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Résumé

Résumé

Le foncteur D5 de Fontaine nous permet d’obtenir des isocristaux a partir des représentations
cristallines. Pour un groupe reductif G, on s’intéresse a étudier la réduction des réseaux dans un
germe de représentations cristallines avec G-structure V', vers les réseaux (qui sont des cristaux)
avec G-structure contenus dans Dcis(V'). En utilisant la théorie des modules de Kisin, on donne
une description de cette réduction en termes du groupe G, dans le cas ol la représentation est
(G-)ordinaire. Pour cela, il faut d’abord généraliser la construction de la filtration de Harder-
Narasimhan des groupes p-divisibles, donnée par Fargues, aux modules de Kisin.

Mots-clés

Modules de Kisin, Filtration de Harder-Narasimhan, Représentations cristallines, G-structure.

Abstract

Fontaine’s D.is functor allows us to associate an isocrystal to any crystalline representation. For
a reductive group G, we study the reduction of lattices inside a germ of crystalline representations
with G-structure V' to lattices (which are crystals) with G-structure inside Dgis(V). Using
Kisin modules theory, we give a description of this reduction in terms of G, in the case when
the representation V' is (G-)ordinary. In order to do that, first we need to generalize Fargues’
construction of the Harder-Narasimhan filtration for p-divisible groups to Kisin modules.

Keywords

Kisin modules, Harder-Narasimhan filtration, Crystalline representations, G-structure.
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Chapter 1

Introduction

1.1 The problem

Integral models of Shimura varieties have been constructed by Kisin in [26] and [27], and by
Kisin and Pappas in [28]. Given an integral model, we can ask ourselves how to reduce special
cycles of the Shimura variety at places of good reduction. This thesis was motivated by that
question, in particular, by the study of 0-dimensional special cycles, which thus correspond to
CM points of the Shimura variety. If v is an isogeny class of such points, then v may be described
as a coset

Aut(P\AXP(7) x Xp(7).

The sets XP(v) and X, (y) parameter the level structures prime to p and in p, respectively, and
together they determine the position of a point in the isogeny class. Langlands made a conjecture
in [33] about the mod p points of a Shimura variety. Afterwards, the conjecture was made more
precise by Kottwitz ([30]) and then by Langlands and Rapoport (|34]). This conjecture has
been proved in the case of Shimura varieties of abelian type by Kisin in [24]. The conjecture
implies that the points of the Shimura variety in characteristic p may be described analogously
as disjoint union of sets of the form

Aut(Y\XP(F) x Ap (7).
While the morphism Aut(y) — Aut(¥) and the bijection XAP(y) ~ AP(¥) are well known, the
map

red : X,(y) = X(7)
remains quite mysterious. The aim is to describe the latter as concretely as possible.
In order to do that, we can use methods from integral p-adic Hodge theory and Bruhat-Tits
buildings. In particular, we will be working with Kisin modules and various kinds of well-known
filtrations in p-adic Hodge theory.

The D functor and Bruhat-Tits theory

Let G/Z, be the reductive group such that G, is the group associated to the Shimura variety.
For the integral models constructed by Kisin, there is presumably (see the article by Milne [37]) a
Tannakian description for the reduction map. An element z € X),(y) corresponds to a ®-functor

,ab
z : Repg, G — RepCera Galg
where Repy, | G is the category of Zy-linear representations of G and Repczzab Galg is the category
of abelian crystalline representations of Gal(Q,/K) for some finite extension K of Ko = W (F) []%]

and F = F,. Similarly, an element y € X,(¥) corresponds to a ®-functor

y : Repg, G — Mod%,(]F)

10
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where Modg, ) is the category of finite free W (F)-modules with a Frobenius isomorphism oy :
U*M[%] — M[%] Here o is the lifting to W (F) of the Frobenius on F. Then, the reduction map
is essentially given by

Y= Dgisox

where D, is Kisin’s integral functor

cr,ab

Degyis - RepZ GalK%Mod“},(F)

described in [6] or [25]. For the Tate module T),(X) of a p-divisible group over O, Deyis(Tp(X))
is the Dieudonné crystal of the reduction of X to the residue field F.

Bruhat-Tits buildings provide yet another convenient description of the source and target sets
of the reduction map. The source set X,(v) ~ G(Qp)/G(Zy) is simply the G(Qy)-orbit of the
hyperspecial point of the extended Bruhat-Tits building B¢(Gg,) which corresponds to G/Zj,.
The target set is usually more difficult to grasp, but it may still be embedded in the much larger
Bruhat-Tits building B¢(Gk,) of G over K. Nevertheless, it also has a simple description under
the ordinary condition on ~ (that we shall explain later): in this case the target of our reduction
map is easy to describe, it is the quotient M(Q,)/M(Zy,) where M is a Levi of a parabolic
P =U x M of G associated to the Newton type of y.

Moreover, M(Q,)/M(Zy,) — G(Qp)/G(Zy) is a fundamental domain for the action of U(Q)) on
G(Qp)/G(Zy). Thus, there is a natural retraction

G(Qp)/G<Zp) - M(@p)/M(Zp)

where the source and target sets respectively correspond to X,(y) and &,(5). Our main result,
Theorem [8.5.6] gives us:

Theorem 1.1.1. The above map coincides with the reduction map red : X, () = X,(7).

The Harder-Narasimhan filtration of a G-Kisin module

The proof of the theorem uses the theory of buildings, Wintenberger’s work in [48] on abelian
crystalline representations and the factorization

mod u

Deris © Repl ™ Galye = Modg, 1, 2% Modfy s,

where Modé i is the category of Kisin modules, defined by Kisin in [25] together with the
functor M. We thus have to study G-Kisin modules, i.e. ®-functors

M : Repg, G — Modg 4
and their mod p"-variants,
M, : Repg G — Modg ,, M, = M/p"M

where ModZ , is the category of finitely generated &-modules killed by a power of p and with
no u-torsion with a o-linear morphism ¢ that becomes an isomorphism after inverting E (the
minimal polynomial of an uniformizer of K). Inside this category, there is a full subcategory
Modﬁ[’[ﬂ” i of the category of p-torsion Kisin modules composed by those called aligned (see
Definition |1} '

The key point of the proof is to lift the Newton filtration of Repz, G — Mod{'/V(F) to a filtration
of Harder-Narasimhan type on the G-Kisin module. Harder-Narasimhan filtrations have already
been defined in different contexts such as:
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e Fargues developed a Harder-Narasimhan theory for finite flat group schemes and for filtered
isocrystals in [18] and [19].

e Fargues also defined the Harder-Narasimhan polygon for p-divisible groups in [I8, Theorem
2].

e Moonen (|38]) and Shen ([45]) constructed the Hodge-Newton filtration for a p-divisible
group with additional structures (which corresponds to the case of PEL Shimura varieties),
under the ordinarity condition. This filtration lifts the Newton filtration of the isocrystal.
Shen’s result is more general, since it proves that whenever the Hodge and Newton filtration
of the filtered isocrystal coincide in a break point, we can lift the sub-filtered isocrystal to
a sub-p-divisible group.

1.2 The results

1.2.1 Settings

In chapter 2, we present basic notions about filtrations and lattices on vector spaces and the
space of types of those filtrations (which are principal objects in this thesis). An important op-
erator defined in this chapter is the relative position between two lattices, denoted by Pos. This
operator will be used many times in order to define Harder-Narasimhan filtrations on categories
of Kisin modules (more precisely, it will useful to define degree functions), and to define Hodge
types on those categories, since Pos can be viewed as the type of a filtration. Also, we recall the
Harder-Narasimhan formalism given by André in [2] and we give the tools from the theory of
Bruhat-Tits buildings that we will need.

In chapter 3, we start by setting the p-adic Hodge theory framework in which we will be working.
We recall some properties of modules over the ring & = W(F)[[u]] for F a perfect field of
characteristic p > 0 and W(F) the ring of Witt vectors over F. Let K be a finite extension of
Ky = Frac W(IF), with uniformizer mx. Recall that a Kisin module is a finite free G-module M
together with a Frobenius morphism

om0 @ M[E] S M[E]

where E € G is the minimal polynomial of 7x. These modules were defined by Kisin in [25]. In
the same article, he also constructed a functor

M : Repz Galg — Modg 4,

and such that S)ﬁ(L)/ui)ﬁ(L)[%] ~ Deris(L ®Qp) for any L € Rep7 Galg. Some other categories

of Kisin modules that will appear are: the categories of isogeny classes of Kisin modules that we

denote by Modé ®Q, and Modé[ 1 the category of p°°-torsion Kisin modules that we denote
P

by Modét (formed by finitely generated G-modules killed by a power of p with no u®-torsion,

endowed with a Frobenius) and the category of p-torsion Kisin modules denoted by Modﬁ[[uﬂ o

(formed by finite free F[[u]]-modules endowed with a Frobenius). We also describe the category
MHP of Hodge-Pink modules, defined by Genestier and Lafforgue in [22]. In their article, they
also gave ®-functors

Modg , — MHP — MF%

where MF is the category of filtered isocrystals. Then, they proved that there are equivalence of
categories between Hodge-Pink modules verifying Griffiths transversality condition and filtered
isocrystals, and which sends weakly admissible Hodge-Pink modules (that they define) to weakly
admissible filtered isocrystals.
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All the following categories admit Harder-Narasimhan filtrations:

Repdl Galx < MF% < MHP"*C" < ModZ ©Q, < Modé[%],
where MHPY®C™ denotes the category of weakly admissible Hodge-Pink modules verifying the
Griffiths transversality condition. In particular, the Harder-Narasimhan filtration on Reprfp Galg
is given by Fargues in [I8], where he also showed that this filtration is compatible with tensor
products and with the change of extension K. In Proposition [3.7.1] we show that all the filtra-
tions defined in the categories above are compatible with the functors between the categories,
thus the filtrations are all compatible with tensor products, by Fargues’ result ([18, Corollaire
6]).

Motivated by the study of special points of Shimura varieties, we want to be able to change the
extension K over K. For that reason, we define the germ of crystalline representations (Defi-
nition that we can think of as pairs (V, p) such that (V, p) € Repg, Galk for a sufficiently
large finite extension K of Ky. We denote by Repr{GalKo} the category of germs of crys-
talline representations. In Proposition 3.8.1 we prove that the Fargues filtration on crystalline
representations extends to a filtration on germs of crystalline representation. In Lemma 3.8.2,
following Liu’s results in [35], we have that the functor Repy Galg — Modfy gy, constructed
by Kisin, induces a ®-functor

RepZP{GaIKO} — MOd%/(F) .

1.2.2 Chapters 4, 5 and 6: Fargues filtrations on Kisin modules

Chapter 4 is divided principally in two parts: at the beginning we give a degree and rank function
on objects in Modﬁ[[uﬂ e by

rank(M, ¢pr) = rankg, M and  deg (M, prr) = Pos(M, onp*M).

These functions define a slope function in the sense of André’s formalism and thus Harder-
Narasimhan filtration Fp 1 (M) and its polygon tg ; (M) on each object M € M0d§[[u]],fr' This is
a generalization of the results by Fargues in [19], who gave this construction for finite flat group
schemes (which are related to p™-torsion Kisin modules in the same way p-divisible groups
corresponds to Kisin modules of height 1) and, for this reason, we call Fargues filtration the
Harder-Narasimhan filtrations defined on categories of Kisin modules. In a second part, we
define two types of p-torsion Kisin modules, those who are aligned and those who are flat.
These two properties are given as conditions about the polygons associated to relative positions
between M and the image of the n-th iteration of its Frobenius, but they also have a geometric
interpretation in the Bruhat-Tits building associated to the F((u))-vector space M[2]: we say
that a module is aligned when for n large enough and m > 1, the modules ¢ M are in a same
geodesic ray together with M, when we see these modules as points in the Bruhat-Tits building
of G. We denote by Mod&2L  the category of p-torsion Kisin modules which are aligned. The

F([ul],fr
main result in this section is the following:

,al

Theorem 1.2.1. The Fargues filtration on the category Modﬁuﬂ ¢ 18 compatible with tensor
products, exterior and symmetric powers.

The proof of this theorem follows the ideas of Totaro’s compatibility of semi-stable objects with
tensor products, given in [47]. First, adapting the ideas in [I2], we prove that an object is
semi-stable of slope p (for the slope function defined above) if and only if we have

(M, oy M;Z) + (V(—p),E) <0
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for every R-filtration = defined on V' = M|[2] which is py-stable, V(—p) the filtration with
just one jump at —pu, (—, —) is the scalar product between two filtrations (see section 2.6) and
(—, —;2) a certain scalar product that we will define in section 4.5. The second step is to prove
that for M = My ® My with M; and M> semi-stable of slope, respectively p1 and po, and for
every = = Z1 ® Zo where =1 and Zy are @-stable filtrations on Ml[%] and Mg[%], respectively,
the condition above is verified if we take p = p1 + po. Now, buildings get in the game. There is
a convex projection p sending a p-stable filtration = on M to p(E) = E1 ® Ey for some p-stable

filtrations =1, Zo on, respectively, M7 and M. This projection verifies that
(F,B) < (F,p(8))

for every p-stable filtration Z and every filtration F which is already decomposed, i.e. the tensor
product of two filtrations, see [11, 5.7.7]. In particular, it is true for

F=V(=p) =V(—pm) @ V(-p2).
To finish, we can prove that for M an aligned p-torsion Kisin module, we have
(M, v M;E) < (M, oy M;p(E))

for every py-stable filtration Z on M. The hypothesis aligned is needed in order to have a good
behavior of the Frobenius iterates of M inside the building, with respect to the filtration Z=.

Near the end of the work in this thesis, it came to our attention that an article on this subject
has been published on arXiv, by Levin and Wang Erickson, see [17]. Their theorem seems more
general than ours but their proof uses a different construction.

In chapter 5, we work with p*°-torsion Kisin modules. We want to construct the Fargues filtration
but we need to define our degree function in a different (but equivalent) way, as we cannot define
relative positions on objects in p®°-torsion G-modules in general. For a p®-torsion Kisin module
(M, opr) we define the i-th twist of (M, par) by

(M(Z)7 SOM(i)) = (Mv uiQOM)a

for every i € Z. We can thus reduce ourselves to an effective module and define the rank and
degree functions of (M, ) € Modg | by

rank (M, par) = lengthyy @) (M/uM) and deg(M, o) = lengthg (Q(i)) + i rank(M, oar)

for i large enough and Q(i) = coker ¢ps;). The degree function does not depend on i for a
sufficiently large i € Z. This construction gives the Fargues filtration Fg (M) and its polygon
tp, (M) for every object of Modg .

In chapter 6, we follow the strategy given by Fargues in [18] and Shen in [45] to construct a
Harder-Narasimhan filtration on p-divisible groups under some hypothesis. For a Kisin module
M= (M,pn) € Modé i» We use the polygons defined on the p>-torsion Kisin modules M /p™ M
to define a polygon tp (M) on M, and we prove that this polygon does not depend on the
isogeny class of M. Even though the category Modé i 18 not quasi-abelian, we have good degree
and rank functions ’

rank(M, ops) = rankg M and  deg(M, pyr) = Pos(M @ &, ppr(9* M @ &))

for & the completion of 6[%} with respect to the ideal generated by E. Again, this functions
only depend on the isogeny class of M and gives us an invariant pps. We can define a notion of
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semi-stability using this invariant and we see that it coincides with the semi-stability on M /pM
or M/p"M. We define HN-type Kisin modules as the ones for which there exists a filtration
by Kisin modules and whose graded pieces are semi-stable Kisin modules. In the rest of the
chapter, we prove two important results:

1. Proposition A Kisin module M is HN-type if and only if to (M) = ty (M),
2. Theorem [6.5.3} Every Kisin module is isogenous to a HN-type Kisin module.

Both proofs are made in the same spirit as the proofs given by Fargues and Shen for p-divisible
groups.

1.2.3 Charpter 7: The reduction of germs of GG-crystalline representations

In chapter 7, we will be working with objects with G-structure, for G a reductive group over
Z, (related to the reductive group in the Shimura datum). We start then by presenting the
filtrations, graduations and space of types for fiber functors

wr : Repp G — Bunpg

where O € {Q,,Z,,F,} and R is a ring. Then, we use the result given by Broshi in [7] to prove
the following result, which will be a key tool for us:

Proposition 1.2.2. Let R be a local strictly henselian and faithfully flat O-algebra. Then, any
exact and faithful ®-functor as above is ®-isomorphic to the trivial fiber function wa r (the
forgetful functor).

Even if we start working with a trivial (or isomorphic to trivial) crystalline representation with
G-structure, a priori, the functors that we will apply to it (Fontaine’s D5 functor, Kisin’s 9t
functor, etc.) will change the functor to a non-trivial one. However, the proposition above will
always allow us to reduce to the (isomorphic to the) trivial case. This is very important as
the results we will be using from different authors are only stated for the trivial fiber functor.
Another important result given in this section is a generalization of Haboush theorem, using
Seshadri’s results in [44]:

Proposition 1.2.3. Let L be a field which is an O-algebra. Let I' C R be a subring. Suppose
that a fiber functor wy, : Repp G — Vecty, admits a factorization through an additive @-functor

F : Repp G — Filk

which is compatible with exterior and symmetric powers. Then F is exact, thus a filtration on
wi,.

We use this proposition to prove that the Fargues filtrations and Hodge filtrations defined in
previous sections can be generalized to filtrations on the object with G-structure.
We define the germs of crystalline representations as faithful ®@-functors

V' : Repg, G — Repg, {Galk, }-

Using Fontaine’s functor, we can associate to V a filtered isocrystal with G-structure, that we
denote by D. Let C2(G) be a closed Weyl chamber for the split group G over K, equipped with
the dominance order (this is the set where the types of filtrations on objects with G-structure
live). Then, we define the ordinary germs of crystalline representation with G-structure as those
verifying
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in C%(@), where tx(D) and ty(D) are the Newton and Hodge types associated to the Newton
graduation and Hodge filtration of D, and # is the average of the Galois orbits of a type. In
this case, we can already say something about the reduction map: in Corollary 7.3.24, we prove
that for an ordinary V, there is a factorization of the reduction map red : L(V) — L(D) by

L(V)— L(D,ty(D)) — L(D)

where £(V) and L£(D) are the notations that we will use in the text for the sets corresponding
to Xp(v) and A (¥) in the case of points of Shimura varieties, and L(D,t{;(D)) is the subset
of lattices y in D such that Pos(y,opy) = tu(D). Note that this factorization is always true
(without the ordinary condition) in the case coming from Shimura varieties, as the type t{;(D)
is minuscule in that situation. We also prove the following theorem (Theorem 7.3.25):

Theorem 1.2.4. Suppose V is ordinary, let x : Repz, — Repgp Galg for some K such that V
is defined over it. Let M = Mo x and M = M/pM. Then:

1. The p-torsion Kisin module with G-structure M is aligned.
2. The Kisin module M is HN-type. Therefore its Fargues filtration Fp(M) exists.

In the end of this chapter we define two operators ®%, and ®;;, on, respectively, lattices inside

V' and lattices inside D and prove in Proposition 7.3.27 that they commute with the reduction
map red in the ordinary case. Then, we obtain the following result (Theorem [7.3.30)):

Theorem 1.2.5. For V an ordinary germ of crystalline representations with G-structure, the
map red admits a factorization

L(V) red » L(D, ti(D)).
U(Qp)\L(V)

where U is the unipotent radical of the parabolic subgroup of G stabilizing the Fargues filtration
of V.

1.2.4 Chapter 8: The abelian case

In this chapter we study the particular case when the germ of crystalline representation is
abelian, which is the case that interested us originally (since it is the one coming from CM
points in Shimura varieties). In [43, 2|, Fontaine proves, building on Serre’s results in [42], that
there is an equivalence of categories

~ b
Vi Repg, Tk — Rep&a Galg,
where Tx = lim . . Resgq, (Gp,E)- Then, in [48], Wintenberger constructs a ®-functor
Dry : Repg Tk — Mod%,(F)

and proves that when we restrict ourselves to a finitely generated tensor subcategory V of
Repg, Tk, we have a isomorphism of ®-functors

Dﬂ—Klv ~ (DCI"iS (o) V;é)‘v

We generalize both constructions to germs of crystalline representation with G-structure, in
Proposition [8.2.1] and section [8:3:3] and then give an explicit description, as cocharacters, of the
Hodge and Newton types in Proposition In Proposition [8.3.5] we prove that in this case,
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the Fargues filtration defined on a germ of crystalline representation with G-structure coincides
with the opposed Newton filtration of the G-isocrystal D associated to it.

For the rest of the chapter we restrict ourselves to the ordinary case. Using the explicit descrip-
tion of G-isocrystals given by Kottwitz in [29], [31] and [32], and by Rapoport and Richartz in
[40], we are able to say a little bit more about the reduction map. Putting together the results
in section 8.5, we obtain the main theorem (Theorem [8.5.6)):

Theorem 1.2.6. The reduction map
red : L(V)— L(D,ty(D))
factors through an M (Qy)-equivariant bijection

Ure (Qp\L(V) = L(D, tyy(D)).



Chapter 2

Preliminaries

Most of the structures described in this section can be found in [2] and [I1].

2.1 Space of types and the dominance order

Let T" be a nonzero subring of R and » € N. We define the space of I'-types of length r in three
different but equivalent ways :

1. The cone I'S = {(v1,..., %) €T [ >... 2%}

2. Consider first the group-ring Z[I'] = {t =Y er Ny €7 | ny € Z and t has finite support}.
Inside the group-ring, we have the space of positive elements

NI =<t= Z ny - €’ | ny € Nand t has finite support
~yel

and finally, the space of types of length r is given by

N[[]" = t:va-e”ZnV:randnweN ,
vel ~vel

i.e. it is the subspace of positive elements of degree r.

3. Concave polygons : Continuous functions t : [0,7] — R with f(0) = 0, which are affine on
[i —1,1] for every 1 < i < r with slopes 7; € I" verifying 1 > ... > 7.

We can also define the entire space of I'-types as the union of the spaces of types of length r,
for all » € N. In the second case, the entire space of I'-types corresponds to N[I']. We will drop
the notation I' when there is no confusion about the indexation of the type. We recall some of
the operations that we can consider in the space of types.

Degree
The degree of a type is defined by

1. The map
deg e — r
(Mseesw) = Xy

18
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2. The map
deg NI — r
nyer ny el Zyer Ty -y
3. For a concave polygon, its degree corresponds to the y-coordinate of its ending point.

Degree functions will appear everywhere in this thesis so, in this section, we will show how the
degree of a type behave with respect to other operators that will be defined.

Dominance order

We can define a partial order relation called the dominance order over the space of types of
length r:

(1) In the cone, the order is given by v < ¢ if and only if Zle v < Zle O;forall 1 <k<r

with equality when k& = r, where v = (71,...,7,) and § = (d1,...,0,) are two elements of
IR

(3) Viewed as concave polygons this partial order corresponds to saying that § is above v and
they both have the same extremities.

If t; < tg, then degt; = deg to.

Addition

The addition of two types of length r is given by:
(1) The map
+ IS xI't — RS
(775) = 7+6:(71+517-'-7'7r+5r)
where v = (71,...,7) and § = (01,...,0,).

(3) As concave polygons, the addition corresponds to the usual addition of functions.

From the formula above, it is easy to see that

deg(y + 0) = deg~y + deg .

Norm

We define the norm of a type as
-1 s — Ry
(Y1yee oy r) Y+ ..+ 2
and it verifies two properties.

1. We have ||t; + t2|| < |[t1]| + ||t2]| for all t1,ts € I'Y, since || - || is the euclidean distance
in R, CR". -

2. For ty,ty € T'Y, the inequality for the dominance order t; < to implies an inequality for
the respective norms ||t1]| < [[t2||, moreover ||t|| = ||t2|| implies that t; = t2. To prove
that, let (y1,...,%) < (61,...,6r), thus I = 37, ;v < A; = 7., 65, and the equality
holds for ¢ = r. Then

D 0 = i i=1 (0 = %) (i + i) .
(A = T3) (0 +7i) = 22151 (Ai = Ti)(di1 + Yit1)
(A = Ti)(0i — bit1 + v — Vit1)

AV
=

and the equality holds if and only if (A; —T)(6; — dix1 +vi —Yir1) =0 for 1 <i <r—1,
which means that (y1,...,7) = (01,...,d,).
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Multiplication by scalars

The multiplication by scalars is given by
1. For a type (v1,...,7) and ¢ > 0 an element in T, then ¢ (y1,...,7%) = (¢y1,..., ).
2. For . crny-e” €N[ITand ¢ >0 an element in I, then ¢+ 37 cpny €7 =37 pny - €.

For the degree, we have deg(cy) = cdegr.

Involution

We define the involution of a type as:

(1) For a type v = (71,...,7) € I', it is the map

TRER L r7
Y o= A= (_")/7“7“'7_'71)
(2) For an element of N[I'], it is the map
Lo NI — NI

dovery € o cpny el
The degree verifies deg(v") = — deg .

Concatenation

We define the concatenation of two types as
(1) In the cone, the map

. T S r4+s
« 0 TLxTY — rZ

(77 5) oy k0 = (60'(1)7 cee 760(7‘4-5))

where if v = (y1,...,7%), 6 = (01,...,0s), then (e1,...,€645) = (V1,--+,%,01,...,05) and
0 € 6,45 is a permutation such that €51y > ... > €,(45). From this description, we see
that

c(y*0) =cy*cod

for every =y, d in the space of types and every ¢ > 0 in I.

(2) Inside N[I'], it is the usual addition.

(3) As polygons, the concatenation is the smallest concave polygon above the collection of
points {(i +7,7(i) + ()} o<s<, or, equivalently, the polygon defined as the function
Oi,gjjegNs
yx0 : [0,r+s] — R
x

1

From the first formula, we get deg(y * 0) = deg(y) + deg(9).
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Tensor product
The tensor product of two types is given by
(1) In the cone, the map
® : I'txI'Y — e
(7,0) = Y@= (€s01)s- 5 Co(rs))

where if v = (y1,...,%), 6 = (01,...,0s), then

(€1, y€rs) = (M1 + 015y 4+ 05y v ey Y + 01,00,V + 0s)

and o € G, is a permutation such that €,(1) > ... > €,(r5). From this description, we see
that
c(y®0) =cy®co

for every =, in the space of types and every ¢ > 0 in I'.

(2) Inside N[I'], it is given by the usual multiplication on the group-ring Z[I'] (N[I'] is stable
under this multiplication).

Again, from the first formula, we have deg(y® ) = sdeg~y+rdegd, for v and ¢ of length r and
s, respectively.
Exterior powers

For k > 1, we define the k-th exterior power of a type by

AR I — s

(/ylu-"v’yr) = (lg(l)""’la(s))

where s = (), vt ={wm+.+r 1 <ia<...<ip<rtando € & isa
permutation such that Y1) >...> Yor(s): If we take k bigger than the length of the type, we

will get a zero as its k-th exterior power.
A straightforward calculation gives us

—1
Ay = (7 .
deg(A"y) <k 3 1) degy
In particular, for k = r, we have deg(AFy) = deg~.

Symmetric powers
For k > 1, we define the k-th symmetric power of a type by
Sym* e — s
(717 s >’77") = (lr(l)’ s 710(5))
where s = (r+£_1), {11,...,18} ={vi,+...+7, 1< <...<ip<r}land o € Gsis a

permutation such that Y1) > Vo)
A straightforward calculation gives us

r+k—1
deg(Sym* ~) = 7“( 1 >deg'y.
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2.2 Filtrations

Let I' a non zero subgroup of R, let K be a field and V a finite dimensional K-vector space.
A T-filtration F on V is a collection of K-subspaces (F=7V ) er of V which is decreasing (i.e.
F2V'V © F2VV for 4/ > 7), separated (i.e. FZY = 0 for v large enough), exhaustive (i.e.
FZ7V =V for v small enough) and left continuous (i.e. for all v € T, there exists ¢ > 0 such
that for every 7/ with v — e <~/ < 5, we have F2VV = F27V).

For a filtration F of V', we define

FPWoi=Uo, F2UV oand GrkV = F2IV/FV.

Y>>y

We thus have a short exact sequence of K-vector spaces
0— F>WV — FV — GryV — 0.
This yields a I'-graded K-vector space associated to F,

GrrV:=PGiVv=GEVae. aGkV
vel

where {71,...,7s} = {7 | Gr-V # 0} are called the breaks of F. The type of F (or, equivalently,
the type of Grr) is defined by t(F) = t(Grr) = (y1,...,7s) where each v; for 1 < i < s is
written as many times as the dimension of Gr} V. This is an element in the space of types of
length r = dimg V' defined in last subsection and we have

t(F) = > crdimg (Gry V) -e? in NI
We define the degree of the filtration as the degree of t(F). Thus
deg(F) = ZdimK(Gr} V).
vyel

Example 2.2.1. For v € T', Denote by V() the filtration of V' such that Gr?/(,y) =V and
Gr"y//(v) = 0 if 9/ # 4. For this filtration, we have

t(V(y)) = dimgV -e?
deg(V(y)) = dimgV -~.
Proposition 2.2.1. Some important properties of the filtrations are the following:

1. Let
0=-W =V ->V/W-=0

be an exact sequence of K-vector spaces and let Fyy be a filtration on V. We also con-
sider the filtrations on W and V/W induced by Fy and denote them by Fyw and Fviw
respectively. Then, the types verify

2. Given a filtration F; on a K-vector space V;, for 1 < i < n, we can define a filtration
F=@ F,onV =",V by

FUV) = &in F (Vi)

and it verifies

t(F) =t(F1) *...xt(Fpn).
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3. Let F1 and Fa be two filtrations on a K-vector space V. Then we have
t(F2) < t(Grg (F2))

where Grg, (Fa) is the filtration that Fy induces on Grg, V.. This property is a consequence
of t