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Résumé

Résumé

Le foncteur Dcris de Fontaine nous permet d’obtenir des isocristaux à partir des représentations
cristallines. Pour un groupe reductif G, on s’intéresse à étudier la réduction des réseaux dans un
germe de représentations cristallines avec G-structure V , vers les réseaux (qui sont des cristaux)
avec G-structure contenus dans Dcris(V ). En utilisant la théorie des modules de Kisin, on donne
une description de cette réduction en termes du groupe G, dans le cas où la représentation est
(G-)ordinaire. Pour cela, il faut d’abord généraliser la construction de la filtration de Harder-
Narasimhan des groupes p-divisibles, donnée par Fargues, aux modules de Kisin.

Mots-clés

Modules de Kisin, Filtration de Harder-Narasimhan, Représentations cristallines, G-structure.

Abstract

Fontaine’s Dcris functor allows us to associate an isocrystal to any crystalline representation. For
a reductive groupG, we study the reduction of lattices inside a germ of crystalline representations
with G-structure V to lattices (which are crystals) with G-structure inside Dcris(V ). Using
Kisin modules theory, we give a description of this reduction in terms of G, in the case when
the representation V is (G-)ordinary. In order to do that, first we need to generalize Fargues’
construction of the Harder-Narasimhan filtration for p-divisible groups to Kisin modules.

Keywords

Kisin modules, Harder-Narasimhan filtration, Crystalline representations, G-structure.
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Chapter 1

Introduction

1.1 The problem

Integral models of Shimura varieties have been constructed by Kisin in [26] and [27], and by
Kisin and Pappas in [28]. Given an integral model, we can ask ourselves how to reduce special
cycles of the Shimura variety at places of good reduction. This thesis was motivated by that
question, in particular, by the study of 0-dimensional special cycles, which thus correspond to
CM points of the Shimura variety. If γ is an isogeny class of such points, then γ may be described
as a coset

Aut(γ)\X p(γ)×Xp(γ).

The sets X p(γ) and Xp(γ) parameter the level structures prime to p and in p, respectively, and
together they determine the position of a point in the isogeny class. Langlands made a conjecture
in [33] about the mod p points of a Shimura variety. Afterwards, the conjecture was made more
precise by Kottwitz ([30]) and then by Langlands and Rapoport ([34]). This conjecture has
been proved in the case of Shimura varieties of abelian type by Kisin in [24]. The conjecture
implies that the points of the Shimura variety in characteristic p may be described analogously
as disjoint union of sets of the form

Aut(γ)\X p(γ)×Xp(γ).

While the morphism Aut(γ) → Aut(γ) and the bijection X p(γ) ' X p(γ) are well known, the
map

red : Xp(γ)→ Xp(γ)

remains quite mysterious. The aim is to describe the latter as concretely as possible.
In order to do that, we can use methods from integral p-adic Hodge theory and Bruhat-Tits
buildings. In particular, we will be working with Kisin modules and various kinds of well-known
filtrations in p-adic Hodge theory.

The Dcris functor and Bruhat-Tits theory

Let G/Zp be the reductive group such that GQp is the group associated to the Shimura variety.
For the integral models constructed by Kisin, there is presumably (see the article by Milne [37]) a
Tannakian description for the reduction map. An element x ∈ Xp(γ) corresponds to a ⊗-functor

x : RepZp G→ Repcr,ab
Zp GalK

where RepZp G is the category of Zp-linear representations of G and Repcr,ab
Zp GalK is the category

of abelian crystalline representations of Gal(Qp/K) for some finite extensionK ofK0 = W (F)[1
p ]

and F = Fp. Similarly, an element y ∈ Xp(γ) corresponds to a ⊗-functor

y : RepZp G→ ModσW (F)

10
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where ModσW (F) is the category of finite free W (F)-modules with a Frobenius isomorphism σM :

σ∗M [1
p ]→M [1

p ]. Here σ is the lifting to W (F) of the Frobenius on F. Then, the reduction map
is essentially given by

y = Dcris ◦ x

where Dcris is Kisin’s integral functor

Dcris : Repcr,ab
Zp GalK → ModσW (F)

described in [6] or [25]. For the Tate module Tp(X) of a p-divisible group over OK , Dcris(Tp(X))
is the Dieudonné crystal of the reduction of X to the residue field F.

Bruhat-Tits buildings provide yet another convenient description of the source and target sets
of the reduction map. The source set Xp(γ) ' G(Qp)/G(Zp) is simply the G(Qp)-orbit of the
hyperspecial point of the extended Bruhat-Tits building Be(GQp) which corresponds to G/Zp.
The target set is usually more difficult to grasp, but it may still be embedded in the much larger
Bruhat-Tits building Be(GK0) of G over K0. Nevertheless, it also has a simple description under
the ordinary condition on γ (that we shall explain later): in this case the target of our reduction
map is easy to describe, it is the quotient M(Qp)/M(Zp) where M is a Levi of a parabolic
P = U oM of G associated to the Newton type of y.
Moreover, M(Qp)/M(Zp) ↪→ G(Qp)/G(Zp) is a fundamental domain for the action of U(Qp) on
G(Qp)/G(Zp). Thus, there is a natural retraction

G(Qp)/G(Zp) �M(Qp)/M(Zp)

where the source and target sets respectively correspond to Xp(γ) and Xp(γ). Our main result,
Theorem 8.5.6, gives us:

Theorem 1.1.1. The above map coincides with the reduction map red : Xp(γ)→ Xp(γ).

The Harder-Narasimhan filtration of a G-Kisin module

The proof of the theorem uses the theory of buildings, Wintenberger’s work in [48] on abelian
crystalline representations and the factorization

Dcris : Repcr,ab
Zp GalK

M−→ ModϕS, fr
mod u−−−−→ ModσW (F)

where ModϕS, fr is the category of Kisin modules, defined by Kisin in [25] together with the
functor M. We thus have to study G-Kisin modules, i.e. ⊗-functors

M : RepZp G→ ModϕS, fr

and their mod pn-variants,

Mn : RepZp G→ ModϕS, t, Mn = M/pnM

where ModϕS, t is the category of finitely generated S-modules killed by a power of p and with
no u-torsion with a σ-linear morphism ϕ that becomes an isomorphism after inverting E (the
minimal polynomial of an uniformizer of K). Inside this category, there is a full subcategory
Modϕ,al

F[[u]],fr of the category of p-torsion Kisin modules composed by those called aligned (see
Definition 1).

The key point of the proof is to lift the Newton filtration of RepZp G→ ModσW (F) to a filtration
of Harder-Narasimhan type on the G-Kisin module. Harder-Narasimhan filtrations have already
been defined in different contexts such as:
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• Fargues developed a Harder-Narasimhan theory for finite flat group schemes and for filtered
isocrystals in [18] and [19].

• Fargues also defined the Harder-Narasimhan polygon for p-divisible groups in [18, Theorem
2].

• Moonen ([38]) and Shen ([45]) constructed the Hodge-Newton filtration for a p-divisible
group with additional structures (which corresponds to the case of PEL Shimura varieties),
under the ordinarity condition. This filtration lifts the Newton filtration of the isocrystal.
Shen’s result is more general, since it proves that whenever the Hodge and Newton filtration
of the filtered isocrystal coincide in a break point, we can lift the sub-filtered isocrystal to
a sub-p-divisible group.

1.2 The results

1.2.1 Settings

In chapter 2, we present basic notions about filtrations and lattices on vector spaces and the
space of types of those filtrations (which are principal objects in this thesis). An important op-
erator defined in this chapter is the relative position between two lattices, denoted by Pos. This
operator will be used many times in order to define Harder-Narasimhan filtrations on categories
of Kisin modules (more precisely, it will useful to define degree functions), and to define Hodge
types on those categories, since Pos can be viewed as the type of a filtration. Also, we recall the
Harder-Narasimhan formalism given by André in [2] and we give the tools from the theory of
Bruhat-Tits buildings that we will need.

In chapter 3, we start by setting the p-adic Hodge theory framework in which we will be working.
We recall some properties of modules over the ring S = W (F)[[u]] for F a perfect field of
characteristic p > 0 and W (F) the ring of Witt vectors over F. Let K be a finite extension of
K0 = FracW (F), with uniformizer πK . Recall that a Kisin module is a finite free S-module M
together with a Frobenius morphism

ϕM : ϕ∗M [ 1
E ]
∼−→M [ 1

E ]

where E ∈ S is the minimal polynomial of πK . These modules were defined by Kisin in [25]. In
the same article, he also constructed a functor

M : Repcr
Zp GalK → ModϕS, fr

and such that M(L)/uM(L)[1
p ] ' Dcris(L⊗Qp) for any L ∈ Repcr

Zp GalK . Some other categories
of Kisin modules that will appear are: the categories of isogeny classes of Kisin modules that we
denote by ModϕS⊗Qp and Modϕ

S[ 1
p

]
, the category of p∞-torsion Kisin modules that we denote

by ModϕS, t (formed by finitely generated S-modules killed by a power of p with no u∞-torsion,
endowed with a Frobenius) and the category of p-torsion Kisin modules denoted by ModϕF[[u]],fr

(formed by finite free F[[u]]-modules endowed with a Frobenius). We also describe the category
MHP of Hodge-Pink modules, defined by Genestier and Lafforgue in [22]. In their article, they
also gave ⊗-functors

ModϕS, fr → MHP→ MFσK

where MFσK is the category of filtered isocrystals. Then, they proved that there are equivalence of
categories between Hodge-Pink modules verifying Griffiths transversality condition and filtered
isocrystals, and which sends weakly admissible Hodge-Pink modules (that they define) to weakly
admissible filtered isocrystals.
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All the following categories admit Harder-Narasimhan filtrations:

Repcr
Qp GalK

'←−
wa

MFσK
'←− MHPwa,Gr ↪→ ModϕS⊗Qp ↪→ Modϕ

S[ 1
p

]
,

where MHPwa,Gr denotes the category of weakly admissible Hodge-Pink modules verifying the
Griffiths transversality condition. In particular, the Harder-Narasimhan filtration on Repcr

Qp GalK
is given by Fargues in [18], where he also showed that this filtration is compatible with tensor
products and with the change of extension K. In Proposition 3.7.1, we show that all the filtra-
tions defined in the categories above are compatible with the functors between the categories,
thus the filtrations are all compatible with tensor products, by Fargues’ result ([18, Corollaire
6]).
Motivated by the study of special points of Shimura varieties, we want to be able to change the
extension K over K0. For that reason, we define the germ of crystalline representations (Defi-
nition 7.3.8) that we can think of as pairs (V, ρ) such that (V, ρ) ∈ RepQp GalK for a sufficiently
large finite extension K of K0. We denote by RepQp{GalK0} the category of germs of crys-
talline representations. In Proposition 3.8.1 we prove that the Fargues filtration on crystalline
representations extends to a filtration on germs of crystalline representation. In Lemma 3.8.2,
following Liu’s results in [35], we have that the functor RepZp GalK → ModσW (F), constructed
by Kisin, induces a ⊗-functor

RepZp{GalK0} → ModσW (F) .

1.2.2 Chapters 4, 5 and 6: Fargues filtrations on Kisin modules

Chapter 4 is divided principally in two parts: at the beginning we give a degree and rank function
on objects in ModϕF[[u]],fr by

rank(M,ϕM ) = rankF[[u]]M and deg (M,ϕM ) = Pos(M,ϕMϕ
∗M).

These functions define a slope function in the sense of André’s formalism and thus Harder-
Narasimhan filtration FF,1(M) and its polygon tF,1(M) on each object M ∈ ModϕF[[u]],fr. This is
a generalization of the results by Fargues in [19], who gave this construction for finite flat group
schemes (which are related to p∞-torsion Kisin modules in the same way p-divisible groups
corresponds to Kisin modules of height 1) and, for this reason, we call Fargues filtration the
Harder-Narasimhan filtrations defined on categories of Kisin modules. In a second part, we
define two types of p-torsion Kisin modules, those who are aligned and those who are flat.
These two properties are given as conditions about the polygons associated to relative positions
between M and the image of the n-th iteration of its Frobenius, but they also have a geometric
interpretation in the Bruhat-Tits building associated to the F((u))-vector space M [ 1

u ]: we say
that a module is aligned when for n large enough and m ≥ 1, the modules ϕmnM are in a same
geodesic ray together with M , when we see these modules as points in the Bruhat-Tits building
of G. We denote by Modϕ,al

F[[u]],fr the category of p-torsion Kisin modules which are aligned. The
main result in this section is the following:

Theorem 1.2.1. The Fargues filtration on the category Modϕ,al
F[[u]],fr is compatible with tensor

products, exterior and symmetric powers.

The proof of this theorem follows the ideas of Totaro’s compatibility of semi-stable objects with
tensor products, given in [47]. First, adapting the ideas in [12], we prove that an object is
semi-stable of slope µ (for the slope function defined above) if and only if we have

〈M,ϕVM ; Ξ〉+ 〈V (−µ),Ξ〉 ≤ 0



CHAPTER 1. INTRODUCTION 14

for every R-filtration Ξ defined on V = M [ 1
u ] which is ϕV -stable, V (−µ) the filtration with

just one jump at −µ, 〈−,−〉 is the scalar product between two filtrations (see section 2.6) and
〈−,−; Ξ〉 a certain scalar product that we will define in section 4.5. The second step is to prove
that for M = M1 ⊗M2 with M1 and M2 semi-stable of slope, respectively µ1 and µ2, and for
every Ξ = Ξ1 ⊗ Ξ2 where Ξ1 and Ξ2 are ϕ-stable filtrations on M1[ 1

u ] and M2[ 1
u ], respectively,

the condition above is verified if we take µ = µ1 + µ2. Now, buildings get in the game. There is
a convex projection p sending a ϕ-stable filtration Ξ on M to p(Ξ) = Ξ1 ⊗Ξ2 for some ϕ-stable
filtrations Ξ1, Ξ2 on, respectively, M1 and M2. This projection verifies that

〈F ,Ξ〉 ≤ 〈F , p(Ξ)〉

for every ϕ-stable filtration Ξ and every filtration F which is already decomposed, i.e. the tensor
product of two filtrations, see [11, 5.7.7]. In particular, it is true for

F = V (−µ) = V (−µ1)⊗ V (−µ2).

To finish, we can prove that for M an aligned p-torsion Kisin module, we have

〈M,ϕVM ; Ξ〉 ≤ 〈M,ϕVM ; p(Ξ)〉

for every ϕV -stable filtration Ξ on M . The hypothesis aligned is needed in order to have a good
behavior of the Frobenius iterates of M inside the building, with respect to the filtration Ξ.

Near the end of the work in this thesis, it came to our attention that an article on this subject
has been published on arXiv, by Levin and Wang Erickson, see [17]. Their theorem seems more
general than ours but their proof uses a different construction.

In chapter 5, we work with p∞-torsion Kisin modules. We want to construct the Fargues filtration
but we need to define our degree function in a different (but equivalent) way, as we cannot define
relative positions on objects in p∞-torsion S-modules in general. For a p∞-torsion Kisin module
(M,ϕM ) we define the i-th twist of (M,ϕM ) by

(M(i), ϕM(i)) = (M,uiϕM ),

for every i ∈ Z. We can thus reduce ourselves to an effective module and define the rank and
degree functions of (M,ϕM ) ∈ ModϕS, t by

rank(M,ϕM ) = lengthW (F)(M/uM) and deg(M,ϕM ) = lengthS(Q(i)) + i rank(M,ϕM )

for i large enough and Q(i) = cokerϕM(i). The degree function does not depend on i for a
sufficiently large i ∈ Z. This construction gives the Fargues filtration FF,t(M) and its polygon
tF,t(M) for every object of ModϕS, t.

In chapter 6, we follow the strategy given by Fargues in [18] and Shen in [45] to construct a
Harder-Narasimhan filtration on p-divisible groups under some hypothesis. For a Kisin module
M = (M,ϕM ) ∈ ModϕS, fr, we use the polygons defined on the p∞-torsion Kisin modulesM/pnM
to define a polygon tF,∞(M) on M , and we prove that this polygon does not depend on the
isogeny class ofM . Even though the category ModϕS, fr is not quasi-abelian, we have good degree
and rank functions

rank(M,ϕM ) = rankSM and deg(M,ϕM ) = Pos(M ⊗ Ŝ, ϕM (ϕ∗M ⊗ Ŝ))

for Ŝ the completion of S[1
p ] with respect to the ideal generated by E. Again, this functions

only depend on the isogeny class of M and gives us an invariant µM . We can define a notion of
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semi-stability using this invariant and we see that it coincides with the semi-stability on M/pM
or M/pnM . We define HN-type Kisin modules as the ones for which there exists a filtration
by Kisin modules and whose graded pieces are semi-stable Kisin modules. In the rest of the
chapter, we prove two important results:

1. Proposition 6.4.3: A Kisin module M is HN-type if and only if t∞(M) = tF,1(M),

2. Theorem 6.5.3: Every Kisin module is isogenous to a HN-type Kisin module.

Both proofs are made in the same spirit as the proofs given by Fargues and Shen for p-divisible
groups.

1.2.3 Charpter 7: The reduction of germs of G-crystalline representations

In chapter 7, we will be working with objects with G-structure, for G a reductive group over
Zp (related to the reductive group in the Shimura datum). We start then by presenting the
filtrations, graduations and space of types for fiber functors

ωR : RepOG→ BunR

where O ∈ {Qp,Zp,Fp} and R is a ring. Then, we use the result given by Broshi in [7] to prove
the following result, which will be a key tool for us:

Proposition 1.2.2. Let R be a local strictly henselian and faithfully flat O-algebra. Then, any
exact and faithful ⊗-functor as above is ⊗-isomorphic to the trivial fiber function ωG,R (the
forgetful functor).

Even if we start working with a trivial (or isomorphic to trivial) crystalline representation with
G-structure, à priori, the functors that we will apply to it (Fontaine’s Dcris functor, Kisin’s M
functor, etc.) will change the functor to a non-trivial one. However, the proposition above will
always allow us to reduce to the (isomorphic to the) trivial case. This is very important as
the results we will be using from different authors are only stated for the trivial fiber functor.
Another important result given in this section is a generalization of Haboush theorem, using
Seshadri’s results in [44]:

Proposition 1.2.3. Let L be a field which is an O-algebra. Let Γ ⊂ R be a subring. Suppose
that a fiber functor ωL : RepOG→ VectL admits a factorization through an additive ⊗-functor

F : RepOG→ FilΓL

which is compatible with exterior and symmetric powers. Then F is exact, thus a filtration on
ωL.

We use this proposition to prove that the Fargues filtrations and Hodge filtrations defined in
previous sections can be generalized to filtrations on the object with G-structure.
We define the germs of crystalline representations as faithful ⊗-functors

V : RepQp G→ RepQp{GalK0}.

Using Fontaine’s functor, we can associate to V a filtered isocrystal with G-structure, that we
denote by D. Let CQ(G) be a closed Weyl chamber for the split group G over K0, equipped with
the dominance order (this is the set where the types of filtrations on objects with G-structure
live). Then, we define the ordinary germs of crystalline representation with G-structure as those
verifying

tN(D) = tH(D)#
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in CQ(G), where tN(D) and tH(D) are the Newton and Hodge types associated to the Newton
graduation and Hodge filtration of D, and # is the average of the Galois orbits of a type. In
this case, we can already say something about the reduction map: in Corollary 7.3.24, we prove
that for an ordinary V , there is a factorization of the reduction map red : L(V )→ L(D) by

L(V )→ L(D, tιH(D)) ↪→ L(D)

where L(V ) and L(D) are the notations that we will use in the text for the sets corresponding
to Xp(γ) and Xp(γ) in the case of points of Shimura varieties, and L(D, tιH(D)) is the subset
of lattices y in D such that Pos(y, σDy) = tH(D). Note that this factorization is always true
(without the ordinary condition) in the case coming from Shimura varieties, as the type tιH(D)
is minuscule in that situation. We also prove the following theorem (Theorem 7.3.25):

Theorem 1.2.4. Suppose V is ordinary, let x : RepZp → Repcr
Zp GalK for some K such that V

is defined over it. Let M = M ◦ x and M = M/pM . Then:

1. The p-torsion Kisin module with G-structure M is aligned.

2. The Kisin module M is HN-type. Therefore its Fargues filtration FF(M) exists.

In the end of this chapter we define two operators Φs
ét and Φs

cris on, respectively, lattices inside
V and lattices inside D and prove in Proposition 7.3.27 that they commute with the reduction
map red in the ordinary case. Then, we obtain the following result (Theorem 7.3.30):

Theorem 1.2.5. For V an ordinary germ of crystalline representations with G-structure, the
map red admits a factorization

L(V ) L(D, tιH(D)).

U(Qp)\L(V )

red

π

where U is the unipotent radical of the parabolic subgroup of G stabilizing the Fargues filtration
of V .

1.2.4 Chapter 8: The abelian case

In this chapter we study the particular case when the germ of crystalline representation is
abelian, which is the case that interested us originally (since it is the one coming from CM
points in Shimura varieties). In [43, 2], Fontaine proves, building on Serre’s results in [42], that
there is an equivalence of categories

V u
K : RepQp TK

∼−→ Repcr,ab
Qp GalK ,

where TK = lim←−E⊂K ResE/Qp(Gm,E). Then, in [48], Wintenberger constructs a ⊗-functor

DπK : RepQ TK → ModσW (F)

and proves that when we restrict ourselves to a finitely generated tensor subcategory V of
RepQp TK , we have a isomorphism of ⊗-functors

DπK |V ' (Dcris ◦ V u
K)|V .

We generalize both constructions to germs of crystalline representation with G-structure, in
Proposition 8.2.1 and section 8.3.3, and then give an explicit description, as cocharacters, of the
Hodge and Newton types in Proposition 8.3.3. In Proposition 8.3.5, we prove that in this case,
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the Fargues filtration defined on a germ of crystalline representation with G-structure coincides
with the opposed Newton filtration of the G-isocrystal D associated to it.

For the rest of the chapter we restrict ourselves to the ordinary case. Using the explicit descrip-
tion of G-isocrystals given by Kottwitz in [29], [31] and [32], and by Rapoport and Richartz in
[40], we are able to say a little bit more about the reduction map. Putting together the results
in section 8.5, we obtain the main theorem (Theorem 8.5.6):

Theorem 1.2.6. The reduction map

red : L(V )→ L(D, tιH(D))

factors through an M(Qp)-equivariant bijection

UFF
(Qp)\L(V ) ' L(D, tιH(D)).



Chapter 2

Preliminaries

Most of the structures described in this section can be found in [2] and [11].

2.1 Space of types and the dominance order

Let Γ be a nonzero subring of R and r ∈ N. We define the space of Γ-types of length r in three
different but equivalent ways :

1. The cone Γr≥ = {(γ1, . . . , γr) ∈ Γr | γ1 ≥ . . . ≥ γr}.

2. Consider first the group-ring Z[Γ] =
{
t =

∑
γ∈Γ nγ · eγ | nγ ∈ Z and t has finite support

}
.

Inside the group-ring, we have the space of positive elements

N[Γ] =

t =
∑
γ∈Γ

nγ · eγ | nγ ∈ N and t has finite support


and finally, the space of types of length r is given by

N[Γ]r =

t =
∑
γ∈Γ

nγ · eγ |
∑
γ∈Γ

nγ = r and nγ ∈ N

 ,

i.e. it is the subspace of positive elements of degree r.

3. Concave polygons : Continuous functions t : [0, r]→ R with f(0) = 0, which are affine on
[i− 1, i] for every 1 ≤ i ≤ r with slopes γi ∈ Γ verifying γ1 ≥ . . . ≥ γr.

We can also define the entire space of Γ-types as the union of the spaces of types of length r,
for all r ∈ N. In the second case, the entire space of Γ-types corresponds to N[Γ]. We will drop
the notation Γ when there is no confusion about the indexation of the type. We recall some of
the operations that we can consider in the space of types.

Degree

The degree of a type is defined by

1. The map
deg : Γr≥ → Γ

(γ1, . . . , γr) 7→
∑r

i=1 γi

18
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2. The map
deg : N[Γ] → Γ∑

γ∈Γ nγ · eγ 7→
∑

γ∈Γ nγ · γ

3. For a concave polygon, its degree corresponds to the y-coordinate of its ending point.

Degree functions will appear everywhere in this thesis so, in this section, we will show how the
degree of a type behave with respect to other operators that will be defined.

Dominance order

We can define a partial order relation called the dominance order over the space of types of
length r:

(1) In the cone, the order is given by γ ≤ δ if and only if
∑k

i=1 γi ≤
∑k

i=1 δi for all 1 ≤ k ≤ r
with equality when k = r, where γ = (γ1, . . . , γr) and δ = (δ1, . . . , δr) are two elements of
Γr≥.

(3) Viewed as concave polygons this partial order corresponds to saying that δ is above γ and
they both have the same extremities.

If t1 ≤ t2, then deg t1 = deg t2.

Addition

The addition of two types of length r is given by:

(1) The map
+ Γr≥ × Γr≥ → Γr≥

(γ, δ) 7→ γ + δ = (γ1 + δ1, . . . , γr + δr)

where γ = (γ1, . . . , γr) and δ = (δ1, . . . , δr).

(3) As concave polygons, the addition corresponds to the usual addition of functions.

From the formula above, it is easy to see that

deg(γ + δ) = deg γ + deg δ.

Norm

We define the norm of a type as

|| · || : Γr≥ → R+

(γ1, . . . , γr) 7→
√
γ2

1 + . . .+ γ2
r

and it verifies two properties.

1. We have ||t1 + t2|| ≤ ||t1|| + ||t2|| for all t1, t2 ∈ Γr≥, since || · || is the euclidean distance
in Rr+ ⊂ Rr.

2. For t1, t2 ∈ Γr≥, the inequality for the dominance order t1 ≤ t2 implies an inequality for
the respective norms ||t1|| ≤ ||t2||, moreover ||t1|| = ||t2|| implies that t1 = t2. To prove
that, let (γ1, . . . , γr) ≤ (δ1, . . . , δr), thus Γi =

∑
j≤i γj ≤ ∆i =

∑
j≤i δj , and the equality

holds for i = r. Then∑r
i=1 δ

2
i −

∑r
i=1 γ

2
i =

∑r
i=1 (δi − γi)(δi + γi)

=
∑r

i=1 (∆i − Γi)(δi + γi)−
∑r−1

i=1 (∆i − Γi)(δi+1 + γi+1)

=
∑r−1

i=1 (∆i − Γi)(δi − δi+1 + γi − γi+1)
≥ 0,

and the equality holds if and only if (∆i − Γi)(δi − δi+1 + γi − γi+1) = 0 for 1 ≤ i ≤ r− 1,
which means that (γ1, . . . , γr) = (δ1, . . . , δr).
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Multiplication by scalars

The multiplication by scalars is given by

1. For a type (γ1, . . . , γr) and c > 0 an element in Γ, then c · (γ1, . . . , γr) = (cγ1, . . . , cγr).

2. For
∑

γ∈Γ nγ · eγ ∈ N[Γ] and c > 0 an element in Γ, then c ·
∑

γ∈Γ nγ · eγ =
∑

γ∈Γ nγ · ecγ .

For the degree, we have deg(cγ) = cdeg γ.

Involution

We define the involution of a type as:

(1) For a type γ = (γ1, . . . , γr) ∈ Γr≥, it is the map

·ι : Γr≥ → Γr≥
γ 7→ γι = (−γr, . . . ,−γ1)

.

(2) For an element of N[Γ], it is the map

·ι : N[Γ] → N[Γ]∑
γ∈Γ nγ · eγ 7→

∑
γ∈Γ nγ · e−γ

The degree verifies deg(γι) = −deg γ.

Concatenation

We define the concatenation of two types as

(1) In the cone, the map

∗ : Γr≥ × Γs≥ → Γr+s≥
(γ, δ) 7→ γ ∗ δ = (εσ(1), . . . , εσ(r+s))

where if γ = (γ1, . . . , γr), δ = (δ1, . . . , δs), then (ε1, . . . , εr+s) = (γ1, . . . , γr, δ1, . . . , δs) and
σ ∈ Sr+s is a permutation such that εσ(1) ≥ . . . ≥ εσ(r+s). From this description, we see
that

c(γ ∗ δ) = cγ ∗ cδ

for every γ, δ in the space of types and every c > 0 in Γ.

(2) Inside N[Γ], it is the usual addition.

(3) As polygons, the concatenation is the smallest concave polygon above the collection of
points {(i+ j, γ(i) + δ(j))} 0 ≤ i ≤ r

0 ≤ j ≤ s
i, j ∈ N

or, equivalently, the polygon defined as the function

γ ∗ δ : [0, r + s] → R
x 7→ sup

a + b = x
0 ≤ a ≤ r
0 ≤ b ≤ s

γ(a) + δ(b)

From the first formula, we get deg(γ ∗ δ) = deg(γ) + deg(δ).
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Tensor product

The tensor product of two types is given by

(1) In the cone, the map

⊗ : Γr≥ × Γs≥ → Γrs≥
(γ, δ) 7→ γ ⊗ δ = (εσ(1), . . . , εσ(rs))

where if γ = (γ1, . . . , γr), δ = (δ1, . . . , δs), then

(ε1, . . . , εrs) = (γ1 + δ1, . . . , γ1 + δs, . . . , γr + δ1, . . . , γr + δs)

and σ ∈ Srs is a permutation such that εσ(1) ≥ . . . ≥ εσ(rs). From this description, we see
that

c(γ ⊗ δ) = cγ ⊗ cδ

for every γ, δ in the space of types and every c > 0 in Γ.

(2) Inside N[Γ], it is given by the usual multiplication on the group-ring Z[Γ] (N[Γ] is stable
under this multiplication).

Again, from the first formula, we have deg(γ⊗ δ) = s deg γ+ r deg δ, for γ and δ of length r and
s, respectively.

Exterior powers

For k ≥ 1, we define the k-th exterior power of a type by

Λk : Γr≥ → Γs≥
(γ1, . . . , γr) 7→ (γ

σ(1)
, . . . , γ

σ(s)
)

where s =
(
r
k

)
, {γ

1
, . . . , γ

s
} = {γi1 + . . . + γik | 1 ≤ i1 < . . . < ik ≤ r} and σ ∈ Ss is a

permutation such that γ
σ(1)
≥ . . . ≥ γ

σ(s)
. If we take k bigger than the length of the type, we

will get a zero as its k-th exterior power.
A straightforward calculation gives us

deg(Λkγ) =

(
r − 1

k − 1

)
deg γ.

In particular, for k = r, we have deg(Λkγ) = deg γ.

Symmetric powers

For k ≥ 1, we define the k-th symmetric power of a type by

Symk : Γr≥ → Γs≥
(γ1, . . . , γr) 7→ (γ

σ(1)
, . . . , γ

σ(s)
)

where s =
(
r+k−1
k

)
, {γ

1
, . . . , γ

s
} = {γi1 + . . . + γik | 1 ≤ i1 ≤ . . . ≤ ik ≤ r} and σ ∈ Ss is a

permutation such that γ
σ(1)
≥ . . . ≥ γ

σ(s)
.

A straightforward calculation gives us

deg(Symk γ) = r

(
r + k − 1

k − 1

)
deg γ.
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2.2 Filtrations

Let Γ a non zero subgroup of R, let K be a field and V a finite dimensional K-vector space.
A Γ-filtration F on V is a collection of K-subspaces (F≥γV )γ∈Γ of V which is decreasing (i.e.
F≥γ′V ⊂ F≥γV for γ′ ≥ γ), separated (i.e. F≥γ = 0 for γ large enough), exhaustive (i.e.
F≥γV = V for γ small enough) and left continuous (i.e. for all γ ∈ Γ, there exists ε > 0 such
that for every γ′ with γ − ε ≤ γ′ ≤ γ, we have F≥γ′V = F≥γV ).

For a filtration F of V , we define

F>γV :=
⋃
γ′>γ F≥γ

′
V and GrγF V = F≥γV/F>γV.

We thus have a short exact sequence of K-vector spaces

0→ F>γV → F≥γV → GrγF V → 0.

This yields a Γ-graded K-vector space associated to F ,

GrF V :=
⊕
γ∈Γ

GrγF V = Grγ1F V ⊕ . . .⊕GrγsF V

where {γ1, . . . , γs} = {γ | GrγF V 6= 0} are called the breaks of F . The type of F (or, equivalently,
the type of GrF ) is defined by t(F) = t(GrF ) = (γ1, . . . , γs) where each γi for 1 ≤ i ≤ s is
written as many times as the dimension of GrγiF V . This is an element in the space of types of
length r = dimK V defined in last subsection and we have

t(F) =
∑

γ∈Γ dimK(GrγF V ) · eγ in N[Γ].

We define the degree of the filtration as the degree of t(F). Thus

deg(F) =
∑
γ∈Γ

dimK(GrγF V ) · γ.

Example 2.2.1. For γ ∈ Γ, Denote by V (γ) the filtration of V such that GrγV (γ) = V and

Grγ
′

V (γ) = 0 if γ′ 6= γ. For this filtration, we have

t(V (γ)) = dimK V · eγ
deg(V (γ)) = dimK V · γ.

Proposition 2.2.1. Some important properties of the filtrations are the following:

1. Let
0→W → V → V/W → 0

be an exact sequence of K-vector spaces and let FV be a filtration on V . We also con-
sider the filtrations on W and V/W induced by FV and denote them by FW and FV/W
respectively. Then, the types verify

t(FV ) ≤ t(FW ) ∗ t(FV/W ).

2. Given a filtration Fi on a K-vector space Vi, for 1 ≤ i ≤ n, we can define a filtration
F = ⊕ni=1Fi on V = ⊕ni=1Vi by

Fγ(V ) = ⊕ni=1F
γ
i (Vi)

and it verifies
t(F) = t(F1) ∗ . . . ∗ t(Fn).
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3. Let F1 and F2 be two filtrations on a K-vector space V . Then we have

t(F2) ≤ t(GrF1(F2))

where GrF1(F2) is the filtration that F2 induces on GrF1 V . This property is a consequence
of the last two properties.

4. Given a filtration Fi on a K-vector space Vi, for i = 1, 2, we can define a filtration
F = F1 ⊗F2 on V = V1 ⊗ V2 by

Fγ(V ) =
∑

γ1 + γ2 = γ
γ1, γ2 ∈ Γ

Fγ11 (V1)⊗Fγ22 (V2).

Thus
GrγF (V ) =

⊕
γ1 + γ2 = γ
γ1, γ2 ∈ Γ

Grγ1F1
(V1)⊗Grγ2F2

(V2)

and
t(F) = t(F1)⊗ t(F2).

5. Given a filtration F on a K-vector space V , we can define a filtration Symk F on Symk V
for every k ≥ 1 by taking the image of F by V ⊗k � Symk V , and we have

t(Symk F) = Symk(t(F)).

6. Given a filtration F on a K-vector space V , we can define a filtration ΛkF on ΛkV for
every k ≥ 1 by taking the image of F by V ⊗k � ΛkV , and we have

t(ΛkF) = Λk(t(F)).

2.3 Lattices

Suppose OK is a discrete valuation ring with uniformizer u, fraction field K and residue field k.
Let M1 and M2 be two OK-lattices inside the same finite dimensional K-vector space V .

Let M1 = M1/uM1. We can define a Z-filtration F(M1,M2) on the k-vector space M1 by

F i(M1,M2) =
uiM2 ∩M1 + uM1

uM1

for every i ∈ Z. The filtration F(M1,M2) allows us to define two operators over the lattices, by

Pos(M1,M2) = t(F(M1,M2)) and ν(M1,M2) = deg(F(M1,M2)).

We call Pos(M1,M2) the relative position of M1 and M2 and we are going to explain the reason
why. There exists a basis {e1, . . . , er} of V adapted to M1 and M2, meaning that

M1 =
r⊕
i=1

OK · ei, M2 =
r⊕
i=1

OK · u−aiei

for some ai ∈ Z verifying a1 > . . . > ar. Then (a1, . . . , an) does not depend upon the chosen
basis. In fact:

Pos(M1,M2) = (a1, . . . , ar) and ν(M1,M2) =
r∑
i=1

ai
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Indeed,
ukM2 ∩M1 =

⊕r
i=1OK · umax{k−ai,0}ei

ukM2 ∩M1 + uM1 =
⊕r

i=1OK · umin{1,max{k−ai,0}}ei

thus

Fk(M1,M2) =
r⊕
i=1

k ·
(

0 if k > ai
ei if k ≤ ai

)
,

where ei is the image of ei in M1, so

GrkF(M1,M2) =
r⊕
i=1

k ·
(

0 if k 6= ai
ei if k = ai

)
,

hence t(F(M1,M2)) = (a1, . . . , ar).

Remark 1. If M1 ⊂ M2, then Pos(M1,M2) corresponds to the invariant factors (given by the
structure theorem for finitely generated torsion modules over a principal ideal domain) of the
quotient Q = M2/M1 and ν(M1,M2) corresponds to the length of Q.

The relative position of two lattices is an element of the space of Z-types. For two OK-lattices
M1, M2 inside V , we can also define the operator

d(M1,M2) = ||Pos(M1,M2)||

where || · || is the norm of a type.

Lemma 2.3.1. Let M1,M2,M3 be OK-lattices in a K-vector space. Then:

1. The relative position verifies the triangular inequality, i.e.

Pos(M1,M3) ≤ Pos(M1,M2) + Pos(M2,M3).

2. The operator d verifies the triangular inequality

d(M1,M3) ≤ d(M1,M2) + d(M2,M3),

thus d is a distance.

Proof. The triangular inequality is given in [11, 6.1]. For the second point, we have

d(M1,M3) = ||Pos(M1,M3)||
≤ ||Pos(M1,M2) + Pos(M2,M3)||
≤ ||Pos(M1,M2)||+ ||Pos(M2,M3)||
= d(M1,M2) + d(M2,M3).

where the first and second inequalities are given, respectively, by the first and second properties
of the norm listed in 2.1.

We study some properties of the filtration associated to two lattices in the next proposition and,
afterwards, we will study the properties of the relative position.

Proposition 2.3.2. The filtration F(M1,M2) verifies the following properties:

1. It is compatible with tensor products, i.e. for M1,M2 (resp. M ′1,M
′
2) two OK-lattices in

V (resp. V ′), we have

F(M1 ⊗M ′1,M2 ⊗M ′2) = F(M1,M2)⊗F(M ′1,M
′
2).
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2. Let 0 → W → V
π−→ V/W → 0 be an exact sequence of K-vector spaces, M1, M2 two

lattices in V , and let Ni = Mi ∩W and Qi = π(Mi) for i = 1, 2. Suppose there exists a
basis adapted to M1, M2 and W . Then, there is an exact sequence

0→ F i(N1, N2)→ F i(M1,M2)→ F i(Q1, Q2)→ 0

for each i ∈ Z.

3. Symmetric powers: for M1 and M2 two OK-lattices in V , we have

F(SymkM1,SymkM2) = Symk(F(M1,M2))

for every k ≥ 1.

4. Exterior powers: for M1 and M2 two OK-lattices in V , we have

F(ΛkM1,Λ
kM2) = Λk(F(M1,M2))

for every k ≥ 1.

5. Direct sums: for M1,M2 (resp. M ′1,M
′
2) two OK-lattices in V (resp. V ′), we have

F i(M1 ⊕M ′1,M2 ⊕M ′2) = F i(M1,M2)⊕F i(M ′1,M ′2)

for every i ∈ Z.

6. Graduations: For a filtration F and an OK-lattice M on a K-vector space V , we define
an OK-lattice in GrγF V by GrγFM = (M ∩ F≥γ)/(M ∩ F>γ) ⊂ GrγF V . Then, for two
OK-lattices M1,M2 in V such that there exists an adapted basis for M1, M2 and F , we
have

F(GrFM1,GrFM2) = ⊕γ∈ΓF(GrγFM1,GrγFM2)

Proof. 1. There is a natural map

F(M1,M2)⊗F(M ′1,M
′
2)→ F(M ′′1 ,M

′′
2 )

for (M ′′1 ,M
′′
2 ) = (M1 ⊗M ′1,M2 ⊗M ′2), given by the inclusion

∑
i+j=l

M1 ∩ uiM2 + uM1

uM1
⊗ M ′1 ∩ ujM ′2 + uM ′1

uM ′1
↪→ M ′′1 ∩ ulM ′′2 + uM ′′1

uM ′′1
.

It is easy to check this inclusion, since in M ′′1 [ 1
u ] we have

(M1 ∩ uiM2)⊗ (M ′1 ∩ ujM ′2) = M ′′1 ∩ ulM ′′2 ∩ (M1 ⊗ ujM ′2) ∩ (uiM2 ⊗M ′1)

for some fixed i+ j = l, because M1 and M ′1 are OK-lattices and the tensor product com-
mute with intersections of OK-lattices. Taking basis adapted to (M1,M2) and (M ′1,M

′
2)

we get a basis adapted to (M ′′1 ,M
′′
2 ) and we check easily that the natural inclusion is an

isomorphism.

2. Let {e1, . . . , en} be a basis adapted to M1, M2 and W , which means that

M1 = 〈ua1e1, . . . , u
anen〉

M2 = 〈e1, . . . , en〉
M1 ∩W = 〈ua1e1, . . . , u

aded〉
M2 ∩W = 〈e1, . . . , ed〉
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for some ai ∈ Z for 1 ≤ j ≤ n. Then,

F i(M1,M2) =
n⊕
j=1

k · u
iej ∩ uajej + uaj+1ej

uaj+1ej
,

thus

F i(M1,M2) ∩W =
d⊕
j=1

k · u
iej ∩ uajej + uaj+1ej

uaj+1ej

and

π(F i(M1,M2)) =
n⊕

j=d+1

k · u
iej ∩ uajej + uaj+1ej

uaj+1ej
.

On the other hand, we have a basis adapted to Q1 and Q2 given by {uad+1ed+1, . . . , u
anen}

and {ed+1, . . . , en}. Using this basis and the adapted basis for M1 ∩W and M2 ∩W , it is
easy to see that

F i(Q1, Q2) = π(F i(M1,M2))
F i(N1, N2) = F i(M1,M2) ∩W

for every i ∈ Z.

3. By (2), we just need to find an adapted base to M⊗k1 , M⊗k2 and the kernel of M [ 1
u ]⊗k →

SymkM [ 1
u ]. Let {e1, . . . , er} a basis of M1 and {ua1e1, . . . , u

arer} a basis of M2, with
a1 ≥ . . . ≥ ar. Then, we have basis adapted to M⊗k1 and M⊗k2 given by

{ei}i=(i1,...,ik)∈[1,...,r]k

{ua(i)ei}i=(i1,...,ik)∈[1,...,r]k

where ei = ei1 ⊗ . . .⊗ eik and a(i) = ai1 + . . .+ aik . Then, if we take σ(i) the permutation
of i such that (σ(i1) ≤ . . . ≤ σ(ik)), the basis {e′i}i∈[1,...,r]k given by

e′i =

{
ei if i = σ(i)
ei − eσ(i) if i 6= σ(i)

we get a basis adapted to M⊗k1 , M⊗k2 and the kernel of M [ 1
u ]⊗k → SymkM [ 1

u ].

4. For Λk, the proof works exactly the same as the proof for the symmetric powers, by taking
the adapted base {e′i}i∈[1,...,r]k given by

e′i =

{
ei if i1 < . . . < ik
ei − ε(σ)eσ(i) otherwise

where σ is the permutation such that σ(i1) < . . . < σ(ik).

5. The direct sum commutes with intersections of OK-lattices, so we have (uiM2 ∩M1) ⊕
(uiM ′2 ∩M ′1) = ui(M2 ⊕M ′2) ∩ (M1 ⊕M ′1), thus an isomorphism

M1 ∩ uiM2 + uM1

uM1
⊕ M ′1 ∩ uiM ′2 + uM ′1

uM ′1
' M ′′1 ∩ uiM ′′2 + uM ′′1

uM ′′1

for every i ∈ Z, where M ′′1 = M1 ⊕M ′1 et M ′′2 = M2 ⊕M ′′2 .

6. It is a consequence of (2) and (5).
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Proposition 2.3.3. The relative position verifies the following properties:

1. The relative position is antisymmetric, i.e. for M1, M2 two OK-lattices, we have

Pos(M2,M1) = Pos(M1,M2)ι

as types.

2. Let 0 → W → V
π−→ V/W → 0 be an exact sequence of K-vector spaces, M1, M2 two

lattices in V , and let Ni = Mi ∩W and Qi = π(Mi) for i = 1, 2. We have

Pos(N1, N2) ∗ Pos(Q1, Q2) ≤ Pos(M1,M2)

with an equality if there exists a basis adapted to M1, M2 and W .

3. Let M1, M2 (respectively, M ′1, M
′
2) be two OK-lattices inside a K-vector space V (respec-

tively, V ′). Then we have

Pos(M1 ⊕M ′1,M2 ⊕M ′2) = Pos(M1,M2) ∗ Pos(M ′1,M
′
2)

as types.

4. Let M1, M2 (respectively, M ′1, M
′
2) be two OK-lattices in the K-vector space V (respec-

tively, V ′). Then we have

Pos(M1 ⊗M ′1,M2 ⊗M ′2) = Pos(M1,M2)⊗ Pos(M ′1,M
′
2)

as types.

5. Let F a filtration on a K-vector space V and M a OK-lattice in V. Then, for M1, M2 two
OK-lattices in V, we have

Pos(GrFM1,GrFM2) ≤ Pos(M1,M2)

as types, with equality if there exists a basis adapted to M1, M2 and F .

Proof. 1. It is an easy calculation using adapted basis.

2. It can be found in [11, Proposition 99].

3. It is a consequence of the properties of the type of a filtration given in 2.2.1 and the
properties of the filtration listed in 2.3.2.

4. It is also a consequence of 2.2.1 and 2.3.2.

5. It comes from (2) and (3).

Definition 2.3.1. Given a K-vector space V, a Z-filtration F on V and an OK-lattice M in V,
we can define another OK-lattice by

M + F =
∑
i∈Z

u−iM ∩ F iV .

A basis adapted to an OK-lattice M and a Z-filtration F on V is a basis 〈a0, . . . , an〉 of M such
that

F iV =

dimK F iV⊕
k=0

K · ak.
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Proposition 2.3.4. The addition operator defined above verifies the following properties:

1. We have Pos(M,M + F) = t(F).

2. It is compatible with tensor products: we have

(M1 ⊗M2) + (F1 ⊗F2) = (M1 + F1)⊗ (M2 + F2)

for M1 ⊂ V1, M2 ⊂ V2 OK-lattices and F1,F2 filtrations on the K-vector spaces V1 and
V2, respectively.

Proof. These are both easy computations with adapted basis.

2.4 Quasi-abelian categories

Let C be a category with a null object 0, i.e. an object that is both initial and terminal. Then,
there are also zero morphisms 0 in C, which are the composition of the morphisms M → 0→ N
for any two objects M and N of C.

Let M f−→ N be a morphism in C. A kernel ker f of f is a morphism with codomain M such
that f ◦ ker f = 0 which is universal for this property. We also call kernel of f the domain of
this morphism. A morphism f is called mono (or monic) if for any two morphisms g, h, we have
that f ◦ g = f ◦ h implies g = h. A kernel is always mono and it is called a strict mono. Its
domain is called a strict subobject of its codomain.

Dualy, a cokernel coker f of f is a morphism with domain N such that coker f ◦ f = 0 which
is universal for this property. We also call cokernel of f the codomain of this morphism. A
morphism f is called epi if for any two morphisms g, h, we have that g ◦ f = h ◦ f implies g = h.
A cokernel is always epi and it is called a strict epi. Its codomain is called a strict quotient of
its domain.

Definition 2.4.1. A pre-abelian category is an additive category such that any morphism has
a kernel and a cokernel.

In a pre-abelian category C, we can define flags and exact sequences. A flag of length r on an
object M of C is a finite sequence

F (M) : 0 = M0 ↪→M1 ↪→ . . . ↪→Mr = M

of strict subobjects of M such that Mi 6= Mi−1 for 1 ≤ i ≤ r. A short exact sequence, denoted
by

0→M
f−→ N

g−→ P → 0

is a pair of composable morphisms (f, g) such that f = ker g and g = coker f .

Let P f−→ Q
g←− N be a pair of morphisms with common codomain. A pull-back is a commutative

diagram

M N

P Q,

f ′

g′ g

f
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that is universal. We say that f ′ is the pull-back of f by g. Dually, for a pair P g′←−M f ′−→ N of
morphisms with a common domain, one has the dual notion of push-outs.

The pull-back of a strict mono always exists and is a strict mono. Dually, the push-out of a
strict epi g′ always exists and is a strict epi.

Definition 2.4.2. A quasi-abelian category is a pre-abelian category where every pull-back of
a strict epi is a strict epi and every push-out of a strict mono is a strict mono.

For a pre-abelian category and a morphism M
f−→ N , we set

coim f = coker ker f and im f = ker coker f .

For any morphism M
f−→ N , there is a unique factorization

M N

coim f im f

f

strict epi

f

strict mono

and f is mono-epi if C is a quasi-abelian category.

In André’s article, we can find an equivalent characterization of quasi-abelian category.

Proposition 2.4.1. An additive category C is quasi-abelian if and only if it can be fully embedded
in an Abelian category A with the following properties :

1. any object of A is a quotient of an object of C,

2. there is a strictly full subcategory T ⊂ A (the torsion subcategory) such that

• any object A ∈ A sits in a unique (up to unique isomorphism) short exact sequence

0→ Ators → A→M → 0

where Ators ∈ Ob T and M ∈ Ob C.
• there are no nonzero morphisms from objects of T to objects of C.

Using this characterization, it is easy to give the description of kernel, cokernel, coimage and
image. Let M f−→ N a morphism in C. Then

1. The object ker f correspond to the kernel viewed as a morphism in A, since in the exact
sequence 0→ ker f tors → ker f → Q→ 0 for ker f an object in A, we must have ker f tors =
0 because otherwise, there would be a mono ker f tors ↪→ M and there are no nonzero
morphisms from T to C.

2. For the cokernel, let Q be the cokernel of f viewed as a morphism in A. Then, there
is an exact sequence 0 → Qtors → Q → Q′ → 0 with Q′ an object in C, and we have
coker f = Q′ in C. Indeed, let M f−→ N

p−→ P in C such that p ◦ f = 0, then in A we have
a morphism Q→ P which factors through Q′ since Q′ = Q/Qtors and there is no nonzero
morphism Qtors → P .

3. The coimage coim f = M/ ker f since this is a subobject of N and thus in the exact
sequence 0 → (M/ ker f)tors → M/ ker f → P → 0 we must have (M/ ker f)tors = 0 so
there is no nonzero morphism from T to C.
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4. For the image, we need to introduce the notion of saturation. Let M be an object of
A, then for any subobject M ′ of M , we denote by (M ′)sat the subobject of M such that
(M ′)sat/M ′ = (M/M ′)tors. It is called the T -saturation of M ′ in M . Then, the image of
f is given by im f = f(M)sat, the T -saturation of f(M) in N , where f(M) is the image
of f computed in A.

2.5 The Harder-Narasimhan formalism

In this section, we will introduce the Harder-Narasimhan formalism given by André in [2] and
afterwards, we will add some extra conditions that will be verified for all the categories that will
appear, and some properties of the Harder-Narasimhan filtration and polygon considering those
extra conditions.

André’s formalism

Let C be a quasi-abelian category and Γ a Q-subspace of R. We denote by sk C the skeleton of
C, i.e. the isomorphism classes of objects of C.

Definition 2.5.1. A rank function on C is a map

rank : sk C → N

that is additive on short exact sequences and takes the value 0 only on the 0 object.

A degree function on C, with values in Γ, is a map

deg : sk C → Γ

taking value 0 at the 0 object (but, unlike the case of the rank function, we do not require that
the 0 object is the only element taking value 0), that satisfies the following two conditions:

1. It is additive on short exact sequences.

2. For any epi-monic M1 →M2, one has deg(M1) ≤ deg(M2).

Given a degree and rank function, we can associate a slope function

µ =
deg

rank
: sk C\{0} → Q.

Two important properties of the slope function are :

• For any short exact sequence 0→M ′ →M →M ′′ → 0 of nonzero objects, one has

min{µ(M ′), µ(M ′′)} ≤ µ(M) ≤ max{µ(M ′), µ(M ′′)},

both inequalities being strict unless µ(M ′) = µ(M) = µ(M ′′).

• More generally, for any flag 0 = M0 ↪→ M1 ↪→ . . . ↪→ Mr = M with nonzero quotients
Mi/Mi−1, one has

min(µ(Mi/Mi−1))1≤i≤r ≤ µ(M) ≤ max(µ(Mi/Mi−1))1≤i≤r,

both inequalities being strict unless all the µ(Mi/Mi−1) are equal to µ(M).
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Definition 2.5.2. A non-zero object M is called µ-semistable (or just semistable when there is
no ambiguity) when for every strict subobject M ′ ⊂M , we have

µ(M ′) ≤ µ(M).

We denote by C(γ) the full subcategory of objects of C which are µ-semistable of slope γ ∈ Γ,
together with the zero object.

Remark 2. 1. The semi-stability condition is equivalent to ask that for any strict quotient Q
of M , we have

µ(M) ≤ µ(Q),

by the property of the slope function over exact sequences given above.

2. As a consequence, we have that ifM is semi-stable of slope µ, then for every strict subobject
N (resp. strict quotient M/N) of M such that µ(N) = µ (resp. µ(M/N) = µ), we have
that N (resp. M/N) is also semi-stable.

For the rest of the section, suppose we are given a rank function on C. A Γ-filtration on C is a
functor

F≥ : Γop × C → C

which sends any object (γ,M) to a strict subobject F≥γM of M and verifying:

• It is decreasing, i.e. F≥γ′M ⊂ F≥γM for γ′ ≥ γ for any M in C.

• It is separated, i.e. lim←−F
≥γM = 0 for any M in C.

• It is exhaustive, i.e lim−→F
≥γM = M for any M in C.

• It is left continuous, i.e. F≥γM = lim←−γ′<γ F
≥γ′M for any M in C.

For a Γ-filtration F , we define

F>γM := lim−→γ′>γ
F≥γ′M and GrγFM := F≥γM/F>γM .

Then, we can define the type and degree associated to a Γ-filtration F as we did in 2.2, by

t(F(M)) =
∑

γ∈Γ rank(GrγFM) · eγ in N[Γ]

deg(M) =
∑

γ∈Γ rank(GrγFM) · γ in Γ

for every object M of C, and a function µ(M) = degM
rankM . Using these functions, we define the

slope Γ-filtrations.

Definition 2.5.3. A slope Γ-filtration F≥ on C is a Γ-filtration on C satisfying

1. for any γ, the filtration of F≥γM (resp. M/F≥γ) is induced by the filtration of M ,

2. the associated function µ is a slope function in the sense of Definition 2.5.1.

Since the rank bounds the length of any flag on an object M of C, it is easy to see that for any
Γ-filtration, and any object M , there is a partition by intervals

Ir =]−∞, γr], . . . , I2 =]γ2, γ1], I1 =]γ1,+∞]

such that F≥γM is constant on each interval, and a flag of length r

F (M) : 0 ↪→M1 = F≥γ1M ↪→ . . . ↪→Mr = F≥γrM = M.



CHAPTER 2. PRELIMINARIES 32

Proposition 2.5.1. Let F≥· be a slope filtration on C and let M be a nonzero object of C. The
flag

F (M) : 0 ↪→ F≥γ1M = M1 ↪→ . . . ↪→ F≥γrM = Mr = M

attached to F≥· is the unique flag on M whose graded pieces Mi/Mi−1 for 1 ≤ i ≤ r are
semistable of decreasing slopes

γ1 > . . . > γr.

We can now state the main theorem, which gives us the Harder-Narasimhan filtration.

Theorem 2.5.2. [2, 1.4.7] The construction F 7→ µ yields a bijection between slope filtrations
on C and slope functions on C.

The slope Γ-filtration F≥· of the theorem is called the Harder-Narasimhan filtration of M and
the slopes γ1 > . . . > γr are called the breaks of the filtration F . Sometimes, we will refer to
the flag associated to F≥· as the Harder-Narasimhan filtration of M .

Proposition 2.5.3. Let FHN be the Harder-Narasimhan filtration of an object M of C and
tHN(M) its type viewed as a polygon. Then (rkM ′,degM ′) lies below tHN(M) for every strict
subobject M ′ of M . Moreover, tHN(M) is the convex hull of such points.

Proposition 2.5.4. The Harder-Narasimhan filtration verifies the following properties:

1. Let
0→M1 →M2 →M3 → 0

be an exact sequence of objects of C. Then we have

tHN(M2) ≤ tHN(M1) ∗ tHN(M3).

2. Let Mi be a finite family of objects in C. Then the Harder-Narasimhan filtration of M =
M1 ⊕ . . .⊕Mn is given by

F≥γ(M) =
n⊕
i=1

F≥γ(Mi)

for all γ ∈ Γ and thus

tHN(M) = tHN(M1) ∗ . . . ∗ tHN(Mn).

3. Let F ′ be a flag of M . Then we have

tHN(M) ≤ tHN(GrF ′(M)).

If F ′ is the flag attached to F , then

tHN(M) = tHN(GrFM).

Further assumptions

Proposition 2.5.5. Let C be a quasi-abelian category with rank and degree functions such that

1. For a mono-epi M1 →M2, we have rankM1 = rankM2.

2. The function rank detects the mono-epi morphisms, i.e. it verifies that a mono (resp. an
epi) M1 →M2 in C is an epi (resp. a mono) if and only if rankM1 = rankM2.

3. The functions deg detects the isomorphisms, i.e. for a mono-epi M1
f−→ M2 we have

degM1 = degM2 if and only if f is an isomorphism in C.
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Then,

1. The function µ also detects the isomorphisms.

2. The category C(γ) is abelian, for every γ ∈ Γ.

3. Let 0→M1 →M2 →M3 → 0 be an exact sequence in C. Suppose that

tHN(M2) = tHN(M1) ∗ tHN(M3).

Then, for every γ ∈ Γ, we have an exact sequence

0→ F≥γHNM1 → F≥γHNM2 → F≥γHNM3 → 0.

Proof. 1. It follows from the condition (1) since the equality for the rank gives us an equality
for µ if and only if we have an equality for deg.

2. Let f : M1 →M2 be a morphism in C(γ), where M1 and M2 are nonzero objects in C(γ).
Then, the inclusion ker f ⊂ M1 gives us µ(ker f) ≤ γ and im f, coim f ⊂ M2 gives us
µ(coim f) ≤ γ and µ(im f) ≤ γ. We have an exact sequence

0→ ker f →M1 → coim f → 0,

so min{µ(ker f), µ(coim f)} ≤ γ ≤ max{µ(ker f), µ(coim f)}, thus we have an equality
µ(ker f) = µ(coim f) = γ, so ker f, coim f are semi-stable. Since coim f ↪→ im f is a
mono-epi, we have γ = µ(coim f) ≤ µ(im f) ≤ γ, so µ(im f) = γ and then im f is semi-
stable. To finish, the exact sequence

0→ im f →M2 → coker f → 0

gives us µ(coker f) = γ, so coker f is semi-stable.

3. Let 0 → M1 → M2 → M3 → 0 be an exact sequence in C with tHN(M2) = tHN(M1) ∗
tHN(M3). By induction on the rank of M2, it suffices to prove the exactness of

0→ F≥γHNM1 → F≥γHNM2 → F≥γHNM3 → 0.

for γ the maximal slope in tHN(M2). We have a strict mono

F≥γM1 ↪→M1 ↪→M2

so we can consider the quotients

0→M1/F≥γM1 →M2/F≥γM1 →M3 → 0.

Suppose first F≥γM1 6= 0, then rank(M2/F≥γM1) < rankM2. It is easy to see that we
have again

tHN(M2/F≥γM1) = tHN(M1/F≥γM1) ∗ tHN(M3)

so, by induction, we get

0→ F≥µ(M1/F≥γM1)→ F≥µ(M2/F≥γM1)→ F≥µM3 → 0

for every µ ∈ Γ. In particular, for µ = γ, we have F≥γ(M2)/F≥γ(M1) ' F≥γ(M3) as we
wanted. Suppose then F≥γM1 = 0, then since F≥γM2 and F≥γM3 are semi-stable of slope
γ, the kernel of F≥γM2 → F≥γM3 is also semi-stable of slope γ and contained inM1, thus
it is zero and the morphism is a mono. Now, F≥γM2 and F≥γM3 have the same rank by
assumption, so by (2), we have that it is a strict epi. Then, F≥γM2 → F≥γM3 is a mono-
epi and deg(F≥γM2) = deg(F≥γM3). It is then an isomorphism, by (3). It remains to
prove that im f ' coim f which is true since we have a mono-epi morphism coim f → im f
with µ(coim f) = µ(im f), and by our hypothesis 1 and 3, it is an isomorphism.
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Remark 3. If C is an abelian category, then it verifies the properties of last proposition trivially,
since mono-epi morphisms in abelian categories are isomorphisms.
We will see that all the categories that we will work with verify this condition for the rank and
degree functions, so the Harder-Narasimhan formalisms that we consider include the properties
of the proposition.

2.6 Bruhat-Tits theory

2.6.1 The vectorial Tits building FR(V )

Let K be a field, V a K-vector space of dimension r ∈ N. Denote by FR(V ) the set of all
R-filtrations on V : this is the vectorial Tits building of G = GL(V ), also denoted by FR(G) or
FR(G)(K) in [11].

Action of G(K), facets

The group G(K) acts on FR(V ) by (g · F)≥γ = g · F≥γ . The stabilizer of F is (the group of
K-rational points of) a parabolic subgroup of G, denoted by PF . Two R-filtrations F1 and F2

are in the same facet of FR(V ) if and only if PF1 = PF2 . This yields a partition of FR(V ) into
facets indexed by the parabolic subgroups of G. On the other hand, the type map

t : FR(V )→ Rr≥

yields a bijection G(K)\FR(V ) ' Rr≥.

Apartments

Definition 2.6.1. A line decomposition of V is a subset D ⊂ P1(V ) such that

V = ⊕D∈DD

(thus D is finite and ]D = r). We say that a line decomposition D of V is adapted to an
R-filtration F of V when

F≥γ = ⊕D∈DF≥γ ∩D

for every γ ∈ R.

We denote by FR(D) the set of all filtrations adapted to D: this is the apartment of FR(V )
attached to D, a disjoint union of finitely many facets. The map D 7→ FR(D) yields a
G(K)-equivariant bijection between line decompositions of V and apartments of FR(V ). If
e = (e1, · · · , er) is a K-basis of V , we also denote by FR(e) the apartement corresponding to the
line decomposition D = {Kei}. Then Rr ' FR(e) by (γ1, · · · , γr) 7→ F , with F≥γ = ⊕γi≥γKei.
The resulting structure of R-vector space on FR(D) does not depend upon the base e such that
D = {Kei}. For every (F1,F2) ∈ FR(V ), there is an apartment FR(D) containing F1 and F2.

Scalar product

For F1,F2 ∈ FR(V ), we set

〈F1,F2〉 =
∑
γ1,γ2

γ1γ2 dimK
F≥γ11 ∩ F≥γ22

F≥γ11 ∩ F>γ22 + F>γ11 ∩ F≥γ22

=
∑
γ1

γ1 deg Grγ1F1
(F2)

=
∑
γ2

γ2 deg Grγ2F2
(F1)
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where GrγiFi(F3−i) is the filtration induced by F3−i on GrγiFi . This yields a G(K)-invariant “scalar
product”

〈−,−〉 : FR(V )× FR(V )→ R

whose restriction to any apartement is a scalar product in the usual sense.

Distance

The formulas ‖F‖ =
√
〈F ,F〉 and

d(F1,F2) =

√
‖F1‖2 + ‖F2‖2 − 2 〈F1,F2〉

define a G(K)-invariant distance

d : FR(V )× FR(V )→ R

on FR(V ), whose restriction to any apartment is Euclidean. The resulting metric space (FR(V ), d)
is a complete CAT(0)-space, see [11, 4.2.10].

Convex projection

For any closed and convex subset C of FR(V ), there is a convex projection

p : FR(V )→ C

such that for every F ∈ FR(V ),

d(F , p(F)) = inf {d(F ,G) : G ∈ C} .

We will use the following case: V = V1⊗V2 and C is the set of decomposed filtrations, by which
we mean the image of

FR(V1)× FR(V2)→ FR(V1 ⊗ V2) (F1,F2) 7→ F1 ⊗F2.

In this situation, C = FR(H) is the vectorial Tits building of the reductive group H over K
defined by the sequence

GL(V1)×GL(V2) � H ↪→ GL(V1 ⊗ V2).

The projection p : FR(G) → FR(H) is closely related to the notion of Kempf filtrations, used
for instance in [47]. For any F ∈ FR(V1 ⊗ V2) and H ∈ FR(H), we have

〈F ,H〉 ≤ 〈p(F),H〉

by [11, 5.7.7].

2.6.2 The Bruhat-Tits building B(V )

Suppose that K is the fraction field of a complete discrete valuation ring OK , with non-trivial
valuation

|−| : K → R+.

Write q > 1 for the real number such that qZ = |K×| and k for the residue field.
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The space B(V ) and its apartments

A K-norm on V is a function
α : V → R+

such that for every u, v ∈ V , λ ∈ K

1. α(v) = 0 if and only if v = 0,

2. α(λv) = |λ|α(v),

3. α(u+ v) ≤ max {α(u), α(v)}.

The Bruhat-Tits building of G = GL(V ) is the set B(V ) of all K-norms on V . The group G(K)
acts on it by (g · α)(v) = α(g−1v). We say that a line decomposition D of V is adapted to
α ∈ B(V ) if

α(v) = max {α(vD) | D ∈ D}

for all v =
∑
vD in V = ⊕D∈DD. We denote by B(D) the set of all K-norms adapted to D:

the apartment of D in B(V ). The map D 7→ B(D) is a G(K)-equivariant bijection between line
decompositions of V and apartments of B(V ). If D = {Kei} for some K-basis e = (e1, · · · , er)
of V , we also denote by B(e) the corresponding apartement. Thus Rr ' B(e) by the map
(γ1, · · · , γr) 7→ α with

α(
∑
λiei) = max

1≤i≤r
{|λi| q−γi}.

For every x, y ∈ B(V ), there is an apartement B(D) containing x and y.

The embedding L(V )→ B(V )

Write L(V ) for the set of OK-lattices L in V . Then G(K) acts on L(V ) and there is a G(K)-
equivariant embedding

L(V ) ↪→ B(V ), L 7→ αL

where αL is the gauge norm of L, defined by

αL(v) = inf {|λ| | v ∈ λL}

The image of L(V ) is the set of K-norms α on V such that

α(V \ {0}) =
∣∣K×∣∣ = qZ.

We write A(D) for B(D) ∩ L(V ) and refer to it as the apartement of D in L(V ):

A(D) = {L ∈ L(V ) | L = ⊕D∈DL ∩D} .

The action of FR(V )

There is a G(K)-equivariant “action”

B(V )× FR(V )→ B(V ) (α,F) 7→ α+ F

defined by

(α+ F)(v) = min
{

max
{
q−γα(vγ) | γ ∈ R

}
| v =

∑
vγ , vγ ∈ F≥γ

}
.

For any line decomposition D of V , this induces a map

B(D)× FR(D)→ B(D)
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which turns B(D) into an affine space with underlying vector space FR(D). This operation
yields a commutative diagram

L(V ) × FZ(V ) → L(V )
∩ ∩ ∩

B(V ) × FR(V ) → B(V )

where FZ(V ) is the set of all Z-filtrations on V and the top map is

(L,F) 7→ L+ F =
∑

π−iK L ∩ F≥i

where πK is a uniformizer (thus |πK | = q−1).

The vectorial and classical distances

For every x, y ∈ B(V ), there is an F ∈ FR(V ) such that y = x + F . Such an F is not at all
unique, but

d(x, y) = t(F) ∈ Rr≥
does not depend upon the choice of F . This yields a G(K)-equivariant function

d : B(V )×B(V )→ Rr≥

which is called the vectorial distance, see [11, 5.2.8]. We have

1. d(x, y) = 0 if and only if x = y,

2. d(y, x) = d(x, y)ι

3. d(x, z) ≤ d(x, y) + d(y, z)

The formula (for y = x+ F)

d(x, y) = |d(x, y)| = ‖F‖ ∈ R+

thus defines a genuine G(K)-equivariant distance

d : B(V )×B(V )→ R+.

Then (B(V ), d) is yet another complete CAT(0)-space, see [11, 6.1 and 5.3.2].

Since K is complete, the map

B(V )× FR(V ) → C0 (R+,B(V ))

(α,F) 7→ c(t) = α+ tF

identifies:

1. B(V )×FR(V ) with the set of all (constant speed) geodesic rays in B(V ) (allowing constant
functions as geodesic rays with speed 0),

2. FR(V ) with asymptotic classes of (constant speed) geodesic rays in B(V ),

3. Elements of FR(V ) with norm 1 with the visual boundary ∂B(V ) of B(V ) (defined in [5,
II.8]).
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This follows from [41, 2.3.8], see [11, 6.2.8]. With notations as above, the speed of the geodesic
ray c(t) is the norm of F .

The following diagram is commutative:

Pos : L(V ) × L(V ) → Zr≥
∩ ∩ ∩

d : B(V ) × B(V ) → Rr≥

Indeed for L,L′ ∈ L(V ), pick a line decomposition D of V such that L,L′ ∈ A(D), let F be the
unique element of FR(D) such that αL′ = αL +F . Then F(L,L′) is the filtration induced by F
on the residue L = L⊗ k of L, thus

Pos(L,L′) = t(F(L,L′)) = t(F) = d(αL, αL′)

and F belongs to FZ(D) = FZ(G) ∩ FR(D), the set of all Z-filtrations split by D. We may also
define a G(K)-invariant function

ν : B(V )×B(V ) → R
(x, y) 7→ ν(x, y) = deg(d(x, y)).

Thus ν(x, z) = ν(x, y) + ν(y, z) and ν(y, x) = −ν(x, y).

Busemann functions

For x, y ∈ B(V ) and F ∈ FR(V ), we set

〈−→xy,F〉 = ‖F‖ · lim
t→∞

d(x, z + tF)− d(y, z + tF)

where z is any point of B(V ): the limit exists and does not depend upon z by [5, II.8.18-20].
This yields a well-defined, G(K)-equivariant “Busemann scalar product” [11, 5.5.8].

B(V )2 × FR(V )→ R

whose restriction to any appartment is the obvious scalar product

B(D)2 × FR(D) → FR(D)× FR(D) → R
(x, y,F) 7→ (−→xy,F) 7→ 〈−→xy,F〉 .

For any x, y, z ∈ B(V ) and F ∈ FR(V ),

〈−→xz,F〉 = 〈−→xy,F〉+ 〈−→yz,F〉 and 〈−→yx,F〉 = −〈−→xy,F〉

Proposition 2.6.1. Let D be a line decomposition of V . Suppose that a sequence (xn)n ∈ B(D)
converges to some ξ ∈ ∂B(D) ⊂ FR(D). Then for every x ∈ B(V ),

lim
n7→∞

〈−−→xxn,F〉
d(x, xn)

= 〈ξ,F〉 .

Proof. Since xn is unbounded and

〈−−→xxn,F〉
d(x, xn)

=
〈−→xy,F〉
d(x, xn)

+
d(y, xn)

d(x, xn)
· 〈
−−→yxn,F〉
d(y, xn)

for every x and y in B(V ), the left hand side limit exists and is independent of x if it exists for
one single x. We may thus assume that x also belongs to the Euclidean affine space B(D), in
which case the result is trivial.
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Remark 4. If (xn)n ∈ B(V ) converges to some ξ ∈ ∂B(V ) ⊂ FR(V ) without being contained in
any apartment, the following inequality still holds:

lim inf
〈−−→xxn,F〉
d(x, xn)

≥ 〈ξ,F〉 .

However, this is usually a strict inequality.

An explicit formula for the Busemann scalar product is given by

〈−→xy,F〉 =
∑
γ∈R

γ · ν
(
GrγFx,GrγFy

)
where GrγF (z) is the K-norm induced by z on GrγF , namely

GrγF (z)(vγ) = inf {z(vγ) | vγ ∈ vγ} for vγ ∈ GrγF = F≥γ/F>γ .

Let us sketch the proof of this formula. We fix F and view both sides as functions of (x, y). For
u and v in the unipotent radical UF of PF , both sides are invariant under (x, y) 7→ (ux, vy).
This is clear for the right hand side. As for the left hand side, we have

〈−−−→uxvy,F〉 = ‖F‖ lim
t→∞

d(ux, z + tF)− d(vy, z + tF)

= ‖F‖ lim
t→∞

d(x, u−1z + tF)− d(y, v−1z + tF)

= ‖F‖ lim
t→∞

d(x, z + tF)− d(y, z + tF)

because u−1z+ tF = z+ tF = v−1z+ tF for t� 0 (this is the axiom UN+ in [11, 5.4.6]). Using
this invariance, we may assume that x, y ∈ B(D) and F ∈ FR(D) for some line decomposition
D of V . Then y = x + G for some G ∈ FR(D), which implies that also GrγFx = GrγFy + GrγFG
in B(GrγF ) for every γ ∈ R. Our claim follows:

〈−→xy,F〉 = 〈G,F〉 =
∑
γ∈R

γ · deg GrγF (G) =
∑
γ∈R

γ · ν
(
GrγFx,GrγFy

)
.

Many apartments

Any one of the following pair of objects in B(V ) is contained in some apartment:

1. Two points: axiom R(s) of [11, 5.2.5], see [9, 1.26].

2. Two germs of segments: see [8, 7.4.18 (i)].

3. The germ of a segment and an asymptotic class of geodesic rays: axiom L(s)+ of [11,
5.3.1].

4. The germ of a segment and the germ of a geodesic ray: see [41, 1.2.6].

5. Two germs of geodesic rays: see [41, 1.2.6].

Note that (4)⇒ (3)⇒ every geodesic ray is contained in an apartment, and (2)⇒ (1)⇒ every
segment is contained in an apartment, and thus extends (in both directions) to a geodesic line.
We use this in the following proposition:

Proposition 2.6.2. Let (Ln)n≥0 be a sequence of OK-lattices in V and let F be an R-filtration
on V . Suppose that

d(L0, Ln) = d(L0, Lm) + d(Lm, Ln)

for every 0 ≤ m ≤ n. Then:
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1. There exists a K-basis e of V which is adapted to all Ln’s.

2. There exists a K-basis e of V which is adapted to F and all but finitely many Ln’s.

Proof. Let xn ∈ B(V ) be the point corresponding to Mn ∈ L(V ). The assumption implies that
for every 0 ≤ m ≤ n, xm lies on the geodesic segment [x0, xn] of the complete CAT(0)-metric
space (B(V ), d). Then xn converges to a point x∞ in the compactificationB(V ) = B(V )∪∂B(V )
of B(V ), all xn’s belong to [x0, x∞], and any germ of [x0, x∞] at x∞ contains all but finitely
many of the xn’s. Fix an apartment B(D) which contains [x0, x∞] (resp. which contains F in its
boundary together with a germ of [x0, x∞] at x∞), which exists by (1) or (3) (resp. (3) or (5))
depending upon x∞ ∈ B(V ) or ∂B(V ) (i.e. xn is bounded or unbounded). Then any K-basis
e of V such that D = {Kei} is adapted to all the Mn’s (resp. to F and all but finitely many
Mn’s).

We will also use the following result:

Proposition 2.6.3. For any apartment B(D) of B(V ) and any F ∈ FR(V ), there is a finite
set of line decompositions {D1, · · · ,Dn} of V such that B(D) ⊂ ∪Bn

i=1(Di) and F ∈ FR(Di) for
every i ∈ {1, · · · , n}.

Proof. This follows from the stronger statement in [41, 1.2.8], which implies that we may even
replace the assympotic class of geodesic rays F ∈ FR(V ) by the germ of any geodesic ray
c(t) = x+ tF in this class.
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Kisin’s theory

3.1 Modules over S

The ring S

Let F be a perfect field of characteristic p and let W (F) be the ring of Witt vectors over F. The
ring

S := W (F)[[u]]

is a complete, regular, local ring of Krull dimension 2, with maximal ideal m = (p, u), so it
is a unique factorization domain. Moreover, for all f ∈ m nonzero, the ring S[ 1

f ] is a unique
factorization domain of Krull dimension 1, therefore a principal ideal domain.

A nonconstant polynomial P (u) ∈ S is called distinguished if

P (u) = un + an−1u
n−1 + . . .+ a0

where p|ai for 0 ≤ i ≤ n− 1. In [39, 5.3.7], we have a classification of the prime ideals of Zp[[T ]]
that we can easily generalize to S.

Proposition 3.1.1. The prime ideals of S are 0, m, (p) and the ideals (P (u)) where P (u) is
an irreducible and distinguished polynomial.

Classification of finitely generated S-modules

Let M be a finitely generated S-module. Then there is a unique exact sequence

0→Mtors →M →Mfr →M → 0

where Mtors is a torsion module, Mfr is a free module and M is a finite length module. This
dévissage of M is given by Bhatt-Morrow-Scholze in [4]. It is easy to give some descriptions of
Mfr as

Mfr = M∨∨ =
⋂

ht(p)=1

(M/Mtors)p

where M∨∨ is the bidual of M , and the intersection is considered in M ⊗ FracS.

Definition 3.1.1. A finitely generated S-module is called pseudo-null if it has finite length. A
morphism between two S-modules is called a pseudo-isomorphism if its kernel and cokernel are
pseudo-null.

The following theorem is the equivalent of the structure theorem for finitely generated modules
over a PID. It is Iwasawa’s structure theorem, in [39, 5.1.10], using Proposition 3.1.1.

41
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Theorem 3.1.2 (Structure theorem of finitely generated S-modules). Let M be a finitely gen-
erated S-module. Then there exists a pseudo-isomorphism

M ∼ Sr ⊕
s⊕
i=0

S/(pni)⊕
t⊕

j=0

S/(Pj(u)mj )

for some r ≥ 0, s, t ≥ 0, ni ≥ 0 for 0 ≤ i ≤ s, and mj ≥ 0 and Pj(u) distinguished irreductible
S-polynomials for 0 ≤ j ≤ t. These quantities are unique up to reordering.

The structure theorem gives us two important invariants:

µIW(M) =
r∑
i=0

ni, λIW(M) =
t∑

j=0

mj deg(fj).

Remark 5. 1. For a torsion S-module, after localization by (p), we get an isomorphism

M(p) '
s⊕
i=0

S(p)/p
ni

for s ≥ 0 and ni ≥ 1 for 0 ≤ i ≤ s given by the structure theorem. Thus

µIW(M) = lengthS(p)
(M(p)).

2. As a consequence, we have that µIW is additive on short exact sequences of torsion S-
modules.

Cohomological properties

Let M be a finitely generated S-module. There is an exact sequence

0→M [m∞]→Mtors →Mt → 0

where M [m∞] is pseudo-null. We have a diagram

0

M [m∞]

0 Mtors M Mfr M 0

Mt

0

Definition 3.1.2. We define the depth of M as

depth(M) := min{i | Exti(F,M) 6= 0}

or, equivalently, the maximal length of an M -regular m-sequence, i.e. a sequence of ele-
ments x1, . . . , xr ∈ m such that x1 is not a zero divisor of M and xi is not a zero divisor
in M/(x1, . . . , xi−1)M for 2 ≤ i ≤ r.
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The projective dimension of M is the minimal length of a projective resolution of M , i.e. the
miniminal length a sequence

0→ Pd → . . .→ P2 → P1 → P0 →M → 0

where Pi is a projective module for i ≥ 0.We write pd(M) for the projective dimension of M .
In the case of modules over noetherian local rings, there is an interesting relation between the
projective dimension and the Tor functor.

Proposition 3.1.3. Let M be a finitely generated S-module. Then

pd(M) = max{i | Tori(F,M) 6= 0}.

We can relate the depth and projective dimension with the Auslander-Buchsbaum theorem [3]:

Theorem 3.1.4. Let M be a finitely generated S-module. Then

pd(M) + depth(M) = 2

As a consequence of this theorem, we get some good properties for finite free and finitely gen-
erated torsion modules over S.

• For a finitely generated S-module M , the following conditions are equivalent: M is pro-
jective, M flat, M is free, M is reflexive and Tor1(F,M) = 0.

• For a finitely generated torsion S-module M , the following conditions are equivalent:
pd(M) = 1, depth(M) = 1 and Ext0(F,M) ' Tor2(F,M) = M [m] = 0.

Proposition 3.1.5. Let
0→ K →M → Q→ 0

with M a finite free S-module and pd(Q) ≤ 1. Then K is a finite free S-module.

Proof. Since M is a finite free S-module, we know that Tori(F,M) = 0 for i = 1, 2, and thus
Tor1(F,K) = Tor2(F, Q) = 0 since pd(Q) ≤ 1.

Another way to check if M is free is given by the following proposition.

Proposition 3.1.6. Let M be a finitely generated S-module. Then M is free if and only if

1. The reduction M/pnM has no u-torsion for every n ≥ 1.

2. The µIW invariants of the modules M/pnM are compatible, i.e.

µIW(M/pnM) = nµIW(M/pM)

for every n ≥ 1.

Proof. First, we remark that the condition are necessary. Conversely, by hypothesis we know
that the F[[u]]-module M/pM is free. Let m be its rank. By Nakayama’s lemma, we know that
there is a system of m generators of M , giving us the exact sequence

0→ kerf → Sm f−→M → 0.

Considering reductions modulo pn for each n ≥ 1 we get

0→M [pn]→ kerf/pnkerf → (S/pnS)m →M/pnM → 0
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that we can cut into two exact sequences:

0→M [pn]→ kerf/pn ker f → Kn → 0

0→ Kn → (S/pnS)m →M/pnM → 0.

Now, the second hypothesis tells us that

µIW((S/pnS)m)− µIW(M/pnM) = mn− nµIW(M/pM) = 0.

So by the additivity of µIW on short exact sequences of torsion S-modules seen in Remark 5 we
get µIW(Kn) = 0. Being also killed by pn, Kn has to be pseudo-null. Since (S/pnS)m contains
no nonzero pseudo-null submodule, actually Kn = 0. Therefore (S/pnS)m ' M/pnM . Since
S and M are p-adically complete, it follows that Sm 'M .

Some categories of S-modules

Denote ModS the category of finitely generated S-modules and let A be the category of finitely
generated S-modules killed by a power of p. It is a full subcategory of ModS which is abelian
and stable by subobjects, quotients and extensions. Inside A, we consider two subcategories:

• The full subcategory T of objects with finite length, i.e. theS-modules such thatM [m∞] =
M (which is the same as M [u∞] = M since the m∞-torsion and the u∞-torsion coincide
in this category).

• The full subcategory ModS,t of objects with projective dimension 1. This is a full subcat-
egory of ModS, it contains S/pS = F[[u]] and it is stable by subobjects and extensions,
but not stable by quotients.

For any module M in A, consider the short exact sequence

0→M [u∞]→M →M ′ → 0

where M [u∞] is an object in T and M ′ = M/M [u∞] is an object in ModS,t. There are no
nonzero morphisms from T to ModS,t since the objects in ModS,t have no u∞-torsion. This
proves that ModS,t is a quasi-abelian category and we can give an explicit description of kernels,

cokernels, images and coimages. Let M f−→ N in ModS,t, then:

• The object ker f corresponds to the usual kernel in the category ModS, since it is a
submodule of M , so it has no m∞-torsion and it already is an object in ModS,t.

• For the cokernel, let f(M) be the usual image in the category ModS. We define the
saturation of f(M) by u∞ in N as

f(M)sat := {n ∈ N | uin ∈ f(M) for some i ≥ 0},

then we have
coker f = N/f(M)sat.

To prove it, suppose we have M f−→ N
q−→ Q with q ◦ f = 0, then it suffices to show that

f(M)sat is in the kernel of q so we can factor through N/f(M)sat. For n ∈ f(M)sat, let
i ≥ 0 such that uin ∈ f(M), then q(uin) = uiq(n) = 0 since q ◦ f = 0. Since Q has no
u-torsion, q(m) must be zero.

• For the image, we know that im f = ker coker f = f(M)sat.
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• For the coimage, we have coim f = coker ker f = M/ ker f , since it is isomorphic to the
submodule f(M) of N , and thus has no u-torsion.

There is a rank function in the sense of the Harder-Narasimhan formalism on the abelian category
A, given by the Iwasawa invariant µIW and we can reinterpret it in the following way:

Proposition 3.1.7. Let M be an object in A, then

µIW(M) = lengthS(p)
(M(p)) = lengthS[ 1

u
](M [ 1

u ])

and for M an object of the subcategory ModS,t, we have

µIW(M) = lengthS(p)
(M(p)) = lengthS[ 1

u
](M [ 1

u ]) = lengthW (F)(M/uM).

Proof. We have already seen in Remark 5 the first equality. For the second one, let M be an
object in A, the structure theorem gives an exact sequence

0→ K →M →M ′ → Q→ 0

where M ′ =
⊕r

i=0 S/p
ni for some r ≥ 0, ni ≥ 1, Q[m∞] = Q and K[m∞] = K. Then,

K[ 1
u ] = Q[ 1

u ] = 0, so
M [ 1

u ] 'M ′[ 1
u ] =

⊕r
i=0 S[ 1

u ]/(pni)

and thus µIW(M) = lengthS[ 1
u

](M).

Moreover, if M is an object in ModS,t, we have K = 0 because there are no nonzero m∞-torsion
submodules in M as an object in ModS,t. The multiplication by u gives us an exact sequence

0→ Q[u]→M/uM →M ′/uM ′ → Q/uQ→ 0

where all the terms are of finite length and then

lengthW (F)(M
′/uM ′)− lengthW (F)(M/uM) = lengthW (F)(Q/uQ)− lengthW (F)(Q[u]) = 0.

As

M ′/uM ′ '
r⊕
i=0

W (F)/(pni),

we have µIW(M) =
∑r

i=0 ni = lengthW (F)(M/uM).

Frobenius

We define a Frobenius morphism over S as

ϕ : S → S∑
i≥0 aiu

i 7→
∑

i≥0 σ(ai)u
pi

where σ is the morphism on W (F) lifting the Frobenius morphism of F. For a S-module M , we
define the module

ϕ∗M = M ⊗ϕ,S S.

Lemma 3.1.8. Let M ∈ T . Then, we have

lengthϕ∗M = p lengthM.
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Proof. Since M ∈ T , there exists a flag

0 = M0 ⊂M1 ⊂ . . . ⊂Mr = M

such that Mi/Mi−1 ' S/m ' F[[u]]/u for 1 ≤ i ≤ r, and we have lengthM = r. Since ϕ is flat,
we obtain a flag

0 = ϕ∗M0 ⊂ ϕ∗M1 ⊂ . . . ⊂ ϕ∗Mr = ϕ∗M

with ϕ∗Mi/ϕ
∗Mi−1 ' ϕ∗(Mi/Mi−1) ' ϕ∗(F[[u]]/u) ' F[[u]]/up. Thus,

lengthϕ∗M =
r∑
i=1

length(ϕ∗Mi/ϕ
∗Mi−1) =

r∑
i=1

p = pr

since length(F[[u]]/up) = p.

3.2 Categories of Kisin modules

The category ModϕS and its dévissage

Let K0 = FracW (F) and let K be a finite totally ramified extension of K0, with ring of integers
OK , uniformizer π and residue field F. Let E(u) ∈ S be the minimal polynomial of π, which
is Eisenstein. Then, E is an irreductible distinguished polynomial, hence a prime element in S,
and S/ES ' OK by u 7→ π.

We have already seen in last section that for every object in the category ModS of finitely
generated S-modules, there is an exact sequence

0→Mtors →M →Mfr →M → 0,

and that for Mtors in the sequence, we have another exact sequence

0→M [m∞]→Mtors →Mt → 0.

Consider now the category ModϕS, whose objects are pairs (M,ϕM ) with M a module in ModS

and ϕM is a Frobenius isomorphism

ϕM : ϕ∗M [ 1
E ]
∼−→M [ 1

E ],

where ϕ is the Frobenius over S. When there is no confusion, we will denote only by M the
objects in ModϕS. A morphism f : (M,ϕM ) → (N,ϕN ) in ModϕS is a morphism of S-modules
f : M → N making the following diagram commute

ϕ∗M [ 1
E ] ϕ∗N [ 1

E ]

M [ 1
E ] N [ 1

E ].

ϕ∗f

ϕM ϕN

f

The category ModϕS is abelian and there is a unique dévissage
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0

(M [m∞], ϕm∞)

0 (Mtors, ϕtors) (M,ϕM ) (Mfr, ϕfr) (M,ϕM ) 0

(Mt, ϕt)

0

where Mfr is a free S-module, Mtors is killed by a power of p (i.e. it is an object in the category
A from last section), Mt is an object in ModS,t, and M and M [m∞] are S-modules of finite
length. The proof that Mtors is killed by a power of p is given by Bhatt, Morrow and Scholze in
[4].

Remark 6. 1. Since M [m∞] (resp. M) has finite length, we have

M [m∞][ 1
E ] = ϕ∗M [m∞][ 1

E ] = 0

(resp. M [ 1
E ] = ϕ∗M [ 1

E ] = 0) and so the Frobenius ϕm∞ (resp. ϕM ) is just the zero
morphism between zero objects.

2. For a module M in A, we have M [ 1
E ] 'M [ 1

u ]. Indeed, E(u) = udegE + f(u), where f(u)
is nilpotent on M .

3. We haveM [m∞] = M [u∞] = M [E∞] for everyM ∈ ModϕS, since bothM [E∞] andM [u∞]
are submodules of Mtors, so they are also killed by a power of p.

4. The module M [1
p ] is free over S[1

p ], since M [1
p ] = Mtors[

1
p ] = 0.

The decomposition above allows us to define the following categories that we will study in more
detail later:

1. The category ModϕS, fr: It is the additive full subcategory of ModϕS whose objects are pairs
(M,ϕM ) with M a free module. We call its objects Kisin modules.

2. The category ModϕS,tors: It is the abelian full subcategory of ModϕS whose objects are pairs
(M,ϕM ) with M a module in A. By point 2 in the remark above, we see that the objects
in ModϕS,tors do not depend on K, π or E.

Using the exact sequence

0→ (M [m∞], ϕm∞)→ (Mtors, ϕtors)→ (Mt, ϕt)→ 0

above, we can define a torsion theory on ModϕS,tors, using the following two categories:

(3) The category ModϕS, t: It is the full subcategory of ModϕS,tors whose objects are pairs
(M,ϕM ) with M a module in ModS,t. We call its object p∞-torsion Kisin modules. This
will play the part of the torsion-free subcategory. It is then a quasi-abelian category.

(4) The category ModϕS,fl: It is the abelian full subcategory of ModϕS whose objects are pairs
(M,ϕM ) with M a finite length module, i.e. M [m∞] = M . We have seen that ϕm∞ = 0
in Remark 5, so we have an equivalence of categories ModϕS,fl ' ModS,fl. This will play
the part of the torsion subcategory.
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One last category will be studied, the p-torsion category:

(5) The category ModϕF[[u]],fr: It is the additive full subcategory of ModϕS, t whose objects are
killed by p. This corresponds to finite free F[[u]]-modules (since they do not have u-torsion,
asM [E] = M [u] for everyM ∈ ModS killed by p and objects in ModϕS, t have no E-torsion)
endowed with a Frobenius ϕM : ϕ∗M [ 1

u ]
∼−→ M [ 1

u ]. We call the objects in this category
p-torsion Kisin modules. This is a quasi-abelian category, since it is fully embedded in
ModϕS, t and it is stable by kernels and cokernels.

Definition 3.2.1. Let M be an object in ModϕS such that M [m∞] = 0. Then M ⊂ M [ 1
E ] and

ϕ∗M ⊂ ϕ∗M [ 1
E ]. We say that M is effective when ϕM (ϕ∗M) ⊂ M . Thus ϕM : ϕ∗M → M is

an injective morphism with cokernel killed by a power of E.

Lemma 3.2.1. Suppose M is effective, then a subobject N of M is effective if M/N has no
m∞-torsion and a quotient of M is effective if it has no m∞-torsion.

Proof. Indeed, for a subobject N of M , we have that ϕMϕ∗N ⊂ N [ 1
E ] ∩M . Now, for M/N we

have the exact diagram

0

(M/N)[m∞]

0 (M/N)tors M/N (M/N)fr M/N 0

(M/N)t

0

so, if (M/N)[m∞] = 0, we have (M/N)tors ' (M/N)t which is in ModϕS, t, so it doesn’t have
E-torsion, and neither does M/N . An element x ∈ N [ 1

E ] ∩M has E-torsion image in M/N , so
its image is zero, and x ∈ N .

For a quotient π : M � Q, we have ϕ∗Q = (ϕ∗π)(ϕ∗M), so

ϕQ(ϕ∗Q) = ϕQ ◦ (ϕ∗π)(ϕ∗M) = π ◦ ϕM (ϕ∗M) ⊂ π(M) = Q.

Isogenies classes of Kisin modules

Let ModϕS⊗Qp be the category whose objects are the same objects as in ModϕS and whose
morphisms are morphisms in ModϕS tensored by Qp. It is the isogeny category of Kisin modules.
For (M,ϕM ) in ModϕS, we denote by (M,ϕM )⊗Qp the corresponding object in ModϕS⊗Qp (or
M ⊗Qp as an abuse of notation when there is no confusion).

Proposition 3.2.2. There is an equivalence of categories

ModϕS⊗Qp ' ModϕS, fr⊗Qp.
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Proof. It is induced by the adjoint functors

ModϕS → ModϕS, fr
M 7→ Mfr

and
ModϕS, fr → ModϕS
M 7→ M

since Mtors ⊗Qp = M ⊗Qp = 0.

Both categories ModϕS⊗Qp and ModϕS, fr⊗Qp are abelian, since ModϕS is abelian.

Definition 3.2.2. Let M1,M2 ∈ ModϕS. An isogeny between M1 and M2 is a morphism
f : M1 → M2 which becomes an isomorphism in ModϕS⊗Qp. Equivalently, it is a morphism
whose kernel and cokernel are objects in ModϕS,tors. In particular, if M1 and M2 are free Kisin
module, the kernel is trivial and the cokernel belongs to ModϕS, t.

We say that two objects are isogenous if there is an isogeny between them, i.e. if they become
isomorphic in the category ModϕS⊗Qp.

There is a fully faithfully functor, studied in [22],

ModϕS⊗Qp → Modϕ
S[ 1

p
]

(M ⊗Qp, ϕM ) 7→ (M [1
p ], ϕM ⊗ 1)

where Modϕ
S[ 1

p
]
is the abelian category whose objects are finitely generated S[1

p ]-modules N

together with a Frobenius
ϕN : ϕ∗N [ 1

E ]
∼−→ N [ 1

E ],

and whose morphisms are the morphisms between modules compatible with the Frobenius, as
above. When an object in Modϕ

S[ 1
p

]
comes from an object M in ModϕS, fr, we will denote it by

M [1
p ]. By proceeding as in [4, Proposition 4.3], we can prove that all the modules in Modϕ

S[ 1
p

]

are free modules.

Lemma 3.2.3. The essential image of the functor ModϕS⊗Qp → Modϕ
S[ 1

p
]
given above is stable

by subobjects and quotients. In particular, it is an abelian subcategory of Modϕ
S[ 1

p
]
.

Proof. It suffices to show that for any submodule N of M [1
p ] in Modϕ

S[ 1
p

]
, where M ∈ ModϕS, fr,

there is a module N ′ in ModϕS such that N ′[1
p ] = N . We can take N ′ = N ∩M and it is easy

to show that this is a module in ModϕS, by the compatibily between ϕM , ϕM [1
p ] and ϕN . Then,

each quotient is also included in the essential image, since the localization functor is exact, thus
the essential image forms an abelian category. The lemma follows since the essential image of
ModϕS, fr → Modϕ

S[ 1
p

]
equals the essential image of ModϕS⊗Qp → Modϕ

S[ 1
p

]
.

Now, we want to show that there are Harder-Narasimhan filtrations in the two categories, and
compare them. For Modϕ

S[ 1
p

]
, we put

rank : Modϕ
S[ 1

p
]
→ Z

N 7→ rankS[ 1
p

]N

and
deg : Modϕ

S[ 1
p

]
→ Z

N 7→ ν(N ⊗ Ŝ, ϕNϕ
∗N ⊗ Ŝ),
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where the operator ν was defined in section 2.3. In the next proposition, we show that they
verify the conditions of a Harder-Narasimhan rank and degree function.

Proposition 3.2.4. The degree function on Modϕ
S[ 1

p
]
is additive on short exact sequences and

the rank function verifies the following properties:

1. If rank(N) = 0, then N = 0.

2. It is additive on short exact sequences.

Proof. The two properties for the rank function are obvious since every object in Modϕ
S[ 1

p
]
is

free, as we saw in 3.2, and the usual rank function is additive on short exact sequences of free
modules. For the degree, we may assume the modules to be effective. A short exact sequence

0→ N1 → N2 → N3 → 0

in Modϕ
S[ 1

p
]
yields a diagram with exact rows and columns

0 0 0

0 ϕ∗N1 ϕ∗N2 ϕ∗N3 0

0 N1 N2 N3 0

0 cokerϕN1 cokerϕN2 cokerϕN3 0

0 0 0

and by localization at (E), we obtain

degN2 = − lengthS(E)
(cokerϕN2 (E))

= − lengthS(E)
(cokerϕN1 (E))− lengthS(E)

(cokerϕN3 (E))

= degN1 + degN3.

The rank and degree functions above together with the fact the Modϕ
S[ 1

p
]
is an abelian category,

define a Harder-Narasimhan filtration on objects of Modϕ
S[ 1

p
]
that we will denote by FF,S[ 1

p
].

For ModϕS⊗Qp, let

rank : ModϕS⊗Qp → Z
M ⊗Qp 7→ rankS⊗Qp(M ⊗Qp) = rankS(M)

and
deg : ModϕS⊗Qp → Z

M ⊗Qp 7→ ν(M ⊗ Ŝ, ϕMϕ
∗M ⊗ Ŝ).

Remark 7. The degree and rank function on M ⊗Qp and M [1
p ] coincide.

Proposition 3.2.5. The degree function on ModϕS, fr⊗Qp is additive on short exact sequences
and the rank function verifies the following properties:
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1. If rank(M ⊗Qp) = 0, then M ⊗Qp = 0.

2. It is additive on short exact sequences.

Proof. It follows from the properties of the degree and rank function defined on Modϕ
S[ 1

p
]
, since

the functor ModϕS⊗Qp → Modϕ
S[ 1

p
]
is exact, and the degree and rank functions coincide in the

two categories.

The degree and rank functions above together with the fact the ModϕS⊗Qp is an abelian category,
gives us a Harder-Narasimhan filtration on ModϕS⊗Qp that we denote by FF,◦ and whose polygon
we will denote by tF,◦. Next proposition proves that the functor ModϕS⊗Qp → Modϕ

S[ 1
p

]
is

compatible with the Harder-Narasimhan filtrations given in each category.

Proposition 3.2.6. Let M ∈ ModϕS⊗Qp, then

F≥γ
F,S[ 1

p
]
(M [1

p ]) = (F≥γF,◦(M))[1
p ]

for every γ ∈ Q. In particular tF,S[ 1
p

](M [1
p ]) = tF,◦(M).

Proof. It suffices to show that the image of the graded spaces for FF,◦ are semi-stable for the
slope function defined on Modϕ

S[ 1
p

]
. Let Mγ = GrγFF,◦

(M) and denote by µ◦ (resp. µS[ 1
p

]) the

slope function on ModϕS⊗Qp (resp. on Modϕ
S[ 1

p
]
). Then

µS[ 1
p

](M
γ [1
p ]) = µ◦(M

γ) = γ

by definition. Now, for every subobject N of Mγ [1
p ], lemma 3.2.3 tells us that there exists a

submodule N ′ of M such that N ′[1
p ] = N . Thus,

µS[ 1
p

](N) = µ◦(N
′) < γ

where the last inequality is due to the semi-stability of Mγ in ModϕS⊗Qp. This proves that
Mγ [1

p ] is semi-stable for every γ ∈ Q.

3.3 Hodge-Pink modules

We recall in this section the definitions and some results about Hodge-Pink modules that can
be found in the article of Genestier and Lafforgue [22]. First, we introduce the category of
isocrystals, where the objects are pairs (D,σD) such that D is a finite dimensional K0-vector
space and

σD : σ∗D
∼−→ D

is an isomorphism of K0-vector spaces, for σ the Frobenius on K0. The morphisms are the
morphisms f : D → D′ of K0-vector spaces which are compatible with the Frobenius σD and
σD′ . We denote by VectσK0

the category of isocrystals. LetK be a totally ramified finite extension
of K0 with uniformizer πK , let E ∈ S be the minimal polynomial of πK and denote by Ŝ the
completion of S[1

p ] with respect to the ideal generated by E.

Definition 3.3.1. For D a finite dimensional K0-vector space, a Hodge-Pink structure on D is
a free Ŝ-module VD which is a lattice in ϕ∗D ⊗K0 Ŝ[ 1

E ].

A Hodge-Pink module is a 3-tuple (D,ϕD, VD) where:
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• D is a finite dimensional K0-vector space,

• σD : σ∗D → D is an isomorphism of K0-vector spaces,

• VD is a Hodge-Pink structure on D.

We denote by MHP the category of Hodge-Pink modules. A morphism of Hodge-Pink modules
D → D′ is a morphism f compatible with σD and σD′ such that f(VD) ⊂ VD′ . This is a
quasi-abelian category.

Remark 8. If (D,σD, VD) is a Hodge-Pink module and (D′, σD′) a subobject of the isocrystal
(D,σD), we can endow D′ with a Hodge-Pink structure by setting VD′ = VD ∩ (σ∗D′⊗K0 Ŝ[ 1

E ]).

We denote by D the Hodge-Pink module (D,σD, VD) when there is no confusion. We define the
Newton and Hodge types of D by

tN(D,σD, VD) = tN(D,σD) and tH(D,σD, VD) = Pos(σ∗D ⊗K0 Ŝ, VD)

where tN(D,σD) denotes the type associated to the Newton polygon of the isocrystal (D,σD)
given by the Dieudonné-Manin decomposition. We denote their degrees by

tN(D) = deg(tN(D,σD, VD)) and tH(D) = deg(tH(D,σD, VD)) = ν(σ∗D ⊗K0 Ŝ, VD).

The usual rank function and the degree function given by

deg(D) = tH(D)− tN(D)

define a Harder-Narasimhan theory on MHP. Indeed, it is easy to see that the rank function
verify the conditions. For the degree function, a mono-epi

f : (D,σD, VD)→ (D′, σD′ , VD′),

yields an isomorphism between the underlying isocrystals, so

tN(D) = tN(D′).

Also, since f(VD) ⊂ VD′ and f(σ∗D ⊗K0 Ŝ) = σ∗D′ ⊗K0 Ŝ, we obtain

tH(D′)− tH(D) ≥ 0

with equality if and only if VD ' VD′ , i.e. f is an isomorphism of Hodge-Pink modules.

Definition 3.3.2. We say that a Hodge-Pink module D is weakly admissible when it is semi-
stable of slope 0 for the Harder-Narasimhan theory defined above. We denote by MHPwa the
full subcategory of weakly admissible Hodge-Pink modules. It is an abelian category.

We say that a Hodge-Pink module D verifies the Griffiths transversality condition when

1⊗ u d
du

(VD) ⊂ E−1VD.

We denote by MHPGr the full subcategory of Hodge-Pink modules verifying the Griffiths transver-
sality condition, and MHPwa,Gr the full subcategory of weakly admissible Hodge-Pink modules
verifying the Griffiths transversality condition.

Proposition 3.3.1. The category MHPwa,Gr is a full subcategory of MHPwa stable by subobjects.
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Proof. Let D = (D,σD, VD) be an object in MHPwa,Gr, D′ = (D′, σD′ , VD′) be a weakly admis-
sible subobject of D and D′′ = (D′, σD′ , V

′
D′) the image of D′ in the category MHP, i.e.

V ′D′ = VD ∩ σ∗D′ ⊗ Ŝ[ 1
E ].

We have
tH(D′) ≤ tH(D′′) ≤ tN(D′′) = tN(D′) = tH(D′)

where the first inequality is due to the definition of tH, the second inequality is given by the
weakly admissibility of D and the last equality is given by the weakly admissibility of D′. Thus
tH(D′) = tH(D′′), so VD′ = V ′D′ . Now, by hypothesis we have u d

du(VD) ⊂ E−1VD, so

u d
du(VD′) = u d

du

(
VD ∩ σ∗D′ ⊗K0 Ŝ[ 1

E ]
)

⊂ u d
du(VD) ∩ u d

du

(
σ∗D′ ⊗K0 Ŝ[ 1

E ]
)

⊂ E−1
(
VD ∩ σ∗D′ ⊗K0 Ŝ[ 1

E ]
)

= E−1VD′ ,

therefore D′ verifies the Griffiths transversality condition.

The following theorem gives us the relation between Hodge-Pink modules and Kisin modules.
It can be found in [22, Theorem 0.4].

Theorem 3.3.2. There is an equivalence of ⊗-categories

ModϕS, fr⊗Qp ' MHPwa .

The functor is given by
ModϕS, fr → MHPwa

(M,ϕM ) 7→ (D,σD, VD)

where
D = M ⊗S K0 = M [1

p ]⊗S[ 1
p

] K0 = M [1
p ]/uM [1

p ]

σD = ϕM ⊗ 1

and in order to define VD, we use the O[ 1
λ ]-linear isomorphism ξ in [22, Lemma 3.5] or [25, 1.2.6],

making the following diagram commute

D ⊗K0 O
[

1
λ

]
M ⊗S O

[
1
λ

]
σ∗D ⊗K0 O

[
1
λ

]
ϕ∗M ⊗S O

[
1
λ

]
.

ξ

σD⊗1 '

ϕ∗(ξ)

ϕM⊗1'

We can tensor this with the morphism O → Ŝ defined in [22, Lemma 3.2] (with n = 0), to
obtain the diagram

D ⊗K0 Ŝ
[

1
E

]
M ⊗S Ŝ

[
1
E

]
M ⊗S Ŝ

σ∗D ⊗K0 Ŝ
[

1
E

]
ϕ∗M ⊗S Ŝ

[
1
E

]
.

ξ ⊂

σD⊗1 '

ϕ∗(ξ)

ϕM⊗1'

Then,
VD = (σD ⊗ 1)−1ξ−1(M ⊗S Ŝ)

= ϕ∗(ξ)−1 ◦ (ϕM ⊗ 1)−1(M ⊗S Ŝ).

The check that ModϕS⊗Qp → MHPwa is a ⊗-functor, it suffices to show that the construction
of ξ is compatible with tensor products, and this is evident since ξ is unique.
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Definition 3.3.3. We denote by Modϕ,log
S,fr the full subcategory of ModϕS, fr whose image in

MHPwa lies in MHPwa,Gr.

The following proposition gives us the relation between the Hodge types of the Kisin module
and the Hodge-Pink module.

Proposition 3.3.3. We have
tH(M) = tH(D)ι.

Proof. We have
tH(M) = Pos

(
M ⊗S Ŝ, ϕM ⊗ 1(ϕ∗M ⊗S Ŝ)

)
tH(D) = Pos

(
σ∗D ⊗K0 Ŝ, VD

)
= Pos

(
ξ(D ⊗K0 Ŝ),M ⊗S Ŝ

)
.

By [25, Lemma 1.2.6], we have

ξ(D ⊗K0 Ŝ) = ϕM ⊗ 1
(
ϕ∗M ⊗S Ŝ

)
,

hence
tH(M) = tH(D)ι.

3.4 Filtered isocrystals

Definition 3.4.1. A filtered isocrystal is a 3-tuple (D,σD,FH) where:

• The pair (D,σD) is an isocrystal,

• FH is a Z-filtration on DK = D ⊗K0 K by K-subspaces.

We denote by MFσK the category of filtered isocrystals (with the filtration defined on K), whose
objects are filtered isocrystals and the morphisms are morphisms between isocrystals f : D → D′

such that f(F≥iH DK) ⊂ F≥iH D′K for every i ∈ Z. This is a quasi-abelian category. If D′ is a
subobject of the underlying isocrystal of D = (D,σD,FH), we can endow D′ with a Hodge
filtration given by F≥iH D′K = F≥iH DK ∩ (D′ ⊗K0 K).

We can define the Newton and Hodge type by

tN(D,σD,FH) = tN(D,σD) and tH(D,ϕD,FH) = t(FH).

We denote their degrees by

tN(D) = deg(tN(D,σD,FH)) and tH(D) = deg(FH) =
∑

i∈Z i · dimK(GriFH
(DK)).

It is easy to check (analogously to the Hodge-Pink modules case) that the usual rank function
and the degree function given by

deg(D) = tH(D)− tN(D)

define a Harder-Narasimhan theory on MFσK .

Definition 3.4.2. We say that a filtered iscocrystal D is weakly admissible when it is semi-
stable of slope 0 for the Harder-Narasimhan theory defined above. We denote by waMFσK the
full subcategory of weakly admissible filtered isocrystals. It is an abelian category.
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The category waMFσK is abelian and in [18], we see that there is a good Harder-Narasimhan
formalism by taking for every object D = (D,ϕD,FH)

degD = −tH(D) and rankD = dimK0 D.

We denote by FF,wa the Harder-Narasimhan filtration given by these degree and rank functions,
and tF,wa will be its polygon.

There is a functor
MHP → MFσK

DHP = (D,σD, VD) 7→ DFil = (D,σD,FH)

where
FH = F(D ⊗K0 Ŝ, σD ⊗ 1(VD))

since both arguments are Ŝ-lattices in D ⊗ Ŝ[ 1
E ], so we obtain a filtration on the reduction of

D⊗K0 Ŝ, which is D⊗K0 K. It is clear that this is a ⊗-functor. The following theorem is given
by Genestier and Lafforgue in [22, Lemma 1.3] and [22, Lemma 1.4].

Theorem 3.4.1. This construction yields an equivalence of ⊗-categories

MHPGr ∼−→ MFσK

inducing an equivalence of ⊗-categories

waMFσK
∼−→ MHPwa,Gr .

The next proposition gives us the comparison between the Hodge types defined on the Hodge-
Pink module and the filtered isocrystal.

Proposition 3.4.2. Let DHP be a Hodge-Pink module whose image by the functor above is DFil.
We have

tH(DHP) = tH(DFil).

Proof. We have

tH(DHP) = Pos
(
σ∗D ⊗K0 Ŝ, VD

)
= Pos

(
D ⊗K0 Ŝ, σD ⊗ 1(VD)

)
= tH(DFil).

To summarize, we get a diagram

ModϕS⊗Qp MHPwa MHP

Modϕ,log
S,fr ⊗Qp MHPwa,Gr MHPGr

waMFσK MFσK

'

'

α ' '
Θ̃

where the category Modϕ,log
S,fr is defined in definition 3.3.3, and the functor

α : Modϕ,log
S,fr ⊗Qp →wa MFσK

is described by associating to (M,ϕM )⊗Qp the filtered isocrystal (M(0), ϕM(0),FH) where

• The underlying module is M(0) = (M/uM)[1
p ],
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• The Frobenius ϕM(0) is the reduction of ϕM to M(0),

• The filtration on M(0)K = M(0)⊗K0 K is given, via the isomorphism

M(0)⊗K0 K
∼−→ ϕMϕ

∗M ⊗Ŝ K,

by the filtration

F(ϕMϕ
∗M ⊗ Ŝ,M ⊗ Ŝ) =

ϕMϕ
∗M ∩ E(u)iM + E(u)ϕMϕ

∗M

E(u)ϕMϕ∗M
⊂ ϕMϕ∗M ⊗Ŝ K.

and
Θ̃ : waMFσK → Modϕ,log

S,fr ⊗Qp

is its inverse, the functor defined in [25].

From the diagram above and the results for Hodge-Pink modules, we get:

Proposition 3.4.3. The category Modϕ,log
S,fr ⊗Qp is a full subcategory of ModϕS⊗Qp stable by

subobjects.

As a consequence, we get the compatibility for the filtrations, as we did in 3.2.6.

Proposition 3.4.4. Let D ∈wa MFσK , then

F≥γF,◦(Θ̃(D)) = Θ̃(F≥γF,wa(D))

for every γ ∈ Q.

3.5 Fontaine’s functors

Using the same notations from last section, let K be a finite totally ramified extension of K0 con-
tained inK0, πK an uniformizer ofK,K∞ = ∪n≥1K( pn

√
πK), GalK = Gal(K0/K) and GalK∞ =

Gal(K0/K∞). We denote by Repcr
Qp GalK the category of crystalline GalK-representations, and

by Repcr
Zp GalK the category of GalK-stable Zp-lattices L such that L⊗Qp ∈ Repcr

Qp GalK .

For a crystalline representation V , recall that we have Fontaine functor

Dcris(V ) = (Bcris ⊗Qp V )GalK

defined in [20, 2.3.3], where Dcris(V ) is an object in MFϕK , the category of filtered isocrystals, and
it is compatible with the change of the extension K of K0. We get an equivalence of ⊗-categories

Dcris : Repcr
Qp GalK

'−→
wa

MFσK ,

whose inverse is denoted by Vcris. Then, we also get a functor

N = Θ̃ ◦Dcris : Repcr
Qp GalK → ModϕS⊗Qp.

By construction, there is a canonical isomorphism of ⊗-functors

α ◦N ' Dcris : RepQp GalK →wa MFσK .

Denote by OE the p-adic completion of S(p), a discrete valuation ring with fraction field
E = FracOE and residue field F((u)). Let Modϕ,ét

E be the category whose objects are finite
dimensional E-vector spaces M together with a Frobenius isomorphism

ϕM : ϕ∗M
∼−→M
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and the morphisms are morphisms between E-vector spaces compatible with the Frobenius. Also,
let Modϕ,ét

OE be the category whose objects are finite free OE -modules together with a Frobenius
isomorphism as above. Then, Fontaine gives in [20] two equivalences of ⊗-categories

Modϕ,ét
OE

∼−→ RepZp GalK∞ and Modϕ,ét
E

∼−→ RepQp GalK∞

which are exact. These two isomorphism induce a diagram

Modϕ,log
S,fr Modϕ,ét

OE RepZp GalK∞

Modϕ,log
S,fr ⊗Qp Modϕ,ét

E RepQp GalK∞

Modϕ,log
S,fr ⊗Qp

waMFσK Repcr
Qp GalK

−⊗OE

−⊗Qp

'

−⊗Qp

−⊗E '

α '

where the upper diagram is strictly commutative by construction and Kisin proves in [27, Propo-
sition 2.1.5] that the lower diagram is also commutative, i.e. the two functors Modϕ,log

S,fr ⊗Qp →
RepQp GalK∞ are canonically isomorphic.

3.6 Kisin’s functor

Using the Fontaine’s functors from last subsection, we obtain an exact and fully faithful ⊗-
functor

Modϕ,log
S,fr → Repcr

Zp(GalK ,GalK∞)

which is an equivalence of categories by [25, 2.1.15], where Repcr
Zp(GalK ,GalK∞) denotes the

category whose objects are the couples (T, V ) such that T ∈ RepZp GalK∞ is a lattice in V ∈
Repcr

Qp GalK . We denote by M its inverse and also the fully faithful ⊗-functor

M : Repcr
Zp GalK → ModϕS, fr

which is obtained by pre and post composing this inverse with the fully faithful embeddings
Repcr

Zp GalK ↪→ Repcr
Zp(GalK ,GalK∞) and Modϕ,log

S,fr ↪→ ModϕS,fr. The functor M is compatible
with the formation of symmetric and exterior powers, by [27, Theorem 1.2.1]. By construction,

• We have M⊗Qp ' N(−⊗Qp). In particular, since N and −⊗Qp are exact, so are M⊗Qp

and M[1
p ].

• The functor M⊗OE is isomorphic to Fontaine’s functor

Repcr
Zp GalK → RepZp GalK∞ → Modϕ,ét

OE .

In particular, it is exact and since S(p) → OE is faithfully flat, so is M(p) = M⊗S S(p).

Remark 9. It follows that for every p ∈ SpecS\{m}, the localized functor Mp is exact. For an
exact sequence

0→ L1 → L2 → L3 → 0

in Repcr
Zp GalK , the sequence

0→M(L1)→M(L2)→M(L3)

is exact and the cokernel of M(L2)→M(L3) has finite length.
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In the sequel, a Z-filtration on an A-module M is a decreasing collection F = (F≥i)i∈Z of direct
summands of M such that F≥i = M for i� 0 and F≥i = 0 for i� 0. Any such filtration has
a (non-unique) splitting: a Z-graduation M = ⊕i∈ZGi such that F≥i = ⊕j≥iGj for all i ∈ Z.

For M ∈ ModS,fr and a Z-filtration F = (F≥i)i∈Z on N = M [1
p ], we set

M + F =
∑
i∈Z

p−iM ∩ F≥i.

Since M + F =
∑r

i=−r p
−iM ∩ F≥i for r � 0, this is a finitely generated S-submodule of N ,

and so is therefore also
M +fr F = (M + F)fr.

The following conditions on (M,F) are equivalent:

1. We have F ∩M = (F≥i ∩M)i∈Z is a Z-filtration on M ,

2. There is a Z-filtration F ′ = (F ′≥i)i∈Z on M such that F ′[1
p ] = F .

Indeed (1) ⇒ (2) with F ′ = F ∩M and (2) ⇒ (1) since then F ∩M = F ′. They are also
equivalent to:

3. For each i ∈ Z, M/F≥i ∩M is free over S.

Then
M + F = M +fr F .

Indeed, let M = ⊕Gi be a splitting of F ∩M . Then each Gi is a free S-module and

p−iM ∩ F≥i =
(
⊕j∈Zp−iGj

)
∩
(
⊕j≥iGj [1

p ]
)

= ⊕j≥ip−iGj
thus M + F =

∑
i∈Z

(
⊕j≥ip−iGj

)
= ⊕j∈Z

∑
j≥i

p−iGj


= ⊕j∈Zp−jGj

is already a free S-submodule of N .

If now M ∈ ModϕS, fr and F is a ϕN -stable Z-filtration on N = M [1
p ] ∈ Modϕ

S[ 1
p

]
, then M + F

and (M +F)fr are ϕN -stable S-submodules of N . We may thus view them as objects in ModϕS
and ModϕS,fr, respectively.

Proposition 3.6.1. Let L ∈ Repcr
Zp GalK , let V = L⊗Qp, and let F be a GalK-stable Z-filtration

on V . Then we have
M(L+ F) = M(L) +fr N(F).

Proof. Plainly, L+ F is a GalK-stable sub-lattice of V . Applying Kisin’s functor M and N to

0 p−iL ∩ F≥i p−iL p−iL/p−iL ∩ F≥i 0

0 F≥i V V/F≥i 0

⊂ ⊂ ⊂
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we obtain a commutative diagram with exact rows

0 M(p−iL ∩ F≥i) M(p−iL) M(p−iL/p−iL ∩ F≥i)

0 N(F≥i) N(V ) N(V/F≥i) 0

⊂ ⊂ ⊂

Since also M
(
p−iL

)
= p−iM(L) in N(V ), we obtain

M
(
p−iL ∩ F≥i

)
= M

(
p−iL

)
∩N

(
F≥i

)
= p−iM (L) ∩N

(
F≥i

)
inside N(V ). Fix r ≥ 0 such that F≥−r = V and F≥r = 0. Applying Kisin’s (additive) functors
M and N to the diagram

⊕ri=−rp−iL ∩ F≥i L+ F 0

⊕ri=−rF≥i V 0

⊂ ⊂

we thus obtain a commutative diagram

⊕ri=−rp−iM(L) ∩N(F≥i) M(L+ F)

⊕ri=−rN(F≥i) N(V ) 0
⊂ ⊂

The image of the top map is the S-submodule M(L) +N(F) of N(V ) and its cokernel has finite
length, thus indeed

(M(L) +fr N(F)) = (M(L) + N(F))fr = M(L+ F).

3.7 Harder-Narasimhan filtrations

We use the same notations as we did in 3.2, that is F a perfect field of characteristic p,
K0 = FracW (F), K is a totally ramified extension of K0, with ring of integers OK , uniformizer
π and residue field F. Then, E(u) ∈ S is the minimal polynomial of π, which is an irreductible
distinguished polynomial, hence a prime element in S. Denote by C = K̂, the completion of an
algebraic closure K of K.

In [18], Fargues constructs a Harder-Narasimhan filtration FF,cr on RepHT
Qp GalK , the abelian cat-

egory of Hodge-Tate Qp-representations of GalK , by considering the dimension as rank function
and the degree function defined by deg(V ) = d where

∧rankV VC ' C(d)

where VC = V ⊗Qp C. Then, he constructs a Harder-Narasimhan filtration on Repcr
Qp GalK via

the fully faithful functor
Repcr

Qp GalK → RepHT
Qp GalK ,

since every subrepresentation of a crystalline representation is crystalline.
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Now, consider the category VectFilC/Qp of Qp-vector spaces endowed with a filtration on VC .
This is a quasi-abelian category admitting a Harder-Narasimhan formalism for the rank function
defined as the dimension of the Qp-vector space and the degree function defined by

deg : VectFilC/Qp → N
(V,Fil• VC) 7→

∑
i∈Z i · dimC(GriFil• VC).

Moreover, the Harder-Narasimhan filtration obtained is compatible with tensor products. Far-
gues also shows that there is an exact and faithful ⊗-functor

G : RepHT
Qp GalK → VectFilC/Qp

such that deg V = deg(G(V )) and rankV = rank(G(V )).

To summarize, we have the following relations between all the categories presented before:

MHPwa,Gr Modϕ,log
S ⊗Qp ModϕS⊗Qp Modϕ

S[ 1
p

]

waMFσK Repcr
Qp GalK RepHT

Qp GalK VectFilC/Qp

'

'

'

where all the functors are exact and ⊗-functors. Also, there is a Harder-Narasimhan filtration
defined in every category above (the filtration in MHPwa,Gr is defined by the equivalence of
categories with Modϕ,log

S ⊗Qp).

Proposition 3.7.1. All the Harder-Narasimhan filtrations defined on the categories above are
compatible.

Proof. As we have seen in previous subsections, all the filtrations defined from Modϕ
S[ 1

p
]
to

waMFσK are compatible. For the lower row, Fargues proves that via the equivalence of categories
Dcris, the filtration on crystalline representations corresponds to the filtration defined on waMFσK
for the degree function given above and then, in [18, Proposition 13], he proves that the filtration
on Repcr

Qp GalK is compatible with the filtration on VectFilC/Qp .

3.8 Germs of crystalline representations

Assume F algebraically closed.

Definition 3.8.1. For a Qp-vector space V , denote by Cr(V,K) the set of all morphisms

ρ : GalK → GL(V )

such that (V, ρ) is a crystalline representation of GalK , and set

Cr(V ) := lim−→
K0⊂K⊂K0

Cr(V,K)

where the transition maps Cr(V,K) → Cr(V,K ′) are induced by the inclusion GalK′ ↪→ GalK ,
for finite (totally ramified) extensions K0 ⊂ K ⊂ K ′ ⊂ K0. For an element ρ ∈ Cr(V ), we
denote by ρK the morphism ρK : GalK → GL(V ), for K large enough.

We define a germ of crystalline representations of GalK0 as an object (V, ρ) where V is a finite
dimensional Qp-vector space and ρ ∈ Cr(V ). A morphism f : (V, ρ) → (V ′, ρ′) of germs of
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representations is a Qp-linear morphism f : V → V ′ verifying that for every K and K ′ such that
ρ = ρK and ρ′ = ρK′ , there exists a finite extension K0 ⊂ K ′′ ⊂ K0 containing K and K ′ such
that f ◦ ρK|K′′ = ρK′|K′′ ◦ f , where ρK|K′′ and ρK′|K′′ are the restrictions of ρK and ρK′ to K ′′.
We define the germs of integral crystalline representations of GalK0 analogously.

The category of germs of crystalline representations and the category of germs of integral crys-
talline representations are denoted by Repcr

Qp{GalK0} and Repcr
Zp{GalK0}, respectively.

The Harder-Narasimhan filtration on germs of crystalline representations

For an extension K0 ⊂ K ⊂ K ′ ⊂ K0, we have a diagram

waMFσK Repcr
Qp GalK VectFilC/Qp

wa MFϕK′ Repcr
Qp GalK′ VectFilC/Qp

wa MFϕ
K

Repcr
Qp{GalK0} VectFilC/Qp

'
G

G
'

'
G

We have Harder-Narasimhan filtrations in the first two rows and next proposition gives us
the necessary compatibility between them in order to get a Harder-Narasimhan filtration on
Repcr

Qp{GalK}.

Proposition 3.8.1. The Harder-Narasimhan filtration defined on objects in Repcr
Qp GalK is com-

patible with base change. In particular, it defines a Harder-Narasimhan filtration on objects in
Repcr

Qp{GalK0}.

Proof. Proposition 13 in [18] tells us that after forgetting the action of GalK0 , the Harder-
Narasimhan filtration on a crystalline representation V is given by applying the functor VectFilC/Qp →
VectQp to the Harder-Narasimhan filtration on G(V ). For every extension K of K0, by the same
argument and because C does not depend on K, after forgetting the action of GalK , we obtain
the same filtration. The compatibility between the actions is evident, since Repcr

Qp GalK →
Repcr

Qp GalK0 is just given by (V, ρ) 7→ (V, ρ ◦ i) for i : GalK0 → GalK .

The Dcris functor on germs of crystalline representations

For a germ of crystalline representations (V, ρ), there always exists a large enough finite extension
K0 ⊂ K ⊂ K0 such that (V, ρK) ∈ RepQp GalK . Then, we can consider Fontaine’s Dcris functor
to get a functor

Repcr
Qp{GalK0} → VectσK0

(which is just the composition ofDcris with the functor forgetting the filtration) and by Fontaine’s
construction, this functor does not depend on K.

We would like to define the Dcris functor on germs of integral crystalline representations using
Kisin’s construction but, in order to do that, we have to prove that this construction is inde-
pendent of the choice of K. For a finite extension K0 ⊂ K ⊂ K0 with uniformizer πK . Let η be
the ⊗-isomorphism between Kisin’s ⊗-functor

DK
cris : Repcr

Qp GalK
N−→ Modϕ,log

S,fr ⊗Qp
α−→

wa
MFσK



CHAPTER 3. KISIN’S THEORY 62

and Fontaine’s functor
Dcris : Repcr

Qp GalK →wa MFσK .

Define ⊗-functors
DK

cris : Repcr
Zp GalK → ModσW (F)

L 7→ M(L)/uM(L)

and
Dcris : Repcr

Zp GalK → ModσW (F)

L 7→ ηL⊗Qp(D
K
cris(L))

so that DK
cris(L) is a lattice in DK

cris(L⊗Qp) and Dcris(L) is a lattice in Dcris(L⊗Qp).

Lemma 3.8.2. This construction induces a ⊗-functor

Dcris : Repcr
Zp{GalK0} → ModσW (F) .

Proof. It follows from the more general result given by Liu in [35, Proposition 2.2.4] for semi-
stable representations, knowing that in the case of a crystalline representation we have Dst(V ) =
Dcris(V ).



Chapter 4

The Fargues filtration on Mod
ϕ
F[[u]],fr

4.1 The category ModϕF[[u]],fr

We have already defined the category ModϕF[[u]],fr in 3.2, but we can give another interpretation
of this categories as lattices inside vector spaces.

Denote by ModϕF((u)) the abelian category whose objects are finite dimensional F((u))-vector

spaces V together with a Frobenius isomorphism ϕV : ϕ∗V
∼−→ V and the morphisms are the

linear morphisms of vector spaces f : V → V ′ which are compatible with the isomorphisms ϕV
and ϕV ′ . For an object V in ModϕF((u)), denote by L(V ) the set of lattices of V . The cate-
gory ModϕF[[u]],fr is then equivalent to the category of all pairs (V,M) where V ∈ ModϕF((u)) and
M ∈ L(V ).

We have already seen that this is a quasi-abelian category. Now, we give explicitely the kernel,
cokernel, image and coimage in this category. For a morphism f : M → N between two objects
in ModϕF[[u]],fr, the kernel (ker f, ϕker f ) is given by:

• The underlying module is ker f = {m ∈M | f(m) = 0}, which is a free module since it is
a submodule of a free module over a PID.

• The morphism ϕker f = ϕM | ker f since from the compatibility of f with ϕM and ϕN , the
image of ϕ∗ ker f [ 1

u ] by ϕM is contained in ker f [ 1
u ].

The cokernel of f is given by (coker f, ϕcoker f ) where

• The underlying module is coker f = N/f(M)sat, where f(M)sat is the saturation of f(M)
in N .

• The morphism ϕcoker f = ϕN where ϕN is the morphism induced by ϕN on the quotient
coker f , since ϕN sends ϕ∗f(M)sat to f(M)sat[ 1

u ] ' f(M)[ 1
u ].

The image of f is given by (im f, ϕim f ) where

• The underlying module is im f = ker coker f = f(M)sat.

• The morphism ϕim f = ϕN | im f is the restriction of ϕN to im f .

To give a mono-epi in this category, is the same as to give a monomorphismM1 ↪→M2 such that
M1

[
1
u

] ∼−→M2

[
1
u

]
, which is the same as to say that we have an exact sequence in the category

of F[[u]]-modules.
0→M1 →M2 → Q→ 0

63
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with Q a torsion F[[u]]-module.

Some operators we can consider on ModϕF[[u]],fr are

1. Tensor products : For two p-torsion Kisin modules (M1, ϕM1) and (M2, ϕM2), define

(M1 ⊗M2, ϕM1⊗M2) = (M1 ⊗F[[u]] M2, ϕM1 ⊗ ϕM2).

This definition works since we have ϕ∗(M1 ⊗F[[u]] M2)[ 1
u ] = (ϕ∗M1[ 1

u ]) ⊗F((u)) (ϕ∗M2[ 1
u ])

and (M1 ⊗F[[u]] M2)[ 1
u ] = (M1[ 1

u ]) ⊗F((u)) (M2[ 1
u ]). The identity object for the tensor

product is the p-torsion Kisin module 1 = (F[[u]], ϕF[[u]]) where ϕF[[u]] is the identity on
ϕ∗F[[u]] ' F[[u]].

2. Twist: We define the i-twist of a p-torsion Kisin module as

−(i) : ModϕF[[u]],fr → ModϕF[[u]],fr

(M,ϕM ) 7→ (M(i), ϕM(i)) = (M,uiϕM )

For any p-torsion Kisin module, there exists i ≥ 0 such that M(i) is effective. We have
M(i) = M ⊗ 1(i) for i ∈ Z.

3. Exterior powers: We define the exterior powers of a p-torsion Kisin module by

Λk : ModϕF[[u]],fr → ModϕF[[u]],fr

(M,ϕM ) 7→ (ΛkM,ΛkϕM )

where ΛkϕM is defined as the composition of the morphism Λk(ϕM ) : Λkϕ∗M → ΛkM
with the isomorphism ϕ∗ΛkM ' Λkϕ∗M , for all 1 ≤ k ≤ rankF[[u]]M .

4. Symmetric powers: We define the symmetric power of a p-torsion Kisin module by

Symk : ModϕF[[u]],fr → ModϕF[[u]],fr

(M,ϕM ) 7→ (SymkM, Symk ϕM )

where Symk ϕM is defined as the composition of the morphism Symk(ϕM ) : Symk ϕ∗M →
SymkM with the isomorphism ϕ∗ SymkM ' Symk ϕ∗M , for all k ≥ 1.

5. Duality : For a p-torsion Kisin module (M,ϕM ), we define the dual of (M,ϕM ) as
(M∨, ϕM∨) where M∨ = HomF[[u]](M,F[[u]]) and

ϕM∨ : (ϕ∗M∨)[ 1
u ] → M∨[ 1

u ]

f 7→ ϕ ◦ f ◦ ϕ−1
M

since ϕ∗Hom(M,F[[u]])[ 1
u ] ' Hom(ϕ∗M,ϕ∗F[[u]])[ 1

u ] ' Hom(ϕ∗M [ 1
u ], ϕ∗F[[u]][ 1

u ]).

6. Internal homomorphisms: Since we have defined the tensor product and duality, we can
define an internal Hom by

Hom((M1, ϕM1), (M2, ϕM2)) = (M1, ϕM1)∨ ⊗ (M2, ϕM2)

for all pair of objects (M1, ϕ1), (M2, ϕM2) in ModϕF[[u]],fr.



CHAPTER 4. THE FARGUES FILTRATION ON MODϕ
F[[U ]],FR 65

4.2 The filtration

For a Harder-Narasimhan filtration, we need a degree and a rank function. For the rank function,
we will take the usual rank of the module

rank : sk ModϕF[[u]],fr → N
M 7→ rank(M) = rankF[[u]](M)

.

Remark 10. We see that another description of the rank function is given by

rank(M) = µIW(M)

for M ∈ ModϕF[[u]],fr viewed as an S-module.
We define the degree function by

deg : sk ModϕF[[u]],fr → Z
M 7→ ν(M,ϕM (ϕ∗M))

for ν the operator defined in 2.3. When M is effective, we have degM = − lengthF[[u]]Q for
Q = M/ϕM (ϕ∗M) the cokernel of ϕM in the category of F[[u]]-modules. Also, define

µ(M) =
degM

rankM
.

We show how the rank and degree functions behave with respect to the operators defined on
ModϕF[[u]],fr. All the formulas for the degree function (except the formula for the dual) come
directly from 2.1 and Proposition 2.3.3, since the degree function is the degree of a type (the
relative position Pos(M,ϕM (ϕ∗M)):

1. Tensor product: Let M1, M2 ∈ ModϕF[[u]],fr and M = M1 ⊗M2, by a direct calculation we
get

rankM = rankM1 rankM2

degM = degM1 rankM2 + degM2 rankM1

µ(M) = µ(M1) + µ(M2).

2. Twist: For M ∈ ModϕF[[u]],fr, we have trivially rank(M(i)) = rankM for all i ∈ Z. For the
degree we have

deg(M(i)) = ν(M(i), ϕM(i)ϕ
∗M(i))

= ν(M,uiϕMϕ
∗M)

= ν(M,ϕMϕ
∗M)− i rankM

= degM − i rankM

for all i ∈ Z. Thus µ(M(i)) = µ(M)− i for all i ∈ Z.

3. Exterior power: Let M ∈ ModϕF[[u]],fr, r = rankM , then

deg(ΛkM) =
(
r−1
k−1

)
degM

rank(ΛkM) =
(
r
k

)
µ(ΛkM) = kµ(M)

for all k ≥ 1.

4. Symmetric power: Let M ∈ ModϕF[[u]],fr, r = rankM , then

deg(SymkM) = r
(
r+k−1
k−1

)
degM

rank(SymkM) =
(
r+k−1
k

)
µ(SymkM) = kµ(M)

for all k ≥ 1.
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5. Duality: Let M ∈ ModϕF[[u]],fr, then

degM∨ = −degM
rankM∨ = rankM
µ(M∨) = −µ(M)

Let us prove the formula for the degree in (5). We start by verifying that ϕM∨(ϕ∗(M∨)) '
(ϕM (ϕ∗M))∨. Let {ei}1≤i≤r be a basis of M . Then, a basis of ϕM∨(ϕ∗(M∨)) is given by
{ϕM∨(e∗i⊗1)}1≤i≤r, where {e∗i }1≤i≤r is the dual basis ofM∨, and a basis of (ϕM (ϕ∗M))∨ is given
by {(ϕM (ei ⊗ 1))∗}1≤i≤r, the basis dual to {ϕM (ei ⊗ 1)}1≤i≤r. For the basis {ϕM (ei ⊗ 1)}1≤i≤r
of ϕMϕ∗M , we have

(ϕM∨(e∗i ⊗ 1))(ϕM (ej ⊗ 1)) = ϕ ◦ (e∗i ⊗ 1) ◦ ϕ−1
M )(ϕM (ej ⊗ 1))

= (ϕ ◦ (e∗i ⊗ 1))(ej ⊗ 1)
= ϕ(δij ⊗ 1)
= δij

for 1 ≤ i, j ≤ r, so both basis coincide and ϕM∨(ϕ∗(M∨) ' (ϕMϕ
∗M)∨. Thus,

Pos(M∨, ϕM (ϕ∗(M∨))) = Pos(M∨, (ϕM (ϕ∗M))∨) = Pos(M,ϕM (ϕ∗M))ι

where the last equality is calculated using adapted basis as follows: Let {uγi · ei}1≤i≤r and
{ei}1≤i≤r be an adapted basis of M and ϕM (ϕ∗M). Then, an adapted basis of M∨ and
(ϕM (ϕ∗M))∨ is given by {u−γi ·e∗i }1≤i≤r and {e∗i }1≤i≤r, since u−γi ·e∗i = (u−γi ·ei)∗ for 1 ≤ i ≤ r.
The equalities between the relative positions give us deg(M∨) = −degM .

The following proposition shows that rank and deg are a rank and degree function in the sense
of the Harder-Narasimhan formalism.

Proposition 4.2.1. The function rank verifies the following properties:

1. It is additive on short exact sequence of objects in ModϕF[[u]],fr.

2. If rankM = 0, then M = 0.

3. If f : M1 →M2 is a mono-epi, then rankM1 = rankM2.

The function deg verifies the following properties:

1. It is additive on short exact sequences of objects in ModϕF[[u]],fr.

2. For f : M1 → M2 a mono-epi, we have degM1 ≤ degM2. Moreover, the equality holds if
and only if f is an isomorphism.

Proof. The statements about the rank function are trivial. For the degree function, we can
reduce to the effective case by the additivity of rank and the formula for the degree of a twisted
module given in 2. The exact sequence

0→M1 →M2 →M3 → 0

and the flatness of ϕ then gives rise to an exact sequence

0→ cokerϕM1 → cokerϕM2 → cokerϕM3 → 0

so
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degM2 = − lengthF[[u]](cokerϕM2)

= − lengthF[[u]](cokerϕM1)− lengthF[[u]](cokerϕM3)

= degM1 + degM3.

For the second part, we have seen that f mono-epi means that there is an exact sequence in the
category of F[[u]]-modules

0→M1
f−→M2 → Q→ 0

with Q a torsion F[[u]]-module. Again, we can consider M1 and M2 to be effective since
rankM1 = rankM2. By the flatness of ϕ, we get a diagram

0

0 0 kerϕQ

0 ϕ∗M1 ϕ∗M2 ϕ∗Q 0

0 M1 M2 Q 0

cokerϕM1 cokerϕM2 cokerϕQ

0 0 0

ϕM1
ϕM2 ϕQ

in the category of F[[u]]-modules. By the snake lemma, we have an exact sequence

0→ kerϕQ → cokerϕM1 → cokerϕM2 → cokerϕQ → 0.

From this, we get that

degM2 − degM1 = − lengthF[[u]] cokerϕM2 + lengthF[[u]] cokerϕM1

= − lengthF[[u]]Q+ lengthF[[u]](ϕ
∗Q)

= (p− 1) · lengthF[[u]]Q

≥ 0

where the last equality is proved in 3.1.8. We also see that the equality holds if and only if
lengthQ = 0, which implies that Q = 0 and f is an isomorphism.

The deg and rank functions define a Harder-Narasimhan filtration on every object of ModϕF[[u]],fr.
This filtration was already announced by Carl Wang-Erickson and Brandon Levin in [17] and
was originally inspired by Fargues’ theory [19] of Harder-Narasimhan filtrations for finite flat
group schemes. This is why, from now on, we will refer to our filtration as the the Fargues
filtrations. We will denote by FF,1 the Fargues filtration and by tF,1, the polygon associated to
it.
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4.3 Hodge types

Let M ∈ ModϕF[[u]],fr with rankM = r, and let V = M [ 1
u ]. Define the type

Pos(M,Mn) in Zr≥,

where M0 = M , M1 = ϕM (ϕ∗M) and for n ≥ 2, we have

Mn = (ϕM ◦ ϕ∗ϕM ◦ . . . ◦ ϕ(n−1)∗ϕM )(ϕ(n)∗M)

where ϕ(k)∗M is the pullback of M by ϕ(n) and

ϕ(k)∗ϕM : ϕ(k)∗(ϕ∗ϕM ) = (ϕ ◦ ϕ(k))∗M = ϕ(k+1)∗M → ϕ(k)∗M

for k ≥ 2. There is an alternative definition using the isomorphism ϕV : ϕ∗V
∼−→ V . Consider

the composition of morphisms

L(V )
ϕ∗−→ L(ϕ∗V )

ϕV−−→ L(V )

sending a lattice M to ϕV (ϕ∗M). As an abuse of notation, we denote this composition by ϕV .
We put M0 = M and Mn = ϕV (Mn−1) = ϕnV (M0) for every n ≥ 1. This interpretation of the
lattices Mn will be very useful, since the following lemma tells us how the relative position of
lattices interacts with ϕV : L(V )→ L(V ).

Lemma 4.3.1. Let M1,M2 be two F[[u]]-lattices in V . Then we have

Pos(ϕV (M1), ϕV (M2)) = pPos(M1,M2).

Proof. Let {uni ·ei}1≤i≤r and {ei}1≤i≤r be adapted basis ofM1 andM2. Then, basis of ϕV (M1)
and ϕV (M2) are given by {ϕV (uni · ei ⊗ 1)}1≤i≤r and {ϕV (ei ⊗ 1)}1≤i≤r, respectively. Since
ϕV (uniei ⊗ 1) = ϕV (ei ⊗ upni) = upniϕV (ei ⊗ 1), the lemma follows.

As a consequence, we have:

Corollary 4.3.2. Let M1, M2 be two F[[u]]-lattices in V . Then

d(ϕVM1, ϕVM2) = p d(M1,M2).

In particular, for a p-torsion Kisin module, we have

Pos(Mi,Mj) = pi Pos(M,Mj−i)
d(Mi,Mj) = pi d(M,Mj−i)

for 1 ≤ i ≤ j. Next proposition gives some other properties of the modules Mn.

Proposition 4.3.3. The modules Mn verify:

1. For all n ≥ 1 and M1, M2 two F[[u]]-lattices in two objects V and V ′ of ModϕF((u)), we
have (M1 ⊗M2)n = M1,n ⊗M2,n.

2. For all n, k ≥ 1, we have Λk(Mn) = (ΛkM)n.

3. For all n, k ≥ 1, we have Symk(Mn) = (SymkM)n.

4. For all n ≥ 1 and M1, M2 two F[[u]]-lattices in V, V ′ ∈ ModϕF((u)), we have (M1⊕M2)n =
M1,n ⊕M2,n.
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5. For an exact sequence 0 → W → V
π−→ V/W → 0 in ModϕF((u)), and any F[[u]]-lattice M

in V , we have (Mn ∩W ) = (M ∩W )n and (π(M))n = π(Mn).

6. For every ϕV -stable flag F of V , we have GrF (Mn) = (GrF M)n.

Proof. 1. We prove it by induction on n since

ϕV⊗V ′(M1 ⊗M2) = ϕVM1 ⊗ ϕV ′M2 = M1,1 ⊗M2,1

and if the statement is true for n− 1, then

ϕV⊗V ′(M1 ⊗M2)n−1 = ϕV⊗V ′(M1,n−1 ⊗M2,n−1)
= ϕVM1,n−1 ⊗ ϕV ′M2,n−1

= M1,n ⊗M2,n.

2. We prove it by induction on n, since Λk(ϕVM) = ϕΛkV (ΛkM) and if we suppose that
ΛkMn−1 = (ΛkM)n−1, then

Λk(Mn) = Λk(ϕVMn−1) = ϕΛkV (ΛkMn−1) = ϕΛkV ((ΛkM)n−1) = (ΛkM)n.

3. The proof is the analogous to the one for the exterior power.

4. We prove it by induction on n, since ϕV⊕V ′(M1 ⊕M2) = ϕV (M1) ⊕ ϕV ′(M2) and if we
suppose that (M1 ⊕M2)n−1 = M1,n−1 ⊕M2,n−1, then

(M1 ⊕M2)n = ϕV⊕V ′((M1 ⊕M2)n−1) = ϕV⊕V ′(M1,n−1 ⊕M2,n−1) = M1,n ⊕M2,n.

5. Let W be a ϕV -stable subspace of V . Since ϕ is flat, it commutes with intersections, so
we have ϕ∗(M ∩W ) = ϕ∗M ∩ ϕ∗W . Since ϕV is an isomorphism, ϕV (ϕ∗M ∩ ϕ∗W ) =
ϕV (ϕ∗M) ∩ ϕV (ϕ∗W ). Thus ϕW (M ∩W ) = ϕV (M) ∩W , since W is ϕV -stable. If we
suppose (M ∩W )n−1 = Mn−1 ∩W , we get

(M ∩W )n = ϕW (M ∩W )n−1 = ϕW (Mn−1 ∩W ) = ϕV (Mn−1) ∩W = Mn ∩W.

Let V π−→ V/W be the projection. Then π(ϕVM) = ϕV/W (π(M)) again using the flatness
of ϕ and the bijectivity of ϕV , and then if we consider the statement true for n − 1, we
have

π(Mn) = π(ϕVMn−1) = ϕV/W (π(Mn−1)) = ϕV/W (π(M))n−1 = (π(M))n.

6. It is a consequence of (4) and (5).

Definition 4.3.1. We define the n-th Hodge filtration of a p-torsion Kisin module M by

FH,n(M) = F(M,Mn),

i.e. the filtration induced by Mn on M/uM .

Proposition 4.3.4. The Hodge filtrations verify the following properties:

1. For M1,M2 ∈ ModϕF[[u]],fr, let M = M1 ⊗M2. Then

FH,n(M) = FH,n(M1)⊗FH,n(M2)

for all n ∈ N.
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2. For M ∈ ModϕF[[u]],fr and for every k, n ∈ N, we have

FH,n(ΛkM) = Λk(FH,n(M)).

3. For M ∈ ModϕF[[u]],frand for every k, n ∈ N, we have

FH,n(SymkM) = Symk(FH,n(M)).

4. For M1,M2 ∈ ModϕF[[u]],fr, let M = M1 ⊕M2. Then

FH,n(M) = FH,n(M1)⊕FH,n(M2)

for all n ∈ N.

Proof. It follows directly from Proposition 2.3.2 and Proposition 4.3.3.

Definition 4.3.2. We define the n-th Hodge type of a p-torsion Kisin module M by

tH,n(M) = p−1
n t(FH,n(M)) = p−1

n Pos(M,Mn) in Qr
≥

for pn = pn−1
p−1 and r = rankM .

In the next lemma, we prove that the Hodge types are decreasing for the divisibility in N.

Lemma 4.3.5. For all n ≥ 1 and m ≥ 1, we have

tH,nm(M) ≤ tH,n(M) in Qr
≥.

Proof. For all n, m ≥ 1, we have

Pos(M,Mnm) ≤
∑m−1

i=0 Pos(Mni,Mn(i+1))

=
∑m−1

i=0 pni Pos(M,Mn)
= pmn

pn
Pos(M,Mn)

for all m ≥ 1, thus tH,nm ≤ tH,n.

Remark 11. In particular, all the Hodge types tH,n have the same ending point (rankM,degM).

We consider the lower limit of the collection (tH,n(M))n≥1 for a p-torsion Kisin module M :

tH,∞(M) = lim tH,n(M) in Rr≥

where the limit is taken with respect to divisibility. This limit exists since the Hodge types can
be interpreted as piecewise affine concave polygons with the same starting and ending points,
and those are lower bounded by the linear polygon starting and ending at the same points as
the tH,n(M).

Proposition 4.3.6. Some properties of the Hodge types are:

1. For M1,M2 ∈ ModϕF[[u]],fr, let M = M1 ⊗M2. Then

tH,n(M) = tH,n(M1)⊗ tH,n(M2)

for all n ∈ N ∪ {∞}.
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2. For M ∈ ModϕF[[u]],fr and every n, k ≥ 1, we have

tH,n(ΛkM) = Λk(tH,n(M)).

3. For M ∈ ModϕF[[u]],fr and every n, k ≥ 1, we have

tH,n(SymkM) = Symk(tH,n(M)).

4. For M1,M2 ∈ ModϕF[[u]],fr, let M = M1 ⊕M2. Then

tH,n(M) = tH,n(M1)⊕ tH,n(M2)

for all n ∈ N ∪ {∞}.

5. Let 0 → M1 → M2 → M3 → 0 be an exact sequence of p-torsion Kisin modules, then we
have

tH,n(M1) ∗ tH,n(M3) ≤ tH,n(M2)

for all n ∈ N ∪ {∞}.

6. Let M ∈ ModϕF[[u]],fr and F be a flag on V = M [ 1
u ] which is ϕV -stable, then

tH,n(GrFM) ≤ tH,n(M)

for all n ∈ N ∪ {∞}.

Proof.(1)-(4) It follows from Proposition 4.3.4 and Proposition 2.2.1.

(5) It follows from 4.3.3 and 2.3.3.

(6) We have tH,n(GrFM) = p−1
n Pos(GrFM, (GrFM)n) = p−1

n Pos(GrFM,GrF (Mn)), where
the last equality is given in 4.3.3. Then, by 2.3.3, we have p−1

n Pos(GrFM,GrF (Mn)) ≤
p−1
n Pos(M,Mn) = tH,n(M) as we wanted.

Proposition 4.3.7. Let M ∈ ModϕF[[u]],fr. Then we have

tF,1(M) ≤ tH,∞(M) in Rr≥.

Proof. In Proposition 2.5.4, we have seen that tF(M) = tF(GrFF
M) = tF(Grγ1FF

M) ∗ . . . ∗
tF(GrγrFF

M) where {γ1, . . . , γr} are the breaks in the Fargues filtration of M . Now, for each
n ≥ 1 and for each 1 ≤ i ≤ r, we have tF(GrγiFF

M) ≤ tH,n(GrγiFF
M) since both are polygons

with the same terminal points and GrγiFF
M is semi-stable, so its Fargues polygons only have one

slope. Thus, also tF(GrγiFF
M) ≤ tH,∞(GrγiFF

M) for all 1 ≤ i ≤ r and

tF(Grγ1FF
M) ∗ . . . ∗ tF(GrγrFF

M) ≤ tH,∞(Grγ1FF
M) ∗ . . . ∗ tH,∞(GrγrFF

M).

Therefore

tF(M) = ∗ri=1tF(GrγiFF
M) ≤ ∗ri=1tH,∞(GrγiFF

M) = tH,∞(GrFF
M) ≤ tH,∞(M)

where the last inequality is given by Proposition 4.3.6.
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4.4 Aligned and flat modules

Definition 4.4.1. 1. We say that the p-torsion Kisin module M is aligned if we have

tH,∞ = tH,n

for some n ∈ N. We denote by Modϕ,al
F[[u]],fr the full subcategory of p-torsion Kisin modules

which are aligned.

2. We say that a p-torsion Kisin moduleM is flat if there exists an apartment A that contains
Mn for infinitely many n ∈ N. We denote by Modϕ,flat

F[[u]] the full subcategory of p-torsion
Kisin modules which are flat.

Proposition 4.4.1. Aligned and flat modules verify the following properties:

1. Let M be an aligned p-torsion Kisin module, then M is also flat.

2. Let M1, M2 be two aligned F[[u]]-lattices in V1 and V2. Then M1 ⊗ M2 is an aligned
p-torsion Kisin module.

3. Let M be an aligned p-torsion Kisin module, then ΛkM and SymkM are aligned for every
k ≥ 1.

4. Let 0→M1 →M2 →M3 → 0 be an exact sequence in ModϕF[[u]],fr. Then, M2 flat implies
that M1 and M3 are also flat.

5. Any strict subquotient of a flat p-torsion Kisin module is flat.

6. The Fargues filtration FF,1 of a flat module is formed by flat submodules.

Proof. 1. Suppose M is aligned, then there exists n ≥ 1 such that tH,∞ = tH,n = tH,nm for
all m ≥ 1. By the triangular inequality, we have

d(M,Mnm) ≤
∑m−1

i=0 d(Mni,Mn(i+1))

=
∑m−1

i=0 pni d(M,Mn)
= pmn

pn
d(M,Mn)

for all m ≥ 1, thus

pnm||tH,nm|| = d(M,Mnm) ≤ pnm
pn

d(M,Mn) = pnm||tH,n|| = pnm||tH,nm||

where the last equality is due to our hypothesis. Then 2.6.2 proves that there is an
apartment containing Mnm for all m ≥ 0, and M is flat.

2. Recall that, by 4.3.6, we have

tH,n(M1 ⊗M2) = tH,n(M1)⊗ tH,n(M2)
tH,∞(M1 ⊗M2) = tH,∞(M1)⊗ tH,∞(M2).

If M1 and M2 are aligned, there exists n1, n2 ∈ Z such that tH,ni(Mi) = tH,∞(Mi) for
i = 1, 2, thus also tH,n1n2(Mi) = tH,∞(Mi) for i = 1, 2 and we have

tH,∞(M1 ⊗M2) = tH,∞(M1)⊗ tH,∞(M2)
= tH,n1n2(M1)⊗ tH,n1n2(M2)
= tH,n1n2(M1 ⊗M2),

so M1 ⊗M2 is aligned.
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3. By hypothesis, there exists n ≥ 1 such that tH,n(M) = tH,∞(M). Then, by Proposition
4.3.6, we have

tH,n(ΛkM) = ΛktH,n(M) = ΛktH,∞(M) = tH,∞(ΛkM)

and
tH,n(SymkM) = Symk tH,n(M) = Symk tH,∞(M) = tH,∞(SymkM)

for every k ≥ 1, so ΛkM and SymkM are aligned for k ≥ 1.

4. Consider the exact sequences

0 M1 M2 M3 0

0 V1 V2 V3 0π

for Vi objects in ModϕF((u)) for i = 1, 2, 3. If M2 is flat, there exists an apartment A2 of
L(V2) containing M2,n for infinitely many n ∈ N. Then, Proposition 2.6.3 tells us that
there exists a finite family of apartments of L(V2) adapted to the exact sequence such that
A2 ⊂ ∪ri=1A2,i, thus there exists i ∈ {1, . . . , r} such that A2,i contains M2,n for infinitely
many integers n ∈ N. We denote by S the subset of such integers. Let D be the line
decomposition of V2 defining A2,i. Since A2,i is adapted to the exact sequence, we get line
decompositions of V1 and V3 by taking D1 = D ∩ V1 and D3 = π(D), respectively. Then,
for every n ∈ S, we have

M1,n = M2,n ∩ V1 = (⊕D∈D(M2,n ∩D)) ∩ (⊕D∈D1D)
= ⊕D∈D(M2,n ∩D ∩ V1)
= ⊕D∈D(M1,n ∩ (D ∩ V1))
= ⊕D∈D1(M1,n ∩D)

so M1,n ∈ A(D1) for infinitely many n ∈ Z, thus M1 is flat. We can do the same for M3

since

M3,n = π(M2,n) = π (⊕D∈D(M2,n ∩D)) = ⊕D∈D3(π(M2,n)∩π(D)) = ⊕D∈D3(M3,n∩π(D)),

so the apartment A(D3) contains M3,n for every n ∈ S. The points (5) and (6) are a
consequence of (4).

4.5 Compatibility with tensor products

In this subsection, V will always refer to an object in ModϕF((u)). We denote by FR(V, ϕV ) the
set of R-filtrations of V which are ϕV -stable.

For every filtration F on V , and two F[[u]]-lattices in V , we define the scalar product with
respect to M1 and M2 as

〈M1,M2;F〉 =
∑
γ∈Γ

γ · ν(GrγF (M1),GrγF (M2)).

In particular, for a F[[u]]-lattice M inside V , we have

〈M,ϕVM ;F〉 =
∑
γ∈Γ

γ · deg(GrγFM).
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Remark 12. If we view the lattices M1,M2 as points xM1 , xM2 inside the building B(V ), we
see that the scalar product defined above corresponds to the Busemann function 〈−−−−−→xM1xM2 ,F〉
defined in 2.6.2.

Lemma 4.5.1. LetM be an F[[u]]-lattice in V . ThenM is semi-stable of slope µ for the Fargues
filtration if and only if we have

〈M,ϕVM ; Ξ〉+ 〈V (−µ),Ξ〉 ≤ 0

for every Ξ ∈ FR(V, ϕV ), where V (−µ) is the filtration of V such that Gr−µV (−µ) = V and
GrγV (−µ) = 0 if γ 6= −µ.

Proof. Suppose first the inequality above is true. We have to show that for every ϕV -stable
subspace W of V , we have µ(M ∩ W ) ≤ µ(M). For all a, b ∈ R with a ≤ b and for every
ϕV -stable subspace W of V , we define a filtration ΞW,a,b, given by

ΞγW,a,b =


V if γ ≤ a
W if a < γ ≤ b
0 if b < γ

.

Set M ′ = M ∩W and M ′′ = π(M) for the projection π : V → V/W . This filtration verifies

〈M,ϕVM ; ΞγW,a,b〉 = adegM ′′ + bdegM ′

= adegM + (b− a) degM ′

〈V (−µ),ΞγW,a,b〉 = −µ · deg(Gr−µV (−µ) ΞW,a,b)

= −µ · (a dimF((u))(V/W ) + bdimF((u))W )

= −µ · (a dimF((u)) V + (b− a) dimF((u))W ).

By hypothesis, we have 〈M,ϕVM ; ΞW,a,b〉 + 〈V (−µ),ΞW,a,b〉 ≤ 0 because ΞW,a,b ∈ FR(V, ϕV ),
i.e.

a(degM − µdimF((u)) V ) + (b− a)(degM ′ − µdimF((u))W ) ≤ 0.

Taking b = a in R, we find that degM = µ dimF((u)) V , i.e. µ(M) = µ. Taking a = 0 and b = 1,
we find that degM ′ − µdimF((u))W ≤ 0, i.e. µ(M ′) ≤ µ. Hence

µ(M) =
degM

dimF((u)) V
= µ

and for every strict p-torsion Kisin submodule M ′ ⊂ M , we get µ(M ′) ≤ µ(M) = µ by taking
W = M ′[ 1

u ] and b = 1, a = 0 in the inequality. Hence, M is semi-stable of slope µ.

Conversely, suppose that M is semi-stable of slope µ. Then, for any Ξ ∈ FR(V, ϕV ), we have

〈V (−µ),Ξ〉 = −µ deg Ξ

= −µ
n∑
i=1

γi · (dimF((u)) Ξγi − dimF((u)) Ξγi+1)

= −µ

(
n∑
i=2

(γi − γi−1) dimF((u)) Ξγi + γ1 dimF((u)) V

)
where {γ1 < . . . < γn} = {γ ∈ R | GrγΞ 6= 0} (which means that Ξγn+1 = 0), and

〈M,ϕVM ; Ξ〉 =
n∑
i=1

γi · deg(GrγiΞ (M))

=
n∑
i=1

γi · (deg(Ξγi ∩M)− deg(Ξγi+1 ∩M))

=

n∑
i=2

(γi − γi−1) deg(Ξγi ∩M) + γ1 degM.
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If M is semi-stable of slope µ, we have

µ(Ξγi ∩M) =
deg(Ξγi ∩M)

dimF((u)) Ξγi
≤ µ

for 1 ≤ i ≤ n and deg(M) = µdimF((u)) V , so the inequality holds.

Lemma 4.5.2. Let V1 and V2 be two F((u))-vector spaces. Then:

1. For F1,G1 (resp. F2, G2) two filtrations on V1 (resp. V2), we have

〈F1 ⊗F2,G1 ⊗ G2〉 = 〈F1,G1〉 dimF((u)) V2

+ 〈F2,G2〉 dimF((u)) V1

+ degF1 deg G2

+ degF2 deg G1.

2. For G1 (resp. G2) a filtration and M1,M
′
1 (resp. M2,M

′
2) two F[[u]]-lattices on V1 (resp.

on V2), we have

〈M1 ⊗M2,M
′
1 ⊗M ′2;G1 ⊗ G2〉 = 〈M1,M

′
1;G1〉dimF((u)) V2

+ 〈M2,M
′
2;G2〉dimF((u)) V1

+ ν(M1,M
′
1) deg G2

+ ν(M2,M
′
2) deg G1.

Proof. (2) Let M = M1 ⊗M2, M ′ = M ′1 ⊗M ′2 and G = G1 ⊗ G2. By the properties given for
the relative position in Proposition 2.3.3 and the formulas given for degree of a type in 2.1
and 2.1, we have:

〈M,M ′;G〉 =
∑
γ∈R

γ · ν(GrγGM,GrγGM
′)

=
∑
γ∈R

γ · ν

( ⊕
γ1+γ2=γ

Grγ1G1(M1)⊗Grγ2G2(M2),
⊕

γ1+γ2=γ

Grγ1G1(M ′1)⊗Grγ2G2(M ′2)

)
=

∑
γ = γ1,i + γ2,i
γ1,i ∈ Γ1

γ2,i ∈ Γ2

γ ·
(
d2,iν(Gr

γ1,i
G1 (M1),Gr

γ1,i
G1 (M ′1)) + d1,iν(Gr

γ2,i
G2 (M2),Gr

γ2,i
G2 (M ′2))

)

=
∑

γ1,i∈Γ1

γ1,iν(Gr
γ1,i
G1 (M1),Gr

γ1,i
G1 (M ′1))

∑
γ2,i

d2,i

+
∑

γ2,i∈Γ2

γ2,iν(Gr
γ2,i
G2 (M2),Gr

γ2,i
G2 (M ′2))

∑
γ1,i

d1,i

+
∑

γ1,i∈Γ1

γ1,i · d1,i

∑
γ2,i

ν(Gr
γ2,i
G2 (M2),Gr

γ2,i
G2 (M ′2))

+
∑

γ2,i∈Γ2

γ2,i · d2,i

∑
γ1,i

ν(Gr
γ1,i
G1 (M1),Gr

γ1,i
G1 (M ′1))

where dk,i = rankF((u)) GrγiGkMk and Γk = {γ ∈ Z | GrγGk 6= 0} for k = 1, 2. We know that∑
γk,i

dk,i = dimF((u)) Vk and
∑

γk,i
γk,i · dk,i = deg Gk, for k = 1, 2. Also, by point (5) in

Proposition 2.3.3, we have

Pos(GrGk(Mk),GrGk(M ′k)) ≤ Pos(Mk,M
′
k)

for k = 1, 2. In particular,∑
γk,i

ν(Gr
γk,i
Gk (Mk),Gr

γk,i
Gk (M ′k)) = ν(GrGk(Mk),GrGk(M ′k)) = ν(Mk,M

′
k),
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thus
〈M1 ⊗M2,M

′
1 ⊗M ′2;G1 ⊗ G2〉 = 〈M1,M

′
1;G1〉dimF((u)) V2

+ 〈M2,M
′
2;G2〉dimF((u)) V1

+ ν(M1,M
′
1) deg G2

+ ν(M2,M
′
2) deg G1.

(1) The proof is analogous to (2).

For the rest of the section, we fix M1, M2 ∈ ModϕF[[u]],fr two p-torsion Kisin modules modules,
and note M = M1 ⊗M2, V1 = M1[ 1

u ], V2 = M2[ 1
u ] and V = V1 ⊗ V2.

Corollary 4.5.3. Suppose M1, M2 semi-stable of slope µ1 and µ2 respectively. Then, for every
Ξ ∈ FR(V, ϕV ) which is decomposed, i.e

Ξ = Ξ1 ⊗ Ξ2 with Ξi ∈ FR(Vi, ϕi),

we have
〈M,ϕM ; Ξ〉+ 〈V (−µ),Ξ〉 ≤ 0

where µ = µ1 + µ2.

Proof. We apply Proposition 4.5.2 with M ′i = ϕViMi, Gi = Ξi and Fi = Vi(−µi), for i = 1, 2,
and we get

〈M,ϕM ; Ξ〉 = 〈M1, ϕ1M1; Ξ1〉dimF((u)) V2

+ 〈M2, ϕ2M2; Ξ2〉 dimF((u)) V1

+ degM1 deg Ξ2

+ degM2 deg Ξ1.

On the other hand, using the fact that V (−(µ1 + µ2)) = V1(−µ1)⊗ V2(−µ2) and an analogous
calculation, we get

〈V (−(µ1 + µ2)),Ξ〉 = 〈V1(−µ1),Ξ1〉 dimF((u)) V2

+ 〈V2(−µ2),Ξ2〉 dimF((u)) V1

− µ1 dimF((u)) V1 deg Ξ2

− µ2 dimF((u)) V2 deg Ξ1.

Then, if M1 and M2 are semi-stable of slope µ1 and µ2 respectively, we obtain using 4.5.1,

〈M,ϕM ; Ξ〉+ 〈V (−(µ1 + µ2)),Ξ〉 ≤ 0

for all Ξ ∈ FR(M1[ 1
u ], ϕ1)⊗ FR(M2[ 1

u ], ϕ2).

Now, for every Ξ ∈ FR(V, ϕV ), the projection

p : FR(V )→ im(FR(V1)× FR(V2))

given in section 2.6.1 gives us p(Ξ) = Ξ1 ⊗ Ξ2 for some Ξi ∈ FR(Vi, ϕi) for i = 1, 2. Indeed,

d(Ξ, ϕV (p(Ξ))) = d(ϕV (Ξ), ϕV (p(Ξ))) = d(Ξ, p(Ξ))

where the first equality is true since Ξ is fixed by ϕV , so ϕV (p(Ξ)) = p(Ξ), as one property of p
is that it is the only map such that d(Ξ, p(Ξ)) is minimal. Thus

〈M,ϕVM ; p(Ξ)〉+ 〈V (−µ), p(Ξ)〉 ≤ 0.
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Moreover, we know that 〈F ,Ξ〉 ≤ 〈F , p(Ξ)〉 for every F ∈ FR(V ), in particular for

F = V (−µ) = V1(−µ1)⊗ V2(−µ2).

Hence, to prove that M is semi-stable of slope µ, it suffices to prove that 〈M,ϕVM ; Ξ〉 ≤
〈M,ϕVM ; p(Ξ)〉 for every Ξ ∈ FR(V, ϕV ) and to be able to do it, we need some preliminary
results.

Lemma 4.5.4. For M,N ∈ L(V ), let Mn = ϕnVM and Nn = ϕnVN . Let Ξ be a ϕV -stable
filtration on V . Then

1. For every n ≥ 1, we have 〈Mn, Nn; Ξ〉 = pn〈M,N ; Ξ〉.

2. For every n ≥ 1, we have 〈M,Mn; Ξ〉 = pn〈M,ϕVM ; Ξ〉, where pn = pn−1
p−1 .

Proof. 1. We have

〈Mn, Nn; Ξ〉 =
∑
γ∈R

γ · ν(GrγΞ(Mn),GrγΞ(Nn))

=
∑
γ∈R

γ · ν((GrγΞ(M))n, (GrγΞ(N))n)

=
∑
γ∈R

γ · pnν(GrγΞM,GrγΞN)

= pn〈M,N ; Ξ〉

for every Ξ ∈ FR(V, ϕV ) and every n ≥ 0, where the second equality is given by Proposition
4.3.3 and the third equality is given by Proposition 4.3.1.

2. This is a consequence of (1), since

〈M,Mn; Ξ〉 =

n−1∑
i=0

〈Mi,Mi+1; Ξ〉 =

n−1∑
i=0

pi〈M,ϕVM ; Ξ〉 = pn〈M,ϕVM ; Ξ〉,

for pn = pn−1
p−1 .

Proposition 4.5.5. Suppose M flat. Then, for every Ξ ∈ FR(V, ϕV ), we have

〈M,ϕVM ; Ξ〉 ≤ 〈M,ϕVM ; p(Ξ)〉

for p the projection given in 2.6.1.

Proof. First, we can suppose that there is no unbounded sub-family inMn because if there exists
a bounded subsequence, we have

〈M,ϕVM ; Ξ〉 = 〈M,ϕVM ; p(Ξ)〉 = 0

for every ϕV -stable filtration Ξ on V . Indeed, let {Mb(n)}n≥0 be a bounded subsequence. Then,
also {GrγΞMb(n)}n≥0 is bounded for every γ ∈ R, thus

pb(n)〈M,ϕVM ; Ξ〉 = 〈M,Mb(n); Ξ〉 =
∑
γ∈R

γ · ν(GrγΞM,GrγΞMb(n))

is bounded. Therefore, 〈M,ϕVM ; Ξ〉 = 0.
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Since M is flat, we know that there is a sub-family of modules {Ma(n)}n≥0 contained in an
appartment. Inside this family, we take a sub-family of modules {Mb(n)}n≥0 converging to a
point in the boundary of the apartment, that we denote by ξ. By Proposition 2.6.1, we have

〈M,Mb(n); Ξ〉
d(M,Mb(n))

→ 〈ξ,Ξ〉

and the same goes for p(Ξ). Then, for every ε, there exists N ∈ N such that for every n ≥ N ,
we have

〈M,Mb(n); Ξ〉
d(M,Mb(n))

− ε ≤ 〈ξ,Ξ〉 ≤ 〈ξ, p(Ξ)〉 ≤
〈M,Mb(n); p(Ξ)〉

d(M,Mb(n))
+ ε,

where the central inequality is given in section 2.6.1, thus

〈M,Mb(n); Ξ〉 ≤ 〈M,Mb(n)M ; p(Ξ)〉+ 2εd(M,Mb(n))

and therefore by Lemma 4.5.4,

〈M,ϕVM ; Ξ〉 ≤ 〈M,ϕVM ; p(Ξ)〉+ 2ε
d(M,Mb(n))

pb(n)
.

The triangular inequality for the distance given in Proposition 2.3.1 gives us

d(M,Mb(n)) ≤
b(n)∑
i=1

d(Mi−1,Mi)

=

b(n)∑
i=1

pi−1 d(M,ϕVM)

= pb(n)d(M,ϕVM)

where pb(n) = pb(n)−1
p−1 , so

〈M,ϕVM ; Ξ〉 ≤ 〈M,ϕVM ; p(Ξ)〉+ 2εd(M,ϕVM)

for every ε ≥ 0, hence
〈M,ϕVM ; Ξ〉 ≤ 〈M,ϕVM ; p(Ξ)〉.

To summarize, we have the following corollary.

Corollary 4.5.6. Let M1,M2 be two semi-stable p-torsion Kisin modules of slope µ1 and µ2

respectively, as above, and suppose M = M1 ⊗ M2 is flat. Then M is semi-stable of slope
µ = µ1 + µ2.

Proof. For every Ξ ∈ FR(V, ϕV ), we have

〈M,ϕVM ; Ξ〉+ 〈(V (−µ),Ξ〉 ≤ 〈M,ϕVM ; p(Ξ)〉+ 〈(V (−µ), p(Ξ)〉 ≤ 0

where the first inequality is due to last proposition and the second one is given by Corollary
4.5.3, since M1 and M2 are semi-stable. Thus M is semi-stable of slope µ by Lemma 4.5.1.

As a consequence, we get the main theorem of the section.

Theorem 4.5.7. The Fargues filtration on the category Modϕ,al
F[[u]],fr is compatible with tensor

products, exterior powers and symmetric powers.
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Proof. Let M1 and M2 be two aligned p-torsion Kisin modules, and M = M1 ⊗M2. We have
to verify that

FF,1(M) = G(M)

where G(M) = FF,1(M1)⊗FF,1(M2), i.e. to verify that for every γ ∈ Γ,

GrγG(M) =
⊕

γ1 + γ2 = γ
γ1, γ2 ∈ Γ

Grγ1FF,1
(M2)⊗Grγ2FF,1

(M2)

is semi-stable of slope γ and, since the category C(γ) is abelian, we only need to prove if for
Grγ1FF,1

(M2)⊗Grγ2FF,1
(M2), knowing that GrγiFF,1

(Mi) is semi-stable of slope γi for i = 1, 2. If M1

and M2 are aligned, then, by Proposition 4.4.1, the module M is aligned and then flat by the
same proposition. Since flat modules are stable by subobject and quotients, we have GrγG(M)
flat, and again by stability of quotients, we have that Grγ1FF,1

(M1)⊗Grγ2FF,1
(M2) is also flat. We

apply the corollary above and get Grγ1FF,1
(M1)⊗Grγ2FF,1

(M2) semi-stable of slope γ1 + γ2 = γ.

There are natural maps (M,ϕM )⊗k � Symk(M,ϕM ) and (M,ϕM )⊗k � Λk(M,ϕM ) giving us
maps FF,1(M,ϕM )⊗k → FF,1(Symk(M,ϕM )) and FF,1(M,ϕM )⊗k → FF,1(Λk(M,ϕM )), since
we just proved that FF,1 commutes with tensor products for aligned modules. We get mono-epi
morphisms

Symk FF,1(M,ϕM )→ FF,1(Symk(M,ϕM ))

and
ΛkFF,1(M,ϕM )→ FF,1(Λk(M,ϕM )).

We can calculate the slopes to see that they are isomorphisms. For the left side, we obtain

µ(Symk FF,1(M,ϕM )) = kµ(FF,1(M,ϕM )) = kµ(M,ϕM )

by the formulas given in Proposition 4.2. For the right side, we have that FF,1 and FH,1 have
the same total slope by definition, so we do the calculation for FH,1. Since we already know that
Symk FH,1(M,ϕM ) ' FH,1(Symk(M,ϕM )) by Proposition 4.3.4, we have

µ(FF,1(Symk(M,ϕM ))) = µ(FH,1(Symk(M,ϕM )))

= µ(Symk(FH,1(M,ϕM )))
= kµ(FH,1(M,ϕM ))
= kµ(M,ϕM )

where the third equality is given by the formulas for the degree in 2.1. Same goes for Λk.

Even though we do not know if the alignment hypothesis is always verified, it is verified whenever
the Kisin module comes from an ordinary germ of crystalline representations, which is the case
studied in this thesis.



Chapter 5

The Fargues filtration on Mod
ϕ
S, t

5.1 The category ModϕS, t

We have already defined the category ModϕS, t in 3.2. It is a quasi-abelian category and we
are going to give explicitely the kernel, cokernel, image and coimage of a morphism. We have
already seen existence of kernels and cokernels for the underlying module in 3.1, so we only need
to study the Frobenius which works in the same way as it did in ModϕF[[u]],fr as we will see. For
a morphism f : M → N between two objects in ModϕS, t, the kernel (ker f, ϕker f ) is given by:

• The underlying module is ker f = {m ∈M | f(m) = 0}.

• The morphism ϕker f = ϕM | ker f since from the compatibility of f with ϕM and ϕN , the
image of ϕ∗ ker f [ 1

u ] by ϕM is contained in ker f [ 1
u ].

The cokernel of f is given by (coker f, ϕcoker f ) where

• The underlying module is coker f = N/f(M)sat, where f(M)sat is the saturation of f(M)
in N , i.e. f(M)sat/f(M) = (N/f(M))[m∞].

• The morphism ϕcoker f = ϕN where ϕN is the morphism induced by ϕN on the quotient
coker f , since ϕN sends ϕ∗f(M)sat to f(M)sat[ 1

u ] ' f(M)[ 1
u ].

The image of f is given by (im f, ϕim f ) where

• The underlying module is im f = f(M)sat.

• The morphism ϕim f = ϕN | im f is the restriction of ϕN to im f .

The coimage of f is given by (coim f, ϕcoim f ) where

• The underlying module is coim f = M/ ker f = f(M).

• The morphism ϕcoim f = ϕM is the morphism induced by ϕM on the quotient coim f , since
we have already seen that ϕM sends ϕ∗ ker f to ker f [ 1

u ].

To give a mono-epi in this category, is the same as to give a monomorphismM1 ↪→M2 such that
M1

[
1
u

] ∼−→M2

[
1
u

]
, which is the same as to say that we have an exact sequence in the category

A defined in 3.1 of torsion S-modules

0→M1 →M2 → Q→ 0

with Q an object in T , i.e. a finite length S-module.

80
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We define the i-twist of a p∞-torsion Kisin module as

−(i) : ModϕS, t → ModϕS, t
(M,ϕM ) 7→ (M(i), ϕM(i)) = (M,uiϕM )

and we have that for all p∞-torsion Kisin modules, there exists i ≥ 0 such that M(i) is effective.

5.2 The filtration

Now we need to define a slope function. First, we start by defining the rank function as

rank : ModϕS, t → Z
M 7→ lengthW (F)(M/uM)

.

Proposition 5.2.1. Let M ∈ ModϕS, t. We have the following properties :

1. The rank function is additive on short exact sequences of torsion Kisin modules.

2. We have an equality rank(M) = lengthS[ 1
u

](M [ 1
u ]) = µIW(M).

Proof. The additivity follows from the fact that M has no torsion other than p∞, so multipli-
cation by u is injective and from the exact sequence

0→M1 →M2 →M3 → 0

we get
0→M1/uM1 →M2/uM2 →M3/uM3 → 0.

The second point is proved in 3.1.7.

We cannot use relative position in this context to define the degree function since we do not have
a DVR anymore, but recall that the degree function of a p-torsion Kisin module corresponded
to the length of a quotient when the p-torsion Kisin module was effective. Since the twist turns
a module effective for a sufficiently large integer, we define the degree function by

deg : ModϕS, t → Z
M 7→ − lengthS(Q(i)) + i rankM

for i large enough and Q(i) = M(i)/(ϕM(i)ϕ
∗M(i)), i.e. the cokernel of ϕM(i) viewed as a

morphism in the category of S-modules.

Proposition 5.2.2. The function deg is independent of the choice of a large enough i ∈ N.

Proof. First, remark that by definition Q(i) = M/(uiϕMϕ
∗M) for all i large enough. The exact

sequence
0→ K(i)→M/(ui+1ϕMϕ

∗M)→M/(uiϕMϕ
∗M)→ 0

gives us
lengthS(Q(i+ 1)) = lengthS(Q(i)) + lengthS(K(i)).

Since K(i) ' (uiϕMϕ
∗M)/(ui+1ϕMϕ

∗M) and multiplication by u is injective because ϕMϕ∗M
has no u-torsion, we get K(i) ' (ϕMϕ

∗M)/(uϕMϕ
∗M) and

lengthS(K(i)) = lengthW (F)((ϕMϕ
∗M)/(uϕMϕ

∗M))

= lengthS[ 1
u

](ϕMϕ
∗M [ 1

u ])

= lengthS[ 1
u

](M [ 1
u ])

= rankM
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where the second equality is given by 3.1.7. Using the formula above, we have

− lengthS(Q(i+ 1)) + (i+ 1) rankM = − lengthS(Q(i)) + i rankM

so the degree function does not depend on i, for i large enough.

Proposition 5.2.3. The degree function verifies the following properties :

1. It is additive on short exact sequences of p∞-torsion Kisin modules.

2. If f : M1 → M2 is a mono-epi, then deg(M1) ≤ deg(M2). Moreover, the equality holds
if and only if f is an isomorphism.

3. For p-torsion Kisin modules, it coincides with the degree function defined in last section.

Proof. 1. The exact sequence 0→ M1 → M2 → M3 → 0 and the fact that ϕ is flat and ϕM
is injective for every effective p∞-torsion Kisin module M , give rises to an exact sequence

0→ Q1(i)→ Q2(i)→ Q3(i)→ 0

for a large enough i and Qk(i) = Qk(i) = Mk(i)/(ϕMk(i)ϕ
∗Mk(i)) for k ∈ {1, 2, 3}. Thus,

lengthS(Q2(i)) = lengthS(Q1(i)) + lengthS(Q3(i))

and since we have already seen the additivity of the rank, we have degM2 = degM1 +
degM3.

2. Up to twist, we may assume that the modules are effective. Let f : M1 → M2 be a
mono-epi with cokernel Q ∈ T , so that we have an exact sequence

0→M1 →M2 → Q→ 0

with Q = Q[m∞]. This goes into a diagram in the category of S-modules:

0

0 0 K

0 ϕ∗M1 ϕ∗M2 ϕ∗Q 0

0 M1 M2 Q 0

Q1 Q2 Q/(ϕQϕ
∗Q)

0 0 0

ϕM1
ϕM2 ϕQ

where Qi = Mi/(ϕMiϕ
∗Mi) for i = 1, 2 and ϕQ is the projection of ϕM2 to ϕ∗Q. By the

snake lemma, we have an exact sequence

0→ K → Q1 → Q2 → Q/(ϕQϕ
∗Q)→ 0.
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From this, we get that

lengthSQ2 − lengthSQ1 = lengthSQ− lengthS(ϕ∗Q) = −(p− 1) lengthSQ ≤ 0

by Lemma 3.1.8, therefore degM2 − degM2 ≥ 0. The equality holds if and only if Q = 0.

The deg and rank functions define a Harder-Narasimhan filtration on every object of ModϕS, t.
We will denote by FF,t(M) the Fargues filtration of a p∞-torsion Kisin module M and by
tF,t(M), the type associated to FF,t(M).



Chapter 6

The Fargues filtration on Mod
ϕ
S, fr

6.1 The category ModϕS, fr

Some operators we defined for objects in ModϕF[[u]],fr can be generalized to objects in ModϕS, fr:

1. Tensor products : For two Kisin modules (M1, ϕM1) and (M2, ϕM2), define

(M1 ⊗M2, ϕM1⊗M2) = (M1 ⊗S M2, ϕM1 ⊗ ϕM2).

This definition works since we have ϕ∗(M1⊗SM2)[ 1
E ] = (ϕ∗M1[ 1

E ])⊗S[ 1
E

] (ϕ∗M2[ 1
E ]) and

(M1 ⊗S M2)[ 1
E ] = (M1[ 1

E ]) ⊗S[ 1
E

] (M2[ 1
E ]). The identity object for the tensor product is

the Kisin module 1 = (S, ϕ) where ϕ is the identity on ϕ∗S ' S.

2. Duality : For a Kisin module (M,ϕM ), we define the dual of (M,ϕM ) as (M∨, ϕM∨) where
M∨ = HomS(M,S) and

ϕM∨ : (ϕ∗M∨)[ 1
E ] → M∨[ 1

E ]

f 7→ ϕ ◦ f ◦ ϕ−1
M

since ϕ∗HomS(M,S)[ 1
E ] ' Homϕ∗S(ϕ∗M,ϕ∗S)[ 1

E ] ' Homϕ∗S[ 1
E

](ϕ
∗M [ 1

E ], ϕ∗S[ 1
E ]).

3. Internal homomorphisms: Since we have defined the tensor product and duality, we can
define an internal Hom by

Hom((M1, ϕM1), (M2, ϕM2)) = (M1, ϕM1)∨ ⊗ (M2, ϕM2)

for all pair of objects (M1, ϕ1), (M2, ϕM2) in ModϕS, fr.

4. Twist: We define the i-twist of a Kisin module as

−(i) : ModϕS, t → ModϕS, t
(M,ϕM ) 7→ (M(i), ϕM(i)) = (M,EiϕM )

and we have that for all Kisin modules, there exists i ≥ 0 such that M(i) is effective. We
have M(i) = M ⊗ 1(i) for i ∈ Z.

Let ModσW (F) denote the category of crystals, whose objects are finite free W (F)-modules D
together with a morphism σD : D[1

p ]
∼−→ D[1

p ]. We can always associate a crystal to a Kisin
module, considering the functor

ModϕS, fr → ModσW (F)

(M,ϕM ) 7→ (D,σD)

84
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where D = M/uM and σD is the reduction modulo u of ϕM .

For a Kisin moduleM ∈ ModϕS, fr, there are natural rank and degree functions that we can define
in the exact same way we defined the degree for the isogeny category, i.e. for a Kisin module
M , we define a rank function by

rank(M) = rankSM.

Also, we can define two Hodge filtrations and their associated types on M by

FH(M) = F(M(E), ϕMϕ
∗M(E)) and FH,u(M) = F(M/uM,σMσ

∗(M/uM)),

tH(M) = Pos(M(E), ϕMϕ
∗M(E)) and tH,u(M) = Pos(M/uM,σMσ

∗(M/uM))

in ZrankM
≥ , where σ is the Frobenius on S/uS = W (F) and σM is the Frobenius on M/uM .

Then, we can also define a degree function given by

deg(M) = deg(tH(M)) = ν(M(E), ϕMϕ
∗M(E)).

Suppose M is effective, then there is an exact sequence in the category of S-modules

0→ ϕ∗M →M → Q→ 0

where Q is killed by a power of E. In particular, there is a pseudo-isomorphism

Q ∼
m⊕
i=1

S/(E(u)ni)

with ni ≥ 0 for 1 ≤ i ≤ m, for m = rankM . Then, we have tH(M) = (−n1 ≥ · · · ≥ −nm) (up
to reordering the ni) and deg(M) = − lengthS(E)

(Q(E)) = −
∑m

i=1 ni.

IfM is an object in ModϕS, fr, thenM/pnM is an object in ModϕS, t for every n ≥ 1, the Frobenius
being the reduction of the Frobenius on M . In particular M/pM is an object in ModϕF[[u]],fr.

Proposition 6.1.1. Let M ∈ ModS, fr and M = M/pM . Then

tH,1(M) ≤ e · tH(M)
tH,u(M) ≤ tH(M).

Proof. We can reduce to the effective case, since

tH(M(r)) = tH(M)− (r, . . . , r)

tH,1(M(r)) = tH,1(M)− e · (r, . . . , r)
tH,u(M(r)) = tH,u(M)− (r, . . . , r)

for every r ∈ Z. So, let M be an effective Kisin module and Q = cokerϕM and m = rankM .

We fix a pseudo-isomorphism Q ∼ Q′ =

m⊕
i=1

S/(E(u)ni), which becomes an isomorphism after

localizing by (E), with n1 ≥ . . . ≥ nm ≥ 0 (completing by 0 the invariant factors of Q). For
N = n1, consider the filtration

0 = Q′0 ( Q′1
N

( . . . ( Q′N
N

= Q′

with Q′i
N

= Q′[Ei]. Let Q i
N

= Q ∩Q′i
N

= Q[Ei], so we have a filtration

0 = Q0 ( Q 1
N

( . . . ( QN
N

= Q.
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Also, an exact sequence

0→ Q/Q i
N
↪→ Q′/Q′[Ei] � Q′/(Q+Q′[Ei])→ 0

and an isomorphism
Q′/Q′[Ei] '

⊕
nj>i

S/Enj−iS

for 1 ≤ i ≤ N , so Tor2
(
Q/Q i

N
,F
)

=
(
Q/Q i

N

)
[m] = 0. Let ϕ∗M ⊂M i

N
⊂M with

M i
N
/ϕ∗M = Q i

N
⊂ Q = M/ϕ∗M.

Since M/M i
N

= Q/Q i
N
, we have Tor2

(
M/M i

N
,F
)

= 0, Tor1(M i
N
,F) = 0 and M i

N
is free. So

we have a filtration
ϕ∗M (M 1

N
( . . . (MN

N
= M

with quotients
M i

N
/M i−1

N
= Q i

N
/Q i−1

N
= Q[Ei]/Q[Ei−1] = Ri,

which are contained in
R′i = Q′[Ei]/Q′[Ei−1] '

⊕
nj≥i

S/ES

and with cokernel of finite length. Since S/ES is a DVR, we also have

Ri '
⊕
nj≥i

S/ES.

For M , we have the sequence

ϕ∗M (M 1
N

( . . . (M N
N

= M,

with torsion F[[u]]-modules as quotients,

Ri =
⊕
nj≥i

F[u]/EF[u].

The triangle inequality for relative positions tells us

Pos(ϕ∗M,M) ≤
N∑
i=1

Pos(M i−1
N
,M i

N
)

and we know that
Pos(M i−1

N
,M i

N
) = (e, . . . , e, 0, . . . , 0) ∈ Zm≥

where e = degE and the multiplicity of e is #{j : nj ≥ i}. So we get

Pos(ϕ∗M,M) ≤ e · (n1, n2, . . . , nm) = e · Pos(ϕ∗M(E),M(E)).

For M/uM , we have the sequence

σ∗(M/uM) ( (M/uM) 1
N

( . . . ( (M/uM)N
N

= M/uM,

with torsion W (F)-modules as quotients,

Ri/uRi =
⊕
nj≥i

F.
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The triangle inequality for relative positions tells us

Pos(σ∗(M/uM),M/uM) ≤
N∑
i=1

Pos((M/uM) i−1
N
, (M/uM) i

N
)

and we know that

Pos((M/uM) i−1
N
, (M/uM) i

N
) = (1, . . . , 1, 0, . . . , 0) ∈ Zm≥

where the multiplicity of 1 is #{j : nj ≥ i}. So we get

Pos(σ∗(M/uM),M/uM) ≤ (n1, n2, . . . , nm) = Pos(ϕ∗M(E),M(E)).

Proposition 6.1.2. Let M ∈ ModϕS, fr. Then :

1. For n ≥ 1, we have
deg(M/pnM) = en deg(M)

rank(M/pnM) = n rank(M),

where e = degE.

2. For the isogeny class, we have deg(M ⊗Qp) = deg(M) and rank(M ⊗Qp) = rank(M).

Proof. Up to twist, we may assume that M is effective and consider the exact sequence

0→ ϕ∗M →M → Q→ 0.

Then, (1) follows from the previous proposition, using

0→M/pnM
p−→M/pn+1M →M/pM → 0

and (2) is obvious.

This way, we get an invariant

µM =
degM

rankSM

which only depends on the isogeny class of M .

We want to get rid of the coefficient e in the last proposition. For that, it suffices to define a
new degree function on ModϕS, t by putting

degnew(M) = 1
e degold(M)

for every M ∈ ModϕS, t. The new degree function verifies the same properties as the old one and
gives us a new slope function, Fargues filtration and Fargues polygon verifying

µnew(M) = 1
eµold(M)

F≥γF,t,new(M) = F≥
γ
e

F,t,old(M)

tF,t,new(M) = 1
etF,t,old(M)

for every γ ∈ Q. From now on, we will only work with the new degree function, filtration and
polygon and drop it from the notation.

Corollary 6.1.3. Let M ∈ ModϕS, fr. Then

n deg(M) = deg(M/pnM)
n rank(M) = rank(M/pnM)

µM = µ(M/pnM)

for all n ∈ N.
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6.2 Minimal slopes

Definition 6.2.1. For M ∈ ModϕS, t, let M
min be the last quotient of the Harder-Narasimhan

filtration of M . We define the minimal slope of M as

µmin(M) := µ(Mmin) = max{λ | F≥λM = M}.

It is easy to see that then M is semi-stable if and only if µ(M) = µmin(M).

Proposition 6.2.1. Let M ∈ ModϕS, t. Then for every nonzero strict quotient M � Q in
ModϕS, t, we have

µ(Q) ≥ µmin(Q) ≥ µmin(M)

and the equality µ(Q) = µmin(M) holds if and only if Q is a semi-stable quotient of Mmin.

Proof. 1. The filtration FF,t is functorial, so have morphisms F≥λF,tM → F≥λF,tQ for every
λ ∈ R. In particular, for λ = µmin(M), we get

M = F≥µmin(M)
F,t M F≥µmin(M)

F,t Q

Q

so F≥µmin(M)
F,t Q = Q. Since, by definition, we have µmin(Q) = max{λ ∈ R | F≥λF,tQ = Q}

it follows that µmin(M) ≤ µmin(Q). Also, we know that µmin(Q) ≤ µ(Q) by concavity of
tF,t(Q).

2. Suppose that µ(Q) = µmin(M), thus

µmin(M) = µmin(Q) = µ(Q).

Then Q is semi-stable and M � Q maps F>µmin(M)
F,t M to F>µmin(M)

F,t Q = 0, i.e the
morphsim M � Q factors through M � Mmin � Q and Q is a semi-stable quotient
of Mmin.

For M ∈ ModϕS, fr, we set µmin(M) := µmin(M/pM).

Lemma 6.2.2. Let M ∈ ModϕS, fr nonzero and Mn = M/pnM . Then:

1. For every n ≥ 1, we have µmin(M) = µmin(Mn) = µ(Mmin
n ).

2. For 1 ≤ m ≤ n, we have

pmMmin
n = im(Mmin

n−m →Mmin
n ).

3. For 1 ≤ m ≤ n, we have
Mmin
n /pmMmin

n = Mmin
m .

4. The system (N)n≥1, for Nn = ker(Mn →Mmin
n ), is Mittag-Leffler surjective.
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Proof. 1. Let M ∈ ModϕS, fr and consider the exact sequence

0→Mmin
n [pm]→Mmin

n
×pm−−−→Mmin

n →Mmin
n /pmMmin

n → 0

for all 1 ≤ m ≤ n. By the properties of our Harder-Narasimhan formalism, seen in 2.5.5,
which are verified by torsion Kisin modules as we saw in 5.2.1 and 5.2.3, we know that
Mmin
n /pmMmin

n is semi-stable and

µ(Mmin
n ) = µ(Mmin

n /pmMmin
n ).

Since µmin(M/pnM) = µ(Mmin
n ) (and µmin(M/pmM) = µ(Mmin

m ) respectively), and we
have the quotients

M/pnM �M/pmM �Mmin
m

and
M/pmM 'Mn/p

mMn �Mmin
n /pmMmin

n

we get the following inequalities

µ(Mmin
n ) ≤ µ(Mmin

m ) ≤ µ(Mmin
n /pmMmin

n )

which must be equalities in order to have µ(Mmin
n /pmMmin

n ) = µ(Mmin
n ). In particular

µ(Mmin
n ) = µ(Mmin

1 ) = µmin(M), for every n ≥ 1.

2. We have
im(Mmin

n−m →Mmin
n ) = im(Mn−m �Mmin

n−m →Mmin
n )

= im(Mn−m ↪→Mn �Mmin
n )

= im(pmMn ↪→Mn �Mmin
n )

= pmMmin
n .

3. If we apply last proposition to the surjection Mm 'Mn/p
mMn �Mmin

n /pmMmin
n , we get

Mmin
m �Mmin

n /pmMmin
n .

On the other hand, applying last proposition to the surjection Mn � Mm � Mmin
m we

obtain thatMmin
n �Mmin

m and it is obvious that it factors throughMmin
n /pmMmin

n , giving
us a surjection

Mmin
n /pmMmin

n �Mmin
m ,

which ends the proof.

4. Denote by Nm
n = ker(Nn → Nm) and Qmn = ker(Mmin

n → Mmin
m ), for n ≥ m ≥ 1, so we

have a diagram

0 0 0

0 Nm
n Nn Nm

0 Mn−m Mn Mm 0

0 Qmn Mmin
n Mmin

m 0

0 0
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Let C = coker(Nn → Nm). Then, we have Nn−m ⊂Mn−m ∩Nn = Nm
n and a diagram

0 Nn−m Mn−m Mmin
n−m 0

0 Nm
n Mn−m Qmn C

which gives us

0→ Nm
n /Nn−m →Mmin

n−m → Qmn → C → 0.

Since both Mmin
n and Mmin

m are semi-stable of slope µmin(M), then Qmn is semi-stable of
slope µmin(M). Suppose C 6= 0, then C is semi-stable of slope µmin(M) and also a quotient
of Nm, so

µmin(M) = µ(C) ≥ µ(Nm) > µ(Mmin
m ) = µmin(M)

which is a contradiction, therefore C = 0 and (Nn)n≥1 is Mittag-Leffler surjective.

6.3 A polygon on ModϕS, fr

Even though we have rank and degree functions defined on Kisin modules, ModϕS, fr is not a
quasi-abelian category, so we cannot use André’s formalism in order to endow this category
with a Harder-Narasimhan filtration. However, we can consider the projective limit of Fargues
polygons on torsion Kisin modules to try to construct a polygon on a Kisin module, as follows.

ForM a Kisin module, we can renormalize the polygons tF,t(M/pnM) by considering the concave
functions tF,n(M) defined as

tF,n(M)(x) = 1
ntF,t(M/pnM)(nx)

for every x ∈ [0, rankM ], for every n ≥ 1. Such functions are concave polygons with end point at
(rankM,degM) but whose break points may not have integer abscissas, so we cannot consider
them as types, but we can extend all the properties for types to these concave functions. In
particular, the dominance order still makes sense for them. Moreover, the next lemma shows
that they form a decreasing system.

Lemma 6.3.1. For every Kisin module M , we have.

tF,nm(M) ≤ tF,n(M)

for every m,n ≥ 1.

Proof. By induction using the exact sequences

0→M/pnM →M/pmnM →M/pm(n−1)M → 0

we get
tF,t(M/pmnM) ≤ tF,t(M/pnM)∗m.

Now, the polygon tF,t(M/pnM)∗m is just an homotethy of tF,t(M/pnM) and we have

tF,t(M/pnM)∗m(x) = mtF,t(M/pnM)( xm)

for 0 ≤ x ≤ mn rankM . Thus
1
mntF,t(M/pmnM)(mnx) ≤ 1

ntF,t(M/pnM)(nx)

for 0 ≤ x ≤ rankM and we obtain tF,mn(M) ≤ tF,n(M).
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Then, we obtain:

Theorem 6.3.2. Let M ∈ ModϕS, fr. Let r = rankM and d = degM . The sequence of functions

[0, r] → R
x 7→ tF,n(M)

converges uniformly for the divisibility order to a continuous concave function

tF,∞(M) : [0, r]→ R

which is equal to
inf
n≥1

tF,n(M)

and moreover, verifying tF,∞(M)(0) = 0 and tF,∞(M)(r) = d. We call this function the Fargues
polygon of M .

Proof. Denote by fn = tH,n and f its limit. The limit exists since the functions fn are decreasing
and lower bounded. For n ≥ 1 and 0 ≤ x < y in [0, r],

f ′1,r(0) ≤ fn(y)− fn(x)

y − x
≤ f ′1,l(r),

so {fn} ∪ {f} is equi-Lispchitz over [0, r], i.e. there exists an M > 0 independent of x, y and n,
such that for every n ≥ 1 and x < y,∣∣∣∣fn(y)− fn(x)

y − x

∣∣∣∣ ≤M.

Let ε > 0, Mr
C ≤ ε such that xi = ir

C , N such that if N | n, then |fn(xi)− f(xi)| ≤ ε. Then, for
every x ∈ [xi, xi+1], we have

|fn(x)− f(x)| ≤ |fn(x)− fn(xi)|+ |fn(xi)− f(xi)|+ |f(xi)− f(x)|
≤ M |x− xi|+ ε+M |xi − x|
≤ 3ε

so the convergence is uniform over [0, r]. In particular, f is continuous and the theorem follows.

The Fargues polygon of a Kisin module only depends on the isogeny class of the module, as we
can see in the next proposition.

Proposition 6.3.3. Let M1, M2 ∈ ModϕS, fr such that M1⊗Qp 'M2⊗Qp in ModϕS⊗Qp. Then

tF,∞(M1) = tF.∞(M2).

Proof. The proof is analogous to the one in [18, Proposition 3]. By reflexivity of the isogeny
relation, it suffices to prove one inequality. Fix an isogeny M1 → M2 giving rise to an exact
sequence

0→M1 →M2 → Q→ 0

in ModϕS with pnQ = 0 for n large enough. By multiplication by pn, we obtain an exact sequence

0→ Q→M1/p
nM1 →M2/p

nM2 → Q→ 0

in ModϕS, t. This yields two exact sequences

0→ Q→M1/p
nM1 → Nn → 0
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0→ Nn →M2/p
nM2 → Q→ 0

in ModϕS, t, with nr = rn + q, for r = rankM , rn = rankNn and q = rankQ. Then rn
n = r − q

n .
For n large enough, let x ∈ [0, rnn ] = [0, r − q

n ], then the second exact sequence gives us

tF,t(Nn)(nx) ≤ tF,t(M2/p
nM2)(nx)

and the first exact sequence implies

tF,t(M1/p
nM1)(nx) ≤ (tF,t(Nn) ∗ tF,t(Q))(nx)

= tF,t(Nn)(nx− δn) + tF,t(Q)(δn)

for some 0 ≤ δn ≤ nx, q, by definition of the concatenation. By concavity of tF,t(Nn), we have

tF,t(Nn)(nx− δn) ≤ tF,t(Nn)(nx)− µmin(Nn) · δn.

Since Nn is a quotient of M1/p
nM1 by proposition 6.2.1, we obtain

µmin(Nn) ≥ µmin(M1/p
nM1) = µmin(M1),

thus
tF,t(M1/p

nM1)(nx) ≤ tF,t(Nn)(nx) + tF,t(Q)(δn)− µmin(M1) · δn
≤ tF,t(Nn)(nx) + C

for
C = max{tF,t(Q)(δ)− µmin(M1) · δ | δ ∈ [0, q]}

which is independent of n. Combining all the inequalities above, we have

tF,t(M1/p
nM1)(nx) ≤ tF,t(Nn)(nx)) + C ≤ tF,t(M2/p

nM2)(nx) + C,

so
tF,n(M1)(x) ≤ tF,n(M2)(x) +

C

n

for n large enough and x ∈ [0, r − q
n ], therefore

tF,∞(M1)(x) ≤ tF,∞(M2)(x)

for every x ∈ [0, r) and we already know the equality for x = r.

6.4 Semi-stability and type HN

Even though there is not a good Harder-Narasimhan formalism, we can define some sort of
semi-stability on objects in ModϕS, fr.

Proposition 6.4.1. Let M ∈ ModϕS, fr. The following conditions are equivalent:

1. The module M/pM is semi-stable (as a p-torsion Kisin module),

2. For every n ≥ 1, the module M/pnM is semi-stable (as a p∞-torsion Kisin module),

3. For every p∞-torsion Kisin module Q which is a quotient of M we have µM ≤ µ(Q),

Proof. It is easy to see that (1) implies (2), since the category C(µ) of semi-stable objects of
slope µ is stable by extension. For (2) implies (3), we have that for any p∞-torsion quotient
Q of M , there exists a n ≥ 1, such that we have a factorization M � M/pnM � Q, thus
µM = µ(M/pnM) ≤ µ(Q). For (3) implies (1), we have that any quotient Q of M/pM is a
p∞-torsion quotient of M therefore µ(M/pM) = µM ≤ µ(Q) and M/pM is semi-stable.



CHAPTER 6. THE FARGUES FILTRATION ON MODϕ
S,FR 93

Definition 6.4.1. We say that a Kisin moduleM is semi-stable if it verifies one of the conditions
above.

Remark 13. If a Kisin module M is semi-stable, then tF,∞(M) is isoclinic of slope µM .

In the next proposition, we compare the semi-stability we just defined on ModϕS, fr with the
semi-stability on ModϕS⊗Qp.

Proposition 6.4.2. Let M,M ′ ∈ ModϕS, fr isogenous and M ′ semi-stable in ModϕS, fr. Then for
every subobject N 6= 0 of M ⊗Qp, we have µN ≤ µM , i.e. M ⊗Qp is semi-stable in ModϕS⊗Qp.

Proof. As we have already discussed, an object in ModϕS⊗Qp is semi-stable of slope λ if and only
if its image in Modϕ

S[ 1
p

]
is semi-stable of slope λ. We use this characterization. LetM ∈ ModϕS, fr

and N = M [1
p ] its image in Modϕ

S[ 1
p

]
. An exact sequence 0 → N1 → N → N2 → 0 in Modϕ

S[ 1
p

]

induces an exact sequence 0 → M1 → M → M2 → 0 in ModϕS, where M1 = M ∩ N1 and M2

is the image of M in N2. The cokernel of M2 ↪→ M2,fr is killed by pm for some m ≥ 1, so
multiplication by pm gives us an isogeny f : M2,fr ↪→M2. We have thus a diagram

0 M1 M M2 0

0 M1,fr M ′ M2 0

0 M1,fr M ′′ M2,fr 0

i i

f f

by push out of i : M1 → M1,fr and pull-back by f : M2,fr → M2. Since M ′′ is an extension of
two free modules, it is itself free and we have an exact sequence

0→M1,fr/p
nM1,fr →M ′′/pnM ′′ →M2,fr/p

nM2,fr → 0

for every n ≥ 1.

Suppose M is semi-stable of slope λ. Then, M/pM is semi-stable of slope λ, so tF,1(M) is
isoclinic of slope λ, which implies that tF,∞(M) is also isoclinic of slope λ, since tF,∞(M) ≤
tF,1(M). Now, tF,S[ 1

p
](N) has the same starting and ending point, so

tF,∞(M) ≤ tF,S[ 1
p

](N).

Let λmax be the maximal slope of tF,S[ 1
p

](N). Then, tF,S[ 1
p

](N) is isoclinic of slope λ if and only
if λmax = λ, if and only if λmax ≤ λ, since we already have the other inequality. Let N1 be the
first submodule in the Fargues filtration of N , such that µ(N1) = λmax and r1 = rankN1. We
have that

r1λmax = degN1 = degM1,fr = tF,n(M1,fr)(r1) ≤ tF,n(M ′′)(r1)

so r1λmax ≤ tF,∞(M ′′)(r1). In 6.3.3, we have seen that tF,∞ is invariant by isogeny, so we have
tF,∞(M ′′) = tF,∞(M ′1,fr) = tF,∞(M) which implies that

r1λmax ≤ tF,∞(M ′′)(r1) = tF,∞(M)(r1) = r1λ,

hence λmax ≤ λ and
tF,S[ 1

p
](N) = tF,◦(M ⊗Qp) = tF,∞(M)

is isoclinic of slope λ.
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We cannot use André’s formalism to give a Harder-Narasimhan filtration on Kisin modules,
but some of them may have a Harder-Narasimhan filtration for the semi-stable definition given
above.

Proposition 6.4.3. Let M ∈ ModϕS, fr. The following statements are equivalent:

1. The Kisin moduleM admits a Harder-Narasimhan filtration by Kisin submodules or, equiv-
alently, an increasing flag

0 = M0 ⊂M1 ⊂ . . . ⊂Mr = M

of Kisin submodules such that, for 1 ≤ i ≤ r, the modulesMi/Mi−1 are free and semi-stable
of slopes µi verifying

µ1 > . . . > µr.

2. We have tF,∞(M) = tF,1(M).

Moreover, if the conditions above are verified, we have:

(a) The flag is uniquely determined by Mi = lim←−nF
µi
F,n(M) for 1 ≤ i ≤ r and we have

tF,∞(M) = (µ1, . . . , µr) (with multiplicity).

(b) The reduction of the flag modulo pn gives us the Fargues filtration of M/pnM .

(c) The flag is compatible with the one obtained for the isogeny categories, i.e. we have

Mi ⊗Qp = FµiF,◦(M ⊗Qp) and Mi[
1
p ] = Fµi

F,S[ 1
p

]
(M [1

p ])

for 1 ≤ i ≤ r.

Proof. It is easy to see that (1) implies (2) since the semi-stability condition is preserved by re-
ducing modulo pn, so we obtain a flag for Mn whose quotients are semi-stable, and the Fargues
filtration is unique. Moreover, the slopes are also preserved by reduction and by the compat-
ibility of the rank and slopes, we get that the polygons modulo pn are constant and we have
tF,n(M) = (µ1, . . . , µr), thus tF,∞(M) = lim tF,n(M) = (µ1, . . . , µr).

Conversely, suppose that tF,∞(M) = tF,1(M). We consider the sequences

0→Mn →Mm+n →Mm → 0,

for n,m ≥ 1. Our hypothesis implies that all the polygons tF,n(M) coincide for n ≥ 1, so we
have

tF,t(M/pn+mM) = tF,t(M/pnM) ∗ tF,t(M/pmM)

for n,m ≥ 1. Then, we can apply the point (3) in 2.5.5 to get a diagram

0 0 0

0 F>γF,tMn F>γF,tMm+n F>γF,tMm 0

0 F≥γF,tMn F≥γF,tMm+n F≥γF,tMm 0

0 Gr≥γFF,t
Mn GrγFF,t

Mm+n GrγFF,t
Mm 0

0 0 0



CHAPTER 6. THE FARGUES FILTRATION ON MODϕ
S,FR 95

for all γ ∈ Q. In particular (F>γF,tMn)n≥1, (F≥γF,tMn)n≥1 and (GrγFF,t
Mn)n≥1 are Mittag-Leffler

surjective. Call F>γF M , F≥γF M and GrγFF
M their projective limit. Since (F>γF,tM)n≥1 is Mittag-

Leffler surjective, we obtain an exact sequence

0→ F>γF M → F≥γF M → GrγFF
M → 0.

On the other hand, an exact sequence

0→ Xn
×pm−−−→ Xm+n → Xm → 0

for all n,m ≥ 1, induces an exact sequence

0→ X
×pm−−−→ X → Xm → 0

where X = lim←−nXn ' lim←−nXn+m. We apply this result to

• The family (Xn)n≥1 = (F>γF,tMn)n≥1 to obtain that F>γF M/pmF>γF M ' F>γF,tMm for every
m ≥ 1, so F>γF M is free of rank max{i | µi > γ}.

• The family (Xn)n≥1 = (F≥γF,tMn)n≥1 to obtain that F≥γF M/pmF≥γF M ' F≥γF,tMm for every
m ≥ 1, so F≥γF M is free of rank max{i | µi ≥ γ}.

• The family (Xn)n≥1 = (GrγFF,t
Mn)n≥1 to obtain that GrγFF

M/pm GrγFF
M ' GrγFF,t

Mm

for every m ≥ 1, so GrγFF
M is free of rank max{i | µi = γ}.

In particular, GrFF
M is semi-stable of slope γ, for γ ∈ {µ1, . . . , µr}, and the zero object for γ

otherwise. Since FγFM = M for γ ≤ µr, this proves (1).

Assertions (a) and (b) have already been established in the proof of (1) if and only if (2), and
(3) follows from Proposition 6.4.2.

Definition 6.4.2. Let M ∈ ModϕS, fr. We say that M is HN-type if it verifies one of the
conditions above.

6.5 The algorithm

The aim of this subsection is to prove that every Kisin module is isogenous to a HN-type Kisin
module.

We would like to define the last submodule in the Harder Narasimhan filtration ofM ∈ ModϕS, fr
as

θM = ker(M →Mmin) = lim←−
i

(ker(Mi �Mmin
i ))

for
Mmin = lim←−

i

Mmin
i

and Mmin
i defined as above. The problem is that we cannot ensure that M/θM is a Kisin

module. In the next proposition, we find a Kisin module M ′ isogenous to M and such that
M ′/θM is also a Kisin module.

Proposition 6.5.1. Let M ∈ ModϕS, fr. Then:
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1. The inclusion θM →M factors (not canonically) through

θM →M ′ →M

where θM, M ′ ∈ ModϕS, fr, M
′/θM ∈ ModϕS, fr is either zero or semi-stable of slope

µmin(M) and M ′ → M is an isogeny with cokernel in ModϕS, t which is semi-stable of
slope µmin(M).

2. If θM 6= 0, then µmin(θM) > µmin(M).

3. If M is effective, then θM is effective.

4. We have
θ(M(r)) = (θM)(r)

for every r ≥ 1.

Proof. 1. Let M ∈ ModϕS,fr. We have the following commutative diagram

0 kerπk−1 Mmin
k Mmin

k−1 0

0 kerπk Mmin
k+1 Mmin

k 0

[p] [p]

πk−1

[p]

πk

where the morphism πk is the reduction modulo pk and [p] is multiplication by p, coming
from

M/pkM
p−→ pM/pk+1M ↪→M/pk+1M.

Multiplication by p restricted to the kernels is surjective. Indeed, let x ∈ kerπk = pkMmin
k+1,

so there exist an y ∈Mmin
k+1 such that x = pky. Consider y′ = πk(y), and x′ = pk−1y′ which

is in pk−1Mmin
k = kerπk−1. Since ([p] ◦ πk)(y) = py, we get that [p] (x′) = x.

This way, for
ak = rank(kerπk),

we get a decreasing family of integers (ak)k≥1 that will stabilize at some point. Let k0 ≥ 1
such that ak+k0 = ak0 for all k ≥ 0. This means that kerπk+k0 ' kerπk0 for all k ≥ 0,
a fact that we will use later. In the case that ak0 = 0 we get that Mmin

k ' Mmin
k0

for all
k ≥ k0 and thus Mmin = Mmin

k0
.

Let Ki = ker(Mmin
i+k0

�Mmin
k0

) for such a k0 ≥ 1. Thus,

Ki = pk0Mmin
i+k0 = im(Mmin

i →Mmin
i+k0)

by Lemma 6.2.2. We have the following commutative diagram

0 Ki+1 Mmin
i+1+k0

Mmin
k0

0

0 Ki Mmin
i+k0

Mmin
k0

0

πi+k0 πi+k0
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so (Ki)i≥1 is Mittag-Leffler surjective and we can prove by induction that rank(Ki) =
i rank(kerπk0). We would like to prove that K = lim←−Ki is a Kisin module using Proposi-
tion 3.1.6. It only remains to show that K/pnK ' Kn for n ≥ 1, since Kn has no u-torsion
and the ranks are compatible.

First, we remark that for a fixed n ≥ 1 and for all i ≥ n, we have

ker(Ki � Kn) = ker(Mmin
i+k0

�Mmin
n+k0

)

= pn+k0Mmin
i+k0

= pnKi

since Ki = pk0Mmin
i+k0

for every i ≥ 1, so Kn ' Ki/p
nKi. Moreover, using the properties of

the last quotient studied in 6.2.2, we have

Ki = ker(Mmin
i+k0 →Mk0) = pk0Mmin

i+k0 'M
min
i ' pn+k0Mmin

i+n+k0 ' p
nKi+n

for every i, n ≥ 1, so there are exact sequences

0→ Kn
×pi−−→ Ki+n → Ki → 0,

for every i, n ≥ 1, which gives us

lim←−
i

Ki+n ' lim←−
i

Ki

and
0→ K

×pn−−→ K → Kn → 0,

thus
K/pnK = Kn

for all n ≥ 1, hence K is free. It is semi-stable of slope µmin(M) since so is each
Kn = K/pnK being the kernel of Mmin

n+k0
→Mmin

k0
, both semi-stable of slope µmin(M).

Now, for every i ≥ k0, let M ′i = ker(Mi � Mmin
k0

) and (θM)i = ker(Mi → Mmin
i ). There

is a diagram

0 0

0 (θM)i M ′i Ki−k0 0

0 (θM)i Mi Mmin
i 0

Mmin
k0

Mmin
k0

0 0

where (Mi)i≥k0 , (M ′i)i≥k0 and (Ki−k0)i≥k0 are Mittag-Leffler surjective. Moreover, we have
seen in Lemma 6.2.2 that ((θM)i)i≥1 is also Mittag-Leffler surjective. Then, taking limits
in the above diagram, we obtain
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0 0

0 θM M ′ K 0

0 θM M Mmin 0

Mmin
k0

Mmin
k0

0 0

Using Proposition 3.1.5 on the isogeny 0 → M ′ → M → Mmin
k0
→ 0, we have that

M ′ ∈ ModϕS, fr and the same proposition for 0 → θM → M ′ → K → 0 tells us that
θM ∈ ModϕS, fr, since we have already proved that K ∈ ModϕS, fr. Moreover, M ′/θM '
K ∈ ModϕS, fr and it is semi-stable of slope µmin(M).

2. If Q is a nonzero quotient of θM in ModϕS, t, there exists i ≥ 1 such that Q is a quotient
of (θM)i, therefore

µ(Q) ≥ µ(θMi) > µmin(Mi) ≥ µmin(M).

Thus, if θM 6= 0,
µmin(θM) = µmin(θM/pθM) > µmin(M).

3. By Lemma 3.2.1, we have that M ′ is effective since it is a submodule of M such that
M/M ′ = Mmin

k0
∈ ModϕS, t has no m∞-torsion. Now, it suffices to show that M ′/θM has

no m∞-torsion, but M ′/θM = K ∈ ModϕS, fr, so θM is effective.

4. We have
θ(M(r)) = ker((M,ErϕM )→ lim←−n((M,ErϕM )n)min)

= ker((M,ErϕM )→ lim←−n (Mn, E
rϕMn)min)

= ker((M,ErϕM )→ lim←−n (Mmin
n , ErϕMmin

n
))

= (ker(M → lim←−nM
min
n ), ErϕM )

= (θM)(r)

where the third equality is verified since twisting by Er does not change the Harder-
Narasimhan filtration on Mn, it just change the slopes.

We get a family of Kisin modules (M (i))i≥0, where M (i) = θ(i)M , together with inclusions

ιi : M (i+1) ↪→M (i)

verifying the properties of last proposition. We say that this algorithm stops when M (i) = 0 for
some i ≥ 0.

Proposition 6.5.2. Let M ∈ ModϕS, fr. The algorithm above stops in a finite number of steps.

Proof. We can reduce to the case when M is an effective Kisin module for all i ≥ 1. Suppose
that the algorithm does not stop, then, by point (2) in last proposition µi = µmin(θ(i)M) is
strictly increasing for i ≥ 1. However

µmin(θ(i)M) =
deg(θ(i)M/pθ(i)M)min

rank(θ(i)M/pθ(i)M)min
∈

−1
eN

rank(θ(i)M)
⊂ − 1

e · rankM !
N
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where e = degE, since (θ(i)M/pθ(i)M)min is effective by hypothesis. This is a discrete set, so
we have a contradiction.

Theorem 6.5.3. Every Kisin module is isogenuous to a HN-type Kisin module.

Proof. Suppose we have three families (M (i))0≤i≤r, (M ′(i))0≤i≤r−1 and (Q(i))0≤i≤r−1 of Kisin
modules verifying

• M (0) = M ,

• There is an isogeny between M ′(i) and M (i) for all 0 ≤ i ≤ r − 1,

• For 0 ≤ i ≤ r − 1 we have exact sequences

0→M (i+1) →M ′(i) → Q(i) → 0,

• For 0 ≤ i ≤ r − 1, the Kisin module Q(i) is semi-stable of slope µi and we have

µ0 < . . . < µr−1.

Then we can prove by induction on r that M is isogenuous to a HN-type Kisin module. Indeed,
suppose that f : M (2) → N is an isogeny with N a HN-type Kisin module. So we have a diagram

0 M (2) M ′(1) Q(1) 0

0 N N ′ Q(1) 0

f '

where N ′ is the pushout of M (2) → M ′(1) and M (2) → N . The isogeny f gives us an isogeny
between M ′(1) and N ′ and so an isogeny between M = M (1) and N ′. If we put FilrN

′ = N ′,
Filr−1N

′ = N and FiliN
′ = ι(FiliN) for all 1 ≤ i ≤ r − 1, where Fil•N is the HN flag defined

on N , we obtain a HN-type Kisin module isogenuous to M .

It remains to show that such three families of modules exist for any Kisin module M , but
this is equivalent to show that the algorithm given before stops, since that way we can take
M (i) = θ(i)M , M ′(i) corresponds to the M ′ given by 6.5.1 for M (i) and Q(i) = M ′(i)/θ(i+1)M .
By proposition 6.5.2, the algorithm stops.

As a consequence, we have

Corollary 6.5.4. Notations as above, we have

tF,∞(M) = tF,◦(M) in Qr
≥

To finish this section, the following lemma gives us all the inequalities and equalities between
the polygons presented before.

Lemma 6.5.5. Let M be a Kisin module. Then, we have inequalities of types

tF,◦(M) = tF,∞(M) ≤ tF,n(M) ≤ tF,1(M) ≤ tH,∞(M/pM) ≤ tH,1(M/pM) ≤ tH(M)

for every n,m ≥ 1.

Proof. Last proposition together with 6.4.3 gives us the first equality. The inequality tF,∞ ≤ tF,n

is given by 6.3.1 and 6.3.2. The inequality tF,1(M) ≤ tH,1(M/pM) is given in 4.3.7 and the last
inequality is given by 6.1.1.



Chapter 7

Crystalline representations with
G-structure

7.1 The partially ordered commutative monoid CΓ(G)

For a reductive group G over a base scheme S and a totally ordered commutative group

Γ = (Γ,+,≤) 6= 0,

Cornut constructs a sequence of S-schemes

GΓ(G)
Fil−→ FΓ(G)

t−→ CΓ(G)

in [11, 2]. The construction is compatible with base change on S and covariantly functorial in
G and Γ. On GΓ(G) there is an involution ι, compatible with the order and addition, inducing
an involution on CΓ(G). Moreover, CΓ(G) is an étale, partially ordered commutative monoid
over S. The partial order is the weak dominance order of [11, 2.2.12]. It is compatible with the
functoriality in G and Γ, but the monoid structure is only compatible with the functoriality in
Γ. The functors represented by these schemes are related to Γ-graduations and Γ-filtrations on
various fiber functors, as explained in [11, 3] – see also section 7.2.1 below.

Suppose that S is a connected normal scheme, Γ is (uniquely) divisible and T is a connected S-
scheme. Then CΓ(G)(S)→ CΓ(G)(T ) is a monomorphism, with a canonical additive retraction
] : CΓ(G)(T ) → CΓ(G)(S), functorial in the connected S-scheme T , by [11, 3.11.8]. If T = s
is a geometric point of S, corresponding to the fundamental group π(S, s), then π(S, s) acts on
CΓ(G)(s) with finite orbits, CΓ(G)(S) is the fixed point set of this action and the retraction
] : CΓ(G)(s)→ CΓ(G)(S) maps x to the average of its orbit in the (uniquely) divisible monoid
CΓ(G)(s).

If Spec(R) is an affine S-scheme, we set

GΓ(GR) = GΓ(G)(R)

FΓ(GR) = FΓ(G)(R)

CΓ(GR) = image of FΓ(G)(R)→ CΓ(G)(R)

Suppose that R is local, as in [11, 4.1]. Then CΓ(GR) is a (partially ordered) commutative
submonoid of CΓ(G)(R). Moreover,

GR is quasi-split ⇐⇒ CΓ(GR) = CΓ(G)(R).

100
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This follows from [11, 4.1.8] and [1, XXVI 3.8]. If R is a valuation ring with fraction field
K, then CΓ(GR) = CΓ(GK) by [11, 4.1.18]. If R is Henselian with residue field k, then
CΓ(GR) = CΓ(Gk) by [11, 4.1.17], and GR is quasi-split if and only if Gk is quasi-split. This
is for instance the case if k is finite (by Lang’s theorem) or algebraically closed. If GR is split,
then CΓ(GR) is the constant partially ordered commutative monoidCΓ(GR)Spec(R) ([11, 2.2.11]).
Then for any morphism of local S-algebras R→ R′, the base change map CΓ(GR)→ CΓ(GR′)
is an isomorphism. If G = GLn, then CΓ(GR) = Γn≥.

In the sequel, we will have a reductive group G over Zp. Thus G is quasi-split over Zp and split
over a finite unramified extension ZpN of Zp. In particular, applying CΓ(G−) to the diagram

W (Fp) Fp

K0 W (F) F

S F[[u]]

K S(E)

all the arrows become isomorphisms. We will drop the index relative to the ring and note it
simply by CΓ(G) (this is an abuse of notation, but we will denote by CΓ(GZp) when we want
to make clear that we are considering the group defined over Zp). The Frobenius σ acts on it,
with fixed point set CΓ(GZp) = CΓ(GFp) and σN ≡ Id on CΓ(G). The partial order on CΓ(G)
then has the following Tannakian caracterisation, which can be found in [11, 3.11.8], see also
[14, 9.4.2].

Proposition 7.1.1. Suppose Γ is divisible and G is defined over Zp. For every connected Zp-
scheme SpecR and t1, t2 ∈ CΓ(GR), consider the following conditions:

1. t1 ≤ t2 in CΓ(GR),

2. For every τ ∈ RepRG, t1(τ) ≤ t2(τ) in CΓ(GR)(GL(V (τ)) = Γ
rankR(τ)
≥ ,

3. t#
1 ≤ t#

2 in CΓ(GZp),

4. For every τ ∈ RepZp G, t1(τR) ≤ t2(τR) in CΓ(G)(GL(V (τR)) = Γ
rankZp (τ)

≥ .

Then, we have (1) ⇐⇒ (2), (4) =⇒ (3) and we have (3) ⇐⇒ (4) if t1 = t#
1 .

7.2 Fiber functors

In this section, let G be a reductive group defined over O, for O ∈ {Qp,Zp,Fp}. For a scheme
X, we define the category BunX as the category of finite locally free sheaves of OX -modules.
In particular, for X = SpecR, it corresponds to the category of finite projective R-modules and
we denote this category by BunR. We define the category RepOG as the category of algebraic
representations of G on finite free O-modules. We say that a functor

ωX : RepOG→ BunX

is a fiber functor when ωX is an exact ⊗-functor, for a scheme over SpecO. We denote by
Aut⊗(ωX) the group of ⊗-automorphisms of ωX .
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7.2.1 Graduations and filtrations

Definition 7.2.1. Let Γ be a subring of R. A Γ-graduation G on ωR is a factorization

RepOG
G−→ GrΓ BunR

f−→ BunR

where f is the forgetful functor and GrΓ BunR is the category of finite projective R-modules
endowed with a Γ-graduation, such that if Gγ is the γ-component of G,

(G1) For every τ1, τ2 ∈ RepOG and γ ∈ Γ, we have

Gγ(τ1 ⊗ τ2) = ⊕γ1+γ2=γGγ1(τ1)⊗ Gγ2(τ2).

(G2) For the trivial representation τ of G on L ∈ BunO, we have

G0(τ) = ωR(τ) and Gγ(τ) = 0 if γ 6= 0.

A Γ-filtration G on ωR is a factorization

RepOG
G−→ FilΓ BunR

f−→ BunR

where f is the forgetful functor and FilΓ BunR is the category of finite projective R-modules
endowed with a Γ-filtration by direct summands as defined in [11, 3.3.1], such that if Fγ is the
γ-component of F ,

(F1) For every τ1, τ2 ∈ RepOG and γ ∈ Γ, we have

Fγ(τ1 ⊗ τ2) =
∑

γ1+γ2=γ

Fγ1(τ1)⊗Fγ2(τ2).

(F2) For the trivial representation τ of G on L ∈ BunO, we have

Fγ(τ) = ωR(τ) if γ ≤ 0 and Fγ(τ) = 0 if γ > 0.

(F3) For every γ ∈ Γ, Fγ is exact.

We denote by GΓ(ωR) and FΓ(ωR) the set of Γ-graduations and Γ-filtrations on ωR, respectively.

For every O-algebra R and every Γ subring of R, there is an exact ⊗-functor

Fil : GrΓ BunR → FilΓ BunR

sending a graduation G to the filtration Fil(G) = F defined by F≥γ = ⊕η≥γGη. It induces an
Aut⊗(ωR)-equivariant map

Fil : GΓ(ωR)→ FΓ(ωR).

We define the types on ωR by

CΓ(ωR) := Aut⊗(ωR)\FΓ(ωR).

The three sets GΓ(ωR), FΓ(ωR) and CΓ(ωR) are compatible with change of the O-algebra R,
so we can define three presheaves GΓ(ω), FΓ(ω) and CΓ(ω) together with maps

GΓ(ωR)
Fil−→ FΓ(ωR)

t−→ CΓ(ωR).

Now, consider the standard fiber functor

ωG,R : RepOG→ BunR

given by the composition of the forgetting functor ωG : RepOG→ BunO with the tensorization
by R. This fiber functor is called the trivial fiber functor. The next proposition gives a criterion
for the existence of a ⊗-isomorphism ωG,R ' ωR.
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Proposition 7.2.1. Let R be a local strictly henselian and faithfully flat O-algebra. Then, any
exact and faithful ⊗-functor

ωR : RepOG→ BunR

is ⊗-isomorphic to the standard fiber functor ωG,R.

Proof. We can use the results in [7] since our base scheme Spec(O) is a Dedekind scheme for the
cases considered. In [7], Broshi proved that there is an equivalence of categories between exact
and faithful ⊗-functors taking values in BunR and G-torsors over Spec(R). Now, G-torsors over
Spec(R) are classified by the étale cohomology group H1(Spec(R), G). Using [1, Exposé XXIV,
Proposition 8.1], we have that

H1(Spec(R), G) ' H1(F, GF)

under our hypothesis. Then, in [46, Theorem 1.9], we see that

H1(F, GF) = 0,

thus, all G-torsors over R are trivial, and ωR ' ωG,R as wanted, by the equivalence of categories
given by Broshi.

The choice of a ⊗-isomorphism ωR ' ωG,R (when it exists) yields isomorphisms

GΓ(ωR) ' GΓ(ωG,R) =: GΓ(GR)
FΓ(ωR) ' FΓ(ωG,R) =: FΓ(GR)
CΓ(ωR) ' CΓ(ωG,R) =: CΓ(GR)

so, in this case, we can use the results in [11]. The first two isomorphisms are not canonical,
since they depend on the chosen isomorphism ω ' ωG,R. Let η, η′ be two different isomorphisms
ω ' ωG,R, then we have η′ = κη for some κ ∈ Aut⊗(ωG,R) = G(R). Then, the induced
isomorphisms

η, η′ : CΓ(ωR) = Aut⊗(ωR)\GΓ(ωR) ' G(R)\GΓ(GR) = CΓ(GR)

are equal, so CΓ(ω) is canonically isomorphic to CΓ(GR).

The definition of a filtration on a fiber functor implies that the filtration is compatible with
exterior and symmetric powers. The next proposition shows that the converse is also sometimes
true.

Proposition 7.2.2. Let L be a field which is an O-algebra. Suppose that a fiber functor

ωL : RepOG→ VectL

admits a factorization through an additive ⊗-functor

F : RepOG→ FilΓL

which is compatible with Λ and Sym. Then F is exact, thus F is a filtration of ωL.

Proof. We say that F is exact if it verifies the following equivalent conditions. For every exact
sequence

0→ τ1 → τ2
π−→ τ3 → 0

with τ1, τ2, τ3 ∈ RepOG:
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• The sequence
0→ Fγ(τ1)→ Fγ(τ2)→ Fγ(τ3)→ 0

is exact, for every γ ∈ Γ.

• We have Fγ(τ1) = Fγ(τ2) ∩ ωL(τ1), and Fγ(τ3) = π(Fγ(τ2)), for every γ ∈ Γ.

• The functor F transforms strict monomorphisms (respectively strict epimorphisms) into
strict monomorphisms (respectively, strict epimorphisms).

We will use the last characterization of an exact functor. By [16, II, Proposition 1.9], an addi-
tive ⊗-functor between two rigid categories is also compatible with duality, i.e. F(τ)∨ = F(τ∨).
This means that we only need to check that F transforms strict monomorphisms into strict
monomorphisms.

Let τ1 ↪→ τ2 be a strict monomorphism. Set Gγ(τ1) = Fγ(τ2)∩ ωL(τ1). Since F is a functor, we
have a commutative diagram in FilΓL

F(τ1) F(τ2)

G(τ1)

i1

ι

i2

where i1 is a mono-epi and i2 is a strict mono. We want to show that F(τ1) = G(τ1), i.e. that i1
is an isomorphism. First, we prove that we can reduce to the case where rankO τ1 = 1. Indeed,
let d = rankO τ1 and consider Λdτ1 ↪→ Λdτ2, applying F , and since F is compatible with exterior
powers, we get a diagram

ΛdF(τ1) ΛdF(τ2)

ΛdG(τ1)

Λdi1

Λdι

Λdi2

where Λdi1 is again a mono-epi by the properties of the exterior power, and by a direct calculation
considering a splitting, we can check that Λdi2 is a strict monomorphism. Since

µ(ΛdF(τ1)) = dµ(F(τ1)) and µ(ΛdG(τ1)) = dµ(G(τ1))

we obtain that i1 is an isomorphism if and only if Λdi1 is an isomorphism.

Now, we have τ1 ↪→ τ2 where τ1 is a character of G. Since F is compatible with tensor products
and duality, twisting the initial sequence by the inverse of that character, we may assume that
τ1 = 1.

Let thus 1 ↪→ τ be a strict monomorphism. The generalization of Haboush’s theorem given by
Seshadri in [44, Theorem 1] tells us that there is an r ≥ 1 such that 1 = Symr 1 ↪→ Symr(τ) is
split. This implies that F(1) → F(Symr(τ)) = Symr(F(τ)) is a strict monomorphism. Since
Symr i2 is also a strict mono, the mono-epi

Symr i1 : Symr F(1)→ Symr G(1)

is an isomorphism. Since

µ(Symr F(τ1)) = rµ(Symr(τ1)) and µ(Symr G(τ1)) = rµ(G(τ1))

we have F(1) ' G(1).
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Remark 14. In the case where O = Qp, every exact sequence in RepOG is split, in which case
the exactness of F follows from its additivity.

7.2.2 Lattices

Let OL be an O-algebra which is a discrete valuation ring, L its fraction field, πL a uniformizer
and l its residue field. For G a reductive group over O, let

V : RepOG→ BunL

be a ⊗-functor. We denote by L′(V ) the set of ⊗-functors

x : RepOG→ BunOL

such that

1. For every τ ∈ RepOG, its image x(τ) is an OL-lattice in V (τ),

2. For every τ1
f−→ τ2, the morphism x(f) : x(τ1)→ x(τ2) is induced by V (f) : V (τ1)→ V (τ2).

Then, there is a canonical ⊗-isomorphism xL ' V , where

xL : RepOG
x−→ BunOL

⊗L−−→ BunL .

Conversely, to give an element of L′(V ) amounts to give an isomorphism class of pairs (x′, η)
where x′ : RepOG→ BunOL is a ⊗-functor and η is an isomorphism of ⊗-functors x′L ' V : we
associate to (x′, η) the functor x(τ) = ητ (x′(τ)).

We denote by Lex(V ) ⊂ L′(V ) the subset of lattices x which are exact. Then Lex(V ) 6= ∅ implies
that V is exact. We suppose V exact henceforth, i.e. V : RepOG → BunL is a fiber functor.
Denote by L(V ) ⊂ Lex(V ) the subset of lattices x which are isomorphic to the standard fiber
functor ωG,OL (they are exact since the latter is exact). Then, if L(V ) 6= ∅, we have V ' ωG,L
and, conversely, if V ' ωG,L, then we have ωG,OL ∈ L(ωG,L) ' L(V ) 6= ∅. We suppose V ' ωG,L
henceforth.

Remark 15. In the case when OL is a local strictly henselian faithfully flat O-algebra and

V : RepOG→ BunL

is faithful, we get L(V ) = Lex(V ), using Proposition 7.2.1, since V faithful implies x faithful for
every x ∈ L′(V ).

Let η : V1 → V2 be a ⊗-isomorphism. Then η induces a bijection L∗(V1)
∼−→ L∗(V2), by

x 7→ ηx where ηx(τ) = ητ (x(τ)) (so η is also a ⊗-isomorphism x ' ηx). In particular, the
group Aut⊗(V ) acts on L(V ) ⊂ Lex(V ) ⊂ L′(V ). The action is transitive on L(V ), since two
elements x, y ∈ L(V ) are isomorphic as functors, through a ⊗-isomorphism η : x → y inducing
a ⊗-isomorphism ηL : V → V , i.e. an element g ∈ Aut⊗(V ), which sends x to y by definition.
Thus for any x ∈ L(V ) with stabilizer Aut⊗(x) in Aut⊗(V ), the map g 7→ g · x yields an
Aut⊗(V )-equivariant bijection

Aut⊗(V )/Aut⊗(x) ' L(V ).

Remark 16. 1. For V = ωG,L and x = ωG,OL , we obtain

G(L)/G(OL) ' L(V )

since Aut⊗(x) = G(OL) inside Aut⊗(V ) = G(L).
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2. For G̃ = GOL , V = ωG,L and Ṽ = ωG̃,L, the map L(Ṽ )→ L(V ) defined by x̃ 7→ x, where

x : RepOG
⊗OL−−−→ RepOL G̃

x̃−→ BunOL

is G(L) = Aut⊗(Ṽ ) = Aut⊗(V )-equivariant, thus a bijection since

L(Ṽ ) ' G(L)/G(OL) ' L(V ).

3. For O = OL Henselian and V = ωG,L, there is a G(L)-equivariant embedding

L(V ) ↪→ Be(ωG, L)

mapping x to the gauge norms αx ∈ Be(ωG, L) defined by

αx(τ)(v) = inf{|λ| | λ ∈ L, v ∈ λx(τ)}

for τ ∈ RepOG and v ∈ ωG,L(τ). Here, Be(ωG, L) is the space of L-norms on ωG defined
in [11, 6.4].

Definition 7.2.2. Let FZ(V ) = FZ(ω(V )). We define an addition operator between lattices
and filtrations

+ : L(V )× FZ(V ) → L(V )
(x,F) 7→ x+ F

where, for every τ ∈ RepZp G, we have

(x+ F)(τ) = x(τ) + F(τ ⊗Qp) =
∑
i∈Z

π−1
L x(τ) ∩ F≥i(τ ⊗Qp).

Proposition 7.2.3. The operator defined above is well-defined.

Proof. We may assume that V is trivial. Fix x ∈ L(V ) and F ∈ FZ(V ). We know that x+F is
functorial and, by Proposition 2.3.4, compatible with tensor products. We have then an element
x+F ∈ L′(V ), so it suffices to see that it is isomorphic to the trivial lattice. Up to multiplication
with an element of G(L), we may assume that x = ωG,OL . Since F ∈ FZ(GL) = FZ(GOL), there
exists a cocharacter χ : Gm,OL → GOL splitting F . For every τ ∈ RepZp G, let x(τ) = ⊕i∈Zx(τ)i
be the weight decomposition of (τ ⊗ OL) ◦ χ : Gm,OL → GLOL(x(τ)). Then F≥j(τ ⊗ Qp) =
⊕i≥jV (τ)j where V (τ)j = x(τ)j ⊗ L, so

x(τ) + F≥j(τ ⊗Qp) =
∑

j πL
−jx(τ) ∩ F≥j(τ ⊗Qp)

=
∑

j ⊕i≥jπL−jx(τ)i
=

⊕
i

∑
j≥i πL

−jx(τ)i
=

⊕
i πL

−ix(τ)i
= τ(χ(π−1

L )) · x(τ)

= (χ(π−1
L ) · x)(τ),

and x+ F = χ(π−1
L ) · x, which indeed belongs to L(V ).



CHAPTER 7. CRYSTALLINE REPRESENTATIONS WITH G-STRUCTURE 107

7.2.3 A variant: From RepQp G to RepZp G

For the rest of the chapter, we will use a slightly different framework. If O = Zp, G a reductive
group over Zp and

V : RepQp GQp → BunL

is a fiber functor, then we denote
L(V ) = L(V ′)

where
V ′ : RepZp G→ BunL

is the fiber functor induced by precomposition of V with RepZp G→ RepQp G. We have

L(V ) 6= ∅ ⇔ V is isomorphic to the trivial fiber functor ωGQp ,L

⇔ V ′ is isomorphic to the trivial fiber functor ωG,L.

Indeed, we already know that L(V ) 6= ∅ if and only if L(V ′) 6= ∅ if and only if V ′ ' ωG,L.
Suppose V ' ωGQp ,L, then it is obvious that V ' ωG,L. Conversely, suppose we have an element
a : V ′ ' ωG,L in Iso⊗(V ′, ωG,L). By [15, Theorem 1.12 and Remark 1.13], there exists a finite
Galois extension L′/L such that there exists an isomorphism b : VL′ ' ωGQp ,L

′ . Consider the
diagram

Iso⊗(V, ωGQp ,L) Iso⊗(V ′, ωG,L) 3 a

b ∈ Iso⊗(VL′ , ωGQp ,L
′) Iso⊗(V ′L′ , ωG,L′).

Changing b by an element g ∈ GQp(L
′) = G(L′) = Aut⊗(ωG,L′), we may assume that b and

a have the same image in Iso⊗(V ′L′ , ωG,L′). Then b is fixed by the action of Gal(L′/L) on
Iso⊗(VL′ , ωGQp ,L

′), thus b ∈ Iso⊗(V, ωGQp ,L) and indeed V ' ωGQp ,L.

7.2.4 Vectorial distance

For x, y ∈ L′(V ), we denote by

F(x, y) : RepOG→ FilZ Bunl

the functor given by
F(x, y)(τ) = F(x(τ), y(τ)),

with underlying fiber functor

x : RepOG
x−→ BunOL

⊗l−→ Bunl .

It is clear that x is a ⊗-functor, and so is F(x, y), by Proposition 2.3.2.

Proposition 7.2.4. Suppose x, y ∈ Lex(V ), then the ⊗-functor F(x, y) is exact, i.e.

F(x, y) ∈ FZ(x).

In particular, it is true for every x, y ∈ L(V ).

Proof. Let x, y ∈ Lex(V ). Then, x is exact and, by Proposition 7.2.2, it suffices to show that
F(x, y) is compatible with exterior and symmetric powers. We check it for exterior powers. We
have

ΛrF(x(τ), y(τ)) = F(Λrx(τ),Λry(τ)) = F(x(Λrτ), y(Λrτ))

for every τ ∈ RepOG and every r ≥ 0, where the first equality is given by Proposition 2.3.2 and
the second equality follows from the exactness of x and y. Thus F(x, y) is exact.
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Using this filtration, we define the vectorial distance (also called relative position) of x, y ∈ L(V ),
as

Pos(x, y) = t(F(x, y)) ∈ CZ(x) = CZ(Gl).

(where the equality CZ(x) = CZ(Gl) is due to the fact that x is isomorphic to the trivial fiber
functor).

Example 7.2.1. Let V = ωG,L, x = ωG,OL and y = µ(πL) · ωG,OL , where

µ : Gm,OL → GOL .

We also denote by µ the type of the graduation given by µ. Then, we have

Pos(x, y) = µι in CZ(Gl).

Remark 17. If OL is Henselian, with the proper normalization of the multiplicative valuation
on L, there is a commutative diagram

L(ωG,L) × L(ωG,L)
Pos−−→ CZ(Gl)

Be(ωG̃, L) × Be(ωG̃, L)
d−→ CR(GL)

where G̃ = GOL , Ṽ = ωG̃,L and L(V ) ← L(Ṽ ) ↪→ Be(ωG̃, L) are as above and CZ(Gl) '
CZ(GOL) ' CZ(GL) ⊂ CR(GL), by [11, 4.1.17] and [11, 4.1.18]. The vectorial distance d is
introduced in [11, 5.2.8], using [11, 6.2] and [11, 6.4]. We explain the diagram a bit more in
detail. For the calculation of relative positions, we may assume that O = OL and V = ωG,L.
Both maps L(ωG,L)2 → CR(GL) are G(L)-equivariant, so we may fix the first component of
(x, y) ∈ L(ωG,L)2 to x = ωG,OL , which maps to α◦G,L in B◦(ωG, L). By [11, 6.4.8], it suffices to
check the commutativity of

Pos(ωG,OL ,−) : L(ωG,L) FZ(Gl)

loc : Be(ωG, L) FR(Gl)

The two maps L(ωG,L)→ FR(Gl) on the diagram send y ∈ L(ωG,L) to the filtration defined by

F i1(τ) =
ωG,OL(τ) ∩ πiLy(τ) + πLωG,OL(τ)

πLωG,OL
⊂ ωl(τ)

Fγ2 (τ) =
ωG,OL(τ) ∩B(αy(τ), γ) + πLωG,OL(τ)

πLωG,OL
⊂ ωl(τ)

for every i ∈ Z, every γ ∈ R and every τ ∈ RepZp G, where

B(αy(τ), γ) = {v | αy(τ)(v) ≤ exp(−γ)}.

If |L×| = exp(Z), i.e. |πL| = exp(−1), then F2 ∈ FZ(Gl) and

B(αy(τ), i) = {v | αy(τ)(v) ≤ exp(−i)} = πiLy(τ),

therefore F1 = F2.

Proposition 7.2.5. The relative position defined above verifies
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1. The triangular inequality: for every x, y, z ∈ L(V ), we have

Pos(x, z) ≤ Pos(x, y) + Pos(y, z),

in the partially ordered commutative monoid CZ(Gl).

2. Compatibility with the involution: For every x, y ∈ L(V ), we have

Pos(y, x) = Pos(x, y)ι.

Proof. We may assume that V = ωG,L. We can now use all the results in [11] as follows: as
we have seen above, the functor sending a lattice to its Gauge norm embeds L(V ) in B(ωG̃, L)
and in the last remark we have seen that for a suitable normalizaton of the valuation on L, the
operator Pos corresponds to the vectorial distance d defined on B(ωG̃, L) via 6.4.10 and 6.2 in
[11], which verifies itself the triangular inequality. The compatibility with the involution is an
obvious property of the vectorial distance d given in [11, 5.2.8].

Another property that will be useful is given by the next proposition:

Proposition 7.2.6. Let ϕ : L→ L′ be a finite extension with ramification index e and set

V ′ = V ⊗ L′ : RepOG→ BunL → BunL′ .

Then we have
F(x′, y′) = e · F(x, y)⊗ l′ in FZ(x′) = FZ(xl′)

for every x, y ∈ L(V ), x′ = x⊗OL′, y′ = y⊗OL′ in L(V ′) and l′ the residue field of OL′. As a
consequence, we have

Pos(x′, y′) = e · ϕPos(x, y) in CZ(Gl′).

Proof. It suffices to prove that F(x′(τ), y′(τ)) = e · F(x(τ), y(τ)) ⊗ l′ for every τ ∈ RepOG.
Let x(τ) = OLe1 ⊕ . . . ⊕OLer, y(τ) = OLπ−n1

L e1 ⊕ . . . ⊕OLπ−nrL er, where πL and πL′ are the
uniformizers of OL and OL′ , respectively. Then

x(τ) ∩ πnLy(τ) = ⊕ri=1OLπ
max{0,n−ni}
L ei

x(τ) ∩ πnLy(τ) + πLx(τ) = ⊕ri=1OLπ
min{1,max{0,n−ni}}
L ei

Fn(x(τ), y(τ)) = ⊕ni≤nlei.

Now, we have x′(τ) = OL′e1 ⊕ . . .⊕OL′er, y′(τ) = OL′π−en1
L′ e1 ⊕ . . .⊕OL′π−enrL′ er, so

Fn(x′(τ), y′(τ)) = ⊕eni≤nl′ei
= ⊕ni≤ne l

′ei

= F
n
e (x(τ), y(τ))⊗ l′

= e · Fn(x(τ), y(τ))⊗ l′.

Remark 18. We can apply the last proposition in the case where L′ = L and ϕ is a morphism
which may be ramified, with ramification index e. Suppose there is an isomorphism ϕV : ϕ∗V →
V of ⊗-functors, where ϕ∗V = V ⊗L,ϕ L. As an abuse of notation, we denote by

ϕV : L(V )
ϕ−→ L(ϕ∗V )

L(ϕV )−−−−→ L(V )

the induced morphism on lattices. Then we have

Pos(ϕV (x), ϕV (y)) = eϕPos(x, y) in CZ(Gl),

where l is the residue field of L, for every x, y ∈ L(V ).
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7.3 Crystalline representations with G-structure

Let F be an algebraically closed field of characteristic p > 0, W (F) the ring of Witt vectors over
F, K0 = FracW (F) and we fix an algebraic closure of K0 denoted by K0. We denote by

GalK = Gal(K0/K)

for every (totally ramified) extension K0 ⊂ K ⊂ K0. Let G be a reductive group over Zp.

The aim of this section is to define and study the diagram

L(V,K) L(N) L(D′,≤ tH)

L(V ) L(D,≤ tH)

'

for V,N,D and D′ some ⊗-functors on RepQp G that will be defined later.

7.3.1 Isocrystals with G-structure

An isocrystal with G-structure (or G-isocrystal) is an exact and faithful ⊗-functor

D : RepQp G→ ModσK0
.

We denote by ω(D) its underlying fiber functor

ω(D) : RepQp G→ BunK0 .

We say that D is trivial when ω(D) = ωG,K0 .

Lemma 7.3.1. There is a canonical correspondance between trivial G-isocrystals and elements
of G(K0).

Proof. A trivial G-isocrystal is a ⊗-isomorphism

σD : σ∗ωG,K0 ' ωG,K0 .

Since σ∗ωG,K0 is canonically isomorphic to ωG,K0 , a trivialG-isocrystal corresponds to an element
in Aut⊗(ωG,K0) = G(K0).

Composing D with the Newton slope graduation ModσK0
→ GrQK0

, we obtain a Q-graduation

GN : RepQp G→ GrQK0
.

It lives in GQ(ω(D)), and so does the opposite graduation, defined by GιγN = G−γN , for every
γ ∈ Q. We get two filtrations FN = Fil(GN) and F ιN = Fil(GιN), living in FQ(ω(D)), called the
Newton filtrations. We denote by tN(D) and tιN(D) the types of these filtrations, which are
elements in CQ(ω(D)).

Proposition 7.3.2. Suppose D is isomorphic to a trivial G-isocrystal, then the types

tN(D), tιN(D) ∈ CQ(GK0)

are fixed by σ, i.e.

tN(D) = tN(D)# and tιN(D) = tιN(D)# in CQ(GK0).
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Proof. This is well known, see [29, 4.4]. The Frobenius of D induces an isomorphism of fiber
functors σD : σ∗ω(D)→ ω(D). It gives rises to a commutative diagram

FQ(ω(D)) FQ(σ∗ω(D)) FQ(ω(D))

CQ(GK0) CQ(GK) CQ(GK)

σ

t

σD

t t

σ Id

Since GN is a graduation by sub-isocrystals, the top map fixes FN and F ιN. Thus σtN(D) = tN(D)
and σtιN(D) = tιN(D).

Set L(D) = L(ω(D)). Thus L(D) 6= ∅ if and only if D is isomorphic to a trivial G-isocrystal,
by section 7.2.3, which we assume from now on. As we have seen in Remark 18, the Frobenius
on D induces a bijection

L(D) = L(ω(D))
σ−→ L(σ∗ω(D))

σD−−→ L(ω(D)) = L(D)

which we simply denote by σD. By Remark 18, we have

Pos(σDx, σDy) = σPos(x, y)

in CZ(GF), for every x, y ∈ L(D). For any y ∈ L(D), we define the Hodge filtration by

FH(y) = F(y, σDy).

Proposition 7.2.4 shows that it lives in FZ(GF). We denote by

tH(y) = Pos(y, σDy)

its type in CZ(GF) = CZ(GK0), which verifies Mazur’s inequality given by the next proposition.

Proposition 7.3.3. The types above verify the inequality

tιN(D) ≤ tH(y)# in CQ(GK0)

for any y ∈ L(D).

Proof. This is well-known, see [40, Theorem 4.2], [32, 4.1 and 4.10] or [13, 4.2]. The inequality
tιN(D)(τ) ≤ tH(y)(τ) for every τ ∈ RepZp G and every y ∈ L(D) is a well-known inequal-
ity, stated by Mazur in [36] and whose proof can be found in [23, Theorem 1.4.1]. Thus, by
proposition 7.1.1 and since tN(D) = tN(D)#, we get tιN(D) ≤ tH(y)#.

We define two subsets of lattices in L(D) by

L(D,≤ µ) = {y ∈ L(D) | tH(y) ≤ µ}
L(D,µ) = {y ∈ L(D) | tH(y) = µ}

for any µ ∈ CZ(GK0).

These objects have already been studied by various authors, in particular we can give an im-
proved version of Mazur’s inequality. First, Kottwitz in [31], and Rapoport and Richartz in
[40], classify trivial isocrystals with G-structure, i.e. they describe the set B(G) of σ-conjugacy
classes in G(K0). The key ingredient for the classification is a map

B(G) → CQ(GK0)× π1(G)Γ

[b] 7→ (νG[b], κG[b])
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which is shows to be injective in [31, 4.13], see also [40]. The first component is our Newton
type, constructed by Kottwitz in [29, 3]: if Db is the G-isocrystal corresponding to b ∈ G(K0),
then νG[b] = tN(Db). The second component is the Kottwitz map, defined in [29, Proposition
5.6] or [40, 1.13], with values in the Γ-coinvariants of the algebraic fundamental group π1(G),
there Γ = GalQp . In our quasi-split case, CQ(G)Γ = CQ(GQp) and for any Borel pair (T,B) in
GQp , there are canonical Γ-equivariant isomorphisms

CZ(G) ' X∗(T )B−dom, CQ(G) ' (X∗(T )⊗Q)B−dom and π1(G) ' X∗(T )/Z ·R∨G
where X∗(T )B−dom and (X∗(T )⊗Q)B−dom are the cones of B-dominant elements in X∗(T ) and
X∗(T ) ⊗ Q, respectively, while Z · R∨G is the subgroup of X∗(T ) spanned by the coroots R∨G of
T in G. Moreover, the maps

[−]G : CZ(G) � π1(G) and [−]G,Γ : CZ(G) � π1(G)Γ

induced by these isomorphisms, given in [40, 4.1] do not depend upon the chosen Borel pair.

Let (T,B) be a Borel pair in G = GZp . For µ ∈ X∗(T )B−dom ' CZ(GK0) and b ∈ G(K0), set

XG
µ (b) = {x ∈ G(K0)/G(W (F)) | x−1bσ(x) ∈ G(W (F))µ(p)G(W (F))}.

The following improved version of Mazur’s inequality was established in [40, Theorem 4.2], see
also Theorem 4.1 and section 4.4 of [32]:

XG
µ (b) 6= ∅ =⇒

{
νG[b] ≤ µ# in CQ(G) and
κG[b] = [µ]G,Γ in π1(G)Γ.

The last equality is also explained in [13, 4.2]. The converse implication was established by
Gashi in [21], building on a strategy proposed by Kottwitz in [32]. Thus:

XG
µ (b) 6= ∅ ⇐⇒

{
νG[b] ≤ µ# in CQ(G) and
κG[b] = [µ]G,Γ in π1(G)Γ.

On the other hand, the G(K0)-equivariant bijection

G(K0)/G(W (F)) = Aut⊗(ωG,K0)/Aut⊗(ωG,W (F)) → L(ωG,K0) = L(Db)

g 7→ g · ωG,W (F)

induces a bijection
XG
µ (b) ' L(Db, µ

ι),

as we can check using Example 7.2.1. Thus,

L(D,µ) 6= ∅ ⇐⇒
{

tιN(D) ≤ µ# in CQ(GK0) and
κ(D) = −[µ]G,Γ in π1(G)Γ

for every G-isocrystal D.

Definition 7.3.1. For µ ∈ CZ(GK0), we say that D is µ-ordinary when

L(D,µ) 6= ∅ and tιN(D) = µ#.

Proposition 7.3.4. Up to isomorphism, there is a unique D which is µ-ordinary.

Proof. We will prove the existence later. For the unicity, if D is µ-ordinary, L(D) 6= ∅ so we
may assume that D is trivial. From the discussion above, we obtain that then there is at most
one [b] ∈ B(G) with Xµ(b) 6= ∅ and νG[b] = µ#, the one associated to the element

(µ#,−[µ]G,Γ) ∈ CQ(GK0)× π1(G)Γ.
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7.3.2 Torsion Kisin modules with G-structure

Definition 7.3.2. An exact ⊗-functor

Mtors : RepZp G→ ModϕF[[u]],fr

is called a torsion Kisin module with G-structure. We denote by ω(Mtors) its underlying fiber
functor and we say that Mtors is trivial when ω(Mtors) = ωG,F[[u]]. An exact and faithful ⊗-
functor

MFp : RepFp GFp → ModϕF[[u]],fr

is called a Kisin module with GFp-structure. We denote by ω(MFp) its underlying fiber functor
and we say that MFp is trivial when ω(MFp) = ωGFp ,F[[u]].

Note 1. Torsion Kisin modules with G-structure should be called p-torsion Kisin modules with
G-structure to be completely coherent with the notations of the sections before. However, since
we will not work with functors RepZp G→ ModϕS, t, we can drop p from the notation.

Remark 19. A Kisin module with GFp-structure extends canonically to a torsion Kisin module
with G-structure, by considering the composition

RepZp G ModϕF[[u]],fr

RepFp GFp

Proposition 7.3.5. There are canonical correspondences between trivial torsion Kisin modules
with G-structure and elements of G(F((u))) and trivial Kisin modules with GFp-structure and
elements of G(F((u))).

Proof. A trivial torsion Kisin module with G-structure M is nothing but a ⊗-isomorphism

ϕ : ϕ∗ωG,F((u)) ' ωG,F((u))

where ωG,F((u)) : RepZp G→ BunF((u)) is the trivial fiber functor. Since ϕ∗ωG,F((u)) is canonically
isomorphic to ωG,F((u)), a trivial torsion Kisin module M with G-structure corresponds to an
element of Aut⊗(ωG,F((u))) = G(F((u))). The same proof works for a trivial Kisin module with
GFp-structure, by replacing G by GFp .

Remark 20. In particular, the last proposition proves that there is a canonical correspondence
between trivial torsion Kisin modules with G-structure and trivial Kisin modules with GFp-
structure, given by the extension procedure of Remark 19.

Proposition 7.3.6. Every Kisin module with GFp-structure is isomorphic to a trivial Kisin
module with GFp-structure.

Proof. It is a consequence of 7.2.1, since F[[u]] is a strictly henselian faithfully flat Fp-algebra.

Definition 7.3.3. An isogeny class of torsion Kisin modules with G-structure is an exact ⊗-
functor

X : RepZp G→ ModϕF((u)) .

We denote by ω(X) its underlying fiber functor and we say what X is trivial when ω(X) =
ωG,F((u)).
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Set L(X) = L(ω(X)). Thus L(X) 6= ∅ if and only if X is isomorphic to a trivial isogeny class
of torsion Kisin module with G-structure, which we assume from now on. Any z ∈ L(X) has a
unique factorization through a ⊗-functor

RepZp G→ ModϕF[[u]],fr,

i.e. yields a torsion Kisin module with G-structure.

As explained in Remark 18, the Frobenius morphism induces a map

ϕX ; L(X) = L(ω(X))
ϕ∗−→ L(ϕ∗ω(X))

ϕX−−→ L(ω(X)) = L(X).

For every z ∈ L(X) and n ≥ 1, we set

FH,n(z) = F(z, ϕn
X

(z)) in FZ(ω(z ⊗ F)),

by Proposition 7.2.4. Its type lives in CZ(GF) = CZ(GK0). However, we will be working with
the renormalized Hodge types, defined as

tH,n(z) = p−1
n t(FH,n(z))

for pn = pn−1
p−1 . These types live in CQ(GF).

Proposition 7.3.7. Let z ∈ L(X). If ϕN = 1 on CQ(G), then for every N |n and m ≥ 1, we
have

tH,nm(z) ≤ tH,n(z) in CQ(GF).

Proof. Let N |n. We have

t(FH,nm(z)) = Pos(z, ϕnm
X

(z))

≤
∑m−1

i=0 Pos(ϕni
X

(z), ϕ
n(i+1)

X
(z))

=
∑m−1

i=0 pniϕni Pos(z, ϕn
X

(z)),

where the last equality is given by Remark 18, taking L = F((u)) and for ϕ we have e = p. Since
ϕn = 1 on CQ(G), we obtain t(FH,nm(z)) ≤ pnm

pn
t(FH,n(z)), thus tH,nm(z) ≤ tH,n(z).

Definition 7.3.4. A torsion Kisin module z ∈ L(X) with G-structure is called aligned if for
every Zp-representation τ of G, the torsion Kisin module z(τ) is aligned.

The following proposition gives us a sufficient condition for a p-torsion Kisin module with G-
structure to be aligned.

Proposition 7.3.8. Suppose tH,nm(z)# = tH,n(z)# for some N |n ≥ 0 and all m ≥ 1, then z is
aligned.

Proof. We have just seen that tH,mn(z) ≤ tH,n(z) for every m ≥ 1. Suppose that the inequality
is strict, then σitH,mn(z) < σitH,n(z) for i ≥ 1, thus t#

H,mn(z) < t#
H,n(z) which is a contradiction.

So,
tH,mn(z) = tH,n(z),

thus tH,mn(z)(τ) = tH,n(z)(τ) for every m ≥ 1 and every τ ∈ RepZp G, which implies that
tH,∞(z)(τ) = tH,n(z)(τ) for every τ ∈ RepZp G, so z(τ) is aligned for every τ ∈ RepZp G, i.e. z
is aligned.
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Suppose now that z ∈ L(X) is aligned. The filtration FF,1 over Modϕ,al
F[[u]],fr defines a ⊗-functor

FF,1(z) = FF,1 ◦ z : RepZp G → FilQF[[u]]

τ 7→ FF,1(z(τ))

and the next proposition shows that this is a filtration in FQ(ω(z)).

Proposition 7.3.9. The functor

FF,1(z) = FF,1 ◦ z : RepZp G→ FilQF[[u]],

factoring the fiber functor ω(z), is an exact ⊗-functor.

Proof. We have to show that FF,1(z) is exact. Since it is a filtration by strict subobjects, it is
sufficient to show that

FF,1(z)⊗ F((u)) : RepZp G→ FilQF((u))

is exact. It follows from Proposition 4.5.7, using Proposition 7.2.2.

Definition 7.3.5. If z ∈ L(X) is aligned, we define the Fargues type tF,1(z) as the type
associated to the filtration FF,1 of z. It lives in CQ(GF[[u]]) = CQ(G).

Proposition 7.3.10. If x ∈ L(X) is aligned, then the types defined above on z ∈ L(X) verify
the following inequalities:

1. tF,1(z) = tF,1(z)#

2. tF,1(z) ≤ tH,n(z)# for every n ≥ 1.

Proof. 1. The commutative diagram

FQ(ω(X)) FQ(ϕ∗ω(X)) FQ(ω(X))

CQ(GF((u))) CQ(GF((u))) CQ(GF((u)))

ϕ

t

ϕX

t t

σ Id

gives us

tF,1(z) = t (FF,1(z)⊗ F((u))) = t(ϕXϕ
∗(FF,1(z)⊗F((u)))) = σ·t (FF,1(z)⊗ F((u))) = σ·tF,1(z)

since FF,1(z)⊗ F((u)) is stable under the upper row map.

2. We have tF,1(z)(τ) ≤ tH,n(z)(τ) for every τ ∈ RepZp G, by Proposition 4.3.7, so by
proposition 7.1.1 and the previous point, we have tF,1(z) ≤ tH,n(z)# for every n ≥ 1.

7.3.3 Kisin modules with G-structure

We fix a finite extension K of K0, an uniformizer πK of K, E ∈ S the minimal polynomial of
πK . Let e = [K : K0]. Let Ŝ be the completion of S(E).
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Definition 7.3.6. An exact and faithful ⊗-functor

M : RepZp G→ ModϕS, fr

is called a Kisin module with G-structure. Let ω(M) be its underlying fiber functor. We say
that M is trivial if ω(N) = ωG,S. An exact and faithful ⊗-functor

N : RepQp G→ Modϕ
S[ 1

p
]

is called an isogeny class of Kisin modules with G-structure. We denote by ω(N) its underlying
fiber functor. We say that N is trivial if ω(M) = ωG,S[ 1

p
].

Proposition 7.3.11. There are canonical correspondences between trivial Kisin modules with
G-structure and elements of G(S[ 1

E ]), and between trivial isogeny classes of Kisin modules with
G-structure and elements of G(S[ 1

pE ]).

Proof. A trivial Kisin module with G-structure M is nothing but a ⊗-isomorphism

ϕ : ϕ∗ωG,S[ 1
E

] ' ωG,S[ 1
E

]

where ωG,S[ 1
E

] : RepG → BunS[ 1
E

] is the trivial fiber functor. Since ϕ∗ωG,S[ 1
E

] is canonically
isomorphic to ωG,S[ 1

E
], a trivial Kisin module M with G-structure corresponds to an element

of Aut⊗(ωG,S[ 1
E

]) = G(S[ 1
E ]). We proof for a trivial isogeny class of Kisin modules with G-

structure is analogous.

Remark 21. To any Kisin module with G-structure M , we can associate a torsion Kisin module
with G-structure M , obtained by composition

M : RepZp G
M−→ ModϕS, fr

mod p−−−−→ ModϕF[[u]],fr .

We fix an isogeny class of Kisin modules with G-structure N . We define the set of lattices inside
N , and denote it by L(N), as the set of Kisin modules with G-structure M such that M [1

p ]

corresponds to the ⊗-functor N ′ given by precomposition of N with RepZp G→ RepQp G.

Proposition 7.3.12. 1. Every Kisin module with G-structure is isomorphic to a trivial Kisin
module with G-structure.

2. If L(N) 6= ∅, then N is isomorphic to a trivial isogeny class of Kisin modules with G-
structure

Proof. 1. This follows from Proposition 7.2.1.

2. Let M ∈ L(N). Then ω(M) ' ωG,S, thus ω(N ′) = ω(M) ⊗ S[1
p ] ' ωG,S[ 1

p
]. This also

implies that ω(N) ' ωGQp ,S[ 1
p

], as in 7.2.3.

We assume that L(N) 6= ∅ from now on. We can construct a functor

FH(N) = F(N ⊗ Ŝ, ϕNϕ
∗N ⊗ Ŝ) : RepQp G→ Fil(ω(N)K).

Then, Proposition 7.2.4 tells us that it is a filtration in FZ(ωK(N)). Its type it is denoted by
tH(N) and it lives in CZ(GK) = CZ(GK0).
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We can associate an isocrystal with G-structure to N , by setting

D′ = N/uN : RepQp G→ ModσK0
,

which is a faithful functor since its faithfulness only depends on the fiber functor ω(D′) which is
faithful as it is isomorphic to the trivial fiber functor ωG,K0 by assumption. We thus get a map

L(N) → L(D′)
M 7→ y′

where y′ is the exact ⊗-functor

y′ = M/uM : RepZp G→ ModσW (F) .

Proposition 7.3.13. We have
tH(y′) ≤ tH(N),

i.e. the map L(N)→ L(D′) factors through L(D′,≤ tH(N)).

Proof. We can suppose that M is trivial, so the Frobenius on M is given by an element g ∈
G(S[ 1

E ]). Then

tH(y′) = Pos(ωG,W (F), g(0) · ωG,W (F)) and tH(N) = Pos(ωG,Ŝ, g · ωG,Ŝ)

in, respectively, CZ(GF) = CZ(G) and CZ(GK) = CZ(G). Thus, by 7.1.1, it suffices to show
that for every τ ∈ RepSGS (or RepW (F)GW (F)), we have

Pos(X/uX, Y/uY ) ≤ Pos(X ⊗ Ŝ, Y ⊗ Ŝ)

where X = M(τ) and Y = τ(g)M(τ). This follows from the proof of 6.1.1.

Another important inequality concerning the Hodge type of N is the following:

Proposition 7.3.14. Let M ∈ L(N) and M the torsion Kisin module with G-structure associ-
ated to M . We have

tH,1(M) ≤ e · tH(N).

Proof. We can suppose that M is trivial, so the Frobenius on M is given by an element g ∈
G(S[ 1

E ]). Then

tH,1(M) = Pos(ωG,F[[u]], g · ωG,F[[u]]) and tH(N) = Pos(ωG,Ŝ, g · ωG,Ŝ)

in, respectively, CZ(GF) = CZ(G) and CZ(GK) = CZ(G). Thus, by 7.1.1, it suffices to show
that for every τ ∈ RepSGS (or RepF[[u]]GF[[u]]), we have

Pos(X/pX, Y/pY ) ≤ e · Pos(X ⊗ Ŝ, Y ⊗ Ŝ)

where X = M(τ) and Y = τ(g)M(τ). This follows from the proof of 6.1.1.

Definition 7.3.7. A Kisin module with G-structure is said to be HN-type if for every Zp-
representation τ of G, the Kisin module M(τ) is HN-type.

Under the type HN-type hypothesis, we can define a Fargues type on M .
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Proposition 7.3.15. Suppose M is HN-type and M is aligned, then the functor FF(M) sending
a Zp-representation τ of G to the Fargues filtration of the HN-type Kisin module M(τ) is in
FQ(ω(M)).

Proof. It is a filtration by direct summands, so we need to check the exactness and compatibility
with tensor products. For exactness, let

0→ τ1 → τ2 → τ3 → 0

be an exact sequence of representations of G. Then, we have a commutative diagram where the
second row is exact

0 FγF(τ1) FγF(τ2) FγF(τ3)

0 M(τ1) M(τ2) M(τ3) 0

f

Reducing the first sequence modulo p, we obtain the exact sequence

0→ FγF,1(τ1)→ FγF,1(τ2)→ FγF,1(τ3)→ 0

so by Nakayama’s lemma, the map FγF(τ2)→ FγF(τ3) is surjective. Then,

ker f = ker(FγF(τ2)→ FγF(τ3))

is a free S-module, and we also have FγF(τ1) ↪→ ker f , which becomes an isomorphism modulo
p, so again by Nakayama’s lemma, we have FγF(τ1) ' ker f .

For the compatibility with tensor products, let G(τ1⊗ τ2) = FF(τ1)⊗FF(τ2). Then, we have to
show that the Kisin module

X = GrγG(τ1 ⊗ τ2) =
⊕

γ1+γ2=γ

Grγ1F (M(τ1))⊗Grγ2F (M(τ2))

is semi-stable of slope γ. We can reduce modulo p to obtain

X = GrγG(τ1 ⊗ τ2) =
⊕

γ1+γ2=γ

Grγ1F (M(τ1))⊗Grγ2F (M(τ2))

= GrγFF,1
(τ1 ⊗ τ2)

Then X is semi-stable of slope γ = γ1 + γ2 and so is therefore also X.

For M a HN-type Kisin module such that M is aligned, we can define the Fargues type tF(M)
associated to the filtration FF(M). It is an element in CQ(GS).

7.3.4 Germs of crystalline representations with G-structure

Definition 7.3.8. A germ of crystalline representations with G-structure is a faithful ⊗-functor

V : RepQp G→ Repcr
Qp{GalK0}.

We denote by ω(V ) its underlying fiber functor. We say that V is trivial when ω(V ) ' ωG,Qp .
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Let V be a germ of crystalline representations with G-structure. We can define a Fargues
filtration on V by

FF(V ) : RepQp G → FilQQp
τ 7→ FF,cr(V (τ))

for FF,cr the filtration defined on crystalline representation in section 3.7. This functor a ⊗-
functor by [18, Corollary 6] and exact since it is defined over Qp and every exact sequence in
RepQp G is split, so we have FF(V ) ∈ FQ(ω(V )). We denote its type by tF(V ) and it lives in
CQ(GQp).

Remark 22. The type tF(V ) is invariant under #, since it is defined in CQ(GQp) and σ acts
trivially on this set.

The functor V induces a filtered isocrystal with G-structure by taking

D = Dcr ◦ V : RepQp G→
wa MFσ

K0
.

We (still) denote by
D : RepQp G→ ModσK0

the underlying G-isocrystal, by

ω(D) : RepQp G→ BunK0

the underlying fiber functor, and by

FH(D) : RepQp G → FilZ
K0

the Hodge filtration of the filtered isocrystal, which is an exact ⊗-functor by construction, i.e.
an element of FZ(ω(D) ⊗K0 K0). Since K0 is algebraically closed, ω(D) ⊗K0 K0 ' ωG,K0

and
the type tH(D) of FH(D) lives in CZ(GK0

) = CZ(GK0). We can also define a Fargues filtration
on weakly admissible filtered isocrystals with G-structure by

FF(D) : RepQp G → FilQK0

τ 7→ FF,wa(D(τ))

where FF,wa is the Fargues filtration on weakly admissible filtered isocrystals. This is an exact
⊗-functor by [12, Theorem 12], i.e. an element in FQ(ω(D)). If ω(D) is isomorphic to the trivial
fiber functor, we obtain a type tF(D) ∈ CQ(GK0).

Proposition 7.3.16. Suppose that D is isomorphic to a trivial G-isocrystal. We have

1. The equalities
tF(D) = tF(D)# and tF(V ) = tF(D) .

2. The inequality tF(V ) ≤ tιN(D).

3. If tN(D) = tH(D)#, then F ιN(D) = FF(D) and tιN(D) = tF(D).

Proof. 1. The commutative diagram

FQ(ω(D)) FQ(σ∗ω(D)) FQ(ω(D))

CQ(GK0) CQ(GK0) CQ(GK0)

σ

t

σD

t t

σ Id
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gives us

tF(D) = t(FF(D)) = t(σDσ
∗
K0
FF(D)) = σ · t(FF(D)) = σ · tF(D)

since FF(D) is stable under the upper row map.

For the other equality, we have tF(V )(τ) = tF(D)(τ) for every τ ∈ RepZp G, by Proposition
3.7.1, so by proposition 7.1.1, we have

tF(V ) = tF(V )# = tF(D)# = tF(D).

2. The inequality tF(V )(τ) ≤ tιN(D)(τ) is given by Fargues in [18, Theorem 6], for every
τ ∈ RepQp G, thus

tF(V ) = tF(V )# ≤ tιN(D)# = tιN(D)

by Proposition 7.1.1 and Remark 22.

3. We may assume D is trivial and so, we can use the results in [12]. We drop D from the
notation. We have to show that tN = t#

H implies F ιN = FF. In [12], we see that if we equip
FR(GK0) with a ϕ-invariant CAT(0)-distance as defined in [11, Corollary 88], then

FR(GK0 , ϕ) = {F ∈ FR(GK0) | Fγ(τ) ∈ ModσK0
for every γ ∈ R and every τ ∈ RepQp G}

FR(GK0 , ϕ,FH) = {F ∈ FR(GK0) | Fγ(τ) ∈wa MFσ
K0

for every γ ∈ R and every τ ∈ RepQp G}.

are closed convex subsets of FR(GK0) and there is a convex projection

FR(GK0 , ϕ)→ FR(GK0 , ϕ,FH).

In [12, Proposition 13], we see that FF is the convex projection of F ιN, so it suffices to
prove that F ιN ∈ FR(GK0 , ϕ,FH). In [12, Lemma 11], we see that

FR(GK0 , ϕ,FH) = {Ξ ∈ FR(GK0 , ϕ) | 〈FH, Ξ〉 = 〈FN, Ξ〉}
= {Ξ ∈ FR(GK0 , ϕ) | 〈FH, Ξ〉 ≥ 〈FN, Ξ〉}

so we need to prove that, under the assumption tN(D) = tH(D)#, we have

〈FH, F ιN〉 ≥ 〈FN, F ιN〉.

The operator

〈x, y〉tr = inf{〈X, Y 〉 | t(X) = x, t(Y ) = y X, Y ∈ FR(GK0)}

defined in [11, 4.2.5] verifies that for two opposed filtrations F and F ι, we have

〈t(F), t(F ι)〉tr = 〈F , F ι〉.

Thus 〈tN, t
ι
N〉tr = 〈FN,F ιN〉 and 〈FH, F ιN〉 ≥ 〈tH, t

ι
N〉tr. Therefore,

〈FH, F ιN〉 ≥ 〈tH, t
ι
N〉tr

= 〈t#
H , t

ι
N〉tr

= 〈tN, t
ι
N〉tr

= 〈FN, F ιN〉

where the first equality is true because the operator 〈·, ·〉tr is invariant under the action
of Galois and additive by [11, 4.2.7], and the second equality is given by our hypothesis.
Thus, F ιN = FF.
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Remark 23. 1. We will show later, in Proposition 24, that if V is isomorphic to a trivial germ
of crystalline representations with G-structure, then D is isomorphic to a trivial isocrystal
with G-structure.

2. The filtration FF(D) is the image of FF(V ) by Dcris. However, since Dcris is not induced
by an isomorphism between fiber functors, we cannot deduce directly that tF(D) = tF(V ).

Set L(V ) = L(ω(V )). Thus L(V ) 6= ∅ if and only if V is isomorphic to a trivial germ of
crystalline representations with G-structure, by Remark 7.2.3, which we assume from now on.
Any x in L(V ) has a unique factorization through an exact and faithful ⊗-functor

RepZp G→ Repcr
Zp{GalK0}

that we also denote by x. We call such a ⊗-functor a germ of integral crystalline representations
with G-structure.

Definition 7.3.9. 1. A finite extension K ⊂ K0 of K0 is a field of definition of V if V factors
through the full subcategory Repcr

Qp GalK of Repcr
Qp{GalK0}.

2. A finite extension K ⊂ K0 of K0 is a field of definition of x ∈ L(V ) if x factors through the
full subcategory Repcr

Zp GalK of Repcr
Zp{GalK0}. We denote by L(V,K) the set of lattices

in L(V ) having K as field of definition.

Lemma 7.3.17. There exists a field of definition of V .

Proof. Let τ be a ⊗-generator of RepQp G. Then V (τ) ∈ Repcr
Qp GalK for some large enough K,

in which case also V (τ ′) ∈ Repcr
Qp GalK for every τ ′ ∈ RepQp G. Then V factors through the

full-subcategory Repcr
Qp GalK of Repcr

Qp{GalK0}.

Let K be a field of definition of V . Then GalK acts on L(V ) by

(g · x)(τ) = g · x(τ)

for g ∈ GalK , x ∈ L(V ) and τ ∈ RepZp G. Plainly, L(V,K ′) = L(V )GalK′ for every finite
extension K ′ of K.

Lemma 7.3.18. We have
L(V ) = ∪L(V,K ′)

for K ′ ⊂ K0 running through the finite extensions of K. In particular, every x ∈ L(V ) has a
field of definition.

Proof. We may assume that V is trivial. Then V : RepQp G → Repcr
Qp GalK is induced by a

continuous morphism GalK → Aut⊗(V ) = G(Qp). Since any x ∈ L(V ) ' G(Qp)/G(Zp) has an
open stabilizer in G(Qp), it also has an open stabilizer in GalK , which proves the lemma.

Fix K, a field of definition of V such that L(V,K) 6= ∅, with uniformizer πK and EK the
minimal polynomial of πK . Then, V induces an isogeny class of Kisin modules with G-structure
N , defined by the exact and faithful ⊗-functor

N = N ◦ V : RepQp G→ Modϕ,EK
S[ 1

p
]
.

Let
D′ = N/uN : RepQp G→

wa MFσK

the weakly admissible filtered G-isocrystal associated to N . We also denote by D′ the underlying
G-isocrystal.
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Note 2. Until now, we have avoided the superscript EK on categories of Kisin modules, to ease
the notations, as we were working with a fixed field K. Since we will be changing K, depending
on the field of definition of germs of integral crystalline representations with G-structure, we use
now the rigorous notation, including EK .

Given an integral crystalline representation with G-structure x ∈ L(V,K), we can associate a
Kisin module with G-structure M , with isogeny class N , by composition with the Kisin functor
M. Next proposition tells us that M is an exact functor (we already know that it is a faithful
⊗-functor) giving us a map

L(V,K) → L(N)
x 7→ M ◦ x.

Proposition 7.3.19. Let x : RepZp G → Repcr
Zp GalK be an integral crystalline representation

with G-structure. Then the functor

M = M(x) : RepZp G
x−→ Repcr

Zp GalK
M−→ Modϕ,EKS,fr

is exact.

Proof. We view ω(M) as a faithful ⊗-functor

ω : RepZp G→ BunS .

Let ωU : RepZp G → BunU be the restriction of ω(M) to the open set U = SpecS\{m} ⊂
SpecS. Then ωU is a faithful ⊗-functor which is exact by the exactness of x and the properties
of the Kisin functor M. By Broshi [7], such functors are classified by H1(U,G). By [10, Theorem
6.13], we have

H1(U,G) = H1(S, G)

and we have seen in the proof of 7.2.1 that H1(S, G) = 0. Thus, ωU ' ωG,U . But then, we have

ω = Γ(U,−) ◦ ωU ' Γ(U,−) ◦ ωG,U ' ωG,S,

so ω ' ωG,S is exact.

Remark 24. In particular, L(N) 6= ∅ since L(V,K) 6= ∅. Thus ω(N) ' ωGQp ,S[ 1
p

] by Proposition
7.3.12. Therefore,

ω(D′) = ω(N)⊗K0 ' ωGQp ,S[ 1
p

] ⊗K0 = ωGQp ,K0

so D′ is isomorphic to a trivial G-isocrystal. By Kisin’s construction, there is an isomorphism
η : D → D′, so D is isomorphic to a trivial G-isocrystal, as claimed in last Remark.

Proposition 7.3.20. We have

tH(N) = tH(D′)ι = tH(D)ι.

Proof. The isomorphism D ' D′ gives tH(D) = tH(D′). On the other hand, the ⊗-isomorphism

ω(D′)⊗K0 K → ω(ϕNϕ
∗N)⊗S K

maps FH(D′) to
F ιH(N) = F(ω(ϕNϕ

∗N)⊗ Ŝ, ω(N)⊗ Ŝ).
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as we have seen in section 3.4. Therefore,

tH(D′) = t(FH(D′)
= t(F ιH(N))

= Pos
(
ω(ϕNϕ

∗N)⊗ Ŝ, ω(N)⊗ Ŝ
)

= Pos
(
ω(N)⊗ Ŝ, ω(ϕNϕ

∗N)⊗ Ŝ
)ι

= tιH(N)

The next proposition gives us the relation between the Fargues type defined on V and the types
defined on the torsion Kisin module with G-structure M , for x ∈ L(V,K) and M = M ◦ x ∈
L(N).

Proposition 7.3.21. We have

1. The inequality e · tF(V ) ≤ tH,n(M)#.

2. If M is aligned, then e · tF(V ) ≤ tF,1(M). If, moreover, e · tF(V ) = tF,1(M), then, M is
HN-type.

Proof. 1. In section 4 we have seen that for all τ ∈ RepZp G, there are inequalities

e · tF(V )(τ) = e · tF(N(τ)) ≤ tF,1(M)(τ) ≤ tH,∞(M(τ)) ≤ tH,n(M)(τ)

for every n ≥ 1 (the coefficient e appears since we have not renormalized the types defined
on M as we did in section 5), since proposition 6.1.1 gives us tF,1(M(τ)) ≤ tH,n(M(τ))
for all τ and every n ≥ 1. Using proposition 7.1.1, we get

e · tF(V ) = e · tF(V )# ≤ tH,n(M)#

for every n ≥ 1, the first equality given by Remark 22.

2. For every τ ∈ RepZp G, we have

e · tF(V )(τ) = e · tF(N(τ)) ≤ tF,1(M)(τ),

thus e · tF(V ) ≤ tF,1(M) by Proposition 7.1.1, since both types are invariant by # by
Remark 22 and Proposition 7.3.10, respectively. The equality implies that

e · tF(V )(τ) = e · tF(N)(τ) = tF,1(M)(τ)

for every τ ∈ RepZp G, so M(τ) is HN-type by Proposition 6.4.3, and M is HN-type.

For every finite extension K0 ⊂ K ⊂ K0, we can construct maps

DK
cris : L(V,K) → L(D)

x 7→ y

where y = η(y′) for y′ ∈ L(D′) the image of M = M ◦x for the map L(N)→ L(D′) constructed
in last section, and η : L(D′) ' L(D) induced by the isomorphism between Fontaine’s Dcris and
Kisin’s functor M⊗K0. This construction extends to a map

red : L(V )→ L(D)

thanks to Liu’s results in 3.8.2 which gives us compatibility of Dcris with base change for K ′ a
totally ramified extension of K, and Proposition 7.3.18 which gives us L(V ) = ∪L(V,K).

We can still say a bit more about the image of this functor.
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Proposition 7.3.22. There is a factorization

L(V ) L(D)

L(D,≤ tιH(D))

red

red

where the maps are equivariant under the action of Aut⊗(V )→ Aut⊗(D).

Proof. We have L(D) ' L(D′) and L(D,≤ tιH(D)) ' L(D′, tιH(D′)), by Proposition 7.3.20. We
conclude by the analogous result for D′ given in Proposition 7.3.13, since tH(N) = tH(D)ι by
Proposition 7.3.20.

7.3.5 The ordinary case

Fix a germ of crystalline representations with G-structure

V : RepQp G→ Repcr
Qp{GalK0}

inducing a filtered G-isocrystal

D = Dcris ◦ V : RepQp G→ ModσK0
.

Proposition 7.3.23. Suppose V isomorphic to a trivial germ of crystalline representations with
G-structure, then D is isomorphic to a trivial filtered G-isocrystal and we have

tN(D) ≤ tH(D)# in CQ(GK0).

Proof. We have V isomorphic to a trivial germ of crystalline representations with G-structure
if and only if L(V ) 6= ∅, which implies that L(D) 6= ∅, so D is isomorphic to a trivial filtered
G-isocrystal. The inequality is obtained assembling Proposition 7.3.3, Proposition 7.3.13 and
Proposition 7.3.20.

Definition 7.3.10. We say that V is ordinary when

tN(D) = tH(D)# in CQ(GK0).

Under the ordinarity condition, the more general proposition in last subsection becomes:

Corollary 7.3.24. Suppose that V is ordinary, then there is a factorization

L(V ) L(D).

L(D, tιH(D))

red

red

In particular, D is tιH(D)-ordinary.

Proof. Let x ∈ L(V ) with image red(x) = y ∈ L(D). From tιN(D) ≤ tH(y)# ≤ tιH(D)# and
the ordinary hypothesis tιN(D) = tιH(D)#, we get the equality tH(y)# = tιH(D)#. Moreover, we
have seen that tH(y) ≤ tιH(D). Thus actually, tH(y) = tιH(D).

Theorem 7.3.25. Suppose V is ordinary, with field of definition K. Given x ∈ L(V,K) and N
as before, we have that for every M ∈ L(N) (for instance M = M ◦ x),
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1. The torsion Kisin module M with G-structure is aligned.

2. M is HN-type. Therefore FF(M) exists.

Proof. 1. Under the ordinary condition we have (with e = [K : K0])

e · tιN(D) = e · tF(D) = e · tF(V ) ≤ tH,mn(M)# ≤ tH,n(M)# ≤ e · tH(N)# = e · tιN(D),

where the inequalities are given by Propositions 7.3.16, 7.3.21, 7.3.7, 7.3.14 and 7.3.20.
Thus tH,mn(M)# = tH, n(M)# for every m ≥ 1 and M is aligned, by Proposition 7.3.8.

2. We use the fact that M is aligned, which means that FF,1 is an exact ⊗-functor, so a
filtration in FQ(GF[[u]]) and we can consider its type tF,1 as an element in CQ(GF[[u]]).
Then, we get inequalities

e · tF(V ) ≤ tF,1(M) ≤ tH,1(M)# ≤ e · tH(N)#

by Proposition 7.3.21, Proposition 7.3.10 and Proposition 7.3.14. Again, by ordinarity,
since tF(V ) = tF(D) = tιH(D)# = tH(N)#, we get

e · tF(V ) = tF,1(M)

and so M is HN-type, by Proposition 7.3.21.

Next proposition allows us to associate a Z-filtration to FF(V ), which will be used to define
some operators:

Lemma 7.3.26. There exists an integer s > 0 such that sFF(V ) ∈ FZ(ω(V )).

Proof. We may suppose that V is trivial. Then FF(V ) is (non-canonically) split by a morphism
G : D(Q) → GQp . The kernel of this morphism is D(Q/N), where N is a finitely generated
subgroup of Q, i.e. there exists an integer s > 0 such that sN ⊂ Z. Thus sG factors through

D(Q) GQp

D(Z)

sG

and Fil(sG) = sFil(G) = sFF(V ) is a Z-filtration.

We fix s > 0 such that sFF(V ) ∈ FZ(ω(V )). We define the étale and crystalline operators by

Φs
ét : L(V ) → L(V )

x 7→ Φs
ét(x) = x+ sFF(V )

and

Φs
cris : L(D) → L(D)

y 7→ Φs
cris(y) = y + sF ιN(D),

where the addition of a lattice and a filtration is given in Definition 7.2.2. The following propo-
sition gives us the compatibility between the two operators.

Proposition 7.3.27. Suppose that V is ordinary and let x ∈ L(V ). Then,

red(Φs
ét(x)) = Φs

cris(red(x)).
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Proof. Fix a field of definition K for x, so that x ∈ L(V,K). Then also

x′ = Φs
et(x) ∈ L(V,K)

since FF (V ) is a GalK-stable filtration on V . Fix also a uniformizer πK of K, giving rise to
N = N(V ), M = M(x) and M ′ = M(x′) in L(N), as well as their images y and y′ in L(D′),
where D′ is the (weakly admissible filtered) G-isocrystal obtained from N by reduction modulo
u. We have to show that

y′ = Φs
cris(y) in L(D′)

where Φs
cris(y) = y + sF ιN (D′): the isomorphism of G-isocrystals η : D′ → D transports this

equality in L(D′) to the desired equality in L(D).

Since V is ordinary, M is HN-type and FF (M) exists. By compatibility of the various Fargues
filtrations,

FF (N) := FF (M)[1
p ] = N (FF (V ))

and this reduces to FF (D′), which equals F ιN (D′) by Proposition 7.3.16. In particular, multi-
plying any of these Q-filtrations by s yields Z-filtrations. Let

ω(M) = ⊕a∈Zωa(M)

be a splitting of FF (M). Note that such a splitting exists by Proposition 7.3.12 and [11, 3.11.3].
It gives rise to splittings

ω(N) = ⊕a∈Zωa(N) and ω(D′) = ⊕a∈Zωa(D′)

of FF (N) and FF (D′) = F ιN (D′). Consider now some τ ∈ RepZpG. By Proposition 3.6.1 and
the computations preceeding it,

M ′(τ) = M(τ) +fr sFF (N)(τ)

= M(τ) + sFF (N)(τ)

with underlying S-module
ω(M ′)(τ) = ⊕a∈Zp−aωa(M)(τ).

This reduces modulo u to the W (F)-lattice

y′(τ) = ⊕a∈Zp−aωa(y)(τ)

in D′(τ), where y = ⊕a∈Zωa(y) is the reduction of ω(M) = ⊕a∈Zωa(M), so that also ωa(y)[1
p ] =

ωa(D
′) for every a ∈ Z. On the other hand,

Φs
cris(y)(τ) = y(τ) + sF ιN (D′)(τ)

=
∑

i∈Zp
−iy(τ) ∩

(
sF ιN (D′)

)i
(τ)

=
∑

i∈Z
(
⊕ap−iωa(y)(τ)

)
∩
(
⊕a≥iωa(D′)(τ)

)
=

∑
i∈Z
(
⊕a≥ip−iωa(y)(τ)

)
= ⊕a∈Z

∑
i≤ap

−iωa(y)(τ)

= ⊕a∈Zp−aωa(y)(τ).

Thus Φs
cris(y)(τ) = y′(τ) for every τ ∈ RepZp(G) and Φs

cris(y) = y′.
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Lemma 7.3.28. Let x, y ∈ L(V ) and let

π : L(V )→ UFF (Qp)\L(V )

be the usual projection, for FF the Fargues filtration on V and UFF the unipotent radical of the
parabolic subgroup of G associated to FF . Then, we have π(x) = π(y) if and only if

(Φs
ét)

(n)(x) = (Φs
ét)

(n)(y)

for n large enough.

Proof. We may assume V is trivial. We use the results in [11] as follows: In 6.2.7, we see that
Be(ωG) is a tight building, so verifies the axiom ST . It also verifies L(s), thus it verifies UN+,
by Lemma 114. Then, the lemma holds by 5.6.2.

Lemma 7.3.29. The operator Φs
cris is bijective on the set L(D, tιH(D)).

Proof. As we will see in the next chapter (see Remark 25), the lemma is true in the abelian case.
We can construct an abelian germ of crystalline representations V ′ such that D′ = Dcris(V

′) is
tιH(D)-ordinary: fix a Borel pair (TG, BG) in G and lift tH(D) to a BG-dominant cocharacter
t̃H(D) : Gm,K0 → TG,K0 . Let V ′ be the abelian germ of crystalline representations associated to
this cocharacter by Proposition 8.4.1. By Proposition 8.4.3, V ′ is ordinary and by Proposition
7.3.24, D′ is tιH(D)-ordinary.

Now, by Proposition 7.3.4, there is a unique tιH(D)-ordinary G-isocrystal up to isomorphism,
we get D′ ' D and the lemma follows.

As a consequence of the three previous results, we obtain:

Theorem 7.3.30. Notations as above. For V an ordinary germ of crystalline representations
with G-structure, the map red admits a factorization

L(V ) L(D, tιH(D)).

UFF
(Qp)\L(V )

red

π

Proof. Suppose we have π(x) = π(y) for x, y ∈ L(V ). By last lemma, we have

(Φs
ét)

(n)(x) = (Φs
ét)

(n)(y)

for n large enough. We apply the corollary above to obtain

(Φs
cris)

(n)(red(x)) = red((Φs
ét)

(n)(x)) = red((Φs
ét)

(n)(y)) = (Φs
cris)

(n)(red(y))

for n large enough, and the theorem follows by Lemma 7.3.29.



Chapter 8

A particular case: the abelian case

The aim of this section is to describe more precisely the results obtained in last section in
the case where the germ of crystalline representations with G-structure is abelian. We use the
same notations from last section. Let F be an algebraically closed field of characteristic p > 0,
K0 = FracW (F), we fix an algebraic closure K0 of K0 and an embedding ι0 : Qp ⊂ K0. We
shall use the notation E for a finite extension Qp ⊂ E ⊂ Qp, with ring of integers OE and
uniformizer πE , and the notation K for a finite extension K0 ⊂ K ⊂ K0, with ring of integers
OK and uniformizer πK .

8.1 Preliminaries

8.1.1 The pro-tori TK and T

Denote by
TE = ResE/Qp(Gm,E)

the torus over Qp associated to the group E×, i.e. for a Qp-algebra R, we define TE(R) as the
group of units of E ⊗Qp R. For E ⊂ E′ ⊂ K, the norm NE′/E induces a morphism TE′ → TE .
We define two pro-tori by

TK = lim←−E⊂K TE and T = lim←−E⊂K0
TE

where the norms NE′/E are the transition maps. For every E ⊂ K, there is a continuous
morphism

χK,E : GalK → Gal(Eab/Eur) ' O×E ⊂ E
× = TE(Qp)

and since these morphisms are compatible with the norm maps, they define a continuous mor-
phism

χK : GalK → TK(Qp) = lim←−
E⊂K

TE(Qp).

The maps T → TK → TE give us maps between the characters groups

X∗(TE)→ X∗(TK)→ X∗(T )

and the cocharacters groups
X∗(T )→ X∗(TK)→ X∗(TE).

For a finite extension E of Qp, we have

X∗(TE) ' C(Hom(E,Qp),Z),

the set of functions f : Hom(E,Qp) → Z. The character χf : TE |Qp → Gm,Qp
corresponding to

f induces

128
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TE(Qp) Gm(Qp)

(E ⊗Qp)
× Q×p

x
∏
ι:E↪→Qp

(ι⊗ id)(x)f(ι).

χf

The action of GalQp on X∗(TE) is given by

(σ · f)(ι) = f(σ−1 ◦ ι), for σ ∈ GalQp , ι : E ↪→ Qp.

Since T = lim←−TE , for E running through all finite extensions of Qp contained in K0,

X∗(T ) = lim−→X∗(TE) ' C(GalQp ,Z),

the set of locally constant functions f : GalQp → Z with the Galois action

(σ · f)(σ′) = f(σ−1σ′) for σ, σ′ ∈ GalQp .

Similarly, for TK = lim←−E⊂K TE ,

X∗(TK) = lim−→
E⊂K

X∗(TE) ' C(GalQp /GalK∩Qp ,Z),

the set of locally constant, right GalK∩Qp-invariant functions f : GalQp → Z.

8.1.2 The Hodge cocharacters

We define the Hodge cocharacter
µ : Gm,Qp

→ T|Qp

as the cocharacter corresponding to the evaluation at 1 in the dual group

X∗(T ) = HomGr(X
∗(T ),Z) = HomGr(C(GalQp ,Z),Z),

i.e. 〈·, µ〉 = ev1, where
ev1 : C(GalQp ,Z) → Z

f 7→ f(1).

Thus, for any x ∈ Q×p = Gm(Qp) and f ∈ C(GalQp ,Z),

χf ◦ µ(x) = x〈χf ,µ〉 = xf(1).

We denote by µK ∈ X∗(TK) and µE ∈ X∗(TE) the corresponding Hodge cocharacters of TK
and TE , which are respectively defined over K ∩Qp and E:

µK : Gm,K∩Qp → TK |K∩Qp and µE : Gm,E → TE |E .

For every E-algebra R, the canonical decomposition E ⊗ E ' E × E′ where E′ = kerm for

E ⊗ E m−→ E
x⊗ y 7→ xy,

yields a canonical decomposition E ⊗R ' R×R′, and

Gm,E(R) TE(R)

R× R× ×R′×

x (x, 1).

µE

In the dual group X∗(TE) of X∗(TE) = C(Hom(E,Qp),Z), the cocharacter µE corresponds to
evaluation at the given embedding E ↪→ Qp.
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8.1.3 The Newton cocharacter

Similarly, integration against the Haar measure µHaar of GalQp defines a GalQp-invariant mor-
phism

iHaar : C(GalQp ,Z) → Q
f 7→

∫
GalQp

fdµHaar

which yields the Newton cocharacter, defined over Qp,

ν : D(Q)→ T.

We denote by
νK : D(Q)→ TK and νE : D(Q)→ TE

the corresponding Newton cocharacters for TK and TE . Inside

Hom
(
D(Q)|Qp , TE |Qp

)
= Hom

(
C(Hom(E,Qp),Q

)
the Newton cocharacter νE corresponds to the morphism

C(Hom(E,Qp),Z) → Q

f → 1

[E : Qp]

∑
ι:E↪→Qp

f(ι).

8.2 The Fontaine-Serre functor

Definition 8.2.1. We say that a crystalline representation (V, ρ) ∈ Repcr
Qp GalK is abelian when

its image ρ(GalK) ⊂ GL(V ) is abelian. We denote by Repcr,ab
Qp GalK the category of abelian crys-

talline representations of GalK .

Denote by CrAb(V,K) ⊂ Cr(V,K) the set of all morphisms ρ : GalK → GL(V ) such that (V, ρ)
is an abelian crystalline representation of GalK , and set

CrAb(V ) := lim−→
K0⊂

f
K⊂K0

CrAb(V,K) ⊂ Cr(V ).

We say that a germ of crystalline representations (V, ρ) is abelian when ρ ∈ CrAb(V ). We
denote by Repcr,ab

Qp {GalK0} the category of germs of abelian crystalline representations, a full
Tannakian subcategory of Repcr

Qp{GalK0}.

In [43, 2], Fontaine proves, building on Serre’s results in [42], that there is an equivalence of
categories

V u
K : RepQp TK

∼−→ Repcr,ab
Qp GalK

given by the composition of χK with a representation TK(Qp)→ GL(V ).

Proposition 8.2.1. The equivalences of neutralized Tannakian categories

V u
K : RepQp TK

∼−→ Repcr,ab
Qp GalK ,

for every finite extension K0 ⊂ K ⊂ K0, extends to a diagram

RepQp TK RepQp T

Repcr,ab
Qp GalK Repcr,ab

Qp {GalK0}

V uK V u
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where V u is an equivalence of neutralized Tannakian categories.

Proof. Let (V, ρ) ∈ RepQp T . For a large enough finite extension K of K0, we have (V, ρ) ∈
RepQp TK , thus (V, ρ ◦ χK) ∈ Repcr,ab

Qp GalK . For a finite extension K ⊂ K ′, we have (V, ρ) ∈
RepQp TK ⊂ RepQp TK′ and the commutative diagram

GalK TK(Qp)

GalK′ TK′(Qp)

χK

Res

χK′

NK′/K

induces another commutative diagram

RepQp TK Repcr,ab
Qp GalK

RepQp TK′ Repcr,ab
Qp GalK′

thus ρ ◦ χK ∈ CrAb(V ) does not depend upon the chosen K, so V is a well-defined ⊗-functor.
It is plainly compatible with fiber functors and faithful. The diagram is commutative, and any
object or arrow on the bottom right category comes from an object or arrow on the bottom left
category for a sufficiently large K, so V is also full and essentially surjective.

8.3 Wintenberger’s functor

8.3.1 Universal norms

Let Ka
0 be the composite of K0 and Qp in K0. First we need to prove that there exists a norm

compatible system of uniformizers π = (πK) ∈ lim←−K
×, for K ⊂ Ka

0 . For each finite extension
K0 ⊂ K ⊂ K0, let vK : K× → Z be the normalized valuations of K. For K0 ⊂ K1 ⊂ K2 ⊂ K0,
the norm map yields a morphism of exact sequences

1 O×K2
K×2 Z 0

1 O×K1
K×1 Z 0

vK2

vK1

It is known by [39, 6.5.6 and 6.5.8] that the norm maps NK2/K1
: O×K2

→ O×K1
are all surjective.

Every extension of K0 contained in Ka
0 can be written as K0E, for E ⊂ Q0 a finite extension of

Qp. There are finitely many finite extensions E ⊂ Qp of Qp of a given degree, so K0 has only
finitely many finite extensions of any given degree. Writing Kn for the composite of all finite
extensions of K0 whose degree is less than n, we thus obtain a totally ordered and countable
cofinal subset of {K | K0 ⊂ K ⊂ Ka

0}, so we can use the Mittag-Leffler condition on this system
to get an exact sequence

1→ lim←−
K0⊂K⊂Ka

0

O×K → lim←−
K0⊂K⊂Ka

0

K×
v−→ Z→ 0..

We fix π = (πK) ∈ lim←−K0⊂K⊂Ka
0

K× such that v(π) = 1, i.e. a norm compatible system of
uniformizers. From now on, we also require that πK0 = p.
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8.3.2 The element b ∈ T (K0)

There is a morphism
lim←−

K0⊂K⊂Ka
0

K× → T (K0)

which maps
{xK} ∈ lim←−

K0⊂K⊂Ka
0

K×

to the element
{yE} ∈ T (K0) = lim←−

Qp⊂E⊂Qp

TE(K0) = lim←−
Qp⊂E⊂Qp

(E ⊗K0)×

defined as follows. Let E0 = E ∩K0 = E ∩Qnr
p ⊂ E be the maximal unramified extension of Qp

in E, and let K ' E ⊗E0 K0 be the compositum of E and K0 in Ka
0 . Then

E ⊗K0 = E ⊗E0 (E0 ⊗Qp K0) =

[E0:Qp]−1∏
i=0

E ⊗E0,σi K0.

For i = 0, we have E ⊗E0 K0 ' K by e ⊗ b 7→ eb. This construction allows us to define an
inclusion

K× ' (E ⊗E0 K0)× ⊂ (E ⊗K0)× = TE(K0).

We set yE as the image of xK under this inclusion.

Lemma 8.3.1. This construction yields a well-defined morphism

lim←−
K0⊂K⊂Ka

0

K× → T (K0).

Proof. Fix E ⊂ E′, giving K ⊂ K ′ and E0 ⊂ E′0. We have to show that the norm

NE′/E : TE′(K0)→ TE(K0)

maps yE′ to yE . Considering the decomposition

E ⊗K0 =
∏
i

Li

where Li = E ⊗E0,σi K0 for 0 ≤ i ≤ a− 1 with a = [E0 : Qp], so that

E′ ⊗K0 = E′ ⊗E (E ⊗K0)
=

∏
iE
′ ⊗E (E ⊗E0,σi K0)

=
∏
iE
′ ⊗E0,σi K0

=
∏
iE
′ ⊗E′0 (E′0 ⊗E0,σi K0)

=
∏
iE
′ ⊗E′0,σaj+i K0

=
∏
i

∏
j Li,j

with Li,j = E′ ⊗E′0,σaj+i K0 for 0 ≤ j ≤ b− 1 with b = [E′0 : E]. We obtain

NE′/E(xi,j) = (
∏
j

NE′/E(xi,j))i.

For yE′ , all xi,j = 1 except x0,0 = πK′ , so NE′/E(xi,j) has all components 1, except at i = 0,
where we get

∏
j NE′/E(x0,j) = NE′/E(x0,0) = NE′/E(πK′) = πK . Thus NE′/E(yE′) = yE .
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We define b as the image of π in T (K0) by this morphism. Let bE and bK be the images of b in
TE(K0) and TK(K0), respectively.

Lemma 8.3.2. We have bK = NK/K0
(µK(πK)) in TK(K0), for K ⊂ Ka

0 .

Proof. We look at the images of both elements in TE(K0) for a E large enough such that
K = E ·K0, using

E ⊗K0 =

[E0:Qp]−1∏
i=0

E ⊗E0,σi K0 =

[E0:Qp]−1∏
i=0

Li

E ⊗K =

[E0:Qp]−1∏
i=0

Li ⊗K0 K

Then, b maps to bE = (πK , 1, . . . , 1) in TE(K0) =
∏
L×i , µK(πK) maps to (x, 1, . . . , 1) in

TE(K) =
∏

(Li ⊗K0 K)× and NK/K0
(µK(πK)) maps to (NK/K0

(x), 1, . . . , 1) in
∏
L×i , where

x = (πK , 1) in L0⊗K = K×K ′, thus NK/K0
(x) = πK in L0 = K, i.e. bK and NK/K0

(µK(πK))
have the same image in TE(K0) for every E ⊂ K and the lemma holds.

8.3.3 Wintenberger’s functor

For K ⊂ K0, there is a strictly commutative diagram

RepQp TK RepQp T

waMFσK
waMFσ

K0

DπK Dπ

of ⊗-categories. The two horizontal arrows are the obvious ⊗-functors. The left hand side of
the diagram is given by Wintenberger’s ⊗-functor

DπK : RepQp TK →
wa MFσK

defined by taking, for a representation τ = (V, ρ) ∈ RepQp TK , the filtered isocrystal DπK (τ)
given by:

• The underlying K0-vector space DπK (V ) = V ⊗Qp K0,

• The Frobenius morphism σDπK (V ) = ρ(bK)⊗ σ, for bK ∈ TK(K0) defined as above.

• The Hodge filtration given by F iH(DπK (V )K) = ⊕j≥iVK,j for every i ∈ Z, where V ⊗QpK =
⊕i∈ZVK,i is the weight decomposition attached to

ρ ◦ µK : Gm,K → TK → GL(V )K .

The right hand side of the diagram is given by the ⊗-functor

Dπ : RepQp T →
wa MFσ

K

defined as follows: for every (V, ρ) ∈ RepQp T ,

• The underlying module Dπ(V ) = V ⊗Qp K0,

• The Frobenius on Dπ(V ) given by σDπ(V ) = ρ(b)⊗ σ, for b ∈ T (K0) defined as above.
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• The Hodge filtration on Dπ(V )K0
defined by taking

F iH(Dπ(V )K0
) = ⊕j≥iVK0,j

for every i ∈ Z, where V ⊗K0 = ⊕i∈ZVK0,i
is the weight decomposition attached to

ρ ◦ µ : Gm,K0
→ TK0

→ GL(V )K0
.

We may view Dπ as a trivial filtered isocrystal with T -structure.

Proposition 8.3.3. The Hodge filtration

FH ◦Dπ : RepQp T → FilZ
K0

is split by µ : Gm,K0
→ TK0

. The Newton graduation

GN ◦Dπ : RepQp T → GrQK0

is given by the cocharacter ν : D(Q)→ T .

Proof. The statement about the Hodge filtration is obvious from the definition. For the newton
graduation, we need to prove that for every τ = (V, ρ) ∈ RepQp T , the weight decomposition
V = ⊕λ∈QVλ given by ρ ◦ ν is the Newton graduation of Dπ(τ), for every λ ∈ Q.

We may assume that τ factors through TE for a finite extension E. By definition, νE is the
average for the Galois orbits of µE . On the other hand, Kottwitz proves in [29, 2.8.1] that the
average map has a factorization

X∗(TE) � X∗(TE)Γ ' B(TE) ↪→ (X∗(TE)⊗Q)Γ

where Γ = GalQp , X∗(TE)Γ and X∗(TE)Γ are, respectively, the Γ-invariants and Γ-coinvariants of
X∗(TE), and B(TE) is the set of σ-conjugacy classes in TE(K0) and the last map is the Newton
map (with values in (X∗(TE) ⊗ Q)Γ = CQ(TE)Γ). So it suffices to prove that the image of µE
in B(TE) under the first map is σ-conjugated to bE . In [29, 2.5], we see that the image of µE
in B(TE) is given by the σ-conjugation class of b′E = NE/E0

(µE(π′E)) for π′E an uniformizer of
E. Now, the image of b′E in TE(K0) =

∏s−1
i=0 L

×
i , where Li = E⊗E0,σi K0, is (π′E , 1, . . . , 1) while

the image of bE is (πK , 1 . . . , 1).

Let s = [E : Qp]. It remains to prove that there exists x = (x0, . . . , xs−1) ∈ TE(K0) such that
(σ − 1)(x)(b′E) = bE . Since we have

(σ − 1)(x0, . . . , xs−1) =
(
σxs−1

x0
, σx0x1 , . . . ,

σxs−2

xs−1

)
in TE(K0),

then it suffices to find x0 ∈ K0 such that (σs − 1)x0 = u where u ∈ O×K0
such that uπ′E = πE .

Since (σs − 1) is surjective on O×K0
, this element x0 ∈ K0 exist and we can take

x = (x0, σx0, . . . , σ
s−1x0) ∈ TE(K0)

to obtain the σ-conjugation between b′E and bE .

The next proposition gives us the relation between Wintenberger’s functor

Dπ : RepQp T →
wa MFσ

K0

and Fontaine’s functor
Dcris ◦ V u : RepQp T →

wa MFσ
K0
.
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Proposition 8.3.4. For any finitely generated tensor subcategory V of RepQp T , there is an
isomorphism of ⊗-functors

(Dcris ◦ V u)|V ' Dπ |V .

Proof. This immediately follows from the main result of [48]: any such V is contained in
RepQp TK for a sufficiently large finite extension K ⊂ Ka

0 of K0.

As a consequence, we get the following result about the Fargues filtration of V u.

Proposition 8.3.5. The filtration FF(V u) is split by νι = ν−1 and

FF(Dcris ◦ V u) = F ιN(Dcris ◦ V u).

Proof. Write V = V u. Fix τ ∈ RepQp T . Since T is commutative, we have a decomposition
τ = ⊕λ∈Qτλ according to νι-weights. We first want to show FγF(V (τ)) = ⊕λ≥γV (τλ). We
obviously have

FγF(V (τ)) = ⊕λ∈QFγF(V (τλ)),

so we need to show FγF(V (τλ)) = V (τλ) if λ ≥ γ and 0 otherwise, i.e. we want to show that
V (τλ) is semi-stable of slope λ. This is equivalent to prove that the weakly admissible filtered
isocrystal Dcris(V (τλ)) is semi-stable of slope λ. Now, we have Dcris(V (τλ)) ' Dπ(τλ) which is
Newton isoclinic of slope −λ, by Proposition 8.3.3. Since tF(Dcris(V (τλ))) ≤ tιN(Dcris(V (τλ))),
the equality must hold and Dcris(V (τλ)) is indeed semi-stable of slope λ.

We next want to show that FF(Dcris ◦ V (τ)) = F ιN(Dcris ◦ V (τ)) and we know that

FF ◦Dcris = Dcris ◦ FF,

so it suffices to show that F ι,γN (Dcris ◦ V (τ)) = ⊕λ≥γDcris ◦ V (τλ). Let V be the ⊗-category
generated by τ and τλ for each λ appearing in the decomposition of τ (since there is a finite
number of such τλ’s, V is finitely generated). By last proposition, we can replace Dcris ◦ V by
Dπ and it suffices to show that F ι,γN (Dπ(τ)) = ⊕λ≥γDπ(τλ), which is obvious since F ιN ◦Dπ is
split by νι.

8.4 Germs of abelian crystalline representations with G-structure

We want to add a G-structure to the germs of abelian crystalline representation, as we did in
the sections before for general germs of crystalline representations. Let G be a reductive group
over Zp. A germ of abelian crystalline representation with G-structure is an exact and faithful
⊗-functor

V : RepQp G→ Repcr,ab
Qp {GalK0}.

We say that V is trivial when ω(V ) = ωG,Qp .

Proposition 8.4.1. The following data are equivalent:

1. A morphism x : T → G,

2. A trivial germ of abelian crystalline representation with G-structure Vx,

3. A cocharacter µx : Gm,Qp
→ GQp

such that the Mumford-Tate group MT(µx) is a torus.

Moreover, K is a field definition of Vx if and only if x factors tough TK , if and only if µx is
defined over K ∩Qp.
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Proof. (1)⇔ (2): From a morphism x : T → G we get

Vx = V u ◦ x : RepQp G→ RepQp T ' Repcr,ab
Qp {GalK0}.

Given Vx, we obtain a map Aut⊗(ω(Vx)) → G. On the other hand, Fontaine gives an isomor-
phism Aut⊗(ω(Vx)) → T . Composing the inverse of the latter with the first map, we obtain
x : T → G.

(1)⇔ (3): Now, given x, we obtain µx = x ◦ µ. Then, MT(µx) ⊂ T since MT(µx) is defined as
the smallest algebraic subgroup of G, defined over Qp such that µx factors through it. Moreover,
Gm,Qp

is a connected group, so we have a factorization

Gm,Qp
µx−→ MT(µx)◦Qp

⊂ MT(µx)Qp .

Then MT(µx)◦Qp
= MT(µx)Qp and MT(µx) is connected. Over Qp, every connected subgroup

of a torus is a torus, so MT(µx) is a torus. Conversely, starting with µx defined over E, pick a
finite extension E ⊂ Qp of Qp such that µx is defined over E. Then µx yields an element of

HomZ[GalE ](X
∗(MT(µx)),Z) = HomZ[GalQp ](X

∗(MT(µx)), C(Hom(E,Qp),Z))

= Hom(TE ,MT(µx))

hence x : T → TE → MT(µx) ⊂ G. In the display, the first map is f 7→ f̃ , f̃(a)(ι) = f(σa) if
σι = ι0.

The statement about the field of definition is obvious by construction of the equivalences.

The next proposition gives us the Hodge and Newton types for a trivial germ of abelian crystalline
representations with G-structure.

Proposition 8.4.2. Let Vx be a trivial germ of abelian crystralline representation with G-
structure, with associated morphism x : T → G. Then, we obtain the Hodge, Newton and
Fargues types by

tH(Vx) = [x ◦ µ] in CZ(GQp
)

tN(Vx) = [x ◦ ν] in CQ(GQp).
tF(Vx) = [x ◦ νι] in CQ(GQp)

Therefore, Vx is ordinary when [x ◦ ν] = [x ◦ µ]#.

Proof. As an abuse of notation, let x : RepQp G→ RepQp T and let Vx be the essential image of
this map. It is a finitely generated ⊗-subcategory of RepQp T , thus Dcris ◦ Vx = Dcris ◦ V u ◦ x '
Dπ ◦x, by Proposition 8.3.4. The functor Dπ ◦x is trivial, and we know that FH is split by x◦µ
and GN is given by x◦ν, by Proposition 8.3.3 and that FF is split by x◦νι by Proposition 8.3.5.

Since G is defined over Zp, it is quasi-split over Zp and Qp: there are Borel pairs (T0, B) in G and
they are all conjugated. In particular, we obtain a conjugation class of distinguished maximal
tori in G, formed by the ones contained in a Borel pair. Let (T0, B) be a Borel pair in G. A
cocharacter µ ∈ X∗(T0) is called B-dominant if for every positive root α of T0 in B we have
〈α, µ〉 ≥ 0, where 〈·, ·〉 is the pairing between X∗(T0) and X∗(T0). We denote by X∗(T0)dom the
set of B-dominant cocharacters of T0.

Proposition 8.4.3. If the image of x is contained in a distinguished maximal torus, then Vx
is ordinary. In this case, the definition field is an unramified extension of Qp and we have
x(b) = µx(p).
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Proof. By assumption, there is a Borel pair (T0, B) ⊂ G defined over Qp such that µx = x ◦ µ
factors through a B-dominant cocharacter of T0, i.e. µx ∈ X∗(T0)dom. The morphism T0 ↪→ G
induces a GalQp-equivariant map

X∗(T0)⊗Q = CQ(T0,Qp
)→ CQ(GQp

)

whose restriction to the B-dominant cone is also compatible with the monoid structures: it is a
GalQp-equivariant isomorphism of monoids

(X∗(T0)⊗Q)dom → CQ(GQp
).

Plainly, (x ◦µ)# = x ◦ ν on the left hand side, thus also [x ◦µ]# = [x ◦ ν] on the right hand side,
i.e. tH(Vx) = tN(Vx) by proposition 8.4.2 and Vx is ordinary.

In this case, µx is a cocharacter of T0, which is split over K0, so µx is defined over an unramified
extension E of Qp. Thus x factors through TK0 by construction and

x(b) = xK0(bK0) = xK0 ◦ µK0(πK0) = xK0 ◦ µK0(p) = (x ◦ µ)(p) = µx(p),

where xK0 : TK0 → T0 ↪→ G is the factorization of x.

8.5 The reduction map

For the rest of the section, we fix a trivial germ of abelian crystalline representations

Vx : RepQp G→ Repcr,ab
Qp {GalK0}

with G-structure such that MT(µx) is contained in T0, for (T0, B) a Borel pair of GZp with µx
dominant. We set

νx = x ◦ ν : D(Q)|Qp → T|Qp → G|Qp

and Mx = ZG(νx). The cocharacter νx is defined over Zp, by [11, Proposition 3 and Lemma
4], so Mx is also defined over Zp. By Proposition 8.4.2, Mx is a Levi subgroup of the parabolic
subgroup Px = PF stabilizing FF(V ). Note also that B ⊂ PF since νx is B-dominant, since µx
and all its conjugates are.

As we have seen in last section, the map red has a factorization

L(Vx) L(Dx, t
ι
H(Dx))

UFF (Qp)\L(Vx)

red

where Dx = Dcris(Vx), FF is the Fargues filtration on the germ of G-crystalline representation
Vx, and the map red is compatible with the morphism Aut⊗(Vx)→ Aut⊗(Dx). The aim of the
rest of the section is to give a more explicit description of the diagram above.

8.5.1 The source

Since Vx is trivial, we have a canonical isomorphism

L(Vx) ' G(Qp)/G(Zp),

since L(Vx) = L(ωG,Qp) and Aut⊗(ωG,Qp) = G(Qp) acts transitively on L(ωG,Qp), with stabilizer
Aut⊗(ωG,Zp) = G(Zp), for ωG,Zp ∈ L(Vx) the trivial lattice. Next proposition describes the
automorphism group of Vx as a subgroup of Aut⊗(ω(Vx)) = G(Qp).
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Proposition 8.5.1. For Vx as above, we have

Aut⊗(Vx) = Mx(Qp).

Proof. For g ∈ G(Qp), we denote by Int(g) the inner automorphism defined by g. Then, an
element g ∈ Aut⊗(ω(Vx)) defines an isomorphism Vx → VInt(g)·x, since

τ(g)(σ ·x v) = τ(g)(τ(x ◦ χK(σ)) · v)
= τ(g · x ◦ χK(σ))(v)
= τ(g · x ◦ χK(σ) · g−1 · g)(v)
= τ(Int(g)(x) ◦ χK(σ) · g)(v)
= τ(Int(g)(x) ◦ χK(σ))(τ(g) · v)
= σ ·Int(g)(x) τ(g)v

for τ ∈ RepQp G, v 3 ωG(τ), K a field of definition of Vx and σ ∈ GalK (we may take K = K0).
By definition, Aut⊗(Vx) is the set of g ∈ Aut⊗(ω(Vx)) inducing an isomorphism of Vx, i.e.
the set of g ∈ G(Qp) such that Vx = VInt(g)(x), and by the classification of trivial germs of
abelian crystalline representations with G-structure given in 8.4.1, this is equivalent to the set
of g ∈ G(Qp) such that x = Int(g)(x) or, with respect to µx, the set of g ∈ G(Qp) such that
µx = Int(g)(µx), i.e.

Aut⊗(Vx) = {g ∈ G(Qp) | g · x · g−1 = x}
= {g ∈ G(Qp) | g · µx · g−1 = µx}.

Now, the faithful ⊗-functor Dπ is compatible with fiber functors and induces a commutative
diagram

Aut⊗(Vx) Aut⊗(Dπ(Vx))

Aut⊗(ω(Vx)) Aut⊗(ω(Dπ(Vx)))

G(Qp) G(K0).

If g ∈ Aut⊗(Vx), g ∈ G(K0) preserves in particular the underlying isocrystal associated to
Dπ(Vx), so it also preserves the Newton graduation, which is given by νx, thus g normalizes νx,
i.e.

g ∈Mx(K0) ∩G(Qp) = Mx(Qp).

On the other hand, we have a factorization (all groups over Qp)

Gm T0 G

ZG(Mx) Mx

µx

Indeed, νx factors through T0, which is commutative, so T0 ⊂ Mx, thus µx factors through Mx

since it factors through T0 ⊂ Mx. Let M = Lie(Mx). Let Φ(T0,Mx) be the system of roots
of T0 in Mx, i.e. characters such that M = M0 ⊕ ⊕α∈Φ(T0,Mx)Mα, where M0 = LieT0. Let
Φ+(T0,Mx) = Φ(T0,Mx)∩Φ+(T0, G) be the roots of T0 inM which are positive with respect to
B ∩Mx, a Borel subgroup of Mx with Levi T0. For every α ∈ Φ+(T0,Mx) and µ′ in the GalQp-
orbit O(µx) of µx, we have 〈α, µ′〉 ≥ 0, but

∑
O(µx) 〈α, µ′〉 = 〈α,

∑
O(µx) µ

′) = #O(µx)〈α, νx〉 = 0

since νx is central in Mx, thus 〈α, µ′〉 = 0 for every µ′ ∈ O(µx). In particular 〈α, µx〉 = 0 for
every α ∈ Φ+(T0,Mx), which implies that µx is central inMx. ThusMx(Qp) ⊂ Aut⊗(Vx) which
proves that Mx(Qp) = Aut⊗(Vx).
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The last result can be reformulated as follows: since x factors through T0, it factors through Mx

and we have
Vx : RepQp G→ RepQpMx

VMxx−−−→ Repcr,ab
Qp {GalK0}

which induces a diagram

Aut⊗(VMx
x ) Aut⊗(Vx)

Aut⊗(ω(VMx
x )) Aut⊗(ω(Vx))

Mx(Qp) G(Qp).

'

Note that VMx
x is also ordinary by Proposition 8.4.3, since the corresponding morphism x : T →

Mx factors through the distinguished torus T0 ofMx. Moreover, we have anMx(Qp)-equivariant
diagram

L(VMx
x ) L(Vx) UFF

(Qp)\L(Vx)

Mx(Qp)/Mx(Zp) G(Qp)/G(Zp) UFF
(Qp)\G(Qp)/G(Zp).

The next proposition gives us a description of the quotient:

Proposition 8.5.2. The top map L(VMx
x )→ UFF

(Qp)\L(Vx) bijective.

Proof. It is well known. The Iwasawa decomposition G(Qp) = B(Qp)G(Zp) gives us

G(Qp) = PFF
(Qp)G(Zp) = UFF

(Qp)Mx(Qp)G(Zp)

as B(Qp) ⊂ PFF
(Qp) = UFF

(Qp) oMx(Qp). Thus we have the surjectivity of the bottom map.
The injectivity is given by [11, 6.3.3].

8.5.2 The target

It remains to study the description of both the set L(Dx, t
ι
H(Dx)) and the action of the auto-

morphism group Aut⊗(Dx). We may assume that Dx is isomorphic to a trivial G-isocrystal,
since we can fix an isomorphism Dx = Dcris ◦ Vx ' Dπ ◦ x and use Wintenberger’s results in
[48]. Applying Fontaine’s functor Dcris to

Vx : RepQp G→ RepQpMx
VMxx−−−→ Repcr,ab

Qp {GalK0}

we obtain
Dx : RepQp G→ RepQpMx

DMxx−−−→ ModσK0
.

Proposition 8.5.3. The functor Dcris induces a bijection

Aut⊗(Vx) ' Aut⊗(Dx).
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Proof. We may replace Dx by Dπ ◦x. As we have seen, the ⊗-automorphisms of Dπ ◦x preserve
the Newton cocharacter, so their image is in Mx(K0) and we get

Aut⊗(Dπ ◦ x) = {m ∈Mx(K0) | mx(b) = x(b)σ(m)}.

Now, by ordinarity, we know by Proposition 8.4.3 that x(b) = x(µ(p)) = µx(p), which is central
in Mx(K0), thus

Aut⊗(Dπ(Vx)) = {m ∈Mx(K0) | m = σ(m)} = Mx(Qp).

Our claim now follows from Proposition 8.5.1.

The previous result and Proposition 8.5.1 together imply that Dcris and the embeddingMx ↪→ G
yield group isomorphisms

Aut⊗(VMx
x ) Aut⊗(DMx

x )

Aut⊗(Vx) Aut⊗(Dx).

'

' '

'

A similar result holds for lattices. We will use the script Mx or G to indicate if we are working
with the vectorial distance defined on Be(MxK) or Be(GK), respectively.

Proposition 8.5.4. The functor Dcris and the embeddingMx ↪→ G yield a commutative diagram

L(VMx
x ) L

(
DMx
x , tι,Mx

H (DMx
x )

)
L(Vx) L

(
Dx, t

ι,G
H (Dx)

)
.

⊂

'

'

red

Proof. To compute the right hand side map, we may again replace Dx by Dπ ◦ x, that we call
D to easy the notations. Also, we set V = Vx, M = Mx, tM = tι,Mx

H (DMx
x ) in CZ(Mx) and

tG = tι,GH (Dx) in CZ(G). We have to show that the embedding L(VM ) ⊂ L(V ) yields a bijection
L(DM , tM ) ' L(D, tG). This is well-known result, given by Kottwitz in [32, Theorem 1.1]. We
propose here an alternative proof. We have a diagram

L(DM , tM ) L(D, tG)

B(ωM ,K0) B(ωG,K0)

Be(MK0) Be(GK0)

' '

which is cartesian, i.e. L(DM , tM ) = L(D, tG) ∩ Be(GK0). From [13, Theorem 7], we thus
already obtain L(D, tG) ⊂ L(DM ), therefore

L(D, tG) =
∐

t′M 7→tG

L(DM , t′M )

where t′M runs through the fiber CZ(M) � CZ(G) over tG. So, it suffices to show that
L(DM , t′M ) = ∅ whenever t′M 6= tM . Note that L(DM , tM ) is indeed non empty, since the M -
isocrystal DM is tM -ordinary by 7.3.24, it is therefore sufficient to establish that tM is the only
point in the intersection of the relevant fibers of the Kottwitz map [−]M,Γ : CZ(M)→ π1(M)Γ
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and the projection CZ(M)→ CZ(G).

Let WG(T0) = NG(T0)/ZG(T0) be the Weyl group of T0 in G, denote by R∨G = Φ∨(T0, G) the
system of coroots of T0 in G, ∆G the simple coroots of T0 in G and X∗(T0)G−dom the cone of
dominant cocharacters defined by B. We use analogous notation for the corresponding objects
defined with respect to M and M ∩ B. Finally, denote by XΓ the coinvariants of Γ = GalQp
acting on a group X. We then have the following commutative diagram, with exact second and
third rows (compare with [32]):

CZ(M) 'WMx(T0)\X∗(T0) WG(T0)\X∗(T0) ' CZ(G)

0
⊕

δ∈∆G\∆M
Z · δ X∗(T0)/Z ·R∨M X∗(T0)/Z ·R∨G 0

0
⊕

Γ·δ∈Γ\(∆G\∆M ) Z · Γ · δ (X∗(T0)/Z ·R∨M )Γ (X∗(T0)/Z ·R∨G)Γ 0

By construction tM = µx in X∗(T0)G−dom ⊂ X∗(T0)M−dom. Let t′M ∈ X∗(T0)M−dom be any
other element in the fiber of CZ(M) � CZ(G) over tG. Then, t′Mx

= w · tMx for some w ∈
WG(T0), thus tM − t′M ∈ X∗(T0) is a linear combination of elements of ∆G with non-negative
coefficients. In the second line of our diagram, we thus obtain

tMx − t′Mx
=
∑

δ∈∆G\∆Mx
nδ · δ ∈

⊕
δ∈∆G\∆Mx

Z · δ, with nδ ≥ 0.

The map ⊕
δ∈∆G\∆Mx

Z · δ →
⊕

Γ·δ∈Γ\(∆G\∆Mx )

Z · Γ · δ

is given by ∑
δ∈∆G\∆Mx

nδ · δ 7→
∑

δ∈∆G\∆Mx

( ∑
δ′∈Γ·δ

nδ′

)
· δ.

Thus if also [tM ]M,Γ = [t′M ]M,Γ in (X∗(T0)/Z ·R∨M )Γ (which is the case if L(DM , t′M ) 6= ∅), then
actually t′M = tM as was to be shown, since all the nδ must be 0.

We still have to show that L(VM ) ↪→ L(DM ) induces a bijection L(VM ) ' L(DM , tM ). Inside
L(DM ) 'M(K0)/M(W (F)), we have

L(DM , tM ) = {m ∈M(K0)/M(W (F)) | m−1µx(p)σ(m) ∈ G(W (F)µx(p)G(W (F)}

which equals
{m ∈M(K0)/M(W (F)) | m−1σ(m) ∈ G(W (F)}

since µx(p) is central in M . In other words,

L(DM , tM ) = {y ∈ L(DM ) | σy = y} = L(V x)

using, for instance, [13, 2.5.5] for the last equality.

Let s be the order of the Γ-orbit of µx in X∗(T0). Then sνx ∈ X∗(T0) and σs(µx) = µx, thus

σstιH(Dx) = tιH(Dx) in CZ(G).
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It follows that the s-power of the Frobenius of Dx acts on L(Dx, t
ι
H(Dx)), giving an automor-

phism
F : L(Dx, t

ι
H(Dx))→ L(Dx, t

ι
H(Dx)).

It is related to the operator Φs
cris of section 7.3.5 as follows:

Proposition 8.5.5. We have F = Φs
cris on L(Dx, t

ι
H(Dx)).

Proof. We may as usual replace Dx by Dπ ◦ x and call it D to ease the notations. Let also
V = Vx and M = Mx. Then F acts on

L(D) ' L(ωG,K0) ' G(K0)/G(Zp)

by the element
(µx(p), σ)s = (sνx(p), σs) ∈ G(K0) o 〈σ〉Z.

It thus acts on
L(D, tιH(D)) ' L(VM ) 'M(Qp)/M(Zp)

by sνx(p) ∈ M(Qp). For any y ∈ L(D, tιH(D)) and τ ∈ RepZp G with weight decomposition
τ |M = ⊕a∈Zτa with respect to the central cocharacter sνx : Gm,Zp →M , we thus have

F (y)(τ) = ⊕a∈Zpa · y(τa).

On the other hand, since ν−1
x splits F ιN(D),

Φs
cris(y)(τ) =

∑
i∈Z p

−iy(τ) ∩ (sF ιN(D))i(τ)
=

∑
i∈Z
(
⊕a∈Zp−iy(τa)

)
∩ (⊕a≤−iy(τa)⊗K0)

= ⊕a∈Zpa · y(τa).

Thus indeed F = Φs
cris on L(Dx, t

ι
H(Dx)).

Remark 25. This also proves that Φs
cris is bijective on L(Dx, t

ι
H(Dx)), as we claimed in the proof

of 7.3.30.

8.5.3 The main result

Putting all the results in this section together, we have obtained a commutative diagram

Mx(Qp)/Mx(Zp) L(VMx
x ) L(DMx

x , tιH(DMx
x ))

G(Qp)/G(Zp) L(Vx) L(Dx, t
ι
H(Dx))

'

⊂

'

⊂

'

' red

which is equivariant with respect to the actions of

Mx(Qp) Aut⊗(ω(VMx
x )) Aut⊗(VMx

x ) Aut⊗(DMx
x )

G(Qp) Aut⊗(ω(Vx)) Aut⊗(Vx) Aut⊗(Dx).

⊂

'

⊂

'

'

'

'

' ⊂ '

In particular:

Theorem 8.5.6. The reduction map

red : L(Vx)→ L(Dx, t
ι
H(Dx))

factors through an Mx(Qp)-equivariant bijection

UFF
(Qp)\L(Vx) ' L(Dx, t

ι
H(Dx)).
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