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Abstracts

Abstract — The dissertation presents novel statistically and computationally efficient hy-
pothesis tests for relative similarity and dependency, and precision matrix estimation. The
key methodology adopted in this thesis is the class of U -statistic estimators. The class of
U -statistics results in a minimum-variance unbiased estimation of a parameter. We make use
of asymptotic distributions and strong consistency of U -statistic estimators to develop novel
non-parametric statistical hypothesis tests.

The first part of the thesis focuses on relative similarity tests applied to the problem of model
selection. Probabilistic generative models provide a powerful framework for representing data.
Model selection in this generative setting can be challenging, particularly when likelihoods
are not easily accessible. To address this issue, we provide a novel non-parametric hypothesis
test of relative similarity and test whether a first candidate model generates a data sample
significantly closer to a reference validation set. Our model selection criterion is based on the
Maximum Mean Discrepancy (MMD) and measures the distance of the generated samples to
some reference target set.

Subsequently, the second part of the thesis focuses on developing a novel non-parametric
statistical hypothesis test for relative dependency. Tests of dependence are important tools
in statistical analysis, and several canonical tests for the existence of dependence have been
developed in the literature. For many problems in data analysis, however, the question of
whether there exist dependencies is secondary. The determination of whether one dependence
is stronger than another is frequently necessary for decision making in real-world scenarios. We
present a statistical test which determine whether one variables is significantly more dependent
on a first target variable or a second. Dependence is measured via the Hilbert-Schmidt
Independence Criterion (HSIC). The resulting tests of dependence and relative similarity are
consistent and unbiased (being based on U -statistics) and can be computed in O(n2), where
n is the sample size.

Finally, a novel method for structure discovery in a graphical model is proposed. Making
use of a result that zeros of a precision matrix can encode conditional independencies, we
develop a test that estimates and bounds an entry of the precision matrix. Methods for
structure discovery in the literature typically make restrictive distributional (e.g. Gaussian)
or sparsity assumptions that may not apply to a data sample of interest, and direct estimation
of the uncertainty of an estimate of the precision matrix for general distributions remains
challenging. Consequently, we derive a new test that makes use of results for U -statistics and
applies them to the covariance matrix, which then implies a bound on the precision matrix.
The resulting test enables one to answer with statistical significance whether an entry in the
precision matrix is non-zero, and O(n−1/2) convergence results are known for a wide range of
distributions. The computational complexity is linear in the sample size.

Keywords: U -statistics, hypothesis testing, dependency, similarity, kernel methods.
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Titre — Tests d’hypothèses statistiquement et algorithmiquement efficaces de similarité et
de dépendance

Résumé — Cette thèse présente de nouveaux tests d’hypothèses statistiques efficaces pour
la relative similarité et dépendance, et l’estimation de la matrice de précision. La principale
méthodologie adoptée dans cette thèse est la classe des estimateurs U -statistiques. La classe
des U -statistiques donne lieu à une estimation sans biais de variance minimale d’un paramètre.
L’utilisation d’estimateurs U -statistics à distributions asymptotiques fortement consistantes
permet le développement de nouveaux tests d’hypothèses statistiques non paramétriques.

La première partie de la thèse porte sur les tests de relative similarité appliqués au prob-
lème de la sélection de modèles. Les modèles génératifs probabilistes fournissent un cadre
puissant pour représenter les données. La sélection de modèles dans ce contexte génératif
peut être difficile, en particulier lorsque les probabilités ne sont pas facilement accessibles.
Pour résoudre ce problème, nous proposons un nouveau test d’hypothèse non paramétrique
de relative similarité et testons si un premier modèle candidat génère un échantillon de don-
nées significativement plus proche d’un ensemble de validation de référence. Notre critère de
sélection de modèle est basé sur le Maximum Mean Discrepancy (MMD) et mesure la distance
entre des échantillons générés et une cible de référence fixée.

La deuxième partie de la thèse développe un test d’hypothèse statistique non paramétrique
pour la relative dépendance. Plusieurs tests de dépendances statistiques ont déjà été dévelop-
pés dans la littérature. Toutefois, en présence de dépendances multiples, les méthodes ex-
istantes ne répondent qu’indirectement à la question de la relative dépendance. Or, savoir
si une dépendance est plus forte qu’une autre est important pour la prise de décision dans
des scénarios réels. Nous présentons un test statistique qui détermine si une variable dépend
beaucoup plus d’une première variable cible ou d’une seconde variable. La dépendance est
mesurée au moyen du Hilbert-Schmidt Independence Criterion (HSIC). Les tests de relat-
ifs similarité et de dépendance résultants sont cohérents et non biaisés (étant basés sur les
U -statistiques) et peuvent être calculés en O(n2), où n est la taille de l’échantillon.

Enfin, une nouvelle méthode de découverte de structure dans un modèle graphique est pro-
posée. En partant du fait que les zéros d’une matrice de précision représentent les indépen-
dances conditionnelles, nous développons un nouveau test statistique qui estime une borne
pour une entrée de la matrice de précision. Les méthodes existantes de découverte de structure
font généralement des hypothèses restrictives de distributions gaussiennes ou parcimonieuses
qui ne correspondent pas forcément à l’étude de données réelles. Ainsi, l’estimation directe de
l’incertitude d’une estimation de la matrice de précision pour les distributions générales de-
meure difficile. Nous introduisons ici un nouveau test utilisant les propriétés des U -statistics
appliqués à la matrice de covariance, et en déduisons une borne sur la matrice de précision.
Sans faire d’hypothèse sur la distribution, ce test permet de déterminer significativement si
un coefficient de la matrice de précision est non nul. Nous démontrons une convergence du
test en O(n−1/2) pour une large gamme de distributions. La complexité algorithmique est
linéaire en la taille de l’échantillon.
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Titel — Statistisch en computationeel efficënte hypothesetoetsen voor similariteit en afhanke-
lijkheid

Abstract — Dit werk presenteert nieuwe reken- en statistisch efficiënte hypothesetesten
op relatieve similariteit en afhankelijkheid, en op precisiematrixschatting. De belangrijkste
methode voorgesteld in dit werk, is de klasse van U -statistic schatters. De klasse van U -
statistics resulteert in een zuivere schatting met minimum-variantie van een parameter. We
maken gebruik van asymptotische distributies en sterke consistentie van U -statisticschatters
om nieuwe niet-parametrische statistische hypothesetoetsen te ontwikkelen.

Het eerste deel van dit werk richt zich op de relatieve similariteitstesten toegepast op het prob-
leem van modelselectie. Probabilistische generatieve modellen bieden een waardevol kader
voor het weergeven van data. Modelselectie bij generatieve modellen kan echter een uitdaging
zijn, vooral als observaties van de aannemelijkheidsfunctie moeilijk te verkrijgen zijn. Om dit
probleem aan te pakken, stellen we een nieuwe niet-parametrische hypothesetest op relatieve
similariteit voor en testen we of een monster gegenereerd door een eerstekandidaatsmodel
aanzienlijk dichter ligt bij de validatieset. Ons criterium voor modelselectie is gebaseerd op
de Maximum Mean Discrepancy (MMD) en meet de afstand tussen de gegenereerde monsters
en een referentieset.

Vervolgens richt het tweede deel van dit werk zich op het ontwikkelen van een nieuwe niet-
parametrische statistische hypothesetest op relatieve afhankelijkheid. Afhankelijkheidstesten
zijn belangrijk voor statistische analyse. Er zijn verschillende canonieke testen ontwikkeld op
het bestaan van afhankelijkheid in de literatuur. Voor talrijke problemen in gegevensanalyse
is echter de vraag of afhankelijkheid bestaat van secundair belang. Het kunnen vaststellen of
een afhankelijkheid sterker is dan een andere, is vaak noodzakelijk voor de besluitvorming in
real-world scenario’s. We presenteren een statistische test die kan bepalen of een variabele
significant sterker of minder sterk afhankelijk is van een doelvariabele. Afhankelijkheid wordt
gemeten via de Hilbert-Schmidt Independence Criterium (HSIC). De resulterende testen van
afhankelijkheid en relatieve similariteit zijn consistent en zuiver (omdat ze gebaseerd zijn op
U -statistics) en kunnen worden berekend in O(n2), waarbij n de grootte is van de steekproef.

Tenslotte wordt een nieuwe werkwijze voor structuurontdekking in grafische modellen voorges-
teld. Gebruikmakend van het feit dat nullen in een precisiematrix voorwaardelijke onhankeli-
jkheden kunnen coderen, ontwikkelen we een test die de waarden in een precisiematrix schat
en begrenst. Methoden voor structuurontdekking in de literatuur maken doorgaans veronder-
stellingen over de distributie (bijvoorbeeld een Gaussische verdeling) of de spaarsheid die vaak
niet van toepassing zijn op een bepaalde steekproef. Het verkrijgen van een directe schatting
voor de onzekerheid van een waarde uit de precisiematrix blijft uitdagend. Daarom leiden we
een nieuwe test af die gebruik maakt van de resultaten van U -statistics en deze toepast op
de covariantiematrix, wat een begrenzing op de waarde van de precisiematrix impliceert. De
resulterende test laat ons toe om met statische significantie the bepalen of een waarde in de
precisiematrix verschillend is van nul. O(n−1/2) convergentieresultaten zijn gekend voor een
breed scale aan verdelingen. De computationele complexiteit groeit lineair met de grootte
van de steekproef.
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Chapter 1

Introduction

Hypothesis testing is one of the most important procedure in statistics as a method of making
decisions using data. In order to undertake hypothesis testing, we need to express a research
hypothesis as a null when nothing happened, or there were no differences, or no cause and
effect and alternative hypothesis when we are correct in a theory [Casella and Berger, 2002].
In this thesis, we consider the problem of hypothesis tests for similarity and dependency which
are of fundamental importance in statistics.

First, the concept of distances between distributions is important. Relative similarity tests
determine whether the distribution of a source sample is closer to the distribution of one
target sample or another. An example application is to test if a new process or treatment is
superior to a current process or treatment.

Second, the concept of dependence relations between random variables plays a very important
role in many fields of mathematics and is one of the most widely studied subjects in probability
and statistics. The investigation of such inter-relationships is of great scientific importance.
For example, in studies of complex diseases, the exploration of the inter-relationship among
the responsible genes is crucial for the understanding of the disease pathologies. Moreover,
the concept of conditional independence, describes the relationship between two variables
while conditioning on another variable. A well known theorem by Hammersley and Clifford
[1971] relates such conditional dependencies to an underlying graph topology. The study of
the topology of a graphical model reflects the conditional independence assertions between
the observable variables.

This thesis focuses on the exploration of methods that exploit such information.
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2 INTRODUCTION

1.1 Motivation and Tasks of Interest

There are a variety of problems for testing similarity and dependence addressed in the machine
learning and statistics literature. In this thesis, we focus our attention on the study of relative
similarity, relative dependency and the concept of conditional independence. A more detailed
look at related work is provided in the sequel.

1.1.1 The Study of Relative Similarity

Many problems in testing and learning require evaluating the similarity of distributions.
Examples of these applications include lexical semantic similarity, comparing the diversities
of two communities or measuring a delay between two signals (e.g. stock market fluctuations
in financial data or electrocardiograms in medical data). Another potential example can be
found in model selection. It is important to be able to evaluate the quality of samples from
a generator by measuring their similarity to a sample of reference data. E.g. when a complex
generative model based on deep learning techniques is learned, it is necessary to provide
feedback on the quality of the samples produced. The two-sample test is a task that deals
with testing whether distributions Px and Py are different on the basis of samples drawn from
each of them. Formally, given independent and identically distributed (i.i.d.) samples x and
y drawn from Px and Py, respectively, we want to test if Px = Py.

The past decade saw significant advances in the task of testing distribution similarity on
complex structured data. One of the main driving forces of these advances is the use of kernel
methods. Kernel methods are a class of non-parametric learning techniques relying on the
Reproducing Kernel Hilbert Space (RKHS) construction, and utilize positive definite kernels
taken over sufficiently rich function classes. In the last few decades kernel methods have
been employed in the design of new methods to tackle several machine learning problems to
compare objects which have much more complex structure [Schölkopf and Smola, 2001]. Key
to the success of any kernel method is the definition of an appropriate kernel for the data at
hand.

Gretton et al. [2012a] propose three simple multivariate tests for comparing samples from two
distributions Px and Py. The test statistic is the maximum mean discrepancy (MMD), defined
as the maximum deviation in the expectation of a function evaluated on each of the random
variables x and y, taken over a sufficiently rich function class, the RKHS. The resulting test
has O(n2) computational complexity, where n is the sample size, and can be applied to a
variety of problems.

The ability of the kernel two-sample test to give excellent performance on complex structured
data yields a promising approach for the task of testing relative similarity. The problem setting
is to determine whether a target distribution is closer to one of two candidate distributions.
An important potential application of the proposed test can be found in recent work with
deep neural networks. The problem is to determined which of two models generates samples
that are closer to a real-world reference sample of interest by testing the models’ samples
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(b) Samples generated from a second model.

Figure 1.1 – Illustration of the Variational Auto-encoder reference model from Kingma and
Welling [2014]. A first goal of this thesis is to test for relative similarity for model selection in
generative models. We may have several different models under consideration, and we want
to know which is the best match to a data sample.

against the reference data set (Figure 1.1).

1.1.2 The Study of Relative Dependency

Parallel to the advances on evaluating distribution similarity, testing dependency has also
achieved promising results in several applications. It is very important to understand the
relationship between variables to draw the right conclusion from a statistical analysis. For
example, analyzing relationships between financial variables is useful in many ways. Such an
analysis can be helpful in identify the factors that are most responsible for profits for instance.
A first step in the analysis is to quantify the relationship between the two sets of variables
using coefficients of association and then decide if the association is significant by using a
statistical test.

Many different coefficients and tests have been published as measures of association between
two data samples. Also, kernel methods have been successfully used for capturing dependence
of variables and the resulting methods can be applied to a variety of problems related to the
estimation of dependency in structured domains, such as text, images, graphs and captions
(Figure 1.2).

However, it is important to note that, despite these advances, the question of relative depen-
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(a) Illustration of the Indo-European family tree
from Schaller-Schwaner [2015].

Tumor location

Genes

Chromosome imbalance

(b) Illustrations from Chromosome Disorder Out-
reach [2016], National Human Genome Research
Institute [2016], Nationwide Children’s Hospital
[2016].

Figure 1.2 – The secondary goal of this thesis is to find significant relative statistical depen-
dencies between different sets of variables. (a) The identification of language groups from a
multilingual parallel corpus. (b) Brain tumors have different genetics origins depending on
the location of the tumor in the brain. The goal is to identify the mechanisms responsible for
the tumor.

dencies has not been previously addressed in the literature.

1.1.3 The Study of Structure Discovery

Finally, conditional independence (CI) tests have received special attention lately in the ma-
chine learning literature as an important indicator of the relationship between variables in a
model. Statistical dependence between observed variables can have a conditional relation, for
instance conditional on the time or location of a study. A more explicit form of conditioning
may result by design or by statistical analysis of several variables. In that case the distinction
between conditional and marginal (in)dependence becomes relevant.

Indeed, conditional independence tests are especially important and are challenging for the
task of learning the structure of a probabilistic graphical model from data.

For Gaussian graphical models, originating with the seminal work of Dempster [1972], a
considerable body of literature has been developed on the identification of non-zero entries
in the inverse of the covariance matrix of a random vector, called the precision matrix. For
a large class of distributions, a non-zero entry in the precision matrix corresponds to two
variables that have a non-zero partial correlation, i.e. they are correlated conditioning on all
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Figure 1.3 – A third goal of the thesis is discovering structure in graphical model. A graphical
model is a probabilistic model for which a graph expresses the conditional dependence struc-
ture between random variables. For a large class of distributions, the presence of an edge in
the graph corresponds to a non-zero entry in the precision matrix.

other variables (Figure 1.3). A large fraction of this literature focuses on a specific setting
in which (i) data are assumed to be Gaussian distributed, and (ii) the precision matrix is
assumed to obey a sparsity assumption.

However, while there exist many methods in the literature using strong assumptions of data
being generated by discrete or Gaussian multivariate distributions, other distributions pose
new challenges in statistical modeling for real-world data.

1.2 Research Questions

From the previous section it is evident that the potential of new statistical hypothesis testing
for dependence and similarity has not been sufficiently explored in prior work. We therefore
advance the theory and practice of hypothesis testing in three related settings. First, the
family of two-sample tests that make use of distances between distributions is one of the
most commonly used strategies to quantify the similarity between two data samples. We
propose to compare samples from two probability distributions which have different distance
to a reference distribution. Second, when there exists classical criteria for test of dependence,
the question of whether dependence exists is secondary; there may be multiple dependencies,
and the question becomes which dependency is the strongest. Furthermore, for conditional
dependency, the methods for structure discovery in the literature typically make restrictive
Gaussian assumptions or sparsity assumptions that may not apply to a data sample of interest.
So direct estimation of the uncertainty of an estimate of the precision matrix for general
distributions remains challenging.

Considering these points, the objective of this thesis is to exploit new statistically and effi-
ciency hypothesis testing for similarity and dependence. For this reason and for clarity of
presentation, we split the thesis into three questions to address specifically some of these
factors. For the formal setup of this section, suppose that we have random variables x ∼ Px,
y ∼ Py and z ∼ Pz, that take values on (X ,Bx), (Y,By), and (Z,Bz), respectively, where
here X , Y, and Z are separable metrics and Bx, By, and Bz are Borel σ-algebras.

Research Questions:

1. Is the probability measure Px significantly closer to Py or to Pz?
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2. Is the dependency between x and y significantly stronger than the dependency between x
and z?

3. Can we develop a statistically and computationally efficient estimator of the topology of
graphical models for non-Gaussian distributions?

Answering these research questions resulted in the following contributions.

1.3 Overview and Contributions of the Thesis

The line of work presented in this thesis focused on reasoning about statistically and compu-
tationally efficient hypothesis tests for dependency and similarity. The work covered in this
thesis has been collected in several papers. The content and contributions of these papers
are presented in Chapters 3, 4 and 5. As a whole, the contents of these papers address the
research questions introduced earlier with each chapter having specific contributions.

In Chapter 2, we present fundamental principles and tools used in the different methods
presented in the thesis. The objective of this chapter is to lay the foundations for the rest of
the thesis.

Chapter 3 presents a novel non-parametric of relative similarity. The contributions of this
part is based on classic theory of U -statistics to analyze the asymptotic distribution of the
kernel statistic, the Maximum Mean Discrepancy (MMD), which is our notion of similarity.
This answers Research Question 1, which analyzes the relative similarity between probability
distributions in different settings. Our main contribution is a test of relative similarity with
O(n−1/2) convergence and O(n2) computation that is consistent under mild conditions on
separable topological domains enriched with kernels. The content of this work is based on
the following publication

• W. Bounliphone, E. Belilovsky, M. B. Blaschko, I. Antonoglou, and A. Gretton. A test
of relative similarity for model selection in generative models. In The 4th International
Conference on Learning Representations, 2016a.

In Chapter 4 of this thesis, we present a novel non-parametric test of relative dependence.
This chapter directly applies the U -statistic asymptotic distribution theorem on our notion of
dependence, the Hilbert-Schmidt Independent Criterion. This answers Research Question 2,
which analyzes the relative dependence for different outputs in case of multiple dependencies.
Again, our main contribution prove that this scheme is consistent in the kernel independent
test setup under mild conditions on separable topological domains enriched with kernels. The
content of this work is based on the following publication

• W. Bounliphone, A. Gretton, A. Tenenhaus, and M. B. Blaschko. A low variance
consistent test of relative dependency. In F. Bach and D. Blei, editors, Proceedings of
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Chapter 1
Introduction

Chapter 2
Background Materials

Chapter 3
A Hypothesis Test of
Relative Similarity

Chapter 4
A Hypothesis Test of
Relative Dependency

Chapter 5
Linear Time Non-Gaussian
Precision Matrix Estimation

Chapter 6
Conclusion

Figure 1.4 – The outline of this thesis.

Setting Statistical Computation Chapter
Convergence Rate Time

M̂MD2
u [H,Xn,Yn]− M̂MD2

u [H,Xn,Yn] O(n−1/2) O(n2) 3
ĤSICu [Hx,Hy, (Xn,Yn)]− ĤSICu [Hx,Hz, (Xn,Zn)] O(n−1/2) O(n2) 4

Cov
(
Σ̂ij , Σ̂kl

)
O(n−1/2) O(n) 5

Table 1.1 – Key theoretical contributions.

The 32nd International Conference on Machine Learning, volume 37 of JMLR Workshop
and Conference Proceedings, pages 20–29, 2015a.

Chapter 5 presents a study of edge detection in an undirected graphical model. We construct
a new non-parametric linear time test for precision matrix estimation. The contributions
of this part is a direct application of a U -statistic asymptotic distribution theorem on the
covariance matrix. This chapter gives a positive answer to Research Question 3 by show-
ing the effectiveness of the statistical test with millions of observations from non-Gaussian
distributions. The content of this work is based on the following publication

• W. Bounliphone and M. B. Blaschko. Linear time non-Gaussian precision matrix esti-
mation. 2016. arXiv:1604.01733 – under submission.

Chapter 6 concludes the thesis and revisits the Research Questions devised in Section 1.2.
An outline of the thesis with dependencies between chapters is illustrated in Figure 1.4. Key
theoretical contributions developed in this thesis are summarized in Table 1.1.





Chapter 2

Background Materials

The work presented in this thesis is related to a variety problems in statistical estimation
and computational efficiency. In this chapter we introduce essential background knowledge
necessary for the development of our later theory. We start by introducing the class of U -
statistic, which allows a minimum-variance unbiased estimation of a parameter. Then, we
introduce the kernels methods and the concept of reproducing kernel Hilbert space (RKHS).
Afterward, we present the two statistics, the kernel Maximum Mean Discrepancy (MMD)
and the Hilbert-Schmidt Independence Criterion (HSIC), which are used in the two novel
non-parametric statistical hypothesis tests in Chapters 3 and 4. Subsequently, we introduce
basic results for the estimation of the precision matrix.
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2.1 U-statistics Estimator

When we assume the existence of a simple random sample Xr = {x1, . . . ,xr}, U -statistics gen-
eralize common notions of unbiased estimation. In fact, the letter ”U” in U -statistics stands
for “unbiased.” In this section, we study their properties: unbiased, minimum variance, con-
centration, asymptotic variance, asymptotic covariance and asymptotic distribution. The
basic theory of U -statistics can be found in Hoeffding [1948], Lee [1990], Lehmann [1999,
Ch. 6] and Serfling [2009, Ch. 5].

Suppose that we have a sample Xr = {x1, . . . ,xr} of size r drawn independently and iden-
tically distributed (i.i.d.) from Px. U -statistics concern an unbiased and minimum variance
estimation of a parameter θ of Px using Xr. That is, θ may be represented as

θ = Ex [h (x1, . . . ,xr)] , (2.1.1)

for some function h, called a kernel1 of the estimator. The smallest integer r for which
Equation (2.1.1) holds is called the degree of θ. Without loss of generality we may assume
that h is symmetric. If not, h also satisfies Equation (2.1.1) for any permutation (i1, . . . , ir)
of the set {1, . . . r} and therefore so does the symmetric kernel

1
r!
∑
πr
h (xi1 , . . .xir) , (2.1.2)

where the summation extends over all r! permutations πr of the set {1, . . . r}.

We now turn to the estimation of θ by means of the n observations x1, . . . ,xn, where we shall
assume that n ≥ r. Clearly, h (x1, . . . ,xr) is an unbiased estimator of θ and so is h (xi1 . . .xir)
for any r-tuples drawn without replacement from the set {1, . . . n}. Then, for any kernel, the
corresponding U -statistic for estimation of θ using a sample Xn = {x1, . . . ,xn} of size n larger
than r is constructed in the following way:

Definition 2.1. (U -statistic, [Serfling, 2009, Section 5.1.1]). Given a kernel h of degree r
and a sample Xn = {x1, . . . ,xn} of size n ≥ r, the corresponding U -statistic for estimation θ
is obtained by averaging the kernel h symmetrically over the observations

Un := 1
(n)r

∑
inr

h (xi1 . . .xir) , (2.1.3)

where (n)r = n!
(n−r)! = r!

(n
r

)
is the Pochhammer symbol and where the summation is over the

set imr of all n!
(n−r)! r-tuples drawn without replacement from the set {1, . . . n}.

Note that in this definition, we do not require the kernel h to be symmetric in its arguments. If
the kernel h is symmetric in its arguments, we may without loss of generality restrict attention
to the cases in which 1 ≤ i1 < · · · < ir ≤ n. In that case, we can drop the normalization by

1Note that the term kernel in U -statistics has a different meaning than in kernel methods in the machine
learning community.
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r! due to the symmetrization and then, Un has the equivalent form

Un = 1(n
r

) ∑h (xi1 . . .xir) , (2.1.4)

where the summation is over all combinations
(n
r

)
of r distinct elements, 1 ≤ i1 < · · · < ir ≤ n,

drawn without replacement from the set {1, . . . n}.

We now introduce the variance and covariance of U -statistics and with this characterization,
we can examine the asymptotic distribution of U -statistics.

Theorem 2.1. (Variance of a U -statistic, [Serfling, 2009, Section 5.2.1]). The variance of
the U -statistic given in Equation (2.1.3) is equal to

VarUn =
(
n

r

)−1 r∑
k=1

(
r

k

)(
n− r
r − k

)
ζi, (2.1.5)

where
ζi = Var

(
Exi+1,...,xr [h (x1, . . . ,xi,xi+1, . . . ,xr)]

)
, (2.1.6)

with Exi+1,...,xr denotes the integral of the function h (x1, . . . ,xi,xi+1, . . . ,xr) with respect to
the variables of integration, xi+1, . . . ,xr. If the distribution Px has a density f then

Exi+1,...,xr [h (x1, . . . ,xi,xi+1, . . . ,xr)] (2.1.7)

=
∫
Rr−i

h (x1, . . . ,xi,xi+1, . . . ,xr) f (xi+1, . . . ,xr) dxi+1 . . . dxr.

Remark 2.1. Depending on whether ζ1 is vanishing or not, the asymptotic distribution is
different. For ζ1 > 0, the asymptotic distribution is Gaussian, while for ζ1 = 0, the asymptotic
distribution is an infinite sum of χ2(1) random variables. In this thesis, we only have the case
where ζ1 > 0.

Theorem 2.2. (Asymptotic distribution of a U -statistic, [Serfling, 2009, Theorem. A p. 192]).
If E

[
h2] < ∞ and ζ1 > 0, then as n → ∞, Un is asymptotically normal with mean θ and

variance r2

n ζ1

n1/2 (Un − θ)
d−→ N

(
0, r2ζ1

)
. (2.1.8)

Theorem 2.3. (Covariance of two U -statistics, [Serfling, 2009, Section 6]). Let U (1)
n and U (2)

n

be two U -statistics, both based on a common sample Xn = {x1, . . . ,xn} but having different
kernels h and g of degrees r1 and r2 respectively, with r1 ≤ r2. Then the covariance of two
U -statistics is equal to

Cov
(
U (1)
n , U (2)

n

)
=
(
n

r1

)−1 r1∑
k=1

(
r2
k

)(
n− r2
r1 − k

)
ζi, (2.1.9)
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where

ζi = Cov
(
Exi+1,...,xr1

[h (x1, . . . ,xi,xi+1, . . . ,xr1)] ; (2.1.10)
Exj+1,...,xr2

[g (x1, . . . ,xj ,xj+1, . . . ,xr2)]
)
.

Theorem 2.4. (Joint asymptotic distribution of U -statistics, [Hoeffding, 1948, Theorem.
7.1]). Let U (j)

n , j = 1, . . . ,m, be U -statistics having expectations θj and kernels h(j) of degrees
rj and let denote by Un and θ the m-vector

(
U

(1)
n , . . . , U

(m)
n

)T
and (θ1, . . . , θm)T , respectively.

If Varh(j)
(
x1, . . . ,xrj

)
< ∞ for all j = 1, . . . ,m, then Un converges asymptotically in

distribution to a multivariate normal distribution with mean vector zero and Σ the limiting
covariance matrix of n1/2(U (j)

n − θj), the entries of which are given by Equations (2.1.5)
and (2.1.9), provided Σ is positive definite:

n1/2 (Un − θ) d−→ Nm (0,Σ) . (2.1.11)

Applications of U -statistics have been used in many domains in high dimensional statistical
inference and estimation, in many different hypothesis tests, feature selection, and the esti-
mation of high dimensional graphical models [Callaert and Janssen, 1978, Chang et al., 2016,
Chen and Shao, 2007].

2.2 Kernel Methods

In this section, we introduce concepts and notation required to understand reproducing ker-
nel Hilbert spaces. There is a significant interest in these methods from the statistics and
mathematics communities. A more detailed account of this topic can be found in Aronszajn
[1950], Schölkopf and Smola [2001, Ch. 1] and Berlinet and Thomas-Agnan [2011, Ch. 1], for
example. For basic definitions of Hilbert spaces and their applications, we refer to Dieudonné
[1960, Ch. 6] and Rudin [1987, Ch. 4].

2.2.1 Definitions and Properties of Kernels

Many machine learning algorithms can be expressed in terms of inner products between
observations, 〈x,x′〉 , or inner products between matrix structured observations, XX′T . An
inner product can be interpreted as a measure of similarity between x and x′. However, the
class of linear functions induced by this inner product may be too restrictive for many real-
world problems. Kernel methods aim to build more flexible and powerful tools by replacing
〈x,x′〉 with some other, non-linear similarity measures. This is the so-called kernel trick:
wherever inner product are used, they are replaced by kernel functions. We now introduce
formally kernel functions and their properties.

Definition 2.2. (Kernel function) Given a general set X and two observations x and x′,
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a kernel function (or kernel) is an inner product 〈., .〉H in a feature space H

k : X × X −→ R (2.2.1)(
x,x′

)
7−→ k

(
x,x′

)
:= 〈φ(x), φ(x′)〉H,

where φ(x) : X −→ H, called the feature map, is a nonlinear mapping from an observation
to its feature space representation.

Likewise, we can interpret k (x,x′) as a non-linear similarity measure between x and x′ by
substituting 〈x,x′〉 with 〈φ(x), φ(x′)〉H. The machine learning algorithms remain the same,
we only change the space in which these algorithms operate. Note that the feature map φ (x)
is not unique and need not be known explicitly.

The natural question is to find a full characterization of functions that are kernels. We start
with basic definitions and results.

Definition 2.3 (Gram Matrix). Given a symmetric function k : X × X −→ R and observa-
tions Xn = {x1, . . . ,xn} ⊆ X , then the real symmetric n× n matrix K with elements

[K]ij = k (xi,xj) (2.2.2)

is called the Gram matrix of k with respect to x.

Definition 2.4 (Positive Semi-Definite Matrix). A symmetric function k : X × X −→ R is
a positive definite kernel (or a kernel for simplicity), if for any finite set of observations it
gives rise to a positive definite Gram matrix.

Furthermore, kernels have a set of closure properties, meaning that certain operations on
kernels still yield kernels. These closure operations allow us to create new kernels. Primitive
closure operations are:

1. Positive linear combination: If k1 and k2 are kernels, and α1, α2 ≥ 0, then α1k1 (x,x′) +
α2k2 (x,x′) is a kernel.

2. Non-negativity: If k is a kernel, and b ≥ 0, then k (x,x′) + b is a kernel.

3. Tensor product: If k1 and k2 are kernels, then k1 (x,x′) k2 (x,x′) is a kernel.

Example 2.1. Based on these primitives, we can derived more complicated closure operations.
The following functions are well-known examples of kernels for X = R

• Linear kernel: 〈x,x′〉.

• Gaussian kernel with bandwidth σ > 0: exp
(
−σ‖x− x′‖2

)
.

• Laplace kernel with bandwidth σ > 0: exp (−σ‖x− x′‖).

• polynomial kernel with c ≥ 0 and degree p ∈ N: (〈x,x′ + c〉)p.
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All these examples are kernels on Rp, which are the most common in the literature, but
there exist kernels on many other domains, too, for instance graphs, strings, images, etc.
[Shawe-Taylor and Cristianini, 2004].

2.2.2 Reproducing Kernel Hilbert Spaces

We now develop a characterization of kernel functions by constructing a specific Hilbert space,
specifying both its topology and inner product. A Hilbert space H is a real or complex inner
product space that is also a complete metric space with respect to the distance function
induced by the inner product. We now give the definition of a reproducing kernel Hilbert
space.

Definition 2.5 (Reproducing Kernel Hilbert Spaces, RHKS). Given a set X and a Hilbert
space H of functions f : X −→ B. Then H is called a reproducing kernel Hilbert space
induced by the inner product 〈·, ·〉 if there exists a function k : X ×X −→ R with the following
properties

1. k has the reproducing property

〈f, k (x, ·)〉 = f(x)∀f ∈ H; (2.2.3)

in particular,
〈k (x, ·) , k

(
x′, ·

)
〉 = k

(
x,x′

)
. (2.2.4)

2. The RKHS is simply the Hilbert space H of functions f : X −→ R spanned by the kernel
k (x, ·), i.e. H = span{k (x, ·) |x ∈ X}.

The RKHS H is fully characterized by the reproducing kernel k and vice versa, as stated in
the following theorem:

Theorem 2.5. For every positive definite function k : X × X −→ R, there exists a unique
RKHS with k as its reproducing kernel.

Kernel methods are widely applied in the problem of supervised learning. Early examples
include kernel PCA [Schölkopf et al., 1997], kernel ICA [Bach and Jordan, 2002], and kernel
dimensionality reduction [Fukumizu et al., 2009]. They are also well established in the areas of
estimation, analysis of probability distributions, and hypothesis testing. In the next section,
we present two statistics based on kernel methods that we will use in Chapters 3 and 4.

2.3 The Maximum Mean Discrepancy

In this section, we introduce a kernel method for comparing samples from two probability
distributions. A statistical test for the two-sample problem determines with significance if
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two samples are drawn from different distributions. The test we consider in this thesis con-
sists in maximizing the mean discrepancy between probabilistic distributions. We explain a
framework for the distribution analysis via the kernel mean embedding: each distribution is
mapped into a RKHS via an expectation operation. Then, we define the measure of discrep-
ancy between distribution functions in term of their kernel mean embeddings. Most of the
theory follows from Berlinet and Thomas-Agnan [2011, Ch. 4], Gretton et al. [2006], Smola
et al. [2007] and Gretton et al. [2012a].

For the formal setup of this section, suppose that we have random variables x ∼ Px and
y ∼ Py that take values in (X ,Bx) and (Y,By), respectively, here X and Y are two separable
metrics and Bx and By are Borel σ-algebras. We want to determine whether PX 6= PY.
Furthermore, we define the positive definite kernel k : X ×X −→ R associated with a RKHS
H.

2.3.1 Hilbert Space Embedding of Distributions

We start by extending the notion of feature maps to the embedding of a probability distri-
bution. We first provide the conditions under which the embedding µx exists and belongs
to H. The existence and uniqueness of the mean embedding in the RKHS is guaranteed by
Riesz representation theorem [Fréchet, 1907, Riesz, 1907]. Then, we use the following lemma
to define the embedding.

Lemma 2.1. If the kernel k is measurable and Ex
√
k (x,x) < ∞, where x is a random

variable with distribution Px, then there exists µx ∈ H such that

Exf (x) = 〈f, µx〉,∀f ∈ H. (2.3.1)

Definition 2.6 (Kernel Mean Embedding). Suppose that the space M+ (X ) consists of all
probability measures Px on a measurable space (Ω,X ). The kernel mean embedding of proba-
bility measures inM+ (X ) into an RKHS H induced by the kernel k : X ×X −→ R, is defined
by a mapping

µx :M+ −→ H (2.3.2)

Px 7−→
∫
k (x, ·) dPx (x) = µx = Exk(x, ·).

Then, in the next lemma, we provide the existence condition of the mean embedding µx into
an RKHS H.

Lemma 2.2 (Smola et al. [2007]). If Ex
√
k (x,x) <∞, µx ∈ H and Exk(x, ·) = 〈f, µx〉H.

The mean embedding is a very powerful tool as it gives us a non-parametric representation
of a distribution as an element in a Hilbert space, which we can use in statistical methods. A
schematic view of the kernel embedding and the mean element is illustrated in Figure 2.1. In
practice, we do not have access to the true distribution Px. Instead, we use the sample from
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µ :M+ → H

Figure 2.1 – Illustration of kernel embedding and the mean elements of two distributions.

this distribution. Given an i.i.d. sample Xn = {x1, . . . ,xn}, the empirical estimate µ̂x of the
mean embedding µx is

µ̂x = 1
n

n∑
i=1

k (xi, .) . (2.3.3)

Clearly, µ̂x is unbiased and µ̂x
d−→ µx.

2.3.2 Universal and Characteristic Kernels

The notions of universal and characteristic kernels play crucial roles in the analysis of kernel
mean embeddings. We now formally introduce the notion of universal and characteristic
kernels. For more detail, we refer to Fukumizu et al. [2007], Gretton et al. [2006], Steinwart
[2001] and Sriperumbudur et al. [2011].

Definition 2.7 (Universal kernel, [Steinwart, 2001]). The kernel k on X is called universal if
k(x, ·) is continuous for all x and the corresponding RKHS H induced by k is dense in C(X ),
a space of bounded continuous functions on X .

Definition 2.8 (Characteristic kernel, [Fukumizu et al., 2007]). The kernel k is called char-
acteristic if the map Px 7→ Exk(x, ·) is injective and the RKHS H is called characteristic if
its reproducing kernel is characteristic.

For kernels which are universal / characteristic (the notions are identical for finite signed Borel
measures [Sriperumbudur et al., 2011]), such as the Gaussian and Laplace kernels, the mean
embedding operator is injective, so if we have samples from two distributions x ∼ Px and
y ∼ Py then µx = µy ⇐⇒ Px = Py. This is the basis for the Maximum Mean Discrepancy
(MMD) test statistic [Gretton et al., 2012a], which measures ‖µx−µy‖. We present the MMD
in the next section.
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2.3.3 Definition and Properties of MMD

As we have seen, kernel embeddings of Borel probability measures inM+ exist, and we can
introduce the notion of distance between Borel probability measures in this set using the
Hilbert space distance between their embeddings. Let x and y be random variables defined
on a topological space X , with respective Borel probability measures Px and Py. Given
observations Xn = {x1, . . . ,xn} and Ym = {y1, . . . ,ym} of these variables, obtained i.i.d.
from Px and Py, we want to determine whether Px 6= Py.

Lemma 2.3. (Dudley [2002, Lemma 9.3.2]). The Borel probability measures Px and Py are
equal if and only if Exf (x) = Eyf (y), ∀f ∈ C (X ).

Definition 2.9. Maximun Mean Discrepancy – MMD, [Gretton et al., 2012a, Lemma 4].
Assume that the mean embeddings µx and µy exist then

MMD2 [H,Px,Py] = ‖µx − µy‖2H. (2.3.4)

The following alternative representation of the squared MMD will be useful.

Lemma 2.4. (Gretton et al. [2012a, Lemma 6]). Let H be an RKHS, with the continuous
feature mapping φ(x) ∈ H from each x ∈ X , such that the inner product between the features
is given by the kernel function k : X ×X −→ R. Then the squared population MMD is given
by

MMD2 [H,Px,Py] = Ex,x′
[
k
(
x,x′

)
)
]
− 2Ex,y [k (x,y)] + Ey,y′

[
k(y,y′)

]
, (2.3.5)

where x, x′ and y, y′ are obtained i.i.d. from Px and Py, respectively.

A schematic view of the kernel embedding and the mean element is illustrated in Figure 2.2.
This quantity can, in general, be estimated using empirical expectations.

Lemma 2.5. (Gretton et al. [2012a, Lemma 6]). Given i.i.d. samples Xn = {x1, . . . ,xn}
and Ym = {y1, . . . ,ym} from Px and Py respectively, an unbiased empirical estimate of
MMD2 [H,Px,Py] can be written in terms of k as

M̂MD2
u [H,Xn,Ym] = 1

n(n− 1)

n∑
i=1

n∑
j 6=i

k(xi,xj) (2.3.6)

+ 1
m(m− 1)

m∑
i=1

n∑
j 6=i

k(yi,yj)

− 2
nm

n∑
i=1

m∑
j=1

k(xi,yj).

Furthermore, let m = n and vn = (v1, ...,vn) be n i.i.d. random variables where v := (x,y) ∼
Px×Py, then Equation (2.3.6) is an unbiased estimate which is a sum of two U -statistics and
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µ :M+ → H

Figure 2.2 – Illustration of the Maximum Mean Discrepancy in the RKHS H.

a sample average. That is

M̂MD2
u [H,Xn,Yn] = 1

n(n− 1)

n∑
i 6=j

h (vi,vj) , (2.3.7)

where h is the U -statistic kernel of degree 2 such that

h (vi,vj) = k(xi,xj) + k(yi,yj)− k(xi,yj)− k(xj ,yi), (2.3.8)

and we assume that E [h] <∞.

2.3.4 Application to the Two-Sample Test

We have described a metric on probability distributions based on the difference of their
Hilbert-Schmidt embeddings and its empirical estimate. In this section, we introduce a sta-
tistical two-sample test. The goal of a two-sample test is to decide whether a distribution
Px is different from Py with statistical significance on the basis of the samples. The task is
formulated as a statistical hypothesis test. Following Casella and Berger [2002, Ch. 8], we
briefly introduce the framework of statistical hypothesis testing applied in the two-sample
context. Given i.i.d. samples Xn = {x1, . . . ,xn} and Yn = {y1, . . . ,yn} of size n drawn from
Px and Py, respectively, the statistical test, T : X n × Yn 7→ {0, 1} is used to distinguished
between the null hypothesis H0 : Px = Py and the alternative hypothesis H1 : Px 6= Py. This
is achieved by comparing the test statistic M̂MD2

u [H,Xn,Yn] with a particular threshold: if
the threshold is exceeded, then the test rejects the null hypothesis. The acceptance region
of the test is defined as any real number below the threshold. Since the test is based on a
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finite sample, the notion of statistical error is an integral part of hypothesis testing. A Type
I error occurs when the null hypothesis is true, but is rejected. Conversely, a Type II error
occurs when the null hypothesis is false, but erroneously fails to be rejected. The level α of
a test is the probability of rejecting the null hypothesis when it is true. This α is a design
parameter of the test and is an upper bound on the Type I error, used to set the threshold.
Gretton et al. [2012a] proposed two statistical approaches for the two-sample problem. The
first is based the McDiarmid [1989] or the Hoeffding [1963] concentration inequalities on the
M̂MD2

u [H,Xn,Yn] statistic and the second is based on the asymptotic distribution of the
unbiased estimate of MMD2. The approach we adopt here is the second: we show that MMD
is asymptotically normally distributed, and we derive its variance to formulate statistics for
a significant test.

Theorem 2.6. (Asymptotic distribution of the MMD [Gretton et al., 2012a, Theorem 19]).
If E [h] < ∞, given i.i.d. samples Xn = {x1, . . . ,xn} and Yn = {y1, . . . ,yn} drawn from Px
and Py. When Px 6= Py, an unbiased estimate of MMD2 [H,Px,Py] given in Equation (2.4)
converges asymptotically in distribution to a Gaussian distribution with mean zero and vari-
ance σ2

MMD2
xy

n1/2
(

MMD2 [H,Px,Py]− M̂MD2
u [H,Xn,Yn]

)
d−→ N

(
0, σ2

MMD2
xy

)
, (2.3.9)

where
σ2

MMD2
XY

= 4
(
Ev1

[
(Ev2h (v1,v2))2

]
− [Ev1,v2h (v1,v2)]2

)
, (2.3.10)

where vi = (xi,yi).

When Px = Py, the U -statistic is degenerate (cf. Remark 2.1), we have Ev2h (v1,v2) = 0. In
that case, MMD2 [H,Px,Py] converges in distribution according to

nM̂MD2
u [H,Xn,Yn] d−→

∞∑
l=1

λl{z2
l − 2}, (2.3.11)

where zl ∼ N (0, 2) i.i.d. and λl are the solution to the eigenvalue equation,∫
X
k̃(x,x′)ψi(x)dPx = ψi(x′), (2.3.12)

with k̃(x,x′) := k(x,x′)−Exk(x,xi)−Exk(x,xj)+Ex,x,k(xi,xj) is the centered RKHS kernel.

We then use the 1−α quantile of this distribution as the test threshold. Since the distribution
under H0 is complicated, we need to accurately approximate its quantile. There are two ways
to estimate this quantile. The first is to use the bootstrap on the aggregated data and the
second is to approximate the null distribution by fitting the Pearson curve to its first four
moments.

Furthermore, the MMD has been applied in many applications such as hypothesis testing
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[Chwialkowski et al., 2015, Zaremba et al., 2013], clustering, density estimation, covariate
shift [Zhang et al., 2013], and generative models [Bounliphone et al., 2016a].

2.4 The Hilbert-Schmidt Independence Criterion

There are different methods to measure the dependence or association between random vari-
ables. A random variable is said to be dependent on another random variable if its variations
can be (partially) explained by those of another. Measuring statistical dependence is an
important tool in statistical analysis, and is widely applied in many data analysis contexts.
For instance, dependence measures can help answer questions such as whether the price of
one stock is linked to another, whether students examination results are connected to one
traditional teaching method or to another; or whether the one micro-climate is synchronized
with another. A large variety of dependence concepts have been studied by a number of
authors, an overview of which can be found in Joe [1997]. Classical criteria include Pearson’s
linear correlation, Spearman’s ρ, Kendall’s τ , the RV coefficient and the mutual information
[Casella and Berger, 2002, Escoufier, 1973]. More recent research on dependence measures has
devoted considerable interest to non-parametric measures of dependence using criteria based
on functions in RKHSs. This has been applied even when the dependence is non-linear, or
the variables are non-euclidean (for instance images, graphs and strings). This was first ac-
complished by Bach and Jordan [2002], who introduced a kernel dependence functional using
a regularized estimate of the spectral norm of the correlation operator between two RKHSs.
Then, Gretton et al. [2005b] employed the covariance operator instead of the correlation op-
erator. Others statistics for test of dependence are diverse and include kernel measures of
covariance [Gretton et al., 2008, Zhang et al., 2011] and correlation [Dauxois and Nkiet, 1998,
Gretton et al., 2008], distance covariances (which are instances of kernel tests) [Sejdinovic
et al., 2013, Székely et al., 2007], kernel regression tests [Cortes et al., 2009, Gunn and Kan-
dola, 2002], rankings [Heller et al., 2013], and space partitioning approaches [Gretton and
Gyorfi, 2010, Kinney and Atwal, 2014, Reshef et al., 2011]. Specialization of such methods
to univariate linear dependence can yield similar tests to classical approaches such as Bring
[1996], Darlington [1968].

In our work, we choose the Hilbert-Schmidt Independence Criterion (HSIC) as a measure
of dependency. The HSIC is a kernel based method to detect dependence between random
variables: both the joint probability measures and the product of the marginal distribution are
mapped into a infinite-dimensional feature space. We introduce HSIC in two different ways:
first, we define it as the Hilbert-Schmidt norm of the cross-covariance operator [Gretton et al.,
2005b] and then as a special cased of the Maximum Mean Discrepancy (MMD) [Gretton et al.,
2012a].

For the formal setup of this section, suppose that we have random variables x ∼ Px and
y ∼ Py, that take values on (X ,Bx) and (Y,By), respectively. Here X , Y are two separable
metrics and Bx,By are Borel σ-algebras. Then, (X × Y,Bx × By) is again measurable and
the joint distribution is Pxy, which assigns values to the product space (X × Y,Bx × By).
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Empirical samples from (X × Y,Bx × By) are assumed to be of size n. We have that x and
y are independent if and only if Pxy = PxPy.

Furthermore, we define kernels k(·, ·) and l(·, ·) on the space X and Y, with the corresponding
feature maps φ and ϕ and denote the corresponding RKHSs by Hx and Hy, respectively.
Throughout, we assume the integrability conditions Ex [k] <∞ and Ey [h] <∞.

2.4.1 HSIC using the Cross-Covariance Operator

We first introduce HSIC as the Hilbert-Schmidt norm of the cross-covariance operator which
follows from Baker [1973], Fukumizu et al. [2004]. Similarly to the definition of the mean em-
bedding (Definition 2.6), the cross-covariance operator in the RKHS is an important concept.

Definition 2.10. (Cross-Covariance operator, [Baker, 1973]). The cross-covariance operator
associated with the joint measure in Pxy on (X × Y,Bx × By) is a linear operator Cxy : Hy −→
Hx defined as

Cxy : = Exy [(k(x, .)− µx)⊗ (l(y, .)− µy)] (2.4.1)
= Exy [k(x, .)⊗ l(y, .)]− µx ⊗ µy,

where µx = Exk(x, .) and µy = Eyl(y, .) and ⊗ denotes the tensor product operator formally
defined as

f ⊗ g : F −→ G (2.4.2)
(f ⊗ g)h 7→ f〈g, h〉G , ∀h ∈ G.

Next, our goal is to derive the Hilbert-Schmidt norm of this cross-covariance operator Cxy as
the basis of our measure of dependence, called the Hilbert-Schmidt Independent Criterion.

The Hilbert-Schmidt (HS) norm of a linear operator C : G −→ F is defined as

‖C‖HS =
∑
ij

〈Cvi,uj〉2F , (2.4.3)

where vi and uj are orthonormal bases of F and G respectively. Furthermore, a linear
operator is called Hilbert-Schmidt operator if its Hilbert-Schmidt norm exists. The set of
Hilbert-Schmidt operators C : G −→ F also form a Hilbert space H with inner product
defined as

〈C,D〉H :=
∑
ij

〈Cvi,uj〉F 〈Dvi,uj〉F . (2.4.4)
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Then, we can compute the Hilbert-Schmidt norm of a tensor product operator as

‖f ⊗ g‖HS = 〈f, (f ⊗ g)g〉HS = f ⊗ g (2.4.5)
= 〈f, f〉F 〈g, g〉G = ‖f‖2F‖g‖2G .

We now define the Hilbert-Schmidt Independence Criterion (HSIC) as the HS norm of the
cross-covariance operator Cxy in the following definition.

Definition 2.11. (Hilbert-Schmidt Independence Criterion – HSIC), [Gretton et al., 2005a,
Definition 1]). Given separable RKHSs, F ,G and a joint measure Pxy over (X × Y,Bx × By),
we define the Hilbert-Schmidt Independence Criterion (HSIC) as the squared HS-norm of the
associated cross-covariance operator Cxy

HSIC [Hx,Hy,Pxy] := ‖Cxy‖2HS . (2.4.6)

In terms of kernels, HSIC can be expressed as following

HSIC [Hx,Hy,Pxy] : = Exy [〈k(x, .)⊗ l(y, .), k(x, .)⊗ l(y, .)〉] (2.4.7)
− 2Exy [〈k(x, .)⊗ l(y, .), µx ⊗ µy〉] + 〈µx ⊗ µy, µx ⊗ µy〉F

= Exx′yy′
[
k(x,x′)l(y,y′)

]
− 2Exy

[
Ex′ [k(x,x′)]Ey′ [l(y,y′)]

]
+ Exx′

[
k(x,x′)

]
Eyy′

[
l(y,y′)

]
.

A nice property of HSIC is that with universal kernels HSIC = 0 if and only if x and y are
independent. This as been proved in the following theorem.

Theorem 2.7. (Independence and HSIC, [Gretton et al., 2005a, Theorem. 4]). Let F and
G be separable RKHSs with universal kernels k, l on respective compact domains X and Y,
then HSIC = 0 if and only if x and y are independent.

Furthermore, the population HSIC can be estimated by estimating each term in Equa-
tion (2.4.7) using the kernel matrices K and L.

Theorem 2.8. (Unbiased estimator for HSIC [Hx,Hy,Pxy], [Song et al., 2012, Theorem.
1]). We denote by Sn the set of observations (Xn,Yn) = {(x1,y1), . . . (xn,yn)} of size n
drawn i.i.d. from Pxy. The unbiased estimator HSIC [Hx,Hy,Pxy] is given by

ĤSICu [Hx,Hy, (Xn,Yn)] = 1
n(n− 3)

[
Tr
(
K̃L̃

)
+ 1′K̃11′L̃1

(n− 1)(n− 2) −
2

n− 2K̃1′L̃1
]
, (2.4.8)

where 1 is a vector 1s of size n and K̃ and L̃ are related to K and L by K̃ij = (1 − δij)Ki

and L̃ij = (1− δij)Lij.

The HSIC unbiased estimator in Equation (2.4.8) can be alternatively formulated using U -
statistics.
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Theorem 2.9. U -statistic of estimator of HSIC, [Song et al., 2012, Theorem. 3]. The fi-
nite sample unbiased estimator of ĤSICu [Hx,Hy, (Xn,Yn)] given in Equation (2.4.8) can be
written as a U -statistic,

ĤSICu [Hx,Hy, (Xn,Yn)] = (n)−1
4

∑
(i,j,q,r)∈in4

hijqr, (2.4.9)

where (n)4 = n!
(n− 4)! , the index set in4 denotes the set of all 4−tuples drawn without replace-

ment from the set {1, . . . n}, and where h is the U -statistic kernel of degree 4 such that

hijqr = 1
24

(i,j,q,r)∑
(s,t,u,v)

kst(lst + luv − 2lsu), (2.4.10)

where the summation is over all 4! = 24 quadruples (s, t, u, v) selected without replacement
from (i, j, q, r) [Song et al., 2012, Equation (11)], and the kernels k and l are associated
uniquely with respective reproducing kernel Hilbert spaces F and G.

2.4.2 HSIC using the Maximum Mean discrepancy

In Section 2.3, we have derived a kernel based method for the two-sample test problem based
on the Maximum Mean Discrepancy (MMD). We show here that the HSIC can be seen as a
special case of the MMD [Gretton et al., 2012a, Section 7.4].

The kernel product in an RKHS F over X × Y is defined by

k · l : (X × Y)× (X × Y) −→ R (2.4.11)(
(x,y), (x′,y′)

)
7→ k

(
x,x′

)
· l
(
y,y′

)
,

where k(·, ·) and l(·, ·) are kernels on X and Y respectively. Then the MMD for the joint
probability measures Pxy and the product of the marginals PxPy can be expressed as

MMD2 [F ,Pxy,PxPy] = ‖µxy − µxµy‖2F (2.4.12)
= 〈µxy − µxµy, µxy − µxµy〉
= 〈µxy, µxy〉 − 2〈µxy, µxµy〉+ 〈µxµy, µxµy〉
= Exx′yy′

[
k(x,x′)l(y,y′)

]
− 2Exy

[
Ex′ [k(x,x′)]Ey′ [l(y,y′)]

]
+ Exx′

[
k(x,x′)

]
Eyy′

[
l(y,y′)

]
,

which is exactly the expression of HSIC given in Equation (2.4.7).
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2.4.3 Application to the Independence Test

We have introduce a notion of independence and we now describe how to use HSIC as a basis
of an independence test. Similarly to Section 2.3.4, we describe a statistical hypothesis test
for dependence. Given i.i.d. samples Xn = {x1, . . . ,xn} and Yn = {y1, . . . ,yn} of size n
drawn from Pxy, the statistical test, T : X n × Yn 7→ {0, 1} is used to distinguished between
the null hypothesis H0 : Pxy = PxPy and the alternative hypothesis H1 : Pxy 6= PxPy.
This is achieved by comparing the test statistic ĤSICu [Hx,Hy, (Xn,Yn)] with a particular
threshold.

Theorem 2.10. (Asymptotic distribution of MMD, [Gretton et al., 2012a, Theorem. 19]).
If E [h] < ∞, given the set of observations Sn = {(x1,y1), . . . (xn,yn)} of size n drawn
i.i.d. from Pxy. When Pxy 6= PxPy, an unbiased estimate of HSIC [Hx,Hy,Pxy] given in
Equation (2.4.7) converges asymptotically in distribution to a Gaussian distribution with mean
zero and variance σ2

HSICxy

n1/2
(
HSIC [Hx,Hy,Pxy]− ĤSICu [Hx,Hy, (Xn,Yn)]

)
d−→ N

(
0, σ2

HSICxy

)
, (2.4.13)

and where
σ2

HSICxy = 16
(
Exi

(
Exj ,xq ,xrhijqr

)2
−HSIC [Hx,Hy,Pxy]

)
. (2.4.14)

Its empirical estimate is σ̂2
HSICxy

= 16{Rxy − (HSIC [Hx,Hy,Pxy])2} where

Rxy = 1
n

n∑
i=1

(n− 1)−1
3

∑
(j,q,r)∈in3 \{i}

hijqr

2

, (2.4.15)

and the index set in3\ {i} denotes the set of all 3−tuples drawn without replacement from the
set {1, . . . n} \ {i}.

When Pxy = PxPy, the U -statistic is degenerate, we have Eh = 0. In this case, HSIC [Hx,Hy,Pxy]
converges in distribution according to

ĤSICu [Hx,Hy, (Xn,Yn)] d−→ 1
n

∞∑
l=1

λl{z2
l − 2}, (2.4.16)

where z2
l ∼ χ2(1) i.i.d. and λl are the solutions to the eigenvalue equation∫

hijqrψl(Sj)dPSi,Sq ,Sr = λlψl(Sj). (2.4.17)

We then use the 1−α quantile of this distribution as the test threshold. Since the distribution
under H0 is complicated, we need to accurately approximate its quantile. There are several
possible strategies to do so analogous to the discussion for the MMD in Section 2.3.4.

The HSIC has been applied in many applications [Gretton et al., 2005a], including conditional
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independence [Fukumizu et al., 2007] and causal discovery [Peters et al., 2014, Zhang et al.,
2011].

2.5 Estimation of the Structure of the Graphical Models

In this section, we give a brief overview of the estimation of precision matrices and testing
conditional independence on undirected graphical models. More details account on this topic
can be found in Dawid [1979], Dempster [1972], Lauritzen [1996] and Whittaker [2009].

The importance of estimating covariance matrices and their inverses, called precision matrices,
is fundamental in modern multivariate analysis and in a wide array of scientific applications.
The covariance matrix reveals marginal correlations between variables, while the precision
matrix encodes conditional correlations between pairs of variables given the remaining vari-
ables.

Generally, graphical models blend probability theory and graph theory together. They are
powerful tools for analyzing relationships between a large number of random variables. A
graph is a set of vertices V = {1, . . . , p} and a set of edges E ⊆ V×V. An undirected
graphical model is a joint probability distribution, Px, defined on an undirected graph G,
where the vertices V in the graph index a collection of random variables x = {x1, . . .xp} and
the edges encode conditional independence relationships among random variables

Px ∝
∏
c∈C

Ψc(xc), (2.5.1)

where C is the set of maximal cliques in the graph and {Ψc}c∈C are non-negative potential
functions.

It is well known that recovering the structure of an undirected Gaussian graph is equivalent
to the recovery of the support of the precision matrix (Figure 2.3). Formally, suppose we
have a sample Xp = {x1, . . . ,xp} of dimension p and size n with the mean of each xi equal
to zero, and a covariance matrix of size p× p is Σij = E(xixTj ) such that x ∼ Np(0,Σ) then

(i, j) /∈ E ⇐⇒ xi ⊥⊥ xj |V \ {i, j} ⇐⇒ Σ−1
ij = 0. (2.5.2)

Testing conditional independence is an important concept in statistics, artificial intelligence,
and related fields [Dawid, 1979]. A common measure for the testing of independence of
two variables conditioned on a set of variables is the partial correlation ρx1x2·x3 . With the
assumption that all variables are multivariate Gaussian, the partial correlation is zero if and
only if x1 is conditionally independent from x2 given a set of variables, x3:

H0 : ρx1x2·x3 = 0 vs H1 : ρx1x2·x3 6= 0. (2.5.3)

The distribution of the sample partial correlation for a Gaussian distribution was described
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x1 x2

x3 Σ−1 =


x1 x2 x3

x1 ∗ ∗ 0
x2 ∗ ∗ ∗
x3 0 ∗ ∗


Figure 2.3 – For a given random variables x ∼ N3(0,Σ) with the covariance matrix Σ, we
consider the problem of non-parametric testing of the hypothesis of conditional independence
of In this case, we have x1 and x2 are independent conditioned on x3, this hypothesis is
denoted as x1 ⊥⊥ x3|x2.

by Fisher [1924] and we would reject H0 if the absolute value of a transformed test statistic
exceeded the critical value from the Student table evaluated at δ/2. The computational
complexity of the partial correlation is O(np2 + p3) which simplifies to O(np2) as n ≥ p.
However, as mentioned in [Kendall, 1946, Ch. 26 & 27], this hypothesis test makes a strong
assumption that the data are Gaussian distributed, and in particular that the fourth-order
moment is constrained.

Furthermore, tests of conditional independence can be made without any assumption of nor-
mality in the distribution, using for instance the permutation distribution of ρXY.Z or boot-
strap techniques, but this becomes too computationally expensive in practice when n tends
to be large.



Chapter 3

A Hypothesis Test of Relative
Similarity

Probabilistic generative models provide a powerful framework for representing data that
avoids the expense of manual annotation typically needed by discriminative approaches.
Model selection in this generative setting can be challenging, however, particularly when
likelihoods are not easily accessible. In that regard, this chapter addresses Research Ques-
tion 1 by proposing a statistical test of relative similarity, which is used to determine which of
two models generates samples that are significantly closer to a real-world reference dataset of
interest. We use as our test statistic the difference in maximum mean discrepancies (MMDs)
between the reference dataset and each model dataset, and derive a powerful, low-variance
test based on the joint asymptotic distribution of the MMDs between each reference-model
pair. In experiments on deep generative models, including the variational auto-encoder and
generative moment matching network, the tests provide a meaningful ranking of model per-
formance as a function of parameter and training settings.

Work corresponding to this chapter is published in:

• W. Bounliphone, E. Belilovsky, M. B. Blaschko, I. Antonoglou, and A. Gretton. A test
of relative similarity for model selection in generative models. In The 4th International
Conference on Learning Representations, 2016a.

This publication has received the Université Paris-Saclay STIC Doctoral School Best Scientific
Contribution Award.

Project: https://github.com/wbounliphone/relative_similarity_test & https://github.com/
eugenium/MMD.
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3.1 Introduction

Generative models based on deep learning techniques aim to provide sophisticated and ac-
curate models of data, without expensive manual annotation [Bengio, 2009, Kingma et al.,
2014]. This is especially of interest as deep networks tend to require comparatively large
training samples to achieve a good result [Krizhevsky et al., 2012]. Model selection within
this class of techniques can be a challenge, however.

First, likelihoods can be difficult to compute for some families of recently proposed models
based on deep learning [Goodfellow et al., 2014, Li et al., 2015b]. The current best method to
evaluate such models is based on Parzen-window estimates of the log likelihood [Goodfellow
et al., 2014, Section 5]. Second, if we are given two models with similar likelihoods, we typically
do not have a computationally inexpensive hypothesis test to determine whether one likelihood
is significantly higher than the other. Permutation testing or other generic strategies are often
computationally prohibitive, bearing in mind the relatively high computational requirements
of deep networks [Krizhevsky et al., 2012].

In this work, we provide an alternative strategy for model selection, based on a novel, non-
parametric hypothesis test of relative similarity. We treat the two trained networks being
compared as generative models [Goodfellow et al., 2014, Hinton et al., 2006, Salakhutdinov
and Hinton, 2009], and test whether the first candidate model generates samples significantly
closer to a reference validation set. The null hypothesis is that the ordering is reversed, and
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the second candidate model is closer to the reference (further, both samples are assumed to
remain distinct from the reference, as will be the case for any sufficiently complex modeling
problem).

Our model selection criterion is based on the maximum mean discrepancy (MMD) [Gretton
et al., 2006, 2012a], which represents the distance between embeddings of empirical distribu-
tions in a reproducing kernel Hilbert space (RKHS). The maximum mean discrepancy is a
metric on the space of probability distributions when a characteristic kernel is used [Fukumizu
et al., 2007, Gretton et al., 2006, Sriperumbudur et al., 2011], meaning that the distribution
embeddings are unique for each probability measure. Recently, the MMD has been used in
training generative models adversarially, [Dziugaite et al., 2015, Li et al., 2015b], where the
MMD measures the distance of the generated samples to some reference target set; it has
been used for statistical model criticism [Lloyd and Ghahramani, 2015]; and to minimize the
effect of nuisance variables on learned representations [Louizos et al., 2016].

Rather than train a single model using the MMD distance to a reference distribution, our
goal in this work is to evaluate the relative performance of two models, by testing whether
one generates samples significantly closer to the reference distribution than the other. This
extends the applicability of the MMD to problems of model selection and evaluation. Key to
this result is a novel expression for the joint asymptotic distribution of two correlated MMDs
(between samples generated from each model, and samples from the reference distribution).
Li et al. [2015a] have derived the joint distribution of a specific MMD estimator under the
assumption that the distributions are equal. By contrast, we derive the case in which the
distributions are unequal, as is expected due to irreducible model error.

We derive the joint asymptotic distribution of the MMDs in Section 3.2.1 and we formulate
a hypothesis test of relative similarity, to determine whether the difference in MMDs is sta-
tistically significant. Our first test benchmark is on a synthetic data for which the ground
truth is known (Section 3.3), where we verify that the test performs correctly under the null
and the alternative.

Finally, in Section 3.4, we demonstrate the performance of our test over a broad selection of
model comparison problems in the deep learning setting, by evaluating relative similarity of
pairs of model outputs to a validation set over a range of training regimes and settings. Our
benchmark models include the variational auto-encoder [Kingma and Welling, 2014] and the
generative moment matching network [Li et al., 2015b]. We first demonstrate that the test
performs as expected in scenarios where the same model is trained with different training set
sizes, and the relative ordering of model performance is known. We then fix the training set
size and change various architectural parameters of these networks, showing which models
are significantly preferred with our test. We validate the rankings returned by the test using
a separate set of data for which we compute alternate metrics for assessing the models, such
as classification accuracy and likelihood.

For the formal setup of this whole chapter, suppose that we have random variables x ∼ Px,
y ∼ Py and z ∼ Pz, that take values on (X ,Bx) , (Y,By) and (Z,Bz) respectively, here
X ,Y,Z are three separable metric and Bx,By,Bz are Borel σ-algebras. Furthermore, we
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define the kernel k : X ×X −→ R, with the corresponding feature map φ such that k(x,x′) =
〈φ(x), φ(x′)〉 and denote the corresponding RKHSs with H.

Let now reformulate our Research Question 1 into a mathematical setting. In Section 2.3,
we have shown that MMD is a metric on two probability distribution Px and Py. With this
choice, the problem we would like to solve is described as follows

Problem 3.1. Given separable RKHSs H with Px 6= Py and Px 6= Pz, the statistical relative
similarity test TMMD : X n ×X n ×X n 7→ {0, 1} is used to test the null hypothesis

HMMD
0 : MMD [H,Px,Py] ≤ MMD [H,Px,Pz] , (3.1.1)

versus the alternative hypothesis

HMMD
1 : MMD [H,Px,Py] > MMD [H,Px,Pz] , (3.1.2)

at a given significance level α.

3.2 A Test of Relative Similarity

In this section, we calculate two dependent MMD statistics and derive the joint asymptotics
distribution of this dependent quantities, which is used to construct a consistent test for the
Problem 3.1. This is a direct application of Theorem 2.4 using the definition of MMD written
as a U -statistic of degree 2.

3.2.1 Joint Asymptotic Distribution of Two Correlated MMD

In this section, we derive our statistical test for relative similarity as measured by MMD. In
order to maximize the statistical efficiency of the test, we will reuse samples from the reference
distribution, denoted by Px, to compute the MMD estimates with two candidate distributions
Py and Pz. We consider two MMD estimates M̂MD2

u [H,Xn,Yn] and M̂MD2
u [H,Xn,Zn],

and as the data sample Xn is identical between them, these estimates will be correlated. We
therefore first derive the joint asymptotic distribution of these two metrics and use this to
construct a statistical test.

Theorem 3.1 (Joint asymptotic distribution of two correlated MMD). We assume that
Px 6= Py, Px 6= Pz, E(k(xi,xj)) <∞, E(k(yi,yj)) <∞ and E(k(xi,yj)) <∞, then

n1/2

M̂MD2
u [H,Xn,Yn]

M̂MD2
u [H,Xn,Zn]

− (MMD2 [H,Px,Py]
MMD2 [H,Px,Pz]

) (3.2.1)

d−→ N2

(0
0

)
,

 σ2
MMD2

xy
σMMD2

xy,xz

σMMD2
xy,xz

σ2
MMD2

XZ

 ,
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where σ2
MMD2

xy
, σ2

MMD2
XZ

are respectively the variances of MMD2 [H,Px,Py] and MMD2 [H,Px,Pz]
are as in Equation (2.3.10) and the covariance term σMMD2

xy,xz
of MMD2 [H,Px,Py] and

MMD2 [H,Px,Pz] is as in Equation (2.1.9).

Proof: Equation (3.2.1) is a direct application of [Hoeffding, 1963, Theorem 7.1], described in
Theorem 2.4, which gives the joint asymptotic distribution of U -statistics, which here is the
MMD statistics.

Theorem 3.2 (Empirical estimate of the variance/covariance of MMD). We note [K̃xx]ij =
[Kxx]ij for all i 6= j and [Kxx]ij = 0 for j = i. Same for Kyy and Kzz. The empirical
estimate of the variance term σ2

MMD2
xy

of MMD2 [H,Px,Py] in Equation (3.2.1), neglecting
higher order terms, can be computed in O(n2) and is

σ̂2
MMD2

xy
= 4(n− 2)
n(n− 1)

{ 1
n(n− 1)2 1T K̃xxK̃xx1−

( 1
n(n− 1)1T K̃xx1

)2
(3.2.2)

− 2
( 1
n2(n− 1)1T K̃xxKxy1− 1

n3(n− 1)1T K̃xx11TKxy1
)

+ 1
n(n− 1)2 1T K̃yyK̃yy1−

( 1
n(n− 1)1T K̃yy1

)2

− 2
( 1
n2(n− 1)1T K̃yyKxy1− 1

n3(n− 1)1T K̃yy11TKxy1
)

+ 1
n3 1TKxyKxy1− 2

( 1
n2 1TKxy1

)2
+ 1
n3 1TKxyKxy1

}
,

where 1 is a vector of 1s of size n× 1. The empirical estimate of the variance term σ2
MMD2

XZ

is similar to Equation (3.2.2) by substituting Kxy and K̃yy by Kxz and K̃zz, respectively.
Moreover, the empirical estimate of covariance σMMD2

xy,xz
in Equation (3.2.1), neglecting

higher order terms, can be computed in O(n2) and is

σ̂MMD2
xy,xz

= 4(n− 2)
n(n− 1)

{ 1
n(n− 1)2 1T K̃xxK̃xx1−

( 1
n(n− 1)1T K̃xx1

)2
(3.2.3)

−
( 1
n2(n− 1)1T K̃xxKxz1−

1
n3(n− 1)1T K̃xx11TKxz1

)
−
( 1
n2(n− 1)1T K̃xxKxy1− 1

n3(n− 1)1T K̃xx11TKxz1
)

+
( 1
n3 1TKyxKxz1−

1
n4 1TKxy11TKxz1

)}
.

Proof: A complete proof is given in Section 3.6.1.
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3.2.2 A Statistical Test via Two Uncorrelated MMD Statistics

Based on the empirical distribution from Equation (3.2.1), we now describe a statistical test
to solve the following problem:

Problem 3.2 (Relative similarity test). Given observations Xn := {x1, ...,xn}, Yn :=
{y1, ...,yn} and Zn := {z1, ..., zn} i.i.d. from Px, Py and Pz, respectively, such that Px 6= Py,
Px 6= Pz, we test the hypothesis that Px is closer to Pz than Py, i.e. we test the null hypothesis

H0 : MMD [H,Px,Py] ≤ MMD [H,Px,Pz] (3.2.4)

versus the alternative hypothesis

H1 : MMD [H,Px,Py] > MMD [H,Px,Pz] (3.2.5)

at a given significance level α

The test statistic M̂MD2
u [H,Xn,Yn]− M̂MD2

u [H,Xn,Zn] is used to compute the p-value for
the standard normal distribution. The test statistic is obtained by rotating the joint distri-
bution (cf. Equation 3.2.1) by π/4 about the origin, and integrating the resulting projection
on the first axis. Denote the asymptotically normal distribution of

n1/2
[
M̂MD2

u [H,Xn,Yn] ; M̂MD2
u [H,Xn,Zn]

]T
asN2 (µ,Σ). The resulting distribution from

rotating by π/4 and projecting onto the primary axis is N
(
[Qµ]1, [QΣQT ]11

)
where Q =

√
2

2

(
1 −1
1 1

)
is the rotation matrix by π/4 and

[Qµ]1 =
[√

2
2

(
1 −1
1 1

)(
MMD2 [H,Px,Py]
MMD2 [H,Px,Pz]

)]
1

(3.2.6)

=
√

2
2
[
MMD2 [H,Px,Py]−MMD2 [H,Px,Pz]

]
; (3.2.7)

[QΣQT ]11 = 1
2

(1 −1
1 1

) σ2
MMD2

xy
σMMD2

xy,xz

σMMD2
xy,xz

σ2
MMD2

xz

( 1 1
−1 1

)
11

(3.2.8)

= 1
2
(
σ2

MMD2
xy

+ σ2
MMD2

xz
− 2σMMD2

xy,xz

)
, (3.2.9)

with Q is the rotation matrix by π/4. Then, the p-values for testing H0 versus H1 are

p ≤ Φ

−MMD2 [H,Px,Py]−MMD2 [H,Px,Pz]√
σ2

MMD2
xy

+ σ2
MMD2

xz
− 2σMMD2

xy,xz

 , (3.2.10)

where Φ is the cumulative distribution function of a standard normal distribution.

In practice, the terms in Equation (3.2.10) are replaced by their empirical expectations, which
are given in Lemma 2.5 and Theorem 3.2.
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Figure 3.1 – (a) Illustration of the synthetic dataset where x, y and z are, respectively,
Gaussian distributed with means µx = [0, 0]T , µy = [−20,−20]T , µz = [20, 20]T and with
variance ( 1 0

0 1 ). (b) For n = 1000, we fixed µy = [−5,−5], µz = [5, 5] and varied µx such that
µx = (1− γ)µy + γµz, for 41 regularly spaced values of γ ∈ [0.1, 0.9] versus p-values for 100
repeated tests.

In Section 3.6.3, we prove that Equation (3.2.9), obtained by first performing a rotation
followed by integration into the first axis, is equivalent to calculating the variance of the
difference M̂MD2

u [H,Xn,Yn]− M̂MD2
u [H,Xn,Zn], which is a U -statistic.

3.3 Experimental Validation

We verify the validity of the hypothesis test described above using a synthetic data set in
which we can directly control the relative similarity between distributions.

We constructed three Gaussian distributions as illustrated in Figure. 3.1a. These Gaussian
distributions are specified with different means so that we can control the degree of relative
similarity between them. The question is whether the similarity between x and z is greater
than the similarity between x and y. In these experiments, we used a Gaussian kernel
with bandwidth selected as the median pairwise distance between data points, and we fixed
µy = [−20,−20], µz = [20, 20] and varied µx such that µx = (1−γ)µy +γµz, for 41 regularly
spaced values of γ ∈ [0.1, 0.9] (avoiding the degenerate cases Px = Py or Px = Pz).

Figure 3.1b shows the p-values of the relative similarity test for different distribution. When γ
is varying around 0.5, i.e., when M̂MD2

u [H,Zn,Yn] is almost equal to M̂MD2
u [H,Xn,Zn], the

p-values quickly transition from 1 to 0, indicating strong discrimination of the test. Figure 3.2
shows an empirical scatter plot of the pairs of MMD statistics along with a 2σ iso-curve of
the estimated distribution, demonstrating that the parametric Gaussian distribution is well
calibrated to the empirical values.
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Figure 3.2 – The empirical scatter plot of the joint MMD statistics with n = 1000 for 200
repeated tests, along with the 2σ iso-curve of the analytical Gaussian distribution estimated
by Equation (3.2.1). The analytical distribution closely matches the empirical scatter plot,
verifying the correctness of the variances.

3.4 Model Selection for Deep Unsupervised Neural Networks

An important application of the problem of relative similarity(Problem 3.2) can be found
in recent work on unsupervised learning with deep neural networks [Bengio et al., 2014,
Goodfellow et al., 2014, Kingma and Welling, 2014, Larochelle and Murray, 2011, Li et al.,
2015b, Salakhutdinov and Hinton, 2009]. As noted by several authors, the evaluation of
generative models is a challenging open problem [Goodfellow et al., 2014, Li et al., 2015b],
and the distributions of samples from these models are very complex and difficult to evaluate.
The performance of the relative test of similarity can be used to compare different model
settings, or even model families, in a statistically valid framework. To compare two models
using our test, we generate samples from both, and compare these to a set of real target data
samples that were not used to train either model.

In the experiments, in the sequel, we focus on the recently introduced variational auto-encoder
(VAE) [Kingma and Welling, 2014] and the generative moment matching networks (GMMN)
[Li et al., 2015b]. The former trains an encoder and decoder network jointly minimizing
a regularized variational lower bound [Kingma and Welling, 2014]. While the latter class
of models is purely generative minimizing an MMD based objective, this model works best
when coupled with a separate auto-encoder which reduces the dimensionality of the data.
An architectural schematic for both classes of models is provided in Figure 3.3. Both these
models can be trained using standard backpropagation [Rumelhart et al., 1988]. Using the
latent variable prior we can directly sample the data distribution of these models without
using MCMC procedures [Hinton et al., 2006, Salakhutdinov and Hinton, 2009].

We use the MNIST and FreyFace datasets for our analysis [Goodfellow et al., 2014, Kingma
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and Welling, 2014, LeCun et al., 1998]. We first demonstrate the effectiveness of our test
in a setting where we have a theoretical basis for expecting superiority of one unsupervised
model versus another. Specifically, we use a setup where more training samples were used to
create one model versus the other. We find that the relative test of similarity agrees with the
expected results (models trained with more data generalize better). We then demonstrate
how the relative test of similarity can be used in evaluating network architecture choices, and
we show that our test strongly agrees with other established metrics, but in contrast can
provide significance results using just the validation data while other methods may require
an additional test set.

Several practical matters must be considered when applying the relative similarity test. The
selection of kernel can affect the quality of results, particularly more suitable kernels can give
a faster convergence. In this work we extend the logic of the median heuristic [Gretton et al.,
2012b] for bandwidth selection by computing the median pairwise distance between samples
from Px and Pz and averaging that with the median pairwise distance between samples
from Px and Py, which helps to maximize the difference between the two MMD statistics.
Although the derivations for the variance of our statistic hold for all cases, the estimates
require asymptotic arguments and thus a sufficiently large n. Selecting the kernel bandwidth
in an appropriate range can therefore substantially increase the power of the test at a fixed
sample size. While we observed the median heuristic to work well in our experiments, there
are cases where alternative choices of kernel can provide greater power: for instance, the
kernel can be chosen to maximize the expected test power on a held-out dataset [Gretton
et al., 2012b].

3.4.1 Variational Auto-Encoder Sample Size and Architecture Experiments

We use the architecture from Kingma and Welling [2014] with a hidden layer at both the
encoder and decoder and a latent variable layer as shown in Figure 3.3a. We use sigmoidal
activation for the hidden layers of encoder and decoder. For the FreyFace data, we use a
Gaussian prior on the latent space and data space. For MNIST, we used a Bernoulli prior for
the data space. We fix the training set size of the second auto-encoder to 300 images for the
FreyFace data and 1500 images for the MNIST data. We vary the number of training samples
for the first auto-encoder. We then generate samples from both auto-encoders and compare
them using the relative test of similarity to a held out set of data. We use 1500 FreyFace
samples as the target in the relative test of similarity and 15000 images from MNIST. Since
a single sample of the data might lead to better generalization performance by chance, we
repeat this experiment multiple times and record whether the relative similarity test indicated
a network is preferred or if it failed to reject the null hypothesis. The results are shown in
Figure 3.4 which demonstrates that we are closely following the expected model preferences.
Additionally for MNIST we use another separate set of supervised training and test data. We
encode this data using both auto-encoders and use logistic regression to obtain a classification
accuracy. The indicated accuracies closely match the results of the relative similarity test,
further validating the test. We consider model selection between networks using different
architectures. We train two encoders, one a fixed reference model (400 hidden units and 20
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Decoder Hidden Layer

Input

Encoder Hidden Layer

Latent Variables

Data Space Samples

(a) Variational auto-encoder reference model

GMMN Hidden Layer 3

Prior

GMMN Hidden Layer 1

GMMN Hidden Layer 2

Latent Space Samples

GMMN Hidden Layer 4

Encoder HIdden Layer 1

Encoder Hidden Layer 2

Decoder Hidden Layer 1

Decoder Hidden Layer 2

Input Data Space Samples

(b) Auto-Encoder + GMMN reference model

Figure 3.3 – In Figure 3.3a, we have 400 hidden nodes (both encoder and decoder) and 20
latent variables in the reference model for our experiments. In Figure 3.3b, we illustate that
the auto-encoder (indicated in orange) is trained separately and has 1024 and 32 hidden nodes
in decode and encode hidden layers. The GMMN has 10 variables generated by the prior, and
the hidden layers have 64, 256, 256, 1024 nodes in each layer respectively. In both networks
red arrows indicate the data flow during sampling

.
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Figure 3.4 – In Figure 3.4a, we show the
effect of varying the training set size of
one auto-encoder trained on MNIST data.
In Figure 3.4c As a secondary validation
we compute the classification accuracy of
MNIST on a separate train/test set encoded
using encoder 1 and encoder 2. In Fig-
ure 3.4b We then show the effect of vary-
ing the training set size of one auto-encoder
using the FreyFace data. We note that due
to the size of the FreyFace dataset, we limit
the range of ratios used. From this figure we
see that the results of the relative similarity
test match our expectation: more data pro-
duces models which more closely match the
true distribution.
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Hidden Latent Result Accuracy (%) Accuracy (%) Lower Bound Lower Bound
VAE 1 VAE 1 RelativeMMD VAE 1 VAE 2 VAE 1 VAE 2
200 5 Favor VAE 2 92.8 ± 0.3 94.7 ± 0.2 -126 -97
200 20 Favor VAE 2 92.6± 0.3 94.5 ± 0.2 -115 -105
400 50 Favor VAE 1 94.6 ± 0.2 94.0 ± 0.2 -99.6 -123.44
800 20 Favor VAE 1 94.8 ± 0.2 93.9 ± 0.2 -111 -115
800 50 Favor VAE 1 94.2 ± 0.3 94.5 ± 0.2 -101 -103

Table 3.1 – We compare several variational auto encoder (VAE) architectural choices for the
number of hidden units in both decoder and encoder and the number of latent variables
for the VAE. The reference encoder, denoted encoder 2, has 400 hidden units and 20 latent
variables. We denote the competing architectural models as encoder 1. We vary the number
of hidden nodes in both the decoder and encoder and the number of latent variables. Our test
closely follows the performance difference of the auto-encoder on a supervised task (MNIST
digit classification) as well as the variational lower bound on a withheld set of data. The data
used for evaluating the Accuracy and Lower Bound is separate from that used to train the
auto-encoders and for the hypothesis test.

latent variables), and the other varying as specified in Table 3.1. 25000 images from the
MNIST data set were used for training. We use another 20000 images as the target data in
the relative test of similarity. Finally, we use a set of 10000 training and 10000 test images for
a supervised task experiment. We use the labels in the MNIST data and perform training and
classification using an `2-regularized logistic regression on the encoded features. In addition we
use the supervised task test data to evaluate the variational lower bound of the data under the
two models [Kingma and Welling, 2014]. We show the result of this experiment in Table 3.1.
For each comparison we take a different subset of training data which helps demonstrate the
variation in lower bound and accuracy when re-training the reference architecture. We use a
significance value of 5% and indicate when the test favors one auto-encoder over another or
fails to reject the null hypothesis. We find that the evaluation of the relative test of similarity
for the models closely matches performance on the supervised task and the test set variational
lower bound.

3.4.2 Generative Moment Matching Networks Architecture Experiments

We demonstrate our hypothesis test on a different class of deep generative models called
Generative Moment Matching Networks (GMMN) [Li et al., 2015b]. This recently introduced
model has shown competitive performance in terms of test set likelihood on the MNIST data.
Furthermore the training of this model is based on the MMD criterion. Li et al. [2015b]
proposes to use that model along with an auto-encoder, which is the setup we employ in this
work. Here a standard auto-encoder model is trained on the data to obtain a low dimensional
representation, then a GMMN network is trained on the latent representations (Figure 3.3).

We use the relative similarity test to evaluate various architectural choices in this new class
of models. We start from the baseline model specified in Li et al. [2015b] and associated
software. The details of the reference model are specified in Figure 3.3.
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RelativeMMD Preference
Experimental Condition (A/B) A Inconclusive B Avg Likelihood A Avg Likelihood B
Dropout/No Dropout 199 17 360 -9.01 ± 55.43 76.76 ± 42.83
More/Fewer GMMN Layers 105 14 393 -73.99 ± 40.96 249.6 ± 8.07
More/Fewer Nodes 450 13 113 125.2 ± 43.4 -57 ± 49.57
More/Fewer AE layers 231 21 324 41.78 ± 44.07 25.96 ± 55.85

Table 3.2 – For each experimental condition (e.g. dropout or no dropout) we show the number
of times when the relative test of similarity prefers models in group 1 or 2 and number of
inconclusive tests. We use the validation set as the target data for Relative MMD. An average
likelihood for the MNIST test set for each group is shown with error bars. We can see that
the MMD choices are in agreement with likelihood evaluations. Particularly we identify that
models with fewer GMMN layers and models with more nodes have more favorable samples,
which is confirmed by the likelihood results.

We vary the number of auto-encoder hidden layers (1 to 4), generative model layers (1, 4, or
5), the number of network nodes (all or 50% of the reference model), and use of drop-out on
the auto-encoder. We use the same training set of 55000, validation set of 5000 and test set
of 10000 as in Goodfellow et al. [2014], Li et al. [2015b]. In total we train 48 models. We
use these to compare 4 simplified binary network architecture choices using the relative test
of similarity: using dropout on the auto-encoder, few (1) or more (4 or 5) GMMN layers,
few (1 or 2) or more (3 or 4) auto-encoder layers, and the number of network nodes. We use
our test to compare these model settings using the validation set as the target in the relative
similarity test, and samples from the models as the two sources. To validate our results we
compare it to likelihoods computed on the test set. The results are shown in Table 3.2. We
see that the likelihood results computed on a separate test set follow the conclusions obtained
from MMD on the validation set. Particularly, we find that using fewer hidden layers for the
GMMN and more hidden nodes generally produces better models.

3.4.3 Discussion

In these experiments we have seen that the relative similarity test can be used to compare
deep generative models obtaining judgments aligned with other metrics. Comparisons to
other metrics are important for verifying our test is sensible, but it can occlude the fact that
MMD is a valid evaluation technique on its own. When evaluating only sample generating
models where likelihood computation is not possible, MMD is an appropriate and tractable
metric to consider in addition to Parzen-Window log likelihoods and visual appearance of
the samples. In several ways it is potentially more appropriate than Parzen-windows as it
allows one to consider directly the discrepancy between the test data samples and the model
samples while allowing for significance results. In such a situation, comparing the performance
of several models using the MMD against a single set of test samples, the RelativeMMD test
can provide an automatic significance value without expensive cross-validation procedures.

Gaussian kernels are closely related to Parzen-window estimates, thus computing an MMD in
this case can be considered related to comparing Parzen window log-likelihoods. The MMD
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gives several advantages, however. First, the asymptotics of MMD are quite different to
Parzen-windows, since the Parzen-window bandwidth shrinks as m grows. Asymptotics of
relative tests with shrinking bandwidth are unknown: even for two samples this is challenging
[Krishnamurthy et al., 2015]. Other two sample tests are not easily extendable to relative
tests [Friedman and Rafsky, 1979, Hall and Tajvidi, 2002, Rosenbaum, 2005]. This is because
the tests above rely on graph edge counting or nearest neighbor-type statistics, and null
distributions are obtained via combinatorial arguments which are not easily extended from
two to three samples. MMD is a U -statistic, hence its asymptotic behavior is much more
easily generalized to multiple dependent statistics.

There are two primary advantages of the MMD over the variational lower bound, where it
is known [Kingma and Welling, 2014]: first, we have a characterization of the asymptotic
behavior, which allows us to determine when the difference in performance is significant;
second, comparing two lower bounds produced from two different models is unreliable, as we
do not know how conservative either lower bound is.

3.5 Conclusion

In this chapter, we have presented a study of a hypothesis test of relative similarity of dis-
tributions, and its application to model selection. We have described a novel non-parametric
statistical hypothesis test for relative similarity based on the Maximum Mean Discrepancy.
The test is consistent, and the computation time is quadratic. Our proposed test statistic
is theoretically justified for the task of comparing samples from arbitrary distributions as
it can be shown to converge to a quantity which compares all moments of the two pairs of
distributions.

We evaluate test performance on synthetic data, where the degree of similarity can be con-
trolled. Our experimental results on model selection for deep generative networks show that
the relative test of similarity can be a useful approach to comparing such models. There
is a strong correspondence between the test results and the expected likelihood, prediction
accuracy, and variational lower bounds on the models tested. Moreover, our test has the
advantage over these alternatives of providing guarantees of statistical significance to its con-
clusions. This suggests that the relative similarity test will be useful in evaluating hypotheses
about network architectures, for example that AE-GMMN models may generalize better when
fewer layers are used in the generative model.

3.6 Detailed Proofs

3.6.1 Proof of Theorem 3.2

Proof: We have that Equations (3.2.2) and (3.2.3) are a direct application of Theorems 2.1
and 2.3, respectively. We remind that the corresponding U -statistic kernels of degree 2 for
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M̂MD2
u [H,Xn,Yn] and M̂MD2

u [H,Xn,Zn] are, respectively (cf. Equation (2.3.8)),

h (ui,uj) = k(xi,xj) + k(yi,yj)− k(xi,yj)− k(xj ,yi), with u = (x,y) ∼ Px × Py, (3.6.1)
g (vi,vj) = k(xi,xj) + k(zi, zj)− k(xi, zj)− k(xj , zi), with v = (x, z) ∼ Px × Pz. (3.6.2)

Then the variance/covariance for a U -statistic with a kernel of order 2 is given by

Var
(

M̂MD2
u

)
= 4(n− 2)
n(n− 1)ζ1 + 2

n(n− 1)ζ2, (3.6.3)

where ζ1 and ζ2 are given as in Equation (2.1.7). Moreover, Equation (3.6.3) with neglecting
higher terms can be written as

V ar

(
M̂MD2

u

)
= 4(n− 2)
n(n− 1)ζ1 +O(n−2). (3.6.4)

In Sutherland et al. [2016] and Sutherland [2016], they develop our approach including an
estimate of ζ2.

We now give an explicit expression for ζ1 for the variance of M̂MD2
u [H,Xn,Yn] and the

covariance of MMD2 [H,Px,Py] and MMD2 [H,Px,Pz] which follow from Equation (2.1.7).
We note [K̃xx]ij = [Kxx]ij for all i 6= j and [Kxx]ij = 0 for j = i. Same for Kyy and Kzz.
We will also make use of the fact that k(xi, xj) = 〈φ(xi), φ(xj)〉 for an appropriately chosen
inner product, and function φ.

Variance of M̂MD2
u [H,Xn,Yn]

ζ1 = Var [Eu2 [h(u1,u2)]] (3.6.5)

= Eu1

[
Eu2

[{
h(u1,u2)

}2]]
−
(
MMD2 [H,Px,Py]

)2
(3.6.6)

= Ex1,y1

[{
Ex2,y2 [k(x1,x2) + k(y1,y2)− k(x1,y2)− k(x2,y1)]

}2]
(3.6.7)

−
(
MMD2 [H,PX,PY]

)2

= Ex1,y1

[{
Ex2 [k(x1,x2)] + Ey2 [k(y1,y2)]− Ey2 [k(x1,y2)]− Ex2 [k(x2,y1)]

}2]
(3.6.8)

−
(
MMD2 [H,PX,PY]

)2
.

Let first calculate the term Ex2 [k(x1,x2)] in Equation (3.6.8). If the distribution from Px
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has a density f , then

Ex2 [k(x1,x2)] = Ex2 [〈φ(x1), φ(x2)〉] (3.6.9)

=
∫
R
〈φ(x1), φ(x2)f(x2)dx2〉

= 〈φ(x1),
∫
R
φ(x2)f(x2)dx2〉

= 〈φ(x1),x〉,

where x is by definition the mean of the sample x. Similarly, we have that the remaining
terms in Equation (3.6.8) are

Ey2 [k(y1,y2)] = 〈φ(y1),y〉 (3.6.10)
Ey2 [k(x1,y2)] = 〈φ(x1),y〉 (3.6.11)
Ex2 [k(x2,y1)] = 〈φ(y1),x〉. (3.6.12)

Finally, we have that

ζ1 = Var [Eu2 [h(u1,u2)]] (3.6.13)

= Ex1,y1

[{
〈φ(x1),x〉+ 〈φ(y1),y〉 − 〈φ(x1),y〉 − 〈x, φ(y1)〉

}2]
(3.6.14)

−
(
MMD2 [H,Px,Py]

)2
. (3.6.15)

We note many terms in expansion of the squares in Equation (3.6.15) above cancel out due to
independence. For example Ex1,y1 [〈φ(y1),y〉〈φ(x1),y〉]−Ey1 [〈φ(y1),y〉]Ex1 [〈φ(x1),y〉] = 0.
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We can thus simplify to the following expression for ζ1.

ζ1 = Ex1,y1

[{
〈φ(x1),x〉+ 〈φ(y1),y〉 − 〈φ(x1),y〉 − 〈x, φ(y1)〉

}2]
−
(
MMD2 [H,Px,Py]

)2

(3.6.16)
= Ex1,y1

[
〈φ(x1),x〉2 + 2〈φ(x1),x〉〈φ(y1),y〉 − 2〈φ(x1),x〉〈φ(x1),y〉 (3.6.17)
− 2〈φ(x1),x〉〈φ(y1),x〉+ 〈φ(y1),y〉2

− 2〈φ(y1),y〉〈φ(x1),y〉 − 2〈φ(y1),y〉〈φ(y1),x〉
+ 〈φ(x1),y〉2 + 2〈φ(x1),y〉〈φ(y1),x〉

+ 〈φ(y1),x〉2
]
−
(
MMD2 [H,PX,PY]

)2

= Ex1,y1

[
〈x1,x〉2 − 2〈x1,x〉〈x1,y〉+ 〈y1,y〉2 (3.6.18)
− 2〈y1,y〉〈y1,x〉+ 〈x1,y〉2 + 〈y1,x〉2

]
− centering terms

= Ex1 [〈φ(x1),x〉2]− Ex1 [〈φ(x1),x〉]2 (3.6.19)
− 2(Ex1 [〈φ(x1),x〉〈φ(x1),y〉]− Ex1 [〈φ(x1),x〉] Ex1 [〈φ(x1),y〉])
+ Ey1 [〈φ(y1),y〉2]− Ey1 [〈φ(y1),y〉]2

− 2(Ey1 [〈φ(y1),y〉〈φ(y1),x〉]− Ey1 [〈φ(y1),y〉] Ey1 [〈φ(y1),x〉])
+ Ex1 [〈φ(x1),y〉2]− Ex1 [〈φ(x1),y〉]2

+ Ey1 [〈φ(y1),x〉2]− Ey1 [〈φ(y1),x〉]2.

We next substitute the kernel MMD definition from Equation (2.3.6), expand the terms in
the expectation, and determine their empirical estimates in order to compute the variances
in practice. Now, let derive the twelve terms of Equation (3.6.19)

1.

Ex1 [〈φ(x1),x〉2] ≈ 1
n

n∑
i=1
〈φ(xi),

1
n− 1

n∑
j=1
j 6=i

φ(xj)〉〈φ(xi),
1

n− 1

n∑
k=1
k 6=i

φ(xk)〉 (3.6.20)

= 1
n(n− 1)2

n∑
i=1

n∑
j=1
j 6=i

n∑
k=1
k 6=i

k(xi,xj)k(xi,xk)

= 1
n(n− 1)2 1K̃xxK̃xx1.

2.

Ex1 [〈φ(x1),x〉]2 ≈ 1
n2(n− 1)2

 n∑
i=1

n∑
j=1
j 6=i

〈φ(xi), φ(xj)〉


2

(3.6.21)

= 1
n2(n− 1)2

(
1T K̃xx1

)2
.
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3.

Ex1 [〈φ(x1),x〉〈φ(x1),y〉] ≈ 1
n2(n− 1)

n∑
i=1

n∑
j=1
j 6=i

n∑
k=1
〈φ(xi), φ(xj)〉〈φ(xi), φ(yk)〉 (3.6.22)

= 1
n2(n− 1)1T K̃xxKxy1.

4.

Ex1 [〈φ(x1),x〉] Ex1 [〈φ(x1),y〉] ≈ 1
n(n− 1)

n∑
i=1

n∑
j=1
j 6=i

〈φ(xi), φ(xj)〉 ×
1
n2

n∑
i=1

n∑
j=1
〈φ(xi), φ(yj)〉

(3.6.23)

= 1
n3(n− 1)1T K̃xx11TKxy1.

5.

Ey1 [〈φ(y1),y〉2] ≈ 1
n(n− 1)2

n∑
i=1

n∑
j=1
j 6=i

n∑
k=1
k 6=i

〈φ(yi), φ(yj)〉〈φ(yi), φ(yk)〉 (3.6.24)

= 1
n(n− 1)2 1T K̃yyK̃yy1.

6.

Ey1 [〈φ(y1),y〉]2 ≈ 1
n(n− 1)

n∑
i=1

n∑
j=1
j 6=i

〈φ(yi), φ(yj)〉 ×
1

n(n− 1)

n∑
i=1

n∑
j=1
j 6=i

〈φ(yi), φ(yj)〉

(3.6.25)

= 1
n2(n− 1)2

(
1T K̃yy1

)2
.

7.

Ey1 [〈φ(y1),y〉〈φ(y1),x〉] ≈ 1
n2(n− 1)

n∑
i=1

n∑
j=1
j 6=i

n∑
k=1
〈φ(yi), φ(yj)〉〈φ(yi), φ(xk)〉 (3.6.26)

= 1
n2(n− 1)1T K̃yyKxy1.
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8.

Ey1 [〈φ(y1),y〉] Ey1 [〈φ(y1),x〉] ≈ 1
n(n− 1)

n∑
i=1

n∑
j=1
j 6=i

〈φ(yi), φ(yj)〉 ×
1
n2

n∑
i=1

n∑
j=1
〈φ(yi), φ(xj)〉

(3.6.27)

= 1
n3(n− 1)1T K̃yy11TKxy1.

9.

Ex1 [〈φ(x1),y〉2] ≈ 1
n3

n∑
i=1

n∑
j=1

n∑
k=1
〈φ(xi), φ(yj)〉〈φ(xi), φ(yk)〉 (3.6.28)

= 1
n3 1TKxyKxy1.

10.

Ex1 [〈φ(x1),y〉]2 ≈ 1
n2

n∑
i=1

n∑
j=1
〈φ(xi), φ(yj)〉 ×

1
n2

n∑
i=1

n∑
j=1
〈φ(xi), φ(yj)〉 (3.6.29)

= 1
n4

(
1TKxy1

)2
.

11.

Ey1 [〈φ(y1),x〉2] ≈ 1
n3

n∑
i=1

n∑
j=1

n∑
k=1
〈φ(yi), φ(xj)〉〈φ(yi), φ(xk)〉 (3.6.30)

= 1
n3 1TKxyKxy1.

12.

Ey1 [〈φ(y1),x〉]2 ≈ 1
n2

n∑
i=1

n∑
j=1
〈φ(yi), φ(xj)〉 ×

1
n2

n∑
i=1

n∑
j=1
〈φ(yi), φ(xj)〉 (3.6.31)

= 1
n4

(
1TKxy1

)2
.

Finally, substituting empirical expectations over the data sample for the population expecta-
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tions in Equation (3.6.19) gives

σ̂2
MMD2

XY
= 4(n− 2)
n(n− 1)

{ 1
n(n− 1)2 1T K̃xxK̃xx1−

( 1
n(n− 1)1T K̃xx1

)2
(3.6.32)

− 2
( 1
n2(n− 1)1T K̃xxKxy1− 1

n3(n− 1)1T K̃xx11TKxy1
)

+ 1
n(n− 1)2 1T K̃yyK̃yy1−

( 1
n(n− 1)1T K̃yy1

)2

− 2
( 1
n2(n− 1)1T K̃yyKxy1− 1

n3(n− 1)1T K̃yy11TKxy1
)

+ 1
n3 1TKxyKxy1− 2

( 1
n2 1TKxy1

)2
+ 1
n3 1TKxyKxy1

}
.

Using the order of operations implied by the parentheses in the following Equation (3.6.33),
the computational cost of the empirical variance of is O(n2).

σ̂2
MMD2

XY
= 4(n− 2)
n(n− 1)

{ 1
n(n− 1)2 (1T K̃xx)(K̃xx1)−

( 1
n(n− 1)

(
(1T K̃xx)1

))2
(3.6.33)

− 2
( 1
n2(n− 1)(1T K̃xx)(Kxy1)− 1

n3(n− 1)
(
(1T K̃xx)1

) (
1T (Kxy1)

))
+ 1
n(n− 1)2 (1T K̃yy)(K̃yy1)−

( 1
n(n− 1)

(
(1T K̃yy)1

))2

− 2
( 1
n2(n− 1)(1T K̃yy)(Kxy1)− 1

n3(n− 1)
(
(1T K̃yy)1

) (
1T (Kxy1)

))
+ 1
n3 (1TKxy)(Kxy1)− 2

( 1
n2

(
(1TKxy)1

))2
+ 1
n3 (1TKxy)(Kxy1)

}
.

Covariance of M̂MD2
u [H,Xn,Yn] and M̂MD2

u [H,Xn,Zn] Using the same derivation than
for the variance of M̂MD2

u [H,Xn,Yn] above, we have

ζ1 = Ex1,y1,z1 [Ex2,y2,z2 [h(x1,y1)g(x1, z1)]]−
(
MMD2 [H,Px,Py] MMD2 [H,Px,Pz]

)
(3.6.34)

= Ex1,y1,z1 [(〈φ(x1),x〉+ 〈φ(y1),y〉 − 〈φ(x1),y〉 − 〈φ(x1),y)〉)
(〈φ(x1),x)〉+ 〈φ(z1), z〉 − 〈φ(x1), z〉 − 〈φ(x1), z〉)]

−MMD2 [H,Px,Py] MMD2 [H,Px,Pz]

= Ex1

[
〈φ(x1),x〉2

]
− Ex1 [〈φ(x1),x〉]2 (3.6.35)

− (Ex1 [〈φ(x1),x〉〈φ(x1), z〉]− Ex1 [〈φ(x1),x〉] Ex1 [〈φ(x1), z〉])
− (Ex1 [〈φ(x1),x〉〈φ(x1),y〉]− Ex1 [〈φ(x1),x〉] Ex1 [〈φ(x1),y〉])
+ Ex1 [〈φ(x1),y〉〈φ(x1), z〉]− Ex1 [〈φ(x1),y〉] Ex1 [〈φ(x1), z〉]
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Using the similar derivations than above, we obtain the following approximation for ζ1

ζ1 ≈
1

n(n− 1)2 1T K̃xxK̃xx1−
( 1
n(n− 1)1T K̃xx1

)2
(3.6.36)

−
( 1
n2(n− 1)1T K̃xxKxz1−

1
n3(n− 1)1T K̃xx11TKxz1

)
−
( 1
n2(n− 1)1T K̃xxKxy1− 1

n3(n− 1)1T K̃xx11TKxz1
)

+
( 1
n3 1TKxyKxz1−

1
n4 1TKxy11TKxz1

)
.

Finally, the empirical estimate in order to compute the covariance term σMMD2
xy,xz

in Equa-
tion (3.6.36), neglecting higher order terms is

σ̂MMD2
xy,xz

= 4(n− 2)
n(n− 1)

{ 1
n(n− 1)2 1T K̃xxK̃xx1−

( 1
n(n− 1)1T K̃xx1

)2
(3.6.37)

−
( 1
n2(n− 1)1T K̃xxKxz1−

1
n3(n− 1)1T K̃xx11TKxz1

)
−
( 1
n2(n− 1)1T K̃xxKxy1− 1

n3(n− 1)1T K̃xx11TKxz1
)

+
( 1
n3 1TKxyKxz1−

1
n4 1TKxy11TKxz1

)}
.

And again, using the order of operations implied by the parentheses in Equation (3.6.38), the
computational cost of the empirical variance is O(n2).

σ̂MMD2
xy,xz

= 4(n− 2)
n(n− 1)

{ 1
n(n− 1)2 (1T K̃xx)(K̃xx1)−

( 1
n(n− 1)

(
1T (K̃xx1)

))2
(3.6.38)

−
( 1
n2(n− 1)(1T K̃xx)(Kxz1)− 1

n3(n− 1)
(
(1T K̃xx)1

) (
1T (Kxz1)

))
−
( 1
n2(n− 1)(1T K̃xx)(Kxy1)− 1

n3(n− 1)1T K̃xx11TKxz1
)

+
( 1
n3 (1TKxy)(Kxz1)− 1

n4

(
(1TKxy)1

) (
1T (Kxz1)

))}
.

3.6.2 Derivation of the variance of the difference of two MMD statistics

In this section we propose an alternate strategy of deriving directly the variance of a u-statistic
of the difference of MMDs with a joint variable. This formulation agrees with the derivation
of the covariance matrix and subsequent projection, and provides extra insights.

Let dn = (d1, ...,dn) be n i.i.d. random variables where d := (x,y, z) ∼ Px × Py × Pz. Then
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the difference of the unbiased estimators of MMD2 [H,Px,Py] and MMD2 [H,Px,Pz] is given
by

M̂MD2
u [H,x,y]− M̂MD2

u [H,x, z] = 1
n(n− 1)

n∑
i 6=j

f(di,dj) (3.6.39)

with f , the kernel of MMD2 [H,Px,Py]−MMD2 [H,Px,Pz] of order 2 as follows

f(d1,d2) = (k(x1,x2) + k(y1,y2)− k(x1,y2)− k(x2,y1)) (3.6.40)
− (k(x1,x2) + k(z1, z2)− k(x1, z2)− k(x2, z1))

= (k(y1,y2)− k(x1,y2)− k(x2,y1))− (k(z1, z2)− k(x1, z2)− k(x2, z1)) (3.6.41)

Equation (3.6.39) is a U -statistic and thus we can apply Equation (3.2.2) to obtain its variance.
We denote Var

(
M̂MD2

u [H,x,y]− M̂MD2
u [H,x, z]

)
by σ̂MMD2

xy−MMD2
xz

σ̂MMD2
xy−MMD2

xz
= 4(n− 2)
n(n− 1)ζ1 +O(n−2). (3.6.42)

We first note

Ed1(f(d1,d2)) =〈φ(y1),y〉 − 〈φ(x1),y〉 − 〈x, φ(y1)〉 (3.6.43)
− (〈φ(z1), z〉 − 〈φ(x1), z〉 − 〈x, φ(z1)〉)

Ed1,d2(f(d1,d2)) = MMD2 [H,Px,Py]−MMD2 [H,Px,Pz] . (3.6.44)

We are now ready to derive the dominant leading term ζ1, in the variance expression of
Equation (3.6.42).

ζ1 = Var(Ed1(f(d1,d2))) (3.6.45)
= Ex1,y1,z1 [(〈φ(y1),y〉 − 〈φ(x1),y〉 − 〈x, φ(y1)〉 − (〈φ(z1), z〉 − 〈φ(x1), z〉 − 〈x, φ(z1)〉)2]

−
(
MMD2 [H,Px,Py]−MMD2 [H,Px,Pz]

)2
(3.6.46)

We note many terms in expansion of the squares above cancel out due to independence. For
example Ey1,z1 [〈φ(y1),y〉〈φ(z1), z〉]− Ey1 [〈φ(y1),y〉] Ez1 [〈φ(z1), z〉] = 0.
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We can thus simplify to the following expression for ζ1

ζ1 = Ey1 [〈φ(y1),y〉2]− Ey1 [〈φ(y1),y〉]2 (3.6.47)
+ Ex1 [〈φ(x1),y〉2]− Ex1 [〈φ(x1),y〉]2

+ Ey1 [〈x, φ(y1)〉2]− Ey1 [〈x, φ(y1)〉]2

+ Ez1 [〈φ(z1), z〉2]− Ez1 [〈φ(z1), z〉]2

+ Ex1 [〈φ(x1), z〉2]− Ex1 [〈φ(x1), z〉]2

+ Ez1 [〈x, φ(z1)〉2]− Ez1 [〈x, φ(z1)〉]2

− 2(Ey1 [〈φ(y1),y〉〈x, φ(y1)〉]− Ey1 [〈φ(y1),y〉] Ey1 [〈x, φ(y1)〉])
− 2(Ex1 [〈φ(x1),y〉〈φ(x1), z〉]− Ex1 [〈φ(x1),y〉] Ex1 [〈φ(x1), z〉])
− 2(Ez1 [〈φ(z1), z〉〈x, φ(z1)〉]− Ez1 [〈φ(z1), z〉] Ez1 [〈x, φ(z1)〉]).

We can empirically approximate these terms as follows and we have

σ̂MMD2
xy−MMD2

xz
= 4(n− 2)
n(n− 1)

{ 1
n(n− 1)2 1T K̃yyK̃yy1−

( 1
n(n− 1)1T K̃yy1

)2
(3.6.48)

+ 1
n3 1TKxy

TKxy1−
( 1
n2 1TKxy1

)2

+ 1
n3 1TKxyKxy

T1−
( 1
n2 1TKxy1

)2

+ 1
n(n− 1)2 1T K̃zzK̃zz1−

( 1
n(n− 1)1T K̃zz1

)2

+ 1
n3 1TKxzKxz

T1−
( 1
n2 1TKxz1

)2

+ 1
n3 1TKxz

TKxz1−
( 1
n2 1TKxz1

)2

− 2
( 1
n2(n− 1)1T K̃yyKxy1− 1

n(n− 1)1T K̃yy1× 1
n2 1TKxy1

)
− 2

( 1
n3 1TKxyKxy

TKxz1−
1
n2 1TKxy1× 1

n2 1TKxz1
)

− 2
( 1
n2(r − 1)1T K̃zzKxz

T1− 1
n(n− 1)1T K̃yy1× 1

n2 1TKxy1
)}

.

3.6.3 Equality

In this section, we prove that Equation (3.2.9) is equal to the variance of the difference of
MMD2 [H,Px,Py] and MMD2 [H,Px,Pz].
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σ2
XY + σXZ − 2σXYXZ = Ey1

[
〈φ(y1),y〉2

]
− Ey1 [〈φ(y1),y〉]2 (3.6.49)

+ Ez1

[
〈φ(z1),y〉2

]
− Ez1 [〈φ(z1),y〉]2

− 2 (Ey1 [〈φ(y1),y〉〈φ(y1),x〉]− Ey1 [〈φ(y1),y〉] Ey1 [〈φ(y1),x〉])
− 2 (Ez1 [〈φ(z1), z〉〈φ(z1),x〉]− Ez1 [〈φ(z1), z〉] Ez1 [〈φ(z1),x〉])

+ Ex1

[
〈φ(x1),y〉2

]
− Ex1 [〈φ(x1),y〉]2

+ Ey1

[
〈φ(y1), z〉2

]
− Ey1 [〈φ(y1), z〉]2

+ Ey1

[
〈φ(y1),x〉2

]
− Ey1 [〈φ(y1),x〉]2

+ Ez1

[
〈φ(z1),x〉2

]
− Ez1 [〈φ(z1),x〉]2

− 2 (Ex1 [〈φ(x1),y〉] Ex1 [〈φ(x1), z〉]) .

We have shown that Equation (3.2.9) is equal to Equation (3.6.49).

3.6.4 Calibration of the test

We show here that our derived test is well calibrated. A calibrated test should output a
uniform distribution of p-values when the two MMD distances are equal. The empirical
distributions of p-values for various sets of Px, Py and Pz are given in Figure 3.6. Similarly,
for a given significance level α, the false positive rate should be equal to α. The empirical
false positive rates for varying α are shown in Figure 3.5 further demonstrating the proper
calibration of the test.
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Figure 3.5 – Verification of the calibration of the relative similarity test. Here we demonstrate
that the empirical frequency of p-values equals the significance level α.
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(a) Illustration of the synthetic data with different
means for x, y and z.
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(b) Uniform histogram of p-values
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X : µX :[0 0], αX = 0
Y : µY :[-20 -20], αY = π/2
Z : µZ :[20 20], αZ = π/2

(c) Illustration of the synthetic data with different
means and orientations for x, y and z.
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(d) Uniform histogram of p-values
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X : µX :[0 0], αX = 0
Y : µY :[0 0], αY = π/2
Z : µZ :[0 0], αZ = π/2

(e) Illustration of the synthetic data with different
orientations for x, y and z.
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(f) Uniform histogram of p-values

Figure 3.6 – Verification of the calibration of the relative similarity test. In all cases, the two
target distributions are constructed to be equally distant from the source distribution. A well
calibrated test should consequently produce a uniform distribution of p-values.





Chapter 4

A Hypothesis Test of Relative
Dependency

In the previous chapter, we investigated the problem of relative similarity. The main re-
sult was a novel non-parametric statistical hypothesis test of relative similarity using the
asymptotic distribution of two MMD statistics. By using the HSIC statistics to measure
the dependency between two probabilistic distributions, it is natural to derive a novel-non
parametric statistical hypothesis test of relative dependency. In this chapter, we present our
approach to tackle the second Research Question 2: Is the dependency between x and y
stronger than the dependency between x and z?

We describe a novel non-parametric statistical hypothesis test of relative dependence between
a source variable and two candidate target variables. Such a test enables us to determine
whether one source variable is significantly more dependent on a first target variable or a
second. Dependence is measured via the Hilbert-Schmidt Independence Criterion (HSIC),
resulting in a pair of empirical dependence measures (source-target 1, source-target 2). We
test whether the first dependence measure is significantly larger than the second. Modeling
the covariance between these HSIC statistics leads to a provably more powerful test than the
construction of independent HSIC statistics by sub-sampling. The resulting test is consistent
and unbiased, and being based on U -statistics has favorable convergence properties. The
test can be computed in quadratic time, matching the computational complexity of standard
empirical HSIC estimators. The effectiveness of the test is demonstrated on several real-world
problems: we identify language groups from a multilingual corpus, and we prove that tumor
location is more dependent on gene expression than chromosomal imbalances.

The work covered in this chapter is based on:

• W. Bounliphone, A. Gretton, A. Tenenhaus, and M. B. Blaschko. A low variance
consistent test of relative dependency. In F. Bach and D. Blei, editors, Proceedings of
The 32nd International Conference on Machine Learning, volume 37 of JMLR Workshop
and Conference Proceedings, pages 20–29, 2015a.

Project: https://github.com/wbounliphone/reldep.
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4.1 Introduction

Tests of dependence are important tools in statistical analysis, and are widely applied in many
data analysis contexts as described in the introduction of Section 2.4.

For many problems in data analysis, however, the question of whether dependence exists is
secondary: there may be multiple dependencies, and the question becomes which dependence
is the strongest. For instance, in neuroscience, multiple stimuli may be present (e.g. visual
and audio), and it is of interest to determine which of the two has a stronger influence on
brain activity [Trommershauser et al., 2011]. In automated translation [Peters et al., 2012], it
is of interest to determine whether documents in a source language are a significantly better
match to those in one target language than to another target language, either as a measure
of difficulty of the respective learning tasks, or as a basic tool for comparative linguistics.

We present a statistical test which determines whether two target variables have a significant
difference in their dependence on a third, source variable. The dependence between each of the
target variables and the source is computed using the Hilbert-Schmidt Independence Criterion
(HSIC). Care must be taken in analyzing the asymptotic behavior of the test statistics, since
the two measures of dependence will themselves be correlated: they are both computed
with respect to the same source. Thus, we derive the joint asymptotic distribution of both
dependencies. The derivation of our test utilizes classical results of U -statistics [Arcones
and Gine, 1993, Hoeffding, 1963, Serfling, 2009]. In particular, we make use of results by
Hoeffding [1963] and Serfling [2009] to determine the asymptotic joint distributions of the
statistics (see Theorem 2.4) as described in Section 2.1. Consequently, we derive the lowest
variance unbiased estimator of the test statistic.
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We prove our approach to have greater statistical power than constructing two uncorrelated
statistics on the same data by subsampling, and testing on these. In experiments, we are able
to successfully test which of two variables is most strongly related to a third, in synthetic
examples, in a language group identification task, and in a task for identifying the relative
strength of factors for Glioma type in a pediatric patient population.

For the formal setup of this whole chapter, suppose that we have random variables x ∼ Px,
y ∼ Py and z ∼ Pz, that take values on (X ,Bx) , (Y,By) and (Z,Bz) respectively, here X ,Y,Z
are three separable metric and Bx,By,Bz are Borel σ-algebras. Then, (X × Y,Bx × By) and
(X × Z,Bx × Bz) are again measurable and the joint distribution is Pxy and Pxz is taking
values in the product space (X × Y,Bx × By) and (X × Z,Bx × Bz) respectively. We denote
the observations Xn := {x1, ...,xn}, Yn := {y1, ...,yn} and Zn := {z1, ..., zn} of size n, drawn
i.i.d. from Px, Py and Pz respectively and Sn = (Xn,Y,Zn) the joint sample which are drawn
i.i.d from Pxyz. Furthermore, we define kernels k(., .), l(., .) and m(., .) on the space X , Y and
Z, and denote the corresponding RKHSs with Hx, Hy and Hz respectively and K, L and
M ∈ Rn×n are kernel matrices containing kij = k(xi,xj), lij = l(yi,yj) and mij = m(zi, zj).
Throughout, we assume the integrability Ex [k] <∞ and Ey [h] <∞.

Let’s now reformulate our Research Question 2 into a mathematical setting. In Section 2.4, we
have shown that HSIC determines independence: HSIC = 0 if and only if Pxy = PxPy when
kernels k and l are characteristic on their respective marginal domains. With this choice, the
problem we would like to solve is described as follows:

Problem 4.1. Given separable RKHSs F , G, and H with HSIC [Hx,Hy,Pxy] > 0 and
HSIC [Hx,Hz,Pxz] > 0, the statistical relative independence test THSIC : X n × X n × X n 7→
{0, 1} is use to test the null hypothesis

HHSIC0 : HSIC [Hx,Hy,Pxy] ≤ HSIC [Hx,Hz,,Pxz,] (4.1.1)

versus the alternative hypothesis

HHSIC1 : HSIC [Hx,Hy,Pxy] > HSIC [Hx,Hz,Pxz] , (4.1.2)

at a given significance level α.

4.2 A Test of Relative Dependence

In this section we calculate two dependent HSIC statistics and derive the joint asymptotic
distribution of these dependent quantities, which is used to construct a consistent test for
Problem 4.1. This is a direct application of Theorem 2.4 using the definition of HSIC written
as a U -statisticof degree 4. We next construct a simpler consistent test, by computing two
independent HSIC statistics on sample subsets. While the simpler strategy is superficially
attractive and less effort to implement, we prove the dependent strategy is strictly more
powerful.
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4.2.1 Joint Asymptotic Distribution of HSIC

In the present section, we compute each HSIC estimate on the full dataset, and explic-
itly obtain the correlations between the resulting empirical dependence measurements. Let
ĤSICu [Hx,Hy, (Xn,Yn)] and ĤSICu [Hx,Hz, (Xn,Zn)] be respectively the unbiased esti-
mators of HSIC [Hx,Hy,Pxy] and HSIC [Hx,Hz,Pxz], written as a sum of U-statistics with
respective U -statistic kernels hijqr and gijqr of degree 4 as described in Equation (2.4.10),

hijqr = 1
24

(i,j,q,r)∑
(s,t,u,v)

kst(lst + luv − 2lsu), (4.2.1)

gijqr = 1
24

(i,j,q,r)∑
(s,t,u,v)

kst(dst + duv − 2dsu). (4.2.2)

Theorem 4.1 (Joint asymptotic distribution of two HSIC). If E[h2] < ∞ and E[g2] < ∞,
then the multivariate vector [HSIC [Hx,Hy,Pxy] ; HSIC [Hx,Hz,Pxz]]T converges asymptoti-
cally in distribution to a multivariate normal distribution with mean vector zero and Σ the
limiting covariance matrix as following

n1/2
((

ĤSICu [Hx,Hy, (Xn,Yn)]
ĤSICu [Hx,Hz, (Xn,Zn)]

)
−
(

HSIC [Hx,Hy,Pxy]
HSIC [Hx,Hz,Pxz]

))
(4.2.3)

d−→ N2

((
0
0

)
,

(
σ2

HSICxy
σHSICxy,xz

σHSICxy,xz σ2
HSICxz

))
,

where σ2
HSICXY

and σ2
HSICXY

are as in Equation (2.4.14). The empirical estimate of σHSICxy,xz

is σ̂HSICxy,xz = 16
n

(
RXYXZ − ĤSICu [Hx,Hy, (Xn,Yn)] ĤSICu [Hx,Hz, (Xn,Zn)]

)
, where

RXYXZ = 1
n

n∑
i=1

(n− 1)−2
3

∑
(j,q,r)∈in3 \{i}

hijqrgijqr

 , (4.2.4)

where hijqr and gijqr are the U -statistic kernel of degree 4 described in Equations (4.2.1)
and (4.2.2) and the index set in3\ {i} denotes the set of all 3−tuples drawn without replacement
from the set {1, . . . n} \ {i}.

Proof: Equation (4.2.3) follows from the application of [Hoeffding, 1963, Theorem 7.1], de-
scribed in Theorem 2.4, which gives the joint asymptotic distribution of U -statistics. And
Equation (4.2.4) is a direct application of Theorem 2.3 and is constructed with the defini-
tion of the variance of a U-statistic as given by [Serfling, 2009, Ch. 5] where one variable is
fixed.

Based on the joint asymptotic distribution of HSIC described in Theorem 4.1, we can now de-
scribe a statistical test to solve Problem 4.1 described above. This is achieved by projecting the
distribution to 1D using the statistic ĤSICu [Hx,Hy, (Xn,Yn)] − ĤSICu [Hx,Hz, (Xn,Zn)],
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and determining where the statistic falls relative to a conservative estimate of the 1−α quan-
tile of the null H0. We now derive this conservative estimate. A simple way of achieving this
is to rotate the distribution by π

4 counter-clockwise about the origin, and to integrate the
resulting distribution projected onto the first axis (cf. Figure 4.3). Let’s denote the asymp-
totically normal distribution of n1/2

[
ĤSICu [Hx,Hy, (Xn,Yn)] ; ĤSICu [Hx,Hz, (Xn,Zn)]

]T
as N2 (µ,Σ). The distribution resulting from rotation and projection is

N
(
[Qµ]1, [QΣQT ]11

)
, (4.2.5)

where Q =
√

2
2

(
1 −1
1 1

)
is the rotation matrix by π/4 and similarly to Section 3.2.2, we

have

[Qµ]1 =
√

2
2 (HSIC [Hx,Hy,Pxy]−HSIC [Hx,Hz,Pxz]) ; (4.2.6)

[QΣQT ]11 = 1
2
(
σ2

HSICxy + σ2
HSICxz − 2σHSICxy,xz

)
. (4.2.7)

Following the empirical distribution from Equation (4.2.5), a test where the test statistic is
the difference of two HSIC estimator ĤSICu [Hx,Hy, (Xn,Yn)] − ĤSICu [Hx,Hz, (Xn,Zn)]
has p-value

p ≤ 1−Φ

(HSIC [Hx,Hy,Pxy]−HSIC [Hx,Hz,Pxz])√
σ2

HSICxy
+ σ2

HSICxz
− 2σHSICxy,xz

 , (4.2.8)

where Φ is the CDF of a standard normal distribution, and we have made the most conser-
vative possible assumption that HSIC [Hx,Hy,Pxy]− HSIC [Hx,Hz,Pxz] = 0 under the null
(the null also allows for the difference in population dependence measures to be negative).

To implement the test in practice, the variances of σ2
HSICxy

, σ2
HSICxz

and σHSICXY,XZ may be
replaced by their empirical estimates. The test will still be consistent for a large enough sample
size, since the estimates will be sufficiently well converged to ensure the test is calibrated.

Equation (4.2.4) is expensive to compute naïvely, because even computing the kernels hijqr
and gijqr of the U -statistic itself is a non trivial task. Following Song et al. [2012, Section
2.5], we first form a vector hXY with entries corresponding to

∑
(j,q,r)∈in3 \{i} hijqr, and a vector

hXZ with entries corresponding to
∑

(j,q,r)∈in3 \{i} gijqr. Collecting terms in Equations (4.2.1)
and (4.2.2) related to kernel matrices K̃ and L̃, hXY can be written as

hXY = (n− 2)2
(
K̃� L̃

)
1− n(K̃1)� (L̃1) (4.2.9)

+ (n− 2)
(
(Tr(K̃L̃))1− K̃(L̃1)− L̃(K̃1)

)
+ (1T L̃1)K̃1 + (1T K̃1)L̃1− ((1T K̃)(L̃1))1,

where � denotes the Hadamard product. Then RXYXZ in Equation (4.2.4) can be com-
puted as RXYXZ = (4n)−1(n − 1)−2

3 hXY
ThXZ. Using the order of operations implied by

the parentheses in Equation (4.2.9), the computational cost of the cross covariance term is
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O(n2). Combining this with the unbiased estimator of HSIC in Equation (2.4.8) leads to a
final computational complexity of O(n2).

In addition to the asymptotic consistency result, we provide a finite sample bound on the
deviation between the difference of two population HSIC statistics and the difference of two
empirical HSIC estimates.

Theorem 4.2 (Generalization bound on the difference of empirical HSIC statistics). Assume
that k, l, and d are bounded almost everywhere by 1, and are non-negative. Then for n > 1
and all δ > 0 with probability at least 1− δ, for all Pxy and Pxz, the generalization bound on
the difference of empirical HSIC statistics is∣∣∣∣ {HSIC [Hx,Hy,Pxy]−HSIC [Hx,Hz,Pxz]} (4.2.10)

−
{

ĤSICu [Hx,Hy, (Xn,Yn)]− ĤSICu [Hx,Hz, (Xn,Zn)]
} ∣∣∣∣

≤ 2


√

log(6/δ)
α2n

+ C

n

 , (4.2.11)

where α > 0.24 and C are constants.

Proof: In Gretton et al. [2005a] a finite sample bound is given for a single HSIC statistic.
Equation (4.2.10) is proved by using a union bound:∣∣∣∣ {HSIC [Hx,Hy,Pxy]−HSIC [Hx,Hz,Pxz]} (4.2.12)

−
{

ĤSICu [Hx,Hy, (Xn,Yn)]− ĤSICu [Hx,Hz, (Xn,Zn)]
} ∣∣∣∣

=
∣∣∣∣ {HSIC [Hx,Hy,Pxy]− ĤSICu [Hx,Hy, (Xn,Yn)]

}
+
{

HSIC [Hx,Hz,Pxz]− ĤSICu [Hx,Hz, (Xn,Zn)]
} ∣∣∣∣

≤
∣∣∣∣ĤSICu [Hx,Hy, (Xn,Yn)]− ĤSICu [Hx,Hy, (Xn,Yn)]

∣∣∣∣
+
∣∣∣∣ĤSICu [Hx,Hz, (Xn,Zn)]−HSIC [Hx,Hz,Pxz]

∣∣∣∣
≤ 2


√
log(6/δ)
α2m

+ C

n

 .

Corollary 4.1. ĤSICu [Hx,Hy, (Xn,Yn)]− ĤSICu [Hx,Hz, (Xn,Zn)] converges to the pop-
ulation statistic at rate O(n1/2).
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4.2.2 A Simple and Consistent Statistical Test via Two Uncorrelated HSIC
Statistics

From the result of the joint asymptotic distribution of the two HSIC statistics in Equa-
tion (4.2.3), a simple, consistent test of relative dependence can be constructed as follows:
split the samples from Px into two equal sized sets denoted by X′n/2 and X′′n/2, and drop
the second half of the sample pairs with Yn and the first half of the sample pairs with Zn.
We will denote the remaining samples as Y′n/2 and Z′′n/2. We can now estimate the joint

distribution of n1/2
[
ĤSICu

[
Hx,Hy,

(
X′n/2,Y

′
n/2

)]
; ĤSICu

[
Hx,Hz,

(
X′′n/2,Z

′′
n/2

)]]T
as

N2

((
HSIC

[
Hx′ ,Hy′ ,Px′y′

]
HSIC [Hx′′ ,Hz′′ ,Px′′z′′ ]

)
,

(
σ2

HSICx′y′
0

0 σ2
HSICx′′z′′

))
, (4.2.13)

which we will write as N (µ′,Σ′). Given this joint distribution, we need to determine the
distribution over the half space defined by HSIC [Hx,Hy,Pxy] < HSIC [Hx,Hz,Pxz] . As in
the previous section, we achieve this by rotating the distribution by π

4 counter-clockwise
about the origin, and integrating the resulting distribution projected onto the first axis. The
resulting projection of the rotated distribution onto the primary axis is

N
([

Qµ′]
1 ,
[
QΣ′QT

]
11

)
(4.2.14)

where

[Qµ′]1 =
√

2
2
(
HSIC

[
Hx′ ,Hy′ ,Px′y′

]
−HSIC [Hx′′ ,Hz′′ ,Px′′z′′ ]

)
, (4.2.15)

[QΣ′QT ]11 = 1
2
(
σ2

HSICx′y′
+ σ2

HSICx′′z′′

)
. (4.2.16)

From this empirically estimated distribution, it is straightforward to construct a consistent
test (cf. Equation (4.2.8)). The power of this test varies inversely with the variance of the
distribution in Equation (4.2.14).

4.2.3 The Dependent Test is More Powerful

While discarding half the samples leads to a consistent test, we might expect some loss of
power over the approach in Section 4.2.1, due to the increase in variance with lower sample
size. In this section, we prove the Section 4.2.1 test is more powerful than that of Section 4.2.2,
regardless of Pxy and Pxz. We call the simple and consistent approach in Section 4.2.2,
the independent approach, and the lower variance approach in Section 4.2.1, the dependent
approach. The following theorem compares these approaches.
Theorem 4.3. The asymptotic relative efficiency (ARE) of the independent approach relative
to the dependent approach is always greater than 1.
Remark 4.1. The asymptotic relative efficiency is defined in e.g. Serfling [2009, Chap. 5,
Section 1.15.4]. If mA and mB are the sample sizes at which tests "perform equivalently" (i.e.
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have equal power), then the ratio mA
mB

represents the relative efficiency. When mA and mB

tend to +∞ and the ratio mA
mB
→ L (at equivalent performance), then the value L represents

the asymptotic relative efficiency of procedure B relative to procedure A. This example is
relevant to our case since we are comparing two test statistics with different asymptotically
normal distributions.

The following lemma is used for the proof of Theorem. 4.3.

Lemma 4.1 (Lower Variance). The variance of the dependent test statistic is smaller than
the variance of the independent test statistic.

Proof: From the convergence of moments in the application of the central limit theorem [von
Bahr, 1965], we have that σ2

HSICx′z′
= 2σ2

HSICxy
. Then the variance summary in Equa-

tion (4.2.7) is 1
2(σ2

HSICxy
+σ2

HSICxz
−2σHSICxy,xz) and the variance summary in Equation (4.2.15)

is 1
2(2σ2

HSICxy
+ 2σ2

HSICxz
) where in both cases the statistic is scaled by

√
n. We have that the

variance of the independent test statistic is smaller than the variance of the dependent test
statistic when

1
2(σ2

HSICxy + σ2
HSICxz − 2σHSICxy,xz) < 1

2(2σ2
HSICxy + 2σ2

HSICxz)

⇐⇒ −2σHSICxy,xz < σ2
HSICxy + σ2

HSICxz . (4.2.17)

which is implied by the positive definiteness of Σ.

Proof of Theorem 4.3.: The Type II error probability of the independent test at level α is

Φ

Φ−1(1− α)−
m−1/2(HSIC [Hx,Hy,Pxy]−HSIC [Hx,Hz,Pxz]

)√
σ2

HSICx′y′
+ σ2

HSICx′′z′′

 , (4.2.18)

where we again make the most conservative possible assumption that HSIC [Hx,Hy,Pxy] −
HSIC [Hx,Hz,Pxz] under the null. The Type II error probability of the dependent test at
level α is

Φ

Φ−1(1− α)−
m−1/2(HSIC [Hx,Hy,Pxy]−HSIC [Hx,Hz,Pxz]

)√
σ2

HSICxy
+ σ2

HSICxz
− 2σHSICxy,xz

 , (4.2.19)

where Φ is the CDF of the standard normal distribution. The numerator in Equation (4.2.18)
is the same as the numerator in Equation (4.2.19), and the denominator in Equation (4.2.19)
is smaller due to Lemma 4.1. The lower variance dependent test therefore has higher ARE,
i.e., for a sufficient sample size n > τ for some distribution dependent τ ∈ N+, the dependent
test will be more powerful than the independent test.
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4.3 Generalizing to more than Two HSIC Statistics

The generalization of the dependence test to more than three random variables follows from
the earlier derivation by applying successive rotations to a higher dimensional joint Gaussian
distribution over multiple HSIC statistics. Given observations X1 := {x1

1, . . .x1
n}, . . . ,Xr :=

{xr1, . . . ,xrn} i.i.d. drawn, respectively, from Px1 , . . . ,Pxr . We define a generalized statistical
test, Tg : (X n)r → {0, 1} to test the null hypothesis

H1 :
∑

(i,j)∈{1,...,r}2

v(i,j) HSIC
[
Hxi ,Hxj ,Pxixj

]
≤ 0 (4.3.1)

versus the alternative hypothesis

H1 :
∑

(i,j)∈{1,...,r}2

v(i,j) HSIC
[
Hxi ,Hxj ,Pxixj

]
> 0 (4.3.2)

where v is a vector of weights on each HSIC statistic. We may recover the test in the
previous section by setting v(1,2) = +1, v(1,3) = −1 and v(i,j) = 0 for all (i, j) ∈ {1, 2, 3}2 \
{(1, 2), (1, 3)}.

The derivation of the test follows the general strategy used in the previous section: we con-
struct a rotation matrix so as to project the joint Gaussian distribution onto the first axis,
and read the p-value from a standard normal table. To construct the rotation matrix, we
simply need to rotate v such that it is aligned with the first axis. Such a rotation can be
computed by composing n 2-dimensional rotation matrices as in Algorithm 1. We note that
this same principle is applicable to any linear combination of U -statistics, including for the
MMD as in Chapter 3.

Algorithm 1 Successive rotation for generalized high-dimensional relative tests of depen-
dency (cf. Section 4.3)
Require: v
Ensure: [Qv]i = 0 ∀i 6= 1, QTQ = I

Q = I
for i = 2 to n do

Qi = I; θ = − tan−1 vi
[Qv]1

[Qi]11 = cos(θ); [Qi]1i = − sin(θ); [Qi]i1 = sin(θ); [Qi]ii = cos(θ)
Q = QiQ

end for

4.4 Experiments

In this section, we apply our estimates of statistical dependence to three challenging problems.
The first is a synthetic data experiment, in which we can directly control the relative degree of



62 A HYPOTHESIS TEST OF RELATIVE DEPENDENCY
si

n(
t)

+
γ

1
N

(0
,

1)

−1 0 1 2 3 4 5 6 7
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

t
si

n(
t)

+
γ

2
N

(0
,

1)

−10 −5 0 5 10 15
−15

−10

−5

0

5

10

t
co

s(
t)

+
γ

3
N

(0
,

1)

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

t + γ1N (0, 1) t cos(t) + γ2N (0, 1) t cos(t) + γ3N (0, 1)
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Figure 4.1 – Illustration of a synthetic dataset sampled from the distribution in Equa-
tion (4.4.1).

functional dependence between variates. The second experiment uses a multilingual corpus
to determine the relative relations between European languages. The last experiment is a
3-block dataset which combines gene expression, comparative genomic hybridization, and a
qualitative phenotype measured on a sample of Glioma patients.

4.4.1 Synthetic Experiments

We designed a synthetic problem motivated by constructing 3 distributions as defined in
Equation (4.4.1) and illustrated in Figure 4.1.

Let t ∼ U [(0, 2π)], (4.4.1)
(a) x1 ∼ t+ γ1N (0, 1) y1 ∼ sin(t) + γ1N (0, 1);
(b) x2 ∼ t cos(t) + γ2N (0, 1) y2 ∼ t sin(t) + γ2N (0, 1);
(c) x3 ∼ t cos(t) + γ3N (0, 1) y3 ∼ t sin(t) + γ3N (0, 1).

These distributions are specified so that we can control the relative degree of functional
dependence between the variates by varying the relative size of noise scaling parameters γ1,
γ2 and γ3. The question is then whether the dependence between (a) and (b) is larger than
the dependence between (a) and (c). In these experiments, we fixed γ1 = γ2 = 0.3, while
we varied γ3, and used a Gaussian kernel with bandwidth σ selected as the median pairwise
distance between data points. This kernel is sufficient to obtain good performance, although
others choices exist [Gretton et al., 2012b].

Figure 4.2 shows the power of the dependent and the independent tests as we vary γ3. It is
clear from these results that the dependent test is far more powerful than the independent test
over the great majority of γ3 values considered. Figure 4.3 demonstrates that this superior
test power arises due to the tighter and more concentrated distribution of the dependent
statistic.
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Figure 4.2 – Power of the dependent and independent test as a function of γ3 on the synthetic
data described in Section 4.4.1. For values of γ3 > 0.3 the distribution in Figure 4.1(a) is
closer to Figure 4.1(b) than to Figure 4.1(c). The problem becomes difficult as γ3 → 0.3. As
predicted by theory, the dependent test is significantly more powerful over almost all values
of γ3 by a substantial margin.
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Figure 4.3 – For the synthetic experiments described in Section 4.4.1, we plot empirical HSIC
values for dependent and independent tests for 100 repeated draws with different sample sizes.
Empirical p-values for each test show that the dependent distribution converges faster than
the independent distribution even at low sample size, resulting in a more powerful statistical
test.
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Source Target 1 Target 2 p-value
es pt fi 0.0066
fr it da 0.0418
it es fi 0.0169
pt es da 0.0173
de nl fi < 10−4

nl en es < 10−4

da sv fr < 10−6

sv en it < 10−4

en de es < 10−4

Table 4.1 – A selection of relative dependency tests between two pairs of HSIC statistics for
the multilingual corpus data.

4.4.2 Multilingual Data

In this section, we demonstrate dependence testing to predict the relative similarity of dif-
ferent languages. We use a real world dataset taken from the parallel European Parliament
corpus [Koehn, 2005]. We choose 3000 random documents in common written in: Finnish
(fi), Italian (it), French (fr), Spanish (es), Portuguese (pt), English (en), Dutch (nl), German
(de), Danish (da) and Swedish (sv). These languages can be broadly categorized into either
the Romance, Germanic or Uralic groups [Gray and Atkinson, 2003]. In this dataset, we
considered each language as a random variable and each document as an observation. Our
first goal is to test if the statistical dependence between two languages in the same group is
greater than the statistical dependence between languages in different groups.

For pre-processing, we removed stop-words (http://www.nltk.org) and performed stemming
(http://snowball.tartarus.org). We applied the TF-IDF model as a feature representa-
tion and used a Gaussian kernel with the bandwidth σ set per language as the median pairwise
distance between documents. For all tests, we set the significance value to α = 5%.

In Table 4.1, a selection of tests between language groups (Germanic, Romance, and Uralic)
is given: all p-values strongly support that our relative dependence test finds the different
language groups with very high significance.

Further, if we focus on the Romance family, our test enables one to answer more fine-grained
questions about the relative similarity of languages within the same group. As before, we
determine the ground truth similarities from the topology of the tree of European languages
determined by the linguistics community [Bouckaert et al., 2012, Gray and Atkinson, 2003]
as illustrated in Figure 4.4 for the Romance group. We have run the test on all triplets from
the corpus for which the topology of the tree specifies a correct ordering of the dependencies.
In a fraction of a second (excluding kernel computation), we are able to recover certain
features of the subtree of relationships between languages present in the Romance language
group (Table 4.2). The test always indicates the correct relative similarity of languages when
nearby languages (pt, es) are compared with those further away (ft, it), however errors are

http://www.nltk.org
http://snowball.tartarus.org
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Figure 4.4 – Partial tree of Romance languages adapted from Gray and Atkinson [2003].

Source Target 1 Target 2 p-value
fr es it 0.0157
fr pt it 0.1882
es fr it 0.2147
es pt it < 10−4

es pt fr < 10−4

pt fr it 0.7649
pt es it 0.0011
pt es fr < 10−8

Table 4.2 – Relative dependency tests between Romance languages. The tests are ordered
such that a low p-value corresponds with a confirmation of the topology of the tree of Ro-
mance languages determined by the linguistics community [Bouckaert et al., 2012, Gray and
Atkinson, 2003].

made when comparing triplets of languages for which the nearest common ancestor is more
than one link removed.

In our next tests, we evaluate our more general framework for testing relative dependencies
with more than two HSIC statistics. We chose four languages, and tested whether the average
dependence between languages in the same group is higher than the dependence between
groups. The results of these tests are in Table 4.3. As before, our generalized test is able to
distinguish language groups with high significance.

4.4.3 Pediatric Glioma Data

Brain tumors are the most common solid tumors in children and have the highest mortality
rate of all pediatric cancers. Despite advances in multimodality therapy, children with pedi-
atric high-grade gliomas (pHGG) invariably have an overall survival of around 20% at 5 years.
Depending on their location (e.g. brainstem, central nuclei, or supratentorial), pHGG present
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Source Targets p-value
da de sv fi < 10−9

da sv en fr < 10−9

de sv en it < 10−5

fr it es sv < 10−5

es fr pt nl 0.0175

Table 4.3 – Relative dependency test between four pairs of HSIC statistics for the multilingual
corpus data. These tests show the ability of the relative dependence test to generalize to
arbitrary numbers of HSIC statistics by constructing a rotation matrix using Algorithm 1. In
all cases v = [1 1 −2].

different characteristics in terms of radiological appearance, histology, and prognosis. The
hypothesis is that pHGG have different genetic origins and oncogenic pathways depending on
their location. Thus, the biological processes involved in the development of the tumor may
be different from one location to another.

In order to evaluate such hypotheses, pre-treatment frozen tumor samples were obtained from
53 children with newly diagnosed pHGG from Necker Enfants Malades (Paris, France) from
Puget et al. [2012]. The 53 tumors are divided into 3 locations: supratentorial (HEMI),
central nuclei (MIDL), and brain stem (DIPG). The final dataset is organized in 3 blocks of
variables defined for the 53 tumors: x is a block of indicator variables describing the location
category, the second data matrix y provides the expression of 15 702 genes (GE). The third
data matrix z contains the imbalances of 1229 segments (CGH) of chromosomes.

For x, we use a linear kernel, which is characteristic for indicator variables, and for y and z,
the kernel was chosen to be the Gaussian kernel with σ selected as the median of pairwise
distances. The p-value of our relative dependency test is < 10−5. This shows that the tumor
location in the brain is more dependent on gene expression than on chromosomal imbalances.
In contrast to the independent subsampling method described in Section 4.2.2, the dependent
test was also able to find the same ordering of dependence, but with a p-value that is three
orders of magnitude larger (p = 0.005). Figure 4.5 shows iso-curves of the Gaussian distribu-
tions estimated in the independent and dependent tests. The empirical relative dependency is
consistent with findings in the medical literature, and provides additional statistical support
for the importance of tumor location in Gliomas [Gilbertson and Gutmann, 2007, Palm et al.,
2009, Puget et al., 2012].

4.5 Conclusion

In this chapter, we have described a novel statistical test that determines whether a source
random variable is more strongly dependent on one target random variable or another. This
test, built on the Hilbert-Schmidt Independence Criterion, is low variance, consistent, and
unbiased. We have shown that our test is strictly more powerful than a test that does not ex-
ploit the covariance between HSIC statistics, and empirically achieves p-values several orders
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Figure 4.5 – 2σ iso-curves of the Gaussian distributions estimated from the pediatric Glioma
data. As before, the dependent test has a much lower variance than the independent test.
The tests support the stronger dependence on the tumor location to gene expression than
chromosomal imbalances.

of magnitude smaller. We have empirically demonstrated the test performance on synthetic
data, where the degree of dependence could be controlled; on the challenging problem of
identifying language groups from a multilingual corpus; and for finding the most important
determinant of Glioma type. The computation and memory requirements of the test are
quadratic in the sample size, matching the performance of HSIC and related tests for de-
pendence between two random variables. The test is therefore scalable to the wide range
of problem instances where non-parametric dependency tests are currently applied. We have
generalized the test framework to more than two HSIC statistics, and have given an algorithm
to construct a consistent, low-variance, unbiased test in this setting.





Chapter 5

Linear Time Non-Gaussian
Precision Matrix Estimation

In the previous chapter we investigated relative dependency using a non-parametric statistical
test based on U -statistic. In this chapter, we will address conditional dependency using an
analogous approach based on a U -statistic estimator of the covariance matrix and address
Research Question 3.

Structure discovery in graphical models is the determination of the topology of a graph
that encodes conditional independence properties of the joint distribution of all variables in
the model. For some class of probability distributions, an edge between two variables is
present if and only if the corresponding entry in the precision matrix is non-zero. For a
finite sample estimate of the precision matrix, entries close to zero may be due to low sample
effects, or due to an actual conditional independence between variables; these two cases
are not readily distinguishable. Methods for structure discovery in the literature typically
make restrictive (Gaussian) distributional or sparsity assumptions that may not apply to
a data sample of interest, and direct estimation of the uncertainty of an estimate of the
precision matrix for general distributions remains challenging. Consequently, we derive a new
test that makes use of results for U -statistics and applies them to the covariance matrix.
By probabilistically bounding the distortion of the covariance matrix, we can apply Weyl’s
theorem to bound the distortion of the precision matrix, yielding a sound test threshold for
a wider class of distributions than considered in previous works. The resulting test enables
one to answer with statistical significance whether an entry in the precision matrix is non-
zero, and convergence results are known for a wide range of distributions. The computational
complexity is linear in the sample size enabling the application of the test to large data samples
for which computation time becomes a limiting factor. The soundness and effectiveness of the
test is demonstrated on synthetic and real-world weather and medical datasets comprising
millions of observations from non-Gaussian distributions.

Work covered this chapter is based on:

• W. Bounliphone and M. B. Blaschko. Linear time non-Gaussian precision matrix esti-
mation. 2016. arXiv:1604.01733 – under submission.

Project: https://github.com/wbounliphone/Ustatistics_Approach_For_SD
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5.1 Introduction

Graphical models are powerful tools for analyzing relationships between a set of random vari-
ables, so that key conditional independence properties can be read from a graph. Learning
the structure of an underlying graphical model is of fundamental importance and has ap-
plications in a large number of domains [de Morais and Aussem, 2010, Gasse et al., 2012,
Sechidis and Brown, 2015]. In many contemporary applications, a large, effectively unlimited
stream of raw data with unknown multivariate distribution is to be analyzed. In such sce-
narios, computation becomes a fundamental limit and methods that can estimate properties
of graphical models from very general distributions with computation linear in the number
of observations become necessary. We can divide graphical models in two types, namely di-
rected graphical models, e.g. Bayesian networks [Neapolitan, 2004] or undirected graphical
models, e.g. Gaussian graphical models [Lauritzen, 1996, Whittaker, 2009]. Here, we focus on
undirected graphical models to encode the conditional dependence structure in multivariate
distributions.

Hypothesis testing with statistical measures of dependence is a relatively well developed field
with a number of general results. Classical tests such as Spearman’s ρ and Kendall’s τ are
widely applied [Kendall, 1946]. Recently, for multivariate non-linear dependencies, novel sta-
tistical tests were introduced, with prominent examples including the generalized variance
and kernel canonical correlation analysis [Bach and Jordan, 2002], the Hilbert-Schmidt in-
dependence criterion [Gretton et al., 2005a], distance based correlation [Székely et al., 2007]
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and rankings [Heller et al., 2013]. Testing the conditional dependence is even more challeng-
ing, and only few dependence measures have been generalized to the conditional case [Doran
et al., 2014, Fukumizu et al., 2007, 2009, Zhang et al., 2011]. We note that their work requires
the estimate of a regularization parameter with appropriate asymptotic decrease to estimate
the distribution of the test statistic under the null hypothesis, as well as for kernel selection,
and has quadratic space usage rendering it inapplicable to very large data sets. These re-
sults, however, do not directly extend to the test that we analyze here: that of independence
between two variables conditioned on all the others:

xi ⊥⊥ xj |xV \{i,j}. (5.1.1)

For Gaussian graphical models, the non-zero entry in the inverse of the covariance matrix
(called the precision matrix), can be shown to correspond to the underlying structure of
the graphical model [Dempster, 1972]. This observation has motivated a range of structure
discovery techniques for estimating the precision matrix using model selection and parameter
estimation methods [Drton and Perlman, 2004, Roverato and Whittaker, 1996, Yuan and Lin,
2007]. Furthermore, estimation in high-dimensional settings (n � p, where n is the sample
size and p is the dimension) has been the focus on recent research [Banerjee et al., 2008,
Friedman et al., 2008, Li and Gui, 2006, Liu et al., 2013, Meinshausen and Bühlmann, 2006,
Ravikumar et al., 2011, Ren et al., 2015, Schäfer and Strimmer, 2005, Yuan and Lin, 2007]
where methods impose a strong sparsity constraint on the entries of the precision matrix. The
consequence of this method to estimate the sparse precision matrix has been the development
of diverse statistical hypothesis tests [G’Sell et al., 2013, Jankova and van de Geer, 2015,
Lockhart et al., 2014]. Each of these methods explicitly assumes that the data distribution
is multivariate Gaussian. By contrast, we instead focus in this paper on designing a test for
the p � n case, and in particular ensure that the test has computational complexity linear
in n, while making minimal distributional assumptions and no sparsity assumptions.

For non-Gaussian graphical models, several techniques focus on the existence of a relationship
between conditional independence and the structure of the inverse covariance matrix. Loh
and Wainwright [2013] have established several theoretical results by extending a number
of interesting links between covariance matrices and graphical models for discrete random
variables and tree-structured graphs.

While there exist many convenient methods using Gaussian multivariate distributions or dis-
crete variables, other distributions pose new challenges in statistical modeling. In Wasserman
et al. [2014], the authors consider the problem of providing non-parametric confidence guaran-
tees that do not assume a Gaussian distribution or sparsity using finite sample Berry-Esseen
bounds on the accuracy of the normal approximation and the bootstrap approach. In con-
trast to this article, these bootstrap estimates add a significant computational overhead to
the approach.

Our contribution: Consequently, we develop a statistically and computationally efficient
framework for hypothesis testing of whether an entry of the precision matrix is non-zero
based on a data sample from the joint distribution Px. The proposed test does not depend
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on the data being Gaussian distributed or other parametric assumptions and does not require
sparsity. Also, the test not only has asymptotic guarantees, but can be applied to finite
samples without the need to set a regularization parameter or perform a computationally
expensive bootstrap procedure.

5.2 Proposed Method

In this section, we first develop a U -statistic estimator of the covariance matrix and its uncer-
tainty. Based on this distribution over covariance matrices, we subsequently probabilistically
bound its distortion and use this bound to compute a test threshold for the empirical preci-
sion matrix. Finally, we analyze the computational and statistical properties of the resulting
algorithm.

5.2.1 Structure Discovery in Undirected Graphical Models

In this section, we first give a U -statistic estimator of the covariance matrix to define a
hypothesis test for discovering the structure of graphical models. We show that this estimator
can be computed in time linear in the number of samples and study its asymptotic distribution.
We will denote the covariance matrix by Σ with its unbiased estimator Σ̂ using Definition 5.1.

We focus here on U -statistic estimates of Σ̂ and its asymptotic normal distribution to calculate
conservative bounds on the threshold for our hypothesis test. We develop the full covariance
between the elements of Σ̂, which we denote Cov(Σ̂) ∈ R

p(p+1)
2 × p(p+1)

2 , where the size is due
to the symmetry of Σ̂. We note U(A) the function returning the upper triangular part and
diagonal of a matrix A.

Definition 5.1 (U -statistic estimator for the covariance matrix). Let ur = (xir ,xjr)T , with
r = 1, 2 be ordered pairs of samples, with 1 ≤ i ≤ p. Consider Σ = Cov(xi1 ,xi2), the
covariance functional between xi1 and xi2 and h, the kernel of order 2 for the functional Σ
such that

h(u1,u2) = 1
2 (xi1 − xi2) (xj1 − xj2) . (5.2.1)

The corresponding U -statistic estimator of the covariance Σ is

Σ̂ = 1
n− 1

n∑
i,j=1

(xi1 − xi2)(xj1 − xj2) = 1
n− 1

n∑
i=1

(xi − xj)(xi − xj) (5.2.2)

where xi = 1
n

∑n
q=1 xqi. Σ̂ can be computed in O(n), with n the sample size.

Theorem 5.1 (Joint asymptotic normal distribution of the covariance matrix, [Serfling,
2009]). For all (i, j, k, l) range over each of the p variates in a covariance matrix Σ, if
Var(Σ̂ij) > 0 and Var(Σ̂kl) > 0, then

[
Σ̂ij ; Σ̂kl

]T
converges in distribution (as n −→ ∞)
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to a Gaussian random variables

n
1
2

(
Σ̂ij − Σij

Σ̂kl − Σkl

)
d−→ N

((
0
0

)
,

(
Var(Σ̂ij) Cov(Σ̂ij , Σ̂kl)

Cov(Σ̂ij , Σ̂kl) Var(Σ̂kl)

))
. (5.2.3)

where Var(Σ̂ij),Cov(Σ̂ij , Σ̂kl) and Var(Σ̂kl) are derived in Theorem 5.2.

The preceding theorem indicates that the empirical covariance estimate has asymptotic Gaus-
sian distribution with a O(n−1/2) convergence rate. The following two theorems show that
the covariance of the empirical covariance estimates are also known and can be empirically
computed in time linear in n.

Theorem 5.2 (Variance/Covariance of the U -statistic for the covariance matrix). We note
respectively h and g the corresponding kernel of order 2 for the two unbiased estimates Σ̂ij

and Σ̂kl, where

h(u1,u2) = 1
2 (xi1 − xi2) (xj1 − xj2) ,with ur = (xir ,xjr)T , for r = 1, 2;

g(v1,v2) = 1
2 (xk1 − xk2) (xl1 − xl2) ,with vr = (xkr ,xlr)T . (5.2.4)

The low variance, unbiased estimates of the covariance between two U -statistics estimates Σ̂ij

and Σ̂kl, where i ≤ j, k ≤ l range over each of the p variates in a covariance matrix Σ̂ is

[Cov(Σ̂)](ijkl) := Cov(Σ̂ij , Σ̂kl) =
(
n

2

)−1

(2(n− 2)ζ1) +O(n−2), (5.2.5)

where ζ1 = Cov (Eu2 [h(u1,u2)],Ev2 [g(v1,v2)]) and Cov(Σ̂) ∈ R(p2−(p2))×(p2−(p2)).

Proof: Equation (5.2.5) is directly constructed with the definition of the covariance of a U -
statistic from Hoeffding [1948].

Theorem 5.3. Each entry of Cov(Σ̂) can be estimated in time linear in n. For each 1 ≤
i, j, k, l ≤ p, Cov(Σ̂ij , Σ̂kl) can be estimated using one of seven different cases through simple
variable substitution.

I Case 1 : i 6= j, k, l; j 6= k, l; k 6= l

ζ1 = 1
4

{
xixjxkxl − xi xjxkxl − xj xixkxl − xk xixjxl (5.2.6)

+ xi xk xjxl + xj xk xixl − xixjxk xl + xi xl xjxk

+ xj xl xixk − (xixj − 2 xi xj) (xkxl − 2 xk xl)
}
.



74 LINEAR TIME NON-GAUSSIAN PRECISION MATRIX ESTIMATION

I Case 2 : i = j; j 6= k, l; k = l

ζ1 = 1
4

{
x2
ix2

k − 2 xi xix2
k − 2 x2

ixk1 xk + 4xixk xi xk (5.2.7)

−
(
x2
i − 2 xi2

) (
x2
k − 2 xk2

)}
.

I Case 3 : i = j; j 6= k, l; k 6= l

ζ1 = 1
4

{
x2
ixkxl − 2 xixkxl xi − x2

ixl xk + 2 xixl xi xk (5.2.8)

− x2
ixk1 xl + 2 xixk xi xl −

(
x2
i − 2 xi2

)
(xkxl − 2 xk xl)

}
.

I Case 4 : i = k; j 6= i, k, l; k 6= l

ζ1 = 1
4

{
x2
ixjxl − xi xjxixl − x2

ixl xj − xixjxl xi + xi2 xjxl (5.2.9)

+ xixl1 xj xi − x2
ixj xl + xi xjxi xl + x2

i xj xl

− (xixj − 2 xi xj) (xixl − 2 xi xl)
}
.

I Case 5 : i = k; i 6= j; j = l

ζ1 = 1
4

{
x2
ix2

j − 2xix2
j xi + xi2 x2

j − 2x2
ixj xj + 2xi xj xjxi (5.2.10)

+ x2
i xj2 − (xixj − 2(xi xj))2

}
.

I Case 6 : i = j = k; i 6= l

ζ1 = 1
4

{
x3
ixl − 3 x2

ixl xi + 2 xixl xi2 − x3
i xl + 2 x2

i xi xl (5.2.11)

−
(
x2
i − 2 xi2

)
(xixl − 2 xi xl)

}
.

I Case 7 : i = j, k, l

ζ1 = 1
4

{
x4
i − 4x3

i xi + 4x2
i xi2 −

(
x2
i − 2xi2

)2
}
. (5.2.12)
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A proof of Theorem 5.3 is given in Section 5.5.

We have shown that, for an extremely general class of multivariate distributions (non-pa-
thological with finite second moment), empirical estimates of covariances and their joint
distribution can be computed in linear time. By contrast, estimation of the precision matrix
remains challenging, and for general, non-Gaussian distributions, the asymptotic distribution
of an empirical estimate is unknown. We consequently use the distribution of the covariance
estimate to probabilistically bound the distortion of the precision matrix in the next section.

5.2.2 Hypothesis Test using a U-statistic Estimator for the Covariance
Matrix

This section describes the main novel theoretical contributions of this work. We first describe
our statistical test for structure discovery in undirected graphical models, based on the U -
statistic estimator Σ̂ of the covariance matrix reviewed in the previous section and discuss
its performance (Section 5.2.2). We subsequently study the computational efficiency of the
proposed statistical test (Section 5.2.3).

We now describe our test for structure discovery in undirected graphical model, based on
the asymptotic Gaussian distribution of the empirical covariance matrix described in Theo-
rems 5.1 and 5.2. We begin with an introduction to the terminology of statistical hypothesis
testing, as it applies to edge discovery. We denote the precision matrix by Θ = Σ−1, with Θ̂
its empirical estimate.

Given X a design matrix of size n × p and for all (i, j) ∈ {1, ..., p}, the statistical test
(Tij , Θ̂ij , δ) : (X, i, j) 7−→ {0, 1}, is used to distinguish between the following null hypothesis

H0(i, j) : Θi,j = ν, (5.2.13)

and the two-sided alternative hypothesis

H1(i, j) : Θi,j 6= ν, (5.2.14)

with ν ∈ R at a significance level δ. This is achieved by comparing the test statistic, |Θ̂ij | with
a particular threshold t: if the threshold is exceeded, then the test rejects the null hypothesis.
The acceptance region of the test is thus defined as any real number below the threshold.

We discuss the assumptions and explain in Theorem 5.5 how the threshold is determined and
show that it is a conservative bound. Theorem 5.5 is proved using Lemmas 5.1 and 5.2 and
Weyl’s Theorem 5.4.



76 LINEAR TIME NON-GAUSSIAN PRECISION MATRIX ESTIMATION

Lemma 5.1. With probability at least 1− δ, we have the two following inequalities

‖Σ− Σ̂‖2 ≤
√

2λmaxΦ−1 (1− δ/2) , (5.2.15)

‖Σ− Σ̂‖2 ≤
√

2 Tr[Cov(Σ̂)]Φ−1 (1− δ/2) , (5.2.16)

where Φ(·) is the CDF of N (0, 1) and λmax is the largest eigenvalue of Cov(Σ̂). Equa-
tion (5.2.15) is tighter than Equation (5.2.16).

Proof: As Σ̂ is a U -statistic, we have that U(Σ̂), a vector containing its upper diagonal com-
ponent (including the diagonal), is Gaussian distributed with covariance Cov(Σ̂) (cf. Theo-
rems 5.1, 5.2). Therefore, with probability at least 1− δ,

‖U(Σ)− U(Σ̂)‖2 ≤
√
λmaxΦ−1 (1− δ/2) (5.2.17)

and furthermore
‖Σ− Σ̂‖F ≤

√
2‖U(Σ)− U(Σ̂)‖2 (5.2.18)

which combined with the fact that ‖ · ‖2 ≤ ‖ · ‖F yields the desired result.

Lemma 5.2 (Bounding the deviation of the empirical precision matrix as a function of
eigenvalues). Given x a set of random variables drawn from a distribution for which

p∑
k=1

1
αkα̂k

− 2 Tr
[
ÛΛ̂ÛTUΛUT

]
, (5.2.19)

converges at a rate O(n−1/2) with a precision matrix Θ, and an empirical estimate of the
precision matrix Θ̂ corresponding to a covariance matrix Σ̂ with eigenvalues α̂1, . . . , α̂p, then
with high probability

|Θ̂ij −Θij | ≤ µ

√√√√ p∑
k=1

( 1
αk
− 1
α̂k

)2
∀i, j ∈ {1, ..., p}, (5.2.20)

for a distribution dependent constant µ.

Proof: We denote respectively Σ̂ the perturbed matrix of Σ, with α1 ≥ ... ≥ αp the eigen-
values of Σ and α̂1 ≥ ... ≥ α̂p the eigenvalues of an empirical estimate of the true covariance
matrix Σ̂, and Θ̂ the perturbed matrix of Θ. We then have that |Θ̂ij − Θij | ≤ ‖Θ̂ −Θ‖F
for all i, j ∈ {1, ..., p}. We will use the property of the singular value decomposition that
Σ̂ = V̂ ÂV̂

T , where V̂ is an n× n unitary matrix and a diagonal matrix Â with Âii = α̂i is
the i-th eigenvalue of Σ̂. Furthermore, we have that Σ−1 = Θ and the empirical estimate of
Θ is Θ̂ such that Θ̂ = ÛΛ̃ÛT where Û is an n× n unitary matrix and a diagonal matrix Λ̂
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with Λ̂ii = 1/α̂i.

‖Θ̂−Θ‖2F = Tr
[
Θ̂Θ̂ + ΘΘ− 2Θ̂Θ

]
(5.2.21)

= Tr
[
Λ̂Λ̂ + ΛΛ− 2ÛΛ̂ÛTUΛUT

]
(5.2.22)

= Tr
[
Λ̂Λ̂ + ΛΛ− 2ΛΛ̂

]
+ 2 Tr

[
ΛΛ̂− ÛΛ̂ÛTUΛUT

]
(5.2.23)

=
p∑

k=1

( 1
αk
− 1
α̂k

)2

︸ ︷︷ ︸
(5.2.24)−A

+ 2
p∑

k=1

1
αkα̂k

− 2 Tr
[
ÛΛ̂ÛTUΛUT

]
︸ ︷︷ ︸

(5.2.24)−B

(5.2.24)

≤ µ
( p∑
k=1

( 1
αk
− 1
α̂k

)2
)
. (5.2.25)

The bound in Equation (5.2.25) will hold with high probability, e.g. when the finite moment
conditions of Xia et al. [2013] are satisfied, as Equation. (5.2.24) is then guaranteed to converge
with rate O(n−1/2).

We have now shown that we can compute a bound on the distortion purely from the eigen-
values of Σ and Σ̂.

Theorem 5.4 (Weyl’s Theorem, [Weyl, 1912]). For two positive definite matrices Σ and Σ̂
with corresponding eigenvalues αk and α̂k, respectively, if

|αk − α̂k| ≤ ‖Σ̂−Σ‖2 ≤ ε, (5.2.26)

where 0 < ε < αk ∀k ∈ {1, ..., p}, then

αk − ε ≤ α̂k ≤ αk + ε ∀k ∈ {1, ..., p}. (5.2.27)

Theorem 5.5 (Conservative threshold). For all (i, j) ∈ {1, ..., p}, the threshold t for testing
H0 : Θi,j = ν versus H1 : Θi,j 6= ν is given by P for a small probability δ ∈ (0, 1) such that

P
(
|Θ̂i,j | > t|Θi,j = 0

)
< δ, (5.2.28)

such that

t = µ

√√√√ p∑
k=1

( −ε
α̂k(α̂k − ε)

)2
, (5.2.29)

where t is a conservative threshold, α̂k is the k-th eigenvalue of the empirical covariance
matrix Σ̂, ∀k, α̂k > ε, µ is a distribution dependent constant satisfying the Equation (5.2.25),
and ε is an error bound such that

εEig =
√

2λmaxΦ (1− δ/2) , or, (5.2.30)

εTrace =
√

2 Tr[Cov(Σ̂)]Φ (1− δ/2) , (5.2.31)

where λmax is the largest eigenvalue of Cov(Σ̂) and Tr[Cov(Σ̂)] is the trace of Cov(Σ̂).
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Proof: We have shown that we can compute the distortion of Θ̂ purely from the eigenvalues
of Σ and Σ̂. Therefore, we use Weyl’s theorem on the covariance matrix to get error bounds
for the eigenvalues of Σ. For ε < α̂k, ∀k, inequality (5.2.27) gives the following bounds for
the eigenvalues of the precision matrix Θ( 1

αk
− 1
α̂k

)2
≤
( −ε
α̂k(α̂k − ε)

)2
∀k ∈ {1, ..., p}. (5.2.32)

Combining Equation (5.2.25) and Equation (5.2.32) gives with high probability

‖Θ̂−Θ‖F ≤ µ

√√√√ p∑
i=1

( −ε
α̂k(α̂k − ε)

)2
, (5.2.33)

which implies a bound on the individual entries of the precision matrix as

|Θ̂ij −Θij | ≤ ‖Θ̂−Θ‖F . (5.2.34)

Remark 5.1. In the case that ε is larger than the smallest eigenvalue of Σ̂, the test threshold
is unbounded and we can never reject the null hypothesis. In this case, additional data are
necessary to decrease ε in order to have a non-trivial bound. Theorem 5.1 guarantees that ε
converges to zero as a function of the sample size at a rate O(n−1/2).

The computation of the statistical test for structure discovery in multivariate graphical models
is described in detail in Algorithm 2. We now discuss the computational efficiency of the test.

5.2.3 Computational Efficiency of the Test

We now address the computational efficiency for the proposed test. Due to the fact that the
computational complexity of the statistical test is linear (O

(
np4) for the eigenvalue threshold

and O
(
np2 + p3)) for the trace threshold), we show theoretical results of the performance of

the test in term of computational cost and power of a statistical test.

Theorem 5.6. For a fixed computational budget N less than the time required to process all
data points, the trace bound decreases at the same asymptotic rate as the eigenvalue bound as
a function of N and p.

Proof: We note that the bound in Equation (5.2.16) is strictly larger than that of Equa-
tion (5.2.15), but its computation CTrace(n, p) � np2 as opposed to CEig(n, p) � np4, where
� denotes that the function is asymptotically bounded above and below (see e.g. Temlyakov,
Greedy Approximation (2011) for a formal definition of the notation). The number of samples
processed is nTrace(N, p) � N/p2 for the trace test and nEig(N, p) � N/p4 for the eigenvalue
test.



PROPOSED METHOD 79

Algorithm 2 Linear time hypothesis test for a non-zero precision matrix entry
Require: δ, the significance level of the test; µ, a constant satisfying (5.2.25); Xp =
{x1, ...,xp} a sample matrix variables of dimension p with sample size n.

Ensure:
1: Compute Σ̂, the unbiased estimator of Σ from Xp (cf. Definition. 5.1).
2: Compute Θ̂ = Σ̂−1, the estimator of the precision matrix.
3: Compute U([Cov(Σ̂ij , Σ̂kl)]) the upper triangular of the covariance of U(Σ̂) where

(i, j, k, l) vary over the set of p variables (cf. Theorem 5.2).
4: Compute

• λmax, the largest eigenvalue of Cov(Σ̂), or
• Tr[Cov(Σ̂)], the trace of Cov(Σ̂).

5: Compute one of the two error bounds ε (cf. Equations (5.2.30) and (5.2.31))

• εEig =
√

2λmaxΦ−1 (1− δ/2), or

• εTrace =
√

2 Tr[Cov(Σ̂)]Φ−1 (1− δ/2)

where Φ is the CDF of a standard normal distribution.
6: if ε is greater than the smallest eigenvalue of Σ̂ then
7: t =∞
8: else
9: Compute the conservative threshold for the two error bound, t =

µ

√∑p
k=1

( −ε
α̂k(α̂k − ε)

)2
, where α̂k is the k-th eigenvalue of the unbiased esti-

mator Σ̂.
10: end if
11: return t.
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For a full rank
(
p2 −

(p
2
))
×
(
p2 −

(p
2
))

p.s.d. matrix, the trace is O(p2λmax). We have when the
sample sizes are equal εTrace ∈ O(pεEig). Furthermore, Equation (5.2.29) is asymptotically lin-
ear in ε as ε approaches zero from the right, and εEig ∈ O(λ(p)n−1/2), where λ(p) gives the de-
pendence of εEig on the dimensionality of the data. Therefore, at a fixed computational budget
the eigenvalue threshold is O(λ(p)nEig(n, p)−1/2) = O(λ(p)(Np−4)−1/2) = O(λ(p)N−1/2p2),
while the trace threshold is O(λ(p)p(nTrace(n, p))−1/2) = O(λ(p)N−1/2p2)

In the experiments, we set µ = 1, which we have empirically validated to result in a sound
test threshold for a wide range of distributions. As discussed below, for a trace threshold on
a matrix with condition number κ = λmax

λmin
, the trace over-estimates Equation (5.2.24)-A by at

least a factor of 1+ (p2−(p2)−1)λmin
λmax

, and the resulting test is therefore valid for distributions for

which Equation (5.2.24)-B is asymptotically at most p2−(p2)−1
κ as large as Equation (5.2.24)-A.

Theorem 5.7. For a test with computational cost Ω(ns) and a threshold that decreases as
Ω(nr), our test is asymptotically more powerful in the regime n� p whenever r

s > −
1
2 .

Proof: Our tests have computation CTrace(n) � CEig(n) � n. The convergence of our test
threshold is O(n−1/2) so for a fixed computational budget N , the test threshold is O(N−1/2).
For a test with computational cost Ω(ns) and a computational budget N , O(N1/s) samples
will be processed. As nr is decreasing in n for any consistent test, this implies that the test
threshold is Ω(N r/s) which is asymptotically larger than O(N−1/2) whenever r

s > −
1
2 .

Corollary 5.1. Any test that is superlinear must have a threshold that converges faster than
O(n−1/2) to be asymptotically more powerful at a fixed computational budget than the tests
proposed here.

In this section, we have derived two variants of a statistical hypothesis test that determines if
an empirical estimate of an entry of the precision matrix significantly deviates from zero. We
have shown that the two variants are asymptotically identical in the case that computation
rather than data size is a limiting factor (Theorem 5.6), we have further demonstrated that
our test is asymptotically more powerful than any method with superlinear computation and
O(n−1/2) convergence (Corollary 5.1). In the next section, we show that these theoretical
results are matched by empirical performance.

5.3 Experiments

In this section, we demonstrate the soundness and effectiveness of the proposed test for non-
zero entries in a precision matrix, which enables one to answer if an edge is significantly present
in a graphical model for a broad class of distributions. This is demonstrated both in terms of
experiments on randomly generated graphical models with known analytic precision matrices
Θ (Section 5.3.1), as well as and on real-world climate and weather data from the National
Centers for Environmental Information [2016] (Section 5.3.2) and on real-world medical data
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obtained from the Centers for Disease Control and Prevention [2014] (Section 5.3.3). In all
experiments, we have used a significance upper bound of δ < 0.05.

5.3.1 Synthetic Datasets

In these simulations, we generated the data sample Xp = {x1, . . . ,xp} of dimension p and
size n with the mean of each xi equal to zero, and a covariance matrix Σ, from multivariate
Gaussian or Laplace distributions with known analytic precision matrices Θ = Σ−1, such
that

Σij = xTi xj
‖xi‖2‖xj‖2

∀(i, j) ∈ {1, ..., p}. (5.3.1)

1. Multivariate Gaussian distribution:

f(Xp,Σ) = 1√
2πp|Σ|

exp
{
−1

2XT
p ΘXp

}
. (5.3.2)

2. Multivariate Laplace distribution [Gómez, 1998]:

f(Xp,Σ) =
pΓ
(p

2
)

π
p
2 Γ
(
1 + p

ω

)
21+ d

ω |Σ|−
1
2

exp
{1

2
[
XT
p ΘXp

]ω
2
}
, (5.3.3)

where Γ(p) is the gamma function evaluated at p. For ω = 1, the multivariate Laplace
distribution is derived.

In Figure 5.1, we plot the sample size for 101 regularly spaced values of n ∈ [10000, 1010000]
versus the empirical threshold tEig and tTrace (cf. Equation (5.2.29)) of the test. We clearly
distinguish that the threshold tEig based on the eigenvalue bound in Equation (5.2.17) is less
than the threshold tTrace based on the trace bound in Equation (5.2.16) (see Lemma 5.1).

In Figure 5.2, we illustrate the inequality of Weyl’s Theorem (Theorem 5.4). We show the
boxplots of the eigenvalues of Θ obtained from the simulation study. As expected, for a
known precision matrix Θ, the eigenvalues 1/αi, i ∈ {1, ...p} is bounded by the two error
bounds εEig and εTrace. As the sample size n increases, the two bounds become tighter. We
compare our hypothesis test with the eigenvalue threshold and the trace threshold (edgeTest-
eig and edgeTest-tr) to the classical Fisher test (FisherTest) (cf. Section 2.5) for the Gaussian
and the Laplace distributions. The simulations are repeated 100 times to provide statistical
significance.

In Figure 5.3 we plot the significance level of the test δ against the false positive rate, which
refers to the probability of falsely rejecting H0 for n = 100000 and p = 6. The diagonal dotted
black line indicates that the significance level of different tests is equal to false positive rate.
Curves above the diagonal indicate that the test does not obey the semantics of (a bound on)
the false positive probability, while a curve under the diagonal indicates that the proposed
test is conservative but sound. For the Gaussian distribution (Figure 5.3a), the Fisher test
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(green curve) is well calibrated while the proposed test is sound. However, for the Laplace
distribution (Figure 5.3b), the Fisher test is not valid. By contrast, the proposed test with
the trace and the eigenvalue threshold (blue and pink curves) is sound when applied to more
general families of distributions, including heavy tailed distributions such as the Laplacian.
Furthermore, we compare our method to permutation tests that are widely-applicable to
non-parametric tests. The permutation procedure is a robust but computationally intensive
alternative. Random shuffles of the data are used to get the correct distribution of a test
statistic under a null hypothesis, and these sampling distributions are valid regardless of
whether or not its distribution is known for any sample size. We calculate the test statistic
for each resampling and the threshold o this procedure is choose to be the δ quantile of the
distributions of the permuted test statistic. We found the error rates of permutation tests to
be systematically higher than the target level (red curve) showing that the permutation test
is not valid.
In addition to the comparison to the permutation tests and the Fisher tests, we have compare
the proposed test to the Gaussian graphical model under a sparseness condition. At δ = 0.05
we obtain an empirical false positive rate of 0.265, demonstrating that the violation of the
test assumptions lead to an invalid test procedure.

In Figure 5.4, we compare the power of the tests by plotting the sample size for 101 regularly
spaced values of n ∈ [10000, 1010000] against the power of the test. We take into account
an effect in the graph in the sense that we want to detect edge only when there is a non-
negligible conditional dependence between two edges in the graph, i.e. when |Θij | > 0.5 for all
(i, j) ∈ {1, ...p} (see Lauritzen [1996]). We show that the power of the test approaches 1 after
only a few thousand samples, and the linear scaling of the test means that it is applicable to
millions of datapoints, enabling the discovery of subtle effects in complicated distributions.

5.3.2 Zone climate associations datasets

In the second experiment, we present our method on real-world measurements of the weather
in Europe and on the east coast of the United States. We are particularly interested by
modeling micro-climate dependencies as a function of the air temperature.

We have collected the datasets from the NCEI [National Centers for Environmental Informa-
tion, 2016]. The NCEI acquires, historical weather datasets in the world. These data include
quality controlled daily, monthly, seasonal, and yearly measurements of temperature recorded
over decades, meaning that n � p. We have selected the temperature within a range of 50
miles for few cities in Europe and in the east coast of the United State and we have prepro-
cessed the datasets by selecting common hourly measurements of temperature from 1942 to
2016 for each city. In Table 5.1, we present three collections of datasets, (I), (II) and (III) for
different cities and millions of hourly measurements of temperatures.

In Table 5.1 and in Figure 5.5, we emphasize the fact that for these real-world experiments,
the empirical distributions are non-Gaussian. For each city, we estimate the kurtosis and
the resulting values (Kurt. < 3) indicate a platykurtic distribution (flatter than a Gaussian
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Figure 5.1 – Illustration of the sample size for 101 regularly spaces values of n ∈
[10000, 1010000] versus the thresholds tEig and tTrace (Equation (5.2.29)). We have plotted
both the eigenvalue bound as well as the trace bound (cf. Lemma 5.1).

distribution with shorter tails). Additionally, we have performed one-sample Kolmogorov-
Smirnov statistical tests for the normality of the empirical distributions. The resulting low p-
value concludes that the empirical data are clearly non-Gaussian. Furthermore, in Figures. 5.7
and 5.8, we present the resulting undirected graphical model discovered with our statistical
test for each collection. Our tests reject the null hypothesis with probability decreasing as a
function of the distance between the cities, and that dependence between more distant cities
can largely be explained by conditioning on cities lying in between.

Finally, we note that our test is capable of processing millions of observations with unopti-
mized Matlab code in a matter of seconds on a 2.80GHz CPU.

5.3.3 Risk Factors for Tuberculosis in the United States

In the third experiment, we evaluate our method on real-world data of Tuberculosis (TB)
cases. TB is a potentially serious infectious disease that mainly affects the lungs. The factors
responsible for TB are multiple but in the United States, the most important are problems of
poverty, homelessness, and poor access to health care, which have combined to help maintain
a reservoir of infected persons [Narasimhan et al., 2013, Suchindran et al., 2009]. The addition
of HIV-associated immunodeficiency has had an observable impact on the incidence of TB.
In the last decades, the number of new TB cases reported annually in the United States has
increased and the TB morbidity has consistently demonstrated the burden of TB. Multiple
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Figure 5.2 – For a known analytic precision matrix Θ of size p = 8 and for two different
sample sizes, we show the boxplots of accuracy values of eigenvalues of 200 estimates matrices
Θ̂ for the Gaussian (Figures 5.2a, 5.2c) and Laplace (Figures 5.2b, 5.2d) distributions with
normalized data. In pink, we plot the true eigenvalue of Θ and in green and blue, we plot the
upper and lower bound given by Weyl’s theorem. As n grows, we see that the bound more
closely constrains the true eigenvalues of Θ.
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Figure 5.3 – Comparison of the false positive rate for the proposed test, the Fisher test and
the permutation test. For the Gaussian distribution (Figure 5.3a), the curves show that the
Fisher test is well calibrated and that the proposed test is conservative (below the diagonal).
For the Laplace distribution (Figure 5.3b), the Fisher test does not obey the semantics of
a bound on δ (the curve is above the diagonal). By contrast, the proposed tests remains
conservative and sound. In addition, the permutation test dost not obey the semantics of
a bound on δ for both distributions. An explanation for the overly high false positive rate
of the permutation test is that the permutations destroy the underlying edge distribution of
the graph resulting in an incorrect estimate of the distribution of the statistic under the null
hypothesis.



86 LINEAR TIME NON-GAUSSIAN PRECISION MATRIX ESTIMATION

po
w
er

0 2 4 6 8 10

#10 5

0

0.2

0.4

0.6

0.8

1

EdgeTest-tr
EdgeTest-eig

Sample size n
(a) Gaussiandistribution

po
w
er

0 2 4 6 8 10

#10 5

0

0.2

0.4

0.6

0.8

1

EdgeTest-tr
EdgeTest-eig

Sample size n
(b) Laplace distribution

Figure 5.4 – Comparison of the powers of the proposed test using the two bounds as a function
of n,when we reject the null hypothesis and when there is a large magnitude entry of Θ, here
when |Θij | > 0.5.
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Figure 5.5 – Empirical distribution of the weather datasets for different cities for the collec-
tion(I).
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Figure 5.6 – Collection (I): Illustrations of the undirected graph with weight edges (Fig-
ure 5.6a), the absolute value of the test statistic matrix between the different cities (Fig-
ure 5.6b), with a threshold of teig = 0.7279 and the adjacency matrix showing the significant
association between the cities (Figure 5.6c).
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Figure 5.7 – Collection (II): Illustrations of the undirected graph with weight edges (Fig-
ure 5.7a), the absolute value of the test statistic matrix between the different cities (Fig-
ure 5.7b), with a threshold of teig = 0.7899 and the adjacency matrix showing the significant
association between the cities (Figure 5.7c).



90 LINEAR TIME NON-GAUSSIAN PRECISION MATRIX ESTIMATION

lo
ng

itu
de

39 40 41 42

-77

-76

-75

-74

-73

-72

-71

2.124
4

3.2
82

1.94
37

2.14

1.19
61

1.55
6

2.63
28

Allentown

Boston

New-York

Philadelphia

Washington

latitude

(a)
(b)

8.38

0.86

2.12

3.28

1.94

0.86

5.17

2.14

1.20

0.62

2.12

2.14

7.02

1.56

1.00

3.28

1.20

1.56

8.79

2.63

1.94

0.62

1.00

2.63

6.49

All
Bos Nyc Phi

W
as

h

All

Bos

Nyc

Phi

Wash -2

0

2

4

6

8

(c)



All. Bos. Nyc. Phi. Wash.

All 1 0 1 1 1
Bos 0 1 1 1 0
Nyc 1 1 1 1 0
Phi. 1 1 1 1 1
Wash. 1 0 0 1 1


(d)

Figure 5.8 – Collection (III): Illustrations of the undirected graph with weight edges (Fig-
ures. 5.8a and 5.8b), the absolute value of the test statistic matrix between the different
cities (Figure 5.8c), with a threshold of teig = 1.0958 and the adjacency matrix showing the
significant association between the cities (Figure 5.8d).
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Collection (I) Collection (II) Collection (III)
n = 1, 266, 463 n = 1, 971, 449 n = 3, 463, 949

Cities Kurt. Cities Kurt. Cities Kurt.
Liverpool (Liv) 2.8947 Brussels (Bru) 2.8883 Allentown (All) 2.1786
London (Lon) 2.8773 Copenhagen (Cop) 2.6244 Boston (Bos) 2.4226
Brussels (Bru), 2.8954 London (Lon) 2.8350 New–York (Nyc) 2.2426
Paris (Par), 2.8146 Munich (Mun) 2.7201 Philadelphia (Phi) 2.2014
Frankfurt (Fra) 2.8561 Paris (Par) 2.7778 Washington (Wash) 2.1802
Munich (Mun) 2.8034 Stockholm(Sto) 2.7614

Vienna(V ie) 2.4138

Table 5.1 – Description of the three collections of the datasets. For each city, the low values
of the estimate kurtosis show a fatter tail. Additionally, the one-sample Kolmogorov-Smirnov
statistical test of normality yields a p-value smaller than numerical precision.

factors contributed to the recent increases in the number of TB cases. With the resurgence
of tuberculosis in the United States, this is of interest to provide significant and effective
information for the targeting of efforts to control tuberculosis and to reverse that trend.

We studied independently factors that increase the risk of being infected and the risk of
infection leading on to active disease. The Online Tuberculosis Information System (OTIS)
contains information on verified TB cases reported to the Centers for Disease Control and
Prevention [2014]. The data set consist of n = 163,997 tuberculosis cases for which we have
selected 4 causes of being infected: Positive to HIV (HIV ); Alcohol use (Alc); Drug use
(Drug) and Homeless in the past year (Homeless).

The proposed tests show a significant association between, “HIV positive - Homeless in past
year” and “drug use - Homeless in past year” showing that environmental factors represent
important common risk factors for TB as shown in Figure 5.9. This association that has long
been highlighted in the medical literature [Narasimhan et al., 2013, Suchindran et al., 2009]
and our hypothesis test produces consistent findings.

5.4 Discussion and Conclusion

We have considered the problem of structure discovery for undirected graphical models in
the context of non-Gaussian multivariate distributions. By using a concentration bound from
the theory of U -statistics, we have developed two sound test thresholds tEig and tTrace. As
a baseline, we compare to the Fisher test which is only correct under the assumption of a
Gaussian distribution. As shown in the simulation studies, for non-Gaussian distributions,
the Fisher test is not calibrated, while alternatively, the proposed test is sound. Among the
two bounds presented here, the eigenvalue bound is preferred when the availability of data
is more limited than computation, while tTrace is a competitive test when we have a fixed
computational budget N that is exceeded by the amount of available data. In this work,



92 LINEAR TIME NON-GAUSSIAN PRECISION MATRIX ESTIMATION

1.04

0.00

0.19

0.08

0.00

1.12

0.18

0.29

0.19

0.18

1.09

0.10

0.08

0.29

0.10

1.11

HIV Alc
Dru

g

Hom
ele

ss

HIV

Alc

Drug

Homeless
-0.2

0

0.2

0.4

0.6

0.8

1

(a)


HIV Alc. Drug Homeless

HIV 1 0 1 0
Alc. 0 1 1 1
Drug 1 1 1 0
Homeless 0 1 0 1


(b)

Figure 5.9 – Illustration of the absolute value of the test statistic matrix between the risk
factors (Figure 5.9a), with a threshold of teig = 0.1170 and the adjacency matrix showing the
significant association between the risk factors (Figure 5.9b).

we have constructed a conservative threshold on the absolute value of the precision matrix
as a hypothesis test of the presence of an edge in a graphical model. For a wider range of
distributions, we have developed a threshold based on a U -statistic empirical estimator of the
covariance matrix. This is achieved by probabilistically bounding the distortion of the true
covariance matrix, and then using this fixed bound in conjunction with Weyl’s theorem to
bound the distortion of the precision matrix. These bounds are applicable to the quantification
of uncertainty in the magnitude of an effect between variables as measured by the value of
the precision matrix, and can also be used to construct a hypothesis test of whether an edge
is present in a graphical model by testing for significant deviations from zero. The resulting
test asymptotically converges at the same O(n−1/2) rate as the U -statistic, which we have
additionally verified empirically. We have shown two alternative thresholds, one based on the
largest eigenvalue of Cov(Σ̂), and a second based on the trace of Cov(Σ̂), which strictly upper
bounds the first. Simulation studies show that the test successfully recovers the structure
of undirected graphical models given a sufficient number of samples. Theorem 5.7 implies
that more expensive tests will eventually be dominated by our test. However, there may be
situations in which subsampling and running a different test may give higher power if data
are limitated. Comparison, e.g. to Wasserman et al. [2014], in such a setting is therefore an
interesting direction for future work. We have empirically demonstrated the test performance
on synthetic data, on the challenging problem of understanding geographic dependencies in
weather, and on the problem of identifying conditionally dependent risk factors for having
tuberculosis. We have demonstrated that our method is scalable to millions of data points in
under a minute on a standard CPU using a direct implementation of Algorithm 2.

5.5 Proofs

In this section, we show the details of the derivation of Theorem 5.3. We first provide a short
theoretical reminder of the notation in this context using the Theorem 2.3 of the covariance
of two U -statistics with the corresponding U -statistic kernel of degree 2.



PROOFS 93

We derive low variance, unbiased estimates of the covariance between two U -statistics esti-
mates Σ̂ij and Σ̂kl, where (i, j, k, l) range over each of the d variates in a covariance matrix

ˆSigma. We note h and g the corresponding kernel of order 2 for Σ̂ij and Σ̂kl, where

h(u1, u2) = 1
2 (xi1 − xi2) (xj1 − xj2) ,with ur = (xir ,xjr)T (5.5.1)

g(v1, v2) = 1
2 (xk1 − xk2) (xl1 − xl2) ,with vr = (xkr ,xlr)T . (5.5.2)

Then, using Theorem 2.3, the covariance Cov(Σ̂ij , Σ̂kl) for the two U -statistics Σ̂ij and Σ̂kl is

Cov(Σ̂ij , Σ̂kl) =
(
n

2

)−1

(2(n− 2)ζ1 + ζ2) (5.5.3)

=
(
n

2

)−1

(2(n− 2)ζ1) +O(n−2), (5.5.4)

where
ζ1 = Cov (Eu2 [h(u1,u2)],Ev2 [g(v1,v2)]) (5.5.5)

where Eu2 = Exi2 ,xj2 denotes the integral of the function h (xi1 ,xj1 ,xi2xj2) with respect with
respect to the variable of integration are xi2 ,xj2 . If the distribution from Px has a density f
then

Eu2 [h(u1,u2)] = Exi2 ,xj2 [h(xi1 ,xj1 ,xi2xj2)] (5.5.6)

=
∫
R
h (xi1 ,xj1 ,xi2xj2) f (xi2 ,xj2) dxi2dxj2 (5.5.7)

Ev2 [g(v1,v2)] = Exk2 ,xl2 [g(xk1 ,xl1 ,xk2xl2)] (5.5.8)

=
∫
R
g (xk1 ,xl1 ,xk2xl2) f (xk2 ,xl2) dxk2dxl2 . (5.5.9)

We now present a proof of Theorem 5.3.

5.5.1 Description of the algorithm providing the seven cases

We formally described the algorithm that provided us 7 cases for the derivation of Cov(Σ̂ij , Σ̂kl)
of Theorem 5.3, where (i, j, k, l) vary over the set of p variables.

Enumeration First, we enumerate all configurations of Cov(Σ̂ij , Σ̂kl), which can be en-
coded as a non-unique assignment matrix of variables i, j, k, l to instantiated variables
(a, b, c, d). For a fixed assignment of i to variable a, we can list all possible assignments
of the 3 remaining variables (j, k, l) to any (a, b, c, d). Naïvely, we have 43 possible
assignments, but many of them will be equivalent by variable substitution. To test
whether two forms are equivalent, it is sufficient to test a reduced form for equality.
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Reduced Form We map a variable assignment to a reduced form by re-labeling variables
sorted by the number of occurrences, which reduces the number of possible matches
up-to non-uniqueness of the mapping due to equal numbers of variable occurrences.
This ambiguity is then resolved by testing for symmetries.

Symmetry Symmetry of the covariance operator brings the following equally that we take
into consideration in testing for equivalence:

Cov(Σ̂ij , Σ̂kl) = Cov(Σ̂kl, Σ̂ij) = Cov(Σ̂ij , Σ̂lk) = Cov(Σ̂lk, Σ̂ij) (5.5.10)
= Cov(Σ̂lk, Σ̂ji) = Cov(Σ̂ji, Σ̂kl) = Cov(Σ̂ji, Σ̂lk).

The algorithm outputs each variable assignment that is not equivalent by variable substitution
to any previously enumerated assignment. The resulting seven cases are given in Table 5.2.

Cases Indices Correspondence

1 i 6= j, k, l; j 6= k, l; k 6= l Cov(Σ̂ij , Σ̂kl)
2 i = j; j 6= k, l; k = l Cov(Σ̂ii, Σ̂kk)
3 i = j; j 6= k, l; k 6= l Cov(Σ̂ii, Σ̂kl)
4 i = k; j 6= i, k, l; k 6= l Cov(Σ̂ij , Σ̂il)
5 i = k; i 6= j; j = l; Var(Σ̂ij)
6 i = j = k; i 6= l Cov(Σ̂ii, Σ̂il)
7 i = j, k, l Var(Σ̂ii)

Table 5.2 – Enumeration and correspondence of the seven cases.

5.5.2 The seven exhaustive cases

We now derive linear-time finite-sample estimates of the covariance for each of the seven
cases. We note xyuv = E[xyuv], xyz = E[xyz], xy = E[xy], x = E[x], and xyuv x =
E[xyuv]E[x].

I Case 1: i 6= j, k, l; j 6= k, l; k 6= l

The corresponding U -statistic kernels for this case are

h(u1,u2) = 1
2 (xi1 − xi2) (xj1 − xj2) , and (5.5.11)

g(v1,v2) = 1
2 (xk1 − xk2) (xl1 − xl2) , (5.5.12)
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then, if the distribution from Px has a density f , the expectation in Equation (5.5.7) is

Eu2 [h(u1,u2)] =
∫
R
h (xi1 ,xj1 ,xi2xj2) f (xi2 ,xj2) dxi2dxj2 (5.5.13)

=
∫
R

1
2 (xi1 − xi2) (xj1 − xj2) f (xi2 ,xj2) dxi2dxj2

= 1
2

∫
R

(xi1 − xi2) (xj1 − xj2) f (xi2) f (xj2) dxi2dxj2

= 1
2

(∫
R

(xi1 − xi2) f (xi2) dxi2
)(∫

R
(xj1 − xj2) f (xj2) dxj2

)
= 1

2

{(
xi1

∫
R
f (xi2) dxi2 −

∫
R

xi2f (xi2) dxi2
)

(
xj1

∫
R
f (xj2) dxj2 −

∫
R

xj2f (xj2) dxj2
)}

= 1
2

{
(xi1 − xi) (xj1 − xj)

}
,

where we make use of the i.i.d. properties of xi and xj , and we have that the probability
density function f satisfy the condition∫

f (x) dPx = 1 (5.5.14)

and where xi represent the mean of the sample xi1 . Similarly, using the same derivations
than in Equation (5.5.13), we have that the Equation (5.5.9) is equal to

Eu2 [g(v1,v2)] = 1
2

{
(xk1 − xk) (xl1 − xl)

}
. (5.5.15)
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Finally, we have that ζ1 is equal to

ζ1 = Cov
[1

2 (xi1 − xi) (xj1 − xj) ,
1
2 (xk1 − xk) (xl1 − xl)

]
(5.5.16)

= 1
4

{
Cov [xi1xj1 − xixj1 − xi1xj ; xk1xl1 − xkxl1 − xk1xl]

}
= 1

4

{
Eu1

[
xi1xj1xk1xl1 − xixj1xk1xl1 − xi1xjxk1xl1

− xi1xj1xkxl1 + xixj1xkxl1 + xi1xj xkxl1
− xi1xj1xk1xl + xixj1xk1xl + xi1xjxk1xl

]
− Eu1 [xi1xj1 − xixj1 − xi1xj ]Eu1 [xk1xl1 − xkxl1 − xk1xl]

}
= 1

4

{
xixjxkxl − xi xjxkxl − xj xixkxl

− xk xixjxl + xi xk xjxl + xj xk xixl
− xixjxk xl + xi xl xjxk + xj xl xixk

− (xixj − 2 xi xj) (xkxl − 2 xk xl)
}
.

I Case 2: i = j; j 6= k, l; k = l

The corresponding U -statistic kernels for this case are

h(u1,u2) = 1
2 (xi1 − xi2)2 , and (5.5.17)

g(v1,v2) = 1
2 (xk1 − xk2)2 . (5.5.18)

Using the same derivations than in (5.5.13), we obtain

ζ1 = Cov
[1

2 (xi1 − xi)2 ; 1
2 (xk1 − xk)2

]
(5.5.19)

= 1
4

{
Cov

[
x2
i1 − 2xi1xi; x2

k1 − 2xk1xk
]}

= 1
4

{
Ex1

[
x2
i1x

2
k1 − 2xi1xix2

k1 − 2x2
i1xk1xk + 4xi1xixk1xk

]
− Ex1

[
x2
i1 − 2xi1xi

]
Ex1

[
x2
k1 − 2xk1xk

]}
= 1

4

{
x2
ix2

k − 2 xi xix2
k − 2 x2

ixk1 xk + 4xixk xi xk

−
(
x2
i − 2 xi2

) (
x2
k − 2 xk2

)}
.

I Case 3: i = j; j 6= k, l; k 6= l
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The corresponding U -statistic kernels for this case are

h(u1,u2) = 1
2 (xi1 − xi2)2 , and (5.5.20)

g(v1,v2) = 1
2 (xk1 − xk2) (xl1 − xl2) . (5.5.21)

And, ζ1 is equal to

ζ1 = Cov
[1

2 (xi1 − xi)2 ; 1
2 (xk1 − xk) (xl1 − xl)

]
(5.5.22)

= 1
4

{
Cov

[
x2
i1 − 2xi1xi; xk1xl1 − xkxl1 − xk1xl

]}
= 1

4

{
Eu1

[
x2
i1xk1xl1 − 2xi1xixk1xl1 − x2

i1xkxl1

+ 2xi1xi xkxl1 − x2
i1xk1xl + 2xi1xixk1xl

]
− Eu1

[
x2
i1 − 2xi1xi

]
Eu1 [xk1xl1 − xkxl1 − xk1xl]

}
= 1

4

{
x2
ixkxl − 2 xixkxl xi − x2

ixl xk

+ 2 xixl xi xk − x2
ixk1 xl + 2 xixk xi xl

−
(
x2
i − 2 xi2

)
(xkxl − 2 xk xl)

}
.

I Case 4: i = k; j 6= i, k, l; k 6= l

The corresponding U -statistic kernels for this case are

h(u1,u2) = 1
2 (xi1 − xi2) (xj1 − xj2) , and (5.5.23)

g(v1,v2) = 1
2 (xi1 − xi2) (xl1 − xl2) . (5.5.24)
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And, ζ1 is equal to

ζ1 = Cov
[1

2 (xi1 − xi) (xj1 − xj) ; 1
2 (xi1 − xi) (xl1 − xl)

]
(5.5.25)

= 1
4

{
Cov [xi1xj1 − xixj1 − xi1xj ; xi1xl1 − xixl1 − xi1xl]

}
= 1

4

{
Ex1

[
x2
i1xj1xl1 − xixj1xi1xl1 − x2

i1xjxl1

− xi1xj1xixl1 + xi2 xj1xl1 + xi1xj xixl1
− x2

i1xj1xl + xixj1xi1xl + x2
i1xjxl

]
− Ex1 [xi1xj1 − xixj1 − xi1xj ] Ex1 [xi1xl1 − xixl1 − xi1xl]

}
= 1

4

{
x2
i1

xj1xl1 − xi xj1xi1xl1 − x2
i1

xl1 xj

− xi1xj1xl1 xi + xi2 xj1xl1 + xi1xl1 xj xi
− x2

i1
xj1 xl + xi xj1xi1 xl + x2

i1
xj xl

]
− (xixj − 2 xi xj) (xixl − 2 xi xl)

}
.

I Case 5: i = k; i 6= j; j = l

The corresponding U -statistic kernels for this case are

h(u1,u2) = 1
2 (xi1 − xi2) (xj1 − xj2) , and (5.5.26)

g(v1,v2) = h(u1,u2). (5.5.27)

And, ζ1 is equal to

ζ1 = Var
[1

2 (xi1 − xi) (xj1 − xj)
]

(5.5.28)

= 1
4

{
Var [xi1xj1 − xixj1 − xi1xj ]

}
= 1

4

{
Ex1

[
(xi1xj1 − xixj1 − xi1xj)2

]
− Ex1 [xi1xj1 − xixj1 − xi1xj ]

2
}

= 1
4

{
Ex1

[
x2
i1x

2
j1 − 2xi1x2

j1xi + xi2x2
j1 − 2x2

i1xj1xj + 2xixj1xi1xj + x2
i1xj

2]
−
(
xiXj − 2(xi xj)

)2
}

= 1
4

{
x2
ix2

j − 2xix2
j xi + xi2 x2

j − 2x2
ixj xj + 2xi xj xjxi + x2

i xj2

−
(
xiXj − 2(xi xj)

)2
}
.

I Case 6: i = j = k; i 6= l
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The corresponding U -statistic kernels for this case are

h(u1,u2) = 1
2 (xi1 − xi2)2 , and (5.5.29)

g(v1,v2) = 1
2 (xi1 − xi2) (xl1 − xl2) . (5.5.30)

And, ζ1 is equal to

ζ1 = Cov
[1

2 (xi1 − xi)2 ; 1
2 (xi1 − xi) (xl1 − xl)

]
(5.5.31)

= 1
4

{
Cov

[
x2
i1 − 2xi1xi1 ; xi1xl1 − xi1xl1 − xi1xl1

]}
= 1

4

{
Ex1

[
x2
i1xi1xl1 − 2xi1xi1xi1xl1 − x2

i1xi1xl1

+ 2xi1xi1 xi1xl1 − x2
i1xi1xl1 + 2xi1xi1xi1xl1

]
− Ex1

[
x2
i1 − 2xi1xi1

]
Ex1 [xi1xl1 − xi1xl1 − xi1xl1 ]

}
= 1

4

{
x3
ixl − 3 x2

ixl xi + 2 xixl xi2 − x3
i xl + 2 x2

i xi xl

−
(
x2
i − 2 xi2

)
(xixl − 2 xi xl)

}
.

I Case 7: i = j, k, l

The corresponding U -statistic kernels for this case are

h(u1,u2) = 1
2 (xi1 − xi2)2 , and (5.5.32)

g(v1,v2) = h(u1,u2). (5.5.33)

And, ζ1 is equal to

ζ1 = Var
[1

2 (xi1 − xi)2
]

(5.5.34)

= 1
4 Var

[
x2
i1 − 2xi1xi1

]
= 1

4

{
Ex1

[(
x2
i1 − 2xi1xi1

)2
]
− Ex1

[
x2
i1 − 2xi1xi1

]2}
= 1

4

{
x4
i − 4x3

i xi + 4x2
i xi2 −

(
x2
i − 2xi2

)2
}
.

5.5.3 Derivation in O(n) time for all terms

In section 5.5.2, all terms are in the form of E[x],E[xy],E[xyz] and E[xyuy] and can be
computed in O(n) as following
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E[x] = 1
n

n∑
q=1

xq. (5.5.35)

E[xy] = 1
n

n∑
q=1

xq � yq (5.5.36)

E[xyz] = 1
n

n∑
q=1

xq.� yq � zq. (5.5.37)

E[xyuy] = 1
n

n∑
q=1

xq � yq � uq � vq. (5.5.38)



Chapter 6

Conclusion

The problem of hypothesis tests for similarity and dependency are of fundamental importance
in statistics. However, there were several important open questions in the literature prior to
the work done in this thesis. First, while significant progress had been achieved in modeling
and using classical hypothesis tests for the task of identifying similarity between variables,
or finding the dependencies among them, existing methods have mostly focused on pairwise
relationships. Second, conditional independence tests are especially important and are chal-
lenging for the task of learning probabilistic graphical model structures from data. Such tests
enable reasoning about interconnected nodes in networks, for example. However, while there
exist many methods in the literature using strong assumptions of data being generated by
discrete or Gaussian multivariate distributions, other distributions have posed new challenges
in statistical modeling for real-world data.

In this thesis, we have taken as starting point these shortcomings. This chapter summarizes
the contributions made in this thesis and their relationship to the three research questions
posed at the beginning of the thesis.

6.1 Summary of contributions

In this thesis, we addressed the problem of novel non-parametric hypothesis tests for similar-
ity and dependence and we explored means to achieve them. As a result, the contributions
resulting from this work have developed novel statistical hypothesis tests with optimal com-
putational complexity. A summary is given in Table 1.1 in Chapter 1.

Being based on the powerful framework of U -statistics, all resulting tests have favorable
convergence properties and are consistent, low-variance, and unbiased. In the following para-
graphs, we described in more detail the contributions of each component.

The first work presented in this thesis addresses the task of determining whether a target
distribution is closer to one of two candidate distributions. In Chapter 3, we propose a novel
non-parametric statistical hypothesis test for relative similarity based on the MMD. Based
on the theory of U -statistics, we use as our test statistic the difference of MMDs between the
reference dataset and each model dataset, and derive a powerful, low-variance test based on
their joint asymptotic distribution.

The test is consistent, and the computation time is quadratic. Our proposed test statistic
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is theoretically justified for the task of comparing samples from arbitrary distributions as
it can be shown to converge to a quantity which compares all moments of the two pairs of
distributions.

For the second work presented in this thesis, we describe in Chapter 4 a novel statistical test
which determines whether two target variables have a significant difference in their dependence
on a third, source variable. The dependence between each of the target variables and the
source is computed using the Hilbert-Schmidt Independence Criterion (HSIC).

Finally, in Chapter 5, we have constructed a conservative threshold for a hypothesis test
on the absolute value of the precision matrix being significantly non-zero for a wider range
of distributions than has been previously considered in the literature. Previous works have
primarily focused on Gaussian or discrete distributions. We have developed a threshold based
on a U -statistic empirical estimator of the covariance matrix, which we use to probabilistically
bound the distortion of the true covariance matrix. Using this fixed bound in conjunction
with Weyl’s theorem, we are able to bound the distortion of the precision matrix.

6.2 Revisiting the Research Questions

At the beginning of this thesis, we set the objective of investigating the potential of new
statistical hypothesis testing for dependence and similarity that has not been explored. To
this end, we formulated three research questions which were presented in introduction. We
revisit and address each of them in turn.

1. Is the probability measure Px significantly closer to Py or to Pz?

The results obtained from Chapter 3 give a novel non-parametric statistical hypothesis test for
relative similarity based on the MMD. Our proposed test statistic is theoretically justified for
the task of comparing samples from arbitrary distributions as it can be shown to converge to a
quantity which compares all moments of the two pairs of distributions. Experimental results
on model selection for deep generative networks show that this hypothesis can be a useful
approach to comparing such models. These observations were further confirmed by Sutherland
et al. [2016], where the method optimizes the representation and distinguishes samples from
two probability distributions by maximizing the estimated power of a statistical test based
on the MMD statistics. These findings essentially show that answering such a question is of
importance in the machine learning community.

2. Is the dependency between x and y significantly stronger than the dependency between
x and z?

This research question was explored with one main goal, which is to find significant relative
dependency of different outputs. When there may be multiple dependencies, which depen-
dence is the strongest? Dependence is measured via the HSIC resulting in a pair of empirical



DIRECTIONS FOR FUTURE RESEARCH 103

dependence measures (source-target 1, source-target 2). We formulate the hypothesis test
to determine whether the first dependence measure is significantly larger than the second.
There do not exist competing tests and detecting the strength of dependencies between three
sets of variable is of great importance in a variety of problems. For instance, to develop a
treatment for cancer, we must identify the mechanisms responsible for the disease, so the
goal is to determine the cause of this process. Doctors are frequently interested in genomic
analysis (to locate genes, determine the function of a protein, or interpret large amounts of
information generated) and chromosome imbalance (when there is extra or missing chromoso-
mal material). In order to save time and money, the question posed by researchers at Hôpital
Necker-Enfants Malades [Puget et al., 2012] was whether the dependency between the loca-
tion of glioma is most associated with the expression of genes or chromosomal anomaly. This
application demonstrates the real world interest in answering this research question.

3. Can we develop a statistically and computationally efficient estimator of the topology
of graphical models for non-Gaussian distributions?

Aiming at answering this research question, in Chapter 5 we proposed a new framework for
hypothesis testing of whether an entry of the precision matrix is non-zero based on a data
sample from the joint distribution. The proposed test is sound and does not depend on
the data being Gaussian distributed or other parametric assumptions and does not require
sparsity. Furthermore, results from synthetic and real-world datasets show that for millions
of data points and general distributions, the hypothesis test is effective at finding conditional
independencies between all variables in the model. These results give a positive answer to
this research question by showing that considering a very general class of distributions, and
for very large sample sizes, the topology of a graphical model can be discovered.

6.3 Directions for Future Research

In the last section of this thesis, we draw some directions for future research based on the
contributions and limitations of our work. We propose several research paths that can be
followed.

One direction for future work lies in the extension of the relative test of dependency in Chapter
4 to random process variables. In many applications, an observation is dependent on its past
values. For instance, in neuroscience, multiple stimuli may be present (e.g. visual and audio),
and it is of interest to determine which of the two has a stronger influence on brain activity.
For Alzeihmer’s disease, we can test over long term, if drug and non-drug treatments help
with both cognitive and behavioral symptoms. The question is then to determine whether
a source random process variable is more strongly dependent on one target random process
variable or another.

Futhermore, recent work by Chwialkowski et al. [2015] propose a class of nonparametric two-
sample tests with a cost linear in the sample size. We can extend our two main Chapters 3
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and 4 to have a linear time complexity.

Another possible direction is related to the Chapter 5. The idea is to select a subset of
variables of interest and study whether an entry if the precision matrix is non-zero. More
formally, given a sample X = {x1, . . . ,xp}, we can select a subset of from X and then form
a low-rank approximation of the covariance of X. The most straightforward technique is to
use the Nÿstrom approximation, but further research on conditions for the identifiability of
partial correlations under such approximations is required.
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Titre : Tests d’hypothèses statistiquement et algorithmiquement efficaces de similarité et de
dépendance

Mots clefs : U -statistiques, tests d’hypothèses statistiques, dépendance, similarité, méthodes à noyau.

Résumé : Cette thèse présente de nouveaux tests
d’hypothèses statistiques efficaces pour la relative similar-
ité et dépendance, et l’estimation de la matrice de préci-
sion. La principale méthodologie adoptée dans cette thèse
est la classe des estimateurs U -statistiques.

Le premier test statistique porte sur les tests de rel-
ative similarité appliqués au problème de la sélection de
modèles. Les modèles génératifs probabilistes fournissent
un cadre puissant pour représenter les données. La sélec-
tion de modèles dans ce contexte génératif peut être diffi-
cile. Pour résoudre ce problème, nous proposons un nou-
veau test d’hypothèse non paramétrique de relative simi-
larité et testons si un premier modèle candidat génère un
échantillon de données significativement plus proche d’un
ensemble de validation de référence.

La deuxième test d’hypothèse statistique non
paramétrique est pour la relative dépendance. En présence
de dépendances multiples, les méthodes existantes ne
répondent qu’indirectement à la question de la relative

dépendance. Or, savoir si une dépendance est plus forte
qu’une autre est important pour la prise de décision. Nous
présentons un test statistique qui détermine si une vari-
able dépend beaucoup plus d’une première variable cible
ou d’une seconde variable.

Enfin, une nouvelle méthode de découverte de struc-
ture dans un modèle graphique est proposée. En partant
du fait que les zéros d’une matrice de précision représen-
tent les indépendances conditionnelles, nous développons
un nouveau test statistique qui estime une borne pour
une entrée de la matrice de précision. Les méthodes
existantes de découverte de structure font généralement
des hypothèses restrictives de distributions gaussiennes
ou parcimonieuses qui ne correspondent pas forcément à
l’étude de données réelles. Nous introduisons ici un nou-
veau test utilisant les propriétés des U -statistics appliqués
à la matrice de covariance, et en déduisons une borne sur
la matrice de précision.

Title : Statistically and computationally efficient hypothesis tests for similarity and dependency

Keywords : U -statistics, hypothesis testing, dependency, similarity, kernel methods.

Abstract : The dissertation presents novel statis-
tically and computationally efficient hypothesis tests for
relative similarity and dependency, and precision matrix
estimation. The key methodology adopted in this thesis is
the class of U -statistic estimators. The class of U -statistics
results in a minimum-variance unbiased estimation of a
parameter.

The first part of the thesis focuses on relative similar-
ity tests applied to the problem of model selection. Prob-
abilistic generative models provide a powerful framework
for representing data. Model selection in this generative
setting can be challenging. To address this issue, we pro-
vide a novel non-parametric hypothesis test of relative sim-
ilarity and test whether a first candidate model generates
a data sample significantly closer to a reference validation
set.

Subsequently, the second part of the thesis focuses
on developing a novel non-parametric statistical hypothe-
sis test for relative dependency. Tests of dependence are
important tools in statistical analysis, and several canoni-

cal tests for the existence of dependence have been devel-
oped in the literature. However, the question of whether
there exist dependencies is secondary. The determination
of whether one dependence is stronger than another is
frequently necessary for decision making. We present a
statistical test which determine whether one variables is
significantly more dependent on a first target variable or
a second.

Finally, a novel method for structure discovery in a
graphical model is proposed. Making use of a result that
zeros of a precision matrix can encode conditional inde-
pendencies, we develop a test that estimates and bounds
an entry of the precision matrix. Methods for structure
discovery in the literature typically make restrictive distri-
butional (e.g. Gaussian) or sparsity assumptions that may
not apply to a data sample of interest. Consequently, we
derive a new test that makes use of results for U -statistics
and applies them to the covariance matrix, which then
implies a bound on the precision matrix.
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