
HAL Id: tel-01523877
https://theses.hal.science/tel-01523877

Submitted on 17 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A model of programming languages for dynamic
real-time streaming applications

Xuan Khanh Do

To cite this version:
Xuan Khanh Do. A model of programming languages for dynamic real-time streaming applica-
tions. Embedded Systems. Université Pierre et Marie Curie - Paris VI, 2016. English. �NNT :
2016PA066522�. �tel-01523877�

https://theses.hal.science/tel-01523877
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE
l’UNIVERSITÉ PIERRE ET MARIE CURIE

Spécialité

Informatique

École doctorale Informatique, Télécommunications et Électronique (Paris)

Présentée par

Xuan Khanh DO

Pour obtenir le grade de

DOCTEUR de l’UNIVERSITÉ PIERRE ET MARIE CURIE

Sujet de la thèse :

Modèle de calcul et d’exécution pour des applications flots de
donnés dynamiques avec contraintes temps réel
(Thesis topic : A model of programming languages for dynamic
real-time streaming applications)

soutenue le 17 octobre 2016

devant le jury composé de :

M. Marco Mattavelli Rapporteur
M. Marco Bekooij Rapporteur
Mme. Alix Munier Examinateur
M. Frédéric Blanc Examinateur
M. Stéphane Louise Encadrant
M. Albert Cohen Directeur de thèse

ii

Acknowledgements

When I started my PhD thesis, little did I know what it would be about. The final
destination was vague ideas and distant. However, during the last three years, this journey
got me to visit many interesting places, both physically and intellectually. From the whole
experience, this is what I treasure more. The compilation of experiences during the last
years that changed me and made me (I hope) a better person.

Looking back at these moments, I need to thank all the people that made my trip
through knowledge a little bit more comfortable, a little bit more enjoyable and a little
bit easier. I will start from Thierry Collette (head of CEA LIST/DACLE department),
Renaud Sirdey (ex-head of LaSTRE laboratory), and Raphaël David (head of LCE labo-
ratory), for warmly hosting me in the DACLE department, the LaSTRE and LCE labo-
ratories, in addition for providing me all the resources for the work.

My thesis advisors, Albert Cohen and Stéphane Louise have been decisive factors
throughout the PhD. They seemed to complement each other making my journey much
easier. Albert for his insight, for providing a clean perspective of the work and for his
support when things were looking grim. He has the ability to always challenge a statement
which makes every bit of progress a slow but verified step. Stéphane, for his thorough
knowledge that leads to many excellent ideas and a lot of discussions, sometimes on the
verge of disagreement, but always constructive enough to push the work further. His
motivation and dynamism for this work has affected me all along this successful journey.
I thank you for your daily professional and personal advices. I really enjoyed working
with you.

These 3 years would never pass so fast and so smooth without the great support of my
colleagues. I thank you all, one by one, for the great time we share during and after the
work. In particular, I would like to thank Paul, Thierry, Philippe, Paul-Antoine, Thanh
Hai, who helped me to overcome a lot of technical problems related to my work, and also
for our great discussions about my work. It is of great pleasure to continue this journey
with you after the PhD.

A special thank to the department secretaries, in particular Annie, Sabrina, Marie-
Isabelle and Julien, for taking care with an ultimate speed and lovely smile all my admin-
istrative issues.

Last but not least, a very special acknowledgement of love and gratitude to my family,
the DO’s. Thank you my parents Thanh and Dung, my sister Trang, for your continuous
love and support. It was the key for my success throughout the challenging years of my
education. I also thank my wife’s family, the TRUONG’s, for showing their ultimate care
and sharing this joy for me.

Finally, there are no words that can express my feelings of gratitude to my wife Linh.
Your big support, your great tolerance, your great daily encouragements, and your shining

iii

iv

love made this tough journey very special. I love you.

Abstract

There is an increasing interest in developing applications on homo- and heterogeneous
multiprocessor platforms due to their broad availability and the appearance of many-core
chips, such as the MPPA-256 chip from Kalray (256 cores) [34] or TEGRA X1 from
NVIDIA (256 GPU and 8 64-bit CPU cores). Given the scale of these new massively
parallel systems, programming languages based on the dataflow model of computation
have strong assets in the race for productivity and scalability, meeting the requirements
in terms of parallelism, functional determinism, temporal and spatial data reuse in these
systems. However, new complex signal and media processing applications often display
several major challenges that do not fit the classical static restrictions: 1) How to provide
guaranteed services against unavoidable interferences which can affect real-time perfor-
mance?, and 2) How these streaming languages which are often too static could meet the
needs of emerging embedded applications, such as context- and data-dependent dynamic
adaptation?

To tackle the first challenge, we propose and evaluate an analytical scheduling frame-
work that bridges classical dataflow MoCs and real-time task models. In this framework,
we introduce a new scheduling policy noted Self-Timed Periodic (STP), which is an exe-
cution model combining Self-Timed scheduling (STS), considered as the most appropriate
for streaming applications modeled as data-flow graphs, with periodic scheduling: STS
improves the performance metrics of the programs, while the periodic model captures
the timing aspects. We evaluate the performance of our scheduling policy for a set of
10 real-life streaming applications and find that in most of the cases, our approach gives
a significant improvement in latency compared to the Strictly Periodic Schedule (SPS),
and competes well with STS. The experiments also show that, for more than 90% of the
benchmarks, STP scheduling results in optimal throughput. Based on these results, we
evaluate the latency between initiation times of any two dependent actors, and we intro-
duce a latency-based approach for fault-tolerant stream processing modeled as a CSDF
graph, addressing the problem of node or network failures.

For the second challenge, we introduce a new dynamic Model of Computation (MoC),
called Transaction Parameterized Dataflow (TPDF), extending CSDF with parametric
rates and a new type of control actor, channel and port to express dynamic changes
of the graph topology and time-triggered semantics. TPDF is designed to be statically
analyzable regarding the essential deadlock and boundedness properties, while avoiding
the aforementioned restrictions of decidable dataflow models. Moreover, we demonstrate
that TPDF can be used to accurately model task timing requirements in a great variety of
situations and introduce a static scheduling heuristic to map TPDF to massively parallel
embedded platforms. We validate the model and associated methods using a set of realistic
applications and random graphs, demonstrating significant buffer size and performance

v

vi

improvements (e.g., throughput) compared to state of the art models including Cyclo-
Static Dataflow (CSDF) and Scenario-Aware Dataflow (SADF).

Index terms— Many-core, parallelism, dataflow, embedded systems, dynamic ap-
plications, scheduling, time-constrained, fault-tolerant, latency, throughput

Contents

1 Introduction 3
1.1 Thesis Motivation . 3

1.1.1 From SoC to MPSoC: challenges of the embedded manycore 4
1.1.2 Programmability: how to leverage manycore processors? 5
1.1.3 New needs for emerging embedded real-time applications 6

1.2 Problem Statement . 8
1.3 Contribution . 9
1.4 Outline . 11

2 Dataflow Models of Computation 13
2.1 Parallel Models of Computation . 14

2.1.1 Kahn Process Networks . 14
2.1.2 Dataflow . 15

2.2 Cyclo-Static Dataflow . 15
2.2.1 Formal Definition . 15
2.2.2 Static Analyses . 17
2.2.3 Scheduling Cyclo-Static Dataflow 18
2.2.4 Special Cases of CSDF Graphs . 20

2.3 Dynamic Extensions of Cyclo-Static Dataflow 21
2.3.1 Dynamic Topology Models . 21
2.3.2 Dynamic Rate Models . 22
2.3.3 Model Comparison . 28

2.4 Programming Languages based on Dataflow Models 28
2.4.1 StreamIt . 29
2.4.2 ΣC . 30
2.4.3 Transformation between ΣC and StreamIt 38

2.5 Summary . 41

3 Self-Timed Periodic Scheduling 45
3.1 Motivational Example . 47
3.2 System Model . 48

3.2.1 Timed Graph . 48
3.2.2 Graph Levels . 48
3.2.3 System’s model and Schedulability 49

3.3 Self-Timed Periodic Scheduling . 49
3.3.1 Assumptions and Definitions . 50

vii

viii Contents

3.3.2 Latency Analysis under STP Schedule 51
3.4 Evaluation Results . 54

3.4.1 Benchmarks . 54
3.4.2 Experiment: Latency comparison 56
3.4.3 Experiment: Throughput comparison 57
3.4.4 Discussion: Decision tree for real-time scheduling of CSDF applica-

tions . 58
3.5 Summary . 58

4 Latency-based approach for fault-tolerance 63
4.1 Motivational Example . 64
4.2 Hard-Real-Time Scheduling of CSDF . 65
4.3 Actor Dependence Function . 67

4.3.1 Definition . 67
4.3.2 Calculating ADF . 68
4.3.3 Illustrative example . 69

4.4 Latency Analysis . 70
4.4.1 Definition . 70
4.4.2 Latency Analysis under a hard-real-time scheduling 70

4.5 Fault-Tolerance . 71
4.5.1 Data Model . 71
4.5.2 Support for fault-tolerance . 72

4.6 Evaluation results . 73
4.6.1 Benchmarks . 73
4.6.2 Experiment: Throughput comparison 73

4.7 Summary . 75

5 Transaction Parameterized Dataflow 77
5.1 Model of Computation . 78
5.2 (max, +) Algebraic Semantics of TPDF 80
5.3 Static Analyses . 82

5.3.1 Rate consistency . 82
5.3.2 Boundedness . 83
5.3.3 Liveness . 84
5.3.4 Throughput Analysis . 86
5.3.5 Scheduling . 88

5.4 Summary . 89

6 Real-Time Extension for TPDF 91
6.1 Time-Constrained Automata . 91

6.1.1 Chains . 92
6.1.2 Time-constrained trees . 93
6.1.3 Automata . 93
6.1.4 The visibility principle . 93

6.2 Systematic translation from TCA to TPDF 94
6.3 Example . 96
6.4 Application . 100

Contents ix

6.4.1 QDS design . 100
6.4.2 TPDF design . 102

6.5 Summary . 102

7 Experimental Results 105
7.1 Benchmarks . 105

7.1.1 Case-study on Edge Detection . 106
7.1.2 Case-study on Viola & Jones . 108
7.1.3 Case study on Satellite positioning 109
7.1.4 Case-Study on Cognitive Radio . 111
7.1.5 Case-Study on VC-1 Decoder . 112

7.2 Analysis Tool . 113
7.3 Experimental Results . 115
7.4 Summary . 116

8 Conclusions 119
8.1 Conclusions . 119
8.2 Open Problems and Future Research . 120

8.2.1 The STP scheduling policy . 120
8.2.2 The TPDF Model of Computation 121
8.2.3 Compilation toolchain . 123

Acronyms 127

x Contents

List of Figures

1.1 Bridging dataflow MoCs and real-time task models 10
1.2 Comparison of dataflow models of computation 11

2.1 An example of a process network . 14
2.2 A CSDF graph of the MP3 application . 16
2.3 An inconsistent CSDF graph . 17
2.4 Illustration of latency path for the MP3 application 19
2.5 BDF special actors . 21
2.6 A BDF graph . 22
2.7 A PSDF graph . 24
2.8 SADF model of an MPEG-4 decoder . 25
2.9 An SPDF graph with its parameter propagation network 26
2.10 A simple BPDF graph . 27
2.11 Stream graph for the DCT application . 29
2.12 A simplified view of the MPPA chip architecture 31
2.13 Process Network topology of a ΣC subgraph 32
2.14 The iDCT agent with one input and one output 33
2.15 Four principal stages of the compilation toolchain 35
2.16 The DCT execution time of each agent and its standard error by number

of cores . 36
2.17 The Motion Detector Graph . 36
2.18 The Motion Detection execution time and standard error of each agent . . 37
2.19 Diagram of the Python program . 39
2.20 Throughput normalized for the BeamFormer and Parallel application . . . 41
2.21 Throughput normalized for the DCT application 42

3.1 CSDF graph of the MP3 application . 47
3.2 Initial phase of schedule Sα . 53
3.3 Schedule S∞ by pipelining the steady state Sα 53
3.4 Illustration of latency path for the MP3 application 55
3.5 Ratios of the latency under different scheduling policies 58
3.6 Decision tree for real-time scheduling of CSDF applications 60

4.1 Distributed stream graph . 64
4.2 Example of hard-real-time scheduling for distributed stream graph 65
4.3 Example MP3 application . 69
4.4 Example of Late scheduling and ADF calculation 70

xi

xii List of Figures

4.5 Example of hard-real-time scheduling for the MP3 application 71
4.6 State Machine of the fault-tolerant procedure 72

5.1 Example of a TPDF graph with integer parameter p, control actor C and
control channel e5. 79

5.2 Boundedness of TPDF graph . 85
5.3 Live TPDF graphs . 86
5.4 State-space and its Finite State Machine 88
5.5 Scheduling of the TPDF graph example . 89

6.1 Constrained chain . 92
6.2 Chain of Figure 6.1 with relative labeling. The relative date is calculated

from the previous after node. 92
6.3 Time-constrained tree . 93
6.4 Unfolding of an automaton . 93
6.5 Observable values of a temporal variable 94
6.6 Send of message . 94
6.7 Modeling of TCA node as a TPDF graph 95
6.8 Synchronisation using control clock . 96
6.9 Periodic tasks . 96
6.10 Periodic tasks with period 2, relative deadline 1 and phase 1. The blue

dotted line is used to cluster the region with a phase equal to 1. 97
6.11 Illustration of a periodic task with period 5 97
6.12 Two periodic tasks of period 25ms and 15ms 99
6.13 Constrained chain . 100
6.14 System architecture of a QDS software . 101
6.15 A TPDF model of the QDS software . 104

7.1 TPDF graph of the Edge Detection application 107
7.2 Results of different Edge Detection methods 108
7.3 edge-contours detected using different thresholds 109
7.4 TPDF graph of the Viola & Jones application 110
7.5 Person detection with the Viola Jones algorithm 110
7.6 TPDF graph of the Satellite application 111
7.7 TPDF model of a OFDM demodulator . 112
7.8 Minimum buffer size of a TPDF graph example 113
7.9 The VC-1 decoder captured in TPDF. Three possible modes of operation

can be distinguished: Intra only, Inter only, Intra and Inter. 114
7.10 An XML representation of the TPDF example graph in Figure 5.1. 114
7.11 Ratios of the throughput under different degrees of pipelining 116
7.12 Average analysis times in ms for random graphs. 117

8.1 A TPDF graph with data duplication on edge 122
8.2 A TPDF multi-graph . 122
8.3 TPDF code of a simple application . 124
8.4 Graph representation and its XML file . 125

List of Tables

2.1 Comparison table of expressiveness and analyzability of dataflow models . 28
2.2 StreamIt benchmark suite used for evaluation 39
2.3 StreamIt vs. ΣC . 40

3.1 Proposed STP Schedules . 49
3.2 Benchmarks used for evaluation . 54
3.3 Results of Latency comparison . 56
3.4 Results of Throughput comparison . 59

4.1 Dependence between actor’s executions in the MP3 application 69
4.2 Benchmarks used for evaluation . 73
4.3 Results of Throughput comparison . 74

6.1 Period parameter of the QDS and their typical values 102

7.1 Benchmarks from different sources to check the expressiveness of TPDF
and its performance results . 106

7.2 Throughput obtained and the improvement of TPDF 115

xiii

xiv List of Tables

Résumé en français

Il y a un intérêt croissant pour le développement d’applications sur les plates-formes
multiprocesseurs homo- et hétérogènes en raison de l’extension de leur champ d’application
et de l’apparition des puces many-core, telles que Kalray MPPA-256 (256 cœurs) ou

TEGRA X1 de NVIDIA (256 GPU et 8 cœurs 64 bits CPU). Étant donné l’ampleur de
ces nouveaux systèmes massivement parallèles, la mise en oeuvre des applications sur
ces plates-formes est difficile à cause de leur complexité, qui tend à augmenter, et de
leurs exigences strictes à la fois qualitatives (robustesse, fiabilité) et quantitatives (débit,
consommation d’énergie).

Dans ce contexte, les Modèles de Calcul (MdC) flot de données ont été développés
pour faciliter la conception de ces applications. Ces MdC sont par définition composées
de filtres qui échangent des flux de données via des liens de communication. Ces modèles
fournissent une représentation intuitive des applications flot de données, tout en exposant
le parallélisme de tâches de l’application. En outre, ils fournissent des capacités d’analyse
statique pour la vivacité et l’exécution en memoire bornée. Cependant, de nouvelles
applications de signalisation et de traitement des médias complexes présentent souvent
plusieurs défis majeurs qui ne correspondent pas aux restrictions des modèles flot de
données statiques classiques: 1) Comment fournir des services garantis contre des in-
terférences inévitables qui peuvent affecter des performances temps réel ?, et 2) Comment
ces langages flot de données qui sont souvent trop statiques pourraient répondre aux
besoins des applications embarquées émergentes, qui nécessitent une exécution plus dy-
namique et plus dépendante du contexte ?

Pour faire face au premier défi, nous proposons un ordonnancement hybride, nommé
Self-Timed Periodic (STP), qui relie des MdC flot de données classiques et des modèles
de tâches temps réel. Cet ordonnancement peut aussi être considéré comme un modèle
d’exécution combinant l’ordonnancement classique dirigé seulement par les contraintes de
dépendance d’exécution appelé Self-Timed Scheduling (STS), évalué comme le plus ap-
proprié pour des applications modélisées sous forme de graphes flot de données, avec
l’ordonnancement périodique: STS améliore les indicateurs de performance des pro-
grammes, tandis que le modèle périodique capture les aspects de synchronisation. Nous
avons évalué la performance de notre ordonnancement sur un ensemble de 10 applications
et nous avons constaté que dans la plupart des cas, notre approche donne une amélioration
significative de la latence par rapport à un ordonnancement purement périodique ou
Strictly Periodic Scheduling (SPS), et rivalise bien avec STS. Les expériences montrent
également que, pour presque tous les cas de test, STP donne un débit optimal. Sur la
base de ces résultats, nous avons évalué la latence entre le temps d’initiation de tous les
deux acteurs dépendants, et nous avons introduit une approche basée sur la latence pour
le traitement des flux à tolérance de pannes modélisée comme un graphe CSDF, dans le

1

2 Résumé en français

but d’aborder des problèmes de défaillance de nœud ou de réseau.
Pour le deuxième défi, nous présentons un nouveau MdC flot de données, le Transac-

tion Parameterized Dataflow (TPDF), une extension de CSDF avec des paramètres en-
tiers et un nouveau type d’acteur, channel et port de contrôle qui permettent d’exprimer
les changements dynamiques de la topologie du graphe et d’imposer des contraintes
temporelles dans le modèle. Malgré l’augmentation de l’expressivité, TPDF est conçu
pour rester statiquement analysable pour leur propriété de vivacité et d’exécution en
mémoire bornée tout en évitant des restrictions mentionnées ci-dessus des modèles flot de
données statiques. De plus, nous démontrons que TPDF peut être utilisé pour modéliser
des contraintes temps réel dans une grande variété de situations, où une plate-forme
d’ordonnancement peut être appliqué pour ordonnancer et partitionner des applications
modélisées par TPDF sur des architectures massivement parallèles. Nous avons validé le
modèle et des méthodes associées en utilisant un ensemble d’applications et de graphes
aléatoires, qui démontre une réduction significative de la taille du tampon et des améliorat-
ions en terme de performance (e.g., le débit) par rapport à des modèles de pointe, y com-
pris le Cyclo-Static Dataflow (CSDF) et le Scenario-Aware Dataflow (SADF).

Mots-clés— Many-core, parallélisme, dataflow, systèmes embarqués, applications
dynamiques, ordonnancement, contraintes de temps, tolérant aux fautes, latence, débit

Chapter 1

Introduction

“Begin at the beginning,” the King said gravely, “and go on till
you come to the end: then stop.”

— Lewis Carroll, Alice in Wonderland

Contents

1.1 Thesis Motivation . 3

1.1.1 From SoC to MPSoC: challenges of the embedded manycore 4

1.1.2 Programmability: how to leverage manycore processors? 5

1.1.3 New needs for emerging embedded real-time applications 6

1.2 Problem Statement . 8

1.3 Contribution . 9

1.4 Outline . 11

There is an increasing interest in developing applications on multiprocessor platforms
due to their broad availability and the appearance of many-core chips, such as the MPPA-
256 chip from Kalray (256 cores) [34] or Epiphany from Adapteva (64 cores). Given
the scale of these new massively parallel systems, programming languages based on the
dataflow model of computation have strong assets in the race for productivity and scala-
bility, toward meeting the requirements in terms of parallelism, functional determinism,
temporal and spatial data reuse in these systems. However, new complex signal and me-
dia processing applications often display dynamic behavior and real-time constraints that
do not fit the usual static restrictions. This thesis addresses these problems by providing
guaranteed services against unavoidable interferences which can affect real-time perfor-
mance of dataflow applications and proposes a new model of computation, which allows
topology changes and time constraints enforcement.

The remainder of this chapter is organised as follows. Section 1.1 introduces our
motivation for undertaking the research work detailed in this dissertation. In Section 1.2,
we state the problems addressed in this thesis. Section 1.3 discusses our contributions.
Finally, the organization of this dissertation is presented in Section 1.4

1.1 Thesis Motivation

In this section, the motivation of this thesis is detailed from both the hardware and
software points of views.

3

4 Introduction

1.1.1 From SoC to MPSoC: challenges of the embedded manycore

Single core has been making faster for decades, by increasing clock speed, increasing
cache and pipeline size and exploiting Instruction-Level Parallelism (ILP) [21]. How-
ever, this progress reached a plateau at the end of the 20th century, since the progress
of electronics lead to an execution close enough to the practical limits of the Instruc-
tion Level Parallelism [58], that no substantial improvements of processor performances
was achievable without being a burden with regards to the number of transistors and
power consumption. Since the single core practical limits were so close, the only way
left to improve performance without impacting power consumption is the use of higher
level parallelism, i.e. multiply the number of processors on the chip in conjunction with
multitask or multithread programming. This is the multicore era since the beginning of
the 21th century, which opens not only new opportunities but introduce also significant
challenges.

The memory wall With so much processing power, the first issue awaiting, is the prob-
lem of memory wall, initially defined as the gap between the speed of processors and
the speed of memory access, has slowly morphed into a different problem: the latency
gap became smaller, but with the increase in the number of cores, the need for memory
bandwidth has increased. Interconnects became the other issue that needed attention:
existing solutions became either too power hungry as the transistor count went up (the
case of bus or ring solutions) or led to higher latency (mesh networks), as the number
of cores continues to increase. Finally, the larger number of cores starts to question the
emphasis on core usage efficiency and ideas relying on using some of the cores (or at least
hardware threads) as helpers have popped up recently. On software side, as the number
of cores increased, the cost of pessimistic, lock-based synchronization of access to shared
memory got higher, prompting the search for new mechanisms.

To overcome this limitation, multi- and manycore architectures have undergone several
changes. One of the most popular ways is to find a kind of hierarchical memory architec-
ture that will permit very high and sustained bandwidths between processing elements
close to one another and an important but more scarce communication means between
distant elements. This kind of architecture is already met in several embedded manycores:
Intel Xeon Phi, Phytium Mars and Kalray’s MPPA [34] platforms. For example, the last
one uses clustered architectures with several (typically 16) cores on a shared memory, and
clusters being bound to a 2D Network-on-Chip (NoC) (either a mesh or a torus). The
weak point of this architecture as a path to the future, is that migrations between clusters
and therefore virtual clustering is hard because communications between close neighbor
clusters is the same as faraway clusters. This is acknowledged by hardware designers who
work on possible 3D heterogeneous stacking with an interconnection and memory layer
[43].

The Instruction Level Parallelism wall Secondly, a programmer who would want to
take the utmost advantage of the computing power of a chip should be able to express
a parallelism that can feed at least several thousands of computing units each cycle. It
requires some scaling: Programming thousands of tasks, making sure to synchronize them
efficiently, feeding them with enough data to munch in a way that is manageable by human
programmers is a challenge waiting ahead. Threads are not a very good means to express
parallelism because they lack sufficient determinism to be manageable and permitting

Thesis Motivation 5

debug, that is also a big challenge [75].
These arising issues that will appear with massive multicore chips will at the same

time put a pressure on the programmability issues. It means that programming languages
need to evolve to free the programmers from the hardware constraints, but also to permit
an easy expression of efficient applications, i.e. using the whole chip computing power
if required (and otherwise being as power efficient as possible). This problem will be
discussed in the next section.

1.1.2 Programmability: how to leverage manycore processors?

Programming concepts used by usual programming models and tools (e.g., OpenMP),
do not really fit the architectural constraints of many-core systems. In fact, because of
the memory wall, programming languages for manycore architectures should provide an
efficient and intuitive path to prefetch data on on-chip memories, hence the programmer
should be imposed to explicit each data element that would be required for a given
computation kernel. On these a priori prefetched elements, simple data parallelism should
be easy to express , but should avoid to permit referencing non-constant data elements that
are not explicitly prefetched. It means that data-parallelism should not be as transparent
as with current implementations of OpenMP since, with OpenMP, data sharing is mostly
implicit. Nonetheless, it should be nearly as easy as OpenMP shared data to implement
data parallelism, provided that execution determinism can still be achieved.

On that front, dataflow paradigms are good candidates for programing multi- and
manycore systems. CUDA [31] and OpenCL [54] are two ongoing industrial efforts to
bring dataflow principles to ordinary (C-like) languages. They are quite well fitted to
heterogeneous computing, but in their current form, remain focused on GPU-like models
of computation. Moreover, memory movements being completely explicit, it makes them
very low level on the programmer side and sometimes challenging for scheduling complex
set of heterogeneous tasks in the execution support of these languages (see e.g. [113]).

Lately, the concept of stream programming (e.g. StreamIt [105], Brook [25] or ΣC
[52]) is making huge steps because the framework of stream programming offers to the
programmer a path toward an easy and manageable way to express and describe massive
parallelism. It also renders obvious the data-path and data-dependency all along the
processing chain, both to the programmer and to the compiler without making it com-
pletely explicit. Therefore the compiler takes an important role: It can place and route
the data migration path and automatically discard data that are not relevant any longer
at a given point of processing. Stream programming can offer a deterministic execution
model which permits to discriminate between sane parallel programs and unmanageable
ones at compile-time (see [42]). It also offers a manageable memory and data placement
with regards to the compilers.

The bases of stream programming rely on Kahn Process Networks (KPN, [65]), more
precisely on their derivations, like Data Process Networks ([76]), as well as their more re-
strictive variants such as Synchronous Dataflow (SDF, [74]) Cyclo-Static Dataflow (CSDF,
[19]). Any process can take one or several channels as inputs and the same as outputs.
Input channels are read-only and output channels are write-mostly. Channels are the only
communication means between processes (dataflow paradigm) and reading is blocking so
any task that misses some data on any of its input channel is not permitted to pursue
its execution until all channels have enough data to provide. These dataflow MoCs are
attractive for the prototyping of streaming applications because they allow static analy-

6 Introduction

ses that verify various qualitative (liveness, boundedness determinism) and quantitative
(throughput, power consumption) properties of the application early in the design pro-
cess. They also make parallel implementation easier because they provide an intuitive
way to represent filters and streams and allow the functional partitioning of an applica-
tion exposing the available parallelism and allowing modular design. In addition, much
of the development of data flow visual programming languages in the 80s was backed by
industrial sources [63] resulting in the development of visual languages, such as LabView
[62] which was successfully deployed in industry, significantly reducing development time
[10].

However, the appearance of new classes of applications requires increasing the expres-
sivity of dataflow models, that greatly complicates its deployment on a parallel architec-
ture. For example, parametric exchange of data results in parametric data dependencies,
or dynamic topology changes remove and add data dependencies at run-time. Many
standard implementation techniques (e.g., the compilation toolchain of StramIt or ΣC)
are incompatible with this behaviour and cannot be used. Furthermore, manual paral-
lel implementations are hard to produce and can be error-prone, so a further research
to improve the dataflow models in the needs of new emerging applications is necessary.
However, before knowing what to improve, a survey of requirements of possible future
applications can provide some insights.

1.1.3 New needs for emerging embedded real-time applications

New classes of applications are arising. For example, multimedia applications with
higher definitions are widely used in the modern world. Video conferencing with multi-
ple participants and high quality movie playback, even on mobile devices, are considered
granted for modern users. Apart from our daily life, multimedia applications have changed
our capabilities. Augmented reality car head-up displays are becoming available, facili-
tating driving with low visibility, while remote surgery allows doctors to perform surgeries
over long distances. The future of these emerging applications relies mostly on the fact
that enough computing power (as stated by Gustafson’s Law [55]) will be available with
enough versatility, but also good power performance. Power issues advocates the use of
manycores in the embedded world since more parallelism can (at least theoretically) be
translated as more power efficiency.

Moreover, the structure of these new embedded applications often revolves around
the notion of ”streams”. For example, both LTE (4G) [97] and the H265 [3] drafts
were evaluated on the MPPA platform by using the stream programming model, which
can be characterized by large streams of data that are being communicated between
different computation nodes (often called actors or filters). However, the requirements
of streaming applications can widely vary. For applications that run on mobile devices,
low power consumption is crucial to preserve battery life. On the contrary, medical
applications need to be reliable and, in the case of remote surgery, with extremely low
latency. A common factor, though, is their high performance requirements, which makes
their parallel implementation a necessity.

To capture the limitations of stream programming concepts, we must focus on appli-
cations that are outside the scope of digital processing or still in infancy, then try and see
what the stream programming paradigm is lacking in nowadays implementations to face
the challenge of popularizing them and offering new leverage for parallelizing applications.
Let us study several simple examples of such applications.

Thesis Motivation 7

Software Radio (SW) and Cognitive Radio (CR) The Software Radio ultimate goal
would be to replace all but the unavoidable analog stages of an ordinary radio as a digital
platform. It means that in the ideal case, the analog amplifiers would be directly plugged
into an Analog to Digital Converter (ADC) for the reception side and in a Digital to
Analog Converter (DAC) for the emission side. This goal is only wishful thinking, but
for narrower bands, i.e. without the High Frequency Modulation stage, this is realis-
tic, if enough processing power is available. Therefore the protocol management up to
the base modulation can be done entirely in software, provided that the computation
can be performed in real-time (which sometimes requires astonishing performances, e.g.
WiMax or LTE). Nonetheless, Software Radio is mostly about replacing protocol de-
pendent Application-Specific Integrated Circuits (ASICs) and a part of the analog stage
with software. This is something usual programming languages, and especially Stream
Programming Languages are well fitted to.

The situation goes beyond with Cognitive Radio [59]. The most basic difference be-
tween Software Radio and Cognitive Radio is the context dependence, and the fact that
configuration of a Cognitive Radio adapts itself from the knowledge of the context. This
can be to switch the protocols from Mobile bands and protocols to Wifi communications
when the system is stationary and a Wifi access point is available. This can be changing
protocols when changing countries, or using in real-time known blank times in protocols
to transmit information without interfering with official and licensed transmissions. Con-
text and learning based adaptation is why manycore systems with parallel programming
are more relevant than FPGA for such applications.

What appears as important differences between Software Radio and Cognitive Radio
paradigms, is that Cognitive Radio makes Software Radio more intelligent, by being
sensitive to context and past history, by recognizing it, and by adapting to it in real-time.
Concretely, it requires database and real-time (depending on the application, either soft
or hard) capabilities, and a configuration that can change dynamically, according to the
context of execution. CR can use a mix of mode switching, hard real-time constraints and
low-level and high-level data processing which make them a good application scheme for
manycore systems. It can also ”learn” from the past, and adapt dynamically its present
state in accordance with the context and whatever solution was seen as correct in its more
or less recent past.

Virtual and Augmented Reality On December 28, 2015, Google filed a new application
with the Federal Communications Commission of the United States for a new version of
the Google Glass, after failure of the first prototype. It is still hard to predict what
will come out of this new product, nonetheless, what is sure is that Virtual Reality and
Augmented Reality always important roles to take in the future, either in the medical field
to help surgeons in their work (e.g. [96]), and for more mundane applications, for touring/-
museum visit guidance (e.g. [44]), or even for walkers guidance [91] (either for disabled
or valid persons). It can also be recreational (e.g. Google Ingress). Such systems are also
available since a long time for aircraft pilots, and start to appear for driver assistance in
high-end cars and trucks. These applications quite naturally require real-time adaptation
to context, and often a good computational power, because, especially for augmented
reality, the system must recognize the context which can be a challenge by itself, then
apply as accurately as possible an added and relevant piece of information. This result
may require physical simulations, database matching, etc., all working together in a single

8 Introduction

application.

Autonomous Vehicles and Advanced Cruise Control and Assistance Autonomous
vehicles like Google cars [88], or their ancestors, the DARPA car challenge candidates
[107]; or smart agile drones like the Quadrotors from the University of Pennsylvania [71],
are raising increasing interests in the world and not only for military applications.

Such applications rely on several captors and actuators. For autonomous vehicles,
the actuators are quite simple (steering, breaking, accelerating, for the most important
parts, since the other parts like car lights, or motor fine control, are already automatically
activated in cars). The controls are simple, but the instrumentation (captors) is plural,
with usually high throughput (e.g. video cameras), but the relevant information (position
on the road, obstacles, pedestrians, or any kind of danger) is hard to extract from the
rough data provided by the captors. Often information from several sources must be
combined (usually in a probabilistic way, because the conclusion from a single captor
is not always reliable or sufficient by itself), with hard real-time constraints but mixed
criticality (e.g. turning at the wrong crossroad, as long as the safety of the vehicle and
others is preserved, is not the same as missing a red light, or mistaking the street from
the sidewalk).

Even without thinking about fully autonomous vehicles, modern days high-end cars
and trucks are provided with new types of helps and monitors for drivers: Lane detection
and involuntary lane-change alerts, road signs detection and recognition, surrounding ve-
hicle monitoring and emergency brake assistance, to cite some of them. These driver help
appliances are the corner stones of autonomous vehicles, and even if their failures is less
critical than for autonomous vehicles, we can think that drivers will rely on them increas-
ingly as they become more pervasive and they become more reliable. The computation
and software architecture issues for these applications are the same as for the autonomous
vehicles.

As has been seen, these examples of applications are highly dependent on the context
(usually of physical world), sometimes past learned strategies, and often show soft or hard
real-time constraints. This context dependency requires a versatile and agile execution
environment that can fit the challenge of real-time reconfiguration of the application
according to the variations in the current context. This is an incremental but difficult
constraint on the programmability requirements of manycore systems.

Moreover, this is not one model fits all for a given application, as some parts are better
expressed as real-time tasks or communication, whereas others can be a good fit for Kahn
Process Networks, and others fit more client-server or transactional models. All these as-
pects are necessary to harness a very high level of potential parallelism within applications
so that the available processing power of multicores can be efficiently exploited. The issue
is to present all these aspects in a coherent way to an embedded system programmer.

1.2 Problem Statement

Although stream programming provides a sane programming base for the manycore
future, it lacks the versatility required for highly dynamic applications as seen in Section
1.1.2 and 1.1.3. The main issue of these stream languages and and its model of computa-
tion is that it is often too static to meet the needs of emerging embedded applications, such
as real-time, context- and data-dependent dynamic adaptation. Moreover, its compilation
toolchain is mostly meant for static instantiation (the set of tasks in the application is in

Contribution 9

most cases fixed at compilation-time). For instance, an MPEG decoder uses dynamism to
route i-frames and p-frames along different paths, but the operators on those paths that
process the frames all have static rates. Financial computations require identifying events
in data-dependent windows, but static rate operators process those events. A network
monitor recognizes network protocols dynamically, but then identifies security violations
by applying a static rate pattern matcher. For other types of applications, as it would be
the case with augmented reality -see Section 1.1.3, it requires real-time interface which are
not often well taken into account within stream processing. These are several elementary
examples of why stream programming, while it has good properties for embedded systems
is not a universal solution.

To summarize, we have to solve two major challenges of emerging complex signal and
media processing applications: 1) How to provide guaranteed services against unavoid-
able interferences which can affect real-time performance?, and 2) How these streaming
languages which are often too static could meet the needs of emerging embedded applica-
tions, such as context- and data-dependent dynamic adaptation? Let us introduce what
we can contribute to solving these issues in the next section.

1.3 Contribution

To find a solution that meets the application requirements, we must extend the state
of the art in many aspects, including scheduling policy for classical dataflow models
(e.g., CSDF) to solve the first challenge as mentioned above, dynamic expressivity and
analyzability for new dynamic models for the second one. This section lists the main
contributions of this thesis as follows:

Contribution 1: Proposing and evaluating a scheduling framework that bridges

dataflow MoCs and real-time task models We propose an analytical scheduling frame-
work (see [36, 37, 39]) that bridges classical dataflow models and classical real-time task
models as shown in Figure 1.1. The first arrow represents decidability and expressiveness
for popular dataflow MoCs: HSDF, SDF [74], CSDF [19], BDF [27], KPN [65], DDF [28]
and RPN [50]. The arrows between the MoCs indicate that the MoC on the left-side
is a subset of the one on the right-side. For example, SDF is a subset of CSDF. The
dotted vertical line represents the borderline between decidable and undecidable models.
The second arrow represents popular real-time task models and the complexity of their
feasibility tests: L&L [81], GMF [12], RRT [13], NRRT [11], DRT [100], EDRT [101] and
TA [45]. The arrows between the models indicate that the model on the left-side is a
subset of the one on the right-side. For example, L&L is a subset of GMF. The dashed
line indicates that any acyclic CSDF can be scheduled as a set of L&L tasks.

In this framework, we introduce a new scheduling policy noted Self-Timed Periodic
(STP), which is an execution model combining Self-Timed scheduling (STS), considered
as the most appropriate for streaming applications modeled as data-flow graphs, with
periodic scheduling: STS improves the performance metrics of the programs, while the
periodic model captures the timing aspects. We evaluate the performance of our schedul-
ing policy for a set of 10 real-life streaming applications and find that in most of the cases,
our approach gives a significant improvement in latency compared to the Strictly Peri-
odic Schedule (SPS), and competes well with STS. The experiments also show that, for
more than 90% of the benchmarks, STP scheduling results in optimal throughput. Based
on these results, we evaluate the latency between initiation times of any two dependent

10 Introduction

Expressiveness (Design-time analysis)low (high) high (low)
Turing Incomplete (decidable) Turing Complete (undecidable)

HSDF SDF BDF KPN DDF RPNCSDF

Feasibility test

L&L GMF NRRT DRT EDRT TARRT

Pseudo-polynominal Strongly (co)NP-hard
easy difficult

can be scheduled as

Figure 1.1: Bridging dataflow MoCs and real-time task models through the proposed scheduling
framework. The link indicates that any acyclic CSDF can be scheduled as a set of L&L tasks.

actors, and we introduce a latency-based approach for fault-tolerant stream processing
modeled as a CSDF graph, addressing the problem of node or network failures. We view
this work as an important first step to provide a failure-handling strategy for distributed
real-time streaming applications.

Contribution 2: Based on classical models, introducing a new dynamic Model of

Computation, allowing topology changes and time constraints enforcement Decid-
able dataflow models in the SDF or CSDF family are useful for their predictability, formal
abstraction, and amenability to powerful optimization techniques. However, complex sig-
nal and media processing applications, as seen in Section 1.1.3, often display dynamic
behavior that do not fit the classical static restrictions; typical challenges include variable
data rate processing, multi-standard or multi-mode signal processing operation, and data-
dependent forms of adaptive signal processing behavior. For this reason, we introduce a
new dynamic Model of Computation (MoC), called Transaction Parameterized Dataflow
(TPDF), extending CSDF with parametric rates and a new type of control actor, chan-
nel and port to express dynamic changes of the graph topology and time constraints
semantics. TPDF is designed to be statically analyzable regarding the essential deadlock
and boundedness properties, while avoiding the aforementioned restrictions of decidable
dataflow models. Figure 1.2 visualizes a comparison between TPDF and the most im-
portant dataflow MoCs on the three mentioned aspects of expressiveness, analyzability
and implementation efficiency. It is our personal assessment based on our experiences
when modeling applications, because it is difficult, if not impossible, to formalize this
comparison.

We also introduce a scheduling policy to map TPDF applications to massively parallel
embedded platforms. We validate the model and associated methods using a set of realistic
applications and random graphs, demonstrating significant buffer size and performance
improvements (e.g., throughput) compared to state of the art models including Cyclo-
Static Dataflow (CSDF) and Scenario-Aware Dataflow (SADF).

Moreover, several tools are also developed for this new dynamic model of computation.
The first one is an analysis tool written in C++, implementing the TPDF model and its
algorithms to check automatically the consistency, boundedness, liveness and analyse the
worst-case throughput of dynamic reconfigurable applications. This work makes TPDF
not far away from larger frameworks such as Ptolemy [94] and its extensions PeaCE [56]
or Open RVC-CAL [112] as well as dataflow visual programming languages, such as Lab-

Outline 11

Figure 1.2: Comparison of dataflow models of computation.Our aim is to build TPDF as a
Model of Computation with expressivity better than static models (e.g., SDF or CSDF) and
anazability betten than dynamic models (e.g., BDF).

View [62] or Simulink, which was successfully deployed in industry, significantly reducing
development time but lacking static guarantees as provided in TPDF. Furthermore, this
analysis tool can also be used as optimization mechanism for a new compilation toolchain,
developed to use the TPDF as the model of programmation to not only homogeneous ar-
chitectures such as MPPA-256 but also new emerging heterogeneous architectures.

1.4 Outline

The outline of this thesis is as follows. We first further put our problem statement and
approach in context by a detailed discussion of the current state-of-the-art dataflow MoCs.
From this discussion, we find two challenges that must be solved by these existing dataflow
models and streaming languages to meet the needs of emerging complex signal and media
processing applications: 1) How to provide guaranteed services against unavoidable inter-
ferences which can affect real-time performance?, and 2) How these streaming languages
which are often too static can meet the needs of emerging embedded applications, such
as context- and data-dependent dynamic adaptation?

For the first challenge, we propose and evaluate in Section 3 four classes of STP sched-
ules based on two different granularities and two types of deadline: implicit and con-
strained. We evaluate the proposed STP representation using a set of 10 real-life applica-
tions and show that it is capable of achieving significant improvements in term of latency

12 Introduction

(with a maximum of 96.6%) compared to the SPS schedule and yielding the maximum
achievable throughput obtained under the STS schedule for a large set of graphs. From
these results, we investigate the applicability of the theory of hard-real-time scheduling
for periodic tasks in the context of streaming applications. More specifically, we consider
Cyclo-Static Dataflow (CSDF) graphs with variable interprocessor communication (IPC)
times, and real-time constraints imposed by hardware devices or control engineers. As
a result, we establish a latency constraint on the initiation times of predecessor actors
on which a given actor is dependent. Based on this constraint, we show how to guaran-
tee real-time services and reduce inconsistencies in a CSDF application by introducing a
fault-tolerant procedure.

For the second challenges, we propose in Section 5 Transaction Parameterized Dataflow
(TPDF) and its extension in Section 6, a new model of computation combining integer
parameters—to express dynamic rates—and a new type of control actor—to allow topol-
ogy changes and time constraints enforcement. We present static analyses for liveness and
bounded memory usage. We also introduce a static scheduling heuristic to map TPDF to
massively parallel embedded platforms. We validate the model and associated methods
in Section 7 using a set of examples that illustrate how the modelling techniques and
corresponding analysis can be applied in practice. After which we conclude this thesis,
with summarising the approach and discussing future work.

The thesis is structured as follows: In Chapter 2, the current state-of-the-art dataflow
MoCs are presented. Moreover, the current methods of their implementation on streaming
languages and manycore architectures are discussed. Chapter 3 discusses the scheduling
policy for classical models to meet hard-real-time requirements. An introduction to a
new dataflow model is provided in Chapter 5 , while Chapter 6 extends this model of
computation to capture real-time requirements. In Chapter 7 the applicability of our
analysis approach is illustrated with a number of examples, while this thesis concludes in
Chapter 8.

Chapter 2

Dataflow Models of Computation

Everything flows

— Heraclitus

Contents

2.1 Parallel Models of Computation . 14

2.1.1 Kahn Process Networks . 14

2.1.2 Dataflow . 15

2.2 Cyclo-Static Dataflow . 15

2.2.1 Formal Definition . 15

2.2.2 Static Analyses . 17

2.2.3 Scheduling Cyclo-Static Dataflow . 18

2.2.4 Special Cases of CSDF Graphs . 20

2.3 Dynamic Extensions of Cyclo-Static Dataflow 21

2.3.1 Dynamic Topology Models . 21

2.3.2 Dynamic Rate Models . 22

2.3.3 Model Comparison . 28

2.4 Programming Languages based on Dataflow Models 28

2.4.1 StreamIt . 29

2.4.2 ΣC . 30

2.4.3 Transformation between ΣC and StreamIt 38

2.5 Summary . 41

Modelling is essential during development as it allows the analysis and study of a
system to be done indirectly on a model of the system rather than directly on the system
itself. Computational systems are modelled with Models of Computation (MoCs). These
are mathematical formalisms that can be used to express systems [77].

A system captured using a MoC can be analyzed and have various properties, both
qualitative (e.g., reliability) and quantitative (e.g., performance) verified. Then, the model
can be used to generate code that preserves these properties which in turn can be compiled
into software or synthesized into hardware. This way, many aspects of the system can
be explored rapidly before the actual development takes place. Moreover, specifications
of the system can be verified and, as the human factor is limited, the procedure is less
error-prone. Hence, a system can be developed and evaluated faster, cheaper and safer.

13

Cyclo-Static Dataflow 15

Parks’ thesis [87] and extended in [49].

2.1.2 Dataflow

The Dataflow MoC first appeared in 1974, in a paper by Jack B. Dennis [35]. In
Dennis’ data flow, applications are expressed as directed graphs. Nodes, called actors, are
function units and edges are communication links. Actors can execute or fire once they
have enough tokens on their input links. In comparison with KPNs, a major difference is
that processes in KPNs can be executing by consuming data from just a subset of their
inputs. In contrast, actors in data flow require data on all of their inputs. However,
because Dennis’ dataflow takes into account the value of the data on the links, this model
is very expressive though and has limited analyzability. Hence, subsequent data flow
models aimed at limiting expressiveness and increasing analyzability for properties like
liveness and boundedness. Two of the most influential is Cyclo-Static Dataflow (CSDF
[19]) and Synchronous Dataflow (SDF [74]), which are presented in detail in the next
sections.

2.2 Cyclo-Static Dataflow

In this section, we present CSDF [19], one of the reference dataflow MoC for embedded
streaming applications. CSDF was introduced in 1995, for the implementation of Digital
Signal Processing (DSP) applications on parallel architectures. CSDF is well suited for
DSP because of the ease of expression of such applications using the model.

2.2.1 Formal Definition

In CSDF, a program is defined as a directed graph G = 〈A,E〉, where A is a set of
actors, E ⊆ A × A is a set of communication channels. Actors represent functions that
transform the input data streams into output data streams. The communication channels
carry streams of data and work as a FIFO queue with unbounded capacity. An atomic
piece of data carried by a channel is also called a token. Each channel has an initial
status, characterized by its initial tokens.

Each actor aj ∈ A has a cyclic execution sequence of length τj, [fj(0), · · · , fj(τj − 1)]
which can be understood as follows: The n-th time that actor aj is fired, it executes the
code of function fj(n mod τj) and produces (resp. consumes) xu

j (n mod τj) (resp. y
u
j (n

mod τj)) tokens on its output (input) channel eu. The firing rule of a cyclo-static actor
aj is evaluated as true for its n-th firing if and only if all input channels contain at least
yuj (n mod τj) tokens. The total number of tokens produced (resp. consumed) by actor

aj on channel eu during the first n invocations, denoted by Xu
j (n) =

∑n−1
l=0 xu

j (l) (resp.

Y u
j (n) =

∑n−1
l=0 yuj (l)).

One of the most important properties of the CSDF model is the ability to derive at
compile-time a schedule for the actors. Compile-time scheduling has been an attractive
property of these dataflow models because it removes the need for a run-time scheduler.
In order to derive a compile-time schedule for a CSDF graph, it must have a non-trivial
repetition vector.

Definition 1 Given a connected CSDF graph G, a valid static schedule for G is a
schedule that can be repeated infinitely on the incoming sample stream and where the
amount of data in the buffers remains bounded. A vector −→q = [q1, q2, ..., qn]

T , where

18 Dataflow Models of Computation

Corollary 1 (From [19]). If a consistent and live CSDF graph G completes k iterations,
where k ∈ N , then the net change to the number of tokens in the buffers of G is zero.

Liveness

A CSDF graph is live if it can execute an infinite number of time without deadlocking.
Checking the liveness of a graph amounts to finding a sequence of firings that complete
an iteration, a schedule. Finding the schedule for one iteration is sufficient for the liveness
of the graph; once the schedule is executed, the graph returns to its initial state, allowing
the schedule to start again and repeat indefinitely. However, not all schedules are valid.
There may be schedules that cannot finish the iteration because they contain non-eligible
firings, i.e., firings of actors that do not have enough tokens on their input edges. A
schedule that is composed only by eligible firings is called admissible. Hence, formally:

Definition 4 (Liveness): A CSDF graph is live if and only if there exists an admissible
schedule.

Acyclic graphs and graphs with non-directed cycles are inherently live, as an admissible
schedule can always be found, just from the topological sorting of the actors. When there
are directed cycles, however, each cycle needs to have a sufficient number of initial tokens
for the graph to be live.

2.2.3 Scheduling Cyclo-Static Dataflow

Scheduling is the allocation of tasks in time. It consists of two steps: ordering and
timing. Ordering defines the execution order of the tasks. Timing assigns an integer
value to each task indicating the exact time at which the task will start its execution.
Scheduling mainly deals with the optimization of the application performance and memory
utilization. It focuses on optimizing the performance of the application (i.e., maximizing
throughput and minimizing latency) as well as its memory footprint (i.e., minimizing code
size and the memory used for data).

Self-Timed Schedules (STS)

A self-timed schedule (STS), also known as an as-soon-as-possible schedule, of an
CSDF graph is a schedule where each actor firing starts immediately if there are enough
tokens in all its input edges. Figure 2.4(a) illustrates the STS schedule for the MP3
application shown in Figure 2.2 with each task/actor mapped in one core. This scheduling
policy is considered as the most appropriate for streaming applications modeled as data-
flow graphs [89, 90, 99] because it delivers the maximum achievable throughput and the
minimum achievable latency if computing resources are sufficient [8]. However, this result
can only be true if we ignore synchronization times. Synchronization can be considered
as a special form of communication, for which data are control information. Its role is
to enforce the correct sequencing of actors firing, and to ensure the mutually exclusive
access to shared resources. This synchronization can be made through different methods
or using a hierarchical Logical Vector Time (LVT) execution model [42], and the delay it
takes should not be negligible [83].

Furthermore, STS does not provide real-time guarantees on the availability of a given
result in conformance with time constraints. Due to the complex and irregular dynamics
of self-timed operations, in addition to the synchronization overhead, many different hy-
potheses were suggested, like contention-free communication [89] or considering uniform

Cyclo-Static Dataflow 19

costs for communication operations [8, 90]. But neglecting subtle effects of synchroniza-
tion is not reasonable with regards to real systems and their hard real-time guarantees. In
addition, using a predefined schedule of accesses to shared memory [67] makes run-time
less flexible. Therefore, analysis and optimization of self-timed systems under real-time
constraints remain challenging.

0 48 96

mp3

src1

src2

app

dac

(a)

mp3

src1

src2

app

dac
0 48 96 144 196

(b)

Figure 2.4: Illustration of latency path for the MP3 application shown in Figure 2.2: (a) STS
(b) SPS. The dotted line represents a valid static schedule of the graph.

Strictly Periodic Schedule (SPS)

A Strictly Periodic Schedule [90] of a Cyclo-Static Dataflow graph is a schedule such
that, ∀ai ∈ A, ∀k > 0, ∀τ ∈ [0, . . . , τi − 1]:

s(i, k) = s(i, 0) + φ× k, (2.4)

and

s(i, k, τ) = s(i, k) + λi × τ, (2.5)

where s(i, k) represents the time at which the k-th iteration of actor ai is fired, s(i, k, τ)
represents the time at which the τ -th phase of the k-th invocation of actor ai starts

execution, λi is the period of actor ai ∈ A,
−→
λ = [λ1, λ2, . . . , λn] is the period vector of

actors ai ∈ A and φ is an equal iteration period for every complete repetition of all the
actors.

Theorem 2 (Period Vector) For a Cyclo-Static consistent and acyclic Dataflow graph
G, with cyclically changing consumption and production rates, it is possible to schedule

20 Dataflow Models of Computation

actors of this graph as strictly periodic tasks using periods given by a solution to both [8]:

φ = q1λ1 = q2λ2 = · · · = qn−1λn−1 = qnλn, (2.6)

and −→
λ −−→ω ≥

−→
0 (2.7)

where −→ω = [ω1, ω2, . . . , ωn] is the worst-case execution time (WCET) vector of all
actors ai ∈ A and qi ∈

−→q is the basic repetition vector of G. It means that in every
period φ, actor ai is executed qi times, for all ai ∈ A. λi ∈ N

N , represents the period
measured in time-units of actor ai ∈ A, is given by:

λmin
i =

Q

qi

⌈

η

Q

⌉

for ai ∈ A, (2.8)

where η = maxai∈A(ωiqi) and Q = lcm(q1, q2, . . . , qn) (lcm denotes the least common
multiple operator).

Figure 2.4(b) illustrates the SPS schedule for the MP3 application shown in Figure
2.2. SPS is receiving more attention for streaming applications [8, 38, 90] with its good
properties (i.e., timing guarantees, temporal isolation [33] and low complexity of the
schedulability test). However, periodic scheduling increases the latency significantly for a
class of graphs called unbalanced graphs. A balanced graph is the one where the product
of actor execution time and repetition is the same for all actors [7]. In contrast, an
unbalanced graph is the one where such products differs between actors and in the real
world, unbalanced graphs are the usual cases because execution times of processes can
have large variations. Therefore, in this thesis, one of our mission is to find a scheduling
policy that provides not only real-time guarantees but improves also the performance
metric of the application (e.g., throughput and latency).

2.2.4 Special Cases of CSDF Graphs

Some restrictive classes of CSDF are worth mentioning as they are used in a variety
of cases. The Synchronous Dataflow (SDF) [57, 74] graphs are graphs where all execution
sequence lengths are equal to 1. Figure 2.3 gives also an example of SDF graphs where
the consumption/production rates are fixed and known at compile time. Formally:

Definition 5 (Synchronous Dataflow): A CSDF graph is an SDF graph iff

∀aj ∈ A, τj = 1 (2.9)

where τj represents the execution sequence length of actor aj

Moreover, another convenient class of CSDF is the Homogeneous Synchronous Dataflow
(HSDF) graphs, where all execution length and all port rates equal to 1. Any CSDF and
SDF graph can be converted to an equivalent HSDF graph. There are many algorithms
that convert (C)SDF graphs to HSDF graphs, one widely used can be found in [19]. The
main intuition behind the transformation is to replicate each actor as many times as its
solution and connect the new actors according to the rates of the original (C)SDF. The
resulting graph may have an exponential increase in size. However, this HSDF representa-
tion is useful because it exposes all the available task parallelism. It has been successfully
used to produce parallel schedules of (C)SDF graphs and evaluate its liveness.

Dynamic Extensions of Cyclo-Static Dataflow 21

SW
IT
C
H

Tr
ue

Fa
ls
e

b
(a)

SE
LE

C
T

b
(b)

Tr
ue

Fa
ls
e

Figure 2.5: BDF special actors: (a) SWITCH actor, (b) SELECT actor. Both actors have a
boolean control input that receives boolean tokens. Depending on the value of the boolean
tokens, SWITCH (resp. SELECT) selects the output (resp. input) port that is activated.

2.3 Dynamic Extensions of Cyclo-Static Dataflow

This section describes the more prominent of the extensions of (C)SDF, classified in
two categories: the ones that allow the graph to change topology at run-time (dynamic
topology models, Section 2.3.1) and the ones that allow the amount of data exchanged be-
tween actors to change at run-time (dynamic data rate models, 2.3.2). Dynamic topology
models like BDF [28] and its natural expansion IDF [26] introduce specialized actors that
can change the topology of the graph at run-time using boolean or integer parameters,
respectively.

Dynamic data rate models use integer parameters to parameterize the amount of data
communicated between the actors of a graph. Some of these models are PSDF [17], VRDF
[110], SADF [104], SPDF [46] and BPDF [16].

Many models presented below, allow actors to change their internal functionality at
run-time. In this thesis, we are interested in dynamic changes of the graph that affect its
dataflow analyses. If it does not affect any of the subsequent analyses of the model and
one can safely ignore it when it comes to the modelling of the application. In the CSDF
MoC for example, one can assume that the internal functionality of the actors change at
run-time. If the rates of each port remain the same the boundedness and liveness analyses
remain valid.

2.3.1 Dynamic Topology Models

In this section, we present two models that focus on altering the graph topology at run-
time, Boolean Dataflow (BDF) and Integer Dataflow (IDF). Joseph T. Buck introduced
BDF in his thesis [28] as an extension of SDF that provides if-then-else functionality.
BDF uses two special actors, a SWITCH and a SELECT actor (Figure 2.5). SWITCH
has a single data input and two data outputs, whereas SELECT is the opposite with
two data inputs and one data output. Both actors have a boolean control input that
receives boolean tokens. Depending on the value of the boolean tokens, SWITCH (resp.
SELECT) selects the output (resp. input) port that is activated.

A BDF graph is analyzed like an SDF graph except for the SWITCH (resp. SELECT)
actors whose output (resp. input) ports use rates depending on the proportion of true
tokens on their input boolean streams which can also be seen as the probability of a
boolean token to be true. A SWITCH actor with a proportion of p true tokens in its

Dynamic Extensions of Cyclo-Static Dataflow 23

init graph. The body graph typically represents the functional ”core” of the overall com-
putation, while the subinit and init graphs are dedicated to managing the parameters of
the body graph. In particular, each output port of the subinit graph is associated with a
body graph parameter such that data values produced at the output port are propagated
as new parameter values of the associated parameter. Similarly, output ports of the init
graph are associated with parameter values in the subinit and body graphs.

Changes to body graph parameters, which occur based on new parameter values com-
puted by the init and subinit graphs, cannot occur at arbitrary points in time. Instead,
once the body graph begins execution it continues uninterrupted through a graph itera-
tion, where the specific notion of an iteration in this context can be specified by the user
in an application-specific way. For example, in PSDF, the most natural, general definition
for a body graph iteration would be a single SDF iteration of the body graph, as defined
by the SDF repetitions vector.

However, an iteration of the body graph can also be defined as some constant number
of iterations, for example, the number of iterations required to process a fixed-size block
of input data samples. Furthermore, parameters that define the body graph iteration can
be used to parameterize the body graph or the enclosing PSDF specification at higher
levels of the model hierarchy, and in this way, the processing that is defined by a graph
iteration can itself be dynamically adapted as the application executes. For example, the
duration (or block length) for fixed-parameter processing may be based on the size of a
related sequence of contiguous network packets, where the sequence size determines the
extent of the associated graph iteration.

Body graph iterations can even be defined to correspond to individual actor invo-
cations. This can be achieved by defining an individual actor as the body graph of a
parameterized dataflow specification, or by simply defining the notion of iteration for an
arbitrary body graph to correspond to the next actor firing in the graph execution. Thus,
when modelling applications with parameterized dataflow, designers have significant flex-
ibility to control the windows of execution that define the boundaries at which graph
parameters can be changed.

A combination of cooperating body, init, and subinit graphs is referred to as a PSDF
specification. PSDF specifications can be abstracted as PSDF actors in higher level PSDF
graphs, and in this way, PSDF specifications can be integrated hierarchically.

In Figure 2.7 a PSDF component is shown. The component has two sets of dataflow
inputs, one to connected to the subinit graph and on to the body. There is also an initflow
carrying parameter values from the parent component. In this example, the body has
three functions and function f2 is configured with two parameters g and p. g changes the
functionality of f1 while p sets its output rate. When the component is fired, first the
init graph is fired and it sets parameter p and potentially other parameters. Finally, the
rest of the graph executes as in the SDF model, with subinit fired first to set the value
for g. Within the iteration subinit may fire multiple times to change the value of g but
init fires only once.

Scenario-Aware Dataflow

Scenario-Aware Data Flow (SADF) [104] is a modification of the original SDF model
inspired by the concept of system scenarios. SADF introduces a special type of actors,
called detectors, and enables the use of parameters as port rates. Detectors, detect the
current scenario the application operates in and change the port rates of the graph ac-

24 Dataflow Models of Computation

Figure 2.7: A PSDF component with two sets of dataflow inputs, one to connected to the subinit
graph and on to the body. initflow carries parameter values from the parent component. The
body has three functions f1, f2 and f3. When the component is fired, init graph is fired and it
sets parameter p. After, subinit fired to set the value for g and the rest of the graph executes
as in the SDF model.

cordingly.

Each detector controls a set of actors. These sets do not overlap, that is each actor is
controlled by a single detector. The detectors are connected to each actor with a control
link, a dataflow edge which always has a consumption rate of 1. When a detector fires,
it consumes tokens from its input edges and selects a scenario. Based on the detected
scenario, the detector sets its output rates that are parameterized and produces control
tokens on all output edges. When an actor fires, it first reads a token from the control
link that configures the values of its parameters, and then waits to have sufficient tokens
on its input edges.

The set of possible scenarios is finite and known at compile time. A scenario is defined
by a set of values, one for each parameterized rate. A production (resp. consumption)
rate of any edge can take a zero value if and only if the corresponding consumption (resp.
production) rate takes also a zero value in the same scenario configuration.

Figure 2.8 depicts the SADF model of a MPEG-4 decoder. This decoder supports
video streams consisting of I and P frames. Such frames consist of a number of macro
blocks, each requiring operations like Variable Length Decoding (VLD), Inverse Discrete
Cosine Transformation (IDCT), Motion Compensation (MC) and Reconstruction (RC).
The VLD and IDCT kernels in this model fire once per macro block that is decoded for
a frame, while the MC and RC kernels fire once per frame. The Frame Detector (FD)
represents the part of the actual VLD determining the frame type.

When detecting an I frame, all macro blocks must be decoded using VLD and IDCT,

26 Dataflow Models of Computation

Figure 2.9: An SPDF graph with its parameter propagation network. Figure reproduced from
[46].

SPDF uses symbolic rates which can be products of positive integers or symbolic
variables (parameters). The variable values are set by actors of the graph called modifiers.
Actors that have parameters on their port rates or at their solutions are called users of the
parameter. The parameter values are produced by the modifiers and propagate towards
all the users through an auxiliary network of upsamplers and downsamplers.

Modifiers and users have writing and reading periods respectively. These indicate
the number of times an actor should fire before producing/consuming a new value for a
parametric rate. The writing periods are defined by an annotation under each modifier of
the form set param[period]. The reading periods are calculated by analyzing the graph.

Not all writing periods are acceptable. Some may cause inconsistencies and SPDF
introduces safety criteria and analyses to check whether an SPDF graph satisfies them.
These analyses rely on the notion of regions formed by the users of each parameter. SPDF
demands that for a parameter to have a safe writing period, the subgraph defined by its
region needs to complete its local iteration before the parameter changes value. The
parameter regions may overlap, as long as all criteria are satisfied. This is called the
period safety criterion. There is also another safety criterion but we will not go into more
details here.

A sample SPDF graph is shown in Figure 2.9. The graph has two parameters, p and
q. The modifier of p is actor A with writing period 1 and the modifier of q is actor B with
writing period of p. In gray is shown the auxiliary network for parameter communication
that propagate the parameter values. The region of parameter p is {A,B,C} and that of
q is {B,C}.

SPDF graphs can be statically analyzed to ensure their boundedness and liveness.
These analyses rely on the symbolic solution of the balance equations and the satisfaction
of safety criteria mentioned above. Moreover, for liveness, SPDF checks the liveness of all
directed cycles and demands that there is a directed path from each modifier to all the
users.

Compared to other parametric models, SPDF provides the maximum flexibility as far
as the changing of the parameter values are concerned. However, this increased expressiv-

Dynamic Extensions of Cyclo-Static Dataflow 27

Figure 2.10: A simple BPDF graph with integer parameter p and boolean parameter b.

ity makes scheduling SPDF applications very challenging because the data dependencies
are parametric and can change any time during execution; in contrast with other para-
metric models where a schedule can be found at the beginning of an iteration, in SPDF
graphs parameters may change within the iteration, demanding a constant reevaluation
of the schedule.

Boolean Parametric Dataflow

Boolean Parametric Data Flow (BPDF) [16] is a model which combines integer pa-
rameters (to express dynamic rates) and boolean parameters (to express the activation
and deactivation of communication channels). As in other parametric dataflow models,
each BPDF actor has input ports (resp. output) labeled with a production rate (resp.
consumption) that can be parametric (a product of integers and symbolic parameters).
Integer parameters are allowed to change at runtime, between two iterations of the BPDF
graph. Moreover, each BPDF edge can be annotated with a boolean expression defined
using boolean parameters that are allowed to change at runtime, even inside an iteration
of the graph. When a boolean expression is false, the edge it annotates is considered
disabled (absent). Therefore, the topology of the BPDF graph changes according to the
values taken by the boolean parameters.

Figure 2.10 shows a simple BPDF graph where actors have constant or parametric
rates (e.g., p for the output rate of A). Omitted rates and conditions equal to 1 and true
respectively. The parametric repetition vector of this graph is [2, 2p, p, 2p, 2p]. The edges
(B,D), (B,C) and (C,E) are conditional. They are present only when their condition
(here b or ¬b) is true. A sample execution of the graph is the following: A fires and
produces p tokens on edge (A,B). Then B fires and sets the value of boolean parameter
b. If b is true, B does not produce tokens on edge (B,D). As the edge is disabled, D fires
twice without consuming tokens. B will fire a second time without changing the value of
b enabling C to fire once. Finally, E will consume the tokens produced by C and D. If b
is set to false, C is disconnected and it will fire without producing or consuming tokens.
D and E will fire as expected. This continues until each actor has fired a number of times
equal to its repetition count (as in SDF).

BPDF present also static analyses which ensure statically the liveness and the bound-
edness of BPDF graphs. However, this is not enough because this model lacks the ability

28 Dataflow Models of Computation

to impose real-time constraints, a feature that is also required to program modern safety
critical applications which will be both highly parallel and time constrained. Moreover,
its scheduling policy targets to many-core platforms such as STHORM, which is not
developed any more by STMicroelectronics.

2.3.3 Model Comparison

To sum up, we provide Table 1 comparing the dynamic features of the models men-
tioned in the previous sections. The SDF and CSDF MoCs offer no dynamism at all.
Because CSDF allows to change its rates within its iteration, this model is a little more
expressive than SDF.

The BDF and IDF MoCs allow the topology graph to change, however, they do not al-
low changes in the rates of the graph. Moreover, they lack static analyses for boundedness
and liveness.

The PSDF MoC, provides dynamic rates that may change within an iteration, i. e.,
a child component can change its internal rates many times during the iteration of the
parent. Yet, PSDF does not provide dynamic topology and its analyses are not well-
defined.

The SADF MoC provides both dynamic rates and dynamic topology, however, only
in-between iterations. Moreover, this model has limitations not captured by the table,
like the requirement of SADF for all scenarios to be known and analyzed at compile time.
However, this requirement only work well when the number of scenarios are limited and
manageable by a human.

The SPDF MoC supports rate changing in-between and within an iteration but not
support any topology change. SPDF is analyzable but due to its complexity it is difficult
to schedule efficiently.

Finally, BPDF allows not only dynamic variations of production and consumption
rates between iterations but also dynamic changes of the graph topology. However, like
the other models, this model lacks the ability to impose real-time constraints.

Table 2.1: Comparison table of expressiveness and analyzability of dataflow models

Model
Dynamic Rates Dynamic Topology

Static Analyses
Between
Iterations

Within
Iterations

Between
Iterations

Within
Iterations

SDF ◦ ◦ ◦ ◦ •

CSDF ◦ ◦ ◦ ◦ •

BDF ◦ ◦ • • ◦

IDF ◦ ◦ • • ◦

PSDF • • ◦ ◦ •

SADF • ◦ • ◦ •

SPDF • • ◦ ◦ •

BPDF • ◦ • • •

2.4 Programming Languages based on Dataflow Models

Because of its good properties (e.g., static guarantees, predictability or amenability to
powerful optimization techniques), static models such as SDF or CSDF is used as basis

30 Dataflow Models of Computation

and SDF. Programmers can combine operators into fixed topologies, as shown in Fig-
ure 2.11, using three composite operators: pipeline, split-join and feedback-loop. Compos-
ite operators can be nested in other composites. The example code in Listing 2.1 shows
four principal filters composed in a pipeline. In these filters, there are two split-join fil-
ters that connect atomic operators iDCT4x4 1D row fast and iDCT4x4 1D col fast fine.
Each operator has a work function that processes streaming data. To simplify the code
presentation, we have elided the bodies of the work functions. When writing a work
function, a programmer must specify the pop and push rates for that function. The pop
rate declares how many data items from the input stream are consumed each time an
operator executes. The push rate declares how many data items are produced. When all
pop and push rates are known at compilation time, a StreamIt program can be statically
scheduled.

2.4.2 ΣC

ΣC is a language designed based on the Cyclo-Static Dataflow model, in order to ensure
programmability and efficiency on many-core platforms such as MPPA-256 from Kalray.
This language is built as an extension of the C language, with buildings suitable for
expression of parallelism by using stream programming concepts. Close and familiar with
C, it minimizes the syntactic burden of learning a new language, while making explicit
the construction of parallelism [52]. Moreover, ΣC, based on its basis model CSDF, is
sufficient to express complex multimedia implementations such as H.264/MPEG-4 Part
10 or AVC (Advanced Video Coding) [52].

The ΣC Underlying Platform

The MPPA - 256 [34] manycore architecture, from Kalray, consists of 256 user cores
(i.e., cores with fully processing power provided to the programmer for computing tasks)
organized as 16 (4× 4) clusters tied by a Network-on-Chip (NoC) with a torus topology.
Each cluster has 16 user processors connected to a shared memory. There are also 2
DMA engines (one in Rx, one out Tx) for communication with the NoC, and one spe-
cial processor called Resource manager which makes the role of orchestra conductor and
provides OS-like services. Each processing core PEi and the RM are fitted with two-way
associative instruction and data caches (i.e., each location in main memory can be cached
in either of two locations in the cache). In addition to the 16 computing clusters, there
are 4 I/O clusters that provide access to external DRAM memory or interfaces, etc. The
shared memory of a given compute cluster is a modular memory system. The memory
system consists of M memory modules among which physical addresses are distributed
cyclically, so that, if i is the address of a memory location, then j ≡ i (mod M) × l is
the address of the module containing the location (l is the size of a line, 64 bytes). For
the MPPA case, the memory system contains 16 memory modules of 128KB so 2MB per
cluster. Each module has a memory controller connected to each pair of user processors
(i.e., via a bus). The memory is implemented as a multi-bus approach [34]: it provides
the same functionality as a full crossbar with lower impact on surface occupation and
power consumption. A simplified view of this chip can be seen in Figure 2.12.

The ΣC Programming Model

The ΣC programming model builds networks of connected agents. An agent is an
autonomous entity, with its own address space and thread of control. It has an interface

Programming Languages based on Dataflow Models 31

Local
Shared
Memory

PE15

NoC node

PE14

PE13

PE12

PE11

PE10

PE9

PE8

DMA InDMA Out
Manager

Core

PE0

PE1

PE2

PE3

PE4

PE5

PE6

PE7

$I

$D (vliw)

Network on Chip (NoC) and routers

Cluster 0 Cluster 1 Cluster 2

Cluster 4 Cluster 5 Cluster 6 Cluster 7

Cluster 8 Cluster 9 Cluster 10 Cluster 11

Cluster 12 Cluster 13 Cluster 14 Cluster 15

I/O Cluster N

I
/O

 C
lu

s
t
e
r
 W

I/O Cluster S

I
/O

 C
lu

s
t
e
r
 E

Cluster 3

Cluster 3 PE0

Multi-bus

Figure 2.12: A simplified view of the MPPA chip architecture. Cluster 3 is zoomed to see
the details of a cluster with its 16 processing elements (PE). Four I/O clusters ensure the
communication with the outside. Clusters communicate between each other thank to a NoC.

describing a set of ports, their direction and the type of data accepted; and a behav-
ior specification describing the behavior of the agent as a cyclic sequence of transitions
with consumption and production of specified amounts of data on the ports listed in the
transition.

A subgraph is a composition of interconnected agents and it has also an interface
and a behavior specification. The contents of the subgraph are entirely hidden and all
connections and communications are done with its interface. Recursive composition is
possible and encouraged; an application is in fact a single subgraph named root. The
directional connection of two ports creates a communication link, through which data is
exchanged in a FIFO order with non-blocking write and blocking read operations (the
link buffer is considered large enough). An application is a static data-flow graph, which
means there is no agent creation or destruction, and no change in the topology during the
execution of the application. Entity instantiation, initialization and topology building are
performed offline during the compilation process. System agents ensure distribution of
data and control, as well as interactions with external devices. Data distribution agents
are Split, Join (distribute or merge data in round robin fashion over respectively their
output ports / their input ports), Dup (duplicate input data over all output ports) and
Sink (consume all data).

The ΣC Programming Language

The ΣC programming language is designed as an extension to C. It adds to C the
ability to express and instantiate agents, links, behavior specifications, communication
specifications and an API for topology building by using some new keywords like agent,
subgraph, init, map, interface,. . . but does not add communication primitives. The com-
munication ports description and the behavior specification are expressed in the interface
section. Port declaration includes orientation and type information, and may be assigned
a default value (if oriented for production) or a sliding window (if oriented for intake).

Programming Languages based on Dataflow Models 33

Listing 2.3: The iDCT agent’s ΣC source code. Specific keywords of the ΣC language are
underlined.

agent iDCT4x4 1D row fast () {
interface {
in<int> input ;
out<int> output ;
spec{ input [2] ; input [2] ; output [2] ; output [2] } ;
}

void s tep (int qin , int qout) exchange (input myIn [qin] , output myOut [qout]) {
/∗ d e t a i l s e l i d e d ∗/

}
void s t a r t () {

s tep (2 , 4) ;
s tep (2 , 4) ;

}
}

iDCT
input [2,4] output [2,4]

Figure 2.14: The iDCT agent used in Figure 2.13 with one input and one output, and its
cyclically changing firing rules

The ΣC compilation toolchain

The compilation toolchain of ΣC includes four principal stages [5], as can be seen in
Figure 2.15.

Frontend The frontend of the ΣC toolchain performs syntactic and semantic analysis of
the program. It generates per compilation unit a C source file with separate declarations
for the offline topology building and for the online execution of agent behavior. The
declarations for the online execution of the stream application are a transformation of
the ΣC code mainly to turn exchange sections into calls to a generic communication
service. The communication service provides a pointer to a production (resp. intake)
area, which is used in code transformation to replace the exchange variable. This leaves
the management of memory for data exchange to the underlying execution support, and
gives the possibility to implement a functional simulator using standard IPC on a POSIX
workstation.

Instantiation and Parallelism Reduction The second compilation step of the tool chain
aims at building an intuitive representation of the application relies on the dataflow
paradigm, where the vertices are instances of agents and the edges are channels. This
representation can be used for both compiler internal processings and developer debug
interface. Once built, further analyses are applied to check that the graph is well-formed
and that the resulting application fits to the targeted host. The internal representation
of the application (made of C structures) is designed to ease the implementation and
execution of complex graph algorithms.

Instantiating an application is made possible by compiling and running the instantiat-
ing program (skeleton) generated by the frontend parsing step. In this skeleton program,
all the ΣC keywords are rewritten using regular ANSI C code. This code is linked against
a library dedicated to the instantiation of agents and communication channels.

34 Dataflow Models of Computation

The parallelism reduction in the ΣC compilation chain is done in two different ways:
graph pattern substitution or generic parallelism reduction based on merging agents [5].

Scheduling, Dimensioning, Placing & Routing, Runtime Generation Once the agents
have been instanciated into tasks, the resulting dataflow application may pass the schedul-
ing process. The whole scheduling process consists in the following steps. First, one must
determine a canonical period, which corresponds to the execution of one cycle of the ap-
plication. Basically, once all task occurrences in the canonical schedule are executed, the
application must return to its initial state (list of ready tasks, amount of data present in
the FIFOs). This is determined by calculating the repetition vector which is the minimum
non-zero integer vector whose components correspond to the number of execution cycles
of each task transition, in order to return to the initial state. During the symbolic execu-
tion, minimum buffer sizes are generated in order to determine a minimum dimensioning
of the FIFOs. For this, the FIFO sizes are considered to be infinite, and we measure
the maximum fill size of each FIFO during the symbolic execution. Moreover, the ΣC
toolchain computes also the effective buffer sizes for the application to be executed with
a certain frequency.

Once satisfying FIFO sizes have been determined, a working period is generated. The
working period consists in the repetition of several canonical periods, ensuring the al-
located buffers for the critical FIFOs may be saturated during the execution, i.e. the
produced (and consumed) amount of data in the period corresponds to the allocated
buffer size. Tasks are then mapped on the different clusters of the MPPA chip, and routes
are determined for communication channels between tasks in different clusters.

Link edition and execution support The final stage in the ΣC compiler is the link
edition. It consists in building, per cluster hosting tasks, first a relocatable object file with
all the user code, user data and runtime data; then the final binary with the execution
support. All this compilation stage was realized using the GNU binutils for MPPA if it
targets this architecture.

ΣC applications

Some representative applications have been developed in ΣC in laboratory. We present
results about the stability of the execution time of each agent measured on the MPPA
- 256 [34] clustered architecture. Figure 2.11 and 2.17 show two graphs of the DCT
application (the graph created by ΣC is the same as the one generated by StreamIt
because the source code is automatically translated as presented in the Section 2.4.3) and
the Motion Detection application (a process of detecting a change in position of an object
relative to its surroundings or the change in the surroundings relative to an object). The
execution time of each agent in these streaming programs is described in Figure 2.16
and 2.18 as a function of the number of cores. With a standard error of around 10%
of the mean value, these execution times are stable, in accordance with the assumptions
of compilation heuristics for CSDF graphs: the execution time of each agent does not
depend on the number of cores.

Comparison between StreamIt and ΣC

This section discusses similarities and also differences between ΣC and StreamIt, with
the aim of identifying limitations in meeting the growing requirements of modern embed-
ded applications.

36 Dataflow Models of Computation

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 2 4 6 8 10 12 14 16

E
x
e
c
u
ti
o
n
 t
im

e
 (

c
y
c
le

s
)

Number of cores

iDCT_row
Split

Source

Figure 2.16: The DCT execution time of each agent and its standard error by number of cores

HandMadeVideoBMPReader1

HandMadeVideoBMPReader2
Motion Detector HandMadeVideoBMPWriter1

Figure 2.17: The Motion Detector Graph

context). For example, the Motion Detector program, as seen in Fig. 2.17, in some cases
need to add some agents before the HandMadeVideoBMPReader to clean up noises if the
quality of the video is too low. This requirement therefore need further research.

Other similar aspects between these languages are the real-time requirements which
are not often well taken into account. The main reason is that the model of computation
of these languages is data-driven (actors are fired as soon as there are enough tokens in
all of their input edges) and not time-driven. Several solutions can be found in [39, 40]
and will be discussed further in Section 3 and Section 6.

Besides these similarities, we can recognize a lot of differences between these two lan-
guages. While StreamIt tries to create a SDF graph of connected filters, the model of
computation of ΣC is CSDF, which is also a special case of data-flow process networks.
In SDF, actors have static firing rules: they consume and produce a fixed number of
data tokens in each firing. This model is well suited to multirate signal processing ap-
plications and lends itself to efficient, static scheduling, avoiding the run-time scheduling
overhead incurred by general implementations of process networks. In CSDF, which is a
generalization of SDF, actors have cyclically changing firing rules. In some situations, the
added generality of CSDF can unnecessarily complicate scheduling. Some higher-order
functions can be used to transform a CSDF graph into a SDF graph, simplifying the
scheduling problem [92]. To resolve this issue, a new scheduling policy noted Self-Timed
Periodic (STP) Schedule, which is a hybrid execution model based on mixing Self-Timed

Programming Languages based on Dataflow Models 37

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2 4 6 8 10 12 14 16

E
x
e
c
u
ti
o
n
 t
im

e
 (

c
y
c
le

s
)

Number of cores

HandMadeVideoBMPReader1
HandMadeVideoBMPWriter

MergeComponents
DeltaAgent

ThresholdAgent
MedianFilter

Figure 2.18: The Motion Detection execution time and standard error of each agent by number
of cores, MergeComponents, Delta, Threshold and MedianFilter located in the MotionDetector
subgraph

schedule and periodic schedule while considering variable Inter-process Communication
(IPC) times, could be implemented in ΣC [37]. In other situations, CSDF has a genuine
advantage over SDF: simpler precedence constraints. This makes it possible to eliminate
unnecessary computations and expose additional parallelism.

Another difference difference is that networks of processes in StreamIt are defined di-
rectly through a dedicated coordination language, distinct from the Java or C implemen-
tation of StreamIt filters. This limits the topology of the associated Network (StreamIt
topology is hierarchical, and is mostly limited to series-parallel graphs with the important
addition of feed-back loops. Special features like teleport-messaging are required to over-
come this limitation, see [105]). While in ΣC, the networks of processes are built through
compilation of a single language: the first step of the compilation symbolically executes
the code constructing the network of so-called “agents” (individual tasks in the stream
model), and the associated communication interconnect called “subgraph”. This approach
has the advantage of expressing more general topologies, because it proceeds to an off-line
execution of the first-stage compilation to build the process network [84]. Therefore, it is
not necessary to describe the concept of feedbackloop in ΣC because the task graph model
is more flexible than the series-parallel model of StreamIt. In other words, feedback loops
are used in StreamIt only to alleviate limitations of the programming model.

As a compiler, ΣC on MPPA can be compared to the StreamIt/RAW compiler, that is
the compilation of a high level, streaming oriented, source code with explicit parallelism
on a manycore/RAW architecture with limited support for high-level operating system
abstractions. However, the execution model supported by the target is different: dynamic
tasks scheduling is allowed on MPPA; the communication topology is arbitrary and uses
both a Networks on Chip (NoC) and shared memory. Moreover, the average task granu-

38 Dataflow Models of Computation

larity in ΣC is far larger than the typical StreamIt filter (supposed to be more than 1 µS)
because the current implementation does not provide task aggregation like in StreamIt.
So a task switch always pay a tribute to the execution support (see [42]). In addition, the
current ΣC toolchain does not support paging when the cluster memory size is insuffi-
cient. Furthermore there is no way to make the distinction between several states within
an application (init, nominal, . . .). Lastly, the toolchain does not take into account some
other aspects like power consumption, fault management and safety.

2.4.3 Transformation between ΣC and StreamIt

After studying StreamIt and ΣC, a method and tool was developed to convert StreamIt
benchmarks in ΣC. This work aims to better understand these two languages and create
a library of benchmarks for ΣC. This library allows us to use the many existing StreamIt
examples as the number of ΣC applications is still insufficient and requires more programs
to test the ability of language. But we have seen that there are some situations where it
is undesirable to perform this transformation, as we shall see in the following example.

Rules for transforming

As shown in Section 2.4.2, there are a lot of similarities between StreamIt and ΣC.
One of them is the similarity between two models of computation SDF and CSDF. Trans-
forming between these languages is also transformation from the SDF graph of StreamIt
to the CSDF graph of ΣC. This leads to a problem that is the loss of the dynamism of
the CSDF model because in a cycle, a CSDF agent can have many different firing rules.
In this paper, we restrict our discussion to a language transformation from a SDF model
of an StreamIt application to the same ΣC model.

In StreamIt, filter is the atomic element of programming corresponding to the concept
agent ΣC. In addition, Pipeline, SplitJoin, and FeedbackLoop, three constructs for com-
posing filters into a communicating network are able to be replaced by a subgraph in ΣC.
The first rule to transform between ΣC and StreamIt is to find a way to convert a filter
of StreamIt in an agent in ΣC. To realize this rule, the first thing we have to do is to
determine the behavior of the filter which is declared in the work part of a filter while this
portion of input and output is declared in the interface part of an agent. The second rule
is to understand how filters of a StreamIt application connect between them. Basically,
StreamIt uses pipeline as factor to connect between filters. Likewise, ΣC programmers
have to create a new instance of agent and connect between these instances. Likewise,
splitjoin filter in StreamIt can be replaced by a subgraph with system agents Split and
Join in ΣC.

An automatic method to transform StreamIt programs in ΣC

The method used here for the transformation between these two languages is to build
controller loops that detect StreamIt filters and converts it into ΣC agents. The diagram
in Figure 2.19 represents how the method and tool work. 1 and 6 are beginning and ending
states, relatively. Firstly, the tool will find in the StreamIt code the main program (state
2), which is a special pipeline filter. After, other elements will be detected and handled
by other controllers: normal filter (state 3), Split or Join filter (state 4) and Source or
Printer filter (state 5).

The tool will read the code line by line when it encounters the declaration of the main
program; it begins to create a main program that starts with ΣC subgraph root (the

40 Dataflow Models of Computation

of anonymous stream, a special filter unnamed and is used only once in the program. As
there is no concept of anonymous agent in ΣC, the tool will automatically create a new
agent in the generated code, which could be reused when needed and also explain why
the ΣC code is longer than the StreamIt code.

Table 2.3: StreamIt vs. ΣC

StreamIt ΣC

Benchmark Lines Filters Lines Filters

Audio beam former 219 5 350 8

Multi-channel beamformer 398 9 380 9

Discrete cosine Transform (DCT) 651 19 995 21

Fast Fourier Transform (FFT) kernel 168 8 251 8

Low-pass filter 43 4 96 4

Band-pass filter 61 7 154 7

FMRadio with equalizer 167 12 335 14

Minimal program 12 3 45 3

Moving Average Filter 64 4 97 4

Multiply two matrices 163 9 290 12

Bitonic Parallel Sorting 260 10 412 10

After being translated in ΣC, some benchmarks (with different levels of grain of tasks
to understand the impact of extra communication costs on parallelism’s efficiency) are
tested in the MPPA - 256 [34] clustered architecture, from Kalray, comprising 256 user
cores (i.e., cores with fully processing power provided to the programmer for computing
tasks) organized as 16 (4 × 4) clusters tied by a Network-on-Chip (NoC) with a torus
topology. As can be seen in Figure 2.20, the throughput normalized (in comparison with
the throughput obtained in the case of mono-core) of the programs augmented when the
number of cores used increased with a bottleneck after 12 cores. This result could be
explained because of many reasons: there was not sufficient parallelized work to offset the
extra communication costs because of the lack of coarse-grained parallelism benchmarks in
StreamIt. In addition, the overhead of semi-dynamic scheduling of tasks within a cluster
in MPPA is another reason for this result, because it augments as the number of cores to
manage augments.

Limitations of the translation tool

A problem we encountered when translating from StreamIt to ΣC is the conversion
of anonymous filters. The new agent created automatically results in difficulties when
connecting between ports of agents. For example, new agents created in the Multiply
two matrices application increased significantly the compilation time (127s in comparison
with 5s when revising the code by hand). In addition, there is some similar concepts in
StreamIt and ΣC, such as Identity filter. However, if this concept is used automatically
in ΣC source code, the application’s graph becomes more complicated, resulting in a
decrease in performance. This problem could be resolved by making some changes in the
source code by hand. For the Multiply two matrices application, the number of agents
declared could be reduced to 9 by removing the Identity filter used in the StreamIt source
code along with improvements in throughput (with an average of 55%).

Another problem can be seen in Fig. 2.21, the throughput decreases when the num-

Summary 41

 0.9

 1

 1.1

 1.2

 1.3

 1.4

1 2 4 8 12 16

T
h

ro
u

g
h

p
u

t
n

o
rm

a
liz

e
d

Number of cores

BeamFormer

Parallel Computing

Figure 2.20: Throughput normalized for the BeamFormer and Parallel Computation application

ber of cores increases. To understand the impact of the results, we use the concept of
synchronization time (see Section 2.2.3. In the case of this example, the execution time
of each agent is relatively small when compared to the synchronization time, so the ef-
ficiency that the parallelism gives can not offset the extra synchronization costs, along
with the switching time between cores. A few changes in the automatically translated
source code could deliver an average improvement of 15% in throughput as can be seen in
Fig. 2.21. As mentioned earlier, a slight difficulty is that there is no concept of feedback
loop in ΣC because the task graph model is more flexible. Therefore, a small number of
StreamIt applications using this concept have to be implemented by a for loop in ΣC.
This translation can also be automated without loss of expressiveness.

2.5 Summary

In this chapter, the current state-of-the-art of Models of Computation that focus on
parallelism was presented. Two main steps of system design have been discussed: mod-
elling and its implementation in streaming languages.

Dataflow modelling has been a natural choice for the development of highly parallel
streaming applications. The intuitive design and the exposure of the underlying par-
allelism makes dataflow a very attractive solution. Moreover, dataflow MoCs does not
require memory coherence protocols and provide also compile-time analyses for both qual-
itative and quantitative properties of the system. In this way, the development procedure
becomes faster and less error-prone, resulting in more reliable and high quality products.
For this reason, many streaming languages, based on static models of computation, have
appeared, from research languages like StreamIt or more production-ready offrerings like
ΣC. In Section 2.4.3, a method and tool was introduced to convert StreamIt benchmarks
in ΣC. This work aims to create a library of benchmarks for ΣC. This library allows us
to use the many existing StreamIt examples as the number of ΣC applications is still
insufficient and requires more programs to test the ability of language.

However, programming on manydcore platforms remains very challenging as there are

42 Dataflow Models of Computation

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1 2 4 8 12 16

T
h
ro

u
g
h
p
u
t
n
o
rm

a
liz

e
d

Number of cores

Automatic
Hand code

Figure 2.21: Throughput normalized for the DCT application implemented by hand and by the
Python program

many different conflicting parameters to take into account. As we saw in Section 2.4.2,
StreamIt and ΣC, despite their differences, have a lot of common limitations to meet
the demands of emerging embedded applications. For example, many task scheduling
heuristics have been developed, and although they can be reused in less expressive models
like CSDF or SDF, they quickly become obsolete when developing modern applications
because of the requirements for time constraints. In fact, these scheduling techniques
(e.g., Self-Timed Scheduling) does not provide real-time guarantees on the availability of
a given result in conformance with time constraints. New techniques based on periodic
scheduling have been developed. However, they often ignore performance metrics such as
latency and throughput or can even have a negative impact on it: the results are quite
far from the optimal results obtained under Self-Timed Scheduling (STS).

Still, new dataflow MoCs are needed as current complex applications get even more
complex and demand increased expressiveness. Proper combination of both topological,
data rate dynamism and real-time constraints has not yet been achieved in any of the
existing models. These features are desirable in modern streaming applications that
are highly dependent on the context, and often show soft or hard real-time constraints.
This context dependency requires a versatile and agile execution environment where the
amount of data as well as the configuration of the application that process it may vary,
as discussed in Section 1.1.3.

In the following, we propose a scheduling framework, noted Self-Timed Periodic (STP),
that can schedule static dataflow MoCs on many-core platforms. The framework relies
on combining self-timed scheduling with periodic scheduling. The proposed framework
shows that the use of both strategies is possible and that they complement each other;
STS improves the performance metrics of the programs, while the periodic model captures
the timing aspects. We evaluated the performance of our scheduling policy for a set of 10
real-life streaming applications. We found that in most of the cases, our approach gives
a significant improvement in latency compared to the Strictly Periodic Schedule (SPS),

Summary 43

and competes well with STS in terms of performance. The framework is presented in
detail and applied to CSDF in Chapter 3 while its extension is introduced in Chapter 6
to consider variable interprocessor communication (IPC) times and real-time constraints
imposed by hardware devices or control engineers.

Furthermore, we introduce Transaction Parameterized Dataflow (TPDF), a new model
of computation combining integer parameters—to express dynamic rates—and a new type
of control actor—to allow topology changes and time constraints enforcement. This new
model preserves all the static analyses that make dataflow modelling so attractive, such
as liveness, bounded memory usage and evaluation of worst-case throughput. Moreover,
its real-time extension makes TPDF available to model task timing requirements in a
great variety of situations. We also propose a static scheduling heuristic to map TPDF
to massively parallel embedded platforms. We implement these analysis and scheduling
methods in a tool and validate the model using not only the benchmarks library developed
for ΣC but also a new set of real-life dynamic applications, demonstrating significant buffer
size and throughput improvements compared to the state of the art static and dynamic
models, including Cyclo-Static Dataflow (CSDF) and Scenario-Aware Dataflow (SADF).
Our new data flow MoC, Transaction Parameterized Dataflow (TPDF), and its evaluation
are presented in Chapter 5, 6 and 7.

44 Dataflow Models of Computation

Chapter 3

Self-Timed Periodic Scheduling

I’ve always felt so grateful that I dropped out of school, that I
never had to do a thesis. I wouldn’t know how to organise and
structure myself to film so that B follows A and C follows B.

— Michael Moore

Contents

3.1 Motivational Example . 47

3.2 System Model . 48

3.2.1 Timed Graph . 48

3.2.2 Graph Levels . 48

3.2.3 System’s model and Schedulability . 49

3.3 Self-Timed Periodic Scheduling . 49

3.3.1 Assumptions and Definitions . 50

3.3.2 Latency Analysis under STP Schedule 51

3.4 Evaluation Results . 54

3.4.1 Benchmarks . 54

3.4.2 Experiment: Latency comparison . 56

3.4.3 Experiment: Throughput comparison 57

3.4.4 Discussion: Decision tree for real-time scheduling of CSDF applications 58

3.5 Summary . 58

Given the scale of the new massively parallel systems (e.g., MPPA-256 chip from
Kalray (256 cores) [34], Epiphany from Adapteva (64 cores) or Tegra X1 from NVIDIA
(256 GPU-cores and 4 CPU-cores)), programming languages based on the dataflow model
of computation have strong assets in the race for productivity and scalability. Nonetheless,
as streaming applications must ensure data-dependency constraints, scheduling has serious
impact on performance. Hence, multiprocessor scheduling for dataflow languages has been
an active area and therefore many scheduling and resource management solutions were
suggested.

The Self Timed Scheduling (STS) strategy (a.k.a. as-soon-as-possible) of a stream-
ing application is a schedule where actors are fired as soon as data-dependency is satis-
fied. This scheduling policy is considered as the most appropriate for streaming applica-
tions modeled as dataflow graphs [89, 90, 99] because it delivers the maximum achievable

45

46 Self-Timed Periodic Scheduling

throughput and the minimum achievable latency if computing resources are sufficient [8].
However, this result can only be true if we ignore synchronization times. Synchronization
can be considered as a special form of communication, for which data are control infor-
mation. Its role is to enforce the correct sequencing of actors firing, and to ensure the
mutually exclusive access to shared resources, and the time it takes considered as not be
negligible.

Furthermore, STS does not provide real-time guarantees on the availability of a given
result in conformance with time constraints. Due to the complex and irregular dynamics
of self-timed operations, in addition to the synchronization overhead, many different hy-
potheses were suggested, like contention-free communication [89] or considering uniform
costs for communication operations [8, 90]. But neglecting subtle effects of synchroniza-
tion is not reasonable with regards to real systems and their hard real-time guarantees. In
addition, using a predefined schedule of accesses to shared memory [67] makes run-time
less flexible. Therefore, analysis and optimization of self-timed systems under real-time
constraints remain challenging.

To cope with this challenge, periodic scheduling is receiving more attention for stream-
ing applications [8, 38, 90] because of its good properties (i.e., timing guarantees, temporal
isolation [33] and low complexity of the schedulability test). However, periodic schedul-
ing increases the latency significantly for a class of graphs called unbalanced graphs. A
balanced graph is the one where the product of actor execution time and repetition is
the same for all actors [7]. On the contrary, an unbalanced graph is the one where such
products differs between actors and in the real world, as execution times of processes can
have large variations, unbalanced graphs are the usual cases.

In this chapter, we propose a new scheduling policy noted Self-Timed Periodic (STP)
schedule for Cyclo-Static Dataflow (CSDF) [19] graph, one of the state of the art models
for describing applications in the signal processing domain (see Section 2.2). STP is a
hybrid execution model based on mixing Self-Timed schedule and periodic schedule. We
introduce four classes of STP schedules based on two different granularities and two types
of deadline: implicit and constrained. Two first schedules, denoted STP I

qi
and STPC

qi
, are

based on the repetition vector qi, given by resolving Equation (2.1),without including the
sub-tasks of actors. Two remaining schedules, denoted STP I

ri
and STPC

ri
, have a finer

granularity by including the sub-tasks of actors. It is based on the repetition vector ri,
given by resolving Equation (2.2). For unbalanced graphs, we show that it is possible
to significantly decrease the latency and increase the throughput under the STP model
for both granularities. We evaluate the proposed STP representation using a set of 10
real-life applications and show that it is capable of achieving significant improvements in
term of latency (with a maximum of 96.6%) compared to the SPS schedule and yielding
the maximum achievable throughput obtained under the STS schedule for a large set of
graphs.

The remainder of this chapter is organized as follows. In Section 3.1, we present a
motivational example to illustrate the impact of the STP model on the performance.
Section 3.2 introduce the timed graph, system model and schedulability of a CSDF graph
which are important points for understanding our scheduling platform in Section 3.3.
Section 3.4 present our evaluation of the proposed scheduling policy. Finally, Section 3.5
contains a comparison of STP with other scheduling platforms.

48 Self-Timed Periodic Scheduling

3.2 System Model

We introduce in this section the timed graph, system model and schedulability of a
CSDF graph which are important points for understanding our contribution in Section
3.3.

3.2.1 Timed Graph

The timed graph is a more accurate representation of the CSDF graph, that asso-
ciates to each sub-task or instance of an actor a computation time and a communication
overhead. We consider the Timed graph G = 〈A,E, ω, ϕ〉, where A is a set of actors,
E ⊆ A × A is a set of communication channels, −→ω ∈ N

N is the execution time vector of
G, such that ωi ∈

−→ω is the worst-case execution time (WCET) of actor ai ∈ A. Similarly,
−→ϕ ∈ N

N is the communication time vector of G, such that ϕi ∈
−→ϕ is the communication

cost of actor ai ∈ A (i.e. worst-case time needed for reading and writing data tokens,
etc.).

Example 2 Figure 3.1(a) represents also a Timed graph of the MP3 application with
execution vector −→ω = [4, 9, 5, 3, 2]T and communication vector −→ϕ approximately equal to
−→
0 .

3.2.2 Graph Levels

In this chapter, we restrict our attention to acyclic CSDF graphs which can be used to
model most of the static dataflow applications. An acyclic graph G has a number of levels,
denoted by α. Different graph traversals types exist like topological, breadth-first, etc.
Actors will be assigned to a set of levels V = {V1,V2, ...,Vα}. Authors in [8], proposed a
method, presented in Algorithm 1, based on assigning the actors in the graph according
to precedence constraints. An actor ai that belongs to level Vj in Algorithm 1 has a
level index σi = j. Each actor ai ∈ A is associated with two sets of actors. The sets of
actors are the successors set, denoted by succ(ai), and the predecessors set, denoted by
prec(ai).

succ(ai) = {aj ∈ A : ∃eu = (ai, aj) ∈ E}
prec(ai) = {aj ∈ A : ∃eu = (aj, ai) ∈ E}

(3.1)

Algorithm 1 TIMED-GRAPH-LEVELS(G)

Require: Timed graph G = 〈A,E, ω, ϕ〉
1: i ← 1
2: while A 6= ∅ do
3: Vi ← {aj ∈ A : prec(aj) = ∅}
4: Ei ← {eu ∈ E: ∃ak ∈ Vi that is the source of eu}
5: A← A \ Vi

6: E ← E \ Ei

7: i = i + 1
8: end while
9: α ← i - 1

10: return α disjoint sets V1, V2, . . . , Vα where
⋃α

i=1 Vi = A

Self-Timed Periodic Scheduling 49

3.2.3 System’s model and Schedulability

This section presents the system’s model and its schedulability analysis.

System’s Model

A system Π consists of a set π = {π1, π2, ..., πm} of m homogeneous processors. The
processors execute a level set V = {V1,V2, ...,Vα} of α periodic levels. A periodic level

Vi ∈ V is defined by a 4-tuple Vi = (Si,
∧
ωi,

∧
ϕi, Di), where Si ≥ 0 is the start time of

Vi,
∧
ωi is the worst-case computation time (where

∧
ωi = max

k=1→βi

ωk with βi representing the

number of actors in level Vi),
∧
ϕi ≥ 0 is the worst-case communication time of Vi under

STP schedule and Di is the relative deadline of Vi where Di = max
k=1→βi

Dk. A periodic level

Vi is invoked at time t = Si + kφ, where φ ≥
∧
ωi +

∧
ϕi is the level period, and has to finish

execution before time t = Si+kφ+Di. If Di = φ, then Vi is said to have implicit-deadline.
If Di < φ, then Vi is said to have constrained-deadline.

Schedulability Analysis

Actors in the Timed graph G are scheduled as implicit-deadline or constrained-deadline
periodic tasks (depending on the STP approach being used) and assigned to levels. At
run-time, they are executed in a self-timed manner. This is possible because actors of
level k+1 consume the data produced in level k. A necessary condition for scheduling an
asynchronous set of implicit-deadline periodic tasks Γ ⊆ A on m processors is Usum ≤ m,
where Usum is the total utilization of Γ as proof in [33]. In this work, we consider only
consistent and live CSDF graphs. A static schedule [99] of a consistent and live CSDF
graph is valid if it satisfies the precedence constraints specified by the edges. Authors
in [89] introduced a theorem that states the sufficient and necessary conditions for a valid
schedule. However, this result was established for Synchronous Dataflow graphs where
actors have constant execution times. In this context, our research uses the test introduced
in [37] which allows the timing of firing to respect the firing rules of actors in a CSDF
graph.

3.3 Self-Timed Periodic Scheduling

The effect of Self-timed Periodic (STP) scheduling can be modeled by replacing the
period of the actor in each level by its worst-case execution time under periodic scheduling.
The worst-case execution time is the total time of computation and communication parts
of each actor. The period of each level i is the maximum time it needs to fire each actor
aj ∈ Vi, when resource arbitration and synchronization effects are taken into account.
This is counted from the moment the actor meets its enabling conditions to the moment
the firing is completed. There are 4 types of STP scheduling that we are interested in
modeling as depicted in Table 3.1.

Table 3.1: Proposed STP Schedules

Type/Repetition vector qi ri

φ = Di (Implicit-Deadline) STP I
qi

STP I
ri

φ > Di (Constrained-Deadline) STPC
qi

STPC
ri

50 Self-Timed Periodic Scheduling

STPXi
refers to scheduling decisions using the different granularities offered by CSDF

model:
– Coarse-Grained Schedule: coarse-grained description of STP schedule regards in-
stances of actors by using −→q as the repetition vector. Each actor ai is viewed as
executing through a periodically repeating sequence of qi instances of sub-tasks.

– Fine-Grained Schedule: fine-grained description of STP schedule regards smaller
components (i.e., sub-tasks of actors) of which the actors are composed by using −→r
as the repetition vector.

3.3.1 Assumptions and Definitions

A graph G refers to an acyclic consistent CSDF graph. A consistent graph can be
executed with bounded memory buffers and no deadlock. We base our analysis on the
following assumptions:

A1. External sources in data-flow: The model is accomplished with interfaces to the
outside world in order to explicitly model inputs and outputs (I/Os). A graph G has a set
of input streams I = {I1, I2, ..., I∆} connected to the input actors of G, and a set of output
streams O = {O1, O2, ..., OΛ} processed from the output actors of G. An actor ai ∈ A
is defined, inter alia, with Ei = (Ein

i , Eout
i) such that Ein

i and Eout
i represent the sets of

input and output edges of ai. A source and a sink nodes can be integrated as closures
since they define limits of an application. These special nodes are defined as follows:
src ∈ A, Ein

src = ∅ and Eout
src = {I1, I2, ..., I∆}, snk ∈ A, Ein

snk = {O1, O2, ..., OΛ} and
Eout

snk = ∅.

Definition 6 For a graph G under periodic schedule, the worst-case communication over-

head
∧
ϕj of any level Vj ∈ V depends on the maximum number of accesses to memory mβj

processed in the time interval [(j − 1)× φ, j × φ[. In [38], the authors proved that
∧
ϕj is a

monotonic increasing function of the number of conflicting memory accesses:
∧
ϕj =↑ f(mβj

), ∀Vj ∈ V (3.2)

A2. For periodic schedules, synchronization cost is constant, because periodic behavior
guarantees that an actor ai ∈ Vj, ∀i ∈ [1, ..., βj], will consume tokens produced at level
(j − 1) [38]. This implies that actors of the same level can start firing immediately in the
beginning of a given period because all the necessary tokens have already been produced.

Definition 7 A graph G is said to be matched input/output (I/O) rates graph if
and only if:

η mod Q = 0 (3.3)

If Formula (3.3) does not hold, then G is a mismatched I/O rates graph.

Definition 8 A graph G is called balanced if and only if:

q1ω1 = q2ω2 = · · · = qnωn, (3.4)

where qi ∈
→
q is the repetition of actor ai ∈ A and ωi is its worst-case computation time.

If Equation (3.4) does not hold, then the graph is called unbalanced.

Self-Timed Periodic Scheduling 51

Definition 9 An actor workload is defined as:

Wi = vi × ωi, (3.5)

where vi is the ith component of the repetition vector used for STP schedule. For STPqi,

vi = qi and for STPri, vi = ri. The maximum workload of level Vj is
∧

W j = maxai∈Vj
{Wi}.

Definition 10 Let pa z = {(aa, ab), . . . , (ay, az)} be an output path in a graph G. The
latency of pa z under periodic input streams, denoted by L(pa z), is the elapsed time
between the start of the first firing of aa which produces data to (aa, ab) and the finish of
the first firing of az which consumes data from (ay, az).

Consequently, we define the maximum latency of G as follows:

Definition 11 For a graph G, the maximum latency of G under periodic input streams,
denoted by L(G), is given by:

L(G) = max
pi j∈P

L(pi j), (3.6)

where P denotes the set of all output paths in G. A path pi j = (ai, aj) is called output
path if ai is a source node which receives an input stream of the application and aj is
a sink node which produces an output stream.

Example 3 The CSDF graph shown in Figure 3.1(a) has two output paths given by P =
{p1 = {(mp3, src1), (src1, app), (app, dac), p2 = {(mp3, src2), (src2, app), (app, dac)}. This
graph is also an example of an unbalanced graph since the product of actor execution time
and repetition is not the same for all actors (e.g., 3× 4 6= 4× 9).

3.3.2 Latency Analysis under STP Schedule

A self-timed schedule does not impose any extra latency on the actors. This leads us
to the following result:

Definition 12 (Periods of Levels in STPqi) For a graph G, a period φ, where φ ∈ Z
+,

represents the period, measured in time-units, of the levels in G. If we consider
→
q as the

basic repetition vector of G in Definition 9, then φ is given by the solution to:

φ ≥ max
j=1→α

(
∧

W j +
∧
ϕj) (3.7)

Definition 12 defines the level period φ as the maximum execution time of all levels.
φ can be chosen as this value or greater. Similarly, we define the schedule function for

the finer granularity of CSDF characterized by the repetition vector
→
r if we consider

→
r

as the basic repetition vector of G in Equation (3.7).
For STPqi , we use Algorithm 1 to find the levels of G. For STPri , Algorithm 2 is used

because this scheduling policy has a finer granularity and requires an algorithm which
depends also on the precedence constraints and firing rules of actors. In this case, each

52 Self-Timed Periodic Scheduling

Algorithm 2 GRAPH-LEVELS-STP-Ri(G)

Require: Timed graph G = 〈A,E, ω, ϕ〉
1: counti ← 0
2: j ← 1
3: S ← {a1} ⊲ a1 assumed to be the source actor;
4: while ∃ai ∈ A counti < qi do
5: Vj ← {ai ∈ S : there are enough tokens in all input edges to fire ai for ri times}
6: for all ai ∈ Vj do
7: counti ← counti + ri
8: if counti < qi then
9: S = S

⋃

succ(ai)
10: else
11: if counti = qi then
12: S ← S \ {ai}
13: end if
14: end if
15: end for
16: j ← j + 1
17: end while
18: α′ ← j - 1
19: return α′ disjoint sets V1, V2, . . . , Vα′

actor ai could only be fired for ri times if there are enough tokens in all of their input
edges.

An actor ai ∈ Vj is said to be a level-j actor. For STPqi , let φ denote the level period
as defined in Definition 12, and let a1 denote the level-1 actor. a1 will complete one
iteration when it fires q1 times. Assume that a1 starts executing at time t = 0. Then, by
time t = φ ≥ q1ω1 as defined in Definition 12, a1 is guaranteed to finish one iteration in
a self-timed mode (start the next sub-task immediately after the end of the precedent).
According to Theorem 1, a1 will also generate enough data such that every actor ak ∈ V2

can execute qk times (i.e. one iteration). According to Definition 12, firing ak for qk times
in a self-timed mode takes qkωk time-units. Thus, starting level-2 actors at time t = φ
guarantees that they can finish one iteration. Similarly, by time t = 2φ, level-3 actors will
have enough data to execute for one iteration. By repeating this over all the α levels, a
schedule Sα (shown in Figure 3.2) is constructed in which all actors ai ∈ Vj are started
at start time, denoted si,j, given by:

si,j = (j − 1)φ (3.8)

Vj(k) denotes level-j actors executing their k-th iteration. For example, V2(1) denotes
level-2 actors executing their first iteration. At time t = αφ, G completes one iteration.
It is trivial to observe from Sα that as soon as a1 finishes one iteration, it can immediately
start executing the next iteration since its input stream arrives periodically. If a1 starts
its second iteration at time t = φ, its execution will overlap with the execution of the
level-2 actors. By doing so, level-2 actors can start immediately their second iteration
after finishing their first iteration since they will have all the needed data to execute one

Self-Timed Periodic Scheduling 53

time [0,φ) [φ,2φ) [2φ,3φ) . . . [(α− 1)φ,αφ)

level V1(1) V2(1) V3(1) . . . Vα(1)
V1(2) V2(2) . . . Vα−1(2)

V1(3) . . . Vα−2(3)
. . . Vα−3(4)
.

V1(α)

Figure 3.2: Initial phase of schedule Sα

iteration in a self-timed mode at time t = 2φ. Now, the overlapping can be applied α
times to yield a schedule Sα as shown in Figure 3.2. Starting from t = αφ, a schedule
S∞ can be constructed by pipelining the Sα schedule, as can be seen in Figure 3.3. The
start time defined in Equation (3.8) guarantees that actors at a given level will execute
only when they have enough data to execute. Thus, schedule S∞ shows the existence of
a self-timed periodic schedule of G where every actor aj ∈ A is self-timed periodic with a
period level equal to φ.

time [0,φ) [φ,2φ) . . . [(α− 1)φ,αφ) [αφ,(α+ 1)φ)

level V1(1) V2(1) . . . Vα(1) Vα(2)
V1(2) . . . Vα−1(2) Vα−1(3)

. . . Vα−2(3) Vα−2(4)

. . . Vα−3(4) Vα−3(5)

.
V1(α) V1(α+ 1)

Figure 3.3: Schedule S∞ by pipelining the steady state Sα

According to Definition 10 and 11, latency is defined as the maximum time elapsed
between the first firing of src actor in level V1 and the finish of the first firing of snk actor
in level Vα. Then, the graph latency L(G) is given by:

L(G) = max
pi j∈P

(ssnk,α +
∧
y
u

snkφ+Dα − (ssrc,1 +
∧
x
r

srcφ)) (3.9)

where ssnk,α and ssrc,1 are the earliest start times of the snk actor and the src actor,

respectively, Dα is the deadline of snk and Vα, and
∧
x
r

src and
∧
y
u

snk represent the first non-
zero production (consumption) sub-task of the src (snk) actor, such that for an output

path psrc snk in which er is the first channel and eu is the last channel,
∧
x
r

src and
∧
y
u

snk are
given by:

∧
x
r

src = min{k ∈ N : xr
src(k) > 0} − 1 (3.10)

∧
y
u

snk = min{k ∈ N : yusnk(k) > 0} − 1 (3.11)

Under the implicit-deadline model,Dα = φ and under the constrained-deadline schedul-
ing, Dα < φ. Using Equations (3.7) and (3.8), it is possible to obtain a simple version of

54 Self-Timed Periodic Scheduling

Table 3.2: Benchmarks used for evaluation

Domain No. Application N Q max(qiωi) Source

Signal Processing

1 Discrete cosine Transform (DCT) 4 12 1800
CEA LIST2 Fast Fourier Transform (FFT) kernel 4 6 900

3 Multi-Channel beamformer 4 12 7800
4 Filter bank for multirate signal processing 17 600 113430 MIT [106]

Audio Processing
5 MP3 audio decoder 5 24 36 CEA LIST
6 Sample-rate converter used in CDs 6 23520 960

SDF3 [102]
Video Processing

7 H.263 video encoder 5 33 382000
8 H.263 video decoder 4 2376 10000

Mathematics 9 Bipartite graph 4 144 252
Communication 10 Satellite receiver 22 5280 1056

Equation (3.9) under the implicit-deadline model for acyclic CSDF graphs where produc-
tion of src actor and consumption of snk actor taking place from the first firing of each

node (
∧
x
r

src =
∧
y
u

snk = 0):

LSTP I
qi/ri

= (ssnk,α + φ)− ssrc,1 = α× φ (3.12)

Example 4 We illustrate in Figure 3.4 different scheduling policies applied for the MP3
application shown in Figure 3.1(a). This application has an execution vector −→ω =

[4, 9, 5, 3, 2]T and a communication vector −→ϕ approximately equal to
−→
0 . The mp3 node

is the src actor and dac is the snk actor. Applying Algorithm 1, the number of levels
for STP I

qi
is α = 4 and we have 4 sets: V1 = {mp3}, V2 = {src1, src2}, V3 = {app},

V4 = {dac}.
Applying Algorithm 2, the number of levels for STP I

ri
is α = 6 and we have 6 sets:

V1 = {mp3}, V2 = {mp3, src1, src2}, V3 = {mp3, app}, V4 = {src1, src2, dac}, V5 =
{app}, V6 = {dac}. Given −→q = [3, 4, 4, 8, 8]T and −→r = [1, 2, 2, 4, 4]T , we use Equation
(3.5) and (3.7) to find the period of levels φ = 36 for STP I

qi
and φ = 18 for STP I

ri
.

This graph has two output paths given by P = {p1 = {(mp3, src1), (src1, app),
(app, dac), p2 = {(mp3, src2), (src2, app), (app, dac)}. Finally, using Equation (3.12), we
have LSTP I

qi
(p1) = LSTP I

qi
(p2) = 144 and LSTP I

ri
(p1) = LSTP I

ri
(p2) = 108 as depicted in

Figure 3.4.

3.4 Evaluation Results

We evaluate our proposed scheduling policy in Section 3.3 by performing an exper-
iment on a set of 10 real-life streaming applications. The objective of the experiment
is to compare the efficiency of our STP approach to their maximum achievable perfor-
mance obtained via self-timed scheduling and the results achieved under strictly periodic
scheduling.

3.4.1 Benchmarks

The streaming applications used in the experiment are real-life applications which come
from different domains (e.g., signal processing, video processing, mathematics, etc.) and
from different sources to check the efficiency of this scheduling in different architectures.
The first source is the ΣC benchmark which contributes 4 streaming applications. The

Evaluation Results 55

mp3

src1

src2

app

dac
0 48 96 144 196

(a)

0 36 72 108 144 180

mp3

src1

src2

app

dac

(b)

0 18 36 54 72 90 108 126 144 162 180

mp3

src1

src2

app

dac

(c)

Figure 3.4: Illustration of latency path for the MP3 application shown in Figure 3.1(a): (a)
SPS (b) STP I

qi
(c) STP I

ri
. The dotted line represents a valid static schedule of the graph. An

improvement of 25% to 60% in latency could be achieved by the STP I
qi

and STP I
ri

schedules
compared to the SPS schedule.

second source is the SDF3 benchmark which contributes 5 streaming applications [102].
The last source is the StreamIt benchmark [106]. In total, 10 applications are considered
as shown in Table 3.2. The graphs are a mixture of CSDF (ΣC’s applications) and SDF
(StreamIt and SDF3 benchmark) graphs. The use of synchronous dataflow (SDF) models
does not affect our scheduling policy because SDF, with static firing rules of actors, is a
special case of CSDF model [19, 74]. The fourth column (N) shows the number of actors in
each application, the fifth column (Q) shows the least-common-multiple of the repetition
vector elements (i.e., Q = lcm(q1, q2, . . . , qn)) and the sixth column is the maximum of the
product qiωi used to calculate the end-to-end latency by Formula (3.5), (3.7) and (3.12).

The actors execution times of the ΣC benchmark are measured in clock cycles on the
MPPA 256 cores, while the actors execution times of the SDF3 benchmark are specified
by its authors for ARM architecture. For the StreamIt benchmark, the actors execution
times are specified in clock cycles measured on MIT RAW architecture.

56 Self-Timed Periodic Scheduling

We use SDF3 tool-set for several purposes during the experiments. SDF3 is a pow-
erful analysis tool-set which is capable of analyzing CSDF and SDF graphs to check
for consistency errors, compute the repetition vector, compute the maximum achievable
throughput, etc. In this experiment, we use SDF3 to compute the minimum achievable
latency of the graph and use it as a reference point for comparing the latency under the
SPS and STP models. For StreamIt benchmark, the graph exported by this language is
converted in the XML required by SDF3. For ΣC applications, the ΣC compiler is capable
of checking consistency errors and computing the repetition vector during its 4 stages of
compilation [53]. The latency of its applications is calculated by using the execution times
measured on the MPPA platform.

3.4.2 Experiment: Latency comparison

In this experiment, we compare the end-to-end latency resulting from our STP ap-
proach to the minimum achievable latency of a streaming application obtained via self-
timed scheduling and the one achieved under strictly periodic scheduling. The STS la-
tency is computed using the latency algorithm of the sdf3analysis tool from SDF3 with
auto-concurrency disabled and unbounded FIFO channel sizes.

Table 3.3 shows the latency obtained under STS, SPS, STP I
qi
, STP I

ri
, STPC

qi
and

STPC
ri

schedules as well as the improvement of these policies compared to the SPS model.
We report the graph maximum latency according to Formula (3.12). For SPS schedule,
we used the minimum period given by Equation (2.6). For STP schedule, we used the
level period given by Definition 12. We see that the calculation of the STP schedule is not
complicated because the graph is consistent and an automatic tool could be implemented
to find this schedule.

Table 3.3: Results of Latency comparison

Application STS SPS STPI
qi

EffSTPI
qi

STPI
ri

EffSTPI
ri

STPC
qi

EffSTPC
qi

STPC
ri

EffSTPC
ri

DCT 2500 7200 5400 38.3 4500 57.5 3500 78.7 3200 85.1

FFT 23000 36000 27000 69.2 32000 30.8 23000 100.0 23000 100.0

Beamformer 9500 25200 23400 11.5 30000 -30.6 12100 83.4 13700 73.3

Filterbank 124792 1254000 1247730 0.6 1247730 0.6 309033 83.7 309033 83.7

MP3 48 192 144 33.3 108 58.3 88 72.2 72 83.3

Sample-rate 1000 141120 5760 96.6 5760 96.6 2439 99.0 2439 99.0

Encoder 664000 1584000 1528000 6.1 1528000 6.1 799000 85.3 799000 85.3

Decoder 23506 47520 40000 31.3 40000 31.3 25880 90.1 25880 90.1

Bipartite 293 576 504 25.4 504 25.4 369 73.2 369 73.2

Satellite 1314 58080 11616 81.9 11616 81.9 2377 98.1 2377 98.1

For the STP I
qi
, we see that it delivers an average improvement of 39.4% (with a maxi-

mum of 96.6%) compared to the SPS model for all the applications. In addition, we clearly
see that our STP I

qi
provides at least 25% of improvement for 7 out of 10 applications.

Only three applications (Filterbank, Beamformer and H.263 Encoder) have lower perfor-
mance under our STP I

qi
. To understand the impact of the results, we use the concept of

balanced graph (see Definition 8). According to [7], periodic models increase the latency
significantly for unbalanced graphs. For our approach, Definition 12 and Formula (3.12)
indicate that if the product qiωi is too different between actors, so the period of levels φ
and the latency L become higher. For actors where this product is much smaller, wasted
time in each level increases the final value of latency. This is the main reason why we

Evaluation Results 57

reduce these bad effects by using the constrained-deadline self-timed periodic schedule
STPC

qi
and STPC

ri
.

We also see that the mismatched I/O rates applications (i.e. with large Q such as
Sample-rate, Satellite and Filterbank in Table 3.2) have higher latency under strictly
periodic scheduling. This result could be explained using an interesting finding reported
in [106]: Neighboring actors often have matched I/O rates. This reduces the opportunity
and impact of advanced scheduling strategies proposed in the literature. This issue can be
resolved by using our approach. In fact, for nearly balanced graphs (i.e., graphs where
the product qiωi is not too different between actors) such as Sample-rate and Satellite,
we have an improvement of 96.6% and 81.9%, relatively, for the end-to-end latency of
each benchmark. For the remaining applications, the SPS model increases the latency on
average by 2.5× compared to the STS latency while this rate for STP I

qi
is 2×.

For the STP I
ri
approach, we have an average improvement of 35.8% compared to the

SPS model for all the applications. For 8 out of 10 benchmarks, this scheduling policy
give at least the result given by STP I

qi
. Only two applications (Beamformer and FFT)

have lower performance when using this scheduling policy. The main reason is that the

STP I
ri

give a finer granularity based on the repetition vector ri. This means that if
→
r

is too close to
→

1, the sum of wasted time in each level will significantly increases the
end-to-end latency.

For this reason, we extend our result by using 2 other constrained deadline approaches:
STPC

qi
and STPC

ri
. The constrained deadline model assigns for each task a deadline

D < φ, where φ is the period of levels. Figure 3.5 shows the ratio of the latency of
5 scheduling policies (including STPC

qi
and STPC

ri
) to the minimum achievable latency

(i.e., STS latency). A ratio equal to 1.0 means that the STPC
qi

and STPC
ri

latency are

equal to the STS latency. We see that the STPC
ri

model achieves nearly the minimum
achievable latency for 7 graphs. In addition, it is worth noting that these approaches
have, on average, 86.4% of improvement for STPC

qi
and 87.1% for STPC

ri
compared to

the SPS latency; it means that we have only 13.6% and 12.9%, respectively, degradation
of latency compared to STS. However, this degradation is negligible for a schedule that
guarantees periodic properties.

3.4.3 Experiment: Throughput comparison

In this experiment, we compare the throughput resulting from our STP approach to
the maximum achievable throughput of a streaming application obtained via self-timed
scheduling. Computing the throughput of the STS using SDF3 is done using the algorithm
throughput of the sdf3analysis− (c)sdf tool.

The last column of Table 3.4 shows the ratio of the STS schedule throughput to
the STP I

qi
schedule throughput (ΥSTS/ ΥSTP I

qi
). Notice that the unit for the results in

Table 3.4 is 1
clock cycle

. A result in seconds could be obtained by dividing these results by

the value of one cycle (e.g. 2.5×10−9s for MPPA 256 cores). We clearly see that our STP
delivers the same throughput as STS for 9 out of 10 applications. The only application
have lower throughput is H.263 Encoder but overall, we demonstrated good results while
ensuring high level of time determinism. This fact show one more advantage of using our
STP framework.

58 Self-Timed Periodic Scheduling

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

DCT
FFT

BeamFormer

Filterbank

MP3Decoder

Sample-rate

Encoder

Decoder

Bipartite

Satellite

SPS
STPqi(Implicit)
STPri(Implicit)

STPqi(Constrained)
STPri(Constrained)

Figure 3.5: Ratios of the latency under SPS, STP I
qi
, STP I

ri
, STPC

qi
and STPC

ri
to the STS

latency. It must be noted that the Sample-Rate and Satellite programs have a ratio for SPS
much larger than 12, but the graph is zoomed to display accurately the results for most of the
programs.

3.4.4 Discussion: Decision tree for real-time scheduling of CSDF applications

Based on the evaluation results in Section 3.4.2 and 3.4.3, we present a decision tree
for selecting between different real-time scheduling policies that we propose for CSDF
graphs in this chapter. The decision tree is illustrated in Figure 3.6. The first decision is
to determine whether the application is safety-critical or not. If the application is safety-
critical, then the SPS model, with its better temporal isolation property, is chosen to
guarantee time constraints. If the application have simpler real-time constraints, STP I

qi

and STP I
ri

could be chosen, based on which granularity gives better result, to reduce
the end-to-end latency while ensuring the maximum throughput obtained under the Self-
Timed Scheduling. In the case of unbalanced graphs, STPC

qi
and STPC

ri
helps in further

reducing latency if the constrained deadline model is possible.

3.5 Summary

In this chapter, we prove that the actors of a streaming application modeled as CSDF
graph, can be scheduled as self-timed periodic tasks. As a result, we conserve the prop-
erties of a periodic scheduling and in the same time improve its performance. We also
show how the different granularities offered by CSDF model can be explored to decrease
latency. We present an analytical framework for computing the periodic task parameters
while taking into account inter-processor communication and synchronization overhead.

Summary 59

Table 3.4: Results of Throughput comparison

Application ΥSTS ΥSTPI
qi

ΥSTS/ΥSTPI
qi

DCT 2.22 × 10−3 4/1800 1.0

FFT 3.33 × 10−3 3/900 1.0

Beamformer 5.13 × 10−4 4/7800 1.0

Filterbank 8.81 × 10−6 1/113430 1.0

MP3 2.22 × 10−1 8/36 1.0

Sample-rate 1.04 × 10−3 1/960 1.0

Encoder 4.73 × 10−6 1/382000 1.8

Decoder 1.0 × 10−4 1/10000 1.0

Bipartite 3.96 × 10−3 1/252 1.0

Satellite 9.46 × 10−4 1/1056 1.0

Based on empirical evaluations, we show that our STP approach reduces significantly
the latency compared to the SPS model and delivers the maximum throughput achieved
under the STS model. We summarize our results in the form of a decision tree to assist
the designer in choosing the appropriate scheduling policy for acyclic CSDF graphs.

In comparison with other scheduling frameworks, Ghamarian et al. propose a heuris-
tic for optimizing latency under a throughput constraint [51]. It gives optimal latency
and throughput results under a constraint of maximal throughput for all DSP and multi-
media models. However, this approach uses Synchronous Data-flow (SDF) graphs which
are less expressive than CSDF graphs in that SDF supports only a constant produc-
tion/consumption rate on their edges, whereas CSDF supports varying (but predefined)
production/consumption rates. As a result, the analysis result in [51] is not applicable to
CSDF graphs. In [20], Bodin et al. present a characterization of feasible periodic sched-
ules associated with a CSDF. Two algorithms are deduced to approximately solve the
evaluation of the maximum throughput of a CSDF and the buffer sizing with a through-
put constraint. However, the throughput computed for instances with bounded buffers is
quite far from the optimal achieved under self-timed schedule.

In [70, 111], the authors present a buffer sizing approach and its extension which
exploits that FIFO buffers bound interference between tasks on shared processors. The
approach combines temporal analysis using a cyclic dataflow model with computation of
buffer capacities in an iterative manner and thereby enables higher throughput guarantees
at smaller buffer capacities. In [4], Ali et al. propose an algorithm for extracting the real-
time properties of dataflow applications with timing constraints. Our approach differs
from [4, 70, 111] in: these papers use Homegeneous Synchronous Data-flow (HSDF) as
analysis model, which is less expressive than CSDF and transformation of (C)SDF graphs
into equivalent HSDF graphs use an unfolding process that replicates each actor possibly
an exponential number of times.

Bouakaz et al. [22] propose a model of computation in which the activation clocks
of actors are related by affine functions. This model, named Affine Dataflow (ADF),
extends the CSDF model and proposed an analysis framework to schedule the actors in
an ADF graph as periodic tasks. A major advantage of their approach is the enhanced
expressiveness of the ADF model. For most benchmarks, both CSDF and ADF achieve the
same throughput and latency while requiring the same buffer sizes. However, in few cases,

60 Self-Timed Periodic Scheduling

Acyclic CSDF graph G= (A,E)

Critical embedded
systems?

SPS

Yes

STPqi

Real-time
constraints?

No

STS

No

Balanced?
(see Def. 4)

Yes

Yes

STPri
I

Yes No STPqi/STPri

No

STPri gives
better L?

I

I C C

Figure 3.6: Decision tree for real-time scheduling of CSDF applications. The STP scheduling
could be used to reduce the end-to-end latency of real-time CSDF applications. In the case of
unbalanced graphs, STPC

qi
and STPC

ri
give better results if the constrained deadline model is

possible.

ADF results in reduced buffer sizes compared to CSDF [22]. In [23], the authors provide
another symbolic expression of the maximal throughput of acyclic synchronous dataflow
graphs. Based on these investigations, they define symbolic analyses that approximate the
minimum buffer sizes needed to achieve maximal throughput for acyclic graphs. The same
approach can be assumed to be applied for exact and approximate symbolic evaluations
of the latency of parametric graphs. However, in this paper only graphs with a single
parametric edge dataflow are studied and symbolic analysis of cyclic dataflow graphs is
still to solve.

In [68], Klikpo et al. propose an approach to model formally the synchronous semantic
of multi-periodic Simulink systems by Synchronous Dataflow Graph (SDF).This model
is constructed on a formal equivalence between the data dependencies imposed by the
communication mechanisms in Simulink and the precedence constraints of a synchronous
dataflow graph. In [8], Bamakhrama and Stefanov present another complete framework for
computing the periodic task parameters using an estimation of worst-case execution time.
They assume that each write or read has constant execution time which is often not true.
Our approach is somewhat similar to [8] in using the periodic task model which allows
to apply a variety of proven hard-real-time scheduling algorithms for multiprocessors.
However, it is different from [8] in: 1) in our model, actors will no longer be strictly
periodic but self-timed assigned to periodic levels, and 2) we treat the case variable
execution time of actors due to synchronization and contention in shared resources.

Summary 61

Nevertheless, the STP technique does not consider variable interprocessor communi-
cation (IPC) overhead and real-time constraints imposed by hardware devices or control
engineers. In the next section, we introduce an improvement of the STP platform to
satisfy all the system and user requirements, latency could be evaluated between the
initiation times of any two dependent actors. As a result, a latency-based approach for
fault-tolerance could be implemented in a manycore architecture to guarantee real-time
services.

62 Self-Timed Periodic Scheduling

Chapter 4

Latency-based approach for
fault-tolerance

When Larry and Sergey founded Google Search, one of the things
that struck me is that it was available for everyone to use. We
deeply desire our services to work for everyone. And that
inherently means we have to work with partners. That is the
thesis underlying everything we do.

— Sundar Pichai

Contents

4.1 Motivational Example . 64

4.2 Hard-Real-Time Scheduling of CSDF 65

4.3 Actor Dependence Function . 67

4.3.1 Definition . 67

4.3.2 Calculating ADF . 68

4.3.3 Illustrative example . 69

4.4 Latency Analysis . 70

4.4.1 Definition . 70

4.4.2 Latency Analysis under a hard-real-time scheduling 70

4.5 Fault-Tolerance . 71

4.5.1 Data Model . 71

4.5.2 Support for fault-tolerance . 72

4.6 Evaluation results . 73

4.6.1 Benchmarks . 73

4.6.2 Experiment: Throughput comparison 73

4.7 Summary . 75

In the last section, we demonstrate that it is possible to apply periodic scheduling for
applications modelled as CSDF graphs and improve its latency and throughput perfor-
mance by using the STP platform. However, this scheduling technique can still violate
timing constraints and safety requirements of critical real-time embedded systems (e.g.
avionics). Such violations are usually caused by delays that are not accounted for, due
to resource sharing (e.g. the communication medium). In this chapter, we improve the

63

Hard-Real-Time Scheduling of CSDF 65

Periodic Scheduling (see Section 4.2) which takes into account all these conditions could

be found in Figure 4.2 with a vector of minimum period for each actor
→

Tmin = [4, 4, 3].

1a1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3

1 2 3 4 1 2 3 4 1 2 3 4

1 2

1

L =71

L =62

L =93

L =84

a2

a3

Figure 4.2: Example of hard-real-time scheduling for the distributed stream graph in Figure
4.1(a).

In this work, some communication channels will be considered as fragile. This can
result in time constraints violated or inconsistency of data because of communication
failures. Therefore, it is necessary to have a method to check the consistency of data in
a real-time streaming application. We introduced an actor dependence function, ADF,
that describes the dependence between the executions of 2 actors connected by a directed
path in a stream graph. As a result, a latency constraint could be evaluated between
the executions of any two dependent actors in a CSDF graph and the consistency of
data could be checked automatically by the dependence between actors’ executions and
latency from the source to the destination actor. In the case of the dataflow graph in
Figure 4.1(a), Figure 4.1(b) shows the dependence between actors. This table can be
read as follows: The first execution of a1 produces the last token required for the first
execution of a2 and the first execution of a2 produces the last token required for the first
execution of a3. Similarly, the second execution of a1 produces the last token required for
the second execution of a2 and the second execution of a2 produces the last token required
for the third execution of a3. From this dependency, the latency between a1 and a3 could
be calculated as in Figure 4.2. The consistency of data between actors could be verified
when at a latency check-point, if a destination actor did not receive a packet of data from
the actor on which this destination actor is dependent. In this case, a fault-tolerance
procedure (see Section 4.5) is necessary to guarantee real-time services.

4.2 Hard-Real-Time Scheduling of CSDF

We present in this section an extended hard-real-time scheduling (RTS) algorithm for
the timed graph, which is proven to meet the precedence constraints [8, 37] introduced
by the Late Schedule in Section 4.3 and could obtain the maximum throughput achieved
under self-timed scheduling, as evaluated in Section 4.6.

As presented in Chapter 3, a Static Periodic Schedule [90] of a Cyclo-Static Dataflow
graph is a schedule such that, ∀ai ∈ A:

66 Latency-based approach for fault-tolerance

s(i, k) = s(i, 0) + α× k, (4.1)

where s(i, k) represents the time at which the k-th iteration of actor ai is fired and α is
an equal iteration period for every complete repetition of all the actors. The authors in
[8] proved that it is possible to schedule a graph G actors as static periodic tasks using
periods given by the following equation:

α = q1λ1 = q2λ2 = · · · = qn−1λn−1 = qnλn, (4.2)

where qi ∈
−→q (The basic repetition vector of G) and λi ∈

−→
λ (The minimum period vector

of G), given by:

λmin
i =

Q

qi

⌈

η

Q

⌉

for ai ∈ A, (4.3)

where η = maxai∈A(ωiqi) and Q = lcm(q1, q2, . . . , qn) (lcm denotes the least common
multiple operator).

However, in a real-time applications, temporal constraints are usually imposed by the
control engineers or by electronic devices. For instance, an audio output sink should not
experience any hiccups due to the aperiodic behavior caused by either the initial transition
phase of the STS or by the variation of execution times from iteration to iteration. In this
case, a throughput constraint could be imposed for the sink node (i.e. terminal actor)
by the programmer. This constraint could be converted into a periodic constraint for
the sink node. Moreover, the control engineer in the domain of avionics and automotive
sector usually impose real-time constraints on actors for safety requirements or hardware
features. In this case, we take care of these real-time constraints by defining:

η = max
ai∈A

(ω∗i qi, T
∗
i qi) (4.4)

where T ∗i is the period imposed by the control engineer and ω∗i = ωi+ϕi+∆clock where ϕi

is the communication time from ai to its successors and ∆clock is the sum of the maximum
clock offset between 2 consecutive distributed nodes. In fact, the scheduler and latency
has to take into account that the local clocks are not perfectly synchronized and that
communication between distributed nodes can take a notable amount of time. For the
communication cost, the mean delay-time that can be experienced when accessing on-chip
shared memory used for interprocessor communication in a MPPA’s cluster is evaluated
in [83]. It is quite a general result that can also fit the STHORM chip with a little
adaptation. As a result, the minimum period of each actor is given by:

Tmin
i =

η

qi
for ai ∈ A (4.5)

where qi ∈
−→q is the repetition of ai.

However, this period does not mean that all actors in a CSDF graph would be executed
periodically. For a long time, self-timed scheduling was considered the most appropriate
policy for streaming applications modeled as dataflow graphs. Our approach allows sub-
graph of a CSDF graph, without real-time constraints, could be executed in a self-timed
mode. This subgraph could be seen as a single CSDF actor, with only a time constraint
for all actors in the subgraph.

Actor Dependence Function 67

The earliest start time under the strictly periodic schedule is given by:

sj =

0 , if prec(aj) = ∅

max
ai∈prec(aj)

(si→j) , if prec(aj) 6= ∅ (4.6)

where prec(ai) is the predecessors set of ai

prec(ai) = {aj ∈ A : ∃eu = (aj, ai) ∈ E} (4.7)

and

si→j = min
t∈[0,si+α]

{t : prd
[si,max(si,t)+α)

(ai, eu) ≥ cns
[t,max(si,t)+k]

(aj, eu) ∀k = 0, 1, . . . , α} (4.8)

where prd
[ts,te)

(ai, eu) (or cns
[ts,te]

(ai, eu)) is the sum of the number of tokens produced (con-

sumed) by an actor ai into a channel eu during the interval [ts, te)

4.3 Actor Dependence Function

This section defines an Actor Dependence Function (ADF) that describes the depen-
dence between the execution of 2 actors connected by a directed path in a stream graph.
Our approach is to construct a Late Schedule, which represents the execution order be-
tween actors in a CSDF graph. The hard-real-time scheduling introduced in Section 4.2
is proven to meet these precedence constraints [8, 37].

4.3.1 Definition

We say that the upstream actor is at the start of the path, while the downstream actor
is at the end. Dependences between parallel actors fall outside the scope of this report
but could be discussed in future work.

Definition 13 Let ai, aj ∈ A be two actors of a Timed graph G = 〈A,E, ω, ϕ〉 on a path
pi j connecting ai to aj. We say that the k−th firing of aj is dependent on the n−th
firing of ai if n is the last firing of ai which produces at least one token for the k−th firing
of aj.

Informally, ADFA←B(n) gives the list of B’s execution which depends on the nth
execution of A. This dependence is meaningful only if A is upstream of B, otherwise ADF
assumes an empty set. A formal definition of ADF using the notations introduced above
is as follows:

Definition 14 ADFA←B(n) = maxList
φ∈Φ

(|φ ∧ A(n)| ∧ {B})

where φ is an ordered sequence of actor firings of a dataflow graph and Φ denotes the
set of all legal schedules. Each firing represents the execution of a single sub-task of the
actor. φ[i] is the ith actor appearing in sequence φ. Let |φ ∧ A(n)| denotes the list of
actors between the nth and (n + 1)th execution of A in φ and |φ ∧ A(n)| ∧ {B} denotes
the list of B’s firings in this list.

The Definition 14 reads: over all legal execution in which A fire (n + 1) times,
ADFA←B(n) is the list of execution of B between the nth and the (n + 1)th firing of
A.

68 Latency-based approach for fault-tolerance

4.3.2 Calculating ADF

Our approach is to construct an execution φ that provides the maximum execution
of the downstream actor, which also means that the downstream actor have to use the
”best” of its source or fires its sources only when it is necessary. We construct φ by using
a Late Schedule with respect to actor B as can be seen in Algorithm 3.

Algorithm 3 LATE-SCHEDULE(X,n)

1: //Returns a Late Schedule for n executions of X where its predecessors are fired as late as
possible

2: lateSchedule(X,n) {
3: φ = {}
4: for i = 1 to n do
5: //execute predecessors of X only when X can not execute and until X can fire
6: for all input channels ci of X do
7: while X need more tokens on ci in order to fire do
8: //extend schedule (⊕ denotes concatenation)
9: φ = φ⊕ lateSchedule(source(ci, 1)

10: end while
11: end for
12: //add X to schedule
13: φ = φ⊕X
14: //update number of tokens on I/O channels of X
15: simulateExecution(X)
16: end for
17: return φ }

This schedule is obtained by calculating the demand for data items on the input
channels of X, and firing its predecessors only when X can not fire. This schedule is then
propagated back through the stream graph via scheduling actors connected to X. Some
stream graphs admit multiple Late Schedules, as actors might be connected to multiple
inputs that can be scheduled in any orders. However, the set of dependent actors remains
constant even when the order changes.

The following theorems allow us to use the Late Schedule to calculate the ADF func-
tion:

Theorem 3 ADFA←B(n) = |lateSchedule(B, qB) ∧ A(n)| ∧ {B} with 1 6 n 6 qA

where qA and qB are the number of times A and B have to fire to return the graph to the
initial state (the number of items on each channel after the execution is the same as it
was before the execution). In other words, qA and qB are elements of the repetition vector
of the Timed graph.

Proof 1 lateSchedule(B, qB) gives a steady state of the stream graph and in this steady
schedule, each predecessor of B is fired only when it is necessary or as few times as possible
to fire B as many times as possible. In addition, we have to analyze the dependence only
in this steady state because all other schedules are repetitions of this steady state.

Fault-Tolerance 71

Example 5 We illustrate in Figure 4.5 the hard-real-time scheduling for the MP3 appli-
cation shown in Figure 4.3 with time constraints T1 = 24 imposed by the control engineer.
This application has an execution vector −→ω = [4, 9, 5, 3]T and a communication vector −→ϕ
approximately equal to −→ϕ = [1, 1, 0, 0]T . Given −→q = [3, 4, 4, 8]T and −→r = [1, 2, 2, 4]T , we

have a period of all levels α = 72 and the minimum period vector
−→
T = [24, 18, 18, 9]T .

Using Equation (4.6), we have the earliest start time vector
−→
S = [0, 29, 28, 39]T .

Finally, using Equation (4.10), we have L(mp3, app, 1) = 39, L(mp3, app, 2) = 48 and
L(mp3, app, 5) = 27, etc. as depicted in Figure 4.5.

1

1 2 3 4 1

1 2 3 4 5 6 7 8

2 3 1 2

1 2 3 4 1

1

mp3

src1

src2

app

L =391
L =482 L =275

Figure 4.5: Example of hard-real-time scheduling for the MP3 application with time constraints
imposed by the control engineer or hardware devices

4.5 Fault-Tolerance

In this section, we present a latency-based approach for fault-tolerant stream pro-
cessing modeled as a CSDF graph in the face of node failures or network failures. Our
approach aims to reduce the degree of inconsistency in the system while guaranteeing
that available inputs capable of being processed are processed within a specified latency
constraint.

4.5.1 Data Model

To accommodate our new token semantics, we adopt and extend the CSDF data model.
In CSDF, an atomic piece of data carried out by a channel is called a token. CSDF allows
the number of tokens to vary from one execution of the actor to the other, in a cyclic way,
i.e. after a given number of firing each channel produce the same amount of tokens again.
These tokens form, for each firing, a tuple. We extend the notion of tuple by adding the
tuple id, which is the ID of the source node between two dependent actors. This tuple id
will be repeat after a steady state. In our fault-tolerant model, a tuple between actors
takes now the following form:

(tuple id, a1, a2, . . . , am)

Evaluation results 73

and latency constraints between affected actors have to be recalculated.

4.6 Evaluation results

We evaluate our proposed scheduling policy in Section 4.2 by performing an experiment
on a set of 12 real-life streaming applications. The objective of the experiment is to
compare the efficiency of our approach to the maximum achievable throughput obtained
via self-timed scheduling.

4.6.1 Benchmarks

We used benchmarks from different domains (e.g. signal processing, video processing,
mathematics, etc.) and from different sources to check the efficiency of this scheduling
in different architectures. The first source is the ΣC benchmark [52] which contributes
5 streaming applications. The second source is the SDF3 benchmark which contributes
6 streaming applications [102]. The last source is the StreamIt benchmark [106]. In
total, 12 applications are considered as shown in Table 4.2. The graphs are a mixture of
CSDF (ΣC’s applications) and SDF (StreamIt and SDF3 benchmark) graphs. The use of
synchronous dataflow (SDF) models does not affect our scheduling policy because SDF,
with static firing rules of actors, is a special case of CSDF model [19, 74]. The fourth
column (N) shows the number of actors in each application, the fifth column (Q) shows
the least-common-multiple of the repetition vector elements (i.e. Q = lcm(q1, q2, . . . , qn))
and the sixth column is η = maxai∈A(ω

∗
i qi, T

∗
i qi) used to calculate the minimum period

according to Formula 4.5.

Table 4.2: Benchmarks used for evaluation

Domain No. Application N Q η Source

Signal Processing

1 Discrete cosine Transform (DCT) 4 12 1800
CEA LIST2 Fast Fourier Transform (FFT) kernel 4 6 900

3 Multi-Channel beamformer 4 12 7800
4 Filter bank for multirate signal processing 17 600 113430 MIT [106]

Audio Processing
5 Sample-rate converter used in CDs 6 23520 960 SDF 3 [102]
6 MP3 audio decoder 6 24 36

CEA LIST

Video Processing
7 Motion detection 9 1 57232627
8 H.263 video encoder 5 33 382000

SDF 3 [102]
9 H.263 video decoder 4 2376 10000

Mathematics 10 Bipartite graph 4 144 252

Communication
11 Satellite receiver 22 5280 1056
12 Modem 16 16 16

The actors execution times of the ΣC benchmark are measured in clock cycles on the
MPPA 256 cores, while the actors execution times of the SDF3 benchmark are specified
by its authors for ARM architecture. For the StreamIt benchmark, the actors execution
times are specified in clock cycles measured on MIT RAW architecture. This fact shows
clearly the portability of our scheduling policy to be applied for different architectures.

4.6.2 Experiment: Throughput comparison

We use SDF3 tool-set for several purposes during the experiments. SDF3 is a powerful
analysis tool-set which is capable of analyzing (C)SDF graphs to check for consistency
errors, compute the repetition vector, compute the maximum achievable throughput, etc.

74 Latency-based approach for fault-tolerance

In this experiment, we compare the throughput resulting from our scheduling approach
to the maximum achievable throughput of a streaming application obtained via self-
timed scheduling. Computing the throughput of the STS using SDF3 is done using the
algorithm throughput of the sdf3analysis − (c)sdf tool. For StreamIt benchmark, the
graph exported by this language is converted in the XML required by SDF3. For ΣC
applications, the ΣC compiler is capable of checking consistency errors and computing
the repetition vector during its 4 stages of compilation.

We measure the throughput of the actors which produces the output stream, i.e. the
sink actor under the hard-real-time sheduling (RTS), given by:

ΥRTS
snk =

1

Tmin
snk

(4.11)

The throughput of the sink actor in the self-timed scheduling:

ΥSTS
snk = qsnk ×ΥSTS

G (4.12)

where ΥSTS
G is the graph throughput under STS, measured by using SDF3. It should be

noted that the unit for the results in Table 4.3 is 1
clock cycle

. A result in seconds could be

obtained by dividing these results by the value of one cycle (e.g. 2.5 × 10−9s for MPPA
Andey 256 cores or 1.67× 10−9s and 1.25× 10−9s for its Bostan version).

Table 4.3: Results of Throughput comparison

Application ΥSTS
snk ΥRTS

snk ΥSTS
snk / ΥRTS

snk

DCT 2.22 × 10−3 4/1800 1.0

FFT 3.33 × 10−3 3/900 1.0

Beamformer 5.13 × 10−4 4/7800 1.0

Filterbank 2.64 × 10−5 3/113430 1.0

Sample-rate 1.67 × 10−1 1/6 1.0

MP3 2.22 × 10−1 8/36 1.0

Motion detection 1.74726 × 10−8 1/57232627 1.0

Encoder 4.73 × 10−6 1/382000 1.8

Decoder 1.0 × 10−4 1/10000 1.0

Bipartite 6.35 × 10−2 16/252 1.0

Satellite 9.46 × 10−4 1/1056 1.0

Modem 6.25 × 10−2 1/16 1.0

The last column of Table 4.3 shows the ratio of the STS schedule throughput to our
scheduling approach throughput (ΥSTS

snk / ΥRTS
snk). We clearly see that our approach de-

livers the same throughput as STS for 11 out of 12 applications. The only application
have lower throughput is H.263 Encoder but overall, we demonstrated good results while
ensuring high level of time determinism, as required in hard real-time systems. In com-
parison with the results in Chapter 3, our improved scheduling policy delivers also the
same throughput and succeeds to introduce periodic constraint for the MP3 and Motion
detection applications

Summary 75

4.7 Summary

In this chapter, we present an analytical framework for computing the periodic task
parameters for the actors of a streaming application, modeled as an acyclic CSDF graph
such that a strictly periodic schedule exists. As a result, a variety of hard real-time
scheduling algorithms for periodic tasks can be applied to schedule such applications while
considering variable interprocessor communication and real-time constraints imposed by
hardware devices or control engineers. Based on empirical evaluations, we show that
our real-time scheduling approach delivers the maximum throughput achieved under the
STS model. Based on this, we evaluate the latency between initiation times of any
two dependent actors, and we introduce also a latency-based approach for fault-tolerant
stream processing modeled as a CSDF graph, addressing the problem of node or network
failures. We view this work as an important step to provide a failure-handling strategy
for distributed real-time streaming applications based on static decidable dataflow models
(e.g., CSDF or SDF). However, complex signal and media processing applications, such
as cognitive radio or modern video codecs, often display dynamic behaviors that do not
fit the classical static models’ restrictions. As a result, in the next chapter, we introduce
an extension of the CSDF model and demonstrate how this new approach tackles the
limitations of static models while always allowing time constraints enforcement, failure-
handling strategy and static analyses (i.e., consistency, liveness and boundedness) as in
decidable models.

76 Latency-based approach for fault-tolerance

Chapter 5

Transaction Parameterized Dataflow

Obviously, simulation and testing may pinpoint some errors of
this kind. It is well known, however, that testing is efficient only
in the first steps of a design, and that formal methods are
necessary to find the last bugs.

— Paul Feautrier

Contents

5.1 Model of Computation . 78

5.2 (max, +) Algebraic Semantics of TPDF 80

5.3 Static Analyses . 82

5.3.1 Rate consistency . 82

5.3.2 Boundedness . 83

5.3.3 Liveness . 84

5.3.4 Throughput Analysis . 86

5.3.5 Scheduling . 88

5.4 Summary . 89

In the last chapter, we demonstrate that it is possible to schedule decidable dataflow
graphs (e.g., SDF or CSDF) as periodic tasks while considering variable interprocessor
communication and real-time constraints imposed by devices or control engineers. These
dataflow models are also useful for their predictability, formal abstraction, and amenability
to powerful optimization techniques. However, for signal processing applications, it is not
always possible to represent all of the functionality in terms of purely decidable dataflow
representations; typical challenges include variable data rate processing, multi-standard
or multi-mode signal processing operation, and data-dependent forms of adaptive signal
processing behavior. For this reason, numerous dynamic dataflow modeling techniques—
whose behavior is characterized by dynamic variations in resource requirements—have
been proposed. In many of these, in exchange for the increased modeling flexibility (high
expressive power) provided by the underlying techniques, one must give up guarantees
on compile-time buffer underflow (deadlock), overflow validation (boundedness) or per-
formance analysis (e.g., throughput).

In this chapter, we introduce a new dynamic MoC, called Transaction Parameterized
Dataflow (TPDF), allowing variable production/consumption rates and dynamic changes

77

78 Transaction Parameterized Dataflow

of the graph topology. TPDF is designed to be statically analyzable regarding the essential
deadlock and boundedness properties, while avoiding the aforementioned restrictions of
usual decidable dataflow models.

The remainder of this chapter is organised as follows. In Section Section 5.1, we intro-
duce our new dynamic model TPDF, as a parametric extension of Cyclo-Static Dataflow
(CSDF). Section 5.3 presents the static analyses for liveness, boundedness, worst-case
throughput and a scheduling heuristic for this model, which is illustrated and evaluated
in Chapter 7 by different real-life case studies.

5.1 Model of Computation

In this work, we choose Cyclo-Static Dataflow (CSDF) [19] as the base model for
TPDF because it is deterministic and allows for checking conditions such as deadlocks
and bounded memory execution at compile/design time, which is usually not possible for
Dynamic Dataflow (DDF).

We extend CSDF by allowing rates to be parametric and a new type of control actor,
channel and port. For a compact formal notations, we assume that kernels, which play
the same role as computation units (actors) as in CSDF, have at most one control port.
Kernels without control ports are considered to always operate in a dataflow way, i.e.,
a kernel starts its firings only when there is enough data tokens on all of its data input
ports.

Definition 16 A TPDF graph G is defined by a tuple (K, G, E, P , Rk, Rg, α, φ
∗) where:

– K is a non-empty finite set of kernels and G is a finite set of control actors such
that K ∩ G = ∅. For each kernel k ∈ K, Mk denotes the set of modes indicated
by the control node connected to its unique control port c. The following modes are
available within a TPDF graph:
– Mode 1: Select one of the data inputs (outputs)
– Mode 2: Select more than one data input (output)
– Mode 3: Select available data input with the highest priority
– Mode 4: Wait until all data inputs are available
In this context, the effect of control tokens can be also described as selecting data
input and output ports besides choosing modes. Indeed, at a given time, the input and
output ports of an edge may be in a different state. However, it does not affect the
firings of kernels or control actors, only the data tokens that are chosen or rejected.

– E ∈ O× (I ∪C) is a set of directed channels, where I, C,O is the union of all input,
control and output port sets respectively. Ec = E \ (O × I) is the set of all control
channels. A control channel can start only from a control actor and is connected to
a control port.

– P is a set of integer parameters.
– Rk : Mk × (Ik ∪ Ck ∪ Ok)× N −→ N assigns the rate to the ports of the n-th firing
of k for each mode. The rate Rk(m, c, n) = {0, 1} for all modes m ∈Mk and for all
firings of k.

– Rg : (Ig ∪ Cg ∪ Og) × N −→ N assigns the rate to each port of the n-th firing of a
control actor g.

– α : (I ∪ C ∪O) −→ N returns for each port its priority.
– φ∗ : E −→ N is the initial channel status.

80 Transaction Parameterized Dataflow

Transaction symmetric processes with n inputs and one output. Its role is to atomically
select a predefined number of tokens from one or several of its input to its output. By using
special modes predefined by TPDF and combining with a control actor, the Transaction
process implements important actions not available in usual dataflow MoC: Speculation,
Redundancy with vote, Highest priority at a given deadline, Selection of an active data-
path among several [85].

Clock can be considered as a watchdog timer with control tokens sent each time there
is a timing out. The kernel which receives this time token will be awakened and fired
immediately. In this way, TPDF can be applied to model streaming applications with
time constraints, as can be seen in Section 6.4.2 and 7.1.1.

5.2 (max, +) Algebraic Semantics of TPDF

We use (max, +) algebra [6, 48] to capture the semantics of modes introduced by
TPDF graphs. In fact, this MoC can be considered as a dynamic switching between cases
(each case is one graph iteration and can consist of different modes), each of which is
captured by a CSDF graph with two fundamental characteristics of its self-timed exe-
cution: synchronisation (the max operator), i.e. when the graph (in a specific mode of
TPDF) waits for sufficient input tokens to start its execution, and delay (the + operator),
i.e. when an actor starts firing it takes a fixed amount of time before it completes and
produces its output tokens.

We briefly introduce some basic concepts of (max, +) (see [6] for background on
(max, +) algebra, linear system theory of the (max, +) semiring). (max, +) algebra
defines the operations of the operations of the maximum of numbers and addition over
the set Rmax = R∪ {−∞}, where R is the set of real numbers. Let a⊕ b = max(a, b) and
a⊗b = a+b for a, b ∈ Rmax. For scalars x and y, x·y (with short hand xy denotes ordinary
multiplication), not the (max, +) ⊗ operator. For a ∈ Rmax,−∞⊕ a = a⊕−∞ = a and
a ⊗ −∞ = −∞⊗ a = −∞. By (max, +) algebra we understand the analogue of linear
algebra developed for the pair of operations (⊕,⊗) extended to matrices and vectors. The
set of n dimensional (max, +) vectors is denoted R

n
max while R

n×n
max denotes the set of n×n

(max, +) matrices. The sum of matrices A,B ∈ R
n×n
max , denoted by A ⊕ B is defined by

[A⊕B]ij = aij⊕ bij while the matrix product A⊗B is defined by [A⊗B]ij =
n
⊕

k=1

aik⊗ bkj.

For a ∈ R
n
max, ||a|| denotes the vector norm, defined as ||a|| =

n
⊕

i=1

ai = maxi ai (i.e., the

maximum element). For a vector a with ||a|| > −∞, we use anorm to denote [ai − ||a||].
With A ∈ R

n×n
max and c ∈ R, we use denotations A⊕ c or c⊕A for [aij + c]. The ⊗ symbol

in the exponent indicates a matrix power in (max, +) algebra (i.e., c⊗n = c · n).
Within an iteration, numerous modes can be invoked. Each mode corresponds to a

member of the execution sequence of the kernel which receives the control token (e.g., for
the TPDF graph in Figure 5.1, with p = 1, F can be fired in two different modes within
an iteration). Each combination of these modes forms a case of the TPDF graph, which
can be represented by a CSDF graph. We record the production times of initial tokens
after the i−th case CSDF iteration using the time-stamp vector λi consisting of as many
entries as there are initial tokens in the graph (e.g., (2p+ 1) initial tokens in Figure 5.1).
The relationship between the i−th and the (i+ 1)-st case iteration is given by (5.1):

λi+1 = Mi+1 ⊗ λi (5.1)

(max, +) Algebraic Semantics of TPDF 81

Mi is the characteristic (max, +) matrix of case i. This matrix can be obtained by
symbolic simulation of one iteration of the CSDF graph in case i. To illustrate, we use
case 1 of Example 1 in Figure 5.1, where p = 1. The execution time vector of this graph
is [2, 2, 1, 5, 2, 1.5], respectively in the order A,B,C,D,E, F and two tokens from the
control actor set the kernel F in mode 4 (i.e., wait until all data inputs are available).
This graph has three initial tokens so λi = [t1, t2, t3]

T . Entry tk represents the time
stamp of initial token k after the i−th case iteration. Initially, time-stamp t1 corresponds
to the symbolic time-stamp vector [0,−∞,−∞]T , t2 corresponds to the symbolic time-
stamp vector [−∞, 0,−∞]T and finally t3 to [−∞,−∞, 0]T . We start by firing actor A
consuming two tokens, one from the self edge and one from the edge from actor F , labelled
t1 and t2 respectively. The tokens produced by A carry the symbolic time-stamp:

max([0,−∞,−∞]T , [−∞, 0,−∞]T) + 2 = [2, 2,−∞]T

which corresponds to the expression max(t1 + 2, t2 + 2). The subsequent first firing of
actor B with a duration of 2 consumes this token and produced output tokens labelled
as:

max([2, 2,−∞]T) + 2 = [4, 4,−∞]T

If we continue the symbolic execution till the completion of the iteration, we obtain the
symbolic time-stamp for the second firing of A [4, 4, 2]T which reproduces the token in
the self edge for the next iteration. The tokens produced by the first and second firings
of F in the back edge and reused by the next iteration has the time-stamp [8.5, 8.5, 6.5]T

(by consuming t2) and [12.5, 12.5, 10.5]T (by consuming t3). If we collect the symbolic
time-stamp vector of these new tokens into a new vector λ′i = [t′1, t

′
2, t
′
3]

T , we obtain the
following (max, +) equation:

t′1
t′2
t′3

=

4 4 2

8.5 8.5 6.5

12.5 12.5 10.5

t1

t2

t3

(5.2)

If we assume that all initial tokens are available from time 0, the first time-stamp is
λ0 = [0, 0, 0]T . After one iteration in the case where both the first and second tokens from
C set F in mode 4, the time-stamp of initial tokens becomes λ1 = [4, 8.5, 12.5]T .

If this case followed by another case where the TPDF graph works in the mode 4 (i.e.,
wait until all data available) for the first token of C and mode 1 (i.e., select input E) for
the second token of C, we obtain the following matrix:

t′1
t′2
t′3

=

4 4 2

8.5 8.5 6.5

9.5 9.5 7.5

t1

t2

t3

(5.3)

With the initial tokens λ1 = [4, 8.5, 12.5]T , after this case, the time-stamp becomes λ2 =
[14.5, 19, 20]T .

After analyzing all cases individually, the theory of (max, +) automata is used to
capture the dynamic semantics of modes introduced by TPDF graphs. The completion
time of a sequence of cases cs1cs2cs3 . . . csn is given by:

λi+1 = Mi+1 ⊗Mi ⊗ . . .M1 ⊗ λ0 ∀i ∈ [0, n− 1] (5.4)

82 Transaction Parameterized Dataflow

A careful reader might have noticed that for the example in Figure 5.1, the initial token
vectors between the cases where p = 1 and p = 2 are not in the same dimensions and
therefore the matrix multiplication of (5.4) will not be well-defined. However, case ma-
trices can be extended with entries 0 and −∞ to accommodate the initial tokens of the
entire case sequence. For example, if p has a maximum value of 2 in the case sequence,
the case iteration has five initial tokens so λi = [t1, t2, t3, t4, t5]

T we can extend the matrix
of case cs1 (Equation (5.2)) to accommodate this case sequence and yield the following
matrix:

M ext
1 =

4 4 2 −∞ −∞

8.5 8.5 6.5 −∞ −∞

12.5 12.5 10.5 −∞ −∞

−∞ −∞ −∞ 0 −∞

−∞ −∞ −∞ −∞ 0

(5.5)

The synchronization data between two different cases is made through the common initial
tokens between two consecutive iterations. For the synchronization between different
values of parameters, we use the initial token labelling to model inter-case synchronization.
Initial tokens are explicitly defined by their identifier (e.g., t1). Two initial tokens of two
different cases are common only if they share the same identifier. With this approach,
if a case has five initial tokens (p = 2) is followed by a case which has only three initial
tokens (p = 1), only time-stamp value of initial tokens with the same identifier will be
selected by using the extended case matrix. In the opposite case, the missing values for
the (i+1)-th are replaced by ||λi|| (the production time of the last token produced by the
last iteration).

5.3 Static Analyses

This section presents the three static analyses needed to ensure consistency, bounded-
ness and liveness of TPDF graphs. In Section 5.3.1, we check rate consistency by adapting
the analysis of CSDF to TPDF. Conditions for rate consistency and solutions of balanced
equations are computed in terms of symbolic expressions. In Section 5.3.2, we check that,
along with rate consistency, the TPDF MoC with control actor and parameter setting
ensures boundedness. Section 5.3.3 completes the analysis chain by checking for liveness.

5.3.1 Rate consistency

As in SDF and CSDF, we check the rate consistency of a TPDF graph by generating
the associated system of balance equations expressed in matrix-form as in Equation (5.6)
and this system must be shown to have a non null solution for all possible values of
parameters, all possible reconfigurations of the graph and all modes of the kernels.

Γ · −→r = 0 (5.6)

and where the topology matrix Γ is defined by

Γuj =

Xu
j (τj) , if task aj produces on edge eu

−Y u
j (τj) , if task aj consumes from edge eu

0 , otherwise

(5.7)

Static Analyses 83

The matrix is generated by considering the parametric rates and by ignoring all possi-
ble configurations of the graph. If the system is rate consistent when all edges are present,
then it is also consistent when one or more several edges are removed. Indeed, when re-
moving edges (i.e., tokens produced in this edge are not used and will be rejected), the
resulting system of balance equations will be a subset of the system of equations of the
fully connected graph. Checking rate consistency of all edges maybe considered too strict
because it does not take into account the fact that some input edges may not be active in
the same mode. However, it simplifies the understanding and implementation since the
graph has a unique iteration vector.

The minimal solutions for all actors when solving the system of equations (5.6) are
found by eliminating all the coefficients or parametric factors common to all solutions.
Then, we arbitrarily set one of the solutions to 1 and recursively find other solutions.
Finally, we normalize the solutions to integers. If the system of equations (5.6) has a
non-trivial solution, the TPDF graph also satisfies the necessary and sufficient conditions
for the existence of parametric solutions, introduced for parametric models such as SPDF
[46] and BPDF [16].

Example 7 For the graph of Figure 5.1, by setting rA = 1, we consecutively get:

rB = p, rC = p/2, rD = p/2, rE = p, rF = p/2 (5.8)

To normalize the fractional solutions we multiply by 2. Finally, we get the vector −→r
and also the repetition vector −→q by multiplying with the matrix P :

−→r = [2, 2p, p, p, 2p, p] ,−→q = [2, 2p, p, p, 2p, 2p] (5.9)

and a possible valid static schedule for this graph is A2B2pCpDpE2pF 2p = A2(B2CDE2F 2)p.

5.3.2 Boundedness

Without dynamic topology changes, rate consistency is sufficient to ensure that a graph
returns to its initial state after each iteration and boundedness is guaranteed. However, in
TPDF, a graph can change its topology within a valid static schedule by using the control
actor. Yet, not all static schedules are safe and their boundedness must be checked. The
criterion ensuring that reconfiguration by using control actor and several modes for one
kernel are safe relies on the notion of control area. Intuitively, the criterion states that
each control actor will be fired once per local iteration of the area it reconfigures.

Definition 17 (Control area): The area of a control actor g ∈ G, noted Area(g), is
defined as:

Area(g) = prec(g) ∪ succ(g) ∪ infl(g) (5.10)

where
succ(g) = {ai ∈ (K ∪G) : ∃eu = (g, ai) ∈ E}
prec(g) = {ai ∈ (K ∪G) : ∃eu = (ai, g) ∈ E}

(5.11)

and infl(g) = (succ(prec(g))∩prec(succ(g)))\{g} is the list of actors between prec(g)
and succ(g), influenced by g.

The control area of g is the set containing its sources, kernels or controls that receive
its control tokens and all other influenced actors between these actors.

84 Transaction Parameterized Dataflow

Definition 18 (Local Solution) The local solution of an actor (kernel or control actor)
ai in a subset of actors Z = {a1, . . . , an}, written qLai, is defined as:

qLai =
qai

qG(Z)
(5.12)

where qG(Z) = gcd(qai/τi) ∀ai ∈ Z (gcd denotes the greatest common divisor). Local
solutions can be considered as a repetition vector for a subset of actors.

Definition 19 (Rate Safety): A TPDF graph is rate safe if and only if, for each control
actor g ∈ G and each actor a ∈ Area(g), the consumption and production rates of these
actors ensure that, during a local iteration of its area, a control actor will be fired only
one time. This condition is guaranteed, if and only if, for each control actor g ∈ G and
for each actor ai ∈ prec(g) ∪ succ(g), connected with g by the channel eu:

{

Xu
g (1) = Y u

i (q
L
ai
) if g is the production actor

Y u
g (1) = Xu

i (q
L
ai
) if g is the consumption actor

(5.13)

Rate safety ensures that, during a local iteration of an area of a given control actor,
the total number of tokens consumed (produced) on any edge connected with the control
actor is sufficient for this actor to fire exactly one time. It is ensured by a simple syntactic
check on TPDF graphs.

Example 8 In Figure 5.1, Area(C) = {B,D,E, F} and possible static schedules for this
graph are A2B2pCpDp E2pF 2p and A2(B2CDE2F 2)p, where B2CDE2F 2 is a local solution
for the Area(C). C will be fired only one time for each iteration of this local area.

Theorem 4 (Boundedness) A rate consistent, safe and live TPDF graph returns to its
initial state at the end of its iteration. Hence it can be scheduled in bounded memory.

Proof 2 There are several modes defined by a control actor as defined in Section 5.1. In
fact, the Rate safety ensures that, during a local iteration of a control area, its influenced
kernels receive synchronous control tokens, calculated by only one firing of the control
actor and define in which mode this kernel will fire. For the modes that choose between
the data inputs (e.g., Transaction), the dependence with kernels which produce these input
tokens is not broken here because unchosen data input are considered only as not to be
used. For the modes which choose between data outputs (e.g., Select-duplicate), we assume
that there is a virtual control actor and a virtual kernel which chooses between data inputs,
as in Figure 5.2.

Rate consistency and safety were crucial to ensure that the graph returns to its initial
state after an iteration. However, we assumed that actors can be fired in the right order to
respect dataflow constraints. This holds only when the graph is live and the next section
shows how it is checked.

5.3.3 Liveness

In SDF and CSDF, checking liveness is performed by finding a schedule for a basic
iteration. Since each actor must be fired a fixed number of times in each iteration, this
can be done by an exhaustive search. For TPDF, the situation is more complex for two
reasons:

Static Analyses 87

Chain. For worst-case analysis, we can abstract from these transition probabilities and
obtain a Finite State Machine (FSM). Every state is labelled with a graph case and
different states can be labelled with the same graph case.

Definition 20 Given a set U of cases. A finite state machine F on U is a tuple (S, s0, σ, ϕ)
consisting of a finite set S of states, an initial state s0 ∈ S, a set of transitions between
two states σ ⊆ S × S and a case labelling ϕ : S → U .

Each case of the graph is characterized by a (max, +) matrix, as can be seen in Section
5.2. Since TPDF is designed to be well adapted with streaming applications, we consider
here infinite executions of the FSM to characterize the mode sequences that may occur.
With this FSM and an initial time-stamp λ0, we can associate a time-stamp sequence
λ0λ1λ2 . . . λn with λi+1 = Mi+1 ⊗ λi ∀i ∈ [0, n − 1]. According to the theory of CSDF
[19], each case is guaranteed to have an upper bound on the self-timed execution of the
dataflow’s execution, so we can derive straightforwardly that this case sequence has also
an upper bound value.

To compute throughput, we have to check all possible case sequences. From the FSM
of a TPDF graph, we define a state-space of case sequence executions as follows.

Definition 21 Given a TPDF graph G characterized by the set of (max, +) matrices
{Mi|i ∈ U} and a FSM F = (S, s0, σ, ϕ), a state-space of G on F is a tuple (Q, q0, θ),
consisting of:

– A set Q = S×RN
max of configurations (s, λ) with a state s ∈ S of F and a time-stamp

vector λ.
– q0 is the initial configuration of the state-space.
– θ is the set of transitions between two configurations θ ⊆ Q×R×Q consisting of the
following transitions: {((s, λ), ||λ′||, (s′, λ′norm))|(s, λ) ∈ Q, (q, q′) ∈ σ, λ′ = MΣ(i)λ},
where MΣ(i) is a multiplication of all case matrices between λ and λ′, as defined in
Equation (5.4).

A state in the state-space is a pair consisting of a state in the FSM and a normalized
vector representing the relative distance in time of the time-stamp of the common initial
tokens. An edge in this state-space ((s, λ), ||λ′||, (s′, λ′norm)) represents the execution of
a single iteration in the case of the destination of the edge. If we start with the initial
tokens having time-stamp vector λ and we execute a single iteration in case s′ then the
new time-stamp vector of initial tokens are produced at λ′ = ||λ′||+λ′norm (or earlier). The
state-space of a TPDF graph can be constructed in depth-first-search (DFS) or breadth-
first-search (BFS) (or any other) manner incrementally [48]. For a self-timed bounded
graph with rational execution times, the state-space is finite. However, it can be large
in some cases because of the number of modes used in each case and because of the
complexity of the FSM. Further techniques (e.g., (max, +) automaton [47, 48]) can be
applied to reduce the size of the state-space and analyse the worst-case throughput in a
faster way.

From Definition 21, according to [99], the throughput of a TPDF graph is equal to the
inverse of the Maximum Cycle Mean (MCM) attained in any reachable simple cycles of
the state-space. For example, Figure 5.4 represents the reachable state-space of example
in Figure 5.1 and its Finite State Machine. The blue box and bold arrows highlights the
cycle with maximum cycle mean or lowest throughput (i.e., 10.5 for the MCM and 1/10.5
for the throughput).

88 Transaction Parameterized Dataflow

Mode 4

Wait all

p=1

0

0

0

0

0

Mode 1

Wait E

p=1

Mode 4

Wait all

p=2

Mode 4

Wait all

p=1

-8.5

 -4

 0

 0

 0

Mode 1

Wait E

p=1

Mode 4

Wait all

p=2

-5.5

 -1

 0

 0

 0

-8.5

 -8

 -4

 -4

 0

12.5

10.5

9.5

16.5

10.5

10.5

7.5 11.5

15.5 3.5

14.5 6.5

0

0

0

0

0

0

0

0

0

0

(a)

Mode 4

Wait all

p=1

Mode 1

Wait E

p=1

Mode 4

Wait all

p=2

(b)

Figure 5.4: (a) State-space of the example in Figure 5.1 and (b) its Finite State Machine. The
blue box and bold arrows highlight the cycle with the maximum cycle mean which determines the
throughput. Each edge is labelled with the worst-case time dependencies between the individual
tokens in the specific locations and corresponding cases. For example, the channel connected
between two cases using mode 4 is annotated by ||λ′||, where λ′ = M ⊗ λ and M is the matrix
characterizing mode 4 as in Equation (5.5).

5.3.5 Scheduling

In Section 5.3.3, we described a way to find a sequential schedule for TPDF applications
and Section 5.3.4 introduced an analysis method based on the dynamic change between
cases. Each case represents an entire iteration of the graph. This mechanism is well-suited
to the approach by which programmers implement streaming applications on many-core
platforms with highly parallel schedules such as the MPPA-256 [34] clustered architecture,
from Kalray, comprising 256 cores. The native dataflow programming model developed in
ΣC (Sigma-C) for MPPA-256 uses the notion of canonical period [5], which represents the
partial order corresponding to the execution of one iteration of the application. For TPDF

90 Transaction Parameterized Dataflow

graph topology and time-triggered semantics. So far, several parametric dataflow models
have been proposed, for instance PSDF [17], VRDF [110], SPDF [46]. In contrast to
CSDF, these models allow a dynamic variation of the production and consumption rates
of actors to change at runtime according to the manipulated data. However, none of
these models provide any of the static guarantees that TPDF does (rate consistency,
boundedness and liveness) or propose parametric rates without dynamic topology changes.
In [69], Koek et al. introduces another extension of CSDF: the CSDFa model with Auto-
concurrency. In CSDFa, tokens have indices and the consumption order of tokens is static
and time-independent. This allows expressing and trading off pipeline and coarse-grained
data parallelism in a single, unified model. Another related model is the Scenario-Aware
Data-Flow (SADF) MoC [104], which exploits also the mode-based approach where the
dynamic behavior of an application is viewed as a collection of different scenarios; yet, our
model is more generic as it provides a unified view of manycore systems, which is entirely
composable.

Our approach is somewhat similar to Boolean Parametric Dataflow (BPDF) [16] which
allows not only dynamic variations of rates but also dynamic changes of the graph topol-
ogy. Each BPDF edge can be annotated with a boolean parameter which changes the
topology of the graph. When a boolean parameter is false, the edge annotated by this
parameter is considered absent. Still, this is not enough because this model lacks the
ability to impose real-time constraints, a feature also required to program modern safety
critical applications which will be both highly parallel and time constrained. Our model
already solves this problem by using control actors of type clock. Moreover, all SPDF
and BPDF case studies (e.g., the VC-1 Video Decoder), presented in [46], [16] and [15],
can be replicated using our approach, as presented in Section 7.1, without introducing pa-
rameter communication and synchronization between firings of modifiers and users, which
would have complicated scheduling significantly because of the additional actors, edges
and ports. We can also improve the quality of the AVC Encoder, a much more complex
application, by using a quality threshold, as can be seen in the Edge Detection benchmark
in Section 7.1, for the motion vector detection, implemented with a Transaction kernel,
to choose dynamically the highest quality video available within real-time constraints.

Moreover, in this chapter, the problem of throughput calculation of parametric dataflow
graphs was also discussed. Throughput calculation is important as throughput values can
be taken into account to improve the design at compile time and optimize the execution
at run-time. Most throughput calculation techniques are limited to static models, such as
SDF and CSDF [41, 99, 102]. For this reason, we used the (max, +) algebra to capture
the dynamic semantics of modes introduced by TPDF. From this theory, we introduced
a technique to automatically analyse its worst-case throughput. In the next chapter, we
investigate the applicability of TPDF to model hard-real-time applications and an im-
plementation/validation of the model by using a set of real-life dynamic applications is
introduced in Chapter 7.

Chapter 6

Real-Time Extension for TPDF

Our greatest weakness lies in giving up. The most certain way to
succeed is always to try just one more time.

— Thomas A. Edison

Contents

6.1 Time-Constrained Automata . 91

6.1.1 Chains . 92

6.1.2 Time-constrained trees . 93

6.1.3 Automata . 93

6.1.4 The visibility principle . 93

6.2 Systematic translation from TCA to TPDF 94

6.3 Example . 96

6.4 Application . 100

6.4.1 QDS design . 100

6.4.2 TPDF design . 102

6.5 Summary . 102

The advent of embedded manycores opens perspectives for new applications, which
will be both highly parallel and time constrained. In this section, we bring real-time
support for embedded high performance applications by using control actor of type clock
and parametric extension. We demonstrate that TPDF can be used to accurately model
task timing requirements in a great variety of situations, described by using the Time
Constrained Automata (TCA) [79, 80] model.

6.1 Time-Constrained Automata

TCA was initially designed for the expression of multi-task critical real-time Instru-
mentation and Control (I&C) systems. It offers deterministic parallel execution and
communications, with periodic dataflows. The expression of the time constraints is quite
simple, consisting in simple boundaries around functions, which enables tools to perform
feasibility checks and schedule the tasks on multi-core systems.

To present TCA, we can start from the model given for chains and trees before ex-
plaining the time-constrained automata.

91

92 Real-Time Extension for TPDF

6.1.1 Chains

In TCA, a task (as a kernel in TPDF or an actor in CSDF) is modelized as a sequence
of indivisible code blocks. Each block, represented by arcs and are separated by nodes.
The node from which the arc starts immediately precedes the arc, and the node to which
it leads immediately succeeds the arc. A chain is a sequence of blocks, executing one after
the other. When blocks a and b are consecutive, instructions of a have to be executed
before those of b.

TCA supports only two kinds of temporal constraints, represented by nodes : Before
nodes express a deadline constraint (denoted by ⊳) and After nodes express the earliest
time for an execution (denoted by ⊲). When a block bears both a before and an after
constraint at the same date, then it becomes a synchronization point (denoted by ♦).
Except for synchronization points, nodes cannot bear more than one time constraint.
Nodes with no temporal constraint are represented by ©. Figure 6.1 gives an example of
a TCA chain of blocks. The constraint nodes are labelled by the absolute date that they
represent.

Figure 6.1: Constrained chain: Block A must start after date 1, B must execute between 2 and
5, C must end before 7, and D must execute between 7 and 10.

In TCA, an after node implicitly constrains all the succeeding blocks to start after
its date, and a before node constrains all the preceding blocks to end before its date.
Thus the following labelling convention can be adopted without modifying the semantics
of our model: all node dates can be labeled using the relative date from the previous after
node (including synchronization points). This convention will allow expression of loops
in automata and the relative labeling, as shown in Figure 6.2, is denoted by putting
underscores below dates.

Figure 6.2: Chain of Figure 6.1 with relative labeling. The relative date is calculated from the
previous after node.

Time-Constrained Automata 93

6.1.2 Time-constrained trees

The previous concept of chains is extended to trees, which requires to handle ”choices”.
Several blocks can start from a node (such a node is called a choice node). This expresses
the fact that different execution paths may be taken. The choice of which path to take
is made when finishing executing the immediately preceding block. Figure 6.3 gives an
example.

Figure 6.3: Depending on the execution of a, either b or c will be executed. The path a → b
has 2 units of time to complete, but the path a → c only has 1.

6.1.3 Automata

To represent infinite computations with finite objects, TCA uses automata. Automata
differ from trees in two aspects: first they allow several arcs to finish on the same node;
second they allow cycles in the graph. These differences change the precedes relation
on blocks, and affects negatively the semantics, which depends on this relation. TCA
addresses these problems by defining the semantics of automaton as such: the semantics
of a time-constrained automaton is equivalent to that of its unfolded tree, which is the
infinite tree representing all possible traversals of the automaton. Thus, the precedes
relation, and the semantics, are preserved. Figure 6.4 shows example of such an unfolding.

Figure 6.4: Unfolding of an automaton

6.1.4 The visibility principle

This section explains how determinism can be preserved in a real-time system modeled
by TCA and composed of parallel tasks that communicate using the visibility principles,
by controlling when the received messages are made accessible to the tasks.

In [79], the visibility principle is defined as: a task A shall be able to see a received
message at time t only if the message would have been received at t in every possible

94 Real-Time Extension for TPDF

execution. From this definition, there are two modes of communication between tasks.
The first mode is implicit with temporal variable which corresponds to real-time data
flows: past values, available for each agent that deals with them, are stored and updated
by the unique writer, the owner agent, at a predetermined temporal rhythm. The system
layer is in charge of updating (i.e., copying) the available values of these variables. As
can be seen in the example in Figure 6.5, if we consider a temporal variable X owned
by the task a, and a second task b that want to access the last value of X, then it will
observe the past value X(t0) = X(sta). The rationale is quite simple: during processing
the first firing of b (i.e., b1), only the value at the formal start date is observable, and at
t0, processing a2 may be not terminated, so the last coherent observable value of X is
X(sta).

Figure 6.5: Observable values of a temporal variable

The second communication mechanism which is explicit, is the sending of messages. All
message attributes (content, recipient id, type, ...) of the sending messages are formally
checked by the compiler. A visibility date specifies the date after which the message can
be observed and read by the recipient. This date allows to give a validity duration to
the receiving message. The system also verifies if the recipient consumes the message
before it expires, else a specific exception is raised. To achieve determinism, the order of
messages induced by the visibility dates is made to be total. For example, if a message M
is sent by the second task c with visibility date t1, it could not be observed (and therefore
consumed) before the end date, because t1 > sta, as can be seen in Figure 6.6.

Figure 6.6: Send of message

6.2 Systematic translation from TCA to TPDF

To reuse existing analysis techniques for real-time applications modelized by using
TCA, we find a way to translate systematically from TCA to TPDF by representing
temporal nodes Before and After in a dataflow way. Once this straightforward translation

98 Real-Time Extension for TPDF

Algorithm 4 RATE-SEQUENCE(A,B)

Require: Source kernel A with period TA and phase pA, destination kernel B with period TB

and phase pB
1: k = lcm(TA,TB) ⊲ lcm denotes the least common multiple of TA and TB;
2: kA = k

TA

3: kB = k
TB

4: τDTr = kA ⊲ τDTr denotes the length of the rate sequence of DTr;
5: i = 0
6: j = 0
7: l = 0
8: for j < kB do
9: max = 0

10: sB(j) = pB + j × TB

11: for i < kA do
12: vA(i) = pA + (i+ 1)× TA ⊲ vA(i) denotes visibility date of the token produced by

the i-th firing of A;
13: if i > max and vA(i) ≤ sB(j) then
14: max = i
15: end if
16: i = i + 1
17: end for
18: count(max) = count(max) + 1 ⊲ count(max) denotes the number of execution of B

depends on the max−th execution of A;
19: j = j + 1
20: end for
21: for l < τDTr do
22: cons(l) = 1
23: prod(l) = count(l)
24: end for

Application 101

Figure 6.14: System architecture with multi Ethernet port configuration of a QDS software,
implemented in terms of OASIS agents.

– HMIdisAg performs the screen display management that prepare and display all
defined screen pages;

– HMImkAg for the keyboard and pointing devices management;
– netAg for the low-level network management, including Ethernet chip management
and protocol implementation (to receive data from the Teleperm XSTM (TXS) units
and to send them specific applicative data and QDS self monitoring results). In a
real QDS architecture, there are 4 similar netAg agents, named as netiAg (i from
1 to 4) and connected to the 4 TXS units: each agent controls the communication
port with one TXS unit.

– updAg for the high-level network management for building functional real-time data
streams;

– netMUAg for maintenance management;
– selfTestAg for additional hardware self-tests and collection of those performed by
agents that manage hardware components.

Table 6.1 shows the list of these agents’ period parameters with their typical values.
In Figure 6.14, there are two kinds of exchanges: data ”continuously” or cyclically needed
(such as values of information to be displayed) represented by plain lines beginning with a
dot, and with their names in italic; and data that are exchanged when they are available
(such as HMI actions and commands), represented by plain lines ending with an arrow.
Bold-arrowed lines represent the interactions with hardware components.

102 Real-Time Extension for TPDF

Table 6.1: Period parameter of the QDS and their typical values

Agent Period parameter Typical value (unit)

netiAg QDS NET SCAN PERIOD 10 or 20 (ms)

netMUAg QDS MU MAIN PERIOD 1000 (ms)

selfTestAg QDS SELFTEST MAIN PERIOD 20 (ms)

updAg QDS UPD PERIOD 20 (ms)

HMImkAg QDS IMK PERIOD 10 (ms)

HMIdisAg QDS DISPLAY MAIN PERIOD 200 (ms)

appliNAg APPLI AG 20 (ms)

6.4.2 TPDF design

Figure 6.15 gives a TPDF model of the QDS software. Each periodic kernel has a
control of type clock to define its period. Each time these kernels receive a control token
from its clock, it starts by changing its status to be ready to fire. After having enough
tokens on its input, it changes the status to be ready to execute and starts its computation.
Each control clock has a self-loop to be restarted after a period of time equal to its value.
This kind of control actor plays the same roles as the temporal After node in TCA. For
the Before node, we use the DTr kernel which plays the role as a deadline checker for
the continuous data needed by a kernel when its period arrives. In QDS, we assume that
the visibility date of a token is also the deadline of its source. For example, the netMuAg
kernel stores the self-test results, provided by the selfTestAg kernel. From this self-test
results, it computes the QDS status and send it to each netiAg of the graph. However,
because these kernels are executed in two different periods, the faster kernel (i.e., netiAg)
uses DTr kernels as deadline checkers to send the token to the netiAg kernel in time.
Each 1000ms, the DTr kernel consumes one token from the netMu kernel and produces
100 similar tokens, enough for the next 100 firings of net1Ag dependent on only one firing
of netMu. In this way, the data dependency between kernels is guaranteed and the rate
consistency of the graph can be checked by generating the system of balance equations
expressed in matrix-form as in Equation (5.6).

The QDS is designed to ensure that a data coming from the network kernel net1Ag
is taken into account and the result displayed on the screen by the HMIdisAg kernel
within 1s in the worst case. By following the blue line, representing the way of a coming
data token from a network kernel to the screen display management, and by applying the
scheduling algorithm proposed for TPDF in Section 5.3.5, we have the worst-case latency
for the coming data to be displayed is 260ms, satisfying the display condition required by
the nuclear power plant.

6.5 Summary

From the TPDF model, it is possible to introduce timing constraints to allow integra-
tion of dataflow high-performance computation graphs to hard real-time I&C tasks. By
demonstrating that all time constraints and visibility principles of TCA can be systemati-
cally translated to TPDF, we reused existing analysis techniques for real-time applications
modelized by using TCA to guarantee strong safety features required by safety-critical
applications while preserving its determinism and its static analysis with quadratic com-
plexity algorithms in the worst case. The product of this analysis for TPDF gives all the

Summary 103

required information for placing and routing tasks, dimensioning buffers and scheduling
hard real-time jobs. Thanks to the safety-classified QDS case-study for nuclear activities,
we demonstrate that the TPDF implementation of this application satisfies the worst-
case latency required for the display of incoming data. In the next section, we present a
way to validate the performance of TPDF model by evaluating its throughput, another
performance metric which is as important as the latency.

Chapter 7

Experimental Results

Experiments were not attempted at that time, we did not believe
in the usefulness of the concept anyway, and I finished my thesis
in 1962 with a feeling like an artist balancing on a high rope
without any interested spectators.

— Richard Ernst

Contents

7.1 Benchmarks . 105

7.1.1 Case-study on Edge Detection . 106

7.1.2 Case-study on Viola & Jones . 108

7.1.3 Case study on Satellite positioning . 109

7.1.4 Case-Study on Cognitive Radio . 111

7.1.5 Case-Study on VC-1 Decoder . 112

7.2 Analysis Tool . 113

7.3 Experimental Results . 115

7.4 Summary . 116

Digital systems design consists in fitting one or several applications onto a given plat-
form with limited resources while satisfying predefined criteria. In this chapter, by focus-
ing on many-core platforms such as Kalray MPPA-256, we introduce a tool to automati-
cally analyse and validate a TPDF application for its static properties (i.e., consistency,
liveness and boundedness) and its worst-case performance (i.e., throughput). This chap-
ter starts with the overview of several benchmarks and case studies used to evaluate our
TPDF model and its analysis tool introduced in Section 7.2. Then, the experimental
results are presented and discussed in Section 7.3.

7.1 Benchmarks

We have done experiments with a set of cognitive radio applications (e.g., OFDM,
Adaptive Coding Transceiver and Receiver model), on the well-known video codec VC-
1 model, on the time-constrained application Edge Detection as presented in Section
7.1.1 and on a large collection of randomly generated graphs, on a standard Intel Core
i3@2.53GHz based PC. Table 7.1 shows these applications with its number of kernels (N)
in the third column and its number of states in the fourth column. These benchmarks are

105

106 Experimental Results

selected from different sources to check the expressiveness of TPDF and its performance
results. The first source is several case studies of other dynamic dataflow models (e.g.,
VC-1 Decoder and OFDM). These applications are also official benchmarks of industrial
tools such as LabView or Simulink. Another source is to build TPDF graph from real-life
application programmed in C (e.g., Edge Detection). From this approach, dynamic code
analysis tool, as the method introduced in [72], can be developed in the near future to
transform automatically legacy code to TPDF graph.

Table 7.1: Benchmarks from different sources to check the expressiveness of TPDF and its
performance results

Application Source N #States

OFDM [108] 8 15

Adaptive Coding [82] 14 6

VC-1 Decoder [16] 12 12

Edge Detection [93] 8 18

Viola & Jones [109] 10 68

Satellite [9] 9 55

Random Graphs 10-150 5-30

7.1.1 Case-study on Edge Detection

Edge detection is one of the most significant tasks in image processing systems. For
the last few decades a lot of researches has been done in this field. Various edge detection
techniques are proposed: Quick Mask, Sobel, Prewitt, Kirsch [93], Canny [29] or Canny
with loop [95]. Gradient based edge detectors like Prewitt and Sobel are relatively simple
and easy to implement, but are very sensitive to noise. The Canny algorithm is an optimal
solution to problem of edge detection which gives better detection specially in presence
of noise, but it is time consuming and require a lot of parameter setting. As can be seen
in Figure 7.1, the execution time of Quick Mask is the shorter and Canny is the longest
(tested on a standard Intel Core i3@2.53GHz).

In an ideal world, a programmer would use the best algorithm and be done with it, but
possible real-time constraints can mitigate this idyllic view. When dealing with timing
constraint, an average quality result at the right time is far better than an excellent
result, later. The Canny filter may be the best algorithm for edge detections, but the
execution time depends on the input image. In contrast, Quick Mask or Sobel have image-
independent execution time (i.e. depending only on the size of the input image, not on
its contents). So we can use a control actor of type clock and a Transaction kernel set to
be fired in mode 3 ”Select available data input with the highest priority” to implement
this time constraint, as can be seen in Figure 7.1. If a deadline arrive soon Quick Mask
will be chosen. In the other cases, the best current result with Canny will be delivered.
This kind of time-dependent decision is not available in usual CSDF. By contrast, our
model fits well the case by using a transaction filter. The exercise is now to find how
our new proposal could satisfy the real-time constraints of this type of application. A
ΣC implementation of this method to use the transaction filter could be seen in Figure
7.1. The IRead kernel reads images from source and duplicates this image to be tested by
different Edge Detection methods: Quick Mask, Sobel, Prewitt, Canny,. . . and its output
is connected directly to the Transaction kernel. This box will select the best results in

108 Experimental Results

(a) (b) (c)

(d) (e) (f)

Figure 7.2: Results of different Edge Detection methods: (a) The image source (b) Quick Mask
(c) Sobel (d) Prewitt (e) Kirsch (f) Canny.

how many loops can be done before the deadline occurs. As can be seen in Figure 7.1, if
the incremental path is still running when the deadline occurs, the latest available corner
detected (with a two-dimensional entropy minimized) is chosen. Again, usual CSDF
cannot express this kind of time- and context-dependent decision.

7.1.2 Case-study on Viola & Jones

The Viola & Jones object detection framework is the first object detection framework
to provide competitive object, face or person detection rates in real-time proposed by
Paul Viola and Michael Jones [109]. There are three components in the framework.
The first is the introduction of a representation called the Integral Image which allows
the features used by the detector to be computed very quickly. The second is a learning
algorithm, based on AdaBoost, which selects a small number of critical visual features from
a larger set and yields extremely efficient classifiers. The third is a method for combining
increasingly more complex classifiers in a Cascade which allows background regions of the
image to be quickly discarded while spending more computation on promising object-like
regions. The cascade can be viewed as an object specific focus-of-attention mechanism
which unlike previous approaches provides statistical guarantees that discarded regions
are unlikely to contain the object of interest.

However, in most applications of person or object detection (e.g. in avionics, military
and video surveillance), a high level of accuracy is not sufficient, as real-time constraints
are equally critical. For example, with a fighter, all persons or objects detected must
be synthesized after a firm deadline. The exercise is now to find how our new data

Benchmarks 109

(a) (b)

(c)

Figure 7.3: Original object image overlaid with the edge-contours detected using “too high” (a),
“too low” (b) and optimal (c) threshold (Source: [95])

distribution filters could satisfy the real-time constraints of this application. A TPDF
implementation of this method to use the transaction filter could be seen in Figure 7.4.
An image will be analysed and tested in different scales and only persons, objects or
interest point detected before a deadline will be selected by a transaction box. As can
see in Figure 7.5, the transaction filter selects only results from GoodPoint which arrive
before the deadline and the number of persons detected on the image will also change. In
the first case with a longer deadline, 2 persons and 1 object-like person are detected. In
the second case, only 2 persons are detected and in the third case with a deadline which
arrives too soon, no person or object is detected. This kind of time-dependent decision
is not available with usual programming models based on SDF or CSDF MoCs, contrary
to our model which is more dynamic and context-dependent by integrating transaction
filter as a new data distribution filter.

7.1.3 Case study on Satellite positioning

Our example to study is the case of satellite positioning thanks to data-fusion. The
concept of data-fusion is to use several sources from different inputs to infer a value that
matches all the relevant inputs. A strong constraint we want to impose is resilience to a
failure of a part of the input sources but also to be able to use them again easily when
they become relevant again.

Potentially, relevant sources for satellite 1 localization, as can be seen in Figure 7.6, are

1. This example is based on a real-life application of a low-cost “satellite” attached to a weather balloon.

Analysis Tool 113

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

10 20 30 40 50 60 70 80 90 100

B
u

ff
e

r
s
iz

e

Vectorization degree

N=512 TPDF

N=512 CSDF

N=1024 TPDF

N=1024 CSDF

Figure 7.8: Minimum buffer size increased proportionally to β, given by Buff = 3+ β × (12×
N + L) for TPDF and Buff = β × (17×N + L) for CSDF.

pipeline is composed of actors MV PRED, PREF, and MCOMP, while the intra pipeline
is composed of actors PRED, IZZ, ACDC, IQIT, and SMOOTH. In the VC-1 decoder,
three possible modes of operation can be distinguished: Intra only , Inter only, Intra and
Inter. In the Intra only case, the value of the current block depends only on the values of
the surrounding blocks. The inter pipeline is disabled. In the Inter only case, the value of
the current block depends on the value of another block from a previous frame, as defined
with a motion vector. Only the inter pipeline is used. Finally, in the Intra and Inter case,
both pipelines are used but in the intra part the PRED actor is bypassed. The TPDF
implementation of VC-1 is shown in Fig. 7.9. The decoder makes use of two integers and
a control actor. The integer parameters are p, which encodes the slice size in macroblocks,
and q, which encodes the macroblock size in blocks. The control actor captures whether
a block is using intra, inter or both of these two modes.

7.2 Analysis Tool

We have implemented our method to check the static guarantees, compute the execu-
tion state-space and analyse the worst-case throughput of TPDF graphs in the publicly
available SDF 3 software library for SDF, CSDF and SADF analysis [102]. In this new
TPDF analysis tool written in C++, we reuses the native scheduling technique canonical
period proposed by the native dataflow programming model of the MPPA-256 platform, as
presented in Section 2.4.2 and 5.3.5. We also use a basic breadth-first-search to constructs

Experimental Results 115

is consistent or not.
– tpdfanalyze –graph graphfile –algo ’liveness’: Check if the TPDF graph is
live or not.

– tpdfanalyze –graph graphfile –compute ’buffersize’: Computes the maximum
buffer size for all channels.

– tpdfanalyze –graph graphfile –compute ’throughput[(kernel—control ac-
tor)]’: Computes the worst-case throughput for the specified kernel/control actor
or for the graph.

7.3 Experimental Results

We implemented these applications, by using TPDF, SADF and a conservative CSDF/
SDF model, without modes. Table 7.2 shows the throughput obtained using these mod-
els as well as the improvement of the results using TPDF compared to the SADF and
CSDF/SDF model. For the OFDM application, a conservative SDF model, without
modes, can guarantee a throughput of 1.58 × 10−2 iterations per cycle. This result by
using SADF is 1.6×10−2. Experiments with the TPDF graph show that the OFDM graph
can achieve a guaranteed throughput of 2× 10−2 iterations per processors cycle, 25% and
26.58% higher than SADF and SDF implementations, respectively. This result can be
explained as follows: TPDF maximizes the degree of parallelism and driving around some
sequential limitations by using speculation, a technique often used in hardware design to
reduce the critical data-path, all kernels and cases which receive enough data tokens will
be fired immediately and in parallel. Moreover, the kernel which receives the control token
will also be fired instantly and choose the input or output data channel depending on the
control token. All unnecessary kernels will be stopped or superseded, then computation
will be accelerated and parallelized.

Table 7.2: Throughput obtained and the improvement of TPDF compared to the SADF and
(C)SDF model (EffSADF and Eff(C)SDF, respectively). The last column represents the analysis
time by using our tool set.

Application TPDF SADF EffSADF (C)SDF Eff(C)SDF N #States Time(ms)

OFDM 2 × 10−2 1.6 × 10−2 25% 1.58 × 10−2 26.58% 8 15 4

Adaptive Coding 10 × 10−2 8.5 × 10−2 17.65% 4.6 × 10−2 117.39% 14 6 16

VC-1 Decoder 4 × 10−1 2.5 × 10−1 60% 2.2 × 10−1 81.81% 12 12 8

Edge Detection 7.86 × 10−1 8 18 12

Viola & Jones 1.48 × 10−1 10 68 22

Satellite 5.5 × 10−1 9 55 20

Random Graphs 1.5 × 10−1 1.29 × 10−1 15.51% 1.09 × 10−1 36.6% 10-150 5-30

VC-1 Decoder is another application modelled by BPDF, a recent dynamic dataflow
model [16]. The existing analysis method of this model takes only into account the maxi-
mum throughput. Our technique focuses on the worst-case throughput (i.e., a guaranteed
lower bound on the application throughput), which is a more interested performance
metric. Experiments with the TPDF model shows that we have an improvement of 60%
compared to the SADF model and 81% to the conservative SDF model. For the Edge De-
tection case study, as discussed in Section 7.1.1, our tool succeed to analyse the throughput
of the graph with a state-space of 18 states and the analysis took only 12ms. This type
of time constraint is complicated, even impossible by using SADF or SDF model.

116 Experimental Results

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

OFDM
A.Coding

VC-1Decod

EdgeDetect

Example1

Satellite
ViolaJones

R
a

ti
o

s
 o

f
th

e
 t

h
ro

u
g

h
p

u
t

P=2
P=3
P=4

Figure 7.11: Ratios of the throughput under different degrees of pipelining, compared to the
case when only one canonical period is used.

We have also extended these results by testing the capacity of pipelining canonical
periods of TPDF graphs. This experiment is to test the ability of TPDF to adapt the
compile tool chain used for MPPA-256, which constructs for each CSDF application a
canonical period per iteration and optimise the parallelism by pipelining these canonical
periods. Figure 7.11 shows the ratios of the throughput by using a degree of pipelining
of 2, 3 and 4 compared to the case when only one canonical period is used. We can see
that a higher level of pipelining (under 4) gives always a higher throughput. In this way,
we can conclude that TPDF is well adapted to the existing parallelism method used for
ΣC and its present real-world many-core platform, the Kalray’s MPPA. We have also
analysed a collection of more than 200 random TPDF graphs between 10 and 150 actors
with an entry in the repetition vector between 1 and 10 and between 5 and 30 modes
to use, giving an average of 15.51% and 36.6% higher throughput guarantee than from a
SADF and a conservative CSDF model of the same graph, respectively. The execution
times for state-space analysis are summarised in Figure 7.12, averaged for graphs with
a particular number of kernels. The graph shows that the average analysis times scale
roughly linear with the complexity of the graph and the number of kernels. The number
of kernels can be analysed is approximately 1400 kernels/s. This fact shows the ability
of TPDF and its analysis tool to be expanded for real-time streaming applications with
millions of execution units, which should be available in the near future.

7.4 Summary

In this chapter, the TPDF model and its associated methods to check the consis-
tency, liveness, boundedness and worst-case throughput is validated using a set of real-life
dynamic applications. We used benchmarks from different sources to check the expres-

Summary 117

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

10 25 50 75 100 125 150

A
n

a
ly

s
is

 T
im

e
 (

m
s
)

Number of kernels

Figure 7.12: Average analysis times in ms for random graphs.

siveness of TPDF and its efficiency when implemented in different architectures. The
experimental results demonstrates significant buffer size and performance improvements
compared to the state of the art models, including Cyclo-Static Dataflow (CSDF) and
Scenario-Aware Dataflow (SADF). Moreover, by combining two data distribution kernels
(Select-duplicate and Transaction Box) and a new type of control clock with the basic
model CSDF, in valid combinations that are intuitively easy to figure out and that can
be checked automatically by a compiler, we demonstrated that the main properties of
CSDF graphs are preserved in TPDF, while overcoming a range of limitations that use
to be associated with CSDF models. Lifting these restrictions is useful on real-time and
cyber-physical systems with computational requirements: Speculation, Redundancy with
vote, Best-of at a given deadline, Select an active data-path among several, and so on.
The real-life case-studies tested in this section demonstrated also the importance of TPDF
to define a new set of applications for embedded computing, which can be encompassed
in the coming years.

118 Experimental Results

Chapter 8

Conclusions

I have strengths, and I have weaknesses. I don’t pretend to be
able to write a great thesis or doctorate - I have no pretensions
in that direction.

— Bob Ainsworth

Contents

8.1 Conclusions . 119

8.2 Open Problems and Future Research 120

8.2.1 The STP scheduling policy . 120

8.2.2 The TPDF Model of Computation . 121

8.2.3 Compilation toolchain . 123

8.1 Conclusions

In this thesis, we resolve two existing challenges of dataflow models and streaming
languages to meet the needs of emerging complex signal and media processing applica-
tions: 1) How to provide guaranteed services against unavoidable interferences which can
affect real-time performance?, and 2) How these streaming languages which are often
too static can meet the needs of emerging embedded applications, such as context- and
data-dependent dynamic adaptation? For the first challenge, in Chapter 3, we proved
that the actors of a streaming application modeled as CSDF graph, can be scheduled as
self-timed periodic tasks. As a result, we proposed four classes of STP schedules based
on two different granularities and two types of deadline: implicit and constrained. Two
first schedules, denoted STP I

qi
and STPC

qi
, are based on the repetition vector qi without

including the sub-tasks of actors. Two remaining schedules, denoted STP I
ri
and STPC

ri
,

have a finer granularity by including the sub-tasks of actors. It is based on the repetition
vector ri. Based on empirical evaluations, we showed that our STP approach reduces
significantly the latency compared to the SPS model and often delivers the maximum
throughput achieved under the STS model. We summarize our results in the form of
a decision tree to assist the designer in choosing the appropriate scheduling policy for
acyclic CSDF graphs.

We presented also in Chapter 4 an analytical framework for computing the the periodic
task parameters for the actors of CSDF graphs while taking into account inter-processor

119

120 Conclusions

communication and real-time constraints imposed by hardware devices or control engi-
neers. Based on this, we evaluate the latency between starting times of any two dependent
actors, and we introduce a latency-based approach for fault-tolerant stream processing
modeled as a CSDF graph, addressing the problem of node or network failures. We view
this work as an important first step to provide a failure-handling strategy for distributed
real-time streaming applications.

For the second challenge, we developed and presented TPDF in Chapter 5, a novel
parametric data flow Model of Computation (MoC) that allows dynamic changes of the
graph topology, variable production/consumption rates and time constraints enforcement.
Despite the increase in expressiveness, TPDF remains statically analyzable. In this way,
qualitative properties of an application, such as bounded and deadlock-free execution
can be verified at compile-time. We believe that TPDF finds a balance point between
expressiveness, analyzability and schedulability. It is expressive enough to efficiently
capture modern streaming applications, while providing static analyses and moderate
schedulability.

A difference of TPDF from other dynamic dataflow models is that our model allows
time constraints enforcement. In Chapter 6, we introduced a method to systematically
translate from TCA to TPDF, a time-constrained model widely used to model multi-task
critical real-time Instrumentation and control (I&C) systems. In this way, we demon-
strated that all properties (before and after constraints, visibility principle) of TCA are
preserved while modeling its applications by using the TPDF model. We illustrated the
possibility to mix timed dataflow actors with hard real-time I&C by using the safety-
classified Qualified Display System (QDS) application and demonstrated that the TPDF
implementation guarantees the worst-case latency required for the display of incoming
data.

Finally, the proposed model and its associated methods to check the consistency,
liveness, boundedness and worst-case throughput is validated in Chapter 7 using a set
of real-life dynamic applications. For the worst-case throughput, we use the (max, +)
algebra to capture the dynamic semantics of modes introduced by TPDF graphs by con-
sidering this MoC as a dynamic switching between cases (each case can consist of different
modes). An implementation of the analysis method was tested and demonstrated signif-
icant buffer size and throughput improvements compared to the state of the art models,
including CSDF and SADF. Moreover, thanks to several real-life case-study, we showed
that TPDF overcomes a range of expressive limitations often associated with dataflow
models (e.g., dynamic variations of consumption/production rates, time constraints or
dynamic reconfiguration of the graph).

8.2 Open Problems and Future Research

Static dataflow models enable powerful analyses for parallel embedded applications
while dynamic dataflow MoC (e.g., TPDF) hepls to tackle its limitations to express dy-
namic behaviors of new emerging embedded streaming applications. Both of these two
directions to implement embedded streaming applications can be further extended to offer
a better system-level design flow for streaming programmers.

8.2.1 The STP scheduling policy

Improving the WCET by Considering the Effect of Mapping In Chapter 3, we as-
sume that the WCET of an actor is computed assuming the worst-case latency of com-

Open Problems and Future Research 121

munication operations. This worst-case latency occurs when the underlying interconnect
is fully congested. However, such assumption overestimates the WCET value. In a real
system, many communication streams are isolated from the others. Therefore, communi-
cation operations occur without congestion and they do not take their worst-case latency.
Therefore, it is possible to reduce the WCET values if the mapping is taken into account.
A first step towards ”communication-aware” allocation in hard real-time systems realized
on MPSoCs is the work presented in [114]. Zimmer and Mueller in [114] presented a
framework for deriving low-contention mapping of real-time programs mapped onto NoC-
based MPSoCs. They devised two solvers: one based on exhaustive search and another
based on a heuristic. The resulting mapping tries to reduce the communication contention
and, hence, reduce the communication latency. This, in turn, leads to a tighter WCET
estimates of the tasks.

Support for Hierarchical Scheduling The scheduling policy and mapping derivation
explained in Chapter 3 does not support hierarchical scheduling. Hierarchical schedul-
ing is becoming more popular in modern hard real-time systems since it allows different
programs to be scheduled using different scheduling policies. Furthermore, in some appli-
cation domains such as avionics, it is mandatory to use two-levels of scheduling in order
to provide complete partitioning in time and space as mandated by industry standards
(such as ARINC 653 Specification [61]). Therefore, it is interesting to investigate how
such hierarchical scheduling schemes affect the derivation of the architecture and mapping
specifications.

Optimal granularity The study of the whole CSDF granularity, throughput and latency
trade-off space is a very interesting open issue. In this thesis, we consider two degrees
of granularities (i.e., STPqi and STPri) naturally offered by the CSDF model. Finding
the optimal granularity for all the actors in the CSDF graph while considering the con-
strained deadline and achieving maximum throughput or/and minimum latency is a very
interesting direction.

Towards More Accurate IPC estimation In Chapter 3 and Chapter 4, we assume
that the inter-processor communication of actors assigned to the periodic level is computed
assuming that all the memory accesses are done on the same memory bank. However, such
assumption overestimates the IPC value. In a real system, many communication streams
are isolated from the others to ensure that a memory bank would not be a hot-spot for
memory accesses. Therefore, it is possible to reduce the IPC values if this assumption is
taken into account. A first step towards ”random access memory-modules” allocation is
the work presented in [83], in which the author dealt with probabilistic contention issues
in uniformly accessing the shared memory modules of the MPPA-256 architecture.

8.2.2 The TPDF Model of Computation

TPDF can be extended in many ways. Allowing integer parameters to change val-
ues within an iteration is a feature that can be used in many applications. Currently,
such functionality can be achieved from other models, such as SPDF, which allows such
changes. However, this extension significantly increases the scheduling complexity, so
changing periods should be further restricted in comparison with SPDF.

Another extension would allow port rates to be fractional and/or polynomial. Frac-
tional rates can be used to avoid duplication of the same value. Moreover, it provides a
more intuitive representation of some applications. An example is given in Figure 8.1.

Open Problems and Future Research 123

perform poorly when executed on a programmable processor. In this context, the actor
merging approach introduced in [24] can be used as a methodology to increase performance
metrics for not only static but also dynamic dataflow model (e.g., TPDF).

Finally, the TPDF analysis tool has been implemented as a standalone model in C++.
Such an implementation makes comparison with other existing dataflow MoCs difficult.
TPDF needs to be integrated in larger frameworks such as Ptolemy [94] and its extensions
PeaCE [56], Open RVC-CAL [112] and TURNUS [30] as well as Dataflow Intechange
Format (DIF) [60], to make such a comparison possible.

Dataflow MoCs have great potential to shape the way we develop systems. They
enable modular design and static analyses, in the design phase, and code generation and
automation in the implementation phase. The resulting systems are developed faster and
cheaper and at the same time they are more reliable and maintainable. In this way,
not only more complex designs can be conceived by experienced developers, but also
development is made accessible to less knowledgeable ones. Hence, more ideas are likely
to come to fruition.

8.2.3 Compilation toolchain

A TPDF compilation toolchain has been developed to map real-time streaming appli-
cations on the MPPA chip architecture. This toolchain is based on the ΣC programming
tool, as presented in Section 2.4.2. However, the biggest difference between two compila-
tion toolchain is the static model CSDF of ΣC is replaced by our dynamic model TPDF.
As a result, several changes have to made for the fours stages of the compilation toolchain:
from the frontend, which performs syntactic and semantic analysis, to the runtime gen-
eration, which builds the final binary for the MPPA chip. Until now, 3/4 steps of the
new compilation toolchain is developed to use the TPDF as the model of programma-
tion and expand the compilation toolchain to not only homogeneous architectures such
as MPPA-256 but also new emerging heterogeneous architectures:

– For the frontend with lexer, parser and code generator, new syntaxes are added to
well define a control actor, its ports and its communication channels, as can be seen
in Figure 8.3.

– The second step of the compilation toolchain is to build an intuitive graph repre-
sentation of the application, as can be seen in Figure 8.4. This representation can
be used for both compiler internal processing and developer debug interface. Once
built, further analyses are applied to check that the graph is well-formed and that
the resulting application fits to the targeted host. The internal representation of the
application (made of C structures) is also designed to ease the implementation and
execution of complex graph algorithms.

– For the Resource allocation stage for scheduling, dimensioning, placing & routing,
the scheduling algorithm has been developed to adapt the TPDF scheduling policy
as presented in 5.3.5. Moreover, new task mapping method needs to be developed
for heterogeneous architecture.

– The fourth step is under development and will be presented in the near future.

124 Conclusions

Figure 8.3: TPDF code of a simple application. Compared with ΣC programming language, the
control keyword is added to define a control actor, the controlin and controlout is also used to
define control in and out ports.

Open Problems and Future Research 125

(a)

(b)

Figure 8.4: (a) The graph representation and (b) its XML file of a simple TPDF application;
the dashed boxes and lines represents different instances of the control actors and channels.

126 Conclusions

Acronyms

(C)SDF (Cyclo-Static) Synchronous Dataflow 20, 58, 71, 83, 106

ADC Analog to Digital Converter 7

ADF Affine Dataflow xi, 63, 65–68, 70

BDF Boolean Dataflow xi, 11, 21, 22, 28

BPDF Boolean Parametric Dataflow xi, 21, 26–28, 81, 88, 114

CSDF Cyclo-Static Dataflow v–viii, xi, 1, 2, 5, 9–11, 13, 15–18, 20, 21, 25, 27–29, 33,
36–38, 41–49, 52, 54, 57–59, 61–65, 67–73, 75–80, 82, 84, 85, 87, 88, 90, 104–107,
109, 111–114, 116–119, 121

DAC Digital to Analog Converter 7, 45, 67

DCT Discrete Cosine Transform xi, 28, 29, 33, 35, 38–40, 54, 71

DDF Dynamic Dataflow 76

DSP Digital Signal Processing 15, 57

FFT Fast Fourier Transform 22, 38, 39, 54, 55, 71, 111

FIFO First-In First-Out 15, 16, 30, 33, 45, 54, 62, 105

FSM Finite State Machine 85

FSMs Finite State Machines 14

HMI Human-Machine Interface 98, 99

HSDF Homogeneous Synchronous Dataflow 20, 58, 68

IDF Integer Dataflow 21, 22, 28

ILP Instruction Level Parallelism 4

IPC Interprocessor Communication 36, 42, 59, 62, 119

KPN Kahn Process Network 14

KPNs Kahn Process Networks 14, 15

lcm Least Common Multiple 20, 64, 96

MCM Maximum Cycle Mean 85

127

128 Acronyms

MdC Modèle de Calcul 1, 2

MoC Model of Computation v, 9, 10, 15, 21, 25, 28, 75, 76, 78, 88, 111, 118

MoCs Models of Computation v, 6, 9, 10, 12, 14, 27, 28, 41, 109, 120

MPSoC Multiprocessor Systems-on-Chip vii, 3, 4

NoC Network-on-Chip 4, 36, 39, 104, 105

OFDM Orthogonal Frequency-Division Multiplexing 105, 106, 111–113

PE Processing Element 104

PSDF Parameterized Synchronous Dataflow xi, 21–24, 28, 87

QDS Qualified Display System xiii, 97–100, 118

RTS Hard-Real-time Scheduling 63, 72

SADF Scenario-Aware Dataflow vi, xi, 2, 10, 21, 23–25, 28, 42, 88, 105, 106, 113, 114,
116, 118

SDF Synchronous Dataflow 5, 9–11, 15, 20–25, 27–29, 36, 37, 41, 54, 57–59, 71, 73, 75,
77, 80, 82, 83, 88, 105, 109, 113, 114

SoC Systems-on-Chip vii, 3, 4

SPDF Schedulable Parametric Dataflow xi, 21, 25, 26, 28, 81, 87, 88, 119

SPS Strictly Periodic Scheduling v, 1, 9, 19, 20, 41, 44, 45, 53–57, 117

STP Self-Timed Periodic v, viii, ix, xiii, 1, 9, 11, 36, 41, 43, 44, 47–49, 53, 54, 56, 57, 59,
61, 117, 118

STS Self-Timed Scheduling v, 1, 9, 11, 18, 19, 41, 43–45, 54–57, 62, 64, 72, 73, 117

TCA Time Constrained Automata viii, xii, 89–93, 95, 98, 100, 118

TPDF Transaction Parameterized Dataflow v, viii, ix, xii, xiii, 2, 10–12, 42, 75–90,
92–94, 99–101, 103, 105, 106, 108, 110–123

VRDF Variable-Rate Dataflow 21, 87

WCET Worst-Case Execution Time 20, 46, 118, 119

Personal Publications

Published papers

Xuan Khanh Do, Stéphane Louise, and Albert Cohen. Transaction parameterized dataflow: A model
for context-dependent streaming applications. In 2016 Design, Automation Test in Europe Conference
Exhibition (DATE), pages 960–965, March 2016.

Xuan Khanh Do, Amira Dkhil, and Stéphane Louise. Self-timed periodic scheduling of data-dependent
tasks in embedded streaming applications. In Algorithms and Architectures for Parallel Processing,
volume 9529 of Lecture Notes in Computer Science, pages 458–478. Springer International Publishing,
2015.

Xuan Khanh Do, Stéphane Louise, and Albert Cohen. Managing the latency of data-dependent tasks in
embedded streaming applications. In IEEE 9th International Symposium on Embedded Multicore/Many-
core Systems-on-Chip (MCSoC), pages 9–16, 2015.

Xuan Khanh Do, Stéphane Louise, Albert Cohen, Thierry Goubier, Paul Dubrulle and Philippe Doré. An
empirical evaluation of a programming model for context-dependent real-time streaming applications.
In International Conference On Computational Science, ICCS 2015, volume 51 of Procedia Computer
Science, pages 1423 – 1432, 2015.

Xuan Khanh Do, Stéphane Louise, and Albert Cohen. Comparing the streamit and ΣC languages for
manycore processors. In Proceedings of the 2014 Fourth Workshop on Data-Flow Execution Models
for Extreme Scale Computing, DFM ’14, pages 17–25, Washington, DC, USA, 2014. IEEE Computer
Society.

Amira Dkhil, Xuan Khanh Do, Stéphane Louise, and Christine Rochange. A hybrid scheduling algorithm
based on self-timed and periodic scheduling for embedded streaming applications. In Parallel, Distributed
and Network-Based Processing (PDP), 2015 23rd Euromicro International Conference on, pages 711–
715, March 2015.

Amira Dkhil, Xuan Khanh Do, Stéphane Louise, and Christine Rochange. Self-timed periodic scheduling
for cyclo-static dataflow model. In International Conference On Computational Science, ICCS 2014,
volume 29 of Procedia Computer Science, pages 1134 – 1145, 2014.

Submitted paper

Xuan Khanh Do, Stéphane Louise, and Albert Cohen. Design and performance analysis of real-time
dynamic streaming applications. ACM Trans. Architec. Code Optim. 0, 0, Article 0, August 2016.

129

130 Acronyms

Bibliography

[1] Streamit cookbook. Technical report, MIT, September 2006.

[2] Streamit language specification. version 2.1. Technical report, MIT, September
2006.

[3] Andrzej Abramowski. Towards H.265 video coding standard, 2011.

[4] H.I. Ali, B. Akesson, and L.M. Pinho. Generalized extraction of real-time parameters
for homogeneous synchronous dataflow graphs. In Proceedings of PDP, 2015.

[5] Pascal Aubry, Pierre-Edouard Beaucamps, Frédéric Blanc, Bruno Bodin,
Sergiu Carpov, Löıc Cudennec, Vincent David, Philippe Dore, Paul Dubrulle,
Benôıt Dupont de Dinechin, François Galea, Thierry Goubier, Michel Harrand,
Samuel Jones, Jean-Denis Lesage, Stéphane Louise, and Renaud Sirdey. Extended
cyclostatic dataflow program compilation and execution for an integrated manycore
processor. In ICCS, volume 18, pages 1624–1633, 2013.

[6] F. Baccelli, G. Cohen, G.J. Olsder, and J.P. Quadrat. Synchronization and Linear-
ity. John Wiley & Sons Ltd, 1992.

[7] Mohamed A. Bamakhrama and Todor Stefanov. Managing latency in embedded
streaming applications under hard-real-time scheduling. In CODES+ISSS, pages
83–92, 2012.

[8] Mohamed A. Bamakhrama and Todor Stefanov. On the hard-real-time scheduling
of embedded streaming applications. Design Automation for Embedded Systems,
2012.

[9] Sébastien Bardot, Camille Barnier, Pascal Bouda, Xuan Khanh Do, Sylvain
Hochede, Eric Li, Trong Thuc Nguyen, Ismael Paqueriaud, Adrien Polidano, and
Revyll-Jones Ratanga. Red dragons : The origins by l’ensmacansat. In Planete
Science, 2013.

[10] Ed Baroth and Chris Hartsough. Visual object-oriented programming. chapter
Visual Programming in the Real World, pages 21–42. Manning Publications Co.,
Greenwich, CT, USA, 1995.

[11] S. Baruah. The non-cyclic recurring real-time task model. In Real-Time Systems
Symposium (RTSS), 2010 IEEE 31st, pages 173–182, Nov 2010.

[12] Sanjoy Baruah, Deji Chen, Sergey Gorinsky, and Aloysius Mok. Generalized multi-
frame tasks. Real-Time Systems, 17(1):5–22, 1999.

131

132 Bibliography

[13] Sanjoy K. Baruah. Dynamic- and static-priority scheduling of recurring real-time
tasks. Real-Time Systems, 24(1):93–128, 2003.

[14] Shuvra S. Battacharyya, Edward A. Lee, and Praveen K. Murthy. Software Synthesis
from Dataflow Graphs. Kluwer Academic Publishers, 1996.

[15] Vagelis Bebelis, Pascal Fradet, and Alain Girault. A framework to schedule para-
metric dataflow applications on many-core platforms. In LCTES, pages 125–134,
2014.

[16] Vagelis Bebelis, Pascal Fradet, Alain Girault, and Bruno Lavigueur. BPDF: A stati-
cally analyzable dataflow model with integer and boolean parameters. In EMSOFT,
pages 3:1–3:10, 2013.

[17] B. Bhattacharya and S.S. Bhattacharyya. Parameterized dataflow modeling for DSP
systems. IEEE Transactions on Signal Processing, 2001.

[18] Shuvra S. Bhattacharyya, Ed F. Deprettere, and Bart D. Theelen. Dynamic
Dataflow Graphs, pages 905–944. Springer New York, New York, NY, 2013.

[19] G. Bilsen, M. Engels, R. Lauwereins, and J.A. Peperstraete. Cyclo-static data flow.
In ICASSP, volume 5, pages 3255–3258, May 1995.

[20] Bruno Bodin, Alix Munier Kordon, and Benôıt Dupont de Dinechin. Periodic sched-
ules for cyclo-static dataflow. In ESTImedia, pages 105–114, 2013.

[21] Shekhar Borkar and Andrew A. Chien. The future of microprocessors. Commun.
ACM, 54(5):67–77, May 2011.

[22] A. Bouakaz, J. Talpin, and J. Vitek. Affine data-flow graphs for the synthesis of
hard real-time applications. In Proceedings of ACSD, pages 183–192, 2012.

[23] Adnan Bouakaz, Pascal Fradet, and Alain Girault. Symbolic Buffer Sizing for
Throughput-Optimal Scheduling of Dataflow Graphs. In RTAS 2016 - 22nd IEEE
Real-Time Embedded Technology & Applications Symposium, Vienne, Austria, April
2016.

[24] J. Boutellier, J. Ersfolk, J. Lilius, M. Mattavelli, G. Roquier, and O. Silvén. Actor
merging for dataflow process networks. IEEE Transactions on Signal Processing,
63(10):2496–2508, May 2015.

[25] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Hanra-
han. Brook for gpus: Stream computing on graphics hardware. In ACM SIGGRAPH
2004 Papers, SIGGRAPH ’04, pages 777–786, New York, USA, 2004. ACM.

[26] J. Buck. Static scheduling and code generation from dynamic dataflow graphs with
integer-valued control streams. In Signals, Systems and Computers, 1994. 1994
Conference Record of the Twenty-Eighth Asilomar Conference on, volume 1, pages
508–513 vol.1, Oct 1994.

[27] Joseph Tobin Buck. Scheduling Dynamic Dataflow Graphs with Bounded Memory
Using the Token Flow Model. PhD thesis, 1993. AAI9431898.

Bibliography 133

[28] J.T. Buck and E.A. Lee. Scheduling dynamic dataflow graphs with bounded memory
using the token flow model. In Acoustics, Speech, and Signal Processing, 1993.
ICASSP-93., 1993 IEEE International Conference on, volume 1, pages 429–432
vol.1, April 1993.

[29] John Canny. A computational approach to edge detection. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, PAMI-8(6):679–698, Nov 1986.

[30] S. Casale-Brunet, M. Wiszniewska, E. Bezati, M. Mattavelli, J. W. Janneck, and
M. Canale. Turnus: An open-source design space exploration framework for dynamic
stream programs. In Design and Architectures for Signal and Image Processing
(DASIP), 2014 Conference on, pages 1–2, Oct 2014.

[31] NVIDIA Corp. NVIDIA CUDA: Compute unified device architecture, 2007.

[32] V. David, C. Aussaguès, S. Louise, Ph, B. Ortolo, and C. Hessler. The OASIS
Based Qualified Display System. In Lecture Notes in Computer Science, 17th In-
ternational Conf. on Computer Safety, Reliability and Security Fourth American
Nuclear Society International Topical Meeting on Nuclear Plant Instrumentation,
Controls and Human-Machine Interface Technologies (NPIC&HMIT 2004), Colum-
bus, Ohio. September, 2004., September 2004.

[33] Robert I. Davis and Alan Burns. A survey of hard real-time scheduling for multi-
processor systems. ACM Comput. Surv., 2011.

[34] Benôıt Dupont de Dinechin, Pierre Guironnet de Massas, Guillaume Lager, Clément
Léger, Benjamin Orgogozo, Jérôme Reybert, and Thierry Strudel. A distributed
run-time environment for the Kalray MPPA-256 integrated manycore processor.
Procedia Computer Science, 2013.

[35] J. B. Dennis. First version of a data flow procedure language. In Programming
Symposium, Proceedings Colloque Sur La Programmation, pages 362–376, London,
UK, UK, 1974. Springer-Verlag.

[36] A. Dkhil, Xuan Khanh Do, S. Louise, and C. Rochange. A hybrid scheduling
algorithm based on self-timed and periodic scheduling for embedded streaming ap-
plications. In Parallel, Distributed and Network-Based Processing (PDP), 2015 23rd
Euromicro International Conference on, pages 711–715, March 2015.

[37] Amira Dkhil, Xuan Khanh Do, Stéphane Louise, and Christine Rochange. Self-
timed periodic scheduling for cyclo-static dataflow model. In International Con-
ference On Computational Science, ICCS 2014, volume 29 of Procedia Computer
Science, pages 1134 – 1145, 2014.

[38] Amira Dkhil, Stéphane Louise, and Christine Rochange. Worst-Case Communica-
tion Overhead in a Many-Core based Shared-Memory Model. In Junior Researcher
Workshop on Real-Time Computing, Nice, 2013.

[39] Xuan Khanh Do, Amira Dkhil, and Stéphane Louise. Self-timed periodic scheduling
of data-dependent tasks in embedded streaming applications. In Algorithms and
Architectures for Parallel Processing, volume 9529 of Lecture Notes in Computer
Science, pages 458–478. Springer International Publishing, 2015.

134 Bibliography

[40] Xuan Khanh Do, Stéphane Louise, and Albert Cohen. Transaction parameterized
dataflow: A model for context-dependent streaming applications. In 2016 Design,
Automation Test in Europe Conference Exhibition (DATE), pages 960–965, March
2016.

[41] Xuan Khanh Do, Stéphane Louise, and Albert Cohen. Managing the latency of data-
dependent tasks in embedded streaming applications. In IEEE 9th International
Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC), pages
9–16, 2015.

[42] Paul Dubrulle, Stéphane Louise, Renaud Sirdey, and Vincent David. A low-overhead
dedicated execution support for stream applications on shared-memory cmp. In
Proceedings of the Tenth ACM International Conference on Embedded Software,
EMSOFT ’12, pages 143–152, New York, NY, USA, 2012. ACM.

[43] Christian Fabre, Iuliana Bacivarov, Ananda Basu, Martino Ruggiero, David

Atienza, Éric Flamand, Jean-Pierre Krimm, Julien Mottin, Lars Schor, Pratyush
Kumar, Hoeseok Yang, DeveshB. Chokshi, Lothar Thiele, Saddek Bensalem, Mar-
ius Bozga, Luca Benini, MohamedM. Sabry, Yusuf Leblebici, Giovanni De Micheli,
and Diego Melpignano. Pro3d, programming for future 3d manycore architectures:
Project’s interim status. In Formal Methods for Components and Objects, volume
7542 of Lecture Notes in Computer Science, pages 277–293. Springer Berlin Heidel-
berg, 2013.

[44] S. Feiner, Blair MacIntyre, T. Hollerer, and A. Webster. A touring machine: proto-
typing 3d mobile augmented reality systems for exploring the urban environment.
In Wearable Computers, 1997. Digest of Papers., First International Symposium
on, pages 74–81, Oct 1997.

[45] Elena Fersman, Pavel Krcal, Paul Pettersson, and Wang Yi. Task automata:
Schedulability, decidability and undecidability. Information and Computation,
205(8):1149 – 1172, 2007.

[46] P. Fradet, A. Girault, and P. Poplavko. SPDF: A schedulable parametric data-flow
MoC. In DATE, pages 769–774, March 2012.

[47] S. Gaubert. Performance evaluation of (max,+) automata. IEEE Transactions on
Automatic Control, 40(12):2014–2025, Dec 1995.

[48] M. Geilen and S. Stuijk. Worst-case performance analysis of synchronous dataflow
scenarios. In CODES+ISSS, pages 125–134, Oct 2010.

[49] Marc Geilen and Twan Basten. Requirements on the execution of kahn process net-
works. In Proceedings of the 12th European Conference on Programming, ESOP’03,
pages 319–334, Berlin, Heidelberg, 2003. Springer-Verlag.

[50] Marc Geilen and Twan Basten. Reactive process networks. In Proceedings of the
4th ACM International Conference on Embedded Software, EMSOFT ’04, pages
137–146, New York, NY, USA, 2004. ACM.

Bibliography 135

[51] A. H. Ghamarian, S. Stuijk, T. Basten, M. C. W. Geilen, and B. D. Theelen.
Latency minimization for synchronous data flow graphs. In Proceedings of the 10th
Euromicro Conference on Digital System Design Architectures, Methods and Tools,
DSD ’07, pages 189–196, Washington, DC, USA, 2007. IEEE Computer Society.

[52] T. Goubier, R. Sirdey, S. Louise, and V. David. ΣC: A programming model and
language for embedded manycores. In Proceedings of ICA3PP, pages 385–394, 2011.

[53] T. Goubier, R. Sirdey, S. Louise, and V. David. ΣC: A programming model and
language for embedded manycores. In Proceedings of the 11th International Con-
ference on Algorithms and Architectures for Parallel Processing, ICA3PP’11, pages
385–394, 2011.

[54] Khronos OpenCl Working Group. The OpenCL specification, 2008.

[55] John L. Gustafson. Reevaluating amdahl’s law. Commun. ACM, 31(5):532–533,
May 1988.

[56] Soonhoi Ha, Sungchan Kim, Choonseung Lee, Youngmin Yi, Seongnam Kwon, and
Young-Pyo Joo. PeaCE: A hardware-software codesign environment for multimedia
embedded systems. ACM Trans. Des. Autom. Electron. Syst., 12(3):24:1–24:25,
May 2008.

[57] Soonhoi Ha and Hyunok Oh. Decidable Dataflow Models for Signal Processing:
Synchronous Dataflow and Its Extensions, pages 1083–1109. Springer New York,
New York, NY, 2013.

[58] John L. Hennessy and David A. Patterson. Computer Architecture, Fifth Edition:
A Quantitative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 5th edition, 2011.

[59] Marnix Heskamp, Roel Schiphorst, and Kees Slump. Public safety and cognitive
radio. In Alexander M. Wyglinsk, Maziar Nekovee, and Y. Thomas Hou, editors,
Cognitive radio communications and networks, pages 467–488. Elsevier, November
2009.

[60] Chia-Jui Hsu, Ming-Yung Ko, and Shuvra S. Bhattacharyya. Software synthesis
from the dataflow interchange format. In Proceedings of the 2005 Workshop on
Software and Compilers for Embedded Systems, SCOPES ’05, pages 37–49, New
York, NY, USA, 2005. ACM.

[61] ARINC Incorporated. 653P1-3 Avionics Application Software Standard Interface,
Part 1, Required Services. 2013.

[62] Gary W. Johnson. LabVIEW Graphical Programming: Practical Applications in
Instrumentation and Control. McGraw-Hill School Education Group, 1997.

[63] Wesley M. Johnston, J. R. Paul Hanna, and Richard J. Millar. Advances in dataflow
programming languages. ACM Comput. Surv., 36(1):1–34, March 2004.

136 Bibliography

[64] G. Kahn. The semantics of a simple language for parallel programming. In J. L.
Rosenfeld, editor, Information processing, pages 471–475, Stockholm, Sweden, Aug
1974. North Holland, Amsterdam.

[65] Gilles Kahn. The semantics of simple language for parallel programming. In IFIP
Congress, pages 471–475, 1974.

[66] Hari Kalva and Jae-Beom Lee. The vc-1 video coding standard. IEEE Multimedia,
14(4):88–91, 2007.

[67] M. Khandelia, N.K. Bambha, and S.S. Bhattacharyya. Contention-conscious trans-
action ordering in multiprocessor dsp systems. IEEE Transactions on Signal Pro-
cessing, 2006.

[68] E. C. Klikpo, J. Khatib, and A. Munier-Kordon. Modeling multi-periodic simulink
systems by synchronous dataflow graphs. In 2016 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 1–10, April 2016.

[69] Peter Koek, Stefan J. Geuns, Joost P.H.M. Hausmans, Henk Corporaal, and
Marco J.G. Bekooij. Csdfa: A model for exploiting the trade-off between data and
pipeline parallelism. In Proceedings of the 19th International Workshop on Software
and Compilers for Embedded Systems, SCOPES ’16, pages 30–39, New York, NY,
USA, 2016. ACM.

[70] P. S. Kurtin, J. P. H. M. Hausmans, and M. J. G. Bekooij. Combining offsets with
precedence constraints to improve temporal analysis of cyclic real-time streaming
applications. In 2016 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 1–12, April 2016.

[71] Alex Kushleyev, Daniel Mellinger, Caitlin Powers, and Vijay Kumar. Towards a
swarm of agile micro quadrotors. Autonomous Robots, 35(4):287–300, 2013.

[72] Mihai T. Lazarescu and Luciano Lavagno. Interactive trace-based analysis toolset
for manual parallelization of C programs. ACM Trans. Embed. Comput. Syst.,
14(1):13:1–13:20, January 2015.

[73] E. A. Lee. Consistency in dataflow graphs. IEEE Trans. Parallel Distrib. Syst.,
1991.

[74] E. A. Lee and D. G. Messerschmitt. Synchronous data flow. In Proceedings of the
IEEE, vol. 75, no. 9,, pages 1235–1245, 1987.

[75] E.A. Lee. The problem with threads. Computer, 39(5):33–42, May 2006.

[76] E.A. Lee and T.M. Parks. Dataflow process networks. Proceedings of the IEEE,
83(5):773–801, May 1995.

[77] Edward A. Lee. Embedded software. In Advances in Computers, page 2002. Aca-
demic Press, 2002.

[78] Jae-Beom Lee and Hari Kalva. The VC-1 and H.264 Video Compression Stan-
dards for Broadband Video Services. Springer Publishing Company, Incorporated,
1 edition, 2008.

Bibliography 137

[79] M. Lemerre and E. Ohayon. A model of parallel deterministic real-time computation.
In Real-Time Systems Symposium (RTSS), 2012 IEEE 33rd, pages 273–282, 2012.

[80] Matthieu Lemerre, Vincent David, Christophe Aussaguès, and Guy Vidal-Naquet.
An introduction to time-constrained automata. In Proceedings of ICE, 2010.

[81] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in
a hard-real-time environment. J. ACM, 20(1):46–61, January 1973.

[82] J. Lotze, S.A. Fahmy, J. Noguera, and L.E. Doyle. A model-based approach to
cognitive radio design. IEEE J-SAC, 29(2):455–468, February 2011.

[83] S. Louise. A formal evaluation of mean-time access latencies for interleaved on-chip
shared banked-memory in manycores. In Proceedings of MCSoC, pages 19–24, 2013.

[84] S. Louise. Toward a model of computation for time-constrained applications on
manycores. In ENASE 2015 - Proceedings of the 10th International Conference on
Evaluation of Novel Approaches to Software Engineering, pages 45–50, 2015.

[85] S. Louise, P. Dubrulle, and T. Goubier. A model of computation for real-time
applications on embedded manycores. In MCSoC, Sept 2014.

[86] S. Louise, M. Lemerre, C. Aussagues, and V. David. The OASIS kernel: A frame-
work for high dependability real-time systems. In High-Assurance Systems Engi-
neering (HASE), 2011 IEEE 13th International Symposium on, pages 95–103, Nov
2011.

[87] Thomas M. Parks. Bounded Scheduling of Process Networks. PhD thesis, 1995.

[88] J. Markoff. Google cars drive themselves in traffic. The New York Times, Oct 2010.

[89] Orlando Moreira. Temporal analysis and scheduling of hard real-time radios running
on a multi-processor. PHD Thesis, Technische Universiteit Eindhoven, 2012.

[90] Orlando M Moreira and Marco JG Bekooij. Self-timed scheduling analysis for real-
time applications. EURASIP Journal on Advances in Signal Processing, 2007.

[91] A.C. Murillo, D. Gutierrez-Gomez, A. Rituerto, L. Puig, and J.J. Guerrero. Wear-
able omnidirectional vision system for personal localization and guidance. In Com-
puter Vision and Pattern Recognition Workshops (CVPRW), 2012 IEEE Computer
Society Conference on, pages 8–14, June 2012.

[92] T.M. Parks, J.L. Pino, and E.A. Lee. A comparison of synchronous and cycle-static
dataflow. In Signals, Systems and Computers, 1995. 1995 Conference Record of the
Twenty-Ninth Asilomar Conference on, volume 1, pages 204–210 vol.1, Oct 1995.

[93] Dwayne Phillips. Image processing in C, Part 5: Basic edge detection. pages 47–56,
1994.

[94] Claudius Ptolemaeus, editor. System Design, Modeling, and Simulation using
Ptolemy II. Ptolemy.org, 2014.

138 Bibliography

[95] Danijela Ristić-Durrant and Axel Gräser. Closed-loop control of segmented im-
age quality for improvement of digital image processing. Automatic Control and
Robotics, 7(1):27–34, 2004.

[96] Y. Sato, M. Nakamoto, Y. Tamaki, T. Sasama, I. Sakita, Y. Nakajima, M. Monden,
and S. Tamura. Image guidance of breast cancer surgery using 3-d ultrasound
images and augmented reality visualization. Medical Imaging, IEEE Transactions
on, 17(5):681–693, Oct 1998.

[97] Stefania Sesia, Issam Toufik, and Matthew Baker. LTE, The UMTS Long Term
Evolution: From Theory to Practice. Wiley Publishing, 2009.

[98] R. Soulé, M. I. Gordon, S. Amarasinghe, R. Grimm, and M. Hirzel. Dynamic
expressivity with static optimization for streaming languages. In Proceedings of the
7th ACM International Conference on Distributed Event-based Systems, DEBS ’13,
pages 159–170, New York, NY, USA, 2013. ACM.

[99] Sundararajan Sriram and Shuvra S. Bhattacharyya. Embedded Multiprocessors:
Scheduling and Synchronization. Marcel Dekker, Inc., 2nd edition, 2009.

[100] M. Stigge, P. Ekberg, N. Guan, and W. Yi. The digraph real-time task model. In
2011 17th IEEE Real-Time and Embedded Technology and Applications Symposium,
pages 71–80, April 2011.

[101] M. Stigge, P. Ekberg, N. Guan, and W. Yi. On the tractability of digraph-based
task models. In 2011 23rd Euromicro Conference on Real-Time Systems, pages
162–171, July 2011.

[102] Sander Stuijk, Marc Geilen, and Twan Basten. Sdf3: Sdf for free. In Proceedings of
the Sixth International Conference on Application of Concurrency to System Design,
pages 276–278, 2006.

[103] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand. Overview of the high
efficiency video coding (hevc) standard. IEEE Transactions on Circuits and Systems
for Video Technology, 22(12):1649–1668, Dec 2012.

[104] B.D. Theelen, M.C.W. Geilen, T. Basten, J.P.M. Voeten, S.V. Gheorghita, and
S. Stuijk. A scenario-aware data flow model for combined long-run average and
worst-case performance analysis. In Formal Methods and Models for Co-Design,
2006. MEMOCODE ’06. Proceedings. Fourth ACM and IEEE International Con-
ference on, pages 185–194, July 2006.

[105] W. Thies, M. Karczmarek, J. Sermulins, R. Rabbah, and S. Amarasinghe. Tele-
port messaging for distributed stream programs. In Proceedings of the Tenth ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP
’05, pages 224–235, 2005.

[106] William Thies and Saman Amarasinghe. An empirical characterization of stream
programs and its implications for language and compiler design. In Proceedings of
PACT, 2010.

Bibliography 139

[107] Sebastian Thrun, Mike Montemerlo, Hendrik Dahlkamp, David Stavens, Andrei
Aron, James Diebel, Philip Fong, John Gale, Morgan Halpenny, Gabriel Hoffmann,
Kenny Lau, Celia Oakley, Mark Palatucci, Vaughan Pratt, Pascal Stang, Sven Stro-
hband, Cedric Dupont, Lars-Erik Jendrossek, Christian Koelen, Charles Markey,
Carlo Rummel, Joe van Niekerk, Eric Jensen, Philippe Alessandrini, Gary Bradski,
Bob Davies, Scott Ettinger, Adrian Kaehler, Ara Nefian, and Pamela Mahoney.
Stanley: The robot that won the darpa grand challenge. Journal of Field Robotics,
23(9):661–692, 2006.

[108] J.-J. van de Beek, M. Sandell, M. Isaksson, and P. Ola Borjesson. Low-complex
frame synchronization in OFDM systems. In ICUPC, 1995.

[109] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple fea-
tures. In Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings
of the 2001 IEEE Computer Society Conference on, volume 1, pages I–511–I–518
vol.1, 2001.

[110] M.H. Wiggers, M.J.G. Bekooij, and G.J.M. Smit. Buffer capacity computation
for throughput constrained streaming applications with data-dependent inter-task
communication. In RTAS, pages 183–194, April 2008.

[111] P. S. Wilmanns, S. J. Geuns, J. P. H. M. Hausmans, and M. J. G. Bekooij. Buffer
sizing to reduce interference and increase throughput of real-time stream processing
applications. In 2015 IEEE 18th International Symposium on Real-Time Distributed
Computing, pages 9–18, April 2015.

[112] Matthieu Wipliez, Ghislain Roquier, and Jean-François Nezan. Software code gener-
ation for the RVC-CAL language. Journal of Signal Processing Systems, 63(2):203–
213, 2009.

[113] Eddy Z. Zhang, Yunlian Jiang, Ziyu Guo, Kai Tian, and Xipeng Shen. On-the-fly
elimination of dynamic irregularities for gpu computing. SIGPLAN Not., 46(3):369–
380, March 2011.

[114] C. Zimmer and F. Mueller. Low contention mapping of real-time tasks onto TilePro
64 core processors. In 2012 IEEE 18th Real Time and Embedded Technology and
Applications Symposium, pages 131–140, April 2012.

140 Bibliography

	Introduction
	Thesis Motivation
	From SoC to MPSoC: challenges of the embedded manycore
	Programmability: how to leverage manycore processors?
	New needs for emerging embedded real-time applications

	Problem Statement
	Contribution
	Outline

	Dataflow Models of Computation
	Parallel Models of Computation
	Kahn Process Networks
	Dataflow

	Cyclo-Static Dataflow
	Formal Definition
	Static Analyses
	Scheduling Cyclo-Static Dataflow
	Special Cases of CSDF Graphs

	Dynamic Extensions of Cyclo-Static Dataflow
	Dynamic Topology Models
	Dynamic Rate Models
	Model Comparison

	Programming Languages based on Dataflow Models
	StreamIt
	C
	Transformation between C and StreamIt

	Summary

	Self-Timed Periodic Scheduling
	Motivational Example
	System Model
	Timed Graph
	Graph Levels
	System's model and Schedulability

	Self-Timed Periodic Scheduling
	Assumptions and Definitions
	Latency Analysis under STP Schedule

	Evaluation Results
	Benchmarks
	Experiment: Latency comparison
	Experiment: Throughput comparison
	Discussion: Decision tree for real-time scheduling of CSDF applications

	Summary

	Latency-based approach for fault-tolerance
	Motivational Example
	Hard-Real-Time Scheduling of CSDF
	Actor Dependence Function
	Definition
	Calculating ADF
	Illustrative example

	Latency Analysis
	Definition
	Latency Analysis under a hard-real-time scheduling

	Fault-Tolerance
	Data Model
	Support for fault-tolerance

	Evaluation results
	Benchmarks
	Experiment: Throughput comparison

	Summary

	Transaction Parameterized Dataflow
	Model of Computation
	(max, +) Algebraic Semantics of TPDF
	Static Analyses
	Rate consistency
	Boundedness
	Liveness
	Throughput Analysis
	Scheduling

	Summary

	Real-Time Extension for TPDF
	Time-Constrained Automata
	Chains
	Time-constrained trees
	Automata
	The visibility principle

	Systematic translation from TCA to TPDF
	Example
	Application
	QDS design
	TPDF design

	Summary

	Experimental Results
	Benchmarks
	Case-study on Edge Detection
	Case-study on Viola & Jones
	Case study on Satellite positioning
	Case-Study on Cognitive Radio
	Case-Study on VC-1 Decoder

	Analysis Tool
	Experimental Results
	Summary

	Conclusions
	Conclusions
	Open Problems and Future Research
	The STP scheduling policy
	The TPDF Model of Computation
	Compilation toolchain

	Acronyms

