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Résumé Les processus de type “action-conséquence” (orienté vers un but)
et stimulus-réponse sont deux composants importants du comportement. Le
premier évalue le bénéfice d’une action pour choisir la meilleure parmi celles
disponibles (sélection d’action) alors que le deuxième est responsable du com-
portement automatique, suscitant une réponse dès qu’un stimulus connu est
présent. De telles habitudes sont généralement associées (et surtout opposées)
aux actions orientées vers un but qui nécessitent un processus délibératif pour
évaluer la meilleure option à prendre pour atteindre un objectif donné. En
utilisant un modèle computationnel, nous avons étudié l’hypothèse classique
de la formation et de l’expression des habitudes au niveau des ganglions de la
base et nous avons formulé une nouvelle hypothèse quant aux rôles respectifs
des ganglions de la base et du cortex. Inspiré par les travaux théoriques et
expérimentaux de Leblois et al. (2006) et Guthrie et al. (2013), nous avons
conçu un modèle computationnel des ganglions de la base, du thalamus et du
cortex qui utilise des boucles distinctes (moteur, cognitif et associatif) ce qui
nous a permis de poser l’hypothèse selon laquelle les ganglions de la base ne
sont nécessaires que pour l’acquisition d’habitudes alors que l’expression de
telles habitudes peut être faite par le cortex seul. En outre, ce modèle a per-
mis de prédire l’existence d’un apprentissage latent dans les ganglions de la
base lorsque leurs sorties (GPi) sont inhibées. En utilisant une tâche de bandit
manchot à 2 choix, cette hypothèse a été expérimentalement testée et confir-
mée chez le singe; suggérant au final de rejeter l’idée classique selon laquelle
l’automatisme est un trait subcortical.

Title Neuroscience of decision making: from goal-directed actions to habits

Abstract Action-outcome and stimulus-response processes are two impor-
tant components of behavior. The former evaluates the benefit of an action
in order to choose the best action among those available (action selection)
while the latter is responsible for automatic behavior, eliciting a response as
soon as a known stimulus is present. Such habits are generally associated (and
mostly opposed) to goal-directed actions that require a deliberative process to
evaluate the best option to take in order to reach a given goal. Using a compu-
tational model, we investigated the classic hypothesis of habits formation and
expression in the basal ganglia and proposed a new hypothesis concerning the
respective role for both the basal ganglia and the cortex. Inspired by previous
theoretical and experimental works (Leblois et al., 2006; Guthrie et al., 2013),
we designed a computational model of the basal ganglia-thalamus-cortex that
uses segregated loops (motor, cognitive and associative) and makes the hypoth-
esis that basal ganglia are only necessary for the acquisition of habits while the
expression of such habits can be mediated through the cortex. Furthermore,
this model predicts the existence of covert learning within the basal ganglia
ganglia when their output is inhibited. Using a two-armed bandit task, this
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hypothesis has been experimentally tested and confirmed in monkey. Finally,
this works suggest to revise the classical idea that automatism is a subcortical
feature.

Keywords habit, goal-directed action, decision-making, Hebbian learning,
reinforcement learning, computational neuroscience, cortex, basal ganglia

Mots-clés habitude, action orientée, prise de décision, Hebbian apprentis-
sage, renforcement apprentissage, neuroscience informatique, cortex, ganglion
de la base
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“The only difference between screwing around
and science is writing it down.”

— Alex Jason
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Neuroscience de la prise de décision : des actions dirigées vers un but 
aux habitudes  
Meropi Topalidou


Résumé étendu 

Les habitudes sont une des composantes essentielles du comportement chez les 
vertébrés supérieurs. Elles peuvent être complexes, de haut niveau et être exécutées 
rapidement, avec un minimum d'effort et ce, sans mobiliser l’attention, afin notamment de 
libérer celle-ci pour des fonctions plus importantes comme par exemple la recherche de 
proies ou l’évitement de prédateurs. Historiquement, Aristote a été le premier à proposer 
le terme d’habitude en termes de compétences acquises par un individu qui lui sont 
nécessaires pour améliorer ses performances en vue d'atteindre un objectif donné. 
Cependant, la recherche en neurosciences sur les habitudes est relativement récente et 
émane principalement du travail de William James qui a défini les habitudes comme des 
compétences acquises ne nécessitant pas le contrôle de l’attention. À cette même 
époque, Edward Thorndike, formulait la «loi d'effet», qui explique en substance que les 
comportements suivis par des conséquences positives seront répétés alors que des 
comportements suivis de conséquences négatives seront évités. Plus d'un siècle après, il 
n’y a toujours pas de consensus quant à la définition des habitudes et celles-ci restent 
sujettes à controverse tant le terme d’habitude possède de connotations différentes  
selon les domaines de recherche considérés, où l’on peut préférer les termes de routine, 
de préférence ou bien de compétences développées. Si la communauté scientifique n'a 
pas encore convenu des caractéristiques fondamentales d'une action pour la caractériser 
comme habitude, il existe cependant, un ensemble de caractéristiques qui semble lui 
faire consensus:


1. Les habitudes sont déclenchées par un stimulus spécifique.

2. Ce sont des actions qui ont été acquises par l'expérience, généralement après un 

apprentissage approfondi.

3. Les habitudes sont effectuées automatiquement, c'est-à-dire qu'elles sont exécutées 

rapidement par rapport à des actions dirigées par un but, et inconsciemment, c’est à 
dire, sans y prêter attention.


4. Enfin, la caractéristique la plus courante utilisée dans les expériences pour définir les 
habitudes, est leur désengagement par rapport à un but. En d'autres termes, ce type 
d'actions est exécuté même si leur résultat a été dévalué.


Ce désengagement des habitudes par rapport au but initial a conduit Anthony Dickinson 
à proposer la division du comportement instrumental en deux types opposés: le 
comportement dirigé vers un but et le comportement habituel. Suite à cette distinction 
originelle, de nombreuses études expérimentales ont été développées afin d'identifier et 
de comprendre les mécanismes cérébraux responsables de la production de ces deux 
types de comportement. La vision dominante du XXème siècle se résume par l’idée que les 
comportements nouveaux nécessitent une attention soutenue et une architecture flexible 
et dépendraient donc du cortex. A contrario, les comportements automatiques ne 



nécessiteraient ni l'une ni l'autre et ne dépendraient donc pas majoritairement du cortex 
mais plutôt de structures sous-corticales. C’est pourquoi selon cette théorie, un rôle 
crucial a été attribué aux ganglions de la base (groupe de noyaux sous-corticaux) dans 
l’acquisition et l’expression des habitudes. Les actions dirigées vers un but pouvant être 
considérées sous la forme d’actions effectuées afin d’atteindre un but (A-O: action-
outcome) alors que les habitudes peuvent quant à elles être considérées comme des 
stimulus déclenchant une réponse automatique (S-R: stimulus-response).


Ce travail de thèse porte sur l’étude et la modélisation des mécanismes de prise de 
décision avec une attention particulière sur les mécanismes relatifs à l’acquisition et à 
l’expression des habitudes chez le primate. Dans ce cadre précis, nous faisons 
l’hypothèse que les processus d’acquisition et d’expression des habitudes sont deux 
processus distincts qui peuvent être expérimentalement dissociés mettant ainsi en 
lumière les rôles respectifs des ganglions de la base et du cortex. En s’inspirant des 
travaux théoriques et expérimentaux de Leblois et al. (2006) et Guthrie et al. (2013), nous 
avons conçu un modèle computationnel des ganglions de la base, du thalamus et du 
cortex qui utilise des boucles distinctes (moteur, cognitif et associatif) ce qui nous a 
permis de poser l’hypothèse selon laquelle les ganglions de la base ne sont nécessaires 
que pour l'acquisition d'habitudes alors que l'expression de telles habitudes peut être 
faite par le cortex seul. Le modèle de Leblois et al., (2006) a introduit un mécanisme de 
sélection d'action, qui dérive de la compétition entre une rétroaction positive par la voie 
directe et une rétroaction négative par la voie hyper-directe dans la boucle cortex - 
ganglions de la base - thalamus. Le modèle a été étendu dans Guthrie et al. (2013) afin 
d'explorer l'organisation parallèle des circuits dans le BG. Ce modèle comprend les 
principaux noyaux des ganglions de la base (saut le Globus Pallidus externe (GPe)) et est 
organisé le long de trois boucles ségrégées (motrice, associative et cognitive) qui 
s'étendent sur le cortex, les ganglions de la base et le thalamus. Il intègre une prise de 
décision à deux niveaux avec une sélection de niveau cognitif (cortex préfrontal latéral, 
LPFC) basée sur la forme et une sélection de niveau moteur (zone motrice 
supplémentaire, SMA et cortex moteur primaire, PMC) basée sur la position. Dans ce 
dernier modèle, le cortex était principalement une structure d'entrée / sortie sous 
l'influence directe de l'entrée de tâche et de la sortie thalamique résultant des calculs des 
ganglions de la base. Par conséquent, ce cortex ne pourrait pas prendre une décision, en 
contradiction avec de nombreuses études. Pour cette raison, nous avons ajouté un 
mécanisme de compétition latérale au niveau cortical basé sur l'excitation à courte 
distance et l'inhibition à longue distance. Cette compétition se traduit par la capacité du 
cortex de prendre une décision, ave cependant une dynamique plus lente par rapport au 
circuit pasant par les ganglions de la base. Nous avons préservé l'apprentissage modulé 
par la dopamine via un apprentissage par renforcement (RL) entre le cortex et le striatum 
et nous avons ajouté un apprentissage de type Hebbien (HL) au niveau cortical qui ne 
dépend donc pas de la récompense, mais seulement des choix effectués.


Pour tester ce modèle, nous avons utilisé une tâche de type bandit manchot où deux 
stimuli A et B sont présentés à des positions aléatoires (parmi 4). Le stimulus A est associé 
à une probabilité de récompense de 0.75 alors que stimulus B est associé à une 
probabilité de récompense de 0.25. Il est donc évident que le meilleur choix est de choisir 
A. La difficulté étant cependant que ces probabilités ne sont pas initialement connues du 



modèle et requièrent donc d’être approximées par essais-erreurs. Le modèle intact se 
révèle capable de faire cela assez rapidement, c’est à dire en un peu moins de 60 essais.
Après cette première phase, le modèle est lésé au niveau du Globus Pallidus interne (GPi) 
ce qui entraîne l’impossibilité pour les ganglions de la base d’agir sur le comportement. Or, 
on constate dans ce cas là que le modèle est malgré tout capable de maintenir sa 
préférence sur le stimulus A, suggérant qu’un transfert d’apprentissage a eu lieu au sein 
du modèle. Cela peut-être démontré sur ce modèle lésé en utilisant un nouveau couple de 
stimuli qui n’a jamais été vu auparavant. Dans ce cas précis, le modèle se révèle 
incapable de choisir préférentiellement l’un ou l’autre stimulus, démontrant ainsi que les 
ganglions de la base sont nécessaires pour l’acquisition de la préférence initiale mais pas 
pour son expression sur le long terme. Autrement si, l’apprentissage par essais-erreurs a 
été transféré sous forme d’habitudes au niveaux du cortex où la simple apparition d’un 
stimulus provoque sa sélection préférentielle. Cette même expérience a été confirmée 
chez le primate au sein de l’institut des maladies neurodégénératives au sein duquel se 
déroule cette thèse. Via une inhibition reversible (muscimol) au sein du Globus Pallidus 
interne et après entrainement préalable, les primates se montrent capables de conserver 
un choix optimum. Une autre prédiction forte de ce modèle est que le protocole peut-être 
renversé, à savoir que le modèle est initialement lése puis testé en condition intacte. 
L’hypothèse est que si le modèle va effectuer des choix aléatoires durant la première 
phase, les valeurs associées aux stimuli respectifs seront apprises et mémorisées au sein 
des ganglions de la base. Lorsque dans un deuxième temps l’inhibition est levée, ces 
valeurs apprises vont instantanément guider le comportement du modèle lui conférant 
ainsi un comportment optimal en terme de récompense. Cela a été confirmé d’une part 
dans les expériences avec le modèle et d’autres part chez le primate qui ont subi le même 
protocole sur deux jours. Si les singes ont des réponses aléatoires durant le premier jour, 
alors qu’ils sont sous l’action du muscimol, dés les premiers essais du deuxème jour, on 
voit une différence très significative et biaisée vers le stimulus associé à la plus forte 
probabilité de récompense.

Ce travail de thèse propose de reconsidérer la prise de décision comme étant un 
processus distribué entre plusieurs structures et en interaction. Nous avons pu montré 
comment les processus d’acquisition et d’exploitation pouvait être dissocié 
expérimentalement mettant ainsi en exergue le processus de formation des habitudes au 
niveau cortical. Par ailleurs, ce travail propose un nouveau cadre théorique et 
expérimental permettant l’exploration de deux types d’apprentissage en interaction 
constante; apprentissage Hebbien au niveau cortical, et apprentissage par renforcement 
au niveau des ganglions de la base. Ainsi, une façon d'étudier la force relative de ces deux 
types d'apprentissage sur le comportement serait d’effectuer des essais avec choix forcé 
(un seul stimulus présent) avec un probabilité de récompense donnée. En contrôlant le 
nombre de fois qu'un stimulus spécifique a été présenté par rapport à la probabilité de 
récompense associée, nous pourrions mesurer l'influence relative de l'apprentissage de 
renforcement par rapport à l'apprentissage Hebbien. Ainsi, pour un stimulus A (associé à 
un probabilité de récompense RA et une fréquence de présentation FA) et un stimulus B 
(associé à un probabilité de récompense RB et une fréquence de présentation FB), le 
modèle prédit que le choix dépendra du ratio entre les probabilités et fréquences 
respectives.

Enfin, au niveau de notre modèle, nous avons émis l'hypothèse que les habitudes sont 
stockées au sein du cortex bien que nous n’ayons pas pas de preuves expérimentales 



solides quant à cette cette hypothèse. Afin d'évaluer si l'apprentissage cortical Hebbien est 
effectivement responsable de la mémorisation et de l’expressions des habitudes, il serait 
nécessaire de pouvoir inactiver sélectivement l'apprentissage associatif dans le cortex 
dorsolatéral préfrontal ou orbitofrontal et vérifier si les singes seraient à mêm de réussier 
la tâche précédente sans développer des habitudes.

Au final, il est remarquable que ce modèle renverse l'idée relativement ancienne que 
l'automatisme est une caractéristique sous-corticale. Le fait que l'association d'entrée / 
sortie automatique se produise au niveau cortical, contournant un long voyage sous-
cortical et donc économisant des ressources cognitives est un argument écologique fort. 
Si ce modèle est confirmé par d'autres expériences, il ouvre donc de nouvelles questions 
telles que: 
i) Est-ce une spécificité de mammifère?
ii) Une spécificité des primates?
iii) comment ces automatismes sont-ils mis en œuvre chez d'autres vertébrés?
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“The discovery of the habit loop is important
because it reveals a basic truth: When a habit
emerges, the brain stops fully participating in
decision making. It stops working so hard, or
diverts focus to other tasks. ”

— Charles Duhigg

Introduction

Every morning I take out my dog for a walk. We always follow the same route,
because it is the optimal for us. My dog is not on a leash when we are out,
so our path should not include big, busy roads. However, when we first came
to Bordeaux, I didn’t know which route to follow. For this reason, the first
days I explored different paths, and by paying attention in the details I eval-
uated them. When I found the most convenient for us, I started following it
for months. During this exploitation phase, we stopped paying attention to
the surroundings. That’s why one day we had to cross a bridge, as we usually
did, to realize that there were constructions at its end, forcing us to modify
our route. It took me three days to stop crossing the bridge, and even after,
occasionally if I was distracted by my thoughts, I forgot about the construc-
tions and crossed it again. However, my dog needed more than two weeks to
express similar behavior. Why were we unable to adapt to the new situation
after the first failure? What impelled us to persist in our previous successful
route? We were taking this route for more than three months. The reason is
that during our exploitation phase we had formed a new habit, which contrary
to goal-directed actions, here the exploration of the routes, is difficult to alter.

Historically, Aristotle was the first to propose the term habit to describe
acquired skills that are needed by an individual to improve his performances in
order to reach a desired goal. However, the research of habits in neuroscience
is quite recent, and mostly emanates from the work of William James. He
proposed that habits are learned skills that use the optimum amount of fine
movements following a cue, and not require conscious attention. At the end of
19th century, Thorndike, one of Jame’s student, formulated the “Law of effect”,
which states: behaviors followed by convivial consequences are likely to be re-
peated, contrary to behaviors followed by unpleasant consequences are likely
to be stopped. Based on this law, Pavlov introduced the “classical condition-
ing”, where an individual learns the association of a response to an antecedent
stimuli by being an observer of his environment. On the other hand, Skinner
proposed “operant conditioning” (also referred as instrumental) by studying
voluntary behavior; now the individual interacts and changes his environment,
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not just observe it. In this case, he emits an action as a result of stimulus and
depending on if it is rewarded or not (or even punished) then it is reinforced
in order to be more probable to be chosen again or not.

More than a century of investigating habits and still today defining them
is a controversial subject. The term habit, for instance, has a lot of connota-
tions. It can be a routine, as the story with my dog. Preferences can also be
considered as habits, for example one person’s favorite drink (tea or coffee) or
meal (meat or fish). Another type of habits are developed skills as walking or
driving. Aristotle, in his Book II of Nicomachean Ethics, suggests that ethics
is the result of moral habits. For a example, if someone feels fear or confidence
each time in front of a danger that makes him a coward or brave, respectively.
Moreover, the research community has not yet agreed on which features of an
action are fundamental in order to characterize it as habit. However, the most
commonly accepted ones are:

1. Habits are triggered by a specific stimulus.

2. They are actions that have been acquired via experience, usually after
extensive training.

3. Habits are performed automatically, id est they are executed fast com-
pared to goal-directed actions, and unconsciously, without paying atten-
tion.

4. Finally, the most common feature used in experiments to define habits,
is their disengagement from a goal. In other words, this type of actions
are executed even if their outcome has been devaluated.

The non-conscious execution of actions is an essential feature of habit for
survival in species. This characteristic allows attention to be focused some-
where else and not in a specific action. For instance, when an animal is under
attack, it has to flee quickly. If its attention had been focused on how to use its
body to run, then it could not capture its predator moves or find a safe place
to hide. Another example, related to humans this time, can be the procedure
of driving. The driver has to have his full attention to the road in order not to
crash or hit somebody. That would be hopeless if he had to think about how
to change the gears or push the petals. In general, a well-established habit,
depending on the species, is difficult or even impossible to not be expressed
and/or be replaced by another behavior. This persistent of habits is useful in
a lot of cases, but can also be dangerous for some others. For example, when
somebody has health problems and the doctor suggests to follow a healthier
diet, but the patient ends up to choose again the unhealthy snacks that used to
have. In other words, habits have a strong impact on everyday life of species,
either good or bad. Their importance generally in instrumental behavior is
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Introduction

the reason that habits are studied in many different fields, using a variety of
species.

The acceptance of habits being independent of goals, led Dickinson to pro-
pose the division of instrumental behavior into two opposed types: the goal-
directed and habitual. Following this distinction, many experimental studies
were developed in order to identify and investigate the mechanisms in the brain
responsible for the production of these behaviors. The features that these two
types of behavior contain, led to the dominant view of the 20th century: “Novel
behaviors require attention and flexible thinking and therefore are dependent
on cortex, whereas automatic behaviors require neither of these and so are not
mediated primarily by cortex. Instead, it has long been assumed that auto-
matic behaviors are primarily mediated by subcortical structures.” Following
this theory, a crucial role has been assigned to the basal ganglia (a group of
subcortical structures) in habitual learning. The early development of BG
both at phylogenetic and ontogenetic level, and the widespread projections
from cortex to BG support this assumption. Furthermore, these projections
form a mechanism for producing bonds between a sensory input with a motor
output that in other words constitutes habits. By investigating the brain ar-
eas responsible for instrumental behavior contributed to the proposal that two
distinct mechanisms are responsible for expressing this type of behavior: the
action-outcome (A-O) which produces goal-directed actions and the stimulus-
response (S-R) which expresses habits. It is hypothesized that these systems
are implemented in the parallel cortico-basal loops, and either compete for
expression or shift from A-O to S-R system. This resulted in the hypothesis
that both systems depend on striatum, and as an extension on basal ganglia.
However, there are evidence today on the critical role of basal ganglia in goal-
directed actions and the initial formation of habits, but not in the expression
of habits.

My thesis was dedicated to the investigation of the mechanisms of decision
making, with emphasis on the formation of habits in the cortex of primates. I
developed a dynamical model of cortical-basal (CBG) loop that incorporates
an action selection mechanism and learning, through three segregated loops,
that was inspired by previous theoretical and experimental works. This model
makes the hypothesis that basal ganglia are only necessary for the acquisition of
habits while the expression of such habits can be mediated through the cortex.
Furthermore, this model predicts the existence of covert learning within the
basal ganglia ganglia when their output is inhibited. Using a two-armed bandit
task, this hypothesis has been experimentally tested and confirmed in monkey.
We tested it by first inhibiting the GPi and made the monkeys to learn a two
armed bandit task using two never seen stimuli. In such condition, monkey’s
performance is purely random. However, on the second day, we removed the
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inhibition and tested the monkey on the same task. Performance were instantly
quasi perfect demonstrating the monkeys knew the respective value of the two
stimuli even though they were unable to express this knowledge the day before.
Finally on the third day, we suppressed again the GPi output. This time,
monkey’s performances stays at a very good level, demonstrating a transfer
has occurred and we hypothesized this could be attributed to the formation of
a habit at the cortical level as it is the case in the model. Overall, this work
suggests that the classical idea that automatism is a subcortical feature should
be revised.

Plan of this thesis
This dissertation is subdivided in four chapters. The first two chapters are
reviews of the existing bibliography on: the biology of the structures partici-
pating in instrumental learning, and the computational models that implement
instrumental behavior. The last two chapters are describing the architecture
and the properties of our model, as well as the results of the protocols that
have been tested on. The manuscript is organized as follow:

1. An overview of the state-of-the-art of basal ganglia and habits in biolog-
ical bibliography is provided in the first chapter.

2. The second chapter includes a review of computational models imple-
menting action selection and habits. The choice of these models was
based either on their significant contribution in research or the given
inspiration to our model.

3. In the third chapter, I introduce our dynamical model of the BG-cortical
network, which has been developed to investigate the underlying mecha-
nisms of the acquisition and expression of habits. Before the full descrip-
tion of the model, I recite its history by summarizing the two previous
models that it is based on.

4. Finally, I describe the protocols that were used to test either the abili-
ties of our model, or our hypothesis about the elemental mechanisms of
instrumental behavior, followed by the analysis of their results. For two
of these protocols, we also have conducted experiments on monkeys, and
their results are compared to the ones from the model.
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“Neuroscience is by far the most exciting
branch of science because the brain is the most
fascinating object in the universe. Every
human brain is different - the brain makes each
human unique and defines who he or she is. ”

— Stanley B. Prusiner

Chapter 1

Biology Background
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The ability of decision making and learning are essential capacities for the
survival of all living organisms. For example, an animal has to learn where
to forage for food or how to protect itself from predators in order to survive.
The study of animal behavior led to the definition of two learning processes,
the operant and classical conditioning, which in turn led to the foundation of
behaviorism, a school of psychology that studies the mechanisms of learning
and action selection.

At the end of 19th century, Thorndike worked on alearning theory that
led to the formulation of the “Law of effect”, which states: behaviors followed
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by convivial consequences are likely to be repeated, contrary to behaviors fol-
lowed by unpleasant consequence are likely to be stopped. Based on this law,
Pavlov [1927] introduced the “classical conditioning”, where an individual is an
observer of the relationships among the events in the world. He initially con-
ducted experiments on dogs, where he presented a stimulus (rang a bell) before
giving them food. After training he noticed that the dogs produced saliva im-
mediately after the stimulus and before the presentation of the food. Pavlov
found that the interval between the conditioned stimulus (CS; sound of the
bell) and the appearance of the unconditioned stimulus (UCS; food) affected
the strength and the time the dog needed to learn the conditioned response
(CR; saliva). In summary, the difference between the classical and operand
conditioning is that in the first case, behavior is learned as a response of an
antecedent stimuli, whereas in the latter, behaviors are strengthened or weak-
ened by their consequences (i.e. reward or punishment). On the other hand,
the term “operant conditioning” (also known as “instrumental conditioning”)
was originated by Skinner [1950], who believed that the observation of the ex-
ternal causes of a behavior is important and not the internal, like thoughts and
motivations. In instrumental conditioning, an individual has to obtain knowl-
edge for the actions outcome in an environment through experience, before
to acquire this knowledge. Said differently, an individual will emit an action,
and, if it provides a reward, then it will be reinforced in order next time to
be more likely to be chosen again, although if it provokes punishment, then it
will be diminished to be less likely to be chosen. This behavior is equivalent to
what is called voluntary behavior. In summary, in classical conditioning the
subject learns through observation, on contrary to the operant where he learns
through exploring the outcomes of his choices.

These two theories were the starting point of instrumental behavior re-
search on animals, which led to the realization that in order to perform cor-
rectly tasks that need this type of behavior, it is necessary the knowledge of:
(1) the outcome’s value, and (2) the relationship between an action and its
outcome are necessary. Yin and Knowlton [2006] highlighted that the manip-
ulation of these variables by the experimenter had altered dramatically the
studies of instrumental behavior. A consequence of this realization was the
division of instrumental behavior into two types: goal-directed and habitual.
The main feature used to differentiate them was their dependency with the
expected outcome [Dickinson, 1985; Colwill and Rescorla, 1995; Hammond,
1980; Dickinson and Balleine, 1993]. More precisely, a goal-directed action is
driven by the outcome it leads to, whereas a habit is carried out even in the
case of outcome devaluation.

Hirsh [1974] was the first to propose a crucial role of basal ganglia (BG)
in habitual learning. His argument was based to the early development of BG
both in phylogeny and ontogeny, and also to the widespread projections from
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1. Biology Background

cortex to the main input of BG. He proposed that these projections form a
mechanism for producing bonds between a sensory input with a motor output
that in other words constitutes habits. The crucial role of BG in this type of
learning has been supported also from studies in a variety of species and tech-
niques, as well as from computational models [Seger and Spiering, 2011; Frank,
2005; Yin and Knowlton, 2006; Graybiel, 2008; Balleine et al., 2009; Packard,
2009; Ashby and Ennis, 2006; Cohen and Frank, 2009]. Data from studies on
rodents and primates revealed the participation of striatum in two distinct sys-
tems, and further the existence of parallel functional cortico-striato-thalamic
loops responsible for processing different functional types of information (e.g.
motor or cognitive) [Yin and Knowlton, 2006; Albin et al., 1989; Parent and
Hazrati, 1995a].

In this chapter, firstly I summarize the anatomy, as well as the internal
and external connectivity of basal ganglia. Also, I refer the existing theories
about the functional role of the pathways that are formed inside BG. It has
been shown that BG incorporate learning through a dopaminergic signal. For
this reason, I describe the role of dopamine in learning, as well as the learning
rule that they follow. Finally, I introduce the term habit, and because the
definition of habit is a controversial subject, I present different definitions that
have been proposed. The description will be kept short, because the focus
of this part is the reader to understand the basic and relevant to the model
properties (for more details, please refer to the indicated bibliography in the
text).

1.1 Anatomy of the basal ganglia

Even though Willis (1667) and Swedenborg (1740) (as cited in Ding and Gold
[2013]) talked about the role of striatum (main input of BG) in sensation, their
theories were overshadowed by clinical observations in humans of movement
disorders. Pathological changes in the basal ganglia have been recognized
in diseases as Parkinson and Huntington. This focus of research in motor
symptoms led to intensive investigation of the BG role in movement. However,
at the end of the previous century, clinical studies indicated the involvement of
BG in various cognitive functions [Haber, 2003], such as learning and memory
[Hélie et al., 2015]. However, their exact role is still unknown.

Most studies investigating the role of BG during instrumental learning
conducted experiments on rodents and primates. For that reason, I will briefly
describe the anatomy and connectivity of BG in those species specifically.
The description is focused on the structures and their connectivity that are
implemented in the model. For more extensive details please refer to the
articles of Parent and Hazrati [1995a,b], Haber [2003] and Utter and Basso
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1.1. Anatomy of the basal ganglia

[2008], which are excellent for this purpose.

1.1.1 Structures

The basal ganglia are a group of interconnected structures: striatum (Str),
subthalamic nucleus (STN), globus pallidus (GP; external [GPE] and internal
[GPi]), substantia nigra (SN; pars compacta [SNc] and pars reticulata [SNr])
and ventral tegmental area (VTA). Their location in the brain is shown by
sagittal view in Figure 1.1a, and coronal view in Figure 1.1b.

Striatum (Str)

Striatum comprises of the caudate nucleus, the putamen and the nucleus ac-
cumbens (in primates [Figure 1.2]; dorsal and ventral compartments in ro-
dents). It is composed principally by medium spiny neurons (MSN) that are
projection neurons [Parent and Hazrati, 1995a; Wickens, 1997]. The main
neurotransmitter of MSNs is γ-aminobutyric acid (GABA), although a variety
of neuroactive peptides are also expressed, such as substance P, enkephalin,
dynorphin and neurotensin [Parent and Hazrati, 1995a]. These neurons are
separated in two types depending on the dopamine receptors that they con-
tain (D1, D2).

MSNs are usually silent and require concurrent and numerous excitatory
cortical input in order to be activated. A variety of interneurons also exist
in striatum. One of the types is the GABAergic fast spiking interneurons,
which are responsible fro the silence of MSNs. Another type of interneurons
are the aspiny cholinergic interneurons that are characterized by spontaneous
firing activity, and therefore are referred as tonically active neurons (TANs).
Contrary to MSNs, TANs need a relatively small number of extrinsic synap-
tic input to alter their patterns of activity. They receive excitatory cortical
and thalamic input, and dopaminergic input from substantia nigra. In turn,
they target primarily MSNs, but also GABAergic interneurons. It has been
proposed that TANs participate in reward based learning by modulating the
activity of MSNs [Tepper and Bolam, 2008]. The proportion of MSNs versus
interneurons is higher in primates (3:1) than the rats (9:1) [Parent and Hazrati,
1995a].

Striatum receives dopaminergic input into MSNs from SNc and VTA [Utter
and Basso, 2008], and glutamenergic input from multiple nuclei in thalamus
[Bar-Gad et al., 2003]. MSNs, also, have a collateral arborization to themselves
or adjacent cells. The two types of MSNs project in segregate way to GPi/SNr
(D1 receptors) and GPe (D2 receptors).

Extrinsic afferents arise from all cortical areas. Even if there is major
convergence at striatal level, anatomical and physiological studies have shown
that topography is preserved, i.e. functionally distinct cortical areas project in
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1. Biology Background

(a) It can be found as material of a course of the Department of
Psychology from the University of Virginia

(b) As in Leisman et al. [2013]

Figure 1.1: A schematic illustration of the structures composing basal ganglia:
(a) their location within the brain, (b) coronal plane
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1.1. Anatomy of the basal ganglia

DMS	

DLS	

Nacc	Sh

Nacc	C

Figure 1.2: As in Liljeholm and O’Doherty [2012]. Schematic representation
of striatal compartments and their connectivity with cortex. Afferents aris-
ing from different cortical areas project to different sub-regions of the stria-
tum, which project back to the particular cortical areas via the basal-thalamo-
cortical pathway. The circle represents inhibitory connection, whereas the ar-
row excitatory. DMS, dorsomedial striatum; DLS, dorsolateral striatum; GPi,
internal segment of globus pallidus; VP, ventral pallidum; VA, ventral ante-
rior; DM, dorsomedial; VL, ventrolateral; VM, ventromedial; Nacc C, nucleus
accumbens core; Nacc Sh, nucleus accumbens shell.

different parts of striatum (Figure 1.2). Based on cortical input, striatum in
primates is divided into: (1) ventral component, which includes n. accumbens,
ventromedial portions of the caudate and putamen, and (2) dorsal including
the rest caudate and putamen, which can further divided into associative,
comprising of caudate and the anterior putamen, and sensorimotor, including
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the posterior putamen [Parent and Hazrati, 1995a]. Homologous division exists
also in rodents, the dorsomedial (DMS) and dorsolateral (DLS) striatum, which
corresponds to the associative and sensorimotor, respectively [Joel and Weiner,
2000].

Globus Pallidus (GP)

The Globus Pallidus is separated into two nuclei: the external (GPe) and the
internal (GPi). In rodents, the latter is referred often as the endopeduncular
nucleus.

As mentioned before the two nuclei receive GABAergic input from different
types of medium spiny neurons. MSNs with substance P are connected with
GPi and with enkephalin are connected with GPe. Although, there are striatal
neurons that project to both. Further, anatomical evidence disclosed connec-
tivity directly from GPe to GPi [Parent and Hazrati, 1995b]. In addition, GPe
projects to STN, and GPi sends its output to thalamus.

Subthalamic Nucleus (STN)

Traditionally, STN was considered as an intrinsic nucleus. However, anatom-
ical studies revealed direct cortical projections to STN that makes it also an
input nucleus. In contrast with cortical input to striatum, STN receives exci-
tatory input form somato-motor areas of frontal lobes [Nambu et al., 2000 b;
Mink, 1996].

STN has reciprocal connections to GPe. Its excitatory projections are the
only ones in BG circuity. Anatomical studies has shown that STN projects
widely and to a variety of GPi neurons [Hazrati and Parent, 1992 a,b].

Substantia Nigra (SN)

Substantia Nigra pars reticulata (SNr) is the other output nuclei of BG. Studies
in non-human primates and rodents suggest a role of SNr in movement, but
more recent work supports its involvement also in cognitive processes [Utter
and Basso, 2008]. Like GPi, it receives inhibitory input from striatum and
sends inhibitory input to thalamus.

On the other hand, substantia Nigra pars compacta (SNc) provides dopamin-
ergic input to striatum through its DA cells, and receives back from it. How-
ever, the reciprocal connections are neither topographical nor equal in the size
of the input. According to Haber [2003]:

“The ventral striatum receives a limited midbrain input, but projects
to a large region. In contrast the dorsolateral striatum receives a
wide input, but projects to a limited region”.
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1.1.2 External connectivity

As Utter and Basso [2008] has emphasized, BG influence many neuronal path-
ways and information processing systems, because of their major input from
the entire cortex and their output through thalamus back to cortex. Sev-
eral studies have shown that different cortical areas project to explicit regions
of striatum, from which they receive back input. Thereby, first Alexander
et al. [1986] proposed a model composed of a five parallel segregate infor-
mation processing loops (motor, oculomotor, dorsolateral prefrontal, lateral
orbitofrontal). However, a lot of evidence later suggested that not all these
five loops are closed, but the existence of cross-talk among the loops. These
evidence exhorted several researchers to revise this model, and finally suggest
the existence of only three functionally defined loops, the associative, the sen-
sorimotor, and the limbic [Parent and Hazrati, 1995a; Haber, 2003; Seger and
Spiering, 2011; Hélie et al., 2015].

Based on this theory and combined with structural evidence, it has been
proposed that striatum is divided into three components: the motor (dorso-
lateral striatum in rodents), which includes posterior putamen, the associative
(dorsomedial striatum in rodents) that consists of all of the caudate and the
anterior putamen, and finally nucleus accumbens, ventromedial caudate and
putamen comprising the ventral component (Figure 1.3) [Hélie et al., 2015;
Parent and Hazrati, 1995a; Liljeholm and O’Doherty, 2012; Seger and Spier-
ing, 2011].

Each component is part of one of the functional loops and receives input
from particular cortical areas. Sensory and motor cortices send to motor stria-
tum, but associative receives from frontal and parietal association cortices.
Finally, amygdala, hippocampus, medial orbitofrontal and anterior cingulate
cortices are connected with the ventral striatum. The structural and func-
tional topography is preserved through the BG, to thalamus and back to cor-
tex [Haber, 2003]. However, the integration of information across functional
circuits is essential for forming behavioral responses. Haber [2003] suggested
that the two intrinsic networks of striato-nigro-striatal and thalamo-cortico-
thalamic are responsible for a continuous feedforward mechanism of informa-
tion flow.

Nowadays, it is widely accepted that the associative loop is involved in
goal-directed actions by monitoring recent actions and anticipating their con-
sequences, contrary to the sensorimotor loop, which is related to movements
as a response to distinct stimuli, and is independent from reward expectancy,
characteristics of habitual behavior [Yin and Knowlton, 2006].
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Figure 1.3: As in Seger [2008]. Corticostriatal loops.

1.1.3 Anatomical differences in vertebrates

Invertebrates, despite their small brain size, can perform highly optimized
functions for specific behaviors. Although, these functions are part of a ge-
netically pre-programmed fixed repertoire of behaviors [Doya, 1999]. However,
decision making is an ability that all vertebrates share, down from Caenorhab-
ditis elegans up to humans. Someone can claim that this is correlated with the
brain size, however the brain size varies a lot among these species. The basal
ganglia, nonetheless, are present in all species, and they have been associated
with voluntary behavior and procedural learning. Figure 1.4 shows that the
pallium (analog to cortex in mammals) in lower vertebrates is smaller than the
subcortical structures. As a result, the basal-thalamic loop generates most of
the behaviors compared to pallium. In birds, on the other hand, the pallium
is bigger and is more interconnected with the basal-thalamic loop, such that
both parts are used in order distinct behaviors to be generated. Finally, the
mammalian cortex is much larger than the subcortical structures, and con-
sequently becomes the main structure that generates behaviors. However, it
sends strong input to basal ganglia, and receives back from thalamus. Through
this connectivity BG participate in the finally decisions produced by cortex.

These differences in the connectivity among the species are responsible
for the variety of abilities that they contain. For this reason, whenever an
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Figure 1.4: As in Boraud [2015]. Schematic illustration of the connectivity of
basal ganglia with the rest of the brain, and their contribution in expression
of behaviors through the prism of evolution of vertebrates.

experiment is conducted, it must be taken in account the capabilities of the
species that is used, and not generalize the results for all species.

1.1.4 Pathology

The association of BG dysfunction with particular diseases, such as Parkinson
and Huntington, led to the intensive investigation of their role in movement.
Although, different disorders affect different parts of BG. However, from stud-
ies of clinical abnormalities combined with the known connectivity among BG
and cortex, it has been concluded that BG participate in voluntary motor and
cognitive behavior, procedural learning as well as in control of emotions. Some
of the most famous diseases associated with BG are: Parkinson, Huntington
and obsessive-compulsive disorder.

Parkinson’s Disease (PD)
Rigidity, tremor, akinesia (loss of voluntary movements) and bradykineseia

(extremely slow movements and reflexes) are some of the motor symptoms en-
countered in Parkinson’s disease. The degeneration of dopamine (DA) neurons
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in the SNc is responsible for these symptoms, however still today, the cause
of PD is unknown. The loss of DA is hypothesized to generate an imbalance
between the activity of the direct and indirect pathways [DeLong, 1990]. In or-
der to conterbalance this loss, patients are prescribed Levodopa (L-Dopa) that
is converted to dopamine in the brain. L-Dopa is the most effective medica-
tion of PD, however after extended treatment, the efficacy of L-Dopa becomes
irregular. It has been observed that lesions on GPi also help the control of
the symptoms. Benabid [2003] was the first to observe that high frequency
stimulation could improve motor symptoms of PD, so he proposed the use
of electrical stimulation to treat them by damaging permanently brain tis-
sue. Because of the inconsistencies associated with drug therapy, Deep Brain
Stimulation (DBS) procedure brought a breakthrough in the treatment of the
syptoms of PD. DBS involves the implantation of a neurostimulator (“brain
pacemaker”) that sends electrical stimulus to specific targets in the brain.

Huntington’s Disease (HD)
Characteristic symptoms of HD include involuntary spastic movements of

the extremities. Degeneration of the GABAergic medium spiny projection
neurons in the striatum results in the disruption of proper functioning of the
entire BG circuity. Today, there is no cure for HD. However, after the successful
use of DBS for PD, the exploration of DBS treatment for HD revealed the
amelioration of motor symptoms in a patient with advanced HD by bilateral
stimulation of GPi [Moro et al., 2004].

Obsessive-Compulsive Disorder (OCD)
Patients with OCD are plagued by unreasonable thoughts and fears (obses-

sions), which produce anxiety that lead to repetitive behaviors (compulsions).
Human imaging studies of this disorder have shown cortico-striatal dysfunc-
tions, such as an increased or abnormal functional connectivity in a subset
of cortico-striatal circuits [Shepherd, 2013]. The dysfunctionality has been
located to the anterior part of the caudate nucleus and the ventral striatum
[Graybiel, 2008]. Furthermore, Gillan et al. [2011] observed that an insensi-
tivity to outcome devaluation and slips of action exists in OCD. Dolan and
Dayan [2013] based on evidence by Daw et al. [2011] and Maia et al. [2008] of
abnormalities in components of the model-based system in OCD, concluded
that the habitual system overdominate the goal-directed in OCD.

1.2 Functional pathways

1.2.1 D1/D2 Medium spiny neurons (MSN)

Medium spiny neurons contain two types of dopaminergic (DA) receptors, D1
and D2, which are G-protein coupled receptors [Utter and Basso, 2008]. The
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bounding of D1 receptors with DA results in depolarization of the neuron,
in contrast to D2 receptors, which results in hyperpolarization [Sealfon and
Olanow, 2000].

That means that the role of D1 receptors is the enhancement of the cortical-
striatal influence, and the role of D2 is the reduction. Evidence indicate that
striatal neurons projecting to the two compartments of GP have different re-
ceptors depending on their target. The ones with D1 project to GPi, but the
ones with D2 project to GPe. This dichotomy inspired Albin et al. [1989] to
suggest the existence of two pathways: the direct (STR-GPi/SNr), and the
indirect (STR-GPe-STN-GPi/SNr). This led to the assumption that the role
of the direct pathway is to facilitate movement, whereas the role of the indirect
inhibits movements [Gerfen et al., 1990]. Although, new evidence shows that
there is co-localization of D1 and D2 receptors on striatal neurons [Aizman
et al., 2000; Nadjar et al., 2006]. Through an operant task on mice, Cui et al.
[2013] observed that both types of MSNs increased their activity during an
action, and remained silent when mice were not moving, which contradicts the
theory by [Albin et al., 1989].

1.2.2 Direct/indirect/hyperdirect pathways

Albin et al. [1989] were the first to propose a model of BG, explaining the
functional role of the internal connectivity of BG(Figure 1.5a). This model
suggests the existence of two pathways, and it’s able to explain different types
of behavior in healthy states and in Parkinsonnism. The ‘direct’ pathway con-
tains STR as the main input structure, which receives input from cortex, and
projects to the BG outputs, GPi and SNr. Although the ‘indirect’ pathway
also contains STR as an input structure, but this time its signal reaches the
BG outputs through GPe and STN. As discussed previously, STR includes two
types of MSNs with different dopamine receptors (D1 and D2), which project
in segregate way to GPi/SNr (D1 receptors) and GPe (D2 receptors). Evidence
showed that dopamine excites D1 receptors, and enhance cortico-striatal influ-
ence, but inhibits D2 receptors leading to reduce of cortico-striatal influence.
Based on this differentiation, Albin proposed that the role of the direct pathway
is to facilitate movements, contrary to the indirect pathway which is supposed
to suppress them. Following this theory, the loss of dopamine that is observed
also in Parkinsonism, induces the decrease of direct pathway’s activity and in-
creases the indirect’s, impending voluntary movement (Figure 1.5b). However,
this model is not able to explain other symptom’s of Parkinson’s disease, such
as tremor and rigidity, or evidence for co-existence of D1 and D2 receptors in
a single neuron [Bar-Gad et al., 2003].

Few years lated, Mink [1996] proposed a modification of Albin’s model,
suggesting a center-surround organization between the interaction of the two
pathways. In this model, the direct pathway provides an excitatory center
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(a)

(b)

Figure 1.5: BG circuitry in the normal and parkinsonian state. Boxes corre-
spond to projection neurons, ovals to interneurons. The glutamatergic neurons
correspond to red boxes and empty endings; the gabaergic neurons correspond
to blue boxes and filled endings; the dopaminergic neurons of the SNc cor-
respond to the green box and the arrow tail ending. For the sake of clarity,
we characterized the MSN according to their dopaminergic receptor and re-
placed most of the original notations by the ones presented previously in this
manuscript; SC stands for superior colliculus. Impacted areas are shaded in
yellow; diminished projections are dashed and grey; augmented projections are
wider. Modification from Albin et al. [1989] by Liénard [2013], as well as the
caption.
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by inhibiting GPi and focusing to the desired movement, and the indirect
provides inhibitory surroundings by exciting GPi and so inhibiting all the
other competing movements. Further, anatomical studies has shown that STN
projects widely and to more GPi neurons compared to striatal connections that
are topographically and functionally segregated [Hazrati and Parent, 1992 a,b],
providing a crosstalk mechanism among different functional areas in addition
to the striatal interneurons. These evidence corroborate the existence of a
‘center-surround’ model in BG.

Striatum

GPeDirect "Go"
pathway
Indirect "NoGo"
pathway
Hyperdirect pathway
Shared pathways
Modulatory projections

GPi / SNr 

Thalamus

CortexVTA

SNc STN

Inhibitory / GABA
Excitatory / Glutamate
Modulatory / Dopamine

Figure 1.6: As in Seger [2008]. Main pathways through the basal ganglia.

Nambu et al. [2002] expanded this model to include the discovery of the
fast ‘hyper-direct’ pathway, where STN receives cortical input (mainly from
motor areas) and project to BG outputs [Nambu et al., 2000 b]. As a result,
they also revise the functional role of the pathways. They proposed that this
third pathway receives cortical input before the initiation of a movement, in
order to inhibit all movements prior the facilitation of the execution of only
one by the direct pathway. Finally, the indirect pathway signals the end of
the movement by increasing GPi activity. All the pathways proposed here are
shown in Figure 1.6.

Another equally important loop for the normal functioning of BG is the
striato-nigro-striatal pathway. SNc dopaminergic neurons receive and project
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back to striatum, participating in learning [Doya, 1999]. It has been shown
that the ventral part of striatum projects extensively to SNc but receives lim-
ited input. The reverse connectivity exists also between SNc and dorsalateral
striatum. This arrangement promotes the flow of information from limbic to
motor system [Haber, 2003].

1.3 The role of dopamine

There are two types of dopamine: the phasic and the tonic. The tonic release
is a level of dopamine outside the synapse. Although, still today it is unknown
what is it for. It may play a role on the balance exploration/exploitation, and
it is certainly important for motor functioning, because it is the one which is
decreased in Parkinson’s disease, and on which L-DOPA and dopaminergic ag-
onist provided to Parkinsonian patients work. On the hand, phasic dopamine
is released in a specific level, which increases when unexpected reward is re-
ceived, or decreases when an expected reward is not given.

In this section, I refer only to the phasic dopamine, because is an important
element in instrumental learning.

1.3.1 Reward prediction error

The dopamine neurons are located mostly in substantia nigra pars compacta
(SNc), and ventral tegmental area (VTA). These neurons release the neuro-
transmitter dopamine in the frontal cortex and striatum. The characteristic
that distinguishes them from other midbrain neurons is the polyphasic long im-
pulses discharged at low frequencies. These neurons have been correlated with
reward characteristics of somatosensory, visual, and auditory stimuli [Schultz,
1998].

Most of the dopamine neurons show phasic activations when animals receive
unexpected reward, independently of the nature of the reward; e.g. different
food objects or liquids (Figure 1.7 top; Romo and Schultz [1990]). A small
amount of these neurons show phasic activation also to the presentation of
primary aversive stimuli [Mirenowicz and Schultz, 1996]. The phasic responses
of the dopamine neurons depend on the unpredictability of reward. That is the
reason why they are more active during the learning phase, but stop responding
to an already conditioned stimuli; i.e. the animal knows the existence and
the expected timing of the reward (Figure 1.7 middle; [Ljungberg et al., 1992;
Mirenowicz and Schultz, 1994]). By contrast, when a predicted reward does not
occur results in depression of dopamine neurons (Figure 1.7 bottom; [Hollerman
and Schultz, 1996]). If the reward delivery is delayed for 0.5 to1.0s, at the time
it is expected the neurons will be depressed, and activation will occur after the
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W. SCHULTZ4

fails to occur, even in the absence of an immediately preced-
ing stimulus (Fig. 2, bottom) . This is observed when animals
fail to obtain reward because of erroneous behavior, when
liquid flow is stopped by the experimenter despite correct
behavior, or when a valve opens audibly without delivering
liquid (Hollerman and Schultz 1996; Ljungberg et al. 1991;
Schultz et al. 1993). When reward delivery is delayed for
0.5 or 1.0 s, a depression of neuronal activity occurs at the
regular time of the reward, and an activation follows the
reward at the new time (Hollerman and Schultz 1996). Both
responses occur only during a few repetitions until the new
time of reward delivery becomes predicted again. By con-
trast, delivering reward earlier than habitual results in an
activation at the new time of reward but fails to induce a
depression at the habitual time. This suggests that unusually
early reward delivery cancels the reward prediction for the
habitual time. Thus dopamine neurons monitor both the oc-
currence and the time of reward. In the absence of stimuli
immediately preceding the omitted reward, the depressions
do not constitute a simple neuronal response but reflect an
expectation process based on an internal clock tracking the
precise time of predicted reward.

Activation by conditioned, reward-predicting stimuli
About 55–70% of dopamine neurons are activated by

conditioned visual and auditory stimuli in the various classi-
cally or instrumentally conditioned tasks described earlier
(Fig. 2, middle and bottom) (Hollerman and Schultz 1996;
Ljungberg et al. 1991, 1992; Mirenowicz and Schultz 1994;
Schultz 1986; Schultz and Romo 1990; P. Waelti, J. Mire-
nowicz, and W. Schultz, unpublished data) . The first dopa-
mine responses to conditioned light were reported by Miller
et al. (1981) in rats treated with haloperidol, which increased
the incidence and spontaneous activity of dopamine neurons
but resulted in more sustained responses than in undrugged
animals. Although responses occur close to behavioral reac-
tions (Nishino et al. 1987), they are unrelated to arm and
eye movements themselves, as they occur also ipsilateral toFIG. 2. Dopamine neurons report rewards according to an error in re-

ward prediction. Top : drop of liquid occurs although no reward is predicted the moving arm and in trials without arm or eye movements
at this time. Occurrence of reward thus constitutes a positive error in the (Schultz and Romo 1990). Conditioned stimuli are some-prediction of reward. Dopamine neuron is activated by the unpredicted what less effective than primary rewards in terms of responseoccurrence of the liquid. Middle : conditioned stimulus predicts a reward,

magnitude and fractions of neurons activated. Dopamineand the reward occurs according to the prediction, hence no error in the
prediction of reward. Dopamine neuron fails to be activated by the predicted neurons respond only to the onset of conditioned stimuli and
reward (right) . It also shows an activation after the reward-predicting stim- not to their offset, even if stimulus offset predicts the reward
ulus, which occurs irrespective of an error in the prediction of the later (Schultz and Romo 1990). Dopamine neurons do not distin-reward ( left ) . Bottom : conditioned stimulus predicts a reward, but the re- guish between visual and auditory modalities of conditionedward fails to occur because of lack of reaction by the animal. Activity of

appetitive stimuli. However, they discriminate between ap-the dopamine neuron is depressed exactly at the time when the reward
would have occurred. Note the depression occurring ú1 s after the condi- petitive and neutral or aversive stimuli as long as they are
tioned stimulus without any intervening stimuli, revealing an internal pro- physically sufficiently dissimilar (Ljungberg et al. 1992;cess of reward expectation. Neuronal activity in the 3 graphs follows the P. Waelti, J. Mirenowicz, and W. Schultz, unpublishedequation: dopamine response (Reward) Å reward occurred 0 reward pre-

data) . Only 11% of dopamine neurons, most of them withdicted. CS, conditioned stimulus; R, primary reward. Reprinted from
Schultz et al. (1997) with permission by American Association for the appetitive responses, show the typical phasic activations also
Advancement of Science. in response to conditioned aversive visual or auditory stimuli

in active avoidance tasks in which animals release a key to
avoid an air puff or a drop of hypertonic saline (Mirenowicztogether, the occurrence of reward, including its time, must
and Schultz 1996), although such avoidance may be viewedbe unpredicted to activate dopamine neurons.
as ‘‘rewarding.’’ These few activations are not sufficiently
strong to induce an average population response. Thus theDepression by omission of predicted reward
phasic responses of dopamine neurons preferentially report
environmental stimuli with appetitive motivational value butDopamine neurons are depressed exactly at the time of

the usual occurrence of reward when a fully predicted reward without discriminating between different sensory modalities.

J857-7/ 9k2a$$jy19 06-22-98 13:43:40 neupa LP-Neurophys

 by 10.220.33.1 on August 22, 2016
http://jn.physiology.org/
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Figure 1.7: As in Schultz et al. [1997]. Depending on an error in reward
prediction, the dopamine neurons report the predictability of a reward in three
cases: top, delivery of unpredicted reward, middle, delivery of predicted reward
to a conditioned stimulus, and bottom, lack of an expected reward as a result
of a conditioned stimulus.
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reward is given. However, earlier deliveries of reward than habitual causes an
activation, but not depression at the habitual time.

1.3.2 Reinforcement learning

Computational neuroscience expedited the work on instrumental learning. The
pioneering work of Sutton and Barto [1998] that introduces the essential char-
acteristics of reinforcement learning (RL) provided the impetus for the experi-
mental neuroscientists to identify neural signals equivalent to the vital elements
of RL models [Daw et al., 2005; Daw and Doya, 2006]. Reinforcement learning
is the learning of actions that maximizes the received reward. The learner is
ignorant about the outcome of his actions, and must discover them by choosing
different actions and observe their consequences. Put it in different words, he
has to explore in order to make better actions in the future, but also exploit
previously discovered effective in producing reward actions. In summary, the
agent in each state has to take an action and wait to obtain or not a reward.
After the delivery of the reward, the agent estimates the error between his
prediction of being rewarded and the actual reward, and then updates his es-
timation. As a result, if he gets an unexpected reward then he will increase
the value of the action, so next time will be more probable to choose it, but
if he does not get an expected reward, he will decrease the value to be less
probable to choose it again. In this way, associations between an action and
its outcome are established, thereby facilitating the decision making procedure.

Doya [1999] observed that the cortico-striatal synapses follow the reinforce-
ment learning module to evaluate a given state and produce an action based on
this evaluation. The learning among the neurons emerges from the strength of
the synapses. Furthermore, a large literature provides evidence that dopamine
fires above baseline after unexpected reward, and below when expected reward
has not been delivered [Montague et al., 1996; Wickens, 1993; Hollerman and
Schultz, 1998; Bar-Gad et al., 2003]. So, this dopaminergic signal is competent
for the role of reward-mediating training signal [Schultz, 2002; Ashby et al.,
2007; Seger and Spiering, 2011]. In order for a synapse to be strengthen, it re-
quires strong presynaptic and postsynaptic activation, and release of dopamine
[Calabresi et al., 1996; Arbuthnott et al., 2000; Wickens, 1990, 1993; Ashby
et al., 2007]. The cortical neurons send glutamate input to the striatal neu-
rons, which they receive it through N-methyl-D-aspartate (NMDA) receptors.
NMDA receptors have a high threshold for activation, which is an impor-
tant factor for discriminating the actual input from noise, and consequently
crucial in long-term potentiation (LTP). In this way, it is ensured that only
the synapses driven by the cortical cells responding to the stimulus will be
strengthen. Cortico-striatal synapses receive dopaminergic input originated
by VTA and SNc. In the case of no postsynaptic activation or dopamine re-

From goal-directed actions to habits 21



1.4. Habits

lease, long-term depression (LTD) will occur; i.e. the synapses will be weaken
[Arbuthnott et al., 2000; Calabresi et al., 1996]. Another necessary feature
of dopamenergic signal to striatum that makes it ideal as learning signal, is
that DA is released in the relevant synapses quickly, and also is cleared quickly
from the synapses. If it is not, either the activation of the neurons will not be
enough and LTD will occur, or in the next trial inappropriate synapses will be
strengthen [Hélie et al., 2015].

In contrast, cortical DA levels change slowly. The single delivery of reward
increases DA levels in PFC over the baseline for several minutes [Seamans
and Robbins, 2009; Feenstra and Botterblom, 1996]. That means that all the
active synapses in this period will be strengthen regardless of whether it is
associated with the appropriate behavior or not. Thus, Doya [1999] identified
cortical learning as Hebbian learning. In this case, LTP occurs at synapses
when pre and post synaptic activity is strongly correlated and LTD when is
weakly correlated [Ashby et al., 2007; Hélie et al., 2015].

1.4 Habits
Historically, Aristotle was the first to propose the term habit, in order to
describe different types of acquired skills of an individual needed to improve his
performances leading to a desired goal [Bernacer and J.I., 2014]. The first type
is the theoretical, and regards the habits of basic associations that acquired by
comprehension ( “knowing that x is so”) and not repetition, which can be used
after for understanding new concepts and propositions. An example is the
perception of mathematics, in which someone has to understand the theorems
or the concepts to become a mathematician, and not only repeat operational
routines. A behavioral habit is the learned best option for the agent in a
situation (“knowing how to behave”). The last type, the technical habits, are
acquired motor skills needed to achieve an external goal.

The genealogical map of the concept of habit by Barandiaran and Di Paolo
[2014] (Figure 1.8) shows the history, starting from Ancient Greece to the late
1980s, and th richness of this notion. They authors identify two major trends,
consisting of seven schools of thought that include 77 thinkers. However, the
research of habit in neuroscience is quite recent, and mostly emanates from
the work of William James. He proposed that habits are learned skills, which
use the optimum amount of fine movements (need the least effort and are the
most precise) as response to a cue, and do not require conscious attention. As
Bernacer and J.I. [2014] describes, Jame’s proposal was based on association-
ism trend, which follows the idea that:

“... habits are based on the plasticity of matter, and they subserve
adaptive purposes. Moreover, a habit can be chunked into smaller
pieces that are automatically assembled: this is the main feature
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of associationism, and the start point of the Pavlovian stimulus-
response pairing.”

Thorndnike, Pavlov and Skinner followed, and, based on their studies of an-
imal behaviors, establish a new trend, the behaviorism, which supports that
behavior can be described and explained through external observations (from
the environment) without making ultimate reference to internal psychological
processes (the mind, internal state). Soon after the advent of computational
and information theory, the notion of habit was replaced by “mental repre-
sentation” [Tolman, 1948; Chomsky, 1959; Fodor, 1983]. This led to the use
of artificial neural networks in computational neuroscience. These networks
composed by a number of units and weights that measure the strength of
the connections among these units, which are analogous to neurons and their
synapses with other neurons.

1.4.1 Definition of Habits

The definition of habit varies among research domains, such as cognitive psy-
chology, cognitive neuropsychology, and animal learning.

In cognitive psychology, the term habit learning was not used at first, but
from the late 1960s through the 1980s, several concepts were embodied with
this theory [Seger and Spiering, 2011]. Graf and Schacter [1985] defined im-
plicit memory as the previous experience used to ease performance on a task
without conscious or intentional recollection of those experiences. In implicit
memory tasks, priming improve in accuracy and/or processing time after re-
peated stimuli. Three rules for implicit learning were delineated by Seger
[1994][p. 164]:

1. “the knowledge gained in implicit learning is not fully accessible to con-
sciousness, in that subjects cannot provide a full .. verbal account of
what they have learned”,

2. “information [learned] .. is more complex than a single simple association
or frequency count”, and

3. “implicit learning does not involve processes of conscious hypothesis test-
ing but is an incidental consequence of the type and amount of cognitive
processing performed on the stimuli”.

Further, Seger and Spiering [2011] identified as influential to the notion of
habit the concept of automaticity that was developed by Shiffrin and Schneider
[1977], who characterized a process to be automatic based on the following
criteria:

1. short-term memory capacity limitations do not constrain automatic pro-
cesses, in which attention is not required
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2. after the initiation of an automatic process, it is completed without the
subjects’ intention, as a result of a too quick performance

3. extensive training is required in order a shift from controlled to automatic
processing to occur

4. the modification of an automatic process is difficult, once it has been
acquired.

The investigation of learned behaviors, such as habits, led Cohen and Squire
[1980] to define procedural learning in cognitive neuropsychology as “operations
governed by rules or procedures”. However, this term was insufficient to de-
scribe all types of learning and memory, and therefore the “non-declarative”
term was defined later by Squire and Zola-Morgan [1988][p. 171] as: “ a het-
erogeneous collection of abilities: motor skills, perceptual skills, and cognitive
skills (these abilities and perhaps others are examples of procedural memory);
as well as simple classical conditioning, adaptation level effects, priming, and
other instances where experience alters performance independently of provid-
ing a basis for the conscious recollection of past events”. The authors in Squire
and Zola-Morgan [1988, 1991] developed a figure in order to illustrate the dif-
ferenttypes and subtypes of declarative and non-declarative memory (Figure
1.9).

Figure 1.9: The division of long-term memory proposed by Squire and Zola-
Morgan [1991]. It has been redrawn by Seger and Spiering [2011].

Parallel, through experimentation on animals, Dickinson [1985] suggested
the division of instrumental behavior into two opposed types: the goal-directed
and the habit. The diversity of these two types stems from the dependency of
the animal behavior on the expected outcome. Later on, a wide definition of
habit learning was given by Graybiel [2008][p. 361]:
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1. Habits (mannerisms, customs, rituals) are largely learned; in
current terminology, they are acquired via experience-dependent
plasticity.

2. Habitual behaviors occur repeatedly over the course of days
or years, and they can become remarkably fixed.

3. Fully acquired habits are performed almost automatically, vir-
tually non-consciously, allowing attention to be focused else-
where.

4. Habits tend to involve an ordered, structured action sequence
that is prone to being elicited by a particular context or stim-
ulus.

5. And finally, habits can comprise cognitive expressions of rou-
tine (habits of thought) as well as motor expressions of rou-
tine.

“These characteristics suggest that habits are sequential, repeti-
tive, motor, or cognitive behaviors elicited by external or internal
triggers that, once released, can go to completion without constant
conscious oversight.”

1.4.2 Acquisition vs expression

Identifying the characteristics of a behavior is the guide for investigating which
brain areas participate into the acquisition and expression of the different types
of behavior. Using this approach, Sherrington [1906] proposed a theory, which
is summarized in Ashby et al. [2007][p. 632]:

“Novel behaviors require attention and flexible thinking and therefore are
dependent on cortex, whereas automatic behaviors require neither of these and
so are not mediated primarily by cortex. Instead, it has long been assumed
that automatic behaviors are primarily mediated by subcortical structures.”

Along with this view, Lashley [1950] supported the existence of a shift of
memory traces from cortex to subcortical structures after extensive training.
Another supporter of this theory, Fuster [2001] endorsed it with the argument
that prefrontal cortex does not participate in automatic overlearned sequences
of behaviors. This view assumes that two distinct systems regulate instrumen-
tal behavior: the action-outcome (A-O) which produces goal-directed actions
and the stimulus-response (S-R) which expresses habits [Yin and Knowlton,
2006; Daw et al., 2005; Niv et al., 2006; Dayan and Berridge, 2014]. It has
been hypothesized, for quite long time now, that these systems are parallel
and either compete for expression or a shift from A-O to S-R system exists
[Yin and Knowlton, 2006].
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Nowadays, there is evidence showing that cortex acquires the habits, but
BG are needed during training. Piron et al. [2016] showed that after the
inactivation of GPi (main output of BG) primates are incapable to learn new
contingencies, contrary to well-learned ones that are expressed.

In this work, we argue that there is no shift from the goal-directed system to
habits. Instead, our proposal is that both habits and goal-directed actions are
learned simultaneously, but in a different pace and based on different learning
rules. In the beginning of habit acquisition, the goal-directed system leads
the final decision, whereas after the establishment of habits, the habit system
dominates in the decision procedure. To explain better, how this is possible,
I describe the chronicle of the acquisition of habits. Simultaneously, when
an action starts to be associated with an outcome in basal ganglia, also an
association between a stimulus and a particular action starts to exist at cortical
level. However, basal ganglia learn through the feedback they receive from the
environment (reward), so they learn fast. Contrary, cortical learning starts at
the first received reward, but continues for a lot subsequent actions, regardless
of their outcome. In this way, cortex cannot learn the best action as a response
to a stimulus alone. That’s why it needs basal ganglia as its trainer. After
they associate the actions with their outcome, basal ganglia influence cortical
decision by leading it to the best choice, and consequently cortex learns only
the optimal actions. In other words, cortical learning is based on the statistics
provided by the basal ganglia.
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“Even if a scientific model, like a car, has only a few years
to run before it is discarded, it serves its purpose for
getting from one place to another. ”

— David L. Wingate

“A theory has only the alternative of being right or wrong.
A model has a third possibility: it may be right, but
irrelevant. ”

— Manfred Eigen
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The complexity of basal ganglia circuity revealed the necessity to develop
models for investigating the functional role of their internal and external con-
nectivity, as well as the different mechanisms that are implemented inside their
architecture. First Albin et al. [1989] used the box-and-arrow representations,
schematic representations of neurons (boxes) and axonal projections (arrow),
to provide an unified view of BG. However, these representations can be confus-
ing to interpret, and are not suitable for examining the interactions among sub-
systems or the evolution of the dynamics during learning. On the other hand,
biologically constrained computational models provide a useful framework to
explain the results from different studies, and even compare findings among
different experiments, species and level of analysis [Schroll and Hamker, 2013;
Cohen and Frank, 2009]. Furthermore, they are able to produce predictions
that derive from the model properties and not directly from the assumptions.
Another advantage of computational models is that they can test different
hypothesis faster and easier than conducting an experiment, providing pre-
liminary results, which can reveal any deficiencies of these assumptions. The
development of the computational neuroscience field expedited the research on
basal ganglia functioning, providing evidence that experimental research ben-
efits from these kind of models. For example, the pioneering work of Sutton
and Barto [1998] that introduces the actor-critic model and the focused selec-
tion model by Mink [1996] gave a new perspective on the role of the nuclei of
BG and the pathways that they comprise, as well as on the role of dopamine
during learning.

Our model has been developed to investigate action selection, and partic-
ularly the formation of habits. For this reason, in this chapter, I introduce
models which investigate one of the two systems. Some of the models are bio-
logical inspired, meaning that they are developed to explore how the anatomy,
connectivity or other biophysical properties participate in these mechanisms.
However, other models investigate the principles that underlie these behaviors,
without taking in account how exactly they emerge from specific brain areas.
Because it would be impossible to review all the existed models, the choice
of the presented models was based on either their significant contribution in
research of these mechanisms or the given inspiration to our model. Table
2.1 summarizes which models will be reviewed here and the mechanisms they
explore. For further information, someone can refer to Liénard [2013].
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Table 2.1: Overview of the computational models reviewed and the mecha-
nisms they explore

2.1 Reinforcement learning

Twenty years ago, the study of learning methods by which agents can improve
their performances by interacting with the environment was a hot area (and
still is) of research in artificial intelligence. Inspired by the animal research,
Barto [1995] proposed a new learning paradigm called reinforcement learning
(RL). RL systems differ from their predecessors (supervised learning) in such
way that the goal of RL systems is to maximize the frequency of reinforcing
events through time by adjusting their behavior, contrary to the latter system
which learn appropriate behaviors by a set of examples of correct input/output
behavior.

Theories derived from animal research, as the classical and operant con-
ditioning, were the core of reinforcement learning. However, the research of
learning in neuroscience was expedited by the development of the reinforce-
ment learning theory, as a result of the effort to relate these architectures with
structures and functions of certain brain regions.
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2.1.1 Prediction error learning theory

The theory described in this section explains how a stimulus is paired with a
reward. When the presence or the absence of a stimulus ends up to the same
reward, then the stimulus induces no surprises, resulting in a correct predic-
tion from the object. Hence, no learning occurs about this stimulus. In other
words, an object will learn only when a prediction error exists. The procedure
of learning a stimulus-reward pair is outlined below.

A reward prediction error (PE) is defined by:

PE(t) = λ(t)− P (t) (2.1)

where λ is the received reward in trial t and P the prediction of the reward
by the object. So PE is the difference between the real and expected reward.
Using this PE, the object updates the value of the expected reward of a
stimulus, in order to minimize the error and become more accurate in its
predictions. This update follows the equation:

P (t+ 1) = P (t) + α ∗ PE(t) (2.2)

where α is the learning rate. Said differently, the calculated prediction error
weighted by the learning rate is added to the current prediction . The diagram
in Figure 2.1A displays how the predictions are updated based on the errors
[Schultz, 2015]. The learning rate is usually < 1 in order the error to decline
gradually, following the typical asymptotic learning curve (Figure 2.1B).

From the equations above, it is concluded that predictions worse than the
received reward generate positive prediction errors and lead to learning of a
behavior, although the extinction of a behavior derives from negative predic-
tion errors, when the reward is less than expected. Finally, there is no learning
and the prediction stays unchangeable when the error becomes zero. Thus, as
Schultz [2015] draws up:

This formalism views learning intuitively as a change in behavior
that occurs when encountering something new or different than
predicted, whereas behavior stays the same when everything occurs
according to “plan”.

2.1.2 Temporal difference

The prediction error method implies that the value of an action is updated
based only on the last outcome. Sutton and Barto [1998] suggested that this
update also depends on their reward history, and based on this assumption
they proposed the temporal difference learning theory. Put it differently, the
object predicts the reward by taking in account a prior event, so the learning
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Figure 2.1: A: Feedback circuit diagram that illustrates how learning occurs
through the update of a prediction by errors. B: Gradually declining prediction
errors generate typical learning curve. Taken from Schultz [2015].

derives directly from experience without a priori model of the environment
[Sutton and Barto, 1998; Bar-Gad et al., 2003].

After an action has occurred, its value is contrasted with the observed
reward plus the updated prediction for the future rewards. This comparison
result is called temporal difference error (TD) and its formula is:

TD(t) = [r(t) + γP (t)]− P (t− 1) (2.3)

where γ is a discount factor. This TD error is used to update the value of the
action as in PE method.

P (t+ 1) = P (t) + α ∗ TD(t) (2.4)

Sutton and Barto [1998] TD learning theory has been associated with
the phasic changes of the midbrain dopaminergic neurons in their firing rate
[Schultz et al., 1997].

2.1.3 Actor/critic

Influenced by the basic idea of Throndike’s “Law of effect”, Sutton and Barto
proposed the actor-critic architecture to describe the reinforcement learning
rules underlying this idea; if an action followed by a desired (absence) outcome,
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then the action is reinforced (weaken), in order to be more (less) probable to be
produced again. In this architecture, there are two different memory systems,
the actor which is responsible for selecting the actions, and the critic which
evaluates the actions made by the actor.

The critic estimates the action value in consequence of a reinforcement
signal, that follows the temporal difference learning rule, and the actor based
on the same signal learns to produce or not an action as a result of a stimulus.
The actor learning rule is based on the idea that if the comparison of the
expected with the observed outcome of an action differs, then learning occurs,
otherwise no. Now, if the expected consequence is better (worse) than the
observed, then the tendency of the action, responsible for this outcome, to be
repeated in the future will be weakened (strengthened). When the TD error is
positive (negative), the tendency of choosing the action is strengthen (weaken),
because it means that the outcome is better (worse) than expected.

Suppose a collection of possible actions is represented by a collection of
units, and the actor chooses the more active one. Let at to the activity of a
unit at time t analogous to action a, which is computed by:

at =
n∑

i=1

wit x
i
t (2.5)

where wit are the weights of the activation and xit the input activity at time t.
If an action is executed at time t, then the following learning rule is applied
on the corresponding unit:

wit = wit−1 + αTD(t− 1)xit−1 (2.6)

where α is the learning rate and TD(t) the TD error as described in 2.3.
Figure 2.2 illustrates a neural network implementing the actor-critic archi-

tecture. The same learning rule and modulator signal is used by both units,
actor and critic, in order to update their synaptic weights. However, the
learning rule is applied only to the winning actor unit, after competing with
the others. Lateral inhibition is a suitable implementation of this competi-
tion. Also, the actor unit mechanisms must remember past connection of pre-
and postsynaptic activity, in contrast to the critic unit which needs only past
presynaptic activity.

2.1.4 Model free / model based

Experimental and theoretical evidence support that actions are guided by two
distinct systems. These mechanisms are trained with different methods, to
learn and make predictions about an action’s outcome; i.e. if it will receive
reward or punishment. With the model-based method, the system learns to
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Figure 2.2: As in Barto [1995]. Network Implementation of the Actor-Critic
Architecture. The same learning rule, as well as the same TD signal are used in
both units, actor and prediction. A competition among the actor units results
to a winner that determines the action, which will be executed, followed by
the application of the learning rule only to the winner.

make predictions of an action outcome based on representations of the environ-
ment, expectations and prospective calculations [Dayan and Berridge, 2014].
Contrary, model-free method uses retrospective experience to train the sys-
tem to estimate the value of an action. In other words, model-based models
are capable to predict an outcome of an action by seeing in the future, and
model-free models by seeing in the past and choosing an appropriate action
from the previously experienced ones (i.e. they take advantage of the collected
knowledge of what an action results).

Computational analyses of instrumental and Pavlovian learning implicate
this distinction between model-free and model-based forms of learning and
computation [Dayan and Berridge, 2014]. Goal-directed actions have been
correlated with model-based strategies, which employs an internal model of
the external world [Daw et al., 2005; Doya, 1999]. On the other hand, model-
free strategies, as habits, are cached information of the action outcomes that
were received in past interactions with the environment. In the Figure 2.3 by
Dayan and Berridge [2014], the authors summarize these two computational
approaches through their applications in instrumental versus Pavlovian forms
of reward learning.
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Figure 2.3: As in Dayan and Berridge [2014]. A comparison of model-based and
model-free approaches to reward learning. Applications of both approaches in
instrumental and Pavlovian conditions are also proposed. A brief description
of computations, an example of behavioral or neural demonstration, and a
feature by which it can be recognized are presented in each cell. Citations: 1

Dickinson and Balleine [2010]; 2 Daw et al. [2005]; 3 Robinson and Berridge
[2013]; 4 Schultz et al. [1997]

2.2 Models of decision making

2.2.1 Gurney et al. [2001a,b]

Gurney et al. [2001a,b] presented a model of basal ganglia to explore the in-
trinsic processes responsible for action selection. Through the revision of these
networks and the anatomy of basal ganglia (BG), they proposed a novel func-
tional architecture of BG, which is dissociated into two pathways: the ‘selec-
tion’ pathway, which is constituted by a feedforward off-center on-surround
network, and makes the selection per se, and the ‘control’ pathway, which
regulates the selected action (by the ‘selection’ pathway) to ensure a plain
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performance.
Previously, Redgrave et al. [1999] argued that centralized switching mecha-

nisms are capable to approximate action selection, in terms of connectivity pro-
ductiveness. Additional to this work, Prescott et al. [1999] showed that their
hypothesis of selection as a major function of basal ganglia can be justified by
the known anatomy and physiology. In that paper, the authors developed a
biologically inspired model of BG, referred to as GPR2, to provide answers to
the following questions: How ‘selection’ can be quantitatively articulated and
implemented as basal ganglia intrinsic model? How basal ganglia anatomy can
be explained as a specialized set of neural mechanisms for selection?

Figure 2.4: As in Gurney et al. [2001a]. The new functional architecture
divided in the component parts. (a) Illustration of the network with two
separated input nuclei, one for excitation and one for inhibition, but a unique
output. (b) An instantiation of the ‘selection’ pathway. (b) An instantiation
of the ‘control’ pathway.

Answering to the first question, they proposed that actions are presented
to BG as saliences (i.e. the overall activity level of neural representation
corresponding to an action), and they are mediated to the outputs by the
release of inhibition. Thus, the process of ‘action selection’ is redefined as
‘signal selection’, in which large salience input to striatum and STN (inputs of
BG) inhibits the outputs of BG (GPi and SNr) resulting in low signal outputs.
Selection among a variety of actions is derived by the competition of neural
populations (called here ‘channels’) based on their saliences, in a winner-take-
all manner. The channels with the lowest salience in the outputs of BG will
trigger an action. Therefore, a selection mechanism can be implemented by an
off-center on-surround neural network as shown in Figure 2.4 (a).

Based on the connectivity of BG, and the previously presented approach of
selection process, the authors proposed two co-existing modules in the archi-
tecture of BG, the selective and the control. The selective module contains an
off-center part with the projection from D1 to GPi/SNr, and an on-surround
part with the distributed STN to GPi/SNr projection of the hyperdirect path-
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way (Figure 2.4 (b)). This module contains the selection mechanism per se,
since GPi/SNr are the BG outputs; therefrom the name selective. Contrary,
the control module’s function is to regulate the properties of the main selec-
tion mechanism by increasing the striatal inhibition to the outputs structures.
This is accomplished directly by the signals sent from GPe to GPi/SNr, and
indirectly to STN (Figure 2.4 (c)). The control module includes the focused
projections from striatal populations containing D2 receptors and diffused pro-
jections from STN to GPe. The overall architecture of the model is shown in
Figure 2.5

Figure 2.5: As in Gurney et al. [2001a]. The functional architecture of the full
model demonstrating the combination of the selection and control pathways.

Figure 2.6 shows the ability of the model to choose the channel with the
highest salience. The figure displays the salience of the input to three channels
and their output signal level through time. Initially there is no salience on all
channels, until time t = 1 when the channel 1 receives a salience of 0.4, resulting
in a decrease of its output activity and an increase of the other channels. If
the output of channel 1 is less than a given threshold it is hypothesized that
the corresponding action is performed. At t = 2, the salience of channel 2
increases to 0.6, which is sufficient to entirely inhibit its output while forcing
an increase to the output of channel 1 above the threshold, as well as a further
increase to channel 3. Thus, the selection of channel 2 causes the interruption
of the prior selection of channel 1, if it had previously occurred. Then, from
t = 3 to t = 4 the two first channels receive the same salience, which prompts
a inter-channel competition that leads to a higher common output level, and
therefore none of them is selected.

Compared to the model of [Albin et al., 1989], the authors highlighted
two main differences. First, the direct pathway of Albin contains the whole
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Figure 2.6: As in Gurney et al. [2001b]. Simulation results for three channels
in a 6-channel model. Only channels 1 and 2 have non-zero salience; channel 3
is shown as representative of the other, non-active channels. For each channel,
the solid line indicates the GPi/SNr output and the dashed line the input
salience. Time is measured in arbitrary units. a Results for an intact model
with synaptic weights on STN e erents having 0.9 times the value of those from
striatum.

striatum, although the selective module comprises of only the striatal sub-
populations of D1 receptors, and furthermore incorporates STN as an input
nucleus. Secondly, the control module does not contain the GPi/SNr nuclei,
but contains projections from STN to GPE, compared to the indirect pathway.
Also, in GPR2 model there is the distinction of striatal sub-population (D2
receptors) that participate in the control module. Lastly, the two pathways
have different functional roles between the two models: selection and control
in GPR2, facilitation and inhibition of actions in Albin.

2.2.2 Girard et al. [2008]

Inspired by the GPR model, Girard et al. [2008] explored the functional per-
spective of the BG anatomy in action selection through a computational model
of the basal ganglia (hence name CBG) as shown in Figure 2.7. The GPR
model was extended to contain usually neglected neural projections, such as
the GPe projections to STN, GPi/SNr and Str. Also, except the D1 and D2
striatal neurons, it also includes GABAergic fast-spiking interneurons (FS).

The architecture of CBG model includes a closed cortico-baso-thalamo-
cortical loop which emanates by and ends up to frontal cortex (FC). However,
basal ganglia receive also cortical input from sensory cortex (SC) that projects
to all types of striatal neurons (D1, D2, FS). SC projects also to the excita-
tory cortico-thalamic loop through its projection to FC. The thalamic reticular
nucleus (TRN) is included as a global regulatory inhibitor of thalamus. Fur-
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Figure 2.7: As in Girard et al. [2008] Diagram of the architecture of the basal
ganglia model (CBG). Each box presents a nucleus, and the circles inside
a neuron. Each nucleus contains three neurons (referred in the passage as
channels), which compete for selection. The colored shading represents the
second channel. All the connections related to this channel are illustrated,
and they are identical for the other channels. Excitatory projections are shown
with white arrowheads, and inhibitory with black arrowheads.

thermore, GPe modulates the activity of FS, which in turn exert feedforward
inhibition on the striatal neurons.

GPe projects also to all the other basal nuclei, striatum, GPi/SNr, and
STN [Staines et al., 1981; Bevan et al., 1998; Kita et al., 1999]. STN and
GPi/SNr neurons receive diffused input from GPe, influencing large sets of
STN and GPi/SNr neurons, while it projects in a focused manner to striatum.
In this way, the focus feedback from GPe to striatum makes the selection of a
channel sharpened by promoting the channel with the highest salience in D1
and D2. Also, the amplitude of the unselected channels inhibition in GPi/SNr
is limited by the interaction between the global inhibition of GPe and exci-
tation of STN on GPi/SNr. As a result, the thalamo-cortical loop receives
inhibitory projections from BG that consequently causes a selective amplifica-
tion of the winning channels while limits the amplification of the unselected
channels. This architecture provides to frontal cortex a mechanism for selective
amplification of the winning channel, through the thalamo-cortical loop, and
an inhibitory mechanism of the unselected channels, through the subcortical
circuits of BG, ensuring no interference with unwanted motor commands.
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They tested the model with a similar task as in Gurney et al. [2001a,b] (in
Gurney protocol the saliences are changed every 1s, here they change every 2s),
and compared their results with a more recent version of GPR model [Prescott
et al., 2006]. As shown in Figure 2.8, the model expresses the same behaviors
as in GPR model, except at t = 6 → 8, when the first two channels receive
the same salience (emphasized with asterisk in the bottom row of the Figure
2.8). The CBG model selects both channels (both behaviors are hypothesized
to be executed), contrary to GPR model that selects the second one; this
comes as a result of the previous step where the channel 2 was selected and
remains selected in the current step whereas channel 1 is fully inhibited (higher
inhibition level than the inhibition at rest).

Figure 2.8: As in Girard et al. [2008]. At the top are presented the variation
of the GPi/SNr inhibitory output of CBG during the Gurney et al. [2001b]
test, and at the bottom the result of the output of GPR. Dashed and solid
lines represent the input salience of the channel and the output of the channel
respectively. The asterisk denotes the different behaviors that the two models
express during the fourth step (6 s < t < 8 s). CBG selects both channels 1
and 2, whereas GPR only channel 2.
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2.2.3 Leblois et al. [2006]

In Leblois et al. [2006], the authors proposed a model for the function and
dysfunction of the motor part of basal ganglia. Albin et al. [1989] and DeLong
[1990] introduced one of the first models of motor symptoms of Parkinson’s
disease (PD) and Huntington’s disease (HD), which relies on a segregation
between the BG’s direct and indirect pathways. Later, Mink and Thach [1993]
have suggested that a center surround inhibition of pallidal activity originated
by the focused striatal inhibition combined with the diffused excitation from
STN provides the basis of action selection. Based on this idea, Leblois et al.
[2006] assign a primary role to the hyperdirect pathway. They demonstrated
that action selection in cortico-basal ganglia loop arise from the competition
between the positive feedback of the direct pathway and the negative of the
hyperdirect, resulting to the emergence of symmetry-breaking.

Our model is an extension of this model, and will be described more thor-
oughly in chapter 3.1.

2.2.4 Guthrie et al. [2013]

Guthrie et al. [2013] extended the model by Leblois et al. [2006] in order to
explore the parallel organization of circuits in BG [Alexander et al., 1991]
through a two-armed bandit task. In this task, two cues associated with a
reward probability are presented in two positions, and the model has to choose
one of them. After the choice has been made, a reward is delivered or not
according to the reward probability of the chosen cue. The model contains the
intrinsic connectivity presented in Leblois et al. [2006] with the addition of two
action selection modules: the cognitive for the selection of the cue, and the
motor for the position. The two modules are considered parallel, because of
their distinct cortical input. Action selection is based on symmetry breaking
that emanates from the addition of internal noise in the structures, which
further allows the system to explore possible actions. Furthermore,the model
incorporates learning between the cues and their outcome. A simulated reward
signal evokes cortico-striatal learning inside the cognitive module, resulting the
selection of an action based on the learned cues and not the noise as before
learning.

This model constitutes the previous generation for our own model, and is
described extensively in 4.1.2.
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2.3 Models of habit formation

2.3.1 Daw et al. [2005]

The traditional theory of behavioral control supports the existence of two sys-
tems emanated by: the dorsolateral striatum and its dopaminergic afferents,
from which habitual control derives, and the prefrontal cortex that executes
goal-directed actions. However, such a distinction of behavioral control raise
two questions as identified by Daw et al. [2005]: “why should the brain use mul-
tiple action controllers, and how should action choice be determined when they
disagree?”. The authors answered these questions by suggesting a Bayesian
principle for the arbitration between the two controllers based on uncertainty.
They assume that the most accurate system is unfolded in order a decision to
be made.

The main idea behind this model is that the goal-directed and habit con-
trollers compete each other for expression. The controller with the strongest
salience wins this competition and its action is finally executed (Figure 2.9).

Stimulus

Strongest

Action

Goal-directed 
System

Habit 
System

“A broad range of neural and behavioral data 
suggests that the brain contains multiple systems 
for behavioral choice, including one associated with 
prefrontal cortex and another with dorsolateral 
striatum. However, such a surfeit of control raises 
an additional choice problem: how to arbitrate 
between the systems when they disagree. Here, we 
consider dual-action choice systems from a 
normative perspective, using the computational 
theory of reinforcement learning. We identify a key 
trade-off pitting computational simplicity against the 
flexible and statistically efficient use of experience. 
The trade-off is realized in a competition between 
the dorsolateral striatal and prefrontal systems…”

Daw et al. (2005)

Figure 2.9: Illustration of the proposal by Daw et al. [2005] about how a
goal-directed action or a habit is chosen to be executed.
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Figure 2.10: As in Daw et al. [2005]. Representations of an instrumental
conditioning task used by the (a) model-based and (b) model-free methods.
Reward is represented by R = 1, 0; 1 if reward was attained, 0 if it wasn’t.
Q is the expected future value for each action in each state in a model-free
controller.

They proposed that both systems are based on reinforcement learning
framework, although they comprise of methods that make approximations by
a different manner in particular circumstances. Model-free approaches are as-
sociated with the habitual control, whereas model-based with goal-directed
control. The basis of the first method is the association of an action with a
summary of its future value (referred as ‘cached’ value). Working with this kind
of values results in the separation of the values from the outcomes, which make
this method inflexible to re-evaluation of the outcomes. This is a characteristic
of habitual control. By contrast, the model-based method is constructed by
chaining predictions in a sequence about the consequences of an action. This
method triggers quicker reactions when outcomes are changed than the model-
free, however it needs more time to select an action, because of the need for
exploration of different branches of future situations.

The two controller models were simulated on the tasks illustrated on Figure
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Figure 2.11: As in Daw et al. [2005]. Tree representation of a two-actions
instrumental conditioning task, where two rewards can be obtained.

2.10 and 2.11. The subject is given different choices in two states in order to
achieve a reward, although only one sequence results to reward. As shown in
Figure 2.10b, the cache system (model-free) evaluates the value of an action
independently of any outcome information. On the contrary, the tree system
keeps track of the expected consequences for a sequence of actions (Figure
2.10a). The action values of each system along with the uncertainty of the
system about those values were studied as functions of the amount of training
and the position of the action in the behavioral sequence relative to the reward.

Figure 2.12 and 2.13 show that in both systems prior ignorance was grad-
ually replaced by certainty of the expected value. The tree system was more
confident earlier in training compared to the cache, because any part of experi-
ence is used to influence the estimation of action values at all states. However,
the nature of the learning in the cache system is to delay this transmission.

In the first task, for the action proximal to reward (magazine entry), the
enhancement of data efficiency allowed the tree system to be asymptotically
more certain (Figure 2.12b), contrary to the distal action (lever press) where
the system is less confident, because of the requirement of an extra iteration
resulting to the addition of noise (Figure 2.12a). By contrast, the recall of val-
ues make the cache system to stay intact by noise (there are no computations)
resulting to the same confidence in both states. Different results were found
on the second task, where a second choice with a different rewarded outcome
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Figure 2.12: As in Daw et al. [2005]. Simulation of the two controllers in the
task of Figure 2.10 for the first (a) an the second (b) action. The topmost
figures show the uncertainty of the value estimation in the two systems, and
the middle ones, their value estimations. The diamond indicate the estimation
of the value after reward devaluation at various training stages. The bar plots
illustrate the probability of choosing an action before and after devaluation
of their contingencies, normalized to the non-devalued level. Which system
controlled the action is denoted by the bar color.

exists (Figure 2.13). Here, the experience of the agent was distributed among
more states and actions, resulting to fewer relevant data about any particular
action value. This ensued the preservation of uncertainty in high levels in the
cache system even after extensive training. In both tasks, the sensitivity to
reward devaluation was kept whenever the tree system dominated, whereas the
domination of the cache system the insensitivity in devaluation. Overall these
results support the authors’ hypothesis that brain selects among the controllers
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based on expected accuracy in order to choose an action.
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Figure 2.13: As in Daw et al. [2005]. Simulation of the two controllers in the
task of Figure 2.11.

The existence of two separate controllers is based also on the idea that
habitual control derives from dorsolateral striatum and further from the loop
that it forms with cortex, and the goal-directed from prefrontal cortex and
thus the dorsomedial striatal loop. This parallelism endorses the suggestion
of the authors that the competition between model-free and model-based con-
trol must be considered between the two loops and not between cortex and
striatum as previously believed. Although, the role of dopamine projection to
dorsomedial striatal neurons cannot be explained by this hypothesis.
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2.3.2 Dezfouli and Balleine [2013]

Following the general idea of two forms of action control to govern instrumental
conditioning (goal-directed actions and habits) and experimental results from
a two-stage task on humans, Dezfouli and Balleine [2013] suggested a new
model for understanding the interaction between goal-directed and habitual
action control. This model proposes that a goal-directed mechanism selects
if a goal-directed action or a habitual sequence of actions will be executed
to reach a goal; i.e. the model uses a hierarchical manner for the interaction
between the two processes (Figure 2.14a). Furthermore, it proposes that when
a habitual sequence is selected, the action in the second stage depends on
the choice of the first stage. This contradicts the flat architecture proposed
by Daw et al. [2011], who argued that the selection of an action in the second
stage is independent from the first, and that an external arbitration mechanism
coordinates the interactions between the two systems (Figure 2.14b).

(a)

(b)

Figure 2.14: As in Dezfouli and Balleine [2013]. Illustration of the (A) hier-
archical and (B) flat organization in an example. Goal-directed system (GD);
Restaurant on this side of the road (Rr1) and on the other side (Rr2); Arbi-
tration mechanism(Ar).

Overall this model suggests the existence of a goal-directed system, which
(explicitly) selects the type of the action (goal-directed or habit) that will be
executed (Figure 2.15). In this hierarchical model, there is no need for both
systems to make their own choice and then compete for expression.
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Stimulus

Action

Dezfouli et al. (2013)

“… Model-based reinforcement learning (RL) has 
been argued to underlie the goal-directed process; 
however, the way in which it interacts with habits 
and the structure of the habitual process has 
remained unclear. According to a flat architecture, 
the habitual process corresponds to model-free RL, 
and its interaction with the goal-directed process is 
coordinated by an external arbitration mechanism. 
Alternatively, the interaction between these 
systems has recently been argued to be 
hierarchical, such that the formation of action 
sequences underlies habit learning and a goal-
directed process selects between goal-directed 
actions and habitual sequences of actions to reach 
the goal…”

Action

(explicit) 

Selection

Goal-directed 
System

Habit 
System

Figure 2.15: Illustration of the proposal by Dezfouli and Balleine [2013] about
how a goal-directed action or a habit is chosen to be executed.

The structure of the task used to test this theory is illustrated in Figure
2.16. In the first stage (black screen), two actions are available that lead to
one out of two slot machines by a fixed probability. For example, the action
A1 provides access to slot machine S1 70% of the times, whereas S2 is reached
only 30% of the times. Choices in the second stage are rewarded with a high
(0.7) or low (0.2) probability. The association of the reward probability with
each slot machine changes randomly with a small probability (1/7).

The authors compared the ability of the flat and the hierarchical architec-
tures to explain experimental data from the same task. First, they queried
whether the decisions in this task are goal-directed, habitual or a mixture of
both. To answer this question, they analyzed the data to identify the ten-
dency of the subjects staying on the same action in the first stage based on
the received feedback of the previous trial. The results indicated that a pre-
vious reward trial increased the possibility of repeating an action regardless
whether the reached slot machine was the common or the rare result of the ac-
tion (Figure 2.17). Although this increase was higher in the case of a common
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Figure 2.16: As in Dezfouli and Balleine [2013]. Structure of the task. The
key presses leads to one of the slot machines 70% of the time, and to the other
slot machine 30% of the time. There is a high (0.7) or a low probability (0.2)
a choice at the second stage to be reinforced, which can change randomly with
a small probability (1/7).

transition, revealing the knowledge about the task structure by the subjects.
Therefore, they expressed both goal-directed and habitual action, but with a
bias of staying on the same action independently from previous trial reward
and transition type. As shown in Figure 2.17, both the flat and the hierarchical
model captures the subjects’ behavior.

In a second analysis, the authors investigated the interaction of goal-directed
actions an habit sequences in stage 2. Their hypothesis is that a habitual re-
sponse is implied by the repetition of a first stage action which was rewarded
in the previous trial, and it is expected to choose the same action also in the
second stage, even when different slot machine is accessed. On the contrary, if
another first action is chosen, it means that it is independent from the previ-
ous sequence of action, and so the repetition of the second stage action with
a different slot machine in the next trial is not expected. Figure 2.18 shows
the probability of selecting the same second stage action as a function of if a
same first stage was chosen after a rewarded trial. The data pinpointed that
subjects had the drift to stay on the second stage action when habitual actions
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Figure 2.17: As in Dezfouli and Balleine [2013]. (A) Data from the experi-
ment: The probability of staying on the first stage action was higher when the
previous trial was rewarded, and even higher when it contained a common tran-
sition. Thus, the subjects expressed both habitual (1st case) and goal-directed
(2nd case) action control. (B) & (C) show the responses of the flat and hierar-
chical architecture, respectively, in the same task. Both architectures are able
to model the pattern of the data from the subjects.

were executed. The hierarchical model was able to capture the interaction of
the first stage action and the reward, whereas the flat structure wasn’t.

Figure 2.18: As in Dezfouli and Balleine [2013]. The stay probability on the
second stage action when the slot machine differs from the one in the previous
trial. (A) The probability is higher to stay on the same second stage action
when the subjects stay on the same first stage action after being rewarded in
the previous trial. (B) The flat architecture expresses different behavior than
the observed data from the subjects. (C) The hierarchical model captures the
observed pattern in actual stay probabilities.

Also, the reaction times were faster when a subject executed a habitual
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response contrary to goal-directed. When a previously rewarded first stage
action was repeated, the reaction time was increased when the second stage
action was not compared to the repeated ones (Figure 2.19). The same effect
was observed after no rewarded trials, excluding the fact that the increase was
due to the cost of switching to another second stage action. The results of the
hierarchical model implies that the second stage is inversely related to action
sequence value.

Overall these results indicate that when the reward of the previous trial is
followed by the same first stage action and decreased reaction time, then most
probably the subject performs an action sequence. This results to the expec-
tation that a second stage action will be repeated regardless of the accessed
slot machine.

Figure 2.19: As in Dezfouli and Balleine [2013] The probability of staying
on the second stage action when the same (A) or different (B) first stage action
is taken, as a function of whether the previous trial is rewarded, and whether
the second stage state is the same or different from the previous trial.

The hierarchical model proposed by Dezfouli and Balleine [2013] assumes
that during the execution of an action sequence, its performance reveals insen-
sitivity to the received feedback. That contrasts previous work of hierarchical
RL theory, which considers that the state of the environment induces the ac-
tion selection. Finally, the authors propose that action sequences, similarly to
single actions, are prompted by goal-directed behavior.
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2.3.3 Ashby et al. [2007]

Ashby et al. [2007] supported the idea that the goal-directed and habit sys-
tem compete for expression, as in Daw et al. [2005], with the difference that
this time the fastest system is expressed (and not the one with the strongest
salience). Another difference is that in this model the habit system, except the
stimulus, receives also input from the goal-directed system(Figure 2.20). The
authors hypothesized that at the begin of training the goal-directed system is
faster, but progressively it also trains the habit system. The latter one, once
it has learned the correct action for a specific stimulus, becomes faster, and so
leads the decision.

Stimulus

Fastest

Action

Ashby et al. (2007)

“… The model assumes 2 neural pathways from 
sensory association cortex to the premotor area 
that mediates response selection. A longer and 
slower path projects to the premotor area via the 
striatum, globus pallidus, and thalamus. A faster, 
purely cortical path projects directly to the 
premotor area. The model assumes that the 
subcortical path has greater neural plasticity 
because of a dopamine-mediated learning signal 
from the substantia nigra. In contrast, the cortical-
cortical path learns more slowly via (dopamine 
independent) Hebbian learning…”

Goal-directed 
System

Habit 
System

Figure 2.20: Illustration of the proposal by Ashby et al. [2007] about how a
goal-directed action or a habit is chosen to be executed.

Ashby et al. [2007] designed a model called SPEED (Subcortical Pathways
Enable Expertise Development) to study how automatic perceptual catego-
rization is acquired in procedural learning tasks. The model comprises of two
neural pathways (thus forming two systems) responsible for action selection,
which both originate from sensory association cortex and end up to premo-
tor area: a faster cortical path, and a slower subcortical path through basal
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ganglia. Both systems incorporate learning, but based on different learning
rules. The first follows the 2-factor learning rule (Hebbian learning [HL]), and
the second the 3-factor (reinforcement learning [RL]). Their main hypothesis
is that before learning, the BG learn fast through RL which ensues that the
subcortical system dominates the decision. However, after cortical learning
has been established, a shift of control to the cortical system takes place; a
characteristic of automaticity. This is compatible with our own hypothesis.

The model includes the sensory association cortex (SC), premotor area
(PrM), striatum (Str), globus pallidus internal segment (GPi) and thalamus
(Th). It assumes that the SC influences the activity of neurons in premotor
area and consequently the execution of a single action through two routes:
indirectly via the direct pathway of basal ganglia, and by direct projections in
cortical level (Figure 2.21). The role of the indirect route is to facilitate the

Figure 2.21: As in Ashby et al. [2007]. Schematic illustration of SPEED in
the case of two contrasting categories, A and B. Excitatory projections are
denoted by solid black lines, inhibitory by dashed lines, and dopaminergic by
solid gray lines.

development of more permanent cortico-cortical connectivity. Whereas the
strong cortico-cortical projections result to faster decisions, as a consequence
of the involvement of only one synapse, and the avoidance of the long subcor-
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tical path consisting of at least four synapses.

Ashby et al. [2007] tested SPEED in different protocols inspired by ex-
periments on monkeys and rats. One of them was equivalent to a series of
single-unit recording studies by Romo, Merchant, and their colleagues [Mer-
chant et al., 1997; Romo et al., 1995, 1997]. In these experiments, monkeys
learned to push one button in response to five low-speed vibrations, and an-
other one for five high-speed. To simulate this experiment in SPEED, the SC
contained one-dimensional array of 100 sensory cortical cells, and because of
the existence of two contracting categories all the other structures contained
only two units. All sensory cells projected on both striatal units. Each stimu-
lus maximized the activation of one sensory cell and activated less the nearby
cells. A response was considered to be initiated when the activation of the two
premotor units exceeded a threshold. Finally, the cortico-cortical and cortico-
striatal connections were altered between trials.

Figure 2.22: As in Ashby et al. [2007]. Proportion of “low” responses given to
each of 10 stimuli by monkeys (black line) [Merchant et al., 1997, p. 1151] and
by SPEED (gray line).

Figure 2.22 demonstrates that both the monkeys and the SPEED learned
the two categories by showing the proportion of low responses for each of
the 10 stimuli given by them. The boundary of the category is indicated
by the solid vertical line. Figure 2.23a illustrates the response of low and
high speed striatal and premotor cells of monkeys in both types of vibration.
Note that each type of cells in both structures becomes active only when the
corresponding vibration is given as an input. SPEED mimics these results as
shown in Figure 2.23b.
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(a) (b)

Figure 2.23: As in Ashby et al. [2007]. (a) Single-cell responses from left puta-
men [Merchant et al., 1997] and population responses from premotor cortex
[Romo et al., 1997] to each of 10 stimuli in a tactile category-learning exper-
iment. (b) Single-cell responses from the striatum and premotor cortex of
SPEED in the tactile category-learning experiment as on the monkeys.

In another experiment Carelli et al. [1997] trained rats to press a lever as a
response to a tone, and they recorded striatal single units. As shown in Figure
2.24a at session 4 the striatal units burst before the lever is pressed. Notice
that at session 5 and 6, the same units still burst, but this time after the
response. However, in later sessions, no activity is elicited by the tone or the
lever press. The authors presumed that the last behavior comes as a result of
the establishment of automaticity. In order to test SPEED on the equivalent
protocol, they modified the architecture of SPEED. Only one sensory cortical
unit exists, which is activated by the presence of the stimulus. Similarly,
all brain regions include only one unit, because of the unique possibility of
response. Figure 2.24b shows that SPEED expresses analogous behavior with
the rats.
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(a) (b)

Figure 2.24: As in Ashby et al. [2007] (a)Striatal single-cell responses of a rat
in the instrumental learning task of [Carelli et al., 1997] (b) Striatal responses
from SPEED

Further, Figure 2.25 presents the architecture of SPEED for this experi-
ment, as well as the activity of all brain regions units before and after learning.
At the beginning of training, striatum chooses first and then leads the premo-
tor area to perform the appropriate action (Figure 2.25a). Contrary, premotor
decision is much faster after training (Figure 2.25b). Furthermore, both the
monkeys and SPEED gradually decrease their reaction time over training.

From these data derives that: (a) differences in reaction time between the
early stages of training (slow) and the late stages (fast) exist, (b) information-
integration category learning is initially mediated within the striatum, and (c)
automaticity is acquired through repetition in cortico-cortical connectivity.
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(a)

(b)

Figure 2.25: As in Ashby et al. [2007]. Schematic illustration of SPEED when a
stimulus from Category A is presented. Illustration of the simulated solutions
of the differential equations of each brain area in a trial (a) early and (b) later
in learning.
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2.3.4 Baldassarre et al. [2013]

Baldassarre et al. [2013] developed a system-level bio-constrained computa-
tional model to demonstrate how actions that have been previously learned
by an ‘intrinsic motivations’ (IM) system can be used to achieve goals that
emerge from an ‘extrinsic motivations’ (EM) system. The model explores
these two systems through three segregated cortico-basal-thalamic loops (sim-
ilar to Guthrie et al. [2013]): an arm loop, which selects the arm actions, an
oculomotor loop that selects the eye gaze, and finally a goal loop, which se-
lects the goals to pursue (Figure 2.26). Also, they implemented the intrinsic
basal connectivity of the direct and hyperdirect pathways (as in Leblois et al.
[2006]) combined with the off-center on-surround network for selection through
diffused STN and focused striatal projections to GPi as introduced in Gurney
et al. [2001a,b].

Figure 2.26: As in Baldassarre et al. [2013]. Detailed architecture of the model.
The small circles indicate neural units of a populations, and the boxes are
rate-coded neural populations. The abstractly implemented components are
represented with boxes that include text.

The experiment includes two phases: a training and a testing. In the
training phase, the system is let to randomly choose one eye gaze and one arm
action. The set-up comprises of six possible gazes, one for each of the three
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buttons and the three boxes available, and three arm actions, one ‘reach to and
press the looked-at object’ action and two ‘dummy’ that are not useful for the
task. When the eye gaze is on certain button and the arm reaches and presses
it, then a box is opened. The goal of the task is to learn which button opens
which box. This learning occurs at cortical and striatal level. An example of
a trial during the training phase is shown in Figure 2.27. After the system
discovers a combination of an arm action and a eye gaze that opens a box, it
repeats this combination until the two actions (arm and eye gaze) are learned,
and only then the focus is moved on others that are still unexplored. When

Figure 2.27: As in Baldassarre et al. [2013]. Behavioral example of the intact
model during the training phase. The y-axis shows the number of executions
of the action that opens finally one of the three boxes (Bt1-Press, Bt2-Press,
Bt3-Press), and also the number of executions of all the other available actions
considered together (Other).
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a box is opened, phasic DA is released and reaches the striatal connections
of the arm and oculomotor loops, resulting in strengthening the connections
between the seen object and the performed action, and between the view of the
button with the eye saccade, respectively. This plasticity is based on a 3-factor
learning rule [Reynolds and Wickens, 2002], which increases the weight of the
connection between two neurons when DA is released and the pre and post
synaptic neurons are more active than their thresholds. However, an inhibitor
component also exists, in order to suppress DA expression so a decay of the
weight to be ensued. They added the inhibitor to ensure that after the system
explores repeatedly, and consequently learns the desired association, it will be
able to unlearn it in striatal level providing the system the ability to explore
new contingencies (Figure 2.28 a, b). The cortical learning follows a Hebbian
learning rule and is applied on the cortical projections from goal loop to the
arm and oculomotor loops. In this way, an association between the outcome of
the performed action and the action itself is formed. The authors implented a
different from classical Hebbian learning rule, which involves dopamine. Here,
the learning occurs also as a result of DA release, but its absence does not
evoke unlearning of the associations as in striatal case (Figure 2.28 c, d). After
the acquisition of the associations during the intrinsically motivated learning
phase, the ability of the model to engaged them for reaching a rewarded goal
is tested. During the testing phase, a goal (open a specific box) is activated
externally in the goal loop, and if the system has learned properly, then the
equivalent actions will be executed by the other two loops.

They authors explored the behaviors of the intact model, as well as of
four lesioned models with inactive: (a) the putamen, (b) the caudate, (c) the
putamen & the caudated, and finally (d) the inhibitor. The results of the five
models are shown in Figure 2.29. During the learning phase, a test procedure
is performed in which the three goals are sequentially activated for 2minutes
each. This can give an evaluation of the model performances in different timing
of the learning. At the beginning of the learning, the intact model explores its
options and acquires the desired ones, resulting to efficient use of them after
the whole training. When putamen or/and caudate are lesioned, the arm and
oculomotor loops are still able to choose action, but only in a random manner.
This results in slow learning. The lesion of putamen allows the system to
explore more (than in the intact model) the ‘dummy’ actions for a specific
gaze, and consequently to not learn efficiently the good action. On the other
hand, the caudate lesion lets the system to interact with all buttons to a certain
extent, even with no attentional focus, resulting to better performances from
putamen lesion, but also equivalent learning for all buttons. As expected the
lesion of both parts of striatum slows further the learning as a consequence
of performing wrong actions on buttons and interacting with all the boxes.
Finally, the inhibitor lesion eliminates the ability of the system to explore
other buttons.
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Figure 2.28: As in Baldassarre et al. [2013]. Example of evolution of the trained
connection weights of the model during the learning phase. (a) Cortico-striatal
(Put) weights, (b) Cortico-striatal (Put) weights (Cau), (c) Cortico-cortical
weights from the PFC to the PMC/PRR , and (d) Cortico-cortical connection
weights from the PFC to the FEF/LIP.

In summary, the proposed model by Baldassarre et al. [2013] demonstrates
how actions are acquired by intrinsic motivation (i.e. randomly perform actions
and observe their outcomes) can be later used to achieve goals emanated by
extrinsic motivation; e.g. reach a reward, through a repetition bias developed
in the learning phase.
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Figure 2.29: As in Baldassarre et al. [2013]. Performance of the non-lesioned
model (‘Intact’) and four lesioned versions of the putamen (Put), the caudate
(Cau), both the putamen and the caudate (Put-Cau), and the inhibitor (Inh).
For more details refer to the text, or the original article.
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“Essentially, all models are wrong,
but some are useful.”

— George E. P. Box

Chapter 3

A computational model
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In this chapter, I introduce a dynamical model of the BG – cortical net-
work that we developed, which is able to solve a two-armed bandit task. The
model is based on previously published models by Leblois et al. [2006] and
Guthrie et al. [2013]. The first model introduces an action selection mecha-
nism originated by the competition between a positive feedback, provided by
the direct pathway, and a negative feedback emanated from the hyperdirect
pathway. Guthrie et al. [2013] have further extended the model to explore the
parallel organization of circuits between cortex and basal ganglia [Alexander
et al., 1986; Albin et al., 1989; Parent and Hazrati, 1995a] by using segregated
modules: one for the selection between two presented cues and the other for
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the selection between two possible movement directions corresponding to the
positions of the cues. However, to solve the task properly, it is necessary for
the model to choose the cue shape and select the corresponding movement. For
this reason a third module exists to provide solution to the binding problem,
as well to the need for cross-talking between these two modules. Addition-
ally, learning occurs between cortex and striatum using a simple reinforcement
learning rule where the values of the different cues are updated a each decision
has occurred.

We further refined the model such as to have a competition mechanism
within each cortical group. Using short-range excitation and long-range inhi-
bition, this competition ensures that a unique cognitive and motor decision
eventually emerges. Hebbian learning is also added at the cortical level, and
is enforced after a move has been executed, independently from the actual
reward.

Through the sections below, I recount the history of our model by summa-
rizing the two previous models that it is based on [Leblois et al., 2006; Guthrie
et al., 2013], and describing the modifications and additions that lead to the
final architecture. Trying to implement the model by Guthrie et al. [2013],
we confronted some difficulties such as erroneous and ambiguous information,
which I describe and explain how we managed to overstep them.

3.1 First generation [Leblois et al., 2006]

In Leblois et al. [2006], the authors proposed a dynamical model of the motor
part of basal ganglia (BG), providing an explanation of how action selection is
generated from BG. Contrary to Albin et al. [1989] and DeLong [1990] model
of basal ganglia circuitry that relies on a segregation between the direct and
the indirect pathways of BG, Leblois et al. [2006] assigned a fundamental role
to the hyperdirect pathway. They showed that BG functions and dysfunctions
arise from the competition of direct and hyperdirect pathways. The aim of
this model was to investigate the physiology and pathophysiology of BG, how-
ever I focus only to the action selection mechanism, which we use in our model.

The model consists of five populations: cortex (CTX), striatum (STR),
subthalamic nucleus (STN), internal segment of globus pallidus (GPi) and tha-
lamus (Th) [Figure 3.1]. Based on anatomical and electrophysiological studies
supporting that there is a topographic organization in the direct pathway, the
model contains two parallel circuits that are hypothesized to control two dis-
tinct motor programs [Alexander et al., 1986; Nakano, 2000]. However, an
interaction between the two circuits exists at the level of STN to GPi connec-
tivity, expressing divergence at this level [Parent and Hazrati, 1995b]. Each
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population contains two neurons of rate model [Hopfield, 1984; Wilson and
Cowan, 1972; Shriki et al., 2003], which are engaged in distinct circuits.

GPi

Cortex

Thalamus StriatumSTN

DA

Figure 3.1: As in Leblois et al. [2006]. Architecture of the model. Each
structure contains two populations that implement two circuits. The excitatory
connections are indicated by arrows, and the inhibitory by dots. The network
does not include the substantia nigra pars compacta.

Figure 3.1 displays the two circuits that contain two feedback loops: one
global positive close feedback loop (direct loop; CTX → STR → GPi →
Th → CTX), and one global negative close feedback loop (hyperdirect loop;
CTX → STN → GPi → Th → CTX). The positive or negative character-
ization of the loops emanates from the effect of each loop on thalamus. For
example in the direct loop, thalamus is disinhibited through one excitatory
and two inhibitory set of projections. On the other hand, the hyperdirect loop
inhibits thalamus through two excitatory and one inhibitory set of projections.

The relation between the products of synaptic strength of these two loops
affects the behavior of the model (G+ = GCtxThGThGPiGGPiStrGStrCtx, G− =
GCtxThGThGPiGGPiSTNGSTNCtx, where Gba denotes the strength of the inter-
action between two neurons in the same circuit), as shown in Figure 3.2. In
the oscillations state, the external input that is sent to cortical neurons pro-
voke oscillations in all populations, with the same phase in the two circuits
(Figure 3.3a). By contrast, a small asymmetric disturbance leads to symmet-
ric instability in the symmetry breaking state, which is originated by a strong
feedback that is sent to thalamus from both loops, direct and hyperdirect. If
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Figure 3.2: As in Leblois et al. [2006]. Various dynamical regimens of the
reduced model as a function of G+ and G− are presented in the phase diagram.

one of the two cortical populations increases its activity, then the direct loop
amplifies it. On the contrary, strong cortical input in STN leads to increase of
activity in GPi for both populations. Although, this increase tends to reduce
the activity of the weaker in cortical level, resulting in less inhibition from GPi
to thalamus to the more active population. So in the end, only one cortical
population stays active. Figure 3.3 demonstrates the evolution of activity of
the two populations in GPi, thalamus and cortex, before and after external
input is sent to cortex in the symmetry breaking state.

Other models than Leblois et al. [2006], assumed that a selection is made at
cortical level, and this information is processed by BG in a feedfoward manner.
However, in this model BG have an active role in action selection by inducing
cortical activity after symmetry breaking has been achieved.

3.2 Second generation [Guthrie et al., 2013]

Guthrie et al. [2013] extended the model by Leblois et al. [2006] in order to
explore the parallel organization of circuits in BG [Alexander et al., 1991]
through a two-armed bandit task. Generally, in this type of tasks two cues are
presented to the subjects. Each of the cues is associated with a hidden reward
probability, and the subjects are able to learn these probabilities by exploring
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(a) (b)

Figure 3.3: As in Leblois et al. [2006]. The network from t = −500ms remains
stable until t = 0, when a brief external current is sent in cortical population
of circuit 1 resulting in (a) oscillatory instability for G+ = 0.18 and G− = 2.85,
and (b) symmetry breaking for G+ = 2.47 and G− = 2.85. The activities in
circuit 1 (respectively circuit 2) are donated be solid (resp. dashed) lines. The
colors of the lines indicate the different structures: red for cortex, black for
thalamus, blue for GPi.

the outcome of the cues. In their paradigm, Guthrie et al. [2013] used the task
as described in Pasquereau et al. [2007], where two shapes are presented in two
distinct positions on a screen in front of the monkeys.

To be compatible with the nature of the task, the model implemented two
segregated modules: one devoted to shape selection (cognitive), and one to
position selection (motor). However, to solve the task successfully the model
should be able to exchange information between the modules, so that when a
shape is chosen, the corresponding position will also be chosen. Therefore, a
third open module (associative) exists. This module receives the info about
which shape is placed at which position, solving the binding problem, and fur-
ther integrates the needed mechanism for transmission of information between
the segregated loops. Furthermore, noise has been added to the the system to
produce symmetry breaking, when two identical inputs are given. In addition,
the model incorporates cortico-striatal learning inside the cognitive module by
a simulated reward signal, showing that after training, the action selection is
generated based on the learned cues and not the noise as before learning.

3.2.1 Architecture

The general architectural diagram of the model is illustrated in Figure 3.4.
Following the architecture of Leblois et al. [2006], the two modules, cognitive
and motor, comprise of two segregated BG-cortical closed loops: the direct
(Ctx-Str-GPi-Th-Ctx) and hyperdirect (Ctx-STN-GPi-Th-Ctx respectively).

The authors consider that the two modules are parallel, with inputs from
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Figure 3.4: As in Guthrie et al. [2013]. Architecture of the model of the
basal ganglia. The two levels of decision making are represented by the two
cortico-basal ganglia: the cognitive loop in blue, and a motor loop in red.

distinct areas of cortex. The third module is an open loop, which contains
only cortical and striatal populations. One of its roles is to provide cross-
talking between the parallel modules. This is achieved by the projection from
cortical to associative striatal populations, and in turn they project to GPi
populations of both of the modules. Another role of associative module is to
solve the binding problem generated by the distinct cortical input that the two
parallel modules receive. For instance, cognitive cortex receives information
of which pair of shapes is presented and motor cortex which positions contain
a shape. However, there is no information about which position each shape
occupies. This obstacle is overstepped by providing this information through
an external input to the associative cortex.

Each structure consists of two segregated groups of ensembles (one en-
semble represents a population of neurons), the cognitive and the motor, ex-
cept cortex and striatum, which contain also an associative group. Individual
groups are components of the corresponding modules. Also, each group com-
prises of four ensembles, which within cortical area represent a possible choice.
In associative groups, sixteen ensembles exist in order all the possible combi-
nations of cues in corresponding positions to be included. The connectivity
among the populations are shown in Figure 3.5. All the projections in cognitive
and motor modules and the associative cortico-striatal ones are somatotopic,
except of divergence from STN to GPi, where one STN ensemble projects to
all ensembles of GPi in the same module. Finally, divergence occurs from
cortical motor and cognitive groups to the associative striatum, followed by
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Figure 3.5: As in Guthrie et al. [2013]. Connectivity of the model. For more
details please refer to the original paper.

reconvergence from associative STR to motor and cognitive GPi.
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3.2.2 Neuron model

Neural activity in all ensembles is described by the same equation, except a
variation in parameters among populations (Table A.1). Each ensemble is
hypothesized to simulate the mean activity of a population of neurons, which
is the reason for using a leaky integrator as neuron model [Leblois et al., 2006;
Hopfield, 1984]:

τ
dm

dt
= −m+ IS + Iext − T (3.1)

where τ is a decay time constant of synaptic input, m is the output of
the ensemble, Is is the synaptic input to the neuron, Iext is the external input
representing the visual salience of the cue and presented only to the cortical
structues, and T is the threshold of the ensemble. In Leblois et al. [2006], the
authors applied a bias signal to one of the ensembles to break symmetry and
thus action selection. However, Guthrie et al. [2013] added Gaussian noise to
the activity of each ensemble at each time step in order to generate symmetry
breaking.

The total input to a neuron B is fully described from:

IBS =
∑

A

GA
B ×mA (3.2)

where A is the presynaptic neuron, B the postsynaptic, GA
B the gain of the

synaptic connectivity from A to B respectively.

Many studies showed that striatal neurons follow a sigmoidal function,
because of their particularity of being silent without coordinated input [Nisen-
baum and Wilson, 1995; Sandstorm and Rebec, 2003; Wilson and Groves,
1981]. This is implemented by the Boltzmann equation:

mout = Vmin + (Vmax − Vmin)/(1 + e((Vh−min)/VC )) (3.3)

where min is the input to the transfer function (the activation level of
the cortical inputs in this case) and Vout is the output, Vmin is the minimum
activation, Vmax the maximum activation, Vh the half-activation, and Vc the
slope.

3.2.3 Learning

Striatal learning is implemented among cognitive cortico-striatal synapses.
The cognitive module was chosen over the motor, because in this particu-
lar task the received reward is a result of the chosen cue and not the chosen
position. So, the desired association of the reward with the cue should be
learned in the cognitive module. It has been show, that learning at striatal
level follows reinforcement learning rules. That has been based on the role of
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dopamine that is sent to striatal neurons, which is to provide an error pre-
diction signal and strengths the synapses. For this reason, at the end of each
trial, reinforcement learning rules are applied as follows:

∆wA→B = αα × PE ×mB (3.4)

where ∆wA→B is the change in the weight of the corticostriatal synapse
from cortical population A to striatal population B, PE is the prediction error,
the amount by which the actual reward delivered differs from the expected
reward, mB is the activation of the striatal ensemble, and αα is the global
actor learning rate. The generation of long-term potentiation (LTP) and long-
term depression (LTD) in striatal neurons has been found to be asymmetric
[Pawlak and Kerr, 2008]. Therefore, the actor-learning rate in the model is
αα = 0.002 for LTP and αα = 0.001 for LTD.

The PE is calculated by using a simple critic-learning algorithm.

PE = R + Vi (3.5)

where i is the number of the cue chosen, and Vi is the value of cue i. Then,
the value of the chosen cue is updated by using the PE.

Vi ← Vi + PE · αc (3.6)

where αc is the critic learning rate, set to 0.05.
The weights are bounded to absolute maximum 0.75 and absolute minimum

0.25.

3.2.4 Results

Figure 3.6 shows the evolution of cortical activity during a trial of a two-armed
bandit task. The network is let to stabilize for 500ms, when the external input
is applied to cortex, representing the display of two cues (out of four) in two
distinct positions (out of four). Each cue is associated with a unique reward
probability (c1 = 1.00, c2 = 0.66, c3 = 0.33, c4 = 0.00). The two ensembles
that don’t receive input, are immediately inhibited, contrary to the other two
which increase their activity and start to compete each other. A decision is
considered to be made, when one motor cortical ensemble is 40sp/smore active
than the others. When the network is naive, the motor and cognitive selection
is random. Also, the motor decision can be preceded by the cognitive in some
occasions, as shown in the inset of Figure 3.6, because their inputs have the
same value.

In the beginning of a learning simulation, containing 120 trials, the network
has a chance level probability (0.5) to choose the optimal cue (the cue with
a higher probability of being rewarded). However, as Figure 3.7 shows, the
network gradually learns the optimum choices among the different pairs, and
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Figure 3.6: As in Guthrie et al. [2013]. Cortical activation of the motor (grey
line) and cognitive (black line) populations during a single trial. Inset: an
example trial where the motor action selection precedes and leads the cognitive
action selection.

at the end of the simulation, there is an increase of probability for the optimal
choice (0.95±0.01). The analysis of the evolution of the cortico-striatal weights
(Figure 3.8) revealed that the weight associated with the best cue (highest
reward probability) increases to 96% of the absolute maximum by the end of
the simulation. On the other hand, the weight of the worst cue decreases only
to 44%. These results reveal that the system learns by actions.

3.3 A long journey into reproducible science

[Topalidou et al., 2015; Topalidou and Rougier,
2015]
In the long journey of understanding the brain, computational neuroscience is
a powerful ally. The development of models, even simple ones, is an invalu-
able tool, providing the opportunity of exploring this or that structure and
propose new hypothesis concerning the overall brain organization. However,
the uniqueness of this tool is based on the possibility of the existing models
to be produced, and further extended. In this manner, every extension of a
model gets us nearer to an incremental computational knowledge of the brain.
Unfortunately, when we tried to reproduce the model by Guthrie et al. [2013],
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Figure 3.7: As in Guthrie et al. [2013]. Learning curve (black) and an approx-
imation of this curve (light gray; y = 0.5 + 0.5 × 1− Exp[−(t− 1)/13.7]) for
the choice of the optimum cue.
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Figure 3.8: As in Guthrie et al. [2013]. Evolution of normalized cognitive
cortico-striatal synaptic weights during a session for each of the four cues.

we confronted a common problem in the field, the inability of reproducing a
model from the bibliography. The information provided by the article was
not sufficient to allow the direct reproduction of the model, either the source
code that the authors provided us (hundred of files and 6000 lines of Delphi
[Object Pascal]). Overall, the model is described quite precisely, with a lot of
important information, but still, some information are ambiguous or erroneous
and some others are just missing.
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After some minor corrections and modifications of the original description
of the model, we were able at last to reproduce the original results, confirming
the correctness of the original implementation of the model [Topalidou and
Rougier, 2015]. We did not reproduce all analyses of the original article but
the main results which are illustrated on figures 4 & 5 in the original article
Guthrie et al. [2013] (3.6 & 3.7 in section 3.2).

We first reproduce the activity in the cortical populations during a single
trial, prior to learning. Noise has a great influence on the overall dynamic and
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Figure 3.9: Activity in the cortical population during a single trial
of action selection. This is the reproduction of figure 3.6 in Guthrie et al.
[2013].

it is not possible to exactly reproduce figure 4 in the original article without
precise information on the underlying random generator(seed). Consequently,
we can only report a qualitatively equivalent figure where the most critical
feature is the existence of bifurcation in cognitive and motor activities after
stimulus onset. Since no learning has occurred yet, it is also possible to have
the motor decision occurring before the cognitive decision. Figure 3.9 shows an
example of the cortical dynamics with an oscillatory regime between time t=0
and time t=500ms that is a characteristic of the model. Finally, we tested the
learning capacity of the model (Figure 3.10) by reproducing the same procedure
as in the original article (250 experiments, 120 trials). We also established the
tabular description of the model as proposed in Nordlie et al. [2009] [Table
A.1], which allow anyone to rewrite the model using a different language, tools
or software.
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Figure 3.10: Learning time course over 120 trials, averaged over 250
simulations.The blue filled area indicates the standard deviation of the mean
performance. This is the reproduction of figure 3.7.

3.4 Third generation [Topalidou et al., 2016]

The distinct somatatopic, functional, cortical projections to explicit regions of
striatum[Alexander et al., 1986; Deniau et al., 1996; Nakano, 2000] inspired
first Alexander et al. [1986] to propose a model of five parallel, segregate loops
that process information, which was revised later by several researchers sug-
gesting the existence of only three functionally defined loops (sensorimotor, as-
sociative, limbic) [Parent and Hazrati, 1995a; Haber, 2003; Seger and Spiering,
2011; Hélie et al., 2015]. Sensorimotor loop has been associated with habitual
behavior, contrary to the associative which is believed to participate in goal-
directed actions. Several theoretical and experimental studies have shown that
dorsomedial striatum (DMS in rodents; associative in primates) is responsible
for goal-directed actions, and dorsolateral striatum (DLS in rodents; sensori-
motor in primates) for storing the habits [Daw et al., 2005; Yin et al., 2005;
Yin and Knowlton, 2006]. Nowadays, new evidence bring to light the ability
of cortex to express habits without the feedback from BG[Hélie et al., 2015;
Piron et al., 2016]. For example in Piron et al. [2016], we demonstrated the
ability of the monkeys to make choices and execute actions when the main
output of BG (GPi) was inactive.

The model presented in the previous section (3.2) illustrates how the func-
tionally parallel closed CBG loops participate in action selection. However,
if GPi is inactive, as in monkey experiments, it is no more able anymore to
choose among options, much less expressing habits. Thus, we extended the
model to explore the mechanisms of the acquisition and expression of habits.

In this section, I will present the final architecture and properties of our
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model by emphasizing the modifications and additions that we have conducted
in the model by Guthrie et al. [2013].

3.4.1 Architecture

The architecture of the model is equivalent to the one described in the sec-
tion 3.2 and is illustrated in Figure 3.11. It contains five structures: cortex
(Ctx), striatum (Str), subthalamic nucleus (STN), internal segment of globus
pallidus (GPi), and thalamus (Th). Also, it implements the direct (Ctx-Str-
GPi-Th-Ctx) and hyperdirect (Ctx-STN-GPi-Th-Ctx) pathway of BG, and
three functional modules, cognitive, associative and motor (for more details
refer to Section 3.2).

The model has been refined such as to have a competition mechanism
within each cortical group. Using short-range excitation and long-range inhi-
bitions, this competition ensures that a unique cognitive and motor decision
eventually emerges, even if these decisions might be unrelated at this stage.
In other words, this mechanism provides the ability of action selection to the
model when the connectivity between GPi and Th is interrupted (equivalent to
the inactivation of GPi in monkey experiments [Piron et al., 2016]). However,
this addition does not provide solution to the binding problem (where each cue
is positioned). To overcome this obstacle, we added cross-connectivity among
the three cortical groups, from cognitive and motor to associative groups. In
this case, the associative part of cortex is employed as mediator between the
cognitive and motor part. Furthermore, we Hebbian learning (LTP) has been
added at the cortical level between the cognitive and the associative cortical
group. This learning is enforced once per trial, at the time a move is made and
independently of the actual reward. Because of these additions, the dynamic
of the model have been changed, and so we modified the parameters of the
Guthrie model (Table A.2).

3.4.2 Neuron model

Each ensemble is hypothesized to simulate the mean activity of a population
of neurons. The neuron model that we used is a leaky integrator as in Leblois
et al. [2006] and Guthrie et al. [2013]. The membrane potential V (t) and firing
rate U(t) are described by the following equations:

τ
dV

dt
= −V + IS + Iext − h (3.7a)

U = max(V, 0) (3.7b)

where τ is a decay time constant of synaptic input, V is the activity of the
neuron, Is is the synaptic input to the neuron, Iext is the external input received
only by the cortical structures (for the other structures Iext = 0), and h is the
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Figure 3.11: Model Architecture: The model contains 5 structures: cortex
(Ctx), striatum (Str), subthalamic nucleus (STN), internal segment of globus
pallidus (GPi), and thalamus (Th). Two of the three known cortico-basal-
thalamic pathways are also implemented: direct (Ctx-Str-GPi-Th-Ctx), and
hyperdirect (Ctx-STN-GPi-Th-Ctx). In order the model to be able to solve
the two-armed bandit task, three loops are added, the cognitive (responsible
for cognitive selection), the motor (responsible for action selection), and finally
the associative (necessary for binding reasons, to keep which shape is where;
more details in the text [3.2, 3.4.1]. All structures include 2 populations for the
cognitive and motor loop, except cortex and striatum which have one more for
the associative loop. Finally, owing to the nature of the task, each population
comprise of 4 neurons.

threshold of the neuron. Notice that firing rates cannot be negative, so with
equation 3.7b we ensure that the minimum obtained value is zero. The cortical
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cognitive ensembles receive information about the presented cues, the motor
about their positions, and finally the combination (where is what) is given as
input to the associative ensembles, as shown in Figure 3.12. Also, symmetry
breaking is generated by Gaussian noise to the activity of each ensemble at
each time step.
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Figure 3.12: Representation of the external input received by the cortical
groups.

The total input to a neuron B is fully described from:

IBS =
∑

A

GA
B ×WA

B × UA (3.8)

where A is the presynaptic neuron, B the postsynaptic, GA
B and WA

B the
gain of the synaptic connectivity and weights from A to B respectively.

Striatal neurons silence without coordinate input is implemented by the
Boltzmann equation:

U = Vmin + (Vmax − Vmin)/(1 + e((Vh−V )/VC )) (3.9)

where V is the input to the transfer function (the activation level of the cor-
tical inputs in this case) and U is the output, Vmin is the minimum activation,
Vmax the maximum activation, Vh the half-activation, and Vc the slope.
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3.4.3 Learning

Striatal

Striatal learning is implemented among cognitive cortico-striatal synapses, in
order to associate the cues with the reward probability. At the end of each
trial, a reinforcement learning rule is applied as follows:

∆WA→B = αα × PE × UB × UA (3.10)

where ∆WA→B is the change in the weight of the cortico-striatal synapse
from cortical population A to striatal population B, PE is the prediction error,
the amount by which the actual delivered reward differs from the expected
reward, UB is the activation of the striatal ensemble, and αα is the global
actor learning rate. Generation of LTP and LTD in striatal MSNs has been
found to be asymmetric [Pawlak and Kerr, 2008]. Therefore, the actor-learning
rate in the model is αα = 0.01 for LTP and αα = 0.008 for LTD.

The PE is calculated using a simple critic-learning algorithm.

PE = R + vi (3.11)

where i is the number of the cue chosen, and vi is the value of cue i. Then,
the value of the chosen cue is updated using the PE.

vi ← vi + PE · αc (3.12)

where αc is the critic learning rate, set to 0.002.
The authors in Guthrie et al. [2013] are referred to bounded weights to

absolute maximum 0.75 and absolute minimum 0.25. However, the bounding
algorithm is not described in the article. We hypothesized that it is based
on the estimation of the weight gradient along the sigmoid. So, we used an
Oja-like rule for our model:

S = (WA→B −Wmin)(Wmax −WA→B) (3.13)

Finally the updated weights are given by the following equation:

WA→B = WA→B + ∆WA→B · S (3.14)

The model as described above is capable of associating the different reward
probabilities of the cue (exploration phase), and once it has learned, to choose
always the cue with the higher probability (exploitation phase). These results
imply that BG are able to learn the respective value of A (low reward proba-
bility) and B (high reward probability), and also learn to select B to get the
higher probability to be rewarded.
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Hebbian

In Piron et al. [2016], we showed that monkeys are capable to make optimal
choice even without the feedback from BG, and concluded that habits are
stored outside of BG, probably in cortex (not a lot of evidence exists today
to support or reject this hypothesis). To provide this ability to the model,
we implemented learning at cortical level, and we particularly chose Hebbian
learning based on evidence from different studies [Doya, 1999; Hélie et al.,
2015]. Cortico-cortico synapses from cognitive to associative populations are
updated after a decision has been made, according to the following rule:

∆WCog→Ass = α× UCog (3.15a)
WCog→Ass = WCog→Ass + ∆WCog→Ass · S (3.15b)

where ∆WCog→Ass is the change in the weight of the cortico-cortical synapse
from the cognitive to the associative cortical group, UCog is the activation of
the cognitive ensemble, and αα is the global actor learning rate, set to 0.0005.

The choice of the learning rate was based on the realization of a rapid basal
ganglia learning compared to the cortical learning [Paspathy and Miller, 2005].

All the weights are initialized to the absolute values displayed in Table
except the ones that are altered in learning (striatal & cortical). The lateral
ones are initialized to 0.5 (SD: 0.005) at the beginning of each session.

3.5 Conclusions

Our model is an extion of previously introduced models by Leblois et al. [2006]
and Guthrie et al. [2013], in order to investigate the acquisition and expression
of habits. In the model of Guthrie et al. [2013], action selection at the cortical
level occurs because of the interaction between the direct and hyperdirect
pathway. However, it has been shown that monkeys are able to choose among
options when the main output of BG is inactive [Piron et al., 2016]. In order
the model to obtain this capability, we added a competition mechanism, short-
range excitation and long-range inhibitions, within each cortical group. This
competition ensures that eventually a unique cognitive and motor decision
emerges. Hebbian learning has also been included at the cortical level, and is
enforced once per trial, after a move has been executed, independently from
the actual reward. We assume that habits are stored outside of basal ganglia,
and more precisely at cortical level, even though we still do not have enough
evidence to exclude other areas (e.g. cerebellum) [Hélie et al., 2015; Piron
et al., 2016].

In the next chapter, I will introduce the protocols that the model has been
tested on. Then, I will report the results of the model on these protocols, and
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compare them with the monkey results whenever they exist. I will close the
chapter by our interpretation of these results, and the comparison of our model
with the ones introduced in the previous chapter.
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“When it comes to exploring the mind in the
framework of cognitive neuroscience, the
maximal yield of data comes from integrating
what a person experiences - the first person -
with what the measurements show - the third
person.”

— Daniel Goleman

Chapter 4

Experimental and computational
results

Contents
4.1 Protocols . . . . . . . . . . . . . . . . . . . . . . . . 86

4.1.1 Overall structure of the task . . . . . . . . . . . . . . 86

4.1.2 Protocol A: Control . . . . . . . . . . . . . . . . . . 91

4.1.3 Protocol B: Formation of habits . . . . . . . . . . . . 91

4.1.4 Protocol C: Storage of habits . . . . . . . . . . . . . 96

4.1.5 Protocol D: Characterizing habits . . . . . . . . . . . 97

4.2 Computational results . . . . . . . . . . . . . . . . . 97

4.2.1 Protocol A: Control . . . . . . . . . . . . . . . . . . 97

4.2.2 Protocol B: Formation of habits . . . . . . . . . . . . 98

4.2.3 Protocol C: Storage of habits . . . . . . . . . . . . . 99

4.2.4 Protocol D: Characterizing habits . . . . . . . . . . . 101

4.3 Experimental results . . . . . . . . . . . . . . . . . 106

4.3.1 Protocol B: Formation of habits . . . . . . . . . . . . 106

4.3.2 Protocol C: Storage of habits . . . . . . . . . . . . . 107

4.4 Overall interpretation of the results . . . . . . . . 108

4.5 Comparison of our model with existed models . . 112

Our model has been developed based on anatomical and physiological data
of primates, and its aim is to explore the decision mechanisms underlying goal-
directed actions and habits. Therefore, we test the model on equivalent tasks,

85



4.1. Protocols

such as n-armed bandit paradigms which used in experimental psychology and
neuroeconomics.

In total, we used four protocols of two-armed bandit task. The first one
is the same as described in Guthrie et al. [2013] (adaptation of the protocol
used on monkeys in Pasquereau et al. [2007]). With this protocol, the model
ability for action selection and learning hidden reward probabilities is tested.
Furthermore, the experiments on monkeys described by Piron et al. [2016]
provide evidence for the crucial role of basal ganglia during initial stages of
learning, alongside cortex ability to make optimal choices alone, without feed-
back from the BG after learning. Thus, we implemented the same protocol
to investigate the role of BG during the acquisition and expression of habits
through the model. These results combined with the properties of the model
led us to a new hypothesis about how cortex is able to acquire (store) habits
and express them. We developed a new protocol to test our theory, and then
conducted experiments on monkeys that confirmed it.

The characterization of an action as a habit in many studies is provided
by the inability of the subjects to adapt their behavior according to new in-
ternal or external conditions (food satiation or outcome devaluation) [Yin and
Knowlton, 2006; Liljeholm and O’Doherty, 2012]. We finally developed the last
protocol in order to observe how the model will handle these kind of changes
(devaluation of the outcome), and explore its capacity.

4.1 Protocols

4.1.1 Overall structure of the task

In a n-armed bandit task, the subject must choose repetitively among differ-
ent options. Each choice results to an outcome that is unknown to the subject
before the start of a session. The subjects generally assess the outcomes dur-
ing exploratory trial-and-error phase, and then choose preferentially, but not
always exclusively, the choice associated with the best outcome, in an exploita-
tion phase. This type of task allows the testing of deliberative decision-making
process built on the accumulation of evidence (learning).

Generally, in this kind of tasks, each cue (Si) is associated with three
values: the probability (Pi ∈ [0, 1]), the quality (Qi ∈ (0, 1]), and the amount
(Ri ∈ (0, 1]) of reward. If the probability of a cue is 1, it means that each
time the cue is chosen it will be rewarded, and when it is 0 then no reward
will ever be received. Analogically, the amount of reward depends on the value
Ri, with 1 being the most reward that can be achieved by the subject. The
quality value characterizes how desirable the reward is to the subject. For
example, cappucin monkeys like cucumber, but grapes are much better food
for them, so the cucumber will be correlated with a smaller quality value than
the grapes. The motivation of the subject to choose a particular cue or the
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amount of learning during one trial varies depending on the different values of
reward. For instance, if the value of the quality or amount of reward associated
with one cue is high, then theoretically the subject will learn faster this cue
compare to others with more medium values. But if its probability is low, then
maybe he will prefer to choose one cue with less quality or amount, but more
probable to receive some reward.

In our protocols, we used exclusively a two-armed bandit task meaning
that only two options are given in each trial. Also in our case, the amount
of reward is always Ri = 1, as well its quality (Qi = 1). The probability of
reward although varies among the protocols.

Implementation

As described in the previous chapter (3.4.1), the cortical cognitive part of our
model comprises of four ensembles, representing equal number of possible cues,
the motor part of possible positions, and the associative of sixteen possible
combinations of cues and positions. In each trial, external input of 7Hz is sent
to two ensembles of each cortical group (Figure 4.1), representing the display
of two shapes in two specific positions. For convenient reasons, the external
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:
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input

Figure 4.1: The cognitive and motor cortex receive external input to two
random ensembles, representing which shapes are given to the network and
which positions are occupied. The associative cortex contains the information
of which shape is presented in which position.

inputs to cortical cognitive and motor groups will be referred as shape and
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position respectively. The choice of two presented shapes and positions are
made randomly in each simulated trial, and then their combination is derived.
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Figure 4.2: Timeline: The model is left for 500ms to stabilize before the
cortical populations receive the external input at t = 0ms. It has 2.5s to make
a choice, and then the activities of all the populations in the network are reset.

The timeline of the task is shown in Figure 4.2. Each trial lasts 3 sec of
simulated time. The system is let to settle into its stable point for 500ms.
At this moment, the 3 cortical groups receive an external input. A movement
is considered to be performed when one of the motor neurons is 40Hz more
active than the others, and the trial ends. A trial is considered successful if
a movement has occurred within 2.5 sec subsequently to the reception of the
external input. In a successful trial, it is ensured that a motor decision has
been made. However, there is the chance that the cognitive decision would
occur before or after the motor, or not at all. In the monkey experiments,
we observe only the push of a button as a result of a decision, but we cannot
be sure if the respective shape was chosen first or not. For that reason, in
the model as chosen shape is considered the one in the chosen position. After
the end of a successful trial, the reward is delivered or not, according to the
reward probability of the chosen shape, and learning occurs in cortical and
striatal level. To ensure independence among sessions and trials, the model
is initialized before the start of each session (weights initialization), and the
activity of all ensembles before each trial.

A choice is defined as optimal when the shape at the chosen position is
associated with the highest reward probability. Furthermore, the reaction time
is defined as the latency between the reception of the input at cortical level
and the execution of a simulated movement (a choice in motor level). Finally,
the beginning of the session is defined as the first 25 trials, and the end of the
session as the last 25 trials.

The performance of the model in a protocol is evaluated by the mean
success rate; in other words, the mean of optimal choices for each trial in all
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sessions is computed, and then the mean of all trials outlines the performance
of the model in a protocol.

Task Set

For each trial, two out of the four cognitive and motor cortical ensembles re-
ceive external input representing the display of shapes in specific positions.
Two associative cortical ensembles also receive external input providing the
information of where each shape is placed. Each protocol determines how
many shapes are presented during a session, and which reward probability are
associated with. If the association between the individual shape and reward
probability changes or not during each session and among sessions, it depends
on the protocol. The choice of the positions are random among the four possi-
bilities in all protocols. However, the presented pair of shapes can be random
, but can also be the same during a session. The protocol defines the number
of trials in a session, although each protocol contains 25 sessions.

Example

An example of cognitive and motor cortical activity during a trial in the be-
ginning of a session is shown in figure 4.3a (red and blue line respectively).
The system is let to stabilize for 500ms, and then external input is sent to the
cortical groups. The two ensembles that receive the input inhibit the other two
due to lateral connectivity, and start to compete with each other. Due to the
noise, the symmetry breaks and the activation of one ensemble is amplified,
when simultaneously inhibits the other one.

Figure 4.3b is equivalent to 4.3a, but when the BG output (GPi) is inactive.
It shows that even in this situation, the model is able to make a decision due
to the lateral cortical connectivity and connectivity among cortical structures
absence. The motor decision precedes the cognitive one in he latter figure.
Knowing the task, someone could say that this is a deficiency of the model.
However, at the beginning of a session, there is no evidence of which component
of the task is important, the shape or the position. The choices based on each
of them are equally optimal.

In Figure 4.3c, we notice that the cognitive choice has been made faster
than the motor, providing time to cognitive cortex to interfere in the motor.
Furthermore, we observe that in motor cortex one ensemble starts to win but
few milliseconds later the other one becomes more active and win at the end.
This change occurs as a result of a faster cognitive choice that influences the
motor through the associative group. Finally, Figure 4.4 demonstrates the
evolution of activity for all structures during a single trial.
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Figure 4.3: The activity of the cognitive and motor cortical populations is
presented at the beginning of learning with (a) active and (b) inactive the
connections between GPi and thalamus, and after learning has occurred with
active connections.
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Figure 4.4: Activity of all populations at the beginning of learning.

4.1.2 Protocol A: Control

The purpose of this protocol is to test the ability of the model to learn the
hidden reward probabilities in a two-armed bandit task. We hypothesize that
the model is initially naive, choosing randomly, but after training it is able to
learn the values of new contingencies.

This protocol follows the task set as described in section 4.1.1, and is shown
in Figure 4.5. Four shapes are presented in a session (180 trials in total; two
shapes in each trial), and each is associated with a unique reward probability:
n1 = 1.00, n2 = 0.66, n3 = 0.33, n4 = 0.00.

During one session and among all sessions, the association between the
individual shape and its reward probability does not change.

4.1.3 Protocol B: Formation of habits

To address the contradiction between experimental data showing that the basal
ganglia are involved in goal-oriented and routine behaviors, and clinical obser-
vations which have reported no sever impairment in goal-directed or automatic
movement after lesion or disruption by deep brain stimulation of the globus
pallidus interna, Piron et al. [2016] designed an experimental paradigm based
on a two-armed bandit task that combines pre-learned choice behavior, delib-
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Figure 4.5: As in Guthrie et al. [2013]. Schematic representation of the time
line of the task. During a session, four cues associated with reward probabilities
[P(R)] are used, and only two out of the four are chosen randomly for each
trial.

erative decision making, and procedural learning. The experiment was carried
out on nonhuman primates with pharmacological inactivation of the GPi.

I will first present the monkey set up, task and protocol and then the
equivalent protocol for the model.

Monkey set up

Two female macaque monkeys (Macaca mulata weighing 4.9 and 5.6 kg, re-
spectively) took part in this experiment. The setup consists of four buttons
placed on a board at different locations (0o, 90o, 180o, and 270o), and a fur-
ther button in a central position, which detects contact with a monkey’s hand
(Figure 4.6). The primates are placed in front of a screen at a distance of 50
cm, seated in chairs. A cursor appears on the screen to one of the 5 possible
display positions, when the corresponding button is pressed.

Monkey Task

A trial is initiated, when the monkeys keep their hands on the central button,
resulting in the appearance of the cursor at the central position of the screen.
Two shapes are presented in two out of the four positions, randomly determined
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Reward (juice) delivered
according to the reward
probability associated

with the chosen stimulus

Up

Down

Left

Right
Control

Saline muscimolor
injection into the internal 
part of Globus Pallidus (GPi) 
15 minutes before session

Figure 4.6: Monkey set up

for each trial, after a random delay (0.5− 1.5s). Once the cues are shown, the
monkeys must press one of the periferl button corresponding to one of the
shapes in a random duration time window (0.5-1.5 s). They have to maintain
this position for 0.5 s to 1.5 s, in order to be rewarded (0.3 ml of water). If the
chosen button corresponds to one of the presentes shapes, only then reward
is delivered according to the reward probability of the chosen target. The
disappearance of the cursor from the chosen shape indicates the finish of the
trial. The next one begins after an inter-trial interval between 0.5 s and 1.5 s.
The task is summarized in the Figure 4.7.

Trial start Cue presentation Go signal Decision Reward Trial stop

1.0s - 1.5s Time1.0s - 1.5s 1.0s - 1.5s

Figure 4.7: Schematic representation of the behavioral task

Bilateral inactivation of GPi

Microinjections were delivered bilaterally 15 minutes before a session. We
assume that our injection encompassed a significant proportion of the GPi
including motor and associative areas. For both animals injections of the
GABA agonist muscimol hydrobromide (Sigma) or saline (NaCl 9%� ) were
randomly assigned each day. Muscimol was delivered at a concentration of
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1µg/µl (dissolved in a NaCl vehicle). The effect of the muscimol injection is
presented in Figure 4.8. For more details, please refer to Appendix.
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Figure 4.8: As in Piron et al. [2016]. A) Theoretical injection sites for both
monkeys in the right and left hemispheres. B) Time histogram of the firing
rate of three neurons recorded before and after muscimol injection in GPi. The
two vertical lines represent the beginning and the end of the injection. The
three neurons recorded were sensitive to the muscimol injection. The timescale
is in ms. C) Histological display of the position of the cannulae in monkey Z.
For more details please refer to the original paper.

Monkey Protocol

The two experimental conditions were alternated in blocks of 10 trials: the
Habitual Condition (HC ) and the Novelty Condition (NC ). In the HC always
the same pair of shapes was presented (HC1 and HC2), on which the animals
had been previously trained (during 8 months for monkey Z and 12 months
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for monkey F). Each shape was associated with a fixed reward probability
(PHC1 = 0.75 and PHC2 = 0.25) [Figure 4.9]. In the NC, each session contains
a unique pair of shapes that was never presented before (NC1 and NC2) with
fixed probabilities of reward of 0.75 and 0.25 respectively (PNC1 = 0.75 and
PNC2 = 0.25) [Figure 4.9].

20 sessions (10 for each monkey) with saline injections (Saline) and 20 (10
for each monkey also) with muscimol injections (Muscimol) were performed.
The proportion of trials in which the animals chose the optimal target (i.e.
HC1 or NC1 respectively) was defined as the success rate, normalized by the
number of trials in which a choice was made. When a trial was interrupted
before a choice had been made and validated, it was counted as an error trial.
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Figure 4.9: As in Piron et al. [2016]. The monkeys have been trained on the
cues (HC1, P = 0.75 and H2C, P = 0.25), which are used in the habitual
condition (top). In the novelty condition (bottom), the cues (NC1 and NC2)
have the same reward probabilities (P = 0.75 and P = 0.25), respectively),
but the pairs are changed (new shape and colors) in each session.

Model Protocol

The protocol is divided in three sections, which I will refer to them as training,
habitual, and novel. The training section simulates the monkeys’ pre-training
to a particular pair of shapes before they are tested on them in the Habitual
condition. In training and habitual sections, only the two first cognitive cortical
ensembles receive input, with 75% and 25% probability to be rewarded (n1 =
0.75, n2 = 0.25). The two last ensembles receive input during the novel section,
with reward probabilities 75% and 25% (n3 = 0.75, n4 = 0.25). With this
separation, we ensure that a different pair of shapes is presented during this
part.
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At the first part, the model is trained for 360 trials, and then it is tested
on the same inputs for 120 trials in the habitual part. Lastly, inputs to the
other pair of neurons are presented to the model for 120 trials during the novel
part. The cortical groups receive input as described in 4.1.1. The model is
tested in the two conditions (Habitual and Novelty) separately, contrary to
the experiments where two blocks of ten trials of each condition alternate to
ensure that the monkeys do not use only their working memory.

This protocol includes also two states: one with active connectivity between
GPi and Thalamus, and one with inactive; simulating the effect of saline and
muscimol (i.e. inactivation of GPi) injections. Even if it is inaccurate, these
two conditions will be referred as GPi On and GPi Off for simplicity reasons.
We separate these two states in two experiments, where we conduct the experi-
ment as described above with GPi On during all parts of the protocol with GPi
On. In the second state, the connectivity is active during the training part, but
inactive during the two conditions. During and among sessions the association
between the individual ensemble and its reward probability remains the same.

4.1.4 Protocol C: Storage of habits

The aim of this protocol is to investigate where and when the acquisition and
expression of habits occur, and the role of BG in these procedures.

Model

In this protocol, only the two first ensembles of cognitive cortex receive external
input, associated with the reward probabilities of 75% and 25% respectively
(n1 = 0.75 and n2 = 0.25). We also included two states, GPi On and Off, as
described in section 4.1.3.

The protocol is divided in three phases with alternation of the two states.
First the model is tested with GPi Off (Day 1), followed by GPi On (Day 2),
and lastly with GPi Off again (Day 3). Each session includes the three phases
consisting of 120 trials each. The learning weights are initialized at the start
of each session to ensure the presentation of new contingencies in the first part.

Our hypothesis is that during the whole first part the model will choose
randomly between new inputs, because of the absence of feedback from BG,
like in Protocol B. However, it will be able to perform over the chance level
(0.5) at the beginning of the second part and improve until its end. That is
because we expect striatum to have already learned the values of each input,
so it can influence and lead cortical choices to optimum options. Finally, at the
beginning of the third part the performances are also predicted to be better
than chance level, as a consequence of habit acquisition in cortical level during
the second part.
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Monkeys

Following the experimental rules at Piron et al. [2016], on Day 1 muscimol is
injected, before the monkeys to be tested on an unknown pair of shapes. On
Day 2, after saline injection, the same pair is presented for testing. Unfortu-
nately, the monkey experiments do not include the third part of the model’s
protocol. However, we conducted another experiment that can help us make a
hypothesis for the last part. The monkeys after saline injection on Day 1 were
tested on novel pair of shapes, and on Day 2, muscimol was injected before
testing them on the same pair of Day 1. Each day comprised of 60 trials in a
total of 5 experiments.

4.1.5 Protocol D: Characterizing habits

One characteristic of habits widely accepted is the insensitivity to devaluation;
i.e. reduction of an action outcome. This protocol has been designed to test
the ability of the model to follow the changes of reward probabilities.

In this protocol, only the two first cortical cognitive ensembles receive input
during a session. At the beginning, the 1st has 75% probability to be rewarded
(n1 = 0.75) and the 2nd 25% (n2 = 0.25) until trial t. From the trial t+1
and until the end of the session, the probabilities are reversed (n1 = 0.25,
n2 = 0.75). We conducted different experiments with a variety of t, from
50 to 950 per 50 trials. This variety of reverse time is convenient for the
demonstrating the model behavior after short or extensive training. Finally,
we assume that the model explores when its performances are over 0.0 and less
than 0.90 and exploits when they are more than 0.9.

4.2 Computational results

4.2.1 Protocol A: Control

Figure 4.10 shows the mean success rate for all the trials of one session over all
sessions. At the first trials, the model makes choices randomly (58.6%±10.0%),
showing its ignorance to the hidden reward probabilities associated with the
distinct shapes. Then, we observe an exploration phase for about 100 trials,
when the model starts to learn the worth of each input. For the rest of the
session, the learning continues but with a slower progress, reaching finally
93 ± 0.06% of success (95 ± 10% for the last 30 trials and 250 sessions in
Guthrie et al. [2013]). More trials would improve the performances, but in
this task would never be perfect. The reason is that the input with no reward
is almost never chosen, so striatum cannot learn that it is a bad choice. We can
see that from figure 4.11, where the value of the input and the cortico-striatal
weights don’t decrease, resulting to an insignificant difference with the second
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Figure 4.10: Performances (top) and reaction time (bottom) of the model over
180 trials, averaged over 25 simulations. The filled area indicates the standard
deviation.

worst one. Thus, when these two inputs compete, even if the one with 33%
chance of reward will be more likely to be chosen, it’s not absolute certain such
as with the other combinations, because of the noise in the system. Finally, it
is worth mentioning that as learning improves the time for the model to choose
an action decreases from 851.74± 76.16ms to 596.01± 50.21ms (lower part of
panel in Figure 4.10).

4.2.2 Protocol B: Formation of habits

Figure 4.12 contains the results of both states; i.e. with active and inactive
GPi. As we can see, the model is able to express previously acquired habits.
In the habitual condition, it makes the optimal choice in every trial (100.0%±
0.0%). Additionally, the model begins every session in the novel condition with
random choices (60.2%± 18.6%), but it succeeds to learn the new associations
by the end of the session (99.5%±1.7%). Furthermore, habits are still expressed
after inactivating GPi, but not perfectly as before (95.3% ± 3.40%); a small
tendency for exploration exists. On the other hand, the model is unable to
deduce new associations and remains to a random mode (from 56.0%± 14.1%
to 60.6%± 20.9%).

Finally, the decisions are faster for pre-learned pairs of choices compared
to unknown, but also when BG contribute to final decision than otherwise.
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Figure 4.11: Evolution of weights and values The average cortico-striatal
and cortico-cortical weight, and the state value for the 4 cues are presented
with the different colored lines: P (R) = 1 blue, P (R) = 0.66 red, P (R) = 0.33
green, and P (R) = 0 magenta

The mean reaction time is 258.58± 4.53ms during a session in habitual condi-
tion but significantly increases when GPi is inactivated to 1014.05± 62.30ms.
Analogous significant rise is observed in the novel condition with mean reac-
tion time of 330.35± 50.22ms with GPi On and 1129.45± 57.98ms with GPi
Off.

4.2.3 Protocol C: Storage of habits

As expected based on the results of protocol B on Day 1, the model is unable
to learn new associations without feedback from BG (beginning of sessions
51.5%± 11.0%, end 53.0%± 17.1% ) [Figure 4.13]. However, after the reacti-
vation of GPi the model reaches instantly optimal performances (94.2%±6.6%
in 25 first and 99.5%± 1.3% 25 last trials), confirming our theory of value ac-
quisition in BG and their ability of leading cortical decision.

After GPi is inactivated once more, the model does not return to the chance
level (i.e. random choices), but it shows to have learned the optimal choice,
although not perfect yet (84.6 ± 10.3% in 25 first and 87.4 ± 9.4% 25 last).
That indicates that habit acquisition at cortical level,but also highlights the
necessity of BG as his teacher during the acquisition. All these results are
summarized in Figure 4.13.

The results from Day 2 confirm our theory of implicit value acquisition
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Figure 4.12: Mean success rate across successive trials in the two conditions,
routine (gray) and novelty condition (black), and in the two states with (dashed
line) and without (solid line) GPi. The curve is smoothed using a moving
average filter of 10 consecutive trials.

Figure 4.13: D1 corresponds to the first day of the experiment where GPi
is suppressed (removal of GPi-Thalamus connection). D2 corresponds to the
second day where the suppression of the GPi is removed. During D3, GPi is
suppressed again.
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Saline / GPi ON Muscimol / GPi OFFFigure 4.14: On the top figures, all the trials of the 12 sessions are presented.
The black dot represents an optimal trial, meaning that the model chose the cue
with the highest reward probability, contrary to the white dot which represents
a trial that the cue with the lowest reward probability has been chosen. The
bottom figures show the mean success rate of the session with a window of 10
trials. D1 corresponds to the first day of the experiment where GPi is active in
the model, and D2 to the second day where there is suppression of the activity
of GPi.

in BG during Day 1, even though GPi is inactive at this state. Also, on
Day 2 is demonstrated the BG ability of leading cortical decision before habit
acquisition. Finally Day 3 indicates that cortex needs BG supervision for the
acquisition of habits, a procedure parallel to goal-directed learning.

To be consistent with the monkeys experiments, we tested the model also
to a protocol equivalent to the monkeys. On Day 1 (active GPi), the model
starts naive (56.0 ± 3.8%), but, during the session, it is able to learn the
new presented contingencies (86.5 ± 4.0%) [Figure 4.14]. As expected, from
the results of the three days protocol, on Day 2 (suppressed GPi) the model
performs well (76.3± 9.1%) from the beginning of the session , and continues
to improve until the end (92.6± 6.7%).

4.2.4 Protocol D: Characterizing habits

Figure 4.15 shows three experiments with reverse of reward probabilities among
the cues at t = 50, 450, 950. At the first case, the model has reached perfor-
mances over 80% before the reverse occurs, so it is still sensitive to changes
resulting to an immediate exploratory behavior after it. This is not the case
in the second experiment, where the model adheres to old routines for more

From goal-directed actions to habits 101



4.2. Computational results

trials than before the reverse, but eventually it’s able to learn which is the
optimal choice after the reverse. However in the last experiment, the model
is unable to modify its strategy, continuing choosing the same choice for the
whole session.

Many researchers argue that the subject has acquired habits when there is
no strategy change after reward devaluation [Yin and Knowlton, 2006; Gray-
biel, 2008]. But for how many trials did they tested after the modification?
What would happen if they had included more trials in their experiments?
For example, if we had stopped our sessions in less number of trials when the
reverse occurs after 450 trials, we would have conducted the same conclusions.
However, the model shows that the network just needs more training before
to start learning again.

The experiments that I presented previously, are only a part from a series
of experiments that we conducted. The model behavior was observed on the
same protocol for 18 different cases; with the reverse occurring from 50 to 90
trials per 50. In all of these cases, we defined the amount of trials that the
model needed to start exploring after the reverse (mean success rate over 0%)
and to start exploiting (mean success rate over 90%). All these results are
gathered and presented in Figure 4.16 where we can see that the pre-training
and the exploration of new strategies are linearly dependent. In other words,
the more pre-training occurs, the more trials are needed to start reducing the
expression of old strategies. However, the model, after a finite number of trials
(500), is unable to express goal-directed actions again. Unfortunately, we don’t
have any experimental results on monkeys to compare with the results from
our model. However, based on these results, we suggest that a habit has been
acquired when in order to alter this action, the subject requires more training
than for the acquisition.

As human beings we are able to modify our strategies based on previous
failures on relative fast pace. Why the model cannot? One reason is that
the involvement of other areas is necessary, such as ACC, to compare the
consequence of the last action with the previous one. On the other hand there
are also computational limitations. Figure 4.22 contains the progress of the
sessions in two experiments (t = 50, 950), displaying their performances and
the evolution of learning. From figure 4.17a, we observe that the exploration
of alternative strategies starts when the strongest striatal weight decreases
its strength at almost the level of the other ones. At this point the cortical
learning of the new strategy also begins. Our network does not contain any
anti-Hebbian or forgetting rule in cortical level, resulting finally to equally
learning for all inputs. In this case, if BG were inactive, cortex would not be
able to express any habits and would choose randomly as in the beginning of
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(a)

(b)

(c)

Figure 4.15: Averaged performances over 25 sessions of the model during three
experiments with reverse at (a) t = 50, (b) t = 450, and (c) t = 950
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Figure 4.16: The y-axis donates how many trials are needed for the model to
start exploring (blue line) or exploiting (red line) after a reverse occurring at
a specific trial, donated by the x-axis. The green line is given by the equation
y = x, and it is displayed to emphasize the fact that the exploration line is
almost linear. For more details please refer to the text.

a session.
Furthermore, in the latter experiment, the strongest striatal weight begins

to decrease after the reverse, but after some trials, it increases again (Figure
4.17b). This is a mathematical deficit of our implementation.

When a weight reaches the maximum level before the reverse, then after
the reverse, the value of the input decreases too fast. Learning occurs when
the prediction of the reward is different from the actual value. In other words,
if the prediction error is zero, there is no reason for learning to follow. And,
when the value of the input reaches the minimum, there is no prediction error.
Consequently, when the value v in equation 3.11 reaches 0.25, then:

PE = R− v = R− 0.25 =

{
+3

4
, when reward = 1

−1
4
, when reward = 0

(4.1)

If we now compute the amount of change in synaptic weights for the two
cases using the PE values, we derive to :
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(a)

(b)

Figure 4.17: The first panel displays the performances of the model in a specific
task, and the other three the evolution of the values used in RL, the cogni-
tive cortico-striatal and cortico-cortical weights during the session. Reverse
experiments at (a) t = 50, and (b) t = 950.

∆WA→B =

{
3
4
× αLTP × UB, αLTP = 0.010, when reward = 1

1
4
× αLTD × UB, αLTD = 0.008, when reward = 0

(4.2)
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Now, if only the bad choice is selected, then it will be rewarded at average
among trials once per four trials. In total of four trials with only one rewarded,
the weight will change as follows:

1 ∗∆WA→B,reward=1 − 3 ∗∆WA→B,reward=0 =

= 1× 3

4
× 0.010× UB − 3× 1

4
× 0.008× UB

= (0.010− 0.008)× 3

4
× UB

= 0.002× 3

4
× UB > 0

(4.3)

According to the results of 4.3, in average of four trials the model in this case
of four trials will increase its weight, as we observe in Figure 4.17b. Another
aftermath from 4.3 is that the greater the difference between LTP & LTD the
faster the model becomes unable to recover from a reward probability change.

4.3 Experimental results

4.3.1 Protocol B: Formation of habits

After saline injections, animals were able to maximize their reward in the
Habitual condition and to learn new values in the Novelty. The mean success
rate (for the last 25 trials) was 99.4± 3.3% (Figure 4.18 A,B), [98.8± 0.6% for
monkey F (Figure 4.18C,D) and 100.0±0.0% for monkey Z (Figure 4.18E,F)].
The difference in success rate between the two animals was not significant
(unpaired t-test). In the NC, both animals learned progressively the difference
between the two shapes (Figure 4.18A,C and E). At the beginning of training,
their choices were made randomly. Although, at the end of the session the
animals displayed a preference for NC1, the target associated with the highest
reward probability (mean 53.8±4.4% for the first 25 trials and 93.0±2.5% for
the last 25 trials, Figure 4.18B). Mean reaction time in NC was significantly
higher than in the HC (respectively 447.6ms ± 5.6ms and 418.8ms ± 4ms,
P < 0.01 unpaired t test, Figure 4.19A).

After muscimol injections, the success rate did not decrease significantly
(mean 97.0% ± 1.8%, 4.18A,B) when compared with saline. On the other
hand, in the NC, at the end of the session, the animals did not display any
preference for either of the 2 targets after the muscimol injections (mean
42.4%± 4.5% to 52.0%± 7.0, F1, 72 = 2.13, P > .05, 4.18B). Muscimol injec-
tions in the GPi significantly increased the reaction time in both condition HC
(452.5ms±4.2ms) and NC (495.7ms±6.5ms) when compared with the saline
injections (2-way ANOVA: F1, 76 = 47.42, P < .01 between the 2 conditions
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Figure 4.18: As in Piron et al. [2016]. Mean success rate of the monkeys.
Please for more details refer to the text or the original paper.

and F1, 76 = 61.24, P < .01 between saline and muscimol, 4.19A). Overall
these results are compatible with the results of the model.

4.3.2 Protocol C: Storage of habits

We observed similar behaviors between the model and the monkeys in this
protocol. On Day 1 of the first experiment, the monkeys were injected with
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Figure 4.19: As in Piron et al. [2016]. Reaction time of the monkeys. Please
for more details refer to the text or the original paper.

muscimol, and, as in protocol B, were unable to learn new contingencies as
their performances showed [ 0.39± 0.12 in 25 first trials to 0.41± 0.14 in the
25 last (Figure 4.20b) ]. However, the next day and under saline, they reached
instantly optimal performances ( 0.97 ± 0.05 in 25 first and 1.0 ± 0.0 25 last
trials for both).

In the second experiment, the monkeys on Day 1, after saline injection,
were tested on novel pair of shapes, and reached good performances at the
end of the sessions (0.87 ± 3.6). On Day 2 under muscimol, the monkeys
started at the same level of performances as at the end of Day 1 (0.77± 5.3),
and improved until the end of the sessions (0.92 ± 4.5) [Figure 4.20a]. It
is worth to notice that even when GPi is inactive, there is an improvement
in performances, which support the theory that cortex learns based on the
statistics. To explain it better, take for example the beginning of the session.
From the performances of the monkeys derives that there is 72% probability
of cortex to choose optimally. Say it differently, in 100 trials the subject will
choose the best target 72 times and 28 the other one, so it will learn about 3
times more the best one over the other thanks to the nature of cortical learning.
So in the end of these 100 trials the optimum choice will be stronger learned at
the cortical level, resulting this choice to be even more probable to be chosen
in later trials.

4.4 Overall interpretation of the results

The results of all protocols described in the previous section show that the
model is able to select an action among available choices, and learn the one
with the highest probability to be rewarded. Furthermore, the model is able
to express similar behaviors with the monkeys in protocol B, where cortex is
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Habit learning

Saline / GPi ON Muscimol / GPi OFF(a)

(b)

Figure 4.20: As in Topalidou et al. [2016]. (a) In Protocol 1, D1 corresponds
to the first day of the experiment where the habits are believed to have been
acquired by the end of the day. D2 corresponds to the second day where GPi
output is suppressed in the monkeys (muscimol injection). (b) In Protocol
2, D1 corresponds to the first day of the experiment where GPi output is
suppressed in monkeys (muscimol injection). D2 corresponds to the second
day where the suppression of the GPi output is removed. D3 (suppression of
GPi) results is only a prediction based on model results and monkey protocol
1 results. They have not yet been confirmed.
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able to express habits without the feedback from basal ganglia, but not to
learn new contingencies. These experiments provided a framework to make
prediction of the monkey behaviors in different tasks.

“… Said differently, we managed to explicitly 
dissociate reinforcement learning from Hebbian 
learning and demonstrated covert learning inside 
the basal ganglia. These results suggest that a 
behavioral decision results from both the 
cooperation (acquisition) and competition 
(expression) of two distinct but entangled memory 
systems, the goal-directed system and the habit 
system that may represent the two ends of the 
same graded phenomenon. 

Decision 
 
 
 
 
 

Action

StimulusPiron et al. (2016)

Cooperation

“Slow”

Competition

Goal-directed 
System

Habit 
System

Figure 4.21: Illustration of our proposal about how a goal-directed action or
a habit is chosen to be executed.

The theoretical and experimental results of protocol C confirm our pre-
diction, by demonstrating that Hebbian and reinforcement learning can be
explicitly dissociated by inactivating the output of the basal ganglia while pre-
serving the normal function at striatal level, which we interpret as the learning
of the stimuli value. When GPi is inactive the Hebbian learning at cortical
level is equal for all choices, as a result of the randomness of the choice among
the options in any trial; the learning there is independent of the reward. On the
contrary, at striatal level the learning, which depends on the reward, following
reinforcement learning rules is analogous to the outcome of the choice in each
trial. Although, BG are able to learn properly in this case, they are unable
to interfere into the cortical decision, resulting to chance level performances
through the whole session. However, when GPi is active again, BG are able
to use the learning of the previous session to teach cortex. This is possible,
because BG answer is faster than the cortical, giving them time to influence
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the cortical decision. Finally, after an adequate training, cortical learning is
strong enough to make optimal decisions without the interference of BG (with
inactive the GPi). A habit has been formed. Based on these theoretical re-
sults and in light of experimental results in the monkey, we can predict that
equivalent processes underlay the habit formation in the frontal cortex of the
primates. Our hypothesis is that there are two actors and one critic that par-
ticipate in the acquisition of habits (Figure 4.22a). However, when the output
of BG is inactive, covert learning exists inside the basal ganglia that is ready
to be expressed when GPi becomes active again (Figure 4.22b).Habit learning
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Figure 4.22: Illustration of our hypothesis that cortex and BG implement a 2
actor - 1 critic system with (a) active and (b) inactive GPi.

Even though the term habit has a long history in many different fields of
neuroscience and psychology, there is still a large degree of uncertainty around
the exact definition. This characterization may further vary across fields de-
pending on the species, tasks and methodologies such that in the end, it is
difficult to assess if a given behavior emanates from a habit or from another
process. Our results suggest a new explanation for the primates where a behav-
ioral decision results from both the cooperation (acquisition) and competition
(expression) of two distinct but entangled memory systems. Finally, our last
protocol indicates that the existing criteria for defining the type of a behavior
(habit or goal-directed) should be revised to take also in account the capabil-
ities of the species.

In conclusion, based on the theoretical and experimental results, we support
the hypothesis that the two types of instrumental behavior are implemented by
two distinct mechanisms. However, contrary to the hypotheses that I described
in Chapter 2 (Daw et al. [2005]; Dezfouli and Balleine [2013]; Ashby et al.
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[2007]), we propose that the goal-directed and habit mechanisms interact, and
cooperate or compete in order the optimal action to be chosen as a result
of a specific stimulus (Figure 4.21). Unlike to previous theories, when they
compete each other, there is not a unique factor that indicates who will be
the winner. For example, Daw et al. [2005] proposed that the winner is always
the mechanism with the strongest salience. In our theory, this is true before
the habits have been formed. In this case, the goal-directed system influences
a lot the habit, and in the end is the one that leads the final decision. By
contrast, after the acquisition of habits, the habit mechanism is faster that the
goal-directed, resulting in being the leader of the decision, as in [Ashby et al.,
2007]. An outcome of our theory is that habits and goal-directed actions are
not totally independent. Contrary, habits are a graded phenomenon that has
as a basis goal-directed actions (Figure 4.23).

Conclusion

Habit acquisition and habit expression 
→ These are two different processes even though they’re entangled 
→ Basal ganglia serves as an implicit supervisor 
→ Habit can be expressed outside BG (at least in the primate) 
  

The critic role of the BG 
→ Basal ganglia serves as a generic critic, for any “actor” 
→ No experimental evidence yet for the role of the cortex 
→ Ongoing experiments to measure RL vs HL influence on behavior 

Habits are a graded phenomenon

Goal directed HabitsConsolidation Time XKCD #1066

Figure 4.23: Illustration of my proposal about how a goal-directed action or a
habit is chosen to be executed.

4.5 Comparison of our model with existed mod-
els

The model by Gurney et al. [2001a,b] and its extension by Girard et al. [2008]
contain almost all the known structures and connections participating in the
cortico-basal loop, and is undeniably more complete than ours. Its choices are
driven by a ‘winner-take-all’ mechanism that selects the neuron with the most
salient input. However, two identical inputs cannot produce a single action.
In GPR model none of the actions will be chosen, and in CBG all of them will,
but in both cases that is what each of them wanted to obtain. The explanation
for the first model is that none of them is better than the others, so no action
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should be performed, whereas for the second, they assume that it is valid more
than on action to be selected, as in multitasking paradigms (walking and talk-
ing simultaneously). In our model, we assume that the proposed actions are
opponents, so only one can be produced. That is the reason we added noise
in our system, to break the symmetry, and ensure action selection. Another
difference is that in our model we assume that the indirect pathway plays a
secondary role, contrary to the hyperdirect at which we assign a primary role.
Wanting to keep the complexity as simple as possible in order to focus in the
investigation of the habit mechanism, we implemented the least of the struc-
tures and connections needed to obtain action selection.

On the other hand, [Ashby et al., 2007] proposed an even simpler model
than ours to describe the acquisition of motor habits associated with a sensory
input. For this reason, they implemented a sensory cortex which projects di-
rectly to premotor area, but also indirectly through the cortico-basal-thalamic
loop. Through this loop, thalamus receives input from sensory cortex and
projects to premotor area. That results that at the beginning of training the
selection of the move occurs at striatum, which by disinhibiting thalamus in-
creases the cortical activity leading to the execution of the action. In our
model the procedure of selection starts and ends in the cortex thanks to the
closed loops with basal ganglia and thalamus. Despite the differences between
the models that mostly derive from the nature of the tasks and the examined
cortical areas, we both support the idea that basal ganglia lead decision in a
naive model, but through training cortico-cortical connections are strengthen,
and so the cortical action selection precedes the basal-ganglia one. Further,
it is suggested that both the cortico-cortical pathway and the cortico-basal-
thalamo-cortical pathway process the input in pre and post-learning periods,
however the later pathway is faster in the beginning of training and gets the
chance to influence the other one, and in the end the cortico-cortical decision
is much faster that the second have no time to interfere and modify it. By an
ecological point of view, it is reasonable since the first one contains only one
connection of two populations, and the second four.

Baldassarre et al. [2013] followed the same route, proposing that habits are
stored in cortico-cortical connectivity providing a repetition bias. However,
through the properties of the model it is predicted that even without the help
of basal ganglia the cortex can form habits, of course much more trials will
be needed until it will finally learn. This is due to the cortical learning rule
that they implemented, which considers that the learning occurs only when
dopamine is released as a consequence of reward. This contrasts the existent
bibliography suggesting that dopamine in cortical level stays for several min-
utes, so all the consequential actions are learned and not only the one that
triggered dopamine release.
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The theoretical model by Daw et al. [2005] propose that goal-directed ac-
tions and habits are processed separately and parallel by the two parts of
dorsal striatum (associative and sensorimotor respectively). For each decision,
both systems process the input, make a choice and then compete each other
for expression. Through this theory a question had arisen: Which is the pur-
pose of associative striatal learning? Our answer is that in this loop the most
appropriate strategies emanated from prefrontal cortex are reinforced in order
the total input from this loop to the sensorimotor, which are not totally seg-
regated, to become stronger and influence its decision.

Finally, Dezfouli and Balleine [2013] suggested that habits are learned ac-
tion sequences, triggered by a goal. They proposed that decision follow a
hierarchical model that first defines if a habit or a goal-direct action will be
executed, and if it is a habit, then the selected sequence will be insensitive
to the received feedback among the different stages. However, they do not
precise which area or loops are responsible for each mechanism, goal-directed
or habits, or how habits are formed in first place.

In summary, with this work we provide a new framework to explore the
interaction of the two types of learning at cortical (Hebbian) and striatal (ein-
forcement) level. Our new hypothesis about the formation and expression of
habits opens the road to reconsider the role of basal ganglia in these proce-
dures.
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“Our habits define us!
Therefore, by choosing them, we can redefine
ourselves, and become whoever we have
dreamed of!”

Conclusion

Habits are an important element for the production of complex and high-level
behaviors that can be found in superior vertebrates. They are actions executed
fast, with the minimum amount of effort (optimum use of muscles and energy),
and free of attention in order to be used for more important functions; e.g.
look for predators. Most of our knowledge today about habits comes from ex-
perimental studies on a variety of species, although the different species don’t
always share the same capabilities. For this reason, it is important to take in
account this diversity of capacity among the species when we generalize the
conclusions of a study on a specific species. The dominant view, nowadays,
supports that habits are goal independent, which was proposed mostly from
experiments on rodents. Primates, on the other hand, do not express this char-
acteristic in non-pathological situations. For example, monkeys conduct the
experiments only because they are kept under hydric deprivation to motivate
them during the task. So, if they are exposed to liquids before the experi-
ment, equivalent to the protocols for reward devaluation applied on rodents,
the monkeys will have no motivation for completing the task. Concluding from
the existing bibliography, the features that characterize an action as habit, in
non-human and human primates, are: automaticity, unconsciousness, inflexi-
bility, incremental acquisition, goal-oriented.

The dominant view of the 20th century supported the idea that cortex is
responsible for flexible thinking, and consequently for goal-directed actions.
In contrast, habits are automatic, so they were thought to be generated by a
less complex, subcortical structure such as the basal ganglia. Basal ganglia
are a group of subcortical structures existing in all vertebrates. Also, it has
been shown to participate in action selection, an ability that all vertebrates
share, in contrast to invertebrates where instinct triggers the behavior. The
evolution of computational modeling accelerated the research of the role about
basal ganglia in instrumental tasks, as well as their underline properties. A
variety of models have been developed in order to examine different aspects
of basal ganglia. For example, some models study the interaction of the path-
ways inside BG during action selection, and others study the cortico-basal
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loops investigating their role in habits and goal-directed actions, but both
put a piece in the puzzle of understanding the anatomy, the physiology and
the functional role of basal ganglia. In the same time, machine learning, and
more specifically reinforcement learning, provided critical insight and theories
of the mechanisms governing instrumental behavior. Combined evidence from
theoretical and experimental studies led to a new theory, which supports the
existence of two distinct, parallel cortico-basal loops responsible for habitual
and goal-directed behavior. Also, this theory suggests that habits are stored
in basal ganglia. Nowadays, there are many studies suggesting that habits are
stored in cortex, which nevertheless needs basal ganglia during their forma-
tion. We also provided evidence supporting this theory, showing that if the
main output of BG is inactivated then habits are still executed, but no new
associations between a stimulus and an action can be learned. At this point,
I want to highlight that the acquired knowledge we investigate in this work,
derives only from instrumental learning; learning by feedback.

In this work we explored the nature of instrumental behavior through a
computational, biological inspired model of cortico-basal-thalamic closed loop
that we developed. We kept the complexity as simple as possible so the
model can perform action selection, in order to focus on the mechanisms un-
derlying the acquisition and expression of habits. One hypothesis derived
from our model was that habits are developed parallel to the acquisition of
proper action-outcome association necessary for achieving better performances
in goal-directed actions. A lot of evidence suggests that cortical learning is
based on Hebbian learning rules, i.e. every choice is learned independently
to its outcome, and basal learning on reinforcement learning rules, i.e. each
choice is evaluated depending on its output and reinforced according to this
evaluation. Therefore, we argued that cortex learns by the statistics provided
implicitly by early basal ganglia action selection. To explain it better, when
basal ganglia have learned the appropriate action for a stimulus, they influence
cortical decision. In this way, the optimal choice is over-represented at cortical
level; e.g. if the optimal cue is chosen 100 times and another one only 10, then
cortex will learn the optimal 10 times more. However, when cortical learning
is strong enough, the decision in cortical level is fast enough to prevent the
interference of basal ganglia. To test our hypothesis, we designed a proto-
col of a two arm-bandit task, which contained three parts. At the first part,
new contingencies, associated with reward probability, were presented to the
system, after the inactivation of GPi (one of the basal ganglia output). The
model was unable to explicitly select the stimulus associated with the highest
probability of reward. Its answers were random. Because of the properties
of the model, we know that this occurred because basal ganglia could not in-
fluence the decision anymore, resulting in cortical learning of each performed
action to be learned at cortical level, because cortical learning is independent
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of the action outcome. However, we hypothesized that the value of the stimuli
were covertly learned inside the BG (cortical-striatal connections) even though
BG was unable to influence the decisions. To test this theory, in the second
part of the experiment we reactivated GPi and presented the same input. As
expected, the model was able to make optimal choices from the beginning of
the session, proving that, during the first part, striatum had already learned
the values of the stimuli. Finally, the aim of the last part was to verify that
basal ganglia were able to train cortex and not just lead the decision during
the second part. For this reason, we inactivated once more GPi, and present
again the same options. We observed that from the beginning of the session
the model chose nearly optimally. This experiment additionally has been con-
ducted on monkeys, which expressed the same behaviors in the three parts as
the model. The experimental results confirmed our prediction, which suggests
that at the beginning of learning, BG are responsible to train cortex by lead-
ing cortical decision, but after learning has occurred BG role is to accelerate
cortical decision without being necessary anymore for the decision per se. Fur-
thermore, this protocol provides a way to dissociate cortical Hebbian learning
from striatal reinforcement learning that are normally entangled.

Indubitably, our model has limitations. First of all, a lot of details in
anatomical and physiological level are missing, as for example the indirect
pathway, striatal interneurons or connections from GPi or thalamus back to
striatum. Now that we have an idea for the role of basal ganglia as an en-
tity, these additions could expose the intrinsic mechanisms. Also, the notion
of context is not included. This means that the model would express habits
whatever the context. For example, at the sight of a switch, the action to turn
the light on is triggered only when it is combined with a dark room. However,
our model would produce the action even if the simulated room was not dark,
because it can only associate the sight of the switch with the appropriate ac-
tion, independent of the context. Furthermore, the model cannot relearn after
extensive training, contrary to humans or primates. This is due to our im-
plementation of basic reinforcement and Hebbian learning rules. One reason
is that at the cortical level there is no forgetful element. That means that
even if after reward devaluation of the pre-learned choice the model learns the
new optimal choice owing to BG, it will be unable to express habits without
the BG, because the two choices will have been learned equally at cortical
level. Another limitation of the model is that the salience of a stimuli can
take precedence over its value. This means that the model might be unable to
choose the best stimulus (in terms of probability of reward) if the worst stim-
ulus is made salient enough. If a stimulus salience is strong enough, the model
will choose this one, even though another stimulus could have bigger value.
Also, the choice between two stimuli presented in a different timing depends
on the amount of the interval timing. If the difference of presentation is small,
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then the model will choose based on the values. Whereas if the interval is big
enough, then the model will choose the first presented. Same behaviors can be
observed also in humans. For example, lets say that a piece of cake is given,
and after some time a delicious ice-cream. Even if the subject has started to
reach the piece of the cake, he will change his mind and go for the ice-cream,
if it is given after few seconds. However, if the ice-cream is presented to the
subject after an hour, it will be irrelevant for his first and only choice at that
moment, so he will reach the piece of cake.

Finally with this work, we provided a new framework to explore the inter-
action of the two types of learning, Hebbian and reinforcement, and set the
foundation for new experiments. For example, a way to investigate the rela-
tive strength of these two types of learning on instrumental behavior would
be to display a single stimulus (forced choice) with a given reward probability.
By controlling the number of time a specific stimulus has been presented ver-
sus the associated reward probability, we could measure the relative influence
of reinforcement learning versus Hebbian learning. If one stimulus with high
probability is presented with low frequency, but another is associated with low
probability and presented with high frequency, then the model predicts that
the choice between the two stimuli will depend on the probability if a session is
small, but on the frequency if it contains many trials. Furthermore, the model
has been extended in the framework of a neuroeconomic task that requires a
two steps decision. This means the reward is obtained only after the second
action. By slightly modifying the semantics of each input structure (motor,
cognitive, associative cortices), the model has been shown to be able to solve
the task. However, after the learning of the action sequences, the model is un-
able to separate the actions and execute them in similar tasks. It actually uses
a strategy-based rather than a model-based decision and this limits strongly
the scope of the model. Finally, in our model we hypothesized that habits
are stored in cortex, although today we don’t have solid evidence for this as-
sumption. In order to assess if Hebbian learning is actually responsible for
the storage of habits, it would be necessary to inactivate associative learning
in dorsolateral prefrontal or orbitofrontal cortex and check whether monkeys
would complete the task without developing habits. This is ongoing work but
there is no data at the time of writing.

Despite this promising start, our model needs further experiments to be
confirmed. Nevertheless it is noticeable that it reverses the old idea that au-
tomatism is a sub-cortical feature. The fact that automatic input/output
association occurs at cortical level, bypassing a long sub-cortical journey and
therefore saving cognitive resources is a strong ecological argument. If our
model is confirmed by further experiments, it opens new questions such as: i)
is it a mammal specificity? ii) a primate specificity? iii) how such automatisms
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are implemented or even are they implemented in other vertebrates?

In the end, my dog learned the new path, so habits can be reversed!
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Appendix A

Parameters Table

A.1 Guthrie et al. [2013]Guthrie

A Model Summary
Populations Twelve: Cortex (motor, associative & cognitive), Striatum (motor, asso-

ciative & cognitive), GPi (motor & cognitive), STN (motor & cognitive),
Thalamus (motor & cognitive)

Topology –
Connectivity one to one, one to many (divergent), many to one (convergent)
Neuron model Dynamic rate model
Channel model –
Synapse model Linear synapse
Plasticity Reinforcement learning rule
Input External current in cortical areas (motor, associative & cognitive)
Measurements Firing rate

B Populations
Name Elements Size Threshold (h) Noise Initial state
Cortex motor Linear neuron 1⇥ 4 -3 5.0% 0.0
Cortex cognitive Linear neuron 4⇥ 1 -3 5.0% 0.0
Cortex associative Linear neuron 4⇥ 4 -3 5.0% 0.0
Striatum motor Sigmoidal neuron 1⇥ 4 0 5.0% 0.0
Striatum cognitive Sigmoidal neuron 4⇥ 1 0 5.0% 0.0
Striatum associative Sigmoidal neuron 4⇥ 4 0 5.0% 0.0
GPi motor Linear neuron 1⇥ 4 -10 5.0% 0.0
GPi cognitive Linear neuron 4⇥ 1 -10 5.0% 0.0
STN motor Linear neuron 1⇥ 4 -10 5.0% 0.0
STN cognitive Linear neuron 4⇥ 1 -10 5.0% 0.0
Thalamus motor Linear neuron 1⇥ 4 -40 5.0% 0.0
Thalamus cognitive Linear neuron 4⇥ 1 -40 5.0% 0.0
Values (Vi) Scalar 4 – – 0.5
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C Connectivity
Source Target Pattern Weight Gain Plasticity
Cortex motor Thalamus motor (1, i)→ (1, i) 1.0 0.1 -
Cortex cognitive Thalamus cognitive (i, 1)→ (i, 1) 1.0 0.1 -
Cortex motor STN motor (1, i)→ (1, i) 1.0 1.0 -
Cortex cognitive STN cognitive (i, 1)→ (i, 1) 1.0 1.0 -
Cortex motor Striatum motor (1, i)→ (1, i) 0.5 1.0 -
Cortex cognitive Striatum cognitive (i, 1)→ (i, 1) 0.5 1.0 (F1)
Cortex motor Striatum associative (1, i)→ (∗, i) 0.5 0.2 -
Cortex cognitive Striatum associative (i, 1)→ (i, ∗) 0.5 0.2 -
Cortex associative Striatum associative (i, j)→ (i, j) 0.5 1.0 -
Thalamus motor Cortex motor (1, i)→ (1, i) 1.0 0.4 -
Thalamus cognitive Cortex cognitive (i, 1)→ (i, 1) 1.0 0.4 -
GPi motor Thalamus motor (1, i)→ (1, i) 1.0 -0.3 -
GPi cognitive Thalamus cognitive (i, 1)→ (i, 1) 1.0 -0.3 -
STN motor GPi motor (1, i)→ (1, i) 1.0 1.0 -
STN cognitive GPi cognitive (i, 1)→ (i, 1) 1.0 1.0 -
Striatum cognitive GPi cognitive (i, 1)→ (i, 1) 1.0 -2.0 -
Striatum motor GPi motor (i, 1)→ (i, 1) 1.0 -2.0 -
Striatum associative GPi motor (∗, i)→ (1, i) 1.0 -2.0 -
Striatum associative GPi cognitive (i, ∗)→ (i, 1) 1.0 -2.0 -
Cortex motor Cortex motor (1, i)→ (1, ∗) 1.0 -0.5 -
Cortex cognitive Cortex cognitive (1, i)→ (1, ∗) 1.0 -0.5 -
Cortex associative Cortex associative (i, j)→ (∗, ∗) 1.0 -0.5 -
Cortex motor Cortex associative (1, i)→ (∗, i) 0.5 0.03 -
Cortex associative Cortex cognitive (i, ∗)→ (i, 1) 0.5 0.03 (F2)
Cortex cognitive Cortex associative (i, 1)→ (i, ∗) 0.5 0.03 -
Cortex associative Cortex motor (∗, i)→ (1, i) 0.5 0.03 -

D1 Neuron Model
Name Linear neuron
Type Rate model
Membrane Potential τdV/dt = −V + Isyn + Iext − h

U = max(V, 0)

D2 Neuron Model
Name Sigmoidal neuron
Type Rate model
Membrane Potential τdV/dt = −V + Isyn + Iext − h

U = Vmin − (Vmax − Vmin)/
(

1 + e
Vh−V

Vc

)



E Synapse
Name Linear synapse
Type Weighted sum
Output IBsyn =

∑
A∈sources(GA→BWA→BUA)

F1 Plasticity
Name Reinforcement learning
Type Delta rule
Delta ∆WA→B = α× PE × UB

PE = Reward− Vi
α = 0.008 if PE < 0 (LTD), α = 0.01 if PE > 0 (LTP)
∆Vi = β × PE, β = 0.002

F2 Plasticity
Name Hebbian learning
Type Hebb rule
Delta ∆WA→B = α× UA × UB, α = 0.001

G Input
Type Cortical input
Description A trial is preceded by a settling period (500ms) and followed by a reset period.

At time t = 0, two shapes are presented in cortical cognitive area (Iext =
7 at {i1, i2}) at two different locations in cortical motor area (Iext = 7 at
{j1, j2}) and the cortical associate area is updated accordingly (Iext = 7 at
{i1, i2} × {j1, j2}).

Timing
Trial start Stimulus onset Stimulus offset Reset

-500ms 0 2500 ms 3000 ms

H Measurements
Site Cortical areas
Data Activity in cognitive and motor cortex

Cortico-striatal weights

I Environment
OS OSX 10.11 (El Capitan)
Language Python 3.5.1 (brew installation)
Libraries Numpy 1.10.2 (pip installation)

Cython 0.23.4 (pip installation)
Matplotlib 1.5.0 (pip installation)



A.2. Topalidou et al. [2016]

A.2 Topalidou et al. [2016]Topalidou

A Model Summary
Populations Twelve: Cortex (motor, associative & cognitive), Striatum (motor, asso-

ciative & cognitive), GPi (motor & cognitive), STN (motor & cognitive),
Thalamus (motor & cognitive)

Topology –
Connectivity one to one, one to many (divergent), many to one (convergent)
Neuron model Dynamic rate model
Channel model –
Synapse model Linear synapse
Plasticity Reinforcement learning rule
Input External current in cortical areas (motor, associative & cognitive)
Measurements Firing rate

B Populations
Name Elements Size Threshold (h) Noise Initial state
Cortex motor Linear neuron 1⇥ 4 -3 5.0% 0.0
Cortex cognitive Linear neuron 4⇥ 1 -3 5.0% 0.0
Cortex associative Linear neuron 4⇥ 4 -3 5.0% 0.0
Striatum motor Sigmoidal neuron 1⇥ 4 0 5.0% 0.0
Striatum cognitive Sigmoidal neuron 4⇥ 1 0 5.0% 0.0
Striatum associative Sigmoidal neuron 4⇥ 4 0 5.0% 0.0
GPi motor Linear neuron 1⇥ 4 -10 5.0% 0.0
GPi cognitive Linear neuron 4⇥ 1 -10 5.0% 0.0
STN motor Linear neuron 1⇥ 4 -10 5.0% 0.0
STN cognitive Linear neuron 4⇥ 1 -10 5.0% 0.0
Thalamus motor Linear neuron 1⇥ 4 -40 5.0% 0.0
Thalamus cognitive Linear neuron 4⇥ 1 -40 5.0% 0.0
Values (Vi) Scalar 4 – – 0.5
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C Connectivity
Source Target Pattern Weight Gain Plasticity
Cortex motor Thalamus motor (1, i)→ (1, i) 1.0 0.1 -
Cortex cognitive Thalamus cognitive (i, 1)→ (i, 1) 1.0 0.1 -
Cortex motor STN motor (1, i)→ (1, i) 1.0 1.0 -
Cortex cognitive STN cognitive (i, 1)→ (i, 1) 1.0 1.0 -
Cortex motor Striatum motor (1, i)→ (1, i) 0.5 1.0 -
Cortex cognitive Striatum cognitive (i, 1)→ (i, 1) 0.5 1.0 (F1)
Cortex motor Striatum associative (1, i)→ (∗, i) 0.5 0.2 -
Cortex cognitive Striatum associative (i, 1)→ (i, ∗) 0.5 0.2 -
Cortex associative Striatum associative (i, j)→ (i, j) 0.5 1.0 -
Thalamus motor Cortex motor (1, i)→ (1, i) 1.0 0.4 -
Thalamus cognitive Cortex cognitive (i, 1)→ (i, 1) 1.0 0.4 -
GPi motor Thalamus motor (1, i)→ (1, i) 1.0 -0.3 -
GPi cognitive Thalamus cognitive (i, 1)→ (i, 1) 1.0 -0.3 -
STN motor GPi motor (1, i)→ (1, i) 1.0 1.0 -
STN cognitive GPi cognitive (i, 1)→ (i, 1) 1.0 1.0 -
Striatum cognitive GPi cognitive (i, 1)→ (i, 1) 1.0 -2.0 -
Striatum motor GPi motor (i, 1)→ (i, 1) 1.0 -2.0 -
Striatum associative GPi motor (∗, i)→ (1, i) 1.0 -2.0 -
Striatum associative GPi cognitive (i, ∗)→ (i, 1) 1.0 -2.0 -
Cortex motor Cortex motor (1, i)→ (1, ∗) 1.0 -0.5 -
Cortex cognitive Cortex cognitive (1, i)→ (1, ∗) 1.0 -0.5 -
Cortex associative Cortex associative (i, j)→ (∗, ∗) 1.0 -0.5 -
Cortex motor Cortex associative (1, i)→ (∗, i) 0.5 0.03 -
Cortex associative Cortex cognitive (i, ∗)→ (i, 1) 0.5 0.03 (F2)
Cortex cognitive Cortex associative (i, 1)→ (i, ∗) 0.5 0.03 -
Cortex associative Cortex motor (∗, i)→ (1, i) 0.5 0.03 -

D1 Neuron Model
Name Linear neuron
Type Rate model
Membrane Potential τdV/dt = −V + Isyn + Iext − h

U = max(V, 0)

D2 Neuron Model
Name Sigmoidal neuron
Type Rate model
Membrane Potential τdV/dt = −V + Isyn + Iext − h

U = Vmin − (Vmax − Vmin)/
(

1 + e
Vh−V

Vc

)



E Synapse
Name Linear synapse
Type Weighted sum
Output IBsyn =

∑
A∈sources(GA→BWA→BUA)

F1 Plasticity
Name Reinforcement learning
Type Delta rule
Delta ∆WA→B = α× PE × UB

PE = Reward− Vi
α = 0.008 if PE < 0 (LTD), α = 0.01 if PE > 0 (LTP)
∆Vi = β × PE, β = 0.002

F2 Plasticity
Name Hebbian learning
Type Hebb rule
Delta ∆WA→B = α× UA × UB, α = 0.001

G Input
Type Cortical input
Description A trial is preceded by a settling period (500ms) and followed by a reset period.

At time t = 0, two shapes are presented in cortical cognitive area (Iext =
7 at {i1, i2}) at two different locations in cortical motor area (Iext = 7 at
{j1, j2}) and the cortical associate area is updated accordingly (Iext = 7 at
{i1, i2} × {j1, j2}).

Timing
Trial start Stimulus onset Stimulus offset Reset

-500ms 0 2500 ms 3000 ms

H Measurements
Site Cortical areas
Data Activity in cognitive and motor cortex

Cortico-striatal weights

I Environment
OS OSX 10.11 (El Capitan)
Language Python 3.5.1 (brew installation)
Libraries Numpy 1.10.2 (pip installation)

Cython 0.23.4 (pip installation)
Matplotlib 1.5.0 (pip installation)
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