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Title: Resonant Nanophotonics: Structural Slow Light and 
Slow Plasmons 
Abstract: Enhancing light-matter interactions at micro and nanoscales is one of the 
spearheads of nanophotonics. Indeed, the control of the field distribution due to the 
resonant interaction of nanostructures with electromagnetic waves has prompted 
the development of numerous optical components for many applications in 
telecommunication, spectroscopy or sensing. A promising approach lies in the 
control of light speed in nanostructures. Light slowdown, obtained by wave 
interferences in periodic structures or subwavelength confinement in plasmonic 
waveguides, is associated to pulse compressions and large field enhancements, 
which are envisioned as key processes for the miniaturization of optical devices and 
the enhancement of light-matter interactions.  
The thesis studies both fundamental aspects and possible applications related to 
slow light in photonic and plasmonic nanostructures. In particular, we study the 
impact of periodic system sizes on the group velocity reduction and propose a novel 
family of resonators that implement slow light on very small spatial scales. We then 
investigate the role of fabrication disorder in slow periodic waveguides on light 
localization and demonstrate how modal properties influence the confinement of 
localized modes. Also we propose a new hollow-core photonic crystal waveguide 
that provides efficient and remote couplings between the waveguide and atoms that 
are trapped away from it. Finally we demonstrate the important role played by slow 
plasmons on the emission of quantum emitters placed in nanogap plasmonic 
antennas and explain how large radiation efficiency can be achieved by overcoming 
quenching in the metal. Additionally, one part of the thesis is devoted to the 
derivation of a novel modal method to accurately describe the dynamics of 
plasmonic resonators under short pulse illumination. 
Keywords: Structural slow light, Slow plasmons, Photonic crystal waveguide, 
Metal-insulator-metal waveguide, Plasmonic nanoresonator, Density of states, Light 
localization, Quasi-normal modes, Quenching, Atom-photon interaction. 
 

Titre : Résonance en Nanophotonique : Lumière Lente 
Structurale et Plasmons Lents 
Résumé : L'augmentation de l'interaction lumière-matière aux échelles micro et 
nanométriques est un des fers de lance de la nanophotonique.  En effet, le contrôle 
de la répartition spatiale de la lumière grâce à l'interaction résonante entre 
nanostructures et ondes électromagnétiques a conduit aux développements de 
nombreuses applications dans des domaines variés tels que les télécommunications, 
la spectroscopie et la détection d'objets. Le ralentissement de la lumière, sujet de la 
thèse, obtenue grâces à l'interférence d'ondes contre-propageantes dans des milieux 
périodiques ou le confinement sub-longueur d'onde dans des guides d'ondes 
plasmoniques, est associé à une compression des pulses lumineux et une forte 
augmentation du champ électrique, deux phénomènes clés pour la miniaturisation 
de composées optiques et l'augmentation de l'interaction lumière matière.  

Mots clés : Lumière lente structurale, Plasmon lent, Guide à cristaux photoniques, 
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RESUME EN FRANÇAIS 

 Cette thèse, articulée autour de 5 chapitres indépendants, étudie à la fois 

des aspects fondamentaux et appliqués liés à la lumière lente structurale et 

aux plasmons lents. Les pages suivantes détaillent le contenu des 5 chapitres 

et donnent un aperçu des différents points abordés. 

------- Chapitre 1 ------- 

Les systèmes périodiques infinis possèdent des vitesses de groupe 

extrêmement faibles et présentent une divergence de la densité d'états en 

bord de bande. En pratique cependant, tout système a une taille finie. Celaa 

pose inévitablement la question de savoir si les quantités physiques définies 

à partir de systèmes infinis, comme la vitesse de groupe déduite du 

diagramme de bande, conservent leur signification dans des systèmes de 

tailles finies. Nous pouvons par exemple nous demander si la densité d'états 

d’un système infini peut être approchée ou reproduite dans un système de 

taille finie. Intuitivement, nous pouvons nous attendre à ce que 

l'implémentation d’une densité d'états de plus en plus grande, ou de manière 

équivalente d’une vitesse de groupe de plus en plus faibles, augmente 

considérablement la taille du système.  

 Dans le chapitre 1, nous démontrons, grâce à des arguments basés sur les 

ondes se propageant dans des systèmes à 1 dimension (1D), que de fortes 

augmentations de la densité d'états dues au seul effet de la lumière lente 

peuvent en réalité être observées sur des systèmes très courts, dont la taille 

varie avec le logarithme de l'inverse de la vitesse de groupe. La 

compréhension obtenue dans les systèmes 1D nous conduit à proposer une 

toute nouvelle famille de résonateurs photoniques, analogues de dos d'âne 

pour photons, dans lesquelles l'énergie électromagnétique est accumulée, 
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non pas à cause de l'interférence d'ondes entre deux miroirs, mais à cause 

d'une chute soudaine de la vitesse de groupe, suivie d'une ré-accélération à 

la vitesse de groupe initiale. Des simulations numériques en 3 dimensions 

montrent que des systèmes courts (quelques longueurs d'ondes) peuvent 

mimer le comportement de systèmes infinis, même pour des vitesses de 

groupes extrêmement faibles. Nous montrons de plus que l'augmentation de 

la densité d'états du dos d'âne pour photons provient d'une résonance 

classique caractérisée par un seul mode résonant dont la nature et les 

propriétés sont drastiquement différentes de celles de microcavités 

classiques. 

------- Chapitre 2 ------- 

Les études initiales sur le transport de la lumière dans les guides d'ondes 

périodiques ont montré que les défauts résiduels de fabrication avaient un 

impact considérable sur la propagation de la lumière lente et limitaient 

sévèrement la réalisation de systèmes optiques exploitement ce phénomène 

[Mel14, Not01]. La conséquence la plus marquante est incontestablement la 

formation de modes localisés en bord de bande, généralement expliquée par 

la grande sensibilité de la lumière lente à des défauts aléatoires [Mel14]. 

Cependant, une analyse détaillée de l'extension spatiale de ces modes 

localisés est manquante, notamment l'analyse du plus petit confinement 

atteignable pour un niveau d'imperfection de fabrication donné, renseignant 

sur les limites de fonctionnement de ces systèmes. 

 Dans le chapitre 2, nous examinons l'impact des défauts de fabrication 

résiduels dans les guides périodiques lents sur la formation de modes 

fortement localisés, avec l'ambition de déterminer les paramètres clés 

régissant leur extension spatiale. D'un point de vue expérimentale, nous 

observons que des modes fortement localisés apparaissent naturellement en 

bord de bande de guides à cristaux photoniques fabriqués sans désordre 

intentionnel mais seulement perturbés par des défauts de fabrication 

intrinsèques (perturbations d'environ 1 nm pour une longueur d'onde de 1.5 
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µm). Ces observations, réalisées par le groupe de Frédérique De Fornel à 

l'Université de Bourgogne, révèlent que le plus petit mode naturellement 

formé dans ce type de guide possède un volume modal de l'ordre de 

quelques longueurs d'onde au cube. Ce résultat surprenant soulève des 

questions fondamentales sur la manière dont des guides d'ondes quasiment 

parfait, comprenant seulement de petits défauts de l'ordre du nanomètre, 

peuvent modifier à tel point le transport de la lumière. Comme évoqué plus 

haut, la vitesse de groupe est reconnue comme étant le paramètre clé 

expliquant le phénomène de localisation en bord de bande, puisque faible 

vitesse de groupe est synonyme de forte interaction entre lumière et défauts 

de fabricaiton. Nous montrons cependant que la taille des plus petites modes 

localisés est en réalité régie par la masse effective, i.e. l'aplatissement de la 

courbe de dispersion. Nous démontrons de plus que les guides à cristaux 

photoniques, grâce à une masse effective plus élevée que d'autres structures 

périodiques telles que les empilements de Bragg, peuvent en effet supporter 

des modes localisés sur une longueur de l'ordre de la longueur d'onde, en 

accord avec les mesures expérimentales. 

Ce travail a été réalisé en étroite collaboration avec les groupes de Thomas 

Krauss à l'Université de York et Frédérique de Fornel à l'Université de 

Bourgogne. Les premiers ont fabriqué les guides à cristaux photoniques 

tandis que les seconds ont réalisé les expériences en champ proche. Cette 

collaboration a conduit à une publication dans Scientific Reports en 2016. 

L'article donne les détails sur la méthode de fabrication et les mesures en 

champ proche qui ne sont pas détaillés dans le chapitre. 

------- Chapitre 3 ------- 

L'intégration sur puce de composés photoniques couplés à des atomes froids 

offre des perspectives intéressantes dans la réalisation de nouveaux 

composés optiques pour le domaine de l'information quantique [Kim08a]. 

Dans ce contexte, un obstacle récurrent réside dans la difficulté de coupler 

efficacement photons uniques et atomes uniques et de piéger simultanément 



Résumé en français 

vi 

les atomes à une distance suffisante de la nanostructure pour éviter de subir 

les forces attractives de Casimir-Polder présentes entre matière et atome. 

Jusqu'à présent, la nature évanescente du champ électrique dans le vide, 

limitant fortement la distance d'interaction due à une décroissance rapide, a 

empêché l'implémentation simple de couplage entre atomes et photons à 

l'aide de nanostructures. 

 Dans le chapitre 3, nous concevons un guide lent à cristaux photoniques à 

fente permettant d'obtenir une interaction élevée entre lumière et atomes loin 

de toute interface de la nanostructure. La conception repose sur l'ingénierie 

des propriétés d'un mode de Bloch permettant l'obtention d'un champ 

intense dans une fente d'environ 1 µm de large, bien plus grande que dans 

les précédents guides à fentes dans lesquels la taille est généralement limité à 

des largeurs de l'ordre de deux cents nanomètres [San07, Hun13]. 

L'augmentation de l'amplitude du champ électrique dans la fente est obtenue 

grâce à un ralentissement de la lumière et une décroissance plus lente du 

champ évanescent dans le vide environnant. Cependant, la conception d'un 

tel objet est contradictoire. D'un côté, la lumière doit être déconfinée dans le 

vide, et donc interagir peu avec la matière. D'un autre côté, le ralentissement 

de la lumière nécessite une interaction forte entre la lumière et une 

modulation périodique de l'indice de réfraction de la matière. Pour 

contourner ce problème, nous proposons un nouveau type de guide d'onde, 

possédant deux périodicités distinctes mais proportionnelles, permettant de 

contrôler l'aplatissement de la courbe de dispersion du mode proche de la 

ligne de lumière du vide. 

------- Chapitre 4 ------- 

Le domaine de la plasmonique ultra-rapide a connu une croissance 

considérable dans la dernière décennie grâce au développement de 

nouveaux outils expérimentaux permettant l'observation de l'interaction 

lumière-matière avec une précision nanométrique sur des échelles de temps 

de l'ordre de la femtoseconde. Cependant, aucun outil théorique simple et 
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intuitif n'a été développé jusqu'à présent pour interpréter de manière claire 

ces résultats et comprendre les mécanismes physiques à leurs origines. Dans 

un premier temps, des modèles d'oscillateurs harmoniques simples ont été 

utilisés mais ce type de modèle est souvent trop simpliste pour expliquer la 

riche physique de ces systèmes. D'un autre côté, des simulations numériques 

dans le régime fréquentiel [Sun13] avec des fréquences réelles ou dans le 

domaine temporel [Mar15] ont été réalisées mais ne permettent pourtant pas 

toujours d'avoir accès à la physique sous-jacente.  

 Dans le chapitre 4, nous proposons une nouvelle approche modale 

décrivant précisément la dynamique temporelle du champ diffusé par des 

nano-résonateurs. Cette approche, basée sur une expansion en modes quasi 

normaux (MQN) développée récemment dans le groupe, considère 

explicitement les modes résonants naturels de la structure [Sau13]. Les 

MQNs, dénotés par 𝑬! 𝒓 , 𝑚 = 1,2… sont des solutions des équations de 

Maxwell en l'absence de source avec une fréquence de résonance complexe 

dont la partie imaginaire prend en compte les fuites et l'absorption du 

système. L'analyticité apportée par l'expansion en MQNs et la continuité 

dans le plan complexe permettent de décrire précisément la réponse 

spectrale de résonateurs plasmoniques autour de la fréquence de résonance. 

Dans le régime temporel, nous démontrons qu'une expression simple  

𝑬!"# 𝒓, 𝑡 ≈ 𝛽! 𝑡! 𝑬! 𝒓 , 

où les coefficients d'excitation 𝛽! sont connus analytiquement, conduit à une 

description très précise du champ 𝑬!"# 𝒓, 𝑡  diffusé par le résonateur. Nous 

appliquons cette théorie au calcul de la réponse temporelle de modes 

dipolaires brillants et de modes quadripolaires bien plus sombres et 

comparons nos prédictions à celles obtenues par la méthode "Finite-

difference Time-Domain" (FDTD). Nous montrons que la prise en compte 

des modes naturels du système permet d'interpréter de manière très intuitive 

des résultats obtenus lors d'expériences de plasmonique ultra-rapide. La 

comparaison permet également de mettre en évidence que le formalisme 
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permet, si la réponse temporelle peut être décrite par seulement quelques 

modes dominants, de décrire très précisément la réponse au temps long, i.e. 

pendant la désexcitation, pour des temps de calculs extrêmement plus faibles 

que ceux de la méthode FDTD. 

La méthode de calcul des MQNs développée dans le groupe repose sur une 

recherche itérative de pôles et ne permet de calculer que quelques MQNs 

dominants, nécessitant de plus un a priori sur la valeur du pôle. Pendant les 

8 derniers mois de la thèse, nous avons travaillé sur la possibilité de calculer 

tous les MQNs d'un système donné, en un seul calcul et sans valeur initiale, 

en considérant une méthode basée sur des champs auxiliaires [Ram10]. Des 

résultats encourageants, qui ne sont pas présentés dans le manuscrit, ont été 

obtenus avec la nouvelle méthode de calcul et seront présentés pendant la 

soutenance. 

Ce travail a été réalisé en collaboration avec le groupe d'Anders Mikkelsen 

(Université de Lund, Suède) qui a réalisé les calculs FDTD et fournit les 

données expérimentales. 

------- Chapitre 5 ------- 

De récentes expériences [Aks14, Egg15, Kin09, Rin08] ont montré la 

possibilité d'obtenir de fortes augmentations de taux de d'émission 

spontanée (×1000) avec des efficacités d'émission relativement élevées (> 

50%) en plaçant des émetteurs quantiques dans des nano-fentes diélectriques 

à l'interface de deux objets métalliques. Ces résultats très surprenants sont 

obtenus pour des émetteurs placés à proximité du métal (quelques 

nanomètres) dans un régime où le quenching est considéré comme le canal 

de désexcitation dominant, empêchant a priori toute émission radiative de 

l'émetteur. La contradiction de ces observations suggèrent que les 

mécanismes physiques précis régissant l'émission d'émetteurs quantiques 

placés à proximité d'objets métalliques dans les nano-fentes diélectriques est 

toujours incomprise.  
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 Dans le chapitre 5, nous clarifions comment de bonnes efficacités 

d'émission peuvent être obtenues malgré la proximité du métal et essayons 

de répondre à des questions fondamentales sur le rôle du quenching dans les 

antennes plasmoniques à nano-fentes. Nous discutons notamment du role 

primordiale d'un autre canal de désexcitation, le couplage aux plasmons 

lents de fentes, grâce à l'écriture d'une expression analytique du ratio entre 

couplage aux plasmons à fentes et quenching pour des systèmes planaires 

dans la limite de fentes fines. De manière intéressante, cette expression 

montre que l'émission dans les plasmons à fentes peuvent surpasser le 

quenching en choisissant de manière adéquate les permittivités des 

matériaux. A partir de la connaissance obtenue dans les systèmes planaires, 

nous quantifions les différent taux de désexcitation dans des antennes 

plasmoniques réalistes en modélisant leur comportement par des résonateurs 

Fabry-Perot. 

Ce travail a permis une compréhension plus complète de la physique en jeu 

dans les antennes plasmoniques à fentes et donne une nouvelle vision pour 

la conception de systèmes plus efficaces. Ce travail a été publié en 2015 dans 

ACS Photonics et en 2016 dans Nanoscale Horizons. 
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INTRODUCTION 

The last two decades have witnessed the rapid development of a new 

research field - nanophotonics - that comprises the studies of the interaction 

between electromagnetic fields with quantum objects or structured materials 

of characteristic size on the nanometer scale. Primarily this research has been 

encouraged by the high promises for miniaturization and processing rate 

enhancement of information and communication devices. This motivation 

has driven the study and development of new components for data storage 

and exchange such as waveguides, filters, buffers or optical switches [Kni96, 

Rab02, Xia07, Yan03]. However, the study of light-matter interaction at the 

nanoscale has expanded far beyond its initial goal and has conveyed many 

developments for sub-wavelength imaging [Spe92], new platform in 

quantum technologies [Lod15], sensing devices [Scu11], improvement in 

spectroscopy techniques [Nie97] energy harvesting in photovoltaic 

technologies [Atw10, Mok12] or sub-wavelength light sources [Oul09]. 

The large majority of applications emerging in nanophotonics essentially 

relies on the design of nanostructures that can resonantly interact with light 

to enhance light-matter interactions and to control field distributions at sub-

wavelength scales. Accordingly, one fundamental quest has been the 

reduction of the confinement volume of light, i.e. the mode volume, to locally 

enhance the field intensity. The most common examples are undoubtedly 

dielectric microcavities. Their light trapping is achieved by surrounding 

highly reflective mirrors and the resonance originates from constructive 

interferences of the reflected waves [Vah03]. Those first attempts enabled to 

confine light in volumes of the order of the wavelength cube and to reach 

new regimes of light-matter interaction to achieve for instance strong 

coupling with atoms in quantum electrodynamics experiments [Ver98] or to 
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design filters for optical communications [Rab02]. More recently, new 

regimes of light confinement have been developed by exploiting metallic (i.e. 

plasmonic) nanostructures whose properties arise from their ability to 

support collective electron excitations, known as surface plasmons. Owing to 

their confinement at scales far beyond the diffraction limit in free space, 

metallic-based resonators have enabled to concentrate light in deep sub-

wavelength volumes [Agi12, Sch10]. Although resistive heating losses in 

metals can severely limit the performance, many useful functionalities have 

recently been realized [Ada09, Liu11, Yu11].  

An alternative route towards enhancing light-matter interactions is provided 

by structural slow light, i.e. light pulses that are slowed down by their 

interaction with a periodic arrangement along the propagation direction. 

Well-known examples are slow photonic-crystal waveguides formed by a 

periodic modulation of the refractive index [Joa08]. The highly dispersive 

nature of the mode sustained by periodic waveguides leads to the 

appearance of frequency ranges for which the group velocity is considerably 

reduced [Not01]. This phenomenon can be intuitively understood as 

resulting from the establishment of a standing wave, with a net flux close to 

zero, due to the interferences between forward- and backward-going waves 

within the structure. Due to energy conservation, the slowdown of light is 

accompanied by an increase of the field intensity proportional to the inverse 

of the group velocity [Boy11, Sol04]. In addition to dielectric periodic 

structures, nanogap-based plasmonic waveguides (also known as metal-

insulator-metal (MIM) waveguide), in which thin dielectric layers are 

sandwiched between metallic claddings, also sustain slow light modes 

[Fer10, Yan12]. In those structures, the power flow in the tiny dielectric gap is 

compensated by a power flow in the metal (due to the electron motion) with 

opposite sign, giving a null total flow and thus creating slow plasmons. By 

combining a strong confinement and slowdown of light, nanogaps offer huge 

field enhancements, recently exploited for the design of new optical 

components [Aks14, Oul09]. 
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The thesis mainly focuses on fundamental aspects and possible applications 

related to slow plasmons and structural slow light. Interestingly, they both 

share similarities that may inspire new understanding or new components. 

For instance, the photonic speed bump proposed and analyzed in chapter 1 is 

a perfect illustration of application in photonics of well known concepts in 

plasmonics. But some of their characteristics may also strongly differ as they 

originate from different physical processes. Hereafter, we briefly review their 

main properties, summarized as well in Fig. I-0. 

As previously mentioned, structural slow light is usually implemented in 

periodic waveguides and originates from interferences between scattered 

waves in periodic structure. The characteristic dimension of the structure, i.e. 

the lattice constant 𝑎, therefore scales with the wavelength of interest 

𝑎 ≈ 𝜆 2𝑛  with 𝑛 the average refractive index. It immediately appears that 

structural slow light operates in a narrow frequency range. Importantly, in 

contrast to other kind of slow light obtained by nonlinearities in atomic-gas 

transition for instance [Boy11], structural slow light is associated to an 

enhancement of the field intensity. The enhancement in the slow light regime 

can be easily derived from Poynting's theorem. If one denotes by 𝑬,𝑯 the 

normalized electromagnetic field of an electromagnetic Bloch mode of a 

periodic waveguide, the Poynting's theorem stipulates that: 

!
!!
× !
!!

𝜀!𝜀 𝑬 ! + 𝜇!𝜇 𝑯 ! 𝑑𝑉  
!"#$%& = 1, 

for a mode with a unitary power flow. The equality of the electric and 

magnetic energy density (the energy oscillates every half period from electric 

field energy to the magnetic field energy) directly implies that both the 

electric and magnetic fields scale proportionally to the square root of the 

group index, 𝑬,𝑯 ∝ 𝑛! (if one neglects any change of the spatial mode 

dispersion as 𝑛! varies in the narrow spectral range of slowness). This 

important scaling law represents the building block for structural slow light 

applications, allowing a strong boost in light-matter interactions as exploited 
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in Chapter 3. However, the electric field enhancement represents also a huge 

limitation for the implementation of real devices as structural slow light 

suffers from enhanced backscattering by unavoidable fabrication disorder. 

This considerably limits the propagation length 𝐿! (𝐿! ∝ 𝑛!!!) and may even 

lead to light localization, as studied in Chapter 2. 

Slow plasmons in nanogaps originate instead from sub-𝜆 confinement and 

interaction of electromagnetic field with free electrons of metals. As a result, 

slow plasmons operate in the quasi-static limit and the characteristic 

dimension of the system, i.e. the gap size 𝑔, is much smaller than the 

wavelength (𝑔 ≪ 𝜆). Slow plasmons in nanogaps are thus inherently broad 

band. Interestingly, transition from fast to slow light regime is instead 

obtained by tuning the gap size, 𝑛! =
!!

!
!!

!!!!
!"!!
!"

 with 𝜀! and 𝜀! the relative 

permittivities of dielectric and metallic materials. Using the unconjugated 

form of Lorentz reciprocity theorem (the analog of the Poynting theorem for 

lossy media), one obtains for a normalized ( 𝑬×𝑯 ∙ 𝒅𝑺 = 2) gap plasmon  

!
!!
× !
!

𝜀!𝜀 𝐸!! + 𝐸!! − 𝐸!! + 𝜇!𝜇 𝐻!! + 𝐻!! − 𝐻!! 𝑑𝑆 = 1, 

with 𝑛! a complex number due to absorption. For subwavelength gap sizes, 

the energy oscillates between the electric energy and the kinetic energy 

sustained by free electrons while the magnetic energy becomes negligible 

[Khu15]. This energetic considerations lead to a different scaling law, 𝑬 ∝ 𝑛! 

and 𝑯 ∝ 𝐶𝑡𝑒. As discussed in Chapter 5, the increase of the electric field with 

the group index may be for instance exploited for enhancing coupling to 

quantum emitters and the design efficient plasmonic structures. 

Nevertheless, the electron motion is inevitably accompanied by absorption 

and the propagation length !
!!×!" !!""

, 𝑛!"" = 𝜀!𝜆 𝜋𝜀!𝑔, considerably 

reduces as the gap size shrinks. The propagation length scales, as for the case 
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of structural slow light, as 𝑛!!!, but this damping originates from a 

completely different physical process. 

 

Figure I-0. Structural slow light and slow plasmons. 

Overall, structural slow light and slow plasmons, thanks to their propensity 

to reinforce the interaction between light and matter, have led to numerous  

developments in photonics and in other domains of sciences and 

technologies; yet, a lot remains to be discovered ... 

Throughout the manuscript, structural slow light and slow plasmons have 

been studied and this thesis, articulated in 5 independent chapters, 

investigates both fundamental and applied aspects related to these physical 

phenomena. 

------- Chapter 1 ------- 

One-dimensional (1D) infinite periodic systems exhibit vanishing group 

velocity and diverging density of states (DOS) near band edges. In practice, 

however, systems have finite sizes, which inevitably prompts the question of 

whether physical quantities related to infinite systems, such as the group 

velocity that is deduced from the band structure, remain relevant in finite 

systems. For instance, an interesting aspect is to understand how the DOS 
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divergence can be approached in systems with finite size and if the 

implementation of larger and larger DOS (or equivalently smaller and 

smaller group velocities) relies on a considerable increase of the structure 

length, as it may intuitively be expected. 

 

Figure I-1. Implementation of slow light effect in short nanostructures 
with a photonic speed bump. a) Schematic of the speed bump and field 
profile. The speed bump is composed of a N-period long slow waveguide 
(here N = 8) surrounded by perfectly transparent tapers, working at their 
optimized frequency (here corresponding to 𝑛! = 100), and semi-infinite 
fast waveguides. The field map represents the absolute value of the y-
component of the magnetic field exited by an electric dipole source (white 
arrow) emitting at the frequency corresponding to 𝑛! = 100. The light 
emitted by the dipole slowly propagates in the slow waveguide and is 
perfectly expelled in the fast waveguides. b) Normalized LDOS (solid 
black) seen by the x-polarized source placed in the center of the speed 
bump shown in (a). The red dashed curve corresponds to the LDOS 
achieved for a fully-periodic, infinite slow-W1 waveguide (Van Hove 
singularity). As evidenced, the speed-bump well reproduces the DOS of the 
infinite waveguide up to 𝑛! = 100. 
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 In chapter 1, based on general 1D-wave-physics arguments, we 

demonstrate that the large slow-light DOS enhancement of periodic systems 

can in fact be observed with very short systems, whose lengths scale with the 

logarithm of the inverse of the group velocities. The understanding obtained 

in 1D leads us to propose a totally new family of photonic micro-resonators, 

photonic analogues of speed-bumps, in which the electromagnetic energy 

accumulates, similarly to plasmonic nanofocusing devices, not because of a 

resonant recirculation between two mirrors, but because of a sudden 

reduction of the group velocity, followed by a reciprocal acceleration to go 

back to the initial speed (see Fig. I-1a). 3D simulations conclusively support 

that short systems may mimic the slow-light DOS enhancements of infinite 

systems even for very small group velocities (see Fig. I-1b). In addition, we 

show that the DOS enhancements of speed bumps result from a classical 

electromagnetic resonance characterized by a single resonance mode and 

that the nature and properties of the resonance are markedly different from 

those of classical defect-mode photonic-crystal cavities. 

------- Chapter 2 ------- 

Initial studies on light transport in periodic waveguides have shown that 

fabrication imperfections have significant impacts on slow light transport 

and impose important limitations on the realization of slow light photonic 

devices [Mel14, Not01]. The most striking phenomenon is undoubtedly the 

formation of localized modes at band edges, generally explained by the 

enhanced sensitivity of light to randomly-distributed defects at small group 

velocities [Mel14]. However, the analysis of the spatial extent of localized 

modes is missing, especially regarding the smallest confinement which 

provides an upper bound of the longest propagation delay that can be 

implemented for a given technology, i.e. for a given level of fabrication 

imperfection. 

 In chapter 2, we investigate the impact of residual fabrication 

imperfections in slow light periodic waveguides on the formation of highly-
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localized modes, with the ambition to understand the key parameters 

driving their spatial extent. From an experimental side, we show that highly-

confined states are naturally formed at the band-edges of photonic-crystal 

waveguides manufactured without any intentional disorder, just with the 

intrinsic imperfections of the fabrication technology (1  𝑛𝑚 perturbations @ 

𝜆 = 1.5  𝜇𝑚). Our experimental observations, conducted in Frédérique de 

Fornel's group in Burgundy University, reveal that the smallest confined 

modes that naturally form have mode volumes equal to a few wavelengths 

cube (see Fig. I-2). This surprising result raises fundamental questions on 

how almost perfect waveguides with tiny defects of ≈ 1  𝑛𝑚 may so 

profoundly impact light transport. As mentioned above, the group velocity is 

known to be a key parameter for localization near photonic band edges, since 

small group velocities reinforce light interaction with imperfections. In 

contrast with previous works, we show that the size of the smallest localized 

modes is instead driven by the effective photon mass, i.e. the flatness of the 

dispersion curve. Additionally, we demonstrate that photonic-crystal 

waveguides, owing to their large effective mass compare to other 1D 

periodic systems such as Bragg stacks, may indeed support wavelength-scale 

localized modes whose sizes are in agreement with the experimental 

observations. 

 

Figure I-2. Measurements of wavelength-scale localized modes with 
residual disorder in photonic crystal waveguides. The top image shows a 
SEM of the photonic-crystal waveguide we have studied. Although the 
waveguide seems almost perfect, highly localized states have been 
observed with near-field optics in Frédérique de Fornel's group in Dijon, 
see the bottom image. 
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The work was conducted in close collaboration with Thomas Krauss's group 

in York University and Frédérique de Fornel's group in Burgundy 

University. The former fabricated state-of-art photonic crystal waveguides 

and the latter carried out the near-field experiments. The fruitful 

collaboration led to a publication in 2016 in Scientific Reports. The article 

provides details on the fabrication procedure and the near-field 

measurement techniques which are not discussed in the chapter. 

------- Chapter 3 ------- 

The emerging field of on-chip integration of nanophotonic devices and cold 

atoms offers extremely strong and pure light-matter interaction schemes, 

which may have a profound impact on quantum information science 

[Kim08a]. In this context, a long-standing obstacle is to achieve a strong 

interaction between single atoms and single photons while simultaneously 

trapping atoms in vacuum at distances large enough from the dielectric 

waveguide to avoid Casimir-Polder forces. To date, the evanescent nature of 

the electric field in vacuum, whose amplitude rapidly decreases with 

distance, limits the separation distance and prevents easy implementations of 

atom-photon coupling in nanostructures. 

 In chapter 3, we design a slotted photonic-crystal slow-light waveguide 

that achieves enhanced light-matter interaction far from the nanostructure 

(see Fig. I-3). We engineer the modal properties of a guided Bloch mode in 

order to reach a strong electric field in a 1µm-large gap, much larger than 

that of previous slot waveguides, usually limited to widths of about two 

hundred nanometers [San07, Hun13]. The field enhancement is achieved 

thanks to a slower decay of the evanescent field in vacuum, combined with a 

slowdown of light. The design embraces two conflicting issues: on the first 

hand, the light has to be deconfined in vacuum, and therefore it should 

weakly interact with the periodic structure. On the other hand, implementing 

slow light requires a strong interaction between the light and the refractive 

index modulation. To circumvent this issue, we propose a new type of 
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waveguide with two commensurate periodicity, which allows to tailor flat 

dispersion curves at (𝜔, 𝑘) very close to the light line of the air clad. Figure I-3 

shows the Bloch mode field in a transverse section of the waveguide and its 

geometry. 

 

Figure I-3. Slow-light waveguide for enhanced light-interaction in air. a) 
Cross-sectional view of the x-polarized electric field amplitude in a wide 
slot waveguide for a frequency corresponding to a group index of 50. The 
field is extremely intense in the air region. b) First fabrication in Thomas 
Krauss's group of the wide slot waveguide using e-beam lithography. 

------- Chapter 4 ------- 

The field of ultrafast plasmonics is constantly growing for the last decade 

thanks to the development of new experimental tools for observing light-

matter interaction with nanometric precision at femtosecond timescales. 

However, no intuitive or simple theoretical tool has been developed so far to 

clearly interpret experimental measurements and unravel the physical 

processes at their origins. On one side, damped harmonic oscillator models 

have been used but it is often too simplistic to embrace all the rich physics. 

On the other hand, numerical brute-force simulations have been carried out 

either in the spectral domain [Sun13] with real frequencies or in the time 

domain [Mar15] but a clear insight on the underlying physical processes is 

not always granted. 

In chapter 4, we propose a novel modal approach that accurately 

describes the temporal dynamics of the field scattered by resonators. The 

approach is based on a quasi-normal-mode (QNM) expansion recently 
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developed in our group, which explicitly considers the natural resonant 

modes of the structure [Sau13]. The QNMs, denoted by 𝑬! 𝒓 , 𝑚 = 1,2…, 

are solutions of Maxwell’s equations in the absence of a source with complex 

resonance frequencies whose imaginary part accounts for leakage and 

absorption. The analyticity brought by the QNM expansion and the 

continuation in the complex plane allows us to accurately describe the 

spectral response of plasmonic nanoresonators around the resonance 

frequency. In the temporal regime, we demonstrate that a very simple 

expression  

𝑬!"# 𝒓, 𝑡 ≈ 𝛽! 𝑡! 𝑬! 𝒓 , 

where the excitation coefficients 𝛽!’s are known analytically, leads to very 

accurate predictions of the field 𝑬!"# 𝒓, 𝑡  scattered by plasmonic 

nanoresonators. We apply this theory to calculate the temporal response of 

bright dipolar and much darker quadrupolar plasmonic modes and compare 

the theory predictions with numerical data obtained with the FDTD method. 

We show that, since it intrinsically relies on the natural resonances of the 

systems, the QNM theory provides unprecedented intuitive clues for 

interpreting ultrafast nanoplasmonic experiments. The comparison 

additionally evidences that, provided that the temporal response is well 

described by a few dominant resonance modes, the formalism leads to 

highly-accurate predictions (see Fig. I-4) of the long time behavior, with CPU 

times considerably smaller than the FDTD ones.  

The QNM solver that has been developed in the group relies on an iterative 

pole search [Bai13] and can calculate only a few dominant QNMs in 

reasonable time, provided that accurate guess values for the poles exist. 

During the last 8 months of the PhD work, we have investigated the 

possibility to calculate all QNMs with a single computation (no 

preconditioning) by considering the auxiliary-field method [Ram10]. 

Encouraging results, not reported in the thesis, have been obtained with the 

new QNM solver. They will be presented during the defense. 
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The work was realized in collaboration with Anders Millelsen's group (Lund 

University, Sweden), which carried out FDTD calculations and provided 

experimental measurements. 

 

Figure I-4. Temporal dynamic responses computed at point 
𝐴 = (−5,−10,0) nm of a gold dolmen [Zha08], see sketch in the upper-right 
inset, illuminated by a 12.7-fs Gaussian driving pulse polarized along the 
𝒙 + 2𝒚 direction. (blue) FDTD computational results and (red) QNM-
expansion formalism. Calculation time for the FDTD method is about 7 
days. The QNM method requires the calculation of the dominant modes 
(here 3 modes are considered for a total calculation time of 30 min). Since 
the 𝛽!’s are known analytically, the CPU time to compute the temporal 
response for another driving field, with a different polarization, incidence 
angle or pulse duration for instance, is negligible. With the FDTD the entire 
calculation should be re-performed for every driving field. Note that the 
discrepancy between the FDTD and QNM results at long times is due to a 
numerical dispersion of the FDTD.  

------- Chapter 5 ------- 

Recent experiments [Aks14, Egg15, Kin09, Rin08] have shown the possibility 

to significantly increase the spontaneous emission rate (×1000) with relatively 

good radiative efficiencies (> 50%) by burying quantum emitters in tiny 

nanogaps at the interface of two metallic objects. This result comes as a 

surprise as quantum emitters in close proximity to metallic objects (a few 

nanometers) are in a regime where quenching is considered as the 

predominant decay channel, preventing any radiation. Those contradictory 

results suggest that the precise physical mechanisms that drive the emission 
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of quantum emitters placed very close to metal surfaces in tiny gaps are not 

well understood.  

In chapter 5, we clarify why good efficiencies are achieved despite the 

proximity to the metal, and try to respond to fundamental questions on the 

importance of quenching in nanogap antennas. Using analytical derivations 

and a simple emission-rate model (Fig. I-5), we show that a competing decay 

channel, the coupling to slow gap plasmon polaritons, exists in nanogaps 

and provide analytical expressions for the branching ratio between gap 

plasmon decay and quenching in the small gap limit. Interestingly, the 

expressions evidence that gap-plasmon decay may overcome quenching for 

tiny gaps by solely choosing properly the materials permittivities. From the 

understanding gained in planar systems, we then study the decay rates in 

realistic nanogap antennas by modeling the antenna behavior as a Fabry-

Perot resonator. 

 

Figure I-5. Schematic representation used in chapter 5 for modeling light 
emission in tiny gaps. (1) Near-field non-radiative decay (quenching) at 
rate 𝛾!"#$%! of the emitter into the metal; (2) excitation of gap plasmons at 
rate 𝛾!"#; (3) conversion of the excited plasmons into free space photons at 
rate 𝛾!"#; (4) plasmon decay into metal at rate 𝛾!"#.  

The work enables a more complete understanding of the physics at play in 

nanogap-based nanoantennas and provides insight on the design of more 

efficient systems. It was published in ACS Photonics in 2015 and Nanoscale 

Horizons in 2016. 
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Chapter 1 - IMPLEMENTING STRUCTURAL SLOW LIGHT ON 

SHORT LENGTH SCALES: THE PHOTONIC SPEED-BUMP 

1.1 Introduction 

Introducing a 1D periodic modulation into an initially uniform wire results 

in a bandgap opening and a redistribution of the states that cluster at the 

band edge, leading to a divergence of the density of states (DOS), known in 

solid-state physics as the Van Hove singularity [Ash76]. The DOS singularity 

and the related group-velocity reduction have important consequences in 

optics. They are responsible for the feedback mechanism in distributed-

feedback solid-state lasers [Dow94, Xue16], help implementing nonlinear 

processes [Cor09, Sol02, Bar09a], enhance the mode lifetimes of photonic-

crystal cavities [Ben96, Lal08] and the sensitivity of optical sensors [Scu11, 

Dic12], and serve as key building blocks for interfacing light with atoms for a 

range of applications in photonic quantum-information processing [Gob14, 

Gob15].	  	  

The singularity (Fig. 1-1a) exists only in infinite systems, meaning that an 

infinite number of unitary cells are required to build it up. Intuitively, if one 

assumes that a resonance state can be attached to every individual cell or a 

few cells, the singularity is seen as originating from a coherent superposition 

of an infinite number of resonance states, which are all phase-matched and 

form a Bloch state with a null group-velocity at a precise frequency. 

However, no structure is strictly periodic and in any real device, e.g. 

photonic-crystal cavities [Not10], single photon sources [Lod15], lasers 

[Mor14], slow waves are reflected at the device termination and since the 

reflectivity considerably increases as the group velocity vanishes [Cot72], 

only very weak reminiscences of the DOS singularity are observed. 
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Slow-light DOS enhancements are always entangled with other cavity-like 

DOS effects [Ben96, Cot72, Lal08, Kra16a, Moo08, Atl10], so that the Van 

Hove singularity of infinite media is an abstract concept only. Despite the 

ample literature on slow-light-assisted spontaneous-emission rate in periodic 

waveguides and cavities [Lod15], it is not clear if the DOS enhancement 

associated to given slowness can be observed in a finite-length structure, 

especially for large slowness. Nor it is evident what is the minimum number 

of cells required to experience the slowness, or how close can one approach 

the DOS singularity with a finite structure. The goal of this work is to 

provide the answers to these questions and to propose a new structure to 

observe slow-light DOS enhancements. 

We first consider 1D periodic systems. Based on general wave-physics 

arguments, we explain how to engineer the impedance at the system 

terminations to achieve slow-light DOS enhancements on very short lengths 

that scale with the logarithm of the inverse of the group velocities, the group 

index. Then in a second step, capitalizing on the mature knowledge recently 

gained on photonic-crystal (PhC) waveguides, we validate the previous 

general considerations with realistic designs. This leads us to propose a 

totally new family of photonic micro-resonators, photonic analogues of 

speed-bumps, in which the electromagnetic energy accumulates, not because 

of a resonant recirculation between two mirrors, but because of a sudden 

reduction of the group velocity, followed by a reciprocal acceleration to go 

back to the initial speed. 3D simulations of the transmission and DOS 

enhancement conclusively support that short systems may mimic the slow-

light DOS enhancements of infinite systems even for very small group 

velocities. 

1.2 1D toy-model 

Let us start by considering a 1D periodic system (Fig. 1-1a) composed of 

alternating layers of high and low indices for instance. In 1D, only a single 
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pair of counter-propagating Bloch modes, either evanescent (in the gap) or 

propagative (in the band), exists, and the DOS exhibits the classical 

𝜔 − 𝜔! !! ! divergence at the band edge 𝜔!. For a periodic system of finite 

length 𝐿, Bloch modes are back-reflected at the terminations, the singularity 

is smoothed and the DOS in the bandgap is no longer zero [Yeg14]. 

Intuitively, if one assumes that the momentum space is typically sampled 

with a resolution of 1 𝐿 because of the finite length, one expects to observe 

group velocities 𝑣! that scales inversely proportional to the system length, 

𝑣! ∝ 1 𝐿, see Fig. 1-1b. 

 

Figure 1-1. Mimicking periodic infinite media with finite periodic media. 
a) 1D infinite periodic medium: the source couples to outgoing Bloch 
modes (black) that propagate away without any reflection. b) 1D finite 
system: the Bloch modes are back-reflected on the terminations and modify 
the field distribution inside the periodic structure. c) 1D finite periodic 
medium with perfectly matched boundaries (tapers): the Bloch modes are 
not reflected on the boundaries and the source sees an infinite periodic 
medium. a)-c) The right insets sketch the corresponding DOS.  

Actually, much shorter length scales can be achieved with suitably 

engineered terminations. The local DOS can be evaluated by considering to 
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the total power radiated by a Dirac dipole source at a working frequency 𝜔. 

The radiation mechanism in 1D is very simple. The source, a 2D current 

sheet, excites the two counter-propagative Bloch modes existing at 𝜔. The 

modes propagate until they reach the terminations. Thus if the terminations 

are equipped with tapers whose impedance matches the slow Bloch modes 

with the fast modes of the surrounding medium (Fig. 1-1c), no back-

reflection occurs at the terminations. The tapers act as trompe-l'oeil that 

mimics the infinite system: the source sees the same impedance in the finite 

or infinite systems and radiates identically. 

Counter-intuitively, our simple reasoning also suggests that the number of 

periods of the finite-length crystals is unimportant, and might be 1,2 or 

many, since there is no back-action of the termination on the source. Thus 

answering our initial question of how many cells are required to experience a 

given slowness 𝑣! amounts to answer what is the minimum length required 

to perfectly bridge the impedance mismatch between a slow Bloch mode and 

a fast mode. Adiabatic tapers based on a gradual variation of the geometry 

could be a first alternative [Ste02]. Such tapers have the advantage to offer 

broadband operation and to conform to any kind of waveguide geometries, 

but their lengths may become prohibitively long at small 𝑣!‘s. For 1D 

systems, it is possible to design much shorter tapers. By assuming that slow-

Bloch modes of 1D periodic media are stationary patterns locally formed by 

two counter-propagating plane waves, perfectly-matched tapers formed by a 

combination of a phase plate and a quarter-wave stack can be designed at 

any arbitrarily-small 𝑣! [Vel07]. Such tapers are not broadband, but 

interestingly offer small lengths that scale with the logarithm of the group 

index, 𝐿~𝑙𝑜𝑔 𝑛!  with 𝑛! = c 𝑣!. This implies that perfect matching at 

𝑛! = 10! for instance is achieved with a taper length as small as four quarter-

wave periods.  

Albeit simplistic, the 1D toy model suggests that the DOS enhancement at 

the band edge of periodic media, which is generally attributed to slow Bloch 
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modes in infinite media, may be recovered in a very short length scale, 

𝐿 ∝ 𝑙𝑜𝑔 𝑛! . In a different point of view, one may illuminate the tapered 

system from outside with a plane wave, rather than with an internal source. 

The structure then can be seen as the analogue of a "speed-bump" for 

photons. The light propagating at large group velocity in the surrounding 

medium is first slowed down in the taper and then propagates at slower 

group velocity in the periodic system, before being reaccelerated in the 

second taper and escaping in the surrounding medium on the opposite side. 

Indeed, the perfectly-matched impedance ensures a complete transmission at 

the working frequency 𝜔.  

Structural slow light has many applications in science and technology, from 

delay lines [San12], pulse compression [Kon15] and sensors [Scu11, Dic12] to 

single-photon components for quantum information [Lod15]. Hereafter, we 

implement the concept of photonic speed bumps, developed in 1D, with the 

aim to design a manufacturable photonic structure that potentially offers 

new properties. 

1.3 Photonic-crystal speed bump 

We will rely on the mature photonic crystal (PhC) waveguide platform to 

study the optical properties of realistic speed bumps. A schematic of the 

proposed speed-bump is shown in Fig. 1-2. A finite-length N-period-long 

slow-W1 waveguide (with one row of holes missing in the 𝛤𝑀 direction of 

the photonic lattice) is bridged, by two tapers, to two semi-infinite fast-W1 

waveguides obtained by slightly elongating the period of the slow-W1 

waveguide in the longitudinal direction. This structure will be referred to as 

the N-period long speed bump. The geometrical parameters of the 

waveguides are given in the caption of Fig. 1-2. 
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Figure 1-2. Photonic-crystal speed bump. a) Schematic of an N-period-long 
speed bump, composed of an N-period-long slow-W1 waveguide 
surrounded by bilayer heterostructure tapers and fast-W1 waveguides. The 
waveguides are assumed to be etched in a membrane of thickness 220𝑛𝑚 
and refractive index 3.45. The 2D photonic crystal mirrors of the slow-W1 
waveguide are made of a triangular lattice of air holes of periodicity 
𝑎 = 232𝑛𝑚. The fast-W1 waveguide is obtained by stretching the 
longitudinal period of the slow-W1 waveguide from 𝑎 = 232𝑛𝑚 to 
𝑎! = 245𝑛𝑚, the transverse period being unchanged. b) Dispersion curves  
of slow-W1 (red) and fast-W1 (black) waveguides. The operating frequency 
is marked with a black horizontal dashed line. c) Amplitude of the y-
component of the magnetic field of the slow-W1 (𝑛! = 1000) and fast-W1 
(𝑛! = 6) Bloch modes at the operating frequency. The modes are 
normalized to carry a power flow of 1.  
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Hereafter, the theoretical analysis is performed with a 3D fully-vectorial 

Fourier-modal method [Lec07a], which relies on an analytical integration of 

Maxwell’s equations along the waveguide direction through a Bloch mode 

expansion of the field. The method has already been successfully applied to 

accurately analyze various scattering problems in photonic crystal 

waveguides and in sequences of them, see [Hug07, Fag16] for instance. More 

details on the computation method can be found in Appendix 1. 

The dispersion curves of the slow- and fast-W1 Bloch modes are plotted in 

Fig. 1-2b. In the spectral range of interest, close to the band edge of the slow-

W1 waveguide marked by the horizontal black dotted line, the waveguides 

are monomode. The slow-W1 waveguide exhibits a small group velocity, 

while the fast-W1 waveguides exhibit rather large and nearly constant group 

velocity 𝑐 6. Figure 1-2c shows the normalized amplitude of the y-

component of the magnetic field in the median plane of the membrane at 

𝜔 𝑐 = 6.816𝜇𝑚!!, 𝑛! = 6 and 1000 for the fast- and slow-W1 waveguides 

respectively. The mode profiles and amplitudes are sharply distinct due to 

the group-velocity impedance mismatch. We note that the fast-W1 

waveguides may be replaced with other types of waveguides, e.g. ridge 

waveguides; the choice just impacts the taper design, but not the principle of 

operation of the speed bump. 

The impedance mismatch leads to large modal reflectance at the interface 

between the slow- and fast-W1 waveguides, see the black curve in Fig. 1-3b. 

Thus the PhC speed-bump design relies solely and critically on our ability to 

suppress this impedance mismatch with effective tapers that match the fast- 

and slow-W1 waveguides to mimic an infinite slow-light system. To design 

effective tapers for coupling to slow-light PhC waveguides, several 

geometries and optimization techniques can be considered [Osk12, Scu14]. 

Hereafter, we follow the approach in [Hug07]. 
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Figure 1-3. Taper optimization. a) Taper layout. A slow-W1 waveguide is 
connected to an elongated fast-W1 waveguide through a bilayer-
heterostructure taper, which is optimized by tuning the longitudinal 
periods 𝑎! and 𝑎! of the two layers. b) Reflectance of the tapered interface 
for 3 tapers optimized for 𝑛! = 100 (dotted blue), 500 (dotted-dashed 
green) and 1000 (dashed red). The solid black curve shows the reflectance 
without taper. Inset: Minimum taper reflectance and taper geometrical 
parameters.  

Figure 1-3a shows the taper geometry. The latter is composed of a bilayer-

heterostructure formed from the slow-W1 waveguide by slightly varying the 

longitudinal periods, 𝑎! and 𝑎!. Similar bilayer tapers have been previously 

used to design remarkably-short and effective couplers with 2D 

computational results [Hug07], and have been used in many slow-light 
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experiments afterwards [Arc14, Cor09, Lod15]. The following numerical 

results are obtained with a 3D fully-vectorial method that takes into account 

scattering into the air clads. They evidence that the bilayer geometry is 

versatile since it allows us to design effective tapers from 𝑛! = 4 up to 1000.  

Figure 1-3b shows the performance of 3 tapers optimized for 3 target group 

indices, 𝑛! = 100 (dotted-dashed green curve), 500 (dotted-blue curve) and 

1000 (dashed-red curve), respectively. In contrast with the abrupt interface 

case (no taper), the reflectance shows a markedly different behavior with a 

nearly-zero reflectance around the targeted 𝑛!. Additionally, the calculations 

shows that the scattering in the cladding is negligible and that the 

transmission is equal to 1-R with a very good approximation (1-R-T  = 0.012 

for 𝑛! = 1000). Although compactness comes at a price of narrowband 

operation, the ultra-short bilayer-heterostructure taper provides a very 

effective approach to reduce the impedance mismatch and to mimic an 

infinite system on short length scales. Also, it is worth noting that, the taper 

design presented here is just a proof-of-concept demonstration. Tapers with 

more than two periods and/or other intricate topology [Ben03] may be 

designed to achieve even better performances, in terms of, e.g., bandwidth, 

target group index, and tolerance to fabrication imperfection. 

1.4 Speed bump LDOS 

The capability of PhC speed bumps to mimic the DOS singularity is analyzed 

by computing the local DOS, or LDOS, seen by an 𝑥-polarized electric dipole 

(small arrow in Fig. 1-2a) placed in the center of the PhC speed bump. This 

quantity, normalized by the emission of the same dipole in the bulk, is 

commonly known as the Purcell factor. Figure 1-4 shows the normalized 

LDOS for a long speed bump (𝑁 = 8) for the optimized tapers of Fig. 1-3. For 

comparison, we also show the LDOS of the same emitter placed in an infinite 
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slow-W1 waveguide (black dotted curve showing the van Hove singularity) 

and in a speed bump without taper (black solid curve). 

 

Figure 1-4. Mimicking the van Hove singularity with PhC speed bumps. 
Normalized LDOS (or Purcell factor) seen by an x-polarized source placed 
in the center of a 8-period-long speed bump optimized for operation at 
𝑛! = 100 (blue), 500 (green), 1000 (red) and without taper (black). The 
black dashed curve corresponds to the LDOS achieved for a fully-periodic, 
infinite slow-W1 waveguide (Van Hove singularity). The blue, green and 
red circles highlight the Purcell values achieved by the speed bump at their 
nominal operation wavelengths for which the taper reflectance is almost 
null. Importantly, the dots are almost superimposed with the black dashed 
curve, evidencing that the source emitting in the speed bump emits as if it 
were in a fully periodic waveguide. Inset: Evolution of the Purcell factor 
with speed bump length Na for the same three optimized tapers at 
𝑛! = 100, 500  and  1000.  

The results evidence that the LDOS is substantially enhanced by tapering 

and that the enhancement is stronger for speed bumps with tapers that are 

designed for high group indices. We also note that the LDOS is not null in 

the gap of the slow-W1 waveguide, simply because of the tunneling effect 

associated to the evanescent gap Bloch modes that are not perfectly matched 

at the interface. More interesting are the LDOS enhancements achieved by 

the speed bumps at every target group indices. The enhancements are 
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highlighted by circle markers. It is noteworthy that all markers are 

superimposed with the black-dashed curve obtained for the truly infinite 

slow-W1 waveguide, implying that the tapers act as a trompe-l'oeil at their 

target group indices and that the source therefore emits as if it were 

experiencing the LDOS of the fully periodic structure. This observation fully 

validates the possibility to mimic, at least in a narrow spectral band, the DOS 

of infinite periodic systems up to 𝑛! ≈ 1000 with compact systems with 

lengths of a few periods.   

The inset of Fig. 1-4 displays the LDOS enhancements achieved at the target 

group indices for several values of the speed-bump length 𝑁. In contrast with 

the predictions of the 1D toy-model, the normalized LDOS vary with 𝑁. 

Further computations, not reported here, have shown that the LDOS at the 

target group index remains stable for 𝑁 > 8. Unlike 1D thin-film stacks, PhC 

waveguides support, in addition to the guided Bloch modes, a few 

evanescent Bloch modes [Hug07]. The source emission feeds all the modes. 

The latter propagate outward until reaching the tapers, where they scatter 

back (only the truly guided Bloch mode is fully transmitted) and potentially 

excite the inward-propagating guided Bloch modes, resulting in a back-

action on the source. Overall, these intricate scattering processes involving 

evanescent Bloch modes not considered in 1D systems may lead to a 

substantial change of the LDOS, preventing the observation of a mere 

signature of the slow-light LDOS enhancement. However, when the slow-W1 

section length increases, the impact of radiation modes fades away as they 

effectively lose their energy by radiation before reaching the taper. Similar 

conclusions may be obtained by using a Fabry-Perot model, presented in 

Appendix 2, that quantifies the sole contribution of the propagating Bloch 

mode in the Purcell factor.  
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1.5 Nature of the speed-bump resonance mode 

In classical defect-modes PhC microcavities [Not10], the resonance modes are 

essentially Fabry-Perot resonances formed by the bouncing back and forth of 

light in a region surrounded by two high-𝑅 mirrors. In the speed bump, the 

trapping mechanism is different. The electromagnetic energy accumulates 

because of a sudden and drastic reduction of the light group velocity from 

𝑐 6 to 𝑐 1000, followed by a reciprocal acceleration to go back to the initial 

speed. The accumulation does not rely on a confinement with high-𝑅 

mirrors, but rather on the possibility for the light to efficiently escape the 

slow-light region. The speed-bump can thus be seen as the photonic 

analogue of plasmonic nanofocusing devices, which provide strong field 

enhancements with slow plasmons in tiny air gaps formed at the mouth of 

almost touching metallic dimers [Fer10, Gra14]. 

Due to the unusual nature of the trapping mechanism, the question arises as 

to whether the DOS enhancement in speed bumps results from the excitation 

of an electromagnetic resonance. Often asymmetric lineshapes that are 

seemingly Lorentzian, such as those in Fig. 1-4, are not due to a single 

resonance but to an interference between two modes with very similar 

energies [Lov13], see the striking example of Fig. 3 in [Sau13]. To clarify the 

origin of the asymmetric lineshapes, we compute the resonance modes 

supported by the speed bump designed for a target group index of 100 in the 

spectral range of interest, around the band edge frequency 

𝜔! = 2.043. 10!"  𝑠!!. We find a single resonance mode with a complex 

eigenfrequency 𝜔 = 𝜔! 0.999− 0.001𝑖  corresponding to a quality factor of 

𝑄 = 500. Figure 1-5a shows the distribution of the y-component of the 

magnetic field of the resonance mode. The mode volume, normalized with 

the method in [Bai13], is 𝑉 = 0.092+ 𝑖0.039  𝜇𝑚!. 

The real part of 𝑉, ≈ 0.1 wavelength cube, directly quantifies the normalized 

LDOS enhancement (the Purcell factor 𝑃) at resonance 𝜔 = 𝜔!, and the 
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imaginary part accounts for the asymmetry of the spectral lineshape 

response, 𝑃 𝜔 = !
!!

!!
!

!
Re !

!
!!!

!!
!!!

!!!!!!! !!!! ! 1+ 2𝑄
!!!!
!!

Re !
Im !

 [Sau13]. 

Figure 1-5b shows the normalized LDOS seen by an 𝑥-polarized emitting 

dipole placed in the center of the speed bump. The single-mode model 

prediction computed with the analytical expression for 𝑃 𝜔  and shown with 

the red-dashed curve faithfully agrees with fully-vectorial Green-tensor 

calculations (black-solid curve), evidencing that the speed-bump physics is 

governed by a single electromagnetic resonance. 

 

Figure 1-5. Optical properties of the speed bump resonance mode. a) 𝐻!  
for the resonance mode of a 4-period long speed bump. b) Normalized 
LDOS seen by the x-polarized electric dipole source placed in the center of 
the speed bump, see a). The black and dashed-red curves are respectively 
obtained with fully-vectorial Green-tensor calculations [Fag16] and with 
the single-mode expansion formula. c) Step-like transmission (red curve) 
under illumination by the guided Bloch mode of the fast-W1 waveguide. 
The black dashed line represents the band edge of the slow-W1 mode. All 
the results in (a)-(c) are obtained for a speed bump with a taper optimized 
for 𝑛! = 100. 
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Comparatively, classical defect-modes PhC microcavities have much smaller 

  Im 𝑉 ‘s, and also more symmetric lineshape. Large values of Im 𝑉  are 

encountered with plasmonic nanoantennas [Sau13], for which the asymmetry 

of the DOS on the red and blue sides of the resonance is due to the metal 

dispersion. For speed bumps, the asymmetry is not due to material 

dispersion, but to the highly dispersive nature of the slow-W1 Bloch mode at 

the band edge. 

The value of Im 𝑉  is not the sole difference between the speed bumps and 

the classical defect-modes PhC microcavities. PhC microcavities have 

energies in the photonic gap of the mirrors, whereas speed bumps have 

energies at the band edge frequency. Also, the responses of PhC 

microcavities strongly depend on the defect length, while the length of the 

slow-light region of speed bumps is only of minor importance. No precise 

phase accumulation and matching are required with speed bumps. Another 

striking difference with classical PhC microcavities is shown in Fig. 1-5c. 

Unlike PhC microcavities that present an Airy-type symmetric Fabry-Perot 

transmission, the speed-bump transmission exhibits an unusual step-like 

shape, varying from 1 to 0 at the band edge of the slow-W1 waveguide with 

a steepness that slightly depends on the length of the slow-light region and 

the target group index used to design the tapers. 

1.6 Conclusion 

We have added a new family of resonators to the long list of photonic 

microcavities. The photonic speed bumps are composed of a short slow-light 

section with a few identical unit cells that are impedance-matched with the 

outside space by short tapers. The latter give the impression to the slow 

wave that the short slow light section is much more extended and thus 

artificially enhance the DOS. The nature of speed-bump resonances is 

markedly different from that of the resonances of classical defect-mode PhC 

microcavities. Speed-bump resonances more resemble those found in 
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plasmonic nanofocusing devices. Energy is not accumulated by confining 

light between two mirrors, but rather by implementing a sudden reduction 

of the light speed, followed by a reciprocal acceleration to go back to the 

initial speed.  

Using the mature photonic-crystal-waveguide platform, we have designed 

realistic speed-bumps that can be easily fabricated with present technologies. 

3D simulations confirm the possibility of mimicking infinite periodic 

waveguides with compact devices that are only 10-period long and 

achieving large DOS enhancements corresponding to slowdown factors of 

1000. Just as for PhC microcavities, we have shown that the LDOS 

enhancement of speed bumps is due to a single electromagnetic resonance, 

but striking differences have also been observed between the two resonators. 

For instance, the resonance frequencies of speed bumps are no longer set by a 

Fabry-Perot-like phase-matching condition and are actually independent of 

the length of the slow-light periodic section. Also the transmission presents a 

highly unusual step-like character not encountered in PhC microcavities. 

Photonic-crystal speed bumps may found applications for engineering 

photon emission and scattering. Owing to their capability to suddenly vary 

the light speed, these microscale dielectric devices are ideal candidates to 

implement 1D photon/emitter interfaces [Sol15, Haa15] capable of mediating 

long-range interactions between quantum emitters using photons 

propagating in fast guided modes and achieving nearly-perfect couplings 

between the emitters and the waveguide in slow light sections. In addition, 

the possibility of mimicking infinite periodic waveguides with compact 

devices may allow fundamental studies on structural slow light at ultra-low 

speeds, whose observation is usually hampered by localization effects due to 

inevitable fabrication errors [Moo08, Xue16]. In this regard, it would be 

interesting to study the properties of speed bumps for slowness such that the 

localization length is longer or comparable to the slow-light section length. 
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Chapter 2 - LOWER BOUND FOR THE SPATIAL EXTENT OF 

LOCALIZED MODES IN PHOTONIC-CRYSTAL WAVEGUIDES 

WITH SMALL RANDOM IMPERFECTIONS 

2.1 Introduction 

Random imperfections, even very small ones, can have a profound impact on 

light propagation in periodic photonic structures, the most striking 

phenomenon being undoubtedly the formation of small localized modes in 

the vicinity of photonic band edges. The interplay between long-range order 

and perturbative disorder, originally proposed as a way to enable strong 

light localization in three-dimensional media [Jon87, Con08], was largely 

investigated in one-dimensional (1D) layered structures (i.e., Bragg stacks), 

which can be modelled with greater ease [Mcg93, Bul98, Dey98, Vin04, Kal06, 

Izr09, Pod12]. Besides these works, the research topic arose considerable 

interest in the photonic-crystal community, when it was realized that the 

operation of slow-light devices based on photonic-crystal waveguides 

(PhCWs) was unavoidably limited by small residual fabrication 

imperfections [Not01, Moo08, Maz10, Mel14]. The possibility to observe 

individual localized modes formed by disorder in these structures and 

exploit them as "optical cavities'' for, e.g., quantum information processing 

[Sap10, Thy12, Gao13, Min13] or random lasing [Yan11, Liu14] prompted 

numerous studies on their confinement properties [Top07, Smo11, Spa12, 

Hui12]. Quite remarkably, near-field measurements on PhCWs fabricated 

with state-of-the-art nanotechnologies [Spa12, Hui12] suggest that 

wavelength-scale localized modes, comparable in size to engineered 

heterostructure nanocavity modes in PhCWs [Son05, Kur06], could naturally 

be formed in spite of the very low perturbation level. 
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It is widely accepted that the typical spatial extent of localized modes in the 

band decreases when approaching the edge. This trend is generally 

understood by drawing a parallel between the mode spatial extent and the 

"Anderson'' localization length, which describes the exponential attenuation 

of the ensemble-averaged intensity with the system size. The localization 

length is known to scale as the square of the group velocity 𝑣! for small 

disorder levels [Hug05a, Maz09, Gar10], thereby indicating that light 

confinement should be extremely strong at the band edge, where 𝑣! vanishes 

(in perfectly periodic media). The formation of small localized modes in close 

vicinity to the band edge, however, deserves special attention, as it relies not 

only on the interference between multiply-scattered propagating waves, 

leading to Anderson localization [Lag09, Seg13], but also on the attenuation 

provided by the photonic band gap. Imperfections, even vanishingly small 

ones, can indeed easily create gap (defect) modes, similar in nature to 

photonic-crystal nanocavities [Lal08, Bli08, Not10], which participate in the 

broadening of the band edge [Sav11, Hui12, Man12] and in the formation of 

the so-called Lifshitz tail in the band gap [Lif64, Hui12]. In this narrow 

spectral range around the band edge, propagating and evanescent waves mix 

up and the group velocity evidently looses physical significance, thereby 

requiring the basic parallel between mode spatial extent and localization 

length to be revisited. 

In this chapter, we theoretically, numerically and experimentally investigate 

the confinement properties of localized modes in close vicinity to the band 

edge of 1D periodic photonic structures at small disorder levels. We 

demonstrate in particular that the size of the smallest localized mode that 

may be found in a given photonic structure is driven by the effective photon 

mass, i.e. the flatness of the dispersion curve, rather than the group index. 

This, in turn, suggests that an engineering of photonic bands in PhCWs may 

allow us either to lower the impact of residual imperfections on the 

performance of slow-light photonic devices or to reinforce the light 

confinement for strong light-matter interaction purposes. 
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The fact that the sensitivity of wave transport to random perturbations is 

increased with the flatness of the dispersion relation is well known in 

condensed matter physics [Cha10, Bab16], but the possibility to control the 

spatial extent of the smaller localized modes via the effective mass has not 

been suggested in earlier works on light localization in photonic structures 

[Joh87, Not01, Hug05a, Top07, Moo08, Maz09, Sap10, Maz10, Gar10, Smo11, 

Yan11, Sav11, Thy12, Spa12, Hui12, Gao13, Min13, Mel14, Liu14, Man15]. We 

believe that the conceptual understanding gained from our study could help 

the design of PhCWs and cavities with potential outcomes in photonic 

technologies. 

In the remainder of this chapter, we first present a phenomenological model 

for light propagation near the band edge of 1D periodic media with small 

random perturbations. We predict that a minimum number of periods is 

necessary to form a localized mode at a given disorder level and derive a 

closed-form expression relating this lower bound to the disorder level and 

the effective photon mass. Then, we test and validate our predictions by a 

series of numerical simulations on randomly-perturbed Bragg stacks and 

PhCWs. At tiny disorder levels, PhCWs are found to support surprisingly 

small localized modes, much smaller than those observed in Bragg stacks 

thanks to their larger effective photon mass. Finally, in collaboration with 

Thomas Krauss's group in York University for the fabrication and Frédérique 

de Fornel's group in Burgundy University for the near-field experiments, we 

verify this possibility by performing near-field measurements on a photonic-

crystal waveguide fabricated without any intentional disorder and observe 

very distinctly a localized mode with a spatial extent of only 6 µm, in 

agreement with our numerical simulations. 

2.2 Formation of localized modes at band edges 

We start by considering an arbitrary one-dimensional periodic photonic 

structure and aim at establishing an explicit relation between the dispersion 
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relation of the unperturbed medium, the level of geometric variation, and the 

spatial extent of the resulting localized modes at the band edge. A typical 

dispersion curve 𝜔(𝑘) near a band edge is sketched in Fig. 2-1a. While it is 

common practice in the literature to plot band structures for purely real 

wavevectors only, one should be aware that the wavevector is in general a 

complex quantity, 𝜅 = 𝑘 + 𝑖𝛼. Dispersion relations are analytic and 

continuous at band edges [Koh59] and can be approximated by a quadratic 

expression 

𝜔 − 𝜔! =
!!! ! !

!!
, (2-1) 

where 𝑚 = 𝛿!𝜔 𝛿!𝜅 !! is the effective photon mass, which describes the 

flatness of the dispersion curve. The complex wavevector equals 𝜅 = 𝑘 in the 

band, corresponding to propagating waves, and 𝜅 = 𝑘 + 𝑖𝛼 in the gap, 

leading to an exponentially-damped evanescent wave. Note that Eq. 2-1, 

which comes from a Taylor expansion of the dispersion relation at the band 

edge, remains valid for complex periodic waveguides provided that the 

mode dispersion remains below the light line of the cladding. It is hence 

often used in photonics to describe band-edge phenomena [Son05, Pov05, 

Xue16] (albeit for real wavevectors only in most cases). 

As sketched in Fig. 2-1a, small geometrical variations result in energy shifts 

±Δ𝜔 of the dispersion curve with negligible deformation [Sol04]. In the 

perturbative regime, the relative frequency shift Δ𝜔 𝜔 is directly 

proportional to the variation of the waveguide effective refractive index 

Δ𝑛!"" 𝑛!"", which itself scales linearly with the disorder level 𝜎. These 

energy shifts define three frequency regions, where different behaviors are 

expected. At frequencies 𝜔 < 𝜔! − Δ𝜔, Bloch waves are essentially 

evanescent (bottom panel in Fig. 2-1b). In this regime, light is expected to be 

strongly damped via the band gap attenuation and few gap modes may be 

found. By contrast, at frequencies 𝜔 > 𝜔! − Δ𝜔, Bloch waves are essentially 

propagating (top panel in Fig. 2-1b). This is typically the regime where 
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Anderson-localized modes are found and the localization length should scale 

as 𝜉  ~   1 𝑛!!. To understand the limited range of validity of this regime, one 

should know that this scaling behavior comes from a double limit in the 

group velocity 𝑣! = 𝑐 𝑛! and the disorder level 𝜎 ∝ Δ𝜔 both tending 

towards zero. It is valid only when 𝜎 tends towards zero at a fast enough rate 

compared to 𝑣!. This requirement guarantees that the impact of random 

imperfections on transport remains perturbative [Wan08]. Due to the 

nonvanishing disorder level in real nanostructures, this condition necessarily 

fails in the close vicinity of the band edge and the 1 𝑛!! scaling behavior 

unavoidably breaks down. This peculiar regime that surrounds the band 

edge, 𝜔! − Δ𝜔 ≤ 𝜔 ≤ 𝜔! + Δ𝜔, is the one of interest in this chapter. Here, 

light propagating in the randomly-perturbed periodic medium will 

experience alternatively and randomly either phase-shifts Δ𝑘 (in Re 𝜅 ) or 

exponential attenuations 𝛼 (in Im 𝜅 ). The formation of localized modes 

should therefore rely on an interplay between propagating and evanescent 

waves (middle panel in Fig. 2-1b). 

 

Figure 2-1. Effect of random imperfections on light propagation in one-
dimensional periodic media. a) Sketch of the dispersion curve of a one-
dimensional periodic medium near a band edge at 𝜔 = 𝜔! (black curve). 
Note that the left and right parts of the plot correspond to the real and 
imaginary parts of the wavevector 𝜅. Perturbations result in positive or 
negative energy shifts ±Δ𝜔 of the dispersion curve (gray curves), where 
Δ𝜔 ≪ 𝜔!, resulting in a phase-shift Δ𝑘 (green arrows) and/or a damping at 
rate 𝛼 (blue arrow) for a guided wave at 𝜔 = 𝜔! + 𝛿𝜔. b) Sketches of wave 
propagation in randomly-perturbed periodic media. In the vicinity of the 
band edge, 𝜔! − Δ𝜔 ≤ 𝜔 ≤ 𝜔! + Δ𝜔, light successively and randomly 
experiences either phase-shifting or damping unit cells (middle), contrary 
to higher and lower frequencies, for which only phase-shifts or tunnelling 
damping are experienced (top and bottom, respectively). 
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We adopt a Fabry-Perot picture to model the formation of a localized mode 

in this regime. By analogy with standard optical cavities, for a localized 

mode to appear at a frequency 𝜔 (it is convenient to situate the frequency in 

relation to the band edge, 𝜔 = 𝜔! + δ𝜔), it is required that, during its 

transport, light both accumulates a phase-shift that satisfies a phase-

matching condition (typically, 2𝜋 on a round trip) and experiences a strong 

damping (typically, 1 𝑒! for the intensity). This simple reasoning first 

indicates that a minimum number of periods 𝑁!"# is necessary to form a localized 

mode in a perturbed medium. 

Evidently, smaller localized modes are formed for imperfections that 

produce larger momentum variations and damping rates. Depending on the 

perturbation and the frequency, the momentum variations (with respect to 

the unperturbed mode) can be either positive or negative, and the damping 

rate can be zero or take large values. To account for these statistical 

variations, we calculate the average momentum variation Δ𝑘  and the 

average damping rate α  using Eq. 2-1 and, keeping only the lowest order in 

Δ𝜔 𝜔, find that 

Δ𝑘 ≈

!
!
2𝑚Δ𝜔 1+ !"

!"!
            for  𝛿𝜔 ≤ 0

!
!
2𝑚Δ𝜔 1− !"

!"!
    for  𝛿𝜔 ≥ 0

, (2-2) 

and 

α ≈ !
!
2𝑚Δ𝜔 1− !"

!"!
, (2-3) 

Hence, Δ𝑘  is the largest at the band edge (𝜔 = 𝜔!) and decays more slowly 

in the gap than in the band (𝛿𝜔 2Δ𝜔 compared to 2 𝛿𝜔 2Δ𝜔), while α  

continuously increases when entering deeper into the gap. This indicates, on 

the one hand, that the smallest localized modes should be found at the band edge 

(𝜔 = 𝜔!), and on the other hand, that the localized modes formed in the gap 
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should be smaller and more numerous than in the band. To obtain the lower 

bound value for the mode spatial extent, it is thus sufficient to consider the 

momentum variation and damping rate at the band edge, Δ𝑘 =    !
!
2𝑚Δ𝜔 

and α = !
!
2𝑚Δ𝜔, which evidently become more important as the 

dispersion curve flattens, i.e. for larger effective photon masses. This leads us 

to predict that the lower bound on the spatial extent of localized modes in 

perturbed periodic media scales as 

𝑁!"# ∝ 𝑎!𝑚Δ𝜔 !! !, (2-4) 

Equation 2-4 is obtained by neglecting intricate multiple-scattering processes 

in transport, such as variations of the reflection and transmission coefficients 

at the perturbed lattice sites [Bar11], yet it is highly robust and accurate. As 

will be seen with numerical and experimental results, fine effects related to 

the actual geometry, especially the scattering coefficients at every lattice sites, 

impact the proportionality factor but not the scaling with 𝑚 and Δ𝜔. 

2.3 Computational method 

To test our prediction on the existence of a minimum number of periods 

necessary to form a localized mode near a photonic band edge, we resort to 

numerical simulations. The computational results are obtained with an in-

house fully-vectorial frequency-domain Fourier-Bloch-mode method 

presented in the previous chapter [Sil01, Lec07a] and described in Appendix 

1. In the present context, a systematic exploration of real PhCWs with long-

scale propagation lengths and nanometer-scale perturbations would require 

unreasonably long computation times with 3D fully-vectorial approaches, 

considering as well the large number of simulated structures to reach good 

statistical accuracy.  

For this reason, we resort to a 2D fully-vectorial analysis and use an effective 

index for the dielectric material to model the transverse confinement of the 
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main TE-mode in the membrane [Hug07]. The effective index value is chosen 

so that the cutoff frequency of the W1 waveguide matches that of the 3D 

structure. Out-of-plane scattering into the air cladding is therefore omitted in 

the computation. Fortunately, in close vicinity of the band edge, that is the 

region of interest here, out-of-plane scattering into the air cladding is much 

weaker than backscattering (scaling as 𝑛! and 𝑛!!, respectively) [Hug05a, 

Ofa10]. Since the out-of-plane channel is much weaker than the 

backscattering channel near the band edge, we expect inaccuracies on the 

quality factor of the resonances but we believe that the approximation is 

likely to impact only weakly our predictions on the spatial extent of the 

cavity modes. 

The same method is implemented later on for the calculations of localized 

modes in Bragg stacks. In this case, 1D calculations are sufficient to describe 

the system. 

2.4 Threshold in the size distribution of localized 

modes 

We perform 2D fully-vectorial calculations on a single-row-missing (W1) 

PhCW with an hexagonal lattice constant 𝑎 = 420  𝑛𝑚, a hole radius 0.3𝑎 and 

an effective index of 2.83 to model the transverse confinement in a silicon 

membrane of thickness 240 nm suspended in air [Hug07]. We implement 

disorder by varying the hole radii in the first rows of the W1 waveguide 

according to a normal distribution with standard deviation 𝜎. The 

computational layout is shown in Fig. 2-2a. In brief, we calculate the local 

density of states (LDOS) spectrum in the center of a 100𝑎-long perturbed 

medium and spectrally locate the resonant modes of the system from the 

observed Lorentzian peaks, see Fig. 2-2b for an example. The LDOS spectrum 

is calculated on a narrow frequency window close to the band-edge 

wavelength 𝜆! = 2𝜋𝑐 𝜔!    𝜆! − 0.5  𝑛𝑚 <   𝜆 <   𝜆! + 1.5  𝑛𝑚 , in which, 
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according to our analysis above, the smallest possible localized modes 

should be observed. We apply a strict protocol, described in the Appendix 3, 

to ensure that the peaks correspond to individual localized modes, i.e. they 

are not affected by the finite length of the computational window. Repeating 

the calculation for 900 independent disorder realizations, we estimate the 

distribution function 𝑃! 𝐿! , which represents the likelihood of observing a 

localized mode near the band edge frequency with a spatial extent 𝐿 smaller 

than 𝐿! at any position along an infinitely-long W1 waveguide perturbed by 

a disorder level 𝜎. 

 

Figure 2-2. Numerical study of small localized modes formed in W1 
waveguides. a) Computational layout used to estimate 𝑃! 𝐿! . The red 
arrow represents a dipole source placed in the center of a 100𝑎-long section 
of the PhCW. The grey holes of the two inner rows represent the perturbed 
holes. Two semi-infinite unperturbed PhCWs surround the perturbed 
section. b) Spectral dependence of the LDOS normalized to that in free 
space, LDOS!, in a specific configuration. The vertical red dashed line 
indicates the band edge wavelength. The envelop of the magnetic-field-
intensity profile 𝐻 ! of the resonant mode marked by a red square is 
shown in the inset. Its spatial extent is 𝐿 = 12.4  𝜇𝑚. c) Examples of the 
intensity distribution 𝐸 ! of small localized modes obtained by numerical 
calculations with 𝜎   =   1.5  𝑛𝑚. The localized modes may be composed of 
several sub-spots. d) Numerical prediction of 𝑃! 𝐿!  for a W1 waveguide 
with 𝜎   =   1.5  𝑛𝑚. The distribution exhibits a clear threshold 𝑁!!, obtained 
from a linear fit (red dashed line). 



2 - LOCALIZED MODES IN PHOTONIC CRYSTAL WAVEGUIDES 
 

40 

𝑃! 𝐿!  is shown in Fig. 2-2d for a disorder level 𝜎 = 1.5  𝑛𝑚, which is 

comparable to the residual disorder amplitude left by state-of-the-art 

nanofabrication technologies. The curve clearly exhibits a threshold-like 

behavior and evidences that localized modes are formed essentially above a 

certain threshold length 𝑁!!𝑎, where 𝑁!! is the number of lattice periods. The 

threshold is straightforwardly estimated by a linear fit of 𝑃! 𝐿!  for 

0.03   <   𝑃! <   0.15. The intensity maps 𝐸 ! of three localized modes are 

shown in Fig. 2-2c, the first one corresponding to the smallest mode 

(𝐿 = 3.85  𝜇𝑚) we obtained among the 900 realizations, the others showing 

that localized modes may be composed of several sub-spots. Quite 

remarkably, our numerical simulations unambiguously show that 

wavelength-scale localized modes may be observed in PhCWs at disorder 

levels of the order of 𝜆/1000. This point will be further discussed below. It is 

also interesting to remark that most of the smaller localized modes were 

formed in the gap region, as expected from the perturbative analysis in the 

previous section. 

We proceed to the numerical verification of the scaling law in Eq. 2-4. For a 

careful testing, we consider two different geometries, the W1 waveguide 

investigated above and a 1D quarter-wave Bragg stack, which have 

substantially different localization properties. Figure 2-3a shows the 

dispersion curves of the unperturbed photonic structures, where the Bragg 

stack is composed of alternating dielectric layers with lattice constant 

𝑎 = 453  𝑛𝑚 and refractive indices 𝑛! = 1.5 and 𝑛! = 3.5. The band edges of 

the two photonic structures appear at nearby frequencies, yet the PhCW 

exhibits an effective photon mass about 10 times larger than the Bragg stack. 

The scaling law in Eq. 2-4 is tested, on the one hand, by varying the disorder 

level 𝜎 imposed on the PhCW without changing its structure -- Δ𝜔 is 

therefore varied while 𝑚 and 𝜆! remain constant -- and, on the other hand, 

by varying the refractive index 𝑛! of the Bragg stack up to large (unrelatistic 

for optical waves) values while precisely monitoring the disorder level and 
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the period to respectively maintain Δ𝜔 𝑐 = 0.01  𝜇𝑚!! and 𝜆! = 1.51  𝜇𝑚 

constant. In the latter case, the sole physical quantity that is expected to vary 

is therefore the effective photon mass, from 𝑚𝑐 ≈   4  to  40  𝜇𝑚!!. Furthermore, 

the same protocol is applied and an average over 10000 independent 

disorder realizations, obtained by randomly varying the layer thicknesses, is 

performed (computations rely on simple 2×2 matrix products). The resulting 

threshold lengths 𝑁!! are shown in Fig. 2-3b as a function of 𝑎!𝑚Δ𝜔 !! !. A 

clear linear dependence is obtained in both cases, thereby constituting a firm 

validation of the scaling law proposed in Eq. 2-4. 

 

Figure 2-3. Scaling of the size of smallest localized modes: verification of 
Eq. 2-4. a) Dispersion curves 𝜔 𝜅  of a W1 waveguide and of a quarter-
wave Bragg stack with 𝑛! = 1.5 and 𝑛! = 3.5. The former has an effective 
photon mass that is about 10 times larger than that of the latter. b) Size 
threshold 𝑁!! for the two photonic structures with varying Δ𝜔 (while 
keeping 𝑚 constant for the PhCW) or varying 𝑚 (while keeping Δ𝜔 
constant for the Bragg stack). The linearity of the curves validates Eq. 2-4. 
The difference in the slopes is likely to be due to the different scattering 
coefficients at every perturbed interface [Bar11]. Furthermore, W1 
waveguides exhibit wavelength-scale localized modes, much smaller than 
those possibly obtained in Bragg stacks, even at tiny disorder levels. 

As already noted above, our numerical simulations indicate that wavelength-

scale localized modes may be observed in W1 waveguides even at tiny 

disorder levels. Figure 2-3b shows that such small localized modes cannot be 

observed in classical Bragg stacks (except if one considers unrealistically 

large values for the index contrast). It is the large effective photon mass 

provided by W1 waveguides that makes the difference. 
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The formation of localized modes near the photonic band edge is completely 

expected, but the fact that structural imperfections as small as 𝜆 1000  may 

lead to the formation of modes with spatial extents of only a few 

wavelengths comes as a surprise. In engineered nanocavities, for instance, 

the lattice structural modifications employed to create wavelength-scale gap 

modes are usually larger than 𝜆 1000  , typically consisting in removing, 

shifting or resizing a few holes [Son05, Lal08, Not10]. In addition, they are 

spatially correlated and precisely controlled to collectively contribute to the 

mode formation. Thus, one would expect rather large volumes for modes 

created by perturbations that are much weaker and random. 

2.5 Near-field observation of a wavelength-scale 

localized mode 

Our numerical results encouraged us to explore the possibility of observing 

wavelength-scale localized modes at tiny disorder levels. The experimental 

part has been realized by Thomas Krauss's group in York University for the 

fabrication and Frédérique de Fornel's group in Burgundy University for the 

near-field experiments. We fabricated a W1 waveguide without adding any 

intentional disorder during the writing process, so that the sole perturbation 

that remained was the inevitable residual disorder caused by our state-of-

the-art fabrication technology. The typical disorder level of the fabrication 

facility has been characterized by thorough statistical analysis in prior 

studies and was found to be 𝜎  ~  1-‐2  𝑛𝑚 [Por11]. Though our procedure lacks 

control compared to previous studies on localization that introduce 

intentional random perturbations [Top07, Sap10, Gao13, Thy12], we are able 

to reach a minute and unprecedented level of perturbation that has never 

been probed up to now near photonic band edges.  

At vanishingly small group velocities, it is well known that the optical mean 

free-path is very short and coupling light into localized modes cannot be 

achieved by end-fire injection through cleaved facets [Not10]. For this reason, 
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a layout consisting of a pair of collinear waveguides was designed: a W1 

waveguide operating in the slow-light regime near the band cutoff-

wavelength 𝜆!  ~  1490  𝑛𝑚, and a W1.1 (10% larger defect-width) waveguide 

operating in the fast-light regime, and therefore much less sensitive to 

residual imperfections. An SEM micrograph of a typical set of waveguides 

fabricated into a 220-‐𝑛𝑚 thick free-standing silicon membrane is shown in 

Fig. 2-4a. The fast (W1.1) waveguide is used as an independent channel for 

delivering light into the localized modes supported by the slow (W1) 

waveguide via evanescent coupling, see the inset of Fig. 2-4a. This coupling 

is extremely weak due to the very low disorder level and is therefore 

expected not to affect the localization properties of interest here. 

Furthermore, compared to a previous approach where TE-like localized 

modes were excited via a weak coupling with TM-like ballistic modes in a 

single PhCW, thereby resulting in near-field images containing both 

localized and extended modes [Hui12], their configuration allows us to form 

clear near-field maps of individual localized modes and thus, estimate their 

spatial extent with greater accuracy. 

Nevertheless, because of their small spatial extents and spectral bandwidths 

as well as their unknown spatial and spectral positions, wavelength-scale 

localized modes remain challenging to observe. Hence, they first realize 

multispectral near-field scanning-optical microscopy (SNOM)  with low-

spectral (200  𝑝𝑚) and low-spatial resolution (100  𝑛𝑚) [De12] followed by a 

high spectral-resolution (1  𝑝𝑚) and high-spatial-resolution (~62  𝑛𝑚) 

measurements at spatial locations found with low resolution. This allows us 

to detect modes with larger 𝑄's, but in return, finding a resonance becomes 

very time-consuming. Figure 2-4b shows a state formed by a chain of spots 

with varying brightness, which collectively resonate at the same wavelength, 

ergo all spots including the less intense spots belong to the same coherent 

state that covers the entire scan interval. The "stadium-shaped" patterns are 

due to the cavity tip interaction [Muj07]. Figure 2-4c shows a different mode 

composed of three dominant main spots that are grouped together and show 
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up over a dark background. It is the smallest mode that we have observed. 

Its total spatial extent 𝐿 is smaller than 6  𝜇𝑚. For comparison, the numerical 

data reported in Fig. 2-2d predict that 𝑃!.! 𝐿!  is equal to 0.14 for 𝐿! = 6  𝜇𝑚. 

This implies that, on average along the W1 waveguide, localized modes with 

spatial extents 𝐿 ≤ 6  𝜇𝑚 are expected every 𝐿! 𝑃!.! 𝐿! = 43  𝜇𝑚. This is 

consistent with our observation of a single localized mode obtained by 

scanning a 25-‐𝜇𝑚-long section of the W1 waveguide. Interestingly also, we 

note that the predicted and measured lower bound in mode spatial extent 

matches well with the cavity length above which the operation of photonic-

crystal cavity lasers becomes significantly impacted by residual fabrication 

imperfections [Xue13]. The occurrence of disorder-induced localization in 

engineered cavities is an aspect that deserves more attention. 

 

Figure 2-4. Near-field experiment. a) Scanning electron microscope images 
of the sample. The inset on the bottom left provides a close-up of the two 
side-coupled 84  𝜇𝑚-long PhCWs and of the access ridge waveguides used 
to inject light. The inset on the bottom right shows a sketch of the layout 
designed to obtain clear near-field images of the localized modes. Light is 
injected in the W1.1 waveguide, which operates in the fast-light regime, 
and couples evanescently to localized modes in the W1 waveguide, 
operating in the slow-light regime. b)-c) High-resolution (10  𝑝𝑚) near-field 
images of the PhCW pair recorded over an area covering the first 25  𝜇𝑚 of 
the sample. The panel in b) shows an extended state (𝜆 = 1489.61  𝑛𝑚) 
composed of a series of coupled localized modes. The panel in (c) shows a 
wavelength-scale localized mode (𝜆 = 1488.38  𝑛𝑚) composed of three sub-
spots and of spatial extent about 6  𝜇𝑚. It is the smallest localized mode 
detected experimentally. d) Spectral evolution of the wavelength-scale 
mode near the resonance wavelength 𝜆!. The inset shows the intensity 
𝑆!"# 𝜆  integrated over the rectangular dashed-linebox and normalized to 
the averaged intensity in the W1.1 waveguide. 
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Figure 2-4d finally shows the spectral evolution of the localized mode, 

calculated by integrating the measured intensity over a fixed rectangular 

area comprising the mode and normalizing it to the averaged intensity in the 

W1.1 waveguide for several wavelengths. The result confirms the existence 

of a high confinement level both in the spatial and spectral domains. As the 

wavelength is tuned away from resonance at 𝜆 = 1488.38  𝑛𝑚, we observe 

that the spatial and spectral variations of the spot intensities exhibit an 

intricate behavior, suggesting a beating between several modes (although 

non-uniform coupling with the tip cannot be excluded). The inset shows the 

spectral evolution of the normalized intensity of the localized state and 

evidences a resonance with a 𝑄  ~  5. 10!. Since the localized mode is formed 

from tiny structural modifications, smaller than those typically employed for 

engineered cavities, mode-profile impedance mismatch [Lal08] is kept at a 

very low level, and leakage into the air cladding and into the W1.1 

waveguide is expected to be as small as that encountered with side-coupled 

engineered cavities. Thus, we believe that the observed 𝑄 value is limited by 

the tip interaction, consistently with earlier works with silica tips and 

engineered cavities [Koe05]. 

2.6 Conlusion 

In this chapter, we have investigated the physical mechanism underlying the 

formation of small localized modes at band edges of periodic media, 

demonstrating the existence of a minimal mode size and showing that this 

bound is predominantly driven by the effective photon mass. In particular, 

we have found that wavelength-scale localized modes naturally form up in 

PhCWs at state-of-the-art intrinsic disorder levels due to the flatness of the 

dispersion curve. 

The localized modes have positions and frequencies that are not known in 

advance by design. As such, they are not easy to handle in applications that 

require extreme precisions, but their existence and the possibility to enhance 
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(statistically) their spatial confinement by using flatter dispersion curves is 

extremely relevant for quantum electrodynamics experiments [Sap10, Thy12, 

Gao13, Min13], random lasing [Yan11, Liu14], but also for sensing 

applications [Wan10, Scu13] and random photonics devices [Vyn12, Red13]. 

The existence of a lower bound for the volume of localized states in 

perturbed periodic media and the importance of the effective photon mass 

have not been pointed out in early works on optical localization in the slow-

light regime. These first results, supported by a simple intuitive model, 

should encourage more in-depth theoretical investigations. 

Similarly, the effective photon mass is rarely acknowledged in the literature 

on engineered nanocavities, such as the heterostructure family [Son05, 

Kur06], which are defect-modes that benefit from a slow-light effect close to 

the band edge [Lal08] and, as explained in this chapter, are in many respects 

similar to the present localized modes. We therefore expect that the 

conceptual understanding gained from this disorder-driven study will have 

repercussions on future photonic structure designs to push back the ultimate 

limit imposed by unavoidable disorder in slow-light photonic devices 

[Hug05a, Maz09, San12] as well as in engineered cavities [Tag11, Xue16]. 
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Chapter 3 - HOLLOW-CORE PHOTONIC CRYSTAL 

WAVEGUIDE FOR REMOTE AND EFFICIENT COUPLINGS 

BETWEEN ATOMS AND WAVEGUIDES 

3.1 Introduction 

Strong atom-photon interaction, whereby a single photon can 

deterministically interact with a single atom, constitutes the basic building 

block of a number of quantum-processing, simulation, and sensing schemes. 

Enhancing the atom-photon interaction requires increasing the mode electric 

field at the position of the atom. This can be done by reducing the transverse 

size of the light mode, for instance, by guiding it in ultrathin unclad optical 

fibers [Kie04, Kie05, Vet10] or focusing it with high-numerical-aperture 

lenses [Het11, Tey08]. Further enhancement of the field amplitude can be 

achieved by reducing the mode longitudinal extent, either by manipulating 

the light dispersion to slow down the group velocity or, equivalently, by 

implementing a longitudinal resonator. Current implementations using both 

of these methods include quantum dots integrated into photonic-crystal-

waveguide structures [Lun08] and atoms placed in high-finesse cavities 

[Dua04, Muc10, Rai01]. An emerging alternative is the interaction between 

ultracold atoms in vacuum and evanescent fields of slow guided modes 

supported by periodic photonic nanostructures [Gob14, Tho13]. These hybrid 

systems combine the subwavelength confinement and dispersion control of 

the nanostructures with the long coherence time of isolated single atoms, all 

on a flexible and scalable platform. In current approaches [Dou15, Gob14, 

Yu14], the atoms are placed inside tiny 250-nm-wide slots etched into 

corrugated bridge waveguides. Due to the narrowness of the slit, hybrid 

trapping mechanisms involving Casimir-Polder forces and repulsive 
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frequencies-detuned dipole-force have been investigated [Vet10]. Although 

such a hybrid approach has great potential, it is not without significant 

technical challenges and the precise control of the interaction, implemented 

in corrugated-slot (or “alligator”) waveguide [Gob14], had proved difficult. 

Indeed constraints would be largely relaxed if the atoms could be trapped far 

away from any interfaces, while maintaining a strong atom-waveguide 

interaction. That, of course, begs the question of slow-light hollow-core 

waveguides. Indeed structural slow light offering a large fraction of its field 

in air at significant distance from any interface has a huge potential in many 

areas of science and technology, from cold atom engineering to sensing 

[Lai11, Scu13].  

Slow light in air proceeds from two conflicting perspectives. One expects 

that the slow Bloch mode well extends into the vacuum cladding, implying 

that it weakly interacts with the periodic modulation. Conversely, a strong 

interaction between the Bloch mode and the periodic modulation is needed, 

keeping away from any weak-permittivity-modulation regime for which the 

slow-light spectral bandwidth is very weak [Zan16]. To realize this, one may 

consider a nanowire waveguide operating close to the cut-off frequency, with 

a mode profile that expels away in the air clad and with an effective index 

𝑛!"" ≈ 1. By periodically patterning the wire with an air-hole array for 

instance, light can be slowed down. However, due to the weak confinement, 

only a small fraction of the field interacts with the holes. The effective index 

modulation Δ𝑛 = 𝑛!"" − 1 becomes small, thus reducing the effective photon 

mass 𝑚 = !!!
!!!

!!
, i.e. the flatness of the mode dispersion curve at small 

group velocities which acquaints us with the slow-light spectral bandwidth 

(𝑚 ∝ Δ𝑛 [Yeh88]). 

To mitigate the mass reduction, it is convenient to consider a photonic 

crystal (PhC) guidance mechanism with strong phase dispersion, rather than 

a guidance by total-internal reflection [Zan16]. The degree of freedom added 

by the dispersive PhC-reflection-phase can be exploited to flatten the mode 
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dispersion curve, as evidenced in [Zan16] where is reported an original PhC-

waveguide structure that offers an empty half space to load the atoms and a 

×60 fold mass enhancement compared to the alligator structure for a 

comparable confinement level (𝑛!"" = 1.15). 

In this work, we explore ultimate regimes of slow hollow-core waveguides 

with effective mode indices that approaches 1, and obtain large coupling 

efficiencies in vacuum at large distances (𝜆/3) away from any material 

interface. After highlighting the limitations of simple index-guided periodic 

nanowire waveguides, we propose an original PhC waveguide that uses two 

different periodicities to implement a strong light-atom interaction in a wide 

vacuum slot. Finally, after comparing relevant figures of merit of the present 

waveguide with known geometries, we will study the atom-waveguide 

coupling and demonstrate coupling coefficient larger than 95% for 1.12 µm-

large slot. 

3.2 Wide-slot photonic crystal waveguide design 

The first slow-light geometry that comes to mind to implement efficient 

atom-photon couplings at large distance in vacuum claddings is the periodic 

nanowire (Fig. 3-1b). One may tune the wire size to implement a mode with 

a dispersion curve, shown with the solid-green line in Fig. 3-1b, which lies 

just below the light line. Since the normalized propagation constant 

𝑘// 𝑘! = 𝑛!""  is close to 1, the mode profile slowly decays in the vacuum 

cladding, and the atom-waveguide coupling is relatively large. Even larger 

couplings are achieved by reducing the group velocity of the guided mode 

by implementing a periodic refractive index modulation. The latter folds the 

photonic band of the mode into the first Brillouin zone and opens a gap at a 

frequency close to the light line of the cladding, as shown with the solid-blue 

line in Fig. 3-1b. Let us note that folding close to the light line sets the 

periodicity 𝑎 since the parallel wavevector modulus is simultaneously equal 
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to ≈ 𝑘!, (𝑛!"" ≈ 1) and  ≈ π 𝑎 requiring that 𝑎 ≈ 𝜆! 2 for a fixed operation 

wavelength 𝜆!.  

The problem with such an approach is that the modulation effectively seen 

by the mode is very weak, and so does the slow-light bandwidth. As 

proposed in [Zan16], a solution to overcome this critical issue is to abandon 

the refractive guidance to implement a gap guidance that provides 

additional degrees of freedom to engineer the dispersion relation [Fra06, 

Not01] to implement large effective photon mass values that are out of reach 

from purely index-guided periodic waveguides.  

The hollow-core photonic-crystal waveguide proposed in the present work is 

sketched in Fig. 3-1a. It is composed of a wide slot of width 𝐿! surrounded by 

two PhC constructs implemented in a half-wavelength thick semiconductor 

membrane. The in-plane hybrid guidance is ensured on one side by gap 

guiding and on the other side by total-internal reflection at the slot interface. 

The PhC constructs are characterized by a double periodicity, as they feature 

a periodic waveguide of period 𝑎 = 𝜆!/2 and a 2D square PhC mirror with a 

half period 𝑎! = 𝑎 2. The periodic waveguide is formed by a 1D hole array 

in a tiny nanowire of width 𝐿!; it is responsible for the slowness of a guided 

Bloch mode with an effective index 𝑛!"" ≈ 1.01, see Fig. 3-1b. The PhC 

crystal guaranties a partial gap guidance mechanism in the transverse 𝑥-

direction for a longitudinal component of the wave vector 𝑘// ≈ 𝑘!, similar to 

that encountered in PhC fibers [Bir95]. In contrast with the hybrid-clad 

waveguide [Zan16] for which the achievable values of 𝑛!"" are limited, the 

double periodicity allows us to independently tune and overlap the spectral 

ranges of slow-light in the longitudinal direction (periodicity 𝑎) and gap 

guidance in the transverse direction (periodicity 𝑎!).  
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Figure 3-1. Wide-slot PhC waveguide. a) The waveguide is composed of a 
wide vacuum slot surrounded by two PhC constructs, with a double 
periodicity  𝑎 = 760  𝑛𝑚 for the periodic waveguide composed of a 1D hole 
array and 𝑎! = 𝑎 2 = 380  𝑛𝑚 for the 2D square PhC mirror. b) Periodic 
waveguide: a slow Bloch mode with 𝑛!"" ≈ 1 is implemented by opening a 
band gap (solid-blue curve) in the dispersion relation (dashed-green curve) 
of a tiny waveguide operating close to the light line. c) 2D square PhC 
mirror: the photonic bands are computed for a period 𝑎! = 380 nm, a hole 
radius 𝑟 = 0.3𝑎! and a membrane thickness of 220 nm. The vertical dashed 
lines correspond to longitudinal (along 𝑧) momentum 𝑘// = 𝜋 𝑎 =
𝜋 2𝑎! . The solid vertical black lines that are determined from the red 
dots A, B, C and D delimitate the partial band gap for 𝑘// = 𝜋 𝑎. Insets: 
First Brillouin zone of the PhC. 

The design is performed for operation at telecom wavelength, 𝜆! = 1.55  𝜇𝑚, 

with 𝑎 = 760  𝑛𝑚 and 𝑎! = 𝑎 2 = 380  𝑛𝑚. Figure 3-1c shows the photonic 

bands of TE-like modes supported by the square lattice of air holes of radius 

𝑟 = 0.3𝑎! perforated in a half-wavelength thick semiconductor membrane 

(𝑛 = 3.48). The results computed with the MIT Photonic-Bands (MPB) 

package [Joh01] show that, in the spectral range of slow-light, the photonic 

crystal mirror does not provide a full band gap, but a partial gap for a 

longitudinal component of wave vector 𝑘// = 𝜋 𝑎 ≈ 𝑘! ≈ 4.1  µμ𝑚!!. As 

shown by the thick solid black line in Fig. 3-1c, the partial gap edges at 
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𝑘! = 3.1  µμ𝑚!! and 4.13  µμ𝑚!!, are determined from points A, B, C and D. 

Points A and B are determined for 𝑘!" = 𝜋 𝑎 and 𝑘!! = 0, by the crossing 

between the vertical line AB with the light line (point A) and the PhC bands 

(point B). Similarly, points C and D are obtained for 𝑘!" = 𝜋 𝑎 and 

𝑘!! = 𝜋 𝑎, by the crossing between the vertical line CD with the PhC bands. 

We note that a full band gap, like in classical PhC waveguides [Not01], is not 

required for gap guiding. As noted in a recent discussion session at the 2016 

PECS meeting in York, it is even unclear what are the advantages of full- or 

partial-band-gap guidance over index guidance, other than the possibility to 

engineer the flatness of the dispersion curve. One may argue that gap 

guidance mitigates radiation losses due to fabrication imperfections [Pov04]. 

However, in the fast light regime, it is not clear that PhC waveguides provide 

smaller attenuations than nanowire waveguides, and in the slow light 

regime, scattered light is mainly backscattered (as discussed in Chapter 2) so 

that cladding leakage is negligible. However, for the sake of completeness, an 

alternative design using a full band gap PhC mirror was realized. The full 

band gap is obtained by elongating the periodicity of a triangular lattice in 

the transverse 𝑥-direction (details on the PhC mirror design are provided in 

Appendix 4). However, the alternative design does not improve the 

waveguide figures of merits, and we got identical low 𝑛!""-values and 

flatness.  

3.3 Bloch mode properties 

The design of the wide-slot PhC waveguide depends on two additional 

parameters, the waveguide width 𝐿! and the slot width 𝐿!. As for classical 

waveguides, the width 𝐿! controls the waveguide effective index. For small 

widths, the dispersion curve comes near the air light line and the field is 

expelled away in the cladding. On the other hand, the slot width 𝐿! weakly 

impacts the dispersion curve as the electromagnetic interaction between the 

two PhC constructs weakens for large separation distances. 
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Figure 3-2. Bloch mode of wide-gap PhC waveguides. a) Comparison 
between the dispersion curves of a periodic nanowire waveguide (dashed-
blue) and a wide-slot PhC waveguide (red). The periodic nanowire is 
composed of an array of semiconductor (𝑛 = 3.48)  boxes with 220×
400  𝑛𝑚! cross section and 500  𝑛𝑚 length. The period is 𝑎 = 760  𝑛𝑚, like 
the one of the PhC waveguide. The parameters of the wide-slot PhC 
waveguide are 𝐿! = 290  𝑛𝑚, 𝐿! = 1120  𝑛𝑚 and the membrane thickness is 
220  𝑛𝑚. The black dashed lines represent the air light line and the edge of 
the first Brillouin zone. Both waveguides offer 𝑛!"" ≈ 1.016 at slow speeds. 
b) Normalized field intensity for the wide-slot PhC waveguide in the 
median plane of the membrane (upper inset) and in a cross-section (lower 
inset) shown with a white dashed line in the upper inset. The field maps 
are computed for 𝑛!   =   50, but they are very similar at other 𝑛!‘s. 

In Figure 3-2a, we plot the dispersion curve (solid-red) of a wide-slot PhC 

waveguide, which is computed for 𝐿! = 290  𝑛𝑚 and 𝐿! = 1120  𝑛𝑚 with the 

same 3D fully-vectorial Fourier-modal method used in Chapters 1 and 2 

(Appendix 1). The waveguide width is chosen to achieve slow light at 

𝜆! = 1.55 µm. We have also computed the dispersion curve (dashed blue) of 

a periodic nanowire waveguide composed of an array of semiconductor 

boxes with the same period 𝑎 = 760  𝑛𝑚. The box cross-section and length 

(see caption for details) were chosen so that both waveguide Bloch modes 

have the same effective index 𝑛!"" = 1.016 at 𝜆!, and thus comparable spatial 

extent in the air clad. As previously suggested, it is stringent that the wide-

slot PhC waveguide offer a much broader slowness bandwidth than the 

periodic nanowire. Actually, the wide-slot effective mass obtained by fitting 
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the dispersion curves with a parabola, 𝜔 − 𝜔 !//!! ! = 𝑘// − 𝜋 𝑎 ! 2𝑚 , is 

much larger, 𝑚𝑐𝑎 = 0.12 against 𝑚𝑐𝑎 = 8.7×10!!  for the periodic nanowire. 

The intensity profiles 𝑬 ! of the wide-slot PhC waveguide are displayed in 

Fig. 3-2b for 𝑛𝑔   =   50. As expected, a significant fraction of the slot space is 

bathed in light. Indeed, ~30% of the electric energy, equal to !
!

𝜀 𝑬 2 𝑑𝑉 for 

Bloch modes, is contained in a volume of length 𝑎 and cross-sectional size 

defined in the 𝑥-direction by the width of the slot and extending 500 nm 

above and below the membrane in the 𝑦-direction. Due to the evanescent 

character of the field in the air cladding, the intensity is minimum at the slot 

center. An oscillatory decaying field is also observed in the PhC mirrors, 

confirming that the mode is indeed gap-guided by the photonic gap. Let us 

notice that the electric field also expands above and below the semiconductor 

membrane. This expected feature may offer an additional freedom for 

implementing strong light-matter interaction.   

3.4 Figures of merit 

Two main conflicting figures of merit are important when comparing the 

performance of various slow-light waveguides: the normalized slowness 

bandwidth and the normalized field extension length in the vacuum 

cladding. The latter is approximately given by 𝐿! 𝜆 = 2𝜋 𝑛!""! − 1
!!

 and 

is thus directly characterized by the waveguide effective index. By assuming 

a quadratic expression for the dispersion relation close the band edge, 

𝜔 − 𝜔 !//!! ! = 𝑘// − 𝜋 𝑎 ! 2𝑚 , it is easily found that the slowness 

bandwidth Δ𝜔 imposed by a maximum group-velocity variation Δ𝑣! is 

simply !!
!
= !"#

!!
!!!
!

!
. From this expression, it immediately appears that the 

slowness bandwidth is directly characterized by the normalized effective 

mass 𝑚𝑐𝑎. 
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Table 3-1 compares the values of 𝐿! 𝜆 and 𝑚𝑐𝑎 for all waveguides designed 

so far for implementing structural slow light with atoms, the alligator 

waveguide [Gob14] that is the only one tested experimentally, the hybrid-

clad waveguide [Zan16], the present wide-slot PhC waveguide. For the sake 

of comparison the Table also includes the periodic nanowire waveguide 

analyzed in Fig. 3-2a. 

Indeed, the periodic nanowire and the wide-slot PhC waveguides, whose 

periodicity has been carefully chosen to achieve low effective index values, 

offer the longest decay lengths (≈ 𝜆), whereas the two other waveguides 

have limited lengths ≈ 𝜆 3. We also note that, for equivalent 𝐿! 𝜆 values, 

waveguides with a gap PhC guidance offer larger normalized effective 

masses than their counterparts with index guidance. In addition, the wide-

slot PhC waveguide reaches a normalized effective mass comparable to that 

of the alligator waveguide whereas its decay length in vacuum is 

significantly larger. 

 Alligator  
[Gob14] 

Hybrid-clad  
[Zan16] 

Periodic  
nanowire 

Wide-slot  
PhC 

𝑚𝑐𝑎 0.22 12 8.7×10-3 0.12 

𝐿! 𝜆 0.28 0.29 0.91 0.89 

Table 3-1. Comparison of the two figures of merit for the implementation 
of slow light in vacuum. 

In other simulations not reported here for simplicity, we tried to increase 

further the mass of the wide-slot PhC waveguides, by transversally shifting 

the 1D periodic hole array of the waveguide channel or by considering 

hexagonal lattices for the mirror. Indeed, we were able to increase the mass 

while maintaining the decay length, but disappointingly, only small 

increases were obtained from 𝑚𝑐𝑎 = 0.12 to 0.14.  We do not know if these 

values are close to a fundamental limit, or if better designs may make a 

significant difference. 
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3.5 Atom-photon coupling 

In order to analyze the performance of the wide-slot PhC waveguide, it is 

important to quantify the electromagnetic coupling between an atom trapped 

in the slot and the photonic Bloch mode.  The key figure of merit used in 

many studies related to photon-emitter coupling experiments and 

computations [Arc14, Ble11, Fae14, Lec07b] is the 𝛽-factor, which represents 

the fraction of the total light emitted by a linearly polarized dipole oscillator 

that is coupled into the guided mode. The 𝛽-factor can be expressed as 

𝛽 = 2𝛾! 2𝛾! + 𝛾! , with 𝛾! the decay rate into the guided mode and 𝛾! the 

decay into all other radiation decay channels. The factor 2 accounts for the 

coupling in both directions of the waveguide. For truly-guided Bloch modes 

with an electric field 𝑬 𝑟 , the decay rate 𝛾! normalized by the decay rate 𝛾! 

of the same oscillator in free-space is simply 𝛾! 𝛾! = 3 8𝜋 𝑛!𝜆!𝑎 𝑉!"", 

with 𝑉!"" = 𝜀 𝑟 𝑬 𝑟 !𝑑𝑟!  
!"#$  !"## 𝒖 ∙ 𝑬 𝑟! ! [Lec07a]. In the previous 

expression, 𝑟! and 𝒖 denote the position and orientation of the linearly-

polarized dipole oscillator, and 𝜀 𝑟  the waveguide relative permittivity. It 

clearly indicates that the interaction is driven by two main quantities: the 

group index 𝑛! and the mode volume 𝑉!"".  

The 𝛽-factor can straightforwardly be evaluated from the normalized Bloch-

mode field distribution by assuming that 𝛾! is equal to 𝛾!. As shown in a 

recent study [Zan15], this assumption is likely to be valid for the wide-slot 

geometry, especially for atoms trapped in the middle of the wide slot and for 

large 𝑛!'s since 𝛾! ≫ 𝛾!. 
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Figure 3-3. Atom-photon coupling in the wide-slot PhC waveguide. a) 
Dependence of the 𝛽-factor with 𝑛! for dipoles polarized along the 𝑥-
direction (red circles, blue squares and black diamonds) or the 𝑦-direction 
(green triangles). Three dipole locations are considered: points 𝐴 and 𝐶 are 
located in the median plan at 560 nm and 150 nm from the nearest slot 
facet, and point 𝐵 is located 500-nm above the periodic waveguide. b)-c) 𝛽-
factor maps for a 𝑥-polarized dipole located in the main symmetry planes 
of the waveguide for 𝑛! = 50. d) 𝛽-factor maps for a 𝑦-polarized source in 
the same cross-section as (b). e)  𝛽-factor maps for a z-polarized source in 
the same plane as (c). f) 𝛽-factor maps for a z-polarized in a cross section 
where the 𝛽-factor is maximum in the slot. b-f) 𝛽-factors are displayed only 
in vacuum. The same scale is used for all maps. 

Figure 3-3 gathers the main relevant computational results obtained for the 

𝛽-factors for the three dipole orientations. The 𝛽-factors strongly increase 

with the group index 𝑛!, as evidenced by Fig. 3-3a obtained for 3 different 

atom locations shown with the points 𝐴, 𝐵 and 𝐶 in Fig. 3-3b. Due to the 

extremely small effective index value, the coupling is remarkably large even 

for small 𝑛𝑔's. At point 𝐶 (located 150-nm away from the slot facet), the 

coupling efficiency is as high as 90% for a group index of only 10. A 

noteworthy efficiency of 95% for 𝑛𝑔   =   50 is achieved for a 𝑥-polarized 
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dipole in the middle of the slot at point 𝐴 situated 560-nm away from any 

interface.  

As shown in Figs. 3-3b-c, the coupling efficiency 𝛽! to 𝑥-polarized dipoles is 

very high in a wide area comprising the slot and a fraction of the vacuum 

spaces above and below the membrane. The coupling to 𝑦-polarized dipolar 

oscillators 𝛽! is null in the median plane of the membrane for symmetry 

reason and is thus very weak in the slot (Fig. 3-3d). Similarly the coupling to 

𝑧-polarized dipolar oscillators 𝛽! is extremely weak in the slot (Figs. 3-3e-f). 

All this shows that the coupling in the slot area is almost completely 

achieved with the 𝑥-polarized field. 

The coupling outside the slot area, above and below the membrane, is also an 

important characteristic of the wide-slot waveguide that may be exploited in 

experiments. In this area, the coupling to 𝑧-polarized dipolar oscillators 

remains negligible (Fig. 3-3f), but both 𝛽! and 𝛽! are large. As shown by the 

coupling maps of Figs. 3-3b and 3-3d, 𝛽! is especially large over wide spaces 

that spread far away above and below the slot area, while 𝛽! is the dominant 

coupling mechanism above and below the periodic waveguide channels on 

both sides of the slot.  

Additionally, since the slot is large and the electromagnetic interaction 

between the waveguide channels is weak, it is anticipated that a mono-

channel waveguide construct would offer 𝛽-factor maps similar to those 

reported here, together with an entire half-space to conveniently load and 

trap the atoms. 

3.6 Conclusion 

Cold atoms that interact almost exclusively with just a single propagating 

optical mode constitute a nearly ideal photon-matter interface with many 

applications in quantum information processing. We have explored an 
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ultimate regime of interaction for which the atoms are trapped away from 

any material interfaces and decoherence effects are kept at a minimum level.  

In general, achieving strong and remote couplings address two conflicting 

objectives, and the proposed slow wide-slot PhC waveguide geometry offers 

a good trade-off. Its particularity is the double periodicity that enables to 

both control the mode confinement and slowness bandwidth, at least up to a 

certain extent. Notably, we have shown that the engineering of the modal 

properties could enable slow hollow-core Bloch modes with a significant 

fraction, ~30%, of the field in vacuum. The designed structure achieves an 

unprecedented strong waveguide-atom couplings, ~95%, at a remarkably 

large 𝜆 3 separation distance from any materials, while offering a slowness 

bandwidth comparable to that achieved in recent realizations [Gob14]. 

However, the present design is certainly not optimal, and more theoretical 

and numerical investigations are needed to understand how to enlarge the 

slowness bandwidth by a better control of the penetration length of PhC 

mirrors operating with a longitudinal component of the wave vector 𝑘// ≈

𝑘!. It would also be interesting to understand how to design slow waveguide 

constructs for which the balance between confinement and bandwidth can be 

gradually tuned. Besides the cold atom field, the present waveguide that 

offers a remarkably large volume of high field may open interesting 

perspectives for sensing, especially at low concentration. 
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Chapter 4 - MODAL ANALYSIS OF THE TEMPORAL 

RESPONSE OF PLASMONIC RESONATORS 

4.1 Introduction 

Plasmonic structures, in addition to their ability to confine light in deep sub-

wavelength volumes through collective excitation of electrons at metallic-

dielectric interfaces, undergo ultrafast dynamics at timescales down to sub-

femtosecond due to their broad spectral bandwidth. As a result, broadband 

excitation of plasmons by femtosecond lasers allows to control light-matter 

interaction with nanometric precision at femtosecond timescales [Sto02]. 

Combining high spatial and temporal confinements in plasmonic systems 

has repercussions in fields as diverse as material science, cell biology and 

quantum optics [Pia16] and, in addition to fundamental interests, has 

enabled to build intense high energy light sources [Kim08b], ultrashort 

electron sources [Vog15]  or high contrast nanoscale probes [Ber10] by 

inducing strong non-linear optical phenomena. 

Of particular interest is the temporal response of plasmonic nanoresonators, 

as represented by the scattering problem in Fig. 4-1, where the excitation by a 

given optical pulse gives rise to a spatially varying electric field with 

complex temporal evolution. The prospect of accessing experimentally this 

temporal response has stimulated the development of various, increasingly 

sophisticated, spatially resolved techniques based on optical microscopy 

[Han09, Bri13, Acc14], electron microscopy [Kub05, Bar09b, Aes10] or 

scanning near-field optical microscopy [Oni13, Nis15, Kra16b]. Such 

development is continuously fed by new theoretical proposals and 

discussions [Sto07, Aes16].  
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However, the measurements reported so far are interpreted or analysed 

using simple damped harmonic oscillator models [Kub05, Han09, Bri13, 

Acc14, Nis15, Kra16b, Aes16], only valid for simple samples and/or 

experimental conditions, or interpreted using classical numerical simulations 

(performed either in the spectral domain [Sun13] or in the time domain 

[Mar15] using Finite-Difference Time-Domain (FDTD) solvers). Overall, 

these simulations do not always provide a clear insight on the underlying 

physical processes. To the best of our knowledge, general and intuitive yet 

rigorous theoretical tools do not presently exist. 

In this chapter, relying on recent advances on the modeling of plasmonic 

nanoresonators [Sau13, Bai13], we develop a semi-analytical modal approach 

to model the temporal response. In the approach, the scattered field is 

expanded in a basis formed by the quasi-normal modes (QNMs), i.e. the 

natural resonant modes of the resonator. If the scattering process can be 

accurately modelled with the excitation of a few dominant resonant modes, 

the modal approach provides a fast and intuitive tool to describe the 

temporal response of complex plasmonic structures. The physics required to 

understand experimental results is then made readily available and 

unambiguous, in sharp contrast with more widespread classical scattering 

theories that do not intrinsically rely on the natural modes of the resonator. 

Moreover, the general and versatile character of the modal formalism can be 

used advantageously to predict and interpret spatio-temporal control 

schemes of plasmonic structures [Sto02, Hua09, Aes10], design original 

geometries and develop new applications in the field of ultrafast 

nanoplasmonics. After emphasizing the gain brought by the modal method 

to interpret experimental measurements, we will quantitatively test its 

precision and versatility by comparing the results obtained on a complex 

plasmonic structure with those obtained using widespread numerical 

methods. 
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Figure 4-1. Scattering problem. An incident optical pulse 𝑬!"# 𝒓, 𝑡 , which 
may be a far or near-field excitation, drives a plasmonic resonator and 
gives rise to a locally varying scattered field 𝑬!"# 𝒓, 𝑡 .  

4.2 Theoretical Method 

In the vast majority of classical electromagnetic methods, the interaction 

between light and nanoresonators is described via continuum (scattering) 

theory with classical Maxwell’s equation solvers, operating either in the 

frequency-domain with real frequencies, or in the time domain. The FDTD 

method for instance is almost hegemonically used by experimentalist groups 

nowadays. Nevertheless, the core physical concepts attached to the 

resonator, the resonance modes, are only indirectly accessed with such 

descriptions. Thus interpretation is not straight ahead and the high 

“simplicity” of the physics is not always revealed. In contrast, since it explicitly 

relies on the natural resonator modes, the present treatment restores 

analyticity and intuition into the modeling, closing the huge gap presently 

existing between nanoresonator physics and modeling tools. 

Contrary to quasistatic eigenmodes [Sto02], which are solutions of the 

Poisson equation, QNMs are solutions of the full set of Maxwell equations, 

and can be used to model resonators with large sizes, much greater than a 

few tens of nanometers. Let us start by considering QNM expansions in the 

spectral domain. In the scattering field formulation, the total field is 

decomposed as a sum of a driving field 𝑬!"# 𝒓,𝜔  at frequency 𝜔 and a 

scattered field 𝑬!"# 𝒓,𝜔 . As shown in [Bai13], the field scattered by the 

plasmonic nanoresonators can be expanded in a QNM basis, and provided 
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that few resonance modes are dominantly excited, 

𝑬!"# 𝒓,𝜔 ≈ 𝛼! 𝜔 𝑬! 𝒓! , the expansion provides accurate closed-form 

expressions even for strong radiation leakage, absorption and material 

dispersion. The coupling coefficient 𝛼! 𝜔  is simply obtained by an overlap 

integral between the normalized mode and the driving field 𝛼! 𝜔 =

−𝜔 Δ𝜀 𝑟,𝜔 𝑬!"# 𝒓,𝜔 .𝑬! 𝒓 𝑑𝑟! 𝜔 − 𝜔! , where 𝜔! is the complex 

frequency of the mth mode and Δ𝜀 𝒓,𝜔  the permittivity difference between 

resonator and background medium [Bai13].  

In principle, to be accurate, the expansion requires to consider many QNMs. 

In the 90’s, key theoretical works [Leu94a, Leu94b] have nicely established 

the completeness of the QNM expansion for simple open systems, e.g. 1D 

systems and 3D spherical dielectric resonators surrounded by a uniform 

background. More recently, interesting numerical results [Via14] have shown 

that the expansion provides remarkably accurate predictions for the 

scattering cross-section of 2D dielectric (non-dispersive) resonators and TE 

polarization, provided that the continuum of radiation QNM is included in 

the expansion, see also [Doo13].  However, completeness for the general case 

of 3D systems made of absorbent and dispersive media, especially if 

surrounded by complex backgrounds, remains an open question. 

In the following, we assume that only a few dominant QNMs in the 

expansion are sufficient to achieve a meaningful modeling. The advantage is 

that the interpretation remains simple, the calculations are very fast and, as 

we will see, the predictions remain very accurate in the near-field of the 

resonator, as already discussed in [Sau13, Bai13]. 

Referring to Fig. 4-1, we now consider that the driving field is an optical 

pulse, 𝑬!"# 𝒓, 𝑡 , i.e. a wave packed that can be Fourier transformed 

𝑬!"# 𝒓, 𝑡 = 𝑬!"# 𝒓,𝜔 exp 𝑖𝜔𝑡 𝑑𝜔!!
!! , with 𝑬!"# 𝒓,𝜔  the frequency 

spectrum of the pulse. Driven by the incident optical pulse, the plasmonic 

resonator scatters a time-dependent electromagnetic field, 𝑬!"# 𝒓, 𝑡 . Every 
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infinitesimal component 𝑬!"# 𝒓,𝜔 𝑑𝜔 of the driving field gives rise to an 

infinitesimal scattered field 𝑑𝑬!"# 𝑟,𝜔  which is conveniently expanded as a 

sum of QNM modes 𝒅𝑬!"# 𝒓,𝜔 ≈ 𝑑𝛼! 𝜔! 𝑬! 𝒓  with  

𝑑𝛼! 𝜔 = !!"!
!!!!

Δ𝜀 𝒓,𝜔 𝑬!"# 𝑟,𝜔 ∙ 𝑬! 𝒓 𝑑𝑟!. (4-1) 

Assuming that the scattered field can be inverse Fourier transformed, we 

then obtain the scattered field in the time domain by summing up all the 

frequency components, 𝑬!"# 𝒓, 𝑡 = 𝑑𝑬!"# 𝒓,𝜔 exp 𝑖𝜔𝑡!!
!! . The latter can 

be conveniently expressed as 

𝑬!"# 𝒓, 𝑡 ≈ 𝛽! 𝑡! 𝑬! 𝒓 , (4-2) 

with  

𝛽! 𝑡 = 𝑑𝛼! 𝜔 exp 𝑖𝜔𝑡
!!

!!
 

                            = !!"# !"#
!!!!

!!
!! Δ𝜀 𝒓,𝜔 𝒔 𝒓,𝜔 ∙ 𝑬! 𝒓 𝑑𝒓!𝑑𝜔. (4-3) 

Because of the linearity in the time-domain, the scattered field remains a sum 

of QNM modes with time-dependent excitation coefficients, the 𝛽! 𝑡 's. 

Moreover, the total field, 𝑬!"# 𝒓, 𝑡 + 𝑬!"# 𝒓, 𝑡 , is simply given by a sum of 

independent contributions, analytically known from the sole knowledge of 

the QNM mode profile in the resonator, the resonance frequency and the 

driving field. Equations 4-2 and 4-3 provide a very simple and intuitive 

description of the temporal response of nanoresonators. 

Let us note that the formalism is valid for any driving field, e.g. a field 

scattered by another resonator, a dipole emission in the near-field of the 

resonator or a far-field focused laser pulse. Hereafter we will consider a 

plane-wave driving field, a pulse propagating towards the positive z 

direction defined in the spectral domain by 
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𝒔 𝒓,𝜔 =𝑾𝑔 𝜔 − 𝜔! exp −𝑖𝑘 𝜔 𝑧 , with 𝜔! the central frequency of the 

pulse, 𝑘 𝜔  the wavevector modulus in the background medium, 𝑔 the 

frequency spectrum of the pulse and 𝑾 the 3×1 electric-field vector of the 

plane wave. Substituting into the expression of 𝛽! 𝑡 , we obtain  

𝛽! 𝑡 = !!"# !"# ! !!!!
!!!!

Δ𝜀 𝒓,𝜔 exp −𝑖𝑘 𝜔 𝑧 𝑾 ∙ 𝑬! 𝒓 𝑑𝑟! 𝑑𝜔.   

The 𝛽! 𝑡  ‘s are easily calculated in practice. The most difficult part consists 

in computing and normalizing the few dominant QNMs. For that purpose, 

we use the method described in [Bai13] and the associated freeware 

implemented with COMSOL Multiphysics, a commercial finite-element 

software. To simplify, the frequency dependence of Δ𝜀 𝒓,𝜔  and 

exp −𝑖𝑘 𝜔 𝑧  in the spectral window defined by the resonance term 

1/ 𝜔 − 𝜔!  is neglected hereafter, so that the spatial integral is performed 

only once at a single frequency equal to Re 𝜔! . We have numerically 

checked that that accounting for the dispersion by calculating the spatial 

integral for every frequency gives almost the same results in the following 

examples (see Appendix 6). Finally, the integral over 𝜔 in 𝛽! 𝑡   is performed 

using a fast Fourier transform algorithm. The present formalism is thus very 

easy to implement. Indeed, once the few dominant QNMs are computed, any 

change in the driving field (polarization, propagation direction, central 

frequency, pulse duration, etc.) is straightforwardly taken into account 

because of the analyticity with the driving field, in sharp contrast with the 

FDTD method that requires to re-perform the entire computation for every 

instance of the driving field. 

4.3 PEEM experimental data 

To evidence the benefit brought by QNM expansions to interpret 

measurements of ultrafast resonator dynamics, we start by reviewing the 

difficulties encountered when interpreting experiments with available 

modeling tools. For the sake of illustration, we consider interferometric time-
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resolved PEEM measurements recently performed on silver rice shaped 

nanoparticles (inset of Fig. 4-2a).  

 

Figure 4-2. Experimental measurements and FDTD calculations. a) Non-
linear autocorrelation of the fields induced by ~6-fs laser pulses at the two 
ends of a rice-shaped silver nanoparticle, measured by interferometric 
time-resolved PEEM. Each curve is normalized to its maximum. The black 
arrows evidence a duplication of the intensity peaks, suggesting markedly-
different time-evolutions for the two fields. The inset shows a Scanning 
Electron Microscope image of the rice shaped silver nanoparticle. The 
colored arrows indicate the ends that correspond to the colored curves. 
Details of the experimental parameters can be found in [Mar15] and in Fig. 
4-3a. b) Normalized time-evolution of the fields at the two ends of the 
nanoparticle, obtained from FDTD computations. c) Non-linear normalized 
autocorrelation of the fields shown in (b). Consistently with the 
experimental data in (a), the autocorrelation functions are markedly 
different for delays >  5 fs and < 10 fs, see the black arrows (c). 

In the experiment [Mar15], the nanoparticles were randomly deposited on an 

glass substrate covered with ITO and illuminated by ~6 fs laser pulses. 

Autocorrelation measurements of the induced plasmonic fields at the particle 

ends (indicated by the blue and red arrows) were performed by splitting the 

laser pulses into two identical replicas delayed by a controlled amount of 

time, and by recording PEEM images of the rice particle for varying delays. 

Importantly, we observed that the autocorrelation functions of the intensity 
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spots imaged at the two ends of the particles were systematically and 

markedly different for delays >  5fs and < 10 fs, see the black arrows in Fig. 4-

2a, suggesting a complex time evolution of the plasmonic fields at the 

nanoparticle ends that we were not able to fit with simple analytical models 

[Mar15].  

To support the observations, FDTD calculations were performed.  

Consistently with the experiment, they predicted a complex temporal 

evolution of the plasmonic fields (Fig. 4-2b) which allow us to qualitatively 

reproduce the near-field autocorrelation measurements, see Fig. 4-2c. The 

complex temporal evolution was attributed to  the interplay between (i) the 

non-normal incidence wide field and broadband excitation and (ii) the 

particles whose size leaves the quasistatic regime, and which support several 

eigenmodes. This interplay leads to a delocalized induction of intricate 

surface wave packets over the particle that interfere with each other as well 

as with the excitation pulses. However, the details of such interference could 

not be captured from the field calculated by FDTD, and the interpretation of 

the experiment thus remained limited.  In contrast, by disentangling the 

intrinsic properties of the object from the excitation, the present QNM 

expansion method allows an in-depth interpretation of the temporal 

evolution of the field probed by the PEEM experiment. 

4.4 Interpretation of the PEEM experimental data 

To compute the QNMs, we model the nanorice shaped particle as an 

ellipsoid of length 600 nm and radius 50 nm positioned just above a substrate 

of permittivity 2.1 (see Fig. 4-3a). The permittivity of silver is approximated 

by a Drude model with plasma frequency of 1.25x1016 rad/s and relaxation 

rate of 1.6x1014 s-1. In order to match the experimental conditions, we consider 

a plane wave illumination with a 5.5 femtoseconds Fourier limited Gaussian 

pulse of central frequency 𝜔! = 2.43x1015 rad/s, p-polarized and propagating 

with an angle of 25° with respect to the substrate (Fig. 4-3a). In the spectral 
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range spanned by the pulse, the nanorice deposited on the substrate supports 

two dominant QNMs whose mode profiles in the plane of incidence are 

shown in Fig. 4-3b. Their respective complex resonance frequencies are 

𝜔! = 2.08×10!" 1+ 𝑖 2𝑄!  rad/s and 𝜔! = 2.95×10!" 1+ 𝑖 2𝑄!  rad/s, 

𝑄! = 5.4 and 𝑄! = 8.1 being the quality factors of the resonances. The QNMs 

are independent from the driving field and are thus either symmetric (mode 

1) or anti-symmetric (mode 2) with respect to the small axis of the ellipsoid. 

Due to the presence of the substrate, a small asymmetry is present with 

respect to the long axis of the ellipsoid.  

In Figs. 4-3c-e, we show the three contributions to the total field at the two 

ends of the particle, denoted by points A and B in Fig. 4-3a. In accordance 

with [Mar15], we solely consider the z component of the field as it is the 

main component driving the nonlinear photoemission process in the 

experiment [Mar15]. The driving field is shown in Fig. 4-3c. Because of the 

oblique incidence, a phase delay corresponding to the propagation distance 

between points A and B is observed. The fields scattered by the modes 1 and 

2 are shown in Figs. 4-3d and 4-3e. They resemble the usual temporal 

response of any dissipative resonators (or damped harmonic oscillators) with 

markedly different oscillation frequencies equal to Re 𝜔! , and with a 

relaxation (by absorption and scattering) at a decay rate fixed by Im 𝜔! . 

Referring to Eq. 4-2, since the coupling coefficients 𝛽! and 𝛽! do not depend 

on the position 𝒓, the spatial dependence of the response of every individual 

mode is solely determined by the mode profile. Accordingly, the mode 

responses at all spatial locations have all the same normalized envelop, only 

the amplitudes or phases may differ. In the present case, the fields scattered 

by mode 1 at both ends are identical by symmetry, and the fields scattered by 

mode 2 are 𝜋-phase shifted (see Fig. 4-3b). 
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Figure 4-3. Modal analysis of the nanorice temporal response. a) The 
nanorice is deposited on a glass substrate and illuminated by a p-polarized 
5.5-fs plane-wave Fourier limited Gaussian pulse of central frequency 𝜔! = 
2.43x1015 rad/s-1 propagating with a 25° incidence degree with respect to the 
substrate. b) 𝐸!-profile of the normalized dominant QNM modes. c-f) 
Temporal profile of the 𝐸! field-component computed at point A (red) and 
B (blue). c) Driving pulse, which includes the reflection of the incident 
plane wave on the substrate in the absence of nanorice. d) Fields scattered 
by mode 1 (they are the same due to the mode symmetry). e) Fields 
scattered by mode 2. f)  Total field. 

The resulting total field (Fig. 4-3f) is given by the sum of the three 

contributions. The responses are different at the two ends. Notably, the 

signal envelops strongly differ from one another, both in amplitude and 

shape. In addition, the interference induces different oscillation distortions 

during the relaxation for 15-25 fs delays, and a slight initial retardation of the 

red signal due to the incident pulse. The QNM model qualitatively 

corroborates the observations in [Mar15] and predicts the FDTD calculations 

in Fig. 4-2b (the parameters in the two calculations are slightly different, and 

thus only qualitative agreement can be found). However, the decomposition 
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into different contributions in the modal formalism brings new insights on 

the underlying phenomena and greatly eases the interpretation. For instance, 

it clearly appears that the oscillation distortions results from interferences 

between the two QNMs, creating a beating at the frequency Re 𝜔! − 𝜔!  that 

is  comparable to the central frequencies of the driving pulse. Thus the 

beating period is similar to the oscillation period, and the FDTD 

computational results showing the distortion are difficult to interpret 

directly. Additionally, since the phase of the different contributions are 

different at the two ends, the resulting interferences selectively modify both 

the envelope and oscillations of the response. Overall, by identifying the 

individual contributions of the resonance modes, the present QNM-

expansion method provides unique insights and new clues for quantitatively 

interpreting time-resolved measurements of the ultrafast dynamics of 

nanoresonators, which are difficult to assess with classical frequency- or 

time-domain methods. 

4.5 Quantitative test of the modal formalism 

The previous analysis on nanorices was meant to demonstrate the potential 

of the present method to intuitively interpret experimental measurements. 

Hereafter we aim at showing the versatility of the modal expansion and at 

testing its strength and weaknesses. We thus study a more complex 

geometry and compare the QNM-expansion predictions with numerical data 

obtained with the FDTD method as well as with fully-vectorial Finite-

Element Method (FEM) calculations.  

We chose a Dolmen nanostucture composed of three gold nanorods. The 

Dolmen provides a richer physics than the nanorice, with a Fano response 

resulting from the interference of out-of-phase modes [Ver09, Lov13] that can 

be exploited for sensing and realizing induced transparency in plasmonic 

metamaterials [Zha08]. The Dolmen is represented in Fig. 4-4a and the 

relevant geometrical parameters are given in the caption.  
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In the following computations, it is illuminated by a 12.7 fs plane-wave 

Fourier limited Gaussian pulse (central frequency 𝜔! = 2.90x1015 rad/s) 

propagating in the 𝑧-direction and linearly polarized along the 𝒙+ 2𝒚 

direction (𝒙 and 𝒚 are the unitary vectors along the 𝑥- and 𝑦-axis).  At visible 

frequencies, the Dolmen supports three dominant QNMs. Their normalized 

intensity distributions are plotted in Figs. 4-4b-d. Their complex resonance 

frequencies are 𝜔! = 2.70×10!" 1+ 𝑖 2𝑄!  rad/s, 𝜔! = 2.97×10!" 1+

𝑖 2𝑄!  rad/s and 𝜔! = 3.11×10!" 1+ 𝑖 2𝑄!  rad/s with 𝑄! = 19.1, 

𝑄! = 23.1 and  𝑄! = 8.7. Modes 1 and 2 preferably couple to x-polarized 

driving fields and mode 3 preferably couples to y-polarized fields. For the 

sake of understanding, the in-plane equivalent electrical dipoles of the 

nanorods, determined from the field lines, are depicted with white arrows in 

the figure. 

 

Figure 4-4. QNMs of the Dolmen. a) The Dolmen is composed of 3 gold 
rods. The geometrical parameters are hs = 100 nm, ws = g = G = 30 nm, hb = 
50nm and wb = 128nm. The three rods have a thickness of 20 nm. b-d) 
Intensities of the normalized QNM modes (the yellow tiny arrows 
represent the local E-field direction). The white arrows represent the 
equivalent electric dipoles of each rod. For the simulations, the gold 
permittivity is approximated by a Drude model with a plasma frequency of 
1.365×1016 rad.s-1 and a relaxation rate of 3.2×1013 s-1. The Dolmen is in air with 
a background refractive index of 1. 

The FDTD calculations are performed with the FDTD Solutions software 

from Lumerical. We use typical parameters for convergent simulations using 

total-field scattered-field sources (computational box size of 800×800×800 

nm3, 64 PML layers, mesh override region with mesh size of 0.25×0.25×0.25 
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nm3 containing the nanorods)1, resulting in CPU times of the order of a few 

days on an Intel i7–4770K CPU, 3.50 GHz, 16 GB RAM PC. The FDTD 

methods allow to calculate the temporal response of the dolmen for any 

driving pulse with a single run [Hua09].  

The Dolmen QNMs are computed and normalized with the radio frequency 

module of COMSOL Multiphysics using the freeware in [Bai13], with a 

simulation space of radius 600 nm, a PML layer of thickness 300 nm and 

second-order finite elements. An extremely refined mesh (~ 𝜆 300) is used 

close to the rice surface to finely sample the rapid variations of the field. In 

total, 329000 tetrahedral elements are considered. To compute the QNM, we 

use two mirror-symmetry planes. Only 11 min are required to compute and 

normalize every individual QNM with the very fine mesh, using the iterative 

pole search method [Bai13], with an Intel Xeon(R) E5-2637 CPU, 3.50 Ghz, 64 

Go RAM PC. The CPU time to compute the 𝛽! 𝑡  of Eq. 4-3 is negligible < 1 s 

and is dominantly due to the computation of the volume integral with 

COMSOL Multiphysics. We use the Fast-Fourier-Transform algorithm of 

Matlab to compute the 1D Fourier transform. 

Figure 4-5a compares the FDTD- and QNM-method predictions for the 𝑥-

component of the total electric field, 𝑬! 𝑡, 𝒓!  computed at point 𝐴 =

−5,−10,0  nm.  Overall, a good agreement is obtained. Both methods 

evidence a clear signature of mode beating, with a beating period much 

greater than that previously observed for the nanorice case due to the small 

frequency difference between the modes. However, a more attentive 

inspection reveals two main discrepancies. First, the QNM treatment predicts 

oscillation amplitudes that are larger than those obtained with the FDTD 

method, the difference being especially stringent for the first beating. Second, 

the responses are in quadrature for large 𝑡’s and slightly shifted for small 

ones, as respectively shown in the right and left lower insets. 

                                                

1 https://kb.lumerical.com/en/layout_analysis_test_convergence_fdtd.html 
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To have a deeper insight into inaccuracy issues, we have performed 

frequency-domain computations with COMSOL Multiphysics, using the 

same fine mesh as the one used for the QNM computations. The dots in Fig. 

4-5b show the field 𝑬!"#,! 𝜔, 𝒓!  scattered by the Dolmen at point 𝐴 under 

illumination by an harmonic plane wave with the same incident angle and 

polarization vector as before, and with an electric field 

𝑬 𝜔, 𝒓 = 𝒙
!  
, !𝒚
!  
, 0 exp −𝑖 !

!
𝑧 . The computation was performed for 100 

frequencies ranging from 𝜔 = 2×10!" to 4×10!" rad/s and the CPU time per 

frequency point is 3.5 min on average. We have also computed the scattered 

field computed with the QNM expansion, 

𝑬!"#,! 𝜔, 𝒓! ≈ 𝛼! 𝜔!!!,!,! 𝑬! 𝒓 , with the 𝛼!’s given by Eq. 4-1,  see the 

red-solid curve. We used the same fine mesh to minimize numerical 

dispersion, so that the discrepancies between the fully-vectorial FEM results 

and the QNM-expansion results directly assess inaccuracy issues inherent to 

QNM expansions with a small number of QNMs.  

Clearly, although it only qualitatively predicts the magnitude of the spectral 

response, the QNM formalism quantitatively predicts the Fano response. It is 

especially remarkable that the complex shape can be unambiguously 

attributed to the interference between modes 1 and 2 (blue solid curve) and 

that the frequencies of the extrema of the complex spectral response are all 

accurately predicted with an expansion involving only 3 QNMs (red curve). 

This evidences that the physics of the electromagnetic interaction between 

the three nanorods is well captured by the QNM formalism and that the 

discrepancy between the fully-vectorial (dots) and QNM-expansion (red-

solid) data corresponds to higher-order QNMs that are neglected in the 

expansion and are likely to exhibit rather smooth spectral responses in the 

spectral range of interest, away from their own resonance frequencies.  
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Figure 4-5. Temporal and spectral analysis of the Dolmen. a) Comparison 
of the temporal responses computed at point 𝐴 = (−5,−10,0) nm with the 
FDTD method (blue) and the QNM-expansion formalism (red), for a 12.7-fs 
Gaussian incident pulse polarized along the 𝒙 + 2𝒚 direction, see the 
upper-right inset. Bottom-left/center/right insets: Enlarged views of the 
temporal response. The black curves represent the temporal response 
obtained by Fourier transforming the data computed with the fully-
vectorial FEM and shown in (b). b) Spectrum of the field scattered by the 
Dolmen at 𝐴 under illumination by a plane wave with a unit amplitude and 
with the same polarization as in (a). The dots are data computed with 
COMSOL Multiphysics. The coloured curves show the contributions of 
modes 1, 1+2, and 1+2+3, see the main text for more details. 
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It is tempting to attribute the deviation between the FDTD and QNM 

methods in Fig. 4-5a to the QNM-expansion inaccuracies revealed in Fig. 4-

5b. To evidence that it is not that simple, we have computed 𝑬! 𝑡, 𝒓!  from 

the fully-vectorial data obtained for  the frequency response 𝑬!"#,! 𝜔, 𝒓!  

with COMSOL Multiphysics, using a Fourier transform to go back to the 

time domain. The new FEM data, which are shown with black curves in the 

lower insets of Fig. 4-5a, led to three conclusive remarks. 

At small 𝑡‘s, the fully-vectorial FEM results quantitatively agree with the 

FDTD results, evidencing that the initial temporal response is only 

qualitatively predicted with the QNM formalism. It is reasonable to assume 

that the initial pulse excites higher-order QNMs with larger complex 

frequencies, which are neglected. At intermediate t's (central inset), a 

transition regime is observed, in which the fully-vectorial FEM results, 

initially in perfect agreement with the FDTD results, start to depart from the 

FDTD data and become nearly superimposed with the QNM-expansion 

results. The transition regime occurs for 𝑡 ≈ 40 fs, which approximately 

corresponds to the end of the crossing with the driving pulse and beginning 

of the relaxation of the three dominant QNMs. It is thus a characteristic time 

such as the impact of higher-order QNMs becomes less significant. Finally, at 

long 𝑡‘s, the fully-vectorial FEM results quantitatively match the QNM-

expansion results both in amplitude and phase, whereas the FDTD results 

are phase-shifted by ≈ 𝜋 2. 

Although  the FDTD method is clearly a reference method that is widespread 

for time-domain analysis, its performance deteriorates when implementing 

metal dispersion with auxiliary differential equations [Taf00]. The second-

order accuracy of the Yee grid is no longer guaranteed at metal-dielectric 

interfaces even for straight interfaces and square corners, and the FDTD 

predictions for metallic structures suffer from numerical errors that are 

known to far exceed those of FEMs [Bes07]. As shown in Appendix 5 where 

the accuracy of the QNM-expansion and FDTD methods are studied by 
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increasing the mesh discretization accuracy, the convergence of the QNM-

expansion data appears much more stabilized than the FDTD ones.  

Indeed only the fundamental QNMs contribute to the response at long 𝑡‘s 

and the high accuracy of the QNM formalism is to be expected. However, the 

high degree of accuracy together with the high level of simplicity constitute a 

direct evidence of the force of the present formalism, and especially Eqs. 4-2 

and 4-3. 

4.6 Conclusion 

A semi-analytical time-domain QNM-expansion theory to calculate the 

temporal response of plasmonic and photonic nanoresonators has been 

presented. The approach relies on an analytic continuation at complex 

frequencies using a modal expansion of the scattered field and markedly 

contrasts with classical Maxwell’s equation solvers, such as the FDTD 

method. The numerical implementation of the QNM-expansion formalism is 

simple. It relies on the computation and normalization of a few QNMs (Eq. 4-

2), which can be performed with effective mode-solvers, followed by the 

calculation of a 3D integral over the physical volume of the resonator and a 

1D Fourier transform straightforwardly implemented with a Fast-Fourier-

Transform algorithm (Eq. 4-3). The present theory is approximate, but when 

the physics of the temporal response is driven by a few dominant QNMs 

only, as it is often the case, it becomes highly accurate. Comparison with the 

FDTD method have evidenced two major assets. First, by providing a direct 

access to the few control knobs, the QNM excitation coefficients, of the 

ultrafast dynamics of metallic nanoresonators, the QNM-expansion theory 

eases the interpretation of experiments, in sharp contrast with more 

widespread scattering theories that does not intrinsically rely on modal 

expansions. The comparison has also revealed that the QNM-expansion can 

be almost as accurate as the FDTD, while the required computational speeds 

and resources are considerably smaller.   
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It would be interesting from a theoretical point of view to investigate the 

limitations imposed by our QNM solver, namely the use of a low number of 

QNMs. Practically the QNM formalism, due to its simplicity and analyticity, 

may be helpful for inverse design [Alp16] to engineer for instance nanoscale 

pulse shapers. Other interesting perspectives concern the extension of the 

formalism towards molecular plasmonics [Csa11], i.e. hybrid systems 

composed of molecule ensembles that collectively interact with plasmonic 

resonances.  
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Chapter 5 - QUENCHING, PLASMONIC, AND RADIATIVE 

DECAYS IN NANOGAP EMITTING DEVICES 

5.1 Introduction 

Spontaneous emission remains at the core of the performance of many 

optoelectronic devices, including not only lighting components and displays, 

but also lasers, optical amplifiers, single photon sources and non-classical 

light sources in general. Metal nanogaps formed by a thin insulator layer 

sandwiched between two metals films have very rich physical properties and 

many established applications ranging from electron tunneling microscopy, 

nanocatalysis, Raman spectroscopy to disruptive electronics, but they are 

also likely to profoundly impact spontaneous emission [Aks14]. Owing to the 

strong localization in the gap, metal nanogaps strongly modify the 

electromagnetic density of modes. It follows that the spontaneous emission 

of dye molecules or quantum dots that are placed in the gap can be enhanced 

considerably. This fundamental phenomenon of light emission, known as the 

Purcell effect [Pur46], has been first demonstrated in optics by coupling 

quantum emitters with resonant dielectric microcavities [Lod15] with very 

high quality factors and mode volumes of the order of the wavelength cube. 

The use of deep-subwavelength confinements with plasmonic 

nanostructures has created a totally new framework with mode volumes 

10,000 times smaller and broadband responses [Pel15, Sau13], and thus have 

opened a promising route toward new applications in optical spectroscopy 

[Gia11, Muh05, Tam08], spaser or low-threshold nanolasers [Ber03, Kha12], 

or broadband non-classical light sources [Pel15]. For instance, for a molecule 

placed close to a single metallic nanoparticle, such as a nanorod or preferably 

a triangular particle with sharp corners, spontaneous emission rate 
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enhancements of a few hundred are observed over a spectral linewidth of 

about a tenth of the emitted frequency. This is remarkable and unfeasible 

with dielectric structures. The down-side is that metal absorbs. High 

radiation efficiencies are achieved as long as the coupling with the particle 

resonance dominates, but as the molecule approaches the metal surfaces 

down to separation distances smaller than 10  𝑛𝑚, the emission efficiency 

breaks down. Photon emission is quenched. Consequently, quenching has 

been considered for many years as the predominant spontaneous decay 

channel for an emitter that is placed at a small separation distance 𝑑 from a 

metallic object [Dre74]. In classical electrodynamics, this effect, which usually 

scales as ∝ 𝑘!𝑑 !! [Bar98, For84], is due to the intense near field of the 

emitter that induces considerable Ohmic heating of the metal. 

Since the very early stage of plasmonic-nanoantenna research, there was thus 

a concern that large spontaneous-emission-rate enhancements with metallic 

nanostructures would be inevitably accompanied by a strong quenching that 

would critically restrict antenna efficiencies. However, recent experiments 

[Aks14, Egg15, Kin09, Rin08] performed with molecules placed in nanogaps 

formed by pairs of particles placed side by side, such as patches [Aks14], 

bowties [Kin09], and nanoparticle dimmers [Egg15, Rin08] have shown that 

nanogaps offer enhancements even stronger than those achieved with single 

nanoparticles due to the capacitive coupling, and most importantly have 

revealed that the initial intuition is wrong. A recent experimental result 

obtained for nanocube-antenna [Aks14] provide a particularly striking 

example. In the experiment, a significantly large Purcell factor of 10! is 

measured and a good extraction efficiency of 50% is surprisingly predicted 

for dye molecules in an 8-‐𝑛𝑚-thin polymer-film sandwiched between a gold 

substrate and a small silver nanocube. Notably, the good efficiency is 

obtained for molecules that are placed only 4-‐𝑛𝑚 away from the metal 

interfaces. In the end, the precise physical mechanisms that drive the 

emission of quantum emitters placed very close to metal surfaces in tiny gaps 
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are not well understood. In particular, it is unclear from the literature why 

good efficiencies are achieved despite the proximity to the metal, why 

quenching is not the dominant decay channel, what is the ultimate efficiency, 

and whether this limit is impacted by the gap thickness or other parameters. 

To further explore how optical antennas may lead to new regimes of light–

matter interactions, it is important to first understand the different channel 

decays at play when quantum emitters in 2D nanogaps emit light in the 

immediate vicinity of metal surfaces and then draw a relationship between 

this basic situation and more complex problems of light emission and 

coupling with nanogap antenna architectures. 

This is exactly the approach that is adopted in the present chapter. First, after 

describing the emission of an emitter on a metallic interface, we provide a 

comprehensive analysis of the decay rates of quantum emitters placed in 2D 

planar nanogaps. So far, this has been discussed only with scattered 

numerical calculations performed for specific gap thicknesses and metal 

dielectric constants [For84, Jun08, Rus12]. In contrast, we derive a closed-

form formula for the branching ratio between quenching and gap plasmon 

decays in the limit of small gap thicknesses, and then clarify the key material 

and geometrical parameters that drive the ratio. Counterintuitively, we 

evidence that the key parameters are the material permittivities, and not the 

gap thickness and that the gap plasmon decay surpasses the quenching 

decay for nanogaps fed with high-refractive-index materials and molecules 

polarized perpendicular to the gap interfaces. 

Then we use the understanding gained from 2D planar structures to infer 

general recipes for designing efficient nanogap emitting devices. For that 

purpose, we model nanogap devices as gap-plasmon Fabry-Perot resonators 

and propose a phenomenological classification of nanogap antenna 

architectures, based on the tradeoff between quenching, absorption and free-

space radiation rates, which may be monitored by controlling the gap-facet 

reflectance. 
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To set the classification against real structures, we analyze nanogap emitting 

devices formed by tiny nanocubes laying on metal surfaces. By scaling down 

the gap thickness and the cube dimensions to keep resonance in the visible, 

distinct behaviors within the same architecture family are comprehensively 

reviewed. Our analysis corrects inaccurate numerical results of the recent 

literature [Aks14, Ros14], and definitely sets nanogaps with engineered facets 

as a very promising technological platform for light-emitting devices.  

5.2 Decays on a single interface 

To start the analysis, let us consider the classical problem of the emission of a 

vertically-polarized molecule (treated as an electric dipole) buried in a 

polymer layer at a small distance 𝑑 from a silver interface. Figure 5-1 

summarizes the main trends for an emission wavelength 𝜆 at 650  𝑛𝑚.  

 

Figure 5-1. Radiation of a vertical electric dipole above a Ag/polymer 
interface. a) log!" 𝐸 !  of the total electric field excited by the dipole (black 
arrow) for a dipole-metal separation distance 𝑑   =   4  𝑛𝑚. b) Calculated 
decay rates into SPPs (𝛾!", blue), free space photons (𝛾!"#, black), and 
quenching (𝛾𝑞𝑢𝑒𝑛𝑐ℎ

𝑆𝐼 , red). The total decay rates 𝛾!"! is shown with black 
triangles. All decay rates are normalized by the decay rate in a vacuum. 
The calculations are performed for an emission wavelength 𝜆!   =   650  𝑛𝑚. 
The refractive index of polymer is 𝑛   =   1.4 and the silver permittivity is 
𝜀!" = −17 + 1.15i [Pal98]. 
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As d decreases, the normalized decay rate 𝛾!" (we normalize all decay rates 

by the vacuum decay rate hereafter) into surface plasmon polaritons (SPPs) 

and the normalized radiative decay rate 𝛾!"# remain constant and the total 

normalized decay rate 𝛾!"! becomes dominantly driven by the direct decay 

𝛾!"#$%!!"  in the metal, which is known to scale with the cube of 𝑑, 𝛾!"#$%!!" =

!
!!! !!! ! Im

!!!!!
!!!!!

 in a local quasi-static approximation [For84], with 𝜀! and 

𝜀! denoting the dielectric and metal permittivities, and 𝑘! = 2𝜋 𝜆 the 

wavevector. 

5.3 Decays in dielectric nanogaps 

We obtain radically different results when two adjacent metallic interfaces 

are considered. Let us consider the emission of a vertically-polarized 

molecule buried in the middle of a polymer layer of thickness 2𝑑 of a metal-

insulator-metal (MIM) planar stack. Two channels are available for the 

decay. Either the molecule excites the gap plasmon modes of the planar stack 

or quenches by directly heating the metal. We denote by 𝛾!"# and 𝛾!"#$%! the 

corresponding normalized decay rates. Figure 5-2a-b shows the radiated 

field and decay rates for the same emission wavelength and materials as 

those used for the single interface in Fig. 5-1. First we find that the direct 

decay in the metal, 𝛾!"#$%! scales as 𝑑!! as 𝑑 → 0. This scaling is understood 

from the local and static nature of quenching. Intuitively the quenching rate 

in a nanogap is expected to be ~  2 times larger than the quenching rate 

𝛾!"#$%!!"  of the same vertical dipole on a single interface at the same separation 

distance 𝑑, and since 𝛾!"#$%!!" = !
!!! !!! ! Im

!!!!!
!!!!!

 as 𝑑 → 0 [For84], the cubic 

scaling is well anticipated. In fact, 𝛾!"#$%! ≈ 2𝛾!"#$%!!"  holds for 𝑑   > 10  𝑛𝑚 

only; as smaller 𝑑’s, we found empirically with numerical calculations 

performed at 650  𝑛𝑚 that the quenching rate 𝛾!"#$%! is ~  3 times larger than 

𝛾!"#$%!!" . 
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Figure 5-2. Radiation of an electric dipole placed inside an 
Ag/polymer/Ag nanogap. a-b) Vertical electric dipole placed at the center 
of the nanogap; c-d) horizontal electric dipole that is placed 1  𝑛𝑚 above the 
nanogap center (horizontal electric dipoles placed in the gap center do not 
couple to the gap plasmon mode). a-c) log!" 𝐸 !  of the total electric field 
radiated by the dipole (black arrow) for a gap thickness 2𝑑   =   8  𝑛𝑚. b-d) 
same legend as in Fig. 5-1b, except for the additional dashed-blue curves 
that represent the decay rates into gap plasmons. 

Importantly, we also find that the normalized decay rate into the gap 

plasmon modes of the planar stack also scales as the cube of the separation 

distance 2𝑑 between the metal films. The fact that 𝛾!"# and 𝛾!"#$%! have an 

identical rate-dependence with 𝑑 is not trivial but should not come as a 

surprise; for vanishing 𝑑’s, gap plasmons exhibit slower group velocities 

(𝑣! ∝ 𝑑!!) [Yan12] and become mostly electronic waves with a low photonic 

character; they lose their delocalized coherent character, so that direct near-

field absorption and gap-plasmon excitations contribute similarly to the local 

density of states seen by the quantum emitter. By using a complex 

continuation approach to calculate the Green-tensor [Col04] and by assuming 
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that the transverse electric and magnetic field components of the gap 

plasmon bear a flat profile within the gap, we have derived an analytical 

expression for 𝛾!"# for very small gap thickness, 𝛾!"# ≈
!"#!!

!!!! ! !! ! (details of 

the derivation are given in the next section), which evidences the inverse-

cubic scaling. 

Let us note that the results are very different when one considers molecules 

with a polarization parallel to the interfaces. Since the parallel electric-field 

component of the gap plasmon is much weaker than the perpendicular 

component, plasmonic modes are weakly excited for parallel polarizations, 

see Figs. 5-2c-d, and quenching is now the dominant decay channel, even for 

tiny gap thicknesses. Likewise, since optical pumping of molecules placed in 

nanogaps is dominantly performed via the excitation of gap plasmons, 

optical pumps are much less efficient for molecules oriented parallel to the 

interfaces than for those oriented vertically.

 

 

Thus we obtain an analytical expression for an important figure of merit of 

planar nanogaps with vanishing gap thicknesses, namely the branching ratio 

𝐹 between gap-plasmon decay rates and quenching rates 

𝐹 ≈ !!"#
!!!"#$%!

!" = !!!
!" !! !

!! ! !!!
!! !

!
, (5-1) 

with 𝜀! and 𝜀! denoting the dielectric and metal permittivities. The formula 

carries important hints: 

First, the ratio is independent of 𝑑 for 𝑘!𝑑 → 0, the first correction term being 

of order 𝑂 𝑘!𝑑 !, and takes a universal expression that only depends on the 

dielectric constants. 

Second, for good metals, 𝜀! ≪ 𝜀! 𝜔 , one should bury the quantum emitter 

in a high-index material to enhance the branching ratio in the near- and far-

infrared spectral regions. 
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Third, the ratio solely depends on the losses encountered in polarizing the 

material, i.e. on Im 𝜀! 𝜔 , and not on the usual quality factor − !" !! !
!" !! !

 of 

plasmonic materials, which gives an incontestable advantage to silver at 

visible frequencies, in comparison with gold or aluminum for instance. 

Figure 5-3 shows typical branching ratios that can be obtained in the visible 

and near-infrared spectral regions with different metals and gap materials. 

The usefulness of the simple formula in Eq. 5-1 is reinforced by its ability to 

provide quantitative predictions, as evidenced with the comparison with 

fully-vectorial computational data (shown with marks) obtained for planar 

nanogaps with small gap sizes (𝑑   =   2  𝑛𝑚). We emphasize that Eq. 5-1 is 

obtained in the asymptotic limit 𝑘!𝑑 → 0; as the gap thickness increases 

beyond the quasi-static approximation, the ratio 𝐹 increases because 

quenching rapidly vanishes, and in this sense Eq. 5-1 actually sets a lower 

bound for the branching ratio. On overall, Eq. 5-1 represents a good 

compromise between simplicity or intuition and accuracy. 

 

Figure 5-3. Branching ratios for nanogaps formed with various materials 
at visible and near-infrared frequencies. Fully-vectorial calculations (for 
𝑑   =   2  𝑛𝑚) and analytical predictions from Eq. 5-1 are shown with markers 
and solid curves. Calculations made with Ag and Au are represented by 
red and blue colors, for dielectric (squares) and semiconductor (triangles) 
gap materials. Metal permittivities are taken from tabulated values [Pal98]. 
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In the fully-vectorial results shown in Figs. 5-1, 5-2 and 5-3, quenching rates 

are found as the difference between the total decay rates (calculated as the 

Poynting-vector flux on a close surface surrounding the emitter) and the 

decay rates into the remaining channels (free-space and SPPs for Fig 5-1 and 

gap plasmon modes for Figs 5-2 and 5-3) calculated using an open-source 

software [Yan16a]. Details on the calculation technique are provided in 

Appendix 7 along with a verification that the indirect derivation of the 

quenched energy actually corresponds to the absorption in the near-field 

zone (< 0.02𝜆!
!) of the emitter. 

5.4 Analytical expression of the decay rate in gap 

plasmons 

The objective of this section is to derive an analytical formula for the 

emission of a vertically polarized electric dipole source emitting in an MIM 

stack. The following derivation relies on a formalism that is developed in 

[Yan16a]. 

5.4.1 Power coupled to gap plasmons in MIM stacks 

For an electric current 𝐽 that is vertically polarized (𝐽   =   𝐽!, see Fig. 5-4) and 

placed at 𝑟   =   0, the excited gap plasmon field 𝐸!"# 𝑟,𝜃, 𝑧  can be written as 

𝐸!"# 𝑟,𝜃, 𝑧 = 𝑐!"#𝐸!"#! 𝑘!"# , 𝑟 ,  (5-2) 

where 𝑐!"# denotes the mode amplitude (𝑎 constant to be determined), 

𝐸!"#! 𝑘!"# , 𝑟  describes the 𝑟-‐ and 𝑧-‐dependent mode profile, and the 

superscript ‘+’ indicates outgoing mode (propagating from 𝑟   =   0 to 𝑟   = ∞).  
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Figure 5-4. Dipole emission in an MIM stacks. a) We consider the 
emission of a vertical electric dipole placed in the dielectric nanogap at 
𝑟 = 0. b) In an MIM stack with a narrow gap (𝑔 → 0), the transverse electric 
and magnetic field-components can be assumed to be independent of the 
transverse coordinate. 

According to the unconjugated form of Lorentz reciprocity, the plasmon 

amplitude can be found by a dot product of 𝐽! and the ingoing mode 

𝐸!"#! 𝑘!"# , 𝑟  as [Yan16a] 

c!"# = 𝐸!"#! ∙ 𝐽! 𝑁!"#. (5-3) 

In Eq. 5-3, 𝑁!"# = 16 𝑘!"# denotes the mode normalization coefficient 

[Yan16a] and the minus superscript ‘‒’ refers to ingoing modes (propagating 

from 𝑟   = ∞ to 𝑟   =   0). Accordingly the total power carried by the gap 

plasmon is found as 

𝑃!"# = 4 𝑐!"# ! 𝑘!"# . [Yan16a] (5-4) 

According to Eqs. 5-3 and 5-4, we need the z-component electric field of the 

mode. The z-component of the gap plasmon can be written as 𝐸!"#
± 𝑘!"# , 𝑟 =

𝐻!
± 𝑘!"#𝑟 𝑒! 𝑧  [Yan16a], with 𝐻!± denoting the Hankel function of the first 

(‘+’) or second (‘‒’) kind of order n, 𝑒! 𝑧  denoting the transverse electric 

field of the 𝑧-‐dependent mode profile (see Fig. 5-4). Note that since the dipole 

source is placed at 𝑟   =   0, the Hankel functions diverge at 𝑟   =   0. Therefore a 
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special trick to avoid singularity is applied [Yan16a], and Eq. 5-4 is rewritten 

as 

𝑃!"# 𝑧 = 𝐽! ! 𝑒! 𝑧 ! 𝑘!"# 16. (5-5) 

5.4.2 Mode profile of gap plasmon in MIM stacks with very 
small gap 

To use Eq. 5-5 for deriving a closed-from expression, we need to calculate 

𝑒! 𝑧  and 𝑘!"#. In principle, the mode profile can be calculated analytically 

[Yeh88]; however, as we are solely interested by vanishing gaps (𝑔 → 0), the 

mode profile can be found in a simple manner by assuming that the 

transverse electric 𝑒! 𝑧  and magnetic ℎ! 𝑧  field components inside the gap 

are uniform (Fig. 5-4b). Thus we have 

𝑒! 𝑧 = 𝑒!,  ℎ! 𝑧 = ℎ!,    for   𝑧 ≤ 𝑔 2
eT z =e0  

εd
εm
exp -‐τ z-‐ g 2 ,  hT z =h0  exp -‐τ z-‐ g 2 ,  for   𝑧 > 𝑔 2,           (5-6) 

where 𝑒! and ℎ! denote the amplitudes of electric and magnetic components 

inside the gap, 𝜏 denotes the damping term of the plasmon in the metal 

cladding. Applying Eq. 5-6 into unconjugated form of mode normalization 

based on Lorentz reciprocity (a normalization method valid for lossy modes) 

[Sny83, Lal09] 𝑒! 𝑧 ℎ! 𝑧 𝑑𝑧 = −2, we find easily that 

𝑒!ℎ! 𝑔 + !!
!!

!
!
= −2. (5-7)  

If 𝑔 → 0,  𝑘!"# can be expressed as 𝑘!"# = − !!!
!!!

 [Boz07], with 𝜀! and 𝜀! 

denoting the gap (dielectric) and metal permittivities, and 𝜏 (𝜏! = 𝑘!"#
! −

𝑘!
!𝜀!) can be found as  

𝜏 = − !!!
!!!

.  (5-8)  
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Applying Eq. 5-8 into Eq. 5-7, we obtain the important (and simple) relation 

𝑒!ℎ! ≈ − !
!
.  (5-9)  

Then by applying ℎ! 𝑧 = !!!!!
!!"#

𝑒! 𝑧  into Eq. 5-9, which is valid within the 

dielectric gap and can be easily found for any slab waveguide, we find  

𝑒! 𝑧 = 𝑒! = 8 𝜔𝜀!𝜀!𝑔!   for   𝑧 ≤ 𝑔 2.  (5-10) 

5.4.3 Asymptotic expression of the decay rate in gap plasmons 
for very small gaps 

Incorporating Eq. 5-10 into Eq. 5-5, we find 

𝑃!"# =
!!

!!!!! !! ! 𝐽! !   𝑔 → 0 .  (5-11) 

The radiated power of the same dipole in vacuum being 𝑃! =
!!!

!"!!!!!
𝐽! !, we 

finally get the normalized decay rate as [Nov06] 

𝛾!"# =
!!"#
!!

= !"!!!
!!! ! !! !.  (5-12) 

Clearly, Eq. 5-12 indicates that decay to gap plasmon varies as 𝑑!! (𝑑 

denoting the dipole-metal distance). We recall that Eq. 5-12 relies on the 

approximation that the transverse components of the gap-plasmon mode 

does not vary with the transverse coordinate. This is all the more accurate as 

the gap thickness is small. Thus, the coupling to gap plasmons in nanogaps 

may overcome, by choosing the proper materials permitivities, the decay into 

quenching and enables the design of nanogap-based structures. 
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5.5 Classification of nanogap emitting devices 

As a matter of fact, the decay into plasmon modes is often considered as 

detrimental, just like quenching. However it is of different nature since 

plasmons are coherent oscillations that may be transformed into free-space 

photons by scattering. This transformation is at the art of nanogap-device 

design. Intuitively, gap devices can be thought as Fabry-Perot 

nanoresonators with gap plasmon modes that bounce back and forth 

between two facets [Bol07, Miy06, Yan12]. The nanoresonator modes can 

couple to different decay channels, i.e. to free-space photons and surface 

plasmon polaritons (SPPs) for nanoresonators surrounded by metal films, 

with normalized rates 𝛾!"# and 𝛾!" respectively. They also give rise to a new 

non-radiative decay, the mode absorption, with a decay rate 𝛾!"#. Unlike 

quenching which is intrinsically determined by proximity to metal, 𝛾!"# is 

determined by the nanoantenna design and particularly the reflectivity 𝑅 of 

the gap facets. Thus, from the sole knowledge acquired on the 2D planar 

structures and according to values of 𝑅 that govern the resonance strength, 

we may distinguish three different nanogap-device categories, as illustrated 

in the classification of Fig. 5-5. 

Almost nil reflectivity is implemented in tapered nanogaps formed for 

instance by curved and flat metal surfaces (Fig. 5-5a) by adiabatically 

converting the slow gap-plasmons generated at the mouth [Fer10, Mub12, 

Yam11a] into free-space photons and SPPs launched on the flat metal surface 

surrounding the device. The SPPs can be further converted into photons with 

groove arrays for instance. Thus the total decay rate is expected to be equal 

to 𝛾!"! ≈ 𝛾!"# + 𝛾!"#$%! where 𝛾!"# and 𝛾!"#$%! are the gap-plasmon and 

quenching decay rates obtained in a planar nanogap with a thickness equal 

to the mouth thickness. For full SPP conversion into free-space photons, the 

photon-radiation efficiency is thus limited by quenching and is bounded by 

F F+ 1 , a value that can be as large as 0.75 at an emission wavelength of 

600  𝑛𝑚 for Ag/polymer gaps (see Fig. 5-3).  
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By contrast, for strong reflectivity favored by large impedance mismatch at 

the facet of tiny gaps [Aks14, Oul09], see Fig. 5-5c, the total decay rate is 

considerably boosted and quenching becomes completely negligible. 

However, the photon-radiation efficiency is limited by the absorption of gap 

plasmons in the tiny gap; it is expected to be much smaller than the value 

reached for adiabatically-tapered antennas. 

 

Figure 5-5. Classification of planar nanogap emitting devices with 
different degrees of decay rate enhancements. a) Tapered devices with 
large photon-radiation efficiencies. Dipole emission is initially captured by 
gap plasmons and then adiabatically (low reflection 𝑅~0) converted into 
photons. Grooves etched in the metal film help conversion of launched 
SPPs into free-space photons. b) Nanoresonators with controlled facet 
reflectivities. c) Nanoresonators with strong facet reflectivities. d-f) 
Corresponding decay rates. d) Due to the tapering, 𝛾!"! ≈ 𝛾!"# + 𝛾!"#$%! 
where 𝛾!"# and 𝛾!"#$%! are the gap-plasmon and quenching decay rates 
obtained in a planar nanogap with a thickness equal to the mouth 
thickness. e) The weak reflection in (b) results in a broadband rate 
enhancement with a large photon-radiation efficiency. f) The strong 
reflection in (c) results in a narrowband Fabry-Perot resonance; 𝛾!"! can be 
considerably boosted, but the non-radiative decay 𝛾!"# due to cavity 
absorption lowers the photon-radiation efficiency. 

Figure 5-5b illustrates a promising class of nanogap antenna, with 

intermediate values of the facet reflectivity. Spontaneous-decay rates larger 

than 𝛾!"# are implemented, but the photon-radiation efficiency that is limited 

by quenching and absorption in the cavity may approach or even exceed the 

upper bound value of the 𝑅 ≈ 0 case. 
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5.6 Study of the nanocube antenna 

After this qualitative discussion, it is interesting to set the classification of 

Fig. 5-5 against real nanogap emitting-device technologies. For that purpose, 

we consider devices formed by a tiny dielectric layer sandwiched between a 

metallic nanocube and a metallic substrate. This geometry that has been 

recently studied [Aks14, Ros14] is particularly suitable for exploring the 

three categories of the classification, since by scaling down the cube 

dimension, a whole family of gap emitting devices with distinct facet 

reflectivities can be straightforwardly designed and studied at the same 

resonant visible wavelength. But first let us begin by explaining how we 

calculate the photon-radiation efficiency and estimate the respective impact 

of quenching and gap-plasmon absorption. This is necessary because our 

results differ from those reported in [Aks14, Ros14], at least by a factor two 

for the efficiency, and it is important to understand the reason. 

We consider the same nanocube geometry as in [Aks14], with a vertically-

polarized emitting dipole. The latter is placed in the middle of an 8-‐𝑛𝑚-thick 

polymer gap at a cube corner, where maximum coupling with the resonance 

mode is achieved. Using COMSOL multiphysics, we first calculate the 

normalized total decay rate 𝛾!"! by integrating the total power radiated 

around the source. Consistently with [Aks14], at resonance 𝛾!"! (black circles) 

is as large as 10!, a value which represents a tenfold enhancement, compared 

to the normalized gap-plasmon decay rate 𝛾!"# (cyan circles) obtained for a 

planar nanogap with the same materials and gap thickness. 

To provide a deeper insight, we also calculate the normalized decay rate 

𝛾!"#$ (i.e. the Purcell factor) into the fundamental magnetic-dipolar 

nanocube mode [Ros14]. 𝛾!"#$ is calculated by using a resonance-mode 

theory recently developed [Bai13, Sau13] to the analysis of plasmonic 

nanoresonators. Owing to the very small mode volume 𝑉   =    84,000+

8,000i   𝑛𝑚! of the magnetic-dipolar mode, we find that 95% of the total 
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decay is actually funneled into the resonance mode at resonance. The 

quenching rate 𝛾!"#$%! (red circles) is then calculated as 𝛾!"#$%! = 𝛾!"#$%! −

𝛾!"#$ − 𝛾!"#$, where 𝛾!"#$ represents a residual decay into a quadrupolar 

mode that resonates in the green [Las13]. Unlike intuitive statements in 

[Aks14], our calculations indicate that quenching (red circles) is playing a 

negligible role, as its rate only represents ~  2% of 𝛾!"! at resonance. Then, 

using an open source code that computes the radiation diagrams of free-

space and guided waves [Yan16a], we calculate the normalized decays into 

free space photons and SPPs launched around the nanocube, 𝛾!"# and 𝛾!", 

respectively. We find that ~  60% of the mode energy is dissipated into heat, 

and the remaining 40% equally decays into free-space photons (20%) and 

SPPs (20%) that are launched on the flat metal interface surrounding the 

cube. This suggests the great potential of nanocubes for implementing 

plasmon sources. The present prediction 𝛾!"# 𝛾!"! ≈ 20% differs from the 

50% photon-radiation efficiency calculated in [Aks14, Ros14] for the same 

geometrical parameters. We believe that the discrepancy is due to the fact 

that in [Aks14, Ros14], the photon-radiation efficiency is inferred from a 

direct computation of the Poynting-vector flux on a close surface 

surrounding the nanocube, without separating the respective contributions 

of the radiated photons and surface plasmons with a near-to-far-field 

transform.  

Clearly, the nanocube antenna with a facet reflectivity of ~  0.85, a value 

deduced from results reported in [Yan12], belongs to the category of 

nanogap antennas with large facet reflectivities, i.e. case (c) in the 

classification of Fig. 5-5. 
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Figure 5-6. The decay channels of nanocube antennas. Calculated 
normalized decay rates of a vertical electric dipole at the corner (insets) of 
the antenna as a function of the wavelength. 𝛾!"!, 𝛾!"#$ (decay into the 
fundamental magnetic mode), 𝛾!"# (antenna absorption), 𝛾!"# + 𝛾!" (sum of 
the radiative and SPP decay rates) and 𝛾!"! are shown by black, blue, 
magenta, green, and red circles, respectively. 𝛾!"# (cyan) represents the 
decay into the gap plasmon of a planar nanogap of the same materials and 
gap thickness. Left inset: cross-sectional view of the nanoantenna: a silver 
nanocube (side length 65  𝑛𝑚) with a 3-‐𝑛𝑚 polymer coating (𝑛 = 1.4) is 
placed on a gold substrate covered by a 5-‐𝑛𝑚 polymer (8-‐𝑛𝑚 gap). The 
molecule is represented as a red arrow placed in the middle of gap. Right 
inset: top view of the cube showing the position of the dipole. The 
frequency-dependent permittivities, ε!" and ε!", of silver and gold are 
taken from tabulated data [Pal98], ε!" = −17 + 1.15i and ε!" = −9.7 +
1.04i @ 𝜆   =   650  𝑛𝑚. 

We are now ready to study the nanocube performance for various 

thicknesses. For that, at every thickness, we adapt the cube size to maintain 

the magnetic-dipolar resonance at 𝜆!   =   650  𝑛𝑚 and repeat the previous 

modal analysis. The results for total decay rate 𝛾!"! and the external 

efficiency 𝛾!"# + 𝛾!" 𝛾!"! defined as the normalized decay into SPPs and 

photons are displayed in Fig. 5-7a as a function of the gap thickness. The 

latter is shown to importantly impact the nanocube performance. As the 

thickness reduces, the facet reflectivity increases [Yan12] and accordingly, 
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𝛾!"! strongly increases. However, the coupling to outgoing channels also 

decreases and the enhancement of the total decay rates is accompanied by a 

sudden drop of the external efficiency, from 80% for 𝑑   =   20  𝑛𝑚 to 15% for 

𝑑   =   4  𝑛𝑚. 

 

Figure 5-7. Patch versus tapered-nanogap antennas with polymer gaps. a) 
Patch antennas. The calculations are performed for a vertical electric dipole 
located close to the center of the antenna facet (inset). The cube size varies 
with the gap thickness to maintain the resonance wavelength at 650  𝑛𝑚 
(side lengths are 47, 56, 65, 70, 75, 80 and 85  𝑛𝑚, for gap thickness d = 4, 6, 
8, 10, 12, 16 and 20  𝑛𝑚). b) Perfectly tapered-nanogap antennas. The 
performances are predicted with planar-nanogap calculations by assuming 
perfect tapering of the gap-plasmons into SPPs and/or radiative photons. 
In (a) and (b), the normalized total decay rates 𝛾!"! are shown with solid 
curves and the external efficiencies 𝛾!"# + 𝛾!" 𝛾!"! with dashed curves.  

For the sake of comparison, in Fig. 5-7b, we display 𝛾!"! and the external 

efficiency 𝛾!"# + 𝛾!" 𝛾!!" (again, 𝛾!" denotes the decay to the SPPs on the 

flat metal surface, not gap plasmons) for a perfectly-tapered antenna (case (a) 

of the classification in Fig. 5-5). The predictions are obtained from planar 

nanogap calculations only, by assuming that 𝛾!"# + 𝛾!"  is equal to the gap-

plasmon decay rate 𝛾!"# in a planar nanogap with a thickness equal to the 

mouth thickness. This amounts to assume that gap plasmons are fully 

converted by the tapering structure into SPPs and/or photons and this 

provides an upper bound for the photon-radiation efficiency. As shown by a 

comparison between Figs. 5-7a and 5-7b, smaller decay rates are achieved 
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with the tapered antenna, but significantly larger external efficiencies are 

also obtained. Impressively, we predict that large efficiencies > 70% with 

large normalized emission rates ~  10! are achieved for tiny nanogaps. Lastly, 

our simulations do not include additional loss mechanisms such as electron 

surface collisions [Egg15] but we use silver permittivity tabulated in [Pal98] 

that exhibits a larger amount of non-radiative losses compare to other data 

sets. Regardless, even if doubts remain on the exact amount of losses in metal 

films/particles, our calculations open important perspectives for 

spontaneous light emission in general, and definitely set nanogaps as a 

relevant technological platform. The future success of the platform will 

depend on fabrication and material issues, and on our ability to engineer 

facet reflectivities adequately. 

5.7 Conclusion 

Emitting photonic devices with quantum emitters embedded in nanogaps for 

operation at visible and near-infrared frequencies can provide large 

spontaneous emission rate enhancements and good photon-radiation 

efficiencies, because the decay into slow gap-plasmons is considerably 

boosted, and quenching is thus effectively overcome. This is particularly true 

for gaps with high-refractive-index insulators sandwiched between good 

metals, since the branching ratio ∝ ε! Im ε! ω  between gap-plasmon 

decay rates and quenching rates reach values as large as 80% for 

semiconductor gaps operated at near-infrared frequencies. The dominant 

character of plasmonic decays for small gaps has a direct impact on the 

design and performance of nanogap emitting devices. First, the high decay 

rates found in planar nanogaps can be harnessed to realize tapered antennas 

(Fig. 5-3a) offering strong decay rate enhancements (≈   10!-‐10!) and large 

photon-radiation efficiencies limited by the branching ratio between gap-

plasmon decay rates and quenching rates, see Eq. 5-1. Second, even larger 

rate enhancements can be even achieved in nanogap cavities (Fig. 5-3c), 
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which exhibit strong resonances owing to strong reflection of gap plasmons 

at the cavity facets. In return, the photon-radiation efficiency is significantly 

reduced by the cavity absorption, as indicated by the analysis of the state-of-

the-art nanocube devices. Third, a better balance between decay rate 

enhancement and photon-radiation efficiency may be reached with nanogap 

antennas with engineered facet reflectivities (Fig. 5-3b) for which a delicate 

engineering of the facets and a precise choice of the gap and metal materials 

may lead to acceleration decay rates greater than 10! with significant 

photon-radiation efficiency, ≈ 50%. 

Certainly, the main strength of nanogap light emitting devices is the 

capability to boost the spontaneous emission rate over a broad bandwidth 

with potentially easy electrical contacting. This might be useful for increasing 

quantum yield. However, the present analysis seems to indicate that it will 

be hard to achieve extremely high efficiencies (≈ 1), as required for some 

quantum-information protocols, and that the branching of Eq. 5-1 appears as 

a barrier for the photon-radiation efficiency which will be hard to overcome. 
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CONCLUSION AND PERSPECTIVES 

Photonic nanostructures provide an extremely rich physics, and their 

interactions with light give rise to fascinating phenomena. In this thesis, we 

have tried to study and understand different aspects of the interaction, 

examining the intrinsic responses of nanostructures but also the effects on 

the response of small variations in their geometries, the impact of their 

dimensions, or simply trying to engineer their properties. 

 In Chapter 1, we have studied the impact on slowness of the finite length 

of “periodic” waveguides. We have notably shown that physical phenomena 

occurring in infinite periodic systems, such as the LDOS divergence, can be 

mimicked on very short length scales by tricking the waves at the 

termination of the structure. This founding, based on general 1D-wave-

physics arguments and 3D simulations on photonic crystal waveguides, has 

enabled the design of a new kind of resonators for which the resonance is 

due to sudden slow down and acceleration of light, quite differently from 

usual microcavities for which recirculation of reflected waves between 

mirrors and phase-matching are required. 

Just like all slow light devices, the proposed photonic speed bump may 

suffer from fabrication disorder. However, the length of the structure, 

comparable to the spatial extent of localized modes measured and computed 

in Chapter 2, may reduce the sensitivity to localization with respect to long 

photonic crystal waveguides. Further study on the impact of disorder are 

interesting, both for fundamental understanding and application 

perspectives. 

Moreover, the frequency response of the photonic speed-bump is a step-like 

transition that strongly contrasts with the Lorentzian responses of cavities. 
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This feature, achieved in a compact system, may have interests for the 

realization of optical switch. For instance, one could envision to exploit 

material properties such as electro-optical [Sor87] or thermo-optic [Yam11b] 

effects to dynamically shift the transmission drop as sketched in Fig. C-1. 

 

Figure C-1. Schematic of the frequency shift of the photonic speed bump 
for dynamic optical switches. Solid lines represent the initial behavior of 
the photonic speed bump. Dashed lines show the potential frequency shift 
in transmission and reflection after thermo-optic or electro-optical effects. 

 In Chapter 2, we evidenced that wavelength-scale localized modes 

naturally form up in photonic crystal waveguides in presence of tiny intrinsic 

fabrication imperfections due to the extreme flatness of photonic-crystal 

waveguide mode. These results, supported by both experimental and 

numerical data, may promote further investigations on the precise role of the 

effective mass on the mode sensitivity to disorder, either to achieve even 

smaller localized modes or to lower disorder-induced losses in slow light 

periodic structures, to improve the design of future photonic structures.  

 In Chapter 3, we have designed an original photonic crystal waveguide in 

which light-matter interaction is significantly increased in the surrounding 
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vacuum cladding. Notably, we have shown that the engineering of the modal 

properties could enable slow hollow-core modes with a significant fraction of 

the field in air to achieve strong guide-atom couplings as large as 95% for a 

560-nm (~ 𝜆 3) separation distance from any structure material at a 

frequency corresponding to 𝑛! = 50. However, the weak-permittivity 

modulation inherent to the design imposes a small slow-light bandwidth. 

Accordingly, a realistic implementation of atom-photon interaction schemes 

exploiting slow light effects with the present hollow-core waveguide seems 

hardly realizable.  

A first idea to circumvent this issue consists in releasing the constraints on 

the design by finding a compromise between field extension in air and 

bandwidth, respectively related to the effective mode index and flatness of 

the mode. Another solution may reside in a more efficient control of the 

dispersion of the reflection-coefficient phase of the photonic-crystal mirror to 

tailor the penetration length [Sau09, Fra06] and evaluate its impact on the 

mode dispersion. With this in mind, one could replace the photonic crystal 

mirrors by Bragg-stack mirrors (Fig. C-2(a)). Indeed, in addition to an easier 

numerical implementation, the reduced degrees of freedom in the design of 

Bragg-stacks may facilitate the study of the penetration length.  

 

Figure C-2. Sketch of potential future designs for strong light-matter 
interaction in vacuum. 
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Alternatively, the wide-slot PhC waveguide may be modified to implement 

more complex trapping schemes. A first approach would be to increase the 

waveguide length, thus decreasing the mode frequency, and take advantage 

of the "conduction" mode present at higher frequencies. Moreover, the weak 

interaction between the two sides of the waveguide suggests that only half of 

the structure may be sufficient to sustain a slow mode, as demonstrated in 

[Zan16], providing that small geometrical parameter changes are realized to 

preserve the mode operation frequency. Thus, one could replace the other 

half of the structure by a fast waveguide (a simple dielectric ridge or a fiber 

for instance, see Fig. C-2(b)). Ultimately, those alternative approach may 

provide new paths for implementing stable trapping potentials with detuned 

frequencies [Gob14, Vet10]. 

 In Chapter 4, we have first introduced a new formalism based on a QNM 

expansion to describe the temporal dynamics of plasmonic nanoresonators. 

Interestingly, the formalism, which relies on the natural resonances of the 

systems, provides an intuivite understanding of the underlying physical 

phenomena at the origin of the responses, in contrast with other scattering 

theories, and constitutes a powerful tool to help modeling and interpreting 

experiments. In addition, the analyticity of the formalism allows a quick and 

accurate computation of the response of any resonator for any driving pulse, 

much faster than that of widespread numerical methods such as the FDTD. 

As briefly discussed in the Chapter, even better accuracy could be achieved 

by considering more QNMs in the expansion such as higher order modes 

and radiation (or PML) QNM's (i.e. not bounded to the resonator but 

delocalized in the PML). Following this goal, preliminary theoretical 

derivations and numerical tests for the calculations of many QNM modes 

based on auxiliary-field method [Ram10] have been carried out. Figure C-3 

shows the calculation of 100 QNMs of the Dolmen geometry. First, the new 

QNM solver retrieves the three dominant modes (insets A, B and C) 

previously computed with the iterative pole-search solver [Bai13]. The 

agreement is excellent since the relative difference between the frequencies 
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calculated with the new QNM solver and the iterative pole search are smaller 

than 10-14 when the same mesh is used for both computations. The solver also 

gives access to higher order modes (insets D and E) and PML modes (inset 

F). Details on their respective contribution in the resonator response is still 

under study and will be discussed during the defense. 

 

Figure C-3. Dolmen QNM eigenfrequencies computed with the auxiliary-
field method. Insets: Absolute value of the electric field in a cross-section. 
Insets A, B and C: Dominant QNMs used in Chapter 4. Insets D and E: 
Higher-order QNMs. Inset F: PML QNMs (plotted in the full numerical 
space). 

Another perspective would be the development of a coupled mode theory 

with QNMs. The latter would enable the description of complex geometries 

from simpler building blocks, i.e. the QNMs of individual resonators, and 

may provide more degrees of freedom for the design of new plasmonic 
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devices. Applied to the temporal regime, the coupled mode theory may 

allow us to assess, for instance, time-dependent energy transfers between 

resonators. 

 In the last Chapter, we studied the different decay processes involved in 

the emission of quantum emitters embedded in nanogap plasmonic antennas 

and evidenced that high radiation efficiency could be reached despite the 

small proximity between the emitter and the metal. Indeed, the intrinsic non-

radiative decay, i.e. quenching, may be overcome thanks to deep-

subwavelength confinement and the coupling to slow plasmons offered by 

nanogap structures. This important finding suggests that one should not be 

afraid of tiny gaps to implement emitting optical devices, and that nanogap 

antennas may really offer new opportunities not met with dielectric cavities.  

There is still a long way to go before optimizing the performance of nanogap 

plasmonic antennas, starting from designing nanogap geometries to match 

the impedance of slow gap plasmons with free-space photons and to make 

the extraction efficiency approaching 100%. This approach is already under 

study [Yan16b] and shows promising results. Ultimately, quenching will 

always limit the efficiency but derivations of the different decay rates 

provided in the chapter may provide inspiration to wisely select quantum 

emitters, dielectric insulators and plasmonic materials [Nai13] to maximize 

both radiative decay rate and radiative efficiency in a specific wavelength 

range.  
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APPENDIX 1: COMPUTATIONAL METHOD 

 

In this Appendix, we describe the numerical method used in Chapter 1, 2 & 

3, which was initially developed at Institut d’Optique in the group of P. 

Lalanne in the 00’s. The method is an extension of the rigorous coupled-wave 

analysis (RCWA) also called the Fourier Modal Method (FMM) to analyze 

aperiodic systems. 

The RCWA or FMM  has been gradually developed over years for analyzing 

the diffraction by gratings, starting in the 80’s [Moh81, Moh95]. As the name 

Fourier modal method suggests, the electromagnetic field components and 

material functions are expanded into Fourier series in terms of spatial 

harmonics. However, the spatial discretization and finite truncation of 

Fourier series that are required for the numerical implementation result in 

the deviation from the exact values. For a long time, the numerical 

performances of Fourier expansion techniques have been plagued by slow 

convergences, which have been thought to be due to Gibbs phenomenon 

occurring from the Fourier expansion of discontinuous functions [Li93, 

Vil94]. A few years after, a spectacular improvement in the convergence rate 

has been achieved for TM polarization of one-dimensional gratings [Gra96, 

Lal96], as well as for the general case of conical diffraction [Lal96]. This 

finding was followed by the derivation of mathematical theorems that 

govern the factorization of Fourier series, i.e. Fourier factorization rules 

[Li96a]. It implies that an appropriate formulation of the eigenvalue problem 

and the correct Fourier factorization must be carefully performed to assure 

fast convergence rate. These works had a tremendous impact on the 
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performances of theories relying on Fourier expansion techniques for solving 

Maxwell's equations. 

A1.1 a-FMM: implementation of Perfectly 

Matched Layer 

The a-FMM (where “a” denotes “artificially periodic, or aperiodic for short”) 

is a generalization of the FMM approach that allows to handle non-periodic 

geometries, using an artificial periodization and the introduction of 

absorbers [Lal00], Perfectly Matched Layers (PMLs) [Sil01] or of complex 

nonlinear coordinate transformations [Hug05b] to satisfy the outgoing wave 

conditions on finite periodic spaces. Basically, the PMLs map the two semi-

infinite half spaces surrounding the investigated geometry into a finite space. 

Theoretically, this mapping guarantees that the outgoing wave conditions 

are perfectly satisfied since evanescent or propagative fields, incoming from 

the boundaries of the computational domain, are attenuated over an infinite 

distance before reaching the geometry. The mapping can be implemented 

either as a modification of the differential operators, or as a renormalization 

of the permittivity and permeability distributions [Hug05b] and appears as a 

generalization of more classical PML-formulations [Che94, Sac95]. 

The artificial periodization along the transverse directions makes the field 

periodic, which allows to expand the electric field 𝑬 and magnetic field 𝑯 

into a Fourier basis [Sil01], 

𝑯 𝑟 = 𝑈!"#𝒙+ 𝑈!"#𝒚+ 𝑈!"#𝒛!,! exp i pG!x+ qG!y , (A1-1) 

𝑬 𝑟 = 𝑆!"#𝒙+ 𝑆!"#𝒚+ 𝑆!"#𝒛!,! exp i pG!x+ qG!y , (A1-2) 

where G! = 2π Λ! and G! = 2π Λ!, Λ! and Λ! being the lengths of the 

artificial unit cell. In Eqs. (A1-1) and (A1-2), 𝑆 and 𝑈 are unknown z-

dependent coefficients. In practice, the Fourier series have to be truncated, so 
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we denote by 𝑚! and 𝑚! the truncation ranks, −𝑚! < 𝑝 < 𝑚! and −𝑚! <

𝑞 < 𝑚!. By incorporating Eqs. (A1-1) and (A1-2) into the curl Maxwell’s 

equations, and by expanding the permittivity and the permeability in the 

Fourier basis as well, we obtain after elimination of the z-components 

!
!!

! 𝚿
!"

= 𝛀 𝑧 𝚿 . (A1-3) 

In Eq. (A1-3), 𝚿 is equal to 𝑆!  𝑆!  𝑈!  𝑈! , a column-vector formed by the 

electric- and magnetic-field coefficients and 𝛀 is a matrix formed by the z-

dependent Fourier coefficients of the permittivity and of the permeability. 

A1.2 Scattering matrix 

For periodic waveguides, the computation of the Bloch modes requires the 

integration of Eq. (A1-3) over one period 𝑎 along the 𝑧-direction from 𝑧 to 

𝑧 + 𝑎. For the integration, we approximate the real profile of the circular 

holes by a stack of slices with locally 𝑧-invariant permittivities [Lal02]. 

Within this approximation, the integration along the 𝑧-direction can be 

performed analytically. The modes of each slice (p) correspond to the modes 

of a z-invariant waveguide surrounded by PMLs [Sil01]. The modes, denoted 

by the vectors 𝑾!
(!) and 𝑾!!

(!) (𝑛 = 1, . . . ,𝑁) in the Fourier basis, are 

computed in every slice (p) as the eigenvectors of a reduced matrix 𝛀(!). 

Denoting by 𝜆!(!) the corresponding eigenvalue, the electromagnetic field 

𝚿(!) in every slice (p) can be written as a superposition of modes  

𝚿(!) = 𝑏!
(!)exp −𝜆!

(!)𝑧 𝑾!!
(!) + 𝑓!

(!)exp 𝜆!
(!)𝑧 𝑾!

(!)!
! , (A1-4) 

where 𝒃(!) and 𝒇(!) are column vectors whose elements are the amplitudes of 

the modes propagating backward (in the negative z-direction) and forward 

(in the positive z-direction) respectively. The linearity of Maxwell's equations 

assures the existence of a linear relationship between the mode amplitudes of 



Appendix 1 
 

108 

the slice (1), 𝒃(!) and 𝒇(!), in the input 𝑧-plane and those of the slice (N), 𝒃(!) 

and 𝒇(!), in the output 𝑧 + 𝑎 -plane. An S-matrix approach is used to relate 

these amplitudes and we have 

𝒃(!)
𝒇(!) = 𝑆!! 𝑆!"

𝑆!" 𝑆!!
𝒃(!)
𝒇(!) ,  (A1-5) 

where the matrix on the right-hand side of the equation is simply the S-

matrix of a unit cell. Details concerning the recursive calculation of S can be 

found in [Li96b]. The Bloch modes are computed from eq. (A1-5) using a 

generalized and stable eigenproblem [Cao02]. 
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APPENDIX 2: FABRY-PEROT MODEL FOR THE DESCRIPTION 

OF THE PHOTONIC SPEED BUMP 

To understand and explain the behavior of the photonic speed bump 

discussed in Chapter 1, we have developed a single-mode model by 

assuming that the structure can be described by the bouncing back and forth 

of the slow-W1 Bloch mode between the left and right tapers. This 

assumption can be justified by the fact that this mode is the dominant mode 

that transfers energy in the structure at frequencies close to the band edge.  

The model, which solely relies on parameters related to the Bloch mode itself 

and its reflection coefficient on the taper, gives two analytical expressions of 

the Purcell factor of a source in the center of the structure according to the 

frequency range of emission.  

The starting point of the model is the coupling coefficient 

𝐴! = −𝐸 𝑟! ∙ 𝐽 4  (A2-1) 

of the source with the dominant Bloch mode [Lec07a]. In Eq. A2-1, 𝐸 𝑟!  is 

the amplitude of the normalized Bloch mode field on the source and 𝐽 the 

amplitude of the considered current source. In the conduction band, 𝐴! is 

proportional to 𝑐/𝑣!
!! !. In the band gap, the source does not radiate but 

excite an evanescent Bloch mode that does not carry energy. How the Bloch 

mode should be correctly normalized so that Eq. A2-1 holds for both 

evanescent and propagative Bloch modes is explained in [Lec07a]. 

In a second step, the finite size is taken into account by considering the Bloch 

mode reflection coefficient 𝑟 of the tapers. With a one-mode model, we 
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obtain 𝐴! 1− 𝑟𝑢! , for the coupling coefficient with  𝑢 = 𝑒𝑥𝑝 𝑖𝑘!𝑛!""𝑁𝑎  

the phase and the damping accumulated on the inner section of the speed 

bump that is composed of 𝑁 periodic cells. The Purcell factor 𝑃 is 

straightforwardly inferred. For a frequency in the band, we have 

𝑃 = 2 !!
!!!!!

!
1− 𝑟𝑢! ! . (A2-2) 

Equation A2-2 is identical to that obtained for Fabry-Perot cavities formed by 

the bouncing back and forth of a slow mode between two mirrors [Sau05]. In 

the gap, the phenomena is radically different as it results from the tunneling 

of two counter-propagating evanescent Bloch modes. Each mode does not 

carry energy but actually their superposition provides a net power flow and 

we have 

𝑃 = 2 !!
!!!!!

!
Im 𝑟𝑢! ,  (A2-3) 

We note that for 𝑟   =   0 (perfect tapers), the two expressions recover the 

trivial expressions 𝑃!"!" = 2 𝐴! ! and 𝑃!"# = 0, where the factor two arises 

from the coupling to two channels. 

Figure A2-1 compares the Purcell factor of an electric source placed in the 

center of a speed bump calculated with fully-vectorial technique based on a 

Green tensor formalism [Lec07b] and the Purcell factor predicted by the 

Fabry-Perot model. We notice that for long enough speed bumps (≥ 8 

periods), the model predictions are almost perfectly superimposed with the 

Green-tensor computations. As expected, the model well predicts the LDOS 

inhibition in the gap, the LDOS enhancement at the band edge and the 

oscillations due to backreflection for long speed bumps. Moreover, it implies 

that the propagative Bloch mode solely contributes to the energy transfer in 

the structure. For short speed bumps in a), the model largely overestimate 

the Purcell factor in the structure. This suggests that other modes, not taken 

into account in the model, are involved in the energy transfer. As mentioned 
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in Chapter 1, we attribute the modification of the Purcell factor to evanescent 

modes supported by PhC waveguides. 

 

Figure A2-1. Fabry-Perot model for the speed-bump. Purcell factor 
calculations of a electric source placed in the center of 4- (a), 8- (b) and 34- 
(c) period long speed bumps for tapers designed for 𝑛𝑔 = 500. The dashed 
black curves represent data obtained with the fully-vectorial computations 
and the dotted- red curves represent the Purcell factor predicted by the 
Fabry-Perot model. 
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APPENDIX 3: PROTOCOL FOR THE CALCULATION OF 

INDIVIDUAL LOCALIZED MODES 

In this Appendix, we detail the strict procedure that we used in Chapter 2 to 

determine the distribution function of the spatial extent of localized modes. 

The protocol thoroughly eliminates necklace or delocalized states, to solely 

count states that are truly-confined in a limited space. 

All our computational results were obtained with an in-house fully-vectorial 

frequency-domain Fourier-Bloch-mode method [Sil01, Lec07a]. The statistical 

retrieval of 𝑃! 𝐿!  requires determining whether the resonant modes 

identified in the LDOS spectrum are truly individual localized modes. On the 

one hand, the field profile of localized modes (with spatial extent smaller 

than the computational system size) should remain unchanged after 

increasing the waveguide length. On the other hand, a normalized field 

profile independent of the position of the source indicates that a single mode 

contributes to it. On this basis, we computed the on-axis magnetic-field 

profiles generated by a dipole source at the center of the system at the 

resonance wavelength for the 100𝑎-long perturbed waveguide, for a 200𝑎-

long protracted waveguide obtained by surrounding the 100𝑎-long 

waveguide by two 50𝑎-long perturbed sections, and for the same 200𝑎-long 

waveguide where the source position was shifted by two periods. A resonant 

mode was considered as an individual localized mode only if the field profile 

remained unchanged after the waveguide extension and source 

displacement. The spatial extent of the localized mode is defined as 

𝐿 = 𝑧! − 𝑧! , where the magnetic field intensity 𝐻 𝑧 ! should be smaller 

than 𝐻 𝑧 ! 𝑒! everywhere outside the interval 𝑧!; 𝑧! . Figure A3-1 shows 

several examples of resonant modes corresponding or not to individual 
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localized modes. Note that individual localized modes are retrieved 

independently of the physical mechanism underlying their formation 

(Anderson localization or gap confinement) [Bli08] and all delocalized 

modes, including necklace states [Ber05, Seb06], are excluded. 

 

Figure A3-1. Examples of resonances that are or are not accounted for in 
the distribution function of spatial extent of localized modes. a,d,g,j) 
Spectral dependence of the normalized LDOS obtained for a source placed 
in the center of the 100𝑎-long W1 waveguide. The vertical red dashed line 
indicates the band-edge wavelength 𝜆!. b,e,h,k) Envelop of the magnetic-
field-intensity profiles, 𝐻!"" ! and 𝐻!"" !, at the resonance wavelength for 
the 100𝑎-long W1 waveguide (dashed blue line) and the extended 200𝑎-
long W1 waveguide (red solid line). c,f,i,l) Envelop of the magnetic-field-
intensity profiles in the 200𝑎-long W1 waveguide for a source positioned in 
the center (red solid line) and for the same right-shifted source (black 
dashed-dotted line). a-c) Resonance that is not considered as an individual 
localized mode (mode profile affected by the boundary). Here, 𝜎 = 0.5  𝑛𝑚. 
d-f) Resonance that is not considered as an individual localized mode 
(mode profile affected by the source position). Here, 𝜎 = 0.75  𝑛𝑚. g-i) 
Resonance that is considered as an individual localized mode. The 
extension length is 𝐿 = 6.4  𝜇𝑚 and 𝜎 = 0.5  𝑛𝑚. j-l) Resonance that is 
considered as an individual localized mode. The extension length is 
𝐿 = 12.5  𝜇𝑚 and 𝜎 = 0.75  𝑛𝑚. 
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APPENDIX 4: WIDE-SLOT PHOTONIC CRYSTAL WAVEGUIDE 

WITH FULL BAND GAP MIRROR 

In this Appendix, we investigate the design of a full photonic band gap 

mirror to be implemented in the wide-slot photonic crystal waveguide 

discussed in Chapter 3.  

In the Chapter, we considered a square lattice offering a partial band gap. An 

alternative solution, commonly used in photonic crystal waveguide, is the 

triangular lattice. Photonic band gap computation using the MPB package for 

the same parameters (hole radius, period, membrane thickness) as Chapter 3 

is shown in Figure A4-1a. As for the case of the square lattice, it does not 

provide a full band gap at the frequency of interest (represented by the red 

horizontal dashed line). However, a large full band gap exists at a slightly 

larger frequency. It suggests that only a small change in geometrical 

parameters may be sufficient to lower its frequency and match the operation 

frequency of the waveguide. 

Intuitively, lowering the frequency of photonic bands amount to increase 

their effective index and thus the relative amount of high index material. One 

possible solution is to increase the periodicity of the lattice. As the periodicity 

in the propagation direction is fixed by the design criteria of the wide-slot 

photonic crystal waveguide, only the period in the transverse direction can 

be tuned.  

Figure A4-1b shows the computation of the photonic bands of an elongated 

triangular lattice with a period 𝑎! = 380 nm in the propagation direction and 

a period 𝑎! = 440 nm in the transverse direction (see sketched in Fig. A4-2a). 

Let us note that the symmetry breaking caused by the elongation of the 
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periodicity in one direction distorts the irreducible first Brillouin zone (as 

sketched in the inset of Fig. A4-1b) and additional critical points must be 

considered to fully scan the reciprocal space. As predicted, the new lattice 

provides a full band gap at the frequency of interest. We also notice that the 

spectral width of the gap is reduced which can intuitively be explained by 

the reduction of the index modulation as the periodicity increases. 

 

Figure A4-1. Photonic bands of photonic crystal mirrors. a) Photonic 
bands of a photonic crystal with a triangular lattice of air holes (𝑛 = 1) in a 
medium of index 𝑛 = 3.48. The computation is realized for a period 
𝑎! = 380 nm, hole radius 𝑟 = 0.3𝑎! and membrane thickness 220 nm. b) 
Photonic bands of a photonic crystal with a triangular lattice stretched in 
one direction (𝑎! = 380 nm and 𝑎! = 440 nm). The hole radius, membrane 
thickness and refractive indices are the same as in (a). a-b) The grey area 
represents the area above the air light line and the red dashed line 
represents the frequency of interest in the design. Insets: First Brillouin 
zone of the photonic crystal and critical points of the irreducible first 
Brillouin zone. 

The elongated triangular lattice can thus provide a full band gap at the 

frequency of interest. However, the implementation of a full band gap does 

not modify the properties of the wide-slot waveguide since guidance was 

already ensured by the partial gap of the square lattice and no significant 

modification of the effective mass is observed in the mode dispersion curves 

plotted in Fig A4-2b. 

To summarize, both the square lattice and the elongated triangular lattice are 

suitable for the design of the wide-slot waveguide. However, for reasons of 

calculation time, we have decided to use the square lattice for the final 

design. 
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Figure A4-2. Wide-slot PhC waveguide with an elongated triangular 
lattice. a) Sketch of the wide-slot PhC waveguide with an elongated 
triangular lattice. The periods of the mirrors are respectively 𝑎! = 380 nm 
in the propagation direction and 𝑎! = 440 nm in the transverse direction. 
b) Dispersion curves of the wide-slot waveguide presented in Chapter 3 
(blue) and with the elongated triangular lattice (red). The latter has a 
waveguide width Lg=280 nm. Other parameters are identical. The black 
dashed lines represent the light line and the edge of the first Brillouin zone. 
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APPENDIX 5: CONVERGENCE OF THE FDTD AND TEMPORAL 

QNM-EXPANSION METHODS 

Comparison of the temporal responses computed with the FDTD method 

and the QNM-expansion formalism reveals discrepancies in the phase and 

amplitude of the temporal signal. Hereafter, we study the accuracy of the 

two approaches as a function of the mesh discretization to check their 

respective convergence. 

In Fig. A5-1a, we show FDTD computations realized for 3 different mesh 

sizes, 1.5×1.5×1.5 nm3 (red), 0.75×0.75×0.75 nm3 (blue) and 0.25×0.25×0.25 nm3 

(black). The three computations clearly gives different responses. In the first 

beating oscillations, responses are in phase but amplitude is different. More 

significant, the responses at long t's (inset) display both large amplitude and 

phase differences. Even though the two finer meshes give more similar 

results, the FDTD method does not seem to converge.  

In Fig. A5-1b, we show computational results obtained with the QNM-

expansion formalism for three different meshes. The mesh sizes in the 

dolmen are approximately equal to ~ 𝜆 30 ≈ 20  𝑛𝑚 (red), ~ 𝜆 150 ≈ 4  𝑛𝑚 

(blue) and ~ 𝜆 300 ≈ 2  𝑛𝑚 (black). Small amplitude and phase differences 

are observed in the responses, but an overall agreement is achieved, even for 

meshes much coarser than those used for the FDTD computations. The more 

significant discrepancy, a slight phase shift for long t's (inset), is attributed to 

numerical dispersion of the resonance frequencies, the relative difference 

between the resonance frequencies computed with mesh 1 and 3 being about 

1%. 
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Figure A5-1. FDTD and QNM-expansion computational results for 
different meshes for the field at point A of the Dolmen, see Fig. 4-5a of 
Chapter 4 for details.  a) FDTD computations are performed for meshes of 
1.5×1.5×1.5 nm3 (red), 0.75×0.75×0.75 nm3 (blue) and 0.25×0.25×0.25 nm3 
(black). b) QNM-expansion computations are performed for refined mesh 
around the dolmen of size ~ 𝜆 30 ≈ 20  𝑛𝑚 (red), ~ 𝜆 150 ≈ 4  𝑛𝑚 (blue)  
and ~ 𝜆 300 ≈ 2  𝑛𝑚 (black). Insets: zoom of the responses for 90 < 𝑡 < 100 
fs. 

We note that, for both methods, the phase of the signal for all meshes is 

identical in the first beating period (which corresponds to the crossing with 

the driving pulse) and discrepancies on the phase only occur at longer t's. 

This suggests that the first oscillations are not very impacted by the three 

dominant resonance frequencies of the Dolmen. 

The QNM-expansion formalism implemented with second-order finite-

elements exhibits a fast convergence rate, much faster than the FDTD method 

that relies on finite-differences. This explains why a better accuracy is 

achieved with the QNM-expansion at long t's in Chapter 4. 
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APPENDIX 6: APPROXIMATION ON THE DISPERSION IN THE 

TEMPORAL QNM-EXPANSION 

The QNM-expansion developed in Chapter 4 is computed by assuming that 

the frequency dependence of Δ𝜀 𝒓,𝜔  and exp −𝑖𝑘 𝜔 𝑧  is negligible in the 

spectral window defined by the resonance term 1/ 𝜔 − 𝜔! . In this 

Appendix, we numerically check the validity of this assumption. In Fig. A6-

1, we show the calculation of the temporal response of the Dolmen at the 

same location and for the same driving field as in Fig. 4-5a. of Chapter 4 

performed by neglecting the dispersion of Δ𝜀 𝒓,𝜔  and exp −𝑖𝑘 𝜔 𝑧  (red) 

and without this approximation (black). 

 

Figure A6-1. Test of the assumption on the dispersion in the QNM-
expansion. The computations are performed for the gold Dolmen at the 
same location and for the same driving field as in Fig. 4-5a of Chapter 4. 
The red curve represents the calculation neglecting the frequency 
dependence of Δ𝜀 𝒓,𝜔  and exp −𝑖𝑘 𝜔 𝑧 . The black curve represents the 
calculation without this assumption. 
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Both computations give almost identical predictions and only small 

disprepancies in the amplitude of the signal are observed at short t's while 

the responses are superimposed for t's larger than 40 fs. It suggests that only 

mode excitations are affected by the dispersion while the relaxation remains 

unchanged. One may conclude that the dominant dispersive term is in fact 

exp −𝑖𝑘 𝜔 𝑧  while Δ𝜀 𝒓,𝜔  has only a small impact on the response. In 

conclusion, we can safely consider the approximation as valid. Similar 

observations can be done in the case of the rice-shaped nanoparticle. 
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APPENDIX 7: QUENCHING CALCULATION 

In this Appendix, we describe the calculation techniques to evaluate the 

decay rates into quenching in an MIM structure and demonstrate its near-

field nature.  

A7.1 Indirect calculation of quenching 

For the dipole emission into an MIM stack problem shown in Fig. 5-2 of 

Chapter 5, the dipole decays either into gap plasmons modes (𝛾!"#) or 

couples directly to the metal (quenching, 𝛾!"#$%!). To estimate the quenching, 

we first calculate the total decay rate by integrating the total power emitted 

by the source over a box surrounding the source. Then with an open-source 

near-to-far-field transform (NFFT) tool [Yan16a], we obtain the decay into 

the propagative modes (𝛾!"#). Finally 𝛾!"#!"! is indirectly calculated as the 

difference 𝛾!"#$%! = 𝛾!"! − 𝛾!"#. 

Note that, in previous works on dipole emission in MIM stacks [For84, 

Jun08], 𝛾!"#$%! is directly calculated by integrating the power coupled into all 

evanescent waves, i.e. into decay channels that are not associated to 

propagative modes. In contrast, in our work 𝛾!"#$%! is obtained in an indirect 

way, mainly because the calculations of totγ  and the NFFT implementation 

are accurate and efficient. The validity of the indirect calculation by 

difference is shown in the next section. 

The latter also applied for the quenching on a single interface shown in Fig. 

5-1 of Chapter 5. The quenching decay rate is calculated as 𝛾!"#$%! = 𝛾!"! −
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𝛾!"# − 𝛾!", where 𝛾!"# and 𝛾!" are respectively the decay rates into free-space 

and surface plasmons. 

A7.2 Verification of the indirect quenching 

calculation and localized nature of 

quenched fields 

The following verification is motivated by two main reasons: 

1/ Power does not sum up in absorbing media, and thus strictly speaking, 

we cannot decompose the total decay rate as a sum of decays into different 

channels. This decomposition is valid only in the limit of “weak 

absorptions”. Nothing guaranties that. 

2/ Taking the example of metal-dielectric interfaces for simplicity, it is well 

known that absorption in the metal has (at least) three distinct origins: SPP 

launching, a quasi-cylindrical wave launching that alters the SPP absorption 

over an area of ≈ 100𝜆! around the source [Loz14], and a localized 

absorption in the near-field of the source. This again implies that quenching 

(defined as the localized absorption) cannot be strictly obtained as a 

difference between the total decay and the sum of the decays into 

propagative modes. 

It is therefore important to check numerically that this difference in power 

decays effectively corresponds to a localized absorption. 

For that purpose, we consider a vertically-polarized dipole emitting at a 

wavelength of 650  𝑛𝑚 in an MIM with a gap thickness 𝑔   = 8  𝑛𝑚. Since the 

MIM stack laterally extends to infinity, all the emitted power is absorbed by 

the metal. The total field is shown in Fig. A7-1a. We can clearly see an intense 

field in the metal claddings in the immediate vicinity of the source. In a 

cylindrical coordinate 𝑟,𝜃, 𝑧 , we define the absorbed power density as 

𝐴 𝑟,𝜃 = 0.5𝜔 Im 𝜀 𝐸 𝑟, 𝜃 2𝑑𝑧. The total absorbed power (or total emitted 
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power) 𝑃!"! is simply 𝑃!"! = 𝑟𝐴 𝑟,𝜃 𝑑𝑟𝑑𝜃. In Fig. A7-1b, the logarithm of 

𝑟𝐴 𝑟,𝜃  is plotted with a red curve at an arbitrary azimuth (for a vertical 

dipole, the whole system is azimuthal-independent). The exponentially 

decaying tail (the linear part in the logarithm coordinates) of 𝑟𝐴 𝑟,𝜃  

corresponds to the gap-plasmon damping 𝑒!!Im 𝑘𝐺𝑆𝑃 𝑟, with 𝑘!"# denoting the 

propagation constant. A backward extrapolation of the tail (black dashed) to 

𝑟   =   0 offers a clear distinction between the respective contributions of gap 

plasmons and quenching (which occurs in a very short length scale around 

the source) to total absorption. The quenching area (between the red and 

black curves) is at deep subwavelength scale, revealing the localized nature 

of quenching. 

 

Figure A7-1. Localized nature of quenching. a) Intensity of the field 
excited at a wavelength of 650  𝑛𝑚 by a vertical electric dipole in the center 
(𝑧   =   0 and 𝑟   =   0) of an Ag/Polymer/Ag MIM stack with a gap thickness 
of g =8 nm. The field in the gap is not represented to better show the field 
in metal claddings. b) Radial plots of 𝑟𝐴 𝑟, 𝜃  as a function of 𝑟  (red solid) 
and of the exponential damping of gap plasmon (black dashed). c) 𝛾!"#$%! 
obtained by indirect calculation (𝛾!"#$%! = 𝛾!"! − 𝛾!"#, red line) and by 
integrating the density of quenched power (black circles), for varying gap 
thicknesses. In the calculation, the refractive index of polymer is 𝑛   =   1.4 
and the relative permittivity of silver is 𝜀!" = −17 + 1.15i. 

As shown in Fig. A7-1c, quenching rate 𝛾!"#$%! (black circles) obtained by 

directly integrating the density of quenched power in real space matches 

𝛾!"#$%! obtained with the indirect calculation (red lines). The quantitative 

agreement validates the indirect calculation. 

. 
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