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Overzicht 
Ion cyclotron resonante verhitting (Ion cyclotron resonant heating - ICRH) is één van de belangrijkste 

verhittingsmethodes in de huidige Tokamaks. De golven worden opgewekt door antennes aan de rand 

van de Tokamak met frequenties tussen 30 en 80 MHz. Om de plasma’s voldoende te kunnen verhitten 

en de systemen voldoende betrouwbaar te maken voor langdurige steady-state operatie, is het van 

belang de antenne-plasma koppeling te begrijpen en de nefaste, ongewilde randeffecten van de nabije 

velden van de radio frequente (RF) golven tot een minimum te beperken.  

Een ICRH antenne kan twee types van koude plasma golven uitzenden: de snelle golf (meestal de 

belangrijkste component) en de trage golf (parasitair). Het eerste deel van deze thesis bestudeert de 

invloed van een dichtheid die continu afneemt in de antenne en daarbij een resonante laag doorkruist 

(i.e. de lower hybrid (LH) resonantie), op de nabije RF velden en het koppelen van het vermogen naar 

het plasma. Hiertoe werd een 2D golf code ontwikkeld, RAPLICASOL, gebaseerd op het COMSOL 

Multiphysics pakket. Bij dichtheden onder de LH resonantie is het niet-triviaal gebleken om numerieke 

convergentie te bereiken. Tot de grenzen van het geheugen van de gebruikte computer, blijft het 

patroon van de velden veranderen met de grootte van het gebruikte rooster. Een fysische interpretatie 

is dat de trage golf zich kan voorplanten bij deze dichtheden en zeer korte golflengtes kan aannemen, en 

daardoor gevoelig is voor de parameters van de simulatie, zoals de grootte van het rooster. Echter, een 

interessante en belangrijke observatie is dat het totale spectrum dat gekoppeld wordt naar het plasma 

onafhankelijk is van de grootte van de cellen en slechts beperkt wordt beïnvloed door de aanwezigheid 

van een dichtheidsprofiel in de antenne box, vooral bij een dipool fase spectrum van de antenne. Golven 

met een dipool fase verschil worden meestal gebruikt voor de plasma verhitting. Voor de studie van de 

snelle golven en de koppeling is het daarom niet nodig om deze lage dichtheden in de antenne box in 

rekening te brengen.  Bij antenne operatie met een monopole fasering tonen de simulaties dat er tot 20% 

meer vermogen in het plasma kan terecht komen als rekening wordt gehouden met de lage dichtheden. 

Het verschil is te verklaren door het feit dat de evanescentielengte van de snelle golf voor lage waarden 

van k// verandert. Dit heeft tot gevolg dat het modelleren van schema’s met lage k// waarbij wordt 

aangenomen dat de antennes zich in vacuüm bevinden, moet worden herbekeken. De simulaties tonen 

verder aan dat veranderingen in de dichtheidsgradiënt in de evanescente zone van de snelle golf geen 

effect heeft op de koppeling van de golven. Het is dus nog steeds mogelijk om de vermogensoverdracht 

naar het plasma met goede nauwkeurigheid te modelleren ondanks onzekerheden in het 

dichtheidsprofiel.   

Grenslaag (“sheath”) effecten aan de antennes worden verantwoordelijk geacht voor het sputteren van 

onzuiverheden en een overdreven verhitting van antenne oppervlakken en andere componenten die in 

aanraking kunnen komen met plasma, zoals ook experimenteel wordt waargenomen. Om deze sheath 

effecten te modelleren in een realistische geometrie op schaal van een ICRH antenne werd al voor de 

start van deze thesis een code ontwikkeld, de SSWICH-slow wave code (Self-consistent Sheaths and 

Waves for ICH). Ze koppelt op een zelf-consistente wijze de propagatie van de trage golf en de DC SOL 

biasing via een niet-lineaire RF en DC sheath randvoorwaarde die wordt toegepast op de interfaces 

tussen het plasma en de wand. Een eerste versie van SSWICH had een 2D toroïdale en radiale geometry 
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en rechthoekige wanden die hetzij loodrecht, hetzij parallel waren met het magnetische veld B0 . Het 

kon enkel een evanescente trage golf modelleren. De snelle golf propageert verder van de antenne dan 

de evanescente trage golf en kan de SOL wijzigen in regio’s die niet bereikbaar zijn voor de trage golf. 

Daarnaast, als de wanden schuin staan t.o.v.   of een scherpe overgang hebben, zoals het geval is in een 

echte Tokamak omgeving, kan de snelle golf koppelen naar de trage golf bij een reflectie en op die 

manier bijdragen tot het creëren van RF sheaths. In de eerste versie van SSWICH werd in zekere mate 

met deze effecten op een verre afstand van de antenne rekening gehouden door het invoeren van een 

DC stroomtransport.  

Het centrale deel van deze thesis behandelt het ontwikkelen van een nieuwe SSWICH versie die ook de 

snelle golf modelleert, een meer realistische magnetische veld configuratie en gebogen wanden. De 

SSWICH-Full Wave code is nog steeds in 2D om de numerieke kost te beperken, het heeft een 

magnetisch veld dat een hoek maakt met het poloïdale en toroïdale vlak.  Meer algemene 

randvoorwaarden voor de RF sheath werden afgeleid en verbeterde formules voor het gelijkrichten van 

de RF elektrische velden houden op eenvoudige wijze rekening met de helling van B0. Ze zijn 

geïmplementeerd langs de gebogen wanden van de SOL regio. De techniek van de perfecte aangepaste 

laag (Perfectly Matched Layer) werd gebruikt om de snelle golf te dempen. De RF golven kunnen worden 

geëxciteerd door ofwel een opgelegde stroom in de poloïdale richting ofwel een opgelegd externe 

veldkaart. SSWICH is op dit moment de enige code in de wereld die in staat is om RF sheaths te 

simuleren in een tokamak omgeving en daarbij gebruik maakt van een realistische veldkaart gecreëerd 

door de antenne.  

De SSWICH-Full Wave simulaties van typische tokamak experimenten hebben de mode conversie 

aangetoond, waarbij de snelle golf wordt omgezet in een trage golf, aan scherpe hoeken waarbij de 

vormen van de wanden sterk variëren. Het heeft ook de sheaths van de verre velden weten te vinden, 

die voorkomen op de gebogen wanden die een relatief lange magnetische connectie hebben met de 

antenne. Deze oscillaties kunnen enkel worden opgewekt door een propagerende snelle golf. Door de 

toroïdale en radiale dimensies van de SOL regio aan te passen, kan men zien dat zowel |VRF| als |VDC|  

aan de gebogen verre SOL rand verminderd (of vermeerderd) onder een grotere toroïdale (of radiale) 

afstand van de actieve antenne. Dit gedrag komt overeen met de verwachte eigenschappen van de door 

de snelle golf veroorzaakte verre veld sheath. Simulaties tonen aan dat een vermindering van de 

loodrechte DC plasma geleiding in belangrijke mate de verbreding van de radiale VDC  kan beïnvloeden in 

de vrije SOL, zelfs in aanwezigheid van de snelle golf. Dit suggereert dat het DC stroomtransport nog 

steeds het dominante mechanisme is om de DC plasma verbreding te bepalen. SSWICH-FW/RAPLICASOL 

simulaties hebben ook een dubbele bult in de poloïdale structuur getoond, zoals experimenteel werd 

gemeten in de temperatuur en potentiaal kaarten. Simulaties komen beter overeen met de 

experimentele structuur als alleen met de trage golf wordt gerekend. De trage golf, met een korte 

evanescentie lengte, is gevoelig voor kleine wijzigingen van de geometrie in de private SOL. De buiging 

die werd geïntroduceerd in de private SOL is van belang voor de studie van het nabije veld, maar zeer 

waarschijnlijk is ze niet relevant voor de koppeling van de snelle golf.  De snelle golf zelf is gevoelig voor 

3D effecten. Niettemin, beide golven blijken een gelijkwaardige rol te spelen op de VDC excitatie in de 

nabijheid van de antenne. Verder werd ook de hitte flux geëvalueerd langs twee tegenover elkaar 

opgestelde wanden met een sheath aan eenzelfde antenne. De simulatie onthulde de links-rechtse 
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asymmetrie die uitgebreid werd geobserveerd in experimenten waarbij een asymmetrie in de antenne 

strap werd geïntroduceerd. Dit suggereert dat de effecten van een ruimtelijke nabijheid op de excitatie 

van de sheath, zoals eerder voor de trage golf werd bestudeerd, nog steeds belangrijk zijn in de 

nabijheid van de antenne rekening houdend met een volledige golf polarisatie.   

Hoewel oorspronkelijk ontwikkeld voor de RF sheath studies in Tokamaks, SSWICH-FW heeft bredere 

toepassingen. Er wordt aangetoond hoe het SSWICH principe kan worden geïmplementeerd in een 

totaal andere machine dan een Tokamak, wat betreft de geometrie en plasma koppeling regimes. Het 

Aline experiment is gewijd aan basisstudies van het gedrag van golven in plasma’s en ook RF sheaths. 

Het derde deel van deze thesis gaat over het gebruik van SSWICH voor interpretatieve simulaties van de 

Aline opstelling. Met de SSWICH code werden zowel een Lower Hybrid golf als een Helicon golf 

bestudeerd, die beide voorkomen in Aline onder verschillende parameters. De structuur van de velden is 

echter afhankelijk van een slecht gekende botsingsfrequentie. Verder, aangezien het magnetisch veld in 

Aline volledig horizontaal is en het feit dat een “trage-golf-achtige” lower hybrid golf de belangrijkste 

component is die wordt opgewekt in de huidige configuratie, werd in eerste instantie de SSWICH-slow 

wave (SSWICH-SW) code gebruikt voor het modelleren van de RF sheath.  Dankzij een eenvoudige 

toegang voor diagnostieken, kan in Aline een volledige experimentele floating potential kaart 

opgemeten worden, die kan worden vergeleken met de SSWICH modellen. De DC plasma potentiaal in 

de SSWICH-SW simulatie is vrij homogeen aan de antenne, terwijl de experimentele floating potential 

steeds een piek vertoont bovenaan de antenne. Dit verschil wordt verklaard door het versnellen van de 

ionen door het radiale elektrische veld aan het bovenoppervlak van de antenne, een eigenschap die niet 

aanwezig is in SSWICH.  
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Abstract 
Ion cyclotron resonant heating (ICRH) is one of the main heating methods in the present-day Tokamaks. 

The wave is launched by antennas at the edge of the Tokamak device under the frequency range of 30-

80MHz. To achieve a sufficient plasma heating and make the heating system reliable for steady-state 

operation, one must understand the antenna-plasma coupling and minimize spurious edge effects of RF 

near field.  

An ICRH antenna can emit two types of cold plasma waves: the fast wave (mainly) and the slow wave 

(parasitically). The first part of this thesis studied the impact of densities that decay continuously inside 

the antenna and across the Lower hybrid resonance on RF near field and power coupling. A 2D full wave 

code: RAPLICASOL has been developed based on COMSOL Multiphysics to investigate this topic. It is 

shown that at densities below the LH resonance, reaching numerical convergence is nontrivial: up to the 

memory limits of the adopted workstation, the field pattern changes with the grid size. A physical 

interpretation relies on the fact that propagating slow wave can have very short wavelength and thus it is 

sensitive to simulation parameters, like mesh size. Interestingly and importantly, however, the total 

coupled spectrum is independent on the mesh size and is weakly affected by the presence of the density 

profile inside the antenna box in dipole phasing. Dipole phasing is often used as heating phasing. One can 

thus drop this low density inside antenna box for the fast wave coupling studies. In monopole phasing, 

simulation shows there is a maximum 20% of power increase due to the presence of plasma. The 

distinction comes from the fact that the fast wave evanescence length for low k// is changing. Hence 

modeling low k// scheme with antenna staying in vacuum may need to be re-considered. Simulation also 

shows that varying the density gradient in the fast wave evanescence region has no significant effect on 

wave coupling. One can thus still model the power coupling to plasma in a fairly good precision despite of 

some uncertainties existing in the density profile. 

Sheath rectification is suspected to cause strong impurity sputtering and excessive heat loads on ICRH 

antenna surfaces and other plasma facing components that have been observed experimentally. In order 

to model the sheath rectification in a realistic geometry over the size of ICRH antennas, the Self-consistent 

Sheaths and Waves for ICH (SSWICH)-slow wave code has been developed based on COMSOL before this 

thesis. It couples self-consistently the slow wave propagation and the DC SOL biasing via non-linear RF 

and DC sheath boundary conditions (SBCs) applied at plasma/wall interfaces. A first version of SSWICH 

had 2D (toroidal and radial) geometry, rectangular walls either normal or parallel to the confinement 

magnetic field B0 and only included the evanescent slow wave. The fast wave propagates further from the 

antenna than the evanescent SW and could modify the SOL in regions inaccessible to the SW. Besides, 

when the walls are tilted to B0 or have a sharp transition as it is in the real Tokamak environment, the FW 

could couple to the SW upon reflection and thus contribute to the RF sheath excitation. In the first version 

of SSWICH, these RF-induced remote effects were partially accounted for by DC current transport. 

The central part of this thesis is to develop a new SSWICH version which includes the fast wave, a more 

realistic magnetic field configuration and shaped walls. The SSWICH-Full Wave code, still in 2D to limit the 

numerical cost, has a magnetic field tilted in poloidal and toroidal plane. More general RF SBCs were 

derived using all RF field components and improved rectification formulas account for the tilted B0 in a 

simple way. They are implemented along the shaped walls of the SOL region. The Perfectly Matched Layer 

technique was used to damp the FW. The RF waves can be excited either by prescribed poloidal currents 
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on built-in antenna straps or prescribed external field maps. SSWICH is at the present time the only code 

in the world able to simulate RF sheaths in tokamak environment using realistic antenna field maps. 

SSWICH-Full Wave simulations of typical tokamak experiments have shown the mode conversion of FW 

into SW occurring at the sharp corners where the boundary shape varies rapidly. It has also evidenced 

“far-field” sheath oscillations appearing at the shaped walls with a relatively long magnetic connection 

length to the antenna. These oscillations can only be excited by the propagating FW. By tuning the toroidal 

and radial dimensions of the SOL region, one could see that both the |VRF| and |VDC| at the shaped far 

SOL boundary decreases (increases) under larger toroidal (radial) distance to active antenna. These 

behaviors agree with the expected properties of the fast wave induced far field sheath. Simulation shows 

that decreasing the perpendicular DC plasma conductivity can significantly affect the VDC radial broadening 

in the free SOL even in the presence of the fast wave. This suggests that DC current transport is still the 

dominant mechanism to determine the DC plasma broadening. SSWICH-FW/RAPLICASOL simulations 

have also recovered the double-hump poloidal structure measured in the experimental temperature and 

potential maps. The simulation matches better with this experimental structure when only the slow wave 

is accounted for. The slow wave, with a short evanescence length, is sensitive to the small modifications 

of the geometry in the private SOL. The curvature we introduced in the private SOL is important for the 

near field study but most probably not relevant for the fast wave coupling studies, while the fast wave is 

sensitive to the 3D effect. Nevertheless, both of these two waves seem to play a comparable role on VDC 

excitation in the vicinity of the wave launcher. We further evaluated the heat flux along two opposite 

sheath boundaries of the same antenna. Simulation revealed the left-right asymmetry that has been 

observed extensively in the strap dissymmetrization experiments, suggesting that spatial proximity effects 

in RF sheath excitation, studied for SW only previously, is still important in the vicinity of the wave 

launcher under full wave polarizations.  

Initially developed for the RF sheath studies in Tokamaks, SSWICH-FW has more versatile applications. We 

have shown how SSWICH principle can be implemented into a totally different machine than Tokamak, in 

terms of geometry and plasma coupling regime. The Aline device is a dedicated tool to study the basic 

plasma wave properties and the RF sheath. The third part of this thesis is to use SSWICH to conduct 

interpretative simulations for Aline device. Using the SSWICH-FW code, we have observed and studied in 

the simulation both the LH wave and Helicon wave appearing under different Aline parameters. The field 

structure is however very sensitive to the badly known collision frequencies. Since the magnetic field is 

totally horizontal in Aline and the fact that the “slow-wave-like” Lower Hybrid wave is the main wave 

being excited under current status of the Aline device, the SSWICH-SW code is used as the first step to 

model RF sheath in Aline. Thanks to its easy access for diagnostic, the Aline device can provide 

experimental floating potential map to be compared with the SSWICH modelling. The DC plasma potential 

in the SSWICH-SW simulation is quite homogeneous at the antenna, whereas the experimental floating 

potential always has a peak value above the antenna. This discrepancy is explained by the acceleration of 

the ions by the radial electric field at the top surface of antenna, a phenomenon not present in SSWICH.  
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Chapter 1  Background of this thesis 
 

This chapter introduces the general background of this thesis. It starts from a description of the 

thermal nuclear fusion, and introduce the most common fusion reactor, the so-called Tokamak. Radio 

frequency wave heating systems are often used to provide supplementary heating. This thesis focuses on 

the ion cyclotron resonant heating (ICRH). An overview of the ICRH wave launchers used in the Tore Supra 

Tokamak is given. The final part presents some challenges that the present-day ICRH systems still face as 

a motivation of this thesis.  

1.1  Thermal nuclear fusion as a promising future energy source 
The world’s energy consumption could possibly double in the next 50 years. Yet more than 80% of our 

current energy is from fossil origin. According to the current consumption rate, the depletion time for oil, 

coal and gas are approximately 40, 200 and 70 years [Shafiee 2009]. This means fossil resources would be 

used up by the end of next century. Moreover, CO2 emission from fossil fuel contributes to climate change 

and has raised huge political dispute and public concerns.  

Nuclear power has come into people’s sight since 1940s. By Einstein’s mass-energy equation
2E mc , 

huge amount of energy can be released from the mass loss during a nuclear reaction. The present day 

nuclear power stations are based on nuclear fission reaction: a heavy radiative atom, for example, 

uranium-235 absorbs a neutron and splits into several lighter atoms. The kinetic energy carried by the 

products is then turned into electricity through driving a steam turbine. Nuclear fission has created great 

economy benefits meanwhile keeping a low level of greenhouse gas emission.  However, it also receives 

enormous criticisms over its disastrous accidents and potential risks of waste pollution. Thus a cleaner 

and safer power source is needed for the future. Nuclear fusion, the reaction powering the sun and stars, 

is the most promising candidate so far.   

Nuclear fusion is the reverse process of fission. It is a process where two or more lighter atoms collide 

and combine to form a heavy atom. In atomic physics, the nuclear cross section [Clayton 1983] is used to 

characterize the probability that a nuclear reaction will occur. It is often quantified in terms of a 

“characteristic area” where a larger area means a larger probability of reaction. Figure 1.1 shows the cross 

sections w.r.t the energy level of the atoms in several typical fusion reactions. The abscissa unit is the kilo 

electron volt (keV), 1eV=1.6×10-19J. One can see that the Deuterium-Tritium (DT) reaction has the largest 

cross section and it reaches the peak value even before the other reactions. Thus it is considered as the 

easiest way to be realized on earth and potentially used as an economically viable energy source. 

Figure 1.2 shows the details of the DT reaction. Each of this reaction generates 17.6MeV (Mega eV) of 

power. Among them, 14.1MeV is carried by neutrons. The other 3.5MeV is carried by alpha particle (4He). 

In a future fusion reactor, the former part of the power is transformed into electricity.  The latter part is 

used for self-sustaining the fusion reaction. Compared to the other power resources, fusion has many 

remarkable advantages. Firstly, unlike nuclear fission in which the input resource has a very limited 

reservation on Earth, the reactants of nuclear fusion are plenty. Deuterium is present in the sea water. 

The radioactive element tritium has limited source naturally but can be produced manually or bred during 

the fusion reaction by contacting with lithium. Lithium is also widely available in the nature. Secondly, In 

DT reaction, no carbon is produced and only a tiny amount of tritium will be released to the surrounding 
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environment. The radioactive wastes produced by neutron activation in DT reaction are less active and 

have a much shorter half-life, compared to those in fission. Thirdly, in a fission power plant, a chain 

reaction is developed so the reaction continues even without feeding the fuel. In contrast, fusion reaction 

can stop instantly as soon as the discharge fueling is interrupted thus it is much safer. Moreover, a fusion 

power plant is also economical. A 1000MW coal-fired power plant requires 2.7 million tonnes of coal per 

year, a fusion plant will only need 250 kilos of fuel per year. All these features support nuclear fusion to 

be a bright energy source for the mankind. The only question is how to make it happen. 

 

 

Figure 1.1. Nuclear fusion cross sections of different 
fusion reactions 

Figure 1.2. A diagram of nuclear fusion 
reaction 

 

1.2  Magnetically confined torus:  the main device to realize fusion on earth 
In a real reactor, shortly after deuterium and tritium gas are injected, they are ionized, i.e. the electrons 

are ripped from the nuclei. The main difficulty to combine two light nuclei together is to overcome the 

Coulomb repulsion between them. In order to do this, the fuels must be heated to a very high temperature, 

i.e. 108K. At this temperature, the fuel becomes a state called plasma, which by definition, is a quasi-

neutral gas of charged and neutral particles. In mathematics, the quasi-neutrality property of the plasma 

is defined as 

 
1

0
N

s s e
s

Z n n


     (1.1) 

Where ns is the density of ion species s with the number of electric charge Zs, ne is the electron density, 

N is the number of ion species. The charge neutrality, Eq. (1.1) is well fulfilled in a scale larger than the so-

called Debye length 𝜆𝐷[Chen 2016] 

 0
2

B e
D

k T
ne


    (1.2) 

Where 𝜀0 is the vacuum permittivity, kB is the Boltzmann constant, Te is the electron temperature in 

Kelvin, n is the plasma density, e is the elementary charge. Under typical fusion plasma parameters, 𝑛 =

1 × 1020𝑚−3, 𝑇𝑒 = 108 K, this length is about 7×10-5m.  If observing over a scale shorter than this length, 
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one can see the plasma is oscillating in response to the charge separation. The oscillating frequency is 

defined as the plasma frequency, 

 
2
s

ps
o s

nqw
m

   (1.3) 

Where ms is the mass and qs is the electric charge of species s, i.e. electron and ion. 

In any nuclear fusion device, using input power to generate and maintain the plasma is a-priori before 

any fusion reaction can happen. Nuclear physicists often use an energy gain factor Q to indicate the ratio 

between the instant output fusion power and the instant input power. Q=1 limit is called break-even, 

which means the released fusion power to the plasma equals the input power.  𝑄 → ∞ limit is referred as 

the ignition condition. It indicates the moment when the energy released by the fusion reaction can solely 

sustain the plasma such that no external heating is required. In mathematics, the ignition condition is 

expressed as the so called “Lawson Criterion”[Lawson 1957],  

 
21 33 10EnT m keV s       (1.4) 

Where n is the plasma density, T plasma temperature in keV. In plasma physics, many literatures use 

the electron volt to indicate temperature, (
71 1000 1.16 10 KkeV eV   ). In this thesis, the electron 

volt is used as the unit for temperature. The amount of nuclear power generated by fusion reaction 

depends on the reaction rate, which is a function of the plasma density and the speed of the ionized 

particles. The speed of particles is equivalent to its temperature. The plasma suffers continuous energy 

loss due to conduction, convection, radiation processes, etc. To achieve thermonuclear conditions Eq. 

(1.4), it is necessary to confine the plasma for a sufficient time. We define the energy confinement time 

E  as the e-folding time in which the total plasma energy decreases to 1/e under zero input power.  

There is no existing material can hold on such a thermal fusion plasma. The sun uses gravitational force 

to confine the plasma However, this approach is impossible to be repeated on the earth since it requires 

a huge quantity of mass.  

One kind of fusion device was developed after the invention of laser. This approach confines the 

plasma at a very high density (
31 310n m

) for a very short time ( 1110E s  ). It uses high-power 

(several MW) laser beams to heat and compress a fuel pellet, which typically consists of a mixture of 

deuterium and tritium. The pellet is expected to encounter nuclear reactions before the fuel escapes. The 

National Ignition Facility in the USA and Laser Megajoule in France are based on this principle.  

Alternatively, when dealing with charged particles, one naturally think about the Lorentz force. In the 

magnetized plasma, the Lorentz force can act as a confinement force. Charged particles are rotating 

around the confinement magnetic field in a plane perpendicular to the magnetic field or we say the 

particles attach to the magnetic field line and thus get confined in the direction perpendicular to the 

magnetic field. The frequency under which they rotate is called the cyclotron frequency. Each of the 

plasma particle species has its own cyclotron frequency, which reads, 

 0s
cs

s

q Bw
m

   (1.5) 
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Where qs, ms are the electrical charge and mass of species s, respectively. Note qs has signs, e.g. qs=-e 

in case of electron. B0 is the magnitude of the confinement magnetic field B0. 

The radius of the particle cyclotron motion is called the Larmor radius, 

 
0| |

s
s

s

m vr
q B

   (1.6) 

Where v is the particle velocity component that is perpendicular to the magnetic field.  

In the direction parallel to the magnetic field, particles can be confined by bending and closing the 

magnetic field lines. In the 1950s, scientists from Soviet Union invented a toroidal machine called Tokamak 

and nowadays it is considered as the main approach to build thermal nuclear reactors on Earth. A sketch 

of the Tokamak structure is shown in Figure 1.3. In order to understand this complex structure, let’s firstly 

define some coordinate conventions.  

To describe the particle and current motion inside a Tokamak, two right-handed coordinate systems 

are often used at the same time, see Figure 1.4. The cylindrical coordinate system (R, , Z) is used to 

describe the overall framework. Here R represents the major radial direction,  represents the toroidal 

direction, Z is the vertical direction. R0 is the major radius. Since the Tokamak geometry is toroidal 

homogeneous, one could take a poloidal cross-section in one toroidal position. In this cross-section plane, 

a second coordinate system, the poloidal coordinate system (r, , ) is often used.  Here r represents the 

minor radial direction and   represents the poloidal direction. ro is the minor radius. In this thesis, unless 

being specified, the radial direction means the major radial direction R.  

 

 
Figure 1.3. Tokamak structure and its magnetic field configuration  
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Figure 1.4. A schematic view of the Tokamak coordinate systems 

 

Tokamaks are designed to generate a magnetic configuration that can confine the plasma. The main 

magnetic field is along the toroidal direction and it is produced by the toroidal magnetic field coils, see 

Figure 1.3. However, the toroidal magnetic field alone is not enough to confine the plasma. This is because 

there are always some transversal (w.r.t the toroidal magnetic field) plasma drifts occurring due to the 

presence of curved field lines, which introduces a pressure or current gradient. In order to balance this 

gradient force, a poloidal magnetic field is needed as well. 

 
Figure 1.5. Magnetic flux surface in the central plasma, view inside a poloidal cross section. Red 

curve indicates a typical profile of the plasma density; The blue curve represents the magnetic field 
profile. 

 

In a Tokamak, the poloidal magnetic field is generated by the plasma current. The plasma current is 

mainly induced by a central transformer, although there are some alternative current generation methods 

that will be presented later. The total magnetic field lines in a Tokamak therefore are helical. If one tracks 

their trajectories, they actually form many stratified surfaces. The field lines lay on these nested magnetic 

surfaces. Draw in a poloidal cross-section, it is something like many loops circling around the center, 

shown in Figure 1.5. The plasma parameters, i.e. density, pressure, are constant on the magnetic flux 

surfaces as a consequence of the plasma equilibrium [Grad 1958][Shafranov 1966]. Along the radial 

directions, the plasma parameters evolve as crossing the magnetic surface. A typical density profile and 
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magnetic field profile are shown in Figure 1.5. The magnetic field strength roughly scales as 1/R, with R 

the major radius axis. 

Some additional coils are needed to control the plasma shape and position, i.e. the outer poloidal 

magnetic field coils. For convenience, in Tokamak convention, we also define the parallel direction to be 

the direction parallel to the confinement magnetic field B0. Similarly, the perpendicular direction is the 

direction perpendicular to B0. 

Tokamak can achieve a significant longer energy confinement time than the lasers. A typical set of 

parameters in a Tokamak that fulfilling the ignition conditions is: 
20 310 , 10n m T keV  and 3E s  . 

Compare to the air (n=1026 m-3, T=300K), the Tokamak plasma is rather tenuous and hot. 

Over the past 60 years, the Tokamak concept has been tried in many countries around the world. There 

are hundreds of them in total. The major limitations of the Tokamak concept are the following: at first, 

Tokamak relies on a strong magnetic field (several Teslas) to confine the plasma. The magnetic field is 

generated by currents flowing through the compactly winded magnetic field coils. An ordinary coil could 

produce huge heat which needs much energy to cool down. In 1988, people in France employed 

superconducting coils and built the world’s first supra-conducting toroidal coil Tokamak, Tore Supra. The 

temperature gradient formed between the central hot plasma (10 KeV) and liquid helium (3.4×10-4 eV) 

used in the superconducting coil is the greatest in the universe. Secondly, Tokamak usually operates in a 

pulsed mode. This is because the central transformer needs to generate a time-varying magnetic field in 

order to drive Ohmic plasma current. Once the central transformer current reach its maximum, the pulse 

will cease. A method to increase the pulse duration is by taking advantage of the non-inductive current. 

This is one of the applications of the auxiliary heating that will be discussed in section 1.5 .  

Table 1-1. Typical parameters for Tore Supra Tokamak and ITER Tokamak 

 Tore Supra ITER 

Major radius R0 (m) 2.5 6.2 

Minor radius r0 (m) 0.7 2 

Plasma toroidal 
current (MA) 

1.5 15 

Magnetic field B0 (T) 3.8 5.3 

 

Another type of machine also using magnetic confinement, the Stellarator [Nuehrenberg 1995], was 

developed in parallel to the Tokamak. The main advantage of this machine is that it has no net current 

flowing along the toroidal direction. Consequently, there is no need to have a central transformer and the 

twisted magnetic field lines are totally created by the external helical coils. It is naturally a good candidate 

for a steady-state operation. It can also avoid plasma instabilities caused by the current gradient. However, 

since it relies on extremely dedicated magnetic configuration to balance the gradient force, the 

manufacturing of such a magnetic coil system is much more complicated than the coils used in Tokamak. 

In addition, it suffers from a low confinement performance and critical particle losses. Wendelstein 7-X, 

the world’s largest stellarator has just completed its 10 years’ construction phase and had its first plasma 

at the end of 2015.   

At the moment, Europe has chosen the magnetic confinement as its main route to fusion power. The 

International Thermonuclear Experiment Reactor (ITER) - the largest Tokamak in the world and the leading 
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fusion machine, is currently being built in Cadarache, France. It has an ambitious scientific object: 

demonstrate the feasibility of fusion power and pave the path for the future commercial fusion reactor.  

Some major parameters of the Tore Supra Tokamak and the ITER Tokamak are shown in Table 1-1.  

1.3  At the magnetized plasma edge: the Scrape-Off Layer 
The central plasma is the useful part where the nuclear fusion reaction occurs. But one cannot have 

only the central plasma because the plasma cannot be of infinite size. This is also because one of the main 

products in DT reaction, helium and other impurity particles (also called as fusion ashes) must be 

exhausted from the fusion device at the edge in order to avoid plasma dilution. In addition, the output 

power must be exhausted from the plasma at the edge. Here the edge is defined where the plasma can 

have interactions with the wall. Unlike in the central plasma, at the edge, the magnetic field lines are open 

and connect to the wall or other protruding components. The boundary between the closed magnetic flux 

surface and open magnetic flux is called the Separatrix or the last closed flux surface (LCFS). In the earlier 

days, a solid surface called limiter was used to interrupt the magnetic field surface. The location of the 

limiter thus determines the LCFS. In this case, the limiter can be a source of impurity to the plasma because 

of the sputtering of the limiter surface. Modern-day Tokamaks are more often equipped  with an element 

called “Divertor”. The Divertor is usually located at the bottom (in Figure 1.6) or at the top of the machine, 

it is further away from the plasma, compared to a limiter. In a Divertor configuration, the LCFS is solely 

determined by the magnetic field and its location is manipulable by changing the current in the Divertor’s 

magnetic field coils. Magnetic field lines connect to the Divertor target plates. The fusion ashes are 

diverted along the open magnetic field lines to the Divertor and then they are being pumped out of the 

machine.  

 

 
Figure 1.6. Magnetic flux surface in JET Tokamak 

 

What we called as edge in the beginning of this section is the region between the Separatrix and vessel 

wall. A more definitive name for this region is the scrape-off layer (SOL). It is marked in yellow in Figure 
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1.6. The SOL region is important, because it is the region where the plasma-wall interaction occurs. 

Understanding the plasma-wall interaction is one of the key tasks in magnetic confinement fusion 

research. Firstly, as indicated before, the fusion ashes and a part of fusion power must be exhausted 

through the plasma-wall interaction. Secondly, the plasma-wall interaction affects significantly the plasma 

confinement at the center. For example, the impurity generated at the edge can be transported to the 

center, which can reduce the energy confinement time and drop down the temperature. 

Therefore, before thinking of making any nuclear reaction, one needs to have a clear view of what is 

happening at SOL.  

1.4  Plasma-wall interactions at the SOL 
Many physical processes are occurring at the SOL region. A dedicated study of plasma-wall interaction 

will cover material science, plasma physics, atomic physics, chemistry, mechanics, et al.  Some references 

dedicated on this topic can be found in [Kirschner 2009][Meade 1974][Reiter 1991][Stangeby 2000]. Here 

we just mention a few of them that are related to this thesis,  

Plasma facing material erosion and re-deposition: During Tokamak operation, plasma facing 

components suffer constantly high energetic particle flows striking on their surface. This could cause some 

erosion processes, i.e. sputtering, melting, sublimation and evaporation. Fortunately, a large part of 

material components released to the plasma by erosion are re-deposited again on the wall surface. This 

re-deposition process can largely compensate the loss of surface material by erosion.    

Sheath excitation:  The plasma potential is often positively biased compared to the grounded wall. A 

thin layer called sheath is formed at the plasma/wall interface. Inside the sheath, the plasma charge 

neutrality is broken and ions get accelerated. High energy ions then bombard the wall which can cause 

many deleterious effects, i.e. hot spots at the plasma facing components, impurity production and edge 

power losses. Understanding the reason of sheath excitation and its effect is the main topic of this thesis. 

Sputtering and heat loads: Sputtering is the ejection of the particles from the surface of a solid caused 

by the bombardment of highly energetic particles, i.e. ions accelerated by sheath. Sputtering can be 

categorized as physical sputtering and chemical sputtering. For physical sputtering, there is generally an 

energy threshold below which the sputtering does not occur. High Z material usually has a significant 

larger energy threshold. For deuterium incident, the energy threshold for Carbon and Tungsten surfaces 

are 30eV and 214eV [Kirschner 2015], respectively. The sputtering yield is defined as the number of 

particles being ejected from the surface per incident ion. It is a function of the incident ion energy, the 

mass ratio between the projectile and target and the surface binding energy of the target particles. A 

Deuterium plasma with a temperature of 100eV has a sputtering yield of 0.1% for a Tungsten surface and 

2% for a Carbon surface [Samm 2015]. The former material has been chosen as the armor of the ITER 

Divertor. During the ITER operation, it is estimated that the Divertor will suffer around 5-20MW/m2 

steady-state heat flux and 1GW/m2 instant heat flux [Linke 2015]. As a comparison, the heat flux density 

at the nozzle of rocket is just around 85MW/m2. Heat loads on other plasma facing components are less 

pronounced, but still could produce serious damage on the wall surface.  

Impurity transport and radiation: as highly energetic particles incident on the surface, some wall 

materials can be released to the plasma.  They are usually different from the plasma species and thus play 

as impurities. Some high Z (atomic number) impurities, like Tungsten can be transported to the core 

plasma and significantly cool down the plasma core by its radiation losses. In some worse cases, it can 
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further develop instabilities, so called MARFE [Lipschultz 1987] and cause plasma disruptions [Schuller 

1995].  

1.5  Heating and current drive methods in the magnetic confinement device 

1.5.1  Ohmic heating  
Once the plasma is created, the ions and electrons are driven by the loop voltage which is produced 

by the central transformer. They flow along the magnetic field and form a plasma current. In a Tokamak, 

this current can easily reach several Mega Ampere. The plasma has an electrical conductivity. In the 

parallel direction, it is expressed by Spitzer conductivity, 

 
3/2

//, 9

(0.001 )
1.65 10 lnS

Te





 
  (1.7) 

Where Te is the electron temperature in eV, ln  is the Coulomb logarithm whose typical values are 

between 15 and 20. From Eq. (1.7), the conductivity increases with the electron temperature. So the 

resistivity and thus the efficiency of Ohmic heating decreases dramatically after the temperature reaches 

2.6-3.5107 KeV.  In order to achieve the ignition temperature, e.g. T=10 KeV, additional heating is needed. 

There are two major auxiliary heating methods, neutral beam injection and radio frequency (RF) wave.  

It’s worthwhile to mention that besides providing additional heating, another main purpose of the 

auxiliary heating is to drive non-inductive current. As indicated before, one of the drawbacks of Tokamak 

operation is that it is intrinsically pulsed. However, in a real fusion reactor, a steady-state operation is 

desired for many reasons. This relies on the contribution of non-inductive currents to the total plasma 

current. A steady state operation of Tokamak requires at least 20% of the total current driven from 

auxiliary heating & current drive. For ITER, a high fraction of it will come from the bootstrap current 

[Peeters 2000], which is a naturally occurring current caused by the pressure gradient. Another part will 

come from the auxiliary heating being discussed in the following.   

1.5.2  Neutral beam injection 
In a Tokamak plasma, the magnetic field is so strong that any charged particles coming from outside 

will soon be deflected by the Lorentz force and could not reach the core. In order to heat the core plasma, 

one can only use neutrals. The structure of a neutral beam system is the following: ions (typically H+ or D+) 

coming out from an ion source are accelerated by electrical grids to highly energetic (100 keV at present) 

and then they pass through a cold neutral gas where they are neutralized by charge exchange. The 

remaining ions that have not been neutralized are diverted out by a magnetic field. Finally only the neutral 

hydrogen atoms are injected into the plasma. Inside the plasmas, the neutrals are ionized again soon (with 

a typical penetration length of 1m) and then transfer their energy to the plasma through collisions. Neutral 

beam injection has achieved significant heating in present-days’ Tokamak experiments and it is the main 

heating system in JET and DIII-D Tokamaks. Some references about this heating method can be found in 

[Hemswoth 2009][McAdams 2014]. In the following sections, we will only talk about the radio frequency 

wave heating. 

1.5.3  Radio frequency wave heating and current drive 
The electromagnetic waves are injected through the Tokamak edge. In most media, i.e. water inside 

food, waves are damped through collisional mechanisms. In fusion plasmas, however, collisions are often 

too weak so it has to rely on the collisionless mechanism. When the wave frequency matches one of the 
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cyclotron frequencies, the corresponding charged particle is then accelerated by the oscillating electric 

field of the wave in the perpendicular direction. Thus the wave energy and momentum could be 

transferred from the wave to the charged particles.  This is the fundamental principle of the so called 

resonant heating. In the parallel direction, the wave can also be damped through a collisionless 

mechanism called Landau damping [Landau 1946][Chen 2016]. The thermal velocity of the particles 

usually follows a distribution, e.g. Maxwellian distribution. Those particles whose thermal velocity are 

smaller than the wave phase velocity can be accelerated by the wave. On the contrary, the other particles 

having a velocity larger than the wave phase velocity will be slowed down. If the wave velocity lies on the 

higher part of the velocity distribution, the particles will then feel a net acceleration. Assuming a plane 

wave with harmonic oscillations in exp⁡(𝑖𝑤𝑡 − 𝑖𝐤 ∙ 𝐫). (Note: here we used the engineering convention, as 

it will be in the rest of this thesis). The above two heating mechanisms are governed by the wave-particle 

resonance condition, 

 / / / / 0s csw k v Nw     (1.8) 

Where w is the angular frequency, k// the wave vector parallel to the confinement magnetic field, v//s 

parallel velocity of particle species s, wcs is the cyclotron frequency of s, N is an integer, represents the 

order of the harmonic. 

Depending on the frequency, waves can be categorized as the ion cyclotron range of frequency (ICRF) 

wave frequency 50
2
wf MHz


  , lower hybrid (LH) 2f GHz   and electron cyclotron range of 

frequency (ECRF) 100f GHz , see Figure 1.7. The ICRF and ECRF waves, as indicated by their names, 

are damped at the ion cyclotron resonance and the electron cyclotron resonance, respectively.  

Although the electromagnetic waves carries negligible momentum, it could achieve current drive by 

heating particles in one specific direction. The particles that are heated become less collisional than those 

who are travelling in the opposite direction. Thus a net current is formed. This is the principle of the RF 

wave current drive.  

The lower hybrid wave is generally the most efficient auxiliary method for non-inductive current drive 

in present-day Tokamak, while the electron cyclotron wave is an ideal tool to provide localized current 

drive and heating. Some reference about these two waves can be found in [Hoang 2009][Goniche 

2013][Prater 2004]. The following text will only focus on the ion cyclotron wave.  

 
Figure 1.7. Diagram of frequency range of three auxiliary heating and current drive waves 
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Finally, a list of auxiliary heating powers equipped in the Tore Supra and ITER is shown in Table 1-2. 

Table 1-2. Quantities of the auxiliary heating power in Tore Supra and ITER Tokamak 

Auxiliary 
heating power 

Tore Supra ITER 

ICRH (MW) 12 20 

LHCD (MW) 7 0 

ECRH (MW) 0.8 20 

NBI (MW) 0.5 33 

 

1.6  Ion Cyclotron Resonant Heating: an efficient way to achieve direct ion heating 
Among these three wave types, the lower hybrid and electron cyclotron wave mainly damp their waves 

directly on the electrons (although it can also indirectly heat ions through collisions). However, the fuel of 

the nuclear reaction is a mixed of Deuterium and Tritium ions. It will be more efficient if one can heat 

these two nuclei directly. This is where one of the key elements related to this thesis comes into the game: 

the Ion Cyclotron Resonant Heating (ICRH). At first let us describe the principles of ICRH and its operation 

scenarios.  

A schematic view of ICRH antenna in the WEST (Tungsten (W) Environment in Steay-State Tokamak) 

tokamak is shown in Figure 1.8. WEST is the upgraded version of Tore Supra Tokamak at CEA, which aims 

at testing actively cooled tungsten divertor. The waves are launched by phased array straps (antenna) at 

the edge. For ICRH (𝑓=25-100MHz), two types of waves could be excited: the fast wave (FW) and the slow 

wave (SW), named by the relative scales of their phase velocities. The fast wave can propagates across 

the whole plasma and thus it is the main heating wave. The ICRH antenna is designed for exciting this 

wave. The slow wave is excited parasitically by the antenna and it is widely blamed for causing some 

deleterious wave-SOL interaction, i.e. radio frequency sheath that will be introduced in the next section.  

 
Figure 1.8. The WEST Tokamak vacuum vessel and ICRH antenna. Note: the ICRH antenna here 

does not reflect the final design that will be used actually in WEST  
ICRH has a variety of heating scenarios and relatively cheaper to build, making it a very popular 

auxiliary heating method. Here are some of its main heating scenarios, 

 Wave absorption at the fundamental resonant frequency (N=1): This looks like the most 

straightforward way to have ion heating. Observing along the direction of the magnetic field, the 
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ions rotate left-handedly along the magnetic field line. If an incident wave having the same 

polarization and the same frequency as ion cyclotron motion, then the oscillating electric field of 

the wave is in phase with the ion motion. Over one cyclotron period, the ions feel a net 

acceleration. But this is not going to happen in single-ion-species plasma. This is because the fast 

wave is right-handed at the fundamental resonance of ions, see chapter 2, section 2.1.4.    

 Wave absorption at the harmonic frequency (N>1): The polarization problem can be avoided by 

working at the harmonics of the cyclotron frequency. Let’s take N=2 for example. The wave 

electric field varies two times faster than the ion cyclotron frequency. If the wave electric field is 

uniform, then there is no net acceleration for ions. On the contrary, if the wave electric field is 

higher on one side than the other side, then the ions experience a net acceleration over one 

period. Similarly, higher harmonic resonant heating requires the existence of non-vanishing 

higher derivatives of the electric field. The efficiency of harmonic wave heating decreases with 

harmonic number.  

 Minority heating:  Another way to avoid the polarization problem is to use multiple ion species. 

For example, put a small amount of hydrogen in a majority of deuterium plasma. The polarization 

is determined by deuterium but the wave is damped at the fundamental hydrogen resonance. In 

this case, the fast wave has a left-hand electric component and thus could heat the hydrogen ions, 

which then transfer their energy to other majority deuterium particles, or electrons through 

collisions.  

 Mode-conversion can take place if several ion species co-exist in the plasma. Each of two ion 

species pair could create an ion-ion hybrid resonance. The fast wave is mode converted to other 

waves, i.e. ion Bernstein wave at this resonance. The converted waves are damped on the 

electrons through Landau damping. A further details of this mechanism can be found in [Lu 2013] 

 

Most of the present-day Tokamaks use the minority heating as the main ICRH heating scenario. ITER 

will use the second harmonic of Tritium and 3He minority heating.  

 
 

Figure 1.9. 4 straps ICRH antenna in the KSTAR Tokamak (left); 2 straps ICRH antenna in the ASDEX-
Upgrade Tokamak (right)  

 

Different ICRH antennas have been used in many machines. But all of them have some features in 

common. Firstly, the straps are placed along poloidal direction. This is because the wave that is expected 

to be excited by the straps has a large poloidal electric field. Secondly, in order to have different spectra 
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for multiple purposes, the antenna usually contains multiple straps with different phasings. Thirdly, the 

antenna includes some protecting components, like side limiters and one Faraday Screen. The Faraday 

screen also aims at minimizing the parallel electric field. An example of ICRH antenna in the ASDEX-

Upgrade and the KSTAR Tokamak are shown in Figure 1.9. 

1.7  Overview of ICRH wave launchers on the Tore Supra Tokamak 
The ICRH system in Tore Supra Tokamak is designed for 12MW of ICRH power injection in the frequency 

range of 35 to 80MHz (ion-ion hybrid heating) and 8MW at 120MHz (harmonic cyclotron heating). The 

power is delivered into Tokamak through three horizontal ports. The total ICRH system thus consists of 

three wave launchers (4MW per each), six transmission line and six RF generators.  Each of the six RF 

power generators consists of a pilot generator, a modulator, a solid state wideband amplifier and a 3-

stage tetrode amplifier. Six 80m long coaxial transmission lines are installed from the generator to the 

torus hall. They have a diameter of 140/230mm, with a characteristic impedance of 30Ω. Each of the 

generator and transmission line connects one strap. More references on the transmission line and 

generator can be found in [Kuus 1988]. 

 
Figure 1.10. Layout of the standard ICRH wave launcher on Tore Supra, cite from [Vulliez 2003] 

 

A cross-section of one of the three wave launchers is shown in Figure 1.10. It is about 3m’s long in 

reality. Each of the three wave launchers has two radiating straps (placed side by side in toroidal direction) 

which are protected by Faraday screen in front of it and lateral bumpers in the poloidal directions. Each 

radiating strap is based on the resonant double loop concept [Owens 1985]. It is fed at the middle and 

short-circuited at both ends through two tuning capacitors, which creates a one wave resonator [Colas 

2006]. The strap has a large self-inductance, the AC current flowing on its surface varies in time. This is 

not a lossless resonance loop since it radiates RF waves to the plasma. The energy loss is compensated by 

the feeder. During the plasma pulse, the plasma resistance (especially the capacitance) is time-varying, 

the matching is done by changing the capacitance of the resonant circuit. The two capacitors are 

connected side by side through a bridge. The capacitor consists of two parallel plates, the amount of plate 

surface which overlaps are controlled by the mechanical tuning bars, i.e. the pink ones in Figure 1.10. A 

quarter-wavelength stub is used at the input of the wave launcher to enable the cooling water cycling 

through the wave launcher. The port flange connects the vessel port and the wave launcher. During the 



Background of this thesis  Chapter. I  

14 
 

operation, the part in front of port range of the wave launch is plugged into the vacuum vessel of the 

Tokamak. The antenna is hanging on a rollerskate, which allows the antenna moving radially about 10cm 

along the port axis during Tokamak pulses to achieve more power being transmitted to the plasma. 

Figure 1.11 is a picture of the plasma facing part of the ICRH antenna. The classical ToreSupra ICRH 

antenna [Beaumont 1988] consists of two vertically placed, water cooled rectangular straps made of 

silver-coated stainless steel, shown in brown. The currents flow along the straps and thus excite mainly 

the poloidal electric fields, see Figure 1.12. The Tore Supra classical antenna uses two straps. Just like the 

antenna array used in telecommunication, the direction of emitted wave is determined by the current 

phasing on the straps. Usually, three current phasings are often used. Dipole phasing [0 π] and monopole 

phasing [0 0] have antiparallel and parallel currents, respectively. They are frequently used as heating 

phasings, while the asymmetric phasing [0 π/2] is used mostly for current drive purposes. 

 

  
Figure 1.11. ICRH antenna on Tore Supra (view 

from the plasma side) 
Figure 1.12. The principle of exciting RF field 

by a poloidal current 
 

The metallic frame with many tilted bars in front of the straps is the Faraday screen. Its dimension is 

0.432*0.595 m2. The bars are oriented roughly parallel to B0. Initially it is designed to cancel the parallel 

electric field of the wave and protect the straps from heat flux. The Faraday screen is actively cooled by 

pressurized water at 150oC behind it and it is coated with boron carbide (B4C) to limit high Z impurity 

contamination of the plasma. The two straps are separated by a vertical septum in the middle. At their 

lateral sides, a curved structure sitting at each side of the antenna is called side limiter. Its main role is to 

protect the antenna from the heat flux coming from toroidal directions. Like all the other plasma facing 

components, it is cooled by a water loop beneath it. The side limiter is made of CuCrZr alloy.  

1.8  Selected ICRH challenges  
Despite the fact that ICRH has many flexible heating schemes and the engineering system is generally 

reliable during the Tokamak operation, it has some defects which limit its performance. The requirement 

that a fusion reactor should work in a continuous way imposes a big challenge for the heating system. 

One must thus optimize the antenna-plasma coupling in a steady-state operation, in the meantime 

avoiding the spurious effects such as impurity generation, hot spots and anomalous edge heating. Besides, 

the interactions between different heating systems also need to be accounted for. Here we list several of 

the main issues related to this thesis. 
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1.8.1  Plasma intermittence and antenna matching 
The plasma property can vary due to some instability events. This will lead to a change of the antenna 

input impedance seen by the transmission line. If the antenna cannot adjust its load resistance 

instantaneously to match with the transmission line, the power will be reflected to the RF generators, and 

subsequently trigger protective power trips, which could possibly shutdown the power supply. To 

overcome this problem, a real-time matching system, i.e. tuning capacitor (see Figure 1.10), is installed 

behind the antenna which allows antenna matching automatically, following the load change. The 

reaction time of the mechanical tuning element is typically 100ms (Tore Supra value). This method can 

handle long-time scale load changes, but the short time scale (~1ms) plasma change is still too fast, so in 

addition to this, more load-resilient antennas were developed recently using conjugate T junctions or 3dB 

hybrids techniques [Vuillez 2008][Graham2012], which reduces the voltage standing wave ratio (VSWR) 

over a wider range of load resistances. It guarantees that the total power transmitted to the plasma can 

still achieve a high level when the antenna input impedance varies in the designed region. With the 

dedicated matching system, the reflected power can bounce back to the plasma again, instead of being 

transmitted back through the feeder. A maximum of 10.4MW of ICRF power into plasma over 12MW input 

from generator has been achieved in ToreSupra [Colas 2006]. Besides the matching, there are other 

operational limits. For instance, the RF current on the strap is limited by the thermal issues in critical 

elements, i.e. matching capacitor. The RF current is proportional to the RF voltage, the latter is limited by 

the arcing issues.  

1.8.2  Antenna-plasma coupling at the edge 
The wave coupling property is characterized by the coupling resistance (or the plasma resistance 

mentioned before), which quantifies how much power is transmitted to the plasma with 1A current on 

the straps. The details will be given in the next chapter. The main objective when designing any auxiliary 

heating system is to couple as much power as possible to the plasma. From this point of view, using the 

IC wave is more problematic than the EC wave. This is because the main heating wave, the fast wave 

encounters an evanescent region just after it is being excited at the antenna straps. The length of this this 

evanescent region is the distance between the adjacent cut-off layer and the antenna. The location of the 

cut-off layer in the plasma depends on the wave frequency, confinement magnetic field and plasma 

parameters (Details will be given in chapter 2). The fast wave thus suffers a lot of reflection and only a 

part of the wave can tunnel across the evanescent region and reach the plasma center. This coupling 

resistance decays exponentially with the length of the evanescence region. In reality, the antenna can 

move a little bit radially but cannot approach the plasma too much, otherwise it will simply melt. The 

length of the fast wave evanescent region ranges from several centimeters to tens of centimeters. 

Furthermore, small scale plasma instability, i.e. turbulence can significantly modify the plasma density in 

the SOL region. This can also affect the wave coupling.  

1.8.3  Radio-frequency sheaths 
Another major issue at the SOL is that during the ICRH operations, the antenna surface suffers a large 

heat flux (of the order of MW/m2) caused by the bombardment of high-energetic ions. To make things 

worse, the Direct Current (DC) plasma potential are often enhanced by ICRF waves via a non-linear process 

called sheath rectification. Consequently, the ions get more significant kinetic energy and lead to more 

severe damages on the wall surface. Many spurious RF edge effects are suspected to be caused by this 

sheath rectification process, i.e power losses at the SOL, heat loads deposition on the plasma facing 

components and impurity production from the wall. As an example, Figure 1.13 shows a spread of hot 
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spots observed on the surface of the Faraday screen and side limiters by infrared thermography during 

Tore Supra ICRH operation.    

 

The physics lying behind RF sheath rectification has not been fully understood yet. It is usually 

modelled in analogy with a double Langmuir probe driven by an oscillating RF voltage (details will be given 

in chapter 2). The oscillating RF voltage is estimated from a field-line integral of the parallel electric field 

E//, while E// is often pre-calculated in full wave RF simulations without sheath [Perkins 1989]. Their 

underlying assumption is that the RF sheath rectification is mainly attributed to the parasitically excited 

slow wave. A prototype Faraday screen designed for reducing RF sheath on its front surface has been 

tested during ToreSupra 2011 experimental campaign. It is equipped with a slotted frame and 

cantilevered horizontal bars, aiming at intercepting all parallel RF current paths on its front surface 

[Mendes 2010]. Surprisingly, compared to the conventional Faraday screen, the prototype exhibited more 

intense heat loads during the ICRF operations [Colas 2013]. This cannot be explained by the conventional 

sheath modeling and thus motivated the development of the Self-consistent Sheath & Waves for ICH 

(SSWICH) code [Jacquot 2014][Colas 2014].  

1.9  Dedicated RF sheath test beds  
In order to understand RF sheath physics, some specific devices were built. Compared to a Tokamak, 

they are more flexible to set up relevant parameters, diagnostics and test different antennas. Their 

geometries are simple for simulations. The experiments on these devices can be much faster as there is 

no constraints from the Tokamak campaigns. The Ion cyclotron Sheath Test Arrangement (IShTAR) 
[Crombé 2015] in Ipp Garching and A Linear Experiment (Aline) machine [Faudot 2015] in Institute Jean 

Lamour are among these dedicated test beds.  

The Aline machine has a cylindrical vacuum chamber, which is 1m long and 30cm in diameter, see 

Figure 1.14. It is made by stainless steel. During the experiment, a DC magnetic field can be created by 

external coils winding around the vacuum chamber. The magnetic field is spatially homogeneous and 

 
Figure 1.13. Surface temperature map at the front surface of the prototype Faraday screen, obtained 

by Infrared thermography during ICRH operation 
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aligns along the longitudinal direction. The magnitude of the magnetic field in Aline is rather low (Max 

0.1T), compared to the Tokamak (~T). The RF wave is injected into plasmas through a stainless steel disk 

antenna in the middle of the machine. The antenna disk has a radius of 4cm, and 1cm of thickness, see 

Figure 1.15. In the start-up stage, it also serves to generate the plasma. The details of the excitation will 

be given in Chapter 2. During the antenna operation, the current flowing on the antenna surface is very 

low, the electromagnetic field is excited by the voltages. This is called a capacitively coupled plasma. The 

typical plasma types supported in Aline are Argon (A=40) and Helium (A=4) with a density ranging from 

1015 to 1017 m-3. The RF amplifier has a maximum power of 1100W. The bandwidth covers from 10 KHz to 

250 MHz.  

 
Figure 1.14. A photograph of Aline vacuum chamber without magnetic field coils, cite from [Faudot 

2015]  
 

Aline is instrumented with a RF self-compensated Langmuir probe [Sudit 1994]. The main body of the 

probe is 1.5m long and made by aluminum alloy. In front of the probe is a tungsten cylindrical tip (0.15mm 

in diameter and 10mm long). The whole probe is mounted on a 3D manipulator, which is able to move in 

a range of 50cm along the longitudinal direction (cylindrical axis aligned with the applied magnetic field) 

and 10cm along other two directions. The manipulator is driven by a 10 micrometer accuracy step motors 

operated by a Labview program. The probe can measure the potential map and other plasma parameters, 

i.e. temperature, density, etc.  
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Figure 1.15. Disk antenna and Langmuir probe inside 

vacuum chamber, cite from [Faudot 2015]   
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Chapter 2  Theoretical basis of this thesis 
 

This chapter introduces all the theoretical ingredients that are needed in order to understand this 

thesis work. First, we will derive the cold plasma dielectric tensor, which makes it possible to treat the 

plasma as a specific dielectric. Then we will look at the properties of waves that exist in the cold plasma 

under Ion Cyclotron Range of Frequencies (ICRF). Their dispersion relation, polarization and the theory of 

wave coupling are discussed. Then a short introduction on how to model the wave coupling numerically 

is made. The second part discusses the sheath physics. Some important sheath features under RF and DC 

regimes are presented, i.e. sheath capacitance and sheath rectification. Finally, an overview of the status 

of numerical codes on wave coupling and RF sheath before this thesis is given, followed by the motivation 

and outline of this thesis.   

2.1  The physics of cold plasma waves under ion cyclotron range of frequencies 

2.1.1  Dielectric tensor under cold plasma approximation 
The basic equations describing the electromagnetic waves are the well-known Maxwell’s equation 

[Jackson 1998]. Using Faraday’s law and Ampere’s law, one can derive the wave equation which is the 

governing equation of the RF waves. Assume the time-harmonic waves are oscillating as 
iwte , where w is 

the wave angular frequency. The wave equation reads, 
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𝑢̿𝑟 , 𝜎̿  are the relative permeability, relative permittivity and electric conductivity tensors of the 

material, i.e. plasma. k0, 𝜀0  and 𝑢0are the wave number, permittivity and permeability in vacuum. In 

contrast to vacuum where relative permeability, relative permittivity and electric conductivity are all 

scalars, they are all tensors in plasma. The excitation is done by the external current J on the RHS of Eq. 

(2.1). 

Even though the fusion plasma is hot, it has been proved that using a cold plasma approximation 

[Swanson 2003] could significantly simplify the problem while providing a fairly well description of the RF 

waves of our concern. Cold plasma means that all the particles have zero thermal energy of their own but 

could still move in response to the oscillating electric fields of the RF waves. One needs to consider the 

hot plasma effect only when describing the resonant heating in the regions near the wave-particle 

resonances (introduced in Chapter 1). Under the cold plasma approximation, the plasma dielectric tensor 

can be derived from the equation of motion. For a particle species s, it reads,   

 ( ( ) ) ( )s sm q
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s s s

v v v E v Β   (2.2) 

Where vs is the fluid velocity. Please note Eq. (2.2) implicitly assumes that the temperature is zero. A 

full description considering thermal effect can be done through more complicated fluid description 

[Swanson 2003] or kinetic description [Brambilla 1998].  
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We further assume that vs is small enough so that the second term on the LHS of Eq. (2.2) could be 

neglected. Doing this simplification also means the zero-order velocity of the particle flow has been 

neglected. Eq. (2.2)  thus becomes linear. The particle current reads, 

 s s
s

n q sJ v   (2.3) 

Substitute Eq. (2.2) into Eq. (2.3) and add up all the particle species. After some algebra, the current 

density J becomes a linear function of E. By comparing that function to Ohm’s law, one immediately 

obtains the plasma conductivity tensor. The equivalent cold plasma dielectric tensor is a combination of 

relative permittivity and conductivity tensors. It can be expressed as [Stix 1992] 
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Where , r and  stand for the Tokamak coordinates defined in Chapter 1. The full derivation of the 

cold plasma dielectric tensor can be found in [Swanson 2003]. The Tokamak coordinates defined in 

chapter 1 are used here. Please note in this thesis we use engineering convention, and assume at this 

moment B0 is along the toroidal () direction. The tensor we obtained is thus the complex conjugate of 

the one in [Swanson 2003]. Since the cold plasma dielectric tensor (2.4) is essentially a matrix, hereafter 

we will use the notation 𝛆𝐫.  / / ,   and   are Stix parameters defined in [Stix 1992]. They are functions 

of wave angular frequency, plasma frequency and cyclotron frequency, 
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Where psw  and csw   are the plasma frequency and cyclotron frequency defined in chapter 1. The 

dielectric tensor Eq. (2.4) is invariant under rotations along the magnetic axis, i.e.  direction. This is called 

the gyrotropic property of the magnetized plasma. The frequency-dependent property of the cold plasma 

dielectric tensor indicates that the cold plasma is a time-dispersive material. The waves inside the plasma 

should be described by the dispersion relation, which gives plane wave vector k as a function of w.  
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Eq. (2.4) is the case when the B0 aligns wth the -axis. In a Tokamak edge, B0 is usually tilted w.r.t the 

toroidal direction. Now let x be the toroidal direction (), y the radial direction (r) and z the poloidal 

direction (). This coordinate is often used in the later simulations, and it corresponds to the equatorial 

plane in the real 3D Tokamak geometry. We consider a simple case where B0 has a tilt angle θ at 

toroidal/poloidal plane, see Figure 2.1. This is not the most general case, but it can ease the code 

development mentioned in the later chapters of this thesis. So now the toroidal direction is no more 

equivalent to the parallel direction. The dielectric tensor in Eq. (2.4) is valid for the coordinate system 

shown with dashed lines in  Figure 2.1. Now it should be rotated to fit the black coordinates.   

 
 Figure 2.1. Diagram of tilted magnetic field  

 

After conducting a rotational transform to Eq. (2.4), the cold plasma dielectric tensor becomes, 
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Throughout this thesis, we will frequently use this form of the cold plasma dielectric tensor. For 

simplicity, we define hereby the following notations, 
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For simplicity, unless being explicitly pointed out, the rest of the theoretical derivations concerning the 

wave properties in this section will only consider the non-tilted B0. Given the dispersion relation, the 

polarization are the intrinsic properties of the plane waves, they should be independent on the coordinate 

rotation.  

2.1.2  Dispersion relations of ICRF waves under cold plasma approximation 
 In a homogenous, isotropic and infinite extended medium, the solution for Eq. (2.1) is a plane wave 

oscillating as exp( )iwt i k r  . A real fusion plasma is by no means such an ideal medium. Firstly, the 

plasma density and temperatures are varying spatially and thus the plasma is inhomogeneous. Secondly, 

due to the presence of the magnetic field, the magnetized plasma is gyrotropic (justified at the end of last 

subsection). Thirdly, it is bounded by the walls.  

However, with an infinite domain and homogeneous (in all dimensions) plasma, it is much easier to 

derive the dispersion relations for the cold plasma waves. The wave behaviors described by those 
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dispersion relations are preserved in a realistic fusion plasma. Therefore for the dispersion studies, we 

assume that the plasma is homogeneous and boundless. We also restrict ourselves to the plane wave 

solutions. In principle, all the waves can be decomposed by a series of plane waves.  

By assuming that the plasma is homogeneous, all the spectral components are independent. One can 

replace ∇ in Eq. (2.1) by –ik (engineering convention again). The wave equation under a non-tilted B0 

becomes, 

 2
0( ) 0k    rk k E ε E   (2.12) 

It is convenient to express Eq. (2.12) by a non-dimensional vector n, whose magnitude is the refractive 

index  
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It then becomes 

 2
0( ) 0k    rn n E ε E   (2.14) 

We assume the poloidal direction (here the z direction) has no derivative, i.e. nz=0. Making use of Eq. 

(2.4), one can express Eq. (2.14) in a matrix form 
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Since B0 is aligned with the toroidal direction, // is equal to the toroidal direction and  is the 

composition of the radial and the poloidal directions. To avoid nontrivial solution, the determinant in Eq. 

(2.15) must vanish. One thus obtains a fourth-order equation for n , 

 4 2 2 2 2 2 2
// / / / / / /[( )( ) ] [( ) ] 0n n n n                        (2.16) 

Although Eq. (2.16) is derived under non-tilted B0, it should be invariant under tilted B0. 

2.1.3  Decoupled dispersion relations for the fast wave and the slow wave  

The Eq. (2.16) has two 2n
 roots as functions of 2

//n . Assuming n// is fixed, the dispersion relation 

provides a picture of how the wave property evolves with the plasma density, magnetic field, etc. In a 

Tokamak plasma, under ion cyclotron range of frequencies, the two roots can be decoupled (although not 

always, see subsection 2.1.5 ) to the fast wave mode and the slow wave mode. The dispersion relation for 

each of them and their respective plasma conditions are 
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Where the subscript F represents the fast wave; S represents the slow wave. Knowing the dispersion 

relation, the wavelength of the waves can be immediately computed. Under a typical Tokamak plasma 

condition (i.e. 19 3 5
//1 10 , 2.5 10 , 222en m  

       ), the slow wave is almost evanescent 

everywhere in the Tokamak, thus it is convenient to define an evanescence length. At the edge plasma, 

the second term on the LHS of Eq. (2.18) can usually be neglected. It thus yields to / /
pe

s

w
n i

w
   . 

The slow wave evanescence length corresponds to the e-fold decay length, 
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In the wave physics, two physical quantities are often used to describe the speed of wave propagation. 

The phase velocity vp describes the propagation of the wave front, while the group velocity vg indicates 

the speed of the energy flow. They are defined as 
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In which | |k  k  is the wave number. It should be noted that although the phase velocity has a 

direction described by a wave vector k, it is not a vector because it does not follow the cosine law [Booker 

1984]. The names “fast wave” and “slow wave” come from the fact that the slow wave usually has a larger 

wave number and smaller phase velocity than the fast wave. A wave is called forward (backward) wave if 

its phase velocity points the same (opposite) direction as its group velocity. The fast wave is typically a 

forward wave, while the slow wave is often a backward wave.  

The concept of the fast wave and slow wave are initially used to describe the waves in ICRF domain a 

Tokamaks. For linear machines, as Aline, there are two waves equivalent to the fast wave and the slow 

wave. They are called differently as helicon wave and lower hybrid wave, respectively. The dispersion 

relations of them are, 
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With 
0( 90 , )ci ce pew w w w    , is the angle between wave vector k and B0. 
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With ( 0, , )ci ce pew w w w    , 
2 2 2/ (1 / )LH ce ci ce pew w w w w    
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Be aware that Eq. (2.22) excludes the case where the phase velocity is perpendicular to B0, i.e. 
090  .  

In that case, the wave is named as ordinary wave Eq. (2.24) and extraordinary wave Eq. (2.25) 

 
2n P   (2.24) 

 
2 2

2 / S Dn RL S
S


    (2.25) 

Chen [Chen 2016] gives a simplified introduction of these waves. More elaborate descriptions can be 

found in [Swanson 2003][Chabert 2011].  

2.1.4  Wave polarizations 
The wave polarization can be determined from Eq. (2.15). For the fast wave, since 

2 2
// / /| | ,| |,| |,n n     , it has a relatively small parallel electric field component / /E . The main electric 

components of the fast wave are those perpendicular to B0. Some literatures often call the fast wave as a 

transversal electric (TE) mode. Here one should note that the polarization is defined, with respect to the 

direction of B0, instead of the direction of wave propagation. The latter convention is often used in the RF 

communication.  

If we now neglect the parallel electric field component, the matrix Eq.(2.15) can be reduced to 2 2 , 

 

2
/ /

2 0y

z

En i
Ei n

 

 

 

 

   
   

    
  (2.26) 

It yields to the fast wave polarization 
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One can further computer the ratio of the left-hand to the right-hand components. In case the plasma 

only has one ion species,  
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The left-hand component vanishes when ciw w . Note that the ion cyclotron motion is left-handed. 

That explains why the fast wave usually cannot be used as a heating wave at the fundamental resonance 

in case of single ion species.  

For the slow wave, since 2 2
// / /| | | |,| |,n n     , it has a relative small poloidal electric field 

component, zE . The wave magnetic field component in toroidal direction is zero. So it is approximately a 

transversal magnetic (TM) mode.  

Similarly, under the slow wave condition, the matrix Eq.(2.15) can be reduced to  
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It’s worthwhile to mention that from Eq. (2.26) and Eq. (2.29), one can immediately obtain the 

dispersion relations Eq. (2.17) and Eq. (2.18). Using the second row of Eq. (2.29), one gets the Slow wave 

polarization, 
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2.1.5  Cut-off and resonance 
From this point, we go back to the inhomogeneous plasma, and make a simplification that the 

inhomogeneity is only present in the radial direction. In the dispersion relation Eq. (2.17) and Eq.(2.18), 

there are two limiting case where the refractive index 2 0n   and 2n   . Here  is equal to the radial 

direction. When the radial refractive index goes to zero, the wave stops propagating in the radial direction. 

This case is called cut-off. On the contrary, if the radial refractive index goes to infinity, it is called as 

resonance. In Eq. (2.17) and Eq. (2.18), the cut-off and resonance are just layers.  In real fusion plasma, 

due to the thermal effects, they have a finite width. Waves are being reflected at the cut-off. At the 

magnetized plasma edge, the R cut-off layer of the fast wave plays an important role in RF wave coupling. 

Under non-tilted B0, it is defined as 

 2
// Rn    (2.31) 

 

Figure 2.2. Evolution of Stix parameter R  and plasma density profile from Tore Supra shot 40574 along 

the radial distance to the Tokamak center. Magnetic tilt angle 0  and Tore Supra parameters are 
used, nx=9.14, f=w/2π=48MHz, B0(R0=2.4)=3.1T, full Deterium plasma 
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The Stix parameter R  defined in Eq.(2.8) decreases with the density, or the distance from the center 

plasma, shown in Figure 2.2. The locations of the separatrix and antenna box are also shown in the figure. 

Thus from Eq. (2.31), one can see with a lower n//, the R cutoff layer shifts towards the edge.  

In case of a tilted magnetic field, the parallel and perpendicular refractive index can be expressed as  
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Insert the above two equations into Eq. (2.17). In case of a 2D geometry, neglecting the poloidal 

derivative, i.e. nz=0, finally one obtains 
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Using the definition of R-cutoff layer, ny=0, yields to 
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Note Eq. (2.34) falls back to (2.31) in case of 0  . 

Figure 2.3 shows the R cutoff density decreases with the increasing tilt angle. This means that the R 

cutoff layer shifts towards the edge under a higher tilt angle, as its behavior under smaller n//.   

 
Figure 2.3. Fast wave cutoff density w.r.t the magnetic tilt angle. The same Tore Supra parameters are 

used as Figure 2.2  
 

On the contrary, Waves are absorbed or being mode-converted at the resonance. For the slow wave, 

the lower hybrid resonance is defined as  
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 0    (2.35) 

Please note that the singularity of the dispersion relation Eq. (2.18) occurring at the resonance layer is 

essentially due to the simplification of the cold plasma approximation. The singularity vanishes when 

thermal effects are included. Near the resonance, the decoupled dispersion relations of the fast wave Eq. 

(2.17) and the slow wave Eq. (2.18) are not valid any more. Instead, one should use the fully coupled roots 

computed directly from Eq.(2.16). The fully coupled roots are [Bellan 1994], 
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 Where the small root corresponds to the fast wave, the big root is the slow wave. The two decoupled 

roots as well as the two fully coupled roots w.r.t a range of typical Tokamak densities are drawn in Figure 

2.4. From this figure, the fast wave is evanescent between the antenna and the R cut-off layer. The length 

of this layer affects significantly the power coupling to the plasma, details will be given in the next section. 

On the other hand, the slow wave, almost evanescent everywhere in Tokamak plasma, is however 

propagating below the Lower hybrid resonance. From its dispersion relation Eq. (2.18), the slow wave 

naturally has a short-wavelength since / /  . This feature will cause the numerical modeling of this 

wave being problematic across and below the lower hybrid resonance.  

 
Figure 2.4. A drawing of the dispersion relations of the fast wave and the slow wave in a range of plasma 

densities and the propagation/evanescence regions for these two waves. Following parameters are used, 

frequency 48MHz, magnetic field B0=2.32T at ne=1018m-3, parallel wave number k//=5 m-1, Deuterium 

plasma 
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2.1.6  Theory of the fast wave coupling 

(a) Wave excitation by phased array straps 

We have introduced in Chapter 1 that the ICRH wave is launched by phased array straps. The current 

flows on the surface of the strap to excite the large poloidal electric field needed by the fast wave. Figure 

2.5 draws the front view of a simplified two-strap array. The two straps are located symmetrically w.r.t. 

the x=0 axis. The toroidal distance between the two centers of the straps is characterized as e. Each strap 

has a toroidal width of D. The poloidal length of the strap is Lstrap. The current density J0 is assumed to be 

uniformly distributed on the strap surface. 1 and 2 are the current phasing on the left and right straps, 

respectively. In the ToreSupra classical antenna, Lstrap=0.53m, D=0.109m, e=0.224m [Beaumont 1988].  For 

simplicity, we assume the strap has no radial thickness and infinite poloidal length strapL  .   

 
Figure 2.5. A sketch of phased array straps 

 

The dispersion relations solved in section 2.1.3  generally consider a fixed n//. It is determined by the 

antenna structure, current phasing, etc. From the current spectrum, one can have an idea of the values 

of n//. By conducting Fourier transform of the currents on two straps, one can obtain the current spectrum 

of this two-strap array 
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Let 2 1     , after some algebra, one gets 
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A plot of the current spectrum with all frequently used phasing (Monopole phasing [0 0]; Dipole 

phasing [0 π]; Current drive [0 ±π/2]) is shown in Figure 2.6. We used the Tore Supra antenna geometrical 

parameters. The abscissae / /
/ /

k cn
w

  is the parallel refractive index, where f=48×106 MHz is the typical 

operation frequency of Tore Supra antenna.  

In monopole phasing, the main lobe of the current spectrum is located at n//=0. In reality, dipole 

phasing is often used as the main heating phasing, which had the main lobe at n//=13 for Tore Supra, see 

the red curve in Figure 2.6. This is because the wave absorption by plasma increases with the n// [Lerche 

2010], also because more issues related to wave/SOL interaction are usually observed when using 

monopole phasing. It’s worthwhile to mention that this spectrum will shift slightly inside the plasma, see 

subsection (c).  

 
Figure 2.6. Current spectrum with different current phasings. Tore Supra classical antenna parameters 

are used, D=0.109m, e=0.224m, wave frequency f=w/2π=48×106Hz, J0=10 A/m 
 

(b) Coupling resistance 

Any auxiliary heating system is designed for delivering as much as possible the heating power to the 

plasma. Wave coupling quantifies with I=1A current along 1m of straps, how much power can be 

transferred to the plasma [Clairet 2004][Goniche 2003]. 

 21
2t c strapP R L I   (2.39) 

Where Pt is the power coupled to the plasma, Rc the coupling resistance, expressed in Ω/m. A detailed 

derivation of Eq. (2.39) can be found in the early work by Bhatnagar [Bhatnagar 1981]. 

In order to have an approximate mathematic expression for the coupling resistance Rc, we consider a 

simple three-wave coupling model. The model is shown in Figure 2.7. It adopts the simplified Tokamak 

geometry, where the x is the toroidal direction, y is the radial direction. The poloidal variation and 
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curvature effects have been ignored. The wave is excited at the antenna with a poloidal electric field 

whose amplitude E0 is known. It firstly passes an evanescence region which has a length of y0. The wave 

number 1k  in this region is thus a pure imaginary number. A part of the wave energy is reflected and 

the rest is tunneling to the plasma region where the wave becomes propagative. The amplitudes of the 

poloidal electric fields of the incident wave, the reflected wave and the transmitted wave are marked as 

Ei, ER and Et, respectively.  Imposing continuity conditions for the poloidal electric field and the toroidal 

magnetic field across y=0, and a boundary condition at y=-y0, the total power transmitted to the plasma 

can be calculated. 

 
Figure 2.7. A simple three-wave coupling model  
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  (2.40) 

Where the sign * means the complex conjugate. Comparing Eq. (2.40) and Eq. (2.39) leads to 

 1 0exp( 2 | | )cR k y    (2.41) 

With this simple model, we can explain that the power coupling decreases exponentially with the 

increasing of the length of the evanescence region. Some more elaborate explanations and experimental 

evidences about the dependence of the power coupling on the evanescence length can be found in [Bilato 

2005][Messiaen 2011][Clairet 2004][Mayberry 1990] 

(c) Toroidal power spectrum 

By Parseval’s theorem, the coupled power evaluated in the real space should equal to its counterpart 

in the frequency space. Thus one could cross-check the simulation results carried out in space domain by 

analyzing the power in spectral domain. The radial Poynting vector Sy(x) across a 1D toroidal interface (i.e. 

the leftmost boundary in Figure 2.7) reads, 
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 *1 ( )
2

*
y x z x zS (x) Re H (x)E (x)- E (x)H (x)   (2.42) 

We perform an inverse Fourier transform along the toroidal direction for all the magnetic and electric 

components contained in Eq. (2.42). The power spectrum comes from integration of Sy from x   to 

x   

 
' * ' * ' '1 [ ]exp(i i )

2
[ ]

+ + + +

y x x x x z x z x x x x x
- - - -

S (x)dx Re dx dk dk H (k )E (k ) H (k )E (k ) k x k x
   

   

        (2.43) 

Then using the property of Dirac distribution 

 exp( ) 2 ( )ikx dx k




   (2.44) 

And substituting Eq. (2.44) into Eq. (2.43) immediately yields to, 

 * *
+ + +

y x x z x x x x z x x
- - -

S (x)dx Re H (k )E (k )dk Re E (k )H (k )dk 
  

  

      (2.45) 

Where kx is the toroidal wave number. In reality, the length of interface cannot goes to infinity, but it 

can still be approximated by extending the interface and imposing periodic boundary conditions at its two 

extremities.   

 

 

Figure 2.8. Toroidal power spectrum, f=w/2π=48×106Hz, x
x

k cn
w

  

A graph of the power spectrum of the monopole phasing and dipole phasing is shown in Figure 2.8. 

The electromagnetic fields are taken from the plasma stands radially 50cm away from the straps. The 
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monopole phasing has the main lobe at nx=0, whereas the main lobe in dipole phasing are located at 

|nx|=9. Compared to the current spectrum, which has a main lobe at nx=13, the power spectrum has a 

phase shifting towards nx =0. This is because under high nx, the R-cutoff layer shifts towards the plasma 

center. The fast wave evanescence length is accordingly getting larger. More power is being reflected and 

less power is transmitted to the central plasma. 

2.2  Numerical techniques used in modelling full wave propagation at the SOL 
No analytical solution fulfilling the wave equation Eq. (2.1) exists for an inhomogeneous plasma. Thus 

one has to rely on numerical methods. Any numerical model for the ICRF wave coupling needs at least 

two ingredients, the wave excitation and wave damping. Depending on the complexity of the code, the 

wave can be excited through imposing a current, voltage or external field map on the 

antenna/sheet/aperture, etc. The wave can be damped by collision or absorbed in an artificially layer, i.e. 

perfectly matched layer.  

2.2.1  Numerical techniques to solve the wave equation  
Although no simple solution exists, there are some dedicated methods to do this. Wentzel-Kramer-

Brillouin (WKB) method or ray-tracing [Swanson 2003][Van Eester 1989] can give an accurate solution for 

a single wave in a slowly evolving plasma (invariant over one wavelength). Ray-tracing is a generalized 

WKB method, it traces the energy fronts of many waves. It is a perfect tool to describe short-wavelength 

waves. The typical ICRF wavelength (~1cm) is much shorter than the machine size (1m) thus the WKB 

method is applicable at this point. On the other hand, the WKB approach becomes invalid at the cut-off 

and resonance layers whereas in the Tokamak edge plasma, this layers are often present. Spectral analysis 

is capable to model the waves at these special positions and it is cheap in terms of memory. But Fourier 

transform can be done only with periodic or infinite boundary conditions. A realistic boundary condition 

can be much more complicated than this. When the geometry has transitions, one needs to perform mode 

matching at the interface between two geometries. Finite Difference method is convenient when the 

geometry is regular or can be subdivided by regular domains. In the latter case, the fields need to be 

matched at each internal boundary. The scope of this thesis is to find a numerical solution to the wave 

problem in an inhomogeneous plasma with realistic boundary shapes, sophisticated boundary conditions, 

i.e. sheath boundary conditions. Thus none of the above methods fit our requirements. This thesis uses 

the finite element solver which is embedded in a commercial software, COMSOL Multiphysics. By adopting 

the finite element method, one has a great flexibility to set up realistic boundaries and special boundary 

conditions. 

2.2.2  RF wave excitation 
There are generally two ways to couple RF waves into a plasma: inductive coupling and capacitive 

coupling [Chabert 2011] [Lieberman 2005]. In a Tokamak, the RF field is excited by a strong current flowing 

on the straps, thus it is an inductive coupling discharge. A realistic heating system uses coaxial line to feed 

the radiating straps. Thus the best way to simulate the wave emission is imposing a voltage drop between 

the inner conductor and outer conductor of the coaxial line, or simply impose a constant power at the 

port. Figure 2.9 shows a part of the TS classical antenna model. The RF field excitation is done by imposing 

a voltage drop or power at the blue gap of the coaxial line. A current loop is formed flowing from one 

coaxial feeder to the other (does not show in the figure). However, this treatment requires a 3D geometry. 

In this thesis, due to the computational memory and time consuming of the simulation, we will only tackle 

2D problem, providing everything is infinite and homogeneous in the third (poloidal) direction. In a 2D 
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model, one generally cuts the strap in one poloidal position and then imposes current or electric field on 

the obtained rectangular boundaries. Strictly speaking, prescribing a current on the strap is not very self-

consistent because the plasma can induce current on the straps too.  A better way to model the antenna-

plasma coupling more self-consistently is to introduce an electric field map from the 3D solver directly on 

a prescribed place at the boundary of the 2D simulation domain, i.e. the aperture.  

 

 
Figure 2.9. A schematic view of RF field excitation in RF modeling for inductive coupling. In a realistic 3D 
antenna model, voltage/power excitation is imposed at the outer port of the coaxial feeder. Green part 

shows in case of 2D, strap falls to a rectangle  
 

An example of the antenna aperture is shown in Figure 2.10. From the 3D simulation, we could export 

the field map at one radial position, e.g. at the Faraday screen and then import it into the 2D simulation. 

The 2D model is a cut in one poloidal position. If one can neglect the poloidal derivative, a 3D results can 

be done using 2D model through scanning all the poloidal positions with a regular step size. This is called 

the multiple-2D approach. The straps, side limiters, septum and the thickness of the antenna box are 

considered as perfect electric conductors and thus are removed in the simulation domain, see the blank 

ones in Figure 2.10 (b). The 2D model can be excited either or by field map at the aperture or by imposing 

currents on the straps. In the former case, choosing the aperture on/above the Faraday screen in the 3D 

model allows one to avoid implementing tilted Faraday screen bars in the 2D model. In the latter case, 

the power emanating from the strap should fulfill the following identity 

 *1 Re( ) Re( )
2 V

dV  E J P   (2.46) 

The Left-Hand Side (LHS) is a volume integral to the antenna region with J the imposed surface current 

density on the strap, whereas the Right-Hand Side (RHS) means the real part of 
*1 ( )

2 a
S

dS  P E H n  

i.e. the power flow through a closed surface Sa surrounding the strap.  
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(a) Tore Supra antenna in 3D 

modelling. Red plane is the 
aperture. 

(b) Tore Supra antenna in 2D simulation. Red curve is 
the aperture.  

Figure 2.10. Typical choices of the aperture in the 3D and 2D simulation  

 

Capacitive coupling is used in Aline [Faudot 2015] at this moment, although it is flexible to change to 

inductive coupling when needed. The Aline reactor uses a disc antenna to excite the RF fields. The disc 

antenna is essentially an electrode and the DC current flowing on its surface is negligible. The RF field is 

consequently excited by the voltage difference between the antenna and the plasma. The feeder of the 

RF disk antenna, shown in Figure 2.11 (a) is a solid stainless steel wire, which has a diameter of 6mm. It is 

further covered by a ceramic ( 152 10 / , 6, 1r rS m u     ) layer (2mm of thickness). The stainless 

wire is injected into the vacuum vessel, which is indicated by the enclosed dot lines. The upper part of the 

stainless wire has a metal connection with the disk antenna. Below the stainless wire, there is a copper 

( 76 10 / , 1, 1r rS m u     ) connection wire (1mm in diameter), which joints together the stainless 

wire and coaxial cable. The coaxial cable is connected to the RF generator. Under a typical operation 

frequency w0= 8.5×107 rad/s, the skin depth of stainless steel is 1E-4 m. It is much smaller than the 

dimensions of disk antenna, i.e. 1cm and the wire, i.e. 6E-3 m. Thus the disk antenna and stainless wire 

generally can be replaced by Perfect Electric Conductor (PEC) in the simulation, see Figure 2.11 (b). Figure 

2.11 (b) is a zoom-in of the rectangular region enclosed by dot lines in Figure 2.11 (a). In 2D modeling, in 

the same way as imposing the field map at a chosen aperture. The excitation was done by imposing 

tangential electric field at the bottom of the ceramic layer.  
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(a) (b) 

Figure 2.11.  A view of the RF field excitation in a capacitive coupling mode (a) A cut of the Aline disc 

antenna and its feeder. (b) Excitation in the modelling   

 

2.2.3  Wave damping 
In fusion devices, the ICRF wave is damped at the cyclotron resonance at the plasma center, but our 

interested simulation domain is in the scrape-off layer. Besides cyclotron damping is a hot plasma effect 

that cannot be captured with the adopted cold plasma tensor. In the SOL region, it is needed to introduce 

other kinds of wave damping, otherwise the wave will bouncing forth and back inside a cavity. Assuming 

a plane wave that oscillates as exp( )iwt i k r , there are two typical ways to do this.  

The perfectly matched layer (PML) emulates radiation at infinity in a bounded simulation domain. The 

underlying assumption under which the PML technique could work is that wave passing through the 

plasma never comes back (single pass absorption). The principle of the PML is that it extends the 

coordinate r into the complex domain, i.e. r=r’-ir’’, the imaginary part of the coordinate will then damp 

the propagating wave, the real part of the coordinate will take care of the evanescent one.  A detailed 

description of PML technique applied in the magnetized plasma can be found in [Jacquot 2013]. At this 

moment, the PML we used can only damp either the forward wave or the backward wave, not both at the 

same time (the reason is explained in the following page). Thus it is implemented in the region where only 

the fast wave (forward) is expected to appear, i.e. the slow wave (backward) has decayed to a negligible 

level. PML can be defined as an artificial material. In case PML is filled by the plasma, the dielectric tensor 

reads, 
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Where the stretching function Sy, Sz and Sz contains complex coordinates. They are defined in Eq. 13 in 

[Jacquot 2013]. 

 

1 0
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  (2.48) 

Here, r represents x, y, and z. Lr is the location of PML. Larger 
''
rS  and lower rP  could efficiently damp 

the wave, however it will also produce a steeper density gradient among PML, which needs finer mesh to 

keep smooth. A compromise is found to be
' 1rS  ,

'' 2rS  and 2Pr  [ Jacquot 2013]. For a forward 

wave (kr>0), the reflection coefficient can be derived as exp( '')rk S   , whereas for a  backward wave 

(kr<0), it is exp(| | '')rk S  . One can see from here why the PML cannot damp both the forward and 

backward wave at the same time. 

When PML is used in vacuum, one can simply set the non-diagonal terms of Eq. (2.47) to zero in 

addition with 11 22 33 1     . Similarly, the magnetic permeability in PML reads, 
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  (2.49) 

In plasma reactors, i.e. Aline, collision plays an important role for damping the wave. Wave energy can 

be damped through collisions.  This is done by adding a collision term Fco in the equation of motion, Eq. 

(2.2), after linearization 

 ( )s s com q F
t


   



s
s

v E v Β   (2.50) 

Considering collisions with neutrals, the simplest expression for the collision term is co s coF m w sv , 

where wco is the collision frequency. Move the collision term to the left side, and repeat the steps of 

deriving dielectric tensor. Now in the new dielectric tensor, the wave frequency is extended to a complex 
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number. For example, Eq. (2.5), Eq. (2.8) and Eq. (2.9) should transform w into (w-iwco) in their original 

formula.  
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A typical ion-neutral collision frequency is like 105 rad/s for Argon plasma [Faudot 2015].  

 

2.3  Sheath properties in DC and RF regimes 
Here we start to talk about sheath. Sheath is a thin (<1mm) layer at the plasma/wall interface. Inside 

the sheath, the charge neutrality breaks down and a separation of electrons and ions occurs. Ion density 

is generally larger than the electrons. The sheath width is much shorter compared to the ion mean free 

path. Thus we assume there is no collision inside the sheath. The Direct Current (DC) sheath does not vary 

in time. Typical DC sheath, i.e.  Bohm sheath and Debye sheath, has a thickness of several Debye lengths. 

The Radio Frequency (RF) sheath is induced by oscillating RF waves. It expands and contracts sinusoidally, 

following the RF wave oscillation. Although the RF sheath oscillates during the RF cycle, over one period, 

its net contribution to the DC plasma potential is non-zero. Instead, it often enhances the DC plasma 

biasing with respect to the wall. The DC plasma potential enhancement by sheath RF oscillations or simply 

called sheath rectification has long been accused to cause many deleterious RF edge effects. Previous 

literatures has studied extensively the DC sheath perpendicular to B0 [Lieberman 2005][Stangeby 2000], 

while relatively less literatures talk about DC sheath with tilted B0 [Chodura 1982][Stangeby 2012]. One 

generally makes an analogy between the RF sheath and a capacitor, which suggests an important 

characteristic of RF sheath: the sheath capacitance. While the theory of the sheath capacitance has been 

well established in the case where the B0 is perpendicular to the wall, there is no theory being developed 

yet under tilted B0. 

2.3.1  DC sheath B0  
The DC sheath has been studied for a long time. The physics of DC sheath is well known [Lieberman 

2005]. The magnetic field lines are open at the edge and connect to the wall. Particles flow along the 

magnetic field line. Due to the different mobilities between ions and electrons. The plasma is often 

positively biased with respect to the grounded wall. A voltage drop is thus created between the plasma 

and the wall. This voltage in turn accelerates ions and repels electrons, see Figure 2.12. 

In order to form a stable DC sheath, the ion speed at the sheath entrance must exceed the Bohm speed 

[Bohm 1949] or the sound speed. The Bohm /sound speed reads 

 
( )B e i

s
i

k T TC
m


   (2.51) 

Where mi is the ion mass. Some literatures indicate that a pre-sheath [Lieberman 2005] is required to 

accelerate ions to Bohm speed before entering the sheath. The pre-sheath lies in front of the sheath. The 

density at the exit of the pre-sheath is consequently the density at the entrance of the sheath.  The pre-

sheath is much larger than the sheath in scale and charge neutrality is still preserved there. Sometimes it 
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is simply the plasma itself [Stangeby 2000]. But the density at the exit of the pre-sheath is approximately 

half the density in the plasma. 

 
Figure 2.12. A diagram of DC sheath formation 

 

If there is no ionization inside the sheath, the ion current is constant all along the sheath. The current 

density, also called ion saturation current density, reads, 

 
2

B i
is i s

nJ q C    (2.52) 

Where ni is the ion density in the plasma. The superscript B denotes the wall is perpendicular to the 

magnetic field line.  

 Inside the sheath, electrons are repelled. One generally assumes that the electron density follows the 

Boltzmann distribution. Maxwellian distribution is still a good approximation for the election velocity 

because the directed electron velocity is small in comparison with the thermal velocity [Godyak 1976]. 

For the Maxwellian electrons, the thermal speed is defined as 

 8 /B e ev k T m   (2.53) 

Considering the Maxwellian velocity and Boltzmann density, the electron current density inside the 

sheath has the form 

 exp( )
8

B e
electron

B e

n ev e VJ
k T

  
   (2.54) 

Where ne is the electron density inside plasma, ΔV is the potential drop across the sheath. For a 

grounded wall, it is equal to the plasma potential VDC.  If the wall is floating (i.e. isolated), a steady-state 
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is reached when the ion flux reaching the wall is equal to the electron flux. The wall potential at this state 

is called the floating potential. By equaling Eq. (2.52)and Eq. (2.54),  one gets the expression of the floating 

potential Vf,  

 
2ln( (1 ))

2
B e e i

f
i e

k T m TV
e m T


    (2.55) 

In deriving Eq.(2.55) qi=e is assumed and the plasma neutrality gives ni=ne.  

The floating potential can be directly measured by a Langmuir probe, a figure of such a probe has been 

shown in Chapter 1. When a Langmuir probe is inserted into the plasma, a Bohm sheath [Stangeby 2000] 

is formed at the tip of the probe. Through analyzing the current and voltage picked up by the probe, one 

can obtain a current-voltage relation, i.e. the I/V characteristic. A typical I/V characteristic from probe 

measurement is shown in Figure 2.13.  

In Figure 2.13, Vf  is the point where the I/V curve crosses zero, corresponding to the case in which no 

net current is arriving at the probe surface.  

 

At the two extremities of the I/V 
characteristic, there are two parts (B and D) 
where the current is almost stable. The B part 
represents the electron saturation regime. It is 
the state when the probe potential equals to the 
plasma potential. No sheath is formed at this 
state. Electrons flow to the probe with a thermal 
velocity. The corresponding current is called the 
electron saturation current  

8
B e

es
n evJ    (2.56) 

On the contrary, if the probe potential is much 
lower than the plasma potential. There is no 
electrons inside sheath. The probe will only 
collect the ion current. The current in this case is 
the ion saturation current. Its expression is 
shown in Eq. (2.52). 
 

Figure 2.13. Probe I/V characteristic   

In principle, the plasma potential can also be obtained from the I/V diagram by determining the point 

with the maximum slop [Chen 2003].  But in reality, with the presence of the magnetic field, the I/V curve 

will suffer a lot of fluctuations and thus is difficult to determine the plasma potential by this way. A more 

advanced method is to use the field retarding analyzer [Gahan 2008][Kubic 2013]. 

The DC sheath has a constant sheath width. It is described by the Child-Langmuir law [Child 

1911][Langmuir 1913],  

 3/4( )B DC
sh De

B e

eV
k T

     (2.57) 
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For a grounded wall, i.e. Tokamak vessel, VDC is the plasma potential. For a floating wall, it is the voltage 

across the DC sheath. Eq. (2.57) was firstly derived as a voltage-current relation in a thermionic diode 

which is occupied by electron space charge. Later a similar dependence was found between the sheath 

width and the magnitude of the DC plasma potential [Chabert 2011].  

2.3.2  RF oscillating sheath B0:  sheath capacitance 
Until now, we did not consider the impact of RF waves on sheath. The interaction between sheath and 

waves [Noterdaeme 1993] is the key topic of this thesis. RF sheath can be modelled by a circuit model 

[Chabert 2011], which consists of a constant current source, a reversed diode and a capacitor, see Figure 

2.14. The ion conduction current flows through the current source whereas the electron conduction 

current flows through the reversed diode. Due to the inherent time-varying feature of the RF sheath, a 

displacement current is also present, which passes through the capacitor.  

 
Figure 2.14. Equivalent circuit of RF sheath 

 

We consider a specific regime, (a) the wave frequency is between the ion plasma frequency and the 

electron plasma frequency, i.e. pi pew w w  ; (b) RF sheath voltage is high, i.e. /sh B eV k T e ; (c) No 

currents enter or exit the sheath at the perpendicular direction. (d) Sheath is electrostatic. Assumption (a) 

guarantees the ions respond only time-averaged potential, whereas electrons can respond to the 

instantaneous potential. Assumption (b) suggests that the electron density tends to reach zero in the 

sheath, and the displacement current is much larger than the conduction current. Assumption (c) ensures 

the total current is conserved all through the sheath along the parallel direction. Under these assumptions, 

Chabert [Chabert 2011] proves that a current-driven symmetric double sheath with a constant ion density 

can be treated as a single capacitor. Lieberman [Lieberman 2005] [Lieberman 1988] further demonstrates 

that the sheath RF capacitance is still valid in case of an inhomogeneous ion density when the wall is 

floating. Strictly speaking, the RF capacitance is valid only for a series of two sheaths, shown in Figure 2.15. 

However, at first approximation, we assume that a single sheath can be treated as a capacitor too.  
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Figure 2.15. A draw of a current-driven symmetric double sheath 

 

Sheath capacitance gives a definition to VRF, which reads 

 / / / /
B B

n sh sh
RF

sh sh

D EV   

 

 

      (2.58) 

where 𝛿𝑠ℎ
⊥𝐵, / / have been defined in Eq. (2.57), Eq. (2.5) and n represents the normal direction from 

sheath towards the plasma. The sheath capacitance per unit was used 𝐶𝑠ℎ =
𝜀𝑠ℎ

𝛿𝑠ℎ
⊥𝐵 in deriving Eq. (2.58). 

When B0 is perpendicular to the wall, n is also the parallel direction. The constitutive relation links the 

normal displacement Dn and the parallel electric field E//. sh  is the sheath dielectric permittivity. 

Opposite signs in the last step accounts for the reversal of the normal direction, + when   
ˆ

1
n
e z and 

- when  
ˆ

1
n

e z .  

2.3.3  DC sheath rectification B0 
In the presence of the RF waves, the plasma potential will be more positively biased w.r.t the wall via 

a non-linear process called sheath rectification. To understand this process, we write down the averaged 

current density inside the sheath over one RF period. Please note that the net displacement current 

vanishes after averaging. Thus only the electron and ion conduction current persist. Combining the ion 

current Eq. (2.52) and electron current Eq. (2.54), and making use of Eq. (2.55), the DC current density 

averaged over one RF period T0 is obtained: 
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Where  

 ( ) costot DC RFV t V V wt    (2.60) 
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is the instantaneous voltage drop across the total sheath (RF sheath + DC sheath). Here it is implicitly 

assumed that the RF sheath and DC sheath share the same boundary. This is not true when B0 is tilted to 

the wall, see Chodura’s model in the next subsection. In Eq. (2.59) we use the electron saturation current 

as the threshold for the electron conduction current. 

The averaging of cosRFV wt  leads to a modified Bessel function of the first kind, 

 0
0

1( ) exp( cos ) ( )RF RFI V V wt d wt



    (2.61) 

Substitute Eq. (2.61) into Eq. (2.59), one gets the final DC current expression when B0 is perpendicular 

to the wall,  
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Where 0
| |ln[ ( )]B e RF

b
B e

k T e VV I
e k T

  is the additional biasing to the DC plasma potential by the oscillating 

RF waves.  From Eq. (2.62), one can understand although the average of the RF quantities over one period 

is zero, its net contribution to the DC plasma potential and the DC current is nonzero. This is the so-called 

DC sheath rectification by RF oscillations.  

  
Figure 2.16. An illustration of DC sheath rectification 

 

Figure 2.16 is a graphic view of the DC sheath rectification.  The I/V characteristic in this figure stands 

for the D region in Figure 2.13. When there is no wave present, the I/V characteristic is the green curve. 

The DC plasma potential and current are time independent. With the RF oscillations, the curve is shifted 

rightwards and the current is a function of the time-dependent potential Vtot. After averaging over time, 

the new current curve is the black one. Consequently, the plasma potential becomes more positive w.r.t 

the wall potential. 
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2.3.4  DC sheath under tilted B0: Chodura’s model 
A pioneering work on DC sheath under tilted B0 is done by Chodura [Chodura 1982] and reviewed by 

Stangeby [Stangeby 1994][Stangeby 2012]. Chodura’s model is shown in Figure 2.17. It considers a 

poloidal-toroidal geometry. B0 is tilted as it is in Figure 2.1.  Under the tilted magnetic configuration, a 

quasi-neutral region called “Chodura sheath” or “magnetic pre-sheath” will occur, which turns the ion 

flow from being sonic/supersonic at the parallel-to-B0 direction to being sonic/supersonic at the 

perpendicular-to-wall direction. Chodura sheath has a typical size of ion Larmor radius. Ions then enter 

into the normal charge separated DC sheath or Debye sheath whose size is a few Debye lengths. Debye 

sheath can exist without the presence of magnetic field, and the ion motion is dominated by the electric 

field. Recall Bohm criterion about the sheath formation, ion speed must be no less than the sound speed, 

which represents the Mach number M=Vz/Cs≥1, at the entrance of Debye sheath. Similar to this, [Chodura 

1982] also proved that at the entrance of the Chodura’s sheath, the ion parallel velocity should obey 

V///Cs≥1. To obtain this, a quasineutral pre-sheath region is defined in this model, in this region the 

electron pressure gradient creates a balanced electric field, which in turn accelerates ions to the sound 

speed at the entrance of Chodura’s sheath. As mentioned in the subsection 2.3.1 , the ion density is half 

of the plasma density at the pre-sheath boundary. Chodura made an assumption that the plasma flow 

speed is sonic in the direction of normal to the wall at the exit of the Chodura sheath in order to excite 

the Debye sheath. However, [Stangeby 2012] shows in a strongly tilted sheath ϴ~900, the ion speed at the 

Chodura’s sheath exit can be subsonic due to the disappearance of the Debye sheath. In this text, we 

assume that the ion speed V// and Vz equal to the sound speed at the entrance of the Chodura sheath and 

the Debye sheath, respectively.  

With a floating wall, Chodura shows that the total voltage drop across the two sheaths Vtot is almost 

independent on the tilt angle, which is only an approximation for our non-floating case, i.e. the Tokamak 

wall is grounded. 

RF sheath is approximately considered as a plate capacitor, while a capacitor is related to the charge 

separation, which happened in Debye sheath here. Now we assume all the oscillating RF part is carried by 

the Debye sheath, i.e. the Chodura sheath is time independent. We extend Chodura DC sheath model 

given by a collisionless fluid model [Stangeby 2012] into a dynamic model. Adopting the current magnetic 

configuration, the potential drop at the Chodura’s sheath reads 

 ln(cos )B e
CS

k TV
e

    (2.63) 

To be self-consistent, the following VDS is chosen 

 ( ) ln(cos ) cosB e
DS DC RF

k TV t V V t
e

      (2.64) 

The ion current density at the wall now is a projection of the total ion current density that is parallel 

to the tilted magnetic field line at the Chodura sheath entrance, and thus should be multiplied by⁡cos𝜃 

 cos cos
2

B i
is is i s

nJ J q C      (2.65) 
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Similarly for the electron current density. The ( )totV t   in Eq. (2.59) should be replaced by 

( ) ( )tot CS DSV t V V t  . Finally the I/V characteristic reads,  

 f DC( )cos (1 min( ,exp( )))
B

B es b
DC is B

is B e

J e V V VJ J
J K T

 






 
     (2.66) 

Eq. (2.66) gives a similar formula as the I/V characteristic in Eq. (2.62). Thus the form we choose for VDS 

in Eq. (2.64) is self-consistent. One can see from Eq. (2.63), when magnetic field is non-tilted, the Chodura 

sheath is disappeared. This corresponds to subsection 2.3.3, where VDC and VRF are defined at the same 

sheath. Now with the magnetic field tilted, VRF is defined only in the Debye sheath, while the DC voltage 

is the combination of the Chodura sheath and DC part of the Debye sheath. From Eq. (2.64), we can also 

derive the displacement current inside the Deybe sheath as 

 * * sinDS
d DS DS RF

dVJ C C V t
dt

       (2.67) 

Where the equivalent capacitance per surface unit is  

 *

( )
sh

DS
DS

C 

 
   (2.68) 

Similar to the Child-Langmuir law for DC sheath, here we assume the Debye sheath width is a function 

of DC part of VDS(t), which reads 

 3/4( ) ( )( ln(cos ))DC
DS De

B e

eV
k T

        (2.69) 

 
Figure 2.17. Chodura’s DC sheath model for a tilted magnetic configuration 
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Where
1/2( ) cosDe De    . Note that the sheath width depends on the tilt angle. One can see when 

θ=0o, it falls back to Eq. (2.57). The Debye length also depends on the tilt angle, since the density at the 

entrance of Debye sheath contains the tilt angle. However, this formula fail to validate when θ~90o, where 

sheath width from this formula can be infinite. In such a strongly tilted case, there is a criterion θcrit, above 

this criterion θ, Stangeby [Stangeby 2012] has proved that⁡δ𝐷𝑆(𝜃) = 0. Consistent to this result, a 2D 

paricle-in-cell (PIC) simulation shows that the rectification of the RF potential is reduced or disappeared 

when the Debye sheath cease to exist [Heuraux 2015]. Strictly speaking, at the parallel boundaries, the 

cross field sheath [Moritz 2016] could still appear due to the difference of the Larmor radius between ions 

and electrons. This specific sheath is not considered in this thesis. 

2.3.5  RF sheath under the tilted B0: a simple model and open issues 
Very few literatures exist on studying the RF sheath under the tilted B0. No literature has proposed an 

explicit formula for the RF sheath capacitance under the tilted B0. Nevertheless, we extrapolate a similar 

form to Eq. (2.58), but now with the new sheath width obtained from Eq. (2.69). The sheath capacitance 

under tilted B0 thus becomes, 

 
( ) ( )n DS z DS

RF
sh sh

D DV    

 
      (2.70) 

Where Dz is the toroidal displacement. The justification of Eq. (2.70) can only be done through more 

fundamental physics investigations. Works are still undergoing on exploring the sheath behaviors under 

tilted B0 using a PIC code [Verboncoeur 1995] and a 1D Vlasov code [Devaux 2006].  

A more generalized form of the sheath capacitance Eq. (2.70) is proposed in [D’Ippolito 2015] in the 

middle of this thesis.  It releases the “immobile ion” assumption and both the resistive and capacitive part 

of the RF sheath are retained in their new model.  This thesis will still keep using the older sheath 

capacitance Eq. (2.70). Applying the generalized sheath boundary condition is foreseen in the future.  

2.3.6  Sheath as a boundary condition  
Since sheath is geometrically thin, it is often treated as a boundary condition in the simulation. A well-

known RF sheath boundary condition is proposed by Myra and D’Ippolito [D’Ippolito 2006]. It considers 

an electrostatic and capacitive sheath. The ions are immobile in response to the RF wave pulse, meaning 

that they are either strongly magnetized or the steady-state magnetic field is normal to the sheath. Under 

this assumption, the conduction current is much smaller than the displacement current so it can be 

neglected. In this model, the plasma density has a sharp transition from the plasma to the sheath region 

[VanEester 2013], which overlooks the possible existence of the lower hybrid resonance inside the sheath. 

Under these approximation, the resistive part of the sheath is discarded. Making use of the continuity of 

the normal displacement at the sheath/plasma interface, the electrostatic assumption and sheath 

capacitance, it leads to a simple formula that the tangential electric fields are equal to the tangential 

gradient of the RF sheath voltage, at the sheath entrance,  

 t t RFE V    (2.71) 

Where the subscript “t” denote the tangential components.  

Efforts are ongoing at LPP Brussels to examine this sheath boundary condition and assess its validity 

domain by a 1D FORTRAN code [Van Eester 2015]. Success would justify replacing metallic boundary 



Theoretical basis of this thesis                      Chapter. II  

50 
 

conditions by this sheath boundary conditions; failure would force one to account for solving multiple 

basic equations, i.e. Maxwell’s equation, equation of motion and continuity equation at differing time 

scales simultaneously.  

2.4  Status of IC wave coupling and RF sheath modeling before this thesis 
There are numerous wave coupling and RF sheath modeling codes that existed before this thesis. A 

good review of numerical modeling tools on these two fields can be found in [Heuraux 2015]. Here we 

will give a short overview of the status of the modelling codes before this thesis. 

2.4.1  Wave coupling codes 
Plenty of numerical codes have been developed to study the ICRF wave propagation and coupling.  

ANTITER II [Messiaen 2010] has a simple antenna geometry consisting of an array of boxes that are 

recessed in the metal wall. In each of these boxes, the RF field is excited by a thin radiating strap. The 

antenna is sitting in vacuum. A mode matching technique is used at the plasma/vacuum interface to 

ensure the continuity of the tangential fields. Calculation by this code is fast but it relies on the input from 

other codes with more complex geometry. The TOPICA code [Lancellotti 2006] has a so far the most 

realistic 3D antenna geometry. The code is based on the “method of moment”. It has difficulties to include 

plasma density inside the antenna box and it need to perform an impedance matrix transform at the 

plasma/vacuum interface. The TORIC code [Brambilla 1998A][Brambilla 2006] solves the differential wave 

equation using a spectral decomposition by the fast Fourier transform. It is a useful tool to simulate IC 

wave heating in a thermal plasma. FELICE [Brambilla 1989] solves the same set of equation as TORIC, but 

the plasma is discretized into a series of slabs. Both the TORIC and FELICE codes treat the antenna as a 

current sheet. The EVE code [Dumont 2009] simulates the wave coupling in a hot plasma using a 

variational form of Maxwell’s equation. Compared to other codes where the differential operator is used, 

the main advantage of the variational form approach is that it ensures the energy conservation.  This code 

uses a fixed current on the antenna (sheet) to excite the field, the antenna-plasma coupling is thus not 

modelled self-consistently. This weakness is overcome by using the boundary element method in ICANT 

code [Pécoul 2002]. Some of the codes developed from the first principles using FORTRAN or any other 

basic languages usually restrict themselves in a simplified geometry. Upgrading them to a complex 

geometry and applying multiple types of finite element shapes would be tough and needs a lot of 

programming. Recently emerged commercial softwares give unprecedented flexibilities to model wave 

physics. Most of the code based on CST microwave studio [Louche 2015] and HFSS software [Hillairet 2015] 

have a problem to implement the off-diagonal term of the plasma dielectric tensor so they lose the typical 

gyrotropic properties of a magnetized plasma.  

A 2D full wave (fast wave + slow wave) coupling code, (name: RAPLICASOL) [Jacquot 2013] with 

magnetic field either parallel or perpendicular to the wall, dedicated to study of wave coupling problems 

in a collisionless magnetized cold edge plasma has been developed and tested based on COMSOL 

Multiphysics finite element solver. During this thesis, this code has been further extended into a tilted 

magnetic configuration [Lu 2016] and a curved cylindrical geometry [Jacquot 2015]. The details of this 

code will be presented in the next chapter.    

2.4.2  RF sheath modeling codes 
The first modelling of the RF sheath rectification was made by Perkins [Perkins 1989]. Following his 

way of thinking, the oscillating RF voltage is calculated by an integral of E// along magnetic field line, where 

the E// is generally obtained in the full wave simulation without sheath, i.e. the plasma is in contact with 
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the metallic wall. This approach has been challenged both theoretically and experimentally. For example, 

it can hardly explain that opposite variations of sheath effect were observed at the two ends of the same 

open flux tube in ToreSupra (TS) [Jacquot 2014] and ASDEX Upgrade (AUG) [Bobkov 2015]. One of the 

main obstacle in modeling the RF+DC problem is that the plasma is a time-dispersive medium, so no single 

dielectric tensor, Eq. (2.4) or conductivity tensor is valid for all frequencies. Kohno [Kohno 2012] 

demonstrates the use of the finite element approach of solving plasma waves subject to sheath boundary 

conditions mentioned in subsection 2.3.6 . However in his paper [kohno 2012A], he avoids computing 

different time scales by using a crude approach to estimate the rectified potential. A better way is to 

separate these two time-scales. The Self-consistent Sheath and Waves for ICH (SSWICH) code solves the 

slow wave propagation, the RF oscillating sheath voltage and the DC plasma potential and then couples 

these three fields in a loop by non-linear sheath boundary conditions, i.e. sheath capacitance, sheath 

rectification and the RF sheath boundary condition presented in subsection 2.3.6 . The RF part and DC 

part are solved in different steps using different conductivity tensors. A first version of SSWICH had 2D 

(toroidal and radial) geometry, rectangular walls either normal or parallel to the confinement magnetic 

field B0 and only included the evanescent slow wave (SW) excited parasitically by the ICRF antenna.  It has 

reproduced qualitatively the poloidal distribution of DC sheath voltage in TS [Jacquot 2014] and AUG 

experiment [Krivska 2015]. Within this formalism, sheaths at the two ends of the same magnetic field line 

can oscillate differently, due to the toroidal proximity effects in the sheath excitation by the evanescent 

slow wave [Colas 2016]. The LPP code [Van Eester 2015] also follows this strategy, it solves self-

consistently the interplay between full wave (fast wave + slow wave) and plasma density. The fast time 

scale modifies the density of the slow time scale via non-linear Ponderomotive effect. An alternative way 

to model RF+DC problem is used by Smithe [Smithe 2015]. He uses the method of “auxiliary differential 

equations”, which allows frequency dependent materials to be treated in the time domain. Using the 

same strategy, Faudot [Faudot 2013] develops a 1D time-dependent fluid model which counts for both 

the transversal RF and DC current. Unlike the first strategy, in their method, the plasma conductivity 

tensor is replaced by a conductivity operator.   

2.5  Motivation for this thesis 
This thesis is a part of a working project whose ultimate goal is to minimize deleterious effects of RF 

near field to have heating system reliable for steady state operation.  As a first step to understand the 

physical reasons behind the RF edge effects mentioned in chapter 1, the RAPLICASOL code and the 

SSWICH-SW code have been established before the start of this thesis by Jacquot [Jacquot 2014]. 

Following his work, this thesis focuses on upgrading these simulation tools and using them to investigate 

the RF wave coupling and DC sheath rectification by RF waves.  

This thesis work was conducted in 3 different European labs, the Institute for magnetic fusion research 

(IRFM) in France, the Laboratory for plasma physics (LPP) in Brussels and the Institute Jean Lamour (IJL) at 

the University of Lorraine. The works that has been done in these 3 labs are synthesized into three parts.    

Most present Ion Cyclotron Resonant Frequency (ICRF) heating codes and antenna codes mentioned 

in the previous section assume the antenna sitting in a vacuum region and consider the fast wave only, 

which implicitly performs an abrupt density transition from vacuum to the above lower hybrid (LH) 

resonance, Eq. (2.35). The impact of the appearance of the LH resonance is entirely overlooked in their 

simulations. This motivated the first part of this thesis work which was done at LPP, namely, studying the 
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impact of densities that decay continuously inside the antenna box on near field patterns and power 

coupling. 

The central part of this thesis work was to introduce the fast wave into 2D SSWICH-SW. The 2D SSWICH-

SW version has a magnetic field either //B0 or B0. Under such a magnetic configuration, the fast wave 

which is the main heating wave, is missing in the sheath formation. Besides, measurement in Tore Supra 

by a retarding field analyzer (RFA) shows that the radial extension of DC plasma potential is far beyond 

the slow wave evanescence length. At this measurement, the RFA is magnetically connected to the leading 

edge of one of the antenna’s side limiter, see Figure 2.18 (right), although the length of the magnetic field 

line between them is 12m. The potential measured by the RFA is thought to represent the potential at 

that limiter leading edge, see the shading parallelogram in Figure 2.18 (right).  Figure 2.18 (left) is a 

differential potential map measured by the RFA. Vhalf is the potential corresponding to half of the ion 

saturation current and Vsh is the time-averaged rectified potential, seen by the RFA. The difference 

between Vhalf and Vsh indicates the broadening of the ion distribution function and thus reflects relatively 

the DC plasma potential. In this figure, the VDC broadening is approximately 1.5cm, indicated by the blue 

arrow line in the left figure.  Whereas the slow wave evanescence length calculated by Eq. (2.19) is about 

5mm. So this VDC broadening cannot be fully explained by the evanescent slow wave. This contradictory 

was temporarily explained by introducing radial DC current transport, where an ad-hoc plasma 

perpendicular conductivity was embedded in the equation. One generally assumes that the slow wave 

propagates along the magnetic field line. So the slow wave could be the reason for the sheath excitation 

only if the target wall is magnetically connected to the place where the slow wave is excited, which is the 

case here. But the distance between them is 12m. With typical evanescence length of a few millimeters, 

the slow wave certainly cannot penetrate such a long distance along the parallel direction.    

 

  
Figure 2.18. Left: Measurement from retarding field analyzer in Tore Supra, cite from [Kubic 2013] 

Right: ICRF antenna front face, and field line trajectory from the leading edge of the side limiter to RFA. 
Shading parallelogram is the plane where the 2D measurement (left) represents for. 
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A large plasma potential (>100V) on field lines that are not connected to the RF antenna has been 

observed explicitly in the C-mod Tokamak [Ochoukov 2014] and that is explained by the fast wave induced 

far-field sheath [D’Ippolito 2014]. The fast wave propagates further away from the wave launcher, and 

thus it can access remote areas that cannot be approached by the slow wave. 

In addition, in a realistic Tokamak, the wall is shaped and the magnetic field is tilted to the wall. Under 

this magnetic configuration, the fast wave is automatically coupled to the sheath boundary conditions 

and thus contributes to the sheath formation. Besides, previous literature indicates that a sort of “mode 

conversion” could occur if the magnetic field is tilted to the wall. [D’Ippolito 2008] proves that for an 

oblique incidence, single reflected wave is not enough to fulfill either the metallic boundary condition or 

the sheath boundary condition at the wall. Thus the incident fast wave must be converted to the slow 

wave upon the reflection. A graphic illustration of this mechanism is shown in Figure 2.19. One can see 

these two waves indeed need to be treated simultaneously.  

Then the question being asked is “what is the role of the fast wave in the plasma wave interaction”. 

This question motivates one to couple the fast wave into SSWICH modeling. Now with tilted magnetic 

configuration, it will be shown in Chapter 4 that the fast wave is now being added in the new SSWICH 

version. The fast wave propagates further away from the wave launcher, and thus it provides a mechanism 

to excite the far field sheath. Secondly, it may provide an additional mechanism to interpret the VDC radial 

broadening measured experimentally by RFA. Finally, with the full wave being assembled in the code, the 

wave coupling and sheath physics could be studied in one single code, that is to say, combine the previous 

SSWICH code and RAPLICASOL code together.   

 

 
Figure 2.19. Mode conversion mechanism under tilted magnetic configuration  

 

A new code should be able to explain some experimental facts. The first SSWICH version, 2D SSWICH-

SW had already made some comparison with measurements from Tore Supra. The new 2D SSWICH-FW 

code should recover these results and possibly go beyond, i.e. observe the far field sheath. The Aline 

machine was set into operation during this thesis. It had a first Argon plasma on June 2014.  Simulations 
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are needed to interpret the probe potential measurement and predict the conditions for observing the 

helicon waves in Aline. The new SSWICH-FW could contribute to these work by conducting dedicated 

simulations. This motivates the third part of this thesis work: the applications of the 2D SSWICH-FW code.  

2.6  Thesis outline 
The first two chapters aim at providing the background and theoretical basis for understanding this 

thesis work. This thesis work is divided into three parts: 1. Upgrading the 2D RAPLICASOL code and 

deploying it to model wave coupling with a density across the Lower hybrid resonance; 2. Introducing the 

fast wave, tilted magnetic field and shaped walls into the 2D SSWICH-SW code; 3. Numerical test of the 

new 2D SSWICH-FW code and performing interpretive simulations for Tore Supra Tokamak and Aline. 

Chapter 3 presents the results on wave coupling simulations with a finite, inhomogeneous density 

inside the antenna box. First of all, specification of the new full wave code with tilted B0 is introduced. 

Then we study the near field pattern above and below the lower hybrid resonance. The last part is to 

investigate the impact of this low density on power coupling and radiating power spectrum. 

Chapter 4 is the technical development of the 2D SSWICH-FW code. The new code combines the sheath 

physics and wave coupling together. At first, the specifications of the new 2D SSWICH-FW code designed 

for Tokamak simulation are introduced and the challenges in extension to 3D are pointed out. The second 

part discusses the numerical issues encountered during the code development. The last part shows the 

modifications that are needed in order to adopt SSWICH for Aline simulations. 

Chapter 5 is the application of the 2D SSWICH-FW code. In this chapter, the questions being asked at 

the beginning of this thesis: the role of the fast wave is answered by testing this new code and performing 

direct comparison with the previous “slow-wave-only” version. It further gives a comparison of SSWICH 

simulation with measurements from Tokamak and Aline. Besides, electromagnetic simulations for helicon 

and lower hybrid wave in Aline are also presented.  

Chapter 6 is the close remark of the whole thesis. Since the summary of the main achievements has 

been shown in the abstract.  Here we will mainly discuss the weakness of the current 2D SSWICH-FW code. 

In the end, some future improvements and applications are proposed.   
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Chapter 3  Study of wave coupling with density inside ICRF 

antenna box 
 

3.1  Introduction of this chapter 
From chapter 2, we know that the fast wave can propagate into high density plasma, which is why this 

type of wave is often used as heating wave, whereas the slow wave only propagates in plasmas with fairly 

low densities. Most current-day ICRF heating codes and antenna codes mentioned in section 2.4.1 assume 

the density close to the antenna is sufficiently low to allow it being neglected altogether, and restrict 

themselves to the fast wave excitation. In reality, a low but finite density is actually present inside the 

antenna box and a fast wave antenna parasitically excites the slow wave. So an intriguing question is 

whether this presence of density profile inside antenna will significantly change the results outside the 

antenna box. Furthermore, since no accurate density measurement presently exists experimentally inside 

the antenna box, one may ask whether an accurate density profile is essential. The power carried by the 

fast wave is the main heating power. For a given n//, the fast wave is evanescent below the R cut-off layer 

(section 2.1.5) and propagating above. The power coupling is sensitive to the fast wave evanescence 

length (section 2.1.6). For tokamak parameters like those of Tore Supra used in Figure 2.4, the R-cut off 

layer for the main n// of a Tore Supra antenna with antisymmetric (dipole) strap phasing locates at the 

plasma density close to 1018 m-3. For smaller n//, the R-cut off layer shifts from the center plasma towards 

the wall. So another question is how much the density profile inside antenna box can affect R-cut off layer 

and the coupling power.  

The physical behavior becomes more complicated when the Lower Hybrid (LH) resonance (section 

2.1.5) appears inside the antenna box. For typical tokamak parameters, i.e. ToreSupra, the LH resonance 

appears at the plasma density approaching 1017 m-3. The density is well beyond the LH resonance at the 

last closed flux surface but well below it or marginally below it at the position of the straps. Hence the LH 

resonance is a natural ingredient of wave behavior close to launching structures. Numerous papers have 

talked about this resonance. Puri [Puri 1973] discovered the collisional energy absorption at the LH 

resonance leads to a high plasma heating efficiency. Brambilla [Brambilla 1998] points out that the slow 

wave near this resonance actually shows some properties of the electrostatic waves. Recently, Després 

and Campos Pinto [Campos Pinto 2016] proposed a new weak formulation to solve the wave equation 

across the LH resonance. In their method, the specific line in the standard finite element matrix, which 

reflects the LH resonance is replaced by an integral relation. This method could capture the exact solution 

even in a relatively coarse mesh in the zero dissipation limits. Somehow at this moment, this method is 

limited in 1D and deals with the fast wave only. Crombé and Van Eester [Crombé 2014] discussed the 

wave behavior below the LH resonance, where the slow wave starts to propagate. From its dispersion 

relation, the slow wave having a nature of short wavelength can be very sensitive to the mesh size in the 

numerical simulations.  Moreover, as the wavelength gets very short, the thermal effect starts to play a 

role. An unusual situation is met at the LH resonance where the perpendicular wavelength of the slow 

wave shrinks to zero. One may wonder if it is possible to numerically capture this wave sufficiently 

accurate. And if it is not as claimed in [Crombé 2014], does a non-converged result inside antenna box 

significantly affect the results outside the box? It is interesting to know if this thin layer has a global impact 
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or not. Another question being whether the power carried by the slow wave to this resonance is significant 

or not.  

The 2D RAPLICASOL code [Jacquot 2013] has been used to investigate the radiated electric fields in the 

presence of a finite, inhomogeneous density inside the antenna box. Essentially, the fields below lower 

hybrid resonance, and the power coupling property with the appearance of lower hybrid resonance were 

examined in detail and the results of this study will be discussed in this chapter.  

The structure of this chapter is the following: Section 3.2 gives the specifications of the code and the 

parametric setup for the numerical tests, i.e. density profiles, mesh size, magnetic field tilt angle and 

phasing. Section 3.3 tunes the PML depth to minimize numerical costs while still guaranteeing a good level 

of power absorption. Section 3.4 and 3.5 analyze the simulated RF near field pattern inside the antenna 

box. Section 3.6 shows the radiated power at the antenna mouth and the role of the density gradient in 

front of antenna straps on the fast wave power coupling. Section 3.7 is the final discussion and conclusion. 

A simplified version of this chapter was published in [Lu 2016] 

3.2  Specifications of the 2D RAPLICASOL code with tilted B0 
To answer the questions being asked in the introduction, we need a dedicated numerical code. It 

should cover the following physics, a) Fields are excited by a realistic ICRF antenna model includes all the 

essential elements, antenna box, strap, limiter and so on. b) Fields need to be solved in a tokamak (cold) 

plasma, which is described by a full dielectric tensor. c) Both the fast wave and the slow wave should be 

considered simultaneously. d) It should accommodate a continuous and inhomogeneous plasma density 

across R-cut off layer and LH resonance. e) Fine mesh is needed in order to capture the short wavelength 

structure. f) As any other numerical code, it should save the computational resource as much as possible. 

g) At last, for our specific interests, implementing RF sheaths should be easy in a later stage of 

development. 

The 2D RAPLICASOL code [Jacquot 2013] has a realistic 2D geometry, which takes advantage of the 

finite element solver in COMSOL. It is a cut from the middle plane of the 3D realistic ICRH antenna, see 

Figure 3.1. Using COMSOL allows one cutting down the time spent on the code development. The 

geometry is shown in Figure 3.2, where the x direction corresponds to the toroidal direction, y is the radial 

direction and z (out of plane component) is the poloidal direction in a Tokamak geometry where the 

curvature effect has been ignored. The antenna includes two straps, the antenna box, central septum and 

lateral limiters, indicated as the blank components. All passive metallic elements are treated as Perfect 

Electric Conductor (PEC): at their interface with the plasma the tangential RF electric field vanishes. The 

antenna mouth is shown as a dashed line. We will not consider sheath in this chapter, i.e. all the external 

boundaries are PEC. 
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Figure 3.1. A diagram of Tore Supra ICRH prototype antenna. The shading area represents the geometry 

adopted in the 2D RAPLICASOL modeling   
 

 
Figure 3.2.Schematic view of 2D RAPLICASOL code in the case of a tilted B0 in poloidal (z) direction.  The 

computational area is shown in green. Dashed line is the antenna mouth. The red dashed rectangle 
represents one of the two individual boxes that consists the antenna box. 

 

The magnetic field is tilted as described in Figure 2.1. Accordingly, the cold plasma tensor is defined in 

Eq. (2.10). The tilted magnetic configuration, which did not appear in the previous version of this code, 

can introduce the fast wave in describing the Direct Current (DC) sheath biasing by RF sheath rectification 

[Lu 2016]. Thus makes it compatible with the new SSWICH-FW code. To save the computational resource, 

our simulation domain is radially and toroidally close to the vicinity of a wave launcher. We assume the 

wave transmitted to the central plasma never comes back to the antenna (single-pass absorption), which 

could occur in a real hot tokamak plasma. Under this assumption, the Perfectly Matched Layer (PML) is 

used in the code surrounding the plasma region, to emulate radiating boundary conditions in two 
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directions. The propagating fast wave is damped artificially in these layers with very low reflections. The 

PML technique described in [Jacquot 2013] is extended to tilted B0 [Lu 2016A] and has been recently 

further adapted to a curved cylindrical geometry [Jacquot 2015]. In this 2D code, the poloidal geometry is 

assumed to be infinite and homogenous. As a consequence, the poloidal derivative is set to zero. A 3D 

simulation tool is developed in parallel with this work in [Jacquot 2015]. It is however extremely memory 

demanding, and the convergence of the iterative solver is much more difficult to achieve. Thus all the 

simulations in this paper are done using the 2D code. 

In this chapter, we use a plasma solely composed of D ions. Furthermore, the following Tore Supra like 

parameters are taken [Jacquot 2014]:  magnetic field at antenna mouth B0(y=0.224)=2.32T, RF wave 

frequency 48MHz. The magnetic field strength scales as 1/Ra, with Ra the major radius axis. In our adopted 

geometry, Ra=3.382-y. All the simulations in this chapter were done using a dedicated workstation with 

64Gb of RAM memory.  

Table 3-1. Density profiles used inside the antenna box 
Density Value inside antenna box (m-3) Density at wall (m-3) Location of LH resonance 
0 0 0 Not present 
1 Extrapolate experiment profile to 1017 1×1017 Not present 
2 ne=1018exp(-(0.2195-y)/0.0933) 9.5×1016 Not present 
3 ne=1018exp(-(0.2195-y)/0.0477) 1×1016 y=0.1056m 
4 ne=1018exp(-(0.2195-y)/0.0318) 1×1015 y=0.1434m 

 

A set of continuous density profiles is used inside the antenna box, the details are shown in Table 3-1. 

Figure 3.3 is the density profile from Tore Supra shot TS 40574, the same as in Figure 2.2, but plotted in 

the new geometry. It is used outside of the antenna box. Figure 3.4 is the density profiles inside the 

antenna box, corresponding to the density profiles listed in Table 3-1. For the adopted magnetic field and 

RF wave frequency, the LH resonance occurs at ne=9.21016 m-3 i.e. at a density crossed by density 3 and 

density 4. In this chapter, we only consider the cases where the straps locate above the LH resonance and 

the LH resonance is not crossed anywhere outside the antenna box. 

  

Figure 3.3. Density profiles above the antenna, 
from TS 40574 

Figure 3.4. Density profiles inside the antenna box. 
Vertical solid lines indicate the locations of the LH 
resonance. Vertical dot line specifies the edge of 

the antenna box.  
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Our major goal is to investigate the field structure inside the antenna box, where the slow wave may 

become propagating. As mentioned above, the slow wave generally has a short wavelength. This requires 

a very fine mesh.  In the following simulations, we use four different meshes with triangular shape through 

all the domain. The details is shown in Table 3-2.  

Table 3-2. List of meshes used in the simulations 
 Mesh 1 Mesh 2 Mesh 3 Mesh 4 
Grids size (x, y) 4mm*4mm 4mm*2mm 2mm*4mm 2mm*2mm 
Number of grids in 
each individual box 

52*54 52*108 104*54 104*108 

Specific refinement Up to 800*800 
 

In those regions where the slow wave is supposed to be present, i.e. near the antenna mouth, a mesh 

refinement is added, generally 4 times or 8 times finer than the other regions. A typical simulation time 

using the above mesh is around 6 minutes. In case we need to check the convergence with extremely fine 

mesh, more intensive meshes are used, up to 800*800 grid points in each individual box. A 3D simulation 

with such a mesh density can easily run out of memory. This explains why we restrict our investigation to 

two dimensions. 

The magnetic field in this code can be tilted continuous from -90o to 90o. We start from non-tilted (0o) 

case, then pick up a realistic angle (for Tore Supra) 7o and a large angle 60o for all the field analysis. In the 

power coupling analysis, a scan of tilt angle from -90o to 90o is conducted for the sake of completeness 

although extreme tilts are clearly unrealistic in tokamaks. 

The waves are excited by imposing current on the straps. All the simulations are done with 1A poloidal 

current imposed on each strap. Both antiparallel strap currents (dipole phasing [0 ]) and parallel ones 

(monopole phasing [0 0]) are considered in order to change the radiating toroidal spectrum. 

 

3.3  Tuning the PML for implementing good radiation conditions at minimal numerical 

cost 
As having been introduced in Chapter 2, a PML is an artificial lossy medium used to enforce radiation 

conditions by stretching the spatial coordinates into the complex domain. Three PMLs are used in the 

radial-toroidal plane, see Figure 3.2. Radial PML can stretch its coordinates in the positive vertical 

direction, while toroidal PMLs can stretch in horizontal directions. Additional PML corners in each upper 

corner can stretch both in horizontal and positive vertical direction, thus keeping the continuity of 

stretched coordinates. The spatial extension of this PML is marked by Lpmlt and Lpmlr, shown in Figure 

3.5. These two parameters need to be determined before doing any wave coupling simulation.  
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Figure 3.5. 2D map of real part of poloidal electric field in dipole phasing with θ=0o. Arrows represent 

the Poynting Vector. Density 0 is used in the antenna box. Red lines are defined for the power 
measurement propose. Lpmlt=Lpmlr=0.4m. 

 

Lpmlt and Lpmlr are chosen according to the following considerations: A. the slow wave should have 

been evanescent before reaching the radial PML, since this PML cannot describe FW and SW at the same 

time. B. most of wave power is supposed to be absorbed in the radial PML layer, as wave propagates into 

the center plasma in real tokamak heating. The analytical reflected coefficient for the propagating plane 

wave with wave number kr inside radial PML reads [Jacquot 2013], 

 
''

exp( 2 Lpmlr )
1

r
r

r

Sk
p
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

  (3.1) 

Where 𝑆𝑟
′′, Pr have been introduced in Eq. (2.48). 

Theoretically, any of the results in the main plasma should not be PML dependent. From the numerical 

point of view, we prefer to have a small PML depth to save memory since the PML also needs to be meshed. 

Meanwhile, according to Eq. (3.1), a larger PML depth is needed to sufficiently damp the wave. So a scan 

of each PML depth is conducted to obtain a minimum PML depth that needs a least memory consumption, 

and keep at the same time the results unaffected. 

We chose a small tilt angle, 7o (corresponding to the tilt angle in TS), scan the radial PML depth, Lpmlr, 

from 1m to 0.09m with step size 0.1m, to examine the fluctuation of the total absorbed power. Power is 

calculated as the real part of the flux of the Poynting vector through three PML-plasma interfaces (red 

lines in Figure 3.5).  
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Figure 3.6. A scan of radial PML depth with θ=7o, toroidal PML depth at 0.4m. Criterion PML depth is 

found at 0.4m, where relative error goes below 1×10-4 
 

Figure 3.6 compares variations of total radiated power and power crossing the radial PML/plasma 

interface (the top red line in Figure 3.5). It shows that when the PML depth is 0.4m, the power variation 

is in a scale of 10-5. If we set 1e-4 as a criterion of relative variation, then the criterion value of Lpmlr can 

accordingly to be put as 0.4m. In Figure 3.6, more than 90% of the total radiated power is crossing the 

radial PML/plasma interface. The same PML criterion depth is found at a large pitch angle, 70o, thus the 

degree of pitch angle apparently does not significantly affect the PML criterion depth.  

 

 
Figure 3.7. A scan of toroidal PML depth with a pitch angle of 7 degree. Radial PML depth is 0.4m. 

Criterion length is also set at Lpmlt=0.4m 
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After choosing this Lpmlr criterion depth, we start another scan of the toroidal PML length, Lpmlt. Its 

criterion depth is also chosen to be 0.4m, see Figure 3.7. The simulations of the poloidal electric field and 

power flow in Figure 3.5 use these two PML depth. We see the electric field is indeed being sufficiently 

damped before reaching the metallic boundaries surrounding the PMLs. The criterion PML depth obtained 

in this section will be used in all of the simulations in this thesis. 

 

3.4  Near field pattern above the Lower Hybrid resonance   
This section investigates the RF electric field pattern in the region where the density is above the 

density at which the lower hybrid resonance condition is satisfied. When the magnetic field is non-tilted, 

and when the symmetric excitation conditions are used, i.e. dipole and monopole, one can apply “mirror” 

boundary conditions at the middle of the antenna: perfect electric conductor for dipole and perfect 

magnetic conductor for monopole. The RF quantities, i.e. poloidal current density Jz, Poynting components 

Sx and Sy, electric field components Ex, Ey and Ez thus show some symmetric and anti-symmetric properties, 

see Table 3-3. Using this symmetric properties, one can half the simulation domain if rather needed. Often, 

it provides a quick check of the simulation results. Under tilted magnetic field, these properties are lost.  

Table 3-3. Symmetry and anti-symmetry properties of RF quantities dipole phasing and monopole phasing 

in non-tilted magnetic configuration 

Original quantities Dipole phasing, toroidal B0 Monopole phasing, toroidal B0 

Jz(x,y,z) or  
Ez(x,y,z) 

Jz(x,y,z)= -Jz(-x,y,z) 
Ez(x,y,z)= -Ez(-x,y,z) 

Jz(x,y,z)= Jz(-x,y,z) 
Ez(x,y,z)= Ez(-x,y,z) 

Ex(x,y,z) and  
Sx(x,y,z) 

Ex(x,y,z)= Ex(-x,y,z) 
Sx(x,y,z)= -Sx(-x,y,z) 

Ex(x,y,z)= -Ex(-x,y,z) 
Sx(x,y,z)= -Sx(-x,y,z) 

Ey(x,y,z) and  
Sy(x,y,z) 

Ey(x,y,z)= -Ey(-x,y,z) 
Sy(x,y,z)= Sy(-x,y,z) 

Ey(x,y,z)= Ey(-x,y,z) 
Sy(x,y,z)= Sy(-x,y,z) 

 

The power spectrum also exhibits a mirror symmetry property under opposite tilt angles. The toroidal 

power spectrum shown in Figure 3.8 is calculated at the radial PML/plasma interface and the magnitude 

is normalized to satisfy continuous Parseval theorem. In this simulation, the main plasma toroidal width 

is extended to a large scale, 5m, in order to satisfy periodic conditions presumed by Fourier transformation.  

It seems the most efficient nx or the center of main lobe does not change with different pitch angles. The 

power spectrum concentrates more on one direction when the pitch angle increases, however, it still 

displays mirror symmetry with   transform.  

From the dispersion plot Figure 2.4, we know that only the fast wave is propagating in the region above 

the LH resonance. The fast wave has a large poloidal electric field, thus it is reasonable to look at this 

electric component. Figure 3.9 takes density profile 3 in the antenna box. The electric field is anti-

symmetric as the magnetic field is non-tilted. One can see the fast wave is propagating in the plasma and 

being damped inside the PML. The perpendicular wavelength of the fast wave is around 15cm, which is 

compatible with the calculation from the dispersion relation Eq. (2.17), using a parallel refractive index 

n//=9.14 (main lobe of the spectrum in Figure 3.8). The poloidal electric field changes less than 1% when 

switching from density 0 (vacuum) to density 3 and it varies less than 0.1% between density 3 and density 

4 (Figure 3.10). Figure 3.11 shows the differential poloidal electric field taken from two simulations with 
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different mesh grids, while other parameters are taken the same as Figure 3.9. The scale of differential 

poloidal field in Figure 3.11 is 3 orders of magnitude smaller than the poloidal field in Figure 3.9 . Figure 

3.12 is a zoom on the region around the straps surrounded by a red rectangle in Figure 3.11. It shows the 

relative difference of poloidal electric field is less than 10-3.  The relative difference is twice larger under 

large tilt angle, i.e. theta=60o. One may expect in this case the antenna excites a larger part of the slow 

wave rather than the fast wave (note the slow wave needs a large parallel electric field to be excited, it is 

the case when the strap orients along the magnetic field). So it will be more sensitive to the mesh. 

 

 
Figure 3.8. Toroidal power spectrum with different tilt angles. Date picks at the radial PML/plasma 

interface, density 0 inside the box  

 

 

  
Figure 3.9. Real part of the poloidal electric field, 

theta=0o, mesh 2, density 3, dipole phasing 
Figure 3.10. Differential field map for the real 

part of the poloidal electric field, i.e. 
Epol(density 4)-Epol(density 3)  
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Figure 3.11. Differential field for the real part of 
poloidal electric field, i.e. Epol(mesh 1)-Epol(mesh 2). 

Horizontal line: location of LH resonance. Rectangle: 
box region shown in Figure 3.12 

Figure 3.12. Relative error of poloidal electric field. 
Zoom in the antenna strap’s region surrounded by 

rectangle in Figure 3.11 

 

The radial electric field is also independent on the above mesh sizes outside the antenna box. While 

inside the antenna box, compared to the vacuum case, new filaments along the toroidal direction appear 

in both the toroidal electric field and the radial electric field, see Figure 3.13-Figure 3.14. Smoothing the 

corner, imposing different distributions of surface current, i.e. hyperbolic cosine, do not totally remove 

these filaments.  

 

  
Figure 3.13. Toroidal electric field in the antenna 
strap region surrounded by rectangle in Figure 
3.11, with hyperbolic cosine distribution of RF 

current over straps with rounded corners 

Figure 3.14. Same as Figure 3.13, radial electric 
field 

 
From Figure 3.12, we see that the poloidal electric field is determined by the imposed current and is 

thus independent on the mesh (size). However unlike in a vacuum antenna, where electric fields on the 

strap surface normally have a converged solution, further tests show that in a plasma-filled antenna box, 

it is more difficult to ensure numerical convergence of the toroidal and radial electric field around the 

strap. A simulation with an extremely intensive mesh shows that the field at the corner points is still not 

converged, see Figure 3.15. This non-converged problem appearing in the neighborhood region of 

antenna in the presence of plasma [Crombé 2014] is most likely caused by the excitation of the slow wave. 
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A check of polarization also gives the same indication, that a slow wave fulfills the magnitudes of all the 

electric components around the strap. Besides, the polarization of the slow wave indicates that the radial 

electric component of the slow wave is coupled with its parallel electric component [Myra 2010]. The 

latter is increasing with the tilt angle. Thus one can anticipate that the radial electric field also increases 

with the tilt angle. Simulation shows that the real part of the radial electric field at theta=20o is indeed 

twice larger than idem value at theta=0o.  

 

 
Figure 3.15. Toroidal distribution of Re(Erad) on the front face of the right strap, under two very dense 

symmetric meshes, other conditions are the same with Figure 3.14 
 

COMSOL is unable to go further than the mesh used in Figure 3.15, due to the memory limits. Thus a 

semi-analytical model has been built to further investigate the physics related to the filament. The details 

can be found in the Appendix A. For simplicity, the field is excited by a sheet of poloidal current in this 

model. It has a 2D geometry with 3 metallic walls and 1 radiating boundary. By assuming the fast wave 

and the slow wave are decoupled, one can separate the contribution from the fast wave and the slow 

wave to the total electric field. This model has successfully reproduced the filament surrounding the 

current sheet by conducting Fourier analysis for a sufficient large number of plane wave eigenmodes. The 

spatial resolution is 10 times’ finer than Figure 3.15. Results show that this filament persists under such a 

high resolution and it is indeed associated with the slow wave, which demonstrates that a fast wave 

antenna can excite the slow wave. The slow wave is strongly evanescent here and is sensitive to the stix 

tensor element / / . One can estimate that the perpendicular evanescence length is changing with the 

square root of / / , see Eq. (2.19). This was confirmed by artificially changing the / /  value, see the 

Appendix A. 

In realistic 3D simulations, most of the excitation is done through imposing a certain voltage on the 

straps, thus the currents on the strap are computed self consistently. Unlike we fix the direction of current 

flow on the antenna here, in a voltage excitation, the tilt angle is relevant w.r.t. the direction in which the 

current flows on the antenna. Self-consistent computations give rise to image currents on metallic objects 

and they locally play the role of ‘antenna’ as well. These may change the slow wave excitation. Besides, a 

slow wave can also be generated via mode conversion when the geometry has a shape transition [Kohno 

2015]. A voltage excitation and curved geometry has been implemented in the 3D RAPLICASOL code 

[Jacquot 2015].  
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3.5  Non converged field below the Lower Hybrid resonance 
In this section, the fields near and below the lower hybrid resonance are shown. We use the density 3 

and density 4, in which the LH resonance is crossed inside the antenna box. As said before, only the slow 

wave is propagating in this region. Near the LH resonance, the slow wave has a characteristic of an 

electrostatic wave. Its polarization Eq. (2.30) approximates to   

 / /
/ /

/rad

tor

E n
E n

 
      (3.2) 

  
(a) (b) 

  
(c) (d) 

Figures 3.16. (a)-(b). Real part of the radial electric field with different density profiles, but the same mesh. 

Dipole phasing, theta=00. (c). the same simulation as (b) but with mesh 4. (d) Radial electric field, using 

density 4, the same mesh size as mesh 4 but with square grid, instead of triangle. Red arrows indicate the 

normalized real part of the Poynting vector 
 
Hence one can know the direction of the phase velocity from the ratio of relevant electric fields.  

Figures 3.16 (a)-(b) use exponential density profile 3 and 4 with the same mesh 2. Locations of the lower 

hybrid resonance are indicated by red dot line, specifically at y=0.1056m and y=0.1434m. One can see 

below the resonance, new fields start to grow and as the density decreases, more and more modes appear. 

In dipole phasing, this structure is anti-symmetric between two individual boxes, with respect to the 

antenna septum, under the condition of a symmetrical mesh. The radial electric field is about 20 times 

larger than the toroidal electric field, which is consistent with the typical ratio of

/ / / 500 /1 20    , so the phase velocity of the slow wave is mainly in the radial direction. The 

poloidal electric field is still independent on the mesh in this region. 
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The slow wave propagates between the lower hybrid resonance (𝜀⊥ = 0) and⁡𝜀⊥ = 𝑛∕∕
2 .  One generally 

considers that the parallel refractive index n// is determined by the antenna geometry and phasing in the 

main plasma, which can approximately be seen as an invariant spectrum. But this may not be the case in 

the region below the LH resonance. From Figures 3.16 (b), one can see the slow wave behaves like cavity 

modes, where modes with 𝑘∕∕ =
2𝜋𝑛

𝐿
 (with n an arbitrary integer and L the toroidal dimension of metallic 

box) are selected and added up together. Aside from propagating along the radial direction, it bounces 

between two toroidal metallic walls. The toroidal modulation of the small-scale structure that appears in 

the lower part of Figures 3.16 (b) agrees with the grid’s size. This suggests that the field structures below 

the LH resonance are not totally resolved by the present mesh grids. 

From the slow wave dispersion relation Eq (2.18), one knows that in its propagating region, for a given 

k//, the perpendicular wave vector 𝑘⊥ decreases as the density decreases, see the red line in Figure 2.4. 

This is consistent with Figures 3.16 (a), where the ⊥ (perpendicular wave length) is increasing as the 

density decreases from upper to bottom.  

Although the propagative region for the slow wave mode is surrounded by 3 metallic walls and one 

resonance, it is not a lossless resonant cavity for the slow wave. The energy of the slow wave can be 

transferred through mode conversion to the fast wave at the wall (under tilted magnetic field) or at the 

LH resonance. Since no damping mechanism is considered in the box, i.e. frequency and all dielectric 

tensor element have a real value, all the radiative energy (real part of power flow) could finally be 

transferred to the fast wave, which then carries this power out of the antenna box. This is shown in Figures 

3.16 (d) where the direction of the normalized real Poynting vector indicating the power flow indeed goes 

to the LH resonance and lateral metallic walls. Although potentially the slow wave can also carry power 

out of the antenna box, the wave emanating from the box (be it a fast wave, a slow wave or a combination) 

seems to be essentially the same, i.e. the active power is better converged than the sloshing power. Finally 

only the slosh power (imaginary part of power flow) remains bouncing inside box.  

Given the small radial scales appearing in Figures 3.16, one can anticipate that the mesh size near the 

wall might affect the numerical results. To see this, we check the case where we add a specific mesh 

refinement in the region within a distance of 0.008m to the antenna box wall. We find that Figures 3.16 

(a) with density 3 changes 10% of values, while Figures 3.16 (b) with lower density (density 4) changes 

200%.  

A further test shows that the non-convergence persists up to the memory limits of the adopted 

workstation (800*800 grid points inside each individual box). This confirms the observation from another 

finite difference code [Crombé 2014] about the non-convergence behavior of the field below lower hybrid 

resonance. This instability is increasing under larger tilt angle which again coincides with the fact that the 

antenna excites more slow wave in that case. No explicit dependence on antenna phasing is observed. 

This is not surprising for the simulations considered. The straps are housed in individual boxes. The LH 

resonance is rather deep inside the box. Each slow wave resonant cavity may be therefore mainly 

influenced by one single strap.  

3.6  Power coupling and radiating spectra 
One can use Eq. (2.46) to evaluate the total power emitted from the straps. Since we only imposed the 

poloidal current, the volume integral in LHS can be reduced to a line integral to a scalar product. Since our 

radiation medium is loss-less, we checked that the power flow at the antenna mouth exactly equals the 
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line integration at the strap. From Figure 3.11, we know that the poloidal electric field is almost 

independent on the mesh and the current is imposed externally. So the total emanating power as well as 

the power flow in the plasma is independent on the mesh.  

Most antenna design codes assume the antenna is sitting in a vacuum region. It is interesting and 

important to check how different the power and the electric field near the antenna mouth are when one 

compares the difference between a plasma-filled and a vacuum antenna box. In the following test, we 

measure power by doing a line integral of radial power flow, the real part of Poynting vector, across the 

antenna mouth (dashed line in Figure 3.2). 

  
(a) (b) 

Figures 3.17 . Radial power flow across the antenna mouth versus the magnetic field tilt angle, (a) dipole 

phasing with density profiles 1, 3 and 4. (b) Monopole phasing with density profiles 2, 3 and 4. Blue curves 

indicating plasma-filled antenna box. Green curves show simulations with vacuum in the antenna box.  

 

Figures 3.17 shows the variation in the radiated power for 1A on the straps, over a scan of tilt angle. 

Mesh 2 is used. In the simulations with a vacuum antenna box, the density profiles are cut at the antenna 

box edge, dot line of Figure 3.4. In Figures 3.17, the power level in monopole phasing is higher than in 

dipole phasing. This is not surprising since the evanescence region for the fast wave is shorter in monopole 

phasing than in dipole, thus less power is reflected to the straps. For dipole phasing, power seems 

independent of whether the antenna is in plasma or in vacuum. For monopole phasing, there is up to 20% 

difference between the power launched from an antenna immersed in a plasma compared to one sitting 

in vacuum when scanning over all possible tilt angles. In both cases, power coupling is not sensitive to the 

density profile shape. In order to check this difference, we plot the toroidal power spectrum (section 2.1.6) 

obtained by conducting Fourier transform near the antenna mouth at theta=60o where the difference gets 

largest. We see clearly from the power spectrum, (Figure 3.18) that under monopole phasing the power 

gap between plasma filled-in antenna and vacuum antenna is larger than that in dipole phasing. The 

farthest lobe we can see in Figure 3.18 is located at the toroidal refractive index nx=-35, corresponding to 

a wavelength of 0.006m. As a comparison, our grid size is 2.5×10-4m, so all the spectrum lobes have already 

been well captured in obtaining the results of Figures 3.17. 

The drop of the power spectrum at low nx in monopole phasing can be understood by looking at the 

fast wave cut-off layer, as introduced in section 2.1.5. 
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Figure 3.18. Power spectrum at large tilt angle 

theta=60o, plasma density 3 is used for blue curves 
Figure 3.19. Fast wave cut-off density, Dipole 

phasing nx=9.14, monopole phasing nx=4.5 are 
used 

Figure 3.19 plots the fast wave cut off density versus the magnetic tilt angle for two toroidal 

wavenumbers nx, characteristic of each phasing. As a reference, the density around the antenna mouth is 

about 9×1017 m-3. In dipole phasing, due to the large nx, the cut-off layer is well above the antenna box, 

thus the fast wave is evanescent inside the antenna box, no matter the box is in vacuum or filled by plasma. 

However, in monopole phasing, the cut-off layer is generally inside the antenna box under large tilt angles, 

thus the fast wave evanescence region is larger in a vacuum antenna than in an antenna filled with plasma. 

With the increasing of the tilt angle, the cut off layer is shifting to the edge see Figure 2.3, in other words 

the cut off density is decreasing. This explains that the power in Figures 3.17 is increasing as the 

evanescent length is decreasing with increasing of the tilt angle. Then under large tilt angle it drops down 

dramatically as the fast wave antenna changes to a slow wave antenna. 

Dipole phasing is used as the main heating phasing in the present ICRH experiments for its better 

power absorption by the plasma. For this phasing, the effect of the density gradient in the fast wave 

evanescence region on the power coupling is also studied. We will firstly consider the case in which the 

densities are both fixed at cut off layer and an extra reference point, i.e. the strap front surface, so that 

only the density gradient between them is variable. Then we go to a more realistic case that density simply 

follows an exponential decay, starting from the cut off layer. Please note here we only vary the density 

gradient below the R-cutoff layer. A sharp density gradient can also happen in the main SOL plasma where 

it is likely to reflect the propagating fast wave. Some dedicated studies [Messiaen 2011] has been done to 

investigate the power coupling with varying density gradient in the main SOL plasma. The coupling varies 

like a tapered line w.r.t the density decay length. The conclusion is that as long as the density decay length 

exceeds the first maximum, the power variation remains small.  

Case 1. Fixed density at the reference point 
In this case, we impose an analytical density profile in the fast wave evanescence region, which reads 

 
_ _ _( ) (exp( ) 1) _

1 exp( ( _ _ ) / )e
n co n ref y y con y n co

y co y ref L L
 

  
  

  (3.3) 

Where L is the exponential decay length; n_co, y_co are the cut off density and location, which 

depends on tilt angle. The density at reference point (y_ref) is marked as n_ref. It takes the same value 

for all decay lengths. The density in front of the cutoff layer is the experimental profile, i.e. Figure 3.3. 
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Figure 3.20. Exponential decay density in the fast wave evanescence region 

 

In case of vacuum antenna, the reference point is defined at the antenna box edge, i.e. n_ref 

=1.1164e18 m-3 and y_ref =0.214m. The density is shown by solid line in Figure 3.20.  

In case of a plasma filled antenna, we impose the exponential decay density up to the front face of 

straps. Thus the reference point is defined at the strap front face, i.e. n_ref =1.1164e18 m-3 and y_ref 

=0.18m. One of the densities is drawn by dashed line in Figure 3.20. It takes pre-defined density 3 

underneath the strap’s front face. Figure 3.21 shows all the exponential decay lengths we will use in the 

evanescence region under dipole phasing, theta=00. 

 
Figure 3.21. A scan of density profiles in the evanescence region, theta=00, dipole phasing, plasma filled 

antenna, n_ref =1.1164e18m-3 and y_ref =0.18m 
 



Study of wave coupling with density inside ICRF antenna box                      Chapter. III  

75 
 

The power flow across the radial PML/plasma interface (top red line in Figure 3.5) is measured. The 

result is shown in Figure 3.22. One can see under these three tilt angles, the power has only a 5% of 

variation with different decay lengths. With larger decay length, the density profiles becomes more ‘flat’ 

so that the evanescent lengths for small n// waves become shorter compared to the ones with sharp 

density profiles, thus slightly increase the power coupling. We also see the presence of plasma inside the 

antenna box does not modify significantly the power coupling.   

 
Figure 3.22. Radial power flow w.r.t decay length, case 1 

 

Case 2.  Variable density at the reference point 
A more realistic case is to release the fixed density at the reference point. In this case, We tested three 

tilt angles, i.e. theta=00,70 and 200. For each tilt angle, we calculated the R cut-off density using Eq. (2.34)

and its radial location with our reference density profile (Figure 3.3). Then starting from the R cut-off, a 

set of exponential density profiles with different decay lengths was imposed, as shown in Figure 3.23. The 

density is assumed to have the form as following, 

 ( ) _ *exp(( _ ) / )en y n co y y co L    (3.4) 

 
Where n_co, y_co are the cut off density and its location, y the radial coordinate and L the density 

decay length. 

Results is shown in Figure 3.24. We see that changing density gradient in the fast wave evanescence 

region can drive power variations up to 5%. 

 

 



Study of wave coupling with density inside ICRF antenna box                      Chapter. III  

76 
 

  
Figure 3.23. Test density profiles in the fast wave 
evanescence region, theta=0o. Labels indicate the 

exponential decay length L in meter 

Figure 3.24. Power flow across radial PML 
interface versus density decay length. In case of a 

vacuum antenna box, density is cut at antenna 
box rim, shown in Figure 3.23 

 

3.7  Discussion and conclusion 
The presence of a tenuous plasma inside an ICRF antenna box can make the numerical simulation of 

local RF electric field problematic when the density profile crosses the LH resonance. Up to the memory 

limits of our dedicated workstation, radial and toroidal RF fields below the LH resonance did not converge 

with decreasing mesh size. They exhibited sensitivity to small local density changes. This is probably due 

to the conjunction of short wavelength for the slow wave and the presence of a lossy cavity for this mode 

inside the antenna box. It is critical to be aware of this non-convergence when studying near field effects 

inside the antenna box. Another similar case is that a slow wave can also be excited in the vicinity of the 

straps by a fast wave antenna, however it only causes local numerical instabilities here due to its strong 

evanescence. 

With a dominant poloidal current imposed on the straps, it was shown that the poloidal electric field 

and thus the total excited power is independent of the mesh even in the presence of the LH resonance 

behind the straps. This guarantees that the ICRF power transmitted to the main plasma via the fast wave 

is also independent of the mesh or the non-convergence property of the fields inside the antenna box. In 

a 3D antenna with voltage excitation, this point may need further investigations. With no damping inside 

the antenna box, all the radiated power carried by the slow wave is transferred out of the antenna box. 

In a situation where the R-cutoff layer for the fast wave is well outside the box, e.g. in dipole phasing with 

Tore Supra profiles, the total power coupled to main plasma is indifferent with the plasma density inside 

the antenna box so that one can drop out the low density inside the antenna box when studying coupling 

issues. In monopole phasing with Tore Supra density profiles, simulations show that there is a maximum 

20% of power increase due to the presence of plasma, for large tilt angles. The distinction comes from the 

fact that the fast wave evanescence length for low k// changes. Hence modeling low k// scheme with 

antenna staying in vacuum may need to be re-considered. We did not consider the extreme case in which 

the strap is below the LH resonance and can excite directly the propagating slow wave. The present model 

ignores parasitic damping (collisional) and sheath effects. Near the LH resonance, the wavelength become 

comparable with Larmor radius Eq. (1.6), one may also need to consider the thermal effect or the finite 

Larmor radius corrections. A situation similar to the LH resonance might arise when peripheral cyclotron 

layers are located inside the antenna box. The poloidal gradient, which was ignored in our simulations, 

will likely play a key role at the study of density modifications by ponderomotive force [Van Eester 2013]. 
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Those effects will be left for the future study. The density measurement in the fast wave evanescence 

region is affected by the largest uncertainty [Milanesio 2013] due to both measurement issues and large 

fluctuation levels [Clairet 2004]. This is again crucial in determining near field.  Nevertheless, changing 

density gradient in the evanescence region can maximally affect power coupling up to 5%. One can thus 

still model the power coupling to plasma with a fairly good precision despite some uncertainties in low-

density part of the profile. All simulations however stress the need to measure precisely the R-cut off 

radial position in order to get accurate estimation of ICRF wave coupling properties. This is a strong 

motivation for implementing density diagnostics as close as possible to the wave launchers. 
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Chapter 4  SSWICH-FW: self-consistent modeling of full 

wave propagation and DC plasma biasing by RF sheath 
 

4.1  Introduction of this chapter 
Most of the deleterious RF edge effects, including SOL power losses, heat loads on the plasma facing 

components and impurity sputtering to the main plasma are associated to the DC plasma potential 

enhancement by RF sheath rectification. In order to model the sheath rectification beyond the traditional 

double Langmuir probes approach, which has suffered criticism both from experiment and theory, a 

sheath project under European level has been carried out. It assembles most of the current efforts of RF 

sheath modelling in Europe. The LPP group focuses on the fundamental physics within the sheath, trying 

to understand the interplay between RF waves and plasma density by solving iteratively the Maxwell’s 

equation, equation of motions and continuity equations over the spatial scale of the sheath at two 

different time-scales. The IJL lab in Université de Lorraine studies the fundamental sheath properties by 

particle-in-cell simulations. They are interested in exploring the behavior of Debye sheath under zero 

grazing angle of the magnetic field line and the cross field sheath induced by the difference of Larmor 

radius of the electrons and ions. Both of these two approaches are restricted themselves in a simple 

geometry with a limited size, which is far from the realistic antennas.  

At CEA, our approach is to model RF sheath over a realistic antenna size. Sheath is thus being treated 

as boundary conditions. The Self-consistent Sheaths and Waves for ICH (SSWICH)-slow wave code was 

developed in 2013. It couples self-consistently the RF wave propagation and the DC SOL biasing via non-

linear RF and DC sheath boundary conditions applied at plasma/wall interfaces. The first slow wave 

version adopts a simple assembly of rectangular elements and the magnetic field is either parallel or 

perpendicular to the wall. Under this magnetic configuration, the SBCs are only associated with the slow 

wave. This chapter reports the development of a new SSWICH version, the 2D SSWICH-FW code which 

includes a more realistic geometry, magnetic configuration, wall shape and full wave (fast wave + slow 

wave) polarizations.  The structure of this chapter is the following: Section 4.2 gives a short overview of 

the 2D SSWICH-SW code. Section 4.3 illustrates the specifications of the new 2D SSWICH-FW code initially 

developed for the Tokamak context. Section 4.4 discusses some numerical issues in the 2D SSWICH-FW 

code. The last section shows how SSWICH principle can be applied in the Aline device in order to provide 

interpretative simulations.  

4.2  Overview of the 2D SSWICH-SW code before this thesis [Jacquot 2012][Jacquot 

2013][ Colas 2012] 
SSWICH-Slow Wave code deals with a simplified 2D geometry in the radial-toroidal plane, it is a cut of 

one poloidal direction of a real 3D Tore Supra antenna geometry, similarly with the choice of 2D 

RAPLICASOL code in Chapter 3. Magnetic field line is assumed either perpendicular or parallel to the 

boundaries. In Figure 4.1, blue vertical rectangles represent protruding material objects, e.g. antenna side 

limiters. They are considered as the walls where sheath can be excited. In reality, sheath is quite thin 

compared to the simulation domain, their effect is treated through boundary conditions. Numbers 1, 3, 5, 

7, 9, 11 are sheath boundaries. They are zoomed in to be visible. No 2, 10 and 4, 8 are outer wall of the 

machine and leading edge of limiters respectively. No. 12 represents the inner radial boundary. It is a 

boundary just for the RF field calculation, but not a boundary for the plasma, which will be crossed in the 
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2D SSWICH-FW code. Antenna part is replaced by imposing field map of E// from any other antenna code 

[Lancellotti 2006] [Jacquot 2015] at the antenna aperture (No. 6 in Figure 4.1). The antenna straps in those 

codes need to be tilted in order to generate the field map with a magnetic field tilted to the antenna as in 

the realistic case and perpendicular to the wall as assumed in the 2D SSWICH-SW code. In reality, the 

physical aperture is surrounded by metallic walls. So accordingly we implement two metallic boundary 

conditions at the two extremities of the aperture 6. For simplicity, in the following equations, we use //B0 

or //x represent metallic boundaries 2, 4, 8, 10, and B or x represent sheath boundaries 1, 3, 5, 7, 9, 

11. 

 
Figure 4.1. Geometry of the 2D SSWICH-SW code. The blue rectangles represent metallic components, 

red ones correspond to sheath boundaries and green ones indicate sheath corners [Jacquot 2013] 
 

Three scale fields are solved iteratively using the finite element methods (Figure 4.2), the parallel 

electric field E//, the oscillating sheath voltage VRF and the DC plasma biasing VDC, respectively. RF 

quantities E// and VRF  are complex scalars, i.e. fields with amplitude and phase, assuming time-harmonic 

variations as exp⁡(𝑖𝑤0𝑡), following engineering convention adopted in COMSOL software. VDC is real-

positive field. Each of these three quantities is calculated within a separated module in COMSOL. They are 

coupled together by sheath capacitance and sheath rectification. Sheath is treated as a plate capacitor in 

the E// module by assuming that its resistance can be ignored and electric field is constant with space 

inside sheath. Sheath capacitance gives a definition of VRF, see Eq. (2.58). Oscillating sheath voltage, 

although its average amplitude over one RF period is zero, can introduce a biasing voltage in VDC module 

via sheath rectification. These sheath properties are applied as boundary conditions for three field 

equations. Now we present the details for each module.  

In E// module, the governing equation for the slow wave propagation can be known by manipulating 

Eq. (2.29),  

 2
// / / / / / /[ ( ) ] 0E

c


            (4.1) 
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Figure 4.2. Iterative process in 2D SSWICH-SW code [Jacquot 2013] 
 

Please note Eq. (2.29) has used kz=0. In SSWICH-SW, the magnetic field is parallel to the toroidal 

direction. Thus EX in Eq. (2.29) is equivalent to E// here. Along the //B0 boundaries, E//=0 is imposed since 

they are metallic. Along the B0 boundaries, knowing from the sheath capacitance, the electric field can 

be represented as a function of the sheath voltage, by introducing a sheath width and sheath 

permittivity sh. This can be used as a sheath boundary condition. So the boundary conditions in E// module 

read 

 

/ / 0

/ / 0
/ /

/ /

0 / / B

Bsh
RF

E and inner radial boundary

E V

E from antenna code aperture



 

 



  




   (4.2) 

The second equation can also be inversely used as a boundary condition for VRF, which will lead to the 

whole three-field loop run in the opposite direction. Our choice here is first due to a pure computational 

reason, because the present loop gets a better convergence. Second in the case of large DC biasing, this 

boundary condition will reduce to / / 0E  , which was justified by the asymptotic analysis in [Colas 2012]. 

This gives a starting point for running the loop. 

In VRF module, the conservation of the displacement ( 0 D  ) is solved at the sheath-plasma 

interface. The RF sheath boundary condition Eq. (2.71)  gives  

 RFE V    (4.3) 

Expand the conservation of displacement by the constitutive relation, one gets two terms 

containing⁡𝐸⊥. The E  term can be neglected by the fact that the slow wave is a transverse magnetic 

wave. Insert Eq, (4.3) into the E term, one finally obtains a simple relation, 

 / / / / / /RFV E       (4.4) 

In the original 2D SSWICH-SW version [Jacquot 2013], Eq. (4.4) is solved in all the 2D simulation domain, 

but VRF only makes sense along sheath boundaries, which could reduce the problem to 1D. The second 



SSWICH-FW: Self-consistent modelling of full wave propagation and  
DC plasma biasing by RF sheath                      Chapter. IV 

82 
 

equation in (4.2) yields VRF=0 at the two ends of each sheath boundary (green rectangles in Figure 4.1) 

since the tangential E along metallic surface is zero. To ease the implementation, we impose VRF=0 at the 

//B0 boundaries (This was justified in Section 2.3.4), the inner radial boundary and also the aperture. Doing 

this does not affect VRF solution at sheath boundaries.  

 00 / / B ,RFV inner radial boundary and aperture   (4.5) 

The last module is the VDC module. It solves the conservation of the DC current ( 0 J ), where  

 
/ / / /

DC

DC

E
E



 

  
   
   

J   (4.6) 

Where the superscript DC is used to distinguish the RF electric field. Making use of the static electric 

field-voltage relation, one can derive the following equation, 

 / / / / 0DC DCV V        (4.7) 

Here, // and  are the parallel (Spitzer Eq. 1.7) and perpendicular DC conductivities. In the 

experiment, VDC is observed beyond the side limiter, which is much further than the slow wave 

evanescence length. To explain this radial extension of VDC phenomenologically,  has to be introduced 

to allow the radial DC current transport.  

In the VDC module, boundary conditions are implemented by assuming transversal current normal to 

the //B0 boundaries can be ignored compared to the injection of parallel current at the B0 boundaries, 

where sheath rectification Eq. (2.62) contributes to the net current. At the inner radial boundary, there is 

no net current to perturb the core plasma, which means VDC should equal the floating potential Vf. 

 

0

0

0 / / B
( )

(1 min( , [ ])) B
B

f b DCB es
n is B

is B e

DC f

and aperture
e V V VJJ J exp

J k T
V V inner radial boundary






  


 
  


 

J n

  (4.8) 

After solving VDC, the iterative loop is closed by applying the Child-Langmuir law Eq. (2.57) to obtain a 

new sheath width.  

The last thing to think about is how to enter this loop. One may note in the second equation of the 

boundary condition (4.2), that a prior knowledge of sheath width is needed. But It is supposed to be solved 

at the last step of this loop. So in order to begin the loop, an asymptotic module that gives a first guess of 

the sheath width is created (Figure 4.2). The asymptotic version solves the three-field in segregated steps 

instead of using iterative scheme in the fully coupled version. In this version, everything keeps the same, 

except the second equation of the boundary condition (4.2) is simplified to be / / 0E   at B0 boundaries, 

providing an infinite sheath width[Colas 2012]. Applying the SSWICH-SW code to realistic TS case at MW 

RF power range shows a finite sheath width is only a small correction to the infinite sheath width [Jacquot 

2013A], thus we believe the asymptotic version, where the convergence is faster and guaranteed in 

contrast to the fully coupled version, can already approximate the final results with a fairly good precision.  
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The 2D SSWICH-SW version assumes kz=0 everywhere in the simulation domain. Full 3D version of 

SSWICH-SW asymptotic code is also developed and its principle is presented in [Colas 2012], where the 

direction on z is treated in the spectral domain. The SSWICH-SW simulation shows neglecting the poloidal 

derivatives would leads to a maximum 10% of error for VDC compared with the one has a finite kz spectrum 

[Jacquot 2013A]. This may not true when the fast wave is included. 

4.3  Specifications of the 2D SSWICH-FW code  
In the 2D SSWICH-SW code, B0 is either perpendicular or parallel to the metallic walls. Under this 

magnetic configuration, one can see from above that the sheath boundary condition in the E// module 

(4.2) and VRF field equation (4.4) only contain the slow wave polarization. Now we consider the same 

magnetic configuration with the 2D RAPLICASOL code that B0 has a tilt angle   in poloidal-toroidal plane 

(Figure 2.1), like Chodura did, but with another definition of in the original paper [Chodura 1982]. This 

is not the most general case, but under this magnetic configuration, one can keep a similar simulation 

geometry and at the same time can introduce the fast wave coupling into code.  

 
Figure 4.3. Geometry of the 2D SSWICH-FW code. PMLs are implemented to simulate fast wave free 

propagation. The sheath boundaries are marked in blue. The walls in the SOL region (enclosed by 
the red dot lines) are shaped 

 
Figure 4.3 shows the new geometry of the 2D SSWICH-FW code. The magnetic field now has a 

component in the out-of-plane direction. The simulation domain combines the antenna, SOL region and 

the main plasma, the latter is surrounded by a non-reflecting boundary condition through implementing 

PMLs, in order to simulate the fast wave propagation and radiation. A realistic density profile can be 

imported in the model. The antenna is treated in vacuum so as to avoid the LH resonance. One can either 

excite RF waves by importing two tangential electric field components at antenna aperture, or imposing 

currents on the straps (a voltage excitation by coaxial line is only available in 3D, see Figure 2.9). The 

sheath boundaries are shaped boundaries locating in the SOL region. It will be shown that curvature is 

important for RF sheath modelling in Chapter 5. 
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The structure of the 2D SSWICH-FW code is shown in Figure 4.4. We keep three-field structure in the 

new code. RF fields, VRF and VDC are solved in the same sequence. The RF field module is now vectorial 

fields and solves both of the polarizations. General formula for sheath capacitance Eq. (2.70), sheath 

rectification formula Eq. (2.66) and Child-Langmuir law Eq. (2.69) are used in this code (with slightly 

modifications to include curvature, see details in the next 3 subsections). To save the computational 

memory, the three fields are solved in different dimensions. Now we will present each module individually.  

 
Figure 4.4. Work flow of the 2D SSWICH-FW code 

 

4.3.1  The RF field module 
In the presence of tilted magnetic field, the two plasma eigenmodes are likely coupled. The slow wave 

propagation Eq. (4.1) should be replaced by the vectorial wave equation 

 2
0( ) ( ) 0k    rE ε E   (4.9) 

Where E is a vector corresponding to the full RF electric fields of the wave; r is the new dielectric 

tensor defined in Eq. (2.10); k0 is the wavenumber in vacuum. Combine Myra and D’Ippolito’s boundary 

conditions Eq. (2.71) and 2D assumption, one has 

 0RF
z

VE
z


  


  (4.10) 

Another boundary condition for the sheath boundary comes from the sheath capacitance. Starting 

from Eq. (2.70), accounting for the curvature, one has 

 
( ) | |
sh RF

n
DS

VD
nx



 
   (4.11) 

Where nx is a COMSOL build-in operator, meaning the x component of the normal direction of the 

curve. The |nx| is necessary to be included in the new sheath width on the curved boundaries. |nx|=1 on 

a flat boundary along y direction, and |nx|=0 on a toroidal boundary. 

For metallic boundaries, PEC boundary conditions give two tangential components equal to zero. So 

the whole set of boundary conditions read, 
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0,

( ) | |
0

sh RF
z n

DS

x z

VE D sheath
nx

E E metal



 


 


  

  (4.12) 

Compared with Eq.(4.2), on each boundary, now we need two constraints to solve the vectorial electric 

field.  

4.3.2  The oscillating RF sheath voltage module 
a. Primary approach to evaluate VRF 

In the 2D SSWICH-SW code, we worked out a 2nd order PDE for VRF by eliminating SW perpendicular 

electric fields so that the equation only involves the parallel electric field. This process is not necessary 

since we are now solving all the three electric components. So one may wondering the VRF does not 

necessary come from the second order differential equation. VRF is only solved at the sheath boundaries, 

see Figure 4.5. According to the 2D sheath boundary condition given by Myra and D’Ippolito, one has

/s RFE V s   , where Es the electric field along the direction of arc length (The other relation 

/z RFE V z    has already been used in Eq. (4.10)). So we can simply integrate the tangential electric 

field along the sheath boundary. This process will not require the derivative of the electric fields. Besides, 

the first order differential equation only needs one boundary condition at each boundary.  

 
Figure 4.5. Simulation geometry in VRF and VDC modules. VRF solved along 1D sheath boundaries, 

whereas VDC solved in the 2D SOL domain. The orange color indicates the plasma region; Grey is the 
vacuum region. Rectangle and ellipse are the boundary points where the RF sheath boundary condition 
applied in the two approaches; The two identities are the DC sheath boundary condition imposed at the 

corresponding lines 
 

Following this approach, it is reasonable to choose points sitting furthest away from the wave launcher 

and assume there VRF=0. Therefore points 1 and 2 are chosen. For simplicity, the line integral takes all the 
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blue boundaries of Figure 4.5, which includes the metallic part between two sheath boundaries, but the 

metallic boundary has no contribution to VRF since 0sE  . 

 

b. Secondary approach to evaluate VRF 

The conservation of RF electric displacement ( 0 D  ) is still valid under tilted magnetic field. Due 

to the curvature, it however needs to be revised to fit in the curvilinear coordinate where the vector basis 

( , , )s n ze e e  is used, with s the direction of arc length, n normal direction and z the out-of plane direction, 

see Figure 4.6. It is obtained by multiplying the Cartesian base vector by a rotation matrix 
'R  

 

 

'

s x x

n y y

z z z

e e etx ty 0
e nx ny 0 e R e

0 0 1e e e

      
      

       
                 

    (4.13) 

Where , , ,x y x ytx ty nx ny
s s n n
   

   
   

  

 
are all COMSOL build-in operators named as 
tangential and normal variables. 

Figure 4.6. Curvilinear base vector Vs. Cartesian 
base vector 

The following relations are naturally fulfilled 

,tx ny ty nx     (4.14) 

Thus the displacement vector and electric vector in curvilinear coordinate reads 

 

11 12 131
' '

21 22 23

31 32 33

s s s

n n n

z z z

D E EA A A
D R R E A A A E

A A AD E E


      
      

       
      
      

ε   (4.15) 

 

s x

n y

z z

E Etx ty 0
E nx ny 0 E

0 0 1E E

    
    

     
    
    

  (4.16) 

where the matrix A is the generalized dielectric tensor expressed in the curvilinear coordinate, 
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2 2
11 12 13 11 22 22 11 21 13 23

2 2
21 22 23 22 11 21 11 22 13 23

31 32 33 31 32 31 32 33

( )
( )

A A A tx ty tx ty tx ty
A A A A tx ty nx ny nx ny

A A A tx ty nx ny

      

      

    

      
  

        
       

 (4.17) 

 Where 𝜀11 − 𝜀33⁡are defined in Eq. (2.11).  

The next step is to rewrite the zero divergence of the displacement into curvilinear coordinate. A 

mathematical formula concerning the divergence operator under curvilinear coordinate has been derived 

for this purpose. The details of these derivations can be seen in the Appendix B.  Here we just recall the 

results, 

s n nz

c

D D DDD
s n z R

  
    

  
(4.18) 

Where Rc is the radius of curvature of the curve. It is positive (negative) when its direction is parallel 

with ne  (- ne ). 

Substituting Eq. (4.15) into the zero divergence equation and making use of Eq. (4.18), one can obtain 

the sheath voltage equation along a curve 

 2211 21
11 12 21 22 23 z( ) ( ) ( ) ( ) nRF RF

n s n
c c

A EV A A VA A E A E A E A E
s s s R s s n R
    

       
     

  (4.19) 

For the flat boundary, it reduces to, 

 2 2
/ / / /( ) ( ) ( ) ( )y xRF z

x

E EV Ei sin i sin E sin cos sin cos
y y x y x x
                

   
     

     
 (4.20) 

Again, VRF is solved only at the sheath boundaries. The two metallic boundaries at the bottom of the 

two far SOL regions in Figure 4.5 are consequently not involved. Each boundary now needs two boundary 

conditions at two extremities. Dirichlet boundary condition VRF=0 is used at the points surrounded by 

small rectangles in Figure 4.5. The underlying assumption here is that there is no RF sheath at those points. 

The Neumann boundary condition 
( )

shRF
RF

iV V
y sin



   





 based on sheath capacitance is used at the 

two points surrounded by small ellipses.  

The main difficulty to implement Eq. (4.19) along the 1D sheath boundaries in COMSOL is that Eq. (4.19) 

contains the normal derivative of tangential/normal variables, such as 
tx
n




, whereas those variables are 

only defined at the boundaries in COMSOL. The problem can be solved using specific COMSOL build-in 

operators. Alternatively, those partial derivatives can be calculated analytically if we assume the 

tangential/normal variables are defined in the domain. Appendix C explains these two ways of 

implementing Eq. (4.19) in COMSOL.  

 

c. Short remark on these two approaches 
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This section presents two approaches to evaluate the VRF. The first approach is easy to implement but 

sometimes it is difficult to choose the starting points of the line integral, e.g.  for a vertical boundary, like 

boundary 1 in Figure 4.1, choosing VRF=0 at the upper extremity could automatically leads to 𝑉𝑅𝐹 ≠ 0 at 

lower extremity and vice versa. Hence, the “no sheath” assumption cannot be fulfilled at both points. The 

second approach has no such problem since VRF is constrained at both two extremities of each boundary. 

But numerical tests show the VRF is not converged to the mesh using this approach, see details in section 

4.4.3. Therefore, at this moment, the line integral approach is used as the primary method to computer 

VRF. If the numerical issues are solved in the future, then the second approach can be a better choice. 

4.3.3  The DC plasma potential module 
The VDC module also needs to be modified to fit the tilted magnetic configuration. The conductivity 

tensor in Eq. (4.6) should be converted to fit the new (x,y,z) coordinate. It is done by doing a similar 

coordinate rotation as the dielectric tensor εr, i.e. in Eq. (2.10), replace / /  and   by / /  and   , 

meanwhile set 0  . 

 

2 2
/ / / /

2 2
/ / / /

0 ( )
( ) 0 0

( ) 0
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DC y

z

sin cos sin cos

sin cos cos sin

       

 

       

 



 

  
 

  
   

σ   (4.21) 

As in the SSWICH-SW code, / /  takes the Spitzer conductivity Eq. (1.7). The separation of conductivity 

introduces a badly known parameter , but apparently affects the VDC value in the simulations [Jacquot 

2013A]. This uncertainty leads to a weak point of the SSWICH-SW code. At this moment, we still keep 

using the present conservation of the DC charge equation. DC sheath voltage is solved in the SOL region 

of Figure 4.6. 

 Besides, sheath rectification should be reconsidered now with the magnetic field tilting. Detailed 

formulations on the floating potential Vf, RF biasing Vb, saturation current Jsat and jmax under tilted B0 have 

been given in sections 2.33-2.34. 

Three types of the boundary conditions are used as seen in Eq. (4.8). We assume there is no 

perturbation to the main plasma, so VDC=Vf  is imposed along the red boundary of Figure 4.6. Since there 

is no sheath at //B0 boundary, the zero flux boundary condition is used at the black boundaries. The 

generalized sheath rectification formula Eq. (2.66) is used along the sheath boundaries. As the boundary 

is curved, the effective current at the boundary is the normal projection of the toroidal current, which 

reads,  

 f DC( )( )cos (1 min( ,exp( )))
B

B es b
n is B

is B e

J e V V VJ J abs nx
J K T








 
    (4.22) 

The current sheath-rectification formula Eq. (4.22) for RF sheath with tilted B0 is still simple. It can be 

further refined when more complete “microscopic” models of the sheaths are available.  

4.3.4  The asymptotic version 
As mentioned in the Section 4.2, the requirement of a prior knowledge of the sheath width in E// 

boundaries leads to the development of the asymptotic SSWICH-SW version which is based on the wide 
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sheath approximation. Simulation by the SSWICH-SW code shows the asymptotic version can already 

provide a first guess that very close to the final solution. We do the same in the 2D SSWICH-FW code. It 

means in the boundary condition(4.11), Dn tends to be zero in order to keep VRF finite. Thus the sheath 

width can be avoided in this boundary condition. This simplification needs to be justified later. Extend 

Dn=0 using the constitutive relation, the sheath boundary condition in Eq. (4.12) can be rewritten as,  

 
11 12/

0
y x

z

E E
E

  



  (4.23) 

at the flat boundaries, While 

 
22 12 11 21( ) ( ) / ( )

0
x y

z

E tx ty F ty E ty tx
E

          



  (4.24) 

at the curved boundaries, where the dielectric element Eq. (2.11) is used. F(ty) is a smooth function 

which depends on y component of tangential vector. ty varies from 1 at the vertical sheath boundary to 

0 at the toroidal boundaries. In the following tests, we chose hyperbolic tangent function as the smooth 

function. Physically it means the sheath width has a continuous decay from large width to zero.  

 ( ) abs(tanh(15* )) [ 1,1]F ty ty ty     (4.25) 

Its role will be further discussed later in 4.4.2.  

4.3.5  Progress and challenges towards 3D 
The wave equation Eq. (4.9) can be directly implemented in 3D. Work has been done within a European 

project to develop the 3D RAPLICASOL code with full TS and AUG antenna geometry [Jacquot 2015]. In 

the future, this code is going to replace the current 2D RF field module in SSWICH-FW code. The problem 

of memory cost is foreseen. During this thesis, the COMSOL workstation in CEA has been upgraded to 

128Gb of memory. A single run of 3D RAPLICASOL costs more than 100 Gb of memory and around 4 hours.  

Besides, not all the sheath boundary conditions are ready, at this moment, to be implemented in 3D. 

Myra and D’Ippolito’s boundary condition [Eq. 2.71] implicitly indicates 

 ( ) 0s RF zE V E
z z s s

  
      

   
n Ε  (4.26) 

The rotation of the vector field in curvilinear coordinate has been derived in Appendix B. So the 

boundary conditions for 3D RF field module could be written as, 

( ) 0,
( ) | |

0

sh RF
n

DS

VD sheath
nx

Ex Ez metal



 


   


  

n E
  (4.27) 

Eq. (4.26) is equivalent to Bn=0. The asymptotic version will thus use Bn=0, Dn=0 at the sheath boundary. 

In engineering design, this is called “DB” boundary conditions [Lindell 2009][Bosiljevac 2011]. Lindell 

proved that for a TE polarized plane wave (w.r.t incidence plane), this boundary condition can be replaced 
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by a PEC, whereas for a TM polarized plane wave, it can be seen as a PMC. He later successfully 

implemented this type of boundary condition into a circular waveguide [Lindell 2010]. The DB boundary 

condition is incomplete for a normal incidence plane wave. In this case the plane wave naturally fulfill the 

vanishing of longitudinal components. So this boundary does not play a role of boundary at all. None of 

these properties seems to be held in magnetized plasma waves. [Kohno 2012] demonstrates the 

possibility of modelling RF sheath by this boundary condition. However, constraining the normal electric 

field in COMSOL turns out to be problematic. Like any other commercial EM modeling software, COMSOL 

only provides the possibility to set the tangential fields at the boundary. Appendix D provides a promising 

way to implement DB boundary condition in COMSOL. At this moment, this method is only tested in the 

free space.   

In terms of VRF model, the conservation of displacement is still valid in 3D. But we haven’t tested the 

divergence vector expressed in a 2D curved plane even though its mathematically form is derived in 

Appendix B. Clearly the primary approach of solving VRF in 1D is not suitable for calculating VRF in 2D plane 

of the 3D domain.  

 All the equations in the VDC model can be implemented in 3D. 

4.3.6  Parametric setup for numerical tests 
Some numerical tests of the 2D SSWICH-FW code were conducted to demonstrate the feasibility and 

points out the limitations of the code, if there is any. The numerical tests in this chapter use a plasma 

composed of sole Deuterium. The following TS like parameters are taken: The B0 scales as 1/R, with R 

major radius axis. B0 at aperture (y=0.214)=2.3T, RF wave frequency 𝑓 =
𝑤0

2𝜋
= 48𝑀𝐻𝑧. A realistic density 

profile from TS shot 40574 (Figure 3.3) is used in the main plasma. The density at the aperture is about 

4.5×1018m-3. The RF fields are excited by imposing 1A poloidal current on each strap. Mesh is the densest 

along the sheath boundary, i.e. 5×10-4m (size), and sparsest inside vacuum antenna, i.e. 5cm (size). 

4.4  Numerical issues in the code  
This section aims at testing numerically the sheath boundary conditions in the RF field module, Eq. 

(4.23) and Eq. (4.24). The first part of this section shows the impact of the finite element shape on the RF 

field simulation. The second part discusses numerical problems at the transition point, i.e. the point where 

the sheath width varies rapidly, and the mesh dependent behavior of the derivative of the electric field at 

the sheath boundaries. The last part decreases the magnetic tilt angle gradually, to see how far we can 

push it to zero while keeping the numerical error of the boundary conditions Eq. (4.23) and Eq. (4.24) in 

an acceptable level. 

4.4.1  The choice of the shape function in solving vectorial wave equation  
Unlike solving the classical PDE equations, i.e. Helmholtz or Poisson equations, where the nodal 

(Lagrange) element are used. For solving the electromagnetic field problems, the vector or edge elements 

are often adopted. The advantage of the latter is that it releases the continuity condition imposed on the 

normal components of the EM fields across the interior boundaries between different media. In both 

cases, using a higher order of the finite element could generally achieve a better accuracy of the solution, 

given the same mesh size. The vectorial wave equation Eq. (4.9) is implemented in the RF module. It uses 

by default the vector element, but provides flexibility to change the order of finite element shape. The 

default one is quadratic. There are also linear and cubic as alternatives.  
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Firstly we use the quadratic finite element to solve the wave equation and examine the solution at the 

lower-left boundary in the far SOL region, shown by blue curve in Figure 4.7 (a). The toroidal length of the 

far SOL shown in Figure 4.3 is reduced in order to save memory. The dependence of the RF fields on the 

dimensional length will be discussed in the next Chapter. The blue line in Figure 4.7 (c) is Ex imposed by 

sheath boundary condition, which should in principle match the Ex calculated in COMSOL (green line). But 

we can see returned Ex has some oscillations meaning that the sheath boundary condition does not 

behave properly, see Figure 4.7 (c). The period of the oscillation is correlated to the mesh size which is 

shown in Figure 4.7 (b). A similar check in the flat boundary gives a better result. Now we keep everything 

the same but change the shape function order to cubic and solve the wave equation again. The Ey at the 

same boundary is shown in Figure 4.7 (d). We can see the oscillation disappears. But still the left 

extremities of the curves in (c) and (d) present some discrepancies. They correspond to the transition 

points shown by red ellipse in (a). We will talk about this problem in the next section.    

  
(a)  (b) 

  

(c) (d) 

Figure 4.7. Solving the vectorial wave equation using quadratic/cubic shape functions, theta=7°. (a) 
Choose the lower-left sheath boundary of far SOL region as the target boundary; Red circles show the 
transition points. (b) shows the mesh around the target boundary; (c) comparison of Ex given by the 

simulation (Green) using quadratic shape function and Ex given by asymptotic SBC, i.e. the first equation of 
Eq. (4.24). Arc length goes from the lower-right to the upper-left; (d) comparison of Ex solution using cubic 

finite shape function with the Ex given by asymptotic SBC at the same boundary as (c) 
 

The cubic finite element shaper can lead to a large memory consumption, typically 40Gb to solve the 

single wave equation, in contrast to 20Gb when using quadratic element with the same mesh size. 
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However, another test shows that using quadratic finite element with finer mesh in the SOL region 

consumes even more memory yet the performance of the sheath boundary condition is worse, see Figure 

4.8. Hence the cubic finite element is used in RF field module thereafter. 

 

  
Using cubic finite element, mesh size in sheath 
region; 1e-3m. Total memory 40Gb, solution time 
5mins 

Using quadratic + finer mesh, half of the mesh size in 
SOL region (4 times’ of the number of elements). 
Total memory 80Gb, solution time 10mins 

Figure 4.8 . Comparison of the realization of sheath boundary conditions in cubic finite element and 
quadratic finite element. The upper-left curved sheath boundary of the far SOL region is considered; Arc 

length goes from lower-right to upper-left.  
 

4.4.2  Discontinuity and mesh dependent behavior at the sheath boundary  
Now we will have a special look on the solutions at the transition points. We see in Figure 4.7 (c)-(d) 

the Ex calculated in the simulation (green curve) is non zero at the transition point which contradicts with 

the requirement by the metallic boundary condition or the asymptotic SBC. Furthermore, we tried with 

different mesh grids, the fields around the transition points are not converged w.r.t the mesh and show 

some discontinuities, see Figure 4.9. The mesh sizes used in these two simulations are extremely fine: 5e-

4m-1 in x direction and three different sizes in y direction, 5e-4m-1 (yscale=2), 2.5e-4 m-1 (yscale=3), 1.25e-

4 m-1 (yscale=4). The smooth function used in the boundary condition(4.24) aims at minimizing the 

discontinuity occurring at the transition points due to the rapid variation of the sheath width. Without the 

smooth function, the discontinuity becomes much larger. The discontinuity seems to be a numerical 

problem. It even appears, but in a much smaller scale, in the case when the asymptotic SBC is switched 

off. Fortunately both of the mesh-dependent behavior and discontinuity of the RF field only occur locally 

near the transition points. They should not affect the calculation globally.   
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(a) (b) 

  

(c) (d) 

Figure 4.9. (a)-(b) Blue curve Indicates the target boundary while the black circle shows the transition 
point; (c) Comparison of Ey with three mesh sizes at the boundary in (a). Black circle indicates the 

transition point; (d) Comparison of Ey with three mesh sizes at the boundary in (b) 
 

Figure 4.10 shows the toroidal and radial electric fields at two sheath boundaries. The boundary 

elements have a size of 0.5e-4m and 1e-4m in (c) and (d), respectively. We confirms again that excepting 

some transition points, the fields are generally converged to the mesh size. But even when RF fields are 

converged, their gradients i.e. Exx (=
Ex
x




) are not necessary converged to the mesh size, see (e)-(f).  The 

most problematic place is the upper part of boundary (a). This mesh-dependent behavior also appears in 

the other derivatives, but Exx is the one most sensitive to the mesh size. 
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(a) Left sheath boundary (b) Right sheath boundary 

  
(c) Ex on the boundary (a)  (d) Ey on the boundary (b) 

  
(e) Exx on the boundary (a) (f) Eyy on the boundary (b) 

Figure 4.10. A plot of electric field and its derivatives along sheath boundaries, theta=7°; Arc length 
from left to right 

This mesh-dependent of the derivative of the electric field unfortunately dismisses the secondary 

approach of evaluating VRF as both the Eq. (4.19) and Eq. (4.20) containing the derivatives. Indeed, the 

comparison of VRF evaluated by this approach shows (Figure 4.11) the difference between two different 

mesh sizes can lead up to 100%.  
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(a) VRF on the boundary of Figure 4.10 (a) (b) VRF on the boundary of Figure 4.10 (b) 

Figure 4.11. Test of VRF with different mesh sizes, 1A current on each strap. Theta=7° 
 

The slow wave propagation equation, i.e. Eq. (4.1) in the SSWICH-SW code uses the Lagrange element 

and it does not have such a mesh-dependent derivative. Indeed, the vector element method are more 

sensitive to the element quality than the Lagrange element [Mur 1994]. We will see in the next chapter 

that using vector element, the derivatives are difficult (but possible with extremely fine mesh size) to 

achieve convergence even at the metallic boundaries. Things get worse with SBCs. This mesh-dependent 

derivative of Figure 4.1 is most probably linked with the compatibility between the vector element used 

in solving the vectorial wave equation and our choice of the asymptotic SBCs. Work is undergoing to 

improve the finite element method in solving Maxwell’s equation in plasma [Campos Pinto 2016].  

4.4.3  Accuracy of the RF field simulation at small magnetic tilt angle 
One could note that the current asymptotic sheath boundary condition (4.23) and (4.24) contain 

𝑠𝑖𝑛𝜃⁡in the denominator. It is worthwhile to check how small the magnetic tilt angle can go without losing 

a good numerical accuracy. We will now compare the relative error: dEx/Ex (dEx is the error between Ex 

imposed by the sheath boundary condition and Ex given by COMSOL calculation) and dEy/Ey. 

The first boundary we check is the curved boundary at the lower-left of the far SOL region, the blue 

boundary in Figure 4.12 (a). The curvature is introduced by using an ellipse fillet which has semi-axes 

a=0.02m, b=0.01m. Those lengths are chosen to minimize the numerical errors. For example, using a circle 

fillet with radius of 0.02m can lead to the relative error of Ex reach 2% when theta=7° and 10% when theta 

=1°. Using the ellipse, the error has been well reduced, see Figure 4.12 (b). Sheath boundary condition 

performs better along the other boundaries, e.g. the flat boundary in Figure 4.12 (c) and other curved 

boundaries. If we choose relative error<1% as a criterion, then the minimum angle one can reach is 0.01° 

along flat boundary and 1° along curved boundary. 
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(a) (b) 

 

 
(c) (d) 

Figure 4.12. Test of the accuracy of the sheath boundary condition at the boundaries. (a) an example of 
curved boundary; (b) relative error of COMSOL returned Ex at boundary (a) with Ex required by the sheath 
boundary condition that is imposed at boundary (a) under two magnetic tilt angles; (c) an example of flat 

boundary; (d) relative error of COMSOL returned Ex at boundary (c) with Ex required by the sheath 
boundary condition that is imposed at boundary (c) under two magnetic tilt angles 

  

4.5  Adaptations of SSWICH for ALINE simulations  
Above, we have mentioned how SSWICH-FW code is implemented for Tokamak simulations. As a 

general method, it can in principle be used in any device. This section introduces how we transfer SSWICH 

philosophy into a totally different device, the Aline machine.  

As mentioned in chapter 2, there are two waves can exist within Aline operation limits: the Helicon 

wave and the LH wave. The former corresponds to the fast wave and the latter corresponds to the slow 
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wave. The Helicon wave is inherently electromagnetic and can only be realized using the full wave 

simulation. The RF module of the 2D SSWICH-FW code is thus used in this simulation. The simulation is 

done w/o sheath boundary conditions. The equatorial plane of the realistic ALINE vacuum vessel (Figure 

1.14) is chosen for our 2D simulation. Figure 4.13  shows the adapted SSWICH geometry. All the 

boundaries are flat. The excitation technique introduced in Figure 2.11 is used, where the antenna and 

stainless steel wire have been treated as PECs. The metal connection between the stainless steel wire and 

the disk antenna is not shown since the stainless steel wire is not meshed. The same vectorial wave 

equation, Eq. (4.9) is solved in this domain.  

 
Figure 4.13. 2D SSWICH-FW geometry for Helicon wave Simulations. The feeder structure inserted on the 

left side is a zoom in the region indicated by the black rectangle; 
 

In order to avoid creating a resonant cavity as being discussed in the chapter 3 where the numerical 

convergence was not guaranteed, we added a collisional damping. The ionization threshold for Argon is 

about 15.6eV. Under current energy level of Argon plasma (around Ti=0.026eV, Te=5eV) in Aline, the 

ionization was very low. The dominant collision was thus the electron-neutral collision. A simple 

estimation for this frequency could be found in [Chabert 2011]. 

 el em gv n v   (4.28) 

Where gn  is the neutral density, el  is the cross section, ev  is the mean velocity of a Maxwellian 

electron Eq. (2.53). This electron-neutral collision frequency is added as the imaginary part of the wave 

frequency in the dielectric tensor as shown in section 2.2.3. 

Knowing the typical working gas pressure in Aline (like 10-2 mbar or 1 Pascal), the ion-neutral mean 

free path can be obtained by the following empirical formula that accounts for ionization, ion-neutral 

elastic collision, excitation [Chabert 2011], 

 ( ) 0.0042 / ( )i n m P Pa     (4.29) 

Taking the thermal velocity of ions, one can easily calculate the ion-neutral collision frequency.   
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The RF sheath is examined separately to the helicon wave simulations. The Aline device has a 

horizontal magnetic field. Under this B0, the sheath boundary condition only contains the slow wave. Thus 

we could model RF sheath with 2D SSWICH-SW code. Besides, the slow wave propagation equation, which 

is a Helmholtz equation, has less numerical instabilities as shown in the previous section and the Appendix 

A.  

 
Figure 4.14. Boundary conditions used in SSWICH-SW simulation for Aline 

 

The excitation is the same as shown in Figure 4.13 where E// field map is imported at the bottom of 

the ceramic insulator. The slow wave propagation inside ceramic and stainless steel wire can be derived 

by replacing the plasma dielectric element / /  and  in Eq. (4.1) by 1 −
𝑖𝜎

𝑤0𝜀0
, where   is the 

conductivity of the ceramic and stainless steel wire given in section 2.2.2. In the RF field module, PEC 

boundary condition (E// =0) is used at the parallel boundaries of the antenna and vessel wall. In this case, 

the asymptotic sheath boundary condition gives the same E// =0 as PEC, see the second equation of 

equation 4.2 with infinite sheath width.  VRF is only solved along the sheath boundaries by Eq. (4.4). At 

each boundary, VRF =0 is imposed at two extremities. VDC is only solved inside the plasma via Eq. (4.7). The 

Spitzer conductivity used in SSWICH-FW accounts for electron-ion collisions. This is barely validated in the 

Tokamak case where the ionization rate is very high. In Aline, the dominant collisions are those with 

neutrals. The new parallel conductivity accounts for electron-neutral friction, it is proposed by Eq. 2.53 in 

[Chabert 2011] or the parallel term in the expression 1.3 in [Rozhansky 2008]. 

 
2

/ /
e

e m

n e
m v

    (4.30) 

 Where we have set 𝑤 = 0 in the original formula to represent the DC conductivity. Since ions have 

larger Larmor radius which gives it larger mobility in perpendicular direction than electrons, the 

perpendicular conductivity thus accounts for the ion-neutral collisions,  

 
2

i

i i

n e
m v

    (4.31) 
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where vi is the characteristic frequency of ion-neutral collision. For the Argon plasma in Aline, the ions 

are often not magnetized, meaning that the ion-neutral collision frequency can be larger than the ion 

cyclotron frequency. Eq. (4.31) can also be obtained by simplifying the perpendicular term in the 

expression 1.3 in [Rozhansky 2008] under the approximation, wci<<vi. 

A typical range of collision frequency can be found in [Faudot 2015]. In the experiment, the outer walls 

of Aline are connected to the ground. The disk antenna (electrode) can either be grounded or floating via 

inserting a capacitor in the feeder. In the latter case, the biasing potential at the antenna can be known. 

Therefore, the boundary conditions used in the VDC are, 

 //B0 vessel walls: VDC=0 

 B0 vessel walls and antenna side boundaries: sheath boundary condition, i.e. second 

equation of Eq. (4.8)  

 //B0 antenna boundaries:  0J n    

 Ceram/plasma interfaces: 0J n    

 

4.6  Conclusion of this chapter 
In this chapter, we presented the evolution of 2D SSWICH code from the slow wave version to the full 

wave version. Right now, the SSWICH-FW code has a 2D toroidal/radial geometry and the plasma is 

assumed only to evolve in the radial direction only. It adopts a tilted B0 and shaped walls. Under tilted B0, 

the formula of sheath capacitance, sheath rectification and Child-Langmuir law all have been revised. Now 

with the new magnetic configuration, the fast wave is being coupled into the sheath boundary condition. 

SSWICH-FW is thus able to study the fast wave coupling and sheath physics simultaneously. Compared to 

the previous slow wave only version, the full wave code has the following new features: 1. The RF field 

module has a current excitation by realistic antenna geometry, including the antenna box, limiters, 

septum and straps. The fast wave is damped by an artificial medium, the Perfect Matched Layers. At this 

moment, a simple generalized form of RF sheath capacitance is used as a boundary condition in solving 

the Maxwell’s equation. 2. The RF sheath boundary condition proposed by [D’Ippolito 2006] is 

implemented making use of the boundary PDE instead of volume PDE in order to save memory.  3. A 

generalized form of DC sheath rectification is used in DC plasma potential model. We have also developed 

the asymptotic version of the SSWICH-FW code, which solves the 3 modules in segregated steps instead 

of an iterative loop as in the fully coupled version. The asymptotic version assumes the sheath width is 

infinite. This assumption violates at the transition points where the sheath boundary meets the metallic 

boundary. Thus a smooth function is included in the sheath boundary condition to gradually decrease the 

sheath width. The RF field at the sheath boundary likely to have some numerical issues under low order 

finite element shape. Hence a cubic finite element shape is used in the RF field module. The antenna box 

is simulated in vacuum so as to avoid the lower hybrid resonance. Due to the limitation of the current 

sheath boundary conditions, SSWICH-FW code cannot deal with a non-tilted B0, the minimum tilt angle it 

can go is 0.01° at the flat boundary and 1° at the curved boundary in order to preserve a fairly good 

precision level. Several approaches to calculate the oscillating RF sheath voltage have been tried, but only 

one method (the first approach described in section 4.3.2 a) gives a good numerical stability. The DC 

plasma potential is still sensitive to the badly constrained parameters, the DC perpendicular conductivity. 
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The SSWICH-FW code, limited in 2D at this moment for both numerical and physical reason, is initially 

developed for RF sheath studies in Tokamak. Its philosophy can however be applied to other machines, 

such as Aline. Application of SSWICH for the Tore Supra ICRH antenna and Aline are illustrated in the next 

chapter.  
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Chapter 5  Applications of the 2D SSWICH-FW asymptotic 

code 
 

5.1 Introduction of this chapter 
This chapter aims at applying the 2D SSWICH-FW code to do interpretative simulations for Tokamak 

and Aline device, meanwhile trying to answer the core question being asked in the motivation of this 

thesis [Section 2.5]: the role of the fast wave in the RF sheath excitation.  

In tokamak environment, the suspected role of the fast wave can be summarized as follows: First, the 

fast wave can mode convert to a slow wave at the walls when the B0 is tilted to the wall or when the wall 

has a sharp transition [Kohno 2015]. Besides, the fast wave can induce far field sheath in the region where 

the wall is not magnetically connected to the wave launcher and locates much further away from the 

wave launcher than the slow wave evanescence length. Finally, the fast wave may affect the radial 

extension and parallel prolongation of the VDC. Measurement by the Retarding Field Anaylzer (RFA) shows 

those lengths are far beyond the slow wave evanescence length. This is currently interpreted by the DC 

current transport in the SSWICH-SW code. Can the fast wave provide additional mechanism to explain this 

observation? Can it produce mode conversion and excites the far field sheath in SSWICH-FW simulation? 

Section 5.2 answers these questions by testing the 2D asymptotic SSWICH-FW code.  

A successful model must be able to reproduce and interpret some experimental facts. During 

operations of TS antennas, the temperature on the antenna surface shows a double-hump poloidal 

distribution. Left-right asymmetry at the two extremities of the same magnetic field line was observed 

with asymmetric strap feeding. Section 5.3 shows the comparison of SSWICH-FW/RAPLICASOL simulations 

with those experimental observations. An ideal model has no uncertainty on the input parameters. This 

is not the case in SSWICH. The sensitivity of the simulation results on these parameters is addressed. 

SSWICH-FW code is also used to conduct electromagnetic simulations for Argon plasmas in Aline. 

Section 5.4 presents SSWICH-FW simulations on the lower hybrid wave and Helicon wave in Aline. These 

simulations are conducted without sheath. Section 5.5 studies the RF sheath in Aline using the SSWICH-

SW approach, the DC plasma potential from SSWICH simulation is compared to the experimental floating 

potential map measured by the RF compensated probe.  

For the sake of simplicity, only the asymptotic version of SSWICH-FW will be employed for these 

applications, i.e. the first round in the iterative self-consistent loop. At least in tokamak cases it was 

verified that the asymptotic results are a fair approximation of the self-consistent results of the fully 

coupled SSWICH-SW model [Jacquot2014].  

5.2 Identifying the role of the fast wave in Tore Supra configuration 
SSWICH-FW code is established on the basis of the SSWICH-SW code. Both of the two codes are initially 

developed for RF sheath studies in Tore Supra Tokamak. Under realistic TS conditions, like density profile 

in Figure 3.3, the typical field pattern is shown in Figure 5.1. In this simulation, the excitation is done by 

imposing 1000A poloidal current with 180o phase difference on the two straps. R cutoff layer locates 

several centimeters above the antenna aperture (depending on k//). The fast wave is propagating above 

the R-cut off layer and evanescent below. The slow wave is typically evanescent everywhere with an 
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evanescence length of a few millimeters. Thus it is most concentrated in the private SOL and usually 

cannot reach the far SOL boundaries (shown by cyan arrow in Figure 5.1). The direct excitation of the RF 

sheath by the evanescent slow wave can be described by the spatial proximity effects, which tells us the 

emission points which are closer to the sheath wall have a larger contribution to the sheath excitation 

than those who locate farther away. It is still unclear whether the fast wave also have such a proximity 

effect.  

 
 Figure 5.1. The real part of the poloidal electric field obtained in SSWICH-FW under TS configuration. The 

R-cutoff layer is shown by red dot line. The private SOL is enclosed by black dot rectangle. At its bottom, it 

is the antenna aperture.  

 

By comparing the SSWICH-FW code with the SSWICH-SW code, one can immediately find out the 

impact of the fast wave. The first simulation conducted in this section is thus a controlled trial on RF fields. 

The second test is tuning the dimensional length of the SOL region, trying to see the impact of the 

dimensional length on the simulation results on one hand, and find evidences of the far field sheath at 

the far SOL boundaries on the other hand. The last test compares the role of the perpendicular DC 

conductivity and the fast wave propagation on the radial extension of the VDC structure.  

5.2.1 Comparison of RF fields from 2D SSWICH-FW simulations with 2D SSWICH-SW results: 

observation of mode conversion   
The 2D SSWICH-FW solves simultaneously the fast wave and the slow wave polarizations, whereas the 

slow wave code only solves the slow wave propagation. It’s interesting to check the difference of the RF 

fields from these two codes. To do this, the two codes must have exactly the same geometry and mesh. 

The following modifications are thus done in the 2D SSWICH-FW code, 

1. Tore Supra like geometry, see Figure 5.1; The RF Excitation is done by imposing current with dipole 
phasing on straps.  
 

2. Remove all the curved geometry in the SSWICH-FW code.  
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3. Remove the vacuum gap between the antenna box and side limiters in the SSWICH-FW code. (It is 
the two thin rectangular parts hanging below the aperture in Figure 4.3). 

 

 
4. A constant density (=1.5×1018m-3) is assumed all through the private SOL region (the region 

bounded by two limiters in Figure 5.1), in order to get rid of the impact of dielectric tensor evolving 
with y coordinate in the slow wave propagation.  We will only examine the difference of the RF 
fields in this region. 
 

5. The magnetic tilt angle is set to θ=0.01° (the limit we can achieve at the flat boundary for which 
the sheath BC is still working well, see Chapter 4) to match θ=0° in the SSWICH-SW code. 
 

6. The two wave equations: the vectorial wave equation and the slow wave propagation is 
implemented sequentially in the same model. The E// field map at the aperture of the SSWICH-FW 
is used as an input field map to the slow wave code. 

The following TS like parameters are used, f=48MHz, density profile TS40574 (Figure 3.3), B0(at 

aperture)=2.32T. Under this condition, the slow wave has an evanescence length Eq. (2.19) around 3mm 

in the private SOL region. As a reference, the mesh density here is 0.5mm-1. Figure 5.2 (a), (c) and (e) show 

the parallel electric field (E//) calculated by the two codes. The relative difference between them is zero 

at the aperture where they have common fields. Then it increases as the slow wave become evanescent 

and the fast wave contributes part of E//. Finally the propagating fast wave takes over totally and the 

relative difference of E// consequently becomes very large.  

In (a), a large E// pattern appears at the top corners of the side limiters, which does not exist in (c).  The 

slow wave is evanescent before reaching those points, thus we expect it is the fast wave that propagates 

to that position and mode converts to the slow wave. This observation is similar to the simulations 

reported in [Kohno 2015], where mode conversion to slow wave occurs when the geometry has a sharp 

transition.  

Figure 5.2 also compares the evolution of E// due to the changing of / / . The evanescence length of the 

slow wave Eq. (2.19) is inversely proportional to / /| | . Hence reducing / /  by a factor of 10, the slow 

wave should propagate further radically. This is confirmed in (d) where the slow wave exceeds the private 

SOL region. Correspondingly, in (f) the boundary where relative error is less than 1 is shifting upwards. 

Besides, the E// pattern at the top corners of the side limiters is also increased. (e) has a larger error 

starting from x=±0.1 and ending at y=0.216. This is because this region is the gap between the main and 

side lobes where the denominator E//, sw is small, see (c). Similar to the definition of width of a Gaussian 

beam, the slow wave evanescence length is defined as the width where the magnitude of E// decreases to 

1/e of its maximum value. In log scale, it is the width where the ln(abs(E//)) decreases 1 unit. Figure 5.3 

shows the slow wave evanescence length is indeed almost 3 times’ larger when manually reducing / /  by 

a factor of 10. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 5.2. Comparison of E// obtained from two codes. (a) , (c), (e) with normal / / . (b), (d), (f) uses 

/ / /10 . (b) and (d) use the field map from (a) and (c) respectively.   
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Figure 5.3.  E// calculated along a vertical line(x=-0.1m) in the slow wave code 

 

The fast wave dispersion relation Eq. (2.17) can be reformulated as  

2 2 2
2 / /

2
/ /

( )nn
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 
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 


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 



(5.1) 

From which we see that this wave depends on  .   is negative above the lower hybrid resonance, 

thus in the private SOL, the denominator is negative of Eq. (5.1). For our adopted constant density, 

41  , 14   and / / 10n   (main lobe in dipole phasing, see Figure 2.8) in the private SOL.  So the 

numerator is positive and the fast wave is evanescent. Reducing   can make the fast wave more 

evanescent, whereas   has no significant impact on the slow wave Eq. (2.18). So changing manually the 

  will only affect the fast wave. Keeping the sheath boundary condition still working correctly, one can 

investigate how the E// evolves when   is changing. Reducing   by a factor of 10, the fast wave become 

more evanescent. This is indicated in Figure 5.4 where the field structure on the right side is significantly 

reduced. Note the slow wave code uses the input field map from the output of the full wave code. So even 

it is only solving the slow wave propagation, the field scale can still be affected by reducing   in the full 

wave code, as seen in Figure 5.4 (d). The boundary where the relative difference is less than 1, shown in 

Figure 5.4(d) is now changing because both the fast wave and the slow wave are affected. However the 

slow wave evanescence length should not be affected by varying the   in both codes. This is confirmed 

in Figure 5.5. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 5.4. Comparison of E//. Left: normal parameters Right:  /10 
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Figure 5.5. Comparison of E// along the same vertical line as Figure 5.3 

 

The next test is change the tilt angle in the full wave code to see the impact on mode conversion. When 

the magnetic field is tilted to 20o, / /E  pattern still roughly remain the left-right symmetry. This can be 

seen from the lower part of the right figure of Figure 5.6. Another symmetric check shows the quantity 

𝐸⊥(𝑥) + 𝐸⊥(−𝑥) changes from 0 to 3 when the tilt angle increases from 0o to 20o. In other words, the 

anti-symmetric of 𝐸⊥ loses seriously when 𝜃 = 20𝑜. We see in Figure 5.6 that the E// at the left top of the 

limiter increases, while decreases at the right top. This opposite variation matches the variation of 𝐸⊥and 

it also coincides with the fast wave spectrum variation w.r.t the tilt angle Figure 3.8.   

  
Figure 5.6. The real part of E// from Full wave code with two magnetic tilt angles 

 

5.2.2 Evidence of the far field sheath excitation on remote areas inaccessible to SW emitted by 

the antenna 
In a realistic Tokamak edge condition, the fast wave can propagate much further away from the wave 

launcher than the evanescent slow wave. The latter should vanish within a few millimeters. In this test, a 

constant density profile higher than the fast wave R-cutoff density is imposed in the SOL region. So the 

fast wave can propagate and reach the upper-left boundary of the far SOL region, as shown by the blue 
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curve in Figure 5.7. The magnetic tilt angle is set to 1o (minimum angle at the curved sheath boundary to 

guarantee the sheath boundary condition working correctly, see Chapter 4). The mode conversion is still 

present at the rounded corners even when 𝜃 = 0𝑜as the magnetic field is neither perpendicular nor 

parallel to the curved boundary. VRF is excited preferentially near these rounded corners. This justifies why 

the intense VDC is observed when the geometry changes rapidly [D’Ippolito 2013]. Here we define two 

characteristic dimensional lengths, the toroidal and the radial length of the SOL region, L// and L, 

respectively. By tuning the L// and radial L, one could see the impact of these lengths on the excited far 

field sheath. The potential variation at the shaped far SOL boundary (blue curve in Figure 5.7) w.r.t. L// and 

L is examined. Results in Figure 5.8 (a) and (c) illustrates both |VRF| and |VDC| at that boundary decreases 

under larger toroidal dimensions. This can be understood from the fast wave field pattern (Figure 3.5) 

that when the toroidal connection length increases, the fast wave passes over the blue boundary and thus 

only has a smaller contribute to the far field sheath excitation. By the same postulation, increasing the L 

by shifting downwards the antenna structure could increase the potential as the fast wave can contact 

with the blue boundary.  This is confirmed in Figure 5.8 (b) and (d) where both |VRF| and |VDC| increases 

as L getting larger. This observation is prior counter-intuitive: RF sheath excitation gets more intense as 

the extremity of the wall moves farther from the antenna. It is against the prediction by the spatial 

proximity effect. Currently, the spatial proximity effect is evidenced only in the evanescent slow wave 

[Colas 2016]. It is important to assess how this property evolves in the presence of the fast wave. Results 

in Figure 5.8 (b) and (d) suggest the fast wave may not have the proximity effects at least in its propagative 

regions. 

 
Figure 5.7. The characteristic length L// and L  are shown in the geometry; Blue boundary is where VRF and 

VDC are examined in Figure 5.8 
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(a) |VRF| at the blue boundary of Figure 5.7 

varies with a scan of L// , L=0.0375m, 
1000A current, θ=1o  

(b) Variation of |VRF| at the blue boundary of 
Figure 5.7 with a can of L , L//=2m, other 
conditions the same as (a) 

  
(c) VDC at the blue boundary varies with a scan 

of L//, other conditions the same as (a) 
(d) Variation of VDC at the blue boundary with 

a scan of L, other conditions the same as  

Figure 5.8. VRF and VDC behavior with different dimensional lengths; Data were picked up along the blue 

boundary of Figure 5.7. A constant density 9×1018m-3 at SOL region, f0=w0/2π=48MHz, B0(y=0.214m)=2.3T, 

𝜃 = 1𝑜 

 

Finally, we consider the impact of the tilt angle. It affects the VDC structure from two aspects: firstly it 

changes the fast wave evanescence length and the slow wave excitation. In the extremely case where 𝜃 =

900, the fast wave antenna excites mainly the slow wave. But under typical TS parameters, the slow wave 

is always evanescent along the radial direction in the private SOL for whatever tilt angles. On the contrary, 

the fast wave experiences from evanescent to propagative during the variation of the tilt angle. Thus in 

the far SOL region, the fast wave may play the dominant role. Secondly, it changes the RF sheath 

rectification as the RF sheath ceases to exist when 𝜃 = 900. The dependence of VDC structure at far SOL 

region on tilt angle is similar to the dependence of the radiating power on the tilt angle (Figures 3.17). 

Figure 5.9 shows the VDC evaluated at the left boundary of the left side limiter with a full scan of θ. The 

excitation is done by imposing current on the straps. When the tilt angle is increasing, the VDC is enhanced 

as the RF field is stronger. After certain points, the second effect become dominant and VDC decreases 

dramatically to the floating potential. 
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Figure 5.9. VDC at the green line of the left figure of Figure 5.15, w.r.t the magnetic tilt angle. Excitation is 

done by imposing 1000A current on each strap 

 

5.2.3 Tests of DC plasma potential on DC perpendicular conductivity and Stix tensor: the fast wave 

plays a supplementary mechanism in VDC radial broadening 
The parallel conductivity is described by the Spitzer conductivity, which gives a typical value of

/ / 35714 /S m  . Two perpendicular conductivities, 𝜎⊥,𝑝 and 𝜎⊥,𝑓⁡are used to distinguish the different 

turbulence levels in the private SOL and free SOL, respectively. 𝜎⊥,𝑝 is usually larger than the 𝜎⊥,𝑓. No 

precise estimation is available for these two conductivities at this moment. Nevertheless, a domain of 

these values has been determined by matching the simulation with experimental radial broadening of VDC 

[Jacquot 2014]. Our goal here is to investigate the role of the fast wave on the VDC radial broadening (Δy 

in Figure 5.10 (a)) by reducing the perpendicular conductivity as much as possible. Small value of 

perpendicular conductivity often leads to convergence problems as the finite element matrix becomes 

singular during the LU decomposition. The minimum conductivity we can achieve without losing a 

converged solution is 100 times smaller than the ones used in [Jacquot 2014]. Simulation shows that the 

radial broadening decreases significantly when the perpendicular conductivity decreases, see from Figure 

5.10(a)-(b).  

Let’s now consider an extremely case where 𝜎⊥is zero. In this case, there is no transverse current in 

the private SOL, the current injects at the left boundary should equal to the current comes from the right, 

which means 
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(a) (b) 

 
(c) 

Figure 5.10. Tuning the perpendicular conductivity and off-diagonal term of Stix tensor to see the evolution 

of VDC radial extension Δy, θ=7o 
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Where the index l, r indicate the left and right sides, respectively.  

See from Figure 5.10 (b), VDC is the same at the right side and the left side of the private SOL. So equal 

VDC,l=VDC,r=VDC in Eq. (5.2), and use the property of Bessel function: 0
| |ln[ ( )] | |B e RF

b RF
B e

k T e VV I V
e k T

  . 

After some algebra, one obtains 

 , ,max(| |,| |)DC f RF l RF rV V V V    (5.3) 

In the private SOL of Figure 5.10 (b), the typical potential values at y=0.226m are: max(|VRF|) =637V, 

Vf=26V, VDC=627V. Thus it fulfills the inequality(5.3). Further below this radial position, Eq. (5.3) become 

invalid because the sheath rectification is so strong that the electron current reaches saturation.  
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From the fast wave dispersion relation, Eq. (5.1), this wave is sensitive to the change of the off-diagonal 

term of the Stix tensor:  . Thus the fast wave contribution to the VDC radial broadening is affected by 

reducing  . Compare (c) with (a), the radial broadening only varies slightly. These observations suggest 

that the DC current transport described by the perpendicular conductivity is still the dominant mechanism 

for VDC radial broadening.   

The two perpendicular DC plasma conductivities in the free SOL and in the private SOL are loosely 

constrained both in the SSWICH-SW and SSWICH-FW codes. Here are the main points on how VDC evolves 

with these conductivities: (a) In SSWICH-SW simulations, choosing two different DC conductivities in the 

free SOL and in the private SOL was found necessary to produce VDC maps with both magnitude and radial 

extension comparable to the RFA observations on Tore Supra [Jacquot2014].  𝜎⊥,𝑝needs to be larger than 

𝜎⊥,𝑓 to obtain significant VDC in the free SOL; VDC amplitude is intense in the private SOL and lower in the 

free SOL; (b) VDC at the leading edge of limiter (its location is shown in Figure 5.7) increases with 𝜎⊥,𝑝; (c) 

With larger  𝜎⊥,𝑓, the radial broadening of the VDC structure in front of the limiter leading edge at free SOL 

increases. (a) can be seen in Figure 5.10(a)-(b). Indeed, VDC starts from the private SOL and can propagate 

to the free SOL only if 𝜎⊥,𝑝is sufficiently large. The above three observations have similar behaviors in the 

slow wave code, mainly because SSWICH-SW and SSWICH-FW share similar DC modules. An analytical 

non-linear diffusion model has been proposed in [Jacquot 2013] to explain them (a simplified model was 

published in [Jacquot 2014]). It considers a four-region rectangular geometry which covers the private 

SOL and three free SOL regions. The transversal diffusion length of the VDC is derived, which is proportional 

to the square root of perpendicular conductivity and the parallel connection length.  

 / /
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Figure 5.8 has shown the dependence of VDC on dimensional parameters. The realistic parallel 

connection length is about 10m. Modelling such a large scale is certainly out of the memory limits of our 

working station. But the effect of the dimensional length on the radial extension of VDC structure can be 

compensated by the choice of perpendicular DC plasma conductivity, i.e. from Eq.(5.4), it is the product 

of⁡𝜎⊥,𝑓 and L// is the parameter that really matters. 

(b) can be understood naively that with a larger 𝜎⊥,𝑝, ∇𝑉𝐷𝐶  is smaller to fulfill the conversion of DC 

current equation. Thus the diffusion length is larger in the private SOL or VDC decreases slower vertically 

starting from the aperture. Given VDC at the aperture, VDC at the leading edge of the side limiter is 

consequently larger. Figure 5.11 shows a scan of VDC at leading edge of the left side limiter with a variety 

of conductivity. The excitation is done by imposing 1000A current with hyperbolic distribution on each 

straps. Other parameters are 𝜃 = 7𝑜, L//=1.1m, L=0.0375m. 

 The analytical model can also predict the VDC radial width ∆𝑦  (width defined between two half 

maximum). A homogeneous plasma density is assumed to derive analytical solution of ∆𝑦. The RF biasing 

at the walls of far SOL region is assumed to zero, which is barely true when only the slow wave is 

considered. Following these assumptions, the ratio of ∆𝑦 over diffusion length λ can be expressed as a 

function of the magnitude of VDC at leading edge of the limiter, see Eq.(5.5). The right side of Eq. (5.5) is 

barely constant among the conductivity range of our choice. The radial width is thus increasing with the 

diffusion length.  



Applications of the 2D SSWICH-FW asymptotic code                      Chapter. V 

115 
 

 
0

0 /2 2( 1 exp( ))
V

V

y d


 
 

  
   (5.5) 

Where V0 is the normalized VDC at the leading edge of the side limiter, i.e. 0
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Figure 5.11. Dependence of the VDC at the leading edge of the left side limiter on perpendicular 

conductivities 

 

5.3 Comparison of SSWICH-FW simulation with Tokamak experiment: VDC vertical structure 

and left-right asymmetry of the heat flux at the side limiters 
The temperature distribution recorded by the infrared thermography over the antenna surface during 

the RF operation of Tore Supra antennas reflects the intensity of the interactions between SOL plasma 

and the antenna, see Figure 5.12(a). The temperature distribution shows a clear double-hump poloidal 

structure, which is consistent with the poloidal distribution of the potential measurement by RFA [Figure 

2.18 left]. The enhancement of the DC plasma potential by the RF sheath rectification is widely suspected 

to be the physics reason behind the intense SOL-antenna interactions. If this is true, VDC should show the 

similar structures as the temperature. In Figure 5.12(b), a differential temperature map is shown. It makes 

the difference between two RF pulses whose left/right power ratio on the straps are 50%-50% and 63%-

37%, respectively. The differential field map shows the temperature is increasing on the left hand side 

(from the plasma side, strap with higher power) while decreasing on the right hand side (strap with 

reduced power). This asymmetry cannot be interpreted by the traditional double Langmuir probe 

approach of RF sheath modelling which characterizes the sheath intensities at both field line extremities 

with one single parameter (a line-integral of E//). Neglecting the transverse heat exchanges in the materials, 

the temperature measurement in thermal steady-state is a direct indication of the heat flux normal to the 

antenna surface. Thus we will also examine whether the heat flux in our simulation exhibits left-right 

asymmetry in case of asymmetric strap feeding. In [Colas 2016], the spatial proximity effect related to the 

evanescent slow wave is invoked to understand this asymmetry. We do not know yet how this property 

evolves in the presence of the evanescent fast wave, whose characteristic evanescence lengths are larger 

than those of the slow wave in the SOL region. This asymmetry property inherently indicates that reducing 

the power on one strap could mitigate the sheath effect on the side of the antenna that is close to it but 
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at the same time increase the sheath potential on the other side. This promotes the current effort of using 

3 straps antenna in AUG [Bobkov 2016]. Recently results evidenced the sheath effects on both sides of 

the antenna could be mitigated through using 3 straps antenna.  

 
 

(a) (b) 

Figure 5.12 (a): infrared picture of active ToreSupra ICRF antenna [Corre 2012] shows a double-hump 

structure at the side limiters (b) differential IR image from subtraction of two RF pulses, where the RF 

generator power balance is changed from (50% / 50%) to (63% / 37%)[Colas 2013] 

 

The realistic antenna has a poloidal curvature to match the shape of the vacuum vessel, thus the 

poloidal direction is not exactly vertical. For simplicity, this curvature is not considered in the simulation. 

SSWICH-FW limited in 2D at this moment, can however produce results on different vertical positions via 

a multiple-2D approach, exciting several independent 2D simulations with full-wave field maps from the 

3D RAPLICASOL code [Jacquot 2015] at different altitudes z. For SSWICH-SW, the multiple-2D approach is 

shown to be a fairly good approximation of realistic 3D simulations [Colas 2016]. A similar assessment will 

be made below for the fast wave. The 3D RAPLICASOL code simulates a realistic TS antenna geometry, 

including the CBSB Faraday screen, see Figure 5.13 (upper figure). In the simulation model, the Faraday 

screen bars are recessed by 5mm compared to the edge of the screen box. We found by shifting the bars 

slightly inward along the radial direction can reduce poloidal oscillations in the electric field at the Faraday 

screen (here we refer to the radial position of the box, 5mm above the bars). This was done also in the 

real CBSB FS for some mechanical considerations, see Figure 5.13 (lower figure). The electric field in 

RAPLICASOL is solved using the following TS parameters, plasma composition: 95% D and 5% H, B0 scales 

as 1/R, with R major radius axis, B0 at aperture (y=0.214)=2.9T, RF wave frequency 57MHz, θ=7o. A realistic 

density profile from TS shot 43026 is used. The density at the aperture is about 1×1018m-3. The slow wave 

radial evanescence length is about 1cm (value at y=0.224m, n//=10). The fast wave R cut-off layer locates 

at y=0.244m (n//=10). The density profile as well as the locations of the antenna aperture, leading edge of 

the limiter and R-cutoff layer are shown in Figure 5.14. The simulation in 3D RAPLICASOL is done with PEC 

BCs only. It is further normalized to 1MW total coupled power.  
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Figure 5.13.Up:  RAPLICASOL antenna model with the Cantilevered Bars and Slotted Box (CBSB) Faraday 

screen; Down: Recessed FS bars in the real CBSB Faraday screen 
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Figure 5.14. Radial density profile and its relative location in the code, data from TS shot 43026 

 

SSWICH-FW simulations are carried out with the same plasma parameters and density profiles as 

RAPLICASOL runs. In 2D SSWICH-FW code, the top of the limiter is shifted downward to match the realistic 

value (1cm) of the radial extension of the private SOL (distance between the blue dot line and aperture in 

the left figure of Figure 5.15). The aperture is extended to connect the curved part of the side limiters as 

it is in 3D RAPLICASOL code. We consider both the cases where the curvature at the side limiter is kept 

and removed.  We chose the parallel connection as large as possible using our dedicated workstation with 

128 GB of memory, L// =4.7m. Under typical edge plasma temperature Ti=20eV, Te=10eV, the Spitzer 

parallel conductivity is around / / 35714 /S m  . The perpendicular DC plasma conductivity 

8
, / /10f 

   is chosen to match the radial extension of the VDC in free SOL.  In the private SOL, the 

same 
6

, / /2.6 10p 

    is used as in [Jacquot 2013]. 

  

Figure 5.15. Two realistic geometry used in the simulation of this section. Left: the curved part (enclosed 

by the orange circle) at the top of side limiters is kept but being shifted downwards; The green vertical line 

is where the VDC data is extracted in Figure 5.17; The two red curves are where the heat flux is examined in 

Figure 5.20. Right: the curvature part at the top of the side limiters is removed  

 

The multi-2D simulation procedure is the following: scan the vertical positions using 2D SSWICH-FW 

from -0.376m to 0.378m (bounded by the vertical length of the FS) with a step size of 3mm. In each vertical 

position, the electric field map tangent to the aperture (containing both the vertical and toroidal field 
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components) exported from the 3D RAPLICASOL at the Faraday screen (5mm above the bars) in that 

vertical position is imposed at the aperture of the 2D SSWICH-FW. In 2D SSWICH-FW, we examine the VDC 

structure at the left edge of the left limiter, shown by the green line in Figure 5.15. 

 

 
Figure 5.16. 2D field map generated at the Faraday screen of the 3D RAPLICASOL code; Up: the real part of 

the parallel component; Bottom: the real part of the perpendicular component (the one perpendicular to 

the radial direction).  

 

In the first approximation for large / /| | , the fast wave is transverse electric field while the slow wave 

is transverse magnetic field w.r.t. the direction of the static magnetic field. For kz=0 this also means that 

the poloidal electric field is negligible in the polarization of the slow wave. These distinct features allow 

one separating the fast wave and the slow wave on RF excitation. The E// and E map extracted at the 

Faraday screen (again 5mm above the bars) of the 3D RAPLICASOL. The direction of the magnetic field 

depends on the way of looking, i.e. standing at the plasma side facing towards the antenna or the reverse. 

To ease comparison with experiment, in this section we show the simulation results as if we are looking 

from the plasma side towards the antenna. So the magnetic field now points from right to the left instead 

of pointing from left to right as we showed in Figure 4.3. We further flip vertically the field maps in order 
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to match the convention used in the previous simulation in [Jacquot 2013]. The final field maps with the 

direction of the magnetic field are shown in Figure 5.16. The E// map shows a clear double-hump structure 

at the lateral edges of the side limiters and at the end of the FS bars, whereas the E has only a single 

hump and spreads over a large scale. The E// is significantly smaller than the E at the FS bars (strictly 

speaking, 5mm above the bars), which is normal since the FS is used for cancelling the E// from the 

excitation. These field maps are decomposed into the toroidal and vertical components and then 

imported at the aperture of the 2D SSWICH-FW code.  

The vectorial wave equation, the VRF equation ( /s RFE V s   ) as well as the asymptotic RF sheath 

boundary condition Eq. (4.23)-(4.24) are all linear. Thus the RF field and the scale of |VRF| will both 

respond linearly to the magnitude of the excitation and follow the additivity rules.  The sheath rectification 

formula Eq. (4.22) is intrinsically non-linear and hence the VDC does not follow the additivity rule. These 

properties are useful when comparing results with different scales of excitations. 

  
(a) (b) 

  
(c) (d) 

Figure 5.17. VDC vertical scan using field map containing E// only (a), E only (b), smoothed E only (c) and 

both E// and non-smoothed E (d). Data picked up at the green line of Figure 5.15 (Left) 

 

The first set of simulations excites SSWICH-FW with only the E// component of the RAPLICASOL field 

map, representing a VDC produced uniquely by the slow wave excitation. The result (Figure 5.17(a)) 

recovers the double-hump shape observed by the RFA measurement and previous SSWICH-SW runs 

[Jacquot 2014]. With our choice of transverse conductivity, the radial broadening of VDC is about 3cm, 

which is consistent with the measurement although the parallel connection length in our simulation is 
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smaller than those in TS free SOL by a factor of 2. The scale of VDC in Figure 5.17 (a) is however only 40% 

of the result in [Jacquot 2013]. It is partly because the slow wave is sensitive to the geometry shape of the 

private SOL. As a reference, the arc length of the curved SBC in the private SOL is 45mm. After removing 

the curvature, the flat boundary in the private SOL is only 10mm. The value of this arc length in the realistic 

TS antenna is about 28mm. Simulation shows removing curvature at the top of the side limiters could lead 

the VDC scale of Figure 5.17 (a) increasing by 30%. Another part of difference comes from the fact that in 

[Jacquot 2013], the magnitude of the electric field map is 1.5 times larger than the value used in the 

simulation here. 

 The double-hump structure is most probably linked to the slow wave, as it vanishes when only the E 

is imposed at the aperture, representing the pure fast wave excitation, i.e. Figure 5.17 (b). No significant 

difference is observed on the VDC scale in Figure 5.17 (b) when removing the curvature of the side limiters. 

The vertical modulation of VDC in (b) is caused by the Faraday screen bars in the RAPLICASOL code. It can 

be seen also in the E field map. However such poloidal modulation is not obvious in the experimental 

measurements, although its typical period (~3cm) is within the spatial resolution of infrared cameras (the 

FS bars are clearly visible on the IR pictures). One might look for artefacts in the measurements. Here we 

rather re-assess for the fast wave the multi-2D approach successfully applied for the SW simulations, 

looking for a possible over-estimation of the poloidal modulation compared to full-3D calculations. 

A typical scale of perpendicular wave number of the fast wave and the slow wave at the green line of 

Figure 5.15 can be evaluated from their dispersion relations Eq. (2.17) and Eq. (2.18), i.e.  𝑘⊥,𝑓𝑤
2 =

−100⁡𝑚−2, 𝑘⊥,𝑠𝑤
2 = −105𝑚−2 . The squared radial wavenumber reads: 𝑘𝑦

2 = 𝑘⊥
2 − 𝑘𝑧

2 . Our multi-2D 

approach amounts to taking kz=0 for all spectral components in the input field map, whereas in real 3D 

calculations, a finite kz should be present, whose magnitude (2/0.03~200m-1 for 3cm modulations) is 

larger than the  |𝑘⊥,𝑓𝑤|, while being much less than the |𝑘⊥,𝑠𝑤|. Thus the fast wave can be more sensitive 

than the slow wave to a finite kz. Adding a finite kz will make 𝑘𝑦
2 more negative and increases the radial 

evanescence of the fast wave. Taking as typical radial distance the recess of the side limiters, i.e. 𝛿𝑦=1cm, 

one finds that⁡𝑘𝑧𝛿𝑦 ~2 while 𝑘⊥,𝑓𝑤𝛿𝑦 ~0.1. One anticipates a non-negligible attenuation of the FW field 

modulations between the Faraday screen and leading edge. Correspondingly, the local field structure will 

become less intense. Thus the amplitude of VDC modulation shown in Figure 5.17 (b) is probably being 

overestimated.  A way to mitigate the poloidal modulation is to smooth the E field map. In the following 

simulation, we average E over a period of 3cm in the poloidal direction. This can eliminate the fast 

modulations which has kz 200m-1. The result is shown in Figure 5.17 (c), where the VDC scale indeed 

decreases by 30%. Comparing the VDC in (c) with (a), one can see that the fast wave changes not only the 

VDC magnitude in antenna vicinity, but also the poloidal shape.  

Although the slow wave only appears in the private SOL, the VDC structure can extend further away 

toroidally, see Figure 5.10 (a). This explains why the RFA locating 12m away from the wave launcher can 

still receive significant signals. Figure 5.17 (d) shows the VDC distribution over a vertical scan with full (both 

E// and E) excitation at the aperture. The same smoothed E field map as in (c) is used.  The total VDC is 

not a simple addition of the two individual contributions from the fast wave and the slow wave since the 

sheath rectification process is non-linear. The scale of VDC in (d) is comparable with the experimental value 

(~100 volts), but not really the poloidal shape.  
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Our latest effort to combine the 3D effect into the simulation is to replace the zero poloidal derivative 

assumption which was used in deriving RF sheath boundary conditions Ez=0 in Eq. (4.12) by considering 

all the kz spectrum. Now if we assume that the plasma parameters have no z-dependence and that the 

spatial boundaries of the simulation domain are invariant under translation along z. Then we can Fourier 

transform the RF quantities in z direction and rewrite the RF sheath boundary condition in the spectral 

domain, 

 

( , )( , )( , ) ,
( )

0

sh RF zz z
s z n

z

x z

V s kE s kiE s k D Sheath
k s

E E Metal



 
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  
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  

  (5.6) 

Where s represents the direction of the boundary arc length, the ansatz z.=-ikz and Eq. (4.26) have 

been used in deriving the first equation.  

The ansatz z.=-ikz can also be used to extract directly VRF from the vertical RF electric field as 

 ( , ) ( , )RF z z z
z

iV s k E s k
k

    (5.7) 

In this approach no independent module is needed to compute VRF, contrary to previous formulations. 

One can also see that in this spectral domain, no boundary condition is necessary to specify VRF (except 

for kz=0). In this special case when kz=0, we checked the convergence of the VRF by decreasing successively 

kz. The test is done in a flat SOL geometry, namely removing all the curved boundaries. With curvature, 

COMSOL still has some difficulties to reach numerical convergence when solving the vectorial equation in 

the spectral domain at this moment. We plot VRF at the left far SOL boundary, which is the blue boundary 

in Figure 4.12 C. The results is shown in Figure 5.18.  One can see that as kz decreasing, VRF gets converged. 

kz=0.01 can already well represent kz=0.      

Under wide sheath assumption, the sheath boundary conditions in Eq. (5.6) become linear. Linearity 

in the first two steps in SSWICH-FW indeed ensures that 2D simulations for each wavevector kz are 

independent of each other [Colas2016]. This allows running them sequentially with memory requirements 

equivalent to a 2D simulation, and running time equivalent to a multi-2D simulation. 

The detailed procedures are the following, 

1. Fourier transform the input field map, Ex(x, z), Ez(x, z) Ex(x, kz), Ez(x, kz) 
2. For every kz, excite electromagnetic fields in spectrum domain using spectral sheath boundary 

conditions 

3. Calculate VRF(s, kz) in spectrum domain for every kz 

4. Inverse Fourier transform VRF(s, kz)  VRF(s, z) 

5. Run VDC module as before 

With this new method, one can include all the poloidal derivatives of the RF fields as well as prevent 

the use of integral constant introduced in the first approach to evaluate VRF (See section 4.3.2 a). This 

method is promising at those points. However, the assumption we made in order to conduct the poloidal 

Fourier transform is that the antenna has an unlimited size in the poloidal direction. Test shows that a 

surface wave is likely to propagate at the outer boundaries of the side limiters under a high kz, see the 
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wave pattern inside the red ellipses in Figure 5.19. In reality, the antenna has a limited size, the surface 

wave will be bounced back at antenna extremities. This is a clear point suggesting that this spectral 

method cannot replace the full 3D simulation.  

Further testing on this method is restricted by the time duration of this thesis, but this should be a 

prior improvement to the code when a full-3D SSWICH-FW simulation is out of reach.       

 

 
Figure 5.18. Convergence of VRF with tapered kz. Date are picked up at the left far SOL boundary, 
θ=7o,  freq=57MHz, central magnetic field B0=3.87T, a constant density ne=1.6×1019 m-3 is used 

below the Separatrix 
 

 

 
Figure 5.19. Excitation of surface wave in the far SOL under a high kz, other parameters are the 

same as Figure 5.18 
 



Applications of the 2D SSWICH-FW asymptotic code                      Chapter. V 

124 
 

The next step is to calculate the heat flux at the lateral sheath boundary of the private SOL, i.e. the red 

boundaries in Figure 5.15. It is feasible to change the power ratio over the two straps in the 3D 

RAPLICASOL code. Two tangential field maps with power ratio of 50%-50% and 63%-37% are exported at 

the Faraday Screen in order to compare with Figure 5.12(b). All these maps are not smoothed. The 

effective heat flux is the one normal to the boundary, which can be determined via the following analytical 

expression [Jacquot 2013], 

( , ) ( , )2[ ( , ) 2.5 ] | | cos min{ ,exp[ ]}| | cos
B

f b DCB BB i B e es
n is DC is B

is B e

V V x y V x yk T k T jQ j V x y nx j e nx
e e j k T

 


 



 
     (5.8) 

Where the first term is the ion heat flux; the second term corresponds to the electron heat flux. The 

electron flux reach the maximum when the electron current is saturated, in this case the first term in the 

bracket is used. 

We first evaluate the heat flux at the curved boundary of the private SOL at z=-0.2m, shown in the left 

figure of Figure 5.15. The left-right asymmetry is nicely recovered by SSWICH-FW/RAPLICASOL simulation, 

see Figure 5.20. This left-right asymmetry is a robust invariant property that appears at all vertical 

positions. This suggests that the spatial proximity effect is still present in the region where the evanescent 

slow wave and evanescent fast wave co-exist. Figure 5.20 starting from the aperture, the sheath 

rectification is so strong that the electron current get saturated. At this stage, the electron saturation 

current Eq. (2.56) only depends on plasma parameter while it is invariant to the power ratio at straps. 

Then as moving to the top of the limiter, sheath rectification become moderate so the electron heat flux 

and thus the total heat flux is correlated with the RF field and thus the power ratio. The sharp drop of the 

electron flux at the two figures does not occur at the same radial position, this is because the electron 

current depends on the biased potential Vb and thus the local RF electric fields. Under a tilted magnetic 

field, the local wave pattern is not exactly left-right symmetric as we have seen in the power spectrum, 

i.e. Figure 3.8. After a certain point, the sheath rectification is so low that the electron heat current is 

negligible compared to the ion heat flux. The ion heat flux depends on the VDC. But it is not very sensitive 

to a small change of the power balance. In the simulation, VDC amplitude only changes 4% with these two 

power ratios. At the leading edge of the limiter, heat flux becomes zero as it is parallel to the magnetic 

field.  

  
Figure 5.20. Heat flux at the curved boundaries of the private SOL, data picked up at the red boundaries of 

Figure 5.15 (Left), 𝜃 = 7𝑜, z=-0.2m 
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The curvature again plays an important role on the scale of VDC. In Figure 5.21, the curved part at the 

top of the limiters is removed. The heat flux still maintains the left-right asymmetry but the magnitude 

increases 175% compared to Figure 5.20. The sensitivity of the magnitude of the heat flux at the private 

SOL boundary on the curvature suggests the slow wave plays a dominant role on the sheath excitation 

inside the private SOL. A more realistic curvature will be considered in the future development of the 

SSWICH code. 

  
Figure 5.21. Heat flux at the vertical boundaries of the private SOL; Data picked up at the red boundaries 

of Figure 5.15 (Right), 𝜃 = 7𝑜, z=-0.2m 

 

5.4 Electromagnetic simulations for Aline plasma 
The Aline device provides a good opportunity to study the physics of the basic plasma waves. One of 

the short-term scientific goals of the Aline device is to generate the helicon wave. Simulations are thus 

needed to find out whether the Aline condition could support this wave. Helicon wave is an 

electromagnetic wave, while the electromagnetic simulations have never been done before in Aline 

device. This section reports the first electromagnetic simulations for Aline using the 2D SSWICH-FW code 

without sheath. Both the LH and the Helicon wave are studied.  

5.4.1 Simulation of Lower hybrid and Helicon waves for Aline discharge 
The first step is to know the typical Argon density profile in Aline. The density is measured by the 

Langmuir probe, which is shown in Figure 1.15. Limited by the Aline window, the probe can only access 

y=[-50mm 50mm] in the radial direction. The measured density is indicated by the black dot rectangle in 

Figure 5.22. The spatial resolution here is 1mm, corresponding to 100 data points inside the rectangle. 

Outside of this rectangle, a density with an exponential decay is extrapolated. The combined full density 

profile is shown by the blue curve in Figure 5.22. From the dispersion relation Eq. (2.22), we knows that 

the helicon wave prefers a high density (so that 𝑤𝑝𝑒
2  is larger), low magnetic field (lower wce) in order to 

be propagative (a high k2), whereas the lower hybrid wave appears only when 𝜀⊥ ≈ 0. Thus it requires a 

lower density.  

Substituting Aline neutral density (1020m-3), Argon cross-section (10-20m2), and the experimental 

electron temperature1.5eV-5eV into Eq. (4.28), yields to the typical electron-neutral collision frequency 

in Aline: 5×106-9×106rad/s. The Argon gas pressure is between 10-3mbar (0.1 Pascal) to 10-1mbar (10 

Pascal), and the experimental ion temperature is like 0.026eV. Hence by Eq.(4.29), the ion-neutral collision 

frequency is around 5.2×104rad/s-5.2×106 rad/s. These values are also mentioned in [Faudot 2015]. 
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Figure 5.22. Typical density plasma density profile in Aline discharge 

 

Table 5-1. List of parameters for Aline simulation 

Argon Plasma  LH wave Helicon wave 

ni=ne (m-3) @ center 1015 1018 

Neutral density N (m-3) 1020 1020 

Magnetic field B0 (T) 0.05 0.005 

Wave frequency w0 (rad/s) 108 6×107 

Electron-neutral collision frequency vm 
(rad/s) 

5×106 5×106 

Ion-neutral collision frequency vi (rad/s) 5.2×104 5.2×104 

Ion cyclotron frequency  wci (rad/s) 1.2×105 1.2×104 

Electron cyclotron frequency wce (rad/s) 8×109 8.79×108 

Ion plasma frequency wpi (rad/s) 6.59×106 2×108 

Electron plasma frequency wpe (rad/s) 1.78×109 5.6×1010 

Spitzer parallel conductivity σ// (S/m) 1.2×104 1.2×104 

Perpendicular conductivity σ (S/m) 0.0074 7.4 

Ti (eV) 0.026 0.026 

Te(eV) 5 5 

  @ center 1+4×10-4i 4×103+5.2i 

/ /  @ center -314+31.6i -8.7×105+1.5×105i 

  @ center -3.6+0.18i 6.0×104+5×103i 

 

The LH wave is an electrostatic wave, it could appear even without the static magnetic field. The 

current Aline condition can easily excite the Lower hybrid wave. One of the realistic parameter setup is 

shown in Table 5-1. The Helicon wave is electromagnetic. It prefers a higher density and lower magnetic 

field. Taking the typical density in Aline: 1017m-3, the squared wavenumber of Helicon wave is then
2 2 2

//k k k  =15m-2 according to the dispersion relation Eq. (2.22) under B0=5mT (here we used 0   

provided the Helicon wave mainly propagating parallel to B0 [Chabert 2011])). This corresponds to a 
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wavelength of 40cm. Note the half-width of the machine is only 50cm along axis. This explains why we 

proposed a higher density in Table 5-1 . As a reference, the wavelength of the Helicon wave is about 13cm 

for ne=1018m-3. Density above 1017m-3 is impossible before, but now the lab has equipped a new tunable 

matching box. A density in a scale of 1018m-3 has been achieved. Different to the Tokamak case, the Argon 

ion is not really magnetized under the proposed helicon wave condition due to such a low magnetic field 

(5mT). Note the requirement for magnetized plasma is that the collision frequency of electrons and ions 

must be lower than their cyclotron frequencies. For the provided ion-neutral collision frequency 5.2×104, 

the lowest magnetic field to have magnetized ion is 0.025T. 

Figure 5.23 shows the electric fields of the LH and Helicon waves under the parameters in Table 5-1 

The excitation is done by imposing Ex=±900V/m (900V/m on the right and -900V/m on the left) at the 

bottom of the ceramic layers, as explained in Figure 4.14. Under these parameters, the LH has a 

wavelength of 7mm (evaluated from Eq. 2.23 with k//=50m-1, which is the main lobe of the spectrum). As 

a reference, the mesh sizes used in the simulation are 1mm in the plasma, 0.2mm in the ceramic layer, 

i.e. 10 grid points in each layer. Both the helicon wave and LH wave have their energy flow concentrated 

inside a resonance cone, which are orientated along the field line. This is a significant difference from the 

fast wave in Tokamak, which usually propagates perpendicular to B0. The limiting angles between the 

group velocity and B0 for these two waves are, 

 /LH arctan S P     (5.9) 

 ( )
2He

tanarctan 
     (5.10) 

The LH wave, like the slow wave in a tokamak plasma, has an ignorable Ez component. The limiting 

angle of the resonance cone predicted by Eq.(5.9) is about 5o. This value agrees with the observation from 

Ex and Ey maps shown in Figure 5.23 (a).  

For the Helicon wave, one can immediately see that Eq. (5.10) has a maximum value of 20o at 54o  . 

That is to say the Helicon wave only exists inside a resonance cone which has an angle 20o. Beyond this 

resonance cone, the extraordinary wave could still propagate. This is shown explicitly in the lower part of 

the Ey map in Figure 5.23. According to its dispersion relation Eq. 2.25, the perpendicular propagating 

extraordinary has a typical wavelength of 3cm. This is consistent with the Ex and Ey maps in Figure 5.23 

(b). Increasing the dissipation (collision) will sufficiently eliminate these modes.  

With collision, we can define a damping length where the magnitude of the electric field reduces to a 

factor of 1/e (e is the natural constant) w.r.t the maximum magnitude. For parallel propagation helicon 

wave, the parallel damping length can be defined as, 

He,/ / He,/ / ,
He,/ / 0 He,/ / 0

1 , ( )
Im( ) Im( ) Im( ) He

c cL k k
k w n w D   

     
                            (5.11) 

 

Take Stix parameters listed in Table 5-1, the parallel damping length of this Helicon wave is about 

L//=0.5m.  
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(a) LH wave, Ex real part (b) Helicon wave, Ex real part 

 
 

(c) LH wave, Ey real part (d) Helicon wave, Ey real part 

  
(e). LH wave, Ez real part (f). Helicon wave, Ez real part 

Figure 5.23. Electric fields of the LH and Helicon wave, using the parameters in Table 5-1 

 

In a capacitively coupled plasma, the wave is excited by the displacement current, rather than by the 

induction current. The ceramic tube is an insulator, thus the induction currents flowing inside it and 

reaching the disk antenna surface are rather low. The disk antenna and the bottom metallic wall 

constituted a parallel-plate capacitor. The displacement current flows along the y direction and excites 

waves. This explains why the electric fields in Figure 5.23 are more likely to be excited by the feeder than 

by the antenna itself. Setting perfect electric conductors along with the feeder line could suppress this 

excitation. This is shown in Figure 5.24. Here one can see clearly the limiting angle of the wave propagation 

(group velocity) in Figure 5.24 is close to 20o. The distance between two lobes is also consistent with the 

predicted wavelength, i.e. 13cm. 
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Figure 5.24. Real part of Ez field map. Two PECs are set alongside the feeder, other parameters are taken 

the same as Figure 5.23 (b) 

Finally, it’s worthwhile to mention that the field structure in Figure 5.23 is quite sensitive to the 

electron-neutral collision frequency as it induces different levels of the dissipations.  

 

5.4.2 Mesh-dependent issues near the antenna and lateral boundaries 
The field structure shown in Figure 5.23(b) also has a convergence problem. Figure 5.25 shows the 

relative difference of Ey with two mesh sizes. The field structure is mesh sensitive, especially in the region 

surrounding the disk antenna. This mesh-dependent behavior can be suppressed by increasing the 

dissipation level. The collision frequency needed to find a stable solution is around 107 rad/s, provided the 

Helicon wave frequency is w0=6×107 rad/s. For LH wave, the relative difference is shown in Figure 5.26.  

The non-convergence behavior is also most severe around the disc, which confirms the observation in 

Chapter 3. By introducing the dissipation, one can greatly reduce this mesh-dependent behavior to a small 

level i.e. relative difference<20%. The dissipation level needed is again found to be the same scale as the 

wave frequency, 108 rad/s.  

A collision frequency at the same order of the wave frequency is of course non-realistic in Tokamak 

edge plasma. In Aline, the maximum electron-neutral collision frequency is 107. But using such a high 

collision frequency somehow modifies the dispersion relations of the wave. The physics of the solution is 

thus changed. Using a smaller collision frequency than the wave frequency, the RF field is not converged 

to the mesh size around the antenna, which makes sheath treatment directly on the antenna boundaries 

problematic. This is one of the reasons why the SSWICH-FW approach is not used to conduct RF sheath 

simulations in Aline. The RF sheath simulation in the next section thus uses the asymptotic SSWICH-SW 

approach, where E//=0 is imposed at the sheath boundaries.  Another reason to use SSWICH-SW approach 

is that the magnetic field is totally horizontal in Aline. 
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Figure 5.25. Relative variations of Ey of the Helicon wave with different dissipation; dEy/Ey=(Ey(1mm)-

Ey(2mm))/Ey(2mm); Left: collision frequency vm=3.14×106 rad/s; Right vm=6.28×107 rad/s 

 

  

Figure 5.26. Relative variations of Ey of the LH wave with different dissipation, dEy/Ey=(Ey(1mm)-

Ey(2mm))/Ey(2mm), zoom in the antenna region;  Left: collision frequency vm=3.14×107 rad/s; Right 

vm=3.14×108 rad/s 

 

 
Figure 5.27. Exx at the left PEC boundary with different mesh sizes, the same plasma parameters is used as 

Figure 5.23(b) 
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It has been shown in chapter 4, the vector finite element has some problems to evaluate the derivative. 

Here we plot the x derivative of Ex at the left vessel boundary. We can see in Figure 5.27, even along the 

PEC boundary, the derivative is hard to converge. The small fluctuations on the Exx curve were due to the 

fact that mesh was not regular at the boundary. Using a more regular mesh, one could obtain a smoother 

Exx. Fortunately, at PEC boundary, the numerical instability is decreasing as the mesh size getting finer, as 

opposed to the behavior at the asymptotic boundary. One could believe that up to a certain limit of mesh 

size, the derivative at the PEC will be converged.  

 

5.5 Comparison of 2D SSWICH-SW simulation with experimental potential map in Aline 
Aline device is meant to ease the understanding of RF sheath around ICRF antennas in Tokamak. As 

first step to model RF sheath in Aline. The DC plasma potential by the SSWICH-SW simulation is compared 

to the floating potential map from the probe measurement. 

The experimental floating potential map in the middle plane of the Aline is shown in Figure 5.28. The 

details of how this potential field map is obtained from the measurement can be found in [Faudot 2016]. 

In short, it is derived from the probe IV characteristic Figure 2.13. The black part is the disk antenna. The 

maximum value of the floating potential always locates in a region above the antenna, i.e. y=[20mm-

40mm]. The plasma density from this measurement also has a peak value at y=40mm. This is probably 

due to the E B  drifts which transfer the particles radially. To model this process, one needs a 3D 

simulation and hence it is out of the scope of our current 2D version of SSWICH.  In this measurement, 

ne(@center)=4×1016m-3 (the same density as in Figure 5.22), B0=0.023T, w0=2.2×108rad/s, gas pressure 10-

2mbar, one could estimate 𝑘⊥,𝐿𝐻
2 = 5.5 × 105𝑚−2  (k//=50m-1) and 𝑘𝐻𝑒

2 = 21𝑚−2  (α=0o). Thus the LH 

wave is the main propagating wave. The SSWICH-SW code only models the LH wave, which is the main 

propagating wave in this case. The ion cyclotron frequency under current magnetic field is about 5.5×104 

rad/s is one order less than the ion-neutral collision frequency estimated from Eq. (4.29), which leads to 

vi=5.2×105 rad/s. Thus the DC perpendicular conductivity proposed in Eq. (4.31) can be used in this 

simulation.  

 

 
Figure 5.28. Floating potential map measured by the probe in Aline discharge [Faudot 2016], B0=0.023T, 

w0=2.2×108rad/s, gas pressure 10-2mbar, antenna is grounded as it is in Tokamak 
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In the simulation, we shifted the density profile Figure 5.22 rightwards to have the maximum value at 

y=40mm. The electric field inside the feeder still uses the rough estimation of Ex=900V/m. The 

temperature is constant all through the domain. The DC plasma potential calculated by SSWICH-SW under 

the same condition is shown in Figure 5.29. The VDC is converged to the mesh size even the RF field of the 

LH wave has some oscillations. Unlike the experimental map, the VDC from simulation is quite 

homogeneous at the center. The radial extension of VDC depends on the perpendicular conductivity and 

thus the ion-neutral collision. To recover the toroidal (x direction) variations of VDC structure as seen in 

Figure 5.28, one needs to lower the parallel DC conductivity in SSWICH to allow the toroidal gradient 

taking effect. The simplest case is a linear sheath regime where the relation 
( )

| | 1b DC f

B e

e V V V
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 

 is 

fulfilled. In this case, the toroidal inhomogeneity can be quantified as [Colas 2010] 
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Where λ is the diffusion length that has been defined in Eq. (5.4). In this expression, x=0 corresponds 

to the middle plane. When |VDC/VDC|<<1, the toroidal homogeneity is well preserved. The 

inhomogeneity get largest at x=±0.5.  

We then progressively decrease the parallel conductivity in the simulation to find the critical value 

below which the toroidal homogeneity of VDC breaks. In Figure 5.29, 𝜎⊥ = 0.02⁡𝑆/𝑚, 𝜎// = 80⁡𝑆/𝑚, 𝜆 =

0.08𝑚⁡at y=0, x=-0.5 so that |VDC/VDC|=0.0098<<1.  One can see the VDC is homogenous along the 

toroidal direction.  If we define |VDC/VDC(y, -0.5)|=0.1 as the criterion level, the minimum 𝜎// one can 

go is 10 times smaller provided other conditions remain the same. This is confirmed by the SSWICH 

simulation. As an example of toroidal inhomogeneous VDC, Figure 5.30 shows the simulation with 𝜎// 100 

times smaller than the one in Figure 5.29. Indeed the toroidal inhomogeneity gets larger at the edge and 

smaller at the center.  

In reality, the density profile also has toroidal variations, these will also make a contribution to the VDC 

toroidal inhomogeneity since the conductivities depend on the density.  To recover the whole picture of 

Figure 5.28, one needs a precise 2D density profile.  
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Figure 5.29. DC plasma potential map from 2D SSWICH-SW simulation, density Figure 5.22, Te=5eV, 

Ti=0.026eV, vm=107 rad/s, vi=5.2×105 rad/s, B0=0.023T, w0=2.2×108rad/s 

 

 
Figure 5.30. DC plasma potential with parallel conductivity 100 times less than the one used in Figure 5.29, 

other parameters are the same as Figure 5.29 

 

One of the explanations of the maximum floating potential appearing above the antenna is that the 

ions are accelerated by the radial electric field at the antenna top surface. Thus the ions are more 

energetic in some specific regions above the antenna. To fully model this process, one needs to solve 

relevant kinetic equations. In SSWICH, we could only model this physics by artificially increasing the ion-

neutral collision frequency vi from 5×105 rad/s to 5×106 rad/s in the region y=[10mm 50mm].  The new VDC 

map taking to account these modifications is shown in Figure 5.31.  The peak value of VDC is now slightly 

shifted upwards.  

With the latest developed spectral method, (see Page 121), we could now conduct full wave simulation 

for Aline. The SSWICH-SW simulation deals with non-tilted magnetic field and ignores the poloidal (out of 

plane direction) derivative. In order to have a better comparison, we take the smallest magnetic tilt angle 

θ=0.01o in the SSWICH-FW, which still keeps the numerical accuracy of the RF field simulation as 

mentioned in Section 4.4.3.  From Page 121, we know that kz=1×10-3m-1can well approach the zero kz case.    

Figure 5.32 shows the VDC by SSWICH-FW simulation. The field structure keeps almost invariant which 

justifies our previous assessment that the LH wave is the main wave under the present experimental 

conditions. However, unlike the Tokamak case where the VDC magnitude increases when combing the fast 

wave, here the VDC magnitude decreases by 20%. Thus the Helicon wave seems play a destructive rule on 

VDC magnitude. 

Go beyond these comparisons are difficult as a realistic plasma contains many physical processes that 

are not modelled in SSWICH. In the above simulations, we have assumed the antenna is grounded. The 

self-biasing of the antenna depends on the way whether it is directly connected to the ground, or through 

a capacitor. In the former case, the voltage at the antenna surface is similar to the Tokamak case, i.e. 0V, 

whereas in the latter case, it is negatively biased. This biasing can be investigated in Aline and answer the 

question: should the antenna structure be grounded or floating to limit the heat flux. In this part of the 

thesis, only the first case is studied. Although Aline has a capacitive coupling regime at this stage, it can 
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easily change to the inductive coupling.  To be more representative to the Tokamak situation, two straps 

can be put side by side into the Aline chamber. Each strap forms a current loop to the feeder. This has 

been planned in the future experimental studies.  

 

 
Figure 5.31. DC plasma potential map from 2D SSWICH-SW simulation with modified ion-neutral collision, 

parallel conductivity is divided by 100 as shown in Figure 5.30 

 

 
Figure 5.32. DC plasma potential map from 2D SSWICH-FW simulation using spectral approach, 

kz=0.001m-1, θ=0.01o, other plasma parameters are the same as Figure 5.31 

 

5.6 Conclusion of this chapter 
This chapter firstly documented the role of the fast wave in tokamak environment. With the new 2D 

SSWICH-FW cod in its asymptotic version, we observed mode conversion occurring at the far SOL sheath 

boundaries when the geometry has a shape transition. At materials boundaries located far away from the 

modelled ICRF launchers, the behaviour of oscillating RF sheath voltage and DC plasma potential varying 

under different geometric dimensions agrees with the expected properties of the fast wave induced far 

field sheaths, that were totally absent in SSWICH-SW. The amplitude of VRF at these remote locations 

remains modest in comparison with VRF values induced on close objects (e.g. internal face of antenna side 

limiters) in the same simulations. The existence of far-field sheaths in the free SOL cannot totally explain 

the enhanced DC potentials measured outside antenna limiters.  Decreasing the perpendicular DC plasma 
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conductivity significantly affects the DC plasma potential broadening even with the presence of the fast 

wave. This suggests the DC current transport is still the dominant mechanism in determining radial 

extension of the DC plasma potential peaks measured experimentally.  

We have also shown that the SSWICH-FW asymptotic code could recover some key experimental 

results on Tokamaks, including the double-hump structure of the DC plasma potential and left-right 

asymmetry of the heat flux on the antenna surface. By decoupling the slow wave and the fast wave 

excitations, simulations reveal that the fast wave can play a significant role on the DC plasma biasing even 

in the vicinity of the wave launcher. The double-peak poloidal distribution of sheaths effects observed on 

RFA and IR thermography on Tore Supra, already present in SSWICH-SW results, is mainly attributed to 

the E// component (dominated by Slow Wave) in the RF field map for SSWICH-FW excitation. 

Our simulations also revealed poloidal modulations of VRF and VDC that are hardly present on 

measurements. These modulations are attributed to the effect of Faraday screen bars in the E 

component of the radiated RF near field (dominated by Fast wave). We speculate that the present 

simulations over-estimate these poloidal modulations of VRF and VDC. Simple assessments indeed suggest 

that the multi-2D approach followed so far, while being satisfactory for Slow Wave computations in 

tokamaks, underestimates the evanescence of Fast Waves with large poloidal wavevectors. These spectral 

components do not contribute much to the radiated ICRH power but are present in the RAPLICASOL near-

field maps. Therefore incorporating at least some 3D effects should be envisaged in future versions of 

SSWICH-FW. This comes unfortunately with a numerical cost. 

Besides, the SSWICH asymptotic code was also being used to conduct electromagnetic simulations for 

Argon plasmas in the Aline device. Our first step is to implement SSWICH-FW principles into the Aline 

cylindrical geometry, with equatorial plane (radial/axial) as our simulation domain. A prescribed electric 

field map is used as the excitation at the ceramic layer to mimic the capacitive coupling regime of Aline 

machine. To damp the waves, the neutral-electron collision frequency has been introduced into the cold 

plasma dielectric tensor. There are mainly two polarizations of waves existing in Aline, the Helicon wave 

and the lower hybrid wave, corresponding to the fast wave and the slow wave in Tokamak, respectively. 

SSWICH-FW simulations showed that at low densities the disc-shaped RF electrode in Aline excites 

preferentially the LH wave, while it rather emits helicon wave at large densities. The field structure 

however is very sensitive to the electron-neutral collision frequency, whose accurate value is 

unfortunately hard to know. The antenna is plugged inside the Aline chamber. A collision frequency that 

is comparable to the wave frequency is needed to totally resolve the mesh-dependent behaviours of the 

electromagnetic fields around the antenna. The 2D SSWICH-SW approach has been used to simulate RF 

sheath in Aline. The DC plasma potential from SSWICH-SW simulation is compared with the measured DC 

floating potential map during the Aline experiment. The experimental floating potential map peaks several 

centimetres above the antenna, this feature can be partially modelled by counting the increasing of the 

ion-neutral collision in the region above the antenna due to the ion acceleration by the radial electric field.   



Applications of the 2D SSWICH-FW asymptotic code                      Chapter. V 

136 
 

Reference 

[Bobkov 2016] V. Bobkov et al, “Making ICRF compatible with a high-Z wall in ASDEX Upgrade”, Proc. 43rd 
EPS conference, July 4-8th, 2016, KU Leuven, Belgium 

[Kohno 2015] H. Kohno, J. R. Myra and D. A .D’Ippolito, “Numerical investigation of fast-wave propagation and 
radio-frequency sheath iteraction with a shaped tokamak wall”, Phys. Plasma 22, 072504 (2015) 

[Chabert 2011] P. Chabert and N. Braithwaite. “Physics of Radio-Frequency plasmas”, Cambridge University 
Press, Cambridge, UK, 2011. 

[Corre 2012] Y. Corre et al, “Characterization of heat flux generated by ICRH heating with cantilevered bars and 
a slotted box Faraday screen”, Nucl. Fusion 52, 103010 (2012) 

[Colas 2013] L. Colas et al, “RF-sheath patterns modification via novel Faraday screen and strap voltage imbalance 
on Tore Supra ion cyclotron antennae”, J. Nucl. Mat. 438 S330-S333 (2013) 

[Colas 2016] L. Colas, L. Lu, A. Krivska, J, Jacquot, J. Hillairet, W. Helou, M. Goniche, S. Heuraux and E. Faudot, 
“Spatial proximity effects of the excitation of sheath RF voltages by evanescence slow wave in the ion cyclotron range 
of frequencies”, accepted by PPCF in October 2016 

[Jacquot 2013] J Jacquot, PhD thesis, “Description non lineaire auto-coherente de la propagation d’ondes 
radiofrequences et de la peripherie d’un plasma magnetise”, Universite de Lorraine, 2013 

[Jacquot 2014] J. Jacquot, D. Milanesio, L. Colas, Y. Corre, M. Goniche, J. Gunn, S. Heuraux, M. Kubic and R. 
Maggiora, “Radio-frequency sheaths physics: Experimental characterization on Tore Supra and related self-consistent 
modeling”, Phys. Plasma 21, 061509 (2014) 

[Jacquot 2015] J. Jacquot et.al, “Full wave propagation modelling in view to integrated ICRH wave coupling/RF 
sheaths modelling”, AIP Conf. Proc, 1689, 050008 (2015) 

 [Faudot 2016] E. Faudot et al, “RF potential oscillations in a magnetized capacitive discharge”, proc. 43 rd EPS 
conference, July 4-8th, Leuven, Belgium, 2016 

 

 

 

 

 

 

 

 

 

 

 

 



Final remarks and prospects                     Chapter. VI 

137 
 

Chapter 6  Final remarks and prospects 
1. Main results achieved in this thesis 
Ion cyclotron resonant heating (ICRH) is one of the main heating methods used in the present-day 

magnetic fusion devices, i.e. Tokamak. It is also the unique way to achieve direct ion heating. The wave is 

launched by antennas at the edge of the Tokamak device under the typical frequency range of 30-80MHz. 

To achieve a sufficient plasma heating and make the heating system reliable for steady-state operation, 

one must understand the antenna-plasma coupling and minimize spurious edge effects of RF near field. 

This thesis is a part of work contributed to this subject.  

Although the fusion plasma is extremely hot, the thermal effect is only important around the 

resonance.  Out of the resonance region, it is often convenient to use the cold plasma approximation. The 

use of simplified dielectric tensor makes it possible to treat the cold plasma as an anisotropic dielectric. 

An ICRH antenna can emit two types of cold plasma waves: the fast wave and the slow wave. The former 

can propagate to the central plasma and play as a heating wave, while the latter is evanescent above the 

lower hybrid resonance and propagates below. The fast wave has notable electric field components that 

are perpendicular to the static magnetic field, whereas the slow wave has a large electric field in the 

direction parallel to the static magnetic field. Since the fast wave is the main heating wave, the ICRH 

antenna is often poloidally displaced to generate the fast wave. The lower hybrid resonance naturally 

presents in the current-day Tokamaks, i.e. inside the antenna box, however, it is often being neglected in 

the previous wave coupling simulations.   

The first part of this thesis studied the impact of densities that decay continuously inside the antenna 

and across the Lower hybrid resonance on RF near field and power coupling. A 2D full wave (slow wave + 

fast wave) code named RAPLICASOL-2D has been developed before this thesis. Previously it had a pure 

toroidal magnetic field. During this thesis, it was upgraded to the tilted magnetic field configuration. The 

new magnetic field is now tilted in the toroidal/poloidal plane. This code considers a collisionless cold 

magnetized plasma without sheath, although it is flexible to add collisions and is also compatible to 

implement sheath boundary conditions. The code was developed based on the finite element solver of 

the commercial software COMSOL Multiphysics. One of the main reasons to use COMSOL is that it allows 

one saving the time in coding and compiling and thus the users can focus on studying the physics.  

 Simulation by the new 2D RAPLICASOL code shows that at densities below the LH resonance, reaching 

numerical convergence is nontrivial: up to the memory limits of the adopted workstation, the field pattern 

changes with the grid size. A physical interpretation relies on the fact that propagating slow wave can 

have very short wavelength and thus it is sensitive to simulation parameters, like mesh size. The main 

results of this part of thesis are shown in Figure E.1. In this figure, we examined the dependence of the 

power coupling to the main plasma on the variation of the tilt angles, with finite plasma densities inside 

the antenna box. Interestingly and importantly, the total coupled spectrum is independent on the mesh 

size and is only weakly affected by the presence of the density profile inside the antenna box in dipole 

phasing. Dipole phasing is often used as heating phasing. One can thus drop this low density inside 

antenna box for the fast wave coupling studies. This justifies the simplification that most current-day wave 

coupling codes made, i.e. ignoring the existence of the lower hybrid wave in their simulation and only 

considering the fast wave. In monopole phasing, simulation shows there is a maximum 20% of power 

increase due to the presence of plasma. The distinction comes from the fact that the fast wave 
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evanescence length for low k// is changing. Hence modeling low k// scheme with antenna staying in vacuum 

may need to be re-considered. Simulation also shows that varying the density gradient in the fast wave 

evanescence region has no significant effect on wave coupling. One can thus still model the power 

coupling to plasma in a fairly good precision despite of some uncertainties existing in the density profile. 

  
Figure E.1 behaviors of the power coupling with tilt angle and different density profiles, in dipole phasing 

(left) and monopole phasing (right) 

Radio frequency (RF) waves can induce the sheath RF oscillations in their accessible regions. The 

oscillating RF sheath voltage has a net contribution to the DC plasma potential via non-linear sheath 

rectification. The sheath rectification is suspected to cause strong impurity sputtering and excessive heat 

loads on ICRF antenna surfaces and other plasma facing components. Our way to model the RF wave and 

sheath interaction is to solve self-consistently the RF wave propagation and DC plasma biasing with non-

linear sheath boundary conditions (SBC). It adopts a three fields approach, i.e. solves the RF wave 

propagation, RF oscillating sheath voltage and DC plasma potential in an iterative way. The RF sheath is 

often modelled in the textbook by a circuit model which consists of a capacitor, revered diode and 

constant ion current source. Under a high sheath voltage and immobile ion regime, like the typical working 

conditions of the ICRF antenna in Tokamak, this model can be further reduced to a parallel-plate capacitor 

with a time-varying width. The formula for the RF sheath capacitance can consequently be obtained. 

Under an electrostatic sheath assumption, a sheath boundary condition strictly speaking valid for an 

immobile ions limits were proposed by Myra and D’Ippolito before this thesis. The theory of the DC sheath 

assumes a constant ion current with knowing the ion enters the sheath at the Bohm sound speed, while 

the electrons are assumed to be Maxwellian and follows the Boltzmann density distribution inside the 

sheath. A sheath IV characteristic can then be derived to describe the total DC current across the sheath, 

where the RF sheath has a non-linear contribution to the DC plasma potential via the rectification process. 

The thickness of the DC sheath is described by the Child-Langmuir law. With these theoretic bases, the 

Self-consistent Sheath and Waves for ICH (SSWICH) code was developed at CEA in 2013. The first SSWICH 

version adopts a simple 2D rectangular geometry and the magnetic field is either parallel or perpendicular 

to the wall. Under this magnetic configuration, the SBCs are only associated to the evanescent slow wave, 

thus it solves only the slow wave propagation in the RF field module. The slow wave field is excited by 

importing the field map from any other antenna code, i.e. TOPICA. An asymptotic version considering an 

infinite sheath width was also developed in order to ease the numerical convergence of the fully coupled 

SSWICH-SW. It only solves the three modules one time instead of iteratively. Tests have shown that at 

least in the Tore Supra configuration, the asymptotic version can already give a result fairly close to the 

final solution. Furthermore, A 3D version of the asymptotic SSWICH-SW was developed by taking Fourier 

transform in the third (poloidal) direction [Colas 2012]. Indeed, with the infinite sheath width assumption, 
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the sheath boundary conditions used in the first two modules become linear. This linearity guarantees 

that each poloidal wave number is independent to others, which allows one to run the 2D module 

sequentially for all the kz. With SSWICH-SW/TOPICA simulation, one can already recover the spatial 

proximity effect that has been observed experimentally and cannot be produced by the traditional line 

integral approach. However, the main heating wave, the fast wave is somehow missing in the SSWICH-SW 

code.  

The central part of this thesis is the development and test of a new SSWICH version which should 

include the fast wave, a more realistic magnetic field configuration and shaped walls. Those objects are 

internally linked with each other. For example, under a tilted magnetic field, the fast wave is automatically 

coupled into the SBCs. Secondly, previously literature also indicates that under tilted magnetic field or 

with shaped walls, mode conversion is likely to occur between the slow wave and the fast wave, so one 

must also introduce the fast wave. Adding the tilted magnetic field and shaped wall is a step towards the 

realistic geometry.  

The SSWICH-Full Wave code, still in 2D to limit the numerical cost, has a magnetic field tilted in poloidal 

and toroidal plane. This is not the most general case, but under this magnetic configuration, one can keep 

a similar simulation geometry as the previous code and at the same time introduce the fast wave coupling 

into code. At the beginning of this thesis, we have already envisaged that the RAPLICASOL and SSWICH 

should finally be generalized into one code. Thus during the development of the SSWICH-FW code, we 

chose a similar geometry with the 2D RAPLICASOL code, but the walls were shaped and new sheath 

boundary conditions were applied.  

The SBCs used for the SSWICH-FW code should be valid under the tilted magnetic field. These boundary 

conditions did not exist before this thesis. In this thesis, more general RF SBCs were derived using all RF 

field components and the rectification formula was improved account for the tilted B0 in a simple way. 

Whether these formula fulfill the reality or not is still an open question and they are still under tested by 

more fundamental simulations. These boundary conditions were implemented along the shaped walls of 

the SOL region in the SSWICH-FW. The RF waves can be excited either by prescribed poloidal currents on 

built-in antenna straps or by prescribed external field maps. The way of imposing a current on the strap 

surface is not so realistic since the plasma can induce a current on the antenna surface too. Thus the field 

map excitation is better. SSWICH is at the present time the only code in the world able to simulate RF 

sheaths in tokamak environment using realistic antenna field maps. 

Following the same strategy used in the development of the SSWICH-SW code, an asymptotic version 

of SSWICH-FW code based on the infinite sheath width assumption was developed. Asymptotic SSWICH-

FW simulations using typical tokamak experimental (Tore Supra like) parameters have shown that the 

mode conversion from FW to SW occurring at the sharp corners where the boundary shape varies rapidly.  

Indeed, based on the fact that the slow wave and the fast wave have different behaviors when the Stix 

component evolves, we found that the field pattern appears at the leading edge of the side limiter is more 

likely a slow wave. The fast wave can access remote regions that are inaccessible for the slow wave. 

Simulation has also evidenced “far-field” sheath oscillations appearing at the shaped walls with a relatively 

long magnetic connection length to the antenna. These oscillations can only be excited by the propagating 

FW. By tuning the toroidal and radial dimensions of the SOL region, one could see that both the |VRF| and 

|VDC| at the shaped far SOL boundary decreases under a larger toroidal distance to the active antenna. 

The hypothesis behind this observation is that the fast wave contact less with the target boundary when 
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the SOL toroidal dimension getting larger. This can be seen by recalling the fast wave field pattern. |VRF| 

is a better indicator to examine the influence of the fast wave than |VDC| since the scale of VDC at the far 

SOL is affected by both the propagating fast wave and the DC current transport. For example, increasing 

the toroidal magnetic connection length will increase the transversal diffusion length at far SOL and 

reduce the VDC at the leading edge of the side limiter. Both the |VRF| and |VDC| increase under larger radial 

distance to the wave launcher, which is somehow counter-intuitive, especially when thinking about the 

spatial proximity effects. This behavior suggests that a propagating fast wave may not have the spatial 

proximity effects. Nevertheless, this observation agrees with the expected properties of the fast wave 

induced far field sheath provided the fast wave can contact more with the target boundary when the 

radial distance is larger. The behavior of VDC at the far SOL boundary with variation of tilt angle is quite 

similar to the tendency of power coupling w.r.t. the tilt angle, i.e. Figure E.1. It further confirms that the 

fast wave plays a dominant role on the VDC  excitation in the far SOL region. The third part of simulations 

aims at exploring the role of the fast wave on VDC radial broadening. Results show that decreasing the 

perpendicular DC plasma conductivity can significantly affect the VDC radial broadening in the free SOL 

even in the presence of the fast wave. This suggests that the DC current transport is still the dominant 

mechanism to determine the DC plasma radial broadening.  

Up to here, the results we discussed above were obtained using the current excitation by imposing 

poloidal currents on the build-in antennas. When comparing the simulation with the experiment, it is 

better to use a more realistic excitation. For example, importing field maps at the aperture from other 

more advanced wave coupling code. The 3D version of the RAPLICASOL code is developed in parallel to 

this thesis under the framework our European sheath project, thanks to the work by our Garching 

colleague [Jacquot 2015]. It has a very similar structure with the 2D RAPLICASOL code and the field map 

from this code has less noise than the previous maps we used from TOPICA. Thus further tests are carry 

out by the joint 3D RAPLICASOL and 2D SSWICH-FW asymptotic simulations. One of the most successful 

results produced by the SSWICH-SW/TOPICA simulation is the double-hump structures appearing at the 

2D vertical-radial VDC map at the toroidal location of the edge of side limiters. This kind of structure has 

been seen excessively in the experimental temperature and potential maps. SSWICH-FW/RAPLICASOL 

simulations have also recovered this double-hump vertical structure using multiple 2D approaches. At first, 

we ran the 3D RALICASOL code with the same parameter set-up as the 2D SSWICH-FW asymptotic and 

picked up the 2D (vertical-toroidal) electric fields at the Faraday screen of the 3D RAPLICASOL code. For 

each altitude (in vertical direction), the corresponding two tangential electric field components from the 

field map were imposed at the SSWICH aperture. The distinct polarizations of the fast wave and the slow 

wave allow one to decouple these two waves from the excitation, i.e. use only the perpendicular E 

component from the field map for the fast wave and use only the parallel E component for the slow wave. 

Figure E. 2 shows the multiple-2D scan simulation results using SSWICH-FW/RAPLICASOL. The result 

matches better with the experimental double-hump structure when only the slow wave is accounted for. 

The slow wave, with a short evanescence length, is sensitive to the small modifications of the geometry 

in the private SOL. The curvature we introduced in the private SOL is thus important for the near field 

study but most probably not relevant for the fast wave coupling studies. On the other hand, the fast wave 

is sensitive to the 3D effect. While the slow wave has a dominant effect to excite VDC in the private SOL, 

both of these two waves seem to play a comparable role on VDC excitation in the vicinity of the wave 

launcher. At the last several months of this thesis period, we eventually tried a way to incorporate the 3D 

effect. The trick is to perform Fourier transform at the vertical direction (z direction) for the input E field 

map, similarly to the 3D asymptotic SSWICH-SW version, but now we consider both the two tangential 
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components from the 3D RAPLICASOL simulation. Then for each kz, run successively the RF field module 

and VRF module making use of the spectral input of the RF field map and revised RF-SBCs which 

incorporates kz. Next, extract spectral component of VRF at the sheath boundaries for each kz and perform 

inverse Fourier transform to VRF along the vertical direction to obtain the VRF solution in spatial domain at 

each sheath boundary. Finally run the VDC module normally using the VRF from the last step. Using this 

technique, a surface wave propagating along z direction is likely to appear at the sheath boundaries under 

high kz. This may due to an inconsistency between the FFT assumption and the finite size of the wave 

launcher. By using the Fourier transform, we imposed the periodic boundary conditions at the two ends 

of the vertical extension of the antenna, so these surface wave can propagates to infinite away from the 

antenna, whereas in reality they are reflected by the boundaries of the antenna.  

 

 

Figure E.2. Vertical-radial map of VDC at the edge of the left side limiter by SSWICH-FW/RAPLICASOL 

simulations using multiple-2D approach, with only E// excitation (left), with full excitation (right). The 

simulation did not include the 3D effect 

 The left-right asymmetry of the temperature or the heat load at two opposite ends of the same 

magnetic field line has been observed extensively in the strap dissymmetrization experiments. This 

observation is a strong justification for the spatial proximity effects. With SSWICH-FW/RAPLICASOL 

simulations, we further evaluated the heat flux along two opposite sheath boundaries of the same 

antenna. Simulation successfully revealed the left-right asymmetry, suggesting that spatial proximity 

effects in RF sheath excitation, studied for slow wave only previously, is still important in the vicinity of 

the wave launcher under full wave polarizations, where both the fast wave and the slow wave are 

evanescent.  

Initially developed for the RF sheath studies in Tokamaks, SSWICH-FW has more versatile applications. 

In the third part of this thesis work, we have shown how SSWICH principle can be implemented into a 

totally different machine than Tokamak, in terms of geometry and plasma coupling regime. The Aline 

device is a dedicated tool to study the basic plasma wave properties and the RF sheath. SSWICH is used 

as the first attempt to conduct interpretative simulations for Aline Argon plasmas. Using the asymptotic 

SSWICH-FW code, we have observed and studied both the LH wave and Helicon wave appearing under 

different Aline parameters. The LH wave normally propagates under a low density, like the slow wave in 

Tokamak, whereas the Helicon wave prefers a high density, similar to the fast wave in Tokamak. A major 

difference of the Helicon wave and the fast wave in Tokamak is that the helicon wave propagates along 

the magnetic field and has a resonance cone oriented along the toroidal direction. The lower hybrid wave, 

like the electrostatic slow wave in Tokamak, also propagates inside a resonance cone. This common 

property help us to identify the helicon wave and the Lower hybrid wave in the simulation. Given the 
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current plasma density of Aline, the Helicon wave can be observed under a very low magnetic field in 

Argon plasmas. In this magnetic field, the Argon ions are not really magnetized. To realize the helicon 

wave with a magnetized ions, it is better to use Helium. The mesh-dependent behavior of the electric 

fields surrounding the straps which we identified in Chapter 3 appears again in the Aline simulation. 

Adding collision is an efficient way to reduce this non convergence. From a pure numerical point of view, 

the collision frequency should be as high as the wave frequency in order to eliminate this non convergence, 

however, having such a high collision frequency will definitely change the physics of the waves. A better 

solution is clearly needed to tackle this non-convergence problem.  

Since the magnetic field in Aline is totally horizontal and the fact that the “slow-wave-like” Lower 

Hybrid wave is the main wave that could be excited under the present status of the Aline machine, the 

SSWICH-SW code was used to model the RF sheath in Aline. The Spitzer conductivity was replaced by a 

parallel conductivity that counts for the electron-neutral collision, whereas the perpendicular DC 

conductivity comes from the ion-neutral collisions. There are also some other mechanisms that affects 

the DC conductivity, i.e. ion viscosity, ion inertial. For simplicity, those effect were neglected in the current 

simulations. Thanks to its easy access for diagnostic, the Aline device can provide experimental floating 

potential map that can be compared with the SSWICH-SW modelling. The DC plasma potential in the 

SSWICH-SW simulation shows a toroidal homogeneity under a high parallel conductivity, i.e. in the 

tokamak plasmas, whereas the experimental floating potential map measured in Aline has toroidal 

variations. Now with our new parallel conductivity, the toroidal inhomogeneity appeared as predicted by 

an analytical model. The experimental floating potential always has a peak value above the antenna 

whereas the SSWICH simulation shows the peak value is located at the antenna. This discrepancy was 

partially explained by the acceleration of the ions due to the radial electric field at the top surface of 

antenna, a phenomenon not present in SSWICH.  

Above we have summarized the main results achieved during this thesis. We hope that we have 

convinced the readers that SSWICH as a numerical code can produce some reasonable results to help 

understand the wave/sheath problems. In the following, we will present the prospect for the future work.  

 

2. Future work  
The present 2D RAPLICASOL code we used to carry out the first part of this thesis work did not consider 

the parasitic damping. Our later simulation in Aline device has shown that adding collision can greatly 

reduce the mesh-dependent behavior. However, an accurate dissipation level is critical in these 

simulations but it is difficult to know the collisionality around the LH resonance. Thus a better way to solve 

this mesh-dependent problem is strongly needed. An ongoing mathematical work tries to reformulate 

rigorously the finite element method around the lower hybrid resonance, to get a converged solution 

across this resonance under the collisionless limits [Campos 2016]. At this moment, this method has only 

been proven to work efficiently for the fast wave. It may be still a promising method to tackle the slow 

wave, which causes the real problem. In this part of work, we only consider the case where the LH 

resonance locates below the straps, however, the same method can also be used to examine another 

extreme case when the strap is below the LH resonance and can excite directly the propagating slow wave. 

The 3D effect is not included in this part of work. The poloidal derivative is likely to play an important role 

in studying the density modification by ponderomotive forces and thus should be accounted in the wave 

coupling studies. Right now, we have the 3D RAPLICASOL available at hand, but running this code is highly 
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memory consuming. Finally, around the LH resonance, thermal effect become significant, one may thus 

also need to consider the finite Larmor radius corrections. These interesting topics are left for future 

studies. 

In the current 2D SSWICH-FW code which we developed in the second part of this thesis, formulas of 

RF sheath capacitance and RF sheath rectification under tilted B0 took a simple extrapolation from the 

previous formula that are valid under non-tilted magnetic field configuration. These formulas will be 

updated when more fundamental physics on RF sheath studies get advanced. In Chapter 4, two different 

approaches were proposed to calculate the oscillating RF sheath voltage (VRF). In our latest effort, the first 

method by integrating the tangential electric field to calculate VRF is generalized by a spectral treatment. 

Throughout the code development, we spent a lot of time on deriving and implementing the second 

approach of VRF. It is finally reserved as the secondary choice due to the numerical instability of the 

derivatives of the electric field at the sheath boundary. We speculate this is a numerical issue that is 

related to the compatibility of the asymptotic sheath boundary conditions with the setup of the finite 

element method used in COMSOL software. Using COMSOL allows us cutting down greatly the time we 

spent in the code development, but on the other hand, we are restricted from knowing and modifying the 

internal processing of the finite element solver. Another weakness of using COMSOL is the limited options 

for the boundary condition. In a home-made code based on the primary compiling language, i.e. FORTRAN, 

one can easily realize the DB boundary condition. But in COMSOL, it becomes tricky.  

Another weakness of the current SSWICH-FW code is the use of the loosely constrained transport 

parameters. The scale of VDC is still very sensitive to the value of the perpendicular conductivity. This 

problem exists already in the SSWICH-SW code and had been discussed extensively in the PhD thesis of 

Dr. Jacquot. At this moment, SSWICH-FW code takes similar VDC model as the SW code, it thus inherits this 

weak point.  The two ad hoc perpendicular conductivities still need to be determined more precisely from 

the edge turbulence analysis. Work has been started on this point [Tamain 2016], but unfortunately it was 

not completed before the end of this thesis.  

In SSWICH-FW, the shape of geometry in the private SOL also matters. The magnitudes of VDC and also 

the heat flux in the private SOL are sensitive to the modification of the geometry in the private SOL. The 

slow wave is generally believed to have a dominant contribution on VDC in the private SOL. Probably due 

to the short wavelength of the slow wave, it was shown in the simulation that a modification of the 

geometry can affect the scale of VDC (or heat flux) up to 30%. The next step will thus be to implement with 

more realistic curved components, especially in the private SOL region. Besides, in parallel to this thesis 

work, the 2D RAPLICASOL code has been extended to a cylindrical geometry in order to cover the full 

toroidal curvature of the Tokamak vessel wall and the antenna structure. A comparison of the RF near 

field calculated by this new 2D RAPLICASOL under the cylindrical geometry and the rectangular geometry 

[Jacquot 2015] shows the toroidal curvature is important for the amplitude of the parallel near field. In 

the future, SSWICH-FW will also have to include the toroidal curvature.  

In Chapter 5, we found the 3D effects is important to evaluate the impact of the fast wave on VDC 

excitation at the far SOL. The best way to count the 3D effect is of course to conduct a 3D simulation. In 

3D, one can also have a realistic voltage excitation of the antenna. Unfortunately a full-3D SSWICH-FW 

simulation is presently out of reach, both by lack of appropriate formulation for the SBCs and due to the 

excessive memory requirements. The latter memory problem is obvious. For the former problem, we have 

made some progress, i.e. the formulation of the 3D sheath boundary condition (DB SBCs) has been tested 
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in free space but not in plasma yet. In theory, the secondary approach for VRF works also in 3D if the 

derivative of the electric field gets numerically converged to the mesh size, but it remains to be tested 

numerically on a curved plane. The latest way of spectral treatment we found to include the 3D effect is 

so far the best method we can provide in the period of this thesis. This should be the prior point to improve 

the code in the future.  

Our final goal with SSWICH is to implement a 3D realistic geometry, a full wave treatment and a 3D 

sheath boundary conditions. The 3D RAPLICASOL code solving full wave propagation without sheath is 

now available. It will replace the current RF module in the 3D version of SSWICH-FW code. In the future, 

SSWICH can work together with other codes to cover more physics. For example, the RF induced density 

modification and gas puffing are considered in the 3D edge transport code: the EMC3-Eirene code [Zhang 

2016]. The VDC map produced by 3D SSWICH-FW can be used as an input for the EMC3-Eirene code. The 

latter will then return a more self-consistent 3D density profile, which in turn can be imported into 3D 

SSWICH-FW code. These two codes can be solved iteratively until the numerical convergence is reached.    

Last but not least, sputtering, heat loads and impurity radiations are among the direct consequences 

of the RF near field.  At this stage, they are not modelled in the SSWICH, but we have shown in Chapter 5 

how SSWICH results can be used to evaluate the heat flux. SSWICH-FW is an important step to model 

these physical processes. Studying experimentally the RF impacts on the impurity transport and radiation 

will be the topic of a new PhD. SSWICH-FW code could be used as a numerical tool for his thesis. 

 For the simulations of Aline plasma, we surely know that our work is just a start of the efforts towards 

a better understanding the properties of waves and sheath in a linear device. Modeling waves inside a 

cavity like Aline needs to introduce the collisions to act as a damping mechanism. Not surprisingly, the 

field structure in the simulation is very sensitive to the electron-neutral collision. The analytical equation 

proposed in Chabert’s book is currently the best way to estimate this collision frequencies. Besides, an 

accurate density is also important to guarantee the simulation is comparable with the reality discharge. 

At this moment, the density profile used in the simulation is only inhomogeneous along the radial 

direction. To fully recover the toroidal variation shown in the experimental floating potential map, one 

must count the toroidal variation of the density.     

This thesis is done within the context of nuclear fusion research, and especially dedicated to model the 

Tore Supra RF sheath. Tore Supra has nearly completed its upgrade to WEST and plans to launcher its first 

plasma by the end of this year. The 3D asymptotic SSWICH-SW code together with the field maps from 

TOPICA was used before to optimize the electric design of the FS of the new WEST antennas [Helou 2015]. 

The first of these antennas has now been delivered to CEA. In the future WEST experiment, if more 

simulations on the RF sheath are needed, the SSWICH-FW/RAPLICASOL can be a new choice.   

 Finally, SSWICH presents a methodology to model RF waves and sheath interactions. It has potential 

applications in the other research areas. For example, RF sheath is also present in the artificial satellites 

and spacecraft. The plasma in space can interacts with the satellites which uses the RF wave as 

information carrier. In the presence of SBC, SSWICH simulation has shown the sheath-plasma waves 

appears when the resonance condition [D’Ippolito 2008] fulfills. From an engineer’s view, the metal-

sheath-plasma region creates a waveguide where the surface waves (sheath-plasma wave) can propagate. 

The immediate result of these surface waves is that they make a significant contribution to the antenna 

impedance thus affect its performance [Laurin 1989]. Besides, they provide a mechanism for locally 

generated electromagnetic waves to propagate between widely separated points on large spacecraft. 
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These waves are likely to give rise to the electromagnetic interference problems if picked up by sensitive 

devices. SSWICH may help to understand these waves.   

 

3. Proposals for the future experiments 
One of the central question this thesis discussed is the role of the fast wave in RF/DC sheath excitation. 

With SSWICH, we have observed the FW-SW mode conversion, explored the properties of the fast wave 

induced far field sheath and investigated the impact of the fast wave on radial VDC broadening, these 

features are yet to be proved through experiments. The role of the fast wave can be identified 

experimentally using B  probe [D’Ippolito 2013]. It is a coil that measures the RF magnetic field traversing 

through it. By choosing the orientation correctly, it can be used to detect the time-varying of the parallel 

magnetic field and thus determine the transversal electric field which mainly comes from the fast wave. 

By comparing the fast wave component of the B  probe signal with the strength of the measured plasma 

potential, one can find the correlation between these two quantities and then check which wave is 

dominant on RF sheath rectification both in the vicinity of wave launcher and at the far SOL boundaries. 

The other way to compare the impact of the fast wave and the slow wave on RF sheath is to excite these 

two waves one after the other and to see the evolution of the potential on the nearby material boundaries. 

To excite the slow wave on purpose maybe difficult to realize in Tokamak, but it is much easier to do in 

Aline. Aline device is meant to ease understanding of the RF sheath in Tokamaks. In the near future, a 

replacement of the current electrode is planned. It will have a similar strap antenna as in Tokamak. 

SSWICH-FW can provide numerical support for the design of this antenna. After the new strap antenna is 

installed in Aline, one can conveniently manipulate the strap orientations. For example, rotating the strap 

by 90o, the fast wave antenna becomes a slow wave antenna. A Faraday screen can be put in front of this 

strap to compare the strength of the plasma-wall interactions on the FS surface under two different strap 

orientations.  

The spatial proximity effect has been justified by the experiments conducted in TS and AUG upgrades 

since it is proposed. It’s generally known that the evanescent slow wave has this effect, while it is less 

clear whether the propagating wave or the fast wave also have this feature. We answered partially this 

question in the numerical test of chapter 5. At least in the Tore Supra configuration we found that the 

propagating fast wave does not have this feature. This result can be examined experimentally by moving 

radially the straps and comparing the magnitude of the electric field at the fast wave propagating region. 

One can further change the density to have an evanescent fast wave in the probe accessible region in 

Aline. Then play with the dissymmetrization experiments to see whether the evanescent fast wave has 

the spatial proximity effects.  
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A : Filamentary RF electric fields around straps in plasma-

filled box as Slow Wave structures excited by poloidal RF 

currents 
 

This Appendix proposes an explanation for the filamentary structures observed in simulated 2D RF 

field maps around poloidal current straps radiating in plasma-filled antenna box [Chapter 3][Lu 2016]. The 

qualitative phenomenology to be reproduced includes the following observations: 

1°) “Filaments” appear mainly on the parallel and radial components of the RF electric field. 

2°) Filaments feature small-scale radial structures in the immediate vicinity of the radiating straps. 

3°) Filaments decrease in magnitude and change shape when the parallel dielectric constant of the 

medium is artificially increased in magnitude. 

4°) Filaments are absent when the antenna box is in vacuum or more generally when it is filled with 

diagonal dielectric media. 

5°) Filaments persist even when the confinement magnetic field is fully toroidal. For the sake of 

simplicity we will study this particular case. 

Arguments 1—3 suggest that the filaments consist of highly evanescent Slow Wave electric fields. 

However a direct excitation of the Slow Wave by the poloidal RF currents imposed on the strap is counter-

intuitive, particularly in situation 5. Besides, observation 4 demonstrates a role of the non-diagonal 

components in the dielectric tensor. These components are traditionally associated with the Fast Mode. 

Here we propose a simple semi-analytical theory for filament production by an infinitely thin poloidal 

current strap radiating in toroidally-bounded homogeneous gyrotropic medium with large but finite 

parallel conductivity. The conditions for exciting the Slow Wave are determined and compared to the 

phenomenology. 

Monochromatic RF electric fields E oscillating as exp(+i0t) (“engineer convention”) propagate 

according to the time-harmonic vectorial equation 

antjεEE 00
2
0 i  k   (A.1) 

In this equation k0=0/c is the wavevector in vacuum, jant is an imposed current source, while the 

(normalized) dielectric tensor takes a gyrotropic form characteristic of cold magnetized plasmas [Stix 

1992]. Using the COMSOL geometric conventions  
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In a loss-less medium the three Stix parameters 𝜀⊥,  𝜀× and 𝜀∕∕   are real constants, and in magnetized 

plasmas  𝜀∕∕  generally takes large negative values. When the medium is homogeneous, plane waves 

oscillating as exp(+i0t-ik0(n//x+ny)) are allowed to propagate. In Fourier space equation (A.1) becomes 

([Stix 1992] with “engineer conventions”) 

2
/ / / /

2 2
0 0 0

2
/ / / /

i
ˆˆ i ; i 0

0

y

z

x

n n n
k n

n n n

 

   



  

 

 

 
 

    
  

antKE j K   (A.3) 

For given parallel refractive index n// the perpendicular refractive indices n and the electric field 

polarisations are respectively the solutions of det(K)=0 and the associated eigenvectors. In gyrotropic 

media two modes can exist: the Fast Wave and the Slow Wave. In this note we use the simplified 

dispersion relations valid for large negative 𝜀∕∕  far from the Lower Hybrid resonance 𝜀⊥ = 0. However 

we retain the full wave polarizations, because they play a key role in filament excitation. The simplified 

formulas are also valid for any value of𝜀∕∕  when 𝜀× = 0, i.e. in uniaxial media. The Fast Wave refractive 

index is given by equation (see also [Stix 1992], or [Brambilla1998], eq. (22.4)) 
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The associated (approximate) polarization is ([Brambilla1998], eq. (22.13), with “engineer convention”)  

  
 / / / /

2 2 2 2
/ / / / / / / /

ii ; F F
yF zF xF yF zF F F zF

F F

n n n nE E E E E P n E
n n n n



   

  


   

     
   

 (A.5) 

For large |𝜀∕∕|, the Fast Wave electric field is nearly transverse to the confinement magnetic field. Yet 

for finite parallel conductivity and in presence of gyrotropy (𝜀× ≠ 0) the Fast Wave carries a small Ex 

component. The Slow Wave refractive index is given by equation (see also ([Brambilla1998], eq. (22.5)). 
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The associated (approximate) polarization is ([Brambilla1998], eq. (22.14)) 
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The radiated Slow Wave electric field is nearly transverse to the ignorable direction z. Yet for finite 

parallel conductivity and in presence of gyrotropy the Slow Wave carries a small Ez component. 

For  𝑛∕∕
2 ≫ |𝜀⊥|  , the first equation of (A.7) reduces to |

𝐸𝑦

𝐸𝑥
| ~√|𝜀∕∕/𝜀⊥|  . We now investigate wave 

excitation by an infinitely thin poloidal current sheet located in y=0, i.e. in equation (A.1) we impose 

        zant ej xnktynjzyx zant //00// iiexp,,     (A.8) 
For simplicity we assume radiating boundary conditions both towards large positive y and large 

negative y. To incorporate a metallic wall at the back of the antenna box, one can use a posteriori the 

method of images. Under radiating conditions, the poloidal and parallel RF electric fields take the simple 

form: 

         ynknEynknEynE SzSFzFz   0//0//// iexpiexp,   (A.9) 
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                ynknEnPynknEnPyynE SzSSSFzFFFx   0//0//// iexpiexpsgn,   (A.10) 

In these expressions either Re(n)>0 (outgoing waves) or Im(n)<0 (evanescent waves). In expression 

(A.10) sgn(y) appears since both PF(nF) and PS(nS) change signs when n is reversed (see equation (A.5) 

and (A.7)). At the current sheet, we enforce the continuity of the parallel RF electric field as well as  
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This yields 
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Whence the amplitude of the Slow Wave poloidal RF field. 
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Formula (A.14) shows that poloidal RF currents can excite the Slow mode. The qualitative explanation 

is as follows. Poloidal currents produce RF electric fields oriented in the poloidal direction (equation 

(A.11)), i.e. preferentially excite the Fast wave. But the Fast mode can in turn generate a small parallel 

electric field. To cancel this field at the current sheet it is necessary to produce a Slow Wave component. 

From equation (A.12) EzS(n//)=0 if PF=0, i.e. for example if 𝜀×/𝜀∕∕ = 0 . In other words the Slow Wave 

appears only in gyrotropic media with finite parallel conductivity, consistent with observations 3 and 4. 

Besides n//0 is also required. 

Figures A.1.a) – 1.d) illustrate the RF electric fields produced by an infinitely thin current strap radiating 

in a typical plasma found in the box. For these conditions all the Fast Wave modes and the Slow Wave 

modes of the box are evanescent, but the Slow Wave disappears over a smaller radial distance. In these 

conditions the radial RF field is in phase with the RF current, while the poloidal and parallel RF fields are 

in phase quadrature. Small-scale features, of millimetric radial extension, appear mainly in the map radial 

electric field, but are hardly visible for the poloidal electric field, consistent with observations 1 and 2. 

Across the strap, the parallel electric field swaps signs. This change is continuous but occurs over a small 

radial width of the same order as for the radial field. Although their spatial structures are different, the 

ratio of typical amplitudes for the radial and parallel electric fields is |
𝐸𝑦

𝐸𝑥
| ~√|𝜀∕∕/𝜀⊥|. Since the Fast and 

Slow waves can be explicitly separated in our model, we verify that the small-scale features are associated 

with the Slow mode. This is illustrated on Figures A.1.b) for the parallel electric field. Away from the strap, 

only the Fast Wave components of the RF fields persist. 
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Figures A.1. 2D (toroidal/radial) maps of RF electric fields produced by an infinitely thin current strap of 

parallel extension l//=0.1m. The strap is fed with 1A of current distributed regularly over the strap width. 

The strap is enclosed in a metallic box of parallel extent L//=0.2m, with a metallic wall at y=-15mm. The 

box is filled with homogeneous plasma of dielectric constants 𝜀∕∕ = −15290,  𝜀⊥ = −3.787,  𝜀× = 13.17. 

a) Imaginary part of parallel RF electric field, b) idem, slow wave contribution, c) Real part of radial RF 

electric field, d) Imaginary part of poloidal electric field. Thick horizontal lines : sketch of strap. Only half of 

the box is represented. Toroidal symmetry relations: Ex(-x,y)=-Ex(x,y) ; Ey(-x,y)=+Ey(x,y) ; Ez(-x,y)=+Ez(x,y). 

 

Figures A.2 illustrate how the near field patterns evolve when the parallel dielectric constant is divided 

by ten compared to Figures A.1. The poloidal electric field is hardly modified, consistent with the expected 

properties of the Fast Wave. The parallel electric fields increase in magnitude as ~|𝜀∕∕|  , while the 

amplitude small-scale radial fields scales as ~√| 𝜀∕∕| . The shape of the parallel electric field pattern hardly 

evolves, except close to the strap. The filamentary structures become wider radially, by an approximate 

factor√| 𝜀∕∕| . 

Going beyond the qualitative observations 1—5 is challenging, because the spatial pattern of Slow 

Wave fields likely depends on the detailed spatial distribution of strap RF currents. In our simple 2D model 

the strap is reduced to an imposed current sheet homogeneous in the ignorable direction. In more refined 

3D models the strap is thick, the distribution of RF currents should depend on the poloidal coordinate and 

should be determined self-consistently. 
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Figures A.2. Same as figures A.1, with parallel dielectric constant 𝜀∕∕ = −1529 
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B : Vector analysis using 2D curved coordinates 
Let us consider a 1D curve drawn on a 2D Cartesian plane and scalar or vector fields in the vicinity of 

the curve. The present note aims at expressing the standard operators of vector analysis (gradient, 

divergence, rotational, Laplacian) in the vicinity of this 2D curve, using two “local coordinates” related to 

the curve, namely an arc length along the curve and an extra coordinate normal to the curve, together 

with field derivatives “tangential” and “normal” to the curve. A prerequisite towards this goal is to 

properly define these “local coordinates” as well as the tangential and normal derivatives, for points lying 

on the curve or located in its immediate vicinity. Some necessary conditions on the smoothness of the 

curve and its curvature are outlined, in order to be able to build the local coordinates. 

Tangential, normal vectors and radius of curvature for a 1D curve in a 2D Cartesian plane. 
Our working objects are a 2D Cartesian plane (x,y), a third out-of-plane direction z, as well as a 1D 

parametrized curve C(x(t),y(t)) drawn in the 2D plane. We assume that coordinates x(t) and y(t) have at 

least first and second order derivatives with respect to parameter t. The main notations and conventions 

associated with curve C are summarized on Figure B.1. 

 

Figure B.1: Main conventions and notations adopted in the note. 

 

Without loss of generality, parameter t can be taken as an arc length or curvilinear abscissa, i.e.  

𝑑𝑥2 + 𝑑𝑦2 = 𝑑𝑡2 for elementary displacements along the curve (B.1) 

In every point of curve C one can define a tangent vector tC(t) as: 

𝐭𝐂(𝑡) = (
𝜕𝐫

𝜕𝑡
)

𝐶
= [

(𝜕𝑥/𝜕𝑡)𝐶

(𝜕𝑦/𝜕𝑡)𝐶
] (B.2) 

Here subscript C denotes displacements along curve C. Since t is an arc length, tC(t) is a unit vector. 

One can also define a unit vector nC(t) normal to the curve in the 2D plane as: 

𝐧𝐂(𝑡) = 𝐞𝐳 × 𝐭𝐂(𝑡) (B.3) 
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Where ez is the unit vector in the out-of-plane direction z (independent of t). While the amplitude of 

tC(t) is always 1, in the most general case the direction of this vector depends on arc length t, so that one 

can define a derivative (𝜕𝐭𝐂/𝜕𝑡)𝐶. Since tC is a unit vector one has 

𝐭𝐂. (
𝜕𝐭𝐂

𝜕𝑡
)

𝐶
=

1

2
(

𝜕𝐭𝐂.𝐭𝐂

𝜕𝑡
)

𝐶
= 0 (B.4) 

Since ez.tC=0, 𝐞𝐙. (𝜕𝐭𝐂/𝜕𝑡)𝐶 = 0, and consequently (𝜕𝐭𝐂/𝜕𝑡)𝐶  is parallel to nC(t) 

(
𝜕𝐭𝐂

𝜕𝑡
)

𝐶
= −

𝐧𝐂(𝑡)

𝑅𝑐(𝑡)
 (B.5) 

Rc(t) is an (algebraic) local radius of curvature for curve C in point t. Similarly from the definition (B.3) 

of the normal vector 

(
𝜕𝐧𝐂

𝜕𝑡
)

𝐶
= +

𝐭𝐂(𝑡)

𝑅𝑐(𝑡)
 (B.6) 

Tangential and normal coordinates in the vicinity of a 1D curve in a 2D Cartesian plane. 
To locate a point on curve C, one single coordinate t is necessary. However two coordinates are 

necessary to place a point in the 2D plane (x,y). This 2D extension is necessary to define scalar and vector 

fields and their differential operators in the vicinity of curve C. One would therefore like to build a local 

system of two coordinates (t,n) such that: 

- The arc length t on curve C is the first coordinate. 
- n is constant on curve C, and without loss of generality, one can choose n=0 on C. 
- For easier use the system of coordinates is orthogonal, i.e. (𝜕𝐫/𝜕𝑡). (𝜕𝐫/𝜕𝑛) = 0 everywhere. 

Note that here the subscript C has been dropped, since displacements are not restricted to curve 
C any more. Orthonormality of the coordinate system is not requested. 

The choice for the set of local coordinates (t,n) is not unique. To define one such set one can proceed 

as follows. Given any point r0(x0,y0) in the vicinity of C there exists a “closest point” pC(x(t0),y(t0)) on curve 

C whose distance to r0 is minimal. This requirement defines the first coordinate t0. This definition is non-

ambiguous if point pc(t0) is unique. Unicity can be a difficult issue. It is briefly discussed below and it is 

postulated for the moment. Let us call pc(t0) the “projection” of r0 onto curve C. If we exclude the 

extremities of curve C (another potential source of difficulty…) the definition of pC(t0) as “closest” point 

yields 

𝜕.

𝜕𝑡
[𝐫𝟎 − 𝐩𝐂(𝑡)]𝐶

2 = 2(𝐫𝟎 − 𝐩𝐂(𝑡0)). 𝐭𝐂(𝑡0) = 0 (B.7) 

i.e. the projection is locally normal to curve C. Consequently r0 writes 

𝐫𝟎 = 𝐩𝐂(𝑡0) + 𝑛0𝐧𝐂(𝑡0) (B.8) 

This relation defines the second coordinate n0, whose physical meaning is an algebraic (closest) 

distance of point r0 to curve C. If r0 lies on curve C, it coincides with pC(t0) and n0=0, as requested. While 

coordinates (x0,y0) are relatively easy to obtain as a function of (t0,n0), the opposite transformation is 

generally delicate. But only the forward formulas are necessary to express the differential operators of 

field calculus. Let us now consider two neighboring points r0 and r0+dr not necessarily located on curve C. 

dr can be expressed as 

𝐝𝐫 = 𝐩𝐂(𝑡0 + 𝑑𝑡) − 𝐩𝐂(𝑡0) + (𝑛0 + 𝑑𝑛)𝐧𝐂(𝑡0 + 𝑑𝑡) − 𝑛0𝐧𝐂(𝑡0) (B.9) 
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Retaining only first order quantities yields 

𝐝𝐫 = (1 +
𝑛0

𝑅𝑐(𝑡0)
) 𝐭𝐂(𝑡0)𝑑𝑡 + 𝐧𝐂(𝑡0)𝑑𝑛 (B.10) 

One can therefore define local partial derivatives (tangential and normal) in every point r0 as an 

extension of the partial derivatives on C. 

𝜕𝒓

𝜕𝑡
(𝑡0, 𝑛0) = (1 +

𝑛0

𝑅𝑐(𝑡0)
) 𝐭𝐂(𝑡0) (B.11a) 

𝜕𝒓

𝜕𝑛
(𝑡0, 𝑛0) = 𝐧𝐂(𝑡0) (B.11b) 

as well as the local metric 

𝑑𝑠2 = (1 +
𝑛0

𝑅𝑐(𝑡0)
)

𝟐

𝑑𝑡2 + 𝑑𝑛2 = ℎ𝑡
2𝑑𝑡2 + ℎ𝑛

2𝑑𝑛2 = 𝑑𝑠𝑡
2 + 𝑑𝑠𝑛

2 (B.12) 

Inverting relation (B.10) one also gets 

𝛁𝑡(𝑡0, 𝑛0) =
𝐭𝐂(𝑡0)

1+𝑛0/𝑅𝑐
 (B.13a) 

𝛁𝑛(𝑡0, 𝑛0) = 𝐧𝐂(𝑡0) (B.13a) 

From equation (B.11) (𝜕𝐫/𝜕𝑡). (𝜕𝐫/𝜕𝑛) = 0, i.e. the coordinate system is orthogonal, as requested. 

For points r0 on curve C, n0=0 and (𝜕𝐫/𝜕𝑡)  coincides with  (𝜕𝐫/𝜕𝑡)𝐶 . On the curves n0=constant, 

coordinate t generally does NOT represent an arc length. Provided that the normal vector nC(t0) can be 

properly defined, the normal derivative is always well-behaved, i.e. hn>0. This is not true for the tangential 

derivative: even if the tangential vector tC(t0) can be properly defined, an additional requirement for ht>0 

is that n0>-Rc(t0) if Rc(t0)>0, or n0<-Rc(t0) if Rc(t0)<0. Associated with the critical normal distance n0=-Rc(t0) is 

a loss of unicity for the point pC(t0) “closest” to r0. Indeed, as sketched on Figure B.1, multiple projections 

mean dr=0 for non-zero dt in equation (B.10), which is possible if n0=-Rc(t0). 

The local radius of curvature of curve n=n0 in point r0 is calculated from 

(
𝜕𝐭𝐂

𝜕𝑠
)

𝑛=𝑛0

= −
𝐧𝐂(𝑡0)

𝑛0+𝑅𝑐(𝑡0)
 (B.14) 

 Near the critical point it becomes null, preventing a clear definition of a local tangent.  

If |Rc(t0)|R0>0 for every point on curve C, then one can always define the local system of coordinates 

(t, n) in a neighborhood of curve C small enough such that |n0|<R0. This justifies the term “local” system 

of coordinates. Simple examples of the above procedure are 

Straight line y=0 
For this trivial example t=x, n=y, Rc(t)→, the system of coordinates can be extended throughout the 

2D plane. 

Circle x2+y2=r0
2 

Using the standard polar coordinates (r,) one can choose t=-r0, n=r-r0, Rc(t)=r0, Rc(t)+n=r. The system 

of coordinates is meaningful if r0 or n-r0.  
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Finally Figure B.2 illustrates a less trivial example of coordinates built from a parabola. Near the summit 

of the parabola, a singularity appears in the coordinate system when n becomes too positive, preventing 

its extension to the whole 2D plane. 

 

Figure B.2: local orthogonal coordinate system built from parabola C: y=x2 (shown as bold curve) 

Vector analysis using local coordinates. 
With the newly defined local coordinate system (t,n) in the 2D plane (x,y), complemented with the 

usual out-of-plane coordinate z, one can express the standard differential operators of mathematical 

physics in 3D using standard tools from textbooks (e.g. [Angot1972]). As particular examples, the obtained 

formulas include Cartesian and cylindrical geometries. 

Gradient of a scalar field 
We envisage a scalar field F(r)=F(x,y,z)=F(t,n,z) defined in 3D, in the vicinity of curve C for (t,n), as well 

as its partial derivatives with respect to all coordinates. The metric element associated to z is hz=1. The 

gradient of F in point r0 is such that, for infinitesimal displacement dr 

𝐹(𝐫𝟎 + 𝐝𝐫) = 𝐹(𝐫𝟎) + 𝑑𝐹 = 𝐹(𝐫𝟎 + 𝐝𝐫) + 𝐝𝐫. ∇𝐹(𝐫𝟎) (B.15) 

Vector F(r0) has components along tangent, normal and out-of-plane directions 

∇𝐹(𝐫𝟎) = [∇𝐹(𝐫𝟎)]𝑡𝐭𝐜(𝑡0) + [∇𝐹(𝐫𝟎)]𝑛𝐧𝐜(𝑡0)+[∇𝐹(𝐫𝟎)]𝑧𝐞𝐳 (B.16) 

Combining (B.15) and (B.16) with expression (B.10) for dr the components of the gradient write 

[∇𝐹(𝐫𝟎)]𝑡 =
1

ℎ𝑡

𝜕𝐹

𝜕𝑡
=

1

1+𝑛0/𝑅𝑐(𝑡0)

𝜕𝐹

𝜕𝑡
 (B.17a) 

[∇𝐹(𝐫𝟎)]𝑛 =
1

ℎ𝑛

𝜕𝐹

𝜕𝑛
=

𝜕𝐹

𝜕𝑛
 (B.17b) 

[∇𝐹(𝐫𝟎)]𝑧 =
1

ℎ𝑧

𝜕𝐹

𝜕𝑧
=

𝜕𝐹

𝜕𝑧
 (B.17c) 

Divergence and Rotational of a vector field 
We now introduce a vector field V(r)=V(x,y,z)=V(t,n,z) defined in the vicinity of curve C, as well as its 

partial derivatives with respect to all coordinates. The tangential and normal components of V are defined 
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as their projections in the local tangent and normal directions Vt(t0,n0,z0)=V(t0,n0,z0).tC(t0) and 

Vn(t0,n0,z0)=V(t0,n0,z0).nC(t0). For the sake of completeness, we also assume that V(t0,n0,z0) has a 

component Vz(t0,n0,z0) in the out-of-plane direction z. Using these components the local divergence of 

vector field V is defined as [Angot1972] 

div(𝐕) =
1

ℎ𝑡ℎ𝑛ℎ𝑧
[

𝜕ℎ𝑛ℎ𝑧𝑉𝑡

𝜕𝑡
+

𝜕ℎ𝑧ℎ𝑡𝑉𝑛

𝜕𝑛
+

𝜕ℎ𝑡ℎ𝑛𝑉𝑧

𝜕𝑧
] (B.18) 

div(𝐕) =
1

1+𝑛0/𝑅𝑐(𝑡0)

𝜕𝑉𝑡

𝜕𝑡
+

𝜕𝑉𝑛

𝜕𝑛
+

𝑉𝑛

𝑅𝑐(𝑡0)+𝑛0
+

𝜕𝑉𝑧

𝜕𝑧
 (B.19) 

The 3 components of rot(V) are defined in 2D as [Angot1972] 

[𝐫𝐨𝐭(𝐕)]𝑡 =
1

ℎ𝑛ℎ𝑧
[

𝜕ℎ𝑧𝑉𝑧

𝜕𝑛
−

𝜕ℎ𝑛𝑉𝑛

𝜕𝑧
] =

𝜕𝑉𝑧

𝜕𝑛
−

𝜕𝑉𝑛

𝜕𝑧
 (B.20a) 

[𝐫𝐨𝐭(𝐕)]𝑛 =
1

ℎ𝑧ℎ𝑡
[

𝜕ℎ𝑡𝑉𝑡

𝜕𝑧
−

𝜕ℎ𝑧𝑉𝑧

𝜕𝑡
] =

𝜕𝑉𝑡

𝜕𝑧
−

1

1+𝑛0/𝑅𝑐(𝑡0)

𝜕𝑉𝑧

𝜕𝑡
 (B.20b) 

[𝐫𝐨𝐭(𝐕)]𝑧 =
1

ℎ𝑡ℎ𝑛
[

𝜕ℎ𝑛𝑉𝑛

𝜕𝑡
−

𝜕ℎ𝑡𝑉𝑡

𝜕𝑛
] =

1

1+𝑛0/𝑅𝑐(𝑡0)

𝜕𝑉𝑛

𝜕𝑡
−

𝜕𝑉𝑡

𝜕𝑛
−

𝑉𝑡

𝑅𝑐(𝑡0)+𝑛0
(B.20c) 

Laplacian of a scalar field 
Combining the above results yields a formula for the Laplace operator of the scalar function F(t,n,z) 

[Angot1972] 

∆𝐹 =
1

ℎ𝑡ℎ𝑛ℎ𝑧
[

𝜕.

𝜕𝑡
(

ℎ𝑛ℎ𝑧

ℎ𝑡

𝜕𝐹

𝜕𝑡
) +

𝜕.

𝜕𝑛
(

ℎ𝑧ℎ𝑡

ℎ𝑛

𝜕𝐹

𝜕𝑛
) +

𝜕.

𝜕𝑧
(

ℎ𝑡ℎ𝑛

ℎ𝑧

𝜕𝐹

𝜕𝑧
)] (B.21) 

Or 

∆𝐹 =
1

[1+𝑛0/𝑅𝑐(𝑡0)]2

𝜕2𝐹

𝜕𝑡2 +
𝑛0𝑅𝑐(𝑡0)

[𝑅𝑐(𝑡0)+𝑛0]3

𝜕𝑅𝑐

𝜕𝑡
(𝑡0)

𝜕𝐹

𝜕𝑡
+

𝜕2𝐹

𝜕𝑛2 +
1

𝑅𝑐(𝑡0)+𝑛0

𝜕𝐹

𝜕𝑛
+

𝜕2𝐹

𝜕𝑧2 (B.22) 

In this last formula the tangent derivative of the radius of curvature enters into account, except on the 

curve itself (n0=0). 
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C : Implement the alternative approach to solve the 

oscillating sheath voltage along a curve  
I. Implementing equation (4.19) using COMSOL boundary PDE 

The goal of this Appendix is to show how to compile Eq. (4.19) in COMSOL. Eq. (4.19) reads, 

2211 21
11 12 21 22 23 z( ) ( ) ( ) ( ) nRF RF

n s n
c

A EV A A VA A E A E A E A E
s s s R s s n R
    

       
     

(C.1) 

It can be embedded into the coefficient form of boundary PDE in COMSOL, which reads [COMSOL 2012]  

  V V V aV f        c α γ β (C.2)  

Here, V is an unknown scalar representing the sheath voltage, c is a matrix, and  are vectors, a is a 

scalar, f is a source term. ,
x y

  
   

  
 is by default defined in the Cartesian coordinate.  

If equation (C.2) is solved along 1D curve, we have proved that it can be re-formulated as an ordinary 

differential equation defined in the curvilinear coordinate. 

           

       

.

. ; . ; . ; .t t t t t

d du duc s s u s s a s u f s
ds ds ds
c s e e s e s e s e

  

  

 
      
 

   c α γ β
(C.3) 

with 

     

       

2

2
;

;

t

t t

txtx tx ty
c s s e s

tytx ty ty

tx tx
s e s s e s

ty ty

 

   

   
     

   

   
      

   

c α

β γ
(C.4) 

Compare equation C.1, it’s easy to see 

21
11( ) , ( )

c

Ac s A s
R

   (C.5) 

While the others coefficient α(s), ϒ(s) are zeros. Note the Right-Hand side (HRS) of equation (C.1) has three 

items. The first term can be extended as, 

2 21
12 22 11 22 11 22 11

12

( ) ( ( ) ( ) ( ) )

( )

n n

x y xx xy yx yy

tx tyA E E ty tx tx ty ty
s s s y y

nx nyA E E nx txE nx tyE ny txE ny tyE
s s


     

   
       

    

 
         

 

(C.6) 
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Where , ,i
ij

EE i j x y
j


 


 are used in COMSOL. In the derivation of C.6, we have used the chain rule 

for the derivatives of electric fields and dielectric tensor: tx ty
s x y
  
 

  
and the fact that partial 

derivatives of dielectric tensor w.r.t x are zero. For the tangential derivatives of the normal/tangential 

vector, COMSOL provides two build-in operators to calculate them,  

dtang( , ) , dtang( , )tx tytx y ty ty x tx
s s

 
 

 
 (C.7) 

So the partial derivatives of the normal/tangential vector can be avoided by using ‘dtang’ operator, for 

example, 

12 22 11 21

22 11 21

( ) ( dtang( , )( ) ( dtang( , ) dtang( , )))

( dtang( , )( ) ( dtang( , ) dtang( , )))

x y x

y

nx nyA E E tx ty y tx ty x ty ty y E
s s

ty tx x tx tx x ty tx y E

  

  

 
        

 

      

 (C.8) 

The second term of C.1 can be calculated as, 

21 22 23 z 21 22 21 22

2 322 11 21 11 22
23

( ) ( )( ) ( )( )

( )( ) ( ) ( )

s n xx xy yx yy

zx zy s n

A E A E A E A tx A nx nx E ny E A ty A ny nx E ny E
n

A nx E ny E E tx ty ny ny E nx ny ny
y y y y

    


               



    
          

   

(C.9) 

where the chain rule is used, nx ny
n x y
  
 

  
 and the simplification Ez=0 at curve.  Finally the third 

term of C.1, 

22
22 curvn

n
c

A E A E
R

    (C.10) 

Where build-in operator ‘curv’ is used, Rc=-1/curv. So the equation C.1 becomes  

21
11( )RF RF

c

dV A dVd A
ds ds R ds

   Eq. (C.6)+ Eq. (C.9)+ Eq.(C.10)    (C.11) 

 

II.  Calculate partial derivatives of normal/tangential vector components defined in a 2D 

domain 
This section shows how to calculate partial derivative of nx or ny with respect to x, y, as like they are 

defined in the domain instead of on the curve only. This method can avoid using ‘dtang’ operator.  

Starting from definition xn.exn and performing partial derivation we have in the vicinity of curve 

C[x(s),y(s)]. 
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Expanding usual derivative dx and dy in curvilinear coordinate, one gets the following relation  

 

0

0

(1 )

(1 )

c

c

n tx nx
Rdx ds

dy n dnty ny
R

 
 

       
     
 

  (C.12) 

Where on the curve n0=0, one recovers the familiar total differential of dx and dy 

 

x xdx ds dn
s n
y ydy ds dn
s n

 
 
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From equation C.12 one gets the reversal relation 
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And the definition of Rc gives 
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Here we used the properties 
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Using C.16-C.17, the first RHS term of C.1 then becomes 
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Finally the equation C.1 can also be expressed as 

21
11( )RF RF

c

dV A dVd A
ds ds R ds

   Eq. (C.18)+ Eq. (C.9)+ Eq. (C.10)     (C.19) 
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D : A possible way to realize DB boundary condition in 

COMSOL 
I. Analysis of the problem 

In engineering design, the DB boundary condition reads: 

 0 0n D n B      (D.1) 

[Lindell 2009] proved that for a TE polarized plane wave (w.r.t incidence plane), this boundary condition 

can be replaced by a Perfect Electric Conductor (PEC), whereas for a TM polarized plane wave, it can be 

seen as a Perfect Magnetic Conductor (PMC),  

Indeed, consider a TE polarized wave incident in xz plane, with a PEC in the z>0 half plane. If we use 

engineering convention.  

The incident fields writes 
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And reflection fields: 
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Where i z z x xu k u k u  ,  r z z x xu k u k u   , 0 0/cZ u  . One can see at the boundary, it fulfills  
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  (D.4) 

The same for TM polarized wave with PMC boundary. 

A problem may arise for a normal incidence plane wave. In this case the plane wave naturally fulfill the 

vanishing of longitudinal components. So this boundary does not play a role of boundary at all. In other 

words, DB boundary condition is incomplete for normal incident plane wave [Bosiljevac 2011].  

If we consider a 3D waveguide in free space, see Figure D.1. Plane 1 is the plane to excite fields. Plane 

4 is the target plane on which we want to implement DB boundary condition. There is no direct way to 

implement boundary conditions other than constraint on tangential components of EH fields in COMSOL. 

However, this can be done through introducing two extra scalars, i.e. u and v. The definition of this two 

vectors are represented by introducing an extra boundary ODE (2D boundary plane in 3D space), defined 

on the target plane 4, 
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Where ea, da are 2*2 vectors and f is a 1*2 vector. 𝐓 = [
𝑢
𝑣

]. Here we choose ea and da equal zero, 𝐟 =

[
𝒏 ∙ 𝐄

𝒏 ∙ 𝒄𝒖𝒓𝒍𝐄
], where n is the normal component of the target plane 4. E is the electric field on the plane, n

•curlE gives normal magnetic field. So the solution of (D.5) must be En=0 and Bn=0 (which is equal to (D.1) 

in free space), while u and v can be any value. Now going back to wave equation, without loss of generality, 

we rewrite the E field on the boundary plane as  

 

1 *u 2 *
1 *u 2 *

1 *u 2 *

x

y

z

E t x t x v
E t y t y v
E t z t z v

 

 

 

  (D.6) 

Where t1 and t2 are the two tangential base vector on the boundary plane. t1x is the x component of 

t1, et.al. The idea lies behind (D.5) and (D.6) is that by (D.5) Comsol is aware of DB boundary conditions 

thus all the six electrical and magnetic components of wave equation can be solved. Then the two extra 

scalars is uniquely determined by two of three equations in (D.6). (D.6) can be implemented in COMSOL 

through boundary type ‘Electric field’ under EMW.  

II. Tests on 3D rectangular waveguide in COMSOL 
We first construct a 3D rectangular waveguide in free space. As Figure D.1 shows, wave propagates 

along z direction. E field is excited in the y direction. This is done by applying an excitation port boundary 

condition on plane 1, which specifies the power excited from this port is 1W. Correspondingly, on plane 6 

we apply a receiver port boundary condition. The boundaries on top and bottom (3, 5) are PEC. Since DB 

boundary condition is incomplete for normal incidence plane wave, it is reasonable to implement this 

boundary condition on the planes parallel to propagation direction, e.g. plane 4. The other lateral 

boundaries plane 2 is PMC.  

One would note that in free space, DB boundary condition (D.1) requires the vanishing of the normal 

electric field and magnetic field. To see this, let’s plot the magnetic field and electric field near plane 4. In 

Figure D.2, the electric field stays dominant in y direction whereas the magnetic field deviated from x 

direction to z direction. The Poynting vector thus should be normal to the DB boundary.  

III. Conclusion  
Although more tests still need to be done, several conclusions can already be made. 1. DB boundary 

condition has an inherent drawback that it must exclude a normal incidence plane wave. 2. The kind of 

trick to constrain normal components presented in this report can be easily extended to constrain other 

components, e.g. a mixed boundary type Ey=0, Bz=0 on plane 4.   
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Figure D.1. 3D geometry of a simple waveguide 

 

 

Figure D.2. Behavior of Magnetic field and electric field near the DB boundary  
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Résumé long 
 

1. Principaux résultats obtenus au cours de cette thèse 
Les ondes dans le domaine des fréquences cyclotroniques ioniques (FCI, gamme typique 30-80MHz) 

sont l'une des principales méthodes de chauffage additionnel utilisées dans les dispositifs de fusion 

magnétique actuels, par exemple les tokamaks. Elles constituent également un moyen unique de 

chauffage direct des ions. Ces ondes sont excitées par des réseaux phasés de rubans poloïdaux de courant 

situés du bord de l'appareil. Pour obtenir un chauffage du plasma suffisant et rendre le système de 

chauffage fiable en régime permanent, il est nécessaire comprendre le couplage des ondes depuis ces 

antennes jusqu’au plasma et de minimiser des effets parasites apparaissant dans le plasma de bord, en 

particulier dans le champ proche radiofréquence (RF) rayonné par les antennes. Cette thèse apporte une 

contribution de modélisation aux recherches sur ces sujets. 

Bien qu’un plasma de fusion soit extrêmement chaud (les températures typiques se chiffrent en 

millions de K), les effets thermiques sur le comportement des ondes FCI se font surtout sentir autour de 

la résonance cyclotronique et ses harmoniques pour les principales espèces présentes. Hors de ces zones 

de résonance, il est souvent commode d'utiliser l'approximation plasma froid, permettant de traiter le 

plasma comme un matériau diélectrique gyrotrope. Une antenne FCI peut émettre deux types d'ondes de 

plasma froid: l’onde rapide et l'onde lente. La première onde est évanescente dans le vide et en dessous 

d’une densité de coupure, dépendant pour une onde plane du vecteur d’onde parallèle k//. Au-dessus de 

la densité de coupure, l’onde rapide peut se propager jusqu’au plasma central et contribuer au chauffage. 

L’onde lente est évanescente au-dessus de la résonance hybride inférieure et propagative en-dessous. 

L'onde rapide a des composantes notables de champ électrique qui sont perpendiculaires au champ 

magnétique statique, alors que l'onde lente a un grand champ électrique dans la direction parallèle au 

champ magnétique de confinement. L'onde rapide étant la principale onde de chauffage, les rubans 

excitateurs sont orientés dans la direction poloïdale pour engendrer préférentiellement cette polarisation. 

Dans les tokamaks actuels, la résonance hybride inférieure est naturellement présente à l’extrême 

périphérie de la machine, et peut-être à l'intérieur du boîtier d'antenne. Cependant, elle est souvent 

négligée dans les simulations actuelles de couplage d'onde. 

La première partie de cette thèse a étudié l'impact sur le champ RF proche et le couplage de puissance 

FCI de profils densités qui décroissent continûment à l'intérieur de l'antenne et traversent la résonance 

hybride inférieure (résonance LH). Avant cette thèse un code de couplage 2D pleine onde (onde lente + 

onde rapide), RAPLICASOL-2D avait été développé. Auparavant, il avait un champ magnétique purement 

toroïdal. Au cours de cette thèse, le code a été amélioré pour incorporer une configuration du champ 

magnétique inclinée dans le plan toroïdal / poloidal. Ce code considère un plasma froid magnétisé sans 

collision ni gaine à l’interface plasma-paroi. Il est toutefois flexible pour ajouter des collisions et est 

également compatible avec des conditions aux limites de type gaines à l’interface plasma-paroi. Le logiciel 

a été élaboré à partir du solveur commercial d'éléments finis COMSOL Multiphysics. L'une des principales 

raisons d'utiliser COMSOL est qu'il permet d'économiser le temps de codage et la compilation et donc les 

utilisateurs peuvent se concentrer sur l'étude de la physique. 
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Le nouveau code 2D RAPLICASOL montre qu’en présence de densités inférieures à la résonance LH, il 

devient difficile d’atteindre la convergence numérique des simulations: dans les limites de mémoire de la 

station de travail adoptée, le motif de champ change avec la taille des éléments finis. Une interprétation 

physique repose sur le fait qu’en dessous de la résonance LH l’onde lente peut se propager à très courte 

longueur d'onde et donc est sensible aux paramètres de simulation, comme la taille du maillage. Les 

principaux résultats de cette partie de la thèse sont présentés à la figure E.1. Pour une configuration de 

plasma et d’antenne typique de Tore Supra, cette figure trace la puissance FCI couplée au plasma principal 

avec 1A de courant RF sur 1m de ruban rayonnant, en fonction de l’angle d'inclinaison du champ 

magnétique, pour différents profils radiaux de densité plasma à l'intérieur de la boîte d'antenne. Fait 

intéressant et important, le spectre en nombre d’onde toroïdal ktor de la puissance couplée est 

indépendant de la taille des mailles et n’est que faiblement affecté par la présence du profil de densité à 

l'intérieur de l'antenne, lorsque les deux rubans de courant considérés oscillent en opposition de phase 

(phasage « dipôle », le plus souvent utilisé comme configuration de chauffage sur Tore Supra). On peut 

donc ignorer la faible densité à l'intérieur de la boîte d'antenne pour les études de couplage d'onde rapide. 

Cela justifie la simplification adoptée par les principaux codes de couplage actuels: ignorer l'existence de 

la résonance hybride basse dans leur simulation et ne considérer que l'onde rapide. En phasage 

« monopôle », lorsque les deux rubans oscillent en phase, la simulation montre qu'il y a au maximum 20% 

d'augmentation de puissance couplée due à la présence de plasma dans la boîte. La distinction vient du 

fait que la longueur d’évanescence pour l’onde rapide à faible ktor est en train de changer, contrairement 

aux ktor plus élevés du dipôle. Ainsi l’hypothèse du vide dans la boîte nécessite peut-être d'être ré-

examinée pour modéliser des systèmes rayonnant aux faibles ktor. La simulation montre également que la 

variation du gradient de densité dans la région d'évanescence de l'onde rapide n'a aucun effet significatif 

sur le couplage d'onde. On peut donc modéliser encore le couplage de puissance à un plasma avec une 

assez bonne précision en dépit de certaines incertitudes sur le profil de densité mesuré. 

  
Figure E.1 : Puissance transmise au plasma central, pour 1A dans 1m de ruban, en fonction de l’angle 

d’inclinaison du champ magnétique par rapport à la direction toroïdale, pour différentes formes de profils 

de densité dans la boîte d’antenne. (a) Simulation pour deux rubans de géométrie Tore Supra dont les 

courants RF oscillent en opposition de phase (phasage « dipôle ») ; (b) idem pour des courants RF en phase 

(phasage « monopôle ») 

 

Dans les régions qui leur sont accessibles, les ondes RF peuvent induire des oscillations RF de la couche 

limite à l’interface entre le plasma et la paroi de la machine, appelée « gaine ». La gaine pouvant être vue 

comme un composant électrique non-linéaire, des oscillations de sa tension induisent une contribution 
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nette au potentiel continu (DC) du plasma via un processus non-linéaire de rectification. On attribue à la 

rectification de gaine, la génération d'impuretés par pulvérisation de la première paroi, et des flux de 

chaleur excessifs sur les surfaces d'antenne FCI exposées au plasma, et sur les autres composants de la 

machine en regard. Notre façon de modéliser l'interaction des ondes RF et de la gaine est de résoudre de 

manière auto-cohérente la propagation des ondes RF et la polarisation DC du plasma, couplées par 

l’intermédiaire de conditions aux limites non-linéaires RF et DC de type gaines (SBC) appliquées à 

l’interface plasma-paroi. On adopte une approche couplant de manière auto-cohérente trois quantités 

physiques. On résout de manière itérative jusqu’à convergence la propagation du champ électrique 

vectoriel RF (E), l’excitation de tension oscillante de la gaine (VRF) et la modification du potentiel DC du 

plasma (VDC). Dans les manuels la gaine RF est souvent modélisée par un circuit électrique constitué d’un 

condensateur, d’une diode et d’une source constante de courant ionique. Sous une tension de gaine 

élevée et dans un régime d'ions immobiles, la partie RF de ce modèle peut être réduite à un condensateur 

à plaques parallèles. La formule pour la capacitance RF de la gaine peut donc être obtenue en fonction de 

la largeur moyenne de gaine. Sous cette hypothèse électrostatique, une condition aux limites RF de type 

gaine valable dans la limite des ions immobiles a été proposée par Myra et D'Ippolito avant cette thèse. 

La théorie de la gaine DC considère un courant d'ions constant pénétrant la gaine à la vitesse du son 

(vitesse de Bohm), tandis que les électrons sont supposés avoir une distribution maxwellienne tronquée 

et suivent une distribution de densité de type Boltzmann à l'intérieur de la gaine. Le courant électronique 

dépend de manière exponentielle de la tension appliquée à la gaine. A l’aide de ces contributions 

élémentaires, une caractéristique courant-tension moyennée dans le temps (IDC-VDC) peut être établie 

pour la gaine, pour décrire le courant continu total à travers la gaine, en fonction de la tension continue 

à ses bornes. Par l'intermédiaire du processus non-linéaire de rectification, la présence d’oscillations RF 

de la tension de gaine modifie cette caractéristique IDC-VDC moyennée. L'épaisseur moyenne de la gaine 

est décrite par la loi de Child-Langmuir et dépend du potentiel DC. Ainsi la capacitance RF, qui influe sur 

la réflexion des ondes RF aux parois, dépend de VDC. Ces bases théoriques ont été utilisées pour 

développer au CEA en 2013 le code SSWICH (Self-consistent Sheaths and Waves for Ion Cyclotron Heating). 

La première version de SSWICH (SSWICH-SW) adoptait une géométrie 2D simple formée de blocs 

rectangulaires où le champ magnétique était soit parallèle soit perpendiculaire aux parois. Dans cette 

configuration magnétique, les conditions aux limites gaine font uniquement intervenir l’onde lente. Dans 

son module de champ RF, SSWICH-SW résout seulement la composante parallèle du champ, associée 

l’onde lente. Le champ RF est excité en imposant à une limite externe du domaine de simulation une carte 

du champ RF parallèle issue d’un code d'antenne extérieur. Afin d’initier la résolution itérative de SSWICH-

SW, on utilise dans le module RF une version asymptotique des conditions aux limites RF de type gaine, 

qui ne dépend plus de la largeur de gaine. Des tests ont montré qu'au moins dans la configuration Tore 

Supra, cette version asymptotique dite « gaines larges » peut déjà donner un résultat assez proche de la 

solution finale après convergence. En outre, une version 3D du code SSWICH-SW asymptotique a été 

développée en traitant la troisième direction (poloidale) de manière spectrale. En effet, dans 

l’approximation « gaines larges », les deux premiers modules de SSWICH deviennent linéaire. Cette 

linéarité garantit que chaque nombre d'onde poloidal kz est indépendant des autres, ce qui permet de 

faire fonctionner le module 2D séquentiellement pour chaque kz. Avec la simulation SSWICH-SW, on a 

déjà reproduit un effet de proximité spatiale entre émetteur d’onde et gaines, qui a été observé 

expérimentalement.  

L'onde rapide, principale onde de chauffage, est absente du code SSWICH-SW. Dans la partie centrale 

de cette thèse nous avons développé une nouvelle version de SSWICH incluant l’onde rapide (FW), une 
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configuration plus réaliste de champ magnétique et des parois courbes. Ces nouvelles propriétés sont 

intrinsèquement reliées. Par exemple, dans un champ magnétique incliné, l'onde rapide intervient dans 

les conditions aux limites gaines (SBCs). La littérature indique alors que, par réflexion sur un mur incliné 

par rapport au champ magnétique, une conversion de mode est susceptible de se produire entre l'onde 

lente (SW) et l’onde rapide (FW). L’ajout du champ magnétique incliné et des murs courbes est une étape 

vers la géométrie réaliste. Le code SSWICH-Full Wave, toujours en 2D pour limiter le coût numérique, a 

un champ magnétique incliné dans le plan poloïdal et toroïdal. Ce n'est pas le cas le plus général, mais 

sous cette configuration magnétique, on peut garder une géométrie de simulation similaire à celle du 

code précédent et en même temps d'introduire le couplage d'onde rapide dans le code. Au début de cette 

thèse, nous avons déjà envisagé que RAPLICASOL et SSWICH devraient à terme être généralisés en un seul 

code. Ainsi lors de l'élaboration du code SSWICH-FW, nous avons choisi une géométrie similaire au code 

RAPLICASOL 2D. Mais les parois ont été courbées et des conditions aux limites de type gaine plus générales 

ont été utilisées. 

Les conditions aux limites DC et la capacitance RF utilisés dans SSWICH-FW doivent être valables dans 

le champ magnétique incliné. Ces conditions n'existaient pas avant cette thèse. Dans cette thèse, des SBCs 

RF plus générales ont été formulées en utilisant tous les composants de champ RF et la formule de 

rectification DC a été améliorée pour prendre en compte de manière simple le champ magnétique incliné. 

Que ces formules simples reproduisent la réalité ou non est encore une question ouverte et elles sont 

encore en cours de test dans des simulations plus fondamentales. Les ondes RF peuvent être excitées soit 

par des courants poloïdaux imposés sur des rubans dans l’antenne ou par des cartes de champ 

(composantes toroïdales et poloïdales) issues d’un code d’antenne 3D extérieur et imposées à la bouche 

de l’antenne. Imposer un courant sur la surface des rubans est moins réaliste car on incorpore moins de 

détails de la géométrie d’antenne. Aussi, pour reproduire des expériences il est actuellement préférable 

d’utiliser une excitation par cartes de champ. SSWICH est à l'heure actuelle le seul code dans le monde 

capable de simuler des gaines RF dans un environnement tokamak en utilisant des cartes de champ 

d'antenne réalistes. 

Selon la même stratégie utilisée dans SSWICH-SW, une version asymptotique du code SSWICH-FW 

basée sur l'hypothèse « gaine large » a été développée. Les simulations SSWICH-FW asymptotiques 

utilisant des paramètres typiques d’expériences tokamak (comme Tore Supra) ont montré une conversion 

de mode de FW à SW se produisant aux angles vifs où la forme des parois varie rapidement. En effet, sur 

la base du fait que les ondes lentes et rapides ont des comportements différents lorsque les différentes 

constantes diélectriques du plasma varient, nous avons constaté que des motifs de champ apparaissant 

au sommet des limiteurs latéraux d’antenne sont probablement associés à l’onde lente. L’onde rapide 

peut accéder à des régions du plasma éloignées de l’antenne, qui sont inaccessibles à l'onde lente 

évanescente. Les simulations pleine onde ont mis en évidence des oscillations de gaine dans ce "champ 

lointain", apparaissant sur des parois courbes loin de l'antenne. Compte tenu de la distance antenne/gaine 

ces oscillations ne peuvent être excitées que par une onde rapide propagative. En variant les dimensions 

toroïdale et radiale de la paroi, on a pu voir que les deux quantités |VRF| et |VDC| dans ce champ lointain 

diminuent avec la distance toroïdale à l'antenne active. Par contre |VRF| et |VDC| augmentent avec la 

distance radiale au lanceur d'onde. C’est à première vue contre-intuitif, surtout par comparaison aux les 

effets de proximité spatiale gaine/émetteur observés en champ proche. Ce comportement suggère 

qu'une onde rapide propagative peut ne pas produire de tels effets de proximité spatiale. Néanmoins, 

cette observation est cohérente avec la proximité spatiale de la paroi où se développent les gaines avec 
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le lobe de propagation de l’onde rapide devant l’antenne. Les variations de VRF dans la SOL lointaine avec 

l'angle d'inclinaison sont assez similaires à celles du couplage de puissance, à savoir la figure E.1. Cela 

confirme que l'onde rapide joue un rôle dominant sur l'excitation VRF dans la SOL lointaine. La troisième 

série de simulations visait à explorer le rôle de l'onde rapide sur l’extension radiale de la région à VDC 

élevés dans la SOL libre. Les résultats montrent que la diminution de la conductivité perpendiculaire DC 

du plasma peut affecter de manière significative cette largeur, même en présence de l'onde rapide. Cela 

donne à penser que le transport de courant continu est toujours le mécanisme dominant pour déterminer 

l'extension radiale de la zone polarisée par les ondes. 

Jusqu'ici, les résultats dont nous avons parlé ci-dessus ont été obtenus en imposant des courants 

poloïdaux sur des rubans implantés dans l’antenne. Lorsque l'on compare la simulation avec l'expérience, 

il est préférable d'utiliser une excitation plus réaliste: imposer à la bouche d’antenne des cartes de champ 

importées d’un code de couplage d'onde avec une géométrie d’antenne plus détaillée. Une version 3D du 

code RAPLICASOL a été développée en parallèle à cette thèse grâce au travail de J. JACQUOT à Garching. 

Il a une structure très similaire au code 2D RAPLICASOL et la carte du champ issue de ce code a moins de 

bruit numérique que les cartes précédentes. L'un des résultats produis par la simulation SSWICH-SW / 

TOPICA est une structure verticale en double bosse pour VDC  au niveau du bord d’attaque des limiteurs 

d’antenne. Ce type de structure a été vu expérimentalement sur des images infrarouges de la température 

de surface des limiteurs, ainsi que sur des cartes 2D du potentiel mesuré par sondes. Les simulations 

SSWICH-FW / RAPLICASOL ont également reproduit cette structure verticale à double bosse en utilisant 

une approche multi-2D. Dans un premier temps, nous avons utilisé le code 3D RALICASOL avec les mêmes 

paramètres plasma que la simulation 2D SSWICH-FW asymptotique et déduit du code d’antenne des 

cartes 2D (vertical-toroïdal) des champs électriques à l'écran de Faraday. Pour chaque altitude (dans la 

direction verticale), les deux composantes tangentielles du champ électrique de la carte de champ ont été 

imposées à la bouche d’antenne dans SSWICH. Les polarisations distinctes de l’onde rapide et l'onde lente 

permettent de découpler partiellement ces deux ondes dans l'excitation. En utilisant uniquement la 

composante E de la carte du champ on excite préférentiellement l’onde rapide. En utilisant uniquement 

E// on excite préférentiellement l'onde lente. La figure E. 2 montre les résultats de la simulation multi-2D 

utilisant SSWICH-FW / RAPLICASOL. Le résultat correspond mieux avec la structure à double bosse 

expérimentale quand seul E// est utilisé. L’onde lente, avec une longueur d’évanescence courte, est 

sensible aux petites modifications de géométrie dans la SOL privée. La courbure de la paroi introduite 

dans le SOL privée se révèle importante pour l'amplitude du champ proche, mais très probablement non 

pertinente pour les études de couplage d'onde rapide. D'autre part, l'onde rapide est probablement 

sensible à des effets 3D. Alors que l'onde lente a un effet dominant pour exciter VDC dans la SOL privée, 

ces deux ondes semblent jouer un rôle comparable sur VDC dans le voisinage du lanceur d'onde. Au cours 

des derniers mois de cette période de thèse, nous avons finalement testé un moyen d'intégrer des effets 

3D dans les simulations. L'astuce consiste à traiter la direction verticale (direction z) de manière spectrale 

dans les deux premiers modules de SSWICH, de manière similaire à la version 3D asymptotique SSWICH-

SW, en considérant maintenant les deux composantes tangentielles du champ issues de RAPLICASOL 3D. 

Enfin on exécute le module VDC en multi-2D en utilisant le VRF de la dernière étape. En utilisant cette 

technique, et pour certains vecteurs d’ondes poloidaux kz, une onde de surface se propageant dans la 

direction z est susceptible d'apparaître au niveau des parois où existent des gaines. Cela peut être dû à 

une incompatibilité entre les conditions aux limites périodiques et la taille finie du lanceur d'onde. En 

utilisant des transformées de Fourier, nous avons implicitement imposé des conditions aux limites 

périodiques aux deux extrémités verticales du domaine de simulation, de sorte que ces ondes de surface 
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peuvent se propager à l'infini de l'antenne, alors qu'en réalité elles sont peut-être réfléchies aux 

extrémités des limiteurs d’antenne. 

 

 

Figure E.2. Carte Verticale-radiale de VDC à l’extérieur du limiteur d’antenne gauche, pour 1 MW 

couplés, simulations SSWICH-FW/RAPLICASOL multi-2D, sans inclure d’effet 3D. (Gauche) simulations 

excitées uniquement avec la composante E//, de la carte de champ RF issue RAPLICASOL 3D. (Droite) 

simulations réalisées avec toutes les polarisations de la carte de champ RF.  

Une asymétrie gauche-droite de la température de surface ou des flux de chaleur a été observée en 

détail entre les deux extrémités opposées de la même ligne de champ magnétique dans des expériences 

où les deux rubans des antennes Tore Supra n’étaient pas alimentés avec la même puissance. Cette 

observation est une justification solide pour les effets de proximité spatiale dans l’excitation des gaines 

RF. Avec SSWICH-FW et RAPLICASOL, nous avons simulé le flux de chaleur sur les deux limiteurs aux deux 

extrémités de la même antenne. La simulation pleine onde a reproduit avec succès l'asymétrie gauche-

droite des flux de chaleur, ce qui suggère que les effets de proximité spatiale, étudiés précédemment 

uniquement pour l’onde lente, sont toujours valables en présence de toutes les polarisations d’onde dans 

le voisinage de l’antenne, où à la fois l’onde rapide et l'onde lente sont évanescentes. 

Initialement développé pour les études de gaine RF dans les tokamaks, SSWICH-FW a des applications 

plus polyvalentes. Dans la troisième partie de ce travail de thèse, nous avons montré comment le principe 

de SSWICH peut être mis en œuvre dans une machine totalement différente du Tokamak, en termes de 

géométrie et régime de couplage onde/plasma. Le dispositif ALINE est une décharge plasma cylindrique 

magnétisée dédiée à l'étude des propriétés de base des ondes de plasma et des gaines RF. SSWICH a été 

utilisé dans une première tentative de simulations interprétatives pour les plasmas d’ALINE en Argon. En 

utilisant le code SSWICH-FW asymptotique, nous avons observé et étudié à la fois l’onde hybride basse 

(LH) et l’onde Hélicon, apparaissant dans différents régimes de paramètres d’Aline. L’onde LH se propage 

normalement à une faible densité, comme l’onde lente des Tokamak, alors que l’onde Hélicon existe 

préférentiellement à densité élevée, comme l'onde rapide dans un Tokamak. Une différence majeure 

entre l’onde Hélicon et l’onde rapide Tokamak est que l'onde hélicon se propage le long du champ 

magnétique et a un cône de résonance orienté selon la direction toroïdale. L'onde LH, comme l’onde lente 

électrostatique des Tokamak, se propage aussi à l'intérieur d'un cône de résonance. Cette propriété 

commune nous aide à identifier l'onde Hélicon et l'onde hybride inférieure dans la simulation. Compte 

tenu de la densité actuelle du plasma d'ALINE, l’onde Hélicon peut être observée uniquement avec un très 

faible champ magnétique dans les plasmas d'argon. Dans ce champ magnétique, les ions argon ne sont 

pas vraiment magnétisés. Pour produire l'onde hélicon avec ions magnétisés, il est préférable d'utiliser 

l'hélium. La sensibilité des champs électriques au maillage du domaine au voisinage des structures 
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excitatrices, identifiée précédemment en tokamak, apparaît également dans les simulations ALINE. 

Ajouter des collisions est un moyen efficace de réduire cette sensibilité. D'un point de vue purement 

numérique, la fréquence de collision doit être aussi élevée que la fréquence d'onde afin d'éliminer cette 

non-convergence avec le maillage. Cependant, avoir une fréquence de collision aussi élevée va 

certainement changer la physique des ondes. Une meilleure solution est clairement nécessaire pour 

résoudre ce problème de non-convergence. 

Étant donné que le champ magnétique dans ALINE est totalement horizontal et que l'onde LH est la 

principale onde qui pourrait être excitée dans l'état actuel de la machine Aline, le code SSWICH-SW a été 

utilisé pour modéliser les gaines RF dans ALINE. La conductivité DC Spitzer des tokamaks a été remplacée 

par une conductivité parallèle prenant en compte les collisions électrons-neutres, tandis que la 

conductivité DC perpendiculaire du plasma provient des collisions ions-neutres. D’autres mécanismes 

sont susceptibles d’affecter la conductivité DC effective du plasma: la viscosité ionique, l’inertie des ions. 

Par souci de simplicité, ces effets ont été négligés dans les simulations actuelles. Grâce à son accès facile 

pour les diagnostics, le dispositif ALINE peut fournir une carte expérimentale du potentiel flottant de 

sondes de Langmuir qui peut être comparée à la modélisation SSWICH-SW. Le potentiel de plasma DC 

dans la simulation SSWICH-SW présente une homogénéité toroïdale lorsque la conductivité parallèle du 

plasma est élevée, comme c’est le cas dans les plasmas de tokamak. La carte mesurée dans Aline montre 

des variations parallèles du potentiel flottant. Avec une conductivité parallèle plus faible, une 

inhomogénéité toroïdale apparaît également dans nos simulations, comme le prédit un modèle 

analytique. Le potentiel flottant expérimental a toujours une valeur maximale au-dessus de l'antenne 

tandis que la simulation de SSWICH indique une valeur crête localisée à l'antenne. Cet écart est 

actuellement expliqué par l'accélération d’ions par le champ électrique radial au niveau de la surface 

supérieure de l'antenne, un phénomène non présent dans SSWICH. 

Nous avons ici résumé les principaux résultats obtenus au cours de cette thèse. Nous espérons avoir 

convaincu que le code numérique SSWICH peut produire des résultats raisonnables pour aider à 

comprendre les problèmes d’ondes et de gaines RF au bord des plasmas magnétisés. Dans ce qui suit, 

nous allons présenter des perspectives pour des travaux futurs. 

2. Travaux futurs 
Le code 2D RAPLICASOL actuel, utilisé pour réaliser la première partie de ce travail de thèse, n'a pas 

tenu compte d’un éventuel amortissement parasite des ondes dans le bord. Notre simulation dans le 

dispositif ALINE a montré que l'ajout de collisions peut réduire considérablement la sensibilité des 

résultats au maillage. Cependant, le niveau de dissipation précis est critique dans ces simulations, et il est 

difficile de connaître la collisionalité autour de la résonance de la LH. Aussi, une meilleure façon de 

résoudre ce problème est fortement nécessaire. Un travail mathématique en cours tente de reformuler 

rigoureusement la méthode des éléments finis autour de la résonance hybride inférieure, pour obtenir 

une solution convergente à travers cette résonance dans la limite non-collisionnelle. Jusqu’à présent, 

cette méthode n'a été testée que dans des cas plus simples que notre géométrie. Dans notre première 

partie nous n’avons considéré que le cas où la résonance de LH est localisée derrière les rubans de  courant. 

Cependant, la même méthode peut également être utilisée pour examiner un autre cas extrême, lorsque 

le ruban est en-dessous de la résonance de LH et peut exciter directement l'onde lente propagative. Les 

effets 3D n’étaient pas inclus dans cette première partie de notre travail. Une dérivée poloidale est 

susceptible de jouer un rôle important dans l'étude de la modification de la densité par les forces 
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pondéromotrices et doit donc être prise en compte dans les études de couplage d'onde. A présent une 

version 3D de RAPLICASOL est disponible, mais l'exécution de ce code est très consommatrice de mémoire. 

Enfin, autour de la résonance de LH, les effets thermiques deviennent importants, et peuvent nécessiter 

des corrections pour tenir compte des effets dus au rayon de Larmor fini. 

Dans le code 2D SSWICH-FW actuel, développé dans la deuxième partie de cette thèse, les formules 

de capacitance RF de la gaine et de rectification en champ magnétique incliné ont pris la  forme d’une 

simple extrapolation des formules antérieures, valides en champ magnétique normal aux parois. Ces 

formules seront mises à jour au vu d’études plus fondamentales de la physique des gaines RF. Deux 

approches différentes ont été proposées pour calculer la tension de gaine RF oscillant (VRF). Dans notre 

dernier effort, notre première approche de calcul VRF par une méthode intégrale a été généralisée par un 

traitement spectral. Tout au long du développement de code, nous avons passé beaucoup de temps pour 

mettre au point une méthode alternative utilisant des dérivées spatiales du champ RF pour calculer VRF. 

Finalement cette deuxième approche n’a pas été privilégiée, en raison de l'instabilité numérique des 

dérivées du champ électrique aux parois où on applique les SBCs. Nous pensons que c'est une question 

numérique liée à la compatibilité des conditions aux limites de la gaine asymptotique avec la mise en place 

de la méthode des éléments finis utilisés dans le logiciel COMSOL. L’utilisation de COMSOL nous permet 

de réduire considérablement le temps de développement et de compilation du code, mais d'autre part, 

nous restreint dans notre capacité à connaître et modifier le traitement interne du solveur d’éléments 

finis. Une autre faiblesse de COMSOL est une limitation relative des options pour les conditions aux limites. 

Dans un code fait maison basé sur le langage de compilation primaire, à savoir FORTRAN, on peut 

facilement implémenter les conditions aux limites souhaitées.  

Une autre faiblesse du code SSWICH-FW actuel est l'utilisation des paramètres de transport faiblement 

contraints. L'extension radiale de VDC est toujours très sensible à la valeur de la conductivité DC 

perpendiculaire. Ce problème existait déjà dans le code SSWICH-SW et avait été discutée en détail dans 

la thèse de doctorat de J. Jacquot. Actuellement, le module pour le calcul de VDC utilisé dans le code 

SSWICH-FW est très similaire à celui du code SW, et il hérite donc ce point faible. Les deux conductivités 

perpendiculaires ad hoc doivent encore être déterminées plus précisément a partir de l'analyse des 

turbulences. Un travail sur ce point a été initié par P. TAMAIN, mais malheureusement, il n'a pas été 

achevé avant la fin de cette thèse. 

Dans SSWICH-FW, la forme de la géométrie des parois dans la SOL privée est également importante. 

L’amplitude de VDC et aussi le flux de chaleur dans la SOL privée sont sensibles à la modification de la 

géométrie dans cette région. Généralement, on attribue à l'onde lente une contribution dominante sur 

VDC dans le SOL privé. Probablement en raison de la courte longueur d'évanescence de l'onde lente, il a 

été montré par la simulation d'une modification de la géométrie peut influer sur l’amplitude de VDC (ou 

des flux de chaleur) jusqu'à 30%. La prochaine étape sera donc d’implanter avec des composants incurvés 

plus réalistes, en particulier dans la région de la SOL privée. D'ailleurs, en parallèle à ce travail de thèse, le 

code 2D RAPLICASOL a été étendu à une géométrie cylindrique afin de rendre compte la courbure 

toroïdale du champ magnétique, des parois du Tokamak et la structure d'antenne. Une comparaison du 

champ proche RF calculé par cette extension 2D RAPLICASOL en géométrie cylindrique avec le résultat 

obtenu en utilisant la géométrie rectangulaire montre que  la courbure toroïdale importe pour l'amplitude 

du champ proche parallèle. À l'avenir, SSWICH-FW devrait également inclure la courbure toroïdale. 
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Dans le chapitre 5, nous avons trouvé que les effets 3D sont importants pour évaluer l'impact de l'onde 

rapide sur l’excitation des gaines dans la SOL. La meilleure façon de prendre en compte les effets 3D est 

bien sûr de procéder à une simulation 3D complète. En 3D, on peut aussi avoir une excitation de tension 

réaliste de l'antenne. Malheureusement, une simulation complète 3D SSWICH-FW est actuellement hors 

de portée, à la fois par l'absence de formulation appropriée pour les SBC et en raison des exigences 

excessives de mémoire Le problème de la mémoire est évident. Pour le premier problème, nous avons 

fait des progrès, à savoir la formulation en 3D de la condition aux limites de la gaine (DB SBCs) n'a pas 

encore été testée dans le plasma mais dans l'espace libre. En théorie, l'approche secondaire pour VRF 

fonctionne également en 3D si la dérivée numérique du champ électrique converge en changeant le 

maillage, mais il reste à la tester numériquement sur un plan incurvé. Le traitement spectral de la direction 

poloidale est actuellement la meilleure méthode pour incorporer des effets 3D que nous pouvons 

proposer à l’issue de cette thèse. 

Notre objectif final avec SSWICH est de mettre en œuvre une géométrie 3D réaliste, une propagation 

pleine onde et des conditions aux limites de type gaine valables en 3D. Le code 3D RAPLICASOL est 

maintenant disponible pour résoudre la propagation pleine onde complète sans gaine. Il remplacera le 

module RF courant dans la version 3D du Code SSWICH-FW. À l'avenir, SSWICH peut être couplé avec 

d'autres codes pour couvrir plus de physique. Par exemple, la modification de la densité induite par la RF 

et une modélisation de l’injection locale de gaz sont considérés dans le code de transport de bord 3D 

EMC3-Eirene. La carte de VDC produit par  SSWICH-FW 3D pourrait être utilisée comme une entrée pour 

le code EMC3-Eirene. Ce dernier pourrait alors retourner une distribution 3D de densité plus auto-

cohérente, qui à son tour pourrait être importée dans le code 3D SSWICH-FW. Ces deux codes peuvent 

être résolus de manière itérative jusqu'à convergence numérique. 

Enfin, la pulvérisation, les flux de chaleur et le rayonnement des d'impuretés sont parmi les 

conséquences directes des effets de gaine RF. A ce stade, ces phénomènes ne sont pas modélisés dans le 

code SSWICH, mais nous avons montré comment les résultats de SSWICH peuvent être utilisés pour 

évaluer des flux de chaleur. SSWICH-FW est une première étape importante pour modéliser ces processus 

physiques. Étudier expérimentalement les impacts des ondes sur les impuretés sera le sujet d'un nouveau 

doctorat sur la nouvelle machine WEST et le tokamak chinois EAST. Le code SSWICH-FW pourrait être 

utilisé comme un outil numérique pour interpréter les mesures. 

 Pour les simulations plasma dans ALINE, nous sommes conscients que notre travail est juste une 

première étape pour une meilleure compréhension des propriétés des ondes et des gaines dans une 

machine linéaire. La modélisation des ondes dans une cavité comme ALINE doit comporter des collisions 

comme mécanisme d'amortissement. Sans surprise, la structure du champ dans la simulation est très 

sensible aux collisions électrons-neutres. L'équation analytique proposée dans le livre de Chabert est 

actuellement la meilleure façon d'estimer cette fréquence de collision. En outre, une densité précise est 

également importante pour garantir que la simulation est comparable à la décharge réelle. A ce moment, 

le profil de densité utilisé dans la simulation est seulement inhomogène le long de la direction radiale. 

Pour reproduire entièrement la variation toroïdale présente dans la carte expérimentale de potentiel 

flottant, il faut certainement incorporer une variation toroïdale de la densité. En outre, la simulation 

actuelle de gaine RF ne comporte que l'onde hybride inférieure. Les effets de l'onde hélicon sur l’excitation 

de gaines RF sont encore à explorer. 
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Cette thèse se fait dans le contexte de la recherche sur la fusion nucléaire, et elle est particulièrement 

dédiée à la modélisation de gaine RF dans Tore Supra. Tore Supra a presque terminé sa mise à niveau vers 

WEST et prévoit de produire son premier plasma d'ici la fin de cette année. Le Code SSWICH-SW 3D 

asymptotique avec les cartes champ de TOPICA a été utilisé pour optimiser la conception électrique des 

écran de Faraday des nouvelles antennes WEST. La première de ces antennes a maintenant été livrée au 

CEA. Dans l'avenir, SSWICH-FW / RAPLICASOL pourra être utilisé pour interpréter les expériences dans 

WEST. 

 Enfin, SSWICH présente une méthodologie pour modéliser les ondes RF et les interactions de la gaine. 

Elle a des applications potentielles dans les autres domaines de recherche. Par exemple, des gaines RF 

sont également présentes dans les satellites artificiels et des vaisseaux spatiaux. Le plasma dans l'espace 

peut interagir avec les satellites qui utilisent des ondes RF pour leurs transmissions. En présence de SBC, 

la simulation SSWICH a montré que des ondes gaine-plasma apparaissent le long des parois. Du point de 

vue d'un ingénieur, la région métal-gaine-plasma crée un guide d'onde où les ondes de surface (ondes 

gaine-plasma) peuvent se propager. Le résultat immédiat de ces ondes de surface est qu'ils apportent une 

contribution significative à l'impédance de l'antenne et affecte ainsi sa performance. En outre, ce 

mécanisme permet aux ondes électromagnétiques générées localement de se propager entre les points 

largement séparés sur un grand vaisseau spatial. Ces ondes sont susceptibles de donner lieu à des 

problèmes d'interférences électromagnétiques si elles sont collectées par des dispositifs sensibles. 

SSWICH pourait aider à comprendre ces ondes. 

3. Propositions pour les futures expériences 
Une question centrale de cette thèse est le rôle de l'onde rapide dans l’excitation de gaines RF. Avec 

SSWICH, nous avons observé une conversion de mode FW-SW, exploré les propriétés des gaine RF en 

champ lointain produites par l'onde rapide et étudié l'impact de l'onde rapide sur l’extension radiale des 

pics de VDC. Ces caractéristiques ne sont pas encore été observées expérimentalement. L'onde rapide peut 

être identifiée expérimentalement en utilisant une bobine qui mesure le champ magnétique RF la 

traversant. En choisissant correctement l’orientation de la bobine, on peut détecter le champ magnétique 

RF parallèle qui provient principalement de l’onde rapide. En comparant la composante d'onde rapide du 

signal de la sonde avec la force du potentiel du plasma mesurée, il est peut-être possible de trouver une 

corrélation entre ces deux grandeurs et vérifier quelle onde est dominante sur la rectification de gaine RF 

à la fois à proximité du lanceur d'onde et plus loin dans la machine. L'autre façon de comparer l'impact de 

l'onde rapide et l'onde lente sur la gaine RF est d'exciter ces deux ondes les unes après les autres et de 

voir l'évolution du potentiel sur les parois matérielles à proximité. Exciter préférentiellement l'onde lente 

peut être difficile à réaliser dans Tokamak, mais est plus facile à réaliser dans ALINE. ALINE est destiné à 

faciliter la compréhension de la gaine RF dans les Tokamaks. Dans un futur proche, il est prévu un 

remplacement de l'électrode de courant actuelle par une antenne ruban similaire à celle des Tokamaks. 

SSWICH-FW peut fournir un support numérique pour la conception de cette antenne. Lorsque la nouvelle 

antenne ruban aura été installée dans ALINE, on pourrait facilement manipuler son orientation par 

rapport au champ magnétique. Une rotation de 90° du ruban transforme l'antenne d'onde rapide en 

antenne excitant préférentiellement l’onde lente. Un écran de Faraday peut être mis en face du ruban 

pour comparer la force des interactions plasma-paroi sur la surface de l’écran pour deux orientations 

différentes du ruban. 
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Un effet de proximité spatiale entre émetteur d’onde et gaine a été proposé pour interpréter des 

expériences de déséquilibre droite-gauche menées dans Tore Supra et ASDEX-Upgrade. Il est 

généralement connu que l’onde lente évanescente peut produire cet effet. Il est moins clair de savoir si 

l'onde rapide, évanescente ou propagative, peut produire un effet analogue. Nous avons répondu en 

partie à cette question dans nos tests numériques. Au moins dans la configuration Tore Supra nous avons 

constaté que l’onde rapide propagative ne possède pas cette propriété. Ce résultat peut être examiné 

expérimentalement en déplaçant radialement les rubans et en comparant l'amplitude du champ 

électrique au niveau de la région de propagation d'onde rapide. On peut en outre modifier la densité pour 

avoir une onde rapide évanescente dans la région accessible à la sonde dans ALINE. Ensuite, reprendre 

des expériences de dissymétrisation des antennes pour voir si l'onde rapide évanescente produit des 

effets de proximité spatiale.
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Abstract 

Ion Cyclotron Resonant Heating (ICRH) by waves in 30-80MHz range is currently used in magnetic 

fusion plasmas. Excited by phased arrays of current straps at the plasma periphery, these waves exist 

under two polarizations. The Fast Wave tunnels through the tenuous plasma edge and propagates to its 

center where it is absorbed. The parasitically emitted Slow Wave only exists close to the launchers. How 

much power can be coupled to the center with 1A current on the straps? How do the emitted 

radiofrequency (RF) near and far fields interact parasitically with the edge plasma via RF sheath 

rectification at plasma-wall interfaces? To address these two issues simultaneously, in realistic geometry 

over the size of ICRH antennas, this thesis upgraded and tested the Self-consistent Sheaths and Waves for 

ICH (SSWICH) code. SSWICH couples self-consistently RF wave propagation and Direct Current (DC) plasma 

biasing via non-linear RF and DC sheath boundary conditions (SBCs) at plasma/wall interfaces. Its upgrade 

is full wave and was implemented in two dimensions (toroidal/radial). New SBCs coupling the two 

polarizations were derived and implemented along shaped walls tilted with respect to the confinement 

magnetic field. Using this new tool in the absence of SBCs, we studied the impact of a density decaying 

continuously inside the antenna box and across the Lower Hybrid (LH) resonance. Up to the memory limits 

of our workstation, the RF fields below the LH resonance changed with the grid size. However the coupled 

power spectrum hardly evolved and was only weakly affected by the density inside the box. In presence 

of SBCs, SSWICH-FW simulations have identified the role of the fast wave on RF sheath excitation and 

reproduced some key experimental observations. SSWICH-FW was finally adapted to conduct the first 

electromagnetic and RF-sheath 2D simulations of the cylindrical magnetized plasma device ALINE. 

Résumé 

Le Chauffage Cyclotron Ionique (ICRH) par des ondes dans la gamme 30-80MHz est couramment utilisé 

dans les plasmas de fusion magnétique. Excitées par par des réseaux phasés de rubans de courant à la 

périphérie du plasma, ces ondes existent sous deux polarisations. L’onde rapide traverse le bord ténu du 

plasma par effet tunnel puis se propage à son centre où elle est absorbée. L’onde lente, émise de façon 

parasite, existe seulement à proximité des antennes. Quelle puissance peut être couplée au centre avec 

1A de courant sur les rubans? Comment les champs radiofréquence (RF) proches et lointains émis 

interagissent-ils avec le plasma de bord par rectification de gaine RF à l’interface plasma-paroi? Pour 

répondre simultanément à ces deux questions, en géométrie réaliste sur l’échelle spatiale des antennes 

ICRH, cette thèse a amélioré et testé le code numérique SSWICH (Self-consitent Sheaths and Waves for 

ICH). SSWICH couple de manière auto-cohérente la propagation des ondes RF et la polarisation continue 

(DC) du plasma via des conditions aux limites non-linéaires de type gaine (SBC) appliquées à l’interface 

plasma / paroi. La nouvelle version SSWICH-FW est pleine onde et a été développée en deux dimensions 

(toroïdale/radiale). De nouvelles SBCs couplant les deux polarisations d’ondes ont été obtenues et mises 

en œuvre le long de parois courbes inclinées par rapport au champ magnétique de confinement. Avec ce 

nouvel outil en l'absence de SBCs, nous avons étudié l'impact d'une densité décroissant continuement à 

l'intérieur de la boîte d'antenne en traversant la résonance hybride basse (LH). Dans les limites mémoire 

de notre poste de travail, les champs RF au-dessous de la résonance LH ont changé avec la taille de maille. 

Par contre spectre de puissance couplée n’a que très peu évolué, et n’était que faiblement influencé par 

la densité à l'intérieur de l'antenne. En présence de SBCs, les simulations SSWICH-FW ont identifié le rôle 

de l'onde rapide sur l’excitation de gaines RF et reproduit certaines observations expérimentales clés. 

SSWICH-FW a finalement été adapté pour réaliser les premières simulations 2D électromagnétiques et de 

gaine-RF de la machine plasma cylindrique magnétisée ALINE. 
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