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Titre: Ensembles de modèles pour l’IRMf: l’apprentissage stable à grande échelle

Mots-clé: IRMf, clustering, décodage, réduction de dimension.

Résumé: En imagerie médicale, des collaborations

internationales ont lançé l’acquisition de centaines de

Terabytes de données - et en particulier de données

d’Imagerie par Résonance Magnétique fonctionelle (IRMf) -

pour les mettre à disposition de la communauté scienti�que.

Extraire de l’information utile de ces données nécessite

d’importants prétraitements et des étapes de réduction de

bruit. La complexité de ces analyses rend les résultats très

sensibles aux paramètres choisis. Le temps de calcul requis

augmente plus vite que linéairement: les jeux de données

sont si importants qu’il ne tiennent plus dans le cache, et les

architectures de calcul classiques deviennent ine�caces.

Pour réduire les temps de calcul, nous avons étudié le feature-

grouping comme technique de réduction de dimension. Pour

ce faire, nous utilisons des méthodes de clustering. Nous

proposons un algorithme de clustering agglomératif en temps

linéaire: Recursive Nearest Agglomeration (ReNA). ReNA

prévient la création de clusters énormes, qui constitue un

défaut des méthodes agglomératives rapides existantes. Nous

démontrons empiriquement que cet algorithme de clustering

engendre des modèles très précis et rapides, et permet

d’analyser de grands jeux de données avec des ressources

limitées. En neuroimagerie, l’apprentissage statistique peut

servir à étudier l’organisation cognitive du cerveau. Des

modèles prédictifs permettent d’identi�er les régions du

cerveau impliquées dans le traitement cognitif d’un stimulus

externe. L’entraînement de ces modèles est un problème de

très grande dimension, et il est nécéssaire d’introduire un a

priori pour obtenir un modèle satisfaisant.

A�n de pouvoir traiter de grands jeux de données et

d’améliorer la stabilité des résultats, nous proposons de

combiner le clustering et l’utilisation d’ensembles de modèles.

Nous évaluons la performance empirique de ce procédé à

travers de nombreux jeux de données de neuroimagerie. Cette

méthode est hautement parallélisable et moins coûteuse que

l’état de l’art en temps de calcul. Elle permet, avec moins de

données d’entraînement, d’obtenir de meilleures prédictions.

En�n, nous montrons que l’utilisation d’ensembles de

modèles améliore la stabilité des cartes de poids résultantes

et réduit la variance du score de prédiction.

Title: Ensembles of models in fMRI: stable learning in large-scale settings

Keywords: fMRI, clustering, decoding, dimensionality reduction.

Abstract: In medical imaging, collaborative worldwide

initiatives have begun the acquisition of hundreds of

Terabytes of data that are made available to the scienti�c

community. In particular, functional Magnetic Resonance

Imaging –fMRI– data. However, this signal requires extensive

�tting and noise reduction steps to extract useful information.

The complexity of these analysis pipelines yields results

that are highly dependent on the chosen parameters. The

computation cost of this data deluge is worse than linear:

as datasets no longer �t in cache, standard computational

architectures cannot be e�ciently used.

To speed-up the computation time, we considered

dimensionality reduction by feature grouping. We use

clustering methods to perform this task. We introduce a

linear-time agglomerative clustering scheme, Recursive

Nearest Agglomeration (ReNA). Unlike existing fast

agglomerative schemes, it avoids the creation of giant

clusters. We then show empirically how this clustering

algorithm yields very fast and

accurate models, enabling to process large datasets on budget.

In neuroimaging, machine learning can be used to understand

the cognitive organization of the brain. The idea is to build

predictive models that are used to identify the brain regions

involved in the cognitive processing of an external stimulus.

However, training such estimators is a high-dimensional

problem, and one needs to impose some prior to �nd a suitable

model.

To handle large datasets and increase stability of results, we

propose to use ensembles of models in combination with

clustering. We study the empirical performance of this

pipeline on a large number of brain imaging datasets. This

method is highly parallelizable, it has lower computation

time than the state-of-the-art methods and we show that,

it requires less data samples to achieve better prediction

accuracy. Finally, we show that ensembles of models improve

the stability of the weight maps and reduce the variance of

prediction accuracy.
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Résumé – Ensembles de modèles pour l’IRMf:
l’apprentissage stable à grande échelle

En imagerie médicale, des collaborations internationales ont lançé l’acquisition de centaines de Terabytes de

données et en particulier de données d’Imagerie par Résonance Magnétique fonctionelle (IRMf) - pour les mettre

à disposition de la communauté scienti�que. Extraire de l’information utile de ces données nécessite d’importants

prétraitements et des étapes de réduction de bruit. La complexité de ces analyses rend les résultats très sensibles

aux paramètres choisis. Le temps de calcul requis augmente plus vite que linéairement: les jeux de données sont si

importants qu’il ne tiennent plus dans le cache, et les architectures de calcul classiques deviennent ine�caces.

A la croisée des mathématiques, de l’informatique et des neurosciences, j’ai contribué par mon travail de thèse à

des innovations sur 3 aspects di�érents: i) au niveau algorithmique, j’ai proposé une nouvelle méthode de clustering

agglimeratif en temps linéaire, pour extraire des régions cérébrales à partir de données d’imagerie fonctionnelle prenant

en compte la variabilité inter-individuelle, ainsi que des autres signaux structurés; ii) dans le domaine applicatif, j’ai

utilisé ces régions cérébrales avec des modèles de machine learning pour améliorer sensiblement l’état de l’art sur la

stabilité des algorithmes pour le décodage des images du cerveaux. J’ai réalisé une analyse statistique complète de

ces résultats a�n de les véri�er, et iii) dans le domaine informatique, j’ai fait parti du développement de un package

Python open-source permettant une collaboration plus aisée entre neuro-scienti�ques et informaticiens proposant des

implémentations performantes d’algorithmes propres au domaine et capable de traiter de grands jeux de données.

Réduction de la dimension par regroupement des voxels

Les performances des méthodes de machine learning dépendent grandement de la dimension des données

d’apprentissage. Les données IRMf étant composées d’une succession de 150 à 1000 images 3D comptant 100 000

voxels cérébraux, il est impossible de les analyser directement en raison du �éau de la dimension. Pour s’a�ranchir de

cet e�et, et pour réduire les temps de calcul, nous avons étudié reagroupage des voxels –le feature-grouping– comme

technique de réduction de dimension. Avec cet technique nous segmentantons le cerveau en sous-unité fonctionnelles,

les régions cérébrales. Dans tous les cas, ces images sont donc utilisées en entrée d’autres algorithmes, comme une

analyse en composantes indépendantes ou un algorithme de classi�cation. Ces algorithmes sou�rent d’une grande

lenteur et exigence mémoire pour des entrées d’une dimension pareille. Il est donc utile de réduire cette dimension.

Pour être clair, nous parlons de réduire à 2000 dimensions, gardant ainsi l’essentiel du signal, pas de résumer en trois

paramètres. Mais les algorithmes de réduction de dimension doivent eux-mêmes être rapide et su�samment �dèles.

Pour ce faire, nous utilisons des méthodes de clustering agglomeratif. Nous proposons un nouveau algorithme de

clustering agglomératif en temps linéaire: Recursive Nearest Agglomeration (ReNA). ReNA prévient la création de

clusters énormes, qui constitue un défaut des méthodes agglomératives rapides existantes.

Contributions

Dans la continuité d’ussage des méthodes de clustering au sein de mon laboratoire, j’ai développé une méthode de

clustering agglomeratif en temps linéaire: ReNA. Elle promeut des parcellations compactes [4]. Cette méthode peut

être appliqué pour ajouter une contrainte spatiale au niveau du groupe (multi-sujet), en réduiçant le temps de calcule des
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méthodes comme l’inférence fondée sur une parcelle aléatoire, analyse des composants principaux, au les estimateurs

linéaires. En�n, j’ai proposé une méthode d’extraction de clusters à partir ces cartes cérébrales, pouvant autant

fonctionner á partir de coe�cients des estimateurs lineares ainsi que d’ICA, a�n de reduire le temps de calcul tant

qu’il ameliore le conditionement du problème d’optimization.

Résultats

L’absence de vérité de terrain est un frein à l’évaluation de la pertinence de nos modèles. Néanmoins, nous pouvons

utiliser le score de prédiction comme un proxi du performance. Premièrement, nous comparons le performance des

estimateurs avec di�érent méthodes de réduction de la dimensionalité [1]. Nous démontrons empiriquement que cet

algorithme de clustering engendre des modèles très précis et rapides, et permet d’analyser de grands jeux de données

avec des ressources limitées. Cette methode n’est pas limité aux lattices 3D, car il peut être appliqué a n’importe quelle

topologie qui peuve être répresenté comme un graph. Pour cela, il nous faut un calcule de distances ou de similarités

entre les features.

Apprentissage statistique à grande échelle

En neuroimagerie, l’apprentissage statistique peut servir à étudier l’organisation cognitive du cerveau. Des modèles

prédictifs permettent d’identi�er les régions du cerveau impliquées dans le traitement cognitif d’un stimulus externe.

L’entraînement de ces modèles est un problème de très grande dimension, et il est nécéssaire d’introduire un a priori

pour obtenir un modèle satisfaisant. Néanmoins, les a prioris qui marchent le mieux sou�rent d’une grande lenteur.

Une possible solution est l’utilisation des ensembles de modèles, mais l’implementation naïe de ce stratégie est lent. Le

but est de constuir un algorithme qui peut turner sur un ordinateur standard (8 coeurs, 32Gb RAM). Cependant, on

propose une pipeline composé par une étape de clustering et la combination de di�érent modeles pour reduire le temps

de calcul et améliorer le performance de prédiction. J’ai testé le score de prédiction, la stabilité des poids et le temps

de calcule dans 8 di�érents études de IRMf et avec plusieurs éstimateurs. J’ai ensuite réalisé une étude post-hoc des

résultats qui ont mené à plusieurs conclusions importantes

Contribution

A�n de pouvoir traiter de grands jeux de données et d’améliorer la stabilité des résultats, nous proposons de combiner

le clustering et l’utilisation d’ensembles de modèles [2]. Cette méthode utilise le boucle de validation croisée, en

choisissant les modès avec le meilleur score de prédiction, les coe�cients des ces modèles sont donc moyennés. Cet

stratégie est moins dépendant des hypothèses du bruit, et sa parallelization est plus simple. j’ai comparé la méthode

proposé avec plusieurs des méthodes couramment utilisées.

Résultats

Nous évaluons la performance empirique de ce procédé à travers de nombreux jeux de données de neuroimagerie. Cette

méthode est hautement parallélisable et moins coûteuse que l’état de l’art en temps de calcul. Elle permet, avec moins

de données d’entraînement, d’obtenir de meilleures prédictions. En�n, nous montrons que l’utilisation d’ensembles de

modèles améliore la stabilité des cartes de poids résultantes et réduit la variance du score de prédiction [3].
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de méthode de machine-learning sur des données de neuroimagerie et ainsi permettre une collaboration plus

e�cace entre experts en machine learning et neuroscienti�ques. En se basant sur le célèbre package scikit-learn,

nilearn rend possible l’intégration directe des algorithmes conçus pas des experts techniques pour des applications
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Notations

Notation Description De�nition

x Columnvectors arewritten using bold lower-case

xi the i-th component of x

X Matrices are written using bold capital letters

X∗,j The jth column vector of X

Xi,∗ the ith row vector of X

P Letters in calligraphic denote sets or graphs, and

it will be clari�ed by the context

{Ci}k
i=1 be short for the set {C1, . . . , Ck}

|P| the cardinality of a set P
‖x‖p ℓp norm of a vector x

(

∑
k
i=1 |xi|p

) 1
p

, for p = [1, ∞).

[n] [n] = {1, . . . , n}
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Introduction

This thesis was prepared with the Parietal team at Inria, Saclay, France. It was

partly funded by the Microsoft Research-Inria Joint Centre.

This thesis work falls within the joinMicrosoft Research – InriaMedilearn

project. The Medilearn project gathers researchers from the Machine

Learning and Perception group (MSR Cambridge), and the Inria Asclepios and

Parietal teams. Our work aims at developing approaches to learn from large-

scale datasets of medical images, and the automatic analysis and indexation

of medical images [99][92][83]. In particular, we design machine algorithms

to adequately handle large-scale neuroimaging datasets.

Context – “big data” in medical Imaging

In various �elds of science, experts have tried to predict a phenomenon based

on passed observations or measurements. Generally, scientists have tried to

address this by deriving theoretical frameworks based on �rst principles or

accumulated knowledge to analyze, model and understand the phenomenon

under study. Nowadays, we are also using data to build data-aware models

that are capable of making predictions or decisions. This is the aim of

statistical machine learning.

Personalizedmedicine: In the near future, machine learning could lead to

personalized medicine. The key idea behind personalized medicine is to use

the predicted response or risk of disease of the individual an patient to tailor

medical decisions, practices, interventions and/or products. One example is

the promise of a computer algorithm able to predict whether or not a patient

has a mental disorder e.g. Alzheimer’s disease [116][48][135]. However,

medical imaging is not yet powerful enough to achieve this. Nevertheless,

we have learned an important lesson: in medical imaging, we need a lot of

data to train reliable estimators. In this �eld, we have to deal with high-

dimensional data, where the number of features is greater than the number

of samples. Thus we frequently have models that are too complicated for the

amount of data available1. A consequence is that hyperparameter selection 1 In a classical bias-variance trade-o�, this
corresponds to a high variance setting.is very di�cult due to sampling noise [162]. In practice, this is often done by
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cross-validation like techniques [9].

Large-scale datasets in medical imaging: In medical imaging, building

large datasets is not an easy task, as the cost of acquisitions remains high.

However, in recent years, more scientists have become aware of the bene�ts

of data sharing, as they see it as an e�ort to increase reproducibility and

reliability of scienti�c results. Thus, collaborative worldwide initiatives have

begun the acquisition of hundreds of Terabytes of data that are made available

to the scienti�c community 2,3,4 [46][59][133][98]. These huge datasets open 2 https://www.braininitiative.nih.gov/
3 http://www.ukbiobank.ac.uk/
4 https://ninesights.ninesigma.com/web/head-

the possibility to ask new and interesting questions. But they also pose

new challenges, as processing and analyzing them becomes prohibitive in

standard computer architectures.

Machine learning and brain imaging studies

In brain-imaging studies, in particular functional Magnetic Resonance

Imaging (fMRI), neuroscientists are currently acquiring many datasets that

display, in spite of their high noise, brain activation patterns giving access

to meaningful representations of brain organization [50]. This ongoing

accumulation is intensi�ed via new large-scale international initiatives such

as the Human Connectome Project (HCP) [46], with more than 1600 subjects,

but also open repositories of functional neuroimaging datasets such as the

OpenfMRI [130] with 52 datasets and 1930 subjects across datasets; the UK

biobank5 contains recordings from 5 000 individuals and is growing up to 5 http://www.ukbiobank.ac.uk/

100 000. However, in task-based fMRI, we often have hundreds of thousands

of voxels, whereas the number of brain images remains in the order of

thousands. Thus, the sample size continues to be small, and the training of a

machine learning algorithm is a high-dimensional problem6. 6 In neuroscience, each individual
experiment typically contains hundreds of
observations, and it is often considered as
large enough [36]. This is markedly bellow
common sample sizes in machine-learning
problems [30][140]. Indeed, data analysis in
brain imaging has historically been driven
by very simple models i.e. linear models,
whereas other problems considered in the
machine-learning community allow to use
richer models.

Pipelines to analyze fMRI data: In fMRI, extensive �tting and “denoising”

steps are required to extract useful information from brain images [132]. The

two most prominent of these preprocessing steps are head-motion correction

and inter-subject registration i.e. spatial normalization. Then, to delineate

the brain regions associated with a set of tasks, we model the signal of

interest and then do statistical inference or prediction. The main caveat here

is that these pipelines are complex, and the results that we obtain are highly

dependent on the chosen parameters.

Decoding brain activation images: To understand the cognitive

organization of the brain, cognitive neuroscientists usually design

http://www.ukbiobank.ac.uk/
https://ninesights.ninesigma.com/web/head-health
http://www.ukbiobank.ac.uk/
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experiments to probe neural activity during various tasks in order to segment

the brain into several brain functional units and characterize them. Since

2001[67], a popular approach consists in using machine-learning algorithms

to build data-aware models to predict these experimental tasks on unseen

data points. In the neuroimaging community this is called brain imaging

decoding or Multi-Voxel Pattern Analysis (MVPA). The main advantage of

these methods is that they allow one to aggregate heterogeneous datasets,

each one under a di�erent experimental setting7. Therefore, decoding can be 7 The analysis of several experimental
designs can be done with forward inference.
However, they are not explored in this
thesis.

used on these datasets to capture a large variety of brain processes8, giving

8 The neuroscience question here is that of
functional speci�city [155].

the possibility to understand the large-scale functional organization of the

brain.

Decoding with linear models: We use linear models for decoding,

as these models can be relatively well-behaved in very high-dimensional

settings. In addition, these models yield weight maps that delineate predictive

brain regions. These weight maps can easily be interpreted as loadings on

brain regions tied to cognitive tasks.

From the neuroscience point-of-view they can lead to probing well-posed

questions [111], such as the neurologic signature of physical pain [165].

We need stable algorithms in neuroimaging

Generally speaking, any neuroimaging study based on group level results

(univariate or multivariate) assumes overall consistency of the functional

specialization of cortical areas across subjects. This universality assumption

is sharedwith cognitive neuropsychology [26], and constitutes the basis of the

most widely adopted inferences schemes in cognitive neuroscience [70] [127].

This assumption implies an underlying spatial structure. Then, the acquired

brain activation images can be cast as the result of a generative process acting

on the activity of groups of neurons9. In other words, the physiological 9 The acquired signals display local
correlations. In fMRI, neighboring voxels
respond similarly.

activity can be parametrized by a spatially-structured neighborhood i.e.

topology. It is important to take this information in account when designing

decoding algorithms, in order to model local correlations.

Stable weight maps: A necessary condition to achieve reproducibility

and reliability results in neuroimaging is stability [175]. In particular, we

need brain decoding algorithms with stable loadings on voxels, that are

typically expected to delineate brain regions. This stability is measured with

respect to data perturbations10 –e.g. boostrap, cross-validation, jackknife. 10 These perturbations are de�ned as
sampling from an underlying distribution or
replicating the experiment for a new set of
data.

To assess stability, we have to train the decoding algorithm several times,

enough to build an empirical distribution of the predictive performance. This

can be prohibitive as, generally, work-stations used by neuroscientists are
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not sophisticated11. Hence, the computation resources required to assess 11 For instance, Graph-net can take weeks in
a standard workstation, as it is reported in
[106]

stability are still limited.

Summary

In neuroimaging, we are accumulating large volumes of data, yet the

computing resources available to train machine-learning algorithms are not

strong enough in view of this accumulation. Additionally, standard pipelines

to analyze fMRI data are complex, making the setting of parameters and

hyperparameters di�cult. Thus, we need to use the available computation

resources adequately.

Decoding opens the possibility of mapping a large variety of brain

processes [131], giving a framework to understand the functional speci�city

of the brain. To do this, decoding algorithms have to be:

1. Spatially stable: The weight maps of the decoder have to be stable to data

samplings/resamplings. In addition, the brain regions delineated by the

decoder have to be consistent across subjects.

2. Fast to compute: To learn from large collaborative neuroimaging datasets,

one needs to train several times the decoder to set the hyperparameters

and assess its performance. This repetitive task entails computation costs

that are intractable in common workstations.

Layout of the manuscript

Part I: Modeling and analyzing fMRI data

The �rst part introduces functional-imaging techniques and the standard

tools that can be used to localize brain-activation patterns. We start by

describing the assumptions to model the fMRI BOLD signal and show

how we can obtain statistical maps. We also introduce statistical machine

learning methods used in neuroimaging. In particular, we present linear

models and how to deal with high-dimensional datasets, as is the case of

neuroimaging. We describe the use of data sampling/resampling schemes to

perform hyperparameter selection.

Part II: Contribution – fast decoding

In this part, we benchmark standard fast dimension reduction techniques –i.e.

random sampling and random projections– in the context of brain decoding.

In particular, we show that random sampling yields interpretable brain weight

maps. Then, we introduce and analyze feature grouping as a dimension

reduction technique that implicitly takes into account the spatial structure of
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brain images. In addition, we propose a fast clustering algorithm, that �nds

clusters of roughly the same size in images. Finally, we validate the proposed

algorithm on several datasets and statistical learning tasks.

Part III: Contribution – improving the stability of brain decoders In

this part, we propose a simple scheme to train ensembles of models in a high-

dimensional setting. We show empirical evidence on several neuroimaging

datasets that ensembles of models yield more stable weight maps, as well

as prediction accuracy. In terms of computation time, they are faster than

state-of-the-art decoding methods –i.e. total-variation (TV) and Graph-net.

In addition, they are highly parallelizable.





Part I

Modeling and analyzing

fMRI data
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1 Background – studying the brain

In this chapter, we describe how cognitive neuroscientists use

the functional Magnetic Resonance Imaging (fMRI) signal to analyze

brain function. We start with a brief description of some functional

neuroimaging modalities. Then, we introduce the standard tools used

to model and analyze fMRI data. In particular, we introduce the basic

intuitions about the signal of interest, the BOLD signal, which can be

seen as a delayed and blurred version of the neural activity evoked by

a particular task. Finally, we present the brain imaging datasets used

throughout this manuscript.

1.1 Functional neuroimaging modalities

Today, neuroscientists have at their disposal several functional brain imaging

methods [72]. Each of these modalities makes it possible to study brain

structures, as well as their function. Nevertheless, they represent di�erent

aspect of neuronal activity, and actually have di�erent time and spatial scales.

Hence, the selection of a functional brain imaging modality depends on the

experimental hypothesis that one wants to test.

A brief summary of some functional neuroimaging modalities is presented

in Fig. 1.1.

Electroencephalography (EEG): It measures the electrical activity on the

scalp. EEG represents direct measures of neural activity. It has a good

temporal resolution, typically of the order of milliseconds. In particular, scalp-

recorded EEG has been used extensively in research, clinical neurophysiology,

and practice, but its spatial resolution remains poor. This lack of spatial

resolution is mainly due to the attenuation and distortion of the electrical

signal by intervening tissues such as cerebrospinal �uid, skull and scalp.

Invasive versions of EEG improve spatial resolution by placing subdural

and/or depth electrodes for a more direct recording of spontaneous or

evoked neural activity. In humans the following two are typically used: i)

Electrocorticography (ECoG), where the electrodes are placed on the surface

of the brain; and ii) Stereotactic EEG (sEEG) uses depth electrodes localized
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Figure 1.1: Commonly used

functional neuroimaging

methods: Spatial and temporal

resolutions of di�erent modalities

commonly used for functional

imaging. fMRI is a non-invasive

technique, it gives a spatial

resolution of 1 to 3 milliliters with

a temporal resolution of 1 to 3

seconds.

with a stereotactic technique.

Magnetoencephalography (MEG): It measures the magnetic �eld

induced by neural electrical activity. Although EEG andMEG are produced by

the same physiological process, MEG displays an improved spatial resolution

as the sources of activity are less distorted by intervening tissues. MEG is

mainly used in neuroscience research.

Positron emission tomography (PET): Is an imaging modality used

to track glucose consumption. It is based on the detection of radioactive

tracers induced in a subject. It can generate precise radioactivity distribution

maps of the target, and consequently, it can provide detailed information

of biochemical or physiological processes with a precise anatomical

context. It is widely used in neuroscience research, clinical application, and

neuropsychopharmacological drug development.

Functional magnetic resonance imaging (fMRI): It uses a strong

magnetic �eld to indirectly measure neuronal activity. fMRI is a widely

used modality that makes it possible to safely and noninvasively detect

physiological changes that indicate brain activity with a good spatial

resolution (1 - 3mm3), and a temporal resolution on the order of 1 - 3 seconds.

It is important to note that fMRI has full-brain coverage, and it is not limited

to the cerebral cortex. fMRI is thus a suitable modality for the localization of

brain functions.

1.2 fMRI – blood flow and neuronal activity

Neuroscienti�c studies increasingly rely on non-invasive imaging of the

hemodynamic response to neural activation using functional magnetic

resonance imaging [132]. In particular, they seek to establish whether

cognitive processes elicit activity in the brain regions. This is tested with a
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set of prede�ned experimental conditions, designed to isolate some cognitive

process of interest. The fMRI signal is well-suited to observe these spatial

di�erences.

Blood Oxygen Level Dependent signal (BOLD)

The most common fMRI modality1 takes advantage of the fact that neurons 1 There are other modalities, like arterial
spin labeling (ASL) [171] method, where
the contrast comes form blood �ow
and perfusion, independent of blood
oxygenation.

in the brain increase their consumption of energy when they are active, and

this metabolic activity is implicitly related to the oxygen consumption. Thus,

we can indirectly measure neural activity by acquiring a signal depending

on local metabolic demands –oxygenation consumption– of active neurons.

This is the core concept behind the Blood Oxygen Level Dependent signal, or

BOLD [117][118].

The BOLD signal arises from the interplay between blood �ow, blood

volume, and blood oxygenation in response to changes in neuronal activity.

This signal captures the di�erence between oxygenated and deoxygenated

hemoglobin. This is possible because hemoglobin exists in two di�erent

states, each of which has di�erent magnetic properties and produces di�erent

local changes of magnetic susceptibility: oxyhemoglobin is diamagnetic, and

deoxyhemoglobine is paramagnetic.

During brain activity, the energy consumption is increased and so is

oxygen consumption. Then, there is a local increase of blood �ow and volume,

which increases the homogeneity of magnetic susceptibility, hence the BOLD

signal. However, the delivered oxygen exceeds metabolic need. The magnetic

susceptibility of blood is altered compared to the surrounding tissue. This

creates local magnetic inhomogeneities that decrease the BOLD signal. Then

an in�ow of oxygenated blood, much higher than the oxygen consumed,

changes this ratio again and BOLD signal increases [24]. All these steps make

the BOLD signal a blurred and delayed representation of the original neural

signal [91].

Major components of fMRI analysis

The Fig. 1.2 shows a standard preprocessing pipeline in fMRI.

Quality 

control
Distortion 

correction

Motion 

correction

Slice timing 

correction
Spatial 

normalization

Spatial 

smoothing
Temporal 

filtering

Figure 1.2: Preprocessing of fMRI

data: Illustration of the complex

pipeline necessary to extract useful

information from the fMRI BOLD

signal.
Here, we present a summary of major component of fMRI analysis:

Preprocessing:
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1. Quality control: Checking whether the data are not corrupted by

artifacts such as spikes or incomplete brain coverage, ensuring no

missing regions.

2. Distortion correction: This reduces the spatial distortions that often

occur in fMRI, coming from the interaction of the magnetic �eld with

di�erent tissues and materials in echo-planar images.

3. Motion correction: Head motion has typically a magnitude of a few

millimeters. One has to reduce this displacement by realigning the scans

across time using some form of image matching.

4. Slice timing correction: Brain slices are not acquired at the same time,

hence one has to correct di�erences in timing across di�erent slices in

the image to �t a uniform model on the whole brain.

5. Spatial normalization: The brain of each individual subject is di�erent.

To perform the group analysis, one has to align each brain into a

common space2. 2 A reference anatomical template used
for fMRI registration is the Montreal
Neurological Institute (MNI).6. Spatial smoothing: One can in general assume a local structure of brain

signal; if there is activation in one voxel; it is highly probable that its

neighbors will present activation too. Under this assumption, the use of

spatial smoothing increases the signal-to-noise-ratio (SNR), by reducing

undesired noise.

7. Temporal �ltering: Filtering of the data in time reduces low-frequency

noise.

Analysis: This is covered by the next section.

9. Statistical modeling: Fitting of a statistical model to the data in

order to estimate the response to a task.

10. Statistical inference: Estimation of the statistical signi�cance of the

results, always correcting for the large number of statistical tests

performed.

11. Visualization: Visualization of the results and estimation of e�ect

sizes.

1.3 Encoding – modeling fMRI data

The main interest of cognitive neuroscientists is to understand how mental

function are implemented. Yet, their organization in the brain is a step in

this direction. In order to assess this information, they build experiments

composed of several mental tasks/conditions designed to manipulate speci�c

mental processes. Thereafter, they test whether a particular brain region

correlates with the stimuli or not. A model is needed to perform these
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tests. Parametric tests are often preferred due to their simplicity, but non-

parametric tests make it possible to relax the underlying assumptions.

General Linear Model (GLM)

Let us recall that the BOLD signal is a delayed and blurred version of the

original neural signal [91]. Therefore, we can express voxel activations due to

experimental conditions as a noisy linear forward model[52]. For simplicity,

we can use a Linear Translation Invariant (LTI) �lter to model this blurriness.

In brief, the LTI assumption[28][19], implies

Scaling (homogeneity): The amplitude of the measured signal corresponds to

the amplitude of neuronal activity. Relative di�erence in amplitude makes

sense, hence the amplitude di�erence in the signal between two conditions

can be used to determine if the neuronal activity is di�erent.

Additivity/superposition: It allows us to di�erentiate between the response

in any brain region to multiple closely spaced stimuli.

Time invariant: If the stimulus is shifted by t seconds, the BOLD signal will

be shifted by the same amount.

0s 5s 10s 15s 20s 25s 30s
time

0.01

0.00

0.01

0.02

0.03
H

R
F

Glover HRF model

Figure 1.3: Canonical

Hemodynamic Response

Function (HRF)[58]: The HRF

�rst follows an increase of the

signal (from 1 to 5.2s), then

decreases (from 5.2 to 12.2s),

and �nally returns to baseline with

undershoot (from 12.2 to 20s).

Hemodynamic Response Function (HRF)

The HRF is composed of several stages (see Fig. 1.3): Initial dip – Generally

ignored in most models of fMRI data [132], it re�ects early oxygen

consumption before blood �ow and volume occur [23]. Peak height – This is

the most common feature of interest due its relation with the activity in the

tissue [91]. Time to peak – This increase in BOLD signal peaks about 4 to 6

seconds following activation. Poststimulus undershoot – The HRF generally

shows a late undershoot, that is relatively small compared with the positive

response. It is due to a combination of reduced blood �ow and increased

blood volume, and it can persist up to 20 seconds after the stimulus.

Design Matrix

The design matrix de�nes the temporal e�ects that can be observed in the

fMRI data. The columns in the design matrix consist of the convolution of

the HRF by the occurrence of stimuli presentation in the experimental design,

as well as confounding variables and �lters (i.e. motion, respiratory cycle,

cardiac rhythm �uctuations, and low-frequency signals).

The Fig. 1.4 shows an example of a simple design matrix (only 4 conditions

are modeled), each task/condition/event is convolved by the HRF, leading to

an approximation of the BOLD signal for each task. These activations are

linearly combined to model a clean BOLD signal.
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Figure 1.4: Illustration of the

construction of the design

matrix: Each of the four

fMRI experimental conditions

is convolved with the HRF, yielding

an atom to approximate the

acquired BOLD signal.

Putting all the pieces together, the GLM is formulated as follows:

Y = X β + ǫ, (1.1)

where Y ∈ R
n×p represents the acquired fMRI data, n denotes the number

of scans, and p the number of voxels. X ∈ R
n×k denotes the design matrix,

where k is the number of regressors. Each condition regressor is an indicator

of occurrence of stimuli in the experimental design convoluted with the HRF

(see Fig. 1.5). The design matrix also includes some nuisance confounds such

as subject motion, additional confounds such as session or study-dependent

e�ects, as well as low-frequency signals that model drifts in the data. In

addition, the time derivative of the experimental conditions is also often

included, as it takes into account signal delays in the hemodynamic response.

β ∈ R
k×p denotes the e�ects (the weight of the regressors), and ǫ ∈ R

n×p

denotes a noise component. For each voxel j, this noise can be modeled as a

Gaussian white noise with zero mean and variance σ2
j . It is often modeled

as an AR(1) process, as the BOLD signal is positively correlated in the time

domain. Assuming Gaussian noise with variance σ2
j and full column rank of

X, the best unbiased estimator of β is

β̂ = X†Y = β + X†ǫ, (1.2)

where X† denotes the moore-Penrose pseudo inverse of X. Note that X†ǫ is

also Gaussian with zero mean.

Figure 1.5: The GLM: The signal

in each voxel is modeled as a

linear combination of the smoothed

stimuli presentation, plus noise. By

stacking regressors, this model can

include several sources of noise.

Based on [122].
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1.4 Statistical methods for task-based fMRI analysis

In cognitive neuroscience, researchers design experiments to test whether a

brain region shows more activity for a particular condition than for other

(e.g. it responds to a condition A and not B). We are particularly interested

in establishing a relative di�erence between two or more contrasts, in form

of a statistical test [90]. We encode these comparisons in a vector c ∈ R
k

–e.g. with a contrast vector c = [+1, 0,−1, 0] we test if the �rst versus the

third condition/event are signi�cantly di�erent. In this setting, for each voxel

j ∈ [n], the null hypothesis H0 : c T β j = 0, the di�erence is due to chance;

the alternative hypothesis corresponds to H1 c T β j 6= 0. After �tting the

GLM, we have

c T β j = c T β̂ j − c T X†ǫj, (1.3)

which is a Gaussian variable c T β̂ j ∼ N (c T β j, σ2
j c T(X T X)−1c). Then,

we can use several statistical test, we often consider:

z-statistic:

zj =
c T β j

σj

√

c T(X T X)−1c
. (1.4)

Usually we don’t have access to σj, then we have to estimate it3 as σ̂2
j = 3 The unbiased estimator is estimated from:

E

[

‖r j‖2
]

= E

[

‖Yj − Xβ̂ j‖2
]

= E

[

‖(I− XX†)ǫj‖2
]

= E

[

ǫj
T(I− XX†)ǫj

]

= E

[

Tr((I− XX†)ǫjǫj
T)
]

= σ̂2
j Tr(I− XX†)

= σ̂2
j (n− k)

‖y− Xβ̂ j‖2/(n− k). Then we can build a t-statistic as follows

t-statistic:

tj =
c T β̂ j

σ̂j

√

c T(X T X)−1c
∼ tn−k. (1.5)

We obtain a map representing the brain activity with one test per voxel

–i.e. t-map, F-map, χ2-map. These kind of maps are more generally called

statistical parametric maps (SPMs) [51]. The Fig. 1.6 shows an example

of a brain activation map of a contrast between two conditions: face and

scrambled face on the Henson dataset –see datasets description in section 1.5.

-8 -4 0 4 8

Figure 1.6: Example of brain

activation maps: Beta maps for a

visual stimulus. The thresholding

of the left hand side image is

arbitrary and for visualization

purpose only.
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The p-value resulting from a hypothesis testing corresponds to the

probability of an observation considering that H0 is true. After, we can set an

arbitrary signi�cance level –e.g. 5% or 1%–, which controls that the number

of false positives –Type I error– does not exceed the chosen threshold. But,

we are controlling the type I error per voxel and we are testing around 50 000

voxels individually. This yields a large number of false positives and a further

correction has to be applied. This problem is referred to as themultiple testing

problem and it is a critical issue in fMRI data analysis.

As mentioned, at voxel level, classical methods provide simple means to

control the level of false positive risk through appropriate selection of the

signi�cance level. Then, to account for the multiplicity, we have to measure

the false positive risk over the whole image. Basically, there are twomeasures

of false positive risk: the family-wise error rate and the false discovery rate.

The family-wise error rate (FWER): Is the probability of any Type I error

among all the tests when performing multiple hypothesis tests [113]. We can

apply di�erent corrections of the signi�cance level:

Bonferroni correction assumes that all voxels are independent, and corrects

the signi�cance level by dividing it by the number of tests performed. This

method becomes conservative when there is a strong correlation between

tests. Due to the smoothness of fMRI data, Bonferroni is conservative and

has little power to detect true e�ects.

Random Field Theory assumes that the data are smooth and have a lower

probability of exceeding a certain threshold by chance. This threshold is

chosen to control the probability of maximum above a given threshold

[172].

Resampling methods use the data to obtain empirical null distributions of

interest [44]. The most common resampling techniques are permutation

tests and bootstrap. They are accurate, but computationally demanding.

The false discovery rate (FDR): It is the expected proportion of rejected

hypotheses that are false positive. The Benjamini-Hocheberg procedure

[17] consists of an adaptive Bonferroni correction that applies a di�erent

correction depending on the signi�cance of the voxel [54].

1.5 Ge�ing the data

Nowadays, there is a growing awareness of the importance of data sharing

in the neuroimaging community [129]. It is indeed important to increase

reproducibility and the validation of scienti�c claims by sharing the data

leading to those results. Some of the pioneering projects are OpenfMRI [130]

and the Human Connectome Project (HCP) [46].
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These initiatives come with the opportunity to ask new questions about

the functional structure of the brain; they allow researchers to use several

datasets built with di�erent experimental conditions, and they open the door

to meta-analysis on full brain images.

Datasets

In this section, we introduce the MRI data used throughout this document.

The detailed information on tasks and sample size is summarized in Table 6.1.

(a) OpenfMRI

(b) OASIS

(c) HCP

Figure 1.7: Some raw MRI data

sharing initiatives: (a) OpenfMRI

contains 52 datasets, summing up

to 1564 subjects; (b) The OASIS

dataset contains Voxel-Based-

Morphometry of 403 subjects; (c)

The HCP shares data from over

500 subjects (currently 900) in 7

di�erent fMRI tasks

Resource name Data type URL

OpenfMRI raw & maps https://openfmri.org

OASIS raw http://www.oasis-brains.org

HCP raw https://db.humanconnectome.org

BioMag2010 raw
ftp://ftp.mrc-cbu.cam.ac.uk/personal/rik.henson/wakemandg_hensonrn/

Table 1.1: Table listing some

resources o�ering raw MRI data.

OpenfMRI: The OpenfMRI [130] database is a repository of human brain

imaging data collected using MRI and EEG techniques. OpenfMRI is a game

changing initiative, that allow researchers to make their MRI data openly

available to the research community, by making the data accessible by direct

download under a permissive license. The main goal of this initiative is to

increase the validity of scienti�c claims due to ease of analysis replication of

the results. As of today, it features as many as 52 task-fMRI datasets and 1930

subjects across all datasets.

Haxby dataset: This dataset is already contained in OpenfMRI, but its

importance to the community of statistical learning in neuroimaging leads

us to describe it separately.

The experimental condition of this dataset [67] is a visual object

recognition task obtained from 5 subjects –plus one removed for quality

reasons– which aims at studying the face and object representation in human

ventral temporal cortex. The data consist of 12 sessions, each containing 9

volumes per object category (i.e. face, house, chair, cat, bottle, scissors, shoes,

and scrambled picture). The data were resampled at 3mm, yielding about

p = 30 000 voxels per volume.

The Open Access Series of Imaging Studies (OASIS) The Open Access

Series of Imaging Studies (OASIS)4 [98] is a project aimed at making MRI 4 OASIS was supported by grants P50

AG05681, P01 AG03991, R01 AG021910,

P50 MH071616, U24 RR021382, R01

MH56584.

data sets of the brain freely available to the scienti�c community. OASIS is

made available by the Washington University Alzheimer’s Disease Research

Center, Dr. Randy Buckner at the Howard Hughes Medical Institute (HHMI)

at Harvard University, the Neuroinformatics Research Group (NRG) at

https://openfmri.org
http://www.oasis-brains.org
https://db.humanconnectome.org
ftp://ftp.mrc-cbu.cam.ac.uk/personal/ rik.henson/wakemandg_hensonrn/
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Washington University School of Medicine, and the Biomedical Informatics

Research Network (BIRN).

This dataset consists of 403 anatomical brain images (Voxel Based

Morphometry) of subjects aged between 60 and 96 years. These images

were preprocessed with the SPM8 software [11] to obtain modulated grey

matter density maps [100] sampled in the MNI space at 2mm resolution.

These images were masked to an average mask of the grey matter, which

yields about p = 140 398 voxels.

Human Connectome Project (HCP): This dataset5 [46] contains 500 5 Data were provided in part by the Human
Connectome Project, WU-Minn Consortium
(Principal Investigators: David Van Essen
and Kamil Ugurbil; 1U54MH091657) funded
by the 16 NIH Institutes and Centers that
support the NIH Blueprint for Neuroscience
Research; and by the McDonnell Center
for Systems Neuroscience at Washington
University.

participants (among 13 were removed for quality reasons), acquired at rest

–typically analyzed via ICA– and during cognitive tasks [15] –typically

analyzed with linear models. None the subjects has any psychiatric or

neurological history. Informed consent was obtained from all participants

by the Washington University in St. Louis institutional review board.

The primary goal of this dataset is network discovery, which is facilitated

by probing experimental task paradigms that are known to tap on well

characterized neural networks [15].

Over two image acquisition sessions, paradigms were administered on

1) working memory/cognitive control processing, 2) incentive processing,

3) visual and somatosensory-motor processing, 4) language processing

(semantic and phonological processing), 5) social cognition, 6) relational

processing, and 7) emotional processing. All data were acquired on the same

Siemens Skyra 3T scanner at Washington University. We pro�ted from the

HCP “minimally preprocessed” pipeline [56]. A general linear model (GLM)

was implemented by FILM from the FSL suite with model regressors obtained

by the convolution with a canonical hemodynamic response function with

its temporal derivatives. The resulting GLM-derived activation maps (18 per

subject) are sampled at 2mm resolution in MNI space, which yields about

220 000 voxels.

1.6 Summary

fMRI is one of the working horses of cognitive neuroscientists, as its spatial

resolution makes it suitable to study the functional structure of the brain. To

gain this information, researchers design experiments to test whether or not

there is a di�erence in a hypothesized brain region. Usually, this consists of

�tting a model followed by statistical inference. Regarding the modeling step,

a General Linear Model (GLM) is often used to model each voxel individually

–i.e. mass univariate modeling. This model relates the observable data –

BOLD signal– to unobservable parameters –coe�cients– as that we can then

use inference to quantify the uncertainty in the estimated parameter values

[114]. However, performing massively univariate tests is prone to in�ating

the number of false positives and we thus have to apply multiple comparisons
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correction to control them.

It has been shown that linearity assumption may be insu�cient, as the

shape of the HRF varies across brain regions, across trials, across subjects

[62][13]. Yet, taking this variability into account increases even more the

degrees of freedom in our pipeline.
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# blocks

Dataset Description Samples (sess. /subj.) Task

bottle / scramble

cat / bottle

cat / chair

cat / face

cat / house

cat / scramble

chair / scramble

Haxby (ds105) [67] fMRI 209 12 sess. chair / shoe

5 di�erent subjects, face / house

leading to 5 experiments face / scissors

per task scissors / scramble

scissors / shoe

shoe / bottle

shoe / cat

shoe / scramble

consonant / scramble

Duncan (ds107) [41]

fMRI

196 49 subj.

consonant / word

across subjects
objects / consonant

objects / scramble

objects / words

words / scramble

fMRI negative cue / neutral cue

Wager (ds108) [163] across subjects 390 34 subj. negative rating / neutral rating

negative stim / neutral stim

Cohen (ds009)
fMRI

80 24 subj. successful / unsuccessful stop
across subjects

fMRI
Moran (ds109) [107]

across subjects
138 36 subj. false picture / false belief

Henson [71]
fMRI

286 16 subj.

famous / scramble

across subjects
famous / unfamiliar

scramble / unfamiliar

fMRI,
Knops [80]

across subjects
114 19 subj. right �eld / left �eld

HCP [46]

17 cognitive tasks

fMRI

8500 500 subj.

face / shape

across subjects match / rel

punish / reward

story / math

VBM
Oasis [98]

across subjects
403 403 subj. Gender discrimination

Table 1.2: The di�erent

neuroimaging datasets and

their experimental tasks used

throughout this manuscript.
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2 Decoding – machine learning meets fMRI

In this chapter, we introduce some of the concepts required to gain

an overall picture of how machine learning can help us to understand

the functional structure of the brain. Brain activation decoding is a

supervised-learning technique that tries to �nd a link between brain

signal activity and experimental conditions/stimuli. It is a data-driven

method designed to �nd suitable discriminative maps, allowing one to

make predictions on unseen data. In addition, classi�cation accuracy

serves as whole-brain test, also known as omnibus test. Since decoding

predicts quantities that are directly observable, it can serve as a

complementary test to validate models that model brain activity as

the linear combination of di�erent experimental conditions (encoding

models). It also allows us to test several experimental conditions across

experiments, providing a way of capturing a large variety of brain

processes. However, given the low sample size of fMRI datasets, �nding

a model that leads to reproducible results is not an easy task and

additional constraints must be imposed, yielding models that are slow

to train. This additional computation cost hinders subsequent analysis,

which often uses data perturbation –e.g. sub-sampling, resampling,

permutation tests–, where we need to �t several models to select

hyperparameters or to assess the stability of the brain maps and/or the

prediction power.

In fMRI data analysis, encoding models, also called forward models, model

brain responses following a stimulus. On the other hand, decoding algorithms,

or inverse models, perform inference in the opposite direction; predicting the

stimuli form brain images. This practice is referred as decoding or Multivoxel

Pattern Analysis –MVPA– in the neuroimaging community [31][63][141], and

has become a central tool in neuroimage data processing [68][128][115]. A

simple scheme of encoding and decoding is presented in Fig. 2.1.

An advantage of this kind of approach is that it performs a unique test for

the whole brain, i.e. an omnibus test, avoiding multiple-testing problems. Its

multivariate nature enables to capture distributed patterns that are predictive
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Figure 2.1: Illustration of

encoding and decoding:

Schematic of the di�erence

between encoding and decoding

models in brain imaging.

of a given target. In addition, decoding models can serve as a useful tool to

validate an encoding model, as they often predict quantities that are directly

observable [160]. It is often considered that decoding provides an increase in

sensitivity compared to standard mass-univariate analysis [115], and it can

provide a good framework to interpret overlapping activations [124].

Studying the functional specialization of the brain, requires to testing

more functions than the number of conditions that can be addressed in one

experimental paradigm. For this reason, investigators rely on sharing and

publishing their data and results [129][59][46]. Gathering data coming from

several experiments with di�erent experimental protocols, can leverage the

relevant information about cognitive concepts of interest [164], avoiding

dataset-speci�c biases. Nevertheless, to cover more concepts, one has to deal

with more data. This poses new challenges, in particular, how to handle

these data and the computational costs and memory footprint of subsequent

analysis.

2.1 Supervised statistical learning

Let us start with the general description of the learning problems that

we tackle throughout this document. We assume two spaces X and Y .
We refer to X as the input/sample space, and Y as the output/target

space. We assume that the input-output pair (x, y) is a random variable

distributed according to an unknown probability distribution P. Given a

sequence of n independent and identically distributed –i.i.d– paired training

data {(x1, y1), . . . , (xn, yn)} sampled from P, one would like to build the

following predictive model:

y = h(x) + ǫ, (2.1)

where h is some �xed but unknown function of x, and ǫ is a random error

term, which is independent from x and has mean zero. Then, learning boils

down to selecting a prediction function by solving an optimization problem.
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Formally, our goal is to determine a prediction function h : X → Y
from an input space X to an output space Y such that, given x ∈ X , h(x)

o�ers a good prediction of the output y ∈ Y . This function must generalize

the concepts that can be learned from a given set of examples and avoid

memorization, also known as over�tting. To choose a prediction function h,

we minimize a risk measure over an adequately selected family of prediction

functions [159] H –hypothesis class.

As the function h is �xed, it can be parametrized by a real vector ω ∈ R
p

–weights/coe�cients map–, h(·; ω). To de�ne the optimization problem, we

assume a given loss function, l : Y × Y → R, that measures how well the

estimator performs. In other words, l(h(x; ω), y) simply indicates whether

h(x; ω) correctly predicts y or not.

We proceed by minimizing the expected risk,

R(ω) =
∫

l(h(x; ω), y)dP. (2.2)

Nevertheless, in practice, we do not have access to the probability distribution

P representing the true relationship between inputs and outputs. For this

reason, we use an estimation of the expected risk: the empirical risk. We

use our training set of n ∈ N independently drawn input-output samples

{(xi, yi)}n
i=1 to de�ne the empirical risk, as follows:

Rn(ω) =
1

n

n

∑
i=1

l(h(xi; ω), yi). (2.3)

This approximation converges asymptotically (n → ∞) to the expected risk,

and minimizing it is taken as our problem of interest. However, for small

sample sizes this approximation is coarse and large deviations are possible.

As a consequence, our prediction function h over�ts the sample data; it learns

only sample speci�c details, rather than global properties of P.

Our interest throughout this document is brain decoding, where each

xi ∈ R
p is a brain image –i.e. predictor variable– composed of p voxels. In

this setting, X ∈ R
n×p is just the vertical stacking of all the training brain

images, and y is the behavioral/categorical variable to be �t, i.e. the target.

In the case of binary classi�cation, yi ∈ {−1,+1}; in the case of regression,

yi ∈ R.

In brain decoding, the relationship between stimuli and each predictor

can be adequately summarized using a linear model, as non-linear estimators

usually yield the same performance as linear ones [104]. In addition, using

a linear model can be bene�cial for a better understanding of how any

individual predictor is associated with the response [65]. This is a favorable

property and can be helpful to advance the understanding of brain function.
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Losses

In classi�cation of fMRI data, the most common losses are the hinge loss

and the logistic loss1 [85] [126]. These losses correspond to support vector

1 Both hinge and logistic losses are upper-
bounds of the 0-1-loss –i.e. average number
of misclassi�ed samples. They are surrogate
losses of the 0-1-loss.

machine (SVM) and logistic regression, respectively [162]. For the SVM,

the loss is �at and exactly zero for well-classi�ed training examples with a

misclassi�cation cost that grows linearly with the distance to the decision

boundary. The logistic regression uses a soft version of the hinge loss, which

decreases exponentially as the training examples are well classi�ed –see

Fig. 2.2.

SVM Logistic regression

lhinge((x, ω), y) = max(0, 1− y〈x, ω〉) llog((x; ω), y) = log(1 + exp(−y〈x, ω〉))

Figure 2.2: Illustration of

common losses in fMRI: The

classi�ers used most often in fMRI

are the support vector machine

–SVM– and the logistic regression.

SVMs use a hinge loss; this loss

is continuous and non-smooth,

assigning exactly a zero value

for all well-classi�ed points. The

logistic loss uses a logistic function,

which is continuous and smooth

and it does not assign zero penalty

to any point.

In regression, the most common loss is the mean squared error loss,

lmse((x; ω), y) =
1

2
(y− 〈x, ω〉)2. (2.4)

Up to now, we de�ned our hypothesis class to beH : {h(·; ω) : ω ∈ R
p},

but this class tends to select the most complex h, leading to over�tting. One

possible solution to this problem is to include a measure of the complexity of

h. This approach is closely related to the structural risk minimization [158].

Regularization

In neuroimaging, the number n of samples is typically only a few hundreds

while p represents thousands of voxels: p ≫ n. Even if the high

dimensionality of the data opens the way to richer models, the low-sample

regime prevents one from �nding a unique solution. Then, training an

estimator h is an ill-posed inverse problem. To overcome this issue and to

reduce over�tting, we must add some additional constraints to the empirical

risk, Eq. 2.3 [145]. This approach is known as regularized loss minimization,

and is a learning rule in which we jointly minimize the empirical risk and a

regularization function, as follows

ω̂(λ) ∈ argmin
ω∈Rp

{Rn(ω) + λΩ(ω)} , λ > 0, (2.5)

where Ω is a regularization function –i.e. prior information– and λ is a

regularization parameter to control the penalization of the solution. This

additional parameter λ, often called hyperparameter, needs to be estimated

as well. To be able to use e�cient optimization algorithms, we often choose

Rn and Ω to be convex but not necessarily smooth.

a) small λ

b) large λ

Figure 2.3: Regularization with

SVM-ℓ2: blue and brown points

are training samples of each class.

The SVM learns a separating line

between the two classes. In a
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In brief, a regularization function measures the complexity of the

hypothesis, and allows one to control the trade-o� between low empirical

risk and simpler hypothesis.

Regularizers: The convex function Ω imposes structure on the solution h –

the inverse problem. In machine learning and signal processing literature, the

two most used penalties are the ℓ2 and ℓ1 penalties. The squared ℓ2-penalty,

‖ω‖2
2 = ∑

p
i=1 ω2

i , it penalizes large values on the solution [154], whereas

the ℓ1-penalty, ‖ω‖1 = ∑
p
i=1 |ωi|, forces a large fraction of uninformative

coe�cients to zero: it induces sparsity [153].

When the variables are correlated as in fMRI data, the ℓ1-penalized

methods can select overly sparse solutions, leading to a high rate of false

negatives in the support estimation [161], even selecting entirely di�erent

subsets of coe�cients when the data are resampled. Hence, the weight maps

obtained through the ℓ1-penalty are not stable. On the other hand, the

squared ℓ2-penalty returns full brain maps, making the identi�cation of brain

regions problematic.

To mitigate this issue, we can take advantage of two properties of brain

images to de�ne the Ω regularizer: spatial structure and sparsity.

1. Spatial structure: In medical imaging, the acquired signals are the resulting

process acting in a neighborhood structure –i.e. a topology. This yields

an underlying spatial structure that can be taken into account by the

regularizer.

2. Sparsity: There is evidence that the brain is functionally segregated into

local areas that di�er in their anatomy and physiology [155]. This is a

strong prior, as under this assumption only a fraction of the brain is useful

to predict a speci�c task.

The TV-ℓ1[103] and Graph-net [61] penalties were successfully introduced

L R

z=-16

L R

y=-34

Logistic-ℓ2
L R

z=-16

L R

y=-34

Logistic-ℓ1
L R

z=-16

L R

y=-34

Graph-net

L R

z=-16

L R

y=-34

TV-ℓ1

Figure 2.4: Illustration of discriminative weights obtained through various regularizations: This �gure shows

the unthresholded coe�cients of a logistic regression discriminating between faces and houses. From left to right, the

logistic regression penalized with: ℓ2, ℓ1, Graph-net, and TV-ℓ1. The ℓ1 penalty yields very sparse maps, avoiding

locally connected regions. On the other hand, the ℓ2 penalty imposes smoothness and assigns activity to the whole

brain. Finally, structured penalizations –Graph-net and TV-ℓ1 yield maps that respect local activation pattern, while

keeping many zero coe�cients.
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to the neuroimaging community as a proposal to include structure and

sparsity assumptions. The Graph-net penalty consists of the sum of an ℓ1-

penalty on all the coordinates and a squared ℓ2-penalty of the spatial gradient,

it promotes sparse and smooth groups. The TV-ℓ1-penalty is de�ned as the

sum of an ℓ1-penalty and an ℓ2,1-group
2 penalty of the spatial gradient. Both 2 ℓ2,1-penalty, written ‖v‖2,1 =

∑g∈G ‖vg‖2penalties promote “blobby” coe�cient maps.

Fig. 2.1 shows the coe�cient maps obtained with a logistic regression and

various penalties on the Haxby dataset, performing discrimination between

faces and places.

C=10−5 C=1.

Sparse

C=102 C=105 C=10−5

Non-sparse

C=1 C=105

Figure 2.5: Varying amount

of regularization on the face

vs house discrimination in the

Haxby 2001 data [67]. Left) with

an ℓ1 logistic regression, more

regularization induces sparsity.

Right) with a SVM-ℓ2, more

regularization means that weight

maps are a combination of a larger

number of images of the training

set, although this has only a small

visual impact on the corresponding

brain maps. Source [162].

2.2 Validation and model selection

In neuroimaging, the role of a decoder is to predict a stimulus/condition or

health status given a brain image. Hence, we use the accuracy or predictive

power to assess its performance on this task. Accuracy is de�ned as the

expected error on the prediction, formally:

accuracy = E[ f (ypredicted, ytrue)] (2.6)

where f is function to measure the error. For classi�cation, typical examples

are the 0-1 loss, and functions that consider both precision3 and recall4, e.g.

3 Precision is the number of correct positive
results divided by the number of all positive
results

4 Recall is the number of correct positive
results divided by the number of positive
results that should have been returned.

Fβ-score, or receiver operating characteristic (ROC). For multi-class problems,

where there is more than 2 categories in y, or for unbalanced classes, a more

elaborate choice is advisable, to distinguish misses and false detections for

each class [162].

Model selection

The role of model selection is to choose a statistical model from a class of

models which captures the global properties of the distribution P. To make

the choice, we measure how the model generalizes to unseen data. Hence, it

gives an idea of how well it performs in real scenarios.

Manymodel selection schemes have been proposed, each one designed for

a particular application. One can perform model selection with a sequence of

hypothesis tests [35]. Another approach uses information theoretic criteria
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[7][143], that measure the information loss between candidate models and

an approximation of the true model. Most schemes perform the selection

in terms of predictive power of the model on unseen data, e.g. by cross-

validation.

Data perturbation – cross-validation and related methods: In fMRI

decoding studies, we often use data-driven approaches to select a suitable

model; we subsample or resample our dataset to generate pseudo-datasets.

We �t a model on each of these pseudo-datasets. Then, we evaluate the

trained model on unseen data and select the model with the best average

predictive ability.

For cross-validation, we iteratively divide the data into a training and

testing set, where we learn the prediction function on the training set and

evaluate it on the unseen test set. There are several cross-validation schemes.

Here, we describe some of the most popular classes [9]. This choice is not

representative of all the literature:

• Evaluate exhaustively data splitting: Every possible subset of p data points

is let out for assessing the predictive ability, e.g. leave-one-out, leave-p-

out.

• Partial data splitting: Considering the combination of all possible subsets is

computationally intractable. Then, as an alternative we can select disjoint

sets at random, avoiding testing all possible sets, e.g. K-fold, monte-carlo

CV.

• Other cross-validation-like risk estimators: Additionally, we have several

methods that were designed to overcome possible drawbacks of cross

validation. For instance, in case of discontinuous error functions, Bootstrap

[42] can smooth over possible discontinuities. Bootstrap is a data

resampling method for approximating the sampling distribution of a

statistics and its characteristics. For instance, it can be used to construct a

boostraped estimate of the Kullback-Leibler divergence [146].

Hyperparameter selection

We try to assess the task-related neural information at every location in

the brain via decoding models. Unfortunately, we are in high-dimensional

settings as the number of parameters of these models is much larger than

the sample size. For this reason, we need to impose some prior knowledge,

applied through a regularization function. This penalization allows one to

control the trade-o� between under�tting and over�tting.

Inwords, under�tting happenswhen the resulting model is too constrained

by the prior, so that it does not exploit the richness of the data. On the
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other hand, with over�tting, the model does not generalize as it learns

even the sampling noise. Both cases, under�tting and over�tting, are

detrimental for the predictive power of the model, thus the regularization

parameter has to be chosen carefully. Roughly speaking, the selection of

the regularization parameter is a problem of bias-variance trade-o�, and the

choice is determined by the predictive power of the model [162]. In general,

the best trade-o� is a data-speci�c choice.

In practice, we often use nested cross-validation to set the regularization

parameters5. In this scheme, the data are repeatedly split into a decoding 5 Let us note that the amount of penalization
will change the appearance of the
weight/coe�cient map and the predictive
power as well.

set and a validation set. The decoding set is split in multiple train and test

sets, forming an inner “nested” cross-validation loop in which we select the

hyperparameter, whereas the external loop varying the validation is used to

measure prediction performance –see Fig. 2.6.

Figure 2.6: Nested cross-

validation: Two cross-validation

loops are run one inside the other.

The inner/nested loop is used to

select the hyperparameter of the

estimator –i.e. the amount of

penalization–, whereas the outer

loop is used to assess the predictive

power of the decoder.

Fig. 2.7 is a didactic view on the parameter-selection problem, and shows

the tuning curves of several decoders for the discrimination between scissors

and scramble on the Haxby dataset. The discrepancy between the tuning

curve, computed with nested cross-validation and the validation curve, is an

indication of the uncertainty on the cross-validated estimate of prediction

power.

SVM ℓ2 Log-reg ℓ2 SVM ℓ1 Log-reg ℓ1

Figure 2.7: Tuning curves for

SVM-ℓ2, logistic regression-ℓ2,

SVM-ℓ1, and logistic regression-

ℓ1, on the scissors / scramble

discrimination for the Haxby

dataset [67]. The thin colored

lines are test scores for each of

the internal cross-validation folds,

the thick black line is the average

of these test scores on all folds,
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2.3 Stability – the need for reproducibility

Reproducibility is imperative for any scienti�c discovery. In neuroimaging,

more often scienti�c �ndings are based on statistical analysis of high-

dimensional data. At minimum, a necessary condition for reproducibility is

the stability of statistical results relative to samplings/resamplings of the data.

Hence, we need stability for interpretable and reliable encoding/decoding

models.

Stable coe�icient/weight maps: As in many �elds of applied

mathematics as numerical analysis or partial di�erential equations, we need

stability to deal with real world problems. In machine learning, the concept

of stability is often associated with good generalization performance [18]. In

a broader sense, we consider that statistical stability holds if the predictive

power of the model is robust to appropriate perturbation of the data, i.e.

bootstrap, cross-validation, etc.. In brief, statistical stability di�ers from

robust statistics as the former deals with data perturbation, while robust

statistics methods deal with perturbations of model assumptions.

In neuroimaging studies, decoders solve a high-dimensional multivariate

statistical estimation problem that is very ill-posed given the sample size.

This leads to degenerate solutions: many brainmaps yield the same predictive

performance. We use regularization to overcome this issue, but the increase in

the computation cost is directly proportional to the complexity of the penalty.

Brain signals are spatially correlated, hence ℓ1-penalized estimators are

naturally unstable. However, there are several methods to improve the

stability of the solution given by this kind of estimators. One approach

is called stability selection. This method consists of building an empirical

distribution of the support (non-zero voxels) using data randomization, then

based on an arbitrary threshold, a linear model is �t on the selected voxels

[12][101]. A second approach is based on a selection of a regularization

parameter, using as criterion the variance of the predictive power of the

model through several data perturbations [175][88].

Another approach to mitigate the instability of sparse estimators is to

group similar features together, reducingmulticollinearity e�ects. Oneway to

do this is to apply clustering as a preprocessing step, using clusters centroids

to �t the sparse model [22]; we can also use grouping penalties –e.g. Graph-

net or TV-ℓ1, or we can estimate the stability of the support of groups of

features, combining clustering and stability selection ideas [161].

Statistical significance maps: We typically use permutation tests6 to 6 Permutation tests consist of randomly
exchanging labels on data points when
performing signi�cance tests.

assess which features drive the decision boundary of the estimator [108][167].
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This method is used to establish a null distribution on the weight vector

components at each voxel. But these permutation tests are extremely

expensive computationally, and hence prohibited in practice. In response to

this problem, an analytical approximation of the distribution of the weights

of an SVM with ℓ2 penalty is proposed in a large-sample size regime [53].

Therefore, the problem remains open for low sample sizes, which is actually

the case we are interested in.

2.4 Discussion – about brain decoding

We have shown that methods to decode brain images are susceptible to

over�tting. Hence, we have to use out-of-sample data to evaluate their

predictive power.

Regarding interpretation, decoding allows potential insights in to brain

function or structure that drives prediction, but we have to recall that it tests

the overall signi�cance of the model. Hence it does not test which variables

have a signi�cant contribution to the model [66]. Nevertheless, decoding is a

complementary analysis tool to encoding models [169]. In addition, decoding

also o�ers a possibility to ask new questions about the functional structure of

the brain, making it possible to analyze jointly several datasets with di�erent

experimental conditions7. This can be leveraged with the accumulation of 7 This can also be done with univariate
methods, but it is not explored in this thesis.task-based fMRI data.

We have shown how state-of-the-art sparse decoding methods, namely

Graph-net and TV-ℓ1, take the underlying structure of fMRI signals into

account, yielding more stable results than the vanilla ℓ1-penalty. Hence, it

deals with the multicollinearity problem.

We have presented the use of data perturbation schemes –e.g. bootstrap,

cross validation, etc– through all the steps of the analysis pipeline, as it is used

to assess the predictive power of the model, to set its hyperparameters, and

even to evaluate the stability of the resulting weights/coe�cients. However,

we need to train the estimator a large number of times8, and performing this 8 The number of times depends on the
sample size and an arbitrary desired
precision

becomes prohibitive if �tting the estimator takes time, as it is the case for

spatially-structured estimators9. While there have been some attempts to 9 Graph-net can take weeks in a standard
workstation, as it is reported in [106]speed up such estimators [38][37], the computational cost hinders the use of

permutation tests.

In the next chapters, we will present a way to improve the stability of the

prediction power and the coe�cients, while reducing the computational cost

with a fast and highly distributed approach.



Part II

Contribution – fast

decoding
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3 Faster brain decoding with classic data approximations

schemes

In this chapter we present a �rst attempt to speed up brain activation

decoding. These multivariate techniques are becoming standard brain

mapping tools, but they entail much larger computational costs.

With datasets growing, acquiring larger cohorts and higher-resolution

imaging, this cost is increasingly a burden. Here we consider the

use of random sampling and projections as fast data approximation

techniques for brain images. We evaluate their prediction accuracy

and computation time on various datasets and discrimination tasks.

We show that the weight maps obtained after random sampling are

highly consistent with those obtained with the whole feature space,

while having a fair prediction performance. Altogether, we present

the practical advantage of random sampling methods in neuroimaging,

showing a simple way to embed back the reduced coe�cients, with only

a small loss of information.

The work presented in this chapter has been published in:

Fast brain decoding with random sampling and random projections,

Andrés Hoyos-Idrobo, Gaël Varoquaux and Bertrand Thrion. PRNI - IEEE

International Workshop on Pattern Recognition in NeuroImaging. 2016, Trento,

Italy.

3.1 Introduction – brain decoding and datasets’ growing

sizes

Aswe introduced in previous chapters, decoding uses predictive models to link

brain regions with an experimental condition or a behavior. It has become

a central tool in neuroimaging [119]. In particular, linear estimators can

highlight the brain maps that lead to the identi�cation of cognitive labels

[109][111]. Yet, to date, decoding is still orders of magnitude slower than
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standard analysis. This discourages the use of non-parametric hypothesis

testing –e.g. permutation testing. Additionally, large cohorts are needed to

fully tap the potential of decoding, increasing both power and reliability in

group studies. A striking example is the Human Connectome Project [46] –30

Terabytes of data and growing.

Increasing data sizes pose tractability challenges for all processing steps,

but this is especially true for multivariate statistics: multivariate estimators

entail high computation costs. The literature of machine learning on massive

datasets often relies on dimension reductions to mitigate the impact of

data size on computational cost. Data reduction is very bene�cial, as

�rst, it reduces memory requirements, and, as a consequence, it decreases

computation time.

Various approaches are used as standard tools in the literature to compress

datasets. Typically, a data matrix is represented by a sketch matrix –random

linear image of the matrix–[87] that is signi�cantly smaller than the original,

but approximates it well. Two sketching strategies are common employed:

i) approximating the matrix by a small subset of its rows (or columns) (e.g.

Nyström [55] and CUR [97]); ii) randomly combining matrix rows, relying

on subspace embedding and strong concentration phenomena, e.g. random

projections [77]. Random projections are appealing as they come with

theoretical guaranties quantifying the expected distortion.

These sketching techniques can be used to render tractable in the large-

data limit a model like PCA, which has a computational cost that grows super-

linearly.

Distance-based estimators

Given the paired data samples {(x1, y1), . . . , (xn, yn)}, where each xi ∈
R

p is a brain image –e.g. predictor variable– and each yi ∈ R is the

behavioral/categorical variable to be �t –e.g. the target. The goal is to

estimate a function that can be used to predict future responses based on

observing only brain images. Henceforth, the data are represented as amatrix

X ∈ R
n×p, n observed brain images composed of p voxels.

Kernel-based methods: Here, we give a brief reminder about kernels. A

kernel is a function that quanti�es the similarity of two observations (e.g.

pairwise distance between brain images). Kernel-based methods use a feature

mapping Φ to reveal the discriminant informations in a high-dimensional

space F . In brief, a kernel-method pipeline is: i) embedding the data X

into F using the feature mapping Φ, and ii) performing the estimation (e.g.

classi�cation). In neuroimaging, the feature mapping Φ : R
p → F is often

chosen as linear for interpretability of the weights [109].

Kernel-based methods rely on the idea that inner products in high-

dimensional feature spaces can be computed in implicit form via kernel



ensembles of models in fmri: stable learning in large-scale settings 41

function Ki,j =
〈

Φ(xi), Φ(xj)
〉
resulting in the Gram matrix K ∈ R

n×n.

This is important, because the decision function of many classi�cation

algorithms (e.g. SVM and logistic regression) can be carried out just on the

basis of the values of the kernel function over pairs of domain points. The

kernel function in a linear setting leads to a symmetric positive semide�nite

matrix Ki,j =
〈
xi, xj

〉
1. 1 From the viewpoint of geometry, in a

Euclidean space, the distance describes the
dissimilarity of a pair of points while the
inner product describes the similarity. But,
they are both simply related to each other if
the data are centered.

3.2 Background – matrix sketching as fast dimension

reduction technique

Figure 3.1: Lipschitz embedding

via linear mapping: Perform a

linear dimension reduction with

a mapping that preserves the

Euclidean distance between the

points

Signal approximation with random projections or random sampling

techniques is now central to many data analysis, machine learning, or signal

processing algorithms.

Johnson-Lindenstrauss-Embeddings

Let X ∈ R
p×n be a data matrix composed of n samples and p features (i.e.

pixels/voxels). We are interested in an operator Φ ∈ R
k×p that reduces

the dimension of the data in the feature direction, acting as a preprocessing

step to make further analysis more tractable. This operator should maintain

approximately the pairwise distance between pairs of images (X∗,i, X∗,j) ∈
X2 for (i, j) ∈ [n]2,

‖Φ X∗,i −Φ X∗,j‖2
2 ≈ ‖X∗,i − X∗,j‖2

2, ∀(i, j) ∈ [n]2. (3.1)

Note that this approximation needs to hold only on the data submanifold, and

not the entire R
p.

Random projections: A standard choice, is to build Φ with random

projections, ΦRP [69].
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Figure 3.2: Random projections

is an ǫ-embedding: Random

projections preserve the pairwise

squared distance in the projected

space with a distortion up to ǫ,

where the number of projections

required is O(log(n)/ǫ2).

It is particularly attractive due to its algorithmic simplicity and theoretical

guaranties that make it ǫ-isometric (see Eq. 3.2).
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Lemma 3.2.1. [77] By the Johnson-Lindenstrauss lemma, the pairwise

distances among a collection X of n-points inR
p are approximately maintained

when the points are mapped randomly to an Euclidean space of dimension k =

O(ǫ−1 log n) up to a distortion at most ǫ. More precisely, given ǫ, δ ∈ (0, 1)

and k ≤ p, there exists a random linear projection ΦRP : R
p → R

k such that

for every x, x′ in X , the following relations hold:

(1− ǫ)‖x− x′‖2
2 ≤ ‖ΦRP x−ΦRP x′‖2

2 ≤ (1 + ǫ)‖x− x′‖2
2, (3.2)

with probability at least 1− δ.

These Johnson-Lindenstrauss embeddings have been widely used in the

last years. By providing a low-dimensional representation of the data, they

can speed up algorithms dramatically, in particular when their run time

depends super-linearly on the dimension of the data. In addition, as this

representation of the data is accurate in the sense of the ℓ2 norm, it can be

used to approximate shift-invariant kernels [94][136].

The ΦRP matrix can be generated by sampling from a Gaussian

distribution with rescaling. In practice, a simple and e�cient generation

scheme can yield a very sparse random matrix with good properties [4]. The

computational performance of random projections can be further improved

i) with fast orthogonal decompositions [6] [156], ii) by reducing the number

of necessary projections when the data lie on a submanifold of R
p [14].

This approach su�ers from two important limitations: i) inverting the

randommapping fromR
p to R

k is di�cult, requiring more constraints on the

data (e.g. sparsity), which entails another estimation problem. As a result, it

yields less meaningful or easily interpretable results, as the ensuing inference

steps cannot be made explicit in the original space. ii) This approach is

suboptimal for structured datasets, since it ignores the properties of the data,

such as a possible spatial continuity.

Random sampling – interpolative decomposition

A related technique is random sampling, and in particular the Nyström

approximation method. This method is mainly used to build a low-rank

approximation of amatrix. It is particularly useful with kernel-basedmethods

when the number n of samples is large, given that the complexity of building

a kernel matrix is at least quadratic in n [170]. It has become a standard tool

when dealing with large-scale datasets [55].

The key idea is to preserve the spectral structure of a kernel matrixK using

a subset of columns of this matrix, yielding a low-rank approximation. This

can be cast as building a data-driven feature mapping ΦNys ∈ R
k×p. In a

linear setting, the kernel matrix is de�ned as K = X T X, which leads to the

following approximation:

Ki,j =
〈
X∗,i, X∗,j

〉 ≈ 〈ΦNys X∗,i, ΦNys X∗,j
〉

. (3.3)
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Here, building a basis ΦNys is achieved by randomly sampling k ≪ n points

from X, and then normalizing them –i.e. whitening the subsampled data– see

algorithm 1. The cost of the SVD dominates the complexity of this method

O(pk min{p, k}). This method is well suited for signals with a common

structure, for instance images that share a common spatial organization

captured by ΦNys. As the Nyström approximation captures the structure of

the data, it can also act as a regularization [138].

Nyström featuremapping: Here, we present the standard implementation

of the Nyström approximation for linear kernels. Algorithm 1 allows to build

a data-driven feature mapping that is used to reduce the dimensionality of the

data matrix. The algorithm is summarized as follows: �rst, we select images

uniformly at random2, then we calculate the kernel of these samples and use 2 We can use other sampling probabilities
(e.g. the leverage score [96]), but by
sampling uniformly we are assuming a
regular structure

it to normalize the selected images.

Algorithm 1 Nyström: Learning the feature mapping

Require: The training data matrix X ∈ R
p×n, number k of components,

where k < n.

Ensure: The feature mapping ΦNys ∈ R
k×p

1: r← Generate uniform sampling of k components

2: X∗,r ∈ R
p×k {Subsample of k columns}

3: K̃ = X T∗,r X∗,r {Kernel matrix of the subsampled data}

4: ΦNys = K̃−1/2X∗,r {Normalization: via SVD}

5: return ΦNys

3.3 Experiments – empirical verification

In this section, we investigate brain decoding after random sampling and

random projections. To achieve reliable empirical conclusions, we evaluate

the performance across several neuroimaging studies, using both anatomical

and functional images. We compare prediction accuracy obtained without

compression to that using random projections and Nyström approximation

under linear settings. We also quantify and compare the execution time.

In all the experiments, n > 180 and we split the data into train and test

set, changing the proportion of these sets according to the dataset. All

dimensionality reduction procedures are calibrated on the train set and used

to reduced the test set.

Datasets

Detailed descriptions of these datasets are given in section 1.5.

Haxby [67]: We perform a binary discrimination between pairs of visual

stimuli. The prediction is performed on two left-out sessions.
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The Open Access Series of Imaging Studies (OASIS)[98]: We perform

across-subject gender discrimination, leaving half of the subjects out to

measure the accuracy.

Human Connectome Project (HCP)[46]: Form this dataset, we took

images related to 5 tasks: 1) working memory/cognitive control processing,

2) incentive processing, 3) visual and somatosensory-motor processing, 4)

language processing (semantic and phonological processing), 5) social (theory

of mind). We perform across-subject discrimination of 17 experimental

conditions selected from the aforementioned task-related datasets.

Benchmarking of linear classifiers

We explore standard classi�ers of the neuroimaging literature: SVM-ℓ2 and

logistic regression-ℓ2. Firstly, we analyze the performance of various standard

solvers in the primal and dual space3: i) for the SVM we use Liblinear 3 Note that not all the algorithms are
designed to work in both spaces (primal and
dual), this is the case of LibSVM which only
works on the dual space

and LibSVM, setting the regularization parameter by inner cross validation.

ii) For the logistic regression, we use Liblinear with inner cross validation

to set the regularization parameter; and L-BGFGS with warm start setting,

the parameter via regularization path. To build the con�dence interval, we

perform a 10-fold cross validation maintaining the proportion between the

labels at each iteration. We measure the accuracy4 obtained on test data and 4 Accuracy is de�ned by:
number of correctly predicted data

total number of samples × 100%the computation time to train the classi�er. We compare the performance of

all classi�ers with an SVM (LibSVM), which is often used by default.

Fig. 3.3 displays the results of the discrimination of visual objects on the

Haxby dataset and the gender prediction on the OASIS dataset. These tasks

cover a range from easy to di�cult discrimination problems. The prediction

accuracy of the logistic regression (LibLinear) is statistically di�erent to the

SVM (LibSVM) –p < 0.001, paired Wilcoxon rank test. The estimators using

a primal solver yield the same distribution.

Regarding computation time, logistic regression-ℓ2 using L-BFGS with

warm start has the best performance: it displays a good trade-o� between

prediction accuracy and computation time. Henceforth, we refer to this

choice simply as logistic regression-ℓ2, making the solver implicit.

Bringing the reduction to the brain space

In this experiment, we show the capability of the Nyström method to

approximate the coe�cients of a linear estimator in the brain space. We

use a logistic regression-ℓ2 as a classi�er, using as a solver an L-BFGS with

warm start, to discriminate 7 paired visual objects on the Haxby dataset, and

gender on the OASIS dataset. We compare the prediction accuracy and the

correlation, between the weight maps obtained using all the voxels with the

approximation via Nyström method for k = 100.

Fig. 3.4 shows the weight map (hyperplane of discrimination), to
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2

Figure 3.3: Comparison of

the performance of various

solvers relative to SVM

(LibSVM): Comparison of the

performance of the SVM and

logistic regression with ℓ2 penalty

on the discrimination of 7 paired

visual object recognition tasks

for the Haxby dataset, and the

discrimination of gender of the

OASIS dataset. (left) The prediction

accuracy of the logistic regression

using LibLinear is statistically

di�erent to the obtained using the

SVM (LibSVM); (right) Regarding

the computation time, the logistic

regression using L-BFGS with

warm start, displays a good trade-

o� between computation time and

accuracy.

discriminate between face and house. Contours show the well-known

Fusiform Face Area (FFA) and Parahippocampal Plane Area (PPA) regions,

respectively involved in the face and house recognition tasks. They are

highlighted by the coe�cients of the classi�er. This is considered as an easy

classi�cation task and �nding the structure by Nyström approximation only

requires a small number k of components (k > 30).

Figure 3.4: Approximation

in the brain space: Weight

maps (unthresholded) of a ℓ2-

logistic regression, obtained for

the discrimination of face and

house on the Haxby dataset. The

contours show the FFA (green) and

PPA (white) regions, respectively

involved in the face and house

recognition tasks. These regions

are highlighted by the coe�cients

obtained using two methods: (left)

the whole feature space, and (right)

the Nyström method with k = 100.

Fig. 3.5 shows the consistency between the discriminative weights found

after applying the Nyström method and raw data. Nyström displays a high

consistency with the raw data, having a correlation score > 0.7 for all the

conditions. Regarding the prediction accuracy, we can see that the Nyström

method exhibits only slightly worst performance than raw.

Random sampling, random projections and decoding

Now, we compare the e�ect of random sampling and projections across

di�erent discrimination tasks and datasets. To this end, we use 7 visual object

discrimination of the Haxby dataset, gender discrimination of the OASIS

dataset, and 17 cognitive tasks of the HCP dataset. We train a binary logistic

regression on the �rst two datasets and multinomial logistic regression on
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Figure 3.5: Consistency of the

discriminative weights after

dimensionality reduction:

Discrimination of various

conditions using a logistic

regression with ℓ2 penalty.

The dimension is reduced to

k = 100. (left) Correlation

between coe�cients obtained

using the raw data and the

Nyströmmethod. The weight maps

found after approximation are

generally consistent with the maps

found without reduction; (right)

Regarding prediction accuracy, the

Nyström method is comparable

with the performance obtained

with the raw data.

the last one. We reduce the dimensionality of the feature space form p to k,

where k is set to k = 100 in this experiment. We use random projections and

Nyström method to carry out this task.

The results of the use of random sampling and projections with respect

to raw data are summarized in Fig. 3.6. We can see that the accuracy of

the classi�er after dimensionality reduction by Nyström method is close to

the one obtained using the whole feature space. This indicates that there

is a reliable linear structure underlying the brain images, which is captured

by Nyström approximation with only a small number k of components. In

contrast, the estimator after random projections shows lower performance.

This is because random projections act in the feature direction, needing a

larger number k of components to approximate the pairwise distances.

Regarding computational time, both methods have an equal performance

in average. Note that using the Nyström method yields impressive time

savings on the HCP dataset.

Implementation aspects: We rely on scikit-learn[123] for machine

learning tasks (logistic regression and SVM) and on Nilearn[2] to interact

with neuroimaging data.

3.4 Discussion – brain decoding with random sampling

Our validation over 27 decoding tasks on 3 di�erent datasets, varying from

moderate to large size datasets, shows that random sampling overperforms

random projections for decoding brain images. The dimensionality reduction

by random projections does not take the structure of the signal into account,

making it di�cult to �nd an appropriate pseudo-inverse to bring the weight

maps back into the brain space. On the other hand, the Nyströmmethod tries

to approximate the spectral properties of the data matrix X, relying on a data-

driven approach. In this sense, it takes into account the intrinsic structure

–e.g. smoothness, latent network structure– being consistent with the feature
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Figure 3.6: Impact of the

dimensionality reduction

on the prediction performance:

Discrimination using logistic

regression of 25 conditions on 3

datasets, after dimensionality is

reduction to k = 100. left) Each

point represents the impact of

the corresponding dimensionality

reduction scheme on the prediction

accuracy, relatively to the

prediction obtained with raw

data. The Nyström approximation

method has a better performance

than random projections. right)

In most of the conditions, the

time performance of both methods

is almost the same, yielding

impressive time saving. On

the HCP dataset, Nyström is

considerably faster while keeping

the same prediction performance

as random projections.

space and controlling the spatial maps. This leads to an easy scheme to embed

the coe�cients back in brain space, making it possible to perform further

analysis on brain maps.

Regarding computation time, both methods yield impressive speed gains:

more than 16 times faster. However, the prediction accuracy is not better

than that obtained with raw. Indeed, these methods do not separate the

signal from the noise. In our setting, brain decoding, brain images present

a continuous spatial structure, whereas noise is assumed to be unstructured.

Hence, both signals can be separated using local spatial information; it would

be interesting to investigate adding the spatial structure as a prior to the

dimension reduction scheme. We think that this approach is better suited

for medical images, it could reduce noise, and improve subsequent analysis.





4 Dimension reduction of structured signals by feature

grouping

In the previous chapter we have introduced matrix sketching as a

technique to reduce the dimensionality of the signal in brain decoding

settings. We have presented some MRI experiments showing a better

performance of data-driven dimension-reduction methods outperform

fully random ones.

In this chapter, we assume that the signal of interest has a spatial

structure. Thus, it can be modeled as a generative process acting on

a neighborhood, e.g. in brain activation images, if a voxel displays

activity is highly probable that its neighbors are active too. Under

this assumption, the features are locally connected and the grouping

of features –feature grouping– can serve as a dimension reduction

method, summarizing the data to decrease computational costs and

memory footprint of subsequent analysis. Such scheme adapts to

commonstatistics across the data, unlike randomprojectionswhich only

preserves the Euclidean distance between data points.

Throughout this chapter we consider feature grouping as a dimension

reduction scheme of structured signals. In particular, we analyze the

approximation of the spectral norm of the signal, giving a worst-case

bound that is useful to understand the properties that ensure a good

approximation. We also show the spatial condition required to reduce

unstructured noise –i.e. denoising–, increased statistical power.

The contributions developed in this chapter, along with the next two, have

been submitted to:

Recursive nearest agglomeration (ReNA): fast clustering for

approximation of structured signals. Andrés Hoyos-Idrobo, Gaël

Varoquaux, Jonas Kahn and Bertrand Thrion. IEEE TPAMI - Transactions on
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Pattern Analysis and Machine Intelligence.

4.1 Introduction – high-dimensional signals and large-

scale datasets are now everywhere

Cheap and ubiquitous sensors lead to a rapid increase of data sizes, in

the sample direction –the number of measurements –but also the feature

direction– the richness of each measurement. These “big data” put a lot of

strain on data management and analysis. Indeed, they entail large memory

and storage footprint, and the algorithmic cost of querying or processing

them is often super-linear in the data size. Yet, such data often display

a structure, for instance originating from the physical process probed by

the sensor. This structure implies that the data can be well approximated

by a lower-dimensionality representation, dropping drastically the cost of

subsequent data management or analysis.

The deluge of huge sensor-based data is ubiquitous: in imaging sciences –

e.g. biological [8] or medical [46]– in genomics [120][29], with time series,

as in seismology [5]. Researchers have introduced a variety of strategies

to mitigate the computational costs created by the rapid increase in signal

resolution. Many approaches integrate reduced signal representations in

statistical analysis.

Super-voxels, leveraging the image structure, accelerate optical �ow

algorithms for huge biological microscopy images [8]. Fast large-scale image

search can use a reduced representation of the images combining mid-level

features with the image topology [76]. For information retrieval, state-of-the-

art indexing of times series can be achieved with a symbolic representation

[89] that �nds a regular piecewise constant approximation of the signal,

and then associates a symbolic code with this quantization. In genomics,

clustering can extract a small number of candidate SNPs (single nucleotype

polymorphisms) from a large set of SNPs, speeding up subsequent analysis

[137][33]. Using the topology of the DNA strand to restrict this clustering

makes it faster and more relevant for genomic studies [33]. Similarly, as

medical images exhibit strong spatial structure, clustering [152][73] or super-

voxels [95][166] are used to speed up statistical analysis. Finally, in the

analysis of large seismic time-series [5], building indexes of the database is

crucial for fast retrieval of similar waveforms. Dimension reduction is a good

strategy for such fast indexing [79][5], evenmore so if it captures the structure

of the signals [27].

Here, we are interested in representing structured signals, and using this

structure to improve the data approximation and speed up its computation.

Signal processing often models such signals as generated from a random

process acting on a neighborhood structure. Individual features of the data

then form vertices of a graph [147]. This structure graph is given by the
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speci�city of the acquisition process, such as the physics of the sensors. Note

that such a description is not limited to regular grids, such as time-series or

images, and encompasses for instance data on a folded surface [148].

Additionally, we want this scheme to account for the graph structure of the

data. For this, we use feature grouping, approximating a signal with constant

values over a partition of features. We use a clustering algorithm to adapt the

partition to the data statistics.

4.2 The feature-grouping to approximate structured

signals

Figure 4.1: Illustration of the

approximation of a signal:

Piece-wise constant approximation

of a 1D signal contaminated

with additive Gaussian noise

x ∈ R
512. The approximated signal

is represented as ΦFG
T

ΦFG x,

where the matrix ΦFG ∈ R
12×512

is built using the clustering of the

intensities with a spatial constraint

(i.e. spatially-constrained Ward

clustering). Only 12 clusters can

preserve the structure of the signal

and decrease the noise, as seen

from the signal-to-noise-ratio (dB).

Feature grouping de�nes a matrix Φ that extracts piece-wise constant

approximations of the data [22]. Let ΦFG be a matrix composed with

constant amplitude groups (clusters). Formally, the set of k clusters is given

by P = {C1, C2, . . . , Ck}, where each cluster Cq ⊂ [p] contains a set of

indexes that does not overlap other clusters, Cq ∩ Cl = ∅, for all q 6= l.

Thus, (ΦFG x)q = αq ∑j∈Cq
xj yields a reduction of a data sample x on the

q-th cluster, where αq is a constant for each cluster. With an appropriate

permutation of the indexes of the data x, the matrix ΦFG can be written as

ΦFG =









α1 α1 0 0 . . . 0 0

0 0 α2 α2 . . . 0 0
...

...
. . .

...

0 0 0 0 . . . αk αk









∈ R
k×p.

We choose αq = 1/
√

|Cq| to set the non-zero singular values of ΦFG to 1,

making it an orthogonal projection.

We call ΦFG x ∈ R
k the reduced version of x and ΦFG

T
ΦFG x ∈ R

p

the approximation of x. Note that having an approximation of the data means

that the ensuing inference steps can be made explicit in the original space. As

the matrix ΦFG is sparse, this approximation follows the same principle as

[84], speeding up computational time and reducing memory storage.
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Let M(x) be the approximation error for a data x given a feature grouping

matrix ΦFG,

M(x) =
∥
∥
∥x−ΦFG

T
ΦFG x

∥
∥
∥

2

2
, (4.1)

this is often called inertia in the clustering literature. This corresponds to the

sum of all the local errors (the approximation error for each cluster), M(x) =

∑
k
q=1 mq, where mq(x) is the sum of squared di�erences between the values

in the q-th cluster and its representative center, as follows

mq(x) =

∥
∥
∥
∥
∥
∥

xCq −
(ΦFG x)q
√

|Cq|

∥
∥
∥
∥
∥
∥

2

2

, (4.2)

where xCq
are the values xi such that i ∈ Cq. The squared norm of the data

x is then decomposed in two terms: �delity and inertia, taking the form (see

section 2 in supplementary materials):

‖x‖2
2 = ‖ΦFG x‖2

2
︸ ︷︷ ︸

Reduced norm

+
k

∑
q=1

∥
∥
∥
∥
∥
∥

xCq −
(ΦFG x)q
√

|Cq|

∥
∥
∥
∥
∥
∥

2

2
︸ ︷︷ ︸

M(x): Inertia

. (4.3)

Eq. 4.3 is key to understanding the desired properties of a matrix ΦFG. In

particular, it shows that it is bene�cial to work in a large k regime to reduce

the inertia.

Corollary 4.2.1. Let x ∈ R
p be a signal, and ΦFG be a feature-grouping

matrix, the following holds

‖x‖2
2 −

k

∑
q=1

∥
∥
∥
∥
∥
∥

xCq
− (ΦFG x)q

√

|Cq|

∥
∥
∥
∥
∥
∥

2

2

= ‖ΦFG x‖2
2 ≤ ‖x‖2

2. (4.4)

Proof. As ΦFG
T

ΦFG is an orthogonal operator, Eq. 4.3 corresponds to an

orthogonal decomposition.

We start by writing down the ℓ2 norm of the data vector x for every point

inside all the clusters {Cq}k
q=1. Then, we perform simple manipulations, as

follows

‖x‖2
2 =

k

∑
q=1

∑
i∈Cq

x2
i

=
k

∑
q=1

∑
i∈Cq

(

x2
i +

(ΦFG x)2
q

|Cq|
−

(ΦFG x)2
q

|Cq|

)

=
k

∑
q=1

(ΦFG x)2
q +

k

∑
q=1

∑
i∈Cq

(

x2
i −

(ΦFG x)2
q

|Cq|

)

= ‖ΦFG x‖2
2 +

k

∑
q=1

∥
∥
∥
∥
∥
∥

xCq −
(ΦFG x)q
√

|Cq|

∥
∥
∥
∥
∥
∥

2

2

.

(4.5)
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Finally, the right hand inequality of Eq. 4.4 comes naturally after scaling each

cluster (the non-zero singular values are set to 1).

Capturing signal structure

We consider data with a speci�c structure, e.g. spatial data. Well-

suited dimensionality reduction can leverage this structure to bound the

approximation error. We assume that the data x ∈ R
p are generated from

a process acting on a space with a neighborhood structure (topology). To

encode this structure, the data matrix X is associated with an undirected

graph G with p vertices V = {v1, v2, . . . , vp}. Each vertex of the graph

corresponds to an index in the data matrix X and the presence of an edge

means that these features are connected. For instance, for 2D or 3D image

data, the graph is a 2D or 3D lattice connecting neighboring pixels. The graph

de�nes a graph distance between features distG . In practice, we perform the

calculations with the adjacency matrix G of the graph G .

De�nition 4.2.1. L-Smoothness of the signal: A signal x ∈ R
p structured

by a graph G , is pairwise Lipschitz smooth with parameter L when it satis�es

|xi − xj| ≤ L distG(vi, vj), ∀(i, j) ∈ [p]2. (4.6)

This de�nition means that the signal is smooth with respect to the graph that

encodes the underlying structure. Note that distG has no unit since the scale is

�xed by having each edge have length 1.

Lemma 4.2.1. Let x ∈ R
p be a pairwise L-Lipschitz signal, and ΦFG ∈ R

k×p

be a �xed feature grouping matrix, formed by {C1, . . . , Ck} clusters. Then the

following holds:

‖x‖2 − L2
k

∑
q=1

|Cq| diamG(Cq)
2 ≤ ‖ΦFG x‖2 ≤ ‖x‖2, (4.7)

where diamG(Cq) = sup
vi,v j∈Cq

distG(vi, vj).

We see that the approximation is better if: i) the cluster sizes are about the

same, and ii) the clusters have a small diameter. These arguments are based

only on the assumption of smoothness of the signal. Re�ning Eq. 4.7 gives

an intuition on how a partition could be adapted to the data: We can see that

the approximation is better if: i) the signal in a cluster is homogeneous; ii)

clusters in irregular areas are smaller.

Proof. The corollary 4.2.1 shows that the lower bound of the representation

is only a�ected by the inertia (see left hand side of Eq. 4.4). So, the worst case

corresponds to the upper bound of the inertia M(x) = ∑
k
q=1 mq(x). Then,
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the inertia of each cluster can be bounded as follows

mq(x) =

∥
∥
∥
∥
∥
∥

xCq −
(ΦFG x)q
√

|Cq|

∥
∥
∥
∥
∥
∥

2

2

= ∑
j∈Cq



xj −
1

|Cq| ∑
i∈Cq

xi





2

≤ |Cq|max
j∈Cq

∣
∣
∣
∣
∣
∣

xj −
1

|Cq| ∑
i∈Cq

xi

∣
∣
∣
∣
∣
∣

2

(4.8)

The last inequality corresponds to the worst case for the sum inside the

cluster.

Let us constrain our analysis to L-smooth signals x ∈ R
p structured by

graph G (see De�nition 2.1). Under this assumption, we can bound the inertia

of each cluster as follows:

mq(x) ≤ |Cq|max
j∈Cq

∣
∣
∣
∣
∣
∣

xj −
1

|Cq| ∑
i∈Cq

xi

∣
∣
∣
∣
∣
∣

2

≤ |Cq| L2 sup
i,j∈Cq

distG(vi, vj)
2

= L2 |Cq| diamG(Cq)
2,

(4.9)

where the second inequality follows from the pairwise L-Lipschitz condition.

Finally, plugging Eq. 4.9 into Eq. 4.5 we have:

‖x‖2 − L2
k

∑
q=1

|Cq| diamG(Cq)
2 ≤ ‖ΦFG x‖2 ≤ ‖x‖2

2. (4.10)

Corollary 4.2.2. Let Lq be the smoothness index inside cluster Cq, for all q ∈
[k]. This is the minimum Lq such that:

|xi − xj| ≤ Lq distG(vi, vj), ∀(i, j) ∈ C2
q .

Then the following two inequalities hold:

‖x‖2
2 −

k

∑
q=1

|Cq| sup
xi,x j∈xCq

|xi − xj|22 ≤

‖x‖2
2 −

k

∑
q=1

L2
q |Cq| diamG(Cq)

2 ≤‖ΦFG x‖2
2.

(4.11)

Proof. As in Eq. 4.9, the second inequality is consequence of adding the local

L-smoothness condition.
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Approximating signals with unstructured noise

In this section, we analyze the regularity condition of the signal of interest s,

its relation with the noise and maximum cluster size. Let x be the acquired

signal, which is a �xed signal of interest s contaminated with an i.i.d. zero-

mean Gaussian noise n with variance σ2, x = s + n.

Proposition 4.2.1. Let x = s + n ∈ R
p be an acquired signal, where s is a

�xed smooth L-Lipschitz signal and n an i.i.d. zero-mean Gaussian noise with

variance σ2. Then, for a given grouping matrix ΦFG ∈ R
k×p the mean squared

error of the approximation (MSEapprox) is upper-bounded by

MSEapprox ≤ L2
k

∑
q=1

|Cq| diamG(Cq)
2 +

k

p
MSEorig. (4.12)

Proof. With the purpose of ensuring clarity, we de�ne A = ΦFG
T

ΦFG.

Let MSEappox = En

[

‖s−A x‖2
2

]

and MSEorig = En

[
‖n‖2

2

]
be the mean

squared error with andwithout approximation, receptively. Aswe are dealing

with Gaussian noise, the risk of the raw data is MSEorig = p σ2. Given that

‖s‖2
2 is �xed, it is enough to showMSEapprox ≤ MSEorig to ensure an increase

in the SNR.

We start by writing down theMSEapprox, then we separate the components

thanks to the i.i.d assumption and plug the upper-bound of the inertia, as

follows

MSEapprox = En

[

‖s−A x‖2
2

]

= ‖(I−A) s‖2
2 + En

[

‖A n‖2
2

]

= ‖(I−A) s‖2
2 + k σ2

≤ L2
k

∑
q=1

|Cq| diamG(Cq)
2 + k σ2.

Corollary 4.2.3. Let x = s + n ∈ R
p be an acquired signal, where s is a

�xed a pairwise smooth L-Lipschitz signal and n is an i.i.d. zero-mean Gaussian

noise with variance σ2. For a given grouping matrix ΦFG ∈ R
k×p, the noise

after approximation is reduced, MSEapprox ≤ MSEorig, only if the L2 smoothness

parameter satisfy

L2 ≤ (p− k)

∑
k
q=1 |Cq| diamG(Cq)2

σ2. (4.13)

Proof. This is a direct result of the proposition 4.2.1 after some arithmetic
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manipulations,

MSEapprox ≤ L2
k

∑
q=1

|Cq| diamG(Cq)
2 + p σ2− (p− k) σ2

≤ L2
k

∑
q=1

|Cq| diamG(Cq)
2 +MSEorig − (p− k) σ2.

Then, to satisfy MSEapprox ≤ MSEorig, we must have:

L2
k

∑
q=1

|Cq| diamG(Cq)
2 ≤ (p− k) σ2,

which lead us to the upper-bound of the Lipschitz constant.

Cluster of the same size: This is a particular case, where we assume that

the clusters P = {Cq}k
q=1 have the same size, p

k . Under this assumption, the

following holds:

MSEapprox ≤ p

(
L

k

)2

+
k

p
MSEorig = O

(

max

{
p

k2
,

k

p

})

. (4.14)

We need to balance both therms in the right-hand side of 4.14 in order to

maximize the rate of decay. This implies that p

k2 = k
p therefore k = p2/3 and

MSEapprox = O(k−1/2).

4.3 Conclusion – signal approximation by feature

grouping

We presented a theoretical analysis of the approximation of the signal using

feature grouping. We showed that feature grouping can preserve well the

pairwise Euclidean distances between structured signals. This property

makes it well suited for ℓ2-based algorithms –see chapter 3–, like shift-

invariant kernel-based methods, or to approximate queries in information-

retrieval settings.

In addition, we introduced a su�cient regularity condition to show

when this scheme leads to a reduction of the unstructured noise. This

noise attenuation can yield a bene�cial improvement on the performance of

subsequent analysis.

An important aspect of feature grouping compared to other fast dimension

reductions, such as random projections, is that the features of the reduced

representation it creates of the data make sense for the application.

Consequently, the dimension reduction step can be inverted, and any

statistical analysis performed after reduction can be reported with regard

to the original signal.



5 Recursive nearest agglomeration - ReNA: A fast

structured clustering algorithm

In the previous chapter, we introduced and analyzed feature grouping

as a dimension reduction technique to approximate structured signals

–e.g. images.

Here, we propose a data-driven approach to build the feature

agglomeration matrix. In particular, via clustering of features.

Nevertheless, there are some algorithmic challenges, as an impediment

to fast dimension reduction is that good clustering comes with large

algorithmic costs; the main issue with fast algorithms: they create huge

clusters, this impair the approximation of the signal.

In this chapter, we address these drawbacks by contributing

a linear-time agglomerative clustering scheme, Recursive Nearest

Agglomeration (ReNA). Unlike existing fast agglomerative schemes, it

avoids the creation of giant clusters. This algorithm relies on a recursive

extraction of the connected components of a 1-Nearest-Neighbor graph,

reducing the graph at each iteration until the desired number of clusters

is reached.

5.1 Introduction – data-aware feature grouping

Spatially and information-aware compression schemes are probably better

suited for structured signals –e.g. images– [3]. We propose here using

clustering procedures to �nd a suitable feature partition to group features,

respecting the outline of signals’ structures. But, as we discussed in

chapter 3.4, the approximation of the signal improves quadratically on

the number of clusters. Therefore, a good approximation still requires

many clusters. In this setting, a standard clustering method as K-means

yields computationally expensive estimation procedures. On the contrary,

agglomerative clustering algorithms are amongst the fastest approaches to

extract many clusters with graph-connectivity constraints. However, they fail

to create clusters of evenly-distributed size, favoring a few huge clusters1. 1 This phenomenon is known as percolation
in random graphs [150].
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Figure 5.1: Feature grouping for

statistical analysis of structured

images: Illustration of the di�erent

steps of feature grouping-based

data approximation . The approach

consists in �nding a data-driven

spatial reduction ΦFG using

clustering. Then, the data x are

reduced to ΦFG x and then used

for further statistical analysis (e.g.

classi�cation).

Finding a feature grouping matrix: We now consider a data-driven

approach to build the matrix ΦFG. We rely on feature clustering: a clustering

algorithm is used to de�ne the groups of features from the data. X ∈ R
p×n

is represented by a reduced version ΦFG X, where p is potentially very

large (greater than 100 000), whereas k is smaller but close enough to p (e.g.

k = ⌊p/20⌋). As illustrated in Fig. 5.1, once the reduction operator ΦFG has

been learned, it can be applied to new data.

5.2 Existing fast clustering algorithms

K-means clustering is a natural choice as it minimizes the total inertia in

Eq. 4.3. But it tends to be expensive in our setting: The conventional k-means

algorithm has a complexity of O(n k) per iteration [3]. However, the larger

the number of clusters, the more iterations are needed to converge, and the

worst case complexity is given2 byO(pk+2/n) [10]. This complexity becomes 2 Note that here n and p are swapped
compared to common clustering literature,
as we are doing feature clustering.

prohibitive with many clusters.

Super-pixel approaches: In computer vision, feature clustering can be

related to the notion of super-pixels (super-voxels for 3D images). The

most common fast algorithm for super-pixels is SLIC [3], which has a low

computational cost and produces super-pixels/super-voxels of roughly even

sizes. SLIC performs a local clustering of the image values with a spatial

constrain, using as a distance measure the combination of two Euclidean

distances: image values and spatial positions. The SLIC algorithm is related

to K-means, but it performs a �xed small number of iterations, resulting in a

complexity of O(np). Its main drawback is that, in the large-k regime, it can

be di�cult to control precisely the number of clusters, as some clusters often

end up empty in the �nal assignment.
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Agglomerative clustering: Agglomerative clustering algorithms are fast

in the setting of a large number k of clusters. Unlike most clustering

algorithms, adding a graph structure constraint makes them even faster, as

they can then discard association between non-connected nodes.

Agglomerative clustering schemes start o� by placing every data element

in its own cluster, then they proceed by merging repeatedly the closest pair

of clusters until one obtain the desired number of clusters [65]. Various

methods share the same approach, di�ering only in the linkage criterion used

to identify the clusters to be merged. The most common linkages are single,

average, complete [65] and Ward [168]. Average-linkage, complete-linkage,

and Ward are generally preferable over single-linkage, as they tend to yield

more balanced clusters. Yet single-linkage clustering is often used as it is

markedly faster; it can be obtained via a Minimum Spanning Tree and has a

complexity ofO(np+ p log p) [110]. Average-linkage, complete-linkage and

Ward have a worse case complexity of O(np2) [110].

The approximation properties of feature grouping are given by the

distribution of cluster sizes (Eq. 4.3). Balanced clusters are preferable for low

errors. Nevertheless, agglomerative clustering on noisy data can often lead

to a “preferential attachment” behavior, where large clusters grow faster than

smaller ones. In this case, the largest cluster dominates the distortion, as in

Lemma. 4.2.1. By considering that the clusters are connected components on a

similarity graph, this behavior can be linked to percolation theory [150], that

characterizes the appearance of a giant connected component (i.e. a huge

cluster). In this case, the clustering algorithm is said to percolate, and thus

cannot yield balanced cluster sizes.

In brief, single-linkage clustering is fast but su�ers form percolation issues

[125] and Ward’s algorithm performs often well in terms of goodness of �t

for large k [152].

More sophisticated agglomerative strategies have been proposed in the

framework of computer vision (e.g. [49]), but they have not been designed

to avoid percolation and do not make it possible to control the number k of

clusters.

5.3 Contributed clustering algorithm – ReNA

Preliminaries: neighbors graphs

For feature clustering on structured signals, an algorithm should take

advantage of the generative nature of the data, e.g. for images, work with

local image statistics. Hence we rely on neighborhood graphs [45].

Neighborhood graphs form an important class of geometric graphs

with many applications in signal processing, pattern recognition, or data

clustering. They are used to model local relationships between data points,

with ǫ-neighborhood graphs3 or k-nearest neighbor graphs.

3 ǫ-neighborhood graph: vi and vj are
connected if ‖vi − vj‖ ≤ ǫ.
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The ǫ-nearest neighbor graph is the core of one of the most popular

scalable clustering algorithms, DBSCAN [47]. It is a density-based clustering

method for which the number k of clusters is implicitly set by the ǫ

neighborhood’s radius. Its main drawback is its high sensitivity to the choice

of this very parameter. K-nearest neighbor graphs, on the other hand, are

not well suited for clustering as they tend to percolate for k greater than or

equal to 2. In contrast, the 1-nearest neighbor graph (1-NN) is not likely to

percolate[151]. For this reason, we use the 1-NN graph.

ReNA: algorithm outline

Figure 5.2: The nearest neighbor

grouping: The algorithm receives

a data matrix X represented on a

regular square lattice G. left) The

nodes correspond to the feature

values and the edges are the

encoded topological structure. 1)

Graph representation: We calculate

the similarity matrix D. 2) Finding

1-NN: We proceed by �nding the

1-nearest neighbors subgraph Q

according to the similarity measure.

3) Getting the clusters and reduction

step: We extract the connected

components of Q and merge the

connected nodes.

In a nutshell, our algorithm relies on extracting the connect components

of a 1-NN graph. To reach the desired number k of clusters, we apply it

recursively. The algorithm outline is as follows:

Initialization: We start by placing each of the p features of the data X in

its own cluster P = {C1, . . . , Cp}. We use the binary adjacency matrix

G ∈ R
p×p of the graph G , that encodes the topological structure of the

features.

Nearest neighbor grouping: We use the nearest neighbor of a similarity

graph as linkage criterion. We then extract the connected components

of this subgraph to reduce the data matrix X and the topological structure

G. These operations are summarized in the next steps:

1. Graph representation: We build the similarity graph D of the data

X, represented by the adjacency matrix D ∈ R
p×p. The weights are

constrained by G4. 4 This corresponds to an element-wise
condition, where a similarity weight is
assigned only if the edges are connected
according to G.

2. Finding 1-NN: Creating a 1-nearest neighbor graphQ, represented by
the adjacency matrix Q ∈ R

p×p, where each vertex of D is associated

with its nearest neighbor in the sense of the dissimilarity measure.

3. Getting the clusters: We use [121] to extract the set of connected

components of Q and assign them to the new set of clusters P .
4. Reduction step: The clusters are used to reduce the graph G and the

data X.



ensembles of models in fmri: stable learning in large-scale settings 61

Stopping condition: Nearest neighbor grouping can be performed

repeatedly on the reduced versions of the graph G and the data X until

the desired number k of clusters is reached5. 5 In practice the size of the matrices
X(t), D(t), G(t) decreases during the
iterations. Therefore it is necessary to
express the partition P on a reduced index
set. To simplify notations, we have not
detailed this operation in the algorithm.

Fig. 5.2 presents one iteration of the nearest neighbor grouping on a regular

square lattice. The pseudo-code of ReNA is given in algorithm 2 and an

illustration on a 2D brain image in Fig. 5.3.

The algorithm is iterated until the desired number of clusters k is reached6.

As the number of vertices is divided by 2 at each step, the number of iterations

is at most O{log(p/k)}; in practice, we never have to go beyond 5 iterations.

The cost of computing similarities is linear in n and, as all the operations

involved are also linear in the number of vertices p, the total procedure is

O(np).

Algorithm 2 Recursive nearest neighbor (ReNA) clustering

Require: Data X ∈ R
p×n, sparse matrix G ∈ R

p×p representing

the associated connectivity graph structure, nearest-neighbor subgraph

extraction function NN, connected components extraction function

ConnectComp [121], desired number k of clusters.

Ensure: Clustering of the features P = {C1, C2, . . . , Ck}
1: q = p {Initializing the number of clusters to p}

2: t = 0

3: X(t) = X

4: G(t) = G

5: while q > k do

6: D
(t)
i,j ← G

(t)
i,j ‖X

(t)
i,∗ − X

(t)
j,∗‖2

2, (i, j) ∈ [q]2

{Create a similarity weighted graph.}

7: Q← NN(D(t)) {1-nearest neighbor graph.}

8: P ← ConnectComp(Q), 6

{Sets of connected components of 1-nearest neighbor graph.}

9: Ui,j ←







1 if i ∈ Cj

0 otherwise
, (i, j) ∈ [q]× [|P|]

{Assignment matrix}

10: X(t+1) ← (U T U)−1U T X(t), X(t+1) ∈ R
|P|×n

{Reduced data matrix. Note that the computation boils down to sample

averages}

11: G(t+1) ← support(U T G(t)U), G(t+1) ∈ R
|P|×|P|

{Reduced between-cluster topological model; the non-zero values are

then replaced by ones.}

12: q = |P|{Update the number of clusters}

13: t = t + 1

14: end while

15: return P
6 At each iteration, a connected components
routine extracts them from Q and returns
them as a set of clusters P . In the last
iteration of the algorithm, if there are less
than k connected components, Q is pruned
of its edges with smallest edge values to keep
only the q− k shortest edges, so that no less
than k components are formed.
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Original First 
iteration

Second 
iteration

Third 
iteration

Compressed

Figure 5.3: Illustration of the

working principle of the

Recursive Nearest Neighbor,

ReNA: The white lines represent

the edges of the graph. The

algorithm receives the original

image, considering each feature

(i.e. pixel or voxel in the image) as

a cluster. From now on, for each

iteration, the nearest clusters are

merged, yielding a reduced graph,

until the desired number of clusters

is found.

5.4 Conclusion – ReNA, a non-percolating fast clustering

method

We proposed a linear-time graph-structured clustering algorithm, ReNA, that

is e�cient with many clusters. This algorithm iteratively performs 1-nearest

neighbor grouping, reduces the graph at each iteration, then averages the

input features and repeats the process until it reaches the desired number of

clusters. Hence, this clustering strategy takes the underlying regularity in the

observed signal into account; and it will likely �nd balanced cluster sizes as

the 1-nearest neighbor graph does not percolate in general.



6 Validating the proposed clustering algorithm – ReNA

In the previous chapters, we introduced and analyzed feature

grouping as a dimension reduction technique for structured signals –

e.g. brain images. We also proposed a new clustering algorithm –see

chapter 5–, ReNA, that �nds balanced cluster sizes in linear-time.

In this chapter, we empirically validate that ReNA approximates the

data as well as traditional variance-minimizing clustering schemes that

have a quadratic complexity. As a consequence, data reduction by

this algorithm is very bene�cial for analysis of large-scale structured

datasets, as the dimension reduction is very fast, and it reduces the

computational cost of various estimators without losing accuracy.

In addition, our theoretical analysis –see chapter 3.4– is backed

by extensive experiments on publicly-available data that illustrate the

computation e�ciency and the denoising properties of the resulting

dimension reduction schemes.

6.1 Experimental Study

In this chapter, we conduct a series of experiments to assess the quality of the

dimensionality reduction scheme and its viability as a preprocessing step for

several statistical analyses. Table. 6.1 gives a summary of the datasets used.

We investigate the performance of feature grouping with a variety of

clustering algorithms: single-linkage, average-linkage, complete-linkage,

Ward, SLIC, and ReNA. We compare them with other fast dimensionality

reductions: random projections, random sampling, as well as image

downsampling. We measure their ability to represent the data and

characterize their percolation behavior when it is relevant. To evaluate

their denoising properties, we use them in prediction tasks. We study not

only ℓ2 methods, but also methods relying on higher moments of the data

distribution: ℓ1 penalization and independent component analysis (ICA).

To present the results, we use the fraction of the signal, which is de�ned

as the ratio between the number k of components and the greatest possible

value of k. Here, we have two cases: i) for random projections and feature

grouping methods, the maximum value of k corresponds to the number p of
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features, k/p × 100%; ii) for random sampling, the maximum value of k is

the number of samples, k/n× 100%. Downsampling the images with linear

interpolation can be seen as using data-independent clusters, all of the same

size.

datasets

Dataset Description n p Task

Synthetic Cube 10 {8, 16, 64, 128}3 Time complexity

1 000 240 000 Distortion

Faces [173] Grayscale 2 414 32 256 Recognition of 38 subjects

face images

OASIS [98] Anatomical 403 140 398 Gender discrimination

brain images Age prediction

HCP [46] Functional 8 294 254 000 Predicting 17 cognitive tasks

brain images Spatial ICA

Table 6.1: Summary of the datasets

and the tasks performed with them.

Synthetic data: We generate a synthetic data set composed of 1 000 3D

images with and without noise. Each one is a cube of p = 503 voxels

containing a spatially smooth random signal (FWHM=8 voxels), which is

our signal of interest X. The acquired signal S is our signal of interest

contaminated by zero-mean additive white Gaussian noise, with a Signal-to-

Noise Ratio (SNR) of 2.06dB.

The extended Yale B face recognition dataset[173]: This dataset was

designed to study illumination e�ects on face recognition[173] and consists

of n = 2 414 images of 38 identi�ed individuals under 64 lighting conditions.

Each image was converted to grayscale, cropped, and normalized to 192×
168, leaving p = 32 256 features. For the face recognition task, there are 38

classes, one per subject.

The Open Access Series of Imaging Studies (OASIS)[98]: This dataset

is described in section 1.5. We perform two prediction tasks with this dataset:

i) Gender classi�cation and ii) age regression.

Human Connectome Project (HCP)[46]: We consider a functional

Magnetic Resonance Imaging acquired in the HCP –see the description in

section 1.5.

Task-related data: The tasks relate to di�erent cognitive labels on working

memory/cognitive control processing. With these data, we perform across-

subject discrimination of 17 experimental conditions selected from the

aforementioned task-related datasets.
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Resting-state data: We use the two resting-state sessions from 93 subjects.

Each session represents about 1GB of data, with p ≈ 220 000 and n = 1200,

totaling 200 GB of dense data for all subjects and sessions. With this data, we

perform a spatial ICA.

Implementation aspects: We use scikit-learn for machine-learning tasks

(logistic and Ridge regression), fast-ICA, clustering and sparse random

projections [123]. We rely on scikit-image for SLIC[157], and on Nilearn[2]

to handle neuroimaging data. Code for ReNA and experiments is available

online1. 1 https://github.com/ahoyosid/ReNA

6.2 �ality assessment experiments

We perform experiments to measure distortion properties and computation

times of the dimensionality reduction methods.

Empirical computational complexity

We empirically assess the scalability of the algorithms as function of the input

size. The test is carried out for a synthetic dataset composed of 10 cubes. We

varied their dimension p ∈ {8, 16, 64, 128}3 and �x the number of clusters

to k =
⌊ p

20

⌋
. We repeat 10 times, and report the average computation time.

Fig. 6.1 reports the computation time to estimate Φ for the di�erent

approximation schemes. It shows that Nyström, single-linkage, complete-

linkage, SLIC and ReNA have a behavior linear in the number p of features.

Random projections, average-linkage and Ward display a sub-quadratic

time complexity, whereas downsampling has a sub-linear behavior. Single-

linkage and ReNA outperform other agglomerative methods, reducing the

computation time by a factor of 10. Pro�ling random projections reveals

that its run time is dominated by the random number generation. The scikit-

learn implementation uses a Mersenne Twister algorithm, with good entropic

properties to the cost of increased computations [78].
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Figure 6.1: Complexity of

the computation time on a

synthetic dataset: Evaluation

of the time complexity to �nd Φ

per algorithm on a synthetic data

cube, for various feature space

dimensions p ∈ {8, 16, 64, 128}3

and �xing the number of clusters to

k =
⌊ p

20

⌋
. Downsampling displays

a sub-linear time complexity,

whereas Nyström, single-linkage,

complete-linkage, SLIC and

ReNA present a linear behavior.

Complete-linkage, Ward and

random projections have a sub-

quadratic time behavior.

https://github.com/ahoyosid/ReNA


66 andrés hoyos idrobo

Evaluating feature grouping properties

We evaluate the performance of Φ with three measures: i) The computation

time when varying the number k of clusters for a �xed dimension p, ii) the

signal distortion for various number of clusters; iii) the size of the largest

cluster. Tuning dimensionality reduction to the data at hand may capture

noise in addition to signal. Hence we apply the learned Φ on left-out data,

in a cross-validation scheme splitting the data randomly 50 times. Each time,

we extract the clustering on half of the noisy data and apply it to the other

half to measure distortion with regards to the non-noisy signal. We vary the

number of clusters k ∈ [0.01p, p], because all the tested algorithms worked

properly in this range. In particular, the implementation used for SLIC [157]

posed problems to control the number of clusters in a larger regime. For the

Nyström approximation, we vary the dimensionality k ∈ [0.01n, n].

(a) downsampling (b) single-linkage (c) average-linkage (d) complete-linkage (e) Ward (f) SLIC (g) ReNA

Figure 6.2: Example of clusters

obtained for the extended Yale

B face dataset using various

feature grouping schemes:

Clusters found on the faces images

(k = 120). Single, average and

complete linkage clustering fail

to represent the spatial structure

of the data, �nding a huge cluster

leaving only small islands apart.

Downsampling fails to capture

the global appearance. In contrast,

methods yielding balanced clusters

maintain this structure. Colors are

random.

The clusters found by the clustering algorithms on the faces dataset are

shown on Fig. 6.2. We can see that single, average, and complete linkage have

percolated, failing to retain the spatial structure of the faces. Downsampling

also fails to capture this structure, while Ward, SLIC and ReNA perform

well in this task. Additionally, Fig. 6.2 shows the approximations of brain

images using clustering methods. As previously, percolating algorithms fail

to represent spatial features of the data.

Distortion: We want to test whether the reduction Φ X of the noisy data

is true to the uncorrupted signal S,

‖Φ X∗,i −Φ X∗,j‖2 ≈ ‖S∗,i − S∗,j‖2, ∀(i, j) ∈ [n]2. (6.1)

Then, to assess the quality of this approximation (see Eq. 3.2 and Eq. 4.7),

we randomly split half of the data to form a train and test clean signals

(Strain, Stest) and a train corrupted data matrix Xtrain. We learn Φ on the

train corrupted data Xtrain. On the test data, we �t a proportionality constant

η that relates the distances in reductions of the corrupted data with the

corresponding distances in the clean signals2. 2 We assume that the approximation
in Eq. 6.1 can be summarized by a
proportionality

We denote δ
orig
(i,j)

the norm of the di�erence of the i and j uncorrupted

signals, ‖Stest
∗,i − Stest

∗,j ‖2, and δ
noisy
(i,j)

the norm of the di�erence of the i and j

scaled noisy signals, η‖Φ Xtest
∗,i −Φ Xtest

∗,j ‖2, for all (i, j) ∈ [⌊ n
2

⌋]2
(note that
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(a) Original (b) single-linkage (c) average-linkage (d) complete-linkage (e) Ward (f) SLIC (g) ReNA

Figure 6.3: Approximation of anMRI image obtainedwith various feature grouping algorithms: A compressed

representation of an MRI image (slice) using various clustering methods for a number of clusters k = 1000. Traditional

agglomerative clustering methods exhibit giant clusters, loosing meaningful information. In contrast, Ward, SLIC and

ReNA algorithms present a better performance, �nding balanced clusters.

δ ∈ R
n(n−1)/8). We then use the relative distortion (RD) between δorig and

δnoisy to quantity the denoising e�ect of each method:

RD(δorig, δnoisy)(dB) = −10 log10

‖δnoisy − δorig‖2
2

‖δorig‖2
2

. (6.2)

This measure gives us an insight on the distortion and possibly denoising

e�ect. In particular, it shows us for which fraction of the signal the condition

of Eq. 4.6 is satis�ed. This experiment is carried out on two datasets: i)

Synthetic data, and ii) brain activation images (motor tasks) from the HCP

dataset.

The results on the distortion behavior are presented in Fig. 6.4 (top). Note

that SLIC displays an early stopping due the its inability to control the number

of clusters. In synthetic data, the clustering methods based on �rst order

linkage criteria (single, average, complete linkage) fail to represent the data

accurately. By contrast, SLIC,Ward and ReNA achieve the best representation

performance. These methods also show an expected denoising e�ect inside

the useful fraction of the signal value (k = {⌊p/20⌋, ⌊p/10⌋}), whereby
the learned approximation matches approximately the smoothing kernel that

characterizes the input signal. Downsampling also exhibits a denoising e�ect,

needing more components than the non-percolating methods. For the HCP

dataset, the denoising e�ect is subtle, given that we do not have access to

noiseless signals. Downsampling and Random projections �nd a plateau in

the relative distortion (RD) curve, meaning that the signal has a low entropy

that is captured with only few components. In both datasets, dimensionality

reduction by random projections and random sampling fail to diminish the

noise component, this is due to their property to maintain approximate

distance, representing also the noise.

Percolation behavior: Given that percolation is characterized by the

occurrence of one huge cluster for mild or large k values, we monitored the

size of the largest cluster when varying the number k of clusters.
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Figure 6.4: Quality assessment

of various approximation

techniques on synthetic and

brain imaging data: Evaluation of

the performance for several number

k of clusters. (top) Empirical

measure of the distortion, RD of

the approximated distance. For

a fraction of the signal between

5% and 30% Ward, SLIC and

ReNA present a denoising e�ect,

improving the approximation of the

distances. In contrast, traditional

agglomerative clustering fails to

preserve the distance in the reduced

space. Downsampling displays

an intermediate performance.

(center) Regarding computation

time, downsampling and random

sampling outperform all the

alternatives, followed by random

projections and single-linkage.

The proposed method is almost

as fast as single-linkage. (bottom)

Percolation behavior, obtained

through the size of the largest

cluster. Ward, SLIC and ReNA

are the best avoiding huge

clusters. The vertical dashed

lines indicate the useful value

range for practical applications

(k ∈ [⌊p/20⌋, ⌊p/10⌋]).

The results of tracking the size of the largest cluster are presented in Fig. 6.4

(bottom). This shows that among the traditional agglomerative methods,

single, average and complete linkage display the worst behavior with a

persistent percolation. Complete-linkage exhibits a more complex behavior,

with the occurrence of relatively large clusters in the large k regime, that

grows slowly in the small k regime. On the other hand, Ward and SLIC are the

most resilient methods to percolation, both known for their tendency to create

equally large clusters. Finally, ReNA achieves a slightly worst performance,

but mostly avoids huge clusters. The results are again across both datasets.

Computation time: Computation-time of the di�erent methods are

displayed in Fig. 6.4 (center). Dimension reduction by downsampling is

overall fastest, as it does not require any training and the computational time

lies in the linear interpolation. It is followed by the Nyström approximation,

with faster computation for a small number k of components. While

the computation time of Nyström approximation and random projections

increases with the reduction fraction of signal, clustering algorithms are

faster, as they require less merges. Random projections are faster than

clustering approaches to reduce signals to a size smaller than 30% of their

original size. In the clustering approaches, single-linkage and ReNA are
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the fastest, as expected. Note that the cost of the clustering methods scales

linearly with the number of samples, hence can be reduced by subsampling:

using less data to build the feature grouping.

6.3 Use in prediction tasks

To evaluate the denoising properties of dimension reduction, we now consider

their use in prediction tasks. We use linear estimators, as they are standard

in high dimensional large-scale problems. In particular, we focus on linear

estimators with ℓ2 or ℓ1 penalties. For the ℓ2 case, the estimation problem

ΦFG
T

ΦFG acts like a kernel of the quadratic form. For such estimators,

dimension reductions that preserve pairwise distance are well motivated

theoretically [136]

For each problem, we use the relevant metric (i.e. explained variance3 3 The explained variance is de�ned as R2 =

1− Var(model−signal)
Var(signal)for regression and accuracy4 for classi�cation) to assess the performance

4 Accuracy is de�ned by: 1 −
number of miss-classi�cations

total number of samples

with di�erent dimension reduction methods, as each one yields a di�erent

estimator. These results are then compared with those obtained based on raw

data.

Spatial approximation on a faces recognition task

Face recognition is a classic computer-vision task. A standard pipeline to

tackle this problem consists of dimensionality reduction of the data and then

training a classi�er to recognize an unseen face image. Some of the pipelines

include random projections, PCA, downsampling [173] or dictionary learning

[174]. It has been shown that images of a subjectwith a �xed pose and varying

illumination lie close to a low-dimensional subspace [16]. This justi�es the

use of data approximation, in particular with linear projections.

To perform the classi�cation task, we use an ℓ2 or ℓ1 logistic regression

with a multi class one-vs-rest strategy and set the regularization parameter

λ by 10-fold nested cross-validation. We mimic a study on reduced face

representations [173], computing prediction accuracy for various feature-

space dimensions k ∈ {30, 56, 120, 504}, corresponding to downsampling

ratios of {1/32, 1/24, 1/16, 1/8} respectively. Prediction error is measured

in 50 iterations of a cross-validation loop randomly selecting half of images

in each subject for the training and the other half for testing.

Fig. 6.5 reports the prediction accuracies. For high reduction factors

(k = 30), Ward, Nyström, and ReNA perform up to 10% better than

random projections or downsampling: representations adjusted on the data

outperform data-independent reduction operators. For raw data, without

reduction, prediction accuracy is around 95.3% and 94.1% for the ℓ1 and ℓ2

penalization respectively. Similar performance is obtained after reducing the

signal by a factor of 64 with random projections, Nyström, downsampling,

Ward, SLIC or ReNA. In contrast, single, average and complete linkage
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clustering fail to achieve the same performance. This shows the importance

of �nding balanced clusters.

Regarding computation time, data reduction speeds up the convergence of

the logistic regression. Nyström and downsampling are the fastest methods.

They are followed by random projections, single-linkage and ReNA, all of

them having similar performances. Average, complete linkage, Ward and

SLIC are slightly slower on this dataset.
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Figure 6.5: Impact on face

prediction accuracy for various

approximation schemes:

Prediction accuracy as function

of the feature space dimension

obtained for various approximation

schemes and classi�ers for the

recognition of human identities

on the extended Yale B dataset.

The clustering methods �nding

balanced clusters need less features

to have a fair performance, and

they also obtain signi�cantly

higher scores than the percolating

methods.

Convergence time – a good solution on a time budget

We now turn to evaluating dimension reduction on brain imaging data.

Machine learning techniques is often used on brain images to link brain

regions with external variables (e.g. experiment conditions or cognitive tasks)

[105][142]. Linear models are generally used as their coe�cients form brain

maps that can be interpreted [111]. With progress in MRI, brain images

are becoming bigger, leading to computational bottlenecks. The Human

Connectome Project (HCP) is prototypical of these challenges, scanning 1 200

subjects with high-resolution protocols. We consider two brain-imaging

prediction problems: i) gender classi�cation using anatomical brain images of

the 400 subjects fromOASIS dataset and ii) the prediction of 17 cognitive tasks

using functional brain images from 483 subjects of the HCP dataset. Here we

study how dimension reduction can speed up convergence of classi�ers. To

do so, we measure the computation time needed to reach a stable solution

for an ℓ2 logistic regression, including the cost of computing the compressed
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representation and of training the classi�er. We use a multinomial logistic

regression with an ℓ2 penalty and an L-BFGS-based solver.

In Fig. 6.6, we report prediction results as a function of computing time on

the OASIS and HCP dataset. In both datasets, feature clustering with single,

average, and complete linkage lead to poor prediction. This was expected

due their tendency to �nd unbalanced clusters (percolation). On the other

hand, Ward, SLIC, and ReNA obtain better prediction accuracy than raw data.

All three approaches converge to similar accuracies, though with di�erent

convergence time. On the HCP dataset, SLIC takes more time to �nd the

clusters, but it requires only a few iterations to converge, likely because it

�nds good quality clusters. Downsampling displays uneven performance,

on the HCP dataset it performs slightly better than raw, while performing

marginally worse on the OASIS dataset. In both datasets, the Nyström

approximation and random projection achieve a lower prediction level than

raw, this is because these methods capture both data and noise.

Improved performance of feature clustering compared to raw data

highlights the importance of its signal denoising e�ect. ReNA strikes an

excellent balance, as it reaches accuracies above that of raw data fastest.
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Figure 6.6: Computation time

taken to reach a solution:

Quality of the �t of a ℓ2 penalized

logistic regression as function

of computation time for a �xed

number of clusters. In both

datasets, Ward, SLIC and ReNA

obtain signi�cantly higher scores

than estimation on non-reduced

data with less computation time to

reach a stable solution. Note that

the time displayed does include

cluster computation.

Impact of the approximation on prediction accuracy

Here, we examine the impact of the signal approximation on prediction

accuracy. We use various datasets (i.e. faces, anatomical and functional

brain images), setting k = ⌊p/20⌋ for random projections, downsampling
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Figure 6.7: Impact of reduction methods on prediction for various datasets: (Top) Each bar represents the

impact of the corresponding option on the prediction accuracy, relatively to the mean prediction with non-reduced

data. Downsampling has the same performance as raw data. On the other hand, random projections, Nyström, single,

average and complete linkage algorithms are consistently theworst ones across datasets. Ward, SLIC and ReNAperform

at least as good as non-reduced data. (middle) Regarding the computation time to �nd a reduction, single-linkage and

ReNA are consistently the best among the clustering algorithms. Random projections perform better than Nyström

when the number of samples is large. Downsampling is the fastest across datasets. (Bottom) The time to converge for

single-linkage and ReNA is almost the same. Average, complete-linkage and Ward are consistently the slowest. SLIC

performs well on large datasets. Nyström and random projections are the fastest across datasets. Single-linkage and

ReNA are the fastest clustering methods. ReNA strikes a good trade-o� between time and prediction accuracy.
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and clustering methods, and k = ⌊n/10⌋ for Nyström. For the faces

dataset, we use the k = 504 for all the methods; this value corresponds to a

downsampling ratio of 1/8. In addition, we predict age on the OASIS dataset,

using a Ridge regression and setting its regularization parameter via cross

validation. For each prediction task, we measure for all dimension reduction

schemes the prediction accuracy, relatively to the mean prediction with raw

data.

Fig. 6.3 summarizes the impact of dimension reduction on prediction

accuracy and computation time. Dimension reduction with clustering

algorithms that yield balanced clusters (Ward, SLIC, and ReNA) achieve

similar or better accuracy aswith raw datawhile bringing drastic time savings.

Random projections and the percolating methods give consistently worse

prediction accuracy than raw data. On the OASIS dataset, downsampling,

SLIC, and Ward achieve the same prediction accuracy as raw, and perform

better than raw on other datasets. Nyström only performs as good as raw

data on the faces dataset with an ℓ2 penalized logistic regression. ReNA has

a slightly worst performance than raw only in this dataset, and displays a

better performance than raw on the remaining datasets (p-value < 10−4).

This illustrates the reduction of the spatial noise exhibited by non-percolating

clustering methods.

6.4 Use in a spatial ICA task

Aside from the ℓ1-penalized estimator, the data processing steps studied

above depend only on the pairwise distances between samples. We now we

investigate dimension reduction before an Independent Component Analysis

(ICA), which probes higher moments of the data distribution. We use ICA on

resting-state fMRI from the HCP dataset. ICA is used routinely on rest fMRI

to separate signal from noise and obtain a spatial model of the functional

connectome [149]. We use 93 subjects, with two resting-state fMRI sessions,

each containing 1200 brain images.

We compare ICA on the raw data and after dimension reduction to �ve

percent of the number of voxels (k =
⌊ p

20

⌋
). For the Nyström method the

dimension is set to ten percent of the number n of samples (k =
⌊

n
10

⌋
). In each

subject, we extract 40 independent components as it is a standard number in

the literature. We investigate i) how similar the components obtained are

before and after reduction; ii) how similar the components of session 1 and

session 2 are with di�erent reduction approaches. This second experiment

gives a measure of the variability due to noise. In both cases, we measure

similarity between components with the absolute value of their correlation,

and match them across sessions with the Hungarian algorithm.

Fig. 6.4 summarizes the use of dimension reduction in ICA of rest fMRI.We

�nd that the 40 components are highly similar before and after data reduction

with downsampling and Ward: the average absolute correlation greater than
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0.8. SLIC and ReNA have a slightly worse performance, with an average

correlation greater than 0.74. On the other hand, single-linkage, average-

linkage, complete-linkage, Nystöm, and random projections do not recover

the components (average correlation < 0.4). As expected, the components

between sessions obtained by non-percolating clustering (Ward, SLIC, and

ReNA) are similar to the original ones. Donwsampling improves the similarity

with respect to raw: the estimation problem is simpler and less noisy. On

the opposite, single, average, and complete linkage yield a degradation of

the similarity. This is caused by their tendency to percolate, hence dismiss

information. Random projections and Nyström perform poorly. Indeed, they

average data across the images, destroying the high-order moments of the

data by creating signals more Gaussian than the originals. As a consequence,

ICA cannot recover the sources derived from the original data. By contrast,

the non-percolating clustering algorithms extract local averages of the data,

that preserve its non-Gaussianity, as it has a spatial structure. Hence the

spatial ICA is successful even though it has access to less samples. Finally,

dimensionality reduction using ReNA speeds up the total analysis by a factor

of 15.

0.0 0.2 0.4 0.6 0.8 1.0

correlation

raw: non reduced

random proj

Nystrom

downsampling

single linkage

average linkage

complete linkage

Ward

SLIC

ReNA

consistency with raw
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correlation

between session similarity

1
16

x 1
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x 1x 4x

Relative CPU time

computation time

Approximating an ICA decomposition

Figure 6.8: Reproducibility of a spatial ICA after dimension reduction: Reproducibility of 40 spatial independent

components on 93 individual functional brain images dataset, with a �xed reduced dimension. (Left) the reproducibility

of downsampling, Ward, SLIC and ReNA with respect the non-compressed components is high. (Middle) across two

sessions, donwsampling yields components more consistent than raw data. Ward, SLIC and ReNA perform as good as

raw data, while other approaches fail to do so. (Right) regarding computational time, ReNA outperforms downsampling,

Ward and SLIC, with a performance similar to single-linkage and random projections. It yields a gain factor of 16 with

respect to raw data.

6.5 Summary and Discussion

Fast dimension reduction is a crucial tool to tackle the rapid growth in

datasets size, sample-wise and feature-wise. In particular, grouping features
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is natural when there is an underlying regularity in the observed signal,

such as spatial structure in images or a more general neighborhood structure

connecting features. We studied here a data-driven approach to feature

grouping, where groups are �rst learned from a fraction of the data using

a clustering algorithm, then used to build a compressed representation for

further analysis.

Our experiments have shown that on moderate-to-large datasets, non-

percolating feature-grouping schemes –i.e. Ward, SLIC, and ReNA– most

often outperform state-of-the-art fast data-approximation approaches for

machine learning, namely random projection and random sampling. Using

these methods in a predictive pipeline increases the quality of statistical

estimations: they yield more accurate predictions than using all features. This

indicates that feature grouping leads to a good approximation of the data,

capturing the structure and reducing the noise. This denoising is due to the

smoothness of the signal of interest: unlike the noise, the signal displays

structure captured by feature grouping.

A key bene�t of the ReNA clustering algorithm is that it is very fast

while avoiding percolation. As a result, it gives impressive speed-ups for

real-world multivariate statistical problems: often more than one order of

magnitude. Note that the computational cost of ReNA is linear in the number

of samples, hence additional computation gains can be obtained by sub-

sampling its training data, as in Nyström approaches. In this work, we did

not investigate the optimal choice of the number k of clusters, because we

do not view compressed representations as a meaningful model per se, but

as an approximation to reduce data dimension without discarding too much

information. The range k ∈ [⌊ p
20

⌋
,
⌊ p

10

⌋]
is a useful regime it gives a

good trade-o� between computational e�ciency and data �delity. In our

experiments, k =
⌊ p

20

⌋
gave enough data �delity for statistical analysis to

perform at least as good as raw data. In this regime, Ward clustering gives

slightly better approximations of the original data, however it is slower, often

by several factors, hence is not a practical solution.

We have shown that feature grouping is useful beyond ℓ2-distance-based

methods: it also gives good performance on estimators relying on higher

order moments (e.g. ICA) or sparsity (ℓ1-based regression or classi�cation)5. 5 On the faces datasets for the ℓ1 estimator,
ReNA performs as well as raw data.As future work, it would be interesting to investigate the use of ReNA-

based feature grouping in expensive sparse algorithms, for instance with

sparse dictionary learning, where feature sub-sampling can give large speed

ups [102]. Similarly, the combination of clustering, randomization, and

sparsity has also been shown to be an e�ective regularization for some ill-

posed inverse problems [161][22]. We conjecture that ReNA clustering is

particularly well-suited for these problems. This is all the more important

that computation cost is a major roadblock to the adoption of such estimators.

Given that ReNA clustering is extremely fast, the proposed featuring-

grouping is a promising avenue to speed up any statistical analysis of large
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datasets where the information is in the large-scale structure of the signal.

Such an approach is crucial for domains where the resolution of the sensors

is rapidly increasing, in medical or biological imaging, genomics or geospatial

data.



Part III

Contribution – improving

the stability of brain

decoders
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7 Decoding with ensembles of models

In the previous chapters, we have considered feature grouping as a

dimension reduction scheme of structured signals. We have proposed

a fast agglomerative clustering algorithm that �nds balanced clusters,

ReNA. In addition, we validated it by extensive experiments, showing its

computational e�ciency and denoising behavior.

In this chapter, we are interested in brain activation decoding. In

particular, we consider the stability of the decoder as a �rst step

towards reproducibility. Here, the stability is measured relatively to data

perturbations. These perturbations are obtained by sampling from an

underlying distribution or replicating the experiment with a new set of

data.

We propose to use ensembles of models –e.g. model aggregation– to

improve the stability of decodersweight maps, as well as their prediction

accuracy. But given the high-dimensional setting of neuroimaging

data, choosing the hyperparameters of the aggregated estimator is

computationally expensive. To tackle this, we make use of the decoder

set in the nested cross-validation loop to �nd a “good” estimator per

iteration, then we build the decoder by aggregating these estimators.

In addition, we include an implicit spatial constraint by using feature

grouping.

The contributions developed in this chapter, along with the next two, have

been published in:

Improving sparse recovery on structured images with bagged

clustering. Andrés Hoyos-Idrobo, Gaël Varoquaux and Bertrand Thirion.

PRNI - IEEE International Workshop on Pattern Recognition in Neuroimaging.

2015, Stanford University, Palo Alto, USA.
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7.1 Introduction: decoding needs stability

Decoding models reconstruct stimuli or behavior from brain images. These

models have become a standard tool in neuroimaging data processing

[68][160][115]. In clinical applications, these models open the possibility of

performing diagnosis or prognosis [48][34]. They are also used as evidence of

the link between brain regions [67][108] and an observed behavior. Decoding

can map a large variety of cognitive processes [127].

In brain decoding, the main goal is to retrieve and understand the patterns

of brain images that drive a good prediction, that is: identifying the brain

regions involved in the cognitive processing of an external stimulus. Yet,

training a reliable decoder is challenging due to the dimensionality of the

problem: the number of samples is small –hundreds or less–, whereas the

number of features is typically the number of voxels in the brain –up to

hundreds of thousands. Linear models, e.g. linear support vector machines

(SVM), are often used [126], as they have shown a good performance in a

small-sample regime. In addition, their classi�cation/regression weights form

brain maps used for interpretation of the discriminative pattern [108].

However, the high dimensionality of the problem leads to multiple weight

maps yielding the same predictive power, and some form regularization has

to be applied [64]. In across-subject settings, spatial and sparse penalties such

as total-variation (TV) [103] and Graph-net [61] help the decoder to capture

the important brain regions shared across subjects. TV and its variants are

considered as the state-of-the-art regularizers for brain images, as they handle

local correlations present in the data. The main drawback of spatial sparsity

as in TV and related penalties is their computational cost.

Assessing the predictive power of the decoder is important, as it provides a

�gure of merit of the model. The setting of hyperparameters is also essential,

and typically requires some measure of accuracy. In practice, we use cross-

validation to perform these tasks [162]. This method requires training the

decoder several times to build an empirical distribution of the predictive

performance. These repeated calculations entail computational costs that are

intractable in standard workstations [106]. The computation resources are

an important limitation to account for.

Another desired characteristic of decoding algorithms is the stability to

data perturbations. These perturbations are de�ned as sampling from an

underlying distribution or replicating the experiment for a new set of data.

In practice, we do not have access to this distribution. Instead we have to rely

on data sampling/resampling methods to create an empirical distribution –e.g

bootstrap, cross-validation. Stability assumes that small variations in the data

yield a commensurate variation in the weight map.
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One approach to reduce the variability of the decoder is to use ensembles

of models [176]. A simple version of this idea is to build a decoder by

averaging several “good” models. One way is to use bootstrap resampling to

generate several training sets and corresponding models, and then aggregate

them: Bagging1 [20]. This approach is easily parallelizable, as each model 1 Bagging is a sobriquet for Bootstrap
aggregatingis trained independently. However, the application of this idea does not

translate straightforwardly to a high-dimension setting, as choosing the

hyperparameter of the aggregated model is computationally expensive.

In this chapter, we propose a simple scheme to reduce the variance of the

weight maps of the decoder. This method consists in averaging the estimator

with the best predictive power per loop inside the nested cross-validation.

In addition, we include a spatial denoising step using feature grouping. We

assume that by averaging several models the resulting decoder is more robust

to violations of modeling assumptions.

Brain decoding

In neuroimaging, a decoder is a predictive model that, given n brain images,

infers an external variable y. In practice, we arrange n observed brain images

composed of p voxels in a matrix X ∈ R
n×p. y denotes a target variable

giving the experimental condition or health status of subjects. In linear-

regression setting, y ∈ R
n, and in the case of classi�cation y ∈ {−1, 1}n.

Typically, we use the following linear predictive model [65]:

y = f (Xω + ǫ), (7.1)

where f represents the decision function in the classi�cation or the

identity in the case of regression; ω ∈ R
p denotes a �xed but unknown

weight vector/map, and ǫ ∈ R
n is a random error term, which is independent

of X and has mean zero. Formally, we have a sequence of n independent

and identically distributed (i.i.d.) input-output pairs {(Xi, yi)}n
i=1 distributed

according to an unknown distribution P. Then, our aim is to �nd a suitable

estimator, parametrized by the unknown ω weight maps.

In spite of a recently growing e�ort on the accumulation of neuroimaging

data [130], the number n of samples per-class remains in the order of a few

hundreds, whereas p can be hundreds of thousands of voxels (p ≫ n). In

this high-dimensional setting there are many equivalent solutions and some

form of regularization or prior is necessary to restrict model complexity. A

standard approach relies on solving the following optimization problem:

ω̂(λ) = argmin
ω∈Rp

{L(y, X; ω) + λΩ(ω)} , λ > 0, (7.2)

whereL is a data-�delity term, a loss function that measures the quality of the

estimator (e.g. logistic loss, hinge loss); Ω denotes the penalty/regularization

term, and λ is the parameter that controls the amount of regularization. In
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practice, we chose Ω to be a convex but not necessarily smooth. Two of the

most often used penalties are: 1) ℓ2-penalty, ‖ω‖2
2 = ∑

p
i=1 ω2

i , that penalizes

large ω-coe�cients, it is non-sparse; 2) ℓ1-penalty, ‖ω‖1 = ∑
p
i=1 |ωi|, that

promotes a small number of non-zero ω-coe�cients: it yields sparse solutions

[153].

Model selection

In high-dimensional settings, the number of candidate models is much larger

than the sample size. Therefore, we use regularization to constrain the

complexity of the solution, and this penalization is controlled by the λ

regularization parameter. Then, our aim is to �nd a model that exploits the

richness of the data, �nding the best bias-variance trade-o�. We use the

predictive power of the decoder to chose the right amount of regularization.

Estimating the predictive power: The accuracy, or the predictive power

of a decoder is de�ned as the expected error on the prediction, formally:

accuracy = E
[
η(ypred, yground truth)

]
, (7.3)

where η is measure of the error, most often2 the fraction of instances for 2 In multiclass problems or for unbalanced
classes, the measure of the error have to
be more elaborate to distinguish misses and
false detections for each class.

which ypred 6= yground truth. We need the underlying distribution of the

data to compute the Eq. 7.3, but in practice it is unknown. Instead, we use

data perturbation schemes to assess the predictive power of each model [9].

We create b pseudo datasets,
{

(X∗(j), y∗(j))
}b

j=1
, where each one draws m

samples with orwithout replacement from (X, y). Each pseudo dataset is split

into a train set and a test set: (X
∗(j)
train, y

∗(j)
train) and (X

∗(j)
test , y

∗(j)
test ) respectively. We

use the train set to �t the decoder, and use the test set to measure its ability

to generalize to new data .

Hyperparameters selection: In general, the setting of the hyperparameter

is a data-speci�c choice, as it is governed by the amount of data and the

signal-to-noise-ratio (SNR). The most common approach to set it is to use

cross-validation to measure the predictive power of various amounts of

regularization and retain the value that maximizes the predictive power

across several data perturbations [162]. To assess predictive power in

addition, the standard scheme is nested cross-validation, which consists

of two cross-validation loops run one inside the other: an outer loop is used

to assess the predictive power of the decoder, and an inner/nested loop is

used to set the hyperparameter (see Fig. 7.1).

In most of the non-parametric approaches to select a regularization

parameter, we �rst de�ne a suitable and �nite set of l hyperparameters,

λ ∈ [λ1, . . . , λl ], λi > 0 for i ∈ [1, . . . , l]. Hence, we �t l models on these b

datasets, as follows:
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Figure 7.1: Illustration of nested

cross-validation: Two cross-

validation loops are run one inside

the other. The inner loop is used to

set the hyperparameters, whereas

the outer loop is used to assess the

predictive power of the decoder.

ω̂(j)(λi) = argmin
ω∈Rp

{

L(y∗(j)
train, X

∗(j)
train; ω) + λiΩ(ω)

}

, (7.4)

where j ∈ [1, . . . , b] and i ∈ [1, . . . , l]. One measures the prediction error

of each i-model on X
(j)
test. Then, one choses the λi value that maximizes the

predictive power across b datasets. Nevertheless, we must note that in the

case of multicollinearity, a strong correlations of the columns of X, the ℓ1-

penalty is not stable as it tends to arbitrarily select one among the correlated

variables and not the others [175][161]. One way to tackle this is the use

of spatially informed penalties as Graph-net [61] or TV related [103][43].

However, these complex penalties come with a higher computational cost

[106], which hinders the statistical validation of the predictive power as we

have to perform several iterations of the outer cross-validation loop.

Ensembling methods for be�er stability

Model averaging: Model selection can run into some issues due to

instability in the choice of the model, as any perturbation of the original

data entails the selection of a completely di�erent hyperparameter [9]. Model

averagingmitigates this problem by aggregating the output of several suitable

models [112]. A simple version of this idea is bootstrap aggregation (bagging)

[20]. This method improves the predictive power of the base estimator,

reducing the variance if the errors each of model are su�ciently uncorrelated.

The bagged/aggregated estimator is built by averaging predictors.

Bagging in regression [20]: We present Breiman’s proof of bagging

regressors to demonstrate its bene�ts. Let D be a training set which contains

a sample of independent (x, y) drawn from the distribution P. De�ne h(x, D)

to be prediction function based on the sample D. Let haggr(x) = ED[h(x, D)]

be an aggregate of prediction functions.
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Take x to be a �xed predictor and y an output value. Then

ED[(y− h(x, D))2] ≥ ED[y− h(x, D)]2 (by Jensen’s inequality)

= y2 − 2yED[h(x, D)] + ED[h(x, D)]2

= (y− haggr(x))2.

Hence, the averaged predictor has lower mean-squared error than the base

predictor. This improvement depends on how unequal ED[h(x, D)2] ≥
ED[h(x, D)]2 are. The more the h(x, D) vary with respect each other, the

more improvement the aggregation may produce.

To understand the e�ect of averaging, let us assume the extreme case

where the models created by sampling are i.i.d. Let the aggregation be the

mean of the predicted values haggr(x) = 1
b ∑

b
i=1 hi(x, D), where hi(x, D)

denotes the prediction function based on the sample D. The predictions are

i.i.d., and the variance of each of them is de�ned by ED[(y− hi(x, D))2] =

σ2. Hence, the variance of the aggregated estimator is:

ED

[
(y− haggr(x))2

]
=

1

b2
ED

[

(
b

∑
i=1

y− hi(x, D))2

]

=
1

b2

b

∑
i=1

ED

[
(y− hi(x, D))2

]
(by independence)

=
1

b
σ2.

We can see that averaging decreases the error as
√

b. Note that the i.i.d. case

studied here is the most favorable case.

In particular, averaging linear models3 boils down to: 3 The bagged estimator is a Monte-Carlo
approximation of E[ω].

ω̂bagg(λ) =
1

b

b

∑
j=1

ω̂(j)(λ), (7.5)

where b is often chosen as 50 or 100, depending on the sample size and on

the computation cost to evaluate the estimator ω̂ [21]. Note that λ has to be

set, requiring another nested loop of cross-validation.

Stability-based ensembles: In neuroimaging, another approach to

improve the stability of the estimators is to train the base estimator on

several random partitions of the feature space, then select representative

features according to a consensus. These partitions can be de�ned using

various criteria, for instance: i) random voxels selection[82][81]; ii) using

clustering in decoding [161] and encoding [32] settings. Yet, these decoders

need to �t more models, to accumulate selection statistics, and hence entail

computational costs that are intractable given the number of models to �t.
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7.2 Improving ensembling in high-dimensional se�ings

Dimension reduction – feature agglomeration: In neuroimaging,

dimension reduction is routinely used to alleviate problems due to high-

dimensionality, and it can be performed within the cross-validation loop to

avoid over�tting. A common way to select features is univariate feature

screening, which uses a score (e.g. statistical test, correlation) to remove non-

predictive variables [37]. However, this method does not take into account

the spatial structure of brain images. Hence, we can reduce the dimension

of the data by grouping similar neighboring voxels, moving form the voxel-

space to a parcel-space. To do this, we can use anatomical/functional atlases

or data-driven approaches.

Here we rely on the ideas developed in the previous part –see chapter 3.4–,

where we use a fraction of the training data to train a clustering algorithm,

�nding suitable groups of features or parcellations. Then, we use these parcels

on the remaining data to work at a parcel level. Formally, we de�ne a feature-

grouping matrix Φ ∈ R
p×k, where k ≪ p, and each column has a constant

value with support at each parcel. We normalize each column to have unit

ℓ2-norm [74]. To reduce the dimension, we multiply the data by the feature-

grouping matrix, Xreduced = X Φ. We can also build an approximation4, 4 This approximation can be seen as the
application of an anisotropic smoothingXapprox = X Φ Φ

†. When the feature-grouping matrix has independent

columns, this approximation boils down to Xapprox = X Φ Φ
T.

This approach increases the SNR at the expense of spatial resolution

without excluding potentially informative variables. It can be used in

combination with sparse methods to alleviate their unstability when dealing

with correlated variables [22][161].

Faster regularized ensembles of linear models: Setting the

hyperparameters of ensembles of models can be computationally expensive,

as a single aggregated estimator requires �tting b base estimators (see Eq. 7.5).

To tackle this computational bottleneck, we can average weight vectors of

nested cross-validation folds at best performing hyperparameter values (in

the sense of predictive power). In addition, we can also add an implicit spatial

constraint using clustering of features, applying it at each fold to increase

the entropy of the clusters shapes. For completeness we detail the proposed

pipeline in Algorithm 3 and Fig. 7.2.

7.3 Summary – training ensembles of models in

neuroimaging

We proposed a scheme to train ensembles of linear models in high-

dimensional settings. This scheme aggregates the best estimators of each

nested cross-validation loop. Additionally, we include an implicit spatial

constraint by using feature grouping at each iteration. Hence, this scheme
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Figure 7.2: Regularized ensembling ofmodels: Fast regularized ensembles ofmodels uses one loop less than bagging

of regularized models.
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Algorithm 3 Fast regularized ensembling of models

Require: Training data X ∈ R
n×p, desired number k of clusters, sampling parameter, number b of estimators to

aggregate, set of hyperparameters [λ1, . . . , λl ], penalty Ω and loss L.
Ensure: ωbagg

1: for j = 1 to b do

2: Build pseudo-dataset:
{

(X∗(j), y∗(j))
}

← {(Xi, yi)}m
i=1 , where X∗(j) ∈ R

m×p, and y∗(j) ∈ R
m

{draw m samples from (X, y) at random}

3: Split into a training set and a testing set:
(

X
∗(j)
train, y

∗(j)
train

)

,
(

X
∗(j)
test , y

∗(j)
test

)

{Select ⌊m
2 ⌋ samples at random (without replacement)}

4: Build feature-grouping matrix: Φ
(j) ∈ R

p×k{Clustering of features using Eg. 2}

5: Dimension reduction: X̃red ← X
∗(j)
train Φ

(j), where X̃red ∈ R
⌊ m

2 ⌋×k

6: Univariate feature selection: use [37]

7: for i = 1 to l do

8: Estimate weight map: ω̂
(i)
red = argmin

ω∈Rp

{

L(y∗(j), X̃red; ω) + λiΩ(ω)
}

, ω̂
(i)
red ∈ R

k

9: end for

10: Assing to ω
(j)
best the ω̂

(i)
red, i ∈ [l] with the best performance on the test set

11: Return to voxel-space: ω
(j)
approx = ω̂

(j)
bestΦ

T(j), where ωapprox ∈ R
p

12: end for

13: return ω̂bagg ← 1
b

b

∑
j=1

ω
(j)
approx

can improve the stability of the weight maps.
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8 Validating ensembles of models: brain decoding

In the previous chapter, we have considered ensembles of models

to improve the performance of decoders. In this chapter, we

empirically validate this approach on several binary discrimination tasks.

Additionally, we do an intensive benchmark ofmany decoders to analyze

their stability.

We show that ensembles of models improve the stability of weight

maps, while reducing the variability of the prediction accuracy. It also

improves the small-sample recovery behavior, needing less data samples

to �nd weight maps that are similar to the ones obtained using the

whole dataset. When this scheme is combined with clustering, there

is an additional gain in weight map stability. In terms of computation

time, it is generally faster than state-of-the-art structured decoders. This

scheme is easily parallelizable across the nested cross-validation loops,

thus displaying additional speed ups. Finally, ReNA has shown to be

well suited to be used with ensembles of models, as it is very bene�cial

for weight-map denoising while incurring small additional computation

time.

The contributions developed in this chapter have been submitted to:

Stable brain decoding with ensembles of estimators. Andrés Hoyos-

Idrobo, Gaël Varoquaux, Yannick Schwartz and Bertrand Thrion. Neuroimage.

8.1 Empirical studies: stable brain decoding

In this section, we conduct a series of experiments to highlight the practical

aspects of model averaging in brain decoding. We use several MRI datasets

to investigate their prediction performance, weight-map stability, and

computation time.



92 andrés hoyos idrobo

Experiments on real neuroimaging data

To achieve reliable empirical conclusions, we consider a large number of

di�erent neuroimaging studies. We investigate model ensembles in several

binary classi�cation problems based on 8 fMRI datasets. We perform within-

subject discrimination across sessions between various types of visual stimuli

on the Haxby dataset [67]. In addition, we discriminate in an across subjects

setting: i) di�erent categories of visual stimuli from [40]; ii) conditions

di�erent levels of a�ective content with data from [163]; iii) mentalization

with data from[107]; iv) famous, familiar, and scrambled faces from a visual-

presentations dataset [71]; v) left and right saccades in data from [80]; vi)

relational and emotion processing, language, and gambling protocols from the

human connectome project (HCP)[46]; vii) response inhibition on openfMRI

ds009 [133]. We use the trial-by-trial (Z-score) maps computed in a �rst-level

GLM to perform all across-subject predictions. Additionally, we predict the

gender from VBM maps using the OASIS dataset [98]. See section 1.5 for a

more detailed description of these datasets.

Standard preprocessing and �rst-level analysis were applied using SPM.

All MR data were variance-normalized and spatially smoothed at 6 mm

FWHM for fMRI data and 2 mm FWHM for VBM data.

Experimental setup In all classi�cation tasks, we use nested cross-

validation for an accurate measure of the predictive power. We repeatedly

split the data into a validation set and a decoding set. We choose validation

sets of 20% the data, respecting the sample dependence structure (leaving out

subjects or sessions). We set 10 folds for the outer cross validation loop.

As is standard practice in fMRI decoding [126], we use univariate feature

selection on the training set to select 20% of voxels and train the decoder on

the selected features. We compare several decoders, split into two groups:

• Non-ensembles: Graph-net [61], TV-ℓ1 [103], SVM-ℓ1, and SVM-ℓ2.

• Ensembles: Ensembles of SVM-ℓ1, SVM-ℓ2, both, with and without

clustering. These estimators are �tted using the proposed pipeline –see

Algorithm 3.

We use scikit-learn [123] for the SVM with ℓ1 and ℓ2 penalties. We use

nilearn [2] for Graph-net and TV-ℓ1. When clustering is applied, we set the

number k of clusters to 10% of the number of p voxels1. We rely on the

1 We consider a useful dimension reduction
range, k ∈

[ p
20 ,

p
10

]
. This regime gives

a good trade-o� between computational
e�ciency and data �delity [74].

fast agglomerative clustering presented in [74] –see chapter 5. Regarding the

ensembles of models, we use 50% of decoding sets to train the decoder2. 2 In the standard bootstrap the whole
dataset is resampled. It can however be
approximated with a subsampling of 50% of
the data [144][134][39]In the �rst experiment, we empirically validate the performance of various

decoders on di�erent discrimination tasks. In a second experiment, we

explore the training speedup of decoders in a multi-core setting. Then we
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evaluate the similarity between weight maps obtained using all the data and

the ones obtained for di�erent sample sizes (small-sample recovery). Finally,

we measure the stability of ensembles of models.

8.2 Results: evaluating the performance of decoders

Benchmarking decoders

For all discriminative conditions, we measure the prediction error on several

left-out validation sets to assess the predictive power of the decoders.

Additionally, we measure the correlation between the weight maps obtained

in each cross-validation fold, and the computation time required to train

the decoder. To perform this analysis, we split the datasets into two types:

within-subject and across-subject. Throughout this experiment, we set the

number b of estimators used in the ensembles of models to 50. This choice is

discussed in Fig. 8.2.

Fig. 8.2 summarizes the relative performance with respect to the mean

across decoders per discriminative task. In within-subject settings, all sparse

methods have good prediction performance. Decoding using the standard

SVM with both ℓ1 and ℓ2 penalty is fast, but the weight maps are less stable

than the ones found by sparse structured methods –i.e. Graph-net and TV-ℓ1.

However, these complex penalties come with higher computation costs. As

expected, using ensembles of models reduces the variance of the prediction,

while increasing the stability of the weight maps. This e�ect is enhanced

when including a clustering step. The computation time of ensembles of

models with or without clustering is less than that of structured sparse

classi�ers.

For the discriminative task across subjects, ensembles of models

consistently improve prediction accuracy as well as the stability of the

weight maps, while keeping a computation cost less than structured sparse

classi�ers. In addition, the use of spatial clustering has a bene�cial impact on

the spatial stability. In all the presented cases, ensembles of models improve

stability of the weight maps of the base estimator, while preserving the

prediction accuracy. Note however that, for the combination of the SVM-ℓ2

and clustering, it does not display any additional bene�t.

Table 8.1 shows the comparison between each decoder and the decoder

displaying the best prediction accuracy, namely ensembles of SVM-ℓ1 for

within-subject problems, and ensembles of SVM-ℓ2 with clustering for across-

subjects problems. These results con�rm the above observations.



94 andrés hoyos idrobo

a) Within-subject discrimination
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Figure 8.1: Relative performance: Relative prediction accuracy, weight stability and computation time for di�erent

classi�cation tasks. Values are displayed relative to the mean over all the classi�ers. a) ensembling of models

improves prediction accuracy, and when applied with clustering it also reduces the variability. The ensembles of

models consistently improves the weights stability, with a computation time smaller than TV-ℓ1 and Graph-net. b)

The ensembles of models with and without clustering slightly improve the prediction accuracy, while signi�cantly

improving the stability. Note that the computation time is obtained using a single CPU.

Delineating brain regions

An important question regarding brain decoders is whether they segment

well the brain regions that support the decoding. The validation of this

question is hard, yet there is evidence that relying on ensembles of models

is a good approach [176][86]. Fig. 8.2 displays the decoder maps for the face-

recognition tasks. For these tasks, we expect prediction to be driven by the

functional areas of the visual cortex [60]. Indeed, the maps outline regions in

known visual areas –e.g. the fusiform face area (FFA).

In both within-subject and across-subject datasets, the SVM-ℓ1 maps are
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a) Within-subject discrimination

Classifier
prediction weight computation

score stability time

Graph-net <1e-10 (>) 6.8e-9 (>) <1e-10 (<)

TV-ℓ1 <1e-10 (>) 4.5e-5 (>) <1e-10 (<)

SVM-ℓ2 <1e-10 (>) <1e-10 (>) <1e-10 (>)

SVM-ℓ1 4.5e-8 (>) <1e-10 (>) <1e-10 (>)

SVM-ℓ2 <1e-10 (>) 2.1e-6 (<) (<)1e-10 (<)

SVM-ℓ1 Reference

SVM-ℓ2

+ clustering
<1e-10 (>) 6.1e-9 (<) 4.7e-6 (<)

E
n
se
m
b
le
s

SVM-ℓ1

+ clustering
5.8e-7 (>) 5.3e-7 (<) 4.6e-3 (<)

b) Across-subjects discrimination

Classifier
prediction weight computation

score stability time

Graph-net 5.2e-4 (>) 8.9e-5 (>) 0.12 (<)

TV-ℓ1 2.5e-4 (>) 8.9e-5 (>) 8.9e-5 (<)

SVM-ℓ2 7.3e-4 (>) 8.9e-5 (>) 8.9e-5 (>)

SVM-ℓ1 8.9e-5 (>) 8.9e-5 (>) 8.9e-5 (>)

SVM-ℓ2 0.097 (>) 0.093 (<) 6.8e-4 (>)

SVM-ℓ1 0.086 (>) 8.9e-5 (>) 8.9e-5 (>)

SVM-ℓ2
Reference

+ clustering

E
n
se
m
b
le
s

SVM-ℓ1

+ clustering
0.28 (>) 8.9e-5 (>) 0.17 (>)

Table 8.1: Comparison of

performance: Each decoder

is compared with a reference. The

values correspond to p-values

obtained by paired Wilcoxon

rank test. The direction in the

parenthesis denotes the sign of

the mean di�erence, and bold text

denotes a signi�cant results (p

< 10−6).

unstructured, and even if using ensembles of this model improves the stability

of the weight maps, these maps remain scattered with a large number of small

clusters. However, the use of clustering yields less and larger clusters, with

maps that are qualitatively similar to TV-ℓ1 maps. Graph-net and SVM-ℓ2

display similar behavior, yielding various small clusters around large clusters

of activation. In the case of SVM, the use of ensembles can reduce the number

of small clusters. The combination with clustering enhances this e�ect. Note

that setting the threshold to visualize regions is di�cult task as the noise level

is unknown.

Se�ing the number of estimators to ensemble

The choice of the number b of estimators to combine also a�ects the stability

of the weight maps and the running time. Setting b corresponds to choosing

the amount of spatial smoothing, and the computation time that one is willing

to pay to train a decoder. We measure the performance of ensembles of

classi�ers on three di�erent datasets and across 10 folds of cross-validation.

In practice, we often use a number of estimators between 50 and 100, but

to verify if the model converges, we consider here a range from 10 to 640

estimators.

Fig. 8.2 shows that for ensembles of classi�ers, prediction accuracy does

not depend on the number of estimators, whereas the computation time is

almost linear (t ∝ bγ, where γ ≈ 1). We use the running time as a constraint

to �nally set the number of estimators to 50, as the weight stability of non-

sparse classi�ers are at least 95% of the asymptotic optimum. In addition, this

is a good compromise between stability and computation cost. Henceforth,

this number of estimators is used throughout all experiments.
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a) Within-subject discrimination
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b) Across-subjects discrimination
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Figure 8.2: Qualitative comparison of decoderweight maps: Weight maps for di�erent discriminative tasks on the

Haxby and HCP datasets. The maps are thresholded at the 99 percentile for visualization purposes. In both dataset,

(top) illustration of weight maps for the face-recognition task; (bottom) outlines of the other tasks.
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Figure 8.3: Tuning curve of

ensembles of models: Quality

of ensembles of classi�ers as

a function of the number of

estimators. For each decoder,

prediction accuracy is almost

constant, hence it does not

depend on the number of

estimators. The use of clustering

slightly improve the weight

stability of the SVM-ℓ2. In

contrast, SVM-ℓ1 consistently

obtains higher stability when

it is combined with clustering.

Regarding computation time,

the ensembles of models are

almost linear in the number

of estimators (t ∝ bγ, where

γ ≈ 1). Therefore, setting the

number b of estimators depends

on the computational resources

available. The vertical dashed

line denotes 50 estimators,

which gives a good trade-o�

across performance metrics and

datasets.

8.3 Results: parallel computing of brain decoders

One important feature of ensembling models is scalability, as these methods

can be trained in parallel in a multi-core, shared-memory environment. This

corresponds to current standard workstations, which frequently have a large

number of CPUs. Here, we measure the training time of various decoders

across 5 folds of cross-validation. We perform face-discrimination tasks on

two datasets with di�erent sizes.

Fig. 8.3 shows that, in general, there is not an ideal decrease in the

computation time as more CPUs are added. The SVM with ℓ1 and ℓ2 penalty

are the fastest. In contrast, TV-ℓ1 is the slowest, followed by Graph-net. In

both datasets, ensembles of models display most of the speed up at 10 CPUs,

and reach a minimum at 20. These methods are much faster that Graph-

net. The combination of ensembles of models with clustering does increase

computation cost as we use a fast clustering algorithm.

8.4 Results: small-sample recovery behavior of decoders

In fMRI, despite growing e�orts in data accumulation [133][46], the sample

size remains small in comparison with the number of voxels. Therefore, an

important aspect of the brain decoders is their sample complexity –i.e. the

number of samples required to bound the estimation error. Yet, assessing

the recovery of weight maps is di�cult, as we do not have access to the

asymptotic result. To bypass this problem, wemeasure the similarity between
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Figure 8.4: Computation

time of decoders: Total wall

clock averaged across 5-fold

CV. In general, the speed-up in

computation time is not ideal:

it has a plateau. The fastest

methods are the SVM with ℓ1

and ℓ2 penalty, followed by

the ensembles of models, that

display most of the speed-up at

10 CPUs; past this value, the

computation time slowly reduces

until �nally reaching a minimum

at 20 CPUs. In contrast, TV-ℓ1

and Graph-net are consistently

the slowest methods.

the weight maps obtained with di�erent sample sizes and the ones obtained

using the whole dataset. This can give us an intuition of the small-sample

recovery behavior.

Fig. 8.4 shows that across datasets, the ensembles of ℓ2 with and without

clustering, and ensembles of SVM-ℓ1 with clustering are consistently the best.

In contrast, the SVM-ℓ1 fails to recover the �nal weight maps. TV-ℓ1, Graph-

net, and SVM-ℓ2 have a good performance on both datasets. Ensembles

of SVM-ℓ1 outperform these methods on the within-subject discrimination,

as the weight similarity rapidly increases. On across-subject datasets, the

ensembles of SVM-ℓ1 with clustering has almost the same performance as

TV-ℓ1, Graph-net, and SVM-ℓ2, di�ering only after using 80% of the data for

training.
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Figure 8.5: Small-sample recovery behavior of decoders: Evaluation of the correlation between decoder weight

maps for each sample size and the ones obtained using the full dataset. Ensembles of SVM-ℓ2 with and without

clustering have consistently the best small-sample recovery performance, followed by TV-ℓ1, Graph-net, and SVM-

ℓ2. Within-subject) ensembles of SVM-ℓ1 rapidly increase their weights similarity, outperforming TV-ℓ1 and Graph-net.

Across-subjects) the combination of clustering and ensembles of SVM-ℓ1 has a performance as good as TV-ℓ1. In both

discrimination tasks, SVM-ℓ1 fails to recover the �nal decoder weight maps.
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8.5 Results: assessing weight stability with ensembles of

models

Reproducibility is a main concern in neuroimaging. At minimum, a necessary

condition is the stability of the weight maps of the decoder. To assess this

information, we use the ratio mean to standard deviation3 of weight maps 3 This corresponds to a Z value if the
data is centered. It also corresponds to
an alternative de�nition of the Signal-to-
Noise-Ratio (SNR), mainly used in image
processing [139].

obtained during the nested cross-validation loop.

Fig. 8.5 shows maps of F values, the maps obtained with standard stability

selection, and the maps obtained using our method. On both datasets, we can

observe that F-tests highlight well-localized regions of the brain. Very similar

regions are clearly outlined by the combination of clustering and ensembles

of models, whereas the ensembles of SVM-ℓ1 modules yield more spatially

scattered points. The use of clustering reduces the noise, resulting in less

variance.

8.6 Discussion: using ensembles of models

Decoding has become a central tool in neuroimage data processing. The high-

dimensional nature of these data hinders reproducible results. However, at

minimum, reproducibility manifests itself in stability of weight maps relative

to data perturbations.

In this chapter, we have devised a strategy to train ensembles of models,

which improves the stability of brain decoders. This scheme is summarized

as follows: i) For each fold of the nested cross-validation loop, we select the

estimator with the best predictive power; ii) we build an estimator by storing

themodels for all folds of cross-validation and averaging them. This approach

di�ers from the stability selection methods [101][161], as here we use the

amplitude of predictive weight maps for the model aggregation, and not only

their support.

Using ensembles of models The predictive power of ensembles of modes

is barely a�ected by the number of estimators used during the aggregation

step. On the other hand, the stability of the resulting decoder improves as

more estimators are used. On across-subjects datasets, the use of clustering

improves the stability of sparse methods. In terms of computation time, this

scheme displays an almost linear complexity in the number of estimators.

Thus, setting the number of estimators is an arbitrary choice, it depends only

on the computation resources available.

Comparing decoders In both within and across subjects datasets,

ensembles of models have shown an improvement of the performance of the

base estimator. This strategy reduces the variance of predictive power and

increases the stability of weight maps of the base estimator. It also improves

the small-sample behavior of the base estimators, boosting the consistency
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a) Within-subject: face vs house

L R

z=­16

L R

y=­34

F­test

L R

z=­16

L R

y=­34

Ensemble SVM­ℓ2

L R

z=­16

L R

y=­34

Ensemble SVM­ℓ1

L R

z=­16

L R

y=­34

Ensemble SVM­ℓ2 + clustering

L R

z=­16

L R

y=­34

Ensemble SVM­ℓ1 + clustering

b) Across-subjects: face vs shape

L R
L R

F­test

L R
L R

Ensemble SVM­ℓ2

L R
L R

Ensemble SVM­ℓ1

L R
L R

Ensemble SVM­ℓ2 + clustering

L R
L R

Ensemble SVM­ℓ1 + clustering

Figure 8.6: Stability of weight maps of ensembles of models: Evaluation of the squared ratio of the mean weight

map and the standard deviation of weights obtained on the nested cross-validation. Higher values represent lower

variability. On top, F-tests highlight well localized regions of the brain. In both datasets, ensembles of SVM-ℓ2 with

and without clustering, and ensembles of SVM-ℓ1 with clustering localize similar regions to the F-tests. In contrast,

ensembles of SVM-ℓ1 modules fail to delineate brain regions. The combination of clustering and ensembles of methods

decreases the variability and yields larger standardized e�ects. Note that these maps are unthresholded.

of weight maps. In addition, this scheme leads to qualitatively good brain

regions delineation.

In terms of computation time, the use of ensembles of methods yields

decoders that are slower than the base estimators. But they are faster than

state-of-the-art decoders, namely TV-ℓ1 and Graph-net. Nevertheless, the

speed up of ensembles of methods can be enhanced by parallelizing the

training of each estimators to aggregate. Thus, the training time is dominated

by the �tting of each decoder. However, this gain is not ideal, and there is a

plateau in the speed-up when the number of CPUs increases.

Regarding the combination of ensembles of methods and clustering, it has

a spatial denosing e�ect on the resulting weight maps. This is re�ected in

the reduction of the variability and an increase in the prediction power. But,
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when the base estimator is a sparse method, the averaging step reduces the

sparsity, and yields weight maps with many small values instead.

Concluding remarks Our extensive empirical validation (36 decoding

tasks, taken from 9 datasets) shows that the ensembles of methods, in

particular SVM-ℓ2 with clustering, give the best stability-prediction trade-

o�, with a good qualitative delineation of brain regions. The use of this

scheme is a recommended practice in neuroimaging. Averaging several

“good” estimators yields a model that can adapt to the properties of the

noise present in the data. Hence, it is more robust to violations of modeling

assumptions. The application of this scheme with clustering bene�ts to the

spatial stability of weight maps, a key requirement of any cross-population

study of functional imaging signals. In addition, the aggregation gives an

estimate of the variance that can be used for post-hoc analysis of the weight

maps.
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9 Conclusions and perspectives

9.1 Contributions

Throughout this thesis, we have worked on scaling up brain decoders to

handle larger datasets, while also improving their stability. We proposed a

fast agglomerative clustering algorithm, and used it to perform dimension

reduction by feature grouping. We relied on ensembles of linear models

combined with clustering to yield a stable and easily parallelizable decoder.

We validated this approach by extensive experiments on a large number of

openly available neuroimaging datasets.

Feature grouping: We considered feature grouping as an alternative

dimension-reduction scheme to matrix sketching, as it is well suited for

signals with an underlying structure. This structure can be represented

with a graph, e.g. the 3-dimensional grid underlying medical images. We

have analyzed some properties of feature grouping as: i) how strongly it

underestimates the energy of the signal ii) its ability to reduce independent

noise. In both cases, we considered this behavior as a function of the

regularity inside a cluster, and the cluster size.

Fast agglomerative clustering: We proposed a clustering algorithm that

�nds balanced clusters in linear time. This algorithm is convenient for feature

grouping, as it scales linearly in the number of features. We investigated

its performance in di�erent machine-learning scenarios, such as: matrix

decomposition, classi�cation, regression, and compression. This algorithm

has consistently shown a denoising behavior, performing as well as state-of-

the art clustering methods –i.e. SLIC and Ward. In real datasets, we assessed

denoising using the predictive power of an estimator, given that we do not

have access to the ground truth. In addition, it can be used to train a decoder

on a budget, needing less computation time to converge.

Brain decoding with ensembles of models: We propose the use of

ensembles of models to �nd a more stable decoder. To train this estimator

in a high-dimensional setting, we aggregate “good” models found during the

nested cross-validation step. We conducted a series of experiments, where we
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showed an improvement in the predictive power and weight-maps stability.

This scheme also leads to better small-sample recovery of discriminative

weight maps. Its computation is easily parallelizable, nevertheless its one-

core implementation is faster than state-of-the-art decoders. Additionally,

We showed that adding implicit spatial constraints yields an improvement in

stability with respect state-of-the-art decoders, with a good visual qualitative

quality of the weight maps of the decoder.

Experiment reproducibility: We believe that reproducibility of

experiments is important. As such, all the developped code is based on

and will be released1 in the Nilearn [2] Python library. Nilearn provides an 1 For the moment, the code can be found in:
https://github.com/ahoyosid/ReNA

https://github.com/nilearn/nilearn/pull/698
API to easily use machine learning algorithms with neuroimaging data.

9.2 Perspectives

Two-sample tests for high-dimensional structured signals: In high-

dimensional settings, testing whether or not two samples of data come from

the same distribution can be extremely challenging, as classical hypothesis

testing methods can be ine�ective, or not applicable at all. In [93] the authors

used random projections to approximate the covariance matrix, performing a

Hotelling test statistic with a reduced signal space. This approach is extended

in [75], where the location shift between the two populations is expected

to be related to a known graph structure. However, the authors used a

permutation procedure to estimate the distribution of the number of false

positive subgraphs, and this can be computationally expensive. This can

be alleviated with the proposed fast dimension-reduction scheme for graph-

structured signals: ReNA.

Building stable functional brain atlases: To understand the structure of

the human cerebral cortex, an important step is to build a map that displays

its major subdivisions, i.e. cortical areas. In [57] the authors used multiple

functional neuroimaging modalities to build this map, but we consider that

more data have to be taken into account, leveraging the information of other

collaborative data sharing initiatives. However, when relying on data-driven

approaches to build this map, one has to deal with important issues, such

as: setting the optimal number of brain areas, labeling problems, unbalanced

classes, and small-sample sizes –per class. The use of ontologies and

structured cross-validation were proposed to overcome labeling issues [142].

Thus, ensembles of models combined with clustering can be used to: i) to

make tractable training on large datasets; ii) improve small-sample prediction

and stability. The resulting maps can be used to understand the relationship

between brain organization and individual di�erences in behavior, as well as

for clinical applications.

https://github.com/ahoyosid/ReNA
https://github.com/nilearn/nilearn/pull/698
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Going beyond task-based fMRI: Themethods proposed in this thesis can

be applied to resting-state fMRI data, where the correlation between brain

regions is the main feature, i.e. functional connectivity: i) one can �nd brain

regions in linear time: the proposed clustering algorithm (ReNA) can be used

to build a data-driven atlas [1]. Using this implicit spatial constraint helps to

deal with the mismatch between subjects; ii) one can use ensembles of models

to improve the predictive power of a base estimator. In addition, this has a

smoothing e�ect that produces continuous maps.

Faster training and becoming ambitious with scalability: It has been

proven that the combination of clustering and randomization is an extremely

e�ective tool in high-dimensional estimation problems, in particular when

there is multicollinearity [32][161]. However, good spatial clustering

algorithms are super-linear in computation time. Then these schemes are

intractable in practice, given the number of resampling iterations needed to

achieve stable results. In these settings, ReNA renders these methods feasible

to practical implementations.

Feature grouping with ReNA can be easily plugged into semi-supervised

methods [25], and online dictionary learning [102]. It can be used to improve

the symbolic representation of time series [89], and when it is combined with

ensembles of models it makes it possible to tackle scalability issues. This

allows one to continue the idea presented in [142], and use evenmore datasets.

Open problem – Statistical analysis of weight maps: The weight maps

of the decoder carry information about the probability of predictive brain

regions conditioned to the target. However, the prediction of the target

depends on all non-zero weights, and to visualize important regions one has

to set an arbitrary threshold. Yet, the noise level of the weight maps remains

unknown.

9.3 Concluding remarks

Decoding is a way to �nd predictive brain regions for di�erent experimental

conditions and datasets, but these datasets are now becoming huge and

training in standard workstations is intractable. This thesis opens the door

to �nding more stable decoding results, while making it possible to use

standard computer architectures. We have shown the denoising properties

of model aggregation and feature grouping in neuroimaging settings. As this

scheme yields more stable results, this approach can be useful for cognitive

neuroscientists to �nd more insights about the functional specialization of

the brain.
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Titre: Ensembles de modèles pour l’IRMf: l’apprentissage stable à grande échelle

Mots-clé: IRMf, clustering, décodage, réduction de dimension.

Résumé: En imagerie médicale, des collaborations

internationales ont lançé l’acquisition de centaines de

Terabytes de données - et en particulier de données

d’Imagerie par Résonance Magnétique fonctionelle (IRMf) -

pour les mettre à disposition de la communauté scienti�que.

Extraire de l’information utile de ces données nécessite

d’importants prétraitements et des étapes de réduction de

bruit. La complexité de ces analyses rend les résultats très

sensibles aux paramètres choisis. Le temps de calcul requis

augmente plus vite que linéairement: les jeux de données

sont si importants qu’il ne tiennent plus dans le cache, et les

architectures de calcul classiques deviennent ine�caces.

Pour réduire les temps de calcul, nous avons étudié le feature-

grouping comme technique de réduction de dimension. Pour

ce faire, nous utilisons des méthodes de clustering. Nous

proposons un algorithme de clustering agglomératif en temps

linéaire: Recursive Nearest Agglomeration (ReNA). ReNA

prévient la création de clusters énormes, qui constitue un

défaut des méthodes agglomératives rapides existantes. Nous

démontrons empiriquement que cet algorithme de clustering

engendre des modèles très précis et rapides, et permet

d’analyser de grands jeux de données avec des ressources

limitées. En neuroimagerie, l’apprentissage statistique peut

servir à étudier l’organisation cognitive du cerveau. Des

modèles prédictifs permettent d’identi�er les régions du

cerveau impliquées dans le traitement cognitif d’un stimulus

externe. L’entraînement de ces modèles est un problème de

très grande dimension, et il est nécéssaire d’introduire un a

priori pour obtenir un modèle satisfaisant.

A�n de pouvoir traiter de grands jeux de données et

d’améliorer la stabilité des résultats, nous proposons de

combiner le clustering et l’utilisation d’ensembles de modèles.

Nous évaluons la performance empirique de ce procédé à

travers de nombreux jeux de données de neuroimagerie. Cette

méthode est hautement parallélisable et moins coûteuse que

l’état de l’art en temps de calcul. Elle permet, avec moins de

données d’entraînement, d’obtenir de meilleures prédictions.

En�n, nous montrons que l’utilisation d’ensembles de

modèles améliore la stabilité des cartes de poids résultantes

et réduit la variance du score de prédiction.

Title: Ensembles of models in fMRI: stable learning in large-scale settings

Keywords: fMRI, clustering, decoding, dimensionality reduction.

Abstract: In medical imaging, collaborative worldwide

initiatives have begun the acquisition of hundreds of

Terabytes of data that are made available to the scienti�c

community. In particular, functional Magnetic Resonance

Imaging –fMRI– data. However, this signal requires extensive

�tting and noise reduction steps to extract useful information.

The complexity of these analysis pipelines yields results

that are highly dependent on the chosen parameters. The

computation cost of this data deluge is worse than linear:

as datasets no longer �t in cache, standard computational

architectures cannot be e�ciently used.

To speed-up the computation time, we considered

dimensionality reduction by feature grouping. We use

clustering methods to perform this task. We introduce a

linear-time agglomerative clustering scheme, Recursive

Nearest Agglomeration (ReNA). Unlike existing fast

agglomerative schemes, it avoids the creation of giant

clusters. We then show empirically how this clustering

algorithm yields very fast and

accurate models, enabling to process large datasets on budget.

In neuroimaging, machine learning can be used to understand

the cognitive organization of the brain. The idea is to build

predictive models that are used to identify the brain regions

involved in the cognitive processing of an external stimulus.

However, training such estimators is a high-dimensional

problem, and one needs to impose some prior to �nd a suitable

model.

To handle large datasets and increase stability of results, we

propose to use ensembles of models in combination with

clustering. We study the empirical performance of this

pipeline on a large number of brain imaging datasets. This

method is highly parallelizable, it has lower computation

time than the state-of-the-art methods and we show that,

it requires less data samples to achieve better prediction

accuracy. Finally, we show that ensembles of models improve

the stability of the weight maps and reduce the variance of

prediction accuracy.
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