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Résumé

Dans les domaines de l'imagerie médicale et de la vision par ordinateur, la segmentation joue un rôle crucial dans le but d'extraire les composantes intéressantes d'une image ou d'une séquence d'images. Elle est à l'intermédiaire entre le traitement d'images de bas niveau et les applications cliniques et celles de la vision par ordinateur de haut niveau. Ces applications de haut niveau peuvent inclure le diagnostic, la planification de la thérapie, la détection et la reconnaissance d'objet, etc. Parmi les méthodes de segmentation existantes, les courbes géodésiques minimales possèdent des avantages théoriques et pratiques importants tels que le minimum global de l'énergie géodésique et la méthode bien connue de Fast Marching pour obtenir une solution numérique. Dans cette thèse, nous nous concentrons sur les méthodes géodésiques basées sur l'équation aux dérivées partielles, l'équation Eikonale, afin d'étudier des méthodes précises, rapides et robustes, pour l'extraction de structures tubulaires et la segmentation d'image, en développant diverses métriques géodésiques locales pour des applications cliniques et la segmentation d'images en général.

Introduction (French)

English speakers are invited to go to Chapter 1 for the English version of this introduction.

La segmentation des images joue un rôle essentiel dans le domaine du traitement d'images, liant le traitement d'images de bas niveau, comme le débruitage d'images, la restauration et l'amélioration d'images et les taches de haut niveau pour des applications en imagerie médicale ainsi que la vision par ordinateur. L'objectif fondamental de la segmentation d'images consiste à obtenir une partition de l'image c'est à dire une collection de régions, qui sont généralement disjointes les unes des autres. La segmentation d'images est encore un problème difficile à r é s o u d r e , p u i s q u e d i ff é r e n t s t y p e s d ' i m a g e s n é c e s s i t e n t d i ff é r e n t e s m é t h o d e s d e segmentation.

Il existe un grand nombre de méthodes de segmentation, celle-ci ont été étudiées au cours des dernières décennies. Parmi elles, la classe des méthodes de seuillage qui est largement utilisée est généralement considérée comme l'étape de segmentation brute suivie de procédures de raffinement, grâce à la facilité de sa mise en oeuvre et à une faible complexité. Ces méthodes utilisent l'information des niveaux de gris ou bien l'information en couleurs de chaque pixel ou groupe de pixels (comme un patch de l'image) et attribuent la même étiquette aux pixels ayant des propriétés similaires. Cependant, sans une régularisation des pixels, ces procédés de seuillage sont le plus souvent sensibles au bruit. En outre, ces méthodes de segmentation ne sont pas capables d'intégrer des informations plus complexes et utiles, telles que la texture, la connaissance deforme préalable et l'interaction de l'utilisateur. Pour pallier ce problème, des méthodes de segmentation plus modernes ont été développées, comme les modèles basés sur les graphes et les méthodes variationnelles de modèles déformables.

Des méthodes de segmentation basées sur les graphes ont été proposèes tels que le modèle de normalized cut proposé par (Shi and Malik, 2000), la méthode de segmentation graph cut (Boykov and Funka-Lea, 2006)a i n s iq u el am é t h o d ed e segmentation par marche aléatoire (Grady, 2006). La formulation de ces modèles suppose que les images soient basées sur le domaine discret considérant une image comme un graphe composé d'arêtes et de noeuds. L'optimisation des énergies xi xiii d'origine du chemin minimal de Cohen-Kimmel a été suivi par de nombreuses méthodes de segmentation d'images interactives par le biais de procédures de détection de contour fermé (Appia and Yezzi, 2011;Appleton and Talbot, 2005;[START_REF] Mille | Combination of piecewise-geodesic paths for interactive segmentation[END_REF], où il est communément proposé que les contours de l'objet soient délimités par un ensemble de chemins minimaux contraints par les points sources fournis par l'utilisateur. De plus, les modèles fondés sur des chemins minimaux sont particulièrement appropriés pour l'extraction de structures tubulaires (Benmansour and Cohen, 2011; [START_REF] Li | Vessels as 4-D curves: Global minimal 4-D paths to extract 3-D tubular surfaces and centrelines[END_REF].

Dans cette thèse, diverses métriques appropriées F sont conçues pour différentes tâches de détection de structures tubulaires pour l'extraction des vaisseaux rétiniens et des contours actifs pour la segmentation d'images. Les contributions techniques sont décrites dans les chapitres 3 à 6.L ec h a p i t r e2 est notamment consacré aux modèles déformables qui constituent la base de cette thèse. La structure principale est ainsi décrite:

• Le Chapitre 2 introduit le contexte scientifique de la thèse: les modèles déformables, y compris les modèles de contours actifs et les modèles de chemin minimal. Nous commençons ce chapitre par l'analyse de l'énergie du modèle d'origine des contours actifs proposé par Kass et al. (1988). Ensuite, les modèles de contours actifs classiques sont introduits, selon la manière dont ces modèles sont capables de résoudre les problèmes qui affectent le modèle original des contours actifs.

Dans ce chapitre, la méthode d'ensembles de niveau ainsi que la méthode de Fast Marching, constituant les outils numériques p our les mo dèles des contours actifs et pour les modèles de chemin minimal, sont discutées respectivement. Nous utilisons plus particulièrement les méthodes de Fast Marching anisotrope introduites dans (Mirebeau, 2014a,b)commelessolv eursEik onal associés aux paramètres de conception, utilisés dans cette thèse. Les détails de la construction des stencils adaptatifs sont présentés dans la section 2.4.4.

• Le Chapitre 3 illustre le rôle des chemins minimaux à la base de l'EDP Eikonale pour la tâche de segmentation de structure tubulaire, en particulier pour l'extraction des vaisseaux rétiniens. Nous abordons les problèmes consistant à trouver à la fois les lignes centrales et les bords des vaisseaux, affectant les modèles existants de chemin minimal.

-La Section 3.2 traite du filtre de flux orienté (OOF) de manière optimale [START_REF] Law | Three Dimensional Curvilinear Structure Detection Using Optimally Oriented Flux[END_REF], considéré dans cette thèse comme le descripteur d'anisotropie tubulaire pour l'extraction de la structure tubulaire. Ce filtre peut être utilisé pour détecter la probabilité de chaque pixel d'appartenir à un vaisseau et l'orientation optimale pour chaque point de ce vaisseau.

-La Section 3.3 présente les détails de la construction de la métrique anisotrope de Riemann, proposée par (Benmansour and Cohen, 2011) en espace+rayon. Dans la formulation de base, chaque point d'un chemin minimal de espace3D+rayon, associé à cette métrique, comprend trois composantes: les deux premières, qui sont les coordonnées, représentent la position physique et la troisième est la valeur du rayon du vaisseau correspondante.

-La Section 3.4 présente une méthode de détection de points-clés, basée sur un masque pour l'extraction automatique de l'arbre vasculaure et son application pour l'extraction de l'arbre des vaisseaux rétiniens. Ce modèle, qui ne nécessite qu'un seul point source initial, permet de trouver le point-clé suivant qui est considéré comme le nouveau point source initial pour la méthode de Fast Marching. Le masque peut être calculé par un détecteur quelconque de structures vasculaires. S'appuyant sur le masque, notre méthode visant à rechercher le point-clé peut éviter les problèmes de fuites et utiliser une petite valeur du seuil de la longueur de la courbe.

-La Section 3.5 propose une nouvelle métrique dynamique anisotrope Riemannienne, pour le modle de chemin minimal pour l'extraction interactive des vaisseaux rétiniens. Cette métrique dynamique est calculée par l'utilisation de la courbe géodésique locale et des informations supplémentaire sur l'image. Notre objectif est d'extraire une géodésique le long de laquelle la fonction de l'image varie lentement, étant un indice très important pour l'extraction des vaisseaux rétiniens. Nous présentons également un modèle de chemin minimal contraint dans une région, pour obtenir à la fois des lignes centrales et les bords des vaisseaux sanguins de la rétine.

-La Section 3.6 introduit un procédé automatique pour mesurer la largeur du vaisseau sur la base du modèle de chemin minimal contraint à une région. Cette méthode peut utiliser une carte binaire pré-segmentée qui fournit une collection de points sources et de régions contraignant la méthode de Fast Marching, de cette façcon, les chemins minimaux extraits sont inclus à l'intérieur de cette région, ce qui peut écarter le problème de chevauchement.

• Le Chapitre 4 propose une méthode de Fast Marching anisotrope de propagation du front pour la segmentation de l'arbre vasculaire. Dans ce chapitre, il s'agit notamment d'étudier la construction de la métrique anisotrope dynamique Riemannienne, mise en oeuvre par la méthode de Fast Marching anisotrope. L'amélioration dynamique et anisotrope permet d'éviter le problème des fuites qui affectent le modèle classique isotrope de propagation du front, reposant uniquement sur la position.

• Le Chapitre 5 introduit un modèle de chemin minimal pénalisant la courbure avec la métrique de Finsler pour un modèle Elastica et en espace+orientation. Ce procédé est réalisé par l'établissement d'une relation entre l'énergie de flexion de l'Elastica d'Euler et l'énergie géodésique, à travers la métrique Elastica de Finsler. En résolvant l'EDP Eikonale associée à la métrique de Finsler Elastica,n o u sp o u v o n so b t e n i rl e sg é o d é s i q u e sm i n imales pénalisant la courbure et globalement minimisantes, susceptibles d'être utilisées pour approcher les courbes élastiques d'Euler.

Ap a r t i rd el am é t r i q u eElastica de Finsler, nous présentons des méthodes afin de détecter les contours fermés, le groupement perceptuel et l'extraction de structure tubulaire. Le modèle proposé de chemin minimal Elastica de Finsler utilise à la fois l'information sur l'orientation et la courbure, obtenant ainsi des résultats bien meilleurs que les modèles classiques de chemin minimal.
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Introduction

Image segmentation plays an essential role in the field of image processing, linking low level image processing procedure like image denoising, restoration and enhancement to the high level medical imaging applications and computer vision.

The basic goal of image segmentation is to partition the image to a collection of components, which generally are disjoint to each other. Image segmentation is still a challenging problem, since different types of images may require different segmentation methods.

There are a large number of segmentation methods have been studied in the past decades. Among these methods, the class of thresholding methods is widely used which are usually taken as the rough segmentation step for the possible refined procedures, thanks to its easy implementation and low complexity. These methods make use of the grey level or color information of each pixel or group of pixels (like image patch) and assign the same label to these pixels with similar properties. However, without the regularization to the connectivity of pixels, these thresholding methods often suffer from the problem of sensitivity to noise. Furthermore, thresholding based segmentation methods lack of the ability to incorporate more complicated and useful information, such as texture, shape prior and user intervention. More advanced segmentation methods have been devoted to this field,such as the graph based models and the variational deformable models.

Graph-based segmentation methods such as the normalized cut model proposed by Shi and Malik (2000), the graph cut-based segmentation method (Boykov and Funka-Lea, 2006)a n dt h er a n d o mw a l ks e g m e n t a t i o nm o d e l ( Grady, 2006). The formulation of these models assume that the images survive on the discrete domain and regard an image as a graph making up of edges and nodes. The optimalization of the graph-based energies are particularly efficient, for instance, the graph cut minimization methods (Boykov and Kolmogorov, 2004;[START_REF] Kolmogorov | What energy functions can be minimized via graph cuts[END_REF]. Another advantage of the graph-based segmentation models is the easy implementation of user interaction. The popular initialization way for the methods like (Boykov and Funka-Lea, 2006)a n d ( Grady, 2006)i st op l a c eas e to f prescribed seeds, inside each desired image component. Moreover, regularization on the boundaries of the image components can be considered. The most popular regularization term is the minimization of Euclidean curve length of the boundaries. Recently, the curvature regularization methods (El-Zehiry and Grady, 2010; Schoenemann et al., 2012)a r ep r o v e dt oh a v eb e t t e rs e g m e n t a t i o nr e s u l t sf o ro bjects with long and thin structures.

Active contours models are designed to minimize curve energy functionals survived on the continuous domain based on the Euler-Lagrange equations and variational principles. The basic idea of the active contours model (Kass et al., 1988)i st o deform a curve or a snake to converge to the object boundaries, where the curve is controlled by the internal and external forces. Specifically, the internal force can ensure the active contours to be smooth, while the external force, computed in terms of image data, can attract the active contours toward to the boundaries. Various external forces (Cohen, 1991;Cohen and Cohen, 1993 (Caselles et al., 1993(Caselles et al., , 1997)a r eb a s e do nt h eE u c l i d e a nc u r v a t u r em o t i o nfl o w . I nt h e i rb a s i c formulation, the active contours are represented by the zero value of a level set function (Osher and Sethian, 1988). These geometric models are able to deal with the topological changes automatically, thanks to the level set-based curve evolution scheme. However, based on the respective Euler-Lagrange equations and gradient descent flows, these active contours models sometimes fall into spurious edges resulted by noise or intensities inhomogeneity. Further, these active contours energies have strong non-convex formulas. Thus it is difficult to find the global minima of the energies.

The minimal path model was proposed by [START_REF] Cohen | Global minimum for active contour models: A minimal path approach[END_REF]t ofi n dt h e global minimum of the geodesic energy by solving a nonlinear partial differential equation (PDE), instead of the linear Euler-Lagrange equation which is used in the classical geodesic active contours model (Caselles et al., 1997). The crucial point in this minimal path model is the design of the geodesic metric F,w h e r e the curve energy is obtained by integrating F along a regular curve Γ. Once one gets the metric F,t h em i n i m a lg e o d e s i c sb e t w e e na n yp o i n ti nt h ed o m a i na n d the initial source point can be determined immediately, following the calculation of the geodesic distance map. The original Cohen-Kimmel minimal path model [START_REF] Cohen | Global minimum for active contour models: A minimal path approach[END_REF])hasraisedmanyinteractiv eimagesegmentationmethods via closed contour detection procedures (Appia and Yezzi, 2011;Appleton and Talbot, 2005;Benmansour and Cohen, 2009;[START_REF] Mille | Combination of piecewise-geodesic paths for interactive segmentation[END_REF], where the common proposal is that the object boundaries are delineated by a set of minimal paths constrained by the user input seeds. Moreover, minimal paths-based models are particularly suitable for tubular structure extraction (Benmansour and Cohen, 2011;[START_REF] Li | Vessels as 4-D curves: Global minimal 4-D paths to extract 3-D tubular surfaces and centrelines[END_REF].

Within this thesis, various suitable metrics F are designed for different tasks of tubular structure extraction for retinal blood vessels extraction and active contours for image segmentation. The technical contributions are outlined in Chapters 3 to 6.I nc h a p t e r2 we give the introduction to deformable models which form the basis of this thesis. The main structure is outlined as follows:

• Chapter 2 introduces the scientific background of this thesis: the deformable models including the active contours models and the minimal path models.

We start this chapter from the analysis of the curve energy of the original active contours model proposed by Kass et al. (1988). Then the classical active contours models are introduced along the line of how these models are able to solve the problems suffered by the original active contours model.

In this chapter, the level set method and the fast marching method, which are the numerical tools for the active contours models and for the minimal path models, are also discussed respectively. Specifically, we make use of the state-of-art anisotropic fast marching methods introduced in (Mirebeau, 2014a,b)a st h eE i k o n a ls o l v e r sa s s o c i a t e dt ot h ed e s i g n e dm e t r i c st h a ta r e used through this thesis. The details of the construction of the adaptive stencils are presented in Section 2.4.4.

• Chapter 3 demonstrates the power of the Eikonal PDE-based minimal paths for the task of tubular structure segmentation, especially for retinal blood vessels extraction. We address the problems of finding both the centrelines and boundaries of the vessels simultaneously that are suffered by the existing state-of-the-art minimal path models.

-Section 3.2 discusses the optimally oriented flux filter [START_REF] Law | Three Dimensional Curvilinear Structure Detection Using Optimally Oriented Flux[END_REF]w h i c hi st a k e na st h et u b u l a ra n i s o t r o p yd e s c r i p t o ri nt h i st h e s i s for tubular structure extraction. This filter can be used to detect the probability of each pixel belonging to a vessel and the optimal orientation for each vessel point.

-Section 3.3 introduces the details of the construction of the anisotropic radius-lifted Riemannian metric proposed by Benmansour and Cohen (2011). In the basic formulation, each point of a 3-D radius-lifted minimal path associated to this metric includes three components: the first two coordinates represent the physical position and the last coordinate is the value of the corresponding vessel radius value.

-Section 3.4 introduces a mask-based keypoints detection method for automatic vessel tree extraction and its application for retinal vessel tree extraction. This model only requires one initial source point and is able to iteratively find the successive keypoint which will be taken as a new initial source point for the fast marching front propagation scheme. The mask can be computed by any tubular structure detector.

Based on the mask, our keypoint searching method can avoid leaking problem completely and use a small curve length threshold value.

-Section 3.5 proposes a novel dynamic anisotropic Riemannian metricbased minimal path model for interactive retinal vessel extraction. This dynamic Riemannian metric is computed by using the local back-tracked geodesic and the consistency of the additional image feature information. The main goal of this model is to extract a geodesic along which the image feature varies slowly. In this section, we show that this property is very helpful for interactive retinal blood vessel extraction. We introduce a region-constrained minimal path model to obtain both the centrelines and boundaries of the retinal blood vessel.

-Section 3.6 presents an automatic method for vessel width measurement based on the region-constrained minimal path model. This method can make use of the binary pre-segmented map to provide a collection of end points and constrained regions to the fast marching method, thus the extracted minimal paths are included inside the constrained region, which can avoid the overlapping extraction problem.

• Chapter 4 proposes an anisotropic fast marching front propagation method for vessel tree segmentation. The main contribution of this chapter is the construction of dynamic anisotropic Riemannian metric implemented by the anisotropic fast marching method. The dynamic and anisotropic enhancement can avoid the leaking problem suffered by the classical isotropic front propagation model, which only relies on the positions.

• Chapter 5 introduces a curvature-penalized minimal path model with an orientation-lifted Finsler elastica metric. This is done by establishing the relationship between the Euler elastica bending energy and the geodesic curve energy through a Finsler elastica metric. By solving the Eikonal PDE associated to the Finsler elastica metric, we can obtain the globally minimizing curvature-penalized minimal geodesics which can be used to approximate the Euler elastica curves.

region-based active contours energy to the geodesic curve energy, by a Finsler metric, in terms of the divergence theorem. Therefore, the minimization of the region-based energy is turned to solve the Eikonal PDE associated to the Finsler metrics by the anisotropic fast marching method (Mirebeau, 2014b). The minimum of the corresponding Eikonal PDE is very robust and efficient.

Traditional region-based active contours energy minimization strategy uses the gradient descent scheme and level set-based curve evolution method, which is sensitive to local minimum and needs a careful treatment to the parameters. In contrast, the proposed method can avoid the problems of sensitivity to local minimum and parameters. Moreover, the proposed method is very easy and natural to incorporate the user-provided information.

• Chapter 7 summaries the main contributions of this thesis and gives the perspective future work.

In this chapter, we briefly discuss the existing well known active contours models, their respective gradient descent flows and the corresponding level set-based curve evolution scheme, and the Eikonal PDE-based minimal path models with different geodesic metrics as well as the respective numerical fast marching methods associated to these metrics.

Active Contours Models

Original Active Contours Model

Active contours models have been considerably studied and used for object segmentation and feature extraction during almost three decades, since the pioneering work of the active contours/snakes model proposed by Kass et al. (1988). The core idea behind this model is to deform a snake to converge at the interesting edges, where a snake is a regular parametrized curve Γ : [0, 1] ! Ωl o c a l l ym i n i m i z i n g the curve energy:

E Snake (Γ) = Z 1 0 w 1 kΓ 0 (t)k 2 + w 2 kΓ 00 (t)k 2 + P Γ(t) dt, (2.1) 
with appropriate boundary conditions at the endpoints t =0andt =1. Ωisthe image domain. Γ 0 and Γ 00 are the first-and second-order derivatives of the curve Γ, respectively. Positive constants w 1 and w 2 relate to the elasticity and rigidity of the curve Γ, hence weight its internal forces. This approach models object boundaries as curves Γ locally minimizing an objective energy functional E that consists of an internal force and an external force. The internal force terms depend on the firstand second-order derivatives of the curves or snakes, and respectively account for ap r i o ro fs m a l ll e n g t ha n do fl o wc u r v a t u r eo ft h ec o n t o u r s . T h ee x t e r n a lf o r c e is derived from a potential function P ,d e p e n d i n go ni m a g ef e a t u r e sl i k eg r a d i e n t magnitude, and designed to attracting the active contours or snakes to the image features of interest such as object boundaries. The function P has a small values around the interested image features, where a common P can be computed by

P (x)=g(krI(x)k), 8 x 2 Ω, (2.2) 
where g is a non-negative decreasing function such as

g(a)=⌘ 0 + 1 ⌘ 1 + a , or g(a)=⌘ 0 +exp(-⌘ 1 a),a 2 [0, 1), (2.3) 
where ⌘ 0 and ⌘ 1 are positive constants.

The Euler-Lagrange equation of the energy functional E snake with respect to the admissible curve Γ is expressed as

-! 1 Γ 00 (t)+! 2 Γ 0000 (t)+rP (Γ(t)) = 0, 8 t 2 [0, 1], (2.4) 
which means that a curve Γ ⇤ locally minimizing the active contours energy E snake should obey the Euler-Lagrange equation (2.4). Γ 0000 is the fourth order derivative defined by

Γ 0000 (t)= @ 4 @t 4 Γ(t), 8t 2 [0, 1].
In order to find the locally optimal contour Γ ⇤ ,appliedthegradientdescentmethod to iteratively minimize E snake (2.4), which introduced a family of curve Γ(⌧, •): [0, 1) ⇥ [0, 1] ! Ωw i t hr e s pe c tt ot i m e⌧ .

The curve evolution formula associate to ⌧ can be expressed as

@Γ @⌧ = ! 1 Γ 00 -! 2 Γ 0000 | {z } Regular Term -r P (Γ). | {z } External Vector Field (2.5)
One expects the curve Γ to delineate the desired boundaries when ⌧ !1 .T h e regular term of (2.5)e n f o r c et h ec u r v e st obes m oo t h ,t h u sr e f e r r e dt oa ni n t e r n a l force

F smooth := ! 1 Γ 00 -! 2 Γ 0000 . (2.6)
The terms rP is used to attract the active contours to the boundaries. This forms the external force of the active contours model:

F Ext := -rP. (2.7) 
Generally, the external vector field rP ,a s s o c i a t e dt ot h ee x t e r n a lf o r c e ,h a sa small supported domain which is around the object boundaries which may lead the active contours model to be sensitive to initial curves.

The efforts for the improvements of classical active contours model (Kass et al., 1988)a r em a i n l yd e v o t e dt ot h r e ed r a w b a c k s : 1 )s e n s i t i v et oi n i t i a l i z a t i o n ,2 ) difficult to deal with topological changes of the active contours, and 3) strong non-convex curve functional energy.

• Regarding the initialization of this classical active contours model, it requires an initial guess close to the desired image features, and preferably enclosing them because energy minimization tends to shorten the snakes. The introduction of an expanding balloon force allows to be less demanding on the initial curve given inside the objective region (Cohen, 1991). Moreover, extended vector field approaches have been studied in (Cohen and Cohen, 1993;[START_REF] Li | Active contour external force using vector field convolution for image segmentation[END_REF]Xie and Mirmehdi, 2008;Xu and Prince, 1998) to enlarge the supported domain of the external force F Ext ,w h i c hw i l lb e introduced in next sections.

• The issue of topology changes led, on the other hand, to the development of active contour methods, which represent object boundaries as the zero level set (Osher and Sethian, 1988)ofthesolutiontoaPDE (Caselles et al., 1993(Caselles et al., , 1997;;[START_REF] Malladi | Evolutionary fronts for topologyindependent shape modeling and recovery[END_REF][START_REF] Yezzi | A geometric snake model for segmentation of medical imagery[END_REF], where inside and outside the active contours, values of the scalar level set function have opposite signs. Therefore, the curve evolution scheme (2.5)i st r a n s f o r m e dt ot h ee v o l u t i o no ft h e level set function, where the topology changes can be handled automatically and naturally.

• Minimizing the active contours energy functional E Snake relies on its Euler-Lagrange equation (2.4)m e a n i n gt h a to n l yt h el oc a lm i n i m u mo fE snake can be obtained. This may result that the minimizing curves Γ ⇤ are sensitive to noise and spurious edges. 

Active Contours Model with Ballon Force

Cohen (1991)introducedaadditionalexternalforcefortheactivecontourmodels. This external force drives the contour to deform as a balloon in a inflation way.

In the basic formulation, the new external ballon force can be expressed as

F Ballon := c N , (2.8) 
where N denotes the normal vector of the curve Γ.

Note that the balloon force F Ballon (2.8)c a nb eo b t a i n e db ym i n i m i z i n gt h ef o llowing region-based functional

c Z R i dx,
where c is a constant and R i is the region inside the curve Γ, i.e., Γ = @R i .

Based on the ballon force F Ballon (2.8), Cohen (1991)p r e s e n t e dan e we x t e r n a l force

F Ext = F Ballon -c 2 rP krP k , (2.9) 
where c 2 is a constant. The parameter c 2 should be a little larger than c. Hence the edge points can stop the evolution of the curve under the control of F Ext (2.9). With the additional ballon force F Ballon ,s p u r i o u se d g e sp r od u c e db yn o i s ec a nbe avoided. Moreover, the initial curve can be placed far from the boundaries, thus the ballon force based active contours model is insensitive to the initialization.

Active Contours with Distance Vector Flow

Cohen and Cohen (1993)p r e s e n t e dan e we x t e r n a lf o r c em a k i n gu s eo ft h ep r edetected edge points to reduce the problem of sensitivity to the initializations of the classical active contours model (Kass et al., 1988). This method firstly computes a Euclidean distance map D for each point x 2 Ωw h e r eD(x)d e n o t e s the Euclidean distance value of x to the nearest edge points.

By the use of a decreasing function g (2.

3), the external force of the distance vector field can be expressed as

F Ext (x):=-g 0 D(x) rD(x), 8 x 2 Ω. (2.10)
where rD is the gradient map of D,w h i c hp o i n t st ot h ee d g ep o i n t s . T h i s gradient vector field can be considered as the distance competition such that the curve will be attracted to its nearest edge points. The edge points can be detected by using various edge detectors such as the Canny detector (Canny, 1986)o r the higher order steerable edge detector (Freeman and Adelson, 1991; Jacob and Unser, 2004).

Active Contours with Gradient Vector Flow

Xu and Prince (1998)p r o po s e dan e we x t e r n a lf o r c ef o ra c t i v ec o n t o u r se v o l u t i o n scheme based on the diffused gradient vectors of the edge map. The basic idea is to diffuse the image gradient information to the whole image domain Ω, leading to an insensitive initialization for the active contours model.

Let H =(u, v):Ω! R 2 be the expected diffused gradient vector field. H can be obtained by solving the following minimization problem:

min u,v 8 > > > < > > > : µ Z Ω ⇣ kru(x)k 2 + krv(x)k 2 ⌘ dx | {z } † + Z Ω krh(x)k 2 kH(x) -rh(x)k 2 dx | {z } ‡ 9 > > > = > > > ;
(2.11) where h(•)=krI(•)k is the norm of the image gradient rI(•)a n dµ is a positive constant that is used to balance the importance between terms † and ‡.T h et e r m † ensures the smoothness of the vector field H and ‡ is the image data term. At the edge points, minimizing (2.11)i m p l i e st h a tH ⇡rh since at these points the value of the norm krhk is very large.

The gradient vector field H satisfies the Euler-Lagrange equation of ( computed the desired vector field H for any x =(x, y) 2 Ω:

@u @⌧ (x)=µ∆u(x) -(u(x) -h x (x))krh(x)k 2 , (2.12) @v @⌧ (x)=µ∆v(x) -(v(x) -h y (x))krh(x)k 2 , (2.13) 
where h x = @h @x and ∆ is the Laplacian operator. If point x is in homogeneous region, the norm krh(x)k⇡0a n d( u(x)h x (x))krh(x)k 2 or (v(x)h y (x))krh(x)k 2 will vanish. Thus in such region, the components u and v of vector field H are computed by the diffusion equation which enforce the smoothness of H.I nc o n t r a s t ,i fp o i n tx is at the vicinity region of the image boundaries, one has u(x) ⇡ h x (x)a n dv(x) ⇡ h y (x).

Then the gradient vector flow force F GVF can be expressed as

F GVF := H, (2.14) 
or more generally, the gradient vector flow can be computed by the normalized gradient vector field of H

F GVF (x):= H(x) kH(x)k , 8x 2 Ω.
(2.15)

The gradient vector field H extends the narrow band supported domain of the original image gradient vector field rh to the whole domain Ω, thus the active contours model controlled by the gradient vector field H is insensitive to initializations. In other words, one can place the initial curve far from the object boundaries (Xu and Prince, 1998).

Level Set-based Active Contours

In this section, the level set function proposed by Osher and Sethian (1988)i s first briefly introduced. Then based on the level set function, three typical active contours models are reviewed.

Level Set Method

In its basic formulation, a level set function is a scalar embedding function, the values of which have opposite signs inside and outside the closed curves. A family of time dependent curves Γ : Let us consider the basic curve evolution equation (Caselles et al., 1997;Osher and Sethian, 1988)i nt e r m so f @Γ @⌧ = f N , (2.17)

[0, 1)⇥[0, 1] ! Ωisrepresentedbythecorresponding zero-level set of φ :[0, 1) ⇥ Ω ! R: Γ={x; x 2 Ω,φ (⌧, x)=0}. ( 2 
where ⌧ denotes the time, f is a given scalar function, and N is the normal vector of the curve Γ. According to (2.16), one has

φ(⌧, Γ) = 0, (2.18) which yields ⌧ rφ, @Γ @⌧ + @φ @⌧ =0 (2.19)
Recalling that the curve Γ is defined as the zero-level set of the scalar function φ, the normal vector N of Γ can be interpreted by

N = rφ krφk . (2.20) Thus one obtains @φ @⌧ = - ⌧ rφ, f rφ krφk = -f krφk, (2.21) 
which is considered as a front propagation equation with speed f .

The level set function φ should be reinitialized as a signed distance map in the course of the level set evolution (Osher and Sethian, 1988;[START_REF] Sussman | A level set approach for computing solutions to incompressible two-phase flow[END_REF]. As discussed in [START_REF] Sussman | A level set approach for computing solutions to incompressible two-phase flow[END_REF], at the time ⌧ 0 ,t h el e v e ls e tr e i n i t i a l i z a t i o n can be done by solving the following time-dependent PDE

( @ @⌧ =sign(φ ⌧ 0 )(1 -kr k), (0, •)=φ(⌧ 0 , •), (2.22) 
where φ ⌧ 0 (•)=φ(⌧ 0 , •)a n dt h en e wl e v e ls e tf u n c t i o n φ is equal to the solution at the steady state of (2.22).

Note that the level set function can also be reinitialized by using the solution ' of the Eikonal PDE:

( kr'(x)k =1, 8x 2 Ω\Ψ 0 , '(x)=0, 8x 2 Ψ 0 , (2.23) 
where Ψ 0 is defined as a collection

Ψ 0 := {x 2 Ω; (⌧ 0 , x)=0}.
The desired reinitialized level set function φ can be computed by φ =sign(φ ⌧ 0 ) '.

The Eikonal PDE (2.23)canbesolvedtheisotropicfastmarchingmethod (Sethian, 1996(Sethian, , 1999) ) 

Z Ω P Regu (krφ(x)k)dx, (2.24) 
where P Regu is a potential function. One possible choice for this potential function, as suggested In [START_REF] Li | Distance regularized level set evolution and its application to image segmentation[END_REF], can be formulated as 

P Regu (x)= 1 2 (x -1)
P Regu (x)= ( 1 4⇡ 2 (1 -cos(2⇡x)), if x  1, 1 2 (x -1) 2 ,x ≥ 1, which is twice differentiable.

Geometric Active Contours

The geometric active contours model was proposed by Caselles et al. (1993) 

@Γ @⌧ = g ( + c)N , (2.26) 
where g is the image data function defined in (2.3), c is a positive constant and  is the curvature of curve Γ. Actually, g plays the role of stopping function which can stop the evolution of Γ when it arrives at the real object boundaries, since at these boundaries one has g ⇡ 0.

The curve evolution flow (2.26)i sa c t u a l l yb a s e do nt h eE u c l i d e a nc u r v a t u r efl o w or Euclidean heat flow @Γ @⌧ =  N , (2.27) which can shorten and smooth the curve Γ. This flow can drive the curve Γ to minimize its curve length functional

Z 1 0 kΓ 0 (t)kdt
in the gradient direction (Caselles et al., 1993). By incorporating the curve Γ into the level set function φ,w ec a no b t a i nt h el e v e ls e te v o l u t i o ne q u a t i o na c c o r d i n g to (2.26)a sf o l l o w s :

@φ @⌧ = ✓ r• ✓ rφ krφk ◆ + c ◆ gkrφk, (2.28) 
where r•u denotes the divergence value of vector u.T h i s l e v e l s e t e v o l u t i o n equation is based on the fact that

 = r• ✓ rφ krφk ◆ .
Corresponding to the general level set-based curve evolution flow (2.21), we have that the speed function f = g(c + ). When the curve Γ is far from the boundary, the stopping function g can be considered as a positive constant such that the behaviour of the curve mainly is controlled by the Euclidean heat flow  N and the ballon force c N . When Γ is close to the boundaries, one has g ⇡ 0s u c ha t the evolution of the contour will be terminated.

This level set based geometric active contours model can deal with curve topology changes automatically. The initial curve can be placed outside the object and far from its boundaries. Moreover, starting from a convex curves, one can obtain a non-convex final contours represented by the zero value of level set function φ.

Geodesic Active Contours

The famous geodesic active contours model proposed by Caselles et al. (1997)aims at finding a locally optimal curve Γ ⇤ to (locally) minimize the geodesic energy in aR i e m a n n i a ns p a c ew i t hai s o t r o p i cR i e m a n n i a nm e t r i c (2.30)

E GAC (Γ) = Z 1 0 P (Γ(t)) kΓ 0 (t)kdt, ( 2 
The term of hrg, Ni can push the curve toward the valley of the stopping function g (Caselles et al., 1997). This property is very useful for purpose of detecting a boundary that passes through the regions with inhomogeneous intensities and high noise.

In order to improve the performance of the geodesic gradient flow (2.30)t od e a l with the detection of boundaries with high curvature, Caselles et al. (1997)g i v e the gradient flow by adding a constant c as

@Γ @⌧ = ⇣ (g + c)  + hrg, Ni ⌘ N . (2.31)
The behaviour of this geodesic gradient flow can be divided to two cases:

• When the curve is close to the boundary, the stopping function g is degenerated to a constant and rg =0. Thegradien tflo w(2.31)i si d e n t i c a lt ot h e Euclidean heat flow: the curve tends to shrink to a point.

• When the curve is close to the boundary, the stopping function g have small values and the force hrg, Ni will push or pull the curve to the explicit boundary where each point x b at the boundary obeying that rg(x b )=0.

By combining with the level set function φ,w ec a no b t a i nt h el e v e ls e te v o l u t i o n equation:

@φ @⌧ =(g + c)div ✓ rφ krφk ◆ krφk + hrg, rφi, (2.32) 
which is a geometric front propagation approach. In Fig. 2.3 we show the segmentation result using the geodesic active contours model. Fig. 2.3ai st h eo r i g i n a l image with initial contour indicated by red curve, Fig. 2.3bi st h ei n t e r m e d i a t e result and Fig. 2.3ci st h efi n a ls e g m e n t a t i o nc o n t o u r . Note that the constant c in the flows (2.26)and(2.30)shouldbetreatedcarefully . This parameter is used to address the possible shortcuts problem when dealing with the segmentation task for the object with concave region. In this case, when the value of the constant c is very small, the curve evolution might be stopped before it follows the expected boundary. We illustrate this shortcuts problem in Fig. 2.4. However, if the value of c is too large, some parts of the active contours may stop inside the object. 

Alignment Active Contours

E Align (Γ) = Z 1 0 hrI(Γ(t)), NikΓ 0 (t)kdt, (2.33)
where rI is the gradient vector field of the given image I.T h i sm o d e la d d st h e anisotropy of the path to the energy such that tangents of the obtained optimal curve should be consistent to the image gradient vector field rI.T h eg r a d i e n t flow of E Align can be expressed as

@Γ @⌧ =∆I N , (2.34) 
where ∆I is defined for each x =(x, y) 2 Ωa s ∆I(x)= @ 2 I @x 2 (x)+ @ 2 I @y 2 (x).

Ar o b u s tv e r s i o no ft h ee n e r g yE Align is proposed by [START_REF] Kimmel | Regularized laplacian zero crossings as optimal edge integrators[END_REF]; [START_REF] Kimmel | Regularized laplacian zero crossings as optimal edge integrators[END_REF]:

E Ralign (Γ) = Z 1 0 hrI(Γ(t)), Ni kΓ 0 (t)kdt (2.35)
with the gradient flow of

@Γ @⌧ = hrI,Ni khr, Nik ∆I N . (2.36)
The values of the term hrI,Ni khrI,Nik denote actually the sign map of the align term hrI,Ni.

Cohen-Kimmel Minimal Path Model and its Extensions

In this section, we fix the image domain Ω ⇢ R d where d =2o rd =3 . W es e t the radius-lifted domain as Ω=Ω⇥ [R min ,R max ] ⇢ R d+1 where [R min ,R max ]i s the admissible radius space and the orientation-lifted domain Ω=Ω⇥ S 1 ⇢ R d+1 , where S 1 =[0,⇡)o r[ 0 , 2⇡).

From Active Contours to Eikonal PDE-based Minimal Paths

The difficulty of minimizing the non-convex snakes energy (Kass et al., 1988)

E Snake (Γ) = Z 1 0 w 1 kΓ 0 (t)k 2 + w 2 kΓ 00 (t)k 2 + P Γ(t) dt, (2.37) 
leads to important practical problems, since the curve optimization procedure is often stuck at unexpected local minima of the energy functional E Snake (2.37), making the results heavily rely on curve initialization and sensitive to image noise. This is still the case for the level set approach on geometric or geodesic active contours (Caselles et al., 1993(Caselles et al., , 1997;;Malladi et al., 1995). In order to address this local minimum sensitivity issue, Cohen and Kimmel (1997)p r o p o s e da nE i k o n a l PDE-based minimal path model, with goal of finding the global minimum of the geodesic energy which is similar to that used in (Caselles et al., 1997), in which the penalty associated to the second-order derivative of the curve was removed from the snakes energy. Thus the reduced energy functional is

Z 1 0 ⇣ w + P Γ(t) ⌘ kΓ 0 (t)k dt,
the local minimizer of which was proved to be a geodesic in (Caselles et al., 1997).

Alternately, [START_REF] Cohen | Global minimum for active contour models: A minimal path approach[END_REF]proposedanon-linearPDEbasedapproach to find the global minimizer of this geodesic energy. Thanks to this approach, a fast, reliable and globally optimal numerical method allows to find the energy minimizing curve with prescribed endpoints; namely the fast marching method (Sethian, 1999) 

Cohen-Kimmel Minimal Path Model

The classical Cohen-Kimmel model (Cohen and Kimmel, 1997)w a sd e s i g n e dt o find the global minimum of the following geodesic energy functional as a simplification of the active contour energy (Kass et al., 1988) 

L I (Γ) = Z 1 0 ⇣ w + P Γ(t) ⌘ kΓ 0 (t)k dt, ( 2 
U (Γ) = ⌧, which yields that @U @⌧ = ⌧ rU, @Γ @⌧ =1.
Considering the level set evolution equation (2.41), we obtain that part and the radius values part. Such a property has important in the clinical applications. In Fig. The length of the radius-lifted path γ =(Γ,r):[0, 1] ! Ωc a nbed e fi n e db y

⌧ rU, @Γ @⌧ = 1 P ⌧ rU, rU krUk =1 ) krU (x)k = P (x), x 2 Ω. ( 2 
L IR (γ)= Z 1 0 1 P IR (γ(t)) p kΓ 0 (t)k 2 + ✏ |r 0 (t)| 2 dt, (2.48) 
where P IR is an image data-driven speed function and ✏ is positive constant. The symmetric positive definite tensor field M IR for the metric R IR is expressed by

M IR (x)=P 2 IR (x) 0 B @ 10 0 01 0 00 ✏ 1 C A , (2.49) 
which is proportional to a diagonal matrix. Based on the tensor field M IR (2.49), the curve length L IR can be rewritten as

L IR (γ)= Z 1 0 p hγ 0 (t), M IR (γ(t)) γ 0 (t)i dt,
where γ 0 (t)= Γ 0 (t),r 0 (t) , 8t 2 [0, 1]. where d is the dimension of the image domain Ω. P s i is image data dependent function associated to the direction v i 2 R d .P a r t i c u l a r l y ,w h e nd =2,onehas

Minimal Paths with Anisotropic Riemannian Metric

M A (x)= d X i=1 P s i (x) v i (x)v T i (x), (2.50) v 1 v ⊥ 1
M A (x)=P s 1 (x) v 1 (x) v T 1 (x)+P s 2 (x) v 2 (x) v T 2 (x), (2.51) 
where v 2 (x)i spe r pe n d i c u l a rt ov e c t o rv 1 (x)f o ra l lx 2 Ω.

Based on the tensor field M A ,t h ea n i s o t r o p i cR i e m a n n i a nm e t r i cR A :Ω⇥ R d ! R + can be expressed as:

R A (x, u)= p hu, M A (x) ui, 8 x 2 Ωa n d8 u 2 R d . (2.52)
In Fig. 2.8,w ev i s u a l i z et h e2 -Dt e n s o rM -1 A (2.51)b ya ne l l i p s e . T h eb l a c kd o t denotes the centre point x.I nt h i sfi g u r e ,w es u p p o s et h a tP s 1 (x)  P s 2 (x), 8x 2 Ω.

The anisotropy ratio µ of the metric R A is defined by The minimal action map or geodesic distance map U form the initial source point s with respect to the anisotropic Riemannian metric R A can be obtained by solving the following anisotropic Eikonal PDE:

µ(R A ):=sup x2Ω ⇢ max kuk=kvk=1 R A (x, u) R A (x, v) . ( 2 
( krU (x)k M -1 A (x) =1, 8x 2 Ω\{s}, U (s)=0, (2.54) 
where the norm kuk M(x) = p hu, M(x) ui.

The minimal path C s,x that joins the initial source point s to point x can be recovered by reversing the path Ĉx,s as the solution to the following ODE: 

( Ĉ0 x,s (t) /-M -1 A Ĉx,
v 1 (x)= ⇣ G x ⇤ I(x),G y ⇤ I(x) ⌘ , 8 x 2 Ω.
Thus the tensor field M s can be constructed as anisotropic, less grid points are passed by the fast marching front before the end point is reached. In this figure, the original image is demonstrated in Fig. 2.9a and the anisotropic tensor M A is constructed by (2.57). 

M A (x)=P (x)v 1 (x)v T 1 (x)+v ? 1 (x)(v ? 1 (x)) T . ( 2 

Minimal

M r (x,r)= ✓ M s (x,r) 0 0 P r (x,r) ◆ , (2.58) 
where M s is constructed by:

M s (x,r)= d X i=1 P s i (x,r)v i (x,r) v T i (x,r), (2.59) 
where P s i are the potential functions along the orientation vector v i 2 R d . P r is ap o s i t i v es c a l a rf u n c t i o nd e fi n e do v e rt h er a d i u s -l i f t e dd o m a i n Ω. Note that the dimension of the domain Ωi sd +1.

M r is a positive symmetric definite tensor field which is the special case of the tensor field M A defined in (2.50):

M r (x,r)= d X i=1 P s i (x,r) vi (x,r) vT i (x,r)+P r (x,r) v0 (x,r) vT 0 (x,r), (2.60) 
where vi := (v i , 0) 2 R d+1 and v0 =( 0 , ••• , 0, 1) 2 R d+1 .W eu s et h ev e c t o rv i where the last entry is zero, since it makes no sense to add anisotropy in the radius dimension.

In Eqn. (3.10), we give the computation example of M s using the optimally oriented flux filter [START_REF] Law | Three Dimensional Curvilinear Structure Detection Using Optimally Oriented Flux[END_REF]. The anisotropic radius-lifted Riemannian metric R AR : Ω ⇥ R d+1 ! R + can be defined as

R AR (x, û):= p hû, M r (x) ûi , (2.61) 
for all x 2 Ωa n da n yv e c t o rû 2 R d ⇥ R.

Minimal Paths with Isotropic Orientation-Lifted Riemannian Metric

In order to take into account the local orientation in the image, it is possible to include orientation information in the energy minimization. For this purpose, the image domain space Ω ⇢ R 2 can be extended to the orientation lifted space Ωb y product with an abstract orientation space S 1 (Kimmel and Sethian, 2001), i.e., Ω=Ω⇥ S 1 ⇢ R 3 and the problem is to find a minimal path in the new lifted space Ω. Each point x in the orientation lifted path is thus a pair composed of a point x in the image domain Ω and an orientation ✓,i . e . ,x =(x,✓).

For any orientation-lifted vector ū =( u,⌫) 2 R 2 ⇥ R and any orientation-lifted point x =( x,✓) 2 Ω, the isotropic orientation-lifted Riemannian metric R IO : Ω ⇥ R 3 ! R + can be defined by:

R IO (x, ū)= 1 P IO (x) p kuk 2 + ⇢|⌫| 2 , (2.62) 
The curve length of an orientation-lifted path γ := (Γ,✓), where γ :[ 0 , 1] ! Ω, can be measured with respect to the isotropic orientation-lifted Riemannian metric R IO :

L IO (γ)= Z 1 0 1 P IO (γ(t)) p kΓ 0 (t)k 2 + ⇢ |✓ 0 (t)| 2 dt, (2.63) 
The symmetric positive definite tensor field M IO is defined by

M IO (x)=P 2 IO (x) 0 B @ 10 0 01 0 00 ⇢ 1 C A ,
where P IO is an image data-driven speed function defined over the orientation-lifted domain Ωa n d⇢ is a positive constant.

The idea of orientation lifting provides an alternate way to make use of the path orientation. 

R OR ( x, ū)= q h ū, M OR ( x) ūi, 8 x 2 Ω ⇥ S 1 ⇥ [R min ,R max ], 8 ū 2 R 4 . (2.65)
Since this radius and orientation-lifted minimal path is defined over the 4D domain, the computation complexity is extremely high compared to the anisotropic radiuslifted metric based minimal path model (Benmansour and Cohen, 2011).

General Minimal Path Model and Finsler Metric

The minimal path problem (Peyré et 

F x (u)=F(x, u)( 2 . 6 6 )
These norms must be positive F x (u) > 0w h e n e v e ru 6 =0 ,1 -h o m o g e n e o u s ,a n d obey the triangular inequality. In general, we allow them to be asymmetric:

F x (u) 6 = F x (-u). ( 2 

.67)

Based on the metric F,o n ec a nm e a s u r et h ec u r v el e n g t ho fa n yr e g u l a rc u r v eγ:

L(γ)= Z 1 0 F γ(t),γ 0 (t) dt.
(2.68)

The minimal action map U (x), or geodesic distance from the source point s,isthe minimal length (2.68)amongallpathscon tainedinthecollectionA s,x joining the initial source point s to any point x 2 Ω:

U (x):=inf{L(γ); γ 2A s,x }.
(2.69)

The minimal action map U in (2.69)istheuniqueviscosit ysolutiontoanEik onal PDE [START_REF] Lions | Generalized solutions of Hamilton-Jacobi equations,v o l u m e6 9[END_REF]Sethian and Vladimirsky, 2003):

( F ⇤ x -rU(x) =1, for all x 2 Ω, U (s)=0, (2.70)
where rU is the gradient of U with respect to the position in the domain Ω and F ⇤ x is the dual norm of F x defined for all u 2 R d by

F ⇤ x (u)=sup v6 =0 hu, vi F x (v) , (2.71) 
where h•, •i denotes the scalar product over R d .

Randers Metric

The metrics F considered in this thesis combine a symmetric part, defined in terms of a positive definite tensor field M,a n da na s y m m e t r i cp a r ti n v o l v i n gav e c t o r field ! 2 R d :

F(x, u)= p hu, M(x) ui + h!(x), ui, 8 x 2 Ωa n d8 u 2 R m .
(2.72)

In this case, the Finsler metric F (2.72)i sr e g a r d e da st h eR a n d e r sm e t r i c( Randers, 1941). Note that in the following part of this thesis, whenever we mention the Finsler metric, we mean the Randers metric with the form formulated in (2.72).

The Finsler metric or the Randers metric F (2.72)s h o u l do b e yt h ef o l l o w i n g smallness condition (Mirebeau, 2014b)t oe n s u r et h a tt h em e t r i cF is positive:

8x 2 Ω, h!(x), M -1 (x) !(x)i < 1. (2.73)
The anisotropy ratio µ(F)c h a r a c t e r i z e st h ed i s t o r t i o nb e t w e e nd i ff e r e n to r i e n t ations induced by a Finsler metric F on a domain Ω. The anisotropic ratio µ(F) of the metric F (2.72)i sd e fi n e db y :

µ(F):=sup x2Ω ⇢ max kuk=kvk=1 n F x (u) F x (v) o .
(2.74) Equation (2.72) defines an anisotropic Finsler metric in general. This is an anisotropic Riemannian metric if the vector field ! is identically zero, and an isotropic metric if in addition the tensor field M is proportional to the identity matrix.

Based on the definition of the dual norm in (2.71), the corresponding optimal direction map Ψ is then obtained by

Ψ(x, u):=argmax v6 =0 hu, vi F x (v) , 8 x 2 Ω, 8u 2 R n . (2.75)
Again, the geodesic C s,x is obtained by reversing the path Ĉx,s with C s,x (0) = s and C s,x (1) = x,w h e r e Ĉx,s is tracked through the following ODE involving the minimal action map U and the optimal direction map Ψ

8 < : Ĉ0 x,s (t) /-Ψ ⇣ Ĉx,s (t), rU Ĉx,s (t) ⌘ , Ĉx,s (0) = x. (2.76)
Numerically, the ODE in (2.76)canbesolvedbyusingtheRunge-Kutta'smethod, or more robustly using the numerical method proposed by Mirebeau (2014a). 

Fast Marching Method 2.4.1 Overview of the Fast Marching Method

The fast marching method was developed independently by Sethian (1996Sethian ( , 1999) ) and Tsitsiklis (1995)t oa d d r e s st h ep r o b l e mo ft h ec o m p u t a t i o no ft h em i n i m a l action map or geodesic distance map with respect to isotropic Riemannian metric. The essential difference between the fast marching methods Sethian (1996Sethian ( , 1999) ) and Tsitsiklis (1995)liesatthediscretizationschemeforthelocalgeodesicdistance update, where Sethian's method made use of the upwind discretization form of the Eikonal equation (2.43)i t s e l f ,w h i l eT s i t s i k l i s ' ss h o r t e s tp a t hm e t h odu t i l i z e dt h e Hopf-Lax update scheme. Both the fast marching methods mentioned above are similar to Dijkstra's non-iterative algorithm (Dijkstra, 1959)i nam o n o t o n i c a l l y advancing wave propagation manner. Compared to the fast marching methods, it is known that Dijkstra's shortest path algorithm may suffer from the metrication error problem [START_REF] Cohen | Global minimum for active contour models: A minimal path approach[END_REF].

For the purp ose of estimation of the minimal action map U in (2.69)a n d( 2.70) by the fast marching method, we first introduce some basic notations:

Notation 2.4.1. let Z be a discretization orthogonal grid of the domain Ω with dimension d and let N =#Z be the total number of grid points of Z.

Notation 2.4.2. For each grid point x 0 , a stencil S(x 0 ) is a neighbourhood of x 0 with vertices in Z. We introduce a translated stencil } defined by offset-based Algorithm 1 General Fast Marching Method Input:

• Metric F.

• Initial source points collection W. Output:

• Minimal action map U . Initialization:

• For each p oint x 2 Z,s e tU (x) +1 and V(x) Far . • For each p oint y 2W,s e tU (y) 0a n dV(y) Trial . Main Loop 1: while at least one grid point is tagged as Trial do 2:

Find x min ,t h eTrial point which minimizes U .

3:

V(x min )

Accepted.

4:

for all neighbourhood points y of x min and V(y) 6 = Accepted do 5:

Compute U new (y)b yl oc a lg e od e s i cd i s t a n c eu pd a t es c h e m e .

6:

if V(y)=Far then

7:

Set V(y) Trial .

8:

end if

9: if U new (y) < U (y) then 10: Set U (y) U new (y), 11: end if 12:
end for 13: end while coordinate system: }(x 0 ):=S(x 0 )x 0 .

(2.77) The fast marching method is a single-pass algorithm where the cartesian grid points in Z are visited by the front in an ordered way. The behaviour of the fast marching method is like a monotonically advancing wave propagation: starting from the initial source points, the front will propagate outward until filling the whole domain combining with a point labelling procedure. In the course of the fast marching front propagation, each grid point in Z is tagged as either Accepted, Trial or Far by a labelling function V : Z !{Accepted, Trial, Far }:

A common simplex T 2 }(x 0 ) is defined as the convex envelop of vertices in the set {0}[{x 1 -x 0 , ••• , x d -x 0 } where {x 1 , ••• , x d }
• Accepted points are the grid points for which minimal action values of U have been estimated and been frozen.

• Trial points are the grid points for which the minimal action values have been estimated but not frozen.

• Far points are the grid points for which the minimal action values have not been estimated.

All the Trial points form the fast marching front which is considered as the interface between the points tagged as Accepted and the points tagged as Far.W e illustrate the fast marching front in Fig. 2.12,w h e r et h eAccepted, Trial and Far points are represented by red, green and black dots respectively. The front consisting of all the Trial points are indicated by green region. The values of minimal action map U for all Trial points have been updated at least once. These Trial points are stored in a priority queue such that the Trial point x min with the smallest value of U can be identified efficiently. By marching the front in an ordered way, the minimal action map U can be obtained within a finite number of local geodesic distance update steps.

The overview of the fast marching method can be found in Algorithm 1.I ne a c h step, the grid point x min with the smallest value of U among all the Trial points is selected and tagged as Accepted as described in Line 2 of Algorithm 1.T h ec r u c i a l point of the fast marching method is to update all the neighbourhood points y of x min obeying V(y) 6 = Accepted by the local geodesic distance update scheme detailed in Sections 2.4.2, 2.4.3 and 2.4.5. Note that the neighbourhood points y of x min is defined by the local mesh S(x min ).

The general stopping criterion for fast marching algorithm can be formulated as: once all the grid points in Z have been tagged as Accepted,t h ef a s tm a r c h i n g front propagation can be stopped. In order to reduce the computation time of the minimal action map computation, the early abort scheme can be applied: once all the end points are tagged as Accepted,w es t o pt h ef a s tm a r c h i n gc o m p l e t e l y .

Isotropic Fast Marching Method with Sethian's Update Scheme

In the classical minimal path model, [START_REF] Cohen | Global minimum for active contour models: A minimal path approach[END_REF] 

✓ max{U new -U m-1,n , U new -U m+1,n , 0} ∆x ◆ 2 + ✓ max{U new -U m,n-1 , U new -U m,n+1 , 0} ∆y ◆ 2 = P 2 m,n , (2.80) 
for each grid point (m, n) 2 Z.I nt h ef o l l o w i n g ,w es e t∆ x =∆y =1forsimplicit y .

We denote 

(A 1 ,A 2 )=(U m-1,n , U m+1,n )a n d( B 1 ,B 2 )=(U m,n-1 , U m,n+1
{(m +1,n)(m -1,n), (m, n +1), (m, n -1)} are considered.
Hence the equation (2.80)c a ns i m p l i fi e da s

(U new -A 1 ) 2 +(U new -B 1 ) 2 = P 2 m,n . (2.81)
The discriminant ∆ of the quadratic equation (2.81)i se x p r e s s e db y

∆ m,n =4(2 P 2 m,n -(A 1 -B 1 ) 2 ). (2.82) 
When ∆ m,n ≥ 0, we obtain the following solution

u = A 1 + B 1 + q 2 P 2 m,n -(A 1 -B 1 ) 2 2 .
(2.83)

The solution U new of equation (2.82)c a nb eo b t a i n e db yt h ef o l l o w i n gu p w i n d scheme:

1. If ∆ m,n ≥ 0a n du>max{A 1 ,B 1 },w eh a v eU new := u. 2. If ∆ m,n ≥ 0a n du<max{A 1 ,B 1 },w eh a v eU new := min{A 1 ,B 1 } + Pm,n . 3. If ∆ m,n < 0, we have U new := min{A 1 ,B 1 } + Pm,n .
In each fast marching step, we find a grid point x min ,aTrial point that minimizes the minimal action map U . 

Hopf-Lax Update Scheme

In contrast with Sethian's fast marching method which solves the Eikonal PDE with an upwind discretization scheme, the basic idea of Tsitsiklis' geodesic distance computation method (Tsitsiklis, 1995)i st oa p p r o x i m a t et h em i n i m a la c t i o nm a p U by the Hopf-Lax update scheme. Note that Tsitsiklis' method is only suitable for the geodesic distance computation with respect to a isotropic Riemannian metric.

In this section, a more general metric F as discussed in Section 2.3.7 is considered.

The minimal action map U associated to a general metric F satisfies the anisotropic Eikonal PDE or the static Hamilton-Jacobi PDE

( F ⇤ x -rU(x) =1, 8x 2 Ω\{s}, U (s)=0, (2.84) 
As discussed in (Kushner, 1990;Mirebeau, 2014b;Sethian and Vladimirsky, 2003), the discretization of the Eikonal PDE can be interpreted as a fixed point problem based on the Hopf-Lax update scheme

( U (x)=ΛU (x), 8x 2 Z, U (s)=0, (2.85)
where Z is the discretization orthogonal grid of the domain Ω. Λ is the Hopf-Lax update operator that is defined by:

ΛU (x):= min z2@S(x) n F(x, x -z)+I S(x) U (z) o , (2.86) 
where S(x)i st h el o c a ls t e n c i lc e n t r e da tp o i n tx 2 Z and I S(x) denotes the piecewise linear interpolation operator on the mesh S(x). Note that z lies on the boundary @S(x). The value of I S(x) U (z)c a nb eo b t a i n e db yl i n e a ri n t e r p o l a t i o n on the boundary @S(x)ofthestencilS(x). The equality U (x)=ΛU (x), replacing in (2.85)t h eE i k o n a lP D E,i sad i s c r e t i z a t i o no fB e l l m a n ' so p t i m a l i t yp r i n c i p l e which states that

U (x)=d F (x, z)+U (z), (2.87) 
where d F (x, z)d e n o t e st h eg e od e s i cd i s t a n c ebe t w e e npo i n t sx and z.

Bellman's optimality principle (2.87)r e fl e c t st h ef a c tt h a tt h em i n i m a lg e o d e s i c C s,x ,f r o ms to x,h a st oc r o s st h em e s hb o u n d a r y@S(x)a tl e a s to n c ea ts o m e point z;t h u si ti st h ec o n c a t e n a t i o no fag e o d e s i cC s,z from s to z,a ss h o w ni n Fig. 2.13. Using the Hopf-Lax update operator (2.86)t oe s t i m a t et h ev a l u e so f the minimal action map U in (2.87)w h i c hl e n g t hi sa p p r o x i m a t e db yp i e c e w i s e linear interpolation, and a very short geodesic C z,x from z to x,a p p r o x i m a t e db y as e g m e n tw i t hg e od e s i cc u r v el e n g t hF(x, xz).

Anisotropic Fast Marching Method

The stencil plays an important role in the computation of the minimal action map U by the fast marching method (Chopp, 2001;Sethian and Vladimirsky, 2003).

The fast marching methods proposed by Sethian (1999)andTsitsiklis (1995)making use of the square formed stencil (see Fig. 2.11a) have difficulty to deal with the anisotropic metrics-based minimal action maps computation, especially when the anisotropy ratio µ (2.53)o r( 2.74)g e t sl a r g e ,s i n c eb o t hm e t h o d sr e l yo nt h e assumption that the tangent directions of the geodesics are propositional to the gradient of the minimal action map (Chopp, 2001).

Let us Consider the gradient descent ODE used to recover the geodesic C x,s ,joining x to the initial source point s,w i t hr e s pe c tt oag e n e r a lm e t r i c :

8 < : C 0 x,s (t) /-Ψ ⇣ C x,s (t), rU C x,s (t) ⌘ , C x,s (0) = x. (2.88)
where

F ⇤ x is the dual norm of F x (•)=F(x,
•)a n dΨi st h eo p t i m a ld i r e c t i o nm a p defined in (2.75). It can be seen from (2.88)t h a tt h et a n g e n t sC 0 depend on both the metric F and the gradient of U .T h i sm e a n st h ec l a s s i c a lf a s tm a r c h i n gm e t hods invoking 4-connected neighbourhood stencil will not give accurate minimal action map computation results.

Let us recall the Hopf-Lax update scheme with respect to a Fisnler metric F defined in (2.72):

U (x)= min z2@S(x) n F(x, x -z)+I S(x) U (z) o , 8 x 2 Z. (2.89)
The minimization problem of (2.86)canbesolvedusingtheverticesofthesimplex T 2 }(x)where} is the translated stencil defined in (2.77). Let x T i be the vertices of the stencil S(x)where i 2{1, 2, ••• ,d} and d is the dimension the domain. For each simplex T 2 }(x), the Hopf-Lax update operator Λ defined in (2.86)c a nb e approximated by u(T )=min

⌘2Ξ ( F x, v T ⌘ + d X i=1 ⌘ i U (x T i ) ) , (2.90) 
where the convex set

Ξ:= ( ⌘ =(⌘ 1 ,⌘ 2 , ••• ,⌘ d ); d X i=1 ⌘ i =1, 8 ⌘ i ≥ 0 ) ,
and vector

v T ⌘ = d X i=1 ⌘ i x T i -x .
The minimal action map value U (x):=U new at point x can be obtained by

U new =m i n T 2S(x) u(T ),
where U new is used in Line 5 of Algorithm 1.

There are two ways to solve the anisotropic Eikonal PDE, both of which are based on the local Hopf-Lax update scheme (2.89):

• The first method to solve the anisotropic Eikonal PDE is the Bellman-Ford inspired adaptive Gauss-Seidel iteration (AGSI) method that is proposed by Bornemann and Rasch (2006). The AGSI numerical method has the computation complexity of O µN 1+1/d ,w h e r eµ is the anisotropy ratio value defined by (2.74). The AGSI method solves the fixed point problem (2.85) by using the Hopf-Lax update operator (2.89)inaiterativewaybased on a simple local stencil. However, when the value of anisotropy ratio µ gets very large, the iteration numbers for the Hopf-Lax update operator (2.89) required by the AGSI method will get extremely large. In some real-time Algorithm 2 Adaptive Stencils Construction (Mirebeau, 2014b) Input:

• Norm F x . Output:

• Translated stencil }(x). Initialization:

• Initialize two lists: M(x) {(1, 0)} and L {(1, 0), (0, -1), (-1, 0), (0, 1)}. Marching Loop:

1: while L is non-empty do 2:
Let a and b be the last two elements of M and L respectively. L L [{b}.

5:

Remove b from M.

6:

else 7:
Append a + b to M.

8:

end if 9: end while 10: Append all the elements of L to }. applications in the fields of computer vision and medical imaging, the AGSI method will be impractical, as pointed out by Mirebeau (2014a,b).

• Alternately, one-pass fast marching method with metric dependent stencils can be applied to solve the anisotropic Eikonal PDE. Sethian and Vladimirsky (2003) proposed an ordered upwind (OU) method where the local stencil are built in the course of the fast marching propagation. The sizes of the stencils used in OU fast marching method rely on the values of anisotropy ratio µ: al a r g ev a l u eo fµ implies a large size of stencil to cover the regions passed by the local optimal path. Contrary to the dynamic stencil construction based OM fast marching method (Sethian and Vladimirsky, 2003), Alton and Mitchell (2012)proposedastaticstencilbasedmethodwherethestencil will be constructed before the fast marching front propagation is performed. Both the mentioned fast marching methods have computation complexity O(µ d N ln N )w h i c ha r eu n w o r k a b l ef o rl a r g ev a l u e so fa n i s o t r o p yr a t i oµ.

For the purp ose of improving the stability and accuracy of the computation of the minimal action map with respect to a high anisotropic geodesic metric, a novel adaptive stencil construction method was introduced by Mirebeau (2014a) for 3D anisotropic Riemannian metric and by Mirebeau (2014b)f o ra r b i t r a r y2 D Finsler metric with computation complexity O(N ln µ + N ln N )a sd e s c r i b e di n next section. In this thesis, we make use of these adaptive stencil based fast marching method as our numerical tools for the proposed anisotropic Riemannian metrics by (Mirebeau, 2014a) and for novel anisotropic and asymmetric Finsler metrics. 

Adaptive Stencil-based Anisotropic Fast Marching Method

Mirebeau (2014b)p r o po s e da na n i s o t r o p i cs t e n c i lr e fi n e m e n tb a s e df a s tm a r c h i n g method (FM-ASR) for the minimal action map computation with respect to an arbitrary Finsler metric with the form of

F(x, u)= p u, M(x) u -h!, ui, 8 x 2 Ω, u 2 R 2 .
(2.91)

F defines a general Finsler metric and will degenerate to a anisotropic Riemannian metric if ! = 0 with respect to a non-diagonal symmetric positive define tensor field M. In the following, we introduce the stencil construction for 2D Finsler metric.

The F dependent stencil construction is based on the geometrical concept of F xacute angle (Mirebeau, 2014b). Two non-zero vectors u, v 2 R 2 form an F x -acute angle if they obey that for all δ>0

F x (u + δv) ≥F x (u)a n dF x (v + δu) > F x (v). (2.92) If F
x is differentiable at u and v,t h ed e fi n i t i o no fF x -acute (2.92)isequiv alen tto the following condition:

hu, rF x (v)i≥0a n dhv, rF x (u)i≥0, (2.93) 
where

F x (•)=F(x, •)i san o r mo nR 2 .
Note that when F is a Riemannian metric, i.e, the vector field ! = 0 and The stencil S can be recovered by (2.77). A point neighbourhood point of x 2 Z if it obeys x 2 S(y). In other words, the neighbourhood point set N e of x is defined in terms of S(x)b y N e (x):={y 2 Z; x 2 S(y)}.

F x (u)= p hu, M(x) ui,
y 2 Z is a S(x)-dependent (a) (b) (c) (d) 

Stencils Construction for Lifted Metrics

We take the radius-lifted anisotropic Riemannian metric as an example. The anisotropic Riemannian metric with radius lifting for tubular structure extraction survives over the domain Ω ⇢ R 2 ⇥ R 1 with general tensor field form of (2.58)o r (2.60). For completeness, we rewrite the radius-lifted tensor field M r The anisotropy for this metric depends on the tensor M s (2.59), where the 2D case is

M r (x,r)= ✓ M s (x,r) 0 0 P r (x,r) ◆ , (2.95) (a) (b) (c) (d)
M s (x,r)=P s 1 (x,r)v 1 (x,r) v T 1 (x,r)+P s 2 (x,r)v 2 (x,r) v T 2 (x,r). (2.96) Note that the vectors v 1 (x), v 2 (x) 2 R 2 .
The steps for the stencil construction with respect to M r are listed as follows:

• We first invoke the method described in Algorithm 2 with respect to tensor field M s (2.95)t oo b t a i nt h el oc a lt r a n s l a t e ds t e n c i l s}(x), for any x 2 Z.

• The M r -based translated local stencil }(x)c a nbec o n s t r u c t e da s -For each vertex a 2 }(x), we append (a, 0) to }(x).

-Append (0, 0, 1) and (0, 0, -1) to }(x).

In this thesis, we make use of the above stencil construction scheme for the geodesic distance map computation with respect to the anisotropic radius-lifted Riemannian metric and the anisotropic and asymmetric orientation-lifted Finsler elastica metric.

Chapter 3

Retinal Vessel Segmentation via New Minimal Paths Models Abstract

The retinal vessel extraction, including both the blood vessel centreline positions and therespective thickness values at the corresponding centreline points, has important medical and clinical applications. To satisfy this requirement, a retinal blood vessel can be modelled as a minimal geodesic in the sense that this geodesic involves both the vessel centreline positions and the corresponding vessel radii information. The minimal path models are therefore very suitable and intuitive for the retinal blood vessel extraction task. They are particularly efficient to extract a tubular structure in the way of giving two points at the ends of a retinal vessel (Benmansour and Cohen, 2011;[START_REF] Li | Vessels as 4-D curves: Global minimal 4-D paths to extract 3-D tubular surfaces and centrelines[END_REF]. However, there exist some difficulties suffered by these classical isotropic or anisotropic minimal path models, like the shortcuts problem and the short branches combination problem, leading to unexpected vessel extraction results.

In this chapter, we propose three novel minimal paths models to solve these existing problems in the task of retinal vessels extraction suffered by the classical minimal path models. These new minimal paths models include the mask-based keypoints detection model, the dynamic anisotropic Riemannian metric-based minimal path model and the region-constrained minimal paths model. All of these three models are devoted to extract both centrelines and the respective width values of vessels, combining with different retinal vessels properties, vessel orientation enhancement, and the prior vessel segmentation results. The vessel orientation is detected in this chapter by the optimally oriented flux filter proposed in [START_REF] Law | Three Dimensional Curvilinear Structure Detection Using Optimally Oriented Flux[END_REF].

We p erform the numerical exp eriments involving the comparative results for the proposed new minimal paths models in the retinal images. Actually, these proposed minimal paths models can also be adapted to extract vessels and roads from various types of medical images or aerial images, in either automatic or interactive ways. 

Retinal Vessel Tracking Models

Retinal vessel tracking methods can find both the centrelines and radii values for each individual vessel. Generally, the tracking methods consider to describe a piece of vessel by a collection of ordered vessel profiles, which can be determined either by minimizing the distance between the detected local cross sectional image feature and the prior ideal vessel model, or by optimizing the computed local • Growing stage. The centre point and edge points in the current profile can be used to determine the local orientation of the vessel at the centre point. By going ahead a small distance along this detected orientation, the initial guess of the next centre point can be obtained.

• Configuration stage. The vessel profile associated to the initial centre point from the growing stage can be determined.

The main difference of the vessel tracking methods with growing scheme lies at the configuration stage. Different criterion have been proposed to obtain the optimal vessel profiles. For example, Lowell et 

Retinal Vessel Segmentation Models

The basic idea of the vessel enhancement methods (Chaudhuri et 

Definition

The oriented flux f of an image I,ofd ime n s ion2,isd e fi n e db yth eamou n tofth e image gradient projected along the orientation n flowing out from a 2D circle at point x with radius r: f (x; r, p):=

I @Sr (r(G σ ⇤ I)(x + rn) • p)(p • n) ds, (3.1) 
where G σ is a Gaussian function with variance σ and n is the outward unit normal vector along @S r . ds is the infinitesimal length on @S r . r is the gradient operator and ⇤ is the convolution operator.

By the divergence theorem, it is proved that the oriented flux f in (3.1)c a nb e rewritten as a quadratic function by a symmetric matrix Q.T h e r e f o r e ,o n eh a s

f (x; r, p)=h p, Q(x,r) p i,
where the eigenvalues and eigenvectors of the symmetric matrix Q(x,r)wedenote by λ i (x,r)a n dv i (x,r),i=1, 2. One has

Q(x,r)= 2 X i=1 λ i (x,r) v i (x,r)v T i (x,r). (3.2)
We refer to the symmetric matrix Q as the oriented flux matrix. [START_REF] Law | Three Dimensional Curvilinear Structure Detection Using Optimally Oriented Flux[END_REF]u s e dt h en o r m a l i z e ds u m m a t i o no ft h en o n -z e r oe i g e n v a l u e st oc o m p u t e the vesselness map, which takes its largest values for points x in vessel centrelines. Indeed, the eigenvector of Q(x)orien tedtangen tiallytothev esselisassociatedto an eigenvalue with small or zero magnitude, whereas another eigenvector oriented transversally to the vessel are associated to eigenvalue with large magnitude. We assume that points inside a vessel have higher intensity values than those in the background. Without loss of generality, we assume that λ 1 (•)  λ 2 (•) ⇡ 0s u c h that the eigenvalue λ 1 can be used to compute the vesselness map which is defined by V ness :Ω! R as follows:

V ness (x):=max ⇢ max r ⇢ - 1 r λ 1 (x,r) , 0 . (3.3) 
The normalized factor 1/r is used to remove the scale bias of the optimal oriented flux filter to ensure that the vesselness map V ness is scale invariant. The vesselness map V ness (x)in(3.3)hasalargevalueifx is located inside the vessels, which means that we can take into account this vesselness map to indicate the the probability of each pixel appearing as a vessel point.

For each pixel, we can assign an optimal scale value, by using the following optimal scale map S opt :

S opt (x)=argmax r ⇢ - 1 r λ 1 (x,r) . (3.4) 
Based on the map S,t h eo p t i m a lo r i e n t e dfl u xm a t r i xQ opt can be expressed by:

Q opt (x)=Q x, S opt (x) . (3.5) 
By the matrix decomposition method, the optimal oriented flux matrix Q opt can be expressed as

Q opt (x)=Λ 1 (x)V 1 (x)V T 1 (x)+Λ 2 (x)V 2 (x)V T 2 (x), (3.6) 
where the vector V 1 (x)c a nb ec o n s i d e r e da st h et u b u l a rs t r u c t u r eo r i e n t a t i o na t point x if it is located inside a vessel. Thus the vector field V 2 are the orthogonal vector field of V 1 . Note that vector fields V 1 and V 2 will be used to constructed to the anisotropic Riemannian metric in the following section.

Scalar fields Λ 1 , Λ 2 :Ω! R are the eigenvalues at the optimal scale for all the points x 2 Ω, which are defined by:

Λ 1 (x)=λ 1 x, S opt (x) , (3.7) 
Λ 2 (x)=λ 2 x, S opt (x) . (3.8)
Note that maps V ness , S and Q opt are all defined over the image domain Ω ⇢ R 2 instead of the radius-lifted space Ω.

Optimally Oriented Flux Filter-based Anisotropic radius-lifted Riemannian Metric Construction

Benmansour and Cohen (2011)i n t r o d u c e daw a yt oc o n s t r u c tt h ea n i s o t r o p i c radius-lifted Riemannian metric R AR (2.61)b yu s i n gt h eo p t i m a l l yo r i e n t e dfl u x filter [START_REF] Law | Three Dimensional Curvilinear Structure Detection Using Optimally Oriented Flux[END_REF]. Let us recall the radius-lifted tensor field M r :

M r (x)= ✓ M s (x) 0 0 P r (x) ◆ , (3.9) 
where M s is a symmetric tensor with size 2 ⇥ 2:

M s (x)=exp ↵λ 2 (x) v 1 (x)v T 1 (x)+exp ↵λ 1 (x) v 2 (x)v T 2 (x), (3.10) 
and P r : Ω ! R + is a scalar potential function penalizing the variations of the tubular structure thickness which can be expressed as:

P r (x,r)=β exp ✓ ↵ λ 1 (x,r)+λ 2 (x,r) 2 ◆ , (3.11) 
where λ 1 , λ 2 are the eigenvalues of the matrix Q (3.2)a n dv 1 , v 2 are the corresponding eigenvectors. The constant β>0c o n t r o l st h es p e e da l o n gt h er a d i u s direction, and constant ↵ controls the anisotropy ratio µ ≥ 1f o rt h ea n i s o t r o p i c Riemannian metric R AR :

µ(R AR )=max (x,r) s exp ↵λ 2 (x,r) exp ↵λ 1 (x,r) = r exp ⇣ ↵ max (x,r) λ 2 (x,r) -λ 1 (x,r) ⌘ .
In practice, we use the values of the anisotropy ratio µ and the constant β to construct the tensor filed M r .T h el o c a la d a p t i v es t e n c i l sf o rt h ef a s tm a r c h i n g method (Mirebeau, 2014a) Based on the constructed tensor field M r (3.9), one can find a geodesic which can describe both the centreline points and radius values by globally minimizing the the following curve energy

L(γ)= Z 1 0 p hγ 0 (t), M r (γ(t)) γ 0 (t)i dt, (3.12) 
where γ :[0, 1] ! Ωi sar e g u l a rc u r v e .

Mask-based Keypoints Detection

We address a more difficult problem in this section, comparing to the classical minimal path models: the extraction of a full vessel tree structure given a single initial root point, by growing a collection of keypoints or new initial source points, connected by minimal geodesic paths. In this section, these keypoints are iteratively added, using a new detection criteria, which utilize the weighted geodesic distances with respect to an anisotropic radius-lifted Riemannian metric, the standard Euclidean curve length and a path score.

Brief Introduction to Existing KeyPoints Models

The basic minimal path models such as (Benmansour and Cohen, 2011; Cohen and Kimmel, 1997; Li and Yezzi, 2007), require user input initial source points and endpoints as the prior knowledge to track the minimal paths. The initial source points, considered as the boundaries of the nonlinear Eikonal equation, are necessary initialize the fast marching algorithm. The end points are used to start the geodesics back-tracking scheme. In some cases, to provide both initial source points and end points are difficult and time-consuming. In another aspect, for vessel tree extraction, the positions of the initial source points can be detected by, for example, finding the points with local minimum of the vesselness map. Therefore, efforts have been devoted to reduce the end points input.

For the purp ose mentioned ab ove, Benmansour and Cohen (2009)proposedanew approach: a keypoints searching method to detect recursively new startpoints (or keypoints) along the expected features named. Kaul In this section, we proposed a new vessel tree extraction method based on the automatic keypoints detection and state-of-the-art anisotropic fast marching method proposed by Mirebeau (2014a)f o ra no pe ns o u r c el i b r a r y . T h ep a i r w i s ed i s t a n c e s between keypoints are fixed by a curve length threshold; classical keypoints searching method (Benmansour and Cohen, 2009)t e n d st oo v e r l o o kp a r t so ft h ev e s s e l tree when the curve length threshold is small, and to leak or take shortcuts between distinct branches of the vessel tree for large curve length threshold. We substantially improve the performance for small curve length threshold, by incorporating in the keypoint detection criterion a path score computed from the optimally oriented flux vesselness map for each keypoint candidate detected by the classical definition. Furthermore, The above mentioned keypoints-based minimal path models use the isotropic metric. In contrast, we make use of the anisotropic Riemannian metric, integrating with the path orientation, to enforce the geodesic agree with the vessel orientation. The Euclidean curve length computation method associated to an anisotropic Riemannian metric is also presented, based on the Hopf-Lax formula.

Summarily, our contribution in this section is as follows:

• We redefine the keyp oints to make them reasonable even for small curve length threshold.

• We present the extension of the curve length calculation in the anisotropic case, in itself a different contribution.

• We give a stopping criterion to automatically stop the keyp oints searching scheme.

Euclidean Curve Length Calculation

One of the critical points of keypoints method is the calculation of the geodesic curve length (geodesic distance) map and the Euclidean curve length map using fast marching method (Mirebeau, 2014a)sim ultaneously . LettingK be the collection of keypoints which are taken as new source points, for any geodesic C ŝ,x where ŝ 2Kis an initial source point, the Euclidean curve length map L(x)=L(C ŝ,x ) can be formulated as:

L(x):= Z C ŝ,x kC 0 ŝ,x (t)k dt. (3.13)
Anaturalapproac hofc omputingtheE uc lide anc urv ele ngthmapL,i st oe x t r a c t for each x 2 Ωam i n i m a lg e o d e s i cC ŝ,x by solving the ODE (2.55), and then calculating its Euclidean curve length. This first method turns out unfortunately to be too expensive in terms of computational cost.

Deschamps and Cohen (2001)a n dBenmansour and Cohen (2009)p r o p o s e da fast method for approximating the Euclidean curve length in the course of the fast marching front propagation. However, their methods depend only on the isotropic Riemannian metrics over the image domain Ω. In this section, we extend this method to the radius-lifted anisotropic Riemannian metric case to blend the benefits of both orientation enhancement and radius lifting.

Based on the tensor field M r as shown in (3.9), the geodesic distance map U (x) denoting the geodesic curve length of C ŝ,x can be obtained by solving the Eikonal PDE 

( krU (x)k M -1 r (x) =1, 8x 2 Ω\{ŝ} U (ŝ)=0. ( 3 
ΛU (x)= min ŷ2@S(x) n R AR (x, ŷ -x)+I S(x) U (ŷ) o , =m i n ŷ2@S(x) n kŷ -xk Mr(x) +I S(x) U (ŷ) o , (3.15) 
where I S(x) denotes the piecewise linear interpolation operator on the mesh S(x), and y lies on the boundary of S(x) ( Mirebeau, 2014a). R AR (x, ŷx)i st h e anisotropic radius-lifted Riemannian metric as described in (2.61).

An approximation of L is given by the solution of the following fixed point problem: find L : Ω ! R such that (i) for all x =( x,r) 2K , `(x)=0 ,a n d( i i )f o r all x 2 Ω/K,d e n o t i n gb yŷ ⇤ the point at which the minimum of the Hopf-Lax update operator (3.15)i sa t t a i n e d . O n ec a nc o m p u t eL as

L(x)=kŷ ⇤ -xk M 2 + L(ŷ ⇤ ), (3.16) 
where L(ŷ ⇤ )canbeobtainedb yin terpolation. kuk M 2 = p hu,M 2 ui and M 2 with size 3 ⇥ 3i sd e fi n e da s

M 2 = 0 @ 100 010 000 1 A .
(3.17) Equation (3.16)m e a n st h a tw eo n l yc o m p u t et h ea p p r o x i m a t e dc u r v el e n g t ho f the projected path from the radius-lifted domain Ωt ot h ei m a g ed o m a i nΩ .

Let Ẑ be a discretization grid of the radius-lifted domain Ω. For concreteness, we give a second description of (3.16), closer to implementation and specialized to 3-dimensional domains as in the 2D with radius lifting case. Opting for offset based notations, we introduce the translated stencil

}(x):=S(x) -x, x 2 Ẑ \ Ω, (3.18)
which is a collection of tetrahedra which union is a neighborhood of the origin. A generic boundary stencil point ŷ 2 @S(x)a si no p t i m i z a t i o n( 3.16)c a nt h e nb e expressed as:

ŷ = x + 3 X i=1 i ûi , (3.19) 
s.t. i > 0, and

3 X i=1 i =1, (3.20) 
where û1 , û2 and û3 are non-zero vertices of a common tetrahedron T 2 }(x).

Consider the compact and convex set:

Ψ:={ =( 1 , 2 , 3 ); i > 0, 3 X i=1 i =1,i=1, 2, 3}. (3.21)
For each p oint x 2 Ẑ \ Ωa n ds i m p l e xT 2 }(x)w ec o n s i d e rt h ef u n c t i o n :

J x,T ( )= 3 X i=1 i ûi Mr(x) + 3 X i=1 i U (x + ûi ). (3.22) 
One can see that J x,T is a convex function on the set of Ψ (3.21). Minimizing J x,T can be found in (Mirebeau, 2014a;Sethian and Vladimirsky, 2003). Then equation (3.16)i se q u i v a l e n tt o 

U (x)=min T 2} ⇢ min 2Ψ n J x,T ( ) o . ( 3 
L(x)= 3 X i=1 ⌘ ⇤ i ûi M 2 + 3 X i=1 ⌘ ⇤ i L(x + ûi ). (3.24)
Therefore, the minimizer ŷ⇤ = x+ P 3 i=1 ⇤ i ûi .As i n g l ep a s ss o l v ei sa g a i np o s s i b l e : whenever the Fast Marching algorithm updates U (x), simultaneously update L(x), using the (just computed) minimizer ŷ⇤ from (3.15).

Keypoints Definition with a Path Score

The score PS of a path γ =( Γ ,r)i so b t a i n e db ya v e r a g i n gt h ev e s s e l n e s sm a p V ness computed from the optimally oriented flux filter proposed by [START_REF] Law | Three Dimensional Curvilinear Structure Detection Using Optimally Oriented Flux[END_REF], see (3.3)f o rd e t a i l s . O n eh a s

PS(Γ, Th) = Z Γ V ness Γ(s) δ Th, V ness Γ(s) ds Z Γ δ Th, V ness Γ(s) ds .
(3.25)

The threshold parameter Th > 0andselectorδ(•, •)areusedtoeliminateirrelevant parts of the path

δ(Th,d)= ( 1, if d<Th; 0, otherwise. (3.26)
For each x 2 Ω, we denote by PS(x, Th) = PS(Γ x , Th) the path score associated to the geodesic C s,x =(Γ x ,r)j o i n i n gx =(x,r)t ot h es o u r c epo i n tŝ.

Our algorithm combines three main ingredients:

• The classical keypoint searching scheme (Benmansour and Cohen, 2009);

• State-of-the-art anisotropic Fast Marching method (Mirebeau, 2014a)w i t h integrated geodesic curve length computation;

• Vessel tree extraction based on original and new keyp oints selection criteria as well as the stopping criteria.

In practice, our keypoints detection method is embedded within the inner loop of the fast marching method, which it augments with several robust criteria for keypoints detection, adaptation of a set of path score thresholds, and termination.

Keypoints Selection Method

The approximated geodesic distance U to the currently extracted tree structure is estimated using the fast marching algorithm update scheme: initialization and steps 2-12 of the loop in Algorithm 3. 

Keypoints Searching Scheme Based on A Path Score

Ap o i n tx =( x,r)i sm a r k e da san e wk e y p o i n ti fi t sE u c l i d e a nc u r v el e n g t h satisfies L(x) 2 [λ, 3λ), and if additionally it obeys min

n PS(x, Th i-1 ), V ness (x) o > Th i , (3.27) 
where V ness is the vesselness map. The key idea behind this selection criterion is that, among all points for which the action map U is within a given bound, the point which maximizes the Euclidean curve length map L should be inside the tubular structure. Indeed the large ratio L(x)/U (x)r e fl e c t st h ef a c tt h a tt h e geodesic C x,j oiningx to a previous keypoint, has a small action R AR (C(•), C 0 (•)) in average. Thus, by construction of the metric, this geodesic must lie on the vessel centrelines and be aligned with the vessel orientations.

Here we consider the minimal action map U for a tubular structure tree with the initial point at the root of this tree. For all the points ŷ in the level set C = {ŷ |U(ŷ)=c} where c>0isaconstant,theremaybemanylocalmaximums of L,someofwhicharetheintersectionsofthelevelsetC and the tubular structure branch centrelines. Thus we select the maximal local maximum which is inside at u b u l a rs t r u c t u r ej u d g i n gb yt h ee q u a t i o n( 3.27). In our keypoints searching method, one or several path score thresholds Th 1 ≥ Th so as to push the keypoint selection towards finer and less visible structures, when i>1, and leave the vicinity of the tree extracted with the previous threshold Th i-1 . Using a hierarchy of successive thresholds, an anisotropic metric, allows in the end to reliably handle a much smaller curve length threshold λ than the inspirational KPSM (Benmansour and Cohen, 2009), without leaking outside of the vessel or tubular structure, but staying right in its centreline. In Fig. 3.3,w e show the keypoint searching results using the proposed method. In this figure, the green dot is the user-input initial source point, red dots indicate the searched keypoints with two path score thresholds. Cyan contours are the boundaries of the tubular structures. In Figs. 3.3at o3.3c, we show one, two and seven keypoints with the corresponding centrelines and contours. In Fig. 3.3dto3.3f, we show the optimal minimal action map U opt of U with respect to Figs. 3.3at o3.3c, where U opt is defined as

U opt (x)= min r2[R min ,Rmax] n U (x,r) o . (3.28)

Stopping Criterion

The keypoint selection process has to be stopped after all vessel branches have been explored, but before spurious artifacts appear in the reconstructed vessel tree, which requires an adequate stopping criterion. The proposed algorithm terminates when all provided path score thresholds (Th i ) k i=1 have been used, and the value of Euclidean curve length is L(x min ) > 3λ,w h e r ex min is the latest accepted point in the Fast Marching propagation. In Fig. 3.4,w esho wthecomplete keypoints searching result. Green point is the initial source point. Red points are the keypoints with respect to path score threshold Th 1 .B l u ep o i n t sa r et h e keypoints associated to the path score threshold Th 2 . From Fig. 3.4,w ec a ns e e that no leakage occurs, even on weak branches which are reliably extracted by our algorithm.

Semi-Automatic Parameter Setting

The proposed algorithm requires a few parameters: a curve length threshold λ, and a collection of thresholds (Th i ) k i=1 ,o n ei n i t i a ls o u r c epo i n t . T h ec u r v el e n g t h threshold λ should be slightly more than twice the largest radius of the vessels to be detected. We use one or two path score thresholds, depending on the test case, which are automatically selected as quantiles of the vesselness map V ness distribution on image pixels. Finally, the initial source point used in the Fast Marching algorithm can be user provided or automatically selected as the point which maximizes the value of the vesselness map V ness (3.3). 

Numerical Experiments

Small curve length thresholds are a-priori desirable when extracting vessel trees, since they favour the discovery of small structures and avoid the extraction of inadequate shortcuts linking different tree branches. Unfortunately, the classical KPSM (Benmansour and Cohen, 2009)s u ff e r sf r o mal e a k i n gp r o b l e mw i t hs m a l l curve length threshold: before the main vessel branches are extracted, multiple irrelevant keypoints are detected outside the vessel structure of interest. This problem, which is mainly caused by noise and intensity inhomogeneities, is avoided with our new keypoint selection criterion involving a path score, as illustrated on Fig. 3.5. In Fig. 3.5,w i t hal a r g ec u r v el e n g t ht h r e s h o l dλ =60,thet w omethods produce similarly inaccurate results: some small branches are missed, and some undesirable shortcuts between different branches are extracted. In Fig. 3.5(a), with asmallcurvelengththresholdλ =26,thek eypoin tsfromtheKPSM (Benmansour and Cohen, 2009)l e a ka n dbe g i nt oa c c u m u l a t eo u t s i d et h es t r u c t u r e ;i nc o n t r a s t our method accurately detects the vessel tree and then automatically stops as shown in Fig. 3.5,whichcanillustratetheadvantagesofusingpathscoreconstraint and small curve length threshold. Note that in this experiment, we only use one path score threshold for the keypoints searching scheme.

We illustrate on Fig. 3.6 the results of classical KPSM and our method, with curve the length threshold λ =1 2w h i c he m p i r i c a l l yi st h eb e s tf o rt h e s et w o methods on this image. For the classical KPSM, we specify a certain number of keypoints to stop the keypoints searching scheme and for our method, it is stopped automatically. For the proposed method as shown in Fig. 3.6b, we compute the path score threshold Th 1 as the 10% quantile of the vesselness map, in other words {x 2 Ω; V ness (x) ≥ T 1 } collects 10% of the image pixels. For Th 2 ,w eu s e the 12% quantile. On this retinal image, one can see that the classical KPSM suffers from the leakage problem in at least three places due to the gray level inhomogeneities. However, for our method, no leakage happens. Note that in the following experiments with retinal image, we only show the centrelines and keypoints for better visualization. In fact our algorithm also extracts the vessel radii, hence the vessel walls, as illustrated on Fig. 3.4.

Many vessels are missed with a large curve length threshold λ,r e s u l t i n gi nt h e extraction of numerous irrelevant shortcuts, as shown in Fig. 3.7.I nt h i se x p e r iment, we use the same retinal image and path score thresholds as which are used in Fig. 3.6b, except that in Fig. 3.7,w eu s eal a r g ec u r v el e n g t ht h r e s h o l dλ =40. One can see that many finer vessels are missed and some short cuts occurs when compared to Fig. 3.6b.

Again, we have shown the impact of the path score threshold to our algorithm in the same retinal image as Fig. 3.6b. Here we utilize only one large path score threshold Th 1 by specifying the 6% highest vesselness map value among all the pixels. Less keypoints are found due to the larger path score threshold comparing to Fig. 3.6b.

The main drawback of the proposed path score based keypoints searching method is that when handling the tubular structure tree with loops, as shown in Fig. 3.6b, some small tubular segments will be missed due to the existence of the loops and the fast marching scheme.

Conclusion

We prop ose a new keyp oint based tubular structure tree extraction metho d using anisotropic fast marching, and introducing of a path score selection procedure in the keypoint selection criterion. We also show the possibility that the keypoints searching scheme can be automatically stopped by only providing a set of path score thresholds and the curve length threshold. These ingredients allow our method to search keypoints separated by small curve lengths, leading to better extraction results compared to the classical keypoints searching method (Benmansour and Cohen, 2009). Numerical experiments illustrate these improvements on two MRA images and one retinal image. The next step is to extend our approach to 3D and to validate it on a large data set.

Algorithm 3 Vessel Tree Extraction using Path Score based Keypoints Method Input:

• Metric M r ,s t e n c i lS and initial source point ŝ.

• Curve length threshold λ and path score thresholds (Th i ) 1ik .

• Vesselness map V ness . Output:

• Minimal path C,k e y p o i n ts e tK. Initialization:

• For each p oint x 2 Ẑ, U (x) +1, L(x) +1 and V(x) Far. Find xmin =(x min ,r min ), the Trial point which minimizes U .

•U (ŝ)=`(ŝ)=0, K { ŝ}, i 1a 
3:

V(x min ) Accepted.

4:

for All ŷ such that xmin 2 S(ŷ)a n dU (ŷ) > U (x min ) do 5:

Compute U new (ŷ)u s i n g( 3.15).

6:

Compute L new (ŷ)u s i n g( 3.16).

7:

V(ŷ) Trial.

8:

if U new (ŷ) < U (ŷ) then 9:

U (ŷ) U new (ŷ). for all points ẑ 2 Ẑ passed by the minimal paths C do 20:

Set U (ẑ)=`(ẑ)=0.

21:

V(ẑ) Trial.

22:

end for 23:

else if `(x min ) ≥ λ then . Keypoint selection.

24:

Track the minimal path C x from xmin .

25:

if min{PS(x min , Th i-1 ), V ness (x min )}≥Th i then 26:

K = K[{x min }. 27: C = C [ {C x }.

28:

Set U (x min )=L(x min )=0.

29:

V(x min ) Trial.

30:

end if

31:

end if 32: end while Once the geodesic metrics are given, the geodesics can be immediately determined by the computed geodesic distance map.

Let us consider the course of the fast marching method. In each iteration, one Trial point with the smallest geodesic distance value will be frozen and a geodesic between this latest Accepted point and the initial source point can be obtained at once. This just computed geodesic contains some useful information. In this section, we propose a way to use this geodesic-based information.

In As the second contribution of this section, we present a region-constrained minimal path model, as the refined processing of the minimal paths obtained by the dynamic Riemannian metric. By this region-constrained minimal path model, we can obtained the expected centrelines and boundaries of the expected vessels. Numerical experiments on the retinal image dataset have demonstrated the advantages of the proposed minimal path models comparing to the classical minimal path models.

Dynamic Riemannian Metric with Feature Consistency Penalty

In this section, we introduce a novel dynamic Riemannian metric by penalizing the feature coherence. This metric is built upon the image domain Ω ⇢ R 2 instead of lifting domain.

Dynamic Riemannian Metric Construction

We firstly intro duce the definition of the back-tracked p oint (Chen et al., 2016c; Liao et al., 2012Liao et al., , 2013)). In (Liao et al., 2012(Liao et al., , 2013)), which is used to compute the feature consistency penalization. 

, which can be defined as a point z = C s,x (z), where z 2 (0, 1), being such that: Positive constant `is a given curve length threshold value. Note that when the value of the Euclidean curve length threshold λ is larger than the Euclidean curve length of C s,x ,w es i m p l ys e tz = s.

z = C s,x (z),s . t . Z 1 1-z kC 0 s,x (t)kdt = `. (3.29) x 1 z 1 s x 1 z 1 s x 1 z 1 x 1 z 1 s x 1 z 1 s x 1 z 1 s x 1 z 1 s x 1 z 1 s x 1 z 1 x 1 z 1 s x 1 z 1 s x 1 z 1 s x 1 z 1 s x 1 z 1 x 2 z 2 s
We illustrate the back-tracked p oints and the corresp onding short back-tracked geodesics in a patch of retinal image as shown in Fig. 3.10 and in a synthetic image as shown in Fig. 3.11a.

Denote the tubular feature map by F :Ω! R. 8x 2 Ωanditsbac k-trac k edpoin t z defined by (3.29), we introduce two feature coherence functions D c and D d : 

D c (x)=exp ⌧ 1 |F (x) -F (s)| p , s is the initial source point, (3.30) D d (x)=exp ⌧ 2 |F (x) -F (z)| p , z is the back-tracked point of x, (3.31 
M d (x)= D c (x)+D d (x) M s (x), 8x 2 Ω, (3.32) 
where M s is a tensor field constructed for all the points x 2 Ωb y

M s (x)=exp ↵Λ 2 (x) V 1 (x)V T 1 (x)+exp ↵Λ 1 (x) V 2 (x)V T 2 (x), (3.33) 
where Λ 1 ,Λ 2 are eigenvalues of Q opt (3.5)a n dV 1 , V 2 are the corresponding eigenvectors: The minimal action map U d associated to the initial source point s and the dynamic Riemannian metric R dyn is defined as

Q opt (x)=Λ 1 (x)V 1 (x)V T 1 (x)+Λ 2 (x)V 2 (x)V T 2 (x), 8x 2 Ω. ( 3 
U d (x)= min γ2As,x ⇢Z 1 0 R dyn γ(t),γ 0 (t) dt . (3.36)
Belleman's optimality principle states that the minimal action map U defined in (3.36)c a nbee x p r e s s e da s :

U d (x)= min y2S(x) {d(x, y)+U d (y)}, (3.37) 
Belleman's optimality principle can be approximated by the Hopf-Lax update operator as shown in Section 2.4.3.

Numerical Implementation based on the Anisotropic Fast Marching Method

The goal is to compute the geodesic distance map associated to the dynamic anisotropic Riemannian metric ( 

D c (y) ⇡D c (x min ), (3.38) 
D d (y) ⇡D d (x min ), (3.39 

Region-Constrained Minimal Path Model

The goal in this section is to find a minimal cost path inside a given prior region instead of the whole image domain Ω. For this purpose, we introduce some no- 

A Û := γ c ; γ c :[0, 1] ! Û,γ c (0) = ŝ,γ(1) = x .
Algorithm 4 Fast Marching Method with Dynamic Riemannian Metric Input:

• Tubular feature map F .

• radius-lifted tensor field M s (3.33).

• Initial source point s and end point p.

• Local stencil S. Output:

• Minimal action map U d and geodesic C s,p . Initialization:

• For each p oint x 2 Z,s e tU d (x) +1. • For each p oint x 2 Z,s e tV(x) Far.

• Set U d (s) 0a n dV(x) Trial. • Set IfStop False. Main Loop 1: while IfStop=False do 2:
Find x min ,t h eTrial point which minimizes U d .

3:

V(x min )

Accepted.

4:

if x min = p then 5:

Recover the minimal path C s,p .

6:

Set IfStop True.

7:

end if

8:

Find the back-tracked point z of x min by (3.29). 

16:

Compute U new (y) by solving the Hopf-Lax operator (2.86).

17:

if U new (y) < U (y) then 18:

U (y) U new (y).

19:

end if 20:
end for 21: end while

The geodesic energy L c with respect to the radius-lifted metric R AR (2.61)a n d the constrained domain Û can be defined as

L c (γ):= 8 > < > : Z 1 0 R AR γ(t),γ 0 (t) dt, if γ 2A Û , 1,
otherwise.

(3.40)

Algorithm 5 Anisotropic Fast Marching method with Constrained Region Input:

• Radius-lifted tensor field M r .

• Constrained domain Û .

• Initial source point ŝ.

• Local stencil S. Output:

• Minimal action map U c . Initialization:

•8 x 2 Û , U c (x) +1 and V(x) Far. • Set U c (ŝ)
0a n dV(ŝ) Trial. Main Loop 1: while at least one grid point is tagged as Trial do Find xmin ,t h eTrial point which minimizes U c .

3:

Set V(x min ) Accepted.

4:

if xmin 2 Û then 5:

for All ŷ such that xmin 2 S(ŷ)a n dV(ŷ) 6 =Accepted do 6:

Compute U new (ŷ) using Hopf-Lax update in (2.86).

7:

if V(ŷ) 6 =Trial then 8:

V(ŷ) Trial.

9:

end if

10: if U new (ŷ) < U c (ŷ) then 11: U c (ŷ)
U new (ŷ).

12:

end if 13:

end for 14:

else 15:

Set U c (x min )=+1.

16:

end if 17: end while Therefore, the minimal action map U c with respect to the initial source point ŝ 2 Û ,d e fi n e do v e rt h ew h o l er a d i u s -l i f t e dd o m a i n Ωc a nbee x p r e s s e da s : Numerically, the minimal action map U c can be naturally computed by the fast marching method with a freezing scheme as described in Algorithm 5.C o m p a r i n g against the regular fast marching method, the freezing scheme-based method set the value of the latest Accepted point as 1 if this point is outside the radius-lifted constrained region Û . Summarily, the proposed interactive vessel extraction method can be decomposed to two steps. The first step is to get the rough minimal path C which pass the vicinity of the true centreline of the expected vessel as demonstrated in Fig. 3.12a.

U c (x):= ( min L c (γ); γ(1) = x,γ(0) = ŝ , if x 2 Û,
Next step is to build the tubular neighbourhood U of the just computed minimal path C by dilation operator and perform the region-constrained minimal path model to obtain both the centreline and boundaries of the expected vessel. The neighbourhood U is shown in Fig. 3.12ba n dt h efi n a lv e s s e le x t r a c t i o nr e s u l ti s demonstrated in Fig. 3.12c.

Note that the region-constrained minimal path model can be considered as the refined procedure of the minimal path obtained by using the dynamic Riemannian metric. Since the inhomogeneous vesselness distribution along the desired vessel, the extracted minimal path using the feature consistency penalized dynamic Riemannian metric may result in centreline bias as shown in Fig. 3.13.I nt h i sfi g u r e , as h o w st w om i n i m a lp a t h s : o n ei st h ep a t he x t r a c t e du s i n gt h ed y n a m i cm e t r i c • N F F :t h en u m b e ro fv e s s e l st h a tb o t hm o d e l sf a i lt oe x t r a c t .

• N T T :t h en u m b e ro fv e s s e l st h a tb o t hm o d e l sp o s i t i v e l ye x t r a c t .

In Table 3 

Conclusion

We present a two-step metho d for interactive retinal vessel extraction including both the centreline and boundary. In the first step, we invoke a feature consistency penalized dynamic metric to find the rough centreline of the targeted vessel. Then ar e g i o n -c o n s t r a i n e dm i n i m a lp a t hm o d e li sa p p l i e dt og e tt h ee x t r a c t i o nr e s u l t s including both accurate centreline and boundary of the vessel. In this section, we deal with the same problem in a different way. We model the vessel segments by piecewise geodesics consisting of centreline positions and the corresponding radius values. The main purpose of this work is to introduce an automatic method to extract a tubular tree structure, such as the retinal vessel tree, relying on the region-constrained minimal path model as introduced in Section 3.5.3.T h ec o n s t r a i n e dr e g i o n sa r eb u i l tt h r o u g ht h es k e l e t o n so ft h ep r esegmented vessels. This method is related to the geodesic or minimal path technique which is particularly efficient to extract a tubular shape, such as a blood vessel. The proposed method utilizes a collection of pairs of points, where each pair of points provides the initial source point and target point for one minimal geodesic. For each pair of initial point and target point, we calculate the regionconstrained Riemannian metric with an additional radius dimension to constrain the fast marching propagation so that our method can get a nice path without any shortcut or overlapping to other minimal paths. The given pairs of points can be easily obtained from a pre-segmented skeletonized image by any vessel detection filter like Hessian based filter or optimally oriented flux filter. Experimental results demonstrate that our method can extract vessel segments at a finer scale, with increased accuracy.

PreProcessing

In obtain a vesselness map. Once the vesselness map is obtained, a constant threshold is applied to this vesselness map to get the binary vessel map. In order to find the endpoints for each vessel segment, we thin the binary image by a sequential morphological filters [START_REF] Lam | Thinning methodologies-a comprehensive survey[END_REF]a n dr e m o v ea l lt h eb r a n c hp o i n t sa n d crossover points. The entire skeleton is broken up into a set of segments, in which each segment consists of two endpoints. The branch or crossover points are defined as any skeleton point having at least three neighbour points in 8neighbuorhood system. Any endpoint is discovered if it has only one neighbour point and segment point has two neighbour points. In Fig. 3.15c, we show the skeletons after applying thinning filter and the labeled segments in different colours in with two endpoints and then tag them with different labels. Next, we delete the segments whose length in pixels are smaller than a given threshold T len ,butretain the segments who connect two branch or crossover points. Those segments will be stored in the set T . Note that similar preprocessing operation can be found in (Al-Diri et al., 2009; Xu et al., 2011). In Figs. 3.16at o3.16c, we show another example of identifying each segment by removing a branch point that connects three segments.

Endpoints Correction

For each segment h 2T,w ec a no b t a i nac o n s t r a i n e dr e g i o nU h 2 Ωb yd i l a t i o n operation. In Fig. . Therefore, the radius-lifted minimal path corresponding to h can be extracted by applying the region-constrained fast marching algorithm as described in Algorithm 5. The radius-lifted initial source point for Algorithm 5 can be identified by assigning radius 1 to either endpoint of h.T h er a d i u s -l i f t e dt e n s o rfi e l dM r (3.9) of the anisotropic Riemannian metric R AR can be constructed using the optimally oriented flux filter (Law and Chung, 2008)a si n t r o d u c e di nS e c t i o n3.3.T h e tubular neighbourhood region Ûh for segment h is necessary to avoid overlapping extraction as demonstrated in Fig. 3.17aa n d3.17b, which show the overlapped minimal paths. In Fig. 3.17a, the minimal path (blue) is extracted based on the two endpoints of segment tagged as blue in Fig. 3.15d. In Fig. 3.17b, the minimal path (red) is extracted based on the information from the red segment Fig. 3.15d. One can see that the red minimal path passes almost the same pixels with the blue shown in Fig. 3.17a.

However, sometimes the endpoints of the segment h are not located at the exact centre of the tubular structure. As an example, see the two endpoints of the red segment in Fig. 3.15d. This endpoint-bias problem will introduce inaccuracy to the final minimal path extraction results around the initial source points and endpoints (see the red path in Fig. 3.17c). To solve this problem, we propose an endpoint correction method before we apply the minimal paths extraction step.

The proposed EC method relies on the Euclidean curve length map L of the minimal path, where L can be computed in the course of the fast marching front propagation as introduced in Section 3.4.

Recall that the Euclidean curve length map L(x)=L(C ŝ,x ) can be formulated as:

L(x):= Z C ŝ,x kC 0 ŝ,x (t)k dt, (3.42) 
where ŝ 2 Ẑ is the initial source point and Ẑ is the discretization grid of Ω.

The EC method is described in Algorithm 6:f o rag i v e ns e g m e n th 2T with two endpoints p 1 , p 2 ,w ei d e n t i f yi t sm i d d l ep o i n tm 2 h and the dilated tubular neighbourhood region U ~with width `.B yp e r f o r m i n gt h ef a s tm a r c h i n ga l g o r i t h m from the radius-lifted point m =( m, 1), one can compute the geodesic distance U h and Euclidean curve length L inside the tubular neighbourhood region U h simultaneously. Once any radius-lifted endpoint p⇤ i =( p i ,r) 2 Ẑ is reached, we can search the desired radius-lifted point qi inside a set B i :

B i := {x 2 Ẑ; kx -p⇤ i k 2  r B },, i =1, 2, (3.43) 
where r B > 0 is a given constant. As described in Algorithm 6:w efi n dac o l l e c t i o n of radius-lifted points

A i := {x 2 Ẑ; L(x) ≥ [L(p i )] + 1, x 2B},i =1, 2, (3.44) 
where [n]m e a n st h el a r g e s ti n t e g e rw h i c hi ss m a l l e rt h a nn 2 R.T h ec o l l e c t i o n A 1 (resp. A 2 )i n c l u d e sa l lt h er a d i u s -l i f t e dp o i n t sf o rw h i c ht h eE u c l i d e a nc u r v e length values are larger than L(p 1 )( r e s p . p2 ). Then the desired endpoint can be selected as: qi =argmin

x2A i U (x),i =1, 2. (3.45)
Once both endpoints are corrected, i.e., q1 and q2 are found by (3.45), stop the algorithm completely. The criteria are based on the fact that among all the points with the same curve length, any point which is located at the centreline of the tubular structure has a local minimum geodesic distance value. In Fig. 3.17d, we show the results with the boundaries delineation. We can see the endpoints of red, green and yellow lines have been placed at the better positions compared with Fig. 3.17c and Fig. 3.15d.

In Algorithm 6,f o re a c hs e g m e n th,w ec o u l dg e tt h em i n i m a lp a t hC h ,j o i n i n g each corrected endpoints qi and the initial source point m:

C h = C m,q 1 [ C m,q 2 . (3.46)
Then we replace the segments collection T by T new involving all the minimal paths C h .

Experimental Results on Retinal Images

we summary our method as follows:

(a) (b) 1. For a given image I,obtainitsvesselskeletonmapbyremovingallthebranch and crossover points. Tag each segment of the skeleton map and store them in T .

2. For each segment h 2T, do Endpoints Correction as described in Algorithm 6 to get a new set of segments T new .

For each segment h new 2T new ,c o n s t r u c tt h et u b u l a rn e i g h b o u r h o o dr e g i o n

Ûh and do region-constrained fast marching algorithm described in Algorithm 5 to obtain a set of minimal paths, in which each minimal path consists of the centrelines and the radius value representing the vessel width. We illustrate the first step of the proposed algorithm in Fig. 3.18. Note that in Fig. 3.18a, we only demonstrate the green channel of the colored retinal image.

In Fig. In Column 1 of Fig. 3.20,w ei l l u s t r a t et h ev e s s e ls e g m e n t se x t r a c t i o nd e t a i l so fI n Fig. 3.19aindicatedb yarro ws. F orthepurposeofcomparison,w esho wtheresult details of our method in column 2 of Fig. 3.20.

In Fig. 3.21,w esho wtheimpro v edresultsafterendpoin tscorrection. Y ello wlines are the paths without endpoints correction. Compared to the red lines which are produced after endpoints correction, we can see the endpoints are located at more precise positions. 3.2 with evaluation measure Accuracy, which can be computed by the ratio of the summation of the statistical components: the true positive and the true negative to the total number of pixels in the FOV [START_REF] Fraz | Blood vessel segmentation methodologies in retinal images-a survey[END_REF]. We erode the FOV region by 11 pixels to remove the effect of the boundaries of the FOV to the vessel pre-segmentation. We evaluate our results only inside this eroded FOV region. In Table 3.3 we show the computation time of our algorithm in endpoints correction and constrained Fast Marching respectively. We also compare the computation time with classical anisotropic Benmansour-Cohen model with the same given segment set. Our method can achieve almost 2 times faster than the Benmansour-Cohen model.

Conclusion

We prop ose a new tubular structure extraction metho d based on the regionconstrained anisotropic fast marching algorithm, and introduce an endpoints correction method using Euclidean curve length map. These ingredients allow our method to extract piecewise minimal paths from complex tubular network, leading to better extraction results compared to the classic Benmansour-Cohen model.

Algorithm 6 Endpoints Correction

Input:

• Metric M,s t e n c i lS,a n dD i l a t e dt u b u l a rn e i g h bo u r h oodr e g i o n Ûh • Endpoints p 1 and p 2 ,i n i t i a ls o u r c epo i n tm. Output:

• Path C and corrected radius-lifted endpoints q1 , q2 . Initialization:

• For each p oint x 2 Ẑ,s e tU (x) +1, L(x) +1 and V(x) Far. •U ( m) 0, L( m) 0, V( m) Trial,a n dA 0 ?. Find xmin =(x min ,r), the Trial point which minimizes U .

3:

V(x min ) Accepted.

4:

if RemainedEndpoints =0then

5:

Track geo desics C m,q 1 and C m,q 2 from both corrected endpoints contained in A 0 .

6:

C C m,q 1 S C m,q 2 .

Introduction

Flux-based active contours models have been widely applied to tubular structure segmentation since the pioneer work presented in (Vasilevskiy and Siddiqi, 2002), in which the flux magnitude field of the image gradient vector is taken as the dominating external force to drive the active contours (2D) or active surfaces (3D) to sketch the tubular structure boundaries. To solve the expensive computation cost of the local flux for each pixel in the image domain, Law and Chung (2009) proposed a fast flux computation method and its improved version: the optimally oriented flux filter (Law and Chung, 2008)whichcanbeadaptedtoactivecontours models (Law and Chung, 2010). However, those deformable models are based on the level set evolution scheme, where the curve or surface is defined as a zero level set with high computation complexity.

Fast marching-based front propagation based segmentation metho d was developed to overcome the computational complexity of the classical level set numerical scheme by [START_REF] Malladi | A real-time algorithm for medical shape recovery[END_REF]. This method is extremely fast with restriction that the speed has to be positive everywhere. This restriction sometimes will lead to a leakage problem: the front will propagate outside the tubular structure before all the points inside the expected tubularity have been covered. In other words, some parts of the fast marching front need more time to reach the boundaries, and by that time, other parts of the front leak across the boundaries of the vessel. Cohen and Deschamps (2007); Deschamps and Cohen (2002)p r oposed a front propagation method combining the Euclidean curve length, which can be applied to tag the fast marching front points as either head or tail.T h e n the leakages problem can be avoided by freezing all the tail points.

In this section, we proposed an alternate way to solve the leakages problem for fast marching front propagation based segmentation method. We take into account the path anisotropy to penalize the front propagation along the directions which do not coincide the vessel orientations. This is done by applying an anisotropic Riemannian metric instead of the isotropic case [START_REF] Malladi | A real-time algorithm for medical shape recovery[END_REF]. The proposed anisotropic front propagation method can guarantee a connected segmented vessel tree structure and is easy to combine with manual interventions, compared to the vesselness based segmentation methods like [START_REF] Law | Three Dimensional Curvilinear Structure Detection Using Optimally Oriented Flux[END_REF]. Furthermore, the optimally oriented flux filter may fail to identify a vessel with large scale since the scale normalization. In contrast, we explore a local intensity consistency based metric construction method, which can be integrated with the vessel orientation to achieve better vessel segmentation results than classical methods (Cohen and Deschamps, 2007; Deschamps and Cohen, 2002; Malladi and Sethian, 1998).

The main contents of this chapter were presented at the ISBI 2016 conference (Chen and Cohen, 2016). 

E Flux (Γ) := Z 1 0 hV, NikΓ 0 (t)kdt, (4.1) 
where V :Ω! R 2 is a vector field and N is the normal of curve Γ. By the divergence theorem, the curve evolution equation derived from (4.1)w i t hr e s p e c t to time ⌧ can be expressed as:

@Γ @⌧ =(r•V) N . (4.2)
r•V is the divergence of vector field V.T h i sd i v e r g e n c eo p e r a t o ri sd e fi n e db y the divergence theorem as

r•V(x)= lim area(R(x))!0 I @R hV, N R ids area(R(x)) , x 2 Ω. (4.3) 
where R(x)d e n o t e sar o u n dr e g i o nc e n t r e da tp o i n tx and area(R(x)) is its area. @R is the boundary with outward normal N R . Vasilevskiy and Siddiqi (2002)used an approximation of the flux definition which can be described as: at each point x,o n ec a nc o m p u t ei t sfl u xv a l u e su s i n gac o l l e c t i o no fd i s c sc e n t r e da tx with increasing radii. Then the maximum value of these radius dependent flux values can be chosen as the the expected flux value of x to drive the active contours. In 

Fast Marching Front Propagation Model

We consider the isotropic Eikonal equation:

krU (x)k = 1 P (x) , (4.4) 
where U is the minimal action map or minimal arrival time with speed function P :Ω! R + with Ω ⇢ R 2 being the image domain. This Eikonal equation was first adopted by Malladi and Sethian (1998)f o rs u r f a c es e g m e n t a t i o na n ds h a p e recover. This front propagation scheme assume that P (x) > 0everywhere. Thanks to this restriction, the front could propagate towards to the object boundaries or surfaces with cheap computation time.

Given a set of initial source points, the behaviour of the front propagation is like the curve evolution driven by a ballon force (Cohen, 1991). Generally, the speed function P should be large inside the flat region in order for the front to propagate very fast. In contrast, at the vicinity of object boundaries or surfaces, P should become small and the front propagation is slow within this region, thus stopping the front to leak out the objects like tubular structures. P might depend on the image gradient magnitudes, intensity values or vesselness values.

Numerically, the Eikonal equation (4.4)canbesolv edb ytheisotropicfastmarc hing algorithm (Sethian, 1999). The gradient rU is approximated by a first-order upwind scheme, satisfied for the isotropic metric. In this section, we focus on the anisotropic Riemannian metric which cannot be solved by such fast marching method. Instead, we utilize the anisotropic fast marching algorithm proposed by Mirebeau (2014a)w h i c hi sv e r ys t a b l ee v e nf o rl a r g ea n i s o t r o p yr a t i o .

Front Propagation with Anisotropic Riemannian Metric and Fast Marching Method

We consider the anisotropic Eikonal equation with anisotropic Riemannian metric. For a symmetric p ositive definite tensor field M,theanisotropicEik onalequation is krU (x)k M -1 (x) =1. (4.5)

The anisotropic Fast Marching algorithm Mirebeau (2014a)c a nb eu s e da st h e numerical solver of distance map U ,b yfi n d i n gt h es o l u t i o n ,a te a c hu p d a t es t e p , of the fixed point problem with respect to the anisotropic metric R A (2.52):

U (x)= min y2@S(x) n R A (x, y -x)+I S(x) U (y) o , (4.6) 
R A (x, y -x)= p hy -x, M(x)(y -x)i, (4.7) 
where I S(x) is a piecewise linear interpolation operator on a mesh S(x). The local mesh or stencil S can be adaptively constructed according to the given Riemannian metric M by the tool of Lattice Basis Reduction, as introduced in Mirebeau (2014a), leading to breakthrough improvements in terms of computational time and accuracy when dealing with metrics having strong anisotropy ratio.

As initialization, the fast marching algorithm tags all the points of discretization grid Z of Ω to either Accepted (points have been computed and frozen), Trial (points have been updated at least once but not frozen) or Far (points have not been estimated yet). The fast marching front consists of all the Trial points. The Trial point x min minimizing U will be tagged as Accepted and all its neighbourhood points {y 2 Ω; x 2 S(y)} will be updated by solving (4.6). More details about the fast marching method can be seen in Section 2.4.

For convenience, we say that p oint x is base-point of all its neighbour points y.

Dynamic Riemannian Metric Construction

Traditional anisotropic Eikonal equation uses static metric field indep endent of the fast marching front and relies only on the positions and orientations of the path. For blo o d vessels segmentation application, one has to deal with the problem of intensities inhomogeneities which is not suitable for the static metric, thus we propose to take into account the front location to calculate the dynamic Riemannian metric.

Let A ✓ ΩbeacollectionofallpointstaggedasAccepted. In Fig. 4.2,wedenoteA by the red region. Assuming that vessels are brighter than background, we define Algorithm 7 Front Propagation with Dynamic Metric Input:

• Tensor field M c .

• Initial point set W and stencil S. Output:

• Minimal action map U . Initialization:

• For each p oint x 2 Ω, set U (x) +1 and V(x) Far. • For each p oint x 2W,s e tU (x) 0a n dV(x) Trial. Main Loop 1: while at least one grid point is tagged as Trial do 2:

Find x min ,t h eTrial point which minimizes U .

3:

A {A [ x min } 4:

V(x min ) Accepted.

5:

Compute K(x min )u s i n g( 4.8).

6:

for All y such that x min 2 S(y)a n dV(y) 6 =Accepted do 7:

if V(y) 6 =Trial then 8:

V(y) Trial.

9:

end if 10:

Update J (y)u s i n g( 4.12).

11:

Construct the tensor field M d using (4.13).

12:

Compute U new (y)u s i n g( 4.6).

13:

if U new (y) < U (y) then 14:

U (y) U new (y). K is computed only inside a local region such that the proposed front propagation method is robust when dealing with intensity inhomogenities and noise. By assuming that vessels have higher gray levels, we consider that if a pixel x has higher intensity than the average intensity value of its vicinity points defined by B r (x) T A, x is likely to be located inside a vessel. Therefore we use | min{I(x) -K(x), 0}| to calculate J (x)in(4.9)ins te ad of using |I(x) -K(x)|.

Numerically, local intensity dissimilarity function J can be updated in each update iteration of the fast marching algorithm. To reduce the computational complexity, we use the following approximation:

K(x) ⇡ K(z), (4.11)
where z is a base-point of x.T h e nJ can be approximated by

J (x) ⇡ exp(↵ | min{I(x) -K(z), 0}|). (4.12)
With this approximation, the function K only requires to be updated N times where N is the total number of grid points in I.

The dynamic tensor field (anisotropic Riemannian metric) M d can be constructed by combination of J as:

M d (x)=J (x) M c (x), (4.13)
where the tensor field M c is constructed by

M c (x)=V 1 (x)V T 1 (x)+µ V 2 (x) V T 2 (x), (4.14)
where V 1 is the detected tubular structure orientation defined in (3.6)a n dV 2 is the vector field orthogonal to V 1 .P a r a m e t e rµ is the anisotropy ratio. One can see that M c is a non-changed tensor field during the fast marching front propagation.

In contrast, M d will be dynamically updated due to the computation of J .I n Algorithm 7,w epresen tthedetailsofouralgorithm. A, K,andJ are updated in lines 4, 5 and 10 respectively. The stopping criterion is a threshold computed by making sure that T %ofpixelshavingthelowestminimalactionmapU ,amongall pixels, have been chosen. For the proposed fast marching front propagation-based segmentation, this stopping criterion is equivalent to find N ⇤ T %p o i n t st a g g e d as Accepted,w h e r eN is the total number of image pixels.

Experimental Results

We first show the advantage of using anisotropic Riemannian metric comparing to the results using isotropic Riemannian metric. Fig. 4.3 shows four front propagation results with the same number of points tagged as Accepted.T h ea n i s o t r o p y ratio values for Figs. 4.3at o4.3da r e1 ,1 0 ,3 0 ,a n d5 0r e s p e c t i v e l y . I tc a nb e seen that a large anisotropy ratio could make the front propagate along the vessel structure as far as possible before the front leaks out of the vessels. In the following experiments, we set the anisotropy ratio value to be 30 for the proposed method.

In Fig. 4.4,w es h o wt h es e g m e n t a t i o nr e s u l t su s i n g1 /J as the speed for the front propagation with isotropic Riemannian metric. At the beginning of the front propagation in Figs. 4.4aa n d4.4b, no leakage happens. However, as the front goes further along interior region of the vessel tree, it leaks from some weak vessels. This is why we utilize the anisotropic front propagation method.

In Fig. 4.

5,w es h o wt h es e g m e n t a t i o nr e s u l t sf r o mt h r e es e g m e n t a t i o nm e t h o d s :

the second column shows the results by thresholding the vesselness map V ness in (3.3); the third column is obtained from a front propagation based method, in which we set the metric as The last column gives the results by the proposed method. All the three methods require thresholding to get the final segmentation results. One can see that the vesselness based results have many holes and scale overfitting. The vesselnessbased front propagation method also suffers from the similar problems since the distance maps are heavily affected by the vesselness. In contrast, the proposed method can avoid the mentioned problems. In this experiment, we choose the same T for the front propagation methods (third and last columns) but a little bigger T 1 to threshold the V ness in the second column.

M(x)=exp(βV ness (x))(V 1 V T 1 (x)+µ V 2 V T 2 (x)), (4.15) (a) (b) (c) (d)

Conclusion

In this chapter, we propose a new front propagation method for vessel segmentation with the dynamic anisotropic Riemannian metric and anisotropic fast marching method. The main contribution of this section lie at the use of the anisotropy enhancement for the front propagation-based segmentation and local region informationbased Riemannian construction. We make use of the local intensity coherence to penalize the tensor field constructed by the vessel anisotropy to make the fast marching front propagation robust to vessel intensity inhomogenities and noise.

Numerical Experimental results show that our model indeed obtains expected results on vessel tree images. Compared against the isotropic front propagationbased image segmentation method, the proposed model can overcome the front leaking problem.

Chapter 5

Global Minimum for a Finsler Elastica Minimal Path Approach

Abstract

In this chapter, we present a novel curvature-penalized minimal path model via an orientation-lifted Finsler metric and the Euler elastica curve. Original minimal path model computes the globally minimal geodesic by solving an Eikonal partial differential equation (PDE). Essentially, this first-order model is unable to penalize curvature that is related to the path rigidity property in the classical active contour models. To solve this problem, we present an Eikonal PDE-based Finsler elastica minimal path approach to deal with the curvature-penalized geodesic energy minimization problem. We are able to add the curvature penalization to the classical geodesic energy (Caselles et al., 1997;[START_REF] Cohen | Global minimum for active contour models: A minimal path approach[END_REF]. The basic idea of this work is to interpret the Euler elastica bending energy via a novel Finsler elastica metric embedding curvature penalty. This metric is non-Riemannian, anisotropic and asymmetric, defined over an orientation-lifted space by adding to the image domain the orientation as an extra space dimension. Based on this orientation lifting, the proposed minimal path model can benefit from both the curvature and orientation of paths. Thanks to the fast marching method with stencils refinement scheme, the global minimum of the curvature-penalized geodesic energy can be computed efficiently and precisely.

For the goal of applying the proposed Finsler elastica metric to image analysis, we introduce two image data-driven speed functions which are derived by steerable filters dependent on orientations. These orientation dependent speed functions are anisotropic, based on which we apply the Finsler elastica minimal path model to the applications of interactive image segmentation, perceptual grouping and tubular structure extraction. We design different algorithms for each applications mentioned above, in terms of the smoothness and asymmetry properties. Numerical experiments on both synthetic and real images show that these applications of the proposed model indeed obtain promising results.

Introduction

Snakes or Active contour models have been considerably studied and used for object segmentation and feature extraction during almost three decades, since the pioneering work of the snakes model proposed by Kass et al. (1988). A snake is a parametrized curve Γ (locally) minimizing the energy:

E(Γ) = Z 1 0 w 1 kΓ 0 (t)k 2 + w 2 kΓ 00 (t)k 2 + P Γ(t) dt
with appropriate boundary conditions at the endpoints t =0andt =1. Γ 0 and Γ 00 are the first and second order derivatives of curve Γ respectively. Positive constants w 1 and w 2 relate to the elasticity and rigidity of the curve Γ, hence weight its internal forces. This approach models contours as curves Γ locally minimizing an objective energy functional E consisting of an internal and an external force. The internal force terms depend on the first and second order derivatives of the curves (snakes), and respectively account for a prior of small length and of low curvature of the contours. The external force is derived from a potential function P ,depending on image features like gradient magnitude, and designed to attracting the active contours or snakes to the image features of interest such as object boundaries.

The drawbacks of the classical active contours model proposed by Kass et al. (1988)a r ei t ss e n s i t i v i t yt oi n i t i a l i z a t i o n ,t h ed i ffi c u l t yo fh a n d l i n gt o p o l o g i c a l changes, and of minimizing the strongly non-convex path energy as discussed in [START_REF] Cohen | Global minimum for active contour models: A minimal path approach[END_REF]. Regarding initialization, the snakes model requires an initial guess close to the desired image features, and preferably enclosing them because energy minimization tends to shorten the snakes. The introduction of an expanding balloon force allows to be less demanding on the initial curve given inside the objective region (Cohen, 1991). The issue of topology changes led, on the other hand, to the development of active contour methods, which represent object boundaries as the zero level set of the solution to a PDE (Caselles et al., 1993(Caselles et al., , 1997;;[START_REF] Malladi | Evolutionary fronts for topologyindependent shape modeling and recovery[END_REF]Osher and Sethian, 1988;[START_REF] Yezzi | A geometric snake model for segmentation of medical imagery[END_REF].

The difficulty of minimizing the non-convex snakes energy (Kass et al., 1988)leads to important practical problems, since the curve optimization procedure is often stuck at local minima of the energy functional, making the results sensitive to curve initialization and image noise. This is still the case for the level set approach on geodesic active contours (Caselles et al., 1997;Malladi et al., 1995). To address this local minimum sensitivity issue, Cohen and Kimmel (1997)p r o p o s e da nE i k o n a l PDE based minimal path model to find the global minimum of the geodesic active contours energy (Caselles et al., 1997), in which the penalty associated to the second order derivative of the curve was removed from the snakes energy. Thanks to this simplification, a fast, reliable and globally optimal numerical method allows to find the energy minimizing curve with prescribed endpoints; namely the fast marching method (Sethian, 1999) 

Motivation

In contrast with the classical snakes energy (Kass et al., 1988), Eikonal PDEbased minimal path methods are first-order models, which do not penalize the second-order derivative of the curves, i.e. the curvature, and therefore do not enforce the smoothness of the extracted geodesics, leading sometimes to undesired results as shown in Fig. 5.1,i nw h i c hw ew o u l dl i k et oe x t r a c tab o u n d a r ya s smooth as possible between two given points indicated by red and green dots. In Fig. 5.1a we show the edge saliency map. Figs. 5.1ba n d5.1ca r et h ee x t r a c t e d minimal paths using the isotropic Riemannian metric [START_REF] Cohen | Global minimum for active contour models: A minimal path approach[END_REF] and the anisotropic Riemannian metric (Bougleux et al., 2008)r e s p e c t i v e l y ,b o t h of which are unable to find expected smooth boundaries and suffer from shortcuts problem due to the lack of curvature penalization in these metrics. In contrast, the minimal path model presented in this section reintroduces curvature, in the form of weighted Euler elastica curves as studied in [START_REF] Mumford | Elastica and computer vision[END_REF]Nitzberg and Mumford, 1990). Therefore the geodesics extracted by the proposed model can sketch the smooth object boundary, as demonstrated in Fig. 5.1d, with arrows indicating the corresponding tangents at the given positions.

The main contents of this chapter were presented at the BMVC 2015 conference (Chen et al., 2015) and the CVPR 2016 conference (Chen et al., 2016b).

Contributions

The contribution of this chapter is three fold:

1. Firstly, we propose a novel globally minimized minimal path model, namely the Finsler elastica minimal path model, with curvature penalty and Finsler metric. We establish the connection between the Euler elastica and minimal path with respect to an orientation-lifted Finsler elastica metric. With an adequate numerical implementation, leveraging orientation lifting, asymmetric Finsler metrics and anisotropic fast marching method, the proposed model still allows to find the globally minimizing curves with prescribed points and tangents.

2. As a second contribution, we present the mathematical convergence analysis of the Finsler elastica metrics, and of their corresponding Finsler elastica minimal paths. Furthermore, we discuss numerical options for geodesic distance and minimal paths computation, and settle for an adaptation of the fast marching method proposed by Mirebeau (2014b).

3. Finally, we provide two types of image data-driven speed functions computed by steerable filters. These data-driven speed functions are therefore orientation dependent, by which we apply the proposed Finsler elastica minimal path model to the applications of closed contour detection, perceptual grouping and tubular structure extraction. Closed contour detection is performed in an interactive manner, where the contour is concatenated by a set of piecewise smooth geodesics. It connects a set of user-provided orientation-lifted points. With a procedure similar to the closed contour detection method, we apply our model to perceptual grouping based on the criteria of connectivity and smoothness. Moreover, we also provide a method to simplify the tubular structure extraction. 

Finsler Elastica Minimal Path Model

In this section, we present the core contribution of this paper: the orientation-lifted Finsler metric embedding curvature penalty term, defined over the orientationlifted domain Ω=Ω⇥ S 1 ⇢ R 3 ,w h e r eS 1 =[ 0 , 2⇡)d e n o t e st h ea n g l es p a c ew i t h periodic boundary conditions and Ω ⇢ R 2 denotes the image domain.

Geodesic Energy Interpretation of the Euler Elastica Bending Energy via a Finsler Metric

The Euler elastica curves were introduced to the field of computer vision by [START_REF] Nitzberg | The 2.1-D sketch[END_REF]Mumford (1990)andMumford (1994). They minimized the following elastica bending energy:

L( Γ) := Z L 0 1 Φ 0 Γ(s) 1+↵ 2 (s) ds, (5.1) 
where Γ:[ 0 ,L] ! Ωi sar e g u l a rc u r v ew i t hn o n -v a n i s h i n gv e l o c i t y , is the curvature of curve Γ, L is the classical Euclidean curve length and s is the arclength. Parameter ↵>0isaconstan t. Φ 0 is an image data-driven speed function, which takes large values around the interesting image features and low values otherwise.

For the sake of simplicity in the coming calculus, we set Φ 0 ⌘ 1, yielding the simplified Euler elastica bending energy:

`(Γ ) = Z L 0 1+↵ 2 (s) ds, (5.2) 
where the general case will be studied in Section 5.

The goal of this section is to cast the Euler elastica bending energy `(5.2)i n the form of curve length with respect to a relevant asymmetric Finsler metric. We firstly transform the elastica problem into finding a geodesic in an orientation-lifted space. For this purpose, we denote by

v ✓ =(cos✓, sin ✓)( 5 . 3 )
the unit vector corresponding to ✓ 2 S 1 .

Let Γ : [0, 1] ! Ωb ear e g u l a rc u r v ew i t hn o n -v a n i s h i n gv e l o c i t ya n dγ =(Γ,✓): [0, 1] ! Ωb ei t sc a n o n i c a lo r i e n t a t i o nl i f t i n g . F o ra n yt 2 [0, 1], ✓(t)i sd e fi n e da s being such that:

v ✓(t) := Γ 0 (t) kΓ 0 (t)k . (5.4) 
According to the definition of v ✓ in (5.3), one has

✓ Γ 0 (t) kΓ 0 (t)k ◆ ? =(v ✓(t) ) ? =(-sin ✓(t), cos ✓(t)), (5.5) 
where u ? denotes the the vector that is perpendicular to a vector u.

It is known that

d dt ✓ Γ 0 (t) kΓ 0 (t)k ◆ = (t)kΓ 0 (t)k ✓ Γ 0 (t) kΓ 0 (t)k ◆ ? , (5.6) 
where  is the curvature of path Γ. Then we have the following equations:

d dt v ✓(t) = d dt (cos ✓(t), sin ✓(t)) = ✓ 0 (t) -sin ✓(t), cos ✓(t) = ✓ 0 (t) ✓ Γ 0 (t) kΓ 0 (t)k ◆ ? .
Thus, using (5.4)a n d( 5.6), we have

✓ 0 (t) ✓ Γ 0 (t) kΓ 0 (t)k ◆ ? = (t)kΓ 0 (t)k ✓ Γ 0 (t) kΓ 0 (t)k ◆ ? , (5.7) 
which yields to

✓ 0 (t)=(t)kΓ 0 (t)k, 8t 2 [0, 1]. (5.8) Using (5.4)a n d( 5.8), one has 
`(Γ) = Z L 0 1+↵ 2 (s) ds = Z 1 0 ✓ 1+↵ |✓ 0 (t)| 2 kΓ 0 (t)k 2 ◆ kΓ 0 (t)k dt = Z 1 0 ✓ kΓ 0 (t)k + ↵ |✓ 0 (t)| 2 kΓ 0 (t)k ◆ dt, (5.9) 
where the Euclidean arc-length is defined as

ds = kΓ 0 (t)kdt.
By the definition of γ,f o ra n yt 2 [0, 1] we have γ 0 (t)=(Γ 0 (t),✓ 0 (t)) and

`(Γ) = Z 1 0 F 1 γ(t),γ 0 (t) dt, (5.10) 
where we define the Finsler metric F 1 on the orientation-lifted domain Ωb y

F 1 (x, ū):= ( kuk + ↵ |⌫| 2 kuk , if u / v ✓ , +1 , otherwise. (5.11) 
for any orientation-lifted point x =( x,✓) 2 Ω, any vector ū =( u,⌫) 2 R 2 ⇥ R in the tangent space, and where / denotes positive collinearity. Note that any other lifting γ(t)=(Γ(t), ✓(t)) of Γ(t)wouldbyconstructionof(5.11)haveinfinite energy, i.e., `(Γ) = 1.

λ Penalized Asymmetric Finsler Elastica Metric F λ

The Finsler metric F 1 (5.11)i st o os i n g u l a rt oc o m p u t et h eg l o b a lm i n i m u m of `(5.2)b yd i r e c t l ya p p l y i n gt h en u m e r i c a la l g o r i t h ms u c ha st h ef a s tm a r c hing method (Mirebeau, 2014b). Hence we introduce a family of orientation-lifted Finsler metrics over the orientation-lifted domain Ω, depending on a penalization parameter λ ≫ 1a sf o l l o w s :

F λ (x, ū):= p λ 2 kuk 2 +2↵λ|⌫| 2 -(λ -1)hv ✓ , ui, (5.12) 
for any orientation-lifted point x =(x,✓) 2 Ωandan yvectorū =(u,⌫) 2 R 2 ⇥ R, and where v ✓ =( c o s✓, sin ✓)i st h eu n i tv e c t o ra s s o c i a t e dt o✓ which denotes the position of x in the orientation space S 1 .

As λ !1,t h eλ penalized Finsler elastica metric F λ can be expressed as:

F λ (x, ū)= p λ 2 kuk 2 +2↵λ|⌫| 2 -(λ -1)hv ✓ , ui =λkuk s 1+↵ 2|⌫| 2 λkuk 2 -(λ -1)hv ✓ , ui =λkuk(1 + ↵|⌫| 2 λkuk 2 + O( 1 λ 2 )) -(λ -1)hv ✓ , ui =kuk + ↵|⌫| 2 kuk +(λ -1)(kuk-hv ✓ , ui)+O(λ -1 )( 5 . 1 3 ) 
The term kuk-hv ✓ , ui will vanish if vector u is positively proportional to v ✓ . Therefore, one has for any x and any ū

F λ (x, ū) !F 1 (x, ū), as λ !1.
The Finsler elastica metric F λ (5.12)h a sp r e c i s e l yt h er e q u i r e df o r mf o r m u l a t e d in (2.72), with tensor field M := M F as:

M F (x)= 0 @ λ 2 00 0 λ 2 0 002 ↵λ 1 A
(5.14) and vector field

! := ! F ! F (x)=(λ -1)(v ✓ , 0), (5.15) 
for any x =(x,✓) 2 Ω. Note that the definiteness constraint (2.73)i ss a t i s fi e d :

h! F (x), M -1 F (x) ! F (x)i =(1-λ -1 ) 2 < 1, 8 x 2 Ωa n dλ>1.
The anisotropy ratio µ(F)c h a r a c t e r i z e st h ed i s t o r t i o nb e t w e e nd i ff e r e n to r i e n t ations induced by a metric F on a domain Ω. Letting x =(x,✓) 2 Ω, the anisotropy ratio µ(F λ ) of the Finsler elastica metric F λ (5.12)i sd e fi n e db y :

µ(F λ ):=sup x2 Ω ⇢ max k ¯w k=kvk=1 n F λ x ( ¯w ) F λ x (v) o , (5.16) 
where the norm F λ x (•):=F λ (x, •). As an example, for the Finsler elastica metric F λ defined in (5.12)w i t hλ ≥ 2a n d↵ =1,w ecansho wthatµ(F λ )i n( 5.16)c a n be obtained by choosing ¯w =(-v ✓ , 0) and v =(v ✓ , 0), so that

µ(F λ )=2λ -1.
Moreover, one can define the physical anisotropy ratio of the Finsler elastica metric F λ defined in (5.12)b yr e p l a c i n gb y ¯w s =(w, 0) and v s =(v, 0) the variables ¯w and v .I nt h i sc a s e ,f o ra n y↵,t h ep h y s i c a la n i s o t r o p yr a t i oi se q u a lt o2 λ -1a n d only depends on λ.

Ac r u c i a lo bj e c tf o rs t u d y i n ga n dv i s u a l i z i n gt h eg e o m e t r yd i s t o r t i o ni n d u c e db y am e t r i ci sT i s s o t ' si n d i c a t r i xd e fi n e da st h ec o l l e c t i o no fu n i tb a l l si nt h et a n g e n t space. For point x =(x,✓) 2 Ωandλ 2 [1, 1), we define the unit balls for metrics F 1 and F λ respectively by

B 1 x := {ū =(u,⌫) 2 R 2 ⇥ R; F 1 (x, ū)  1}.
(5.17) and

B λ x := {ū =(u,⌫) 2 R 2 ⇥ R; F λ (x, ū)  1}. (5.18) 
Then any tangent ū =(u,⌫) 2 B 1

x is characterized by:

u ? =0,u k > 0, and u k + ↵ |⌫| 2 u k  1, (5.19) 
where we introduce u k and u ? as follows:

u k := hu, v ✓ i,u ? := hu, v ? ✓ i. Using (5.19), one has ✓ u k - 1 2 ◆ 2 + ↵ |⌫| 2  1 4 . (5.20) Thus B 1
x is a flat 2D ellipse embedded in the 3D tangent space, and containing the origin on its boundary. Particularly, when ↵ =1,B 1

x turns to a flat 2D disk of radius 1/2 as shown in Fig. 5.2(a).

On the other hand, when λ<1,as h o r tc o m p u t a t i o ns h o w st h a tv e c t o rū = (u,⌫) 2 B λ

x is characterized by a quadratic equation

λ 2 u 2 ? + a λ ✓ u k - b λ 2 ◆ 2 + ↵ |⌫| 2  c λ 4 , (5.21) 
where a λ ,b λ ,c λ are all 1 + O(1/λ). Hence B λ x is an ellipsoid, for instance see Fig.

5.2bw i t h↵ =1 ,a l m o s tfl a ti nt h ed i r e c t i o no fv ?

✓ due to the large factor λ/2, which converges to the flat disk B 1

x in the Haussdorf distance as λ !1.

Tissot's indicatrix is also the control set in the optimal control interpretation of the Eikonal PDE (2.70). The Haussdorf convergence of the control sets guarantees that the minimal action map and minimal paths for the metric F λ converge towards those of F 1 as λ !1. Elements of proof of convergence can be found in Appendix B.

Numerical Implementations

Numerically, anisotropy is related to the problem stiffness, hence to its difficulty. The classical fast marching methods (Sethian, 1999;Tsitsiklis, 1995)u s i n gt h e square formed neighbourhood S have difficulty to deal with the computation of geodesic distance maps with respect to anisotropic metrics, especially when the anisotropy gets large. An adaptive construction method of such stencils S was introduced in (Mirebeau, 2014a)f o ra n i s o t r o p i c3 DR i e m a n n i a nm e t r i c ,a n di n (Mirebeau, 2014b) for arbitrary anisotropic 2D Finsler metric, providing that the stencils or mesh S(x)a te a c hpo i n tx 2 Ωo r Ωs a t i s fi e ss o m eg e o m e t r i ca c u t e n e s s property depending on the local metric F(x, •). Such adaptive stencils-based fast marching methods lead to breakthrough improvements in terms of computation time and accuracy for strongly anisotropic geodesic metrics. When the above mentioned geometric properties do not hold, the fast marching method is in principle not applicable, and slower multiple pass methods must be used instead such as the Adaptive Gauss Siedel Iteration (AGSI) of Bornemann and Rasch (2006). The present paper involves the 3D Finsler metric F λ (5.12), for which we constructed stencils by adapting the 2D construction of Mirebeau (2014b). Although these stencils lack the geometric acuteness condition, we found that the fast marching method still provided good approximations of the paths, while vastly improving computation performance. Note that whenever we mention fast marching method in the remaining part of this chapter, we mean the fast marching method with adaptive stencils proposed by Mirebeau (2014b).

In Table 5.1, we show the computation time and the average number of Hopf-Lax updates required for each grid point by the adaptive stencils based fast marching method (Mirebeau, 2014b)f o r↵ =5 0 0a n dd i ff e r e n tv a l u e so fλ on a 300 2 ⇥ 108 We observe on Table 5.1 al o g a r i t h m i cd e p e n d e n c eo fc o m p u t a t i o nt i m ea n da verage number of the Hopf-Lax updates per grid point with respect to anisotropy. These observations agree with the complexity analysis of the fast marching method presented in (Mirebeau, 2014b), yielding the upper bound O(N ln 3 µ + N ln N ), depending poly-logarithmically on the anisotropy ratio µ (5.16), and quasi-linearly on the number N of discretization points in the orientation-lifted domain Ω. In contrast, numerical methods such as (Sethian and Vladimirsky, 2001)displa yinga polynomial complexity O(µ 2 N ln N )intheanisotrop yratiow ouldbeun w ork able. The iterative AGSI method (Bornemann and Rasch, 2006), on the other hand, requires hundreds of evaluations of the Hopf-Lax operator (2.86)pergridpoin tto converge for large anisotropies, which also leads to prohibitive computation time, thus impractical. For λ = 30 or 100, the average numbers of the Hopf-Lax updates per grid required by the AGSI method are approximately 86 and 182 respectively, while the numbers of Hopf-Lax from the fast marching method are only 6.49 and 7.27 respectively ( see Table 5.1).

In Fig. 5.3(a), we show different Finsler elastica minimal paths, computed by the fast marching method (Mirebeau, 2014b), with ↵ =500(see(5.12)) and different values of λ.T h ea r r o w si n d i c a t et h ei n i t i a la n de n dp o i n t st a n g e n t s .C y a np o i n ti s initial position and blue point is end position. In Figs. 5.3band5.3c, we show the Finsler elastica minimal paths for different values of ↵,w i t hλ =100andλ =300 respectively. In this experiment, we set the angle resolution to be ✓ s =2 ⇡/108 and the image size is 300 ⇥ 300. When λ =1 ,t h em e t r i cF λ is constant over the domain Ωa n dd e g e n e r a t e st ot h ei s o t r o p i co r i e n t a t i o n -l i f t e dm e t r i cR I in (2.62), since the coefficient in front of the term hv ✓ , •i in (5.12) vanishes. Hence the minimal geodesics are straight lines, see Fig. 5.3a, that do not align with the prescribed endpoints tangents. From Fig. 5.3,o n ec a np o i n to u tt h a ta sλ and ↵ increasing, curvature penalization forces the extracted paths to gradually align with the prescribed endpoints tangents and take the elastica shape.

Image Data-Driven Finsler Elastica Metric P

We set the data-driven sp eed function Φ 0 ⌘ 1i nS e c t i o n5.2.1 for the sake of simplicity. In the general case, in order to apply the proposed Finsler elastica minimal path model to image analysis applications, the metric F 1 (5.11)a n di t s approximation F λ (5.12)s h o u l db er e s p e c t i v e l yr e p l a c e db yΦ -1 0 F 1 and Φ -1 0 F λ . Furthermore, in order to take into account the orientation information, we use an orientation dependent speed function Φ : Ω ! R + to replace Φ 0 .I nt h i sc a s e ,t h e data-driven Finsler elastica metric can be defined by

P(x, ū)= 1 Φ(x) F λ (x, ū), 8 x 2 Ω, 8 ū 2 R 3 , (5.22) 
and minimizing the general Euler elastica bending energy L in (5.1)i sa p p r o x imated for large values of λ by minimizing

L(Γ) = Z 1 0 1 Φ(γ(t)) F λ (γ(t),γ 0 (t))dt = Z 1 0 P(γ(t),γ 0 (t))dt,
where γ is the orientation lifted curve of Γ.

Based on the data-driven function Φ, the metric P is asymmetric in the sense that for any vector ū 6 = 0,o n eh a s P(x, ū) 6 = P(x, -ū), 8 x 2 Ω. (5.23) This asymmetric property can help to build a closed contour passing a collection of orientation-lifted points as discussed in Section 5.4.1.

The minimal action map associated to data-driven Finsler elastica metric P and initial source point s,d e n o t e db yW s,i st h eu n i q u ev i s c o s i t ys o l u t i o nt ot h ec o rresponding Eikonal PDE (2.70) [START_REF] Lions | Generalized solutions of Hamilton-Jacobi equations,v o l u m e6 9[END_REF]. Specifically, we have

( P ⇤ x -rW s(x) =1, 8x 2 Ω\{s}, W s(s)=0 , (5.24) 
where P ⇤ x is the dual norm of P x := P(x, •)d e fi n e db y( 2.71). We take the fast marching method (Mirebeau, 2014b) as the Eikonal solver. When λ is sufficiently large, the spatial and angular resolutions are sufficiently small, the fixed point system (2.85)i sp r o p e r l ys o l v e d ,a n dt h em i n i m a lp a t h sa r ep r o p e r l ye x t r a c t e d by (2.76).

Computation of Data-Driven Speed Functions by Steerable Filters

In this section, we introduce two types of orientation dependent speed functions Φf o rt h ea p p l i c a t i o n so fi m a g es e g m e n t a t i o na n dt u b u l a rs t r u c t u r ee x t r a c t i o n respectively, both of which are based on the steerable filters.

Steerable Edge Detector

Jacob and Unser (2004)p r o p o s e dan e wc l a s so fe d g ed e t e c t i o nfi l t e r sc o m b i ning the computational framework and the steerable property. Letting G σ be a 2D isotropic Gaussian kernel with variance σ and x =( x, y), the computational steerable filter F M ✓ with order M (Jacob and Unser, 2004)c a nbee x p r e s s e da s :

F M ✓ (x)= M X ⌧ =1 ⌧ X ⇠=0 K ⌧,⇠ (✓) @ (⌧ -⇠) @x (⌧ -⇠) @ ⇠ @y ⇠ G σ (x), (5.25) 
where ✓ 2 [0, 2⇡)a n dK ⌧,⇠ are orientation-dependent coefficients which can be computed in terms of some optimality criteria. Particularly when M =1 ,t h e steerable filter F 1 ✓ becomes the classical Canny detector (Canny, 1986). For higher order steerable filters, for example, M =3o rM =5 ,t h eo r i e n t a t i o nd e p e n d e n t responses of the filters will be more robust to noise. Therefore, we choose the steerable filter order M =5f o rt h er e l e v a n tn u m e r i c a le x p e r i m e n t s . R e g a r d i n g the details of the computation of K ⌧,⇠ ,w er e f e rt o( Jacob and Unser, 2004).

Ac o l o ri m a g ei sr e g a r d e da sav e c t o r -v a l u e dm a pI :Ω! R 3 .F o re a c hx 2 Ω, we denote that I(x)=[ I 1 (x),I 2 (x),I 3 (x)]. In this section, we consider a multiorientation response of color image I,w h e r et h er e s p o n s eh : Ω ! R + can be computed by the steerable filter F M ✓ (5.25)a sf o l l o w s :

h(x,✓)= 1 3 3 X i=1 |I i (x) ⇤ F M ✓ (x)|. (5.26) 
For a gray level image I :Ω! R,w eh a v et h es i m p l ec o m p u t a t i o no fh:

h(x,✓)=|I(x) ⇤ F M ✓ (x)|. (5.27)
When M is an odd number, the response I i ⇤ F M ✓ is asymmetric with respect to ✓ 2 [0, 2⇡), which may lead to difficult initializations for the proposed Finsler elastica minimal paths-based image analysis applications, such as boundary detection and image segmentation. Thus we remove the asymmetry of the response by using

|I i ⇤ F M ✓ | instead of I i ⇤ F M ✓ in (5.26).

Multi-Orientation Optimally Oriented Flux Filter

Optimally oriented flux filter is used to extract the local geometry of the image. The oriented flux [START_REF] Law | Three Dimensional Curvilinear Structure Detection Using Optimally Oriented Flux[END_REF]o fa ni m a g eI :Ω! R + ,o fd i m e n s i o n 2, is defined by the amount of the image gradient projected along the orientation v flowing out from a 2D circle at point x =(x, y) 2 Ωw i t hr a d i u sr:

f (x; r, v)= Z @Cr (r(G σ ⇤ I)(x + rn) • v)(v • n) ds, (5.28) 
where G σ is a Gaussian with variance σ, n is the outward unit normal vector along @C r ,a n dds is the infinitesimal length on the boundary of C r . According to the divergence theorem, one has

f (x; r, v)=v T Q(x,r) v,
for some symmetric matrix Q(x,r):

Q(x,r)= ✓ @ xx G σ @ xy G σ @ yx G σ @ yy G σ ◆ ⇤ r ⇤ I(x), (5.29) 
where r is an indicator function of the circle C r .

Let λ 1 (x,r)andλ 2 (x,r)betheeigenv aluesofsymmetricmatrixQ(x,r)(5.29)and assume that λ 1 (x,r) ≥ λ 2 (x,r). Supposing that the intensities inside the tubular structures are darker than the background so that inside the tubular structure, one has λ 1 (x,r ⇤ ) ≫ 0andλ 2 (x,r ⇤ ) ⇡ 0, where r ⇤ is the optimal scale map defined by

r ⇤ (x)=argmax r ⇢ 1 r λ 1 (x,r) , 8x 2 Ω, (5.30) 
where 1/r is the scale normalized factor [START_REF] Law | Three Dimensional Curvilinear Structure Detection Using Optimally Oriented Flux[END_REF]. As shown in (Benmansour and Cohen, 2011), the optimally oriented flux filter is a steerable filter which means that we can construct the multi-orientation response function ĝ :

Ω ! R for any ✓ 2 [0, 2⇡)b y : ĝ(x,✓)=u T ✓ Q(x,r ⇤ (x)) u ✓ , 8x 2 Ω, (5.31) 
where u ✓ =( c o s✓, sin ✓) T is a unit vector associated to ✓ and r ⇤ is the optimal scale map defined in (5.30).

Based on the multi-orientation response ĝ,w ec a no b t a i nt h ed e s i r e do r i e n t a t i o n dependent function g(x)=max{ĝ(x), 0}, (

In addition, the vesselness map V n :Ω! R,w h i c hi n d i c a t e st h ep r o b a b i l i t yo fa pixel x belonging to a vessel, can be calculated by:

V n (x)=max ⇢ max r ⇢ 1 r λ 1 (x,r) , 0 . (5.33) 
The vesselness map will be used to compute the isotropic Riemannian metric in the experiments.

Note that an alternate approach for orientation-dependent image data-driven function computation method can be found in (Bekkers et al., 2015a). In that paper, the authors make use of the multi-orientation wavelet to calculate the data-driven function.

Computation of the Data-Driven Speed Function Φ

Based on the orientation-dependent response functions of the steerable filters discussed in Sections 5.3.1 and 5.3.2, the speed function Φ used by Finsler elastica metric P (5.2)c a nbec o m p u t e db yt h er e s po n s eh (5.26):

Φ(x,✓)=1+⌘ ✓ h(x,✓) khk 1 ◆ p . (5.34) 
Similarly, based on the orientation dependent response g (5.32), one can define the speed function for tubular structure extraction by:

Φ(x,✓)=1+⌘ g x,✓ kgk 1 ! p , (5.35) 
where ⌘, p are positive constants and ✓ 2 [0, 2⇡). In this chapter, we use p =2for all the relevant experiments.

Since it relies on the multi-orientation response functions h (5.26)a n dg (5.32), the speed function Φ is symmetric in the sense that for any orientation

✓ ⇡ 2 [0,⇡), one has Φ(x,✓ ⇡ )=Φ(x,✓ ⇡ + ⇡), x 2 Ω.

Closed Contour Detection and Tubular Structure Extraction

We use the following convention in the remaining part of this pap er: if p =(p,✓)is apoin tintheorien tation-lifteddomain Ω, then we use p † =(p, mod (✓ + ⇡), 2⇡) to denote the orientation-lifted point which has the same physical position p with p but opposite direction, where ✓ 2 [0, 2⇡).

(a) q 1 q 2 (b) q 1 q 2 q 3 (c) q 1 q 2 q 3 q 4 (d) q 1 q 2 q 3 q 4 (e) (f)

Closed Contour Detection as a Set of Piecewise Smooth Finsler Elastica Minimal Paths

In this section, we present an interactive image segmentation model via a closed contour detection procedure based on the Finsler elastica metric P in (5.34).

Consider a collection of user-specified physical positions

H := {x i 2 Ω,i =1, 2,...,m; m ≥ 2},
all of which are on the boundary of the object. The goal is to automatically find ac l o s e dc o n t o u r ,l i n k i n gt h o s ep h y s i c a lp o i n t si nH by Finsler elastica minimal paths to form a complete boundary of the object. For this purpose, we denote the orientation-lifted collection D of H by

D := n xi =(x i ,✓ i ), x † i = x i , mod(✓ i + ⇡, 2⇡) ; i =1, 2,...,m, and ✓ i 2 [0, 2⇡) o , (5.36) 
where the directions ✓ i are manually specified in this section. Corresponding to each physical point x i 2H,thereexistt w oorien tation-liftedv ertices: xi and x † i in D with opposite tangents. We show these vertices in Fig. 5. (5.37)

Similarly to ā⇤ ,t h ec l o s e s tv e r t e xc ⇤ 2Dof x † 1 can be detected. By these definitions, the first pair of successive vertices (q 1 , q2 )a r ed e t e r m i n e ds i m u l t a n e o u s l y using the following criterion: ) is computed via the fast marching method (Mirebeau, 2014b), vertex ā⇤ (r e s p . c⇤ )i st h efi r s tv e r t e xr e a c h e db y the fast marching front, which is monotonically advancing. Once the first pair of successive vertices (q 1 , q2 )arefound,thegeodesicC q1 ,q 2 (red curve in Fig. 5.4(b)) can be recovered using (2.76)a n dbo t hq 2 , q † 2 will be removed from D.

(q 1 , q2 ):= ( (x 1 , ā⇤ ), if W x1 (ā ⇤ ) < W x † 1 (c ⇤ ), (x † 1 , c⇤ ), otherwise. 
If the number of physical points m =2 ,t h ec l o s e dc o n t o u rd e t e c t i o np r o c e d u r e can be stopped. The geodesic C q2 ,q 1 ,j o i n i n gq 2 to q1 ,c a nbet r a c k e db yr e v e r s i n g the geodesic which is the solution to the gradient descent ODE (2.76).

If m>2, we take q2 as the initial source point for minimal action map W q2 . Next vertex q3 can be found by

q3 := arg min z2D W q2 (z), (5.39) 
and remove both q3 , q † 3 from D. Again the geodesic C q2 ,q 3 ,l i n k i n gq 2 to q3 can be recovered, as denoted by green curve in Fig. 5.4c. This closed contour detection procedure will stop when the final orientation-lifted point qm is found, as an example see q3 in Fig. 5.4c. Then the geodesic C qm, q1 , as the cyan curve in Fig. 5.4d, can be recovered by using the minimal action map where the initial source and end points are qm and q1 ,r e s p e c t i v e l y . T h e final closed contour, denoted C,i sd e fi n e da st h ec o n c a t e n a t i o no fa l lt h ed e t e c t e d minimal paths. This method simply matches orientation-lifted points by pairs, joining a vertex to the remaining nearest neighbour with respect to the curvature-penalized geodesic distance, so as to form a closed contour located at the expected object boundaries. Note importantly, that the obtained piecewise geodesic contour is smooth (C 1 differentiable) since the initial source and end orientation-lifted points of consecutive geodesics have both matching positions q i and orientations ✓ i .I nf a c t ,w e find a closed contour passing all the orientation-lifted points in a greedy manner. Instead of trying all possible combinations of Finsler elastica minimal paths, we use a greedy searching strategy done in a low complexity. The problem we solve here is similar to the NP-hard traveling salesman problem, where the cities are represented by the orientation-lifted points qi 2D.

In summary, the proposed closed contour detection procedure aims to seeking a set χ of pairs of successive orientation-lifted points:

χ = m-1 [ i=1 (q i , qi+1 ) [ (q m , q1 ) , (5.40) 
and a closed contour C contains a set of Finsler elastica minimal paths, joining all the pairs of vertices in χ.

Perceptual Grouping

Perceptual grouping is relevant to the task of curve reconstruction and completion [START_REF] Deschamps | Fast extraction of minimal paths in 3D images and applications to virtual endoscopy[END_REF] In this section, we focus on the perceptual grouping problem of finding n closed curves, each of which formed by a set of piecewise Finsler elastica minimal paths with initial source points and endpoints in D i ✓D ,w h e r eD is defined in (5.36) and i =1, 2, 3,...,n.

We initialize the p erceptual grouping metho d by selecting a physical p osition x 1 .

The corresponding orientation-lifted points of x 1 ,d e n o t e db yx 1 , x † 1 ,c a nbea u t omatically chosen from D and will be removed from D.T h e nt h ec l o s e s tv e r t i c e s corresponding to x1 and x⇤ 1 can be detected by (5.37) respectively. As a consequence, the first pair of vertices (q 1 , q2 )iscomputedusing(5.38)andthegeodesic C q1 ,q 2 is recovered. Once the first pair of vertices (q 1 , q2 )i sf o u n d ,w ea d dq 1 , q2 to D 1 ,r e m o v eq 2 , q † 2 from D and compensate q1 to D.

Similar to the closed contour detection procedure, the next vertex qk with k ≥ 3 is found based on the criterion of (5.39)a n dt h ed e t e c t e dv e r t e xq k-1 . Following the detection of vertex qk ,w ea d dq k to D 1 ,r e m o v eq k , q † k from D,a n dt r a c k the geodesic C qk-1 ,q k that joins qk-1 to qk .T h i sp e r c e p t u a lg r o u p i n gp r o c e d u r e is carried out by recursively searching for new vertices. Once the vertex q1 is detected again according to the criterion (5.39), we stop the construction of D 1 after removing q1 from D,a n dr e c o v e rt h eg e o d e s i ce n d i n ga tv e r t e xq 1 .T h e desired closed contour C 1 can be obtained by concatenating all the detected Finsler elastica minimal paths with source and end points in D 1 .

We start to build the collection D 2 by choosing a new physical point as initialization. This initial physical point is obtained from the remaining orientation lifted points of D.S i m i l a rt ot h ep r o c e d u r eo fc o n s t r u c t i n gD 1 ,w eb u i l dt h ec o l l e c t i o n D 2 from the remaining orientation lifted points of D.T h ep r o c e d u r eo fb u i l d i n g the collections D i can be terminated when n such collections have been identified or when the collection D is empty. One can note that the constructed collections D i follow D i \D j = ?, 8i 6 = j.

In contrast to the closed contour detection method described in Section 5.4.1,w e do not enforce all of the orientation lifted points in D to be used in the perceptual grouping procedure.

Tubular Structure Extraction

In this section, we apply the proposed Finsler elastica minimal path model to the tubular structure extraction combining with the optimally oriented flux filter [START_REF] Law | Three Dimensional Curvilinear Structure Detection Using Optimally Oriented Flux[END_REF], where the centrelines of tubular structures are represented by the Finsler elastica minimal paths.

The minimal paths with the proposed Finsler elastica metric depend on the tangents of both the initial source point and end point. In order to simplify the initialization procedure, we firstly compute the optimal orientation map, denoted by Θ : Ω ! [0,⇡), which minimizes the multi-orientation response function g in (5.32): Θ(x)=arg min

✓2[0,⇡)
{g(x,✓)}, 8x 2 Ω.

(5.41)

Once the optimal orientation map Θ is defined, for one initial position p s 2 Ω, one can obtain two orientation-lifted points ps =( p s , Θ(p s )) and p † s . Also, for n end positions p i 2 Ω( i =1, 2, ••• ,n), the corresponding orientation-lifted points are defined by pi =(p i , Θ(p i )) and p † i respectively.

For each set of orientation lifted end p oints {p i , p † Let us denote the initial source point and the end point of the geodesic C ⇤ i by ā⇤ and c⇤ i ,respectiv ely . Ifthegeodesiccurv elengthisestimatedb ythefastmarc hing method (Mirebeau, 2014b), this procedure can be simplified as follows: starting the fast marching front propagation from both of the initial source points s and s † ,t h eo r i e n t a t i o nl i f t e dp o i n tc ⇤ i 2{ pi , p † i } is the first point that is reached by the front. The desired geodesic C ⇤ i can be determined by reversing the geodesic that is the solution to the ODE (2.76). As a result, a set {C ⇤ i ;1  i  n} of all the desired geodesics can be extracted from the same minimal action map generated by a single fast marching propagation.

In these applications, the geodesic distance maps with respect to the Finsler elastica metric are computed in a manner of early abort, i.e., once the geodesic distance values of all the orientation-lifted endpoints have been reached by the fast marching front, we stop the geodesic distance computation. The early abort trick can greatly reduce the computation time. This is similar to the partial front propagation described in [START_REF] Deschamps | Fast extraction of minimal paths in 3D images and applications to virtual endoscopy[END_REF]w i t has i m p l ee x t e n s i o nt o multiple points.

Experimental Results

We show the advantages of using curvature p enalization for minimal paths extraction in the following experiments involving a study of the proposed metric itself, and comparative results against the isotropic Riemannian (IR) metric, the anisotropic Riemannian (AR) metric and the isotropic orientation lifted Riemannian (IOLR) metric in the applications of closed contour detection and tubular structure extraction.

Riemannian Metrics Construction

We construct the 2D anisotropic and isotropic Riemannian metrics for color image segmentation using the color gradient proposed by Di Zenzo (1986).

Considering a color image I =(I 1 ,I 2 ,I 3 ):Ω! R 3 and a Gaussian kernel G σ with fixed variance σ,t h eg r a d i e n tr(G σ ⇤ I) can be expressed as a Jacobian matrix:

r(G σ ⇤ I)= ✓ I σ x I σ y ◆ = ✓ @ x G σ ⇤ I @ y G σ ⇤ I ◆ , (5.42) 
where I σ x (•)a n dI σ y (•)s h o u l dbeu n d e r s t ooda s1⇥ 3v e c t o r s ,i . e . ,

I σ x (•)= ⇣ @ x G σ ⇤ I 1 (•),@ x G σ ⇤ I 2 (•),@ x G σ ) ⇤ I 3 (•) ⌘ , I σ y (•)= ⇣ @ y G σ ⇤ I 1 (•),@ y G σ ⇤ I 2 (•),@ y G σ ) ⇤ I 3 (•) ⌘ .
Based on the above matrix r(G σ ⇤ I)d e fi n e di n( 5.42), a tensor E of size 2 ⇥ 2 can be constructed for all x 2 Ω:

E(x)= 0 @ kI σ x (x)k 2 hI σ x (x), I σ y (x)i hI σ x (x), I σ y (x)ik I σ y (x)k 2 1 A .
We decomp ose the tensor E(x)i nt e r m so fi t se i g e n v a l u e sa n de i g e n v e c t o r sa s

E(x)=' 1 (x) g 1 (x) g T 1 (x)+' 2 (x) g 2 (x) g T 2 (x),
where ' 1 (x)and' 2 (x)aretheeigenv aluesoftensorE(x). Vectors g 1 (x)andg 2 (x) are the eigenvectors corresponding to ' 1 (x)a n d' 2 (x), respectively. Without loss of generality, we assume that ' 1  ' 2 such that g 2 denotes the uint color gradient vector field. Further details for color image gradient computation can be found in (Di Zenzo, 1986).

For a gray level image I :Ω! R 2 ,o n eh a s' 1 =0and' 2 is defined by

' 2 (x)=kr(G σ ⇤ I)(x)k.
g 2 is defined as the normalized gradient vector field of the blurred image G σ ⇤ I and g 1 (x)=g ? 2 (x), 8 x 2 Ω.

Therefore, the tensor field M A for the anisotropic Riemannian metric R A ,t h e general form of which is defined in (2.52), can be computed by

M A (x)=exp(-⌧' 2 (x)) g 1 (x) g T 1 (x) +exp(-⌧' 1 (x)) g 2 (x) g T 2 (x), (5.43) 
where the positive constant ⌧ controls the anisotropy ratio of R A .

Moreover, based on the scalar field ' 2 ,t h ei s o t r o p i cR i e m a n n i a nm e t r i cR I (2.45) can be constructed by

R I (x, u)= ⇣ β 1 + β 2 ' p 2 (x) ⌘ -1 kuk, (5.44) 
where β 1 and β 2 are positive constants. In the following relevant experiments, we set p =2andβ 1 =1.

In the tubular structure extraction experiments, regarding the construction of the AR metric, we make use of the radius-lifted tensor field introduced by Benmansour and Cohen (2011), instead of using the tensor field M A defined in (5.43). For the construction of the IR metric, we simply replace the eigenvalue ' 2 in (5.44)b y the vesselness map V n described in (5.33). It is known that the vesselness map indicates the probability of each pixel to belong to the tubular structure. Hence the vesselness values inside the tubular structure are higher than those on the background, leading to that the fast marching front propagate fast inside the tubular structure.

The speed function P IL for the IOLR metric R IL (2.62)shouldbedependentofthe orientations. Simply, one can compute the speed function Φ IL using the following equation:

P IL (x,✓)=Φ(x,✓), 8 ✓ 2 [0,⇡), 8 x 2 Ω, (5.45) 
where Φ is the orientation dependent speed function defined in (5.34)a n d ( 5.35).

The parameter ⇢ of the IOLR metric F IL penalizing the variations of the orientation ✓,i ss e ta s⇢ = ↵,w h e r e↵ is the parameter for the curvature term in the bending energy L (5.1) or the data-driven Finsler elastica metric P (5.22).

Parameters Setting

Curvature penalization in the proposed Finsler elastica metric relies on two parameters, ↵ and λ (5.12). The choice of λ is dictated by algorithmic compromises. Indeed, minimal paths with respect to Finsler elastica metric P converge to the elastica curves in the limit λ !1,h e n c eal a r g ev a l u eo fλ is desirable. However, large values of λ yield metrics with strong anisotropy ratio µ(P) ( 5.16). As a result, the numerical algorithm used, adapted from Mirebeau (2014b), uses larger discretization stencils, which increases its numerical cost and reduces its locality.

For instance, λ =3 0( r e s p .1 0 0o r3 0 0 )l e a d st os t e n c i l sw i t har a d i u so f4p i x e l s (resp. 8 or 13). We typically use λ =100.

On the other hand, the parameter ↵ is used to weight the curvature penalty in the Finsler elastica metric P.I nt h ec o u r s eo ff a s tm a r c h i n gm e t h o d ,al a r g ev a l u eo f ↵ makes the front to propagate slowly along the orientation dimension, implying that the obtained geodesics tend to be smooth, i.e., with low curvature. When ↵ is very small, the extracted geodesics mainly depend on the image data-driven speed function Φ defined in Section 5.3.3.T h e r e f o r e ,t h ec h o i c eo f↵ should depend on the desired image features. Basically, we make use of the following heuristics.

There is a natural candidate ↵ ⇤ for the parameter ↵,dictatedb ytheph ysicalunits of the parameters, namely

↵ ⇤ =(R ⇤ /Φ ⇤ ) 2 ,
where R ⇤ is the smallest radius of curvature of the image features to be extracted, measured in pixels, and Φ ⇤ is the typical value of the speed function Φ around these features.

The parameter ⌘ for image data-driven speed function Φ is set for each tested image individually. The parameter β 2 in the IR metric R I (5.44)i ss e ta sβ 2 =2⌘ for all the comparative experiments. We set ⌧ in the AR metric R AR or its radiuslifted version such that the anisotropy ratio equals 20 in all the experiments except for Fig 5 .6.

The angular resolution is set as ✓ s =2 ⇡/72 for both the IOLR metric and the proposed Finsler elastica metric.

Smoothness and Asymmetry of the Finsler Elastic Minimal Paths

The proposed Finsler elastica metric invoking orientation lifting and curvature penalty benefits from the smooth and asymmetric properties of the minimal paths. We demonstrate the smo oth and asymmetric prop erties in a synthetic image as shown in Fig. 5.5,w h e r et w oe l l i p s e s -l i k es h a p e sc r o s se a c ho t h e r . R e dd o t sa n d green dots are initial source and end positions respectively. Arrows indicate the tangents at the corresponding positions. One can see that for the fixed initial source and end positions, changing the corresponding tangents will give different minimal geodesics. As shown in the first two columns of Fig. 5.5,thetwogeodesics with the same initial source and end positions could form a complete ellipse shape.

In Fig. 5.6,w ed e s i g nas p i r a lw i t hh i g ha n i s o t r o p y . T h ei n i t i a ls o u r c ep o s i t i o n and the end position are placed at the ends of the spiral. In the top row we add high noise to the spiral while in the bottom row we blur the spiral. In columns 1-4, we show the minimal paths extracted by using the IR metric, the AR metric, the IOLR metric and the Finsler elastica metric respectively. One can see that by using the IR and AR metrics, where the shortcuts occur near the initial source position (red dot) as shown in columns 1 and 2. In the top row of the column 3, the minimal path extracted by the IOLR metric is improved compared to the results from the IR and AR metrics. However, a segment of the spiral, near the initial source position, is missed again due to the shortcut problem. In contrast, the minimal paths shown in column 4 which are extracted by the Finsler elastica metric exactly follow the spiral shape thanks to the curvature penalty embedded in the metric. In this experiment, we make use of a anisotropy ratio value of 100 for the AR metric. For the Finsler elastica metric, we set ↵ =5 0 0t oe n s u r et h e Finsler elastica minimal paths to be smooth enough.

In Fig. 5.7a, we illustrate six orientation-lifted candidates qi ,i =1, 2..., 6, denoted by green dots with arrows, and an orientation-lifted initial source point s (red dot with arrow). Among all the candidates, we would like to find the closest orientation-lifted point to the initial source point s,i nt e r m so fg e o d e s i cd i s t a n c e with respect to the data-driven Finsler elastica metric P (5.22). In Fig. 5.7b, it is shown that the closest orientation lifted point to s is the candidate q6 ,e v e n though the geodesic (red curve), joining the orientation lifted points s and q6 , passes through the vicinity of the physical position of q1 .M o r e o v e r ,o n ec a nc l a i m that the Euclidean distance value between the physical positions of s and q6 is the largest one among all of the Euclidean distance values between the physical positions of s and any remaining orientation lifted candidate qi .T h i s e x p e r iment demonstrates the asymmetric and smooth properties of the proposed Finsler elastica minimal path model.

In Fig. 5.8,w es h o wt h em i n i m a lp a t he x t r a c t i o nr e s u l t so nt h r e en a t u r a li m a g e s , where each pair of the prescribed initial source positions and end positions is very close to each other in terms of the Euclidean distance. For each image, we expect to detect a long boundary between the two given orientation lifted points. It can be observed that the extracted geodesics associated to the Finsler elastica metric are able to catch the desired boundaries. In 

Closed Contour Detection and Image Segmentation

Fig. 5.9 shows the closed contour detection results with three prescribed physical positions using different metrics, where each position are assigned two opposite s q 1 q 2 q 3 q 4 q 5 q 6 (a) s q 1 q 2 q 3 q 4 q 5 q 6 (b) the geodesics at the corresponding positions. We assign each geodesic the same color as its initial source position. In these images, most parts of the desired boundaries appear to be weak edges which can be observed from the edge saliency map in column 1. The detected contours associated to the Finsler elastica metric succeed at catching the desired boundaries due to the curvature penalization and asymmetric property. In contrast, the three Riemannian metrics without curvature penalization fail to extract the expected boundaries. The images used in this experiment are from the Weizmann dataset.

In Fig. 5.10,weshowtheclosedcontourdetectionresultsobtainedbytheproposed method with only two given physical positions and the corresponding orientations. One can see that the proposed method can indeed reduce user intervention at least for objects with smooth boundaries.

For the proposed data-driven Finsler elastica metric P defined in (5.22), the curvature penalization relies on the parameter ↵ (λ is fixed to 100). In Fig. 5.11, we show the closed contour detection results by varying ↵ to demonstrate the influence of the curvature term in our approach. In column 1, we show the closed contour detection results with suitable values of ↵,s a y↵ 0 .I nc o l u m n s2a n d3 , the closed contour detection results using ↵ 0 /10 and 5↵ 0 are demonstrated. One can see that it could lead to shortcuts by using small values of ↵ in rows 1-3 of column 2. In contrast, with a larger ↵,t h ed e t e c t e dc l o s e dc o n t o u rc a nc a t c ht h e optimal boundaries of the objects, which supports the effect of using curvature penalization. The edge saliency maps for each image in this experiments can be found from the first column of Fig. 5.9. 

Perceptual Grouping

The perceptual grouping result on a synthetic noisy image is shown in Fig. 5.12. In Fig. 5.12a, we demonstrate the original image consisting of a set of edges. Red and blue dots with arrows are the orientation-lifted points provided by user as initializations, where the red dot is the selected initial physical position. 5.12b shows the perceptual grouping results by the proposed method. The identified orientation-lifted points in the set 

Tubular Structure Extraction

In this section, we show the tubular structure extraction results, where the initial source and end positions are indicated by red and green dots, respectively. In detection using (5.41). We use the extraction strategy described in Section 5.4.3 for the Finsler elastica metric.

In Fig. 5.15, the retinal vessels are extracted by the IR metric, the AR metric, the IOLR metric and the proposed data-driven Finsler elastica metric as shown in columns 1 to 4, respectively. One can see that in columns 1 to 3, the minimal paths suffer from the short branches combination problem, i.e., those minimal paths prefer to choose a shortest way depending only on the image data-driven speed functions. In contrast, the minimal paths obtained by the proposed data-driven Finsler elastica metric can obtain the correct combination of vessel branches, leading to smooth segmentation results between the initial source and end orientation-lifted points.

Similar vessel extraction results are observed in Fig. 5.16. Again, the short branches combination problem occurs in columns 1 to 3 which are obtained by the IR metric, the AR metric and the IOLR metric, respectively. Instead, the proposed Finsler elastica metric can obtain the correct vessels extraction thanks to the curvature penalty.

In Fig. 5.17,w ep r e s e n tt h ee x t r a c t i o nr e s u l t so ft h er e t i n a la r t e r yc e n t e r l i n e si n three patches of retinal images3 .T h e c e n t e r l i n e o f a r e t i n a l a r t e r y u s u a l l y a ppears as a smooth curve. In column 1, we show the retinal artery-vein ground In Fig. 5.20,w es h o wt h er o a ds e g m e n t a t i o nr e s u l t so na na e r i a li m a g eb yt h e proposed Finsler elastica metric. The road images are blurred by Gaussian noise with different variances. One can claim that our method can obtain smooth and accurate minimal paths on noisy images. 

Conclusion

The core contributions of this paper lie at the introduction of curvature penalty to the Eikonal PDE based minimal path model. This is done by establishing the connection between the Euler elastica bending energy and the geodesic energy via a family of orientation-lifted Finsler elastica metrics. Solving the Eikonal PDE with respect to the proposed Finsler elastica metric, our model thus can determine globally minimizing curves with curvature penalty between two orientation-lifteds- points. These minimal curves are asymmetric and smooth, benefiting from the orientation lifting and curvature penalty. Combining with orientation dependent data-driven speed function, we apply the proposed Finsler elastica minimal path model to the applications of interactive image segmentation, perceptual grouping and tubular structure extraction. Experimental results on both synthetic and real images demonstrate the advantages of the Finsler elastica metric approach.

Introduction

The image segmentation problem plays an essential role in the field of computer vision and medical imaging. Various partial differential equation (PDE) inspired image segmentation models, such as the deformable models, have been extensively studied during the last three decades. The Active contour models or snakes, firstly introduced to the applications of image analysis by Kass et al. (1988) 

E CV (γ, c 1 ,c 2 )=↵ 1 Z B I(x) -c 1 2 dx + ↵ 2 Z B c I(x) -c 2 2 dx + λ Z 1 0 kγ 0 (t)kdt + ⌫ Z B dx, (6.2) 
where the last term of above energy functional is an optional ballon force firstly introduced by Cohen (1991). Parameters ↵ 1 , ↵ 2 , λ and ⌫ are constants, where we set ↵ 1 = ↵ 2 and ⌫ =0.

In its basic formulation (Osher and Sethian, 1988) 

(Φ,c 1 ,c 2 )=↵ 1 Z Ω (I(x) -c 1 ) 2 H(Φ(x))dx + ↵ 2 Z Ω (I(x) -c 2 ) 2 H(-Φ(x))dx + λ Z Ω krH(Φ(x))kdx + ⌫ Z Ω H(Φ(x))dx. (6.3) 
The Heaviside function obeys H(-Φ(x)) = 1 -H(Φ(x)).

The CV model made use of a two-step minimization scheme to get the final optimal contour C ⇤ .T h efi r s ts t e pi st ofi xc 1 and c 2 to update the level set function Φ with respect to time ⌧ in a gradient descent manner by

@Φ @⌧ = - @E CV @Φ =δ(Φ) ✓ ↵ 2 (I -c 2 ) 2 -↵ 1 (I -c 1 ) 2 + λdiv ✓ rΦ krΦk ◆ -⌫ ◆ , (6.4) 
with suitable boundary condition. Function δ is the Dirac measure that is defined as

δ(z)= d dz H(z).
The second step is to fix Φ to update c 1 and c 2 by

c 1 = R Ω I(x)H(Φ(x))dx R Ω H(Φ(x))dx , (6.5 
) The locally binary fitting model [START_REF] Li | Minimization of region-scalable fitting energy for image segmentation[END_REF]introducedalocalgaussiankernel G σ with variance σ to the active contour energy:

c 2 = R Ω I(x)H(-Φ(x))dx R Ω H(-Φ(x))dx . ( 6 
H ✏ (z)= 1 2 ✓ 1+ 2 ⇡ arctan( z ✏ ) ◆ , δ ✏ (z)= 1 ⇡ ✏ ✏ 2 + z 2 .

Locally Binary Fitting Model

E LBF (γ, u 1 ,u 2 )=↵ 1 Z Ω Z B G σ (x, y)(I(x) -u 1 (y)) 2 dxdy + ↵ 2 Z Ω Z B c G σ (x, y)(I(x) -u 2 (y)) 2 dxdy + λ Z 1 0 kγ 0 (t)kdt =↵ 1 Z B Z Ω G σ (x, y)(I(y) -u 1 (x)) 2 dydx + ↵ 2 Z B c Z Ω G σ (x, y)(I(y) -u 2 (x)) 2 dydx + λ Z 1 0 kγ 0 (t)kdt (6.7) =↵ 1 Z B J 1 (x)dx + ↵ 2 Z B J 2 (x)dx + λ Z 1 0 kγ 0 (t)kdt, (6.8) 
where the functions J 1 and J 2 are defined as

J 1 (x)= Z Ω G σ (x, y)(I(y) -u 1 (x)) 2 dy, (6.9) 
J 2 (x)= Z Ω G σ (x, y)(I(y) -u 2 (x)) 2 dy. (6.10) 
The Gaussian kernel

G σ obeys Z R 2 G σ (x, y)dy =1,
for any point x 2 Ω. Based on the variation level set framework (Zhao et al., 1996), the locally binary fitting model energy E LBF can be expressed as

E LBF (Φ,u 1 ,u 2 )=↵ 1 Z Ω J 1 (x)H(Φ(x))dx + ↵ 2 Z Ω J 2 (x)H(-Φ(x))dx + λ Z Ω krH(Φ(x))kdx. ( 6 

.11)

Keeping u 1 and u 2 fixed, the corresponding level set evolution equation is

@Φ @⌧ = - @E LBF @Φ = δ(Φ) ✓ λdiv ✓ rΦ krΦk ◆ + ↵ 2 J 2 -↵ 1 J 1 ◆ . ( 6 
.12)

Fixing Φ, we can obtain u 1 and u 2 by

u 1 (x)= (G σ ⇤ IH(Φ))(x) (G σ ⇤ H(Φ))(x) ,u 2 (x)= (G σ ⇤ IH(-Φ))(x) (G σ ⇤ H(-Φ))(x) , (6.13) 
by minimizing (6.7).

Pairwise Region-based Active Contours Energy

The pairwise active contours model was first introduced by For simplicity, we intro duce the following notations:

D x (B)= Z B D(x, y)dy, H x (B)= Z B G σ (x, y)dy, (6.14) 
where D is the pairwise interaction kernel ( 

d(p x ,p y )= Z $p G a (t)kp x (t) -p y (t)k 2 dt, (6.17) 
where G a is a Gaussian kernel with variance a obeying that

Z R 2 G a (t)dt =1.
The patch-based non-local active contours energy can be expressed as

E PW (γ)= Z B D x (B) H x (B) dx + Z B c D x (B c ) H x (B c ) dx + λ Z 1 0 kγ 0 (t)kdt, (6.18) 
The shape gradient of the energy

E PW := Z B D x (B) H x (B) dx, (6.19) 
at shape B ⇢ Ωc a nbee x p r e s s e df o ra l lz 2 @B as

rE PW (B)(z)= D z (B) H z (B) + Z B D(x, z)H x (B) -G σ (x, z)D x (B) H 2 x (B)
dx. (6.20)

Region-based Energy Minimization Problem

In this section, we proposed a new region-based active contours model combining with the Eikonal PDE-inspired minimal paths framework.

Linear Approximation of the Region-based Energy

Let Ω ⇢ R 2 be a bounded image domain. Within this chapter, a shape is an arbitrary measurable subset A ⇢ Ωw i t har e c t i fi a b l eb o u n d a r y@A.W ed e n o t e by χ A characteristic function of shape A:

χ A (x):= ( 1, x 2 A, 0, otherwises. (6.21) 
We fix an exp onent p 2 (1, 2) and denote by q 2 (2, 1)theconjugateexponen tof p,d e fi n e db y

1 p + 1 q =1.
For any shap e B ⇢ Ω, the characteristic function obeys that χ B 2 L p (Ω).

Aregion-basedfunctionalF : L p (Ω) ! R is differentiable at χ B 0 2 L p (Ω) iff there exists c 2 R and a functional f 2 L q (Ω) such that for all χ B 2 L p (Ω):

F (χ B )=c + Z Ω χ B (x) f (x) dx + o(kχ B 0 -χ B k p ) =c + Z B f (x) dx + o(kχ B 0 -χ B k p ). ( 6 

.22)

Let ⌧ ≥ 0d e n o t e st h et i m ea n dN denote the outward normal of a parametric active curve Γ : [0, 1) ⇥ [0, 1] ! Ω, where Γ(0, •)=@A 0 (•). The curve evolution equation in terms of the gradient descent flow of the energy functional E is

@ @⌧ Γ= ⇣ -↵f Γ +  ⌘ N , (6.28) 
where  is the curvature of the curve Γ. The gradient descent flow-based minimization scheme is known to be sensitive to the local minima and costs expensive computation time.

Level Set Curve Evolution Scheme

The level set method (Osher and Sethian, 1988) In the course of the level set evolution, sometimes the level set function φ should be reinitialized as signed distance map, as discussed in Section 2.2.1.M o r e o v e r , the level set evolution scheme requires a small step for stability, which leads to high computation time. In this chapter, we solve the same region-based energy minimization problem in a different way, which is based on a geodesic energy minimization scheme and non-linear Eikonal PDE. The first step of the proposed method is to interpret the region-based energy functional by a Finsler geodesic curve energy via the divergence theorem and a Finsler metric, as discussed in Section 6.4.

Finsler Geodesic Energy Interpretation of the Region-based Energy

We consider the minimization of E in (6.26)i nt h em a n n e ro fs h a p ee v o l u t i o n : for a given shape A 0 with boundary @A 0 ,w ea i mt ofi n d i n gac o n t o u r@A ⇤ as the boundary of shape A ⇤ minimizing E,w h e r eA ⇤ is close to A.W em a k eu s eo fa tubular neighbourhood domain U ⇢ Ωofthecontour@A 0 to restrict the searching space for the contour @A ⇤ such that the expected contour obeys @A ⇤ :[0,`@ A * ] ! U ,w h e r e`@ A * is the Euclidean curve length of @A ⇤ .F o rt h i sp u r p o s e ,w efi r s t l y define a vector field

V ? 2 L 2 (U, R 2 )s u c ht h a t r• V ? (•)=↵f(•) χ U (•), (6.31) 
where r• is the classical divergence operator: for any x =(x, y)o n eh a s r•V ? (x)= @ @x V ? (x)+ @ @y V ? (x).

where χ U is the characteristic function of tubular neighbourhood region U .

Tubular Neighbourhood-Constrained Region-based Energy

We consider a collection B U of all U -constrained paths γ where

γ :[0, 1] ! U, (6.32) 
The energy value E(A)forashapeA with boundary involved in B U can be rewritten as

E(A)=↵ Z A F 0 χ A 0 (x)χ U (x)dx + ↵ Z A 0 \{A 0 \U } F 0 χ A 0 (x)dx + `(γ)( 6 . 3 3 ) =↵ Z A F 0 χ A 0 (x)χ U (x)dx + `(γ)+Constant (6.34) =↵ Z A\U f (x)χ U (x) dx + `(γ)+Constant, (6.35) 
where A 0 is the given initial shape and U is the tubular neighbourhood region of the boundary @A 0 .T h es c a l a rf u n c t i o nf is the shape gradient of F at χ A 0 .S i n c e A 0 is a fixed shape, the term is a constant. In Fig. 6.2,w ei l l u s t r a t et h eb o u n d a r i e s@A 0 of the original shape A 0 and the tubular neighbourhood region U of @A 0 .T h eg o a li st os e a r c hf o ra n optimal shape A ⇤ with boundary @A ⇤ under the constraint:

↵ Z A 0 \A 0 \U F 0 χ A 0 (x)dx, U ∂A 0 ∂A *
@A ⇤ 2B U ,
to minimize E formulated in (6.35). For this purpose, we define an energy

E U such that E U (A)=1 if @A / 2B U ,o t h e r w i s eo n eh a s E U (A)=↵ Z A\U f (x) χ U (x) dx + `(γ)( 6 . 3 6 ) = Z A\U r•V ? (x) dx + `(γ)( 6 . 3 7 ) = Z 1 0 ⌦ V ? (γ(t)), N (t) ↵ kγ 0 (t)k dt + `(γ), (6.38) 
where N is the outward normal of the curve γ := @A 2B U .

Equation (6.36)i so b t a i n e db y( 6.31)a n de q u a t i o n( 6.37)i so b t a i n e db yt h ed ivergence theorem. We express E U in (6.38)b y

E U (A)= Z 1 0 ⌦ M V ? (γ(t)),MN (t)kγ 0 (t)k ↵ dt + `(γ) = Z 1 0 ⇣ kγ 0 (t)k + ⌦ V(γ(t)),γ 0 (t) ↵ ⌘ dt, (6.39) 
where M is a clockwise rotation matrix with rotation angle ✓ = ⇡/2, V(•)= M V ? (•), and ds = kγ 0 (t)kdt, t 2 [0, 1]. γ 0 is the tangent vector of γ in clockwise order. Indeed, T = M N is the tangent vector and

γ 0 (t)=kγ 0 (t)kT(t) = kγ 0 (t)k M N (t), 8 t 2 [0, 1].
We consider a function K :Ω⇥ R 2 ! R + as follows:

K(x, u)= ( kuk + hV(x), ui, 8x 2 U, 1, otherwise, (6.40) 
The term kuk+hV(x), ui will be a Finsler metric if it obeys the smallness condition formulated in (2.73), i.e., kV(x)k < 1, 8x 2 U. (6.41)

Computation of Vector Field V Over a Subdomain U

We start the discussion of the computation of vector field V from the Proposition 6.1 below.

Proposition 6.1. Let Ω ⇢ R 2 be a bounded domain. Let 1  p<2 and let f 2 L q (Ω) with

1 p + 1 q =1.
Let U 2 Ω be subdomain, and let

! 2 L 2 (R 2 , R 2 ) solve: minimize Z R 2 k!(x)k 2 dx, (6.42) s.t. r•!(x)=↵f(x) χ U (x), 8x 2 Ω. (6.43) Then one has k!k L ∞  C ⇤ kf k L q (U ) (Leb(U )) % ,
where % = 1 p -1 2 and

C ⇤ := 2 1 p -1 p ⇡(2 -p) 1 p
.

Proof. The solution to the divergence equation (6.43)i sk n o w nt ob e! = r⇢, where ⇢ solves the Poisson equation

∆ ⇢(x)=f (x) χ U (x), 8x 2 R 2 ,
where ∆ denotes the Laplacian operator.

Expressing ⇢ in terms of the Green kernel we obtain for all x 2 R 2 :

⇢(x)= 1 2⇡ Z U ln kx -ykf (y)dy.
Therefore, one has

!(x)=r⇢(x) = 1 2⇡ Z U x -y kx -yk f (y)dy, 8x 2 U.
Let R U > 0b et h er a d i u sd e fi n e db y⇡R 2 U =L e b ( U ), so that the disk D(0,R U ) has the same area as U . Holder's inequality and a rearrangement inequality yield 2⇡k!(x)kkf k L q (U )

✓Z U 1 kx -yk p dy ◆ 1 p kf k L q (U ) ✓Z D(0,R U ) 1 kzk p dz ◆ 1 p .
Evaluating the right hand side, we conclude the proof: for all x 2 U :

2⇡k!(x)k ✓Z R U 0 2⇡r r p dr ◆ 1 p kf k L q (U ) = ✓ 2⇡ 2 -p R 2-p U ◆ 1 p kf k L q (U ) = 2 1 p p ⇡(2 -p) 1 p Leb(U ) % kf k L q (U ) .
According to Proposition 6.1,t h ev a l u ek!k L ∞ depends only on the area of subdomain U providing that f is fixed. In other words, k!k L ∞ < 1h o l d si fU is sufficiently small. Therefore, we can define the vector field V = M!,w h e r eM is the clockwise rotation matrix with rotation angle ✓ = ⇡/2. Giving a suitable U , one can obtain that kVk L ∞ < 1.

In practice, it is difficult to solve the minimization problem (6.42)overR The solution V ? to the minimization problem (6.44)w i t hl i n e a rc o n s t r a i n t( 6.45) admits the variational formulation: find (V ? ,p) 2 L 2 (U, R 2 ) ⇥ H 1 (U )s u c ht h a t for all (W,q)i nt h es a m es p a c e so n eh a s

8 > > > > < > > > > : Z U hV ? (x), W(x)idx + Z U hrp(x), W(x)idx =0, Z U hV ? (x), rq(x)i- Z U f (x)q(x)dx =0. (6.46)
We use a finite differences discretization on the pixel grid hZ 2 \ U ,w h e r eh>0i s the pixel size. We also store the values of the potentials p and q on a staggered grid so as to improve the accuracy of the gradient operator. The numerical solution to (6.46) can be found in Appendix 6.46.

Recalling that γ :[ 0 , 1] ! Ωd e n o t e st h eb o u n d a r yo fs h a p eA.B a s e d o n t h e computed vector field V = M V ? (M is the clockwise rotation matrix with rotation angle ✓ = ⇡/2),theregionalenergyE U (A)(6.39)isequivalenttoageodesicenergy L(γ):

L(γ)= Z 1 0 K(γ(t),γ 0 (t))dt. (6.47)
In the sense of shape evolution, a shape A 0 is given as initialization. In this case, the domain U is the minimal geodesic searching space and should be a tubular neighbourhood region of curve @A 0 .B yr e d u c i n gt h ew i d t ho ft h et u b u l a r neighbourhood U of @A 0 ,w ec a nl i m i ti t sa r e aa sw e l l ,a n dt h u so b t a i nkVk L ∞ = kV ? k L ∞ < 1b yP r o p o s i t i o n6.1 as desired. However this also limits the search region for the expected path @A ⇤ ,w h i c hm a yu l t i m a t e l yl e a dt ot h ea l g o r i t h m failure if the tubular neighbourhood width is less than the pixel size. We use two methods to mitigate these issues. The first method is to make the parameter ↵ =1/kVk L ∞ +✏ (see (6.43)) where ✏ is a small positive constant. Thus kVk L ∞ < 1 will always hold for any searching space U .

Since we restrict the lower bound of g(x) ≥ 1, the smallness condition for the Finsler metric G Ṽ(x) <g(x), 8x 2 U, will always hold.

Overview of the Proposed Shape Evolution Algorithm

The minimization of L (6.47)i st r a n s f e r r e dt ot h em i n i m i z a t i o no f L. Note that since in general we induce L with a nonlinear mapping T (6.49), there is in fact slight difference in the minimization problems and the results show that our geodesic method is very efficient and robust. Two points guarantee that using the non-linear mapping T is reasonable:

• The minimization of L in (6.47)isrelevanttoboththedirectionsofthecurve and the norm of V,i . e . ,m i n i m i z i n gE U is to find a shape A ⇤ with boundary C :[ 0 , 1] ! U ,f o rw h i c ht h ed i r e c t i o nC 0 (t)f o re a c ht 2 [0, 1] should be as opposite to V C(t) as possible and the norm kV C(t) k should be as large as possible, giving the relevance between the minimization problems of E U and L.I n t r o d u c i n gt h en o n l i n e a rm a p p i n gT will not modify both goals of the minimization problems.

• When the Finsler geodesic evolution scheme as discussed in Algorithm 8 tends to stabilize, one can reduce the width of tubular neighbourhood U . Thus T (kV(x)k) ⇡ kV(x)k, 8x 2 U as kV(x)k is small. Moreover, We experimentally observe that near the centreline of U ,t h ev a l u e so fkVk will become very small, leading to a good approximation of V by Ṽ.

The rest part of this chapter will be devoted to minimize the geodesic energy L (6.51)b yai t e r a t i v es h a pee v o l u t i o nm e t h od . T h eb a s i ci d e ai st os e e kaf a m i l y of clockwise contours C ⌧ with ⌧ 2{ 1, 2, 3, •••} which converge to the expected object boundary as ⌧ !1,w h e r eC 0 is the boundary of an initial shape. In each iteration ⌧ ,t h i ss h a pee v o l u t i o np r oc e d u r ei n v o l v e st w os t e p s :

1. Find a closed contour C ⇤ by a Finsler geodesics extraction strategy to minimize L with respect to the metric K and the tubular neighbourhood U .T h i s is described in Line 2 of the Alogrithm 8.

2. Update the Finsler metric K in Line 7 of the Alogrithm 8,r e l y i n go nt h e computation of first variation f (6.23)a n dt u b u l a rn e i g h bo u r h oodU .

In the following sections, we give the details to the construction of the neighbourhood U and the Finsler geodesics extraction strategy.

Algorithm 8 Summary algorithm of the entire shape evolution procedure Input: Initial shape A 0 with boundary C 0 .

Output: Final contour C 1 .

Initialization:

• Compute the first variation f 0 and tubular neighbourhood U 0 in terms of C 0 .

• Compute the Finsler metric K 0 using eqn. (6.50).

• ⌧ 0.

1: while (d H >✏) do 2:

Find a closed contour C ⇤ minimizing L with respect to the metric K ⌧ (6.50) and U ⌧ by a Finsler minimal paths extraction strategy. Update the Finsler metric K ⌧ using eqn. (6.50). This isotropic Eikonal equation can be efficiently solved using fast marching algorithm (Sethian, 1999).

If one sets P ⌘ 1i d e n t i c a l l y ,t h e nU is a standard tubular neighbourhood of width d centred on the path γ. However, the algorithm efficiency can be improved by using non-cantered tubular neighbourhoods, based on a guess of the likely evolution of the boundary, and obtained using the following potential: Finsler metric K ⌧ (6.50)fromtheinitialsourcepoin ts by the Θ y -constrained fast marching algorithm (Mirebeau, 2014b). Similarly, we can compute the minimal action map U x with respect to Θ x with the same initial source point and the inverse Finsler metric computed by vector field -Ṽ using (6.50). We define a saddle point z ⇤ by z ⇤ =argmin In the course of shape evolution algorithm (see Algorithm 8), if the iteration order ⌧ =0,thens can be chosen randomly from the initial contour C 0 .O t h e r w i s e ,w e set s for the (⌧ +1)-th iteration to be the saddle point z ⇤ at the ⌧ -th iteration. In any iteration step, the vertex z is selected such that the two splitted curves have the same Euclidean curve length. Similarly to the procedure for N s =2a bo v e ,f o re a c hp a t hΥ ⌧,i we can construct at u b u l a rn e i g h bo u r h oodr e g i o nΘ i ⇢ U ⌧ .T h et w oe n dp o i n t so fp a t hΥ ⌧,i are p ⌧ i , p ⌧ i+1 2 Λ ⌧ .T a k i n gp ⌧ i as initial source point and p ⌧ i+1 as end point, we perform the Θ ⌧,i constrained fast marching method to obtained the minimal action map with respect to the Finsler metric K ⌧ .T h eg e o d e s i cΥ ⇤ ⌧,i can be obtained by solving the ODE in (2.76). The expected closed contour C ⌧ can be obtained by

C ⌧ +1 =Υ ⇤ ⌧,1 [ Υ ⇤ ⌧,2 [•••[Υ ⇤ ⌧,Ns .
Since Υ ⇤ ⌧,i are geodesics, we have C ⌧ +1 C ⌧ .I n t h e c o u r s e o f s h a p e e v o l u t i o n algorithm described in Algorithm 8:

1. If the iteration order ⌧ =0 ,t h ev e r t i c e si nΛ 0 are sampled such that the values of the Euclidean curve length for each path Υ 0,i are identical.

2. If the iteration order ⌧>0, each vertice p ⌧ i is identified as the middle point of the path Υ ⌧ -1,i ,i . e . ,p ⌧ i =Υ ⌧ -1,i ( 1 2 ).

Fixed Points Initialization

Suppose that the vertices collection Λ 0 := {p i ,i2{ 1, 2, ••• ,N s }} in the procedure of contour initialization with N s ≥ 3(seeSection6.6.1.2)isgivenbytheuser, where the vertices p i are distributed at the desired boundary in a clockwise order. At the ⌧ =0i t e r a t i o n ,w el i n kt h e s ev e r t i c e sb ys t r a i g h tl i n e st of o r mac l o s e d contour and construct the tubular neighbourhood region U 0 and Finsler metric K 0 .T h eg e o d e s i c sΥ ⇤ ⌧,i is extracted in the same way as discussed in Section 6.6.1.2 can be used to identify the geodesics, except that we do not resample the vertices p i since they are fixed in each iteration ⌧ . This fixed points initialization incorporate the user constrained information and thus can obtain better results than the traditional active contours models based on local region information.

Computation of f for various types of Region-based Active Contours Energies

In this section, we give the first variation f (6.23)oftheregionaltermsF in (6.25) of various types of active contours energy functionals presented in Sections 6.2.2 to 6.2.4. Note that for the regional terms of the Chan-Vese energy E CV (6.2),w e get rid of the ballon force term.

The first variation (or shape gradient) f CV of the region-based term of the Chan-Vese energy E CV (6.2)c a nbee x p r e s s e da s

f CV (x)=↵ 1 I(x) -c 1 2 -↵ 2 I(x) -c 2 2 , 8x 2 Ω, (6.61) 
where c 1 and c 2 are defined in (6.5). Constants ↵ 1 and ↵ 2 are two positive weighted parameters.

Similarly, we can compute the first variation f LBF (6.7)f o rt h er e g i o n -b a s e dt e r m of the locally binary fitting energy E LBF ,w h i c hc a nbed e n o t e db y f LBF (x)=J 1 (x) -J 2 (x), 8x 2 Ω, (6.62)

where J 1 and J 2 are defined in (6.9)a n d( 6.10)r e s pe c t i v e l y .

Finally, we present the first variation f for region-based term of the pairwise energy E PW (6.18): f PW (x)=rE PW (B)(x) -rE PW (B c )(x), (6.63) where rE PW (B)i sd e fi n e di n( 6.63). 

Numerical Experiments

In this section, we demonstrate the experimental results of the proposed method.

The numerical solver for the Finsler metric based Eikonal equation is the fast marching algorithm with adaptive stencils proposed by Mirebeau (2014b). We apply a region constraint to this fast marching algorithm, where the details can be seen in Algorithm 5.

In Fig. results and Fig. 6.4fi st h efi n a lr e s u l t s . I nt h i se x pe r i m e n t ,t h ep r o po s e dm e t h od requires only five steps to converge to the object boundaries. In this experiment, we use the f CV (6.61) to construct the Finsler metric K (6.50). We also investigate the respective computation time and evolution steps for the proposed model to converge to the boundaries with respect to different sizes and shapes of tubular neighbourhood regions U as demonstrated in Table 6.1.T h es i z e sa n ds h a p e so f U are controlled by (δ, d)i ne q u a t i o n s( 6.54)a n d( 6.56). From Table 6.1,w ec a n see that a suitable pair of (δ, In this experiment, the Finsler metric K is constructed by the locally binary fitting based regional term f LBF (6.62). In Fig. 6.5a is the original image with initial contour. Figs. 6.5ba n d6.5c are intermediate segmentation results. 6.5di st h efi n a ls e g m e n t a t i o nr e s u l t s .

In Fig. 6.6,w es h o wt h es e g m e n t a t i o nr e s u l t su s i n gt h efi x e dp o i n t si n i t i a l i z a t i o n way. In this experiment, we use the hybrid Finsler metric G (6.53)c o n s t r u c t e d by the first variation f CV of the Chan-Vese regional term. The reason for using the the hybrid Finsler metric G is that the Chan-Vese regional term adopts the global region information such that for fixed points initialization, we need local image information like the image gradient magnitude values. 

Conclusion

In this chapter, a new framework of Finsler geodesics evolution model is proposed for region-based active contours and image segmentation. The proposed framework presents the first method that provides the connection between the geodesic curve energy and the general region-based active contour energy via a Finsler metric. This Finsler metric is induced from the region-based image data term of the active contour energy by solving a minimization problem with linear constraint. With the Finsler metric, the geodesic energy incorporated region information can be efficiently minimized by fast marching algorithm. Comparing to the popular level set approach, our model requires lower computational cost and can avoid unexpected local minima in case that the image data term invokes a local similarity measurement. On the other hand, the proposed Finsler geodesics evolution can be naturally incorporated user intervention. By the user provided fixed points, the curve evolution results are more robust with low computation burden. Chapter 7

Summary of the Contributions and the Future Work

This thesis was devoted to the Eikonal equation based minimal path model and its applications. We have designed several new geodesic metrics and explored some applications according to these metrics.

We summarize the main contributions and discuss the p ossible future work.

• Dynamic Riemannian Metric

The dynamic Riemannian metric is designed to add penalty with respect to the image feature consistency property to the computation of the minimal paths. For the traditional isotropic or anisotropic Riemannian metrics, they only contain local pixel-based image feature information like tubular structure geometry and image gradient. In contrast, the proposed dynamic metric can incorporate non-local geodesic-based image feature. Thus this model is more robust and accurate in the task of vessel network extraction such as the retinal vein-artery vessel extraction.

• Curvature-Penalized Finsler Elastica Metric

Traditional minimal path mo dels are first-order mo dels. They are unable to penalize curvature property of the geodesics. We introduce in this thesis a curvature-penalized Finsler metric, namely Finsler elastica metric, to the framework of Eikonal equation, by an idea of orientation lifting. The proposed Finsler elastica metric establishes the equivalence between the Euler elastica bending energy and geodesic length energy. By solving the anisotropic Eikonal equation associated to the Finsler elastica metric, the globally minimizing Euler elastica curves or Finsler geodesics can be obtained efficiently. These geodesics blend the benefits from the smoothness and asymmetry properties, which have important effects in tubular structure extraction and closed contour detection.

• Region-based Information Embedded Finsler Metric

We transfer the region-based active contours energy to the curve-based energy by divergence theorem. The crucial point is the construction of a Finsler metric induced from the shape gradient of the region-based active contour energy, which is done by solving a minimization problem with linear constraint. By the Eikonal framework and the constructed Finsler metric, the geodesic energy associated to the constructed Finsler metric can be minimized efficiently. In each iteration, the curve evolution-based minimization scheme of the traditional active contours models are tuned to extract a collection of geodesics. The regional information embedded Finsler metric bridges the two distinguished frameworks: the region-based active contours energy and the Eikonal framework.

• Mask-based Keypoints Detection Method

We designed a new keyp oints detection metho d by invoking a set of masks. This model is able to iteratively add new initial source points in the course of the fast marching front propagation. These new initial source points, known as keypoints, are constrained by a set of computed masks such that we assume each detected keypoint must be inside the mask. Thanks to the mask constraint, the proposed keypoints search scheme is very robust and can avoid leaking problem in vessel tree extraction task.

• Vessel Tracking via Region-Constrained Minimal Paths

We take into account the pre-segmented binary vessel map to pro duce prior constrained regions. We restrict that the minimal paths should pass these constrained regions, to make the extraction of the minimal paths be very efficient, and to avoid the overlapping extraction problem. The constrained region is considered as a tubular neighbourhood of a curve that can be produced from a minimal path or a vessel skeleton curve. The expected minimal paths can be defined in the radius-lifted space. In this case, the obtained minimal paths can be used to represent the vessels including both the centerlines and radii.

• Anisotropic Front Propagation for Image Segmentation

We add anisotropy enhancement to the front propagation-based image segmentation scheme. This is done by invoking an anisotropic Riemannian metric for the fast marching method. Compared to the isotropic front propagation-based segmentation method, the anisotropy enhanced method can avoid leaking problem. We also design a method for anisotropy-preserving dynamic Riemannian metric construction, which makes use of the local gray level information. This strategy can reduce the influence introduced by the intensity inhomogeneities.

Future Work

• Finsler Elastica Metric for Keypoints Detection

In this thesis, we proposed the Finsler elastica metric for globally minimizing Euler elastica curve detection between two given points. However, in some cases, a globally minimal curve is not the expected one. For example, to extract a long retinal artery vessel, a piecewise smooth path might be the desired one. This piecewise smooth curve can be decomposed into a set of Finsler elastica geodesics linking a set of ordered keypoints.

• Dynamic Riemannian Metrics for Interactive Vessel Extraction with Simultaneously partially fast marching method

The introduction of the dynamic Riemannian metric is motivated by the Retinal artery and vein vessel extraction task. In this thesis, we only perform the fast marching methods from one point. Since the dynamic metric makes use of local intensity consistency property, compute the geodesic distance from both points may return a better extracted path.

• Edge-based Finsler Geodesics Evolution Model

We introduced the Finsler geodesics evolution for region-based active contours and image segmentation. Along the same research line, we could extend this idea to pure edge-based active contours model by using the alignment term proposed by [START_REF] Kimmel | Regularized laplacian zero crossings as optimal edge integrators[END_REF]. This work can benefit from the orientation enhancement of the object edges.

• Piecewise Geodesics for Automatic Retinal Vessels Extraction

We designed a new algorithm for retinal network vessel extraction by using region-constrained minimal paths model. The essential step is the Retinal vessels segmentation procedure. We used the optimally oriented flux filter for vessels segmentation. In the future, we could use a more advanced retinal vessel segmentation method such as the-state-of-art orientation score-based method [START_REF] Chen | Curve-like structure extraction using minimal path propagation with backtracking[END_REF]ortheactiv econ tours-basedmodel (Zhao et al., 2015).

continuous. Furthermore, using the homogeneity of the metric F,o n eo b t a i n sf o r all x, ȳ 2 X: L ⇤ F (x, ȳ)=T B (x, ȳ), where L ⇤ (x, ȳ)istheminimalgeodesiccurv elengthbet w eenx and ȳ with respect to the Finsler metric F.

In the case of Finsler elastica problem, one has B 1 (x): =B 1

x and B λ (x): =B λ x , 8x 2 X,whereB 1

x and B λ x are defined in equations (5.17)and(5.18), respectively. The Finsler elastica metrics F λ on X pointwisely tend to the metric F 1 as λ !1. Fortunately, the asso ciated control sets B λ (x) !B 1 (x)uniformlyinC 0 (Ω, =), as can be seen from (5.21). Hence one has lim inf L ⇤ F λ (x, ȳ)=liminfT B λ (x, ȳ) ≥T B∞ (x, ȳ)=L ⇤ F ∞ (x, ȳ), as λ !1for all x, ȳ 2 X.T os h o wt h a te q u a l i t yh o l d s ,i ts u ffi c e st op r o v et h a t sequence B λ obeys B λ ◆B 1 ,e q u i v a l e n t l yt op r o v et h a tF λ (x, ū) F 1 (x, ū)f o r all x 2 X and any vector ū 2 R 3 .I n d e e d ,l e tx =( x,✓) 2 X,a n dū =( u,⌫) 2 R 2 ⇥ R: The last inequality holds because the denominator in (A.0.17)i sg r e a t e rt h a n2 , and kuk≥hu, v ✓ i)f o ra n yv e c t o ru and angle ✓.

F λ (x, ū)= p λ 2 kuk 2
By Corollary A.6,m i n i m a lp a t h sC λ with endpoints x and ȳ for geodesic distance L ⇤ F λ (x, ȳ)c o n v e r g e sa sλ !1to a minimal path C 1 for L ⇤ F ∞ (x, ȳ). We finally point out that L ⇤ F ∞ (x, ȳ) < 1 for all x, ȳ in the interior of X,p r o v i d e dt h i s interior is connected, due to a classical controllability result for the Euler elastica problem.
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  ; Xie and Mirmehdi, 2008; Xu and Prince, 1998)h a v eb e e np r o p o s e dt oi m p r o v et h ep e r f o r m a n c eo f the active contours model. The geometric active contours models

Figure 2 . 1 :

 21 Figure 2.1: An example of gradient vector field.

  .16) In Fig. 2.2, we show an example for a level set function. Fig. 2.2asho wsacon tour indicated by black curve. Fig. 2.2bshowstheimplicitrepresentationofthecurvein Fig. 2.2a by zero value of the level set function and Fig. 2.2cisthe3Dvisualization of the level set function.

  a n d Malladi et al. (1994)f o ro b j e c tb o u n d a r yd e t e c t i o n ,b yd r i v i n gt h ec o n t o u r sa ccording to the following flow:

  Level set function (c) 3D visualization of the level set function

Figure 2 . 2 :

 22 Figure 2.2: An example for level set function. (a) A contour indicated by a black closed curve. (b) Implicit representation for the curve demonstrated in (a) by the zero value of the level set function. (c) 3D visualization for the level set function shown in (b).

Figure 2 . 3 :

 23 Figure 2.3: Image Segmentation by using geodesic active contours. (a) Original image and initial contour. (b) Intermediate segmentation result. (c) Final segmentation result.

  .29) with potential function P .T h i se n e r g yr e m o v e dt h es e c o n d -o r d e rd e r i v a t i v et e r m of the curve Γ from the classical snakes energy E Snake in (2.1). The gradient flow of the geodesic energy E GAC can be expressed as (Caselles et al., 1997; Kichenassamy et al., 1995) @Γ @⌧ =(g+ hrg, Ni) N .

Figure 2 . 4 :

 24 Figure 2.4: Geodesic active contours for object segmentation with concave region using a small value of the constant c.

  [START_REF] Kimmel | Regularized laplacian zero crossings as optimal edge integrators[END_REF]a n dKimmel (2003)p r e s e n t e dan o v e la c t i v ec o ntours model with the energy function consisting of a alignment term:

Figure 2 . 5 :

 25 Figure 2.5: Minimal path extraction results using Cohen-Kimmel minimal path model on a curve image. (a) Original image contains a curve and noise. (b) Gradient magnitude map. (c) The minimal action map. (d) The extracted minimal path indicated by red line. In (c) and (d) green and cyan dots are the initial source points and end points, respectively.
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 26 Figure 2.6: Single vessel extraction results by the Cohen-Kimmel minimal path model and the Li-Yezzi minimal path model. Left: Minimal paths extracted by Cohen-Kimmel model. Rigth: Minimal paths extracted by Li-Yezzi model. Red dots are the initial source points and cyan dots are the end points. Red curve is the minimal path and blue contours are the boundaries of vessel tree.

Figure 2 . 7 :

 27 Figure 2.7: Comparative vessel tree extraction results by Cohen-Kimmel and Li-Yezzi minimal path models. Left: Minimal paths extracted by Cohen-Kimmel model. Rigth: Minimal paths extracted by Li-Yezzi model. Red dots are the initial source points and cyan dots are the end points. Red curves are the minimal paths and blue contours are the boundaries of vessel tree.

Figure 2 . 8 :

 28 Figure 2.8: Visualization for a typical 2D positive definite symmetric tensor by an ellipse.

Figure 2 . 9 :

 29 Figure 2.9: Comparative minimal paths extraction results by using the isotropic and anisotropic Riemannian metrics, respectively. (a) is the original image with initial source point (green dot) and end point (cyan dot). (b) Potential function used in the isotropic metric. (c) and (d) are the minimal paths extracted by using the isotropic metric and anisotropic metric respectively. (e) and(f ) are the corresponding geodesic maps of (c) and (d).

Figure 2 . 10 :

 210 Figure 2.10: Geodesic distance maps with different values of anisotropy ratio. The original image is shown in Fig. 2.9(a) with the same initial source point and end point.

Figure 2 .

 2 Figure 2.11: Stencil examples: 4-connexity and 8-connexity stencils on 2D cartesian grid. (a) 4-connexity stencil. (b) 8-connexity stencil. Blue dots are the centre points of the stencils. Red dots are the neighbourhood points. Green lines denote the boundaries of the stencils.

  are a subset of the vertices contained by S(x 0 ). The translated stencil }(x 0 ) is the union of non-zero vertices of all the simplices T .In Figs. 2.11aa n d2.11bw es h o wt h e4 -c o n n e x i t ya n d8 -c o n n e x i t ys t e n c i l so n 2D cartesian grid respectively. The blue dots indicate the centre points of the stencils. Red dots represent the vertices of the stencils. The green lines denote the boundaries of the stencils. The 4-connexity stencil shown in Fig.2.11aw a s adopted bySethian (1996Sethian ( , 1999))a n dTsitsiklis (1995)f o ri s o t r o p i cf a s tm a r c h i n g algorithm on 2D grid.
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 212 Figure 2.12: Example for fast marching front. Red, green and black dots denote the Accpeted,t h eTrial and the Far points respectively. Green shadow region denotes the fast marching front consists of all the Trial points.
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 213 Figure 2.13: Illustration for Bellman's optimality principle. s is the initial source point. ∂S is the boundary of stencil S(x). z is the intersection points of ∂S and geodesic C s,x .

3 :

 3 if a and b agree with the acuteness condition (2.93) then 4:

Figure 2 . 14 :

 214 Figure 2.14: Demonstrations of the Uint balls for Riemannian Metrics and the respective stencils which are constructed using the method proposed by Mirebeau (2014a). (a) and (c) are the uint balls for different Riemannian metrics. (b) and (d) are the corresponding stencils. Black dots in (a) and (c) denote the origin of the stencils.

then the condition ( 2 .

 2 93)i sr e d u c e dt o hu, M(•) vi≥0, for u, v 2 R 2 with u 6 = 0, v 6 = 0.(2.94)Note that both (2.93)and(2.94)arethesufficientandnecessaryconditionsforthe F x -acute angle(Mirebeau, 2014b). The proof of the equivalence between (2.92) and (2.93)c a nbef o u n df r o m( Mirebeau, 2014b).The translated stencil } can be constructed in terms of the concept of acuteness (2.93), as introduced in (Mirebeau, 2014a,b). A translated stencil } consists of ac o l l e c t i o no fn o n -z e r ov e r t i c e so ft r i a n g l e sT (one of the vertices of each T is the origin 0)a n dc o r r e s po n d st oas t e n c i lS (2.77)w i t hv e r t i c e sl y i n go nt h eg r i d Z. } is said to be F x -acute if each triangle T 2 } has area 1/2a n do b e y st h a t the two non-zero vertices of the triangle T agree with (2.93). The procedure of the translated stencil construction can be found in Algorithm 2.T h i sp r o c e d u r e computes the translated stencils in a recursive refinement manner. We demonstrate the translated stencils for anisotropic Riemannian metrics in Fig.2.14 and for anisotropic and asymmetric Finsler metrics in Fig.2.15 and Fig.2.16.
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 215 Figure 2.15: Demonstrations of the Uint balls for Finsler Metrics and the respective stencils which are constructed using the method proposed by Mirebeau (2014b). (a) and (c) are the uint balls for different Finsler metrics. (b) and (d) are the corresponding stencils. Black dots in (a) and (c) denote the origin of the stencils.

Figure 2 . 16 :

 216 Figure 2.16: Demonstrations of the Uint balls for Finsler Metrics and the respective stencils which are constructed using the method proposed by Mirebeau (2014b). (a) and (c) are the uint balls for different Finsler metrics. (b) and (d) are the corresponding stencils. Black dots in (a) and (c) denote the origin of the stencils.
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 31 Figure 3.1: A Retinal vessel network image (left) and the corresponding vessel ground truth image (right).

3. 1

 1 Introduction Vessel extraction is an essential comp onent of computer-aided diagnosis metho ds for the diagnosis of disorders and pathologies. Various vasculature structure segmentation methods, such as vessel enhancement methods and deformable models have been studied during the passed three decades (Fraz et al., 2012; Kirbas and Quek, 2004; Lesage et al., 2009). Retinal vessel segmentation and extraction is a difficult task due to the complicated vessel network and inhomogeneous intensities distribution, see Fig. 3.1 for an example of a color retinal vessel image and its groundtruth image. Manually segmenting retinal vessels costs expensive time and requires to train medical experts. Thus accurate and efficient automatic and semi-automatic methods for generation of retinal vessel binary segmented map are extremely helpful to the clinical diagnosis for various related diseases such as diabetes, and biometric identification since the retinal vessel tree is unique individually (Dominguez et al., 2015; Koch et al., 2014; Mariño et al., 2006).

Figure 3 . 2 :

 32 Figure 3.2: An example of retinal vessel image and its vesselness map.

  .23) In offset based coordinates, the minimizer of the fixed point problem formulated in (3.15)i sd e n o t e db y ⇤ =( ⇤ 1 , ⇤ 2 , ⇤ 3 ). Then equation (3.16)c a nbee x p r e s s e d with respect to ⇤ :

Following

  the dynamic programming principle, image pixels are tagged as either Trial or Accepted.T h e Trial point xmin currently minimizing U is tagged as Accepted (i.e. frozen), and the value U (ŷ)a tn e i g h b o u r i n gp o i n t sŷ is suitably updated. In addition, line 10,w eestimatethegeodesiccurv elengthU (ŷ)andEuclidean curve length L(ŷ), and potentially tag ŷ as Trial.T h eo r i g i n a lk e y p o i n t s selection method (KPSM)(Benmansour and Cohen, 2009)a d d st h ec u r r e n t l ya ctive point (the latest Accepted point) xmin to the set K of keypoints as soon as L(x min ) ≥ λ,w h e r eλ is the user chosen Euclidean curve length threshold. The reason of choosing such a point as keypoint is that among all the points with the

Figure 3 . 3 :

 33 Figure 3.3: Steps of keypoints searching scheme. (a) The first keypoint is found. (b) Two keypoints are found. (c) Seven keypoints are found. Cyan contours are the boundaries of the tubular structure and red lines are the centrelines. (d)-(f ) are the optimal distance maps U opt for corresponding to the images of (a)-(c).

Figure 3 . 4 :

 34 Figure 3.4: Keypoints searching result with two path score thresholds. Green dot indicates the initial source point, red dots are the keypoints searched using large path score threshold and blue dots are the keypoints obtained using small path score threshold.

Figure 3 . 5 :

 35 Figure 3.5: Comparison between our algorithm and the classical KPSM. (a) and (b) are the results of KPSM with curve length threshold 26 and 60, respectively. (c) and (d) are the results of our algorithm with 26 and 60, respectively.
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 36 Figure 3.6: Comparison of the classical KPSM and the proposed algorithm in real retinal image. (a) Result from the KPSM. (b) Result of our algorithm.

Figure 3 . 7 :

 37 Figure 3.7: Keypoints searching result from our algorithm with curve length threshold 40.

Figure 3 . 8 : 3 . 5

 3835 Figure 3.8: Keypoints searching result from our algorithm with a large path score threshold.

Figure 3 . 9 :

 39 Figure 3.9: Vessel extraction results by the Benmansour-Cohen model. Blue cross and yellow star indicate the initial source points and end points respectively. Cyan curves are the centrelines and red contours are the vessel boundaries. Yellow dash curve in (b)indicates the expected centreline.

Ab a c k -t r a c k e dp o i n tz 2

 2 Ωl o c a t e da tag e o d e s i cC s,x :[ 0 , 1] ! Ωj o i n i n gt h e initial source point s = C s,x (0) to any domain point x = C s,x

Figure 3 . 10 : 3 D d (x 1 )D d (x 2 )D d (x 3 )Figure 3 . 11 :

 3103123311 Figure 3.10: An example for back-tracked points and the corresponding local geodesics in a patch of a retinal image.

) where ⌧ 1

 1 and ⌧ 2 are two positive constant parameters. p is a positive constant,where we set p =1i nt h i ss e c t i o n . D c measures the difference in terms of tubular feature F between each point and the initial source point. D d measures the local coherence of the tubular feature F since it computes the difference of F between current point and its back-tracked point. In Fig. 3.11b, we illustrate the values of function D d in different positions. Based on the feature coherence functions D c and D d ,w ec a nd e fi n et h ep r o p o s e d dynamic Riemannian tensor field M d over the image domain Ω:

For any x 2

 2 .34) The dynamic tensor field M d (3.32)c a np r e s e r v et h ea n i s o t r o p i cp r o p e r t yo ft h e static tensor field M s (3.33). Based on M d ,t h ep r o p o s e dd y n a m i cR i e m a n n i a n metric can be formulated as: R dyn (x, u)= p hu, M d (x) ui . (3.35) Ωa n da n yv e c t o ru 2 R 2 .

  ) where x min is the latest Accepted point and y denotes any neighbourhood point of x min in terms of the local stencil S.S u c ha p p r o x i m a t i o ni sr e a s o n a b l ed u et o the small size of stencil S.F o rN grid points where N =# Z,i to n l yr e q u i r e st o compute the local geodesic N times.

  tations. Given an open subset U ✓ Ω ⇢ R 2 ,b o u n d e da n dc o n n e c t e d ,o n eh a s an e wr a d i u s -l i f t e dd o m a i n Û = U ⇥ [R min ,R max ]([ R min ,R max ]i st h ea d m i s s ible radius space ). Let A Û be the collection of all the regular radius-lifted paths γ c :[0, 1] ! Û :

9 : 10 :

 910 Compute D c (x min )a n dD d (x min )b y( 3.30)a n d( 3.31)r e s pe c t i v e l y . for all y such that x min 2 S(y)a n dV(y) 6 = Accepted do Compute D c (y)a n dD d (y)b y( 3.38)a n d( 3.39)r e s pe c t i v e l y . 15: Calculate the dynamic tensor M d (y)b y( 3.32).

If x 2 Û

 2 ,o n ec a ns e a r c ht h eo p t i m a lp a t hm i n i m i z i n gL c inside Û .O t h e r w i s e ,f o r any curve γ such that γ(1) = x / 2 Û , L c (γ)=1.

Figure 3 . 12 :

 312 Figure 3.12: Steps for the proposed Retinal vessel extraction method. (a) Minimal path (red curve) by using the dynamic Riemannian metric. (b)Tubular neighbourhood region of the minimal path shown in (a). (c) Minimal path extraction result obtained using the region-constrained minimal path model, where the cyan curve denotes the centreline and red curve denotes the vessel boundary.

Figure 3 . 13 :

 313 Figure 3.13: Centreline bias correction. (a) Minimal paths extracted by the proposed region-constrained minimal path model and the dynamic metric model, where the results are indicated by cyan solid line and red dash line respectively. In this figure, we only demonstrate the physical path of the obtain radius-lifted minimal path. (b) and (c) Details for both the minimal paths in (a).

Figure 3 .

 3 Figure 3.14: Comparative Retinal vessel extraction results by the Benmansour-Cohen model and the proposed model. Blue crosses and black stars indicate the initial source points and the end points, respectively. Column 1 show the vessel extraction results by the Benmansour-Cohen model. Column 2 show the vessel extraction results by the proposed dynamic anisotropic Riemannian metric. Column 3 show the refined results by the proposed region-constrained minimal path model.

•

  N T F :t h en u m b e ro fv e s s e l st h a tt h ep r o p o s e dm e t h o dp o s i t i v e l ye x t r a c t sa n d the B-C model fails. • N F T :t h en u m b e ro fv e s s e l st h a tt h eB e n m a n s o u r -C o h e nm o d e lp o s i t i v e l y extracts and the proposed fails.

3. 6

 6 Centerlines Extraction and Boundaries Delineation for Retinal Vessels via a Region-Constrained Minimal Path Model 3.6.1 Introduction Models of tracking vessels constrained by prior centreline points aim to finding the edge points based on various criteria. These models heavily rely on the binary presegmented vessel map, since the prior centreline points are obtained by thinning the binary vessel map using morphological filters. Al-Diri et al. (2009)p r o p o s e d an active contours method to measure the width of the retinal vessels. In their formulation, the centreline points are obtained by a tramline filter and the edge points are computed from the ribbon of twins model. The ribbon of twins model uses two contours to identify one vessel boundary. Xu et al. (2011)p r o p o s e d ag r a p hs e a r c hm o d e lt od e l i n e a t ev e s s e lb o u n d a r yb ym o d e l l i n gt h eb o u n d a r y detection problem as a 3D surface segmentation problem.

Figure 3 . 15 :

 315 Figure 3.15: Tubular structure preprocessing step. (a) Original synthetic image. (b) Vesselness map computed by Hessian-based Filter (Frangi et al., 1998). (c) the Skeleton map of vesselness map in (b). (d) Tag different segments with different colours after removing branch and crossover points.

Fig. 3 .Figure 3 . 16 :

 3316 Figure 3.16: Identifying the segments by removing the branch points and construct the constrained tubular neighbourhood region. (a) Original segments image. (b) Separated segments by removing the branch point. (c) labeled segments by different colors. (d) The constructed tubular neighbourhood region and the identified initial and end points.

Figure 3 . 17 :

 317 Figure 3.17: Comparative extraction results. (a) and (b) are centrelines from Benmannsour-Cohen model which correspond to the vessel segments tagged by blue and red colours in Fig. 3.15(d) respectively. (c) shows the results from our regionconstrained minimal path model. (d) shows the results from region-constrained minimal path model with endpoints correction.

Figure 3 . 18 :

 318 Figure 3.18: Illustration for the proposed algorithm step by step. (a) The green channel of the original retinal image. b Vesselness map obtained by using the method presented in (Zhang et al., 2016). (c) Binary segmented vessel map after thresholding the vesselness map. (d) Skeleton map after removing all the branch points and small segments.

Figure 3 . 19 :

 319 Figure 3.19: Segmentation of a retinal image by the proposed method. (a) The result by Benmansour-Cohen model. (b) The result of our method (Green lines are the boundaries and red lines are the centrelines).

Figure 3 .

 3 Figure 3.20: Details of the segmentation results shown in Fig. 3.19. Column 1: details of Fig. 3.19(a) indicated by arrows. Column 2: corresponding details of Fig. 3.19(b) .

Figure 3 . 21 :

 321 Figure 3.21: Improved results by Endpoints Correction. Yellow lines are the paths without Endpoints Correction while red lines are the paths after Endpoints Correction.

  3.19aw es h o wac o m p l e t er e s u l to b t a i n e db yu s i n gb yB e n m a n s o u r -C o h e n model(Benmansour and Cohen, 2011)f o re a c hv e s s e ls e g m e n t . W ec a ns e et h a t there are three vessel segments are missed due to the overlapping extraction problem. The green lines represent the boundaries while the red lines are the centrelines of the vessel segments. In Fig.3.19bw es h o wt h ev e s s e lt r e ee x t r a c t i o nr e s u l t s by the proposed model. It can be seen that our method can capture the vessel segments missed in Fig.3.19a. The pre-segmented vessel map is obtained by applying a constant threshold value to the vesselness map V ness (3.3)computedusing optimally oriented flux filter.
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 41 Figure 4.1: Illustration of the approximation of the flux computation.

4. 2 Front

 2 Propagation for Image Segmentation 4.2.1 Flux-based Active Contours Model Vasilevskiy and Siddiqi (2002)p r o p o s e daf r o n tp r o p a g a t i o nm e t h o df o rt u b u l a r structure segmentation by maximizing the flux based energy:

Fig. 4 . 1 ,

 41 we illustrate this approximation of flux computation. Arrows indicate the vector field V.R e dd o td e n o t e st h ec e n t r e dp o i n tx and the circles with different colours are the boundaries of discs with different radii. Law and Chung (2009) proposed an fast flux computation method to make the flux based active contours model (Vasilevskiy and Siddiqi, 2002)bep r a c t i c a l .

  while al o c a lm e a ni n t e n s i t yf u n c t i o nK :Ω! R + and a local intensity dissimilarity function J :Ω! R + :K(x):= P y2A\Br(x) I(y) # {A \B r (x)} ,(4.8)J (x):=exp ↵ | min{I(x) -K(x), 0}| , x 2 Ω,(4.9)where ↵ is a positive constant. B r (x)i sc o l l e c t i o nd e fi n e da s B r (x):={y; kx -ykr}. (4.10) # {A T B r (x)} is the number of points contained in the set A T B r (x)w h i c hi s indicated by the cyan region in Fig. 4.2.

Figure 4 . 2 :

 42 Figure 4.2: Illustration for the various regions used in the proposed model in the course of the fast marching front propagation. Black dot is the initial source point and blue contour denotes the fast marching front. Red region indicates the collection A including all the Accepted points. Cyan circle indicates the boundary of the ball B r (x) where the centre point x is denoted by blue dot. The cyan region denotes A \B r (x).

Figure 4 . 3 :

 43 Figure 4.3: Front propagation based on the tensor field M c in (4.14) for different values of anisotropy ratio. (a) to )(d): the values of the anisotropy ratio are 1, 10, 30 and 50 respectively. Black dots indicate the initial source points and red regions include all the Accepted points.

Figure 4 . 4 :

 44 Figure 4.4: The course of the fast marching front propagation using isotropic fast marching front propagation method. Black dots indicate the initial source points and red regions include all the Accepted points. (a) to (d) demonstrate the front propagation results. In (c) and (d), the fast marching fronts propagate outside the vessel trees.

Figure 4 . 5 :

 45 Figure 4.5: Comparative vessel tree segmentation results from different methods. Column 1 Original images. Column 2 Results from optimally oriented flux filter. Column 3 Results from fast marching front propagation using eigenvalues of optimally oriented flux filter. Column 4 Results from the proposed model.

Figure 5 . 1 :

 51 Figure 5.1: Minimal path extraction results using different metrics. (a) edge saliency map, (b): minimal path with isotropic Riemannian metric, (c) minimal path with anisotropic Riemannian metric, (d) minimal path with the proposed Finsler elastica metric. Red curves are the extracted minimal paths with initial source positions and end positions indicated by red and green dots respectively. Arrows in (d) indicate the tangents.

Figure 5 . 2 :

 52 Figure 5.2: Visualization for the metrics F 1 and F λ with ↵ = 1 by Tissot's indicatrix. (a): Tissot's indicatrix for the metric F 1 (5.12)w i t h↵ = 1 are flat 2D disks embedded in 3D space, aligned with the direction v ✓ (several directions ✓ are shown). (b): Tissot's indicatrix for the Finsler elastica metrics F λ are ellipsoids, which flatten and approximate a limit disk as λ !1.

Figure 5 . 3 :

 53 Figure 5.3: Approximating Euler elastica curves by Finsler elastica minimal paths with uniform speed. (a) Finsler elastica minimal paths with ↵ = 500 and different values of λ.( b) and (c) Finsler elastica minimal paths with λ = 100 and λ = 300 respectively, and different values of ↵.

Figure 5 . 4 :

 54 Figure 5.4: Steps for the closed contour detection procedure. (a) original image and all vertices in D denoted by dots and arrows. (b) The first pairs of successive vertices (q 1 , q2 )i sd e t e c t e d . ( c)T h et h i r dv e r t i c eq 3 is detected. (d) The final vertice q4 is detected and the closed contour detection procedure is stopped. (e) Geodesic joining q4 and q1 is tracked. (f ) The final closed contour is obtained.

  4(a) by blue and red dots denoting physical positions and by green arrows indicating the corresponding tangents. We start the prop osed closed contour detection metho d by selecting the first physical position, say x 1 .T h ec o r r e s p o n d i n go r i e n t a t i o n -l i f t e dv e r t i c e so fx 1 are denoted by x1 , x † 1 2D .O n c ex 1 is specified, we remove both vertices x1 and x † 1 from D. As shown in Fig. 5.4(a), x1 and x † 1 are denoted by a red dot and two arrows with opposite directions. Let ā⇤ 2Dbe the closest vertex to x1 in terms of curvatue penalized geodesic distance W x1 (5.24) with respect to the Finsler elastica metric P (5.22), i.e., ā⇤ := arg min z2D W x1 (z).

( 5 .

 5 38) In Fig. 5.4(b), we show q1 and q2 by red and green dots with arrows respectively. If the minimal action map W x1 (r e s p . W x † 1

  i },w ec a ne x t r a c tf o u rpo s s i b l e geodesics,e a c ho fw h i c hj o i n sa ni n i t i a ls o u r c ep o i n ti n{s, s † } to an end point in {p i , p † i }.T h eg o a li nt h i ss e c t i o ni st os e a r c hf o rag e o d e s i cC ⇤ i with minimal geodesic curve length associated to the metric P,a m o n ga l lt h ef o u rp o s s i b l e geodesics.

Fig. 5 .

 5 8,theimagessho wnincolumns 1a n d2a r ef r o mt h eB e r k e l e yS e g m e n t a t i o nD a t a s e t( Arbelaez et al., 2011)a n d the image in column 3 is from the Weizmann dataset (Alpert et al., 2012).
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 55 Figure 5.5: Flexible Finsler minimal paths extraction on ellipse-like curves. Red dots and green dots denote the initial and end positions respectively. Arrows indicate the tangents.

Figure 5 . 6 :

 56 Figure 5.6: Comparative minimal paths extraction results on Spirals. Columns 1-4 Minimal paths extracted by using the IR metric, the AR metric, the IOLR metric and the proposed Finsler elastica metric, respectively. Red dots are initial source positions and green dots are end positions. Arrows indicate the tangents.

Figure 5 . 7 :

 57 Figure 5.7: Finding the nearest orientation-lifted candidate to the orientation-lifted initial source point in terms of geodesic distance associated to data-driven Finsler elastica metric. (a) Red dot denotes the initial source position and green dots are the end positions. Arrows indicate the tangents for each position. (b) q6 denoted by green dot with the arrow is the closest orientation-lifted point to s.

Figure 5 . 8 :

 58 Figure 5.8: Finsler elastica minimal paths extraction results. Red and green dots are the initial source and end positions respectively. Arrows indicate the corresponding tangents.

orientations 2 .

 2 I nt h i se x p e r i m e n t ,w efi r s t l yb u i l dt h ec o l l e c t i o nχ (5.40)b yt h e proposed contour detection procedure using the Finsler elastica metric as described in Section 5.4.1,w h e r et h ed e t e c t i o nr e s u l t sa r es h o w ni nc o l u m n5 . C o l u m n s2 -4 show the closed contour detection results using the IR metric, the AR metric, and the IOLR metric, respectively. The minimal paths shown in columns 2 to 4 are obtained by simply linking each pair of vertices by the respective metrics involved in χ.T h er e d ,y e l l o w ,a n dg r e e nd o t sa r et h ep h y s i c a lp o s i t i o n so ft h ev e r t i c e s q1 , q2 , q3 ,r e s p e c t i v e l y . T h ea r r o w ss h o w ni nc o l u m n5i n d i c a t et h et a n g e n t so f

Figure 5 . 9 :

 59 Figure 5.9: Comparative closed contour detection results obtained by using different metrics. Column 1 Edge saliency map. Columns 2-5 Contour detection results from the IR metric, the AR metric, the IOLR metric and the proposed data-driven Finsler elastica metric, respectively.
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 510 Figure 5.10: Closed contour detection results by using only two given physical positions and the corresponding orientations.

Figure 5 .

 5 Figure 5.11: Contour detection results with different values of curvature penalization parameter ↵. Column 1 Results by suitable parameters of ↵ and λ. Columns 2 Results by small values of ↵. Column 3 Results by large values of ↵.

Fig. 5 .

 5 Fig. 5.13 illustrates the capacity of the proposed method to deal with the perceptual grouping problem with spurious points. Different initializations are shown in Figs. 5.13aand5.13c, where the red dots are the selected initial physical positions.

Figure 5 . 12 :

 512 Figure 5.12: Perceptual grouping results by the proposed method and Finsler elastica metric. (a) Initialization: red and blue dots are physical positions, in which the red dot is the selected initial position. (b) The corresponding perceptual grouping results.Arrows indicate the tangents for each physical position.

Figs. 5 .

 5 Figs. 5.13ba n d5.13da r et h eg r o u p i n gr e s u l t s . R e dc u r v e si n d i c a t et h ed e t e c t e d closed curves. The proposed perceptual grouping method has the ability to detect multple closed curves by only specifying the number of expected closed curves. In Fig. 5.14,three closed curves are detected. Row 1 shows different initializations where red dots denote the selected initial physical positions.Row 2 illustrates the first detected closed curve indicated by red curves. Red dots with arrows denote the selected orientation-lifted points in the set D 1 .R o w 3 i l l u s t r a t e s t h e s e c o n d d e t e c t e d closed curve indicated by orange curves. Orange dots with arrows indicate the orientation-lifted points in the set D 2 .T h ei n i t i a lp h y s i c a lp o s i t i o n sa r es e l e c t e d randomly after D 1 is detected. Column 3 demonstrates the third closed curve using the similar procedure to the detection of D 2 .W es h o wt h efi n a lc l o s e dc u r v e detection results in row 4. One can claim that our algorithm indeed has the ability to deal with curves intersecting each others.

Figs. 5 .

 5 15 to 5.19, only the physical positions are provided manually. The corresponding orientations of these physical positions are computed automatically by(5.41). In Fig.5.20,t h ec o r r e s po n d i n gt a n g e n t sf o rt h ep h y s i c a lpo s i t i o n sa r ep r ovided manually because high noise could lead to failure of the optimal orientation

Figure 5 . 13 :

 513 Figure 5.13: Perceptual grouping results by the proposed method and Finsler elastica metric. (a) Initialization 1. Red dot is the selected initial position. (b) Perceptual grouping result for initialization 1. Red dots with the corresponding arrows are the orientation points chosen to form a closed curve. (c) Initialization 2. Red dot is the selected initial position. (d) Perceptual grouping result for initialization 2.

Figure 5 .

 5 Figure 5.14: Perceptual grouping results by the proposed method where three groups are identified. Row 1 Initializations. Red dots are the selected initial positions. Rows 2-4 Intermediate grouping results for the corresponding initializations. Row 5 Final grouping results.

Figure 5 .

 5 Figure 5.15: Comparative blood vessel extraction results on retinal images. Columns 1-4 The extracted minimal paths using the IR metric, the AR metric, the IOLR metric, and the proposed Finsler elastica metric respectively.

Figure 5 . 16 :

 516 Figure 5.16: Comparative blood vessel extraction results on fluoroscopy images. Columns 1-4 The extracted minimal paths using the IR metric, the AR metric, the IOLR metric, and the proposed Finsler elastica metric respectively.

Figure 5 .

 5 Figure 5.17: Comparative arteries vessels extraction results on retinal images. Column 1 The retinal artery-vein vessels ground truth maps. Columns 2-5 The extracted minimal paths by the IR metric, the AR metric, the IOLR metric, and the Finsler elastica metric respectively.

Figure 5 .

 5 Figure 5.18: Retinal veins extraction results from different metrics. Column 1 The retinal artery-vein vessels ground truth maps. Columns 2-5 The extracted minimal paths by the IR metric, the AR metric, the IOLR metric, and the Finsler elastica metric respectively. Blue curves denote the extracted minimal paths.
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 519 Figure 5.19: Comparative blood vessel extraction results on blurred retinal image. (a)-(d) The extracted minimal paths by the IR metric, the AR metric, the IOLR metric, and the proposed data-driven Finsler metric, respectively.

Figure 5 . 20 :

 520 Figure 5.20: Roads extraction results by the proposed Finsler elastica metric in aerial image blurred by Gaussian noise.
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 61 Figure 6.1: Illustration of the Chan-Vese active contours model. (a) original image and initial contour (red curve). (b) Final segmentation result.

  The locally binary fitting active contours model was introduced byLi et al. (2008) to deal with inhomogeneous intensities problem. In this case, the Chan-Vese active contours model (Chan and Vese, 2001)c a n n o to b t a i ng o o ds e g m e n t a t i o nr e s u l t s since the image intensity values are unable to be approximated well by two constants c 1 and c 2 .

Figure 6 . 2 :

 62 Figure 6.2: Illustration for the U-constrained shape evolution. Dash curve denotes the boundary ∂A 0 of the original shape A 0 and red curve is the expect boundary ∂A ⇤ of the desired shape A ⇤ .

3 :

 3 Compute the Hausdorff distance d H of paths C ⇤ and C ⌧ .

6 :

 6 Update the first variation f ⌧ (6.23)a n dt h et u b u l a rn e i g h b o u r h o o dU ⌧ in terms of C ⌧ .

8 : end while 6 . 5

 865 Tubular Neighbourhood ConstructionAtubularneigh bourhoodU of γ as the boundary of shape A is constructed as the set of points within a given geodesic distance d of γ:U := {x 2 Ω; D γ (x) <d},.(6.54)The geodesic distance map or minimal action map D γ (x)f rompoin tx 2 Ωtothe curve γ obeys the following isotropic Eikonal PDE:( krD γ (x)k = P (x), 8x2Ω, D γ γ(t) =0, 8t 2 [0, 1]. (6.55)

if x 2 AFigure 6 . 3 :

 263 Figure 6.3: Tubular neighbourhood regions for ⌧ = 0, where we denote the neighbourhood regions by red shadow. (a) Neighbourhood region U 0 for contour C 0 , which consists of two paths Υ 1 (cyan curve) and Υ 2 (red curve). (b) Neighbourhood region region Θ 0 for curve Υ 0 (blue curve). (c) Neighbourhood region Θ 1 for path Υ 1 [ [Υ 2 (0 ! ✏)]. (d) Neighbourhood region Θ 2 for path Υ 2 [ [Υ 1 (0 ! ✏)].

x2Θ 0 {U 1 0 ⇣ 2 C x ( 2 -

 01022 y (x)+U x (x)}.(6.58) Using the saddle point z ⇤ ,t h eg e o d e s i c sC y (resp. C x )c a nb et r a c k e db ys o l v i n g the ODE in (2.76)w i t hr e s p e c tt om i n i m a la c t i o nm a pU x (resp. U y ). Thus, geodesics C y and C x have the common end points s and z ⇤ .The value of U y (z ⇤ )+U x (z ⇤ )i sam i n i m u mo ft h ef o l l o w i n ge n e r g y :L(γ y ,γ x )= Z K(γ y (t),γ 0 y (t)) + K(γ x , -γ 0 x (t)) ⌘ dt,for any regular curves γ y :[ 0 , 1] ! Θ y and γ x :[ 0 , 1] ! Θ x with common end point γ y (0) = γ x (0) = s.S i n c eC y and C x are geodesics, one has L(C y , C x )  L(Υ y , Υ x ). The desired closed geodesic C ⌧ +1 :[0, 1] ! U ⌧ can be constructed by C ⌧ +1 (u):= ( C y (2u), if 0  u  1

6. 6 . 1 . 2 0 K

 6120 In Case N s ≥ 3 We sample a collection of successive vertices from the given closed contour C ⌧ in clockwise order such that C ⌧ can be decomposed into a set of paths Υ ⌧,i ,w h e r e i 2{ 1, 2, ••• ,N s } with N s ≥ 3b yt h e s ev e r t i c e s . L e tu sd e n o t et h ec o l l e c t i o no f the successive vertices by Λ ⌧ := {p ⌧ i ,i2{ 1, 2, ••• ,N s }},b yw h i c ht h eg e o d e s i c energy L can be expressed by: ⌧ (Υ ⌧,i (t), Υ 0 ⌧,i (t))dt. (6.60)

Figure 6 . 4 :

 64 Figure 6.4: Shape evolution results of the proposed model with contour initialization and two sampled vertices. (a) Original image and initial contour. (b-e) Intermediate results. (f ) Final segmentation results. The green crosses in each figure denote the saddle points. Blue dots denote the saddle points in the last step. Cyan curves denote the counter-clockwise paths and red curves

  6.4,w ed e m o n s t r a t et h ec o u r s eo ft h es h a p ee v o l u t i o nu s i n gt h ep r o p o s e d model with contour initialization (two vertices are sampled). Fig. 6.4as h o w s the original image with initial contour. Figs. 6.4bt o6.4ea r et h ei n t e r m e d i a t e

Figure 6 . 5 :

 65 Figure 6.5: Shape evolution results of the proposed model with contour initialization and four sampled vertices. (a) Original image and initial contour with four sampled vertices. (b)-(c) Intermediate segmentation results. d Final segmentation result.

  d)w i l lr e d u c et h ec o m p u t a t i o nt i m ea n de v o l u t i o n steps required by the proposed model. In Fig. 6.5,w es h o wt h ec o u r s eo ft h es h a p ee v o l u t i o nu s i n gt h ep r o p o s e dm o d e l with four vertices based contour initialization.

Figs. 6 .

 6 6at o6.6d demonstrates the course of the shape evolution. The fixed points are denoted by dots. In this experiments, we need only four steps to obtain the final contour as shown in Fig. 6.6d. In Fig. 6.8 we show the comparative segmentation results obtained by the nonlocal active contours model Jung et al. (2012)a n dt h ep r o po s e ds h a pee v o l u t i o nm od e l with contour initialization. Column 1 shows the original images and the initial contours. Columns 2 and 3 show the segmentation results from the nonlocal active contours model and the proposed model respectively. One can claim that the proposed shape evolution model is more robust that local minimas compared to gradient descent method. In Fig. 6.8,w es h o wt h ec o m p a r a t i v es e g m e n t a t i o nr e s u l t so b t a i n e db yt h el oc a l l y binary fitting model (Li et al., 2008)a n dt h ep r o p o s e ds h a p ee v o l u t i o nm o d e l with fixed points initialization. Column 1 shows the original images and the initial contours. Columns 2 and 3 show the segmentation results from the locally binary fitting model and the proposed model respectively. Again, with the proposed model, unexpected local minima suffered by the locally binary fitting model sometimes can be avoided.

Figure 6 . 6 :

 66 Figure 6.6: Shape evolution results of the proposed model with three fixed points initialization. Dots denote the fixed vertices.

Figure 6 . 7 :

 67 Figure 6.7: Comparative segmentation results by the level set based nonlocal active contours model (Jung et al., 2012) and the proposed model with contour initialization. Both models are based on the same regional terms. Column 1 shows the original images and the initial contours. Columns 2 and 3 show the segmentation results from the nonlocal active contours model and the proposed model respectively.

Figure 6 . 8 :

 68 Figure 6.8: Comparative segmentation results by the level set based locally binary fitting model (Li et al., 2008) and the proposed model with fixed points initialization. Both models are based on the same regional terms. Column 1 shows the original images and the initial contours. Columns 2 and 3 show the segmentation results from the locally binary fitting model and the proposed model respectively.
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  [START_REF] Cohen | Global minimum for active contour models: A minimal path approach[END_REF]s u g g e s t e daw a yt o to obtain the global minimum of a variant of the energy functional E Snake through the solution of the Eikonal PDE. This variant energy is the famous geodesic energy(Caselles et al., 1997)t h a tr e m o v e st h es e c o n d -o r d e r derivative term Γ

00 

.M o r e o v e r ,t h eg e o d e s i ce n e r g yi si n d e p e n d e n to ft h ep arameterization of the curve, a problem that is suffered by the classical active contours model

(Kass et al., 1988)

.

  ). Without loss of generality, we suppose that A 1  A 2 and B 1  B 2 . Cohen (2001)presen ted asimplew a ytosolv e(2.80)basedonthefactthatonlytheAccepted points in the neighbourhood points

  vessel image into the vesselness map for which the value of each pixel indicates the probability of this pixel belonging to a vessel, see Fig.3.2 for an example. Then the binary segmented vessel map can be obtained either by thresholding the vesselness map by a constant value, or by an adaptive thresholding procedure(Hoover et al., 2000;[START_REF] Jiang | Adaptive local thresholding by verification-based multithreshold probing with application to vessel detection in retinal images[END_REF]. The adaptive thresholding methods use a set of threshold values to test each point by taking into account both the position and vesselness value of this point. The crucial point of these methods is the vesselness map, which can be computed by matched filter(Chaudhuri et al., 1989), Hessian matrix (Frangi et al., 1998; Sato et al., 1998), flux (Law and Chung, 2008)o ro r i e n t a t i o ns c o r e( Hannink et al., 2014).Detecting both the orientations and positions of the blood vessels are essential task of tubular structure detection. The enhancement based blood vessel detectors such as the Hessian based filer[START_REF] Frangi | Multiscale vessel enhancement filtering[END_REF]andtheoptimallyorientedfluxfilter[START_REF] Law | Three Dimensional Curvilinear Structure Detection Using Optimally Oriented Flux[END_REF]canachievethisgoalbytheuseoftheimagegradientfield. They can assign each pixel in the image domain a value denoting the probability that this pixel appearing as a vessel point, and a vector indicating the optimal orientation of the possible vessel at this point. It is demonstrated in(Benmansour and Cohen, 2011;[START_REF] Law | Three Dimensional Curvilinear Structure Detection Using Optimally Oriented Flux[END_REF]thattheoptimallyorientedfluxfilterhas better performance than Hessian based filter[START_REF] Frangi | Multiscale vessel enhancement filtering[END_REF]f o rt h ev e s s e l branches detection. In this section, we focus on the 2D optimal oriented flux filter.

	3.2 Anisotropy Descriptor: Optimally Oriented
	Flux Filter
	The main contents of this chapter were presented at the ICIP 2014 conference
	(Chen et al., 2014), the EMBC 2015 conference (Chen and Cohen, 2015a)andthe
	SSVM 2015 conference (Chen and Cohen, 2015b).

al., 1989; Frangi et al., 1998; Hannink et al., 2014; Law and Chung, 2008; Xiao et al., 2013)i st o convert the original

  2 ≥•••≥Th k are given as input; generally k 2{1, 2},a n db yc o n v e n t i o nTh 0 =+1.I ft h ec u r r e n t l ya c t i v e point xmin has an excessive estimated curve length L(x min ) ≥ 3λ,s e el i n e13, then the next threshold Th i+1 is activated in order to discover finer, less visible vessel structures; unless i = k in which case the method ends. If the currently active point xmin has an appropriate estimated curve length λ  L(x min ) < 3λ, then it is considered as a candidate new keypoint (i.e. a potential node of the vessel tree structure), see line 23.W e e x t r a c tt h eg e o d e s i cC x linking x to the already extracted tree structure, and evaluate its relevance using a path score. The selection test line 25 requires the path score to exceed the current selection threshold Th

i .T h es e l e c t o rδ(T,•)a p pe a r i n gi n( 3.25)i sa p p l i e dw i t hT := Th i-1

  3.35)bystate-of-the-artanisotropicfastmarching method proposed byMirebeau (2014a). As discussed in Section 2.4,t h ef a s t marching method introduces a regular grid Z of the image domain Ω and labels each grid point either Accepted, Trial or Far. Among all the Trial points, the point x min which minimizes the minimal action map U d will be tagged as Accepted.O n c e the latest Accepted point x min 2 Z is found, one can track a minimal geodesic C z,x

min .T h i sm e a n st h a tu p d a t i n gt h ep r o p o s e dd y n a m i ca n i s o t r o p i cR i e m a n n i a n metric R dyn (3.35)i sp o s s i b l ed u r i n gt h ef a s tm a r c h i n gp r o p a g a t i o nb yu s i n gt h e approximation of that for all y such that x min 2 S(y)o n eh a s

Table 3 . 1 :

 31 Comparison of the vessel extraction results for the Benmansour-Cohen model and the proposed minimal path model. from the region-constrained minimal path model where the cyan lines indicate the retinal vessel centrelines and red contours denotes the boundaries of the vessels. From this figure, we can see that the proposed two-step method can obtain the desired results which completely avoid the short branches combination problem.The proposed minimal path model is evaluated on the Test set of the DRIVE dataset(Staal et al., 2004), which includes 20 retinal images. We choose total 110 vessels which start from the optic disk of the retinal images or those cross another vessel. If the extracted minimal path exactly follows the desire vessel, we consider

	Measure N F T	N T F	N T T	N F F
	47	2	55	6
	the final results			

this is a positive extraction (PE), otherwise a negative extraction (NE). For the proposed two-step vessel extraction method, the number of PE = 102 out of total 110 vessels. For Benmansour-Cohen model, this number is 57. Additionally, we compute the following measures:

Table 3 . 2 :

 32 Comparison of our segmentation results with the second manual segmentation on the test set of DRIVE dataset.

	Methods	Maximum Minimum Mean Standard deviation
	Benmansour and Cohen (2011)0 . 9 4 7	0 . 9 2 7 1 0 . 9 3 7 2	0 . 0 0 5 4
	Proposed Method	0.949	0.9305 0.9397	0.0052
	Table 3.3: Comparison of our segmentations Computation time (in Seconds) with
	Benmansour and Cohen (2011) model on retinal images from the test set of DRIVE
		dataset.			
		Maximum Minimum Mean Standard deviation
	Benmansour and Cohen (2011)2 2 . 6 s	9 . 1 6 s1 3 . 1 7 s	3 . 2 s
	Endpoints Correction	5.1s	4.0s	4.39s	0.27s
	Constrained Fast Marching	5.6s	4.4s	5.06s	0.353s

For evaluation we apply our metho d on 20 retinal images got from the test set of the DRIVE dataset

(Staal et al., 2004)

, acquired through a Canon CR5 non-mydriatic 3CCD camera with a 45 degree field of view (FOV). We show the comparison between Benmansour-Cohen model

(Benmansour and Cohen, 2011)

andourmethod in Table

  • Set radius-lifted point collection A = ? and RemainedEndpoints =2 • IfStop False.

	Main Loop
	1: while IfStop=False do
	2:

  , based on the formalism of viscosity solutions to Eikonal PDE. These mathematical and algorithmic guarantees of Cohen and Kimmel's minimal path model have important practical consequences, leading to various approaches for image analysis and medical imaging[START_REF] Deschamps | Fast extraction of minimal paths in 3D images and applications to virtual endoscopy[END_REF][START_REF] Deschamps | Fast extraction of minimal paths in 3D images and applications to virtual endoscopy[END_REF] Peyré et al., 2010).In the basic formulations of the minimal paths based interactive image segmentation models(Appia and Yezzi, 2011; Appleton and Talbot, 2005;[START_REF] Mille | Geodesically linked active contours: evolution strategy based on minimal paths[END_REF][START_REF] Mille | Combination of piecewise-geodesic paths for interactive segmentation[END_REF], the common proposal is that the object boundaries were delineated by a set of minimal paths constrained by user-specified points. In general, these points serve as constraints for minimal paths. In(Benmansour and Cohen, 2011;[START_REF] Li | Vessels as 4-D curves: Global minimal 4-D paths to extract 3-D tubular surfaces and centrelines[END_REF], tubular structures were extracted under the form of minimal paths over the radius-lifted domain. Therefore, each extracted minimal path consists of both the centreline positions and the corresponding thickness values of a vessel.

	and inpainting results especially for objects with long and thin structures. Ulen
	et al. (2015)proposedacurv atureandtorsionregularizedshortestpathmodelfor
	extracting thin and long structures such as coronary artery segmentation, where
	the curvature and torsion properties are approximately computed by B-Splines.
	Their energy functional including curvature and torsion penalization terms can be
	efficiently optimized by line graphs and Dijkstra's algorithm (Dijkstra, 1959).
	(Tai et al., 2011)p r e s e n t e da ne ffi c i e n tm e t h o dt os o l v et h em i n i m i z a t i o np r o b -
	lem of the Euler elastica energy, and demonstrated that this fast method can be
	applied to image denosing, image inpainting, and image zooming. Other curvature-
	penalized approaches of interest include the curvature regularization based image
	segmentation models such as (El-Zehiry and Grady, 2010; Schoenemann et al.,
	2011; Zhu et al., 2013), curvature-regularized inpainting model (Shen et al., 2003)
	Sub-Riemannian Geodesic Models
	2006; Petitot,
	Kim-2003)r e i n t r od u c e dc u r v a t u r epe n a l i z a t i o nt ot h eg e od e s i ce n e r g y ,s i m i l a r l yt ot h e
	mel and Sethian (2001)d e s i g n e da no r i e n t a t i o n -l i f t e dR i e m a n n i a nm e t r i cf o rt h e Euler elastica bending energy (Nitzberg and Mumford, 1990)c o n s i d e r e di nt h i s
	application of path planning, providing an alternative way to take advantages of chapter, yet it differs in two ways: firstly, Euler elastica bending energy involves
	the path orientation. This isotropic orientation-lifted Riemannian metric (Kimmel the squared curvature, a stronger penalization than the sub-Riemannian geodesic
	energy which is roughly linear in the curvature. Secondly, minimal geodesics for and Sethian, 2001)w a sb u i l to v e rt h eh i g h e rd i m e n s i o n a ld o m a i nb ya d d i n ga n extra orientation space to the image domain. sub-Riemannian geodesic model occasionally feature cusps 1 ,w h i c hs o m e t i m e s
	may not be desirable for the applications of interest. In contrast, Euler elastica
	Schoenemann et al. (2009, 2012)proposedamodeltodealwiththeproblemsofus-curves can avoid such cusps.
	ing curvature regularization for region-based image segmentation by a graph-based
	combinational optimization method. This curvature regularization model can find
	asolutionthatcorrespondstothegloballyoptimalsegmen tationinthesensethat
	it does not rely on initialization, and has proven to obtain promising segmentation

In order to reduce the user intervention,

Benmansour and Cohen (2009)

p r o po s e d ag r o w i n gm i n i m a lp a t hm o d e lf o ro bj e c ts e g m e n t a t i o nw i t hu n k n o w ne n d p o i n t s . This model can recursively detect keypoints, each of which can be taken as new initial source point for the fast marching front propagation. Thus this model requires only one user-provided point to start the keypoints detection procedure. Kaul et al. (2012)a p p l i e dt h eg r o w i n gm i n i m a lp a t hm od e lf o re x t r a c t i o no fc o mplicated curves with arbitrary topologies and developed criteria to stop the growth of the minimal paths. Rouchdy and Cohen (2013)proposedaminimalpathvoting model for vessel tree extraction by a voting score map constructed from a set of geodesics with a common initial source point. Recently, improvements of the minimal path model are devoted to extend the isotropic Riemannian metrics to the more general anisotropic Riemannian metrics by taking into account the orientation of the curves (Benmansour and Cohen, 2011; Bougleux et al., 2008; Jbabdi et al., 2008). Such orientation enhancement can solve, for example some shortcuts problems suffered by the isotropic metrics based minimal path models (Cohen and Kimmel, 1997; Li and Yezzi, 2007). Bekkers et al. (2015a,b)consideredadata-drivenextensionofthesub-Riemannian metric on SE(2), which shows that the sub-Riemannian structure outperforms the isotropic Riemannian structures on SE(2) in the application of retinal vessel tracking. The cusp surface is also analysed in this paper. However, the numerical solver used by Bekkers et al. (2015a,b)isbas e donaP DEapproac hwithanup winddiscretization and iterative evolution scheme thus requiring expensive computation time. To solve this problem, Sanguinetti et al. (2015)propos e dtous ethes tateof art anisotropic fast marching method

(Mirebeau, 2014a

)asthenumericalsolverof the Eikonal equation that is associated to the data-driven sub-Riemannian metrics. They also showed that an anisotropic Riemannian metric with a very high anisotropy ratio can approximate well the sub-Riemannian metric. Later on, this sub-Riemannian fast marching-based numerical tool is employed to compute the geodesic distance associated to the sub-Riemannian metrics in SO(3)

(Mashtakov et al., 2016)

. The sub-Riemannian geodesic model

(Citti and Sarti, 

Table 5 . 1 :

 51 Computation time (in seconds) and average number of Hopf-Lax updates required for each grid point by fast marching method with ↵ = 500 and different values of λ on a 300 2 ⇥ 108 grid.

	λ	11 02 03 0	1 0 0 2 0 0 3 0 0 5 0 0 1 0 0 0
	time	13.9s 25.3s 27.3s 27.7s 31.7s 33.9s 34.7s 35.0s 36.8s
	number	3	5.49 6.06 6.49 7.27 7.82 7.83 7.92 8.12
	grid. This experiment was performed with a C++ implementation running on a
	standard 2.7 GHz Intel I7 laptop with 16 Gb RAM.

  , are designed for image feature extraction by minimizing the associated energy functional in the form of edge integration with initial conditions.One of the main drawbacks suffered by the classical edge-based snakes model(Kass et al., 1988)isthatitrequiresfastidiousinitialization. Insomecases,forexample, it requires the initial curves to be very close to the targeted boundaries. Various approaches such as the balloon active contour model(Cohen, 1991; Cohen and Cohen, 1993), gradient vector flow based models[START_REF] Paragios | Gradient vector flow fast geodesic active contours[END_REF]; Xu and Prince, 1998)andphysicallawsbasedmodel(Jalba et al., 2004; Xie and Mirmehdi, 2008), were devoted to solve this initialization sensitivity problem, allowing initial curves to be far from the desired boundaries or even cross them. With the level set numerical tool(Osher and Sethian, 1988), the evolution of the edge-based active contours with balloon force can be efficiently implemented as the geometric active contour models(Caselles et al., 1993(Caselles et al., , 1997;;[START_REF] Malladi | Evolutionary fronts for topologyindependent shape modeling and recovery[END_REF].

	Region-based active contour models aim at partitioning the image into regions with
	homogeneous features like gray levels, colors or texture Cohen (1997); Mumford
	and Shah (1989). Comparing to edge-based active contour models, using global
	region information can sometimes avoid trapping the active contours at spurious
	edges, since most of the edge detectors are based on the local image gradients.
	In Chan and Vese (2001); Tsai et al. (2001); Vese and Chan (2002), the curve
	evolution strategy and level set method (Osher and Sethian, 1988)wereadaptedto
	efficiently minimize the various forms of the Mumford-Shah functional (Mumford
	and Shah, 1989), known as the piecewise constant case (Chan and Vese, 2001)and
	piecewise smooth case (Tsai et al., 2001; Vese and Chan, 2002). The pairwise-
	based active contour models were proposed in (Bertelli et al., 2008; Dubrovina-
	Karni et al., 2015; Jung et al., 2012; Sumengen and Manjunath, 2006), where the
	basic idea is to measure the similarity distance between each pair of pixels within
	the same region or dissimilarity distance for a pair of pixels in different regions
	(Bertelli et al., 2008). Local region-based active contour models are based on
	the homogeneous intensities (Lankton and Tannenbaum, 2008; Li et al., 2008)o r
	texture features (Brox and Cremers, 2009) within a local region. Hybrid active
	contour models (Kimmel, 2003; Paragios and Deriche, 2002; Sagiv et al., 2006; Zhu

and Yuille, 1996)c o n s i d e rt h ei m a g ee d g ei n f o r m a t i o na n dr e g i o nh o m o g e n e o u s properties simultaneously. Hence the hybrid models can share the advantages from both the edge-based and region-based active contour models.

  , the contour γ was represented by the zero-value of the level set function Φ : Ω ! R,i . e . ,

	γ =: {x 2 Ω; Φ(x)=0}.

By a variational level set approach proposed by

Zhao et al. (1996)

i n v o k i n ga Heaviside function H :Ω!{ 0, 1},t h ev a r i a t i o n a ll e v e ls e tb a s e dC h a n -V e s e energy functional (Chan and Vese, 2001)c a nbee x p r e s s e da s E CV

  i so n eo ft h em o s tp o p u l a rt o o l s for curve evolution, where the curves can be denoted by the zero-level set. Letting β :Ω! R denote the front propagation speed, the respective level set evolution equation(Osher and Sethian, 1988)c a nbee x p r e s s e da s

	@φ @⌧	= β krφk.	(6.29)
	Corresponding to the gradient descent flow (6.28), the level set curve evolution
	equation is where the curvature  is expressed by @φ @⌧ = -↵fkrφk + r•	✓ rφ krφk	◆	krφk,	(6.30)
	 = r•	✓ rφ krφk	◆	.
	Zhao et al. (1996)p r o p o s e dav a r i a t i o n a ll e v e ls e ta p p r o a c h ,w h i c hw a sa d o p t e d
	by (Chan and Vese, 2001; Chan et al., 2000; Li and Acton, 2007; Vese and Chan,
	2002)f o ra c t i v ec o n t o u r sa n di m a g es e g m e n t a t i o n . T h ed e t a i l sf o rt h i sp o p u l a r
	numerical tool can be found in Section 6.2.2.	

  2 .I n s t e a d , we solve that problem over the tubular neighbourhood region U ,i . e . ,

	Z			
	minimize	U	kV ? (x)k 2 dx,	(6.44)
	s.t. r•V ? (x)=↵f(x), 8x 2 U,	(6.45)
	which gives good results.			

Table 6 . 1 :

 61 Computation time and evolution steps (ES) required by the proposed method with regional term f CV under different pairs of (δ, d) in equations (6.54) and (6.56).

Cette thèse vise à appliquer différentes métriques géodésiques dans le cadre de l'équation Eikonale, afin de résoudre différents problèmes de segmentation d'image et de détection de frontière, en particulier pour la segmentation de structures tubulaires et les modèles de contours actifs région, en faisant usage de plus d'informations issues des caractéristiques d'image et de connaissances cliniques préalables. Les métriques géodésiques introduites tirent essentiellement leurs avantages de l'orientation géodésique et de l'anisotropie, de la cohérence des caractéristiques de l'image, de la courbure géodésique et de la propriété géodésique d'asymétrie pour faire face aux diverses difficultés posées par les modèles classiques de géodésiques minimales et les modèles de contours actifs. Enfin, cette thèse présente une interprétation des modèles classiques de traitement d'image: le modèle Elastica d'Euler et les contours actifs, par les géodésiques minimales basées sur l'équation aux dérivées partielles Eikonale. Par conséquent, ces modèles classiques peuvent tirer profit des avantages des géodésiques minimales.Aproposdesmod èlesmath ématiquesd év elopp ésdanscetteth èse,nousmon trons la puissance des géodésiques minimales pour l'extraction des vaisseaux de la rétine, tâche clinique souvent difficile à réaliser, en indiquant à la fois la ligne médiane ix

• Le Chapitre 6 introduit une nouvelle méthode s'appuyant sur l'EDP Eikonale non linéaire pour la segmentation d'images par contours actifs basés Région. Nous transformons l'énergie des contours actifs basés Région en une énergie de courbe géodésique, par la métrique de Finsler, à travers le théorème de divergence. Par conséquent, la minimisation de l'énergie basée Région est obtenue en résolvant l'EDP Eikonale associée aux métriques de Finsler par la méthode de Fast Marching anisotrope (Mirebeau, 2014b). Le minimum correspondant est plus robuste et plus efficace. La stratégie traditionnelle de minimisation de l'énergie des contours actifs basée Région utilise la méthode de descente de gradient et l'évolution de la courbe basée sur la méthode des ensembles de niveau, étant sensible aux minima locaux et nécessitant d'un réglage attentif des paramètres. En revanche, la méthode proposée permet d'éviter les problèmes de sensibilité aux minima locaux et des paramètres. En outre, compte tenu de la simplicité d'utilisation de la méthode, il est naturel d'intégrer les informations fournies par l'utilisateur.• Le Chapitre 7 résume les principales contributions de cette thèse et donne les perspectives des futurs travaux.

(a) Initial contour (b) Intermediate result (c) Final result

Such as the norm of image gradient.

Note that in(Yin et al., 2012), the authors used four and eight edge points to describe bifurcation and crossing respectively

The cusps of the sub-Riemannian geodesic have been deeply studied in(Bekkers et al., 

2015b;[START_REF] Boscain | Existence of planar curves minimizing length and curvature[END_REF] Duits et al., 2013[START_REF] Duits | Association fields via cuspless sub-Riemannian geodesics in SE (2)[END_REF]. They can be used for the geometric keypoints detection.

For the IR metric and the AR metric, only the physical positions of these orientation lifted vertices are used.

Many thanks to Dr. Jiong Zhang to provide us these images.

We actually use a slight variant of the classical modulus of continuity because the latter one, obtained with the hard cutoff function C(t)=1i ft  1, 0 otherwise, lacks continuity in general.

7:

IfStop True. Update L(x min )u s i n g ( 3.16).

11:

if x min = p 1 or x min = p 2 then 12:

RemainedEndpoints

RemainedEndpoints -1.

13:

A ? and construct the collection B using (3.43).

14:

for All x 2Bcentred at xmin do 15:

if L(x) ≥ [L(x min )] + 1 and V(x)=Accepted then 16:

A A [{x}. for All ŷ such that xmin 2 S(ŷ)a n dV(ŷ) 6 = Accepted do 26:

Compute U new (ŷ) using Hopf-Lax update in (2.86).

27:

if V(ŷ) 6 =Trial then 28:

V(ŷ) Trial.

29:

end if 30:

U (ŷ) min{U new (ŷ), U (ŷ)}.

31:

end for 32:

else 33:

U (x min ) +1 and L(x min ) +1.

34:

end if 35: end while Chapter 4 Anisotropic Front Propagation for Tubular Structure Segmentation Abstract We present in this chapter a blo o d vessel segmentation mo del by anisotropic fast marching front propagation method with respect to an anisotropic dynamic Riemannian metric. The fast marching front is defined as the level set of the geodesic distance map to a set of given initial source points with respect to a dynamic anisotropic Riemannian metric. The boundaries of the vessels are supported to be represented by the level set at the given distance value. The dynamic anisotropic Riemannian metric can be defined using a prior estimate of the vessel orientations and the local intensity difference values, where the vessel orientations are detected by the oriented flux filter.

Chapter 6 Finsler Geodesics Evolution Model for Region-based Active Contours Abstract

In this chapter, a new geodesics extraction framework is proposed for region-based active contours and image segmentation. The basic idea is to reformulate a regionbased active contours energy into a geodesic contour energy involving a Finsler metric. As a consequence, the region-based active contours energy minimization problem is solved without resorting to level set functions, but using a robust nonlinear Eikonal partial differential equation framework. By sampling a set of control points from the closed active contour in a clockwise order, the active contours evolution problem is turned into finding a collection of minimal geodesics joining all the successive control points. Globally optimal minimal curves are obtained by solving an Eikonal partial differential equation, involving a Finsler metric, which is achieved at a modest numerical cost using a variant of the fast marching algorithm. [START_REF] Cohen | Global minimum for active contour models: A minimal path approach[END_REF]proposedaminimalpathmodeltofindtheglobalminimum of the geodesic energy based on the formalism of viscosity solutions to the Eikonal PDE, which can be solved by a fast and reliable Fast Marching method (Sethian, 1999). The mathematical and algorithmic properties of the classic minimal path model [START_REF] Cohen | Global minimum for active contour models: A minimal path approach[END_REF] In this chapter, we propose a Finsler metric based minimal path model for regionbased active contours and image segmentation. The Finsler metric is induced from the region-based active contour energy functionals by an application of the divergence theorem to a well chosen vector field. The Eikonal PDE associated to the Finsler metric is efficiently solved via an adaptive variant of the fast marching method (Mirebeau, 2014b).

Region-based Active Contours Models

Mumford-Shah Functional Inspired Active Contours Models

The classical Mumford-Shah (MS) functional (Mumford and Shah, 1989)c o n s i s ting of a region based image data term and a curve length regularization term In that case, c and f are uniquely determined and independent to χ B .S c a l a r function f is the first variation of F with respect to χ B 0 :

For the sake of simplicity, in the following, we make use of the following notation

By (6.22), for any B 2 Ωc l o s et oB 0 2 Ω, we have

which means that the functional F (χ B )canbenaturallyappro ximatedb yalinear region term † in (6.24).

The most popular functional appearing in shape optimization or curve evolution are the sum of a linear region term, and a penalization of the Euclidean curve length `(@A)o ft h ebo u n d a r y@A:

The energy functional (6.25)canbeminimizedbyshape or curve evolution method, providing an initial shape A 0 is given. Using (6.24), E(A)c a nbee x p r e s s e da s

where ↵ is a positive constant and f = F 0

is the first variation of F with respect to χ A 0 .Q u a n t i t y`(@A)d e n o t e st h es t a n d a r dE u c l i d e a nc u r v el e n g t h@A,w h i c h is also the 1-dimensional Haussdoff measure.

Time-Dependent Gradient Descent Method for Energy Minimization

Classical shape or curve evolution approaches optimize the energy functional E (6.26)b yu s i n gt h ec o r r e s p o n d i n gl i n e a rE u l e r -L a g r a n g ee q u a t i o n sa n dt h et i m edependent gradient descent method (Jung et al., 2012;[START_REF] Tsai | Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification[END_REF]Zhu and Yuille, 1996). In other words, these approaches make use of the gradient descent flows as the energy minimization way.

We make use of the second way in this chapter for extending the size of the search region U ,w h i c hi st or e p l a c et h ev e c t o rfi e l dV with Ṽ defined by

where T is a nonlinear map which is a decreasing function defined as

When ⇣ is small, we have the approximation

Clearly the smallness condition k Ṽk L ∞ < 1i sa u t o m a t i c a l l ys a t i s fi e d ,a n d Ṽ(x) approximates well V(x)w h e r ei t sn o r mkV(x)k is small, 8x 2 U .

Based on the vector field Ṽ, a Finsler metric K :Ω⇥ R 2 ! R + can be constructed by

Therefore, the geodesic energy L (6.47)i sd e fi n e db yl e t t i n gK := K 

We intro duce a new path

In Fig. 6.3(a), Υ y and Υ x are denoted by red curve and cyan curve respectively.

By Eqn. (6.55), we define the tubular neighbourhood regions Θ ✏ ,Θ y and Θ x for the the paths

This is done by computing the geodesic distance maps based on the potential P (6.56) from each paths respectively. In Figs. 6. The Haussdorff distance between sets where C is the continuous cutoff function defined by

Clearly B 7 ! diam(B)a n d( B,✏) 7 ! Ξ(B,✏)a r ec o n t i n u o u sf u n c t i o n so fB2 C 0 (X, =)a n d✏ 2 R + .I na d d i t i o nΞ ( B,✏)i si n c r e a s i n gw . r . t . ✏. Here and below, if A 1 , A 2 are metric spaces, and A 1 is compact, then C 0 (A 1 ,A 2 )i se q u i p pe dw i t h the topology of uniform convergence. This applies in particular to the space of paths C 0 ([0, 1],X)a n do fc o n t r o l sC 0 (X, =).

Lemma A.4. If γ is B-admissible, then its Lipschitz constant is at most diam(B).

A necessary and sufficient condition for γ to be B-admissible is: for all 0  p  q  1,

Proof. Assume that γ is B-admissible. Then for any 0  p  q  1o n eh a s kγ(p)γ(q)k Z q p kγ 0 (%)kd% |p -q| diam(B), hence γ is diam(B)-Lipschitz as announced. Denoting w % = p +(qp)%,f o ra l l % 2 [0, 1], one obtains γ(q)γ(p) qp = Conversely, assume that γ and B obey (A.0.5). Then

for any 0  p  q  1. Thus γ is a Lipschitz path as announced, and therefore it is almost everywhere differentiable. If p 2 [0, 1] is a point of differentiability, then letting q ! p we obtain

which is the announced admissibility property γ 0 (p) 2B(γ(p)).

The characterization (A.0.5)iswrittenintermsofcontinuousfunctionsofthepath γ and control set B,henceitisaclosedcondition,whic himpliesthefollo wingt w o corollaries.

We denote T B(x):={T u; u 2B(x), 8x 2 X}.

Corollary A.5. The set

Corollary A.6. Let x n , y n , B n and T n be converging sequences in X, X, C 0 (X, =) and R + , with limits x 1 , y 1 , B 1 , and T 1 , respectively. Let γ n 2 C 0 ([0, 1],X) be a (T n +1/n)B n -admissible path with endpoints x n and y n . Then the sequence of paths (γ n ) is equip continuous, and the limit γ 1 of any converging subsequence is a T 1 B 1 -admissible path γ 2 C 0 ([0, 1],X) with endpoints x 1 and y 1 .

Proof. Note that the map (T,B) 7 ! T B is continuous on R + ⇥ C 0 (X, =), hence the controls Bn := (T n +1 /n)B n converge to B1 := T 1 B 1 .D e fi n i n g E := sup{diam(B n ); n>0} which is finite by continuity of diam(•)( A.0.3)a n dc o n v e rgence of Bn ,w efi n dt h a tt h ep a t h s( γ n ) n>0 are simultaneously E-Lipschitz, hence that a subsequence uniformly converges to some path γ 1 .T h e B1 -admissibility of γ 1 then follows from Corollary A.5.

We next intro duce the minimum-time optimal control problems. The minimum of (A.0.10)isattainedbyCorollaryA.6,whichalsoimmediatelyimpliestheCorollary A.8.

Definition A.7. For all x, y 2 X,a n dB2C 0 (X, =), we let

Corollary A.8. The map (x, y, B) 7 ! T B (x, y) is lower semi-continuous on X ⇥ X ⇥C 0 (X, =). In other words, whenever

Proof. For each n>0l e tT n = T Bn (x n , y n )a n dl e tT 1 =l i mi n fT n as n !1 .

Up to extracting a subsequence, we can assume that T 1 =l i mT n as n !1 .

Denoting by γ n ap a t ha si nC o r o l l a r yA.6 for all n>0, we find that there is a converging subsequence which limit γ 1 is T 1 B 1 admissible and obeys γ 1 (0) = x 1 and γ 1 (1) = y 1 .T h i ss h o w st h a tT 1 ≥T B∞ (x 1 , y 1 )a sa n n o u n c e d .

Definition A.9. Let B 1 , B 2 2 C 0 (X, =). These collections of controls are said included

The property B 1 ✓B 2 clearly implies, for all x, y 2 X

(A.0.12)

Corollary A.10. Assume that one has a converging sequence of controls B n !B 1 obeying the inclusions B n ✓B 1 for all n>0. Then lim T Bn (x, y)=T B∞ (x, y).

(A.0.13) for all x, y 2 X. Let T n := T Bn for all n 2 N[{1}, and let γ n be an arbitrary (T n + 1/n)B n -admissible path from x to y. If there exists a unique T 1 B 1 -admissible path γ i nf ty from x to y, then γ n ! γ 1 as n !1.

Proof. The identity (A.0.13)f o l l o w sf r o mt h ei n e q u a l i t i e s( A.0.11)a n d( A.0.12). By Corollary A.6 the sequence of paths γ n is equi-continuous, and any converging subsequence tends to a T ⇤ B 1 γ ⇤ from x to y,w i t hT ⇤ := lim T n .S i n c eT ⇤ = T 1 and by uniqueness we have γ ⇤ = γ 1 hence γ n ! γ 1 as announcend.

Application to Finsler Elastica Geodesics Convergence Problem

Consider an orientation-lifted Finsler metric F : in the same spaces one has

We use a finite differences discretization on the pixel grid Z U = hZ 2 \ U ,w h e r e h>0i st h ep i x e ls i z e . W ea l s os t o r et h ev a l u e so ft h ep o t e n t i a l sp and q on a staggered grid so as to improve the accuracy of the gradient operator. The first step is to express (B.0.1)t ot h ed i s c r e t ef o r m s . S pe c i fi c a l l y ,o n eh a s

where Q is identity matrix with size 2N ⇥ 2N .L e t t i n gV ? =(u, v), r is a vector of size 2N ⇥ 1

where N is the number of grid points in the discrete domain Z U of U .

We denote the divergence op erator as

q i is a divergence vector with size 2N ⇥ 1s u c ht h a t

where p is a vector column with size 2N ⇥ 1. The solution r ? can be given by

where λ is a collection of Lagrange multipliers which come out of the solution alongside r ? .T h e nu s i n gt h es o l u t i o nr ,w ec a no b t a i nt h ev e c t o rfi e l dV ? . 

Résumé