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Abstract

In the fields of medical imaging and computer vision, segmentation plays a crucial

role with the goal of separating the interesting components from one image or a

sequence of image frames. It bridges the gaps between the low-level image pro-

cessing and high level clinical and computer vision applications. These high level

applications may include diagnosis, therapy planning, object detection and recog-

nition and so on. Among the existing segmentation methods, minimal geodesics

have important theoretical and practical advantages such as the global minimum

of the geodesic energy and the well-established fast marching method for numer-

ical solution. In this thesis, we focus on the Eikonal partial differential equation

based geodesic methods to investigate accurate, fast and robust tubular structure

extraction and image segmentation methods, by developing various local geodesic

metrics for types of clinical and segmentation tasks.

This thesis aims to apply different geodesic metrics for the Eikonal partial dif-

ferential equation framework to solve different image segmentation and boundary

detection problems especially for tubularity segmentation and region-based ac-

tive contours models, by making use of more information from the image feature

and prior clinical knowledges. The designed geodesic metrics basically take ad-

vantages of the geodesic orientation or anisotropy, the image feature consistency,

the geodesic curvature and the geodesic asymmetry property to deal with vari-

ous difficulties suffered by the classical minimal geodesic models and the active

contours models. This thesis eventually presents the interpretation of classical

image processing models: the Euler elastica model and the active contours mod-

els by the framework of the Eikonal partial differential equation based minimal

geodesics. Therefore, those classical models can share the advantages of the min-

imal geodesics.

Upon the mathematical models developed in this thesis, we show the power of the

minimal geodesics in the challenging clinical task of retinal blood vessels extraction

including both the centreline positions and the corresponding vessel width values

at these positions. Combining with the novel metrics investigated in this thesis,

the minimal paths inspired solution to this task thus is able to benefit from the

fast numerical solver such as the fast marching method, and easy user intervention,

thus very practical and flexible. These models provide the possibilities to satisfy
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Abstract viii

the requirements of real time solution and flexible and efficient interactive way,

which are highly expected by the medical experts in many situations.

The main contributions of this thesis lie at the deep study of the various geodesic

metrics and their applications in medical imaging and image segmentation. Ex-

periments on medical images and nature images show the effectiveness of the

presented contributions.

Keywords: Minimal path, geodesic, Eikonal partial differential equation, im-

age segmentation, tubular structure segmentation, active contours, Euler elastica

curve, Riemannian meric, Finsler metric, curvature penalty, fast marching method.



Résumé

Dans les domaines de l’imagerie médicale et de la vision par ordinateur, la seg-

mentation joue un rôle crucial dans le but d’extraire les composantes intéressantes

d’une image ou d’une séquence d’images. Elle est à l’intermédiaire entre le traite-

ment d’images de bas niveau et les applications cliniques et celles de la vision par

ordinateur de haut niveau. Ces applications de haut niveau peuvent inclure le diag-

nostic, la planification de la thérapie, la détection et la reconnaissance d’objet, etc.

Parmi les méthodes de segmentation existantes, les courbes géodésiques minimales

possèdent des avantages théoriques et pratiques importants tels que le minimum

global de l’énergie géodésique et la méthode bien connue de Fast Marching pour

obtenir une solution numérique. Dans cette thèse, nous nous concentrons sur

les méthodes géodésiques basées sur l’équation aux dérivées partielles, l’équation

Eikonale, afin d’étudier des méthodes précises, rapides et robustes, pour l’extrac-

tion de structures tubulaires et la segmentation d’image, en développant diverses

métriques géodésiques locales pour des applications cliniques et la segmentation

d’images en général.

Cette thèse vise à appliquer différentes métriques géodésiques dans le cadre de

l’équation Eikonale, afin de résoudre différents problèmes de segmentation d’image

et de détection de frontière, en particulier pour la segmentation de structures tubu-

laires et les modèles de contours actifs région, en faisant usage de plus d’informa-

tions issues des caractéristiques d’image et de connaissances cliniques préalables.

Les métriques géodésiques introduites tirent essentiellement leurs avantages de

l’orientation géodésique et de l’anisotropie, de la cohérence des caractéristiques de

l’image, de la courbure géodésique et de la propriété géodésique d’asymétrie pour

faire face aux diverses difficultés posées par les modèles classiques de géodésiques

minimales et les modèles de contours actifs. Enfin, cette thèse présente une in-

terprétation des modèles classiques de traitement d’image: le modèle Elastica

d’Euler et les contours actifs, par les géodésiques minimales basées sur l’équation

aux dérivées partielles Eikonale. Par conséquent, ces modèles classiques peuvent

tirer profit des avantages des géodésiques minimales.

A propos des modèles mathématiques développés dans cette thèse, nous montrons

la puissance des géodésiques minimales pour l’extraction des vaisseaux de la rétine,

tâche clinique souvent difficile à réaliser, en indiquant à la fois la ligne médiane
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Reśumé x

et les valeurs des diamètres des vaisseaux correspondants. En combinant avec les

nouvelles métriques étudiées dans cette thèse, cette solution basée sur les chemins

minimaux bénéficie d’un solveur numérique rapide tel que la méthode du Fast

Marching et d’une facilité d’interaction pour l’utilisateur, très pratique et flexible.

Les méthodes développées dans cette thèse offrent une solution en temps réel,

flexible et un moyen d’interaction efficace, regroupant ainsi des critères hautement

exigés par les spécialistes du domaine médical dans différentes situations.

Cette thèse contribue principalement à l’étude approfondie des diverses métriques

géodésiques et leurs applications en imagerie médicale et segmentation d’images.

Des expériences ont été réalisées sur des images médicales et des images naturelles

pour montrer l’efficacité des contributions présentées.

Mots-clés: Chemin minimal, géodésique, équation aux dérivées partielles, équation

Eikonale, segmentation d’images, segmentation de structure tubulaire, contours

actifs, courbe Elastica d’Euler, métrique de Riemann, métrique de Finsler, pénalité

de courbure, méthode de Fast Marching.



Introduction (French)

English speakers are invited to go to Chapter 1 for the English version of this

introduction.

La segmentation des images joue un rôle essentiel dans le domaine du traitement

d’images, liant le traitement d’images de bas niveau, comme le débruitage d’im-

ages, la restauration et l’amélioration d’images et les taches de haut niveau pour

des applications en imagerie médicale ainsi que la vision par ordinateur. L’ob-

jectif fondamental de la segmentation d’images consiste à obtenir une partition

de l’image c’est à dire une collection de régions, qui sont généralement disjointes

les unes des autres. La segmentation d’images est encore un problème difficile

à résoudre, puisque différents types d’images nécessitent différentes méthodes de

segmentation.

Il existe un grand nombre de méthodes de segmentation, celle-ci ont été étudiées

au cours des dernières décennies. Parmi elles, la classe des méthodes de seuillage

qui est largement utilisée est généralement considérée comme l’étape de segmen-

tation brute suivie de procédures de raffinement, grâce à la facilité de sa mise

en oeuvre et à une faible complexité. Ces méthodes utilisent l’information des

niveaux de gris ou bien l’information en couleurs de chaque pixel ou groupe de

pixels (comme un patch de l’image) et attribuent la même étiquette aux pixels

ayant des propriétés similaires. Cependant, sans une régularisation des pixels,

ces procédés de seuillage sont le plus souvent sensibles au bruit. En outre, ces

méthodes de segmentation ne sont pas capables d’intégrer des informations plus

complexes et utiles, telles que la texture, la connaissance deforme préalable et l’in-

teraction de l’utilisateur. Pour pallier ce problème, des méthodes de segmentation

plus modernes ont été développées, comme les modèles basés sur les graphes et les

méthodes variationnelles de modèles déformables.

Des méthodes de segmentation basées sur les graphes ont été proposèes tels que

le modèle de normalized cut proposé par (Shi and Malik, 2000), la méthode de

segmentation graph cut (Boykov and Funka-Lea, 2006) ainsi que la méthode de

segmentation par marche aléatoire (Grady, 2006). La formulation de ces modèles

suppose que les images soient basées sur le domaine discret considérant une image

comme un graphe composé d’arêtes et de noeuds. L’optimisation des énergies
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s’appuyant sur des graphes est particulièrement efficace, comme par exemple,

la méthode de minimisation de graph cut (Boykov and Kolmogorov, 2004; Kol-

mogorov and Zabin, 2004). Un autre avantage des modèles de segmentation basée

sur les graphes est la facilité de la mise en oeuvre d’interactions de l’utilisateur.

Le mode d’initialisation populaire pour des méthodes comme (Boykov and Funka-

Lea, 2006) et (Grady, 2006) consiste à introduire des points sources prescrits à

l’intérieur de chaque région de l’image désirée. Par ailleurs, une régularisation des

frontières des régions de l’image peut être envisagée. Le terme de régularisation le

plus populaire est la minimisation de la longueur Euclidienne des bords. Récemment,

certaines de ces techniques mises en place par (El-Zehiry and Grady, 2010; Schoen-

emann et al., 2012) proposent de meilleurs résultats au niveau de la segmentation

dans certains cas, comme pour les images dotées de structures à la fois longues et

fines.

Les modèles de contours actifs sont conçus pour minimiser une fonctionnelle

d’énergie de la courbe dans le domaine continu sur la base des équations d’Euler-

Lagrange et de principes variationnels. L’idée fondamentale du modèle des con-

tours actifs (Kass et al., 1988) est de déformer la courbe ou ’snake’ convergeant

vers les bords de l’objet tant par des forces internes que par des forces externes.

La force interne peut assurer d’obtenir des contours actifs qui sont lisses, tandis

que les forces externes, calculées en fonction de données images, peut attirer les

contours actifs vers les frontières. Dans ce sens, diverses forces externes (Cohen,

1991; Cohen and Cohen, 1993; Xie and Mirmehdi, 2008; Xu and Prince, 1998)

ont été proposées pour améliorer la performance du modèle des contours actifs.

Les modèles des contours actifs géométriques (Caselles et al., 1993, 1997) sont

basés sur le flux de mouvement par courbure Euclidienne. Dans leur formulation

de base, les contours actifs sont représentés par l’ensemble de niveau zéro d’une

fonction (Osher and Sethian, 1988). Ces modèles géométriques sont en mesure de

faire automatiquement face aux changements topologiques grâce à l’évolution de la

courbe basée sur l’ensemble de niveau. Le principal inconvénient de ces équations

d’Euler-Lagrange, inspirées des modèles de contours actifs, est qu’elles tombent

parfois dans des contours parasites provoqués par le bruit ou par les hétérogénéités

d’intensité. Ces contours actifs ont également une energie non-convexe. Ainsi, il

est difficile de trouver les minimums globaux des energies.

Un modèle de chemin minimal a été proposée par (Cohen and Kimmel, 1997) afin

de trouver le minimum global de l’énergie géodésique en résolvant une équation

aux dérivées partielles non linéaires (EDP), au lieu de l’équation linéaire d’Euler

Lagrange, utilisée dans le modèle géodésique classique des contours actifs (Caselles

et al., 1997). Le point crucial, dans ce modèle, est la conception de la métrique

géodésique F , où l’énergie de la courbe est obtenue en integrant F le long d’une

courbe Γ. Une fois la métrique F obtenue, les géodésiques minimales entre un point

quelconque dans le domaine et le point source initial peuvent être immédiatement

déterminées, après le calcul donné par la carte de distance géodésique. Le modèle
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d’origine du chemin minimal de Cohen-Kimmel a été suivi par de nombreuses

méthodes de segmentation d’images interactives par le biais de procédures de

détection de contour fermé (Appia and Yezzi, 2011; Appleton and Talbot, 2005;

Mille et al., 2014), où il est communément proposé que les contours de l’objet soient

délimités par un ensemble de chemins minimaux contraints par les points sources

fournis par l’utilisateur. De plus, les modèles fondés sur des chemins minimaux

sont particulièrement appropriés pour l’extraction de structures tubulaires (Ben-

mansour and Cohen, 2011; Li and Yezzi, 2007).

Dans cette thèse, diverses métriques appropriées F sont conçues pour différentes

tâches de détection de structures tubulaires pour l’extraction des vaisseaux rétiniens

et des contours actifs pour la segmentation d’images. Les contributions techniques

sont décrites dans les chapitres 3 à 6. Le chapitre 2 est notamment consacré aux

modèles déformables qui constituent la base de cette thèse. La structure principale

est ainsi décrite:

• Le Chapitre 2 introduit le contexte scientifique de la thèse: les modèles

déformables, y compris les modèles de contours actifs et les modèles de

chemin minimal. Nous commençons ce chapitre par l’analyse de l’énergie du

modèle d’origine des contours actifs proposé par Kass et al. (1988). Ensuite,

les modèles de contours actifs classiques sont introduits, selon la manière

dont ces modèles sont capables de résoudre les problèmes qui affectent le

modèle original des contours actifs.

Dans ce chapitre, la méthode d’ensembles de niveau ainsi que la méthode de

Fast Marching, constituant les outils numériques pour les modèles des con-

tours actifs et pour les modèles de chemin minimal, sont discutées respective-

ment. Nous utilisons plus particulièrement les méthodes de Fast Marching

anisotrope introduites dans (Mirebeau, 2014a,b) comme les solveurs Eikonal

associés aux paramètres de conception, utilisés dans cette thèse. Les détails

de la construction des stencils adaptatifs sont présentés dans la section 2.4.4.

• Le Chapitre 3 illustre le rôle des chemins minimaux à la base de l’EDP

Eikonale pour la tâche de segmentation de structure tubulaire, en partic-

ulier pour l’extraction des vaisseaux rétiniens. Nous abordons les problèmes

consistant à trouver à la fois les lignes centrales et les bords des vaisseaux,

affectant les modèles existants de chemin minimal.

– La Section 3.2 traite du filtre de flux orienté (OOF) de manière opti-

male (Law and Chung, 2008), considéré dans cette thèse comme le de-

scripteur d’anisotropie tubulaire pour l’extraction de la structure tubu-

laire. Ce filtre peut être utilisé pour détecter la probabilité de chaque

pixel d’appartenir à un vaisseau et l’orientation optimale pour chaque

point de ce vaisseau.
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– La Section 3.3 présente les détails de la construction de la métrique

anisotrope de Riemann, proposée par (Benmansour and Cohen, 2011)

en espace+rayon. Dans la formulation de base, chaque point d’un

chemin minimal de espace3D+rayon, associé à cette métrique, com-

prend trois composantes: les deux premières, qui sont les coordonnées,

représentent la position physique et la troisième est la valeur du rayon

du vaisseau correspondante.

– La Section 3.4 présente une méthode de détection de points-clés, basée

sur un masque pour l’extraction automatique de l’arbre vasculaure et

son application pour l’extraction de l’arbre des vaisseaux rétiniens. Ce

modèle, qui ne nécessite qu’un seul point source initial, permet de trou-

ver le point-clé suivant qui est considéré comme le nouveau point source

initial pour la méthode de Fast Marching. Le masque peut être calculé

par un détecteur quelconque de structures vasculaires. S’appuyant sur

le masque, notre méthode visant à rechercher le point-clé peut éviter les

problèmes de fuites et utiliser une petite valeur du seuil de la longueur

de la courbe.

– La Section 3.5 propose une nouvelle métrique dynamique anisotrope

Riemannienne, pour le modle de chemin minimal pour l’extraction in-

teractive des vaisseaux rétiniens. Cette métrique dynamique est cal-

culée par l’utilisation de la courbe géodésique locale et des informations

supplémentaire sur l’image. Notre objectif est d’extraire une géodésique

le long de laquelle la fonction de l’image varie lentement, étant un in-

dice très important pour l’extraction des vaisseaux rétiniens. Nous

présentons également un modèle de chemin minimal contraint dans une

région, pour obtenir à la fois des lignes centrales et les bords des vais-

seaux sanguins de la rétine.

– La Section 3.6 introduit un procédé automatique pour mesurer la largeur

du vaisseau sur la base du modèle de chemin minimal contraint à une

région. Cette méthode peut utiliser une carte binaire pré-segmentée

qui fournit une collection de points sources et de régions contraignant

la méthode de Fast Marching, de cette façcon, les chemins minimaux

extraits sont inclus à l’intérieur de cette région, ce qui peut écarter le

problème de chevauchement.

• Le Chapitre 4 propose une méthode de Fast Marching anisotrope de propa-

gation du front pour la segmentation de l’arbre vasculaire. Dans ce chapitre,

il s’agit notamment d’étudier la construction de la métrique anisotrope dy-

namique Riemannienne, mise en oeuvre par la méthode de Fast March-

ing anisotrope. L’amélioration dynamique et anisotrope permet d’éviter le

problème des fuites qui affectent le modèle classique isotrope de propagation

du front, reposant uniquement sur la position.
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• Le Chapitre 5 introduit un modèle de chemin minimal pénalisant la cour-

bure avec la métrique de Finsler pour un modèle Elastica et en espace+ori-

entation. Ce procédé est réalisé par l’établissement d’une relation entre

l’énergie de flexion de l’Elastica d’Euler et l’énergie géodésique, à travers

la métrique Elastica de Finsler. En résolvant l’EDP Eikonale associée à

la métrique de Finsler Elastica, nous pouvons obtenir les géodésiques mini-

males pénalisant la courbure et globalement minimisantes, susceptibles d’être

utilisées pour approcher les courbes élastiques d’Euler.

A partir de la métrique Elastica de Finsler, nous présentons des méthodes

afin de détecter les contours fermés, le groupement perceptuel et l’extrac-

tion de structure tubulaire. Le modèle proposé de chemin minimal Elastica

de Finsler utilise à la fois l’information sur l’orientation et la courbure, ob-

tenant ainsi des résultats bien meilleurs que les modèles classiques de chemin

minimal.

• LeChapitre 6 introduit une nouvelle méthode s’appuyant sur l’EDP Eikonale

non linéaire pour la segmentation d’images par contours actifs basés Région.

Nous transformons l’énergie des contours actifs basés Région en une énergie

de courbe géodésique, par la métrique de Finsler, à travers le théorème de

divergence. Par conséquent, la minimisation de l’énergie basée Région est

obtenue en résolvant l’EDP Eikonale associée aux métriques de Finsler par

la méthode de Fast Marching anisotrope (Mirebeau, 2014b). Le minimum

correspondant est plus robuste et plus efficace. La stratégie traditionnelle de

minimisation de l’énergie des contours actifs basée Région utilise la méthode

de descente de gradient et l’évolution de la courbe basée sur la méthode des

ensembles de niveau, étant sensible aux minima locaux et nécessitant d’un

réglage attentif des paramètres. En revanche, la méthode proposée permet

d’éviter les problèmes de sensibilité aux minima locaux et des paramètres.

En outre, compte tenu de la simplicité d’utilisation de la méthode, il est

naturel d’intégrer les informations fournies par l’utilisateur.

• Le Chapitre 7 résume les principales contributions de cette thèse et donne

les perspectives des futurs travaux.
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Chapter 1

Introduction

Image segmentation plays an essential role in the field of image processing, link-

ing low level image processing procedure like image denoising, restoration and

enhancement to the high level medical imaging applications and computer vision.

The basic goal of image segmentation is to partition the image to a collection of

components, which generally are disjoint to each other. Image segmentation is

still a challenging problem, since different types of images may require different

segmentation methods.

There are a large number of segmentation methods have been studied in the past

decades. Among these methods, the class of thresholding methods is widely used

which are usually taken as the rough segmentation step for the possible refined

procedures, thanks to its easy implementation and low complexity. These meth-

ods make use of the grey level or color information of each pixel or group of pixels

(like image patch) and assign the same label to these pixels with similar properties.

However, without the regularization to the connectivity of pixels, these threshold-

ing methods often suffer from the problem of sensitivity to noise. Furthermore,

thresholding based segmentation methods lack of the ability to incorporate more

complicated and useful information, such as texture, shape prior and user interven-

tion. More advanced segmentation methods have been devoted to this field,such

as the graph based models and the variational deformable models.

Graph-based segmentation methods such as the normalized cut model proposed

by Shi and Malik (2000), the graph cut-based segmentation method (Boykov and

Funka-Lea, 2006) and the random walk segmentation model (Grady, 2006). The

formulation of these models assume that the images survive on the discrete domain

and regard an image as a graph making up of edges and nodes. The optimalization

of the graph-based energies are particularly efficient, for instance, the graph cut

minimization methods (Boykov and Kolmogorov, 2004; Kolmogorov and Zabin,

2004). Another advantage of the graph-based segmentation models is the easy

1



Introduction 2

implementation of user interaction. The popular initialization way for the meth-

ods like (Boykov and Funka-Lea, 2006) and (Grady, 2006) is to place a set of

prescribed seeds, inside each desired image component. Moreover, regularization

on the boundaries of the image components can be considered. The most popular

regularization term is the minimization of Euclidean curve length of the bound-

aries. Recently, the curvature regularization methods (El-Zehiry and Grady, 2010;

Schoenemann et al., 2012) are proved to have better segmentation results for ob-

jects with long and thin structures.

Active contours models are designed to minimize curve energy functionals survived

on the continuous domain based on the Euler-Lagrange equations and variational

principles. The basic idea of the active contours model (Kass et al., 1988) is to

deform a curve or a snake to converge to the object boundaries, where the curve

is controlled by the internal and external forces. Specifically, the internal force

can ensure the active contours to be smooth, while the external force, computed

in terms of image data, can attract the active contours toward to the boundaries.

Various external forces (Cohen, 1991; Cohen and Cohen, 1993; Xie and Mirmehdi,

2008; Xu and Prince, 1998) have been proposed to improve the performance of

the active contours model. The geometric active contours models (Caselles et al.,

1993, 1997) are based on the Euclidean curvature motion flow. In their basic

formulation, the active contours are represented by the zero value of a level set

function (Osher and Sethian, 1988). These geometric models are able to deal

with the topological changes automatically, thanks to the level set-based curve

evolution scheme. However, based on the respective Euler-Lagrange equations and

gradient descent flows, these active contours models sometimes fall into spurious

edges resulted by noise or intensities inhomogeneity. Further, these active contours

energies have strong non-convex formulas. Thus it is difficult to find the global

minima of the energies.

The minimal path model was proposed by Cohen and Kimmel (1997) to find the

global minimum of the geodesic energy by solving a nonlinear partial differential

equation (PDE), instead of the linear Euler-Lagrange equation which is used in

the classical geodesic active contours model (Caselles et al., 1997). The crucial

point in this minimal path model is the design of the geodesic metric F , where
the curve energy is obtained by integrating F along a regular curve Γ. Once one

gets the metric F , the minimal geodesics between any point in the domain and

the initial source point can be determined immediately, following the calculation

of the geodesic distance map. The original Cohen-Kimmel minimal path model

(Cohen and Kimmel, 1997) has raised many interactive image segmentation meth-

ods via closed contour detection procedures (Appia and Yezzi, 2011; Appleton

and Talbot, 2005; Benmansour and Cohen, 2009; Mille et al., 2014), where the

common proposal is that the object boundaries are delineated by a set of minimal

paths constrained by the user input seeds. Moreover, minimal paths-based models
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are particularly suitable for tubular structure extraction (Benmansour and Cohen,

2011; Li and Yezzi, 2007).

Within this thesis, various suitable metrics F are designed for different tasks of

tubular structure extraction for retinal blood vessels extraction and active contours

for image segmentation. The technical contributions are outlined in Chapters 3

to 6. In chapter 2 we give the introduction to deformable models which form the

basis of this thesis. The main structure is outlined as follows:

• Chapter 2 introduces the scientific background of this thesis: the deformable

models including the active contours models and the minimal path models.

We start this chapter from the analysis of the curve energy of the original

active contours model proposed by Kass et al. (1988). Then the classical ac-

tive contours models are introduced along the line of how these models are

able to solve the problems suffered by the original active contours model.

In this chapter, the level set method and the fast marching method, which

are the numerical tools for the active contours models and for the minimal

path models, are also discussed respectively. Specifically, we make use of

the state-of-art anisotropic fast marching methods introduced in (Mirebeau,

2014a,b) as the Eikonal solvers associated to the designed metrics that are

used through this thesis. The details of the construction of the adaptive

stencils are presented in Section 2.4.4.

• Chapter 3 demonstrates the power of the Eikonal PDE-based minimal paths

for the task of tubular structure segmentation, especially for retinal blood

vessels extraction. We address the problems of finding both the centrelines

and boundaries of the vessels simultaneously that are suffered by the existing

state-of-the-art minimal path models.

– Section 3.2 discusses the optimally oriented flux filter (Law and Chung,

2008) which is taken as the tubular anisotropy descriptor in this thesis

for tubular structure extraction. This filter can be used to detect the

probability of each pixel belonging to a vessel and the optimal orienta-

tion for each vessel point.

– Section 3.3 introduces the details of the construction of the anisotropic

radius-lifted Riemannian metric proposed by Benmansour and Cohen

(2011). In the basic formulation, each point of a 3-D radius-lifted mini-

mal path associated to this metric includes three components: the first

two coordinates represent the physical position and the last coordinate

is the value of the corresponding vessel radius value.

– Section 3.4 introduces a mask-based keypoints detection method for

automatic vessel tree extraction and its application for retinal vessel

tree extraction. This model only requires one initial source point and
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is able to iteratively find the successive keypoint which will be taken

as a new initial source point for the fast marching front propagation

scheme. The mask can be computed by any tubular structure detector.

Based on the mask, our keypoint searching method can avoid leaking

problem completely and use a small curve length threshold value.

– Section 3.5 proposes a novel dynamic anisotropic Riemannian metric-

based minimal path model for interactive retinal vessel extraction. This

dynamic Riemannian metric is computed by using the local back-tracked

geodesic and the consistency of the additional image feature informa-

tion. The main goal of this model is to extract a geodesic along which

the image feature varies slowly. In this section, we show that this prop-

erty is very helpful for interactive retinal blood vessel extraction. We

introduce a region-constrained minimal path model to obtain both the

centrelines and boundaries of the retinal blood vessel.

– Section 3.6 presents an automatic method for vessel width measurement

based on the region-constrained minimal path model. This method can

make use of the binary pre-segmented map to provide a collection of

end points and constrained regions to the fast marching method, thus

the extracted minimal paths are included inside the constrained region,

which can avoid the overlapping extraction problem.

• Chapter 4 proposes an anisotropic fast marching front propagation method

for vessel tree segmentation. The main contribution of this chapter is the

construction of dynamic anisotropic Riemannian metric implemented by the

anisotropic fast marching method. The dynamic and anisotropic enhance-

ment can avoid the leaking problem suffered by the classical isotropic front

propagation model, which only relies on the positions.

• Chapter 5 introduces a curvature-penalized minimal path model with an

orientation-lifted Finsler elastica metric. This is done by establishing the re-

lationship between the Euler elastica bending energy and the geodesic curve

energy through a Finsler elastica metric. By solving the Eikonal PDE asso-

ciated to the Finsler elastica metric, we can obtain the globally minimizing

curvature-penalized minimal geodesics which can be used to approximate

the Euler elastica curves.

Based on this Finsler elastica metric, we present the methods for closed con-

tour detection, perceptual grouping and tubular structure extraction. The

proposed Finsler elastica minimal path model make use of both the informa-

tion of the orientation and the curvature, thus obtaining better results than

the classical minimal path models.

• Chapter 6 introduces a novel non-linear Eikonal-PDE based method for

region-based active contours and image segmentation. We transform the



Introduction 5

region-based active contours energy to the geodesic curve energy, by a Finsler

metric, in terms of the divergence theorem. Therefore, the minimization of

the region-based energy is turned to solve the Eikonal PDE associated to the

Finsler metrics by the anisotropic fast marching method (Mirebeau, 2014b).

The minimum of the corresponding Eikonal PDE is very robust and efficient.

Traditional region-based active contours energy minimization strategy uses

the gradient descent scheme and level set-based curve evolution method,

which is sensitive to local minimum and needs a careful treatment to the pa-

rameters. In contrast, the proposed method can avoid the problems of sen-

sitivity to local minimum and parameters. Moreover, the proposed method

is very easy and natural to incorporate the user-provided information.

• Chapter 7 summaries the main contributions of this thesis and gives the

perspective future work.





Chapter 2

Active Contours and Minimal

Paths

Abstract

In their basic formulation, deformable models are designed for the goal of driving

a curve, closed or open, to converge to the object boundary according to some

variational principles. The class of active contours models is one of the most

successful and powerful models in the field of image segmentation. Active contours

models have solid mathematical background and well established numerical tools

to support various real world applications. Among these active contours models,

the Eikonal equation based minimal path model has distinguished advantages,

such as global minimum and fast numerical solution, which guarantee the wide

use of this model in medical imaging like tubular structure extraction in medical

imaging and boundary detection in computer vision.

In this chapter, we briefly discuss the existing well known active contours models,

their respective gradient descent flows and the corresponding level set-based curve

evolution scheme, and the Eikonal PDE-based minimal path models with differ-

ent geodesic metrics as well as the respective numerical fast marching methods

associated to these metrics.

7
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2.1 Active Contours Models

2.1.1 Original Active Contours Model

Active contours models have been considerably studied and used for object seg-

mentation and feature extraction during almost three decades, since the pioneering

work of the active contours/snakes model proposed by Kass et al. (1988). The core

idea behind this model is to deform a snake to converge at the interesting edges,

where a snake is a regular parametrized curve Γ : [0, 1] ! Ω locally minimizing

the curve energy:

ESnake(Γ) =

Z 1

0

(
w1 kΓ0(t)k2 + w2 kΓ00(t)k2 + P

(
Γ(t)

))
dt, (2.1)

with appropriate boundary conditions at the endpoints t = 0 and t = 1. Ω is the

image domain. Γ0 and Γ00 are the first- and second-order derivatives of the curve Γ,

respectively. Positive constants w1 and w2 relate to the elasticity and rigidity of the

curve Γ, hence weight its internal forces. This approach models object boundaries

as curves Γ locally minimizing an objective energy functional E that consists of an

internal force and an external force. The internal force terms depend on the first-

and second-order derivatives of the curves or snakes, and respectively account for

a prior of small length and of low curvature of the contours. The external force

is derived from a potential function P , depending on image features like gradient

magnitude, and designed to attracting the active contours or snakes to the image

features of interest such as object boundaries. The function P has a small values

around the interested image features, where a common P can be computed by

P (x) = g(krI(x)k), 8x 2 Ω, (2.2)

where g is a non-negative decreasing function such as

g(a) = ⌘0 +
1

⌘1 + a
, or g(a) = ⌘0 + exp(−⌘1 a), a 2 [0,1), (2.3)

where ⌘0 and ⌘1 are positive constants.

The Euler-Lagrange equation of the energy functional Esnake with respect to the

admissible curve Γ is expressed as

− !1 Γ
00(t) + !2 Γ

0000(t) +rP (Γ(t)) = 0, 8 t 2 [0, 1], (2.4)

which means that a curve Γ⇤ locally minimizing the active contours energy Esnake

should obey the Euler-Lagrange equation (2.4). Γ0000 is the fourth order derivative
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defined by

Γ0000(t) =
@4

@t4
Γ(t), 8t 2 [0, 1].

In order to find the locally optimal contour Γ⇤, applied the gradient descent method

to iteratively minimize Esnake (2.4), which introduced a family of curve Γ(⌧, ·) :

[0,1)⇥ [0, 1]! Ω with respect to time ⌧ .

The curve evolution formula associate to ⌧ can be expressed as

@Γ

@⌧
= !1 Γ

00 − !2 Γ
0000

| {z }

Regular Term

− rP (Γ).
| {z }

External Vector Field

(2.5)

One expects the curve Γ to delineate the desired boundaries when ⌧ ! 1. The

regular term of (2.5) enforce the curves to be smooth, thus referred to an internal

force

Fsmooth := !1 Γ
00 − !2 Γ

0000. (2.6)

The terms rP is used to attract the active contours to the boundaries. This forms

the external force of the active contours model:

FExt := −rP. (2.7)

Generally, the external vector field rP , associated to the external force, has a

small supported domain which is around the object boundaries which may lead

the active contours model to be sensitive to initial curves.

The efforts for the improvements of classical active contours model (Kass et al.,

1988) are mainly devoted to three drawbacks: 1) sensitive to initialization, 2)

difficult to deal with topological changes of the active contours, and 3) strong

non-convex curve functional energy.

• Regarding the initialization of this classical active contours model, it requires

an initial guess close to the desired image features, and preferably enclos-

ing them because energy minimization tends to shorten the snakes. The

introduction of an expanding balloon force allows to be less demanding on

the initial curve given inside the objective region (Cohen, 1991). Moreover,

extended vector field approaches have been studied in (Cohen and Cohen,

1993; Li and Acton, 2007; Xie and Mirmehdi, 2008; Xu and Prince, 1998)

to enlarge the supported domain of the external force FExt, which will be

introduced in next sections.

• The issue of topology changes led, on the other hand, to the development of

active contour methods, which represent object boundaries as the zero level

set (Osher and Sethian, 1988) of the solution to a PDE (Caselles et al., 1993,
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1997; Malladi et al., 1994; Yezzi et al.), where inside and outside the active

contours, values of the scalar level set function have opposite signs. There-

fore, the curve evolution scheme (2.5) is transformed to the evolution of the

level set function, where the topology changes can be handled automatically

and naturally.

• Minimizing the active contours energy functional ESnake relies on its Euler-

Lagrange equation (2.4) meaning that only the local minimum of Esnake can

be obtained. This may result that the minimizing curves Γ⇤ are sensitive

to noise and spurious edges. Cohen and Kimmel (1997) suggested a way to

to obtain the global minimum of a variant of the energy functional ESnake

through the solution of the Eikonal PDE. This variant energy is the fa-

mous geodesic energy (Caselles et al., 1997) that removes the second-order

derivative term Γ00. Moreover, the geodesic energy is independent of the pa-

rameterization of the curve, a problem that is suffered by the classical active

contours model (Kass et al., 1988).

2.1.2 Active Contours Model with Ballon Force

Cohen (1991) introduced a additional external force for the active contour models.

This external force drives the contour to deform as a balloon in a inflation way.

In the basic formulation, the new external ballon force can be expressed as

FBallon := cN , (2.8)

where N denotes the normal vector of the curve Γ.

Note that the balloon force FBallon (2.8) can be obtained by minimizing the fol-

lowing region-based functional

c

Z

Ri

dx,

where c is a constant and Ri is the region inside the curve Γ, i.e., Γ = @Ri.

Based on the ballon force FBallon (2.8), Cohen (1991) presented a new external

force

FExt = FBallon − c2
rP
krPk , (2.9)

where c2 is a constant. The parameter c2 should be a little larger than c. Hence

the edge points can stop the evolution of the curve under the control of FExt (2.9).

With the additional ballon force FBallon, spurious edges produced by noise can be

avoided. Moreover, the initial curve can be placed far from the boundaries, thus

the ballon force based active contours model is insensitive to the initialization.
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2.1.3 Active Contours with Distance Vector Flow

Cohen and Cohen (1993) presented a new external force making use of the pre-

detected edge points to reduce the problem of sensitivity to the initializations

of the classical active contours model (Kass et al., 1988). This method firstly

computes a Euclidean distance map D for each point x 2 Ω where D(x) denotes

the Euclidean distance value of x to the nearest edge points.

By the use of a decreasing function g (2.3), the external force of the distance vector

field can be expressed as

FExt(x) := −g0
(
D(x)

)
rD(x), 8x 2 Ω. (2.10)

where rD is the gradient map of D, which points to the edge points. This

gradient vector field can be considered as the distance competition such that the

curve will be attracted to its nearest edge points. The edge points can be detected

by using various edge detectors such as the Canny detector (Canny, 1986) or

the higher order steerable edge detector (Freeman and Adelson, 1991; Jacob and

Unser, 2004).

2.1.4 Active Contours with Gradient Vector Flow

Xu and Prince (1998) proposed a new external force for active contours evolution

scheme based on the diffused gradient vectors of the edge map. The basic idea is

to diffuse the image gradient information to the whole image domain Ω, leading

to an insensitive initialization for the active contours model.

Let H = (u, v) : Ω! R
2 be the expected diffused gradient vector field. H can be

obtained by solving the following minimization problem:

min
u,v

8

>>><

>>>:

µ

Z

Ω

⇣

kru(x)k2 + krv(x)k2
⌘

dx

| {z }

†

+

Z

Ω

krh(x)k2kH(x)−rh(x)k2dx
| {z }

‡

9

>>>=

>>>;

(2.11)

where h(·) = krI(·)k is the norm of the image gradient rI(·) and µ is a positive

constant that is used to balance the importance between terms † and ‡. The term
† ensures the smoothness of the vector field H and ‡ is the image data term. At

the edge points, minimizing (2.11) implies that H ⇡ rh since at these points the

value of the norm krhk is very large.

The gradient vector field H satisfies the Euler-Lagrange equation of (2.11). Xu

and Prince (1998) suggested to use the following gradient descent equation to
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(a) Edge map

(b) Gradient vector field

Figure 2.1: An example of gradient vector field.
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computed the desired vector field H for any x = (x, y) 2 Ω:

@u

@⌧
(x) = µ∆u(x)− (u(x)− hx(x))krh(x)k2, (2.12)

@v

@⌧
(x) = µ∆v(x)− (v(x)− hy(x))krh(x)k2, (2.13)

where hx = @h
@x

and ∆ is the Laplacian operator. If point x is in homoge-

neous region, the norm krh(x)k ⇡ 0 and (u(x) − hx(x))krh(x)k2 or (v(x) −
hy(x))krh(x)k2 will vanish. Thus in such region, the components u and v of vec-

tor field H are computed by the diffusion equation which enforce the smoothness

of H. In contrast, if point x is at the vicinity region of the image boundaries, one

has

u(x) ⇡ hx(x) and v(x) ⇡ hy(x).

Then the gradient vector flow force FGVF can be expressed as

FGVF := H, (2.14)

or more generally, the gradient vector flow can be computed by the normalized

gradient vector field of H

FGVF(x) :=
H(x)

kH(x)k , 8x 2 Ω. (2.15)

The gradient vector field H extends the narrow band supported domain of the

original image gradient vector field rh to the whole domain Ω, thus the active

contours model controlled by the gradient vector field H is insensitive to initializa-

tions. In other words, one can place the initial curve far from the object boundaries

(Xu and Prince, 1998).
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2.2 Level Set-based Active Contours

In this section, the level set function proposed by Osher and Sethian (1988) is

first briefly introduced. Then based on the level set function, three typical active

contours models are reviewed.

2.2.1 Level Set Method

In its basic formulation, a level set function is a scalar embedding function, the

values of which have opposite signs inside and outside the closed curves. A family

of time dependent curves Γ : [0,1)⇥[0, 1]! Ω is represented by the corresponding

zero-level set of φ : [0,1)⇥ Ω! R:

Γ = {x;x 2 Ω, φ(⌧,x) = 0}. (2.16)

In Fig. 2.2, we show an example for a level set function. Fig. 2.2a shows a contour

indicated by black curve. Fig. 2.2b shows the implicit representation of the curve in

Fig. 2.2a by zero value of the level set function and Fig. 2.2c is the 3D visualization

of the level set function.

Let us consider the basic curve evolution equation(Caselles et al., 1997; Osher and

Sethian, 1988) in terms of
@Γ

@⌧
= f N , (2.17)

where ⌧ denotes the time, f is a given scalar function, and N is the normal vector

of the curve Γ. According to (2.16), one has

φ(⌧,Γ) = 0, (2.18)

which yields ⌧

rφ, @Γ
@⌧

〉

+
@φ

@⌧
= 0 (2.19)

Recalling that the curve Γ is defined as the zero-level set of the scalar function φ,

the normal vector N of Γ can be interpreted by

N =
rφ
krφk . (2.20)

Thus one obtains
@φ

@⌧
= −

⌧

rφ, f rφkrφk

〉

= −f krφk, (2.21)

which is considered as a front propagation equation with speed f .
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The level set function φ should be reinitialized as a signed distance map in the

course of the level set evolution (Osher and Sethian, 1988; Sussman et al., 1994).

As discussed in (Sussman et al., 1994), at the time ⌧0, the level set reinitialization

can be done by solving the following time-dependent PDE

(
@ 
@⌧

= sign(φ⌧0)(1− kr k),
 (0, ·) = φ(⌧0, ·),

(2.22)

where φ⌧0(·) = φ(⌧0, ·) and the new level set function φ̃ is equal to the solution  

at the steady state of (2.22).

Note that the level set function can also be reinitialized by using the solution ' of

the Eikonal PDE: (

kr'(x)k = 1, 8x 2 Ω\Ψ0,

'(x) = 0, 8x 2 Ψ0,
(2.23)

where Ψ0 is defined as a collection

Ψ0 := {x 2 Ω;  (⌧0,x) = 0}.

The desired reinitialized level set function φ̃ can be computed by

φ̃ = sign(φ⌧0)' .

The Eikonal PDE (2.23) can be solved the isotropic fast marching method (Sethian,

1996, 1999) or by the GPU-accelerated fast sweeping method proposed by (Weber

et al., 2008).

Li et al. (2010) proposed a new method to avoid the level set reinitialization

operation. This is done by minimizing the following term

Z

Ω

PRegu(krφ(x)k)dx, (2.24)

where PRegu is a potential function. One possible choice for this potential function,

as suggested In (Li et al., 2010), can be formulated as

PRegu(x) =
1

2
(x− 1)2. (2.25)

Minimizing (2.24) with respect to the potential function formulated in (2.25) is

used to enforce krφk ⌘ 1, which implies that φ is a distance function. However,

the potential function PRegu (2.25) may suffer from the side effect problem (Li

et al., 2010). To solve this problem, Li et al. (2010) designed a double-well potential
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function

PRegu(x) =

(
1

4⇡2 (1− cos(2⇡x)), if x  1,
1
2
(x− 1)2, x ≥ 1,

which is twice differentiable.

2.2.2 Geometric Active Contours

The geometric active contours model was proposed by Caselles et al. (1993) and

Malladi et al. (1994) for object boundary detection, by driving the contours ac-

cording to the following flow:

@Γ

@⌧
= g (+ c)N , (2.26)

where g is the image data function defined in (2.3), c is a positive constant and 

is the curvature of curve Γ. Actually, g plays the role of stopping function which

can stop the evolution of Γ when it arrives at the real object boundaries, since at

these boundaries one has g ⇡ 0.

The curve evolution flow (2.26) is actually based on the Euclidean curvature flow

or Euclidean heat flow
@Γ

@⌧
= N , (2.27)

which can shorten and smooth the curve Γ. This flow can drive the curve Γ to

minimize its curve length functional

Z 1

0

kΓ0(t)kdt

in the gradient direction (Caselles et al., 1993). By incorporating the curve Γ into

the level set function φ, we can obtain the level set evolution equation according

to (2.26) as follows:

@φ

@⌧
=

✓

r ·
✓ rφ
krφk

◆

+ c

◆

gkrφk, (2.28)

where r · u denotes the divergence value of vector u. This level set evolution

equation is based on the fact that

 = r ·
✓ rφ
krφk

◆

.

Corresponding to the general level set-based curve evolution flow (2.21), we have

that the speed function f = g(c+). When the curve Γ is far from the boundary,

the stopping function g can be considered as a positive constant such that the
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(a) A contour
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(b) Level set function

(c) 3D visualization of the level set function

Figure 2.2: An example for level set function. (a) A contour indicated by a black
closed curve. (b) Implicit representation for the curve demonstrated in (a) by the zero
value of the level set function. (c) 3D visualization for the level set function shown in

(b).

behaviour of the curve mainly is controlled by the Euclidean heat flow N and
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(a) Initial contour

(b) Intermediate result (c) Final result

Figure 2.3: Image Segmentation by using geodesic active contours. (a) Original image
and initial contour. (b) Intermediate segmentation result. (c) Final segmentation

result.

the ballon force cN . When Γ is close to the boundaries, one has g ⇡ 0 such at

the evolution of the contour will be terminated.

This level set based geometric active contours model can deal with curve topology

changes automatically. The initial curve can be placed outside the object and far

from its boundaries. Moreover, starting from a convex curves, one can obtain a

non-convex final contours represented by the zero value of level set function φ.
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2.2.3 Geodesic Active Contours

The famous geodesic active contours model proposed by Caselles et al. (1997) aims

at finding a locally optimal curve Γ⇤ to (locally) minimize the geodesic energy in

a Riemannian space with a isotropic Riemannian metric

EGAC(Γ) =

Z 1

0

P (Γ(t)) kΓ0(t)kdt, (2.29)

with potential function P . This energy removed the second-order derivative term

of the curve Γ from the classical snakes energy ESnake in (2.1). The gradient flow of

the geodesic energy EGAC can be expressed as (Caselles et al., 1997; Kichenassamy

et al., 1995)
@Γ

@⌧
= (g + hrg,Ni)N . (2.30)

The term of hrg,Ni can push the curve toward the valley of the stopping function

g (Caselles et al., 1997). This property is very useful for purpose of detecting a

boundary that passes through the regions with inhomogeneous intensities and high

noise.

In order to improve the performance of the geodesic gradient flow (2.30) to deal

with the detection of boundaries with high curvature, Caselles et al. (1997) give

the gradient flow by adding a constant c as

@Γ

@⌧
=
⇣

(g + c)+ hrg,Ni
⌘

N . (2.31)

The behaviour of this geodesic gradient flow can be divided to two cases:

• When the curve is close to the boundary, the stopping function g is degener-

ated to a constant and rg = 0. The gradient flow (2.31) is identical to the

Euclidean heat flow: the curve tends to shrink to a point.

• When the curve is close to the boundary, the stopping function g have small

values and the force hrg,Ni will push or pull the curve to the explicit

boundary where each point xb at the boundary obeying that rg(xb) = 0.

By combining with the level set function φ, we can obtain the level set evolution

equation:
@φ

@⌧
= (g + c)div

✓ rφ
krφk

◆

krφk+ hrg, rφi, (2.32)

which is a geometric front propagation approach. In Fig. 2.3 we show the segmen-

tation result using the geodesic active contours model. Fig. 2.3a is the original

image with initial contour indicated by red curve, Fig. 2.3b is the intermediate

result and Fig. 2.3c is the final segmentation contour.
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Figure 2.4: Geodesic active contours for object segmentation with concave region
using a small value of the constant c.

Note that the constant c in the flows (2.26) and (2.30) should be treated carefully.

This parameter is used to address the possible shortcuts problem when dealing

with the segmentation task for the object with concave region. In this case, when

the value of the constant c is very small, the curve evolution might be stopped

before it follows the expected boundary. We illustrate this shortcuts problem in

Fig. 2.4. However, if the value of c is too large, some parts of the active contours

may stop inside the object.

2.2.4 Alignment Active Contours

Kimmel and Bruckstein (2003) and Kimmel (2003) presented a novel active con-

tours model with the energy function consisting of a alignment term:

EAlign(Γ) =

Z 1

0

hrI(Γ(t)),NikΓ0(t)kdt, (2.33)

where rI is the gradient vector field of the given image I. This model adds the

anisotropy of the path to the energy such that tangents of the obtained optimal

curve should be consistent to the image gradient vector field rI. The gradient

flow of EAlign can be expressed as

@Γ

@⌧
= ∆I N , (2.34)
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where ∆I is defined for each x = (x, y) 2 Ω as

∆I(x) =
@2I

@x2
(x) +

@2I

@y2
(x).

A robust version of the energy EAlign is proposed by Kimmel (2003); Kimmel and

Bruckstein (2003):

ERalign(Γ) =

Z 1

0

∣
∣
∣hrI(Γ(t)),Ni

∣
∣
∣ kΓ0(t)kdt (2.35)

with the gradient flow of

@Γ

@⌧
=
hrI,Ni
khr,Nik ∆I N . (2.36)

The values of the term hrI,Ni
khrI,Nik

denote actually the sign map of the align term

hrI,Ni.
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2.3 Cohen-Kimmel Minimal Path Model and its

Extensions

In this section, we fix the image domain Ω ⇢ R
d where d = 2 or d = 3. We set

the radius-lifted domain as Ω̂ = Ω ⇥ [Rmin, Rmax] ⇢ R
d+1 where [Rmin, Rmax] is

the admissible radius space and the orientation-lifted domain Ω̄ = Ω⇥ S
1 ⇢ R

d+1,

where S
1 = [0, ⇡) or [0, 2⇡).

2.3.1 From Active Contours to Eikonal PDE-based Mini-

mal Paths

The difficulty of minimizing the non-convex snakes energy (Kass et al., 1988)

ESnake(Γ) =

Z 1

0

(
w1 kΓ0(t)k2 + w2 kΓ00(t)k2 + P

(
Γ(t)

))
dt, (2.37)

leads to important practical problems, since the curve optimization procedure

is often stuck at unexpected local minima of the energy functional ESnake (2.37),

making the results heavily rely on curve initialization and sensitive to image noise.

This is still the case for the level set approach on geometric or geodesic active

contours (Caselles et al., 1993, 1997; Malladi et al., 1995). In order to address this

local minimum sensitivity issue, Cohen and Kimmel (1997) proposed an Eikonal

PDE-based minimal path model, with goal of finding the global minimum of the

geodesic energy which is similar to that used in (Caselles et al., 1997), in which

the penalty associated to the second-order derivative of the curve was removed

from the snakes energy. Thus the reduced energy functional is

Z 1

0

⇣

w + P
(
Γ(t)

)⌘

kΓ0(t)k dt,

the local minimizer of which was proved to be a geodesic in (Caselles et al., 1997).

Alternately, Cohen and Kimmel (1997) proposed a non-linear PDE based approach

to find the global minimizer of this geodesic energy. Thanks to this approach, a

fast, reliable and globally optimal numerical method allows to find the energy

minimizing curve with prescribed endpoints; namely the fast marching method

(Sethian, 1999), based on the formalism of viscosity solutions to Eikonal PDE.

These mathematical and algorithmic guarantees of Cohen and Kimmel’s minimal

path model have important practical consequences, leading to various approaches

for image analysis and medical imaging (Benmansour and Cohen, 2011; Cohen,

2001; Deschamps and Cohen, 2001; Li and Yezzi, 2007; Mille et al., 2014; Peyré

et al., 2010).
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Figure 2.5: Minimal path extraction results using Cohen-Kimmel minimal path model
on a curve image. (a) Original image contains a curve and noise. (b) Gradient mag-
nitude map. (c) The minimal action map. (d) The extracted minimal path indicated
by red line. In (c) and (d) green and cyan dots are the initial source points and end

points, respectively.

2.3.2 Cohen-Kimmel Minimal Path Model

The classical Cohen-Kimmel model (Cohen and Kimmel, 1997) was designed to

find the global minimum of the following geodesic energy functional as a simplifi-

cation of the active contour energy (Kass et al., 1988)

LI(Γ) =

Z 1

0

⇣

w + P
(
Γ(t)

)⌘

kΓ0(t)k dt, (2.38)

where

Γ0(t) =
d

dt
Γ(t).

k · k denotes the canonical Euclidean norm on R
d and Γ : [0, 1]! Ω is a Lipschitz

curve. P is the potential function defined over the image domain Ω and w is a

positive constant. Potential P usually depends on the image gradient magnitudes

or intensities as suggested by Cohen and Kimmel (1997). A minimizer of LI is
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a single minimal geodesic between two given points in the approach of Eikonal

minimal path theorem.

The minimal action map or geodesic distance map U from a source point s, is the

minimal curve length of LI (2.38) among all regular paths joining the initial source

point s to any point x 2 Ω:

U(x) := inf
{
LI(γ); γ 2 As,x

 
, (2.39)

where As,x is the collection of all Lipschitz regular paths:

Γ : [0, 1]! Ω, s.t. Γ(0) = s, and Γ(1) = x.

The minimal action map U actually defines a level set function of the arrival time

starting from the initial source point s with speed function 1/P̃ (Caselles et al.,

1997). A level set contour Γ(⌧, ·) is defined by the time ⌧ :

Γ := {x 2 Ω; U(x) = ⌧}. (2.40)

These level set contours follow the level set evolution equation:

@Γ

@⌧
=

1

P̃
N , (2.41)

where N is the unitary normal vector of Γ. (2.41) is actually a front propagation

equation with speed function 1/P̃ which can propagate geodesic distance values

for each point in the image domain. It acts as the curve evolution driven by a

adaptive ballon force P̃−1N (Cohen, 1991) with the initial contour as a small circle

contour around the initial source point s.

From (2.40), we can obtain that

U(Γ) = ⌧,

which yields that
@U
@⌧

=

⌧

rU , @Γ
@⌧

〉

= 1.

Considering the level set evolution equation (2.41), we obtain that

⌧

rU , @Γ
@⌧

〉

=
1

P̃

⌧

rU , rUkrUk

〉

= 1

) krU(x)k = P̃ (x), x 2 Ω. (2.42)
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The nonlinear partial differential equation in (2.42) is the isotropic Eikonal equa-

tion: (

krU(x)k = P̃ (x), 8x 2 Ω\{s},
U(s) = 0,

(2.43)

which is the unique solution of the definition of the minimal action map (2.39).

Cohen and Kimmel (1997) provided three methods to solve this Eikonal equa-

tion: the front propagation approach, the shape from shading approach and the

fast marching method. The authors eventually recommended the fast marching

method (Sethian, 1996, 1999) as the numerical Eikonal solver thanks to its efficient

geodesic distance computation scheme.

A geodesic Ĉx,s with kĈ 0x,s(·)k = 1 can be obtained through the gradient descent

ordinary differential equation (ODE):

(

Ĉ 0x,s(t) / −rU
(
Ĉx,s(t)

)
,

Ĉx,s(0) = x,
(2.44)

where / denotes the positively propositional operator. Then the geodesic Cs,x is

obtained by reversing the path Ĉx,s with Cs,x(0) = s and Cs,x(1) = x.

Generally, the minimal path extraction can be divided into two steps. The first step

is to calculate the minimal action map U by solving the Eikonal equation (2.43).

Next step is to compute the geodesic by solving the ODE (2.44). In Fig. 2.5, we

show an example of the Cohen-Kimmel minimal path model. Fig. 2.5a shows the

original image contains a curve. Fig. 2.5b shows the gradient magnitude map,

Fig. 2.5d shows the minimal action map, and Fig. 2.5c demonstrates the minimal

path by red curve. In this figure, green and cyan dots indicate the initial source

point and end point respectively.

The Cohen-Kimmel minimal path model is based on the isotropic Riemannian

metric RI for all x 2 Ω and any tangent vector u 2 R
d:

RI(x,u) =
p

hu,MI(x)ui, (2.45)

where h·, ·i denotes the scalar product over R
d and MI denotes the symmetric

positive definite tensor field which is proportional to the identity matrix Id with

d = 2 or 3 denoting the dimension of the image domain Ω:

MI(x) =
(
w + P (x)

)2
Id. (2.46)

The parameter w 2 R
+ in (2.45) controls the bound of the curvature of the

minimal geodesic (Cohen and Kimmel, 1997). More precisely, the curvature || of
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a geodesic C that is defined by

|| =
∥
∥
∥
∥

@2C
@s2

∥
∥
∥
∥
,

is bounded by

||  kPk1
!

,

where s denotes the arclength parameter, i.e., kC 0(s)k = 1.

For the applications of the image analysis, object boundaries or tubular struc-

tures like roads or blood vessels, are extracted under the form of minimal paths

with respect to a isotropic Riemannian metric over the image domain (Cohen and

Kimmel, 1997).

The extended minimal path models of Cohen-Kimmel model focus on the ex-

tensions of the design of metric. The isotropic Riemannian metric RI used in

(Cohen and Kimmel, 1997) is isotropic since it depends only on the positions

of the geodesics. Bougleux et al. (2008), Jbabdi et al. (2008) and Benmansour

and Cohen (2011) extended the metric RI to anisotropic case in the sense that

the geodesic metric depends on both the path orientation and its positions. The

isotropic Riemannian metric RI can also be defined on the physical space (image

domain) Ω, or involve additional abstract variables such as the tubular structure

radius (Benmansour and Cohen, 2011; Li and Yezzi, 2007), orientations (Kimmel

and Sethian, 2001) or both of the radius and orientations(Péchaud et al., 2009).

2.3.3 Minimal Paths with Isotropic Radius-Lifted Rieman-

nian Metric

The classical minimal path method (Cohen and Kimmel, 1997) models image

features as minimal paths. This treatment is suitable for boundary detection but

fails in vessel detection. Since in the task of vessel extraction, one would like to

obtain both the centrelines and the corresponding radius values.

In order to solve this problem, i.e., to extract the centrelines and boundaries

of the tubular structure simultaneously, Li and Yezzi (2007) proposed a novel

minimal path model relying on a isotropic radius-lifted Riemannian metric RIR :

Ω̂⇥ R
d+1 ! R

+ over the radius-lifted domain Ω̂ ⇢ R
d+1:

RIR(x̂, û) = PIR(x̂)
p

kuk2 + ✏ |⌫|2, (2.47)

for all x̂ 2 Ω̂ and any vector û = (u, ⌫) 2 R
d ⇥ R. The radius-lifted domain Ω̂ is

constructed by adding an additional abstract radius dimension to the image do-

main. Therefore, a path γ : [0, 1]! Ω̂ has two components: the physical position
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Figure 2.6: Single vessel extraction results by the Cohen-Kimmel minimal path model
and the Li-Yezzi minimal path model. Left: Minimal paths extracted by Cohen-Kimmel
model. Rigth: Minimal paths extracted by Li-Yezzi model. Red dots are the initial
source points and cyan dots are the end points. Red curve is the minimal path and blue

contours are the boundaries of vessel tree.

Figure 2.7: Comparative vessel tree extraction results by Cohen-Kimmel and Li-Yezzi
minimal path models. Left: Minimal paths extracted by Cohen-Kimmel model. Rigth:
Minimal paths extracted by Li-Yezzi model. Red dots are the initial source points and
cyan dots are the end points. Red curves are the minimal paths and blue contours are

the boundaries of vessel tree.

part and the radius values part. Such a property has important in the clinical

applications. In Fig. 2.6, we show the comparison of the Cohen-Kimmel model
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(Cohen and Kimmel, 1997) and Li-Yezzi model (Li and Yezzi, 2007) in the vessel

extraction experiment. In this figure, the results from the Cohen-Yezzi model are

unable to find the centrelines and boundaries simultaneously. In contrast, Li-Yezzi

model can obtain the desired results. In Fig. 2.6, we show the vessel tree extrac-

tion results from the Cohen-Kimmel model and Li-Yezzi model respectively. It can

be seen from Figs. 2.6 and 2.7 that the Li-Yezzi model is able to find the precise

centrelines as well as the boundaries of the vessels.

The length of the radius-lifted path γ = (Γ, r) : [0, 1]! Ω̂ can be defined by

LIR(γ) =

Z 1

0

1

PIR(γ(t))

p

kΓ0(t)k2 + ✏ |r0(t)|2 dt, (2.48)

where PIR is an image data-driven speed function and ✏ is positive constant. The

symmetric positive definite tensor fieldMIR for the metric RIR is expressed by

MIR(x̂) = P 2
IR(x̂)

0

B
@

1 0 0

0 1 0

0 0 ✏

1

C
A , (2.49)

which is proportional to a diagonal matrix. Based on the tensor fieldMIR (2.49),

the curve length LIR can be rewritten as

LIR(γ) =

Z 1

0

p

hγ0(t),MIR(γ(t)) γ0(t)i dt,

where γ0(t) =
(
Γ0(t), r0(t)

)
, 8t 2 [0, 1].

2.3.4 Minimal Paths with Anisotropic Riemannian Metric

Both the Cohen-Kimmel model (Cohen and Kimmel, 1997) and Li-Yezzi model

(Li and Yezzi, 2007) rely only on the position of the geodesics and are unable to

take into account of the path orientation, which sometimes leads to the shortcuts

problem.

In order to introduce the anisotropy to the minimal path framework, Bougleux

et al. (2008) and Jbabdi et al. (2008) extended the isotropic Riemannian metric

RI (2.45) to the anisotropic case, where the symmetric positive definite tensor field

MI in (2.46) can be replaced byMA defined by:

MA(x) =
dX

i=1

P s
i (x)vi(x)v

T
i (x), (2.50)
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v1

v
⊥

1

Figure 2.8: Visualization for a typical 2D positive definite symmetric tensor by an
ellipse.

where d is the dimension of the image domain Ω. P s
i is image data dependent

function associated to the direction vi 2 R
d. Particularly, when d = 2, one has

MA(x) = P s
1 (x)v1(x)v

T
1 (x) + P s

2 (x)v2(x)v
T
2 (x), (2.51)

where v2(x) is perpendicular to vector v1(x) for all x 2 Ω.

Based on the tensor fieldMA, the anisotropic Riemannian metric RA : Ω⇥R
d !

R
+ can be expressed as:

RA(x,u) =
p

hu,MA(x)ui, 8x 2 Ω and 8u 2 R
d. (2.52)

In Fig. 2.8, we visualize the 2-D tensorM−1
A (2.51) by an ellipse. The black dot

denotes the centre point x. In this figure, we suppose that P s
1 (x)  P s

2 (x), 8x 2 Ω.

The anisotropy ratio µ of the metric RA is defined by

µ(RA) := sup
x2Ω

⇢

max
kuk=kvk=1

RA(x,u)

RA(x,v)

}

. (2.53)
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Figure 2.9: Comparative minimal paths extraction results by using the isotropic and
anisotropic Riemannian metrics, respectively. (a) is the original image with initial
source point (green dot) and end point (cyan dot). (b) Potential function used in the
isotropic metric. (c) and (d) are the minimal paths extracted by using the isotropic
metric and anisotropic metric respectively. (e) and(f) are the corresponding geodesic

maps of (c) and (d).

The minimal action map or geodesic distance map U form the initial source point s

with respect to the anisotropic Riemannian metric RA can be obtained by solving

the following anisotropic Eikonal PDE:

(

krU(x)kM−1

A
(x) = 1, 8x 2 Ω\{s},

U(s) = 0,
(2.54)
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where the norm kukM(x) =
p

hu,M(x)ui.

The minimal path Cs,x that joins the initial source point s to point x can be

recovered by reversing the path Ĉx,s as the solution to the following ODE:

(

Ĉ 0x,s(t) / −M−1
A

(
Ĉx,s(t)

)
rU
(
Ĉx,s(t)

)
,

Ĉx,s(0) = x.
(2.55)

For the anisotropic Riemannian metric-based minimal path models (Benmansour

and Cohen, 2011; Bougleux et al., 2008; Jbabdi et al., 2008), the geodesic curve

length in (2.68) will depend on both the orientations and positions of the path.

With the orientation enhancement, the short cuts problem sometimes suffered

by the classical Cohen-Kimmel model will be avoided in some image processing

applications such as perceptual grouping and tubular structure segmentation. In

Fig. 2.9, we show the extracted minimal paths by using the isotropic metric and

anisotropic metrics. Fig. 2.9a is the original image with the initial source point

and end point, indicated by green dot and cyan dot respectively. Fig. 2.9a is

the potential function P used in isotropic metric RI (2.38). We define P by the

gradient of image I:

P (x) = exp

✓

−↵ krGσ ⇤ I(x)k
krGσ ⇤ Ik1

◆

, 8x 2 Ω. (2.56)

whereGσ is a Gaussian kernel with variance σ. For fair comparison, the anisotropic

tensor fieldMA (2.51) is constructed based on the gradient vector field of image

I. Letting x = (x, y) 2 Ω, one has

v1(x) =
⇣

Gx ⇤ I(x), Gy ⇤ I(x)
⌘

, 8x 2 Ω.

Thus the tensor fieldMs can be constructed as

MA(x) = P (x)v1(x)v
T
1 (x) + v?

1 (x)(v
?
1 (x))

T. (2.57)

Fig. 2.9c and Fig. 2.9d are the minimal paths extracted using the isotropic metric

with potential P defined in (2.56) and the anisotropic metric defined in (2.57)

respectively. It can be seen that the minimal path extracted by the isotropic

metric suffers from the shortcut problem while the result by anisotropic metric

is the expected one. The corresponding minimal action maps of Fig. 2.9c and

Fig. 2.9d are demonstrated in Fig. 2.9e and Fig. 2.9f, respectively. Note that in

this experiment the parameter is set as ↵ = −4.2.

In Fig. 2.10, the effect of the anisotropy ratio µ (2.53) is studied. In each figures,

the red region contains all the grid points, of which the geodesic distance values

are larger than that of the end point. We can see that with a larger value of
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Figure 2.10: Geodesic distance maps with different values of anisotropy ratio. The
original image is shown in Fig. 2.9(a) with the same initial source point and end point.

anisotropic, less grid points are passed by the fast marching front before the end

point is reached. In this figure, the original image is demonstrated in Fig. 2.9a

and the anisotropic tensorMA is constructed by (2.57).

2.3.5 Minimal Paths with Anisotropic Radius-Lifted Rie-

mannian Metric

Benmansour and Cohen (2011) extended Li-Yezzi minimal path model (Li and

Yezzi, 2007) to the anisotropic case by lifting the anisotropic tensor field MA

(2.50) to radius-lifted tensor fieldMr:

Mr(x, r) =

✓Ms(x, r) 0

0 Pr(x, r)

◆

, (2.58)

whereMs is constructed by:

Ms(x, r) =
dX

i=1

P s
i (x, r)vi(x, r)v

T
i (x, r), (2.59)

where P s
i are the potential functions along the orientation vector vi 2 R

d. Pr is

a positive scalar function defined over the radius-lifted domain Ω̂. Note that the

dimension of the domain Ω̂ is d+ 1.

Mr is a positive symmetric definite tensor field which is the special case of the

tensor fieldMA defined in (2.50):

Mr(x, r) =
dX

i=1

P s
i (x, r) v̂i(x, r) v̂

T
i (x, r) + Pr(x, r) v̂0(x, r) v̂

T
0 (x, r), (2.60)
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where v̂i := (vi, 0) 2 R
d+1 and v̂0 = (0, · · · , 0, 1) 2 R

d+1. We use the vector v̂i
where the last entry is zero, since it makes no sense to add anisotropy in the radius

dimension.

In Eqn. (3.10), we give the computation example ofMs using the optimally ori-

ented flux filter (Law and Chung, 2008). The anisotropic radius-lifted Riemannian

metric RAR : Ω̂⇥ R
d+1 ! R

+ can be defined as

RAR(x̂, û) :=
p

hû,Mr(x̂) ûi , (2.61)

for all x̂ 2 Ω̂ and any vector û 2 R
d ⇥ R.

2.3.6 Minimal Paths with Isotropic Orientation-Lifted Rie-

mannian Metric

In order to take into account the local orientation in the image, it is possible to

include orientation information in the energy minimization. For this purpose, the

image domain space Ω ⇢ R
2 can be extended to the orientation lifted space Ω̄ by

product with an abstract orientation space S
1 (Kimmel and Sethian, 2001), i.e.,

Ω̄ = Ω ⇥ S
1 ⇢ R

3 and the problem is to find a minimal path in the new lifted

space Ω̄. Each point x̄ in the orientation lifted path is thus a pair composed of a

point x in the image domain Ω and an orientation ✓, i.e., x̄ = (x, ✓).

For any orientation-lifted vector ū = (u, ⌫) 2 R
2 ⇥ R and any orientation-lifted

point x̄ = (x, ✓) 2 Ω̄, the isotropic orientation-lifted Riemannian metric RIO :

Ω̄⇥ R
3 ! R

+ can be defined by:

RIO(x̄, ū) =
1

PIO(x̄)

p

kuk2 + ⇢|⌫|2, (2.62)

The curve length of an orientation-lifted path γ := (Γ, ✓), where γ : [0, 1] ! Ω̄,

can be measured with respect to the isotropic orientation-lifted Riemannian metric

RIO:

LIO(γ) =

Z 1

0

1

PIO(γ(t))

p

kΓ0(t)k2 + ⇢ |✓0(t)|2 dt, (2.63)

The symmetric positive definite tensor fieldMIO is defined by

MIO(x̄) = P 2
IO(x̄)

0

B
@

1 0 0

0 1 0

0 0 ⇢

1

C
A ,

where PIO is an image data-driven speed function defined over the orientation-lifted

domain Ω̄ and ⇢ is a positive constant.
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The idea of orientation lifting provides an alternate way to make use of the path

orientation. Péchaud et al. (2009) combined the ideas of orientation lifting and

radius lifting to construct a Riemannian metric over the orientation-radius lifting

domain Ω⇥ S
1 ⇥ [Rmin, Rmax]. The corresponding tensor field for the orientation

and radius-lifted metric ROR is defined by

MOR(¯̂x) = P 2
OR(

¯̂x)

0

B
B
B
@

1 0 0 0

0 1 0 0

0 0 ⇢ 0

0 0 0 ✏

1

C
C
C
A
, (2.64)

where POR is an image data-driven speed function relying on both the orientation

and position of the minimal paths. Based on MOR, the orientation and radius-

lifted Riemannian metric is expressed as

ROR(¯̂x, ¯̂u) =
q

h¯̂u,MOR(¯̂x) ¯̂ui, 8 ¯̂x 2 Ω⇥ S
1 ⇥ [Rmin, Rmax], 8 ¯̂u 2 R

4. (2.65)

Since this radius and orientation-lifted minimal path is defined over the 4D domain,

the computation complexity is extremely high compared to the anisotropic radius-

lifted metric based minimal path model (Benmansour and Cohen, 2011).

2.3.7 General Minimal Path Model and Finsler Metric

The minimal path problem (Peyré et al., 2010) is posed on a bounded domain Ω 2
R
d equipped with a metric F(x,u) depending on location x 2 Ω and orientation

u 2 R
d, where d = n or d = n+1 with n being the dimension of the image domain

or physical domain. This metric F defines at each point x 2 Ω a norm:

Fx(u) = F(x,u) (2.66)

These norms must be positive Fx(u) > 0 whenever u 6= 0, 1-homogeneous, and

obey the triangular inequality. In general, we allow them to be asymmetric:

Fx(u) 6= Fx(−u). (2.67)

Based on the metric F , one can measure the curve length of any regular curve γ:

L(γ) =
Z 1

0

F
(
γ(t), γ0(t)

)
dt. (2.68)

The minimal action map U(x), or geodesic distance from the source point s, is the

minimal length (2.68) among all paths contained in the collection As,x joining the
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initial source point s to any point x 2 Ω:

U(x) := inf{L(γ); γ 2 As,x}. (2.69)

The minimal action map U in (2.69) is the unique viscosity solution to an Eikonal

PDE (Lions, 1982; Sethian and Vladimirsky, 2003):

(

F⇤
x

(
−rU(x)

)
= 1, for all x 2 Ω,

U(s) = 0,
(2.70)

where rU is the gradient of U with respect to the position in the domain Ω and

F⇤
x is the dual norm of Fx defined for all u 2 R

d by

F⇤
x(u) = sup

v 6=0

hu,vi
Fx(v)

, (2.71)

where h·, ·i denotes the scalar product over Rd.

Randers Metric

The metrics F considered in this thesis combine a symmetric part, defined in terms

of a positive definite tensor field M, and an asymmetric part involving a vector

field ! 2 R
d:

F(x,u) =
p

hu,M(x)ui+ h!(x),ui, 8x 2 Ω and 8u 2 R
m. (2.72)

In this case, the Finsler metric F (2.72) is regarded as the Randers metric (Ran-

ders, 1941). Note that in the following part of this thesis, whenever we mention the

Finsler metric, we mean the Randers metric with the form formulated in (2.72).

The Finsler metric or the Randers metric F (2.72) should obey the following

smallness condition (Mirebeau, 2014b) to ensure that the metric F is positive:

8x 2 Ω, h!(x),M−1(x)!(x)i < 1. (2.73)

The anisotropy ratio µ(F) characterizes the distortion between different orienta-

tions induced by a Finsler metric F on a domain Ω. The anisotropic ratio µ(F)
of the metric F (2.72) is defined by:

µ(F) := sup
x2Ω

⇢

max
kuk=kvk=1

nFx(u)

Fx(v)

o}

. (2.74)
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Equation (2.72) defines an anisotropic Finsler metric in general. This is an anisotropic

Riemannian metric if the vector field ! is identically zero, and an isotropic metric

if in addition the tensor fieldM is proportional to the identity matrix.

Based on the definition of the dual norm in (2.71), the corresponding optimal

direction map Ψ is then obtained by

Ψ(x,u) := argmax
v 6=0

hu,vi
Fx(v)

, 8x 2 Ω, 8u 2 R
n. (2.75)

Again, the geodesic Cs,x is obtained by reversing the path Ĉx,s with Cs,x(0) = s

and Cs,x(1) = x, where Ĉx,s is tracked through the following ODE involving the

minimal action map U and the optimal direction map Ψ

8

<

:

Ĉ 0x,s(t) / −Ψ
⇣

Ĉx,s(t),rU
(
Ĉx,s(t)

)⌘

,

Ĉx,s(0) = x.
(2.76)

Numerically, the ODE in (2.76) can be solved by using the Runge-Kutta’s method,

or more robustly using the numerical method proposed by Mirebeau (2014a).
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(a) 4-connexity (b) 8-connexity

Figure 2.11: Stencil examples: 4-connexity and 8-connexity stencils on 2D cartesian
grid. (a) 4-connexity stencil. (b) 8-connexity stencil. Blue dots are the centre points of
the stencils. Red dots are the neighbourhood points. Green lines denote the boundaries

of the stencils.

2.4 Fast Marching Method

2.4.1 Overview of the Fast Marching Method

The fast marching method was developed independently by Sethian (1996, 1999)

and Tsitsiklis (1995) to address the problem of the computation of the minimal

action map or geodesic distance map with respect to isotropic Riemannian metric.

The essential difference between the fast marching methods Sethian (1996, 1999)

and Tsitsiklis (1995) lies at the discretization scheme for the local geodesic distance

update, where Sethian’s method made use of the upwind discretization form of the

Eikonal equation (2.43) itself, while Tsitsiklis’s shortest path method utilized the

Hopf-Lax update scheme. Both the fast marching methods mentioned above are

similar to Dijkstra’s non-iterative algorithm (Dijkstra, 1959) in a monotonically

advancing wave propagation manner. Compared to the fast marching methods, it

is known that Dijkstra’s shortest path algorithm may suffer from the metrication

error problem (Cohen and Kimmel, 1997).

For the purpose of estimation of the minimal action map U in (2.69) and (2.70)

by the fast marching method, we first introduce some basic notations:

Notation 2.4.1. let Z be a discretization orthogonal grid of the domain Ω with

dimension d and let N = #Z be the total number of grid points of Z.

Notation 2.4.2. For each grid point x0, a stencil S(x0) is a neighbourhood of x0

with vertices in Z. We introduce a translated stencil } defined by offset-based
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Algorithm 1 General Fast Marching Method

Input:
• Metric F .
• Initial source points collection W .

Output:
• Minimal action map U .

Initialization:
• For each point x 2 Z, set U(x) +1 and V(x) Far .
• For each point y 2 W , set U(y) 0 and V(y) Trial .

Main Loop
1: while at least one grid point is tagged as Trial do
2: Find xmin, the Trial point which minimizes U .
3: V(xmin) Accepted.
4: for all neighbourhood points y of xmin and V(y) 6= Accepted do
5: Compute Unew(y) by local geodesic distance update scheme.
6: if V(y) =Far then
7: Set V(y) Trial .
8: end if
9: if Unew(y) < U(y) then
10: Set U(y) Unew(y),
11: end if
12: end for
13: end while

coordinate system:

}(x0) := S(x0)− x0. (2.77)

A common simplex T 2 }(x0) is defined as the convex envelop of vertices in the

set {0} [ {x1 − x0, · · · , xd − x0} where {x1, · · · , xd} are a subset of the vertices

contained by S(x0). The translated stencil }(x0) is the union of non-zero vertices

of all the simplices T .

In Figs. 2.11a and 2.11b we show the 4-connexity and 8-connexity stencils on

2D cartesian grid respectively. The blue dots indicate the centre points of the

stencils. Red dots represent the vertices of the stencils. The green lines denote

the boundaries of the stencils. The 4-connexity stencil shown in Fig. 2.11a was

adopted by Sethian (1996, 1999) and Tsitsiklis (1995) for isotropic fast marching

algorithm on 2D grid.

The fast marching method is a single-pass algorithm where the cartesian grid

points in Z are visited by the front in an ordered way. The behaviour of the fast

marching method is like a monotonically advancing wave propagation: starting

from the initial source points, the front will propagate outward until filling the

whole domain combining with a point labelling procedure. In the course of the
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fast marching front propagation, each grid point in Z is tagged as either Accepted,

Trial or Far by a labelling function V : Z ! {Accepted, Trial, Far}:

• Accepted points are the grid points for which minimal action values of U
have been estimated and been frozen.

• Trial points are the grid points for which the minimal action values have

been estimated but not frozen.

• Far points are the grid points for which the minimal action values have not

been estimated.

All the Trial points form the fast marching front which is considered as the in-

terface between the points tagged as Accepted and the points tagged as Far. We

illustrate the fast marching front in Fig. 2.12, where the Accepted, Trial and Far

points are represented by red, green and black dots respectively. The front con-

sisting of all the Trial points are indicated by green region. The values of minimal

action map U for all Trial points have been updated at least once. These Trial

points are stored in a priority queue such that the Trial point xmin with the small-

est value of U can be identified efficiently. By marching the front in an ordered

way, the minimal action map U can be obtained within a finite number of local

geodesic distance update steps.

The overview of the fast marching method can be found in Algorithm 1. In each

step, the grid point xmin with the smallest value of U among all the Trial points is

selected and tagged as Accepted as described in Line 2 of Algorithm 1. The crucial

point of the fast marching method is to update all the neighbourhood points y

of xmin obeying V(y) 6= Accepted by the local geodesic distance update scheme

detailed in Sections 2.4.2, 2.4.3 and 2.4.5. Note that the neighbourhood points y

of xmin is defined by the local mesh S(xmin).

The general stopping criterion for fast marching algorithm can be formulated as:

once all the grid points in Z have been tagged as Accepted, the fast marching

front propagation can be stopped. In order to reduce the computation time of the

minimal action map computation, the early abort scheme can be applied: once all

the end points are tagged as Accepted, we stop the fast marching completely.

2.4.2 Isotropic Fast Marching Method with Sethian’s Up-

date Scheme

In the classical minimal path model, Cohen and Kimmel (1997) recommended

Sethian’s fast marching method (Sethian, 1999) as their Eikonal PDE solver for
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Far

Trial

Accepted

Front

Figure 2.12: Example for fast marching front. Red, green and black dots denote the
Accpeted, the Trial and the Far points respectively. Green shadow region denotes the

fast marching front consists of all the Trial points.

real time applications. We recall the Eikonal PDE in (2.43) used by Cohen and

Kimmel (1997):
(

krU(x)k = P̃ (x), 8x 2 Ω,

U(s) = 0,
(2.78)

where P̃ = w + P and w is a positive constant. P is a decreasing function that is

usually dependent of the image gradient magnitude or image gray levels.

To solve the Eikonal PDE in a grid Z, we should discrete the minimal action map

U and the potential function P̃ on Z. For the sake of simplicity, we consider the

2D case (d = 2) of the Eikonal PDE (2.78). Let ∆x and ∆y be the grid spacings

in the x and y directions respectively. A grid point (m,n) 2 Z corresponds to a

point (m∆x, n∆y) 2 Ω such that

P̃m,n = P̃ (m∆x, n∆y), Um,n = U(m∆x, n∆y). (2.79)

It is proved by Rouy and Tourin (1992) that the unique viscosity solution for the

minimal action map Um,n := Unew ( Unew is used in Line 5 of Algorithm 1) can be
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obtained by solving the following discretization form of the Eikonal PDE (2.78):

✓
max{Unew − Um−1,n,Unew − Um+1,n, 0}

∆x

◆2

+

✓
max{Unew − Um,n−1,Unew − Um,n+1, 0}

∆y

◆2

= P̃ 2
m,n, (2.80)

for each grid point (m,n) 2 Z. In the following, we set ∆x = ∆y = 1 for simplicity.

We denote (A1, A2) = (Um−1,n,Um+1,n) and (B1, B2) = (Um,n−1,Um,n+1). Without

loss of generality, we suppose that A1  A2 and B1  B2. Cohen (2001) presented

a simple way to solve (2.80) based on the fact that only the Accepted points in the

neighbourhood points {(m+1, n) (m−1, n), (m,n+1), (m,n−1)} are considered.
Hence the equation (2.80) can simplified as

(Unew − A1)
2 + (Unew − B1)

2 = P̃ 2
m,n. (2.81)

The discriminant ∆ of the quadratic equation (2.81) is expressed by

∆m,n = 4(2P̃ 2
m,n − (A1 − B1)

2). (2.82)

When ∆m,n ≥ 0, we obtain the following solution

u =
A1 +B1 +

q

2P̃ 2
m,n − (A1 − B1)2

2
. (2.83)

The solution Unew of equation (2.82) can be obtained by the following upwind

scheme:

1. If ∆m,n ≥ 0 and u > max{A1, B1}, we have Unew := u.

2. If ∆m,n ≥ 0 and u < max{A1, B1}, we have Unew := min{A1, B1}+ P̃m,n.

3. If ∆m,n < 0, we have Unew := min{A1, B1}+ P̃m,n.

In each fast marching step, we find a grid point xmin, a Trial point that minimizes

the minimal action map U . For each neighbourhood point y = (m,n) of xmin

where V(y) 6=Accepted, we solve the equation (2.81) by the above upwind scheme

to update the value of U(y). The minimal action map U can be obtained in a

single pass way with computation complexity O(N(log N)).
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x

∂S

s

z

Figure 2.13: Illustration for Bellman’s optimality principle. s is the initial source
point. ∂S is the boundary of stencil S(x). z is the intersection points of ∂S and

geodesic Cs,x.

2.4.3 Hopf-Lax Update Scheme

In contrast with Sethian’s fast marching method which solves the Eikonal PDE

with an upwind discretization scheme, the basic idea of Tsitsiklis’ geodesic distance

computation method (Tsitsiklis, 1995) is to approximate the minimal action map

U by the Hopf-Lax update scheme. Note that Tsitsiklis’ method is only suitable for

the geodesic distance computation with respect to a isotropic Riemannian metric.

In this section, a more general metric F as discussed in Section 2.3.7 is considered.

The minimal action map U associated to a general metric F satisfies the anisotropic

Eikonal PDE or the static Hamilton-Jacobi PDE

(

F⇤
x

(
−rU(x)

)
= 1, 8x 2 Ω\{s},

U(s) = 0,
(2.84)

As discussed in (Kushner, 1990; Mirebeau, 2014b; Sethian and Vladimirsky, 2003),

the discretization of the Eikonal PDE can be interpreted as a fixed point problem

based on the Hopf-Lax update scheme

(

U(x) = ΛU(x), 8x 2 Z,
U(s) = 0,

(2.85)
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where Z is the discretization orthogonal grid of the domain Ω. Λ is the Hopf-Lax

update operator that is defined by:

ΛU(x) := min
z2@S(x)

n

F(x,x− z) + IS(x) U(z)
o

, (2.86)

where S(x) is the local stencil centred at point x 2 Z and IS(x) denotes the

piecewise linear interpolation operator on the mesh S(x). Note that z lies on the

boundary @S(x). The value of IS(x) U(z) can be obtained by linear interpolation

on the boundary @S(x) of the stencil S(x). The equality U(x) = ΛU(x), replacing
in (2.85) the Eikonal PDE , is a discretization of Bellman’s optimality principle

which states that

U(x) = dF(x, z) + U(z), (2.87)

where dF(x, z) denotes the geodesic distance between points x and z.

Bellman’s optimality principle (2.87) reflects the fact that the minimal geodesic

Cs,x, from s to x, has to cross the mesh boundary @S(x) at least once at some

point z; thus it is the concatenation of a geodesic Cs,z from s to z, as shown in

Fig. 2.13. Using the Hopf-Lax update operator (2.86) to estimate the values of

the minimal action map U in (2.87) which length is approximated by piecewise

linear interpolation, and a very short geodesic Cz,x from z to x, approximated by

a segment with geodesic curve length F(x,x− z).

2.4.4 Anisotropic Fast Marching Method

The stencil plays an important role in the computation of the minimal action map

U by the fast marching method (Chopp, 2001; Sethian and Vladimirsky, 2003).

The fast marching methods proposed by Sethian (1999) and Tsitsiklis (1995) mak-

ing use of the square formed stencil (see Fig. 2.11a) have difficulty to deal with

the anisotropic metrics-based minimal action maps computation, especially when

the anisotropy ratio µ (2.53) or (2.74) gets large, since both methods rely on the

assumption that the tangent directions of the geodesics are propositional to the

gradient of the minimal action map (Chopp, 2001).

Let us Consider the gradient descent ODE used to recover the geodesic Cx,s, joining
x to the initial source point s, with respect to a general metric:

8

<

:

C 0x,s(t) / −Ψ
⇣

Cx,s(t),rU
(
Cx,s(t)

)⌘

,

Cx,s(0) = x.
(2.88)

where F⇤
x is the dual norm of Fx(·) = F(x, ·) and Ψ is the optimal direction map

defined in (2.75). It can be seen from (2.88) that the tangents C 0 depend on both



Active Contours and Minimal Paths 44

the metric F and the gradient of U . This means the classical fast marching meth-

ods invoking 4-connected neighbourhood stencil will not give accurate minimal

action map computation results.

Let us recall the Hopf-Lax update scheme with respect to a Fisnler metric F
defined in (2.72):

U(x) = min
z2@S(x)

n

F(x,x− z) + IS(x) U(z)
o

, 8x 2 Z. (2.89)

The minimization problem of (2.86) can be solved using the vertices of the simplex

T 2 }(x) where } is the translated stencil defined in (2.77). Let xTi be the vertices

of the stencil S(x) where i 2 {1, 2, · · · , d} and d is the dimension the domain. For

each simplex T 2 }(x), the Hopf-Lax update operator Λ defined in (2.86) can be

approximated by

u(T ) = min
⌘2Ξ

(

F
(
x,vT⌘

)
+

dX

i=1

⌘i U(xTi )
)

, (2.90)

where the convex set

Ξ :=

(

⌘ = (⌘1, ⌘2, · · · , ⌘d);
dX

i=1

⌘i = 1, 8 ⌘i ≥ 0

)

,

and vector

vT⌘ =
dX

i=1

⌘i
(
xTi − x

)
.

The minimal action map value U(x) := Unew at point x can be obtained by

Unew = min
T2S(x)

u(T ),

where Unew is used in Line 5 of Algorithm 1.

There are two ways to solve the anisotropic Eikonal PDE, both of which are based

on the local Hopf-Lax update scheme (2.89):

• The first method to solve the anisotropic Eikonal PDE is the Bellman-Ford

inspired adaptive Gauss-Seidel iteration (AGSI) method that is proposed

by Bornemann and Rasch (2006). The AGSI numerical method has the

computation complexity of O
(
µN1+1/d

)
, where µ is the anisotropy ratio

value defined by (2.74). The AGSI method solves the fixed point problem

(2.85) by using the Hopf-Lax update operator (2.89) in a iterative way based

on a simple local stencil. However, when the value of anisotropy ratio µ gets

very large, the iteration numbers for the Hopf-Lax update operator (2.89)

required by the AGSI method will get extremely large. In some real-time



Active Contours and Minimal Paths 45

Algorithm 2 Adaptive Stencils Construction (Mirebeau, 2014b)

Input:
• Norm Fx.

Output:
• Translated stencil }(x).

Initialization:
• Initialize two lists: M(x) {(1, 0)} and L {(1, 0), (0,−1), (−1, 0), (0, 1)}.

Marching Loop:
1: while L is non-empty do
2: Let a and b be the last two elements of M and L respectively.
3: if a and b agree with the acuteness condition (2.93) then
4: L L [ {b}.
5: Remove b from M.
6: else
7: Append a+ b to M.
8: end if
9: end while
10: Append all the elements of L to }.

applications in the fields of computer vision and medical imaging, the AGSI

method will be impractical, as pointed out by Mirebeau (2014a,b).

• Alternately, one-pass fast marching method with metric dependent stencils

can be applied to solve the anisotropic Eikonal PDE. Sethian and Vladimirsky

(2003) proposed an ordered upwind (OU) method where the local stencil are

built in the course of the fast marching propagation. The sizes of the stencils

used in OU fast marching method rely on the values of anisotropy ratio µ:

a large value of µ implies a large size of stencil to cover the regions passed

by the local optimal path. Contrary to the dynamic stencil construction

based OM fast marching method (Sethian and Vladimirsky, 2003), Alton

and Mitchell (2012) proposed a static stencil based method where the stencil

will be constructed before the fast marching front propagation is performed.

Both the mentioned fast marching methods have computation complexity

O(µdN lnN) which are unworkable for large values of anisotropy ratio µ.

For the purpose of improving the stability and accuracy of the computation of

the minimal action map with respect to a high anisotropic geodesic metric, a

novel adaptive stencil construction method was introduced by Mirebeau (2014a)

for 3D anisotropic Riemannian metric and by Mirebeau (2014b) for arbitrary 2D

Finsler metric with computation complexity O(N lnµ + N lnN) as described in

next section. In this thesis, we make use of these adaptive stencil based fast

marching method as our numerical tools for the proposed anisotropic Riemannian

metrics by (Mirebeau, 2014a) and for novel anisotropic and asymmetric Finsler

metrics.



Active Contours and Minimal Paths 46

(a) (b)

(c) (d)

Figure 2.14: Demonstrations of the Uint balls for Riemannian Metrics and the respec-
tive stencils which are constructed using the method proposed by Mirebeau (2014a). (a)
and (c) are the uint balls for different Riemannian metrics. (b) and (d) are the corre-

sponding stencils. Black dots in (a) and (c) denote the origin of the stencils.

2.4.5 Adaptive Stencil-based Anisotropic Fast Marching

Method

Mirebeau (2014b) proposed an anisotropic stencil refinement based fast marching

method (FM-ASR) for the minimal action map computation with respect to an

arbitrary Finsler metric with the form of

F(x,u) =
p

u,M(x)u− h!,ui, 8x 2 Ω, u 2 R
2. (2.91)
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F defines a general Finsler metric and will degenerate to a anisotropic Riemannian

metric if ! = 0 with respect to a non-diagonal symmetric positive define tensor

field M. In the following, we introduce the stencil construction for 2D Finsler

metric.

The F dependent stencil construction is based on the geometrical concept of Fx-

acute angle (Mirebeau, 2014b). Two non-zero vectors u, v 2 R
2 form an Fx-acute

angle if they obey that for all δ > 0

Fx(u+ δv) ≥ Fx(u) and Fx(v + δu) > Fx(v). (2.92)

If Fx is differentiable at u and v, the definition of Fx-acute (2.92) is equivalent to

the following condition:

hu, rFx(v)i ≥ 0 and hv,rFx(u)i ≥ 0, (2.93)

where Fx(·) = F(x, ·) is a norm on R
2.

Note that when F is a Riemannian metric, i.e, the vector field ! = 0 and

Fx(u) =
p

hu,M(x)ui,

then the condition (2.93) is reduced to

hu,M(·)vi ≥ 0, foru, v 2 R
2 with u 6= 0, v 6= 0. (2.94)

Note that both (2.93) and (2.94) are the sufficient and necessary conditions for the

Fx-acute angle (Mirebeau, 2014b). The proof of the equivalence between (2.92)

and (2.93) can be found from (Mirebeau, 2014b).

The translated stencil } can be constructed in terms of the concept of acuteness

(2.93), as introduced in (Mirebeau, 2014a,b). A translated stencil } consists of

a collection of non-zero vertices of triangles T (one of the vertices of each T is

the origin 0) and corresponds to a stencil S (2.77) with vertices lying on the grid

Z. } is said to be Fx-acute if each triangle T 2 } has area 1/2 and obeys that

the two non-zero vertices of the triangle T agree with (2.93). The procedure of

the translated stencil construction can be found in Algorithm 2. This procedure

computes the translated stencils in a recursive refinement manner. We demon-

strate the translated stencils for anisotropic Riemannian metrics in Fig. 2.14 and

for anisotropic and asymmetric Finsler metrics in Fig. 2.15 and Fig. 2.16.

The stencil S can be recovered by (2.77). A point y 2 Z is a S(x)-dependent
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(a) (b)

(c) (d)

Figure 2.15: Demonstrations of the Uint balls for Finsler Metrics and the respective
stencils which are constructed using the method proposed by Mirebeau (2014b). (a) and
(c) are the uint balls for different Finsler metrics. (b) and (d) are the corresponding

stencils. Black dots in (a) and (c) denote the origin of the stencils.

neighbourhood point of x 2 Z if it obeys x 2 S(y). In other words, the neigh-

bourhood point set Ne of x is defined in terms of S(x) by

Ne(x) := {y 2 Z; x 2 S(y)}.

Stencils Construction for Lifted Metrics

We take the radius-lifted anisotropic Riemannian metric as an example. The

anisotropic Riemannian metric with radius lifting for tubular structure extraction

survives over the domain Ω̂ ⇢ R
2 ⇥ R

1 with general tensor field form of (2.58) or

(2.60). For completeness, we rewrite the radius-lifted tensor fieldMr

Mr(x, r) =

✓Ms(x, r) 0

0 Pr(x, r)

◆

, (2.95)



Active Contours and Minimal Paths 49

(a) (b)

(c) (d)

Figure 2.16: Demonstrations of the Uint balls for Finsler Metrics and the respective
stencils which are constructed using the method proposed by Mirebeau (2014b). (a) and
(c) are the uint balls for different Finsler metrics. (b) and (d) are the corresponding

stencils. Black dots in (a) and (c) denote the origin of the stencils.

The anisotropy for this metric depends on the tensor Ms (2.59), where the 2D

case is

Ms(x, r) = P s
1 (x, r)v1(x, r)v

T
1 (x, r) + P s

2 (x, r)v2(x, r)v
T
2 (x, r). (2.96)

Note that the vectors v1(x), v2(x) 2 R
2.

The steps for the stencil construction with respect toMr are listed as follows:

• We first invoke the method described in Algorithm 2 with respect to tensor

fieldMs (2.95) to obtain the local translated stencils }(x), for any x 2 Z.

• TheMr-based translated local stencil }̂(x̂) can be constructed as
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– For each vertex a 2 }(x), we append (a, 0) to }̂(x̂).

– Append (0, 0, 1) and (0, 0,−1) to }̂(x̂).

In this thesis, we make use of the above stencil construction scheme for the geodesic

distance map computation with respect to the anisotropic radius-lifted Rieman-

nian metric and the anisotropic and asymmetric orientation-lifted Finsler elastica

metric.



Chapter 3

Retinal Vessel Segmentation via

New Minimal Paths Models

Abstract

The retinal vessel extraction, including both the blood vessel centreline positions

and therespective thickness values at the corresponding centreline points, has im-

portant medical and clinical applications. To satisfy this requirement, a retinal

blood vessel can be modelled as a minimal geodesic in the sense that this geodesic

involves both the vessel centreline positions and the corresponding vessel radii

information. The minimal path models are therefore very suitable and intuitive

for the retinal blood vessel extraction task. They are particularly efficient to ex-

tract a tubular structure in the way of giving two points at the ends of a retinal

vessel (Benmansour and Cohen, 2011; Li and Yezzi, 2007). However, there exist

some difficulties suffered by these classical isotropic or anisotropic minimal path

models, like the shortcuts problem and the short branches combination problem,

leading to unexpected vessel extraction results.

In this chapter, we propose three novel minimal paths models to solve these ex-

isting problems in the task of retinal vessels extraction suffered by the classical

minimal path models. These new minimal paths models include the mask-based

keypoints detection model, the dynamic anisotropic Riemannian metric-based min-

imal path model and the region-constrained minimal paths model. All of these

three models are devoted to extract both centrelines and the respective width val-

ues of vessels, combining with different retinal vessels properties, vessel orientation

enhancement, and the prior vessel segmentation results. The vessel orientation is

detected in this chapter by the optimally oriented flux filter proposed in (Law and

Chung, 2008).

51
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We perform the numerical experiments involving the comparative results for the

proposed new minimal paths models in the retinal images. Actually, these pro-

posed minimal paths models can also be adapted to extract vessels and roads from

various types of medical images or aerial images, in either automatic or interactive

ways.
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Figure 3.1: A Retinal vessel network image (left) and the corresponding vessel ground
truth image (right).

3.1 Introduction

Vessel extraction is an essential component of computer-aided diagnosis methods

for the diagnosis of disorders and pathologies. Various vasculature structure seg-

mentation methods, such as vessel enhancement methods and deformable models

have been studied during the passed three decades (Fraz et al., 2012; Kirbas and

Quek, 2004; Lesage et al., 2009). Retinal vessel segmentation and extraction is a

difficult task due to the complicated vessel network and inhomogeneous intensi-

ties distribution, see Fig. 3.1 for an example of a color retinal vessel image and

its groundtruth image. Manually segmenting retinal vessels costs expensive time

and requires to train medical experts. Thus accurate and efficient automatic and

semi-automatic methods for generation of retinal vessel binary segmented map

are extremely helpful to the clinical diagnosis for various related diseases such as

diabetes, and biometric identification since the retinal vessel tree is unique indi-

vidually (Dominguez et al., 2015; Koch et al., 2014; Mariño et al., 2006).

Retinal Vessel Tracking Models

Retinal vessel tracking methods can find both the centrelines and radii values for

each individual vessel. Generally, the tracking methods consider to describe a

piece of vessel by a collection of ordered vessel profiles, which can be determined

either by minimizing the distance between the detected local cross sectional image

feature and the prior ideal vessel model, or by optimizing the computed local
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(a) Original Image (b) Vesselness Map

Figure 3.2: An example of retinal vessel image and its vesselness map.

image features1. These tracking methods can start from a initial profile, and then

recursively add new vessel profiles until stopping criterion are reached (Bekkers

et al., 2014; Chutatape et al., 1998; Lowell et al., 2004; Yin et al., 2012). Each

vessel profile consists of one centre point and two edge points2. In each iteration,

the basic procedure of the class of these vessel tracking models can be roughly

divided into two steps:

• Growing stage. The centre point and edge points in the current profile can

be used to determine the local orientation of the vessel at the centre point.

By going ahead a small distance along this detected orientation, the initial

guess of the next centre point can be obtained.

• Configuration stage. The vessel profile associated to the initial centre point

from the growing stage can be determined.

The main difference of the vessel tracking methods with growing scheme lies at the

configuration stage. Different criterion have been proposed to obtain the optimal

vessel profiles. For example, Lowell et al. (2004) used two Gaussian kernels to fit

the vessel cross sectional gray level distribution to reduce the influences leading

by centre reflection. Bekkers et al. (2014) proposed to use the orientation score

computed by wavelet methods (Duits et al., 2007; Jones and Palmer, 1987) to

detect the edge points.

Retinal Vessel Segmentation Models

The basic idea of the vessel enhancement methods (Chaudhuri et al., 1989; Frangi

et al., 1998; Hannink et al., 2014; Law and Chung, 2008; Xiao et al., 2013) is to

1Such as the norm of image gradient.
2Note that in (Yin et al., 2012), the authors used four and eight edge points to describe

bifurcation and crossing respectively
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convert the original vessel image into the vesselness map for which the value of

each pixel indicates the probability of this pixel belonging to a vessel, see Fig. 3.2

for an example. Then the binary segmented vessel map can be obtained either by

thresholding the vesselness map by a constant value, or by an adaptive thresholding

procedure (Hoover et al., 2000; Jiang and Mojon, 2003). The adaptive thresholding

methods use a set of threshold values to test each point by taking into account both

the position and vesselness value of this point. The crucial point of these methods

is the vesselness map, which can be computed by matched filter (Chaudhuri et al.,

1989), Hessian matrix (Frangi et al., 1998; Sato et al., 1998), flux (Law and Chung,

2008) or orientation score (Hannink et al., 2014).

The main contents of this chapter were presented at the ICIP 2014 conference

(Chen et al., 2014), the EMBC 2015 conference (Chen and Cohen, 2015a) and the

SSVM 2015 conference (Chen and Cohen, 2015b).
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3.2 Anisotropy Descriptor: Optimally Oriented

Flux Filter

Detecting both the orientations and positions of the blood vessels are essential task

of tubular structure detection. The enhancement based blood vessel detectors such

as the Hessian based filer (Frangi et al., 1998) and the optimally oriented flux filter

(Law and Chung, 2008) can achieve this goal by the use of the image gradient field.

They can assign each pixel in the image domain a value denoting the probability

that this pixel appearing as a vessel point, and a vector indicating the optimal

orientation of the possible vessel at this point. It is demonstrated in (Benmansour

and Cohen, 2011; Law and Chung, 2008) that the optimally oriented flux filter has

better performance than Hessian based filter (Frangi et al., 1998) for the vessel

branches detection. In this section, we focus on the 2D optimal oriented flux filter.

Definition

The oriented flux f of an image I, of dimension 2, is defined by the amount of the

image gradient projected along the orientation n flowing out from a 2D circle at

point x with radius r:

f(x; r,p) :=

I

@Sr

(r(Gσ ⇤ I)(x+ rn) · p)(p · n) ds, (3.1)

where Gσ is a Gaussian function with variance σ and n is the outward unit normal

vector along @Sr. ds is the infinitesimal length on @Sr. r is the gradient operator

and ⇤ is the convolution operator.

By the divergence theorem, it is proved that the oriented flux f in (3.1) can be

rewritten as a quadratic function by a symmetric matrix Q. Therefore, one has

f(x; r,p) = hp, Q(x, r)p i,

where the eigenvalues and eigenvectors of the symmetric matrix Q(x, r) we denote
by λi(x, r) and vi(x, r), i = 1, 2. One has

Q(x, r) =
2X

i=1

λi(x, r)vi(x, r)v
T
i (x, r). (3.2)

We refer to the symmetric matrix Q as the oriented flux matrix. Law and Chung

(2008) used the normalized summation of the non-zero eigenvalues to compute

the vesselness map, which takes its largest values for points x in vessel centrelines.

Indeed, the eigenvector of Q(x) oriented tangentially to the vessel is associated to
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an eigenvalue with small or zero magnitude, whereas another eigenvector oriented

transversally to the vessel are associated to eigenvalue with large magnitude. We

assume that points inside a vessel have higher intensity values than those in the

background. Without loss of generality, we assume that λ1(·)  λ2(·) ⇡ 0 such

that the eigenvalue λ1 can be used to compute the vesselness map which is defined

by Vness : Ω! R as follows:

Vness(x) := max

⇢

max
r

⇢

−1

r
λ1(x, r)

}

, 0

}

. (3.3)

The normalized factor 1/r is used to remove the scale bias of the optimal oriented

flux filter to ensure that the vesselness map Vness is scale invariant. The vesselness

map Vness(x) in (3.3) has a large value if x is located inside the vessels, which means

that we can take into account this vesselness map to indicate the the probability

of each pixel appearing as a vessel point.

For each pixel, we can assign an optimal scale value, by using the following optimal

scale map Sopt:
Sopt(x) = argmax

r

⇢

−1

r
λ1(x, r)

}

. (3.4)

Based on the map S, the optimal oriented flux matrix Qopt can be expressed by:

Qopt(x) = Q
(
x,Sopt(x)

)
. (3.5)

By the matrix decomposition method, the optimal oriented flux matrix Qopt can

be expressed as

Qopt(x) = Λ1(x)V1(x)V
T
1 (x) + Λ2(x)V2(x)V

T
2 (x), (3.6)

where the vector V1(x) can be considered as the tubular structure orientation at

point x if it is located inside a vessel. Thus the vector field V2 are the orthogonal

vector field of V1. Note that vector fields V1 and V2 will be used to constructed

to the anisotropic Riemannian metric in the following section.

Scalar fields Λ1, Λ2 : Ω ! R are the eigenvalues at the optimal scale for all the

points x 2 Ω, which are defined by:

Λ1(x) = λ1
(
x,Sopt(x)

)
, (3.7)

Λ2(x) = λ2
(
x,Sopt(x)

)
. (3.8)

Note that maps Vness, S and Qopt are all defined over the image domain Ω ⇢ R
2

instead of the radius-lifted space Ω̂.
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3.3 Optimally Oriented Flux Filter-based Anisotropic

radius-lifted Riemannian Metric Construc-

tion

Benmansour and Cohen (2011) introduced a way to construct the anisotropic

radius-lifted Riemannian metric RAR (2.61) by using the optimally oriented flux

filter (Law and Chung, 2008). Let us recall the radius-lifted tensor fieldMr:

Mr(x̂) =

✓Ms(x̂) 0

0 Pr(x̂)

◆

, (3.9)

whereMs is a symmetric tensor with size 2⇥ 2:

Ms(x̂) = exp
(
↵λ2(x̂)

)
v1(x̂)v

T
1 (x̂) + exp

(
↵λ1(x̂)

)
v2(x̂)v

T
2 (x̂), (3.10)

and Pr : Ω̂ ! R
+ is a scalar potential function penalizing the variations of the

tubular structure thickness which can be expressed as:

Pr(x, r) = β exp

✓

↵
λ1(x, r) + λ2(x, r)

2

◆

, (3.11)

where λ1, λ2 are the eigenvalues of the matrix Q (3.2) and v1, v2 are the corre-

sponding eigenvectors. The constant β > 0 controls the speed along the radius

direction, and constant ↵ controls the anisotropy ratio µ ≥ 1 for the anisotropic

Riemannian metric RAR:

µ(RAR) = max
(x,r)

s

exp
(
↵λ2(x, r)

)

exp
(
↵λ1(x, r)

) =

r

exp
⇣

↵ max
(x,r)

(
λ2(x, r)− λ1(x, r)

)⌘

.

In practice, we use the values of the anisotropy ratio µ and the constant β to

construct the tensor filed Mr. The local adaptive stencils for the fast marching

method (Mirebeau, 2014a) can be computed by the metric RAR. It is reported

by Mirebeau (2014a,b) that the fast marching method can compute the minimal

action map precisely and efficiently for any µ 2 [1, 100].

Based on the constructed tensor fieldMr (3.9), one can find a geodesic which can

describe both the centreline points and radius values by globally minimizing the

the following curve energy

L(γ) =
Z 1

0

p

hγ0(t),Mr(γ(t)) γ0(t)i dt, (3.12)

where γ : [0, 1]! Ω̂ is a regular curve.
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3.4 Mask-based Keypoints Detection

We address a more difficult problem in this section, comparing to the classical

minimal path models: the extraction of a full vessel tree structure given a sin-

gle initial root point, by growing a collection of keypoints or new initial source

points, connected by minimal geodesic paths. In this section, these keypoints

are iteratively added, using a new detection criteria, which utilize the weighted

geodesic distances with respect to an anisotropic radius-lifted Riemannian metric,

the standard Euclidean curve length and a path score.

3.4.1 Brief Introduction to Existing KeyPoints Models

The basic minimal path models such as (Benmansour and Cohen, 2011; Cohen

and Kimmel, 1997; Li and Yezzi, 2007), require user input initial source points

and endpoints as the prior knowledge to track the minimal paths. The initial

source points, considered as the boundaries of the nonlinear Eikonal equation, are

necessary initialize the fast marching algorithm. The end points are used to start

the geodesics back-tracking scheme. In some cases, to provide both initial source

points and end points are difficult and time-consuming. In another aspect, for

vessel tree extraction, the positions of the initial source points can be detected

by, for example, finding the points with local minimum of the vesselness map.

Therefore, efforts have been devoted to reduce the end points input.

For the purpose mentioned above, Benmansour and Cohen (2009) proposed a new

approach: a keypoints searching method to detect recursively new startpoints (or

keypoints) along the expected features named. Kaul et al. (2012) improved this

idea using a new stopping criterion for both open and closed curve detection and a

new method to compute the Euclidean curve length different to (Benmansour and

Cohen, 2009; Deschamps and Cohen, 2001). li20093d proposed to detect the tubu-

lar structure using the extra radii model with isotropic Riemannian metric Li and

Yezzi (2007) and the original keypoints searching criteria proposed by Benmansour

and Cohen (2009).

Two main weaknesses of the classical keypoints searching approach proposed by

(Benmansour and Cohen, 2009) are that the geodesic distance and the Euclidean

path length do not take into account the orientation of the tubular structure or

object boundaries, due to the use of an isotropic geodesic Riemannian metric,

and suffer from a leakage problem. In contrast, we use an anisotropic geodesic

Riemannian metric, and develop new criteria for selecting keypoints based on

the path score and automatically stopping the tree growth. Experimental results

demonstrate that our method can obtain the expected results which can extract

vessel structures at a finer scale, with increased accuracy.



Retinal Vessel Segmentation via New Minimal Paths Models 60

In this section, we proposed a new vessel tree extraction method based on the au-

tomatic keypoints detection and state-of-the-art anisotropic fast marching method

proposed by Mirebeau (2014a) for an open source library. The pairwise distances

between keypoints are fixed by a curve length threshold; classical keypoints search-

ing method (Benmansour and Cohen, 2009) tends to overlook parts of the vessel

tree when the curve length threshold is small, and to leak or take shortcuts be-

tween distinct branches of the vessel tree for large curve length threshold. We

substantially improve the performance for small curve length threshold, by in-

corporating in the keypoint detection criterion a path score computed from the

optimally oriented flux vesselness map for each keypoint candidate detected by the

classical definition. Furthermore, The above mentioned keypoints-based minimal

path models use the isotropic metric. In contrast, we make use of the anisotropic

Riemannian metric, integrating with the path orientation, to enforce the geodesic

agree with the vessel orientation. The Euclidean curve length computation method

associated to an anisotropic Riemannian metric is also presented, based on the

Hopf-Lax formula.

Summarily, our contribution in this section is as follows:

• We redefine the keypoints to make them reasonable even for small curve

length threshold.

• We present the extension of the curve length calculation in the anisotropic

case, in itself a different contribution.

• We give a stopping criterion to automatically stop the keypoints searching

scheme.

3.4.2 Euclidean Curve Length Calculation

One of the critical points of keypoints method is the calculation of the geodesic

curve length (geodesic distance) map and the Euclidean curve length map using

fast marching method (Mirebeau, 2014a) simultaneously. Letting K be the collec-

tion of keypoints which are taken as new source points, for any geodesic Cŝ,x̂ where

ŝ 2 K is an initial source point, the Euclidean curve length map L(x̂) = L(Cŝ,x̂)
can be formulated as:

L(x̂) :=

Z

C
ŝ,x̂

kC 0ŝ,x̂(t)k dt. (3.13)

A natural approach of computing the Euclidean curve length map L, is to extract

for each x̂ 2 Ω̂ a minimal geodesic Cŝ,x̂ by solving the ODE (2.55), and then

calculating its Euclidean curve length. This first method turns out unfortunately

to be too expensive in terms of computational cost.
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Deschamps and Cohen (2001) and Benmansour and Cohen (2009) proposed a

fast method for approximating the Euclidean curve length in the course of the

fast marching front propagation. However, their methods depend only on the

isotropic Riemannian metrics over the image domain Ω. In this section, we extend

this method to the radius-lifted anisotropic Riemannian metric case to blend the

benefits of both orientation enhancement and radius lifting.

Based on the tensor fieldMr as shown in (3.9), the geodesic distance map U(x̂)
denoting the geodesic curve length of Cŝ,x̂ can be obtained by solving the Eikonal

PDE (

krU(x̂)kM−1
r (x̂) = 1, 8x̂ 2 Ω̂\{ŝ}

U(ŝ) = 0.
(3.14)

The Eikonal PDE (3.14) can be approximated by the fixed point system (2.85)

with a Hopf-Lax update operator Λ:

ΛU(x̂) = min
ŷ2@S(x̂)

n

RAR(x̂, ŷ − x̂) + IS(x̂) U(ŷ)
o

,

= min
ŷ2@S(x̂)

n

kŷ − x̂kMr(x̂) + IS(x̂) U(ŷ)
o

, (3.15)

where IS(x̂) denotes the piecewise linear interpolation operator on the mesh S(x),

and y lies on the boundary of S(x̂) (Mirebeau, 2014a). RAR(x̂, ŷ − x̂) is the

anisotropic radius-lifted Riemannian metric as described in (2.61).

An approximation of L is given by the solution of the following fixed point problem:

find L : Ω̂ ! R such that (i) for all x̂ = (x, r) 2 K, `(x̂) = 0, and (ii) for

all x̂ 2 Ω̂/K, denoting by ŷ⇤ the point at which the minimum of the Hopf-Lax

update operator (3.15) is attained. One can compute L as

L(x̂) = kŷ⇤ − x̂kM2
+ L(ŷ⇤), (3.16)

where L(ŷ⇤) can be obtained by interpolation. kukM2
=
p

hu, M2 ui andM2 with

size 3⇥ 3 is defined as

M2 =

0

@

1 0 0

0 1 0

0 0 0

1

A . (3.17)

Equation (3.16) means that we only compute the approximated curve length of

the projected path from the radius-lifted domain Ω̂ to the image domain Ω.

Let Ẑ be a discretization grid of the radius-lifted domain Ω̂. For concreteness,

we give a second description of (3.16), closer to implementation and specialized

to 3-dimensional domains as in the 2D with radius lifting case. Opting for offset

based notations, we introduce the translated stencil

}(x̂) := S(x̂)− x̂, x̂ 2 Ẑ \ Ω̂, (3.18)
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which is a collection of tetrahedra which union is a neighborhood of the origin. A

generic boundary stencil point ŷ 2 @S(x̂) as in optimization (3.16) can then be

expressed as:

ŷ = x̂+
3X

i=1

 i ûi, (3.19)

s.t.  i > 0, and
3X

i=1

 i = 1, (3.20)

where û1, û2 and û3 are non-zero vertices of a common tetrahedron T 2 }(x̂).

Consider the compact and convex set:

Ψ := { = ( 1,  2,  3);  i > 0,
3X

i=1

 i = 1, i = 1, 2, 3}. (3.21)

For each point x̂ 2 Ẑ \ Ω̂ and simplex T 2 }(x̂) we consider the function:

Jx̂,T ( ) =

∥
∥
∥
∥
∥

3X

i=1

 i ûi

∥
∥
∥
∥
∥
Mr(x̂)

+
3X

i=1

 i U(x̂+ ûi). (3.22)

One can see that Jx̂,T is a convex function on the set of Ψ (3.21). Minimizing

Jx̂,T can be found in (Mirebeau, 2014a; Sethian and Vladimirsky, 2003). Then

equation (3.16) is equivalent to

U(x̂) = min
T2}

⇢

min
 2Ψ

n

Jx̂,T ( )
o}

. (3.23)

In offset based coordinates, the minimizer of the fixed point problem formulated

in (3.15) is denoted by  ⇤ = ( ⇤
1,  

⇤
2,  

⇤
3). Then equation (3.16) can be expressed

with respect to  ⇤:

L(x̂) =

∥
∥
∥
∥
∥

3X

i=1

⌘⇤i ûi

∥
∥
∥
∥
∥
M2

+
3X

i=1

⌘⇤iL(x̂+ ûi). (3.24)

Therefore, the minimizer ŷ⇤ = x̂+
P3

i=1  
⇤
i ûi. A single pass solve is again possible:

whenever the Fast Marching algorithm updates U(x̂), simultaneously update L(x̂),

using the (just computed) minimizer ŷ⇤ from (3.15).

3.4.3 Keypoints Definition with a Path Score

The score PS of a path γ = (Γ, r) is obtained by averaging the vesselness map

Vness computed from the optimally oriented flux filter proposed by Law and Chung
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(2008), see (3.3) for details. One has

PS(Γ,Th) =

Z

Γ

Vness

(
Γ(s)

)
δ
(
Th,Vness

(
Γ(s)

))
ds

Z

Γ

δ
(
Th,Vness

(
Γ(s)

))
ds

. (3.25)

The threshold parameter Th > 0 and selector δ(·, ·) are used to eliminate irrelevant

parts of the path

δ(Th, d) =

(

1, if d < Th;

0, otherwise.
(3.26)

For each x 2 Ω, we denote by PS(x,Th) = PS(Γx,Th) the path score associated

to the geodesic Cs,x = (Γx, r) joining x̂ = (x, r) to the source point ŝ.

Our algorithm combines three main ingredients:

• The classical keypoint searching scheme (Benmansour and Cohen, 2009);

• State-of-the-art anisotropic Fast Marching method (Mirebeau, 2014a) with

integrated geodesic curve length computation;

• Vessel tree extraction based on original and new keypoints selection criteria

as well as the stopping criteria.

In practice, our keypoints detection method is embedded within the inner loop

of the fast marching method, which it augments with several robust criteria for

keypoints detection, adaptation of a set of path score thresholds, and termination.

Keypoints Selection Method

The approximated geodesic distance U to the currently extracted tree structure

is estimated using the fast marching algorithm update scheme: initialization and

steps 2-12 of the loop in Algorithm 3.

Following the dynamic programming principle, image pixels are tagged as either

Trial or Accepted. The Trial point x̂min currently minimizing U is tagged as

Accepted (i.e. frozen), and the value U(ŷ) at neighbouring points ŷ is suitably

updated. In addition, line 10, we estimate the geodesic curve length U(ŷ) and Eu-

clidean curve length L(ŷ), and potentially tag ŷ as Trial. The original keypoints

selection method (KPSM) (Benmansour and Cohen, 2009) adds the currently ac-

tive point (the latest Accepted point) x̂min to the set K of keypoints as soon as

L(x̂min) ≥ λ, where λ is the user chosen Euclidean curve length threshold. The

reason of choosing such a point as keypoint is that among all the points with the
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Figure 3.3: Steps of keypoints searching scheme. (a) The first keypoint is found.
(b) Two keypoints are found. (c) Seven keypoints are found. Cyan contours are the
boundaries of the tubular structure and red lines are the centrelines. (d)-(f) are the

optimal distance maps Uopt for corresponding to the images of (a)-(c).

same minimal action map value, a point q̂ globally maximizing the Euclidean curve

length map L will be located in the centreline of the tubular structure (Benman-

sour and Cohen, 2009; Chen et al., 2014; Kaul et al., 2012; Li et al., 2009).

Keypoints Searching Scheme Based on A Path Score

A point x̂ = (x, r) is marked as a new keypoint if its Euclidean curve length

satisfies L(x̂) 2 [λ, 3λ), and if additionally it obeys

min
n

PS(x,Thi−1),Vness(x)
o

> Thi, (3.27)

where Vness is the vesselness map. The key idea behind this selection criterion

is that, among all points for which the action map U is within a given bound,

the point which maximizes the Euclidean curve length map L should be inside

the tubular structure. Indeed the large ratio L(x̂)/U(x̂) reflects the fact that the

geodesic Cx̂, joining x̂ to a previous keypoint, has a small action RAR(C(·), C 0(·)) in
average. Thus, by construction of the metric, this geodesic must lie on the vessel

centrelines and be aligned with the vessel orientations.
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Here we consider the minimal action map U for a tubular structure tree with

the initial point at the root of this tree. For all the points ŷ in the level set

C = {ŷ | U(ŷ) = c} where c > 0 is a constant, there may be many local maximums

of L, some of which are the intersections of the level set C and the tubular structure

branch centrelines. Thus we select the maximal local maximum which is inside

a tubular structure judging by the equation (3.27). In our keypoints searching

method, one or several path score thresholds Th1 ≥ Th2 ≥ · · · ≥ Thk are given as

input; generally k 2 {1, 2}, and by convention Th0 = +1. If the currently active

point x̂min has an excessive estimated curve length L(x̂min) ≥ 3λ, see line 13,

then the next threshold Thi+1 is activated in order to discover finer, less visible

vessel structures; unless i = k in which case the method ends. If the currently

active point x̂min has an appropriate estimated curve length λ  L(x̂min) < 3λ,

then it is considered as a candidate new keypoint (i.e. a potential node of the

vessel tree structure), see line 23. We extract the geodesic Cx̂ linking x̂ to the

already extracted tree structure, and evaluate its relevance using a path score.

The selection test line 25 requires the path score to exceed the current selection

threshold Thi. The selector δ(T, ·) appearing in (3.25) is applied with T := Thi−1

so as to push the keypoint selection towards finer and less visible structures, when

i > 1, and leave the vicinity of the tree extracted with the previous threshold

Thi−1. Using a hierarchy of successive thresholds, an anisotropic metric, allows

in the end to reliably handle a much smaller curve length threshold λ than the

inspirational KPSM (Benmansour and Cohen, 2009), without leaking outside of

the vessel or tubular structure, but staying right in its centreline. In Fig. 3.3, we

show the keypoint searching results using the proposed method. In this figure,

the green dot is the user-input initial source point, red dots indicate the searched

keypoints with two path score thresholds. Cyan contours are the boundaries of the

tubular structures. In Figs. 3.3a to 3.3c, we show one, two and seven keypoints

with the corresponding centrelines and contours. In Fig. 3.3d to 3.3f, we show the

optimal minimal action map Uopt of U with respect to Figs. 3.3a to 3.3c, where

Uopt is defined as

Uopt(x) = min
r2[Rmin, Rmax]

n

U(x, r)
o

. (3.28)

Stopping Criterion

The keypoint selection process has to be stopped after all vessel branches have

been explored, but before spurious artifacts appear in the reconstructed vessel

tree, which requires an adequate stopping criterion. The proposed algorithm ter-

minates when all provided path score thresholds (Thi)
k
i=1 have been used, and

the value of Euclidean curve length is L(x̂min) > 3λ, where x̂min is the latest ac-

cepted point in the Fast Marching propagation. In Fig. 3.4, we show the complete

keypoints searching result. Green point is the initial source point. Red points
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Figure 3.4: Keypoints searching result with two path score thresholds. Green dot indi-
cates the initial source point, red dots are the keypoints searched using large path score
threshold and blue dots are the keypoints obtained using small path score threshold.

are the keypoints with respect to path score threshold Th1. Blue points are the

keypoints associated to the path score threshold Th2. From Fig. 3.4, we can see

that no leakage occurs, even on weak branches which are reliably extracted by our

algorithm.

Semi-Automatic Parameter Setting

The proposed algorithm requires a few parameters: a curve length threshold λ,

and a collection of thresholds (Thi)
k
i=1, one initial source point. The curve length

threshold λ should be slightly more than twice the largest radius of the vessels

to be detected. We use one or two path score thresholds, depending on the test

case, which are automatically selected as quantiles of the vesselness map Vness

distribution on image pixels. Finally, the initial source point used in the Fast

Marching algorithm can be user provided or automatically selected as the point

which maximizes the value of the vesselness map Vness (3.3).
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(a) (b)

(c) (d)

Figure 3.5: Comparison between our algorithm and the classical KPSM. (a) and (b)
are the results of KPSM with curve length threshold 26 and 60, respectively. (c) and

(d) are the results of our algorithm with 26 and 60, respectively.

3.4.4 Numerical Experiments

Small curve length thresholds are a-priori desirable when extracting vessel trees,

since they favour the discovery of small structures and avoid the extraction of

inadequate shortcuts linking different tree branches. Unfortunately, the classical

KPSM (Benmansour and Cohen, 2009) suffers from a leaking problem with small

curve length threshold: before the main vessel branches are extracted, multiple

irrelevant keypoints are detected outside the vessel structure of interest. This

problem, which is mainly caused by noise and intensity inhomogeneities, is avoided
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with our new keypoint selection criterion involving a path score, as illustrated on

Fig. 3.5. In Fig. 3.5, with a large curve length threshold λ = 60, the two methods

produce similarly inaccurate results: some small branches are missed, and some

undesirable shortcuts between different branches are extracted. In Fig. 3.5(a), with

a small curve length threshold λ = 26, the keypoints from the KPSM (Benmansour

and Cohen, 2009) leak and begin to accumulate outside the structure; in contrast

our method accurately detects the vessel tree and then automatically stops as

shown in Fig. 3.5, which can illustrate the advantages of using path score constraint

and small curve length threshold. Note that in this experiment, we only use one

path score threshold for the keypoints searching scheme.

We illustrate on Fig. 3.6 the results of classical KPSM and our method, with

curve the length threshold λ = 12 which empirically is the best for these two

methods on this image. For the classical KPSM, we specify a certain number of

keypoints to stop the keypoints searching scheme and for our method, it is stopped

automatically. For the proposed method as shown in Fig. 3.6b, we compute the

path score threshold Th1 as the 10% quantile of the vesselness map, in other

words {x 2 Ω; Vness(x) ≥ T1} collects 10% of the image pixels. For Th2, we use

the 12% quantile. On this retinal image, one can see that the classical KPSM

suffers from the leakage problem in at least three places due to the gray level

inhomogeneities. However, for our method, no leakage happens. Note that in

the following experiments with retinal image, we only show the centrelines and

keypoints for better visualization. In fact our algorithm also extracts the vessel

radii, hence the vessel walls, as illustrated on Fig. 3.4.

Many vessels are missed with a large curve length threshold λ, resulting in the

extraction of numerous irrelevant shortcuts, as shown in Fig. 3.7. In this experi-

ment, we use the same retinal image and path score thresholds as which are used

in Fig. 3.6b, except that in Fig. 3.7, we use a large curve length threshold λ = 40.

One can see that many finer vessels are missed and some short cuts occurs when

compared to Fig. 3.6b.

Again, we have shown the impact of the path score threshold to our algorithm

in the same retinal image as Fig. 3.6b. Here we utilize only one large path score

threshold Th1 by specifying the 6% highest vesselness map value among all the

pixels. Less keypoints are found due to the larger path score threshold comparing

to Fig. 3.6b.

The main drawback of the proposed path score based keypoints searching method

is that when handling the tubular structure tree with loops, as shown in Fig. 3.6b,

some small tubular segments will be missed due to the existence of the loops and

the fast marching scheme.
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3.4.5 Conclusion

We propose a new keypoint based tubular structure tree extraction method us-

ing anisotropic fast marching, and introducing of a path score selection procedure

in the keypoint selection criterion. We also show the possibility that the key-

points searching scheme can be automatically stopped by only providing a set

of path score thresholds and the curve length threshold. These ingredients allow

our method to search keypoints separated by small curve lengths, leading to better

extraction results compared to the classical keypoints searching method (Benman-

sour and Cohen, 2009). Numerical experiments illustrate these improvements on

two MRA images and one retinal image. The next step is to extend our approach

to 3D and to validate it on a large data set.
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Algorithm 3 Vessel Tree Extraction using Path Score based Keypoints Method

Input:
• MetricMr, stencil S and initial source point ŝ.
• Curve length threshold λ and path score thresholds (Thi)1ik.
• Vesselness map Vness.

Output:
• Minimal path C, keypoint set K.

Initialization:
• For each point x̂ 2 Ẑ, U(x̂) +1, L(x̂) +1 and V(x̂) Far.
• U(ŝ)=`(ŝ)=0, K  {ŝ}, i 1 and IfStop  False.

Main Loop
1: while IfStop = False do
2: Find x̂min = (xmin, rmin), the Trial point which minimizes U .
3: V(x̂min) Accepted.
4: for All ŷ such that x̂min 2 S(ŷ) and U(ŷ) > U(x̂min) do
5: Compute Unew(ŷ) using (3.15).
6: Compute Lnew(ŷ) using (3.16).
7: V(ŷ) Trial.
8: if Unew(ŷ) < U(ŷ) then
9: U(ŷ) Unew(ŷ).
10: L(ŷ) Lnew(ŷ).
11: end if
12: end for
13: if L(x̂min) ≥ 3λ then . Path score threshold reduction.
14: if i = k then
15: IfStop  True. . Stopping criterion.
16: else
17: i i+ 1
18: end if
19: for all points ẑ 2 Ẑ passed by the minimal paths C do
20: Set U(ẑ) = `(ẑ) = 0.
21: V(ẑ) Trial.
22: end for
23: else if `(x̂min) ≥ λ then . Keypoint selection.
24: Track the minimal path Cx from x̂min.
25: if min{PS(xmin,Thi−1),Vness(xmin)} ≥ Thi then
26: K = K [ {x̂min}.
27: C = C [ {Cx}.
28: Set U(x̂min) = L(x̂min) = 0.
29: V(x̂min) Trial.
30: end if
31: end if
32: end while
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(a)

(b)

Figure 3.6: Comparison of the classical KPSM and the proposed algorithm in real
retinal image. (a) Result from the KPSM. (b) Result of our algorithm.
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Figure 3.7: Keypoints searching result from our algorithm with curve length threshold
40.

Figure 3.8: Keypoints searching result from our algorithm with a large path score
threshold.
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3.5 Vessel Extraction using Dynamic Rieman-

nian Metric and Region-Constrained Mini-

mal Path Refinement Method

3.5.1 Introduction

The classical Benmansour-Cohen model (Benmansour and Cohen, 2011) can be

applied to efficiently extract the vessel boundaries and centrelines by given two

endpoints as shown in Fig. 3.9a. However, for the task of extracting a vessel from

the complicated network such as the retinal vessel network, global minimizer of

the geodesic energy (3.12) with a static metric RAR cannot obtain the expected

results in some cases. In Fig. 3.9b we show the vessel extraction result by using

the Benmansour-Cohen model (Benmansour and Cohen, 2011), where cyan line

denotes the vessel centerline and red contour is the vessel boundary. The dash

yellow curve indicates the expected tubular structure centreline. This means if one

would like to extract the vessels crossing one another, some parts of the weaker

one will sometimes be missed. One of the possible reasons is that the static metric

RAR depends only on the local pixel-based image features of the vessel detected

by the optimally oriented flux filter (Law and Chung, 2008) thus the extracted

minimal paths will always favour to pass through the vessels with strong local

tubular features. These radius-lifted Riemannian metrics are fixed in the course

of the computation of the geodesic distance by fast marching method. Using such

kind of metrics for geodesics computation, the non-local image features are missed.

Once the geodesic metrics are given, the geodesics can be immediately determined

by the computed geodesic distance map.

Let us consider the course of the fast marching method. In each iteration, one

Trial point with the smallest geodesic distance value will be frozen and a geodesic

between this latest Accepted point and the initial source point can be obtained

at once. This just computed geodesic contains some useful information. In this

section, we propose a way to use this geodesic-based information.

In this section, we propose a new class of minimal path model with dynamic

anisotropic Riemannian metric and image feature coherence penalty. The proposed

dynamic Riemannian metric can penalize the variation of the geodesic-based tubu-

larity features like the gray levels or vesselness values, and meanwhile preserve the

anisotropy of the tubular structure. In contrast with the traditional anisotropic

Riemannian metrics which depend only on the geodesic positions and orientations,

the proposed dynamic Riemannian metric invokes a non-local geodesic-based tubu-

larity features, calculated in the course of the fast marching front propagation.
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(a) (b)

Figure 3.9: Vessel extraction results by the Benmansour-Cohen model. Blue cross and
yellow star indicate the initial source points and end points respectively. Cyan curves
are the centrelines and red contours are the vessel boundaries. Yellow dash curve in (b)

indicates the expected centreline.

As the second contribution of this section, we present a region-constrained mini-

mal path model, as the refined processing of the minimal paths obtained by the

dynamic Riemannian metric. By this region-constrained minimal path model,

we can obtained the expected centrelines and boundaries of the expected vessels.

Numerical experiments on the retinal image dataset have demonstrated the ad-

vantages of the proposed minimal path models comparing to the classical minimal

path models.

3.5.2 Dynamic Riemannian Metric with Feature Consis-

tency Penalty

In this section, we introduce a novel dynamic Riemannian metric by penalizing

the feature coherence. This metric is built upon the image domain Ω ⇢ R
2 instead

of lifting domain.

Dynamic Riemannian Metric Construction

We firstly introduce the definition of the back-tracked point (Chen et al., 2016c;

Liao et al., 2012, 2013). In (Liao et al., 2012, 2013), which is used to compute the

feature consistency penalization.

A back-tracked point z 2 Ω located at a geodesic Cs,x : [0, 1] ! Ω joining the

initial source point s = Cs,x(0) to any domain point x = Cs,x(1), which can be

defined as a point z = Cs,x(z), where z 2 (0, 1), being such that:

z = Cs,x(z), s.t.

Z 1

1−z

kC 0s,x(t)kdt = `. (3.29)
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Figure 3.10: An example for back-tracked points and the corresponding local geodesics
in a patch of a retinal image.
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Figure 3.11: An example for back-tracked points and the corresponding local geodesics
in a synthetic image.

Positive constant ` is a given curve length threshold value. Note that when the

value of the Euclidean curve length threshold λ is larger than the Euclidean curve

length of Cs,x, we simply set z = s.

We illustrate the back-tracked points and the corresponding short back-tracked

geodesics in a patch of retinal image as shown in Fig. 3.10 and in a synthetic

image as shown in Fig. 3.11a.
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Denote the tubular feature map by F : Ω! R. 8x 2 Ω and its back-tracked point

z defined by (3.29), we introduce two feature coherence functions Dc and Dd:

Dc(x) = exp
(
⌧1 |F (x)− F (s)|p

)
, s is the initial source point, (3.30)

Dd(x) = exp
(
⌧2 |F (x)− F (z)|p

)
, z is the back-tracked point of x, (3.31)

where ⌧1 and ⌧2 are two positive constant parameters. p is a positive constant,where

we set p = 1 in this section. Dc measures the difference in terms of tubular fea-

ture F between each point and the initial source point. Dd measures the local

coherence of the tubular feature F since it computes the difference of F between

current point and its back-tracked point. In Fig. 3.11b, we illustrate the values of

function Dd in different positions.

Based on the feature coherence functions Dc and Dd, we can define the proposed

dynamic Riemannian tensor fieldMd over the image domain Ω:

Md(x) =
(
Dc(x) +Dd(x)

)
Ms(x), 8x 2 Ω, (3.32)

whereMs is a tensor field constructed for all the points x 2 Ω by

Ms(x) = exp
(
↵Λ2(x)

)
V1(x)V

T
1 (x) + exp

(
↵Λ1(x)

)
V2(x)V

T
2 (x), (3.33)

where Λ1, Λ2 are eigenvalues of Qopt (3.5) and V1, V2 are the corresponding

eigenvectors:

Qopt(x) = Λ1(x)V1(x)V
T
1 (x) + Λ2(x)V2(x)V

T
2 (x), 8x 2 Ω. (3.34)

The dynamic tensor fieldMd (3.32) can preserve the anisotropic property of the

static tensor field Ms (3.33). Based on Md, the proposed dynamic Riemannian

metric can be formulated as:

Rdyn(x,u) =
p

hu,Md(x)ui . (3.35)

For any x 2 Ω and any vector u 2 R
2.

The minimal action map Ud associated to the initial source point s and the dynamic

Riemannian metric Rdyn is defined as

Ud(x) = min
γ2As,x

⇢Z 1

0

Rdyn
(
γ(t), γ0(t)

)
dt

}

. (3.36)

Belleman’s optimality principle states that the minimal action map U defined

in (3.36) can be expressed as:

Ud(x) = min
y2S(x)

{d(x,y) + Ud(y)}, (3.37)
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Belleman’s optimality principle can be approximated by the Hopf-Lax update

operator as shown in Section 2.4.3.

Numerical Implementation based on the Anisotropic Fast

Marching Method

The goal is to compute the geodesic distance map associated to the dynamic

anisotropic Riemannian metric (3.35) by state-of-the-art anisotropic fast marching

method proposed by Mirebeau (2014a). As discussed in Section 2.4, the fast

marching method introduces a regular grid Z of the image domain Ω and labels

each grid point either Accepted, Trial or Far. Among all the Trial points, the point

xmin which minimizes the minimal action map Ud will be tagged as Accepted. Once

the latest Accepted point xmin 2 Z is found, one can track a minimal geodesic

Cz,xmin
. This means that updating the proposed dynamic anisotropic Riemannian

metric Rdyn (3.35) is possible during the fast marching propagation by using the

approximation of that for all y such that xmin 2 S(y) one has

Dc(y) ⇡ Dc(xmin), (3.38)

Dd(y) ⇡ Dd(xmin), (3.39)

where xmin is the latest Accepted point and y denotes any neighbourhood point

of xmin in terms of the local stencil S. Such approximation is reasonable due to

the small size of stencil S. For N grid points where N = #Z, it only requires to

compute the local geodesic N times.

3.5.3 Region-Constrained Minimal Path Model

The goal in this section is to find a minimal cost path inside a given prior region

instead of the whole image domain Ω. For this purpose, we introduce some no-

tations. Given an open subset U ✓ Ω ⇢ R
2, bounded and connected, one has

a new radius-lifted domain Û = U ⇥ [Rmin, Rmax] ( [Rmin, Rmax] is the admissi-

ble radius space ). Let AÛ be the collection of all the regular radius-lifted paths

γc : [0, 1]! Û :

AÛ :=
{
γc; γc : [0, 1]! Û , γc(0) = ŝ, γ(1) = x̂

 
.
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Algorithm 4 Fast Marching Method with Dynamic Riemannian Metric

Input:
• Tubular feature map F .
• radius-lifted tensor fieldMs (3.33).
• Initial source point s and end point p.
• Local stencil S.

Output:
• Minimal action map Ud and geodesic Cs,p.

Initialization:
• For each point x 2 Z, set Ud(x) +1.
• For each point x 2 Z, set V(x) Far.
• Set Ud(s) 0 and V(x) Trial.
• Set IfStop False.

Main Loop
1: while IfStop=False do
2: Find xmin, the Trial point which minimizes Ud.
3: V(xmin) Accepted.
4: if xmin= p then
5: Recover the minimal path Cs,p.
6: Set IfStop True.
7: end if
8: Find the back-tracked point z of xmin by (3.29).
9: Compute Dc(xmin) and Dd(xmin) by (3.30) and (3.31) respectively.
10: for all y such that xmin 2 S(y) and V(y) 6= Accepted do
11: if V(y) = Far then
12: Set V(y) Trial.
13: end if
14: Compute Dc(y) and Dd(y) by (3.38) and (3.39) respectively.
15: Calculate the dynamic tensorMd(y) by (3.32).
16: Compute Unew(y) by solving the Hopf-Lax operator (2.86).
17: if Unew(y) < U(y) then
18: U(y) Unew(y).
19: end if
20: end for
21: end while

The geodesic energy Lc with respect to the radius-lifted metric RAR (2.61) and

the constrained domain Û can be defined as

Lc(γ) :=

8

><

>:

Z 1

0

RAR
(
γ(t), γ0(t)

)
dt, if γ 2 AÛ ,

1, otherwise.

(3.40)
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Algorithm 5 Anisotropic Fast Marching method with Constrained Region

Input:
• Radius-lifted tensor fieldMr.
• Constrained domain Û .
• Initial source point ŝ.
• Local stencil S.

Output:
• Minimal action map Uc.

Initialization:
• 8x̂ 2 Û , Uc(x̂) +1 and V(x̂) Far.
• Set Uc(ŝ) 0 and V(ŝ) Trial.

Main Loop
1: while at least one grid point is tagged as Trial do
2: Find x̂min, the Trial point which minimizes Uc.
3: Set V(x̂min) Accepted.
4: if x̂min 2 Û then
5: for All ŷ such that x̂min 2 S(ŷ) and V(ŷ) 6=Accepted do
6: Compute Unew(ŷ) using Hopf-Lax update in (2.86).
7: if V(ŷ) 6=Trial then
8: V(ŷ) Trial.
9: end if
10: if Unew(ŷ) < Uc(ŷ) then
11: Uc(ŷ) Unew(ŷ).
12: end if
13: end for
14: else
15: Set Uc(x̂min) = +1.
16: end if
17: end while

Therefore, the minimal action map Uc with respect to the initial source point

ŝ 2 Û , defined over the whole radius-lifted domain Ω̂ can be expressed as:

Uc(x̂) :=
(

min
{
Lc(γ); γ(1) = x̂, γ(0) = ŝ

 
, if x̂ 2 Û ,

1, otherwise .
(3.41)

If x̂ 2 Û , one can search the optimal path minimizing Lc inside Û . Otherwise, for

any curve γ such that γ(1) = x̂ /2 Û , Lc(γ) =1.

Numerically, the minimal action map Uc can be naturally computed by the fast

marching method with a freezing scheme as described in Algorithm 5. Comparing

against the regular fast marching method, the freezing scheme-based method set

the value of the latest Accepted point as1 if this point is outside the radius-lifted

constrained region Û .
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(a) (b) (c)

Figure 3.12: Steps for the proposed Retinal vessel extraction method. (a) Minimal
path (red curve) by using the dynamic Riemannian metric. (b)Tubular neighbourhood
region of the minimal path shown in (a). (c) Minimal path extraction result obtained
using the region-constrained minimal path model, where the cyan curve denotes the

centreline and red curve denotes the vessel boundary.

(a) (b) (c)

Figure 3.13: Centreline bias correction. (a) Minimal paths extracted by the proposed
region-constrained minimal path model and the dynamic metric model, where the results
are indicated by cyan solid line and red dash line respectively. In this figure, we only
demonstrate the physical path of the obtain radius-lifted minimal path. (b) and (c)

Details for both the minimal paths in (a).

Summarily, the proposed interactive vessel extraction method can be decomposed

to two steps. The first step is to get the rough minimal path C which pass the

vicinity of the true centreline of the expected vessel as demonstrated in Fig. 3.12a.

Next step is to build the tubular neighbourhood U of the just computed minimal

path C by dilation operator and perform the region-constrained minimal path

model to obtain both the centreline and boundaries of the expected vessel. The

neighbourhood U is shown in Fig. 3.12b and the final vessel extraction result is

demonstrated in Fig. 3.12c.

Note that the region-constrained minimal path model can be considered as the

refined procedure of the minimal path obtained by using the dynamic Riemannian

metric. Since the inhomogeneous vesselness distribution along the desired vessel,

the extracted minimal path using the feature consistency penalized dynamic Rie-

mannian metric may result in centreline bias as shown in Fig. 3.13. In this figure,

a shows two minimal paths: one is the path extracted using the dynamic metric
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Figure 3.14: Comparative Retinal vessel extraction results by the Benmansour-Cohen
model and the proposed model. Blue crosses and black stars indicate the initial source
points and the end points, respectively. Column 1 show the vessel extraction results
by the Benmansour-Cohen model. Column 2 show the vessel extraction results by the
proposed dynamic anisotropic Riemannian metric. Column 3 show the refined results

by the proposed region-constrained minimal path model.

indicated by red dash line and another is the path obtained using the region-

constrained minimal path mode (cyan solid line). In Figs. 3.13b and 3.13c we give

the details of the centreline bias.

In Fig. 3.14, more comparative retinal vessel extraction results for the classical

Benmansour-Cohen model (Benmansour and Cohen, 2011) and the proposed two-

step method is given. The left column of Fig. 3.14 shows the vessel extraction

results from the Benmansour-Cohen model where the green curves denote the

centrelines and yellow contours denote the boundaries of the retinal vessels. In the

middle column, we show the minimal paths extracted by the dynamic Riemannian

metric where the paths are indicated by red dash lines. The right column present
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Table 3.1: Comparison of the vessel extraction results for the Benmansour-Cohen
model and the proposed minimal path model.

Measure NF
T NT

F NT
T NF

F

47 2 55 6

the final results from the region-constrained minimal path model where the cyan

lines indicate the retinal vessel centrelines and red contours denotes the boundaries

of the vessels. From this figure, we can see that the proposed two-step method can

obtain the desired results which completely avoid the short branches combination

problem.

The proposed minimal path model is evaluated on the Test set of the DRIVE

dataset (Staal et al., 2004), which includes 20 retinal images. We choose total 110

vessels which start from the optic disk of the retinal images or those cross another

vessel. If the extracted minimal path exactly follows the desire vessel, we consider

this is a positive extraction (PE), otherwise a negative extraction (NE). For the

proposed two-step vessel extraction method, the number of PE = 102 out of total

110 vessels. For Benmansour-Cohen model, this number is 57. Additionally, we

compute the following measures:

• NT
F : the number of vessels that the proposed method positively extracts and

the B-C model fails.

• NF
T : the number of vessels that the Benmansour-Cohen model positively

extracts and the proposed fails.

• NF
F : the number of vessels that both models fail to extract.

• NT
T : the number of vessels that both models positively extract.

In Table 3.1, we show these four measures mentioned above. It can be seen that

the proposed two-step model obtains better results than the Benmansour-Cohen

model (102 against 57).

3.5.4 Conclusion

We present a two-step method for interactive retinal vessel extraction including

both the centreline and boundary. In the first step, we invoke a feature consistency

penalized dynamic metric to find the rough centreline of the targeted vessel. Then

a region-constrained minimal path model is applied to get the extraction results

including both accurate centreline and boundary of the vessel.
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3.6 Centerlines Extraction and Boundaries De-

lineation for Retinal Vessels via a Region-

Constrained Minimal Path Model

3.6.1 Introduction

Models of tracking vessels constrained by prior centreline points aim to finding the

edge points based on various criteria. These models heavily rely on the binary pre-

segmented vessel map, since the prior centreline points are obtained by thinning

the binary vessel map using morphological filters. Al-Diri et al. (2009) proposed

an active contours method to measure the width of the retinal vessels. In their

formulation, the centreline points are obtained by a tramline filter and the edge

points are computed from the ribbon of twins model. The ribbon of twins model

uses two contours to identify one vessel boundary. Xu et al. (2011) proposed

a graph search model to delineate vessel boundary by modelling the boundary

detection problem as a 3D surface segmentation problem.

In this section, we deal with the same problem in a different way. We model the

vessel segments by piecewise geodesics consisting of centreline positions and the

corresponding radius values. The main purpose of this work is to introduce an

automatic method to extract a tubular tree structure, such as the retinal ves-

sel tree, relying on the region-constrained minimal path model as introduced in

Section 3.5.3. The constrained regions are built through the skeletons of the pre-

segmented vessels. This method is related to the geodesic or minimal path tech-

nique which is particularly efficient to extract a tubular shape, such as a blood

vessel. The proposed method utilizes a collection of pairs of points, where each

pair of points provides the initial source point and target point for one minimal

geodesic. For each pair of initial point and target point, we calculate the region-

constrained Riemannian metric with an additional radius dimension to constrain

the fast marching propagation so that our method can get a nice path without

any shortcut or overlapping to other minimal paths. The given pairs of points can

be easily obtained from a pre-segmented skeletonized image by any vessel detec-

tion filter like Hessian based filter or optimally oriented flux filter. Experimental

results demonstrate that our method can extract vessel segments at a finer scale,

with increased accuracy.

3.6.2 PreProcessing

In this step, we use the optimally oriented flux filter (Law and Chung, 2008) or

Hessian Filter (Frangi et al., 1998) as our vessel detector to filter the image and
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(a) (b)

(c) (d)

Figure 3.15: Tubular structure preprocessing step. (a) Original synthetic image. (b)
Vesselness map computed by Hessian-based Filter (Frangi et al., 1998). (c) the Skeleton
map of vesselness map in (b). (d) Tag different segments with different colours after

removing branch and crossover points.

obtain a vesselness map. Once the vesselness map is obtained, a constant threshold

is applied to this vesselness map to get the binary vessel map. In order to find

the endpoints for each vessel segment, we thin the binary image by a sequential

morphological filters (Lam et al., 1992) and remove all the branch points and

crossover points. The entire skeleton is broken up into a set of segments, in

which each segment consists of two endpoints. The branch or crossover points

are defined as any skeleton point having at least three neighbour points in 8-

neighbuorhood system. Any endpoint is discovered if it has only one neighbour

point and segment point has two neighbour points. In Fig. 3.15c, we show the

skeletons after applying thinning filter and the labeled segments in different colours

in Fig. 3.15(d). The original synthetic image and the corresponding vesselness map

are shown in Figs. 3.15a and 3.15b.

In this work, we firstly scan the entire skeleton map to find all the vessel segments
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Figure 3.16: Identifying the segments by removing the branch points and construct the
constrained tubular neighbourhood region. (a) Original segments image. (b) Separated
segments by removing the branch point. (c) labeled segments by different colors. (d)
The constructed tubular neighbourhood region and the identified initial and end points.

with two endpoints and then tag them with different labels. Next, we delete the

segments whose length in pixels are smaller than a given threshold Tlen, but retain

the segments who connect two branch or crossover points. Those segments will

be stored in the set T . Note that similar preprocessing operation can be found

in (Al-Diri et al., 2009; Xu et al., 2011). In Figs. 3.16a to 3.16c, we show another

example of identifying each segment by removing a branch point that connects

three segments.

3.6.3 Endpoints Correction

For each segment h 2 T , we can obtain a constrained region Uh 2 Ω by dilation

operation. In Fig. 3.16d, we demonstrate the constructed tubular neighbourhood

region of an identified segment. By adding the radius space [Rmin, Rmax] to Uh,

we get the radius-lifted tubular neighbourhood region Ûh = Uh ⇥ [Rmin, Rmax].
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Figure 3.17: Comparative extraction results. (a) and (b) are centrelines from
Benmannsour-Cohen model which correspond to the vessel segments tagged by blue
and red colours in Fig. 3.15(d) respectively. (c) shows the results from our region-
constrained minimal path model. (d) shows the results from region-constrained minimal

path model with endpoints correction.

.

Therefore, the radius-lifted minimal path corresponding to h can be extracted

by applying the region-constrained fast marching algorithm as described in Algo-

rithm 5. The radius-lifted initial source point for Algorithm 5 can be identified by

assigning radius 1 to either endpoint of h. The radius-lifted tensor fieldMr (3.9)

of the anisotropic Riemannian metric RAR can be constructed using the optimally

oriented flux filter (Law and Chung, 2008) as introduced in Section 3.3. The

tubular neighbourhood region Ûh for segment h is necessary to avoid overlapping

extraction as demonstrated in Fig. 3.17a and 3.17b, which show the overlapped

minimal paths. In Fig. 3.17a, the minimal path (blue) is extracted based on the

two endpoints of segment tagged as blue in Fig. 3.15d. In Fig. 3.17b, the minimal

path (red) is extracted based on the information from the red segment Fig. 3.15d.

One can see that the red minimal path passes almost the same pixels with the
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blue shown in Fig. 3.17a.

However, sometimes the endpoints of the segment h are not located at the exact

centre of the tubular structure. As an example, see the two endpoints of the

red segment in Fig. 3.15d. This endpoint-bias problem will introduce inaccuracy

to the final minimal path extraction results around the initial source points and

endpoints (see the red path in Fig. 3.17c). To solve this problem, we propose an

endpoint correction method before we apply the minimal paths extraction step.

The proposed EC method relies on the Euclidean curve length map L of the

minimal path, where L can be computed in the course of the fast marching front

propagation as introduced in Section 3.4.

Recall that the Euclidean curve length map L(x̂) = L(Cŝ,x̂) can be formulated as:

L(x̂) :=

Z

C
ŝ,x̂

kC 0ŝ,x̂(t)k dt, (3.42)

where ŝ 2 Ẑ is the initial source point and Ẑ is the discretization grid of Ω̂.

The EC method is described in Algorithm 6: for a given segment h 2 T with

two endpoints p1, p2, we identify its middle point m 2 h and the dilated tubular

neighbourhood region U~ with width `. By performing the fast marching algorithm

from the radius-lifted point m̂ = (m, 1), one can compute the geodesic distance

Uh and Euclidean curve length L inside the tubular neighbourhood region Uh
simultaneously. Once any radius-lifted endpoint p̂⇤

i = (pi, r) 2 Ẑ is reached, we

can search the desired radius-lifted point q̂i inside a set Bi:

Bi := {x̂ 2 Ẑ; kx̂− p̂⇤
i k2  rB}, , i = 1, 2, (3.43)

where rB > 0 is a given constant. As described in Algorithm 6: we find a collection

of radius-lifted points

Ai := {x̂ 2 Ẑ; L(x̂) ≥ [L(p̂i)] + 1, x̂ 2 B}, i = 1, 2, (3.44)

where [n] means the largest integer which is smaller than n 2 R. The collection

A1 (resp. A2) includes all the radius-lifted points for which the Euclidean curve

length values are larger than L(p̂1) (resp. p̂2). Then the desired endpoint can be

selected as:

q̂i = arg min
x̂2Ai

U(x̂), i = 1, 2. (3.45)

Once both endpoints are corrected, i.e., q̂1 and q̂2 are found by (3.45), stop the

algorithm completely. The criteria are based on the fact that among all the points

with the same curve length, any point which is located at the centreline of the

tubular structure has a local minimum geodesic distance value. In Fig. 3.17d,

we show the results with the boundaries delineation. We can see the endpoints
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Figure 3.18: Illustration for the proposed algorithm step by step. (a) The green
channel of the original retinal image. b Vesselness map obtained by using the method
presented in (Zhang et al., 2016). (c) Binary segmented vessel map after thresholding
the vesselness map. (d) Skeleton map after removing all the branch points and small

segments.

of red, green and yellow lines have been placed at the better positions compared

with Fig. 3.17c and Fig. 3.15d.

In Algorithm 6, for each segment h, we could get the minimal path Ch, joining
each corrected endpoints q̂i and the initial source point m̂:

Ch = Cm̂,q̂1

[

Cm̂,q̂2
. (3.46)

Then we replace the segments collection T by Tnew involving all the minimal paths

Ch.

3.6.4 Experimental Results on Retinal Images

we summary our method as follows:
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(a)

(b)

Figure 3.19: Segmentation of a retinal image by the proposed method. (a) The
result by Benmansour-Cohen model. (b) The result of our method (Green lines are the

boundaries and red lines are the centrelines).
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Figure 3.20: Details of the segmentation results shown in Fig. 3.19. Column 1:
details of Fig. 3.19(a) indicated by arrows. Column 2: corresponding details of

Fig. 3.19(b) .

1. For a given image I, obtain its vessel skeleton map by removing all the branch

and crossover points. Tag each segment of the skeleton map and store them

in T .

2. For each segment h 2 T , do Endpoints Correction as described in Algo-

rithm 6 to get a new set of segments Tnew.

3. For each segment hnew 2 Tnew, construct the tubular neighbourhood region

Ûh and do region-constrained fast marching algorithm described in Algo-

rithm 5 to obtain a set of minimal paths, in which each minimal path consists

of the centrelines and the radius value representing the vessel width.
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Figure 3.21: Improved results by Endpoints Correction. Yellow lines are the paths
without Endpoints Correction while red lines are the paths after Endpoints Correction.

We illustrate the first step of the proposed algorithm in Fig. 3.18. Note that in

Fig. 3.18a, we only demonstrate the green channel of the colored retinal image.

In Fig. 3.19a we show a complete result obtained by using by Benmansour-Cohen

model (Benmansour and Cohen, 2011) for each vessel segment. We can see that

there are three vessel segments are missed due to the overlapping extraction prob-

lem. The green lines represent the boundaries while the red lines are the centrelines

of the vessel segments. In Fig. 3.19b we show the vessel tree extraction results

by the proposed model. It can be seen that our method can capture the vessel

segments missed in Fig. 3.19a. The pre-segmented vessel map is obtained by ap-

plying a constant threshold value to the vesselness map Vness (3.3) computed using

optimally oriented flux filter.

In Column 1 of Fig. 3.20, we illustrate the vessel segments extraction details of In

Fig. 3.19a indicated by arrows. For the purpose of comparison, we show the result

details of our method in column 2 of Fig. 3.20.

In Fig. 3.21, we show the improved results after endpoints correction. Yellow lines

are the paths without endpoints correction. Compared to the red lines which are

produced after endpoints correction, we can see the endpoints are located at more

precise positions.
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Table 3.2: Comparison of our segmentation results with the second manual segmen-
tation on the test set of DRIVE dataset.

Methods Maximum Minimum Mean Standard deviation

Benmansour and Cohen (2011) 0.947 0.9271 0.9372 0.0054

Proposed Method 0.949 0.9305 0.9397 0.0052

Table 3.3: Comparison of our segmentations Computation time (in Seconds) with
Benmansour and Cohen (2011) model on retinal images from the test set of DRIVE

dataset.

Maximum Minimum Mean Standard deviation

Benmansour and Cohen (2011) 22.6s 9.16s 13.17s 3.2s

Endpoints Correction 5.1s 4.0s 4.39s 0.27s

Constrained Fast Marching 5.6s 4.4s 5.06s 0.353s

For evaluation we apply our method on 20 retinal images got from the test set of the

DRIVE dataset (Staal et al., 2004), acquired through a Canon CR5 non-mydriatic

3CCD camera with a 45 degree field of view (FOV). We show the comparison be-

tween Benmansour-Cohen model (Benmansour and Cohen, 2011) and our method

in Table 3.2 with evaluation measure Accuracy, which can be computed by the ra-

tio of the summation of the statistical components: the true positive and the true

negative to the total number of pixels in the FOV (Fraz et al., 2012). We erode

the FOV region by 11 pixels to remove the effect of the boundaries of the FOV

to the vessel pre-segmentation. We evaluate our results only inside this eroded

FOV region. In Table 3.3 we show the computation time of our algorithm in end-

points correction and constrained Fast Marching respectively. We also compare

the computation time with classical anisotropic Benmansour-Cohen model with

the same given segment set. Our method can achieve almost 2 times faster than

the Benmansour-Cohen model.

3.6.5 Conclusion

We propose a new tubular structure extraction method based on the region-

constrained anisotropic fast marching algorithm, and introduce an endpoints cor-

rection method using Euclidean curve length map. These ingredients allow our

method to extract piecewise minimal paths from complex tubular network, leading

to better extraction results compared to the classic Benmansour-Cohen model.
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Algorithm 6 Endpoints Correction

Input:
• MetricM, stencil S, and Dilated tubular neighbourhood region Ûh
• Endpoints p1 and p2, initial source point m.

Output:
• Path C and corrected radius-lifted endpoints q̂1, q̂2.

Initialization:
• For each point x̂ 2 Ẑ, set U(x̂) +1, L(x̂) +1 and V(x̂) Far.
• U(m̂) 0, L(m̂) 0, V(m̂) Trial, and A0  ?.
• Set radius-lifted point collection A = ? and RemainedEndpoints = 2
• IfStop False.

Main Loop
1: while IfStop=False do
2: Find x̂min = (xmin, r), the Trial point which minimizes U .
3: V(x̂min) Accepted.
4: if RemainedEndpoints = 0 then
5: Track geodesics Cm̂,q̂1

and Cm̂,q̂2
from both corrected endpoints con-

tained in A0.
6: C  Cm̂,q̂1

S Cm̂,q̂2
.

7: IfStop True.
8: end if
9: if x̂min 2 Ûh then

10: Update L(x̂min) using (3.16).
11: if xmin = p1 or xmin = p2 then
12: RemainedEndpoints  RemainedEndpoints− 1.
13: A ? and construct the collection B using (3.43).
14: for All x̂ 2 B centred at x̂min do
15: if L(x̂) ≥ [L(x̂min)] + 1 and V(x̂) = Accepted then
16: A A [ {x̂}.
17: end if
18: end for
19: if A 6= ? then

20: A0  A0 [
⇢

argmin
x̂2A
U(x̂)

}

.

21: else
22: A0  A0 [ {x̂min}.
23: end if
24: end if
25: for All ŷ such that x̂min 2 S(ŷ) and V(ŷ) 6= Accepted do
26: Compute Unew(ŷ) using Hopf-Lax update in (2.86).
27: if V(ŷ) 6=Trial then
28: V(ŷ) Trial.
29: end if
30: U(ŷ) min{Unew(ŷ),U(ŷ)}.
31: end for
32: else
33: U(x̂min) +1 and L(x̂min) +1.
34: end if
35: end while





Chapter 4

Anisotropic Front Propagation for

Tubular Structure Segmentation

Abstract

We present in this chapter a blood vessel segmentation model by anisotropic fast

marching front propagation method with respect to an anisotropic dynamic Rie-

mannian metric. The fast marching front is defined as the level set of the geodesic

distance map to a set of given initial source points with respect to a dynamic

anisotropic Riemannian metric. The boundaries of the vessels are supported to be

represented by the level set at the given distance value. The dynamic anisotropic

Riemannian metric can be defined using a prior estimate of the vessel orientations

and the local intensity difference values, where the vessel orientations are detected

by the oriented flux filter.

95
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4.1 Introduction

Flux-based active contours models have been widely applied to tubular structure

segmentation since the pioneer work presented in (Vasilevskiy and Siddiqi, 2002),

in which the flux magnitude field of the image gradient vector is taken as the

dominating external force to drive the active contours (2D) or active surfaces (3D)

to sketch the tubular structure boundaries. To solve the expensive computation

cost of the local flux for each pixel in the image domain, Law and Chung (2009)

proposed a fast flux computation method and its improved version: the optimally

oriented flux filter (Law and Chung, 2008) which can be adapted to active contours

models (Law and Chung, 2010). However, those deformable models are based on

the level set evolution scheme, where the curve or surface is defined as a zero level

set with high computation complexity.

Fast marching-based front propagation based segmentation method was devel-

oped to overcome the computational complexity of the classical level set numer-

ical scheme by Malladi and Sethian (1998). This method is extremely fast with

restriction that the speed has to be positive everywhere. This restriction some-

times will lead to a leakage problem: the front will propagate outside the tubular

structure before all the points inside the expected tubularity have been covered.

In other words, some parts of the fast marching front need more time to reach the

boundaries, and by that time, other parts of the front leak across the boundaries

of the vessel. Cohen and Deschamps (2007); Deschamps and Cohen (2002) pro-

posed a front propagation method combining the Euclidean curve length, which

can be applied to tag the fast marching front points as either head or tail. Then

the leakages problem can be avoided by freezing all the tail points.

In this section, we proposed an alternate way to solve the leakages problem for fast

marching front propagation based segmentation method. We take into account the

path anisotropy to penalize the front propagation along the directions which do

not coincide the vessel orientations. This is done by applying an anisotropic Rie-

mannian metric instead of the isotropic case (Malladi and Sethian, 1998). The

proposed anisotropic front propagation method can guarantee a connected seg-

mented vessel tree structure and is easy to combine with manual interventions,

compared to the vesselness based segmentation methods like (Law and Chung,

2008). Furthermore, the optimally oriented flux filter may fail to identify a vessel

with large scale since the scale normalization. In contrast, we explore a local inten-

sity consistency based metric construction method, which can be integrated with

the vessel orientation to achieve better vessel segmentation results than classical

methods (Cohen and Deschamps, 2007; Deschamps and Cohen, 2002; Malladi and

Sethian, 1998).

The main contents of this chapter were presented at the ISBI 2016 conference

(Chen and Cohen, 2016).
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Figure 4.1: Illustration of the approximation of the flux computation.

4.2 Front Propagation for Image Segmentation

4.2.1 Flux-based Active Contours Model

Vasilevskiy and Siddiqi (2002) proposed a front propagation method for tubular

structure segmentation by maximizing the flux based energy:

EFlux(Γ) :=

Z 1

0

hV ,NikΓ0(t)kdt, (4.1)

where V : Ω ! R
2 is a vector field and N is the normal of curve Γ. By the

divergence theorem, the curve evolution equation derived from (4.1) with respect

to time ⌧ can be expressed as:

@Γ

@⌧
= (r · V)N . (4.2)

r · V is the divergence of vector field V . This divergence operator is defined by

the divergence theorem as

r · V(x) = lim
area(R(x))!0

I

@R

hV ,NRids

area(R(x))
, x 2 Ω. (4.3)
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where R(x) denotes a round region centred at point x and area(R(x)) is its area.

@R is the boundary with outward normal NR. Vasilevskiy and Siddiqi (2002) used

an approximation of the flux definition which can be described as: at each point

x, one can compute its flux values using a collection of discs centred at x with

increasing radii. Then the maximum value of these radius dependent flux values

can be chosen as the the expected flux value of x to drive the active contours. In

Fig. 4.1, we illustrate this approximation of flux computation. Arrows indicate the

vector field V . Red dot denotes the centred point x and the circles with different

colours are the boundaries of discs with different radii. Law and Chung (2009)

proposed an fast flux computation method to make the flux based active contours

model (Vasilevskiy and Siddiqi, 2002) be practical.

4.2.2 Fast Marching Front Propagation Model

We consider the isotropic Eikonal equation:

krU(x)k = 1

P (x)
, (4.4)

where U is the minimal action map or minimal arrival time with speed function

P : Ω ! R
+ with Ω ⇢ R

2 being the image domain. This Eikonal equation was

first adopted by Malladi and Sethian (1998) for surface segmentation and shape

recover. This front propagation scheme assume that P (x) > 0 everywhere. Thanks

to this restriction, the front could propagate towards to the object boundaries or

surfaces with cheap computation time.

Given a set of initial source points, the behaviour of the front propagation is like

the curve evolution driven by a ballon force (Cohen, 1991). Generally, the speed

function P should be large inside the flat region in order for the front to propagate

very fast. In contrast, at the vicinity of object boundaries or surfaces, P should

become small and the front propagation is slow within this region, thus stopping

the front to leak out the objects like tubular structures. P might depend on the

image gradient magnitudes, intensity values or vesselness values.

Numerically, the Eikonal equation (4.4) can be solved by the isotropic fast march-

ing algorithm (Sethian, 1999). The gradient rU is approximated by a first-order

upwind scheme, satisfied for the isotropic metric. In this section, we focus on

the anisotropic Riemannian metric which cannot be solved by such fast march-

ing method. Instead, we utilize the anisotropic fast marching algorithm proposed

by Mirebeau (2014a) which is very stable even for large anisotropy ratio.
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4.3 Front Propagation with Anisotropic Rieman-

nian Metric and Fast Marching Method

We consider the anisotropic Eikonal equation with anisotropic Riemannian metric.

For a symmetric positive definite tensor fieldM, the anisotropic Eikonal equation

is

krU(x)kM−1(x) = 1. (4.5)

The anisotropic Fast Marching algorithm Mirebeau (2014a) can be used as the

numerical solver of distance map U , by finding the solution, at each update step,

of the fixed point problem with respect to the anisotropic metric RA (2.52):

U(x) = min
y2@S(x)

n

RA(x,y − x) + IS(x) U(y)
o

, (4.6)

RA(x,y − x) =
p

hy − x,M(x) (y − x)i, (4.7)

where IS(x) is a piecewise linear interpolation operator on a mesh S(x). The local

mesh or stencil S can be adaptively constructed according to the given Riemannian

metric M by the tool of Lattice Basis Reduction, as introduced in Mirebeau

(2014a), leading to breakthrough improvements in terms of computational time

and accuracy when dealing with metrics having strong anisotropy ratio.

As initialization, the fast marching algorithm tags all the points of discretization

grid Z of Ω to either Accepted (points have been computed and frozen), Trial

(points have been updated at least once but not frozen) or Far (points have not

been estimated yet). The fast marching front consists of all the Trial points. The

Trial point xmin minimizing U will be tagged as Accepted and all its neighbourhood

points {y 2 Ω;x 2 S(y)} will be updated by solving (4.6). More details about

the fast marching method can be seen in Section 2.4.

For convenience, we say that point x is base-point of all its neighbour points y.

4.4 Dynamic Riemannian Metric Construction

Traditional anisotropic Eikonal equation uses static metric field independent of the

fast marching front and relies only on the positions and orientations of the path.

For blood vessels segmentation application, one has to deal with the problem of

intensities inhomogeneities which is not suitable for the static metric, thus we pro-

pose to take into account the front location to calculate the dynamic Riemannian

metric.

Let A ✓ Ω be a collection of all points tagged as Accepted. In Fig. 4.2, we denote A

by the red region. Assuming that vessels are brighter than background, we define
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Algorithm 7 Front Propagation with Dynamic Metric

Input:
• Tensor fieldMc.
• Initial point set W and stencil S.

Output:
• Minimal action map U .

Initialization:
• For each point x 2 Ω, set U(x) +1 and V(x) Far.
• For each point x 2 W , set U(x) 0 and V(x) Trial.

Main Loop
1: while at least one grid point is tagged as Trial do
2: Find xmin, the Trial point which minimizes U .
3: A {A [ xmin}
4: V(xmin) Accepted.
5: Compute K(xmin) using (4.8).
6: for All y such that xmin 2 S(y) and V(y) 6=Accepted do
7: if V(y) 6=Trial then
8: V(y) Trial.
9: end if
10: Update J (y) using (4.12).
11: Construct the tensor fieldMd using (4.13).
12: Compute Unew(y) using (4.6).
13: if Unew(y) < U(y) then
14: U(y) Unew(y).
15: end if
16: end for
17: end while

a local mean intensity function K : Ω ! R
+ and a local intensity dissimilarity

function J : Ω! R
+:

K(x) :=

P

y2A\Br(x)
I(y)

# {A \ Br(x)}
, (4.8)

J (x) := exp
(
↵ |min{I(x)−K(x), 0}|

)
, x 2 Ω, (4.9)

where ↵ is a positive constant. Br(x) is collection defined as

Br(x) := {y; kx− yk  r}. (4.10)

# {ATBr(x)} is the number of points contained in the set A
TBr(x) which is

indicated by the cyan region in Fig. 4.2. K is computed only inside a local region

such that the proposed front propagation method is robust when dealing with

intensity inhomogenities and noise. By assuming that vessels have higher gray

levels, we consider that if a pixel x has higher intensity than the average intensity

value of its vicinity points defined by Br(x)
T
A, x is likely to be located inside a

vessel. Therefore we use |min{I(x)−K(x), 0}| to calculate J (x) in (4.9) instead
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Figure 4.2: Illustration for the various regions used in the proposed model in the
course of the fast marching front propagation. Black dot is the initial source point and
blue contour denotes the fast marching front. Red region indicates the collection A

including all the Accepted points. Cyan circle indicates the boundary of the ball Br(x)
where the centre point x is denoted by blue dot. The cyan region denotes A \ Br(x).

of using |I(x)−K(x)|.

Numerically, local intensity dissimilarity function J can be updated in each update

iteration of the fast marching algorithm. To reduce the computational complexity,

we use the following approximation:

K(x) ⇡ K(z), (4.11)

where z is a base-point of x. Then J can be approximated by

J (x) ⇡ exp(↵ |min{I(x)−K(z), 0}|). (4.12)
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With this approximation, the function K only requires to be updated N times

where N is the total number of grid points in I.

The dynamic tensor field (anisotropic Riemannian metric)Md can be constructed

by combination of J as:

Md(x) = J (x)Mc(x), (4.13)

where the tensor fieldMc is constructed by

Mc(x) = V1(x)V
T
1 (x) + µV2(x)V

T
2 (x), (4.14)

where V1 is the detected tubular structure orientation defined in (3.6) and V2 is

the vector field orthogonal to V1. Parameter µ is the anisotropy ratio. One can see

thatMc is a non-changed tensor field during the fast marching front propagation.

In contrast, Md will be dynamically updated due to the computation of J . In

Algorithm 7, we present the details of our algorithm. A, K, and J are updated in

lines 4, 5 and 10 respectively. The stopping criterion is a threshold computed by

making sure that T% of pixels having the lowest minimal action map U , among all

pixels, have been chosen. For the proposed fast marching front propagation-based

segmentation, this stopping criterion is equivalent to find N ⇤ T% points tagged

as Accepted, where N is the total number of image pixels.

4.5 Experimental Results

We first show the advantage of using anisotropic Riemannian metric comparing to

the results using isotropic Riemannian metric. Fig. 4.3 shows four front propaga-

tion results with the same number of points tagged as Accepted. The anisotropy

ratio values for Figs. 4.3a to 4.3d are 1, 10, 30, and 50 respectively. It can be

seen that a large anisotropy ratio could make the front propagate along the vessel

structure as far as possible before the front leaks out of the vessels. In the following

experiments, we set the anisotropy ratio value to be 30 for the proposed method.

In Fig. 4.4, we show the segmentation results using 1/J as the speed for the

front propagation with isotropic Riemannian metric. At the beginning of the

front propagation in Figs. 4.4a and 4.4b, no leakage happens. However, as the

front goes further along interior region of the vessel tree, it leaks from some weak

vessels. This is why we utilize the anisotropic front propagation method.

In Fig. 4.5, we show the segmentation results from three segmentation methods:

the second column shows the results by thresholding the vesselness map Vness

in (3.3); the third column is obtained from a front propagation based method, in

which we set the metric as

M(x) = exp(βVness(x))(V1V
T
1 (x) + µV2V

T
2 (x)), (4.15)
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(a) (b)

(c) (d)

Figure 4.3: Front propagation based on the tensor field Mc in (4.14) for different
values of anisotropy ratio. (a) to )(d): the values of the anisotropy ratio are 1, 10, 30
and 50 respectively. Black dots indicate the initial source points and red regions include

all the Accepted points.

with β < 0. For fair comparison, we use the same fast marching algorithm pro-

posed by Mirebeau (2014a) with the proposed method to compute the minimal

action map. Black points in the third and last columns are the initial source points.

The last column gives the results by the proposed method. All the three methods

require thresholding to get the final segmentation results. One can see that the

vesselness based results have many holes and scale overfitting. The vesselness-

based front propagation method also suffers from the similar problems since the

distance maps are heavily affected by the vesselness. In contrast, the proposed

method can avoid the mentioned problems. In this experiment, we choose the
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(a) (b)

(c) (d)

Figure 4.4: The course of the fast marching front propagation using isotropic fast
marching front propagation method. Black dots indicate the initial source points and
red regions include all the Accepted points. (a) to (d) demonstrate the front propagation
results. In (c) and (d), the fast marching fronts propagate outside the vessel trees.

same T for the front propagation methods (third and last columns) but a little

bigger T1 to threshold the Vness in the second column.

4.6 Conclusion

In this chapter, we propose a new front propagation method for vessel segmentation

with the dynamic anisotropic Riemannian metric and anisotropic fast marching

method. The main contribution of this section lie at the use of the anisotropy en-

hancement for the front propagation-based segmentation and local region information-

based Riemannian construction. We make use of the local intensity coherence to
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Figure 4.5: Comparative vessel tree segmentation results from different methods.
Column 1 Original images. Column 2 Results from optimally oriented flux filter.
Column 3 Results from fast marching front propagation using eigenvalues of optimally

oriented flux filter. Column 4 Results from the proposed model.

penalize the tensor field constructed by the vessel anisotropy to make the fast

marching front propagation robust to vessel intensity inhomogenities and noise.
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Numerical Experimental results show that our model indeed obtains expected

results on vessel tree images. Compared against the isotropic front propagation-

based image segmentation method, the proposed model can overcome the front

leaking problem.



Chapter 5

Global Minimum for a Finsler

Elastica Minimal Path Approach

Abstract

In this chapter, we present a novel curvature-penalized minimal path model via

an orientation-lifted Finsler metric and the Euler elastica curve. Original minimal

path model computes the globally minimal geodesic by solving an Eikonal partial

differential equation (PDE). Essentially, this first-order model is unable to penal-

ize curvature that is related to the path rigidity property in the classical active

contour models. To solve this problem, we present an Eikonal PDE-based Finsler

elastica minimal path approach to deal with the curvature-penalized geodesic en-

ergy minimization problem. We are able to add the curvature penalization to the

classical geodesic energy (Caselles et al., 1997; Cohen and Kimmel, 1997). The

basic idea of this work is to interpret the Euler elastica bending energy via a

novel Finsler elastica metric embedding curvature penalty. This metric is non-

Riemannian, anisotropic and asymmetric, defined over an orientation-lifted space

by adding to the image domain the orientation as an extra space dimension. Based

on this orientation lifting, the proposed minimal path model can benefit from

both the curvature and orientation of paths. Thanks to the fast marching method

with stencils refinement scheme, the global minimum of the curvature-penalized

geodesic energy can be computed efficiently and precisely.

For the goal of applying the proposed Finsler elastica metric to image analysis, we

introduce two image data-driven speed functions which are derived by steerable

filters dependent on orientations. These orientation dependent speed functions

are anisotropic, based on which we apply the Finsler elastica minimal path model

to the applications of interactive image segmentation, perceptual grouping and

tubular structure extraction. We design different algorithms for each applications

107
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mentioned above, in terms of the smoothness and asymmetry properties. Numer-

ical experiments on both synthetic and real images show that these applications

of the proposed model indeed obtain promising results.
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5.1 Introduction

Snakes or Active contour models have been considerably studied and used for

object segmentation and feature extraction during almost three decades, since the

pioneering work of the snakes model proposed by Kass et al. (1988). A snake is a

parametrized curve Γ (locally) minimizing the energy:

E(Γ) =

Z 1

0

(
w1 kΓ0(t)k2 + w2 kΓ00(t)k2 + P

(
Γ(t)

))
dt

with appropriate boundary conditions at the endpoints t = 0 and t = 1. Γ0 and Γ00

are the first and second order derivatives of curve Γ respectively. Positive constants

w1 and w2 relate to the elasticity and rigidity of the curve Γ, hence weight its

internal forces. This approach models contours as curves Γ locally minimizing an

objective energy functional E consisting of an internal and an external force. The

internal force terms depend on the first and second order derivatives of the curves

(snakes), and respectively account for a prior of small length and of low curvature of

the contours. The external force is derived from a potential function P , depending

on image features like gradient magnitude, and designed to attracting the active

contours or snakes to the image features of interest such as object boundaries.

The drawbacks of the classical active contours model proposed by Kass et al.

(1988) are its sensitivity to initialization, the difficulty of handling topological

changes, and of minimizing the strongly non-convex path energy as discussed in

(Cohen and Kimmel, 1997). Regarding initialization, the snakes model requires

an initial guess close to the desired image features, and preferably enclosing them

because energy minimization tends to shorten the snakes. The introduction of

an expanding balloon force allows to be less demanding on the initial curve given

inside the objective region (Cohen, 1991). The issue of topology changes led, on

the other hand, to the development of active contour methods, which represent

object boundaries as the zero level set of the solution to a PDE (Caselles et al.,

1993, 1997; Malladi et al., 1994; Osher and Sethian, 1988; Yezzi et al.).

The difficulty of minimizing the non-convex snakes energy (Kass et al., 1988) leads

to important practical problems, since the curve optimization procedure is often

stuck at local minima of the energy functional, making the results sensitive to curve

initialization and image noise. This is still the case for the level set approach on

geodesic active contours (Caselles et al., 1997; Malladi et al., 1995). To address this

local minimum sensitivity issue, Cohen and Kimmel (1997) proposed an Eikonal

PDE based minimal path model to find the global minimum of the geodesic ac-

tive contours energy (Caselles et al., 1997), in which the penalty associated to the

second order derivative of the curve was removed from the snakes energy. Thanks

to this simplification, a fast, reliable and globally optimal numerical method al-

lows to find the energy minimizing curve with prescribed endpoints; namely the
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fast marching method (Sethian, 1999), based on the formalism of viscosity solu-

tions to Eikonal PDE. These mathematical and algorithmic guarantees of Cohen

and Kimmel’s minimal path model have important practical consequences, lead-

ing to various approaches for image analysis and medical imaging (Cohen, 2001;

Deschamps and Cohen, 2001; Peyré et al., 2010).

In the basic formulations of the minimal paths based interactive image segmenta-

tion models (Appia and Yezzi, 2011; Appleton and Talbot, 2005; Mille and Cohen,

2009; Mille et al., 2014), the common proposal is that the object boundaries were

delineated by a set of minimal paths constrained by user-specified points. In

general, these points serve as constraints for minimal paths. In (Benmansour and

Cohen, 2011; Li and Yezzi, 2007), tubular structures were extracted under the form

of minimal paths over the radius-lifted domain. Therefore, each extracted mini-

mal path consists of both the centreline positions and the corresponding thickness

values of a vessel.

In order to reduce the user intervention, Benmansour and Cohen (2009) proposed

a growing minimal path model for object segmentation with unknown endpoints.

This model can recursively detect keypoints, each of which can be taken as new

initial source point for the fast marching front propagation. Thus this model re-

quires only one user-provided point to start the keypoints detection procedure.

Kaul et al. (2012) applied the growing minimal path model for extraction of com-

plicated curves with arbitrary topologies and developed criteria to stop the growth

of the minimal paths. Rouchdy and Cohen (2013) proposed a minimal path voting

model for vessel tree extraction by a voting score map constructed from a set of

geodesics with a common initial source point.

Recently, improvements of the minimal path model are devoted to extend the

isotropic Riemannian metrics to the more general anisotropic Riemannian met-

rics by taking into account the orientation of the curves (Benmansour and Cohen,

2011; Bougleux et al., 2008; Jbabdi et al., 2008). Such orientation enhancement

can solve, for example some shortcuts problems suffered by the isotropic metrics

based minimal path models (Cohen and Kimmel, 1997; Li and Yezzi, 2007). Kim-

mel and Sethian (2001) designed an orientation-lifted Riemannian metric for the

application of path planning, providing an alternative way to take advantages of

the path orientation. This isotropic orientation-lifted Riemannian metric (Kimmel

and Sethian, 2001) was built over the higher dimensional domain by adding an

extra orientation space to the image domain.

Schoenemann et al. (2009, 2012) proposed a model to deal with the problems of us-

ing curvature regularization for region-based image segmentation by a graph-based

combinational optimization method. This curvature regularization model can find

a solution that corresponds to the globally optimal segmentation in the sense that

it does not rely on initialization, and has proven to obtain promising segmentation
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and inpainting results especially for objects with long and thin structures. Ulen

et al. (2015) proposed a curvature and torsion regularized shortest path model for

extracting thin and long structures such as coronary artery segmentation, where

the curvature and torsion properties are approximately computed by B-Splines.

Their energy functional including curvature and torsion penalization terms can be

efficiently optimized by line graphs and Dijkstra’s algorithm (Dijkstra, 1959).

(Tai et al., 2011) presented an efficient method to solve the minimization prob-

lem of the Euler elastica energy, and demonstrated that this fast method can be

applied to image denosing, image inpainting, and image zooming. Other curvature-

penalized approaches of interest include the curvature regularization based image

segmentation models such as (El-Zehiry and Grady, 2010; Schoenemann et al.,

2011; Zhu et al., 2013), curvature-regularized inpainting model (Shen et al., 2003)

Sub-Riemannian Geodesic Models

Bekkers et al. (2015a,b) considered a data-driven extension of the sub-Riemannian

metric on SE(2), which shows that the sub-Riemannian structure outperforms the

isotropic Riemannian structures on SE(2) in the application of retinal vessel track-

ing. The cusp surface is also analysed in this paper. However, the numerical solver

used by Bekkers et al. (2015a,b) is based on a PDE approach with an upwind dis-

cretization and iterative evolution scheme thus requiring expensive computation

time. To solve this problem, Sanguinetti et al. (2015) proposed to use the state of

art anisotropic fast marching method (Mirebeau, 2014a) as the numerical solver of

the Eikonal equation that is associated to the data-driven sub-Riemannian met-

rics. They also showed that an anisotropic Riemannian metric with a very high

anisotropy ratio can approximate well the sub-Riemannian metric. Later on, this

sub-Riemannian fast marching-based numerical tool is employed to compute the

geodesic distance associated to the sub-Riemannian metrics in SO(3) (Mashtakov

et al., 2016). The sub-Riemannian geodesic model (Citti and Sarti, 2006; Petitot,

2003) reintroduced curvature penalization to the geodesic energy, similarly to the

Euler elastica bending energy (Nitzberg and Mumford, 1990) considered in this

chapter, yet it differs in two ways: firstly, Euler elastica bending energy involves

the squared curvature, a stronger penalization than the sub-Riemannian geodesic

energy which is roughly linear in the curvature. Secondly, minimal geodesics for

sub-Riemannian geodesic model occasionally feature cusps 1, which sometimes

may not be desirable for the applications of interest. In contrast, Euler elastica

curves can avoid such cusps.

1The cusps of the sub-Riemannian geodesic have been deeply studied in (Bekkers et al., 2015b;
Boscain et al., 2010; Duits et al., 2013, 2014). They can be used for the geometric keypoints
detection.
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(a) (b)

(c) (d)

Figure 5.1: Minimal path extraction results using different metrics. (a) edge saliency
map, (b): minimal path with isotropic Riemannian metric, (c) minimal path with
anisotropic Riemannian metric, (d) minimal path with the proposed Finsler elastica
metric. Red curves are the extracted minimal paths with initial source positions and
end positions indicated by red and green dots respectively. Arrows in (d) indicate the

tangents.

5.1.1 Motivation

In contrast with the classical snakes energy (Kass et al., 1988), Eikonal PDE-

based minimal path methods are first-order models, which do not penalize the

second-order derivative of the curves, i.e. the curvature, and therefore do not

enforce the smoothness of the extracted geodesics, leading sometimes to undesired

results as shown in Fig. 5.1, in which we would like to extract a boundary as

smooth as possible between two given points indicated by red and green dots. In

Fig. 5.1a we show the edge saliency map. Figs. 5.1b and 5.1c are the extracted

minimal paths using the isotropic Riemannian metric (Cohen and Kimmel, 1997)

and the anisotropic Riemannian metric (Bougleux et al., 2008) respectively, both

of which are unable to find expected smooth boundaries and suffer from shortcuts

problem due to the lack of curvature penalization in these metrics. In contrast,

the minimal path model presented in this section reintroduces curvature, in the

form of weighted Euler elastica curves as studied in (Mumford, 1994; Nitzberg

and Mumford, 1990). Therefore the geodesics extracted by the proposed model
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can sketch the smooth object boundary, as demonstrated in Fig. 5.1d, with arrows

indicating the corresponding tangents at the given positions.

The main contents of this chapter were presented at the BMVC 2015 conference

(Chen et al., 2015) and the CVPR 2016 conference (Chen et al., 2016b).

5.1.2 Contributions

The contribution of this chapter is three fold:

1. Firstly, we propose a novel globally minimized minimal path model, namely

the Finsler elastica minimal path model, with curvature penalty and Finsler

metric. We establish the connection between the Euler elastica and minimal

path with respect to an orientation-lifted Finsler elastica metric. With an ad-

equate numerical implementation, leveraging orientation lifting, asymmetric

Finsler metrics and anisotropic fast marching method, the proposed model

still allows to find the globally minimizing curves with prescribed points and

tangents.

2. As a second contribution, we present the mathematical convergence analysis

of the Finsler elastica metrics, and of their corresponding Finsler elastica

minimal paths. Furthermore, we discuss numerical options for geodesic dis-

tance and minimal paths computation, and settle for an adaptation of the

fast marching method proposed by Mirebeau (2014b).

3. Finally, we provide two types of image data-driven speed functions computed

by steerable filters. These data-driven speed functions are therefore orien-

tation dependent, by which we apply the proposed Finsler elastica minimal

path model to the applications of closed contour detection, perceptual group-

ing and tubular structure extraction. Closed contour detection is performed

in an interactive manner, where the contour is concatenated by a set of piece-

wise smooth geodesics. It connects a set of user-provided orientation-lifted

points. With a procedure similar to the closed contour detection method, we

apply our model to perceptual grouping based on the criteria of connectivity

and smoothness. Moreover, we also provide a method to simplify the tubular

structure extraction.
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(a)

(b)

Figure 5.2: Visualization for the metrics F1 and Fλ with ↵ = 1 by Tissot’s indi-
catrix. (a): Tissot’s indicatrix for the metric F1 (5.12) with ↵ = 1 are flat 2D disks
embedded in 3D space, aligned with the direction v✓ (several directions ✓ are shown).
(b): Tissot’s indicatrix for the Finsler elastica metrics Fλ are ellipsoids, which flatten

and approximate a limit disk as λ!1.

5.2 Finsler Elastica Minimal Path Model

In this section, we present the core contribution of this paper: the orientation-lifted

Finsler metric embedding curvature penalty term, defined over the orientation-

lifted domain Ω̄ = Ω ⇥ S
1 ⇢ R

3, where S
1 = [0, 2⇡) denotes the angle space with

periodic boundary conditions and Ω ⇢ R
2 denotes the image domain.
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5.2.1 Geodesic Energy Interpretation of the Euler Elastica

Bending Energy via a Finsler Metric

The Euler elastica curves were introduced to the field of computer vision by Nitzberg

and Mumford (1990) and Mumford (1994). They minimized the following elastica

bending energy:

L(Γ̂) :=
Z L

0

1

Φ0

(
Γ̂(s)

)

(
1 + ↵2(s)

)
ds, (5.1)

where Γ̂ : [0, L] ! Ω is a regular curve with non-vanishing velocity,  is the

curvature of curve Γ̂, L is the classical Euclidean curve length and s is the arc-

length. Parameter ↵ > 0 is a constant. Φ0 is an image data-driven speed function,

which takes large values around the interesting image features and low values

otherwise.

For the sake of simplicity in the coming calculus, we set Φ0 ⌘ 1, yielding the

simplified Euler elastica bending energy:

`(Γ̂) =

Z L

0

(
1 + ↵2(s)

)
ds, (5.2)

where the general case will be studied in Section 5.2.4.

The goal of this section is to cast the Euler elastica bending energy ` (5.2) in

the form of curve length with respect to a relevant asymmetric Finsler metric. We

firstly transform the elastica problem into finding a geodesic in an orientation-lifted

space. For this purpose, we denote by

v✓ = (cos ✓, sin ✓) (5.3)

the unit vector corresponding to ✓ 2 S
1.

Let Γ : [0, 1]! Ω be a regular curve with non-vanishing velocity and γ = (Γ, ✓) :

[0, 1]! Ω̄ be its canonical orientation lifting. For any t 2 [0, 1], ✓(t) is defined as

being such that:

v✓(t) :=
Γ0(t)

kΓ0(t)k . (5.4)

According to the definition of v✓ in (5.3), one has

✓
Γ0(t)

kΓ0(t)k

◆?

= (v✓(t))
?

= (− sin ✓(t), cos ✓(t)), (5.5)

where u? denotes the the vector that is perpendicular to a vector u.
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It is known that

d

dt

✓
Γ0(t)

kΓ0(t)k

◆

= (t)kΓ0(t)k
✓

Γ0(t)

kΓ0(t)k

◆?

, (5.6)

where  is the curvature of path Γ. Then we have the following equations:

d

dt
v✓(t) =

d

dt
(cos ✓(t), sin ✓(t))

= ✓0(t)
(
− sin ✓(t), cos ✓(t)

)

= ✓0(t)

✓
Γ0(t)

kΓ0(t)k

◆?

.

Thus, using (5.4) and (5.6), we have

✓0(t)

✓
Γ0(t)

kΓ0(t)k

◆?

= (t)kΓ0(t)k
✓

Γ0(t)

kΓ0(t)k

◆?

, (5.7)

which yields to

✓0(t) = (t)kΓ0(t)k, 8t 2 [0, 1]. (5.8)

Using (5.4) and (5.8), one has

`(Γ) =

Z L

0

(
1 + ↵2(s)

)
ds

=

Z 1

0

✓

1 + ↵
|✓0(t)|2
kΓ0(t)k2

◆

kΓ0(t)k dt

=

Z 1

0

✓

kΓ0(t)k+ ↵
|✓0(t)|2
kΓ0(t)k

◆

dt, (5.9)

where the Euclidean arc-length is defined as

ds = kΓ0(t)kdt.

By the definition of γ, for any t 2 [0, 1] we have γ0(t) = (Γ0(t), ✓0(t)) and

`(Γ) =

Z 1

0

F1
(
γ(t), γ0(t)

)
dt, (5.10)

where we define the Finsler metric F1 on the orientation-lifted domain Ω̄ by

F1(x̄, ū) :=

(

kuk+ ↵
|⌫|2

kuk
, if u / v✓,

+1, otherwise.
(5.11)
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for any orientation-lifted point x̄ = (x, ✓) 2 Ω̄, any vector ū = (u, ⌫) 2 R
2 ⇥ R

in the tangent space, and where / denotes positive collinearity. Note that any

other lifting γ̃(t) = (Γ(t), ✓̃(t)) of Γ(t) would by construction of (5.11) have infinite

energy, i.e., `(Γ) =1.

5.2.2 λ Penalized Asymmetric Finsler Elastica Metric Fλ

The Finsler metric F1 (5.11) is too singular to compute the global minimum

of ` (5.2) by directly applying the numerical algorithm such as the fast march-

ing method (Mirebeau, 2014b). Hence we introduce a family of orientation-lifted

Finsler metrics over the orientation-lifted domain Ω̄, depending on a penalization

parameter λ≫ 1 as follows:

Fλ(x̄, ū) :=
p

λ2kuk2 + 2↵λ|⌫|2 − (λ− 1)hv✓,ui, (5.12)

for any orientation-lifted point x̄ = (x, ✓) 2 Ω̄ and any vector ū = (u, ⌫) 2 R
2⇥R,

and where v✓ = (cos ✓, sin ✓) is the unit vector associated to ✓ which denotes the

position of x̄ in the orientation space S
1 .

As λ!1, the λ penalized Finsler elastica metric Fλ can be expressed as:

Fλ(x̄, ū) =
p

λ2kuk2 + 2↵λ|⌫|2 − (λ− 1)hv✓,ui

=λkuk
s

1 + ↵
2|⌫|2
λkuk2 − (λ− 1)hv✓,ui

=λkuk(1 + ↵|⌫|2
λkuk2 +O( 1

λ2
))− (λ− 1)hv✓,ui

=kuk+ ↵|⌫|2
kuk + (λ− 1)(kuk − hv✓,ui) +O(λ−1) (5.13)

The term kuk − hv✓,ui will vanish if vector u is positively proportional to v✓.

Therefore, one has for any x̄ and any ū

Fλ(x̄, ū)! F1(x̄, ū), as λ!1.

The Finsler elastica metric Fλ (5.12) has precisely the required form formulated

in (2.72), with tensor fieldM :=MF as:

MF(x̄) =

0

@

λ2 0 0

0 λ2 0

0 0 2↵λ

1

A (5.14)

and vector field ~! := ~!F

~!F(x̄) = (λ− 1)(v✓, 0), (5.15)
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for any x̄ = (x, ✓) 2 Ω̄. Note that the definiteness constraint (2.73) is satisfied:

h~!F(x̄),M−1
F (x̄) ~!F(x̄)i = (1− λ−1)2 < 1, 8 x̄ 2 Ω̄ and λ > 1.

The anisotropy ratio µ(F) characterizes the distortion between different orienta-

tions induced by a metric F on a domain Ω̄. Letting x̄ = (x, ✓) 2 Ω̄, the anisotropy

ratio µ(Fλ) of the Finsler elastica metric Fλ (5.12) is defined by:

µ(Fλ) := sup
x̄2Ω̄

⇢

max
kw̄k=kv̄k=1

nFλx̄ (w̄)

Fλx̄ (v̄)
o}

, (5.16)

where the norm Fλx̄ (·) := Fλ(x̄, ·). As an example, for the Finsler elastica metric

Fλ defined in (5.12) with λ ≥ 2 and ↵ = 1, we can show that µ(Fλ) in (5.16) can

be obtained by choosing w̄ = (−v✓, 0) and v̄ = (v✓, 0), so that

µ(Fλ) = 2λ− 1.

Moreover, one can define the physical anisotropy ratio of the Finsler elastica metric

Fλ defined in (5.12) by replacing by w̄s = (w, 0) and v̄s = (v, 0) the variables w̄

and v̄. In this case, for any ↵, the physical anisotropy ratio is equal to 2λ− 1 and

only depends on λ.

A crucial object for studying and visualizing the geometry distortion induced by

a metric is Tissot’s indicatrix defined as the collection of unit balls in the tangent

space. For point x̄ = (x, ✓) 2 Ω̄ and λ 2 [1,1), we define the unit balls for metrics

F1 and Fλ respectively by

B1
x̄ := {ū = (u, ⌫) 2 R

2 ⇥ R; F1(x̄, ū)  1}. (5.17)

and

Bλ
x̄ := {ū = (u, ⌫) 2 R

2 ⇥ R; Fλ(x̄, ū)  1}. (5.18)

Then any tangent ū = (u, ⌫) 2 B1
x̄ is characterized by:

u? = 0, uk > 0, and uk + ↵
|⌫|2
uk
 1, (5.19)

where we introduce uk and u? as follows:

uk := hu,v✓i, u? := hu,v?
✓ i.

Using (5.19), one has
✓

uk −
1

2

◆2

+ ↵ |⌫|2  1

4
. (5.20)
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Thus B1
x̄ is a flat 2D ellipse embedded in the 3D tangent space, and containing

the origin on its boundary. Particularly, when ↵ = 1, B1
x̄ turns to a flat 2D disk

of radius 1/2 as shown in Fig. 5.2(a).

On the other hand, when λ < 1, a short computation shows that vector ū =

(u, ⌫) 2 Bλ
x̄ is characterized by a quadratic equation

λ

2
u2? + aλ

✓

uk −
bλ
2

◆2

+ ↵ |⌫|2  cλ
4
, (5.21)

where aλ, bλ, cλ are all 1 +O(1/λ). Hence Bλ
x̄ is an ellipsoid, for instance see Fig.

5.2b with ↵ = 1, almost flat in the direction of v?
✓ due to the large factor λ/2,

which converges to the flat disk B1
x̄ in the Haussdorf distance as λ!1.

Tissot’s indicatrix is also the control set in the optimal control interpretation of the

Eikonal PDE (2.70). The Haussdorf convergence of the control sets guarantees that

the minimal action map and minimal paths for the metric Fλ converge towards

those of F1 as λ!1. Elements of proof of convergence can be found in Appendix

B.

5.2.3 Numerical Implementations

Numerically, anisotropy is related to the problem stiffness, hence to its difficulty.

The classical fast marching methods (Sethian, 1999; Tsitsiklis, 1995) using the

square formed neighbourhood S have difficulty to deal with the computation of

geodesic distance maps with respect to anisotropic metrics, especially when the

anisotropy gets large. An adaptive construction method of such stencils S was

introduced in (Mirebeau, 2014a) for anisotropic 3D Riemannian metric, and in

(Mirebeau, 2014b) for arbitrary anisotropic 2D Finsler metric, providing that the

stencils or mesh S(x) at each point x 2 Ω or Ω̄ satisfies some geometric acuteness

property depending on the local metric F(x, ·). Such adaptive stencils-based fast

marching methods lead to breakthrough improvements in terms of computation

time and accuracy for strongly anisotropic geodesic metrics. When the above men-

tioned geometric properties do not hold, the fast marching method is in principle

not applicable, and slower multiple pass methods must be used instead such as

the Adaptive Gauss Siedel Iteration (AGSI) of Bornemann and Rasch (2006). The

present paper involves the 3D Finsler metric Fλ (5.12), for which we constructed

stencils by adapting the 2D construction of Mirebeau (2014b). Although these

stencils lack the geometric acuteness condition, we found that the fast marching

method still provided good approximations of the paths, while vastly improving

computation performance.
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Figure 5.3: Approximating Euler elastica curves by Finsler elastica minimal paths
with uniform speed. (a) Finsler elastica minimal paths with ↵ = 500 and different
values of λ. (b) and (c) Finsler elastica minimal paths with λ = 100 and λ = 300

respectively, and different values of ↵.

Note that whenever we mention fast marching method in the remaining part of

this chapter, we mean the fast marching method with adaptive stencils proposed

by Mirebeau (2014b).

In Table 5.1, we show the computation time and the average number of Hopf-Lax

updates required for each grid point by the adaptive stencils based fast marching

method (Mirebeau, 2014b) for ↵ = 500 and different values of λ on a 3002 ⇥ 108
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Table 5.1: Computation time (in seconds) and average number of Hopf-Lax updates
required for each grid point by fast marching method with ↵ = 500 and different values

of λ on a 3002 ⇥ 108 grid.

λ 1 10 20 30 100 200 300 500 1000

time 13.9s 25.3s 27.3s 27.7s 31.7s 33.9s 34.7s 35.0s 36.8s

number 3 5.49 6.06 6.49 7.27 7.82 7.83 7.92 8.12

grid. This experiment was performed with a C++ implementation running on a

standard 2.7 GHz Intel I7 laptop with 16 Gb RAM.

We observe on Table 5.1 a logarithmic dependence of computation time and av-

erage number of the Hopf-Lax updates per grid point with respect to anisotropy.

These observations agree with the complexity analysis of the fast marching method

presented in (Mirebeau, 2014b), yielding the upper bound O(N ln3 µ + N lnN),

depending poly-logarithmically on the anisotropy ratio µ (5.16), and quasi-linearly

on the number N of discretization points in the orientation-lifted domain Ω̄. In

contrast, numerical methods such as (Sethian and Vladimirsky, 2001) displaying a

polynomial complexity O(µ2N lnN) in the anisotropy ratio would be unworkable.

The iterative AGSI method (Bornemann and Rasch, 2006), on the other hand,

requires hundreds of evaluations of the Hopf-Lax operator (2.86) per grid point to

converge for large anisotropies, which also leads to prohibitive computation time,

thus impractical. For λ = 30 or 100, the average numbers of the Hopf-Lax updates

per grid required by the AGSI method are approximately 86 and 182 respectively,

while the numbers of Hopf-Lax from the fast marching method are only 6.49 and

7.27 respectively ( see Table 5.1).

In Fig. 5.3(a), we show different Finsler elastica minimal paths, computed by the

fast marching method (Mirebeau, 2014b), with ↵ = 500 (see (5.12)) and different

values of λ. The arrows indicate the initial and end points tangents. Cyan point is

initial position and blue point is end position. In Figs. 5.3b and 5.3c, we show the

Finsler elastica minimal paths for different values of ↵, with λ = 100 and λ = 300

respectively. In this experiment, we set the angle resolution to be ✓s = 2⇡/108

and the image size is 300 ⇥ 300. When λ = 1, the metric Fλ is constant over

the domain Ω̄ and degenerates to the isotropic orientation-lifted metric RI in

(2.62), since the coefficient in front of the term hv✓, ·i in (5.12) vanishes. Hence

the minimal geodesics are straight lines, see Fig. 5.3a, that do not align with the

prescribed endpoints tangents. From Fig. 5.3, one can point out that as λ and

↵ increasing, curvature penalization forces the extracted paths to gradually align

with the prescribed endpoints tangents and take the elastica shape.
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5.2.4 Image Data-Driven Finsler Elastica Metric P

We set the data-driven speed function Φ0 ⌘ 1 in Section 5.2.1 for the sake of

simplicity. In the general case, in order to apply the proposed Finsler elastica

minimal path model to image analysis applications, the metric F1 (5.11) and its

approximation Fλ (5.12) should be respectively replaced by Φ−1
0 F1 and Φ−1

0 Fλ.
Furthermore, in order to take into account the orientation information, we use an

orientation dependent speed function Φ : Ω̄! R
+ to replace Φ0. In this case, the

data-driven Finsler elastica metric can be defined by

P(x̄, ū) = 1

Φ(x̄)
Fλ(x̄, ū), 8 x̄ 2 Ω̄, 8 ū 2 R

3, (5.22)

and minimizing the general Euler elastica bending energy L in (5.1) is approxi-

mated for large values of λ by minimizing

L(Γ) =
Z 1

0

1

Φ(γ(t))
Fλ(γ(t), γ0(t))dt

=

Z 1

0

P(γ(t), γ0(t))dt,

where γ is the orientation lifted curve of Γ.

Based on the data-driven function Φ, the metric P is asymmetric in the sense that

for any vector ū 6= 0, one has

P(x̄, ū) 6= P(x̄,−ū), 8 x̄ 2 Ω̄. (5.23)

This asymmetric property can help to build a closed contour passing a collection

of orientation-lifted points as discussed in Section 5.4.1.

The minimal action map associated to data-driven Finsler elastica metric P and

initial source point s̄, denoted by Ws̄, is the unique viscosity solution to the cor-

responding Eikonal PDE (2.70) (Lions, 1982). Specifically, we have

(

P⇤
x̄

(
−rWs̄(x̄)

)
= 1, 8x̄ 2 Ω̄\{s̄},

Ws̄(s̄) = 0,
(5.24)

where P⇤
x̄ is the dual norm of Px̄ := P(x̄, ·) defined by (2.71). We take the fast

marching method (Mirebeau, 2014b) as the Eikonal solver. When λ is sufficiently

large, the spatial and angular resolutions are sufficiently small, the fixed point

system (2.85) is properly solved, and the minimal paths are properly extracted

by (2.76).
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5.3 Computation of Data-Driven Speed Func-

tions by Steerable Filters

In this section, we introduce two types of orientation dependent speed functions

Φ for the applications of image segmentation and tubular structure extraction

respectively, both of which are based on the steerable filters.

5.3.1 Steerable Edge Detector

Jacob and Unser (2004) proposed a new class of edge detection filters combin-

ing the computational framework and the steerable property. Letting Gσ be a

2D isotropic Gaussian kernel with variance σ and x = (x, y), the computational

steerable filter FM
✓ with order M (Jacob and Unser, 2004) can be expressed as:

FM
✓ (x) =

MX

⌧=1

⌧X

⇠=0

K⌧,⇠(✓)
@(⌧−⇠)

@x(⌧−⇠)

@⇠

@y⇠
Gσ(x), (5.25)

where ✓ 2 [0, 2⇡) and K⌧,⇠ are orientation-dependent coefficients which can be

computed in terms of some optimality criteria. Particularly when M = 1, the

steerable filter F1
✓ becomes the classical Canny detector (Canny, 1986). For higher

order steerable filters, for example, M = 3 or M = 5, the orientation dependent

responses of the filters will be more robust to noise. Therefore, we choose the

steerable filter order M = 5 for the relevant numerical experiments. Regarding

the details of the computation of K⌧,⇠, we refer to (Jacob and Unser, 2004).

A color image is regarded as a vector-valued map I : Ω ! R
3. For each x 2 Ω,

we denote that I(x) = [I1(x), I2(x), I3(x)]. In this section, we consider a multi-

orientation response of color image I, where the response h : Ω̄ ! R
+ can be

computed by the steerable filter FM
✓ (5.25) as follows:

h(x, ✓) =
1

3

3X

i=1

|Ii(x) ⇤ FM
✓ (x)|. (5.26)

For a gray level image I : Ω! R, we have the simple computation of h:

h(x, ✓) = |I(x) ⇤ FM
✓ (x)|. (5.27)

WhenM is an odd number, the response Ii ⇤FM
✓ is asymmetric with respect to ✓ 2

[0, 2⇡), which may lead to difficult initializations for the proposed Finsler elastica

minimal paths-based image analysis applications, such as boundary detection and

image segmentation. Thus we remove the asymmetry of the response by using

|Ii ⇤ FM
✓ | instead of Ii ⇤ FM

✓ in (5.26).
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5.3.2 Multi-Orientation Optimally Oriented Flux Filter

Optimally oriented flux filter is used to extract the local geometry of the image.

The oriented flux (Law and Chung, 2008) of an image I : Ω ! R
+, of dimension

2, is defined by the amount of the image gradient projected along the orientation

v flowing out from a 2D circle at point x = (x, y) 2 Ω with radius r:

f(x; r,v) =

Z

@Cr

(r(Gσ ⇤ I)(x+ rn) · v)(v · n) ds, (5.28)

where Gσ is a Gaussian with variance σ, n is the outward unit normal vector along

@Cr, and ds is the infinitesimal length on the boundary of Cr. According to the

divergence theorem, one has

f(x; r,v) = vT Q(x, r)v,

for some symmetric matrix Q(x, r):

Q(x, r) =

✓
@xxGσ @xyGσ

@yxGσ @yyGσ

◆

⇤ r ⇤ I(x), (5.29)

where r is an indicator function of the circle Cr.

Let λ1(x, r) and λ2(x, r) be the eigenvalues of symmetric matrix Q(x, r) (5.29) and

assume that λ1(x, r) ≥ λ2(x, r). Supposing that the intensities inside the tubular

structures are darker than the background so that inside the tubular structure,

one has λ1(x, r
⇤)≫ 0 and λ2(x, r

⇤) ⇡ 0, where r⇤ is the optimal scale map defined

by

r⇤(x) = argmax
r

⇢
1

r
λ1(x, r)

}

, 8x 2 Ω, (5.30)

where 1/r is the scale normalized factor (Law and Chung, 2008). As shown

in (Benmansour and Cohen, 2011), the optimally oriented flux filter is a steerable

filter which means that we can construct the multi-orientation response function

ĝ : Ω̄! R for any ✓ 2 [0, 2⇡) by:

ĝ(x, ✓) = uT
✓ Q(x, r⇤(x))u✓, 8x 2 Ω, (5.31)

where u✓ = (cos ✓, sin ✓)T is a unit vector associated to ✓ and r⇤ is the optimal

scale map defined in (5.30).

Based on the multi-orientation response ĝ, we can obtain the desired orientation

dependent function

g(x̄) = max{ĝ(x̄), 0}, (5.32)
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In addition, the vesselness map Vn : Ω ! R, which indicates the probability of a

pixel x belonging to a vessel, can be calculated by:

Vn(x) = max

⇢

max
r

⇢
1

r
λ1(x, r)

}

, 0

}

. (5.33)

The vesselness map will be used to compute the isotropic Riemannian metric in

the experiments.

Note that an alternate approach for orientation-dependent image data-driven func-

tion computation method can be found in (Bekkers et al., 2015a). In that paper,

the authors make use of the multi-orientation wavelet to calculate the data-driven

function.

5.3.3 Computation of the Data-Driven Speed Function Φ

Based on the orientation-dependent response functions of the steerable filters dis-

cussed in Sections 5.3.1 and 5.3.2, the speed function Φ used by Finsler elastica

metric P (5.2) can be computed by the response h (5.26):

Φ(x, ✓) = 1 + ⌘

✓
h(x, ✓)

khk1

◆p

. (5.34)

Similarly, based on the orientation dependent response g (5.32), one can define

the speed function for tubular structure extraction by:

Φ(x, ✓) = 1 + ⌘

 

g
(
x, ✓
)

kgk1

!p

, (5.35)

where ⌘, p are positive constants and ✓ 2 [0, 2⇡). In this chapter, we use p = 2 for

all the relevant experiments.

Since it relies on the multi-orientation response functions h (5.26) and g (5.32),

the speed function Φ is symmetric in the sense that for any orientation ✓⇡ 2 [0, ⇡),

one has

Φ(x, ✓⇡) = Φ(x, ✓⇡ + ⇡), x 2 Ω.

5.4 Closed Contour Detection and Tubular Struc-

ture Extraction

We use the following convention in the remaining part of this paper: if p̄ = (p, ✓) is

a point in the orientation-lifted domain Ω̄, then we use p̄† = (p,mod
(
(✓+⇡), 2⇡)

)
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Figure 5.4: Steps for the closed contour detection procedure. (a) original image and
all vertices in D denoted by dots and arrows. (b) The first pairs of successive vertices
(q̄1, q̄2) is detected. (c) The third vertice q̄3 is detected. (d) The final vertice q̄4 is
detected and the closed contour detection procedure is stopped. (e) Geodesic joining

q̄4 and q̄1 is tracked. (f) The final closed contour is obtained.

to denote the orientation-lifted point which has the same physical position p with

p̄ but opposite direction, where ✓ 2 [0, 2⇡).
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5.4.1 Closed Contour Detection as a Set of Piecewise Smooth

Finsler Elastica Minimal Paths

In this section, we present an interactive image segmentation model via a closed

contour detection procedure based on the Finsler elastica metric P in (5.34).

Consider a collection of user-specified physical positions

H := {xi 2 Ω, i = 1, 2, ...,m; m ≥ 2},

all of which are on the boundary of the object. The goal is to automatically find

a closed contour, linking those physical points in H by Finsler elastica minimal

paths to form a complete boundary of the object. For this purpose, we denote the

orientation-lifted collection D of H by

D :=
n

x̄i = (xi, ✓i), x̄
†
i =

(
xi,mod(✓i + ⇡, 2⇡)

)
;

i = 1, 2, ...,m, and ✓i 2 [0, 2⇡)
o

,
(5.36)

where the directions ✓i are manually specified in this section. Corresponding to

each physical point xi 2 H, there exist two orientation-lifted vertices: x̄i and x̄†
i in

D with opposite tangents. We show these vertices in Fig. 5.4(a) by blue and red

dots denoting physical positions and by green arrows indicating the corresponding

tangents.

We start the proposed closed contour detection method by selecting the first physi-

cal position, say x1. The corresponding orientation-lifted vertices of x1 are denoted

by x̄1, x̄
†
1 2 D. Once x1 is specified, we remove both vertices x̄1 and x̄†

1 from D.
As shown in Fig. 5.4(a), x̄1 and x̄†

1 are denoted by a red dot and two arrows with

opposite directions.

Let ā⇤ 2 D be the closest vertex to x̄1 in terms of curvatue penalized geodesic

distance Wx̄1
(5.24) with respect to the Finsler elastica metric P (5.22), i.e.,

ā⇤ := argmin
z̄2D
Wx̄1

(z̄). (5.37)

Similarly to ā⇤, the closest vertex c̄⇤ 2 D of x̄†
1 can be detected. By these defi-

nitions, the first pair of successive vertices (q̄1, q̄2) are determined simultaneously

using the following criterion:

(q̄1, q̄2) :=

(

(x̄1, ā
⇤), if Wx̄1

(ā⇤) <W
x̄
†
1

(c̄⇤),

(x̄†
1, c̄

⇤), otherwise.
(5.38)

In Fig. 5.4(b), we show q̄1 and q̄2 by red and green dots with arrows respectively.

If the minimal action map Wx̄1
( resp. W

x̄
†
1

) is computed via the fast marching
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method (Mirebeau, 2014b), vertex ā⇤ ( resp. c̄⇤) is the first vertex reached by

the fast marching front, which is monotonically advancing. Once the first pair of

successive vertices (q̄1, q̄2) are found, the geodesic Cq̄1,q̄2
(red curve in Fig. 5.4(b))

can be recovered using (2.76) and both q̄2, q̄
†
2 will be removed from D.

If the number of physical points m = 2, the closed contour detection procedure

can be stopped. The geodesic Cq̄2,q̄1
, joining q̄2 to q̄1, can be tracked by reversing

the geodesic which is the solution to the gradient descent ODE (2.76).

If m > 2, we take q̄2 as the initial source point for minimal action mapWq̄2
. Next

vertex q̄3 can be found by

q̄3 := argmin
z̄2D
Wq̄2

(z̄), (5.39)

and remove both q̄3, q̄
†
3 from D. Again the geodesic Cq̄2,q̄3

, linking q̄2 to q̄3 can

be recovered, as denoted by green curve in Fig. 5.4c.

This closed contour detection procedure will stop when the final orientation-lifted

point q̄m is found, as an example see q̄3 in Fig. 5.4c. Then the geodesic Cq̄m,q̄1
,

as the cyan curve in Fig. 5.4d, can be recovered by using the minimal action

map where the initial source and end points are q̄m and q̄1, respectively. The

final closed contour, denoted C, is defined as the concatenation of all the detected

minimal paths.

This method simply matches orientation-lifted points by pairs, joining a vertex to

the remaining nearest neighbour with respect to the curvature-penalized geodesic

distance, so as to form a closed contour located at the expected object bound-

aries. Note importantly, that the obtained piecewise geodesic contour is smooth

(C1 differentiable) since the initial source and end orientation-lifted points of con-

secutive geodesics have both matching positions qi and orientations ✓i. In fact, we

find a closed contour passing all the orientation-lifted points in a greedy manner.

Instead of trying all possible combinations of Finsler elastica minimal paths, we

use a greedy searching strategy done in a low complexity. The problem we solve

here is similar to the NP-hard traveling salesman problem, where the cities are

represented by the orientation-lifted points q̄i 2 D.

In summary, the proposed closed contour detection procedure aims to seeking a

set χ of pairs of successive orientation-lifted points:

χ =
m−1[

i=1

{
(q̄i, q̄i+1)

 [{
(q̄m, q̄1)

 
, (5.40)

and a closed contour C contains a set of Finsler elastica minimal paths, joining all

the pairs of vertices in χ.
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5.4.2 Perceptual Grouping

Perceptual grouping is relevant to the task of curve reconstruction and completion

(Cohen, 2001). Geodesic distance based perceptual grouping model was firstly

introduced by Cohen (2001) using the concept of saddle point. The basic idea of

this model is to identify each pair of points which has to be linked by minimal path

from a set of key points. Later on, Bougleux et al. (2008) improved this grouping

model by using path orientation and structure tensors. However, neither of the

mentioned grouping methods considered curvature regularization.

In this section, we focus on the perceptual grouping problem of finding n closed

curves, each of which formed by a set of piecewise Finsler elastica minimal paths

with initial source points and endpoints in Di ✓ D, where D is defined in (5.36)

and i = 1, 2, 3, ..., n.

We initialize the perceptual grouping method by selecting a physical position x1.

The corresponding orientation-lifted points of x1, denoted by x̄1, x̄
†
1, can be auto-

matically chosen from D and will be removed from D. Then the closest vertices

corresponding to x̄1 and x̄⇤
1 can be detected by (5.37) respectively. As a conse-

quence, the first pair of vertices (q̄1, q̄2) is computed using (5.38) and the geodesic

Cq̄1,q̄2
is recovered. Once the first pair of vertices (q̄1, q̄2) is found, we add q̄1, q̄2

to D1, remove q̄2, q̄
†
2 from D and compensate q̄1 to D.

Similar to the closed contour detection procedure, the next vertex q̄k with k ≥ 3

is found based on the criterion of (5.39) and the detected vertex q̄k−1. Following

the detection of vertex q̄k, we add q̄k to D1, remove q̄k, q̄
†
k from D, and track

the geodesic Cq̄k−1,q̄k
that joins q̄k−1 to q̄k. This perceptual grouping procedure

is carried out by recursively searching for new vertices. Once the vertex q̄1 is

detected again according to the criterion (5.39), we stop the construction of D1

after removing q̄1 from D, and recover the geodesic ending at vertex q̄1. The

desired closed contour C1 can be obtained by concatenating all the detected Finsler

elastica minimal paths with source and end points in D1.

We start to build the collection D2 by choosing a new physical point as initializa-

tion. This initial physical point is obtained from the remaining orientation lifted

points of D. Similar to the procedure of constructing D1, we build the collection

D2 from the remaining orientation lifted points of D. The procedure of building

the collections Di can be terminated when n such collections have been identified

or when the collection D is empty. One can note that the constructed collections

Di follow
Di \ Dj = ?, 8i 6= j.

In contrast to the closed contour detection method described in Section 5.4.1, we

do not enforce all of the orientation lifted points in D to be used in the perceptual

grouping procedure.
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5.4.3 Tubular Structure Extraction

In this section, we apply the proposed Finsler elastica minimal path model to the

tubular structure extraction combining with the optimally oriented flux filter (Law

and Chung, 2008), where the centrelines of tubular structures are represented by

the Finsler elastica minimal paths.

The minimal paths with the proposed Finsler elastica metric depend on the tan-

gents of both the initial source point and end point. In order to simplify the

initialization procedure, we firstly compute the optimal orientation map, denoted

by Θ : Ω ! [0, ⇡), which minimizes the multi-orientation response function g in

(5.32):

Θ(x) = arg min
✓2[0,⇡)

{g(x, ✓)}, 8x 2 Ω. (5.41)

Once the optimal orientation map Θ is defined, for one initial position ps 2 Ω,

one can obtain two orientation-lifted points p̄s = (ps,Θ(ps)) and p̄†
s. Also, for n

end positions pi 2 Ω (i = 1, 2, · · · , n), the corresponding orientation-lifted points

are defined by p̄i = (pi,Θ(pi)) and p̄†
i respectively.

For each set of orientation lifted end points {p̄i, p̄†
i}, we can extract four possible

geodesics, each of which joins an initial source point in {s̄, s̄†} to an end point

in {p̄i, p̄†
i}. The goal in this section is to search for a geodesic C⇤i with minimal

geodesic curve length associated to the metric P , among all the four possible

geodesics.

Let us denote the initial source point and the end point of the geodesic C⇤i by ā⇤

and c̄⇤i , respectively. If the geodesic curve length is estimated by the fast marching

method (Mirebeau, 2014b), this procedure can be simplified as follows: starting

the fast marching front propagation from both of the initial source points s̄ and

s̄†, the orientation lifted point c̄⇤i 2 {p̄i, p̄†
i} is the first point that is reached by

the front. The desired geodesic C⇤i can be determined by reversing the geodesic

that is the solution to the ODE (2.76). As a result, a set {C⇤i ; 1  i  n} of all the
desired geodesics can be extracted from the same minimal action map generated

by a single fast marching propagation.

In these applications, the geodesic distance maps with respect to the Finsler elas-

tica metric are computed in a manner of early abort, i.e., once the geodesic distance

values of all the orientation-lifted endpoints have been reached by the fast march-

ing front, we stop the geodesic distance computation. The early abort trick can

greatly reduce the computation time. This is similar to the partial front prop-

agation described in (Deschamps and Cohen, 2001) with a simple extension to

multiple points.
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5.5 Experimental Results

We show the advantages of using curvature penalization for minimal paths ex-

traction in the following experiments involving a study of the proposed metric

itself, and comparative results against the isotropic Riemannian (IR) metric, the

anisotropic Riemannian (AR) metric and the isotropic orientation lifted Rieman-

nian (IOLR) metric in the applications of closed contour detection and tubular

structure extraction.

5.5.1 Riemannian Metrics Construction

We construct the 2D anisotropic and isotropic Riemannian metrics for color image

segmentation using the color gradient proposed by Di Zenzo (1986).

Considering a color image I = (I1, I2, I3) : Ω! R
3 and a Gaussian kernel Gσ with

fixed variance σ, the gradient r(Gσ ⇤ I) can be expressed as a Jacobian matrix:

r(Gσ ⇤ I) =
✓
Iσx
Iσy

◆

=

✓
@xGσ ⇤ I
@yGσ ⇤ I

◆

, (5.42)

where Iσx(·) and Iσy (·) should be understood as 1⇥ 3 vectors, i.e.,

Iσx(·) =
⇣

@xGσ ⇤ I1(·), @xGσ ⇤ I2(·), @xGσ) ⇤ I3(·)
⌘

,

Iσy (·) =
⇣

@yGσ ⇤ I1(·), @yGσ ⇤ I2(·), @yGσ) ⇤ I3(·)
⌘

.

Based on the above matrix r(Gσ ⇤ I) defined in (5.42), a tensor E of size 2 ⇥ 2

can be constructed for all x 2 Ω:

E(x) =

0

@

kIσx(x)k2 hIσx(x), Iσy (x)i

hIσx(x), Iσy (x)i kIσy (x)k2

1

A .

We decompose the tensor E(x) in terms of its eigenvalues and eigenvectors as

E(x) = '1(x)g1(x)g
T
1 (x) + '2(x)g2(x)g

T
2 (x),

where '1(x) and '2(x) are the eigenvalues of tensor E(x). Vectors g1(x) and g2(x)

are the eigenvectors corresponding to '1(x) and '2(x), respectively. Without loss

of generality, we assume that '1  '2 such that g2 denotes the uint color gradient

vector field. Further details for color image gradient computation can be found

in (Di Zenzo, 1986).
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For a gray level image I : Ω! R
2, one has '1 = 0 and '2 is defined by

'2(x) = kr(Gσ ⇤ I)(x)k.

g2 is defined as the normalized gradient vector field of the blurred image Gσ ⇤ I
and g1(x) = g?

2 (x), 8x 2 Ω.

Therefore, the tensor field MA for the anisotropic Riemannian metric RA, the

general form of which is defined in (2.52), can be computed by

MA(x) = exp(−⌧ '2(x))g1(x)g
T
1 (x)

+ exp(−⌧ '1(x))g2(x)g
T
2 (x), (5.43)

where the positive constant ⌧ controls the anisotropy ratio of RA.

Moreover, based on the scalar field '2, the isotropic Riemannian metric RI (2.45)

can be constructed by

RI(x,u) =
⇣

β1 + β2 '
p
2(x)

⌘−1

kuk, (5.44)

where β1 and β2 are positive constants. In the following relevant experiments, we

set p = 2 and β1 = 1.

In the tubular structure extraction experiments, regarding the construction of the

AR metric, we make use of the radius-lifted tensor field introduced by Benmansour

and Cohen (2011), instead of using the tensor fieldMA defined in (5.43). For the

construction of the IR metric, we simply replace the eigenvalue '2 in (5.44) by

the vesselness map Vn described in (5.33). It is known that the vesselness map

indicates the probability of each pixel to belong to the tubular structure. Hence

the vesselness values inside the tubular structure are higher than those on the

background, leading to that the fast marching front propagate fast inside the

tubular structure.

The speed function PIL for the IOLR metric RIL (2.62) should be dependent of the

orientations. Simply, one can compute the speed function ΦIL using the following

equation:

PIL(x, ✓) = Φ(x, ✓), 8 ✓ 2 [0, ⇡), 8x 2 Ω, (5.45)

where Φ is the orientation dependent speed function defined in (5.34) and (5.35).

The parameter ⇢ of the IOLR metric F IL penalizing the variations of the orien-

tation ✓, is set as ⇢ = ↵, where ↵ is the parameter for the curvature term in the

bending energy L (5.1) or the data-driven Finsler elastica metric P (5.22).
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5.5.2 Parameters Setting

Curvature penalization in the proposed Finsler elastica metric relies on two pa-

rameters, ↵ and λ (5.12). The choice of λ is dictated by algorithmic compromises.

Indeed, minimal paths with respect to Finsler elastica metric P converge to the

elastica curves in the limit λ!1, hence a large value of λ is desirable. However,

large values of λ yield metrics with strong anisotropy ratio µ(P) (5.16). As a

result, the numerical algorithm used, adapted from Mirebeau (2014b), uses larger

discretization stencils, which increases its numerical cost and reduces its locality.

For instance, λ = 30 (resp. 100 or 300) leads to stencils with a radius of 4 pixels

(resp. 8 or 13). We typically use λ = 100.

On the other hand, the parameter ↵ is used to weight the curvature penalty in the

Finsler elastica metric P . In the course of fast marching method, a large value of

↵ makes the front to propagate slowly along the orientation dimension, implying

that the obtained geodesics tend to be smooth, i.e., with low curvature. When

↵ is very small, the extracted geodesics mainly depend on the image data-driven

speed function Φ defined in Section 5.3.3. Therefore, the choice of ↵ should depend

on the desired image features. Basically, we make use of the following heuristics.

There is a natural candidate ↵⇤ for the parameter ↵, dictated by the physical units

of the parameters, namely

↵⇤ = (R⇤/Φ⇤)
2,

where R⇤ is the smallest radius of curvature of the image features to be extracted,

measured in pixels, and Φ⇤ is the typical value of the speed function Φ around

these features.

The parameter ⌘ for image data-driven speed function Φ is set for each tested

image individually. The parameter β2 in the IR metric RI (5.44) is set as β2 = 2⌘

for all the comparative experiments. We set ⌧ in the AR metric RAR or its radius-

lifted version such that the anisotropy ratio equals 20 in all the experiments except

for Fig 5.6.

The angular resolution is set as ✓s = 2⇡/72 for both the IOLR metric and the

proposed Finsler elastica metric.

5.5.3 Smoothness and Asymmetry of the Finsler Elastic

Minimal Paths

The proposed Finsler elastica metric invoking orientation lifting and curvature

penalty benefits from the smooth and asymmetric properties of the minimal paths.

We demonstrate the smooth and asymmetric properties in a synthetic image as

shown in Fig. 5.5, where two ellipses-like shapes cross each other. Red dots and
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green dots are initial source and end positions respectively. Arrows indicate the

tangents at the corresponding positions. One can see that for the fixed initial

source and end positions, changing the corresponding tangents will give different

minimal geodesics. As shown in the first two columns of Fig. 5.5, the two geodesics

with the same initial source and end positions could form a complete ellipse shape.

In Fig. 5.6, we design a spiral with high anisotropy. The initial source position

and the end position are placed at the ends of the spiral. In the top row we add

high noise to the spiral while in the bottom row we blur the spiral. In columns

1-4, we show the minimal paths extracted by using the IR metric, the AR metric,

the IOLR metric and the Finsler elastica metric respectively. One can see that by

using the IR and AR metrics, where the shortcuts occur near the initial source

position (red dot) as shown in columns 1 and 2. In the top row of the column

3, the minimal path extracted by the IOLR metric is improved compared to the

results from the IR and AR metrics. However, a segment of the spiral, near the

initial source position, is missed again due to the shortcut problem. In contrast,

the minimal paths shown in column 4 which are extracted by the Finsler elastica

metric exactly follow the spiral shape thanks to the curvature penalty embedded

in the metric. In this experiment, we make use of a anisotropy ratio value of 100

for the AR metric. For the Finsler elastica metric, we set ↵ = 500 to ensure the

Finsler elastica minimal paths to be smooth enough.

In Fig. 5.7a, we illustrate six orientation-lifted candidates q̄i, i = 1, 2..., 6, denoted

by green dots with arrows, and an orientation-lifted initial source point s̄ (red

dot with arrow). Among all the candidates, we would like to find the closest

orientation-lifted point to the initial source point s̄, in terms of geodesic distance

with respect to the data-driven Finsler elastica metric P (5.22). In Fig. 5.7b, it

is shown that the closest orientation lifted point to s̄ is the candidate q̄6, even

though the geodesic (red curve), joining the orientation lifted points s̄ and q̄6,

passes through the vicinity of the physical position of q̄1. Moreover, one can claim

that the Euclidean distance value between the physical positions of s̄ and q̄6 is

the largest one among all of the Euclidean distance values between the physical

positions of s̄ and any remaining orientation lifted candidate q̄i. This experi-

ment demonstrates the asymmetric and smooth properties of the proposed Finsler

elastica minimal path model.

In Fig. 5.8, we show the minimal path extraction results on three natural images,

where each pair of the prescribed initial source positions and end positions is very

close to each other in terms of the Euclidean distance. For each image, we expect

to detect a long boundary between the two given orientation lifted points. It can

be observed that the extracted geodesics associated to the Finsler elastica metric

are able to catch the desired boundaries. In Fig. 5.8, the images shown in columns

1 and 2 are from the Berkeley Segmentation Dataset (Arbelaez et al., 2011) and

the image in column 3 is from the Weizmann dataset (Alpert et al., 2012).



Global Minimum for a Finsler Elastica Minimal Path Approach 135

Figure 5.5: Flexible Finsler minimal paths extraction on ellipse-like curves. Red dots
and green dots denote the initial and end positions respectively. Arrows indicate the

tangents.

Figure 5.6: Comparative minimal paths extraction results on Spirals. Columns 1-4
Minimal paths extracted by using the IR metric, the AR metric, the IOLR metric and
the proposed Finsler elastica metric, respectively. Red dots are initial source positions

and green dots are end positions. Arrows indicate the tangents.

5.5.4 Closed Contour Detection and Image Segmentation

Fig. 5.9 shows the closed contour detection results with three prescribed physical

positions using different metrics, where each position are assigned two opposite
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(a)
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q̄ 5

q̄ 6

(b)

Figure 5.7: Finding the nearest orientation-lifted candidate to the orientation-lifted
initial source point in terms of geodesic distance associated to data-driven Finsler elas-
tica metric. (a) Red dot denotes the initial source position and green dots are the end
positions. Arrows indicate the tangents for each position. (b) q̄6 denoted by green dot

with the arrow is the closest orientation-lifted point to s̄.

Figure 5.8: Finsler elastica minimal paths extraction results. Red and green dots
are the initial source and end positions respectively. Arrows indicate the corresponding

tangents.

orientations2. In this experiment, we firstly build the collection χ (5.40) by the

proposed contour detection procedure using the Finsler elastica metric as described

in Section 5.4.1, where the detection results are shown in column 5. Columns 2-4

show the closed contour detection results using the IR metric, the AR metric, and

the IOLR metric, respectively. The minimal paths shown in columns 2 to 4 are

obtained by simply linking each pair of vertices by the respective metrics involved

in χ. The red, yellow, and green dots are the physical positions of the vertices

q̄1, q̄2, q̄3, respectively. The arrows shown in column 5 indicate the tangents of

2For the IR metric and the AR metric, only the physical positions of these orientation lifted
vertices are used.
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Figure 5.9: Comparative closed contour detection results obtained by using different
metrics. Column 1 Edge saliency map. Columns 2-5 Contour detection results from
the IR metric, the AR metric, the IOLR metric and the proposed data-driven Finsler

elastica metric, respectively.

the geodesics at the corresponding positions. We assign each geodesic the same

color as its initial source position. In these images, most parts of the desired

boundaries appear to be weak edges which can be observed from the edge saliency

map in column 1. The detected contours associated to the Finsler elastica metric
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Figure 5.10: Closed contour detection results by using only two given physical posi-
tions and the corresponding orientations.

succeed at catching the desired boundaries due to the curvature penalization and

asymmetric property. In contrast, the three Riemannian metrics without curvature

penalization fail to extract the expected boundaries. The images used in this

experiment are from the Weizmann dataset.

In Fig. 5.10, we show the closed contour detection results obtained by the proposed

method with only two given physical positions and the corresponding orientations.

One can see that the proposed method can indeed reduce user intervention at least

for objects with smooth boundaries.

For the proposed data-driven Finsler elastica metric P defined in (5.22), the cur-

vature penalization relies on the parameter ↵ (λ is fixed to 100). In Fig. 5.11,

we show the closed contour detection results by varying ↵ to demonstrate the in-

fluence of the curvature term in our approach. In column 1, we show the closed

contour detection results with suitable values of ↵, say ↵0. In columns 2 and 3,

the closed contour detection results using ↵0/10 and 5↵0 are demonstrated. One

can see that it could lead to shortcuts by using small values of ↵ in rows 1-3 of

column 2. In contrast, with a larger ↵, the detected closed contour can catch the

optimal boundaries of the objects, which supports the effect of using curvature

penalization. The edge saliency maps for each image in this experiments can be

found from the first column of Fig. 5.9.
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Figure 5.11: Contour detection results with different values of curvature penalization
parameter ↵. Column 1 Results by suitable parameters of ↵ and λ. Columns 2

Results by small values of ↵. Column 3 Results by large values of ↵.

5.5.5 Perceptual Grouping

The perceptual grouping result on a synthetic noisy image is shown in Fig. 5.12.

In Fig. 5.12a, we demonstrate the original image consisting of a set of edges. Red

and blue dots with arrows are the orientation-lifted points provided by user as

initializations, where the red dot is the selected initial physical position. 5.12b

shows the perceptual grouping results by the proposed method. The identified

orientation-lifted points in the set D1 are denoted by red dots with arrows. Red

curves linking the points in D1 indicate the expected closed curves.

Fig. 5.13 illustrates the capacity of the proposed method to deal with the percep-

tual grouping problem with spurious points. Different initializations are shown in

Figs. 5.13a and 5.13c, where the red dots are the selected initial physical positions.
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(a) (b)

Figure 5.12: Perceptual grouping results by the proposed method and Finsler elastica
metric. (a) Initialization: red and blue dots are physical positions, in which the red
dot is the selected initial position. (b) The corresponding perceptual grouping results.

Arrows indicate the tangents for each physical position.

Figs. 5.13b and 5.13d are the grouping results. Red curves indicate the detected

closed curves.

The proposed perceptual grouping method has the ability to detect multple closed

curves by only specifying the number of expected closed curves. In Fig. 5.14, three

closed curves are detected. Row 1 shows different initializations where red dots

denote the selected initial physical positions.Row 2 illustrates the first detected

closed curve indicated by red curves. Red dots with arrows denote the selected

orientation-lifted points in the set D1. Row 3 illustrates the second detected

closed curve indicated by orange curves. Orange dots with arrows indicate the

orientation-lifted points in the set D2. The initial physical positions are selected

randomly after D1 is detected. Column 3 demonstrates the third closed curve

using the similar procedure to the detection of D2. We show the final closed curve

detection results in row 4. One can claim that our algorithm indeed has the ability

to deal with curves intersecting each others.

5.5.6 Tubular Structure Extraction

In this section, we show the tubular structure extraction results, where the initial

source and end positions are indicated by red and green dots, respectively. In

Figs. 5.15 to 5.19, only the physical positions are provided manually. The corre-

sponding orientations of these physical positions are computed automatically by

(5.41). In Fig. 5.20, the corresponding tangents for the physical positions are pro-

vided manually because high noise could lead to failure of the optimal orientation
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(a) (b)

(c) (d)

Figure 5.13: Perceptual grouping results by the proposed method and Finsler elastica
metric. (a) Initialization 1. Red dot is the selected initial position. (b) Perceptual
grouping result for initialization 1. Red dots with the corresponding arrows are the
orientation points chosen to form a closed curve. (c) Initialization 2. Red dot is the

selected initial position. (d) Perceptual grouping result for initialization 2.

detection using (5.41). We use the extraction strategy described in Section 5.4.3

for the Finsler elastica metric.

In Fig. 5.15, the retinal vessels are extracted by the IR metric, the AR metric,

the IOLR metric and the proposed data-driven Finsler elastica metric as shown in

columns 1 to 4, respectively. One can see that in columns 1 to 3, the minimal paths

suffer from the short branches combination problem, i.e., those minimal paths pre-

fer to choose a shortest way depending only on the image data-driven speed func-

tions. In contrast, the minimal paths obtained by the proposed data-driven Finsler

elastica metric can obtain the correct combination of vessel branches, leading to

smooth segmentation results between the initial source and end orientation-lifted

points.

Similar vessel extraction results are observed in Fig. 5.16. Again, the short
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Figure 5.14: Perceptual grouping results by the proposed method where three groups
are identified. Row 1 Initializations. Red dots are the selected initial positions. Rows
2-4 Intermediate grouping results for the corresponding initializations. Row 5 Final

grouping results.

branches combination problem occurs in columns 1 to 3 which are obtained by

the IR metric, the AR metric and the IOLR metric, respectively. Instead, the

proposed Finsler elastica metric can obtain the correct vessels extraction thanks

to the curvature penalty.

In Fig. 5.17, we present the extraction results of the retinal artery centerlines in

three patches of retinal images3. The centerline of a retinal artery usually ap-

pears as a smooth curve. In column 1, we show the retinal artery-vein ground

3Many thanks to Dr. Jiong Zhang to provide us these images.



Global Minimum for a Finsler Elastica Minimal Path Approach 143

Figure 5.15: Comparative blood vessel extraction results on retinal images. Columns
1-4 The extracted minimal paths using the IR metric, the AR metric, the IOLR metric,

and the proposed Finsler elastica metric respectively.

Figure 5.16: Comparative blood vessel extraction results on fluoroscopy images.
Columns 1-4 The extracted minimal paths using the IR metric, the AR metric, the

IOLR metric, and the proposed Finsler elastica metric respectively.

truth maps, where the red and blue regions indicate the arteries and veins, re-

spectively. Note that the small vessels have been removed from the ground truth

maps. Columns 2 to 5 show the centerlines extraction results by using the IR

metric, the ARLR metric, the IOLR metric and the Finsler elastica metric, re-

spectively. One can see that the minimal paths demonstrated in columns 2 to 4

pass through the wrong vessels due to the low gray-level contrast of the retinal

arteries. The proposed model can obtain the correct artery centerlines as shown

in column 5, thanks to the curvature penalization.
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Figure 5.17: Comparative arteries vessels extraction results on retinal images. Col-
umn 1 The retinal artery-vein vessels ground truth maps. Columns 2-5 The extracted
minimal paths by the IR metric, the AR metric, the IOLR metric, and the Finsler elas-

tica metric respectively.

In Fig. 5.18, we demonstrate the retinal veins extraction results (blue curves) in

the same patches which are used in rows 1-2 of Fig. 5.17. The extracted paths (blue

curves) are shown in columns 2-5 by using the IR metric, the AR metric, the IOLR

metric and the proposed Finsler elastica metric respectively. In this experiment,

we can see that all the extracted minimal paths can successfully follow the retinal

veins indicated by red regions in the artery-vein ground truth maps shown in

column 1.

In Fig. 5.19, vessel extraction results on a patch of retinal image are demonstrated,

where the vessels are blurred by other tissues. The vessel extraction results from

the three Riemannian metrics fail to follow the desired vessel due to the weak

contrast as shown in Figs. 5.19a to 5.19c. In 5.19d, the extracted minimal path

by the proposed Finsler elastica metric can successfully delineate the centreline of

the desired vessel thanks to the curvature penalization.

In Fig. 5.20, we show the road segmentation results on an aerial image by the

proposed Finsler elastica metric. The road images are blurred by Gaussian noise

with different variances. One can claim that our method can obtain smooth and

accurate minimal paths on noisy images.
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Figure 5.18: Retinal veins extraction results from different metrics. Column 1 The
retinal artery-vein vessels ground truth maps. Columns 2-5 The extracted minimal
paths by the IR metric, the AR metric, the IOLR metric, and the Finsler elastica metric

respectively. Blue curves denote the extracted minimal paths.

(a) (b)

(c) (d)

Figure 5.19: Comparative blood vessel extraction results on blurred retinal image.
(a)-(d) The extracted minimal paths by the IR metric, the AR metric, the IOLR

metric, and the proposed data-driven Finsler metric, respectively.

5.6 Conclusion

The core contributions of this paper lie at the introduction of curvature penalty

to the Eikonal PDE based minimal path model. This is done by establishing

the connection between the Euler elastica bending energy and the geodesic energy

via a family of orientation-lifted Finsler elastica metrics. Solving the Eikonal PDE

with respect to the proposed Finsler elastica metric, our model thus can determine

globally minimizing curves with curvature penalty between two orientation-lifteds-
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(a) (b)

(c) (d)

Figure 5.20: Roads extraction results by the proposed Finsler elastica metric in aerial
image blurred by Gaussian noise.

points. These minimal curves are asymmetric and smooth, benefiting from the

orientation lifting and curvature penalty. Combining with orientation dependent

data-driven speed function, we apply the proposed Finsler elastica minimal path

model to the applications of interactive image segmentation, perceptual grouping

and tubular structure extraction. Experimental results on both synthetic and real

images demonstrate the advantages of the Finsler elastica metric approach.



Chapter 6

Finsler Geodesics Evolution

Model for Region-based Active

Contours

Abstract

In this chapter, a new geodesics extraction framework is proposed for region-based

active contours and image segmentation. The basic idea is to reformulate a region-

based active contours energy into a geodesic contour energy involving a Finsler

metric. As a consequence, the region-based active contours energy minimization

problem is solved without resorting to level set functions, but using a robust non-

linear Eikonal partial differential equation framework. By sampling a set of control

points from the closed active contour in a clockwise order, the active contours evo-

lution problem is turned into finding a collection of minimal geodesics joining all

the successive control points. Globally optimal minimal curves are obtained by

solving an Eikonal partial differential equation, involving a Finsler metric, which is

achieved at a modest numerical cost using a variant of the fast marching algorithm.

147
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6.1 Introduction

The image segmentation problem plays an essential role in the field of computer

vision and medical imaging. Various partial differential equation (PDE) inspired

image segmentation models, such as the deformable models, have been extensively

studied during the last three decades. The Active contour models or snakes, firstly

introduced to the applications of image analysis by Kass et al. (1988), are designed

for image feature extraction by minimizing the associated energy functional in the

form of edge integration with initial conditions.

One of the main drawbacks suffered by the classical edge-based snakes model (Kass

et al., 1988) is that it requires fastidious initialization. In some cases, for example,

it requires the initial curves to be very close to the targeted boundaries. Various

approaches such as the balloon active contour model (Cohen, 1991; Cohen and

Cohen, 1993), gradient vector flow based models (Paragios et al., 2001; Xu and

Prince, 1998) and physical laws based model (Jalba et al., 2004; Xie and Mirmehdi,

2008), were devoted to solve this initialization sensitivity problem, allowing initial

curves to be far from the desired boundaries or even cross them. With the level set

numerical tool (Osher and Sethian, 1988), the evolution of the edge-based active

contours with balloon force can be efficiently implemented as the geometric active

contour models (Caselles et al., 1993, 1997; Malladi et al., 1994).

Region-based active contour models aim at partitioning the image into regions with

homogeneous features like gray levels, colors or texture Cohen (1997); Mumford

and Shah (1989). Comparing to edge-based active contour models, using global

region information can sometimes avoid trapping the active contours at spurious

edges, since most of the edge detectors are based on the local image gradients.

In Chan and Vese (2001); Tsai et al. (2001); Vese and Chan (2002), the curve

evolution strategy and level set method (Osher and Sethian, 1988) were adapted to

efficiently minimize the various forms of the Mumford-Shah functional (Mumford

and Shah, 1989), known as the piecewise constant case (Chan and Vese, 2001) and

piecewise smooth case (Tsai et al., 2001; Vese and Chan, 2002). The pairwise-

based active contour models were proposed in (Bertelli et al., 2008; Dubrovina-

Karni et al., 2015; Jung et al., 2012; Sumengen and Manjunath, 2006), where the

basic idea is to measure the similarity distance between each pair of pixels within

the same region or dissimilarity distance for a pair of pixels in different regions

(Bertelli et al., 2008). Local region-based active contour models are based on

the homogeneous intensities (Lankton and Tannenbaum, 2008; Li et al., 2008) or

texture features (Brox and Cremers, 2009) within a local region. Hybrid active

contour models (Kimmel, 2003; Paragios and Deriche, 2002; Sagiv et al., 2006; Zhu

and Yuille, 1996) consider the image edge information and region homogeneous

properties simultaneously. Hence the hybrid models can share the advantages from

both the edge-based and region-based active contour models.
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Cohen and Kimmel (1997) proposed a minimal path model to find the global min-

imum of the geodesic energy based on the formalism of viscosity solutions to the

Eikonal PDE, which can be solved by a fast and reliable Fast Marching method

(Sethian, 1999). The mathematical and algorithmic properties of the classic mini-

mal path model (Cohen and Kimmel, 1997) have important practical consequences,

allowing deep applications of the minimal path model and its extensions to im-

age segmentation (Appia and Yezzi, 2011; Mille et al., 2014; Peyré et al., 2010)

and medical imaging (Chen and Cohen, 2015b). Benmansour and Cohen (2009)

proposed a growing minimal path model to obtain a closed contour by detecting

a set of keypoints. Mille et al. (2014) proposed a combinational minimal path

model for interactive image segmentation by finding the optimal combination of

geodesics between each pair of given points. A curvature-penalized minimal path

model with a Finsler elastic metric was recently proposed by Chen et al. (2015) to

build the connection between the geodesic energy and the Euler elastic bending

energy.

In this chapter, we propose a Finsler metric based minimal path model for region-

based active contours and image segmentation. The Finsler metric is induced

from the region-based active contour energy functionals by an application of the

divergence theorem to a well chosen vector field. The Eikonal PDE associated to

the Finsler metric is efficiently solved via an adaptive variant of the fast marching

method (Mirebeau, 2014b).

6.2 Region-based Active Contours Models

6.2.1 Mumford-Shah Functional Inspired Active Contours

Models

The classical Mumford-Shah (MS) functional (Mumford and Shah, 1989) consist-

ing of a region based image data term and a curve length regularization term

EMS(g, γ) = ↵

Z

Ω

(I(x)− g(x))2 dx+ β

Z

Ω\γ

krg(x)k2dx+ λ

Z 1

0

kγ̇(t)kdt, (6.1)

where Ω ⇢ R
2 is the image domain and I : Ω ! R is an observed gray level

image. g is a piecewise smooth image data function used to approximate I inside

each region component and γ : [0, 1] ! Ω is a smooth curve. ↵, β and λ are

positive constants. It is known that minimizing the original MS functional EMS is

a difficult task. Vese and Chan (2002) and Tsai et al. (2001) independently pro-

posed numerical approaches to the original MS problem based on active contours

evolution. Along the same research line, Brox and Cremers (2009) statistically

interpreted the piecewise smooth MS functional by a local region based model.
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Figure 6.1: Illustration of the Chan-Vese active contours model. (a) original image
and initial contour (red curve). (b) Final segmentation result.

6.2.2 Piecewise Constant Chan-Vese Active Contours Model

Chan and Vese (2001) presented a region based active contours model where the

energy functional is obtained from the reduced form of the original MS functional

by setting the piecewise smooth function g to be a constant c1 inside γ and to be a

constant c2 outside γ. Letting B denote the regions inside and outside Bc outside

the contour γ respectively, one has Ω = B [ Bc. In Fig. 6.1, we demonstrate

how this model works. It assumes that the image can be approximated by the

constant c1 inside B and by c2 inside Bc. The Chan-Vese energy functional can

be expressed as

ECV(γ, c1, c2) =↵1

Z

B

(
I(x)− c1

)2
dx+ ↵2

Z

Bc

(
I(x)− c2

)2
dx

+ λ

Z 1

0

kγ0(t)kdt+ ⌫

Z

B

dx, (6.2)

where the last term of above energy functional is an optional ballon force firstly

introduced by Cohen (1991). Parameters ↵1, ↵2, λ and ⌫ are constants, where we

set ↵1 = ↵2 and ⌫ = 0.

In its basic formulation (Osher and Sethian, 1988), the contour γ was represented

by the zero-value of the level set function Φ : Ω! R, i.e.,

γ =: {x 2 Ω; Φ(x) = 0}.

By a variational level set approach proposed by Zhao et al. (1996) invoking a

Heaviside function H : Ω ! {0, 1}, the variational level set based Chan-Vese



Finsler Geodesics Evolution Model for Region-based Active Contours 151

energy functional (Chan and Vese, 2001) can be expressed as

ECV(Φ, c1, c2) = ↵1

Z

Ω

(I(x)− c1)2H(Φ(x))dx+ ↵2

Z

Ω

(I(x)− c2)2H(−Φ(x))dx

+ λ

Z

Ω

krH(Φ(x))kdx+ ⌫

Z

Ω

H(Φ(x))dx. (6.3)

The Heaviside function obeys H(−Φ(x)) = 1−H(Φ(x)).

The CV model made use of a two-step minimization scheme to get the final optimal

contour C⇤. The first step is to fix c1 and c2 to update the level set function Φ

with respect to time ⌧ in a gradient descent manner by

@Φ

@⌧
=− @ECV

@Φ

=δ(Φ)

✓

↵2(I − c2)2 − ↵1(I − c1)2 + λdiv

✓ rΦ
krΦk

◆

− ⌫
◆

, (6.4)

with suitable boundary condition. Function δ is the Dirac measure that is defined

as

δ(z) =
d

dz
H(z).

The second step is to fix Φ to update c1 and c2 by

c1 =

R

Ω
I(x)H(Φ(x))dx
R

Ω
H(Φ(x))dx

, (6.5)

c2 =

R

Ω
I(x)H(−Φ(x))dx
R

Ω
H(−Φ(x))dx . (6.6)

to minimize the energy ECV (6.3). Hence as ⌧ !1, the final optimal contour is

expected to converge to the boundaries of the object. As discussed in (Chan and

Vese, 2001), numerically, the Heaviside function H and Dirac measure function δ

are approximated respectively by their regularized functions H✏ and δ✏:

H✏(z) =
1

2

✓

1 +
2

⇡
arctan(

z

✏
)

◆

,

δ✏(z) =
1

⇡

✏

✏2 + z2
.

6.2.3 Locally Binary Fitting Model

The locally binary fitting active contours model was introduced by Li et al. (2008)

to deal with inhomogeneous intensities problem. In this case, the Chan-Vese active

contours model (Chan and Vese, 2001) cannot obtain good segmentation results
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since the image intensity values are unable to be approximated well by two con-

stants c1 and c2.

The locally binary fitting model (Li et al., 2008) introduced a local gaussian kernel

Gσ with variance σ to the active contour energy:

ELBF(γ, u1, u2) =↵1

Z

Ω

Z

B

Gσ(x,y)(I(x)− u1(y))2dxdy

+ ↵2

Z

Ω

Z

Bc

Gσ(x,y)(I(x)− u2(y))2dxdy + λ

Z 1

0

kγ0(t)kdt

=↵1

Z

B

Z

Ω

Gσ(x,y)(I(y)− u1(x))2dydx

+ ↵2

Z

Bc

Z

Ω

Gσ(x,y)(I(y)− u2(x))2dydx+ λ

Z 1

0

kγ0(t)kdt
(6.7)

=↵1

Z

B

J1(x)dx+ ↵2

Z

B

J2(x)dx+ λ

Z 1

0

kγ0(t)kdt, (6.8)

where the functions J1 and J2 are defined as

J1(x) =

Z

Ω

Gσ(x,y)(I(y)− u1(x))2dy, (6.9)

J2(x) =

Z

Ω

Gσ(x,y)(I(y)− u2(x))2dy. (6.10)

The Gaussian kernel Gσ obeys

Z

R2

Gσ(x,y)dy = 1,

for any point x 2 Ω. Based on the variation level set framework (Zhao et al.,

1996), the locally binary fitting model energy ELBF can be expressed as

ELBF(Φ, u1, u2) =↵1

Z

Ω

J1(x)H(Φ(x))dx+ ↵2

Z

Ω

J2(x)H(−Φ(x))dx

+ λ

Z

Ω

krH(Φ(x))kdx. (6.11)

Keeping u1 and u2 fixed, the corresponding level set evolution equation is

@Φ

@⌧
= −@E

LBF

@Φ

= δ(Φ)

✓

λdiv

✓ rΦ
krΦk

◆

+ ↵2J2 − ↵1J1

◆

. (6.12)
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Fixing Φ, we can obtain u1 and u2 by

u1(x) =
(Gσ ⇤ I H(Φ))(x)

(Gσ ⇤H(Φ))(x)
, u2(x) =

(Gσ ⇤ I H(−Φ))(x)
(Gσ ⇤H(−Φ))(x) , (6.13)

by minimizing (6.7).

6.2.4 Pairwise Region-based Active Contours Energy

The pairwise active contours model was first introduced by Sumengen and Man-

junath (2006) based on the dissimilarity measurement between pixels in different

regions. (Bertelli et al., 2008; Dubrovina-Karni et al., 2015) extended this model

to deal with the multi-region image segmentation problem. Jung et al. (2012)

introduced a non-local active contours model by computing the distance between

a pair of patches. This model extended the pixel-based dissimilarity measurement

(Sumengen and Manjunath, 2006) to a nonlocal patch-based similarity measure-

ment.

For simplicity, we introduce the following notations:

Dx(B) =

Z

B

D(x,y)dy, Hx(B) =

Z

B

Gσ(x,y)dy, (6.14)

where D is the pairwise interaction kernel (Jung et al., 2012) defined by

D(x,y) = Gσ(x,y) d(px, py), (6.15)

where d(px, py) denotes the distance between two patches centred at x and y. A

patch is defined by

px(t) = I(x+ t), t 2 $p :=
h

− &
2
,
&

2

i2

, (6.16)

where &2 is the size of the patch. A typical definition for d(·, ·) is the weighted L2

patch distance (Jung et al., 2012):

d(px, py) =

Z

$p

Ga(t)kpx(t)− py(t)k2dt, (6.17)

where Ga is a Gaussian kernel with variance a obeying that

Z

R2

Ga(t)dt = 1.
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The patch-based non-local active contours energy can be expressed as

EPW(γ) =

Z

B

Dx(B)

Hx(B)
dx+

Z

Bc

Dx(B
c)

Hx(Bc)
dx+ λ

Z 1

0

kγ0(t)kdt, (6.18)

The shape gradient of the energy

EPW :=

Z

B

Dx(B)

Hx(B)
dx, (6.19)

at shape B ⇢ Ω can be expressed for all z 2 @B as

rEPW(B)(z) =
Dz(B)

Hz(B)
+

Z

B

D(x, z)Hx(B)−Gσ(x, z)Dx(B)

H2
x(B)

dx. (6.20)

6.3 Region-based Energy Minimization Problem

In this section, we proposed a new region-based active contours model combining

with the Eikonal PDE-inspired minimal paths framework.

6.3.1 Linear Approximation of the Region-based Energy

Let Ω ⇢ R
2 be a bounded image domain. Within this chapter, a shape is an

arbitrary measurable subset A ⇢ Ω with a rectifiable boundary @A. We denote

by χA characteristic function of shape A:

χA(x) :=

(

1, x 2 A,
0, otherwises.

(6.21)

We fix an exponent p 2 (1, 2) and denote by q 2 (2,1) the conjugate exponent of

p, defined by
1

p
+

1

q
= 1.

For any shape B ⇢ Ω, the characteristic function obeys that χB 2 Lp(Ω).

A region-based functional F : Lp(Ω)! R is differentiable at χB0
2 Lp(Ω) iff there

exists c 2 R and a functional f 2 Lq(Ω) such that for all χB 2 Lp(Ω):

F (χB) =c+

Z

Ω

χB(x) f(x) dx+ o(kχB0
− χBkp)

=c+

Z

B

f(x) dx+ o(kχB0
− χBkp). (6.22)
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In that case, c and f are uniquely determined and independent to χB. Scalar

function f is the first variation of F with respect to χB0
:

f := F 0(χB0
). (6.23)

For the sake of simplicity, in the following, we make use of the following notation

F 0
B := F 0(χB).

By (6.22), for any B 2 Ω close to B0 2 Ω, we have

F (χB) =

Z

B

F 0
χB0

(x)dx

| {z }

†

+c, (6.24)

which means that the functional F (χB) can be naturally approximated by a linear

region term † in (6.24).

The most popular functional appearing in shape optimization or curve evolution

are the sum of a linear region term, and a penalization of the Euclidean curve

length `(@A) of the boundary @A:

E(A) = ↵F (χA) + `(@A). (6.25)

The energy functional (6.25) can be minimized by shape or curve evolution method,

providing an initial shape A0 is given. Using (6.24), E(A) can be expressed as

E(A) =↵
Z

A

F 0
χA0

(x)dx+ `(@A) (6.26)

=↵

Z

A

f(x)dx+ `(@A), (6.27)

where ↵ is a positive constant and f = F 0
χA0

is the first variation of F with respect

to χA0
. Quantity `(@A) denotes the standard Euclidean curve length @A, which

is also the 1-dimensional Haussdoff measure.

6.3.2 Time-Dependent Gradient Descent Method for En-

ergy Minimization

Classical shape or curve evolution approaches optimize the energy functional E
(6.26) by using the corresponding linear Euler-Lagrange equations and the time-

dependent gradient descent method (Jung et al., 2012; Tsai et al., 2001; Zhu and

Yuille, 1996). In other words, these approaches make use of the gradient descent

flows as the energy minimization way.
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Let ⌧ ≥ 0 denotes the time and N denote the outward normal of a parametric

active curve Γ : [0,1) ⇥ [0, 1] ! Ω, where Γ(0, ·) = @A0(·). The curve evolution

equation in terms of the gradient descent flow of the energy functional E is

@

@⌧
Γ =

⇣

− ↵f
(
Γ
)
+ 
⌘

N , (6.28)

where  is the curvature of the curve Γ. The gradient descent flow-based mini-

mization scheme is known to be sensitive to the local minima and costs expensive

computation time.

Level Set Curve Evolution Scheme

The level set method (Osher and Sethian, 1988) is one of the most popular tools

for curve evolution, where the curves can be denoted by the zero-level set. Letting

β : Ω ! R denote the front propagation speed, the respective level set evolution

equation (Osher and Sethian, 1988) can be expressed as

@φ

@⌧
= β krφk. (6.29)

Corresponding to the gradient descent flow (6.28), the level set curve evolution

equation is
@φ

@⌧
= −↵ fkrφk+r ·

✓ rφ
krφk

◆

krφk, (6.30)

where the curvature  is expressed by

 = r ·
✓ rφ
krφk

◆

.

Zhao et al. (1996) proposed a variational level set approach, which was adopted

by (Chan and Vese, 2001; Chan et al., 2000; Li and Acton, 2007; Vese and Chan,

2002) for active contours and image segmentation. The details for this popular

numerical tool can be found in Section 6.2.2.

In the course of the level set evolution, sometimes the level set function φ should

be reinitialized as signed distance map, as discussed in Section 2.2.1. Moreover,

the level set evolution scheme requires a small step for stability, which leads to

high computation time. In this chapter, we solve the same region-based energy

minimization problem in a different way, which is based on a geodesic energy

minimization scheme and non-linear Eikonal PDE. The first step of the proposed

method is to interpret the region-based energy functional by a Finsler geodesic

curve energy via the divergence theorem and a Finsler metric, as discussed in

Section 6.4.
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6.4 Finsler Geodesic Energy Interpretation of the

Region-based Energy

We consider the minimization of E in (6.26) in the manner of shape evolution:

for a given shape A0 with boundary @A0, we aim to finding a contour @A⇤ as the

boundary of shape A⇤ minimizing E , where A⇤ is close to A. We make use of a

tubular neighbourhood domain U ⇢ Ω of the contour @A0 to restrict the searching

space for the contour @A⇤ such that the expected contour obeys @A⇤ : [0, `@A∗ ]!
U , where `@A∗ is the Euclidean curve length of @A⇤. For this purpose, we firstly

define a vector field V? 2 L2(U,R2) such that

r · V?(·) = ↵ f(·)χU(·), (6.31)

where r· is the classical divergence operator: for any x = (x, y) one has

r · V?(x) =
@

@x
V?(x) +

@

@y
V?(x).

where χU is the characteristic function of tubular neighbourhood region U .

Tubular Neighbourhood-Constrained Region-based Energy

We consider a collection BU of all U -constrained paths γ where

γ : [0, 1]! U, (6.32)

The energy value E(A) for a shape A with boundary involved in BU can be rewrit-

ten as

E(A) =↵
Z

A

F 0
χA0

(x)χU(x)dx+ ↵

Z

A0\{A0\U}

F 0
χA0

(x)dx+ `(γ) (6.33)

=↵

Z

A

F 0
χA0

(x)χU(x)dx+ `(γ) + Constant (6.34)

=↵

Z

A\U

f(x)χU(x) dx+ `(γ) + Constant, (6.35)

where A0 is the given initial shape and U is the tubular neighbourhood region of

the boundary @A0. The scalar function f is the shape gradient of F at χA0
. Since

A0 is a fixed shape, the term

↵

Z

A0\A0\U

F 0
χA0

(x)dx,
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U
∂A0

∂A∗

Figure 6.2: Illustration for the U-constrained shape evolution. Dash curve denotes
the boundary ∂A0 of the original shape A0 and red curve is the expect boundary ∂A⇤

of the desired shape A⇤.

is a constant. In Fig. 6.2, we illustrate the boundaries @A0 of the original shape

A0 and the tubular neighbourhood region U of @A0. The goal is to search for an

optimal shape A⇤ with boundary @A⇤ under the constraint:

@A⇤ 2 BU ,

to minimize E formulated in (6.35). For this purpose, we define an energy EU such

that EU(A) =1 if @A /2 BU , otherwise one has

EU(A) = ↵

Z

A\U

f(x)χU(x) dx + `(γ) (6.36)

=

Z

A\U

r · V?(x) dx + `(γ) (6.37)

=

Z 1

0

⌦
V?(γ(t)),N (t)

↵
kγ0(t)k dt + `(γ), (6.38)

where N is the outward normal of the curve γ := @A 2 BU .
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Equation (6.36) is obtained by (6.31) and equation (6.37) is obtained by the di-

vergence theorem. We express EU in (6.38) by

EU(A) =
Z 1

0

⌦
M V?(γ(t)), M N (t)kγ0(t)k

↵
dt + `(γ)

=

Z 1

0

⇣

kγ0(t)k+
⌦
V(γ(t)), γ0(t)

↵⌘

dt, (6.39)

where M is a clockwise rotation matrix with rotation angle ✓ = ⇡/2, V(·) =

M V?(·), and ds = kγ0(t)kdt, t 2 [0, 1]. γ0 is the tangent vector of γ in clockwise

order. Indeed, T =M N is the tangent vector and

γ0(t) = kγ0(t)k T (t)
= kγ0(t)kM N (t), 8 t 2 [0, 1].

We consider a function K : Ω⇥ R
2 ! R

+ as follows:

K(x,u) =

(

kuk+ hV(x), ui, 8x 2 U,
1, otherwise,

(6.40)

The term kuk+hV(x), ui will be a Finsler metric if it obeys the smallness condition

formulated in (2.73), i.e.,

kV(x)k < 1, 8x 2 U. (6.41)

6.4.1 Computation of Vector Field V Over a Subdomain U

We start the discussion of the computation of vector field V from the Proposition

6.1 below.

Proposition 6.1. Let Ω ⇢ R
2 be a bounded domain. Let 1  p < 2 and let

f 2 Lq(Ω) with
1

p
+

1

q
= 1.

Let U 2 Ω be subdomain, and let ! 2 L2(R2, R2) solve:

minimize

Z

R2

k!(x)k2dx, (6.42)

s.t. r · !(x) = ↵ f(x)χU(x), 8x 2 Ω. (6.43)

Then one has

k!kL∞  C⇤ kfkLq(U) (Leb(U))
%,
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where % = 1
p
− 1

2
and

C⇤ :=
2

1

p
−1

p
⇡(2− p) 1

p

.

Proof. The solution to the divergence equation (6.43) is known to be ! = r⇢,
where ⇢ solves the Poisson equation

∆ ⇢(x) = f(x)χU(x), 8x 2 R
2,

where ∆ denotes the Laplacian operator.

Expressing ⇢ in terms of the Green kernel we obtain for all x 2 R
2:

⇢(x) =
1

2⇡

Z

U

ln kx− ykf(y)dy.

Therefore, one has

!(x) = r⇢(x)

=
1

2⇡

Z

U

x− y

kx− ykf(y)dy, 8x 2 U.

Let RU > 0 be the radius defined by ⇡R2
U = Leb(U), so that the disk D(0, RU)

has the same area as U . Holder’s inequality and a rearrangement inequality yield

2⇡k!(x)k  kfkLq(U)

✓Z

U

1

kx− ykpdy
◆ 1

p

 kfkLq(U)

✓Z

D(0,RU )

1

kzkp dz
◆ 1

p

.

Evaluating the right hand side, we conclude the proof: for all x 2 U :

2⇡k!(x)k 
✓Z RU

0

2⇡r

rp
dr

◆ 1

p

kfkLq(U)

=

✓
2⇡

2− pR
2−p
U

◆ 1

p

kfkLq(U)

=
2

1

p

p
⇡(2− p) 1

p

Leb(U)% kfkLq(U).

According to Proposition 6.1, the value k!kL∞ depends only on the area of sub-

domain U providing that f is fixed. In other words, k!kL∞ < 1 holds if U is

sufficiently small. Therefore, we can define the vector field V = M !, where M is
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the clockwise rotation matrix with rotation angle ✓ = ⇡/2. Giving a suitable U ,

one can obtain that kVkL∞ < 1.

In practice, it is difficult to solve the minimization problem (6.42) over R2. Instead,

we solve that problem over the tubular neighbourhood region U , i.e.,

minimize

Z

U

kV?(x)k2dx, (6.44)

s.t. r · V?(x) = ↵ f(x), 8x 2 U, (6.45)

which gives good results.

The solution V? to the minimization problem (6.44) with linear constraint (6.45)

admits the variational formulation: find (V?, p) 2 L2(U,R2) ⇥ H1(U) such that

for all (W , q) in the same spaces one has

8

>>>><

>>>>:

Z

U

hV?(x),W(x)idx+

Z

U

hrp(x),W(x)idx = 0,

Z

U

hV?(x),rq(x)i −
Z

U

f(x)q(x)dx = 0.

(6.46)

We use a finite differences discretization on the pixel grid hZ2 \U , where h > 0 is

the pixel size. We also store the values of the potentials p and q on a staggered grid

so as to improve the accuracy of the gradient operator. The numerical solution to

(6.46) can be found in Appendix 6.46.

Recalling that γ : [0, 1] ! Ω denotes the boundary of shape A. Based on the

computed vector field V =M V? (M is the clockwise rotation matrix with rotation

angle ✓ = ⇡/2 ), the regional energy EU(A) (6.39) is equivalent to a geodesic energy
L(γ):

L(γ) =
Z 1

0

K(γ(t), γ0(t))dt. (6.47)

In the sense of shape evolution, a shape A0 is given as initialization. In this

case, the domain U is the minimal geodesic searching space and should be a

tubular neighbourhood region of curve @A0. By reducing the width of the tubular

neighbourhood U of @A0, we can limit its area as well, and thus obtain kVkL∞ =

kV?kL∞ < 1 by Proposition 6.1 as desired. However this also limits the search

region for the expected path @A⇤, which may ultimately lead to the algorithm

failure if the tubular neighbourhood width is less than the pixel size. We use

two methods to mitigate these issues. The first method is to make the parameter

↵ = 1/kVkL∞+✏ (see (6.43)) where ✏ is a small positive constant. Thus kVkL∞ < 1

will always hold for any searching space U .
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We make use of the second way in this chapter for extending the size of the search

region U , which is to replace the vector field V with Ṽ defined by

Ṽ(x) := T (kV(x)k) V(x)kV(x)k , 8x 2 U, (6.48)

where T is a nonlinear map which is a decreasing function defined as

T (⇣) := 1− e−µ⇣ , 8⇣ 2 [0,1), (6.49)

When ⇣ is small, we have the approximation

T (⇣) ⇡ ⇣.

Clearly the smallness condition kṼkL∞ < 1 is automatically satisfied, and Ṽ(x)
approximates well V(x) where its norm kV(x)k is small, 8x 2 U .

Based on the vector field Ṽ , a Finsler metric K : Ω⇥R
2 ! R

+ can be constructed

by

K(x,u) :=
(

kuk+ hṼU(x), ui, if x 2 U, 8u 2 R
2

1, otherwises,
(6.50)

Therefore, the geodesic energy L̃ (6.47) is defined by letting K := K

L̃ :=

Z 1

0

K(γ(t), γ0(t))dt. (6.51)

Hybrid Finsler Metric G

In the expression of the U shape-constrained erergy EU (6.36), the regularity term

for contour γ is the standard Euclidean curve length `(γ). Kimmel (2003) and

Kimmel and Bruckstein (2003) proposed a geodesic curve length regularity term

`g(γ) combining with an edge indicator function g : Ω! [1,1):

`g(γ) =

Z 1

0

g(γ(t))kγ0(t)kdt, (6.52)

to replace the Euclidean curve length regularization term.

The edge indicator g has small values around the desired image features such as

edges. Based on (6.52), we have the hybrid Finsler metric G:

G(x,u) =
(

g(x)kuk+ hṼU(x), ui, if x 2 U and 8u 2 R
2

1, otherwises.
(6.53)
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Since we restrict the lower bound of g(x) ≥ 1, the smallness condition for the

Finsler metric G
Ṽ(x) < g(x), 8x 2 U,

will always hold.

Overview of the Proposed Shape Evolution Algorithm

The minimization of L (6.47) is transferred to the minimization of L̃. Note

that since in general we induce L̃ with a nonlinear mapping T (6.49), there is

in fact slight difference in the minimization problems and the results show that

our geodesic method is very efficient and robust. Two points guarantee that using

the non-linear mapping T is reasonable:

• The minimization of L in (6.47) is relevant to both the directions of the curve

and the norm of V , i.e., minimizing EU is to find a shape A⇤ with boundary

C : [0, 1] ! U , for which the direction C 0(t) for each t 2 [0, 1] should be as

opposite to V
(
C(t)

)
as possible and the norm kV

(
C(t)

)
k should be as large

as possible, giving the relevance between the minimization problems of EU
and L̃. Introducing the nonlinear mapping T will not modify both goals of

the minimization problems.

• When the Finsler geodesic evolution scheme as discussed in Algorithm 8

tends to stabilize, one can reduce the width of tubular neighbourhood U .

Thus T (kV(x)k) ⇡ kV(x)k, 8x 2 U as kV(x)k is small. Moreover, We

experimentally observe that near the centreline of U , the values of kVk will
become very small, leading to a good approximation of V by Ṽ .

The rest part of this chapter will be devoted to minimize the geodesic energy

L̃ (6.51) by a iterative shape evolution method. The basic idea is to seek a family

of clockwise contours C⌧ with ⌧ 2 {1, 2, 3, · · · } which converge to the expected

object boundary as ⌧ !1, where C0 is the boundary of an initial shape. In each

iteration ⌧ , this shape evolution procedure involves two steps:

1. Find a closed contour C⇤ by a Finsler geodesics extraction strategy to mini-

mize L̃ with respect to the metric K and the tubular neighbourhood U . This

is described in Line 2 of the Alogrithm 8.

2. Update the Finsler metric K in Line 7 of the Alogrithm 8, relying on the

computation of first variation f (6.23) and tubular neighbourhood U .

In the following sections, we give the details to the construction of the neighbour-

hood U and the Finsler geodesics extraction strategy.
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Algorithm 8 Summary algorithm of the entire shape evolution procedure

Input: Initial shape A0 with boundary C0.
Output: Final contour C1.
Initialization:
• Compute the first variation f0 and tubular neighbourhood U0 in terms of C0.
• Compute the Finsler metric K0 using eqn. (6.50).
• ⌧  0.

1: while (dH > ✏) do
2: Find a closed contour C⇤ minimizing L̃ with respect to the metric K⌧ (6.50)

and U⌧ by a Finsler minimal paths extraction strategy.
3: Compute the Hausdorff distance dH of paths C⇤ and C⌧ .
4: ⌧  ⌧ + 1.
5: C⌧  C⇤.
6: Update the first variation f⌧ (6.23) and the tubular neighbourhood U⌧ in

terms of C⌧ .
7: Update the Finsler metric K⌧ using eqn. (6.50).
8: end while

6.5 Tubular Neighbourhood Construction

A tubular neighbourhood U of γ as the boundary of shape A is constructed as the

set of points within a given geodesic distance d of γ:

U := {x 2 Ω; Dγ(x) < d}, . (6.54)

The geodesic distance map or minimal action map Dγ(x) from point x 2 Ω to the

curve γ obeys the following isotropic Eikonal PDE:

(

krDγ(x)k = P (x), 8x 2 Ω,

Dγ
(
γ(t)

)
= 0, 8t 2 [0, 1].

(6.55)

This isotropic Eikonal equation can be efficiently solved using fast marching algo-

rithm (Sethian, 1999).

If one sets P ⌘ 1 identically, then U is a standard tubular neighbourhood of

width d centred on the path γ. However, the algorithm efficiency can be improved

by using non-cantered tubular neighbourhoods, based on a guess of the likely

evolution of the boundary, and obtained using the following potential:

P (x) :=

8

>><

>>:

δ, if x 2 A and f(x) > 0,

δ, if x 2 Ac and f(x) < 0,
1
δ
, otherwise,

(6.56)
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where δ > 1 is a given constant, and Ac := Ω\A is the complement of the shape

A ⇢ Ω.

6.6 Finsler Minimal Paths Extraction Strategy

for the Minimization of L̃

Let ⌧ denote the iteration order. We present two Finsler geodesics extraction

methods to minimize L̃ providing that the metric K⌧ the tubular neighbourhood

region U⌧ , and a shape A⌧ is given, with boundary C⌧ : [0, 1] ! Ω. The first

method is named contour initialization, where the initial guess is a closed con-

tour. The second method is called fixed points initialization. For the contour

initialization method, we need to sample a set vertices from the current closed

contour, where the vertices set involves Ns vertices.

6.6.1 Contour Initialization

6.6.1.1 In Case Ns = 2

We present a method to minimize the geodesic energy L̃ by sampling two vertices

s and z from the contour C⌧ . The closed contour C⌧ is decomposed into two

curves: Υy, Υx : [0, 1] ! U⌧ with common end points Υy(0) = Υx(0) = s

and Υy(1) = Υx(1) = z, where Υy is in clockwise order and Υx is in counter-

clockwise order such that

C⌧ (u) =
(

Υy(2u), if 0  u  1
2

Υx(2− 2u), if 1
2
< u  1.

(6.57)

We introduce a new path Υ✏ := [Υy(0 ! ✏)] [ [Υx(0 ! ✏)] with ✏ < 1, where a

path γ✏ := [Υy(0! ✏)] is defined as a part of Υy such that

γ✏(t) : [0, ✏]! U⌧ , and γ✏(t) = Υy(t), t 2 [0, ✏).

In Fig. 6.3(a), Υy and Υx are denoted by red curve and cyan curve respectively.

By Eqn. (6.55), we define the tubular neighbourhood regions Θ✏, Θy and Θx for

the the paths Υ✏, Υy [ [Υx(0 ! ✏)] and Υx [ [Υy(0 ! ✏)] ⇢ U⌧ respectively.

This is done by computing the geodesic distance maps based on the potential

P (6.56) from each paths respectively. In Figs. 6.3(a) to (d), we demonstrate

the tubular neighbourhood regions U⌧ |⌧=0, Θ✏, Θy and Θx respectively. Based

on these definitions, we compute the minimal action map Uy with respect to
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s0 z0

(a)

s0 z0

(b)

s0 z0

(c)

s0 z0

(d)

Figure 6.3: Tubular neighbourhood regions for ⌧ = 0, where we denote the neighbour-
hood regions by red shadow. (a) Neighbourhood region U0 for contour C0, which consists
of two paths Υ1 (cyan curve) and Υ2 (red curve). (b) Neighbourhood region region Θ0

for curve Υ0 (blue curve). (c) Neighbourhood region Θ1 for path Υ1[ [Υ2(0! ✏)]. (d)
Neighbourhood region Θ2 for path Υ2 [ [Υ1(0! ✏)].

Finsler metric K⌧ (6.50) from the initial source point s by the Θy-constrained fast

marching algorithm (Mirebeau, 2014b). Similarly, we can compute the minimal

action map Ux with respect to Θx with the same initial source point and the

inverse Finsler metric computed by vector field −Ṽ using (6.50). We define a

saddle point z⇤ by

z⇤ = arg min
x2Θ0

{Uy(x) + Ux(x)}. (6.58)

Using the saddle point z⇤, the geodesics Cy (resp. Cx) can be tracked by solving

the ODE in (2.76) with respect to minimal action map Ux (resp. Uy). Thus,

geodesics Cy and Cx have the common end points s and z⇤.

The value of Uy(z⇤) + Ux(z⇤) is a minimum of the following energy:

L(γy, γx) =

Z 1

0

⇣

K(γy(t), γ0y(t)) +K(γx,−γ0x(t))
⌘

dt,

for any regular curves γy : [0, 1] ! Θy and γx : [0, 1] ! Θx with common end

point γy(0) = γx(0) = s. Since Cy and Cx are geodesics, one has L(Cy, Cx) 
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L(Υy,Υx). The desired closed geodesic C⌧+1 : [0, 1]! U⌧ can be constructed by

C⌧+1(u) :=

(

Cy(2u), if 0  u  1
2

Cx(2− 2u), if 1
2
< u  1.

(6.59)

In the course of shape evolution algorithm (see Algorithm 8), if the iteration order

⌧ = 0, then s can be chosen randomly from the initial contour C0. Otherwise, we

set s for the (⌧ +1)-th iteration to be the saddle point z⇤ at the ⌧ -th iteration. In

any iteration step, the vertex z is selected such that the two splitted curves have

the same Euclidean curve length.

6.6.1.2 In Case Ns ≥ 3

We sample a collection of successive vertices from the given closed contour C⌧ in

clockwise order such that C⌧ can be decomposed into a set of paths Υ⌧,i, where

i 2 {1, 2, · · · , Ns} with Ns ≥ 3 by these vertices. Let us denote the collection of

the successive vertices by Λ⌧ := {p⌧i , i 2 {1, 2, · · · , Ns} }, by which the geodesic

energy L̃ can be expressed by:

L̃(C⌧ ) =
NsX

i=1

L̃(Υ⌧,i) =
NsX

i=1

Z 1

0

K⌧ (Υ⌧,i(t),Υ
0
⌧,i(t))dt. (6.60)

Similarly to the procedure for Ns = 2 above, for each path Υ⌧,i we can construct

a tubular neighbourhood region Θi ⇢ U⌧ . The two end points of path Υ⌧,i are p
⌧
i ,

p⌧i+1 2 Λ⌧ . Taking p⌧i as initial source point and p⌧i+1 as end point, we perform the

Θ⌧,i constrained fast marching method to obtained the minimal action map with

respect to the Finsler metric K⌧ . The geodesic Υ⇤
⌧,i can be obtained by solving the

ODE in (2.76). The expected closed contour C⌧ can be obtained by

C⌧+1 = Υ
⇤
⌧,1 [Υ

⇤
⌧,2 [ · · · [Υ

⇤
⌧,Ns

.

Since Υ⇤
⌧,i are geodesics, we have C⌧+1  C⌧ . In the course of shape evolution

algorithm described in Algorithm 8:

1. If the iteration order ⌧ = 0, the vertices in Λ0 are sampled such that the

values of the Euclidean curve length for each path Υ0,i are identical.

2. If the iteration order ⌧ > 0, each vertice p⌧i is identified as the middle point

of the path Υ⌧−1,i, i.e., p
⌧
i = Υ⌧−1,i(

1
2
).
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6.6.2 Fixed Points Initialization

Suppose that the vertices collection Λ0 := {pi, i 2 {1, 2, · · · , Ns} } in the proce-

dure of contour initialization with Ns ≥ 3 (see Section 6.6.1.2) is given by the user,

where the vertices pi are distributed at the desired boundary in a clockwise order.

At the ⌧ = 0 iteration, we link these vertices by straight lines to form a closed

contour and construct the tubular neighbourhood region U0 and Finsler metric

K0. The geodesics Υ
⇤
⌧,i is extracted in the same way as discussed in Section 6.6.1.2

can be used to identify the geodesics, except that we do not resample the vertices

pi since they are fixed in each iteration ⌧ .

This fixed points initialization incorporate the user constrained information and

thus can obtain better results than the traditional active contours models based

on local region information.

6.6.3 Computation of f for various types of Region-based

Active Contours Energies

In this section, we give the first variation f (6.23) of the regional terms F in (6.25)

of various types of active contours energy functionals presented in Sections 6.2.2

to 6.2.4. Note that for the regional terms of the Chan-Vese energy ECV (6.2) , we

get rid of the ballon force term.

The first variation (or shape gradient) fCV of the region-based term of the Chan-

Vese energy ECV (6.2) can be expressed as

fCV(x) = ↵1

(
I(x)− c1

)2 − ↵2

(
I(x)− c2

)2
, 8x 2 Ω, (6.61)

where c1 and c2 are defined in (6.5). Constants ↵1 and ↵2 are two positive weighted

parameters.

Similarly, we can compute the first variation fLBF (6.7) for the region-based term

of the locally binary fitting energy ELBF, which can be denoted by

fLBF(x) = J1(x)− J2(x), 8x 2 Ω, (6.62)

where J1 and J2 are defined in (6.9) and (6.10) respectively.

Finally, we present the first variation f for region-based term of the pairwise energy

EPW (6.18):

fPW(x) = rEPW(B)(x)−rEPW(Bc)(x), (6.63)

where rEPW(B) is defined in (6.63).
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(a) (b)

(c) (d)

(e) (f)

Figure 6.4: Shape evolution results of the proposed model with contour initialization
and two sampled vertices. (a) Original image and initial contour. (b-e) Intermediate
results. (f) Final segmentation results. The green crosses in each figure denote the
saddle points. Blue dots denote the saddle points in the last step. Cyan curves denote

the counter-clockwise paths and red curves

6.7 Numerical Experiments

In this section, we demonstrate the experimental results of the proposed method.

The numerical solver for the Finsler metric based Eikonal equation is the fast

marching algorithm with adaptive stencils proposed by Mirebeau (2014b). We

apply a region constraint to this fast marching algorithm, where the details can

be seen in Algorithm 5.

In Fig. 6.4, we demonstrate the course of the shape evolution using the proposed

model with contour initialization (two vertices are sampled). Fig. 6.4a shows

the original image with initial contour. Figs. 6.4b to 6.4e are the intermediate
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Table 6.1: Computation time and evolution steps (ES) required by the proposed
method with regional term fCV under different pairs of (δ, d) in equations (6.54) and

(6.56).

(δ, d) (3, 5) (3, 10) (3, 15) (3, 20) (3, 25) (3, 30) (1, 20) (3.5, 20)

fCV
CPU 11.8s 7.1s 5.6s 5.1s 4.6s 4.6s 17.91s 4.6s

ES 29 15 10 8 6 5 22 7

(a) (b)

(c) (d)

Figure 6.5: Shape evolution results of the proposed model with contour initialization
and four sampled vertices. (a) Original image and initial contour with four sampled

vertices. (b)-(c) Intermediate segmentation results. d Final segmentation result.

results and Fig. 6.4f is the final results. In this experiment, the proposed method

requires only five steps to converge to the object boundaries. In this experiment,

we use the fCV (6.61) to construct the Finsler metric K (6.50). We also investigate

the respective computation time and evolution steps for the proposed model to

converge to the boundaries with respect to different sizes and shapes of tubular

neighbourhood regions U as demonstrated in Table 6.1. The sizes and shapes of

U are controlled by (δ, d) in equations (6.54) and (6.56). From Table 6.1, we can

see that a suitable pair of (δ, d) will reduce the computation time and evolution

steps required by the proposed model.

In Fig. 6.5, we show the course of the shape evolution using the proposed model

with four vertices based contour initialization. In this experiment, the Finsler
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metric K is constructed by the locally binary fitting based regional term fLBF

(6.62). In Fig. 6.5a is the original image with initial contour. Figs. 6.5b and 6.5c

are intermediate segmentation results. 6.5d is the final segmentation results.

In Fig. 6.6, we show the segmentation results using the fixed points initialization

way. In this experiment, we use the hybrid Finsler metric G (6.53) constructed

by the first variation fCV of the Chan-Vese regional term. The reason for using

the the hybrid Finsler metric G is that the Chan-Vese regional term adopts the

global region information such that for fixed points initialization, we need local

image information like the image gradient magnitude values. Figs. 6.6a to 6.6d

demonstrates the course of the shape evolution. The fixed points are denoted by

dots. In this experiments, we need only four steps to obtain the final contour as

shown in Fig. 6.6d.

In Fig. 6.8 we show the comparative segmentation results obtained by the nonlocal

active contours model Jung et al. (2012) and the proposed shape evolution model

with contour initialization. Column 1 shows the original images and the initial

contours. Columns 2 and 3 show the segmentation results from the nonlocal

active contours model and the proposed model respectively. One can claim that

the proposed shape evolution model is more robust that local minimas compared

to gradient descent method.

In Fig. 6.8, we show the comparative segmentation results obtained by the locally

binary fitting model (Li et al., 2008) and the proposed shape evolution model

with fixed points initialization. Column 1 shows the original images and the ini-

tial contours. Columns 2 and 3 show the segmentation results from the locally

binary fitting model and the proposed model respectively. Again, with the pro-

posed model, unexpected local minima suffered by the locally binary fitting model

sometimes can be avoided.

6.8 Conclusion

In this chapter, a new framework of Finsler geodesics evolution model is proposed

for region-based active contours and image segmentation. The proposed frame-

work presents the first method that provides the connection between the geodesic

curve energy and the general region-based active contour energy via a Finsler met-

ric. This Finsler metric is induced from the region-based image data term of the

active contour energy by solving a minimization problem with linear constraint.

With the Finsler metric, the geodesic energy incorporated region information can

be efficiently minimized by fast marching algorithm. Comparing to the popular

level set approach, our model requires lower computational cost and can avoid un-

expected local minima in case that the image data term invokes a local similarity
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measurement. On the other hand, the proposed Finsler geodesics evolution can be

naturally incorporated user intervention. By the user provided fixed points, the

curve evolution results are more robust with low computation burden.
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(a) (b)

(c) (d)

Figure 6.6: Shape evolution results of the proposed model with three fixed points
initialization. Dots denote the fixed vertices.
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Figure 6.7: Comparative segmentation results by the level set based nonlocal active
contours model (Jung et al., 2012) and the proposed model with contour initialization.
Both models are based on the same regional terms. Column 1 shows the original
images and the initial contours. Columns 2 and 3 show the segmentation results from

the nonlocal active contours model and the proposed model respectively.

Figure 6.8: Comparative segmentation results by the level set based locally binary
fitting model (Li et al., 2008) and the proposed model with fixed points initialization.
Both models are based on the same regional terms. Column 1 shows the original
images and the initial contours. Columns 2 and 3 show the segmentation results from

the locally binary fitting model and the proposed model respectively.



Chapter 7

Summary of the Contributions

and the Future Work

This thesis was devoted to the Eikonal equation based minimal path model and its

applications. We have designed several new geodesic metrics and explored some

applications according to these metrics.

We summarize the main contributions and discuss the possible future work.

• Dynamic Riemannian Metric

The dynamic Riemannian metric is designed to add penalty with respect

to the image feature consistency property to the computation of the mini-

mal paths. For the traditional isotropic or anisotropic Riemannian metrics,

they only contain local pixel-based image feature information like tubular

structure geometry and image gradient. In contrast, the proposed dynamic

metric can incorporate non-local geodesic-based image feature. Thus this

model is more robust and accurate in the task of vessel network extraction

such as the retinal vein-artery vessel extraction.

• Curvature-Penalized Finsler Elastica Metric

Traditional minimal path models are first-order models. They are unable

to penalize curvature property of the geodesics. We introduce in this the-

sis a curvature-penalized Finsler metric, namely Finsler elastica metric, to

the framework of Eikonal equation, by an idea of orientation lifting. The

proposed Finsler elastica metric establishes the equivalence between the

Euler elastica bending energy and geodesic length energy. By solving the

anisotropic Eikonal equation associated to the Finsler elastica metric, the

globally minimizing Euler elastica curves or Finsler geodesics can be ob-

tained efficiently. These geodesics blend the benefits from the smoothness

175
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and asymmetry properties, which have important effects in tubular structure

extraction and closed contour detection.

• Region-based Information Embedded Finsler Metric

We transfer the region-based active contours energy to the curve-based en-

ergy by divergence theorem. The crucial point is the construction of a Finsler

metric induced from the shape gradient of the region-based active contour

energy, which is done by solving a minimization problem with linear con-

straint. By the Eikonal framework and the constructed Finsler metric, the

geodesic energy associated to the constructed Finsler metric can be mini-

mized efficiently. In each iteration, the curve evolution-based minimization

scheme of the traditional active contours models are tuned to extract a collec-

tion of geodesics. The regional information embedded Finsler metric bridges

the two distinguished frameworks: the region-based active contours energy

and the Eikonal framework.

• Mask-based Keypoints Detection Method

We designed a new keypoints detection method by invoking a set of masks.

This model is able to iteratively add new initial source points in the course

of the fast marching front propagation. These new initial source points,

known as keypoints, are constrained by a set of computed masks such that

we assume each detected keypoint must be inside the mask. Thanks to the

mask constraint, the proposed keypoints search scheme is very robust and

can avoid leaking problem in vessel tree extraction task.

• Vessel Tracking via Region-Constrained Minimal Paths

We take into account the pre-segmented binary vessel map to produce prior

constrained regions. We restrict that the minimal paths should pass these

constrained regions, to make the extraction of the minimal paths be very

efficient, and to avoid the overlapping extraction problem. The constrained

region is considered as a tubular neighbourhood of a curve that can be pro-

duced from a minimal path or a vessel skeleton curve. The expected minimal

paths can be defined in the radius-lifted space. In this case, the obtained

minimal paths can be used to represent the vessels including both the cen-

terlines and radii.

• Anisotropic Front Propagation for Image Segmentation

We add anisotropy enhancement to the front propagation-based image seg-

mentation scheme. This is done by invoking an anisotropic Riemannian

metric for the fast marching method. Compared to the isotropic front

propagation-based segmentation method, the anisotropy enhanced method

can avoid leaking problem. We also design a method for anisotropy-preserving

dynamic Riemannian metric construction, which makes use of the local gray
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level information. This strategy can reduce the influence introduced by the

intensity inhomogeneities.

Future Work

• Finsler Elastica Metric for Keypoints Detection

In this thesis, we proposed the Finsler elastica metric for globally minimizing

Euler elastica curve detection between two given points. However, in some

cases, a globally minimal curve is not the expected one. For example, to

extract a long retinal artery vessel, a piecewise smooth path might be the

desired one. This piecewise smooth curve can be decomposed into a set of

Finsler elastica geodesics linking a set of ordered keypoints.

• Dynamic Riemannian Metrics for Interactive Vessel Extraction

with Simultaneously partially fast marching method

The introduction of the dynamic Riemannian metric is motivated by the

Retinal artery and vein vessel extraction task. In this thesis, we only perform

the fast marching methods from one point. Since the dynamic metric makes

use of local intensity consistency property, compute the geodesic distance

from both points may return a better extracted path.

• Edge-based Finsler Geodesics Evolution Model

We introduced the Finsler geodesics evolution for region-based active con-

tours and image segmentation. Along the same research line, we could extend

this idea to pure edge-based active contours model by using the alignment

term proposed by Kimmel and Bruckstein (2003). This work can benefit

from the orientation enhancement of the object edges.

• Piecewise Geodesics for Automatic Retinal Vessels Extraction

We designed a new algorithm for retinal network vessel extraction by using

region-constrained minimal paths model. The essential step is the Retinal

vessels segmentation procedure. We used the optimally oriented flux filter

for vessels segmentation. In the future, we could use a more advanced retinal

vessel segmentation method such as the-state-of-art orientation score-based

method (Zhang et al., 2016) or the active contours-based model (Zhao et al.,

2015).





Appendix A

Proof of Finsler Elastica Minimal

Paths Convergence

This proof was obtained from a joint work (Chen et al., 2016a) with Dr. Jean-

Marie Mirebeau.

Let X ⇢ R
d be a compact domain and = be the collection of compact convex sets

of Rd. We will later on specialize to d = 3 for the application to the Euler elastica

curves. The set = is a metric space, equipped with the Haussdorff distance which

is defined as follows.

Definition A.1. The Euclidean distance map from a set A ✓ R
3 is

d(A,x) := inf
y2A
kx− yk. (A.0.1)

The Haussdorff distance between sets A1, A2 ✓ R
d is

H(A1, A2) := sup
x2Rd

|d(A1,x)− d(A2,x)|. (A.0.2)

Definition A.2. Let γ 2 C0([0, 1], X) be a path and B 2 C0(X,=) be a collection

of controls on X. The path γ is said B-admissible iff it is locally Lipschitz and

γ0(t) 2 B(γ(t)) for a.e. t 2 [0, 1].

Definition A.3. A collection of controls on X is a map B 2 C0(X,=). Its

diameter diam(B) and modulus1 of continuity Ξ(B, ✏) are defined by Ξ(B, 0) = 0

1 We actually use a slight variant of the classical modulus of continuity because the latter
one, obtained with the hard cutoff function C(t) = 1 if t  1, 0 otherwise, lacks continuity in
general.
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and for ✏ > 0

diam(B) := sup{kuk;u 2 B(x), 8x 2 X}, (A.0.3)

Ξ(B, ✏) := sup
x,y2X

H(B(x),B(y))C(kx− yk/✏), (A.0.4)

where C is the continuous cutoff function defined by

C(t) =

8

>><

>>:

1 if t  1

2− t if 1  t  2

0 if t ≥ 2.

Clearly B 7! diam(B) and (B, ✏) 7! Ξ(B, ✏) are continuous functions of B 2
C0(X,=) and ✏ 2 R

+. In addition Ξ(B, ✏) is increasing w.r.t. ✏. Here and below,

if A1, A2 are metric spaces, and A1 is compact, then C0(A1, A2) is equipped with

the topology of uniform convergence. This applies in particular to the space of

paths C0([0, 1], X) and of controls C0(X,=).

Lemma A.4. If γ is B-admissible, then its Lipschitz constant is at most diam(B).
A necessary and sufficient condition for γ to be B-admissible is: for all 0  p 
q  1,

d

✓

B(γ(p)), γ(q)− γ(p)
q − p

◆

 Ξ(B, (q − p) diam(B)), (A.0.5)

Proof. Assume that γ is B-admissible. Then for any 0  p  q  1 one has

kγ(p)− γ(q)k 
Z q

p

kγ0(%)kd%  |p− q| diam(B),

hence γ is diam(B)-Lipschitz as announced. Denoting w% = p + (q − p)%, for all
% 2 [0, 1], one obtains

γ(q)− γ(p)
q − p =

Z 1

0

γ0(w%)d%. (A.0.6)

Hence by Jensen’s inequality and the convexity of d(B(γ(p)), ·), which follows the

convexity of B(γ(p)), we obtain

d

✓

B(γ(p)), γ(q)− γ(p)
q − p

◆


Z 1

0

d(B(γ(p)), γ0(w%))d% (A.0.7)


Z 1

0

H(B(γ(p)),B(γ(w%)))d% (A.0.8)

 Ξ(B, (q − p)diam(B)). (A.0.9)

which establishes half of the announced characterization. The inequality (A.0.8)

follows from the admissibility property γ0(w%) 2 B(γ(w%)) and the definition of
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the Haussdorff distance (A.0.2). The inequality (A.0.9) follows from the above

established Lipschitz regularity of γ and the definition of the modulus of continuity

(A.0.4).

Conversely, assume that γ and B obey (A.0.5). Then

∥
∥
∥
∥

γ(q)− γ(p)
q − p

∥
∥
∥
∥
 diam(B) + Ξ(B, diam(B)),

for any 0  p  q  1. Thus γ is a Lipschitz path as announced, and therefore it

is almost everywhere differentiable. If p 2 [0, 1] is a point of differentiability, then

letting q ! p we obtain

d(B(γ(p)), γ0(p))  Ξ(B, 0) = 0,

which is the announced admissibility property γ0(p) 2 B(γ(p)).

The characterization (A.0.5) is written in terms of continuous functions of the path

γ and control set B, hence it is a closed condition, which implies the following two

corollaries.

We denote

TB(x) := {Tu;u 2 B(x), 8x 2 X}.

Corollary A.5. The set

n

(γ,B) 2 C0([0, 1], X)⇥ C0(X,=); γ is B-admissible
o

is closed.

Corollary A.6. Let xn, yn, Bn and Tn be converging sequences in X, X, C0(X,=)
and R

+, with limits x1, y1, B1, and T1, respectively. Let γn 2 C0([0, 1], X) be

a (Tn + 1/n)Bn-admissible path with endpoints xn and yn. Then the sequence of

paths (γn) is equip continuous, and the limit γ1 of any converging subsequence is

a T1B1-admissible path γ 2 C0([0, 1], X) with endpoints x1 and y1.

Proof. Note that the map (T,B) 7! TB is continuous on R
+ ⇥ C0(X,=), hence

the controls B̃n := (Tn + 1/n)Bn converge to B̃1 := T1B1. Defining E :=

sup{diam(Bn);n > 0} which is finite by continuity of diam(·) (A.0.3) and conver-

gence of B̃n, we find that the paths (γn)n>0 are simultaneously E-Lipschitz, hence

that a subsequence uniformly converges to some path γ1. The B̃1-admissibility

of γ1 then follows from Corollary A.5.

We next introduce the minimum-time optimal control problems. The minimum of

(A.0.10) is attained by Corollary A.6, which also immediately implies the Corollary

A.8.
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Definition A.7. For all x, y 2 X, and B 2 C0(X,=), we let

TB(x,y) := min{T > 0; 9γ 2 C0([0, 1], X),

γ(0) = x, γ(1) = y, γ is TB-admissible}. (A.0.10)

Corollary A.8. The map (x,y,B) 7! TB(x,y) is lower semi-continuous on X ⇥
X ⇥ C0(X,=). In other words, whenever (xn,yn,Bn)! (x1,y1,B1) as n!1
one has

lim inf TBn
(xn,yn) ≥ TB∞

(x1,y1). (A.0.11)

Proof. For each n > 0 let Tn = TBn
(xn,yn) and let T1 = lim inf Tn as n ! 1.

Up to extracting a subsequence, we can assume that T1 = limTn as n ! 1.

Denoting by γn a path as in Corollary A.6 for all n > 0, we find that there is a

converging subsequence which limit γ1 is T1B1 admissible and obeys γ1(0) = x1
and γ1(1) = y1. This shows that T1 ≥ TB∞

(x1,y1) as announced.

Definition A.9. Let B1, B2 2 C0(X,=). These collections of controls are said

included B1 ✓ B2 iff B1(x) ✓ B2(x) for all x 2 X.

The property B1 ✓ B2 clearly implies, for all x, y 2 X

TB1
(x,y) ≥ TB2

(x,y). (A.0.12)

Corollary A.10. Assume that one has a converging sequence of controls Bn ! B1
obeying the inclusions Bn ✓ B1 for all n > 0. Then

lim TBn
(x,y) = TB∞

(x,y). (A.0.13)

for all x,y 2 X. Let Tn := TBn
for all n 2 N[{1}, and let γn be an arbitrary (Tn+

1/n)Bn−admissible path from x to y. If there exists a unique T1B1−admissible

path γinfty from x to y, then γn ! γ1 as n!1.

Proof. The identity (A.0.13) follows from the inequalities (A.0.11) and (A.0.12).

By Corollary A.6 the sequence of paths γn is equi-continuous, and any converging

subsequence tends to a T⇤B1 γ⇤ from x to y, with T⇤ := limTn. Since T⇤ = T1
and by uniqueness we have γ⇤ = γ1 hence γn ! γ1 as announcend.

Application to Finsler Elastica Geodesics Convergence Problem

Consider an orientation-lifted Finsler metric F : X ⇥ R
3 ! R

+ where X := Ω̄ ⇢
R

3. For any orientation-lifted point x̄ 2 X, let B(x̄) := {ū 2 R
3;F(x̄, ū)  1}

be the unit ball of the Finsler metric F . B(x̄) is compact and convex, due to the

positivity, continuity and convexity of the metric F and the map B : X ! = is
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continuous. Furthermore, using the homogeneity of the metric F , one obtains for

all x̄, ȳ 2 X:

L⇤
F(x̄, ȳ) = TB(x̄, ȳ),

where L⇤(x̄, ȳ) is the minimal geodesic curve length between x̄ and ȳ with respect

to the Finsler metric F .

In the case of Finsler elastica problem, one has B1(x̄) := B1
x̄ and Bλ(x̄) := Bλ

x̄,

8x̄ 2 X, where B1
x̄ and Bλ

x̄ are defined in equations (5.17) and (5.18), respectively.

The Finsler elastica metrics Fλ onX pointwisely tend to the metric F1 as λ!1.

Fortunately, the associated control sets Bλ(x̄)! B1(x̄) uniformly in C0(Ω,=), as
can be seen from (5.21). Hence one has

lim inf L⇤
Fλ(x̄, ȳ) = lim inf TBλ

(x̄, ȳ)

≥ TB∞
(x̄, ȳ) = L⇤

F∞(x̄, ȳ),

as λ ! 1 for all x̄, ȳ 2 X. To show that equality holds, it suffices to prove that

sequence Bλ obeys Bλ ◆ B1, equivalently to prove that Fλ(x̄, ū)  F1(x̄, ū) for

all x̄ 2 X and any vector ū 2 R
3. Indeed, let x̄ = (x, ✓) 2 X, and ū = (u, ⌫) 2

R
2 ⇥ R:

Fλ(x̄, ū) =
p

λ2kuk2 + 2λ|⌫|2 − (λ− 1)hu,v✓i
(A.0.14)

= λkuk
 

−1 +
s

1 +
2|⌫|2
λkuk2

!

+ λkuk − (λ− 1)hu,v✓i.

(A.0.15)

= kuk+ |⌫|
2

kuk

0

@
2

1 +
q

1 + 2|⌫|2

λkuk2

1

A+ (λ− 1)(kuk − hu,v✓i). (A.0.16)

 F1(x̄, ū). (A.0.17)

The last inequality holds because the denominator in (A.0.17) is greater than 2,

and kuk ≥ hu,v✓i) for any vector u and angle ✓.

By Corollary A.6, minimal paths Cλ with endpoints x̄ and ȳ for geodesic distance

L⇤
Fλ(x̄, ȳ) converges as λ ! 1 to a minimal path C1 for L⇤

F∞(x̄, ȳ). We finally

point out that L⇤
F∞(x̄, ȳ) < 1 for all x̄, ȳ in the interior of X, provided this

interior is connected, due to a classical controllability result for the Euler elastica

problem.





Appendix B

Numerical Solution to the

Minimization Problem with

Linear Constraint

We recall the minimization problem formulated in (6.44) and (6.45). Let U 2 Ω

be subdomain of the image domain Ω. We solve

minimize

Z

U

kV?(x)k2dx, (B.0.1)

s.t. r · V?(x) = ↵ f(x)χU(x), 8x 2 U, (B.0.2)

where operator r · u denotes the divergence value of vector u. The solution V?
to the minimization problem (B.0.1) with linear constraint (B.0.2) admits the

variational formulation: find (V?, p) 2 L2(U,R2)⇥H1(U) such that for all (W , q)

in the same spaces one has

8

>>>><

>>>>:

Z

U

hV?(x),W(x)idx+

Z

U

hrp(x),W(x)idx = 0,

Z

U

hV?(x),rq(x)i −
Z

U

f(x)q(x)dx = 0.

We use a finite differences discretization on the pixel grid ZU = hZ2 \ U , where
h > 0 is the pixel size. We also store the values of the potentials p and q on a

staggered grid so as to improve the accuracy of the gradient operator. The first

step is to express (B.0.1) to the discrete forms. Specifically, one has

Z

U

∥
∥V?(x)

∥
∥
2
dx ⇡ ~rTQ~r, (B.0.3)
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where Q is identity matrix with size 2N ⇥ 2N . Letting V? = (u, v), ~r is a vector

of size 2N ⇥ 1

~r =
(
u(x1) · · · u(xN), v(x1) · · · v(xN)

)T
, x1, · · · ,xN 2 ZU ,

where N is the number of grid points in the discrete domain ZU of U .

We denote the divergence operator as

(
~q1, · · · , ~qN

)T · ~r
=
(
f(x1)χU(x1), · · · , f(xN)χU(xN)

)T
, x1, · · · ,xN 2 ZU , (B.0.4)

~qi is a divergence vector with size 2N ⇥ 1 such that

~qTi ~r = fχU
(xi) = ~p(xi).

where ~p is a vector column with size 2N ⇥ 1. Letting A =
(
~q1, · · · , ~qN

)
, then the

minimization problem (B.0.1) with linear constraint can be formulated as

min
~r

{
~rTQ~r

 
, s.t. AT~r = ~p.

The solution ~r? can be given by

✓Q AT

A 0

◆  

~r?

~λ

!

=

✓
0

~p

◆

. (B.0.5)

where ~λ is a collection of Lagrange multipliers which come out of the solution

alongside ~r?. Then using the solution ~r, we can obtain the vector field V?.
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Résumé 

Mots Clés 

Abstract 

Keywords 

Dans les domaines de l’imagerie médicale et de 
la vision par ordinateur, la segmentation joue un 
rôle crucial dans le but d’extraire les 
composantes intéressantes d’une image ou 
d’une séquence d’images. Elle est à 
l’intermédiaire entre le traitement d’images de 
bas niveau et les applications cliniques et celles 
de la vision par ordinateur de haut niveau. Ces 
applications de haut niveau peuvent inclure le 
diagnostic, la planification de la thérapie, la 
détection et la reconnaissance d'objet, etc. Parmi 
les méthodes de segmentation existantes, les 
courbes géodésiques minimales possèdent des 
avantages théoriques et pratiques importants 
tels que le minimum global de l’énergie 
géodésique et la méthode bien connue de Fast 
Marching pour obtenir une solution numérique. 
Dans cette thèse, nous nous concentrons sur les 
méthodes géodésiques basées sur l’équation 
aux dérivées partielles, l’équation Eikonale, afin 
d’étudier des méthodes précises, rapides et 
robustes, pour l’extraction de structures 
tubulaires et la segmentation d’image, en 
développant diverses métriques géodésiques 
locales pour des applications cliniques et la 
segmentation d’images en général.   Cette thèse 
contribue principalement à l’étude approfondie 
des diverses métriques géodésiques et leurs 
applications en imagerie médicale et 
segmentation d’images. Des expériences ont été 
réalisées sur des images médicales et des 
images naturelles pour montrer l’efficacité des 
contributions présentées. 

In the fields of medical imaging and computer 
vision, segmentation  plays a crucial  role with 
the goal of separating   the interesting 
components from one image or a sequence of 
image frames. It bridges the gaps between the 
low-level image processing and high level 
clinical and computer vision applications.  
Among the existing segmentation methods, 
minimal geodesics have important theoretical 
and practical advantages such as the global 
minimum of the geodesic energy and  the 
well-established fast marching method for 
numerical solution. In this thesis, we focus on 
the Eikonal partial differential equation based 
geodesic methods to investigate accurate, fast 
and robust  tubular structure extraction and 
image segmentation methods, by developing  
various local geodesic metrics for types of 
clinical and segmentation tasks.   The main 
contributions of this thesis lie at the deep study 
of the various geodesic metrics  and their 
applications in medical imaging and image 
segmentation. Experiments on medical images 
and nature images show the effectiveness of 
the presented contributions.

Chemin minimal, géodésique, équation aux 
dérivées partielles, équation Eikonale, 
segmentation d’images, segmentation de 
structure tubulaire, contours actifs, courbe 
Elastica d’Euler, métrique de Riemann, métrique 
de Finsler, pénalité de courbure, méthode de 
Fast Marching.

minimal path, geodesic, Eikonal partial 
differential equation, image segmentation, 
tubular structure segmentation, active contours, 
Euler elastica curve, Riemannian meric, Finsler 
metric, curvature penalty, fast marching method.
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