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Résumé Cette thèse présente de nouvelles approches permettant l’apprentissage
efficace et intuitif de plans de haut niveau pour les robots collaboratifs. Plus
précisément, nous étudions l’application d’algorithmes d’apprentissage par dé-
monstration dans des domaines relationnels. L’utilisation de domaines rela-
tionnels pour représenter le monde permet de simplifier la représentation de
comportements concurrentss et collaboratifs.

Nous avons commencé par développer et étudier le premier algorithme
d’apprentissage par renforcement inverse pour domaines relationnels. Nous
avons ensuite présenté comment utiliser le formalisme RAP pour représenter
des tâches collaboratives comprenant un robot et un opérateur humain. RAP
est une extension des MDP relationnels qui permet de modéliser des activités
concurrentes. Utiliser RAP nous a permis de représenter à la fois l’humain
et le robot dans le même processus, mais également de modéliser des activ-
ités concurrentes du robot. Sous ce formalisme, nous avons montré qu’il était
possible d’apprendre le comportement d’une équipe, à la fois comme une poli-
tique et une récompense. Si des connaissances a priori sur la tâche à réaliser
sont disponibles, il est possible d’utiliser le même algorithme pour appren-
dre uniquement les préférences de l’operateur. Cela permet de s’adapter à
l’utilisateur.

Nous avons montré que l’utilisation des représentations relationnelles per-
met d’apprendre des comportements collaboratifs à partir de peu de démon-
strations. Ces comportements sont à la fois robustes au bruit, généralisables
à de nouveaux états, et transférables à de nouveaux domaines (par exem-
ple en ajoutant des objets). Nous avons également introduit une architecture
d’apprentissage interactive qui permet au système de faire moins d’erreurs
tout en demandant moins d’efforts à l’opérateur humain. Le robot, en esti-
mant sa confiance dans ses décisions, est capable de demander des instructions
quand il est incertain de l’activité à réaliser. Enfin, nous avons implémenté ces
approches sur un robot et montré leurs impacts potentiels dans un scenario
réaliste.

Mots-clés Cooperatif, Robotique, Apprentissage par Imitation, Represen-
tations Relationnelles, Apprentissage Interactif

Laboratoire d’accueil Equipe Flowers, Inria Bordeaux - Sud-Ouest, 200
Avenue de la Vieille Tour, 33405 Talence, France
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Title Relational Representations and Interactive Learning for Efficient Co-
operative Behavior Learning

Abstract This thesis presents new approaches toward efficient and intuitive
high-level plan learning for cooperative robots. More specifically this work
study Learning from Demonstration algorithm for relational domains. Using
relational representation to model the world, simplify representing concurrent
and cooperative behavior.

We have first developed and studied the first algorithm for Inverse Rein-
forcement Learning in relational domains. We have then presented how one
can use the RAP formalism to represent Cooperative Tasks involving a robot
and a human operator. RAP is an extension of the Relational MDP framework
that allows modeling concurrent activities. Using RAP allow us to represent
both the human and the robot in the same process but also to model con-
current robot activities. Under this formalism, we have demonstrated that it
is possible to learn behavior, as policy and as reward, of a cooperative team.
Prior knowledge about the task can also be used to only learn preferences of
the operator.

We have shown that, using relational representation, it is possible to learn
cooperative behaviors from a small number of demonstration. That these be-
haviors are robust to noise, can generalize to new states and can transfer to
different domain (for example adding objects). We have also introduced an in-
teractive training architecture that allows the system to make fewer mistakes
while requiring less effort from the human operator. By estimating its confi-
dence the robot is able to ask for instructions when the correct activity to do
is unsure. Lastly, we have implemented these approaches on a real robot and
showed their potential impact on an ecological scenario.

Keywords Cooperative, Robotics, Imitation Learning, Relational Represen-
tations, Interactive Learning
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Chapter 1

Introduction

1.1 Context

Robots have been used in an industrial context for a long time. They allowed to
automate tedious and repetitive tasks, for example in the automotive industry,
liberating time for humans to do other things. Because industrial robots are
fast and powerful machines, they have mainly been used in separations of
humans as to avoid arming them. However, new technological developments,
in software and hardware, makes them safer and introduce a future where
human and robot could work together.

1.1.1 A need for collaborative robots

This evolution would be profitable for both the employees and companies level.
For the company, it makes it possible to tackle new tasks that neither human
or robot alone can accomplish today. At the employee level, it changes his role
to rely less on his strength and more on his versatility. A team composed of
a human worker and a robot combines the strength and precision of the robot
and the intelligence and flexibility of the human worker.

This trend already started in the form of the cobots. Derived from the words
collaborative and robot, a cobot is a neologism that design robotic systems
that work closely with a human in order to improve its capacities. Most
cobots today are passive systems not showing initiative but only exposing a
reactive behavior. A simple example of cobot, as presented in Figure 1.1,
is a compliant robotic arm equipped with a power tool where the motion is
restricted to predetermined path letting the operator achieve his task while
improving strain on the user by carrying most of the load and security by
restraining the possible position of the power tool.

1



1.1. Context

Figure 1.1: Illustration of a cobot.

1.1.2 A need for easily programmable robots

The main lever that pushed robots from research laboratory to industry was
economical. Companies realized it was more economical to pay one time ex-
perts to design a robotic system to realize a task than to pay for every task
realization. However, this equation is only true for tasks that are done a lot
of time in order to amortize the investment. For short-lived tasks, it stayed
economically better to pay for each task realization than to pay a big upfront
cost to an expert to design a robotic system.

By making robots easier to program, and thus reducing the upfront cost of
the robotic system, robots become also economically viable for short-lived task.
However, to really change the economics and thus the viability to program a
robot for short-lived tasks, it should be doable by a non expert. By making a
factory worker able to reprogram the robot at will, the cost of such an operation
becomes trivial. In order to do so, the programming must be intuitive and
require no advanced mathematical, robotics or computer science concepts.

In order to make robot viable for short-lived tasks, this learning process
must be as effective as possible, optimally making the robot useful from the
first task realization.

1.1.3 A collaborative and easily programmable robot

In this thesis, we explore the combination of these two aspects: how to make
a collaborative robot more easy to program. The term program is used here
loosely, it refers to the process to make a robot behave a certain way. In prac-
tice, we propose, for the robot, to use machine learning to acquire a behavior
from experience. We will also rely on relational representations of the world
as it allows encoding the concurrency needed to learn a cooperative behavior
as well as transferring well in a variety of scenarios.

2 Thibaut Munzer



1. Introduction

1.2 Objectives
The main goal of this thesis is to work toward an easily programmable collab-
orative robots, the objectives are threefold:

• First, we want to improve the state of the art in Programming by Demon-
stration in relational domains. By developing an IRL algorithm for re-
lational domains, we hope to endow robots with a higher capability to
transfer to new domains and tasks. Indeed, both IRL and relational do-
mains allow transferring, we think that a combination of these two tools
would allows transferring more robustly to new domains and tasks.

• Second, we aim to apply Programming by Demonstration algorithms to
cooperatives and concurrent domains. Most research in Programming by
Demonstration has been focused on sequential task. However to learn
the behavior of an support robot we propose to learn the behavior at the
team level which require us to work on concurrent domains so both the
robot and the human can act simultaneously. This also allows the robot
to realize concurrent actions and be more useful to the human.

• Lastly, we want to build an efficient learning procedure. We plan to
use the interactive learning paradigm to this end as it makes the robot
helpful as soon as possible.

1.3 State of the art
As robotics research evolved, different sub-field emerged. This work is based
on different concepts and approaches proposed by the robotics and machine
learning communities.

Some notions used in this section are defined or explained in Chapter 2.
We advise the reader not familiar with Markov Decision Process (MDP) and
Relational Representation to read Chapter 2 before pursuing.

1.3.1 Robot Learning
An important sub-field of robotics is Robot Learning, the use of Machine
Learning to endows robots new possibilities. In some cases, machine learning
is used to create control models that outperform human designed ones. One
famous example is the work of Kober and Peters [2009] where the authors make
a robot plays the Ball-in-a-Cup and Ball Padding games using Reinforcement
Learning (RL). These kind of highly dynamic tasks are hard to solve using
an analytic controller because some forces involved are hard to model. How-
ever it is also possible to use machine learning algorithms and tools to create

Interactive Relational Cooperative Behavior Learning 3



1.3. State of the art

robots that can learn to act from human teaching, usually called Learning from
Demonstration (LfD).

Research on LfD has included: i) low-level learning, where the goal is to
learn a mapping from sensor output to motor command, e.g. learning motor
policies [Chernova and Veloso, 2009] or navigation [Knox et al., 2013; Jain
et al., 2013]; ii) symbolic learning, where the goal being is to learn a policy, a
mapping from a symbolic space state to the space of actions [Natarajan et al.,
2011] or learning rewards [Abbeel and Ng, 2004] from demonstration. Learn-
ing the reward, called Inverse Reinforcement Learning (IRL) usually allow to
generalize better. Some works also consider learning both motor policies and
symbolic learning at the same time using a hierarchical approach [Niekum
et al., 2013].

1.3.2 Interactive Learning
In most examples of Robot Learning, there is a clear separation between the
learning and the execution phase. This has several drawbacks as the number of
demonstrations might be larger than needed, and might not even cover critical
aspects of the task. To address such problems interactive scenarios where
both phases are merged have been proposed. Chernova and Veloso [2009]
propose a system where the robot only makes queries when, in a given state,
the confidence on the actions passes a given threshold. Alternatively, in other
works [Lopes et al., 2009b], the system request information about relevant
states to learn a good reward representing the task. Other approaches provide
a smooth transition between the phases, a first phase of teleoperation where
the policy [Grollman and Jenkins, 2007], or the preference [Mason and Lopes,
2011], is learned and, at any time, the user can resume teleoperating to provide
corrections.

A new trend of interactive learning systems is to rely on weak feedback to
handle situations where optimal feedback is impossible or costly to produce
by the human teacher. In particular, Shivaswamy and Joachims [2012]; Jain
et al. [2013] relies on local improvements of the current policy while Akrour
et al. [2011] asks for ranking between two or more policies.

The concept of cross-training is explored in the work of Nikolaidis and
Shah [2013] where the robot and the user simultaneously adapt to each other
by switching roles. The robot learns directly a policy that better adapts to
the user preferences. This improves team efficiency and acceptance metrics.

1.3.3 Collaborative Behavior Representation
Another line of research considers not just learning individual tasks but also
how to learn collaborative tasks. Several works have shown that learning the
expected behavior from the human teammate has a positive impact on both

4 Thibaut Munzer



1. Introduction

cooperation and engagement of the user [Lee et al., 2012; Mitsunaga et al.,
2008].

Different formalisms can be used to model such cooperation. Most re-
search relying on concurrent formalisms focus on planning. An example is
the Concurrent Action Model (CAM) framework of Rohanimanesh and Ma-
hadevan [2005] where the action space is defined as the scalar product of the
actions. Another core reference for concurrent action planning is Mausam
and Weld [2008], which discusses reductions of Concurrent MDPs (roughly,
MDPs with multi-actions) and Concurrent Probabilistic Temporal Planning
(CPTP) (planning with durative multi-actions) to planning in MDPs with ex-
tended state spaces. The relation or difference to CAM, especially between the
aligned and interleaved epoch reductions of CPTPs and the any, all, and con-
tinue schemes of CAMs is not explicitly clarified in Mausam and Weld [2008],
but they are very similar.

Concerning planning algorithms, Smith and Weld [1999] propose Temporal
GraphPlan (TGP), Younes and Simmons [2004] present a Generate, Test and
Debug (GTD) algorithm, and Mausam and Weld [2008] evaluate Real Time
Dynamic Programming (RTDP) on the various MDP-reductions. Aberdeen
and Buffet [2007] improves on this based on policy gradient methods. We are
not aware of previous work using Monte Carlo methods, despite the recent suc-
cess of Monte Carlo (MC) methods in very large domains and games [Browne
et al., 2012].

1.3.4 Relational Representations
Some works have considered using Relational Representation to model the
world. In a relational domain the state is described in terms of properties of,
and relations between “objects”. Models of the environment (the transition
dynamics and reward function) as well as policies generalize over objects and
naturally generalize to domains with different and varying number of objects.
Therefore, statistical relational learning (regression & classification learning in
relational domains [Natarajan et al., 2012]) as well as relational RL (including
model-free relational RL [Džeroski et al., 2001], model-based relational RL
[Lang et al., 2012]) showed great success in scaling to much larger domains
than what would be possible with propositional representations.

Learning to act from demonstrations in relational domains have been a re-
search problem for a long time [Segre and DeJong, 1985; Shavlik and DeJong,
1987; Khardon, 1999; Yoon et al., 2002]. The use of relational representa-
tions is attracting even more attention due to new algorithmic developments,
new problems that are inherently relational and the possibility of learning
the representations from real-world data, including robotic domains [Lang and
Toussaint, 2010; Lang et al., 2012]. Natarajan et al. [2011] propose to use of
gradient-tree boosting [Friedman, 2001] to achieve Imitation Learning (IL) in

Interactive Relational Cooperative Behavior Learning 5



1.4. Contributions

relational domains. However no IRL algorithm has been proposed for relational
domains.

Relational representation also allow representing more naturally concur-
rency. While concurrency using Relational Representations has been exten-
sively considered in a planning context, it has received less attention in a RL
context. Relational RL [Džeroski et al., 2001; Lang et al., 2012] has demon-
strated the great benefit of exploiting relational representations in respective
domains. But it has not yet been leveraged to learn in concurrent cooperative
domains.

Of course, this effort is aimed toward building tools that can be used in an
industrial context. As such, proposed methods should be validated on a real
setup and a user study should be conducted.

1.4 Contributions
We now list the main contributions of this thesis:

• Inverse Reinforcement Learning in Relational Domains: We developed
and evaluated the first IRL algorithm for Relational Domains. See Chap-
ter 3.

• Supervised Behavior Learning in Relational Activity Process: We showed
that it is possible to learn behaviors in RAPs either using Imitation
Learning or Inverse Reinforcement Learning. See sections 4.5 and 4.6.

• Multiple choices confidence estimation: We proposed a novel method
for potential error estimation in tasks with multiple optimal actions (see
section 5.3.5)

• Interactive Learning in Relational domains: We created an architecture
allowing to interactively learn behavior in Relational Domains. See sec-
tion 5.3.1.

• Interactive Learning for collaborative robots: Using RAP this architec-
ture can be used in concurrent decision processes and in particular for
collaborative decision processes. See section 5.3.2.

• Interactive Preferences Learning: We showed how one can learn user
preferences interactively by treating the task as prior knowledge and
using a gradient method to learn a policy reflecting the preferences. See
section 5.3.3.

• A user study on the impact of robot initiative: We conducted a user
study comparing a robot that progressively takes initiative and a robot
that wait for an order to act. See 6.

6 Thibaut Munzer



1. Introduction

1.5 How to read this thesis
This thesis is composed of six chapters. The first chapter is this one and serves
to introduce the general context of this thesis. The second chapter presents the
main theoretical tools used through this thesis. Then the next four chapters
are the four most important papers produce during the thesis. The last chapter
concludes this document.

The first core chapter of this thesis details an IRL algorithm for relational
domains. In propositional domains, IRL has been shown to generalize better
than IL to unseen state as well as transfer better to different domains. In this
chapter, we develop and evaluate the first IRL algorithm for relational domain.

The second core chapter presents the Relational Activity Process (RAP)
framework. This framework based on semi-Relational Markov Decision Process
(semi-RMDP) allows representing concurrent actions in relational domain. A
necessary step toward cooperative behavior learning.

The third core chapter introduces interactive cooperative behavior learning
and is the final product of this thesis. It presents an efficient architecture for
behavior learning in teams built on RAP.

The last core chapter presents a small scale user-study where we studied
the impact of robot initiative on user acceptance. It compares the architecture
developed in the previous chapter with a passive behavior where the user has
to instruct the robot to do each activity.

Interactive Relational Cooperative Behavior Learning 7
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Chapter 2

Background

2.1 Markov Decision Process
Markov Decision Process (MDP) are a formal model of a sequential decision
process of an agent in a dynamic environment. It is dynamic in the sense
that the agent actions modify stochastically the state of the environment.
MDPs have been traditionally used to solve the Reinforcement Learning (RL)
problem. In RL after each action taken, the agent receives a reward depending
on the state and the action. The goal is to predict the correct action in each
state in order to maximize the cumulated reward.

Formally, a MDP is a tuple MR = {S,A,R, P, γ} where S = {si}1≤i≤NS
is the state space, A = {ai}1≤i≤NA is the action space, R ∈ RS×A is the
reward function, γ ∈]0, 1[ is a discount factor and P ∈ ∆S×A

S (∆S is the set of
distributions over S) is the Markovian dynamics which gives the probability,
P (s′|s, a), to reach s′ by choosing action a in state s. A deterministic policy
π ∈ AS maps each state to an action and defines the behavior of the agent.

In some MDP, different actions are available to the agent depending on the
state. In this case, we define A as a function from the space of states to the
space of sets of actions: A : S → P (A) (P (A) is the powerset of A).

The quality function Qπ
R ∈ RS×A for a given policy is a measure of the

performance of this policy and is defined for each state-action couple (s, a)
as the expected cumulative discounted reward when starting in state s, per-
forming the action a and following the policy π afterwards. More formally,
Qπ
R(s, a) = Eπs,a[

∑+∞
t=0 γ

tR(st, at)], where Eπs,a is the expectation over the distri-
bution of the admissible trajectories (s0, a0, s1, π(s1), . . . ) obtained by execut-
ing the policy π starting from s0 = s and a0 = a. A policy π is said optimal
when :

∀π′ ∈ AS,∀s ∈ S,Qπ
R(s, π(s)) > Qπ′

R (s, π′(s)). (2.1)

Moreover, the function called the optimal quality function, noted Q∗R ∈ RS×A

and defined as Q∗R = maxπ∈AS Qπ
R is important as each optimal policy π∗ is

9



2.2. Learning from Demonstration

greedy with respect to it [Puterman, 1994]:

∀s ∈ S, π∗(s) ∈ argmax
a∈A

Q∗R(s, a). (2.2)

In addition, it is well known [Puterman, 1994] that the optimal quality function
satisfies the optimal Bellman equation:

Q∗R(s, a) = R(s, a) + γ
∑
s′∈S

P (s′|s, a) max
b∈A

Q∗R(s′, b). (2.3)

Equation (2.3) expresses a one-to-one relation between optimal quality func-
tions and their reward functions [Puterman, 1994].

2.2 Learning from Demonstration
A second task apart from RL, for which MDP have been successfully used is the
Learning from Demonstration (LfD) problem, sometimes called apprenticeship
learning problem. In this problem, the agent observes an expert realizing a
task. After some time, it must mimic the expert behavior.

It can be useful in different scenarios. One important case is to learn a
policy when the reward is not trivial. For a user, defining a reward is in most
cases a difficult problem. The agent might find ways to maximize the reward
not foreseen by the user and that don’t satisfy him. This is especially true for
naive users. In that case, it can be simpler and more practical to demonstrate
a behavior.

The observation of the expert behavior is a dataset of expert decisions,
DE = [(si, ai)]Ni=0. The dataset is composed of N couples (s, a) with s ∈ S and
a ∈ A. The problem is to find a policy π̂ such that ∀(s, a) ∈ D, π̂(s) = a.

Of course, without other constraints, defining such a policy is trivial. In
practice, it is expected that the policy can generalize to unseen states.

Another difficulty arises when the expert realizes different actions for a
given state. Indeed, often the expert can realize different actions that are
optimal. While encountering the same state more than once, the expert might
choose different actions each time.

There are two main approaches to the LfD: Imitation Learning (IL) and
Inverse Reinforcement Learning (IRL).

2.2.1 IL
In IL the problem of LfD is cast as a classification problem. The states are
treated as the inputs of the classifier while the actions are treated as the labels.

One advantage of IL is that the agent doesn’t need to have access to the
dynamics of the environment to replicate the expert behavior. However, as it
generalizes directly based on the state representation, it is only useful when
the representation allows generalizing the expert policy.

10 Thibaut Munzer
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2.2.2 IRL
In RL one tries to find a policy that maximize a given reward, in IRL, one
tries to find a reward that explain an observed policy. More formally, given a
dataset of expert decisions, DE = [(si, ai)]Ni=0, the goal is to find a reward, r̂
such that ∀(s, a) ∈ D, ∀b ∈ A,Q∗r̂(s, a) ≥ Q∗r̂(s, b)

The IRL problem is ill-posed as they are an infinite number of reward
function for any policy. As for IL, the problem here is to find a reward such
that the learned policy generalizes to unseen state. In order to do so, most
IRL algorithms make assumptions on the reward shape.

2.3 Relational MDP
Relational MDPs generalize MDPs for high-level representations [Džeroski
et al., 2001]. This representation makes possible to model generic objects
instead of specific instances of objects, allowing to generalize over objects,
contexts, tasks and policies. Solutions to the planning and learning problems
can be found in the literature [Kersting et al., 2004; Lang and Toussaint, 2010].

2.3.1 Model
Relational MDPs use a subset of first-order logic. We now define the main
concepts in a simplified way:

• Constant: a constant is a symbol that refers to an object of the domain,
usually a real world object but it can also be a number, a color, ...

• Variable: a variable is a symbol that can be substituted by a constant.
We follow the classic prolog notation where identifier starting with a
capital refer to variable and lowercase refers to constant

• Term: a term is either a constant or a variable.

• Predicate: a predicate is a symbol p/n where n is the arity of the predi-
cate. It represents a relation between n constants or variables.

• Atom: an atom is an expression of the form p(a1, .., an) where p/n is a
predicate and ai are terms.

• Formula: a formula is a set of atoms and negated atoms.

• Substitution: a substitution is a mapping from variables to terms, noted
σ = {X1 7→ t1, ..., Xn 7→ tn}. Applying a substitution to a formula
f , noted fσ consist in replacing all occurrences of X1, ..., Xn in t by,
respectively, t1, ..., tn.

Interactive Relational Cooperative Behavior Learning 11
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• Grounding: a grounding is a substitution such that there are no variables
in the mapped terms.

Under this representation, the state of the environment, given a set of
predicates and a set of constants, is the set of all true grounded atoms.

For example, we can model, using a relational representation, an environ-
ment where three blocks are on the top of a table and can be stacked. There
are four objects represented by the constants: b1, b2, b3 and table and we use
three predicates to represent the different states: on/2, clear/1 and block/1.
The state where b1 is on top of b2 and both b2 and b3 lie on the table will
then be:

{on(b1, b2), on(b2, table), on(b3, table), clear(b1),
clear(b3), block(b1), block(b2), block(b3)}

The state of the environment changes when relational actions are applied.
In the blocksworld example, we can model a move(A, B, C) action that repre-
sents moving object A from the top of B to the top of C. The action is abstract
in the sense that it can be grounded to different objects. This action can rep-
resent moving b1 from b2 to table, move(b1, b2, table) as well as moving b2
from table to b1, move(b2, table, b1).

Traditionally, in such domains, the transition function is represented as a
set of rules that contain 3 parts: the action, the context, and the outcomes.
There are different ways to represents it, we use the following one:

• the action and its argument (actions are atoms),

• the context, a formula that represents a precondition to executing the
action,

• the outcome, a formula that represents the effect of executing the action,

and we represent them like this:

action:
{ context }
{ outcome }

The set of feasible grounded actions in a given state, D(st), is composed
of all grounded abstract actions for which a rule, a : {c}{o}, exists and there
is a grounding σ such that the context is true in this state, cσ ⊂ st. An
abstract action can be present more than once in the decision set with different
groundings.

If the agent decides to execute the action aσ, the resulting state is obtained
by applying the list of effects.

In our running example the transition function for the action move(A, B,
C) will be represented with three rules:
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Figure 2.1: Sketch of an example of transition in the blocksworld domain. The
context is highlighted in blue, the positives outcomes are highlighted in green
and the negatives ones in red. We favor red over blue. The rule used in the
first action is the first one with the substitution {A 7→ b1, B 7→ b2, C 7→ b3}.

move(A, B, C):
{ clear(A) on(A, B) block(B) block(C) clear(C) }
{ ¬clear(C) ¬on(A, B) on(A, C) clear(B) }

move(A, B, C):
{ clear(A) on(A, B) ¬block(B) block(C) clear(C) }
{ ¬clear(C) ¬on(A, B) on(A, C) }

move(A, B, C):
{ clear(A) on(A, B) block(B) ¬block(C) }
{ ¬on(A, B) on(A, C) clear(B) }

We use the ¬ symbol to represent the negation.
The figure 2.1 illustrates a transition in the blocksworld example.

2.3.2 Relational Regression
TILDE [Blockeel and De Raedt, 1998] is an algorithm designed to do classifi-
cation and regression over relational data. It is a decision tree learner similar
to C4.5 [Quinlan, 1993]. It follows the principle of top down induction of deci-
sion trees where the dataset is recursively and greedily split by building a tree
according to a criterion until all data points in one subset share the same label.
The change made to handle relational data is to have first order logic tests in
each node. These tests are logical formulas of one atom with free variables.
TILDE can be used for regression if one allows leaves to contain real numbers.
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2.3.3 IL for RMDP
One of the main difficulties working with relational representation, as opposed
to vectorized ones, is the little number of learning methods available. In this
thesis, we will use the TBRIL algorithm for policy learning. TBRIL is an
algorithm that works by finding a quality function such that seen actions are
optimal for their associated state.

By first defining a smooth mapping between quality function and policy:

π(s, a) = e−βq(s,a)∑
b∈D(s) e−βq(s,b)

,

the problem becomes finding the function q∗ that minimizes the negative log-
likelihood of the dataset D. Formally:

q∗ = argmin(−log(L(D|q))

q∗ = argmin(
∑

(s,a)∈D
−log(π(s, a)))

TBRIL solves this problem using the Gradient Boosting (GB) algorithm
[Friedman, 2001]. GB it the transposition of the gradient descent algorithm in
function space. Given a function space C → R and an objective functor L to
minimize, to apply gradient descent in function space, is to iteratively define
fi+1 = fi + δL(fi)

δfi
with f0 an initial solution (can be the null vector). More

precisely, for any value of the input space, c ∈ C, fi+1(c) = fi(c) + δL(fi)
δfi(c) .

Gradient Boosting comes into play when it is impossible or not sensible to
compute δL(fi)

δfi(c) for every c ∈ C, either because |C| is infinite or because there
are c ∈ C for which values of fi(c) as no influence on L(fi). A weak regressor
Ri is learned to predict/approximate the values of δL(fi)

δfi(c) for any c ∈ C. From a
subset B ⊂ C, a dataset is build [(c, δL(fi)

δfi(c) )]c∈B from which Ri is learned. fi+1
is then defined as fi+1 = fi +Ri.

In our case, the function space is S × A → R, the functor is L(Q) =∑
(s,a)∈D−log(π(s, a)) and B is defined as B = ∪(s,a)∈D{(s, a′)|a′ ∈ D(s)}.
Because we are working with relational representations, we use as weak

learner relational regression trees [Blockeel and De Raedt, 1998].
As a gradient algorithm, TBRIL needs a starting point. This starting point

is a quality-function, Q∗prior, and can be set to 0. However, it can also be set to
any quality function closer to the goal if prior knowledge is available, allowing
to speed up learning. Alg. 1 sums up the algorithm.
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Algorithm 1 TBRIL
1: procedure TBRIL(Q∗prior, D, nb_iter)
2: Q∗target ← Q∗prior
3: for i ∈ [0, ..., nb_iter] do
4: Dg ← compute_gradient(Q∗target, D)
5: fi ← learn_regression_tree(Dg)
6: Q∗target ← Q∗target + fi

7: return Q∗target
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Chapter 3

Relational Inverse
Reinforcement Learning

This chapter describes an Inverse Reinforcement Learning (IRL) algorithm
for relational MDP. It has been published previously as a conference paper
under the name "Inverse Reinforcement Learning in Relational Domain" in
Ijcai conference [Munzer et al., 2015]. Co-authors are Bilal Piot, Matthieu
Geist, Olivier Pietquin and Manuel Lopes. It has been edited to improve
coherence throughout the thesis.

This chapter main goal was to develop an IRL algorithm that we could
use later to learn policies that generalize and transfer better than IL. It was
also a good entry point to familiarize ourselves with relational representation,
relational MDP and relational policy learning.

3.1 Introduction
Learning control strategies or behaviors from observations is an intuitive way
to learn complex skills [Schaal, 1999; Argall et al., 2009; Khardon, 1999]. When
learning from observing another agent, one can aim at learning directly the
behavior or, instead, the criteria behind such behavior. The former approach
is usually called Imitation Learning (IL) while the latter is called IRL.

The main advantage of IRL is the robustness of the behavior induced. It can
handle different initial states and changes in world dynamics [Ng and Russell,
2000; Neu and Szepesvári, 2009]. With IRL, an explanation of the behavior
is found, so the system can continue to learn online to fulfill this explanation
via an online Reinforcement Learning (RL) algorithm. IRL also improves
performance over learning the policy if a change in the world dynamics occurs.
Indeed, in that case, the system will learn to adapt in order to achieve its goal
while continuing to follow the same behavior (via IL) would not. Being robust
to dynamics modifications is an important property as, for instance, when a
system ages its dynamics changes (e.g., the brake of a car will get worn).
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IRL can also offer a more compact representation of the behavior, modeled
as a reward function. For instance, in a blocks world domain, the task of build-
ing a tower with all objects requires a non-trivial policy but can be described
with a simple reward [Džeroski et al., 2001]. This is useful when the user has to
be aware of the internal state of the system, as a more compact representation
is easier to understand for a human operator. With active learning, the user
has to correct/advise the system. So, he has to quickly be able to determine
what it should do. Human-machine collaboration is another setting where the
user has to take into account the system and so, be informed of the internal
state.

In this chapter, the main contribution is to introduce the first IRL algo-
rithm for relational domains. For this we generalize a previous approach for
IRL, namely Cascaded Supervised IRL (CSI) [Klein et al., 2013], to handle
relational representations. Another contribution is to augment CSI with a re-
ward shaping step to boost performance. A third contribution is to show that
using data from different domain sizes can improve transfer to unseen domain
sizes.

3.2 IRL in Relational Domains
IRL is a method that tries to find a reward function R̂ that could explain
the expert policy πE [Ng and Russell, 2000; Russell, 1998]. More formally,
an IRL algorithm receives as inputs a set DE of expert sampled transitions
DE = (sk, ak = πE(sk), s′k)1≤k≤NE where sk ∈ S and s′k ∼ P (.|sk, ak) and some
information about the world dynamics, for instance a set of non-expert sampled
transitions DNE = (sl, al, s′l)1≤l≤NNE where sl ∈ S, al ∈ A, and s′l ∼ P (.|sl, al).
Then the algorithm outputs a reward R̂ for which the observed expert actions
are optimal.

Most of IRL algorithms can be encompassed in the unifying trajectory
matching framework defined by Neu and Szepesvári [2009]. These algorithms
find a reward function such that trajectories following the optimal policy with
respect to this reward function become close to the observed expert trajec-
tories. Each step of the minimization thus requires an Markov Decision Pro-
cess (MDP) to be solved so as to generate trajectories. These algorithms are
for instance Policy Matching [Neu and Szepesvári, 2007] minimizing directly
the distance between the obtained policy and the expert policy or Maximum
Entropy IRL [Ziebart et al., 2008] minimizing the Kullback-Leibler (KL) di-
vergence between the distribution of trajectories. Those algorithms are incre-
mental by nature and have to solve several MDPs. On another hand, other
IRL algorithms such as Structured Classification for IRL (SCIRL) [Klein et al.,
2012] and Cascaded Supervised IRL (CSI) [Klein et al., 2013] avoid resolving
recursively MDPs.
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In addition, most IRL algorithms are parametric and assume a linear pa-
rameterization of the reward. However this hypothesis do not hold for re-
lational domains where states are logical formulas. Yet, CSI can be made
non-parametric as we will demonstrate later. This, added to the fact that
CSI doesn’t need several MDPs to be solved, makes him a good candidate for
an IRL algorithm adapted to relational domains. After presenting the original
CSI algorithm, we show how it can be improved by introducing an intermediate
step. Then, a relational version is developed.

3.2.1 CSI
The idea behind CSI is that it is hard to define an operator that goes from
demonstrations to a reward function. On the other hand, one can define op-
erators to go from demonstrations to an optimal quality function and from an
optimal quality function to the corresponding reward function. The second
option can be made computationally efficient because of the link between the
score function of a multi-class classifier and an optimal quality function.

Indeed, given the data set DCE = (sk, ak)1≤k≤NE extracted from DE, a
classification algorithm outputs a decision rule πC ∈ AS using sk as inputs and
ak as labels. In the case of a Score Based Classification (SBC) algorithm, the
output is a score function qC ∈ RS×A from which the decision rule πC can be
inferred :

∀s ∈ S, πC(s) ∈ argmax
a∈A

qC(s, a). (3.1)

A good classifier provides a policy πC which often chooses the same action
as πE, πC ≈ πE. Equation (3.1) is very similar to equation (2.2) thus by
rewriting the optimal Bellman equation (2.3), qC can be directly interpreted
as an optimal quality function Q∗RC for the reward RC defined as follows:

RC = qC(s, a)− γ
∑
s′∈S

P (s′|s, a) max
b∈A

qC(s′, b). (3.2)

Indeed, as qC verifies qC(s, a) = RC(s, a) + γ
∑
s′∈S P (s′|s, a) maxb∈A qC(s′, b)

and by the one to one relation between optimal quality functions and rewards
this means that qC = Q∗RC . In addition, as πC is greedy with respect to qC , πC
is then optimal with respect to RC . Thus, the expert policy πE is quasi-optimal
for the reward RC as πC ≈ πE.

However, RC can be computed exactly only if the dynamics P is provided.
If not, we can still estimate RC by regression. For this, we assume that we have
a set DNE of non-expert samples. So, we can easily construct a regression data
set DR = {(si, ai), r̂i}1≤i≤NRL from DE ∪ DNE = (si, ai, s′i)1≤i≤NE+NNE where
r̂i = qC(si, ai) − γmaxa∈A qC(s′i, a) is an unbiased estimate of RC(si, ai). The
output of the regression algorithm is an estimate R̂ of the target reward RC .
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Reward Shaping augmented CSI

Regression implies projecting the data onto an hypothesis space. Given this
hypothesis space some reward functions are easy to represent while other are
hard or impossible due to the so-called inductive bias. There is a one-to-many
relation between the space of demonstrations and the space of quality functions
and a one-to-one relation between the space of quality functions and the one of
reward functions. This means that there are many optimal candidates for the
score based classification step among which one could choose the one that will
be projected with the smallest error in the hypothesis space during regression.

To improve the quality of its regression step, we propose to introduce an
intermediate Reward Shaping (RS) step to CSI. Reward shaping is a technique
aiming at modifying the reward shape while keeping the same optimal policy.
Ng et al. [1999] proved that ∀R ∈ RS×A, ∀t ∈ RS, qt(s, a) = Q∗R(s, a)+ t(s) and
Q∗R(s, a) share the same optimal policies and one can interchangeably use qt or
Q∗R (or their corresponding reward function) to represent a behavior or a task.
Although RS is traditionally used to guide RL, here we propose to use it to
shape the reward so that it can be more efficiently projected onto the chosen
hypothesis space.

In this context the purpose of RS is to find a function t∗ ∈ RS such that the
expected error of the regression step is minimal. If one can define a criterion
c over the reward values that represent the expected regression error (even
heuristically), an optimization problem can be written:

t∗ = argmin
t

J(t),

J(t) = c([q′C(si, ai)− γmax
a∈A

q′C(s′i, a)](si,ai,s′i)∈DE∪DNE).

where q′C(s, a) = qC(s, a) + t(s). The criterion c can vary substantially. For
example, if the regression model is sparse the `1-norm can be used. On the
other hand, if the hypothesis space is composed of regression trees the entropy
of the set of reward values is a candidate: a low entropy implies a few numbers
of values which heuristically leads to a better representation with a decision
tree that can only represent a finite number of values.

As only a finite number of values of t change the value of c (those for which
the state is present in DE or DNE), t can be treated as a vector and standard
black-box optimization tools can be used. We propose to use a simplified
version of CMA-ES [Hansen et al., 2003].

Figure 3.1 summarizes the CSI method augmented with RS. It consists in a
first step of score-based classification 1© with the setDE as input which outputs
a score function qC . RS 2© is then used to produce q′C(s, a) = qC(s, a) + t∗(s)
which corresponds to an easier reward function to learn. From the set DR

constructed from DE, DNE and q′C , it is possible to compute an estimate R̂
of the reward function RC via regression 3©. Theoretical guarantees on the
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Figure 3.1: Sketch of the proposed method : CSI with reward shaping. See
text for explanations.

quality of the reward function learned via CSI are provided by Klein et al.
[2013] with respect to the errors of the classification step and the regression
step.

3.2.2 Lifting to the relational setting

As stated earlier most algorithms for IRL in the literature rely on a parametric
(propositional) representation of the MDP state. However, an IRL algorithm
have to be non-parametric in order to be used in relational domains. We
show here that CSI can be made non-parametric by using different supervised
learners (step 1© and 3©) than Klein et al. [2013]

Relational SBC

Natarajan et al. [2011] have developed an algorithm to realize SBC in rela-
tional domains, Tree Boosted Relational Imitation Learning (TBRIL). Their
algorithm is an adaptation of the gradient boosting method [Friedman, 2001]
where standard decision trees have been replaced with TILDE, a relational
decision trees learner (see next section). They use their method to learn a
policy on relational domains from expert demonstrations but TBRIL can be
more broadly used for any SBC problem in relational domains. We use TBRIL
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1 as a relational SBC 1©.

Relational regression

We use the TILDE algorithm as a relational regressor 3©. To be able to
represent complex functions we allows TILDE to use the count aggregator as
often done in the relational learning literature [De Raedt, 2008].

Relational CSI

We propose the Relational CSI algorithm (RCSI). We make three modifications
to CSI : (i) use TBRIL as the SBC step 1©, (ii) add an intermediate RS step
2© to improve the performance and (iii) use TILDE for regression step 3©.

TILDE is a decision tree based regressor and therefore we choose the criteria
c of the RS step to be the entropy.

3.3 Experiments
To validate the proposed approach, experiments have been run to (i) con-
firm RCSI can learn a relational reward from demonstrations, (ii) study the
influence of the different parameters and (iii) show that IRL outperforms clas-
sification based IL when dealing with transfer and changes in dynamics.

3.3.1 Experimental setup
To test RCSI quantitatively we use the following setup. From a target re-
ward R∗, we compute an optimal policy π∗. The algorithm is given, as expert
demonstrations, Nexpert trajectories starting from a random state and ending
when the (first) wait action is selected. As random demonstrations, the algo-
rithm is given Nrandom one-step trajectories starting from random states. The
optimal policy π̂ corresponding to the learned reward R̂ is then computed. As
proposed by Klein et al. [2013], the expert dataset is added to the random one
to ensure that it contains important (state, action, next-state) triplets such
as (goal-state, wait, goal-state). Each experiment is repeated 100 times and
results are averaged.

To sample the random dataset we use the following distribution, Pstate :
we first draw uniformly from the different relational spatial configurations and
then, for each one, uniformly from the possible groundings.

1It should be noted that we did not use their implementation, so there are differences.
In particular we do not learn a list of trees for each relational action but one list of trees for
all relational actions.
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The main parameters are set as follows: 10 trees of maximum depth 4 are
learned by TBRIL during the SBC step 1© and the reward is learned with a
tree of depth 4, which acts as a regularization parameter.

Performance measure

To evaluate the proposed solution we define a performance measure, the Mean
Value Ratio (MVR), that measures the ratio between the expected cumulative
discounted reward obtain following the learned policy (optimal policy derived
from the learned reward) and following the expert one.

MVR(R̂) = 1
1000

1000∑
i=0

Qπ̂
R∗(si, π̂(si))

Qπ∗
R∗(si, π∗(si))

, si ∼ Pstate

Comparison to TBRIL

TBRIL and RCSI have very different goals, different assumptions, and thus
should not be compared directly. However, as we propose the first algorithm
for IRL in relational domains, we have no baseline to compare to. TBRIL is
an algorithm that has been developed to do IL in relational domains and so
it can inform us on what to expect from imitation in relational domains and
act as a baseline. Latter we will show the advantages of estimating the reward
using IRL.

3.3.2 Sensibility to dataset sizes
Figure 3.2 shows the results of using RCSI to learn the stack and unstack
reward of the blocks world domain. RCSI is able of learning the reward with
enough expert and random training points. This graph also shows that the
RS step 2© always increases the performance of the algorithm.

The setting Nrandom = 300 and Nexpert = 15 gives good results and so we
will use it in the following experiments.

3.3.3 Transfer performance
The main claim of relational learning is the ability of transferring among do-
main sizes. Fig. 3.3 shows the performance while varying the number of blocks
between training and testing. For the stack reward, the graphs show almost no
loss of performances due to a changing number of blocks. On the other hand,
for the unstack reward, results are clearly worse when using 4, 5 or 6 blocks for
training. By looking at the learned rewards, we have observed that, in most
cases, one of the two following rewards is learned : one where the value is high
when the number of clear is 4, 5, or 6 (depending on the number of blocks in
the training set) and a second where high rewards are given when the pattern
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Figure 3.2: Performance for different amounts of training data on the stack
(Top) and unstack (Bottom) task. Error bars represent standard errors.
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on(X, Y )∧block(Y ) cannot be matched. Both solutions are correct for a given
domain size, as long as the number of blocks is the same. However, if we
change the number of blocks, an ambiguity appears and only the second one
stays correct. Yet, there is no reason to prefer one over the other. Moreover,
for both possible rewards the expert demonstrations would be similar so the
system has to choose between them based on hidden hypotheses.

One way to counter this phenomenon is to use a varying number of blocks
during learning. These results are shown in the last column of Fig. 3.3 where
a reward learned with a dataset mixing demonstrations with 4 and 5 blocks
successfully transfers over to 6-block problems. One can also observe that
learning the reward does not perform better than directly learning the policy.
This results would be surprising in a propositional domain and shows how
relational representations allow to easily transfer among tasks. The advantage
of IRL is shown in the following experiments.

Figure 3.3: Performance of RCSI (and TBRIL) when different number of blocks
are used for training and testing the stack (Top) and unstack (Bottom) task.

3.3.4 Online learning
One interesting feature of IRL over IL is to endow the system with online
learning abilities. To showcase this feature, the optimal policy of the learned
reward is no more computed exactly (with value iteration) but learned online
by interacting with the system using theQ-Learning algorithm [Watkins, 1989].
We define an epoch as 1000 interactions. The RCSI algorithm first learns the
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corresponding quality function, so we can use the results of the SBC step 1©
to bootstrap the Q-Learning. Results are shown in Fig. 3.4. There are more
efficient RL algorithms in the literature that we could have used. However,
this is the proof of concept, not the better way to do online learning from the
learned reward.

Figure 3.4: Performance of RCSI (and TBRIL) when the optimal policy is
learned online.

3.3.5 Dynamics change
Learning the reward rather than directly the policy of the expert leads to a
more robust behavior in particular when large modifications of the dynamics
of the environment occur. To evaluate this ability, the dynamics of the blocks
world is modified after 50 epochs. One of the blocks is made unmovable so
in order to build a tower one have to stack them on top of this fixed block.
The results are shown in Fig. 3.5. As expected, in this setup, learning the
reward allows recovering a satisfying policy even after changes in the dynam-
ics. TBRIL output, on the other hand, cannot learn from interaction and
performance stays low.

Moreover, we display results of the algorithm when setting the maximum
depth of the reward tree to be 2 in order to increase the regularization factor.
It is done as a naive way to obtain a more general representation of the reward.
It leads to better performance when the dynamics change; the learned reward
transfers better to the new setting.

3.3.6 Big scale
It is important for an IRL algorithm to scale with the number of states. Most
tasks of object manipulation are highly combinatorial, and the blocks world
domain is no exception: for 5 blocks there are 501 states whereas for 15 blocks
the number of states increases to 6.6× 1013. We evaluate RCSI in a 15 blocks
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Figure 3.5: Performance of RCSI (and TBRIL) when dynamics is changed.

world (using Nrandom = 1000). We use an alternative performance measure
that is computationally more efficient, the Optimal Actions Count (OAC):

OAC(R̂) = 1
1000

1000∑
i=0

1∀â∈argmaxaQ
πE
R̂

(si,a),â∈πE(si),

which is the percentage of states for which all the optimal actions for the
learned reward are optimal actions for the expert.

The results are shown in Fig. 3.6. On a 15 blocks world learning a quality
function for the stack reward requires representing a very complex function,
this explains that the performance for TBRIL is around 0.8; as a consequence
RCSI performance is no more than 0.85. When the performance is not good
enough, setting the maximum depth to 2 is too naive and prunes important
features of the reward leading to low performance. For the reward unstack,
optimal quality functions are trivial so TBRIL performs perfectly and RCSI
performance is around 0.85.

However, the performance can be improved by learning in a small domain
and rely on the transfer ability of relational representations to scale to 15
blocks world. As shown in Fig. 3.6, the reward learned from a mixed 4 and 5
blocks world, scales very well to a 15 block world. If maximum depth is set to
2 OAC is more than 0.98 for stack and unstack rewards.

Even if our goal is to learn a reward, it is also important to be able to find
the corresponding optimal policy. We can do this using the prost2 planner as
described by Keller and Helmert [2013], we search a plan in a 15 block world
for the rewards learned in a mixed 4 and 5 blocks world with RCSI (maximum
depth set to 2). We consider a plan to be successful if a goal state is reached
and stayed in for at least 4 time steps during the first 40 time steps. 10
plans starting from random states are computed to evaluate a learned reward
function and results are averaged over 10 reward learned. For both stack and
unstack, the plans are successful in more than 95% of the cases.

2http://prost.informatik.uni-freiburg.de
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Figure 3.6: OAC of RCSI (and TBRIL) when testing in a 15 blocks world.

We emphasize the strong transfer properties of mixing relational represen-
tations and IRL that allowed us to learn a reward in a small world and having
such reward valid at an extremely high-dimension problem. The policy can
then be found using approximated search methods [Keller and Helmert, 2013;
Lang and Toussaint, 2010].

3.3.7 Reward learned

Learning the reward often offers a better interpretation of the behavior of the
expert. Due to its compactness it is possible to visualize the reasons behind
the behavior of the expert. In Fig. 3.7 we display the reward learned on a
stack task as a tree using the prolog language. We can see that the best thing
to do is to get to a state where all the blocks are stacked (there is only one
clear predicate true) and wait. In any case, it it is better not to put blocks on
the floor and especially when all the blocks are stacked.

Figure 3.7: Reward learned with RCSI on 5 blocks world.
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3.4 Conclusions
In this chapter, we have presented the first approach to IRL for relational
domains. We have shown how the IRL algorithm CSI can be generalized to the
relational domain. The results indicate that it is possible to learn a relational
reward that explains the expert behavior. From it, a policy that matches
the expert behavior can be computed. Besides generalizing the classification
and regression steps in CSI, we have introduced a reward shaping step so as to
reduce the regression error. Finally, we have proposed a new trans-dimensional
perspective on data collection where we increase robustness to transfer over
domain size by including in the training set demonstrations with different
number of objects.

IRL has the advantage of more compact explanations of behaviors and
increased robustness to changes in the environment dynamics. The use of
relational representations allows learning policies and rewards for changing
number of objects in a given domain. This shows one great strength of rela-
tional representations, and such results would not be possible in propositional
or factored domains even with special feature design. Moreover, when the dy-
namics changes, we can see the interest of inferring the reward that allows the
system to re-evaluate the expected behavior in the new conditions.

In the following chapter, we will apply this algorithm in the context of
concurrent domains, where multiple actions can be running at the same time.
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Chapter 4

Relational Activity Process

This chapter describes the Relational Activity Process (RAP) framework. It
has been published previously as a conference paper under the name "Rela-
tional Activity Processes for Modeling Concurrent Cooperation" in Icra con-
ference [Toussaint et al., 2016]. Co-authors are Marc Toussaint, Yoan Mollard,
Li Yang Wu and Manuel Lopes. The RAP framework and Monte Carlo (MC)
planning code have been mainly developed by Marc Toussaint while I adapted
the Learning from Demonstration (LfD) algorithms, TBRIL presented in sec-
tion 2.3.3 and RCSI presented in Chapter 3, and ran the experiments. It has
been edited to improve coherence throughout the thesis.

This chapter introduces the RAP framework that we will use in the fol-
lowing chapters to models teams composed of a human operator and a robot
assistant. We propose the use of two policy learning algorithm in this frame-
work: i) TBRIL, an imitation learning algorithm and ii) RCSI, an Inverse
Reinforcement Learning Algorithm that was introduced in the previous chap-
ter.

4.1 Introduction
This chapter is primarily motivated by a human-robot collaborative domain
where the robot has two manipulators to assist a human in assembling a piece
of furniture. In this domain, the two hands of the robot as well as those
of the human can be conceived as agents that execute multiple actions in
concurrency. Fluently assisting the human requires to plan ahead, ensuring
that pieces are fetched in time, and actions are initiated and terminated at
the right times. However, beyond this concrete application, concurrency is a
very natural aspect of robotic domains in general. Any realistic robot sys-
tem (say, implemented with ROS) will involve concurrently running activities.
One activity might execute a motor primitive controller, another activity might
control the camera pose, and also perceptual processes such as tracking an ob-
ject or actively reducing uncertainty about an object pose can be conceived
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Figure 4.1: A robot concurrently uses its two arms to assist a human by
feeding parts and by holding objects while the operator screws them together.
See video at https://vimeo.com/139342248).

as a concurrently running activities. While the coordination of such processes
could be thought of as a software engineering issue, we think that Reinforce-
ment Learning (RL) and probabilistic planning methods should be scalable to
become applicable to such concurrent activity domains in general.

In this chapter we propose a novel formalization of relational concurrent
activity processes. While previous formulations such as coarticulation, Con-
current Action Model (CAM) [Rohanimanesh and Mahadevan, 2005] and Con-
current MDPs [Mausam and Weld, 2008] describe policies as choosing multi-
actions, we describe a decision process in which different agents may initiate
or terminate activities at different times, and which exploits a relational rep-
resentation of the current activity state. We will review previous formulations
in detail in the following section, none of which have addressed relational do-
mains.

In our case of concurrent cooperation, the “objects” we want to generalize
over are not only real objects, but also the agents: The two hands of a robot
both can potentially execute the same action if the preconditions are met. It is
therefore particularly natural to express multi-agent cooperation domains (as
well as policies and learned reward functions) in relational terms. Formally,
objects as well as agents are equally represented as constants in the underlying
first-order logic.

The main contributions of this chapter are, first, to propose a novel for-
malization of relational concurrent activity processes that is well-suited to
model concurrent cooperation. To our knowledge, this is the first formulation
that considers initiation/termination decisions to describe the Markov process
and exploits the relational state representation for this. When constraining
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the formalism to the propositional setting we show that it is at least as gen-
eral as the existing CAM [Rohanimanesh and Mahadevan, 2005]. Second, to
transfer existing MC planning as well as LfD methods [Munzer et al., 2015]
to the concurrent relational domain using this formalism. The MC methods
not only allow us to estimate optimal decisions, they also provide a reward-
weighted expectation over future decisions, for instance allowing the system to
anticipate future activities of other agents, especially the human. And third,
to demonstrate the proposed methods on a real-world human-robot assem-
bly task, where the system uses either the MC planner or a relational policy
learned from demonstrations to initiate concurrent activities that assist the
human.

In the following section we first briefly sketch the approach of the formal-
ization and explain our distinct use of the words action, activity, and decision
throughout the rest of the thesis, to avoid confusion. In Section 4.3 we present
our model in detail and discuss the relation to CAM and STRIPS. Due to
this formalization, MC planning (Section 4.4) and LfD (Section 4.5) can effi-
ciently be transferred to the concurrent setting. In Section 4.6 we report on
the real-world human-robot collaboration experiments.

4.2 Overview

In a standard Markov Decision Process (MDP), the decision variables are called
actions, which have no duration (beyond one step) or concurrency. One of the
standard generalizations to the concurrent setting, the CAM [Rohanimanesh
and Mahadevan, 2005], introduces multi-actions (tuples M of concurrent ac-
tions). CAMs are a semi-MDP where the state variable is as before while the
decision variable is a multi-action for each phase, phases last for multiple steps,
and the termination time of a phase is stochastic.

In our formalism we instead speak of concurrent activities, and the set M
of currently running activities is part of the relational state. A decision is
the initiation or termination of an activity by only one or few agents. Every
such decision corresponds to a step of the underlying semi-MDP on the rela-
tional state, but only certain decisions lead to a real time duration. While in
terms of the semi-MDP, all decisions are sequential, in terms of real time, the
initiation and termination of activities may be synchronous or asynchronous
and activities arbitrarily concurrent. Policies are single- or multi-agent initia-
tion/termination rules instead of multi-action decision rules.

To avoid confusion, we therefore use the word action only when referring
to the existing CAM model; in our framework we only speak of activities and
initiation/termination decisions.
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4.3 RAPs for modeling concurrent coopera-
tion

A RAP is a way to model concurrent cooperation of multiple agents as a
relational semi-MDP [Toussaint et al., 2016]. The formalism allows for multiple
actions taken simultaneously and asynchronously.

In order to do so, it decomposes the action concept into two different
concepts: decision and activity. Indeed, in the classical MDP formalism action
encompass at the same the time the decision to start and the time to perform an
action. By splitting it in two, and including the action being performed (called
activity) in the Markovian state, RAP can represent a concurrent process.
Roughly, RAPs define a sequential, semi-Markovian decision process where
decisions are about the initiation of activities, and activities run concurrently
with random durations.

For brevity we first describe RAPs in the deterministic case. However,
the reader familiar with non-deterministic decision rules [Zettlemoyer et al.,
2005] will anticipate how we represent stochasticity by probabilistic effects of
all rules. The stochasticity of activity durations is less trivial and needs to be
discussed in more detail later.

We will continue to use the blocksworld example from section 2.3. How-
ever, to showcase the concurrent aspect, we introduce the presence of two
agents and two activities will be used to realize the displacement of a block:
pick(Agent, Block) and place(Agent, Block1, Block2). We also add two predi-
cates, hand_free/1 and in_hand/2.

As for relational MDPs, the transition function is represented using rules.
Given a set A of activity constants, for each activity a ∈ A there exist one
or multiple initiation operators, encoded as rules of a Relational MDP. These
initiations operators have a real value predicate go(a) = τa in the outcome set
that represent the running activity. For instance:

start(pick, X, A):
{ hand_free(X) clear(A) }
{ go(pick, X Y)=1 ¬hand_free(X) ¬clear(A) }

start(put, X, A, B):
{ in_hand(X, A) block(B) clear(B) }
{ go(put, X, A)=0.7 ¬clear(B) ¬in_hand(X, A) }

start(put, X, A, B):
{ in_hand(X, A) ¬block(B) }
{ go(put, X, A)=0.7 ¬in_hand(X, A) }

are the initiation operators of activities pick and put. In state s, the deci-
sion set D(s) includes all initiation operators which context can be grounded
(potentially more than once). In addition, the decision set includes a single
special decision, the wait decision.

Transition model: The transition model for activities is equivalent as for
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Relational MDPs except for the addition of a knowledge base KB that includes
a set of first-order rules. When the state st is modified by a rule it produces
an intermediate state s′t. The new state, st+1, is obtained by the stable model
under this KB (cf. answer set programming), the result of forward chaining all
rules on s′t until convergence.

When the decision is wait, the semantics is that all agents decide not
to initiate anything further and that real time progresses until the relational
state changes and activities might terminate. We concretely define the state
transition for a wait as the following procedure:

1. Find the go-predicate with the minimal time-to-go value τmin.

2. Decrement all go-predicate-values by τmin.

3. All zero-valued go-literals, go(a) = 0, are deleted from st and a corre-
sponding terminate(a) is added to st.

This defines the intermediate relational state s′t. Again, the new state st+1 is
defined as the stable model under the KB. The KB is assumed to include the
rules that express the effects of termination.

For the blocks world example, the termination rules are:

r1(X, A, B):
{ terminate(pick, X, A) on(A, B) }
{ ¬terminate(pick, X, A) in_hand(X, A) ¬on(A, B) clear(B) }

r2(X, A, B):
{ terminate(pick, X, A) ¬on(A, B) }
{ ¬terminate(pick, X, A) in_hand(X, A) }

r3(X, A, B):
{ terminate(put, X, A, B) block(B) }
{ ¬terminate(put, X, A, B) hand_free(A) on(A, B) }

r4(X, A, floor):
{ terminate(put, X, A, B) }
{ ¬terminate(put, X, A, B) hand_free(A) on(A, table) }

Duration model: In the context of hierarchical RL and the standard CAM
[Rohanimanesh and Mahadevan, 2005], steps of the sMDP correspond to the
execution of an option, and the duration of the sMDP step is integer-valued,
counting the steps of the underlying MDP. However, in general sMDPs the du-
ration of one Markov step is real-valued, arbitrarily depending on (s, d, s′). In
the concrete case of RAPs, we assume that initiation and termination decisions
themselves have zero duration, while τ is equal to τmin for the wait decision
and therefore implicitly given by the go predicates in initiation operators.

Reward model: Rewards in RAPs are generally given as a relational mapping
(s, d, τ, s′) 7→ r. In our applications, we encode this mapping as a relational
tree as it is a compact and easily readable way to represent such mappings.

Interactive Relational Cooperative Behavior Learning 35



4.3. RAPs for modeling concurrent cooperation

Optimality: Unrolling a policy generates an episode (s0, d0, τ0, r0, s1, ..). We
define the discounted return for an episode as

R =
∞∑
i=0

γ τ̄iβ(τi)ri , τ̄i =
i∑

j=1
τj , β(τ) = 1− γτ

1− γ (4.1)

The β term weight each reward by the time taken by the transition while
taking into account the impact of the discount factor.

4.3.1 Stochasticity
State transition stochasticity in RAPs is represented by probabilistic effects
of initiation operators as well as KB rules, exactly as done in NDRs [Zettle-
moyer et al., 2005]. We propose to generally define duration stochasticity via
P (τa,x̄ | s, a, x̄), that is, the probability over the time-to-go of an activity (a, x̄)
depending on the current state. Let M(s) = {(a, x̄) | s |= go(a, x̄)} be the
set of current activities in state s (that is, the multi-action in the conventional
formalisms). Then we define the effect of the wait decision by the stochastic
procedure:

1. Sample a τa,x̄ ∼ P (τa,x̄ | s, a, x̄) for each (a, x̄) ∈M

2. Select the minimal τmin of these.

3. For all τa,x̄ = τmin, delete the go(a, x̄) literal and add the terminate(a, x̄)
literal to ŝ

4. For all τa,x̄ > τmin, modify the value of the go(a, x̄) literal such that
E{τa,x̄ | s, a, x̄} reduces by τmin.

In practice, we use Gaussians with the mean defined by the go(a, x̄)-value,
which makes the last step simple to realize.

4.3.2 Generalization and Comparison to STRIPS
The above formulation differs from standard STRIPS (or its stochastic ver-
sion, NDRs [Zettlemoyer et al., 2005]) essentially in the wait operator and
respective treatment of the go-predicate, as well as that the new state is the
stable model under an additional knowledge base KB. We introduced the latter
for representational convenience, allowing for a significantly more flexible dec-
laration of environments. The wait operator, however, seems essential for the
description of concurrent processes as it defines the relation between Markov
steps and real time. This is out of the scope of what could be represented in
plain STRIPS frameworks.
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The special semantics of the initiation and termination operators, and that
they necessarily need to set/delete a go-predicate, can be relaxed. An alter-
native formulation is the following: The rules in the KB are labeled as either
“decision rules” or “auto rules”; decision rules are applied when the respec-
tive decision is made, auto rules are forward-chained as above to find the next
stable model. The decision set is then the set of grounded decision rules s.t.
s models prer plus the wait decision. What we introduced as initiation and
termination operators become special case decision rules. However, the ex-
plicit definition of initiation and termination operators clarifies the semantics
in concurrent activity processes.

4.3.3 Comparison to CAM
The above formulation is a reduction of concurrent action planning in rela-
tional domains to sequential decision making in a relational sMDP. A plan (or
unrolling of a reactive policy) will give a sequence of decisions, each referring
to a different agent (or set of agents), that can be interpreted by a robot ei-
ther as own decision or as anticipation of the other agent’s decision. This is
in contrast to multi-action policies, where it remains somewhat unclear how
a single agent should actually react (do his own, single-agent decision) given
that the another agent is observed to initiate his own activity.

We want to compare RAP in more detail to CAM as presented in Rohan-
imanesh and Mahadevan [2002]. This comparison becomes most explicit by
reducing a CAM model to a RAP model:

Proposition 1. Every CAM process can be represented as a RAP; an optimal
policy of this RAP can be translated back to an optimal CAM-policy.

We sketch a prove of this proposition by construction, making the reduction
explicit. To this end we limit our RAP model to the case of a propositional
state s. We first consider the decision set. In CAM, the decision space is
the set of multi-actions M ∈ M(s) ⊆ A∗ in a subset M(s) of the power set
of the action set A. The subsetM(s) depends on the state and is defined via
mutex conditions, expressing that certain actions cannot be chosen concur-
rently (potentially depending on s). In RAP, let us define a decision episode
as a sub-sequence of decisions D = 〈d1, .., dm, wait〉 where all decisions di are
initiation or termination decisions, except for the last, which is a wait. We
need to show that the preconditions of initiation operators can be chosen such
that every feasible multi-action decision M can be reproduced by a decision
episode D, and that feasible D exist that create an infeasible M . In other
words, can the preconditions express constraints that are equivalent to the
mutex conditions. If the preconditions are general propositional logic expres-
sions this is clearly the case. But in the concrete case of mutex conditions
that are literally mutexes of pairs or tuples of actions, this can very naturally
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be encoded as negative literals in initiation preconditions. Therefore we can
construct an equivalence between M(s) in CAM and the set D(s) of feasi-
ble decision episodes in RAP. If the constructed initiation precondition allow
for all possible permutations of initiation decisions, the D is larger than M.
This could be excluded by construction. However, even then a specific policy
in RAP can always generate decision episodes equivalent to any multi-action
decision.

In CAM, the transition and duration model is jointly and very gen-
erally given in terms of P (τ, s′ | M, s) for τ ∈ N. We can reproduce this in
RAP by creating rules in the KB that reproduce this transition whenever the
last wait decision of a decision episode generates a terminate predicate; as
the state s̄ in RAP includes all information of (s,M) in CAM, any (proba-
bilistic) mapping from (s,M) to s′ can be realized by the KB. An interesting
aspect of the CAM model are the three alternative termination schemes any,
all, and continue (see Rohanimanesh and Mahadevan [2002] for details). The
any scheme can be reproduced in RAP when the KB “deletes” all go literals
(empties M) on a wait; the continue is reproduced simply by not deleting all
go literals; and the all by introducing a blocked predicate that renders all
initiations infeasible, becomes true after wait if there are still activities, and
false if there are none left. Note that all three schemes are reproducible only
by initiation decisions; allowing also for termination decisions generalizes these
schemes.

In terms of the reward and notion of optimality, CAM and RAP do not
differ. In conclusion, every CAM can be expressed as a RAP. Assuming that
a RAP planner computes and optimal RAP-policy, it is straight-forward to
construct a CAM-policy that chooses the multi-action M to be the activity
state M(s) after an decision episode D of the RAP-policy.

4.4 MC Planning in RAPs
A standard approach to planning in single-agent non-concurrent relational
domains is UCT (UCB1 applied to Monte-Carlo Tree Search) [Kocsis and
Szepesvári, 2006]. As our formulation sequentializes the decision process we
can readily apply UCT or other MCTS variants also for planning in concurrent
relational domains. For the purpose of the experiments in this chapter we
utilized the simplest option, namely plain MC estimates of the Q-function
over the decision set D(s) in every step. We empirically found in our specific
domains that plain MC behaves more robust than other MCTS variants (UCT
using MC backups and plain UCB1, UCT using Bellman backups and UCB1
[Keller and Helmert, 2013]) in terms of not getting stuck in sub-optimal tree
branches. We believe this to be a rather special effect of the domains we
consider, where “success” is rare. Further, plain MC has the advantage of
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allowing us to also compute an unbiased reward-weighted distribution over
future states and decisions, for instance allowing one agent to anticipate the
future decisions of another.

For generating finite rollouts we need to decide on a termination condition.
In many domains, including our example domains, there is a natural termina-
tion condition reflecting success or failure. In addition, we always terminate a
rollout in a dead-end state which we define as a state without go-predicates (no
current activities) and D(s) = {wait}. If no natural termination conditions
are given, one typically constrains rollouts to a maximal horizon H. If rewards
are bounded (as they need to be for UCB1) and γ < 1, one can choose H to
ensure a small upper bound on return that could be collected beyond H.

Finally, when comparing to CAM we mentioned that the outcome of deci-
sion episodes may be invariant under permutation of initiation or termination
decisions. This seems to introduce large redundancy in the decision tree in
comparison to a tree spanned by CAM-multi-actions. While in plain MC this
redundancy has no effect, in general MCTS multiple nodes are created for the
same state (the effect of a decision episode) which compromises the efficient
collection of statistics for this node. This can be corrected for by modify-
ing MCTS to become somewhat like graph search: after a wait decision we
uniquely sort the decision episode and hash if the same has been sampled
before.

4.5 LfD in RAPs
As for planning, the RAP formulation allows us to transfer existing learning
methods to the relational cooperation scenario. We consider both, Imitation
Learning (IL) and Inverse Reinforcement Learning (IRL).

4.5.1 IL
For IL we consider a data set D = {(si, di)}Ni=0 of state-decision pairs from ex-
pert demonstrations. Recall that in our case these are multi-agent concurrent
activity demonstrations where di encodes which agent is (or agents are) initi-
ating or terminating which activity. From this data we learn a policy π : s 7→ d
that predicts expert decisions for a novel state.

We propose to use TBRIL [Natarajan et al., 2012] within the RAP frame-
work to learn a relational cooperation policy. The TBRIL algorithm represents
the policy as a relational regression tree and uses gradient tree boosting [Bloc-
keel and De Raedt, 1998; Friedman, 2001] to train the model. The training
objective is the likelihood under the probabilistic policy model

π(d|s) = eβψ(s,d)∑
d′∈D(s) eβψ(s,d′) ,
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where ψ(s, d) are the features implicitly defined as the leaves of the regression
trees.

4.5.2 IRL
In IRL we are given expert demonstrations and assume a generative model
that considers these demonstrations as optimal w.r.t. some unknown reward
function. The goal is to uncover this reward function; in our case a relational
regression tree that represents such a reward function. Note that without
further constraints this is an ill-posed problem as many solutions exist, for
example, the reward function equal to zero for any input will always be a
solution to the problem.

We propose to use RCSI [Munzer et al., 2015] within the RAP framework
to uncover a relational reward function from expert demonstrations of coop-
eration. This algorithm decomposes the problem in two steps: First, find a
Q-function Q(s, d) such that expert decisions are maxima of the Q-function
(i.e. a discriminative function describing the expert policy). This first step is
equivalent to IL and we use the TBRIL algorithm as above. Second, compute
a reward consistent with the Q-function by inverting the bellman equation.
There is a one to one correspondence between the Q-function and the reward
function.

Given the learned reward function we can use planning methods to compute
optimal decisions in novel states, with the potential to generalize much better
than IL.

4.6 Experiments
We will use two domains to showcase the capability of the proposed model.

4.6.1 Example domain: Concurrent assembly assistance
robot

In this domain a robot has to assist a human in an assembly task. We have
two agents, the two end-effectors of the robot, and a human, which we model
using the KB as part of the environment. The aim is that the robot fluently
assists the human in assembling a box composed of 5 parts.

In order to assemble the box the different pieces have to be 1) put in
the human workspace 2) positioned and 3) attached. To put a piece in the
human workspace the robot can initiate two activities, pick(hand, piece) and
give(hand, piece). A third activity, wait_for_human, waits for the human to
position the next piece. The activity hold(hand, piece, identifier) will hold
a piece at a specific point allowing the human to screw them together. Two
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Figure 4.2: Schematics representation and photo of the toolbox.

additional activities, go_home_left and go_home_right, put the robot’s arms
back in homing position. All activities last one unit of time except for hold
which lasts two. Each arm can only be involved in one activity at any time.

Fig. 4.2 illustrates the five pieces handle, side_right, side_left, side_front
and side_back, and their attach points. Since we do not consider impossible
builds, positioning or attaching activities need 3 arguments to avoid ambiguity
(and are used in this order by convention): the object with the female attach
point, the object with the male attach point and the identifier of the female
attach point used.

The state of the domain is represented with the following predicates: at-
tached/3, positioned/3, in_human_ws/1, picked/1, at_home/1, busy/1, free/1,
occupied_slot/2, human_can_do.

The starting state is always the state where nothing is on the human
workspace. This domain is challenging from the planning point of view be-
cause a high number (41) of decisions are necessary before reaching the goal
state. For learning, on the other hand, the fact that the start state is unique
makes it easier.

4.6.2 Example domain: Concurrent blocksworld
This domain is an adaptation of the standard blocksworld domain where two
activities can be realized at the same time. Five blocks can be put on top of
each other or on a surface (called floor) by two robotic arms.

The domain is represented with the following predicates: on/2, clear/1,
busy/1 and in_hand/2. The activities are pick(arm, block) and put(arm, block,
block), both of them last one unit of time and both of them can be realized by
either arm.

The goal of the task is to stack all blocks in one tower. We generate a
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random starting state by first sampling the number of initial towers and then
uniformly selecting one state that respects the total number of blocks. In the
start state no activities are active.

This domain presents different difficulties than the assistance robot one.
The task is shorter in terms of the number of decisions, which simplifies the
planning problem. On the other hand, there are activities with a negative
impact that put the agent further from the goal, so random walk is not an
effective strategy. Another challenge in this domain, more for the learning
method, is that there are many different paths to reach the goal depending on
the start state. Thus it is important to generalize well from the demonstrations
as the policy will often reach states not observed in demonstrations.

4.6.3 Simulation Results
Before showcasing the RAP model in a real-world robot assistance domain we
evaluate the transferred planning, IL and IRL methods in simulation.

MC Planning For the assistance robot domain, results are presented in
Fig. 4.3. We compare the performance of the planner in terms of real task
execution time and success rate, to the optimal policy and to a random policy.
There are 50 trials for every parameter value and results are averaged. After
1000 decisions, if the goal state is not reached we stop the trial and consider
it to be a failure. The success rate is computed as the percentage of successes.
Two rewards function are used for planner. The first one only rewards the final
state while the second one tries to guide the exploration by giving intermediate
reward depending on the number of attached/3 predicates. With few rollouts,
the MC planner is noisier than the optimal policy, resulting in longer task
execution times. With 200 rollouts and the guided reward, the planner finds
a policy to reach the goal in 24 robot time units against 21 for the optimal
policy.

As stated earlier, the planning problem for the blocksworld domain is easier.
Fig. 4.4 shows that with 20 rollouts the performance is almost optimal.

IL For the assistance robot domain we show in Table 4.1 the efficiency of
policy learning from demonstration. With only few demonstrations the policy
learned achieves near optimal behavior.

For the blocksworld, results are presented in Fig. 4.5. This domain is more
challenging in terms of LfD because of the number of possible start states.
However, the TBRIL learns the correct behavior with 20 demonstrations.

IRL The results for IRL are presented in Table 4.1 and Fig. 4.5 and are close
to the ones of policy learning. This is to be expected as we use TBRIL for
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Figure 4.3: Performance of the planner on the assistance robot domain. Shaded
areas represent standard error.

Figure 4.4: Performance of the planner on the blocksworld domain. Shaded
areas represent standard error.

Interactive Relational Cooperative Behavior Learning 43



4.6. Experiments

Table 4.1: Performance of IL algorithms on the robot assistance domain.
robot time success rate

optimal policy 21.0 1.0
random policy 84.96 1.0
policy learned (1 demos) 21.3 1.0
policy learned (2 demos) 22.25 0.96
reward learned (1 demos) 22.0 0.8
reward learned (2 demos) 21.6 1.0

Figure 4.5: Performance of the learning algorithms on the blocksworld domain.
Shaded area represent standard error.

the first step of RCSI and use the full knowledge of the dynamic model of the
world.

4.6.4 Robot application
We realized the robot assembly domain on a Baxter robot. To this end we
additionally had to implement 1) a sensing module that allows us to detect
the truth values of the different predicates and 2) an activity module with a
routine for each activity.

Note that now, in real-world, the wait decision really waits until the first
sensing or activity module reports a termination of an activity or change of
state. This replaces the model assumption made in the definition of the RAP
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model, namely the effect of a wait decision in simulation.
For each predicate, a detector has been coded, e.g.:

• positioned/3 : The 6D pose of the objects are retrieved with an Optitrack
system and compared to the ground truth which is provided to the system
beforehand.

• attached/3 : This is true if it was true in the previous state or if objects
are positioned and the human is operating a screwdriver (tracked with
Optitrack) nearby for 7 seconds.

• in_human_ws/1 : We check if the object is in a cube around the human.

MC Planning Planning on the real robot is achieved with a simple loop
that retrieves the current relational state of the scene and re-plans to find the
next decision using the MC planner. The previous plan is not reused, the
planner starts from scratch each time.

The results are presented in the video supplement at https://vimeo.com/
139342248. The decisions are computed online and result in a complete as-
sembly of the box. Twice the robot holds at a place not needed, otherwise
the decisions are optimal. We assume that allowing the planner more rollouts
would solve this problem. We used the guided reward in this setup.

IL In order to learn the policy, we first recorded some expert demonstrations.
A specific command line interface has been developed that allows to command
the robot to execute any activity. When a command is given, and before it is
executed, the state of the scene and the decision are logged and used later to
learn the policy. Once the demonstrations are recorded, the policy is learned.
It is then used to control the robot with a simple loop similar to the planning
case.

We have successfully learned and played a policy from two demonstrations
on the Baxter robot. This learned policy is presented in the video https:
//vimeo.com/139342248.

4.7 Conclusions
This chapter proposes a model of concurrent cooperation that allows for effi-
cient transfer of existing planning and RL methods to such domains. While in
other formalisms policies map to multi-actions for all agents, RAP describes
a process of sequential initiation, termination and wait decisions that each
involve only one or few agents and exploits the underlying relational state
representation. The knowledge base and generality of activity duration distri-
butions offer great representational flexibility. We compared the generality of
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RAP to previous concurrent action models. Using RAP we transferred MC
planning, IL and IRL to relational concurrent cooperation domains, which
previously has not been demonstrated. We also illustrated the approach on a
real-world robot assistance scenario, where the robot concurrently uses both
end-effectors to assist a human in an assembly task.

The RAP model will be used in the next chapter. We will present how it
can be used to model a team as well as an interactive learning architecture
that will allow the robot to efficiently learn tasks.
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Chapter 5

Cooperative Behavior Learning
in RAPs

This chapter present a framework for learning tasks in a cooperative setting.
It has been submitted as a journal paper. Co-authors are Marc Toussaint and
Manuel Lopes. It has been edited to improve coherence throughout the thesis.
Part of this work has also been published as a conference paper under the
name "Preference Learning on the Execution of Collaborative Human-Robot
Tasks" in Icra conference [Munzer et al., 2017b]

This chapter describes building on the Relational Activity Process (RAP)
framework presented in Chapter 4 to handle cooperation between two agents,
a human operator and a robot helper. It also describes an Interactive approach
for cooperative Learning from Demonstration (LfD).

5.1 Introduction
Robots are still restricted to very controlled environments and mostly sepa-
rated from humans. New technological developments have improved the safety
of robots, making it possible to have robots and humans sharing the same
space. For high volume production, it will still be more efficient to fully au-
tomatize the task. For low volume production, on the other hand, having a
team composed of a human expert and an easily reconfigurable robot might be
more efficient than full automation as the setup cost will be greatly reduced
allowing for fast task switching. As a consequence, to be useful, robots should
be able to help as soon as possible. In this context, robots should be able to
learn how to assist a human operator. This process should be intuitive for the
operator, requiring as little as possible knowledge about how the robot learns
and acts. It is also important for this process to be time efficient, so that the
learning phase is no longer than the actual task execution.

In this chapter we propose an interactive learning system allowing a robot
to learn to assist a human operator. We mean by interactive learning, fusing
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the training (creating a dataset of correct behavior) and execution (using the
behavior learned from the dataset to solve the task) phases. It has several
advantages: i) it exploits the current execution data to start act autonomously
as soon as it is confident on the task, making the teaching process shorter
tedious as the robot can act autonomously when it is sure about the correct
action to execute; ii) the new experience and feedback from the user are used
to fix the learned behavior if some parts are wrong or adapt if the expected
behavior changes.

Another advantage of the interactive setting is to make it easier for a naive
user to use the system. In many cases a deep understanding of the learning
problem and learning algorithms is needed to select parameters such as the
size of the training dataset, the amount of feedback, and the length of the
training. Indeed, if the size picked is too small the system will make mistakes
with no possibility for improvement other than retraining the system with a
bigger dataset. If the size is too big, the user will spend a lot of time recording
useless demonstrations.

Recent works have considered interactive LfD in robotics, but mostly in the
context of single-agent tasks and without concurrent actions and high-level rep-
resentations. In this chapter, we propose a way to learn a collaborative task.
The work presented in this chapter focuses on human-robot collaboration sce-
narios but could be applied more broadly, to any virtual agent that has to work
with a human in a support fashion. Our contributions include the following:
i) proposing and evaluating an interactive behavior learning framework for
cooperative tasks with concurrent actions ii) the introduction of a potential
error estimation mechanism for relational policy learning iii) the introduction
of a formalism, based on relational semi-MDPs, to model concurrent decision
problem and iv) how to learn preferences with the proposed framework.

We present the RAP framework and how to represent a cooperative task
with it in Sec. 5.2. In Sec. 5.3, we present the interactive learning framework
and the algorithms used. Lastly, Sec. 5.4 and Sec. 5.5 are the evaluation and
the conclusion.

5.2 Team behavior modeling with RAPs
Using the RAP formalism, we can model teams of cooperating agents, where
all agents are embedded in the same semi-MDP and the decision space is the
joint space of human decisions and robot decisions, D. Given a reward and
using planning methods, for example, Value Iteration (VI), we can compute
an optimal Q-function over the next decision d ∈ D in a given RAP state s. It
provides values for decisions across agents. If there was a single central decision
maker, it could read out the argmaxdQ(d, s) and transmit the decision d to
the agent it concerns. However, in real human-robot collaboration, without
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such a central decision maker, the readout and interpretation of this quality-
function are non-trivial. With two decision makers, both might want to start
an activity at the same time.

In the human-robot cooperation case, we assume that the joint decision
space decomposes as D = DR ∪ DH and DR ∩ DH = {wait}, with DR the
robot’s and DH the human decision space.

Given the robot has a representation of the shared task as a Q-function, we
propose the following procedure for the robot to decide on its own activities.
If maxd∈DR Q(d, s) < maxd∈DH Q(d, s), that is robot decisions have strictly less
value than optimal human decisions, the robot does not start an activity and
lets the initiative to the human. Otherwise, the robot samples uniformly from
the set of optimal robot decisions ⊆ DR.

5.3 Interactive cooperative behavior learning
We now present the interactive learning framework. The basic idea is to have
a system where the user can instruct the robot. But we make it also possible
for the robot to act before being instructed when it is certain about what
activity to execute. The underlying assumption is that, as the robot does
the task again and again, it will become more and more certain about which
activities to perform. To be certain about a decision we rely on potential error
estimation (detailed in section 5.3.5).

5.3.1 The interactive framework
Fig 5.1. presents the interaction flow. We incrementally build a dataset of
expert behavior during task solving and after each episode (completion of the
task) relearn the correct behavior using batch learning. During an episode, for
each decision, based on the predicted decision and the potential error associ-
ated, we distinguish three cases: confident, ask-before-act and waiting-robot.
If the predicted activity is a robot one and the estimated error is inferior to a
threshold, called confident threshold, the robot acts and eventually gets feed-
back, if no feedback is given before the end of the activity, the activity is
considered to be correct. On the other hand, if the estimated error is over
the confident threshold, the robot starts by asking the user if the predicted
decision is correct and use the user feedback to execute a correct activity. If
the predicted activity is a human one or the decision is wait, the robot does
nothing and gets feedback either by observing a human activity or by getting
a command to do an action. After each activity (start human activity, start
robot activity or wait) D is updated.

Since our present goal is to produce an efficient learning procedure, we also
added a memory system. If the robot recognizes the current state as part of
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Figure 5.1: Schema of the interaction protocol. The three different cases (con-
fident, ask-before-act and waiting-robot) are shown in color.
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D, it predicts the corresponding activity with an estimated error of 0. This
also allows avoiding loops during the execution.

5.3.2 Learning cooperative behavior
We learn the behavior based on the dataset gathered during task solving. It is
composed of tuples (statei, decisioni) where decisioni is a semi-MDP decision
and can, therefore, be the activation of a human activity, the activation of a
robot activity or the wait primitive.

We propose to use the TBRIL algorithm [Natarajan et al., 2011] as it is,
to our knowledge, the only policy learning algorithm for relational knowledge.
TBRIL works by finding a quality function such that seen actions are optimal
for their associated state.

5.3.3 Learning preferences
The previously defined algorithm can also be used to learn the user’s prefer-
ences when the general task is known beforehand.

Given a general task with different ways to solve it, i.e. different optimal
paths in the RAP, preferences are defined as the preferred subset of these
paths. The task can be seen as prior knowledge whereas preference is the
learned behavior. In the extreme case where no prior knowledge is available,
this problem is reduced to task learning.

More formally, under a Markov Decision Process (MDP) the task is defined
by the reward, Rtask. Using Value Iteration, we can compute the optimal
quality function Q∗task. We can then represent the behavior of the team taking
into account human preferences as another quality function Q∗full = Q∗task+Qp.
Where Qp is a shaping function of the task optimal quality function such that
Q∗full maximizes task and human preference.

By initializing the parameter Q∗prior of TBRIL to Q∗task we can use the same
algorithm to learn preferences. The advantage of learning the preferences is
to, at the same time, leverage prior knowledge to be efficient early on while
being able to adapt to different users.

5.3.4 Protocol of interaction
At this stage, we introduce three feedback types:

• Validation: the predicted decision is correct

• Modification: the predicted decision is not correct and feedback is given
before decision is executed

• Correction: the predicted decision is not correct and feedback is given
after decision is executed
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Table 5.1: The different kind and ways to obtain feedback based on the pre-
dicted action and whether it is correct. Exp. stands for explicit and imp.
stands for implicit. The cases to avoid, explicit (blue) and correction (red) are
highlighted

correct decision A robot decision is predicted Human decision or
confident ask-before-act wait is predicted

predicted imp. validation exp. validation imp. validation
not predicted (robot) exp. correction exp. modification exp. modification
not predicted (human) exp. correction imp. modification imp. modification

and two ways to get feedback :

• implicit: the system can recover the information by observing the scene

• explicit: the system receives the information by the direct intervention
of the human

Based on the kind (robot/human/wait) of decision that is predicted and
if it is correct, different feedback will be gathered. Table 5.1 presents these
different feedback types. For example, if the predicted decision is correct, a
validation feedback is be gathered. If the potential error is under the confident
threshold, it will be done implicitly as the robot will act in confident mode. On
the other hand, if the predicted decision is a robot one, the robot is confident
and this prediction is wrong the feedback will be an explicit correction as the
only way for the system to get feedback is from the user after the activity
started.

An efficient learning procedure aims to minimize explicit feedback, as it
requires attention from the user and can break the workflow of the task, as
well as correction feedback, meaning a mistake have been made which can also
break the workflow of the task. The challenge is due to these two objectives
being opposed.

5.3.5 Estimating potential error
We now present how the potential error is estimated allowing acting differently
when the system has enough information to be confident or when it should
acquire more data before acting.

Because we are using relational trees to learn the expected behavior, we
propose to estimate confidence using Query by Bagging [Mamitsuka, 1998].

In particular, we propose to learn N(= 50) models, each from a random
subset, Si, of D (the optimal behavior dataset), i.e. |Si| = 0.4× |D|.

We need to consider a set of optimal decisions as in most cases there are
more than one and the user might give different ones. We define the error
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of an optimal set of predicted decisions, a subset p of D(s), as the averaged
minimum distance between a quality vector such that every decision in p is
optimal, qpos, and the quality vectors predicted by the models.

ep = 1
N

N∑
n=0

argmin
qpos∈Qp

|qpos − qnpred|

with qnpred = [Qn
f (s, d)]d∈D(s), the vector of quality values predicted by

learner n, and Qp = {R|D(s)||∀d ∈ p, d′ ∈ D(s), td ≥ t′d}, the set of quality
vectors such that all decisions from p are optimal.

Given the state, for each possible set of decisions, the error is computed.
The set with the least error is the final prediction. Sometimes more than one
set shares the same error (for example, if only two decision, d1 and d2 are
optimal for every learner, three sets will minimize the error: {d1}, {d2} and
{d1, d2}) we pick the one with the higher cardinality.

For a given set of decisions, we cast the problem of finding the associated
error as a quadratic optimization under constraints problem and use an off-
the-shelf solver to solve it.

5.4 Evaluation
This section presents the different experiments we conducted to evaluate the
framework. They are divided in simulation experiments and a robotic experi-
ment. In simulations, we validate the approach and evaluate how it can handle
different situations. In the robotic setup, we validate it can be used on a real
world robot.

5.4.1 Simulation Experiments
The simulation experiments are conducted on two domains and evaluate differ-
ent aspects: the impact of the confident threshold, how the interactive approach
performs compared to a batch one, how sensitive to noise the system is, how
well it can transfer and what is the quality of the potential error. We use
two metrics for most of these experiments. The cumulated number of explicit
instructions and cumulated number of errors across different task executions.
As explained earlier, both explicit instructions and errors break the workflow
of the task and as such should be avoided.

Domains

We test our system in two domains: the blocksworld because it allows to easily
change its dimension, and a more realistic cooperative human-robot assembling
task.
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Figure 5.2: The toolbox domain. A box can be assembled in an easier and
efficient way if a collaborator robot helps by providing the new parts and by
holding parts in place to make screwing easier for the user. On the photo, the
box is assembled by a human with the help of a robot. The robots hold the
piece in place while the human is screwing. Concurrently, the robot is picking
a piece in preparation for the next step.

Concurrent blocksworld This domain extends the standard blocksworld
by allowing two activities (pick and put) to be executed at the same time.
Blocks can be put on top of each other or on a surface (called floor) by a robot
and by a human. Unless otherwise specified we use 5 blocks (2 red and 3 blue
blocks).

The domain is represented with the predicates: on/2, clear/1, busy/1,
in_hand/2, blue/1 and red/1. The activities are pick(agent, block) and put(agent,
block, block), both of them last one unit of time and both of them can be re-
alized by either the robot or the human.

The goal of the task is to stack all blocks in one tower. Starting states are
generated by uniformly draw one state such that the number of towers is 4
and no activities are running.

Cooperative toolbox The cooperative toolbox domain is inspired by in-
dustrial tasks. In this domain, represented in Fig. 5.2, a robot must support a
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human in the assembly of a toolbox. The toolbox is constituted by five pieces:
handle, side_left, side_right, side_front and side_back. The toolbox can be
built in different ways, the side_left and side_right are interchangeable as well
as side_front and side_back.

At the beginning of the task, all pieces are set in a location not accessible
by the human. The robot has to realize consecutively two activities to put
them in the human workspace : pick(piece) and give(piece). Once the human
has pieces in his workspace he can start a positioning activity to put them in a
correct disposition for screwing. Simultaneously, the robot should hold one of
the pieces in order to allow the human to screw them together. Hold activity is
done with the right arm of the robot whereas pick and give are done with the
left arm so the robot can do different activities at the same time (which can
be naturally represented with the RAP formalism). This domain has 240, 000
states. In this domain, the task is to build the toolbox.

Results

Impact of the confident threshold parameter Previously we introduce
the confident threshold that controls the trade-off between the number of ex-
plicit instructions and the number of error of the system. Fig. 5.3 presents
the cumulative number of explicit instructions and errors for different value of
confident threshold. We can see that, for both domains, with high values, the
number of explicit instructions is low but the number of error is high and the
other way around for low values of the confident threshold. It can indeed be
used to control the trade-off between the number of explicit instructions and
the number of error of the system. For application where errors are costly, it
should be set to a low value whereas non-risky application should use a high
value to increase learning speed.

Incremental vs. Batch A main claim of this chapter is that an interactive
learning approach allows reducing the numbers of instructions and errors made
by a system when compared to batch learning. Fig 5.4 displays the cumula-
tive numbers of instructions and errors for interactive and batch after 20 task
completions. Each approach has been run with different values for the param-
eter that controls for the trade-off between instructions and errors, confident
threshold for interactive and number of demonstrations (full solve of the task)
for batch.

For evaluating the batch learning, the interactive process is used except for
the following modifications, with nb_demo = n:

• The policy is only learned once, at the end of the n-th episode.

• Before the end of the n-th episode, the robot will never use the confident
mode.
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Figure 5.3: Impact of the confident threshold parameter. Top is for the blocks
domain while bottom is for the toolbox domain.

• After the n-th episode, the robot will never use the ask-before-ask mode.

• After the n-th episode, the user will never give feedback to the robot.

The results show that for the blocksworld domain, for any values of nb_demo,
there is a value of confident threshold such that the interactive approach is
better both in terms of explicit instructions and errors. This also true for
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Figure 5.4: Comparison of different batch and interactive strategies after 20
iteration in terms of number of errors and number of explicit instructions. Top
is for the blocks domain while bottom is for the toolbox domain.

the toolbox domain except for nb_demo = 10 where even a very low value
of confident threshold, the interactive approach makes more mistakes. We ex-
plain later why this is the case. We argue that in most case, interactive with
threshold = 0.0005 will be preferable to batch with nb_demo = 10, the num-
ber of errors is only 0.3 more while the number of instructions goes down to
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56 (from 115).

Figure 5.5: Cumulative numbers of explicit instructions and errors when the
communication is noisy. Top is for the blocks domain while bottom is for the
toolbox domain.

Noise Sensitivity In a real life scenario, the feedback might be noisy. For
example, if the system is using speech recognition, some recognition error can
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occur or if the system is using a graphical interface, the user might miss-
click. To evaluate the robustness of the proposed system to noise, we make
the assumption that the communication to instruct the robot of the optimal
action is noisy, for noise = n%, in n% of the case a random decision is given
in place of an optimal one. We can see in Fig. 5.5 that up to 20% noise
the system is able to learn the policy efficiently. However, at 50% noise the
performances decrease considerably.

Figure 5.6: Impact of transferring a learn policy from a 5 blocks world to a 6
blocks world

Transfer One of the reasons that we propose to rely on relational repre-
sentation is to naturally deal with domains where the number of objects can
change. It is an important feature for robotics system that works with humans
as the domain cannot be fully defined in advance. Human are unpredictable
and very flexible (i.e having a second screwdriver around because the handle
is more comfortable). Fig. 5.6 presents the results of an experiment in which
we compare transferring a policy from a 5 to 6-blocksworld and learning a new
policy from scratch on a 6-blocksworld. The transferred policy is trained for
10 episodes, we then add a block to the domain. The explicit instructions and
errors counters are reset. The not transferred policy starts at episode 10 to
allow comparing the two. The transferred policy requires fewer instructions
while making fewer errors showing a clear benefit of transfer.
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Figure 5.7: Impact of transferring a learn policy from a 5 blocks world to a 6
blocks world

Preference learning Fig. 5.7 evaluates the impact of leveraging prior
knowledge about the task when such knowledge is available. In this exper-
iment, we changed the task in both domains to add a preferences component.
For the block domain, the user prefers to only handle red block. In the toolbox
domain, the user prefers to get pieces one by one and as much as possible for
the robot to have the arms in home position.
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We can see that in both domains using the prior knowledge of the task
allows learning faster while making no mistakes.

Figure 5.8: Distribution of the potential error for correctly and wrongly pre-
dicted decisions. Top is for the blocks domain while bottom is for the toolbox
domain.

Potential Error Quality We are interested in evaluating if the measure
used to estimate the potential error is clearly predicts the future error. In Fig.
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5.8 we plot the distribution of the potential error for correctly and wrongly
predicted decisions. We used the data of 45 runs of the interactive approach
for 20 episodes with a confident threshold value of 0.01.

We can see that, for both domains, most of the correct decisions have a
very low error (the y-axis uses a log scale). And, for the blocks world domain,
the distribution of wrong decisions is clearly different. For the toolbox domain,
however, the two distribution are more alike. It explains that, even for low
values of the confident threshold, errors are made by the interactive approach.

5.4.2 Robotic implementation

We now present an experiment of a joint human-robot task realized with a
user and the Baxter robot. This experiment uses the toolbox domain (figure
5.2) and consists of a collaborative assembly of a toolbox. We run the system
for three episodes, each following a different RAP trajectory. The first two
start with all the pieces not in the human workspace but the handle piece is
assembled differently (it is reversed). The third one starts with the side_front
already in the human workspace.

The perception system relies on Optitrack cameras for object tracking and
human activity recognition, both outside the scope of this chapter. Based on
this information, we compute the truth values of the domain predicates for
all objects. The system is also programmed to recognize the different human
activities.

Using an algorithm on a real robot is always more challenging than in
simulation. The list of additional difficulties includes : an imperfect perception
system and a model not conform with the reality. The imperfect perception
system leads to predicates wrongly detected as true as well as the other way
around (for example, because of occlusion). Having an algorithm robust to
noise helps to cope with that. The mismatch of the model from the reality
leads to making decision in states that are not predicted by the model. The
presented algorithm allows learning what to do in those cases.

The results are presented in Fig. 5.9. We set the confident threshold low
enough such that no error are made by the system. We can see that the al-
gorithm allows the system to significantly reduce the number of modification
feedback after only one assembly. A modification feedback is given when the
robot suggests a nonoptimal activity. So, a decrease in the number of modi-
fication feedback shows the robot correctly learned the task and is capable of
generalizing. The bottom graph shows that the number of use of the interface
decrease with the number of assemblies. Which means that the robot is ca-
pable of correctly estimating its confidence. The video of the whole learning
process can be found at https://vimeo.com/196631825.
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Figure 5.9: Number of modification feedbacks (top) and number of uses of the
interface (bottom) during three consecutive assemblies of the toolbox with a
real robot. Because there were no error made by the robot, a decrease in the
number of modification feedback shows the user needs to instruct less and so
that the robot correctly learned the task.
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5.5 Conclusion
In this chapter we present the first approach for a robot to interactively learn a
support behavior during concurrent human-robot collaboration. In our setting,
the robot simultaneously executes the task and learns what the user expect
it to do. Our main contribution is to consider such behavior learning in an
interactive and concurrent multi-agent setting.

We first detailed the RAP framework and how to use it to represent concur-
rent and cooperative task realization. Because RAP is constructed on an un-
derlying relational semi-MDP model, one can use pre-existing policy learning
algorithm such as TBRIL. After introducing an interactive behavior learning
framework that mixes the usual training and exploiting phase, we presented
an estimate of the potential error for a given activity prediction.

We have shown that using the proposed framework leads to the robot mak-
ing fewer errors and requiring less explicit instruction than more traditional
batch learning. We also evaluate how robust our approach is for intra-domain
transfer and noise. We demonstrate that we could change the dimension of the
problem and still reuse parts of the information to learn fast. We describe how
to use the proposed framework to learn user’s preference during the execution
of a collaborative task.

Lastly, we evaluated the implementation of this framework on a real robot
and showed its viability. We believe interactive learning is an important feature
to allow naive users to teach behavior to a robot.

This chapter presented the final product of this thesis in terms of algorith-
mic development. We believe we have proposed an architecture to efficiently
learn behavior from a human operator in the context of collaborative tasks.
The next chapter will present a user study of this architecture.
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Chapter 6

Impact of Robot Initiative on
Human-Robot Collaboration

This chapter presents a user study on the impact of robot initiative in coopera-
tive task. It uses the framework proposed in Chapter 5. It has been published
previously as a conference paper under the name "Impact of Robot Initiative
on Human-Robot Collaboration" in Hri conference [Munzer et al., 2017a] as a
Late breaking report paper. Co-authors are Yoan Mollard and Manuel Lopes.

6.1 Introduction
Today industrial robots are still restricted to highly repetitive tasks where they
work separated from humans. However, due to new technological developments
both in robot safety and artificial intelligence, robots might soon see a more
widespread adoption. Robot safety has recently been greatly improved thanks
to more compliant designs and better human acknowledgment. This is allowing
robots to work in the same workspace as humans without the risk to harm
them. In the same time, advances in machine learning make it possible to
have robots that can learn new tasks from non-expert human operators. It
makes it economically possible to use robots for short-lived tasks.

Especially for collaborative tasks, there is still no definitive answer on how
much autonomy is expected by the human coworker. This chapter focuses
on studying how humans react to a robot that can take initiative. We have
created a semi-autonomous robotic system that responds to instruction but
can take initiatives when it is confident about the action to realize based on
previous experiences. We compare it to a robot without such capacity.

Systems that progressively learn a behavior from human expert have been
previously proposed. In Grollman and Jenkins [2007]; Mason and Lopes [2011],
the user controls the robot. Once it stops the system will use past experiences
to generalize to new situations. The user can take back the control at anytime
to guide the robot when it judges the behavior is incorrect. Closer to what
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we propose, other works consider estimating the robot confidence to request
guidance when the action to take is unsure [Chernova and Veloso, 2009]. Other
works consider optimizing an external reward using social guidance [Knox and
Stone, 2010; Thomaz and Breazeal, 2008].

The impact of robot initiative in human-robot collaboration has been pre-
viously studied. In Gombolay et al. [2015], the authors studied the impact of
autonomy for a scheduling and executing task and found that user preferred to
let control to the robot for the scheduling part. The present work differs on the
following aspects : i) we study increasing autonomy and ii) in a collaborative
task where human and robot share the same workspace.

We present the conducted study in section 6.2 and the results in section
6.3.

6.2 User Study
We perform a user study to check the following hypothesis: i) users find the
robot more useful when it is able to take some initiatives and ii) users are less
comfortable and more afraid when working with a semi-autonomous robot.

The study presented the subjects sequentially with two conditions in-
structed and semi-autonomous. Half of the subjects started with the instructed
condition while the other half started with the semi-autonomous condition.
After each condition, the subjects answered to twelve questions, presented as
Likert scales about their experience. Finally, they were asked which condition
they preferred.

The task considered was to assemble a toolbox with the help of a Baxter
robot. The user could instruct the robot to do support actions using an inter-
face on a tablet. The robot is equipped with 4 actions. It can pick a piece, give
a piece, hold a piece in place (to help the user screw) and reset arms in home
position. The pick and give actions are realized with the left arm while the
hold action is realized with the right one. The robot is controlled using the Re-
lational Activity Process (RAP) framework [Toussaint et al., 2016] that allows
concurrently running actions and uses relational representations for states and
actions.

The semi-autonomous condition is composed of three assemblies of the tool-
box. During the assemblies, the system was gathering information to learn a
relational policy learner, in particular TBRIL [Natarajan et al., 2011], to learn
a mapping from states to actions. It also uses Query by Bagging [Mamitsuka,
1998] to estimate its confidence. During the second and third assemblies, each
time it encountered a new state, it predicted the correct action and associated
confidence. When the confidence was superior to a threshold, the robot started
the action autonomously. Otherwise, it asked the user to confirm.

The instructed condition was also composed of three assemblies of the tool-
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Figure 6.1: Number of interactions with the tablet (left) and number of action
(right). Significance has been tested using the Wilcoxon test with the Pratt
treatment and noted according to the standard defined by the APA(American
Psychological Association)

box. However, no learning was involved. The user had to instruct all actions
to the robot.

The study was conducted on 10 subjects (4 females) of age 30.1±10. They
self-reported an experience with robotics system at 3.1± 1.6 on a scale from 1
to 5.

6.3 Results

We first present quantifiable results before detailing results obtain through the
questionnaires.
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Figure 6.2: Answers to the questionnaire. Each subject experienced both
conditions in random order. Significance has been tested using the Wilcoxon
test with the Pratt treatment and noted according to the standard defined by
the APA. Errors bars represent the standard error of the mean.

6.3.1 Quantifiable Results
Figure 6.1 presents the number of interactions with the tablet and number
of robot action for both conditions. In the semi-autonomous condition the
robot is able to learn the correct action, this can be seen as the number of
interactions decreases with the number of assemblies while the number of robot
actions stays constant. On the contrary, for the instructed condition both
numbers stay constant. The number of interactions is sometimes higher than
the number of actions because user tried to instruct actions before they were
available (for example give, before pick finished).

6.3.2 Questionnaire Results
Results of the questionnaires are shown in Figure 6.2. The first four questions
are related to how helpful the robot is. In three of these four questions, the
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results are statistically significantly better for the semi-autonomous condition.
They considered that the robot was a good coworker, that it made the task
easier and that it was better to do the task with the robot. Also when asked
which condition they preferred 90% of people choose the semi-autonomous
condition.

The next four questions are related to acceptability. While users reported
being more afraid of the robot during the semi-autonomous condition, they
also reported that the behavior was more conform to their expectations. This
means that these two criteria are not strongly correlated. We want to precise
that due to precision errors the robot was sometimes failing its actions. We
hypothesize that people would be less afraid of a robot making fewer mistakes.

The last four questions treat about autonomy and learning. Users clearly
noted that the robot was learning in the semi-autonomous condition. The
agreement to the question "I think the robot should take more initiative." is
positive and similar for both conditions despite the robot taking no initiative
in the instructed condition and starting half of its action by itself in the other
conditions (see section 6.3.1). This means users are expecting more autonomy
from the robot.

6.3.3 Discussion and Future Work
This chapter presented a user experimentation to study the impact in terms
of helpfulness and acceptability of a semi-autonomous robot for human-robot
collaboration. The robot has shown to be seen as more helpful by the users.
Users were also found to be more afraid of the semi-autonomous robot while
its behavior was corresponding more closely to their expectations. As the users
thought the semi-autonomous robot should take more initiative, future work
includes comparing it to a fully autonomous (hard-coded) robot.
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Chapter 7

Discussion

We presented in this thesis our work toward an efficient support robot for small
scale industry. The work was focused on the high-level plan learning. We
offer an approach based on interactive learning and relational representations
allowing a robot to learn a cooperative behavior from a non-expert teacher.
We validated the approach in simulation, on a real robot and by conducting a
limited user study.

7.1 Contributions
Toward building such a system we introduce a number of contributions to the
state of the art.

7.1.1 Algorithmic
First, we developed and evaluated the first Inverse Reinforcement Learning
(IRL) algorithm for Relational Domains (see Chapter 3). We based our work
on a previously developed IRL algorithm that we lifted to the relational set-
ting. This required us to add an intermediary reward shaping step to create a
compact reward that transfers well to different domains.

We then demonstrated how relational policy learning algorithms, both Im-
itation Learning (IL) and IRL, can be used in Relational Activity Processes
(RAPs), allowing robots to learn concurrent policies in such domains (see sec-
tions 4.5 and 4.6).

We proposed a novel method for potential error estimation in tasks with
multiple optimal actions (see section 5.3.5). It is based on query by commit-
tee and finds the best set of actions and its potential error based on a bag of
learners. It contributed to the development of an architecture for interactive
learning in relational domains (see section 5.3.1). We showed that compared
to a batch approache, this architecture allows the robot to require fewer in-
structions from the user while making fewer errors.
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7.1.2 Human-robot collaboration

Because this architecture is based on RAP, we were able to used it to learn
cooperative behavior. We showed how the team behavior can be seen as a
sequential decision making process while allowing both agent to start new
activity at any time (see section 5.3.2). We also demonstrated, that if the
task is known beforehand, only preferences of users can be learned in the
cooperative context by decomposing the quality function (see section 5.3.3).

Lastly, we showed that these developments can be used in practice by
creating a robotic setup and conducting a user study (see Chapter 6).

7.2 IRL vs IL
Throughout this thesis, IRL and IL have been compared in different scenar-
ios. We would like to elaborate on the main differences between these two ap-
proaches when working with relational representations. One standard strength
of IRL is to generalize very well to unseen states. However, we have found that
when working with relational representations this advantage becomes less im-
portant as IL approaches already transfer well. Of course, as seen in chapter
3, for extreme cases IRL still has the advantage.

Major drawbacks of IRL are the need to have access to a transition model
of the world and a higher computational cost. Not using IRL made it pos-
sible to use the proposed approach on a real robot. In real life experiments,
the transition model will not match exactly the dynamic of the world. It is
particularly problematic when perception problems are involved. The policy
found from the reward might be wrong as a consequence. The computational
cost is also limiting. As the world described by the representation have more
states, finding the optimal policy from the learned reward takes more time.
In the real robot setup, it can not run in real time preventing us to offer an
interactive approach.

7.3 Limitations of RCSI
The curious reader might wonder why we don’t present results for RCSI in
chapter 5. We discovered a weakness in the algorithm when working with
RMDP. The second step of the algorithm, shown in Figure 3.1, doesn’t scale
well for big datasets.

This step consists in stochastic optimization and the dimension of the vec-
tor to optimize is equal to the number of unique states in the training dataset.
Because of the curse of dimensionality, stochastic optimization works better in
low dimensionality problems. When using interactive learning the size of the
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dataset will grow after each task realization meaning the second step will work
less and less.

The performance of RCSI never reaches a satisfying level. At the begin-
ning, the dataset is too small to correctly learn the behavior while later on the
stochastic optimization process loses its efficiency leading to a reward impos-
sible to learn with a small tree.

One could argue that we should not use the second step of RCSI and
simply use a more complex model to learn the reward from the quality-function.
However, by removing the simplicity constraint on the reward, the interest
of RCSI is lost. The quality-function learned from TBRIL and the quality-
function obtained from the learned reward of RCSI becomes equivalent.

7.4 Future Work

7.4.1 Describing the world
Throughout this work, we have assumed that the robot is able to apply the
high-level actions at the geometric level and that the world representation
(the predicates) are given. While the first assumption seems reasonable to us
the second is more of an open problem. Indeed, the research in both motion
planning and trajectory learning is really rich. We believe it is today realistic
for a non-expert to program most of the actions used in this work. It would
require a short formation and a good interface using a combination of motion
planning and trajectory learning.

Designing the world representation, on the other hand, is not possible for
a non-expert. It requires a good knowledge about the algorithm and, often,
several iterations. One necessary research step before it can be used in practice
by non-expert to solve a wide variety of task is for the robot to design its own
predicates.

Automatic symbols design is a hard problem and one could argue that it
should be solved first. However, most researchs on symbol learning is task
agnostic. The problem can be made simpler by taking in account the task.
Using the solutions proposed in this thesis it should be possible to reduce the
problem of learning symbols that describe the world to learning symbols that
allow learning the current task.

7.4.2 Coordinated Actions
Another possible development of the work presented in this thesis can be the
learning of coordinated action between the robot and the human on a geometric
level. Research in concurrent motion primitive already exists, however, they
often do not consider the task at hand. By using the high level knowledge of
the task the team motion interaction could be made more efficient.
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In a similar research direction the high level policy learning approach pre-
sented in this work could be improve by taking into account the geometric
features of the different objects and their trajectory. Such an integrated logic-
geometric approach would allow a very natural interaction between the member
of the team and might improve the acceptance of the robot by the operator.
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