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I will remember that I didn't make the world, and it doesn't satisfy my equations. 

I will never sacrifice reality for elegance without explaining why I have done so. 

Nor will I give the people who use my model false comfort about its accuracy.  
 Instead, I will make explicit its assumptions and oversights. 

 
       From the The Modelers' Hippocratic Oath 
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Abstract 

Global Navigation Satellite Systems (GNSS) is used nowadays in various fields for navigation and 

positioning including safety-of-life applications. Among these applications is civil aviation that requires 

a very high quality of service for the most demanding phases of flight. The quality of the GNSS service 

is typically based on four criteria (integrity, accuracy, availability and continuity), that have to meet 

International Civil Aviation Organization (ICAO) requirements. To meet these requirements any source 

of potential service degradations has to be accounted for. 

One such example is GNSS signal distortions due to the satellite payload which can manifest in two 

ways: 

- Nominal signal distortions generated by healthy satellites due to payload imperfections. This 

type of perturbation can limit the accuracy of the GNSS measurements and result in the 

unavailability of the service for some very stringent phases of flight. To mitigate their impact, 

a precise characterization of these distortions and a knowledge of their effects on civil aviation 

GNSS receivers are necessary. 

- Non-nominal distortions that are triggered by a satellite payload failure. Non-nominal 

distortions, also called Evil WaveForms (EWFs) are rare events that may pose an integrity risk 

if the signal remains used by the airborne receiver. The strategy proposed by ICAO to deal with 

the EWF challenge is to characterize threatening distortions by the definition of a Threat Model 

(TM) and to build an appropriate monitor, referred to as Signal Quality Monitor (SQM) that 

will be able to detect any distortion from the TM that could lead to a position integrity failure. 

This task is performed by GNSS augmentation systems including Ground Based Augmentation 

Systems (GBAS) and Satellite Based Augmentation Systems (SBAS). The current monitors are 

based on the analysis of the correlation function.  

Supported by the groundwork performed by civil aviation on signal distortions for the GPS L1 C/A 

signal, this dissertation aims at proposing new distortions models associated to the new Global 

Positioning System (GPS) and Galileo signals that will be used by civil aviation after 2020.  

One important characteristic of GNSS signal distortions is that although they impact all users of the 

distorted signal, the consequence on the estimated pseudorange is dependent upon the GNSS receiver 

setting. This makes arduous the estimation of the impact of signal distortions on a GNSS user. The 

receiver parameters that have an influence on the pseudorange measurement estimated from 

distorted signals (nominal or non-nominal distortions) are listed. In addition illustrations to show the 

influence of these parameters on the GNSS receiver signal processing are proposed.  

The thesis first looks at the nominal distortions through GPS L1 C/A and Galileo E1C signals. Different 

types of observations are used based on correlation or chip domain visualization, and using high -gain 

and omnidirectional antennas. 

This investigation allows to: 

- compare results with the state-of-the-art to validate the receiver processing software 

developed for this study, 

- confirm published results and provide new results, 



Abstract 

4 
 

- make a comparison between nominal distortions observed from measurements collected with 

a high-gain dish antenna and with an omnidirectional antenna. 

The conclusions of the analysis are that the nominal distortions are relatively constant over years and 

that a precise characterization of nominal distortions is difficult notably because it is challenging to 

isolate signal distortions induced by the satellite from distortions induced by the receiver.  

After the observation of nominal distortions, the dissertation investigates the non-nominal distortions 

due to the payload failure. In particular, new TMs for new signals (GPS L5, Galileo E5a and Galileo E1C) 

are proposed. To define these TMs, the same parameters as the ones used to define the ICAO TM for 

GPS L1 C/A are used. The main work then consists in defining the range of the TMs parameters for the 

new signals. The limitation of the range of these parameters is based on two criteria: the impact of a 

distortion on a reference station and the impact of a distortion on differential users. It is noticeable 

that the new proposed TMs are larger than the GPS L1 C/A ICAO TM, resulting in an increase by a factor 

100 of the number of considered threats. 

Then, the dissertation investigates the SQM that would be necessary to protect a civil aviation user 

against the TMs for new GNSS signals. The new SQM is based on current receiver technologies, in 

particular the ability to use many correlator outputs from the same signal. The main contribution is to 

propose an innovative representation to test and compare the SQMs performance whatever the 

received signal 𝐶 𝑁0⁄  is. This representation is based on several assumptions but a strategy is exposed 

to still be able to use this representation if all assumptions are not fulfilled. From this representation, 

new SQMs (for each signal) are designed, their performances are assessed, and optimization processes 

are described to reduce their complexity. 

The concluding chapter of the dissertation reviews the main contributions of this Ph.D.. In addition 

perspectives for future works that could be conducted from the study performed in this Ph.D. are 

exposed. 
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Résumé 

Le GNSS est actuellement présent dans de nombreux domaines et permet le positionnement et la 

navigation. De nombreuses applications tirent profit du service apporté par le GNSS à l’exemple des 

applications portant sur la sécurité des personnes. Parmi ces applications, l’aviation civile a besoin 

d’une qualité de service très élevée et fiable, notamment pendant les phases de vol les plus exigeantes. 

Cette qualité de service est généralement basée sur quatre critères (l’intégrité, la précision, la 

disponibilité et la continuité) qui se doivent de respecter les exigences fixées par l’Organisation de 

l’Aviation Civile Internationale (OACI). Afin de satisfaire ces exigences, toutes les sources de 

dégradations potentielles du service doivent être prises en compte.     

Les distorsions des signaux GNSS générées par la charge utile du satellite sont un exemple de problème 

qui doit être pris en compte par l’aviation civile. Elles peuvent se manifester de deux manières 

différentes: 

- Les distorsions nominales générées par les satellites en fonctionnement normal. Ces 

distorsions sont causées par des imperfections au niveau de la charge utile du satellite. Elles 

limitent la précision des mesures obtenues grâce au GNSS et cela peut entraîner une 

indisponibilité du service pendant les phases de vol les plus contraignantes. Pour atténuer leur 

impact, il est nécessaire de caractériser de manière précise ces distorsions et de connaître 

leurs effets sur les récepteurs GNSS de l’aviation civile.  

- Les distorsions non nominales générées lors d’une panne de la charge utile d’un satellite. Les 

distorsions non nominales, aussi appelées EWFs sont des événements rares qui peuvent poser 

des problèmes d’intégrité si des signaux affectés par de telles distorsions sont utilisés par un 

récepteur embarqué. Afin de répondre à la problématique liée aux EWFs, la stratégie proposée 

par l’OACI est tout d’abord de caractériser par le biais d’un modèle de menaces (aussi appelé 

TM) les distorsions qui pourraient menacer les utilisateurs. Ensuite le but est de mettre au 

point un système permettant de détecter les distorsions du TM pouvant entraîner des pertes 

d’intégrité. Ce système de détection est appelé SQM et est implémenté dans les systèmes 

d’augmentation du GNSS tels que le GBAS et le SBAS. Les détecteurs actuels sont basés sur une 

analyse de la fonction de corrélation.  

En utilisant les travaux réalisés dans le passé par l’aviation civile dans le cadre du signal GPS L1 C/A, un 

but de cette thèse est de proposer de nouveaux modèles de distorsions associés aux nouveaux signaux 

GPS et Galileo qui vont être utilisés par l’aviation civile après 2020. 

Une importante propriété des distorsions des signaux GNSS est que, bien qu’elles impactent tous les 

utilisateurs du signal déformé, la conséquence sur la pseudo-distance estimée dépend du récepteur 

GNSS. Cela rend compliqué l’estimation de l’impact d’une distorsion sur les récepteurs GNSS. Les 

paramètres ayant une influence sur la mesure de pseudo-distance estimée à partir d’un signal déformé 

(que ce soit par une distorsion nominale ou non nominale) sont listés. De plus, des illustrations sont 

proposées afin de montrer l’influence de ces paramètres sur le traitement du signal opéré par le 

récepteur GNSS. 

Tout d’abord, cette thèse aborde le problème des déformations nominales affectant les signaux GPS 

L1 C/A et Galileo E1C. Différentes observations sont réalisées à partir de la visualisation de la fonction 
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de corrélation ou du signal et par l’utilisation d’antennes à haut gain et d’une antenne 

omnidirectionnelle.  

Cette étude permet de : 

- comparer les résultats avec ceux présents dans la littérature afin de valider le bon 

fonctionnement du traitement du signal implémenté dans le récepteur virtuel mis au point 

dans le cadre de cette thèse, 

- confirmer les résultats déjà publiés et fournir de nouveaux résultats, 

- faire une comparaison entre les distorsions nominales observées à partir de collectes réalisées 

grâce à une antenne parabolique à haut gain et à une antenne omnidirectionnelle.  

Les conclusions de cette analyse sont que les distorsions nominales sont relativement constantes au 

fil des années et qu’une caractérisation précise des distorsions nominales est rendue compliquée étant 

donné la difficulté d’isoler la distorsion du signal induite par le satellite de celle induite par le récepteur.  

Après l’observation des distorsions nominales, cette thèse aborde le sujet des distorsions non 

nominales du signal, causées par une panne de la charge utile. Dans ce cadre, de nouveaux TMs pour 

les nouveaux signaux (GPS L5, Galileo E5a et Galileo E1C) sont proposés. La définition de ces TMs est 

basée sur les mêmes paramètres que ceux utilisés pour définir le TM de l’OACI pour le signal GPS L1 

C/A. Le travail consiste alors en la limitation des valeurs que peuvent prendre les paramètres en ce qui 

concerne les nouveaux signaux. Cette limitation est fondée sur deux critères : l’impact d’une distorsion 

sur la station de référence et l’impact de la distorsion sur un utilisateur différentiel. Il est à noter que 

les nouveaux TMs proposés lors de cette étude sont plus larges (environ d’un facteur 100) que le TM 

défini par l’OACI pour le signal GPS L1 C/A.  

La dernière étape de cette thèse se focalise sur l’étude de SQMs capables de protéger un utilisateur 

de l’aviation civile contre les distorsions des TMs proposés pour les nouveaux signaux. Les SQMs 

envisagés utilisent les technologies actuellement disponibles au niveau récepteur. En particulier, de 

nombreuses sorties de corrélateurs estimées à partir d’un même signal sont utilisées. La principale 

contribution est de proposer une représentation innovante afin de tester et de comparer les 

performances de SQMs quel que soit la valeur du 𝐶 𝑁0⁄ . Cette représentation est basée sur plusieurs 

hypothèses mais une stratégie qui permet d’utiliser cette représentation quand les hypothèses ne sont 

pas toutes vérifiées est exposée. A partir de cette représentation, de nouveaux SQMs sont définis pour 

chaque signal. Les performances de ces SQMs sont estimées et un processus  d’optimisation 

permettant de réduire la complexité des SQMs est décrit. 

En guise de conclusion, les principales contributions de cette thèse sont résumées dans le dernier 

chapitre. De plus, les perspectives qui pourraient être envisagées et les travaux futurs qui pourraient 

être entrepris en continuité de cette thèse sont exposés. 
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TWTA  Traveling Wave Tube Amplifier 

UDRE  User Differential Range Error 

UDS  User Design Space 

UERE  User Equivalent Range Error 

UIVE  User Ionospheric Vertical Error 

URA  User Range Accuracy 

VCO  Voltage Control Oscillator 

WAAS  Wide Area Augmentation System 

WMS  WAAS Master Station 

WRS   Wide area Reference Station 
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1 Introduction 

1.1 Thesis Motivations 

Global Navigation Satellite Systems (GNSS) play an important role on the world economy as well as on 

our everyday life. Even if GPS (Global Positioning System) is the well-known standard-bearer of GNSS, 

it only represents a part of the GNSS that is used nowadays in various fields for navigation and 

positioning including safety-of-life applications. Among these applications is civil aviation that requires 

a very high quality of service for the most demanding phases of flight. The quality of the GNSS service 

is typically based on four criteria (integrity, accuracy, availability and continuity), that have to meet 

International Civil Aviation Organization (ICAO) requirements. To meet these requirements any source 

of potential service degradations has to be accounted for. 

Different errors affect GNSS signals (including ionospheric error, tropospheric error, multipath, 

satellite clock and ephemeris inaccuracies, signal distortions and noise). Despite the fact that errors 

from different sources can be present on a GNSS signal, this Ph.D. is focused on one potential source 

of degradation: GNSS signal distortions due to the satellite payload. These distortions can manifest in 

two ways: 

- Nominal signal distortions generated by healthy satellites due to payload imperfections. This 

type of perturbation can limit the accuracy of the GNSS measureme nts and result in the 

unavailability of the service for some very stringent phases of flight. 

- Non-nominal distortions that are triggered by a satellite payload failure. Non-nominal 

distortions, also called Evil WaveForms (EWFs) are rare events that may pose an integrity risk 

if the distorted signal remains used by the airborne receiver. 

Even if nominal and non-nominal GNSS signal distortions are two different topics with two specific 

problematics, both signal distortions impact in the same way (even if the order of magnitude is 

different) the GNSS receiver processing. One important characteristic of GNSS signal distortions is that 

they impact all users of the distorted signal. Nevertheless, the consequence of a signal distortion on 

the estimated pseudorange is dependent upon the GNSS receiver setting and this makes arduous the 

estimation of the impact of signal distortions on a GNSS user due to the large variety of existing GNSS 

receiver configurations.  

On the one hand, the study of GNSS signal nominal distortions aims at quantifying precisely the impact 

of distortions on different GNSS users. Indeed, these distortions are unavoidable, present all the time 

and have to be taken into account by anticipating their effects on users even if they are dependent 

upon several parameters and cannot be characterized easily.    

On the other hand, non-nominal distortions study has two aims. First to model the expected distortions 

that could appear due to a payload failure. These models are referred to as Threat Models (TMs). Then 

to develop techniques that are able to detect non-nominal distortions of TMs that induce hazardous 

error on the considered airborne users. Even if these distortions are hard to predict, their scarcity and 

their considerable impact on the user are at the origin of differences that exist between nominal and 

non-nominal distortions studies. In order to deal with the EWF problem, civil aviation operations are 



1. Introduction 

28 
 

supported by Ground Based Augmentation system (GBAS) or/and Satellite Based Augmentation 

System (SBAS). In GBAS and SBAS, a dedicated monitor is implemented to detect non- nominal signal 

distortions: the Signal Quality Monitor (SQM).   

The GNSS signal distortions topic is not recent and has been subject to many publications regarding 

the GPS L1 C/A signal, the oldest and the most widely used signal. This Ph.D. thesis takes place in the 

context of GNSS signals and constellations modernization. Supported by the groundwork performed 

by civil aviation on signal distortions for the GPS L1 C/A signal, this dissertation aims at proposing new 

distortions models associated to the modernized GPS and Galileo signals that will be used by civil 

aviation users after 2020. Investigations on Galileo E1C, Galileo E5a and GPS L5 signals are developed 

because these signals should be used in the future by airborne receivers.  

Without proof that the quality of new signals aided by augmentation systems permits to meet civil 

aviation requirements, the standardization of these signals to civil aviation users can be compromised. 

The challenges are by consequence considerable and assessments of signal distortions on new signal 

in nominal conditions as well as the definition of TM and system to detect non-nominal distortions are 

of primary importance.  

Even if the dissertation contributions can be extended to GBAS (with some slight differences), this work 

is focused on SBAS and more precisely on the European SBAS: EGNOS (European Geostationary 

Navigation Overly Service). EGNOS already provides a support to civil aviation users on GPS L1 C/A 

signal that has been validated and the aim is to generalize the concept to Galileo E1C, Galileo E5a and 

GPS L5 signals and the Dual-Frequency Multi-Constellation (DFMC) SBAS context. 

1.2 Thesis Objectives 

The global objective of this dissertation is to tackle the problem of signal distortions generated at 

satellite level in both nominal and non-nominal cases in the context of GNSS modernization. More 

precisely a focus is made on Galileo E1C, Galileo E5a pilot component and on GPS L5 pilot component 

signals. To be compared with studies about distortions on GPS L1 C/A signal, a detailed analysis of GPS 

L1 C/A signal is also required.  

Objectives of this Ph.D. thesis can be divided in four sub-objectives: 

1) The review of the state-of-the-art on GNSS signal distortions. 

- Sort and select relevant publications about nominal distortions in the context of this Ph.D. 

thesis. 

- Understand problematics related to EWF, understand why the ICAO TM has been adopted and 

see if other possibilities to deal with the problem of EWF can be found in the state-of-the-art. 

In addition, a clear description of SQM is required. 

2) The investigation of nominal signal distortions on new GNSS signals. 

- Visualize on real signals nominal distortions that can affect GPS L1 C/A, Galileo (E1C and E5a 

pilot component only) and GPS L5 pilot component signals, and isolate the satellite 

contribution from the receiver contribution. 

- Assess the impact of nominal distortions on GNSS receivers. For that, different antennas and 

receivers have to be tested to collect the different signals. 
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- Synthetize results and as a final challenge, characterize nominal distortions that affect the 

different signals. 

3) The investigation of non-nominal distortions on new GNSS signals. 

- Discuss about the relevance to adapt the GPS L1 C/A ICAO TM to new modulations and 

question the TM concept. 

- Propose TMs for new signals and justify the methodology that leads to these TMs.  

4) The investigation of a SQM adapted to the proposed TM for new GNSS signals. 

- Define performance objectives that the SQM has to achieve in terms of probability of false 

alarm, probability of missed detection and maximum tolerable error entailed by undetected 

signal distortions. Two cases have to be considered: the single frequency (GPS L1 C/A and 

GALILEO E1C) and the DFMC contexts.  

- Estimate performance that can be reached by SQM in terms of integrity and accuracy.  

- Compare SQM performance on new modulations to SQM performance on GPS L1 C/A that has 

been already validated. 

- Optimize the SQM by finding the simplest SQM design that is able to meet targeted 

performance objectives.  

1.3 Thesis Contributions 

Meeting objectives detailed in the previous section, the main contributions of the Ph.D. are listed and 

can be divided in four main categories. 

1) Bring a clear understanding of issues related to GNSS signal distortions.  

- A list of receiver parameters that have an influence on the pseudorange measurements 

estimated from distorted signals is exposed. In addition, the influence of these parameters on 

the GNSS receiver signal processing is illustrated. 

- An exhaustive list of GNSS signal distortions that summarizes outcomes found in the state-of-

the-art is provided. Additionally, based on GPS L1 C/A satellite payload considerations, most 

likely sources of these distortions are listed. 

2) Bring new and additional results on GNSS signal nominal distortions. 

- A Matlab® program that is able to process real data collected from different high-gain dish 

antennas was developed. It gives the possibility to estimate the chip domain observable and a 

large number of correlator outputs (up to one thousand) on GPS L1 C/A, GPS L5, Galileo E5 and 

Galileo E1C signals.  

- Observations of nominal distortions on GPS L1 C/A and Galileo E1C signals from a high-gain 

dish antenna in the chip domain and on the correlation function are presented. 

- A comparison of nominal distortions that affect signal measurements collected from high-gain 

dish antenna and from omnidirectional antenna is detailed. Similar phenomena as identified 

in the state-of-the-art are noticed. 

- From results obtained on GPS L1 C/A signals, it appears that nominal distortions are relatively 

constant over years but that a precise characterization of nominal distortions is difficult 

notably because it is challenging to isolate signal distortions induced by the satellite from 

distortions induced by the receiver. 
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- Based on works performed in [Wong, 2014] a parameter that permits to quantify the impact 

of nominal distortions on a user is proposed: the inter-PRN bias. 

3) Propose new TMs for Galileo E5a, GPS L5 and Galileo E1C signals in a DFMC context. 

- A comprehensive history of the EWF threat regarding GPS L1 C/A signal is exposed. The 

strategy adopted by ICAO in the past on the GPS L1 C/A signal is applied to define TMs on new 

signals. It appears that to define these TMs, the same parameters as the ones used to define 

the ICAO TM for GPS L1 C/A can be considered. This choice is justified by the observation of 

nominal distortions, the lack of knowledge about satellite payload and the absence of EWF 

observation on new signals. 

- The relevance of the TM concept is put into question.  

- A method is introduced to limit the range of these parameters thanks to two criteria: the 

impact of a distortion on a reference station and the impact of a distortion on considered 

differential users. 

- Based on the current GPS L1 C/A ICAO TM and a detailed methodology, TMs for Galileo E5a, 

GPS L5 and Galileo E1C are proposed. A Matlab® program has been implemented to generate 

signals distorted by the different TMs. 

- A discussion about the number of distortions to test in a given TM is undertaken.  

4) Propose SQMs regarding new proposed TMs and assess their performance.  

- An innovative representation is proposed to test and compare theoretically the SQMs 

performance whatever the received signal 𝐶 𝑁0⁄  is. 

- A Matlab® program that is able to estimate metrics values on correlation function distorted 

by proposed TMs has been implemented. In addition, the software permits to estimate the 

differential tracking error induced by a distortion on different users. From metrics values and 

differential tracking errors, the ability of a SQM to protect differential users is assessed..  

- Simplified SQMs are proposed. The aim is to reduce the number of SQM metrics still reaching 

performances targeted in this Ph.D..  

In addition to a presentation given at the ENAC ITSNT 2016 as an invited speaker, six papers have been 

published in the context of this Ph.D..  

- [Pagot et al., 2015] presented at ION ITM 2015 conference shows nominal distortions that 

affect GPS L1 C/A signals on the chip domain and the correlation function domain from high-

gain dish antennas data collections.  

- [Pagot et al., 2016a] presented at Navitec 2016 conference focuses SQM design for Galileo E1C 

and Galileo E5a signals. 

- [Pagot et al., 2016b] presented at ION ITM 2016 conference exposes a strategy to design TM 

and this strategy is used to define TM on Galileo E5a and Galileo E1C signals.  

- [Pagot et al., 2016c] presented at ION GNSS+ 2016 conference deals with the SQM design for 

Galileo E1C and Galileo E5a signals. 

- [Thevenon et al., 2014] presented at Navitec 2014 conference gives details on the chip domain 

observable and on its capacity to visualize non-nominal distortions.  

- [Julien et al., 2017] accepted to be presented at ION ITM 2017 conference presents an 

extended TM definition and its associated SQM. 
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1.4 Thesis Outline 

The dissertation is structured as follows: 

Chapter 2 introduces the background which permits to understand the GNSS signal distortions 

problematic. A general overview of GNSS is given before exposing the civil aviation context which is 

focused in this Ph.D.. More precisely ICAO requirements definitions are presented and concepts of 

augmentation systems, crucial to meet these stringent requirements, are described. Finally the SBAS 

is presented as it is the original augmentation system targeted in this study.  

Chapter 3 is a more technical chapter which synthetizes the GNSS receiver processing. This chapter is 

important because it gives the background necessary to understand how a GNSS signal is processed 

and explains the impact of a signal distortion on the final pseudorange measurement. The analog and 

the digital sections of the receiver are presented separately. In addition, GNSS signals of interest are 

presented: GPS L1 C/A, Galileo E1C, Galileo E5a pilot component and GPS L5 pilot component. 

Mathematical time-domain expression, power spectral density and correlation function of the 

different signals are provided.  

Chapter 4 is the first chapter dedicated to signal distortions. First of all, nominal and non-nominal 

distortions are described based on the state-of-the-art. This description includes a speculation about 

the origin of these distortions on GPS L1 C/A signal. Secondly, different impacts of signals distortions 

on the receiver processing are listed. Then, the issue related to non-nominal distortions in a civil 

aviation context is detailed. It is seen that it is necessary to model and detect non-nominal distortions 

that could affect a GNSS signal. Finally, this chapter describes in details two strategies to observe signal 

distortions: look at distortions in the chip domain and look at distortions on the correlation function. 

Chapter 5 synthetizes results on nominal distortions obtained by the observation of real data 

collections from high-gain dish and from omnidirectional antennas. After a brief introduction to the 

different setups that were used to collect the different GNSS signals, the effects of nominal distortions 

at different levels of the receiver processing are observed. From data collected with high-gain dish 

antennas on GPS L1 C/A and Galileo E1C signals, three observables are used to quantify the impact of 

signal distortions on users: the chip domain, the correlation function and the S-curve zero-crossing. 

From high-gain dish antenna measurements, it appears that a wrong or an absence of antenna 

calibration induces an additional distortion on the measurement which cannot be separated from the 

nominal distortion generated by the payload. This is the reason why the S-curve zero-crossing 

observable is also provided based on measurements collected on GPS L1 C/A signal with an 

omnidirectional antenna. This kind of antenna does not need any calibration because a normalization 

can be achieved using all visible signals collected at a given time. Finally, inter-PRN tracking biases are 

estimated from the omnidirectional antenna data collection and appear consistent with results 

provided in the state-of-the-art. 

Chapter 6 deals with the proposition of new TMs for Galileo E5a, Galileo E1C and GPS L5. After a 

detailed description of the current GPS L1 C/A TM adopted by ICAO, it is proposed to assume that same 

parameters are relevant to characterize threatening distortions on new modulations. Based on two 

criteria (the impact of a distortion on a reference station and the impact of a distortion on differential 

users) the parameters range is limited. Finally TMs similar to the ICAO GPS L1 C/A TM-A, TM-B and TM-

C are proposed for each signal of interest.  
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Chapter 7 is a thorough study of SQM on new modulations regarding TMs proposed in the previous 

chapter. Firstly, definitions provided by ICAO on SQM are presented. Secondly an innovative method 

is exposed that is able to test and compare theoretically the SQMs performance whatever the received 

signal 𝐶 𝑁0⁄  is. Then, based on this representation and on TMs proposed in chapter 6, performances 

of reference SQMs are assessed for the different signals. Finally, a method to optimize the SQM is 

described. The aim is to reduce the number of SQM metrics still reaching targeted performances.  

Chapter 8 draws conclusions from main results of this Ph.D. and makes recommendations for works 

that could be addressed in the future.  
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2 GNSS background 

The main purpose of GNSS is to allow users to estimate their Position, Velocity and Time (PVT). The 

work performed in this Ph.D. thesis focuses on the use of GNSS in a civil aviation context, and more 

precisely in the context of two augmentation systems: SBAS and GBAS. The main objective of this 

chapter is to expose GNSS concepts related to its civil aviation use.  

Section 2.1 presents the concepts of GNSS positioning. After the introduction of pseudo-ranging and 

multilateration notions, GNSS segments are described. This section also defines the different errors 

affecting pseudorange measurements. 

Section 2.2 defines the performances requirements criteria that have to be met for the use of GNSS in 

civil aviation. 

Section 2.3 describes augmentation systems used by civil aviation to meet performances 

requirements. In particular, the notion of differential correction is presented. 

Section 2.4 proposes a focus on SBAS which is the augmentation system of interest for this Ph.D. thesis.  

Finally, a conclusion about this chapter is given in section 2.5. 

2.1 PVT Computation using GNSS core constellations 

In this section, the PVT estimation technique based on the multilateration concept is first introduced. 

It uses pseudorange measurements that are described in this section. The GNSS structure is then 

exposed. To finish, errors having an impact on pseudorange measurements and consequently on the 

PVT computation are overviewed. 

2.1.1 GNSS positioning principles 

The primary purpose of GNSS is to allow an autonomous user to compute its PVT. The user’s position 

is commonly evaluated in the Earth-Centered Earth-Fixed coordinate system (ECEF). Information 

needed by the user to estimate its PVT are carried by an electromagnetic wave emitted by GNSS 

satellites. The transmitted signal reaches the earth with a remarkably low power. For instance, the 

minimum received power on ground, measured at the output of a RHCP 0 dBi polarized receiver 

antenna, is -157 dBW for Galileo E1 OS/Sol signals and -155 dBW for Galileo E5a and E5b signals (for 

satellite elevation angle higher than 10°) [GSA, 2010]. A part of the information necessary to the user 

is contained in the time delay caused by the propagation of the electromagnetic waves between 

satellites and users. The time delay estimated from the signal 𝑖 is sometimes called 𝑃𝑇𝑖  (Propagation 

Time).  

The propagation time is estimated by comparing the time at the emission and the time at the reception 

of the signal. The time at the emission is given in the satellite time frame whereas the time at the 
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reception is computed in the receiver time frame. Because the two clocks are not synchronised, a clock 

bias has to be considered between the satellite and the receiver.  

Multiplying 𝑃𝑇𝑖  by the velocity of the wave in space 𝑐 (the speed of light), it is possible to estimate the 

range between the satellite and the receiver. This range estimated for signal 𝑖, affected by errors and 

by the clock bias between the satellite and the receiver is called pseudorange (𝜌𝑖) and is defined by: 

𝜌𝑖 = 𝑃𝑇𝑖  × 𝑐 

To assess its PVT, the user has to estimate the position of the 𝑖𝑡ℎ satellite at the origin of the signal 𝑖. 

A model based on several parameters exists to forecast satellites position. These parameters are sent 

by satellites via the navigation message and are called ephemeris.  

An important remark is that the satellite time may be different from the GNSS constellation time and 

the difference is satellite-dependent. By consequence, a second important information is sent by the 

satellite to the user via the navigation message: the clock correction parameters which allow the user 

to estimate from a model the difference between the satellites and the constellation time. After 

applying the clock corrections, pseudoranges only include the bias between the constellation time and 

the receiver. By consequence, after clock corrections, all pseudoranges are affected by the same 

receiver clock bias 𝛿𝑡𝑢. 

Four unknowns must thus be estimated by the user: three for the position (𝑥𝑢, 𝑦𝑢, 𝑧𝑢) and one for the 

receiver time offset with respect to the constellation reference time 𝛿𝑡𝑢. To compute the four 

parameters at least four measurements from four different satellites are necessary. 

Two types of pseudorange measurements can be extracted from the received satellite signal: carrier 

phase and code pseudorange measurements. 

After correction by the satellite clock term, these clock corrected pseudoranges can be modeled as: 

with 

where 

- 𝜌𝑢
𝑖  is the code pseudorange measurement estimated from satellite 𝑖 in meter. 

- 𝑅𝑢
𝑖  is the geometric distance in meter between the user and the 𝑖𝑡ℎ satellite. 

- [𝑥𝑢,𝑦𝑢, 𝑧𝑢]
𝑇 is the true user’s position vector in the reference system. 

- [ 𝑥𝑠𝑎𝑡,𝑖  , 𝑦𝑠𝑎𝑡,𝑖  , 𝑧𝑠𝑎𝑡,𝑖  ]
𝑇  is the true position of the 𝑖𝑡ℎ satellite in the reference system. 

- 𝑐  is the speed of light in meter/second. 

- 𝑒𝑟𝑟𝑜𝑟𝑠𝜌,𝑢
𝑖  (𝑒𝑟𝑟𝑜𝑟𝑠𝜑,𝑢

𝑖 ) groups all pseudorange errors (respectively all phase measurement 

errors) related to the propagation medium (tropospheric, ionospheric, bias harder to model), 

the synchronization errors (due to multipath, interference, thermal noise) and the 

correction/model uncertainty (satellite clock correction, tropospheric and ionospheric delay, 

and ephemeris). These errors are detailed in the next section (2.1.3) and are given in meter. 

- 𝛿𝑡𝑢 = 𝑐(𝑡𝑢) is the clock bias between the receiver time and the constellation time in meter. 

- 𝜑𝑢
𝑖  is the carrier phase pseudorange measurement in meter. 

𝜌𝑢
𝑖 = 𝑅𝑢

𝑖 +𝛿𝑡𝑢 +𝑒𝑟𝑟𝑜𝑟𝑠𝜌,𝑢
𝑖  (2-1) 

𝜑𝑢
𝑖 = 𝑅𝑢

𝑖 +𝛿𝑡𝑢 + 𝑒𝑟𝑟𝑜𝑟𝑠𝜑,𝑢
𝑖 +𝜆𝑁𝑖 (2-2) 

𝑅𝑢
𝑖 = √(𝑥𝑢− 𝑥𝑠𝑎𝑡,𝑖)

2
+ (𝑦𝑢− 𝑦𝑠𝑎𝑡,𝑖)

2
+ (𝑧𝑢− 𝑧𝑠𝑎𝑡,𝑖)

2
 (2-3) 



 2.1 PVT Computation using GNSS core constellations 

 35 
 

- 𝜆 is the carrier wavelength in meter. 

- 𝑁𝑖 is the carrier phase measurement ambiguity, constant over time as long as the carrier phase 

synchronization is maintained by the receiver. 

In most of GNSS receivers, a least square algorithm is adopted to estimate the four unknowns from at 

least four pseudorange measurements. Nevertheless other methods exist, such as the Kalman filter.  

2.1.2 GNSS structure 

GNSS are composed of three different complementary segments that are described in the following: 

- the space segment, 

- the ground segment, 

- the user segment. 

2.1.2.1 The space segment 

This segment consists of satellites that are orbiting around the earth in order to send signals toward 

the earth that will be used for positioning and timing. The satellite orbit/constellation can generally be 

chosen according to the desired coverage area: 

- Worldwide coverage: a constellation of generally around thirty Medium Earth Orbit satellites 

(MEO) are used, orbiting at an altitude close to 20 000 km. A minimum number of such 

satellites (typically at least twenty-four) allows to provide a worldwide service, meaning that 

any user on earth would see at least four satellites of a given constellation in an open sky 

environment. Typical core global-coverage GNSS constellations such as GPS, Galileo, GLONASS 

and BeiDou are described in Table 2-1.([ESA, 2015], [Navipedia, 2015] and [GPS.gov, 2015])  

- Regional coverage: GeoSynchronous earth Orbit (GSO) or Geostationary Earth Orbit (GEO) 

satellites can be used for regional coverage. GSO vehicles are satellites that are not fixed in the 

earth frame contrary to GEO satellites. GSO satellites ground track results in an “eight” ground 

track figure. GEO is a particular GSO with zero inclination and zero eccentricity. All GEO 

satellites are orbiting at an altitude equal to 35 786 km. BeiDou uses such satellites to enhance 

its coverage over the Asian area. Some other systems, such as NAVIC or QZSS are entirely based 

on regional systems that can be complemented by core constellations [Navipedia, 2015].  

Note that all these satellites typically transmit multiple signals over multiple frequency bands. Such 

diversity allows the system to provide several types of positioning services to different communities. 

The signals and frequency bands associated to civil aviation users will be described later on, in chapter 

3. 
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Constellations GPS GALILEO GLONASS 
COMPASS 

(BeiDou) 

Political entity United States European Union Russia China 

Orbital altitude 
20 200 km 

(MEO) 

23 222 km 

(MEO) 

19 100 km 

(MEO) 

21 528 km 

(MEO) 

35 786 km (GEO 

GSO) 

Orbit type Circular Circular Circular Circular 

Orbit period 11 h 58 min 2 s 14 h 05 min 11 h 15 min 12 h 38 min 

Number of orbits 6 3 3 3 

Inclination of 

orbits 
55° 56° 64.8° 55° 

Minimum 

number of 

satellites 

24 24 24 
27 (MEO)+ 

3 (GSO) + 5 (GEO) 

Frequencies 

(MHz) 

L1(1575.42) 

L2(1227.60) 

L5(1176.45) 

E1(1575.42) 

E6(1278.75) 

E5b (1207.14) 

E5a (1176.45) 

L1 (1602) 

L2 (1246) 

L3 (1201) 

B1 (1561.098) 

B1-2 (1589.742) 

B3(1268.52) 

B2(1207.14) 

Reference system WGS84 ITRF PZ-90.02 CGCS2000 

Reference time GPS time 
GST (Galileo 

System Time) 
GLONASS time 

BDT (BeiDou 

Time) 

Table 2-1. Space segment of four GNSS. 

2.1.2.2 The ground segment 

The role of the ground segment is: 

- to monitor the satellite constellation, 

- to compute the precise satellite ephemeris and satellite clock corrections, 

- to generate the navigation message and upload it to the space segment. The navigation 

message contains the information required by any user receiver to compute its position, such 

as the satellite position and the satellite clock corrections, 

- to perform stations keeping operations. 

As a consequence, a ground segment is typically composed of:  

- sensor stations that are distributed over the world and monitor the satellite positions and the 

transmitted signals of all satellites,  

- a master control station (with a possible redundancy) that gathers all the information from the 

sensor stations and extracts all the necessary information to build the navigation message,  
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- upload stations that can upload the navigation message to all satellites in view, 

- the network that link all these stations. 

2.1.2.3 The user segment 

Generally, this segment consists of antennas and receivers that are able to process at least some of 

the signals sent by the satellites to provide a PVT to the user. A typical receiver is composed of three 

processing stages: 

- A RF front-end whose aim is to pre-condition the received analog signal and digitize it. It is 

typically composed of a Low Noise Amplifier (LNA), a frequency down-conversion stage, a 

selective filter stage and a quantization/sampling stage. 

- A signal processing unit in charge of acquiring and getting the receiver synchronized with the 

incoming signals of interest. 

- A data processing stage in charge of reading the navigation message, forming the pseudorange 

measurements, applying the appropriate corrections to the pseudoranges, and computing the 

PVT. 

The two first processing stages are described in more details in chapter 3. 

Each receiver has different variants according to the system (GPS/GALILEO, etc.). These variants are 

mainly on software and models but also on the processing used by the different systems. An important 

remark is that the user does not have to communicate with the satellites. There can be an unlimited 

number of simultaneous users.  

2.1.3 Pseudorange measurement errors 

As introduced, the pseudorange measurement model is affected by different independent sources of 

errors all grouped in the 𝑒𝑟𝑟𝑜𝑟𝑠𝜌,𝑢
𝑖  (or 𝑒𝑟𝑟𝑜𝑟𝑠𝜑,𝑢

𝑖 ) term. In this section, a list of the main sources of 

errors is given and a measurement model is defined. Orders of magnitude of these errors are discussed 

as a conclusion.  

2.1.3.1 Different sources of errors 

A precise description and modeling of each error type can be found in the literature, for example in 

[Kaplan and Hegarty, 2006]. A brief overview of each error is proposed in the following: 

- the receiver noise, 

- ionospheric effect, 

- tropospheric effect, 

- multipath, 

- clock and ephemeris inaccuracies. 

The satellite payload, the satellite antenna, the receiver antenna and the receiver processing channel 

are also sources of pseudorange errors. These errors are induced by signal delays and signal distortions 

generated at satellite level and at receiver level as detailed in next chapters.  
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2.1.3.1.1 Receiver noise 

The pseudorange estimation is based on the synchronization of the receiver with the digitized 

incoming signal (thus providing the receiver with the capability to estimate the time of arrival of a 

specific part of the incoming signal). This synchronization mechanism, also called tracking, will be 

presented later. The noise affecting a digitized incoming signal has a direct impact on this 

synchronization and consequently on the pseudorange measurement. The repercussion on the 

pseudorange can be modeled as an additive Gaussian noise affecting the measurement.  

The magnitude of this noise depends upon the setting of the tracking loop, the received signal strength, 

the antenna as well as upon the modulation of the signal of interest. 

2.1.3.1.2 Ionospheric effect 

The ionosphere is a dispersive medium located approximatively between 70 km and 1000 km above 

the earth’s surface. Because of free electrons which create an electric field, electromagnetic wave does 

not travel at the vacuum speed of the light as they cross this region. The signal group delay and by 

consequence the code pseudorange measurement are delayed in proportion to the number of 

electrons encountered, referred to as the Total Electron Content (TEC), whereas the carrier phase 

measurement is advanced by the same amount. The ionospheric delay is frequency-dependent. The 

delay on the code pseudorange measurement 𝑖, 𝜀𝐼𝑜𝑛𝑜
𝑖  is modeled by: 

where 

- 𝑓 is the carrier frequency of the signal in hertz. 

GNSS receivers systematically try to mitigate the ionospheric effect applying corrections. Different 

algorithms exist to estimate ionospheric delays:  

- GPS receivers apply the Klobuchar ionospheric model and Galileo receivers the NeQuick 

ionospheric model. These model parameters are embedded in the navigation message.  

- SBAS provides users with its own ionospheric delay correction model by the means of an 

ionospheric grid.  

- Another method consists of combining pseudorange measurements from the same satellite 

but on two different frequencies, exploiting the fact that the ionosphere is a dispersive 

medium, meaning that the ionospheric delay is frequency-dependent. This method called 

dual-frequency iono-free combination removes the first order ionospheric delay.  

- The use of differential measurements is also a means to compensate  the ionospheric effect as 

presented in 2.3.1.1. 

2.1.3.1.3 Tropospheric effect 

The troposphere is a non-dispersive medium (for frequencies up to 15 GHz) located between about 

40 km and the earth’s surface. Within this medium, the group and the carrier phase delays are delayed 

by the same amount compared to free space propagation. This delay, which leads to a pseudorange 

measurement bias, is function of the tropospheric refractive index, which is dependent upon the local 

temperature, pressure, and relative humidity. 

𝜀𝐼𝑜𝑛𝑜
𝑖 (𝑓) ≈ −

40.3 × 𝑇𝐸𝐶

𝑓²
 (2-4) 
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GNSS receivers can estimate and correct their own tropospheric delay according to different models, 

usually fairly accurately. Civil aviation, for instance, recommends the UNB3 tropospheric model to be 

applied by airborne receivers [RTCA, 2006]. 

The use of differential measurements is also a means to compensate tropospheric effect as presented 

in 2.3.1.1. 

2.1.3.1.4 Multipath error 

Multipath are GNSS signal replicas induced by the reflection and/or the diffraction of GNSS signals on 

obstacles encountered during the signal propagation. This phenomenon is environment-dependent. 

At receiver level, interferences exist between the Line of Sight (LoS – the only signal corresponding to 

the true satellite/receiver distance) and reflected/diffracted signals. Thus, the receiver sees multiple 

versions of the GNSS signal, each with different times of arrival, signal levels and carrier phases. The 

consequence is that multipath induces an error on the receiver synchronization with the LoS signal of 

interest. There are usually three types of methods used to mitigate the multipath at different stages 

of the receiver signal processing: 

- at the antenna level, by carefully choosing antenna characteristics and location, in order to 

limit the power of the multipath entering the receiver, 

- at the signal processing level by discriminating the LoS from the multipath. Tens of techniques 

were developed as the MRDLL [Laxton and DeVilbiss, 1997], the MEDLL [Townsend et al., 

2000], the deconvolution technique [Dragunas and Borre, 2011], etc., 

- at the PVT computation level by trying to detect and exclude measurement with biases  (high 

residual values). 

2.1.3.1.5 Clock and ephemeris inaccuracies 

Satellites clocks are highly stable but cannot remain fully synchronized with the constellation time. This 

is the reason why the navigation data message contains a clock correction field. Despite the satellite 

clock correction, some residual errors can affect the receiver. In the same way, ephemeris transmitted 

in the navigation data message, which contains the information of satellites positions, can be affected 

by some imprecisions because of the difficulty to forecast changes of satellites orbit. These 

inaccuracies entail equivalent residual error on pseudorange measurements. Assuming that the 

distribution of the clock and ephemeris inaccuracies (projected on the vector between the satellite 

and the user) is a zero mean Gaussian random variable, the standard deviation of the error budget 

attributed to the clock and ephemeris together is called URA (User Range Accuracy) for GPS and SISA 

(Signal-In-Space Accuracy) for Galileo. These parameters are broadcast in the navigation message.   

2.1.3.2 Measurement error models 

The error term which appears in the pseudorange measurements definition gathers the pseudorange 

measurement bias induced by different sources: 

where 

𝑒𝑟𝑟𝑜𝑟𝑠𝜌
𝑖 = 𝜀𝜌,𝑁𝑜𝑖𝑠𝑒

𝑖 + 𝜀𝑇𝑟𝑜𝑝𝑜
𝑖 + 𝜀𝐼𝑜𝑛𝑜

𝑖 + 𝜀𝜌,𝑀𝑃
𝑖 + 𝜀𝑐𝑙𝑜𝑐𝑘&𝑒𝑝ℎ

𝑖  (2-5) 

𝑒𝑟𝑟𝑜𝑟𝑠𝜑
𝑖 = 𝜀𝜑,𝑁𝑜𝑖𝑠𝑒

𝑖 + 𝜀𝑇𝑟𝑜𝑝𝑜
𝑖 − 𝜀𝐼𝑜𝑛𝑜

𝑖 + 𝜀𝜑,𝑀𝑃
𝑖 + 𝜀𝑐𝑙𝑜𝑐𝑘&𝑒𝑝ℎ

𝑖  (2-6) 
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- 𝜀𝜌,𝑁𝑜𝑖𝑠𝑒
𝑖  (𝜀𝜑,𝑁𝑜𝑖𝑠𝑒

𝑖 ) is the error induced by the receiver noise on the code (respectively the 

carrier phase) pseudorange measurement. 

- 𝜀𝑇𝑟𝑜𝑝𝑜
𝑖  is the error induced by the tropospheric delay (after applying UNB3 tropospheric 

model) on the pseudorange measurement. 

- 𝜀𝐼𝑜𝑛𝑜
𝑖  is the error induced by the ionospheric delay (after applying ionospheric models such as 

Klobuchar and NeQuick etc.) on the pseudorange measurement. 

- 𝜀𝜌,𝑀𝑃
𝑖  (𝜀𝜑,𝑀𝑃

𝑖 ) is the error induced by the multipath (after applying multipath mitigation 

techniques) on the code (respectively on the carrier phase) pseudorange measurement. 

- 𝜀𝑐𝑙𝑜𝑐𝑘&𝑒𝑝ℎ
𝑖  is the error induced by the satellite clock and ephemeris inaccuracies on the 

pseudorange measurement. 

It is usually assumed that components of 𝑒𝑟𝑟𝑜𝑟𝑠𝜌
𝑖  and 𝑒𝑟𝑟𝑜𝑟𝑠𝜑

𝑖  are independent and can be modeled 

by zero-mean normal distributions that overbound the real error distributions. The total error induced 

on the pseudorange measurement model, also called User Equivalent Range Error (UERE), has a 

variance equal to: 

where 

- 𝜎𝑈𝐸𝑅𝐸
2  is the variance of all residual errors affecting the pseudorange measurement.  

- 𝜎𝑁𝑜𝑖𝑠𝑒
2  is the variance of the receiver noise affecting the pseudorange measurement. 𝜎𝑁𝑜𝑖𝑠𝑒

2  is 

lower on carrier phase than on code measurement. 

- 𝜎𝑇𝑟𝑜𝑝𝑜
2  is the variance of the tropospheric delay affecting the pseudorange measurement. 

- 𝜎𝐼𝑜𝑛𝑜
2  is the variance of the ionospheric delay affecting the pseudorange measurement. 

- 𝜎𝑀𝑃
2  is the variance of the error entailed by multipath affecting the pseudorange 

measurement. 

- 𝜎𝑐𝑙𝑜𝑐𝑘&𝑒𝑝ℎ
2  is the variance of the satellite clock error plus the ephemeris error affecting the 

pseudorange measurement. 

2.1.3.3 Code pseudorange measurement error order of magnitude 

Order of magnitude for these five components are given as an example for a single frequency receiver 

not using any augmentation system. All values given in Table 2-2 are dependent upon several 

parameters and characteristics of the GNSS receiver. Values given in Table 2-2 have to be considered 

as order of magnitude and represent the impact of the different errors on a typical receiver. 

- 𝜎𝑇𝑟𝑜𝑝𝑜 is evaluated for a satellite elevation angle 𝜃 equal to 5° (highest value) and equal to 

75° (lowest value). It corresponds to the residual tropospheric model after applying the UNB3 

model. Values are estimated from formulas defined in [RTCA, 2006]. 

- 𝜎𝐼𝑜𝑛𝑜 is evaluated for a receiver latitude 𝛾 equal to 45° and a satellite elevation angle 𝜃 equal 

to 5° (highest value) and equal to 75° (lowest value). GPS results are provided after applying 

the Klobuchar ionospheric model, whereas Galileo results are provided after applying the 

NeQuick ionospheric model [Montloin, 2014]. Even if in general 𝜎𝐼𝑜𝑛𝑜 is lower after applying 

the NeQuick model than the Klobuchar model, at this latitude, the two models reach same 

performance. 

𝜎𝑈𝐸𝑅𝐸
2  = 𝜎𝑁𝑜𝑖𝑠𝑒

2 +𝜎𝑇𝑟𝑜𝑝𝑜
2 +𝜎𝐼𝑜𝑛𝑜

2 +𝜎𝑀𝑃
2 +𝜎𝑐𝑙𝑜𝑐𝑘&𝑒𝑝ℎ

2  (2-7) 
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- 𝜎𝑁𝑜𝑖𝑠𝑒  and 𝜎𝑀𝑃 are provided for information only and give an idea of expected standard 

deviations in a clear sky environment with high-end receiver equipment [GSA, 2014]. The 

standard deviation associated to multipath is considered for a satellite elevation equal to 45° 

and can be higher for lower satellite elevations. Values are available only for GPS L1 C/A signal. 
- 𝜎𝑐𝑙𝑜𝑐𝑘&𝑒𝑝ℎ is linked to the integrity performance requirement. ESA specifies a Galileo SISA 

value for both nominal and degraded modes of 0.85 m [Oehler et al., 2006]. GPS URA depends 

upon the satellite technology and therefore upon the considered modernization step of the 

GPS constellation. For the study we will assume, as GPS performance, current GPS SiS 

performance [Smitham, 2014].   

The use of dual-frequency (for example GPS L1 C/A with GPS L5 or Galileo E1 with Galileo E5) mitigates 

the ionospheric impact (as detailed for example in [Montloin, 2014]) and, in counterpart, increases the 

noise and multipath error components. The term 𝜎𝐼𝑜𝑛𝑜 can be neglected for dual-frequency receiver 

when comparing its magnitude to other errors. 

 GPS L1 C/A GPS L5 Galileo E1C Galileo E5a 

𝜎𝑁𝑜𝑖𝑠𝑒  (m) 0.5 N/A N/A N/A 

𝜎𝑇𝑟𝑜𝑝𝑜 (m) 0.2 –  1.5 0.2 –  1.5 0.2 –  1.5 0.2 –  1.5 

𝜎𝐼𝑜𝑛𝑜 (m) 4.6 –  13.7 8.2 –  24.5 4.6 –  13.7 8.2 –  24.5 

𝜎𝑀𝑃 (m) 0.2 N/A N/A N/A 

𝜎𝑐𝑙𝑜𝑐𝑘&𝑒𝑝ℎ (m) 0.85 0.85 0.85 0.85 

Table 2-2. Order of magnitude of code measurement errors. 

2.2 Civil Aviation Operational Requirements 

Civil aviation is a very specific field in the sense that it is fully attached to the notion of safety-of-life. 

As a consequence, any system used by civil aviation is related to the fact that it has to provide 

performance according to very stringent requirements. For the use of GNSS in civil aviation, the GNSS 

Signal-in-Space (SiS) has to fulfil requirements defined through four parameters: 

- the accuracy, 

- the availability, 

- the continuity, 

- the integrity. 

The four terms are defined below from official sources.  

2.2.1 Accuracy 

In navigation, the accuracy of an estimated or measured position of a craft (vehicle, aircraft, or vessel) 

at a given time is the degree of conformance of that position with the true position of the craft at that 

time [SSF, 2008]. Accuracy requirement is based on the concept that the probability of the estimated 

position being inside the accuracy bound (maximum allowable position error) has to be at least 0.95.   
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2.2.2 Integrity 

Integrity is a measure of the trust that can be placed in the correctness of the information supplied by 

the total system. Integrity includes the ability of a system to provide timely and valid warnings to the 

user (alerts) when the system must not be used for the intended operation (or phase of flight) [ICAO, 

2006]. Three parameters are defined relatively to the notion of integrity: 

- The alert limit: To ensure that the position error is acceptable, an alert limit is defined that 

represents the largest position error allowable for a safe operation. The position error cannot 

exceed this alert limit without annunciation [ICAO, 2006]. 

- Time to alert: Time-to-Alert is the maximum allowable elapsed time from the onset of a 

positioning failure until the equipment annunciates the alert [RTCA, 2006]. 

- Integrity Risk: The integrity risk is the probability of providing a signal that is out of tolerance 

without warning the user in a given period of time [Martineau, 2008]. 

In practice to satisfy ICAO SiS integrity requirement, the following condition must be fulfilled:  

where 

-  𝑇𝑇𝐴 is the Time-To-Alert which comprises the delay necessary to detect the positioning failure 

and transmit this information to the pilot. 

- 𝑃𝐸 is the Position Error. 

- 𝑃(𝐴) means the probability of event 𝐴. 

- 𝐴𝐿 is the Alert Limit. 

- 𝐼𝑅 is the Integrity Risk. 

2.2.3 Availability 

The availability of a navigation system is the ability of the system to provide the required function and 

performance at the initiation of the intended operation. Availability is an indication of the ability of the 

system to provide usable service within the specified coverage area. Signal availability is the percentage 

of time that navigational signals transmitted from external sources are available for use [RTCA, 2006]. 

2.2.4 Continuity 

Continuity of service of a system is the capability of the system to perform its function without 

unscheduled interruptions during the intended operation. More specifically, continuity is the probability 

that the specified system performance will be maintained for the duration of a phase operation, 

presuming that the system was available at the beginning of that phase operation, and predicted to 

exist throughout the operation [RTCA, 2006]. 

These requirements are not met by core GNSS constellations alone and especially accuracy and 

integrity have to be improved for stringent operations, such as approach. Even with GNSS 

modernization and the availability of new signals (for instance on the L5 frequency band), 

𝑃(𝑃𝐸 > 𝐴𝐿    &   𝑛𝑜 𝑎𝑙𝑒𝑟𝑡 𝑤𝑖𝑡ℎ𝑖𝑛 𝑇𝑇𝐴)< 𝐼𝑅 (2-8) 
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requirements cannot be met. As a consequence, augmentations systems are necessary for GNSS to be 

usable by civil aviation. 

2.2.5 Civil aviation SiS requirements 

Table 2-3 presents SiS performances requirements defined in the civil aviation context [ICAO, 2006]. 

The operation LPV-200 is not defined in the SARPs but in a document [FAA, 2008] dedicated to SBAS.  

2.3 Augmentation of core constellation systems for civil aviation 

For GNSS to meet civil aviation operational requirements that demand highest level of performance, 

there is a need to use augmentation system that can improve GNSS performance. Civil aviation 

augmentations are mostly working on two aspects: 

 improvement of the accuracy of the pseudoranges, 

 improvement of the integrity of the PVT solution. 

Obviously, this has to be done keeping in mind the continuity and availability of the solution. Different 

augmentation systems exist and are adopted by civil aviation: 

- ABAS (Aircraft Based Augmentation Systems) which consists in the integration of i nformation 

provided by GNSS with information provided on-board by the aircraft. Indeed, if redundant 

measurements are available (typically, more than four pseudorange measurements), it is 

possible to perform a consistency check between the measurements in order to detect biased 

measurements. The two ABASs that can be used by civil aviation users are the RAIM (Receiver 

Autonomous Integrity Monitoring) which is based on an on-board algorithm that uses only 

GNSS information and the AAIM (Aircraft Autonomous Integrity Monitoring) which uses GNSS 

combined with other on-board sensors such as baro-altimeter and inertial measurement units. 

- SBAS (Satellite Based Augmentation system) which is based on additional satellites and ground 

stations that provide to the user additional information to improve its performance. SBAS 

provides this information at the continental coverage. SBASs are studied in details later in this 

section. WAAS (Wide Area Augmentation System), the United States’ SBAS and EGNOS 

(European Geostationary Navigation Overlay Service), the European’s SBAS support En-Route, 

Terminal and Approach operations. It provides CAT I equivalent vertical guidance (also called 

LPV-200) at any qualifying runway [SBAS IWG, 2014].  

- GBAS (Ground Based Augmentation System) which consists of a single ground station that 

provides to user with additional information to improve its performance. GBAS coverage is 

local, typically 50 km around the ground station, which is enough to cover all aircraft 

approaching an airport. GBAS provides CAT I service but research programs are currently 

conducting to enable CAT III approach service [FAA, 2016a].  

 

 



2. GNSS background 

44 
 

Typical operation 

Accuracy 

horizontal 

95% 

Accuracy 

vertical 

95% 

Time to 

Alert 
Integrity Continuity Availability 

Horizontal alert 

limit 

Vertical 

alert limit 

En-route 3.7 km N/A 5 min 1-10−7/h 
1-10−4 /h to 

1-10−8 /h 

0.99 to 

0.99999 

7.4 km 

(oceanic/continetal 

low density trafic)  

3.7 km 

(continental) 

N/A 

En-route, Terminal 0.74 km N/A 15 s 1-10−7/h 
1-10−4 /h to 

1-10−8 /h 

0.99 to 

0.99999 
1.85 km N/A 

Initial Approach, 

Intermediate, NPA, 

Departure 

220 m N/A 10 s 1-10−7/h 
1-10−4 /h to 

1-10−8 /h 

0.99 to 

0.99999 
556 m N/A 

Approach 

operations with 

vertical guidance 

(APV1) 

16 m 20 m 10 s 
1-2. 10−7in 

any approach 

1-8−6 per  

15 s 

0.99 to 

0.99999 
40 m 50 m 

Approach 

operations with 

vertical guidance 

APV2 

16 m 8 m 6 s 
1-2. 10−7 in 

any approach 

1-8−6 per 

15s 

0.99 to 

0.99999 
40 m 20 m 

CAT I 16 m 
6 m to      

4 m 
6 s 

1-2. 10−7in 

any approach 

1-8−6 per  

15s 

0.99 to 

0.99999 
40 m 

35 m to 

10 m 

LPV-200 16 m 4 m 6.2 s 

2. 10−7/h per 

approach 

(150 s) 

1-8−6 per  

15s 

0.99 or N/A 

depending 

on the 

coverage 

zone 

40 m 35 m 

Table 2-3. Civil Aviation Signal-in-Space Requirements.
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2.3.1 Accuracy improvement  

The accuracy of the pseudorange measurement is one of the performance criteria improved by 

augmentation systems and several ways exist to perform this task. For instance the RAIM algorithm 

allows removing pseudorange measurements affected by large bias from the PVT computation 

whereas AAIM also integrates on-board sensors measurements to increase the pseudorange 

measurement accuracy. SBAS and GBAS use differential corrections to meet accuracy requirements. 

As the study focuses on SBAS applications, the concept of differential corrections is detailed in this 

section. Another method presented in 2.3.1.2 used by civil aviation airborne to increase the accuracy 

of pseudorange measurements is the smoothing of pseudorange measurements.  

2.3.1.1 Differential corrections 

In the literature, this technique is called DGPS for Differential GPS when applied only on GPS signals 

and DGNSS in a more general way. The term DGNSS is used in this document to generalize the 

differential concept to all GNSS signals. 

The concept of differential GNSS is to improve the accuracy of the user pseudorange measurements 

𝜌𝑢
𝑖  by providing corrections ∆𝜌𝑐𝑜𝑟𝑟

𝑖  computed by a set of reference stations. 

For pseudorange errors that are correlated in space and time, it is interesting for the user who derives 

a pseudorange measurement to have access to an estimate of these errors from a nearby reference 

station. Knowing the precise location of the reference station, it is possible to evaluate these errors 

that affect the reference by comparing the actual pseudorange measurements with respect to the 

theoretical pseudorange measurements. 

2.3.1.1.1 Time correlation of the error 

The time correlation of an error gives the rapidity with which the error is varying in time. An error 

highly correlated in time means that the error varies slowly over time. Issues appear when an error is 

poorly correlated in time. In this condition, to be efficient, the correction associated to the error should 

be applied instantaneously. The problem is that in general, a DGNSS user cannot apply corrections in 

real time. Indeed, the correction has to be estimated by the reference, transmitted, received by the 

DGNSS user and applied on measured pseudoranges.  

A time correlation model is standardized by ICAO and consists of a first order Gauss-Markov [RTCA, 

2009] described by: 

where 

- 𝑥 is the Gauss-Markov random process with a zero mean and a variance equal to 𝜎𝑥. 

- 𝑤 is the driving noise of the Gauss-Markov process with a zero mean and a variance equal to 

𝜎𝑤. 

- 𝜏 is the correlation time of the error in second. 

𝑥̇ =
1

𝜏
𝑥 +𝑤 (2-9) 
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The relation between the standard deviation of the random process and the standard deviation of the 

driving noise is given by: 

where ∆𝑡 is the sampling time interval at which the process is observed in second. 

An overview of the time correlation of different errors is given to understand the global impact  of each 

error component. Orders of magnitude of error variations in time are proposed in the literature. 

- 𝜀𝑇𝑟𝑜𝑝𝑜
𝑖  and 𝜀𝑐𝑙𝑜𝑐𝑘&𝑒𝑝ℎ

𝑖  are highly correlated in time, by consequence it is not problematic if 

corrections are applied several seconds after their estimations. The correlation time of 

𝜀𝑐𝑙𝑜𝑐𝑘&𝑒𝑝ℎ
𝑖  can be assumed equal to 7200 s but can be reduced to 3600 s based on the average 

satellite visibility whereas the correlation time of 𝜀𝑇𝑟𝑜𝑝𝑜
𝑖  can be assumed equal to 1800 s 

[RTCA, 2009]. 

- 𝜀𝐼𝑜𝑛𝑜
𝑖  is generally highly correlated in time and this correlation depends upon the latitude. 

When the ionosphere is disturbed (geomagnetic storms, scintillations, etc.), the time 

correlation can decrease significantly. The correlation time of 𝜀𝐼𝑜𝑛𝑜
𝑖  can be assumed equal to 

1800 s [Salos, 2012]. 

- 𝜀𝑀𝑃
 𝑖  and 𝜀𝑁𝑜𝑖𝑠𝑒

𝑖  are poorly correlated in time. As a consequence they cannot be corrected by 

differential corrections. The time correlation of 𝜀𝑀𝑃
 𝑖  depends upon the time over which 

measurements are averaged to derive the pseudorange measurements. In civil aviation, the 

time correlation of the 𝜀𝑀𝑃
 𝑖  can take value between 1 and 100 s. The highest value is obtained 

when smoothing is applied on measurements. The time correlation of the 𝜀𝑁𝑜𝑖𝑠𝑒
𝑖  is in general 

equal to 1 s in civil aviation applications and depends upon receiver setting [Vezinet, 2014].   

2.3.1.1.2 Spatial correlation of the error 

The spatial correlation of an error gives the rapidity with which the error is varying in space. An  error 

highly correlated in space means that the error varies slowly over distance. Issues appear when an 

error is poorly correlated in space. In this condition, to be efficient, the correction associated to the 

error should be applied in an area very close to the location of the reference station. In real conditions 

reference and user locations are different and depending on the error spatial correlation, the 

correction will be more or less efficient. The distance between the DGNSS user and the reference is 

called baseline. 

An overview of the space correlation of the different errors is given to understand the global impact 

of each error component. Orders of magnitude of errors variations in space are proposed in [Pullen, 

2011]. 

- 𝜀𝑐𝑙𝑜𝑐𝑘&𝑒𝑝ℎ
𝑖  is highly correlated in space, by consequence it is not problematic if corrections are 

applied at a location several tens of kilometers from the station providing the estimation. As 

an order of magnitude, considering that the standard deviation of the  error distribution is 

equal to zero at the reference location, the standard deviation of the error at a distance 

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 in km from the reference is equal to 0.1 𝑚𝑚× 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 in optimistic conditions 

and 0.6 𝑚𝑚× 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 in pessimistic conditions [Kaplan and Hegarty, 2006].  

- 𝜀𝐼𝑜𝑛𝑜
𝑖  is, most of the time, highly correlated in space. Even with baselines of tens of kilometers, 

DGNSS corrections decrease greatly the  𝜀𝐼𝑜𝑛𝑜
𝑖  term. When the ionosphere is disturbed, the 

space correlation decreases and this term is more difficult to compensate. As an order of 

𝜎𝑤
2 = 𝜎𝑥

2 (1− 𝑒
∆𝑡
𝜏 ) (2-10) 
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magnitude, considering that the standard deviation of the residual error distribution is equal 

to zero at the reference location, the standard deviation of the error at a distance 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 in 

km from the reference is equal to 0.2 𝑐𝑚× 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 in the case of undisturbed ionosphere 

and 4 𝑐𝑚 ×𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 in the case of disturbed ionosphere [Kaplan and Hegarty, 2006]. 

- 𝜀𝑇𝑟𝑜𝑝𝑜
𝑖  is more affected by a difference in height between the user and the reference station 

than a horizontal distance. This is the reason why, in GBAS, the vertical component which 

arises from the height difference between ground station and aircraft is corrected using the 

standardized nominal model given in [RTCA, 2008]. Considering baseline of several kilometres, 

DGNSS corrections decrease significantly the 𝜀𝑇𝑟𝑜𝑝𝑜
𝑖  term. As an order of magnitude, 

considering that the standard deviation of the error distribution is equal to zero at the 

reference location, the standard deviation of the error at a distance 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 in km from the 

reference is equal to 1  𝑐𝑚 × 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 in optimistic conditions and 4 𝑐𝑚× 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 in 

pessimistic conditions. This value is estimated considering that the user and the reference are 

at the same height [Kaplan and Hegarty, 2006] or that tropospheric error due to height 

difference has been compensated. 

- 𝜀𝑀𝑃
 𝑖  is poorly correlated in space. This error component is dependent upon the receiver 

environment. The consequence is that multipath cannot be corrected by DGNSS even if the 

baseline is of some meters. On the contrary, multipath experienced at the reference station 

will be added to the differential user pseudoranges.  

- 𝜀𝑁𝑜𝑖𝑠𝑒
𝑖  is not correlated in space and depends also upon the receiver. DGNSS cannot 

compensate this error component even if the baseline is of some centimeters.   

2.3.1.1.3 Differential corrections concept 

A simplified differential correction model is proposed to illustrate the DGNSS concept. A more 

comprehensive definition of SBAS differential corrections is discussed in 2.4. 

It is assumed that the error affecting the measurement 𝑖 is decomposed into two parts, the error 

differentially corrected 𝜀𝑑𝑖𝑓𝑓
𝑖  and a smaller error term that is not taken into account by the differential 

correction 𝜀𝑜𝑡ℎ𝑒𝑟
𝑖 . The error affecting the user (𝑢) pseudorange measurement can be written as: 

and the error affecting the reference receiver (𝑟𝑟) can be written as: 

The pseudorange measurement estimated by the reference can be modeled as: 

where 

- 𝑅𝑟𝑟
𝑖  is the geometric distance between the reference station and the satellite at the origin of 

signal 𝑖. 

- 𝛿𝑡𝑟𝑟 is the clock bias between the reference receiver and the satellite constellation time, in 

second. 

𝑒𝑟𝑟𝑜𝑟𝑠𝜌,𝑢
𝑖 = 𝜀𝑜𝑡ℎ𝑒𝑟,𝑢

𝑖 + 𝜀𝑑𝑖𝑓𝑓,𝑢
𝑖  (2-11) 

𝑒𝑟𝑟𝑜𝑟𝑠𝜌,𝑟𝑟
𝑖 = 𝜀𝑜𝑡ℎ𝑒𝑟,𝑟𝑟

𝑖 + 𝜀𝑑𝑖𝑓𝑓,𝑟𝑟
𝑖  (2-12) 

𝜌𝑟𝑟
𝑖 = 𝑅𝑟𝑟

𝑖 +𝛿𝑡𝑟𝑟+ 𝜀𝑜𝑡ℎ𝑒𝑟,𝑟𝑟
𝑖 + 𝜀𝑑𝑖𝑓𝑓,𝑟𝑟

𝑖  (2-13) 
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Knowing the precise location of the reference station allows to remove the term 𝑅𝑟𝑟
𝑖 . The differential 

correction ∆𝜌𝜀𝑑𝑖𝑓𝑓,𝑐𝑜𝑟𝑟
𝑖  is introduced and has the expression: 

The user code pseudorange corrected by ∆𝜌𝜀𝑑𝑖𝑓𝑓,𝑐𝑜𝑟𝑟
𝑖  is noted 𝜌𝑢,𝜀𝑑𝑖𝑓𝑓,𝑐𝑜𝑟𝑟

𝑖  and can be written as a 

function of the uncorrected user pseudorange 𝜌𝑢
𝑖  and the correction ∆𝜌𝜀𝑑𝑖𝑓𝑓,𝑐𝑜𝑟𝑟

𝑖  as: 

with 𝜌𝑢
𝑖  the pseudorange measurement estimated by the user and modeled by: 

where 

- 𝑅𝑢
𝑖  is the geometric distance between the user and the satellite at the origin of signal 𝑖. 

- 𝛿𝑡𝑢 is the clock bias between the user receiver and the satellite constellation times, in second. 

Finally the pseudorange corrected by the term 𝜀𝑑𝑖𝑓𝑓 can be modeled as: 

where 

- 𝛿𝑡𝑢𝑟𝑟 =  𝛿𝑡𝑢 −𝛿𝑡𝑟𝑟   is the difference between user and reference station clock offsets in 

second. 

- ∆𝜀𝑑𝑖𝑓𝑓,𝑢𝑟𝑟
𝑖 = 𝜀𝑑𝑖𝑓𝑓,𝑢

𝑖 − 𝜀𝑑𝑖𝑓𝑓,𝑟𝑟
𝑖  is the residual pseudorange errors on the user pseudorange of 

the error corrected differentially. 

𝛿𝑡𝑢𝑟𝑟 induces the same bias to all pseudorange measurements. This common bias 𝛿𝑡𝑢𝑟𝑟 is 

consequently integrated in the time unknown (clock bias) of the user PVT solution. The term 𝛿𝑡𝑢𝑟𝑟 

which appears in the corrected pseudorange measurement expression is compensated in the same 

way as 𝛿𝑡𝑢. 

It can be seen from the definition of 𝜌𝑢,𝜀𝑑𝑖𝑓𝑓,𝑐𝑜𝑟𝑟
𝑖  that the error term ∆𝜀𝑑𝑖𝑓𝑓,𝑢𝑟𝑟

𝑖  which alters the 

corrected pseudorange is the difference between the errors affecting the user and the reference. If 

both receivers are influenced by the same errors, then the differential correction will have removed 

all errors. However, if there is a poor spatial and time correlation of the error component, error will be 

different at reference and user levels and will not be completely compensated  and will even be 

amplified by DGNSS corrections (terms 𝜀𝑜𝑡ℎ𝑒𝑟,𝑢
𝑖  and 𝜀𝑜𝑡ℎ𝑒𝑟,𝑟𝑟

𝑖  are added).  

2.3.1.2 Pseudorange smoothing 

In DGNSS applications used in civil aviation, the pseudorange measurement is smoothed at reference 

station and user receiver levels using the carrier phase measurement. This step is of primary 

importance in order to decrease the impact of errors poorly time correlated (receiver noise, some 

multipath), since the magnitude of carrier phase tracking errors is significantly lower than that of code 

pseudorange measurements. The smoothing equation is given in the steady state (𝑘 ≥ 𝑛) by: 

∆𝜌𝜀𝑑𝑖𝑓𝑓,𝑐𝑜𝑟𝑟
𝑖 = 𝛿𝑡𝑟𝑟+ 𝜀𝑜𝑡ℎ𝑒𝑟,𝑟𝑟

𝑖 + 𝜀𝑑𝑖𝑓𝑓,𝑟𝑟
𝑖  (2-14) 

𝜌𝑢,𝜀𝑑𝑖𝑓𝑓,𝑐𝑜𝑟𝑟
𝑖 = 𝜌𝑢

𝑖 −∆𝜌𝜀𝑑𝑖𝑓𝑓,𝑐𝑜𝑟𝑟
𝑖  (2-15) 

𝜌𝑢
𝑖 = 𝑅𝑢

𝑖 +𝛿𝑡𝑢+ 𝜀𝑜𝑡ℎ𝑒𝑟,𝑢
𝑖 + 𝜀𝑑𝑖𝑓𝑓,𝑢

𝑖  (2-16) 

𝜌𝑢,𝜀𝑑𝑖𝑓𝑓,𝑐𝑜𝑟𝑟
𝑖 = 𝑅𝑢

𝑖 + 𝛿𝑡𝑢𝑟𝑟+ 𝜀𝑜𝑡ℎ𝑒𝑟,𝑢
𝑖 + 𝜀𝑜𝑡ℎ𝑒𝑟,𝑟𝑟

𝑖 +∆𝜀𝑑𝑖𝑓𝑓,𝑢𝑟𝑟
𝑖  (2-17) 
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where 

- 𝜌̂𝑖 is the smoothed code pseudorange measurement from the signal 𝑖 in meter.  

- 𝜌𝑖 is the unsmoothed code pseudorange measurement from the signal 𝑖 in meter. 

- 𝑛 = 𝑆 𝑇⁄  is the normalized smoothing time with 𝑆 the filter time constant and 𝑇 the epoch 

duration. 

- 𝜑𝑖 is the carrier phase measurement from the signal 𝑖 in meter. 

- 𝑘 represents the epoch of measurements estimation. 

It is noticeable that the difference of carrier phase pseudoranges removes the ambiguity affecting the 

carrier phase measurement if no carrier phase tracking disruption has occurred between the two 

epochs.  

As an example, regarding GBAS and SBAS, civil aviation airborne receivers shall utilize a maximum 

standardized 100-second time constant carrier smoothing [ICAO, 2006]. GBAS users can also use a 30-

second smoothing constant. 

After smoothing, it is estimated that the standard deviation attributed to noise and multipath is of the 

order of a few tens of centimeters [RTCA, 2004]. 

2.3.1.3 Code pseudorange measurement errors after differential corrections  

As an order of magnitude, expected standard deviations of the three code pseudorange measurement 

errors 𝜀𝑐𝑙𝑜𝑐𝑘&𝑒𝑝ℎ
𝑖 , 𝜀𝐼𝑜𝑛𝑜

𝑖  and 𝜀𝑇𝑟𝑜𝑝𝑜
𝑖  using DGPS compared to a standalone L1 C/A GPS receiver are 

presented in [Kaplan and Hegarty, 2006]. Values of the three errors after differential corrections are 

dependent upon the baseline between the user and the reference. It is assumed that: 

- the time correlation of errors is neglected (corrections are estimated, sent and applied 

instantaneously), 

- the Klobuchar ionospheric model is applied before differential corrections, 

- the UNB3 tropospheric model is applied on pseudorange measurements bef ore the 

differential correction, 

- the tropospheric error due to a difference of height between the reference and the user is not 

considered and 

- when two differential correction values are provided, the lowest value consists of optimistic 

conditions and the highest value of pessimistic conditions.  

 Before differential corrections After differential corrections 

𝜎𝑁𝑜𝑖𝑠𝑒   0.5 m 0.7 m 

𝜎𝑇𝑟𝑜𝑝𝑜  0.2 –  1.5 m 1 − 4 𝑐𝑚/𝑘𝑚 ×𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑖𝑛 𝑘𝑚 

𝜎𝐼𝑜𝑛𝑜  4.3 –  13.7 m 0.2− 4 𝑐𝑚/𝑘𝑚× 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑖𝑛 𝑘𝑚 

𝜎𝑀𝑃  0.2 m 0.3 m 

𝜎𝑐𝑙𝑜𝑐𝑘&𝑒𝑝ℎ 0.85 m 0.1− 0.6 𝑚𝑚/𝑘𝑚 ×𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑖𝑛 𝑘𝑚 

Table 2-4. GPS L1 C/A pseudorange measurement errors order of magnitude before and after 

applying differential corrections. 

𝜌̂𝑖(𝑘) =
1

𝑛
𝜌𝑖(𝑘) +

𝑛 − 1

𝑛
[𝜌̂ 𝑖(𝑘− 1) + (𝜑𝑖(𝑘) −𝜑𝑖(𝑘− 1))] (2-18) 
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The standard deviation of 𝜀𝑁𝑜𝑖𝑠𝑒
𝑖 and 𝜀𝑀𝑃

𝑖  increases after applying the differential correction and are 

independent from the baseline. The influence of the multipath and the noise that affect the reference 

receiver and the airborne are added. 

2.3.2 Integrity monitoring 

In a DGNSS system, the accuracy can be improved by sending corrections to the user but a second 

important information is the quality of the correction and the trust that can be put on the correction  

(including the trust in the GNSS). This second information is related to the integrity issue and is 

provided by the augmentation system. In civi l aviation, an integrity risk is allocated to hazardous 

failures depending on the phase of flight.  

The overall integrity risk is allocated to different identified conditions through an integrity risk 

allocation tree. The tree depends upon the approach type. In particular an integrity risk is allocated to 

the SiS threats that correspond to hazardous failures focused in this Ph.D. thesis. An example of 

integrity risk allocation tree for the SiS is presented in Figure 2-1. 

 

 

 

 

 

Figure 2-1. SiS integrity risk allocation example.   

Then for each identified condition, an integrity monitoring function is implemented under the form of 

either: 

- a fault detection monitor, 

- a protection level computation. 

Both integrity monitoring functions are tackled in this section. 

2.3.2.1 Fault detection monitors 

Different specific monitors are implemented to protect GNSS users against identified failures. The 

monitor is generally based on an observable whose value is compared to a threshold estimated from 

the distribution of that observable in nominal conditions. The performance of a fault detection monitor 

is assessed by testing the capability of a monitor to detect failures defined by a mode l. The threshold 

is computed from statistical analysis. 

Different monitors exist such as the Signal Quality Monitor (SQM) which aims at detecting hazardous 

signal distortions. SQM is extensively discussed in chapter 7. Many other monitors exist to detect other 

precisely identified failures. For example, GBAS monitors the following threats:  

- satellite signal deformation (EWF), 

- low satellite signal power, 

Signal in Space (SiS) integrity risk 

Integrity risk due to no 
satellite failure 

Integrity risk due to single 
satellite failure 

Integrity risk due to 
multiple satellite failures 
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- excessive code-carrier divergence, 

- broadcast of erroneous GPS ephemeris data, 

- excessive range acceleration, 

- ionospheric spatial-gradient anomaly, 

- tropospheric gradient anomaly. 

2.3.2.2 Protection levels concept 

Two protection levels are defined: one horizontally and one vertically. The definition of both protection 

levels is provided in [RTCA, 2006]. 

The Horizontal Protection Level (HPL) is the radius of a circle in the horizontal plane (the local plane 

tangent to the WGS-84 ellipsoid), with its center being at the true position, that describes the region 

assured to contain the indicated horizontal position. 

The Vertical Protection Level (VPL) is half the length of a segment on the vertical axis (perpendicular to 

the horizontal plane of WGS-84 ellipsoid), with its center being at the true position, that describes the 

region assured to contain the indicated vertical position. 

The protection level computation is dependent upon the augmentation system. In GBAS and SBAS, the 

protection level is assumed to protect a user that applies the SBAS or GBAS corrections and only use 

the non-faulty satellites, i.e. satellites whose measurements have been monitored successfully by the 

ground reference station(s), for the computation of its PVT. At each epoch, HPL or VPL are computed 

by the user receiver by combining parameters transmitted by the ground segment, airborne 

parameters and the user geometry w.r.t. the satellites used in the position computation.   

In other words, the protection level computed by SBAS and GBAS users assumed that corrected 

pseudoranges are affected by nominal errors only, and not by failures.  

The ABAS protection level differs from GBAS and SBAS concepts in that sense that it takes into account 

that one measurement might be faulty (and that ABAS monitor might not detect certain faults).  

2.4 Focus on SBAS 

After the description of the SBAS architecture, the concept of SBAS differential correction which allows 

the user to improve pseudorange measurement accuracy is described. Then, the SBAS integrity risk 

allocation is deepened. Finally, a comparison between SBAS and GBAS is proposed to have a better 

understanding of augmentation systems.  

2.4.1 SBAS architecture 

Figure 2-2 gives an overview of the SBAS architecture [Chatre, 2003]: 
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Figure 2-2. SBAS general architecture [Chatre, 2003].   

The SBAS space segment consists of Geostationary Earth Orbit (GEO) satellites. Some characteristics 

of the two SBASs that are targeted in this study are given in Table 2-5. Ground stations send 

information via uplink stations to SBAS satellites that transmit the information to all SBAS users in the 

area covered by the satellites. 

SBAS WAAS EGNOS 

Political entity United States European Union 

Orbital height GEO (35 786 km) GEO (35 786 km) 

Orbital slot 

Inmarsat 4F3 (98° W) 

Galaxy 15 (133° W) 

Telesat Anik F1R (107.3° W) 

Inmarsat-3 AOR-E (15.5° W) 

Inmarsat-3 IOR-W (25.0° E) 

ESA-Artemis (21.5° E) 

Number of satellites 3 3 

Frequencies L1 (1575.42 Mhz) L1 (1575.42 Mhz) 

Table 2-5. Space segment of the two SBASs of interest: WAAS and EGNOS [Navipedia, 2015] and 

[GALILEO LA, 2015]. 

Considering SBAS ground segment, WAAS and EGNOS are controlled and managed by different ground 

stations as summarized in Table 2-6.  

 

 

Table 2-6. Ground segment of the two SBASs of interest ([Navipedia, 2015] and [GALILEO LA, 2015]). 

 WAAS EGNOS 

Central processing 

facilities 

WAAS Master Station 

(WMS): 3 

Master Control Center 

(MCC): 4 

Uplinks facilities 
Ground Uplink Station 

(GUS): 6 

Navigation Land Earth 

Station (NLES): 6 

Monitoring facilities 
Wide area Reference 

Station (WRS) : 38 

Ranging Integrity Monitoring 

Station (RIMS) : 36 

 
Operational Control 

Centers : 2 

Performance Assessment 

and Checkout Facilitie: 2 
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More details about WAAS and EGNOS are given respectively in [RTCA, 2006] and in [Westbrook et al., 

2000] or [Brocard et al., 2000]. In EGNOS, specific and independent Ranging Integrity Monitoring 

Stations are dedicated to the monitoring of signal distortions: the RIMS-C. 

The SBAS user segment is based on the same principles as classical GNSS receivers: L-band 

receiver/processors and antennas are necessary to process SBAS satellite signals. As the information 

carried by SBAS satellite signals is different from information carried by GPS or Galileo signals, a 

dedicated software processing has to be implemented.  

SBAS users also have the possibility to use SBAS signals as ranging sources to increase the number of 

pseudorange measurements (not all SBAS provide this service). 

2.4.2 SBAS differential pseudorange measurement concept 

SBAS provides three corrections to users which estimate their PVT from GPS L1 C/A signals [RTCA, 

2006]: 

- Fast corrections: they are intended to correct errors that change rapidly in time such as GNSS 

satellite clock errors. Fast corrections are common to all users. 

- Long-term corrections: they are intended to correct errors that change slowly in time such as 

errors due to the atmospheric and long-term satellite clock and ephemeris errors.  

- Ionospheric corrections: a wide-area vertical ionospheric delay model is provided to the user 

at points on a reference grid. The ionospheric delay is estimated at user level by interpolation 

of delays available on the reference grid (at least three points are necessary for the 

interpolation) and by projection of the ionospheric delay in the direction of the user. 

 

SBAS principles are defined in this section based on EGNOS definitions [RTCA, 2006].  

In EGNOS system, the code pseudorange measurement correction is defined as: 

with 

𝑅𝑅𝐶𝑖(𝑡𝑖,𝑜𝑓) =
𝑃𝑅𝐶𝑖,𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝑃𝑅𝐶𝑖,𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠

∆𝑡
 

∆𝑡 = 𝑡𝑖,𝑜𝑓 − 𝑡𝑜𝑓,𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 

∆𝑡𝑠𝑣
𝑖 (𝑡) = 𝑎𝑓0+ 𝑎𝑓1(𝑡 − 𝑡0) + 𝑎𝑓𝐺0 

where 

- 𝑃𝑅𝐶𝑖 is the fast pseudorange correction associated to signal 𝑖. 

- 𝑃𝑅𝐶𝑖,𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is the most recent fast pseudorange correction associated to signal 𝑖. 

𝑃𝑅𝐶𝑖,𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑃𝑅𝐶𝑖(𝑡𝑖,𝑜𝑓). 

- 𝑃𝑅𝐶𝑖,𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 is the previous fast pseudorange correction associated to signal 𝑖. 

- 𝑡𝑖,𝑜𝑓 is the time of applicability of the most recent fast pseudorange correction associated to 

signal 𝑖. 

- 𝑡𝑖,𝑜𝑓,𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 is the time of applicability of the previous fast pseudorange correction associated 

to signal 𝑖. 

- 𝑇𝐶𝑖 is the tropospheric delay estimated by the user for the signal 𝑖 from a UNB3 tropospheric 

model. 

𝜌̂𝑢,𝑐𝑜𝑟𝑟
𝑖 = 𝜌̂𝑢

𝑖 +𝑇𝐶𝑖+ 𝐼𝐶𝑖+ 𝑃𝑅𝐶𝑖(𝑡𝑖,𝑜𝑓)+ 𝑅𝑅𝐶𝑖(𝑡𝑖,𝑜𝑓)× (𝑡 − 𝑡𝑖,𝑜𝑓)+ ∆𝑡𝑠𝑣
𝑖 (𝑡) (2-19) 
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- 𝐼𝐶𝑖 is the ionospheric delay estimated for the signal 𝑖 from the grid ionospheric model defined 

by RTCA [RTCA, 2006] and send by SBAS satellites. 

- ∆𝑡𝑠𝑣
𝑖  is the long term satellite error correction associated to signal 𝑖. 

- 𝑎𝑓0 is the clock offset error correction. 

- 𝑎𝑓1 is the clock drift error correction.  

- 𝑎𝑓𝐺0 is an additional correction used for GLONASS satellites. It is set to zero for GPS satellites. 

- 𝑡0 is the time of the day applicability.  

Still considering EGNOS, after differential corrections, the standard deviation associated to the 

ionospheric error is approximately equal to 0.5 m ([GSA, 2014]) instead of being between 4.3 and 13.7 

m. The standard deviation of the clock and ephemeris error for users augmented by EGNOS was 

estimated at 0.3 m assuming that the user apply the most recent correction (sent every 6 s) instead of 

0.85 m before corrections [Salos, 2012].   

2.4.3 SBAS integrity risk allocation 

In SBAS, the integrity risk allocation is split in two integrity risks, one for the protection level and 

another one for the fault detection detector. A general fault tree is presented regarding SBAS context 

in Figure 2-3, more details are available in [RTCA, 2004] or [Roturier et al., 2001]. 

 

 

 

 

 

Figure 2-3. General SBAS fault tree, SiS integrity risk allocation.   

SBAS monitors the validity of signals sent from the space segment as well as the ground segment. 

Current SBASs monitor only GPS signals (or GPS and GLONASS). The ground system contribution in the 

integrity risk corresponds to the right branch of Figure 2-3 and can be divided in three high level threats 

as presented for WAAS in [RTCA, 2004] and [Walter et al., 2012]. 

 

 

 

 

 

 

Figure 2-4. General fault tree, ground system SiS integrity risk allocation.   

The three high level threats can be also sub-divided. The signal distortion contribution in the integrity 

risk allocated to Signal-in-Space (SiS) is one of the threat included in the integrity risk allocated to 
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failure in ranging source. Nevertheless other ranging source failures are monitored by SBAS [Fernow, 

2005]: 

- the clock and ephemeris inaccuracies, 

- the code carrier incoherency, 

- excessive acceleration (the list is not exhaustive). 

2.4.4 Comparison between SBAS and GBAS 

In order to understand in a better way the SBAS differential concept, a brief comparison between GBAS 

and SBAS is given. Even if both systems are concerned by the same problem regarding signal 

deformations, the SBAS structure is different from the GBAS structure: 

- GBAS is a system without any space segment. 

- GBAS ground segment is constituted of a single ground station located at an airport, containing 

possibly several reference receivers with precisely known locations. SBAS relies on a network 

of ground stations spread over a continent. 

- SBAS corrections are uploaded from the ground to the satellites and then sent to the user via 

SBAS satellites whereas GBAS corrections are sent by ground stations via a VHF signal. 

- The GBAS user segment contains a dedicated VHF antenna and demodulator, required to 

decode the GBAS message. The SBAS signal is transmitted on the same band as GPS L1 C/A 

signals, with a similar modulation. The hardware modifications required to use the SBAS 

message are minor, any GNSS receiver is able to use the SBAS message with a software 

modification. 

From an operational point of view, the two main differences between GBAS and SBAS are that: 

- SBAS code pseudorange corrections are given separately for each error depending on the 

source of the error whereas all errors are corrected together in the GBAS approach. 

Mathematically, and taking back notations from 2.3.1.1.3, in GBAS all errors coming from 

different sources are corrected differentially in one term: 𝜀𝑜𝑡ℎ𝑒𝑟
𝑖 = 0 and 𝑒𝑟𝑟𝑜𝑟𝑠𝜌

𝑖 = 𝜀𝑑𝑖𝑓𝑓
𝑖 . 

- SBAS code corrections and integrity bounds are valid over an entire area and not only in the 

GBAS reference station neighborhood. To estimate corrections, many reference stations are 

spread over large regions. Instead of GBAS scalar correction, SBAS is based on vectorial 

correction. Indeed SBAS provides the user with a set of corrections values at different space 

locations. From this information, the user extrapolates corrections values to its own location. 

GBAS integrity risk allocation is similar for GBAS and SBAS. 

2.5 Conclusions 

In this chapter, a general overview of GNSS concepts was presented. Among all GNSS, two 

constellations are focused on: the United State GPS constellation, as an unavoidable standard, and the 

European Galileo constellation, as this work is performed in a European context. In the same way, two 

SBASs are focused on: the United State system WAAS and the European system EGNOS.  
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In the civil aviation framework, core constellations cannot be used in critical phases of flight (approach 

and landing) because accuracy, availability, continuity and integrity requirements are not all met. To 

mitigate these errors, improve accuracy and integrity, and meet requirements, augmentation systems 

were developed. In particular, this Ph.D. thesis is focused on SBASs which are DGNSS and integrity 

augmentation systems. To satisfy integrity requirements, SBASs have to associate probabilities 

allocated to different GNSS threats (these probabilities are called integrity risks). A part of the total 

integrity risk (it means the integrity risk considering all GNSS threats) is allocated to the SiS distortions 

threat. GNSS signal distortion is the particular GNSS threat that is tackled in this Ph.D. thesis in the 

SBAS context. 

Even if GBAS is not the target of the study, its concept was introduced to illustrate the differential 

measurement approach and to have a comparison with SBAS. Moreover both GBAS and SBAS are 

concerned by the same problem of signal distortions even if slight differences exist in the strategy to 

monitor SiS distortions as detailed by ICAO in [ICAO, 2006]. 

One of the difficulties regarding the GNSS signal distortion problem is that the impact of such a threat 

on users depends upon two fundamental parameters: the signal modulation and the GNSS receiver 

processing. Both parameters are detailed in the next chapter. 
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3 GNSS signals structure and receiver 

processing 

This chapter intends to give an overview of GNSS receiver structure. The basic architecture of a GNSS 

receiver is presented in a simplified way in Figure 3-1.  

 

 

 

 

 

 

  

  

    

 

 

 

 

 

 

Figure 3-1. General structure of a GNSS receiver.   

First of all, section 3.1 brings details about signals that are (or will be) used by civil aviation receivers: 

GPS L1 C/A, GPS L5, Galileo E5a and Galileo E1C signals. Then, section 3.2 describes briefly the antenna 

and the analog processing part of a GNSS receiver also called RF front-end which output consists of the 

input of the Analog-to-Digital Converter (ADC). Section 3.3 introduces the main digital processing 

steps, namely acquisition, code tracking and carrier phase tracking, which are typically implemented 

in GNSS receivers and that allow to have access to the pseudorange measurements. Note that the PVT 

computation algorithm is not described as the pseudorange measurements are the observables of 

interest in the present Ph.D. thesis. Information about these algorithms can be found for example in 

[Kaplan and Hegarty, 2006]. 
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3.1 Signals of interest description 

This section introduces the GPS and Galileo signals of interest for civil aviation users: GPS L1 C/A, GPS 

L5, Galileo E1C and Galileo E5a. For these users, stringent performances are required in terms of 

accuracy, availability, continuity and integrity, reflected in a need of integrity of the received signals 

themselves. This is why these signals are closely monitored by augmentation systems. 

Satellite navigation signals are broadcasted in a frequency band allocated to the RNSS (Radio 

Navigation Satellite System). In the special case of GNSS signals being used by civil aviation, these 

signals also have to be within an ARNS frequency band (Aeronautical Radio Navigation Services). An 

ARNS band is specifically protected as it hosts signals used for safety-of-life applications. It is thus 

relatively free from interference (apart from intentional interference), except when other ARNS 

broadcast in the band as is it the case for E5/L5 band, which is used by DMEs (Distance Measuring 

Equipments) for example. The frequency band allocation is provided by International 

Telecommunication Union (ITU). 

Figure 3-2 illustrates Galileo and GPS signal frequency plans available in Galileo Interface Control 

Document (Galileo ICD) [GSA, 2010].  

 

Figure 3-2. Galileo and GPS frequency plans [GSA, 2010]. 

3.1.1 General GNSS signal structure 

The modulation scheme for all the considered GPS and Galileo signals is based on Direct Sequence 

Spread Spectrum (DSSS). As a consequence typical GNSS signals are composed of: 

- A carrier. To transport signals information, a suitable carrier frequency is required. It allows to 

choose the frequency band of the transmission, and therefore to respect the ITU frequency 

allocation plan. The frequency bands chosen for GNSS transmissions allow to limit the impact 

of the signal propagation channel (ionosphere, air, etc.) and to limit the size of antennas. The 

carrier frequency (noted 𝑓0) of L1 signals is equal to 1575.42 MHz and the carrier frequency 

of L5 signals is equal to 1175.45 MHz. 
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- The spreading code, which is a binary finite code composed of a large number of bits that 

imitates the statistical behavior of white noise. A bit of the spreading code is known as a chip. 

The chipping rate of a spreading code is noted 𝑓𝑐 . The code sequence 𝑐(𝑡) can be modeled as: 

 

 

𝑐(𝑡) = ∑ ((∑𝑐𝑘 .𝑚(𝑡 − 𝑘𝑇𝑐)

𝑁

𝑘=1

) ∗ 𝛿(𝑡 − 𝑖𝑁𝑇𝑐))

+∞

𝑖=−∞

 (3-1) 

where 

o 𝑁 is the number of chips of the PRN code, 

o 𝑇𝑐 = 1 𝑓𝑐⁄  is the duration of a chip in second, 

o 𝑐𝑘 are the spreading code chips, 

o 𝑚(𝑡) is the shaping waveform of the chip, which can take several forms depending on 

the considered signal, as shown in the following paragraphs, 

o 𝛿(𝑡 − 𝜏) is the Dirac function centered on the delay 𝜏. 

The spreading code name comes from the fact that the baseband signal has a wider bandwidth 

after modulation with the spreading code due to the high chipping rate of the spreading code 

with respect to the data rate. This code is also called PRN (Pseudo Random Noise) due to its 

statistical properties. The code period is noted 𝑇𝑐𝑜𝑑𝑒. This code allows the use of DSSS and is 

chosen for satellite navigation for three main reasons [Kaplan and Hegarty, 2006]: 

o The frequent phase inversions in the signal introduced by the PRN waveform enable 

precise ranging by the receiver. 

o The use of different PRN sequences from a wel l-designed set, enables multiple 

satellites to transmit signals simultaneously on the same frequency. Each satellite has 

its own PRN and a receiver can distinguish among these signals the signal sent by a 

particular satellite.  

o DSSS provides significant rejection of narrowband interference. 

- A secondary code, which is a binary finite code that modulates the signal. The secondary code 

generally has a bit duration equal to the code period [GSA, 2010]. Not all GNSS signals have a 

secondary code. The use of a secondary code can improve some signal features [Sekar et al., 

2012]: 

o data symbol synchronization,  

o correlation properties,  

o narrowband interference protection. 

- The useful data. This component contains the useful information that is meant to be passed 

to the user. Note that not all GNSS signals contain useful data. If they do, they are referred to 

as data component. If they do not, they are referred to as data-less or pilot component. Typical 

GNSS data component uses BPSK modulation. Data bits are sent with a rate 𝑓𝑑 = 1 𝑇𝑑⁄ , with 

𝑇𝑑 the data bit period. 𝑓𝑑 is much smaller than the spreading code frequency 𝑓𝑐 . The data 

sequence 𝑑(𝑡) can be modeled as: 

 

𝑑(𝑡) = ∑ 𝑑𝑛. 𝑟𝑒𝑐𝑡𝑇𝑑 (𝑡 − 𝑇𝑑 (𝑛 +
1

2
))

+∞

𝑛=−∞

 (3-2) 

where the rectangular function is defined by: 
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𝑟𝑒𝑐𝑡𝑋(𝑡) = {
0   𝑖𝑓 |𝑡| >

𝑋

2

1   𝑖𝑓 |𝑡| ≤
𝑋

2

 (3-3) 

 

Parameters defining signals of interest are summarized in Table 3-1. Other Galileo and GPS signals are 

not described because they are not planned to be used by civil aviation users. 

Constellation Galileo GPS 

Signal E1B E1C E5a-I E5a-Q L1 C/A L5-I L5-Q 

Navigation Data 

(sps) 
250 Pilot 

50 

(25 bps) 
Pilot 50 

100 

(50 bps) 
Pilot 

Secondary code 

length (primary 

code length) 

No 25 20 100 No 10 20 

Primary code 

length (chip) 
4092 10230 1023 10230 

Chip rate (Mcps) 1.023 10.23 1.023 10.23 

Primary code 

duration (ms) 
4 1 1 1 

Modulation 𝐶𝐵𝑂𝐶(6,1,1 11⁄ ) 1 𝑄𝑃𝑆𝐾(10) 1 𝐵𝑃𝑆𝐾(1) 1 𝑄𝑃𝑆𝐾(10) 1 

Carrier frequency 

(MHz) 
1575.420 1176.450 1575.420 1176.450 

Bandwidth (MHz) 24.552 20.46 20.46 24 

Polarization Right Hand Circular Polarized (RHCP) 

1: defined in the next section 

Table 3-1. Characteristics of Galileo and GPS signals of interest. 

In the following, details are added about the structure of signals presented in Table 3-1. 

3.1.2 GPS L1 C/A signal structure 

GPS L1 C/A signal is 𝐵𝑃𝑆𝐾(1)-modulated, which means: 

- the PRN code chipping rate 𝑓𝑐  is equal to 1× 1.023 MHz and 

- the shaping waveform 𝑚(𝑡) used by the PRN code is a rectangle of length the chip duration. 

As a consequence, the PRN code can be modeled as: 
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Details about this signal can be found in a lot of documents such as in [GPS.gov, 2000] or [Gleason, 

2009]. The ideal GPS L1 C/A signal at the satellite output can be modeled as: 

where 𝐴 is the amplitude of the transmitted signal. 

The derivation of the normalized Power Spectral Density (PSD) envelope of the GPS L1 C/A signal is 

given in [Avila Rodriguez, 2008] assuming an infinite PRN code: 

The inverse Fourier transform of the normalized PSD is the normalized autocorrelation function of the 

signal: 

𝑅𝐵𝑃𝑆𝐾(1)(𝜏) = ∫ 𝐺𝐵𝑃𝑆𝐾(1)(𝑓)𝑒
−2𝜋𝑖𝑓𝑡𝑑𝑓

+∞

−∞
 

Figure 3-3 shows the normalized PSD (and not only its envelope) and the normalized autocorrelation 

function of the ideal GPS L1 C/A signal made of finite PRN code sequences.  

 

Figure 3-3.Normalized PSD (on the left) and normalized autocorrelation function (on the right) of the 

GPS L1 C/A signal.      

3.1.3 GPS L5 signal structure 

GPS L5 signal is composed of two orthogonal components. One component consists of the L5 pilot 

channel, on the quadrature-phase part of the signal, and the second component consists of the L5 data 

channel, on the in-phase part of the signal. The two channels have different PRN codes and different 

secondary codes (with different secondary code lengths). Both components can be considered as two 

independent 𝐵𝑃𝑆𝐾(10)-modulated signals (the total signal is 𝑄𝑃𝑆𝐾(10)-modulated). Details about 

𝑐(𝑡) = ∑ ((∑𝑐𝑘. 𝑟𝑒𝑐𝑡𝑇𝑐(𝑡 − 𝑇𝑐 (𝑘 +
1

2
))

𝑁

𝑘=0

) ∗ 𝛿(𝑡 − 𝑖𝑁𝑇𝑐))

+∞

𝑖=−∞

 (3-4) 

 
𝑠𝑠_𝐶 𝐴⁄ (𝑡) = 𝐴𝑑(𝑡)𝑐(𝑡) 𝑐𝑜𝑠(2𝜋𝑡𝑓0) (3-5) 

 

𝐺𝐵𝑃𝑆𝐾(1)(𝑓) = 𝑇𝑐

𝑠𝑖𝑛²(
𝜋𝑓
𝑓𝑐
)

(
𝜋𝑓
𝑓𝑐
) ²

 (3-6) 

 

𝑅𝐵𝑃𝑆𝐾(1)(𝜏) = 𝑡𝑟𝑖𝑇𝑐(𝜏) = {1 −
|𝜏|

𝑇𝑐
   𝑖𝑓 |𝑡| < 𝑇𝑐

0      𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 (3-7) 
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GPS L5 are provided in several documents as in [GPS.gov, 2012], [Macabiau et al., 2003] or [Bastide et 

al., 2002]. 

The two GPS L5 components are 𝐵𝑃𝑆𝐾(10)-modulated, which means: 

- the PRN code chipping rate 𝑓𝑐  is equal to 10 ×1.023 MHz and  

- the shaping waveform 𝑚(𝑡) used by the PRN code is a rectangle of length the chip duration. 

As a consequence, the PRN code can be modeled on the in-phase (𝑐𝐼(𝑡)) and the quadrature-phase 

(𝑐𝑄(𝑡)) components as: 

where 

- 𝑋 = 𝐼 is referred to as the in-phase component and 𝑋 = 𝑄 is referred to as the quadradure-

phase component. 

- 𝑐𝑘_𝑋(𝑡) is the PRN chips sequence of the in-phase (𝑋 = 𝐼) and the quadrature-phase 

component (𝑋 = 𝑄). 

The ideal L5 signal, 𝑄𝑃𝑆𝐾(10)-modulated, at the satellite output can be modeled as: 

where 

- 𝐴 is the amplitude of the transmitted signal. 

- 𝑐2,𝐼(𝑡) (𝑐2,𝑄(𝑡)) is the materialization of the secondary code on the in(quadrature)-phase 

component.  

The pilot component is usually used essentially to improve the accuracy of the code pseudorange 

measurement and decrease the time necessary to acquire the signal. Moreover, the current draft SBAS 

Dual-Frequency Multi-Constellation (DFMC) document [Samson, 2015] seems to indicate that only the 

pilot channel would be used to estimate pseudorange measurements in an airborne (DFMC) receiver 

in SBAS mode. As a consequence, a special focus will be put on the pilot component. By consequence, 

the study of the GPS L5 pilot component can be seen as the study of one 𝐵𝑃𝑆𝐾(10)-modulated signal.  

The derivation of the normalized PSD envelope of the quadrature-phase L5 signal component 

(𝐵𝑃𝑆𝐾(10) modulation) is equivalent to the 𝐵𝑃𝑆𝐾(1) modulation with a different chipping rate (10 

times higher in the case of 𝐵𝑃𝑆𝐾(10)) and is given by: 

The inverse Fourier transform of the normalized PSD is the normalized autocorrelation function of the 

signal: 

𝑅𝐵𝑃𝑆𝐾(10)(𝜏) = ∫ 𝐺𝐵𝑃𝑆𝐾(10)(𝑓)𝑒
−2𝜋𝑖𝑓𝑡𝑑𝑓

+∞

−∞
 

 
𝑐𝑋(𝑡) = ∑ ((∑𝑐𝑘_𝑋. 𝑟𝑒𝑐𝑡𝑇𝑐 (𝑡 − 𝑇𝑐 (𝑘 +

1

2
))

𝑁

𝑘=0

) ∗ 𝛿(𝑡 − 𝑖𝑁𝑇𝑐))

+∞

𝑖=−∞

   

𝑤𝑖𝑡ℎ 𝑋 = 𝐼 𝑜𝑟 𝑄 

(3-8) 

 
𝑠𝑠_𝐿5(𝑡) = 𝐴𝑑(𝑡)𝑐𝐼(𝑡)𝑐2,𝐼(𝑡)𝑐𝑜𝑠(2𝜋𝑡𝑓0)+ 𝐴𝑐𝑄(𝑡)𝑐2,𝑄(𝑡)𝑠𝑖𝑛(2𝜋𝑡𝑓0) (3-9) 

 

𝐺𝐵𝑃𝑆𝐾(10)(𝑓) = 𝑇𝑐

𝑠𝑖𝑛²(
𝜋𝑓
𝑓𝑐
)

(
𝜋𝑓
𝑓𝑐
) ²

 (3-10) 
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Figure 3-4 shows the normalized PSD (and not only its envelope) and the normalized autocorrelation 

function of the ideal GPS L5 pilot component made of finite PRN code sequences. 

 

Figure 3-4.Normalized PSD (on the left) and normalized autocorrelation function (right) of the GPS L5 

quadrature component.   

3.1.4 Galileo E5a signal structure 

The Galileo E5 band carries two sub-signals: E5a and E5b signals. These two signals have different 

carrier frequencies and are modulated together to form a wideband E5 signal 𝐴𝑙𝑡𝐵𝑂𝐶(15,10). E5a 

and E5b sub-signals can be considered as two 𝑄𝑃𝑆𝐾(10)-modulated signals and can be processed 

independently. Each sub-signal has the same structure as the GPS L5 signal: a pilot and a data channels 

are sent via the in-phase and the quadrature-phase signal components. Details about Galileo E5 signals 

are provided in [GSA, 2010], [Bastide et al., 2002] or [Shivaramaiah and Dempster, 2009].  

As only the E5a pilot channel component should be used by civil aviation to estimate pseudoranges, 

the E5a signal model is presented without considering the E5b signal. The ideal E5a signal, 

approximated by a 𝑄𝑃𝑆𝐾(10)-modulated signal, at the satellite output can be approximated by: 

where 

- 𝐴 is the amplitude of the transmitted signal. 

- 𝑐2,𝐼(𝑡) (𝑐2,𝑄(𝑡)) is the materialization of the secondary code on the in(quadrature)-phase 

component.  

- 𝑐𝐼(𝑡) (𝑐𝑄(𝑡)) is the PRN code on the in(quadrature)-phase component as defined by equation 

(3-8). 

The normalized PSD envelope of the Galileo E5a quadrature phase component assuming an infinite 

PRN code can be approximated by the GPS L5 signal 𝐵𝑃𝑆𝐾(10)-modulated PSD: 

𝐺𝐵𝑃𝑆𝐾(10)(𝑓) = 𝑇𝑐

𝑠𝑖𝑛²(
𝜋𝑓
𝑓𝑐
)

(
𝜋𝑓
𝑓𝑐
) ²

 

 
𝑅𝐵𝑃𝑆𝐾(10)(𝜏) = 𝑡𝑟𝑖𝑇𝑐(𝜏) = {1 −

|𝜏|

𝑇𝑐
   𝑖𝑓 |𝑡| < 𝑇𝑐

0      𝑒𝑙𝑠𝑤ℎ𝑒𝑟𝑒

 (3-11) 

 
𝑠𝑠_𝐸5𝑎(𝑡) ≈ 𝐴𝑑(𝑡)𝑐𝐼(𝑡)𝑐2,𝐼(𝑡) 𝑐𝑜𝑠(2𝜋𝑡𝑓0) + 𝐴𝑐𝑄(𝑡)𝑐2,𝑄(𝑡)𝑠𝑖𝑛(2𝜋𝑡𝑓0) (3-12) 
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The normalized autocorrelation function of the Galileo E5a quadrature-phased signal can be 

approximated by 𝑅𝐵𝑃𝑆𝐾(10): 

𝑅𝐵𝑃𝑆𝐾(10)(𝜏) = 𝑡𝑟𝑖𝑇𝑐(𝜏) = {1−
|𝜏|

𝑇𝑐
   𝑖𝑓 |𝑡| < 𝑇𝑐

0      𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 

The normalized PSD and the autocorrelation function of the E5a signal pilot component are very similar 

to the GPS L5 signal pilot component PSD and correlation function (see Figure 3-4). In this document 

both signals are considered as equivalent. 

3.1.5 Galileo E1 OS signal structure 

The Galileo E1 Open Service signal is composed of two components: the E1B data component and the 

E1C pilot component. Both components are CBOC-modulated. The data component carries the I/NAV 

navigation data stream, the spreading code and is modulated with two sub-carriers whereas the pilot 

component is constituted of a spreading code (which includes a secondary code) and is modulated 

with the sub-carriers. Galileo E1 signal is 𝐶𝐵𝑂𝐶(6,1, 1 11⁄ )-modulated, which means: 

- the PRN code chipping rate 𝑓𝑐  is equal to 1× 1.023 𝑀𝐻𝑧 and 

- the shaping waveform 𝑚(𝑡) used by the PRN code is a pattern with a length equal to the chip 

duration and defined by: 

o 𝛼𝑠𝑐𝐵𝑂𝐶(1,1)(𝑡) + 𝛽𝑠𝑐𝐵𝑂𝐶(6,1)(𝑡) for the E1B component, 

o 𝛼𝑠𝑐𝐵𝑂𝐶(1,1)(𝑡) − 𝛽𝑠𝑐𝐵𝑂𝐶(6,1)(𝑡) for the E1C component, 

where 

o 𝛼 = √
10

11
 

o 𝛽 = √
1

11
 

o 𝑠𝑐𝐵𝑂𝐶(𝑋,1)(𝑡) = {𝑠𝑖𝑔𝑛
(𝑠𝑖𝑛(2𝜋𝑋𝑡 × 1.023× 10−6))     𝑖𝑓    0 < 𝑡 < 𝑇𝑐

0    𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
 

 is the materialization of the sub-carrier. 

As a consequence, the PRN code on the E1B component can be modeled as: 

And on the E1C component as: 

𝑐𝐸1𝐵(𝑡) = ∑ ((∑𝑐𝑘 . (𝛼𝑠𝑐𝐵𝑂𝐶(1,1)(𝑡− 𝑘𝑇𝑐)+ 𝛽𝑠𝑐𝐵𝑂𝐶(6,1)(𝑡 − 𝑘𝑇𝑐))

𝑁

𝑘=0

)

+∞

𝑖=−∞

∗ 𝛿(𝑡 − 𝑖𝑁𝑇𝑐)) 

(3-13) 

𝑐𝐸1𝐶(𝑡)(𝑡) = ∑ ((∑𝑐𝑘 . (𝛼𝑠𝑐𝐵𝑂𝐶(1,1)(𝑡− 𝑘𝑇𝑐) − 𝛽𝑠𝑐𝐵𝑂𝐶(6,1)(𝑡 − 𝑘𝑇𝑐))

𝑁

𝑘=0

)

+∞

𝑖=−∞

∗ 𝛿(𝑡 − 𝑖𝑁𝑇𝑐)) 

(3-14) 
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It should be noted that 𝑐𝑘 which appears in the definition of the E1B signal component is different 

from 𝑐𝑘 which appears in the definition of E1C even if no distinction is made for the sake of simplicity. 

Details about Galileo E1 OS signal are given in [GSA, 2010] or [Julien et al., 2006]. The ideal E1 signal at 

the satellite output can be modeled as: 

where 

- 𝐴 is the amplitude of the transmitted signal. 

- 𝑐2,𝐸1𝐶(𝑡) is the materialization of the secondary code on the E1C signal. 

As for other signals, only the pilot component is of interest in the context of this Ph.D.: E1C. E1C 

modulation is defined as 𝐶𝐵𝑂𝐶(6,1,1 11⁄ , −) whereas E1B as a 𝐶𝐵𝑂𝐶(6,1, 1 11⁄ ,+).  

The PSD envelope of the transmitted Galileo E1 signal on the in-phase component is made of both E1B 

and E1C signals. The global E1 modulation consists in a 𝐶𝐵𝑂𝐶(6,1,1 11⁄ ) and its normalized PSD 

envelope assuming an infinite PRN code is given in [Julien et al., 2006] by: 

where 

𝐺𝐵𝑂𝐶(𝑋,1)(𝑓) = 𝑓𝑐 (
𝑠𝑖𝑛(

𝜋𝑓
2𝑋𝑓𝑐

)𝑠𝑖𝑛 (
𝜋𝑓
𝑓𝑐
)

𝜋𝑓𝑐𝑜𝑠(
𝜋𝑓
2𝑋𝑓𝑐

)
)

2

 

The autocorrelation of the E1C component cannot be directly estimated from the PSD of the entire E1 

signal. For the E1C component, the normalized 𝐶𝐵𝑂𝐶(6,1, 1 11⁄ , −) autocorrelation function is 

defined from the convolution product as: 

where (𝑥 ∗ 𝑦)(𝜏) = ∫ (𝑥(𝜏 − 𝑡) × 𝑦(𝑡))𝑑𝑡
+∞

−∞  is the convolution process. 

From this expression, the normalized autocorrelation function definition introduced in [Julien et al., 

2006] can be recovered: 

with 

 
𝑠𝑠_𝐸1(𝑡) = 𝐴𝑑(𝑡)𝑐𝐸1𝐵(𝑡)𝑐𝑜𝑠(2𝜋𝑡𝑓0) − 𝐴𝑐2,𝐸1𝐶(𝑡)𝑐𝐸1𝐶(𝑡)𝑐𝑜𝑠(2𝜋𝑡𝑓0) (3-15) 

 
𝐺𝐶𝐵𝑂𝐶(6,1,1 11⁄ )(𝑓) =

10

11
𝐺𝐵𝑂𝐶(1,1)(𝑓) +

1

11
𝐺𝐵𝑂𝐶(6,1)(𝑓) (3-16) 

 𝑅𝐶𝐵𝑂𝐶(6,1,1 11⁄ ,−)(𝜏)

=

(

 (√
10

11
𝑠𝑐𝐵𝑂𝐶(1,1) −√

1

11
𝑠𝑐𝐵𝑂𝐶(6,1))

∗(√
10

11
𝑠𝑐𝐵𝑂𝐶(1,1) − √

1

11
𝑠𝑐𝐵𝑂𝐶(6,1))

∗

)

 (𝜏) 

(3-17) 

 
𝑅𝐶𝐵𝑂𝐶(6,1,1 11⁄ ,−)(𝜏) =

10

11
𝑅𝐵𝑂𝐶(1,1)(𝜏) +

1

11
𝑅𝐵𝑂𝐶(6,1)(𝜏) 

−2
√10

11
𝑅𝐵𝑂𝐶(1,1)/𝐵𝑂𝐶(6,1)(𝜏) 

(3-18) 
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𝑅𝐵𝑂𝐶(𝑋,1)(𝜏) = −∑

(

 𝑡𝑟𝑖(
𝜏 −

2(𝑘 − 1)
2𝑋
𝑇𝑐
2𝑋

)+ 𝑡𝑟𝑖 𝑇𝑐
2𝑋

(𝜏 +
2(𝑘 − 1)

2𝑋
)

)

 

𝑋

𝑘=1

 

𝑅𝐵𝑂𝐶(1,1)/𝐵𝑂𝐶(6,1)(𝜏) =
1

12
∑ 𝑛𝑘 ×𝑡𝑟𝑖 𝑇𝑐

2𝑋

(𝜏−
2(𝑘− 1)

2𝑋
)

12

𝑘=1

 

- 𝑛𝑘 = 1 𝑖𝑓 𝑘 = 1; 2;3; 10;11; 12 and 𝑛𝑘 = −1 𝑖𝑓 𝑘 = 4; 5;6;7;8;9. 

- 𝑡𝑟𝑖𝑇𝑐(𝜏 − 𝑐) the triangular function centered in 𝑐 with a width equal to 2𝑇𝑐 and a magnitude 

equal to 1. 

The three components of the correlation function are illustrated in Figure 3-5. 

 

Figure 3-5. Correlation function terms used to defined CBOC autocorrelation function.   

In the same way the normalized 𝐶𝐵𝑂𝐶(6,1,1 11⁄ , +) autocorrelation function is given by: 

𝑅𝐶𝐵𝑂𝐶(6,1,1 11⁄ ,+)(𝜏) =
10

11
𝑅𝐵𝑂𝐶(1,1)(𝜏) +

1

11
𝑅𝐵𝑂𝐶(6,1)(𝜏) + 2

√10

11
𝑅𝐵𝑂𝐶(1,1)/𝐵𝑂𝐶(6,1)(𝜏) 

In the following, only the E1C component (𝐶𝐵𝑂𝐶(6,1, 1 11⁄ ,−) modulation) will be treated. 

Figure 3-6 shows the normalized PSD (and not only its envelope) and the normalized autocorrelation 

function of the Galileo E1C signal made of finite PRN code sequences. 

 

Figure 3-6.Normalized PSD of the Galileo E1 signal (on the left) and normalized autocorrelation 

function (right) of the Galileo E1C signal.   
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3.1.6 Discussion about power spectral density and correlation function 

PSD expressions given for different signals have been estimated considering only the primary code 

materialization. This choice is equivalent to study the signal on only one spreading code chip symbol. 

On some signals, data and secondary code streams are also added. The consequence is that PSDs of 

transmitted signals are slightly different from PSDs estimated in sections 3.1.2 to 3.1.5. In the general 

case the mathematical definition of the PSD of a transmitted signal 𝑠𝑠(𝑡) constituted of a data 

sequence 𝑑(𝑡), a spreading code sequence  𝑐(𝑡) and a secondary spreading code sequence 𝑐2(𝑡) is 

equal to: 

where  

- 𝑠𝑠(𝑡) = 𝑐2(𝑡)𝑑(𝑡)𝑐(𝑡), 

- 𝐺𝑐2(𝑓) is the PSD of the materialized secondary code, 

- 𝐺𝑐(𝑓) is the PSD of the materialized primary code, 

- 𝐺𝑑(𝑓) is the PSD of the materialized data steam. 

It is noteworthy that PSDs that have been presented for the different signals consist only in the 𝐺𝑐(𝑓) 

term. Considering that the secondary code has a rate equal to 𝑓𝑐2 (𝑓𝑐2 = 1 𝑇𝑐2⁄ ) and that the data rate 

is equal to 𝑓𝑑 (𝑓𝑑 = 1 𝑇𝑑⁄ ), 𝐺𝑐2(𝑓) and 𝐺𝑑(𝑓) can be expressed as: 

𝐺𝑐2(𝑓) = 𝑇𝑐2

𝑠𝑖𝑛²(
𝜋𝑓
𝑓𝑐2
)

(
𝜋𝑓
𝑓𝑐2
)²

 

𝐺𝑑(𝑓) = 𝑇𝑑

𝑠𝑖𝑛²(
𝜋𝑓
𝑓𝑑
)

(
𝜋𝑓
𝑓𝑑
)²

 

For studied signals, 𝑓𝑐2 and 𝑓𝑑 are considerably lower than the primary code frequency 𝑓𝑐  (at least 20 

times lower as it can be seen on Table 3-1. It entails that the frequency occupation of 𝐺𝑐(𝑓) is much 

larger than the frequency occupation of 𝐺𝑐2(𝑓) and 𝐺𝑑(𝑓) and the consequence is that: 

𝐺𝑠𝑠(𝑓) ≈ 𝐺𝑐(𝑓) 

A second remark is that PSDs mathematical expressions established in previous sections of 3.1 are not 

exactly representative of transmitted signals PSD but only of the envelope of transmitted signals PSD, 

as discussed in [Julien, 2006]. Indeed the presence of the periodic spreading code generates PSD 

spectral lines separated from each other by the value of the ratio between 𝑓𝑐  and the code length: 

1 kHz for GPS L1 C/A signal, 250 Hz for Galileo E1C signal, 100 Hz for Galileo E5a and GPS L5 signals. 

For the sake of simplicity, only the PSD envelope is considered even if in Figure 3-3, Figure 3-4 and 

Figure 3-6 true PSDs are shown.  

Regarding correlation functions, only models were introduced. The presence of a secondary code 

and/or data bits does not have a significant impact on correlation functions. Nevertheless, the primary 

code can slightly modify the shape of the correlation function. For instance for a GPS L1 C/A signal, 

depending on the PRN spreading code, the amplitude of the normalized correlation function at a 

 
𝐺𝑠𝑠(𝑓) = 𝐺𝑐2(𝑓) ∗ 𝐺𝑑(𝑓) ∗ 𝐺𝑐(𝑓) (3-19) 
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distance ±𝑇𝑐 is not equal to zero but to ±1 1023⁄ . This phenomenon has an impact on the correlation 

function slope.  

3.1.7 Signals structures summary 

The four signals that should be used by civil aviation receivers to estimate their pseudoranges and that 

are focused in this document are: 

- the GPS L1 C/A signal, 𝐵𝑃𝑆𝐾(1)-modulated, 

- the GPS L5 quadrature-phase signal, 𝐵𝑃𝑆𝐾(10)-modulated, 

- the Galileo E5a quadrature-phase signal, 𝐵𝑃𝑆𝐾(10)-modulated and 

- the Galileo E1C signal, 𝐶𝐵𝑂𝐶(6,1, 1 11⁄ ,−)-modulated. 

Signals, PSDs and correlation functions expressions were introduced for the four signals. As an 

approximation, PSDs were estimated from their envelopes. Secondary code and the data component 

were neglected in order to facilitate the analysis.  

   

Figure 3-7. Chip shapes and autocorrelation functions for different signals.   

Figure 3-7 illustrates the chip shape and the autocorrelation function for signals of interest. In red are 

presented results for the GPS L1 C/A signal, in blue results for Galileo E5a and L5 quadrature -phase 

signal components and in black results for Galileo E1C signal. The abscissa is given in GPS L1 C/A  chip 

unit it means 1.023 × 10−6 s. The Galileo E1C correlation function corresponds to the 

𝐶𝐵𝑂𝐶(6,1,1 11⁄ , −) autocorrelation function. The Galileo E1C signal is normalized to have the 

𝐵𝑂𝐶(1,1) component amplitude equal to 1 in the chip domain.  

3.2 Analog processing of GNSS receiver 

When reaching the receiver antenna, the incoming signal sent by the satellite and generated by the 

payload components, including the satellite antenna, has gone through the propagation channel that 

was described in the previous chapter (free space, ionosphere, troposphere, potential obstruction, 

multipath, interference). First of all this signal passes through the receiver antenna and then through 

the analog section of the GNSS receiver. In this section, the signal is processed as an analog signal 

before being digitized (sampled in time and quantified in amplitude) by the analog to digital converter. 
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The analog section is made of the antenna, a Low Noise Amplifier (LNA), mixers, local oscillators and 

filters. This receiver portion is of primary importance because it pre-conditions the signal that is then 

processed digitally.  

3.2.1 Antenna  

The antenna is the first component of the receiver encountered by the incoming signal. As GNSS signals 

are right hand circularly polarized, GNSS antennas are also right hand circularly polarized. Desired 

characteristics of GNSS antennas are: the frequency selectivity, a high gain towards the satellites, 

multipath and interference rejection capabilities, low gain in directions where no satellite is located 

and a stable phase and group delays.  

The antenna has an impact on the signal quality. As an example, a high-gain dish antenna with a large 

diameter is directive and allows to amplify a signal arriving from one direction while attenuating all 

other. An omnidirectional antenna will have less gain in a given direction but will receive several signals 

with a fair 𝐶 𝑁0⁄ . Depending on the usage, different antennas can be selected. For the observation of 

tiny signal distortions, high-gain dish antennas are preferred. However, typical civil aviation users have 

antenna with a positive gain in the up direction and good rejection in the down direction. 

3.2.2 RF front-end  

After the antenna, the signal is passing through the RF front-end where it is amplified, down-converted 

and filtered. The down-conversion consists in reducing the signal carrier frequency in order to reach 

intermediate frequencies (IF) and filter the IF signal more selectively. The down-conversion is realized 

by multiplying the incoming signals by local sinusoidal waves generated by local oscillators. Several 

stages are usually necessary to translate the signal to IF or baseband.  

The antenna and the summed effect of the different equivalent baseband filters and electronic 

components, part of the RF front-end, determine the so-called equivalent selective filter or pre-

correlation filter of the GNSS receiver. In general, the last filter of the RF front-end (the most selective) 

is the one that will dominate the pre-correlation filter.  

Figure 3-8 gives the chip shapes after applying a 6th-order Butterworth pre-correlation filter of 24 MHz 

(in red) and 12 MHz (in blue) double-sided. It is noticeable that a delay visible on the chip affects 

filtered measurements. The delay is higher when the filter bandwidth is lower. 

At the output of the RF front-end, the GNSS signal is dominated by the noise. The next step of the 

signal processing which is the quantization of the signal consists essentially of a noise quantization 

more than a GNSS signal quantization. 
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Figure 3-8. Influence of the filter bandwidth on chip shapes. 

3.2.3 Analog to digital converter (ADC) 

The ADC is the last step of the GNSS receiver analog processing. The purpose of this device is to digitize 

the analog signal. The signal is quantized in amplitude and in time. The process of time quantization is 

called sampling. The sampling period 𝑇𝑠 is an important parameter because it is one of the parameters 

linked to the resolution with which the signal is observed. Another parameter linked to the resolution 

of the digitized signal is the number of bits used to quantize the amplitude of the signal. If only few 

quantization levels are available, the digitized signal will suffer from quantization losses. In general, to 

avoid these losses, the receiver can use a multi-bit ADC. In this case, an Automatic Gain Controller 

(AGC) is necessary to adapt the power of the received signal to the ADC quantization range and avoid 

signal distortions [Parkinson and Spilker, 2006].  

3.2.4 Signal expression at the output of the analog section 

Considering the ideal GNSS signal at the output of the satellite 𝑠𝑠(𝑡), the signal 𝑠𝑖𝑛𝑝𝑢𝑡(𝑡) at the receiver 

antenna input can be written as a function of the propagation medium impulse response  𝑔𝑝𝑟𝑜𝑝(𝑡):  

When the signal goes through the antenna section, it is convolved with the impulse response of the 

antenna 𝑔𝑎𝑛𝑡(𝑡). At the output of the antenna 𝑠(𝑡), the signal can be modeled as:  

The signal at the output of the RF front-end 𝑠̃(𝑡) can be expressed as a function of the impulse response 

of the RF front-end ℎ𝑅𝐹(𝑡). 

The last step is the A/D conversion which consists in a quantization of the signal. The signal 𝑠̃𝑛 at the 

output of the ADC can be modeled as: 

 𝑠𝑖𝑛𝑝𝑢𝑡(𝑡) = 𝑔𝑝𝑟𝑜𝑝(𝑡)∗ 𝑠𝑠(𝑡) (3-20) 

 
𝑠(𝑡) = 𝑔𝑎𝑛𝑡(𝑡)∗ 𝑠𝑖𝑛𝑝𝑢𝑡(𝑡) (3-21) 

 
𝑠̃(𝑡) = ℎ𝑅𝐹(𝑡)∗ 𝑠(𝑡) (3-22) 
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where 𝑓𝑠 = 1 𝑇𝑠⁄  is the sampling frequency in hertz. 

Finally, the signal at the GNSS receiver analog section output can be written as a function of the signal 

at the satellite output: 

Where 𝑔𝑡𝑜𝑡(𝑡) = (ℎ𝑅𝐹 ∗ 𝑔𝑎𝑛𝑡 ∗ 𝑔𝑝𝑟𝑜𝑝)(𝑡) is the impulse response of the propagation medium, the 

antenna and the RF front-end equivalent filter. 𝑔𝑡𝑜𝑡(𝑡) is equivalent to a delay 𝜏𝑐(𝑡) on the code and 

a delay 𝜏𝜑(𝑡) on the carrier phase that are time-dependent. 

Expressions of the two delays are function of parameters defined in 2.1.3 and can be expressed in 

seconds as: 

 

and  

 

The carrier phase delay caused by the propagation of the signal is usually given in radian and is function 

of the carrier frequency: 

It is important to notice that the Doppler Effect, caused by the relative velocity between the satellite 

and the receiver and signals propagation effects, is included in the definition of the phase delay 𝜑𝑝(𝑡).  

At a given time, the Doppler frequency 𝑓𝑑𝑜𝑝 is linked to the phase delay by: 

It entails that 𝜑𝑝(𝑡) can be written as a function of the signal initial phase 𝜑𝑝0: 

As an example, considering the expression of the GPS L1 C/A signal 𝑠𝑠_𝐶 𝐴⁄ (𝑡) at the satellite antenna 

output defined by equation (3-5): 

the signal 𝑠̃𝑛_𝐶 𝐴⁄  at the output of the ADC can be modeled as: 

 

 

 
𝑠̃𝑛 = 𝑠̃(

𝑛

𝑓𝑠
) (3-23) 

 𝑠̃𝑚 = (𝑔𝑡𝑜𝑡 ∗ 𝑠𝑠)(
𝑛

𝑓𝑠
) (3-24) 

 
𝜏𝑐(𝑡) =

𝜌𝑢
𝑖 (𝑡)

𝑐
=
𝑅𝑢
𝑖 +𝛿𝑡𝑢 + 𝑒𝑟𝑟𝑜𝑟𝑠𝜌,𝑢

𝑖

𝑐
 (3-25) 

 
𝜏𝜑(𝑡) =

𝜑𝑢
𝑖 (𝑡)

𝑐
=
𝑅𝑢
𝑖 +𝛿𝑡𝑢+𝑒𝑟𝑟𝑜𝑟𝑠𝜑,𝑢

𝑖 +𝜆𝑁𝑖

𝑐
 (3-26) 

 
𝜑𝑝(𝑡) = 2𝜋𝑓0𝜏𝜑(𝑡) (3-27) 

 
𝑓𝑑𝑜𝑝 =

1

2𝜋

𝑑𝜑𝑝

𝑑𝑡
 (3-28) 

 
𝜑𝑝(𝑡) = 2𝜋𝑡𝑓𝑑𝑜𝑝(𝑡) + 𝜑𝑝0 (3-29) 

 
𝑠𝑠_𝐶 𝐴⁄ (𝑡) = 𝐴𝑑(𝑡)𝑐(𝑡) 𝑐𝑜𝑠(2𝜋𝑡𝑓0)  

 
𝑠̃𝑛_𝐶 𝐴⁄ = 𝐴𝑑(

𝑛

𝑓𝑠
− 𝜏𝑐 (

𝑛

𝑓𝑠
) , 𝑓𝑑𝑜𝑝 (

𝑛

𝑓𝑠
)) 𝑐̃ (

𝑛

𝑓𝑠

− 𝜏𝑐 (
𝑛

𝑓𝑠
) ,𝑓𝑑𝑜𝑝 (

𝑛

𝑓𝑠
)) 𝑐𝑜𝑠(2𝜋

𝑛

𝑓𝑠
𝑓𝐼𝐹 +𝜑𝑝(

𝑛

𝑓𝑠
))+ 𝑛̃𝑠(

𝑛

𝑓𝑠
) 

(3-30) 
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where 

- 𝑛̃𝑠 is an additive perturbation that affects the GNSS signal. It is modeled as a filtered white 

Gaussian noise (thermal noise). 
- 𝜑𝑝(𝑡) is the phase delay of the signal induces by the propagation, the antenna and the RF 

front-end in radian. 

- 𝑓𝐼𝐹  is the intermediate frequency after the down-conversion in hertz. 
- 𝑓𝑑𝑜𝑝(𝑡) is the Doppler frequency affecting the signal  in hertz. This term is time-dependent. 

- 𝑐̃(𝑡, 𝑓𝑑𝑜𝑝) is the filtered PRN chips sequence affected by a Doppler 𝑓𝑑𝑜𝑝 at time 𝑡. 

- 𝑑(𝑡,𝑓𝑑𝑜𝑝) is the filtered data sequence affected by a Doppler 𝑓𝑑𝑜𝑝 at time 𝑡. 

The same concept can be applied to other signals. 

To simplify formula without losing generality, the influence of the ADC is not taken into account in the 

expression of the signal at receiver digital section input. In the following, derivations are proposed 

considering a continuous signal. 

3.3 Digital processing of GNSS receiver 

After the digitization of the signal, the signal is processed in three main steps: the acquisition, the 

tracking and the data demodulation. The acquisition and the tracking aim at estimating the incoming 

signal parameters (code delay, carrier phase and Doppler). These parameters were defined in 3.2.4. 

These processes are all based on the correlation principle which is described in 3.3.1. The acquisition 

is introduced in 3.3.2. Then, code tracking and phase lock loops are described in 3.3.3. As introduced 

in this chapter, the estimation of the navigation solution is not tackled because the research about 

GNSS signal distortions performed in this study is limited to the pseudorange measurement domain. 

3.3.1 Correlation process 

The correlation process is at the base of the GNSS receiver processing. First of all, a correlator output 

model is given and some notations that are used in the continuation of this manuscript are introduced. 

Then, correlation functions that are derived by GNSS receivers are presented taking into account 

correlation function distortions induced by the analog section of the receiver. Finally, some important 

correlation function properties are given.  

3.3.1.1 Correlator output model 

To extract information from the GNSS signal buried in the noisy RF front-end output, the receiver has 

to perform a correlation operation between the received signal and two local copies of the GNSS signal 

of interest (at least a copy of its PRN code and carrier, which are known by the receiver). One copy of 

the signal represents the in-phase component (𝑠𝑙𝑜𝑐𝑎𝑙_𝐼(𝑡)) and the other one the quadrature-phase 

component (𝑠𝑙𝑜𝑐𝑎𝑙_𝑄(𝑡)). 

 

 
𝑠𝑙𝑜𝑐𝑎𝑙_𝐼(𝑡) = 𝑐(𝑡 − 𝜏̂)𝑐𝑜𝑠(2𝜋𝑡𝑓𝐼𝐹 + 𝜙̂(𝑡)) (3-31) 
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where 

- 𝜏̂ is the incoming signal group delay estimated by the receiver. 

- 𝜙̂(𝑡) is the incoming signal carrier phase delay estimated by the receiver. 

The correlation operation is generally performed over one or an integer multiple of the PRN code 

period. The resulting correlation function 𝑅 (considering only the in-phase local replica) can be 

expressed as: 

𝑅(𝜀𝜏, 𝜀𝜑) =
1

𝑇𝑖𝑛𝑡
∫ 𝑠𝑙𝑜𝑐𝑎𝑙_𝐼(𝜏̂ − 𝑡)𝑠̃

∗(𝑡)𝑑𝑡
𝑇𝑖𝑛𝑡

0
 

 

where 

- 𝑇𝑖𝑛𝑡 is the coherent integration duration in second. 

- 𝑠̃∗(𝑡) is the conjugate of the signal at the output of the GNSS receiver analog section. 

- 𝜏̂ is the delay of the local PRN code in second. 

- 𝜙̂(𝑡) is the phase of the local carrier (that can evolve over time) in radian. 

- 𝜀𝜏 is the difference between the incoming signal and the local code replica delay in second. 
- 𝜀𝜑 is the difference between the incoming signal and the local phase replica in radian. 

This processing thus takes advantage of the correlation properties of the spreading codes used by GNSS 

signals. GNSS spreading code families have two main properties: 

- Poor cross-correlation: the correlation function between any two different PRN codes is very 

small whatever the delay between the two signals is.   

- Strong autocorrelation: the correlation between a PRN code and a local replica of itself is 

maximum when they are synchronised and is very low when they are not synchronized within 

one chip (the autocorrelation functions of the signals of interest are provided in 3.1). 

In addition, the correlation process permits to accumulate the power of the data bit over the coherent 

integration duration, while it averages out all the other signals that are not containing the PRN code  

(such as the noise or interference). The consequence is such that the correlator output of the useful 

signal should dominate the noise (when the local replica and the incoming signal are synchronized). 

A simplified model for the in-phase correlator output affected by thermal noise (assuming a constant 

code and carrier Doppler during the coherent integration duration and considering that the correlation 

is realized within one data bit) is given by [Julien, 2006]: 

where 

- 𝑅𝑠̃ is the correlation function between the local replica and the received signal code (which is 

an element of the received signal). Note that it takes into account the effect on the incoming 

 
𝑠𝑙𝑜𝑐𝑎𝑙_𝑄(𝑡) = 𝑐(𝑡 − 𝜏̂) 𝑠𝑖𝑛(2𝜋𝑡𝑓𝐼𝐹 + 𝜙̂(𝑡)) (3-32) 

 

𝑅(𝜀𝜏, 𝜀𝜑) =
1

𝑇𝑖𝑛𝑡
∫ 𝑐(𝜏̂ − 𝑡)𝑐𝑜𝑠(2𝜋𝑓𝐼𝐹(𝜏̂ − 𝑡) + 𝜙̂(𝑡)) 𝑠̃

∗(𝑡)𝑑𝑡

𝑇𝑖𝑛𝑡

0

 (3-33) 

 
𝐼(𝜀𝜏 ,𝜀𝜑, 𝜀𝑓)= 𝐴𝐷𝑅𝑠̃(𝜀𝜏)

𝑠𝑖𝑛 (𝜋𝜀𝑓𝑇𝑖𝑛𝑡)

𝜋𝜀𝑓𝑇𝑖𝑛𝑡
𝑐𝑜𝑠(𝜀𝜑)+ 𝑛𝐼 (3-34) 
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signal of the propagation channel, the antenna and the RF front-end equivalent filter. The 

expression of filtered correlation function is given in appendix A. 

- 𝑛𝐼 is the noise at the in-phase correlator output. This noise is assumed Gaussian and its power 

is derived in appendix A taking into account the antenna and RF front-end equivalent filter. 

- 𝐴 is the amplitude of the received signal at the receiver input. 

- 𝐷 is the sign of the incoming signal navigation data bit (if any) during the correlation operation. 

- 𝜀𝜏 is the code delay difference between the local replica and the received signal  in second. 
- 𝜀𝜑 is the carrier phase difference between the local replica and the received signal. It 

corresponds to the carrier phase difference in the middle of the correlation interval in radian. 

- 𝜀𝑓 is the Doppler difference between the local replica and the received signal  in hertz.  

From the previous model (equation (3-34)), it can be seen that the correlator output will dominate the 

noise only if 𝜀𝜏, 𝜀𝜑 and 𝜀𝑓 are close to zero. There is thus a need to synchronize the local replica 

generated by the receiver with the incoming signal of interest. 

All GNSS receivers also use the so-called quadrature-phase correlator outputs obtained from the 

correlation of the incoming signal with a local replica of the signal quadrature-phased component 

(𝑠𝑙𝑜𝑐𝑎𝑙_𝑄(𝑡)). The model of the quadrature-phase component is given by: 

Where 𝑛𝑄 is the noise at the quadrature-phase correlator output. This noise is assumed Gaussian and 

is independent from 𝑛𝐼. It has the same power as 𝑛𝐼. 

3.3.1.2 Correlator output model function of the code delay 

𝐼 and 𝑄 are dependent upon the code delay error, the carrier phase error and the Doppler error. 

Nevertheless in signal processing, correlator outputs are also estimated for code delay errors different 
from zero. Assuming that 𝜀𝜑 = 0 and 𝜀𝑓 = 0, the following notations will be used in the continuation. 

Figure 3-9 gives an illustration of the normalized code correlation function on a BPSK code sequence 
of seven chips. It corresponds to a simplified configuration where 𝜀𝜑 = 0 and 𝜀𝑓 = 0. Three cases are 

represented, on the top the local replica is in advance compared to the incoming signal (𝜀𝜏 = −𝑇𝑐 2⁄ ). 

On the middle, both signals are synchronized. On the bottom, the local replica is delayed compared to 

the incoming signal (𝜀𝜏 = 𝑇𝑐 2⁄ ). The blue point on correlation function corresponds to the correlator 

output given by the convolution of the two represented signals. 

 

 

 

 

 

 
𝑄(𝜀𝜏,𝜀𝜑, 𝜀𝑓) = 𝐴𝐷𝑅𝑠(𝜀𝜏)

𝑠𝑖𝑛 (𝜋𝜀𝑓𝑇𝑖𝑛𝑡)

𝜋𝜀𝑓𝑇𝑖𝑛𝑡
𝑠𝑖𝑛(𝜀𝜑)+ 𝑛𝑄 (3-35) 

 𝐼𝜀𝜏 = 𝐼(𝜀𝜏, 0,0) = 𝐴𝐷𝑅𝑠(𝜀𝜏)+ 𝑛𝐼 (3-36) 

 𝑄𝜀𝜏 = 𝑄(𝜀𝜏 ,0,0) = 𝑛𝑄 (3-37) 
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Figure 3-9. Illustration of the code correlation process for different code delays between the incoming 

signal and the local replica. 

3.3.1.3 GNSS receiver correlation function  

For GPS L1 C/A, GPS L5 and Galileo E5a signals, local replicas generated by the receiver have the same 

modulation as the incoming signals. By consequence, the correlation functions estimated by the GNSS 

receiver are defined by autocorrelation expressions presented in section 3.1. Nevertheless, in the same 

section, the expression of the 𝐶𝐵𝑂𝐶(6,1, 1 11⁄ ,−) autocorrelation (𝑅𝐶𝐵𝑂𝐶(6,1,1 11⁄ ,−)) is 

mathematically defined while civil aviation receivers will generate a 𝐵𝑂𝐶(1,1) instead of a 
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𝐶𝐵𝑂𝐶(6,1,1 11⁄ , −) local replica to simplify receivers signal generation. By consequence, civil aviation 

receivers will track Galileo E1C signals via a 𝑅𝐶𝐵𝑂𝐶(6,1,1 11⁄ ,−)/𝐵𝑂𝐶(1,1) correlation function. 

Even if it does not change significantly tracking performance, the difference of shape between 

𝑅𝐶𝐵𝑂𝐶(6,1,1 11⁄ ,−) and 𝑅𝐶𝐵𝑂𝐶(6,1,1 11⁄ ,−)/𝐵𝑂𝐶(1,1) has an influence on the impact of signal distortions on 

the tracking. 

The correlation function of a 𝐵𝑂𝐶(1,1) and a 𝐶𝐵𝑂𝐶(6,1, 1 11⁄ ,−)-modulated signals can be modeled 

as: 

𝑅𝐶𝐵𝑂𝐶(6,1,1 11⁄ ,−)/𝐵𝑂𝐶(1,1)(𝜏) = ((√
10

11
𝑠𝑐𝐵𝑂𝐶(1,1) −√

1

11
𝑠𝑐𝐵𝑂𝐶(6,1))∗ (𝑠𝑐𝐵𝑂𝐶(1,1))

∗
)(𝜏) 

The expressions of 𝑅𝐶𝐵𝑂𝐶(6,1,1 11⁄ ,−)/𝐵𝑂𝐶(1,1) and 𝑅𝐵𝑂𝐶(1,1)are given in section 3.1.5. 

The difference between the 𝐶𝐵𝑂𝐶(6,1,1 11⁄ , −) autocorrelation function in blue and the 

𝐶𝐵𝑂𝐶(6,1,1 11⁄ , −)/𝐵𝑂𝐶(1,1) correlation function in red is illustrated on Figure 3-10. 

 

Figure 3-10. Correlation functions between a CBOC(6,1,1/11)-modulated signal and a CBOC(6,1,1/11)-

modulated signal (blue) or a BOC(1,1)-modulated signal (red). 

3.3.1.4 Filtered correlation functions 

When the incoming signal goes through the analog section of the receiver, its characteristics are 

modified as defined in section 3.2. In particular, the equivalent filter of the antenna and the RF front-

end induces distortions on the signal before the correlation function process. The consequence is that 

correlation functions are also distorted depending on the pre-correlation function characteristics. 

Figure 3-11 gives an example of correlation function shapes after applying a 6th-order Butterworth pre-

correlation filter of 24 MHz (in red) and 12 MHz (in blue) double-sided. Correlation functions are 

delayed because of the filtering effect and the delay is higher when the filter bandwidth is lower. 

 𝑅𝐶𝐵𝑂𝐶(6,1,1 11⁄ ,−)/𝐵𝑂𝐶(1,1)(𝜏)

= √
10

11
𝑅𝐵𝑂𝐶(1,1)(𝜏) −√

1

11
𝑅𝐵𝑂𝐶(1,1)/𝐵𝑂𝐶(6,1)(𝜏) 

(3-38) 
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Nevertheless, in Figure 3-11, the delay is not represented to underline difference that appears on the 

shape of the correlation function because of the filter. 

 

Figure 3-11. Correlation functions for different pre-correlation filters. 

3.3.1.5 Correlation function and filtering properties 

Taking back notations introduced earlier in the document: 

- 𝑠(𝑡) is the nominal signal at the antenna output and at the input of the RF front-end. 

- 𝑠𝑙𝑜𝑐𝑎𝑙(𝑡) is the local replica. 

Considering that a distortion affects the signal, new notations are introduced: 

- 𝑠𝑑(𝑡) = 𝑠(𝑡) + 𝑑(𝑡) is the distorted signal at the antenna output and equivalently at the input 

of the RF front-end. 

- 𝑑(𝑡) is the distortion affecting the temporal signal, represented as an additive component.  

Due to the linearity property of the convolution product, the filtered distorted signal 𝑠̃𝑑(𝑡) can be 

rewritten as: 

where 

- 𝑑(𝑡) = (ℎ𝑅𝐹 ∗ 𝑑
∗)(𝑡) is the signal distortion affecting the temporal signal  filtered by the RF 

front-end. 

- 𝑠̃(𝑡) = (ℎ𝑅𝐹 ∗ 𝑠
∗)(𝑡) is the nominal signal filtered by the RF front-end. 

- ℎ𝑅𝐹(𝑡) is the RF front-end filter impulse response. 

The linearity property of the convolution product entails that the correlation function  of 𝑠̃𝑑(𝑡) with 

the local replica is equal to: 

where 

- 𝑅𝑠̃(𝜏) = (𝑠̃ ∗ 𝑠𝑙𝑜𝑐𝑎𝑙
∗ )(𝜏) is the correlation function between the filtered nominal signal and the 

local replica. 

 
𝑠̃𝑑(𝑡) = (ℎ𝑅𝐹 ∗ 𝑠𝑑

∗)(𝑡)  = (ℎ𝑅𝐹 ∗ (𝑠
∗ +𝑑∗))(𝑡) =  𝑠̃(𝑡) + 𝑑(𝑡) (3-39) 

 
𝑅𝑠̃𝑑(𝜏) = 𝑅𝑠̃(𝜏)+ 𝑅𝑑(𝜏) (3-40) 
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- 𝑅𝑑̃(𝜏) = (𝑑 ∗ 𝑠𝑙𝑜𝑐𝑎𝑙
∗ )(𝜏) is the correlation function between the filtered distortion and the 

local replica. 

It is noticeable that the associative property of the convolution product leads to:  

 

 

Where 𝑅𝑠(𝜏) = (𝑠 ∗ 𝑠𝑙𝑜𝑐𝑎𝑙
∗ )(𝜏) is the correlation function between the unfiltered nominal signal and 

the local replica.  

The three conclusions of these mathematical expressions are that: 

- It is equivalent to apply a filter on a distorted signal or to apply the filter on the ideal signal 

and the distortion separately. (Equation (3-39)) 

- It is equivalent to apply a filter on a distorted correlation function or to apply the filter on the 

ideal correlation function and the distortion convolved with the local replica separately. 

(Equation (3-40)) 

- It is equivalent to apply a filter on the incoming signal or to apply it on the correlation function.  

(Equation (3-41)) 

3.3.2 Acquisition 

The acquisition consists in determining if a given GNSS signal is visible and can be processed by the 

receiver. The only way to do so is to try to see if a local replica of this signal can correlate appropriately 

with it. Based on the analysis of the correlator outputs, if such a correlation occurs, it should also 

provide the receiver with a rough estimation of the GNSS signal delay and Doppler.  

The typical acquisition detector does not need a local replica synchronized in phase: 

where 𝐾 referred to as the number of non-coherent summations. 

The acquisition stage is thus accomplished sequentially by testing all possible combinations of code, 

delay and Doppler that the incoming signal of interest can take. This is thus equivalent to use discrete 

bins on a grid of code delays and Doppler frequencies, all these bins representing a 2-D grid. For each 

bin of the so-called acquisition grid, a correlation is performed between the incoming signal and a local 

replica with a delay and a Doppler frequency corresponding to that bin. During acquisition, if the 

receiver does not have the knowledge about satellites in view, and by consequence does not know 

incoming signal code waveform, all possible PRN codes are tested.  

The typical size for a bin is a fraction (one half) of a chip (to have a bin hitting a high part of the PRN 

code correlation function peak) on the code delay axis and about (2/3)𝑇𝑖𝑛𝑡 on the Doppler frequency 

axis [Kaplan and Hegarty, 2006].  

 𝑅𝑠̃(𝜏) = (𝑠̃ ∗ 𝑠𝑙𝑜𝑐𝑎𝑙
∗ )(𝜏) = ((ℎ𝑅𝐹 ∗ 𝑠) ∗ 𝑠𝑙𝑜𝑐𝑎𝑙

∗ )(𝜏) = (ℎ𝑅𝐹 ∗ (𝑠 ∗ 𝑠𝑙𝑜𝑐𝑎𝑙
∗ ))(𝜏)

= (ℎ𝑅𝐹 ∗ 𝑅𝑠)(𝜏) = 𝑅𝑠̃(𝜏) 
(3-41) 

 
𝑇 =∑(𝐼2(𝑘) +𝑄2(𝑘))

𝐾

𝑘=0

 (3-42) 
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Figure 3-12. Example of GPS L1 C/A acquisition grids. On the left, a signal is acquired, whereas on the 

right no signal is found by the receiver. 

Figure 3-12 gives an example of two acquisition grids for a GPS L1 C/A signal. On the left, the acquisition 

is successful. The estimated Doppler frequency is equal to 1500 Hz and the estimated code delay is 

equal to 185 chips. 

It is noticeable that the code delay swept 1023 chips and 10 000 Hz of Doppler frequencies. 

Considering a code delay resolution of half a chip and a Doppler frequency resolution equal to 100 Hz, 

the number of correlations to perform for each PRN is equal to 2046× 10000/100 = 204 600 . 

Acquisition is generally a relatively long and cumbersome process. 

Different algorithms exist to find out the Doppler frequency and the code delay and run through the 

correlation grid more rapidly as described in [Kaplan and Hegarty, 2006]. Nevertheless no such 

technique is used in the context of this study.    

3.3.3 Tracking 

After being acquired, GNSS signals are tracked by the receiver. Tracking means that the receiver 

attempts to generate a local replica that follows the parameters of the incoming signal. During this 

phase, the code delay and the carrier phase of the incoming signal are estimated more precisely than 

at the output of the acquisition phase, generally using feedback loops known as Phase Lock Loop (PLL) 

for carrier phase tracking and Delay Lock Loop (DLL) for code delay tracking.  

Also, the process of tracking is much less demanding in processing power than that of the acquisition. 

Both code delay and carrier phase parameters are evaluated continuously until a loss of tracking. Like 

the acquisition, tracking is based on the correlation process but the two approaches are different.  

To understand a feedback loop, three important principles have to be introduced: 

- Discriminator functions: discriminators use the correlator outputs to provide measurable 

values of code delay and carrier phase tracking errors. Different discriminators with different 

characteristics can be used to track the code delay and the carrier phase.  

- Numerical Controlled Oscillator (NCO): it converts the filtered discriminator output into a 

frequency that drives the generation of the local replica. One NCO is used to generate the PRN 

code and another one to generate the carrier. 
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- Loop filters: the discriminator outputs are filtered to reduce the noise at the input of the NCO. 

Note that the level of filtering influences the reaction time of the loop. Note also that the filter 

order influences the ability of the loop to react to parameters dynamic.  

In the following, delay lock loop and phase lock loop are presented separately. In GNSS receiver, both 

tracking loops are used jointly. Note that instead of tracking the carrier phase of the incoming signal, 

it is possible to track its carrier frequency using a Frequency Lock Loop (FLL). FLL concepts are not 

detailed but information can be found for example in [Navipedia, 2015] or [Kaplan and Hegarty, 2006]. 

In this section, the second order loop filter that was adopted to process some GNSS signals is described 

to show mathematically the impact of different tracking parameters on the NCO input. 

3.3.3.1 Delay lock loop (DLL) 

In this part, the DLL concept is exposed. Then, performance of the DLL is assessed and parameters with 

an influence on this performance are listed. DLL concept and performance are of interest because it 

conditions GNSS receiver performance. 

3.3.3.1.1 DLL concept 

A DLL is a feedback loop aiming to keep the code-phase of the local replica aligned with the incoming 

signal. The general structure of a DLL is shown in Figure 3-13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-13. General structure of a DLL. Dashed block is outside the DLL. 

It is important to notice that several correlator outputs are fed into the discriminator. In general, three 

PRN code local replicas are used by the receiver (considering one signal component): an early, a 

prompt, and a late replica. In ideal tracking conditions, the prompt PRN code replica is synchronized 

with the PRN code of the incoming signal, the early PRN code replica has an advance, noted 𝐶𝑠 2⁄ , 
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compared to the PRN code of the incoming signal and the late PRN code replica is delayed by 𝐶𝑠 2⁄  

compared to the PRN code of the incoming signal. 𝐶𝑠 is known as the correlator spacing, or Early-Late 

spacing, and corresponds to the time delay between the two early and late PRN code local replicas 

used for the tracking. The mathematical definitions of replicas delivered by the code generator are 

function of the estimated code delay 𝜏̂ and are defined as: 

- 𝑐 (𝑡 − 𝜏̂ +
𝐶𝑠

2
) for the late replica, 

- 𝑐(𝑡 − 𝜏̂) for the prompt replica, 

- 𝑐 (𝑡 − 𝜏̂ −
𝐶𝑠

2
) for the early replica. 

The most common discriminators are the non-coherent Early Minus Late Power (EMLP) discriminator 

and the quasi-coherent Dot Product (DP). The two discriminators are not considered as coherent 

because they are insensitive to carrier phase error, which is interesting for a tracking robustness point 

of view. These two discriminators are defined by: 

where 

- 𝐼𝐸 = 𝐼
−
𝐶𝑠
2

 (𝑄𝐸 = 𝑄
−
𝐶𝑠
2

) is the early correlator output of the in-phase (quadrature-phase) 

component.  

- 𝐼𝐿 = 𝐼𝐶𝑠
2

 (𝑄𝐿 = 𝑄𝐶𝑠
2

) is the late correlator output of the in-phase (quadrature-phase) 

component.  

- 𝐼𝑃 = 𝐼0 (𝑄𝑃 = 𝑄0) is the prompt correlator output of the in-phase (quadrature-phase) 

component. 

A DLL aims at achieving a zero code delay tracking error. The goal of the discriminator is thus to provide 

an unbiased estimation of the actual code delay error so that the loop can react accordingly (to do so, 

the aforementioned discriminators need to be normalized). In ideal condition, perfect synchronization 

is achieved when the Early and Late correlator outputs are levelled. Some discriminator outputs are 

shown in Figure 3-14 for GPS L1 C/A as a function of the code delay tracking error at the input of the 

discriminator. In the example given in Figure 3-14, the discriminator functions are estimated from a 

normalized unfiltered ideal correlation function and the correlator spacing is equal to 𝐶𝑠 = 0.2 

chip.These plots are also called S-curves. 

The S-curve represents the discriminator output. As a consequence, a zero-crossing of the S-curve 

represents a point at which the tracking loop can be locked. It is noticeable on Figure 3-14 that only a 

stable S-curve zero-crossing can be locked: it corresponds to a S-curve zero-crossing surrounded by a 

negative value on the left and a positive value on the right. On these plots, it is assumed that the carrier 

phase tracking error is equal to zero. As a consequence, all terms on the quadrature component are 

equal to zero (no distortion on the in-phase and/or the quadrature-phase signal components).  

 
𝐷𝐸𝑀𝐿𝑃 = (𝐼𝐸

2 +𝑄𝐸
2) − (𝐼𝐿

2 +𝑄𝐿
2) (3-43) 

 𝐷𝐷𝑃 = (𝐼𝐸 − 𝐼𝐿)𝐼𝑃+ (𝑄𝐸 −𝑄𝐿)𝑄𝑃 

 
(3-44) 
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Figure 3-14. Examples of S-curves for an unfiltered GPS L1 C/A signal and different DLL discriminators, 

𝐶𝑆 = 0.2 chip. In blue is the early minus late discriminator, in orange the DP discriminator, in yellow 

the EMLP and in purple the early minus late normalized by the early plus late. 

The important part of the DLL discriminator outputs is the linear part around the code delay error equal 

to zero. Indeed, if a code delay error is affecting the DLL in the discriminator linear section range, a 

NCO command proportional to the error will be generated by the discriminator output, and the error 

will be corrected in the next loop iteration. 

The choice of the discriminator has an impact on the S-curve shape and on performance of the DLL 

that is described in the next part. 

3.3.3.1.2 DLL performance 

Classical DLL performance is dependent upon three errors: 

- the thermal noise, 

- multipath and  

- the dynamic stress error. 

In this section, only the main source of carrier tracking error is treated: the thermal noise. It is assumed 

that no signal distortion and multipath affect the incoming signal. Details about other sources of errors 

can be found as example in [Julien, 2006]. Using a non-coherent EMLP discriminator, assuming a 

perfect normalization, no frequency uncertainty in the carrier wipe-off, a RF front-end filter with unity 

gain within ±𝐵𝑓𝑒 2⁄  Hz and null elsewhere and a code delay error remaining small, the standard 

deviation of the DLL tracking error due to noise is given in meter by [Betz and Kolodziejski, 2000]:   
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In the same way and in same conditions, the DLL tracking error standard deviation can be estimated 

for a DP discriminator and is equal to [Julien, 2006]: 

where 

- 𝑇𝑐 is the chips period in second. 

- 𝑇𝑖𝑛𝑡 is the coherent integration time in second. 

- 𝑆 is the power spectral density of the signal at the receiver antenna (which depends upon the 

modulation type), normalized to unit area over infinite bandwidth. 

- 𝐶′ 𝑁0⁄  is the carrier to noise ratio in hertz. 

- 𝐵𝑓𝑒 is the double-sided font-end bandwidth in hertz. 

- 𝐶𝑠 is the early to late correlator spacing in chip. 

- 𝐵𝐷𝐿𝐿 is the code loop noise bandwidth in hertz. 

It is important to notice that DLL performance is dependent upon several receiver parameters that are: 

- The order of the DLL. It has an impact on the dynamic stress error. The higher the order of the 

loop is and the more robust the loop will be face to dynamic error. In the case of GNSS 

receivers, first order DLLs are generally used because the dynamic error is absorbed by the 

more accurate PLL and one objective of the DLL is to remove the noise on measurements.  

- The coherent integration time 𝑇𝑖𝑛𝑡. To reduce the noise of the DLL, high coherent integration 

time can be used. In practice, on data components, because of data bit transitions, the 

coherent integration time is generally limited (for instance 20 ms to track GPS L1 C/A signal). 

On pilot components, the integration time can be increased. Nevertheless, a long coherent 

integration time implies that tracked parameters have a low update rate and signal conditions 

may vary during that period. 

- The loop bandwidth 𝐵𝐷𝐿𝐿. To reduce the noise of the DLL, narrow bandwidth are implemented 

on DLL loop filters [Julien, 2006]. 
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- The RF front-end bandwidth 𝐵𝑓𝑒. In general the wider the RF front-end filter bandwidth is, the 

smaller the code tracking error will be [Julien, 2006]. 

- The DLL discriminator including the correlator spacing 𝐶𝑠. In general the smaller the correlator 

spacing is, the smaller the code tracking error is [Julien, 2006]. 

As an example, Figure 3-15 gives the standard deviation of the total DLL error considering an Early 

Minus Late (EML) discriminator and a BPSK correlation function ([Kaplan and Hegarty, 2006]). The 

coherent integration time is set to 20 ms, the code loop noise bandwidth is equal to 0.2 Hz, the 

normalized one-sided RF front-end bandwidth is set to 17 times the chip frequency and a third order 

DLL is considered. 

 

Figure 3-15. Example of PLL standard deviations due to all sources of errors function of the C/N0 

[Kaplan and Hegarty, 2006].  

3.3.3.2 Phase lock loop (PLL) 

In this part, the PLL concept is exposed. Then, performance of the PLL is assessed and parameters with 

an influence on this performance are listed. PLL concept and performance are of interest because it 

conditions GNSS receiver performance. 

3.3.3.2.1 PLL concept 

The PLL is designed to keep the carrier phase of the local replica aligned with the incoming signal. The 

general structure of a PLL is provided in Figure 3-16. 
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Figure 3-16. General structure of a PLL. Dashed block is outside the PLL.   

The concept is the same as the DLL but only two local replicas (and correlator outputs) are used. The 

two replicas are defined mathematically by: 

- 𝑠𝑖𝑛(2𝜋𝑓𝐼𝐹𝑡− 𝜑̂) for the in-phase local replica, 

- 𝑐𝑜𝑠(2𝜋𝑓𝐼𝐹𝑡− 𝜑̂) for the quadrature-phase local replica, 

where 𝜑̂ is the local carrier phase driven by the NCO.  

The atan discriminator is commonly used and is defined as: 

The PLL aims at achieving a zero carrier phase error. PLL S-curves have several stable zero-crossings 

separated by 180°. This phenomenon is at the origin of the ambiguity in the carrier phase 

measurement: it is difficult to know which stable lock point is used by the loop. The atan discriminator 

S-curve is presented Figure 3-17. 

 

Figure 3-17. S-curve of the atan PLL discriminator. 

3.3.3.2.2 PLL performance 

Classical PLL performance is dependent upon four errors: 

- the thermal noise, 

- the oscillator frequency noise, also called the Allan deviation, 
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- the oscillator vibration and 

- the dynamic stress error. 

In this section, only the main source of carrier tracking error is treated: the thermal noise. Details about 

other sources of errors can be found as example in [Julien, 2006]. 

PLL errors are also characterized by standard deviations. Assuming that the RF front-end filter is 
modeled by a filter with a unity gain within ±𝐵𝑓𝑒 2⁄  Hz and null elsewhere, the standard deviation of 

the carrier tracking error due to the thermal noise for an atan PLL discriminators is given in degree by 

[Kaplan and Hegarty, 2006]: 

where 

- 𝐶′ 𝑁0⁄  is the carrier to noise ratio in hertz. 

- 𝑇𝑖𝑛𝑡 is the coherent integration time in second. 

- 𝑆 is the power spectral density of the signal at the receiver antenna (which depends on the 

modulation type), normalized to unit area over infinite bandwidth. 

- 𝐵𝑃𝐿𝐿 is the code loop noise bandwidth in hertz. 

It is important to notice that PLL performance is dependent upon several receiver parameters that are: 

- The NCO sensitivity to vibration for some frequencies which has an impact on the oscillator 

vibration error. 

- The NCO frequency stability (drift) regarding the noise which affects the measurement (Alan 

deviation). It has an impact on the oscillator frequency noise.  

- The order of the PLL. It has an impact on the dynamic stress error. A second order PLL is 

sensitive to acceleration and a third order to the jerk. In the case of GNSS receivers, third order 

PLLs are generally used to account for any kind of signal dynamics. 

- The integration time 𝑇𝑖𝑛𝑡. A high integration time decreases the standard deviation of the PLL 

thermal noise but can lead to a loss of lock if the signal dynamic is high.  

- The loop bandwidth 𝐵𝑃𝐿𝐿. A narrow loop bandwidth decreases the standard deviation of the 

PLL thermal noise but can lead to loss of lock if the signal dynamic is high [Julien, 2006]. 

- The PLL discriminator.  

As an example, Figure 3-18 gives the standard deviation of the total PLL error considering an atan 

discriminator ([Kaplan and Hegarty, 2006]). The integration time is set to 20 ms, the Allan deviation to 

1× 10−11, the vibration sensitivity to 1× 10−9 and the vibration is equal to 0.005 g²/Hz between 

20 Hz and 2000 Hz. 
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Figure 3-18. Example of PLL standard deviations due to all sources of errors function of the C/N0 

[Kaplan and Hegarty, 2006]. 

3.3.3.3 Filtered discriminator output 

It was seen that in traditional receivers, the PLL loop filter order is set to three and the DLL loop filter 

to one. In this part, the definition of the discriminator at the output of a second order tracking loop is 

mathematically defined. The second order case is treated because used in the continuation but the 

other cases can be found in [Kaplan and Hegarty, 2006]. The mathematical definition permits to 

underline the influence of the loop filter bandwidth and the integration time on the tracking. 

The 𝑛𝑡ℎ filtered discriminator output is given by [Kaplan and Hegarty, 2006]: 

with 

𝑐𝑜𝑒𝑓𝑓1_𝑋 = 𝜔0_𝑋
2  

𝑐𝑜𝑒𝑓𝑓2_𝑋 = 1.414 × 𝜔0_𝑋 

𝜔0_𝑋 =
𝐵𝑋
0.53

 

where 

- 𝑋 = 𝐷𝐿𝐿 or 𝑋 = 𝑃𝐿𝐿 makes reference to the DLL or the PLL. 

- 𝑇𝑖𝑛𝑡 is the coherent integration time in second and corresponds also to the time between the 

estimation of two consecutive discriminator outputs. 

- 𝜔0 is the filter frequency in radian. 

- 𝐷𝑋
𝑛 is the 𝑛𝑡ℎ tracking loop discriminator output. 

- 𝐷𝑋
𝑛 is the 𝑛𝑡ℎ filtered tracking loop discriminator output. 

- 𝐵𝑋 is the bandwidth of the tracking loop filter in hertz. 

 

 
𝐷𝑋
𝑛= (𝑐𝑜𝑒𝑓𝑓1_𝑋 +𝑇𝑖𝑛𝑡 × 𝑐𝑜𝑒𝑓𝑓2_𝑋)𝐷𝑋

𝑛+ (𝑇𝑖𝑛𝑡× 𝑐𝑜𝑒𝑓𝑓2_𝑋)𝐷𝑋
𝑛−1 (3-49) 
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3.4 Conclusions  

In this chapter, the signal processing part of a typical GNSS receiver has been presented. This chapter 

starts by a diagram which proposes a general overview of a GNSS receiver. A division in three steps 

was envisaged: the signal of interest which feeds the receiver, the analog section of the receiver and 

the digital section of the receiver.  

The signal modulation has consequences on the signal characteristic and on the correlation function 

shape. The PVT computation is derived from pseudorange measurements estimated from the 

correlation function. It entails that the modulation as an impact on the receiver processing and the 

PVT estimation. This is the reason why signals of interest for this study are presented in 3.1. These are 

GNSS signals that are or will be used by civil aviation receivers for positioning and navigation. Four 

signal structures are described: GPS L1 C/A, GPS L5, Galileo E5a and Galileo E1C. For each signal, 

modulation, PSD and correlation function are defined. 

In addition to the signal structure, the analog section of the GNSS receiver has an influence on the 

correlation function, the pseudorange measurement and the PVT estimation in that sense that it pre-

conditions the signal before its processing in the digital section. The analog section is introduced in 3.2 

and the three main components are briefly presented: the antenna, the RF front-end and the ADC.  

Finally, in 3.3 the digital section is described. The correlation process is introduced in 3.3.1 before the 

presentation of acquisition (3.3.2) and tracking phases (3.3.3). A particular care is taken to define DLL 

and PLL principles because tracking loops are of primary importance for the study of GNSS signal 

distortions. Indeed, signal distortions impact straightforwardly the shape of the signal and by 

consequences receiver processing and pseudorange measurements. The derivation of the position 

(navigation processing) from pseudorange measurements is not detailed in this document because the 

impact of GNSS signal distortions is traditionally looked at the pseudorange level and not at the 

position level. 

In the next chapter, the influence of GNSS signal distortions on the receiver processing is tackled. 
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4 Impact of GNSS signal distortions on signal 

processing 

In the previous chapter, principles of GNSS receiver processing were detailed. In this chapter, the 

consequences of GNSS Signal-in-Space (SiS) distortions on the signals of interest and on the receiver 

processing presented in chapter 3 are investigated.  

In section 4.1, the two types of distortions that can be generated by the payload and that can affect a 

GNSS signal are defined. Firstly, nominal distortions that are present on signals in fault-free conditions 

(healthy satellite) are introduced. Secondly non-nominal distortions are investigated. It corresponds 

to signal distortions induced by a payload failure. Both distortion types are defined based on 

observations made in former studies.  

To illustrate concepts developed in this chapter, and before introducing the general distortion models 

that will be the core of the chapter 6, one example of representative distortion is introduced in section 

4.2. 

In section 4.3, the relation between signal distortions and the antenna/RF front-end equivalent filter 

is exposed. The impact of these distortions on tracking loops (PLL and DLL) is then investigated. It is 

seen that depending on the receiver configurations (antenna, RF front-end equivalent filter and 

tracking technique) the impact of a given signal distortion on the pseudorange measurement can be 

different. Parameters with an influence on the pseudorange measurement bias are highlighted with a 

primary interest to DGNSS applications.  

In section 4.5, two techniques which permit to observe GNSS signal distortions are described. The first 

method consists of looking at the signal in the temporal domain and is called in this manuscript the 

Chip Domain Observable (CDO) whereas the second method consists of looking at the correlation 

function between the incoming signal and the local replica. 

A conclusion ends the chapter in section 4.6.  

4.1 Category of GNSS signal distortions  

SiS signal distortions are, by definition, generated at satellite level because visible to all users and are 

divided into two categories: 

- nominal distortions which affect the signal in fault-free condition and 

- non-nominal distortions or Evil WaveForm (EWF) which affect a signal in satellite failure 

condition. 

In this section, nominal distortions are introduced based on previous studies (4.1.1). Then, the impact 

of the first and largest observed non-nominal distortion is described in details (4.1.2). An overview of 

GPS signal distortions reported in the past is also given. The part ends on speculations about the origin 

of nominal and non-nominal distortions (4.1.3).     
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4.1.1 Nominal distortions 

Even in fault-free condition (also called nominal case), signals transmitted by GNSS satellites are 

affected by small distortions. These distortions are generated by the nominal payload, coming from 

the signal generation unit and the antenna. They generally appear as distortions of the PRN chips. 

Previous works put forward characteristics of these distortions: 

- oscillations after each chip transitions (analog distortion) and  

- delay (lead or lag) between rising and falling edges of PRN chips (digital distortion). 

This phenomenon impacts the receiver processing and can introduce unwanted errors at different 

levels of the signal processing. This kind of problem was already tackled by different laboratories: 

Stanford ([Phelts et al., 2009], [Wong et al., 2010], [Wong et al., 2011], etc.), Air Force Institute of 

Technology and Ohio University ([Gunawardena and van Graas, 2012a], [Gunawardena and van Graas, 

2013], [Gunawardena, 2015], etc.), DLR ([Thoelert et al., 2014], etc.) and CNES ([Lestarquit et al., 

2012]). This section introduces some results already obtained about nominal distortions in order to 

show consequences of such distortions on GNSS receiver.  

4.1.1.1 Objective of studies on GNSS signal nominal distortions 

The two main objectives of nominal distortions studies are: 

- Increase GNSS performance (in terms of integrity and continuity). The detection of threatening 

distortions requires a detailed understanding of satellites performance when satellites are 

operating in nominal conditions. Indeed, the detection of distortion is based on a comparison 

between the nominal and the current signal behavior. An accurate definition of the nominal 

case improves the probability allocation for faulty modes. The impact of nominal distortions 

are traditionally looked at the correlation function level or/and pseudorange level. A precise 

understanding of nominal distortions is also a first step in the mitigation of these distortions 

and the increase of GNSS performance as discussed in [Wong, 2014]. 

- Quantify their impact on GNSS users. The impact of nominal distortions is dependent upon the 

receiver as it will be seen in this chapter. Most of the time, the impact of nominal distortions 

is assessed on the pseudorange measurement. 

As the causes of these small perturbations find their origin on the disturbance of the temporal signal, 

the chip domain observation was used in previous studies. The aim was to characterize nominal 

distortions generated by the payload at chip level. From this characterization and with a precise 

knowledge of receiver processing, the two main objectives defined above can be reached, it means 

that nominal distortions (including the effect of the antenna and the RF front-end) that affect final 

pseudorange measurements can be assessed.  

The characterization of nominal distortions that affect the pseudorange measurements can be difficult 

as it depends upon many parameters: the receiver configuration has an impact on the resulting 

tracking error, the satellite type (for instance satellites from different GPS blocks, potentially using 

different technologies) can create different magnitudes of error. The modeling of the distortion can be 

complex although simple models based on a limited number of parameters are generally used [Phelts 

et al., 2009], etc.  
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4.1.1.2 Different techniques to isolate nominal distortions 

Two ways to estimate nominal distortions consists in 1) observing them directly at the signal level or 

2) visualizing their effect at different stages of the receiver processing (correlation function, S-curve, 

pseudorange, etc.). However, specific equipment and/or processing are required to observe these 

distortions: high-gain antennas [Wong et al., 2010], [Thoelert et al., 2014], [Lestarquit et al., 2012] 

multicorrelator receivers [Phelts, 2001], long integration time [Lestarquit et al., 2012], etc. To isolate 

nominal signal distortions generated by the payload (and that entail the so-called natural biases) from 

distortions caused by the receiver, the 3 dB bandwidth of pre-correlation equivalent filters has to be 

chosen large enough (typically larger than 50 MHz) and the reception channel has to be calibrated.  

High-gain parabolic dish measurements are traditionally used for the study of nominal distortions 

because of their high gain and their robustness against noise, interference and multipath. This type of 

antenna can only observe one satellite at a time. It was shown in [Wong, 2014] that without any 

calibration, short term and long term errors in this measurements process cannot be distinguished from 

the satellite signal distortion range biases. The problem is that the calibration of such antenna is a 

difficult task as exposed in [Thoelert et al., 2009]. 

On the other side, omnidirectional antennas are able to collect and process several signals 

simultaneously and can be calibrated easily. But measurements are more affected by multipath and 

the 𝐶 𝑁0⁄  of signals at the output of the antenna are lower than 𝐶 𝑁0⁄  of measurements collected from 

a high-gain dish antenna. The latter drawback is that signals collected with omnidirectional antennas 

are generally filtered by RF front-ends with 3 dB bandwidth lower than 25 MHz. In this condition, the 

RF front-end has a strong influence on observed distortions. Such measurements were processed for 

instance in [Liu et al., 2006]. 

Results obtained from measurements collected with the two types of antennas are provided for 

instance in [Wong, 2014]. In this manuscript, high-gain dish and omnidirectional measurements are 

studied but no hybrid algorithm using both measurements together is envisaged.   

4.1.1.3 Nominal distortions on the signal 

Nominal distortions are generally classified into analog (ringing phenomenon) and digital (delay 

between rising and falling transitions zero-crossings) distortions. To characterize these two types of 

nominal distortions a way is to estimate distortions parameters that are able to represent these 

distortions. Analog parameters are difficult to estimate because no model is perfectly representing the 

observed ringing effects whereas the digital distortion characterization is easier to asses with only one 

parameter.  

4.1.1.3.1 Digital distortion 

Digital distortions are characterized by the parameter ∆. 

This parameter corresponds to the difference existing in the zero-crossing between rising and falling 

transitions. Figure 4-1 is a zoom on transitions for the GPS satellite 34 (Block II-A, PRN 4) obtained with 

real data from the chip domain, it means observing directly the signal. The processing technique to 

obtain such observable is presented in 4.5.2. It is noticeable that the two curves (falling transitions in 

blue and rising transitions in red) are not crossing the zero value at the same time. Indeed, a lag of 

approximately 1.5 ns exists on the falling edge zero-crossing compared to the rising one.  
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Figure 4-1. Example of delay between rising and falling transitions zero-crossings (GPS L1 C/A, PRN 4). 

The value of the delay was estimated for signals generated by different satellites. Results on GPS L1 

C/A and GPS L5 obtained by Stanford University from measurements collected with a high-gain dish 

antenna [Wong et al., 2010] are summarized in Figure 4-2. Information about the setup is available in 

[Wong et al., 2010]. 

It can be seen that the delay is satellite-dependent and that the payload technology has an influence 

on the parameter. The second important result is that the maximum value of the delay is lower than 

5 ns for GPS L1 C/A signals and around 5 ns for the GPS L5 signal sent by the Block II-F satellite (SVN 

62). 

 

Figure 4-2. Results about delay between rising and falling transitions zero-crossings for different 

signals (GPS L1 C/A and one GPS L5) [Wong et al., 2010]. 

Some results on GPS II-F4 L5 (SVN 66, PRN 27) and Galileo PFM E1/E5a are also given in [Thoelert et 

al., 2014]. Information about the setup is available in [Thoelert et al., 2014]. Table 4-1 gives a summary 

of results provided in this publication. 
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Signal Mean digital distortion (ns) 

L5 data 4.6 

L5 pilot 3.7 

E1 OS data ≈ 0 

E1 OS pilot ≈ 0 

E5a-I ≈ 0 

E5a-Q ≈ 0 

E5b-I ≈ 0 

E5b-Q ≈ 0 

Table 4-1. Results about delay between rising and falling transitions zero-crossings for different 

signals (GPS L5, Galileo E5a and Galileo E1 OS) [Thoelert et al., 2014]. 

Values estimated on GPS II-F4 L5 are consistent in [Wong et al., 2010] and in [Thoelert et al., 2014]. 

Results on Table 4-1 show that chip symmetry is better with Galileo E1 OS and E5 signals than with GPS 

L1 C/A and L5 signals. The low delay values between zero-crossings of rising and falling transitions on 

Galileo E1 was also noticed in [Gunawardena et al., 2015]. 

4.1.1.3.2 Analog distortion 

Analog distortions can be recognized by the ringing effects affecting the temporal signal. Observations 

of these distortions were realized on the temporal signal in [Wong et al., 2010] and are shown in Figure 

4-3. In red are represented the distorted chip rising transitions on all SVNs for the L1 C/A signal and in 

blue the in-phase and the quadrature-phase of the GPS II-F1 L5 (SVN 62, PRN 25). The step response 

represented for L5 signals was averaged considering a transition followed by five consecutive positive 

L5 chips to be compared to the L1 C/A step response on one L1 C/A chips. 

 

Figure 4-3. Results about analog nominal distortions (GPS L1 C/A in red and one GPS L5 in blue) 

[Wong et al., 2010]. 
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From this plot, it can be seen that a ringing phenomenon is visible on signals sent by healthy GPS 

satellites. Frequency of the ringing phenomenon is approximately equal to 20 MHz whatever the signal 

is (L5 or L1 C/A). It is noticeable that the ringing effect is attenuated at the beginning of chips but 

remains at a visible level all along the chip. 

Instead of characterizing the analog nominal distortion by a frequency and a damping factor, other 

characterizations can be preferred as in [Phelts et al., 2009]. It was proposed to characterize analog 

distortions by their equivalent step response using four parameters. For each parameter, definition 

and associated overbound value obtained in [Phelts et al., 2009] by high resolution measurements are 

given in brackets. 

- Rise time/Fall time (25 ns): It is the time it takes for the rising (falling) edge of the signal to 

increase from the preceding zero-crossing to the ideal amplitude.  

- Peak time (45 ns): It is the time it takes for the rising edge of the signal to increase from the 

preceding zero-crossing to the first peak value.  

- Settling time (180 ns (at 10 % convergence)): It is the time measured from the zero-crossing 

preceding a positive (or negative) chip to when the signal response first enters and then 

remains within a band whose width is computed as a percentage of amplitude for the 

remaining duration of the chip width.  

- Peak overshoot ratio (35 %): It is the difference of the amplitude of the first peak and the ideal 

amplitude, divided by the ideal amplitude.  

Chip shape of Galileo E1 signals is investigated in [Gunawardena et al., 2015]. Nevertheless, to 

reproduce GNSS receiver conditions, an equivalent RF filter bandwidth equal to 24 MHz was 

implemented. The consequence is that nominal distortions ringing effect cannot be distinguished from 

ringing effect caused by the receiver equivalent RF filtering.   

In several publications, such as in [Phelts et al., 2009] or [Thoelert et al., 2014], equivalent filters that 

are able to reproduce analog distortions behavior are proposed.  

4.1.1.3.3 Other distortions: observation of the quadrature-phase channel 

In addition to analog and digital nominal distortions principally studied in various publications , two 

other nominal distortions were reported on GPS L1 C/A into [Gunawardena and van Graas, 2012b]: in-

phase and quadrature-phase of the signal are imbalanced (they are not perfectly orthogonal) and a 

ringing phenomenon with a frequency equal to 10 times the GPS L1 C/A chip frequency is affecting the 

signal. Both nominal distortions are well visible on the average quadrature channel as presented in 

Figure 4-4. Different colors represent the chip observable for different chips sequences. In green is 

plotted the average of chips sequences corresponding to -1;-1;-1, in pink the chips sequence +1;+1;+1, 

in red the chips sequence -1;+1;-1, and in blue the chips sequence +1;-1;+1.  

It can be seen that whatever the chip sequence is, even when the signal is tracked, the average of the 

quadrature signal component is not null. This phenomenon is typically entailed by an imbalance 

between the in-phase and the quadrature-phase of the signal which leads to a residual of the in-phase 

signal on the quadrature-phase signal. In addition, the 10 MHz ringing, is clearly visible on the 

quadrature component of the signal. 
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Figure 4-4. Imbalance between I and Q channels and 10 MHz ringing [Gunawardena and van Graas, 

2012b]. 

4.1.2 Non-nominal distortions 

GNSS signal distortions in nominal conditions are problematic for GNSS users with high requirements 

in terms of integrity, accuracy, continuity and availability because they induce errors difficult to 

quantify and they impact receiver measurements not negligibly. Naturally, GNSS signal distortions in a 

faulty condition are burning issues for these particular GNSS users. In this section are introduced non-

nominal GNSS signal distortions, also called Evil WaveForm (EWF).    

The EWF matter is based on the initial problem raised by the first GNSS signal non-nominal distortion 

observed in 1993 on the SV 19 (block II). This anomaly was the first real incident regarding GNSS signal 

distortions. Consequently, it was the first example of something that could cause a large error in 

landing an aircraft [Adams, 1999]. The investigation of this new problem led the FAA (Federal Aviation 

Administration) to consider a new GNSS threat. The primary objective was to study the problem and 

look at the entire class of signal anomalies that could have similar effects. The agency wanted 

assurance that next-generation navigation systems will be protected, not only against SV 19 like 

anomalies, but against any other possible EWF [Adams, 1999].  

In 4.1.2.1, the SV 19 anomaly is detailed. Observations made in 1993 and already published are 

presented. In 4.1.2.2, an overview of other recorded GNSS signal distortions generated at payload level 

is given. 

4.1.2.1 Origin of the problem: the SV 19 anomaly 

The first threatening GNSS signal anomaly was reported in 1993. Several measurements were collected 

from the anomalous signal emitted by the faulty satellite. The different impacts of the failure were 

reported as in [Mitelman, 2004] or in [Edgar et al., 1999]. A summary of these impacts is proposed: 
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- Impact on the position domain. Tests made in July 1993 confirmed the presence of severe 

positioning error experienced by GPS users under certain conditions. Specifically, these tests 

indicated differentially corrected vertical position errors up to 8 m when SV 19 was included 

in the PVT solution set, compared with errors on the order of 50 cm when the satellite was 

not in view.  

An important point is that different receivers were affected differently by this error. By 

consequence, the receiver configuration is fondamentally linked to the impact of the error on 

the receiver PVT and the failure was a threat for differential users. 

- Impact on the frequency domain. The University of Leeds has noticed a difference between the 

spectrum of the unhealthy SV 19 (Block II) and the spectrum of the healthy SV 31 (Block II -A). 

These differences were observed using a 3 m dish antenna, the same RF chain and the same 

elevation (25°) and azimuth (165°) for both signal measurements.  

 

 
Figure 4-5. Spectrum of signals transmitted by a healthy satellite (left) and SV 19 during its 

failure (right). 

 

Figure 4-5 shows the L1 power spectra for the SV 31 (on the right) and the SV 19 (on the left). 

Two important points have to be noticed: 

o a 11 dB spike at the center of the main lobe of the SV 19 spectrum and 

o a slight asymmetry at the edges of the main lobe and first side lobes. 

- Impact on the time domain. Measurements were done with a 20 m high-gain antenna by the 

Aerospace Corporation to estimate the signal behavior in the chip domain for the L1 C/A (on 

the top) and for the P(Y) (on the bottom) signals. Figure 4-6 provides results for the unhealthy 

SV 19 (Block II) on the right and the healthy SV 26 (Block II-A) on the left. 
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Figure 4-6. Chip domain representation of signals transmitted by a healthy satellite (left) and 

the SV 19 during the failure (right). 

In the chip domain several key features were worth noting: 

o The zero-crossings of the C/A and P(Y) codes on the healthy SV are aligned within 

few nanoseconds, while those of SV 19 are misaligned by approximately 30 ns. (in-

phase and quadrature-phase components are not synchronized) 

o More ringing is visible after the transition on SV 19.  

An important result underlined in [Mitelman, 2004] is that the error was not detected in real time. The 

consequence is that the satellite failure was an integrity threat for GNSS users estimating a PVT 

solution with a pseudorange measurement derived from the faulty satellite without being warned. 

To summarize, an EWF was initially a distortion of the GNSS signal which could entail a “large error” 

using DGPS without being detected (thus the notion of “Evil”). 

The notion of a SBAS user is thus closely linked to EWFs: 

- The anomaly was observed in a DGNSS configuration. 

- SBAS systems are high integrity systems that are using DGNSS principles, but that are also 

meant at detecting all SiS threats. The EWF is an integrity threat that thus has to be taken into 

account in the SBAS integrity scheme. It does not means that non-SBAS users are not affected 

by the EWF threat, just that they have to take it into account in a different way. 

- Observations shown that different receivers have reported different errors depending on the 

receiver configuration. It entails that SBAS users, affected by these configuration 

dependencies, have to be taken care of cautiously. By consequence, it is a necessity for the 

SBAS to monitor and detect this kind of distortion. 

4.1.2.2 Other satellite anomalies  

The SV 19 anomaly is not the only example of reported GNSS signal distortion. In this section, an 

overview of other EWF threats is given: 
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- SV 49 (PRN 1, Block II-RM) anomaly. Since the emission of the GPS L1 signal in mid-April 2009, 

an anomaly was announced on that signal. Nowadays, the signal is sti ll unusable until further 

notice. Today, the cause of the anomaly is recognized as a reflection of the L1 signal when 

reaching the filtering stage at payload level which affect the transmitted signal [Suard, 2010]. 

The distortion is an EWF in that sense that it corresponds to a signal distortion which affects 

pseudorange measurements of all users processing the signal  in a non-nominal way. In 

addition, the impact of the distortion is different depending on the GNSS receiver 

configuration and is by consequence a threat for all DGNSS users.  

- SV 61 (PRN 2, Block II-R) anomaly. SV 61 experienced a degraded signal quality starting on 

10/31/13 and ending with maintenance on 11/3/13. The anomaly was not a threat in the sense 

that pseudorange measurements were within the normal range. Nevertheless the signal was 

affected by more noise than usually and slight distortions were observed on the correlation 

function. Correlation function distortions were not high enough to be considered as 

threatening and trigger an alarm [FAA, 2016b]. 

- SV 54 (PRN 18, Block II-R) anomaly. A first distortion was observed, starting on 7/26/09 and 

ending on 8/7/09 and a second distortion starting on 3/8/2016 still continue s. In both cases, 

the distortion consists in a correlation function distortion. In 2016, some GBASs have detected 

the signal distortion causing PRN 18 to be unused which was not the case in 2009 [FAA, 2016b].  

It is noticeable that some other signals broadcasted by GPS satellites are affected by distortions that 

could be considered as non-nominal distortions depending on the limit between nominal and non-

nominal distortions. To avoid availability issues, these distortions are considered as nominal but it is 

noticeable that they could be classified as anomalies depending on the application. In [Brenner et al., 

2009], natural signal distortions are divided in two categories: 

- SV 49-like distortion, satellite elevation-dependent. With an amplitude lower than what was 

observed on SV 49, the reflection of the signal at payload level  induces a distortion which 

depends upon the satellite elevation. This phenomenon is visible on SV 41 (PRN 14, Block II-R), 

SV 44 (PRN 28, Block II-R), SV 58 (PRN 12, Block II-RM), SV 59 (PRN 19, Block II-R), SV 60 (PRN 

23, Block II-R) and SV 61 (PRN 2, Block II-R). In another publication [Springer and Dilssner, 

2009], similar behaviors were reported on SV 43 (PRN 13, Block II-R) and SV 55 (PRN 15, Block 

II-RM). 

- Signal distortion that entails large bias. The phenomenon particularly visible on SV 60 (PRN 23, 

Block II-R) also affects, with a lower impact, some other signals. This phenomenon is visible on 

SV 41 (PRN 14), SV 45 (PRN 24), SV 46 (PRN 11), SV 47 (PRN 22), SV 51 (PRN 20), SV 54 (PRN 

18) and SV 56 (PRN 16), all from the Block II-R. 

4.1.3 Origin of GNSS signal distortions 

Distortions focused in this Ph.D. thesis are distortions generated at satellite level. They can be induced 

by the satellite payload or by the reflection of a signal at satellite level. A knowledge about payload 

components is necessary to understand what could be the cause of such distortions. Nevertheless, it 

will be seen that the lack of information available on payload components makes possible only some 

speculations about the origin of nominal as well as non-nominal distortions.   
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4.1.3.1 GPS payload components 

The GPS satellite signal generation unit can be divided in three main processing blocks [Parkinson and 

Spilker, 2006]: 

- The Mission Data Unit (MDU): baseband signals are synthetized. The signal at this stage 

consists of the multiplication of the spreading code with the square wave sub-carrier (if any) 

and the navigation message (if any).  

- Up-conversion to L frequencies: L-band carriers are generated by frequencies multipliers 

followed by intermediate amplifiers. Carriers are then BPSK-modulated with baseband signals. 

Separate balanced mixers are used for each modulated waveform to split in-phase and 

quadrature-phase components.  

- Combiner and Radio frequency Antenna Beam Forming (RABF): modulated carriers are 

summed to obtain a signal with a constant envelope. The signal is then amplified with High-

gain solid-state Power Amplifier (HPA). 

The time of a GPS satellite is managed by three Atomics Frequency Standards (AFS). AFS are used to 

tune a Voltage Control Oscillator (VCO) which provides the clock signal with the correct output 

frequency. Three clocks are used for redundancy.  

Several payload technologies are implemented on different GPS satellites. Among new technologies, 

MDU are upgraded in new GPS satellites to generate new signals such as L2C and M-code (Block II-RM) 

or also L5 (Block II-F). Moreover, high precision L1 and L2 modulators are implemented in new GNSS 

generations (Block II-RM, Block II-F). Intermediate and high power amplifiers are upgraded to high 

frequency GaAs technology and incorporate signal power and code power ratio flexibilities  for Bock II-

RM and Block II-F generations [Rajan and Irvine, 2005]. 

More details about GPS satellite payloads are available in [Marquis and Shaw, 2011], [Fan et al., 2008] 

or [Rajan and Irvine, 2005]. 

4.1.3.2 Galileo payload components  

By analogy, Galileo satellite signal generation unit can be divided in three main processing blocks [OHB 

System, 2012], [Rebeyrol, 2007]: 

- The Navigation Signal Generation Unit (NSGU): it generates the navigation message. As in GPS 

satellite, it consists of the multiplication of the spreading code with the square wave sub-

carrier (if any) and the navigation message (if any). The main difference with GPS technology 

is that the NSGU includes a navigation signal modulator which generates three digital 

modulated baseband signals: one for each frequency band (E1, E5, E6). The E5 digital 

modulated baseband signal is generated from a look-up table [GSA, 2010]. According to the 

signal bandwidth, the modulator puts the baseband signals around a digital intermediate 

frequency and keeps the signals in-phase and quadrature-phase components separated. After 

being modulated, signals are filtered by digital filters. 

- The Frequency Generation and Up-conversion Unit (FGUU): it delivers the sampling frequency 

to the NGSU, achieves the digital to analog conversion and performs the signals up-conversion 

to their respective frequency bands before broadcasting to users. Different frequencies are 

generated by independent frequency synthesizers which include two oscillators (a reference 

and a VCO), a phase detector, a loop filter and a frequency divider.  
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- Combiner and Radio frequency Antenna Beam Forming (RABF): different L-band signals are 

amplified. The two types of power amplifiers that may be used on navigation satellites are the 

Traveling Wave Tube Amplifier (TWTA) and the Solid State Power Amplifier (SSPA). At the 

payload output, before the antenna subsystem, the Output MUltipleX unit (OMUX) combines 

amplified signals. 

The time of Galileo satellites is managed by four atomic clocks. The clock unit is supported by a Clock 

Monitoring and Control Unit (CMCU). One atomic clock is chosen by the CMCU to provide the reference 

time to the FGUU. 

The main difference between GPS and Galileo signal generations is that in Galileo satellites, all 

modulations of a given L-band are digitally synthetized in one navigation signal baseband component. 

Then the composite digital waveform is converted into an analog signal before being up-converted. In 

GPS, different modulations are mixed in an analog way during the signal up-conversion. 

4.1.3.3 Speculation about SiS distortions origins 

This section aims at finding the origins of SiS signal distortions. The strategy consists of studying what 

could be the cause of nominal distortions at payload level. Then it is possible to investigate which 

payload component could lead to a signal distortion if operating in a faulty condition. 

The starting point of this approach is observation made on nominal signals especially observation 

based on chip domain. Possible explanation of all nominal distortions listed earlier are given. 

- Post-transition damped ringing effect. This phenomenon is typically entailed by bandlimited 

transfer function processes that can occur in the signal generation unit or in the transmission 

sub-system. 

- Delay between rising and falling transitions. In [ICAO, 2006] is said that this distortion is 

associated with a failure in the navigation data unit (NDU), the digital partition of a GPS 

satellite.  

- Imbalanced in-phase and quadrature-phase components. The in-phase and the quadrature-

phase components are split during the up-conversion. A slight error in balance mixers could 

explain such a distortion as presented in [Gunawardena and van Graas, 2012b]. 

- 10.23 MHz spectral components. This distortion can be explained by the imbalance between 

the in-phase and the quadrature-phase components of the signal. Indeed, the quadrature-

phase channel carries the P(Y) code with a frequency 10 times higher than the C/A signal 

carried by the in-phase channel. If both channels are not exactly orthogonal, the P(Y) code is 

visible on the C/A code in-phase component [Gunawardena and van Graas, 2012b]. 

- Transition time (at rising and falling transitions). In theory, the passage from a positive chip to 

a negative chip (or reciprocally) is instantaneous. Nevertheless, as discussed in [Gunawardena 

and van Graas, 2012b] the modulator Schottky diodes have finite switching time (between one 

hundred picoseconds to a few nanoseconds). 

- Elevation dependence. In [Gunawardena and van Graas, 2013] it was observed that signal 

distortions were dependent upon the elevation of the satellite. This phenomenon is different 

from other listed distortions in that sense that it is a time varying effect. It could be expected 

to have nominal distortions which are constant in time for a given satellite but the elevation 

dependency shows that in nominal conditions, distortions can be time-dependent. An 

explanation of this phenomenon is proposed in [Gunawardena and van Graas, 2012b]: 
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multipath reflections and phase variations at satellite level can entail such nominal distortions 

elevation dependency. In addition, it was noticed, for example in [Haines et al., 2012], that 

there is a variation of the satellite antenna group delay with the nadir angle due to the antenna 

pattern.   

It is more difficult to speculate about the cause of non-nominal distortions, nevertheless some 

conclusions can be established from the past: 

- SV 19 (1993). Two corrective actions were undertaken to solve the problem on SV 19 

[Mitelman, 2004]. The first one was to switchover the modulator and initial power amplifier 

taking place in the RABF from the primary unit to the on-board backup. It had the consequence 

to reduce the spectral asymmetry and the height of the central spectral spike. The second 

corrective action consisted of the switchover of the digital component known as navigation 

data unit (NDU) from the primary unit to the on-board backup. This second action totally 

restored the signal sent by the SV 19. To conclude the NDU was at the origin of the problem. 

It is not possible to estimate if the RABF was another origin of the problem or if it just enhanced 

the distortion generated by the NDU. 

- SV 49 (2009). As already discussed, it was suggested that the signal distortion observed from 

SV 49 was induced by a reflection at satellite level. 

4.2 Example of signal distortion 

For the sake of illustration, the same example of distortion will be assumed on the three different 

modulations (𝐵𝑃𝑆𝐾(1), 𝐵𝑃𝑆𝐾(10), 𝐶𝐵𝑂𝐶(6,1,1/11)) till the end of this chapter. Filtered distorted 

signals (blue) are compared to nominal signals (orange): on Figure 4-7 for a 𝐵𝑃𝑆𝐾(1)-modulated 

signal, on Figure 4-8 for a 𝐶𝐵𝑂𝐶(6,1,1/11)-mudulated signal and on Figure 4-9 for a 𝐵𝑃𝑆𝐾(10)-

modulated signal. Ten chips are shown. 

 

 

Figure 4-7. Nominal (orange) and distorted (blue) BPSK(1)-modulated signals on ten chips. 
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Figure 4-8. Nominal (orange) and distorted (blue) CBOC(6,1,1/11,-)-modulated signals on ten chips. 

 

 

Figure 4-9. Nominal (orange) and distorted (blue) BPSK(10)-modulated signals on ten chips. 

The distortion consists in a second order ringing distortion with a ringing frequency equal to 8 MHz 

and a damping factor equal to 2.8 Mnepers/s. A 6th-order Butterworth filter with a 24 MHz bandwidth 

is applied to model the pre-correlation filter. 

Nominal and distorted filtered signals shown on figures above will be used to illustrate the impact of 

signal distortions on a GNSS receiver.  

4.3 Impact of GNSS signal distortions on the receiver 

After the description of GNSS signal distortions (nominal and non-nominal) reported in previous 

studies, in this section impacts of GNSS signal distortions on the user are listed and some illustrations 

are proposed. The impact of a distortion on the pseudorange measurement is logically dependent 

upon the distortion affecting the SiS. Nevertheless, the impact is also dependent upon several 

parameters that are receiver-dependent and that are function of: 



 4.3 Impact of GNSS signal distortions on the receiver 

 103 
 

- the antenna and RF front-end equivalent filter and 

- the tracking technique. 

The difference of receiver configurations is one of the main problems in differential systems. Indeed, 

if the reference receiver configuration is different from the user receiver configuration, both receivers, 

processing the same signal affected by the same distortion, might be affected by different errors on 

the pseudorange. As differential corrections are based on pseudorange measurements, corrections 

estimated at reference level could be not adapted to a user with another configuration.  

In this section, illustrations show the impact of the distortion on the DLL and on pseudorange 

measurements. The pseudorange measurement error is of primary interest because official 

requirements on GNSS signal distortions aim at limiting the impact of these distortions at pseudorange 

level. As a consequence, the impact of a distortion has finally to be assessed on pseudorange 

measurements to know if a receiver meets requirements regarding the considered distortion. 

4.3.1 RF front-end and antenna equivalent filters 

The antenna and the RF front-end were presented in sections 3.2.1 and 3.2.2. The influence of the 

antenna and the RF front-end is visible on the sampled signal and consequently on all the downstream 

receiver processing. Specifically, the equivalent pre-correlation filter model, dependent upon the 

antenna and the RF front-end, has an impact on the pseudorange measurement error. More precisely, 

three parameters of the antenna and the RF front-end equivalent filter have an influence on the signal 

before its digitization: 

- The technology of the antenna (and RF front-end) which has an influence on the filter pattern 

and the “filtered signal shape”. It can introduce distortions on the signal. 

- The 3 dB bandwidth of the antenna and RF front-end equivalent filter. Figure 3-8, shown in 

3.2.2, already illustrates the rounding of the correlation function peaks entailed by the pre-

correlation equivalent filter bandwidth. 

- The maximum group delay variation of the equivalent filter which has an influence on the 

“signal shape”. It can introduce distortions on the signal. 

This last parameter is also called the maximum differential group delay and is defined in [ICAO, 2006] 

by: 

where 

- 𝑓𝑐𝑒𝑛𝑡𝑒𝑟 is the pre-correlation band pass filter center frequency in hertz, 

- 𝑓 is any frequency within the 3 dB bandwidth of the pre-correlation filter in hertz, 

- 𝜙 is the combined phase response of pre-correlation band pass filter and antenna in radian, 

- 𝜔 is equal to 2𝜋𝑓. 

4.3.2 Impact on tracking loops 

In this part, the impact of distortions on the tracking and more precisely on the DLL and PLL is tackled. 

|
𝑑𝜙

𝑑𝜔
(𝑓𝑐𝑒𝑛𝑡𝑒𝑟)−

𝑑𝜙

𝑑𝜔
(𝑓)| (4-1) 
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It is assumed that the distortion affects only the in-phase signal component or the quadrature-phase 

signal component. This assumption is important to simplify the study of GNSS signal distortions. 

Instead of having a two dimensional distortion, the problem is reduced to one dimension. It is 

noteworthy that distortions on both components can affect GNSS signals. Nevertheless, the correlation 

process is performed between the incoming signal and a local replica that reproduces the PRN code of 

only one channel of the incoming signal (in-phase or quadrature-phase). For this reason, models which 

represent threatening distortions define the distortion only on one component of the signal.  

4.3.2.1 Impact on the DLL 

The DLL design has a major influence on the final pseudorange measurement and more precisely, three 

parameters of the DLL which are: 

- the receiver local replica,  

- the discriminator type and  

- the correlator spacing used to perform the tracking.  

The local replica has an impact on the correlation function and consequently on the S-curve whereas 

the discriminator type and the correlator spacing only have an impact on the S-curve.  

4.3.2.1.1 DLL parameters with an influence on the distortion that affects the pseudorange 

measurement 

Regarding the influence of the local replica, the problem is raised especially for the 𝐶𝐵𝑂𝐶(6,1,1/11) 

modulation on E1C signal. Indeed, for BPSK modulations, same BPSK-modulated replicas are always 

used for the tracking. However, civil aviation decided to choose Galileo E1C receivers that are able to 

generate 𝐵𝑂𝐶(1,1) modulated local replicas instead of 𝐶𝐵𝑂𝐶(6,1,1/11) for simplicity reasons. An 

illustration of the 𝑅𝐶𝐵𝑂𝐶(6,1,1 11⁄ ,−)(𝜏) and 𝑅𝐶𝐵𝑂𝐶(6,1,1 11⁄ ,−)/𝐵𝑂𝐶(1,1)(𝜏) correlation functions is given in 

Figure 3-10. 

The impact of the local replica used to derive correlator outputs was introduced in 3.3.1.3. It shows 

that depending on the receiver local replica modulation, correlation functions are different, and are 

by consequence impacted differently by a distortion. It entails that a signal distortion will have a 

different impact on two GNSS receivers with different local replicas. Therefore, the tracking error and 

the pseudorange measurement estimated from a distorted signal are dependent upon the receiver 

local replica.  

The impact of the discriminator type on the S-curve was introduced in 3.3.3.1. In the same way, the 

discriminator type changes the shape of the S-curve and by consequence its shape when affected by a 

distortion. For that reason, the tracking error and the pseudorange measurement estimated from a 

distorted signal are dependent upon the discriminator. 

The impact of the correlator spacing is shown on Figure 4-10. The comparison is made considering a 

filtered GPS L1 C/A signal and an Early Minus Late (EML) discriminator on a normalized correlation 

function (prompt equal to one). Both nominal (dashed line) and distorted (continuous line) S-curves 

are plotted for correlator spacing’s equal to 0.2 chip (in red) and 0.35 chip (in blue). 
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Figure 4-10. EML S-curves for a nominal signal (dashed plots) and a distorted signal (continuous plots) 

BPSK(1) modulated and different correlator spacing’s: 0.2 chip (red), 0.35 chip (blue). 

The fact is that the aim of the DLL is to reach a steady-state corresponding to a stable zero-crossing of 

the S-curve. Any bias in the stable zero-crossing of the S-curve would thus result in a bias on the DLL 

synchronization, and thus in a bias on the corresponding pseudorange. In other words, if the zero-

crossing of the S-curve is not obtained for a code delay error equal to zero (perfect synchronization 

with the received signal), the DLL loop will converge towards a code delay tracking error that is 

representative of a synchronization bias. 

From Figure 4-10 it can be seen that the two S-curves are different in the nominal and the distorted 

cases. It is also remarkable that the zero-crossings of distorted S-curves are different depending on the 

correlator spacing, by consequence, pseudorange measurements estimate for various correlator 

spacing‘s will be different. 

4.3.2.1.2 Impact of a distortion on the S-curve for different modulations 

Figure 4-11 illustrates the impact of the considered distortion on the EML discriminator (𝐼𝐸 − 𝐼𝐿) 2⁄ . 

Plots represent the S-curves of that discriminator on a normalized correlation function (prompt equal 

to one). For all modulations, the correlator spacing is equal to 0.2 chip of the studied modulation. In 

blue are shown nominal S-curves (filtered by a 6th-order Butterworth filter) and in orange S-curves 

obtained from distorted correlation functions. 

It is noticeable from Figure 4-11 that the distortion has a direct impact on the S-curve. The zero-

crossing translation is more visible with the 𝐵𝑃𝑆𝐾(10) modulation and a tracking error of 0.1 chip (~3 

m) is expected for a receiver tracking the distorted signal compared to a receiver tracking the nominal 

signal. The code pseudorange measurement error is equal to the code delay error made by the DLL, 

converted in meter.  

For the 𝐵𝑃𝑆𝐾(1) and 𝐶𝐵𝑂𝐶(6,1,1 11⁄ ) modulations the S-curve zero-crossing bias is approximatively 

equal to 0.007 chip (~2.1 m). 
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Figure 4-11. Nominal (orange) and distorted (blue) EML S-curves for BPSK(1) (top left), for 

CBOC(6,1,1/11) (top right) and BPSK(10) (bottom) modulations.  

4.3.2.2 Impact on the PLL 

It is assumed that the carrier phase error of the PLL is only affected by the noise and can be neglected. 

This assumption is equivalent to presume steady state tracking conditions. In this thesis, this 

hypothesis is kept valid because transient problem is not investigated in this manuscript. 

A carrier phase error can affect the PLL if the in-phase and the quadrature-phase components are not 

orthogonal because of a distortion. In this condition, the same phenomenon as on the DLL 

discriminator will affect the PLL: the PPL S-curve zero-crossing will be shifted due to the distortion and 

a bias will appear on the carrier phase measurement. Nonetheless, due to the fact that carrier phase 

errors have a smaller order of magnitude in terms of impact on the pseudorange measurement 

(~1000 for a 𝐵𝑃𝑆𝐾(1) modulation and ~100 for a 𝐵𝑃𝑆𝐾(10) modulation), the bias induced by a 

delay of PLL S-curve zero-crossing can be neglected.  

4.3.3 Effect of nominal distortions on the tracking bias 

It was seen by looking at S-curve zero-crossing that distortions can entail biases on pseudorange 

measurements. Nominal signal distortions are presented in 4.1.1.3 on the temporal signal. 

Nevertheless, as introduced, the main objective of nominal distortions studies is to quantify the impact 

of such distortions on the pseudorange measurement. This part provides some results about the 

impact of nominal distortions on the tracking error, in 4.3.3.1 obtained from high-gain dish antennas, 

BPSK(1) CBOC(6,1,1/11) 

BPSK(10) 
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and in 4.3.3.2 obtained from omnidirectional antennas. Finally, 4.3.3.3 introduces methods that permit 

to limit the impact of nominal distortions on the tracking error. 

4.3.3.1 Tracking bias error observed from high-gain dish antenna 

As discussed in 4.3.1 and in 4.3.2, the impact of a signal distortion on the pseudorange measurement 

is dependent upon the pre-correlation equivalent filter and the tracking technique. In the context of 

nominal distortions research, the pre-correlation equivalent filter should not have any influence on 

the signal and by consequence on the pseudorange measurement. In this condition, so-called nominal 

natural biases can be estimated. This case cannot be reached but can be approached using a large dish 

antenna, a 3 dB bandwidth of the pre-correlation equivalent filter large enough (larger than 50 MHz) 

and a constant gain inside the band.  

In Figure 4-12, tracking bias curves are given considering an EML discriminator and relatively to a 

correlator spacing equal to 0.1 chip. The figure comes from [Wong et al., 2011] and each curve 

corresponds to the tracking error observed on a different PRN. Data were collected from a high-gain 

dish antenna. 

 

Figure 4-12. Tracking error induced by different GPS L1 C/A signals at different correlator spacing’s 

[Wong, 2014].One curve corresponds to one PRN. 

Measurements collected from a high-gain dish antenna are dependent upon the time of the day and 

the temperature of the antenna [Wong, 2014]. It means that a part of the bias observed on these 

curves is induced by the antenna and RF front-end. In order to remove the time varying bias induced 

by the high-gain antenna and which affects results shown in Figure 4-12, a solution is proposed in 

[Wong, 2014]. The mitigation is performed by estimating biases that affect signals collected close in 

time. After the subtraction of these biases to the different curves, residual nominal biases still affect 

pseudorange measurements but with less amplitude and can be seen as the natural biases. 

4.3.3.2 Tracking bias on a commercial GNSS receiver 

The impact of nominal distortions can also be estimated from omnidirectional antennas and 

commercial wideband receivers as in [Wong, 2014], [Gunawardena and van Graas, 2012a] or [Liu et 

al., 2006]. In these conditions, the pre-correlation equivalent filter has a larger impact on the 
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pseudorange measurement that cannot be distinguished from the impact of nominal distortions. In 

every cases, a particular care is taken to mitigate the multipath (environment free of obstacle, 

multipath-limiting antenna, tracking techniques, etc.) Results can be presented using the same 

representation as in Figure 4-12 [Gunawardena and van Graas, 2013]. Important conclusions obtained 

from omnidirectional antenna measurements about the impact of nominal distortions on a user are 

listed: 

- Impact of nominal distortions on a user is dependent upon the satellite elevation 

[Gunawardena and van Graas, 2013]. 

- Impact of nominal distortions on a user is dependent upon the RF front-end filter technology 

and bandwidth [Gunawardena, 2015], [Gunawardena and Van Graas, 2014] and more 

generally, upon the antenna and the analog section of a GNSS receiver.  

- Impact of nominal distortions on a user is dependent upon the receiver discriminator and its 

correlator spacing. 

- Nominal distortions are dependent upon the satellite. 

- As an order of magnitude, for single frequency GPS L1 C/A users, the differential error induced 

by the natural bias can be as large as ±0.12 m considering a reference with an EMLP 

discriminator and a correlator spacing equal to 0.1 chip and a user with an EMLP and a 

correlator spacing equal to 0.2 chip. This differential bias can be as large as ±0.25 m 

considering a reference with a EMLP discriminator and a correlator spacing equal to  0.1 

chip and a user with an EMLP and a correlator spacing equal to 1 chip [Wong, 2014]. 

4.3.3.3 Nominal distortions characterization and mitigation 

The impact of nominal distortions has to be taken into account in the nominal error model in order to 

be able to make the difference between nominal and non-nominal distortions. By consequence, it is 

important to quantify the impact of such distortions on civil aviation GNSS users. Moreover, it is also 

possible to mitigate the impact of nominal distortions. 

A strategy to mitigate nominal distortions can be envisaged: the characterization of the nominal 

distortions and the application of a correction on pseudorange measurements depending on the 

feature of the nominal distortions. The “Measure-and-Correct” method is described in [Wong, 2014]. 

It is noteworthy that this method can be applied only on nominal distortions because these distortions 

can be measured.  

This method has one main drawback: nominal distortions are difficult to characterize accurately. One  

of the reasons is that as presented in 4.3.3.1 and 4.3.3.2, nominal distortions vary in time (depending 

on the receiver temperature, satellite elevation, etc.). Moreover, as the impact of nominal distortions 

is receiver-dependent, each receiver has to assess the impact of nominal distortions on itself. 

Nevertheless, this strategy is studied in ARAIM (Advanced RAIM) discussions as presented in [GPS.gov, 

2016]. ARAIM is a solution proposed by the GNSS Evolutionary Architecture Study (GEAS) in the civil 

aviation context in order to guarantee LPV-200 operation worldwide in the future.  
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4.3.4 Conclusions about the impact of distortions on a user and differential 

considerations 

It is seen in section 4.3.1, 4.3.2 and 4.3.3 how standalone GNSS users are affected by signal distortions. 

To study the impact of GNSS signal distortions, several receiver parameters have to be specified and 

are listed in Figure 4-13. Without these specifications results that are provided relatively to the impact 

of signal distortions lost their interest, because the domain of applicability of results is not known.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-13. Receiver parameters having an influence on the impact of GNSS signal distortions on 

pseudorange measurements. 

As a matter of fact, signal distortions also have an impact on differential users because of their different 

impacts on receivers with different configurations.  

As presented in 2.3.1.1, differential corrections are estimated by the reference receiver from its 

estimated pseudorange measurements and the knowledge of its accurate location. The impact of the 

tropospheric error, ionospheric error and clock and ephemeris inaccuracies is not dependent upon the 

receiver and can be differentially corrected (at least partially). On the contrary, signal distortion impact 

which is dependent upon the receiver configuration cannot be corrected precisely if user and reference 

receivers configurations are too different.  

To conclude, signal distortions and especially non-nominal signal distortions are one of the main 

threats for differential users. More precisely, differential users with high requirements in terms of 

accuracy, integrity, continuity and availability have to be protected against signal distortions that 

induce large differential bias.  

If a distortion induces a too large error on pseudorange measurement estimated from the distorted 

signal, a strategy is to detect and exclude from the PVT computation the affected signal. In this 

approach the difficulty is to define a bound above which a signal is considered as hazardously distorted 

and must be excluded. The method is difficult to adopt in the nominal distortion context. Indeed, as 

Correlator spacing Local replica 

Receiver parameters with an impact on the 

pseudorange measurements  

Pre-correlation equivalent fi lter 

characteristics 

Tracking technique characteristics 

(DLL) 

Bandwidth 

Differential group delay 

Filter technology 

Discriminator type 

Impact on the correlation function (and consequently on the S-curve and the pseudorange measurement) 

Impact on the S-curve (and consequently on the pseudorange measurement) 
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underlined in [Wong, 2014], it is challenging to achieve good availability performance excluding signals 

based on their nominal distortions. Nevertheless, this is the strategy used to detect non -nominal 

distortions. 

4.4 Non-nominal signal distorsions and SBAS  

It was seen in the previous section that GNSS signal distortions are a threat for differential users that 

have to meet stringent requirements. This is the reason why SBAS users (that use mono-frequency or 

DFMC measurements) must deal with the signal distortions issue carefully. 

Even if the failure observed on SV 19 was corrected in January 1994, the problem of EWF was still 

under discussion after 1994. Indeed, one important issue raised by the distortion is about the integrity 

risk induced by signal distortions generated at payload level  on users with stringent integrity 

requirement as SBAS users. The three main questions about non-nominal distortions are: 

1) What kind of distortion can affect a GNSS signal? 

2) How to detect a GNSS signal distortion in a given Time-To-Alert (TTA) and with a given probability 
of false alarm (also called probability of fault-free detection) 𝑃𝑓𝑓𝑑  and a given probability of missed 

detection 𝑃𝑚𝑑? 

3) What is the maximum differential error induced by an undetected GNSS signal distortion? 

Solutions proposed in the past to answer to these three questions are detailed in this section.  

4.4.1 Necessity to model threatening distortions 

The first question (What kind of distortion can affect a GNSS signal?) is the most difficult to answer 

because GNSS signal distortions are seldom and are difficult to characterize. With current knowledge, 

it is not possible to be sure that if a GNSS signal distortion occurs, the distortion will have the same 

signature that what was already observed. 

Two answers of this question were proposed and are detailed in the following: 

- the Most EWF concept and 

- the ICAO Threat Model (TM) concept. 

4.4.1.1 Most EWF concept 

The Most EWF was defined in [Mitelman, 2004] by: The most evil waveform (MEWF) is the waveform 

that will produce the largest differential pseudorange error (PRE) for a particular user, while appearing 

completely benign (undetectable) to the reference station monitor receiver. 

The Most EWF concept answers to the first question (What kind of distortion can affect a GNSS signal?) 

only by fixing the maximum energy of the distortion. It means that the threat space is infinite and 

constrained by only one parameter. The second question (about the detection of distortion) is 

answered by fixing the design of the Signal Quality Monitor (SQM) implemented at the reference 

station. The answer to the third question (impact of undetected distortions) requires more 

mathematical tools. The concept is to find the maximum differential error (among considered users) 
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entailed by a GNSS signal distortion not detected by the SQM. The term Maximum Undetected 

Differential Error (MUDE) is used in the following and is referred to as this quantity. In [Mitelman et 

al., 1999], a mathematical model based on the orthogonally property (Gram-Schmidt 

orthogonalization) between the distortion and the SQM is detailed and gives the possibility to estimate 

the MUDE. 

This method has the advantage to find the worst differential error without making strong assumption 

on the distortion which is important due to uncertainties of what could happen in a faulty case.  

Nevertheless, the Most EWF concept was put aside because of  four main limitations: 

- MEWFs are not necessarily causal (it does not respect law of physics), 

- an assumed signal-to-evil ratio has to be defined to limit the threat space and no method was 

found to limit this parameter, 

- MEWFs are dependent upon the SQM design and 

- the Most EWF is dependent upon the user and the reference configurations (SQM design, 

equivalent RF front-end filter and correlator spacing). 

4.4.1.2 Proposition of a threat model: example of the ICAO TM 

Another way, adopted by ICAO, to deal with the problem of non-nominal distortions is to define a TM. 

The difficulty of this approach is to answer to the question one (What kind of distortion can affect a 

GNSS signal?). Then, a SQM can be designed to detect threatening distortions among distortions of the 

TM. Finally, the MUDE entailed by undetected distortions can be assessed. If MUDE values do not meet 

requirements, other implementations of the SQM can be undertaken until its performance meets the 

requirements.   

Due to the difficulties to characterize all non-nominal distortions which could affect a GNSS signal and 

because of the lack of observations of GNSS signal distortions (in the non-nominal case), a method is 

to propose TMs. These models are based on modeling possible phenomenon that could occur at the 

satellite level. They do not necessarily represent the reality but are approaching expected signal 

distortions which could appear on a GPS L1 C/A signal. In fact, these TMs, and their associated 

parameters range, referred to as Threat Space (TS), are powerful and necessary tools to design and 

test performance of SQM. 

The approach adopted by ICAO to define TMs for the GPS L1 C/A signal is given in the following and 

consists in two steps: 

- the definition of correlation function threats and 

- the limitation of the problem to a characterized TM defined by few parameters and a limited 

TS. 

Definition of correlation function threats 

For the sake of simplification, ICAO proposed to study only three threatening effects (also called 

“problematical effects”) on the correlation function: 

- Dead zones: If the correlation function loses its peak, the receiver’s discriminator function will 

include a flat spot or dead zone. If the reference receiver and aircraft receiver settle in different 

portions of this dead zone, MI (Misleading Information) can result. 

- False peaks: If the reference receiver and aircraft receiver lock to different peaks, MI could exist. 
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- Distortions: If the correlation peak is misshapen, an aircraft that uses a correlator spacing other 

than the one used by the reference may experience MI. 

These signal effects were selected because they might cause a GBAS or SBAS to output Misleading 

Information [ICAO, 2006]. The threat is defined on the correlation function because the pseudorange 

is estimated from correlator outputs via tracking loop processing.  

Limitation to a threat model 

The ICAO TM includes all GNSS signal distortions with the two following properties:  

- distortions have to entail at least one of the three threats (dead zones, false peaks, distortions) 

on the correlation function and 

- distortions must be physically feasible.  

ICAO defines two kinds of distortions that satisfy the two properties: a delay on the falling edge of each 

chip, and a second order oscillation at each chip transition. (Details about the ICAO TM definitions are 

defined in 6.1.1). 

Following the first property, the three correlation function threatening effects can be generated by 

these TMs to address all threatening distortions. The limitation to distortions covered by the TM is the 

consequence of the second property that a distortion has to satisfy (physically feasible). Indeed, a delay 

and a second order oscillation are “natural” in that sense that they could be easily produced by a 

malfunction of a filter or a digital to analog convertor. Even if no information is given about the link 

between the proposed distortions included in the TM and a payload failure, it seems reasonable to 

assume that payload components can provoke it. Moreover, these distortions exist with less amplitude 

in the nominal case as shown in 4.1.1.3. 

With the TM approach, the problem of EWF is reduced to a simple model.  

4.4.2 Necessity to detect non-nominal distortions  

To meet stringent requirements that are defined by ICAO, augmented systems were developed as 

presented in section 2.3. As the Ph.D. thesis focuses SBAS application, only the strategy used by SBAS 

to detect non-nominal distortions is detailed. 

The goal of SBAS regarding non-nominal deformations is to detect threatening distortions for 

differential users, it means distortions which entail differential tracking error higher than a so-called 
MERR (Maximum allowable ERRor) with a probability 𝑃𝑓𝑓𝑑  and 𝑃𝑚𝑑 in a given TTA equal to 6 s. The 

TTA notion is important in the sense that GPS Signal Performance Standard (SPS) only guarantee to 

provide in the navigation message an information about the quality of the signal within 6 hours. 

In SBAS, the detection of non-nominal distortion is performed by the SQM defined by ICAO as [ICAO, 

2006]: 

The objective of the signal quality monitor (SQM) is to detect satellite signal anomalies in order to 

prevent aircraft receivers from using misleading information (MI). MI is an undetected aircraft pseudo-

range differential error greater than the maximum error (MERR) that can be tolerated. These large 

pseudo-range errors are due to C/A code correlation peak distortion caused by satellite payload 

failures. If the reference receiver used to create the differential corrections and the aircraft receiver 
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have different measurement mechanizations (i.e. receiver bandwidth and tracking loop correlator 

spacing), the signal distortion affects them differently. The SQM must protect the aircraft receiver in 

cases when mechanizations are not similar. SQM performance is defined by the probability of detecting 

a satellite failure and the probability of incorrectly annunciating a satellite failure.  

In EGNOS, the SQM function is implemented in dedicated ground stations, the RIMS-Cs, whereas in 

WAAS, the SQM is implemented in the World Reference Stations (WRS). For the two SBASs, the SQM 

is based on the observation of the receiver correlation function between the incoming signal and the 

local replica. Details about SQM are provided in chapter 7.   

In EGNOS, each RIMS-C provides individual satellite warning flags to the CPF (Central Processing 

Facility). The CPF then performs majority voting in order to secure the diagnostic. RIMS-C channels are 

installed in fifteen of the thirty-three RIMS sites. This allows each EGNOS monitored satellite to be 

observed by at least three stations equipped with RIMS-C and make the CPF voting diagnostic robust in 

terms of missed detection and false alarm rate [Brocard et al., 2000]. As a majority voting is adopted, 

two RIMS-Cs over three have to flag the same satellite to consider that a signal distortion affect that 

satellite.  

4.4.3 Estimation of the Maximum Undetected Differential Error (MUDE) 

With the definition of a TM and a SQM, it is possible by simulations to test the capacity of the SQM to 

detect signal distortions included in the TM.  

The main difficulty to assess performance of one SQM when the TM is defined and finite, is to take 

into account all receiver configurations that have to be protected. Indeed, the impact of signal 

distortions on different receivers depends upon the receiver configurations. By consequence, for a 

given distortion, the MUDE has to be estimated considering the user receiver configuration and the 

associated reference receiver configuration leading to the worst differential error (the highest MUDE) 

for that distortion. The closer the user configuration is from the reference station configuration, the 

more adapted the differential correction is (with the effect to decrease the MUDE). In an extreme case 

where user and reference station receivers are identical, GNSS signal distortions are not a threat 

anymore for differential users because fully compensated by the differential correction. 

To limit the issue of various receiver configurations, in the civil aviation context, airborne receiver 

configurations are limited as defined by ICAO [ICAO, 2006]. ICAO defines constraints on parameters 

presented in Figure 4-13 for aircraft tracking GPS L1 C/A signals: the pre-correlation equivalent filter 

bandwidth, the local replica, the correlator spacing and the differential group delay at airborne level is 

limited. The local replica is BPSK-modulated. Two discriminators can be used by civil aviation users: the 

EML and the double delta discriminators. For receivers with an implemented EML discriminator, the 

three remaining receiver parameters with an influence on pseudorange measurements are defined in 

Table 4-2 and are given for four different regions. Regions are represented by blue rectangles in Figure 

4-14. 
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Region 

3 dB pre-correlation 

double-sided bandwidth 

(BW) (MHz) 

Correlator spacing (CS) 

(chip) 

Differential group 

delay (ns) 

1 2 <  𝐵𝑊 ≤ 7 0.04 ≤ 𝐶𝑆 ≤ 1.2 ≤ 600 

2 7 <  𝐵𝑊 ≤ 16 0.04 ≤ 𝐶𝑆 ≤ 0.235 ≤ 150 

3 16 <  𝐵𝑊 ≤ 20 0.04 ≤ 𝐶𝑆 ≤ 0.15 ≤ 150 

4 20 <  𝐵𝑊 ≤ 24 0.07 ≤ 𝐶𝑆 ≤ 0.13 ≤ 150 

 Table 4-2. Characteristics of GPS L1 C/A civil aviation receivers parameters with an influence on code 

pseudorange measurements defined by ICAO [ICAO, 2006].  

The restriction of user receiver configurations is deeply studied in [Wong, 2014] and more stringent 

limits are nowadays proposed to limit airborne receiver configurations in a Dual-frequency Multi 

Constellation (DFMC) SBAS context. 

A summary of expected configurations allowed to DFMC SBAS civil aviation users that are focused in 

this thesis is given in Table 4-3 and are represented by red rectangles in Figure 4-14. 

 GPS L1 C/A Galileo E1C 
Galileo E5a 

GPS L5 

Local replica modulation 𝐵𝑃𝑆𝐾(1) 𝐵𝑂𝐶(1,1) 𝐵𝑃𝑆𝐾(10) 

Correlator spacing (CS) 

(chip) 
0.08 ≤ 𝐶𝑆 ≤ 0.12 0.08 ≤ 𝐶𝑆 ≤ 0.12 

Narrow area around 

𝐶𝑆 = 1  

Differential group delay 

(ns) 
≤ 150 

Discriminator type EML 

3 dB pre-correlation 

double-sided bandwidth 

(BW) (MHz) 

12 ≤  𝐵𝑊 ≤ 24 

Filter technology Manufacturer freedom 

Table 4-3. Characteristics of expected civil aviation receivers parameters with an influence on code 

pseudorange measurements for different signals.  

In civil aviation application, the filter technology choice is let free to the receiver manufacturer but 

generally the equivalent pre-correlation filter is modeled by a 6th-order Butterworth [Mitelman, 2004], 

[Phelts, 2001], [Macabiau and Chatre, 2000].  

The drawback of limiting receiver configurations is that it reduces freedom of the manufacturer in 

terms of receiver design and possible innovation for competitive market sharing. 
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Figure 4-14. Summary of civil aviation and DFMC SBAS receivers configurations in terms of bandwidth 

and correlator spacing. 

4.5 Visualization of GNSS signal distortions 

To understand the impact of a given distortion on the GNSS signal processing, it is important to be able  

to visualize how this distortion affects some specific critical functions of the signal processing. Two 

different observables can be reported for the study of GNSS signal distortions:  

- The Chip Domain Observable (CDO) which is a way to extract the shape of distortions directly 

from the digitized signal samples using the PRN code periodicity. It gives information about 

𝑠̃(𝑡), the incoming signal filtered by the antenna and the RF front-end as shown in section 

4.5.2. 𝑠̃(𝑡) can be affected by a distortion. 

- The correlation function defined in section 4.5.3. It gives information about 𝑅𝑠̃(𝜏), the 

correlation function of the local replica with the incoming signal filtered by the antenna and 

the RF front-end. The signal and by consequence the correlation function can be affected by a 

distortion. 

Both observations are located after the A/D section of the receiver. In the following the two methods 

are described and compared.  

4.5.1 Standard deviation and general considerations 

One way to compare the two observables is by analyzing their standard deviation: the standard 

deviation of the noise affecting the CDO (𝜎𝐶𝐷𝑂) and correlator outputs (𝜎𝐶𝑜𝑟𝑟) are derived in this part. 

It is noticeable that the same principle can be used to estimate the two standard deviations. 

Considering that a noise with a standard deviation 𝜎𝑛 affects the digitized signal and neglecting the 

impact of the antenna and the RF front-end, the following general relation can be written: 

where 

 𝜎𝑋 =
𝜎𝑛

√𝑁𝑋𝑃𝑠 
 (4-2) 
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- X indicates the processing technique: CDO or correlation, 

- 𝑁𝑋 is the number of samples involved in the processing X and 

- 𝑃𝑠 is the power of the received GNSS signal in decibel.  

 

The computation of 𝜎𝑛 is possible considering that the noise is an averaged white Gaussian noise 

[Thevenon et al., 2014]: 

where 𝐶′/𝑁0 is the carrier to noise density ratio expressed in hertz (natural scale) and 𝐹𝑠 is the sampling 

frequency in hertz. The factor 1/2 comes from that only the noise affecting one component of the 

signal (in-phase or quadrature-phase component) is considered. This value of signal power does not 

take into account possible filtering of the noise at the antenna and RF-front end. In appendix A, the 

filter effect on the noise is taken into account for the estimation of 𝜎𝐶𝐷𝑂 and 𝜎𝐶𝑜𝑟𝑟. 

4.5.2 Chip domain observable method 

GNSS signals distortions find their origin on the disturbance of the temporal signal. Then, the first 

approach is to directly observe the impact of the signal distortion in the temporal domain as it is done  

using the CDO. The CDO observations are realized on the filtered signal 𝑠̃(𝑡) in ideal conditions and in 

non-nominal conditions, and are compared. 

This method is also known as the Vision Correlator (NovAtel) [Fenton and Jones, 2005]. Several studies 

were performed using this processing technique especially regarding the study of nominal distortions 

as in [Mitelman, 2004], [Wong, 2014], [Pini and Akos, 2007] or [Phelts et al., 2009]. Nevertheless this 

method can also be used for the study of non-nominal distortions as in [Thevenon et al., 2014]. It is 

also possible to find, in open access, a software receiver toolbox  that is able to generate the CDO from 

GNSS signal samples [Gunawardena, 2014]. 

4.5.2.1 Chip Domain Observable concept 

The Chip Domain Observable is a processing of the digitized GNSS signal that permits to observe an 

average GNSS signal on a section of the signal. The section can be chosen depending on the part of the 

signal that has to be observed and is also called in the following the observed section.  In most of 

studies, chip transitions are focused because signal distortions are enhance d by the chip transition. An 

“average” chip transition is obtained by superimposing every spreading code transitions (rising 

transitions are added and falling transitions are subtracted) during a chosen time window called the 

observation time, in order to average out the noise affecting the temporal samples of the GNSS signal.  

Superimposing only rising (or falling) transitions gives another observable  (if rising and falling 

transitions need to be distinguished). The CDO can be applied on chip (superimposing only positive, 

only negative, or all chips) or on parts of the entire code period. This method is based on the periodicity 

of the PRN code. 

The actual CDO observation is done in a discrete way and thus each discrete observation is associated 

to the notion of bin in which the signal is observed. 

 
𝜎𝑛 = √𝑃𝑛 = √

1

2
. 𝑃𝑠 ∗

𝐹𝑠
𝐶′/𝑁0

 (4-3) 
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Figure 4-15 illustrates the CDO concept. It is considered that only rising transitions are observed on an 

ideal normalized BPSK signal. The observable is centered on the transition and is built from 𝑁𝑏𝑖𝑛= 10 

values. Different notations that are used on the figure are defined below 

 

 

 

 

 

 

 

 

Figure 4-15. Illustration of the CDO concept. 

Parameters that are used in Figure 4-15 are presented with their notation: 

- 𝐶𝐷𝑂𝑘  is the 𝑘𝑡ℎ value of the averaged signal amplitude in a given delay bin. 

- 𝑏𝑡𝑘 is the instant of the 𝑘𝑡ℎ bin center of the observed section, expressed in chip. In this 

example 𝑏𝑡1 = 0.5− Δ𝑏𝑖𝑛 2⁄  corresponds to the instant of the first bin center. 

- Δ𝑏𝑖𝑛 is the length of the bin in chip. It corresponds to the time resolution with which the 

observed section is looked at. This delay is considered constant for all bins if bins are uniformly 

distributed.  

- 𝑁𝑏𝑖𝑛 is the number of delay bins on which the CDO is computed. The relation between Δ𝑏𝑖𝑛 

and 𝑁𝑏𝑖𝑛𝑠 is given by: Δ𝑏𝑖𝑛  = 𝑇𝑐/𝑁𝑏𝑖𝑛𝑠 where 𝑇𝑐 is the chip period if the observed section is 

one chip long and if bins are uniformly distributed along the observed section. 

- 𝑇𝑜𝑏𝑠 the observation time in second. It consists of the time during which the signal is averaged. 

From the introduced notations, the CDO consists in a vector of 𝑁𝑏𝑖𝑛 values grouped in 𝐶𝐷𝑂𝑘  where 

𝐶𝐷𝑂𝑘  is the average on 𝑇𝑜𝑏𝑠 of the signal amplitude in the 𝑘𝑡ℎ  delay bin of length Δ𝑏𝑖𝑛 at a distance 

𝑏𝑡𝑘 from the beginning of the observed section.  

In the following, it is assumed that bins are uniformly distributed along the observed section if no 

information is provided about bins distribution. Nevertheless, bins could be arbitrarily placed along 

the observed part and could have different lengths.  

In the CDO context, the expression of the average number of samples in one bin is: 

with 

- 𝐹𝑠 is the sampling frequency in hertz, 

- 𝑇𝑜𝑏𝑠 is the observation time in second, 

- 𝑇𝑐𝑜𝑑𝑒 is the code period in second, 

- 𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝑝𝑎𝑟𝑡_𝑐𝑜𝑑𝑒 is the number of the wanted observed sections per code period, 

- Δ𝑏𝑖𝑛 is the size of the bin in chip and 

- 𝑇𝑐 is the chip period in second. 

 
𝑁𝐶𝐷𝑂 = 𝐹𝑠Δ𝑏𝑖𝑛𝑇𝑐

𝑇𝑜𝑏𝑠
𝑇𝑐𝑜𝑑𝑒

𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝑝𝑎𝑟𝑡_𝑐𝑜𝑑𝑒 (4-4) 
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Consequently, assuming that the noise distribution is Gaussian, neglecting the effect of the antenna 

and the RF front-end and considering that tracking errors are negligible, the noise standard deviation 

in a bin can be modeled as: 

In appendix A, the standard deviation of chip domain observables taking into account the pre -

correlation filtering is derived. Figure 4-16 shows an example of CDO based on one hundred bins and 

reusing distortions presented in section 4.2. Nominal (blue) and distorted (orange) signals for the 

𝐵𝑃𝑆𝐾(1) (top left), the 𝐶𝐵𝑂𝐶(6,1,1/11) (top right), and the 𝐵𝑃𝑆𝐾(10) (bottom) modulations are 

represented. The observed section is centered on the middle of chips. 

 

 

Figure 4-16. Example of nominal (blue) and distorted (orange) CDO for BPSK(1) (top left), 

CBOC(6,1,1/11) (top right) and BPSK(10) (bottom) modulations.  

From Figure 4-16, the impact of the signal distortion on the CDO is clearly visible for all modulations.  

4.5.2.2 Chip Domain Observable algorithm 

The CDO processing is summarized in Figure 4-17 and is based on [Thevenon et al., 2014]. 

 

 

 

 𝜎𝐶𝐷𝑂 =
𝜎𝑛

√𝑁𝐶𝐷𝑂𝑃𝑠 
 (4-5) 

𝐵𝑃𝑆𝐾(1) 𝐶𝐵𝑂𝐶(6,1,1/11) 

𝐵𝑃𝑆𝐾(10) 
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Figure 4-17. Block scheme summarizing CDO algorithm. 

The CDO is built from digital samples 𝑠̃𝑛 of the incoming signal after it went through the RF front-end. 

The expression of the digital signal is given in section 3.2.3. Digitized samples are processed by 

conventional tracking loops as described in section 3.3.3. This step is necessary to estimate  

the code delay 𝜏̂, the Doppler frequency 𝑓𝑑𝑜𝑝, and the phase 𝜑̂ of the signal to observe. Indeed, to 

average signal samples in an observed section, their position in the observed section has to be precisely 

known to avoid averaging samples that are at different locations on the observed section. Moreover, 

the phase offset due to the Doppler or residual phase that affect the received signal has to be removed. 

The three estimated parameters are used to process signal samples before averaging them. 

The sample correction is necessary to remove the phase, the Doppler and the intermediate frequency 

𝑓𝐼𝐹  which affect the signal carrier. Corrected samples 𝑠𝑛
𝑐𝑜𝑟𝑟(𝑡) can be written as:  

The sample time-stamping is necessary to express the time of samples in the emitter reference frame. 

In the receiver time frame each sample is temporally distant from the previous sample by 𝑇𝑠. 

Nevertheless, because of the Doppler Effect which affects the signal, it does not correspond to the 

distance between two samples in the emitter frame. The adjusted Doppler-corrected sampling interval 

in the emitter time is function of the carrier frequency (𝑓0) and is equal to 𝑇𝑠
′ = 𝑇𝑠 (1− 𝑓𝑑𝑜𝑝/𝑓0)⁄ . 

Translated into a Doppler corrected frequency it leads to:  

Moreover, in the receiver time frame, samples are affected by a delay 𝜏̂ compared to samples time at 

the instant of their transmission. Finally, the time-stamp 𝜏𝑛 attached to each sample, taking into 

account 𝑓𝑑𝑜𝑝 and 𝜏̂ is equal to: 

The sample accumulation is the last step of the CDO estimation. Each corrected sample is associated 

to a given bin based on its time-stamp 𝜏𝑛 and its location in the PRN sequence. Only samples from the 

chosen observed section are accumulated in the bins.  

Each time-stamp can be expressed relatively to the theoretical delay from the center of the 𝑘𝑡ℎ bin of 

the 𝑙𝑡ℎ occurrence of the observed section (𝑏𝑡𝑘
𝑙 ), by subtracting 𝑏𝑡𝑘

𝑙  to 𝜏𝑛.  𝑏𝑡𝑘  can only takes values 

smaller than the length in chip of the observed section whereas 𝑏𝑡𝑘
𝑙  can take any value as it 

 
𝑠𝑛
𝑐𝑜𝑟𝑟= 𝑠𝑛× 𝑐𝑜𝑠(−

2𝜋𝑛

𝑓𝑠
(𝑓𝐼𝐹+ 𝑓𝑑𝑜𝑝)− 𝜑̂0) (4-6) 

 
𝑓𝑠
′ = 𝑓𝑠(1− 𝑓𝑑𝑜𝑝/𝑓0) (4-7) 

 𝜏𝑛 =
𝑛

𝑓𝑠
′ − 𝜏̂ =

𝑛

𝑓𝑠(1− 𝑓𝑑𝑜𝑝/𝑓0)
− 𝜏̂ (4-8) 
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corresponds to the time-stamp of the 𝑘𝑡ℎ bin of the 𝑙𝑡ℎ occurrence of the observed section. Then, a 

sample is allocated to a delay bin if the relative time-stamp to 𝑏𝑡𝑘
𝑙  delay falls into a delay bin. 

Samples associated to the 𝑘𝑡ℎ bin of the CDO are noted 𝑠𝑘
𝑏𝑖𝑛 and have a time-stamp 𝜏𝑛 which satisfies:  

𝜏𝑛 −𝑏𝑡𝑘
𝑙 ∈ [−

Δ𝑏𝑖𝑛

2
,
Δ𝑏𝑖𝑛

2
] 

All observed sections 𝑙 must be treated. 

The CDO can be obtained by averaging in the 𝑘𝑡ℎ bin all samples 𝑠𝑘
𝑏𝑖𝑛 associated to this bin: 

4.5.3 Correlation function observable 

Another way to observe the impact of a signal distortion is to look at its influence on the PRN code 

correlation function which is an observable closely related to the pseudorange estimation as shown in 

section 3.3. The observation is made on the filtered correlation function 𝑅̃𝑠(𝜏) that can be affected by 

distortions. 

One correlation function output is obtained by the correlation of the incoming signal on a time period 

called observation time 𝑇𝑜𝑏𝑠 with a local replica generated over the same observation time. To obtain 

𝑁𝑐𝑜𝑟𝑟 correlator outputs, 𝑁𝑐𝑜𝑟𝑟 correlations must be computed with 𝑁𝑐𝑜𝑟𝑟 delayed versions of the 

local replica. The complexity of the generation of the correlation function observable is thus dependent 

upon the number of correlator outputs that have to be observed. 

As it was done for the CDO, Figure 4-18 illustrates the concept of correlation function observable 

considering an ideal normalized BPSK signal. The observable is built from 𝑁𝑐𝑜𝑟𝑟_𝑜𝑢𝑡 = 5 values. 

 

 

 

 

 

 

 

 

 

 

Figure 4-18. Illustration of the correlation function observable concept. 

Several notations are introduced to define the correlation function observable presented in Figure 

4-18: 

 
𝐶𝐷𝑂𝑘 = 𝑚𝑒𝑎𝑛(𝑠𝑘

𝑏𝑖𝑛 ) (4-9) 
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- 𝑅𝑘 is the 𝑘𝑡ℎ value of the normalized correlation function amplitude at a given point of the 

function. 𝑘 = 0 at the correlation function prompt. 

- 𝜏𝑘 is the value of the 𝑘𝑡ℎ correlator output delay in chip. (𝜏0 = 0 corresponding to the prompt 

output). 

- 𝛥𝜏𝑘 is the distance along the time axis between two outputs of the correlation function, 

expressed in chip. It corresponds to the resolution with which the correlation function is 

observed. In the following it is assumed that the distribution of correlator outputs is uniform 

if no information is provided about the distribution of correlator outputs. With this assumption 

∀𝑘, 𝛥𝜏𝑘  = 𝜏𝑘+1 − 𝜏𝑘 = Δ𝜏. 

- 𝑁𝑐𝑜𝑟𝑟_𝑜𝑢𝑡  is the number of correlator outputs at which the correlation function is estimated. 

For simplicity reasons, it is considered that 𝑁𝑐𝑜𝑟𝑟_𝑜𝑢𝑡  is an odd number. The following relation 

can be written: Δ𝜏 = 2 × 𝑇𝑐/(𝑁𝑐𝑜𝑟𝑟_𝑜𝑢𝑡 −1) (if the entire correlation function is observed and 

is 2 × 𝑇𝑐 large). 

- 𝐶𝑆𝑘 represents the correlator spacing of the 𝑘𝑡ℎ correlator pair.  𝐶𝑆𝑘 = 𝜏𝑘 − 𝜏−𝑘 = 2×  𝑘 ×

𝛥𝜏. 

In the context of correlation function, one correlator output is computed according to a number of 

signal samples equal to: 

where 

- 𝐹𝑠 is the sampling frequency in hertz, 

- 𝑇𝑜𝑏𝑠 is the observation time in second. 

 

Assuming that the distribution of the noise at a correlator output is Gaussian, neglecting the impact of 

the antenna and the RF front-end and considering that the tracking errors are negligible, the standard 

deviation of a correlator output can be modeled as: 

In appendix A, the standard deviation of correlator outputs taking into account the pre -correlation 

filtering is derived. Figure 4-19 shows examples of correlation function observables using one hundred 

correlator outputs and reusing distortions presented in section 4.2. Nominal (blue) and distorted 

(orange) signals for the 𝐵𝑃𝑆𝐾(1) (top left), the 𝐶𝐵𝑂𝐶(6,1,1/11) (top right), and the 𝐵𝑃𝑆𝐾(10) 

(bottom) modulations are represented.  

From Figure 4-19, the impact of the signal distortion on the correlation function is clearly visible for all 

modulations. It can also be seen that a single distortion has different signature depending on the 

modulation. 

 

 
𝑁𝐶𝑜𝑟𝑟 = 𝐹𝑠𝑇𝑜𝑏𝑠 (4-10) 

 𝜎𝐶𝑜𝑟𝑟 =
𝜎𝑛

√𝐹𝑠𝑇𝑜𝑏𝑠𝑃𝑠 
 (4-11) 
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Figure 4-19. Nominal (blue) and distorted (orange) correlation function observables for BPSK(1) (top 

left), CBOC(6,1,1/11) (top right) and BPSK(10) (bottom) modulations.  

4.5.4 Comparison of chip domain and correlation function domain observables  

Advantages and drawbacks of both techniques are detailed in [Thevenon et al., 2014]. A summary is 

presented in the following. 

The advantages of the CDO are: 

- Inputs of the CDO (IF signal samples) are given directly by the RF front-end while multi-

correlator outputs have to be computed specifically for a given code delay. 

- The noise affecting the CDO is an uncorrelated white noise (or weakly correlated by the RF 

front-end filter), while the noise affecting a correlator output is correlated through the 

multiplication with the local replica. 

- The resolution of the CDO can be increased beyond the sampling frequency of the signal based 

on a principle called dithered sampling. [Pini and Akos, 2007] 

- The CDO permits to observe independently different types of signal sections. An important 

consequence is that falling and rising edges can be visualized separately whereas it is not 

possible on the correlation function. 

However, correlation function observables have also advantages compared to the CDO because of the 

place of the correlation operation in the tracking processing. Then: 

𝐵𝑃𝑆𝐾(1) 𝐶𝐵𝑂𝐶(6,1,1/11) 

𝐵𝑃𝑆𝐾(10) 
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- The tracking is directly dependent upon the correlation function. As a consequence, the 

distortion visible on the correlation function is directly related to the pseudorange error. In 

that sense, the distortion on the correlation function appears more representative of the 

potential problems on the pseudoranges. A corollary of this is that some of the distortions 

visible on the CDO could be filtered/transformed by the corre lation process which is based on 

the entire PRN code. Consequently, some signal distortions visible on the CDO could not 

influence the correlation function and by consequence the tracking process.  

- Correlation processing is already available in conventional receivers, although multi-correlator 

outputs are not yet widely available. 

- Correlator outputs are much less noisy than IF samples. 

The last point is illustrated by the comparison of estimated standard deviation for the two observables. 

From (4-4) and (4-10), the ratio of the two standard deviations can be estimated: 

 

(4-12) is a general equation that can be used on all signals with different observable parameters. As an 

example a particular GPS L1 C/A case is considered. Only rising transitions are superimposed to 

estimate the CDO. The observed part is chosen with a 𝑇𝑐 length and bins uniformly distributed along 

this time interval. It entails that: 

- 𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝑝𝑎𝑟𝑡_𝑐𝑜𝑑𝑒 = 𝑁𝑡𝑟𝑎𝑛𝑠 where 𝑁𝑡𝑟𝑎𝑛𝑠 ≈ 250 is the number of rising or falling transitions 

in one GPS L1 C/A spreading code period. 

- Δ𝑏𝑖𝑛  = 𝑇𝑐/𝑁𝑏𝑖𝑛𝑠 where 𝑁𝑏𝑖𝑛𝑠 is the number of bins in the observed section. 

In this particular case, (4-12) becomes: 

And the ratio between the two standard deviations is only dependent upon the number of bins 𝑁𝑏𝑖𝑛 

computed for the CDO.  

It is demonstrated in [Pagot et al., 2015] that the correlation and the chip domain observables, 

estimated from the average of all chips of the spreading code and convolved by a rectangular shape, 

have the same expression assuming that: 

- the correlation function is null outside the peak (for delay smaller than −𝑇𝑐 and higher than 𝑇𝑐 

around the prompt), 

- all chips are used to estimate the CDO (positive and negative chips, after a transition or not).  

In any case, for GPS L1 C/A, a triangular shape (code correlation function-like) can be obtained by the 

convolution of the CDO on one chip with an ideal rectangle. Some receivers use this property and 

derive “correlation functions-like” from the CDO [NovAtel Inc., 2012] to estimate if GNSS signals are 

distorted from CDO observables.  

 𝜎𝐶𝐷𝑂
𝜎𝐶𝑜𝑟𝑟

= √
𝑁𝐶𝑜𝑟𝑟
𝑁𝐶𝐷𝑂

= √
𝑇𝑐𝑜𝑑𝑒

𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝑝𝑎𝑟𝑡_𝑐𝑜𝑑𝑒Δ𝑏𝑖𝑛
 (4-12) 
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≈√4 ×𝑁𝑏𝑖𝑛 (4-13) 
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4.6 Conclusions 

The aim of this chapter is to present the different problematics linked to GNSS signal distortions and 

more precisely GNSS signal distortions generated by the payload that are a problem for all GNSS users 

and particularly for SBAS users.  

In section 4.1 nominal and non-nominal distortions that can affect a GNSS signal are described. As 

nominal distortions affect continuously GNSS signals, they can be observed precisely using particular 

setups to collect signals at every time. Results from previous studies about nominal distortions are 

introduced. A ringing effect after each transition and a lead/lag between zero-crossings of rising and 

falling edges of code transitions is observed even on signals generated by healthy satellites. It has been 

seen that nominal distortions generated at payload level are challenging to characterize especially 

because they are time varying and they are difficult to dissociate from distortions induced by the 

receiver. The concept of signal distortion also appears in faulty conditions (these distortions are also 

called EWF) and is different from the study about nominal distortions. Indeed, due to the lack of 

examples about signal distortions generated in faulty conditions, it is difficult to characterize the kind 

of distortion that could appear in a case of a satellite failure. 

In section 4.2 an example of signal distortion is considered on a 𝐵𝑃𝑆𝐾(1)-modulated signal (GPS L1 

C/A), a 𝐵𝑃𝑆𝐾(10)-modulated signal (GPS L5 and Galileo E5a) and a 𝐶𝐵𝑂𝐶(6,1,1 11⁄ , −)-modulated 

signal (Galileo E1C). This signal distortion is used in section 4.3 and 4.5 to illustrate the impact of signal 

distortions at different levels of the GNSS receiver signal processing. 

The main issue with GNSS signal distortions is that their consequences on different user’s receivers are 

dependent upon several characteristics of receivers presented in section 4.3: the technology and the 

bandwidth of the antenna and RF front-end filter, the discriminator and the correlator spacing used 

for the tracking. In particular, in part 4.3.2 the impact of the signal distortion on tracking loops is 

tackled. 

In section 4.4, the issue entailed by non-nominal deformation is exposed. Even if EWF are not frequent, 

GNSS users with stringent performance, as civil aviation users, have to be protected from such threats. 

To deal with the EWF issue, the Most EWF concept was introduced in a previous study but the 

preferred solution was the definition of a TM. Nowadays a TM is adopted by ICAO to represent 

distortions expected on the GPS L1 C/A signal. 

 In section 4.5, the impact of the distortion is looked at in the chip and in the correlation function 

domains. The technique to generate the CDO is detailed and wi ll be reused in the following.  

From this chapter, it can be seen that the study of GNSS signal distortions is made difficult because the 

characterization of these distortions is complicated and because the impact of GNSS distortions are 

dependent upon several features of the receiver. This chapter introduces all important notions linked 

to GNSS signal distortions and can be viewed as an introduction to the following chapters (chapter 5 

and chapter 6), where a deepened study about nominal and non-nominal distortions is undertaken. 
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5 Nominal distortions 

The first GNSS signal distortions that are tackled in details are distortions that affect the signal in fault-

free conditions. Even if these distortions have a limited impact on GNSS receivers, they can be a 

problem for users with high requirements. Real data were collected to observe nominal distortions on 

real GNSS signals. Two types of data collections were performed:  

- using high-gain dish antennas and 

- using omnidirectional antenna. 

Nominal distortions that affect GNSS signals recorded with the two types of antennas are estimated 

and results are presented and compared to the state-of-the-art (chapter 4). The aim of this chapter is 

to confirm results already available in the state-of-the-art relatively to the study and the 

characterization of nominal distortions and to present new results on Galileo E1C signal. More 

precisely, in this chapter different results are provided: 

- A characterization of GPS L1 C/A nominal deformations that affect high-gain dish antennas 

collected signals. This characterization is based on [Phelts et al., 2009].  

- A visualization of nominal distortions that affect Galileo E1C signals collected with high-gain 

dish antennas. 

- A visualization of nominal distortions that affect GPS L1 C/A and Galileo E1C correlation 

functions. 

- A description of advantages and drawbacks between the study of nominal d istortions using a 

high-gain dish antenna and using an omnidirectional antenna.  

- A characterization of GPS L1 C/A tracking biases that affect signals collected with an 

omnidirectional antenna. This characterization is based on [Wong, 2014]. 

Even if one of the purposes of the nominal distortions study is to establish a limit between the nominal 

case and the non-nominal case, because of the lack of measurements and the difficulties to 

characterize nominal distortions in an absolute way, this task is not developed in this chapter. 

In section 5.1, the setup that was used to collect GNSS signals with high-gain dish antennas is 

presented. Indeed, the antenna, the digitizer and the software used to process signals have an 

influence on the observed nominal distortions and have to be defined. 

In sections 5.2 and 5.3, results obtained from high-gain dish antennas are presented. The first section 

introduces nominal distortions visualized on the Chip domain Observable (CDO), and the second 

section nominal distortions visualized on the correlation function domain and the S-curve zero-

crossing plot. It is seen in 5.4 that some distortions generated by the receiver cannot be distinguished 

from nominal distortions when the setup is not calibrated. 

Distortions generated by the receiver have the particularity to affect all received signals. Therefore, to 

remove the main part of the distortion induced by the receiver, omnidirectional measurements were 

collected and processed. Results are provided in section 5.5. The common bias that affects all PRNs 

measurements collected at the same time are subtracted from pseudorange measurements error to 

estimate inter-PRN biases which effectively affect a GNSS user. 
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In section 5.6, inter-PRN biases estimated from the omnidirectional antenna data collection and from 

one calibrated high-gain antenna data collection are compared to the state-of-the-art. 

Finally, section 5.7 makes a conclusion about all results provided in this chapter. 

5.1 Setups definition and high-gain dish antenna measurements 

First in this section, different antennas and receivers that were used to collect high-gain dish antenna 

measurements are described. Three different setups are presented in this part. Then, an overview of 

the software which was implemented to process the collected data is given. Finally, the strategy to 

obtain CDO and correlation function outputs is defined. These outputs are of interest to study GNSS 

signal distortions as discussed in 4.5. 

5.1.1 Data collections from high-gain dish antennas 

A high-gain antenna is useful to obtain a sufficiently good signal observation. Indeed, after traveling 

the distance which separates the satellite and an antenna located on Earth, the GNSS signals are below 

the noise floor of usual measurement devices. It is therefore advantageous to amplify the received 

signal in order to better observe it. In our case, this was performed thanks to three directive antennas 

with the features described in Table 5-1. More details about the ESA antenna can be found in [Gisbert 

et al., 2012]. 

The signals collected by CNES and DLR were digitized by a dedicated signal digitizer, called BitGrabber2 

and developed by CNES [Ries and Perello Gisbert, 2006] with a sampling frequency of 125 MHz (the 

sampling is done in complex), a 8-bits quantization and a 3 dB bandwidth of 70 MHz. The data 

collected by the DLR were obtained from an antenna owned by the German administration.  

The signals collected at ESA were digitized using a FSQ from Rohde & Schwarz® [Rohde and Schwarz, 

2014]. The sampling frequency was set to 125 MHz (the sampling is done in complex), the digitizer 

3 dB bandwidth was equal to 120 MHz. 

Antenna holder 
German 

administration 
CNES ESA 

Antenna site Leeheim (Germany) Toulouse (France) 
Noordwijk (the 

Netherlands) 

Antenna diameter 7 m 2.4 m 3 m 

Antenna bandwidth 1000 –  2000 MHz 1100 –  1650 MHz 1100 –  1650 MHz 

Collection period Mars 2012 May-July 2014 September 2015 

Digitizer BitGrabber2 BitGrabber2 FSQ 

Table 5-1. Antennas and digitizers features. 

Because of the antenna directivity, it can be considered that multipath are not perturbing the signals. 

The received 𝐶/𝑁0 is typically between 70 and 80 dB-Hz. 
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The list of collected signals is given in appendix C. 

5.1.2 Software overview  

A Matlab® software is used to post-process digitized signals and observe nominal distortions. The 

digital processing is inspired from real GNSS receivers design and is based on concepts defined in 

section 3.3. The acquisition and a first coarse tracking are performed before the precise PLL/DLL 

tracking. During the PLL/DLL tracking, the CDO and the correlation function outputs are estimated. 

5.1.2.1 Acquisition and coarse tracking 

The first step of the Matlab® software processing is the acquisition introduced in section 3.3.2. The 

advantage of high-gain dish antenna measurements compared to traditional GNSS receiver 

measurements is that only one signal from one satellite is collected by a directional antenna at a given 

time. Knowing the PRN associated to the satellite, it is not necessary to test the thirty-two PRNs. It 

simplifies and accelerates the acquisition process.   

After the acquisition, an initial tracking process is implemented to have a better estimation of the 

Doppler and the delay affecting the signal. A DLL and a FLL are used together. Even if the FLL is not as 

precise as a PLL, it permits to converge faster toward the steady state. No detail is provided in this 

document about the FLL implementation because the initial tracking stage has no impact on the 

observation of nominal distortions. At the end of the DLL/FLL tracking process, a data bit 

synchronization is performed on signals which carry data information.  

5.1.2.2 Fine tracking parameters 

After the FLL and DLL coarse tracking, a more precise tracking is implemented based on a PLL and a 

DLL. During this second tracking phase, the DLL discriminator and the PLL discriminator are given by:  

and 

It is noticeable that the 𝐷𝐷𝐿𝐿 corresponds to a normalized EMLP discriminator. Both discriminators 

feed a second order loop filter. 

A list of parameters of interest that are used for the precise tracking is given in Table 5-2. Parameters 

values are different from values of typical receivers. More specifically, in typical receivers:  

- correlator spacing’s are smaller to limit the impact of the multipath and track the signal with 

high amplitude correlator outputs,  

- 𝐵𝐷𝐿𝐿 are close to 1 Hz and 

- 𝐵𝑃𝐿𝐿 are close to 10 Hz. 

Because of the use of high-gain antennas and the observation of signals with high 𝐶/𝑁0, tracking 

parameters were adapted to collected signals. 

 
𝐷𝐷𝐿𝐿 =

(𝐼𝐸
2 +𝑄𝐸

2) − (𝐼𝐿
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 (5-1) 

 
𝐷𝑃𝐿𝐿 = 𝐴𝑡𝑎𝑛(

𝑄𝑃
𝐼𝑃
) (5-2) 
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 GPS L1 C/A GPS L5 Q Galileo E1C 

𝑇𝑖𝑛𝑡 1 ms 1 ms 4 ms 

Correlator spacing 1 𝑇𝑐 1 𝑇𝑐 0.5 𝑇𝑐  

𝐵𝐷𝐿𝐿 5 Hz 10 Hz 2 Hz 

𝐵𝑃𝐿𝐿 20 Hz 30 Hz 10 Hz 

Table 5-2. Tracking parameters used in the setup. 

5.1.2.3 CDO and correlator outputs estimation 

The CDO and correlator outputs are estimated in parallel to the PLL/DLL signal tracking. Algorithms to 

estimate both observables are described in section 4.5.2 and in section 4.5.3. To avoid too long 

simulations, the strategy is to save CDO and correlation function observables and to post-process 

outputs to evaluate nominal distortions that affect signals. In results presented in the following, the 

CDO is built on one thousand delay bins, and eight hundred and one correlator outputs are derived. 

A particular care was taken to estimate and save CDO and correlator outputs after the convergence of 

the PLL and DLL tracking processes (steady state). 

5.2 Chip observation from high-gain dish measurements 

The CDO is described in section 4.5.2 and is used in this section to assess nominal distortions which 

affect signals collected from high-gain dish antennas presented in the previous section. GPS L1 C/A and 

Galileo E1C signals are processed and results are compared to the state-of-the-art (when available). 

5.2.1 GPS L1 C/A 

Two types of nominal distortions were observed on GPS L1 C/A signals in previous studies (as described 

in 4.1.1.3). Nominal distortions are generally classified into analog (ringing phenomenon) and digital 

distortions (delay between rising and falling transitions zero-crossings). Results provided in this part 

were obtained with a 4-second observation time. 

5.2.1.1 Ringing phenomenon  

Figure 5-1 illustrates the average on 4-second of rising and falling PRN transitions for several PRNs 

collected by antennas located at Leeheim (DLR) and Toulouse (CNES).  
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Figure 5-1. Chip domain observable of rising and falling transitions,  

1000 bins/chip, GPS L1 C/A. 

Analog parameters are difficult to estimate because no model is perfectly representing the observed 

ringing effects. Nevertheless, same ringing distortion features as in Figure 4-3 or in [Phelts et al., 2009] 

are visible. Especially, it is noticeable that the ringing frequency is approximately equal to 20 MHz.  

Table 5-3 gives results obtained from the collected data considering the four parameters defined in 

4.1.1.3.2 to characterize nominal distortions. 

 State-of-the-art 

(overbound) 
Obtained results  

Maximum first peak overshoot ratio 

(chip amplitude) 
35 % 39 % 

Maximum rise time (ns) 25 16 

Maximum peak time (ns) 45 33 

Maximum settling time (ns) 180 85 

 Table 5-3. Comparison of nominal distortion parameters for GPS L1 C/A signal.  

In appendix D, values of these four parameters are given for each PRN. 

The values of three over the four parameters that were estimated in [Phelts et al., 2009] (column state-

of-the-art of Table 5-3), are higher than values obtained in this study. It is consistent with the fact that 

in [Phelts et al., 2009], an overbound for the four parameters was looked for, and a margin was taken 

to ensure that all nominal distortions are enclosed within the overbounds. Only the first peak 

overshoot ratio exceeds the limit of 35 %. 

It is noticeable that the data collection setup (different antennas, digitizers, signals, etc.) also has an 

impact on the four estimated parameters. 

5.2.1.2 Delay between rising and falling transitions 

The digital parameter is easier to evaluate than ringing phenomenon parameters. Moreover, the digital 

parameter can be easily assessed from the CDO. As defined in 4.1.1.3.1, this parameter corresponds 

to the difference existing between the zero-crossing of rising and falling transitions. The estimation of 
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this delay was performed for several satellites and compared with Stanford University’s outcomes 

[Wong et al., 2010]. 

Figure 5-2 shows that obtained delays are consistent with Stanford University’s results [Wong et al., 

2010]. These similarities are observed with the data from CNES and DLR. Therefore, it shows that digital 

nominal distortions are relatively constant over time and that these characteristics are not dependent 

upon the receiver. It tends to confirm that the satellite is at the origin of such a distortion. 

     

Figure 5-2. Superposition of results from Stanford University [Wong et al., 2010] with results 

obtained by another set of collected data (Leeheim and CNES). Visualization of the delay 

between rising and falling transitions.  

5.2.2 Galileo E1C 

No specific SiS distortions were observed on Galileo E1C signals until now. The delay between rising 

and falling transitions is relatively small (see 4.1.1.3.2) and no chip domain observables estimated from 

Galileo E1C signals collected with high-gain dish antenna are available in the literature.  

Figure 5-3 shows the chip shape estimated with the data collected from the ESA’s antenna. The CDO 

is assessed for three different PRNs: PRN 18 (FOC-FM1), PRN 14 (FOC-FM2) and PRN 22 (FOC-FM4). 

Continuous lines correspond to the mean (on 800 ms) of positive chips and dashed lines to the mean 

of negative chips. The PRN 18 was collected in March 2015 whereas PRN 14 and PRN 22 were collected 

the same day in September 2015. Several results can be noticed: 

- Distortions on PRN 14 and PRN 22 are similar whereas distortions on PRN 18 are different from 

the two other. The origin of these differences is unknown. It could come from the satellite 

payload but more likely from the acquisition setup. Even if the same instruments were used 

for the three data collections, a difference in the experimental setup parametrization 

(antenna, acquisition chain, digitizer, temperature) could explain the differences between the 

collections. 

- Even if it is not possible from these plots to distinguish distortions caused by the satellite and 

distortions caused by the receiver, a ringing effect approximatively equal  to 24 MHz is 

observed on all signals.  

   March 2012(Leeheim) – L1 
   May 2014(CNES) – L1 
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- A “pre-ringing” phenomenon is visible before transitions (on the 𝐵𝑂𝐶(6,1) as well as on the 

𝐵𝑂𝐶(1,1) component). This kind of phenomenon has already been observed on high-gain dish 

antenna collected data or/and on data collected by receivers with RF front-end equipped with 

a SAW filter [Gunawardena and Van Graas, 2014]. More likely, the “pre-ringing” phenomenon 

is induced by the receiver. 

- On PRN 18, 𝐵𝑂𝐶(6,1) component is not centered on the amplitude of ±1.5. The phenomenon 

is especially visible on the second half of the chip and corresponds to a 𝐵𝑂𝐶(1,1) component 

distortion signature. The source of this distortion is unknown. Even if it is doubtful, it cannot 

be excluded that this distortion is generated at satellite level. 

 
Figure 5-3. Chip domain observable on positive and negative chips,  

1000 bins/chip, Galileo E1C. 

The zero-crossing difference between rising and falling edges is smaller than 0.1 ns for the three 

collected signals which is consistent compared to the state-of-the-art ([Thoelert et al., 2014] and 

[Gunawardena et al., 2015]). 

5.3 Correlation function observable from high-gain dish measurements 

After looking at nominal distortions that affect high-gain dish measurements using the CDO, the impact 

of these distortions at a different receiver processing level is envisaged. The correlation function 

observable is described in 4.5.3 and is used in this section to assess nominal distortions which affect 

the collected signals. The S-curve zero-crossing observable, estimated from the correlation function is 

also introduced. GPS L1 C/A and Galileo E1C signals are processed and results on GPS L1 C/A are 

compared to the state-of-the-art. The advantage of the correlation function and the S-curve 

observables is that they are the last processing step before estimating pseudorange. 

To reduce the standard deviation of the noise affecting the observable, the received signal is correlated 

with a local replica over a long observation time (including non-coherent summations). 
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5.3.1 GPS L1 C/A 

Correlator outputs shown in this part were obtained with a 4-second observation time. 

5.3.1.1 Impact on the correlation function 

As nominal distortions have a small amplitude, they cannot be observed in a straightforward manner 

on the correlation function. It is necessary to subtract the ideal correlation function to the distorted 

one. The normalization of the ideal correlation function is of primary importance  when looking at 

distortions affecting the correlation function observable. The definition of the ideal correlation 

function that is used in this manuscript is exposed below. 

For GPS L1 C/A signals eight hundred and one correlator outputs are visualized and are described as:  

𝑐𝑜𝑟𝑟_𝑜𝑢𝑡𝐿1_𝐶/𝐴(𝑘)    𝑤𝑖𝑡ℎ 𝑘 = 1:1: 801 

The maximum of the correlation function is equal to one and is reached for 𝑘𝑚𝑎𝑥  which is not 

necessarily equal to four hundred and one because slight tracking errors (entailed by correlation 

function distortions) can affect measurements. 

The slopes of the rising and the falling edges are estimated by: 

Correlator outputs located near the prompt and at ± 1 𝑇𝑐  of the prompt of the correlation function 

are not considered to normalize slopes of the ideal correlation function. Indeed, it allows not to take 

into account in the normalization areas where the correlation function is strongly distorted (typically 

rounded by the RF front-end). 

Then, two indexes 𝑘1 and 𝑘2 are defined as follows: 

Finally the ideal correlation function is defined in two segments: 

 

The ideal correlation function is not filtered.  

Figure 5-4 shows the real part of the difference between the ideal correlation function and the one 

affected by nominal distortions for the different GPS L1 C/A collected signals. 

 
𝑠𝑙𝑜𝑝𝑒𝑟𝑖𝑠𝑒=

𝑐𝑜𝑟𝑟_𝑜𝑢𝑡𝐿1_𝐶/𝐴(𝑘𝑚𝑎𝑥 −100) − 𝑐𝑜𝑟𝑟_𝑜𝑢𝑡𝐿1_𝐶/𝐴(100)   

(𝑘𝑚𝑎𝑥 −200)
 (5-3) 

 
𝑠𝑙𝑜𝑝𝑒𝑓𝑎𝑙𝑙 =

𝑐𝑜𝑟𝑟_𝑜𝑢𝑡𝐿1_𝐶/𝐴(𝑘𝑚𝑎𝑥+ 100) − 𝑐𝑜𝑟𝑟_𝑜𝑢𝑡𝐿1_𝐶/𝐴(700)   

(600 − 𝑘𝑚𝑎𝑥)
 (5-4) 

 𝑘1 = 𝑓𝑖𝑟𝑠𝑡𝑘(𝑐𝑜𝑟𝑟_𝑜𝑢𝑡(𝑘)  > 0.5) (5-5) 

 𝑘2 = 𝑙𝑎𝑠𝑡𝑘(𝑐𝑜𝑟𝑟_𝑜𝑢𝑡(𝑘)  > 0.5) (5-6) 

 𝑐𝑜𝑟𝑟𝑖𝑑𝑒𝑎𝑙_𝐿1_𝐶/𝐴(𝑘)

= {
𝑠𝑙𝑜𝑝𝑒𝑟𝑖𝑠𝑒× (𝑘 − 𝑘1) + 𝑐𝑜𝑟𝑟_𝑜𝑢𝑡𝐿1_𝐶/𝐴(𝑘1)   

𝑠𝑙𝑜𝑝𝑒𝑓𝑎𝑙𝑙× (𝑘 − 𝑘2)+ 𝑐𝑜𝑟𝑟_𝑜𝑢𝑡𝐿1_𝐶/𝐴(𝑘2)   

𝑓𝑜𝑟 𝑘 = 1:1:𝑘𝑚𝑎𝑥
 𝑓𝑜𝑟 𝑘 = 𝑘𝑚𝑎𝑥:1: 801

 
(5-7) 
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Figure 5-4. Difference between correlation functions affected by nominal distortions and the 

ideal unfiltered correlation function. GPS L1 C/A. 

It is noticeable that these distortions cannot be considered or even approached by second order 

oscillations contrary to results established in the chip domain (see 4.1.1.3.2). Moreover, for some plots 

obtained from the CNES data, in addition to the ringing effect, a low frequency bending of the 

correlation function is strongly visible. This phenomenon is discussed later.  

This kind of plot cannot be used directly to estimate tracking biases affecting a user. Indeed, depending 

on the normalization of the ideal correlation function involved in the computation of the correlation 

distortion difference, the plot will change. Here, the normalization is reali zed at −0.5 and 0.5 chip (it 

explains that correlation function differences are equal to zero at −0.5 and 0.5 chip from the prompt) 

and no filtering is applied on the ideal function. Therefore, Figure 5-4 only gives an idea of the 

distortion pattern. These results match with the study performed in 2012 by CNES [Lestarquit et al., 

2012]. 

5.3.1.2 Impacts on the S-curve and the tracking error 

S-curves were obtained considering an EMLP discriminator. The analysis of the S-curve zero-crossing 

function of the correlator spacing is a second approach to visualize the correlation function distortion 

from a measurement point of view. Indeed, assuming that the DLL has time to converge, the zero-

crossing of the S-curve translates directly into a pseudorange bias. It is recalled that on a S-curve the 

tracking error is given as a function of the correlator spacing 𝐶𝑆𝑘. 

In the present case, the tracking error is expressed relatively to a reference tracking error. This makes 

sense as it is difficult to assess the tracking bias due to a signal distortion directly (the actual tracking 

bias is also affected by other RF front-end characteristics, such as the group delay). This computed 

differential tracking bias is directly convertible into a differential pseudorange error by multiplying it 

by the speed of light (because an EMLP discriminator is used). The EGNOS and WAAS reference receiver 

characteristics are close. In particular, these reference receivers use an Early-Late spacing of 0.1 chip 

which is used as a reference to plot the S-curve zero-crossing. 

Figure 5-5 shows the differential tracking bias induced by nominal distortions for each correlator 

spacing between 0 and 1 𝑇𝑐 with respect to the reference tracking configuration for the data collected 

at Leeheim and the data collected by CNES. These results can be compared to Stanford University’s 
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outcomes presented in [Wong et al., 2011] with one difference. Indeed the technique introduces in 

[Wong et al., 2011] is slightly different from the strategy used in this document to estimate the S-curve 

zero-crossing function.  

Here, we compute the differential tracking error observed by a correlator pair 𝑘 considering that the 

tracking is performed by these correlator outputs ( it means 𝐼𝑘− 𝐼−𝑘 = 0 for each 𝑘). The differential 

tracking error is then the difference between the tracking error obtained for the reference correlator 

pair and the tracking error obtained for the correlator pair 𝑘. 𝑘 tracking processes have to be repeated. 

In the study of Stanford University, the differential tracking error observed by a correlator pair 𝑘 is 

deduced from the difference of height between the two correlator outputs of the pair 𝑘 (𝐼𝑘 − 𝐼−𝑘 =

𝜀𝐶𝑆𝑘) on a correlation function tracked by the reference tracking pair (only the reference tracking pair 

satisfies 𝐼𝑘− 𝐼−𝑘 = 0). One tracking process is sufficient and has to be performed considering only 

the reference tracking pair. 

 

Figure 5-5. Tracking error function of the correlator spacing for different GPS L1 C/A PRNs 

(reference at 𝐶𝑆 = 0.1 chip). 

Looking at the results obtained from the data collected at Leeheim, Figure 5-5 complies with 

differential tracking bias plots that have been published in [Lestarquit et al., 2012]. However, important 

negative slopes can be observed on these plots for some data from CNES. A deeper comparison of 

results obtained from both antennas (CNES and DLR) is introduced later. 

Differences between plots are noticeable regarding some CNES data with opposite low frequency 

bending (deviation of the tracking error toward negative values rather than positive values). 

Nevertheless, the data from Leeheim lead to similar shape of differential tracking bias curves to the 

results presented in the Stanford University’s study [Wong et al., 2011] and recalled in Figure 4-12. It 

is noticeable, that differential tracking biases reported by Stanford University are going from 0 m to 

1.2 m compared to values going from 0 m up to 0.5 m obtained with the data from Leeheim. 

The difference between the CNES and DLR’s data sets does not come from: 

- The satellite PRN: three PRNs (13, 17 and 23) were recorded by both antennas and for the 

same PRN, results are different depending on the antenna. 

- The day period: the data collected at Leeheim were recorded at different periods of the day 

but similar behaviors are observed whatever the data collection is. 
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- The signal post-processing: the same software was used to process all signals and obtain 

correlation function outputs.  

The difference between the CNES and DLR’s data sets can comes from: 

- The antenna: a different antenna was used at Toulouse (CNES) and at Leeheim (DLR). 

- The digitizer: even if the same digitizer was utilized for both collections, it cannot be excluded 

that an experimental setup parametrization difference between both collection sets leads to 

different signal distortions on the correlation function. Indeed, from the CDO on Galileo E1C 

signals, using the same antenna and the same digitizer, differences were observed between 

different collections. 

- The location of the antenna and the period of the data collection: it cannot be excluded from 

these plots that differences are caused by the period of the data collection and the location of 

the antenna. Indeed, signals were collected in 2012 at Leeheim and in 2014 at Toulouse. The 

signal distortion and by consequence the correlation function distortion could vary depending 

on the time and the location of the data collection. Nevertheless it is important to look at the 

consistency of results obtained from the data collection performed at Leeheim compared to 

differences that affect results obtained from the data collection made at Toulouse. The period 

of the data sets and the location of the antenna could justify different results obtained from 

the two data collections but cannot entirely justify differences that are observed among data 

collected at the same location, at Toulouse. It is seen later that the main contribution of the 

reported low frequency bending of the S-curve zero-crossing plots affecting differently signals 

collected by the CNES is caused by the antenna and/or the digitizer as it was already noticed 

in [Wong, 2014]. 

A part of the difference of signal distortions that affects signals collected by CNES are necessarily 

caused by the antenna and/or the digitizer. Most probably, a problem in the antenna and/or digitizer 

calibration is at the origin of these differences, already obtained in the state-of-the-art, as exposed in 

[Wong, 2014]. It can explain the fact that at ESA, different signal distortions were observed on Galileo 

E1C signals while the same antenna and digitizer configurations were used.  

5.3.2 Galileo E1C pilot component 

After observing nominal distortions on GPS L1C/A signals collected with high-gain dish antennas, the 

same approach is used on Galileo E1C signals. Results proposed in this part were obtained with a 1-

second observation time. Results on PRN 18 are not presented because from the CDO, the data 

collection on PRN 18 cannot be trusted.  

5.3.2.1 Impact on the correlation function 

For Galileo E1C signal, the ideal correlation function that is subtracted to the nominal one is normalized 

differently than for GPS L1 C/A. The presence of the 𝐵𝑂𝐶(6,1) component makes more difficult the 

slope normalization. As for GPS L1 C/A, eight hundred and one correlator outputs are visualized and 

are described as:  

𝑐𝑜𝑟𝑟_𝑜𝑢𝑡𝐸1𝐶(𝑘)    𝑤𝑖𝑡ℎ 𝑘 = 1: 1:801 
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The ideal correlation function is simply an ideal unfiltered 𝐶𝐵𝑂𝐶(6,1, 1 11⁄ ) / 𝐵𝑂𝐶(1,1) correlation 
function built from eight hundred and one points and with its maximum obtained for 𝑘𝑚𝑎𝑥. 

The maximum of the correlation function is reached for 𝑘𝑚𝑎𝑥 which is not necessarily equal to four 

hundred and one. 

Figure 5-6 shows the real part of the difference between the ideal unfiltered correlation function 

(𝑐𝑜𝑟𝑟_𝑜𝑢𝑡𝐸1𝐶) and the one affected by nominal distortions. 

 

Figure 5-6. Difference between correlation functions affected by nominal distortions and an 

ideal unfiltered correlation function. Galileo E1C. 

From Figure 5-6 three main results are noticeable: 

- Ringing phenomenon affects the correlation function and the frequency of the oscillation is 

approximatively equal to 24 MHz as seen with the CDO. 

- At −0.5, 0 and 0.5 𝑇𝑐 from the prompt, steps are present. This phenomenon is linked to the 

fact that the ideal correlation function is not exactly normalized as the distorted correlation 

function. Such distortions can be induced by the filtering of the 𝐵𝑂𝐶(1,1) component on the 

signal affected by nominal distortions.  

- A high slope affects the correlation function between 0 and 0.25 𝑇𝑐 . 

- Discontinuities appear at “𝐵𝑂𝐶(6,1) correlation function peaks”, it means for delays from the 

prompt equal to ±0.08; ±0.17;±0.25;  ±0.33; ±0.42;±0.58;±0.67; ±0.75;±0.83 and 

;±0.92 𝑇𝑐. Discontinuities are more or less visible and are caused by a change of the 

correlation function slope and/or a slight error in the normalization of the ideal correlation 

function that does not match the distorted correlation function. Such distortions can be 

induced by the filtering of the 𝐵𝑂𝐶(6,1) component on the signal affected by nominal 

distortions.  

It was seen from some GPS L1 C/A collected signals that a distortion can be induced by the receiver in 

addition to nominal distortions generated by the satellite. The drawback of high-gain antenna 

measurements is that the distortions induced by the receiver cannot be distinguished from the 

distortions generated by the satellite because only one signal can be collected at a given time. One 

advantage of Galileo E1 signals collected with high-gain dish antenna is that two components are 

available: E1C and E1B. Since antenna and/or digitizer effects will distort both components in the same 
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way, making the difference between distortions that affect the E1C component and distortions that 

affect the E1B component will remove the common distortions due to the receiver front-end. The 

problem is that with this approach, a distortion generated at payload level with a similar impact on 

both components is also removed.  

Figure 5-7 gives difference between the ideal and the distorted correlation functions for Galileo E1C 

and Galileo E1B for one signal (PRN 14). 

 

Figure 5-7. Difference between correlation functions affected by nominal distortions and an 

ideal unfiltered correlation function. Galileo E1C and E1B. (PRN 14 only) 

Figure 5-8 shows the difference between the correlation function distortion on the E1B component 

and on the E1C component. Compare to nominal distortions visible on Figure 5-6, on Figure 5-8 it is 

noticeable that: 

- High slope which affects the correlation function between 0 and 0.25 𝑇𝑐 is removed. More 

generally the amplitude of the distortion is lower because distortions that affect in the same 

way both components are removed.  

- Discontinuities caused by the 𝐵𝑂𝐶(6,1) are enhanced because E1C modulation consists in the 

subtraction of the 𝐵𝑂𝐶(6,1) component whereas E1B modulation consists in the addition of 

the 𝐵𝑂𝐶(6,1) component. 

- A low frequency phenomenon of 1 MHz is clearly visible and corresponds to a distortion which 

affects in different way the E1B and the E1C components. 

Using the two E1 components to estimate distortions that affect a Galileo E1 signal permits to remove 

distortions that have the same effect on Galileo E1C and Galileo E1B components. In particular it 

permits to reduce the amplitude of nominal distortions. Nevertheless, two problems remain with this 

strategy: 
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- Distortions induced by the satellite and having the same effect on E1B and E1C components 

are removed (if they exist). 

- Distortions induced by the receiver and having different effects on E1B and E1C components 

are still present (it they exist). By consequence, it is not possible to distinguish distortions 

introduced by the satellite and by the receiver. 

 

Figure 5-8. Difference between nominal distortions on the correlation functions of the E1C 

and the E1B components. 

5.3.2.2 Impacts on the S-curve and the tracking error 

Figure 5-9 shows the differential tracking bias generated by nominal distortions for each correlator 

spacing between 0 and 0.75 𝑇𝑐 with respect to the reference tracking configuration for the data 

collected at ESA. The correlator spacing of the reference is fixed to 0.25 𝑇𝑐. 

From Figure 5-9 it can be seen that around the prompt the differential tracking error varies rapidly for 

correlator spacing’s smaller than 0.25 𝑇𝑐. For instance, a user who tracks the Galileo E1C PRN 14 with 

a correlator spacing equal to 0.1 𝑇𝑐 will be affected by a differential error equal to 0.8 m relatively to 

a user who tracks the same signal with a correlator spacing equal to 0.15 𝑇𝑐. The phenomenon is also 

visible with less amplitude on GPS L1 C/A signal. It means that around the correlation function peak, 

the correlation function is slightly asymmetric. The signal distortion which entails the asymmetry can 

come as well from the satellite as from the receiver (antenna, digitizer,  etc.). From proposed results, it 

is not possible to isolate the distortion induced by the satellite and the one induced by the receiver.  
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Figure 5-9. Tracking error function of the correlator spacing for different Galileo E1C PRNs 

(reference at 𝐶𝑆 = 0.25 chip). 

As a matter of fact the S-curve zero-crossing is closely related to the distortion which affects the 

correlation function on Figure 5-6. By comparing carefully Figure 5-6 and Figure 5-9, plots have similar 

behaviors but a factor approximatively equal to one hundred has to be applied. By analogy, high 

differential error variations observed for reference receivers with a tight correlator spacing (below 

0.25 𝑇𝑐) are induced by the distortion visible between 0 and 0.25 𝑇𝑐  on the correlation function. It can 

be expected that if this distortion, close to the prompt, is removed from the measurement (better 

calibration of the antenna, use of a measurement based on E1B and E1C, etc.), the differential error 

should not be so high for differential Galileo E1C users with tight correlator spacing.  

5.4 Conclusions and problems related to the observation of nominal 

distortions with high-gain dish antennas 

Three powerful tools were used to observe nominal distortions from high-gain dish antenna data 

collections: 

- the CDO, 

- the correlation function and 

- the S-curve zero-crossing. 

Results presented in sections 5.2 and 5.3 were obtained from data collected with high-gain dish 

antennas. One problem of these data collections and that has already been discussed in 4.1.1.2 is that 

the calibration of the measurements is difficult. The consequence is that it is not possible to isolate the 

nominal signal distortion generated by the satellite and the distortion induced by the receiver. When 

looking at Figure 5-4 and Figure 5-6 it is clearly visible that an additive low frequency bending affects 

the correlation function and the S-curve zero-crossing plot for some collected GPS L1 C/A and Galileo 

E1C PRNs. The phenomenon is observed with the data collected at ESA and the data collected by the 

CNES whereas nothing is visible on data collected at Leeheim. By consequence, it seems that the 

general bending of the correlation function is caused by the receiver (antenna and/or digitizer). 
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To explain the difference between correlation functions obtained from the data collected by CNES, it 

has be shown in the literature that the correlation function distortion can be different depending on 

the period of the day of the data collection if the antenna is not perfectly calibrated [Wong, 2014]. 

Consequently, a possible explanation of the consistency between data collected with the German 

administration antenna is that a better calibration was put in place on this antenna to collect 

measurements.  

To explain the difference between results obtained from data collected by CNES and by the German 

administration antenna, a comparison is proposed to visualize in a better way the difference between 

data collected by the two antennas at two different epochs and at two different locations. Results 

obtained from one PRN (PRN 13) collected by the DLR (March 2012) and by the CNES (May 2014) are 

shown together.  

Figure 5-10 puts forward the comparison at the correlation function level  of nominal distortions that 

affect signals from the two data collections. 

 

Figure 5-10. Comparison of nominal distortions for the same PRN making the difference of 

correlation functions with and without nominal distortions. In red, data were collected by the 

CNES, in blue, by the DLR. 

 

Figure 5-11. Comparison of differential tracking biases entailed by nominal distortions for the 

same PRN (reference at 𝐶𝑆 = 1 chip). 
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It is interesting to notice that nominal distortion ringing effects look very similar for both scenarios at 

a distance higher than 0.25 𝑇𝑐 from the prompt (especially from the Figure 5-10). However, from the 

Figure 5-11 which shows the S-curve zero-crossing obtained from the two data collections, it appears 

that the general low frequency bending of the two differential tracking bias plots is slightly different.   

Figure 5-12 illustrates the impact of nominal distortions on the CDO. 

 

Figure 5-12. Chip domain comparison of nominal distortions for the same PRN. 

In order to visualize differences between these two curves estimated in the chip domain, Figure 5-13 

represents the difference between them. 

 

Figure 5-13. Difference between chip domain observables obtained from the same PRN. 

The only remarkable difference appears at the transition level. This variation could be the signature of 

a filtering phenomenon. The origin of such filtering can come from the satellite filter, the time of the 

data collection, the location of the antenna but more likely from the receiver antenna. 

To conclude, results obtained from high-gain dish antenna measurements are useful to understand 

nominal distortions but have to be interpreted carefully, especially because of antenna calibration 

problems. To solve the calibration issue, a second way to look at the impact of nominal distortions is 

to analyse data collected from an omnidirectional antenna. 

5.5 Nominal differential tracking errors studied from an omnidirectional 

antenna and inter-PRN biases 

It was seen that the distortion and more precisely the general low frequency bending of the correlation 

function and the S-curve zero-crossing plot may varies depending on the collected signal. This 

phenomenon makes the characterization of nominal distortions difficult, especially the signal 

distortion component generated at payload level. 
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Nevertheless, this section shows that even if the bending is time-dependent, all PRNs are affected by 

the same bending at the same time. This phenomenon is difficult to see with a directional antenna 

when only one signal is collected at a given time. However, with measurements obtained from an 

omnidirectional antenna, several signals can be processed at a given time and the common (low 

frequency bending) distortion which affects all measurements can be isolated. The inter-PRN bias is 

defined in this document as the difference between the tracking error affecting a PRN for a given 

correlator spacing and the average among PRNs of tracking errors for that correlator spacing.  

The inter-PRN bias corresponds to the parameter which is effectively threatening for a receiver. Indeed 

the common bias to all measurements is absorbed by the clock bias.  

In this section, results about the differential tracking error obtained with an omnidirectional antenna 

are presented.  

5.5.1 Omnidirectional antenna measurements setup 

The concept used in this dissertation to process omnidirectional antenna measurements is different 

from the one to process high-gain dish antenna measurements. Signals collected by the 

omnidirectional antenna are already partially processed and thirteen correlator outputs are provided 

instead of raw signals. The data were collected by Capgemini at Bayonne (France) with an Aero-

Antenna AT2775 - 100 patch antenna with a choke-ring to limit the multipath and a radome. The 

antenna is 13.75 cm high (including the radome) and 14 cm large (including the choke-ring). The 

antenna bandwidth is equal to 28 MHz centered on the L1 frequency. Correlator outputs were 

obtained from a WAAS Novatel G-III reference receiver with an equivalent RF front-end bandwidth 

equal to 24 MHz. In our case, the thirteen correlator outputs are available. They are estimated based 

on a 1 s integration time over a 1 h period. 

Three sets of data were collected at different times in order to check the repeatability of the observed 

distortion according to the time of the day: 

- Data set 1      TOW: 322217 s, the 18/02/2015 (from 18h30 to 19h30) 

- Data set 2      TOW: 235816 s, the 17/02/2015 (from 18h30 to 19h30) 

- Data set 3      TOW: 135139 s, the 09/02/2015 (from 14h30 to 15h30) 

The fact to have access to a few number of correlator outputs makes harder the visualization of 

distortions which affect the correlation function. In addition, some chip domain outputs are provided 

by the Novatel G-III receiver, but because of the limited number of outputs (thirteen), the signal 

distortion at chip level is not investigated. Only the S-curve tracking error plots are estimated. 

5.5.2 Data set 1 results and introduction of the inter-PRN bias 

Plots in Figure 5-14 are similar to results obtained from the high-gain dish antenna for GPS L1 C/A 

signals on Figure 5-5 but only few points are available and the concept to estimate these points is 

slightly different. Indeed, Figure 5-14 does not strictly represent the S-curves zero-crossing. The 

nuance is the same as described in section 5.3.2.1 and, on Figure 5-14, the concept used in [Wong et 

al., 2011] is applied.  
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The tracking is performed one time considering a reference correlator spacing equal to 0.1 𝑇𝑐 and an 

EML discriminator (𝐷𝐸𝑀𝐿 = (𝐼𝐸 − 𝐼𝐿) 2⁄ ). Points plotted for different 𝐶𝑆𝑘 which are shown in Figure 

5-14 correspond to the EML discriminator outputs obtained from correlator outputs of the pairs 𝑘. It 

means that it corresponds to the delay error estimated by a receiver with a correlator spacing 𝐶𝑆𝑘 in 

the particular configuration of a correlation function tracked by the reference correlator spacing 𝐶𝑆 =

0.1 chip. Nevertheless, if the amplitude of the distortion is small compared to the correlation function 

amplitude, the EML output amplitude, multiplied by 𝑐 (the speed of light), is approximatively equal to 

the differential tracking error between a receiver using 𝐶𝑆𝑘 and a receiver using 𝐶𝑆 = 0.1 chip. In this 

chapter about nominal distortions, the value of 𝐷𝐸𝑀𝐿× 𝑐 estimated for different 𝐶𝑆𝑘 is considered as 

the differential tracking error that affects a correlator output pair 𝑘 compared to the reference tracking 

pair.  

 

Figure 5-14. EML discriminator outputs multiplied by 𝑐 (reference CS at 0.1 chip) recorded with an 

omnidirectional antenna and process by a NovAtel GIII receiver. 

A strong low frequency bending is observed on the differential tracking error plots. The tracking error 

behavior is similar to results obtained from data collected by the CNES with the high-gain dish antenna. 

The advantage of omnidirectional measurements is that several signals are observed at the same time 

and a general behavior appears on all PRNs.  

To underline the fact that all PRNs are affected by a common bias, another representation is given in 

Figure 5-15. Considering that the user operates with a correlator spacing equal to 1 𝑇𝑐, the differential 

tracking error is estimated during one hour from correlator outputs averaged over one minute. 

Even if the differential errors are around −2 m, the inter-PRN biases which affect the user are smaller. 

Table 5-4 gives the averaged inter-PRN bias for the different PRNs, considering a user who tracks 

signals with a correlator spacing equal to 1 𝑇𝑐 and a reference with a correlator spacing equal to 0.1 

𝑇𝑐. Satellites elevations are also provided because it is noticeable that a link exists between the inter-

PRN bias and the satellite elevation.  

Two sky-plots are also shown in Figure 5-16. On the left it corresponds to the sky-plot at the beginning 

of the data collection and on the right to the sky-plot at the end of the data collection. 
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Figure 5-15. Differential tracking errors (reference at 0.1 chip and user at 1 chip) recorded with an 

omnidirectional antenna and processed by the NovAtel GIII. 

 

PRN Satellite elevation 

(𝟏𝟖h𝟑𝟎) 

Satellite elevation 

(𝟏𝟗h𝟑𝟎) 

Inter-PRN bias 

 (cm) 

25 9 33 −19,3 

24 67 76 15,3 

12 47 74 −0,9 

22 15 17 −39,4 

15 65 36 15,5 

17 29 18 1,8 

18 28 16 26,9 

Table 5-4. Inter-PRN biases for different PRNs with associated satellite elevations at the beginning 

and at the end of the data collection. (data set 1) 

 

 

Figure 5-16. Sky-plots at the beginning of the data set 1 collection (left) and at the end of the data set 

1 collection, 1 h after (right).  
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Three major results can be established from the processing of the data set 1: 

- A strong common bending is observed on the S-curve zero-crossing plots. Considering a 

reference station operating with a correlator spacing equal to 0.1 𝑇𝑐 and a user with a 

correlator spacing equal to 1 𝑇𝑐 the average differential tracking error among all PRNs is equal 

to −1.92 m. 

- If the common bias component which affects all PRNs is removed, the remaining inter-PRN 

biases which effectively impact the user (because the common bias is removed in the 

estimated clock bias) is smaller. The inter-PRN bias runs from -39.5 cm to 26.9 cm which is 

equivalent to a difference equal to 66.3 cm between extreme inter-PRN bias values. 

- The satellite elevation seems to have an impact on the inter-PRN bias even if some exceptions 

are noticeable. The three highest absolute values of inter-PRN bias are obtained for the two 

satellites with the lowest elevation (PRN 18, PRN 22 and PRN 25). It cannot be deduced that 

the satellite elevation explains by itself difference of inter-PRN biases. Indeed, PRN 18 and PRN 

22 are in the list of PRNs affected by strong nominal distortions. Nevertheless, it was shown in 

[Gunawardena, 2015] or [Haines et al., 2012] that the satellite elevation has an influence on 

the pseudorange natural biases (biases induced only by the distortion generated at payload 

level). Moreover, the increase of the inter-PRN bias measured from satellites with a low 

elevation can also be explained by multipath or by the GNSS receiver antenna phase delay 

variation and group delay variation function of the observation angle as discussed for example 

in [Murphy et al., 2007].  

5.5.3 Comparison of results obtained from the three different data sets  

Table 5-5 gives the inter-PRN biases obtained from the three different data sets. As for Table 5-4, it is 

considered that the user is operating with a correlator spacing equal to 1 𝑇𝑐 whereas the reference 

station with a correlator spacing equal to 0.1 𝑇𝑐. Three parameters are introduced to make a 

comparison between results established from the three different sets: 

- The common bias: this is the average bias that is subtracted to all PRN biases in order to only 

obtain the inter-PRN bias. 

- The amplitude: this is the difference between the maximum and the minimum inter-PRN 

biases. 

The maximum absolute inter-PRN bias for a set is underlined in red. 

From Table 5-5 it can be seen that inter-PRN biases and the common bias are stable when fixing the 

period of the day, but for two distinct periods of the day, results are different.  

Differences obtained between the two distinct periods of the day can have several origi ns: 

- The difference of satellites sets. Even if sets were chosen randomly and seven satellites were 

in view during the entire period of 1 h, the presence of highly distorted signals can explain the 

difference. It is remarkable that PRN 18, PRN 22 and PRN 24 are in the list of signals strongly 

affected by nominal distortions (see section 4.1.2.2) whereas other satellites are not. 

- The temperature of the antenna and the receiver at the time of the data collect. 

- The consideration that the inter-PRN bias depends upon the elevation (especially because of 

antennas pattern).  
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- The multipath. Rather than the satellite elevation, the multipath is related to the state of the 

constellation and the position of satellites in the sky relatively to the user together with the 

user environment.  

Most likely, the difference of satellite sets has the highest influence on the difference that is observed 

between set 1/set 2 and set 3 results. Nevertheless, other options cannot be excluded.  

 

 

PRN 

Satellite 

elevation 

(𝟏𝟖h𝟑𝟎) 

Satellite 

elevation 

(𝟏𝟗h𝟑𝟎) 

Inter-PRN bias 

 (cm)  

data set 1 

Inter-PRN bias 

 (cm)  

data set 2 

Inter-PRN bias 

 (cm)  

data set 3 

25 9 33 −19,3 −21.8  

24 67 76 15,3 16.8  

12 47 74 −0,9 3.1  

22 15 17 −39,4 -42.0  

15 65 36 15,5 19.1  

17 29 18 1,8 1.6  

18 28 16 26,9 23.2  

13 35 51   10,6 

5 60 75   5,1 

28 17 40   −9,4 

7 46 22   −10,2 

2 30 14   2,5 

30 73 51   4,1 

10 52 25   −6,7 

Common bias (cm) −192,2 −195,7 −237,8 

Amplitude (cm) 66.3 65.2 20.8 

Table 5-5. Inter-PRN biases for different PRNs with associated satellite elevations at the beginning 

and at the end of the data collection. (data sets 1, 2 and 3). 

5.5.4 Conclusions about the observation of nominal distortions with an 

omnidirectional antenna 

The main advantage of processing measurements collected from an omnidirectional antenna is that 

several signals can be observed simultaneously. A general low frequency bending affects S-curve zero-

crossing plots established with data collected by Capgemini. The same phenomenon is observed on 

data collected by CNES with high-gain dish antenna. Nonetheless, it has been shown that the low 

frequency bending of the S-curve zero-crossing plots is not a signal distortion generated by the satellite 

but by the antenna and the receiver. With omnidirectional measurements, the bias component 

introduced by the antenna and the receiver can be removed by subtracting the mean value of the 

differential errors for a given correlator spacing to estimate the inter-PRN biases. For instance, data 

set 1 is considered and it is assumed that the user and the reference track the same correlation 

function. Considering a 0.1 𝑇𝑐 correlator spacing at the reference level and a 1 𝑇𝑐 correlator spacing 

at the user level, the maximum averaged differential error (over one hour) is equal to 2.3 m. Knowing 

that the distortion that is looked at is entailed in nominal conditions, the value  of 2.3 m is high 

compared to values provided by the literature. Removing the common distortion (low frequency 

bending) affecting the differential tracking error across all visible satellites, the inter-PRN biases are 
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assessed with a maximum value equal to 0.4 m. The value of 0.4 m is closer to the expected impact of 

nominal distortion on a differential user. 

The main drawback of omnidirectional data collections is that multipath can affect some 

measurements. By consequence, the inter-PRN bias is not directly equal to the so-called natural bias, 

induced by the satellite. The mitigation of the multipath (a choke-ring antenna was used in this case 

to collect signals) permits to estimate in a better way the natural biases as done in [Gunawardena and 

van Graas, 2012a]. 

Results provided in this section must be carefully interpreted because based on only three data sets 

that were collected with a given setup and in a given environment. It shows order of magnitude of 

nominal distortions on users but also the difficulty to characterize such distortions.  

5.6 Comparison between estimated inter-PRN biases and the state-of-the-

art 

Other inter-PRN biases estimated in previous works are available in the literature. For instance, inter-

PRN biases reported from data collected with a mini-dish antenna and with a choke-ring hemispherical 

antenna are presented in [Wong, 2014]. Inter-PRN biases were estimated considering a 0.1 𝑇𝑐 

correlator spacing at the reference, a 1 𝑇𝑐 correlator spacing at the user and a front-end filter 

bandwidth equal to 16 MHz. Information about the setup can be found in [Wong, 2014]. Results 

provided by [Wong, 2014] show inter-PRN biases and their associated standard deviation. 

Results obtained from Leeheim (high-gain dish antenna) data collection and Bayonne (omnidirectional 

antenna) data collection are compared with results provided in [Wong, 2014]. 

5.6.1 High-gain dish antenna inter-PRN biases (Leeheim) 

The comparison is proposed in Figure 5-17 only for signals collected with the German administration’s 

high-gain dish antenna: in blue inter-PRN biases estimated from the mini-dish antenna, in red from the 

choke-ring antenna used in [Wong, 2014] and in green from the high-gain dish antenna. 

Inter-PRN biases estimated in this document from the German administration’s antenna 

measurements are consistent with the state-of-the-art. Only PRN 23 collected at Leeheim is slightly 

above the limit estimated in the literature and represented by the standard deviation (1𝜎). 
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Figure 5-17. Superposition of inter-PRN biases estimated from high-gain dish antenna measurements 

with results obtained in [Wong, 2014]. (reference at 0.1 chip and user at 1 chip)  

5.6.2 Omnidirectional antenna inter-PRN biases 

In Figure 5-18, inter-PRN biases estimated from the omnidirectional antenna are compared to the 

state-of-the-art: in blue inter-PRN biases estimated from the mini-dish antenna, in red from the choke-

ring antenna used in [Wong, 2014] and in green from the Capgemini omnidirectional antenna (also 

choke-ring). Inter-PRN biases from set 1 and set 2 are averaged but the two measurements estimated 

from the two satellites at low elevation (PRN 22 and PRN 25) are not shown and are removed from the 

average which is subtracted to estimate the inter-PRN biases. Results from the set 3 are also given. 

 

 

 

 

 

 

 

 

 

 

 

    Mini -Dish avg 
    Choke-ring avg 
    Leeheim high-gain dish avg 
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Figure 5-18. Superposition of inter-PRN biases estimated from omnidirectional antenna 

measurements with results obtained in [Wong, 2014]. (reference at 0.1 chip and user at 1 chip)  

5.6.3 Conclusion about the estimation of inter-PRN biases  

An important conclusion established in [Wong, 2014] is that: the high degree of consistency between 

the two sets of measurements (Mini-dish and Choke-ring antenna) strongly demonstrates that the 

observed biases are due to satellite signal distortion and not to measurement errors.  

Without speaking about a demonstration in this document because of the low number of observations, 

inter-PRN biases estimated from the high-gain dish antenna and the omnidirectional antenna are 

consistent with the state-of-the-art. These results are of primary importance because despite of 

difficulties to characterize the impact of nominal distortions on users, the inter-PRN bias parameter is 

consistent over different data collections recorded at different periods and with different devices. It is 

noteworthy that results from [Wong, 2014] were obtained with a 16 MHz RF front-end bandwidth 

whereas results provided from collected signals were obtained with larger RF front-end bandwidths. 

By consequence, it appears an interesting alternative to characterize nominal distortions.  

5.7 Conclusions  

In this section, nominal distortions affecting GPS L1 C/A and Galileo E1C signals were observed on 

different signals collected in different conditions. The study was divided in two steps:  

- the impact of nominal distortions on signals collected from high-gain dish antennas and 

- the impact of nominal distortions on signals collected from one omnidirectional antenna. 

    Mini -Dish avg 
    Choke-ring avg (Stanford) 
    Choke-ring avg (Capgemini) 
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Several results were established from the different data collections. Not enough data collections 

were available on GPS L5 and Galileo E5a signals to be presented in this manuscript.  

High-gain dish antenna data collections 

Three observables were used to observe nominal distortions:  

- The Chip Domain observable (CDO). 

o On GPS L1 C/A, results are consistent with results already published: a damped ringing 

effect is visible on the chip, and rising and falling transitions zero-crossings are 

delayed. Based on one characterization found in the state-of-the-art, four parameters 

were estimated from observed nominal distortions. Although, the rise time, the 

settling time and the peak time are overbounded by the maximum values that are 

reached by nominal distortions in [Phelts et al., 2009], the first peak overshoot ratio is 

slightly higher than the limit defined in [Phelts et al., 2009]. This can be explained by a 

difference in signal processing (antenna, digitizer, processing of sampling signals). 

Regarding the delay which affects zero-crossing of rising transitions compared to 

falling transitions, results show the stability of this parameter independently from the 

signal processing and the period of the measurement.  

o On Galileo E1C, only the estimation of the delay between rising and falling transitions 

can be compared to the state-of-the-art and results are consistent: the delay is 

negligible. The visualization of the analog distortion shows that the same damped 

ringing phenomenon as on GPS L1 C/A is visible but with a frequency slightly higher 

(24 MHz instead of 20 MHz). This result is directly linked to the bandwidth of the 

satellite equal to 20.46 MHz for GPS L1 C/A and 24.552 MHz for Galileo E1C. 

Additional distortions were visible on one of the collected signals (obtained with the 

ESA antenna) raising a question about origin of such distortions. Is the distortion 

induced by the satellite or by the receiver? Without more measurements the question 

cannot be answered.  

- The correlation function. It gives another representation of the distortion. From this 

representation, it is clear that the receiver has an influence on distorti ons observed on the 

signal. A low frequency bending (1 MHz) is visible on signals collected from two (CNES and ESA) 

over three (CNES, ESA and German administration) high-gain dish antennas. The additive 

distortion already noticed in [Wong, 2014] is mainly caused by a problem that affect all 

collected signals. It puts forward the main drawback of high-gain dish antennas 

measurements: having only one signal from one satellite at a given time, it is not possible to 

isolate and quantify the impact of the receiver on the observed distortion. One advantage  of 

Galileo E1 signals is that two components are received on the Galileo E1 band: E1C and E1B. 

Making the difference between the two components, all distortions that affect both 

components in the same way are removed whereas all distortions that affect both components 

differently are mixed. It cannot be concluded that the distortion induced by the receiver is 

removed making the difference between E1C and E1B correlation functions, but it is noticeable 

that it reduces the low frequency distortion.  

-  The S-curve zero-crossing plot. The low frequency phenomenon visible on the correlation 

function - called low frequency bending in this chapter - is enhanced by the S-curve zero-

crossing plot and is visible on signals collected at CNES and ESA. S-curve zero-crossing plots 

obtained from the data collected with the German Administration’s antenna are consistent 

with the state-of-the-art while S-curve zero-crossing plots obtained from the data collected 
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with the CNES antenna differ from the state-of-the-art because of a low frequency 

phenomenon introduced by the receiver on collected signals. 

Omnidirectional antenna 

Only S-curve zero-crossing plots are estimated from data collected by Capgemini with an 

omnidirectional antenna. It was shown that S-curve zero-crossing plots are distorted in the same way 

if data are collected with a high-gain dish antenna without proper calibration and if data are collected 

with an omnidirectional antenna: a general curvature affects these plots (low frequency bending). The 

advantage is that with an omnidirectional antenna, several measurements can be recorded 

simultaneously and it is clearly visible that the general low frequency bending of the S-curve zero-

crossing plots affects all collected signals in the same way. The low frequency distortion will be by 

consequence absorbed in the receiver clock bias. The bias which effectively affects pseudorange 

measurements, also called inter-PRN bias can be estimated by removing the common bias to all 

collected PRNs.  

It appears that the inter-PRN bias is constant over different data collections (for directional as for 

omnidirectional antennas measurements) and is by consequence an interesting parameter to 

characterize the impact of nominal distortions on a user. 

To summarize, the characterization of nominal distortions is an arduous task because if receivers are 

not calibrated, it is not possible to isolate distortions induced by the receiver and distortions induced 

at by the satellite. Nevertheless, results provided in this section show that analog and digital distortions 

visualized from CDO are highly consistent with outcomes from the state-of-the-art. In this chapter, 

new CDO results are proposed for Galileo E1C signals. Results on Galileo E1C have to be carefully 

interpreted because of the lack of measurements.  

In spite of the fact that the characterization of nominal distortions is difficult, the inter-PRN bias reveals 

itself as a good parameter to quantify the impact of nominal distortions on a user. Indeed, the inter-

PRN bias is constant independently from the antenna, the digitizer, the period of the day, etc. used 

during the data collection.   
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6 Non-nominal distortions 

Threat Models (TMs) are based on modeling possible phenomenon occurring at the satellite level in 

faulty conditions and inducing non-nominal distortions on the GNSS signals. They are meant at 

representing the reality, although they might only be an approximation of signal distortions which 

could appear on a transmitted signal. These TMs, and their associated parameters range, referred to 

as Threat Space (TS), are also necessary to design and test performance of Signal Quality Monitor 

(SQM), which is in charge of detecting the threatening distortions represented by the TM. This signal 

monitoring is necessary to protect users with high requirements in terms of integrity, accuracy, 

availability, and continuity such as civil aviation users. Nowadays, this monitoring task is performed in 

SBAS and GBAS systems.  

A proposition of signal distortions types was made in 1999 for GPS L1 C/A signal [Enge et al., 1999]. 

This proposition has been adopted by ICAO with the definition of three TMs [ICAO, 2006] that are 

defined in section 6.1: TM-A, TM-B and TM-C. When the term “ICAO Threat Model” is used in this Ph.D. 

thesis, it actually corresponds to three sub-threat models (TM-A, TM-B and TM-C). 

Section 6.2 describes a general concept to define TMs for GPS L1 C/A, Galileo E1C, Galileo E5a and GPS 

L5 GNSS signals. This concept can also be used to design TMs on other signals. The challenge of defining 

a TM for new signals is making harder due to the fact that no non-nominal distortion has been observed 

on Galileo signals and that information about payload components are not available. This is the reason 

why, in this manuscript, the definition of TMs for new signals is based on the current ICAO GPS L1 C/A 

TM. Even if Galileo and GPS satellite payloads are different, it is assumed that the retained TM on the 

GPS L1 C/A signal is able to characterize signal distortions that could affect a Galileo signal which aim 

is also to provide measurements to estimate a PVT. 

The strategy is to adapt the distortion models characterized by TM-A, TM-B and TM-C to new signals 

(with new correlation functions). It could thus be referred to as ICAO-like TM, as the new TM uses the 

same category of distortions as the current ICAO TMs. The concept is also used to propose an update 

to the TS for a GPS L1 C/A signal and to compare it with the ICAO TS.  

In section 6.3, 6.4, and 6.5, a proposition of TM-A, TM-B and TM-C respectively are given for the four 

signals of interest.  

Section 6.6 ends the chapter by summarizing results provided about TM-A, TM-B and TM-C for new 

signals and bring a critical point of view on the proposed solution.   

6.1 GPS L1 C/A Threat Model 

In this section, the definitions of the GPS L1 C/A TM delivered by ICAO are reminded. Definitions 

provide a characterization of distortions that could affect a signal.  The characterization is given in the 

chip domain and on the correlation function. To illustrate the fact that these distortions are a threat 

for DGNSS users, the impact on the differential tracking error induced by distortions included in the 

ICAO TM is assessed for particular reference receiver configurations and user receiver configurations.  
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6.1.1 ICAO Threat Model definition 

As it was seen in section 4.4.1.2, ICAO proposed to consider only three threatening effects (also called 

“problematical effects”) on the correlation function: 

- Dead zones 

- False peaks 

- Distortions 

The ICAO TM is defined for GPS L1 C/A signal and consists of three TMs that are described in this 

section: the TM-A, the TM-B and the TM-C. Definitions that are provided in this section are taken from 

[ICAO, 2006].  

6.1.1.1 TM-A 

Threat Model A (TM-A) consists of the normal C/A code signal except that all the positive chips have a 

falling edge that leads or lags relative to the correct end-time for that chip. This TM is associated with 

a failure in the navigation data unit (NDU), the digital partition of a GPS or GLONASS satellite. 

TM-A for GPS has a single parameter ∆, which is the lead (∆ <  0) or lag (∆ >  0) expressed in fractions 

of a chip. The range for this parameter is – 0.12 ≤ ∆ ≤  0.12.  

Within this range, TM-A generates the dead zones. Negative values of ∆ do not have to be tested 

because their effects on the correlation function are simply to advance the correlation function 

compared to positive values of ∆ which delay by the same amount the correlation function. By 

consequence threats entailed by positive and negative values are identical. This proprety can be 

theoretically demonstrated taking into account the correlation function mathematical expression as 

done in [Phelts, 2001]. 

Figure 6-1 illustrates chip and correlation deformations induced by the TM-A. 

  

Figure 6-1. Illustration of the ICAO TM-A impact on the signal (left) and on the correlation function 

(right). The nominal signal is in blue, the distorted one in orange.  

Δ = 0.12 chip 

 

Δ 
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6.1.1.2 TM-B 

Threat Model B (TM-B) introduces amplitude modulation and models degradations in the analog 

section of the GPS or GLONASS satellite. More specifically, it consists of the output from a second order 

system when the nominal C/A code baseband signal is the input. TM-B assumes that the degraded 

satellite subsystem can be described as a linear system dominated by a pair of complex conjugate poles. 

These poles are located at 𝜎 ±  𝑗2𝜋𝑓𝑑, where 𝜎 is the damping factor in 106 nepers/s and 𝑓𝑑 is the 

resonant frequency with units of 106 cycles/s. 

The unit step response of a second order system is given by: 

where 𝜔𝑑 = 2𝜋𝑓𝑑. 

TM-B for GPS corresponding to second order anomalies uses the following ranges for the parameters 𝛥, 

𝑓𝑑 and 𝜎: 

𝛥 =  0;  4 ≤  𝑓𝑑  ≤  17;  𝑎𝑛𝑑 0.8 ≤  𝜎 ≤  8.8 

Within these parameter ranges, TM-B generates distortions of the correlation peak as well as false 

peaks. 

The analog distortion is modeled as a second order linear filter with a Laplace transfer function: 

With 

𝑓𝑑_𝑏𝑖𝑠 =
1

2𝜋
√𝜎2 + (2𝜋𝑓𝑑)² 

 

Figure 6-2 illustrates chip and correlation deformations induced by a TM-B distortion.  

 
Figure 6-2. Illustration of the ICAO TM-B impact on the signal (left) and on the correlation function 

(right). The nominal signal is in blue, the distorted one in orange.  

 
𝑒(𝑡) = {

0                                                                                𝑡 < 0

1− 𝑒−𝜎𝑡 [𝑐𝑜𝑠(𝜔𝑑𝑡) +
𝜎

𝜔𝑑
𝑠𝑖𝑛(𝜔𝑑𝑡)]                𝑡 > 0 (6-1) 

 
𝐺(𝑠) =

(2𝜋𝑓𝑑_𝑏𝑖𝑠)²

𝑠2+ 2𝜎𝑠 + (2𝜋𝑓𝑑_𝑏𝑖𝑠)²
 (6-2) 

𝑓𝑑 = 8 MHz 

𝜎 = 8.8 Mnepers/s 

𝜎 
𝑓𝑑 
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6.1.1.3 TM-C 

TM-C introduces both lead/lag and amplitude modulation. Specifically, it consists of outputs from a 

second order system when the C/A code signal at the input suffers from lead or lag. This waveform is a 

combination of the two effects described above. 

TM-C for GPS includes parameters ∆, 𝑓𝑑 and 𝜎 with the following ranges: 

– 0.12 ≤  ∆ ≤  0.12;  7.3 ≤  𝑓𝑑  ≤  13;  𝑎𝑛𝑑 0.8 ≤  𝜎 ≤  8.8 

Within these parameters ranges, TM-C generates dead zones, distortions of the correlation peak and 

false peaks. 

Figure 6-3 illustrates chip and correlation distortions induced by the TM-C. 

 

Figure 6-3. Illustration of the ICAO TM-C impact on the signal (left) and on the correlation function 

(right). The nominal signal is in blue, the distorted one in orange. 

6.1.1.4 Justifications about the ICAO GPS L1 C/A TM 

Characterization of the TM 

The characterization of the ICAO TM is based on three parameters: ∆, 𝜎 and 𝑓𝑑. The choice of the three 

parameters is justified by the fact that in nominal conditions, distortions that affect the signal can be 

approximatively characterized by these three parameters. Indeed, a delay between rising and falling 

transitions zero-crossing average and a damped ringing phenomenon can be observed on GPS L1 C/A 

signals in nominal conditions (see chapter 5). By consequence, it seems reasonable to assume that 

payload components can provoke the same kind of distortion with a larger amplitude in non-nominal 

conditions. 

Moreover, the ICAO TM satisfies two other important criteria: it is easy to implement and it is capable 

of generating the three correlation peak pathologies (dead zone, false peak and asymmetry).   

Limitation of the TS 

Criteria used to define the TS for GPS L1 C/A signal, (i.e. the possible values of the TM parameters (∆, 

𝜎 and 𝑓𝑑)) are described in [Phelts, 2001]. 

𝑓𝑑 = 8 MHz 

𝜎 = 8.8 Mnepers/s 

Δ = 0.12 chip 

 

Δ 

𝑓𝑑 𝜎 
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Considering TM-A:  

- For ∆, the range of the parameter is limited to +/− 0.12 of the chip duration, because larger 

values are easily detectable by SQMs based on multi-correlator techniques. 

Considering TM-B:  

- [Phelts, 2001] mentions that the upper bound for 𝑓𝑑 (17 MHz) has been chosen because higher 

frequency ringing effects would be filtered out by the satellite RF output filter, which is 

20.46 MHz for GPS L1. 

- The lower bound for 𝑓𝑑 (4 MHz) is justified by the fact that lower frequency ringing will affects 

the L1 P(Y) code, that is “closely monitored” by military users. 

- For 𝜎, lower values (𝜎 < 0.8 Mnepers/s) are not realistic since they would introduce 

unrealistic instability of the ringing. Distortions with larger values (𝜎 > 8.8 Mnepers/s) shall 

not be threatening for users protected against TM-B distortions. 

Considering TM-C no justification about the TS is proposed in the literature. 

6.1.1.5 GPS L1 C/A ICAO TM summary 

This part gives a summary about the three sub-TMs defined by ICAO for the GPS L1 C/A signal. Table 

6-1 gives the limit values that the three TMs parameters can take as defined by ICAO.  

Table 6-1. ICAO TS defined for GPS L1 C/A signals. 

6.1.2 Impact on differential users 

In this section differential tracking errors induced by the TM-A, TM-B and TM-C are estimated. The 

differential tracking error induced by a given distortion is dependent upon the user and reference 

station configurations as discussed in section 4.3, and notably upon the following parameters: 

- the tracking technique (including the local replica and the discriminator), 

- the correlator spacing, 

- the antenna and the RF front-end (technology, bandwidth, maximum group delay variation). 

In section 6.1.2.1, parameters that are defined in this chapter at reference and at user levels to 

estimate differential tracking errors are given considering a GPS L1 C/A signal. Then in section 6.1.2.2, 

the impact of the three TMs on the differential tracking error is assessed to put forward that distortions 

defined by ICAO are effectively leading to threatening differential errors. 

 
∆ 𝜎 𝑓𝑑 

TM A 
[−0.12 ;  0.12] chip or 

[−117.3 ;  117.3] ns 
- - 

TM B - [0.8 ;  8.8] Mnepers/s [4 ;  17] MHz 

TM C 
[−0.12 ;  0.12] chip or 

[−117.3 ;  117.3] ns 
[0.8 ;  8.8] Mnepers/s [7.3 ;  13] MHz 
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6.1.2.1 Tested configurations and worst differential tracking error 

Values and information about receiver parameters that are used in this chapter to estimate differential 

errors estimated for GPS L1 C/A signal are given in Table 6-2. The allowable range that these 

parameters can take was provided in chapter 5 and is referred to as the User Design Space (UDS). 

These parameters are representative of expected standardized DFMC civil aviation configurations 

[Samson, 2015]. Note that different types of filters are used to account for the wide variety of filters 

encountered across multiple receiver manufacturers. All these filters satisfy the ICAO requirement on 

the maximal differential group delay which must be lower than 150 ns: 

- Filter1: 6th-order Butterworth. 

- Filter2: resonator filter type with a constant group delay equal to zero.  

- Filter3: resonator filter type with a concave group delay and a 150 ns differential group delay. 

- Filter4: 6th-order Butterworth for the amplitude and the smallest order Butterworth filter 

leading to a differential group delay higher than 150 ns for the phase. 

A detailed description of the four filters (amplitude, phase and differential group delay) is provided in 

appendix E. When designing TMs, to be as conservative as possible, the four filters are also tested at 

reference level even if, in the literature, 6th-order Butterworth is usually used to model the pre-

correlation filters (at reference as well as at user levels).  

Only an EML discriminator (𝐷𝐸𝑀𝐿 = (𝐼𝐸 − 𝐼𝐿) 2⁄ ) is used to perform the tracking as this is the 

discriminator retained by civil aviation for both reference and airborne receivers [Samson, 2015]. The 

tracking bias is estimated by simply finding the discriminator stable lock point. The use of an EMLP, an 

EML or a DP discriminator do not change provided results.  

 reference user 

Tracking technique EML  EML 

Correlator spacing 0.1 chip 0.08 and 0.12 chip 

Pre-correlation 

bandwidth (double-

sided) 

24 MHz 12, 14,16,18, 20,22,24 MHz 

Equivalent reception 

filter 

4 filters are tested (6th-order Butterworth, 0-group delay resonator, 

150 ns differential group delay resonator, 150 ns differential group delay 

6th-order Butterworth) to estimate differential tracking error. 

Only the 6th-order Butterworth filter is applied to the reference to 

estimate the absolute tracking error. 

Table 6-2. Reference receiver and user receiver configurations used to estimate tracking errors and 

differential tracking errors in chapter 6 for GPS L1 C/A signal.  

To estimate the worst (or maximal) differential tracking error entailed by a distortion, the differential 

tracking error entailed by that distortion on each reference/user receiver configuration combination 

is assessed. 4 (reference filters) + 4 (user filters) x 2 (correlator spacing’s at user level) x 7 (bandwidths 

at user level) = 60 differential tracking errors are derived per tested distortion. Then, the highest 

differential tracking error estimated from tested reference/user receiver configurations is kept and is 

considered as the worst (or maximal) differential tracking error entailed by that distortion. 
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6.1.2.2 Results 

Figure 6-4 gives the worst differential tracking error induced by ICAO TM-A, TM-B and TM-C on a GPS 

L1 C/A signal considering user receiver configurations presented in Table 6-2 and a reference station 

with an equivalent 6th-order Butterworth reception filter. To plot results provided by Figure 6-4: 

- 12 distortions are tested regarding TM-A: 

  ∆= 0: 0.01:0.12 chip. 

- 126 distortions are tested regarding TM-B: 

  𝑓𝑑 = 4:1:17 MHz and 𝜎 = 0.8:1:8.8 Mnepers/s. 

- 99 distortions are tested regarding TM-C:  

 𝑓𝑑 = 7.3:0.57:13 MHz and 𝜎 = 0.8: 1:8.8 Mnepers/s. ∆ is set to 0.12 chip for the 

 sake of illustration even if it is not necessarily the ∆ value that entails the largest 

 differential tracking errors. 

 

Figure 6-4. Impact of the TM-A (at top on the left), the TM-B (at top on the right), and the TM-C (at 

bottom) on the worst differential tracking error. 

From Figure 6-4, it can be seen that the worst differential error induced by distortions from the TM-A, 

TM-B and TM-C on a GPS L1 C/A signal pseudorange measurement can reach 12 m. By consequence, 

it is necessary to warn a user that has to meet stringent requirements if such distortions affect a signal. 

The definition of the limit between threatening and nominal differential pseudorange measurement 

errors, referred to as MERR, is given in the next chapter (see section 7.1.1). 
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6.2 Generalization to other modulations 

It was seen that some signal distortions can introduce high differential tracking errors. Even if several 

strategies were investigated to deal with this problem (see section 4.4.1), the adopted strategy was to 

design a TM to characterize distortions that could affect in a hazardous way a GPS L1 C/A signal. With 

the definition of new GNSS signals that will be used by civil aviation users, it is necessary to adopt the 

strategy that was developed for GPS L1 C/A: define representative distortions TM for new signals. The 

issue is that the adaptation to new signals of the ICAO TM developed for GPS L1 C/A signal is not 

elementary. Indeed, new signals and/or new tracking methods change the conception of hazardous 

signal distortions. The problem was already studied in [Phelts et al., 2006], [Fontanella et al., 2010] and 

[Thevenon et al., 2014] but the idea was more about replicating the GPS L1 C/A TM on new signals and 

on new correlation functions. The justification of using such models with the same TS as GPS L1 C/A 

was not clear. In this section, justifications of the TM design for new signals are given and a method to 

define a TM for different GNSS signals is exposed. 

An important remark is that, on GPS L5, the use of the ICAO TM defined for GPS L1 C/A is taken for 

granted [Phelts et al., 2013]. The logic behind is that the same hardware and same satellites are used 

to generate both signals. 

6.2.1 Difficulties to translate GPS L1 C/A case to other modulations  

To define a TM, two questions have to be answered: 

- How are the distortions from the TM characterized? The answer consists in finding relevant 

parameters necessary to generate these distortions. 

- How can the TS be limited? The answer consists in finding the limit values that the TM 

parameters can reasonably take. 

The answer to both questions can be found in the literature in a GPS L1 C/A context ( [Phelts, 2001]) as 

summarized in section 6.1.1.4. Nevertheless it appears that the answer cannot be applied in a 

straightforward manner for new modulations as discussed in this part. 

The first step regarding the design of the ICAO TM was to define correlation peak pathologies that can 

be threatening for a DGNSS user (dead zone, false peak and asymmetry). However, it was seen that 

the impact of distortions is dependent upon the tracking technique and the correlation function shape. 

By consequence, threatening distortions on a given modulated signal and for a given receiver (with a 

given tracking technique) are not necessarily threatening on another signal (with another modulation) 

and for a different receiver. 

For the studied modulations and signals (Galileo E1C, Galileo E5a and GPS L5), it is assumed that only 

EML discriminators will be used by future reference and airborne receivers (as it was the case to define 

the three GPS L1 C/A correlation peak pathologies). Note that this includes EML, EMLP and Dot Product 

discriminators. Moreover, the shape of the correlation function on the tracked area can be 

approximated by a triangular shape. By consequence, it is decided in this Ph.D. thesis to consider that 

whatever the signal is, the three threatening correlation peak pathologies remain dead zone, false 

peak and asymmetry.    



 6.2 Generalization to other modulations 

 161 
 

Therefore, the first strategy to define a TM on new GNSS signals is to apply concepts used to define 

the GPS L1 C/A TM and to adapt them to new modulations. 

Characterization of the TM 

From the observation of nominal deformations (state-of-the-art), it can be deduced that the same 

types of nominal distortions exist on GPS L5 and GPS L1 C/A. It justifies that the same characterization 

can be applied to define distortions on GPS L5 signal as on GPS L1 C/A signal (it is indicative of similar 

payload architecture that could thus lead to similar failures).  

Regarding Galileo E1C and Galileo E5a signals, it appears that no digital distortion seems to affect the 

signal in nominal conditions. This might be due to a very well calibrated payload, or a different 

generation scheme. Observations of Galileo E1C signals show, however, the same ringing phenomenon 

as on GPS L1 C/A, visible from the CDO. 

From the observation of nominal distortions and because of the lack of knowledge about payload 

architecture and behavior in a faulty condition, it is assumed in this manuscript, to be conservative, 

that the distortion model is the same for GPS L5, Galileo E1C and Galileo E5a as for GPS L1 C/A. It means 

that the analog failure consists in the output of a second order system (TM-B) whereas a lead/lag on 

falling signal transitions (whether chip or sub-chip) characterizes a digital failure (TM-A), or a 

combination of both failures (TM-C). 

Limitation of the TS 

Even if it seems reasonable to adapt the ICAO’s strategy to estimate parameters that are chosen to 

define distortions, it seems more difficult to use this strategy to limit the TS. Indeed: 

- ∆ cannot be limited a-prioiri by SQM capabilities because new modulations require new SQM 

designs and new SQM performance assessment.  

- The satellite RF output filter bandwidth is larger for Galileo E1 than for GPS L1. It entails that 

the higher bound for 𝑓𝑑 has to be redefined. 

- No description of a “close monitoring checking” on other component of a signal is available to 

limit 𝑓𝑑.  

- Since chips have a length (or a shape) which depends upon the modulation, the instability of 

distortions at low 𝜎 must be reconsidered. 

- The impact on differential users of highly attenuated distortions has to be estimated in a new 

modulations context. 

These are the reasons why another strategy is developed in this manuscript to limit the TS associated 

to TM on new modulations. 

6.2.2 Proposition of a new methodology to define the TS 

Due to difficulties to adapt the method that was used in the past to define the ICAO TS for GPS L1 C/A 

signal, a new approach is envisaged to limit the TS for other signals. The proposed TS for new 

modulations is based on two quantities that are defined in section 6.2.2.1: 

- the impact of a distortion on a GNSS receiver and 

- the impact of a distortion on a reference station receiver. 

These two quantities are dependent upon two parameters: 
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- reference receiver and user receiver configurations that are considered (presented in section 

6.2.2.2) and  

- the value of the maximum tolerable differential error (defined in section 6.2.2.3). 

6.2.2.1 Introduction to the proposed TS definition methodology 

To establish all parameters limits (for TM-A and TM-B), it is proposed to evaluate two quantities in 

order to limit the TS: 

The impact of a distortion on a receiver working with differential corrections . More precisely, a 

parameters limitation is established based on the consequence of a distortion on the corrected 

pseudorange measurement of a differential user. If a distortion can only lead to small differential 

biases that will not create a hazardous situation (bias smaller than a specified maximum differential 

error: ∆𝑒𝑟𝑟_𝑚𝑎𝑥) for all considered user/reference configurations, the corresponding TM parameters 

values can be removed from the TS. To determine the worst differential bias, all possible civil aviation 

airborne receiver and reference station receiver configurations (essentially different correlator 

spacing’s, RF front-end filter bandwidths and RF front-end filter types) are used. 

The impact of a distortion on a reference receiver. If a signal distortion induces a tracking bias on the 

reference station higher than a specified limit, the distortion is not included in the TS because is 

assumed to be detected by the ground segment (with a given false alarm and missed detection 

probabilities). Today, no such requirement on the tracking error detection at the reference level is 

defined for SBAS. However, such strong hypothesis is useful to limit the TS. It is presumed in this 

manuscript that the SBAS reference station is able to detect, in steady state, an absolute tracking bias 

higher than 20 m with another process than the SQM. Nowadays, no algorithm is implemented to 

perform this task but it is assumed in this document that in the future such detectors w ill be provided. 

These detectors would permit to detect translation of the correlation function that cannot be detected 

by the SQM, only capable of detecting a correlation function distortion. Such detectors could be based 

on same principles as RAIM algorithm detecting large residual biases on faulty pseudorange 

measurements. The value of 20 m is chosen to be reachable and conservative. 

6.2.2.2 Tested configurations 

As it was the case for GPS L1 C/A, the impact of a distortion is dependent upon the reference receiver 

and user receiver configurations. The consequence is that the TS limits are dependent upon the 

reference receiver and user receiver configurations that are considered. 

Values and information about receiver parameters that are defined in this chapter to estimate 

differential tracking errors and tracking errors estimated for new signals are given in Table 6-3. These 

parameters represent expected civil aviation configurations [Phelts et al., 2014]. The four tested filters 

were introduced in 6.1.2.1 and are detailed in appendix E. The four filters are also used to account for 

the wide variety of filters encountered across multiple receiver manufacturers. 
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Galileo E1C signal (𝐶𝐵𝑂𝐶(6.1))  

Galileo E5a and GPS L5 signal 

(𝐵𝑃𝑆𝐾(10)) 

reference user reference user 

Tracking 

technique 

EML (𝐵𝑂𝐶(1.1) 

local replica) 

EML (𝐵𝑂𝐶(1.1) 

local replica) 

EML (𝐵𝑃𝑆𝐾(10) 

local replica) 

EML (𝐵𝑃𝑆𝐾(10) 

local replica) 

Correlator 

spacing 
0.1 chip 

0.08 and  

0.12 chip 
1 chip 0.8, 1.2 chip 

Pre-correlation 

bandwidth 

(double-sided) 

24 MHz 
12, 14, 16,18,20, 

 22, 24 MHz 
24 MHz 

12, 14, 16,18,20, 

 22, 24 MHz 

Equivalent 

reception filter 

4 filters are tested (6th-order Butterworth, 0-group delay resonator, 150 ns 

differential group delay resonator, 150 ns differential group delay 6th-order 

Butterworth) to estimate differential tracking error. 

Only the 6th-order Butterworth filter is applied to the reference to estimate the 

absolute tracking error. 

Table 6-3. Reference receiver and user receiver configurations used to estimate tracking error and 

differential tracking error in chapter 6 for new signals.  

6.2.2.3 Limitation of ∆𝑒𝑟𝑟_𝑚𝑎𝑥 

∆𝑒𝑟𝑟_𝑚𝑎𝑥 is of primary importance because it represents the limit of the acceptable differential error 

in presence of a distortion. Signal distortions which entail smaller differential errors than this limit do 

not need to be included in the TS. The smaller ∆𝑒𝑟𝑟_𝑚𝑎𝑥 is, the wider the TS is. ∆𝑒𝑟𝑟_𝑚𝑎𝑥 thus has to be 

quantified to ensure that a bias smaller than ∆𝑒𝑟𝑟_𝑚𝑎𝑥 would not lead to a hazardous situation. 

The notion of hazardous situation is related to targeted SQM performance. The current SBAS L1 

requirement regarding SBAS SQM is provided by [ICAO, 2006] and states that the ground segment 

should be able to detect any EWF-induced differential bias greater than a given Maximum Error Range 

Residual (MERR), also known as maximum tolerable error, with a 𝑃𝑚𝑑 and a 𝑃𝑓𝑓𝑑.  

MERR values are derived in 7.1.1 and are summarized hereafter. In the context of DFMC receiver, 

assuming that an EWF can only occur on one frequency at a time, the SQM performance will be limited 
to the detection (with appropriate required 𝑃𝑚𝑑  and 𝑃𝑓𝑓𝑑) of any EWF that would create: 

- a differential bias on a Galileo E1 OS measurement greater than MERR equal to 1.55 m or  

- a differential bias on a Galileo E5a measurement greater than MERR equal to 2.78 m. 

In the context of mono-frequency L1 receiver the MERR is equal to 3.5 m. 

To be conservative, in this document, ∆𝑒𝑟𝑟_𝑚𝑎𝑥 is fixed to 1 m, a value lower than any MERR value, 

thus providing some margin with respect to the computation of the worst differential bias . It means 

that the TM includes all signal distortions following the ICAO-like TM leading to a worst-case 

differential error higher than 1 m. 
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6.3 TM-A like propositions for new signals 

In this section, the TM-A of GPS L1 C/A is extended to Galileo E5a, GPS L5 and Galileo E1C signals. It is 

recalled that the reasoning developed in this manuscript is based on the assumption that the same 

kind of failure appears on GPS L1 C/A, Galileo E1C, Galileo E5a and GPS L5 signals.  

The extension to the 𝐵𝑃𝑆𝐾(10) (Galileo E5a and GPS L5) is fairly straightforward. However, it is more 

difficult for Galileo E1C signal because of the presence of sub-carriers on the CBOC signal. That is why 

in part 6.3.2 two digital TMs are proposed for the CBOC modulation: one conservative TM and one 

simplified TM. 

6.3.1 Galileo E5a and GPS L5 TM-A 

To be in line with the current TM-A defined for GPS L1 C/A and to be conservative, the lower bound of 

Δ is taken equal to zero for 𝐵𝑃𝑆𝐾(10)-modulated signals. For this signal it is not possible to use the 

proposed technique to limit the upper bound of the TS (selection in the TS of a distortion based on its 

impact on the tracking error and differential tracking error) as shown in 6.3.1.1. By consequence, 
another method copying the ICAO TM-A developed for GPS L1 C/A signal is proposed. 

6.3.1.1 Use of the proposed methodology 

Figure 6-5 shows on the left the tracking error observed by the reference station when tracking a signal 

affected by a TM-A with different values of Δ running from 0 to 117 ns. On the right, is shown the 

worst differential error seen among all reference/user receiver configurations combinations.  

 

Figure 6-5. Impact of the TM-A for GPS L5 and Galileo E5a signals for different Δ. On the left, impact 

on the reference station tracking error. On the right, impact on the worst differential tracking error.  

From Figure 6-5 (left), the tracking error seen by the reference station is always lower than 20 m 

whatever the value of Δ is. As a consequence, it is not possible to use the criterion about the impact 

of a distortion on the reference station tracking error to limit the TS. 

From Figure 6-5 (right), the worst tracking error entailed by a TM-A distortion increases when Δ 

increases. Consequently, it is not possible to apply the criterion about the impact of a distortion on the 
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differential tracking error to estimate the upper bound of Δ. It is noticeable that for Δ values lower 

than or equal to 50 ns, the differential tracking errors are lower than 1 m and are by consequence not 

a threat for the considered DGNSS users. Nevertheless, to be in line with GPS L1 C/A TM it is decided 

to keep small Δ values in the TS. 

To conclude, the strategy to estimate the Δ upper bound from the two proposed criteria (tracking error 

observed by reference and worst differential tracking error that affect DGNSS users) does not allow 

the reduction of the TS. 

6.3.1.2 Proposition of a TM-A 

Based on the above results, it is proposed to keep the range of Δ (in second) of GPS L1 C/A TM-A:  

−1.2 𝐸5𝑎 (𝐿5) 𝑐ℎ𝑖𝑝𝑠 ≤ Δ ≤ 1.2 𝐸5𝑎 (𝐿5) 𝑐ℎ𝑖𝑝𝑠 

Figure 6-6 illustrates correlation functions affected by TM-A distortions with different Δ values. 

 

Figure 6-6. Distorted GPS L5/Galileo E5a correlation functions for different values of Δ filtered by a 

6th-order Butterworth (24 MHz). 

From Figure 6-6, it can be seen that the correlation peak is still visible for high Δ values even if strongly 

flattened. The legitimacy of distortions with high Δ values could be discussed. Indeed, if the distorted 

signal cannot be tracked by any considered receiver, it is not necessary to include this distortion in the 

TM. Two distorted signal features that could prevent the tracking can be defined: 

- A too low amplitude of the correlation function at tracking correlator outputs level. The worst 

case is considered: a user’s receiver tracks a TM-A distorted signal (Δ = 1.2 chips) with a 

correlator spacing equal to 1.2 chip. From Figure 6-6, the amplitudes of the correlation 

function at tracking correlator outputs are equal to 0.67 in nominal conditions and 0.23 on 

the distorted correlation function which represents a factor of 3. It means that the receiver 

will observe a 4.7 dB Signal-to-Noise Ratio (SNR) loss when tracking the distorted signal 

compared to a nominal one. A 4.7 dB difference between two GNSS signals received by the 

same antenna/receiver is a typical order of magnitude in nominal conditions, for example 
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between a low elevation satellite and one at high elevation. The consequence is that the loss 

of correlation function amplitude entailed by the distortion does not prevent the tracking.  

- A flat zone which includes the two tracking correlator outputs. From Figure 6-6, it is noticeable 

that the two tracking correlator outputs are on the flat zone when the signal is affected by a 𝛥 

higher than 0.6 chip. Nevertheless, depending on the implementation of the discriminator, the 

behavior of the DLL when both correlator outputs used for the tracking are on a flat zone  will 

be different. This difference in the receiver behavior can become a threat for DGNSS users. By 

consequence, it is important to take into account even distortions with high 𝛥 values. 

6.3.2 Galileo E1C TM-A 

As introduced previously, the digital failure of 𝐶𝐵𝑂𝐶(6,1,1 11⁄ )-modulated signal is more difficult to 

design because of the presence of sub-carriers. The presence of several components in the signal 

entails a multiplication of distortion threats.  

6.3.2.1 Proposition of digital distortions 

No occurrence of EWF has been observed on Galileo signals. Payload knowledge could help to make 

choices among the large number of conceivable digital failures. However, the lack of information about 

a payload miss-functioning prevents the selection. In this section, only the two most likely digital 

distortions that could affect a Galileo E1C signal are presented and are called digital distortion 1 and 

digital distortion 2.  

The scheme on Figure 6-7 presents the Galileo E1 signal generation [Navipedia, 2015]. Only the bottom 

part (highlighted green box) is of interest in the E1C component generation.  

 

 

 

 

 

 

 

 

 

 

Figure 6-7. Galileo E1 signal generation block scheme [Navipedia, 2015]. 

Digital distortion 1: A lead/lag on the falling transitions of all signal components after modulation. It 

is possible to imagine that only 𝐵𝑂𝐶(6,1) or 𝐵𝑂𝐶(1,1) transitions are affected by this lead/lag but 

because the distortion occurs after modulation, it is most likely that a delay will appear on every 

transitions. 
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The impact on the signal and on the correlation function, of such a signal distortion is shown in Figure 

6-8 on the left and on the right respectively for Δ = 0.05 chip (in blue the undistorted signal, in red the 

distorted signal). 

 

 

Figure 6-8. Impact of digital distortion 1 on the signal (left), and on the correlation function ( right). 

 

Digital distortion 2: A lead/lag on the 𝐵𝑂𝐶(1,1) sub-carrier or/and on the 𝐵𝑂𝐶(6,1) sub-carrier falling 

transitions at the signal square wave generator level (before modulation). This distortion was 

introduced in [Phelts et al., 2006] for 𝐵𝑂𝐶(1,1) signal. In Figure 6-9, the lag on 𝐵𝑂𝐶(1,1) and 

𝐵𝑂𝐶(6,1) transitions is similar. To be conservative and take into account most of possible cases, two 

independent parameters are defined: 

- Δ11 : the lead/lag parameter on 𝐵𝑂𝐶(1,1) sub-carrier component (before modulation). 

- Δ61 : the lead/lag parameter on 𝐵𝑂𝐶(6,1) sub-carrier component (before modulation). 

The impact on the signal and on the correlation function of such a signal distortion is shown in Figure 

6-9 on the left and on the right respectively for Δ11 = Δ61 = 0.05 chip (in blue the undistorted signal, 

in red the distorted signal). 

 

 

Figure 6-9. Impact of digital distortion 2 on the signal (left), and on the correlation function ( right). 

1 -1 1 1 

𝑇𝑐 

𝑇𝑐 

1 -1 1 1 

𝑇𝑐 
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In Figure 6-10 is represented in red the Galileo E1C signal generation level where the digital distortion 

1 appears and in green where digital distortion 2 appears. 

 

 

 

 

 

 

 

Figure 6-10. Galileo E1C signal generation unit and digital distortions. 

6.3.2.2 First TM-A TS limitation based on physical considerations 

Two TM-A are proposed to take into account each proposed digital distortion for the new Galileo E1C 

signal: 

- TM-A1: A lead/lag (Δ) on every signal falling transitions after modulation. Only one parameter 

is necessary (digital distortion 1). 

- TM-A2: A lead/lag on the 𝐵𝑂𝐶(6,1) ( Δ61) and on the 𝐵𝑂𝐶(1,1) ( Δ11) sub-carrier falling 

transitions at signal square wave generator level (before modulation). Two parameters are 

necessary (digital distortion 2). 

Δ,  Δ61 and Δ11 parameters range can be fixed observing the shape of signals distorted by the different 

digital distortions: 

- From a certain value of Δ, the distorted signal keeps the same shape because a chip is 

composed of one positive and one negative sub-chip. It entails that from a certain value of Δ 

(Δ = 1.08 chips), increasing the value of Δ (above 1.08 chips) does not change the shape of 

the signal and the correlation function. From this value of Δ, chips are disappearing and the 

signal is constant.  

- From a certain value of Δ11, the signal keeps the same shape because a chip is composed of 

one positive and one negative sub-chip. It entails that from a certain value of  Δ11  ( Δ11 =

0.5 chip), sub-chips (of the 𝐵𝑂𝐶(1,1)) are disappearing. Increasing the value of  Δ11 above 

0.5 chip does not change the shape of the signal and the correlation function. 

- From a certain value of Δ61, the signal keeps the same shape because 𝐵𝑂𝐶(6,1) signal is 

composed of alternative positive and negative values with the same amplitude. It entails that 

from a certain value of  Δ61 ( Δ61 = 0 .08 chip), sub-chips (of the 𝐵𝑂𝐶(6,1)) are disappearing.  

Illustrations presented in Figure 6-11 show this concept for different distortions: 

1) TM-A1 with Δ = 1.08 chips 

2) TM-A2 with  Δ11 = 0.5 chip ( Δ61 not considered) 

3) TM-A2 with  Δ61 = 0 .08 chip ( Δ11  not considered) 
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Figure 6-11. CBOC signals affected by different digital distortions on the top and associated 

correlation functions on the bottom. 

In the three cases, choosing higher values of Δ,  Δ61 and Δ11 does not bring any change on the signal. 

These limits can be considered as Δ,  Δ61 and Δ11 values that entail a saturation of the distortion. By 

consequence it is not necessary to take into account higher values of Δ,  Δ61 and Δ11 .  

6.3.2.3 Limitation of the TM-A TS based on the detection capability of the reference station 

It is noticeable that some of the distortions with high values of Δ should be easily detected. The range 

of Δ could be limited by the assumed capability of the reference to detect tracking bias larger than 20 

meters. 

Using this condition, Δ and  Δ11  can be decreased to 0.12 chip and 0.10 chip respectively, as 

represented in Figure 6-12. Reference configuration was applied to establish these plots. 

By consequence, for TM-A1, the following parameter values are envisaged: 

−0.12 𝑐ℎ𝑖𝑝 ≤ Δ ≤ 0.12 𝑐ℎ𝑖𝑝 

and for TM-A2, 

−0.1 𝑐ℎ𝑖𝑝 ≤  Δ11  ≤ 0.1 𝑐ℎ𝑖𝑝 

−0.08 𝑐ℎ𝑖𝑝 ≤ Δ61 ≤ 0.08 𝑐ℎ𝑖𝑝 

 

1 2 3 
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Figure 6-12. Tracking error for TM-A1 and TM-A2 and different delta values (Δ and Δ11 ). 

6.3.2.4 Proposition of a simplified TM-A 

Considering the current GPS L1 C/A digital TM, it is clear that it is assumed that the distortion occurs 

on the signal after its modulation with the PRN code. However, no information about the Galileo E1C 

signal generation on-board the payload is available in the literature. Knowing if the three signal 

components (𝐵𝑂𝐶(1,1), 𝐵𝑂𝐶(6,1), PRN) are generated independently (TM-A2) or as the product of 

the components (TM-A1) could help to choose between TM-A1 or TM-A2 or both.  

Assuming that the digital signal is directly generated as the components product would entails that 

only TM-A1 should be preserved. It is noteworthy that no digital distortion was observed on Galileo 

nominal signals. It means that the TM-A1 already takes into account distortions that are not generated 

by Galileo satellites payload in nominal conditions. Based on these assumptions a simplified TM-A is 

proposed and consists only in TM-A1.   

6.3.3 Summary of the proposed TM-A for new signals 

It is proposed to consider as a signal distortion threat for Galileo E5a, GPS L5 and Galileo E1C, digital 

distortions that replicate the type of threat of the current ICAO GPS L1 C/A TM.  

- For Galileo E5a and GPS L5, 𝐵𝑃𝑆𝐾(10)-modulated, it is decided to reuse the TM-A defined for 

GPS L1 C/A because of similarities between modulations.  

- For Galileo E1C, a larger number of digital distortions could be considered due to the presence 

of sub-carriers in the signal. Without prior knowledge about the satellite payload, two digital 

distortions for Galileo E1C signals are proposed: TM-A1 and TM-A2 that consider potential 

separation of the origin of the distortions related to the sub-carriers. TM-A2 results in the 

definition of two new TM parameters.  

The TS for Galileo E1C has firstly been limited by physical considerations and then using one of the two 

criteria proposed to select threatening distortions: distortion which entails a tracking error on the 

reference station larger than 20 m are removed from the TS. 
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As a conclusion, the proposed parameters for the TM-A of GPS L5, Galileo E5a and Galileo E1 C are 

given in Table 6-4.  

 Conservative TM Simplified TM 

Galileo E1C 

−117 𝑛𝑠 ≤ Δ ≤ 117 𝑛𝑠 −117 𝑛𝑠 ≤ Δ ≤ 117 𝑛𝑠 

−97 𝑛𝑠 ≤ Δ11 ≤ 97𝑛𝑠 / 

−78 𝑛𝑠 ≤ Δ61 ≤ 78 𝑛𝑠 / 

Galileo E5a and GPS L5 −117 𝑛𝑠 ≤ Δ ≤ 117𝑛𝑠 −117 𝑛𝑠 ≤ Δ ≤ 117 𝑛𝑠 

Table 6-4. Digital parameters proposed range for Galileo E1C, Galileo E5a and GPS L5.  

It is noteworthy to remind that all these limits can be reduced if the reference station is able to detect 

bias smaller than 20 m. 

6.4 TM-B like proposition for new signals 

As presented at the beginning of this chapter, ICAO TM-B consists of a damped ringing phenomenon 

induced at chip transitions and can be modeled by a second order low pass filter characterized by two 

parameters: 𝑓𝑑 and 𝜎. It is proposed to also apply the same second order ICAO TM-B filter to represent 

analog signal distortions on the investigated GNSS signals. The remaining difficulty is to define the TS. 

The same methodology as the one introduced in section 6.2.2 is used to limit the TS:  

6.4.1 Lower limit for 𝜎 and 𝑓𝑑  parameters 

In this section, the lower TS bounds are defined: firstly the ringing frequency 𝑓𝑑 and then the damping 

factor 𝜎.  

6.4.1.1 Ringing frequency 𝑓𝑑 

Figure 6-13 presents the influence of distortions with low 𝑓𝑑 (1,2,3 and 4 MHz) on the reference 

receiver as a function of the damping factor for Galileo E5a, GPS L5, GPS L1 C/A and Galileo E1C signals. 

It reads as follows: 

- Results for Galileo E1C are in red, for Galileo E5a and GPS L5 in blue and for GPS L1 C/A in 

green. 

- In black is represented the 20 m tracking error limit over which distortions are considered as 

detected by the ground. 

- For one given signal, dotted curves represent the lowest 𝑓𝑑 that induces a tracking error on 

the reference receiver lower than 20 m for at least one 𝜎 value. This 𝑓𝑑 must thus be included 

in the TS. 

- For one given signal, continuous curves represent the lowest 𝑓𝑑 that induces a tracking error 

on the reference receiver higher than 20 m for all 𝜎 values.  
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Figure 6-13. Tracking errors entail by low 𝑓𝑑 distortions on a reference station for different signals. 

Curves represented by circles and crosses for Galileo E5a and GPS L5 show that analog distortions with 

𝑓𝑑 lower than 3 MHz are detected by the reference and do not have to be included in the TS. 

As a consequence, all 𝑓𝑑 lower than 1 MHz for Galileo E1C and GPS L1 C/A and 3 MHz for Galileo E5a 

and GPS L5 should be detected at the reference station level by the complementary monitor on the 

absolute bias. Therefore, it seems legitimate to remove these low 𝑓𝑑 from the TS. 

6.4.1.2 Damping factor 𝜎 

Without any consideration, the lowest value of 𝜎 should be taken equal to zero. To be conservative, 

this value is also adopted for GPS L1 C/A signal even if nowadays the lowest value of 𝜎 is fixed to 

0.8 Mnepers/s by ICAO. For simulation reasons, the lowest tested value of 𝜎 is not taken equal to zero 

but equal to 0.05 Mnepers/s as discussed in 6.4.3. 

 

Figure 6-14. Tracking error entails by low 𝜎 distortions on a reference station, GPS L1 C/A. 
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It can be seen from Figure 6-14 that distortions with low 𝜎 values (𝜎 between 0.1 Mnepers/s and 

1 Mnepers/s) are physically conceivable and can be assumed undetected by the reference station 

because inducing tracking errors on that reference station lower than 20 m.  

6.4.2 Upper limit for 𝜎 and 𝑓𝑑  parameters 

6.4.2.1 Maximum differential tracking errors entailed by second order distortions  

The following plots represent the worst differential tracking error for all considered reference 

configurations. Results are presented for Galileo E1C in Figure 6-15, for Galileo E5a and GPS L5 signals 

in Figure 6-16 and for GPS L1 C/A in Figure 6-17.  

 

Figure 6-15. Worst differential tracking error for different signal distortion parameters. On the right, 

only the 1 m limit is shown. Blue limits give the remaining conservative TM. Red limit underlines that 

the TM cannot be bounded for high 𝜎 values. Galileo E1C. 

 

 

Figure 6-16. Worst differential tracking error for different signal distortion parameters. On the right, 

only the 1 m limit is shown. Blue limits give the remaining conservative TM. Red limit underlines that 

the TM cannot be bounded for high 𝜎 values. Galileo E5a and GPS L5. 
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Figure 6-17. Worst differential tracking error for different signal distortion parameters. On the right, 

only the 1 m limit is shown. Blue limits give the remaining conservative TM. Red limit underline that 

the TM cannot be bounded for high 𝜎 values. GPS L1 C/A. 

As a reminder, the withheld TS is the parameters range leading to a worst case differential error higher 
than  ∆𝑒𝑟𝑟_𝑚𝑎𝑥 = 1 m (dark colored area on right plots). 

To have a simple TM definition, it is decided to adopt a rectangular TS. Table 6-5 represents the TM 

limits (also representing with blue and red lines in the above figures) for 𝑓𝑑  and low 𝜎 that can be 

chosen from differential tracking error considerations or that have been fixed in the previous section 

6.4.1. This rectangle is referred to as TM-B “area 1”. 

 Galileo E1C Galileo E5a and GPS L5 GPS L1 C/A 

𝑓𝑑 (𝑀𝐻𝑧) 1 𝑡𝑜 19  3 𝑡𝑜 19  1 𝑡𝑜 19  

𝜎 (𝑀𝑛𝑒𝑝𝑒𝑟𝑠/𝑠) 0 𝑡𝑜 26  0 𝑡𝑜 24  0 𝑡𝑜 28  

Table 6-5. Analog parameters proposed range for different signals on area 1.   

It is however noticeable that the rectangular area does not include large differential tracking errors 

generated by high 𝜎 distortions when 𝑓𝑑 is low. There is thus a need to define a complementary area 

to the area 1 to define the TS. 

To define this second area, another representation to observe the impact of high 𝜎 on the tracking 

error is used. It consists in plotting the tracking error for signal distortions with (
𝜎

(𝑓𝑑 )2
; 𝑓𝑑) axis as shown 

in Figure 6-18. As an example, this figure gives the differential tracking error after applying filter 3 

(150 ns differential group delay resonator) on the user receiver (and taking the worst case among the 

two different correlator spacing values and the seven different bandwidths) and filter 1 (6th-order 

Butterworth) on the reference for the four signals of interest. It is noteworthy to mention that 

differential errors can also be large (i.e. larger than the considered ∆𝑒𝑟𝑟_𝑚𝑎𝑥=1 m limit) for high 𝜎 

values. Galileo E1C results are presented on the left, Galileo E5a and GPS L5 results on the middle and 

GPS L1 C/A results on the right. 
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Figure 6-18. Differential tracking errors in meter generated by a TM-B distortion, function of 
𝝈

(𝒇𝒅)𝟐
 

and 𝒇𝒅 for signals of interest. 

This new (
𝜎

(𝑓𝑑)2
; 𝑓𝑑) representation has a lot of interest because it illustrates that:  

- even strongly attenuated distortions can lead to high differential tracking errors. This 

phenomenon can be explained by the fact that the correlation function is strongly rounded 

and distorted in an asymmetric way for high 𝜎 values (as illustrated in Figure 6-19) for an 

unfiltered GPS L1 C/A signal. In this figure, the ratio 𝜎 (𝑓𝑑)
2⁄  is set to 3 and four different 𝑓𝑑 

values are tested. It is noticeable that curves obtained for 𝑓𝑑 = 6 MHz (𝜎 = 36 Mnepers/s), 

𝑓𝑑 = 11 MHz (𝜎 = 121 Mnepers/s) and 𝑓𝑑 = 16 MHz (𝜎 = 256 Mnepers/s) are  

superimposed. 

- the tracking error is (almost) constant for a given 𝜎 (𝑓𝑑)
2⁄  and high frequencies. More details 

about this property is given in appendix G.  

 

 

 Figure 6-19. Impact of highly attenuated TM-B distortions on the correlation function. 

Figure 6-20 represents the tracking errors observed by a reference station with the considered 

configurations for a Galileo E1C (left), a Galileo E5a and GPS L5 (middle), and a GPS L1 C/A signal (right). 

An advantage of the 𝜎 (𝑓𝑑)
2⁄  representation is that high values of 𝜎 (𝑓𝑑)

2⁄  can be easily bounded using 

the condition related to the reference capability to detect large absolute tracking bias. Consequently, 

Worst di fferentia l  tracking 

error, Gal i leo E1C 

Worst di fferentia l  tracking 

error, Ga lileo E5 and GPS L5 

Worst di fferentia l  tracking 

error, GPS L1 C/A 
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it is decided to establish a TM-B “area 2” upper limit in the 𝜎 (𝑓𝑑)
2⁄  representation based on this 

reference capability. It is reminded that in this document the reference minimum detectable bias is 

assumed equal to 20 m. 

 

 

Figure 6-20. Tracking errors affecting the reference in meter generated by TM-B distortions, function 

of 
𝜎

(𝑓𝑑)2
 and 𝑓𝑑. Blue rectangles represent area 2 limits, black lines area 1 upper limits.  

The “area 2” lower limit is based on its complementarity with “area 1”. To be conservative, the lower 

limit for  

- Galileo E1C is given by: 

(
𝜎

(𝑓𝑑)
2
)
𝑚𝑖𝑛

=
26

192
≈ 0.07 𝑛𝑒𝑝𝑒𝑟𝑠/𝑠/𝐻𝑧/𝑀𝐻𝑧 

- Galileo E5a and GPS L5 is given by: 

(
𝜎

(𝑓𝑑)
2
)
𝑚𝑖𝑛

=
24

192
≈  0.06 𝑛𝑒𝑝𝑒𝑟𝑠/𝑠/𝐻𝑧/𝑀𝐻𝑧 

- GPS L1 C/A is given: 

(
𝜎

(𝑓𝑑)
2
)
𝑚𝑖𝑛

=
28

192
≈  0.07 𝑛𝑒𝑝𝑒𝑟𝑠/𝑠/𝐻𝑧/𝑀𝐻𝑧 

One important point is that distortions with 𝜎 (𝑓𝑑)
2⁄  value higher than (𝜎 (𝑓𝑑)

2⁄ )𝑚𝑖𝑛, can be studied 

in the 𝜎 (𝑓𝑑)
2⁄  representation. Indeed, from this (𝜎 (𝑓𝑑)

2⁄ )𝑚𝑖𝑛, the new representation is able to take 

into account most of the different threatening distortions even for high 𝑓𝑑 where less 𝜎 are tested. 

This is supported by the fact that above this limit, distortions vary slowly as intuited on Figure 6-20 and 

as it will be demonstrated in the next part. 

TM-B “area 2” could be reduced to the area between the 20 m absolute tracking error upper limit and 

the black line representing the “area 1” upper limit in the 𝜎 (𝑓𝑑)
2⁄  representation (Figure 6-20). 

Nonetheless, to be conservative and simplify the TMs definition, it is decided to limit “area 2” to the 

blue rectangles. Finally, the proposed “area 2” limits are given in Table 6-6 for all considered signals. 

 

 

  Tracking error Galileo E1C  Tracking error GPS L1 C/A    Tracking error Galileo E5a and GPS L5      
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 Galileo E1C 
Galileo E5a and 

GPS L5 
GPS L1 C/A 

𝑓𝑑 (MHz) 3 𝑡𝑜 19  4 𝑡𝑜 19  4 𝑡𝑜 19  

𝜎

(𝑓𝑑)2
 (nepers/s/Hz/MHz) 0.07 𝑡𝑜 5  0.06 𝑡𝑜 3.5 0.07 𝑡𝑜 1.8  

𝜎 (Mnepers/s)  

For the minimum 𝑓𝑑 value 
0.6  𝑡𝑜 45 1  𝑡𝑜 56 1  𝑡𝑜 29 

𝜎 (Mnepers/s)  

for 𝑓𝑑 = 19 MHz 
25 𝑡𝑜 1805 22 𝑡𝑜 1266 25 𝑡𝑜 650 

Table 6-6. Analog parameters proposed range for different signals on area 2.  

6.4.3 Number of tests to cover the entire proposed TM 

It is noticeable that the proposed TS for TM-B, composed of both areas 1 and 2, is wider (by a factor 

100) than the GPS L1 C/A TS defined by ICAO. The purpose of this part is to compare the TS in terms of 

number of tests to consider to take into account all threatening distortions with a fair resolution. In 

this part, the term resolution is used to represent the capacity of a set of tests to get the largest variety 

of different distortions as possible in a given TS. 

6.4.3.1 Tested distortions in the 𝜎 (𝑓𝑑)
2⁄  and in the 𝜎 represenation 

The new 𝜎 (𝑓𝑑)
2⁄  representation is equivalent to a y-axis scale change compared to the traditional 𝜎 

representation used to define the TM-B and TM-C TSs. 𝜎 (𝑓𝑑)
2⁄  and 𝜎 scales have advantages and 

drawbacks that are exposed in this part. 

- 𝜎 representation: the 𝜎 resolution is identical for low and high 𝑓𝑑. Indeed, if the resolution on 

the y-axis (𝜎) is 1 Mnepers/s, tested distortions will have 𝜎 values equal to 0, 1,2, 3 Mnepers/s 

etc. whatever 𝑓𝑑 is, as illustrated in Figure 6-21. 

 

Figure 6-21. 𝜎 = 1 Mnepers/s increment in the traditional 𝜎 TM representation. Points represent 

tested distortions. 
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- 𝜎 (𝑓𝑑)
2⁄  representation: the 𝜎 resolution is 𝑓𝑑-dependent. Indeed, if the resolution on the x-

axis (𝜎 (𝑓𝑑)
2⁄ ) is 1 nepers/s/Hz/MHz, the tested distortions will have 𝜎 values equal to 

0, 1,2, 3 Mnepers/s etc. for a frequency equal to 1 MHz and 0, 400, 800, 1200 Mnepers/s etc. 

for a frequency equal to 20 MHz. This allow to run through 𝜎 values faster, as illustrated in 

Figure 6-22, but an explanation is necessary to justify that this resolution is applicable.  

 

 

Figure 6-22. 
𝜎

(𝑓𝑑)2
= 1 nepers/s/Hz/MHz increment in the traditional 𝜎 TM representation. Points 

represent tested distortions. 

The problem is that for high frequencies, the tested distortions resolution could not be high enough in 

the 𝜎 (𝑓𝑑)
2⁄  representation. A proposition to estimate the resolution with which a TS has to be studied 

is presented in the next part. 

6.4.3.2 Strategy to limit the number of distortions to test in the proposed TM 

It is not possible to test all threatening distortions because there is an infinity of distortions in a TS. It 

is thus required to sample the TS so that it is representative of all distortions without missing any 

potential hazardous ones. 

Let us define the spacing between two consecutive tested distortions as the spacing between two 

distortions with the same 𝑓𝑑 but two consecutive 𝜎 values, or with the same 𝜎 but two consecutive 𝑓𝑑. 

To measure the appropriate spacing between consecutive tested distortions, let us introduce the 

parameter  ∆𝑒𝑟𝑟_𝑑𝑖𝑠𝑡 , representative of the tracking error difference observed between the two tested 

distortions. To be sure that the filter does not have any impact and to extract only the impact of the 

distortion on the shape of the correlation function,  ∆𝑒𝑟𝑟_𝑑𝑖𝑠𝑡 is estimated from unfiltered distorted 

correlation functions. 

The methodology to define an appropriate spacing between two consecutive distortions is to consider 

that only low enough  ∆𝑒𝑟𝑟_𝑑𝑖𝑠𝑡 values are tolerable. Indeed, if these values are too large, it means that 

the sampling of the TS is too loose and that the correlation function shape varies significantly between 

two consecutive tested distortions. The consequence is that some threatening distortions could be 

omitted. It is important to note that  ∆𝑒𝑟𝑟_𝑑𝑖𝑠𝑡 does not reflect directly the difference of correlation 

function shape between two tested distortions. To be rigorous, a metric based on all correlation 

function points could be evaluated. Nevertheless, for the present purpose, only a general idea of the 

correlation function behavior is sufficient. 
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The lower the value of  ∆𝑒𝑟𝑟_𝑑𝑖𝑠𝑡 is, the better the resolution is. The  ∆𝑒𝑟𝑟_𝑑𝑖𝑠𝑡  used to decide if the test 

grid is well designed for the propose TM is assumed to have the same order of magnitude than the 

 ∆𝑒𝑟𝑟_𝑑𝑖𝑠𝑡 resulting from the ICAO GPS L1 C/A test methodology. As an example, it is decided to 

introduce the grid of tested distortions presented in Figure 6-23 for the GPS L1 C/A ICAO TS: 𝑓𝑑 =

4:1:17 MHz, 𝜎 = 0.8:1:8.8 Mnepers/s. In this case, one hundred and twenty-six tests are performed 

to cover the GPS L1 C/A ICAO TS. A significantly coarser grid is used in this section for GPS L1 C/A than 

was used for WAAS. Indeed, for WAAS, the increment on  𝑓𝑑 is equal to 0.1 MHz and the increment on 

𝜎 is equal to 0.5 Mnerpers/s [Phelts et al., 2003]. Nevertheless, the aim of this section is only to give 

orders of magnitude of the number of distortions to test on proposed TMs compared to the number 

of distortions to test on the ICAO one. For this particular case,  ∆𝑒𝑟𝑟_𝑑𝑖𝑠𝑡 values are given Figure 6-24. 

Different curves correspond to the fourteen tested 𝑓𝑑. The x-axis gives the mean value of 𝜎 between 

the two consecutive tested values of 𝜎 at the origin of the  ∆𝑒𝑟𝑟_𝑑𝑖𝑠𝑡  computation. 

 

Figure 6-23. Example of a TS grid (GPS L1 C/A ICAO TM).  

 

Figure 6-24.  ∆𝑒𝑟𝑟_𝑑𝑖𝑠𝑡 as a function of 𝜎 associated to the TS grid from Figure 6-23 (GPS L1 C/A ICAO 

TM). 

From Figure 6-24, the maximum ∆𝑒𝑟𝑟_𝑑𝑖𝑠𝑡 obtained with this sampling of the L1 C/A current TS is 2.8 

m. This is the approximate upper limit of  ∆𝑒𝑟𝑟_𝑑𝑖𝑠𝑡 that has to be targeted when sampling the TS of 
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the proposed new GNSS signals TM. Note that the value of 2.8 m might appear relatively high and 

could be decreased by choosing a thinner grid to test the TS. 

6.4.3.3 Number of tests: example of TM-B area 1 on Galileo E1C 

The methodology introduced above is used in this part to estimate the number of  distortions to test 

on area 1 for Galileo E1C. Results for Galileo E5a, GPS L5 signals and GPS L1 C/A on TM-B area 1 and 

TM-B area 2 are provided in appendix F as well as results for Galileo E1C on TM-B area 2. 

6.4.3.3.1 Galileo E1C area 1 

To find the same ∆𝑒𝑟𝑟_𝑑𝑖𝑠𝑡 as on the ICAO GPS L1 C/A TM-B, for the area 1 of the Galileo E1C TM-B, one 

thousand and three tests are necessary to cover the whole area. This augmentation (compared to the 

one hundred and twenty-six for GPS L1 C/A) is due to the fact that higher values of 𝜎 and more values 

of 𝑓𝑑  are considered in area 1 of the proposed TM. Moreover, for low 𝑓𝑑 and 𝜎 values, a thinner grid 

has to be designed to reach the same ∆𝑒𝑟𝑟_𝑑𝑖𝑠𝑡 order of magnitude as on the GPS L1 C/A TM-B. The 

proposed grid is presented in Figure 6-25. 

 

Figure 6-25. Example of TS grid (Galileo E1C, area 1 of the proposed TM-B). 

The area 1 can be decomposed in three tested zones: 

- Zone 1 to study low 𝑓𝑑. The grid consists of 𝑓𝑑 = 1:1:4 MHz, 𝜎 = 1: 0.2: 26 Mnepers/s. This 

zone is included in the red square on Figure 6-25. 

- Zone 2 to study low 𝜎. The grid consists of 𝑓𝑑 = 1:1:19 MHz, 𝜎 = 0.05:0.1:1 Mnepers/s. It 

is noticeable that distortions with 𝜎 lower than 0.05 Mnepers/s cannot be studied without 

increasing dramatically the number of tests. This is why this lower bound of 0.05 Mnepers/s is 

set. This zone is included in the green square on Figure 6-25. 

Zone 3 Zone 1 

Zone 2 

Tested dis tortions : 1003 
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- Zone 3 to study the rest of the TS. The grid consists of 𝑓𝑑 = 4:1:19 𝑀𝐻𝑧, 𝜎 =

1:1:26 Mnepers/s. This zone is included in the blue square on Figure 6-25.  

∆𝑒𝑟𝑟_𝑑𝑖𝑠𝑡 associated to zone 1 are presented Figure 6-26. ∆𝑒𝑟𝑟_𝑑𝑖𝑠𝑡  associated to zone 2 are presented 

Figure 6-27. ∆𝑒𝑟𝑟_𝑑𝑖𝑠𝑡  associated to zone 3 are presented Figure 6-28. It is recalled that one curve 

corresponds to one 𝑓𝑑. The blue curve corresponds to the lowest tested 𝑓𝑑 (1 MHz), the orange to the 

second one, the yellow to the third one and the purple to the fourth one.  

 

Figure 6-26.  ∆𝒆𝒓𝒓_𝒅𝒊𝒔𝒕 as a function of 𝜎 associated to the zone 1 of the selected TS grid (Galileo E1C, 

area 1 of the proposed TM-B). 

 

Figure 6-27.  ∆𝒆𝒓𝒓_𝒅𝒊𝒔𝒕 as a function of 𝜎 associated to the zone 2 of the selected TS grid (Galileo E1C, 

area 1 of the proposed TM-B). 

Zone 1 

Zone 2 
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Figure 6-28.  ∆𝒆𝒓𝒓_𝒅𝒊𝒔𝒕 as a function of 𝜎 associated to the zone 3 of the selected TS grid (Galileo E1C, 

area 1 of the proposed TM-B). 

With the grid proposed for the area 1 of the Galileo E1C signal TM-B, the maximum value of ∆𝑒𝑟𝑟_𝑑𝑖𝑠𝑡, 

equal to 3.4 m, has same order of magnitude as the maximum value of 2.8 m obtained with the GPS 

L1 C/A ICAO TM (see Figure 6-23). Even if the value is slightly higher, it can be noticed that only three 

cases entail  ∆𝑒𝑟𝑟_𝑑𝑖𝑠𝑡 higher than 2.6 m. Another zone could be defined around cases which entail 

 ∆𝑒𝑟𝑟_𝑑𝑖𝑠𝑡 higher than 2.6 m, nevertheless for simplicity reasons on Galileo E1C area 1, this new grid 

can be adopted to obtain approximatively the same resolution. In this condition, the number of tested 

values is multiplied by a factor 8 (≈ 1003 126⁄ ). 

6.4.3.3.2 Conclusions about the number of distortions to test 

To conclude, it has been seen in this section how to estimate the number of distortions to test on the 

proposed TMs. It is clear that more tests are required to cover the proposed TS as shown in appendix 

F. However, to obtain approximatively the resolution with which the TS is examined in the GPS L1 C/A 

ICAO TM case, the number of simulations can be limited to: 

- 13.4 + 8 = 21.4 times the number of simulations compared to the current ICAO TM for 

Galileo E1C. 

- 6.7 + 1 = 7.7 times the number of simulations compared to the ICAO current TM for Galileo 

E5a and GPS L5. 

- 8.3 + 2.7 = 11 times the number of simulations compared to the ICAO current TM for GPS L1 

C/A because more distortions are considered in the proposed TS. 

These three values are reasonable considering GNSS signal distortions context. 

6.4.4 Summary on the proposed TM-B for new signals 

In this part, a proposition of ICAO TM-B like has been given for Galileo E1C, Galileo E5a, GPS L5 and 

GPS L1 C/A based on a new methodology. The GPS L1 C/A case has also been looked at in order to 

fairly compare the proposed TS for the considered signals obtained with the proposed methodology.  

The proposed TM is purposely conservative because it includes all dangerous signal distortions, 

meaning that it also includes very high 𝜎 values. This differs from the current ICAO TM for GPS L1 C/A.  

Zone 3 
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A solution is proposed to limit the number of distortions to test. This solution consists in the separation 

of the TS in two areas: 

- Area 1: This representation is equivalent to the classical ICAO TM-B distortion representation. 

This area is necessary to take into account low 𝜎 signal distortion behaviors.  

- Area 2: This area resides on 𝜎 (𝑓𝑑)
2⁄  on the y-axis and 𝑓

𝑑
 on the x-axis. This area is the 

complementary of area 1. 

Two criteria were used to limit the TS of each TM based on the impact of distortions on: 

- the differential tracking error which has to be higher than 1 m to be considered as a threat and  

- the reference ground station tracking error which has to be lower than 20 m to be considered 

as a threat not detected by the ground. 

These criteria led to the following TS restrictions that are summarized in Figure 6-29: 

- Low 𝑓𝑑are detected by the ground station. 

- High 𝑓𝑑 do not have a threatening impact on DGNSS users. 

- Low 𝜎 lead to divergent signals. 

- High 𝜎 are detected by the ground station. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-29. Summary of reasons that are considered to limit TSs. 

An important remark is that the TS is dependent upon the reference station capability to detect a large 

tracking bias. Such bias detectors are not specified in current requirements but could be envisaged. 

Results given in this document are established making the assumption that the reference is able to 

detect minimum detectable bias on any pseudorange equal to 20 m. If performance of the reference 

station is better, the TS could be smaller. 

Proposed TS parameters presented in Table 6-7 are fairly conservative. It is noticeable that more signal 

distortions have to be tested on new signals in comparison to the current ICAO GPS L1 C/A TM. Indeed, 

to run through the proposed TM, the number of tests have to be increased by a factor 8 for Galileo 

E5a and GPS L5 and a factor 21 for Galileo E1C.  

 

𝑓𝑑 (MHz) 

TM-B area 1 

TM-B area 2 

𝜎

(𝑓𝑑)
2 

(nepers/s/Hz/MHz) 

𝑓𝑑_𝑚𝑎𝑥 

Higher frequencies lead to 

“small” differential error 

(
𝜎

(𝑓𝑑 )
2
)
𝑚𝑖𝑛

 

Lower ratios lead to divergent 
signals 

(
𝜎

(𝑓𝑑 )
2
)
𝑚𝑎𝑥

 

Higher ratios are detected by 
the ground station 

𝑓𝑑_𝑚𝑖𝑛 

Lower frequencies are 
detected by the ground station 
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Table 6-7. Proposed TM-B parameters range for different signals using two representations.  

Figure 6-30 gives, as an example, the two areas in the 𝜎 (left plot) and in the 𝜎 (𝑓𝑑)
2⁄  (right plot) 

representations for Galileo E5a and GPS L5 signals. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-30. Area 1 (black) and area 2 (red) in the 
𝜎

(𝑓𝑑 )2
 representation (left) and in the 𝜎 

representation (right) for Galileo E5a and GPS L5 signals. 

6.5 TM-C like propositions for new signals  

In the current ICAO TM, the TM-C is a TM-A and TM-B combination. Parameters range chooses for TM-

C is smaller than individual parameters range for TM-A and TM-B. 

To be conservative and without more knowledge, the TS of the proposed TM-C takes parameters range 

established for the TM-A and the TM-B. A simplified TM-A was envisaged for Galileo E1C. As a 

consequence, a simplified TM-C is also envisaged and consists of a combination of the TM-B with the 

simplified TM-A. It was seen that the simplified TM is based on the assumption that the signal is 

  
Galileo E1C 

Galileo E5a and 

GPS L5 
GPS L1 C/A 

Area 1 

𝑓𝑑 _𝑚𝑖𝑛   (MHz) 1 3 1 

𝑓𝑑 _𝑚𝑎𝑥  (MHz) 19 19 19 

𝜎𝑚𝑖𝑛  (Mnepers/s) 0 0 0 

𝜎𝑚𝑎𝑥  (Mnepers/s) 26 24 28 

Area2 

𝑓𝑑 _𝑚𝑖𝑛  (MHz) 3 4 4 

𝑓𝑑 _𝑚𝑎𝑥  (MHz) 19 19 19 

(
𝜎

(𝑓𝑑)
2
)
𝑚𝑖𝑛

 (nepers/s/Hz/MHz)  0.07  0.06  0.07 

(
𝜎

(𝑓𝑑)
2
)
𝑚𝑎𝑥

(nepers/s/Hz/MHz) 5 3.5 1.8 

Area 1 (black) and area  2 (red) in both representations  
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generated as the product of signal components and that if this assumption cannot be verified, the 

conservative TM-A (and TM-C) has to be adopted. Nevertheless, it is also noteworthy to highlight that 

no digital distortion was observed on Galileo E1C signal. For this reason, the TM-A on Galileo E1C signal 

could be considered as irrelevant. To be conservative, the TM-C based on the TM-A1 is exposed but to 

make the study of the TM-C easier, the simplified TM-C is adopted in the following (TM-A2 distortions 

are not tested conjointly with TM-B distortions). 

Proposed parameters ranges are summarized in Table 6-8:  

 

 
Galileo E1C 

Galileo E5a and 

GPS L5 
GPS L1 C/A 

A
re

a 
1

 𝑓𝑑  ( 𝑀𝐻𝑧 ) 1: 19  1: 19  1: 19 

𝜎  (𝑀𝑛𝑒𝑝𝑒𝑟𝑠/𝑠) 0: 26  0: 24  0: 28 

A
re

a 
2

 𝑓𝑑  ( 𝑀𝐻𝑧 ) 3: 19  4 ∶ 19 4 ∶ 19 

𝜎

(𝑓𝑑 )
2
 (𝑛𝑒𝑝𝑒𝑟𝑠/𝑠/𝐻𝑧/𝑀𝐻𝑧)  0.07 ∶ 5 0.06 ∶ 3.5  0.07 ∶ 1.8 

 
𝛥𝑚𝑖𝑛 =  

− 𝛥𝑚𝑎𝑥  ( 𝑐ℎ𝑖𝑝𝑠) 
0.12 1.2 0.12 

N
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in
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lif
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d

 

TM
-C

  

𝛥11𝑚𝑖𝑛 = 

− 𝛥11𝑚𝑎𝑥 ( 𝑐ℎ𝑖𝑝𝑠 ) 
0.1  / / 

𝛥61𝑚𝑖𝑛 = 

− 𝛥61𝑚𝑎𝑥  ( 𝑐ℎ𝑖𝑝𝑠 ) 
0.08  / / 

Table 6-8. Proposed TM-C parameters range for different signals.  

6.6 Conclusions 

A TM is of primary importance regarding GNSS applications with stringent requirements. It permits to 

characterize expected distortions that could occur on a GNSS signal. The definition of the TM is 

necessary to estimate what could be the influence of GNSS signal distortions on users and how to deal 

with such GNSS threats. Indeed, with a given TM, the threat is known and an adapted SQM can be 

designed. 

This chapter proposes three TMs that are all based on the same types of distortions as the ones used 

current by ICAO for GPS L1 C/A: one for Galileo E5a and GPS L5, one for Galileo E1C and one for GPS 

L1 C/A signals. The case of GPS L1 C/A is treated to compare a TS obtained from the proposed 

methodology with the original ICAO TS.  

It is clear that the ICAO TM main drawbacks are still present in this approach: only a model is 

considered with its imperfections, its assumption of the type of payload failure that could occur and 

the assumption that what was observed in 1993 with a given payload is representative of what could 

happen with a current payload. Moreover, applying it directly to Galileo signals means that there is an 

acknowledgement that the Galileo payload would not provide different distortions, which is very 

unsure. This question of TM legitimacy is raised for example in [Pullen, 2009] but the present work was 

aiming at providing a first set of TM for new signals that could be justified based on previous work.  
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The approach to limit the TS of the proposed TM-A and TM-B is based on keeping only signal distortions 

that generate: 

- a differential bias higher than ∆𝑒𝑟𝑟_𝑚𝑎𝑥= 1 m in a specific receiver worst case configuration, 

which is assumed to be problematic for dual-frequency users,  

- a bias at the reference station smaller than 20 m, which is assumed to be a value that can be 

easily detected by a separate monitor.  

These new TMs, with limits summarized in Table 6-9, are interesting because they take into account 

all possible threats for reference/user configurations considered in this chapter.  

 

Simplified TM-C  

Conservative TM-C 

TM-B TM-A 

Area 1 Area 2 TM-A1 TM-A2 

𝑓𝑑   

(MHz) 

𝜎 

 (Mnepers/s) 

𝑓𝑑  

(MHz) 

𝜎

(𝑓𝑑)
2 (nepers/s/

Hz/MHz) 

𝛥𝑚𝑖𝑛 = 

− 𝛥𝑚𝑎𝑥  

(chip) 

𝛥11𝑚𝑖𝑛 = 

− 𝛥11𝑚𝑎𝑥   

(chip) 

𝛥61𝑚𝑖𝑛 = 

− 𝛥61𝑚𝑎𝑥  

(chip) 
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1: 1: 4 1: 0.2: 26 

3: 1:19 0.07:0.05: 5 0: 0.01: 0.12 0:0.01: 0.1 0: 0.01: 0.08 1: 1:19 0.05: 0.1:1 

4: 1:19 1: 1: 26 
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S 
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3: 1:19 0: 4: 24 4: 1:19 0.06: 0.075: 3.5 0: 0.1: 1.2 / / 

G
P

S 
L1

 

C
/A

 

1: 1: 4 1: 0.2: 28 

4: 1:19 0.07: 0.1:1.8 0: 0.01: 0.12 / / 
3: 1:19 0.05: 0.2:1 

1: 1: 3 0.05: 0.025: 1 

4: 1:19 1: 1: 28 

Table 6-9. Summary of proposed TM parameters range for different signals.  

In Table 6-9, the resolution with which TMs are tested are given for information and can be increased 

or reduced depending on the application.  

Compare to the ICAO TS defined for the GPS L1 C/A signal, proposed TSs are larger because highly 

attenuated distortions (high values of 𝜎) are considered. 

Note that the proposed methodology could be applied to other signal modulations (modernized GPS, 

GLONASS, Beidou, etc.). 

Once the TM is established, new SQM algorithms can be studied to protect a civil aviation users from 

the defined threats. This is the subject of the next chapter.  
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7 Signal quality monitoring of new signals 

After proposing an EWF TM for Galileo E1C, Galileo E5a and GPS L5 signals in the previous chapter, it 

is necessary to make sure that the distortions that are part of the TM will not generate hazardous 

effects on an airborne receiver. In particular, for stringent phases of flight (typically the ones with 

vertical guidance), it is necessary to detect the occurrence of such distortions and timely inform the 

user. This is thus one of the roles of augmentation systems such as SBAS or GBAS.  

In this chapter, the SQM adapted to the proposed TM and the new GNSS signals is presented. A 

representation to assess the performance of the SQM is exposed and is used to design a simplified 

SQM for new signals modulations. 

In section 7.1, principles and definitions linked to SQM are given. It is seen that current SQM is based 

on measurements estimated from correlator outputs that are combined to form metrics that are 

compared to their nominal values. 

In section 7.2, parameters with an influence on the SQM are listed and values of parameters used in 

this chapter to estimate the SQM performance are given. The definition of these parameters is of 

primary interest because changing their values also modify the performance of the SQM.  

In section 7.3, an innovative representation inspired from [Phelts et al., 2013] is proposed to assess 

the SQM performance based on the theoretical metrics standard deviation. A reference SQM based 

on three different metrics (simple ratio, difference ratio and sum ratio metrics) and a high number of 

available correlator outputs (fifty one outputs) spaced by 0.01 chip is first tested on GPS L1 C/A signal. 

GPS L1 C/A signal will be taken as an example to illustrate the concept of the innovative representation 

to assess SQM performance. As a conclusion of this section, a method to adapt theoretical results to 

operating reference station conditions is suggested. 

Section 7.4 compares performance of different SQMs regarding Galileo E1C, Galileo E5a and GPS L5 

signal distortions. A compromise will be found between SQM complexity and its performance. 

Finally, Section 7.5 concludes this chapter.  

7.1 SQM requirements and performance assessment 

The official definition of the SQM provided in [ICAO, 2006] has been presented in section 4.4.2 and is 

not reminded in this section. 

To summarize, the objective of the SQM is to detect signal distortions generated by a satellite payload 

failure that can be hazardous for a certified airborne user. It has been seen that a given distortion  can 

affect differently receivers with different configurations: RF front-end technology, group delay, 

bandwidth and tracking technique (including the local replica and the correlator spacing). 

More precisely, the SQM has to ensure that all distortions inducing threatening events are detected 

with a given 𝑃𝑓𝑓𝑑 (probability of fault-free detection, also called probability of false alarm) and a given 
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𝑃𝑚𝑑 (probability of missed detection) within a given TTA (Time-To-Alert). These probabilities are actual 

requirements that are derived from an integrity analysis. It means that the SQM has to ensure that the 

maximum differential bias induced by an undetected distortion (also called MUDE for Maximum 

Undetected Differential Error) is below a Maximum tolerable ERRor (MERR) with a required 𝑃𝑓𝑓𝑑, 𝑃𝑚𝑑 

and TTA. To meet this objective, metrics values based on correlator outputs are assessed and 

compared to thresholds. Theoretically, to estimate if a distortion is detected meeting the proper 

requirements, the value of the metric without noise can be compared to a Minimum Detectable Error 

(MDE).  

By consequence SQM performance is based on six important notions: the MUDE, requirements, the 

MERR, metrics, thresholds and MDE. The definition of the MUDE is already given in 4.4.3 and is not re-

defined in this section. The notion of MERR is tackled in 7.1.1 and the notion of metrics and tests in 

7.1.2. Then MDE and requirements are presented in 7.1.3 and 7.1.4, and principles of MDE and 

thresholds estimation are exposed in 7.1.5. 

7.1.1 Maximum tolerable ERRor (MERR) 

Even if results provided in this chapter can be adapted to different MERR values, this parameter is of 

primary importance to estimate if SQM performance fulfils requirements. A mathematical expression 

to estimate the MERR is defined by ICAO and is presented in this part. Nevertheless it appears that in 

the literature, other expressions and methodologies are used to derive the MERR. In this part, different 

approaches to derive the MERR are presented and MERR values that will be targeted in this chapter 
are given.  

7.1.1.1 ICAO MERR definition 

The notion of MERR was already introduced in 4.4.2 and 6.2.2.3. In the official source, the MERR 

acronym means Maximum tolerable ERRor [ICAO, 2006]. Nevertheless, in the literature, other 

expressions are used when mentioning the MERR as Maximum allowable range ERRor, Maximum 

allowable pseudorange ERRor [Shively, 1999], Maximum allowable ERror in Range [Rife and Phelts, 

2008] or Maximum Error Range Residual [Shloss et al., 2002]. It is important to understand that the 

MERR is defined in the pseudorange domain. 

The MERR definition is given in [ICAO, 2006]. The maximum tolerable error for each ranging source 𝑖 

can be defined for SBAS APV and precision approach as: 

where 

- 𝐾𝑉,𝑃𝐴 = 5.33 is the multiplier derived from the probability of false alarm equal to 𝑃𝑓𝑓𝑑 =

10−7: 

𝐾𝑉,𝑃𝐴 = √2× 𝑒𝑟𝑓𝑐−1(𝑃𝑓𝑓𝑑) 

with 

𝑒𝑟𝑓𝑐−1(𝑒𝑟𝑓𝑐(𝑥)) = 𝑥 

and 

 
𝑀𝐸𝑅𝑅𝑖 = 𝐾𝑉,𝑃𝐴√𝜎𝑖,𝑈𝐷𝑅𝐸

2 + 𝑚𝑖𝑛{𝜎𝑖,𝑈𝐼𝑅𝐸
2 } (7-1) 
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𝑒𝑟𝑓𝑐(𝑥) =
2

√𝜋
∫ 𝑒−𝑡

2
+∞

𝑥
𝑑𝑡 

- 𝜎𝑖,𝑈𝐷𝑅𝐸 is the standard deviation of the User Differential Range Error (UDRE) for the ranging 

source 𝑖. It can be seen as the residual range error associated to the corrections provided by 

the augmentation system. This parameter is estimated by the ground segment of the  

augmentation system and then sent to the user (via geostationary satellites in SBAS).  

- 𝑚𝑖𝑛{𝜎𝑖,𝑈𝐷𝑅𝐸
2 } is the minimum possible value of 𝜎𝑖,𝑈𝐼𝑅𝐸

2  for any user. 𝜎𝑖,𝑈𝐼𝑅𝐸
2  is the standard 

deviation of the error uncertainty for the ionospheric correction estimated from an 

ionospheric model using broadcast GIVE (Grid Ionospheric Vertical Error). 

MERR is evaluated at the output of a fault-free user receiver and varies with satellite elevation angle 

and ground subsystem performance [ICAO, 2006]. 

For the sake of simplicity, in the following the term MERR will be used instead of 𝑀𝐸𝑅𝑅𝑖. MERR can 

be viewed as the lowest value of 𝑀𝐸𝑅𝑅𝑖 among all ranging sources. 

7.1.1.2 Choice of a targeted MERR value 

As it can be understood, the notion of MERR is a key of the SQM analysis and should correspond to a 

value derived from an integrity analysis. Several derivations of the MERR can be found in the literature: 

- The evaluation of the value of the MERR for LAAS can be found in [Shively, 1999] and 

corresponding values for SBAS can be found in [Phelts, 2001]. In these publications, the MERR 

depends upon the Ground Accuracy Designator (GAD), the number of monitoring stations and 

is elevation-dependent. Example of MERR values estimated from models, as a function of the 

satellite elevation, are shown in [Phelts, 2001]. For a worst case of a satellite at 5° elevation, 

the typical MERR value is upper-bounded by 3.5 m for SBAS L1 in the case of three monitoring 

stations (and lower bounded by 0.7 m).  

- A simpler MERR formula is provided in [Shloss et al., 2002] for WAAS (single frequency) that 

only depends upon the UDRE, the User Ionospheric Vertical Error (UIVE) and the obliquity 

factor. This formula corresponds to a so-called static MERR and is given by: 

where 

o 𝜎𝑈𝐷𝑅𝐸 and 𝜎𝑈𝐼𝑉𝐸 are the standard deviations of the UDRE and GIVE monitors. 𝜎𝑈𝐼𝑉𝐸 

can be conservatively set to its floor value of 3. 

o 𝐹𝑃𝑃 is the obliquity factor, conservatively set to 1. 

Note that this formula changes for a dual-frequency system since the ionospheric term can be 

removed. The static MERR then becomes: 

where 𝜎𝐷𝐹𝑅𝐸 is the standard deviation of the Dual-Frequency Range Error (DFRE). 

Table 7-1 provides the values of the static MERR for both WAAS single and dual -frequency 

cases. Assuming that a SBAS would target a minimum UDRE/DFRE of 4, the static MERR would 

be 6.08 m in single frequency case and 3.64 m in dual-frequency case. 

- Finally, a new derivation of the MERR was proposed in [Rife and Phelts, 2008] where the MERR 

value also takes into account the actual probability of detection of the SQM as well as the 

response time of the SQM metric filter and the airborne measurement filter. This MERR is 

 
𝑀𝐸𝑅𝑅 =

5.33

3.29
×√𝜎𝑈𝐷𝑅𝐸

2 + (𝐹𝑃𝑃𝜎𝑈𝐼𝑉𝐸)
2 ≤

5.33

3.29
×√𝜎𝑈𝐷𝑅𝐸

2 + 9 (7-2) 

 
𝑀𝐸𝑅𝑅 =

5.33

3.29
× 𝜎𝐷𝐹𝑅𝐸 (7-3) 
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referred to as time-varying MERR and is associated with a complex computation methodology. 

It has been applied to WAAS in [Phelts et al., 2013]. This MERR fully protects the user since it 

takes the filters time response in consideration (which was not the case in the static MERR). It 

also has the property to have a value that varies as a function of the probability of detection 

of a given distortion (the MERR becomes higher as the distortion is easier to detect).  

 

Table 7-1. Static MERR values for WAAS for L1-only and dual-frequency users [Phelts et al., 2013]. 

Because the time-varying MERR derivation has not been implemented for the DFMC case in this thesis, 

it is proposed to use for the MERR the target value of 3.64 m provided for WAAS dual-frequency case 

in Table 7-1 for an UDRE/DFRE of 4. The value is rounded to 3.5 m in the rest of the document.  

This MERR thus represents the maximum tolerable value for an undetected bias on the iono-free 

measurement which can be caused by a distortion on L1, L5/E5a, or both, then: 

- if a bias occurs on L1 (none on L5/E5a), then the resulting absolute differential bias on L1 

should be lower than 1.55 m, 

- if a bias occurs on L5/E5a (none on L1), then the resulting absolute differential bias on L5/E5a 

should be lower than 2.78 m, 

- if a bias occurs at the same time on L1 and L5, then the resulting differential bias should be 

such that: 

As a consequence, if one wants to protect a user against an EWF occurring at the same time 

on the two frequencies, one would have to consider the worst case where the L1 and L5 biases 

would add up. It is equivalent to: 

This means that it would be necessary to put in place an EWF detection process which is better 

than what would be needed if considering that an EWF can only occur on one frequency at a 

 
|2.26 ∙ ∆𝑏𝐸𝑊𝐹,𝐿1

𝑖 − 1.26 ∙ ∆𝑏𝐸𝑊𝐹,𝐿5
𝑖 | < 3.5 𝑚 (7-4) 

 |2.26 ∙ ∆𝑏𝐸𝑊𝐹,𝐿1
𝑖 |+ |1.26 ∙ ∆𝑏𝐸𝑊𝐹,𝐿5

𝑖 | < 3.5 𝑚 (7-5) 
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time. In this case, the maximum differential bias values for L1 and L5 to respect an iono-free 

MERR of 3.5 m is plotted in Figure 7-1. 

 

Figure 7-1. Acceptable values of maximum L5 and L1 biases for DFMC SBAS. 

The above analysis is really associated to a worst-case scenario where the bias on L1 and the 

bias on L5 combine to create the worst iono-free bias.  

In the case of the present analysis, it will be assumed that an EWF can only occur on one frequency at 

a time. As a consequence, the SQM performance will be limited to the detection (with appropriate 

𝑃𝑚𝑑 and 𝑃𝑓𝑓𝑑 requirements) of any EWF that would create: 

- a differential bias on a Galileo E1 OS measurement greater than 1.55 m, or 

- a differential bias on a Galileo E5a measurement greater than 2.78 m. 

This is still a significant first step compared to a 3.5 m MERR for GPS L1 C/A that is classically used in 

the literature (when used in mono-frequency airborne receivers). 

7.1.1.3 Conclusion 

To conclude two objectives are targeted on GPS L1 C/A signal: 3.5 m which consists of SBAS L1 

requirements and 1.55 m in a DFMC context. Same targets are adopted for Galileo E1C. For Galileo 

E5a and GPS L5, only one objective is targeted: 2.78 m. 

7.1.2 Tests and metrics 

SQM consists of a test (noted 𝑇𝑒𝑠𝑡) to evaluate if the signal is affected by a distortion or not. SQM 

methodology has already been described for example in [Irsigler, 2008] or [Phelts and Walter, 2003]. 

The typical SQM is based on the use of metrics to detect distortions of the correlation function used 

to track the GNSS signal. A large number of metrics can be designed based on combinations of 

correlator outputs. These combinations can be simple as with the simple, the difference, the sum ratio 

metrics or the alpha metric [Phelts et al., 2003] or more tricky as the “squared ∆” metric [Phelts et al., 
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2001]. Metrics could also be designed from CDO outputs (see chapter 4 and [Phelts et al., 2013]). The 

three types of metrics used in this document are:  

- The simple ratio metric which is the easiest metric to implement and permits to detect all kind 

of correlation function distortions. 

- The difference ratio metric which permits to detect distortions that affect the correlation 

function in an asymmetric way (asymmetric from the prompt) more efficiently than the simple 

ratio metric.   

- The sum ratio metric which permits to detect distortions that affect the correlation function in 

a symmetric way (symmetric from the prompt) more efficiently than the simple ratio metric.  

where 

- 𝐼𝑥 is the in phase correlator output value at a distance 𝑥 (in chip unit) from the prompt. 

- 𝑃 is the value representing the prompt correlator output. In the literature, 𝑃 can take two 

forms: 

o 𝑃 = 𝐼0: in this case 𝑃 is the prompt correlator output. 

o 𝑃 = (𝐼−𝑧+ 𝐼𝑧) 2⁄ : in this case 𝑃 is an approximation of the prompt correlator output 

based on two symmetric correlator outputs. 

The use of a virtual prompt for metric normalization has been reported in [Phelts and Walter, 2003] 

with 𝑃 = (𝐼−0.025 + 𝐼0.025) 2⁄ . Nevertheless, in WAAS reference stations, a prompt is used. In this 

Ph.D. thesis, it is decided to use the classical prompt for metrics normalization for Galileo E1C, Galileo 

E5a, GPS L5 and GPS L1 C/A signals.  

The three types of metrics used in this document are elementary. These metrics are looked at for two 

main reasons: 

- the simple ratio and the difference ratio metrics are currently used in SQM implemented in 

EGNOS [Bruce et al., 2000]. 

- the theoretical value of 𝜎𝑚𝑒𝑡𝑟𝑖𝑐 for these three metrics can be derived as shown in appendix 

B. 

The SQM test consists in looking at the way these different metrics are modified with respect to their 

nominal values (in nominal conditions) to decide if a distortion is present. The  test compares the 

difference between each metric value and its nominal value to a threshold. Mathematically, the test 

based on a given metric 𝑗 (noted 𝑇𝑒𝑠𝑡𝑚𝑒𝑡𝑟𝑖𝑐,𝑗) can be represented as: 

where 

- 𝑚𝑒𝑡𝑟𝑖𝑐𝑗,𝑑𝑖𝑠𝑡
𝑖  is the current value of the metric 𝑗 which can be affected by a distortion. The index 

𝑖 shows that this value is estimated for the ranging signal 𝑖. 

 
𝑚𝑒𝑡𝑟𝑖𝑐𝑥 =

𝐼𝑥
𝑃

 (7-6) 

 
𝑚𝑒𝑡𝑟𝑖𝑐𝑥−𝑥 =

𝐼−𝑥 − 𝐼𝑥
𝑃

 (7-7) 

 
𝑚𝑒𝑡𝑟𝑖𝑐𝑥+𝑥 =

𝐼−𝑥 + 𝐼𝑥
𝑃

 (7-8) 

 
𝑇𝑒𝑠𝑡𝑚𝑒𝑡𝑟𝑖𝑐,𝑗  =

|𝑚𝑒𝑡𝑟𝑖𝑐𝑗,𝑑𝑖𝑠𝑡
𝑖 − 𝑚𝑒𝑡𝑟𝑖𝑐𝑗,𝑛𝑜𝑚|

𝑡ℎ𝑚𝑒𝑡𝑟𝑖𝑐 ,𝑗
 (7-9) 
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- 𝑚𝑒𝑡𝑟𝑖𝑐𝑗,𝑛𝑜𝑚 is the nominal value of the metric 𝑗. For example, the nominal value can consist 

in the median of that metric across all satellites in view [Phelts et al., 2013]. Another method 

is to estimate the nominal value of metrics from the average value of that metric for a given 

PRN using previous measurements known to represent nominal conditions. In the simulations 

considered in this chapter, the nominal correlation function used to estimate nominal metrics 

is the ideal filtered correlation function. 

- 𝑡ℎ𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 is the detection threshold associated to the metric 𝑗, determined according to a 

required false alarm probability. 

Assuming that the distribution of the noise on the metric 𝑗 in the nominal case is Gaussian with 

a standard deviation 𝜎𝑚𝑒𝑡𝑟𝑖𝑐,𝑗, the value of 𝑡ℎ𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 can be deduced from the targeted false 

alarm probability 𝑃𝑓𝑓𝑑 as: 

where 𝐾𝑓𝑓𝑑 is the multiplier derived from the probability of fault-free detection probability 

𝑃𝑓𝑓𝑑 defined in 7.1.4. 

The Gaussian behavior of the noise affecting correlator outputs was verified in [Irsigler, 2008] and is in 

general assumed. It is shown in 7.1.5.2 that if the Gaussian behavior on correlator outputs holds true, 

then the Gaussian behavior on the considered metrics can be assumed.  

In order to detect a faulty case in real time, a Neyman Pearson hypothesis test is performed. The 

monitor which is implemented in reference station is based on the following concept: i f  𝑇𝑒𝑠𝑡𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 

is higher than one, an alarm is triggered, whereas if 𝑇𝑒𝑠𝑡𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 is smaller than one the signal is 

considered as usable. This means that a distortion can be detected by several metrics at the same time. 

7.1.3 Minimum Detectable Error (MDE) definition  

The notion of test threshold is of primary importance because it represents the limit between what is 
considered as a nominal or a faulty behavior. Nevertheless, 𝑡ℎ𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 is only associated to the 

probability of false alarm while ICAO imposes requirements regarding the probability of false alarm 

and the probability of missed detection. This is the reason why it is important to define the notion of 

Minimum Detectable Error (MDE) which is representative of the minimum detectable metric distortion 

that allows to fulfil both false alarm and missed detection ICAO requirements. In this part, the 

definition of MDE is given. Values of MDE are estimated in 7.1.5. 

7.1.3.1 MDE definition 

In [ICAO, 2006], the MDE and the MDR (Minimum Detectable Ratio) are used to derive the SQM 

performance. In this manuscript, for the sake of notation, 𝑀𝐷𝐸𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 is used to name the MDE 

associated to the metric 𝑗. 

Taking back the definition of ICAO, which assumes that the metrics are Gaussian distributed, the 

𝑀𝐷𝐸𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 values used in simulations to assess the minimum metric distortion detectable by the 

SQM according to required false alarm and missed detection probabilities is:  

 𝑡ℎ𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 = 𝐾𝑓𝑓𝑑× 𝜎𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 (7-10) 

 
𝑀𝐷𝐸𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 = (𝐾𝑚𝑑 +𝐾𝑓𝑓𝑑)𝜎𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 (7-11) 
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where 𝐾𝑚𝑑 is the missed detection multiplier representing a given missed detection probability 

defined in 7.1.4. 

Figure 7-2 illustrates the difference between the detection threshold 𝑡ℎ𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 and 𝑀𝐷𝐸𝑚𝑒𝑡𝑟𝑖𝑐,𝑗. Note 

that 𝑡ℎ𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 is the true threshold used in the implemented SQM, while the MDE is a theoretical value 

used to test the SQM performance based on simulations.  

To assess the theoretical SQM performance in presence of distortions with respect to the ICAO 

requirements, it is thus necessary to compare the value of the bias affecting the detector associated 

to each metric with respect to the corresponding MDE.   

Let us define the performance test 𝑇𝑒𝑠𝑡𝑚𝑒𝑡𝑟𝑖𝑐,𝑗_𝑀𝐷𝐸 as: 

Where 𝑚𝑒𝑡𝑟𝑖𝑐𝑗,𝑑𝑖𝑠𝑡,𝑛𝑜 𝑛𝑜𝑖𝑠𝑒
𝑖  now represents the distorted metric without noise (the impact of noise is 

now absorbed by the MDE value). From this definition, it can be seen that the MDE is more 

representative of a bias than of an error between the current and the nominal values of the metric. 

If 𝑇𝑒𝑠𝑡𝑚𝑒𝑡𝑟𝑖𝑐,𝑗_𝑀𝐷𝐸 > 1, this means that a given distortion is detected by the detector associated to 

the metric 𝑗 with the appropriate ICAO requirements. The estimation of 𝑀𝐷𝐸𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 is consequently 

a key to establish SQM performance.  

  

Figure 7-2. Difference between the detection threshold and the MDE. 

7.1.3.2 Case of a test based on several metrics 

Based on equation (7-11), 𝑀𝐷𝐸𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 can be written as:  

where 𝐾 = (𝐾𝑚𝑑 + 𝐾𝑓𝑓𝑑). In this case, 𝐾 is associated to the requirements associated to a given 

detector associated to metric 𝑗. 

If several metrics (and thus detectors) are used by the SQM, it is important to find the appropriate 

value of 𝐾 for each detector so that the global requirement at the global SQM level is fulfilled. Using 

several dependent metrics entails that the false alarm and missed detection probabilities associated 

to each metric test are not equal to the probabilities of the global test using all metrics. 

 
𝑇𝑒𝑠𝑡𝑚𝑒𝑡𝑟𝑖𝑐,𝑗_𝑀𝐷𝐸  =

|𝑚𝑒𝑡𝑟𝑖𝑐𝑗,𝑑𝑖𝑠𝑡,𝑛𝑜 𝑛𝑜𝑖𝑠𝑒
𝑖 −𝑚𝑒𝑡𝑟𝑖𝑐𝑗,𝑛𝑜𝑚|

𝑀𝐷𝐸𝑚𝑒𝑡𝑟𝑖𝑐,𝑗
 (7-12) 

 𝑀𝐷𝐸𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 = 𝐾𝜎𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 (7-13) 

𝐾𝑓𝑓𝑑𝜎𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 

𝑁(0, 𝜎𝑚𝑒𝑡𝑟𝑖𝑐,𝑗
2 ) 𝑁(𝑀𝐷𝐸,𝜎𝑚𝑒𝑡𝑟𝑖𝑐,𝑗

2 ) 

𝑀𝐷𝐸𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 

𝑡ℎ𝑚𝑒𝑡𝑟𝑖𝑐 ,𝑗 

𝐾𝑚𝑑𝜎𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 
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In the typical implementation of a SQM, a distortion is said to be detected if any of the detection tests 

(based on different metrics) detects the distortion. The detection can thus be assessed by looking if 

the maximum value of 𝑇𝑒𝑠𝑡𝑚𝑒𝑡𝑟𝑖𝑐,𝑗_𝑀𝐷𝐸 over all metrics 𝑗 is greater than 1. This is equivalent at looking 

at the maximum value of 𝑇𝑒𝑠𝑡𝑚𝑒𝑡𝑟𝑖𝑐,𝑗_𝑀𝐷𝐸:  

To estimate 𝑇𝑒𝑠𝑡𝑀𝐷𝐸 values in the context of this Ph.D. (use of several metrics of different types): 

- 𝐾 must be evaluated for each detector. Explanations about the 𝐾 value are provided in 7.1.5.1. 

- 𝜎𝑚𝑒𝑡𝑟𝑖𝑐 has to be assessed for the different metrics that are used in this document. This task 

is tackled in 7.1.5.2. 

7.1.4 Targeted requirements (𝑃𝑓𝑓𝑑 , 𝑃𝑚𝑑  and TTA) 

MDE values and SQM performance are dependent upon 𝑃𝑚𝑑 and 𝑃𝑓𝑓𝑑 requirements. In this part 

probabilities values that are used in the continuation are presented. In addition, a discussion about the 

TTA and transient SQM problem is undertaken. 

7.1.4.1 𝑃𝑓𝑓𝑑, 𝑃𝑚𝑑 in ICAO requirements 

The current SBAS L1 requirement regarding SBAS SQM is provided by [ICAO, 2006] and states that the 

ground segment should be able to detect any EWF-induced differential bias greater than a given MERR, 
with a 𝑃𝑚𝑑 of 1.10−3/test and a 𝑃𝑓𝑓𝑑 of 1.5.10−7/test. These values are for the global SQM 

performance and not for each individual metric test. 

7.1.4.2 𝑃𝑓𝑓𝑑, 𝑃𝑚𝑑 in WAAS 

The values taken in WAAS single frequency mentioned in [Phelts et al., 2013] are different from ICAO 

values and must come from the specific WAAS integrity tree: 

- 𝑃𝑚𝑑 of 10−5/test since the assumed a priori probability of failure for a GPS satellite is 

6.42 ×10−5/satellite/h and the allocated fault probability in WAAS due to an EWF is 

6.45 ×10−10/h, 

- 𝑃𝑓𝑓𝑑 of 3.2 × 10−8/test corresponding to one false alarm per satellite per year. It should be 

noted that this is a conservative value, since the SQM test statistics are highly correlated (over 

50 to 100 s) and this value assumes independent exposures to false alarm for each second. 

These values are associated to the use of GPS L1 C/A only. In the case of a dual-frequency user, there 

is a need to monitor both signals on L1/E1C and on L5/E5a. Due to the lack of real knowledge on the 

dependence between failures occurring on L1 and L5, it can be conservatively assumed that the same 

probabilities apply for each individual signal. 

 
𝑇𝑒𝑠𝑡𝑀𝐷𝐸 = 𝑚𝑎𝑥𝑚𝑒𝑡𝑟𝑖𝑐,𝑗[𝑇𝑒𝑠𝑡𝑚𝑒𝑡𝑟𝑖𝑐,𝑗_𝑀𝐷𝐸] (7-14) 
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7.1.4.3 Targeted 𝑃𝑓𝑓𝑑, 𝑃𝑚𝑑  

Each specific system has to derive its own values of 𝑃𝑓𝑓𝑑 and 𝑃𝑚𝑑 that must be applied on tests to 

meet global required performance. The value of the 𝑃𝑓𝑓𝑑 is chosen depending on the service continuity 

that must be reached. The 𝑃𝑚𝑑 is chosen depending on the integrity risk (estimated from the integrity 

risk tree) and the a priori satellite failure rate probabilities. Depending on the architecture of the 

augmentation system, these probabilities are different. As an example two possible architectures are: 

- Architecture 1: each reference station individually provides its assessment of the presence of 

an EWF. To do so, it bases its decision on the fact that at least one of its detectors flags the 

presence of a distortion. The decision of each reference station is then sent to the master 

station. It is assumed that the Central Processing Facility (CPF) then decides to declare the 

presence of an EWF based on majority voting. This architecture could be associated to the 

current EGNOS v2 architecture. 

- Architecture 2: each reference station sends all its SQM metrics (or correlator outputs) values 

to the CPF. The CPF then aggregates the information coming from each reference station. This 

aggregation consists in averaging coherently the corresponding metrics and to decide on the 

presence of an EWF if at least one of its detectors flags the presence of a distortion. This 

architecture could be associated to the current WAAS architecture. 

Advantages and drawbacks of the two architectures are detailed in [Julien et al., 2016]. In the two 
cases, 𝑃𝑓𝑓𝑑 and 𝑃𝑚𝑑 defined per test are different. 

In this manuscript, it is proposed to use the ICAO 𝑃𝑚𝑑 of 1.10−3/test and a 𝑃𝑓𝑓𝑑 of 1.5.10−7/test for 

the global required SQM performance at the CPF level (thus assuming an Architecture 2 case). Indeed, 

this is the official document in which the two probabilities are defined. In EGNOS and WAAS, these 

values will be slightly different, nevertheless, results presented in this chapter can be used to estimate 

SQM performance at different 𝑃𝑚𝑑 and 𝑃𝑓𝑓𝑑 as it is shown in 7.3.3.2. 

7.1.4.4 Requirement on the TTA 

TTA requirements are provided in chapter 2. For the LPV-200 approach which is targeted by SBAS, TTA 

is equal to 6.2 s. The TTA is dependent upon three terms:  

- the time 𝑡𝑑𝑒𝑡𝑒𝑐𝑡 to detect a distortion, 

- the time 𝑡𝑖𝑛𝑓 for the information to be sent from the reference station to the user and to be 

processed. 

- the time 𝑡𝐻𝑀𝐼 at which the distortion entails a hazardous differential error on the user.  

The TTA is then defined by: 

If 𝑡𝑖𝑛𝑓 is necessarily positive, the term (𝑡𝑑𝑒𝑡𝑒𝑐𝑡− 𝑡𝐻𝑀𝐼) can be positive or negative. Indeed, 

(𝑡𝑑𝑒𝑡𝑒𝑐𝑡− 𝑡𝐻𝑀𝐼) is negative if a distortion is detected at reference level before that this distortion 

becomes a threat for differential users.  

In this manuscript, the TTA requirement is not considered and it is assumed that the monitoring is 

performed in steady state conditions. This choice is made for two main reasons:  

 
𝑇𝑇𝐴 = 𝑡𝑖𝑛𝑓+ (𝑡𝑑𝑒𝑡𝑒𝑐𝑡− 𝑡𝐻𝑀𝐼) (7-15) 
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- The TTA is dependent upon transient response of the filter implemented at the user and at the 

reference levels to smooth pseudorange measurements and metric values (reference only). By 

consequence taking into account the TTA adds three parameters that have an impact on SQM 

performance and make the interpretation of results more difficult. Note that the notion of 

time-varying MERR (not used in this manuscript) introduced in section 7.1.1 takes care of the 

TTA requirements. 

- SQM performance estimated taking into account the transient state is assessed by using SQM 

performance obtained in steady state conditions. In [Phelts et al., 2001] is shown that the basic 

transient SQM problem (with 𝑇𝑇𝐴 = 0 seconds) reduces to a simple comparison of the 

normalized steady state errors where the basic transient SQM problem is to consider that the 

same first order filter is used to filter the detection test and the user differential pseudorange 

error. If a different filter is used to filter the detection test and to filter user differential 

pseudorange error, the SQM problem is not reduced to a simple comparison of the normalized 

steady state. The problem is more complex but SQM performance can still be estimated from 

the steady state. 

To conclude, in this manuscript only the steady state is considered. Indeed, the study of the steady 

state is necessary before analysing SQM performance in transient state.  It is however important to 

mention that this implies that the user might not be properly covered during transient phases. In future 

works, transient SQM performance could be assessed based on results provided in this chapter. 

7.1.5 Theoretical estimation of the MDE 

After defining requirements targeted by the SQM in terms of 𝑃𝑓𝑓𝑑 and 𝑃𝑚𝑑, MDE values are estimated 

theoretically. First, the value of 𝐾 is derived, then values of metrics standard deviations are derived.  

7.1.5.1 Estimation of parameter 𝐾 

Let us call 𝑃𝑋_𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 (𝑋 = 𝑓𝑓𝑑 𝑜𝑟 𝑚𝑑) the probability associated to one test based on one metric 

𝑗 and let us assume that the same probability budget is allocated to each sub-test. In this condition, 

𝑃𝑋_𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 is not dependent upon the index 𝑗. If several metrics are used, as it is envisaged in this study, 

𝑃𝑓𝑓𝑑_𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 and 𝑃𝑚𝑑_𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 have to be computed for each metric. Considering that the total test is 

based on 𝑁𝑡𝑒𝑠𝑡 detectors and that an alarm is triggered if at least one metric exceeds its threshold, two 

extreme cases are imaginable: 

- Metrics are totally independent. In this condition, probabilities on one sub-test (𝑃𝑋_𝑚𝑒𝑡𝑟𝑖𝑐,𝑗) 

are related to the global test probability (𝑃𝑋) by: 

- Metrics are totally dependent, in this case : 

 

𝑃𝑓𝑓𝑑 = ∑ 𝐶𝑁𝑡𝑒𝑠𝑡
𝑘 𝑃𝑓𝑓𝑑𝑚𝑒𝑡𝑟𝑖𝑐,𝑗

𝑘 (1 −𝑃𝑓𝑓𝑑𝑚𝑒𝑡𝑟𝑖𝑐,𝑗
)
𝑁𝑡𝑒𝑠𝑡−𝑘

𝑁𝑡𝑒𝑠𝑡

𝑘=1

  

𝑃𝑚𝑑 = 𝑃𝑚𝑑_𝑚𝑒𝑡𝑟𝑖𝑐,𝑗
𝑁𝑡𝑒𝑠𝑡  

(7-16) 

(7-17) 

 𝑃𝑓𝑓𝑑 = 𝑃𝑓𝑓𝑑_𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 

𝑃𝑚𝑑 = 𝑃𝑚𝑑_𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 
(7-18) 

(7-19) 
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In real conditions, 𝑃𝑋_𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 are between the two above extreme cases. With a precise knowledge 

about the correlation between each metric, exact 𝑃𝑋_𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 and consequenlty exact 𝐾𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 =

(𝐾𝑚𝑑_𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 +𝐾𝑓𝑓𝑑_𝑚𝑒𝑡𝑟𝑖𝑐,𝑗) could be estimated. 𝐾𝑚𝑑_𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 is the coefficient multiplier associated 

to 𝑃𝑚𝑑_𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 and 𝐾𝑓𝑓𝑑𝑚𝑒𝑡𝑟𝑖𝑐,𝑗
 is the coefficient multiplier associated to 𝑃𝑓𝑓𝑑_𝑚𝑒𝑡𝑟𝑖𝑐,𝑗. 𝐾𝑚𝑑 = 5.26 for 

𝑃𝑚𝑑 = 1. 10−3 and 𝐾𝑓𝑓𝑑 = 3.09 for 𝑃𝑓𝑓𝑑 = 1.5.10−7. 

𝐾𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 is assessed in this document in a conservative way which is obtained when metrics are 

considered as totally dependent, as shown in Figure 7-3. In red is plotted 𝐾𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 in the particular 

case where all metrics are totally dependent and in blue the case where all metrics are totally 

independent. In real conditions, 𝐾𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 will take values between the red and the blue curves. 

 

Figure 7-3. 𝐾𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 factors if metrics are totally dependent (red plot) or totally independent (blue 

plot) function of the sub-tests number. 

It entails that even if several metrics are used to define a test, the 𝑀𝐷𝐸𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 for each individual 

metric fulfilling the ICAO requirements in terms of 𝑃𝑓𝑓𝑑 and 𝑃𝑚𝑑 can be modeled in a conservative way 

as: 

7.1.5.2 𝜎𝑚𝑒𝑡𝑟𝑖𝑐 estimation 

As discussed previously, 𝑀𝐷𝐸𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 is a function of 𝜎𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 assuming that the noise distribution on 

metrics is Gaussian.  

𝜎𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 can be estimated theoretically for the three introduced metrics (simple ratio, sum ratio and 

difference ratio metrics). Mathematical 𝜎𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 expressions are given in appendix B assuming that 

the noise distribution on metrics is Gaussian. This condition is fulfilled when: 

- 𝐼𝑥 is treated as a Gaussian variable 𝑁(𝜇𝑥,𝜎𝑥
2). This property is used in many publications as for 

instance [Irsigler, 2008], [Brocard et al., 2014] or [Sleewaegen and Boon, 2001]. 

- 
𝜇𝑥

𝜎𝑥
 tends to infinity, which can be interpreted as a high 𝐶 𝑁0⁄  condition. In this case, the ratio 

of two such Gaussian random variables tends towards a Gaussian instead of a more complex 

distribution [Brocard et al., 2014]. It can be considered that these conditions are verified at 

reference station level [Irsigler, 2008] operating with a 1 s correlation duration.  

 
𝑀𝐷𝐸𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 = 8.35 ×𝜎𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 (7-20) 
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To verify the theoretical formulas of 𝜎𝑚𝑒𝑡𝑟𝑖𝑐,𝑗, a Matlab® program was developed. This program 

generates a noisy filtered signal and a local replica. Then, the two signals are correlated to obtain a 

noisy correlation function. Metrics are then built from the noisy correlation functions using Monte 

Carlo simulations so that 𝜎𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 can be assessed. As an example, theoretical and simulated 𝜎𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 

values are compared in Figure 7-4 where all metrics are simulated for a 𝐵𝑃𝑆𝐾(1) signal. In this 

particular case, the coherent integration time is equal to 1 s, the 𝐶 𝑁0⁄  is equal to 30 dB-Hz and the 

signal is filtered by the reference filter. One hundred values of a given metric are generated to estimate 

standard deviations. 

From Figure 7-4, it appears that even at a 𝐶 𝑁0⁄ = 30 dB-Hz, the theoretical 𝜎𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 values match 

with values obtained in simulations. For lower values of 𝐶 𝑁0⁄ , the derived theoretical 𝜎𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 may 

not be representative of the ratio of two Gaussian distributions and results have to be interpreted 

carefully for 𝐶 𝑁0⁄  lower than 30 dB-Hz. More precisely, for lower 𝐶 𝑁0⁄ , better estimation of 

theoretical 𝜎𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 can be derived from formulas defined in [Brocard et al., 2014]. Nevertheless, in 

the context of this Ph.D., it will be seen that reference stations are operating at 𝐶 𝑁0⁄  higher than 

30 dB-Hz. 

Note that standard deviations theoretical formulas might not be valid if the noise on correlator outputs 

is not Gaussian-distributed. 

On Figure 7-4 are represented theoretical (continuous plots) and simulated (dotted plots) metrics 

standard deviations for 𝑚𝑒𝑡𝑟𝑖𝑐𝑥−𝑥 (in blue), 𝑚𝑒𝑡𝑟𝑖𝑐𝑥+𝑥 (in purple) and 𝑚𝑒𝑡𝑟𝑖𝑐𝑥 (in blue for 𝑥 negative 

and in purple for 𝑥 positive). It is shown in appendix B that similar adequacies between theoretical and 

simulated metrics standard deviations have been obtained for Galileo E1C and E5a signals. 

 

 

Figure 7-4. Theoretical and simulated metrics standard deviations on a BPSK(1)-modulated signal for 

𝐶 𝑁0⁄ = 30 dB-Hz and 𝑇𝑖𝑛𝑡 = 1 s. 
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7.1.6 Conclusions 

In this section, notions related to SQM are presented: the MERR, tests, metrics, requirements and 

MDE. A comparison of the MUDE, MERR and MDE notions is presented in Table 7-2. In spite of their 

names, this three parameters are referred to as biases more than errors. The bias is the average of 

errors obtained from one error distribution.  

Table 7-2. Definition of MDE, MERR and MUDE. 

Only three types of metrics are assumed used by the SQM: the simple ratio, the sum ratio and the 

different ratio metrics (from the prompt of the correlation function). These metrics built from 

correlator outputs are adapted to detect asymmetric as well as symmetric distortions. Moreover, 

theoretical derivation of the standard deviation for these metrics has been shown to be valid.  

One important conclusion is that SQM performance can be assessed using the notion of MDE,  which 

is a function of the ICAO requirements, the number and types of metrics used, and the standard 

deviation of the metrics used. The expression of 𝑀𝐷𝐸𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 that is kept in the following is assessed 

in this section in a conservative way, assuming that a test is based on several metrics, but that all 

metrics are totally dependent. 

 

 MERR MUDE MDE 

Meaning 
Maximum tolerable 

ERRor (or other) 
Maximum Undetected 

Differential Error 
Minimum Detectable 

Error 

Domain of application Pseudorange Pseudorange 
Correlation function 

(metrics) 

Concept 

If a distortion leads to 
a differential tracking 
bias above MERR for 

at least one 
differential user, the 
distortion has to be 
detected with the 
𝑃𝑓𝑓𝑑 and 𝑃𝑚𝑑 

probabilities. 

If a distortion leads to 
a differential tracking 
bias above MUDE for 

at least one 
differential user, the 
distortion is detected 
by the SQM with the 

𝑃𝑓𝑓𝑑 and 𝑃𝑚𝑑 

probabilities. 

If a distortion leads to 
a difference between 
the current value of a 

metric and the 
nominal value of the 
same metric above 

MDE, the distortion is 
detected by the SQM 
with the 𝑃𝑓𝑓𝑑 and 𝑃𝑚𝑑 

probabilities. 

Value definition 
Depends upon the 

requirement. 

Depends upon the 
SQM, the 𝐶 𝑁0⁄ , 
considered user 

receiver configuration, 
considered reference 
receiver configuration,  

considered TM, 
requirements. 

Depends upon the 
SQM, the 𝐶 𝑁0⁄ , 

considered reference 
receiver configuration,  

considered TM, 
requirements. 
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7.2 Parameters with an influence on SQM performance 

Now that the different requirements of the SQM, as well as its performance criteria, have been 

presented, it is important to expose the testing methodology. To do so, it is important to describe: 

- the user receiver and reference station receivers configurations of interest, 

- the TM, or in other words, the distortions that must be monitored, 

- metrics that are used to design the SQM. 

7.2.1 Tested distortions 

It is clear that SQM performance is dependent upon signal distortions that have to be monitored. The 

proposed TMs were described in chapter 6, together with a methodology to design them.  

In this chapter, SQM performance is tested for GPS L1 C/A based on the grid of points exposed on Table 

7-3. For Galileo E1C, E5a and GPS L5, the SQM is tested based on values presented in Table 7-4. For 

the latter, some differences are noticeable compared to the TM proposed in chapter 6 and are given 

in bold: 

- For Galileo E5a and GPS L5, on area 1, more 𝜎 values are tested. Instead of increasing 𝜎 by 

4 Mnepers/s between each distortion, an increment of 1 Mnepers/s is used to have the same 

increment as on the large TM-B zone of area 1 on Galileo E1C and the same increment as on 

the TM-B on GPS L1 C/A. This choice is conservative. 

- For Galileo E1C, even if TM-A1 and TM-A2 are considered in the TM-A, the simplified TM-C 

(which does not include the TM-A2) is used in order to limit the number of tests to perform. 

The choice of removing TM-A2 from the TM-C is also justified by the fact that no digital 

distortion was observed on Galileo E1C nominal signals. 

- Some TM-B upper bound values are slightly increased to be sure to test all distortions inside 

the TMs. 

 

The resolutions with which the TMs are tested are kept from chapter 6. Based on the method proposed 

in the previous chapter, a deeper analysis of the resolution could permit to have more adapted tested 

distortions. However, this problem is not tackled in this manuscript.  

GPL L1 C/A TM-C is tested with a 𝑓𝑑 increment equal to 0.57 MHz in order to test ten different 

frequencies. 

 
Δ  

(chip) 

𝜎  

(Mnepers/s) 

𝑓𝑑  

 (MHz) 

TM A [−0.12:0.01: 0.12] - - 

TM B - [0.8:1: 8.8] [4: 1: 17] 

TM C [−0.12:0.01: 0.12] [0.8:1: 8.8] [7.3: 0.57: 13] 

Table 7-3. GPS L1 C/A TM used to estimate SQM performance. 
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Simplified TM-C  

TM-B TM-A 

Area 1 Area 2 TM-A1 TM-A2 

𝑓𝑑  

(MHz) 

𝜎   

(Mnepers/s) 

𝑓𝑑  

(MHz) 

𝜎

(𝑓𝑑)
2 (nepers/s/

Hz/MHz) 

𝛥𝑚𝑖𝑛 = 

− 𝛥𝑚𝑎𝑥  

(chip) 

𝛥11𝑚𝑖𝑛 = 

− 𝛥11𝑚𝑎𝑥   

(chip) 

𝛥61𝑚𝑖𝑛 = 

− 𝛥61𝑚𝑎𝑥  

(chip) 

G
al

ile
o

 

E1
C

 

1: 1: 4 1: 0.2: 26 

3: 1: 19 0.07: 0.05:𝟓. 𝟎𝟕 0: 0.01: 0.12 0: 0.01: 0.1 0: 0.01: 0.08 1: 1:19 0.05:0.1: 𝟏. 𝟎𝟓 

4: 1:19 1: 1: 26 

G
al

ile
o

 E
5

a 

an
d

 G
P

S 
L5

 

3: 1:19 0:𝟏: 24 4: 1: 19 0.06:0.075: 𝟑.𝟓𝟔 0: 0.1: 1.2 / / 

Table 7-4. Galileo E1C, Galileo E5a and GPS L5 TMs used to estimate SQM performance for different 

signals (in bold differences with proposed TMs from chapter 6). 

7.2.2 Receiver configurations 

SQM performance and more precisely the value of the MUDE and the capability of the reference 

station to detect distortions are dependent upon the tested users’ configurations (that have an 

influence on the MUDE) and the reference station configuration (that has an influence on the MUDE 

and the detection capability). The impact of receivers configurations on the MUDE was discussed in 

part 4.4.3. Table 7-5 summarized receivers configurations that are considered in this chapter to assess 

SQM performance. They are in line with the latest discussion regarding the future airborne DFMC 

receiver constraints [Samson, 2015]. 

 

Galileo E1C signal (𝐶𝐵𝑂𝐶(6.1)) and 

GPS L1 C/A(𝐵𝑃𝑆𝐾(1)) 

Galileo E5a and GPS L5 signal 

(𝐵𝑃𝑆𝐾(10)) 

reference user reference user 

Tracking 

technique 

EML (𝐵𝑂𝐶(1.1) local replica for 

Galileo E1C and 𝐵𝑃𝑆𝐾(1) for GPS L1) 
EML (𝐵𝑃𝑆𝐾(10) local replica) 

Correlator 

spacing 
0.1 chip 

0.08, 0.1 and  

0.12 chip 
1 chip 

0.8, 1 and 

 1.2 chip 

Pre-correlation 

bandwidth 

(double-sided) 

24 MHz 
12, 14,16,20, 

22, 24 MHz 
24 MHz 

12, 14,16,20, 

22, 24 MHz 

Equivalent 

reception filter 

6th-order 

Butterworth 

4 filters are 

tested 

6th-order 

Butterworth 

4 filters are 

tested 

Table 7-5. Reference receiver and user receiver configurations used to estimate SQM performance for 

different signals.  
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The four filters that are tested are the same as described in 6.1.2.1 and more details about these filters 

are given in appendix E. Tested receivers configurations are similar to configurations tested in chapter 

6 to establish the TM. The major difference is that only one filter type is applied at the reference 

receiver. The consequence is that results provided in this chapter are less conservative than in chapter 

6, however, they are more representative of the state-of-the-art [Samson, 2015] and more adapted 

when testing SQM performance that do not have to be too conservative.  

For example, in EGNOS, RIMS-A stations estimate differential corrections while RIMS-C stations, with 

a different receiver configuration than the one on RIMS-A stations, support the SQM. The concept 

developed in this chapter can be applied if different stations are used to compute the differential 

corrections and perform the SQM. The strategy is to estimate the MDE values in the operating 

conditions of the station used for the SQM and to estimate maximum differential error in the operating 

conditions of the station which estimates differential conditions. For the sake of simplicity and because 

of the lack of information, it will be assumed that the SQM and differential corrections are provided 

by the same station which is referred to as the reference station. 

7.2.3 Definition of reference SQMs 

In this manuscript, SQM designs are based on an assumed baseline reference receiver: 

- for Galileo E1C and GPS L1 C/A, SQM designs are based on fifty-one monitored correlator 

outputs 𝐼𝑥 with 𝑥 = −0.25: 0.01:0.25 in GPS L1 /A chip unit, 

- for Galileo E5a and GPS L5, SQM designs are based on twenty-one correlator outputs 𝐼𝑥  with 

𝑥 = −1: 0.1:1 in Galileo E5a chip unit.  

 

Figure 7-5 illustrates by green circles correlator outputs that are used on the different correlation 

functions to design the SQM. 

 

 

Figure 7-5. Correlator outputs used to design the SQM (represented in green).  

The limitation to these correlator outputs is justified by three main reasons:  

- ICAO-like TM distortions are more visible around the prompt of the correlation function. It is 

not necessary to monitor the correlation function too far away from the prompt. 

- Correlator outputs situated far away from the prompt are more subject to multipath. With the 

selected correlator outputs range, the impact of multipath is limited. 

- A time delay of 10 ns between two correlator outputs is nowadays reachable but lower values 

of time delays are more difficult to achieve due to a limitation in the sampling frequency of 

2 chips (L1 C/A) 2 chips (E5a and L5) 

2 chips 
(E1C) 
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the analog-to-digital converters. Additionally, denser correlator outputs may be highly 

correlated, making their observation less interesting for detection purpose.  

From these correlator outputs, a reference SQM is defined for each signal. The three types of metrics 

presented earlier are used (simple, difference and sum ratio metrics) for all monitored correlator 

outputs. 

For Galileo E1C and GPS L1 C/A the reference SQM consists of fifty simple ratio metrics plus twenty-

five difference ratio metrics and twenty-five sum ratio metrics. More precisely: 

- fifty 𝑚𝑒𝑡𝑟𝑖𝑐𝑥 are tested for 𝑥 = −0.25: 0.01:−0.01 and 𝑥 = 0.01: 0.01:0.25 in GPS L1 C/A 

chip unit,  

- twenty-five 𝑚𝑒𝑡𝑟𝑖𝑐𝑥+𝑥 are tested for 𝑥 = 0.01:0.01:0.25 in GPS L1 C/A chip unit,  

- twenty-five 𝑚𝑒𝑡𝑟𝑖𝑐𝑥−𝑥 are tested for 𝑥 = 0.01:0.01:0.25 in GPS L1 C/A chip unit.  

For Galileo E5a and GPS L5, the reference SQM consists of forty metrics: 

- twenty 𝑚𝑒𝑡𝑟𝑖𝑐𝑥 with 𝑥 = −1: 0.1:−0.1 and 𝑥 = 0.1:0.1:1 in E5a chip unit, 

- ten 𝑚𝑒𝑡𝑟𝑖𝑐𝑥+𝑥 with 𝑥 = 0.1:0.1: 1 in E5a chip unit, 

- ten 𝑚𝑒𝑡𝑟𝑖𝑐𝑥−𝑥 with 𝑥 = 0.1:0.1: 1 in E5a chip unit. 

Correlator outputs are estimated from a coherent integration time equal to 1 s and metrics are not 

smoothed. 

7.3 SQM performance assessment: example on GPS L1 C/A 

SQM performance is estimated by testing if distortions are detected or not (fulfilling the ICAO 

requirements) and by estimating the worst impact of undetected distortions on the differential 

tracking bias. In the previous sections, it was seen that SQM performance is dependent upon the TM, 

considered receivers configurations, the SQM design and the MDE (which is related to the 𝐶 𝑁0⁄  of the 

monitored signal through the standard deviation of the metrics).  

A new representation of the SQM performance is proposed in this section to assess , from one unique 

figure, its performance at different equivalent theoretical 𝐶 𝑁0⁄ . The new representation and its 

foundations are introduced in part 7.3.1 and developed in part 7.3.2. To illustrate the concept, the 

reference SQM introduced in 7.2.3 is used on a GPS L1 C/A signal (fifty simple ratio metrics plus twenty-

five difference ratio metrics and twenty-five sum ratio metrics) to detect signal distortions of the ICAO 

TM. 

In addition to the simplification of the assessment of SQM performance, the representation also allows 

to easily compare several SQMs performance. In section 7.3.4, two designs of SQM are compared still 

considering a GPS L1 C/A signal.  

In section 7.3.3, a strategy is exposed to estimate the equivalent theoretical 𝐶 𝑁0⁄  at which a reference 

station is operating.  
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7.3.1 A representation to assess SQM performance 

In this document, SQM performance is assessed based on the highest differential error (on all tested 

user/reference receivers configurations) entailed by a distortion from the proposed TM considering 

only the steady state error. This allows to protect any possible airborne user. To do that, two quantities 

are computed: 

- the detectability of the distortion by the SQM. Knowing the distortion and 𝑀𝐷𝐸𝑚𝑒𝑡𝑟𝑖𝑐,𝑗, it is 

possible to evaluate 𝑇𝑒𝑠𝑡𝑚𝑒𝑡𝑟𝑖𝑐,𝑗_𝑀𝐷𝐸  for each metric and by consequence 𝑇𝑒𝑠𝑡𝑀𝐷𝐸. 𝑇𝑒𝑠𝑡𝑀𝐷𝐸 

is independent from the user receiver and depends upon: 

o the reference receiver configuration, 

o the SQM design implemented to the reference, 

o the 𝐶 𝑁0⁄  of incoming signals which will have a direct impact on 𝜎𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 and 

consequently on 𝑀𝐷𝐸𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 and 𝑇𝑒𝑠𝑡𝑚𝑒𝑡𝑟𝑖𝑐,𝑗_𝑀𝐷𝐸. 

Comparing 𝑇𝑒𝑠𝑡𝑀𝐷𝐸 to 1, it is possible to know if a specific distortion from the TM is detected 

by the SQM according to the ICAO requirements for a given reference station configuration.  

- the highest differential error created by the distortion. Considering all allowed user receiver 

configurations and the reference station receiver configuration, the highest differential error 

induced by a given distortion of the TM between different users and the reference can be 

assessed independently from the SQM. This highest differential error is called the maximum 

differential error.  

Using simulations, 𝑇𝑒𝑠𝑡𝑀𝐷𝐸  and the maximum differential error values can be estimated for each 

distortion of the TM. As an example, the reference SQM is used. 

Figure 7-6 shows the maximum differential error induced by distortions from the TM defined by ICAO 

for GPS L1 C/A signal, among the tested user configurations, as a function of the 𝑇𝑒𝑠𝑡𝑀𝐷𝐸 value. The 

𝐶 𝑁0⁄  of the incoming signal is equal to 35 dB-Hz. This representation is comparable to the 

representation proposed in [Phelts et al., 2013] except that in this document, the value of 𝑇𝑒𝑠𝑡𝑀𝐷𝐸 is 

based on the 𝑃𝑚𝑑 and 𝑃𝑓𝑓𝑑 whereas in [Phelts et al., 2013] the value of 𝑇𝑒𝑠𝑡𝑀𝐷𝐸 is derived only from 

the 𝑃𝑓𝑓𝑑.  

 

Figure 7-6. Example of worst differential tracking errors function of 𝑇𝑒𝑠𝑡𝑀𝐷𝐸. 
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Each point of the graph corresponds to one distortion of the TM with the highest impact on tested 

users. 1326 distortions are represented (12 from TM-A, 126 from the TM-B and 1188 from the TM-C). 

The continuous line corresponds to the upper bound. The step-wise shape is easier to interpret on 

Figure 7-8, as discussed in the following section. 

Distortions included in the blue square of Figure 7-6 are distortions detected by the defined reference 

SQM (𝑇𝑒𝑠𝑡𝑀𝐷𝐸  > 1) in the described particular case. The MUDE can then be read by taking the largest 

differential tracking error for 𝑇𝑒𝑠𝑡𝑀𝐷𝐸  < 1. In the conditions of Figure 7-6, the MUDE is equal to 5.1 

m.  

7.3.2 Scale change to assess SQM performance function of 𝐶 𝑁0⁄  

The MUDE is dependent upon the  𝐶 𝑁0⁄  through the MDE, which is a drawback because MUDE has to 

be evaluated depending on the 𝐶 𝑁0⁄  at which a reference station is operating as shown in Figure 7-7. 

On this figure, it can be seen that MUDE is equal to 5.1 m if the reference is operating at a 𝐶 𝑁0⁄  equal 

to 35 dB-Hz and to 2.9 m if the reference is operating at a 𝐶 𝑁0⁄  equal to 38 dB-Hz. 

In this part, it is proposed to adapt the scale on the x-axis in order to have one representation that 

permits to assess performances of a given SQM at different 𝐶 𝑁0⁄ . 

 

Figure 7-7. Comparison of SQM performances considering that the reference station is operating at  
𝐶 𝑁0⁄ = 35 dB-Hz (left) and 𝐶 𝑁0⁄ = 38 dB-Hz (right). 

In Figure 7-7, purple rectangles encompass the same set of distortions. It can be seen that the fact to 

operate at a different 𝐶 𝑁0⁄  only entails a dilatation or a compression of the x-axis. Red points 

represent two distortions for both reception cases. The figure hints that a x-axis scale change could be 

applied to represent the effect of the 𝐶 𝑁0⁄ . Indeed, there is a relation between 𝐶 𝑁0⁄  and the value 

of 𝑇𝑒𝑠𝑡𝑀𝐷𝐸 since the 𝐶 𝑁0⁄  has an impact on 𝜎𝑚𝑒𝑡𝑟𝑖𝑐 which is part of the MDE. Then, a relation exists 

between 𝜎𝑚𝑒𝑡𝑟𝑖𝑐 and 𝑀𝐷𝐸𝑚𝑒𝑡𝑟𝑖𝑐, or equivalently between 𝜎𝑚𝑒𝑡𝑟𝑖𝑐 and 𝑇𝑒𝑠𝑡𝑀𝐷𝐸 for a given metric.  

Assuming a metric with a Gaussian distribution, the relation between the 𝐶 𝑁0⁄  in decibel-hertz and a 
𝑇𝑒𝑠𝑡𝑚𝑒𝑡𝑟𝑖𝑐,𝑗_𝑀𝐷𝐸 can be represented as (see relation between 𝐶 𝑁0⁄  and the metric standard deviation 

in Appendix B): 

where  

 

𝑇𝑒𝑠𝑡𝑚𝑒𝑡𝑟𝑖𝑐_𝑀𝐷𝐸 =
𝐶𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛,𝑗

𝑀𝐷𝐸𝑚𝑒𝑡𝑟𝑖𝑐,𝑗
=

𝐶𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛,𝑗

𝐾 × 𝜎𝑚𝑒𝑡𝑟𝑖𝑐,𝑗
=
𝐶𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛,𝑗 ×

√10
𝐶 𝑁0⁄

10

𝐶𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 × 𝐾
 

(7-21) 

𝐶 𝑁0⁄ = 35 dB-Hz 𝐶 𝑁0⁄ = 38 dB-Hz 
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- 𝐶𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 is a factor associated to the metrics with the highest 𝑇𝑒𝑠𝑡𝑚𝑒𝑡𝑟𝑖𝑐,𝑗_𝑀𝐷𝐸 value. This 

factor is independent from the 𝐶 𝑁0⁄  but is metric-dependent. The expression of this factor 

can be deduced for the different metrics from formulas derived in appendix B. 

- 𝐶𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛,𝑗 is a factor independent from the 𝐶 𝑁0⁄  but which is distortion and metric-

dependent. 

 

As a consequence, for a given distortion entailing a given value of 𝐶𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛, the following relation 

exists: 

𝐶 𝑁0⁄ = 20 ∗ 𝑙𝑜𝑔10(
𝐶𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 × 𝐾 × 𝑇𝑒𝑠𝑡𝑚𝑒𝑡𝑟𝑖𝑐_𝑀𝐷𝐸

𝐶𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛,𝑗
) 

 

The detection (according to the ICAO requirements) of a given distortion being achieved when 

𝑇𝑒𝑠𝑡𝑚𝑒𝑡𝑟𝑖𝑐_𝑀𝐷𝐸 is greater than 1, it is possible to find the minimum 𝐶 𝑁0⁄  that allows to have 

𝑇𝑒𝑠𝑡𝑚𝑒𝑡𝑟𝑖𝑐_𝑀𝐷𝐸 = 1 using: 

(𝐶 𝑁0⁄ )𝑚𝑖𝑛,𝑑𝑒𝑡𝑒𝑐𝑡= 20 ∗ 𝑙𝑜𝑔10(
𝐶𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 ×𝐾

𝐶𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛,𝑗
) 

 

Figure 7-8 shows the same results as on Figure 7-6 but with the x-axis representing the minimum 𝐶 𝑁0⁄  

at which the distortion is detected. The figure can also be interpreted in the following way: assuming 

a given 𝐶 𝑁0⁄  at which the reference station operates, all the distortions generating a dot in Figure 7-8 

that are below the operating 𝐶 𝑁0⁄  shall be detected by the SQM. The blue square in Figure 7-8 is thus 

still representing distortions detected by the SQM at 𝐶 𝑁0⁄ = 35 dB-Hz. 

One of the interests of the representation shown in Figure 7-8 is that MUDE can be assessed for 

different operating 𝐶 𝑁0⁄  considering that the noise on metrics is Gaussian. The green continuous line 

has a lot of interest in this representation as it corresponds to the highest differential error that is 

undetected by a reference station at a given 𝐶 𝑁0⁄ . Horizontal parts of the continuous line are due to 

the fact that a distortion, which entails the worst differential tracking error at a given 𝐶 𝑁0⁄ , remains 

the distortion that leads to the worst undetected differential error, even for lower values of 𝐶 𝑁0⁄ , till 

that a step appears when another distortion leads to a higher differential value for a lower 𝐶 𝑁0⁄ . 

 

Figure 7-8. Example of worst differential errors function of 𝐶 𝑁0⁄ .  
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The same results as shown in Figure 7-7 are observed: the MUDE is equal to 5.1 m if the reference is 

operating at a 𝐶 𝑁0⁄  equal to 35 dB-Hz and to 2.8 m if the reference is operating at a 𝐶 𝑁0⁄  equal to 

38 dB-Hz. These limits are represented by doted black lines. In red are represented distortions at the 

origin of the value of the MUDE in both cases. 

7.3.3 Estimation of the equivalent theoretical 𝐶 𝑁0⁄  at a reference station 

Results that were presented in the previous section are estimated in ideal conditions: 

- the noise distribution on metrics is white and Gaussian, 

- the coherent integration time is equal to 1 s, 

- no multipath is affecting the incoming signal, 

- a 6th-order Butterworth (24 MHz double-sided) is implemented at the reference level. 

To estimate the performance of SQM at a given reference station, it is necessary to know at which 

𝐶 𝑁0⁄  the MUDE has to be assessed. In 7.3.3.1, ideal conditions are kept and it is assumed that the 

noise distribution on metrics is white and Gaussian. Indeed, it is assumed that the  integration time and 

the presence of multipath do not have any influence on the Gaussian characteristic of the noise 

distribution on metrics: only, the standard deviation of the Gaussian distribution is impacted by the 

multipath and the integration time. 

In 7.3.3.2, a strategy to estimate SQM performance if the noise distribution is not Gaussian is 

developed. 

7.3.3.1 Assuming that the noise on metrics is Gaussian 

Figure 7-9 represents, through the dots, some 𝜎𝑚𝑒𝑡𝑟𝑖𝑐𝑥 (standard deviation of simple ratio metric 

𝑚𝑒𝑡𝑟𝑖𝑐𝑥) values that have been measured in real conditions. Three examples are proposed: 

- The two first cases correspond to a data collection performed at Stanford University with a 

LAAS integrity test-bed on SV 5 with a 5° elevation angle [Phelts et al., 2003]. Red dots 

correspond to unsmoothed metrics and green dots to metrics smoothed by a 100 s moving 

average.  

- The last case in blue illustrates 𝜎𝑚𝑒𝑡𝑟𝑖𝑐𝑥 obtained from a data collection made by Capgemini 

with a Novatel GIII receiver. The data collection was one hour long and 𝜎𝑚𝑒𝑡𝑟𝑖𝑐𝑥 was estimated 

from all satellites in view. The worst 𝜎𝑚𝑒𝑡𝑟𝑖𝑐𝑥 among satellites is represented by blue dots. The 

worst case was observed on SV 62. Its elevation angle was equal to 9° at the beginning of the 

data collection and 33° at the end. The signal 𝐶 𝑁0⁄  was equal to 32.8 dB-Hz at the beginning 

of the data collect and 42.0 dB-Hz at the end. 

Figure 7-9 also shows the theoretical link between 𝜎𝑚𝑒𝑡𝑟𝑖𝑐𝑥 and the 𝐶 𝑁0⁄  assuming that only thermal 

noise is present, according to relations derived in appendix B. One curve corresponds to one 𝐶 𝑁0⁄ .  

From Figure 7-9, it can be approximated that the LAAS receiver is working at an equivalent 

𝐶 𝑁0⁄  of 35.1 dB-Hz, in the worst case if metrics are unsmoothed, whereas the equivalent 𝐶 𝑁0 ⁄ is 

equal to 39 dB-Hz with smoothed metrics. With unsmoothed metrics, standard deviations reported 

from the Capgemini’s data collection correspond in the worst case to an equivalent 𝐶 𝑁0⁄ = 35.9 dB-

Hz. This value of 35.9 dB-Hz obtained in the case of the Capgemini’s data collection is consistent with 
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𝐶 𝑁0⁄  values estimated by the receiver. It confirms that equivalent 𝐶 𝑁0⁄  derived from mathematical 

formula of appendix B are a good approximation of the true signal 𝐶 𝑁0⁄  estimated by a receiver.  

 

Figure 7-9. Example of reference station metrics standard deviations compared to theoretical values. 

One curve corresponds to one iso-𝐶 𝑁0⁄ . 

One important remark is that the 100-second smoothing of the metrics seems to entail only a 4 dB 

improvement of the equivalent 𝐶 𝑁0⁄  in the real data whereas a 10 dB improvement would be 

expected if the raw metrics were uncorrelated in time. As a consequence, in practice, the reduction 

factor to apply on the metrics to consider the effect of the 100-second smoothing filter is only 1.5 to 

account for correlated errors, such as multipath. Even if this reduction factor was greater on the signals 

collected by Capgemini, the value of 1.5 (4 dB) can be considered conservative. 

7.3.3.2 Generalization to Non Gaussian noise on metrics 

In order to apply the theoretical SQM performance analysis developed in this chapter, the noise 

distribution of the metrics would have to be white and Gaussian. In real conditions it can appear that 

this hypothesis is not true [Thevenon et al., 2014]. One of the consequences is that, at each reference 

station, the MDE of each metric has to be adjusted to satisfy 𝑃𝑚𝑑_𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 and 𝑃𝑓𝑓𝑑_𝑚𝑒𝑡𝑟𝑖𝑐,𝑗, and 

especially avoid too many false alarms. Indeed in non-Gaussian conditions, it is not possible to estimate 
the 𝑀𝐷𝐸𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 by multiplying 𝜎𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 by a multiplier derived from a normal law. 

In this case, 𝑀𝐷𝐸𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 can be determined based on data collections at a given reference station. 

Indeed, even if the noise distribution on metrics is not Gaussian, it is possible to estimate 𝐾𝑚𝑑_𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 

and 𝐾𝑓𝑓𝑑_𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 (and by consequence 𝑀𝐷𝐸𝑚𝑒𝑡𝑟𝑖𝑐,𝑗) from the cumulative distribution function. With 

the knowledge of the 𝑀𝐷𝐸𝑚𝑒𝑡𝑟𝑖𝑐,𝑗, it is then possible to evaluate the equivalent 𝜎𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 that would 

lead to the same 𝑀𝐷𝐸𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 if the metric was Gaussian-distributed. Finally, from this equivalent 

𝜎𝑚𝑒𝑡𝑟𝑖𝑐,𝑗 and an abacus like the one provided in Figure 7-10, it is possible to determine an equivalent 

theoretical 𝐶 𝑁0⁄  at the reference station. Figure 7-10 represents the value of the MDE as a function 
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of the equivalent 𝐶 𝑁0⁄  at the reference station and the location of the correlator used in the simple 

ratio metric (Figure 7-9 multiplied by 𝐾 = 8.35). 

 

Figure 7-10. Simple ratio metrics performance thresholds for different 𝐶 𝑁0⁄  and different distance to 

the prompt. 

As a consequence, even if at a reference station the noise distribution on metrics is not Gaussian, it is 

possible to find an equivalent theoretical 𝐶 𝑁0⁄  that permits to reduce the problem to an ideal 

theoretical case. It is then possible to use the innovative representation and to read SQM performance 

of that reference station for the estimated equivalent theoretical 𝐶 𝑁0⁄ . Nevertheless, if the noise 

distribution on metrics is far from Gaussian, it might be necessary to ensure that the results correctly 

bound the actual SQM performance. Due to the lack of data, this abacus is not used in this manuscript 

but could be of interest for future works. 

7.3.4 Comparison of SQMs 

Additionally to the fact that the representation proposed in the previous section provides a view of 

the MUDE as a function of the equivalent theoretical 𝐶 𝑁0⁄ , a second interest of the representation is 

that performance of different SQMs can be compared independently from the equivalent theoretical 

𝐶 𝑁0⁄  at which the reference station is operating. 

In this part, a second SQM is introduced: SQM2b. This SQM was studied around 2000 for example in 

[Phelts et al., 2003] or [Phelts et al., 2000], and is still used nowadays in EGNOS RIMS-C stations [Bruce 

et al., 2000]. Originally, SQM2b consisted in eleven metrics but only four metrics are used by RIMS-C 

stations. The second studied SQM is thus based on the four SQM2b metrics:  

𝑚𝑒𝑡𝑟𝑖𝑐−0.075   ,    𝑚𝑒𝑡𝑟𝑖𝑐0.075 

𝑚𝑒𝑡𝑟𝑖𝑐0.075−0.075   ,    𝑚𝑒𝑡𝑟𝑖𝑐0.1−0.1 
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Figure 7-11 gives in red results obtained using the SQM2b and in green using the reference SQM. From 

these plots, it is clear that the reference SQM has better performance than the SQM2b whatever the 

𝐶 𝑁0⁄  is. This result can be read from Figure 7-11 because the red line is higher than the green line for 

the different values of 𝐶 𝑁0⁄ , i.e. the MUDE of SQM2b is higher than that of the reference SQM for the 

different values of 𝐶 𝑁0⁄ . This result was expected especially because the reference SQM relies on one 

hundred metrics whereas SQM2b relies on only four metrics. 

 

Figure 7-11. Comparison of two SQMs performance. 

The MERR was fixed to 3.5 m for SBAS L1 civil aviation operations. It can be seen that MUDE is lower 

than 3.5 m with the SQM2b only if the equivalent 𝐶 𝑁0⁄  is higher than 38.5 dB-Hz, while for the 

reference SQM, an allowable equivalent 𝐶/𝑁0 is 36.1 dB-Hz. 

The results on SQM2b put forward that in this simulation setup, SQM2b does not reach the required 

performance for signals received with an equivalent 𝐶 𝑁0⁄  lower than 38.5 dB-Hz. This can be 

interpreted as a reason why a supplementary step in SQM design was proposed in the early 2000s 

[Phelts et al., 2003]. In order to decrease the metrics standard deviation, which would result in a 

translation to the right of the red points in Figure 7-11, it was proposed to smooth the metrics using 

low pass digital filter with a time constant equal to or shorter than 100 s [ICAO, 2006], which 

corresponds to the airborne measurement smoothing time. Such a smoothing was implemented on 

WAAS reference stations as defined in [Phelts and Walter, 2003], [Bruce et al., 2000] or [Phelts et al., 

2015]. If the noise affecting the metrics was purely white, this smoothing would divide by a factor 10 

the metrics standard deviation. However in practice, especially because of multipath, such 

improvement is not reached. 

Considering that no smoothing is applied on metrics, the equivalent theoretical 𝐶 𝑁0⁄  can be as bad as 

35 dB-Hz as seen in section 7.3.3.1. In this reception condition, the maximum undetectable differential 

error (MUDE) is higher than 7.5 m with SQM2b and is equal to 5.1 m with the reference SQM (fifty 

simple ratio, twenty-five difference ratio and twenty-five sum ratio metrics spread uniformly around 

the correlation function peak) according to Figure 7-11. 

However, if a 100-second moving average window is used to smooth the metrics, the equivalent 

theoretical 𝐶 𝑁0⁄  would be improved (conservatively) by 4 dB as discussed in section 7.3.3.1. In this 

case the MUDE would be equal to 3.2 m with the SQM2b and 2.8 m with the reference SQM. 
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Finally, it is possible to further reduce the equivalent 𝐶 𝑁0⁄  considering that the SQM is taking a 

decision based on the correlator outputs or the metrics of several reference stations. This is not 

investigated here, but it can be expected that using data from four reference stations would allow to 

reduce the standard deviation of the metric by about 2. 

From these results, it can be deduced that SQM2b is fulfilling SBAS L1 ICAO requirements (in steady 

state) even with conservative hypothesis. This conservative hypothesis does not take into account very 

low 𝐶 𝑁0⁄  that could be seen on some signals as for example on the signal collected by Capgemini  at 

the beginning of the collection. Indeed, the 𝐶 𝑁0⁄  estimated by the receiver was equal to 32.8 dB-Hz. 

7.3.5 Conclusions 

As a conclusion of this section, a new method was proposed to estimate and compare SQM 

performance independently from the equivalent 𝐶 𝑁0⁄  at which a reference station operates. SQM 

performance is assessed considering given configurations at user and reference receivers level. 

To estimate the SQM performance, two steps are necessary: 

- plot the new SQM performance representation as a function of the 𝐶 𝑁0⁄ , 

- find the equivalent theoretical 𝐶 𝑁0⁄  at which a reference station is operating. 

The value of the equivalent theoretical 𝐶 𝑁0⁄  is not necessarily representative of the true 𝐶 𝑁0⁄  of 

signals received by the reference station even if, from the only example available (Capgemini’s data 

collection), equivalent theoretical 𝐶 𝑁0⁄  and true 𝐶 𝑁0⁄  were consistent (no smoothing was applied). 

7.4 Results on new signals 

In this section, SQMs theoretical performance for Galileo E1C, GPS L5 and Galileo E5a is estimated and 

compared using the methodology developed in the previous section. As described in chapter 6, there 

are more distortions to test on new GNSS signals than with the ICAO TM defined for GPS L1 C/A since 

their TS is larger: 

- For Galileo E1C, 39455 distortions are generated (12 TM-A1, 80 TM-A2, 1022 TM-B area 1, 

1717 TM-B area 2, 14303 TM-C area 1 and 22321TM-C area 2). 

- For Galileo E5a and GPS L5, 21467 distortions are generated (12 TM-A, 425 TM-B area 1, 736 

TM-B area 2, 5526 TM-C area 1 and 14768 TM-C area 2). 

All abacuses which permit to know the equivalent theoretical 𝐶 𝑁0⁄  at the reference knowing the 

standard deviation of simple ratio metrics are given for Galileo E5a, GPS L5 and Galileo E1C in section 

7.4.1. 

Reference SQMs performance is estimated for GPS L5, Galileo E5a and Galileo E1C in section 7.4.2. 
These SQMs are also called baseline SQMs and are noted 𝑆𝑄𝑀𝑟𝑒𝑓. 

It will be seen that it is not necessary to use all available metrics to reach the same SQM performance 

as the reference SQM. In section 7.4.3, a strategy to estimate an optimal SQM in terms of complexity 

(𝑆𝑄𝑀𝑜𝑝𝑡𝑖𝑚𝑎𝑙), using a reduced number of metrics, is developed and results obtained from this 

optimization are presented.   
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7.4.1 Metrics standard deviations vs 𝐶 𝑁0⁄  abacuses for new signals 

Abacuses which give 𝜎𝑚𝑒𝑡𝑟𝑖𝑐𝑥 as a function of an equivalent theoretical 𝐶 𝑁0⁄  for Galileo E5a, GPS L5 

(on the right) and Galileo E1C (on the left) signals are provided in Figure 7-12. These abacuses are 

drawn from equation (B-1) provided in appendix B in the case of simple ratio metrics. The two abacuses 

are presented to show that they depend upon the correlation function of the considered signal. 

Moreover, these abacuses permit to estimate at which equivalent theoretical 𝐶 𝑁0⁄  new signals are 

received at reference station and could be used in future works.  

 

Figure 7-12. Metric (simple ratio) standard deviations values. One curve corresponds to one iso-𝐶 𝑁0⁄ . 

Galileo E1C signal on the left, Galileo E5a (and GPS L5 signal) on the right. 

Because of the lack of true measurements on new signals, it is assumed in the following the same 

conservative equivalent theoretical 𝐶 𝑁0⁄  at typical reference station as in the GPS L1 C/A case: 

- considering that no smoothing is applied on metrics, the equivalent theoretical 𝐶 𝑁0⁄  is equal 

to 35 dB-Hz, 

- considering that a 100-second moving average window is applied on metrics, the equivalent 

theoretical 𝐶 𝑁0⁄  is equal to 39 dB-Hz. 

The value of 39 dB-Hz is particularly high. It is reminded that it does not correspond to the true 𝐶 𝑁0⁄  

observed from signals but to an equivalent theoretical 𝐶 𝑁0⁄  that takes into account the effect of the 

smoothing. 

7.4.2 Performance of a SQM based on all available metrics 

In this part, the definition of reference SQMs for Galileo E1C, Galileo E5a and GPS L5 signals are given. 

It corresponds to a SQM based on all available metrics as presented in 7.2.3. Then performances of the 

two SQMs are provided. 

7.4.2.1 Results on Galileo E1C 

The reference SQM for Galileo E1C signal was already presented in 7.2.3 and consists of one hundred 

metrics: 

Galileo E1C Galileo E5a and GPS L5 
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- fifty simple ratio metrics 𝑚𝑒𝑡𝑟𝑖𝑐𝑥 with 𝑥 = −0.25:0.01:−0.01 and 𝑥 = 0.01: 0.01:0.25 in 

E1C chip unit, 

- twenty-five sum ratio metrics 𝑚𝑒𝑡𝑟𝑖𝑐𝑥+𝑥 with 𝑥 = 0.01:0.01:0.25 in E1C chip unit, 

- twenty-five difference ratio metrics 𝑚𝑒𝑡𝑟𝑖𝑐𝑥−𝑥 with 𝑥 = 0.01:0.01: 0.25 in E1C chip unit. 

On Figure 7-13 is shown the maximum differential error entailed by distortions of the Galileo E1C TM 

as a function of the equivalent theoretical reference  𝐶 𝑁0⁄ .  

 

Figure 7-13. Reference SQM performance considering the proposed Galileo E1C TM. 

From Figure 7-13, it can be seen that to satisfy the requirement on the MUDE of 1.55 m, the equivalent 

𝐶 𝑁0⁄  must be higher than 38.4 dB-Hz. This value of 38.4 dB-Hz is considered as reached assuming that 

a 100-second moving average window is applied on metrics.  

A second result is that the MUDE value of 3.5 m is reached for an equivalent theoretical 𝐶 𝑁0⁄  equal 

to 34.7 dB-Hz on Galileo E1C signal which is better than the 36.1 dB-Hz on GPS L1 C/A signal. It appears 

that SQM performance is slightly better on Galileo E1C than on GPS L1 C/A using in both cases the 

reference SQM. 

The fact that SQM performance is better on one modulation than on another one can be explained by 

the fact that the narrower the correlation function peak is, the more the correlation function is  affected 

by the ICAO-like distortions. Therefore, it is easier to detect distortions on sharp correlation function 

peak. 

It is noticeable that the standard deviation of the metrics is higher with the 𝐵𝑂𝐶(1,1) than with the 

𝐵𝑃𝑆𝐾(1) because of the variance of the noise which is dependent upon the correlation function slope 

and the mean value of correlator outputs (see appendix A and appendix B). Nevertheless, it appears 

that in general, distortions are easier to detect on a 𝐵𝑂𝐶(1,1)/𝐶𝐵𝑂𝐶(6,1, 1 11⁄ ,−) correlation 

function than on a 𝐵𝑃𝑆𝐾(1) correlation function. 

7.4.2.2  Results on Galileo E5a and GPS L5 

The reference SQM on Galileo E5a and GPS L5 signals consists of forty metrics: 

- twenty 𝑚𝑒𝑡𝑟𝑖𝑐𝑥 with 𝑥 = −1: 0.1:−0.1 and 𝑥 = 0.1:0.1:1 in E5a chip unit, 

- ten 𝑚𝑒𝑡𝑟𝑖𝑐𝑥+𝑥 with 𝑥 = 0.1:0.1: 1 in E5a chip unit, 
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- ten 𝑚𝑒𝑡𝑟𝑖𝑐𝑥−𝑥 with 𝑥 = 0.1:0.1: 1 in E5a chip unit. 

On Figure 7-14 is shown the maximum differential error entailed by a distortion of the Galileo E5a TM 

as a function of the equivalent theoretical reference 𝐶 𝑁0⁄ .  

 

Figure 7-14. Reference SQM performance considering the proposed Galileo E5a TM. 

To satisfy the requirement on the MUDE of 2.78 m on Galileo E5a and GPS L5, the  𝐶 𝑁0⁄  can be as low 

as 26 dB-Hz. Such performance is expected to be reached on reference receivers. SQM required 

performance is clearly easier to reach on Galileo E5a and GPS L5 than on GPS L1 C/A and Galileo E1C.  

This can also be explained by the fact that correlation function slope is higher with the 𝐵𝑃𝑆𝐾(10) 

modulation. In addition, differential tracking errors entailed by distortions on this modulation are 

generally smaller because the correlation function peak is sharper.   

It is noticeable that a step is visible around the  𝐶 𝑁0⁄ = 26 dB-Hz. The distortion that leads to this step 

is a TM-C distortion with 𝑓𝑑 = 13 MHz, 𝜎 = 3 Mnerpers/s, ∆= 0.7 chip inducing a maximum 

differential error equal to 3.8 m. The impact of that distortion on the correlation function is 

represented on Figure 7-14. 

 

Figure 7-15. Distorted correlation function (in red) that induces the step around 26 dB-Hz on Galileo 

E5a and GPS L5 SQM performance. 
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7.4.3 Optimization of the SQM 

In the previous part, the performance that can be reached by the reference SQM (𝑆𝑄𝑀𝑟𝑒𝑓) built from 

one hundred metrics on Galileo E1C and from forty metrics on GPS L5 and Galileo E5a have been 

provided. Such a number of correlators and metrics can appear very high. It is thus interesting to 

investigate if the same performance can be reached with less correlators and/or less metrics.  

7.4.3.1 General results on SQM design 

Based on the selected correlator outputs and metric types, SQM performance obtained using all 

available metrics permits to reach the SQM performance exposed in section 7.4.3. Nevertheless, in 

[Pagot et al., 2016b] it was shown that some metrics are more able to detect distortions than other. 
Indeed, [Pagot et al., 2016b] looked at the influence of three parameters on the SQM performance: 

- the area covered by the correlator outputs used by the reference SQM, 

- the distance between two correlator outputs used by the reference SQM , 

- the use of the difference and the sum ratio metrics. 

From this study several general results were put forward: 

- Distortions detection with metrics based on correlator outputs distant from the correlation 

function main peak (>  200 ns) is more difficult than with metrics based on correlator outputs 

close to the prompt. Indeed, second order distortions are attenuated according to the 

damping factor. Moreover, these correlator outputs will be more affected by multipath which 

has the consequence to increase metrics standard deviation and thus MDE (in real conditions 

that are not taken into account in this chapter). 

- The use of additional correlator outputs close to each other (<  10 ns) does not increase 

detection performance. It is due to the fact that the lowest period of ringing effects considered 

in this document is equal to 1 (19× 10−6)⁄ ≈ 50 ns and that high frequency phenomena are 

filtered out by the RF filter applied on the received signal.  

- The difference ratio metric is not able to detect symmetric distortions that can have a 

threatening impact on differential users. 

In the following, the aim of the SQM optimization is to reduce the number of metrics (among available 

metrics of the reference SQM) while obtaining suitable SQM performance. The definition of suitable 

performance can depend upon the application but has to be clearly defined to make the optimization 

relevant. 

7.4.3.2 Optimization at a given working point 

In this part, the aim of the optimization is to find the SQM based on the lowest number of metrics as 

possible which is able to detect all distortions that entail a maximum differential tracking error above 

a given differential error threshold. To be optimal, 𝑆𝑄𝑀𝑜𝑝𝑡𝑖𝑚𝑎𝑙 has to detect these distortions at same 

equivalent  𝐶 𝑁0⁄  as the reference SQM, 𝑆𝑄𝑀𝑟𝑒𝑓, also called the baseline SQM. 

For Galileo E1C, this maximum differential error threshold (MERR) is equal to 1.55 m. For Galileo E5a 

and GPS L5, this maximum differential error threshold is equal to 2.78 m.  
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7.4.3.2.1 Algorithm of the optimization at a given working point 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-16. Algorithm to optimize the SQM at a given working point. 

𝑖 = 𝑖 + 1 

End when 

𝑀𝑖−1 = [] 

At least one distortion is 

detected by only one 
metric 𝑚𝑘,1 

 No Yes 

𝑁1 𝑚𝑘,1 metrics must 

be included in the 
optimal SQM 

One matrix 𝑀𝑖 is 

generated. Distortions 

detected by metrics 
𝑚𝑘,1 are removed from 

𝑀𝑖−1   

 

𝑁2 pairs of 𝑚𝑙,2,1 and 

𝑚𝑚,2,2 are considered. 

At least one of the two 

metrics must be 

included in the optimal 
SQM 

At least one distortion is 

detected by two metrics 
𝑚𝑙,2,1, 𝑚𝑚,2,2 

 No Yes 

At least one distortion is 

detected by three 
metrics … 

 No Yes 

2𝑁2 matrixes 𝑀𝑖 are 

generated. Distortions 

detected by metrics 
𝑚𝑙,2,1 and detected by 

𝑚𝑚,2,2 are removed 

from 𝑀𝑖−1   

 

 

𝑀𝑖 : matrix (𝑁𝑏𝑑𝑖𝑠𝑡 × 𝑁𝑏𝑚𝑒𝑡𝑟𝑖𝑐 ) with only 1 and 0.  

𝑁𝑏𝑑𝑖𝑠𝑡  (𝑁𝑏𝑚𝑒𝑡𝑟𝑖𝑐 ) is the number of distortions (metrics).  

𝑀0  contains all  distortions that entail differential errors higher than 

the targeted MERR. 

Example: 4 dis tortions  and 3 metrics  𝑀0 =  

1 0 0

1 1 1
0 0 1
1 0 0

  

The fi rs t dis tortion i s  detected by the fi rs t metric at the working 𝐶 𝑁0⁄ . 

The second dis tortion i s  detected by the 3 metrics  at the working 𝐶 𝑁0⁄ . 

 
𝑚𝑘,1: metric number 𝑘 selected by the algorithm because being the 

only one that is  able to detect a particular distortion.  

 

𝑚𝑙 ,2,1, 𝑚𝑚,2,2: metrics number 𝑙 and 𝑚. At least one of the two 

metrics must be included in the SQM. 

 

𝑖 = 1 

2𝑁2 
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The block scheme on Figure 7-16 presents the algorithm that has been used to optimize the SQM at a 

given working point. The blue square corresponds to a basic algorithm step. Several ramifications can 

start at the end of one basic algorithm step. This algorithm stops when the matrix 𝑀𝑖−1 is empty. 

Optimal SQMs are built from the smallest sets of metrics that have been selected all along the 

algorithm. Several optimal SQMs can be obtained because several ramifications can be started. 
 

7.4.3.2.2 Results on Galileo E1C 

It was seen that with the baseline SQM for Galileo E1C (SQM built from all available metrics on E1C 

signal), the lowest reference equivalent 𝐶 𝑁0⁄  that permits to detect all distortions which entail a 

maximum differential error higher than 1.55 m is equal to 38.4 dB-Hz.  

For Galileo E1C, an optimization is envisaged at this working point. 𝑆𝑄𝑀𝐸1𝐶𝑜𝑝𝑡𝑖𝑚𝑎𝑙1
 is designed to 

detect all distortions with a maximum impact on the differential error higher than 1.55 m for a 

reference station operating at an equivalent 𝐶 𝑁0⁄ = 38.4 dB-Hz.  

Using the optimization algorithm, it appears that at least six metrics are necessary to design such a 

SQM. An example of two optimal solutions is given but other solutions are possible: the SQM design is 

not unique and fifteen different suitable SQMs were found. One possible SQM is the 𝑆𝑄𝑀𝐸1𝐶𝑜𝑝𝑡𝑖𝑚𝑎𝑙1
, 

which is composed of the six following metrics (and eleven correlator outputs): 

- two simple ratio metrics 𝑚𝑒𝑡𝑟𝑖𝑐𝑥 with 𝑥 = −0.01 and 𝑥 = 0.12 in E1C chip unit, 

- three sum ratio metrics 𝑚𝑒𝑡𝑟𝑖𝑐𝑥+𝑥 with 𝑥 = 0.02, 𝑥 = 0.05, 𝑥 = 0.07 in E1C chip unit, 

- one difference ratio metric 𝑚𝑒𝑡𝑟𝑖𝑐𝑥−𝑥 with 𝑥 = 0.20 in E1C chip unit. 

Its performance is represented in red on Figure 7-17 

A second possible SQM is the 𝑆𝑄𝑀𝐸1𝐶𝑜𝑝𝑡𝑖𝑚𝑎𝑙2
 represented in blue on Figure 7-17 which is composed 

of the six following metrics (and nine correlator outputs): 

- four simple ratio metrics 𝑚𝑒𝑡𝑟𝑖𝑐𝑥 with 𝑥 = −0.01, 𝑥 = 0.01, 𝑥 = 0.12, and 𝑥 = 0.21 in E1C 

chip unit, 

- two sum ratio metrics 𝑚𝑒𝑡𝑟𝑖𝑐𝑥+𝑥 with 𝑥 = 0.04, 𝑥 = 0.07 in E1C chip unit. 

Its performance is represented in blue on Figure 7-17. 

From the two designs, several results are noticeable and tend to confirm outcomes provided in [Pagot 

et al., 2016b]: 

- The most used correlator outputs are situated close to the prompt. 

- In general, two correlator outputs spaced by 0.01 𝑇𝑐 are not used in the same SQM design. 

- The same correlator output is not used by different metrics for a given SQM design. In other 

words, correlator outputs are used only once. 

- The less used metric is the difference ratio metric. 

- Even if different SQM designs are possible, approximatively the same correlator outputs (but 

different metrics) are used in every optimal SQMs. 

- One metric based on correlator outputs far away from the prompt (0.21 and 0.20 𝑇𝑐) is 

present in the two proposed optimal SQMs. 
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Figure 7-17. 𝑆𝑄𝑀𝐸1𝐶_𝑜𝑝𝑡𝑖𝑚𝑎𝑙1 (in red) and 𝑆𝑄𝑀𝐸1𝐶_𝑜𝑝𝑡𝑖𝑚𝑎𝑙2 (in blue) performances compared to 

baseline SQM (in green) considering the proposed Galileo E1C TM.  

From Figure 7-17, it is clearly visible that the performance of the optimal SQM is equal to performance 

of the baseline SQM composed of all metrics for 𝐶 𝑁0⁄ = 38.4 dB-Hz. Nevertheless, in general, the 

bold continuous line corresponding to the highest differential error induced by distortions undetected 

by a reference station at a given 𝐶 𝑁0⁄  is higher in the optimal SQM case than in the baseline case. It 

means that the baseline case is more performant (or has equal performance) than the optimal SQMs 

outside the working operational 𝐶 𝑁0⁄  considered for the optimization. This is a logical result. 

7.4.3.2.3 Results on E5a and GPS L5 

For GPS L5 and Galileo E5a, the optimal SQM (𝑆𝑄𝑀𝐸5𝑎_𝑜𝑝𝑡𝑖𝑚𝑎𝑙) is designed to detect all distortions 

with a maximum impact on the differential error higher than 2.78 m for a reference station operating 

at an equivalent 𝐶 𝑁0⁄ = 25.3 dB-Hz. Only three metrics are necessary and twelve SQM designs that 

permit to reach this performance were found. 

As an example, one possible SQM is the 𝑆𝑄𝑀𝐸5𝑎_𝑜𝑝𝑡𝑖𝑚𝑎𝑙1 based on the three following metrics (and 

seven correlator outputs): 

- two 𝑚𝑒𝑡𝑟𝑖𝑐𝑥+𝑥 with 𝑥 = 0.8 and 𝑥 = 1 in E5a chip unit, 

- one 𝑚𝑒𝑡𝑟𝑖𝑐𝑥−𝑥 with 𝑥 = 0.1 in E5a chip unit. 

As another example, a second possible SQM is the 𝑆𝑄𝑀𝐸5𝑎_𝑜𝑝𝑡𝑖𝑚𝑎𝑙2 based on the three following 

metrics (and seven correlator outputs): 

- two 𝑚𝑒𝑡𝑟𝑖𝑐𝑥 with 𝑥 = −0.1 and 𝑥 = 1 in E5a chip unit, 

- one 𝑚𝑒𝑡𝑟𝑖𝑐𝑥+𝑥 with 𝑥 = 0.8 in E5a chip unit. 

On Figure 7-18, the two SQMs (𝑆𝑄𝑀𝐸5𝑎_𝑜𝑝𝑡𝑖𝑚𝑎𝑙1 in red and 𝑆𝑄𝑀𝐸5𝑎_𝑜𝑝𝑡𝑖𝑚𝑎𝑙2 in blue) are compared 

to the reference SQM (in green). 

It can be seen that all SQMs meet the required performance at the chosen working point, even if the 

optimal SQMs performance is different elsewhere.  

The selection of one particular optimal SQM rather than another one could be made based on a second 

criterion at a MUDE different from 2.8 m. It is important to notice that for Galileo E5a and GPS L5, the 
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optimization is realized for an equivalent 𝐶 𝑁0⁄ = 25.3 dB-Hz which is not representative of typical 

reference station conditions. A second strategy of optimization is also possible: optimized the SQM 

around an equivalent  𝐶 𝑁0⁄  instead of a value of MUDE. This second strategy is relevant in 𝐵𝑃𝑆𝐾(10)-

modulated signal case because the requirement on the maximum differential error (2.8 m) is easily 

reachable. 

 

Figure 7-18. 𝑆𝑄𝑀𝐸5𝑎_𝑜𝑝𝑡𝑖𝑚𝑎𝑙1 and 𝑆𝑄𝑀𝐸5𝑎_𝑜𝑝𝑡𝑖𝑚𝑎𝑙2 performances considering the proposed Galileo 

E5a TM (also valid for GPS L5). 𝑀𝑈𝐷𝐸 = 2.78 m for 𝐶 𝑁0⁄ = 25.3 dB-Hz. 

Assuming now that the reference receiver is operating at an equivalent 𝐶 𝑁0⁄ = 39 dB-Hz (this value 

was estimated for a GPS L1 C/A signal in part 7.3.3), the MUDE is equal to 0.61 m for the baseline SQM. 

This performance can be reached by two SQM designs with only three metrics: 𝑆𝑄𝑀𝐸5𝑎_𝑜𝑝𝑡𝑖𝑚𝑎𝑙3 and 

𝑆𝑄𝑀𝐸5𝑎_𝑜𝑝𝑡𝑖𝑚𝑎𝑙4 described below. 

𝑆𝑄𝑀𝐸5𝑎_𝑜𝑝𝑡𝑖𝑚𝑎𝑙3 is based on the three following metrics (and six correlator outputs): 

- one 𝑚𝑒𝑡𝑟𝑖𝑐𝑥 with 𝑥 = 0.8 in E5a chip unit, 

- one 𝑚𝑒𝑡𝑟𝑖𝑐𝑥+𝑥 with 𝑥 = 0.2 in E5a chip unit, 

- one 𝑚𝑒𝑡𝑟𝑖𝑐𝑥−𝑥 with 𝑥 = 0.1 in E5a chip unit. 

𝑆𝑄𝑀𝐸5𝑎_𝑜𝑝𝑡𝑖𝑚𝑎𝑙4 is based on the three following metrics (and five correlator outputs): 

- two 𝑚𝑒𝑡𝑟𝑖𝑐𝑥 with 𝑥 = 0.1 and 𝑥 = 0.8 in E5a chip unit, 

- one 𝑚𝑒𝑡𝑟𝑖𝑐𝑥+𝑥 with 𝑥 = 0.2 in E5a chip unit. 

In the same way, the two optimal SQMs have slightly different performances but the MUDE is equal 

to 0.61 m for an equivalent 𝐶 𝑁0⁄  equal to 39 dB-Hz. 
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Figure 7-19. 𝑆𝑄𝑀𝐸5𝑎_𝑜𝑝𝑡𝑖𝑚𝑎𝑙3 and 𝑆𝑄𝑀𝐸5𝑎_𝑜𝑝𝑡𝑖𝑚𝑎𝑙4 performances considering the proposed Galileo 

E5a TM (also valid for GPS L5). 𝑀𝑈𝐷𝐸 = 0.61 m for  𝐶 𝑁0⁄ = 39 dB-Hz. 

From the four optimal SQM designs presented on Galileo E5a signal (and GPS L5 signal), several results 

are noticeable: 

- It is more difficult than on Galileo E1C to find general concepts to design the optimal SQM but 

less metrics and correlator outputs are necessary to monitor Galileo E5a and GPS L5 signals. 

The fact that less metrics are necessary to monitor Galileo E5a and GPS L5 signals is mainly 

justified because, on these signals, the reference SQM is based on less metrics than for Galileo 

E1C signal. 

- It is also noticeable that with Galileo E5a and GPS L5 signals correlator outputs are not used by 

different metrics for a given SQM design. In other words, correlator outputs are used only 

once. 

- Some differences appear between the optimization at 𝐶 𝑁0⁄ = 39 dB-Hz and at  𝐶 𝑁0⁄ =

25.3 dB-Hz: 

o More correlator outputs close to the prompt are used when the optimization is made 

at a high 𝐶 𝑁0⁄ . 

o More SQM designs are possible when the optimization is made at a low 𝐶 𝑁0⁄ .  

It can be justified by the fact that it is easier to optimize at low 𝐶 𝑁0⁄ . 

7.4.3.2.4 Conclusions about the SQM optimization at a given working point 

The aim of this part is to find a SQM based on the lowest number of metrics as possible without 

compromise its performance at a given working point with respect to the baseline SQM. Two strategies 

based on two different criteria were proposed:  

- Fix a MUDE, find the lowest equivalent 𝐶 𝑁0⁄  that permits to reach this MUDE with the baseline 

SQM (SQM built from all available metrics) and find the smallest sets of metrics that permit to 

reach that MUDE for that lowest 𝐶 𝑁0⁄ . 

- Fix an equivalent 𝐶 𝑁0⁄ , find the MUDE obtained at this 𝐶 𝑁0⁄  with the baseline SQM and find 

the smallest sets of metrics that permit to reach that MUDE for that 𝐶 𝑁0⁄ . 
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The first strategy is used in the Galileo E1C context for a MUDE equal to 1.55 m (equivalent 𝐶 𝑁0⁄ =

38.4 dB-Hz). Six metrics are sufficient to reach required performance and several SQM designs permit 

to obtain such performance.   

The first strategy is used in the Galileo E5a and GPS L5 context for a MUDE equal to 2.78 m (equivalent 

𝐶 𝑁0⁄ = 25.3 dB-Hz). Three metrics are sufficient to reach required performance and several SQM 

designs permit to obtain such performance.   

The second strategy is relevant with Galileo E5a and GPS L5 and is applied for an equivalent 𝐶 𝑁0⁄ =

39 dB-Hz (MUDE = 0.61 m). Three metrics are sufficient to reach required performance and several 

SQM designs permit to obtain such performance.   

Depending on requirements that have to be met, different SQMs can be implemented on a reference 

station. An additional optimization criterion (for example an additional requirement at a different 

working poin) may be used in order to select one SQM among those that are able to meet the first 

optimization criterion. 

As a conclusion, to obtain SQM performance as good as the baseline SQM at a specific working point, 

only few metrics (typically around five) are necessary. 

7.4.3.3 Optimization along all  𝐶 𝑁0⁄  values 

The SQM optimization proposed at a given working point has the advantage to be optimal at specific 

critical points and by consequence, only few metrics are necessary to reach performance of the 

reference SQM for that critical points. This is usually sufficient to ensure that the SQM fulfils a specific 

requirement. Nevertheless, this approach has one drawback: the optimization is specific to one 

particular working point and SQM performance can be poor at other points even if it satisfies the 

targeted requirement. In addition, several SQM designs that satisfy optimization criteria can be found. 

Indeed, with the strategy used in 7.4.3.2, in general, optimal SQMs are better than other at some 

equivalent 𝐶 𝑁0⁄  but are worst at other equivalent 𝐶 𝑁0⁄ . 

In this part, a second method to design an optimal SQM, free of the first approach drawback, is 

proposed. 

7.4.3.3.1 Algorithm to optimized along all 𝐶 𝑁0⁄  values 

The optimization criterion consists in finding the smallest set of metrics that permits to reach the 
performance of the baseline SQM, 𝑆𝑄𝑀𝑟𝑒𝑓, whatever the value of the equivalent 𝐶 𝑁0⁄  is. To find this 

optimal SQM, the principle is represented in Figure 7-20. 

The optimization SQM principle is also described below: 

- Step 1. Generate 𝑁𝑚𝑒𝑡𝑟𝑖𝑐 𝑆𝑄𝑀𝑘s where 𝑁𝑚𝑒𝑡𝑟𝑖𝑐 is the number of all available metrics (or 
equivalently the number of metrics in 𝑆𝑄𝑀𝑟𝑒𝑓). One 𝑆𝑄𝑀𝑘 is built from 𝑁𝑚𝑒𝑡𝑟𝑖𝑐− 1 metrics 

and, for each 𝑆𝑄𝑀𝑘, one and only one metric is removed from 𝑆𝑄𝑀𝑟𝑒𝑓. 𝑁𝑚𝑒𝑡𝑟𝑖𝑐 = 100 for 

Galileo E1C, and 𝑁𝑚𝑒𝑡𝑟𝑖𝑐 = 40 for Galileo E5a and GPS L5. 

- Step 2. Compare performance of each 𝑆𝑄𝑀𝑘 with 𝑆𝑄𝑀𝑟𝑒𝑓. 

- Step 3. If the performance of 𝑆𝑄𝑀𝑘 is different from performance of 𝑆𝑄𝑀𝑟𝑒𝑓, the metric that 

has been removed from 𝑆𝑄𝑀𝑟𝑒𝑓 to obtain this 𝑆𝑄𝑀𝑘 has to be included in 𝑆𝑄𝑀𝑜𝑝𝑡𝑖𝑚𝑎𝑙.  
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Figure 7-20. Algorithm of SQM optimization at all  𝐶 𝑁0⁄  values. 

 

As an example, for Galileo E1C signal, before the 

algorithm iteration 1, 𝑚𝑒𝑡𝑟𝑖𝑐 (𝑘) of 
𝑆𝑄𝑀0𝑟𝑒𝑓  consist of (𝑥  are in chip unit): 

𝑚𝑒𝑡𝑟𝑖𝑐𝑥  with 𝑥 = −0.25:0.01: −0.01 for k=1:25. 

𝑚𝑒𝑡𝑟𝑖𝑐𝑥  with 𝑥 = 0.01:0.01: 0.25 for k=26:50. 

𝑚𝑒𝑡𝑟𝑖𝑐𝑥+𝑥 with 𝑥 = 0.01: 0.01: 0.25 for k=51:75. 

𝑚𝑒𝑡𝑟𝑖𝑐𝑥−𝑥 with 𝑥 = 0.01: 0.01: 0.25 for k=76:100. 

𝑆𝑄𝑀0𝑟𝑒𝑓  

based on 𝑁𝑚𝑒𝑡𝑟𝑖𝑐  available metrics. 
𝑆𝑄𝑀𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = [] 

𝑆𝑄𝑀1𝑟𝑒𝑓  

based on 𝑁1𝑚𝑒𝑡𝑟𝑖𝑐  metrics. 

Algorithm, iteration 1. 

Test the influence of 1 metric.  

Algorithm, iteration 2. 

Test the influence of 2 metrics.  

 

𝑆𝑄𝑀2𝑟𝑒𝑓  

based on 𝑁2𝑚𝑒𝑡𝑟𝑖𝑐  kept metrics. 

𝑆𝑄𝑀𝑜𝑝𝑡𝑖𝑚𝑎𝑙  

based on 𝑁𝑜𝑝𝑡𝑖𝑚𝑎𝑙 _𝑚𝑒𝑡𝑟𝑖𝑐  retained metrics. 

For 
k=1: 𝑁𝑚𝑒𝑡𝑟𝑖𝑐  

 
 

Performance is 

similar 

Performance is 

different for at 

least one 𝐶 𝑁0⁄  

𝑆𝑄𝑀1𝑟𝑒𝑓 = [] 

Compare of MUDE at all  𝐶 𝑁0⁄  between 

𝑆𝑄𝑀0𝑟𝑒𝑓  et 𝑆𝑄𝑀𝑘 . 

 (Comparison of continuous line of the 

proposed innovative representation.) 

For end 

𝑆𝑄𝑀0𝑟𝑒𝑓  

𝑆𝑄𝑀1𝑟𝑒𝑓  

Build 𝑆𝑄𝑀𝑘  

based on 𝑁𝑚𝑒𝑡𝑟𝑖𝑐 − 1 available metrics. 

𝑚𝑒𝑡𝑟𝑖𝑐(𝑘) is removed from 𝑆𝑄𝑀0𝑟𝑒𝑓 . 

 

𝑚𝑒𝑡𝑟𝑖𝑐(𝑘) is 

included in  

𝑆𝑄𝑀𝑜𝑝𝑡𝑖𝑚𝑎𝑙  

 

𝑚𝑒𝑡𝑟𝑖𝑐(𝑘) is 

included in 
𝑆𝑄𝑀1𝑟𝑒𝑓  

Algorithm, 
iteration 1 

   The iteration 2 (and following iterations 𝒑) of the algorithm is sl ightly different from 
the one described for iteration 1. Indeed, the 𝑓𝑜𝑟 loop is on metrics included in 𝑆𝑄𝑀1𝑟𝑒𝑓  (𝑆𝑄𝑀(𝑝 − 1)𝑟𝑒𝑓) and 

not on metrics included in 𝑆𝑄𝑀0𝑟𝑒𝑓 . In addition, all  combinations of two metrics (𝒑 metrics) are removed from 

𝑆𝑄𝑀1𝑟𝑒𝑓  (𝑆𝑄𝑀(𝑝 − 1)𝑟𝑒𝑓) to obtain 𝑆𝑄𝑀𝑘  instead of removing only one metric from 𝑆𝑄𝑀0𝑟𝑒𝑓 . 

 

Algorithm, iteration 2 

𝑆𝑄𝑀𝑜𝑝𝑡𝑖𝑚𝑎𝑙  



7. Signal quality monitoring of new signals 

224 
 

- Step 4. It can appear that two (or more) metrics detect the same distortion. In this case, the 

fact to remove only one metric from the SQM does not change performance of the SQM. The 

two metrics have to be removed together from the 𝑆𝑄𝑀𝑟𝑒𝑓 to observe a performance change. 

It entails that one of the two metrics has to be chosen in the optimal SQM and that optimal 

SQM design is not unique. The choice of one metric instead of the other does not have any 

influence on MUDE values. To find metrics which detect same distortions, is it necessary to 

restart from step 1 by removing two by two (then three by three, etc.) metrics from the 
𝑆𝑄𝑀𝑟𝑒𝑓 and to reiterate step 2 and step 3. 

An interpretation of this optimization process is that it removes all redundant metrics from the 

reference initial set, i.e. metrics that detect distortions already detected by other metrics, and keeps 

only those metrics who actually define the performance of the baseline SQM. Results obtained on 

Galileo E1C are provided in section 7.4.3.3.2 and on Galileo E5 and GPS L5 are provided in section 

7.4.3.3.3. 

7.4.3.3.2 Results on Galileo E1C 

For Galileo E1C, an optimal SQM (𝑆𝑄𝑀𝐸1𝐶_𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑎𝑙𝑙1) that reaches performance of the reference 

SQM is reduced to thirty metrics (and thirty-five correlator outputs): 

- twelve 𝑚𝑒𝑡𝑟𝑖𝑐𝑥 with 𝑥 = −0.24,−0.11, −0.09, −0.01,0.02,0.07,0.08, 0.09, 0.11,0.12,0.13, 

0.21, 0.25 in E1C chip unit, 

- fourteen 𝑚𝑒𝑡𝑟𝑖𝑐𝑥+𝑥 with 𝑥 = 0.01, 0.02, 0.03,0.04,0.05,0.06, 0.07, 0.08, 0.09,0.10,0.11, 

 0.16,0.24, 0.25 in E1C chip unit, 

- four 𝑚𝑒𝑡𝑟𝑖𝑐𝑥−𝑥 with 𝑥 = 0.11, 0.12,0.14,0.25 in E1C chip unit. 

Figure 7-21 illustrates correlator outputs that are used in the optimal SQM. 

Figure 7-21. Correlator outputs used in the optimal SQM (Galileo E1C). 

Several differences are noticeable between the SQM design obtained by the optimization at a given 

working point and the more demanding optimization along all equivalent 𝐶 𝑁0⁄ . These differences are 
caused by the fact that the design of 𝑆𝑄𝑀𝐸1𝐶_𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑎𝑙𝑙1 has to be more complex than the design of 

𝑆𝑄𝑀𝐸1𝐶_𝑜𝑝𝑡𝑖𝑚𝑎𝑙1. In addition to the number of metrics which is five times more important in the case 

of 𝑆𝑄𝑀𝐸1𝐶_𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑎𝑙𝑙1 compared to 𝑆𝑄𝑀𝐸1𝐶_𝑜𝑝𝑡𝑖𝑚𝑎𝑙1, other differences are observed with 

𝑆𝑄𝑀𝐸1𝐶_𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑎𝑙𝑙1: 

- the most used correlator outputs are situated around 0.1 𝑇𝑐 from the prompt and not 

necessarily close to the prompt, 

- in general, two consecutive correlators outputs (spaced by 0.01 𝑇𝑐) are used in the same SQM, 

- the same correlator outputs can be used by several metrics.  

Correlator outputs used in the 
optimal SQM. 

Correlator outputs un-used in the 

optimal SQM (because redundant) 

 

Zoom on the correlation function peak 

0.5 chip (E1C) 
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On the other side, some results are comparable between 𝑆𝑄𝑀𝐸1𝐶_𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑎𝑙𝑙1 and 𝑆𝑄𝑀𝐸1𝐶_𝑜𝑝𝑡𝑖𝑚𝑎𝑙1: 

- the least used metric is the difference ratio metric, 

- some metrics based on correlator outputs far away from the prompt (around 0.25 𝑇𝑐 ) are 

present in the proposed optimal SQM.  

Other optimal SQMs with the same number of metrics exist. From Figure 7-22, it can be seen that, as 
expected, the MUDE of 𝑆𝑄𝑀𝐸1𝐶_𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑎𝑙𝑙1 is equal to MUDE of the baseline SQM whatever the 

equivalent 𝐶 𝑁0⁄  is. Indeed, the two continuous lines are superimposed.  

 

Figure 7-22. 𝑆𝑄𝑀𝐸1𝐶_𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑎𝑙𝑙1 performance (in red) compared to the baseline SQM performance 

(in green). 

7.4.3.3.3 Results on Galileo E5a and GPS L5 

For GPS L5 and Galileo E5a, an optimal SQM (𝑆𝑄𝑀𝐸5𝑎_𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑎𝑙𝑙1) that reaches performance of the 

reference SQM is reduced to eleven metrics (and thirteen-one correlator outputs): 

- five 𝑚𝑒𝑡𝑟𝑖𝑐𝑥 with 𝑥 = −0.1, 0.1,0.8,0.9, 1 in E5a chip unit, 

- five 𝑚𝑒𝑡𝑟𝑖𝑐𝑥+𝑥 with 𝑥 = 0.1,0.4, 0.6, 0.7,0.8 in E5a chip unit, 

- one 𝑚𝑒𝑡𝑟𝑖𝑐𝑥−𝑥 with 𝑥 = 1 in E5a chip unit. 

 

The same conclusion as with 𝑆𝑄𝑀𝐸5𝑎_𝑜𝑝𝑡𝑖𝑚𝑎𝑙1 holds: it is more difficult than on Galileo E1C to find 

general concept to design the optimal SQM. Nevertheless less metrics and correlator outputs are 

necessary to monitor Galileo E5a and GPS L5 signals. This is mainly justified because, on these signals, 

the reference SQM is based on less metrics than to monitor Galileo E1C signal.  

Other optimal SQMs with the same number of metrics exist. From Figure 7-23, it can be seen that, as 
expected, the MUDE of 𝑆𝑄𝑀𝐸5𝑎_𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑎𝑙𝑙1 is equal to the MUDE of the baseline SQM whatever the 

equivalent 𝐶 𝑁0⁄  is. Indeed, the two continuous lines are superimposed.  
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Figure 7-23. 𝑆𝑄𝑀𝐸5𝑎_𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑎𝑙𝑙1 performance (in red) compared to the baseline SQM performance 

(in green). 

7.4.4 Conclusions about optimal SQM on new signals 

To conclude this section, several methods can be developed to design a SQM with desired 

performance. Different optimal SQMs are proposed in this section. The main drawback of these 

approaches is that the SQM is necessarily optimized in given conditions (distortions and receivers 

configurations have to be given), and is not optimized for other conditions.  

The best performance that can be obtained by a reference SQM are summarized in Table 7-6. In grey 

are presented values that do not correspond to targeted MERR for a given signal. Values in grey are 

presented for information. The reference SQM consists in: 

- fifty simple ratio metrics plus twenty-five difference ratio metrics and twenty-five sum ratio 

metrics for Galileo E1C and GPS L1 C/A, 

- twenty simple ratio metrics plus ten difference ratio metrics and ten sum ratio metrics for 

Galileo E5a and GPS L5. 

 

MUDE (in meter) 1.55 2.78 3.5 

Equivalent 𝐶 𝑁0⁄  in dB-Hz (GPS L1 C/A) 44.6 39.1 36.1 

Equivalent 𝐶 𝑁0⁄  in dB-Hz (Galileo E1C) 38.4 34.7 34.7 

Equivalent 𝐶 𝑁0⁄  in dB-Hz (GPS L5 and 

Galileo E5a) 
30.2 25.3 25.3 

Table 7-6. SQM performance considering all available metrics.   

The lower the value of 𝐶 𝑁0⁄  is, the easier the required MUDE can be reached. As a consequence, it 

can be deduced that the SQM based on all available metrics shows better performance on Galileo E5a 

signal and GPS L5 signal than on Galileo E1C and GPS L1 C/A signals. Moreover, SQM performance is 

slightly better on Galileo E1C than on GPS L1 C/A. These results have to be carefully interpreted 

because it is difficult to compare SQM performance of two different modulated signals with different 

correlation function shapes and different TMs. 
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It was established in the previous section that the equivalent theoretical 𝐶 𝑁0⁄  can be assumed as 

equal to 39 dB-Hz considering that metrics are smoothed. In this condition, the reference SQM reaches 

targeted performance for a MUDE equal to 3.5 m (Galileo E1C and GPS L1 C/A in mono-frequency 

conditions) and 2.78 m (Galileo E5a and GPS L5 in DFMC conditions). The reference SQM on GPS L1 

C/A is not able to reach a MUDE equal to 1.55 m at an equivalent theoretical 𝐶 𝑁0⁄  equal to 39 dB-Hz 

whereas on Galileo E1C the value of 1.55 m can be achieved (even if with almost no margin).  

An optimization process based on the limitation of metrics number is proposed. To reach the 

performance of the reference SQM at a given MUDE value (MERR equal to 1.55 m), only six metrics 

are necessary (and nine correlator outputs) on Galileo E1C. On Galileo E5a, with three metrics (and six 

correlator outputs), it is possible to reach a MUDE equal to 2.78 m at a 𝐶 𝑁0⁄ = 25.3 dB-Hz. 

It is also possible to establish optimal SQMs with same MUDE values as the reference SQM whatever 

the value of the 𝐶 𝑁0⁄  is. In this condition, more metrics and more correlator outputs are necessary: 

thirty metrics (and thirty-five correlator outputs) for Galileo E1C and twelve metrics (and fourteen 

correlator outputs) for Galileo E5a and GPS L5. 

7.5 Conclusions 

This chapter tackles the design of SQM in the context of new GNSS signals: Galileo E1C, Galileo E5a and 

GPS L5. SQM performance is assessed theoretically for different SQM designs. This performance is 

dependent upon: 

- distortions of the TM that have to be detected (presented in 7.2), 

- user and reference configurations under discussion (presented in 7.2), 

- types of metrics used to design the SQM (presented in 7.1). 

 

In section 7.1, the three types of metrics used to design different SQMs are introduced: the simple 

ratio, the difference ratio and the sum ratio metrics. It is assumed that metrics are totally dependent 

in order to estimate SQM performance in a conservative way. In the same section, some SQM notions 

are exposed. The main issue in SQM study is the determination of requirements and performance 

thresholds which are proportional to the metrics standard deviation if the noise distribution on metrics 

is Gaussian. This strong hypothesis was verified in previous works.  

In section 7.2, distortions, user/reference receivers configurations and reference SQMs considered for 

the study are defined for each signal. The reference SQM corresponds to the use of a high number of 

correlators and represents all available metrics (ratio, difference and sum). This reference SQM is 

expected to have redundant metrics, and is probably too “expensive”, from a computational point of 

view, to be implemented in operational reference receivers. However, thanks to its complexity, it is 

supposed to give the best performance for distortion monitoring. 

In section 7.3, the concept of a new representation inspired from [Phelts et al., 2013] to estimate SQM 

performance is presented using the GPS L1 C/A signal example. This representation permits, based on 

one single figure, to estimate the theoretical MUDE as a function of the equivalent 𝐶 𝑁0⁄  value at a 

reference station, for all distortions of a given TM. Even if SQM performance is dependent upon the 

𝐶 𝑁0⁄ , the representation gives the possibility to estimate from one figure, the SQM performance at 

different equivalent 𝐶 𝑁0⁄ .  
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From the standard deviation of simple ratio metrics of real collected data, it is then possible to estimate 

at which theoretical 𝐶 𝑁0⁄  a reference station is operating. It has been seen through examples, that in 

the worst case, reference stations are operating with an equivalent theoretical 𝐶 𝑁0⁄ = 35 dB-Hz 

considering unsmoothed metrics and 𝐶 𝑁0⁄ = 39 dB-Hz with a 100-second averaging smoothing on 

metrics. 

It is noteworthy that theoretical concepts are exposed assuming that the noise distribution on metrics 

is Gaussian. If this hypothesis is not verified, from MDEs estimated in real conditions, SQM 

performance can still be evaluated from the proposed representation presented in this chapter using 

an abacus which gives the equivalent theoretical 𝐶 𝑁0⁄  value associated to performance thresholds 

estimated in real conditions.  

In section 7.4, some results about SQM on Galileo E1C, GPS L5 and Galileo E5a signals are established. 

An optimization process is applied to the reference SQM in order to remove redundant metrics and 

simplify the computation done by the monitoring process, while still reaching desired performances. 

It can be seen that SQM shows better performance on GPS L5 and Galileo E5a than on Galileo E1C and 

GPS L1 C/A. Moreover SQM performance is slightly better on Galileo E1C than on GPS L1 C/A.  

To conclude, the work performed in this chapter is realized in a theoretical way and under specific 

conditions. Even if a method is proposed to adapt theoretical results to real reference station 

conditions, the provided results must be interpreted carefully and the strategy developed in this 

chapter has to be applied again at each particular reference station and monitoring station (that can 

be different). Nevertheless, results presented in this chapter give a solid analysis of expected SQM 

performance on new GNSS signals.
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8 Conclusion and recommendations for future 

works 

This chapter aims at drawing conclusions of the work done during this Ph.D. thesis. These conclusions 

are divided in three main parts: the study of nominal distortions, the study of TM and the study of 

SQM. Then, several suggestions for future researches in these three areas are listed.  

8.1 Conclusions 

The work performed in this Ph.D. took place in the context of the use of GNSS in civil aviation. It was 

seen in chapter 2 that a core GNSS constellation cannot be used alone by civil aviation users in some 

phases of flight. Indeed, the four criteria that define performance of the GNSS service (accuracy, 

integrity, availability and continuity) cannot be met together when requirements are too stringent. 

This is the reason why augmentation systems are deployed, such as SBAS, the augmentation system 

that was targeted in this study, to increase performance of the GNSS service. GNSS service 

improvement supported by SBAS is today provided only for the GPS L1 C/A signal.  

This Ph.D. takes place in a European context. By consequence the European SBAS system, EGNOS, was 

looked at. EGNOS v3 will augment both GPS and Galileo on L1 and L5 frequency bands and will support 

civil aviation DFMC users.  

For SBAS to meet civil aviation requirements, any source of potential service degradations has to be 

accounted for. Despite the fact that several sources of errors can be present on GNSS signal s, this Ph.D. 

was focused on one potential source of degradation: GNSS signal distortions due to the satellite 

payload. These distortions can manifest in two ways: nominal distortions that are generated by healthy 

satellites due to payload imperfections and non-nominal distortions that are triggered by a satellite 

payload failure. 

To summarize, the purpose of this thesis was to investigate GNSS distortions induced by the payload 

on Galileo E1C, Galileo E5a pilot component, GPS L5 pilot component and GPS L1 C/A signals in the 

SBAS context.  

Conclusions about nominal distortions  

The investigation on nominal distortions observed on real data was performed using two methods. 

The first method was to look at the impact of nominal distortions on signals collected with high-gain 

dish antennas. This method was applied to GPS L1 C/A and to Galileo E1C signals. The second method 

was to look at the impact of nominal distortions on signals collected with an omnidirectional antenna.  

The first method has permitted to confirm distortions features in the chip domain and in the 

differential tracking error domain. It appeared that nominal digital distortions are consistent with 

results provided in the state-of-the-art but that it is more difficult to observe consistent analog 

distortions. The reason of the difference visible on the analog distortion is caused by an imperfect 
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calibration of high-gain dish antenna as underlined in [Wong, 2014]. Among other results, nominal 

distortions observed on Galileo E1C signals collected with a high-gain dish antenna are represented. It 

confirms that no digital distortions are visible on Galileo E1C signals and it puts forward the ringing 

phenomenon of 24 MHz generated most likely by the payload.  

The problem of calibration exists on signals collected with high-gain antennas because only one signal 

is captured at a given time and it is by consequence difficult to extract the distortion component 

induced by the receiver. Nevertheless, this issue is mitigated on signals collected with omnidirectional 

antennas and this is the reason why measurements from omnidirectional antenna were also collected 

on GPS L1 C/A. The advantage of omnidirectional antennas is that several signals are captured at a 

given time. As the signal distortion induced by the receiver affects all collected signals at a given time, 

it is possible, subtracting the mean value of observed signal distortions, to remove the signal distortion 

component induced by the receiver. Applying this technique, the inter-PRN bias (parameter defined in 

the pseudorange domain and which effectively affects the receiver) was estimated on some signals 

collected with an omnidirectional antenna. Values of inter-PRN bias are of the order of tens of 

centimeters assuming that signals are tracked with an EML discriminator. It appeared that the inter-

PRN bias is consistent with results provided in the state-of-the-art and by consequence, seemed to be 

an interesting parameter to characterize the impact of nominal distortions on users. 

To summarize, nominal distortions are difficult to characterize because their impact on users depends 

upon several parameters. Even if high-gain antenna data collections give the possibility to observe 

precisely nominal distortions, omnidirectional data collections are more adequate to characterize the 

impact of nominal distortions on users via the inter-PRN bias. 

Conclusions about non-nominal distortions 

In this Ph.D., three TMs were proposed: one for Galileo E5a and GPS L5 pilot components (the same 

modulation is considered), one for Galileo E1C and one for GPS L1 C/A signals. If a new TM was 

proposed for GPS L1 C/A signal, it was not to question the current ICAO TM, but rather to compare the 

TM obtained from the developed strategy to the ICAO TM. 

It was seen that it is of primary importance to define a TM that is able to characterize signal distortions 

that could appear on GNSS signals to protect users of these threats. Even if TM consists only in a model 

with its possible imperfections, its simplicity of use makes it a necessary tool to establish a common 

and agreed framework for signal distortions monitoring performance. 

Based on the observation of nominal distortions, on previous works done regarding TM on GPS L1 C/A 

signal, and due to the lack of knowledge about payload components, it was decided to design TMs for 

new signals using same parameters as on GPS L1 C/A to characterize threatening distortions: a 

damping factor, a ringing frequency, and a delay between rising and falling PRN transitions zero-

crossings. As for GPS L1 C/A ICAO TM, three sub-TMs were designed: TM-A, TM-B and TM-C. The TM-

A (digital distortion), defined by the delay between rising and falling PRN transitions, was easy to 

generalize to Galileo E5a and GPS L5 because these two signals have similarities with the GPS L1 C/A 

signal. On the contrary, the Galileo E1C signal possesses two sub-carrier components that can be both 

affected by digital distortions. This is the reason why two TM-A were defined on Galileo E1C signal. 

The TM-B (analog distortion), defined by the ringing frequency and the damping factor, can be 

modeled by a second order filter that can be applied no matter the signal modulation.  

Then, the approach to limit the TM-A and TM-B is based on keeping only signal distortions with: 
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- an impact higher than ∆𝑒𝑟𝑟_𝑚𝑎𝑥=1 m for differential users in a specific receiver configurations 

range. This value is fixed by requirement. 

- an impact smaller than 20 m on a reference station absolute pseudorange measurement.  

Then the TM-C consists in a combination of TM-A and TM-B. 

It was assumed that distortions which do not satisfy the fi rst point are not a threat for differential 

(dual-frequency) users, whereas distortions which do not satisfy the second point will be detected by 

an assumed separate monitor implemented at the reference station to be defined. These TMs are 

interesting because they take into account all possible threats for all the user/reference configurations 

considered in this Ph.D.. Proposed TMs were larger than the ICAO TM defined for GPS L1 C/A signal. 

Even if large values of 𝜎 have to be considered, it was assessed that the number of distortions to test 

can be substantially limited. 

Conclusions about SQM 

After defining TMs, the strategy was to design a monitor (SQM) that is able to detect distortions of the 

TMs which entail threatening behaviors on differential users. As it is done nowadays in SBAS, in this 

Ph.D. the SQM was built from correlator outputs. Using a large number of correlator outputs (fifty-one 

for GPS L1 C/A and Galileo E1C and twenty one for Galileo E5a), three metrics were tested to design 

the SQM: simple ratio, difference ratio and sum ratio metrics normalized by the prompt. SQM 

performance was assessed theoretically, in a conservative way, as the maximum differential error 

entailed by a distortion, as a function of the value of the highest metric test for that distortion. SQM 

performance is dependent upon several parameters: 

- distortions of the TM that have to be detected,  

- user and reference configurations under discussion,  

- types of metrics used to design the SQM,  

- 𝐶 𝑁0⁄  of the signal that has to be monitored.  

A new representation was proposed to assess, from one representation, performance of the SQM 

independently from an equivalent 𝐶 𝑁0⁄  value. In addition to this representation, a strategy to 

evaluate the equivalent theoretical 𝐶 𝑁0⁄  in given reference station conditions was exposed. The 

equivalent 𝐶 𝑁0⁄  in reference station operating conditions was estimated equal to 39 dB-Hz 

(considering that metrics are smoothed). Using the innovative representation SQMs performances 

were assessed for the different signals and it appeared that the signal quality monitoring is easier to 

perform on Galileo E5a (and GPS L5) signal than on GPS L1 C/A signal or on Galileo E1C signal. In 

particular, at an equivalent 𝐶 𝑁0⁄  equal to 39 dB-Hz, the Maximum Undetected Differential Error 

(MUDE) obtained with a SQM based on all available metrics is equal to 0.6 m on Galileo E5a, 1.3 m on 

Galileo E1C and 2.8 m on GPS L1 C/A. Finally, different optimal SQMs were proposed on new signals. 

The purpose was to decrease the number of metrics on which the SQM relies still reaching required 

performances targeted in this Ph.D.: a MUDE equal to 1.55 m for Galileo E1C signal and equal to 2.78 

m for Galileo E5a and GPS L5 signals. On new signals, typically around five metrics are sufficient to 

reach targeted performances. 
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8.2 Recommendations for future work 

Further works can be conducted from investigations made in this Ph.D. on the three axes that are: 

nominal distortions, non-nominal distortions and SQM. Recommendations on these three points are 

detailed. 

It is noteworthy that the work performed in this thesis in an EGNOS context is valid for SBAS but could 

be generalized to GBAS applying some adjustments.  

Perspectives on nominal distortions 

One of the conclusions about nominal distortions is the difficulty to characterize them. When studying 

nominal distortions, a particular care must be taken to define precisely the setup that is used to process 

signals. Significant resources should now be used to estimate more precisely nominal distortions: data 

collections at the same time and on the same signal with several different antennas, and this, on all 

signals and all satellites. This would permit to isolate in a better way the signal distortion components 

induced by the antenna and the receiver. 

In addition, only signal distortions on GPS L1 C/A and three Galileo E1C signals were observed. This 

observation must be done on other signals, especially on Galileo E5a and GPS L5 signals.   

Even if the purpose of the study of nominal distortions is to quantify their impact on the users tracking 

error (and differential tracking error), the S-curve zero-crossing observable is not the unique 

observable of interest. Indeed, the chip domain observable gives another point of view on signal 

distortions that may be of interest when distortions are not visible on the correlation function because 

averaged on the entire signal (during the coherent integration time) but are visible on some particular 

parts of the signal (for example on rising transitions or on falling transitions).  

Nominal signal distortions are currently studied as parameters of interest in the ARAIM context 

([European Commission, 2016]). Links between the observation methodology/results and the models 

used in ARAIM should be established to benefit from the work done in this study. 

Perspectives on non-nominal distortions 

TMs proposed for Galileo E1C, Galileo E5a and GPS L5 are conservative but were defined considering 

a limited number of receiver configurations. Consequently, depending on the RF front-end filter 

technology and bandwidth, and depending on the receiver tracking, TMs could be slightly different. It 

is noticeable that group delays tested in this manuscript are only equal to 0 ns or 150 ns. In WAAS, 

filters were tested with a 30 ns increments [Phelts, 2001]. Then, an important remark is that before 

using these TMs, it is necessary to know if the context permits to use these TMs.  

It is noticeable that the TM is limited by the impact of a distortion on a differential user and the impact 

of a distortion on a reference station. In this Ph.D., it was considered that differential errors higher 

than 1 m were threatening, but increase this value would reduce the TM. Moreover, it was considered 

that the reference station will be able to detect tracking bias higher than 20 m but decrease this value 

would reduce the TM. The adjustment of these two limits will change the TS. For a given application, 

TM could be re-estimated and should be included in the proposed conservative TM. 

Regarding digital distortions, TM-A are taken into account conservatively as potential threats for 

Galileo signals but it was observed that such distortions do not affect signals in nominal conditions. 

Further investigations could maybe demonstrate that it is not necessary to consider this threat on a 
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Galileo signal. More generally, observation of non-nominal distortions and knowledges about payload 

functioning could help to design TMs. 

An important issue regarding TM is about the resolution with which the TM is tested. In this 

manuscript, a proposition to deal with this problem is introduced and is used to compare the number 

of tests to perform with different TMs. This method could be applied to optimize the study of non-

nominal distortions. It is noteworthy that the TM grid (that represents tested TM distortions) that is 

used in this manuscript regarding the GPS L1 C/A ICAO TM is coarser than the one used to test WAAS 

monitors. Thinner TM grids that the ones used in this manuscript could be defined in the future to test 

the different proposed TMs. 

Finally, the entire concept of TM could be reworked. Even if TM is a very useful concept, it cannot be 

denied that it does not represent all signal distortions that could appear on a GNSS signal. Other 

strategies could be investigated as an augmented version of the Most EWF concept.  

Perspectives on SQM 

Assuming a given TM, SQM performance estimated in this Ph.D. is dependent upon: 

- user and reference configurations under discussion,  

- types of metrics used to design the SQM.  

It means that to be defined precisely, SQM performance must be assessed considering exact receiver 

configurations at user and reference levels. SQM performance could then be estimated in different 

conditions. 

Moreover, in this thesis, only three types of metrics were investigated but more can be studied. Making 

correlator outputs combination, tens of metrics could be designed as the alpha metric or the “squared 

∆ test”. The chip domain also has potential to better detect signal distortions.  

A method was proposed to estimate SQM performance in a conservative theoretical way. One of the 

most conservative assumption is to consider that all metrics are totally dependent. A more accurate 

metrics model, taking into account that metrics are correlated, could be considered in the future. In 

addition, in real conditions, the metric standard deviation is dependent upon the tracking error caused 

by the noise on the correlation function. This phenomenon was not considered in this manuscript but 

have to be taken into account in the future to estimate precisely SQM performance.  

In this manuscript SQM performance was assessed in steady state conditions. The transient problem 

could be investigated based on results estimated in steady state conditions. 

Finally, the study that is proposed is based on theory. The next step will be to adapt the method 

developed in this thesis to estimate precisely SQM performance at a given reference station . In 

particular, the fact that the reference stations that provide differential corrections are different from 

stations that support the SQM have to be considered. 
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 Correlator outputs and CDO 

standard deviations 

This appendix aims at describing the model that is used in the Ph.D. to estimate the standard deviation 

and the covariance of correlator outputs and the standard deviation of bin values at the origin of the 

CDO.  

This appendix is divided in two sections. Firstly, a theoretical derivation of standard deviations is 

presented. Secondly, theoretical values are compared with results obtained by simulations. 

 The second part of the appendix has two purposes: 

- validate theoretical CDO and correlator outputs standard deviations with simulations,  

- validate the signal processing that is used to observe nominal distortions on the CDO and on 

the correlation function. 

A.1 Theoretical derivation of standard deviations 

In the first section of the appendix, a correlator output model is derived in order to find the expression 

of the standard deviation and the covariance that affect correlator outputs. Then, the same concept is 

applied to the chip domain to derive the bins standard deviation. 

A.1.1 Correlation function observable 

From equation (3-34), the correlator output can be modeled as:  

where 

- 𝑅𝑠 is the correlation function of the local replica and the filtered received signal  code, 

- 𝜀𝜏 is the group delay error in second, 

- 𝜀𝜙 is the carrier phase delay error in radian, 

- 𝜀𝑓 is the carrier phase Doppler error in hertz, 

- 𝐷 is the sign of the data bit, 

- 𝑛𝐼 is the noise on the in-phase component. 

The expression of 𝑅𝑠 is given using the Wiener Lee relation: 

 

 

𝐼 = √
𝑃

2
𝑅𝑠(𝜀𝜏)𝐷

𝑠𝑖𝑛(𝜋𝜀𝑓𝑇𝑖𝑛𝑡)

𝜋𝜀𝑓𝑇𝑖𝑛𝑡
cos(𝜀𝜙)+ 𝑛𝐼(𝜀𝜏) (A-1) 

 
𝑅𝑠(𝜏) = ∫ 𝐻𝑅𝐹(𝑓)𝑆(𝑓)𝑆𝑙𝑜𝑐𝑎𝑙

∗ (𝑓)𝑒2𝑖𝜋𝑓𝜏𝑑𝑓
+∞

−∞
= 𝐹𝑇−1[𝐻𝑅𝐹(𝑓)𝑆(𝑓)𝑆𝑙𝑜𝑐𝑎𝑙

∗ (𝑓)] (A-2) 
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where 

- 𝑆(𝑓) is the Fourier transform of the received signal, 

- 𝑆𝑙𝑜𝑐𝑎𝑙(𝑡) is the Fourier transform of the local replica signal , 

- 𝐻𝑅𝐹(𝑓) is the RF filter transfer function (assuming to be equal to the pre-correlation filter), 

- 𝐹𝑇−1 is the inverse Fourier transform. 

It is now assumed that 𝜀𝑓  and 𝜀𝜙 are negligible. In this condition, the correlator output can be modeled 

as: 

 

It is noticeable from this relation that this formula can be applied for different group delay errors (𝜀𝜏). 

By consequence, correlator outputs can be estimated for different group delay errors. In the following, 

the group delay error is called 𝑥 instead of 𝜀𝜏 and is expressed in chip unit. An index 𝑥 is put on 𝐼 to 

give the expression of 𝐼 for a receiver tracking the signal with a group delay error equal to 𝑥. Moreover, 

considering that the data bit is evaluated and corrected, 𝐷 can be removed from the expression. The 

model becomes: 

 

In [Julien, 2006], a model for the noise correlation function at correlator output was proposed: 

where 

- 𝑁0 = 𝑘𝑏𝑇𝑠𝑦𝑠 is the noise Gaussian density when the noise is considered white and Gaussian in 

decibel/watt/hertz, 

- 𝑘𝑏 is the Boltzmann constant equal to −228.6 dBW/K/Hz, 
- 𝑇𝑠𝑦𝑠 is the system noise temperature in degree on the Kelvin scale, 

- 𝑇𝑖𝑛𝑡 is the coherent integration time in second. 

To simplified notations used in equation (A-5), the correlation function 𝑅𝑁 is introduced and is linked 

to 𝑅𝑛𝐼 by: 

 

The standard deviation of the correlator output value is then given by: 

 

The carrier to noise density is finally introduced. Using 𝐶′ 𝑁0⁄ = 10
𝐶 𝑁0⁄

10  in hertz with 𝐶 𝑁0⁄  given in 

decibel-hertz, the correlator output standard deviation expression becomes: 

 

𝐼 = √
𝑃

2
𝐷𝑅𝑠(𝜀𝜏) + 𝑛𝐼(𝜀𝜏) (A-3) 

 

𝐼𝑥 = √
𝑃

2
𝑅𝑠(𝑥) + 𝑛𝐼𝑥  (A-4) 

 
𝑅𝑛𝐼(𝜏) =

𝑁0
4𝑇𝑖𝑛𝑡

∫ |𝐻𝑅𝐹(𝑓)|²𝑆𝑙𝑜𝑐𝑎𝑙(𝑓)𝑆𝑙𝑜𝑐𝑎𝑙
∗ (𝑓)𝑒2𝑖𝜋𝑓𝜏𝑑𝑓

+∞

−∞

=
𝑁0
4𝑇𝑖𝑛𝑡

𝐹𝑇−1[|𝐻𝑅𝐹(𝑓)|²𝑆(𝑓)𝑆𝑙𝑜𝑐𝑎𝑙
∗ (𝑓)] 

(A-5) 

 
𝑅𝑛𝐼(𝜏) =

𝑁0
4𝑇𝑖𝑛𝑡

𝑅𝑁(𝜏) (A-6) 

 

𝜎(𝑛𝐼) = √
𝑃𝑛𝐼
𝑃𝑠
= √

𝑅𝑛𝐼(0)

𝐼²
= √

2𝑅𝑛𝐼(0)

𝑃× 𝑅𝑠
2(0)

 (A-7) 
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The same concept can be applied for different group delay errors. It leads to:  

 

An important remark is that 𝜎(𝑛𝑥) are given for equivalent correlator outputs amplitude equal to one. 

The average of the correlator outputs at a delay 𝑥 from the prompt is noted 𝜇𝑥. 

 

This model is equivalent to the model presented in [Sleewaegen and Boon, 2001]. The only difference 

is that in this appendix, there is no approximation on noise and tracked correlation functions. It is also 

possible to choose another normalization to better visualize these results on a corre lation function. In 

this second normalization an index 1 is added to parameters, which gives:  

 

In order to estimate different metrics standard deviations using formula presented in appendix B, 

𝑐𝑜𝑣(𝑛𝐼𝑥 , 𝑛𝑦) as to be estimated. This covariance can directly be obtained from the noise correlation 

function. 

𝑐𝑜𝑣 (𝑛𝐼𝑥 , 𝑛𝐼𝑦)= 𝐸 [𝑛𝐼𝑥𝑛𝐼𝑦] − 𝐸[𝑛𝐼𝑥]𝐸 [𝑛𝐼𝑦] = 𝐸 [𝑛𝐼𝑥𝑛𝐼𝑦] =
𝑅𝑛𝐼(𝑥 − 𝑦)

𝐼𝑥𝐼𝑦
=

𝑁0
4𝑇𝑖𝑛𝑡

𝑅𝑁(𝑥 − 𝑦)

𝐼𝑥𝐼𝑦

=
1

2𝐶′ 𝑁0⁄ × 𝑇𝑖𝑛𝑡
×
𝑅𝑁(𝑥 − 𝑦)

𝑅𝑆(𝑥)𝑅𝑆(𝑦)
 

 

The following equation can be written: 

 

To conclude, all parameters necessary to evaluate theoretical standard deviations for different metrics 

can be modeled as: 

 

𝜇1𝐼𝑥 = 𝑅𝑠(𝑥)√2𝐶′ 𝑁0⁄ 𝑇𝑖𝑛𝑡  

𝜎1(𝑛𝐼𝑥) = √𝑅𝑁(0) 

𝑐𝑜𝑣1 (𝑛𝐼𝑥 , 𝑛𝐼𝑦) = 𝑅𝑁(𝑥 − 𝑦) 

 

 
𝜎(𝑛𝐼) = √

𝟏

𝟐𝑪′ 𝑵𝟎⁄ × 𝑻𝒊𝒏𝒕
×
𝑹𝑵(𝟎)

𝑹𝒔
𝟐(𝟎)

 (A-8) 

 

𝜎(𝑛𝐼𝑥) = √
𝑅𝑛𝐼(0)

𝐼𝑥
2 = √

𝟏

𝟐𝑪′ 𝑵𝟎⁄ ×𝑻𝒊𝒏𝒕
×
𝑹𝑵(𝟎)

𝑹𝒔
𝟐(𝒙)

 (A-9) 

 𝜇𝑥 = 1 

𝜎(𝑛𝐼𝑥) = √
1

2𝐶′ 𝑁0⁄ 𝑇𝑖𝑛𝑡
×
𝑅𝑁(0)

𝑅𝑠
2(𝑥)

 
(A-10) 

 𝜇1𝐼𝑥 = 𝑅𝑠(𝑥)√2𝐶′ 𝑁0⁄ 𝑇𝑖𝑛𝑡 

𝜎1(𝑛𝐼𝑥) = √𝑅𝑁(0) 
(A-11) 

 
𝑐𝑜𝑣(𝑛𝐼𝑥 , 𝑛𝐼𝑦)=

1

2 𝐶′ 𝑁0⁄ × 𝑇𝑖𝑛𝑡
×
𝑅𝑁(𝑥 − 𝑦)

𝑅𝑆(𝑥)𝑅𝑆(𝑦)
 (A-12) 
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A.1.2 Chip Domain Observable 

After deriving the standard deviation of correlator outputs and the covariance between two correlator 

outputs, the standard deviation in the chip domain is estimated theoretically.  

The GNSS signal 𝑠(𝑡) passes through the analog section of the receiver before being processed to 

estimate the CDO (see 3.2). Without considering the sampling process to simplify notations, the 

resulting signal, filtered by the antenna and the RF front-end is noted 𝑠̃(𝑡). During this operation the 

noise is also filtered. If the noise is considered as white and Gaussian, and if the filter is assumed as an 

ideal brick wall with a double-sided bandwidth 𝐵𝑊 in hertz, the noise power (𝑃𝑛) on the filtered in-

phase channel can be modeled as: 

The chip domain observable is directly estimated from the filtered signal 𝑠̃(𝑡). In one bin is the average 

of 𝑁𝐶𝐷𝑂 samples defined in equation (4-4). Consequently, the power in one bin can be assessed by: 

with  

𝑁𝐶𝐷𝑂 = 𝐹𝑠Δ𝑏𝑖𝑛
𝑇𝑜𝑏𝑠
𝑇𝑐𝑜𝑑𝑒

𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝑝𝑎𝑟𝑡_𝑐𝑜𝑑𝑒 

- 𝐹𝑠 the sampling frequency in hertz, 

- 𝑇𝑜𝑏𝑠 the observation time in second, 

- 𝑇𝑐𝑜𝑑𝑒 the code period in second, 

- 𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝑝𝑎𝑟𝑡_𝑐𝑜𝑑𝑒 is the number of the wanted observed sections per code period, 

- Δ𝑏𝑖𝑛 is the size of the bin in second, 

- 𝑃 is the power of the received signal in watt. 

Assuming that the amplitude in bins is equal to one, i t is possible to estimate theoretical noise standard 

deviation in a bin by: 

with 𝐶′ 𝑁0⁄ = 10
𝐶 𝑁0⁄

10  the carrier to noise density in decibel-hertz. 

One important remark is that if no filter is considered at the RF front-end the expression of the 

standard deviation of the noise is still valid with 𝐵𝑊 = 𝐹𝑠. 

 

 
𝑃𝑛 = ∫

𝑁0
2

𝐵𝑊
2

−𝐵𝑊
2

𝑑𝑓 =
𝑁0𝐵𝑊

2
 (A-13) 

 
𝑃𝑏𝑖𝑛= 𝑃𝑁𝐶𝐷𝑂 (A-14) 

 

𝜎(𝑛𝐶𝐷𝑂) = √
𝑃𝑛
𝑃𝑏𝑖𝑛

= √
𝑁0𝐵𝑊

2𝑃𝑁𝐶𝐷𝑂
= √

𝐵𝑊
𝐹𝑠
⁄

2 𝐶′ 𝑁0⁄ Δ𝑏𝑖𝑛𝑇𝑜𝑏𝑠𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝑝𝑎𝑟𝑡_𝑐𝑜𝑑𝑒
 

 

(A-15) 
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A.2 CDO and correlator outputs standard deviations estimated from 

simulations  

In simulation, the CDO and the correlation function observables are derived in several steps: 

- A signal is generated by the program with a sampling frequency 𝐹𝑠. A noise is added to the 

signal with a given 𝐶 𝑁0⁄ . The signal can also be filtered at the end of this step. 

- The signal is processed by the GNSS receiver software, as described in 5.1.2. The acquisition is 

followed by the tracking. CDO and correlator outputs are estimated every 𝑇𝑜𝑏𝑠 s on 𝑇𝑡𝑜𝑡  s. 𝑇𝑜𝑏𝑠 

corresponds to the time during which samples are accumulated in bins to estimate the CDO. 

It also corresponds to the time during which samples are convolved with the local replica to 

estimate correlator outputs. The integration time (𝑇𝑖𝑛𝑡 = 1 s) used for the tracking, may be 

different from the observation time 𝑇𝑜𝑏𝑠. The CDO is estimated on 𝑁𝑏𝑖𝑛 bins and correlation 

observable on 𝑁𝑐𝑜𝑟𝑟_𝑜𝑢𝑡  correlator outputs. After a period of time 𝑇𝑡𝑜𝑡 , 𝑁 draws of each bin 

and correlator output are saved with 𝑁 = 𝑇𝑡𝑜𝑡 𝑇𝑜𝑏𝑠 ⁄ . 

- Then CDO and correlator outputs are post-processed. The standard deviation is estimated 

from the 𝑁 saved draws of the 𝑁𝑏𝑖𝑛 bins and the 𝑁𝑐𝑜𝑟𝑟_𝑜𝑢𝑡 correlator outputs. 

Results presented in this appendix are obtained using parameters presented in Table A-1. Six different 

cases are tested. 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

𝐶 𝑁0⁄  60 dB-Hz 

𝑇𝑜𝑏𝑠 20 ms 

𝑇𝑡𝑜𝑡  4 s 

𝑁 200 

𝑁𝑏𝑖𝑛 / 1000 100 / 1000 100 

𝑁𝑐𝑜𝑟𝑟_𝑜𝑢𝑡  801 / / 801 / / 

𝐹𝑠 12 MHz 40 MHz 

Filter 𝑁𝑜 𝑓𝑖𝑙𝑡𝑒𝑟 𝐵𝑟𝑖𝑐𝑘 𝑤𝑎𝑙𝑙 𝑓𝑖𝑙𝑡𝑒𝑟 (15 MHz 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ) 

Table A-1. Description of the different tested cases.    

On Figure A-1 is plotted correlation function results averaged on 𝑇𝑡𝑜𝑡  in the case 1. It means that 𝑁 =

200 epochs are averaged together. On the top, eight hundred and one averaged correlator outputs 

are shown and the standard deviation is estimated, on the bottom, for the eight hundred and one 

correlator outputs. 
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Figure A-1. Correlator outputs and associated standard deviation in case 1.  

On Figure A-2 is plotted the chip domain results averaged on 𝑇𝑡𝑜𝑡 in the case 2. It means that 𝑁 = 200 

epochs are averaged together. On the top, one thousand averaged bins values are shown and the 

standard deviation is estimated, on the bottom, for the one thousand bins. Only rising transitions are 

averaged. 

 

Figure A-2. Bins value and associated standard deviation in case 2.  

On Figure A-3 is plotted the chip domain results averaged on 𝑇𝑡𝑜𝑡 in the case 3. It means that 𝑁 = 200 

epochs are averaged together. On the top, one hundred averaged bins values are shown and the 
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standard deviation is estimated, on the bottom, for the one hundred bins. Only rising transitions are 

averaged. 

 

Figure A-3. Bins value and associated standard deviation in case 3.  

To have a better estimation of the standard deviation of correlator outputs and bins, the standard 

deviation is averaged among the different correlator outputs and the different bins. It means that 

𝑁𝑐𝑜𝑟𝑟_𝑜𝑢𝑡  correlator outputs standard deviations are averaged and 𝑁𝑏𝑖𝑛 bins standard deviations are 

averaged. 

Results provided in Table A-2 validate theoretical formulas of standard deviations (on the correlation 

function and the chip domain) as well as the Matlab® program. Indeed, Table A-2 proposes a 

comparison between theoretical standard deviation values and standard deviation obtained by 

simulation for the six different cases. 

 

 Theory Simulation 

Case 1   𝜎𝑐𝑜𝑟𝑟 5.0 × 10−3 4.9 × 10−3 

Case 2   𝜎𝑐𝑑𝑜 3.1 × 10−1 3.3 × 10−1 

Case 3   𝜎𝑐𝑑𝑜 9.9 × 10−2 1.0 × 10−1 

Case 4   𝜎𝑐𝑜𝑟𝑟 5.0 × 10−3 5.4 × 10−3 

Case 5   𝜎𝑐𝑑𝑜 1.9 × 10−1 1.9 × 10−1 

Case 6   𝜎𝑐𝑑𝑜 6.1 × 10−2 6.6 × 10−2 

Table A-2. Description of the different tested cases.    

Even if the Table A-2 corresponds to particular random draws and particular cases, it is noticeable that 

values obtained by simulations are consistent with theoretical values whether filtering is applied or 

not.  
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These results are of primary importance for two reasons: 

- it validates theoretical standard deviation formulas derived in the previous section of this 

appendix, 

- it validates the Matlab® program which tracks the signal and estimates the CDO and 

correlation function observables. 
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 Theoretical and simulated 

metrics standard deviations 

The first section of this appendix aims at providing theoretical formulas of several metrics standard 

deviations. Three metrics are considered: the simple, the difference and the sum ratio metrics 

normalized by the prompt. The second section compares theoretical metrics standard deviations to 

standard deviations estimated by simulation. 

B.1 Theoretical derivation of some metrics standard deviations 

In this section, standard deviations of different metrics are expressed theoretically. Taking back results 

from [Brocard et al., 2014], the formulas of the standard deviations of simple ratio, difference ratio 

and sum ratio metrics normalized by the prompt are remained. 

In [Brocard et al., 2014] the standard deviation was estimated for two metrics, the simple ratio metric 

𝑚𝑒𝑡𝑟𝑖𝑐𝑥 =(𝐼𝑥 𝐼𝑧⁄ ) and the differential ratio metric 𝑚𝑒𝑡𝑟𝑖𝑐𝑥−𝑦 = ((𝐼𝑥 − 𝐼𝑦) 𝐼𝑧⁄ ). These theoretical 

standard deviations are valid for long integration time (𝑇𝑖𝑛𝑡 ≥ 1 s). Mathematical approximations of 

the two metrics standard deviations are recalled: 

 

It can also be demonstrated in the same way that the standard deviations of sum ratio metrics 

𝑚𝑒𝑡𝑟𝑖𝑐𝑥+𝑦= ((𝐼𝑥 + 𝐼𝑦) 𝐼𝑧⁄ ) can be modeled as: 

 

 
𝜎 (
𝐼𝑥
𝐼𝑧
) = √

𝜇𝑥
2

𝜇𝑧
2
[
𝜎2(𝑛𝑥)

𝜇𝑥
2 +

𝜎2(𝑛𝑧)

𝜇𝑧
2 −2

𝑐𝑜𝑣(𝑛𝑥𝑛𝑧)

𝜇𝑧𝜇𝑥
] (B-1) 

 
  

 

𝜎 (
𝐼𝑥 − 𝐼𝑦

𝐼𝑧
)=

√
  
  
  
  
  
 

(𝜇𝑥−𝜇𝑦)
2

𝜇𝑧
2

[
 
 
 
 
 𝜎

2(𝑛𝑧)

𝜇𝑧
2 +

𝜎2(𝑛𝑥) + 𝜎
2(𝑛𝑦)− 2𝑐𝑜𝑣(𝑛𝑦𝑛𝑥)

(𝜇𝑥 −𝜇𝑦)
2

−2
𝑐𝑜𝑣(𝑛𝑥𝑛𝑧)− 𝑐𝑜𝑣(𝑛𝑦𝑛𝑧)

𝜇𝑧(𝜇𝑥 −𝜇𝑦) ]
 
 
 
 
 

 (B-2) 

 

𝜎 (
𝐼𝑥 + 𝐼𝑦

𝐼𝑧
)=

√
  
  
  
  
  
 

(𝜇𝑥+𝜇𝑦)
2

𝜇𝑧
2

[
 
 
 
 
 𝜎

2(𝑛𝑧)

𝜇𝑧
2 +

𝜎2(𝑛𝑥) + 𝜎
2(𝑛𝑦)+ 2𝑐𝑜𝑣(𝑛𝑦𝑛𝑥)

(𝜇𝑥 +𝜇𝑦)
2

−2
𝑐𝑜𝑣(𝑛𝑥𝑛𝑧)+ 𝑐𝑜𝑣(𝑛𝑦𝑛𝑧)

𝜇𝑧(𝜇𝑥 +𝜇𝑦) ]
 
 
 
 
 

 (B-3) 
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B.2 Theoretical VS simulated 𝜎𝑚𝑒𝑡𝑟𝑖𝑐 

In Figure B-1, Figure B-2 and Figure B-3 are given theoretical (in continuous plot) and simulated (in 

dotted plot) metrics standard deviations for 𝑚𝑒𝑡𝑟𝑖𝑐𝑥−𝑥 (in blue), 𝑚𝑒𝑡𝑟𝑖𝑐𝑥+𝑥 (in purple) and 𝑚𝑒𝑡𝑟𝑖𝑐𝑥 

(in blue for 𝑥 negative and in purple for 𝑥 positive). Figure B-1 presents standard deviations for a GPS 

L1 C/A signal (𝐵𝑃𝑆𝐾(1) modulation). Figure B-2 corresponds to results for a Galileo E1C signal (the 

received signal is 𝐶𝐵𝑂𝐶(6,1,1/11,−)-modulated and the local replica is 𝐵𝑂𝐶(1,1)-modulated). Figure 

B-3 gives standard deviations for a Galileo E5a signal (𝐵𝑃𝑆𝐾(10) modulation). 

Plots were obtained for a 𝐶 𝑁0⁄ = 30 dB-Hz and a 1 s integration time (no smoothing). The sampling 

frequency is equal to 112 MHz for GPS L1 C/A and Galileo E1C signals, and 400 MHz for Galileo E5a 

signal. All signals are filtered by a 6th-order Butterworth filter with a 24 MHz double-sided bandwidth. 

 

Figure B-1. Theoretical (continuous line) and simulated (dotted line) metrics standard deviations on 

BPSK(1) signal. 

 

Figure B-2. Theoretical (continuous line) and simulated (dotted line) metrics standard deviations on 

CBOC(6,1,1/11) signal. 
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Figure B-3. Theoretical (continuous line) and simulated (dotted line) metrics standard deviations on 

BPSK(10) signal.  

Figure B-1, Figure B-2 and Figure B-3 show that theoretical metrics standard deviations match with 

simulations.  

To conclude, it can be deduced that different SQMs can be tested by simulations applying theoretical 

formulas established in this appendix to estimate 𝜎𝑚𝑒𝑡𝑟𝑖𝑐. Results given by this approach are valid: 

- assuming that the noise on correlator outputs has a Gaussian distribution [Irsigler, 2008],  

- for high enough integration time (𝑇𝑖𝑛𝑡 > 1 s). In this condition,  𝜎𝑚𝑒𝑡𝑟𝑖𝑐 can be estimated 

theoretically according to formulas given in this appendix and in appendix A. [Brocard et al., 

2014] [Julien, 2006]
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 List of signals collected from 

high-gain dish antennas 

This appendix presents the different signals that were collected with high-gain dish antennas to assess 

the impact of nominal distortions. The day and the hour of data collections are provided.  

Data were collected at Leeheim by the DLR with an antenna owned by the German administration. 

Data were collected at Toulouse by CNES with an antenna owned by CNES. Data were collected at 

Noordwijk by ENAC with an antenna owned by ESA. Details about different data collections are given 

in 5.1.1. Data were collected during time periods varying from 10 s to 10 min.  

In Table C-1 are presented GPS L1 C/A collected signals whereas in Table C-2 are presented Galileo E1C 

collected signals. Data collected by CNES are highlighted in blue. 

PRN Block Antenna 
Data collection date 

(mm/dd/yy) 

Time at the beginning of 

data collection (hour:min) 

1 GPS BII-F Leeheim 03/14/2012                 08:34 

2 GPS BII-R Toulouse 05/13/2014                 09:17 

4 GPS BII-A Leeheim 03/14/2012                 11:14 

5 GPS BII-RM Leeheim 03/13/2012                 15:31 

7 GPS BII-RM Leeheim 03/13/2012                 15:15 

12 GPS BII-RM Toulouse 07/16/2014                 11:26 

13 GPS BII-R Leeheim 03/14/2012                 14:11 

13 GPS BII-R Toulouse 04/18/2014                 09:57 

17 GPS BII-RM Leeheim 03/14/2012                 09:54 

17 GPS BII-RM Toulouse 07/16/2014                 11:02 

23 GPS BII-R Leeheim 03/14/2012                 10:13 

23 GPS BII-R Toulouse 05/13/2014                 08:40 

24 GPS BII-F Toulouse 07/18/2014                 11:14 

25 GPS BII-F Toulouse 07/18/2014                 11:19 

26 GPS BII-A Toulouse 05/13/2014                 11:33 

29 GPS BII-RM Toulouse 07/17/2014                 17:15 

32 GPS BII-A Leeheim 03/14/2012                 08:38 

Table C-1. Information about GPS L1 C/A data collections. In blue are highlighted signals collected by 

CNES.     
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PRN block antenna 
Data collection date 

(mm/dd/yy) 

Time at the beginning of 

data collection (hour:min) 

14 
Galileo-FOC 

FM-2 
Noordwijk 09/29/2015                14:47 

18 
Galileo-FOC 

FM-1 
Noordwijk Mars 2015                 / 

22 
Galileo-FOC 

FM-4 
Noordwijk 09/29/2015                 10:51 

Table C-2. Information about Galileo E1C data collections.   
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 Nominal distortion parameters 

In this appendix, nominal distortions observed on GPS L1 C/A collected signals are characterized from 

the four parameters defined in 4.1.1.3.2. For each parameter, definition and associated overbound 

value obtained in [Phelts et al., 2009] by high resolution measurements are given in brackets. 

- Rise time/Fall time (25 ns): It is the time it takes for the rising (falling) edge of the signal to 

increase from the preceding zero-crossing to the ideal amplitude.  

- Peak time (45 ns): It is the time it takes for the rising edge of the signal to increase from the 

preceding zero-crossing to the first peak value.  

- Settling time (180 ns (at 10 % convergence)): It is the time measured from the zero-crossing 

preceding a positive (or negative) chip to when the signal response first enters and then 

remains within a band whose width is computed as a percentage of amplitude for the 

remaining duration of the chip width.  

- Peak overshoot ratio (35 %): It is the difference of the amplitude of the first peak and the ideal 

amplitude, divided by the ideal amplitude.  

In Table D-1 results obtained from rising transitions are provided, whereas in Table D-2 results 

obtained from falling transitions are exposed. In blue are highlighted results obtained from CNES 

measurements.  

PRN 
Rise time 

(ns) 
Overshoot ratio 

(%) 
Peak time 

(ns) 
Settling time 

(ns) 

1   (L) 15 30 31 60 

2   (T) 14 30 30 42 

4   (L) 12 32 28 59 

5   (L) 13 36 28 65 

7   (L) 13 37 28 64 

12 (T) 13 32 29 44 

13 (L) 11 33 27 64 

13 (T) 12 32 29 43 

17 (L) 12 34 28 64 

17 (T) 14 39 29 85 

23 (L) 13 31 28 66 

23 (T) 12 27 29 60 

24 (T) 16 36 33 45 

25 (T) 15 34 32 53 

26 (T) 13 32 30 44 

29 (T) 13 36 28 43 

32 (L) 12 32 28 61 

Table D-1. Information about GPS L1 C/A data collections. In blue are highlighted results obtained 

from CNES measurements.      
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PRN Fall time 
(ns) 

Overshoot ratio 
(%) 

Peak time 
(ns) 

Settling time 
(ns) 

1   (L) 14 27 30 59 

2   (T) 13 30 30 43 

4   (L) 12 33 28 63 

5   (L) 12 36 27 62 

7   (L) 10 37 25 63 

12 (T) 11 33 27 44 

13 (L) 10 34 26 64 

13 (T) 12 32 28 42 

17 (L) 11 35 26 61 

17 (T) 13 37 29 43 

23 (L) 10 31 26 66 

23 (T) 11 28 28 41 

24 (T) 13 32 30 46 

25 (T) 12 32 29 43 

26 (T) 13 33 29 44 

29 (T) 13 36 28 61 

32 (L) 13 34 28 60 

Table D-2. Information about GPS L1 C/A data collections. In blue are highlighted results obtained 

from CNES measurements.     
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 Features of tested filters 

To take into account the diversity of filters that can be implemented on civil aviation users, four filters 
are used in this Ph.D.:  

- Filter1: 6th-order Butterworth. 

- Filter2: resonator filter type with a constant group delay equal to zero.  

- Filter3: resonator filter type with a concave group delay and a 150 ns differential group delay. 

- Filter4: 6th-order Butterworth for the amplitude and the smallest order Butterworth filter 

leading to a differential group delay higher than 150 ns for the phase. 

This appendix illustrates the amplitude, the phase and the differential group delay of each filter 

considering a 24 MHz bandwidth (double-sided). 

On Figure E-1 are presented characteristics of Filter1: 6th-order Butterworth (24 MHz double-sided). 

 

Figure E-1. Amplitude, phase and differential group delay of the 6th-ordre Butterworth filter used in 

simulations. 
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On Figure E-2 are presented characteristics of Filter2: resonator filter type with a constant group delay 

equal to zero (24 MHz double-sided). 

 

Figure E-2. Amplitude, phase and differential group delay of resonator filter type with a constant 

group delay equal to zero used in simulations. 

On Figure E-3 are presented characteristics of Filter3: resonator filter type with a concave group delay 

and a 150 ns differential group delay (24 MHz double-sided). 

 

Figure E-3. Amplitude, phase and differential group delay of resonator filter type with a concave 

group delay and a 150 ns differential group delay used in simulations. 
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On Figure E-4 are presented characteristics of Filter4: 6th-order Butterworth for the amplitude and the 

smallest order Butterworth filter leading to a differential group delay higher than 150 ns for the phase 

(24 MHz double-sided). 

 

Figure E-4. Amplitude, phase and differential group delay of a 6th-order Butterworth filter for the 

amplitude and the smallest order Butterworth filter leading to a differential group delay higher than 

150 ns for the phase used in simulations. 

On Figure E-5 is shown the chip distortion induced by the four filters. This distortion can be interpreted 
as the impulse response of the filter. 

 

Figure E-5. Chip distortion induces by the four different filters. 





 

263 
 

 Distortions to test on the 

proposed TMs 

A strategy is exposed in section 6.4.3 to assess how many more distortions have to be tested on 

proposed TMs than on the ICAO TM defined for GPS L1 C/A.   

A parameter  ∆𝑒𝑟𝑟_𝑑𝑖𝑠𝑡 was introduced and is representative of the tracking error difference observed 

between two consecutive tested distortions. The concept to define an appropriate 𝜎 spacing between 

two consecutive distortions is to consider that only low enough  ∆𝑒𝑟𝑟_𝑑𝑖𝑠𝑡 values are tolerable. 

 ∆𝑒𝑟𝑟_𝑑𝑖𝑠𝑡 obtained with a reference sampling of the GPS L1 C/A current TS was estimated equal to 2.8 

m. This is the approximate limit that has to be reached in the worst case when sampling the TS for the 
different studied signals. 

In section 6.4.3, the concept is applied to estimate the number of distortions to test on the Galileo E1C 

TM-B area 1. In this appendix, the same reasoning is applied on area 2 of the Galileo E1C TM-B and to 
other signals. 

F.1 Number of tests on area 1 for Galileo E5a, GPS L5 and GPS L1 C/A  

First the number of distortions to test on area 1 for Galileo E5a and GPS L5 signals is assessed. Then 

the number of distortions to test on area 1 of GPS L1 C/A signals is assessed. 

F.1.1 Galileo E5a and GPS L5 area 1 

The same principle as on Galileo E1C area 1 can be applied on Galileo E5a and GPS L5 signals. However, 

with these signals, it is not necessary to define different zones. One of the consequence s is that less 

tests have to be performed.  

The proposed grid presented in Figure F-1 contains 119 distortions. This grid has been created using 

the following parameters: 𝑓𝑑 = 3:1:19 MHz and 𝜎 = 0.05:4: 24 Mnepers/s. 
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Figure F-1. Example of TS grid (Galileo E5a and GPS L5, area 1 of the proposed TM). 

Associated ∆𝑒𝑟𝑟_𝑑𝑖𝑠𝑡 are presented in Figure F-2: 

 

Figure F-2.  ∆𝒆𝒓𝒓_𝒅𝒊𝒔𝒕 associated to the selected TS grid (Galileo E5a and GPS L5, area1 of the proposed 

TM). 

For the grid proposed on Figure F-1, the maximum value of  ∆𝑒𝑟𝑟_𝑑𝑖𝑠𝑡 (equal to 1.8 m) has the same 

order of magnitude (and is even smaller) as in the GPS L1 C/A ICAO TM case (see Figure F-2). It entails 

that the number of simulations to cover Galileo E5a and GPS L5 area 1 is approximatively the same (≈

119 126⁄ ) as the number of simulations necessary to cover the GPS L1 C/A ICAO TM with an equivalent 

resolution. 

F.1.2 GPS L1 C/A area 1 

The same principle can be applied on GPS L1 C/A signal.  

The area 1 can be decomposed in four tested zones resulting in 1040 different distortions: 

- Zone 1 to study low 𝑓𝑑. The grid consists of 𝑓𝑑 = 1:1:4 MHz and 𝜎 = 1:0.2: 28 Mnepers/s. 

This zone is included in the red square on Figure F-3. 

Tested dis tortions : 119 
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- Zone 2 to study low 𝜎. The grid consists of 𝑓𝑑 = 3:1:19 MHz and 𝜎 = 0.05: 0.2:1 Mnepers/s. 

It is noticeable that distortions with 𝜎 lower than 0.05 Mnepers/s cannot be studied without 

increasing dramatically the number of tests. This is why the lower bound of 0.05 Mnepers/s is 

set. This zone is included in the green square on Figure F-3. 

- Zone 3 to study low 𝜎 and 𝑓𝑑. The grid consists of 𝑓𝑑 = 1:1:3 MHz and 𝜎 =

0.05: 0.025:1 Mnepers/s. This zone is included in the orange square on Figure F-3. 

- Zone 4 to study the rest of the TS. The grid consists of 𝑓𝑑 = 4:1:19 MHz and 𝜎 =

1:1:28 Mnepers/s. This zone is included in the blue square on Figure F-3. 

 

Figure F-3. Example of TSs grid (GPS L1 C/A, area 1 of the proposed TM). 

∆𝑒𝑟𝑟_𝑑𝑖𝑠𝑡 estimated for zone 1, zone 2 and zone 3 are presented in Figure F-4 (no filter is applied at 

receiver level). Results for zone 4 are not presented because from Figure 6-24, it was seen that with 
the selected grid on zone 4, the highest ∆𝑒𝑟𝑟_𝑑𝑖𝑠𝑡 value is equal to 2.8 m. 

 

Figure F-4.  ∆𝒆𝒓𝒓_𝒅𝒊𝒔𝒕 associated to the selected TS grid for GPS L1 C/A area 1. On the left it 

corresponds to zone 1, on the middle to zone 2 and on the right to zone 3.  

Zone 4 Zone 1 

Zone 2 

Zone 3 

 

Zone 3 

 

Zone 2 Zone 1 

Tested dis tortions : 1040 
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For the grid proposed on Figure F-3, the maximum value of  ∆𝑒𝑟𝑟_𝑑𝑖𝑠𝑡 (equal to 3.1 m) has the same 

order of magnitude as in the GPS L1 C/A ICAO TM case (see Figure F-4). It entails that the number of 

simulations to cover GPS L1 C/A area 1 has to be multiplied by 8.3 (≈ 1040 126⁄ ) compared to the 

number of simulations necessary to cover the GPS L1 C/A ICAO TM with the same resolution.  

F.2 Number of tests on area 2 

Distortions in the area 2 of the TS must also be tested. The same strategy as the strategy used to define 

the number of distortions to test on area 1 is applied in this section to estimate the number of 

distortions to test on area 2 for Galileo E1C, Galileo E5a, GPS L5 and GPS L1 C/A signals. 

F.2.1 Galileo E1C area 2 

In the Galileo E1C area 2, with the same mesh as in zone 3 of area 1 (𝑓
𝑑
= 3:1:19 MHz and 𝜎 (𝑓𝑑)

2⁄ =

0.07: 1:5 Mnepers/MHz/MHz/s),  ∆𝑒𝑟𝑟_𝑑𝑖𝑠𝑡  are higher for high frequencies because a lot of 𝜎 values 

are omitted in the 𝜎 (𝑓𝑑)
2⁄  representation. This is why it is necessary to reduce the mesh in area 2 to 

reach the same resolution as on area 1. Regarding the Galileo E1C signal, it is decided to use a mesh 

twenty times thinner on the y-axis for area 2 as illustrated in Figure F-5 and Figure F-6. Figure F-5 

corresponds to the TS grid in the 𝜎 (𝑓𝑑)
2⁄  representation whereas Figure F-6 is given in the 𝜎 

representation. 

 

Figure F-5. Example of a TS grid in the 
𝜎

(𝑓𝑑)2
 representation (Galileo E1C, area2 of the proposed TM).  
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Figure F-6. Example of a TS grid in the 𝜎 representation (Galileo E1C, area2 of the proposed TM). 

∆𝑒𝑟𝑟_𝑑𝑖𝑠𝑡 is given Figure F-7 for this proposed grid. Different curves correspond to the seventeen 

tested 𝑓
𝑑

 (from 3 MHz to 19 MHz). The x-axis gives the 𝜎 (𝑓𝑑)
2⁄  mean value of the two consecutive 

𝜎 (𝑓𝑑)
2⁄  tested values (at fixed 𝑓𝑑) at the origin of the  ∆𝑒𝑟𝑟_𝑑𝑖𝑠𝑡 computation. 

 

Figure F-7. ∆𝑒𝑟𝑟_𝑑𝑖𝑠𝑡 associated to the TS grid from Figure F-6 (Galileo E1C, area2 of the proposed 

TM). 

From Figure F-7, it can be seen that with a thinner mesh (𝜎 (𝑓𝑑)
2⁄ = 0.07:0.05: 5 

Mnepers/MHz/MHz/s), the maximum value of  ∆𝑒𝑟𝑟_𝑑𝑖𝑠𝑡 (equal to 2.4 m) has the same order of 

magnitude as in the GPS L1 C/A ICAO TM case. It means that an equivalent resolution is obtained if the 

number of tested distortions in area 2 is multiplied by 13.4 (≈ 1683/126) compared to the number 

of tests necessary to cover the current ICAO TM. 
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F.2.2 Galileo E5a and GPS L5 area 2 

The same concept can be applied on Galileo E5a and GPS L5. Figure F-8 represents  ∆𝑒𝑟𝑟_𝑑𝑖𝑠𝑡  values for 

 𝑓
𝑑
= 4: 1:19 MHz. At each  𝑓

𝑑
 value corresponds one curve. It is decided to use a mesh fifteen times 

thinner in ordinate than for area 1 (𝜎 (𝑓𝑑)
2⁄ = 0.06:0.075:3.5 Mnepers/MHz/MHz/s).  

 

Figure F-8. ∆𝑒𝑟𝑟_𝑑𝑖𝑠𝑡 values (Galileo E5a and GPS L5, area2 of the proposed TM). 

As observed for Galileo E1C, for this grid, the maximum value of  ∆𝑒𝑟𝑟_𝑑𝑖𝑠𝑡  (equal to 2.6 m) has the same 

order of magnitude as in the GPS L1 C/A ICAO TM case. It means that an equivalent resolution is 

obtained if the number of tested distortions in Galileo E5a and GPS L5 area 2 is multiplied by 6.7 (≈

840 126⁄ ) compared to the number of tests necessary to cover the current ICAO TM. 

F.2.3 GPS L1 C/A area 2 

The same concept can be applied on GPS L1 C/A. Figure F-9 represents ∆𝑒𝑟𝑟_𝑑𝑖𝑠𝑡 values for 𝑓
𝑑
=

4: 1:19 MHz. At each 𝑓
𝑑

 value corresponds one curve. It is decided to use a mesh ten times thinner 

on the y-axis than for zone 4 of area 1 (𝜎 (𝑓𝑑)
2⁄ = 0.07: 0.1:1.8 Mnepers/MHz/MHz/s).  

For the proposed grid on area 2, the maximum value of ∆𝑒𝑟𝑟_𝑑𝑖𝑠𝑡 (equal to 2.8 m) has the same order 

of magnitude as in the GPS L1 C/A ICAO TM case (see Figure F-9). It means that an equivalent resolution 

is obtained if the number of tested distortions in GPS L1 C/A area 2 is multiplied by 2.7 (= 342 126⁄ ) 

compared to the number of tests necessary to cover the current ICAO TM. 
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Figure F-9. ∆𝑒𝑟𝑟_𝑑𝑖𝑠𝑡 values (GPS L1 C/A, area2 of the proposed TM). 

F.3 Conclusion about the number of distortions to test 

To conclude, it has been seen in this section that longer simulations are required to cover the wide 

proposed TSs. However, to obtain approximatively the resolution with which the TS is examined in the 

GPS L1 C/A ICAO TM case, the number of simulations can be limited to: 

- 13.4 + 8 = 21.4 times the number of simulations compared to the current ICAO TM for 

Galileo E1C. 

- 6.7 + 1 = 7.7 times the number of simulations compared to the ICAO current TM for Galileo 

E5a. 

- 8.3 + 2.7 = 11 times the number of simulations compared to the ICAO current TM for GPS L1 

C/A. 

These three values are reasonable considering GNSS signal distortions context.
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 Properties of TM-B distortions 

at 𝜎 𝑓𝑑⁄  and 𝜎 (𝑓𝑑)²⁄  constant 

In this appendix, two important properties of analog signal distortions are described.  More precisely, 

two ratios defined from TM-B parameters have interesting propreties: 

-  𝜎/𝑓𝑑 ratio defines the amplitude of the first peak overshoot caused by a distortion in the 

signal domain, 

- 𝜎/(𝑓𝑑)
2 ratio defines the global shape of the correlation function. 

The property of the second ratio is of primary interest because it can permit to reduce the number of 

distortions to test. Indeed, instead of testing all values of 𝜎 and 𝑓𝑑 which lead to the same 𝜎/(𝑓𝑑)
2 

ratio and the same distorted correlation function, only one value of 𝜎 and 𝑓𝑑 can be tested to take into 

account this distorted correlation function.  

G.1 𝜎 𝑓𝑑⁄  ratio  

𝜎/𝑓𝑑 value defines the signal distortion first peak overshoot.  

Figure G-1 shows the signal amplitude after a transition applying a TM-B distortion. Different plots 

correspond to different 𝑓𝑑 (from 4 MHz to 17 MHz with a 1 MHz increment). In this case, 𝜎 𝑓𝑑⁄ =

2.4 nepers/Hz. It is visible that the maximum amplitude is the same for all 𝑓𝑑 and is equal to 27 % of 

the chip amplitude. 

 

 

Figure G-1. Signal shape for different 𝑓𝑑 but the same 𝜎 𝑓𝑑⁄ . GPS L1 C/A. 
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Figure G-2 shows the average distortion first peak overshoot in % (left) and the standard deviation 

associated to this mean (right) for different 𝜎/𝑓𝑑 ratios. 

  

Figure G-2. Average distortion first peak overshoot in % (left) and standard deviation associated to 

the average (right) function of 𝜎 𝑓𝑑⁄ . GPS L1 C/A. 

For  𝜎/𝑓𝑑 < 5 nepers/Hz , the overshoot of the first peak is not dependent on 𝑓𝑑 but only on the ratio. 

For higher ratios, some 𝑓𝑑 do not reach the chip amplitude, this is why the standard deviation 

increases. These results also highlight that from a certain ratio value, the distortion is strongly 

attenuated.   

It appears that the first signal peak overshoot equal to 27 % of the chip amplitude is obtained for: 

- 𝜎/𝑓𝑑 = 3 nepers/Hz for Galileo E1C. For this ratio, the first peak amplitude is equal to 

1.48 –  1.23 =  0.25 (1.23 is the high crenel sub-chip amplitude in the nominal case) as 

illustrated in Figure G-3. 

 

Figure G-3. Signal shape for different 𝑓𝑑 but the same 𝜎 𝑓𝑑⁄ = 3 nepers/Hz. Galileo E1C. 

- 𝜎/𝑓𝑑 = 2.4 nepers/Hz for Galileo E5a (as expected). For this ratio, the first peak overshoot is 

equal to 1.27 –  1 =  0.27 as illustrated in Figure G-4. 



 Appendix G. Properties of TM-B distortions at 𝜎𝑓𝑑 and 𝜎𝑓𝑑² constant 

 273 
 

 

Figure G-4. Signal shape for different 𝑓𝑑 but the same 𝜎 𝑓𝑑⁄ = 2.4 nepers/Hz. Galileo E5a. 

G.2 𝜎 (𝑓𝑑)
2⁄  ratio  

Figure G-5 illustrates signal (left) and correlation function (right) distortions for 𝜎/(𝑓𝑑)
2 = 1 

nepers/s/Hz/MHz and different 𝑓𝑑 values. On the left, 𝑓𝑑 are tested considering values of 𝑓𝑑 from 1 

MHz to 20 MHz with a 1 MHz increment. On the right, only four values of 𝑓𝑑 are tested (1 MHz in 

green, 6 MHz in pink, 11 MHz in light blue and 16 MHz in red). 

 

Figure G-5. Signals (left) and correlation functions (right) for several 𝑓𝑑 but the same 𝜎 (𝑓𝑑)
2⁄ = 1 

nepers/s/Hz/MHz. GPS L1 C/A signal. 

Figure G-6 illustrates signal (left) and correlation function (right) distortions for 𝜎/(𝑓𝑑)
2 = 3 

nepers/s/Hz/MHz and different 𝑓𝑑 values. Same colors as on Figure G-5 are used.  
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Figure G-6. Signals (left) and correlation functions (right) for several 𝑓𝑑 but the same 𝜎 (𝑓𝑑)
2⁄ = 3 

nepers/s/Hz/MHz. GPS L1 C/A signal. 

Two conclusions are deduced from Figure G-5 and Figure G-6: 

- 𝜎/(𝑓𝑑)
2 represents the general shape of the correlation function excepted for low 𝑓𝑑. It is 

noteworthy that for 𝜎/(𝑓𝑑)
2 = 3 nepers/s/Hz/MHz, all correlation functions, affected by 6 

MHz to 16 MHz 𝑓𝑑, have the same shape. 

- Even correlation functions affected by highly attenuated distortions can lead to threatening 

tracking error. For 𝜎/(𝑓𝑑)
2 = 3 nepers/s/Hz/MHz, apart from the 1 MHz signal distortion, the 

chip amplitude is not reached at the end of the chip. This phenomenon grows when the ratio 

𝜎/(𝑓𝑑)
2 increases. The consequence on the correlation function is that the peak is totally 

rounded and an asymmetry is visible.  

Galileo E1C (left) and Galileo E5a (right) distorted correlation functions are presented in Figure G-7 for 

𝜎/(𝑓𝑑)
2 = 1 nepers/s/Hz/MHz and for different 𝑓𝑑 (1 MHz in green, 6 MHz in pink, 11 MHz in light 

blue and 16 MHz in red). 

 

Figure G-7. Correlation function distortions for several 𝑓𝑑 (1: 5:16 MHz) but the same 𝜎 (𝑓𝑑)
2⁄ = 1 

nepers/s/Hz/MHz. Galileo E1C on the right and Galileo E5a on the left. 

The same phenomenon appears on new signals (from a certain 𝑓𝑑, the correlation function shape is 

only dependent on 𝜎/(𝑓𝑑)
2). It is noticeable that highly attenuated signals distortions for new 

modulations are also fully visible and the asymmetry is stronger when 𝜎/(𝑓𝑑)
2 is higher. The 

consequence is that the tracking bias entailed by these distortions is more important. This 

phenomenon is illustrated in Figure G-8 for a Galileo E1C signal. The plot is also shown in section 

6.4.1.2. 
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Figure G-8. Differential tracking error on a Galileo E1C signal in the 𝜎/(𝑓𝑑)
2representation. 

Another important observation is that from a certain 𝑓𝑑, for a given 𝜎/(𝑓𝑑)
2 = 𝑐𝑠𝑡, the tracking error 

is constant. If these results are visible, this is due to the fact that the correlation function distortion is 

constant for distortions satisfying 𝜎/(𝑓𝑑)
2 = 𝑐𝑠𝑡. The saturation phenomenon illustrated by Figure 

G-8 is visible from the 𝜎/(𝑓𝑑)
2 representation when the tracking error is independent from the 

frequency. This remark could simplify a lot the study of highly attenuated signal distortions: instead of 

considering all distortion parameters, it is possible to take into account only the first parameters set 

(𝑓𝑑 and 𝜎) leading to a particular distortion. These limit parameters sets can be approximatively 

considered on the red dashed line.  

In the 𝜎/(𝑓𝑑)
2 representation, it seems possible to include in the TM only distortions below the red 

dashed curve and the red dotted line (20 m limit). This would allow to reduce considerably the TM.  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Modeling and monitoring of new GNSS signal distortions in the context of civil aviation 

GNSS is used nowadays in various fields for navigation and positioning including safety -of-life 

applications. Among these applications is civil aviation that requires a very high quality of service for 

the most demanding phases of flight in terms of integrity, accuracy, availability and continuity. To meet 

these requirements any source of potential service degradations has to be accounted for. One such 

example is GNSS signal distortions due to the satellite payload which can manifest in two ways: 

nominal distortions that are generated by healthy satellites due to payload imperfections and non-

nominal distortions that are triggered by a satellite payload failure. The thesis first looks at the nominal 

distortions through GPS L1 C/A and Galileo E1C signals. Different types of observations are used based 

on correlation or chip domain visualization, and using high-gain and omnidirectional antennas. After 

the observation of nominal distortions, the dissertation investigates the non-nominal distortions due 

to the payload failure. Supported by the groundwork performed by civil aviation on signal distortion 

for the GPS L1 C/A signal, this dissertation aims at proposing new distortions models associated to the 

new GPS and Galileo signals that will be used by civil aviation after 2020. In particular, new TMs for 

new signals (GPS L5, Galileo E5a and Galileo E1C) are proposed. Finally, in this dissertation is built an 

appropriate monitor, referred to as SQM that is able to detect any distortion from the proposed TMs 

(for new signals) that could lead to a position integrity failure. Regarding GPS L1 C/A signal monitoring, 

such SQM is today implemented in GNSS augmentation systems including GBAS and SBAS. The current 
monitors are based on the analysis of the correlation function.  

Keywords: GNSS, signal processing, signal distortions, signal quality monitoring. 

 

Modélisation et surveillance des distorsions pour les nouveaux signaux GNSS dans le contexte de 
l’aviation civil 

Le GNSS est actuellement présent dans de nombreux domaines et permet le positionnement et la 

navigation. Parmi ces domaines, l’aviation civile a besoin d’une qualité de service élevée, notamment 

pendant les phases de vol les plus exigeantes en termes d’intégrité, de précision, de disponibilité et de 

continuité. Afin de satisfaire ces exigences, toutes les sources de dégradations potentielles du service 

doivent être prises en compte. Les distorsions des signaux GNSS générées par la charge utile du 

satellite sont un exemple  de problème qui doit être pris en compte par l’aviation civile. Elles peuvent 

se manifester de deux manières différentes: les distorsions nominales générées par les satellites en 

fonctionnement normal et les distorsions non nominales générées lors d’une panne de la charge utile. 

Tout d’abord, cette thèse aborde le problème des déformations nominales affectant les signaux GPS 

L1 C/A et Galileo E1C. Différentes observations sont réalisées à partir de la visualisation de la fonction 

de corrélation ou du signal et par l’utilisation d’antennes à haut gain et d’une antenne 

omnidirectionnelle. Après l’observation des distorsions nominales, cette thèse aborde le sujet des 

distorsions non nominales du signal. En utilisant les travaux réalisés dans le passé par l’aviation civile 

dans le cadre du signal GPS L1 C/A, le but est de proposer de nouveaux modèles de distorsions associés 

aux nouveaux signaux GPS et Galileo qui vont être utilisés par l’aviation civile après 2020.  Dans cette 

optique, de nouveaux modèles de menace (appelés TMs) pour les nouveaux signaux  (GPS L5 et Galileo 

E5a et E1C) sont proposés. La dernière étape de cette thèse se focalise sur l’étude d’une technique 

capable de protéger un utilisateur de l’aviation civile contre les TMs proposés pour les nouveaux 

signaux. Cette technique appelée SQM est aujourd’hui implémentée dans les systèmes GBAS et SBAS 
pour détecter les distorsions de la fonction de corrélation dans le cadre des signaux GPS L1 C/A. 

Mots-clés: GNSS, traitement du signal, distorsions du signal, détection de distorsions.  


