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Abstract

Recent technical progress in the field of quantum nanoelectronics has lead to excit-
ing new experiments involving coherent single electron sources. When quantum elec-
tronic devices are manipulated on time scales shorter than the characteristic time of
flight of electrons through the device, a whole class of conceptually new possibilities
become available. In order to treat such physical situations, corresponding advances
in numerical techniques and their software implementation are required both as a tool
to aid understanding, and also to help when designing the next generation of experi-
ments in this domain.

Recent advances in numerical methods have lead to techniques for which the com-
putation time scales linearly with the system volume, but as the square of the simula-
tion time desired. This is particularly problematic for cases where the characteristic
dwell time of electrons in the central device is much longer than the ballistic time of
flight. Here, we propose an improvement to an existing wavefunction based algorithm
for treating time-resolved quantum transport that scales linearly in both the system
volume and desired simulation time. We use this technique to study a number of in-
teresting physical cases. In particular we find that the application of a train of voltage
pulses to an electronic interferometer can be used to stabilise the dynamical modifi-
cation of the interference that was recently proposed. We use this to perform spec-
troscopy on Majorana and Andreev resonances in hybrid superconductor-nanowire
structures.

The numerical algorithms are implemented as an extension to the kwaNT quantum
transport software. This implementation is used for all the numerical results pre-
sented here, in addition to other work, covering a wide variety of physical applications:
quantum Hall effect, Floquet topological insulators, Fabry-Perot interferometers and
superconducting junctions.
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Summary of the Thesis

This thesis deals with the problem of simulating and understanding transport of elec-
trons in quantum devices when the device is subjected to time-dependent perturba-
tions such as pulses of voltage on contacts or electrostatically coupled gates, electro-
magnetic radiation etc. This thesis consists of two main parts. The first part is dedi-
cated to the advances in theoretical techniques and their implementation as numeri-
cal algorithms that allow us to perform simulations where the time to solution scales
linearly in the system volume and maximum (simulation) time required. This is an
improvement over the present state of the art, which scales linearly in system volume,
but as the square of the simulation time. The second part applies this algorithm to sev-
eral key physical devices: a flying qubit interferometer, a Josephson junction under
bias, and a nanowire coupled to a superconductor, which exhibits Majorana states at
its extremities. Here we shall briefly present the key results from each chapter.

Chapter 1: Introduction to Quantum Transport in the

Time Domain

We start by introducing the field of quantum transport, including typical length
scales, and look at the archetypical quantum device: a two-dimensional electron gas
at the interface between two semiconductors. We then go on to look at recent experi-
ments involving single electron sources, which highlight the need for a better under-
standing of the titular quantum transport in the time domain. We follow this with a
brief review of the currently available numerical techniques: non-equilibrium Green’s
functions and wavefunction based approaches. This chapter does not contain any new
results, but serves as an introduction to what follows.

Chapter 2: Numerical Algorithms for Time-Resolved

Quantum Transport

In this chapter we present the improvements that have been made to the numerical
algorithms with respect to the current state of the art. We start off by covering known




material (calculation of stationary scattering wavefunctions) before presenting our ap-
proach to time-resolved transport. This consists of starting with initial scattering states
of the system and then evolving them in time using the time-dependent Schrodinger
equation; observables are then calculated by integrating over the contributions from
these time-evolved scattering states. In the end the differential equations to solve are

Jd - _ _
i Yur(t) = [H(E) = Elae () + WD) v — 2P ()

source term sink term (01)

lpaE(t) = [ltEaE(t) + Ztg]e_iEtf

where ¢, £(t) is the wavefunction in which we are interested, ¢5'. is the initial scat-
tering state incoming in channel « and energy E, H(t) is the Hamiltonian matrix,
W(t) = H(t) — H(0), and X is a diagonal matrix that is non-zero in a finite number of
cells of the leads that are attached to the central scattering region. The key difference
from previous approaches is the use of a complex absorbing potential, —i%, to handle the
boundary conditions at the system-lead interface. This is what gives our algorithm
linear scaling with system volume and simulation time. The characteristic “source”
and “sink” terms in the Schrédinger equation lead us to dub this the “source-sink”
method.

In addition we perform a detailed analysis of the effect of the complex potential,
including an analytical calculation of the reflection amplitude beyond the WKB ap-
proximation. We find that the reflection from the complex potential satisfies

T‘E(E) — i€2ka€—Ak;’E+

L [Ty KLy — < [ 1\2) (02
HEL by ¥ eXp{zlkL“‘Efo = d"} du+@((ﬁ) )

where X(x) is the absorbing potential as a function of distance into absorbing region, L

is the length of the absorbing region, and k is the wavevector corresponding to energy
E.

Finally, we discuss how the observables can be calculated by integrating the con-
tributions from the wavefunctions, weighted by the appropriate Fermi-Dirac distribu-
tion. We propose to integrate in momentum space, as opposed to the energy-space inte-
grations used by competing methods, to avoid singularities arising from new modes
opening in the leads of the system. We provide two examples that illustrate that the
momentum-space integration requires drastically fewer points (and hence fewer wave-
functions to evolve) than the corresponding energy-space integration.
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Chapter 3: Software Design

In this chapter we discuss the requirements for a robust software tool that imple-
ments the algorithms discussed in the preceding chapter. We start by motivating the
need for solid abstractions of the fundamental mathematical objects, as opposed to
an “all-singing all-dancing” monolithic code. We then take the example of the kwanT
package and illustrate — using a simple toy example — how it implements this phi-
losophy for time-independent transport. In particular we put emphasis on how kwant
enables one to express a problem to solve in terms of the mathematical structure, instead
of in terms of its low-level representation to the computer.

We move on to discuss the extra pieces that would have to be implemented on top
of kwaNT in order to be able to handle time-dependent problems, we dub these “ex-
tra pieces” TkwanTt , for “time-dependent kwant ”. We finish by showing a gallery of
examples where the current implementation of TkWANT has been used, outside of the appli-
cations studied in this thesis: calculating time-resolved shot noise; stopping electrons
in the quantum Hall regime; a universal transient regime for voltage pulses applied
to interferometers; and simulating Floquet topological insulators. This includes work
done outside of the research group of the author, which indicates that — despite its
flaws — the current implementation is nevertheless providing value to research projects.

Chapter 4: Split Wire Flying Qubit

We now move to the second half of the thesis, which is concerned with specific ap-
plications of the aforementioned algorithms and software tools. The first application
is to a split-wire setup implemented in a two-dimensional electron gas, which consists
of two quasi one-dimensional regions separated by a controllable tunnelling barrier.
This device has been proposed as an implementation of a “flying qubit”, where the
state of an electron is modified as it is moved around the quantum circuit. This device
is currently being implemented experimentally in the group of Christopher Bauerle at
the Néel Institute in Grenoble.

We start by treating the problem in the absence of any time dependence, using a
scattering approach. This allows us to appreciate that the system acts as an interfer-
ometer with the symmetric and antisymmetric states in the split wire providing the
two alternative paths through the system. We follow by applying a pulse of bias voltage
to the split wire. We see that the number of charges recovered on the other side of
the device oscillates with the number of charges sent by the voltage pulse, as shown
in fig. 1. Experimentally this would correspond to a measurement of the average cur-
rent when the voltage pulse is repeated in time. This effect is interpreted within the
paradigm of dynamical control of interference that was recently explored in a number of
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Figure 1: Charge transport after application of a voltage pulse on one lead of the split wire setup
(shown as an inset in subfigure (a)).

publications [1, 2]. The expressions in ref. [1] for the number of particles transmitted
in a two-path Mach-Zehnder interferometer are applied to the present case:

1 Aky -
n, = ;ll + - sin(7tit) cos (nﬁ + TOL)]
(0.3)

il 1 ~ . Akg-

ny = Ell - sin(7Ti1) cos (nn - TL)]’

where 71 is the number of particles injected by the voltage pulse, Ak is the difference
between the wavevectors of the symmetric and antisymmetric wavefunctions at the

Fermi level, and L is the length over which the wires are coupled.

Chapter 5: Time-resolved Dynamics of Josephson

Junctions

A Josephson junction with a voltage bias applied between the superconducting con-
tacts is an inherently time-dependent system, which is illustrated by the appearance of
the a.c. Josephson effect. This chapter deals with the dynamics of Josephson junctions
with a static or time-varying bias voltage applied. Because of the large separation of
energy scales required to study such a system in an experimentally relevant regime
(the superconducting gap must be very small compared with the Fermi energy), the
difference in time scales will be correspondingly large. This requirement to simulate
to very long times (compared to the smallest time scale of the problem) is perfect for
the source-sink algorithm due to the linear scaling of the latter.
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Figure 2: Current (blue full line) and voltage (red dashed line, offset for clarity) at the left
superconducting-normal contact as a function of time. Inset: propagation of the charge pulse
through the junction at different times (t4, ¢, f3, t4) and the corresponding times indicated
on the main plot.

After an introduction to the relevant parts of the theory of conventional supercon-
ductivity (Bogoliubov-de Gennes equation and Andreev reflection), we start by study-
ing the multiple Andreev reflection (MAR) processes responsible for the finite current
at voltages smaller than the superconducting gap. Despite the fact that we are using
a time-resolved approach to study an essentially periodic problem, we nevertheless
find quantitative agreement with theoretical results obtained using Floquet theory.

We then use the power of the time-resolved approach to study trains of voltage
pulses propagating in long Josephson junctions. We see that a periodic current, is gen-
erated at the output even when just a single voltage pulse is applied, as can be seen in
fig. 2. The voltage pulse generates an excitation in the junction that becomes trapped,
as the pulse is brief enough that the voltage is once again zero by the time the exci-
tation traverses the junction and returns (after an Andreev reflection) to the contact
where the pulse was applied.

We finally turn to short junctions, where the time of flight across the junction is
much shorter than the duration of the voltage pulse, and see that we can still obtain
a periodic current after a single voltage pulse. The pulse creates an excitation in a
superposition of the pair of Andreev bound states in the junction, at energies E and
—E, which gives rise to a current oscillating at frequency 2E/h.

Chapter 6: Manipulating Andreev and Majorana

Resonances in Nanowires

The final application melds the concepts of interferometry introduced in chapter 4
with those of superconductivity and Andreev bound states introduced in chapter 5.
We study a system consisting of a nanowire coupled to a superconductor, which have
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Figure 3: Differential conductance in the presence of a train of voltage pulses for a normal-insulator-
normal-superconductor junction that displays a Majorana resonance in d.c. .

recently become a hot topic due to the presence of a Majorana state, of which a signa-
ture is a peak in the conductance at zero bias.

We start by treating the system in absence of the Majorana state, and show that
by applying a train of voltage pulses we can manipulate the peaks in the differential
conductance that are present at voltage below the superconducting gap due to the
presence of Andreev resonances. In particular we can shift the resonances to different
voltages when applying trains of different frequency.

Next we add further ingredients to the model (Rashba coupling and Zeeman cou-
pling), and work in a parameter regime where spin-momentum locking is present,
which gives rise to a Majorana state and a characteristic peak in the differential con-
ductance at zero bias. We show that the same technique using a train of voltage pulses
can be used to manipulate the Majorana resonance in the same way. We explore the
effect of this train of pulses when the pulse amplitude and frequency are changed, and
even use this to perform “spectroscopy” of the Majorana state, as illustrated in fig. 3.
This reveals distinct signatures for the resonant Andreev reflection mechanism that
gives rise to the Majorana state.

This could be used as an extra experimental probe to show that a zero-bias conductance
peak originates from resonant Andreev reflection, which could provide evidence of
its Majorana character.
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Résumé de la These (francais)

Au sein de ces pages on traite le probléeme de transport d’électrons au sein de dis-
positifs quantiques lorsqu’ils subissent des perturbations dépendantes du temps, par
exemple des impulsions de tensions appliquées a des contactes ou a des grilles, de la
radiation électromagnétique, etc. Cette thése consiste en deux parties principales. La
premiére partie est dédiée aux avancées sur les techniques théoriques ainsi que leur
implémentation numérique qui nous permettent de simuler un systeme en un temps
qui croit linéairement avec le volume du systeme ainsi que le temps maximale (de si-
mulation) requis. Ceci représente une amélioration par rapport a I'état de I’art, ou la
durée d’une simulation croit avec le temps maximale requis au carré. Au cours de la
deuxieme partie on applique ces algorithmes a plusieurs systémes : un interférometre
a qubits volants, une jonction Josephson sous tension, et un nanofil couplé a un su-
praconducteur, qui produit des états de Majorana a ses extrémités. Dans la suite de ce
résumé, on présente brievement les résultats clés de chaque chapitre.

Chapitre 1: Introduction au Transport Quantique Résolu

en Temps

On commence en introduisant le transport quantique de maniere générale; en par-
ticulier on regarde les longueurs caractéristiques, ainsi qu'un dispositif archétype du
transport quantique : un gaz d’électrons bidimensionnel a l'interface entre deux ma-
tériaux semi-conducteurs. Apreés on regarde en plus de détail de récents expériences
sur des sources d’électron unique, ce qui motive notre intérét dans le transport quan-
tique résolu en temps. On suit avec un bref examen des techniques numériques sur
le marché actuellement : les techniques de fonctions de Green hors équilibre, et les
techniques basées sur les fonctions d’onde. Ce chapitre ne contient pas de résultat
nouveau, mais sert d’introduction pour la suite.




Chapitre 2 : Algorithmes Numériques pour le Transport

Quantique Résolu en Temps

Dans ce chapitre on présente la facon dont les algorithmes ont été améliorées par
rapport al’état de I’art. Le cceur de notre approche consiste a calculer les états propres
du systéme infini (cette partie est déja connue depuis longtemps), et puis les évoluer
en temps avec 1’'équation de Schrodinger dépendant du temps; les observables sont
en suite calculés en intégrant sur les contributions de ces états évolués dans le temps.
Enfin les équation différentielle a résoudre sont

Jd _ - _
i=Par(t) = TH — Elpup() + WHYE — ZPur(h)

terme de source terme de fuite (0.4)

Pap(t) = [Pap(t) + ¢St e,

ol P, () est la fonction d’onde qu’on souhaite calculer, ¢S5 est 1’état de « scattering »
initial associé au mode « et énergie E, H(f) est la matrice du Hamiltonien, W(t) =
H(t) — H(0), et X est une matrice diagonale qui est non-nulle sur un nombre fini de
cellules des contactes infinis périodiques qui sont attachés au systeme centrale.

La différence clé par rapport aux approches précédentes est qu’'on se sert d"un po-
tentiel complexe absorbant, —iZ, pour traiter les conditions limites a l'interface entre le
systeme centrale et les électrodes. Ceci nous fournit une algorithme dont le temps
d’exécution croit linéairement avec le volume du systeme centrale et le temps (de si-
mulation) requis. Les termes « source » et « sink » présent dans 1’'équation Schrodinger
nous fournissent le nom « source-sink » pour cette méthode.

En plus de ce dernier, on calcule la coefficient de réflexion pour une forme arbitraire

du potentiel absorbant, en allant au dela de I"'approximation WKB. On trouve que la
réflexion du potentiel complexe satisfait

T‘E(E) — i€2ka€—Ak;’E+

1 oo ) k ru 1\?2 (0.5)
m.fo Z'(u) exp {szLu - E-[o 2(v) dv} du + @((E) ),

ol X(x) est le potentiel absorbant en fonction de la distance dans la région absorbante,
L est la longueur de la région absorbante, et k est le vecteur d’onde qui correspond a
une énergie E.

Finalement, on explique la facon dont les observables peuvent se calculer en in-
tégrant les contributions des fonctions d’onde, en pondérant par la distribution de
Fermi-Dirac appropriée. On propose, en revanche, d’intégrer en quantité de mouvement,
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plutdt qu’en énergie — comme font la majorité des autres méthodes du méme type. Ce
changement nous permet d’éviter des singularités qui sont présent chaque fois qu’il y
a une ouverture de mode dans les électrodes du systeme. Les intégrations en quantité
de mouvement nécessitent, donc, moins d’évaluations de I'intégrande pour atteindre
la méme précision ; on illustre ce point avec deux exemples simples.

Chapitre 3 : Conception Logicielle

Dans ce chapitre on discute des propriétés voulues d"un logiciel implémentant les
algorithmes présentées auparavant. On commence en motivant le besoin de trouver
les bonnes abstractions pour les concepts mathématiques de base, plutot que de créer
un logiciel monolithique sans possibilité de s’adapter aux diverses besoins des utilisa-
teurs différents. On prend I’exemple du logiciel kwanr et illustre — par le biais d"un
exemple simple concret mais simple — comment ce dernier implémente cette philoso-
phie pour du transport quantique indépendant du temps. En particulier on souligne la
facon dont kwanT permet aux utilisateurs a exprimer le probleme a résoudre en termes
de la structure mathématique, plutét qu’en termes de sa représentation de bas niveau
dont l'ordinateur a besoin pour résoudre le probléme.

On suivra en précisant la fonctionnalité supplémentaire qui devraient étre rajoutée
a kwaNT pour le rendre capable de traiter des problémes qui dépendent du temps; on
appelle cette nouvelle fonctionnalité TkwanT de I'anglais « time-dependent kwaNT ».
On termine ce chapitre avec une sélection d’exemples d’usage de la version actuelle de
TKWANT , en dehors du travail présenté dans cette theése : un calcul de bruit résolu en
temps; arréter des électrons dans la régime de Hall quantique; un régime universel
transitoire pour des impulsions de tension appliquées a des interférometres; et des
isolants topologiques de Floquet. En particulier, rkwanT a commencé a étre utilisé en
dehors du groupe de recherche de I'auteur ce qui indique que — méme dans son état
préliminaire — le logiciel est capable de fournir de la vraie valeur a des projets de
recherche.

Chapitre 4 : Qubit Volant

A ce point on commence la deuxiéme partie de la theése, qui se concerne des ap-
plications spécifiques des algorithmes développées auparavant. La premiére systeme
qu’on étudie est un « fil fendu » implémenté dans un gaz d’électrons bidimensionnelle,
qui consiste de deux régions quasi unidimensionnelle séparées par une barriere a ef-
fet tunnel. Ce dispositif a été proposé pour implémenter un « qubit volant », ot I'état
d’un électron est modifié lors de son trajet dans le circuit. Ce dispositif est le sujet d"un
étude expérimentale actuelle au sein du groupe de recherche de Christopher Bauerle
a I'Institut Néel a Grenoble.
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FIGURE 4 : Transport de charge aprés une impulsion de tension sur un des contactes du « fil fendu »
(en cartouche (a)).

On commence en traitant le probleme sans dépendance en temps, avec un approche
de type diffusion. Grace a ce point de vu, on est capable d’apprécier que ce systeme
a une caractere d’interférometre, ot les états symétriques et antisymétriques jouent le
role des deux chemins a travers le systeme. Par la suite, on applique une impulsion de
tension a travers le systeme. On voit que le nombre de charges récupéré a l’électrode de
sortie oscille en fonction du nombre de charges envoyé par I'impulsion, ceci est mon-
tré en fig. 4. Expérimentalement ceci correspondrait a une mesure du courant moyen
lorsque I'impulsion de tension est répété dans le temps. On interprete ce résultat dans
le cadre de modification dynamique du schéma d’interférence qui a été récemment
proposé. L'expression de la ref. [1] pour le nombre de particules transmis dans un
interférometre a deux chemins (Mach-Zehnder) est appliquée au cas présent :

1 Akg -
ny = gll + pou sin(7tit) cos (nﬁ + TOL)]
0 1 1 _ - Akoi 0.6)
n = S|t Esm(nn) Ccos | i - ,

ou 7 est le nombre de particules injectés par I'impulsion de tension, Ak, est la diffé-
rence entre les vecteurs d’onde des fonctions d’onde symétriques et antisymétriques
au niveau de Fermi, et L est la longueur sur laquelle les fils sont couplés.
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Chapitre 5 : Dynamique Résolue en Temps d’une

Jonction Josephson

Une jonction Josephson qui subit une tension entre ses contactes est un systéeme fon-
damentalement dépendant du temps, ce qui est bien illustré par la présence de 'effet
Josephson a.c.. Dans ce chapitre on traitera la dynamique d’une jonction Josephson qui
subit une tension soit statique soit qui varie dans le temps. En raison de la grande sé-
paration d’échelles d’énergies nécessaire pour étudier un tel systéme dans un régime
qui est relevant expérimentalement (le gap supraconducteur doit étre petit par rap-
port au niveau de Fermi), la différence entre les échelles de temps doit étre grande de
la méme facon. En raison de cette nécessité de simuler jusqu’a des temps assez longs
(comparé a I’échelle de temps le plus courte du systeme), "algorithme « source-sink »
est bien adapté, étant donné la complexité linéaire de ce dernier.

Apres une introduction aux éléments pertinents de la théorie de la supraconduc-
tivité (I'équation Bogoliubov-de Gennes et réflexion d’Andreev), on étudie la phéno-
meéne de réflexion d’Andreev multiple (MAR) en raison duquel un courant circule
dans une jonction Josephson en dessous du « gap » supraconducteur. Bien qu’on em-
ploie une méthode résolu en temps pour étudier un probleme dont la solution est
périodique, on atteint néanmoins un accord quantitatif entre nos résultats et un calcul
analytique basé sur la théorie de Floquet.

Apres on passe a une situation ot notre point de vue « résolu en temps » a un net
avantage : I’étude d’impulsions de tension appliqué a une jonction Josephson longue.
On voit qu’'on génére un courant périodique méme avec un seul impulsion de tension,
comme le montre la fig. 5. 'impulsion de tension génére une excitation dans la jonc-
tion qui devient piégée, parce que I'impulsion de tension est suffisamment courte pour
que la tension retombe a zéro avant que I’excitation n’ait le temps de traverser la jonc-
tion et revenir au contacte de gauche (apres une réflexion d’Andreev).

Finalement on traite des jonctions courtes, ot le temps de vol a travers la jonction
est beaucoup plus court que la durée de I'impulsion de tension, et on voit qu’on peut
néanmoins obtenir un courant périodique apres une seule impulsion de tension. L'im-
pulsion crée une excitation dans une superposition du pair d’états liées d’Andreev
dans la jonction, qui sont a des énergies E et —E, ce qui fournit un courant qui oscille
a une fréquence 2E /h.
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FiIGURE 5 : Courant (ligne bleue) et tension (ligne rouge a tireté, écarté verticalement) au contacte de
gauche entre la région supraconductrice et la région normale en fonction du temps. Car-
touche : propagation de 'impulsion de charge a travers la jonction a des temps différents (t4,
ty, ta, t4) et les temps correspondants indiqués dans la figure principale.

Chapitre 6 : Modification de Résonances d’Andreev et de

Majorana dans des Nanofils

Le chapitre final réunit les concepts d’interférométrie introduit dans le chapitre 4
avec ceux de la supraconductivité et des états liés d’Andreev du chapitre 5. On étudie
un nanofil couplé a une supraconducteur, un systeme qui a recueilli rfécemment beau-
coup d’intérét en raison de I'état dites de « Majorana » qui peut s’y retrouver, dont la
signature est un pic dans la conductance différentielle a tension nulle.

On commence par traiter le systéme en absence d’état de Majorana, et montre qu’en
appliquant un train d'impulsions de tension on peut manipuler les pics dans la conduc-
tance différentielle en dessous du gap supraconducteur qui proviennent des réso-
nances d’Andreev. En particulier on peut décaler les résonances a des tensions dif-
férentes an appliquant des trains de fréquences différentes.

Apres, on rajoute plus d'ingrédients a notre modele (couplage de type Rashba et
couplage de type Zeeman), et on se place dans un régime de « spin-momentum lo-
cking », ce qui produit des états de Majorana ainsi que le pic caractéristique de conduc-
tance différentielle a tension nulle. On montre qu’avec la méme technique avec un train
d’impulsions, on peut manipuler les résonances de Majorana de la méme facon. On
étudie l'effet de ce train d’impulsions lorsqu’on modifie 'amplitude des impulsions
ainsi que la fréquence du train, et on est capable méme de faire de la « spectroscopie »
de I'état de Majorana, comme la fig. 6 le montre. Ceci révele une signature distincte
pour la mécanisme de réflexion d’Andreev résonante qui donne lieu a I'état de Majo-
rana.

On pourrait utiliser cette spectroscopie comme sonde expérimentale supplémentaire
pour montrer qu'un pic de conductance a tension nul vient réellement d’un processus
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FiGure 6 : Conductance différentielle en présence d'un train d’impulsions de tension dans une jonc-

tion normale-isolant-normale-supraconducteur dans laquelle manifeste un état de Majo-
rana.

de réflexion d’Andreev résonante, ce qui fournirait une preuve supplémentaire de sa
caractere « Majorana ».
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Introduction to Quantum 1

Transport in the Time Domain

The study of quantum transport is the study of the flow of electrons through small
electronic circuits, typically of a few pm in extent and cooled to cryogenic tempera-
tures < 1K. At such small length scales, and at such low temperatures, the electrons
behave according to the laws of quantum mechanics, which gives rise to behaviour
that is qualitatively different compared to the classical behaviour, due to the fact that
the electrons now behave as waves. The field of quantum transport is now entering
a new era as it becomes possible to modify these circuit devices in time at higher and
higher frequencies. In practice this could involve applying a quickly-changing bias
voltage across the device or rapidly charging and discharging a nearby capacitor. Op-
erating at ever higher frequencies allows us to access qualitatively different regimes
of operation for these devices, where we can start to probe the internal dynamics far
beyond the adiabatic limit.

In this thesis we are concerned with the theoretical and numerical techniques re-
quired for treating this so-called “time-resolved quantum transport”. This chapter
contains a general introduction to the field of quantum transport, discussing the rel-
evant length and time scales, before moving on to the recent experimental progress
that serves as a motivation for studying the emerging sub-field of time-resolved trans-
port. Finally, we discuss existing theoretical and numerical techniques for treating
problems in this field.

1.1 Mesoscopic Quantum Electronics

Let us begin by getting a general feel for the sort of devices and length scales with
which we will be concerned in this thesis. In general we will be studying the coher-
ent transport of electrons, that is, where their quantum-mechanical wave-like nature
is exhibited: quantum transport. This already puts an upper bound on the size of cir-
cuit that we can build while still keeping the electrons coherent. At distances greater
than L, — the coherence length — the electronic wavefunction will lose its well-defined
phase; the characteristic quantum interference will tend to be washed out. The physi-
cal origin of the finite coherence length is related to interactions of the electrons with
other degrees of freedom in the material (e.g. lattice vibrations, impurities with some
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internal degrees of freedom, or electron-electron interactions) [3, 4]. Naturally, then,
the coherence length will strongly depend on temperature; we will normally have to
descend to cryogenic temperatures (< 1K) in order to “freeze out” the non-electronic
degrees of freedom that will give rise to decoherence. At these temperatures coher-
ence lengths of the order of tens of pm have been measured experimentally in certain
semiconductor heterostructures [5]. We will also impose a lower-bound on the length
scales of interest to us; we do not want to describe details on the scale of single atoms.
While devices such as molecular junctions — where a molecule is suspended between
large metallic contacts — can, in principle, be described by the techniques that we will
present [6], this is not our domain of interest. We will mostly be interested in cases
where the electrons in a material “see” the underlying ionic lattice as a continuum,
and the specific material properties enter only in the effective mass of the electrons [3].
This is valid when the Fermi wavelength of the electrons is large compared to the
inter-atomic distance. This range of distances, of the order of a few pm but larger
than atomic distances, is referred to as the “mesoscopic” scale.

Another key feature of electronics at the mesoscopic scale is that devices are usually
constructed so that the electronic motion is restricted in one or more spatial dimen-
sions. For the electrons, the circuit is effectively two or one dimensional, even though
the actual device obviously exists in three dimensions. The archetypal mesoscopic sys-
tem is the two-dimensional electron gas (2DEG) that forms at the interface between lay-
ers of aluminium gallium arsenide and gallium arsenide; a sketch is shown in fig. 1.1a.
Figure 1.1a also shows a simplified sketch of the valence/conductance bands at the
interface of such a heterostructure; we see that the charge transfer that equalises the
Fermi level on either side of the interface induces an electric field that confines elec-
trons close to the interface. The electronic confinement along the z direction leads to
quantization of the z component of the quasi momentum p., although the electrons
are still quasi-free in the x — y plane parallel to the interface. This quantization effec-
tively “freezes out” the z degree of freedom, as long as any perturbations made to the
2DEG are small compared to the energy required to transition to a state with different
p.. Figure 1.1b shows a scanning electron microscope image of a mesoscopic circuit
constructed from such a heterostructure. The 2DEG is in a plane parallel to the image,
embedded ~ 100 nm below the surface. The lighter grey rectangles are made of metal
deposited on top of the heterostructure, and are referred to as “gates”. As the gates
are separated from the 2DEG by a layer of semiconductor (which is insulating) no
electrons flow between the gates and the 2DEG. If a voltage is applied to a gate, how-
ever, the electrons in the 2DEG will feel the electric field produced; this can be used
to confine the electrons within subregions of the 2DEG. The white squares in fig. 1.1b
indicate where electrons will be able to flow in/out of the 2DEG through ohmic con-
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(a) (i) Sketch of an AlGaAs/GaAs heterostructure with a 2DEG at the interface and metallic Ti/Au
gates deposited on the surface. (ii) Sketch of the conduction (E_.) and valence (E,) bands in the
vicinity of the interface. The “+” symbols show the positively charged donors and the 2DEG is
indicated in grey. (iii) A sketch of the quantised modes in the z direction; in this example only the
lowest mode is populated as the others are above the Fermi energy.

(b) Scanning electron microscope image of a flying qubit interferometer in an AlGaAs/GaAs 2DEG.
The 2DEG is in a plane parallel to the page and roughly 100 nm below it. The lighter grey and artifi-
cially coloured regions are metallic gates deposited on the surface of the heterostructure. Reprinted
with permission from ref. [8], copyright 2015 by the American Physical Society).

Figure 1.1: Illustrations of a 2DEG; a conceptual picture, and the experimental reality.

tacts [7] into metallic leads (we will also refer to these as electrodes or contacts). These
leads interface the quantum circuit with the macroscopic world, which consists of the
measurement apparatus, voltage sources, radio-frequency transmission lines etc.

In this thesis we will be developing and applying numerical techniques to simulate
the behaviour of these sorts of mesoscopic devices when their controlling parameters
(such as the gate or bias voltages discussed above) are modified quickly enough to
probe the internal dynamics of the device. Concretely this means varying the control
parameters quickly compared to the time it takes an electron to traverse the device. In
the 2DEGs discussed above the electrons at the Fermi level typically travel at speeds of
10* - 10°ms~! [9], which means that the control parameters need to vary at frequen-
cies in the range of tens of GHz, when the device is a few pm in length. In addition,
we also need to excite electrons at energies higher than the thermal background if we
hope to measure anything. This presents a less stringent constraint, however, as quan-
tum transport experiments are typically carried out at temperatures « 1K, which
corresponds to frequencies less than 20 GHz. We refer to quantum transport in the

1.1  Mesoscopic Quantum Electronics
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presence of time-varying device parameters as time-dependent transport, and reserve
the more specific term time-resolved transport to refer to the case where the internal
device dynamics are probed.

1.2 Experiments in the Time Domain

One of the first examples of time-dependent quantum transport being studied in the
laboratory was the measurement of photo-assisted tunnelling by Tien and Gordon [10],
where the presence of an a.c. bias voltage affects the d.c. current flowing through a de-
vice. This was followed, at around the same time, by the discovery of the a.c. Joseph-
son effect [11, 12], where a d.c. bias voltage causes an a.c. output current in a supercon-
ducting junction. Over the years several other novel effects at finite frequency were
discovered, such as charge pumping [13, 14] (where a purely a.c. voltage with no d.c.
component can induce a d.c. current).

The recent move towards time-resolved transport has been motivated by the desire to
build coherent sources of single electrons. To see why these two ideas are linked, let’s
consider the application of a finite, static bias to an electrode of a quantum circuit. This
can be seen as producing a continuous stream of electrons that flow from the biased
electrode to be collected by the other (grounded) electrodes. If we now apply the
bias only during a finite time interval, we will clearly only transfer a finite number of
charges. As we reduce the time over which we apply the bias we will eventually arrive
at the point where the bias “pulse” is so brief that only a single charge is transferred.
We refer to such weak/brief bias pulses as being “in the quantum regime” when they
only excite one or a few charges, i.e.

e
n= EIV(t)dt, (1.1)

where 7 is a small integer. Although in practice the generation of coherent single
electrons is more complicated than this naive picture, it nevertheless motivates why a
time-resolved description will be necessary.

The first single-electron sources were realised using a different paradigm to the one
outlined above. Instead of applying a bias voltage to inject electrons from an electrode
into the quantum device, gates were used confine electrons in a region of a 2DEG with
size comparable to the Fermi wavelength [15-17]. As a result the electrons in this so-
called “quantum dot” have their energy quantised; A gate applied to the top of the
confined region is used to shift the energy levels of the underlying quantum dot so
that a single electron is brought above the Fermi energy of the surrounding 2DEG. The
electron can then tunnel through the confining potential and propagate into the rest of

Chapter 1 Introduction to Quantum Transport in the Time Domain
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dot

(a) Single-electron source using a quantum dot in

a 2DEG. The schematic (top-right) shows how
the gates (yellow) constrict the 2DEG (grey) to
form a quantum dot with discrete energy lev-
els. The voltage V applied to the top-gate shifts
the levels of the dot to bring a single electron
above the Fermi energy in the rest of the 2DEG;
the electron tunnels through the barrier and es-

capes.

(b) Single-electron source using a lorentzian pulse

applied to an ohmic contact. The schematic
(top-right) shows the ohmic contact (green) via
which charges can be injected from the lead
into the attached to the 2DEG (grey). The bias
voltage pulse V excites the Fermi sea of the
lead; the specific form of the pulse ensures that
when (e/h) [ V(t)dt = 1 the net result is that
only a single electron is excited, and the Fermi
sea remains undisturbed (see main text).

Figure 1.2: Two techniques for producing coherent single-electron excitations in quantum circuits,
that were both recently realised experimentally.

the 2DEG, asillustrated in fig. 1.2a. This setup can produce single electrons with well-
defined energy, but poorly defined release time (due to the Heisenberg uncertainty
relation AEAt > h/2). Such single-electron sources were used to probe the electronic
wave-particle duality in a Hanbury-Brown-Twiss (HBT) setup [18]. Additionally the
fermionic nature of electrons was visualised through anti-bunching behaviour in a
Hong-Ou-Mandel (HOM) setup [19].

This last experiment highlights the importance of the fermionic nature of the elec-
trons when treating such mesoscopic devices. As this point will be important for
our discussion of theoretical methods for time-resolved transport, we shall look at
the experiment of ref. [19] a bit more closely. Figure 1.3a shows an annotated electron
microscope image of the experimental setup. A 2DEG (blue) is attached to several
electrodes (white boxes), and gates (yellow) constrict the 2DEG at the location marked
“beamsplitter”, which will cause the electronic wavefunction to be partially reflected.
The gates marked “source 1” and “source 2” are covering the quantum dots that host
electrons that can be excited into the surrounding 2DEG by raising the gate voltage.
(i.e. the single-electron sources originally realised in ref. [15]). A perpendicular mag-
netic field is applied to the device, which causes the electrons to propagate in unidirec-
tional edge channels in the 2DEG! (shown as blue paths with arrows in fig. 1.3a). The

IThis is the quantum Hall effect, which will be briefly discussed in section 3.3.2.

1.2 Experiments in the Time Domain
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idea of the experiment is to send voltage pulses onto the gates “source 1” and “source
2” with a slight delay relative to one another. This will mean that two electrons will
be excited above the Fermi sea, one at source 1 and the other at source 2, which will
begin propagating towards the beamsplitter (along paths 1 and 2 in fig. 1.3a). As the
voltage pulse is sent to source 2 with a delay with respect to the voltage pulse sent
to source 1, the electrons from the two sources will arrive at the beamsplitter with a
corresponding delay. In the case where the electrons arrive at the beam splitter at the
same time they must exit along different paths (3 or 4); if they exit along the same path
they would be in identical states, which is disallowed due to the Pauli principle. There
are two possibilities: both electrons are transmitted, or both particles are reflected, in
either case each of the contacts on the paths 3 and 4 will receive exactly 1 electron. If the
electrons arrive slightly delayed then it is possible that they both exit the beamsplitter
along the same path, as they will not be perfectly overlapping (and hence not in the
same state) in this case. Unfortunately it is not yet experimentally possible to have
one-shot detection of ballistically propagating single electrons in condensed matter.
Instead, experimentalists will typically generate many single-electron excitations one
after the other and then measure the average current, as well as its noise properties.
In the HOM setup the Pauli principle should then manifest itself in a reduction of the
current noise when there is no delay between the arrival of the electrons; this is shown
in fig. 1.3b.

Later, another method of producing coherent single-electron excitations was demon-
strated [20, 21]. Here, instead of initially confining electrons in a quantum dot, a
Lorentzian-shaped voltage pulse applied to an electrode coupled to the 2DEG via an
ohmic contact injects a single-electron excitation from the electrode into the 2DEG. Fig-
ure 1.2b shows an illustration of this approach, which can be compared to the quantum
dot approach discussed previously. These experiments were motivated by the semi-
nal work of Levitov [22, 23], who showed that the shape (or equivalently, the harmonic
content) of the voltage pulse is of tantamount importance in the generation of coher-
ent single-electron excitations. Applying an arbitrary voltage pulse will, in general,
perturb the Fermi sea and produce excitations above the Fermi energy (electron-like
excitations) as well as below (hole-like excitations), which will both propagate into
the device. Levitov showed that when a Lorenzian pulse is used only electron-like ex-
citations above the Fermi energy will propagate into the device®. Such a Lorentzian
pulse V(t) = Vp /[(t—tg)?+ 1] can excite a single electron, above an undisturbed Fermi

The time delay between the subsequent single-electron excitations should, therefore, be much greater
than the time it takes for an electron to traverse the device.

3The hole-like excitations, required to maintain charge balance, move in the opposite direction and do
not enter the device proper

Chapter 1 Introduction to Quantum Transport in the Time Domain
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(b) Excess noise in the number of transmitted par-
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emission of single electrons from source 1 and
source 2.
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(a) Annotated electron microscope image of the
experimental setup. Metallic gates (yellow) are
capacitively coupled to an embedded 2DEG
(blue). Ohmic contacts (white boxes) measure
the output current.

Figure 1.3: Experimental results from ref. [19], showing how the fluctuations in the electric current
are affected when two identical electron wavepackets are incident on opposite sides of an
electronic beam splitter. When the delay between the arrival of the wavepackets is small,
there is a dip in the current fluctuations due to the Pauli principle. Both subfigures are
from ref. [19] and reprinted with permission from AAAS.

sea, when (e/h) f V(t)dt = 1. Such excitations are referred to as Levitons. Owing
to the continuum of energy states in the electrode (as opposed to the discrete levels
of the quantum dot), the excitation is poorly resolved in energy but well resolved in
time. We should emphasise that this is a completely different paradigm for generat-
ing single-charge excitations than the quantum dot approach of ref. [15]. While the
approach using quantum dots can be understood as tuning the levels in the dot to
put a single level (and hence single electron) above the surrounding Fermi sea, the
Leviton is instead a collective excitation of the Fermi sea itself. That such a collective
excitation consists, in the end, of an unperturbed Fermi sea with unentangled, purely
electron-like excitations on top is far from obvious [23].

After their experimental discovery, Levitons were then used in HBT and HOM se-
tups [21] analogous to those of refs. [18, 19]. Figure 1.4a shows an artist’s impression
of the HOM experimental setup, and the results of current noise measurements are
shown in fig. 1.4b. We clearly see that the noise drops to zero when the two Levitons
arrive at the beamsplitter with no time delay, which is due to the Pauli principle, as
discussed previously. Even more recent experiments used shot noise measurements
to directly reconstruct the temporal structure of the Leviton wavefunction [24].

1.2 Experiments in the Time Domain
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Figure 1.4: (a) Artist’s impression of a Hong-Ou-Mandel setup in a 2DEG (blue) connected via ohmic
contacts (gold rectangles) to metallic leads (gold wires). A voltage V, is applied to metal-
lic gates (gold fingers) to constrict the 2DEG and induce electronic backscattering. Voltage
pulses V (t) are applied to the leads, with a time delay 7 between the pulses on the up-
per/lower contact. (b) Current noise measured in a single contact, as a function of the
delay T between the voltage pulses applied on each of the ohmic contacts. The noise falls
to zero when there is no delay between the pulses; the fermionic nature of the single elec-
tron excitations means that each contact receives exactly one unit of charge each time a
pair of electrons are injected. Figures reprinted from ref. [21] with permission.

This collection of experiments adds yet more techniques to the toolbox of the emerg-
ing field of “electronic quantum optics” [25], where quantum optics experiments are
performed with electrons. Such devices could have wider applications in the field
of quantum computing [26-28]. What is clear is that theoretical and numerical tech-
niques are required to explore the inherently time-resolved nature of these experi-
ments, as well as to propose new ones.

1.3 Theoretical Description of Quantum
Circuits

1.3.1 A General Model for Quantum Circuits

So now we have a bit of an idea about why it might be interesting to study time-
resolved quantum transport. The next question is how can we study such a problem?
The general class of systems that we wish to study in this thesis will consist of a number
of quasi one-dimensional leads (collectively referred to as L) connected to a central
device S. The basic pieces of information that we need to study such a setup are the
Hamiltonian of the leads, HL, the Hamiltonian of the central device, HS (t), and the
lead-device coupling, HT (t). Even though there may be multiple physically separate
leads, we regroup all the lead degrees of freedom into a single HL. Given that we will
be treating transport through the device, where the number of charges in the device is
not fixed, it will be easiest to express the Hamiltonian using the language of second
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quantisation. In this thesis we will only be concerned with treating the non-interacting
problem, so the general Hamiltonian for the full device including electrodes can be
written
Hh =) Hyelg+ Y Hyhelg +he+ ) Hyéle. (12)
i,jeS ieS,jel ijeL

H% () HT () A\t

The ¢! (¢;) are operators that create (destroy) electrons in a single-particle state enumer-
ated by the index i (j), which we refer to as a site. The site index may label position as
well as other degrees of freedom such as spin or orbital angular momentum, although
in specific cases we shall often make the distinction between spatial and internal de-
grees of freedom explicit. The Hy(f) are time-dependent complex numbers that we
collectively refer to as the matrix

S T
H>(t) H (t)) (1.3)

Hn = ([H%)]* HL

where the sub-matrices are the device (H®), lead (H%), and coupling terms (HT).

Given that the Hamiltonian is fully characterised by the matrix H(#), which is just
the Hamiltonian in first quantisation, naively one may think that we just need to use
the time-dependent Schrédinger equation on some wavepacket initial state and call it
aday. The situation is, however, a little more complicated than this. The complications
arise due to two aspects peculiar to open, fermionic systems. Firstly the open condition
means that we treat the electrodes as being infinite in extent (though, for simplicity,
we shall always treat them as being periodic). This has profound consequences on
a mathematical level, as the spectrum of the Hamiltonian will now have a continuous
part (that will mostly dominate the transport properties), in addition to a discrete part.
Secondly, there is a filled Fermi sea already present in the system that — as we saw
previously in the Hong-Ou-Mandel experiment — is crucial to obtaining the correct
physics. In a system with time-dependent perturbations electrons may be excited to
different energies, however the Fermi sea prevents certain transitions (to already filled
states) from being possible. It is not immediately obvious how this condition can be
satisfied just by solving the single-particle time-dependent Schrédinger equation. We
shall see that it is the presence of the filled Fermi sea that will give us the correct initial
conditions for the problem in terms of the macroscopic (and directly experimentally
controllable) parameters of the system, rather than resorting to microscopic details in
the form of electronic wave packets.

1.3 Theoretical Description of Quantum Circuits
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1.3.2 Non-Equilibrium Green’s Function Techniques

Historically the first class of techniques to deal with the these two issues were the
non-equilibrium Green’s function (NEGF) techniques. The earliest numerical simula-
tions of time-resolved transport were based on a seminal article by Caroli, Combescot,
Nozieres, and Saint-James [29], which applied the Keldysh formalism [30] to a strictly
one-dimensional (single mode) model. This technique was applied in ref. [31] to study
resonant tunneling through a device consisting of a single site. A more general for-
mulation for generic device geometries was later proposed by Jauho, Wingreen, and
Meir [32, 33], following their own extension of the stationary non-equilibrium formal-
ism [34], which was itself based on ref. [29]. The formalism described in these papers
is at the foundation of the non-equilibrium Green’s function techniques used today.

In the NEGF approach the fundamental objects are correlators (called Green’s func-
tions) between the electron creation /destruction operators introduced previously. Al-
though a whole zoo of such correlators exist, two of the most important ones are the
so-called retarded (Qt{f (t,t")) and lesser (Q; (t,t")) Green’s functions:

Gt ) = =it — 1) ({ef ), e }) (1.4)
iy (4 1) = (G (E)ED) (L5)

where O(t — t') is the Heaviside function, the E;L (t) and ¢;(t) are creation/destruction
operators in the Heisenberg picture [35], and (-) denotes an average, i.e. <A(t)> =
Tr[ﬁoﬁ(t)], where A(t) is a Heisenberg-picture operator and g is the initial (often
thermal) density matrix for the system. It turns out that all the one-body observables
can be calculated from ((_}I.?(t, t'): for example the electron density on site i is p;(t) =
—igr_?(t, t), and the average current between sites i and j can be written

L;(t) = Hy(H G5 (5 5) — Hy(H G5 (5 D). (L.6)

Given that we are only interested in evaluating quantities within the device region

or currents flowing between the device and the electrodes, we only need elements of
R
;

((_}I (t,t") with both indices in the device region — i,j € S* — which we shall denote

*We can always re-define what we consider “the device” in order to calculate currents flowing into
the leads. The periodicity of the leads ensures that there will be no backscattering within the leads
themselves.
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Gf}(t, t') (similarly G; (t,t") for the lesser Green’s function). The equations of motion
satisfied by Gf? (t,t') (and its relation to G; (t,t")) can be written [35, 36]:

i%GR(t, ) = H° (HGR(t, ') + IduER(t,u)GR(u, t, (1.7)

G<(t 1) = ffdu do GR(t, u)3< (u,0) [GR (¥, 0)]". (1.8)

where GR(t, ') and G<(t, ') are matrices with elements Gg}(t, t") and ij (t,t") respec-
tively. The quantities SRt t') and 3<(t,t') are the so-called retarded and lesser self-
energies that take into account the effect of the leads, and are defined by

SR (¢, ) = HT (hgR ¢, ) [HT (1) ], (1.9)

where gR(Q (t,t") is the retarded (lesser) Green'’s function for the leads in isolation, i.e.
in the absence of coupling to the device region.

There has been a great deal of effort over the years to design efficient strategies
to integrate these equations of motion [37-41], including recursive techniques [42]
and replacing the convolution-type integral with complex absorbing boundary con-
ditions [43]. In addition the issues involved with properly including electron-electron
interactions has been discussed [44-48]. Others have also derived semi-analytical ex-
pressions to calculate restricted parts of the full Green’s function in specific physical
situations [49-53]. An alternative but related approach introduced by Cini [54] does
something a little different from the above-defined NEGF, in that one starts at t = 0
with the exact density matrix for the full problem and follows the system states as
they are driven out of equilibrium. More recent work developed Green’s function
techniques within this framework [55, 56]. All these approaches are, however, fun-
damentally limited by the fact that the equations of motion involve dense matrices,
whose number of elements scale as @(NZ), where N is the number of sites in the
device region.

1.3.3 Wavefunction Techniques

In NEGF the Green’s functions are the fundamental objects of the theory. An alter-
native consists in dealing directly with the many-body wavefunction of the system by
calculating single-particle wavefunctions. In a non-interacting system the full many-
body wavefunction is formed from a simple Slater determinant of single-particle wave-
functions, so it is at least reasonable that such an approach could be equivalent to
NEGE. Nevertheless it was not clear until relatively recently [57] that there was a for-
mal equivalence between the two approaches because of the aforementioned issues of

1.3 Theoretical Description of Quantum Circuits
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dealing with infinite systems, as well as the Pauli principle. The use of wavefunction-
based methods has recently gained popularity [58-62], with variations on the theme

using a “stroboscopic” wavepacket basis [63, 64], or absorbing boundary conditions [65,
66].

In order to get a feel for how such an approach works in principle, it will be illustra-
tive to look at a simplified example consisting of a finite system S at zero temperature.
This will show explicitly how the Pauli principle is satisfied due to the fact that the
unitary evolution of the single-particle states guarantees their mutual orthogonality
at all times. We shall start with a similar model to that of eq. (1.2), but without leads:

H(h = ) Hy(Hele,. (1.10)
ijes

We shall assume that the time-dependence is only switched on for t > 0, so that we
can diagonalise H(t<0):
H(t<0)=) E,did, (1.11)
14

where

di =) [¢a]; ¢ (1.12)
i

and the @, are column vectors of complex numbers (with jth element [@w]j) that satisfy
time-independent Schrédinger equations H(t < 0)¢, = E,¢,. As we are at zero
temperature, the full many-body state at t < 0is just the state where all single-particle

states below the Fermi energy Er are filled:

Yo)= [] dti0), (1.13)
E

ar{EF

where |0) is the vacuum state. The antisymmetry of |¥() under particle exchange is
guaranteed by the anticommutation relations satisfied by the operators d,:

{do,dg} =0, {Ja,d},} = bup, (1.14)

where ¢, is the Kronecker delta. If we now look at times ¢ > 0 the many-body state

will evolve to

¥y =Um [] dio), (1.15)
ERQE;:
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where U(#) is the evolution operator, which satisfies iatﬂ(t) = HnU). As U(t) is
unitary, we can sandwich factors of ut(H)U(t) between the d:‘:_,’s, and use the property
U(t) |0y = |0) to write

¥y =[] dwmio, (1.16)
Ea{EF
where dAL (t) is defined as
dity = Uy dt Ut). (1.17)

Clearly the d} (t) satisfy the equal-time anticommutation relations

{d,t),dg} =0, {cfa(t),%(t)} = bups (1.18)

which ensures that [¥ (¢)) is fully antisymmetric under particle exchange at any time
t, and hence satisfies the Pauli principle at all times. We can also choose to write dﬂi ()
in terms of the original E;L 's

di(t) = Z [Ya (D], &, (1.19)
I
where ¢, (t < 0) = ¢,. Applying the operator id; to egs. (1.17) and (1.19), and equating
the right-hand sides, we get (after some algebra)

Z [attpam] ZZ kB[P e, Pt <) =gp  (1.20)

As the are creation operators for mutually orthogonal single-particle states, we can
equate the coefficients for each term j of the above sum, from which we see that ¥, (t)
satisfies a time-dependent Schrodinger equation id,, (t) = H(t)y,(t). This means that
in order to calculate the full many-body evolution we actually only need to solve n
Schrodinger equations for all the single-particle states with initial energy less than the
Fermi energy. Expectation values of one-body observables also take a simple form.
For example, the average number of particles on site i, defined as (¥ () |€}L ¢;|¥(t)) (for
the zero-temperature case) can be written (after some algebra)

(W) = > gt (1.21)

E,.<Egp

The expectation value of one-body operators can be written as the sum of the expec-
tation values of the associated operators in first-quantisation, evaluated on the states
with energy less than the Fermi energy. When the temperature is instead finite, the

1.3 Theoretical Description of Quantum Circuits

29



30

result is similar, except that the terms in the sum eq. (1.21) are weighted by the ap-
propriate (Fermi-Dirac) occupation factor f (E,). If we also allow the system to now
contain an infinite number of degrees of freedom, the discrete energies E, will form a
continuum and the sum eq. (1.21) will be replaced by an integral. This last step of rea-
soning is not particularly rigorous; a proper derivation for the case of infinite systems
(which also contains the case when the system starts in an out-of-equilibrium steady
state) can be found in ref. [57]. The result (in the absence of true bound states in the
system) is that the thermal average of an observable A = Z Ajicté; at time t can be

ij“i%j
calculated as

(At) Zj b O S B O AP0, (1.22)

where ¢ (t) . is the time-evolved single-particle scattering state that is incoming from
one of the electrodes in a mode a (each mode implicitly belongs to the electrode in
which it has a component incoming into the central scattering region), that originally
had energy E for t < 0. The energy integral runs over the energy band B, of the mode
a: B, = ((infE,(k), sup E,(k)) where E, (k) is the dispersion relation of mode « and
k runs over the Brillouin zone. f,(E) is the Fermi-Dirac function associated with the
lead to which the mode a belongs. Similarly the retarded and lesser Green’s functions
can be written in terms of the wavefunctions [57]:

L , dE ?
GR(t,t') = —iO(t — t') ; IB., o= [, [¢1: )], (1.23)
o dE ?
Gt ) =i} fB“ o faB) e ®], [ )] (1.24)

In the next chapter we will build on the specific wavefunction method introduced
in ref. [57]. We choose to develop an entirely wavefunction based approach due to
the superior scaling properties with respect to the system size and simulation time
compared to direct Green’s function approaches. This essentially comes down to the
fact that the single-particle wavefunctions are vectors with N elements, as opposed to
the dense matrices (N2 elements) of the Green’s function approach. This better scaling
is crucial for the applications targeted in this thesis, where we study systems with a
relatively large number of degrees of freedom (up to 10* or 10°) in the central device
region. In addition, the key role played by resonant reflection in the majority of the
applications means that the dwell-time for charges in the system is also large. This
combination of large system size and long simulation time means that direct Green's
function techniques are unsuitable. It should be noted that for other applications, such
as molecular electronics, the scaling properties of the method may not be so important
and a direct Green’s function technique may be a better choice.
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Numerical Algorithms for 2

Time-Resolved Quantum

Transport

In section 1.3.3 we saw that wavefunction-based methods are the current state of the
art for the types of systems we want to study (a large number of degrees of freedom
and long times). In this chapter we shall explain the algorithms used to compute time-
dependent observables using our wavefunction-based “source-sink” algorithm.

2.1 A High-Level Overview of the Algorithm

We wish to consider a general class of problems consisting of a finite scattering re-
gion, S, coupled to periodic, semi-infinite leads L. Recalling from section 1.3 that we
only wish to describe systems without electron-electron correlations, we may write
the Hamiltonian for such a system as

Ht =) Hymeg+ Y Hyhdie+ Y Hydld, 2.1)
ijes ieS,jeL ijeL

H° (1) HT (1) At

where E;L (6}-) are the fermionic creation (annihilation) operators for a one-particle state
on site 7 (j). A “site” may label position as well as other degrees of freedom such as
spin or orbital angular momentum, although in specific cases we shall often make the
distinction between spatial and internal degrees of freedom explicit. We will denote
H(t) the (infinite) matrix with elements Hfj (t). The Hamiltonian of the central region
is fully general, however we restrict the leads to be time independent (in addition
to being periodic and semi-infinite). Each lead remains in its own thermal equilibrium
at all times, though the leads may be out-of-equilibrium with respect to one another
(different chemical potentials and temperatures). In addition, we restrict the time-
dependent perturbations to positive times, so that H(t < 0) = H,. Note that although
this seems to put quite some restrictions on the class of systems we are considering,
we can still handle:

* uniform, time-dependent voltages applied to leads (we need only perform a
gauge transformation following the steps in appendix C) and
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Figure 2.1: Sketch of a typical system. It consists of a central scattering region, 0, attached to semi-
infinite leads 1, 2, and 3. In this example there are two top gates with time-dependent volt-
ages applied to them and a time-dependent magnetic field threaded through the central
hole. The on-sites and hoppings affected by these time-dependent parameters are shown
in bold and colour. Note that in this gauge the gate applied to lead 1 affects the hoppings
between the gate and the central region, O (see appendix C).

¢ systems that start in a stationary, out-of-equilibrium state (i.e. different temper-
atures or chemical potentials in each lead).

Figure 2.1 shows an example of the type of system that we aim to simulate.

Before the time-dependent perturbations are switched on, the system is charac-
terised by its scattering wavefunctions ¢, which are labelled by their energy E and
incoming channel a. Explicitly, the ¢ are vectors of complex numbers that satisfy
the eigenvalue equation

Hoyst. = Eyst.. (2.2)

The scattering wavefunctions 3% are standard objects of mesoscopic physics and can

be obtained directly by wave matching the incoming and outgoing modes at the lead-

system boundary. An overview of the method for calculating the 5 is given in sec-
yrity

density or local currents) can be directly obtained by simply calculating the single-

tion 2.2. The expectation value of a physical observable A = ¥ i A;ic'é,, (e.g. electronic

particle expectation values using these wavefunctions and weighting these according
to Fermi statistics:

~ dE
()= [ 27 B vk A2 @3

where f, (E) is the Fermi function of the electrode associated with channel « and A is

the matrix with elements A;;.
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The generalisation of eq. (2.3) to the time-dependent problem is rather straightfor-
ward: one first obtains the scattering states and lets them evolve according to the time-
dependent Schrédinger equation

d
fglpt\cE(t) = H(t)lpaE(t) (24)

with the initial condition ¢,g(t = 0) = ¢3%. The observables follow from eq. (2.3)
where the ¢85 are replaced by ¢, (1):

. dE
(A) =) [ 5 A EIEEDA Yo (D). (2.5)

The equivalence between this prescription and the non-equilibrium Green’s function
formalism was derived in ref. [57].
Common observables to calculate are the charge on a single site, p;, and the current

flowing between two sites, I;;, which can be written

ij
) dE .

i) =a)_ [ 5 fuE[WE®], [Yar®)], (2.6)
- dE

(I,(0) = q;fEfa(Eﬁﬁ([wiE(wLHq(t) [ (D], 2.7)

where [, £(t) ], is the component of i, ¢ (t) on site i, J is the imaginary partand q is the
charge of the particles. The charge and current are related by a continuity equation:

d R
5Pi(h) Y It =0, (2.8)
i

which also defines the direction of the current.

2.1.1 A Note on Bound States

It should be noted that eq. (2.5) does not account for the case where there are true
bound states present in the system. These states are problematic as they do not hy-
bridise with the continuum of states in the electrodes. The problem of including the
contribution of bound states into non-equilibrium simulations has been discussed for
some years now [67-71]. Without a unique (and known) distribution function for the
whole system additional models are needed to describe how the bound states should
be initially filled. The scattering states do not have this problem, as they originate
deep in the electrodes, which are always in equilibrium (in our treatment). The role of
bound states is particularly important for the treatment of Josephson junctions, where

2.1 A High-Level Overview of the Algorithm
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the presence of true Andreev bound states is responsible for the various Josephson
effects (see chapter 5). To circumvent this obstacle we use the procedure outlined in
ref. [72] when the system contains true bound states. The scheme consists of calcu-
lating the bound states for t < 0, *2d, filling them up according to the Fermi-Dirac
distribution and then evolving them using eq. (2.4), calculating observables using a
modified form of eq. (2.5):

~ dE
(A) =Y. [ FEWLOALE® + Y FENYROIAYRE®. 29

Note that in order for this procedure to be valid, we must start in equilibrium att = 0
so that there is a unique Fermi-Dirac distribution f (E) for the system. If we do not
start from equilibrium we must introduce additional models that will tell us how to
correctly populate the bound states of the non-equilibrium system; while this physics
is interesting, it is not the subject of this thesis. In any case, for t > 0 we can always
apply a bias voltage to the electrodes to bring the system into a non-equilibrium sit-
uation. The presence of bound states is determined on a case-by-case basis, and in
practice their energies and wavefunctions are determined by truncating the infinite
system, so that it consists of the central region and a large number of layers in the
electrodes, and diagonalising the resulting Hamiltonian. The band structure of the
infinite electrodes is also calculated, and any eigenstates of the truncated system with
energies outside the energy bands of the electrodes is classed as a bound state. The es-
timate for the bound states and their energies can be checked by truncating the system
after an even larger number of electrode layers, and checking that the results match to
within a certain tolerance.

2.1.2 Algorithm Overview
In essence, then, calculating time-resolved observables using our scheme consists
of the following steps:

1. defining a tight-binding Hamiltonian;

2. calculating the scattering states at t = 0, before the time-dependent perturba-
tions;

3. evolving the scattering states up to a time ¢;

4. calculating the single-particle expectation value of the observable for each scat-
tering state;

5. performing the integral (2.5) to calculate the full thermal expectation value;
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6. repeating from step 3 for all times for which we wish to calculate observables.

The definition of the tight-binding Hamiltonian and the calculation of the initial scat-
tering states is handled by the xwanT package [73] (see section 3.2 for details); we give
an overview of the calculation of the stationary scattering states in section 2.2. The al-
gorithm for evolving the scattering states in time will be explained in section 2.3, and
the evaluation of the integral (2.5) will be discussed in section 2.4.

2.2 Computing the Stationary Scattering States

In this section we will define the stationary scattering states in more precise terms
and outline what equations one has to solve to obtain them. This is explained in more
depth in ref. [73], but is included here for completeness.

Firstly, we shall take the (infinite) Hamiltonian matrix for t < 0, Hp, and express it
in a more explicit form:

*. VL
vi H V
Hp=| L L °F (2.10)
VI Hp Vi
.I.
Vis Hs

where Hg is the Hamiltonian of the central system (the part labelled 0 in fig. 2.1), H;
is the Hamiltonian of a single unit cell of the semi-infinite leads (in the case where
we have several physical leads we can always group them together into a single, vir-
tual lead) and V| is the hopping matrix between subsequent lead layers. Vg is the
hopping matrix between the central region and the first layer of the lead. We can also
express 5 in a more explicit form:

2.11)

where @, is the scattering wavefunction in the central region, and 7, (j) is the scat-
tering wavefunction in slice j of the lead.

2.2.1 Calculation of the Lead Transverse Modes

To proceed we need to put some conditions on the form of the scattering wavefunc-
tion in the leads. To this end we will first need to treat the infinite lead in isolation (no
coupling to the central region) in order to find the modes that it can support. We will
see that the 7, defined above will be a linear combination of these modes. Bloch’s

2.2 Computing the Stationary Scattering States
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theorem applied to the infinite lead gives us a general form for the wavefunction in
each cell, numbered by ;:

AaE (}) = ()LttE )jéttE' (2.12)

The ¢, satisfy
[Hy + MgV + A VI8 = EGk, (2.13)

where we call {,r an incoming or outgoing transverse mode and A ¢ is an eigenvalue
of the translation operator. |1,g| < 1 corresponds to evanescent modes, while A, =
e*«(E) corresponds to propagating modes (with k, (E) the longitudinal momentum of
mode «). These propagating modes are normalised with respect to the expectation
value of the current operator,

(I = 23D Vixae((— DI = £1, (2.14)

where J is the imaginary part. This in turn allows us to identify three classes of modes:
incoming ;(;“E ((I) = +1), outgoing ;(3? ((I) = —1), and evanescent x:% ((I) = 0).
The incoming and outgoing modes have positive and negative group velocities, v,
which can be calculated using the Hellman-Feynman theorem [74] and the relation
v, = OE/dk,:

var = iGlp (Velke®) — Viek EN) (2.15)

To solve the (second order) equation (2.13), we can cast it into the form of a gener-
alised eigenvalue problem:

HL - E]' Vz éﬂ.‘tE — )L _VL 0 gﬂiE (2 16)
1 0 PuE ‘ 0 1 PaE '

where p,f is defined by the second line of eq. (2.16). Efficient techniques have been
developed to solve such problems [75, 76].

2.2.2 A Closed Set of Equations for the Scattering States

Using the above definitions we can now proceed to write a general form for the
scattering wavefunction in the leads. In fact we define the scattering wavefunction in
the lead to be a single incoming mode and a superposition of outgoing and evanescent
modes:

aE (]) = X;i;_fr};“ (]) + Z Swﬁxglét ()') + Z ‘gaﬁ;fg‘é (})1 (217)
B P

where xIn. (x%) are the incoming (outgoing) modes (i.e. those with negative and
positive velocity respectively), and the 5,5 and Sa p are the scattering amplitudes from
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mode f to mode a. The 5,4 are the elements of the so called scattering matrix. We thus
see that the scattering states are labelled by their incoming mode, a, although they also in
general have components in many outgoing (and evanescent) modes due to scattering
in the central region.

By inserting this form of 77, (j) into the infinite linear system, Hoy5: = Ey5%, we
are able to extract a closed set of equations for ¢, (the scattering wavefunction inside
the system) and the 5,4 (the components of the scattering matrix). This closed set of

linear equations is then solved numerically using efficient techniques [73, 77].

2.3 The Source-Sink Algorithm

In this section we will present the algorithm used for obtaining the time-evolved
scattering states 1, g(t). We name this the “source-sink” algorithm due to the char-
acteristic “source” and “sink” terms that appear in the time-dependent Schrodinger
equation for the scattering states. We shall see that this algorithm is an improvement
over the WE-C method of ref. [57], as the latter scales as @ (Nt2,, ), whereas the source-
sink algorithm scales as @ (Nt,,) (N the size of the system and ¢,,, the time up to
which we wish to simulate). A large part of this section has been taken from ref. [78].

2.3.1 The Source

In its original form, eq. (2.4) is not very useful for numerics because the wavefunc-
tion spreads over the entire infinite system. A first simple, yet crucial, step consists of
introducing the deviation ¢, () from the stationary solution:

Yup(t) = e Y + Pap()]- (2.18)
(1) satisfies
i%lﬁﬁ(t) = [H(t) — E]I,Z)“E(t) + S.e(h), (2.19)
with
Sae(H) = [H(t) — Hol¢3E: (2.20)
and
Pup(t =0) = 0. (2.21)

The new “source” term S, (t) can be computed from the knowledge of the stationary
scattering states and is localised where the time-dependent perturbation takes place
(where Hfj(t) * Hfj(O)). Equation (2.19) is already much better than eq. (2.4) for nu-
merics because the initial condition for i, (t) vanishes everywhere. One can therefore
truncate eq. (2.19) and keep a finite system around the central time-dependent region

2.3 The Source-Sink Algorithm
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where the source term lies. In practice, one adds N layers of each electrode. Note that
in order for this procedure to be correct, the stationary scattering states are calculated
for the infinite system and the truncation is only performed when evolving ¥, (f) ac-
cording to eq. (2.19). For the truncation to be valid, the size of this added region must
be larger than N > vt .. /2 where v is the maximum velocity at which the wave func-
tion can propagate and tp,, the duration of the simulation. Hence, for large values
of tmax, the total computational time to integrate eq. (2.19) scales as v t2 .. This algo-
rithm corresponds to the WE-C algorithm of ref. [57]. In section 2.3.2 we will see that
we can go beyond the WF-C method by introducing a complex absorbing potential in
the region of added electrode. This will allow us to obtain @ (Nt,,, ) scaling.

2.3.2 The Sink

The 2, scaling of the WF-C algorithm comes from the fact that for long simulation
times, one needs to introduce a large part of the leads (e f,,,) in order to avoid spu-
rious reflections at the boundaries where the leads have been truncated. To do any
better than this, one needs to take advantage of the special structure of the leads: they
are not only time-independent, but also invariant by translation. Hence, whatever en-
ters into the lead will propagate towards infinity and never come back to the central
region. Mathematically, the form of ¢,z () in the leads is a superposition of outgoing
plane waves [57]:

_ dE’ T
Bar (i) = ) [ 5-SwalE E) XS () e (2.22)

where §,£(j, 1) is P,e(t) projected onto layer j of the lead, Y, (j) ek (EN] g de-
fined in section 2.2.1 and S/, (E’, E) is the time-dependent part of the inelastic scatter-
ing matrix. The crucial point of eq. (2.22) is that it only contains outgoing modes, as
the incoming one has been subtracted when removing the stationary scattering state.
Therefore, once the wavefunction starts to reach the leads, it propagates toward infin-
ity and never comes back to the central system.

A natural idea that comes to mind is to replace the finite fraction of the electrodes
by some sort of (non-Hermitian) term in the Hamiltonian that “absorbs” the wave-
function that enters the leads. This has been studied in the literature in the context
of various partial differential equations [79-85], as well as quantum transport more
specifically [43, 65], and is usually known as a complex absorbing potential. The dif-
ficulty lies in the fact that this absorbing term must not give rise to reflections. At
a given energy, a perfectly absorbing boundary condition does exist; it corresponds
to adding the self energy of the lead at the boundary (which is a non-local complex
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absorbing potential, see WE-D method of ref. [57]). However the outgoing waves of
eq. (2.22) span a finite energy window so that some energies would get reflected back
to the central region. One solution to obtain a perfectly absorbing boundary condi-
tion is to use a boundary condition that is non local in time [59, 79]; this is the WE-B
method of ref. [57], and leads to algorithms that scale as 2 ,,.

We choose instead to design an imaginary potential that varies spatially. We will
show that for any desired accuracy we can design an imaginary potential that spreads
over a finite width of N electrode unit cells - where N depends only on the required
accuracy, not on f,,.. In practice, this new algorithm is much more effective than WE-
C when t,,,, becomes larger than the ballistic time of flight through the system. The
idea behind the algorithm is fairly straightforward: suppose that a plane wave with
a dispersion relation E(k) propagates inside one electrode. If one adds an imaginary
potential —iX to the Schrédinger equation, this plane wave becomes evanescent which
eventually leads to the absorption of the wave. On the other hand, any abrupt variation
of this imaginary potential will lead to unwanted reflection back to the central part of
the system. The imaginary potential must therefore be switched on adiabatically within
a finite fraction of the electrodes, see fig. 2.2 for a sketch. The new equation of motion
contains both the previous source term and the additional sink in the electrodes,

a 1. —_
i Par(t) = [H(H) = E = i2]up(t) + Sap(h), (2.23)

where the matrix % is diagonal and vanishes in the central region while it reads
n=N
2 = @ Z(H) lcell (224)
n=1

in the absorbing layer placed at the beginning of the electrodes. The index n labels
the unit cells of the leads, @ is a direct sum, 1. is the identity matrix defined over
a unit cell, and X(n) is a monotonically increasing scalar function. All that remains
is to specify the function X(n) so that it is of large enough magnitude to absorb all
waves entering into the lead while being smooth enough so as not to produce spurious
reflections. Our aim is to minimize the number of layers, N, that must be added in the
system to absorb the outgoing waves without the error exceeding a tolerance 9.

2.3.3 Analytical Calculation of the Spurious Reflection

Before we can design a suitable imaginary potential, we must understand how the
spurious reflection back to the central part depends on the shape of Z(n). We will
start from a continuum model in order to develop an analytical solution for this sim-
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Figure 2.2: Sketch of the truncated approximation to the system shown in fig. 2.1, including the ab-
sorbing layers. The (red) colour of the sites indicates the intensity of the complex absorbing
potential. The curve next to lead 2’s absorbing layer shows a typical shape of the complex
absorbing potential, ().

ple case. The rationale, other than its tractability, is the fact that spurious reflections
happen when X (n) varies on a spatial scale that is short compared to the wavelength of the
solution, hence it is dominated by small momentum k where the tight-binding disper-
sion relation reduces to its continuum limit. We will show that there is an extremely
good agreement between the analytical results derived in this section and numerical
calculations of the discretised model.

Let us consider the stationary 1D Schrddinger equation,

> 92 i_/x
- a0 — 1E( )00 = Epeo 2.25)

where m* is the electron effective mass and we have introduced a length scale, L, which
controls how fast X (x) varies. For negative x, we set Z(x < 0) = 0 so that the wave-
function is in a superposition of plane waves,

P(x) = ek 4 rgeikx (2.26)

where we define E = h?k?/2m*. Our goal is to calculate the spurious reflection proba-
bility Ry = |ry|> induced by the presence of the imaginary potential. We first rescale
the equation by E and define ¥ = kx, (u) = (k/E)Z(u) and ¢(x) = (%) to obtain the
dimensionless equation,

? i x -
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with

P(X) = e + rye™™ (2.28)
for ¥ < 0. Itis apparent from eq. (2.27) that the spurious reflection is controlled by the
dimensionless parameter kL. Since we want this spurious reflection to be small, we
will work in the limit of large kL > 1 and expand ry, in powers of 1/kL. The zeroth
order contribution is simply the extension of the WKB limit to imaginary potential;

the wavefunction takes the form of an evanescent wave,

P(F) = eSO, (2.29)
with S(¥) satisfying
= 12 Ao XN
[S@T +1+i7E(5) =0 (2.30)

where primes denote derivatives. We expand S (%) to first order in 1/kL, and apply the
boundary condition (2.28) at ¥ = 0, as well as (kL) = 0 (perfect reflection at the end
of the simulation domain at x = L) to obtain the zeroth order contribution to ry:

r% — p2ikL e—Ak{E; (2.31)

where
A—lez(f)dx (2.32)
~Jo LTAL '
is independent of kL. Physically speaking, the wavefunction is exponentially attenu-

ated up to the hard wall at x = L where it is fully reflected and then again exponentially
attenuated until x = 0.

The contribution Y takes into account the finite absorption due to the imaginary
potential, but not the spurious reflections due to wavevector mismatch. It it therefore
necessary to go beyond the adiabatic WKB approximation and calculate its 1/kL devi-
ation, r. We can ignore the hard wall at x = L as it will play no role in what follows.
Generalizing the WKB approximation we choose the following ansatz for ¥ > 0:

P(E) = ()@ (2.33)
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S(X) contains the fast oscillating and decaying parts, while ¢ (%) contains the remain-
ing (slow) parts. Plugging the ansatz (2.33) into eq. (2.27), our Schrédinger equation

becomes , ,
{@"@)+l2”_EEZ(kL)+2@((H02)]@wﬂ (2.34)
[ () ol o) -0
2(kL)2 kL (kL)3
with ) - .
5(x) = zx——f Zundu+@(MJ (2.35)

We write ¢(X) as ¢(X) = @o(X) + (1/kL)¢; (¥) and notice that, in the limit (1/kL) — O,
eq. (2.34) admits a solution §(X) = §o(¥) = A + Be~?*. In this limit there should be
no backscattering from the imaginary potential, so B = 0 and ¢(X) = 1, to match the
boundary conditions (2.28). The derivatives of ¢, (¥) hence vanish and we arrive at

1 =r = 1 I
Pl(xX)+2 lz — ﬁZ(x/kL)] ¢ (x) = ﬁi (x/kL) (2.36)
up to terms of order @ ((1/kL)?). Equation (2.36) can be solved by the variation of
constant method,

x/kL

¢1(x) = C(x) exp{ —2i% +I > (u) du} (2.37)

with
C'(x ! —%/(X/kL 2i j;kLi d (2.38)
(x) = L (x/kL) exp42ix — J.o (u) du ;. .
Applying the continuity condition on (%) and ¢’ (¥) at ¥ = 0 we obtain the 1% order
contribution to the reflection amplitude:

-1
1 _
k= 527C0), (2.39)

which we can write explicitly, using eq. (2.38) and the condition C(c0) = 0, as

re = 4sz f )M (u)exp{szLu — f 2(v) dU} du. (2.40)
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One can understand 7+ as the Fourier transform at (large) frequency (kL) of the gra-
dient of the imaginary potential weighted by the absorption that has already taken
place. Putting together egs. (2.31) and (2.40), we finally obtain

— o2ikL,—Ak/E

1
* WL

s
~ ‘ k cu (2.41)
Io 2 (u) exp{ZrkLu ~F Io 2(v) dv} du.

Equation (2.41) is the main result of this section. Now that we understand how the
spurious reflection depends on the shape of X(x), we need to design the imaginary
potential so as to minimize eq. (2.41) (for a given L). More precisely, for a given re-
quired precision ¢, we wish to enforce Ry < e irrespective of the value of the energy
E. Such a stringent condition is not, strictly speaking, feasible as Ry — 1when E — 0
(all the variations of the imaginary potential become “abrupt” when the electronic
wavelength becomes infinite), but we will see that the associated error for the time-
depdendent problem can be kept under control.

Now let us concentrate on an algebraic form for the imaginary potential:
Z(u) = (n+1)Au", (2.42)
from which the reflection amplitude calculated from eq. (2.41) reads,

_ oikL,—AkE , An(n+1)(n —1)
= € on+2Fjen] n+l

Iy (2.43)
As a consistency check of the approach developed above, we compare this analytical
result for the reflection probability with direct numerical calculation using the kwanT
d.c. transport package [73]. To do so we discretise the continuous Schrédinger equa-
tion onto a lattice of lattice spacing 1. Figure 2.3 shows how Ry scales for the casen = 2
and n = 6, showing an excellent agreement between the direct numerical simulations
and the above analytical result in the limit of validity of the latter (small reflection).
Figure 2.3c shows that the reflection has a minimum as a function of A which corre-
sponds to a compromise between the first and last term of eq. (2.43). Once A has been
chosen large enough for the first term of eq. (2.43) to be negligible, one can always
choose L large enough to control the second term. We can already anticipate that the
difficulties will come from vanishing energies E — 0 for which the spurious reflection
tends to unity.
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Figure 2.3: d.c. reflection probability of a one dimensional chain in presence of an imaginary potential.
The three panels show the scaling with different parameters. Symbols are numerical simu-
lation of the discrete model and dashed lines are the analytic (continuum) result, eq. (2.43),
with nn = 2 (circles) and n = 6 (triangles). N is the number of cells in the absorbing region.

2.3.4 Numerical Precision in the Time Domain

Now that we understand the d.c. case, let us consider the previous one dimensional
model in the time domain and send a Gaussian voltage pulse through the wire. This
problem has been studied in detailed in ref. [57], to which we refer for more details on

the physics. We compute the current flowing and measure the error with respect to a
reference calculation Igf(t),

Jym g (h) — I ()| dt .4
T re '
Jo MEAHdt

where [ (t) is the time-dependent probability current for a particle injected at energy
E using the above designed imaginary potential to absorb the outgoing waves. The ref-

erence calculation is performed without imaginary potential, but with enough added
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lead cells such that the solution does not have time to propagate back into the central
region before the end of the simulation (i.e. the reference calculation uses the WF-C
method of ref. [57]).

Figure 2.4a shows the scaling of the error ¢ in the time-dependent calculation with

respect to the d.c. reflection probability of the absorbing region Ry as N is changed.

The current at an energy at the centre of the spectrum is calculated. We see from fig. 2.4
that for very short absorbing regions the error scales proportionally to Ry, whereas for
longer regions it scales as {/Ry. This simply reflects the fact that the error on 9, (t)
is proportional to /Ry = ry; since the current (hence ¢) is quadratic in ¢ (t) =
e B (ySt + P, (1)), the error has the form & ~ 2[¢%[\/R5 + Ry. More importantly, we
see that we can control the error with arbitrary precision and for extremely long times
(we checked this last point for much longer times than those shown in the inset).

More interesting is the behaviour of the error ¢ as a function of the injection energy E.
Indeed, since Ry — 1when E — 0, we might expect ¢ to behave badly as one decreases
the energy. Figure 2.4b indeed shows that the error increases as the energy is lowered,
however, one finds that ¢ saturates at small energy. Furthermore, the saturated valued
decreases with N and can thus be controlled. This behaviour comes from the structure
of the wavefunction as shown in eq. (2.22); even though one injects an electron at a
definite energy inside the system, the energy of the outgoing wave is ill defined. The
contribution to the wavefunction coming from spurious reflections takes the form

0P e, t) = Z J.e_fE’t;(g}E, ()75 (E") Spn (E', E) dE’ (2.45)

The contribution spreads over an energy window E,,;;, which characterizes the inelas-
tic scattering matrix, S,/,(E’, E). S,/,(E’, E) typically decays on an energy scale of the
order of E s, = 1t/ Ty, (see fig. 10 of ref. [57] for an example). For the voltage pulse
considered here (which sends one electron through the system), 7,5, is essentially
the duration of the pulse. The consequence is that the reflection ry, is averaged over
an energy window of width E,,,,;;., which blurs the E = 0 behaviour of ry:

0~ (re(E)pck,,,,, = "= Epuse) (2.46)

We conclude that the error can always be made arbitrarily small, irrespective of the
duration of the simulation. A slight drawback is that for a given imaginary potential,
the precision of the calculation can depend on the actual physics taking place inside
the central system (which sets E,, ;) if one injects electrons with energies close to the
band edges of the leads.
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Figure 2.4: Scaling of the error, §, in the time-dependent simulation with respect to: (a) the d.c. reflec-
tion probability, Ry, and (b) the particle injection energy, E. A monomial CAP withn =6
was used. For (a) simulations were carried out at a single energy at the centre of the band
and the length of the absorbing region was varied. Dashed lines show fits to § o Ry (blue)

and & « /Ry (red). Inset Deviation of the probability current from equilibrium for differ-
ent lengths of the absorbing region corresponding to the two points indicated by arrows
in the main figure. The black dashed curve shows the reference calculation.

2.3.5 Additional Ingredients for a Robust Algorithm

We now discuss how to turn the above results into a practical scheme to perform

numerical calculations in a robust way.

Since we cannot guarantee the error for a given shape of the imaginary potential
(we have seen above that it might depend on the physics of the central region), we
first need to design an algorithm for an on-fly calculation of an error estimate without
the reference calculation used above. This can be done as follows for a small additional
computational cost. In the integration of the Schrédinger equation, one separates the
wavefunction in the central region ¢ and in the leads ¢; (let us suppose that there is
only one lead for simplicity). The equations to be integrated take the block form,

Jd _ _ N
‘E Yo = Hpp(H)Ps + Hpig + Sp(t) (2.47)
d _ N _

falpi = Hi1(2)y; + Hip¥s (2.48)

where 55(#) is the source term present in the central region and the imaginary potential
is included in Hi1. One then introduces a second “copy” of the lead wavefunction ¢;
that uses a different imaginary potential Hi; (X’). The equation of motion for this

“copy” is

a . IR T
=91 = Hii(X)yg + Higg (2.49)
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One then keeps track of both 7 and ¢ simultaneously, although only #; will affect
the dynamics of 1. The trick is to design X' (n) = X(n— M), i.e. to insert M extra lead
layers before the imaginary potential, and to monitor the difference between ¢% and
1 in the lead cell adjacent to the central region, §i; = 5 — 7. Spurious reflections
from the presence of X will arrive at the boundary of the central region for {5 before ¢,
as the latter has M extra lead layers. This delay in the arrival of the spurious reflections
will give rise to a finite 6¢p7. Note that d1P; will remain 0 in the case that there are no
spurious reflections. 417 can thus be used as an error estimate for the wave function
in the lead.

In the worst case scenario this scheme will increase the computational cost by a
factor of 2 (when the absorbing region represents the largest part of the system). It
is worth noting, however, that without an error estimate for the spurious reflections
one would have to check for convergence of results by performing several simulations
with different values of N, the absorbing region length.

The remaining task is to choose the parameters A and N for a given shape of the
imaginary potential. Ideally we would choose N as small as possible so as to minimize
the extra computational effort while requiring that [69;| remain smaller than a fixed
maximum error, dpm,y. Given gy it is easy to choose A such that the first term in
eq. (2.43) is not a limitation. By noting that e=4*/E < ¢=4/@78) (where 4 is the lead
bandwidth and a is the discretisation step) we see that it is sufficient to choose A such
that e=4/@B) < § . for the absorption process not to be the limiting factor of the
precision. Next, one needs to choose N large enough to enforce [65| < pax. This is
currently tuned on a case-by-case basis; in practice, we found that a few hundred (up
to a thousand) lead cells is almost always sufficient for the physics we have studied so
far, for typical dp,,, ~ 107°.

Let us end this section with a last point of practical importance. We have seen that
the major contribution to spurious reflection comes from a narrow region around the
band edge of the lead. The wavefunctions associated with these energies propagate
extremely slowly into the absorbing region due to the vanishing velocity at the band
edge. Unless one is interested in extremely long simulation times, we can take advan-
tage of this by placing a small number of lead layers before the imaginary potential.
The slow-moving waves will induce spurious reflections, but will take a long time to
traverse this buffer layer due to their small group velocity. Meanwhile, the absorb-
ing region does not have to be made as long, as it does not have to absorb waves of
vanishingly small energy.
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2.3.6 A Note on Timestepping Algorithms

All of the above treatment was essentially finding a coupled system of ODEs equiv-
alent to eq. (2.4) within a certain tolerance. Once we have constructed this “equiva-
lent” system according to the above algorithm we still need to select a method to ac-
tually evolve the system forward in time. We choose to use the Runge-Kutta-Fehlberg
(RKF45) method [86, 87], which is the stepper used in all the simulations presented
in this thesis. Note, however, that the choice of stepper is an orthogonal concern to
the source-sink algorithm, and our software implementation allows for any stepper
to be used (see section 3.2 for details), however the claimed @ (Nty,,) complexity is,
naturally, tied to the complexity of the stepper.

The RKF45 method is an embedded Runge-Kutta scheme that uses the same evalua-
tion points to obtain an @ (h*) and an @ (h°) (h the timestep) accurate method. These
estimates of different order can then be used to estimate the local error of the scheme,
which can subsequently be used to control the size of the timestep. Such a scheme
with an adaptive timestep is advantageous because it frees us from the need to pick a
timestep that will be relevant at all energy scales (remember, we have to evolve ¢, g (t)
for a range of energies from the band edge up to the Fermi level). In addition, the use
of an adaptive timestep means that even though the method is only conditionally sta-
ble (it is an explicit method), the algorithm will place the timestep within the radius
of convergence.

The Unreasonable Efficacy of Runge-Kutta Methods

Runge-Kutta methods are not often used for the evolution of the time-dependent
Schrodinger equation (TDSE) for two reasons: it is known to be stiff (and hence im-
plicit methods may be more useful), and the norm of the solution must be preserved.
Runge-Kutta methods are explicit (and so have a finite radius of convergence) and do
not formally preserve the unitarity of the Schrodinger equation. Indeed, barring a few
notable counterexamples [88-90] the most common method used seems to be Crank-
Nicolson [59, 91, 92], however other approaches based on splitting the evolution op-
erator [93-95] or approximating the evolution operator using a unitarity-preserving
Magnus expansion appear to be popular [96-98]. The drawback of these more sophis-
ticated methods are an increase in runtime and possibly algorithmic complexity. The
use of implicit methods, for example, involves the solution of a (sparse) linear system
of equations that scales polynomially with N — even with cutting-edge techniques [77]
— compared to the @ (N) complexity of the sparse matrix-vector products required for
the explicit Runge-Kutta methods. The other methods mentioned invariably involve
approximating some time ordered matrix exponential, which boils down to evaluating
integrals of some commutator of sparse matrices. In addition, such methods are not
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amenable for calculation of an estimate of the local error, meaning that the timestep
cannot be adapted as it can with the RKF45 method. On the other hand, we have found
explicit methods to be more than adequate for all the problems that we have studied,
despite the rich variety of physics involved: quantum Hall effect (see section 3.3.2),
superconductivity (see chapters 5 and 6), and floquet topological insulators (see sec-

tion 3.3.4) to name but a few.

Another argument that is commonly made against Runge-Kutta type steppers is
that they do not respect the unitarity of the evolution one would expect from the
Schrodinger equation. In practice for the transport problems studied in this thesis,
however, this is not a concern for several reasons. Firstly, the presence of the sink
term means that the evolution in the added lead cells is not unitary. Secondly, the
equation of motion for ¥, (t) also contains a source term, meaning that there is some
Pne(t) “injected” on sites where there are time dependent perturbations . Both the
above points stand irrespective of the stepping algorithm that is used. The only case
where the lack of inherent unitarity in the stepping algorithm could be problematic
is the case where the time-dependent perturbations happen in a finite time window
and excite true bound states in the system. In this case, as the bound states do not
hybridise with the leads, they can never relax and the wavefunction norm should be
conserved in this case. If we were to perform simulations for extremely long times
for such a case, the fact that the stepper does not preserve unitarity could become a
problem.

2.4 Integrating the Observables

In this section we shall discuss method used for evaluating the integral (2.5). The
first task is to perform a change of variables so that the integration variable is the quasi-
momentum, k. This change of variables is advantageous because it is much easier to
integrate numerically near the band edges in k-space. The reason for this is that the
normalisation of the 5% is such that they carry unit current (see section 2.2.1). This
means that they have an effective normalisation factor of [v, (E Y1712, with v, (k) the
group velocity [99]. This in turn means that the quantity [¢St-]1"A ¢ has an effec-
tive normalisation of 1/v,(E) , which means that it will diverge whenever v, (E) — 0.
Even though this divergence is formally integrable (v, (E) VE for E close to a band
edge), it renders a numerical evaluation more tricky. The dE/dk Jacobian factor
(which is proportional to v, (E)) cancels with the 1/v,(E) when integrating over k,
which regularises the integrand. We need only integrate in regions of k-space where
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there are modes incoming into the central region, which means v, (k) > 0 (as explained
in sections 2.2.1 and 2.2.2). This gives us the following expression:

- m dk dE
(Am) =) |” 5 ©a®Ifa B P (DA Puk(h), (2.50)

where O (x) is the Heaviside function.

Having obtained eq. (2.50), we can proceed to use a quadrature scheme to numer-
ically evaluate the individual integrals for each mode a. We typically use Gauss-
Kronrod [100] nested quadrature schemes for this purpose. The advantage of nested
quadrature schemes is that they allow an error estimate to be calculated by using a
subset of the abscissae; no extra evaluations of the integrand are needed. This is partic-
ularly important for our application because an evaluation of the integrand at a given
point k requires evolving ,; in time numerically, which is a relatively expensive op-
eration. In addition, Gauss-Kronrod rules (as opposed to other nested quadrature
schemes such as Gauss-Lobatto) do not require the integrand to be evaluated on the
boundary of the integration region. This is important, as the linear system to solve for

2‘,{ is badly conditioned at points where v, (k) = 0[99], and hence we cannot compute
Pak () at these points.

Initially we split the Brillouin zone into regions where v, (k) < 0 and v, (k) > 0
respectively. It is necessary to do this splitting for each mode independently, as in
principle the modes can have very different dispersion relations. Because we are only
interested in states corresponding to incoming modes, we need only integrate over re-
gions where v, (k) > 0. This scheme is illustrated in fig. 2.5a. In the case where there
are no band crossings, the dispersion relation of each mode is C! continuous. It is
therefore sufficient to find all local maxima/minima; this can be achieved using stan-
dard numerical routines [87, 101]. The case with band crossings is more complicated
because the modes no longer have a consistent ordering in energy across the whole
Brillouin zone, and so care is needed to properly identify the “same” mode when
traversing a band crossing. This case has not been treated in detail, but would likely
involve detecting where the band crossings occur and cutting the search intervals for
minima of E (k) at these points. Band crossings could possibly be identified by search-
ing for the roots of r}aﬁ(k) =E, (k) — Eﬁ(k).

Figure 2.5 compares the use of a k-space integration to a direct energy integation, as
well as the use of a Gauss-Kronrod method rather than a simpler Simpson method [87],
for a simple one-dimensional chain with a voltage pulse applied to the left lead. Fig-
ure 2.6 shows the same thing, but for a chain with some static disorder. The quantity
calculated is the contribution to the current coming from the left lead (i.e. a single
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Figure 2.5: Comparison of different integration methods for the calculation of the current flowing
through a one-dimensional (1D) chain after the application of a voltage pulse to the left
lead.

term of the sum over & of egs. (2.5) and (2.50)). In the system without disorder — where
there is no backscattering — the divergence in the energy-space integrand can be clearly
seen, and the error scaling of the corresponding integral (fig. 2.5b, black squares and
lines) is correspondingly unsatisfactory. In this case the momentum-space integral
(red circles and lines) clearly has an advantage due to the regularised integrand. For
the disordered system, however, the situation is a little different. The energy-space
integrand no longer exhibits a strong divergence and the corresponding error scaling
is much improved (although the momentum-space integral still has a clear advantage,
especially for high-precision calculations). The reason for this is that the disorder in-
troduces some finite backscattering into the system, which is especially strong for the
modes near the band edge due to their low kinetic energy. The consequence of this is
that the diverging contribution from these modes entering the system is compensated
by their reflected components, giving a net contribution of (nearly) 0. We can thus see
that while the momentum-space integration may not be “essential” for a large class
of systems (those where the divergence is “naturally” regularised by backscattering
processes), it nevertheless adds a degree of robustness to the integration, as it does
not depend on the physics of the system being simulated.

2.4 Integrating the Observables
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Figure 2.6: Comparison of different integration methods for the calculation of the current flowing
through a one-dimensional (1D) chain after the application of a voltage pulse to the left
lead. The scattering region consists of 10 sites, and there static disorder in the onsite po-
tentials in the range [0,0.06B] where B is the bandwidth.

After the initial integration intervals have been identified, the k-points correspond-
ing to the abscissae of the 15(7)-point Gauss-Kronrod rule in each interval are com-
puted. For each k-point we compute ¢, using the approach outlined in section 2.2.
We can now evolve all the 1, () up to the first time 7; where we wish to calculate an
observable. We then compute the integral (and error estimate) over each interval of
k-points independently, using the Gauss-Kronrod weights. The total integral is then
the sum of the integrals on each interval. The i, (t) can then be evolved to 7,, the next
time at which we wish to calculate an observable. This procedure is repeated until we
have reached the maximum time t,,,, up to which we wish to simulate. Note that each
interval of the integral can be evaluated independently, which lends itself to a trivial
parallelisation of the algorithm. Additionally, we could use an adaptive integration,
whereby If any interval has an error greater than a certain threshold then that interval
is bisected, and the 1, (f) for the k-points in these two new intervals are evolved from
t = 0 to the time of interest. This procedure would continue until the computed value
of the integral on each interval converges, and then the 1, () would be evolved to the
next time of interest, where more subdivisions would possibly take place.
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Software Design 3

In chapter 2 the main algorithms used to simulate time-resolved quantum transport
were presented. While the algorithms themselves are certainly important, one could
argue that of almost equal importance is a concrete software implementation that ac-
tually delivers demonstrable added value to research projects. In this chapter we shall
start by discussing the requirements and “philosophy” for good scientific software in
the context of exploratory research. We will then move on to identify the abstractions
that allow one to easily express the necessary concepts for time-resolved transport. In
addition we shall identify the state of our current implementation, rkwant , and what
needs to be improved before it is ready for public release. Finally we will end with
a short gallery of examples of TkwaNT usage from projects that were mainly the work
of collaborators, or where I personally had a role geared more towards the software
than the physics. This is to show that despite its warts, the current implementation of
TKWANT has been used to study a wide variety of physics outside the main applications
that will be presented in part II of this thesis, and has achieved the goal of delivering
demonstrable added value to research projects.

3.1 Requirements for Well Designed Scientific

Software

The latter half of the twentieth century saw massive advances in both numerical
algorithms and the computing power required to execute them. Indeed, while nu-
merical methods for solving mathematical problems are not new (methods developed
by Newton, Euler, and Gauss — to name but a few — are at the core of many modern
algorithms), their great utility was only really unlocked at the advent of the digital
computer. What has also changed to some extent is the relationship between numeri-
cal methods and their use in fundamental and applied research, especially in physics.

One could say that the evolution of the physicist’s use of numerical methods par-
allels the evolution of the computer programmer’s use of the hardware at her dis-
posal. Similarly to how the first general purpose, programmable computers were pro-
grammed directly in machine language!, the first uses of numerical methods by physi-
cists were to solve problems of very restricted scope: evaluating a specific integral,

"Machine language is the raw sequences of numbers that are interpreted and executed by the com-
puter’s processor.
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or solving a particular differential equation. The appearance of “higher level” pro-
gramming languages freed the programmer from the tedious bookkeeping required
to write in machine language, and allowed her to more easily step back and see the big
picture. Similarly, as more general purpose implementations of algorithms were de-
veloped, the physicist was freed from worrying about the implementation details and
could instead concentrate on what matters: the physics. This development has con-
tinued up until the present day, where very high-level computing languages such as
Python [102] and Ruby [103] almost totally obviate the need to worry about the inter-
nals of the computer. Similarly, in physics, there is a proliferation of black-box simula-
tion software — especially in the fields of computational chemistry and nanoscience [104]
— that obviates much of the need to understand the fundamental algorithms used?.
While the parallel advances in programming languages and physics software have
brought many positives, there are also negative consequences. In particular, high-
level programming languages tend to produce programs that run more slowly?, and
black-box physics software hides perhaps too much from the researcher using it.

In my opinion there is a missing abstraction layer for quantum transport in the cur-
rent offering of software tools. At the lowest layer of abstraction there are a very solid
set of interfaces for solving specific mathematical problems, such as sLas and Larack
for dense linear algebra [107, 108], or quabrack for numerical integration [100]. At the
other end of the spectrum there are the professionally developed (and often non-free?)
tools [110-112] that provide an enormous amount of functionality, but are often too
rigid for exploratory research. In the middle there are a whole host of “home made”
tools that are often used by only a single research group and passed down from stu-
dent to student, each generation making their contribution: adding support for spin,
allowing for a ring geometry with a hole, etc. The consequence of this is that there is
an enormous amount of replicated effort. There is a real need to create an abstraction
layer for the fundamental objects of quantum transport: Hamiltonians, Green’s func-
tions, scattering matrices, etc., that empowers researchers to easily set up and solve
well-defined physical problems without having to be concerned about the low-level
details. The researcher nevertheless needs to have the freedom to be able to set up
exactly the calculation that they want, so such an abstraction layer should not “hard
code” assumptions about the physics being studied.

2Recent technological advances even obviate the need to write a scientific article [105] and get it pub-
lished in a peer review journal [106], but I digress.

3A function call in Python is roughly 100 times slower than a function call in the C language.

4] use the word “free” here, as defined by the Free Software Foundation [109], to refer to software that
respects users’ freedoms, rather than software that is gratis.
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3.1.1 KwWANT : An Example of Well Designed Scientific

Software

The xkwanT package aims to be this missing layer in the software stack. kwaNT essen-
tially provides an interface for specifying a tight-binding Hamiltonian and computing
quantities relevant for d.c. transport such as band structures, scattering matrices, and
Green'’s functions. Notably, kwanT leaves the definition of the tight-binding Hamilto-
nian to the user; whether such a description was arrived at by discretising a contin-
uum model or extracting tight binding parameters from a density functional theory
calculation, is largely immaterial from xwanNT ’s point of view.

Another notable difference between xwanT and traditional scientific codes it that
KWANT is actually a library for the Python programming language, which means that
simulations that use kwanT are written as small Python programs. This approach has
several distinct advantages over the more traditional approach to scientific software,
where a monolithic binary executable takes an input file, performs a computation, and
produces an output file. Firstly, the Python programming language is simple to learn
and offers almost infinite extensibility. Compare this to an input file approach where
as soon as you want to express anything reasonably complex you have to essentially in-
vent your own domain specific language in order to do it; re-implementing elementary
concepts like variables, loops, and sequences. Secondly, there is an enormous ecosys-
tem of extensions to the Python language [113] (called “packages”), that allow one to
efficiently manipulate numeric arrays [114], do symbolic algebra operations [115], or
produce publication-quality graphics [116]. This means that kwanT users (as well as
kwANT developers) can leverage all this power in their scripts and simulations. Finally,
while Python is a somewhat slow language it is also straightforward to write extension
modules in low-level and fast languages like C and Fortran [117], which means that
kwANT does not have to sacrifice run-time speed in the name of ease of use.

A Simple Example of Kwant Usage

To give more of a feel for how kxwanr is actually used we will now go through a
simple example of a quantum wire with a variable-height insulating barrier. We shall
identify the three major steps in a kwanT simulation: system definition; finalisation
of the system into a low-level format for efficient computation; and solution of the
scattering problem. This will allow us to more easily appreciate the changes needed
to incorporate time-resolved transport. This example should be comprehensible to
readers who do not know the Python language, as long as they are familiar with pro-
gramming concepts such as loops and subroutines (functions). Ref. [73] provides a
more complex example for the interested reader.

3.1 Requirements for Well Designed Scientific Software
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The first thing we need to do is to make kwanT available and define our lattice and
an empty tight-binding system (any text on a line after a # is a comment):
import numpy # useful numerical utilities

from matplotlib import pyplot # plotting library

import kwant # make Kwant available

lat = kwant.lattice.square() # a sguare lattice for our sites

syst = kwant.Builder() # an empty tight-binding system

Next, we need to define our tight-binding model, which we obtain from discretising

a continuum Hamiltonian onto a square lattice following appendix A. First we define
the scattering region, which is 20 sites long and 10 sites wide and contains the potential
barrier (3 sites wide) that will induce backscattering:

# populate the system with sites, and set the on-site

# Hamiltonian matrix elements to +4

for x in range (20):

for yv in range (10):

syst[lat (x, y)] = 4

# set all the nearest-—neighbour hoppings to -1
syst[lat.neighbors ()] = -1

# define a function for the insulating barrier
def insulating barrier(site, Vqg):

return 4 + Vg

# change onsite matrix elements for all sites under the barrier
for % in range (9, 12):

for yv in range (10):

syst[lat (x, y)] = insulating barrier

We see that we can set Hamiltonian matrix elements in two ways: with explicit values,
and with functions. The functions will be evaluated at the last possible moment before
the scattering problem is solved; this allows for a system to be constructed once at the
start of the script, and then solved many times for different values of the parameters.
In the above example there is a single parameter Vg, which controls the onsite matrix
element for a strip three sites wide in the centre of the scattering region.

Next we define the electrodes as tight-binding systems with a translational symme-
try in the x direction, and we attach them to the scattering region:

lead = kwant.Builder (kwant.TranslationalSymmetry((-1, 0)))
for yv in range (10):

lead[lat (0, y)] = 4
lead[lat.neighbors()] = -1
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# attach semi—-infinite leads to the scattering region
syst.attach_lead(lead) # lIead from the left
syst.attach lead(lead.reversed()) # lead from the right

Next we convert the system into a low-level format suitable for numerics:

fsyst = syst.finalized()

The consequence of this is that the geometry (or in other words the sparsity structure
of the Hamiltonian) is fixed.

Finally we are ready to compute the scattering matrix and transmission for the sys-

tem:
Vg = 0.05
energies = numpy.arange (0, 1, 0.01) # (0, 0.01, ..., 0.99]
transmissions = []

for E in energies:
# calculate the scattering matrix at a given energy
# with a given value of the system parameter(s) (args)
smatrix = kwant.smatrix(fsyst, energy=E, args=(Vg,))
T01 = smatrix.transmission (1, 0) # lead 0 —> lead 1

transmissions.append (T01)

pyplot.plot (energies, transmissions) # plot the results
pyplot.xlabel (r'SE_N\_[\gammal]$') # set x-axis label
pyplot.ylabel (r'SG_\_[e"2/h]S") # set y-axis label
pyplot.show() # show the plot

This script produces the plot of differential conductance as a function of energy shown
in fig. 3.1. So we see that in 46 lines of simple code (the line count could be drastically
reduced with more terse code) we can reproduce an elementary result of quantum
transport: conductance quantisation.

3.2 TKWANT : Time-Dependent Extensions to

KWANT

In its current iteration kwanT has no facilities for simulating time-dependent quan-
tum transport. Part of the work of the past three years has been not only to develop
the algorithms necessary for an efficient implementation of time-dependent quantum
transport, but to identify the correct abstractions that will allow time-dependent trans-
port to be added seamlessly to xkwanT . In the following paragraphs we will discuss
how the three stages of kwaNT usage (system definition, finalisation, solving) would

3.2 TKwANT : Time-Dependent Extensions to KWANT
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Figure 3.1: Differential conductance through a quasi one-dimensional wire with an insulating barrier.
This exact figure was produced from the script shown in the main text; an illustration of
the simplicity of the xwant package.

have to be altered (or what would have to be added) in order for kwanT to support
time-dependent problems.

3.2.1 Modifications to the Problem Definition Stage

The addition when specifying a time-dependent system is that some elements of the
Hamiltonian should depend on time. As we saw in the above example xwanT already
supports assigning functions to Hamiltonian elements, so naturally any parts of the
Hamiltonian that depend on time just need to take a t ime parameter. This is the way
that specifying time-dependence is implemented in the current version of TkwanT .

A second aspect, which is not present in kwant , is how to specify the observables
that should be calculated during the solving phase. To be generally useful one should
be able to supply a function that receives the kwanT system, the current time, and the
scattering state wavefunction as inputs, and returns the action of the observable on the
wavefunction. This is the interface used by the current version of tkwant . Although
such an interface is sufficiently general to capture all use cases, itis actually too general
to be useful for most users. One particularly useful specialisation would be the case
of general densities and their associated currents. We can define a density associated
with a site i as

e (1) = bf () My (Db (1) 3.1)

where V;(t) is a vector of wavefunction components on site i (e.g. spin or particle/-
hole degrees of freedom), and M;(t) is a (possibly time-dependent) Hermitian matrix
associated with site i. The associated current between sites i and j can be written

i = 23{%] (H My (HH; () b0} (3.2)
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In the case of spin, for example, the M; could be Pauli matrices, and the p}f."l would
therefore be a “spin density”. In order for a user to specify their density observable
it would therefore be sufficient to provide a function that takes a site and a time and
returns the appropriate Hermitian matrix representing the density for that site. This
would be similar to the way in which the system Hamiltonian is defined with func-
tions that take sites, as well as other parameters, and returns the Hamiltonian matrix
elements. Building observables in this way could also be useful for kwanT users irre-

spective of TKWANT .

3.2.2 Modifications to the Finalisation Stage

The xkwanT low-level system format allows for the Hamiltonian to be evaluated, and
for the structure of the system to be efficiently queried (e.g. which sites are con-
nected via hoppings etc.). TkwaNT requires an additional component: evaluation of
the time-dependent part of the Hamiltonian. Often the time dependence of a system
will only affect a limited number of matrix elements, and in such cases it is wasteful
to re-evaluate full Hamiltonian. The low-level format required by tkwant therefore
needs an efficient way to query the system as to which matrix elements depend on
time, and only re-evaluate these. In the current version of TkwanT a new type of low-
level system is used for this purpose, and xwaNT systems are finalised into this new

“TkwanT finalised system”.

3.2.3 Modifications to the Solving Stage

The solving stage will clearly be vastly different for rkwant when compared with
kwaNT . While the kwanT solvers all boil down essentially to solving a linear system
(scattering matrix and scattering wavefunction calculations) or an eigenvalue problem
(calculating band structure), the source-sink algorithm at the heart of rkwanTt requires
evolving many differential equations (one for each mode and value of momentum /en-
ergy) and numerically integrating the results. The Tkwant solver will therefore be com-
pletely independent from the other kwanT solvers, but will need to use them in order
to obtain the initial conditions for the scattering states. A user of the solver should
simply be able to provide: a system that depends on time, a list of observables to cal-
culate, and the times at which to evaluate them, and get back the thermal average
of the observables evaluated at those times. One challenge to overcome is that there
are more many parameters associated with the source-sink algorithm: what bound-
ary conditions to use, what algorithm to use to evolve the scattering states, and what
algorithm to use for the integrals over momentum/energy. There is also the question
of how errors will accumulate during the calculation. The choices made for the cur-
rent implementation were discussed in sections 2.3.5, 2.3.6 and 2.4. A future version

3.2 TKwANT : Time-Dependent Extensions to KWANT
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of TkwaNT should certainly allow for arbitrary combinations of boundary condition-
s/ steppers/integrators.

Another challenge is that an efficient implementation of the source-sink algorithm
will necessarily involve parallel computations, as each 1,4 (t) evolves independently
of the others. The current version of TkwanTt exploits this available parallelism, how-
ever it does not implement an adaptative energy/ momentum integration (see the last
paragraph of section 2.4). Instead, one merely chooses a set of integration regions at
the start of the calculation and the observables (and an error estimate) are calculated
using these regions during the whole calculation. This means that the convergence
(or not) of the calculation can only be verified at the end. While this mode of opera-
tion is useful when a given set of integration regions is known to produce results that
converge, it is particularly inefficient when no knowledge of the structure of the ob-
servables in energy /momentum is known. In this (common) case one has to manually
inspect the integrand and choose the integration regions accordingly. A future version
of TkwanT should certainly have an adaptative energy /momentum integration. This
somewhat complicates the parallel implementation, however, as whenever a region is
subdivided the wavefunctions need to be recomputed for the new energies/momenta.
The question is then how to best divide the available computing resources between the
various sub-regions.

3.3 TKWANT Usage in the Field: A Gallery of

Examples

In this section we will see a small gallery of examples from work done primarily
by my collaborators, which will complement the applications from my own work that
will be seen in part II. While the interface of the current version of rkwant is somewhat
rough around the edges, the results presented in this section show nevertheless that
it is a general tool that is capable of bringing real added value.

3.3.1 Calculating Time-Resolved Shot Noise

Single particle observables such as the charge and current can generally be written
in terms of a single-particle Green’s function. In the wavefunction formalism, these
can be written as a single integral over energy, as seen in section 2.1. Often, one wants
to go beyond such simple observables and instead look at higher-order cumulants.
Current-current correlations, for example, can be written as

St t) = (Lt — (I,)) x (I,(t') — (I,(t))) (3.3)
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where [ u(t) is the current operator for current flowing across an interface p:

L, = (; Hy;(He] (HE(h) — Hy (el (he(h), (34)
i,j)eu

and <f‘u (t)) is its thermal average. We can see that §w,(t, t") will contain products of
four operators and hence, using Wick’s theorem, its thermal average can be expressed
as products of two Green’s functions.

In ref. [118] expressions are derived for the current-current correlations in terms
of the time-evolved scattering wavefunctions. Specifically, the thermal average of the
current-current correlations can be written as

R dE dE’
(St 1)) = Zﬁ | 5= [ 5fa®U o ENL e O e )] (35)

where

IP,EEf(t)=(; (Hy(Olhe O19ae D) — HyO[9he (O [a®)];).  36)
i,j)Eu

In ref. [118] they did not numerically compute such quantities directly, however,
opting instead to look at the variance of the particle number operator:

. 2
i, = J‘_ﬂzdtfy(t), (3.7)

which they split into three contributions in order to take care of terms divergent in the
limit T — oo, which come from the contribution from the equilibrium. Specifically,

var (ii,) = (ﬁg - <ﬁy>2> = T02 + 20, + 02 + @(%) (3.8)

where the three contributions are defined as

dE
=) [ S BT = fo BNl ee ()] (3.9)
dE _
Omix = Zﬁ | S BY1 = f3(E)IRN L], £ (0) (3.10)

dE dE’ -
2= [ o= [ SAfu® - fpENNEp| @.11)
ap
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H
with insulating barrier used for calculating the traversing the cross-section y versus the num-
noise in the number of transmitted particles. A ber of injected particles 7i, computed from Tx-
gaussian voltage pulse V() is applied to the waNT simulations using egs. (3.8) and (3.9).

left-hand contact, which injects charge into the
system. The insulating barrier, controlled with
Vg, provides backscattering. The number of
particles traversing the cross-section y is mea-
sured, as is its noise properties.

Figure 3.2: Computing the noise in a quantum wire after the application of a voltage pulse. Both
subfigures reproduced with permission from ref. [118].

where
Nep = f dt [L, per (1) = 1, g (0)e 1 E=ENMA], (3.12)

They then use the raw output of TkwanT (the time-evolved scattering states) to cal-
culate var (ﬁy) for a one-dimensional conductor with an insulating barrier (shown
in fig. 3.2a), when a voltage pulse is applied to one of the contacts. In addition they
derived an analytical result for var (ﬁy) in this specific case and compared it to simu-
lation; the results are shown in fig. 3.2b, when the area underneath the voltage pulse
ii (= (e/h) f V (t) dt) is varied. They saw that var (ﬁy) is minimised for integer values
of i1, in analogy to the Levitons discussed in the introduction [20].

Although this result is in itself intriguing, it also paves the way for other time-
resolved noise properties to be calculated with Tkwant . We note, however, that the
problem required some delicate refactoring in order to avoid problems with infini-
ties related to the equilibrium contributions, which may hinder attempts to make
a robust implementation in the general case. The fact that there are now fwo en-
ergy integrals to calculate also somewhat complicates matters. However, the fact that
the two-energy quantity I, pp/(f) can be expressed in terms of just the single-energy
quantity ¢, (t) indicates that the computational effort will still scale linearly as a
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function of the number of energy points. This is because computing ¢, ¢ (f) on a set
of energies A = (){Ey, Eq,..., EN} allows us to directly evaluate I%EE,(t) on the grid
AxA = (){(Eyg, Ep), (Eg,Eq), ..., (EN,En_1), (En, EN)}. Whether the density of points
required to reach convergence will be higher when calculating the noise compared to
the current is not clear.

3.3.2 Stopping Voltage Pulses in the Quantum Hall

Regime

The integer quantum Hall effect (IQHE) is observed in two-dimensional systems
subject to strong magnetic fields [119], characterised by an insulating bulk and unidi-
rectional edge states [120]. While most applications of the IQHE concentrate on the
properties of these edge states, in ref. [121] tkwanT is used to investigate the crossover
between these edge states and the bulk insulating states. Figure 3.3 shows a sketch
of the simulated setup: a two-dimensional system in the quantum Hall regime (light
orange) is connected to two electrodes (dark brown) and a gate with potential V (#) is
electrostatically coupled to the system (dashed red box). A voltage pulse is applied to
the lower contact, which injects charge into the system (the dark blob moving through
the system in fig. 3.3). Initially the gate is at a potential V;, which means that the
right-hand “edge” of the system is found in the centre, and we see that the charge
pulse propagates along this edge channel. Afterwards, at a time f,, the gate voltage
is lowered until time ¢, when it becomes 0. This effectively shifts the right-hand edge
channels to the true edge of the system. We can see from fig. 3.3, however, that the
charge pulse does not follow the evolution of the edge channel; instead, it stays in the
centre of the system and its velocity decreases. We see that after f; the pulse has com-
pletely stopped in the centre of the system. This behaviour is independent of the time
t» — t1 over which the gate voltage is lowered, provided that this time is not so long
as to let the charge pulse escape through the upper contact. The fundamental reason
for this highly non-intuitive result is that the system remains translationally invariant
along the y direction at all times, which means that the quasimomentum k must be
conserved (a more in-depth explanation is given in refs. [121, 122]).

Intuitively one would perhaps think that the charge pulse would follow the edge
channel as the gate voltage is decreased, however the simulations indicate that this in-
tuition is incorrect. This is a prime example of where numerics in general (and TkwaNT
specifically) offer a great deal of added value. Without the initial insight offered by
the TkwanT simulations, it would initially not have been clear that there was any inter-
esting physics to be seen in the above-described setup. While a deeper understanding
will usually be found by employing analytical methods, the easy-to-perform numer-
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Figure 3.3: Upper: Snapshots of the deviation from equilibrium of the charge density as a function
of time in a two-dimensional system in the quantum Hall regime. The dark “blob” is the
charge pulse discussed in the main text. The system (beige) is connected to two electrodes
(dark brown) and a gate voltage is applied on top of the right-hand portion of the system
(red dashed box). The gate voltage is initially V, and is reduced to O between t; and t,.
Lower: Velocity of the charge pulse as a function of time. Tkwanr is used to calculate (i (t))
and this is differentiated numerically. Reproduced with permission from ref. [121].

ics afforded by TkwanT offer increased agility and ability to concentrate on the “big
picture”, which is invaluable in the initial stages of an exploratory research project.

3.3.3 a.c. Josephson Effect Without Superconductivity

In many of the applications in part Il we will see that quantum interference will play
a big role. In ref. [2] it was shown that after an abrupt change of bias voltage across
a quantum interferometer there is a universal regime where the current measured at
the output of the interferometer oscillates at a frequency eV, /h (V;, the bias voltage)
during a certain time 7. While the duration of this universal regime depends on the
specific system studied, the frequency does not. This was interpreted as the analogue
of the a.c. Josephson effect for normal conductors. The fundamental idea is that the
application of a bias voltage changes the frequency at which the electronic wavefunc-
tions oscillate, from E /i to (E+eV},) /h. This frequency change originates at the voltage
drop (it is assumed that this drop is spatially short, and occurs before the actual inter-
ferometer) and propagates through the system at the electronic group velocity. As the
interferometer will naturally have multiple paths of different lengths, the frequency
change will take different times to propagate along each path. Once the frequency
change has arrived from the shortest path, the part of the wavefunction oscillating at
(E + eV,) /h will interfere with the part oscillating at E/#, giving rise to oscillations
of frequency eV, /h. In ref. [2] a Mach-Zehnder interferometer in the quantum Hall
regime is studied due to its simplicity (only two paths are avalable through the sys-
tem due to the quantised edge channels); this is illustrated in fig. 3.4a. Figure 3.4b
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(a) Snapshots of the charge density (measured (b) Current at contact 1 as a function of time. Up-
from equilibrium) in the Mach-Zehnder inter- per inset: Schematic of the voltage rise. Lower
ferometer at different times after the bias on inset: zoom of the transient regime. The
contact 0 is raised, from vanishing density (yel- coloured crosses on the time axis correspond
low) to 1011 cm 2 (red). to the times at which the snapshots in fig. 3.4a

are taken.

Figure 3.4: Results from tkwant simulations of the Mach-Zehnder interferometer after an abrupt raise
of bias voltage on contact 0. Subfigures reproduced (modified) with permission from
ref. [2].

shows the current measured at contact 1 as a function of time after the bias on contact
0 is raised to V}, at t = 0. We clearly see that the output current oscillates at frequency
eV, /h for a finite time before we reach the steady state regime that one would expect
from a d.c. bias.

The strength of TkwanT in this work was that it was easy to set up simulations for
other types of interferometers (a Fabry-Perot was also studied in ref. [2]), which en-
abled the claim of a “universal” transient regime to be corroborated.

3.3.4 Floquet Topological Insulators

Systems with so-called “topological” phases have recently seen a great deal of the-
oretical as well as experimental interest [123]. Such systems are characterised by a
bulk that is insulating and sufaces that support chiral edge states, and are thus are
conducting. One simple example of this is the quantum Hall regime that can be in-
duced in two-dimensional electron gases by applying a strong perpendicular magnetic
field[119, 124]. A more recent development involves inducing topological phases by
applying periodic perturbations to the system; these are known as Floquet topological
insulators [125-127].

In ref. [128] TkwaNT is used to show that there is a correspondence between the dif-
ferential conductance and the quasienergy spectrum of a Floquet topological insulator
that arises from the Bernevig-Hughes-Zhang (BHZ) model [129, 130], which is used as
a model for mercury telluride/cadmium telluride quantum wells [130, 131]. Schemat-
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ically, the half-BHZ model corresponds to a square lattice model with two orbitals per
site and first and second nearest neighbour hoppings:

H= Z [ ( Aoy — Boy) |x,yXx,y| + Cog|x,yXx + 1,y| + Doy |x, yXx, v + 1| +
Y (3.13)

Joo( lyXx+ Ly + 1+ y)x+Ly-1]) |,

where capital latin letters denote constant scalars that parametrise the model, and o;
are Pauli matrices:

10 01 0 —i 1 0

Additionally, a periodic on-site perturbation

AHgyz = Z F[sin(wt)oq + cos(wt)or] (3.15)
Xl

is added that can induce a topological phase. As the Hamiltonian is time dependent
energy is no longer conserved, however — as the perturbation is periodic with period
T — the quasienergy is still a useful quantity. The quasienergies ¢, are defined by the
eigenvalues of the Floquet operator U(T,0):

U(T,0) lpg) = e~/ e/ g, ), (3.16)

where 77, /h is a damping rate, and |p, (#)) is a right eigenstate of the Floquet operator.
The Floquet operator itself is just the evolution operator evaluated over one period:

- A T ¢
U(T,0) = y[e“”"”o “(”‘“], (3.17)

where 7 is the time-ordering operator.

First the case of a two-terminal quasi one-dimensional system is analysed. The
model is placed in a parameter regime that should exhibit topological states and the
quasienergy spectrum is calculated analytically, while TkwanT is used to calculate the
time average of the differential conductance. Figure 3.5a shows this quasienergy spec-
trum and differential conductance. The differential conductance clearly shows two
peaks where the two bands of quasienergies occur, and the conductance drops to a
finite value €2 /h in the “gap” between the bands. This finite conductance is due to the
presence of topological edge states inside the gap (shown as the red/blue symbols in
the quasienergy spectrum).
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This can be seen even more clearly by performing a three-terminal measurement
in a T-junction geometry. Figures 3.5b and 3.5c show the three-terminal differential
conductance as a function of time after the perturbation is switched on at two different
chemical potentials. Figure 3.5b corresponds to a chemical potential inside the band of
quasienergies, whereas fig. 3.5¢ corresponds to a chemical potential in the gap (these
are marked by arrows on the y-axis in fig. 3.5a). In the former case we clearly see that
the both the conductances take unquantised, finite values and the inset of fig. 3.5b
shows the delocalised nature of the Floquet state. In the latter case, however, we clearly
see that the conductance between the left and top contacts remains zero while the
between the right and top contacts the conductance is finite and (nearly) quantised to
e?/h. In addition the inset of fig. 3.5¢c clearly shows the localised nature of the Floquet
state inside the gap.

The use of TkwanT in this work clearly demonstrates its applicability to purely peri-
odic problems, despite the fact that it is a time-resolved approach.
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(c) Conductance as a function of time for the three-
terminal setup, at the Fermi energy indicated
by the red arrow in fig. 3.5a. Inset: probability
density map at t/T = 1800, showing the Flo-
quet state localised on one edge.

Figure 3.5: Results from tkwant simulations of the half-BHZ model (see main text). Subfigures repro-
duced with permission from ref. [128].
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Split Wire Flying Qubit 4

In recent years there has been a big push to develop platforms for quantum compu-
tation. Many of the common proposals encode the quantum information (or qubits)
in localised states (e.g. on a quantum dot [132, 133], or in a superconducting junc-
tion [134-137]). An alternative proposal, referred to as a “flying qubit” consists of
encoding the information in a state with a finite velocity [138], so that the qubits can
have gate operations applied in flight as they are moved around to different parts of
the circuit. Recently a split wire geometry proposed to host and manipulate these fly-
ing qubits was realised experimentally, and has since seen an increased experimental
as well as theoretical interest [8, 139-141]. Previous efforts to simulate this system
were limited to looking at d.c. physics [8], or did not take into account the Fermi statis-
tics of the electrons in the system [138]. Experiments currently being carried out in
the group of Christopher Batierle at the Néel Institute in Grenoble hope to directly
probe the time-resolved behaviour of such a split-wire flying qubit. With the source-
sink algorithm we are perfectly positioned to numerically investigate the behaviour of
these flying qubits in the time domain, which will aid in interpretation of experimen-
tal data and design of future generations of devices. In this chapter we will start by
recovering previously obtained results for the d.c. behaviour of the split wire system,
in order to illustrate the main physical effect at play: quantum interference between
different paths through the system. This will be followed by novel time-resolved simula-
tions when a voltage pulse is applied to one of the electrodes of the split wire. We will
see the emergence of a dynamical modification of the interference compared to the d.c.
case, a concept that was recently elucidated in a number of publications [1, 2].

4.1 Simple Model for the Split Wire Geometry

Figure 4.1a shows the experimental setup that we are going to model. The setup
consists of a gallium arsnide-aluminium gallium arsenide heterostructure (dark back-
ground) with metallic gates (the light grey shapes) deposited on the surface. A two-
dimensional electron gas (2DEG) forms at the interface between the two materials (par-
allel to the page), and ohmic contacts (on the extreme right/left of the sample, out of
the view of fig. 4.1a) allow for charge to be injected into the 2DEG. Voltages applied
to the metallic gates allow the charge to be confined to restricted regions of the device.
We shall be interested in the region of the device outlined in fig. 4.1a, which we model
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Figure 4.1: Split wire setup and transverse modes. (a) Scanning electron microscope image of the ex-
perimental setup (reprinted with permission from ref. [8] Copyright 2015 by the American
Physical Society). (b) Sketch of our model setup, the gate voltage V1 controls the tunnel
barrier, V, controls the charge density in the coupling region, and V, applied to the upper-

left lead can inject charge into the system. L measures the total coupling region length, L
measures the effective coupling region length, and W measures the width of an individ-
ual wire. The yellow dashed lines labelled (c) and (d) refer to the cross sections shown
in the remaining subfigures. (c) Sketch of the 4 lowest energy trans- verse modes before
the coupled region. along with the transverse potential, V (y). The states |12, 1) and |, |)
are degenerate. (d) Sketch of the 4 lowest energy transverse modes in the coupled region,
along with the transverse potential, V (y).

as two quasi one-dimensional wires of width W that are coupled in some finite region;
this is shownin fig. 4.1b. There is a potential barrier between the two wires controlled
by the parameter Vr; this controls the tunnelling between the two wires. While the
wires in our model are formally coupled over a length L, we actually reduce the poten-
tial adiabatically along the x direction from a large value V, to V1 (the purple colour
gradient in fig. 4.1b) in order to minimise the reflection from the boundary between
the coupled /uncoupled regions. The consequence of this is that the effective length
over which the wires are coupled is smaller, L. In addition we model the potential
provided by the side-gates (light grey in fig. 4.1a) as a hard-wall boundary in the y
direction, in addition to a uniform potential in the coupled region. This potential is
uniform over the coupled region, controlled by V;, and falls adiabatically to zero out-
side the coupled region (the grey colour gradient in fig. 4.1b); this allows us to control
the number of open conduction channels in the coupled region. We ground three of
the contacts and apply a (possibly time-dependent) voltage V), to lead 1 on the left. We
model the voltage drop as being abrupt between the contact and the scattering region.
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As the Fermi wavelength is sufficiently long compared to the inter-atomic distance
of the material (A = 44nm for the electron density used in the sample of ref. [8]) we
can model the system with a continuum Hamiltonian:

. S W N h
A = [~ dr [ dydtem)| - V2 +qUrs) + gly) o

+ qup(t)G(x — M)@(—y)] P(x,y),

where m* is the effective mass of the 2DEG, g is the electronic charge, M = L/2 + 5y
(x is a length that determines the scale of the variations in U (x) and Ur(x)) and O (y)
and 6(y) are Heaviside functions and Dirac delta functions respectively. The ot (x, v)

(¢ (x,y)) are creation (destruction) operators for single particle states at position (x, ).

The potentials take the following form:

Up(x) = Vi + Vm{l - %ltanh (“L/%) + tanh (M#)” 42)

U, (x) = %lmnh (M#) _ tanh (x—:ﬂ/%)]’ 4.3)

where V is a value sufficiently large so as to render the leads effectively uncoupled
just at the start of the coupled region (to enable a smooth transition between these
regions). We discretise this Hamiltonian onto a square lattice of spacing a, using the
procedure outlined in appendix A, and perform a gauge transformation to bring the
time-dependence from the lead 1 on the left into the coupling between the lead and
the scattering region (see appendix C for details). In what follows we will express all
energies in units of the tight-binding bandwidth 5 = 4% /(2m*a?), voltages in units
of yg/e and times in units of /i /7.

4.2 d.c. Characterization of the Split Wire

In this section we will characterise the d.c. behaviour of the device. We shall see that
the split wire can be considered as an effective two-path interferometer; this point of

view will be invaluable when interpreting the time-resolved simulations in section 4.3.

In order to calculate the d.c. conductance G, , between lead ¢ on the left and lead ¢’
on the right (¢ € {1, l}) we need only use the Landauer formula [142, 143]:

2¢2

Ggrg = TDG"CF (44:)

4.2 d.c. Characterization of the Split Wire
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where D, is the transmission from lead ¢ on the left to lead ¢’ on the right, defined
by
DJ’ o= Z Tmtr',nor (4.5)

n,m

where T, ,, is the transmission probability from mode [n,0) on the left to mode
lm, o") on the right (these modes are sketched in fig. 4.1c). In all that follows we shall

assume that inter-band scattering is negligible, i.e. T, ,, = 6,,,,T where 6

mn-no',ne mn 18
the Kronecker delta.

4.2.1 Analytical Treatment Using Scattering Theory

The T,,,+ , can be calculated by using a wave matching procedure; here we will
reproduce previously perfomed calculations [8] to highlight the salient physics of the
system, while avoiding the intricacies of the more complicated model presented in
section 4.1. In section 4.2.2 we will treat the model numerically, which will allow us
to validate this simplified analytical treatment.

The full wavefunction in the uncoupled region can be written ¥, , (x,y) = (y|n, o) e
where o € {1, 1}, and itsenergy isE = E,, , + (k2/2m*)k3,m where E,, , is the energy of
the transverse mode |, o), and k,, - is the longitudinal wavevector. As the states |1, 1)
and |n, |) are degenerate for a given 1, we can also define symmetric and antisymmet-
ric superpositions:

1
In, 1) = _[ |nr5u> + Ianu)]

-5

(4.6)

In, 1) = ﬁ[ n,S,) — In,Au)],
where the u subscript reminds us that these are transverse modes in the uncoupled re-
gion. In the coupled region we also have symmetric and antisymmetric modes |1, S)
and |n, A) (illustrated in fig. 4.1d), and we suppose that the transition from the uncou-
pled to the coupled region is adiabatic, such that |1, S,,) evolves into |, S) and |, A,,)
evolves into |1, A) with no inter-mode scattering. While |n,A,,) and |1, S,,) are degen-
erate, [n,A) and |n, S) are not. This means that for a given energy the states will have
different longitudinal wavevectors, k,, 4 and k,, 5. If we are in a state |, 1) in the un-
coupled region on the left, this means that a length L after the wires are coupled we
will be in a state:

114 .71 -
|¢M) - \_E[ezkn,AL I, A) + ensL |, S>]' 47)
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The wires are then adiabatically uncoupled (near the right-hand leads) and we can
write the state as the following decomposition on the states |, 1) and |11, |) on the right:

9) = %[(eﬂcn,sl 4l Y in, 1) + (enst — onal ) jn, 1)) 48)

We immediately see that the difference in wavevectors will give rise to interference
between the symmetric and antisymmetric components. We can thus write down the
transmission amplitudes for arriving on the right in |1, 1) or |, |) given that we were
injected on the left in |n, 1):

k,o+k Ak
tyr oy = €XP (i%l) cos ( 2”]:)

kpoa+k Ak
by ny = i€Xp (iwl) sin ( 2”1),

(4.9)

where Ak,, = k,, s — k,, 4. The transmission probabilites can be calculated from these

: : 2
amplitudes using T,,p+ 1o = |tpo nor| -

4.2.2 Numerical Treatment

Having an intuitive picture of the physics at play in the system, we shall now nu-
merically study the model presented in section 4.1 using the xwant [73] package. In
addition to providing a visualisation of the concepts developed in section 4.2.1 it will
also allow us to verify that our model conforms to this simplified view.

Figure 4.2 shows how the wavevector difference changes as a function of the cou-
pling gate voltage V1 and the effect that this has on the transmission D, ; from lead 1
on the left to lead 1 on the right. We clearly see regular oscillations when the wavevec-
tor difference changes linearly. As we go to to very high gate voltages we effectively
uncouple the two wires, which explains why D, ; — 1 in this limit. The red dashed
line in fig. 4.2a shows D; ; calculated using eq. (4.9) where Ak has been calculated
numerically from the tight binding model; we see a good fit between the model and
the simple analytical result.

Figure 4.3 shows the dispersion relations for the leads (subfigure a) and in the cou-
pled region (subfigure b) calculated from the tight-binding model. We see in fig. 4.3c
the transmission probabilities for being transmitted through the first and second modes
from lead 1 on the left to lead 1 on the right. We see that the transmission probabilities
are 0 before the corresponding modes in the central region open. Note that in order
for T, , to be different from 0 we need both modes |1, A) and |n, S) to be open in the
coupled region, as |n, 0) is a linear combination of both. We see that the transmission
probabilities oscillate as a function of energy. The reason for this is clear, as fig. 4.3b

4.2 d.c. Characterization of the Split Wire
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Figure 4.2: d.c. simulation of split wire with L = 700a, W = 10a, V;, = 0.11yg/e and Er = 0.1575.
At this Fermi energy only the modes |0, 1) and |0, |} in the coupled region are open. (a)
Black full line: transmission calculated from tight-binding simulation, red dashed line:
transmission calculated using eq. (4.9) with Ak calculated from tight-binding and L as a
fitting parameter. We used L = 1242q4. (b) Tight-binding calculation of the difference in
momentum between symmetric and antisymmetric modes in the coupling region. Both
plots share the x-axis V1 scale.

clearly shows that Ak, changes as a function of energy. The inter-band transmission
probabilities T, ,,, (With m # n) are not shown, but are 0 at all energies (validating
the assumptions of the analytical derivation above); this is because the transition from
uncoupled to coupled region is done in an adiabatic manner.

One last point, which is perhaps a bit subtle, is that we expect to be able to see
these interference effects even with a large number of open channels. Indeed, at the
energy where the n+1 channel opens the Ak,, , ; is much larger than the Ak,, at the same
energy (see fig. 4.3b). This means that T, ,,, oscillates much slower thanT,, ;1 ;- 41+
at the same energy, as can be clearly seen in fig. 4.3c (at a given energy the red curve
is oscillating much more quickly than the black curve). This separation in frequency
of the different T, ,,, means that the oscillations from the different channels will be
clearly distinguishable in the full differential conductance G, .
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Figure 4.3: Dispersion relations and transmissions for the split wire with L = 700a, W = 10z,

Vi =0.27yp/e and V}, = 0.119p/e. (a) Dispersion relation in lead 1 showing the three
lowest energy modes. (b) Dispersion relation in the coupling region of the split wire, show-
ing the first 2 symmetric (full lines) and anti-symmetric (dashed lines) modes. (c) Trans-
mission probability from |0, 1) on the left to |0, 1) on the right (black full line); transmission
probability from |1, 1) on the left to |1, 1) on the right (red dotted line, shifted by 1 for clar-
ity); total transmission from the t lead on the left to the leads on the right (green dashed
line). All three plots share the y-axis energy scale.

4.3 Application of a Voltage Pulse

Now that we have the understanding of the system in d.c. we can now turn to time-
resolved simulations. We apply a Gaussian voltage pulse to lead 1 on the left and
measure the current I; (I)) leaving the system on the right via lead 1t (]). We also
measure the current [;, injected into the system by the voltage pulse. We assume that
the voltage drop is sharp and localised at the system-lead boundary. In addition, we
tune V}, such that only the modes |0,A) and |0, S) are open in the coupled region at the
Fermi energy. The pulses we apply have a full-width at half maximum of 200% /g and
a typical height of 0.03yg/e. The d.c. transmissions at the Fermi energy for the setup
are D;, = 0.1and D, = 0.9. We have L = 700z and W = 10g; in total we have 16700
sites in the scattering region.

Figure 4.5a shows the results of a simulation where the above-defined currents are
measured. Due to the large characteristic length 1/Ak,, and hence the large length of
the system, we need to go to very long times (9500 times the inverse hopping parame-
ter) in order to see the output current. The voltage pulse shown injects an average of
il = 2 particles into the system, where

efi = j: dt I, (1) (4.10)

and e is the electronic charge. We clearly see that the output current oscillates between
the 1 and | leads, which is counterintuitive; naively one would expect that the current

4.3 Application of a Voltage Pulse
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Figure 4.4: Snapshots of the excess particle density in the split wire after the application of a voltage
pulse that injects 7 = 0.1 particles on average. Red (blue) indicates positive (negative)
deviations from the equilibrium particle density. The colour scale is independently nor-
malised to the maximum density in each snapshot.

in the two leads would have the same “shape” as a function of time, and that only the
magnitudes would be different (proportional to the d.c. transmission).

Figure 4.5b shows the number of particles transmitted on the right into lead 1 (1)
and | (n;) as a function of the number of injected particles. Rather than a simple pro-
portionality relationship (where the slope would be given by the d.c. transmission), we
see that the number of particles depends non-linearly on 77 and even oscillates with 7.
This curious behaviour can be understood within the framework of dynamical control
of interference, aspects of which were elucidated in a number of recent publications [1,
2]. To understand this, one has to remember that there are already electrons in plane-
wave states filling the Fermi sea before the voltage pulse is applied. The naive picture
that the electronic wavefunction will look like some sort of Gaussian wavepacket after
the application of the voltage pulse is essentially wrong. Instead, the voltage pulse ac-
tually puts a twist in the phase of the plane-wave states occupying the Fermi sea. To il-
lustrate this, let us take a simple case where we have a perfect, infinite one-dimensional
system with a time-dependent potential applied at x < 0. Let us take the case where
the potential is initially zero and is abruptly raised to V at t = 0 and then lowered to
0 again at some later time f;. Initially the scattering states originating from the left be-
low the Fermi energy take the form of plane waves l,l)f}_,tE(t) = exp(ik(E)x — iEt/h). Just
after the potential is raised the part of the wavefunction at x < 0 will now be oscillat-
ing faster, with frequency (E 4+ V') /h. As time passes, the part of the wavefunction that
oscillates more quickly will propagate into the x > 0 region at a velocity (1/#)dE/dk.
When the potential is again lowered at t = t; the part of the wavefunction under the
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(a) Current as a function of time flowing in: lead (b) Number of transmitted particles on the right
1 on the left (I;,), lead 1 on the right (I,), and in lead 1 (1;) and lead | (n,) as a function of
lead | on the right (I)), for a voltage pulse that the injected number of particles (7i). Symbols:

injects 7 = 2.0 particles. time-resolved simulation, dashed line: appli-
cation of eq. (4.11) with L = 5964 as a fitting
parameter.

Figure 4.5: Charge transport after application of a voltage pulse on lead 1 on the left of the split-
wire. The system has L = 700a, W = 10a, V;, = 0.11yg/e, V; = 0.14467g/e and
Er = 0.159g. We use a pulse with a duration (full-width half-maximum) of 200%/7 . In
d.c. the transmissions at the Fermi energy are D,, = 0.9and D, = 0.1.

voltage pulse will again oscillate at frequency E/h, however the part that propagated
into the x > 0 region will still be oscillating at frequency (E + V) /h. This is illus-
trated in fig. 4.6. The phase of the wavefunction before and after the pulse are there-
fore offset by (e/h)V't; with respect to one another (more generally they are offset by
Q= f dt (e/h)V (t) for voltage pulses V (t)); the pulse induces a “phase domain wall”
in the wavefunction. While this explanation is not rigorous, it can be shown that this
intuitive picture is correct in the limit that the spectrum is linear (no dispersion) on
energy scales of @ (V) around the Fermi energy [57]. We can now employ this “phase
domain wall” (PDW) picture to the present case to understand the source of the oscil-
lations of n; (n,) with 1. The voltage pulse creates a PDW that propagates into the split
wire system. In the coupled region the state |0, S) has a larger velocity than |0,A) at a
particular energy, which means that the PDW will travel faster along the antisymmet-
ric component of the wavefunction than the symmetric one. If the pulse is sufficiently
short with respect to Atr = L/(vgs — vg 4) then the antisymmetric component will
have its phase modified by ¢ at the output leads before the symmetric component, and
the interference pattern will be modified during this finite interval, before returning
to the d.c. interference pattern once the PDW has arrived from the (slower) symmetric
component. Figure 4.7 illustrates this. The number of particles transmitted into each
of the leads will therefore be affected by this modification of the interference pattern.
In ref. [1] this reasoning is made more precise; in fact, as the split wire constitutes

4.3 Application of a Voltage Pulse
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Figure 4.6: Sketch of the effect of a voltage pulse V (x, t) = v(#)u(x) on a plane-wave exp(ikx — iEt/h).
The v(t) and u(x) show the profile of the voltage pulse in time/space. The orientation of
the arrows shows the phase of the wavefunction relative to a plane-wave exp(ikx — iEt).
When the voltage pulse is applied, the wavefunction oscillates faster in time, and this phase
“twist” @ propagates to the right.
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Figure 4.7: Sketch of the propagation of the phase domain wall (PDW) along the two “paths” (sym-
metric |0, S) and antisymmetric |0, A) components) in the coupled region of the split wire.
Between t = L/vgs and t = L/vg 4 the |0,S) component at the output on the right has
had its phase modified, but the |0, A) component has not. The interference between the
two components here will be different to that in d.c.; the interference has been modified

dynamically.
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a two-path interferometer, the analysis for the present case is identical to that of the

Mach-Zehnder interferometer studied in ref. [1]. Concretely, we can apply egs. (27)

and (28) of ref. [1] to the split wire system and obtain the following relations:

1 1 .

ny = ;l1+ Esin(nﬁ)cos(nﬁ+ TOL)] (4.11)
i 1 Ak

n, = gll — —sin(7ti1) cos(nﬁ+ Tol)]. (4.12)

The lines in fig. 4.5b correspond to the above analytical result where L is used as a fit-
ting parameter (we used L = 596a); we see a very good agreement with the numerics.

4.3 Application of a Voltage Pulse
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Time-Resolved Dynamics of 5

Josephson Junctions

The source-sink algorithm presented in section 2.3 allows us to perform time-resolved
simulations of quantum transport that scale linearly with the required maximum sim-
ulation time. Such scaling is very desirable for systems with a large separation of
energy (and hence time) scales. Systems that contain superconducting elements natu-
rally have two energy scales, the Fermi energy (Er) and the superconducting gap (A),
that should be well separated if we wish to simulate systems in experimentally rele-
vant regimes (for example Ep/Ag ~ 10~> for bulk aluminium at zero temperature). In
this chapter we shall study the effect of time-dependent perturbations on Josephson
junctions. We shall start with an introduction to the parts of the theory of supercon-
ductivity necessary to treat the problem with which we are concerned !. Having estab-
lished the necessary background, we will focus on 3 physical effects. Firstly we will
recover known physics of Josephson junctions: multiple Andreev reflection (MAR)
and the a.c. Josephson effect. Secondly, we will discuss the relaxation of the current in
a Josephson junction after an abrupt rise of the applied potential [144], showing how
MAR comes into play in the relaxation rate. Finally, we will study an interesting phe-
nomenon: the propagation of a voltage pulse through a Josephson junction [78]. We
see that the pulse can become trapped in the junction, leading to a periodic current at
the output that continues forever in the absence of additional relaxation mechanisms.
After the completion of this work we became aware of previous work that follows a
similar line to our own, but that used a different numerical technique [92].

5.1 The Bogoliubov-de Gennes Equation

Conventional superconductivity is well described by the Bardeen-Cooper-Schrieffer
(BCS) theory. Since their original proposal in 1957 [145, 146] there have been compat-
ible reformulations of the theory that are more amenable for direct numerical simu-
lation. Specifically, it turns out that all one needs to describe conventional supercon-
ductivity is to solve a Schrédinger-like equation in a Hilbert space twice the size of the
one required for the problem without superconductivity. The “extended Schrodinger

IThis introduction will stand us in good stead for chapter 6 where we shall study more exotic super-
conducting states and Majorana quasiparticles.
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equation” to solve is is known as the Bogoliubov-de Gennes (BAG) equation [147], and
has the following form in a discrete basis:

H-Ef A W\ _p (W 5.1)
A Er—H")\v, "\v, ) .

where H is the (possibly infinite) Hamiltonian matrix of the problem in the absence
of superconductivity, and Er is the Fermi energy. A is a matrix defining the supercon-
ducting correlations (we shall define this more precisely in section 5.1.2), u,, and v,, are
vectors in the Hilbert space of the problem in the absence of superconductivity, and
E,, is the energy. We can intuitively understand a few things about the BdG equation
by considering the case where there are no superconducting correlations, A = 0. In
this case we see that the BdG equations reduce to

(H_EF)UH=E u

nTn

(H—Ep)v;, = —E,v;,

nr

(5.2)

i.e. the two solutions correspond to solutions of the Schrédinger equation with ener-
gies E, and —E,, with respect to the Fermi energy; we thus identify the u,, and v,
parts of the solution as being associated with electron (above the Fermi energy) and
hole (below the Fermi energy) excitations respectively. More generally we notice that
if (uH VH)T is a solution to eq. (5.1) with energy E,,, then (—v; u,’f,_)T is also a solu-
tion but with energy —E,,. Figure 5.1 shows the dispersion relation for an infinite 1D
chain as we add the successive ingredients needed for superconductivity. We see the
redundancy in the description using the BdG Hamiltonian, due to the “particle-hole”
symmetry of the BdAG Hamiltonian, exemplified by fig. 5.1b; the same information
is encoded in the electron (blue) states as the hole (red) states. We nevertheless re-
quire these two components; when A # 0, in fig. 5.1c, the presence of the pairing term
A = Ayl opens a gap of size 2A in the spectrum around E = 0. A is therefore referred
to as the superconducting gap.

A Prescription for Time-Dependent Problems

As the BdAG formalism deals with a single-particle Hamiltonian (albeit in a Hilbert
space twice as large), we can use it in our framework for time-dependent transport. All
we need do is to obtain the scattering states of the infinite system by solving eq. (5.1)
instead of eq. (2.2). We fill up these scattering states using the Fermi-Dirac distribution
(noting that the Fermi level is now fixed at E = 0, due to the presence of the —Ep
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(c) BAG Hamiltonian with A = Aj1.
Figure 5.1: Dispersion relations for a 1D chain with successive ingredients required for superconduc-
tivity. The line colouration depicts the electron-like (blue) or hole-like (red) nature of the
states, light/dark shading depicts the states that are empty/filled at zero temperature. (a)

and (b) describe the same physical situation (no superconductivity), and (c) describes a
system with superconductivity.

in the definition of the BAG Hamiltonian), and evolve the scattering states using the
generalisation of the time-dependent Schrédinger equation, eq. (2.4):

ind (uag(t)) _ (H(t) —Er AWM )(uag(t))' 53)
ot\ v, g (t) A* (1) Ep—H*(t) )\ v e(t)

All that remains is to then calculate observables using eq. (2.5) as usual.

5.1.1 Calculating Charge and Current in

Superconducting Systems

Even though the prescription for calculating observables is clear in principle, one
should nonetheless be careful when calculating densities and currents, as the wave-

T
function (u v) represents a state that does not have a well-defined charge. The u part is

5.1 The Bogoliubov-de Gennes Equation
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electron-like, with charge —e, and the v part is hole-like, with charge e. We can define
the probability and charge densities on site i, o} and p¢ respectively, as

. i 1 0\ (ut)
TACENCUHG Uf(f))([} 1)(Uf(t))
) ~ . i 1 0 u;(t)
o5 (8) = g (3 (1) 0:-(”)(0 _1)(vf<t>)'

where g is the charge of the particles (—¢ for electrons), and u;(t) and v;(f) are the

(5.4)

components of u(t) and v(t) on site i. Using the continuity equation

WC rlc _ o
at’ () - ZI (5.5)

where the sum runs over all sites, leads to the probability and charge currents:

2 Hy(h) —Epdy Dy ;(b)
Py = = . . j j j j
() hj[(u’(t) UI(”)( A5 (b EF(Sfj—H;}(t))(Uj(t))]

q H;;(t) — Epd;; Ay (1) u;(t)
I5.(t) = 2 * * ) j )
G () hﬁ[(ut(t) o (t))( i H o~ By o

where Hf}- (t) and A,;}-(t) are the elements of the matrices H(t) and A(t) respectively. In-

(5.6)

tuitively we think of I;; as the “flow” of something along the hopping connecting sites i
and j. Note that [ is strange, however, as the component I, (t) = 4(q/h)3[u;‘ (HA; (DY, (t)]
is non-zero in the presence of superconductivity. What this means is that if we naively
compute the sum of the currents flowing across the hoppings from site i to all con-

nected sites j, the charge on site i will not be conserved due to this “onsite current
term I7,.

5.1.2 From Second to First Quantisation

The preceding sections provide a complete scheme for calculating time-resolved
observables in superconducting systems. For the sake of completeness we will now
briefly review how eq. (5.1) is obtained from the mean-field treatment of an interacting
system. This is standard material and can be skipped by readers familiar with the
theory of superconductivity.

We shall start from a Hamiltonian for electrons with a local, attractive two-body
interaction,

H Z (hr} EP(SIJ)CW jo -V Z 6;_!-16;‘_'-16{1 61"[; (57)
i

ijo
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where E;LT (Ej ;) is an electron creation (destruction) operator for an electron with spin
up (down) on site i (), h,;}- are the matrix elements for the non-interacting Hamiltonian,
V is the strength of the interaction, and J;; is the Kronecker delta. Applying the mean
field approximation to eq. (5.7), following [147] we obtain

EEDY [Z (hy — Epdyy + Uy )él, G + Dycheh + 55,6 (5.8)
ij Lo
with

The effect of the local interactions within the mean-field treatment is thus to add two
terms that are diagonal in site space: U, which acts like a regular potential, and A,

which is some kind of anomalous potential. We shall refer to A as the pairing potential.

We can rewrite eq. (5.8) more transparently by writing it in matrix form:
. 1 ""I' .
i

where

] »
s

—
—

¥

¢ = (5.11)
jl
_5;_;
is a vector of creation /annihilation operators for electrons with spin up/down on site
j, and H;; is a matrix

~

h;; A; 0 0

if if
Ax —h* 0 0
HI}‘ = K gl ~ (512)

0 0 A —1”1;}

with ﬁ,;),- = h;j — Epd;; + Uj;. The minus sign is needed in the definition of ¢; because
of the anticommutation of the constituent fermionic operators (this can be seen by
explicitly expanding out eq. (5.10)). Writing everything in this form makes explicit
the fact that our Hamiltonian is still a quadratic form that can be diagonalised by a
unitary transformation. The only difference from the “usual” case is that the unitary
transformation will mix the ¢ and ¢*. Also it is made explicit that the Hamiltonian

5.1 The Bogoliubov-de Gennes Equation

87



88

is block diagonal, and that each of these blocks is exactly the Bogoliubov-de Gennes
Hamiltonian of eq. (5.1)2. Explicitly, the so-called Bogoliuboo transformation [147-149],
that diagonalises eq. (5.8) is

— ~t z
= Z UnjCjy + UnjCjy

Zum o = Ot

(5.13)

where the B are creation operators for Bogoliubov quasiparticles that (by definition) are

energy eigenstates of the Hg, and the u,,; and v,; are complex numbers that satisfy

nj

the relation }° u; .u,; + v}, :0,; = J,,,, which ensures that the Bt satisfy fermionic an-

j imj mj-nj
ticommutation 1e1at10ns. By inverting eq. (5.13) and inserting the expressions for the

¢* and ¢ into eq. (5.8) we obtain a set of linear equations for the uy; and v,,;. The ob-

tained linear equations are exactly the BAG equation, whereu,, = (uﬂg Uy )T and
v, = (’U,IO () ) T. We now also see from eq. (5.13) that the u,,; are the amplitudes
for electron creation, whereas the v,,; are the amplitudes for electron annihilation (i.e.
hole creation), which justifies the identification of u and v made in section 5.1.

Formally we should determine A;; and Uj; self-consistently from the obtained solu-
tions and eq. (5.9) (see [147] for details). In practice we shall assume that the effect of
Uj; is already included into our model for the non-interacting Hamiltonian elements.
In addition, as we shall be dealing with superconductivity in the electrodes of our sys-
tem, we shall treat A;; as being spatially invariant there, and 0 outside of the electrodes.
Aj; shall thus be a parameter of our model.

5.2 Relevant Concepts for Superconducting

Junctions

In this section we shall introduce the concept of Andreev reflection from a normal-
superconductor boundary. This phenomenon will be the fundamental ingredient nec-
essary to understanding the behaviour of Josephson junctions (a normal region sand-
wiched between two superconductors). We will see how Andreev bound states within
a Josephson junction give rise to a current, even in equilibrium, and how a voltage bias
across a Josephson junction leads to the Hamiltonian of the junction being necessarily
time-dependent.

2Although in the case where the Hamiltonian is not spin independent the two spin blocks will not be
identical, and in the case where the Hamiltonian is not diagonal in spin space the Hamiltonian will
no longer be block diagonal either.
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(a) Semiconductor Picture: electrons at energy E > Er are reflected as
holes in the Fermi sea with energy E < Ef.

(b) Excitation Picture: excitations on the electron branch are reflected
onto the hole branch with the same energy.

Figure 5.2: Two equivalent views of the Andreev reflection process between a normal (N) electrode
and a superconducting (S) one.

5.2.1 Andreev Reflection

Andreev reflection is a process that occurs at the boundary between a normal mate-
rial and a superconducting one, where an electron (hole) incident from the normal ma-
terial is reflected as a hole (electron). By solving a scattering problem (see section 2.2)
with a normal electrode and a superconducting one it can be shown [150-152] that
the amplitude for an electron of energy E to be reflected from the superconductor as

The(E) = e#| — — it 2 (5.14)

Ao Ao

a hole is

where Ay and ¢ are the magnitude and phase of the pairing potential in the super-
conductor. For E < Aj (E measured from the Fermi energy) we have |r;,,| = 1, ie.
an incident electron is always reflected as a hole when it has an energy less than the
superconducting gap. Figure 5.2 shows an illustration of this process.

5.2.2 Josephson Junctions

Having established Andreev reflection we shall now look at a Josephson junction
formed from two superconducting electrodes separated by a piece of normal mate-
rial. We shall initially consider the case where there is no bias voltage across the junc-
tion, but the pairing potential in the left superconductor has a phase ¢ with respect to
the right one. As the left and right superconductors both have a gap of +A, around
the Fermi level, any states of the isolated central region with energies inside the gap

5.2 Relevant Concepts for Superconducting Junctions
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of the electrodes will be bound states of the fully connected system. We can imag-
ine these bound states as being formed from the successive possible Andreev reflec-
tion processes at the left and right electrodes. The spectrum of the bound states can
be obtained from a scattering approach [153]. What is interesting about the Joseph-
son junction is that the bound states actually carry a current, which varies with the
phase difference ¢ across the junction. In fact, at equilibrium and zero temperature
the bound states are the only part of the spectrum that carries a current; the contin-
uum contribution from the left and right superconductors cancel. This equilibrium
current is known as the d.c. Josephson effect. Figure 5.3b shows a numerical calculation
of the d.c. Josephson effect in a 1D Josephson junction for various phase differences.
The current was computed by obtaining the bound state wavefunction of the junction
for E < 0 (see section 2.1.1, we used 2000 sites in each of the superconducting regions)
and applying eq. (5.6) in the normal part. In this calculation there was a single normal
site in the superconducting region, leading to a single pair of bound states in the gap
(at energies +E, < 0 and —E;, > 0). Figure 5.3b also compares the calculation of the
current using eq. (5.6) with a calculation using the relation

2e aEb
I= TR (5.15)
This is a special case [154] of the more general relation
2e JF

where F is the free energy, applied to the Josephson junction at zero temperature.

Junctions under Voltage Bias

Next we shall look at the behaviour of a Josephson junction when a constant bias
is applied to one of the superconducting contacts. We shall see that even when the
applied bias is time independent the Hamiltonian describing the junction is time depen-
dent. This in turn leads to a time-dependent current flowing across the junction; this is
known as the a.c. Josephson effect. We will numerically simulate this in section 5.3.1.
In order to treat this situation properly we have to go back to eq. (5.8). If we write
down the mean-field Hamiltonian for a 1D junction with a voltage drop at the inter-
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(a) Energy of Andreev bound state with E < (b) d.c. Josephson effect. The lines and points
are calculated using eq. (5.6) and eq. (5.15)

respectively.

Figure 5.3: Bound state energy and current for a 1D Josephson junction with a single normal site and
phase bias ¢ at zero temperature. solid and dashed lines are for junctions with transmis-
sions of 1 and 0.75 respectively; the grey dashed lines are guides for the eye.

face between the left superconductor and the central (normal) region (we shall take
this interface to be between sites 0 and 1) we get?

o Z [Z ei@(t)c'i_uéo;(hij _ EP‘SJ‘.}' + Uij)cj'gcﬂjor"'
if o

ANg(0_; + 6;_ ,)(5

(5.17)

iiCit ;1 +85(0_; + 91—1)5:?;5;15:'7]

where ¢(t) = (e/h) f Vy, dt and V), is the bias voltage, the normal region consists of
sites 0 to [ inclusive, and 6, is a discrete Heaviside function, defined as 1 if m > 0 and
0 otherwise. Figure 5.4 illustrates this Hamiltonian as a “ladder” consisting of electron

and hole sites. If we now apply a gauge transformation*

Ut = nef‘?’(f)(‘f}rfﬁ’ffﬂén) (5.18)
j<0
then our transformed Hamiltonian is

H = ; [; (hy — Epdy; + Uy +eVy8;6_, )el, &ip+ 519

No(6_ie™2PD + 6, 1)dychel, + AS(0_i 2D + 6,_1) 55,8 | -

3Expressed in a gauge where the scalar potential is zero and the vector potential is non-zero exactly

at the voltage drop.
4This corresponds to a transformation into the Coulomb gauge, where the vector potential will be zero
and the scalar potential is non-zero in the left superconductor.

5.2 Relevant Concepts for Superconducting Junctions
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Ao
S N S

Figure 5.4: Tllustration of the Hamiltonian eq. (5.17), showing the superconducting (S) and normal
(N) regions, as well as the hopping modified by the bias voltage on the left (between sites
0 and 1). The blue and red sites correspond to electron and hole sites respectively. The
system extends to infinity on the left and right.

In addition to the usual onsite term eV}, we see that the voltage bias also causes the
superconducting terms in the left superconductor to pick up a time-varying phase. We
can see how the a.c. Josephson effect arises from this by considering the case where the
bias voltage is small compared to A;. In this case we can look at the adiabatic regime
where the only effect of the bias is to modify the phase across the junction (and we
assume that the junction remains in its equilibrium state at all times). At constant bias
voltage the phase evolves linearly in time: ¢(t) = 2eV,t/h. As I(@) oscillates with ¢
(see fig. 5.3b), this gives rise to a current that oscillates in time with angular frequency
2eV, /h: the a.c. Josephson effect.

When we leave the adiabatic regime we can no longer consider the junction to be in
a quasi-equilibrium state. One way to picture what happens in the junction in such a
regime is to think about the multiple Andreev reflection (MAR) processes that occur
when particles traverse the junction. This is most easy to visualise in the semiconduc-
tor picture, as shown in fig. 5.5. We see that at large bias eV}, > 2A quasiparticles can
tunnel directly from the “valence” band of the left superconductor to the “conduction
band” of the right superconductor. As the bias is lowered so that Ay < eV}, < 2A, the
direct tunneling process is no longer possible, but an electron-like (hole-like) excita-
tion can tunnel into the junction from the left “valence band”, be Andreev reflected on
the right and tunnel back into the filled “valence band” as a hole-like (electron-like)
excitation. As the bias is further lowered into the region Ap/2 < eV}, < Ag the process
with a single Andreev reflection no longer becomes possible, and an excitation must
undergo two Andreev reflections (ending in the right superconductor) to escape the
junction. We can see that whenever eV, is increased past 2A /n (n € Z) thatanew pro-
cess with only n Andreev reflections becomes available. This opening of new “paths”
through the junction gives rise to kinks in the sub-gap current-voltage characteristic of
a Josephson junction, as we shall see in section 5.3.1. This picture will also be used in
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(a) Ag/2 < eV}, < Ay: processes with 2 (b) Ay < eV}, < 2A,: processes with 1
or more Andreev reflections are pos- or more Andreev reflections are pos-
sible. sible.

(c)eVy, > 2Aq: direct tunnelling pro-
cesses are possible.

Figure 5.5: visualisation of the multiple Andreev reflection (MAR) processes in a biased Josephson
junction. As the bias is raised processes with fewer and fewer Andreev reflections become
available, until the bias voltage eV, exceeds 2A,, twice the superconducting gap, when
quasiparticles in the “valence band” of the left superconductor can directly tunnel into the

“conduction band” of the right superconductor.

section 5.3.2 to explain the relaxation of Andreev bound states in the non-equilibrium

regime.

5.3 Time-Resolved Simulations of Josephson

Junctions

We are now in a position where we can perform time-resolved simulations of Joseph-
son junctions and be able to interpret our results within the framework of the concepts
introduced above. We shall use the same basic model of a 1D SNS junction for all the
simulations presented in this section. We can write down the elements of the BAG

Hamiltonian compactly as:

Hy; = (27— Er + U6, — 6]
H, j,1(t) = —yexplip(t)d_y ;]

5.3 Time-Resolved Simulations of Josephson Junctions
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where y = h?/(2m*a?) is the hopping parameter of the discretised problem (m* is the
effective mass), I = L/a where a is the discretisation step used and L is the junction
length. U is a potential barrier present in the normal region that will induce normal
scattering. ¢(t) = (e/h) fot V,(t) dt'is, as usual, the integral of the time-dependent bias
voltage applied to the left electrode. We see that this Hamiltonian describes a normal
region of length L (our central region) attached to two superconducting regions (the
electrodes). We model the voltage drop as being abrupt at the superconductor-normal
interface. For all the simulations presented below we shall use the parameters Er = 7y
and A = 0.027 unless otherwise stated. The different situations that we will consider
will correspond to: different forms for ¢(t), e.g. a constant bias or a pulse; different
lengths L, that will allow us to consider both short and long junctions; and different
transmissions of the central region, which can be controlled by U.

5.3.1 Multiple Andreev Reflection and the a.c. Josephson
effect

Let us start by simulating the a.c. Josephson effect in a short junction. We set L such
that there is only a single normal site in the central region, and we set U such that the
transmission through the junction is 0.7. We use a bias voltage of the form

0, t<0
Vi(t) = %(1 —cos(%‘)), 0<t<T (5.21)
Vi, t>T.

We see that this corresponds to raising the bias voltage from 0 to V, during a time T
(~ h/Ap). The reason that this procedure is necessary is because of the presence of
Andreev bound states (see section 2.1.1).

Figure 5.6 shows the current calculated at the interface between the left contact and
the central region, compared to the adiabatic result discussed in section 5.2.2 (the spec-
trum E(¢@) was calculated from the equilibrium junction and differentiated numeri-
cally). We see that the two results agree at low bias, but that the adiabatic result is not
sufficient to capture the behaviour in the strong bias regime; hence the added value
of numerical techniques in such a regime.

As we increase the bias we see a d.c. component appearing in the current. This
is due to the MAR processes discussed in section 5.2.2. With our simulations we
can go beyond the low bias regime and look at the full current-voltage character-
istic, which should allow us to see the effect of the MAR even more clearly. The
Fourier components of the MAR current have been previously calculated using a Flo-
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Figure 5.6: The a.c. Josephson effect. The different curves show the calculated current as a function of
time for different bias voltages across a short junction with a transmission of 0.7. The full

curves and symbols show the theoretical and numerical results respectively. The curves
have been vertically offset for clarity.

quet approach [155, 156], and are routinely observed experimentally (see for instance
ref. [157]). More recently, some numerical results were obtained with techniques work-
ing in the time domain [92, 144]; our simulations follow a similar line here. We per-
form a series of simulations for different bias voltages and calculate the d.c. compo-
nent of the current by averaging over a number of periods. The results are shown in
fig. 5.7 for different values of the junction transmission (D) and are compared with the
analytical results of ref. [155]. We see a very good quantitative agreement with these
previous results, and nearly perfectly reproduce the “kinks” whenever new MAR pro-

cesses become possible.

We can also go beyond the limits of analytical approaches for a modest extra com-
putational cost. We can, for example, explore the behaviour of a long Josephson junc-
tion under voltage bias. Figure 5.8 compares the current-voltage characteristics of a
long junction with the short junction studied previously. We clearly see that the long
junction has more sub-gap features, which can be attributed to the larger number of
Andreev states below the gap. We see that numerics has an advantage over analytical
approaches in this regard, in that it is relatively cheap to explore new regions of pa-
rameter space or in crossover regions between tractable limits (e.g. short junction vs.
long junction).

5.3.2 Relaxation of Andreev Bound States

The above calculations were performed using the procedure for including the bound
state contribution discussed in section 2.1.1. While this contribution is necessary to get

5.3 Time-Resolved Simulations of Josephson Junctions
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Figure 5.7: d.c. current-voltage curve showing the analytical results from ref. [155] (dashed line) and
the source-sink numerical calculation (points) for different values of the transmission (D)

of the insulating link. Inset: time series corresponding to the enlarged points in the main
figure, showing a typical averaging window over which the d.c. current was calculated.

the correct transient behaviour of the current, in this section we shall see that in the
presence of finite bias the contribution of the initially filled Andreev bound states to
the current tends to zero with time. We shall see that this relaxation can be seen to
come from MAR processes that are not available in the equilibrium junction. This
means that in the presence of finite bias the long-time behaviour of the system will be
independent of the initial filling of the Andreev bound state(s).

Suppose that we start in equilibrium at f = 0, and att = 0% we abruptly raise the bias
voltage, thereby placing the system in a non equilibrium state. Just after the voltage
rise, a given wave function can be decomposed on the eigenbasis of the equilibrium
SNS junction,

TURESY f dE cup ¢35 + )y, (5.22)
[ n

where c,r and c,, are respectively the projection of the wave function on the scattering
states (¢5%) and the Andreev bound states (tpH“d). It is important to realize that in
the absence of bias voltage, the bound state part of the wave function will never relax
(within the above model) as the Andreev states are true bound states with energy E,;:
the second part of the wave function will simply oscillate as ) cpeEntypbrd forever.,
However, the presence of the bias voltage allows the energy to change by eV in between
successive Andreev reflections so that after N ~ Ay/(eV},) reflections, one can reach
energies outside the gap and the wave function can relax. Denoting 7p = L/vf the
time of flight between two Andreev reflections, we expect the relaxation time 7y of
the system to behave as Tz o« N1 = LA/ (vpeVy).
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Figure 5.8: Comparison of the current-voltage characteristics for a short junction (one site in the nor-
mal region) and a long junction (120 sites in the normal region). Both the junctions have a
transmission of 0.7.

Figure 5.9 shows the contribution to the current coming from the initially filled An-
dreev states as a function of time for different bias voltages. We indeed see that the
current carried by the bound states dies away with time in presence of a finite bias. Al-
though we did not define T precisely, we clearly see that dividing V/, by a factor of 10
leads to a tenfold increase in the relaxation time, establishing the relation 7z o« 1/V,
that originates from the MAR assisted relaxation process.

5.3.3 Propagation of a Voltage Pulse

A natural consequence of the above discussion is that if one sends a fast voltage
pulse through the system (i.e. the final bias voltage vanishes instead of having a fi-
nite value), then the corresponding bound state contribution will not relax and will
oscillate forever (within the assumptions of our model).

Long Junction

We shall first look at a transparent (U = 0), long junction and apply a Gaussian
voltage pulse of duration (full-width at half-max) 7,, on the left superconductor. The
time of flight through the junction at the Fermi energy is then 7 = L/vr where vf is
the Fermi velocity. Our junction is “long” in the sense that Ag7p/# > 1 (it consists of
350 sites in the central region, and we used Ay = 0.1 for these simulations), and we
will look at “fast” pulses where 7r/1, > 1 (7¢/ 7, ~ 5 in our case). Intuitively we can
have the following picture of how the system evolves after the voltage pulse is applied.
The pulse generates an electron-like excitation that propagates through the system
until it reaches the right superconductor. There, it is Andreev reflected as a hole-like
excitation. The excitation now propagates backward towards the left superconducting

5.3 Time-Resolved Simulations of Josephson Junctions
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Figure 5.9: Current contribution from the (Andreev) bound states at different bias voltages. The
curves have been offset for clarity. The inset shows a zoom of the curve for V;, = A/e.
Ag = 0.17 for these simulations.

electrode where it is Andreev reflected a second time. As the voltage pulse was fast
with respect to the time of flight, the voltage on the left electrode is again 0 when
the excitation reaches it. This means that upon Andreev reflection the excitation does
not pick up any energy (as it would if a finite bias were applied). Consequently the
excitation cannot escape the junction and continues to oscillate back and forth forever.
This is rather appealing: one sends a short voltage pulse and gets an oscillating current
at frequency 1/(27r). Beyond the current model, the relaxation time of the system will
be given by the fluctuations of the voltage due to the electromagnetic environment and
we anticipate a relaxation of the current on a scale given by the corresponding RC time.

Figure 5.10 shows a numerical simulation of the propagation of a voltage pulse as
discussed above. Despite the fact that there is only a single voltage pulse at the start,
we see pulses of current every 27y. We do not observe any quasiparticle current in
the superconducting lead; this (super)current is purely associated with the Andreev
reflection process described above.

We can go a little bit further and look at the structure of the bound states that carry
the supercurrent. They are given by the stationary condition [153]

ra(E)2e2ETe/hei? = 1, (5.23)

where the left-hand superconductor is at a phase bias ¢ compared to the right-hand
one and 74 (E) is the Andreev reflection amplitude given in section 5.2. The paths
contributing to this amplitude are sketched in fig. 5.11a. A similar expression exists
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Figure 5.10: Current (blue full line) and voltage (red dashed line, offset for clarity) at the left
superconducting-normal contact as a function of time. Inset: propagation of the charge
pulse through the junction at different times (4, t,, t3, ;) and the corresponding times
indicated on the main plot.

for the reversed paths where the sign of ¢ is flipped; this is sketched in fig. 5.11b. For
E < Ay we can re-write this condition as

2E
— 2arccos(E/Ag) + % +¢=2mm, meZ. (5.24)

In the long junction limit (Ag > #1/7F) close to zero energy this simplifies to:
h 1
[ = —lm+—$£] (5.25)

which corresponds to two sets of equidistant energies separated by //(27f): one set
has energy increasing with ¢, and the other decreasing with ¢. Each of these sets
corresponds to ballistic propagation in the continuum limit 7p « Tp. The numerical
spectrum, which is shown in fig. 5.12, adheres to the above-derived result except near
the degeneracy points. The degeneracies are lifted due to the finite ratio Ag/Er used
in the numerical calculation, which induces a finite normal reflection at the normal-
superconducting interfaces. The two insets of fig. 5.12 show two time dependent sim-
ulation at two different values of the superconducting phase difference after the pulse,
@ = @(t = o0). We see that when the two sets of bound states are very close in energy
the output current beats with a frequency which is given by the level spacing. For
well-spaced bound states this frequency is so high that it has no visible effect on the
current trace.

5.3 Time-Resolved Simulations of Josephson Junctions
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Figure 5.11: Sketches of the two classes of paths that can result in bound states. The full lines cor-
responds to an electron-like excitation, and the dashed line to a hole-like one. Andreev
reflection at the normal-superconductor interface converts an electron-like excitation to
a hole-like one. Each sketch actually represents a set of paths with 1, 2, 3, ...pairs of
Andreev reflections.

Short Junction
The above effect is intriguing, but unfortunately long ballistic Josephson junctions

are difficult to realize experimentally (with the exception perhaps of carbon nanotubes).
In diffusive junctions there will be a distribution of times of flight which will wash out
the above effect. An alternative is to consider the limit of short junctions, which have
been studied extensively experimentally with atomic contacts (break junctions) [157].
We shall, therefore, now explore the effect of a voltage pulse applied to a short Joseph-
sonjunction. We do not expect to be able to see a train of well-resolved peaks of current,
as in the long junction case, because the time of flight of the short junction is much
shorter than the typical pulse duration. We do, however, expect to see the effect that
gives rise to the “beating” in fig. 5.12, as this is governed only by the energy difference
between the Andreev bound states in the junction. Figure 5.13 shows the current pass-
ing through a short junction when voltage pulses of varying heights are applied. We
see an initial transient part followed by an oscillatory part that continues indefinitely.
Initially, all the states up to E = 0 are filled. The pulse excites some quasiparticles into
states at E > 0 and also shifts the phase bias across the junction so that we are at a
different place in the phase-energy plot than we were before the pulse (indicated by
dashed lines in the inset to fig. 5.13). Any quasiparticles in continuum states escape
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Figure 5.12: A section around E = 0 of the bound state spectrum after the passage of a pulse as a
function of the phase ¢ picked up from the pulse. The vertical dashed lines highlight
the bound state energies for two values of ¢. The current flowing through the junction
as a function of time is shown in the traces above the main figure. The spectrum was
calculated numerically by diagonalizing the Hamiltonian of the system projected onto a
large, finite region around the junction

into the leads after some time (~ 20%/A in fig. 5.13), however the contribution in the
Andreev bound states cannot escape. After we have reached a steady state we are es-
sentially in a superposition of Andreev bound states at energy E and —E. These two
contributions interfere with one another to give a current that oscillates in time at angu-
lar frequency 2E/h. This effect is most strongly seen for ¢ = 7, as the Andreev levels
have the smallest energy gap here. For ¢ = 27 the oscillations die away with time, as
the Andreev levels hybridize with the continuum at this point. By tuning the energy
gap between the Andreev levels after the pulse we are able to control the frequency
of the current. We can tune the energy gap by placing ourselves at different points in
the phase-energy diagram (by sending in pulses of different heights), or by tuning the
transparency of the junction to modify the phase-energy diagram itself.
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Figure 5.13: Current traces as a function of time for three different voltage pulses applied to a short
Josephson junction with a transparency of 0.9. The curves have been offset for clarity.
Each pulse has a full-width half maximum of 0.4%/A,, and the pulses are of different
heights. This gives a different phase bias, ¢, across the junction after the pulse has com-
pleted. Inset: The bound state spectrum for the junction as a function of the phase bias,
the phases accumulated by the three pulses are indicated by coloured lines.
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Manipulating Andreev and 6
Majorana Resonances in

Nanowires

In chapter 5 we studied the effect of a voltage pulse on a Josephson junction, and saw
several interesting effects due principally to the unique role that the Andreev bound
states play in superconducting systems. Even earlier in chapter 4 we saw how the
electronic wavefunction had its phase twisted by the application of a voltage pulse, and
that this leads to a dynamical modification of any interference in the system. In this
chapter we shall connect these two ideas to study the effect of a train of voltage pulses
applied to a normal-insulator-normal-superconducting (NINS) junction; we shall see
how this leads to a steady state modification of the interference. We shall then turn to a
more involved model that exhibits exotic Majorana excitations, and will show that we
can use the same trains of voltage pulses to manipulate them. Finally we shall show
that we can identify Andreev and Majorana states by “spectroscopy” in the presence of
a train of voltage pulses. This may have implications for detection of Majorana states
in recent experimental setups [158].

Vr
_|_—||—||I
Vy + Ve(t) TNl N S

i
.

—= L

.
L

Figure 6.1: Sketch of the junction to be studied. A section of normal material (N) coupled to a su-
perconducting region (S), with an insulating barrier (I) at a distance L; from the NS junc-
tion. The height of the insulating barrier can be controlled with a gate voltage V1, and the
junction has a time-independent bias V', applied, as well as a time-dependent component
Vp(t).
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6.1 Model for
Normal-Insulator-Normal-Superconductor
(NINS) Junctions

In this section we shall present the general system under study, and the model that
we shall use in the numerical simulations that follow. Figure 6.1 shows a sketch of
the system: a one-dimensional wire consisting of a normal region (N) coupled to a
superconductor (S), with an insulating barrier (I) in the normal region at a length L;
from the normal-superconductor interface. The height of the insulating barrier can
be controlled with a gate voltage V1, and the whole junction has a bias V;, + Vp(t)
applied. The Hamiltonian for this model is:

Hh = [ de ¥ (0)Hpgo(x, HT () (6.1)
where x is the position along the nanowire,

P ()
Z P,
WV(x) = " 6.2
) HEY (-2
— i (x)

is a vector of creation/annihilation operators that create/destroy particles with spin
up/down at position x and Hgyg (%, t) is the Bogoliubov-de Gennes Hamiltonian given
by

2 52

onr 52+ eVd(x) 4+ eVp(HO(—x) — Epl‘tg, +A0O(x - LTy (6.3)

HBdG (x! t) =

where m* is the effective mass, e is the electronic charge, Ag is the superconducting
order parameter, Er is the Fermi energy, and 0(x) and d(x) are the Heaviside and
Dirac delta functions respectively. The <, are Pauli matrices that act in particle-hole
space; for the above-chosen basis they can be written as

01 0 —i 1 0
t1=(1 0)‘3‘]12: t2=(i 0)‘3‘]12: 't3=(0 _1)‘3‘]12 (6.4)

where 1, denotes a 2 x 2 identity matrix and ® is the Kronecker product. Initially the
problem may seem over-specified — as our Hamiltonian is currently spin independent
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(b) Electrical potential gradient: states on the left
are filled the same as in equilibrium, but the
band is shifted.

(a) Chemical potential gradient: more states on
the left are filled compared with equilibrium.

Figure 6.2: Comparison of application of electrical or chemical potential across a normal-
superconducting junction.

—however we have started with this sufficiently general formulation so as to introduce
the necessary notation for section 6.4.2. As usual we perform a gauge transformation
(see appendix C) and discretise this model on a lattice of spacing a to obtain the tight
binding model

oo\ ot 4, at .
)

where Ej = {If(ja) and

H;; = [2y — Ep + eVrdp j]es + Agb; 1 T

Hjja = —7¢

ipp(t)5_q,T - (6.6)

where v = h?/2m*a? is the hopping parameter, l} = L}/a, @p(t) = (e/h) f(: Vp(u)du,
)
m > n and 0 otherwise. The astute reader will notice that the static bias V;, does not

m n 18 the Kronecker delta, and 6,, ,, is a discrete Heaviside function, defined as 1 if
appear in any of these expressions for the Hamiltonian. The reason for this is that
we shall apply the static bias as a modification to the chemical potential of the left lead
(x < 0); this means that it will only enter into the statistical physics part of the problem,
when we integrate over all energies when calculating observables. This means that we
start in an out-of-equilibrium situation at t = 0 (finite bias), which negates the need to
manually raise the bias from zero and wait for the system to relax; this is clearly advan-
tageous from a numerical point of view. Figure 6.2 illustrates the difference between
the addition of a purely chemical potential, as opposed to an electrical potential®. Con-
cretely this allows us to write the following expression for the time-dependent current,
applying eq. (2.7) to the present case:

dE
I = [ - [fE = eV LE D +fBLED)] (6.7)

IThis difference was extensively studied in ref. [122]
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wheref (E) is the Fermi function centred around Er, and I;(E, t) and I, (E, t) are defined
by the contributions to the current flowing across the system/lead interface between
sites 0 and 1 at injection energy E from scattering states originating in the left (/) and
right (r) leads respectively:

I (E, t) = 2¢3{ [¥! () ]1eaHy o[ ap ()]0}, (6.8)

where H, g is defined by eq. (6.6), T3 is defined by eq. (6.4), and [, £(f)]; is a vector
of components of the scattering wavefunction on site j at time t originating in lead a
at energy E, in the basis defined by eq. (6.2). We see that this allows us to write the
following expression for the time-resolved differential conductance:

a(t) dE df

8—Vb =~ )31 aE . I)(E, 1), (6.9)

where primes denote derivatives. As df/dE is sharply peaked around the Fermi
level (in the limit of zero temperature df /dE — J(E — Ef)) this means that calculat-
ing the time-resolved differential conductance is computationally much cheaper than
calculating the full current, as only a relatively small energy window needs to be in-
tegrated (and only a single energy Ep + V, is needed in the zero-temperature limit).
In all the cases that follow we are going to consider a periodic driving Vp(t) (a train
of voltage pulses, for example), so the output current I(¢) will have the same period-
icity in the steady state. Assuming that I(t) has period T after some time t’, we can
define a more experimentally relevant quantity, the time average of the time-resolved
differential conductance:

ol (t) 1 dE df
<av1,>T=_T 27 dE

t'+T
j dtI;(E, 1. (6.10)
t!

E—evb

This corresponds to a d.c. measurement of the differential conductance in the presence
of the periodic driving Vp(t). The time average is taken at a time t’ sufficiently large
that the system will have reached a steady state: Even though we start at finite bias at
t = 0, our approach still requires that Vp(t), the time-dependent part of the bias, be 0
at t < 0 so the system will take a finite time to reach a steady state.
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6.2 Scattering Approach to Andreev

Resonances

In section 5.2 we introduced the notion of Andreev reflection, when an electron
is reflected as a hole from a normal-superconducting (NS) interface. In our NINS
junction the presence of the insulating barrier provides a further source of reflection
(normal reflection this time, as opposed to Andreev reflection). This already gives us
a hint that there are going to be resonances present in the system due to the coherent
superposition (and interference) of the different paths through the system. In this way
scattering theory provides an intuitive method of for understanding these so-called
“Andreev” resonances in terms of an effective Fabry-Perot interferometer.

First we write down the generalised Landauer formula to calculate the d.c. conduc-
tance G for our NINS junction [150, 159, 160]:

e -
G= h Z [O‘Tﬂ" + ‘rha',ealz - |rea',eor|2] (6.11)

oo’

where 1,51 o (Toor o) i the amplitude for an electron with spin o (0 € {1, |}) incident
from the normal lead on the left to be reflected as a hole (electron) with spin ¢’. In the
present case, where the Hamiltonian is spin independent, the only spin-flip process
is during the Andreev reflection, so 7y . = 7 ¢ = 0 (similarly when 1 and | are
switched). In addition, if we consider energies below the gap E < Ay and use the fact
that the number of quasiparticles is conserved, |r;, 1,er|2 + |re1',e1"2 = 1 (similarly when 1t
and | are switched), we can simplify this to

4¢2 2
G= —|r_;,_l, {,T‘ . (6.12)

We shall now calculate 7, . by using an approach equivalent to that used in refs. [159,

161]. Instead of reasoning directly in terms of scattering matrices, however, we will
instead explicitly sum over the amplitudes for different possible paths through the sys-
tem, similar to the approach used in ref. [152]. This more intuitive approach will also
simplify the treatment when we go to the time-dependent case. First we shall define
the amplitudes for the constituent processes. We shall denote s(E) = e BLy the ampli-
tude for free propagation of an electron with energy E (relative to the Fermi energy)
from one side of the junction to the other?. As we will be concerned with energies
smaller than (or of the order of) the superconducting gap Aj, and as Ay < Ef, we can

Zwe have dropped the spin index as the transport is spin independent.

6.2 Scattering Approach to Andreev Resonances
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Figure 6.3: Sketch of the first three paths through the NINS junction that contribute to the amplitude
Thy, et — and their individual amplitudes — which correspond to the first three terms in
eq. (6.13). Solid lines correspond to electrons, dashed lines to holes. The explicit energy
dependence has been dropped for compactness.

approximate the spectrum as being linear around the Fermi wavevector kr: k(E) =
kr + E/hvp , where v is the Fermi velocity. This allows us to write s(E) = elETe/l
where 1 = L / vr is the time of flight through the junction, and we have removed
the ¢**FL1 factor, which will just give a global phase. The equivalent amplitude for
holes is [s(—E)]* = ¢/ETF. The Andreev reflection amplitude for a spin up electron to
be reflected as a spin down hole is py,| +(E) = r4(E) = E/Ag—iy1 - (E/Ag)?, and sim-
ilarly for the other process in the same spin sector: p,; 5, (E) = r4(E). The processes
in the other spin sector have an extra minus sign due to the chosen basis (defined by
eq. (6.2)): 0o n(E) = ppy ¢ (E) = —r4(E). Finally we shall denote d(E) (r(E)) the
transmission (reflection) amplitude for electrons through the insulating barrier?; the
equivalent amplitude for holes is d*(—E) (r*(—E)).

The first three possible paths that take a spin up electron to a spin down hole are
sketched in fig. 6.3, along with their associated amplitudes. The total amplitude can
be obtained by summing over all the paths:

oo
— 42 2m . 2m 4m
Thyer = d2ra ) rPmRmsim, (6.13)
m=0

where we have suppressed the explicit energy dependence for the sake of clarity. This
can be resummed as

der
Thi,et = 1_ 7ol ®(E) (6.14)
where . AF
®(E) = —2 arccos (—) - TP, (6.15)
A% h

3we have dropped the spin index as the transport is spin independent.
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Figure 6.4: d.c. differential conductance in short and long NINS junctions, calculated numerically us-
ing the model eq. (6.6) withy = 1, Er = 1, Ay = 0.01, and V1 = 3.0. The blue solid
curves were calculated using eq. (6.11), while the orange dashed curves were calculated
using eq. (6.12). We see that they match for |E| < Aq (shaded region), but differ for |[E| > Ag
due to the quasiparticle current in the superconductor.

where we have used 4 (E) = arccos(E/A;), which is valid for E < Aj. The expres-
sion for the other spin sector is almost identical: 7;; , = -7y 4. Thus we see the
analogy between the present system and a Fabry-Perot interferometer. The Andreev
resonances* (corresponding to maxima of r;,; ., (E)) occur at energies E 4 that minimise
the denominator of eq. (6.14), i.e. they satisfy ®(E,) = 271q (9 € Z*). Figure 6.4 shows
this resonant structure in the sub-gap differential conductance.

6.3 Trains of Voltage Pulses Applied to NINS

Junctions

In section 4.3 we saw that applying a voltage pulse puts a fwist into the phase of the
stationary wavefunctions; due to the different propagation times along the different
paths the interference pattern is modified during a finite time window, and returns
to its d.c. state once the phase twist has arrived from all the paths (only two paths in
chapter 4). Here, we seek to stabilise this transient regime by applying a train of voltage
pulses. Let us consider an example where we apply a sequence of identical pulses that
each induce a phase shift of ¢, separated by 47. We have not chosen this time delay
arbitrarily; it corresponds to the time difference between successive paths through the
system (see fig. 6.3). This means that when the phase twist from the n! pulse in the
sequence is just arriving at the output from the first path, the (n — 1) phase twist

450 called because there is an Andreev reflection involved
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Figure 6.5: Snapshot of the effect of a voltage pulse train with period T = 41 on the relative phases
of the paths through the NINS junction. At E = 0 the only phase picked up is due to
Andreev reflection (—71/2 phase shift) and the voltage pulse (¢ phase shift). We define
the first path to have a phase 0; longer paths have a greater number of factors of —7r/2
due to the greater number of Andreev reflections, but also at any given time fewer voltage-
pulse-induced phase shifts have arrived compared to the shorter paths, which gives path
n a phase shift of —¢ compared to path n — 1.

is just arriving from the second path, and so on. The result is that the n* path will
have a phase ¢ with respect to the (17— 1) path (compared to the d.c. case) at all times,
not just during a finite time window. In a similar way we can see that by varying the
delay between subsequent voltage pulses, as well as the phase shift they induce (by
changing their height or duration), we will be able to modify the interference pattern
in different ways.

Let us now be more concrete in our reasoning; we shall consider the case where
we apply Vp(t), a T-periodic train of voltage pulses on top of the bias V. Following
the same reasoning as section 4.3 , and considering that the voltage pulses only serve
to twist the phase of the stationary wavefunctions, we can write the time-dependent
electron-hole reflection amplitude as

Py, er(t E) = d?ry ) r2mei®mtE) (6.16)
m=0
with
b, (t E) = mP(E) + @(t + 41pm) (6.17)

where ¢(t) = (e/h) fé Vp(u) du is the phase picked up due to Vp(t). The arrival of the
phase change for the m™ order contribution is delayed by 47pm because of the extra
distance to traverse in the m'® order path. We will consider trains of pulses of different
shapes as shown in fig. 6.6a: a train of upright pulses; a train of alternating pulses; and
also a sinusoid, which can be seen as a deformation of the train of alternating pulses.
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(a) Time-resolved differential conductance (lower figure) at the normal contact of
the NINS junction for three voltage pulse trains (upper figure), calculated from
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Figure 6.6: Numerical simulation of the differential conductance in an NINS junction in the pres-
ence of a train of voltage pulses. In (b) and (c) the solid curves were calculated (semi-
)analytically using eq. (6.19) and symbols were calculated from numerical simulations us-
ing eq. (6.10). Blue squares correspond to 77 = 0.1, red circles correspond to 77 = 0.5 and
black dashed lines correspond to the d.c. case. The upright pulse train used in (b) has
period T' = 47 and the alternating train in (c) has period T = 8.

In the following we will denote the phase accumulated over one period ¢(T) (upright
pulses) or half a period ¢ (T/2)(alternating and sine pulses) as 27t7i.

The simplest situation is when one sends a series of upright localized pulses (of
widths much shorter than 7). Figure 6.5 shows a snapshot of the different paths at an
instant f in time, where such a train of pulses with period 47 has been applied. We see
that there is a phase twist propagating along the first arm of the paths, and the phase
twist due to the pulse sent at t —4 7 is is still propagating through the second, third etc.
paths. Similarly the phase twist sent by the pulse at t — 87 is still propagating through
the third, fourth etc. paths. When the period of the pulse train exactly matches the
delay between different trajectories, T' = 47p, the phase ¢(t + 4mtp) is simply given
by ¢(t + 4mtp) = 2rtim. As aresult, ®,,(t,E) = m®P(E) + 2iim and (6.16) takes the
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form of a geometric series. We see that the application of such a train of pulses just
shifts the resonance by 277, as illustrated in fig. 6.6b.

For the case of an alternating train of pulses the situation is a little more complicated;
now, the positive pulse induces a phase shift of 27777 and the negative pulse induces a
phase shift of —27ii. If we tune the pulse train such that there is 47 between succes-
sive positive/negative pulses (so that the period is 87r), then alternate paths pick up a
phase of 27t7i. We see in fig. 6.6¢ that the effect of an alternating pulse train has a qual-
itatively different effect; now the positions of the resonances are fixed and changing 7
just changes the relative amplitude of the peaks. Note that for 77 = 0.5 the effect of the
upright and alternating pulse trains is identical.

Now that we have some intuition for what is going on we shall proceed with the
generic case where T is not a multiple of 4. We expand ¢(t) in terms of its frequency
components as:

P = lp(MUT +Z c e, (6.18)

p=—co

where w = 27/T . The extra factor in front of the usual Fourier series takes care of
the case when the average of Vp () over one period is different from zero (which is the
case for the upright pulse train), and hence ¢(t) is not periodic. By inserting eq. (6.18)
into eq. (6.16) and keeping only the d.c. component (i.e. the time independent part),
we obtain
c 2

r
= , . , (6.19)
T h pEhe ’ 1 — |r2e!®(eVe)+4iwTelp(T)/27+p]

o)\  4etdt &
avb

where we have explicitly replaced the energy E with eV,. As before, the appearance
of resonances corresponds to minimising the denominator of eq. (6.19), i.e. the phase
factor should be a multiple of 277. This translates into the following resonance condi-
tion:

¢(T)

+ 4wr;lp + ?] =2mnq p,q€ Z. (6.20)

\% 4eV
—Zarccos(e b)+ Ll

A, I

If we are only concerned with resonances far below the gap, such that eV, < A, we
can expand arccos(eV,/Ag) = /2 — eV}, /Ay, however in the long junction limit (that
we shall consider now) where Ay > 1/ T the term linear in eV, /A can be neglected
and we arrive at

eV, w o(T) B 1 1
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In the opposite (short junction) limit the above analysis is not complete, as the pulses
must be shorter (or of the same order, as we shall see in the following paragraphs)
than tp, if /T ~ Ap then the pulses will necessarily excite states at energies above
the superconducting gap. This quasiparticle current has not been taken into account
in the above analysis.

An illustration of the resonance condition is shown rather beautifully in fig. 6.7,

where the contributions from various terms of order p from eq. (6.19) are shown (fig. 6.7a-

d) as a function of the pulse frequency and bias voltage for the case of a sinusoidal
Vp(t). We can consider the sinusoid as a deformation of the alternating pulse train
previously considered. We note, however, that the even though the duration of a
single “pulse” (471f) is of the same order of magnitude as the frequency of the train
(87r), the above-described interference effect is not washed out. Although fig. 6.7 was
obtained by numerically evaluating eq. (6.19), we also performed full tight-binding
simulations using the model eq. (6.6) and the agreement is essentially perfect. This
can also be seen in the perfect agreement between the symbols and lines in figs. 6.6b
and 6.6c.

When w = 0 we clearly recover the d.c. resonant peaks shown in fig. 6.4, and at
finite frequency these “split” only to come back together at w = 27 /4tp. This “re-
emergence” of the d.c. interference pattern is actually rather trivial, as when T = 47
the extra relative phase between subsequent paths is always zero with respect to the
d.c. case (for the case of alternating/sinusoidal pulses, where a net phase of zero is
picked up over one period). For the case of T = 87 alternating paths pick up a phase
271 with respect to one another, which is what gives rise to the peak at zero bias.

6.4 Majorana States in NINS Junctions

Let us switch gears for a moment and come back to the possible applications of the
above-described technique. We said in the introduction to this chapter that we wanted
to use our technique to manipulate Majorana resonances that have been theorised to
exist in NINS junctions. We will essentially see that Majorana resonances in NINS
junctions can be understood using the same resonant Andreev reflection mechanism
described in the preceding sections.

In order to appreciate why this is important, and why it is indeed possible, it will be
necessary to first describe what these Majorana are and why the search for them is the
subject of such an intense theoretical as well as experimental interest [158, 162-167].
While it is not the goal of this section to give an in-depth review (this has been done ex-
ceptionally well elsewhere [168-173]), it is naturally necessary to give an introduction
to the topic.
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Figure 6.7: Contribution to the differential conductance in the NINS junction in the presence of a sinu-
soidal voltage “pulse train” of period T = 87 from different orders p of the sum eq. (6.19).
(a)-(d) The first 4 orders in the sum. (e) the sum of the first 21 orders in the sum; higher
order terms are negligibly small.

6.4.1 Introduction to Majorana States

In 1937 Ettore Majorana proposed a new formulation of the Dirac equation that pre-
dicted the existence of particles that are their own antiparticle [174], which have come
to be known as Majorana particles (henceforth shortened to “Majoranas”). Although
no definitive realisation of Majoranas as an elementary particle has so far been ob-
served, it has been known for some time that such objects could exist as quasiparticle
excitations in superconductors [175-178]. Although on an aesthetic level the discov-
ery of such quasiparticles in condensed matter systems would represent a triumph of
modern physics and engineering in itself, it can be argued that this is not the practical
motivation for the search; the real aim is to develop an additional platform for quan-
tum computing that is more robust to the dreaded decoherence that plagues existing
approaches.

To understand this let us first see how it is possible to realise Majoranas in systems
exhibiting superconductivity. The seminal paper by Kitaev [178] proposed a simple
theoretical model that contains the essential ingredients required for Majoranas. The
Hamiltonian for the model takes the following form:

H= Z —'}'(e?;rij“ + dLlﬁj) - gzﬁ;f.fi;,- + Agé}tﬁ;fﬂ + Ajdj414;, (6.22)

]
where 7y is a hopping amplitude, i is a chemical potential, Ay is the induced super-
conducting gap and ﬁ}f (2;) are fermionic creation (destruction) operators for a state
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on site i. The presence of anomalous terms 4;,,4; looks very much like the models of
superconductors we have seen thus far, except that the superconducting terms couple
different sites, and there is only a single spin species involved. One can then define
Majorana operators

-
EA _ a}- + a}
i
X ‘E~+ (6.23)
a}- a}.

7B —
5 =5

so called because they have the property that [ng] gA and [(, B ] ’B; creating
such an excitation is the same thing as destroying it. Rewrltmg eq. (6.22) in terms of
these new operators we get

N i = B
A=3 ; —nGA TP + (r + D) ZPTA, + (—y + DR (6.24)

We can now take two different parameter regimes for the model:

* the trivial one where y = Ay =0, ¢ < 0, and H-= _I‘u Z gAgB’
* and the nontrivial one where Ag =9 > 0, u =0, and H=iy Z éB i+1°

The first case is trivial in the sense that it corresponds to a chain of sites with no cou-

pling between them. We see that in this case the Hamiltonian is just a sum of terms

,‘,.I.
} aj
the original fermions on site j. In the nontrivial case we see that now Majorana from

that “pair” the two Majorana operators on each site; the terms zg G = B~ —1/2 count
neighbouring sites pair up; this pairing is illustrated in Figure 6.8. For the case of a
finite chain of N sites, we thus see that the Majoranas {{* and {2 do not appear in the
Hamiltonian at all. The consequence of this is that there is a very non local fermionic
state formed of the superposition of these two Majorana states, f* = ({{* —iZF)/ V2,
that has zero enerqy. The ground state is therefore twofold degenerate: If |0) is a ground
state satisfying f |0y = 0, then |1) = f+ |0) is also a ground state. In addition these two
states are separated from the rest of the states by an energy gap A, as can be seen from
the above model.

This non local state formed from two Majoranas is what the community is searching
for. Such a state should be robust to a whole host of decoherence mechanisms due to
the fact that it is non local and is separated from the rest of the states by an energy
gap. Much has been said in the literature about this so-called “topological” protec-
tion [179, 180]. The end goal is to use such states to encode quantum information and
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Figure 6.8: lllustration of the two Majorana pairing regimes present in different parameter ranges of
the model eq. (6.22) for a four-site chain. The circles labelled A and B represent the Majo-
ranas (see main text): They are grouped by site (the dotted outline) and the grey lines rep-
resent hopping terms in the Hamiltonian eq. (6.24). The orange highlighting in (b) shows
the two unpaired Majoranas that do not appear in the Hamiltonian.

realise quantum logic operations by braiding the constituent Majorana of several such
delocalised states around one another [179, 180]. A description of how to perform
computational operations with these objects falls well outside the scope of this thesis,
however; we shall content ourselves with the question of how to realise such states
experimentally and how to detect them.

6.4.2 Realisation of Majorana States in Nanowires

While the Kitaev model is certainly simple it is not immediately clear how one could
realise such a Hamiltonian experimentally. Several proposals were made for how to
generate the necessary theoretical components using experimentally available ingre-
dients, in particular: coupling regular superconductors to two-dimensional electron
gases in the fractional quantum Hall regime [181, 182], and coupling regular super-
conductors to semiconductor nanowires or thin films with strong spin-orbit coupling
while applying magnetic field [183-187]. We shall concentrate on this latter proposal,
specifically that of ref. [183] on which subsequent experiments were based [158].

The model proposed in ref. [183] is for a nanowire with Rashba spin-orbit coupling
and with a magnetic field oriented along the axis of the nanowire, coupled to a regular
s-wave superconductor. If we treat the nanowire as having an effective superconduct-
ing gap A, induced by proximity effect from the coupled superconductor [187, 188],
The Hamiltonian for this system is written as

282

2m* 9x2

. L d 5
H= J;} dx IP+(X) l( - ihaﬂla — EP)T3 + Ezdg + AOtl lP(X) (625)
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Figure 6.9: d.c. Numerical simulations of the model eq. (6.25) discretised with spacing a onto a chain
300 sites long. The parameters used were Ay = 0.27, 8 = 0.057, and Ep = 0.1, where

v= h? / 2m*a? and B = ha/a . The energy spectrum (a) and zero-mode wavefunction
(b) were obtained by directly diagonalising the resulting 300 x 300 matrix.

where L is the length of the nanowire, & quantifies the spin-orbit coupling, E7 is the
Zeeman energy, ¥ (x) is defined by eq. (6.2), and o, are defined analogously to the <,,
in eq. (6.4):

01 0 —i 1 0
01=12®(1 O)' 02:12@(;‘ 0); 03=]12®(0 _1) (6.26)

where 1, denotes a 2 x 2 identity matrix and ® is the Kronecker product. When the
parameters of this model are tuned such that E2 > EZ + AZ then this model exhibits
a “topological phase” that hosts Majorana zero modes at the ends of the nanowire.
Figure 6.9a shows a numerical calculation of spectrum of this model discretized onto
a lattice. We see that as E is increased the gap closes at E; = EZ + A% and then
reopens, however the lowest eigenenergy is now pinned to E = 0. Figure 6.9b shows
the square modulus of the wavefunction for the lowest energy state in the “trivial”

(EZ <E2+ A%) and “topological” (EZ > E2 + A%) phases. In the latter case we

can clearly see its delocalised nature; this is the Majorana state.
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Figure 6.10: Realisation of a setup for producing Majorana quasiparticles. (a) Scanning electron mi-
croscope image of a normal-insulator-normal-superconductor (NINS) junction that pur-
portedly supports Majoranas (from ref. [158], reprinted with permission from AAAS).
(b) Identification of our model with the experimental setup. The insulating barrier could
correspond either to one of the gates (one is highlighted in green in (a)), or the junction
between the nanowire and the Normal lead.

Experimental Realisation

The next question to ask is how one can experimentally observe such objects; in the
above model the nanowire is isolated and the Majoranas are true bound states. If one
weakly couples a regular conductor to the end of the nanowire, however, the bound
state will couple to the continuum of states in the regular conductor and become a res-
onance, with a corresponding distinctive peak in the differential conductance centred
at the energy of the bound state, that is, at the Fermi energy: a zero bias peak [189—
191]. This proposal was later realised experimentally in the seminal work of Mourik et
al. [158], where they claimed to have generated these Majorana quasiparticles. Their
setup is shown in fig. 6.10: They have an indium antimonide nanowire coupled to a
superconducting niobium titanium nitride contact (S) and normal gold contact (N),
and a set of metallic gates electrostatically coupled to the nanowire provide an insu-
lating barrier. In their experiment they measured the differential conductance of this
NINS junction in the parameter regime where one would expect to find Majoranas,
and observed a peak at zero bias.

6.4.3 Scattering Perspective on Majorana Resonances

Let us put the Majorana interpretation to one side for a moment and just consider
at face value the model presented in eq. (6.30). Figure 6.11 shows the band structure
for the leads as successive ingredients are added. Initially the two spin bands are de-
generate, and this degeneracy is then split when the Rashba term is added; there are
still four states available at the Fermi energy (E = 0 in fig. 6.11). However, when the
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Figure 6.11: Bandstructures in the excitation picture for the model eq. (6.25) as additional ingredients
are added. Solid lines denote electron states, while dashed lines denote hole states. Red
colouration denotes spin up, while blue denotes spin down. (a) Simple spin-degenerate
system. The spin bands are degenerate; there are 4 states available at the Fermi energy.
(b) System with Rashba coupling only. The spin bands have been shifted but there are
still 4 states available at the Fermi energy. (c) System with Rashba and Zeeman coupling.
There are now only 2 states available at the Fermi energy, and the spin is locked to the
momentum. (d) System with Rashba, Zeeman coupling and superconductivity.

Zeeman term is added the spin bands hybridise and a gap opens near k = 0. At certain
energies there are therefore only fwo states available, which are counterpropagating
and have opposite spin (the case of fig. 6.11c). This “spin-momentum locking” has
important consequences for transport in the full NINS junction at these energies; no-
tably, when the electrons/holes are reflected at the normal barrier they must undergo
a spin flip. Figure 6.12 illustrates the differences between the case with /without spin-
momentum locking. We see that the amplitude p,, j,, in the second (and subsequent)
paths becomes p, j,;: We change spin sectors, which means that the second path picks
up an extra minus sign with respect to the case without spin-momentum locking, be-
cause 0,1 p; = —P,; pt- Lhe result of this extra minus sign is to shift the positions of the
resonances, such that there is a resonance at E = 0 (the Fermi energy). We can thus
rewrite eq. (6.21) as

e Vb

1
7 (P + fP(T)/27T)— lq——(Zz—l)] p.q € Z (6.27)
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Figure 6.12: First couple of paths through the NINS junction that contribute to the amplitude ry, .,
with spin orientation explicitly marked. py, ., is the amplitude for Andreev reflection
from a spin up electron to a spin down hole. In (b) there is spin-momentum locking; the
difference with (a) is highlighted in red.

where Z, is 0 in the “normal” case, and 1 when there is spin-momentum locking. We
can also write

oI (t) 1¢2|d* 2
(v ), = icis g B (629

where ry,, .+ (t, E) is given by eq. (6.16) with ®(E) now given by

E
®(E) = —2 arccos (—) +
Ag

4F Tr
h

+ 7 Zs. (6.29)

We see that there will be a resonance at E = 0 which gives rise to a 2¢? /h conductance
peak at zero bias (the magnitude is halved with respect to the “normal” case because
there are now only half the number of states available at the Fermi energy). This is the
resonant Andreev reflection from the Majorana state discussed previously [161, 189].

6.5 Manipulating Majorana Resonances with

Voltage Pulses

Now with our understanding of how to manipulate Andreev resonances using trains
of voltage pulses, combined with the view of Majorana resonances as Andreev reso-
nances (just with an “extra minus sign”), we now arrive at an almost banal conclusion:
we can manipulate Majorana resonances using trains of voltage pulses.
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Figure 6.13: Zero-bias differential conductance for the NINS junction as a 8unction of the Zeeman (E 7)
and Fermi (Ef) energies, with « = 1, A = 0.5 and V = 5.0 (transmission D = 0.17).
The colour scale goes between 0 (white) and 2¢2 / h (blue). The continuous phase where
ol/dV, = 2é? / h inthe \|EZ — A2 > Ep sector corresponds to the “topological” regime
where there is a Majorana resonance. The isolated points of high conductance around
Ez = Ep correspond to regular Andreev resonances crossing zero bias. The white cross
indicates where in this parameter space the time-dependent numerical simulations were
carried out.

We take the following model

2 92 . d
T 2 fhﬂ'“la +qV1d(x) + qVp(t)©O(=x) — Ep |3

=+ E203 + A()@(y - L)T.l

Hac (D) = (6.30)

and discretise onto a lattice as before to obtain the a tight-binding Hamiltonian with
matrix elements H; ; given by

H},} = [2(}' - EF + QVTfSo,;]T!g, + Ezﬂg + A()@Lj]'tl

(6.31)

Hj1 = —ye PP 01T, ihny e,

Figure 6.13 shows the zero-bias conductance (the colour scale) as a function of the
Fermi and Zeeman energies (Er and Ez respectively), calculated numerically from
the above model. We clearly see a phase transition where a zero bias (Majorana) peak
appears when the condition E2 < EZ — A3 is satisfied. In what follows we placed
ourselves at the white cross in the above phase diagram, so that the system exhibits
Majoranas in the absence of any time dependence. Figure 6.14a shows the conduc-
tance as a function of bias voltage when a train of alternating pulses is applied. We
see that the application of the voltage pulses reduces the zero-bias peak, analogous to
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the case of fig. 6.6c (without Majoranas), where the same voltage pulse train created
a zero-bias peak. Figure 6.14b is the analogue of fig. 6.7e, and just illustrates that the
resonances are shifted with respect to the “normal” case (as implied by eq. (6.27)).
Figure 6.14c shows the differential conductance at zero bias in the presence of a sinu-
soidal V'p(t), as a function of frequency and the phase picked up under each “lobe” of
the sinusoid. We can see that arbitrary frequencies/phases will destroy the zero-bias
peak, which is unsurprising as in such a case subsequent paths will have an arbitrary
phase relationship that will result in destructive interference. Strikingly we see the
re-emergence of the zero-bias peak when the period is an integer multiple of 47 and
at distinct values of 7i. The position in frequency of these re-emergences is simple to
understand, as these are the only frequencies that will give a fixed-phase relationship
between the different paths.

Despite their simplicity, figs. 6.14b and 6.14c provide very strong signatures for the
Majorana mode. This is promising, as it indicates that this scheme could be used as an
extra verification for the Majorana interpretation of current experiments. There was
originally some controversy around the initial findings of ref. [158], as there could in
principle be a number of explanations for a zero-bias peak that did not involve Ma-
jorana physics at all. Among the proposed alternative explanations for the zero-bias
peak were: Kondo resonance [192-195], interplay between multiple subbands [196—
198], weak antilocalisation [199], and the effect of boundary conditions [200-202]. Al-
though it is true that the present proposal does not address these concerns directly,
it effectively adds two more parameters (pulse height, related to i1, and train period
T) with which to probe the system, and so can only serve to add more information
about what physics is actually at play. As the intricate way in which the conductance
is altered is intrinsically linked to coherent Andreev reflection processes, it is difficult
to see how zero bias peaks due to the alternative mechanisms mentioned above could
be affected in the same way if their physics is not at all related. We would however
make one concession and note that the technique presented here could probably not
be used to distinguish true Majorana resonances from low (but finite) energy Andreev
resonances, as they are both due to essentially the same physics, as discussed exten-
sively in the preceding pages.

6.6 Simulations in the Presence of Disorder and

Finite Temperature

In order to better evaluate the applicability of the above approach to a real experi-
mental system it is necessary to include a few more ingredients into the model. For
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Figure 6.14: Differential conductance in the presence of a train of voltage pulses for a NINS junction
that displays a Majorana resonance ind.c. .

example, in the above we worked in a long junction regime where there are a number
of resonances below the (proximity induced) superconducting gap, whereas present
experiments are typically in the short junction regime where the mean level spacing
between the resonances is of the order of/much larger than the gap. Specifically a
junction length of 200 nm corresponds (using a Fermi velocity of 10* to 10°ms™!)to a
mean level spacing of 50 peV to 500 peV, i.e. of the order of the superconducting gap,
which was 250 peV in the experimental setup of ref. [158]. In addition the nanowires
used typically have a mean free path of roughly the same length as the junction it-
self (in ref. [158] it was measured to be 300 nm), in contrast to the perfectly clean case
studied in the preceding sections. As our mechanism relies heavily on the interfer-
ence between paths with well-defined lengths, it is not obvious that the addition of
disorder (which effectively adds a greater number of possible paths due to backscat-
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tering) will not destroy the effect completely. Finally the experiments are done at finite
temperature, and so we should also look at the effect of thermal broadening on our
mechanism.

The model parameters were tuned to be similar those in the experimental setup of
ref. [158]. Specifically, we chose A = 250 peV, & = 20meV nm, Er = 0, and a magnetic
field of 0.6 T to place us firmly in the topological regime. We used a discretisation step
of 1 nm, which at the relevant energy scales A gives a band structure that is negligibly
different from the continuum limit. Using the above microscopic parameters the Fermi
velocity was calculated numerically to be 6.08 x 10* m s~! which in principle - for the
100 nm junctions studied in our simulations — gives a mean-level spacing of 630 peV.
Finally the disorder used gives a mean free path of 87 nm, which is of the order of the
junction length and places us in the quasi-ballistic regime, similar to the experiments.

Figure 6.15 shows a repeat of fig. 6.14b (i.e. sinusoidal “pulse” train) using the model
described in the preceding paragraph. The different subplots show the results at differ-
ent temperatures. Unsurprisingly the addition of disorder destroys some of the finer
detail, and the presence of only a single resonance (the Majorana resonance) below the
gap means that there is a less rich sub-gap structure. Nevertheless, the application of
the time-dependent bias still does shift the resonance from zero bias; the key feature
of the signature remains. It should be noted that the addition of the voltage pulses
does not add significant noise to the d.c. signal; if a resonance is well-resolved and
visible in a d.c. experiment, then it should also be visible in the presence of the voltage
pulses.
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Figure 6.15: Differential conductance as a function of bias voltage and voltage pulse frequency (for
a sinusoisal voltage “pulse train”, for different temperatures, of an NINS junction that
displays a Majorana resonance in d.c. . The colour bars give the colour scale for each plot

in units of ez/h .
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Conclusion

Experiments that probe the internal dynamics of quantum devices are beginning to
be realised in the laboratory, opening the way for a whole host of physical effects qual-
itatively different to those found in static devices. This thesis has contributed to this
effort along three main axes: improvements in numerical algorithms, improvements
in software tools, and new experimental proposals.

The first contribution involved taking the existing formalism developed in ref. [57]
and improving it in two significant ways. The first improvement was the construction
of an algorithm that scales as @ (Nty,c) — where N is the number of degrees of free-
dom in the central system, and t,,,« is the maximum simulation time — as opposed to
the best effort of ref. [57], which has @ (Nt3,,x ) scaling. This was achieved by attaching
slices of the leads to the central system and incorporating non-Hermitian terms into
the lead Hamiltonian. The number of attached slices is tied to the required accuracy
of the calculation, rather than being proportional to f,,,, as in ref. [57]. Secondly, the
integration over the initially filled states was moved from the energy domain to the
momentum domain, which regularises the singularities associated with new modes
opening in the leads.

The second contribution is an extension to the kwanT quantum transport package,
called TkwanT, that can handle time-dependent problems. Although the software is
not yet of production quality, it has clearly already added enormous value not only to
our work, but also the work of collaborators. In addition there is a clear set of steps that
are required to bring TkwanT to a standard where it can be released publicly alongside
KWANT .

Using TkwanT we then investigated the propagation of a charge pulse inside a fly-
ing qubit interferometer. The concept of dynamical control of interference, recently
developed in ref. [1], allowed us to interpret our results. The presence of this effect in
this particular experimental setup bodes well for an experimental verification of this
dynamical control in the near future. We then turned to superconducting systems and
studied a Josephson junction under the action of static and time-varying bias. We were
able to achieve quantitative agreement between our calculation for the sub-gap current-
voltage characteristic of a short Josephson junction, and that obtained using purely
analytical methods based on Floquet theory. This indicates that our time-resolved
techniques are useful even for problems of a.c. transport that would traditionally be
treated using Floquet theory. The @ (Nt,,,,) scaling of our numerical method really
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came into its own when investigating the propagation of charge pulses inside long
Josephson junctions, where the infinite lifetime of the Andreev bound states means
that extremely long simulation times are needed. Finally we combined the concepts
of electronic interferometers and superconductivity to investigate the effect of voltage
pulses on normal-insulator-normal-superconductor junctions in nanowires, which ex-
hibit Majorana states. Understanding such a junction as a Fabry-Perot interferometer,
we were able to see that repeated application of voltage pulses stabilises the dynamical
modification of the interference pattern. This allowed us to perform “spectroscopy” on
the Majorana states, which provides a signature of their nature as resonant Andreev
states.

Future Perspectives

Time-resolved quantum electronics is still an emerging field and one that will, we
think, see a heyday in the coming years. In particular, the use of single-electron
sources in a new generation of experiments is a particularly exciting prospect. In this
endeavour we can envisage two main axes for development in terms of numerical
tools. Firstly, rkwant (the software) needs to be brought to the stage where it is just
as easy to set up and test new ideas for time-resolved transport as it is to use kwant
for stationary transport. This will allow theorists to more rapidly propose interesting
experiments and help them gain an intuitive understanding of a new physical system
before they bring analytical techniques to bear. Secondly, in order to obtain greater
parity with experiment, TkwanT (the algorithm) should be modified to allow for a
self-consistent calculation of observables that can be fed back into the Hamiltonian.
The most obvious example would be to self-consistently solve the Poisson equation
in order to account for electron-electron interactions on the mean-field level. Another
interesting possibility would be to embed a Josephson junction into its surrounding
(classical) circuit. This would allow us to go beyond simple models (such as RCS])
by treating the full quantum dynamics of the Josephson junction. There are signifi-
cant challenges to overcome, however, as the self-consistency effectively couples the
wavefunctions at different energies, rendering the problem non-linear and making an
efficient parallel implementation much more difficult. Despite the challenges, such
developments would bring with them a wealth of new possibilities and, ultimately,
new physics.
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Discretising Continuous A

models

This thesis deals primarily with performing numerical simulations of tight binding
models. In several instances the model that we actually want to simulate is a continu-
ous one, and a tight binding model is obtained by a discretisation procedure. In this
section we shall show how in practice one obtains a discrete tight binding Hamiltonian
from a continuous one.

We shall start from a general Hamiltonian of the form:

= IQ dx ¢t (x) H(x, ihV, t) §(x) (A1)

where tIJ‘L(x) (tIJ(x)) is a fermionic creation operator for a particle at position x, H(x, ifV, t)
is a differential operator — the realspace projection of the Hamiltonian — and () is the
domain of the problem.

First we shall approximate the integral using a simple rectangle method over a uni-
form grid. Equation (A.1) is thus approximated by

H~ ) ¢t oa) H(xg, ilV, 1) §(x;). (A2)
i
For Q) = R3 we have x; = a(n;i + m,j +;k), with a the discretisation step, n;, m;,l; € Z,

and i, j and k are unit vectors in the X, y, and z directions respectively. For other () the
allowed values of the n;, m;,I; should be adjusted accordingly.

A.1 Finite Difference Formulae

Now we must approximate H(x, ihV, t), which we shall do using central finite-difference

formulae. All the Hamiltonians dealt with in this thesis will be either linear or quadratic
in iV, so it will be enough to write down finite difference formulae for V and V2. We
define J,, the finite difference operator with finite step 4, in the following manner:

1
Vf(x)zéa[f](x):$Z[f(x+an)—f(x—an)}n, (A.3)

where the sum runs over n € {i, j, k}. While this expression has been written for three
dimensions the equivalent expressions for one and two dimensions are obvious. We
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can obtain the finite difference operator for second derivatives by applying eq. (A.3)
twice:

1
VZf(x) = 5§[f] (x) = a_zl —6f (x) + Zf(x +an) + f(x —an) |. (A4)

The factor of 6 in the term proportional to f (x)) is particular to 3D; in general there is
a term —2f (x) for each dimension. In evaluating these formulae we see that there are
two types of term that appear: “onsite” terms, proportional to f(x), and “hopping”
terms proportional to f (x + an). Note that in evaluating the formula for the second
derivative we twice-applied the finite difference operator with discretisation spacing
a/2, which in the end produced a scheme that only contains function evaluations at
points spaced by a. This is advantageous for treating Hamiltonians that contain both
first and second derivatives, as both only give first-nearest neighbour terms.

The above finite difference formulae are accurate to @ (4?) and only contain nearest-
neighbor terms, but we could also define higher-order formulae accurate to @ (a*) or
@ (a®) at the expense of having to include second and third nearest-neighbour terms,
which renders the tight-binding Hamiltonian matrix less sparse. In this thesis we use
the above @ (a?) accurate formulae exclusively.

A.2 From Continuum to Tight-Binding Models

If we apply the central difference formulae to the {(x;) of eq. (A.2) we can see that
we are going to generate terms at neighbouring points IIJ(X}-). The Hamiltonian will
thus mix ¢ (x;) and tIJ(x}-) at neighbouring points. The most general form we can write
down for eq. (A.2) is then

D Hy ¢ ) h(x;), (A5)
gl

where the H;; contains the coefficients from the finite difference formulae that bring
the point x; to x;. We recognise eq. (A.5) as a tight-binding Hamiltonian in second
quantisation.

Up till now this may seem rather abstract, so let us apply this to a concrete example:
a particle in 1D in the presence of a potential landscape. We write the continuum
Hamiltonian as
12 92

N oo - —h .
H= f_m dx ¢t (x) l@@ +Vi(x, t)] P(x) (A.6)
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and discretise onto the lattice of points {x,, = na|n € Z} using the above procedure

to obtain

hZ

H~ ; u)lz * z(lp(xﬂ—i-l) + lta(xﬂ—l) - 21}3(3511)) + V(xnrt)lta(xu) .

Rearranging terms we get

- h2 R )
H=~ ; l (m*a2 + V(xrzft))‘er(xn.)l,b(xﬂ)

~4 -
+ 27’.”1*&21‘[) (xrz)lp(xn+1) + 2m*a2

IIJJF (xn ) lﬁ(xn—l ) ] ’

which allows us to identify the coefficients H;; of the tight-binding model:

hZ
Hy=——+ Vb,
2
Hr.'r.’+1 _2?:?!
and 2
Hii 2m*a?

with all other terms 0.

A.2  From Continuum to Tight-Binding Models

(A7)

(A.8)

(A.9)

(A.10)
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The Peierls Substitution B

Here we shall derive the so-called Peierls substitution [203, 204] that is commonly used
to introduce a vector potential into tight-binding models. Contrary to most presenta-
tions in the literature we shall start from a continuum Hamiltonian, as all the mod-
els presented in this thesis start from such a description and arrive at a tight-binding
Hamiltonian only after discretisation using the procedure outlined in ??2.

B.1 Peierls Substitution Without Magnetic
Field

We shall first treat the case when there is no magnetic field: V x A = 0. While this
might seem contrived, we often treat cases where a time-dependent (but spatially uni-
form) voltage is applied to the leads of a nanoelectronic device. It is very useful to be
able to express such a system in a gauge where there is a time-dependent vector po-
tential at the voltage drop, as opposed to a time-dependent scalar potential everywhere
in the lead. In this gauge the electric field is given by E = —dA /dt. This treatment al-
lows us to identify the formal unitary gauge transformation presented in appendix C.1
as the discrete analogue of the continuum electromagnetic gauge transformation pre-
sented here.

Let us start with a minimally-coupled Hamiltonian in first quantisation of the form
. 1. 2
H(x,ihV) = E[—th +gAx)]". (B.1)

Although we could try to discretise this Hamiltonian directly using the approach
demonstrated in appendix A, for the present case with no magnetic field it is actu-
ally simpler to first recast the Hamiltonian into a different form. Consider the action
of the canonical momentum operator Il on a function f (x):

IIf (x) = [—ihV + gA(X) | f (X). (B.2)
Compare this to the action of the operator Q on f (x):

Qf (x) = —ihe "MLy A(*’)'d"V(e‘(‘*”‘) Jo AC-dXg () ). (B.3)
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which we can evaluate explicitly — using the fact that f; A(X',t) - dx’ is path indepen-
dent (V x A = 0) and hence a well-defined function of x — to obtain

Qf(x) = [—ihV + gA(x)]f (x). (B.4)
We thus see that Q = I1. We see that we can thus write the action of the Hamiltonian
on f (x) as
_kz f( X L} L} . 3 X r r
. _ T i g/h) [TAX)-dX o2 [ ilg/h) [T AKX )-dx
H(x,iV)f (x) = 5 e 0 v2(el o f00). (B.5)

Using eq. (A.4) we can write a discretised approximation for H(x, ifiV) f (x):

2

H(x,ihV) f (x) = 2 l—6f(x) + Z girpx(an)f(x +an) + er‘.tpx(—an)f(x _ an)] (B.6)

where ¢, (y) = (q/h) f:ﬂ A(x") - dx’. We see that eq. (B.6) is the same as the tight
binding model in the absence of A, except that the hopping terms have picked up
phase factors.

B.2 Peierls Substitution With Magnetic Field

Let us now treat the case with magnetic field. Due to the fact that f; Ax") - dx'is
now path dependent we cannot use the same formal reasoning as before. In the end,
however, we will end up with the same general form for the discretised model, but
this time it will be an approximation that is only valid when the magnetic field varies
slowly on the length scale 2 of the discretisation. We start as before from the minimally
coupled Hamiltonian, however this time we explicitly expand out the terms:

—h? ih
H(x,ihV) f(x) = Evzf(x)—%[f(x)v CA(X) +2A(x) - VF () J+4*A(x)-A(x). (B7)
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We now discretise this using the techniques of appendix A.1 onto a cubic lattice with

spacing a:

H(x,ihV) f (x) = l2 2

+ —A(x) ]f(x + an)

A(x) - ]f(x —an)

l2ma2 2ma

ih
+l—+q |A(x)| mqaZ[A(x+an)—A(x—an)]-n f(x).
(B.8)

Now we will re-express the above in units of = #?/2ma? in order to more easily see
the relative order in powers of a of the different terms:

H(x,ihV) f (x) = —f}'Z ll +%A(x) -n]f(x+an)

_,},; ll —%A(x) -n]f(x—an)

2

2
q IA(x)> = 2;;;[A(x+an)—A(x—an)]-n]f(x).
(B.9)

l 2ma
+ 7|6+

Now we will make some approximations in order to proceed. The first approximation
will be that the magnetic field is constant over the length scale a. The consequence

of this is that A(x) varies linearly over a distance a4, and A(x + an) — A(x — an) « 2a.

Next, in order to be compatible with the @ (4?) approximations to the first and second
derivatives, we should discard all terms of @ (a2 ) This leaves us with
. iqa
H(x,itV) f(x) = — Z 1+ - A0 0 f(x+an)
n
iga
—'}'Z ll— %A(x) -n]f(x—an) (B.10)

n

+ 67 f (x).

The final part is to notice that e® = 1 + ix + @ (x?), and since we have discarded all
terms of @ (a?) we can write eq. (B.10) as:

_}'12 i@y (an —igy(an
%2 a2l6f(x)+;€-@x( )f(X+an)+€ Px( )f(x_an)]; (B]_l)

H (x,ihV) f (x)

B.2 Peierls Substitution With Magnetic Field
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with ¢, (y) = (g/h)A(x) - y. We see that this is the same expression as eq. (B.6), except
that ¢, (an) has replaced ¢, (an). The Peierls substitution is therefore also valid when

there is a magnetic field, except in this case it is an approximation that is valid when the
magnetic field is roughly constant on length scales a.
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Gauge Transformations C

In this section we shall look at some important gauge transformations that are used in
this thesis to bring a problem with time dependence in the infinite leads of a nanoelec-
tronic system to a problem with time dependence only in a finite region.

First we recall the expression for a general, time-dependent gauge transformation
on an arbitrary Hamiltonian. We start from the Schrédinger equation

d .
ih== lp(H) = F(t) [y (b)) (1)

and define

pt))y =U '), (C2)

where U (t) is a unitary operator (the gauge transformation of interest), and plug C.2
into C.1:

Jd -~ ~ 0 .
ik(gﬂ(f)) [y () + ihU(t)a lp'(t)) = H(HOU ) [¢' (1)) . (C.3)
Now we multiply on the left by U*(#) to obtain
. d ' Tt & & 27T J - '
Iha ') = | UT(HHMHU®) — ihl (t)aU(t) [y (1)), (C4)
which we recognise as a Schrodinger equation for |’ (#)) with a modified Hamiltonian
H () = UthHM® U () — fhﬁ*(t)%ﬂ(t). (C.5)

We thus conclude that eq. (C.1) and eq. (C.4) represent the same physical situation,
and eq. (C.5) is the transformed Hamiltonian subject to a time-dependent gauge trans-
formation U ().

C.1 Gauge Transformations in Semi-Infinite
Leads

Several times in the main text we make use of the fact that systems that we consider
have infinite, periodic leads that are time invariant. Here we shall show that if we
start from a system where a lead has a uniform, time-varying potential applied to it
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we can perform a gauge transformation to remove the time dependence from the lead
and bring it into the coupling between the lead and the scattering region. We shall
treat a class of systems consisting of a finite, scattering region, S, with an arbitrary
quadratic Hamiltonian coupled to a semi-infinite electrode, L, with a uniform but time-
dependent voltage V() applied to it. The Hamiltonian is written as

A = Z HS (helfe; + Z HE(éfd; + he. + Z (Hg + V(t)éfj)cf;‘c{f (C.6)

BS (4 HT (1) HL(t)

where ¢f ¢; (¢;) are the creation (annihilation) operators for fermions in the scattering re-
gion, and d:_r (d}) are the corresponding operators in the leads. Note that, as mentioned
above, the time-dependence in the lead is given entirely by V (t). We now choose to
apply a gauge transformation

Wty = [ [exp| - /metdid, ], (C7)

where
o(t) = .[V(t) dt. (C.8)

We shall now use eq. (C.5) with egs. (C.6) and (C.7) to obtain the transformed Hamil-
tonian. First evaluating W*(t)H(t)W (t), term by term we note that [W(t),I:IS(t)] =
0 because [ C; },dkdk] = 0. Similar reasoning leads us to [W(t) HL(t)] = 0. The
WHHHT (HW(t) term requires the use of the following operator identities:

o088 §+ e—i08'8 _ e“"§+ (C.9)
018’8 ¢ e 108’8 = e %g, (C.10)

where a is a complex number and g is a fermionic operator (satisfying anticommuta-
tion relation {g,¢*,=}1, and yields

WHHHT (HW(t) = Z H};(t)e—f‘?’(”éjt@ + h.c. (C.11)
i
Now evaluating —th*(t)%W(t) we get

— fhW’f(t)%W(t) = -Vt Z drd,. (C.12)
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Putting this all together allows us to write the transformed Hamiltonian as

H (t) = Z H;(t)c”;‘é;,- + Z H};(t)e—"‘?’(“c‘jcfj +he + Z Hfjcf;?.cf., (C.13)
ij if if

where we see that the time dependence has been moved from the leads into the lead-
system coupling term. This calculation generalises trivially to the case where there are
several semi-infinite electrodes, each with their own uniform, time-dependent voltage.
In addition itis interesting to note that this gauge transformation coincides with that of
appendix B if our tight-binding model is the discretisation of a continuum model. This
gauge transformation is, in effect, a transformation from the Coulomb gauge (V-A = 0)
to the Lorentz gauge (V- A + (1/c2)8q9/8t =0).

C.2 Gauge Transformations for

Superconducting Leads

Here we shall look at the case of a system with a superconducting lead that has a
time-dependent bias applied to it. We shall see that while the problems look similar
in the Lorentz gauge, in the Coulomb gauge there is an extra time-dependence that
¢t

appears in the anomalous terms in the Hamiltonian.

We shall start with the Hamiltonian of a system with a superconducting lead that
has a time-dependent bias applied to it. In the Lorentz gauge the Hamiltonian reads:

i

1

' (t) = S e T (pyo=i@(D) 5t ]
H () —Z(Hfj(t)—;aéfj)c.c. +;Hﬂ-(t)e WO, 4 hc. +
' (C.14)

> (MG = oy )did, + bydfdf + e,

i

with ¢(t) defined by eq. (C.8). This is just eq. (C.13) with the Fermi level y subtracted
and an extra anomalous term (see section 5.1 for details). We shall now apply the
gauge transformation

W(t) = Hexp[(f/h)(p(t)cf;?cff], (C.15)

(the inverse of eq. (C.7)) to bring us into the Coulomb gauge. The treatment is identical
to appendix C.1, except that now we have to evaluate terms of the form

A,;fW+(t)cf;‘@‘W(t). (C.16)

C.2 Gauge Transformations for Superconducting Leads
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Using eq. (C.9) we see that
AWEBATIW (1) = Ao O dldt, (C.17)

i.e. theanomalous terms responsible for superconductivity pick up time-varying phase
factors. The Hamiltonian in the Coulomb gauge, H(t), is then

A = Z (Hf}(t) — ;aéfj)éjc‘f + Z HT (De=#Octd; + he. +
ij if
> (HE = (= V()15 )dtd; + Ay @O dld! + he.
i

(C.18)

It is now clear that even if the bias voltage is constant the Hamiltonian for treating this
system will always be time dependent due to the phase factors — this is true regardless
of the gauge in which we try to treat the problem. This inherent time dependence is
what gives rise to the a.c. Josephson effect.

Chapter C  Gauge Transformations
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