
HAL Id: tel-01528641
https://theses.hal.science/tel-01528641

Submitted on 29 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Criblage phénotypique à l’aide d’intracorps dans un
modèle de cancer colorectal

Vincent Parez

To cite this version:
Vincent Parez. Criblage phénotypique à l’aide d’intracorps dans un modèle de cancer colorectal.
Biologie cellulaire. Université Montpellier II - Sciences et Techniques du Languedoc, 2014. Français.
�NNT : 2014MON20109�. �tel-01528641�

https://theses.hal.science/tel-01528641
https://hal.archives-ouvertes.fr


  
 

 
 
 

 
  

  

  

  

 

 

 

 

Délivré par UNIVERSITE MONTPELLIER 2 

 
 
 

Préparée au sein de l’école doctorale CBS2 

et de l’unité de recherche IRCM – INSERM U896 
 

Spécialité : Biologie Cellulaire et Moléculaire 
 
 
 

 
 

Présentée par Vincent PAREZ 

 

CRIBLAGE PHENOTYPIQUE A L’AIDE D’INTRACORPS 

DANS UN MODELE DE CANCER COLORECTAL. 

Soutenue le 30/10/2014 devant le jury composé de  
 

 
Dr Gisèle CLOFENT-SANCHEZ, DR, CNRS Rapporteur 

Dr Etienne WEISS, PR, Université Strasbourg Rapporteur 

Dr Pierre MARTINEAU, CR, INSERM Examinateur 

Dr Paul GUGLIELMI, DR, INSERM Invité 

Dr Piona DARIAVACH, MCU, Université Montpellier 2 Directrice de thèse  

 



  
 

 
 
 

 
  

  

  

  

 

 

 

 

Delivered by the UNIVERSITY MONTPELLIER 2 

 
 
 

Prepared at the doctoral school CBS2 

and the research unit IRCM – INSERM U896 
 

Specialization: Molecular and Cellular Biology 
 
 
 

 
 

Presented by Vincent PAREZ 

 

A PHENOTYPIC SCREEN USING INTRABODIES IN A 

COLORECTAL CANCER MODEL. 

Defended on 30/10/2014 in front of a jury composed of  
 

 
Dr Gisèle CLOFENT-SANCHEZ, DR, CNRS Rapporteur 

Dr Etienne WEISS, PR, Université Strasbourg Rapporteur 

Dr Pierre MARTINEAU, CR, INSERM Examinateur 

Dr Paul GUGLIELMI, DR, INSERM Invité 

Dr Piona DARIAVACH, MCU, Université Montpellier 2 Directrice de thèse  

 



1 
 

Résumé 

Mots clés : Criblage phénotypique, anticorps intracellulaires, cancer colorectal 

 

Criblage phénotypique à l’aide d’intracorps dans un modèle de cancer 

colorectal. 

L’expression intracellulaire des anticorps (intracorps) est une approche qui permet l’étude et le 

ciblage des antigènes dans les compartiments intracellulaires. Néanmoins, l’expression d’anticorps 

entiers fonctionnels dans les cellules reste une tâche difficile en raison de leur grande taille et de leur 

structure, l’environnement réducteur du milieu intracellulaire étant défavorable à la formation des 

ponts disulfure. Notre groupe a une forte expertise dans le domaine de l'immunisation intracellulaire 

et son application pour l'identification de nouvelles cibles thérapeutiques. Pour cela, notre équipe a 

élaboré des banques de fragments d’anticorps scFv optimisés pour une meilleure expression 

intracellulaire. Nos travaux antérieurs ont démontré que ces intracorps peuvent cibler 

spécifiquement des domaines ou des modifications post-traductionnelles de protéines dans des 

cellules vivantes. Ceci est particulièrement important car il démontre l'un des avantages principaux 

des intracorps par rapport à l'approche basée sur l’ARNi. Cet avantage a été démontré par un criblage 

phénotypique dans un modèle d'allergie. En appliquant cette approche à l’étude de l’activation des 

mastocytes, nous avons pu identifier un nouvel acteur moléculaire impliqué dans la voie de 

signalisation mise en jeu. Ce travail a été protégé par un brevet européen en 2013 et est publié 

récemment. Dans le cadre de mon projet de thèse, j’ai construit une nouvelle banque synthétique 

(HUSCIv) optimisée pour la stabilité, la diversité et l’affinité des scFvs. Pour cela, le scFv 13R4 isolé 

dans notre équipe a servi de charpente pour le greffage des différentes boucles hypervariables, tout 

en respectant la diversité des régions CDR observée dans les anticorps naturels humains. Nous avons 

utilisé la protéine GFP en tant que rapporteur pour étudier le repliement et la solubilité des 

intracorps. Nos résultats ont clairement démontré que la plupart des intracorps issus de la banque 

HUSCIv sont soluble dans le cytoplasme des cellules mammifères.  

Mon projet de thèse décrit ici rapporte l’utilisation de la banque HUSCIv pour un criblage 

phénotypique dans des cellules de cancer colorectal portant une mutation du gène KRAS et 

résistantes au traitement par l’anticorps chimérique Cetuximab. Le projet cherche à sélectionner des 
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scFv capables de restaurer la sensibilité au Cetuximab, avec comme objectif l'identification des cibles 

intracellulaires impliquées. Pour ce criblage fonctionnel, la banque HUSCIv a été exprimée dans les 

cellules HCT116 par l’intermédiaire d’un système d’expression rétroviral. Le processus de sélection 

est basé sur la sélection directe de la prolifération des cellules en utilisant un colorant fluorescent 

(CMRA). Les cellules dont la prolifération est bloquée sont isolées et un séquençage à haut débit 

permet de suivre l’évolution des populations de scFv tout au long de l'expérience. Ainsi, ce projet a 

nécessité un séquençage profond d'un grand nombre de scFv afin de réaliser une analyse statistique.  

Nous avons réalisé à ce jour deux tours de sélection. Les tests de cytotoxicité réalisés sur les 

populations sélectionnées ont montré une inhibition significative de la prolifération en présence du 

Cetuximab d’environ 10%. Ces résultats indiquent l’évolution du phénotype qui tend vers une 

sélection de scFv inhibiteurs et suggèrent que nous devons réaliser au moins un ou plusieurs tours 

plus sélectifs avant de formuler des conclusions. 

L'approche introduite ici est différente de toutes les études existantes en ce qu'elle utilise des 

banques « naïves », et permet non seulement de répondre à la diversité du protéome, mais aussi 

d’étudier les messagers secondaires et le métabolisme des cellules. En tant que tel, et par rapport à 

d'autres approches à grande échelle, celle-ci représente une voie simple pour la découverte de 

molécules thérapeutiques potentielles. 
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Summary 

Keywords: Phenotypic screen, intracellular antibodies, colorectal cancer 

 

A phenotypic screen using intrabodies in a colorectal cancer model.  

Intracellular expression of antibodies (intrabodies) permitted the study and targeting of antigens in 

cellular compartments. However, the expression of functional intrabodies remains a difficult task due 

to their large size, structure, and the reducing intracellular environment. Our group has a strong 

expertise in the field of intracellular immunization and the identification of new therapeutic targets. 

For this purpose, we have developed an scFv library optimized for intracellular expression of scFv 

intrabody fragments. Our previous works have shown the successful use of intrabodies for targeting 

specific domains or post-translational modifications in living cells. This is particularly important 

because it demonstrates one of the main advantages of intrabodies compared to the approaches 

using RNAi. This benefit was demonstrated by a phenotypic screen in a model of allergy. Applying this 

approach to the study of mast cell activation, we identified a new molecular player involved in the 

signaling pathway implemented. This work was protected by a European patent in 2013 and was 

recently published. As part of my thesis project, I designed a new synthetic library (HUSCIv) optimized 

for scFv stability, diversity and affinity. For this, a highly soluble and hyper-stable framework, 

scFv13R4 isolated in our group, was used as a scaffold for grafting different hypervariable loops, while 

respecting the diversity of CDRs observed in human natural antibodies. We used protein GFP as a 

reporter to study the folding and solubility of intrabodies. Our findings clearly demonstrated that 

most of the intrabodies from HUSCIv library are soluble in the cytoplasm of mammalian cells.  

My thesis project described here reports the use of HUSCIv in a phenotypic screen of colorectal 

cancer cells carrying a mutation in the KRAS gene and resistant to the treatment with the chimeric 

antibody Cetuximab. The project seeks to select scFv fragments able to restore the sensitivity to 

Cetuximab, with the objective to identify the intracellular targets involved. For this functional screen, 

the HUSCIv library was expressed in HCT116 cells via a retroviral expression system. The selection 

process is based on the direct selection of cell proliferation using a fluorescent dye (CMRA). The cells 

whose proliferation is blocked are isolated and the evolution of scFv populations throughout the 

experiment is tracked via high-throughput sequencing. This sequencing requires a large number of 

scFvs to perform a statistical analysis.  
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So far, we have achieved two rounds of selection. The cytotoxicity tests carried out on the selected 

populations showed a significant inhibition of proliferation (10%) in the presence of Cetuximab. These 

results indicate that the evolving phenotypes are tending towards a selection of scFv inhibitors and 

suggest that we need to perform at least one or more selective rounds before making conclusions.  

The approach introduced here is different from all existing studies in that it uses "naive" libraries not 

only to respond to the diversity of the proteome, but also to study secondary messengers and 

metabolism in cells. As such, and in comparison to other large-scale approaches, it is a simple way for 

the discovery of potential therapeutic molecules. 
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 Résumé (long) 

1. Introduction 
 

L’approche de « l’immunisation intracellulaire » est basée sur la spécificité de reconnaissance et la 

diversité du répertoire des anticorps, permettant de cibler, neutraliser ou moduler les fonctions des 

protéines intracellulaires. Les anticorps intracellulaires sont alors appelés « intracorps ». L’expression 

intracellulaire des anticorps remonte aux années 80, et ces premières expériences ont permis 

l’utilisation des anticorps comme outils pour l’étude et le ciblage des protéines intracellulaires. 

Néanmoins, l’expression d’anticorps entiers fonctionnels dans les cellules reste une tâche difficile en 

raison de leur grande taille et de leur structure, l’environnement réducteur du milieu intracellulaire 

étant défavorable à la formation des ponts disulfure. Aussi, l’ingénierie des anticorps a permis de 

développer des formats de plus petite taille capables de retenir les mêmes propriétés d’affinité et de 

spécificité pour un antigène que les anticorps parents, et plus adaptés pour une utilisation 

intracellulaire. Des vecteurs dédiés à l’expression d’intracorps ont alors été développés. Ces vecteurs 

sont disponibles sous différentes versions, permettant l’expression des fragments d’anticorps dans les 

divers compartiments subcellulaires comme le cytoplasme, le noyau, ou le réticulum endoplasmique. 

En plus, le développement de la biologie moléculaire notamment grâce à la PCR et au séquençage de 

la totalité des gènes codant pour les immunoglobulines, a facilité la manipulation et le sous-clonage 

des gènes codant les anticorps.  

Le format scFv correspond au plus petit fragment conservant l’ensemble du site de liaison à 

l’antigène. Il est constitué d’une séquence nucléotidique unique codant les domaines variables des 

chaines lourdes et légères (VH et VL), reliés entre eux par un peptide de liaison flexible. En raison de 

leur petite taille les scFv offrent de nombreux avantages, d’autant plus qu’ils peuvent conserver la 

même affinité et spécificité de liaison élevée pour un antigène qu’un anticorps entier. La principale 

limite de ce format est que de nombreux scFv manquent de stabilité en raison de l’absence de ponts 

disulfure intra-domaines, et se retrouvent sous forme d’agrégats insolubles. Cependant des études 

ont montré que dans ces conditions, et malgré leur agrégation, certains intracorps conservaient leurs 

propriétés d’affinité de liaison et étaient capables de séquestrer leur cible antigénique. La 

composition en acides aminés des scFv semble être déterminante pour leur stabilité intracellulaire.  

Les formats d’intracorps les plus utilisés sont les scFv, ainsi que le format simple domaine qui 

commence à émerger pour de telles applications. Le choix du format dépendra de l’application 
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souhaitée, chacun présentant des différences en termes de taille, d’affinité et de stabilité. Enfin, un 

certain nombre de banques synthétiques d’intracorps ont été élaborées et ont permis de générer des 

fragments d’anticorps optimises pour des applications intracellulaires. 

La facilité de production de fragments d’anticorps fonctionnels en grande quantité chez E. Coli a 

conduit des équipes à construire des banques d’anticorps recombinants, ainsi qu’à réaliser des 

criblages de telles banques dans le but d’isoler les anticorps spécifiques d’un antigène donné, ou 

encore exprimés de manière stable dans le milieu cytosolique réducteur des cellules. Généralement, 

la probabilité d’obtenir un anticorps recombinant spécifique pour un antigène donné augmente 

proportionnellement avec la taille de la banque utilisée. Au sein de notre équipe, une banque 

synthétique (PMEW) optimisée pour l’expression intracellulaire a été construite en utilisant la 

séquence du scFv13R4 comme charpente, la diversité ayant été introduite au niveau des régions 

CDR3. Des travaux antérieurs avaient permis d’optimiser ce scFv par évolution moléculaire dirigée 

pour une bonne expression et activité cytoplasmique. L’inconvénient majeur des anticorps d’origine 

murine ou humaine est leur manque de stabilité et leur tendance à l’agrégation. C’est pourquoi une 

nouvelle banque d’intracorps humain (HUSCI) a été conçue afin d'améliorer la stabilité, la diversité et 

l’affinité des fragments d’anticorps (chapitre 3). 

De manière concomitante à l’élaboration des banques d’anticorps recombinants, plusieurs 

techniques se sont développées pour la sélection des fragments d’anticorps contre des ligands 

donnés. Le principe de ces méthodes de sélection repose sur l’association entre un phénotype et le 

génotype. La technique de l’Intracellular Ab Capture couple deux méthodes. Cette technique permet 

à la fois de sélectionner des scFv dirigés contre une cible précise, et de confirmer cette interaction à 

l’intérieur de cellules eucaryotes. Une fois exprimés les intracorps peuvent se lier à leur cible 

antigénique intracellulaire. Cette interaction peut résulter en la modulation ou l’inhibition des 

fonctions de l’antigène soit par une interférence directe, soit par une délocalisation subcellulaire. En 

effet, la liaison d’un intracorps a sa cible peut empêcher des interactions protéine-protéine ou 

protéine-acide nucléique, mais il est également possible d’élaborer des intracorps contenant des 

signaux d’adressage vers les divers compartiments subcellulaires pour délocaliser ou séquestrer une 

cible protéique. 
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De cette façon des propriétés spécifiques de protéines peuvent être exploitées ou détournées par 

l’utilisation d’intracorps, pour induire ou moduler un phénotype associé à la protéine cible. On peut 

définir cette utilisation comme de la mutagenèse à l’échelle de la protéine. Notre groupe a une forte 

expertise dans le domaine de l'immunisation intracellulaire et son application pour l'identification de 

nouvelles cibles thérapeutiques et de nouveaux médicaments. Des travaux antérieurs effectués dans 

notre groupe ont démontré l’efficacité de cette approche par l'inhibition des interactions protéine-

protéine et par la découverte de nouvelles molécules thérapeutiques. Le laboratoire a également 

démontré que les anticorps intracellulaires peuvent cibler spécifiquement une modification post-

traductionnelle d'une protéine dans une cellule vivante. Ceci est particulièrement important car il 

démontre l'un des avantages principaux des intracorps par rapport à l'approche basée sur l’ARNi.  

Dans le chapitre suivant, je décrirai les travaux que j’ai effectués au début de ma thèse de Doctorat 

dans le cadre d’un criblage phénotypique dans un modèle d'allergie qui a conduit à l'identification 

d'une nouvelle cible thérapeutique impliquée dans l'activation des mastocytes. Ce travail a été 

protégé par un brevet européen en 2013 et vient d’être publié. Le chapitre 3 de cette introduction 

résume mon travail pour l’optimisation de la banque de fragments scFv (HUSCI) afin d’améliorer leur 

expression et leur stabilité intracellulaire dans des conditions réductrices. Pour terminer dans le 

chapitre 4, je décrirai l’utilisation de la banque HUSCIv optimisée pour un criblage phénotypique dans 

des cellules de cancer colorectal portant un gène KRAS muté et résistantes au traitement par 

l’anticorps chimérique Cetuximab. Mon objectif était d'identifier des anticorps capables de rétablir la 

sensibilité au traitement, et par la suite d'identifier leurs cibles cellulaires. 

 

2. Criblage phénotypique dans un modèle d’allergie 
 

Les mastocytes dérivent de progénitures de la moelle osseuse qui entament leur maturation pendant 

leur déplacement à travers les tissus périphériques et la terminent localement une fois le site ou ils 

vont résider atteint. Ils sont présents dans tous les organes et tissus, mais plus particulièrement 

associés avec le tissu conjonctif, ainsi qu’aux interfaces avec le milieu extérieur. Une fois matures, ils 

expriment le récepteur haute-affinité pour les IgE (FcεRI), et présentent des granules intracellulaires 

contenant de nombreux médiateurs pro-inflammatoires.  

En réponse à une stimulation, ils sont capables de relarguer par exocytose leur contenus dans des 

granules de sécrétion ou synthétises, c’est ce que l’on appelle la dégranulation. La voie la mieux 
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décrite d’activation des mastocytes est celle de la liaison des IgE couplées à leur antigène, aux 

récepteurs de haute affinité FcεRI, ce qui conduit à l’agrégation des FcεRI et déclenche l’activation de 

cascades intracellulaires aboutissant à la libération de messagers par exocytose. Ces signaux précoces 

de fixation des IgE impliquent le rapprochement des récepteurs agrégés au sein des « lipid rafts », et 

l’activation de Lyn, une tyrosine kinase de la famille Src, qui va phosphoryler les résidus tyrosines 

présents dans les motifs ITAM du récepteur. Une fois phosphorylés, ces motifs vont permettre le 

recrutement de Lyn et de la tyrosine kinase Syk par leurs domaines SH2. L’ancrage de Syk va 

permettre son auto- ainsi que sa transphosphorylation par Lyn, ce qui va l’activer et lui permettre de 

phosphoryler un certain nombre de substrats, impliqués dans l’activation mastocytaire. 

En appliquant la technique de criblage phénotypique à l’étude de l’activation des mastocytes, notre 

équipe a pu identifier un nouvel acteur moléculaire impliqué dans la voie de signalisation mise en jeu. 

Notre but était de sélectionner, à partir d’une banque combinatoire de fragments d’anticorps scFv 

(PMEW) exprimée dans une lignée mastocytaire, ceux capables d’induire une inhibition de la 

libération de médiateurs allergiques. Pour cela, la banque PMEW d’une grande diversité et optimisée 

pour une meilleure expression intracellulaire a été clonée dans deux vecteurs d’expression 

eucaryotes : un vecteur plasmidique et un vecteur rétroviral. Une fois les banques de scFv exprimées 

dans la lignée mastocytaire RBL-2H3, deux sélections phénotypiques ont été réalisées en parallèle par 

cytométrie en flux (FACS), afin de sélectionner les cellules présentant un défaut d’activation et 

exprimant à priori des scFv inhibiteurs. Plusieurs scFv ont ainsi été sélectionnés et analysés. Les scFv 

isolés au moyen de l’approche plasmidique ont été analysés indépendamment sur des transfectants 

stables de la même lignée mastocytaire. L’évolution de la diversité de la banque et l’enrichissement 

en scFv au moyen de la sélection rétrovirale a été également étudiée par séquençage haut-débit. Ces 

analyses ont révélé qu’une vingtaine de séquences avaient été enrichies, et parmi elles un fragment 

d’anticorps en particulier, le 5H4 a retenu notre attention car il a été isolé également au moyen de la 

sélection plasmidique.  

Des expériences d’immunoprécipitation couplées à une analyse par spectrométrie de masse, ont 

permis l’identification de la cible de l’anticorps 5H4. Il s’agit de la protéine LOC297607 C12orf4, dont 

la fonction était jusqu’alors inconnue. Nous avons confirmé l’implication de cette protéine dans 

l’activation des mastocytes par une approche utilisant des shRNA. 
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En résumé, la convergence de l’ensemble de nos résultats, renforcés par l’identification d’un nouvel 

acteur moléculaire dans le domaine de l’allergie et l’inflammation, démontre le fort potentiel du 

criblage phénotypique développé durant ce projet. Cette approche offre de nouvelles perspectives 

d’études fonctionnelles du protéome, avec des applications potentielles à l’étude de multiples 

phénotypes pathologique. 

 

3. La banque d’intracorps HUSCI: Conception et Synthèse 
 

L’immunisation intracellulaire utilise des fragments d’anticorps exprimés à l’intérieur de la cellule afin 

de se lier à une protéine et d’inhiber ou de moduler sa fonction. Le problème majeur limitant 

l’utilisation des intracorps est l’absence de formation des ponts disulfures en milieu cytoplasmique 

(réducteur). Nous avons conçu une nouvelle banque de scFvs en nous basant sur les résultats obtenus 

avec la banque PMEW afin d’améliorer les propriétés de stabilité et de diversité des intracorps. 

Toutefois, devant les difficultés rencontrées pour obtenir des intracorps par greffages des boucles 

hypervariables, nous avons créé une banque d'anticorps optimisés pour l'immunisation 

intracellulaire. Pour cela, différentes boucles hypervariables ont été greffées sur la charpente de 

l'anticorps 13R4 en respectant la diversité des CDR observée dans les anticorps naturels humains. 

Notre but était de permettre la production  d’une majorité de scFvs sous forme soluble et active dans 

des cellules mammifères, et avec des hauts rendements de purification dans  E. Coli. Il était 

également important d’optimiser les intracorps afin d’améliorer leur spécificité pour les modifications 

conformationnelles et post-traductionnelles. La stratégie consistait à garder la même base hyper-

stable du 13R4 en optimisant les positions clefs à diversifier. La diversité de la banque PMEW est 

située sur toutes les positions des CDR3s et exclusivement sur les CDR3s. Dans HUSCI, les positions 

diversifiées sont distribuées sur les 6 CDRs, et correspondent à des positions clefs en termes de 

liaison à l’antigène et de stabilité. Les critères se trouvent dans la chaine latérale impliquée dans la 

liaison à l’antigène et dans la chaine latérale non-impliquée dans la stabilité du scFv. Enfin, dans la 

banque PMEW, les longueurs des CDR3s ont été variées en suivant la distribution en longueurs des 

anticorps humains. Dans HUSCI, par souci de stabilité, seules les longueurs du H3 sont variables: les 8 

longueurs les plus courantes sont représentées avec la même fréquence. 
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Le choix des positions et résidus à diversifier est dépendant de leur contribution énergétique de 

liaison à l’antigène et de liaison intra-scFv (stabilité). Ces mesures d’énergies par « computational 

alanine scanning » ont nécessité un travail préalable de construction et de formatage d’une banque 

de donnée de structures cristallographiques d’anticorps-antigène. Deux informations principales 

ressortent de cette analyse. Tout d’abord, tous les CDR contribuent significativement à l’énergie 

d’interaction antigène-anticorps et deuxièmement, l’énergie d’interaction est distribuée de façon 

inhomogène, à des positions clefs des CDRs. Les CDR3 (uniques CDRs variables dans la précédente 

banque PMEW) ne contribuent en moyenne qu’à hauteur de 40% de l’énergie totale de liaison 

anticorps-antigène dans les structures de la PDB. Même dans le cas de l’unique structure issue de la 

banque PMEW, les CDRs variables (H3 et L3) ne contribuent qu’à hauteur de 30% de l’énergie totale. 

Les résultats de cette analyse confirment le bien-fondé d’une approche ciblant les positions clefs de 

l’interaction anticorps-antigène sur les 6 CDRs, et permet de spécifier les positions et les types de 

résidus optimaux à choisir. Cette distribution en acides aminés correspond à la distribution de la 

banque de donnés PDB aux positions clefs en termes de propriétés physico-chimique. Chaque 

position mutée a été validée en termes d’accessibilité sur des structures modèles représentatives 

pour chacune des 8 longueurs de H3. 

Pour évaluer les scFv issus de la nouvelle banque (HUSCIv) en tant qu’intracorps, ils ont été comparés 

à ceux de de l’ancienne banque (PMEW). Pour cela, les scFv ont été exprimées dans une lignée 

cellulaire humaine (HeLa), et dans la lignée cellulaire modèle de cancer colorectal (HCT116). Afin 

d’étudier le repliement des scFv dans le cytoplasme de cellules de mammifères, une fusion à la 

protéine GFP de méduse a été réalisée. L’utilisation des banques d’intracorps à grande échelle 

dépend de plusieurs paramètres. Tout d'abord, les scFv doivent être facile à isoler. Deuxièmement, 

les scFv devraient être capables de se replier dans tous les compartiments de la cellule, en particulier 

dans les compartiments réducteurs. La comparaison entre PMEW et HUSCIv démontre que la 

nouvelle banque a été améliorée en termes d’expression et de repliement des intracorps. En effet, le 

marquage GFP utilisé en tant que marqueur a clairement démontré que la plupart des intracorps issus 

de la banque HUSCIv sont soluble dans le cytoplasme de la cellule. De plus, le niveau d'expression de 

tous les clones est comparable, ce qui limite le risque d'artefacts lors de la sélection. De plus, alors 

que la banque PMEW contient environ 30% de scFv13R4, la banque HUSCIv en contient deux fois 

moins. Considérant que HUSCIv contient des intracorps plus solubles que PMEW, nous avons conclu 

que les mutations introduites dans les six boucles de CDR n'ont pas réduit la solubilité globale de 

HUSCIv. 
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4. Criblage phénotypique dans un modèle de cancer colorectal résistant au 

Cetuximab 
 

A l'Institut du Cancer de Montpellier, plusieurs équipes ont déjà criblé la banque HUSCI et des 

anticorps contre leurs cibles respectives (p38 MAP kinase, la cathepsine-D, HER4, famille TAM ...) ont 

été sélectionnés avec succès par phage display. Notre projet, cependant, introduit cette banque dans 

une approche totalement différente. En effet, nous avons cloné la banque HUSCIv dans un système 

rétroviral et nous l’avons utilisée dans le cadre d’un criblage phénotypique visant à sélectionner des 

scFv capables de restaurer la sensibilité au Cetuximab des cellules de cancer colorectal (mCRC) 

exprimant un gène KRAS muté. 

Le cancer du côlon est la deuxième ou troisième pathologie cancéreuse (suivant le sexe) avec environ 

40 500 cas et 17 500 morts par an en France. Le traitement neoadjuvant actuel des métastases du 

mCRC s'appuie sur l’association entre une chimiothérapie à base de deux ou trois molécules (5-

fluorouracile, oxaliplatin et/ou irinotecan) et une thérapie ciblée à base d'anticorps monoclonal anti-

VEGF (Bevacizumab) ou anti-EGFR (Cetuximab). Dans les meilleures études, le taux de réponse 

objective reste toutefois limité à environ 50-60% des patients et, en l'absence de chirurgie 

secondaire, 100% des patients rechuteront et deviendront résistants à toute nouvelle chimiothérapie. 

L'apparition de résistances au traitement a été identifiée comme la principale raison des rechutes et 

des échecs thérapeutiques. Cette résistance peut être préexistante au traitement, la tumeur étant 

intrinsèquement résistante, ou apparaître au cours de la chimiothérapie, les cellules résistantes étant 

sélectionnées et enrichies par le traitement lui-même. De nombreux mécanismes peuvent être 

responsables de la réponse ou de la non-réponse des patients souffrant de mCRC aux thérapies mais 

l'un des mieux établis est l'influence des mutations de la voie RAS en aval du récepteur à l'EGF. En 

effet, les patients dont les tumeurs sont mutées dans KRAS, BRAF, NRAF, PIK3CA7 ou PTEN ne 

répondent pas au traitement par le Cetuximab et ont donc un mauvais pronostic. 

Même en l'absence de mutation en aval de l'EGFR, il a été montré que des mutations du récepteur 

lui-même pouvaient expliquer la non-réponse au traitement. Une mutation du gène KRAS est 

présente dans environ 40% des mCRC et le traitement au Cetuximab n'a alors aucun effet. Chez ces 

patients l'effet du Bevacizumab est également réduit, l'augmentation de la survie totale ou sans 

progression étant plus faible que dans la population non-mutée. Notre projet cherche donc à rétablir 

la sensibilité de cellules mutées KRAS au traitement par le Cetuximab in vitro et d’identifier les cibles 

intracellulaires impliquées. Pour cela, nous avons réalisé un criblage fonctionnel à l'aide de la banque 
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HUSCIv dans la lignée HCT116 et en présence du Cetuximab. La prolifération des cellules est détectée 

à l’aide d’un colorant fluorescent (CMRA). La sélection à l’aide du CMRA comme marqueur 

fluorescent est bien documentée et permet de suivre chaque division cellulaire avec une bonne 

résolution. Dans notre cas, un trie par Cytométrie en flux est réalisé et les cellules dont la 

prolifération est bloquée sont sélectionnées. 

A ce jour, nous avons pu réaliser deux tours de sélection. Des tests de cytotoxicité réalisés sur des 

populations sélectionnées ont montré un enrichissement en scFv ayant un effet cytostatique. En 

effet, nos résultats montrent une baisse significative (~10%) de la viabilité cellulaire après le 2ème tour 

de sélection. Ce chiffre n’atteint pas la baisse de viabilité d’environ 50% observée dans la lignée DLD1 

sensible au Cetuximab. Toutefois, cette observation indique l’évolution du phénotype qui tend vers 

une sélection de scFvs d’intérêt et suggère qu’au moins un ou plusieurs tours de sélection 

supplémentaires seront nécessaires avant de confirmer ces résultats. 

Dans ce modèle, notre but est d’identifier les intracorps responsables de l’inhibition de la croissance 

cellulaire ou la mort cellulaire et dont le nombre sera en baisse ou même en disparition lors de la 

sélection (épuisement). Ainsi, un séquençage profond et à haut débit des populations de scFv 

évoluant tout au long de l'expérience est nécessaire afin de permettre une analyse statistique. Du fait 

que les positions variables soient réparties le long de l'ensemble des boucles de CDR, et en raison de 

la taille des fragments séquencés (~550 paires de base), nous avons opté pour l’identification des scFv 

par des codes-barres. A ce jour, le séquençage de l'échantillon d'essai a révélé que 43% de nos 

échantillons contenaient un code barre correct, ce qui correspond à la diversité attendue de 106. 

Ainsi, 108 séquences seront comparées entre les deux groupes (avant et après le traitement par 

Cetuximab) et des séquences spécifiquement appauvries lors de la sélection seront identifiées.  

L'approche introduite ici est différente de toutes les études existantes en ce qu'elle utilise des 

banques « naïves ». En tant que telle, la stratégie est analogue à des approches génétiques classiques 

à l'exception qu'elle agit au niveau de la protéine. En effet, l'intracorps joue le même rôle que les 

mutations. Néanmoins, parce que l'intracorps ne modifie pas directement sa cible mais module sa 

fonction, il est également analogue à un médicament. Toutefois, contrairement aux approches 

typiques utilisant les shRNA et siRNA, l’identité de la cible ne peut être déterminée à partir d'une 

séquence d'anticorps. En résumé, l'approche décrite ici représente un outil puissant, non seulement 

pour répondre à la diversité du protéome, mais aussi pour l’étude de messagers secondaires et du 

métabolisme dans les cellules. En tant que tel, et par rapport à d'autres approches à grande échelle, 

elle représente une voie simple pour la découverte de molécules thérapeutiques potentielles. 
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Objectives 

The main objective of my thesis was to perform a phenotypic screening approach in a colorectal 

cancer model. Our aim was to restore the sensitivity of KRAS mutated cells to Cetuximab treatment in 

vitro by the identification and inhibition of intracellular targets that may interact with the EGF 

pathway.  

For this purpose, a highly diverse retroviral intrabody library was designed with improved diversity, 

affinity and stability of scFv fragments inside the cells. This optimized human intrabody library 

(HUSCI), was used to transfect a KRAS mutated adenoma-carcinoma cell line, and intrabodies of 

interest were identified by two methods: 

1) FACS-based screening of cells blocked in their proliferation by means of a fluorescent dye;  

2) Statistical analysis of declining sequence frequencies, obtained by next generation 

sequencing of the subsequent intrabody pools; 

3) The rescue of full intrabody sequences from the highly diverse library, needed for the 

identification of their targets.  
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Introduction 

1. Intrabody concept 
 

1.1 Structure and function of antibodies 

Upon an infection of a higher organism, two major systems try to counteract the pathogen invasion in 

the body. Initially, the innate immune system provides an immediate, non-specific response after the 

invasion of an unknown pathogen (Palm and Medzhitov, 2007). If the infection continues, the 

response of the adaptive immune system is initiated. The adaptive immune response is antigen-

dependent and specific and is developed during the lifetime of an individual. It is based on a highly 

advanced interplay between a variety of different cell types and molecules among which lymphocytes 

and antibodies are the key elements. There are two types of lymphocytes, T cells and B cells. T cells 

are responsible for cellular immune response, while B cells are essential for the humoral immune 

response. In both cases the immune response is stimulated by specific antigens which can range from 

small chemical structures, through sugars, lipids, peptides and nucleotides to large molecules, such as 

proteins, protein complexes or even whole organisms like bacteria, viruses and parasites (Delves and 

Roitt, 2000). 

During adaptive immune response, B cells are providing both specific and long-lasting protection 

against a diverse range of pathogens (Harwood and Batista, 2010). Once an antigen is bound to the 

surface of a B cell via the B cell receptor (BCR), it gets internalized and processed into peptides 

(Parker, 1993). The processed antigen is returned to the B cell surface and presented via the Major 

Histocompatibility Complex (MHC) II for antigen specific helper T cell (TH cell) recognition (Noelle and 

Snow, 1992). The physical contact between B and TH cell triggers the production of specific 

interleukins including IL-4, IL-5 and IL-6 which in turn activate B cells (Parker, 1993). IL-4 activates 

clonal proliferation, while IL-5 and IL-6 induce the differentiation of the B cell. The activated B cells 

either differentiate into memory B cells providing long-term protection against secondary infection or 

into antibody secreting plasma cells (Reth, 1992). 

In the immune system antibodies are responsible for recognition and binding of foreign structures. 

They protect the host in different ways. First, they neutralize toxic effects of pathogens by binding 

pathogens and hence preventing infection. Second, they facilitate uptake of the pathogen by 

phagocytosis and third, they recruit natural killer (NK) cells by binding to the surface of a pathogen 
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Figure 1: General structure of an immunoglobulin in higher vertebrates illustrated in this 

case by IgG. (Thompson et. al, Austin Peay State University).   

Figure 2: Membrane-anchored forms of the immunoglobulin isotypes are encoded by a cluster of immunoglobulin 

heavy chain constant region genes (IMGT Education). 
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enabling NK cells to destroy the antibody-coated cells in a process called antibody-dependent cell-

mediated cytotoxicity (ADCC). 

Antibodies are capable of recognizing an enormous variety of different antigens. However, they do 

not recognize whole antigens, but parts of it referred to as epitopes. The diversity of antibodies is 

based on their modular architecture making it possible to generate up to 1011 or more different 

antibodies (Willis et al., 2013). In humans and closely related species the basic antibody molecule 

(~150 kDa), also referred to as immunoglobulin (Ig), consists of two identical heavy (H) chains and two 

identical light (L) chains. Two types of light chains (κ and λ) and five types of heavy chains (μ, δ, γ, ε 

and α) can be distinguished. Heavy and light chains are linked covalently by disulfide bonds (Porter, 

1963) (Figure 1). Both, the heavy (~50 kDa) and light chain (~25 kDa) are composed of two regions 

with distinct variability of their amino acid sequence (Hilschmann and Craig, 1965): the variable (V) 

region at the N-terminus and the constant (C) region at the C-terminus (Cohen and Milstein, 1967). 

Each light chain consists of one variable domain (VL) and one constant domain (CL). Each heavy chain, 

however, consists of one variable domain (VH) and up to four constant domains (CH). The so-called 

hinge region is located between CH1 and CH2 constant regions of the heavy chain forming the typical 

Y-shaped structure of an antibody. Antibody molecules can be cleaved in distinct fragments after 

incubation with the protease papain. It cuts the molecule in the hinge region to yield the Fab 

(fragment antigen binding; ~45 kDa) and the Fc (crystallizable fragment; ~50 kDa) part of the 

molecule. The Fab part retains the antigen binding activity while the Fc part contains most of the 

constant region of the heavy chains (Delves and Roitt, 2000). 

Five classes of immunoglobulins can be recognized; IgM, IgD, IgG, IgE and IgA. The different heavy 

chains that define these classes are known as isotypes and are designated by the lower-case Greek 

letters μ, δ, γ, ε, and α. At the membrane of a mature B cell, IgMs are the first type of 

immunoglobulins which are expressed, followed by IgDs (Harriman et al., 1993). The expression of 

these two classes is mainly due to a differential spicing of a primary mRNA. IgMs comprise the heavy 

chain constant region Cμ while IgDs contain Cd (Figure 2).  

During a somatic recombination process called class switch recombination (CSR) (Li et al., 2004), the 

gene coding for CH is changed from Cμ to Cγ, Cε or Cα, allowing for switch of isotype from IgM to 

either IgG, IgE or IgA, respectively. The five isotypes also show structural differences including the 

number and location of disulfide bonds, the number of C domains and the length of the hinge region 

(Figure 2). 
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Figure 3: Schematic illustration of VH and VL domains (Muzard et al., 2013). 
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This hinge region connects the CH1 and CH2 domain and is responsible for the flexibility of an 

antibody molecule (Padlan, 1994). Since the length of the hinge region varies in the different isotypes, 

the distance between the antigen binding sites differs. While IgD, IgG and IgA class antibodies have a 

hinge region, IgM and IgE class antibodies are lacking one but contain an extra heavy-chain domain. 

These differences in the heavy chain composition are responsible for distinct characteristics and 

effector functions of each isotype. As described above, IgMs are the first antibodies to be produced 

and hence are responsible for activation of phagocytosis. IgA class antibodies are mainly found in 

mucosal surfaces. IgEs are involved in defense against parasites and play a major role in common 

allergic diseases, whereas IgD isotypes exist only in minor amounts as antibody in serum and its 

function is still unsolved (Reth, 1992). During immune response of higher vertebrates IgGs are the 

most abundant antibodies in serum (Cohen and Milstein, 1967). 

In humans, IgGs can be further divided into four subclasses: IgG1, IgG2, IgG3 and IgG4. The IgG 

subclasses are named in order of abundance in serum: IgG1 70 %, IgG2 20 %, IgG3 7 % and IgG4 3 % 

(Ochs and Wedgwood, 1987). The structural differences among IgG subclasses lie in the length of the 

hinge region and in the distribution of the disulfide bonds (Ochs and Wedgwood, 1987). Antibodies 

specifically recognize and bind antigens through the variable region located at the N-terminus of the 

molecule. The variable region differs extensively between antibody molecules, but the sequence 

variability, however, is not distributed equally throughout the variable regions but concentrated in 

three so called hypervariable regions. When VH and VL domains are paired in the antibody molecule, 

three hypervariable loops from each domain are brought together creating a single hypervariable 

site: the antigen-binding site (Figure 1). The hypervariable loops form the complementarity 

determining regions (CDR1, CDR2 and CDR3), and are encoded by a genetic recombination of VJ in the 

case of a light chain region and VDJ in the case of heavy chain regions. The CDRs are flanked by less 

variable and highly conserved regions which are called framework regions (FR) (Kabat and Wu, 1991) 

(Figure 3). However, mutations in FRs are also known to influence binding since they play an 

important role in structure preservation, folding yield, stability and even direct interaction of the 

antibody with the antigen (Padlan, 1994) (David et al., 2007). 

The CDRs of the light chain are roughly 6 to 10 amino acid residues in length, those of the heavy chain 

are roughly 5 to 15 amino acid residues in length (Kabat and Wu, 1991) (Johnson and Wu, 2000), but 

they show wide variations in length between species (Padlan et al., 1995) (Collis et al., 2003), 

especially in the CDR3 of heavy chains (Padlan and Kabat, 1991) which often plays a central role in  

antigen binding. Since antigen-binding is mediated through CDRs from both VH and VL domains,
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Figure 4: Schematic illustration of different antibody formats derived 

from conventional antibodies (Frenzel et al., 2013). 
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it is the combination of heavy and light chain which determines the antigen specificity. As a result, 

antibodies naturally are bivalent with two antigen-binding arms of identical specificity (Delves and 

Roitt, 2000). Antibody-antigen interactions are non-covalent bonds such as hydrogen bonds, salt 

bridges and van der Waals bonds (Absolom and van Oss, 1986) and the strength of binding is called 

affinity. The presence of two identical antigen-binding sites allows antibodies to bind simultaneously 

to two identical antigens and hence increases the total strength of the interaction. 

1.2 Antibody engineering 

Recombinant antibodies are antibodies that are not produced from their natural locus in B-cells. 

Nowadays, recombinant antibodies are created by genetic engineering leading towards recombinant 

antibody libraries based on diversified antibody gene segments. It is possible to create recombinant 

antibodies which usually are difficult to obtain by the immune system, e.g. due to transient 

conformational change of an antigen after cofactor binding (Nizak et al., 2003) (Figure 4). The 

smallest antigen binding fragment of immunoglobulins maintaining its complete antigen binding site 

is the Fv fragment, which consists of the variable regions (VH + VL). Naturally, VH and VL domains are 

non-covalently associated via a hydrophobic interaction and tend to dissociate (Winter and Milstein, 

1991). Often, a soluble and flexible amino acid peptide linker ((Gly4Ser)3) is used to connect the V 

regions to a scFv (single chain fragment variable, ~25 kDa) fragment for stabilization of the molecule, 

hence representing the minimal recombinant antigen-binding fragment of antibodies (Hudson, 1998). 

It consists of the two variable domains, VH and VL. As scFvs are relatively small and unglycosylated, 

they can be produced in heterologous expression systems like bacteria or lower eukaryotes (Skerra 

and Plückthun, 1988). Moreover, their small size has been suggested to permit binding to cryptic 

epitopes not accessible to full-sized mAbs (Ward et al., 1989). 

But due to fast absorbance and excretion by the kidney, scFvs demonstrate short circulating half-lives 

in the organism (Sanz et al., 2005). Furthermore, therapeutic applications or diagnostic applications 

are still hampered by stability problems since scFvs still have a strong tendency to aggregate due to 

hydrophobic interactions in a hydrophilic environment (Nieba et al., 1997). 

In some species, like the family of Camelidae, light chains are absent in some of the Ig and thus their 

combining sites consist of only one domain, termed VHH (Hamers-Casterman et al., 1993). Because 

they are relative small, they outperform other antibodies in terms of stability, resistance to 

aggregation, refolding properties, expression yield, DNA manipulation, library construction, 
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Figure 5: Intrabodies modes of action (Lobato et al., 2003) 
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and three-dimensional structure determination. Many of these are desired in applications involving 

antibodies. However, the non-human nature of VHHs limits their use in human immunotherapy 

because of the immunogenicity issue. In this respect, human VHs are ideal candidates for therapeutic 

applications because they are expected to be least immunogenic. However, due to the missing VL 

interaction they have an exposed hydrophobic surface and tend to aggregate (McGregor et al., 1994). 

Thus, attempts were made previously to obtain monomers, i.e. human VHs suitable for antibody 

applications. Such VHs also displayed other useful properties typical of VHHs, such as high expression 

yield, and high renaturation yield. Synthetic libraries built on these VHs as library scaffolds should 

serve as a promising source of therapeutic proteins.  

Besides scFvs and VHs, Fab (~50 kDa) fragments are also commonly used recombinant antibody 

fragments. Fabs can be recombinant or generated by proteolytic digestion of full length antibodies 

and comprise the VH and CH1 domains of the immunoglobulin heavy chain and the VL and CL 

domains of the light chain. Fab fragments are used for diagnostic imaging (Behr et al., 1995) and in 

vivo imaging (Elsässer-Beile et al., 2009). Recently, 3 Fabs have obtained FDA approval as for example 

Ranibizumab, an anti-VEGF antibody used in the treatment of certain forms of age-related macular 

degeneration (Stewart, 2014).  

1.3 Intracellular immunization 

Intracellular antibodies or ‘intrabodies’ are antibody fragments that are expressed within the cell and 

directed against intracellular proteins. In this way they can interfere and inhibit cellular processes 

inside the cell in a number of ways (Figure 5), affording them great potential for the use in target 

validation. Intrabodies can inhibit an enzymatic activity directly, or interfere with protein-protein 

interactions, thus disrupting signaling pathways. They can also be used to displace a protein from its 

site of action. The fusion of intracellular localization signals, such as a nuclear localization signal (NLS) 

or a retention signal for the endoplasmatic reticulum (ER) can be used to re-direct the intrabody and 

its target antigen to specific locations within the cell. For instance, an scFv directed against the ErbB-2 

receptor and designed to prevent transit through the ER was shown to down-regulate the surface 

expression of ErbB-2 and consequently, to considerably affect growth factor signaling (Graus-Porta et 

al., 1995).  

In another elucidating study on the action of intrabodies, the authors compared the inhibition of Ras 

function with a number of different scFv fragments. Their ability to inhibit Ras function was then 

characterized in vivo using a cell proliferation assay and in vitro measuring GTPase activity.  
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Although none of the selected scFvs were able to inhibit Ras function in vitro, it emerged that a 

number of them still functionally inhibited Ras in vivo by diverting it from the plasma membrane and 

sequestring it the nucleus or by the formation of aggregates. These studies illustrate the potential of 

intrabodies to validate targets in cellular assays (Lener et al., 2000). 

The work of Lecerf et al (Lecerf et al., 2001) describes the use of human scFvs directed against 

huntingtin protein to interfere with the formation of intracellular aggregates characteristic of 

Huntington’s disease. The inhibition of protein aggregation required the fusion of a nuclear 

localization signal (NLS) to the scFv, which was subsequently able to retarget the huntingtin derivative 

to the nucleus. The authors suggest that the binding event, by maintaining huntingtin protein in a 

soluble state, favors normal cellular protein turnover rather than aggregation. This ‘solubilizing’ 

property of scFvs could be interesting for a range of neuro-degenerative diseases caused by abnormal 

protein aggregation. 

Also in the field of “HIV therapy” scFv were applied. The scFv 105 against the Env protein (gp120) was 

shown to inhibit the proteolytic processing of the precursor protein gp160 in the ER and decrease the 

infectivity of HIV virions released by the cells (Marasco et al., 1993). Various scFvs have been selected 

to target Tat, another protein essential for the life cycle of HIV.  

Tat is required for the transactivation of the HIV-LTR. Once the scFv was bound to Tat, it blocked the 

latter’s nuclear function. Interestingly, nuclear targeting of the scFv was not required for this effect 

(Mhashilkar et al., 1995). This suggests that the scFv-mediated effects were exerted by sequestering 

Tat in the cytoplasm, rather than interfering mechanistically with its nuclear function. Similarly, scFvs 

directed against HIV’s Rev were shown to prevent the cytoplasmic nuclear shuttling of Rev, a 

regulatory RNA binding protein. Curiously, the in vitro affinities of the scFvs did not always correlate 

with the observed performance in the cellular system; some scFvs with lower affinity displayed a 

more potent inhibitory effect in vivo. This demonstrates the importance of considering the different 

requirements of the intracellular environment for the functionality of an intrabody. 

As a final example, our group has shown the efficient inhibition of the Spleen tyrosine kinase (Syk) 

with intrabodies directed against its SH2 domains. The cytoplasmic expression of anti-Syk intrabodies 

in a mast cell line affected protein-protein interactions of Syk with its cellular targets and inhibited 

mast cell activation (Dauvillier et al., 2002) (Mazuc et al., 2008). Subsequently, these anti-Syk 

intrabodies have been used in a high throughput screening assay to identify non-enzymatic inhibitors 

of Syk and allergy (Villoutreix et al., 2011). 
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Figure 6: Methods for making and selecting intrabodies (Lobato et al., 2003). 
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Despite these encouraging results, the use of antibodies inside the cell is troubled with difficulties 

regarding stability and solubility. This has limited their widespread use to date. Disulfide bridges 

contribute greatly to the stability of the intrabody. In addition to the inter-molecular disulfide bridges 

important for the stability of the full size intrabody, intra-molecular disulfide bridges are crucial for 

the structural integrity of the intrabody (Biocca et al., 1990) (Cattaneo and Biocca, 1999). Therefore, 

only a small proportion of intrabodies are functional under the reducing intracellular conditions, 

while the majority of intrabody frameworks become unstable, insoluble and therefore non-

functional. However, as the potential of intrabodies for applications inside the cell is becoming 

increasingly recognized, intrabody engineering and selection procedures have been developed to 

isolate functional intrabodies. Further development of these technologies in large-scale libraries will 

greatly facilitate the exploitation of intrabodies. 

1.4 Selection systems 

A straightforward approach to intrabody isolation is derivation from the V regions of a high-affinity 

monoclonal antibody (mAb) (Figure 6a). The VH and VL can be amplified by reverse transcriptase (RT) 

– PCR of mRNA from the original hybridoma and then be cloned as a scFv (Marasco et al., 1993). 

Alternatively, one of the in vitro display systems, such as phage (Figure 6b), bacterial or yeast surface 

or ribosome display techniques, can be employed to screen scFv libraries with the desired antigen to 

select specific scFv that can subsequently be tested as intrabodies (Wörn and Plückthun, 2001). 

The problem with these approaches is that no allowance is made for the inability of some scFv to 

function in the cellular milieu. As a result, the scFv can be nonfunctional and show poor expression 

levels, low solubility and/or a short half-life. Although screening high-diversity scFv libraries should 

yield low numbers of scFv that will work in cells, these intrabodies could be quickly identified using 

‘intracellular antibody capture’ (IAC, Figure 6c) (Tse et al., 2002), which combines a first round of in 

vitro screening of diverse phage scFv libraries with a second intrabody – antigen interaction screen in 

yeast (Visintin et al., 1999) to determine the best in vivo interactions. It is also possible to directly 

isolate single domains that bind to target proteins within the reducing cellular environment (Tanaka 

and Rabbitts, 2012). In addition, this method also allows a consensus scaffold to be defined, with 

improved solubilty and expression properties in vivo for the development of improved intrabody 

libraries   (Tanaka and Rabbitts, 2003). 
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Several other techniques have been developed, which rely on a pre-determined ability of intrabody 

fragments to fold adequately and to remain stable in cells using optimized scFv frameworks (Figure 

6d). These include fragments that tolerate the absence of intra-chain disulfide bonds (Wörn and 

Plückthun, 1998), fragments made by CDR grafting onto a stable intracellular scFv (Ohage et al., 1999) 

(Philibert et al., 2007) and fragments produced by rational stability engineering of variable domains 

(Desiderio et al., 2001). These approaches promise to deliver effective intrabody libraries. Future 

adaptations of all these methods will allow the development of rapid-throughput approaches to the 

production of panels of intrabodies against protein targets in disease-state cells and in functional 

genomics applications. 

1.5 Recombinant antibody libraries 

As described above, recombinant antibodies are frequently derived from antibody libraries. The most 

prominent Fab library is the HuCal library (Knappik et al., 2000) which is a synthetically generated 

library with several randomized positions in the 6 CDR-regions. To select desired antibodies from such 

libraries, display technologies such as bacterial display, ribosome display and phage display have 

proven to be powerful tools. With these methods, recombinant binding molecules can be selected in 

vitro from comprehensive libraries derived synthetically (Knappik et al., 2000) or from immunized (He 

et al., 1999) or naïve animals (de Haard et al., 1999). 

Naïve antibody libraries 

A truly ‘naive’ antibody library would be made from IgM bearing cells prior to exposure to antigen. In 

common usage it may simply mean that the individuals whose intrabody-expressing cells were used 

to generate the libraries were not specifically immunized against particular antigens. In practice, 

lymphocytes are isolated from a number of individuals and heavy and light chains are amplified for 

insertion into expression vectors for display. 

Immune antibody libraries 

Immune antibody libraries are created starting with lymphocyte RNA from individuals previously 

exposed to the desired antigen. Such libraries are biased toward high affinity binders for the desired 

antigens since they contain heavy and light chains that have undergone in vivo affinity maturation. 

Such libraries can be of a smaller size than ‘universal’ libraries. Of course, poorly immunogenic 

antigens, including very highly conserved antigens, are problematic and the purposeful exposure to 

antigens is limited to non-human subjects. 
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Figure 7: Development of a scFv library optimized for 

intracellular expression (Philibert et al., 2007) 
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Semi-synthetic antibody libraries 

Semi-synthetic libraries have combinations of natural and synthetic antibody diversity; they are often 

created to increase natural diversity while maintaining a certain level of functional diversity. For 

example, libraries created by shuffling natural CDR regions or by introducing naturally rearranged and 

highly functional CDR3 sequences from human B-cells with synthetic CDR1 and CDR2 diversity. 

De Kruif et al. used 49 germline VH genes in combination with synthetic CDR regions and seven light 

chains to create a human scFv phage display library from which phages were isolated using 13 

different antigens, including ones that could distinguish between two highly related homeobox 

proteins (de Kruif et al., 1995). Another research group paired a single VH chain wherein random 

mutations were introduced using partially degenerate primers and PCR with a single VL chain to 

create a human phage display library. Hoet et al. combined synthetic diversity in CDR1 and CDR2 with 

naturally occurring sequences to create human Fab libraries from which high affinity antibodies were 

obtained. By using the heavy chain CDR3 regions from 35 donors they were able to capture both the 

sequence and length diversity naturally present in CDR3. Specific amino acids in CDR1 and CDR2 were 

varied in such a way as to increase the likelihood of creating higher affinity Fabs from the phage 

display library (Hoet et al., 2005). 

Synthetic antibody libraries 

Synthetic antibody libraries are constructed entirely in vitro using oligonucleotides that introduce 

areas of complete or tailored degeneracy into the CDRs of one or more V genes. Synthetic diversity 

bypasses the natural biases and redundancies of antibody repertoires created in vivo and allows 

control over the genetic makeup of V genes and the introduction of diversity. Knappik et al. used 

consensus frameworks and a cassette approach for introducing diversity into the CDR3 regions of 

both heavy and light chains. Seven master heavy chain genes and seven master light chain genes 

were synthesized based on consensus germ line sequences. Codons were optimized for expression in 

Escherichia coli and certain problematic residues were eliminated altogether. All 49 combinations of 

heavy and light chains were cloned into a phagemid vector. Both the VH and VL CDR3 regions were 

replaced by a mixture of trinucleotides skewed toward amino acids naturally occurring in human 

CDR3 sequences. In this way, diversity can be both created and controlled, depending on the mixture 

of trinucleotides in the mutagenesis cassette (Knappik et al., 2000). Within our team, a synthetic 

library of scFvs optimized for intracellular expression was constructed by using the consensus 

sequence 13R4 as a framework (Figure 7). The diversity was introduced at the level of the CDR3 

regions (Philibert et al., 2007) and the template (scFv13R4) was optimized by molecular 
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evolution during previous works, which aimed for optimal expression and activity in the cytoplasm 

(Martineau et al., 1998a).  

For that purpose, a scFv fragment that binds and activates an inactive mutant β-galactosidase was 

isolated. The gene encoding the scFv fragment was subjected to random mutation in vitro by error-

prone polymerase chain reaction, and co-expressed with the mutant β-galactosidase in lac− bacteria. 

By plating on limiting lactose, they selected for intrabody mutants with improved expression, and 

after four successive rounds of mutation and selection, an intrabody fragment was isolated that is 

highly expressed in the bacterial cytoplasm. Analysis of the mutant intrabody fragments revealed that 

the disulphide bonds are reduced in the cytoplasm and that the fragments could be denatured and 

renatured efficiently under reducing conditions in vitro.  

This shows that with a suitable method of screening or selection, it is possible to make folded and 

functional intrabody fragments in excellent yield in the cytoplasm. These results were also confirmed 

in yeast (Visintin et al., 1999), in plants (Phillips et al., 1997) and in mammalian cells (Lener et al., 

2000) (Sibler et al., 2003). 

1.6 Applications 

The importance of the various intrabody modalities shown in figure 5 is that specific properties of 

target proteins can be exploited to provoke a specified response and to investigate or target a 

particular protein domain. There are several studies describing the potential applications of 

intrabodies in AIDS, including a scFv derived from a human mAb that binds glycoprotein 120 (gp120), 

the envelope protein of HIV-1 (Marasco et al., 1993). This intrabody not only binds to gp120 but also 

retains it in the ER of infected cells, thereby preventing the formation of enveloped virus. A similar 

strategy has also been used to prevent surface expression of the chemokine receptor CCR5, thereby 

protecting T cells against viral infection (Steinberger et al., 2000). Other attempts have been made to 

inhibit the infectivity of HIV-1, by generating scFv that target viral proteins mainly implicated in 

replication. In the field of cancer, intrabodies have been used to modulate the expression of proteins 

upregulated in tumors, such as ERBB2 in breast and ovary tumors (Alvarez et al., 2000), interleukin-2 

receptor α in some leukemia (Richardson et al., 1995), cyclin E in breast cancer (Strube and Chen, 

2002), and epidermal growth factor receptor (EGFR) in glioblastoma and epithelial cancers(Hyland et 

al., 2003) (Jean et al., 1996). In all these cases, appropriate cellular localization signals were attached 

to the intrabodies to reduce the activity of tumor-related proteins by altering their location (Fig. 5c).
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Oncogenic and tumor suppressor proteins, such as p53 (Cohen et al., 1998) and RAS (Tanaka and 

Rabbitts, 2003), which are mutated in a large number of tumors, and fusion proteins resulting from 

chromosomal translocations, such as BCR –ABL (Tse et al., 2002) in leukaemia, are good candidates 

for intrabody therapy. Intrabody-mediated therapies might also be a viable option for 

neurodegenerative diseases (e.g. Alzheimer’s, Parkinson’s or prion diseases), as well as for diseases 

caused by mutated proteins or infectious agents. For instance, scFv have been designed for use in 

Huntington’s chorea (Lecerf et al., 2001), in skin transplants (Mhashilkar et al., 2002) and against the 

Tau protein in Alzheimer’s disease (Visintin et al., 2002). 

In addition to targets in diseased cells, intracellular antibodies could play an important role in target 

validation in functional genomics. Intrabodies can be used to study the function of the thousands of 

novel products identified from the Human Genome Project and other sequencing programs.  

Strategies that use intrabodies to ablate the function of a protein in tissue culture and during 

development (phenotypic knockout), will allow determination of the physiological and pathological 

relevance of this protein. As a result, proteins with therapeutic potential can be selected.  

Furthermore, the identified intrabodies could be the basis for therapeutic compounds. The tyrosine 

kinase Syk, for example, has shown a high potential for the discovery of new treatments for 

inflammatory and autoimmune disorders. Pharmacological inhibitors of Syk catalytic site have been 

developed but showed limited specificity towards Syk (Braselmann et al., 2006). Our lab opted for the 

design of drug-like compounds that could interfere with Syk while maintaining its kinase activity. For 

this challenging task, the lab used the potential of intracellular antibodies for the modulation of 

cellular functions in vivo, combined to structure-based in silico screening. Then, an intrabody 

displacement assay was used in order to screen for functional mimics and found 10 compounds that 

inhibited degranulation with IC₅₀ values ≤ 10 µM. These compounds could be a lead towards the 

development of new classes of non-enzymatic inhibitors of Syk and for drug discovery in the field of 

inflammation (Mazuc et al., 2008) (Villoutreix et al., 2011). 
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2. Protein interference 
 

During the past decade, the complete genomes of more than 140 different organisms have been 

sequenced and made available in databases (Benson et al., 2003). These databases provide extremely 

useful collections of organized, validated data, which are indispensable for genomics and proteomics 

research and the drug discovery process. The human genome encodes approximately 25,000 

proteins. Considering that about 60% of genes are alternatively processed for an average of 2-4 

messages per gene, and that greater than 200 post-translational modifications are known, then the 

protein diversity available to organize a complex organism is vast.  Yet we know the function of only a 

minority of those proteins.  

Differential analyses of pathogenic and healthy states of organisms or isolated cells provide a picture 

of genes and gene products that are related to, or actually responsible for, defined diseases. The 

challenge today is to understand in detail the function and interplay of the numerous proteins in 

different organisms, tissues, cell types and conglomerate protein complexes. Among the most 

effective ways to study the function of a given protein in the context of the living cell or organism is 

the application of a small-molecule drug that exhibits high specificity, affinity and inhibitory activity 

for the protein under investigation. However, because such inhibitors are available only for a minority 

of the estimated total number of proteins of higher vertebrate organisms (Harrison et al., 2002), 

(Claverie, 2001), protein function is most commonly studied by loss-of-function phenotypic analysis. 

2.1 Loss-of-function phenotypic analyses at the mRNA Level 

Most traditional approaches for this purpose usually rely on observation of phenotypic alterations of 

a cell or organism as a consequence of alteration of its genetic information. In general, this is 

achieved either by transgenic knockout technologies (Shashikant and Ruddle, 2003) or by dominant 

negative expression of a protein or a mutant derivative. However, genome manipulation is a time-

consuming and expensive approach, requiring invasive intervention. 

A less laborious alternative is to gain functional information by targeted mRNA destruction of the 

gene of interest. This can be achieved, for example, by antisense oligodeoxynucleotides (ODNs) 

(Uhlmann et al., 2000) or chemically modified oligonucleotides (Kurreck, 2003) with nucleotide 

sequences that are complementary to the mRNA to allow sequence-specific hybridization. Protein 

production is then blocked either by inhibition of ribosome scanning of the mRNA or by activation of
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endogenous RNase H, which recognizes these heteroduplexes and hydrolyses the mRNA part. 

Problems associated with the antisense approach are that many ODNs often exhibit an intolerable 

degree of toxicity, their target sequences on mRNAs may be inaccessible due to bound proteins, or 

because the mRNA is engaged in higher-order structures (Branch, 1998). 

Other options employed for similar purposes are intracellular ribozymes (Castanotto et al., 2002) or 

DNAzymes (Cairns et al., 2002). Unlike ODNs, ribozymes have the advantage of cleaving the target 

mRNA with multiple turnover, while their mechanism of recognition of their target mRNA sequence 

also operates through simple Watson–Crick pairing. As enzymes that cleave phosphodiester bonds 

they are independent of the host-cell’s endogenous RNase activity. Several examples have shown 

that intracellularly expressed ribozymes can efficiently down-regulate the expression of proteins; they 

have been extensively reviewed elsewhere (Rossi, 1995). With regard to cleavage-site selection, 

ribozymes and DNAzymes face similar problems to ODNs, and some impressive attempts have been 

successfully undertaken to overcome these obstacles (Chen et al., 1997). 

In the past few years, another extremely versatile method for silencing genes on the mRNA level has 

become available, in the form of short interfering RNAs (siRNAs). siRNAs are RNA double strands of 

21–22 nucleotides in length that can downregulate the expression of eukaryotic genes with 

complementary sequences by utilizing the RNA-induced silencing complex (RISC) protein components 

of the RNA interference (RNAi) machinery (Tijsterman and Plasterk, 2004). Short interfering RNAs 

have emerged as a powerful laboratory tool for knocking down gene expression in various cells and 

organisms, because their design is simple and because they can be easily obtained by standard RNA 

synthesis, thus allowing straightforward analysis of biological functions of specific genes. Their 

application potential is wide and, like intracellular ribozymes, siRNAs can be endogenously expressed 

in a variety of cells. 

2.2 Loss-of-function phenotypic analyses at the protein Level 

While all these approaches have proved priceless as tools for functional genomics, they share certain 

disadvantages associated with the alteration of the amount of an expressed protein in the context of 

its natural functional network in a cell, tissue or organism. Alteration of the genetic information of an 

organism often has secondary effects on the expression pattern of other genes in a somewhat 

unpredictable fashion. Also, siRNAs sometimes only give partial knock-down of their target protein or 

can result in the undesired induction of interferon response (Kim et al., 2004), which may hamper an 

unbiased analysis of gene function. Specific modulation of gene function at the protein level is
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therefore still highly desirable. The post-genomics era and the need to develop novel pharmaceuticals 

have created a growing demand for specific ligands and inhibitors that will act directly on the protein 

or a defined protein subdomain without altering the genetic or mRNA status of an organism 

(Stockwell, 2000). Direct inhibition of a protein allows immediate insight into questions such as 

drugability, or the functional role of sub-domains or post-translational modifications. The analysis of 

gene function on the protein level requires direct recognition and inhibition of protein targets by 

inhibitory molecules that need to fulfill certain criteria: they should be routinely obtainable and 

applicable independent of the target, and act at low concentrations, with high specificity and in an 

intracellular context. 

A class of molecules that fulfills these requirements is nucleic acid ligands, or aptamers. Aptamers are 

short, single-stranded oligonucleotides that fold into distinct three-dimensional structures capable of 

binding their targets with high affinity and specificity, basically mediated by complementary shape 

interactions (Ellington and Conrad, 1995), (Gold et al., 1995). They can be isolated from vast 

combinatorial sequence libraries by SELEX (systematic evolution of ligands by exponential 

enrichment), an in vitro selection process (Tuerk and Gold, 1990). The SELEX method has been 

applied to many different targets ranging from small organic molecules (Famulok, 1999) to large 

proteins (Gold et al., 1995) and even viruses (Pan et al., 1995) or parasites (Göringer et al., 2003). 

Moreover, in most cases aptamers not only bind their cognate protein but also efficiently inhibit its 

function. Thus, aptamers represent an interesting compound class that can be easily obtained and 

used for assessing the function of a defined protein target. 

Also known in the prior art are retroviral expressed peptide libraries containing random sequences 

(Tolstrup et al., 2001). Retroviral libraries expressing cyclic peptides flanked with dimerization 

sequences have been successfully used in functional screens of cell cycle inhibitors (Xu et al., 2001). 

However, this technology has been applied for isolating intracellular peptides and has not resulted in 

peptidic drugs due to difficulties in delivery as discussed herein. 

Another genetic technology for screening bioactive peptides, genetic suppressor element (GSE) 

methodology, takes advantage of libraries expressing randomly fragmented pieces of cDNAs. While 

GSE libraries carry natural sequences and are therefore enriched for bioactive clones, they are not 

adapted to be efficiently or effectively screened for secreted peptides. In spite of the high potential 

for the discovery of novel drug targets and the development of novel peptide drugs, GSE and random 

peptide intracellular expression libraries have not had broad application, mainly due to difficulties
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in construction, low efficacy, and complicated high-throughput functional screening methodology.  

As described previously in this introduction, intrabodies have been shown to be a valuable tool for 

studying numerous aspects of biological processes, opening up new experimental opportunities to 

analyze the function of a wide range of cellular molecules. They not only exhibit highly specific 

molecular recognition properties but are also able to modulate the function of their cognate targets 

in a highly specific manner.  

As intrabodies are derived from the virtually unlimited repertoire of antibodies, there are basically no 

limitations on the choice of target molecule. With intracellular antibodies, it is possible to develop a 

reagent that prevents particular associations but spares others. Once an intrabody has been 

developed, able to inhibit a cellular function, it provides a direct biochemical handle on the 

recognized protein and its binding partners. Intrabodies have therefore a great added value for 

functional proteomics and the study of protein–protein interactions, and the development of highly 

specific inhibitors. 

 

3. Model 1: The regulation of mast cells responses 
 

3.1 Mast cells: Origin and functions 

Mast cells are primitive immune cells that appear early in evolution and have since evolved into 

multifunctional cells in vertebrates. They have been long recognized as initiators of IgE-dependent 

allergic diseases but it is now realized that they also play a fundamental role in innate and adaptive 

immune responses to infection as well as inflammatory autoimmune diseases (Galli et al., 1999) 

(Metz et al., 2008) (Abraham and St John, 2010). In addition, there is evidence that mast cells 

participate in inflammatory responses to incipient tumors which may either facilitate or retard tumor 

growth depending on the type of cancer (Galinsky and Nechushtan, 2008) (Ribatti and Crivellato, 

2012). Other suspected non-immunological roles for mast cells include promotion of angiogenesis, 

tissue remodeling, and wound healing (Noli and Miolo, 2001) (Norrby, 2006). As such, mast cells 

occupy an unstable position in that their responses to endogenous and exogenous stimuli can be 

detrimental as well as beneficial to the host. 
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Figure 8: Model depicting major molecules and events in mast cell activation (Siraganian et. al, 2002) 
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3.2 Signalization pathways 

The localization of mast cells in tissues as well as their replication and differentiation into distinct 

phenotypes are typically determined by the chemical environment of their final tissue destination 

(Collington et al., 2011). Flexibility in function is also conferred through expression of multiple types 

of receptors (Galli and Tsai, 2010). These include Fc, cytokine, tyrosine kinase, and trimeric G protein-

coupled receptors (Gilfillan and Tkaczyk, 2006). In addition, mast cells can respond to microbial 

products through pattern recognition receptors (PRR) which include the Toll-like receptors (TLRs) and 

the recently recognized nucleotide-binding oligomerization domain (NOD)-like receptor (NLRs) 

(Dawicki and Marshall, 2007). Many of these receptors can act in concert with the high affinity IgE 

receptor (FcεRI) to substantially enhance mast cell responses to antigens or alter the pattern of 

response such that production of cytokines, for example, predominates over degranulation (Qiao et 

al., 2006). FcεRI is a member of the immunoreceptor family that includes the B cell receptor, T cell 

receptor and immunoglobulin receptors. These receptors have intracellular subunits which contain a 

sequence named the immunoreceptor tyrosine-based activation motif (ITAM) that has two tyrosine 

residues separated by 6–8 amino acid residues. FcεRI is a tetrameric formed by the complex αβγ2 

chains. 

The α-chain binds the Fc portion of IgE at ratio of 1:1 while the β- and γ-chains contain ITAMs in their 

cytoplasmic domains. Because FcεRI has no intrinsic enzymatic activity, the activation of non-receptor 

protein tyrosine kinases is essential for cell activation. Aggregation of FcεRI results in phosphorylation 

of the two tyrosine residues within the ITAMs by the Src family of tyrosine kinase Lyn that associate 

with the receptor. Phosphorylated ITAMs then serve as a docking sites for the tyrosine kinase Syk; the 

binding of Syk through its SH2 domains results in a conformational change of Syk and its tyrosine 

phosphorylation due to autophosphorylation and transphosphorylation (Zhang et al., 2000) which 

increases its enzymatic activity (Figure 8). Once activated, Syk plays a pivotal role in the propagation 

of downstream signals. The subsequent Syk- and/or Lyn-mediated tyrosine phosphorylation of the 

transmembrane adaptor molecule LAT (linker for activation of T cells) is crucial for coordination of the 

downstream signaling pathways that are required for the release of the various pro-inflammatory 

mediators. Phosphorylation of LAT results in the recruitment of several types of molecules: cytosolic 

adaptor molecules, guanine-nucleotide-exchange factors and adaptor molecules, and signaling 

enzymes, such as phospholipase Cγ (PLCγ). These interactions with LAT result in the formation of 

macromolecular signaling complexes, and allow the diversification of downstream signaling that is 

required for the release of the various pro-inflammatory mediators. For instance, the activation of
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PLCγ leads to the production of the second messengers diacylglycerol (DAG) and inositol 1,4,5-

trisphosphate (IP3) which, respectively, result in the activation of protein kinase C (PKC) and the rise in 

intracellular calcium [Ca2+]I. This activates a number of transcription factors needed for the novo 

synthesis of cytokines. The increase in [Ca2+]i plays also an important role in granular fusion and 

exocytosis of allergic mediators, also called mast cell degranulation. Receptor aggregation also 

activates and recruits negative regulators which limit the intensity and duration of the positive 

signals. Negative signals are generated by immunoreceptor tyrosine-based inhibition motif (ITIM) 

bearing receptors (e.g., FcγRIIβ). The tyrosine residue in the ITIM motif is phosphorylated during the 

activation steps by Src tyrosine kinases and subsequently recruits inhibitory effectors such as the SH2 

domain-containing inositol 5'-phosphatase (SHIP) or the Src homology region 2 domain-containing 

phosphatase (SHP) via their SH2 domains. In some but not all cases, the negative signals are 

generated by the co-aggregation of the two receptors. 

3.3 Mast cell degranulation 

The acute reactions that occur as a result of mast cell activation are initiated as a consequence of 

degranulation and the generation of lipid-derived mediators, whereas more chronic mast cell-

mediated symptoms are an outcome of the delayed generation of chemokines, cytokines and growth 

factors which follow enhanced gene expression (Metcalfe et al., 1997). The process of degranulation 

occurs within seconds of mast cell activation and the initial rapid phase is essentially complete within 

5–10 minutes. Although mast cell proteases such as tryptase, chymase and carboxypeptidase, 

constitute the major components of mast cell granules, histamine is the predominant granule 

mediator of acute reactions to mast cell activation. It is localized primarily in mast cells and 

basophiles although its link to anaphylactic and inflammatory reactions was suspected long before its 

recognition as a major constituent of mast cells. Histamine is sequestered in mast cell granules by 

proteoglycans such as heparin and chondroitin E. On release, it readily diffuses through tissues and 

the circulatory system but does not penetrate the CNS. 

3.4 The RBL-2H3 cell line 

RBL-2H3 is a basophilic leukemia cell line isolated and cloned from Wistar rat basophilic cells that 

were maintained as tumors. These cells express the high affinity IgE receptor, FcεRI. Their activation 

following FcεRI aggregation leads to the secretion of early and late allergic mediators. RBL-2H3 cells 

have been the model for studies of signalization pathways following the stimulation of FcεRI.  
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Figure 9: The adenoma–carcinoma sequence model: Molecular events that drive the initiation, promotion, and progression 

of colorectal cancer (Sanford et al., 2008) 
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4. Model 2: Colorectal cancer and the resistance to Cetuximab 
 

4.1 Introduction 

Colorectal cancer (CRC) is responsible for approximately 608,000 deaths worldwide (8% of all cancer-

related deaths), making it the fourth most common cause of cancer-related death. As with the 

incidence rates, mortality rates are higher among males than females (http://globocan.iarc.fr). It is 

the third most common cancer among males (663,000 cases, 10% of the total) and the second most 

common cancer among females (570,000 cases, 9.4% of the total) worldwide. There is a variation of 

10-fold in the incidence rates for both genders worldwide: the United States, Australia and Western 

Europe present the highest rates, Africa (excepting Southern Africa) and South-Central Asia have the 

lowest rates, while rates are intermediate in Latin America. In all areas, incidence rates are higher in 

men than women. Risk factors for colorectal cancer include increased age, gender (men are more 

predisposed to the development of colorectal cancer), the presence of inflammatory bowel disease, 

certain hereditary conditions and a family history of colorectal cancer. It is unlikely that these risk 

factors will change. However, it should be noted that even in the absence of predisposing factors, the 

general population has an average risk of developing the disease, and approximately 75% of all cases 

of colorectal cancer occur in individuals with no known predisposing factors for the disease (Burt et 

al., 1990). 

4.2 The adenoma–carcinoma sequence model 

Cancer development is regarded as a multistep process involving tumor initiation, where genomic 

changes lead to a malignant phenotype, tumor promotion, involving the growth of a mutated cell 

clone, and tumor proliferation, where more aggressive tumor cells further grow, become invasive and 

start to metastasize (Lin and Karin, 2007). Concerning these steps, CRC is probably by far the best 

studied model of tumorigenesis; Fearon and Vogelstein initially proposed a model, later called the 

adenoma–carcinoma sequence model (Figure 9), in which certain mutations were directly related to 

distinct stages of tumor development (Fearon and Vogelstein, 1990). In this model, tumor initiation 

was triggered by mutations of the adenomatous polyposis coli (APC) gene, which allowed adenoma 

formation and the development of dysplastic crypts. Tumor promotion and progression was 

supported by a sequence of further mutations including KRAS, SMAD4, and p53, which enabled 

further adenoma growth, the expansion of individual cell clones, and tumor invasion and metastasis.
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Subsequent research showed that mutations observed in CRC are associated with two types of 

genomic instability and both harbor mutations of different genes. Chromosomal instability (CIN), 

which includes the presence of various structural or numerical chromosomal changes, can be found in 

about 65–70% of CRCs and has been related to mutations of the adenoma–carcinoma sequence 

model (Miyazaki et al., 1999). In contrast, 15% of CRCs develop microsatellite instability (MSI) as a 

result of defective DNA mismatch repair (MMR) genes. MSI is characterized by single nucleotide 

mutations and variations in the length of microsatellite sequences. It has been regarded as a positive 

predictive marker in patients with CRC, since patients with MSI + CRC have an improved prognosis in 

comparison to CIN + CRC. Interestingly, MSI is only irregularly associated with the above mentioned 

mutations of CIN + CRCs. Besides defects in MMR genes, MSI has been related to mutations of 

transforming growth factor β receptor 2 (TGFβR2), insulin-like growth factor 2 receptor (IGF2R), BAX, 

and others (Walther et al., 2009). Despite these differences in CIN + and MSI + CRCs, the observed 

mutations are associated with similar or even identical molecular pathways that are critical for the 

individual steps of tumor development. 

Approximately half of all protein-encoding genes in the human genome contain CG-rich regions in 

their promoters or CpG islands. Aberrant DNA methylation, in the form of hypermethylation of CpG 

islands, results in repression of transcription in tumor suppressor genes. For example, inactivation of 

the mismatch repair gene MLH1 by promoter methylation is the molecular basis for microsatellite 

instability in sporadic microsatellite unstable colon cancers (Samowitz, 2007). This phenomenon of 

tumor alteration via epigenetic silencing associated with dense hypermethylation of CpG islands, and 

their complex interplay with modifications in histone structure, provides an alternate mechanism to 

genetic inactivation of tumor suppressor genes via loss or mutation (Esteller, 2008). The presence of 

widespread CpG island methylation in a tumor is termed the CpG island methylator phenotype, or 

CIMP, on which several studies has been performed (Marisa et al., 2013) (de Melo et al., 2014). 

4.3 Current therapies for colorectal cancer 

Primary prevention of colorectal cancer is based on the implementation of screening tests to detect 

and remove pre-cancerous lesions or to discover and treat cancer at its earliest stages. The survival 

rate of patients with colorectal cancer depends on the clinical and pathological stage of the disease at 

diagnosis. Patients with cancer limited to the bowel wall at diagnosis have a 5-year survival rate of 

90% (Mandel et al., 1993). The survival rate is reduced to 35-60% if the lymph nodes are involved, and 

drops to less than 10% when the disease is metastatic (Wingo et al., 1995). 
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There is full agreement among health care professionals regarding the essential role of surgery in the 

treatment of colorectal cancer. Further improvements are obtained through the use of treatments 

combining surgery, chemotherapy and radiotherapy, and in particular adjuvant and neoadjuvant 

therapies. 

Various combinations of chemotherapeutic drugs are currently employed. 5FU, which was the first 

chemotherapeutic agent used to treat colorectal cancer, is still used today or in combination, as with 

FOLFIRI (folinic acid, FU and irinotecan) or FOLFOX (folinic acid, FU and oxaliplatin) protocols. New 

biological compounds, such as Bevacizumab, Cetuximab and Panitumumab, are also used in the 

treatment of colorectal cancer. In particular, vascular endothelial growth factor (VEGF) has proven to 

be the most powerful angiogenic factor. VEGF binds to its receptor, activating several intracellular 

signal transduction pathways (Tol and Punt, 2010). In addition, VEGF receptor-2 was expressed on the 

surface of colorectal cancer cells in approximately 50% of samples analyzed (Duff et al., 2006). The 

role of VEGF in cancer progression is still open to discussion but we know that VEGF and other pro-

angiogenic factors, in addition to their traditional role in neo-vascularization, also stimulate the 

degradation of the extracellular matrix, leading to the proliferation and migration of endothelial cells 

(Dvorak, 2002). For this reason, both VEGF and VEGF receptors are valuable therapeutic targets. 

Bevacizumab is a humanized monoclonal antibody against VEGF. It binds to VEGF, thereby preventing 

VEGF from binding to its receptor and halting the subsequent activation of intracellular signal 

transduction pathways. Previously, it was thought that high microvessel density and VEGF expression 

represented negative prognostic markers in patients with metastatic colorectal cancer (Des Guetz et 

al., 2006). However, it now appears that the response to Bevacizumab is independent of VEGF 

expression or high microvessel density (Jubb et al., 2006). Predictive markers of response to 

Bevacizumab have not yet been identified. 

The epidermal growth factor receptor (EGFR) is a member of the ErbB transmembrane tyrosine 

kinase receptor family. Various ligands (EGF, TGF-α, epiregulin and amphiregulin) bind to this 

receptor and stimulate several intracellular signal transduction pathways (RAS/RAF/MAPK, PI3K/Akt 

and JAK-STAT), leading to cell proliferation, differentiation and the arrest of apoptosis (Scaltriti and 

Baselga, 2006). In addition, EGFR has been observed to be overexpressed on the surface of colorectal 

cancer cells in approximately 40-70% cases, and has been associated with a decrease in survival 

(Spano et al., 2005). Currently, two new anti-EGFR molecules are used to treat colorectal cancer: the 

monoclonal antibodies Cetuximab and Panitumumab. Cetuximab (Erbitux®) is a chimeric IgG1 

antibody and Panitumumab is a fully human IgG2 antibody. Notably, it was determined that 
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Cetuximab can only be used in the absence of KRAS oncogene mutations (De Roock et al., 2008). 

KRAS mutations are observed in approximately 40% of colorectal cancer patients (Andreyev et al., 

1998), and cause the constitutive activation of the RAS/RAF/MAPK pathway, which is not linked to 

EGFR activation by ligand binding (Benvenuti et al., 2007). Since patients without KRAS wild-type 

cancer cannot benefit from treatment with anti-EGFR antibodies, the European Medicines Agency has 

approved the use of these antibodies only in patients with KRAS wild-type tumors 

(http://www.ema.europa.eu/ema/).  

Among patients with KRAS wild-type tumors, anti-EGFR therapy appears to be further limited to 

patients with BRAF wild-type tumors (Tol et al., 2009), although a recent study found that the BRAF 

mutation was a prognostic rather than a predictive marker (Bibeau et al., 2009). Anti-VEGF and anti-

EGFR antibodies have a proven efficacy. At present, Bevacizumab, Cetuximab and Panitumumab are 

the standard therapeutic options for metastatic colorectal cancer. Bevacizumab is administered in 

combination with chemotherapy as a first-line treatment, while anti-EGFR antibodies appear to be 

more beneficial in later-line treatment. Furthermore, anti-VEGF and anti-EGFR antibodies, in 

combination with chemotherapeutic agents, increased the life expectancy of patients with metastatic 

colorectal cancer by approximately 2 years.  

The combination of anti-VEGF and anti-EGFR therapy has been proposed, since VEGF has many 

intracellular pathways in common with EGFR, and because colorectal cancer cells and endothelial 

cells express both EGFR and VEGF receptor-2 (Duff et al., 2006). Although pre-clinical studies 

demonstrated that EGFR ligands up-regulated VEGF expression (Niu et al., 2002) and that the 

combination of anti-angiogenic and anti-EGFR agents might have significant antitumor activity (Jung 

et al., 2002), numerous clinical trials have found that not only is the combination of the two 

antibodies less effective than the individual agents combined with other chemotherapeutic drugs, but 

also that their combination results in a reduction of progression-free and overall survival medians (Tol 

and Punt, 2010). These findings led to a requirement for KRAS mutational testing of metastatic CRC 

(mCRC) and restricting the use of the anti-EGFR antibodies to patients with KRAS wild-type mCRCs 

(Heinemann et al., 2009). On its face this represents another advance toward effective personalized 

cancer treatment (Heinemann et al., 2013).  

Yet, the increases in progression-free survival for patients with KRAS wild-type tumors are modest 

(Amado et al., 2008), half of patients with KRAS wild-type tumors fail to respond (Pentheroudakis et 

al., 2013), and more importantly, eventually all patients develop resistance to treatment and
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Figure 10: EGFR pathway and signaling through the MAP kinase pathway (Berg and Soreide, 2012). 

 

Figure 11: A. The EGFR is activated by ligand binding to the extracellular domain, which results in activation B. 

Monoclonal antibodies hinder binding of ligands. C. Small molecule tyrosine kinase inhibitors prohibit EGFR 

phosphorylation (Berg and Soreide, 2012). 
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relapse (Misale et al., 2012). It can be concluded that few colon tumors are actually KRAS wild-type 

and that most, if not all, colon tumors carry abnormal levels of KRAS mutation. Furthermore, the use 

of EGFR-targeted therapies to treat predominantly KRAS wild-type tumors creates an opportunity for 

the outgrowth of KRAS mutant subpopulations, which can lead to acquired resistance to treatment 

and relapse. The significance of these findings will be discussed in terms of their broader implications 

for developing effective personalized cancer treatments. 

4.4 The EGFR pathway and its implication in cancer therapy 

The EGFR is a member of the family of receptor tyrosine kinases, and the gene is considered an 

oncogene. EGFR activation results in signaling through the MAP kinase pathway, and through the 

PI3K/AKT pathway, causing cellular growth and progression, proliferation, angiogenesis, and invasion 

(Figure 10). EGFR expression is reported to be elevated in 60-80% of colorectal tumors, investigated 

using immunohistochemistry (IHC) (Goldstein and Armin, 2001) but is generally not considered a good 

predictive marker (Yang et al., 2012).  

The employment of anti-EGFR antibodies represents a backbone of the therapeutic options for mCRC 

with relevant efficacy in both first- and second-line treatment regiments. However, this therapy is 

poorly effective or ineffective in unselected patients. Mutations in KRAS, BRAF, and PIK3CA genes 

have recently emerged as the best predictive factors of low/absent response to EGFR-targeted 

therapy. As the increased knowledge of tumor heterogeneity and genetic alterations progresses, it 

exemplifies the need for further personalized medicine in modern cancer management. 

4.5 Treatment directed towards the Epidermal Growth Factor Receptor 

Epidermal growth factor receptor signaling is a response of binding of cytokines, hormones, or growth 

factors to the extracellular domain of the receptor (Figure 11A). The monoclonal antibody Cetuximab 

selectively binds to the extracellular domain of EGFR and sterically blocks the access of growth factors 

to a key ligand binding region on domain III of the receptor. The ligand binding site on domain I is 

unaffected, but the growth factor must engage sites on both domains I and III for high-affinity binding 

that activates the receptor, so efficient blockade of either one is sufficient to debilitate the receptor 

(Figure 12). 
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Figure 12: Model for ligand-induced dimerization by Cetuximab and its blockade by Cetuximab. The 

domains of the extracellular region of EGFR are shown; with domain I in red, domain II in green, 

domain III in gray with red border, domain IV in gray with green border, and ligand in cyan (Li et al., 

2005). 

Figure 13: The Ras switch (Ward et al., 2012). 
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The blockade of receptor dimerization by Cetuximab disables EGFR autophosphorylation, 

downstream signaling, and consequently cell growth and proliferation terminates (Figure 11B) (Citri 

and Yarden, 2006). This is believed to be the critical factor in the observed antitumor effects of this 

antibody in vivo (Mendelsohn and Baselga, 2003).  

Both Cetuximab and Panitumumab mAbs are used as treatment for mCRC. However, as mentioned 

before, treatment with mAbs has been found to be efficient in only a small percentage of patients. 

This implies the presence (or absence) of certain mutations, as found in KRAS. 

4.6 The KRAS mutational status 

KRAS is an oncogene encoded on the short arm of chromosome 12. RAS proteins are central signal 

transduction molecules, which act as molecular switches through cycling between an active, GTP-

bound and an inactive, GDP-bound state (Figure 13) (Ward et al., 2012). In its GTP-bound form, RAS 

interacts with and regulates a vast spectrum of functionally diverse downstream effectors. Many 

mutations of RAS affect the on/off balance and RAS mutations at codon 12, 13 and 61 lead to 

constitutive active RAS protein and the subsequent hyper-activation of the MAPK pathway.  

The gene is mutated in ~40% of CRCs, mainly in the codons 12 and 13, and to a lesser degree in 

codons 61 and 146 (Forbes et al., 2008). The most frequent mutation is substitution of glycine 12 to 

serine and is found in approximately 80% of cases. It has been shown that mutations in codons 12, 

13, and 61 all predict a lack of response to Cetuximab. It is suggested that mutations in both codon 13 

and 146 do not affect Cetuximab efficacy (De Roock et al., 2011). To date, KRAS is the only molecular 

marker used to select patients eligible for mAbs treatment. If relying on test results from the primary 

tumor only, patients with KRAS mutation would not be offered anti-EGFR therapy, even if metastatic 

lesions without the mutation could benefit from such treatment. A focus on accordance between the 

genotype in the primary tumor and metastases from the same patient has gained attention recently, 

as mutation status in the primary tumor might not reflect the mutational situation in metastases of 

the patient (Cejas et al., 2012). Discrepancies in mutational status within the same individual are of 

importance, e.g., when using treatment targeting the EGF receptor, as KRAS status is used in clinical 

practice to decide the use of anti-EGFR treatment. KRAS mutations are considered to be an early 

event in colorectal tumorigenesis, and consequently a high degree of correspondence in mutational 

status between tumor cells of the same individual is assumed. Discordance in KRAS genotype 

between primary tumor and metastasis might be explained by dissemination of cells at an early step 
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in tumor development, heterogeneity in mutation status within the primary tumor, or the fact that 

the metastasis originates from an undetected second primary. Loss of KRAS mutations during disease 

progression, or tumor heterogeneity, giving rise to different subclones of metastases, is suggested to 

be causative for discordance between primary and metastatic tumors. A lack of response in KRAS wild 

type patients have been suggested to be caused by mutations in one or several metastases. 

Mutations in KRAS and the downstream effector BRAF are thought to be mutually exclusive (Garnett 

and Marais, 2004), although some overlap has been reported (Seth et al., 2009). Activating mutations 

in BRAF are reported in ~10% of CRC samples, all observed within the kinase domain of the gene, 

substitution of valine by glutamate in position 600 of the protein being the most prevalent (Garnett 

and Marais, 2004). As for KRAS, mutations in BRAF predict a lack of response to anti-EGFR therapy as 

well as poor prognosis (Barault et al., 2008). 

4.7 Other pathways activated by EGFR 

In addition to signaling downstream through BRAF, EGFR also activates the AKT pathway (Figure 10). 

The phosphatase PTEN and the phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit 

(PIK3CA) have opposing roles in this pathway, converting PIP3 (phosphatidylinositol 3-phosphate) to 

PIP2 (phosphatidylinositol 2-phosphate). Elevated levels of PIP3 results in hyperphosphorylation of 

AKT, either due to loss of PTEN activity or activating mutations in PIK3CA. Hyperphosphorylated AKT 

inhibits the cell from undergoing apoptosis. In patients with metastatic CRC that received Cetuximab 

treatment, the presence of a KRAS wild type with PTEN loss, or having activating mutations in PIK3CA, 

was reported to predict no response and reduced overall survival (Laurent-Puig et al., 2009). 

4.8 Treatment directed towards targets downstream of EGFR 

There are several compounds in clinical development which selectively inhibit mutated BRAF 

(Cichowski and Jänne, 2010). But these agents should be avoided in KRAS-mutated cancers, as these 

will have increased activity through BRAF (Heidorn et al., 2010). Further downstream the EGFR 

signaling cascade from BRAF is the mitogen-activated protein kinase (MEK). MEK inhibitors have been 

suggested for patients being mutant for either KRAS or BRAF (Duffy and Kummar, 2009). Results have 

shown that BRAF mutant cell lines respond to MEK inhibitors, but low response rates and ocular 

toxicities in clinical trials have obstructed the investigation (Lemech and Arkenau, 2012). BRAF 

mutated cell lines were found to be more sensitive to MEK inhibitors than KRAS mutated cell lines, 

probably because of the fact that KRAS has several downstream effectors (Chappell et al., 2011).
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However, BRAF gene amplification has been shown to result in resistance to both MEK and BRAF 

inhibitory treatment. 

4.9 Induction of mutations during anti-EGFR treatment 

The development of therapy-related resistance during anti-EGFR antibody treatment in mCRC has 

been investigated in the light of treatment-induced shift in mutation status for KRAS and BRAF. KRAS 

and BRAF mutation status was shown to be highly concordant in primary tumors before and after 

anti-EGFR therapy, indicating that therapy-induced resistance is likely not induced by mutations in the 

hotspot regions of these genes (Gattenlöhner et al., 2009). However, more recently, a study found 

that 35% (of 24 patients) whose tumors were initially KRAS wild type developed detectable mutations 

in KRAS in the serum, three of which developed multiple different KRAS mutations (Diaz et al., 2012). 

This supports the theory that the emergence of KRAS mutations is a mediator of acquired resistance 

to EGFR blockade and that these mutations can be detected in a non-invasive manner (by blood test). 

Further, it may explain why solid tumors develop resistance to targeted therapies in a highly 

reproducible fashion. Recently, an acquired EGFR ectodomain mutation (S492R) was described that 

prevents Cetuximab binding and confers resistance. Patients with this mutation, however, retain 

binding to and are growth inhibited by Panitumumab (Montagut et al., 2012). Another study found 

frequent coexistence of KRAS and PIK3CA mutations, pointing to the need for targeting both 

pathways to overcome resistance (Garrido-Laguna et al., 2012). 
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Results 

Our laboratory has a strong expertise in the field of the intracellular immunization and its application 

for the identification of new therapeutic targets and new drugs. Previous works performed in our 

group have shown the successful employment of this approach for the inhibition of protein-protein 

interactions of the tyrosine kinase Syk and for the discovery of non-enzymatic inhibitors of Syk and 

allergy (Mazuc et al., 2008) (Villoutreix et al., 2011). The works of our group also demonstrated that 

intrabodies can specifically target a post-translational modification of a protein within a living cell 

(Cassimeris et al., 2013). This is particularly important since it demonstrates one of the main 

advantages of intrabodies compared to RNAi. 

More recently, we have performed a phenotypic screening assay in a model of allergy which led to 

the identification of a new therapeutic target implicated in mast cell activation. This work was 

protected by the European Patent EP 13 305 003.9 “Intracellular phenotypic screening” in 2013 and 

was published recently (see article Mazuc et al., 2014). My contribution to this work (Part 1) is 

described in “1.4 Characterization of inhibitory intrabody families”. The goal of my PhD project was to 

perform a similar intrabody-based screen in cancer cells. For this purpose, I first optimized the scFv 

library for its intracellular expression and stability under strong reducing conditions (Part 2). Then I 

used this newly synthetized library for a phenotypic screen in KRAS-mutated colorectal cancer cells 

resistant to Cetuximab (Part 3). My aim was to identify intrabody fragments able to revert the 

resistant phenotype to a sensitive one, and subsequently identify their potential cellular targets. 

 

1. Phenotypic targeting of mast cells and their role in allergy 
 

Screening for new therapeutic targets and specific inhibitors remains the key to develop new 

medicines. The majority of methods first identifies a suitable target before designing chemical 

inhibitors, or identifies inhibitors in a cellular system then look for the drug target. In both cases there 

is no guarantee of success since some targets have proven to be unsuitable for specific inhibitor 

design and drugs may simultaneously act on multiple targets and pathways. Targets are frequently 

identified using small scale in vitro and in vivo experiments coupled with bibliographic analysis. This 

has been expanded in recent years to genome-wide screenings, based on mutagenesis or RNAi that 

have revealed new targets and original regulatory networks.  
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Figure 14: Schematic view of the selection method (see article 

Mazuc et al., 2014). 

Figure 15: Annexin-V staining of cell populations from the 

library selection rounds (see article Mazuc et al., 2014) 
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In all cases, there is however no insurance that a good inhibitor of the target could be developed and 

translation of a target to a chemical or biological active compound may require years of efforts and 

eventually fail. The problem can be reversed by direct screening of chemical libraries in a suitable cell-

based assay. Several methods to help in the identification of the target have been described but all 

are long, tedious and not always successful. They may rely on biochemical methods, genetic analyses 

or computational approaches to not only identify the target but also the secondary proteins that may 

lead to off-target effects. 

1.1 Phenotypic screen and target identification 

Here, I describe shortly the results of the intrabody-based phenotypic screen, which strategy is 

depicted in figure 14. Because the method is based on the intrabody-target interaction, it results in 

the co-selection of a tarrrrget with its companion intrabody. The aim is to identify new therapeutic 

targets in the field of allergy and inflammation. The model, FcεRI-mediated mast cell degranulation of 

RBL-2H3 basophilic cell line, is visualized through the staining of the exocytotic granules with Annexin 

V. The IgE-dependent stimulation of the cells leads to the exposure of exocytosing granules and 

phosphatidylserines that can be monitored, in proportion to the extent of allergic mediator release, 

by the binding of exogenously added Annexin-V. We used this method to isolate by flow cytometry 

cell sorting (FACS) the population of intrabody-containing RBL-2H3 cells that displayed an impaired 

degranulation. 

First, an scFv library optimized for intracellular expression was sub-cloned in plasmid and retroviral 

eukaryotic expression vectors and two libraries of a diversity of 109 and 2.108 were generated 

respectively. The recombinant vector pools were subsequently used to transfect the RBL-2H3 mast 

cell line in order to generate two distinct populations of 5.107 transformed cells. Seven rounds of 

selection were performed, which allowed the enrichment for cells containing intrabodies able to 

block cell degranulation. This procedure allowed the enrichment for cells containing intrabodies able 

to block cell degranulation as shown by the decrease of the Annexin V staining of stimulated versus 

unstimulated cells (Figure 15). 
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Figure 17: Measure of β-hexosaminidase release by retroviral 

infected populations (see article Mazuc et al, 2014) *: p < 0.05; **: 

p<0.01; (Student t-test). 

Figure 16: Distribution of the β-hexosaminidase release 

measured on 48 retroviral clones (see article Mazuc et al., 

2014) **: p < 0.01 (Student t-test). 
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1.2  Plasmid library sequences 

To identify individual intrabody sequences responsible for the inhibitory phenotype, we generated 

stable RBL-2H3 clones from the pool of plasmids obtained from the seventh round of selection. One 

hundred and twenty-six stable clones were tested in a degranulation assay based on the 

measurement of the FcεRI-mediated release of the enzyme β-hexosaminidase. The low-degranulating 

clones that express inhibitory intrabodies represented about 20% of the clones. The analysis of the 

intrabody sequences expressed in 36 clones revealed a high diversity with 1-2 different sequences 

expressed in each clone. 

1.3 Retroviral library sequences 

An aliquot of cells from selection round 7 was seeded at limiting dilution and 48 isolated clones were 

analyzed in triplicate by measuring the release of β-hexosaminidase (Figure 16). Here, a significant 

inhibition of the β-hexosaminidase release was observed (54% on average). This showed that the 

retroviral library selection was more powerful than the plasmid one, presumably because of the 

presence of fewer intrabodies per cell, which reduced the co-selection of passenger intrabodies to a 

minimal. In order to analyze the intrabody diversity evolution in the cell population during the course 

of selection with the retroviral library, high-throughput sequencing was performed.  

Since the VH domain is known to be the most important determinant of antibody affinity and 

specificity (Ward et al., 1989) only the CDR3 sequences that correspond to the variable part of the VH 

domains in the library design were analyzed. 2568 VH DNA sequences appeared to be enriched and 

none significantly depleted during the course of the selection. Enriched sequences were translated 

and we retained the 108 VH sequences that continuously increased during the course of the 

selection. These 108 VH represented 40% of the sequences present in the final selected library. 

1.4 Characterization of inhibitory intrabody families 

My contribution in this project was to further evaluate the inhibitory phenotype of 10 families of 

intrabodies that were retrieved during the last round of selection. Between the naive library and the 

final selected library, each of these 10 families were enriched about 150-fold, however some 

individual sequences were enriched more than 500-fold. In addition, whereas the frequency of most 

of the clones present in the initial library decreased at an exponential rate during the course of the 

selection, the 10 identified families were strongly enriched. 
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Figure 18: Analysis of stable plasmid clone 5H4. Left: Annexin-V staining; Middle: β-hexosaminidase release (7 

independent replicates); Right: measurement of calcium flux. T-: Irrelevant intrabody. S: IgE/DNP stimulated. 

NS: unstimulated (see article Mazuc et al., 2014).

Figure 19: Specific binding of 5H4-VH to C12orf4. Top 

panel: pull-down assay using 5H4-VH, and detection 

with a commercial anti-C12orf4 antibody. Low panel: 

subcellular localization of C12orf4 analyzed by confocal 

laser microscopy. Top left: Hoechst; top right: 5H4-VHFc 

fusion; bottom left: anti-C12orf4 commercial antibody; 

bottom right: merge (see article Mazuc et al., 2014). 
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To analyze their inhibitory properties, we retrieved the most frequent sequence of each family (R_1 

to R_10) (Annex 2). Therefore,  we designed an oligonucleotide based on the VH CDR3, amplified the 

VH and VL sequences, assembled them in a full scFv, and then recloned the reconstituted gene in a 

retroviral vector. Two independent tests were performed to analyze the inhibitory effect of the 

intrabodies on FcεRI-induced mast cell activation. The measurement of the secretion of β-

hexosaminidase, one of the early allergic mediators released by exocytose, and the release of TNF-α, 

a newly synthetized cytokine that stimulates inflammation. Both cellular tests were performed in 

quadruplicate during four weeks. Figure 17 show a representation of the secretion of β-

hexosaminidase for the 10 clones in comparison with cells transfected with an empty vector (mock) 

to which we have calculated the percentages of released mediator. Six of ten intrabodies induced a 

significant inhibition of degranulation following FcεRI stimulation. 

Next, 136 unique VH sequences obtained from 178 clones of the plasmid library (stable clones and 

randomly picked sequences from the last round of selection) were compared with the 108 VH 

sequences enriched during the retroviral selection. Only one sequence was found common to both 

selections, and that was the VH domain of plasmid clone 5H4. As we demonstrated previously, the 

5H4 family (R_8) is part of the 10 best families selected from the retroviral sequence analysis and the 

5H4-VH sequence was enriched 170-fold during the retroviral selection. Plasmid-derived stable RBL-

2H3 clone 5H4 did not show any Annexin-V staining following FcεRI stimulation and both β-

hexosaminidase release and calcium flux were strongly inhibited (Figure 18). These results confirmed 

the inhibitory potential of the retroviral clone R_8 expressing the intrabody 5H4-VH (Figure 17). 

Analysis of 5H4 sequence revealed that the gene encoding scFv 5H4 was truncated at its C-terminus 

because of the presence of a stop codon in the first codon of the light chain CDR3. Since the original 

scFv library contained only variable CDR3 loops, we reasoned that the inhibitory phenotype of 5H4 

was carried by its VH portion. Indeed, isolated human VH domains have already been shown to be 

efficient intrabodies, particularly when the VH sequence belongs to the human VH3 class as it is the 

case here. 

1.5 Target identification 

One of the advantages of phenotypic screening is that intrabodies have high affinity and specificity, 

which can be used for the identification of their target. In order to identify the cellular target of 

intrabody 5H4, the gene encoding 5H4-VH was expressed in E. coli cytoplasm, and the purified 

intrabody fragment was used to capture its target from RBL-2H3 extracts. The captured proteins were
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Figure 21: a) Western blot analysis of the FcεRI-mediated phosphorylation of major proteins implicated in mast cell 

activation.  b) Schematic view of mast cell signaling pathways (see article Mazuc et. al, 2014). 

Figure 20: shRNA-induced down-regulation of C12orf4. Analysis of β-

hexosaminidase release (left) and calcium flux (right) were performed with cell 

populations 15 days post-infection (see article Mazuc et. al, 2014). 
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analyzed by mass spectrometry using an irrelevant VH fragment as a control. A unique protein called 

LOC297607/C12orf4 was identified in a mast cell line and bone marrow- derived mast cells using a 

pull-down assay (Figure 19, top panel).  

In addition, fluorescence microscopy showed that C12orf4 is a cytoplasmic protein (Figure 19, low 

panel). Database interrogation revealed that C12orf4 is a protein of unknown function and widely 

conserved from nematodes to humans.  

The lab further characterized the role of C12orf4 in FcεRI-mediated mast cell responses. Short hairpin 

RNA (shRNA) approach was used for down regulation and modulation of C12orf4 expression in RBL-

3H2 cells. The analysis of the degranulation of shC12orf4 transfected cells showed a decrease in β-

hexosaminidase release that correlated with an inhibited calcium flux (Figure 20).  

In mast cells and basophils, the engagement of FcεRI initiates the activation of the Src kinases Lyn and 

Fyn and the Syk tyrosine kinase, which allows signal propagation through the phosphorylation and 

activation of several downstream proteins (Kalesnikoff and Galli, 2008). As such, the impact of 

targeting C12orf4 on FcεRI-mediated signaling events was investigated and an impairment of both 

Lyn- and Fyn-dependent signals was noticed. These results are consistent with the defect in the 

degranulation events (Figure 21). Taken together, our results suggest that C12orf4 plays a role in the 

early signaling events leading to degranulation.  

In summary, this study demonstrates that the selection of intrabodies as phenotype-modulators can 

be accomplished in cell-based assays using unbiased combinatorial libraries (not preselected by 

phage panning) and without any previous knowledge of a target. 
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Figure 22: Design scheme of the former (PMEW) versus the new (HUSCI) scFv library. 

Figure 23: CDR contributions and usage. Left; Distribution of the CDR binding free energy contributions. Right; 

Percentage of structure with a given number of interacting CDR. 
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2. Optimization and expression of the intrabody library 
 

2.1 Objectives 

In the previous works of our group, a human scFv, called scFv13R4, which is expressed at high levels 

in E. coli cytoplasm was obtained by molecular evolution (Martineau et al., 1998). This scFv is also 

expressed under a soluble and active conformation in yeast (Visintin et al., 1999) and mammalian 

cells (Sibler et al., 2005). Additionally, scFv13R4 is very stable in vitro and can be renatured in 

presence of a reducing agent. Moreover, analysis of its folding kinetics showed that it folds faster 

than the parent scFv and aggregates more slowly in vitro. Based upon this scFv13R4, a human scFv 

library (PMEW) with more than a billion clones was constructed (Philibert et al., 2007). Most of the 

scFvs in the library are expressed in E. coli and in mammalian cytoplasm, and are functional as 

intrabodies. 

Founded on the results obtained with PMEW, a new human scFv intrabody (HUSCI) library was 

designed in order to improve the stability, diversity and affinity (Gautier et al., 2014, in revision). This 

new library was also based on the hyper-stable scaffold scFv13R4 but strategic changes were made in 

its design. First, the diversity of the PMEW library is located exclusively in the two CDR3s in which all 

positions were mutated. In the new library, the variable positions are distributed throughout the 6 

CDRs but correspond only to key positions in terms of antigen binding and protein stability (Figure 

22). Secondly, the incorporation of amino acids in the variable positions of the PMEW library was 

modeled on the human natural distribution at each position. The use of 20 amino acids as mutation 

residues for the selected positions resulted in a diversity of about 1025 for the combinatorial library, 

which exceeds the maximum diversity of a phage library (~1010). In HUSCI library, one very restricted 

distribution is used for all positions. It includes the top 5 of the most frequently used amino acids at 

the intrabody-antigen interaction sites and can be subdivided in terms of ability to form specific 

connections (hot Y, D, N, and neutral G, S). Thirdly, in PMEW, the lengths of CDR3s were varied in 

accordance with the length distribution in human antibodies. In HUSCI, only the H3 length is variable 

and restricted to the 8 most common lengths that were incorporated with the same frequency 

(Figure 23). These differences in library construction allowed us to minimize the structural and 

stability discrepancies between HUSCI and scFv13R4. 

Here at the Cancer Institute of Montpellier, several research groups made already use of the HUSCI 

library. Binders against their respective targets (p38 MAP kinase, Cathepsin-D, HER4, TAM family …) 
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Figure 24: Kunkel mutagenesis (From http://www.bio.davidson.edu/molecular/kunkel/kunkel.html) 
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were successfully selected by phage display. Our project, however, aimed to use this scFv library in a 

totally different approach. Therefore, the library was redesigned (named HUSCIv) to be expressed via 

a retroviral system, for phenotypic screening in eukaryotic cells. In particular, my PhD project aimed 

to select for scFvs which restored the sensitivity to Cetuximab of KRAS mutated colorectal cancer 

cells. The intrabodies of interest are identified by two methods: by direct selection of cells blocked in 

their proliferation (by means of a fluorescent marker) and by high throughput sequencing of 

subsequent intrabody pools followed by a statistical analysis. To fulfill the constraints of this in cell 

screen, we had to adapt the construction of the library to match the experimental requirements. 

2.2 Design of HUSCIv 

The method for site-directed mutagenesis applied here, termed ‘Kunkel mutagenesis’ (Figure 24), 

features hybridization of a mutation-encoding oligonucleotide to a target site on a uracil-doped 

template plasmid (Kunkel, 1985). The oligonucleotide consists of a variable region sandwiched 

between two annealing sequences that are complementary to the target site. Phosphorylated 

oligonucleotides are annealed to the template plasmid, followed by in vitro enzymatic synthesis of 

the complementary DNA strand. The main advantage of the method is that the number of 

oligonucleotide is not limited and thus that several sites can be mutated in a single experiment. 

The method can be divided in three steps. First, a uracil-doped single-stranded matrix is prepared 

using a dut ung E. coli strain. Second, oligonucleotides are hybridized to the matrix, extended with a 

polymerase devoid of strand displacement activity (T4 polymerase in our case). Of course, the in vivo 

synthetized strand contains T and not U bases. Third, the double-strand hybrid plasmids containing a 

wild type uracilated strand and a mutant non-uracilated strand are transformed in a wild type dut+ 

ung+ strain. In this strain, the uracil-containing strand is destroyed and most of the clones contain a 

plasmid originated from the in vitro synthetized and mutagenized strain. Efficacy of the mutagenesis 

is usually about 70-80% per oligonucleotide.  

The HUSCIv library is aimed to be used in eukaryotic cells and will be thus limited to a diversity of 106–

108 depending on the project requirements. In the case of my PhD project and the selection scheme 

used for the reversal of Cetuximab sensitivity, we chose to limit the diversity to about 106. It was thus 

of premium importance to optimize all the important steps in the Kunkel mutagenesis to obtain a 

small yet functional library. 
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Figure 25: Design of the scFv to be sequenced: Mutagenesis introduces variability in all 6 CDR domains and a barcode 

region of 30 bp after the stop codon. 



83 
 

This excluded the direct recloning of the previously constructed phage-displayed library (HUSCI) for 

two main reasons: 

First, the phage-library was constructed to force the mutation of the three CDR loops. To achieve this 

goal, the mutagenesis was done on a CDR-free template, which represents scFv13R4 sequence lacking 

the CDRs, each of which being replaced by a single nucleotide. Replacing each CDR by a single 

nucleotide shifts the reading frame, thus introducing a STOP codon downstream of a non-mutated 

CDR and avoiding the display of scFvs containing any scFv13R4 CDR. Consequently, only 10-25% (1-

0.76; 1-0.86) of the final library contains expressed clones since the efficacy of Kunkel procedure is 

about 70-80% per oligonucleotide. This is not a problem in the case of a large phage library (about 

1010), but it is a limitation in the case of a very limited library like HUSCIv. 

Second, the project seeks to identify intrabodies based on their declining frequency measured by next 

generation sequencing. To statistically and reliably identify declining sequences it is necessary to start 

with at least 100 copies of each intrabody. Since we seek to use a diversity of 106, we need to 

sequence at least 108 clones for each condition. Such a sequencing depth is only possible on an 

Illumina HiSeq2500 which is limited to a sequencing length of about 100 base pairs. The sequencing 

of a variable part of 550 bases (6 CDR domains) would have been possible but restricted to a diversity 

of about only 20 million sequences, too low for our experiment.  

Therefore, a non-coding barcode of 30 random bases has been added to the library so they can be 

distinguished and sorted during data analysis (Figure 25). Because of the very large potential diversity 

of the barcode sequence (430 > 1018), much larger than the library diversity, a given barcode can only 

be associated with a single sequence of scFv. However, the reverse is not true and a given scFv can be 

represented by several barcodes. To monitor intrabody diversity in cell populations during the course 

of selection, their barcodes will be sequenced. Since the identified barcode are unambiguously 

associated with a single scFv, this will lead to the identification of the intrabody itself. 

It must be noted that identification of a barcode will only theoretically lead to the intrabody 

sequence. In practice, we will have to rescue the full intrabody from the library in order to identify it. I 

had already shown that this can be successfully performed during my previous work on the 

phenotypic screening approach in the mast cells (Results: 1.4 Characterization of inhibitory intrabody 

families).  
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Figure 27: Schematic view of the in vivo folding fate of scFv-GFP fusions (Guglielmi 

et. al, 2011). 

Figure 26: Average frequency for each number of mutant CDRs for a random scFv out of HUSCIv, before and after the 

recloning step into retroviral vector. 
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Indeed, I showed that starting from a barcode sequence (in that case the VH CDR3 sequence), it was 

indeed possible to design an oligonucleotide, amplify the VH and VL sequences and assemble them in 

a full scFv. The reconstituted gene could then be recloned in an expression vector. This allowed us to 

sequence the full scFv and to test its activity as an intrabody (Figure 17). Here, the same approach will 

be followed to identify and test the clones from the Cetuximab selection. 

To address these two pivotal points in the construction of the HUSCIv library, we introduced the 

following modifications in the construction procedure: 

We used a wild type scFv13R4 template instead of the CDR-deleted version. This implies that most of 

the clones will contain some non-mutated CDRs. However, the bioinformatics analysis of intrabody-

antigen complexes developed for the construction of the original HUSCI library showed that many 

antibodies use less than 6 CDRs to interact with the antigen (Figure 23). This restriction of the 

intrabody paratope diversity should thus not affect the functional diversity of the library. However, 

the first attempts to perform such a mutagenesis resulted in a strong bias because the 

oligonucleotides with a low mismatch frequency presented a higher affinity for the template than the 

more mismatched oligonucleotides. We thus modified the hybridization conditions of the annealing 

step. The idea was, once the denaturation step was finished, to lower the temperature as quickly as 

possible towards 20°C (10 seconds, temperature was set to 4°C) to avoid that the most 

complementary primers (high Tm) hybridize preferentially to the template because this would bias 

the library. Final sequencing of randomly picked clones showed that the procedure was successful 

and that no stop codons were observed (Annex 3). 

Finally the library had to be cloned in a retroviral vector. We could have performed the mutagenesis 

directly in such a vector, however we decided not to do so to ensure that all the clones contain a 

barcode. Indeed, the barcode is introduced by the Kunkel procedure and thus 20-30% of the clones 

do not contain the barcode sequence. We thus constructed the library in a first vector then used a 

unique BglII restriction site introduced by the barcode primer to reclone the library in the pMSCV 

retroviral vector. This approach not only ensured the presence of the barcode but also removed the 

non-mutagenized template originating from the non-eliminated uracil-containing template (about 

30%). The total diversity of the HUSCIv library was determined to be at least 1x108.  

Before and after cloning, the variation in the CDR domains of both VH and VL was determined. Fifty 

clones were picked out for sequencing (Annex 3) and the frequencies of each CDR that has been 

mutated are shown in figure 26. One third of the scFvs out of the HUSCIv library are mutated in all six 
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Figure 29: HCT116 cells infected with retrovirus containing scFv library GFP fusions. Left panel: Cell populations were 

analyzed by FACS using the GFP fluorescence signal. Right panel: FL1 log+ values measured as >5% GFP+ population of 

the negative control. 

Figure 28: HeLa cells infected with retrovirus containing scFv 

library GFP fusions. Cell populations were analyzed by FACS using 

the GFP fluorescence signal. 
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CDRs, and therefore represent a fully mutated template. Seventy percent of all scFvs in the library are 

mutated in at least one CDR domain. The number of scFv with at least 3 mutated CDR loops is 86 % in 

the final library. Since 97% of the natural antibody use between 3 and 6 CDRs (Figure 23) to interact 

with their cognate antigen, we can assume that most of the retroviral library is functional. 

2.3 HUSCIv expression in eukaryotic cells 

To evaluate their properties as intrabodies in mammalian cells both former (PMEW) and current 

(HUSCIv) retroviral scFv libraries were expressed in a frequently used human cell line (HeLa), and in 

our model cell line (HCT116). In an attempt to follow scFv stability and solubility in the mammalian 

cell cytoplasm, GFP from jellyfish was used as a folding reporter (Figure 27), as described by Waldo et 

al. in E. coli (Waldo et al., 1999) and by our group in mammalian cells (Guglielmi et al., 2011). 

We first analyzed total GFP signal using FACS; the idea is that the GFP signal of the cell lines correlates 

with the soluble expression levels of the scFvs. For the controls, the lab previously described a scFv, 

called scFv2G4, selected for high expression levels in E.coli cytoplasm. It is an anti-tubulin scFv that 

once expressed in mammalian cells, accumulates as a soluble protein in the cytoplasm and of which 

no aggregated material was detected (Cassimeris et al., 2013). The scFv13R4 which is the template 

scFv of both libraries was also included in our experiments. Additionally, an empty retroviral vector 

fused (control+) or not fused (control-) to EGFP were added to the experiments. 

Figure 28 shows a clear shift (FL1 Log+ of 10) in the FACS signal of HeLa cells expressing PMEW in 

comparison with HeLa cells expressing HUSCIv. The GFP levels were even more convincing in HCT116 

cells: Figure 29 shows a clear augmentation of 23% of the GFP signal of HUSCIv fusion proteins in 

comparison with scFvs out of PMEW.  

However, the GFP signal can be due either to fusions or to cleaved and free GFP. We thus used 

Western blot of total and soluble cell extracts to analyze the expression levels of scFv fusions. Analysis 

of total extracts of HeLa cells showed that scFvs 13R4 and 2G4 fusions were both present at high 

levels in the cell cytoplasm (Figure 30, top panel; MW 60 kDa). On the other hand, due to the absence 

of a fusion protein, the empty control vector is expressed at much higher levels showing a high 

proportion of the EGFP protein (MW 28 kDa). But more importantly, cells expressing PMEW also 

contains free EGFP protein, which is originating from degraded fusion protein whereas those 

expressing the HUSCIv library do not. This means that part of the signal associated with the PMEW 

library in the previous FACS experiment (Figures 28 and 29) is not due to the intrabody itself but to
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Figure 30: Western blotting of; Top panel: Total Hela 

cell extracts revealed using a rabbit polyclonal anti-GFP 

serum; Bottom panel: scFv-GFP fusions were captured 

from soluble Hela cell extracts by their C-terminal poly-

His tag. WB was revealed using a rabbit polyclonal ant-

GFP serum (1/500) coupled to an anti-rabbit HRP 

(1/5000). Exposure: 30 seconds. 

Figure 31: Western blot quantification of soluble cellular 

extracts of HeLa cells. Signal intensities are normalized 

to the positive control. 

Figure 32: Western blotting of soluble cell extracts of HCT116 cells. Left panel: scFv-GFP fusions were captured from 

soluble cell extracts by their C-terminal poly-His tag. WB was revealed using a rabbit polyclonal ant-GFP serum (1/500) 

coupled to an anti-rabbit HRP (1/5000). Exposure: 30 seconds. Right panel: Western blot quantification of soluble 

cellular extracts of HCT116 cells. Signal intensities are normalized to the positive control. 
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cleaved-off eGFP. It also demonstrated that, in eukaryotic cells, the expression of the HUSCIv library is 

higher than the PMEW library. However, to rule out the possibility of measuring scFv-GFP aggregates, 

soluble fractions of cell extracts were prepared and captured on Ni-NTA beads (Figure 30, bottom 

panel). The quantification of this western blot is shown in figure 31. In the case of scFv 13R4 and 2G4, 

both highly soluble fusion proteins are residing at high levels in the cytoplasm. The background was 

annotated through the GFP levels of our negative control (8%). Anyhow, we confirm that the 

proportion of degraded fusion protein in the PMEW-transfected cells is 2 to 3-fold higher than in the 

HUSCIv-transfected cells. And more important, the amount of soluble scFvs in HUSCIv cells is 2 to 4-

fold higher than in PMEW library.  

The Western blot analysis of the libraries expressed in HCT116 showed the same results (Figure 32). 

The template scFv13R4 fused with the EGFP is expressed at high levels (74%) in the cell cytoplasm. As 

we observed with HeLa cell extracts, the fraction of soluble fusion protein in cells expressing HUSCIv 

is twice as high as the fraction found in cells expressing PMEW and represents 60% of the scFv13R4 

control. In addition, we clearly notify the GFP degradation product in PMEW-transfected HCT116 (9% 

versus 2% in HUSCIv).  

Finally, to confirm the results obtained by FACS and Western blot analysis, we used fluorescence 

microscopy, to visualize the expression of the intrabodies. Figure 33 compares the overall 

fluorescence of HCT116 cells infected with PMEW and HUSCIv. There is a much higher and uniform 

GFP intensity in cells expressing the HUSCIv library. Since we know that there is no degradation of the 

fusion (Figure 30 and 32), this represents expression of the intrabody itself as soluble protein in the 

cytoplasm. It is also important to note that no aggregates were present in the cells as frequently 

found with inactive and badly folded intrabodies. 

Altogether, our data clearly demonstrate that most of the clones contained in the HUSCIv library are 

well expressed, non-degraded, and soluble in the cell cytoplasm. In addition the library is clearly 

better than the previously designed PMEW library. This is true not only in HeLa cells but also in the 

HCT116 cell line that will be used for the phenotypic selection. This also demonstrated that the 

optimization steps developed in the construction of this new library were successful and HUSCIv 

represents a very promising tool for the generation of efficient intrabodies. 
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Figure 33: Expression of scFv in mammalian cytoplasm: HCT116 cells were retro-transfected with 

scFv GFP fusions and fixed by PFA. Upper panel: Intrinsic GFP fluorescence revealed by 

fluorescence microscopy (Plan-Neofluar 20x/0.50 – 1.18 s). Lower panel: Cell nuclei of respective 

cell area stained with Hoechst (Plan-Neofluar 20x/0.50 – 11 ms). 

Figure 34: Phenotypic screen of for candidate intrabodies restoring the sensitivity of KRAS 

mutated colorectal cancer cells for Cetuximab treatment by means of retroviral transfection. 

Purple: Method 1, Green: Method 2. 
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3. Phenotypic targeting of KRAS mutated colorectal cancer cells 
 

3.1 Objectives 

The aim of the screen is to identify new therapeutic targets in KRAS mutated colorectal cancer cells by 

intracellular immunization. In analogy with the RNAi, the technique is known to express intrabody 

fragments in the cell to inhibit or modulate the functions at the protein level, and can therefore be 

called "protein interference". Usually, this technique starts with an antibody fragment against a 

chosen target protein. This intrabody is expressed by the cell in the form of a scFv, which then can 

modulate the function of the target protein by different mechanisms (direct inhibition, relocation, 

degradation, etc.). In the approach used here, it is the other way around: starting from the optimized 

HUSCIv retroviral scFv library, a screen for a desired phenotype will be performed and subsequently 

the intrabodies conferring this phenotype to the cells will be isolated. For my PhD project, I employed 

this strategy to select for intrabodies that restored the effect of Cetuximab on KRAS mutated 

colorectal cancer cells. Those intrabodies are identified by two methods (Figure 34): 

4) Direct selection of cells blocked in their proliferation by means of a fluorescent marker. 

5) High throughput sequencing of subsequent intrabody pools followed by a statistical analysis.  

Once the intrabodies of interest are isolated, their potential therapeutic targets can be identified by 

mass spectrometry using intrabodies as conventional antibodies that immunoprecipitate the target as 

already demonstrated with the identification of C12orf4 in mast cells (see article Mazuc et al., 2014, 

Results: 1.5 Target identification). Finally, the mechanisms of action of intrabodies will be 

characterized in the activation of the EGF-pathway in other cell lines treated or not treated with 

Cetuximab. 

3.2 Experimental set-up 

It should be noted that the newly synthetized retroviral intrabody library has a built-in diversity of 108 

clones. The human genome contains about 21,000 protein-encoding genes, but the total number of 

proteins in human cells is estimated to be between 250,000 to one million. We thus used a subset of 

the library of approximately 106 clones. This diversity is of the same order of magnitude as the 

proteome diversity taking into account alternative splicing and post-translational changes. In 

addition, as explained (2.2), this diversity is the largest possible size to be followed by NGS. 
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Figure 35: Cytotoxicity of Cetuximab-treated colorectal cancer cells. 

Figure 36: EGFR internalization of Cetuximab-treated 

colorectal cancer cells. Fluorescence of treated and non-

treated cells was measured by FACS after incubation 

with Cetuximab (50 µg/mL) followed by an Fc-specific 

anti-human IgG – FITC. Negative control: Non-treated 

HCT116. 

Figure 37: Dichromatic emission spectra of green EGFP 

(dotted line) and Cell Tracker Orange (full line) 
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First, we tested the cytotoxic effect of Cetuximab on CRC cell phenotypes. Oncogenic activation of the 

RAS/RAF signaling pathway significantly impairs the therapeutic potential of mAbs such as Cetuximab 

aimed at targeting the EGFR in CRCs. Two CRC cell phenotypes, carrying the same KRAS mutation 

Gly13Asp KRAS (Benvenuti et al., 2007). For these experiments, we selected the DLD1 cell line, which is 

known to be partially Cetuximab-sensitive and HCT116, a resistant cell line. The cells were treated 

with increasing concentrations of Cetuximab and their viability was measured every 3 days during two 

weeks (Figure 35). As expected, HCT116 cells do not respond to Cetuximab treatment but after 1 

week, the cell viability of DLD1 cells was reduced to 50% of the non-treated control. We observed 

that an incubation time of at least 6 days is necessary to get a strong cytotoxic effect on Cetuximab-

sensitive cells. Moreover, the cytotoxicity of DLD1 measured after 6 days of Cetuximab treatment is 

nearly the same for all Cetuximab concentrations. 

In order to exclude the possibility that HCT116 cells internalize their EGFR after being treated with 

Cetuximab for 6 days, a FACS analysis was performed. HCT116 and DLD1 cells were incubated with or 

without 50 µg/mL Cetuximab for 6 days and EGFR levels were measured by FACS by means of an Fc-

specific anti-human IgG. Despite a slightly larger number of unmarked cells in comparison with DLD1, 

a same level of fluorescence was assessed for both treated and non-treated HCT116 (Figure 36). 

Eventually, we had to test the concentration of the fluorescent dye used for the proliferation test. 

The CMRA Cell Tracker™ fluorescent probe freely pass through cell membranes and is converted to a 

cell-impermeant product. The dye resides in the cytoplasm and is passed to daughter cells through 

several generations but is not transferred to adjacent cells in the population. Cell blocked or altered 

in their proliferation will be more fluorescent than adjacent cells that maintain their normal growth. 

As such, those cells can be positively sorted by FACS. However, as successfully transfected cells are 

expressing a scFv-EGFP fusion protein the FACS instrument has to be tested for dichromatic analysis 

with green (EGFP, FL1) and orange (CMRA, FL4) overlapping emission spectra (Figure 37). 

Therefore, a FACS analysis of was performed with increasing concentrations of fluorescent dye. Cells 

were transfected with an irrelevant scFv-GFP and incubated for three days with CMRA concentrations 

varying from 0 to 20 µM. FACS analysis annotates cells bearing a GFP-labeled intrabody in their 

cytoplasm due to successful transfection and the cellular proliferation state represented by the final 

concentration of CMRA. The dichromatic issue resides in the orange component, which is displaying a 

“green component” - shifting the cell population to the right (more GFP-positive) - too intense to be 

removed by color compensation. The aim was to decrease the CMRA concentration until this 

component was low enough to be corrected and one would analyze both fluorescence
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Figure 38: FACS analysis of scFv-GFP transfected HCT116 incubated with increasing concentrations of CMRA. 

Left panel: Total cell populations.  Center panel: CMRA component. Right panel: GFP component. Cells were 

incubated with 0 to 20 µM of CMRA (for clarity, by comfort, only the two best concentrations of 2.5 µM and 

5 µM of CMRA data are shown). The negative control (Control-) is represented by unstained scFv-GFP 

transfected HCT116. Unstained Wild Type cells served as GFP-negative control (GFP-).  

Figure 39: Effect of monoclonal 

Abs on FACS analysis of scFv 

expressing HCT116. Left panel: 

CMRA component. Right panel: 

GFP component. Cells were 

incubated with 0 to 20 µM of 

CMRA. Antibody concentrations 

were set at 50 µg/mL. The 

negative control is represented 

by unstained wild type cells. 

 

Figure 40: FACS analysis of HUSCIv transfected HCT116 a) Sorting window of cells retarded in their proliferation, treated with 

Cetuximab (blue) or control (red) for 6 days. b) FL4 component (CMRA): Sorted subpopulations are depicted in their respective 

colors. c) FL1 component (GFP) with their respective Geometric Mean (GM). Controls: CMRA+: HUSCIv transfected cells at 

maximum staining; GFP-: Wild Type cells; CMRA-: Unstained HUSCIv transfected cells, GFP+: Cells transfected with an empty 

GFP-expressing retroviral vector.   
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components in their true condition. However, the concentration of CMRA should still be able to 

distinguish the state of proliferation in the population; i.e. proliferation arrest (represented by “Day 

0”) and normal proliferation (represented by “Day 3”) (Figure 38; left and center panel). In addition, 

we should be able to visualize the difference between stained and unstained (negative control) cells. 

In the end, we have set the CMRA concentration to 2.5 µM since the use of a 2-fold higher CMRA 

concentration alters the GFP levels significantly (Figure 38; right panel). 

To ensure that the addition of monoclonal antibodies to CMRA-stained cells did not have any effect 

on cell viability, a FACS analysis was performed on stained cells transfected with an irrelevant scFv-

GFP and treated with Cetuximab and Rituximab for 6 days. It is know that HCT116 cells do not express 

CD20, which is the target of Rituximab. No differences in cell proliferation were noticed (Figure 39).  

Based on these results the final parameters of the intrabody-based phenotypic screen of HCT116 cells 

treated with Cetuximab were fixed to 50 µg/mL of Cetuximab during 6 days using a CMRA 

concentration of 2.5 µM for the last 3 days. In the best case represented by DLD-1 cells, we could get 

a 50% decrease in cell proliferation. 

3.3 Phenotypic screen 

As depicted in figure 34, the goal of the experiment is to identify and isolate scFvs that inhibit or 

decrease the proliferation of HCT116, in presence of Cetuximab. 

First, about 7 million HCT116 cells were transfected with a subset of the HUSCIv library containing 106 

intrabodies. The multiplicity of infection (MOI) was set to 1:1 in order to minimize double 

transfections. The transfection was successful as measured by the geometric mean (GM) of the GFP 

fluorescent signal (Figure 40c). Secondly, cells were incubated for 6 days with 50 µg/mL of Cetuximab. 

Three days before analysis, cells were stained with CMRA and re-cultured. At day 6, cells were sorted 

out by FACS. The sorting parameter for CMRA-positive cells was set to 1% of the total sorted 

population (Figure 40a). However, 1 week of anti-EGFR treatment did not show a measurable 

difference in cell proliferation, as analyzed using CMRA staining (Figure 40b). 

Following this first selection round, we introduced a recloning step. This ensured that the retrovirus-

induced phenotype was associated with the expressed intrabody sequence and was not due to a cell 

drift or a particular genomic insertion site. Half a million of sorted cells were brought back in culture, 

DNA was extracted, and the intrabodies (together with the GFP and the barcode) were recloned in 

the retroviral vector. A second round of selection was then performed under the same conditions as 



96 
 

 

Figure 41: Round 2 of FACS analysis: HCT116 cells transfected with Round 1 were treated for 6 days with 50 µL/mL Cetuximab 

and stained with CMRA Cell Tracker (FL4) 3 days before analysis. a) Sorting window of Round 2: about 1% of highest CMRA-

positive cells. b) CMRA component (FL4): Synthetic representation of the proliferative state of Round 2 sorted cells compared to 

that of the naïve library (purple) or Round 1 (green). c) GFP component (FL1): idem. The negative control is represented by 

unstained cells (CMRA-), the positive control (CMRA+) by cells stained just before analysis. 

Figure 42: Cytotoxicity of HUSCIv-transfected HCT116 after two rounds of phenotypic selection with Cetuximab. Round 2 (R2) 

cells represent a subpopulation of Round 1, which have been sorted out by FACS and returned in culture. Round 1 cells were 

recloned after the first round of phenotypic selection. All cells were cultured for 3 days before adding 50 µg/mL Cetuximab. 

Cell viability was analyzed every 3 days by a Sulforhodamine B assay. Values are normalized to cells transfected with the naïve 

library, treated with control mAb (Rituximab). 
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before except that the infection was performed at a MOI of 0.1 to further limit multiple infections. As 

expected, cell sorting has decreased the diversity of the subpopulation as illustrated by the wideness 

of the GFP+ distribution in the total cell population (FL1, Figure 41c). We estimate that the number of 

potential inhibitory scFvs is presumably between 10 and 10000, so maintaining 105 sorted cells should 

be enough to fish most of them. For this reason the second round was performed on 10 million of 

cells instead of 50 million. With a sorting parameter of 1%, we finally selected 100,000 clones upon 10 

million cells (Figure 41a). The second round of phenotypic screen did not show any inhibition of the 

phenotype. After 3 days of CMRA staining, both “Round 1” and “Round 2” populations are 

superimposed on the naïve library, with or without 6 days of Cetuximab/control treatment (Figure 

41b). To conclude, CMRA staining in combination with FACS analysis failed to show any difference in 

the proliferation status between HUSCIv-transfected cells treated with Cetuximab and control. 

We surely can speculate that, due to false positives, 2 rounds of phenotypic selection are not 

sufficient to annotate a clear shift between cell populations. Another hypothesis is that the 

experiment is not refined enough to distinguish between CRC cells altered in their proliferation due to 

concomitant inhibiting effects of Cetuximab and scFv interaction, and the negative cellular effects of 

expressing intrabodies in the cytoplasm. 

3.4 Cytotoxicity experiment 

To verify that we did not miss out any inhibitory effect of Cetuximab on CRC cells during FACS 

analysis, we used an alternative cell proliferation assay. Aliquots of cells from the first and second 

selection round were seeded at limiting dilutions and a cytotoxic test was performed in quintuplicate 

by measuring the total cell mass (Sulforhodamine B assay, Figure 42). Cells were incubated for 3 days 

before adding 50 µg/mL of Cetuximab and control for 6 more days. Contrary to the FACS analysis, the 

proliferation of cells sorted out of the first selective round treated with Cetuximab was significantly 

inhibited by 5% on average when compared to cells treated with control mAb. More importantly, cells 

resulting from Round 2 showed a 10% difference in viability when treated with Cetuximab. The 

experiment was standardized towards the naïve library treated with Rituximab, which is a double 

control. First, by transfecting cells with the naive library, we could interpret the effect of Cetuximab 

on - and its evolution within - a population of inhibitory scFvs. A second dimension (the effect of a 

monoclonal antibody) was added by incubating the cells with Rituximab, which does not to interact 

with HCT116 cells. The negative outcome of those 2 controls confirms the specificity of the measured 

effect and showed that the retroviral selection was more powerful than expected by FACS analysis.
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Figure 43: Preparation of fragments to be 

sequenced. Left: Schematic overview. Right: 

Agarose gel with dimer (560 bp), final sample 

(360 bp) and the MlyI digestion products (116 

bp) 



99 
 

The differences in the two experiments may be due either to a lower sensitivity of the FACS/CMRA 

analysis or to the fact that the Sulforhodamine-based assay measure not only cell proliferation but 

also survival and cloning efficiency. These results are promising, especially because the effect 

increases with the selection rounds, and because of the strict negativity of all the performed controls. 

However, several additional rounds of selection will be necessary to obtain efficient intrabodies and 

confirm these preliminary results. 

3.5 Sequence analysis 

The experiment was performed in triplicate, which is necessary for statistical analysis. Intrabody 

sequences expressed in both pools of HUSCIv-infected cells treated with Cetuximab or Rituximab, 

before and after cell sorting were analyzed (see Figure 34). At “Day 6”, we anticipate the scFv 

diversity should be around 106, with 0-1000 copies of each barcode. We need at least 108 sequences 

to have a precise description of the population, which is an average sequencing depth of 200. We 

thus sequence the pool of intrabodies before and after cell sorting under both treatments, and 

identify the declining sequences.  

The barcode contains a MlyI restriction site, which enables the preparation of the fragment to be 

sequenced. First, the scFv was amplified out of the genomic DNA of HCT116. A second PCR step 

amplifies the barcode region and introduces a single BamHI site, which was used to create a dimer 

(Figure 43). After digestion with MlyI, the final fragment obtained contains a barcode at each end.  

MlyI is cutting blunt, so the fragment is phosphorylated and ready to be ligated with Illumina 

adaptors. Further development of the library is performed by using Illumina’s TruSeq®ChIP Sample 

Preparation kit and comprises 5 steps: 

1. DNA end repair and phosphorylation. After testing both condition (with and without DNA 

end repair), we omitted this step because of several embedded PCR fragments of aberrant 

size. 

2. Addition of adenine at the 3’ extremities. 

3. Ligation of adaptors at both extremities. 

4. Gel purification allowing to select the correct size (500 bp +/- 50). 

5. An amplification step by PCR. Only fragments carrying both adaptors are amplified, 

introducing a second selection step.    
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Position in Read 

Mean Sequence Quality 

Figure 44: Quality of reads. Left; distribution of the quality scores for each base. Right; distribution of the mean quality 

for each sequence. 

Figure 45: Mapping of the “parasite” fragment. Top; position in 

initial PCR fragment (MlyI 155-519). Bottom; gel electrophoresis 

of 1) MlyI digestion of dimer yielding barcode containing 

fragment (2 x 178 bp = 356 bp), 2) MlyI digestion of initial PCR 

fragment yielding “parasite” fragment (364 bp), 3) BstNI digestion 

of initial PCR fragment yields our barcode containing fragment 

(~520 bp), and fragments ˂ 300 bp, which are eliminated by 

subsequent steps.  
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The library construction and NGS experiments were performed on Montpellier MGX platform. The 

sequencing itself was performed on Illumina’s HiSeq 2000, which makes use of the SBS technique 

(Sequence by Synthesis). This strategy is known as “bridge amplification” and generate “clusters”, 

which are detected and DNA sequence determined via sequential incorporation of fluorescent 

nucleotides and a CCD camera. Before sequence analysis of all samples (3 x 2 conditions of input 

sample + 3 x 2 conditions of sorted sample), a single test sample was prepared and sequenced. The 

distribution of the quality scores of the sequences is depicted in Figure 44 (left). We observe a decline 

in quality at the end of the reads (especially the last 10 bases). However, only the 30 first bases of 

those reads are kept after trimming and a 10% error is allowed for the 20 fixed bases following the 

random barcode (i.e. authorizing 2 mismatches). Figure 44 (right) shows that the vast majority of the 

sequences is of excellent quality. After extraction of the barcodes, it is expected to have the following 

construction with on the first 30 bases, a barcode that represents only one scFv sequence, followed 

by 70 base pairs of a known sequence:  

Nx30CAACAGTCTATGCGGCCCCATTCAGATCCTCTTCTGAGATGAGTTTTTGTTCTGCGGCCCCGTGATGGTG  

The expected "barcode" diversity is around 1 million. Finally, 5,466,475 reads contained the known 

barcode sequence, followed by the first 20 bp that corresponded to 24.8 % of the reads. 1,040,131 

different barcodes were found, which corresponds to the expected diversity and 147286 barcodes 

frequencies are superior to 10. However, only 1/4 sequences are representing a barcode. After 

“BLASTing” the overrepresented sequences, we found out that a “parasite” sequence with the same 

size as our fragment, and originating from a MlyI digestion of our initial PCR fragment, was 

contaminating the sample. Normally this MlyI fragment should have been eliminated, but must have 

been carried through the purification as a non-specific PCR product. Therefore, an additional 

preparation step was introduced. For this, we digested the initial PCR product with BstNI. The enzyme 

cleaves many times, including 3 in the unwanted MlyI fragment and does not cut into the fragment 

containing the barcode (Figure 45). We assumed that by adding this digestion step, the contamination 

will be eliminated. Of course we risk to eliminate some barcodes (containing BstNI) but this should 

not bias too much the experiment hence among the 1 million of read barcodes, we expect to have 

only 54,719 (5%) containing a BstN1 site. Recent results revealed an increase in the barcode reads to 

42%.  

Today, the major contamination problems has been solved and all samples are ready to be 

sequenced. Since the power of the HiSeq is 2x108, if we get about 50% of barcodes, we can retrieve 

1x108 sequences (100 times the diversity). 
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Conclusions 

Molecules with the potential to recognize, bind and modulate intracellular targets play an important 

role for basic research in cell biology as well as in the generation of therapeutic and diagnostic agents. 

For real time visualization of cellular components, intracellular target identification and validation in 

living cells, such binding molecules basically have to fulfill three criteria: compactness, folding 

stability, and specific affinity. During the last ten years, elaborate research on recombinant antigen 

binding proteins, the development of combinatorial libraries, screening methodologies and cellular 

targeting technologies led to the identification and creation of numerous intracellular functional 

binding molecules (intrabodies). Selected intrabody formats were shown to function for different 

applications including target inhibition or modulation, studying protein–protein interactions or to 

visualize dynamic changes of cellular components. 

In collaboration with E. Weiss’ team, our lab constructed a intrabody library based on a single scFv 

framework, which was evolved to improve its activity inside the cytoplasm (Martineau et al., 1998). 

The parental scFv13R4 presents favorable folding and aggregation kinetics and is expressed at very 

high levels in all tested cell types (Visintin et al., 1999) (Philibert et al., 2007). The diversity of this scFv 

library (PMEW) was restrained to the CDR3 loops, and was sufficient to generate very efficient and 

diverse binders (Philibert et al., 2007) (Desplancq et al., 2011) (Rinaldi et al., 2013). Thus, by 

mimicking the natural diversity of CDR3 loops we ensured that the scFvs were fully human and 

functional in the cell. However, as it is known that all six CDRs play a role in intrabody specificity and 

affinity, we reconsidered the design of the intrabody library. The goal was to optimize the diversity, 

the expression and the stability of the library expressed in reducing intracellular conditions. We based 

our strategy on a database of crystallographic intrabody-antigen structures, in which an alanine 

scanning analysis taught us which characteristic rules had to be applied. We found that 80% of the 

binding energy is due to only a few significant residues. These residues localize among 25-30 fixed hot 

spot positions that contribute to 75-80% of the energy in more than half of the complexes. In 

addition, between 3 and 6 CDRs are involved in the complex formation. We thus restrained the 

diversity to the identified positions and focus us on the most widely used side-chains. In addition, we 

introduced variable loop lengths in the VH CDR3 to generate different paratope shapes. However, we 

restrained this diversity also to preserve as much as possible the initial stability and expression level 

of the 13R4 framework. Altogether, this allows the construction of smaller yet efficient intrabody 

libraries. 
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Successful use of scFv fragments in intrabody libraries on a large scale requires several primary points 

to be fulfilled. First, the scFv must be easy to isolate. Second, the scFv should be able to fold in all the 

cell compartments, particularly in the reducing ones. This is the case for the scFv library described 

herein, as represented by the quantity of soluble fraction residing in mammalian cells expressing the 

HUSCIv library. The comparison between PMEW and HUSCIv demonstrates that the new library has 

improved expression and folding properties. Using GFP as a folding reporter (Guglielmi et al., 2011), 

we clearly demonstrated that most of the intrabodies from HUSCIv library are expressed and soluble 

in the cell cytoplasm. Of particular interest is the homogeneity of the fluorescence (Figure 33) that 

ensures that the expression level of all the clones is comparable, thus limiting the risk of artifacts 

during the selection. Previous data showed that PMEW contains about 30% of, which is a highly 

soluble scFv. The newly synthetized library contains two times less of scFv13R4, but is still more 

soluble than the former. This means that the introduced mutations in the 6 CDR loops did not reduce 

the overall solubility of HUSCIv. 

In this PhD project, both intrabody libraries were applied in the phenotypic screening of well-

documented phenotypes.  

In the model of allergy, the PMEW library was engaged in a mast cell activation model, which 

permitted us to identify a new molecular actor involved in this signaling pathway (these results have 

been recently published in PLoS ONE journal, see article Mazuc et al., 2014). Such proteins of 

unknown function represent about 40% of the human genes. The identified LOC297607/C12orf4 

protein is even part of the 1,000 human genes without ortholog, paralog, or homology to known 

genes (Clamp et al., 2007). This class of uncharacterized proteins represents a large reservoir of 

therapeutic targets but because of their unknown properties they also represent a challenge for 

inhibitor identification (Mayr and Bojanic, 2009). This selection is a unique example in the current 

literature.  

Of interest is also the recent publication by Dr. Lerner’s group of a comparable selection. In this 

publication, they selected for intrabodies that block viral replication and thus protect cells from 

killing. This clear-cut phenotype (survival/killing) allowed them to get very high enrichment factors 

(Xie et al., 2014). However, our selection is based on a much more general phenotype that could be 

applied to many more systems in which the phenotypes are usually less pronounced. 

For my main PhD project, I used the new optimized library (HUSCIv) to select for intrabodies that 

restore the sensibility of KRAS mutated colorectal cancer cells to Cetuximab treatment. The selection
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process for both projects is based on high throughput sequencing of scFv populations evolving 

throughout the experiment. Even so, one crucial dissimilarity has to be pinpointed. In the case of the 

screen performed in mast cells, the desired phenotype (inhibition of degranulation) keeps cells in 

culture (enrichment) whereas in the CRC model, the number of successful intrabodies (inhibited cell 

growth or death) will decrease or even completely disappear during the selection (depletion). Thus 

the latter requires a profound sequencing of a large number of scFvs, sufficient for statistical analysis. 

Additionally, because the variable parts are distributed along all CDR loops, the fragment makes up to 

550 bases, obliging us to sequence through barcodes. Because we wanted to identify cytotoxic 

intrabodies, a total of 108 intrabody sequences (with about 100 copies/intrabody) were compared 

among two groups (before and after treatment with Cetuximab) and sequences specifically depleted 

during the selection could be discovered. Currently, the different DNA pools are ready to be 

sequenced and the sequencing of our test sample revealed the expected barcode diversity of 106. 

Unfortunately, our first sequences showed a contamination, and our samples required additional 

purification. These steps have been applied and recent sequencing revealed that 43% of our samples 

contained a correct barcode. Notwithstanding the hold back, the phenotypic screen described here in 

the CRC model is known to be unique and promising.  

In addition to the sequencing strategy applied on our CRC model, we performed a direct selection of 

the cells using a fluorescent dye (CMRA). Phenotypic screening by use of CMRA as a fluorescent 

arbitrator is well-documented and can track each cell division with a good resolution. In Cetuximab-

sensitive cells used as control, we observed a difference of about 50 % in proliferation over 6 days of 

Cetuximab treatment. However, after two rounds of selection in the presence of Cetuximab, we did 

not observe any differences in proliferation rates, probably too weak at this stage to be annotated by 

FACS. In regard to this hypothesis, one should note that compared to the high throughput 

sequencing, the fluorescent marker approach does not identify cytotoxic intrabodies but only the 

cytostatic ones. Our results suggest that we need to add at least one or more selective rounds before 

formulating any conclusions on the approach. In that regard, a similar technique was successful in 

which cytostatic aptamers were isolated using CMTMR (de Chassey et al., 2007). In this study it was 

stated that because of a significant background of cells that either do not grow or proliferate more 

slowly independently of the expression of peptide aptamers, multiple screening rounds were 

necessary to isolate peptide aptamers that exert an anti-proliferative effect. In the end, 7 selective 

rounds were necessary (minimum 3 rounds) in order to observe a significant shift of fluorescence. In 

that regard, we performed cytotoxicity tests on selected populations and we observed an inhibitory 

phenotype after only 2 rounds. In fact, our results show a significant drop in cell viability of 10 % after
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Round 2 and a moderate drop of 5 % after Round 1 of selection. The observed evolution in phenotype 

is tending towards a selection of inhibitory scFvs but is still to be confirmed by other cell viability 

experiments.  

Nowadays, the identification of the genotype that is responsible for a phenotype is a hot topic in 

medical research. Molecules with the potential to recognize, bind and modulate pathologic 

phenotypes play an important role for basic research, as well as in the generation of therapeutic 

agents. Two recent studies demonstrated that the apoptotic sensitivity in p53-mutated human cancer 

cells could be restored by microRNA (Herbert et al., 2014) and a low molecular weight compound (Cui 

et al., 2014). The intrabody-based phenotypic screening method described here aims to be an 

integrated approach in that domain. Intrabodies have demonstrated to summarize all the antibody 

properties within the cell. This includes enzyme inhibition (Paz et al., 2005), breaking protein-protein 

(Griffin et al., 2006) and protein-DNA interactions (Cohen et al., 1998), re-activating mutant enzymes 

(Martineau et al., 1998), targeting specific protein conformations, (Tanaka et al., 2007) (Miller et al., 

2005), domains (Dauvillier et al., 2002), and PTM (Cassimeris et al., 2013); and inducing protein 

degradation (Caussinus et al., 2012) (Butler and Messer, 2011). Additionally, by targeting them to 

specific cell compartments, intrabodies can re- or de-localize their target (Sibler et al., 2003b) and 

block secretion (Böldicke, 2007). Furthermore, apart from proteins, antibodies are also able to 

recognize small chemicals usually referred as haptens, glycans and lipids (Rabu et al., 2012) (Quintana 

et al., 2012). The approach introduced here is different from all previous studies in that it used 

unbiased libraries that were not preselected against any known protein. As such, the strategy is 

analogous to classical forward genetic approaches except that it operates directly at the protein level. 

In our model of allergy, we proved that the isolation of intrabodies as phenotype-actors can be 

realized without any previous knowledge of a target. Comparing our system to classical genetics, the 

intrabody plays the same role as mutations. Additionally, because the intrabody does not directly 

modify its target but modulates its function, it is also analogous to a chemical drug. The use of naïve 

intrabody library has been reported only by Lerner’s group for the regulation of stem cell fate. By 

using combinatorial libraries, they found a single agonist intrabody against the alpha chains of 

integrins, which induced human stem cells to become dendritic cells (Yea et al., 2013). Unlike typical 

approaches as shRNA and siRNA, in which the targets are known, nobody can predict the recognized 

target from an intrabody sequence. It is known that the immune system is able to raise antibodies 

against essentially any part of the surface of a protein (Jemmerson, 1987), and it remains to be 

demonstrated that this is also the case with intrabody libraries. Here we demonstrate the possibility
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to construct a very efficient retroviral intrabody library and its use to identify cellular targets and 

specific modulators (inhibitors or activators). The approach described here represents a powerful tool 

not only to address the proteome diversity but also to study secondary messengers and metabolism 

in cells. As such, and compared to other large-scale approaches, this represents a straightforward 

path to the discovery of potential therapeutic molecules. 
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Annex 1: Materials and methods   

1. Synthesis and optimization of the scFv library 
 

1.1 Preparation of chemo-competent E. coli 

Dut- ung- K12 CJ236 (NEB cat# E4141S) cells were streaked on LB agar + 35 µg/mL chloramphenicol 

(Cam). A single colony was picked out and cultured in 2 mL LB. This subculture was brought in 100 mL 

LB + 20 mM MgSO4, and grown until OD590 ≈ 0.5. After centrifugation, the pellet was resuspended in 

20 mL ice cold TFB1 (30 mM KOAc, 100 mM RbCl, 10 mM CaCl2, 50 mM MnCl2, 15 % glycerol, pH 5.8). 

The cells were incubate on ice for 5’ and centrifuged at 5000 rpm for 5’ at 4°C. The pellet was 

resuspended in 4 mL cold TFB2 (10 mM MOPS, 75 mM CaCl2, 10 mM RbCl, 15 % glycerol, pH 6.5) and  

incubated on ice for 1 hour before collecting in aliquots of 100 µL, stored at -80°C. 

1.2 Preparation of uracil-containing single-stranded DNA (ssDNA) 

10 ng of pCANTAB6-13R4-GFP vector was added to 50 µL of chemo-competent bacteria and 

incubated for 1 hour on ice. A heat shock of 45 seconds was performed at 37°C in a water bath. After 

2’ on ice, bacteria were diluted 10 times with LB and grown in a bacterial shaker for 30‘ at 37°C, 220 

rpm. Bacteria were plated on ampicillin plates + 2 % glucose and incubate overnight, 37°C. Colonies 

were grown in 2 mL of 2xTY + Ampicillin + 2 % glucose. At an OD600 ≈ 0.7 and 20X excess of helper 

phage KM13 was added. After an incubation of 1 hour at 37 °C, bacteria were centrifuged and the 

excess of KM13 was discarded. The pellet was resuspended in 2xTY + 2 % glucose, kanamycin, 

ampicillin and 0.25 µg/mL uridine and amplification was done overnight at 37 °C, 220 rpm. The day 

after, bacteria were pelleted and supernatants was collected, transferred to a fresh tube + 1/5 

volume 20 % PEG-8000 and 2.5 M NaCl and incubated overnight on a 4 °C turning wheel. After a 

double centrifugation step for 10 ‘ at 10000 rpm, 2 °C, in order to remove all supernatants, the phage 

pellet was resuspended in 2 x 5 mL PBS and incubated for 10 ‘ at 2 °C.  The insoluble matter was 

pelleted by centrifuging for 5‘ at 15000 rpm, 2°C. The supernatants was transferred to a 10 ml falcon 

and the yield was measured by subtracting OD320 from OD270. The single-stranded phage DNA was 

purified according to the QIAprep Spin M13 Protocol (#27704).  

1.3 Annealing the library mutagenic primers to the ssDNA template 

The primer/template molar ratio was set to 6:1. 20 µg dU-ssDNA was mixed with 75 pmol of each 

primer in presence annealing buffer. The annealing reaction is assembled on ice and directly 

transferred to a preheated thermal cycler at 90 °C for 2 ‘ for subsequent 10 seconds on ice to induce a 

cooling of the primer–template annealing. This allows the mixture to cool fast towards 45 °C, after 20’ 

the temperature was dropped towards 20 °C for 10’ followed by a hold on ice, ready for subsequent 

strand synthesis. 
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1.4 Synthesis of covalently closed circular scFv library: extension/ligation 

The annealed complex of ssDNA and mutagenic primers was further completed by ligation for 4 hours 

at 20 °C in presence of dNTPs, T4 Ligase (Fermentas EL0011), T7 DNA polymerase (NEB M0274S) and 

ligase buffer. The purification was done by the NucleoSpin Plasmid Kit (Macherey-Nagel), according to 

the manufacturer instructions (except 1x AW wash and 2x A4 wash). The synthesis was evaluated on 

1% agarose gel, alongside the ssDNA template. A successful reaction results in the complete 

conversion of single-stranded template to double-stranded DNA. 

1.5 Transformation of bacteria with scFv library by electroporation 

TG1 electro-competent cells (Lucigen) were thawed on ice for 15 ‘. The recovery medium  (Lucigen) 

was thawed at RT. Electroporation cuvettes (0.2 cm gap), 1.5 mL tubes and the cuvette arm were 

chilled on ice. Bacteria were mixed carefully by tapping the tube and the scFv library dsDNA (10µg) 

was added. The mixture was briefly stirred and electroporated using the following conditions: 2500V, 

25µF, 200Ω. The bacteria were immediately transferred to 11 mL recovery medium and incubated for 

1 hour at 37°C. The diversity of the transformed bacteria was annotated by spreading dilutions on 

agar plates + ampicillin + 2% glucose, overnight at 37°C.  

1.6 Purification of scFv library (MAXI prep) 

The 11 mL culture of transformed bacteria was amplified in 500 mL 2xTY + 2 % glucose + ampicillin, 

overnight at 37 °C. The NucleoBond® Xtra for DNA purification kit (Macherey-Nagel) was used for 

prepping the plasmid DNA.  

 

2. Cell cultures 
 

2.1 Rat mast cell line RBL-2H3 

RBL-2H3 cells (ATCC, Manassas, VA) were cultured in Dulbecco’s modified Eagle’s medium (DMEM) 

containing Glutamax ITM supplemented with 15% fetal calf serum (FCS) and antibiotics, at 37 °C in a 

humid incubator with 5 % CO2. Adherent cells are passed three times per week. They are detached 

with 5‘ of trypsin at 37 °C, which is subsequently inactivated by the addition of two volumes of culture 

medium. 

2.2 293T (or HEK-T) 

These cells were maintained in culture in DMEM medium supplemented with 10% FCS and 

antibiotics, at 37 °C in a humid incubator with 5% CO2. The hybridoma producing mouse monoclonal 

antibodies were maintained in culture in presence of DMEM supplemented with 10 % FCS, and 
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antibiotics at 37 °C in a wet incubator with 5% CO2. The culture supernatants containing the 

antibodies were filtered, and stored at -20 °C. The concentration of antibody was determined by 

ELISA. 

2.3 Colorectal cancer cell lines: HCT116, CaCo2 and DLD-1 

Cell lines were cultured at 37 °C in a 5% CO2 humidified atmosphere in Dulbecco’s modified Eagle’s 

medium (DMEM) containing Glutamax ITM, 10% (v/v) heat-inactivated fetal calf serum (FCS) and an 

antibiotic/antimycotic solution (Life Technologies).  

 

3.  Production and purification of antibody fragments  
 

3.1 Production of antibody fragments from cytoplasmic extracts of bacteria 

The antibody fragments were cloned into the pET23NN vector (modified from Novagen, allowing 

expression of a Myc-tag and a His-tag at the C-terminus of the scFv) between the NcoI and NotI sites. 

3.2 Production of antibody fragments from bacterial periplasmic extracts 

The antibody fragments were inserted into the vector pHEN2 at NcoI and NotI sites and HB2151 

bacteria were transformed. After 16 hours of pre-culture at 16 °C in 2xTY containing 100 μg/mL 

ampicillin and 1 % glucose, the growth of bacteria was relaunched at 37 °C until an OD 600nm of 0.8 

was reached. The induction was initiated by the addition of IPTG at a final concentration of 1 mM for 

3 -4 h at 30 °C. Bacteria were then centrifuged at 3500 rpm for 20 ‘ and the pellets were lysed on ice 

for 15 ‘ in lysis buffer: 30 mM Tris pH 8, 20% sucrose, 1 mM EDTA, 1 mM PMSF. After centrifugation, 5 

mM MgCl2 and MgSO4 were added to the periplasmic supernatants. The extracts were then stored at 

-20 °C. 

3.3 Purification on Nickel resin 

Antibody fragments were purified on nickel NTA resin manufactured by Qiagen. We followed the 

procedure of the Ni-NTA spin kit.  

3.4 Purification on magnetic beads of nickel 

For each immuno-precipitation scFvs were purified from bacterial extracts of 

cytoplasmic corresponding to 50 ml of culture with 20 μL of magnetic beads of nickel 

(Ademtech, Pessac, France), according to the specifications of the kit. 
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3.5 Production and immuno-precipitation of cell extracts 

The cell layer was washed twice in warm RPMI. The activated cells were stimulated with 50- 

100 ng/mL of DNP-KLH in RPMI, 3-10‘ at 37 °C in the dark. 

After washing with cold PBS containing phosphatase inhibitors (100 mM NaF, 5 mM orthovanadate), 

the cells were lysed for 15 ‘ on ice with lysis buffer containing PBS supplemented with: 0.5 % sodium 

deoxycholate, 1 % NP-40, 0.1 % SDS. After scratching the cells of the flasks, the cell lysates were 

clarified by centrifugation for 15‘ at 13,000 rpm at 4 °C. An aliquot of the supernatant containing the 

protein extracts was measured by means of a BC Assay kit (Uptima), the remaining lysates were 

supplemented with loading buffer (2 % SDS, 10 % glycerol, 2.5% β-mercaptoethanol, 0.01% 

bromophenol blue, 30 mM Tris pH6.8). 

For immuno-precipitations, 3 mg protein lysates previously purified from cytoplasmic extracts of 

bacteria, containing the scFv, were extracted on magnetic beads of nickel; 2 hours at 4 °C. Before 

elution, 3 washes of 10‘ were performed with lysis buffer supplemented with 10 mM imidazole. 

Elution was performed by adding 500 mM imidazole, the eluate was then complemented with loading 

buffer and loaded on a gel for electrophoresis by SDS- PAGE. 

 

4. HUSCIv expression in eukaryotic cells 
 

4.1 Chemicals and enzymes 

Chemicals were purchased from Sigma-Aldrich. Restriction enzymes and cloned Taq polymerase were 

from Fermentas. Phusion DNA polymerase was purchased from Finnzymes. Plasmid DNA, PCR and 

agarose-separated DNA were purified using Macherey2Nagel kits. 

4.2 Plasmids 

Plasmid pCMV/myc/cyto, obtained from Invitrogen (#V820-20), allows the expression of scFv genes 

from the strong CMV promoter in the cytoplasm of the cell. Plasmid pMSCVhygSN is derived from 

pMSCVhyg plasmid (Clontech) and is used for retroviral expression of the scFv as an N-terminal fusion 

with a c-myc and a His6 tag. First, a 207 bp PCR fragment was amplified from pAB1 plasmid 

(Martineau et al., 1998a) using primers pelBbamHI2 (CCGCTGGATccTTATTACTC) and M13uni 

(AGGGTTTTCCCAGTCACGACGTT). 

4.3 Retrovirus production 

Stable cell lines expressing the scFv library were obtained by retroviral gene transduction using scFv 

genes cloned in pMSCVhygSN-EGFP plasmid. Retroviral particles were produced in 293T by transient 
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co-transfection of gag/pol, env-VSV-G and the indicated viral pMSCV constructs. 2.106 cells were 

seeded on a 15 cm Petri dish the day before transfection. The pMSCV-derived vector (6 µg), the 

packaging plasmid (2 µg), the amphotropic envelope plasmid (2 µg) and 1 ml of Jet Prime transfection 

buffer (Polyplus, Illkirch, France) and 20 µL of jetPRIME® (Polyplus, Illkirch, France) transfection 

reagent were mixed and left at room temperature for 10 min. Then the mixture was added drop-wise 

to the cell culture medium. After 4 h, the medium was replaced with 20 mL of fresh medium. The 

supernatant containing the virus was collected 72 h later. 

4.4 Retroviral transfection 

106 HeLa and HCT116 cells were transduced in 15 cm Petri dishes with 6 mL of virus containing 

supernatant in the presence of 8 mg/mL polybrene (Sigma-Aldrich) for 24 hours. Successfully 

transfected cells were selected with 250 µg/mL of Hygromycin. 

4.5 Flow cytometry analysis and cell sorting 

Single-cell suspension of cell lines expressing scFv-GFP fusions were analyzed by collecting at least 10 

000 events/sample using an EPICS XLw cytometer (Beckman Coulter). Cells stably transduced with the 

retroviral scFv-GFP library were sorted for GFP expression with a FACS Aria cell sorter (Beckton 

Dickinson). One million of cells were resuspended in 1 mL of PBS.  

4.6 Cell extracts, scFv precipitation and western blot analysis 

The pelleted cells were lysed in SDS–PAGE sample buffer. For scFv precipitation, confluent cell 

cultures were lysed in a buffer containing 25 mM Tris-HCl pH 7.5, 150 mM NaCl, 1 mM EDTA, 1% 

(w/v) Nonidet-P40, 1 mM Na3VO4, 100 mM NaF, 1 mM phenylmethylsulphonyl fluoride and a 

protease inhibitor cocktail (Complete EDTA-free, Roche Applied Science). His-tagged proteins were 

captured from 3 mg of clarified lysates with 20 mL of magnetic beads (Ademtech, France). After 

incubation for 1 h at 48 °C under constant rotation, beads were washed twice according to the 

manufacture’s protocol and the proteins were eluted.  

Cells were cultured in Petri 15 cm flasks. For the recovery of the whole-cell protein content, 

transfected cells were harvested by trypsinization and washed twice in PBSi (PBS supplemented with 

complete protease inhibitor cocktail (Roche). Cells were collected and sonicated (6 x 5 seconds with 

20 % amplitude). After centrifugation at 16000 g for 30‘ at 4 °C, the soluble fractions were collected 

and re-centrifuged. The pellet was resuspended in PBSi and sonicated (3 x 5 seconds). The soluble 

fraction was quantified with the UPTIMA assay and used for nickel-precipitation as follows; 20 µL 

Ademtech nickel beads were washed with binding buffer and 1.4 mg soluble extract was added and 

incubated on a turning wheel at 4 °C. After washing, the samples were stored at -20 °C in laemmli 

buffer (1x). Cell extracts and nickel-precipitates were analyzed by reducing SDS–PAGE (10% w/v 

polyacrylamide). Proteins were revealed by western blotting using a rabbit polyclonal serum against 

GFP (Santa Cruz, sc-8334), followed by a horseradish peroxidase-conjugated anti-rabbit secondary 
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antibody (1:15 000; Sigma-Aldrich) in PBS, 0.1 % Tween, 5 % milk. The signal was revealed using 

enhanced chemiluminescence and detected with a camera (GBOX Chemi, Syngene, Cambridge, UK). 

4.7 Fluorescence microscopy 

Cells were seeded on 12 mm glass coverslips in six-well plates. After 2 days, cells were fixed in 4 % 

PFA 10 min at RT. DNA was visualized using cell-permeant Hoechst 33342 dye at 5 mg/ml. The slides 

were washed with PBS, mounted in Mowiol and GFP-tagged scFv residing in cells were visualized with 

a fluorescence microscope (Zeiss) about 4 hours after fixation. To visualize scFv-GFP expression in live 

cells, coverslips were washed in PBS, laid on a drop of PBS on a glass slide and rapidly observed to 

minimize cell death. 

 

5. Phenotypic targeting of mast cells and their role in allergy 
 

5.1 Retrieving scFv sequences 

Sequences were amplified out of mast cell chromosomal DNA (selective Round 7) with pMSCV.for/rev 

using Phusion DNA polymerase (GC buffer, 30 cycles). The sample was purified and diluted before 

applying the second PCR (Phusion GC, 35 cycles) with specific designed oligos (representing the 10 

selected scFv sequence families, R_1 – R_10) and EGFPN1.rev. The DNA band of ~500 bp was 

sequenced with EGFPN1.rev by Eurofins MWG Operon and verified on both their variable domains. 

5.2 Recloning in retroviral vector pMSCV-SN-EGFP 

The vector/template pAB1-13R4 was amplified with M13rev-49.for and FR3.rev (Phusion, 35 cycles) in 

order to create a 454 bp fragment, which was PCR-assembled (M13rev-49, EGFPN1) to our sequences 

(5.4) in order to construct complete and functional scFvs. Those fragments are cloned into pMSCV-

EGFP by digestion with SfiI and NotI. 

5.3 Retrovirus production and transfection 

Stable cell lines expressing the scFvs were obtained by retroviral gene transduction using scFv genes 

cloned in pMSCVhygSN-EGFP plasmid (5.5). Retroviral particles were produced in 293T by transient 

co-transfection of gag/pol, env-VSV-G and the indicated viral pMSCV constructs. 1.106 cells were 

seeded on a 10 cm Petri dish the day before transfection. The pMSCV-derived vector (3 µg), the 

packaging plasmid (1 µg), the amphotropic envelope plasmid (1 µg) and 500 µL of Jet Prime 

transfection buffer (Polyplus, Illkirch, France) and 10 µL of jetPRIME® (Polyplus, Illkirch, France) 

transfection reagent were mixed and left at room temperature for 10 min. Then the mixture was 

added drop-wise to the cell culture medium. After 5 h, the medium was replaced with 11 mL of fresh 

medium. The supernatant containing the virus was collected 72 h later. 
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106 RBL cells were transduced in 10 cm Petri dishes with 2 mL of virus containing supernatant in the 

presence of 8 mg/mL polybrene (Sigma-Aldrich) for 24 hours. Successfully transfected cells were 

selected with 1 mg/mL of Hygromycin. 

5.4 Analysis of stable transfectants 

Measuring β-hexosaminidase release 

The day before the experiment, 105 cells per well were seeded in 96-well plates. 

24h later, the adherent cells were activated by overnight addition of anti-DNP IgE followed by 50 to 

200 ng/ml of DNP-KLH for 45 ‘ at 37 °C, as described above. After collecting the supernatant of each 

well (S1), the cells were lysed in lysis buffer (Tyrode buffer, 0.5% Triton, 50 μg/mL aprotinin, 50 μg/mL 

leupeptin, 50 μg/mL pepstatin, 2 mM PMSF) for 20 ‘ on ice. The plate was then centrifuged for 5‘ at 

2000 rpm in order to collect the supernatants and the corresponding cell lysates (S2). 

The quantification of β-hexosaminidase is based on each 20 μL of S1 and S2 supernatants, by the 

addition of 50 μL of β-hexosaminidase substrate (p-dinitrophenyl-Nacetyl-βD-glucosaminidase, 

SIGMA) in a final concentration of 1.3 mg/mL for 1h30 at 37 °C. The substrate of β-hexosaminidase is 

freshly prepared or stored at -20 °C, in a 0.1 M citric acid solution, pH 4.5. The reaction was 

terminated by addition of 75 μL of 0.4 M glycine, pH 10.7, and the intensity was evaluated by 

measuring the optical density at 405 nm. The percentage of β-hexosaminidase release was calculated 

as the ratio S1/ (S1 + S2) x100. 

Measuring TNF-α release 

The day before the experiment, 8.105 cells per well were seeded in a 12-well culture plate. The next 

day, after washing in RPMI and Tyrode, cells were activated as described above, with 200 μL per well 

of 50 ng/mL DNP-KLH for 2h at 37 °C. Supernatants are harvested and used for the quantification of 

TNF release, by means of an ELISA (BD) kit. 

The cell layer was washed with cold PBS and lysed for 15 ‘ at 4 °C in PBS supplemented with 0.1% 

triton, and protease inhibitors (Complete Mini EDTA free tablet, Roche). In order to normalize the 

results, the amount of cellular protein was assayed using a BC Assay kit (Uptima). 

High-throughput sequencing 

Genomic DNA from 106 cells (for the naïve library), or 5.106 cells (for the selective rounds that 

followed) was extracted and amplified by PCR with primers adjacent to the VH and VL domains of the 

scFv. The DNA was prepared according to the procedures for sequencing. The analysis was performed 

at the MGX sequencing platform in Montpellier. The data obtained were analyzed using the SAM 

software. 
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6.  Phenotypic targeting of KRAS mutated colorectal cancer cells 
 

6.1 Retrovirus production 

Stable cell lines expressing the scFv library were obtained by retroviral gene transduction using scFv 

genes cloned in pMSCVhygSN-EGFP plasmid. Retroviral particles were produced in 293T by transient 

co-transfection of gag/pol, env-VSV-G and the indicated viral pMSCV constructs. 2.106 cells were 

seeded on a 15 cm Petri dish the day before transfection. The pMSCV-derived vector (6 µg), the 

packaging plasmid (2 µg), the amphotropic envelope plasmid (2 µg) and 1 ml of Jet Prime transfection 

buffer (Polyplus, Illkirch, France) and 20 µL of jetPRIME® (Polyplus, Illkirch, France) transfection 

reagent were mixed and left at room temperature for 10 min. Then the mixture was added drop-wise 

to the cell culture medium. After 4 h, the medium was replaced with 20 mL of fresh medium. The 

supernatant containing the virus was collected 72 h later. 

6.2 Viral titers 

Viral titers were measured as follows: Cells of interest were cultured in 6-well plates at 0.5x106 

cells/well. The freshly collected viral supernatants was diluted 10 to 106 times and added to the 

respective wells. After 10 days, clones were counted at the highest dilution possible. The clone 

number times the dilution factor represents the concentration of colony forming units (cfu). The 

same experiment was done with frozen supernatants in order to annotate a possible drop in virility. 

6.3 Retro-transfection 

Six million HCT116 cells were transduced in 15 cm Petri dishes with virus containing supernatant 

according to a ratio of 1:1, in the presence of 8 mg/mL polybrene (Sigma-Aldrich) for 24 h. 

Successfully transfected cells were selected with 250 mg/mL of Hygromycin. 

6.4 FACS analysis of HCT116 stained with CMRA 

Pass library-infected cells in (2x) 10 flasks (2.106 cells/Petri 15 cm). In the evening, add respectively 50 

µg/mL Cetuximab or Rituximab. Incubate for 3 days and pass the cells with 3.106 cells/flask. In the 

morning, add 2.5 µM CMRA (in RPMI) to the cells, incubate for 30‘ and refresh medium. Incubate for 

3 days. Wash petri flasks (10x 30.106 cells) with PBS and trypsinize. Pool the 10 flasks, take 50 % for 

FACS analysis and 50 % for DNA extraction. Resuspend in sterile tubes with 5 mL medium before cell 

sorting with FACS “Aria” (IRB, RIO imaging platform, Montpellier, ± 108 cells). Use controls (CMRA-, 

CMRA+, wild type) to set-up the sorting parameters. For the first round, both Cetuximab and 

Rituximab treated cell pools were sorted. After recloning of the CMRA+ population, only Cetuximab-

treated cells were sorted. All FACS files were analyzed and modified with FlowJo software. 
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6.5 Recloning of CMRA+ population 

Genomic DNA from Cetuximab-treated CMRA+ pool was extracted with QIAamp DNA Mini Kit. The 

scFv fragment was amplified out of 200 ng gDNA by PCR with primers pMSCV.for and pMSCV.rev 

using DreamTaq (Fermentas). The DNA band was purified with the DNA purification kit of Macherey-

Nagel and quantified on agarose gel. The 1.7 kB scFv library fragments were cut with SfiI and BglII in 

order to ligate it in pMSCVhygSB. The ligation was introduced in electro-competent bacteria, scFv 

DNA was amplified and purified as described previously. 

6.6 Preparation of barcoded DNA fragments for Illumina sequencing 

Genomic DNA of 100 million pooled library-transfected HCT116 cells treated for six days with 

respectively Cetuximab or Rituximab was extracted with Nucleobond CB500 (Macherey-Nagel). The 

scFv sequences were amplified as described above and a first digestion with BstNI was performed, 

which removes a contaminating sequence (parasite band). After that, a second PCR was performed in 

order to isolate the barcoded region. For this, primers egfp_BamHI.for and pMSCV.rev were used. 

This PCR introduced a BamHI site at the 5’ end. 

The DNA band (304 bp) was purified with the ‘PCR and Gel Purification’ kit of Macherey-Nagel. Next, 

the DNA fragment was digested with BamHI (FastDigest, Fermentas), creating sticky ends. The 8 bp 

fragment was eliminated with another purification step (Macherey-Nagel kit) and the 296 bp 

fragment was ligated to a dimer of 588 bp, containing two barcodes. After purification on gel the 

dimer was cut with MlyI (FastDigest, Fermentas), which creates a final DNA fragment of 356 bp 

containing two barcodes and with 5’ and 3’ ends ready for Illumina adaptor ligation.  
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Annex 2: Recloned intrabody family sequences  

 

Table 1: Sequences of the most abundant retroviral clones from the 10 selected families. R_7 has a stop codon in the VL CDR3 

loop and is thus truncated and expressed without the C-terminal eGFP tag. R_8 has the same VH than plasmid clone 5H4 and 

has been cloned as a single VH domain in retroviral vector. 

 

 

 

Name Selection Family VH CDR3 VL CDR3 Freq 

R_1 Recloned 1 MDCVIGSYGYGIFDT QSFVRNSTS 9.7E-4 

R_2 Recloned 2 GKVLKKAEYSDWLDN QQCSKFSLT 2.4E-3 

R_3 Recloned 3 RSASCEH EQYDTAPPYT 6.2E-3 

R_4 Recloned 4 GEVGFDY QQYFSQPFT 1.4E-3 

R_5 Recloned 5 TLECSRCGDYGFDL HQSNTYPFT 1.6E-3 

R_6 Recloned 6 DGLYARMYYNGSYY QQYFSQPFT 2.9E-2 

R_7 Recloned 7 ERRDDDGMYAYSYQFDV Q* 1.9E-2 

R_8 Recloned 8 DGGLREGFDC * 1.4E-3 

R_9 Recloned 9 NPASKCVYLEHDFEK QTCNCLTLV 1.3E-3 

R_10 Recloned 10 PERSAYDY QQYSSHPLT 2.6E-1 



124 
 

Annex 3: HUSCIv sequences 

 

Table 2: Sequencing of randomly picked HUSCIv clones, before cloning in retroviral vector 

 

H1 H2 H3 L1 L2 L3 

1 13R4 TCCATTAGTGGTAGTAGTAGATACATAGAT 13R4 13R4 13R4 13R4 

2 13R4 13R4 13R4 13R4 13R4 13R4 

3 AGTGAT AACATTAGTGGTAGTAGTAGATATATATAT AGTAACTATAGT 13R4 GATGACAGTAAC TATACAAACGGC 

4 TATAGT AGTATTTATGGTAGTAGTAGATATATAAGT AGTAGTAACGGC GGCTATTAT AGTGACAGTTAT TATACAAACAAC 

5 TATTAT AACATTAGTGGTAGTAGTAGATATATAAGT AGTAACAGTAGTTTTGGTTAT AGTTATAGT AGTGACAGTAGT TATACAAGTAAC 

6 13R4 13R4 13R4 TATAACGAT TATGACAGTTAT TATACATATTAT 

7 TATAAC TATATTAGTGGTAGTAGTAGAAACATATAT AGTAGTGATTATGGTGGC AGTGATTAT GATGACAGTAAC GGCACAAACTAT 

8 13R4 13R4 13R4 13R4 13R4 13R4 

9 TATTAT AACATTGATGGTAGTAGTAGATATATAAAC AGTAACTATTATGGTGGC 13R4 13R4 TATACAACTAAG 

10 13R4 13R4 13R4 13R4 13R4 13R4 

11 13R4 13R4 13R4 13R4 13R4 13R4 

12 AGTAGT AGTATTAGTGGTAGTAGTAGATATATATAT AGTTATTATTATTATTATGGCGGC AATTATGAT GATGACAGTTAT TATACAAACTAT 

13 TATAAC AACATTTATGGTAGTAGTAGATATATAAGT AGTAGTTATAGTTTTGGTAAC TATGATTAT GAGGACAGTTAT 13R4 

14 GGCGAT AGTATTTATGGTAGTAGTAGAAACATATAT AGTTATTATAACGGTGGC TATTATTAT AGTGACAGTTAT AGTACAAGTAAC 

15 13R4 13R4 TATAGTGGC TATAGTAGT AACGACAGTAAC TATACAAACTAT 

16 13R4 13R4 13R4 13R4 13R4 13R4 

17 13R4 13R4 AGTAATAATTATTTTGGTGGC 13R4 13R4 TATACAAACAAC 

18 13R4 13R4 13R4 13R4 13R4 13R4 

19 AACTAT AACATTTATGGTAGTAGTAGATATATAAAC AGTAACAGTGGCGGTTAT AACTATTAT TATGACAGTAAC TATACAGATGAT 

20 TATGAT TATATTGATGGTAGTAGTAGATATATATAT AGTTATTATTATGGTGGC TATAACAGT TATGACAGTTAT AGTACATATGGC 

21 13R4 13R4 13R4 13R4 13R4 13R4 

22 TATTAT TCCATTAGTGGTAGTAGTAGAAGTATAAGT AGTTATAGTTATGAT AGTAACTAT GATGACAGTGAT CACACATATAGT 

23 AGTAAC TATATTTATGGTAGTAGTAGATATATAAAC AGTAGTAAC TATTATAAC GATGACAGTTAT GATACAAGTAAC 

24 13R4 13R4 AGTTATAGTAAC 13R4 13R4 13R4 
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25 13R4 13R4 13R4 13R4 13R4 13R4 

26 13R4 13R4 13R4 GATTATTAT 13R4 13R4 

27 13R4 13R4 GGCAACAAC GATTATTAT TATGACAGTAGT TATACATATTAT 

28 GATGGC AACATTAGTGGTAGTAGTAGAGATATATAT TATTATGGC AGTTATAGT TATGACAGTTAT TATACAAGTTAT 

29 13R4 13R4 13R4 13R4 AACGACAGTAGT 13R4 

30 TATAAC TATATTTATGGTAGTAGTAGATATATAAGT AGTAACGGCAGTGATAGTAACGGTAAC AGTAACTAT GATGACAGTTAT TATACAGATGAT 

31 13R4 TATATTGATGGTAGTAGTAGAAGTATAAAC 13R4 13R4 13R4 TATACAAACGGC 

32 13R4 13R4 13R4 13R4 13R4 13R4 

33 13R4 13R4 AGTAGTGATGGCGGTGGC 13R4 13R4 TATACATATTAT 

34 13R4 13R4 13R4 TATGGCTAT GAGGACAGTTAT 13R4 

35 AGTAAC AGTATTAACGGTAGTAGTAGAAGTATATAT AGTTATTATTATGGTAAC TATGATTAT GATGACAGTTAT AACACAAACTAT 

36 AACGGC TATATTTATGGTAGTAGTAGATATATATAT AGTAGTGGCAGT TATTATTAT TATGACAGTAAC TATACAAGTTAT 

37 13R4 13R4 13R4 13R4 13R4 13R4 

38 13R4 13R4 13R4 13R4 13R4 13R4 

39 13R4 13R4 AGTGATGATAAC 13R4 13R4 13R4 

40 13R4 13R4 13R4 13R4 13R4 13R4 

41 GATGGC AGTATTTATGGTAGTAGTAGATATATAAAC 13R4 TATAGTTAT TATGACAGTAGT AGTACATATAAC 

42 13R4 13R4 AGTGGCGGCTAT 13R4 13R4 13R4 

       
# total 42 42 42 42 42 42 

# 13R4 25 23 19 22 21 20 

%13R4 60% 55% 45% 52% 50% 48% 
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Abstract

The high specificity of antibodies for their antigen allows a fine discrimination of target conformations and post-
translational modifications, making antibodies the first choice tool to interrogate the proteome. We describe here an
approach based on a large-scale intracellular expression and selection of antibody fragments in eukaryotic cells, so-called
intrabodies, and the subsequent identification of their natural target within living cell. Starting from a phenotypic trait, this
integrated system allows the identification of new therapeutic targets together with their companion inhibitory intrabody.
We applied this system in a model of allergy and inflammation. We first cloned a large and highly diverse intrabody library
both in a plasmid and a retroviral eukaryotic expression vector. After transfection in the RBL-2H3 rat basophilic leukemia cell
line, we performed seven rounds of selection to isolate cells displaying a defect in FceRI-induced degranulation. We used
high throughput sequencing to identify intrabody sequences enriched during the course of selection. Only one intrabody
was common to both plasmid and retroviral selections, and was used to capture and identify its target from cell extracts.
Mass spectrometry analysis identified protein RGD1311164 (C12orf4), with no previously described function. Our data
demonstrate that RGD1311164 is a cytoplasmic protein implicated in the early signaling events following FceRI-induced cell
activation. This work illustrates the strength of the intrabody-based in-cell selection, which allowed the identification of a
new player in mast cell activation together with its specific inhibitor intrabody.
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Introduction

Mast cells and basophils are key effector cells in IgE-associated

immediate hypersensitivity and allergic disorders. Upon FceRI

crosslinking initiated by the binding of antigen-IgE complexes, cell

activation results in downstream events that lead to the secretion of

three classes of mediators: (a) the extracellular release of preformed

mediators stored in cell cytoplasmic granules, by a process called

degranulation; (b) the de novo synthesis of proinflammatory lipid

mediators; and (c) the synthesis and secretion of many growth

factors, cytokines, and chemokines. This IgE-dependent release of

mediators begins within minutes of antigen challenge and leads to

certain acute allergic reactions such as anaphylaxis and acute

attacks of atopic asthma [1].

The majority of drugs currently used to treat allergic disorders

target only a single mediator released by mast cells. Examples

include antihistamine H1 receptor antagonists, leukotriene mod-

ifiers, and steroids that predominantly inhibit mast-cell mediator

production. More recently, protein therapies have permitted

alternative approaches in addition to drug therapies. In this

respect, an important treatment for allergic conditions is the

recombinant humanized IgG monoclonal antibody Omalizumab,

which binds selectively to human IgE and inhibit the production

and release of all mast cell mediators by antagonizing IgE action.

Although this biologic is highly effective, it is difficult and

expensive to manufacture and administer.

An alternative that has gained significant attention in recent

years is to target key enzymes involved in the signal transduction

pathways initiated following FceRI crosslinking. Mast cell activa-
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tion results from the transient perturbation of an active balance

between positive and negative signals that is consequent to

engagement of membrane receptors. Classically, kinases and

phosphatases have been viewed as the effectors of positive and

negative signals, respectively. FceRI mainly trigger positive signals

by recruiting tyrosine kinases and signalosomes into which

signaling molecules assemble [2].

In the past decade, one of the compelling targets for the

treatment of allergic and autoimmune disorders was the Spleen

tyrosine kinase (Syk), a key mediator of immunoreceptor signaling

[3]. Many pharmaceutical companies as well as academic

institutions have been involved in the development of small-

molecule inhibitors of Syk that target the conserved ATP binding

site within the catalytic domain of the kinase. But due to the

similarities of the ATP pocket structures among different kinases,

the ATP-binding site inhibitors of Syk affect multiple tyrosine

kinases and have off-target effects that lead to undesirable side

effects [4]. For these reasons, clinical trials using systemic modes of

administration of Syk inhibitors were abandoned in favor of local

modes of administration. Examples are the compound R112, the

first Syk inhibitor to enter clinical studies developed by Rigel as an

intranasal administration for seasonal allergic rhinitis [5] and

R343, an inhaled formulation for the treatment of allergic asthma

(Pfizer) [6].

In our previous studies, we devised an approach to identify

protein-protein interaction and allosteric inhibitors of Syk instead

of targeting its catalytic site. Our goal was to improve the

selectivity and the safety profiles of Syk inhibitor drug candidates

by selecting drugs targeting the SH2 domains of Syk. To achieve

this, we developed an antibody displacement assay to convert an

intrabody directed against the SH2 domain of Syk into chemical

drugs [7,8]. The isolated molecules recapitulated the intrabody

effects in cell cultures and were able to block the anaphylactic

shock when administrated orally in animal models [7]. This led to

the identification of several scaffolds as potential starting points for

the development of new classes of non-enzymatic inhibitors of Syk

with minimal off-target effects [7,8].

The anti-Syk inhibitory intrabody used in the above studies was

selected from a two-step process: a) in vitro screen of a phage

display library against a recombinant Syk protein; and b)

intracellular expression of the isolated antibody fragments in

mammalian cells to test their inhibitory potential [9]. However, all

targets may not be identified beforehand and it is tempting to

envision a direct selection of intrabodies in cells. The use of an

intrabody library as a target discovery platform has been suggested

almost 20 years ago by Dr. A. Cattaneo and co-workers [10,11]. In

a pioneering experiment, they demonstrated the rescue of an

antiviral neutralizing intrabody diluted within a polyclonal

repertoire. Although this was obtained in a model system with a

limited diversity, this paved the way to a direct selection of a

diverse repertoire of antibody fragments based on a selectable cell

phenotype [12].

We report here the first application of such a strategy for the

identification of new therapeutic targets in the field of allergy and

inflammation. The Intrabody-based Phenotypic Screen (IBPheS)

is based on the intracellular expression of a highly diverse antibody

fragment library in eukaryotic cells and the selection of antibody

fragments associated with the desired phenotype. Because this

method is based on the intrabody-target interaction, it results in

the co-selection of a target with its companion intrabody. This

ensures that the fished targets are accessible to in-cell modulation

(inhibition or activation) and thus may represent a ‘‘druggable’’

class of proteins. In the complex biological system of FceRI-
induced cell activation, the IBPheS approach led to the discovery

of a protein of yet unknown function implicated in mast cell

degranulation.

Materials and Methods

Reagents and Antibodies
Antibodies were obtained from Santa Cruz Biotechnology

(Santa Cruz, CA, USA), with the exception of anti-p44/42 MAP

Kinase antibody and the following phospho-specific antibodies

which were obtained from Cell Signaling Technologies (Danvers,

MA, USA): Phospho Syk (Tyr525/526); Phospho-p44/42 MAPK

(Erk1/2) (Thr202/Tyr204); Phospho-SAPK/JNK (Thr183/

Tyr185); Phospho-p38 MAP Kinase (Thr180/Tyr182); Phospho-

Src Family (Tyr416); Phospho-NFkB (Ser536); Phospho-Gab2

(Tyr452); Phospho-PLCc2 (Tyr1217); Phospho-Akt (Ser473). The

anti-human C12orf4 antibody and all reagents were obtained from

Sigma-Aldrich (St Louis, MO, USA). Antiphosphotyrosine mAb

4G10 was purchased from Upstate Biotechnology (Millipore, MA,

USA). Alexa 488 conjugated anti-mouse IgG and Alexa 594

conjugated anti-rabbit IgG antibodies were purchased from

Jackson ImmunoResearch laboratories (West Grove, PA, USA).

Murine bone marrow derived mast cells
To generate BMMCs, femur bones from C57BL/6 female mice

(4–6 weeks old, Charles River) were isolated and progenitor cells

were flushed out using a sterile protocol and cultured in Opti-

MEM medium supplemented with 10% foetal calf serum (FCS),

4 mM glutamine, 100 units/ml of penicillin, 100 mg/ml of

streptomycin, and 50 mM 2-mercaptoethanol together with

1 ng/ml of recombinant murine IL-3 (Biolegend). All experiments

were performed in compliance with the French guidelines for

experimental animal studies, and protocols were approved by the

Institute of Cancer Research Ethics Committee (agreement

no. B34-172-27). All reasonable efforts were made to ameliorate

suffering, including anesthesia for painful procedures.

Cell culture
Culture media were obtained from Gibco (Life Technologies

Ltd, Paisley, UK). Rat basophilic leukemia cell line RBL-2H3 was

obtained from the ATCC (Manassas, VA, USA) and cultured in

DMEM medium supplemented with 15% FCS and antibiotics.

Line 293T (or HEK-T) cells were maintained in culture in DMEM

medium supplemented with 10% FCS and antibiotics. The

murine hybridoma 2682-1 producing anti-2,4-dinitrophenyl

(DNP) IgE mAb was maintained in culture in DMEM medium

supplemented with 10% FCS and antibiotics, and its culture

supernatants, containing 1 mg/ml of IgE (measured by ELISA),

were filtered and preserved at 220uC.

Intrabody library construction
Expression vector pEF/myc/cyto (Invitrogen, Life Technolo-

gies Ltd, Paisley, UK) was used to express the scFv library in the

cytoplasm of RBL-2H3 cells. In order to clone the scFv library into

this vector, VHpool and VLpool sub-libraries, which are the

source of the diversity of the CDR3 loops in a previously described

library [13], were assembled by PCR, cloned into the NcoI-NotI

linearized vector, and transformed in E. coli. Library diversity was

estimated to 109 by counting the obtained number of clones. An

aliquot corresponding to 40 times the diversity of the library was

used to prepare the recombinant plasmid DNA using the

Nucleobond Xtra Maxi kit (Macherey Nagel) that was subse-

quently used for the transfection of the RBL-2H3 cell line.

For the expression of the scFv library by retroviral infection, the

scFv library was inserted between SfiI and NotI sites in

In-Cell Selection of Intrabodies in Mast Cells
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pMSCVhygSN-EGFP vector as described [14]. The estimated

diversity of the library was 26108. Recloning steps after rounds 3

and 5 during selection were performed by amplification of the

inserted scFv from the chromosome using pMSCV.for

(cgttcgaccccgcctcg) and EGFP-N.back (cgtcgccgtccagctcgaccag)

primers using Phusion polymerase, followed by SfiI-NotI recloning

in the same retroviral vector.

Plasmid transfection of the scFv library
RBL-2H3 cells (56106) were mixed with 50 mg of plasmid and

transferred in a 4 mm electroporation cuvette (BioRad, Hercules,

CA, USA). The electroporation was performed with a Gene Pulser

I (BioRad) at 310 V and 960 mF capacitance. 36108 cells were

electroporated for the first selection round, and 16108 cells for

each subsequent round (cell survival rate of 20%). For stable clone

generation, cells were grown in culture medium supplemented

with 1 mg/ml of geneticin (G418, Gibco).

Retroviral infection of the scFv library
Retroviral particles were produced in 293T cells using

manufacturer instructions using an amphotropic envelop gene

(VSV-G). Culture supernatants containing retroviral particles were

collected, filtered, and used for the infection of 46107 RBL-2H3

for the first selection round, and 76106 cells for the recloning step

after rounds 3 and 5. 48h post-infection, culture medium was

replaced with fresh medium supplemented with 1mg/ml of

hygromycin B (Invitrogen) as selecting agent.

Cell activation, Annexin V staining and cell sorting
Cells were incubated overnight at 37uC with anti-DNP IgE

hybridoma supernatant at a final IgE concentration of 0.5 mg/ml.

Cells were washed once with RPMI, then with Tyrode buffer

(10 mM HEPES pH 7.4, 130 mM NaCl, 5 mM KCl, 1 mM

CaCl2, 1 mM MgCl2, 5.6 mM glucose, and 0.01% BSA). Cells

were activated in Tyrode buffer with 100 ng/ml of DNP-KLH

(keyhole limpet hemocyanin conjugated DNP, Sigma-Aldrich) at

37uC in the dark, for 45 minutes. Cells were subsequently washed

in ice-cold Tyrode buffer.

For the Annexin V-APC (Becton Dickinson Biosciences, San

Jose, CA, USA) staining, 100 ml Annexin V-APC were added to

26106 cells (in 500 ml), placed 30 min on ice in the dark. The cells

were then labeled with 20 mg/ml Propidium Iodide 3 minutes

prior to FACS analysis. Analysis and sorting by flow cytometry

were performed using FACS Aria cell sorter (Becton Dickinson,

Franklin Lakes, NJ, USA). For plasmid library selection, 26108

and 107 cells were sorted at the first round and following rounds

respectively. For retroviral selection, 46107 and 107 cells were

sorted at the first round and following rounds respectively.

High throughput sequencing
The genomic DNA of 106 cells was extracted and the scFv gene

amplified using primers HTSVHFR3.for (nnctgtttattactgtgtgaga)

and HTSVLFR4.back (nncttggtccctccgccgaa) that hybridize to the

3’ end of the FR3 of the VH and the 5’ end of the FR4 of the VL

respectively, and contained a 2-base index (nn in the sequence) for

sequence multiplexing. This resulted in a band of 450 bp bordered

by the VH and VL CDR3 regions with 18–20 bases from the

flanking FR regions and a 2-base index.

Library construction was performed using the ChIPseq sample

preparation kit from Illumina (IP-102–1001, San Diego, CA,

USA). Briefly, 120 ng of the PCR product were repaired using T4

DNA polymerase, Klenow DNA polymerase and T4 PolyNucle-

otide Kinase. An A was added at each 3’ end followed by ligation

of Illumina’s adapters. A size selection was performed on a 2%

agarose gel in the 500 to 900pb range followed by an 18 cycles

PCR amplification. Once purified, the library was validated using

a DNA1000 chip on a BioAnalyzer (Agilent Technologies, Santa

Clara, CA, USA). Library was denatured using NaOH, hybridized

on the flow cell at a concentration of 4 pM and clusterized. A 100-

cycle single read sequencing was performed according to the

manufacturer’s instructions.

Image analyses and base calling were performed using the

HiSeq Control Software (HCS 1.3.8) and RTA component (RTA

1.10.36). Using a perl script, libraries were sorted using the first 2

bases indexes (no mismatch allowed) and the next 18 to 20 bases

(corresponding to the FR regions of the 2 primers) allowing one

mismatch. Count of various random parts is performed using a

perl script on the first 25 bases.

Sequence analysis
All analyses were done using the R statistical environment

(http://www.R-project.org). Only the 9493 VH DNA sequences

corresponding to a full CDR3 loop and present in both the naive

and the final round 7 libraries were used. A two-class unpaired

SAM was implemented, using the R package ‘‘samr’’ (http://

CRAN.R-project.org/package = samr) [15]. In order to identify

VH sequences enriched during the selection, we compared naive

and round 3 (before and after the recloning step) to rounds 5, 7

and 8 libraries. If False Discovery Rate was ,0.05, VH were

considered as significantly enriched. The identified 2568 sequenc-

es were filtered by keeping those that did not contain a stop codon

and whose frequency regularly increased during the selection

(Naive , Round 3, Round 5, Round 7), resulting in 529 VH.

Finally we selected 108 VH that were enriched at least 100-fold

during the selection process (max(Round 7,Round 8) .1006

naive).

Sequences were translated and aligned using IMGT numbering

[16]. Distances between sequences were calculated by giving a

value of 1 if loop lengths were different and a value of (% of

dissimilarity) when the two loops were of the same length

(Normalized Hamming distance). Hierarchical unsupervised clus-

tering was performed using the hclust method of R using the

‘‘complete’’ agglomeration method.

Measurement of b-hexosaminidase release
RBL-2H3 cells were seeded at 105 cells per well in 96-well

culture plates. After 24 hours, adherent cells were incubated

overnight with anti-DNP IgE (0.5 mg/ml), and activated in Tyrode

buffer containing 50 ng/ml of DNP-KLH for 45 minutes at 37uC,

as described [17]. The release of b-hexosaminidase in the

supernatant (S1) and the unreleased fraction (S2) were measured

using a chromogenic substrate (p-dinitrophenyl-N-acetyl-b-D-

glucosaminidase, SIGMA). The percentage of b-hexosaminidase

release was calculated according to the ratio: S1/(S1+S2) 6100,

and expressed as a percentage of the b-hexosaminidase release of

an RBL-2H3 cell line expressing an irrelevant antibody.

Measurement of TNFa secretion
RBL-2H3 cells were activated for 2 hours at 37uC as described

above, and the secretion of TNFa in culture supernatants was

evaluated using the Rat TNF ELISA Set (BD Biosciences, San

Diego, CA, USA).
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Flow cytometric analysis of Calcium mobilization and
membrane FceRI expression
For the determination of the intracellular free calcium

concentration [17], 106 cells were stimulated with anti-DNP IgE

for 2–3 hours at 37uC with gentle stirring. Cells were preloaded

with 5 mM Fluo-3AM (Molecular Probes, Life Technologies Ltd)

in the presence of 0.2% Pluronic F-127 (Molecular Probes) for

30 minutes. Cells were activated by the addition of DNP-KLH at

a final concentration of 200 ng/ml and the intracellular free

calcium concentration was monitored with a FC500 flow

cytometer (Beckman Coulter, Inc. Brea, CA, USA).

For the evaluation of surface expression of FceRI, cells were

incubated for 2 h at 37uC with anti-DNP IgE. The membrane-

bound IgE was detected using biotinylated anti-mouse Ig

(BioLegend, San Diego, CA, USA) followed by Fitc-conjugated

streptavidin (GE Healthcare, Buckinghamshire, UK).

Production and purification of antibody fragments
Antibody fragments were expressed in E. coli after cloning in

pET23NN vector as described [13]. The resulting antibody

fragment is tagged with a c-Myc and a 6xHis tag at its C-terminus.

For pull-down experiments, antibody fragments were purified

from bacterial cytoplasmic extracts using magnetic nickel beads

(Ademtech, Pessac, France).

The production of bivalent antibodies used in immunofluores-

cence experiments was achieved by cloning antibody fragments

between BglII and EcoRI site of vector ps1119 [18], allowing the

production of N-terminal fusions to a mouse Fc of the IgG1

isotype. 293T cells were transiently transfected using JetPEI

(Polyplus, NY, USA) and grown for 6 days. Culture supernatants

enriched in antibody-Fc fusion were harvested, filtered on 0.2 mm

and stored at 280uC.

Target pull-down
Cells were incubated overnight at 37uC with anti-DNP IgE and

they were activated with 50 ng/ml of DNP-KLH for 3–

10 minutes at 37uC as described above. After washing with cold

PBS containing phosphatase inhibitors (100 mM sodium fluoride,

5 mM sodium orthovanadate), cells were lysed for 15 minutes on

ice with lysis buffer (PBS supplemented with 0.5% sodium

deoxycholate, 1% NP-40, 0.1% SDS). Cell lysates were clarified

by centrifugation for 15 minutes at 4uC at 16,000 g. The total

protein content of the soluble fraction was quantified using the

BCA assay kit (Interchim, Montluçon, France).

For pull-down experiments, 3 mg of protein lysates were

incubated with 20 ml of magnetic nickel beads loaded with 20 mg

of purified antibody fragment (see above) for 2 h at 4uC. Beads

were washed 3 times in lysis buffer supplemented with 10 mM

imidazole. Elution was performed by the addition of 500 mM

imidazole to the beads. Eluates were analyzed by SDS-PAGE.

SDS-PAGE and MS/MS analysis
Captured proteins were separated by SDS-PAGE (10%) and

detected with Coomassie-brilliant blue staining. Bands of interest

were cut off from the gel. Gel pieces were subjected to in-gel

digestion with trypsin (Promega, Fitchburg, WI, USA) as described

[19]. Desalted peptides were resolved on an Ultimate 3000 nano-

LC System (Dionex, Thermo Fischer Scientific) equipped with a

PepMap 100 C18 column (3 mm particles, 10 nm pore size,

75 mm id 615 cm). For MALDI MS/MS analysis, column

effluent was mixed in a 1/3 ratio with MALDI matrix (2 mg/ml a-

cyano-4-hydroxycinnamic acid (LaserBio Labs, CA, USA) in 0.1%

TFA, 70% acetonitrile) and spotted on an Opti-TOF 384-well

Insert 123681mm plate. MALDI plates were analyzed using the

4800 Plus MALDI TOF/TOF Proteomics Analyzer mass

spectrometer (AB Sciex, MA, USA) in positive reflector ion mode.

Each MS spectrum is the result of 1500 averaged laser shots. In

MS/MS mode, fragmentation of the 12 most intense selected

precursors was performed at collision energy of 2 kV, each MS/

MS spectrum is the result of 3000 laser shots. Protein identifica-

tions were performed in Uniprot/Swiss-Prot2012_01 database by

ProteinPilot Software V 2.0.1 (AB Sciex) using the Paragon

algorithm. This software calculates a confidence percentage that

reflects the probability that the hit is a false positive, meaning that

at 99% confidence level (unused score.2), there is a false positive

identification chance of about 1%. After database searching, only

proteins identified with an unused score $2 and peptides

identified with a confidence score $95 were retained.

Western blot
Following SDS-PAGE electrophoresis, proteins were transferred

on a 0.2 mm nitrocellulose membrane. Before each hybridization,

the membrane was blocked in 5% BSA in TBS-T buffer (10 mM

Tris pH 7.4, 150 mM NaCl, and 0.1% Tween) for 1h at room

temperature. Proteins were revealed using primary and secondary

antibodies coupled to peroxidase according to manufacturer’s

recommendation. For the signal detection, the ECL-Plus chemi-

luminescent substrate (PerkinElmer, Waltham, MA, USA) and a

camera (G-Box, Syngene, Cambridge, UK) were used. Signal

intensities were quantified using the manufacturer-supplied

software.

Immunofluorescence
The cells were seeded on glass slides in Labtek chambers (Nunc,

Thermo Fischer Scientific). All stages of these experiments were

performed at room temperature. After two washes in PBS, cells

were fixed with 3.7% paraformaldehyde (Sigma Aldrich) for

10 minutes, and then permeabilized with PBS containing 0.1%

triton X-100 and 1.5% FCS for 10 minutes. Cells were incubated

with the primary and the fluorescent antibodies for 1 to 2 h at

room temperature. 5H4-VH-Fc fusion protein and a commercial

rabbit anti-C12orf4 antibody were detected by Alexa 488

conjugated anti-mouse IgG and Alexa 594 conjugated anti-rabbit

IgG antibodies, respectively. After washing, the slides were

mounted in Mowiol, then visualized and captured using a Zeiss

LSM 510 Meta Confocal Microscope (Oberkochen, Germany).

shRNA
The two shRNA (sh1: cattctaatctctcggaaa; sh2: agaattgattggc-

gaaaga) were cloned into vector pSIREN (Clontech, Mountain

View, CA, USA). Retroviral supernatants were produced as

described above. Infected RBL-2H3 cells were selected by

addition of 2.5 mg/ml of puromycin (HyClone, Fischer Thermo

Scientific) to the culture medium two days after retroviral

infection.

RT-qPCR
Total RNA was extracted and purified from 105–106 cells using

a Qiagen kit. 1 mg of RNA was reverse transcribed using 100 ng of

random primer and the M-MuLV Reverse Transcriptase (Invitro-

gen). qPCR was performed on the cDNA using 2 pairs of primers

(ccaaagcgtatgctgagaca/cctgcatcaccttttccatt and ctggaaaccaaaatg-

gagga/cgagcagtgatgtttcctga) and SYBR Green I Master mix on a

Light Cycler 480 (Roche, Basel, Switzerland). The data were

analyzed using the software supplied by the same manufacturer.
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Results

We performed the phenotypic selection in the rat basophilic

leukemia cell line RBL-2H3, used extensively to study FceRI and

the biochemical pathways for secretion in mast cells. First, we sub-

cloned a single chain antibody fragment (scFv) library optimized

for intracellular expression [13,20] in plasmid and retroviral

eukaryotic expression vectors, both designed for cytoplasmic

expression of intrabodies, and two libraries of a diversity of 109

and 26108 were generated respectively. The recombinant vector

pools were subsequently used to transfect the RBL-2H3 cell line in

order to generate two distinct populations of 56107 transformed

cells. Previous studies reported an Annexin-V binding assay as a

powerful method to monitor mast cell degranulation for functional

analysis [21]. The IgE-dependent stimulation of the cells leads to

the exposure of exocytosing granules and phosphatidylserines that

can be monitored, in proportion to the extent of allergic mediator

release, by the binding of exogenously added Annexin-V. We used

this method to isolate by flow cytometry cell sorting (FACS) the

population of intrabody-containing RBL-2H3 cells that displayed

an impaired degranulation.

Both transfection approaches have advantages and drawbacks.

Using plasmid expression allows a higher expression level with the

inconvenience of several different intrabodies expressed in the

same cell. We reasoned that in the case of a dominant phenotype

this should not preclude the selection of inhibitory molecules. On

the opposite, using retroviral transfection ensured that only few

different intrabody genes were present in each cell, presumably

allowing a more efficient selection. However, in the latter case the

explored diversity was limited to the number of transfected cells

(56107), whereas in the former case the diversity was the product

of the cell number by the number of plasmids per cell (2000 copies)

and was thus only limited to the size of the initial library (109).

Thus, we opted for using both approaches because this would

allow not only to explore the limiting factors of each system but

also to compare the results obtained from two independent

selections.

Plasmid library selection
In the case of the plasmid library, seven rounds of enrichment

were performed based on a selection method comprising the

following steps: a) FceRI-mediated cell stimulation followed by

Annexin V-APC staining; b) FACS sorting of 10% of the

population corresponding to the less fluorescent cells; c) extraction

of the plasmid DNA pool; d) amplification of the scFv genes and

their subsequent cloning in the same expression vector (Fig. 1a).

This procedure allowed the enrichment for cells containing

intrabodies able to block cell degranulation as shown by the

decrease of the Annexin V staining of stimulated versus

unstimulated cells (Fig. 1b, Fig. S1a). In addition, because each

round of selection included a recloning step of scFv genes, this

procedure ensured that the observed phenotype was specifically

due to the transfected intrabody genes and not to a cell drift.

Another issue with the selection was the possible anti-apoptotic

effect of monomeric IgE used for FceRI stimulation [22,23].

However, since we have incubated both the unstimulated and the

stimulated cells with IgE before the addition of the antigen DNP, if

present this effect should be identical in both populations and

should not have influenced the selection.

To identify individual intrabody sequences responsible for the

inhibitory phenotype, we generated stable RBL-2H3 clones from

the pool of plasmids obtained from the seventh round of selection.

Using qPCR, we estimated that during the selection, each cell

contained an average of 2,000 plasmids, thus we reasoned that

most of the cells should contain non-inhibitory passenger

intrabodies. One hundred and twenty-six stable clones were tested

in a degranulation assay based on the measurement of the FceRI-
mediated release of the enzyme b-hexosaminidase. As shown in

Fig. 2a, the b-hexosaminidase release values are distributed

following a bimodal distribution with a major peak at 110% and

a smaller one at 65%. The former peak contains cells expressing

non-inhibitory intrabodies whereas the latter corresponds to the

low-degranulating clones that express inhibitory intrabodies and

which represent about 20% of the clones. The analysis of the

intrabody sequences expressed in 36 clones revealed a high

diversity with 1–2 different sequences expressed in each clone (Fig.

S2).

Retroviral library selection
In the case of the retroviral library, the screen was performed in

the same manner. Since retroviral infection directly generated

stable clones, extraction of the intrabody genes and recloning

between each round was not necessary. We however introduced a

recloning step after the third and the fifth round of selection. This

ensured that the retrovirus-induced phenotype was associated with

the expressed intrabody sequence and was not due to a cell drift or

a particular genomic insertion site. Inhibition of the phenotype

was clear after seven rounds of selection as the shift in Annexin V

of FceRI-stimulated cells was totally abolished at round 7 (Fig. 1b

& Fig. S1b). An aliquot of cells from selection round 7 was seeded

at limiting dilution and 48 isolated clones were analyzed in

triplicate by measuring the release of b-hexosaminidase (Fig. 2b).

Contrary to the plasmid selection, the distribution of the b-
hexosaminidase release values was monomodal and significantly

inhibited by 54% on average when compared to 11 mock-

transfected clones. This showed that the retroviral library selection

was more powerful than the plasmid one, presumably because of

the presence of fewer intrabodies per cell, which reduced the co-

selection of passenger intrabodies to a minimal.

We used high throughput sequencing for the analysis of the

intrabody diversity evolution in the cell population during the

course of selection and for the identification of the best inhibitory

intrabodies. This avoided a biased analysis of a limited number of

cellular clones that may bear peculiar properties. scFv sequences

expressed in the initial pool of RBL-2H3 infected cells before the

first selection (naive library), and from cells from each of rounds 3,

5, 7 and 8 were analyzed. Sequencing of 106 clones from the naive

library revealed that 80% of the sequences all had H3 or L3

without frameshift or stop codon. The translation of the nucleotide

sequences generated 250,000 unique VH amino acid sequences

and 350,000 VL sequences. This reflects the actual diversity of the

library contained in 106 cells but do not take into account the

additional diversity due to the random pairing of VH and VL

chains (Fig. S3).

Since the VH domain is known to be the most important

determinant of antibody affinity and specificity [24], we only

analyzed the CDR3 sequences that correspond to the variable part

of the VH domains in our library design [13]. By setting the False

Discovery Rate to 0.05, 2568 VH DNA sequences appeared to be

enriched and none significantly depleted during the course of the

selection using the SAMSeq software [15]. The fact that no

sequence declined significantly during the selection shows that

none of the intrabodies was toxic enough to the cell to induce an

early apoptotic phenotype and to be selected. Enriched sequences

were translated and we retained the 108 VH sequences that

continuously increased during the course of the selection. These

108 VH represented 40% of the sequences present in the final

selected library and were grouped in 69 families using unsuper-
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vised hierarchical clustering and a cutoff of 60% identity (Fig. S4).

Thirty-nine families contained a unique sequence and were not

further analyzed. The remaining 69 VH clustered in 17 groups,

and we retained the 10 VH families present at least at 0.1% (0.1–

25%) in the final enriched library. Between the naive library and

the final selected library, each of these 10 families was enriched

about 150 fold (90–215), however some individual sequences were

enriched more than 500-fold. In addition, whereas the frequency

of most of the clones present in the initial library decreased at an

exponential rate during the course of the selection, the 10

identified families were strongly enriched (Fig. 2c & Fig. S5).

Characterization of individual clones
Next, 136 unique VH sequences obtained from 178 clones of

the plasmid library (stable clones and randomly picked sequences

from the last round of selection) were compared with the 108 VH

sequences enriched during the retroviral selection. Only one VH

sequence corresponding to clone 5H4 was found common to both

selections. Moreover, 5H4 family (R_8) is part of the 10 best

families selected from the retroviral sequence analysis and the

5H4-VH sequence was enriched 170 fold during the retroviral

selection. Plasmid-derived stable RBL-2H3 clone 5H4 did not

show any Annexin-V staining following FceRI stimulation

(Fig. 3a) and displayed strong defects in b-hexosaminidase release,

calcium flux and TNFa secretion (Fig. 3b, 3c, 3d). Analysis of 5H4

sequence revealed that the gene encoding scFv 5H4 was truncated

at its C-terminus because of the presence of a stop codon in the

first codon of the light chain CDR3. Since the original scFv library

contained only variable CDR3 loops, we reasoned that the

inhibitory phenotype of 5H4 was carried by its VH portion.

Indeed, isolated human VH domains have already been shown to

be efficient intrabodies, particularly when the VH sequence

belongs to the human VH3 family as it is the case here [25,26]. In

fact, the analysis of the FceRI-mediated degranulation of the

retroviral clone R_8 confirmed the inhibitory potential of the

intrabody 5H4-VH (Fig. 3e).

We also evaluated the inhibitory phenotype of the 9 other

families of intrabodies selected during the retroviral selection. The

most frequent sequence of each family (Fig. S6) was cloned and the

Figure 1. Selection of intrabodies that inhibit mast cell degranulation. a) Schematic view of the selection method. The scFv/intrabody
library previously described [13] was cloned in plasmid and retroviral vectors and used to transfect the RBL-2H3 cell line in order to induce a
phenotypic diversity in a collection of cells. Clones displaying the desired phenotype, measured by inhibition of degranulation, were selected and the
couple constituted by the inhibitory intrabody and its target antigen was identified and characterized. b) Annexin-V staining of cell populations from
the library selection rounds is illustrated as the ratio of the geometric mean (MFI) of the FceRI-stimulated (S) to the unstimulated (NS) cells (Fig. S1).
doi:10.1371/journal.pone.0104998.g001

Figure 2. Analysis of selected clones. a) Distribution of the b-hexosaminidase release measured on 126 stable clones isolated from the last round
of the plasmid selection. The distribution profile does not fit a normal distribution (p = 0.027 using Jarque-Bera Normality Test) and is skewed to the
left (p = 0.009 using Agostino’s skewness test [53]). The blue curve is the sum of the two normal distributions plotted in magenta and green and was
fitted to the distribution. b) Distribution of the b-hexosaminidase release measured on 48 retroviral clones. The distribution is normal (p = 0.92) and
the blue curve is the best normal distribution fitted to the data. Inset: boxplot of the b-hexosaminidase release of 48 retroviral clones compared to 11
mock-transfected RBL-3H2 clones. **: p,0.01 (Student t-test). Boxplot whiskers extend to the most extreme data point that is no more than 1.5 times
the interquartile range. c) VH sequence evolution during retroviral selection followed by high throughput sequencing. All: frequency of the 6789 VH
sequences present in the four sequenced pools. Selected: enrichment of the 125 DNA sequences (62 different CDR3 in amino acid) forming the 10
selected families (Fig. S4 & S5). Boxplot whiskers extend to the most extreme data point.
doi:10.1371/journal.pone.0104998.g002
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cellular phenotype of retrovirus-infected mixed cell populations

was analyzed. As shown in Fig. 3e, 6 out of 10 intrabodies induced

a significant inhibition of degranulation following FceRI stimula-

tion. These results confirmed that our statistical analysis of the

data generated by high throughput sequencing successfully led to

the identification of inhibitory intrabody sequences.

Target identification
The strength of the IBPheS approach lies in the fact that

intrabodies are antibody molecules bearing high affinity and

specificity which can be used for the identification of their target.

In order to identify the cellular target of intrabody 5H4, the gene

encoding 5H4-VH was expressed in E. coli cytoplasm, and the

purified antibody fragment was used to capture its target from

RBL-2H3 extracts. The captured proteins were analyzed by mass

spectrometry using an irrelevant VH fragment as a control. A

unique protein called RGD1311164, the homolog of human

protein C12orf4, was identified in three independent experiments

with the best score. For an easier reading we will refer to

RGD1311164 as C12orf4. The specific binding of 5H4-VH to

C12orf4 from rat and mouse origin was confirmed in pull-down

experiments performed respectively on RBL-2H3 cell line and

murine bone marrow-derived mast cells using a commercial

polyclonal serum (Fig. 3f & Fig. S7a). Because 5H4 VH differs

from the irrelevant VH fragment only by its CDR3 sequence (10

amino acids), its specificity for C12orf4 is driven by its CDR3

sequence and cannot be due to the exposed hydrophobic VH-VL

interface. Immunoprecipitation experiments as well as immuno-

fluorescence analysis using confocal microscopy with either 5H4-

VH-Fc or a commercial anti-C12orf4 antibody showed that

C12orf4 is a cytoplasmic protein, and that its subcellular

localization and expression level does not change upon FceRI

stimulation (Fig. 3f & Fig. S7b).

Characterization of RGD1311164/C12orf4
We further characterized the role of C12orf4 in FceRI-

mediated mast cell responses. For this purpose, the short hairpin

RNA (shRNA) approach was used for down regulation and

modulation of C12orf4 expression in RBL-3H2 cells. As shown in

Fig. S8a, the two shRNA decreased the mRNA level by 60–80%

and the protein level by 55–70%. The analysis of the degranu-

lation of shRNA transfected cells following FceRI stimulation

showed a decrease in b-hexosaminidase release and TNFa

secretion that correlated with an inhibited calcium flux (Fig.

S8b). These results confirmed using an independent approach that

inhibition of C12orf4 leads to a defect in mast cell activation.

In mast cells and basophils, the engagement of FceRI initiates

the activation of the Src kinases Lyn and Fyn and the Syk kinase,

which allows signal propagation through the phosphorylation and

activation of several downstream proteins [27]. Lyn phosphory-

lates Syk that coordinates further signals such as the activation of

PLC-c and calcium mobilization. Fyn initiates a complementary

signaling pathway through the adapter Gab2 that is essential for

the activation of PI3K and cell degranulation (Fig. 4b). We

investigated the impact of targeting C12orf4 on FceRI-mediated

signaling events. Protein extracts of non-stimulated and FceRI-

Figure 3. Anti-C12orf4 intrabody inhibits mast cell degranulation. Analysis of stable clone 5H4: a) measurement of Annexin-V staining; b) b-
hexosaminidase release; c) calcium flux and d) TNFa secretion. T-: Irrelevant intrabody. S: IgE/DNP stimulated. NS: unstimulated. Boxplot whiskers
extend to the most extreme data point that is no more than 1.5 times the interquartile range. e) Measure of b-hexosaminidase release by retroviral
infected populations. Clone R_8 is identical to the intrabody expressed by the plasmid clone 5H4. Sequences of the clones are given in Fig. S6.
Boxplot whiskers extend to the most extreme data point. f) Specific binding of 5H4-VH to C12orf4. Top panel: pull-down assay using 5H4-VH as
capture agent and a commercial anti-C12orf4 polyclonal serum to reveal the protein. Irr: Irrelevant VH fragment, differing from 5H4 VH only by its
CDR3 sequence. Low panel: subcellular localization of C12orf4 analyzed by confocal laser microscopy after double staining. Top left: Hoechst; top
right: 5H4-VH-Fc fusion; bottom left: anti-C12orf4 commercial antibody; bottom right: merge. *: p,0.05; **: p,0.01; ***: p,0.001 (Student t-test).
doi:10.1371/journal.pone.0104998.g003
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stimulated stable clone 5H4 were analyzed by western blot using

anti-phosphotyrosine monoclonal antibody 4G10. A defect in the

FceRI-mediated tyrosine phosphorylation of proteins migrating at

40–42, 55–60 and 72 kDa was observed. Using antibodies specific

to key proteins involved in the signaling pathways, we confirmed a

decreased phosphorylation of Src and Syk tyrosine kinases as well

as the downstream proteins MAPKs and Akt, demonstrating an

impairment of both Lyn- and Fyn-dependent signals (Fig. 4a).

These results are consistent with the defect in the degranulation

events (Fig. 3b, 3d). The analysis of the protein extracts of cells

transfected with a C12orf4-targeting shRNA showed a milder

overall effect, with a selective modulation of the Fyn pathway as

shown by the decreased phosphorylation of downstream proteins

Gab2 and Akt (Fig. S8c). This may be due to the moderate

shRNA-mediated inhibition of C12orf4 expression (about 50%).

Taken together, our results suggest that C12orf4 plays a role in the

early signaling events following FceRI-induced cell activation.

Discussion

In this study, we report the identification of protein

RGD1311164/C12orf4 as a new player in FceRI-induced cell

degranulation. Database interrogation revealed that C12orf4 is a

protein of unknown function. In human, C12orf4 gene is localized

on chromosome 12p13.3. Sequence analysis showed that C12orf4

is widely conserved from nematodes to humans, with for instance

94% amino acid identity between rat and human protein

sequences. This suggests a common role in all these organisms,

but none of the proteins of this family have a defined function or

homology to a domain of known function. Genini and co-workers

[28] suggested a possible link between C12orf4 gene and the

autosomal recessive disease known as arthrogryposis multiplex

congenita (AMC), one of the most common congenital defects

observed in pigs and in other mammals.

Our data suggest that C12orf4 is a cytoplasmic protein and that

its cellular localization is not affected following FceRI stimulation.

RBL-2H3 stable clones expressing anti-C12orf4 5H4 inhibitory

intrabody, as well as cells expressing a shRNA against C12orf4,

showed an inhibition of mast cell activation and a decrease in

allergic mediator release. These cellular responses correlate with

defects in the early signaling events following FceRI stimulation, as

shown by a decrease in the phosphorylation of key upstream

proteins such as Src kinases. Because the level of FceRI expression

at the membrane of transfected cells was not affected, C12orf4 is

presumably acting upstream of Src kinases, but is not implicated in

receptor recycling and degradation. We analyzed 5H4-pull down

experiments with antibodies specific to FceRI, Lyn, Syk and with

the anti-phosphotyrosine monoclonal antibody 4G10, and none of

the corresponding targets were detected. This is not uncommon

since some signaling molecules interact weakly with their partners

and it is sometimes difficult to demonstrate co-immunoprecipita-

tion of endogenous proteins. Another hypothesis is that 5H4 may

inhibit the interaction of C12orf4 with its cellular partners,

precluding detection of interacting proteins in pull-down exper-

iments.

The IBPheS method described here allowed us to identify

several other intrabodies that affect the degranulation of RBL-2H3

cells. Presumably, some of these intrabodies recognize known

targets implicated in the degranulation process. However, the

diversity of the used intrabody repertoire is somewhat limited

because of the difficulty to manipulate more than 108 cells, and

thus the approach cannot allow a complete enumeration of all the

players implicated in the studied phenotype. This however

demonstrates that the selection of intrabodies as phenotype-

modulators can be accomplished in cell-based assays using

unbiaised combinatorial libraries (not preselected by phage

panning) and without any previous knowledge of a target. On

this line, two recent studies describe the use of large and naı̈ve

intracellular combinatorial libraries for phenotypic modulation.

The first study reports the selection of secreted integrin-binding

agonist antibodies that convert stem cells to dendritic cells [29].

The second approach describes the use of lentiviral libraries of

intrabodies for the selection of scFv fragments that block

rhinovirus-induced cell death [30]. In this case, the studied

phenotype is highly selectable because based on cell survival. This

explains the very impressive enrichment factor of more than one

Figure 4. C12orf4 is implicated in the early events of the degranulation pathway. a) Western blot analysis of the FceRI-mediated
phosphorylation of major proteins implicated in mast cell activation. 5H4 expressing RBL-2H3 cells are compared to cells expressing an irrelevant
antibody fragment. Cells are either non-activated or activated with IgE/DNP for 3 and 10 minutes as indicated. b) Schematic view of mast cell
signaling pathways, kindly provided by Dr. Marc Daëron.
doi:10.1371/journal.pone.0104998.g004
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million-fold since only the cells containing protective intrabodies

survived viral infection. In the present work, we show that despite

a weaker FACS-based phenotype, the selection is efficient enough

to isolate inhibitory intrabodies. This makes the approach

applicable to a larger number of cellular phenotypes. Indeed,

when coupled with high throughput sequencing, the method is

able to identify very rare clones. In fact, the sequence analysis

revealed that intrabodies that were present at a frequency of 1027

in the naive library were significantly enriched and identified in

the 10 families of retroviral clones (Fig. S5). Thus, as in the case of

phage-display selection, the use of high throughput sequencing

allowed the identification of clones even expressed well below the

background and impossible to select using a direct cloning strategy

[31].

If we compare IBPheS to classical genetics, the intrabody plays

the same role than mutations. However, because the intrabody

does not directly modify its target but modulates its function, it is

also analogous to a chemical drug. Thus the system described here

has the advantages of both approaches, that is the power and

flexibility of genetics coupled with the clinical applications of

pharmacology. Intrabodies have demonstrated they are able to

recapitulate all the antibody properties within the cell: enzyme

inhibition [32]; breaking protein-protein [33] and protein-DNA

interactions [34]; re-activating mutant enzymes [35]; targeting

specific protein conformations [36,37], domains [17], and post-

translational modifications [38]; and inducing protein degradation

[39,40]. In addition, by targeting them to specific cell compart-

ments intrabodies can re- or de-localize their target [41] and block

secretion [42]. Intrabodies are thus able to mimic the whole

spectrum of mutations that can be obtained in classical genetics.

However, in addition to proteins, antibodies are also able to

recognize small chemicals, usually referred as haptens, glycans and

lipids [43,44]. As such they represent a powerful tool not only to

interrogate the proteome diversity but also secondary messengers

and metabolism in cells. As such the IBPheS method must be seen

as a complement to other methods such as genome-wide shRNA

screens [45–47], but with specific advantages associated with the

direct targeting of effector proteins instead of mRNA.

Intrabodies have also proven their potential to be used in clinics

[48]. Delivery of an anti-erbB2 intrabody using an adenovirus

vector has been described in a phase I clinical trial with minimal

toxicity [49]. The main current limitation is intrabody gene

delivery but this will improve with advances in gene transfer

technology. An alternative approach still not demonstrated in the

case of intrabodies could be the use of internalizing peptides or

liposomal vehicles to directly deliver proteins within tissues in pre-

clinical models and in patients [50]. However, since this has

already been described in cell cultures [51,52], this route of

intrabody delivery could be a viable solution. As an easier and

more generally applicable solution, we reported the use of an

antibody displacement assay to convert an intrabody directed

against the tyrosine kinase Syk into chemical drugs [7,8]. The

isolated molecules recapitulated the intrabody effects in cell

cultures and were able to block the anaphylactic shock when

administrated orally in animal models [7].

In conclusion, the IBPheS method aims to be an integrated

approach for the concomitant identification of a protein target and

an intrabody as a lead inhibitor. As such, and compared to other

large-scale approaches, this represents a straightforward path to

the discovery of potential therapeutic molecules.

Supporting Information

Figure S1 FACS analysis of the IgE/DNP stimulated (S:

green) and non-stimulated (NS: black) RBL-2H3 cells

transformed with plasmid (a) or retroviral (b) libraries.

Naive: unselected library; Round n: enriched library after n

rounds of selection. The X axis represents Annexin V labelling,

and the Y axis the Forward Scatter (FCS).

(PDF)

Figure S2 Individual clone phenotypes from plasmid

library selection. a) 133 stable clones were tested for b-

hexosaminidase release. Red dots represent the clones selected for

sequencing. The clone 5H4, characterized in Fig. 3 of the

manuscript, is marked. b) 36 clones were sequenced. Clones are

sorted from the least to the most degranulating clone in the initial

screen in (a). Nb seq: number of intrabody sequences retrieved by

PCR. ‘‘.=2’’: the clone contains more than 1 sequence but was

not analyzed further to determine the exact number of inserted

intrabody. H3: VH CDR3 sequence. L3: VL CDR3 sequence.

*: stop codon. x: unread because of poor sequencing quality. c)

Clones for which a sequence was determined, were re-tested for b-

hexosaminidase release (between 2 and 6 replicates). *: p,0.05;

**: p,0.01; ***: p,0.001 (Student t-test). Clones 6E8, 8D12 and

5F5 were used as negative controls.

(PDF)

Figure S3 Intrabody library diversity. Sequence analysis of

DNA extracted from one million clones infected with the indicated

retroviral libraries. Nb of reads: number of reads for each library;

Nb of seq (dna): Number of different full length CDR3 DNA

sequence; Nb of seq (dna no stop): Number of different full length

CDR3 DNA sequence without stop codon or frameshift; Nb of seq

(aa): Number of different CDR3 protein sequences obtained

without stop codon or frameshift. a) VH CDR3. b) VL CDR3.

Round3a and Round3 are the same pool but sequenced before

and after recloning respectively (see Materials and Methods).

(PDF)

Figure S4 Clustering of VH sequences identified in

retroviral library selection. Sequence analysis of the 108 VH

enriched during retroviral selection. Sequences are aligned

according to IMGT numbering scheme. The two numbers at

the left of each sequence are the frequency in the selected library

(round 7) and the enrichment factor between naive and final

library, respectively. The 10 retained families after clustering are

indicated.

(PDF)

Figure S5 Population evolution of the clones from the 10

selected families. For each family in Fig. S4, the evolution of

the frequency of all the clones is plotted. The sequence above the

plots is the VH CDR3 sequence of the most abundant clone used

in the validation study in Fig. 3e. Since clones were considered as

different when their DNA sequences were different, the number of

clones in each family does not necessary match the number in Fig.

S4 that compared translated CDR3 sequences.

(PDF)

Figure S6 Sequences of the most abundant retroviral

clones from the 10 selected families. R_7 has a stop codon

in the VL CDR3 loop and is thus truncated and expressed without

the C-terminal eGFP tag. R_8 has the same VH than plasmid

clone 5H4 and has been cloned as a single VH domain in

retroviral vector.

(PDF)
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Figure S7 Analysis of FceRI-induced C12orf4 expression
and subcellular localization. a) Pull-down assays were

performed on total lysates of non-stimulated and FceRI-stimulated

RBL-2H3 cells, using 5H4-VH and an irrelevant VH fragment.

The presence of C12orf4 in protein extracts and pull-down

fractions (PD) was detected using a rabbit anti-C12orf4 polyclonal

serum. b) Analysis of subcellular localization of C12orf4 following

FceRI-stimulation. RBL-2H3 cells were either non stimulated (top

panels) or stimulated for 3 minutes (middle panels) and 10 minutes

(bottom panels) with IgE/DNP as described in methods and

stained with a commercial rabbit anti-C12orf4 serum followed by

an anti-rabbit IgG Alexa 599 labeled secondary antibody (left

panels). Nuclei were stained with Hoechst (right panels).

(PDF)

Figure S8 shRNA-induced down-regulation of C12orf4
expression. a) Two shRNA against rat C12orf4 (sh1 and sh2)

were cloned in a retroviral vector and transduced in RBL-2H3

cells. Analysis of C12orf4 expression by qPCR and western blot

were performed 10 and 15 days post-infection. b) Analysis of b-
hexosaminisase release (left), calcium flux (middle), and TNFa

secretion (right) were performed with cell populations 5 days post-

infection. c) Western blot analysis of the FceRI-mediated

phosphorylation of major proteins implicated in mast cell

activation. Cell populations transfected with sh1 C12orf4 (5 days

post-infection) are compared with a control shRNA (shLUC),

either non activated or activated with IgE/DNP for 3 and

10 minutes. **: p,0.01; ***: p,0.001 (t-test).

(PDF)
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