

AVERTISSEMENT

Ce document est le fruit d'un long travail approuvé par le jury de
soutenance et mis à disposition de l'ensemble de la
communauté universitaire élargie.

Il est soumis à la propriété intellectuelle de l'auteur. Ceci
implique une obligation de citation et de référencement lors de
l’utilisation de ce document.

D'autre part, toute contrefaçon, plagiat, reproduction illicite
encourt une poursuite pénale.

Contact : ddoc-theses-contact@univ-lorraine.fr

LIENS

Code de la Propriété Intellectuelle. articles L 122. 4
Code de la Propriété Intellectuelle. articles L 335.2- L 335.10
http://www.cfcopies.com/V2/leg/leg_droi.php
http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm

École doctorale IAEM Lorraine

Monitoring and Security for the
RPL-based Internet of Things

Supervision et Sécurité pour l’Internet des
Objets utilisant le protocole de routage RPL

THÈSE

présentée et soutenue publiquement le 21/10/2016

pour l’obtention du

Doctorat de l’Université de Lorraine

(mention informatique)

par

Anthéa Mayzaud

Composition du jury

Président : Olivier Perrin Professeur à l’Université de Lorraine

Rapporteurs : Maryline Laurent Professeur à Télécom SudParis
Michele Nogueira Professeur associé à l’Université fédérale de Paraná, Brésil

Examinateurs : Vincent Nicomette Professeur à INSA Toulouse
Jürgen Schönwälder Professeur à l’Université Jacobs de Brême, Allemagne

Encadrants : Isabelle Chrisment Professeur à TELECOM Nancy, Université de Lorraine
Rémi Badonnel Mâıtre de conférences à TELECOM Nancy, Université de Lorraine

Inria Nancy Grand-Est

Laboratoire Lorrain de Recherche en Informatique et ses Applications — UMR 7503

Mis en page avec la classe thesul.

i

À ma famille,

À mes amis.

iii

Remerciements

Cette thèse n'aurait pas pu voir le jour sans le concours et le soutien de certaines
personnes que je tiens à remercier ici.

Tout d'abord je souhaite remercier Maryline Laurent et Michele Nogueira pour
le temps qu'elles ont consacré à la relecture de cette thèse ainsi que tous les membres
du jury pour l'intérêt qu'ils portent à mes travaux.

Je tiens ensuite à remercier Isabelle Chrisment ma directrice de thèse qui m'a
o�ert cette grande opportunité de réaliser ma thèse au sein de l'équipe Madynes ainsi
que Rémi Badonnel, mon co-encadrant de thèse. Je les remercie pour leurs conseils,
leur patience et leur bienveillance durant ces trois années et demi.

I would also like to thank the Flamingo European network of excellence and all
its members. This European project allowed me to share and exchange in a very
productive way with its members. In particular, I want especially thank Jürgen
Schönwälder, Professor at Jacobs University Bremen and its former student Anuj
Sehgal who welcomed me in Bremen and taught me a lot.

Plusieurs personnes m'ont également apporté leur expertise tout au long de cette
thèse et je tiens à les remercier: Bernardetta Addis, César Bernardini, Alexandre
Boeglin, Thibault Cholez, François Despuaux, Gaëtan Hurel, Meihui Gao, Abdelka-
der Lahmadi, Emmanuel Nataf, Kévin Rousselle, Evangelia Tsiontsiou et tous les
autres membres de l'équipe qui m'ont conseillé. Je tiens aussi à remercier d'autres
personnes qui m'ont aidé techniquement durant cette thèse: Thibaut Delarozière,
Pierre Kimmel et Sébastien Parisot.

Je remercie tous mes collègues qui m'ont permis de travailler dans une bonne am-
biance durant ces trois années et notamment: Elian Aubry, Eric Finickel pour ceux
que je n'ai pas déjà cité ainsi que tous les autres membres de l'équipe. Je remercie
tout particulièrement Thibault Cholez qui a été celui qui m'a donné envie de suivre
cette voie lors de sa soutenance de thèse il y a quelques années et à laquelle j'ai pu
assister alors stagiaire dans l'équipe.

Finalement je remercie ma famille et mes amis qui m'ont soutenu, encouragé et
supporté durant ces années de thèse, je ne fais pas de liste mais ils sont tous dans
mon c÷ur et mes pensées.

Contents

1 Introduction 1

1.1 Context . 1

1.1.1 The Internet of Things . 2

1.1.2 Low Power Lossy Networks and Routing Protocols 3

1.2 Problem Statement . 5

1.2.1 Security Issues . 5

1.2.2 Addressed Challenges . 6

1.3 Overview of Contributions . 6

2 Routing and Monitoring in RPL-based Internet of Things 9

2.1 Introduction . 9

2.2 The RPL Protocol . 10

2.2.1 RPL Control Messages . 11

2.2.2 DODAG Building and Maintenance 12

2.2.3 Loops, Inconsistencies and Repairs 12

2.2.4 Protocol Security . 13

2.3 Monitoring RPL-based Internet of Things 14

2.3.1 Active Monitoring . 14

2.3.2 Passive Monitoring . 19

2.3.3 Comparison and Limits . 21

2.4 Conclusions . 23

3 Taxonomy of Attacks in RPL Networks 25

3.1 Introduction . 25

3.2 Attacks against Resources . 26

3.2.1 Direct Attacks . 26

3.2.2 Indirect Attacks . 27

v

vi Contents

3.2.3 Analysis . 30

3.3 Attacks on Topology . 31

3.3.1 Sub-optimization Attacks . 32

3.3.2 Isolation Attacks . 34

3.3.3 Analysis . 35

3.4 Attacks on Tra�c . 37

3.4.1 Eavesdropping Attacks . 37

3.4.2 Misappropriation Attacks . 38

3.4.3 Analysis . 39

3.5 Conclusions . 40

4 Impact Assessment of RPL Attacks 43

4.1 Introduction . 43

4.2 The DAG Inconsistency Attack . 44

4.2.1 Attack Description . 44

4.2.2 Simulation Setup . 46

4.2.3 Impact Quanti�cation . 46

4.3 The Version Number Attack . 48

4.3.1 Attack Description . 48

4.3.2 Simulation Setup . 49

4.3.3 Impact Quanti�cation . 50

4.4 Conclusions . 55

5 Local Strategy for Addressing DAG Inconsistency Attack 57

5.1 Introduction . 57

5.2 DAG Inconsistency Attack Mitigation 58

5.2.1 Default Mitigation . 58

5.2.2 Adaptive Mitigation . 59

5.2.3 Dynamic Mitigation . 60

5.3 Mitigation Evaluation . 62

5.3.1 Simulation Setup . 63

5.3.2 Mitigation Performance . 64

5.3.3 Con�guration Parameters Impact 69

5.3.4 Resource Consumption . 73

5.4 Conclusions . 76

vii

6 Security-oriented Distributed Monitoring Architecture 79

6.1 Introduction . 79

6.2 Proposed Architecture . 81

6.2.1 Overview and Components 81

6.2.2 RPL-based Mechanisms . 82

6.3 Monitoring Node Placement Formalization 85

6.4 Detection Modules . 86

6.4.1 DAG Inconsistency Attack . 87

6.4.2 Version Number Attack . 89

6.5 Conclusions . 93

7 Architecture Evaluation 95

7.1 Introduction . 95

7.2 Overhearing Evaluation . 96

7.2.1 Simulation Setup . 96

7.2.2 Performance Analysis . 97

7.2.3 Cost Analysis . 99

7.3 Detection Modules Evaluation . 100

7.3.1 DAG Inconsistency Attack . 101

7.3.2 Version Number Attack . 104

7.4 Scalability Evaluation . 109

7.5 Conclusions . 113

8 General Conclusions 115

8.1 Achievements . 115

8.2 Perspectives . 117

Publications 121

List of Figures 123

List of Tables 127

Résumé de la thèse en français 129

1 Introduction . 129

2 Protocole de routage RPL . 130

viii Contents

3 Taxonomie des attaques contre le protocole RPL 132

4 Analyse d'attaques visant le protocole RPL 132

4.1 Attaque d'incohérence DAG 132

4.2 Attaque sur le numéro de version 133

5 Détection locale d'attaques d'incohérence DAG 134

6 Architecture de supervision distribuée pour la sécurité 135

7 Évaluation de l'architecture . 137

8 Conclusions . 138

Bibliography 141

Glossary 149

Chapter 1

Introduction

This thesis on monitoring and security for the RPL-based Internet of Things was
carried out as part of Flamingo1, a Network of Excellence project (ICT-318488) sup-
ported by the European Commission under its Seventh Framework Program. The
Flamingo project focuses on network service and management for the Future Inter-
net. This European project gave us the opportunity to collaborate with the Jacobs
University Bremen, Germany, especially with Anuj Sehgal and Jürgen Schönwälder,
Professor in the CNDS research group.

1.1 Context

The Internet of Things (IoT) is a paradigm that is increasingly growing in the context
of pervasive networks and services. It consists in the extension of the Internet to
objects from the physical world, which are interacting with each other in order to
reach common goals in many application domains (see Figure 1.1). The high interest
for this paradigm has resulted in the large-scale deployment of Low power and Lossy
Networks (LLN), such as wireless sensor networks and home automation systems.
These networks su�er from scarce resources and unreliable links. As an e�ort to
standardize protocols used in the IoT, a dedicated stack has been designed having
in mind all these constraints. In particular for the routing layer, the IETF RoLL2

working group has proposed a new protocol called RPL (Routing Protocol for Low
power and Lossy Networks) based on IPv6 and speci�cally designed for Internet of
Things networks [80].

We propose in this thesis to address security monitoring issues regarding the RPL
routing protocol in the context of IoT networks. Indeed, the multiple constraints
faced by these networks make them particularly vulnerable to security threats. Ad-
dressing security in such environments is a real challenge considering all their limita-
tions. Therefore, the proposed solutions have to be as lightweight as possible in order
to achieve the best trade-o� between security and its induced cost for the network.

1http://www.fp7-�amingo.eu/
2Routing over Low power and Lossy networks

1

2 Chapter 1. Introduction

This introduction gives the context and the research questions of this thesis.
First, we present the Internet of Things paradigm and the induced Low power and
Lossy networks with their routing requirements. We then detail the challenges of this
new paradigm and more speci�cally the issues addressed in this thesis. We �nally
provide an overview of the contributions.

Figure 1.1: Extension of the Internet to everyday objects3.

1.1.1 The Internet of Things

The Global Standards Initiative on Internet of Things (IoT-GSI) has de�ned the IoT
as a global infrastructure for the information society which enables advanced services
by interconnecting (physical and virtual) things based on existing and evolving inter-
operable information and communication technologies [3]. This technology has been
considered by the US National Intelligence Council (NIC) as one of the "Disruptive
Civil Technologies" that will signi�cantly impact the United States [58]. The NIC
envisions that by 2025 Internet nodes will reside in everyday things such as food
packages, furniture, paper documents. Furthermore, the Gartner group forecasts
that 6.4 billions of objects will be deployed this year and 20.8 billions will be used by
20204. The IoT enables huge number of new applications in various domains such
as detailed in [7]:

• Smart environments,

• Transportation and logistics,

• Healthcare.

3Sources: pixabay.com, Creative Commons 0
4http://www.gartner.com/newsroom/id/3165317

1.1. Context 3

Figure 1.2: Example of IoT applications (based on [7]).

Figure 1.2 presents some applications for these domains. For example, in smart
environments, IoT technologies permit to save energy by automatically turning o�
lights and heating when the building is empty, or provide security by monitoring areas
at night. In logistics, the IoT enables real-time information processing technology
which supports monitoring of products, raw materials and so on. The IoT also opens
new possibilities in the healthcare domain by allowing assisted living for elderly or ill
persons for instance. The deployed objects from the Internet of Things form speci�c
networks called Low power and Lossy Networks (LLNs) which present particular
characteristics.

1.1.2 Low Power Lossy Networks and Routing Protocols

LLN networks have strong constraints in terms of resources (energy, memory, pro-
cessing) and their communication links are by nature characterized by a high loss
rate and a low throughput. Even though several classes of devices can be employed in
these networks, as described in Table 1.1, the available computing resources are quite
minimal, when compared to standard computing devices used in most applications
today. This means that protocols for the Internet of Things must operate within the
resource constraints implied by these devices. Moreover, the tra�c patterns are not
simply de�ned according to a point-to-point schema. In many cases, the devices may
also communicate according to point-to-multipoint and multipoint-to-point schemas.

Table 1.1: Classes of constrained devices used
in the Internet of Things (IoT) [11].

Device Classes RAM ROM

C0 < 10 KiB < 100 KiB

C1 ∼ 10 KiB ∼ 100 KiB

C2 ∼ 50 KiB ∼ 250 KiB

4 Chapter 1. Introduction

Several proprietary initiatives such as ZigBee5 or Z-Wave6 have been proposed to
deal with LLN constraints. However, standards have to be designed in order to en-
sure interoperability among the variety of devices and objects. Regarding the routing
layer, the IETF RoLL working group has therefore performed a survey of existing
routing protocols speci�ed in RFCs or mature drafts in order to answer whether
any IETF standardized protocol can meet LLN requirements [47]. They have con-
sidered the following routing protocols: OSPF [57], IS-IS [6], RIP [50], OLSR [33],
TBRPF [74], AODV [22], DSR [51], DYMO [15], OLSRv2 [20] and Triggered RIP [56].
The comparison has been performed using �ve criteria:

• Routing state indicates whether routing state scales reasonably within the
memory resources of low-power nodes,

• Loss response indicates how the considered routing protocol deals with link
failures and recompute paths,

• Control cost indicates if the considered routing protocol minimize power con-
sumption regarding required control tra�c.

• Link cost refers to the ability for a protocol to incorporate link properties into
routing metrics,

• Node cost refers to the ability for a protocol to incorporate router properties
into routing metrics and use node attributes for constraint-based routing.

Table 1.2: Protocol comparison results [47].

Protocol
Routing
state

Loss
response

Control
cost

Link
cost

Node
cost

OSPF/IS-IS fail fail fail pass fail

OLSRv2 fail ? ? pass pass

TBRPF fail pass fail pass ?

RIP pass fail pass ? fail

AODV pass fail pass fail fail

DYMO pass ? pass ? ?

DSR fail pass pass fail fail

Table 1.2 gathers obtained results regarding aforementioned criteria. For each
criteria, pass indicates that a given protocol has satisfactory performance according
to the considered criterion; fail meaning the opposite. The value ? indicates lacks in
the protocol so that authors could not conclude if the test has succeeded regarding
the criterion. We can observe that no existing routing protocols meet requirements of
LLN networks as de�ned by the RoLL working group. As a result, RoLL has proposed
a new proactive routing protocol called RPL standardized by RFC 6550 [80].

5http://www.zigbee.org/
6http://www.z-wave.com/modules/ZwaveStart/

1.2. Problem Statement 5

Another e�ort regarding routing in LLN networks has also been proposed: the
Lightweight On-demand Ad hoc Distance-vector - Next Generation routing protocol
(LOADng) [49]. This protocol is a simpli�ed version of the AODV protocol which
has been extended to be used in Mobile Ad hoc NETworks (MANETs). Unlike the
RPL protocol, LOADng is a reactive protocol which means that routes are built
on demand by nodes which want to reach another node in the network. As such
these solutions inherit advantages and disadvantages of these categories of routing
protocols and their use must be chosen according to the considered scenarios. For
instance, authors of [77] have compared the performance of the RPL and LOADng
protocols in home automation scenarios. Their conclusion is that for applications
in which the response time is important, RPL has performed better than LOADng
even if some implementation improvements could be done regarding this protocol.
Also in [29], authors have evaluated the LOADng protocol for bidirectional data
�ow in AMI (Advanced Measurement Infrastructure) mesh networks. Their study
has showed that LOADng had better results than AODV protocol in all considered
cases, however, RPL has outperformed them. Nonetheless, authors have pointed out
that the RPL protocol has a more complex processing compared to their LOADng
implementation. We also want to highlight the fact that the LOADng protocol is
still currently an IETF draft whereas the RPL protocol is an IETF standard.

1.2 Problem Statement

The manifest importance of the Internet of Things opens new challenges for both
industry and academia. One of the main challenges relates to security. We �rst
present in this section major questions related to security in the Internet of Things.
We then describe more speci�cally challenges addressed in this thesis.

1.2.1 Security Issues

The extension of the Internet to daily objects introduces a new major attack vector
for IT technologies as con�rmed by the NIC which stated that to the extent that
everyday objects become information-security risks, the IoT could distribute those
risks far more widely than the Internet has to date. As an example of this statement,
in December 2013, a researcher at Proofpoint company has discovered a botnet not
only composed of computers but also of household appliances, smart TVs and even
a refrigerator7. These types of botnets are now referred as thingbots and show the
lack of security which IoT networks su�er. The Gartner group also forecasts that
worldwild IoT security spend will reach 348$ million in 2016 and 547$ million in
20188. They foresee that more than 25% of identi�ed attacks in enterprises will
involve IoT infrastructures by 2020.

Several reasons can explain why the IoT is extremely vulnerable to attacks. First,
limited resources of typical IoT devices prevent them from implementing traditional

7http://investors.proofpoint.com/releasedetail.cfm?releaseid=819799
8http://www.gartner.com/newsroom/id/3291817

6 Chapter 1. Introduction

security mechanisms usually deployed in Internet infrastructures. Second, deploy-
ments of things in many applications make these devices unguarded therefore allow-
ing physical attacks. Third, as communications in the IoT are mostly wireless, they
are exposed to eavesdropping attacks. Finally, the probably most important reason
is about human interactions with these things. Indeed end users usually have lit-
tle incentive to make IoT devices secure by changing device passwords for example,
and most of vendors do not consider security as a key feature for their products.
Some e�orts have been made in order to design security solutions as presented in [7].
However, they all rely on cryptographic methods which take away resources and
drastically a�ects the performance of constrained devices [72] likely to be used in
IoT and WSN applications.

1.2.2 Addressed Challenges

The objective of this thesis is to design, implement and evaluate new strategies
able to address security monitoring in the RPL-based Internet of Things. The RPL
protocol is the IETF routing protocol standard for IoT networks. The proposed
solutions should detect behaviors of malicious nodes in order to limit their e�ects.

The �rst challenge of this thesis is therefore to assess security in RPL networks by
identifying and characterizing threats targeting the RPL protocol. We also classify
them using several factors in order to stress threats to be addressed in preference
and quantify their impact.

The second challenge consists in designing monitoring security solutions for pre-
viously identi�ed attacks which minimize resource consumption of nodes deployed in
the RPL network. These solutions should exploit the mechanisms and typical IoT
deployments such as the RPL protocol features or heterogeneity of IoT networks in
order to preserve node energy. We carefully evaluate their e�ciency and their cost
regarding the considered security attacks.

1.3 Overview of Contributions

We tackle in this thesis security monitoring for the RPL-based Internet of Things
as depicted by Figure 1.3. As a �rst step we assess security threats targeting the
RPL protocol. We then propose security solutions. These two main aspects are
organized into speci�c chapters and are preceded by a state of the art on routing
and monitoring in the RPL-based Internet of Things. General conclusions end this
manuscript and point out future research perspectives.

State of the Art

Chapter 2 details the RPL protocol functioning from topology building and main-
tenance to inner repair mechanisms. We also present the main security concerns
to which this protocol is exposed to. We provide a state of the art of existing ap-
proaches for monitoring and security in RPL-based IoT networks. They are classi�ed

1.3. Overview of Contributions 7

Figure 1.3: Road map of the contributions.

according to several criteria (active/passive, centralized/decentralized) which allows
us to discuss their bene�ts and drawbacks in such environments.

Security Assessment

Chapter 3 introduces our taxonomy of the attacks against the RPL protocol con-
sidering three main categories including attacks targeting network resources, attacks
modifying the topology and attacks related to the tra�c. We describe these attacks,
analyze and compare their properties, and discuss existing counter-measures [52].

Chapter 4 details and quanti�es the consequences of two attacks exploiting RPL
mechanisms: the DAG inconsistency attack and the version number attack [53, 71].
These attacks are chosen because they target node resources accordingly to the es-
tablished taxonomy. The obtained results show the importance of addressing them
because they can signi�cantly shorten the network lifetime.

Security Solutions

Chapter 5 proposes di�erent local mitigation approaches for DAG inconsistency at-
tacks. A �rst solution relying on a �xed threshold has been introduced by the RoLL
working group [32]. We show the limits of this solution and introduce new approaches
called adaptive threshold and dynamic threshold [71, 54]. Performance of these mit-
igation solutions is evaluated through experiments. We also quantify their costs and
bene�ts. Besides, we explain why such node-level approach cannot be used to detect
or mitigate the version number attack because of its properties.

Chapter 6 presents our security-oriented distributed monitoring architecture which
detects complex attacks such as the version number attack and complement our node-
level approach. This architecture is composed of regular nodes and monitoring nodes
and exploits RPL mechanisms to organize them. We detail our detection strategy
which relies on dedicated modules deployed on monitoring nodes in order to detect
both DAG inconsistency and version number attacks.

8 Chapter 1. Introduction

Chapter 7 evaluates this architecture and the detection strategy [55]. First,
we quantify the performance of the overhearing mode of monitoring nodes in our
simulation environment. We then study the detection results for our strategy. The
monitoring nodes placement is also discussed through formalization of optimization
problems.

Chapter 2

Routing and Monitoring in

RPL-based Internet of Things

Contents

2.1 Introduction . 9

2.2 The RPL Protocol . 10

2.2.1 RPL Control Messages . 11

2.2.2 DODAG Building and Maintenance 12

2.2.3 Loops, Inconsistencies and Repairs 12

2.2.4 Protocol Security . 13

2.3 Monitoring RPL-based Internet of Things 14

2.3.1 Active Monitoring . 14

2.3.2 Passive Monitoring . 19

2.3.3 Comparison and Limits . 21

2.4 Conclusions . 23

2.1 Introduction

The Internet of Things speci�cs require new methods to perform routing and mon-
itoring. In particular, the Routing Protocol for Low-power Lossy Networks (RPL)
was designed by the IETF RoLL9 working group, with capabilities of resource con-
strained nodes in mind [80]. This protocol is expected to form the basis of many
Internet of Things (IoT) applications. It is integrated in a full standard protocol
stack designed for the IoT as illustrated by Figure 2.1. The IEEE 802.15.4 protocol
is used for both physical and link layers of wireless personal area networks (WPAN)
and is appropriate for low power consumptions, short communication ranges and
low �ow rates. The 6LowPAN protocol also de�nes encapsulation and header com-
pression mechanisms allowing IPv6 packets to be sent or received through the IEEE

9Routing over LLNs

9

10 Chapter 2. Routing and Monitoring in RPL-based Internet of Things

802.15.4 communication protocol; it is thus used as an adaptation layer. The RPL
routing protocol is capable to operate over the two previously mentioned protocols.

Figure 2.1: Overview of the IoT protocol stack.

Internet of Things infrastructures require lightweight methods and techniques to
observe network devices and make sure services are properly running. Such moni-
toring information provides an important data source to identify failures, optimize
the network functioning, and detect potential security attacks. In the meantime,
monitoring such a type of networks should consume a minimal amount of resources
to preserve node operation capacity.

Section 2.2 describes the routing protocol for LLNs (RPL), its functioning and
its security mechanisms. In Section 2.3, we present and compare existing approaches
dedicated to monitoring and security for RPL-based IoT.

2.2 The RPL Protocol

The RPL protocol is a distance-vector routing protocol based on IPv6. RPL de-
vices are interconnected according to a speci�c topology which combines mesh and
tree topologies called Destination Oriented Directed Acyclic Graphs (DODAG). A
DODAG graph is built from a root node which is the data sink of the graph. A
network can operate one or more RPL instances which consist of multiple DODAG
graphs as showed in Figure 2.2. Each RPL instance is associated to an objective
function which is responsible for calculating the best path depending on a set of
metrics and/or constraints. For instance, this function can minimize energy con-
sumption or simply compute the shortest path. A RPL node can join several in-
stances at the same time, but it can only join one DODAG graph per instance such
as nodes 13 and 17 in Figure 2.2. These multiple instances enable the RPL pro-
tocol to perform di�erent optimizations, such as quality-of-service ones. The RPL
packets can be forwarded according to three tra�c patterns as showed in the third
DODAG of Figure 2.2: (i) multipoint-to-point tra�c (MP2P) from leaves to the root
via upward routes; (ii) point-to-multipoint tra�c (P2MP) from the root to leaves us-

2.2. The RPL Protocol 11

ing downward routes; and (iii) point-to-point tra�c (P2P) illustrated by red doted
arrows using both upward and downward routes.

Figure 2.2: Example of a RPL network composed of two instances and three
DODAGs.

We detail below the functioning and the main features of the RPL protocol.
Section 2.2.1 presents the di�erent control messages introduced by the RPL protocol.
Section 2.2.2 explains how these messages are used to build and maintain the DODAG
structures. We then describe loops and inconsistencies issues that may occur in
RPL networks along with the RPL repair mechanisms designed to counter them in
Section 2.2.3. Finally, Section 2.2.4 introduces security concerns regarding the RPL
protocol.

2.2.1 RPL Control Messages

The RPL protocol de�nes four new ICMPv6 control messages in order to share rout-
ing information and manage DODAGs: DIS, DIO, DAO and DAO-ACK messages.
The DIS messages (DODAG Information Solicitation) are typically used for asking
routing-related information from the neighbor nodes. These neighbors then reply
through the sending of DIO messages (DODAG Information Object). These mes-
sages contain the information required by RPL nodes to discover a RPL instance,
get their con�guration parameters, select a DODAG parent set, and maintain the
DODAG graph. In particular, a DIO message is composed of �ve main �elds cor-
responding to the RPL instance ID, the DODAG ID, the version number, the rank
value and the Mode of Operation (MOP) �eld. The RPL instance ID and DODAG
ID �elds are de�ned by the root node. They indicate respectively the identi�er of
the RPL instance and the identi�er of the DODAG graph which is the IPv6 address
of the root. The version number of a DODAG is incremented by the root node, each
time the DODAG is updated in order to synchronize nodes and maintain commu-
nications. The rank value of a node corresponds to its position in the graph with
respect to the root. It must always be greater than its parents' rank in order to
guarantee the acyclic nature of the graph. This value is always increasing in the
downward direction. The MOP �eld given by the root allows the maintenance of

12 Chapter 2. Routing and Monitoring in RPL-based Internet of Things

downward routes and multicast communications. Nodes joining the DODAG have
to match the MOP �eld and therefore its properties, in order to participate as a
router. If not, the RPL nodes can only join the graph as a leaf node. DIO messages
are also used by the root in order to build a new DODAG graph. In that case, the
messages are broadcasted by the root to its neighbors. Finally, the DAO messages
(Destination Advertisement Object) are used to build downward routes along the
DODAG graph. They may be acknowledged with DAO-ACK messages (Destination
Advertisement Object Acknowledgement). In that case, a DAO-ACK message is sent
back to the sender in unicast by the receiver of a DAO message (DAO parent or
DODAG root). All these di�erent control messages play an important role in the
building and maintenance of DODAGs.

2.2.2 DODAG Building and Maintenance

The DODAG graph is built in a step by step manner. The root initially broadcasts
a DIO message as depicted in Figure 2.2. Upon receiving a DIO message, a node
adds the sender of the message to its parents list and determines its own rank value
by taking into account the objective function referred in the DIO message. It then
forwards updated DIO messages to its neighbors. Based on its parent list, the node
selects a preferred parent which becomes the default gateway to be used when data
has to be sent towards the DODAG root. At the end of this process, all the nodes
participating in the DODAG graph have an upward default route to the DODAG
root. This route is composed of all the preferred parents. The DIO messages are
periodically sent according to a timer set with the trickle algorithm [46] which op-
timizes the transmission frequency of control messages depending on the network
state. It consists in increasing the frequency of messages when an inconsistency is
detected. This allows faster recovery. On the other hand, the frequency of messages
may be reduced when the network shows stability. A new node may join an existing
network by broadcasting a DIS message in order to solicit DIO messages from its
neighbors.

The downward routes are then built using the DAO messages. Depending on
the mode of operation speci�ed by the root in the DIO messages, routing tables
can be maintained by router nodes. In the storing mode, the child unicasts a DAO
message to the selected parent which records it. The parent aggregates the routes
received from other DAOmessages and sends the information to its parent recursively
through a DAO message. In the non-storing mode, DAO messages are unicasted to
the DODAG root. Intermediate nodes do not store routing information but simply
insert their own address to the message in order to complete the reverse path. The
DAO messages can be acknowledged with DAO-ACK messages.

2.2.3 Loops, Inconsistencies and Repairs

The RPL protocol integrates mechanisms to avoid loops, detect inconsistencies and
repair DODAGs. Count-to-in�nity phenomena occur when a parent increases its
rank value and selects its child as a new parent and the child does the same because

2.2. The RPL Protocol 13

it cannot re-attach to another node and so on. Then, the rank value of both parent
and child does not stop to increase. To prevent this, the RPL protocol limits the
maximum rank value allowed within the graph. DODAG loops appear when a node
does not respect the rank property which means that the DODAG is no longer
acyclic. To avoid this, a leaving node must poison its sub-DODAG by advertising an
in�nite rank. The leaving node has also the possibility to use a detaching mechanism,
which consists in forming an intermediary �oating DODAG and rejoining the main
DODAG later.

The RPL protocol can also detect inconsistencies using the datapath validation
mechanism [80]. Routing information is included in data packets within a RPL
Option carried in the IPv6 Hop-by-Hop header using several �ags. The Down 'O'
�ag indicates the expected direction up or down of a packet. If a router sets this �ag,
the packet should be forwarded to a child node using downward routes, otherwise it
should be sent to a parent with a lower rank towards the DODAG root. The Rank-
Error 'R' �ag indicates that a rank error is detected. It occurs when a mismatch is
observed between the rank values and the direction of a packet indicated by the Down
�ag. These two �ags are used to detect and repair a so called DAG inconsistency i.e.
a routing loop in the network. Finally, the Forwarding-Error 'F' �ag indicates the
inability of a node to forward the packet towards the destination in case of downward
packets [80]; this means that routing tables are not up-to-date and this �ag is used
to clean faulty entries of routing tables.

When inconsistencies are detected, the RPL nodes should trigger repair mecha-
nisms. These mechanisms contribute also to the topology maintenance when node
and link failures happen. The local repair mechanism consists in �nding an alterna-
tive path to route the packets when the preferred parent is not available. A node
chooses another parent in its parent list. It is also possible to route packets via a
sibling node e.g. node with the same rank. This alternative path may not be the
most optimized one. According to [37], this local repair mechanism is e�ective and
enables the network to converge again within a reasonable time. When the local
repair mechanisms fail due to multiple inconsistencies, the DODAG root can initiate
a global repair by incrementing the version number of the DODAG graph. The RPL
network is then completely rebuilt.

2.2.4 Protocol Security

The RPL protocol de�nes several mechanisms that contribute to its security. As
previously mentioned, it integrates local and global repair mechanisms as well as
loop avoidance and detection techniques. It also de�nes two security modes that can
be used to ensure integrity and con�dentiality of messages. The pre-installed mode
consists in having nodes with pre-installed keys in order to send secure messages.
The authenticated mode goes a step forward and considers that nodes with pre-
installed keys can only join a DODAG graph as leaf nodes. They must obtain a key
from an authenticated authority to join the graph as a router. However, important
features like key-management are left out by the current standard [70]. Furthermore,
cryptographic algorithms are known to occupy the most memory and take many CPU

14 Chapter 2. Routing and Monitoring in RPL-based Internet of Things

cycles, thereby greatly a�ecting the performance of constrained devices likely to be
used in IoT and WSN applications. Current RPL implementations, as such, do
not enable secure operation modes [36]. Typical deployments of such networks base
their security on link layer, transport/application layer [61, 9] or using end-to-end
encryption [64, 65]. However, an attacker may bypass security at the link layer by
either exploiting a vulnerability or gaining access to a shared key. The attacker
can also be a miscon�gured or faulty node whose behaviour can disturb network
functioning.

The RPL protocol is exposed to a large variety of security attacks as showed by
the taxonomy described in Chapter 3. The characteristics of LLN networks such
as resource constraints, lack of infrastructure, limited physical security, dynamic
topology and unreliable links make them particularly vulnerable and di�cult to
protect against attacks [76]. These ones can be speci�c to the RPL protocol, but
can also be applied to wireless sensor networks or even to wired networks [10]. RPL-
based networks thus require performance and security monitoring solutions that are
lightweight and e�cient.

2.3 Monitoring RPL-based Internet of Things

Many monitoring systems have been proposed for the traditional Internet. However
these solutions necessitate to be adapted, or new approaches have to be designed
in order to cope with the requirements of IoT networks. Since the IoT paradigm is
quite recent, few approaches are speci�cally dedicated to these networks and in par-
ticular regarding the RPL protocol. In this study most of the presented monitoring
solutions are inherited from the wireless sensor networks (WSNs) and from mobile
ad hoc networks (MANETs). Some solutions also include frameworks that have been
speci�cally designed for security.

The presented monitoring solutions are classi�ed as presented in Figure 2.3.
We distinguish two main categories: active monitoring architectures presented in
Section 2.3.1 and passive monitoring architectures described in Section 2.3.2.

2.3.1 Active Monitoring

In what follows, target nodes and networks refer to nodes (respectively networks) to
be monitored. We consider as active monitoring a solution that requires target nodes
to perform monitoring tasks, for instance send or forward speci�c tra�c messages
over the network, collect or store monitoring information or decision-making process.
We have divided active monitoring architectures into three categories: centralized,
decentralized and hybrid approaches.

2.3.1.1 Centralized Approaches

Centralized approaches consist in solutions with a central manager. Monitoring
agents are deployed on each node and have to collect, store information about the
device and send collected data over the network to a global manager. This manager

2.3. Monitoring RPL-based Internet of Things 15

Figure 2.3: Classi�cation of monitoring architectures.

is responsible for data aggregation and decision making about collected information.
In IoT networks, it can be deployed on the sink or remotely to a server to which all
messages are transmitted by the sink which is interconnected to the Internet.

We �rst consider in this category traditional management protocols, such as
SNMP [14] and NETCONF [30] with their adaptation to resource constrained envi-
ronments. SNMP permits to monitor, control, and also con�gure network devices.
Each managed device implements an agent responsible for collecting and transmit-
ting data about the device organized in a speci�c standardized database. NETCONF
is used to install, delete and change con�guration on network devices and needs per-
sistent connections to operate. An analysis of the SNMP and NETCONF protocols
shows their limits in the context of the Internet of Things [72]. The NETCONF
protocol is quite resource heavy due to its reliance on XML. SNMP performs rela-
tively well, as long as authentication and encryption are not utilized since these tasks
occupy most of the device resources [38]. The integration of SNMP agents with their
management information base (MIB) on resource constrained devices may take away
valuable resources. This is especially true on C0 and C1 devices (see Table 1.1 from
Chapter 1), where the amount of RAM available to nodes is quite restricted. It is
important to note that these devices are likely to be the majority of deployed IoT
devices [11].

Using the CoAP protocol [73] to perform network management and monitoring
tasks can o�er resource reduction since the protocol would be used by the application
layer in most cases. As such, there are a few e�orts under way to design CoAP based
management and monitoring solutions. The ongoing CoMI (CoRE Management In-
terface) initiative in the IETF is aiming to make SMIv2 function over CoAP [24]. It
utilizes also MIBs and does not rely on connection-oriented communications. Pack-
ets are encoded using the CBOR10 format [12] which is similar to JSON [13] but
optimized for constrained devices.

10Concise Binary Object Representation

16 Chapter 2. Routing and Monitoring in RPL-based Internet of Things

We can notice that theses solutions focus on con�guration management and do
not track network events nor detect anomalies. They can however be exploited
to perform security since the state of each node is recorded and certain types of
malicious activities can be inferred from collected information. In these approaches,
constrained nodes have to maintain internal information and send data. Also, in
large networks, centralized manager may result in congestion of routes to the sink,
and excessive load at the sink due to monitoring data.

2.3.1.2 Decentralized Approaches

Active decentralized approaches also typically rely on agents deployed on each node
to collect and send monitoring data. However, other monitoring tasks (storing,
aggregation, ...) are performed by distributed nodes in the network and are not
dedicated to a central manager. Such approaches allow reducing target node load
compared to active centralized architectures.

Authors of [62] propose a distributed monitoring solution called DAMON11 for
mobile ad-hoc networks (AODV routing protocol), composed of monitoring agents
and data repositories storing monitored information as illustrated by Figure 2.4.
The sinks, collecting monitoring data, vary over time based on their resources and
locations, in order to maximize the network lifetime. In this approach, each agent
is hosted by a target network node which sends information to the distributed mon-
itoring sinks, thereby increasing the resource consumption of all nodes. DAMON
supports sink auto-discovery using beacon messages and the resiliency of agents to
sink failures.

Figure 2.4: Architecture used in DAMON.

A poller/pollee strategy is introduced in [48, 39] to collect and aggregate monitor-
ing data from a sensor network in a lightweight manner. In particular, authors of [48]
present a distributed algorithm to select pollers among the WSN nodes while both
minimizing the number of required monitoring nodes and the false alarm rate. A

11Distributed Architecture for MONitoring mobile networks

2.3. Monitoring RPL-based Internet of Things 17

false alarm occurs if a pollee does not fail to send its reports but the poller misses
all of them within a de�ned time period. This can happen when pollees are too
far away from the poller. Aggregation algorithm is also proposed to reduce the
communication overhead induced by such a solution. Each poller aggregates col-
lected data and makes local decisions. Using a similar architecture as described
in Figure 2.5, Lahmadi et al. [39] minimize monitoring communication overhead by
embedding these communications in data packets. This work is designed for RPL-
based LLNs networks. Not only the piggybacking process is proposed to tackle
communication overhead issue, but authors also present a method to select pollers
within the graph. Their evaluation has also showed that the proposed approach is
robust to topology changes.

Figure 2.5: Poller-pollee architecture used in [39].

Since the monitoring data storing is performed by dedicated nodes, these de-
centralized solutions permit to reduce device resource usage on target nodes which
might represent a better choice compared to active centralized architectures. How-
ever, agents still need to be deployed on target nodes to collect and send monitoring
data thereby reducing their resources.

2.3.1.3 Hybrid Approaches

Hybrid approaches refer to architectures where monitoring data processing tasks
are shared between a central entity and distributed nodes while target nodes are
also instrumented to collect this data. The presented solutions below are Intrusion
Detection Systems (IDS) and are therefore security oriented.

The SVELTE framework [63] is speci�cally designed for the RPL protocol. It is
composed of three modules. One is responsible for rebuilding the topology at the sink
nodes using requests, the second one carries out the intrusion detection process and
the last one is a mini distributed �rewall. The approach is hybrid since lightweight
modules are deployed on each node of the network and modules responsible for heavy
processing are run within the root as described by Figure 2.6. This IDS is designed
to detect sinkholes and selective forwarding attacks and is robust to identity attacks.

A speci�cation-based solution is described in [44, 41] to detect topological attacks
in a RPL-based network. A model is generated remotely by learning the states,
transitions and statistics based on analyzed traces. This one is then used to perform

18 Chapter 2. Routing and Monitoring in RPL-based Internet of Things

Figure 2.6: Architecture used in SVELTE.

the detection of abnormal situations. Distributed super nodes implement the �nite
state machine previously learned. They are then deployed to monitor target nodes
through requests as illustrated by Figure 2.7. However, the super nodes do not
participate in the target network.

Figure 2.7: Architecture used in the speci�cation-based IDS from [41].

In these hybrid approaches, even if data processing is performed by both central
and distributed entities, target nodes are still instrumented to collect the required
monitoring information which consumes their resources. As such, passive monitoring
which relies on dedicated probes may o�er a good compromise to perform network
monitoring while preserving nodes energy.

2.3. Monitoring RPL-based Internet of Things 19

2.3.2 Passive Monitoring

We de�ne as passive monitoring, architectures where dedicated monitoring nodes
called sni�ers are deployed in the target network. They collect information about
network events and the target nodes which are not instrumented. These solutions
have been widely exploited in WSNs. As in the previous section, passive architectures
are classi�ed whether they are centralized or decentralized.

2.3.2.1 Centralized Approaches

Passive centralized monitoring architectures correspond to solutions where deployed
monitoring nodes collect information which are transmitted to a central sink per-
forming the analysis and decision process.

In particular, Khan et al. [35] introduce a troubleshooting suite called SNTS12

to facilitate the identi�cation of anomalies in sensor applications. The solution uses
dedicated extra nodes which passively listen to communications. The gathered in-
formation is then sent in the back-end part of the architecture where data mining
techniques are performed to automate analysis for troubleshooting.

In the same manner, LiveNet [16] proposes to reconstruct the complex behavior of
a deployed sensor network using multiple passive packet sni�ers collocated with the
network as presented in Figure 2.8. Their work focuses on merging the monitoring
traces obtained from the di�erent sni�ers, estimating the coverage of the monitoring
nodes and deducing missing information.

Figure 2.8: Architecture used in LiveNet.

In these examples, data analysis is performed o�ine remotely by a dedicated en-
tity. This allows running complex algorithms, however it may introduce considerable
delays in detecting failures or abnormal activities.

2.3.2.2 Decentralized Approaches

In passive monitoring, decentralized architectures refer to approaches where the mon-
itoring tasks (data aggregation and analysis, decision making process) are not only

12Sensor Networks Troubleshooting Suite

20 Chapter 2. Routing and Monitoring in RPL-based Internet of Things

performed by a central entity. These tasks can be achieved locally by the dedicated
monitoring nodes or they can be shared in a two-level hierarchical system where
the distributed monitoring nodes gather and aggregate data from the sni�ers before
forwarding them to a sink for further processing.

Authors of [82] design a passive monitoring system called PMSW13 composed of
four types of nodes: sensor nodes, sni�ng nodes, monitoring nodes and a worksta-
tion. Sni�ng nodes are deployed in the network to collect information regarding the
sensors, and connect to a monitoring node. This one is responsible for aggregating
collected data and sending them to the workstation. In the workstation, the traces
are merged using clock-adjusting strategies, the missing traces are inferred based on
a �nite state machine. Authors also use descriptions of event-rules based on XML
to perform fault diagnosis.

In Pimoto [8], sensor nodes are divided in so-called islands to which are assigned
a monitoring node that passively listens to all communications in the area. These
sni�ers send their collected information over a hierarchical operating system to a
server using a second radio channel operated on Bluetooth. The server processes the
data afterwards.

Another passive solution called EPMOSt14 [31] focuses on reducing energy con-
sumption by passive monitoring in WSNs. The monitoring information is provided
using an SNMP agent. Sni�ers are deployed in the target network, send their col-
lected information to a local monitoring node using a dedicated monitoring network
as presented in Figure 2.9. The local monitoring nodes store this data in a dis-
tant server which performs the analysis. A sni�er election is run by sni�ers and
monitoring nodes, to choose which target nodes are monitored by a given sni�er.
After having analyzed traces, the server generates reports which are stored in a MIB
database.

While previous approaches rely on hierarchical architectures, the following solu-
tion use exclusively a local strategy to perform monitoring in WSNs. Authors of [25]
propose a self-monitoring approach which relies on watchdog techniques: some nodes
of the network are chosen to perform the monitoring tasks for the target nodes in
communication range. Authors analyze the problem of self-monitoring in large-scale
wireless sensor networks. They present two distributed algorithms to elect the mon-
itoring nodes among the target nodes in an optimal topology reducing the induced
overhead. They provide complexity analysis and cost evaluation of these algorithms.
However, in this case, the monitoring is purely local because there is no monitoring
data exchange between monitoring nodes. It is not possible in this solution to take
into account the entire network, opening the possibility to miss major events. Also,
energy issues are not considered in the selection process of monitoring nodes.

Decentralized passive architectures allow processing monitoring tra�c locally.
Most of these approaches are based on hierarchical systems where target nodes are
monitored from local and global perspectives. In some cases, as in the watchdog
approach, this processing is purely local which does not give a global view of the

13Passive Monitoring System for WSN
14Energy-e�cient Passive MOnitoring System

2.3. Monitoring RPL-based Internet of Things 21

Figure 2.9: Architecture used in EPMOSt.

network. We can also observe that there is no direct interaction among the mon-
itoring nodes which could perform a collaborative level of monitoring by crossing
collected information.

2.3.3 Comparison and Limits

In this section, we compare the di�erent identi�ed solutions according to several rel-
evant criteria for this thesis as presented in Table 2.1. Among those criteria, storing
refers to the fact that target nodes have to store collected information. Gathered
information can also be stored in dedicated nodes called data repositories according
to the considered approach. The pervasiveness of the proposed solution indicates
whether nodes performing monitoring activities are involved in the target network
activities. The security property is also considered, it indicates whether the archi-
tecture has been designed for security purpose. It can be noted that each monitoring
solution could be used to perform security but dedicated algorithms need to be de-
ployed where data is processed. The next criterion is the level of monitoring.
Two values are possible regarding the considered architecture: local which means
that the monitoring process is performed locally by monitoring nodes based on local
data; and global which indicates that the monitoring process is performed considering
all monitoring data from the network. Finally, the RPL criterion indicates whether
the considered architecture is designed for or utilize the RPL protocol (Yes/No) or
whether it can be adapted to manage RPL protocol (Maybe). To provide security
while being energy e�cient for target nodes we need a framework that (i) does not
require target nodes to be instrumented or to store their information; (ii) is perva-
sive; (iii) is designed for security; (iv) provides several level of monitoring; and (v)
can be used in RPL environments.

In Table 2.1 we can observe that in active architectures, all the centralized solu-

22 Chapter 2. Routing and Monitoring in RPL-based Internet of Things

Table 2.1: Comparison of monitoring approaches.

Solutions Storing Pervasiveness Security
Level of

monitoring
RPL

Active

Centralized

SNMP Yes Yes No Global Maybe

NetConf Yes Yes No Global Maybe

CoMI Yes Yes No Global Yes

Decentralized
DAMON Data rep. Yes No Local No

Poller/Pollee Data rep. Yes No Local + Global Yes

Hybrid
SVELTE Yes Yes Yes Local + Global Yes

Spec. based IDS No Yes Yes Local Yes

Passive

Centralized
SNTS No No No Global Maybe

LiveNet No No No Global Maybe

Decentralized

PMSW No No No Local + Global Maybe

Pimoto No No No Local + Global Maybe

EPMost No No No Local + Global Maybe

Watchdog No Yes No Local Maybe

tions and the SVELTE framework require nodes to store their own monitoring in-
formation while dedicated target nodes perform this task in the other decentralized
monitoring approaches. On the contrary the speci�cally deployed monitoring nodes
in passive monitoring are responsible for collecting monitoring information. We can
also notice that all active monitoring architectures are pervasive, since they require
target nodes to be instrumented. They are therefore involved in both monitoring
and target network functioning activities. Except the watchdog strategy, monitoring
nodes used in passive solutions do not contribute in the target network. The pre-
sented monitoring solutions are not designed for security purpose (except the two
IDS), even if security related information could be inferred from the collected data.
Centralized architectures (active and passive) only provide a global monitoring level
which may lack of reactivity in case of attacks since all data are processed in a central
entity remotely. Some architectures give only a local view of the network which im-
plies the possibility to miss major events. Other decentralized approaches have the
capability to perform local and global level of monitoring. Except the DAMON tool,
which is based on the AODV protocol, other solutions have been designed for RPL
networks or could be adapted to them. All passive solutions from the WSNs can
use this protocol since their implementation does not rely on any particular routing
protocol.

Based on these criteria, we can conclude that none of the described architec-
ture meet our aforementioned requirements regarding a security-oriented monitor-
ing framework. Indeed, active solutions have to be excluded since they require to
instrument target nodes for collecting and storing (for most of them) monitoring
information which can take away precious resources on constrained devices. We
therefore argue in favor of implementing passive monitoring framework in RPL net-

2.4. Conclusions 23

works. However, in passive solutions the deployed monitoring nodes (or sni�ers) do
not contribute in the target network at all. Deploying an architecture only dedicated
to monitoring might represent a considerable cost for the operator. Even if most
of these architectures provide local and global level of monitoring, we also want to
perform collaborative monitoring and allow monitoring nodes to interact with each
other and get useful complementary information from neighboring monitoring nodes.
While a large majority of mentioned solutions can be adapted to the RPL protocol,
a solution able to exploit the RPL mechanisms will be more energy e�cient.

2.4 Conclusions

In this chapter, we have presented the RPL protocol and detailed its main mecha-
nisms. We have showed how DODAGs are built and maintained using the di�erent
control messages. First the upward routes are built to reach the sink using DIO mes-
sages. According to the advertised mode of operation, the downward routes are then
formed through DAO messages in order to reach the di�erent nodes participating
in the graph. We have also described loops and inconsistencies that may occur in
RPL networks and how the protocol standard manages them. In particular, a lim-
ited rank value is introduced to address count-to-in�nity phenomena and detaching
mechanisms such as poisoning are designed to prevent them. The data path valida-
tion is used to detect and �x possible loops in the network while local and global
repair mechanisms prevent connectivity loss and ensure optimal topology. We have
introduced security concerns regarding the RPL protocol. We have showed that the
lack of nodes resources and no currently deployed secured transmissions leave the
RPL protocol open to a large variety of attacks.

In such constrained networks, it is necessary to provide a monitoring solution with
a minimal impact on the network resources. We have described several monitoring
architectures mostly from ad-hoc networks and wireless sensor networks depending
on their active/passive and centralized/decentralized natures. These approaches have
been compared using several criteria. We have concluded that none of the presented
solutions meets our requirements. In RPL-based IoT networks, in order to address
security, we need a framework which does not require target nodes be instrumented
in order to preserve their resources. To reduce the cost of deploying such an archi-
tecture, it should take bene�t from the RPL protocol features and allows monitoring
nodes to participate in the target network by relying on typical IoT deployments.
This solution should also perform multi-level of monitoring to guarantee a satisfying
reactivity and a �ne granularity of data to address a large variety of threats.

These solutions are necessary to get performance indicators and to detect attacks
to which the RPL protocol is exposed. In the next chapter, we propose to identify
and classify these attacks.

Chapter 3

Taxonomy of Attacks in RPL

Networks

Contents

3.1 Introduction . 25

3.2 Attacks against Resources 26

3.2.1 Direct Attacks . 26

3.2.2 Indirect Attacks . 27

3.2.3 Analysis . 30

3.3 Attacks on Topology . 31

3.3.1 Sub-optimization Attacks 32

3.3.2 Isolation Attacks . 34

3.3.3 Analysis . 35

3.4 Attacks on Tra�c . 37

3.4.1 Eavesdropping Attacks . 37

3.4.2 Misappropriation Attacks 38

3.4.3 Analysis . 39

3.5 Conclusions . 40

3.1 Introduction

Attacks targeting RPL networks require to be identi�ed and prioritized according to
their consequences in order to design e�cient security solutions. In this chapter, we
propose to establish a taxonomy of routing attacks against the RPL protocol. We
take into account the goals of the attack and which element of the RPL network
is impacted. We also describe in this classi�cation existing security solutions we
have found in the literature. The taxonomy is depicted in Figure 3.1 and considers
three categories of security attacks. The �rst category covers attacks targeting the
exhaustion of network resources (energy, memory and power). These attacks are

25

26 Chapter 3. Taxonomy of Attacks in RPL Networks

Figure 3.1: Taxonomy of attacks against RPL networks.

particularly damaging for such constrained networks because they greatly shorten
the lifetime of the devices and thus the lifetime of the RPL network. The second
category includes attacks targeting the RPL network topology. They disturb the
normal operation of the network: the topology may be sub-optimized in comparison
with a normal convergence of the network or a set of RPL nodes may be isolated
from the network. The third category corresponds to attacks against the network
tra�c, such as eavesdropping attacks or misappropriation attacks. Each section of
this chapter focuses on a speci�c category of RPL security attacks.

3.2 Attacks against Resources

Attacks against resources typically consist in making legitimate nodes perform un-
necessary processing in order to exhaust their resources. This category of attacks
aims at consuming node energy, memory or processing. This may impact on the
availability of the network by congesting available links and therefore on the lifetime
of the network which can be signi�cantly shortened. We distinguish two subcat-
egories of attacks against resources. The �rst one gathers direct attacks where a
malicious node will directly generate the overload in order to degrade the network.
The second one contains indirect attacks where the attacker will make other nodes
generate a large amount of tra�c. For instance, such an attack can be performed by
building loops in the RPL network so that other nodes produce tra�c overhead.

3.2.1 Direct Attacks

In case of direct attacks, the attacker is directly responsible for resource exhaustion.
This can typically be done by performing �ooding attacks or by executing overloading
attacks with respect to routing tables, when the storing mode is active.

3.2.1.1 Flooding Attacks

Flooding attacks consist in generating a large amount of tra�c in a network and
make nodes and links unavailable. These attacks can be performed by an external or

3.2. Attacks against Resources 27

internal attacker. They exhaust the resources of all the network nodes in the worst
case. More speci�cally, using solicitation messages to perform the �ooding is called
an HELLO �ood attack. In RPL networks, an attacker can either broadcast DIS
messages to its neighboring nodes which have to reset their trickle timer, or, unicast
DIS messages to a node which has to reply with DIO messages. In both cases, this
attack leads to network congestion and also to the saturation of the RPL nodes. The
consequences of such attacks have been studied in [45], the authors show that the
control message overhead signi�cantly increases but the delivery ratio is not a�ected.
However, no solution especially designed for RPL has been proposed.

3.2.1.2 Routing Table Overload Attacks in Storing Mode

It is also possible to perform direct attacks against resources by overloading the RPL
routing tables. The RPL protocol is a proactive protocol. This means that the RPL
router nodes build and maintain routing tables when the storing mode is enabled
for those nodes. The principle of routing table overload is to announce fake routes
using the DAO messages which saturate the routing table of the targeted node.
This saturation prevents the build of new legitimate routes and impacts network
functioning. It may also result in a memory over�ow. Let us consider the example of
the DODAG 2 described in Figure 2.2 in Section 2.2 and assume that node 12 plays
the role of the attacker. Nodes 12 and 13 send a DAO message in order to add the
corresponding entries in the routing table of node 11. The attacker, node 12, sends
multiple forged DAO messages to node 11 with false destinations. As a consequence,
node 11 builds all the corresponding entries in its routing table. Afterwards, when
the other nodes including node 13 are sending legitimate DAO messages with respect
to new routes, the node 11 is no longer able to record them because its routing table
is overloaded. This attack is not speci�cally mentioned in the literature but it is part
of overload attacks more generally [66].

3.2.2 Indirect Attacks

Indirect attacks correspond to attacks where the malicious node makes other nodes
generate an overload for the network. It includes: increased rank attacks, DAG
inconsistency attacks and version number attacks.

3.2.2.1 Increased Rank Attacks

The increased rank attack consists in voluntarily increasing the rank value of a
RPL node in order to generate loops in the network. This attack has been studied
in [81] through ns-2 simulations. The authors showed that their loop avoidance
mechanisms costed more than the attack itself. Concretely, in a RPL network, a
rank value is associated to each node and corresponds to its position in the graph
structure according to the root node. As previously mentioned, the node rank is
always increasing in the downward direction in order to preserve the acyclic structure
of the DODAG. When a node determines its rank value, this one must be greater than

28 Chapter 3. Taxonomy of Attacks in RPL Networks

(a) Initial State (b) Final State

Figure 3.2: Rank increased attack in a RPL network.

the rank values of its parents. If a node wants to change its rank value, it has �rst
to update its parents list by removing the nodes having a higher rank than its new
rank value. Once a node has established the set of parents in a DODAG, it selects its
preferred parent from this list in order to optimize the routing cost when transmitting
a packet to the root node. A malicious node advertises a higher rank value than the
one it is supposed to have. Loops are formed when its new preferred parent was in its
prior sub-DODAG and only if the attacker does not use loop avoidance mechanisms.
In that case, two attack scenarios are possible as illustrated in Figure 3.2. In the
�rst scenario, the attacker is node 13 and the new preferred parent (node 24) has
already a substitute parent (node 12) to re-attach to. The node 13 increases its
rank value to 3 and chooses node 24 as the new preferred parent. This operation
generates a routing loop in the DODAG graph, because the node 24 was in the prior
sub-DODAG of node 13. The formed loop is composed of nodes 13 and 24 and is
easily repaired because the node 24 can re-attach to node 12 after sending few control
messages. However, this attack becomes more problematic when the node does not
have a substitute parent such as node 31 in the second scenario. As depicted in
Figure 3.2, the attacker, node 21, increases its rank value which requires node 31
to also increase its own in order to �nd a new parent. Meanwhile nodes 32 and 33
have to connect to a substitute parent (node 22) so node 31 selects node 32 as new
preferred parent. At the end, node 21 increases its rank value to 5 in order to add
node 31 as its preferred parent. The count-to-in�nity problem is avoided because
of the limitation of the maximum rank value advertised for a DODAG, as seen in
Section 2.2.3. The increased rank attack is more damaging in this second scenario,
because more routing loops are built at the neighborhood. In that case, the loop
repair mechanism requires to send many DIO messages (resets of the trickle timer)
and requires a longer convergence time. The more the number of a�ected nodes
increases, the longer the convergence time is. We consider this attack as part of the

3.2. Attacks against Resources 29

resource consumption attacks because the churn is exhausting node batteries and is
congesting the RPL network.

To mitigate this attack, the number of times a RPL node is increasing its rank
value in the DODAG graph should be monitored to determine if a node can be
considered as malicious or miscon�gured. It is important to notice that a node can
legitimately increase its rank value if it no longer matches the objective function
and/or cannot manage the amount of received tra�c. However, it must use the loop
prevention techniques or it can wait for a new version of the DODAG graph. Also,
thanks to the data path validation mechanism, the RPL protocol is able to deal with
these loops even if resources are consumed to repair them [80].

3.2.2.2 DAG Inconsistency Attacks

A RPL node detects a DAG inconsistency when it receives a packet with a Down 'O'
bit set from a node with a higher rank and vice-versa [80] e.g. when the direction
of the packet does not match the rank relationship. This can be the result of a loop
in the graph. The Rank-Error 'R' bit �ag is used to control this problem. When an
inconsistency is detected by a node, two scenarios are possible: (i) if the Rank-Error
�ag is not set, the node sets it and the packet is forwarded. Only one inconsistency
along the path is not considered as a critical situation for the RPL network, (ii) if the
'R' bit is already set, the node discards the packet and the trickle timer is reset [46].
As a consequence, control messages are sent more frequently. A malicious node has
just to modify the �ags or add new �ags to the header. The immediate outcome of
this attack is to force the reset of the DIO trickle timer of the targeted node. In
that case, this node starts to transmit DIO messages more frequently producing local
instability in the RPL network. This also consumes the battery of the nodes and
impacts the availability of links. All the neighborhood of the attacker is concerned
by the attack, since it has to process unnecessary tra�c. Moreover, by modifying
legitimate tra�c, all the packets are discarded by the targeted node. This causes
a blackhole and isolates segments of the network. To mitigate the �ooding induced
by this attack, [32] proposes to limit the rate of trickle timer resets due to an RPL
Option to no greater than 20 resets per hour, however no reasoning is provided
regarding this value. We will present in Chapter 5 two solutions that takes into
account network characteristics to detect and mitigate such attacks.

3.2.2.3 Version Number Attacks

The version number is an important �eld of each DIO message. It is propagated un-
changed down the DODAG graph and is incremented by the root only, each time a
rebuild of the DODAG is necessary which is also called global repair. An older value
indicates that the node has not migrated to the new DODAG graph and cannot be
used as a parent node. An attacker can change the version number by illegitimately
increasing this �eld in DIO messages when it sends them to its neighbors. Such
an attack causes an unnecessary rebuilding of the whole DODAG graph thereby ex-
hausting node resources. Dvir et al. [28] proposed a security mechanism called VeRa

30 Chapter 3. Taxonomy of Attacks in RPL Networks

(standing for Version Number and Rank Authentication) that prevents compromised
nodes from impersonating the root and from sending an illegitimate increased version
number. The solution uses authentication mechanisms based on hash operations. In
that case, a node can easily check if the version number has been modi�ed by the
root node or by another malicious node, which can no longer usurp the identity of
the DODAG root. Also, authors of [40] proposed an improvement of the previous
solution solving some issues they discovered in VeRA. In this thesis we will also
propose a detection strategy for these attacks in Chapter 6.

3.2.3 Analysis

We discuss in this section the properties of the identi�ed attacks as well as methods
and techniques to address them. Table 3.1 summarizes attacks against resources.
A �rst property to be analyzed is the internal (I) or external (E) nature of the
attacks. Internal attacks are initiated by a malicious or compromised node of the
RPL network. External attacks are performed by nodes that do not belong to the
RPL network or are not allowed to access it. We can observe that only the �ooding
can be performed externally because the attacker does not need to join the graph to
perform the DIS �ooding since DIS message are used to discover the DODAG. For
the rest of the attacks, the malicious node needs to be part of the DODAG to have
enough knowledge in order to launch its attacks.

Table 3.1: Summary of attacks on resources.

Attacks I/E A/P Prerequisites Impact CIA
Mitigation/
Protection

Overhead

Flooding I/E A - Link/Battery A None None

Routing
Table
Overload

I A
Storing
Mode

Memory/Battery A/I None None

Increased
Rank
Attack

I A - Battery/Link A
RPL loop detection

and avoidance
mechanisms [80]

None (by
default in
RPL)

DAG In-
consistency
Attack

I A
Option
Header

Battery/Link A/I
Limitation of timer

resets [32]
Low

Version
Number
Attack

I A - Battery/Link A/I

VersionNumber and
Rank

Authentication [28],
TRAIL [40]

Low (for
both

solutions)

A second property is to determine if the attack is passive (P) or active (A).
Passive attacks do not modify the behavior of the network. On the contrary, active
attacks require the malicious node to perform operations that are observable by
other nodes in the network. They are usually more critical than passive attacks
which mainly target data con�dentiality or topology information. Attacks targeting

3.3. Attacks on Topology 31

the resources are all active since the attacker has to send packets. A third property is
the prerequisites property. The prerequisites are the required conditions to initiate
the attack besides the internal/external nature of the attack, such as particular
con�guration of the network. The storing mode which means maintaining routing
tables has to be enabled to launch routing table overload and the RPL option header
has to be implemented to run DAG inconsistency attacks.

The next property corresponds to the impact of the attacks. The objective is to
quantify the consequences of a successful attack on the network. The impact in this
category is evaluated as the type of over-consumed resources (e.g. memory, battery,
link availability). We observe that all the attacks consume node battery as they
imply additional processing for the nodes. Most of the time, the link availability is
also impacted since the attacks require sending a large number of control messages.
The memory is also over-consumed in case of routing table overload attacks.

The �fth property corresponds to the CIA acronym standing for con�dentiality,
integrity and availability, and refers to a security reference model. In the context
of the RPL protocol, con�dentiality means the protection of routing information
and exchanges. Integrity involves the protection of routing information from unau-
thorized modi�cation, and availability requires that forwarding services and routing
information exchanges are accessible for the nodes. Regarding the identi�ed at-
tacks targeting resources, they systematically impact network availability. Indeed,
these attacks involve that the attacker jeopardizes resources of the network (battery,
memory, processing, link availability). The integrity is also impacted when the result
of the attack supposes that a legitimate resource or legitimate tra�c is corrupted
e.g. routing table of legitimate nodes is altered during routing table overload at-
tacks. Version number modi�cations and DAG inconsistency attacks induce that the
integrity of packets is jeopardized.

The two last columns of tables indicate respectively the possible security mech-
anisms to address the attacks, and their overhead (according to their authors). We
saw that RPL provides internal mechanisms which contribute to counter attacks.
For instance, the loop avoidance mechanisms prevent increased rank attacks. The
protocol also proposes an optional mitigation mechanism that limits inconsistency
attacks impact [32]. Speci�c approaches have been designed for the RPL protocol.
The VeRa [28] and the TRAIL [40] approaches address version number modi�ca-
tions. In many cases, it is di�cult to evaluate the overhead induced by the security
mechanisms because they are still at a conceptual level. Moreover, we cannot re-
ally consider that the mechanisms which are inherent to the RPL protocol operation
introduce an overhead.

3.3 Attacks on Topology

Attacks against the RPL protocol can also target network topology. We distinguish
two main categories among these attacks: sub-optimization and isolation.

32 Chapter 3. Taxonomy of Attacks in RPL Networks

3.3.1 Sub-optimization Attacks

In case of sub-optimization attacks, the network will not converge to the optimal
form (i.e optimal paths) inducing poor performance.

3.3.1.1 Routing Table Falsi�cation Attacks in Storing Mode

In a routing protocol, it is possible to forge or modify routing information to advertise
falsi�ed routes to other nodes. This attack can be performed in the RPL network by
modifying or forging DAO control messages in order to build fake downward routes.
This can only be done when the storing mode is enabled. For instance, a malicious
node advertises routes towards nodes that are not in its sub-DODAG. Targeted nodes
have then wrong routes in their routing table causing network sub-optimization. As
a result, the path can be longer inducing delay, packet drops or network congestion.
This has not been studied yet in the context of the RPL protocol.

3.3.1.2 Sinkhole Attacks

An alternative attack consists in building a sinkhole. Such an attack takes place in
two steps. First, the malicious node manages to attract a lot of tra�c by advertising
falsi�ed information data (for instance, up and downward links of superior quality).
Then, after having received the tra�c in an illegitimate manner, it modi�es or drops
it. In RPL networks, the attack can be easily performed through the manipulation of
the rank value as showed in Section 3.4.2.1. Because of this falsi�ed advertisement,
the malicious node is more frequently chosen as preferred parent by the other nodes,
while it does not provide better performance. Thus, the routes are not optimized for
the network. The attack modi�es the topology and degrades network performance.
Moreover, if the attacker decides to drop all the tra�c, it also performs a blackhole
attack.

This attack was studied in [78] and [63], the authors proposed an IDS called
SVELTE to counter it. A functionality of this IDS is to build a global view of the
network and as a consequence the possibility to detect inconsistencies in the network
such as sinkholes as presented in Chapter 2. In [79], the authors investigated defense
techniques against sinkholes. The �rst technique is called Rank veri�cation and
restricts the possibility for the attacker to decrease its rank value. It allows legitimate
nodes to check if another node along the path has a fake rank. The second technique
is called parent fail-over and operates as an end-to-end acknowledgement. When
a root node does not receive enough tra�c from a node (according to a certain
threshold value), it adds this node's address in a DIO message �eld. When the node
receives the DIO message with its own identity, it blacklists its parent and selects
another one. The authors show that a combination of these two techniques provides
e�cient results in a RPL network.

3.3. Attacks on Topology 33

3.3.1.3 Wormhole Attacks

Wormhole attacks are de�ned as the use of a pair of RPL attacker nodes, nodes A
and B, linked via a private network connection. An example is depicted in Figure 3.3.
In this scenario, every packet received by node 13 is forwarded through the wormhole
to node 21 in order to be replayed later. Since the roles are interchangeable, node 21
may perform the same operations than node 13. In the case of wireless networks, it
is easier to perform this attack because the attacker can send through the wormhole
the tra�c addressed to himself as well as all the tra�c intercepted in the wireless
transmissions. The wormhole attack distorts the routing path and is particularly
problematic for RPL networks. If an attacker tunnels routing information to another
part of the network, nodes which are actually distant, see each other as if they are in
the same neighborhood. As a result, they can create non-optimized routes according
to the objective function.

Figure 3.3: A wormhole attack in a RPL network.

This attack was studied in [78] which showed that the RPL protocol cannot solve
this attack by itself. The authors explained that countering this type of attack is a
research challenge if one node of the wormhole is in the Internet. If both attackers are
in the RPL networks, the authors suggested to use geographical data and di�erent
cryptographic keys at the MAC layer for di�erent segments to solve this threat
issue. Also the authors of [34] proposed to prevent this attack by using Merkel trees
to authenticate nodes and paths.

3.3.1.4 Routing Information Replay Attacks

A RPL node can also perform routing information replay attacks. It records valid
control messages from other nodes and forwards them later in the network. In case
of dynamic networks, this attack is quite damaging because the topology and the
routing paths are often changed. Replay attacks cause nodes to update their routing
tables with outdated data resulting in a false topology. The RPL protocol uses

34 Chapter 3. Taxonomy of Attacks in RPL Networks

some sequence counters to ensure the freshness of the routing information such as
the version number for DIO messages or the path sequence number present in the
transit information option of DAO messages [80]. This attack is mentioned in [66]
however the authors neither study the consequences of such an attack nor explained
how it can takes place in RPL networks.

3.3.1.5 Worst Parent Attacks

This attack described in [43] and termed as "Rank attack" consists in choosing
systematically the worst preferred parent according to the objective function. The
outcome is that the resulting path is not optimized inducing poor performance. This
attack cannot be easily tackled because children node rely on their parent to route
packets and this attack cannot be monitored by neighbors. However, using a security
solution which rebuilds a global view of the graph based on nodes information should
detect this attack such as the proposed solution in [63].

3.3.2 Isolation Attacks

The attacks against the topology can also isolate a node or a subset of nodes in the
RPL network which means that these nodes are no longer able to communicate with
their parents or with the root.

3.3.2.1 Blackhole Attacks

In a blackhole attack, a malicious intruder drops all the packets that it is supposed
to forward. This attack can be very damaging when combined with a sinkhole attack
causing the loss of a large part of the tra�c. It can be seen as a type of denial-of-
service attack. If the attacker is located at a strategic position in the graph it can
isolate several nodes from the network. There is also a variant of this attack called
gray hole (or also selective forwarding attack) where the attacker only discards a spe-
ci�c sub-part of the network tra�c. Chugh et al.[18] investigated the consequences
of blackhole attacks in RPL networks through a set of Cooja simulations. They
highlighted di�erent indicators to detect these attacks such as rate and frequency of
DIO messages, packet delivery ratio, loss percentage and delay. The SVELTE IDS
proposed in [63] was designed to detect selective forwarding attacks in such networks.

3.3.2.2 DAO Inconsistency Attacks in Storing Mode

DAO inconsistencies occur when a node has a downward route that was previously
learned from a DAO message, but this route is no longer valid in the routing table
of the child node [80]. RPL provides a mechanism to repair this inconsistency,
called DAO inconsistency loop recovery in the data path validation. This optional
mechanism allows the RPL router nodes to remove the outdated downward routes
using the Forwarding-Error 'F' �ag in data packets which indicates that a packet
can not be delivered by a child node. The packet with the 'F' �ag is sent back to
the parent in order to use another neighbor node, as depicted in Figure 3.4. Once

3.3. Attacks on Topology 35

a packet is transmitted downward, it should normally never go up again. When it
happens the router sends the packet to the parent that passed it with the Forwarding-
Error 'F' bit set and the Down 'O' bit left. When the parent receives the packet with
'F' set it removes the corresponding routing state, clear the 'F' bit, and try to send
the packet to another neighbor. If the alternate neighbor still has an inconsistent
state the process reiterates.

(a) Initial State (b) Final State

Figure 3.4: Illustration of a DAO inconsistency attack.

In this scenario, the malicious node is represented by node 21. It uses the 'F'
�ag to make RPL routers remove legitimate downward routes and thus isolate nodes
from the DODAG graph. Each time node 21 receives a packet from node 11, it only
changes the RPL 'F' �ag and sends it back to node 11. As a consequence, the other
nodes of the network (nodes 31 to 33) are isolated from the graph. The objective of
this attack is to make router nodes discard available downward routes. This makes
the topology of the DODAG graph sub-optimal. One possible consequence of this
attack is to isolate the sub-DODAG bound to the attacker which can no longer
receive packets, as in our example. This also leads to additional congestion (if the
packets are forwarded through sub-optimal paths), partitions and instabilities in the
network. The consequences for the children nodes include starvation and delay [10].
To reduce the e�ects of this attack on the network, RFC 6553 proposes to limit the
rate of the downward routing entries discarded due to an 'F' �ag to 20 per hour [32].
Once this value is reached 'F' �ag packets are no longer taken into account.

3.3.3 Analysis

Table 3.2 synthesizes attacks targeting the topology. We notice that the attacker
has to be both internal and active for these attacks. Indeed, the malicious node
has to join the graph to manipulate the topology. The attacks related to routing
tables such as routing table falsi�cations and DAO inconsistency attacks need the
storing mode to be enabled. Also the RPL option header has to be implemented for
the second attack since the malicious node misuses the data path validation which

36 Chapter 3. Taxonomy of Attacks in RPL Networks

relies on this header. At least two malicious intruders are required to perform the
wormhole attack.

Table 3.2: Summary of attacks on topology.

Attacks I/E A/P Prerequisites Impact CIA
Mitigation/
Protection

Overhead

Routing
Table Fals.

I A
Storing
Mode

Target's
Subnet, D

A/I None None

Sinkhole I A -

Attacker's
Subnet and

Neighborhood,
D/U

A/I
SVELTE [63], Rank
veri�cation [28] and
Parent fail-over [79]

Low, No
evaluation

Wormhole I A
2 intruders

min.
Attackers

Subnet, D/U
A/I

Geographical data
[78], Merkel trees

[34]

No
evaluation
(for both)

Routing
Infor-
mation
Replay

I A -
Attacker's

Neighborhood,
D/U

A/I
Sequence Number

[80]

None (by
default in
RPL)

Worst
Parent

I A -
Attacker's

Subnet, D/U
A/I None None

Blackhole I A -
Attacker's

Subnet, D/U
A/I

Monitoring of
counters [18], Parent

fail-over [79],
SVELTE[63]

Depends on
the solution,

No
evaluation

DAO In-
consis-
tency

I A

Storing
Mode,
Option
Header

Target's
Subnet, D

A/I
Limitation of

discarding routing
state [32]

Low

In this table, the impact characterizes how the topology of the network is a�ected
(modi�ed or isolated) and what type of tra�c is concerned (e.g. downward (D) or
upward tra�c (U)). We consider two main areas that may be impacted: (1) the
neighborhood of a RPL node corresponding to nodes in the direct vicinity such
as parents, children, and siblings nodes, and (2) the subnet of a node. We can
observe in that table that routing table falsi�cation and DAO inconsistency attacks
are characterized by a similar impact. Indeed, these two attacks corrupt the routing
tables of the target. Only downward tra�c is concerned because routing tables are
only used for downward routing. Therefore, the subnet of the target is modi�ed but
the upward tra�c is not disturbed. All the other attacks can have consequences on
both upward and downward tra�c since they concern all types of packets. In that
case, both the subnet and/or the neighborhood can be damaged. These attacks do
not target a speci�c node but try to impact on the overall network tra�c in general,
even if some �ltering can also be performed.

Regarding the next property, the availability is impacted in all attacks because

3.4. Attacks on Tra�c 37

the malicious node modi�es the topology and then isolates nodes or degrades net-
work performance through sub-optimization. The integrity is also impacted by at-
tacks targeting topology. For instance, routing table falsi�cation attacks and DAO
inconsistency attacks alter routing tables. Decreased rank attacks induce that the
integrity of packets is jeopardized. Moreover, the routing information held by legit-
imate nodes such as parent identity, freshness or routing path are corrupted during
routing information replay, sinkhole, wormhole, blackhole and worst parent attacks.

Replay attacks can be countered by sequence numbers implemented by default in
the RPL protocol; also the optional mechanism proposed in RFC 6553 mitigates the
e�ects of DAO inconsistency. The cost of this mitigation is low because it consists in
implementing a �xed threshold. Di�erent authors proposed several counter-measures
to topology attacks such as the Rank veri�cation [28], the Parent fail-over [79] or
Merkel trees [34], however the costs of these solutions have not been evaluated yet.
Chugh et al. [18] have de�ned methods for e�ciently detecting blackholes in these
networks. The SVELTE IDS [63] is also designed to detect the sinkhole and blackhole
attacks. We notice that there is no solution for routing table falsi�cation since
this attack has not been studied in the context of the RPL protocol. The worst
parent attack also does not have any counter-measures although this threat has been
studied [43].

3.4 Attacks on Tra�c

This third category concerns the attacks targeting the RPL network tra�c. It mainly
includes eavesdropping attacks on the one hand, and misappropriation attacks on the
other hand.

3.4.1 Eavesdropping Attacks

The pervasive nature of RPL networks may facilitate the deployment of malicious
nodes performing eavesdropping activities such as sni�ng and analyzing the tra�c
of the network.

3.4.1.1 Sni�ng Attacks

A sni�ng attack consists in listening to the packets transmitted over the network.
This attack is very common in wired and wireless networks and compromises the
con�dentiality of communications. An attacker can perform this attack using a
compromised device or directly capture the packets from the shared medium in case
of wireless networks. The information obtained from the sni�ed packets may include
partial topology, routing information and data content. In RPL networks, if an
attacker sni�s control messages, it can access information regarding the DODAG
con�guration such as DODAG ID, version number, ranks of the nodes located in the
neighborhood. By sni�ng data packets, the attacks can not only discover packet
content but also have a local view of the topology in the eavesdropped area by
looking at source/destination addresses. This attack is di�cult to be detected due

38 Chapter 3. Taxonomy of Attacks in RPL Networks

to its passive nature. The only way to prevent sni�ng is encryption of messages
when the attacker is external. Even if RFC 6550 mentions encryption of control
messages as an option, the technical details are left out from the speci�cation making
implementation di�cult.

3.4.1.2 Tra�c Analysis Attacks

Tra�c analysis aims at getting routing information by using the characteristics and
patterns of the tra�c on a link. This attack can be performed even if the packets are
encrypted. The objective is, like sni�ng attacks, to gather information about the
RPL network such as a partial view of the topology by identifying parent/children
relationships. Thanks to this attack, a malicious node can possibly perform other
attacks with the gathered information. The consequences depend on the rank of the
attacker. If this one is close to the root node, it can process a large amount of tra�c
and therefore can get more information than when the node is located on the edge
of a sub-DODAG.

3.4.2 Misappropriation Attacks

In misappropriation attacks, the identity of a legitimate node is usurped or perfor-
mance are overclaimed. These attacks are not so damaging for the RPL network
per se. However, they are often used as a �rst step for other attacks such as those
seen in the previous two main categories. They allow the attacker to gain a better
understanding of the network and its topology, to get better access or to intercept a
large part of the tra�c.

3.4.2.1 Decreased Rank Attacks

In a DODAG graph, the lower the rank is, the closer the node is to the root and
the more tra�c this node has to manage. When a malicious node illegitimately
advertises a lower rank value, it overclaims its performance. As a result, many
legitimate nodes connect to the DODAG graph via the attacker. This results in the
attraction of a large part of the tra�c, as showed in Figure 3.5. Thanks to this
operation, the malicious node is capable of performing other attacks such as sinkhole
and eavesdropping attacks. In the RPL protocol, an attacker can change its rank
value through the falsi�cation of DIO messages. The VeRa [28] solution as well as
the Rank veri�cation method [79] described in Sections 3.3.1.2 and 3.2.2.3 are able
to address this issue. However, authors in [40] have showed that VeRa is not secure
regarding rank authentication and they proposed improvements to address this issue
called TRAIL. They also showed another way to perform this attack by replaying
the rank of the attacker's parent which allows it to decrease its rank by one. Since
SVELTE [63] can detect sinkhole attacks it can also detect the decreased rank attack.

3.4. Attacks on Tra�c 39

(a) Initial State (b) Final State

Figure 3.5: Illustration of a decreased rank attack.

3.4.2.2 Identity Attacks

Identity attacks gather both spoo�ng and sybil attacks. A spoo�ng attack also called
Clone ID attack occurs when a malicious node pretends to be a legitimate existing
node. In RPL networks, the root node plays a key role in a DODAG graph. It builds
and maintains the topology by sending routing information. An attacker may sni�
the network tra�c to identify the root node. Once this identi�cation is performed,
it can spoof the address of the DODAG root and take the control over the network.
During sybil attacks [26], one malicious node uses several logical entities on the same
physical node. Identity attacks are used as a premise to perform other operations.
In [78], the authors have showed that the RPL protocol cannot solve this issue by
itself and proposed to consider geographical data to detect such attacks.

3.4.3 Analysis

As we can observe in Table 3.3, eavesdropping attacks can be performed externally.
They are usually exploited to gain access to the internal network. As for the other
categories, the attacker has to be an insider to perform misappropriation attacks.
Only the eavesdropping attacks have been classi�ed as passive attacks. All the other
identi�ed attacks induce that the attacker generates or modi�es packets. Passive
attacks are quite di�cult to detect, in particular in RPL networks which are often
supported by wireless links. There is no particular prerequisite for attacks on tra�c.

Regarding attacks on tra�c, Table 3.3 describes the cases where the consequences
can be considered as critical for the RPL network. The e�ect of eavesdropping attacks
depends on the nature of the listened data. For instance, data content may be of
high importance for patients in the area of healthcare sensor networks, while the
criticality is lower when the objective of the RPL network is simply to collect weather
temperatures. In case of misappropriation attacks, the consequences are determined
by the location of the malicious or spoofed node. Indeed, when the malicious node
has a lower rank, it is closer to the root. It is therefore capable of intercepting a

40 Chapter 3. Taxonomy of Attacks in RPL Networks

Table 3.3: Summary of attacks on tra�c.

Attacks I/E A/P Prerequisites Impact CIA
Mitigation/
Protection

Overhead

Sni�ng I/E P - Critical data C Encryption [80]
Depends on

the
algorithms

Tra�c
Analysis

I/E P - Critical data C None None

Decreased
Rank

I A - Node's rank I

VeRA [28],
TRAIL [40], Rank
veri�cation [79],
SVELTE [63]

Low, Low,
Not

evaluated,
Low

Identity
attack

I A - Node's rank I None None

larger amount of data and the opportunities to attack the RPL network are bigger.
The next property to be discussed is the classi�cation according to the CIA

model. The con�dentiality aspect concerns eavesdropping attacks, where the goal of
the attacker is to obtain information about the network con�guration. Due to the
nature of misappropriation attacks, the integrity property is a�ected in these cases.

The only way to prevent sni�ng is to use encryption. However, in our secu-
rity model we assumed that the attacker is able to break the cryptography due to
the physical constraints of RPL networks. As mentioned previously, even if crypto-
graphic mechanisms are suggested in the standard, it is di�cult to implement them
because important feature like key-management are left out by the RFC. Moreover,
cryptographic algorithms are known to be resource consuming in terms of memory
and computation. Current RPL implementations, as such, do not enable secure op-
eration modes. To our knowledge, there is no current existing solution to prevent
tra�c analysis and identity attacks in RPL networks. However, the decreased rank
attack has been widely studied because it is also used in sinkhole attacks and several
counter-measures has been proposed.

3.5 Conclusions

Considering the nature of RPL networks it is mandatory to identify and analyze the
security attacks to which this protocol is exposed. We have therefore proposed, in
this chapter, a taxonomy classifying the attacks against the RPL protocol in three
main categories. The attacks against resources reduce network lifetime through the
generation of fake control messages or the building of loops. The attacks against
the topology make the network converge to a sub-optimal con�guration or they
isolate nodes. Finally, attacks against network tra�c let a malicious node capture
and analyze large part of the tra�c. Based on this taxonomy, we have compared the
properties of these attacks and discussed methods and techniques to avoid or prevent

3.5. Conclusions 41

them.
We have showed how the RPL protocol is exposed to a large variety of attacks. In

order to complement this analysis, we need to quantify the consequences of these at-
tacks. We therefore want to study further attacks in order to evaluate their behavior
and their impact on a RPL network according to relevant metrics.

Chapter 4

Impact Assessment of RPL

Attacks

Contents

4.1 Introduction . 43

4.2 The DAG Inconsistency Attack 44

4.2.1 Attack Description . 44

4.2.2 Simulation Setup . 46

4.2.3 Impact Quanti�cation . 46

4.3 The Version Number Attack 48

4.3.1 Attack Description . 48

4.3.2 Simulation Setup . 49

4.3.3 Impact Quanti�cation . 50

4.4 Conclusions . 55

4.1 Introduction

Quantifying the impact of attacks is important to design e�cient and accurate se-
curity strategies. We consider in this chapter two attacks speci�c to RPL: the DAG
inconsistency attack and the version number attack because they target the node
resources, as presented in our taxonomy, which implies a shortened lifetime of the
network.

We have showed in Chapter 3 that the DAG inconsistency attack exploits the RPL
data path validation feature which is used to avoid and detect possible loops within
the network. Packet information is transported in an IPv6 option header. Three
�ags are de�ned: the down 'O' �ag indicating the expected direction of a packet,
the rank-error 'R' �ag signaling if a mismatch occurred between the down �ag and
the actual direction of the packet and the forwarding-error 'F' �ag used to indicate
whether a node cannot reach a destination. The attack consists in manipulating
the 'O' and 'R' �ags in the IPv6 option header of regular data packets to introduce

43

44 Chapter 4. Impact Assessment of RPL Attacks

fake loops in the network. Meanwhile the version number attack exploits the global
repair mechanism provided by the RPL protocol to ensure an optimized topology.
A malicious node may modify the version number associated to a topology, thereby
forcing a rebuild of the entire routing tree. Since the version number is included in
control messages by parents, there is no mechanism provided by the standardized
protocol to guarantee the integrity of the advertised version number.

We focus on the DAG inconsistency attack in Section 4.2 and present two possible
ways for a malicious node to perform it. The consequences of these attack scenarios
are evaluated through experiments. We then analyze in Section 4.3 the version
number attack and also assess its impact on a RPL network.

4.2 The DAG Inconsistency Attack

In this section, we �rst present the di�erent scenarios for the DAG inconsistency
attack. After describing our simulation setup, we detail the evaluation results.

4.2.1 Attack Description

The RPL data path validation mechanism was designed to improve reliability of the
protocol. However, a malicious node can misuse it in order to attack the network;
this is called a DAG inconsistency attack. This attack can be used to directly harm
a targeted node, or to manipulate packet headers and force the next-hop node to
drop the modi�ed packets.

1"

2" 3"

9"8"7"

6"5"4"

10"

Control'Message'

A.ack'Message'

R=1$R=2$

R=2$
R=2$

R=3$R=3$R=3$

R=4$R=4$R=4$

(a) Direct attack scenario.

1" 2" 5"4"3"

Data$Packets$

Modified$Packets$

1"

2"

3"

4"

5"

R=1$ R=2$ R=3$ R=4$ R=5$

(b) Indirect attack scenario.

Figure 4.1: DAG inconsistency attack scenarios.

4.2. The DAG Inconsistency Attack 45

4.2.1.1 Direct Attack Scenario

A malicious intruder can directly attack its neighborhood by sending packets that
have the `R' �ag and the wrong direction set. For instance, if a parent is targeted,
the attacker can send packets with the `O' and `R' �ags set, since packets with `O'
�ag are intended for descendant nodes. The parent will detect an inconsistency and
thus, drop the packet and restart its trickle timer.

Resetting the trickle timer causes control messages to be sent more frequently
which leads to local instability in the network. This increased control message over-
head reduces channel availability and increases energy consumption which can lead
to a shortened network lifetime in case nodes are battery operated. Since nodes in
RPL networks are likely to be resource constrained, they are unlikely to support
multi-tasking or large packet bu�ers. As such, time spent on processing malicious
packets could lead to loss of genuine ones.

Figure 4.1(a) depicts a scenario where such an attack takes place. In this case,
a stable network topology of ten nodes is formed using RPL. Node 10 assumes the
role of an attacker by sending messages, with the `O' and `R' �ags set, to node 2,
its parent. Node 2 resets its trickle timer, thereby �ooding its neighborhood with
control messages and a�ecting nodes 4 and 5 as well.

4.2.1.2 Packet Manipulation Scenario

In this scenario, the malicious intruder modi�es the IPv6 header of packets it forwards
such that the 'R' �ag and the 'O' �ag representing the wrong direction are set. The
receiving node assumes that a DAG inconsistency has taken place and discards the
packet. As a result, the malicious node succeeds in forming a black-hole at the next-
hop node. This attack could either be carried out on all packets forwarded by the
malicious node, or selectively based on source, destination, or even type of message.

The nodes originating the message cannot easily detect this forced black-hole
because the packet is not dropped by their next-hop, but by a node that is at least
two hops away. If the malicious node itself were to drop the packets, its children
could detect this by enabling the promiscuous mode. But the promiscuous mode is
not an option in such a scenario since in most RPL networks, a node that is two hops
away is usually out of radio range as well [18]. This means, that only the attacker
is within the radio range of both the sender and the node that drops the packet.
The modi�cation of header could be detected by nodes with the promiscuous mode
enabled, however, it is known to consume node energy, which is not suitable for C0
devices.

In general this approach is an advantageous strategy for the attacker to force
another node to drop the packets. Furthermore, if the control packets originating
from the malicious node are normal, then the malicious activity is completely hidden.
In this scenario, not only the delivery ratio decreases, but the control overhead of
RPL nodes also increases along with deteriorating channel availability and increasing
energy consumption.

For example, in the DODAG depicted by Figure 4.1(b) node 3 is the attacker.

46 Chapter 4. Impact Assessment of RPL Attacks

Before forwarding data packets from its descendants, nodes 4 and 5, it modi�es
them such that the `O' and `R' �ags are set. As a consequence, node 2 drops them,
thereby becoming akin to a black-hole. This causes the delivery ratio for nodes 4
and 5, descendants of node 3 to be severely harmed. Node 2 also resets its trickle
timer causing an increase in overhead as well.

4.2.2 Simulation Setup

The Contiki 2.6 operating system has been used for evaluating the DAG incon-
sistency attack since it provides an RPL implementation that works on multiple
platforms. However, the RPL implementation provided by Contiki did not support
correct handling of data path validation mechanism. While packets with the `R'
�ag are dropped, the trickle timers are not reset. As such, the implementation was
modi�ed to correct this functionality.

The TelosB, also known as the TMote Sky, has been used as the development
platform since its computational resources allow it to function as an RPL router
node with the Contiki RPL implementation. To permit evaluation under multiple
scenarios, instead of building a topology of actual nodes, the compiled binary for
a TelosB was used in the Cooja [59] simulator provided by Contiki with Unit Disk
Graph radio attenuation and scattering model (UDGM). This approach provides a
method to quantify the DAG inconsistency attack impact under conditions where
the lossy IEEE 802.15.4 channel does not cause packet loss. This allows evaluation
under ideal conditions, with no external characteristics causing bias in the results.
The Cooja simulator is quite close to real hardware since it uses the MSPSim soft-
ware to emulate the MSP430 architecture and the performance of a MSP430F1611
microcontroller, which is utilized by the TelosB. A validation of the simulation tool
will be provided in Chapter 5.

4.2.3 Impact Quanti�cation

The consequences of the direct attack scenario are �rst evaluated using the control
message overhead metric. We then study the impact of the packet manipulation
scenario based on control message overhead and overall delivery ratio metrics.

4.2.3.1 Direct Attack Scenario Evaluation

To evaluate the control message overhead caused by the DAG inconsistency attack,
the topology showed in Figure 4.1(a) has been setup in Cooja, with node 1, the
DODAG root, acting as the sink. Other nodes have been con�gured to send messages
to the sink to generate a background tra�c (every six seconds). To avoid packet
collisions and add a degree of irregularity to the transmission scenario, an additional
back-o� period of up to six seconds has been added. The RPL implementation has
been setup to always reset trickle timers as indicated by RFC 6550 [80]. The attacker,
i.e., node 10 in Figure 4.1(a), has been setup to periodically send packets, between 15
to 90 msgs/hr, with the `O' and `R' �ags towards the sink. Each simulation has been

4.2. The DAG Inconsistency Attack 47

executed for one hour and the attacks have begun after 2 minutes so as to allow the
network to stabilize. A simulation with no attacks has also been performed to obtain
a baseline measurement for comparison. More complex topologies and scenarios have
not been studied because the e�ects of such attacks are limited to the target and its
immediate neighborhood. As such, our scenarios are carefully designed to study the
possible e�ects of such attacks.

0 90 75 60 45 30 20 15
0

200

400

600

800

1000

1200

1400

1600

1800
(Left = Msg In / Right = Msg Out)

Attacks Per Hour

Nu
m

be
r o

f C
on

tro
l P

ac
ke

ts

N2
N3
N4
N5
N6
N7
N8
N9

Figure 4.2: Total control message overhead experienced by network presented
in Figure 4.1(a) under DAG inconsistency attacks.

Results of this experiment can be seen in Figure 4.2. As expected, the more
aggressive the attacker, the higher the overall message overhead in the network.
Node 2 experiences the largest increase in control messages since it is directly tar-
geted. Nodes 4 and 5 also experience an increase due to being direct descendants of
node 2. The most aggressive attacker tested can increase overhead at the targeted
node by over 2000%. We can therefore conclude on the importance of mitigating
DAG inconsistency attacks.

4.2.3.2 Packet Manipulation Scenario Evaluation

To evaluate the e�ect of the packet manipulation scenario, the topology showed in
Figure 4.1(b) was setup in Cooja, with node 1, the DODAG root, acting as the sink.
All other nodes, except the attacker, were con�gured to send messages to the sink
at rates varying from 5 to 20 packets per minute. The packet sending rate is varied,
because the attacker, i.e., node 3, silently modi�es the option headers of the packets
it forwards, rather than originating a direct attack.

48 Chapter 4. Impact Assessment of RPL Attacks

The primary e�ect of packet manipulation attacks is not to increase overhead,
but to cause the next-hop node to drop all packets of the attacker's descendants as
explained earlier. The emergence of this black-hole can severely impact the overall
delivery ratio of packets, since none of the packets from the attacker's descendants
will ever reach the sink. Without a black-hole mitigation approach the overall deliv-
ery ratio is only about 33% in our results. This is because only packets from node 2
reach the sink, while the attacker forces node 2 to drop all packets sent by nodes 4
and 5.

4.3 The Version Number Attack

In this section we �rst describe the version number attack. We then detail our
simulation setup. Finally, we study the consequences of this attack in terms of
control message overhead, delivery ratio, end-to-end delay, number of loops and
inconsistencies.

4.3.1 Attack Description

The version number is used by the root to control the global repair process of RPL
and to ensure that all nodes in the DODAG are up-to-date with the routing state.
Every DIO message carries the version number so that nodes which are part of an
outdated DODAG version, can join the new DODAG by recalculating their rank and
then updating their stored version number.

1"

4"2"

3"

5" 6"

7" 8" 9"

10"

!

!!!Available!Link!
!

!!!Link!in!version!N!
!

!!!!!Link!in!version!N+1!
!

Figure 4.3: Example of new DODAG iteration.

Figure 4.3 illustrates a rebuild of a DODAG due to a global repair process. In red
solid arrows, the new DODAG is being built, in blue dashed arrows the old topology
is showed. An older value of the version advertised in DIO messages indicates that
the node has not migrated to the new version of the DODAG. Such a node should not
be considered as a preferred parent by other nodes. While the global rebuild process
is ongoing, it is possible for two versions of a DODAG to temporarily coexist. To
avoid loops, data packets are permitted to transit from the old version to the new

4.3. The Version Number Attack 49

one (from blue to red in Figure 4.3) but not the other way, as showed in Figure 4.3.
This is because the old version in blue is no longer a DAG and loop free topologies
cannot be guaranteed in this situation.

To avoid possible inconsistencies in the network, the version number should be
propagated unchanged through the DODAG. However, there is no mechanism in
RPL to check if the integrity of the version number is maintained in received DIO
messages. A malicious node may change this �eld in its own DIO messages to harm
the network. Nodes receiving a malicious DIO, with a new version number, will reset
their own trickle timer, update the version in their own records and advertise this
new version through DIO messages to their neighborhood as well. This can cause
the illegitimate version number to propagate through the network.

Such a manipulation of the version number in the DIO packets does not only
cause an unnecessary rebuild of the whole DODAG but it also generates loops in the
topology. This can negatively impact energy reserves of the nodes, routing of data
packets and channel availability.

4.3.2 Simulation Setup

We have used the same operating system (Contiki 2.6) and the same target plat-
form (TelosB) to perform an evaluation of the version number attack as previoulsy
described in Section 4.2.2. A grid topology of 20 nodes using the UDGM radio
model [59], showed in Figure 4.4, was setup for all experiments in Cooja. Across all
experiments, node 1 is the DODAG root and also the sink to which all other nodes
send messages every twenty seconds to generate background tra�c. The attacker is
designed to constantly send incorrect version numbers, which are greater than the
root's. This scenario is adopted because it allows relocation of the attacker to multi-
ple positions easily, making it possible to study the consequences of the attack from
di�erent locations and neighborhood scenarios within a network. A random back-o�
of up to six seconds is also added to this periodic transmission time on all nodes so
that packet collisions are avoided when possible. The nodes are placed at a regular
distance of 30 meters from their vertical and horizontal neighbors. The transmis-
sion strength is set such that packets are received successfully by nodes within a
30 meters radius and the signal causes interference with other nodes for a radius of
60 meters. This ensures that every node only has vertical and horizontal neighbors
reachable during the simulation, thereby adding predictability and ease of analysis
to the results.

Each simulation lasts for a lifetime of �fty minutes. One simulation was executed
without any attacker in the network to obtain a baseline for comparisons. Further
nineteen simulations are also run, with the location of the attacker being �xed to
one of nodes 2 to 20, such that at least one simulation with the attacker located at
every node between 2 and 20 is executed. Moving the position of the attacker in the
network allows us to study the impact that the position of an attacker and the size
of the neighborhood have upon the behavior of the RPL network. This entire set
of twenty simulations is repeated �ve times to obtain some statistical signi�cance in
order to ensure dependability. Attacks start after �ve minutes of simulation time, so

50 Chapter 4. Impact Assessment of RPL Attacks

15#

1#

2#

3#

4#

6#

7#

8#

5#

10#

11#

12#

9#

14#

16#

13#

18#

19#

20#

17#

!

!!!Available!Link!
!

!!!!!A,ack!Message!
!

Figure 4.4: Grid topology used for performing experimental evaluation of the version
number attack.

that the network has enough time to settle and a stable RPL topology emerges.

4.3.3 Impact Quanti�cation

The following metrics are used to perform this study: (1) Packet overhead, which is
the total number of RPL control packets, i.e. DIS, DIO and DAO message, transmit-
ted (outgoing overhead) and received (incoming overhead) in the network. As such,
in the no attacker scenario these are the messages necessary to form and maintain
an RPL DODAG. (2) Delivery ratio, which is the number of data packets success-
fully delivered to the sink (node 1) compared to the total number of data packets
generated by all nodes in the network. (3) Average end-to-end delay, which is the
average amount of time it takes for all packets, from every node in the network, to
be successfully delivered to the sink. Lost and dropped packets are not considered in
this calculation. (4) Inconsistencies, which are the number of packets detected by a
node that are destined for a descendant but also arrive from a child or vice versa. (5)
Loops, which are the number of packets detected by a node that not only indicate an
inconsistency but also have the `R' �ag enabled, i.e. a possible loop was previously
detected on this path.

Packet overhead. The average incoming and outgoing packet overhead expe-
rienced by the entire network, for each location of the attacker, is depicted in
Figure 4.5. The error bars show the standard deviation between the �ve simula-
tion runs. The incoming and outgoing overhead when there is no attacker (attacker
ID 0 in the �gure), both are about 1250 packets, which can be considered reasonable
for a network of 20 nodes that functions for 50 minutes. However, as soon as an
attacker is introduced, the overhead can increase by up to 18 times in the network.
At �rst glance it appears that the overhead increases as the attacker moves into
regions where it has more neighbors. Closer inspection of Figure 4.5 reveals that
mostly attacker positions in the bottom row of the topology (4, 8, 12, 16 and 20)
produce localized maximums in their column of the topology. For example consid-
ering attacker position at node 8 and the other nodes of its column (5,6,7), we can

4.3. The Version Number Attack 51

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5 x 104

Node ID of Attacker

N
um

be
r o

f C
on

tr
ol

 P
ac

ke
ts

Rx Overhead

Tx Overhead

Figure 4.5: Incoming and outgoing control message overhead for every location of
the attacker.

observe that the packet overhead is the highest for node 8 compared to nodes 5, 6
and 7. Since each of these nodes ends up towards the tail-end of their section of the
DODAG, it also implies that the further away an attacker is from the root, the more
damage it can spread. When the attacker is located at nodes 2 and 5, the produced
topologies are analogous to each other, thereby leading to results that are similar in
both cases. As such, not only the number of neighbors, but also the distance from
the root impacts the level of overhead increase.

Since the position of the attacker can impact the overhead, it is interesting to
also investigate which nodes are particularly a�ected. Only the per node outgoing
packet overhead is plotted in Figure 4.6, because the incoming and outgoing packet
overhead is closely related. While it is intuitive to assume that the largest increase
in overhead would be contributed by nodes neighboring the attacker, because these
are most likely to form loops, the results from Figure 4.6 indicate otherwise. The
version number attack, by design, is propagated across all neighbors, even if they
are not relatives of the current attacker. This causes a signi�cant increase in control
packets to cascade all across the network, leading to the observed results. As such,
a version number attack is worse than many others because it does not only impact
the attacker's neighborhood but also the entire network.

Delivery ratio. This increased overhead decreases channel availability, thereby
impacting delivery ratio. The delivery ratio, averaged over �ve runs, for the entire
network, with respect to the location of the attacker, is showed in Figure 4.7. It is
immediately apparent that the version number attack can have a signi�cant impact

52 Chapter 4. Impact Assessment of RPL Attacks

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 x 104

Node ID of Attacker

N
um

be
r o

f P
ac

ke
ts

N2
N3
N4
N5
N6
N7
N8
N9
N10
N11
N12
N13
N14
N15
N16
N17
N18
N19
N20

Figure 4.6: Per node outgoing packet overhead for every location of the attacker.

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
60

65

70

75

80

85

90

95

100

D
el

iv
er

y
R

at
io

 (%
)

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

1

2

3

4

5

6

7

8

Pa
th

 L
en

gt
h

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
346

518

691

864

1036

Node ID of Attacker

En
d−

to
−e

nd
 D

el
ay

 (m
s)

Delivery Ratio
Path Length

End−to−end Delay

Figure 4.7: Total delivery ratio and end-to-end delay for every location of the at-
tacker.

4.3. The Version Number Attack 53

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
−50

0

50

100

150

200

250

300

350

400

450

Lo
op

s/
In

co
ns

is
te

nc
ie

s

Loops
Inconsistencies

Node ID of Attacker

Figure 4.8: Total number of loops and inconsistencies in the network for every loca-
tion of the attacker.

on delivery ratio, with it being reduced by up to about 30%. More interestingly,
we can see that the path length of the location of the attacker has an e�ect on the
delivery ratio as we have seen on the overhead. However, instead of local maximums
for their column, we observe local minimums. There is a strong correlation between
the distance of the attacker from the root and the impact of the version number
attack on delivery ratio. So, when the attacker is located on nodes 2 and 5, the
delivery ratio is exactly the same, and they both also have a path length of 1 to
the root. In fact, the correlation between the delivery ratio and path length can be
seen across all positions of the attacker, with the attacker located at the bottom of
the topology in Figure 4.4, i.e. farthest from the root, leading to worst impact on
delivery ratio.

End-to-end delay. The end-to-end delay is also a good measure of a network's
performance. The average end-to-end delay for di�erent attacker locations can also
be seen in Figure 4.7. Any lost packet did not contribute towards calculation of the
end-to-end delay. As with other metrics, it is obvious that an attack signi�cantly
impacts end-to-end delay, by almost doubling it as against no attack within the
network. Unlike overhead and delivery ratio, there is no strong correlation between
location of the attacker and the delay. This is because the delay is a�ected by
a number of elements, such as the channel availability, number of loops, possible
alternate routes, neighborhood density, etc. which also cause the high variations
observed in Figure 4.7.

54 Chapter 4. Impact Assessment of RPL Attacks

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

20

40

60

80

100

120

140

160

180

Node ID of Attacker

N
um

be
r o

f L
oo

ps

N2
N3
N4
N5
N6
N7
N8
N9
N10
N11
N12
N13
N14
N15
N16
N17
N18
N19
N20

Figure 4.9: Total number of loops detected per node for every location of the attacker.

Loops and inconsistencies. Since the version number attack creates loops (pack-
ets encountered with the `R' �ag) and rank inconsistencies (packets that mismatch
actual direction and have `O' �ag set) in the network, it is important to also under-
stand their impacts. The number of such inconsistencies can be seen in Figure 4.8.
The pattern of rank inconsistencies and loops are closely related because loops are
included in inconsistencies. Unlike previously, attacker locations farthest from the
root generally lead to the least number of inconsistencies and loops in the network.
On the other hand, attacker locations closest to the root, but with most amount
of neighbors lead to the highest number of inconsistencies and loops. For exam-
ple, nodes 3 and 6 create more inconsistencies than nodes 2 and 5, which are closer
to the root node. This is because both nodes 2 and 5 have fewer neighbors than
nodes 3 and 6. As such, the number of loops are closely related to the number of
neighbors an attacker has and increases with proximity to the root. Closer proximity
to the root likely has this behavior because it forces a rebuild from the root faster as
well, causing this to cascade into the rest of the DODAG before a new attack cycle
can begin.

This interesting relationship of inconsistencies and loops with the location of the
attacker means that it would be useful to understand where in the network most of
this e�ect is centered. As such, the number of loops and inconsistencies per node
are plotted in Figures 4.9 and 4.10 respectively. It is immediately apparent from
these plots that as the location of the attacker changes, the loops and inconsistencies
location changes accordingly. Closer analysis reveals that while there might be some
loops created in nodes that are farther away from the attacker, the majority of them
are located within the direct neighborhood of the attacker. In fact, the bulk of these

4.4. Conclusions 55

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

50

100

150

200

250

300

350

400

Node ID of Attacker

N
um

be
r o

f I
nc

on
si

st
en

ci
es

N2
N3
N4
N5
N6
N7
N8
N9
N10
N11
N12
N13
N14
N15
N16
N17
N18
N19
N20

Figure 4.10: Total number of inconsistencies detected per node for every location of
the attacker.

loops and inconsistencies are detected by the parent, and alternate parents, of the
attackers. This is because most of the packets will be routed towards the preferred
parent, or the alternate parent in case of the preferred parent being unavailable. The
next highest quantity of loops and inconsistencies is detected at the children of the
attackers. For example, when the attacker is located at node 11, the highest number
of loops and inconsistencies are detected by parent nodes 7 and 10. The children,
nodes 12 and 15, account for the majority of the rest of these anomalous situations.

4.4 Conclusions

In this chapter, we have presented two attacks targeting the node resources: the
DAG inconsistency and the version number attacks. We have also analyzed their
impact.

The DAG inconsistency attack exploits the data path validation to forge fake
loops in the network forcing nodes to reset their trickle timer. We have showed two
ways of performing this attack: a direct attack scenario where a malicious node di-
rectly sends attack messages to a targeted node and a packet manipulation scenario
where the malicious node illegitimately modi�es data packets from other nodes cre-
ating a black-hole in the network. Through experiments, we have observed that this
attack can increase signi�cantly the control message overhead of the targeted node
and its descendants, reducing their lifetime. In the packet manipulation scenario we
have also seen that this attack may have a signi�cant impact on the delivery ratio.

The version number attack misuses the global repair mechanism provided by the

56 Chapter 4. Impact Assessment of RPL Attacks

repair protocol to propagate within the network malicious version number forcing
a global rebuild of the DODAG to occur. We have quanti�ed its e�ects in RPL
networks. Through simulations we have discovered that this type of attacks that
control message overhead can increase by up to 18 times, thereby impacting energy
consumption and channel availability. This in turn can reduce the delivery ratio of
packets by up to 30% and nearly double the end-to-end delay in a network. A strong
correlation between the position of the attacker and the e�ect on the network has
been also observed. An attacker located as far away from the root as possible causes
the highest increase in overhead, and similarly a higher path length between the
attacker to the root also causes the higher packet loss. It has been also discovered
that loops and rank inconsistencies created by the attack are generally located around
the neighborhood of the attacker, with parents or alternate parents experiencing the
maximum loops, followed by the descendants.

Through these analyses, we can conclude on the importance of addressing these
attacks whose impact may considerably shorten network lifetime. The designed
security strategy should be as lightweight as possible to preserve the scarce resources
of nodes while being e�cient to tackle these threats.

Chapter 5

Local Strategy for Addressing

DAG Inconsistency Attack

Contents

5.1 Introduction . 57

5.2 DAG Inconsistency Attack Mitigation 58

5.2.1 Default Mitigation . 58

5.2.2 Adaptive Mitigation . 59

5.2.3 Dynamic Mitigation . 60

5.3 Mitigation Evaluation . 62

5.3.1 Simulation Setup . 63

5.3.2 Mitigation Performance . 64

5.3.3 Con�guration Parameters Impact 69

5.3.4 Resource Consumption . 73

5.4 Conclusions . 76

5.1 Introduction

We have previously demonstrated the importance of addressing DAG inconsistency
and version number attacks because they damage the network by increasing the
overhead and reducing the delivery ratio. By analyzing properties of these attacks
we have observed that the �rst one targets a particular node and impacts mostly the
target's descendants while the second one is propagated through the entire DODAG
graph. In that context, we can assume that it is possible to locally deploy defense
mechanisms to counteract the DAG inconsistency attack, but it is not feasible for the
version number attack due to its propagation properties. In this chapter, we propose
to investigate local detection and mitigation approaches to limit DAG inconsistency
attack impact.

57

58 Chapter 5. Local Strategy for Addressing DAG Inconsistency Attack

A sided RFC of RPL [32] proposes to counteract this attack by using a �xed
threshold, beyond which all subsequent packets with erroneous header options are
ignored. However, the �xed threshold is arbitrarily set and does not resolve the
black-hole issue either. In this chapter, we present a new solution called adaptive
threshold (AT) to mitigate e�ects of such an attack. This initial AT approach is
further improved to dynamically take into account network characteristics while de-
riving an appropriate threshold for counteracting the DAG inconsistency attack. Our
experimental results show that both our proposed approaches can lead to improve-
ments over the �xed threshold. Furthermore, our approaches are able to counteract
the black-hole scenario while still outperforming the default RPL mitigation strategy.

This chapter is organized as follows. Section 5.2 presents the di�erent mitiga-
tion approaches for the DAG inconsistency attack which are the �xed threshold,
the adaptive threshold and �nally the dynamic threshold. Section 5.3 details our
experimental evaluation by comparing the di�erent mitigation strategies, discussing
the values of the parameters and analyzing the energy consumption of the proposed
approaches.

5.2 DAG Inconsistency Attack Mitigation

We introduce three detection and mitigation approaches to counter the DAG incon-
sistency attack. The �rst one is proposed by a sided RFC [32] of the RPL protocol.
It is based on a �xed threshold. Since no justi�cation is provided on the threshold
value in the RFC, we have proposed an adaptive threshold relying on set parameters
which mimics the �xed approach under normal conditions. We then improve this
solution to be fully dynamic with auto-con�gured parameters.

5.2.1 Default Mitigation

The default DAG inconsistency attack mitigation strategy of RPL [32] can be seen
in Algorithm 1, where i is a node within the graph with a rank of ri. M represents
a packet received by node i from a neighbor j with rank rj . O and R indicate the
`O' and `R' �ags present in M . The variable countR is the number of received data
packets with the `R' �ag set and is initialized to 0. λ is a constant set to 20.

Algorithm 1 Default DAG inconsistency mitigation strategy of a node.
if (O = 1 and ri < rj) or (O = 0 and ri > rj) then

if R = 1 then

countR + +
drop(M)
if countR < λ then

reset(trickle_timer)
end if

end if

end if

5.2. DAG Inconsistency Attack Mitigation 59

Upon receiving a packet with an inconsistency, the node drops it and resets its
own trickle timer. To limit the e�ects of an attack, the number of trickle timer
resets is limited to the recommended constant λ = 20 [32]. Upon reaching this
threshold, malformed packets are dropped but the trickle timer is not reset. The
variable countR is reset every hour, allowing attackers to once again have a higher
impact.

This approach limits the impact of a DAG inconsistency attacks, but the value
of the threshold λ = 20 is arbitrarily set. No reasoning is provided to justify this
choice or how performance could be improved in case of varying attack scenarios.

5.2.2 Adaptive Mitigation

In order to take into account the current network state and react to varying attack
patterns we have developed an adaptive threshold (AT), which determines when to
stop resetting the trickle timer. Instead of a constant λ, a function λ(r) is used,
which takes the following form:

λ(r) = bα+ β · e−γ·rc (5.1)

where,

r =
countR
Dpkt

, α = 5, β = 15

The variable countR stands for the number of received data packets with the `R'
�ag set and Dpkt represents the number of normal forwarded data packets. To allow
comparison with the default strategy, the value of β was chosen such that the default
λ(r) = 20. The value of α is an asymptote to ensure that threshold never reaches
0. This guarantees that data packet validation is not disabled upon encountering
the �rst packet with an `R' �ag, but only when the situation is deemed an attack.
Since γ impacts the threshold rate of change, a value is not chosen here. In general,
a larger value for γ leads to a smaller threshold being reached quicker. The e�ect of
choosing di�erent values for γ is discussed in Section 5.3.3.1.

The adaptive threshold causes λ(r) to change based on network conditions. If
an attacker is aggressive, the threshold drops quickly and increases slowly once the
attacks stop. Unlike with the �xed threshold, countR is not reset every hour, but
rather allowed to increase in the absence of attacks. As such, not only is this approach
likely to be better than a �xed threshold within the �rst hour of an attack, but it
should perform signi�cantly better against long running attacks. This also ensures
that greater trust is placed in networks where problems have not been encountered
for a long time. Of course, a natural limit upon the value of the counter is the bit-
length of the variable imposed by the platform. In this case, the counter will reset
when the value over�ows. If any of the counters over�ows, we recommend resetting
all counters (countR and Dpkt) so that the algorithm functions as though it was
started in a new network.

60 Chapter 5. Local Strategy for Addressing DAG Inconsistency Attack

To counter the packet manipulation DAG inconsistency attack, an extension was
made to the adaptive threshold. Nodes behave normally until the number of mes-
sages indicating an inconsistency becomes greater than the threshold obtained from
Equation 5.1 and this threshold reaches the α value. This situation indicates either
an attack against the node, or a malfunction of the node forwarding such packets.
To rectify the situation, the node clears the `O' and `R' �ags before forwarding the
packets normally. The complete packet manipulation mitigation strategy, combined
with the adaptive threshold mitigation approach, can be seen in Algorithm 2. The
complexity of this algorithm depends on the complexity of the exponential function
used to compute the threshold. Section 5.3.4.1 will discuss the cost of the proposed
algorithm. Since no additional resources are used by this approach, the cost of
protecting the network against black-hole scenarios is quite low.

Algorithm 2 Adaptive DAG inconsistency mitigation of a node.
if (O = 1 and ri < rj) or (O = 0 and ri > rj) then

if R = 1 then

if countR < λ(r) then
countR + +
drop(M)
reset_trickle_timer()

else if λ(r) = α then

O ← 0
R← 0
forward(M)

end if

end if

end if

The adaptive threshold approach relies on set parameters, which need to be
chosen in the implementation. This can lead to sub-optimal optimizations and so we
have improved our mitigation approach via the design of a fully dynamic threshold,
which is based on network characteristics.

5.2.3 Dynamic Mitigation

We have designed the dynamic threshold (DT) in order to avoid using pre-con�gured
parameters while bene�ting from advantage of the adaptive threshold. The new
dynamic threshold λ(r) used to determine whether the trickle timer should be reset
is:

λ(r) = bδ · e−ε·rc (5.2)

where,

r =
countR
Dpkt

, δ = 2 · ε, ε = Card(neighbors)

5.2. DAG Inconsistency Attack Mitigation 61

As before, countR is the number of received data packets with the `R' �ag set. Dpkt

represents normal data packets forwarded by the node.

Normally, packets with the `R' �ag set do not arrive at any nodes, because the
network is stable and functions as intended. It has been observed, via experiments
carried out during this study, that packets with the `R' �ag set arrive only when an
attack is performed on the network, or loops form due to serious malfunction of nodes,
which is unlikely, unless a software bug exists. Even when the root node initiates a
rebuild of the entire network, i.e., a global repair, a maximum of one or two packets
containing `R' �ags are received from each child. Any given local neighborhood in an
RPL network always returns to stability within two packets containing an `R' �ag,
if the problem is a genuine topological inconsistency.

As such, setting δ to twice the number of neighbors (parents and children repre-
sented by Card(neighbors) or ε in Equation 5.2) permits for each link to send up to
two packets with an `R' �ag set in case of legitimate loops. λ(r) corresponds to the
value of δ in a steady state, i.e., when no packets with `R' �ags are received.

Even though not observed during our experiments, it is possible for multiple
packets with an `R' �ag to arrive as a result of the same inconsistency. This can
be especially true in case a node malfunctions, leading to a loop being formed.
Resetting the trickle timer each time a malfunctioning node sends packets with `R'
�ags leads to unnecessary overhead, especially since a single trickle timer causes
aggressive transmissions of DIO messages in any case. To avoid this situation, a
convergence timer is introduced in this algorithm. This timer is used to ensure that
no further trickle timer resets take place within the amount of time it takes for an
RPL neighborhood to typically converge. Previous experiments have showed that
time for convergence of a DODAG neighborhood increases by about 2 seconds for
every additional 10 neighbors [21]. The convergence_timer is, as such, set to 2
seconds by default but grows based on neighborhood size of a node.

Since the purpose of introducing a convergence_timer is to block trickle timer
resets caused by `R' �ag packets arriving within the time it takes for the neighborhood
to converge, it no longer makes sense to compare countR with λ(r) to determine
whether a trickle reset must occur. Rather, a new counter that keeps track of the
number of trickle timer resets, countT , is introduced. The value of countT is reset one
hour after the �rst `R' �ag packet is encountered to allow the repair of genuine loops
and because λ(r) does not depend on it. Instead of λ representing the number of `R'
�ag packets allowed before a trickle timer reset occurs, as with the default mitigation
approach, it is now the number of trickle timer resets allowed to be caused by `R' �ag
packets that arrive while the neighborhood is already considered to be converged.
The overall dynamic threshold approach can be seen in Algorithm 3.

The dynamic threshold allows λ(r) to change based on network conditions. Like
the adaptive threshold approach, this mitigation strategy should perform better
against long running attacks. This dynamic threshold approach not only does away
with arbitrary constant thresholds, as in the case of the default strategy, but by being
based purely upon network characteristics it does away with the need for constant
parameters to be chosen before deployment [71] and thereby is more useful in case

62 Chapter 5. Local Strategy for Addressing DAG Inconsistency Attack

Algorithm 3 Dynamic DAG inconsistency mitigation strategy of a node.
if (O = 1 and ri < rj) or (O = 0 and ri > rj) then

if R = 1 then

countR + +
if countT < λ(r) then

if timer_expired(convergence_timer) then
drop(M)
start(convergence_timer)
reset(trickle_timer)
countT + +

end if

else if r >= 1
ε then

O ← 0
R← 0
forward(M)

else

drop(M)
end if

end if

end if

of unforeseen network conditions as well.
In order to counter the packet manipulation scenario using the dynamic threshold

approach, Algorithm 3 allows a node to forward packets with the inappropriate �ags
in some situations. First, as long as countT is lesser than λ(r), i.e. as long as a
direct DAG inconsistency attack or genuine topological error is being corrected, all
packets containing the incorrect �ags are dropped. However, once this mitigation
is over, it is deemed that the network should have returned to normal and any
further inconsistency could be a packet manipulation DAG inconsistency attack. As
such, if more than 1/ε tra�c received by the node contains the `R' �ag, then this
is considered a packet manipulation attack. It means that one neighbor only sends
messages containing `R' �ags. In this case, having given enough chances for the
network to �x itself, the node clears the �ags and forwards the message normally.
The complexity of this algorithm also relies on exponential function such as for the
adaptive threshold. The cost of the dynamic threshold computation will be discussed
in Section 5.3.4.1.

5.3 Mitigation Evaluation

In this section, we �rst present our simulation setup along with a validation of our
simulation tool. We then detail performance results of the di�erent mitigation ap-
proaches. After this, we discuss the e�ect of the introduced parameters before ana-
lyzing resource consumption of our local strategy.

5.3. Mitigation Evaluation 63

1"

2" 3"

9"8"7"

6"5"4"

10"

Control'Message'

A.ack'Message'

R=1$R=2$

R=2$
R=2$

R=3$R=3$R=3$

R=4$R=4$R=4$

(a) Direct attack scenario.

1" 2" 5"4"3"

Data$Packets$

Modified$Packets$

1"

2"

3"

4"

5"

R=1$ R=2$ R=3$ R=4$ R=5$

(b) Indirect attack scenario.

Figure 5.1: Topologies for mitigation approaches evaluation (same as Figure 4.1).

5.3.1 Simulation Setup

Such as in the previous chapter, the Contiki 2.6 [27] operating system and the TelosB
platform have been chosen. To allow evaluation under multiple scenarios, instead of
building a topology of actual nodes, the compiled binary for a TelosB was used in the
Cooja [59] simulator provided by Contiki with Unit Disk Graph radio attenuation
and scattering model (UDGM). This approach provides a method of testing the
di�erent thresholds under conditions where the lossy IEEE 802.15.4 channel does
not cause packet loss. This allows evaluation of our approach under ideal conditions,
with no external characteristics causing bias in the results.

Simulation Validation. Even though the Cooja approach is expected to be close
to real performance, we need to con�rm this assumption and validate our simulation
approach. As such, the topology showed in Figure 5.1(a), which is the same used
for attack analysis in Chapter 4, was setup using real TelosB motes, with node 1,
the DODAG root, acting as the sink. All other nodes were con�gured to send
messages to the sink every six seconds. An additional per transmission random
back-o� period of up to six seconds was utilized to avoid packet collisions and add a
degree of irregularity to the transmission scenario. The dynamic threshold mitigation
mechanism was deployed to all nodes.

The attacker node, i.e., node 10 in Figure 5.1(a), was setup to periodically send
packets with the `O' and `R' �ags towards the sink. This period was varied from 20
to 90 messages sent per hour. The experiment was repeated �ve times for each attack
frequency and lasted for a duration of one hour each time. The amount of outgoing
packet overhead at the attacked node, which is the number of DIS, DIO and DAO
messages, for varying number of attacks per hour can be seen in Figure 5.2. The
same experiment was carried out in Cooja as well. Error-bars represent standard
deviation for average from 5 runs.

It is clear from the plot that the results provided by Cooja are within the deviation

64 Chapter 5. Local Strategy for Addressing DAG Inconsistency Attack

20 45 90
50

75

100

125

150

175

200

225

250

Attacks Per Hour

N
um

be
r o

f C
on

tr
ol

 P
ac

ke
ts

Mote
Simulation

Figure 5.2: Comparison of per node outgoing packet overhead for node 2 in the
topology from Fig. 5.1(a).

range of the overhead seen in a network of real motes. This indicates that the Cooja
simulations provide results which closely mimics reality. Furthermore, the overhead
reported by Cooja is on average higher than in reality because the IEEE 802.15.4
channel causes packets to be lost in a deployment of real motes, whereas this does
not occur in Cooja.

A larger topology was not used since the e�ect of a DAG inconsistency attack is
limited mostly to the targeted node. Its children and further descendants are a�ected
only to a small degree. A larger topology would only make the overhead greater, but
not change the patterns observed with this topology.

5.3.2 Mitigation Performance

We �rst evaluate our mitigation algorithms in the direct attack scenario with control
message overhead metric. We then analyze the packet manipulation mitigation with
the control message overhead and the delivery ratio metrics.

5.3.2.1 Direct Attack Mitigation

Using the same experimental setup as in Section 5.3.1 the performance of the �xed,
adaptive and dynamic threshold mitigation approaches have been evaluated using
simulations. The attack frequency was varied from 15 to 3600 attacks per hour.

Packet Overhead. When using the �xed threshold to mitigate the DAG inconsis-
tency attack, we can see from Figure 5.3 that worst case overhead for �xed threshold
(30 attacks/hr) is reduced by nearly 15%. Aggressive attacks cause the threshold to

5.3. Mitigation Evaluation 65

0 15 20 30 45 60 90 180 360 720 1800 3600

500

1000

1500

2000

2500

3000

(Left Bar = No Threshold; Right Bar = Fixed Threshold)

75

N
um

be
r o

f C
on

tr
ol

 M
es

sa
ge

s

0

N2 N3 N4 N5 N6 N7 N8 N9

Attacks per hour

Figure 5.3: Total control message overhead per node when no mitigation strategy
and default mitigation strategy are used.

be reached faster, causing lower overhead in these scenarios. As such, the best strat-
egy for an attacker is to remain as close to the threshold as possible, as is evident from
the 20 attacks/hr scenario. Since the counter for DODAG inconsistencies is reset ev-
ery hour, by remaining close to the �xed threshold the attacker can do maximum
damage and the nodes have no recourse. While a threshold is undoubtedly useful in
mitigating such attacks, adapting it to current network conditions would not allow
an attacker to keep just below a well-known value and neither would counter resets
give the attacker another window of opportunity. The adaptive threshold approach
provides such a solution.

From Figure 5.4, we can observe that the adaptive threshold is more successful
in reducing control message overhead than a �xed threshold. An aggressive attack
causes the adaptive threshold to reduce rapidly, thereby limiting the impact of the
attack. This results in slower attacks being the best strategy. We can also see that
20 attacks/hr is the best strategy for an attacker because the values of α and β were
chosen to model the default value of 20 in a steady state. However, if the values of
these coe�cients are changed, so will the periodicity of the optimal attack pattern.
For the most aggressive attacks the di�erences are not so signi�cant since the �xed
threshold is quickly reached. The adaptive threshold is between 8% (γ = 20) to 13%
(γ = 25) better, even in the worst case scenarios.

Figure 5.5 shows that the dynamic threshold is able to reduce overhead by 20%
for aggressive attacks and 50% for slow attacks, when compared to the default �xed
threshold approach. Comparing Figures 5.4 and 5.5, we can see that the advantage

66 Chapter 5. Local Strategy for Addressing DAG Inconsistency Attack

0 15 20 30 45 60 90 180 360 720 1800 3600
0

100

200

300

400

500

600

700

800
(Left Bar = Fixed Threshold; Middle Bar = γ20; Right Bar = γ25)

75

N
um

be
r o

f C
on

tr
ol

 M
es

sa
ge

s

Attacks per hour

 N2 N3 N4 N5 N6 N7 N8 N9

Figure 5.4: Total control message overhead per node when default mitigation strategy
and adaptive threshold γ = 20 and γ = 25 are used.

0 15 20 30 45 60 90 180 360 720 1800 3600

100

200

300

400

500

600

700

800
(Left Bar = Fixed Threshold; Right Bar = Dynamic Threshold)

75

N
um

be
r o

f C
on

tr
ol

 M
es

sa
ge

s

0

Attacks per hour

 N2 N3 N4 N5 N6 N7 N8 N9

Figure 5.5: Total control message overhead per node when default mitigation strategy
and dynamic threshold are used.

5.3. Mitigation Evaluation 67

800

700

600

500

400

300

200

100

0

N
um

be
r o

f C
on

tr
ol

 P
ac

ke
ts

00:00 00:20 00:40 01:00 01:20 02:0001:40
Time (HH:MM)

90 pkts/hr (Fixed)
45 pkts/hr (Fixed)
20 pkts/hr (Fixed)
90 pkts/hr (�25)
45 pkts/hr (�25)
20 pkts/hr (�25)

(a) Fixed threshold and adaptive threshold time-lines
(γ = 25).

800

700

600

500

400

300

200

100

0
00:00 00:15 00:30 00:45 01:00 01:15 01:30 01:45 02:00

N
um

be
r o

f C
on

tr
ol

 P
ac

ke
ts

Time (HH:MM)

90 pkts/hr (Fixed)
45 pkts/hr (Fixed)
20 pkts/hr (Fixed)
90 pkts/hr (Dynamic)
45 pkts/hr (Dynamic)
20 pkts/hr (Dynamic)

(b) Fixed threshold and dynamic threshold time-lines.

Figure 5.6: Time-lines of outgoing packet overhead of node 2 in topology of
Fig. 5.1(a).

of both approaches is almost the same for aggressive attacks (above 90 attacks per
hour). However, the dynamic threshold has better results for slower attacks making
a strategy to overcome the mitigation mode di�cult.

Time-lines of packet overhead. Since the value of countR is not reset every hour
for the adaptive and dynamic thresholds, the attacker does not have a future window
of opportunity for causing increased damage. Both these thresholds increase in the
absence of an attack, and as such the adaptive and dynamic approaches mitigate
long running attacks even better. Results from a two hour long experiment can be
seen in Figure 5.6. Only results from the directly attacked node 2 are depicted.

In Figure 5.6, we compare the �xed threshold to adaptive and dynamic thresholds.
When using a �xed threshold the control messages increase quickly till the threshold
is encountered. They then grow at a slow rate, following the trickle timer pattern
until the 1 hour mark, when the counter is reset. Once again, the control messages
increase quickly until the threshold is encountered. This behavior causes a high
control message overhead. The only exception is the period of 20 attacks per hour,
because at this rate the threshold is never encountered, thereby causing the largest
overhead growth.

On the other hand in Figure 5.6(a), the limit is reached much faster with the adap-
tive threshold, due to the exponential growth of the function. Coupled with a non-
reseting counter, this leads to between 45%-55% savings in the control message over-
head. Those results depend on the value chosen for γ (discussed in Section 5.3.3.1).
We notice a similar phenomenon in Figure 5.6(b) with the dynamic threshold ap-
proach. Instead of rising quickly in the second hour, as happens in case of the �xed
threshold, overhead increases slowly with the dynamic threshold since the r variable

68 Chapter 5. Local Strategy for Addressing DAG Inconsistency Attack

20 15 10 5
0

20

40

60

80

100

120

140

(Left = Fixed Threshold; Middle = Adaptive Threshold; Right = Dynamic Threshold)

Packet transmission period (pkts/min)

N
u

m
b

e
r

o
f

C
o

n
tr

o
l
M

e
s
s
a
g

e
s

N2 N4 N5

Figure 5.7: Total control message overhead per node with �xed threshold, adaptive
threshold (γ = 25) and dynamic threshold (Fig.5.1(b)) .

from Equation 5.2 increases slowly. The saving for the di�erent attack patterns is
around 45%. In comparison with Figure 5.6(a), we can see that the adaptive thresh-
old has slightly better results. This is due to the γ chosen here and also because
countT in Algorithm 3 is reset every hour to allow legitimate `R' �ag packets from
neighbors to be correctly handled. While using the dynamic threshold, the increase
in overhead will continue after the second hour. This should argue in favor of us-
ing the adaptive threshold. However, the adaptive threshold requires setting the γ
value, which needs to be learned empirically for every node in the network if optimal
performance is desired. The dynamic threshold does not require any such empiri-
cally learned values to be con�gured. As such, because we gain more �exibility, the
dynamic threshold algorithm is recommended over the adaptive threshold.

5.3.2.2 Packet Manipulation Mitigation

To evaluate the e�ect of our mitigation approaches on packet manipulation attacks
(Algorithms 2 and 3), the topology showed in Figure 5.1(b) was setup in Cooja, with
node 1, the DODAG root, acting as the sink. All other nodes, except the attacker
have been con�gured to send messages to the sink at rates varying from 5 to 20
packets per minute. The packet sending rate is varied, because the attacker, i.e.,
node 3, silently modi�es the option headers of the packets it forwards, rather than
originating a direct attack.

5.3. Mitigation Evaluation 69

Packet overhead. The nodes have been con�gured to use the adaptive threshold,
then the dynamic threshold for mitigating packet manipulation. Results in Figure
5.7 show that the adaptive and dynamic thresholds reduce overhead in the network
as demonstrated in Section 5.3.2.1. We can also note that the dynamic threshold
performs slightly better than the adaptive threshold because, in this con�guration,
the dynamic threshold is reached faster than the adaptive one due to the number of
neighbors of node 2. Compared to the default �xed threshold approach a reduction
up to 30% can be achieved.

Delivery ratio. The black-hole created at the next-hop node in this scenario can
severely impact the overall delivery ratio of packets, since none of the packets from the
attacker's descendants will reach the sink. Without a black-hole mitigation approach
such as the �xed threshold which does not counter this scenario, the overall delivery
ratio is only about 33% as showed in Section 4.2.3. This is because only packets
from node 2 reach the sink, while the attacker forces node 2 to drop all packets sent
by nodes 4 and 5.

On the other hand with the adaptive threshold strategy the overall delivery
ratio increases to just above 99%, because node 2 no longer drops packets from
nodes 4 and 5 once the threshold is reached. The dynamic threshold approach also
has a similar performance, with the delivery ratio being above 99%. These results
speak strongly in favor of mitigating packet manipulation based DAG inconsistency
attacks via an adaptive or dynamic threshold approach.

However, since the adaptive and dynamic thresholds depend upon di�erent pa-
rameters, it is also important to check the e�ect they can have upon the performance
of these approaches.

5.3.3 Con�guration Parameters Impact

In the adaptive and dynamic threshold, the computation of the threshold λ(r) are
based on several parameters. In this section we discuss the e�ects of γ for the adaptive
threshold and ε and δ for the dynamic threshold on the mitigation e�ciency.

5.3.3.1 Adaptive Threshold

Given the same attack periodicity, the value of γ in Equation 5.1 determines the
rate at which the threshold changes. Experiments were run with 20 ≤ γ ≤ 35 to gain
insights into its impact. Values larger than 35 have not been used because larger
values of γ result in the threshold dropping too quickly. This leads to situations
where even a single packet with the 'R' �ag causes the trickle timer resets to stop.
This means that genuine malfunctions will no longer be repaired either. In our
tests we observed that for values over 35, this situation was encountered frequently.
Below 20, the threshold reduces too slowly, thereby making it too permissive and
increasing the likelihood of a successful attack.

As can be seen in Figure 5.8, by increasing the value of γ, even in the case of
the most e�cient attacker, the overhead can be further reduced by around 10%.

70 Chapter 5. Local Strategy for Addressing DAG Inconsistency Attack

N
um

be
r o

f C
on

tr
ol

 P
ac

ke
ts

Value of Adaptive Threshold Constant (�)
20 25 30 35

700

650

600

550

500

450

400

350

300

250

90 pkts/hr
45 pkts/hr
20 pkts/hr

Figure 5.8: E�ect of γ parameter on total control packet overhead experienced by
node 2 in topology of Fig. 5.1(a).

This means that higher values of γ are able to o�er more signi�cant savings in the
overhead. However, a rapidly reducing threshold might also impact the repair of
genuine loop conditions. Our recommendation is to keep the value of γ between 20
and 35 so that the algorithm is neither too permissive nor too aggressive. The exact
value has to be chosen according to the topology con�guration by running tests.

5.3.3.2 Dynamic Threshold

The performance of the dynamic threshold approach is closely tied to the size of an
attacked node's neighborhood since two parameters ε and δ depend on it. We have
therefore to study the e�ect of varying neighborhood sizes on the dynamic threshold.

Packet Overhead. The same attack and data packet transmission scenarios from
Section 5.3.1 have been used with the topology from Figure 5.9 to evaluate the impact
of changing neighborhood sizes. The number of neighbors for node 2, targeted by
attacker node 3, was set to 4, 8, 16 and 32 neighbors. A larger neighborhood size
was not evaluated since Contiki can only track about 30 neighbors [23]; furthermore,
due to the limited resources on the TelosB mote, maintaining a list of large number
of neighbors can lead to a node being out of resources.

The overhead experienced by node 2 under di�erent neighborhood sizes and at-
tack patterns can be seen in Figure 5.10. The dynamic threshold outperforms the
default �xed threshold approach, in all neighborhood sizes. In fact, the savings are
between 20-50% and are mostly impacted by the variation of r because r depends
on the number of genuine data packets (cf. Equation 5.2) which increases with the
number of neighbors. The major advantage of the dynamic threshold is that after
reaching a neighborhood size of at least 16 nodes, the control overhead does not

5.3. Mitigation Evaluation 71

1"

2"

3" 4" 5"

R=1$

R=2$

R=3$ R=3$ R=3$

Control'Message'

A.ack'Message'

Figure 5.9: DAG inconsistency attack scenario used to study the e�ect of neighbor-
hood size on the dynamic threshold.

increase more signi�cantly in case of a larger neighborhood.

DT = Dynamic Threshold; FT = Fixed Threshold

N
um

be
r o

f C
on

tr
ol

 P
ac

ke
ts

Attacks Per Hour

1600

1400

1200

1000

800

600

400

200

0 20 45 90 720

Figure 5.10: Outgoing packet overhead experienced by node 2 in the topology of
Fig. 5.9 with varying neighborhood sizes.

In Figure 5.10, the curves for neighborhood sizes of 16 and 32 nodes, while using
the dynamic threshold, are the same as their threshold values are very close. Since
larger neighborhood sizes cause the threshold to reduce quickly, in case of 16 and
32 nodes, the threshold reaches its minimum value at the same time. As such, the
dynamic threshold leads to lesser overhead in large neighborhood sizes.

The e�ect of varying number of neighbors has been also studied in the packet
manipulation scenario. The same simulation scenario as in Section 5.3.2.2 has been
used, the number of neighbors for node 2 has been set to 2, 4, 8 and 16 neigh-
bors. Larger neighborhoods have not been studied since, as previously mentioned,
their impact are not signi�cant. Figure 5.11 shows the overhead experienced by the
targeted node 2 for di�erent packet transmission patterns. The overhead increases
according to the number of neighbors since a larger neighborhood size allows more
resets to occur as speci�ed in the Equation 5.2.

72 Chapter 5. Local Strategy for Addressing DAG Inconsistency Attack

20 15 10 5
44

46

48

50

52

54

56

58

60

62

64

66

68

Packet transmission period (pkts/min)

N
u

m
b

e
r

o
f

C
o

n
tr

o
l
M

e
s
s
a
g

e
s

2 neighbors 4 neighbors 8 neighbors 16 neighbors

Figure 5.11: Outgoing packet overhead experienced by node 2 in the topology of Fig.
5.1(b) with varying sending frequencies and neighborhood sizes.

20 15 10 5
98

98.2

98.4

98.6

98.8

99

99.2

99.4

99.6

99.8

100

Packet transmission period (pkts/min)

D
e
li
v
e
ry

 R
a
ti

o
 (

%
)

2 neighbors 4 neighbors 8 neighbors 16 neighbors

Figure 5.12: Global delivery ratio for di�erent neighborhood sizes of node 2
(Fig.5.1(b)) with dynamic threshold.

5.3. Mitigation Evaluation 73

Delivery Ratio. Figure 5.12 shows the delivery ratio for di�erent neighborhood
sizes of node 2 from the packet manipulation scenario described in Figure 5.3.2.2.
The experiment has been repeated �ve times in order to obtain a standard devi-
ation. In case of two neighbors, which corresponds to the simple scenario used in
Section 5.3.2.2, we can see that the delivery ratio is above 99%. The delivery ratio
decreases when the number of neighbors is increasing in accordance with the Algo-
rithm 3. However even if the size of the neighborhood is 16 the delivery ratio stay
above 99%.

5.3.4 Resource Consumption

To evaluate the e�ciency of a countermeasure designed for constrained environments
it is necessary to assess the cost of our solution.

5.3.4.1 Memory and Computational Costs

Since Equations 5.1 and 5.2 replace a constant threshold whose complexity is O(1),
we have to also quantify the impact using an exponential function has upon the
overall computation costs. The implemented function relies on an approximation of
the actual exponential function using a simple loop making the complexity in O(n).
Measuring this impact is even more important since these approaches are expected
to be used on resource constrained devices with limited computing abilities. While

Table 5.1: Average computation time (ms) to calculate adaptive and dynamic thresh-
olds for di�erent attack patterns.

Type of threshold 20 attacks/hr 45 attacks/hr 90 attacks/hr

Adaptive threshold (γ=20) 28 ms 31 ms 31 ms

Adaptive threshold (γ=25) 28 ms 30 ms 31 ms

Dynamic threshold 26 ms 25 ms 24 ms

running the aforementioned experiments, the time taken to calculate the threshold
has been also obtained. Table 5.1 shows the average computation time required to
obtain the thresholds for multiple attack patterns (20, 45 and 90 attacks/hour) while
using a MSP430F1611 microcontroller operating at 1 MHz on the TelosB platform.

Calculation of the dynamic threshold appears to add about 25 ms of computa-
tional overhead, and 30 ms for the adaptive threshold. This is because the value of
the exponential part of the equation in the dynamic approach is lower than in the
adaptive approach.

Using the msp430-size tool, we have determined the memory occupancy of
nodes implementing the di�erent thresholds. Table 5.2 gathers the obtained re-
sults. A node using the �xed threshold occupies 41.96 kB (87.4%) of �ash memory
and 8.63 kB (86.3%) of statically allocated RAM. The adaptive threshold approach
requires 45.61 kB (95%) of �ash memory and 8.62 kB (86.2%) of statically allocated
RAM. The dynamic threshold approach requires 45.73 kB (95%) of �ash memory

74 Chapter 5. Local Strategy for Addressing DAG Inconsistency Attack

and 8.64 kB (86.4%) of statically allocated RAM. It is important to note that the
base Contiki system is also already a part of this. The almost 8% increase in �ash
usage, for both approaches, can be reduced by optimization. On the other hand,
there is almost no change in the amount of statically allocated RAM required.

The almost 4 kB increase in �ash memory occupancy is due to the usage of a
�oating point library for calculation of the thresholds. This negative impact can
be reduced greatly by using certain optimization, for example, a lookup table with
linear interpolation will save not only �ash space but also CPU execution time.
Results using such optimizations have not been presented here so that the worst
case performance of the algorithms can be quanti�ed.

From the measured worst case values, we observe that the overall impact of both
adaptive and dynamic threshold approaches on computational overhead is quite min-
imal, especially when taking the gains into consideration. Even though the dynamic
threshold approach uses a little extra memory, the gains in having auto-con�gured
parameters and providing good performance make it a good choice.

5.3.4.2 Energy Costs

From the energy model showed in Table 5.3, we have determined that the amount
of energy taken up by the adaptive threshold (γ=25) computation is approximately
22.68 µJ, which is the amount of energy required to keep the processor running for
the computation time of 31.25 ms. On the other hand, computing the dynamic
threshold uses about 18.14 µJ, since the time to compute the threshold is about
25 ms. This means that for attack frequencies of 20, 45 and 90 attacks per hour,
the total energy spent over a period of one hour on computing the adaptive thresh-
old is about 0.45 mJ, 1.02 mJ and 2.04 mJ respectively, for the adaptive threshold
(γ=25). On the other hand, this is about 0.36 mJ, 0.81 mJ, 1.63 mJ respectively for
the dynamic threshold. Figure 5.13 presents the energy consumed at the attacked
node to calculate the adaptive and the dynamic thresholds. The consumed energy
increases by a signi�cant amount when the attacker becomes more aggressive. This is
because aggressive attacks lead to more threshold calculations, as such, more energy
is consumed.

However, looking only at the energy consumed in calculation of the overhead is
not a good measure for energy consumption since such attacks also cause additional
packet overhead, which leads to additional consumption by the radio. Since the radio
tends to be the most energy hungry device on constrained nodes, we have to factor
this into the energy consumption as well. The upper part of Figure 5.14 shows the
energy consumption caused by the control message overhead and threshold compu-
tation for all the nodes in the network. The lower part of Figure 5.14 presents the
change in energy consumption caused by the control message overhead and threshold
computation for all the nodes in the network, while the adaptive (γ=25) and dynamic
thresholds approaches are used in comparison to the �xed approach. We see that
in case of our adaptive and dynamic thresholds the energy spent by the network to
process the control message overhead and the computation of thresholds is less than
the energy used for the �xed threshold strategy. However, when the attacker is the

5.3. Mitigation Evaluation 75

Table 5.2: Memory occupancy of the di�erent thresholds.

Type of threshold Flash memory (kB) RAM (kB)

Fixed threshold 41.96 (87.4%) 8.63 (86.3%)

Adaptive threshold 45.61 (95%) 8.64 (86.4%)

Dynamic threshold 45.73 (95%) 8.64 (86.4%)

Table 5.3: Energy model for the CC2420 radio and MSP430F1611 microcontroller
operating at 1 MHz on the TelosB platform.

Operation Current Voltage Part

Transmit (Tx) 18.8 mA 2.2 V CC2420 [17]

Receive (Rx) 17.4 mA 2.2 V CC2420 [17]

Processing 0.33 mA 2.2 V MSP430F1611 [75]

15 20 30 45 60 75 90 180 360 720 1800 3600

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Attacks Per Hour

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 (

m
J
)

0

Adaptive Threshold Dynamic Threshold

Figure 5.13: Energy required for adaptive (γ=25) and dynamic thresholds computa-
tion under di�erent attack patterns.

76 Chapter 5. Local Strategy for Addressing DAG Inconsistency Attack

15 20 30 45 60 75 90 180 360 720 1800 3600

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 (

J
)

Fixed Threshold

Dynamic Threshold

15 20 30 45 60 75 90 180 360 720 1800 3600
−50

−40

−30

−20

−10

0

10

Attacks Per HourE
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 C

h
a
n

g
e
 (

%
)

Dynamic Threshold

Adaptive Threshold

Adaptive Threshold

Figure 5.14: Energy consumption caused by control message overhead and thresholds
computation under di�erent attack patterns.

most aggressive (3200 attacks per hour) the curves become closer. This is because, in
case of aggressive attacks the threshold is computed more often, leading to a higher
energy cost. For all attack patterns, the dynamic algorithm has better results than
the adaptive threshold as observed in the lower part of Figure 5.14. In fact, the
dynamic threshold approach can provide nearly 50% energy savings in certain attack
scenarios.

5.4 Conclusions

While the RPL protocol provides a �xed threshold based approach as an option to
mitigate the DAG inconsistency attack, the value of the threshold is arbitrarily cho-
sen and can be improved by taking into account network characteristics. Towards
this goal, we have �rst designed an adaptive mechanism that mimics the �xed thresh-
old when there is no attack. This approach has been improved by a fully dynamic
solution. Both of these approaches have been evaluated in our analysis and they
have both outperformed the �xed threshold. In particular, the overhead can be re-
duced between 20%-50% and in case of packet manipulation scenarios, which are not
mitigated by the default RPL approach, our method can improve the delivery ratio
to 99% as against 33% for the default RPL mitigation approach. We have discussed
the con�guration parameters impact. We have concluded that we should remain
cautious for the γ parameter in the adaptive threshold in order to repair genuine
loops and that the dynamic approach still outperforms the default mitigation even
with large size of neighborhood. We have performed a cost analysis of our proposed
strategy and we have showed that energy savings of up to 50% can be obtained. Due
to the drawback of picking pre-deployment constants that need to be determined
empirically for the adaptive approach, the dynamic approach is recommended since

5.4. Conclusions 77

it derives all parameters from the network neighborhood size. The performance of
our two approaches is quite similar in case of aggressive attacks. However, in all
other scenarios the dynamic threshold has outperformed the adaptive threshold. We
therefore recommend the dynamic threshold for use.

We have proposed a node-level solution to counteract the DAG inconsistency
attack. We can note that speci�c attack patterns such as the version number attack
cannot be addressed by such a node-based approach because the attack is propagated
through the entire network making it impossible to detect in a node-level perspective.
In that context, we propose in the next chapter of this thesis to complement this
approach through a distributed security-oriented monitoring architecture for RPL-
based IoT environments able to address these cases.

Chapter 6

Security-oriented Distributed

Monitoring Architecture

Contents

6.1 Introduction . 79

6.2 Proposed Architecture . 81

6.2.1 Overview and Components 81

6.2.2 RPL-based Mechanisms . 82

6.3 Monitoring Node Placement Formalization 85

6.4 Detection Modules . 86

6.4.1 DAG Inconsistency Attack 87

6.4.2 Version Number Attack . 89

6.5 Conclusions . 93

6.1 Introduction

We have previously proposed a node-level mitigation approach to address the DAG
inconsistency attack. While we have demonstrated that the cost of this solution was
reasonable, in some cases, attacks, such as the version number attack, have speci�c
characteristics such that similar local-node methods cannot be e�cient nor feasible
in that context. We therefore propose to extend our solution to these cases with
a passive distributed monitoring architecture designed for security. The originality
of our approach comes in particular from the fact that the architecture exploits the
RPL protocol to e�ciently organize monitoring nodes. Node-level security strategy
and distributed strategy are complementary according to network characteristics.
Indeed, on one hand, the distributed strategy allows providing a global view and
raising alarms to a network administrator, while, on the other hand, the node-level
strategy permits to limit the impact of ongoing attacks. Thanks to this architecture,
we can also handle cases where speci�c code, such as the node-level mitigation, cannot
be deployed on nodes (no physical access, proprietary motes, no more capacity, etc.).

79

80 Chapter 6. Security-oriented Distributed Monitoring Architecture

Figure 6.1: Typical AMI network [19].

In order to preserve node resources, we exploit typical deployments of IoT infras-
tructures relying on higher-order devices. This is the case for advanced measurement
infrastructures (AMI) which is expected to be organized as showed in Figure 6.1 [19].
This network can be divided into two tiers, i.e., the Neighborhood Area Network
(NAN) and the Wide Area Network (WAN). The NAN consists of the smart meters
that are deployed at (1) residential premises, (2) commercial and industrial buildings
and (3) electricity transformer and feeder points in a speci�c neighborhood. These
smart meters typically communicate by forming an IEEE 802.15.4 based mesh net-
work that uses IPv6 for addressing individual devices. The RPL routing protocol
is likely to be used to form the routing topology in the NAN tier. The WAN tier
usually consists of the utility providers head end systems where metering data is
typically collected. Unlike the NAN tier, systems in the WAN tier communicate
using high-speed wireless or �xed-line access technologies. Field routers controlled
by the utility providers, deployed on supply poles in a neighborhood, act as a bridge
between the NAN and WAN tiers. These �eld routers have two interfaces, one that
allows it to communicate with the low-power lossy network (typically IEEE 802.15.4)
on the NAN side and another one that provides access to the high-speed wireless or
�xed-line networks on the WAN side. It is also possible for these �eld routers to par-
ticipate in a NAN-to-NAN mesh, such that the �nal interconnection of smart meters
with head end systems occurs only via the low-power lossy communication channel.
We therefore want to outsource monitoring and anomaly detection activities on these
higher-order devices that are �eld routers. These ones can be interconnected to form
an independent network from the LLN network in order to share their information
which constitute our monitoring architecture.

This chapter presents our monitoring architecture concepts and details detection
algorithms which can be integrated in our solution to address attacks. Section 6.2
introduces our solution, describes its main components and mechanisms based on
the RPL protocol. We then propose in Section 6.3 to formalize the placement of

6.2. Proposed Architecture 81

monitoring nodes through an optimization problem. Finally, Section 6.4 presents
algorithms deployed on monitoring nodes in order to detect DAG inconsistency and
version number attacks.

6.2 Proposed Architecture

We propose a security-oriented distributed monitoring architecture for the Internet
of Things that passively observes the network. This one allows us to detect threats
complementary to the local-node approach, for speci�c complex attacks which cannot
be detected locally or even when dedicated code cannot be implemented on nodes. It
is based on dedicated nodes and relies on the RPL protocol mechanisms to perform
monitoring operations, so the target nodes do not have the charge of this activity.
We describe both the main components of this architecture and the RPL-oriented
features that are exploited to support it on an IoT network.

(a) Monitoring nodes snooping packets
transmitted by nodes in radio range.

(b) Building of two RPL instances.

Figure 6.2: Example of our passive monitoring architecture exploiting the RPL multi-
instance feature.

6.2.1 Overview and Components

Our monitoring architecture described in Figure 6.2 is composed of two types of
nodes participating in the network, regular nodes also called target nodes which are
monitored, plotted in white, and monitoring nodes plotted in blue. The sink plotted
in green is also a monitoring node.

The regular nodes are typically lower order devices that �t into the C0 or C1 class
of constrained devices. Their primary function is to carry out their assigned sensing

82 Chapter 6. Security-oriented Distributed Monitoring Architecture

or actuation task. They form the so called regular network. They communicate
with a sink/controller, where all collected sensing data is forwarded or from where
actuation commands might be periodically received. This communication occurs
over low-power lossy channels and a multi-hop mesh network might be formed in
order to enable interconnection between all nodes.

The monitoring nodes are higher-order devices that should be at least C2 or
better. As such, their monitoring activities might not have an e�ect upon their
ability to serve their primary purpose of routing information in the regular network.
These monitoring nodes are capable of passively listening to the regular nodes in
their radio communication range, while also recording required information.

Since the higher-order devices, instrumented as monitoring nodes, are expected
to be deployed in many IoT applications, those nodes participate in the regular net-
work. As such, they are able to intercept and analyze packets sent by regular nodes.
A monitoring node can only monitor its own low-power lossy network neighborhood
as represented by circled areas in Figure 6.2(a). However, network-level monitor-
ing information is useful to track the topology and inconsistencies in the network,
e.g. topological, security, etc. As such, these monitoring nodes must periodically
forward the collected monitoring data towards a sink. To avoid using the resource
of constrained nodes, the monitoring nodes form a second routing topology as il-
lustrated by the upper part of Figure 6.2(b). This second network, known as the
monitoring network, has access strictly limited to monitoring nodes. Two possibili-
ties can be considered to build the monitoring network depending on the use case.
If the monitoring nodes have an high-speed high-bandwidth access network they can
interlink with each other and with the sink, this can be the case in AMI (Advanced
Measurement Infrastructure) deployments [19]. The second possibility is to share the
same medium as the regular network, the interconnection is feasible using di�erent
radio ranges for monitoring nodes which is possible considering higher-order devices.
The monitoring network will form an overlay network.

A monitoring node has two possibilities to collect monitoring data:

• the processing of tra�c (data and control messages) legitimately sent to it by
other nodes;

• the overhearing of packets exchanged between other nodes.

Indeed, complementary to the data collected by a monitoring node based on packets
it has to process, i.e. data and control messages that are legitimately sent to it,
it may enable the promiscuous mode in order to cover a larger amount of packets.
The promiscuous mode allows a node to overhear packets, it is particularly useful for
detecting anomalies and potential attacks by snooping data tra�c not transmitted
to it.

6.2.2 RPL-based Mechanisms

This passive monitoring solution is instantiated using the RPL protocol mechanisms.
Figure 6.2(a) presents an example of a DODAG where node v′1 is the root. Multiple

6.2. Proposed Architecture 83

instances of RPL, each being an execution of RPL with a speci�c objective function,
can be run within a network. Each instance has its own DODAG graph [80] as
illustrated in Figure 6.2(b) where the network is composed of two instances IM (on
the upper plane) and IR (on the lower plane). While a node may be a member of
multiple instances, it can only join a single DODAG in an instance such as nodes v′4,
v′7 and v

′
10 in Figure 6.2(b) which are part of both instances.

Table 6.1: Summary of considered notations.

Notation Meaning

IR, IM regular instance, monitoring instance

V , vi set of all regular nodes, particular regular node i

V ′, v′k set of all monitoring nodes, monitoring node k

ri rank value of node i

Nvi neighborhood of node vi

The following introduced notations are gathered in Table 6.1. Applying the RPL
protocol to a network leads to the building of a DODAG in a instance I noted DI .
We note as DI(V,E) the DODAG graph composed of V nodes linked using E edges.
Every node participating in the DODAG has an access to the root or sink S using
the E edges which are chosen among all the links available to cope with the objective
function. We note Nvi the neighborhood of a node vi which is the set of nodes {vk}
in the communication range of vi. The neighboring nodes of vi can be parents whose
rank is lesser than the rank value of vi, children whose rank is greater or siblings with
the same rank value. The rank value of a node vi is noted ri. We exploit the multi-
instance feature of RPL to build two networks: a regular network and a monitoring
network. An instance in RPL can be seen as a network optimized for speci�c metrics
or constraints given by an objective function. The RPL multi-instance principle
is an example of VRF (Virtual Routing and Forwarding): multiple instances of a
routing table coexist on the same router at the same time. Those instances are
completely independent which means if one network breaks down at some point
because of regular node failure or attacks, the second network can operate normally.
Therefore, two instances are running at the same time in our solution. One instance
is used for the regular service noted IR wherein the DODAG built is noted DIR

composed of V ∪ V ′ nodes i.e. with both regular and monitoring nodes. The second
instance called the monitoring instance, IM where the DODAG is noted as DIM

also is composed of V ′ nodes as showed in Figure 6.2(b). Using the RPL multi-
instance feature presents two main advantages. First, it allows us to preserve regular
nodes' resources because monitoring nodes forward their data on their monitoring
instance/network. Second, if the regular network malfunctions, the monitoring data
will still be forwarded thanks to the monitoring network, which is independent of
the regular one.

The sink S is also a monitoring node. A monitoring node, v′k is able to collect
information regarding its neighborhood Nv′k

as illustrated in Figure 6.2(a), the zone

84 Chapter 6. Security-oriented Distributed Monitoring Architecture

covered by a monitoring node is its neighborhood. The collected information al-
lows it to monitor the network and also detect possible anomalies by implementing
locally detection algorithms. In Figure 6.2(a), monitoring node v′10 is able to moni-
tor Nv′10

= {v5, v9, v11} using passive listening and overhearing. The monitoring node
supports the detection of local anomalies based on dedicated detection modules. Col-
lected information as well as detection results can then be aggregated and forwarded
to its monitoring neighbor v′4. Since neighborhoods of nodes v

′
10 and v

′
4 overlap, node

v′4 checks if information gathered by node v′10 matches its own information in order to
re�ne the detection in a collaborative manner. Node v′4 performs the same process
as its predecessor: collects information, runs detection algorithms, aggregates the
di�erent sources of data and reports it to the next monitoring node which is here the
sink. Since the sink collects data from the di�erent monitoring nodes, it may detect
inconsistencies only observable at a global level.

A monitoring node is able to record the following RPL statistics from intercepted
messages:

• Information about the DODAG:

� Instance ID observed in messages originating from regular nodes.

� DODAG ID observed in messages originating from regular nodes.

� DODAG Root: destination address observed in all data packets from
regular nodes.

� DODAG Version observed from RPL control messages originating at
each regular node.

� Node Objective Function observed from RPL control messages origi-
nating at each regular node.

• Information speci�c to a node:

� Node DODAG Rank observed from RPL control messages originating
at each regular node.

� Minimum Rank Increase: the option observed in control messages
advertised by a non-root node.

� Maximum Rank Increase the option observed in control messages ad-
vertised by a non-root node.

• Information about the repair mechanisms:

� Local Repairs Triggered the number of local repairs triggered by a
node.

� Global Repairs Triggered the number of global repairs triggered by a
node, i.e. higher DODAG version advertised by a non-root node.

• Information about Control Messages:

6.3. Monitoring Node Placement Formalization 85

� DIO Message Count the number of RPL DIO control messages ob-
served from a node.

� DIS Message Count the number of RPL DAO control messages ob-
served from a node.

� DAO Message Count the number of RPL DAO control messages ob-
served from a node.

� Delay between DAO messages observed by timing the frequency of
DAO message reception from each regular node.

• Information related to the Data Path Validation:

� O-Bit Set the number of packets observed from a regular node with the
O-Bit set.

� F-Bit Set the number of packets observed from a regular node with the
F-Bit set.

� R-Bit Set the number of packets observed from a regular node with the
F-Bit set.

These statistics allow detecting potential miscon�gurations as well as misbehaviors
in the RPL functioning.

6.3 Monitoring Node Placement Formalization

We assume that all regular nodes are covered by at least one monitoring node because
information about each node needs to be collected to monitor correctly the network.
A con�guration under this constraint can be calculated with the resolution of an
optimization problem thanks to integer linear programming. The problem can be
formulated as follows: for a given topology and a given connectivity matrix for
all possible monitoring nodes placement in this topology, �nd a con�guration of
monitoring nodes placement that minimizes the number of monitoring nodes needed
to cover all regular nodes.

Table 6.2: Required inputs for monitoring node placement.

Domain Parameter Description

J1, NK N Number of nodes in the topology

J1, NK× J1, NK A
Connectivity matrix for monitoring nodes,
Ai,j = 1 if node i covers node j

As input to solve this problem we need two parameters detailed in Table 6.2. The
�rst parameter is the number of nodes (size of the topology) and the second one is
the connectivity matrix detailing the links of possible monitoring nodes with other
nodes, Ai,j = 1 if node vi can listen to node vj . We set the diagonal of this matrix
to 0, i.e. ∀i, Ai,i = 0 which means that we consider that a possible monitoring node

86 Chapter 6. Security-oriented Distributed Monitoring Architecture

Table 6.3: Considered variables for modeling.

Domain Variable Description

J1, NK Y
Binary variable indicating whether Yi is a
monitoring node (= 1) or not

does not cover itself. This facilitates the formalization of more complex problems by
excluding monitoring nodes from speci�c constraints focusing on regular nodes only
(as it can be seen in the next chapter). Only one variable is used here (cf. Table 6.3),
Y , which represents whether node vi is a monitoring node (Yi = 1) or not (Yi = 0).

The constraints are detailed in Equations 6.1 and 6.2:

Y1 = 1 (6.1)

∀i ∈ J1, NK :
N∑
j=1

(Ai,j .Yj) + Yi ≥ 1 (6.2)

The objective function fobj is given by Equation 6.3:

fobj = min
N∑
j=1

Yj (6.3)

Equation 6.1 indicates that node v′1 is a monitoring node, because in our case
node v′1 is the sink and the sink is always a monitoring node in our architecture. It
is possible, depending on the topology, to force particular nodes to be monitoring
nodes for the con�guration calculation. Equation 6.2 speci�es that each regular node
is covered by at least one monitoring node. Since the diagonal of the connectivity
matrix is 0, we need to add +Yi in the equation so that the model is correct. The
objective represented by Equation 6.3 is to minimize the number of monitoring nodes
under these di�erent constraints. Minimizing the number of monitoring nodes allows
us to reduce the cost for their deployment. This solution permits to guarantee that
each regular node is covered by at least one monitoring node, however it is also
possible to extend the model with new constraints to meet other requirements.

Our architecture is able to monitor network tra�c but it has been designed having
in mind anomaly detection. We therefore propose detection modules deployed on
monitoring nodes to identify threats targeting RPL networks.

6.4 Detection Modules

We have considered an IoT infrastructure where monitoring nodes can enable the
promiscuous mode and implement detection modules to identify unusual behaviors
and potential attacks. In this section, we present two algorithms: the �rst one allows
monitoring nodes to detect the DAG inconsistency attack by overhearing data tra�c,
and the second one to detect and localize the launcher of a version number attack.

6.4. Detection Modules 87

6.4.1 DAG Inconsistency Attack

The DAG inconsistency attack exploits the data path validation feature of RPL which
is used to avoid and detect possible loops within the network. We have previously
proposed a mitigation strategy deployed on each regular node in the network to
counter such threats. When speci�c code cannot be deployed on regular nodes and/or
when a global view is needed, we want to exploit our designed architecture to perform
the security strategy using distributed detection algorithms. In order to detect such
an attack, the promiscuous mode has to be enabled on monitoring nodes since it
targets data tra�c. In our architecture each monitoring node implements Algorithm
4 to identify this type of anomaly.

Algorithm 4 Detection algorithm implemented on monitoring nodes {v′k}, k ∈
{1, 4, 7, 10} to detect DAG inconsistency attacks

for each data packets received from Nv′k
do

if R_�ag is set then
identify sender vi count_Ri + +
if count_Ri == THRESHOLD then

alone = 1
for each vj 6= vi in Nv′k

do

if count_Rj > 0 then
alone = 0

end if

end for

if alone == 1 then
anomaly is detected

end if

end if

end if

end for

In Algorithm 4, R_�ag represents the rank error �ag in data packets. A mon-
itoring node v′k tracks for each neighbor vi ∈ Nv′k

the number of rank error �ags
count_Ri they have set. If this counter reaches the threshold value then the moni-
toring node has to check if vi is the only node which has sent such packets. In this
case, the 'R' �ag packets are not originated from a legitimate loop and the anomaly is
detected. The di�erent count_Ri values are reset every hour in order to allow nodes
to send legitimate 'R' �ag packets.The threshold value has to be chosen carefully
because it limits the number of 'R' �ag packets a node can send, legitimately or not.
We have adopted a �xed threshold in this approach such as the default mitigation
presented in Chapter 5 for three reasons. First, it allows us to test easily the abil-
ity of our architecture and our algorithm to detect the DAG inconsistency attack.
Second, the varying thresholds (adaptive and dynamic thresholds) as presented in
Chapter 5 cannot be used in this context because they were designed for a local-node
detection, as such, the chosen parameters depending on node-level information are

88 Chapter 6. Security-oriented Distributed Monitoring Architecture

inappropriate in a distributed detection strategy. Finally, the idea of this algorithm
is to detect the DAG inconsistency attack in a global view and not to mitigate it.
The main point of the varying thresholds (AT and DT) is to limit the consequences
of such an attack. The value of the threshold used in this algorithm is discussed in
Section 7.3.1. In our architecture when an attack is identi�ed, the malicious node is
reported to an operator who can isolate it.

In order to determine whether the attack is a direct scenario or not, the monitor-
ing node has just to compare the IP address of the direct sender of 'R' �ag messages
and the IP address of the source.

Figure 6.3: DAG inconsistency attack illustration where node 6 is the malicious node.

Figure 6.3 shows an example of a direct attack scenario. In this scenario, the
node v6 is the attacker and sends attack messages with the 'R' �ag enabled to its
preferred parent v2. The monitoring node v′7 is able to overhear these messages since
the attacker is in its neighborhood. As soon as the number of 'R' �ag messages
reaches the threshold value and if the attacker is the only node to have sent such
messages, then it is considered as anomalous.

This algorithm has been designed in case only one malicious node performs the
attack. However, if multiple attackers are present at the same time, our algorithm is
still able to detect them as long as they are in di�erent monitoring node neighbor-
hoods. If several attackers are in the same neighborhood of a monitoring node v′k
and launch their attacks simultaneously, node v′k cannot determine there is an attack
because there are several senders of 'R' packets, which is considered as legitimate
loops. New conditions should be introduced to manage attackers coalition.

We can observe in this algorithm that monitoring nodes do not have to exchange
data in order to identify the attack. However, when the attack is spread all across the
network such as in the version number attack, monitoring nodes have to collaborate
in order to detect the malicious node.

6.4. Detection Modules 89

6.4.2 Version Number Attack

While the DAG inconsistency attack exploits information contained in data packets,
the version number on the other hand misuses the version number included in DIO
control messages. Due to the fact that an incremented version number is propagated
within the entire graph, a monitoring node cannot decide by itself whether there is an
attack or not. The monitoring nodes have therefore to share monitoring information
to identify the malicious node. Our monitoring architecture is designed to allow
monitoring nodes to collaborate together thanks to the monitoring instance. Also,
the monitoring nodes can track information regarding their neighborhood, so the
regular nodes do not have to carry out this task. To detect this attack and locate
the malicious node we propose Algorithms 5, 6 and 7. The local assessment algorithm
presented in Algorithm 5 is deployed on monitoring nodes except the root and allows
monitoring nodes to report to the root the sender of an incremented version number
in their neighborhood. Algorithms 6 and 7 are implemented on the root node. The
�rst one detects the attack and gathers all monitoring node information into tables.
The last algorithm performs the attacker identi�cation by analyzing the collected
information.

Algorithm 5 Local assessment algorithm.

potential_att = NULL;
for each DIO received by v′k from vi ∈ Nv′k

do

if (VNvi > VNv′k
) and (potential_att == NULL) then

potential_att = vi
send_root(Mk = (VNvi ,vi,Nv′k

))
end if

end for

In Algorithm 5, a monitoring node v′k, upon receiving a greater version number VNvi

from vi than its own version number VNv′k
, sends to the root a message containing the

address of the sender vi and the list of its neighbors Nv′k
obtained from the di�erent

received DIO messages. The monitoring node only sends a message the �rst time it
receives an incremented version number. Indeed, since the attacker is in the direct
neighborhood of at least one monitoring node there is no need in sending further
messages because senders of other incremented version number messages are relays.
We also consider the other neighbors of the monitoring node as safe. Complementary
to the algorithms, the root could have the possibility to send a signal message indi-
cating that the monitoring nodes reset the potential_att value, in order to restart
the detection process, in case another attacker appears in the network.

Algorithm 6 is supported by the root and is used to detect the attack and gather
all related monitoring data. Upon receiving either a monitoring message or an in-
cremented version number, the root starts a detection timer to allow all monitor-
ing nodes to send their messages. Two lists are managed by the root node: the
potential_att_list list which is composed of all vi nodes reported by the di�erent
monitoring nodes and the neigh_list list which is composed of each monitoring

90 Chapter 6. Security-oriented Distributed Monitoring Architecture

node neighbors Nv′k
. Once the lists are completed, the root starts the localization

procedure described in Algorithm 7.

Algorithm 6 Distributed detection algorithm.

anomaly_detected = 0
if (VNvj > VNv′1

in DIO received from vj ∈ Nv′1
) then

anomaly_detected = 1
add(potential_att_list, vj)
add(neigh_list, {Nv′1

})
start(detection_timer)

end if

if (VNvi > VNv′1
in Mk received) and (anomaly_detected == 0) then

anomaly_detected = 1
start(detection_timer)

end if

while (potential_att_list.nb != Card(V ′)) or (!timer_expired(detection_timer))
do

for each message Mk received from v′k ∈ V ′ do
add(potential_att_list, vi)
add(neigh_list, {Nv′k

})
end for

end while

Localization

This procedure exploits the two previous lists in order to produce two new lists:
att_list list composed of nodes considered as malicious and the safe_list list con-
taining all nodes classi�ed as safe. The objective of this procedure is to compare
neighborhoods of monitoring nodes in order to eliminate potential attackers. At ini-
tialization, the �rst element of the potential attacker list is added to the attacker
list, and the other neighbors of the corresponding monitoring node are added to the
safe list. While iterating, when the next potential attacker is already in the attacker
list or in the safe list, it is ignored, and only the other neighbors are added to the
safe list. This means that di�erent monitoring nodes have detected the same node
as a potential attacker, or that a monitoring node has detected a node as a potential
attacker while being chosen as safe by another monitoring node. If the potential at-
tacker is neither in att_list nor in safe_list, it is added to the attacker list. The �nal
test consists in verifying if some elements of the neighbor list are in the attacker list.
This can happen when monitoring messages are received in a disordered manner. In
this case, these elements vm have to be removed from the attacker list. We can notice
that at the end of the algorithm it is possible to obtain several nodes considered as
attackers, when senders of incremented version number are monitored by only one
monitoring node.

6.4. Detection Modules 91

Algorithm 7 Localization algorithm.

procedure Localization

att_list = NULL
safe_list = NULL
for (i=0, i<potential_att_list.nb, i++) do

if (att_list == NULL) then
add(att_list,potential_att_list[i])
add(safe_list,{neigh_list[i] \ potential_att_list[i]}

else

if (potential_att_list[i] ∈ att_list) then
add(safe_list,{neigh_list[i]\potential_att_list[i]}

else if (potential_att_list[i] ∈ safe_list) then
add(safe_list,{neigh_list[i]\potential_att_list[i]}

else

add(att_list,potential_att_list[i])
add(safe_list,{neigh_list[i] \ potential_att_list[i]})

end if

if (neigh_list[i] ∩ att_list = vm, vm 6= ∅) then

remove(att_list,vm)
end if

end if

end for

end procedure

In order to illustrate these algorithms, we provide two examples to describe the
di�erent possibilities using the topology presented in Figure 6.2(a). The �rst sce-
nario shows our detection strategy functioning under normal conditions. The second
scenario is used to present a use case where the detection strategy produces false pos-
itive results (normal node considered as malicious). In Figure 6.4(a), the attacker is
located at position 11, it sends DIO malicious messages to all its neighborhood (plain
red arrows) which are relayed by other nodes (in purple dotted arrows). Monitoring
nodes v′7 and v′10 receive attack messages from attacker v11 and send to the sink
a message containing the sender of the anomalous message and their neighbors as
illustrated by Table 6.4(a). Nodes v′1 and v

′
4 do the same with relays v3 and v5. Once

all data are gathered, the sink can start the localization procedure to establish the
list of attackers and the list of safe nodes. At initialization, the �rst entry of poten-
tial attacker list, v11, is added to the attacker list and the corresponding neighbors
without the potential attacker {v3, v6, v12} are added to the safe list as described
by Table 6.5(a). Then, since the second entry of Table 6.4(a), v11, is already in the
attacker list, only the safe list is updated with the neighbors of monitoring node v′10,
{v5, v9}. The third entry of Table 6.4(a) is v3 which is already in the safe list, so only
the safe list is updated with the corresponding neighbor {v2}. The same process is
repeated for the last entry v5 which is also already in the safe list. At the end of
the algorithm, the only element of the attacker list is v11 which is correct and all the

92 Chapter 6. Security-oriented Distributed Monitoring Architecture

(a) Attacker located at position
11.

(b) Attacker located at position 2.

Figure 6.4: Version number attack illustrations.

Table 6.4: Potential attacker list and neighbors list obtained by the root after mes-
sages aggregation.

(a) Attacker located at position 11.

Monitoring
node

Potential
attacker

Neighbors
list

v′7 v11 {v3 v6 v11 v12}
v′10 v11 {v5 v9 v11}
v′1 v3 {v2 v3}
v′4 v5 {v2 v5 v8 v9}

(b) Attacker located at position 2.

Monitoring
node

Potential
attacker

Neighbors
list

v′1 v2 {v2 v3}
v′4 v2 {v2 v5 v8 v9}
v′7 v6 {v3 v6 v11 v12}
v′10 v5 {v5 v9 v11}

other regular nodes are considered as safe.

The second scenario, illustrated by Figure 6.4(b), where the attacker is located at
position 2 shows the case where the localization procedure produces two attackers.
Table 6.4(a) details how the monitoring data are aggregated by the root v′1 and
Table 6.5(b) shows the localization process. Until step 1 we can see that only v2 is
considered as the attacker, however in step 2 node v6 is also added. The latter is
not in the safe list meaning that no other monitoring node could exculpate it. As
such, this detection algorithm may generate false positive results, a false positive
corresponding to a normal node being detected as malicious by our strategy. The
next chapter will show how to minimize the number of false positives.

6.5. Conclusions 93

Table 6.5: States of attacker list and safe list during the localization procedure.

(a) Attacker located at position 11.

Step
Attacker

list
Safe list

Initialization {v11} {v3 v6 v12}
Step 1 {v11} {v3 v5 v6 v9 v12}

Step 2 {v11}
{v2 v3 v5 v6 v9

v12}

Step 3 {v11}
{v2 v3 v5 v6 v8
v9 v12}

(b) Attacker located at position 2.

Step
Attacker

list
Safe list

Initialization {v2} {v3}
Step 1 {v2} {v3 v5 v8 v9}

Step 2 {v2 v6}
{v3 v5 v8 v9
v11 v12}

Step 3 {v2 v6}
{v3 v5 v8 v9
v11 v12}

6.5 Conclusions

We have proposed in this chapter a security-oriented monitoring architecture for
RPL-based Internet of Things. This distributed passive architecture exploits the
RPL protocol to support monitoring in a lightweight manner for the regular nodes.
We have described its main components and how they interact based on the RPL
protocol. It uses higher-order monitoring nodes typically deployed in many infras-
tructures such as AMI networks. These nodes are able to passively listen to the
network while participating in its operation. The instantiation of our architecture
takes bene�t from the RPL protocol mechanisms such as the multi-instance feature
in order to establish two separated routing topologies: a �rst instance corresponding
to the regular network, and a second instance supporting the security monitoring
activities. The regular nodes do not require to be instrumented so that monitoring
tasks are operated by higher-order nodes.

We have also proposed dedicated modules to address DAG inconsistency and
version number attacks in RPL networks. The �rst detection module which targets
the DAG inconsistency attack relies on the promiscuous mode of monitoring nodes
since the attack takes place in the option header of data packets. The module used
to detect the version number attack exploits the ability of monitoring nodes to share
their collected information since any local approach cannot be adopted. It permits
to identify the malicious node, the attacker localization process being performed by
the root after gathering detection information from all monitoring nodes. We have
illustrated this strategy through examples showing the possibility for false positive
results to occur. As our approach is passive and does not rely on regular nodes, it
allows minimizing the impact on the Internet of Things infrastructure. The next
chapter details the experimental evaluation of our architecture and its detection
modules, in particular performance of the overhearing mode and the e�ciency of our
detection algorithms.

Chapter 7

Architecture Evaluation

Contents

7.1 Introduction . 95

7.2 Overhearing Evaluation . 96

7.2.1 Simulation Setup . 96

7.2.2 Performance Analysis . 97

7.2.3 Cost Analysis . 99

7.3 Detection Modules Evaluation 100

7.3.1 DAG Inconsistency Attack 101

7.3.2 Version Number Attack . 104

7.4 Scalability Evaluation . 109

7.5 Conclusions . 113

7.1 Introduction

We have described a whole strategy to detect attacks targeting RPL networks which
relies on a distributed architecture and dedicated algorithms.

We propose here, to evaluate our architecture and its detection modules. Figure 7.1
presents the di�erent part of this evaluation. We analyze performance and costs of
the overhearing mode. The impact of three parameters in the Cooja environment
is examined: distance, tra�c load and neighborhood size. We then investigate the
DAG inconsistency attack detection performance with the instantiation of a dedi-
cated scenario in Cooja. We then evaluate the detection strategy for the version
number attack. We analyze the number of false positive results according to mon-
itoring node placement con�guration in the topology. Since this detection strategy
is distributed on the di�erent monitoring nodes, we �nally investigate the scalability
of our approach with the formalization of an optimization problem for dealing with
monitoring node placement.

The following of the chapter is organized as follows. Section 7.2 presents our
experimental results regarding the overhearing mode. Section 7.3 details results of

95

96 Chapter 7. Architecture Evaluation

Figure 7.1: Monitoring architecture and detection strategy evaluation.

our detection modules. Finally, Section 7.4 describes our monitoring node placement
strategy.

7.2 Overhearing Evaluation

Our monitoring architecture can exploit the ability of monitoring nodes to overhear
their neighbors. A �rst study is dedicated to the evaluation of the performance and
the cost of this overhearing activity.

7.2.1 Simulation Setup

We have set up a simple scenario composed of three nodes to quantify overhearing
performance: a root node, a regular node con�gured to send data tra�c periodically
and directly to the sink, and a monitoring node with the promiscuous mode enabled
which is equidistant from the previous nodes. This scenario allows us to study
three parameters separately and measure their potential impact on the overhearing
capacity of a monitoring node: (i) the distance from the monitoring node to the
node it monitors, (ii) the sending frequency of a regular node and (iii) the number
of neighbors of a monitoring node.

This scenario has been implemented in the Contiki 2.7 operating system [27].
The TelosB has been chosen as a target platform for regular nodes as in previous
experiments. The Cooja simulator has been used during this analysis to execute
the code written for the TelosB platform. Since Cooja does not have access to a
device model for any higher-order devices, the TelosB platform has not only been
used for regular nodes, but also for monitoring nodes. The monitoring node has
been con�gured to enable the promiscuous mode. Each simulation has lasted for a
lifetime of eight hours and has been repeated six times for accuracy reasons.

The metrics used to evaluate the di�erent parameters are: (i) the success ratio
which is the number of overheard data packets over the number of data packets sent
by regular nodes in percentage and (ii) the number of overheard packets. Through
the simulations it was experienced that the monitoring node can overhear two types
of packets: data packets and point-to-point control messages (not destined to itself)
which were ICMPv6 Neighbor Solicitation and Neighbor Advertisement messages.

7.2. Overhearing Evaluation 97

7.2.2 Performance Analysis

In a �rst series of experiments, we have analyzed the impact of the distance. For this
scenario, the position of the monitoring node has been varied from 15 to 50 meters
from both the regular node and the sink. The regular node has been con�gured to
send data every 20 s (180 msg/hr). Table 7.1 gathers results for di�erent distances.
Looking at the ratio which is around 36%, we can observe that a monitoring node
cannot overhear all messages. This can be explained by the fact that the monitoring
node has to process its legitimate tra�c (control messages) in priority and when its
queue is already full, the new arriving overheard packets are dropped. We could de-
duce that being able to overhear approximately 1/3 of data packets is low. However,
the target platform used is a TelosB, a C1 class device, so it is expected that for a
higher-order device the overhearing success ratio would be higher. Also, as explained
in Section 6.2, overhearing is not the only source of monitoring data in our strategy,
since a monitoring node can also gather data from packets that it legitimately for-
wards. In this scenario only monitoring data coming from the promiscuous mode is
evaluated. As it will be presented in the next section, even if the success ratio seems
low it is good enough to detect certain type of anomalies such Denial of Service
(DoS) attacks. As we can observe the number of overheard packets do not change
over distance such as the ratio, which implies that the distance does not a�ect the
overhearing in the Cooja environment.

Table 7.1: Performance while varying the distance.

Distance (m) 15 20 30 40 50

Success ratio (%) 36 35.5 35.5 36.5 36

Number of listened data packets/hr 64 65 65 65 65

Figure 7.2: Average success ratio while varying sending frequency.

98 Chapter 7. Architecture Evaluation

Figure 7.3: Average number of listened packets in one hour while varying sending
frequency.

A second series of experiments have focused on the sending frequency. For this
analysis the same topology as before has been setup, and the sending frequency
of the regular node has been varied from 45 messages per hour to 360 messages
per hour. Since the distance has no in�uence on the overhearing performance the
monitoring node has been placed at 25 meters. Figure 7.2 presents the average
success ratio of the monitoring node when the sending frequency varies from 45
msg/hr to 360 msg/hr. Figure 7.3 shows the number of listened packets using the
promiscuous mode by the monitoring node. From Figure 7.2, we can see that the
ratio lays between 32% and 39% and is slightly increasing with the frequency. We
can therefore conclude that the success ratio is relatively stable (low variation). Since
the ratio is stable and the number of sent data packets is increasing, it means that
the number of overheard data packets also increases. This is con�rmed by Figure 7.3
where the number of listened data packets increases with the frequency. We can also
note that the number of listened control messages is stable (less than 40 messages),
which makes sense because the number of nodes does not change over the simulations
and the number of overall exchanged control messages is almost the same for each
simulation. As a conclusion it can be said that for this environment the overhearing
mode has slightly better results with a heavier load, although this improvement is
limited (+7% when the tra�c is multiplied by 8). As such, the overhearing success
ratio can be considered as stable with the frequency.

Finally, the number of neighbors has been analyzed in a third series of experi-
ments. For this scenario the topology has been modi�ed so the number of regular
nodes has been varied from 2 to 10 including the sink. The new neighbors have been
directly connected to the root in the range of the monitoring node. The sending
frequency has been set to 180 messages per hour. Table 7.2 gathers the di�erent re-
sults regarding frequency and number of messages. We can see that the ratio stands
between 36.5% and 38.5% which is quite stable. For these simulations we can ex-

7.2. Overhearing Evaluation 99

plain the relative stability of the ratio by the fact that not only the number of data
packets but also the number of control messages exchanged increases signi�cantly
with the number of neighbors. Indeed, if we consider the number of control messages
exchanged between two nodes as stable over the simulations and if we multiply the
number of nodes, the number of listened control messages is multiplied as well. The
increase of listened data packets is also proportional to the number of neighbors:
for two neighbors we have only one regular node which is sending data packets; if
we multiply the number of listened data packets by the number of regular nodes
we can see that we are close to the results given by the simulation. For instance,
66 × 3 = 198 which is close to 208, the number of listened data for 4 neighbors
(3 regular nodes + 1 sink). Larger neighborhood sizes have not be simulated since
the results can be extrapolated from previous observations.

Table 7.2: Performance while varying the neighborhood size.

Number of neighbors 2 4 6 8 10

Success ratio (%) 36.5 38.5 37.5 38.5 38

Number of listened data packets/hr 66 208 337 482 612

The di�erent results obtained on the performance of the promiscuous mode for
TelosB platform in a Cooja environment are useful information. Indeed, even if
the monitoring node can overhear slightly more than a third of transmitted data
packets, thanks to the di�erent results, an estimation of the actual number of sent
data packets can be achieved. Also these results can be helpful when developing
detection algorithms. As we know, from the di�erent studied scenarios, distance,
sending frequency and neighborhood size do not a�ect much the success ratio.

7.2.3 Cost Analysis

Overhearing packets implies a cost for the monitoring node. From the energy
model provided by Table 7.3, we calculated the cost for receiving monitored packets.
Figure 7.4 shows the energy consumption of a monitoring node with two neighbors
while the sending frequency of regular node is varied from 45 to 360 packets per
hour.

Table 7.3: Energy model for the CC2420 radio and MSP430F1611 microcontroller
operating at 1 MHz on TelosB.

Operation Current Voltage Part

Receive (Rx) 17.4 mA 2.2 V CC2420

Figure 7.5 presents the energy consumption while the neighborhood size is varied
from 2 to 10 and the sending frequency on regular nodes is set to 180 msg/hr. Since
the energy is proportional to the number of packets, the di�erent results are similar
to the ones presented in the previous section. We can see in Figure 7.4 that the

100 Chapter 7. Architecture Evaluation

cost in total varies between 65 mJ for 45 msg/hr to 240 mJ for 360 msg/hr. Until
90 msg/hr the monitoring node spends more energy to overhear control messages
than data packets. We can observe from Figure 7.5 that both overhearing data cost
and overhearing control messages cost are increasing with the size of the neighbor-
hood as explained earlier. The cost in total varies from 140 mJ (for two neighbors)
to 1250 mJ (for ten neighbors) which is up 5 times more than costs presented in
Figure 7.4. We see that the cost increases linearly with the size of the neighborhood.
In more realistic conditions it is unlikely that regular nodes send so many data pack-
ets for their applications (360 msg/hr represents one message every 10 s) and have
so many neighbors, we have included extreme cases in our analysis.

Figure 7.4: Energy consumed by the overhearing mode for a monitoring node while
varying sending frequency (2 neighbors).

A trade-o� has to be made between cost and e�ciency. For instance we can
optimize the number of monitoring nodes to be deployed but it means that they
have to cover more nodes and consequently it costs more in terms of energy. This is
also why we proposed in this architecture that the monitoring tasks are supported by
higher-order devices so the energy is not as restrictive as it can be on usual C0/C1
devices.

7.3 Detection Modules Evaluation

This section aims at evaluating the performance of the detection modules used in
our strategy which are deployed on each monitoring node. We �rst present results
regarding module detecting the DAG inconsistency attack. We then focus on version
number attack detection module.

7.3. Detection Modules Evaluation 101

Figure 7.5: Energy consumed by the overhearing mode while varying neighborhood
size for one hour.

7.3.1 DAG Inconsistency Attack

We present how the DAG inconsistency attack can also be detected using the mon-
itoring architecture. After describing our simulation setup, we detail our detection
results. In addition to detect such an attack for every node in the network, we
also propose to mitigate it when monitoring nodes are targeted by implementing the
dynamic threshold as described in Chapter 5 on them.

7.3.1.1 Simulation Setup

The topology showed in Figure 7.6 has been implemented in Cooja using the same
con�guration as Section 7.2. To emulate the behavior of monitoring nodes, Cooja
has been setup to ensure that they all (i.e. nodes v′1, v

′
2, v

′
8 and v′11) were within

radio range of each other. Across all experiments, node v′1 is the DODAG root and
also the sink, nodes v′1, v

′
2, v

′
8 and v

′
11 are monitoring nodes. Regular nodes vi have

been con�gured to send data packets to the sink every 20 s. The attacker is designed
to send attack messages (packets with down and rank error �ags set) every 5 s in
average to its preferred parent which means that the attacker is very aggressive.
This corresponds to the extreme case showed in Chapter 5. This frequency has
been chosen to study the ability of our architecture to deal with aggressive situation.
The location of the attacker has been varied within the network replacing a regular
node in order to analyze the detection performance of our monitoring architecture.
Attacks start after two minutes of simulation time, so that the network has enough
time to settle. Each simulation lasts for a lifetime of two hours and is repeated three
times for accuracy reasons.

For this scenario, the threshold of Algorithm 4 in Section 6.4 has been set to
twice the maximum number of neighbors of a monitoring node (cf. Table 7.4). This
value gives the possibility for neighbors to send packets with an `R' �ag set in case of

102 Chapter 7. Architecture Evaluation

Figure 7.6: Scenario used to perform the DAG inconsistency attack.

legitimate loops without considering them as malicious. It can be envisioned that the
threshold could be set dynamically according to each monitoring node con�guration.

7.3.1.2 Attack Detection Results

The average detection time for the di�erent positions of the attacker where the
threshold value is set to 8 (twice the maximum number of monitoring node neighbors)
is depicted on Figure 7.7. No bar means that the corresponding node could not detect
the attack. Error bars indicate standard deviation between the 3 run simulations.
Table 7.4 summarizes the regular nodes monitored by the di�erent monitoring nodes
as it is showed in Figure 7.6. The table 7.5 shows for each location of the attacker
which node was the targeted node.

Table 7.4: Neighborhood of the di�erent monitoring nodes

Monitoring nodes v′1 v′2 v′8 v′11
Monitored neighborhood {v3, v4} {v3, v5, v6} {v5, v6, v7, v9} {v3, v4, v10, v12}

According to Figure 7.7 and Table 7.4 we can observe that the attack has been
successfully detected in every case; which means that all monitoring nodes have
detected the attacker when it was in their neighborhood. In general the detection
time stands between 2 min 20 s and 2 min 25 s, since the attack has started after
2 min it means that it has been detected in less than 30 s. However when the
monitoring node has been directly targeted (cf. Table 7.5), the detection time is
shorter or equal, for example when the attacker is located at node v3 and node v′1
is targeted, the detection time is 2 min 21 s while it is 2 min 25 s for node v′2 and
2 min 23 s for node v′11. When a monitoring node is targeted the overhearing mode
is useless because the attack packets are directly addressed to this node. A lesser or

7.3. Detection Modules Evaluation 103

Figure 7.7: Detection time of the DAG inconsistency attack for di�erent location of
attacker.

a bigger threshold value results in detecting the anomaly quicker or slower. However,
it is important to keep in mind that low value for threshold might also impact the
repair of genuine loop conditions, this is why it is set to twice the maximum number
of neighbors in our implementation. The aggressiveness of the attack also in�uences
the detection time. Indeed, if the attacker has been less aggressive, the detection time
would have been higher. While our previous work in Chapter 5 has been focused on
mitigation solution deployed on each node, this study is focusing on the possibility to
detect the same threat without implementing a detection algorithm on each regular
node.

Table 7.5: Targeted node for the di�erent location of the attacker

Attacker's position v3 v4 v5 v6 v7 v9 v10 v12

Targeted node v′1 v′1 v′2 v′2 v5 v6 v3 v4

7.3.1.3 Deployment of Mitigation Solution on Monitoring Nodes

Besides the detection module used to identify the DAG inconsistency attack for every
node in the network, we also implement the dynamic mitigation solution presented
in Section 5.2.3 on monitoring nodes in order to limit consequences of such an attack
when monitoring nodes are targeted. The same simulation setup as in Section 7.3.1.1
has been used in this analysis. Each simulation has been repeated �ve times and
lasted one hour.

Figure 7.8 presents the overall outgoing control message overhead experienced
by the network per node. The left bar represents the overhead with the mitigation
enabled and the right bar without mitigation. v0 means a scenario without attacker

104 Chapter 7. Architecture Evaluation

Figure 7.8: Per node outgoing packet overhead, for every location of the attacker
when no mitigation and dynamic mitigation is deployed on monitoring nodes.

and is used as a baseline to compare other results with. It can be seen that the
mitigation strategy is successful to limit the control message overhead when the
attacker was at positions v3, v4, v5 and v6. This is explained by the fact that, in
those cases, the targeted node was a monitoring node as detailed by Table 7.5.
Since this mitigation is a node-level approach, it has no impact when the target is
a regular node. This can be observed in Figure 7.8 when the attacker is located at
v7, v9, v10 and v12. Either the overhead is reduced by up to 600% when the target
is a monitoring node or it is nearly unchanged when the target is a regular node.
By exploiting results from Chapters 4 and 5, the bene�t of the dynamic threshold
approach for the same attack pattern (720 attack messages per hour or one attack
message every 5 s) is 1100%. The di�erence can be explained by the fact that the
topology used are di�erent and the number of neighbors of the targeted node, which
is a parameter of the dynamic mitigation, is not the same.

The DAG inconsistency attack scenario has showed that our monitoring architec-
ture is e�cient to detect such an attack in a RPL network. In this scenario, the de-
tection module has been implemented on monitoring nodes for a neighborhood-level
detection but the architecture can be exploited so the monitoring nodes exchange
data to provide a collaborative detection. By collecting monitoring data to the sink,
the architecture might be able to perform a global detection as we will see in the
next section.

7.3.2 Version Number Attack

In Section 4.3 we have studied the version number attack. The pattern of this
attack makes it hard to detect or mitigate locally since there is no possibility to
identify precisely the malicious node. The Algorithms 5, 6 and 7 allow detecting and
locating an attacker which performs the version number attack. They exploit the

7.3. Detection Modules Evaluation 105

collaboration among the monitoring nodes of our architecture.

7.3.2.1 Simulation Setup

We evaluate the performance of the Algorithms 5, 6 and 7 through experiments by
implementing a Proof of Concept prototype. We have set up the same grid topology
of 20 nodes such as in Section 4.3 as presented in Figure 7.9. The same implementa-
tion of the attacker has been used for these simulations. The Contiki 2.7 operating
system has been used to implement the sink, regular nodes and monitoring nodes.
Due to technical issues with the Contiki code, monitoring nodes have been con�gured
to print required data for detection while Algorithms 6 and 7 have been implemented
and run o�ine using Matlab scripts to produce the di�erent results. The Cooja tool
has been used to run the simulation with the compiled binaries of the di�erent nodes.
The radio model used was the DGRM model (Directed Graph Radio Medium) to
emulate the links as showed in Figure 7.9: regular nodes can communicate with
their neighbors horizontally and vertically, while the monitoring nodes can also lis-
ten diagonally since they are higher-order devices in our architecture. Across all
experiments, node v′1 is the DODAG root and the sink to which all other nodes send
messages every twenty seconds. The attacker is designed to constantly send incorrect
version numbers, which are greater than the root's. Each simulation has lasted ten
minutes which is enough to test our detection algorithms since only the �rst attack
message is taken into account. The location of the attacker has been varied to one
of each regular node.This entire set of simulations has been repeated three times for
accuracy reasons. Attacks have been started after �ve minutes of simulation time,
so that the network has enough time to settle and a stable RPL topology emerges.

Figure 7.9: Grid topology of 20 nodes used to perform version number attacks.

Not only the location of the attacker has been varied but also the location and
the number of monitoring nodes. Indeed, in the previous chapter, we have seen that

106 Chapter 7. Architecture Evaluation

it was possible to encounter false positives results depending on the fact that a node
is monitored by one or several monitoring nodes. The next section details how and
why di�erent monitoring node con�gurations were chosen.

7.3.2.2 Attack Detection Results

In this section, we �rst describe our monitoring node placement selection. We then
detail the performance results of our detection module.

Monitoring Node Placement Selection. Since the version number attack de-
tection module depends on the coverage of regular nodes by monitoring nodes, we
de�ned the following metrics: (i) Covi representing the percentage of regular nodes
covered by exactly i monitoring nodes (i ∈ [1,M],M is the number of monitoring
nodes); (ii) Cai representing the percentage of regular nodes covered by at least i
monitoring nodes, e.g. Ca2 = Cov2 + Cov3 + Cov4 for M = 4. In all cases, we
target Ca1 equals to 100% because all regular nodes should be covered by at least
one monitoring node since the architecture is able to monitor all regular nodes. Ca2
is also an important parameter for selecting the con�gurations to be considered, be-
cause the number of false positives depends on the monitoring node neighborhood
overlapping. Therefore, monitoring nodes con�gurations have been selected for dif-
ferent Ca2 values in order to quantify the impact of this metric on the number of
false positives.

Table 7.6: Number of possible con�gurations for 4 monitoring nodes ranked by
increasing Ca2.

Ca2 (%) Number of con�gurations

0 2

6.25 0

12.5 3

18.75% 5

25 2

31.25 6

37.5 3

43.75 3

Five di�erent Ca2 values have been chosen including the lowest and the highest
possible values (corresponding to worst and best cases) for 4 and 5 monitoring nodes
in the considered topology. The minimal number of required monitoring nodes is 4 so
that Ca1 equals to 100%. This value is given by the resolution of an Integer Linear
Program (ILP) with our grid topology under the constraint that the sink, v′1, is a
monitoring node. The rest of the monitoring nodes are chosen among all the other
nodes. For 4 monitoring nodes, the number of possible con�gurations so Ca1 = 100%
is 24 as described in Table 7.6. This result has been obtained from a program that

7.3. Detection Modules Evaluation 107

computes all correct con�gurations. A particular Ca2 value corresponds to several
combination of Covi. Table 7.7 shows the di�erent con�guration possibilities for
selected values of Ca2. One representative of each con�guration possibility has been
run. For instance, we can observe in Table 7.6 that for Ca2 = 12.5% there are 3
possible monitoring node con�gurations, while, in Table 7.7 only one con�guration
with Ca2 = 12.5% is available. This is because the three possible con�gurations for
Ca2 = 12.5% have the same Covi combination.

Table 7.7: Di�erent con�gurations of Covi for 4 monitoring nodes ranked by increas-
ing Ca2.

Ca2 (%) Cov2 (%) Cov3 (%) Cov4 (%)

0 0 0 0

12.5 12.5 0 0

25 25 0 0

25 18.75 6.25 0

37.5 37.5 0 0

43.75 37.5 6.25 0

43.75 31.25 12.5 0

We have also selected con�gurations with 5 monitoring nodes because the ob-
tained Ca2 values allow us to have zero false positive as illustrated by Figure 7.12.
For 5 monitoring nodes, 427 con�gurations can be run. As for 4 monitoring nodes,
we have selected 5 Ca2 values including the lowest and the highest values (13.33%,
26.67%, 46.67%, 60% and 66.67%). Among the possible con�gurations for these
Ca2 values, we have simulated 26 con�gurations, each one being a representative of
di�erent Covi combinations as detailed in Table 7.8.

For each simulated scenario, the false positive rate (FPR) has been calculated
according to Equation 7.1, where FP and TN are respectively the number of false
positives and the number of true negatives. A false positive is a node which has
been incorrectly detected as malicious by our detection solution (the node is actually
safe). A true negative is a node which has been properly considered as safe.

FPR =
FP

FP + TN
(7.1)

Detection Results. Across all experiments the detection successfully identi�es
the attacker but other regular nodes were sometimes detected as malicious too.
Figure 7.10 details false positive results for the topology presented in Figure 7.9
where the monitoring nodes are v′1, v

′
7, v
′
13 and v

′
15 and the Ca2 is 43,75% (maximum

for 4 monitoring nodes). We can observe on Figure 7.10 that the FPR is 0 for 13
positions of the attacker. Details about the detection results when the FPR is more
than 0 are given in Table 7.9. When the attacker corresponds to node v5, node v9
is always detected as malicious too, because node v9 is each time the direct relay
of the attacker v5 and is monitored by only one monitoring node (v′13). No other

108 Chapter 7. Architecture Evaluation

Table 7.8: Di�erent con�gurations of Covi for 5 monitoring nodes ranked by increas-
ing Ca2.

Ca2 (%) Cov2 (%) Cov3 (%) Cov4 (%) Cov5 (%)

13.33 13.33 0 0 0

13.33 0 13.33 0 0

26.67 26.67 0 0 0

26.67 20 6.67 0 0

26.67 13.33 13.34 0 0

26.67 13.33 6.67 6.67 0

26.67 6.67 20 0 0

46.67 46.67 0 0 0

46.67 40 6.67 0 0

46.67 33.33 13.34 0 0

46.67 33.33 6.67 6.67 0

46.67 26.67 20 0 0

46.67 20 26.67 0 0

60 60 0 0 0

60 53.33 6.67 0 0

60 53.33 0 6.67 0

60 46.67 13.33 0 0

60 46.67 6.67 6.66 0

60 40 20 0 0

60 40 13.33 6.67 0

60 40 6.67 13.33 0

60 33.33 26.67 0 0

66.67 60 6.67 0 0

66.67 60 0 6.67 0

66.67 53.33 13.34 0 0

66.67 53.33 6.67 6.67 0

monitoring nodes could have exonerated it. This is also the case for other positions
of the attacker. However, attack relays were not considered as malicious each time.
This can be explained by the fact that the attack relays can change depending on
the timing for each simulation. For example, when the attacker is v18, v5 is consid-
ered as malicious only once, this is because monitoring node v′1 receives only once
the attack relay message from v5. The other times, the relay node v6 is also mon-
itored by v′7 which exonerates it. Similar results have been obtained for the other
32 con�gurations from Tables 7.7 and 7.8.

Figures 7.11 and 7.12 show average false positive rate for the di�erent values of
Ca2 with varying location of the attacker. Error bars are calculated as standard
error of the mean (SEM) of the di�erent possible con�gurations (Covi combination)

7.4. Scalability Evaluation 109

Figure 7.10: False positive rates for di�erent location of attacker when con�guration
is the topology of Fig. 7.9.

Table 7.9: Detection result details when con�guration is the topology of Fig. 7.9

Attacker's position Series 1 Series 2 Series 3

v5 v5, v9 v5, v9 v5, v9

v9 v5, v9 v5, v9 v9

v18 v5, v18 v18 v18

for a particular Ca2 value. We can see on both �gures that the false positive rate
decreased for increasing Ca2 values, which means that the more nodes are covered
by at least two nodes, the less is the number of false positives. When there are
4 monitoring nodes we can see in Figure 7.11 that the maximum value of the FPR
is 20% which corresponds to the worst case (no node is covered by at least two
monitors), and at best the FPR stands around 1%. We only obtain a false positive
rate almost null when the Ca2 is 66,67% (Figure 7.12) with 5 monitoring nodes.

According to these results we can conclude that monitoring nodes placement
is strategic in order to obtain satisfying performance in detecting version number
attacks. Nevertheless, while the DAG inconsistency attack detection only relies on
neighborhood monitoring and such, only 100% coverage is enough (Cov1 =100%), the
version number attack detection requires monitoring node neighborhoods overlapping
to perform well. This raises questions about monitoring nodes number and placement
to support scaling.

7.4 Scalability Evaluation

We analyze the scalability of our solution in line with the considered monitoring node
placement. We have showed previously that particular coverage can be required to

110 Chapter 7. Architecture Evaluation

Figure 7.11: Average false positive rate for di�erent Ca2 values with 4 monitoring
nodes.

Figure 7.12: Average false positive rate for di�erent Ca2 values with 5 monitoring
nodes.

e�ciently detect threats in RPL networks according to the detection strategy such
as the version number attack detection module. These coverage constraints can be
modeled by optimization problems and, thus, resolved for a given topology.

In the same way that the problem of having all regular nodes covered by at least
one monitoring node, i.e. Ca1 = 100% (see Chapter 6); it is also possible to represent
with an optimization model the problem of having at least C% of regular nodes
covered by at least two monitoring nodes, i.e. Ca2 ≥ C% while Ca1 = 100%. This
constraint is transformed into having at most (100 - C)% of regular nodes covered by
exactly one monitoring node, i.e. Cov1 < (100-C)% while Ca1 = 100%. The problem

7.4. Scalability Evaluation 111

can be formulated as follows: for a given topology, a given connectivity matrix for all
possible monitoring nodes placement in this topology, a given number of monitoring
nodes and a given value C, �nd a con�guration of monitoring nodes placement that
minimizes the number of regular nodes covered by only one monitoring node so that
at most (100 - C)% of regular nodes are covered by exactly one monitoring node
under the constraint that all regular nodes are covered by at least one monitoring
node.

Table 7.10: Required inputs for monitoring node placement.

Domain Parameter Description

J1, NK N Number of nodes in the topology

J1, NK× J1, NK A
Connectivity matrix for monitoring nodes,
Ai,j = 1 if node i covers node j

J1, NK M Number of monitoring nodes

[O, 1] C Value indicating a percentage of nodes

Table 7.11: Considered variables for modeling.

Domain Variable Description

J1, NK Y
Binary variable indicating whether Yi is a
monitoring node (= 1) or not

J1, NK× J1, NK W
Binary variable indicating if node vi is covered
by a monitoring node v′j

J1, NK Z
Binary variable indicating if vi is monitored
by exactly one monitoring node (= 1) or not

As input to solve this problem we need four parameters detailed in Table 7.10.
The �rst parameter is the size of the topology. The second one is the connectivity
matrix detailing the links of possible monitoring nodes with other nodes, Ai,j = 1
when node vi can listen to node vj . We set the diagonal of this matrix to 0, i.e.
∀i, Ai,i = 0 which means that we consider that monitoring node does not cover itself.
The third parameter is the number of monitors. The last parameter is the percentage
of regular nodes we want to be monitored by at least two monitoring nodes. The
variables used are Y which represents whether node vi is a monitoring node(Yi = 1)
or not (Yi = 0), W indicating whether node vi is covered by monitoring node vj
(Wi,j = 1) or not (Wi,j = 0). The last variable Z speci�es whether node vi is
covered by exactly one monitoring node (Zi = 1) or not (Zi = 0). The total number
of variables for this problem is N(N + 2).

The constraints are detailed in Equation 7.2 to 7.7:

Y1 = 1 (7.2)

N∑
i=1

Yi = N (7.3)

112 Chapter 7. Architecture Evaluation

∀i ∈ J1, NK :
N∑
j=1

(Ai,j .Yj) + Yi ≥ 1 (7.4)

∀(i, j) ∈ J1, NK2 : Wi,j = Ai,j .Y j (7.5)

∀i ∈ J1, NK : 2−
N∑
j=1

(Wi,j) + 2.Yi ≤ Zi ≤ 1− Yi (7.6)

N∑
j=1

Zi ≤ (1− C).(N −M) (7.7)

As in the previous chapter, Equation 7.2 is used to set v′1, the root, as a monitoring
node, it is possible to set another particular node to be a monitoring node according
to the topology speci�cs. Equation 7.3 indicates how many monitoring nodes we
choose. The constraint of having all nodes covered by at least one monitor, is given
by Equation 7.4. Equation 7.5 calculates W variable which is used in Equation 7.6
to compute Z. The right part of this equation forces Zi = 0 if vi is a monitoring
node or else Zi = 1. The left part is equal to 1 only if

∑N
j=1(Wi,j) is equal to 1 and

vi is not a monitoring node, which means that the left part equals 1 when the node
vi is monitored by only one monitor. Equation 7.7 indicates the constraint that at
most (1-C) % of regular nodes are covered by exactly one monitoring node.

The objective function fobj is given by Equation 7.8:

fobj = min
N∑
i=1

Zi (7.8)

The objective is to minimize the number of regular nodes covered by only one moni-
toring node i.e. to maximize the number of nodes covered by at least two monitoring
nodes. This objective is necessary to compute the Z variable correctly. Indeed if vi
is not a monitoring node or a regular node only monitored by one monitoring node,
Zi can be equal to 0 or 1. Minimizing the sum on Z forces the default value to 0 in
those cases.

We solved this problem with di�erent sizes of grid topologies from 20 to 1000
nodes and with C=60% using the CPLEX solver [2] under the AMPL environment [1].
The C value has been chosen according to previous results from Section 7.3.2.2 be-
cause the false positive rate was very low. A script has been designed to establish
the connectivity matrix of grids of corresponding sizes (4×5, 7×7, 10×10, 20×25,
25×40). The minimal number of monitoring nodes required to �nd a solution has
been determined empirically by running the solver several times. For instance for
a grid of 20 nodes (4×5), 5 monitoring nodes are required to obtain Ca2 = 100%,
it is not possible with 4 monitoring nodes since the highest Ca2 value is 43.75%
as showed in the previous section. We have restrained the exploratory domain by
solving the problem stated in Chapter 6 (Ca1 = 100%) for every size. The model has
also been modi�ed to �nd the minimal number of monitoring nodes so Ca2 = 100%
which means in this case that FPR should be 0. Figure 7.13 shows the minimal

7.5. Conclusions 113

Figure 7.13: Number of monitoring nodes required to have Ca1 = 100%, Ca2 ≥ 60%
and Ca2 = 100% for di�erent topology sizes

number of monitoring nodes required so Ca2 is at least 60%. The value of C has
been set to 60% because it ensures low false positive rate for the detection algorithm,
as showed in the previous section. We can observe on Figure 7.13 that the number
of monitoring nodes required to have the di�erent Ca values is proportional to the
number of nodes. These results show that our solution supports scalability.

7.5 Conclusions

In this chapter, we have evaluated our monitoring architecture through a set of ex-
periments. In particular, we have quanti�ed the performance and cost of the promis-
cuous mode in that context, considering di�erent distances, sending frequencies and
neighborhood sizes. Experimental results with the Cooja environment have showed
the feasibility of the proposed monitoring approach with respect to tra�c load and
neighborhood size. The cost of the overhearing may seem heavy, this is why it is per-
formed by higher-order devices able to carry out this load. Also it can be envisioned
to dynamically adapt the overhearing mode based on network events.

We have then analyzed the detection performance of our dedicated algorithms for
the DAG inconsistency attack. Thanks to the overhearing mode of monitoring nodes,
we have showed that the detection time was less than 30 s in every con�guration
of the malicious node. Besides the DAG inconsistency attack detection module, we
have deployed the dynamic threshold mitigation, seen in Chapter 5, on monitoring
nodes to limit the impact of this attack when they were targeted. The obtained
results were consistent with the previous study i.e. the control message overhead
has been reduced for monitoring nodes when they were targeted by the attacker.
Regarding the version number attack detection module, we have showed that the
attack has been successfully detected for each case. Even if the attacker has been

114 Chapter 7. Architecture Evaluation

identi�ed, the detection module may produce false positive results by detecting safe
nodes as malicious depending on monitoring node placement. However, we have also
demonstrated the false positive rate of our solution can be reduced to 0 by a strategic
monitoring node placement.

We have �nally considered the scalability of our architecture by proposing an op-
timization problem which can be easily adapted to di�erent topologies. By resolving
this problem, we have quanti�ed the number of required monitoring nodes to ensure
an acceptable false positive rate in detecting the version number attack for a given
size of topology.

This evaluation demonstrates that our security monitoring approach is successful
in detecting attacks targeting the RPL-based Internet of Things while having a
minimal impact on the target nodes.

Chapter 8

General Conclusions

The emergence of the Internet of Things results in the large scale deployment of
Low power and Lossy Networks. In order to deal with the requirements of such
networks, new communication protocols have been designed, and in particular the
RPL protocol which provides a routing solution for these environments. While this
paradigm enables new applications for everyday life and business, it also represents
major security risks. Indeed, the lack of resources such networks su�er make them
particularly vulnerable to security threats compromising their availability. In this
thesis we have proposed to investigate a security monitoring strategy for addressing
the trade-o� between security and its induced cost in the RPL-based Internet of
Things.

Our contributions are organized into three main axes. We have �rst assessed
security threats targeting the RPL protocol through the identi�cation and classi�ca-
tion of attacks and proposed a dedicated taxonomy. We have analyzed the impact of
two RPL speci�c attacks which are the DAG inconsistency and the version number
attacks and showed the importance of addressing them. We have then presented a
local strategy to detect and mitigate DAG inconsistency attacks in RPL networks
and evaluated its performance and costs. We have designed a security-oriented moni-
toring architecture in order to complement our node-level approach and address more
complex attacks. In a passive and distributed manner, this solution preserves con-
strained nodes resources by exploiting RPL mechanisms such as the multi-instance
feature and by relying on higher-order devices which implement detection modules
responsible for identifying the considered security attacks. We have evaluated this
architecture through extensive series of experiments and discussed the placement of
monitoring nodes in that context.

8.1 Achievements

After presenting the challenges for monitoring and security in the RPL-based Internet
of Things, we have described the RPL protocol functioning and its mechanisms, and
have provided a state of the art on existing monitoring approaches for IoT networks.
Their comparison has pointed out their limits in the context of RPL-based Internet

115

116 Chapter 8. General Conclusions

of Things.

In order to quantify security threats in RPL networks, we have �rst proposed a
taxonomy classifying the attacks against the RPL protocol in three categories: at-
tacks that over-consume nodes resources, attacks targeting the topology and attacks
against networks tra�c. Using this classi�cation, we have compared the properties
of these attacks and discussed methods and techniques to avoid or prevent them. We
have then assessed the impact of two major attacks targeting the RPL protocol: the
DAG inconsistency and the version number attacks. The DAG inconsistency attack
exploits an RPL loop avoidance mechanism to forge fake loops in the network forcing
nodes to send unnecessary control messages. We have showed through our experi-
ments that these attacks can increase considerably the control message overhead of
targeted nodes and their descendants, reducing their lifetime. Meanwhile, the ver-
sion number attack misuses the global repair mechanism of the RPL protocol. This
attack leads to the propagation within the network of a malicious version number
forcing a global rebuild of the DODAG. Quantifying the impact of such an attack
has revealed that the control message overhead can increase signi�cantly (by up to
18 times compared to a normal scenario). We have also observed the occurrence of
many loops in the network, an important decrease of the overall delivery ratio and
a strong correlation between location of the attacker and observed e�ects. Through
this impact analysis, we have showed that such attacks can meaningfully consume
node energy. It is therefore crucial to address these attacks through the design of
appropriate security strategies.

To propose security solutions suitable for RPL environments, we have �rst de-
signed a node-level approach in order to deal with DAG inconsistency attacks. Since
the RPL protocol proposes a �xed threshold solution but gives no justi�cation about
the chosen value, we have designed an adaptive approach. This one mimics the �xed
threshold in a steady state, however it takes into account network characteristics and
it adjusts itself under varying attack patterns. Even if we have showed its perfor-
mance compared to the �xed threshold, it relies on pre-con�gured parameters which
can represent an inconvenience depending on network speci�cs. We have improved
this solution to be fully dynamic by relying on auto-con�gured parameters. Our
strategy has been evaluated through experiments which have showed its e�ciency.
In particular, it reduces the control message overhead and increases the delivery
ratio. The impact of the considered parameters has also been discussed in an anal-
ysis to show their potential limitations. We have performed a cost evaluation of
the proposed strategy in terms of computational overhead and energy consumption.
This analysis has demonstrated the limited cost of our algorithms and their bene�ts
regarding the energy savings (up to 50%). Such a node-level approach is e�cient
to detect attacks having only a local impact, however, it is not able to identify a
malicious node in case the attack is spread across the whole network. Also in some
cases, dedicated code cannot be implemented on nodes because they lack of memory
or RAM or they cannot be �ashed.

In that context, we have designed a security-oriented monitoring architecture
which preserves nodes resources by passively listening to network tra�c. This dis-

8.2. Perspectives 117

tributed architecture is based on higher order devices typically used in many IoT
applications. It exploits RPL mechanisms and in particular the multi-instance fea-
ture to organize the monitoring nodes into an independent topology so the resources
of regular nodes are preserved. This solution is also able to perform multi-level
detection by implementing local algorithms but also gives the capability for the
monitoring nodes to collaborate and to send information to the root in order to have
a global view of the network. As such, our architecture meets the di�erent require-
ments provided in Table 2.1 from Chapter 2. We have designed speci�c modules
to address DAG inconsistency and version number attacks. The �rst module uses
the overhearing capacity of monitoring nodes to track malicious data packets. The
second module exploits interactions among monitoring nodes to identify malicious
nodes. We have evaluated our monitoring architecture through extensive series of
experiments. We have �rst quanti�ed the performance and cost of the overhearing
mode in Cooja environment, considering several parameters which allows us to show
the feasibility of our solution. We have then analyzed the e�ciency of our detection
strategy. It was demonstrated that DAG inconsistency attacks can be detected in a
limited time despite the limitations of the overhearing mode. We have also showed
that the false positive rate for detecting the version number attack can be notably
reduced by considering a strategic monitoring node placement. This evaluation per-
mits to conclude on the e�ciency of our strategy in detecting security threats. For
addressing monitoring node placement, we have �nally considered the scalability of
our architecture by proposing and resolving optimization models.

8.2 Perspectives

The work achieved during this thesis opens several perspectives with respect to IoT
security monitoring. We �rst discussed possible future work regarding complemen-
tary experiments in real testbeds and implementation considerations. We then ex-
amine the extension of our security monitoring strategy to new elaborate attacks.
Finally, we consider risk management methods to enhance our solution.

Complementary Experiments in Real Testbeds

We are interested in performing complementary experiments in real testbeds. The
Cooja simulator used in this thesis is a valuable environment for testing and de-
bugging code in the Contiki OS with many features. It is also useful for research
purpose since simulation results are close to real experiments as we have showed
through a simulation validation. Authors of [69] have showed this tool could be
used for other OS such as the RIOT OS [5]. However, they have identi�ed issues
about time inaccuracies which can biased �ne results regarding synchronization and
time related performance. As future work, it would as such make sense to deploy
our proposed monitoring architecture in a real testbed. This permits to use several
classes of devices in order to evaluate the costs of our proposed solution on monitor-
ing nodes. Moreover performance of the overhearing mode could be �nely evaluated

118 Chapter 8. General Conclusions

and detection algorithms could be adapted accordingly.
Also all of our experiments were run using the Contiki OS. At the beginning of

this thesis, it was the most complete project that implemented the RPL protocol
and was widely used in research area. However, this operating system presents some
drawbacks, for instance, the lack of documentation and issues related to coding as
pointed out in [67, 68] and that we have encountered regarding the multi-instance
mechanism. Also, since then, new projects have been developed and are beginning to
be really popular. This is especially the case for the RIOT OS [5] and the OpenWSN
project [4]. These OS open new perspectives to deploy and test our security strategy
for RPL networks.

Extension to New Attacks

We are also planning to enhance our solution by considering new attack scenarios.
First, our detection strategy could be adapted to counter attacker coalition by re�n-
ing the proposed algorithms since we have considered during our analysis that only
one attacker was performing attacks at a time. An attacker coalition is character-
ized by several malicious nodes involved at the same time in the network. Also, the
di�erent implemented solutions could be optimized for better performance and for
resource saving. For instance, the overhearing mode of monitoring nodes known to
be resource consuming which we have used to detect the DAG inconsistency attack
could be dynamically enabled by taking into account network events.

As future work, it can additionally be envisioned to extend our study to new
attacks from our established taxonomy, not only those which target node resources
but also topology and tra�c related threats. We can note that more and more
analysis regarding attacks targeting the RPL protocol are performed in the literature
which can facilitate the extension of this work. Indeed, at the beginning of this thesis
only few studies regarding security in RPL networks were available. Not only our
work can be expanded by considering other attacks targeting the RPL protocol but it
can also be enhanced by considering attacks targeting other protocols in the network
stack. Several existing works can be exploited for this purpose such as [42] and [60]
which focused on 6LoWPAN protocol security.

Risk Management Framework

Risk management o�ers new perspectives to dynamically activating or deactivating
security mechanisms in RPL-based networks, in order to prevent and limit attacks
while maintaining network performances. We therefore envisage to improve our
framework by considering these methods. The risk management process is composed
of two main activities: risk assessment and risk treatment. Risk assessment consists
in quantifying the potentiality of attacks through detection methods. Risk assess-
ment aims also at quantifying the consequences of successful attacks. The objective
is to assess the relative importance of nodes in the RPL network, and to analyze how
the attack against a given node may impact on the functioning of the overall network.
The risk treatment activity consists then in selecting and applying the required se-

8.2. Perspectives 119

curity mechanisms while keeping in mind the cost of the solution. In this thesis, we
can notice that we have performed some steps in this direction, especially regarding
the risk assessment process since we have classi�ed attacks in a taxonomy, quanti�ed
the impact of two attacks and designed a detection strategy relying on a monitoring
architecture. We have also proposed countermeasures related to the risk treatment
process. Risk management methods and algorithms could support the selection and
activation of these di�erent countermeasures within our monitoring architecture.

Publications

Publications

Journals

• Anthéa Mayzaud, Rémi Badonnel, Isabelle Chrisment. � A Taxonomy of At-
tacks in RPL-based Internet of Things �. In International Journal of Network
Security, IJNS 2016, 18 (3), pp.459-473. 2016. Link.

• Anthéa Mayzaud, Anuj Sehgal, Rémi Badonnel, Isabelle Chrisment, Jürgen
Schönwälder. � Mitigation of Topological Inconsistency Attacks in RPL based
Low Power Lossy Networks �. In International Journal of Network Manage-
ment, IJNM 2015, Wiley-Blackwell, 2015. Link.

International Conferences

• Anthéa Mayzaud, Rémi Badonnel, Isabelle Chrisment. � Detecting Version
Number Attacks in RPL-based Networks using a Distributed Monitoring Ar-
chitecture �. In Proceeding of IEEE/IFIP Conference on Network and Service
Management, CNSM 2016, Montreal, Quebec, Canada. Oct-Nov 2016.

• Anthéa Mayzaud, Anuj Sehgal, Rémi Badonnel, Isabelle Chrisment, Jürgen
Schönwälder. � Using the RPL Protocol for Supporting Passive Monitoring in
the Internet of Things �. In Proceeding of IEEE/IFIP Network Operations and
Management Symposium, NOMS 2016, Istanbul, Turkey. Apr 2016. Link.

• Anuj Sehgal, Anthéa Mayzaud, Rémi Badonnel, Isabelle Chrisment, Jürgen
Schönwälder. � Addressing DODAG Inconsistency Attacks in RPL Networks �.
In Proceedings of the Global Information Infrastructure and Networking Sym-
posium, GIIS 2014, pp.1 - 8, Montreal, QC, Canada. Sep 2014. Link.

• Anthéa Mayzaud, Anuj Sehgal, Rémi Badonnel, Isabelle Chrisment, Jürgen
Schönwälder. � A Study of RPL DODAG Version Attacks �. In Proceedings of
the 8th IFIP WG 6.6 International Conference on Autonomous Infrastructure,
Management, and Security, AIMS 2014, pp.92 - 104, Brno, Czech Republic.
Jun 2014. (Best Paper Award) Link.

121

https://hal.inria.fr/hal-01207859v1
https://hal.inria.fr/hal-01207843v1
https://hal.inria.fr/hal-01247297v1
https://hal.inria.fr/hal-01090986v1
https://hal.inria.fr/hal-01090993v1

122 Publications

• Anthéa Mayzaud, Rémi Badonnel, Isabelle Chrisment (2013).� Monitoring and
Security for the Internet of Things �. In Proceedings of the 7th IFIP WG
6.6 International Conference on Autonomous Infrastructure, Management, and
Security (PhD Symposium), AIMS 2013, pp.37-40, Barcelona, Spain. Jun 2013.
Link.

National Conferences

• Anthéa Mayzaud, Anuj Sehgal, Rémi Badonnel, Isabelle Chrisment. � Gestion
de risques appliquée aux réseaux RPL �. In 9ème Conférence sur la Sécurité
des Architectures Réseaux et des Systèmes d'Information, SARSSI 2014, Saint-
Germain-Au-Mont-d'Or, France. May 2014. Link.

https://hal.inria.fr/hal-00876216v1
https://hal.inria.fr/hal-01091008v1

List of Figures

1.1 Extension of the Internet to everyday objects. 2
1.2 Example of IoT applications (based on [7]). 3
1.3 Road map of the contributions. 7

2.1 Overview of the IoT protocol stack. 10
2.2 Example of a RPL network composed of two instances and three

DODAGs. 11
2.3 Classi�cation of monitoring architectures. 15
2.4 Architecture used in DAMON. 16
2.5 Poller-pollee architecture used in [39]. 17
2.6 Architecture used in SVELTE. 18
2.7 Architecture used in the speci�cation-based IDS from [41]. 18
2.8 Architecture used in LiveNet. 19
2.9 Architecture used in EPMOSt. 21

3.1 Taxonomy of attacks against RPL networks. 26
3.2 Rank increased attack in a RPL network. 28
3.3 A wormhole attack in a RPL network. 33
3.4 Illustration of a DAO inconsistency attack. 35
3.5 Illustration of a decreased rank attack. 39

4.1 DAG inconsistency attack scenarios. 44
4.2 Total control message overhead experienced by network presented

in Figure 4.1(a) under DAG inconsistency attacks. 47
4.3 Example of new DODAG iteration. 48
4.4 Grid topology used for performing experimental evaluation of the ver-

sion number attack. 50
4.5 Incoming and outgoing control message overhead for every location of

the attacker. 51
4.6 Per node outgoing packet overhead for every location of the attacker. 52
4.7 Total delivery ratio and end-to-end delay for every location of the

attacker. 52
4.8 Total number of loops and inconsistencies in the network for every

location of the attacker. 53

123

124 List of Figures

4.9 Total number of loops detected per node for every location of the
attacker. 54

4.10 Total number of inconsistencies detected per node for every location
of the attacker. 55

5.1 Topologies for mitigation approaches evaluation (same as Figure 4.1). 63
5.2 Comparison of per node outgoing packet overhead for node 2 in the

topology from Fig. 5.1(a). 64
5.3 Total control message overhead per node when no mitigation strategy

and default mitigation strategy are used. 65
5.4 Total control message overhead per node when default mitigation

strategy and adaptive threshold γ = 20 and γ = 25 are used. 66
5.5 Total control message overhead per node when default mitigation

strategy and dynamic threshold are used. 66
5.6 Time-lines of outgoing packet overhead of node 2 in topology of Fig. 5.1(a). 67
5.7 Total control message overhead per node with �xed threshold, adap-

tive threshold (γ = 25) and dynamic threshold (Fig.5.1(b)) 68
5.8 E�ect of γ parameter on total control packet overhead experienced by

node 2 in topology of Fig. 5.1(a). 70
5.9 DAG inconsistency attack scenario used to study the e�ect of neigh-

borhood size on the dynamic threshold. 71
5.10 Outgoing packet overhead experienced by node 2 in the topology of

Fig. 5.9 with varying neighborhood sizes. 71
5.11 Outgoing packet overhead experienced by node 2 in the topology of

Fig. 5.1(b) with varying sending frequencies and neighborhood sizes. 72
5.12 Global delivery ratio for di�erent neighborhood sizes of node 2 (Fig.5.1(b))

with dynamic threshold. 72
5.13 Energy required for adaptive (γ=25) and dynamic thresholds compu-

tation under di�erent attack patterns. 75
5.14 Energy consumption caused by control message overhead and thresh-

olds computation under di�erent attack patterns. 76

6.1 Typical AMI network [19]. 80
6.2 Example of our passive monitoring architecture exploiting the RPL

multi-instance feature. 81
6.3 DAG inconsistency attack illustration where node 6 is the malicious

node. 88
6.4 Version number attack illustrations. 92

7.1 Monitoring architecture and detection strategy evaluation. 96
7.2 Average success ratio while varying sending frequency. 97
7.3 Average number of listened packets in one hour while varying sending

frequency. 98
7.4 Energy consumed by the overhearing mode for a monitoring node

while varying sending frequency (2 neighbors). 100

125

7.5 Energy consumed by the overhearing mode while varying neighbor-
hood size for one hour. 101

7.6 Scenario used to perform the DAG inconsistency attack. 102
7.7 Detection time of the DAG inconsistency attack for di�erent location

of attacker. 103
7.8 Per node outgoing packet overhead, for every location of the attacker

when no mitigation and dynamic mitigation is deployed on monitoring
nodes. 104

7.9 Grid topology of 20 nodes used to perform version number attacks. . 105
7.10 False positive rates for di�erent location of attacker when con�gura-

tion is the topology of Fig. 7.9. 109
7.11 Average false positive rate for di�erent Ca2 values with 4 monitoring

nodes. 110
7.12 Average false positive rate for di�erent Ca2 values with 5 monitoring

nodes. 110
7.13 Number of monitoring nodes required to have Ca1 = 100%, Ca2 ≥

60% and Ca2 = 100% for di�erent topology sizes 113

1 Taxonomie des attaques contre les réseaux RPL 132
2 Nombre de messages de contrôle envoyé par n÷ud sous di�érents sce-

narios d'attaque . 133
3 Nombre total de boucles par n÷ud pour chaque position de l'attaquant.134
4 Nombre de messages de contrôle total envoyés par le réseau quand la

mitigation par seuil �xe et celle par seuil adaptatif sont déployées. . 135
5 Nombre de messages de contrôle total envoyés par le réseau quand la

mitigation par seuil �xe et celle par seuil dynamique sont déployées. 136
6 Temps de détection par n÷ud de surveillance pour di�érentes positions

de l'attaquant. 137
7 Taux de faux positifs moyen pour di�érentes valeurs de Ca2 avec 5

n÷uds de supervision. 138
8 Nombre de n÷uds de supervision nécessaires pour obtenir di�érentes

valeurs de Ca pour plusieurs tailles de topologie. 139

List of Tables

1.1 Classes of constrained devices used in the Internet of Things (IoT) [11]. 3
1.2 Protocol comparison results [47]. 4

2.1 Comparison of monitoring approaches. 22

3.1 Summary of attacks on resources. 30
3.2 Summary of attacks on topology. 36
3.3 Summary of attacks on tra�c. 40

5.1 Average computation time (ms) to calculate adaptive and dynamic
thresholds for di�erent attack patterns. 73

5.2 Memory occupancy of the di�erent thresholds. 75
5.3 Energy model for the CC2420 radio and MSP430F1611 microcon-

troller operating at 1 MHz on the TelosB platform. 75

6.1 Summary of considered notations. 83
6.2 Required inputs for monitoring node placement. 85
6.3 Considered variables for modeling. 86
6.4 Potential attacker list and neighbors list obtained by the root after

messages aggregation. 92
6.5 States of attacker list and safe list during the localization procedure. 93

7.1 Performance while varying the distance. 97
7.2 Performance while varying the neighborhood size. 99
7.3 Energy model for the CC2420 radio and MSP430F1611 microcon-

troller operating at 1 MHz on TelosB. 99
7.4 Neighborhood of the di�erent monitoring nodes 102
7.5 Targeted node for the di�erent location of the attacker 103
7.6 Number of possible con�gurations for 4 monitoring nodes ranked by

increasing Ca2. 106
7.7 Di�erent con�gurations of Covi for 4 monitoring nodes ranked by

increasing Ca2. 107
7.8 Di�erent con�gurations of Covi for 5 monitoring nodes ranked by

increasing Ca2. 108
7.9 Detection result details when con�guration is the topology of Fig. 7.9 109

127

128 List of Tables

7.10 Required inputs for monitoring node placement. 111
7.11 Considered variables for modeling. 111

Résumé de la thèse en français

Supervision et Sécurité pour l'Internet des
Objets utilisant le protocole de routage RPL

1 Introduction

L'Internet des Objets (IdO) se traduit par le déploiement de réseaux avec pertes et
à faible puissance appelés réseaux LLN15. Ces réseaux permettent à de nombreux
équipements embarqués comme des sondes ou des capteurs de pouvoir communi-
quer entre eux. Un protocole de routage appelé RPL16 a été spécialement conçu
par l'IETF pour répondre aux contraintes spéci�ques qu'impose ce type de réseaux.
Cependant, ce protocole reste exposé à de nombreuses attaques de sécurité. Si des
mécanismes de protection existent, leur mise en ÷uvre est coûteuse c'est pourquoi
notre objectif dans cette thèse est de proposer des stratégies de supervision de la
sécurité e�caces qui consomment peu de ressources. Ces solutions doivent être ca-
pable de détecter des comportements malveillants de n÷uds dans le réseau a�n d'en
limiter les e�ets.

Dans un premier temps, nous nous intéresserons à l'évaluation de la sécurité dans
les réseaux RPL en identi�ant et caractérisant les di�érentes menaces auxquelles sont
soumis ces types de réseaux. Nous classerons également ces menaces selon plusieurs
critères a�n de mettre en avant celles à traiter en priorité. Grâce à cette évaluation,
nous allons dans un second temps concevoir des solutions de supervision de sécurité
qui minimisent la consommation des n÷uds du réseau pour les attaques identi�ées.
Ces solutions se doivent d'exploiter les fonctionnalités du protocole RPL et les par-
ticularités de l'IdO comme l'hétérogénéité des n÷uds pour préserver au mieux des
ressources déjà fortement contraintes. Nous évaluerons également l'e�cacité et le
coût des solutions proposées.

Les travaux de cette thèse sont organisés comme suit. La section 2 présente
succinctement le protocole de routage RPL. Nous proposons une taxonomie des at-
taques visant ce protocole dans la section 3. La section 4 analyse en détail di�érentes
attaques identi�ées dans la section précédente à savoir l'attaque d'incohérence DAG
et l'attaque sur le numéro de version. La section 5 montre plusieurs mécanismes de

15Low power and Lossy Networks
16Routing Protocol for LLNs

129

130 Résumé de la thèse en français

mitigation locaux pour l'attaque d'incohérence DAG. Nous présentons ensuite une ar-
chitecture de supervision orientée sécurité dans la section 6 ainsi que des algorithmes
de détection conçus pour les deux attaques précédemment étudiées. Nous évaluons
cette architecture dans la section 7 avant de conclure cette thèse en section 8.

2 Protocole de routage RPL

Le protocole RPL est un protocole de routage à vecteur de distance utilisant IPv6,
spécialement conçu par l'IETF pour répondre aux besoins des réseaux LLN. Cette
section présente le fonctionnement de ce protocole et les mécanismes de protection
existants.

Topologie, instance et fonction objectif. Les n÷uds RPL s'interconnectent en
formant une topologie spéci�que appelée DODAG17, c'est-à -dire un graphe acyclique
orienté dirigé vers une destination qui est la racine du réseau. Un réseau RPL
contient au moins une instance RPL qui elle-même se compose d'un ou plusieurs
DODAGs. Chaque instance RPL est associée à une fonction objectif (OF) qui permet
d'optimiser la topologie en fonction d'un ensemble de contraintes et/ou de métriques
comme la préservation de l'énergie, le chemin le plus court ou la qualité des liens.
Un n÷ud peut faire partie d'un seul DODAG par instance, mais peut participer à
plusieurs instances simultanément.

Messages de contrôle et construction du DODAG. La construction et la
maintenance des DODAGs sont réalisées grâce à des messages de contrôle ICMPv6.
Plus particulièrement, trois nouveaux messages sont dé�nis: (1) DODAG Informa-
tion Solicitation (DIS), (2) DODAG Information Object (DIO) et (3) Destination Ad-
vertisement Object (DAO). Un nouveau n÷ud peut rejoindre un réseau déjà formé en
di�usant un message DIS pour solliciter en réponse un message DIO qui contient des
informations sur le DODAG comme le numéro de version et l'identi�ant du DODAG,
l'identi�ant de l'instance et l'OF utilisée. Un n÷ud peut également attendre de re-
cevoir un message DIO di�usé périodiquement par ses voisins. La fréquence d'envoi
des messages DIO est déterminée par un temporisateur fondé sur l'algorithme Trickle
(appelé également temporisateur Trickle). À la moindre anomalie dans le réseau, le
temporisateur Trickle est réinitialisé pour permettre à la topologie de reconverger
plus rapidement.

Après avoir reçu un message DIO, le n÷ud calcule son rang en utilisant l'OF
spéci�ée dans ce message. Le rang d'un n÷ud correspond à son emplacement dans le
graphe par rapport à la racine. La valeur du rang augmente toujours en descendant
dans le graphe. C'est donc la racine qui a le rang le plus petit dans le graphe.
Si un n÷ud reçoit des DIOs de voisins di�érents, l'émetteur avec le meilleur rang
(le plus petit donc) est choisi comme le parent préféré vers lequel seront envoyés
tous les messages à destination de la racine. À la �n de ce processus seulement

17Destination Oriented Directed Acyclic Graph

2. Protocole de routage RPL 131

les routes ascendantes (i.e. vers la racine) sont construites. Pour établir les routes
descendantes, un n÷ud doit envoyer un message DAO à son parent contenant le
pré�xe des n÷uds situés dans son sous-DODAG. Lorsque le message se propage vers
le haut, les pré�xes sont agrégés et les routes descendantes deviennent disponibles
pour les parents.

Mécanismes de protection existants. RPL intègre di�érents mécanismes a�n
d'éviter les boucles, détecter les incohérences et réparer le graphe. Le rang joue un
rôle important pour construire une topologie sans boucle. En e�et, un n÷ud ne peut
choisir qu'un parent dont le rang est inférieur au sien, autrement dit tous les n÷uds
se trouvant dans le sous-DODAG d'un n÷ud ont un rang supérieur à ce n÷ud. Si
un n÷ud ne respecte pas cette propriété du rang, le graphe n'est plus acyclique.
De plus, a�n d'éviter les boucles, si un n÷ud doit changer son rang, il doit utiliser
un mécanisme de poisoning (en annonçant un rang in�ni) ou de déconnexion (en
formant un DODAG temporaire).

Dans les cas où des boucles apparaissent dans le graphe, le protocole RPL fournit
une fonctionnalité appelée validation du chemin de données 18. Des informations de
contrôle sont transportées dans les paquets de données via des �ags placés dans
l'en-tête d'extension IPv6 Hop-By-Hop:

• Le �ag 'O' indique la direction attendue du paquet, i.e., vers le haut ou le
bas. Si un n÷ud place ce �ag à 1 le paquet est destiné à un descendant, sinon le
paquet est supposé être envoyé à un parent avec un rang inférieur, vers la racine du
DODAG.

• Le �ag 'R' indique si une erreur de rang a été détectée par un n÷ud transférant
le paquet. Ce �ag est mis à 1 lorsqu'un n÷ud observe une incohérence entre la
direction supposée du paquet indiquée par le �ag 'O' et le rang du n÷ud qui vient
de le transférer. Le �ag 'R' est utilisé pour réparer ce type d'anomalie appelée
incohérence DODAG. Concrètement, à la première incohérence détectée, le n÷ud
place ce �ag à 1 et transfère le message. Lors de la réception d'un autre paquet avec
le �ag positionné à 1 et l'incohérence à nouveau détectée, le paquet est supprimé
et le temporisateur Trickle est réinitialisé de sorte que les messages de contrôle sont
envoyés plus rapidement, a�n de refaire converger la topologie et réparer la boucle.

Deux principaux mécanismes de réparation sont utilisés dans les réseaux RPL en
cas d'incohérences ou de pannes: la réparation locale et globale. La réparation locale
consiste à trouver un chemin alternatif pour router les paquets. Par exemple, lorsque
que la communication avec le parent préféré est rompue, un n÷ud peut choisir un
autre parent pour transférer ses paquets. Si aucun autre parent n'est disponible,
il peut aussi envoyer les paquet à un frère, i.e., un n÷ud de même rang. Si les
réparations locales ne su�sent pas, la racine peut initier une réparation globale en
incrémentant le numéro de version du DODAG. Ceci a pour résultat la reconstruction
complète du graphe.

18data path validation

132 Résumé de la thèse en français

3 Taxonomie des attaques contre le protocole RPL

Les di�érentes attaques visant le protocole RPL ont été répertoriées ainsi que les
contre-mesures existantes dans cette section. Elles ont de plus été classi�ées selon
qu'elles menaçaient en priorité les ressources des n÷uds (surconsommation d'énergie
par exemple), la topologie du réseau et en�n le tra�c comme le montre la Figure 1.
Les attaques de la première catégorie ont pour but de consommer l'énergie, la mé-
moire ou le temps de calcul des n÷uds. On distingue dans cette catégorie les attaques
dites directes et indirectes. Dans le cas des attaques directes un n÷ud malveillant
génère directement la surcharge; pour la seconde sous-catégorie, le n÷uds malveil-
lant fait en sorte que les cibles génèrent la surcharge. Les attaques de la seconde
catégorie visent la topologie du réseau. Plus précisément, ces attaques peuvent en-
gendrer une sous-optimisation du réseau (les routes sont plus longues que ce qu'elles
devraient être par exemple) ou l'isolation de n÷uds dans le réseau. En�n la dernière
catégorie concerne les attaques ciblant le tra�c que nous avons sous-diviser en deux:
l'écoute du tra�c a�n d'accéder au contenu des données et à leur con�dentialité et
le détournement du tra�c qui vise à usurper certaines propriétés comme l'identité
d'autres n÷uds.

Figure 1: Taxonomie des attaques contre les réseaux RPL

4 Analyse d'attaques visant le protocole RPL

Nous avons étudié deux attaques particulières visant les ressources des n÷uds du
réseau dans le cadre de cette thèse, à savoir l'attaque d'incohérence DAG et la
modi�cation du numéro de version. Ces attaques ont été choisies car elles visent les
ressources des n÷uds et sont spéci�ques au protocole RPL.

4.1 Attaque d'incohérence DAG

En théorie, le mécanisme de validation du chemin de données, présenté dans la
Section 2.2, a pour objectif d'améliorer la �abilité générale du réseau. Cependant, il
est possible de détourner cette fonctionnalité pour attaquer le réseau. En e�et, un

4. Analyse d'attaques visant le protocole RPL 133

attaquant peut faire croire à des n÷uds qu'il y a des boucles alors que la topologie
est stable.

Deux approches peuvent être adoptées par l'attaquant: (1) forger des paquets
directement avec le �ag 'R' et la mauvaise direction positionnés, (2) modi�er les pa-
quets qui transitent par lui en positionnant les �ags contenus dans l'en-tête d'extension.
Dans les deux cas, la conséquence immédiate de cette attaque est l'inondation du
réseau en messages de contrôle, puisque tous les n÷uds victimes ayant reçus les pa-
quets malveillants ainsi que leur voisinage réinitialiseront leur temporisateur Trickle.
Ceci réduira à terme la durée de vie du réseau. La �gure 2 montre cette augmenta-
tion du nombre de messages de contrôle envoyés par les di�érents n÷uds du réseau
pour des fréquences d'attaques variées. Dans le second cas plus particulièrement, les
paquets modi�és seront supprimés par le parent de l'attaquant ce qui engendrera un
blackhole déporté sur ce parent où les paquets de données seront perdus.

0 90 75 60 45 30 20 15
0

200

400

600

800

1000

1200

1400

1600

1800
(Left = Msg In / Right = Msg Out)

Attacks Per Hour

Nu
m

be
r o

f C
on

tro
l P

ac
ke

ts

N2
N3
N4
N5
N6
N7
N8
N9

Figure 2: Nombre de messages de contrôle envoyé par n÷ud sous di�érents scenarios
d'attaque

4.2 Attaque sur le numéro de version

Le numéro de version est un champ important dans les messages DIO. Il doit être
propagé sans être modi�é le long du DODAG. Seule la racine peut l'incrémenter a�n
de créer une nouvelle version du DODAG pour revalider l'intégrité du réseau et per-
mettre une réparation globale. Si un n÷ud annonce une version plus ancienne, cela
signi�e qu'il n'a pas migré vers la nouvelle version et qu'il ne doit pas être choisi en
tant que parent. Un attaquant peut changer la version du DODAG en incrémentant
illégitimement le champ correspondant dans ses messages DIO avant de les trans-
mettre à ses voisins. Ceci aura pour conséquence la génération de boucles dans le

134 Résumé de la thèse en français

graphe et la reconstruction entière du DODAG impliquant une consommation de la
batterie des n÷uds. Nous avons étudié les conséquences de cette attaque en faisant
varier la position de l'attaquant dans le réseau, celui-ci incrémentant régulièrement
le numéro de version du graphe. La �gure 3 montre le nombre de boucles détectées
par n÷ud pour di�érentes positions de l'attaquant dans le réseau. On peut voir que
cette attaque génère un grand nombre de boucles dans le réseau ce qui amène le
réseau à envoyer plus messages et donc réduit sa durée de vie.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

20

40

60

80

100

120

140

160

180

Node ID of Attacker

N
um

be
r o

f L
oo

ps

N2
N3
N4
N5
N6
N7
N8
N9
N10
N11
N12
N13
N14
N15
N16
N17
N18
N19
N20

Figure 3: Nombre total de boucles par n÷ud pour chaque position de l'attaquant.

5 Détection locale d'attaques d'incohérence DAG

Après avoir étudié les attaques précédemment décrites, nous nous sommes intéressés
à des mesures de mitigation pour limiter leurs e�ets. Notre étude s'est porté dans un
premier sur la mitigation des attaques d'incohérence DAG. Dans le standard proposé
par l'IETF, un seuil �xe était proposé comme mesure pour limiter cette attaque bien
qu'aucune explication quant à sa valeur n'était fournie. Nous avons donc proposé une
nouvelle mesure de mitigation fondée sur un seuil adaptatif comprenant di�érents
paramètres �xés. La �gure 4 présente une partie des résultats obtenus. Elle montre le
nombre de messages de contrôle reçus pour les di�érents n÷uds du réseau en fonction
du nombre d'attaques (paquets de données malveillants) envoyées par heure. Sur le
graphique la barre de gauche montre les résultats quand le seuil �xe est utilisé,
les deux autres barres correspondent à notre approche pour di�érentes valeurs de
paramètres. D'après cette �gure, on peut voir que notre approche réduit avec succès

6. Architecture de supervision distribuée pour la sécurité 135

le nombre de messages envoyés dus à l'attaque, même dans le cas d'attaque très
agressive. Les résultats du seuil adaptatif sont entre 8% et 13% meilleurs que le seuil
�xe, même dans les pires cas.

0 15 20 30 45 60 90 180 360 720 1800 3600
0

100

200

300

400

500

600

700

800
(Left Bar = Fixed Threshold; Middle Bar = γ20; Right Bar = γ25)

75

N
um

be
r o

f C
on

tr
ol

 M
es

sa
ge

s

Attacks per hour

 N2 N3 N4 N5 N6 N7 N8 N9

Figure 4: Nombre de messages de contrôle total envoyés par le réseau quand la
mitigation par seuil �xe et celle par seuil adaptatif sont déployées.

Ces travaux ont été étendus et améliorés grâce un seuil dynamique prenant en
compte les paramètres du réseau propre à chaque n÷ud et ne nécessitant pas de
paramètres a priori �xés. La �gure 5 montre que cette approche dynamique permet
d'obtenir de meilleurs résultats que le seuil �xe. De plus en comparant les deux
�gures entre elles, on peut voir que l'approche dynamique est plus performante pour
les attaques "lentes" et des performances similaires pour les attaques agressives. Nous
avons également évalué le coût de ses solutions et avons montré que ces algorithmes
consommaient peu par rapport aux béné�ces obtenus.

6 Architecture de supervision distribuée pour la sécurité

A�n de pouvoir détecter les attaques ne pouvant être gérées localement comme
l'attaque du numéro de version dont les conséquences se propagent à tout le réseau,
nous avons conçu une architecture de supervision et réalisé un POC (Proof Of Con-
cept). L'architecture a pour visée de détecter les attaques dans un réseau RPL.
Celle-ci se compose de deux types de n÷uds: les n÷uds réguliers qui sont des n÷uds
classiques fortement contraints de l'Internet des Objets et les n÷uds de surveillance
capables de collecter des informations sur les n÷uds réguliers à portée. Les n÷ds de
supervision forment un réseau indépendant appelé réseau de supervision, cependant
ceux-ci participent aussi au réseau dit régulier a�n de ne pas perdre de ressources.

136 Résumé de la thèse en français

0 15 20 30 45 60 90 180 360 720 1800 3600

100

200

300

400

500

600

700

800
(Left Bar = Fixed Threshold; Right Bar = Dynamic Threshold)

75

N
um

be
r o

f C
on

tr
ol

 M
es

sa
ge

s

0

Attacks per hour

 N2 N3 N4 N5 N6 N7 N8 N9

Figure 5: Nombre de messages de contrôle total envoyés par le réseau quand la
mitigation par seuil �xe et celle par seuil dynamique sont déployées.

L'existence de ces deux réseaux est rendu possible grâce au mécanisme de multi-
instance du protocole RPL.

Des algorithmes de détection sont implémentés sur les n÷uds de supervision en
utilisant les données récoltées. Nous avons développé deux modules permettant de
détecter l'attaque d'incohérence DAG et l'attaque du numéro de version. Concernant
le premier module chaque n÷ud de supervision maintient des compteurs pour chacun
des voisins à portée a�n de détecter si l'un d'eux exécute une attaque d'incohérence
DAG. Le second module est quant à lui chargé de détecter et de localiser le n÷ud
malveillant réalisant l'attaque du numéro de version. Ce module est composé de trois
algorithmes. Le premier est déployé sur chaque n÷ud de supervision non racine. Ces
derniers s'occupent de rapporter à la racine si un numéro de version incrémenté a été
propagé ainsi que l'émetteur du numéro de version et la liste des voisins qu'ils surveil-
lent. La racine grâce à un premier algorithme récolte toutes les informations envoyés
par les n÷uds de supervision et si une attaque est détecté, celle-ci déclenche la procé-
dure de localisation de l'attaquant. Grâce aux informations précédemment récoltées
la racine compare les émetteurs du numéro de version incrémenté et les voisins de
chaque n÷ud de supervision. En procédant par élimination on obtient une liste
d'attaquants potentiels. Bien que l'algorithme garantisse que le n÷ud malveillant
soit établi comme attaquant, il se peut aussi qu'un n÷ud sain soit considéré comme
attaquant en fonction de la con�guration des n÷uds de supervision. Ce point est
étudié lors de l'évaluation de l'architecture.

7. Évaluation de l'architecture 137

7 Évaluation de l'architecture

Nous avons évalué la faisabilité et les performances de notre architecture à travers
plusieurs séries d'expériences. Dans un premier temps nous avons évalué les perfor-
mances et le coût du mode "promiscuité" utilisé par les n÷uds de supervision lors de
la collecte d'information. Ces expériences ont montré que les paramètres considérés
pour l'étude n'in�uençaient pas le taux de succès moyen dans l'environnement de
simulation. L'analyse du coût a montré que celui-ci était proportionnel au tra�c
réseau et au nombre de voisin.

Nous avons ensuite étudié les performances des deux modules de détection. Con-
cernant l'attaque d'incohérence DAG, nous avons montré que notre module était
capable de détecter l'attaque pour tous les scénarios considérés comme présenté par
la �gure 6.

Figure 6: Temps de détection par n÷ud de surveillance pour di�érentes positions de
l'attaquant.

Nos expériences ont montré pour le second module de détection que le n÷ud
malveillant était toujours détecté. Cependant des n÷uds sains pouvait également
être classés comme attaquant c'est pourquoi nous avons étudié le taux de faux posi-
tifs dans nos expériences qui représente le nombre de n÷uds sains considérés comme
attaquant par notre module. Nous avons sélectionné di�érentes con�gurations de
n÷uds de supervision pour étudier l'in�uence de ce paramètre sur le taux de faux
positifs. Les con�gurations ont été sélectionnées de sorte que le nombre de n÷uds
réguliers couverts par au moins deux n÷uds de supervision varie (appelé Ca2). Les
résultats ont montré qu'un placement stratégique des n÷uds de supervision perme-
ttait d'avoir un taux de faux positifs presque nul comme le montre la �gure 7.

138 Résumé de la thèse en français

Figure 7: Taux de faux positifs moyen pour di�érentes valeurs de Ca2 avec 5 n÷uds
de supervision.

Nous avons �nalement étudié le passage à l'échelle de notre architecture et en
particulier du second module de détection en considérant le problème du placement
des n÷uds de supervision dans le réseau. Nous avons modélisé ce problème à l'aide
de l'optimisation linéaire en nombre entiers. Ce problème d'optimisation a ensuite
été résolu grâce un solver appelé CPLEX. La �gure 8 montre que le nombre de n÷uds
de supervision nécessaires pour di�érentes conditions en fonction de la taille de la
topologie est linéaire ce qui montre que notre solution peut passer à l'échelle.

8 Conclusions

Dans cette thèse nous nous sommes intéressés à des stratégies de supervision orien-
tées sécurité dans l'Internet des Objets utilisant le protocole RPL a�n de proposer un
compromis entre sécurité et le coût induit. Dans un premier temps nous avons évalué
les menaces pesant sur le protocole RPL à travers l'identi�cation et la classi�cation
d'attaques à l'aide d'une taxonomie. Nous avons analysé l'impact de deux attaques
spéci�ques qui sont l'attaque d'incohérence DAG et l'attaque du numéro de version
et avons montré à quel point celles-ci pouvaient être nuisible. Nous avons ensuite
présenté une stratégie locale pour détecter et limiter les attaques d'incohérence DAG
et avons évalué son coût et ses performances. A�n de compléter notre approche locale
et gérer des attaques plus complexes, nous avons conçu une architecture supervision
orientée sécurité. En s'appuyant sur des n÷uds distribués, cette architecture préserve
les ressources des n÷uds fortement contraints. Dans le même objectif, celle-ci ex-

8. Conclusions 139

Figure 8: Nombre de n÷uds de supervision nécessaires pour obtenir di�érentes
valeurs de Ca pour plusieurs tailles de topologie.

ploite des mécanismes du protocole RPL comme le multi-instance. Les n÷uds de
supervision distribués implémentent des modules de détection chargés d'identi�er les
attaques considérées. Nous avons évalué notre architecture grâce à de nombreuses
expériences et avons également discuté du placement des n÷uds de supervision.

Le travail réalisé durant cette thèse ouvre de nombreuses perspectives dans le
cadre de la supervision de sécurité dans l'Internet des Objets. Premièrement, nous
nous intéressons à poursuivre nos expériences dans des environnements réels et aussi
à porter l'implémentation de notre stratégie à d'autres OS qui se sont développés au
cours de cette thèse comme RIOT ou OpenWSN. Nous voulons aussi étendre notre
étude à de nouveaux scenarios d'attaques, notamment le cas de coalition d'attaquants
mais aussi considérer d'autres attaques abordées dans notre taxonomie et même des
attaques visant d'autres protocoles de la pile réseau. À long terme, nous envisageons
d'intégrer notre solution au sein d'un framework de gestion de risque. La gestion de
risque o�re de nouvelles perspectives pour activer ou désactiver dynamiquement des
mécanismes de sécurité dans les réseaux RPL a�n de prévenir et limiter des attaques
tout en préservant les ressources du réseau.

Bibliography

[1] A Mathematical Programming Language (AMPL).

[2] IBM ILOG CPLEX Optimization Studio.

[3] Internet of Things Global Standards Initiative.

[4] OpenWSN project.

[5] RIOT: The friendly Operating System for the Internet of Things.

[6] OSI IS-IS Intra-domain Routing Protocol. RFC 1142, feb 2014.

[7] L. Atzori, A. Iera, and G. Morabito. The Internet of Things: A survey. Elsevier
Journal Computer Networks, 54(15):2787�2805, Oct. 2010.

[8] A. Awad, R. Nebel, R. German, and F. Dressler. On the Need for Passive
Monitoring in Sensor Networks. In Digital System Design Architectures, Methods
and Tools, 2008. DSD '08. 11th EUROMICRO Conference on, pages 693�699,
Sept 2008.

[9] E. Baccelli, R. Cragie, P. V. der Stok, and A. Brandt. Applicability Statement:
The Use of the Routing Protocol for Low-Power and Lossy Networks (RPL)
Protocol Suite in Home Automation and Building Control. RFC 7733, feb
2016.

[10] A. Barbir, S. Murphy, and Y. Yang. Generic Threats to Routing Protocols.
RFC 4593 (Informational), Oct. 2006.

[11] C. Bormann, M. Ersue, and A. Keranen. Terminology for Constrained-Node
Networks. IETF RFC 7228, May 2014.

[12] C. Bormann and P. Ho�man. Concise Binary Object Representation (CBOR).
RFC 7049 (Proposed Standard), oct 2013.

[13] T. Bray. The JavaScript Object Notation (JSON) Data Interchange Format.
RFC 7159 (Proposed Standard), mar 2014.

[14] J. Case, M. Fedor, M. Scho�stall, and J. Davin. Simple Network Management
Protocol (SNMP). RFC 1157 (Historic), May 1990.

141

142 Bibliography

[15] I. Chakeres and C. Perkins. Dynamic manet on-demand (dymo) routing. draft-
ietf-manet-dymo-19. txt (work in progress), 2010.

[16] B.-r. Chen, G. Peterson, G. Mainland, and M. Welsh. LiveNet: Using Pas-
sive Monitoring to Reconstruct Sensor Network Dynamics. In S. Nikoletseas,
B. Chlebus, D. Johnson, and B. Krishnamachari, editors, Distributed Computing
in Sensor Systems, volume 5067 of Lecture Notes in Computer Science, pages
79�98. Springer Berlin Heidelberg, 2008.

[17] Chipcon AS. CC2420 2.4 GHz IEEE 802.15.4/ZigBee-ready RF Transceiver.
Oslo, Norway, 2004.

[18] K. Chugh, L. Aboubaker, and J. Loo. Case Study of a Black Hole Attack on
LoWPAN-RPL. In Proc. of the Sixth International Conference on Emerging
Security Information, Systems and Technologies (SECURWARE), Rome, Italy,
August 2012.

[19] Cisco Systems. Routing in The Internet of Things � M2M Networks. BRKSPG-
1661, 2013.

[20] T. Clausen, C. Dearlove, P. Jacquet, and U. Herberg. RFC7181: The Optimized
Link State Routing Protocol Version 2. IETF - Proposed Standard RFC 7681,
2014.

[21] T. Clausen and U. Herberg. A Comparative Performance Study of the Routing
Protocols LOAD and RPL with Bi-Directional Tra�c in Low-power and Lossy
Networks (LLN) . Master's thesis, Ecole Polytechnique, Centre de recherche
INRIA Saclay, Orsay, France, 2011.

[22] S. R. Das, C. E. Perkins, and E. M. Belding-Royer. Ad hoc On-Demand Distance
Vector (AODV) Routing. RFC 3561, mar 2013.

[23] S. Dawans, S. Duquennoy, and O. Bonaventure. On Link Estimation in Dense
RPL Deployments. In 7th IEEE International Workshop on Practical Issues in
Building Sensor Network Applications (SenseApp), Clearwater, FL, Oct 2012.

[24] P. V. der Stok and A. Bierman. CoAP Management Interface. Internet-
Draft draft-vanderstok-core-comi-09, Internet Engineering Task Force, mar
2016. Work in Progress.

[25] D. Dong, X. Liao, Y. Liu, C. Shen, and X. Wang. Edge self-monitoring for wire-
less sensor networks. IEEE Transactions on Parallel and Distributed Systems,
22(3):514�527, March 2011.

[26] J. R. Douceur. The Sybil Attack. In Revised Papers from the First International
Workshop on Peer-to-Peer Systems, IPTPS '01, pages 251�260, London, UK,
UK, 2002. Springer-Verlag.

143

[27] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a Lightweight and Flexible
Operating System for Tiny Networked Sensors. In 29th Annual IEEE Interna-
tional Conference on Local Computer Networks (LCN), pages 455�462, Tampa,
FL, USA, November 2004.

[28] A. Dvir, T. Holczer, and L. Buttyan. VeRA - Version Number and Rank Au-
thentication in RPL. In 8th IEEE International Conference on Mobile Adhoc
and Sensor Systems (MASS), pages 709�714, Hangzhou, China, October 2011.

[29] S. Elyengui, R. Bouhouchi, and T. Ezzedine. Loadng routing protocol evaluation
for bidirectional data �ow in AMI mesh networks. CoRR, abs/1506.06357, 2015.

[30] R. Enns, M. Bjorklund, A. Bierman, and J. Schönwälder. Network Con�guration
Protocol (NETCONF). RFC 6241, Oct. 2015.

[31] F. P. Garcia, R. M. C. Andrade, C. T. Oliveira, and J. N. de Souza. EPMOSt:
An Energy-E�cient Passive Monitoring System for Wireless Sensor Networks.
Sensors, 14(6):10804, 2014.

[32] J. Hui and J. Vasseur. The Routing Protocol for Low-Power and Lossy Networks
(RPL) Option for Carrying RPL Information in Data-Plane Datagrams. RFC
6553 (Proposed Standard), mar 2012.

[33] P. Jacquet. Optimized Link State Routing Protocol (OLSR). RFC 3626, mar
2013.

[34] F. Khan, T. Shon, T. Lee, and K. Kim. Wormhole attack prevention mechanism
for RPL based LLN network. In Ubiquitous and Future Networks (ICUFN), 2013
Fifth International Conference on, pages 149�154, July 2013.

[35] M. M. H. Khan, L. Luo, C. Huang, and T. Abdelzaher. SNTS: Sensor Network
Troubleshooting Suite. In Proceedings of the 3rd IEEE International Conference
on Distributed Computing in Sensor Systems, DCOSS'07, pages 142�157, Berlin,
Heidelberg, 2007. Springer-Verlag.

[36] J. Ko, S. Dawson-Haggerty, O. Gnawali, D. Culler, and A. Terzis. Evaluating
the Performance of RPL and 6LoWPAN in TinyOS. In Workshop on Extending
the Internet to Low Power and Lossy Networks (IP+SN), Chicago, IL, USA,
April 2011.

[37] K. D. Korte, A. Sehgal, and J. Schönwälder. A Study of the RPL Repair Process
Using ContikiRPL. In AIMS, pages 50�61, 2012.

[38] S. Kuryla and J. Schönwälder. Evaluation of the Resource Requirements of
SNMP Agents on Constrained Devices. In 5th Conference on Autonomous In-
frastructure, Management and Security (AIMS 2011), Springer LNCS 6734,
Nancy, France, June 2011.

144 Bibliography

[39] A. Lahmadi, A. Boeglin, and O. Festor. E�cient Distributed Monitoring in
6LoWPAN Networks. In 9th International Conference on Network and Service
Management (CNSM), Zürich, Switzerland, October 2013.

[40] M. Landsmann, H. Perrey, O. Ugus, M. Wählisch, and T. C. Schmidt. Topology
Authentication in RPL. In INFOCOM. Poster, 2013.

[41] A. Le, J. Loo, K. K. Chai, and M. Aiash. A Speci�cation-Based IDS for De-
tecting Attacks on RPL-Based Network Topology. Information, 7(2), 2016.

[42] A. Le, J. Loo, A. Lasebae, M. Aiash, and Y. Luo. 6LoWPAN: a study on QoS
security threats and countermeasures using intrusion detection system approach.
Int. J. Communication Systems, 25(9):1189�1212, 2012.

[43] A. Le, J. Loo, A. Lasebae, A. Vinel, Y. Chen, and M. Chai. The Impact of
Rank Attack on Network Topology of Routing Protocol for Low-Power and
Lossy Networks. IEEE Sensors Journal, 13(10):3685�3692, 2013.

[44] A. Le, J. Loo, Y. Luo, and A. Lasebae. Speci�cation-based IDS for Securing
RPL from Topology Attacks. In IFIP Wireless Days (WD), pages 1�3, Niagara
Falls, Canada, October 2011.

[45] A. Le, J. Loo, Y. Luo, and A. Lasebae. The Impacts of Internal Threats towards
Routing Protocol for Low power and lossy Network Performance. In ISCC, pages
789�794, 2013.

[46] P. Levis, T. Clausen, J. Hui, O. Gnawali, and J. Ko. The trickle algorithm.
RFC 6206 (Proposed Standard), mar 2011.

[47] P. Levis, A. Tavakoli, and S. Dawson-Haggerty. Overview of Existing Routing
Protocols for Low Power and Lossy Networks, IETF Internet Draft: draft-ietf-
roll-protocols-survey-07, April 2009.

[48] C. Liu and G. Cao. Distributed Monitoring and Aggregation in Wireless Sensor
Networks. In 30th IEEE International Conference on Computer Communica-
tions (INFOCOM), San Diego, CA, USA, March 2010.

[49] T. Lys, C. Lavenu, H. Satoh, J. Dean, T. H. Clausen, A. C. Verdiere, J. Yi,
A. Niktash, Y. Igarashi, and U. Herberg. The Lightweight On-demand Ad hoc
Distance-vector Routing Protocol - Next Generation (LOADng). Internet-Draft
draft-clausen-lln-loadng-14, Internet Engineering Task Force, jan 2016. Work in
Progress.

[50] G. S. Malkin. RIP Version 2. RFC 2453, mar 2013.

[51] D. A. Maltz and D. C. Johnson. The Dynamic Source Routing Protocol (DSR)
for Mobile Ad Hoc Networks for IPv4. RFC 4728, mar 2013.

145

[52] A. Mayzaud, R. Badonnel, and I. Chrisment. A Taxonomy of Attacks in RPL-
based Internet of Things. International Journal of Network Security, 18(3):459
� 473� May 2016.

[53] A. Mayzaud, A. Sehgal, R. Badonnel, I. Chrisment, and J. Schönwälder. A
Study of RPL DODAG Version Attacks. In Proc. of AIMS conference, 2014.

[54] A. Mayzaud, A. Sehgal, R. Badonnel, I. Chrisment, and J. Schönwälder. Mitiga-
tion of topological inconsistency attacks in RPL-based low-power lossy networks.
International Journal of Network Management, 2015.

[55] A. Mayzaud, A. Sehgal, R. Badonnel, I. Chrisment, and J. Schönwälder. Using
the RPL protocol for supporting passive monitoring in the internet of things.
In 2016 IEEE/IFIP Network Operations and Management Symposium, NOMS
2016, Istanbul, Turkey, April 25-29, 2016, pages 366�374, 2016.

[56] G. Meyer and S. Sherry. OSPF Version 2. RFC 2091, jan 1997.

[57] J. T. Moy. OSPF Version 2. RFC 2328, mar 2013.

[58] National Intelligence Council, Dirsuptive Civil Technologies. Six Technologies
with Potential Impacts on US Interests Out to 2025. Conference Report CR
2008-07, 2008.

[59] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt. Cross-Level
Sensor Network Simulation with COOJA. In 31st IEEE Conference on Local
Computer Networks (LCN), pages 641�648, Tampa, FL, USA, November 2006.

[60] P. Pongle and G. Chavan. A survey: Attacks on RPL and 6LoWPAN in IoT.
In Pervasive Computing (ICPC), 2015 International Conference on, pages 1�6,
Jan 2015.

[61] D. Popa, N. Cam-Winget, and J. Hui. Applicability Statement for the Routing
Protocol for Low Power and Lossy Networks (RPL) in AMI Networks. Internet-
Draft draft-ietf-roll-applicability-ami-13, Internet Engineering Task Force, may
2016. Work in Progress.

[62] K. N. Ramach, E. M. Belding-royer, and K. C. Almeroth. DAMON: A Dis-
tributed Architecture for Monitoring Multi-hop Mobile Networks. In IEEE
SECON, Santa Clara, CA, USA, October 2004.

[63] S. Raza, L. Wallgren, and T. Voigt. SVELTE: Real-time intrusion detection in
the Internet of Things. Ad Hoc Networks, 11(8):2661�2674, 2013.

[64] E. Rescorla and N. Modadugu. Datagram Transport Layer Security. RFC 4347
(Proposed Standard), Apr. 2006. Updated by RFC 5746.

[65] E. Rescorla and N. Modadugu. Datagram Transport Layer Security Version 1.2.
RFC 6347 (Proposed Standard), oct 2015.

146 Bibliography

[66] A. RGHIOUI, A. KHANNOUS, and M. BOUHORMA. Denial-of-Service at-
tacks on 6LoWPAN-RPL networks: Issues and practical solutions. Journal of
Advanced Computer Science & Technology, 3(2):143�153, 2014.

[67] K. Roussel and Y.-Q. Song. A critical analysis of Contiki's network stack for
integrating new MAC protocols. Research Report RR-8776, INRIA Nancy, Dec
2013.

[68] K. Roussel, Y.-Q. Song, and O. Zendra. Lessons Learned through Implemen-
tation and Performance Comparison of Two MAC/RDC Protocols on Di�erent
WSN OS. Research Report RR-8777, INRIA Nancy, Mar 2015.

[69] K. Roussel, Y.-Q. Song, and O. Zendra. Using Cooja for WSN Simulations:
Some New Uses and Limits. In K. Roemer, editor, EWSN 2016 - NextMote
workshop, EWSN 2016 - NextMote workshop, pages 319�324, Graz, Austria,
Feb 2016. ACM, Junction Publishing.

[70] S. Seeber, A. Sehgal, B. Stelte, G. D. Rodosek, and J. Schönwälder. To-
wards A Trust Computing Architecture for RPL in Cyber Physical Systems.
In IFIP/IEEE International Conference on Network and Service Management
(CNSM), Zürich, Switzerland, October 2013.

[71] A. Sehgal, A. Mayzaud, R. Badonnel, I. Chrisment, and J. Schönwälder. Ad-
dressing DODAG Inconsistency Attacks in RPL Networks. In Proc. of GIIS
conference, 2014.

[72] A. Sehgal, V. Perelman, S. Kuryla, and J. Schönwälder. Management of Re-
source Constrained Devices in the Internet of Things. IEEE Communications
Magazine, 50(12):144�149, 2012.

[73] Z. Shelby, K. Hartke, and C. Bormann. The Constrained Application Protocol
(CoAP). RFC 7252 (Proposed Standard), June 2014.

[74] F. L. Templin, R. Ogier, and M. S. Lewis. Topology Dissemination Based on
Reverse-Path Forwarding (TBRPF). RFC 3684, mar 2013.

[75] Texas Instruments. MSP430F1611 Mixed Signal Controler Datasheet, 2006.

[76] T. Tsao, R. Alexander, M. Dohler, V. Daza, A. Lozano, and M. Richardson. A
Security Threat Analysis for Routing Protocol for Low-power and Lossy Net-
works (RPLs),. RFC 7416, IETF, 2015.

[77] M. Vucinic, B. Tourancheau, and A. Duda. Performance comparison of the
RPL and loadng routing protocols in a home automation scenario. In 2013
IEEE Wireless Communications and Networking Conference (WCNC), Shang-
hai, Shanghai, China, April 7-10, 2013, pages 1974�1979, 2013.

[78] L. Wallgren, S. Raza, and T. Voigt. Routing Attacks and Countermeasures in
the RPL-Based Internet of Things. International Journal of Distributed Sensor
Networks, 13(794326), 2013.

147

[79] K. Weekly and K. Pister. Evaluating Sinkhole Defense Techniques in RPL
Networks. In 20th IEEE International Conference on Network Protocols (ICNP),
pages 1�6, Austin, TX, USA, November 2012.

[80] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,
R. Struik, J. Vasseur, and R. Alexander. RPL: IPv6 Routing Protocol for
Low-Power and Lossy Networks. RFC 6550, IETF, 2012.

[81] W. Xie, M. Goyal, H. Hosseini, J. Martocci, Y. Bashir, E. Baccelli, and A. Dur-
resi. Routing Loops in DAG-Based Low Power and Lossy Networks. In Proc.
of the 24th IEEE International Conference on Advanced Information Network-
ing and Applications, pages 888�895, Washington, USA, 2010. IEEE Computer
Society.

[82] X. Xu, J. Wan, W. Zhang, C. Tong, and C. Wu. PMSW: a passive monitoring
system in wireless sensor networks. International Journal of Network Manage-
ment, 21(4):300�325, 2011.

Glossary

6LoWPAN : IPv6 Low power Wireless Personal Area Network.
AMI : Advanced Measurement Infrastructure.
AMPL : A Mathematical Programming Language.
AT : Adaptive Threshold.
AODV : Ad hoc On-demand Distance Vector protocol.
CBOR : Concise Binary Object Representation.
CIA : Con�dentiality, Integrity, Availability.
CoAP : Constrained Application Protocol.
CoMI : CoAP Management Interface.
CPU : Central Processing Unit.
DAG : Directed Acyclic Graph.
DAMON : Distributed Architecture for MONitoring mobile network.
DAO : Destination Advertisement Object.
DAO-Ack : Destination Advertisement Object Acknowledgement.
DGRM : Directed Graph Radio Medium.
DIO : DODAG Information Object.
DIS : DODAG Information Solicitation.
DODAG : Destination Oriented Directed Acyclic Graph.
DSR : Dynamic Source Routing protocol.
DT : Dynamic Threshold.
DYMO : Dynamic MANET On-demand protocol.
EPMOSt : Energy-e�cient Passive MOnitoring System.
FP : False Positive.
FPR : False Positive Rate.
IEEE : Institute of Electrical and Electronics Engineers.
IETF : Internet Engineering Task Force.
IDS : Intrusion Detection System.
ILP : Integer Linear Programming.
IoT : Internet of Things.
IoT-GSI : Global Standards Initiative on Internet of Things.
IS-IS : Intermediate System to Intermediate System protocol.
IT : Information Technology.
JSON : JavaScript Object Notation.
LLN : Low-power and Lossy Network.

149

150 Glossary

LOADng : Lightweight Ad hoc On-Demand - Next Generation distance vector
routing protocol.

MANET : Mobile Ad hoc NETwork.
MIB : Management Information Base.
MOP : Mode Of Operation.
MP2P : Multipoint-to-Point.
NAN : Neighborhood Area Network.
NETCONF : NETwork CONFiguration protocol.
NIC : National Intelligence Agency.
OLSR : Optimized Link State Routing protocol.
OS : Operating System.
OSPF : Open Shortest Path First protocol.
P2MP : Point-to-Multipoint.
P2P : Point-to-Point.
PMSW : Passive Monitoring System for WSN.
RAM : Random-Access Memory.
RIP : Routing Information Protocol.
RoLL : Routing Over Low-power and Lossy networks.
RPL : Routing Protocol for Low-power and lossy networks.
SEM : Standard Error of the Mean.
SNMP : Simple Network Management Protocol.
SNTS : Sensor Networks Troubleshooting Suite.
TBRPF : Topology Broadcast Based on Reverse-Path Forwarding protocol.
TN : True Negative.
UDGM : Unit Disk Graph Medium.
WAN : Wide Area Network.
WSN : Wireless Sensor Network.
XML : Extensible Markup Language.

Résumé / Abstract
L'intérêt grandissant pour l'Internet des Objets s'est traduit par le déploiement à grande échelle
de réseaux dits à basse puissance et avec pertes (LLN). Ces réseaux sont fortement contraints en
matière de ressources (mémoire, CPU, batterie) et communiquent via des liens instables, à bas
débit avec de forts taux d'erreur. Dans ce contexte, les protocoles de routages existants pour les
réseaux �laires et pour les réseaux ad-hoc ne sont pas adaptés pour ces caractéristiques. Le groupe
de travail RoLL à l'IETF a proposé un nouveau protocole de routage appelé RPL fondé sur IPv6
et spéci�quement conçu pour ces environnements. Cependant, le protocole RPL est exposé à de
nombreuses attaques internes et/ou externes comme les attaques consommant les ressources ou les
attaques d'interception de tra�c. La mise en place de mécanismes de sécurité peut aussi représenter
un coût considérable. C'est pourquoi, les réseaux LLN introduisent de nouveaux enjeux quant à leur
supervision et leur sécurité. Dans le cadre de cette thèse, nous proposons d'étudier une approche de
supervision pour la sécurité de l'Internet des Objets a�n de répondre au compromis entre sécurité et
coût dans l'Internet des Objets. Nous évaluons tout d'abord les menaces auxquelles sont soumis les
réseaux RPL. En particulier, nous identi�ons et classi�ons les attaques visant le protocole RPL au
travers d'une taxonomie. Nous quanti�ons également les conséquences de deux attaques appelées
l'attaque d'incohérence DAG et l'attaque du numéro de version qui provoquent la surconsommation
des ressources des n÷uds du réseau. Les résultats obtenus montrent l'importance de gérer ces
attaques pour préserver les infrastructures de l'Internet des Objets. Nous nous concentrons ensuite
sur les solutions pour la sécurité dans les réseaux RPL. Nous proposons une stratégie locale qui
détecte et limite les attaques d'incohérences DAG. Dans le but de détecter des attaques complexes
comme les attaques sur le numéro de version et de compléter notre approche locale, nous présentons
une architecture de supervision distribuée orientée sécurité pour les réseaux RPL. Cette solution
nous permet de préserver l'énergie des n÷uds contraints en e�ectuant les activités de surveillance
et de détection sur des n÷uds dédiés. Nous montrons la faisabilité de notre approche en implantant
une preuve de concept capable de détecter les attaques d'incohérence DAG et les attaques sur le
numéro de version. Nous quanti�ons ensuite les performances de cette architecture ainsi que la
stratégie de détection proposée.

Mots-clés: Internet des Objets, LLN, RPL, Sécurité, Supervision

The growing interest for the Internet of Things (IoT) has resulted in the large scale deployment
of Low power and Lossy Networks (LLN) such as home automation systems. These networks
are strongly constrained in terms of resources (memory, power and processing) and communicate
using unstable links with high error rates and low throughputs. In this context, existing routing
protocols for wired networks and for ad-hoc networks do not cope with all these constraints. The
IETF RoLL working group has proposed a new routing protocol called RPL based on IPv6 and
speci�cally designed for these environments. The RPL protocol is however exposed to a large
variety of internal and/or external attacks such as resource consuming attacks, tra�c interception
or loops building attacks. The deployment of security mechanisms may also be quite expensive
in terms of resources. Therefore, LLN networks present new challenges in terms of monitoring
and security. In this thesis we propose to investigate a security-oriented monitoring approach for
addressing the trade-o� between security and cost in the Internet of Things. In a �rst stage, we
assess security threats faced by these networks. In particular, we identify and classify attacks
targeting RPL networks through a dedicated taxonomy. We also quantify the consequences of
two major attacks called DAG inconsistency attacks and version number attacks causing over-
consumption of node resources. The obtained results show the importance of addressing them to
preserve RPL-based infrastructures. We then focus our work on security solutions for RPL-based
Internet of Things. We propose a local strategy for addressing DAG inconsistency attacks and
evaluate it through experiments. In order to detect complex attacks such as version number attacks
and to complement our node-level approach, we design a security-oriented distributed monitoring
architecture for RPL networks. This solution allows us to preserve constrained nodes energy by
performing monitoring and detection activities on dedicated nodes. We show the feasibility of our
approach by implementing a prototype able to detect both DAG inconsistency and version number
attacks. We quantify the performance and the cost of this architecture and the detection modules.

Keywords: Internet of Things, LLN, RPL, Security, Monitoring

153

	Introduction
	Context
	The Internet of Things
	Low Power Lossy Networks and Routing Protocols

	Problem Statement
	Security Issues
	Addressed Challenges

	Overview of Contributions

	Routing and Monitoring in RPL-based Internet of Things
	Introduction
	The RPL Protocol
	RPL Control Messages
	DODAG Building and Maintenance
	Loops, Inconsistencies and Repairs
	Protocol Security

	Monitoring RPL-based Internet of Things
	Active Monitoring
	Passive Monitoring
	Comparison and Limits

	Conclusions

	Taxonomy of Attacks in RPL Networks
	Introduction
	Attacks against Resources
	Direct Attacks
	Indirect Attacks
	Analysis

	Attacks on Topology
	Sub-optimization Attacks
	Isolation Attacks
	Analysis

	Attacks on Traffic
	Eavesdropping Attacks
	Misappropriation Attacks
	Analysis

	Conclusions

	Impact Assessment of RPL Attacks
	Introduction
	The DAG Inconsistency Attack
	Attack Description
	Simulation Setup
	Impact Quantification

	The Version Number Attack
	Attack Description
	Simulation Setup
	Impact Quantification

	Conclusions

	Local Strategy for Addressing DAG Inconsistency Attack
	Introduction
	DAG Inconsistency Attack Mitigation
	Default Mitigation
	Adaptive Mitigation
	Dynamic Mitigation

	Mitigation Evaluation
	Simulation Setup
	Mitigation Performance
	Configuration Parameters Impact
	Resource Consumption

	Conclusions

	Security-oriented Distributed Monitoring Architecture
	Introduction
	Proposed Architecture
	Overview and Components
	RPL-based Mechanisms

	Monitoring Node Placement Formalization
	Detection Modules
	DAG Inconsistency Attack
	Version Number Attack

	Conclusions

	Architecture Evaluation
	Introduction
	Overhearing Evaluation
	Simulation Setup
	Performance Analysis
	Cost Analysis

	Detection Modules Evaluation
	DAG Inconsistency Attack
	Version Number Attack

	Scalability Evaluation
	Conclusions

	General Conclusions
	Achievements
	Perspectives

	Publications
	List of Figures
	List of Tables
	Résumé de la thèse en français
	Introduction
	Protocole de routage RPL
	Taxonomie des attaques contre le protocole RPL
	Analyse d'attaques visant le protocole RPL
	Attaque d'incohérence DAG
	Attaque sur le numéro de version

	Détection locale d'attaques d'incohérence DAG
	Architecture de supervision distribuée pour la sécurité
	Évaluation de l'architecture
	Conclusions

	Bibliography
	Glossary

