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Tanguy CABANA
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Rapporteurs

Examinateurs



ii



iii

ABSTRACT

English Abstract

This thesis addresses the rigorous derivation of mean-field results for the continu-
ous time dynamics of heterogeneous large neural networks. In our models, we con-
sider firing-rate neurons subject to additive noise. The network is fully connected,
with highly random connectivity weights. Their variance scales as the inverse of
the network size, and thus conserves a non-trivial role in the thermodynamic limit.
Moreover, another heterogeneity is considered at the level of each neuron. It is in-
terpreted as a spatial location. For biological relevance, a model considered includes
delays, mean and variance of connections depending on the distance between cells.
A second model considers interactions depending on the states of both neurons at
play. This last case notably applies to Kuramoto’s model of coupled oscillators. When
the weights are independent Gaussian random variables, we show that the empirical
measure of the neurons’ states satisfies a large deviations principle, with a good rate
function achieving its minimum at a unique probability measure, implying averaged
convergence of the empirical measure and propagation of chaos. In certain cases, we
also obtained quenched results. The limit is characterized through a complex non
Markovian implicit equation in which the network interaction term is replaced by a
non-local Gaussian process whose statistics depend on the solution over the whole
neural field. We further demonstrate the universality of this limit, in the sense that
neuronal networks with non-Gaussian interconnections but sub-Gaussian tails con-
verge towards it. Moreover, we present a few numerical applications, and discuss
possible perspectives.

French Abstract

Cette thèse porte sur l’obtention rigoureuse de limites de champ moyen pour la dy-
namique continue de grands réseaux de neurones hétérogènes. Nous considérons des
neurones à taux de décharge, et sujets à un bruit Brownien additif. Le réseau est
entièrement connecté, avec des poids de connections dont la variance décroı̂t comme
l’inverse du nombre de neurones conservant un effet non trivial dans la limite ther-
modynamique. Un second type d’hétrogénéité, interprété comme une position spa-
tiale, est considéré au niveau de chaque cellule. Pour la pertinence biologique, nos
modèles incluent ou bien des délais, ainsi que des moyennes et variances de connec-
tions, dépendants de la distance entre les cellules, ou bien des synapses dépendantes
de l’état des deux neurones post- et présynaptique. Ce dernier cas s’applique au
modèle de Kuramoto pour les oscillateurs couplés. Quand les poids synaptiques sont
Gaussiens et indépendants, nous prouvons un principe de grandes déviations pour la
mesure empirique de l’état des neurones. La bonne fonction de taux associée atteint
son minimum en une unique mesure de probabilité, impliquant convergence et prop-
agation du chaos sous la loi ”averaged”. Dans certains cas, des résultats ”quenched”
sont obtenus. La limite est solution d’une équation implicite, non Markovienne, dans
laquelle le terme d’interactions est remplacé par un processus Gaussien qui dépend
de la loi de la solution du réseau entier. Une universalité de cette limite est prouvée,
dans le cas de poids synaptiques non-Gaussiens avec queues sous-Gaussiennes. En-
fin, quelques résultats numérique sur les réseau aléatoires sont présentés, et des
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perspectives discutées.
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Introduction

Neuroscience is the field of research concerned by the study of the development, orga-
nization and functioning of the nervous system. First emerged from neurobiology at
the far end of the nineteenth century, its importance has grown all along the first half
of the twentieth century, to become recognized as a discipline in its own right by the
scientific community. Because of the tremendous complexity of its object of interest,
and due to its potential repercussions on both medicine and artificial intelligence (AI),
it is today a booming, highly interdisciplinary field, involving no less than chemistry,
physics, linguistic, computer science, medicine, psychology, philosophy, and mathe-
matics.

The present work pertains to mathematical neuroscience. Beyond providing a re-
liable formalism as well as technical tools from a number of theories such as the dy-
namical systems, stochastic calculus, or partial differential equations theories, and
ergodic theory, this hybrid area aims at enriching the neuroscientific investigation
with the originality of its viewpoint. In order to help elucidate the mysteries of cog-
nition, it endeavors at tailoring simple tractable models equipped with predictive
strength that would account for biological observations. Such an approach can for
example be illustrated by the contribution of P. L. Buono and M. Golubitsky and col-
leagues [45]: through symmetry assumptions made on the architecture of the central
pattern generator, the brain’s area involved with the generation of locomotive pace in
animals, the authors successfully predicted the existence of a rare gait that was then
observed in nature. Moreover, by bringing into light original mathematical problems
and equations, this transverse dialog has revealed itself as fruitful as mathematical
physics have been for pure and applied mathematics, and might result in new mathe-
matical concepts and theories. For its tremendous complexity and puzzling efficiency,
it indeed seems that the brain has something to tell us about our mathematical world.

The object of the present thesis is to address, through probabilistic tools, a mean-
field problem: that of the asymptotic dynamics emerging from a class of neurobiolog-
ically based mathematical model describing, at the microscopic level, the time evo-
lution of networks of neurons, and in the limit where the number of neurons tends
toward infinity. These models take a particular account of both the spatial extension
of mammalian nervous system, as well as the highly heterogeneous and noisy prop-
erties they display at the microscopic level.

The thesis is organized as follow. Part I presents a general overview of the math-
ematical approach we will develop to tackle the dynamics of randomly connected
neural networks. Chapter 1 will briefly describe the characteristics of the biologi-
cal system at study, and present the classical mathematical models at use. Chapter
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2 CONTENTS

2 will introduce the basic concepts of the mean-field theory that is tailored to address
the dynamics of large systems of particles. Chapter 3 will give a rapid overview on
the emergence of rigorous mean-field approaches in neuroscience, and present two
different strategies in order to cope with networks presenting two different kind of
random interactions: weakly random interactions and strongly random interactions
whose variance respectively scale as 1

N2 and 1
N , N being the size o the network. In the

rest of the manuscript, we shall insist on the second type of interactions which are of
central importance in this work. Part II is the core of this thesis. In chapter 4 and
5, we will undertake the rigorous analysis of two different spatially extended neural
networks. The first one involves spatially-dependent delays, as well as spatially-
dependent mean and variance of interactions. It notably extends its scope to obtain
results for the case of non-Gaussian interactions weights relevant for biology. The
second model analyzed in chapter 5 involves synapses depending on both the postsy-
naptic and presynaptic neurons, extending the general firing-rate approach. Part III
consists in a rapid presentation of some numerical results accompanied by a theoretic
analysis. Chapter 6 presents the phenomenology of randomly connected neural net-
works, and analyze the effect of delays as well as variance and mean of connections
onto the dynamics. Chapter 7 applies the results of Chapter 5 to investigate the ef-
fect of heterogeneous connections on the dynamics of the Kuramoto model of coupled
oscillators. Finally, the General Appendix gives a rapid overview of some tools from
probability theory to Gaussian calculus. It notably furnishes a substantial introduc-
tion on large deviations theory covered by the chapter 9. Note also that a section
referencing the General Notations is also present at the end of the manuscript.



Part I

General Introduction

3





CHAPTER 1

PRINCIPLES OF NEURAL SCIENCE
AND MODELIZATIONS BASICS

1.1 HISTORICAL NOTES

He who cannot draw on three thousand years is
living from hand to mouth.

— Johann Wolfgang von Goethe

”Know thyself”. Found on the forecourt of Apollo’s Delphic temple, this antique
aphorism - traditionally and mistakingly attributed to the Greek philosopher Socrates
- could perfectly have been carved on the pediment of any neuroscientific institution.
In fact, what better answer than the brain could humans - both as a species and indi-
viduals - possibly find when philosophically questioning the essence of their identity:
What makes us unique on Earth? What makes me who I am?

Back in pre-Socratic times, people had a utterly different picture of the mind. For
it was easily observed by the naked eye, and quite apparently extended its vessels
to the entire body, the vascular system was the only convincing candidate for the
carriage of both motions and sensations. It was thought to convey a life-giving air-
like substance called pneuma, extracted from the atmosphere by the pumping of our
lungs. At the center of this system lied the heart viewed as the source of human emo-
tions and mental abilities. Nerves, in comparison, were very hard to see. They were
even harder to distinguish from sinews and ligaments. The brain thus appeared rel-
atively isolated from the rest of the body. Speculations made it a disregarded mucus
carrier.

A testimony of this ancient belief lies in the embalming ritual performed by the
Egyptian civilization. To prepare the passage of Pharaoh into eternal life, some of
its organs were meticulously cared for, and put into jars near its body. The liver, the
lungs and stomach all benefited this sacred privilege, while the heart was regarded
as the most precious of them all: it was to be weighted by the god Anubis as a token
of the merit of the dead sovereign. As for the brain, it experienced a far gloomier fate:
extracted from the skull with an iron hook, it was thrown away as a mere garbage. It
is worth noting that Egyptian were among the most skilled physician of the ancient
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6 CHAPTER 1. NEUROSCIENCES

Mediterranean world, and have certainly greatly influenced their neighbors on medi-
cal matters. The Old Testament and Homeric epics are good witnesses of this possible
transmission: they contain many references to the heart as the siege for bravery and
intelligence.

Figure 1.1: Drawing of a silver-stained pigeon Purkinje cells by Santiago Ramón y
Cajal. Cell body, dendritic bush, and axon are clearly distinguishable.

For centuries now, science has well established that the seat of our intelligence
and memory, of our consciousness and sensations, of our emotions and communicative
skills is to be found in our brain. We have also widely accepted that our experience of
the world can roughly be summarized by the electrical activity of this vital organ - up
to a possible immaterial and complementary element we call soul. One of the most
important discovery of the modern history of neuroscience is that of the neuron, made
by the Spanish histologist Santiago Ramón y Cajal. Using the silver-staining method
invented by Camillo Golgi in 1873, he challenged the contemporary consensus that
depicted the nervous system as a single continuous fibrous network. In fact, he ob-
served that it was in fact made of many distinct elements, connecting with each other
through tiny structure called synapse (meaning fasten in Greek), that constitute the
siege of transmission. His theory, the Neuron’s doctrine, can be stated as follow:
1) neurons are discrete autonomous cells able to interact through electrical impulses
2) synapses are gaps that separate neurons
3) information is directional, i.e. transmitted by the neuron in one direction: from
dendrites to axon.
At first very controversial, it progressively gained into credibility to become the start-
ing point of a new understanding of the mind.

1.2 BASIC NOTIONS

This section found support in [80, 99].
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1.2.1 Neurons and action potentials

What is real? How do you define ”real”? If you’re
talking about what you can feel, what you can
smell, what you can taste and see then ”real” is
simply electrical signals interpreted by your
brain.

— Morpheus, Matrix

In this section we will describe the global organization of the neuron and explain
how it conveys and integrates electrical signals. As will be emphasized in section
1.4.3, there exists a great diversity of neurons, dramatically differing in size function
and shape. The following description does not intend to present them all, but gives a
stereotyped picture underlying neurons functioning. Moreover, we will mainly over-
look important supportive cells, called glial cells.

Figure 1.2: Graphic overview of a typical neuron. Reproduced from Wikipedia Com-
mons.

Neurons are cells characterized by their aptitude to transmit information through
the emission of transient electrical signals, called action potentials or spikes, that
travel along their membrane. In order to establish connections with possibly remote
interlocutors, they display a fibrous tree-like shape that can be divided in three dis-
tinct parts: the dendrites, cell body, and axon. Interestingly, these evoke, by both
their shape and function, the roots, seed, and stem of a growing plant. First, the cell
body, also called soma, is the core of the neuron. It contains the nucleus and DNA,
and shelters the classical cellular machinery that notably produces the proteins and
energy of the cell. It is also the pivot that links the two other parts of the neuron,
both made of filamentous extensions. On one side, the bushy and highly ramified den-
drites - ”tree-like” in Greek - extend in the neighborhood of the soma, and feed it with
the neural raw material: information. They are the ears of the neuron that collect
the electrical activity incoming from the network, to integrate it at the level of the
soma. On the other side lies the solitary axon. It is a far-reaching electrical highway,
able to extend at the order of the meter before branching to connect, through bud-like
structures of its membrane called synapses, the dendrites of other neurons. Its basis,
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the axon hillock, displays the highest density of voltage-gated sodium channels (see
below) making it the most excitable part of the neuron. In order to accurately trans-
mit possibly complex spiking patterns to far away areas (outside the cortex), axon are
wrapped in insulating sheets of myelin (actually, these sheets are made of supportive
glial cells: Schwann cells in the Peripheral Nervous System and of oligodendrocites
in the Central Nervous System) which are steadily spaced by Ranvier nodes, a kind
of exit-entrance for this biological highway. Note that a neuron can possess more
than one axon, that axon-to-axon, dendrite-to-dendrite, and dendrite-to-axon connec-
tions also exist, but these ”exceptions” are relatively scarce in mammalian nervous
systems.

Figure 1.3: Voltage-gated ionic channel, reproduced from
http://cnx.org/contents/QBrzNCkw@5/The-Action-Potential (left). Temporal pro-
file of an action potential, reproduced from wikipedia (right).

When the membrane potential of the soma reaches a given threshold, a spike is
triggered at the level of the axon hillock, and propagates all along its membrane to
reach the synaptic terminals. Locally, this electrical wave lasts 2 milliseconds. It
is governed by the opening and closure of voltage-gated ionic channels covering the
surface of the neuron. When the neuron is at rest, some of these transmembrane
proteins actively thwart the natural diffusion of ions in order to maintain a high
concentration of potassium and a low concentration of sodium inside the cell. This
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pumping requires ATP (energy of the cell), and represents approximatively seventy
percent of the neuron’s consumption in energy. This results in a polarized resting
membrane potential whose typical value lies around -70mV. When a positive current
is locally applied on the membrane, this prompts the opening of sodium channels that
passively and massively let these ions rush into the cytoplasm for the membrane po-
tential to attain +40mV within a millisecond. This local depolarization in turn yields
both the closing of sodium channels and the opening of potassium ones. This causes
a rapid outward flow of potassium ions, allowing the neuron to return to its resting
state. It also impacts the potential of the directly adjacent portions of membrane,
propagating the spike along the axon. This short-lasting event, is generally followed
by a refractory period lasting around two milliseconds, and during which the ion gra-
dient is rebuild.

1.2.2 The synapse

At the level of a synapse, two neurons are interacting: the presynaptic neuron sends
information, whereas the postsynaptic neuron is listening. Remark that a neuron is
perfectly capable of connecting its own dendrites. There exists two great categories
of synapses. On the on hand, electric synapses or gap junctions directly connects
the cytoplasm of the two neurons, allowing the bidirectional transit of various ions,
molecules. This transit is made possible by the binding of two transmembrane pro-
teins, hemichannels, that tightly link the two membrane, and create a small local
aperture. These electrical synapses are characterized by a high speed of transmission
between neurons, a very useful feature for escaping predation through stereotypical
reflexes.

More sophisticated and versatile are the chemical synapses. They rely on the
diffusion of molecular messengers called neurotransmitters throughout the synaptic
cleft - a small space that is set up and maintained between the two neurons. When
an action potential crosses the axon of a presynaptic neuron, and reaches the synap-
tic terminal, voltage-gated calcium channels covering the membrane of the synaptic
terminal open and let this ion flow into the cellular medium. Calcium ions then
bind to specific receptors attached to arm-like proteins linking both the membrane
of the presynaptic neuron, and vesicles filled with neurotransmitters. This activates
a spring-loaded fusion between these vesicles and the synaptic membrane through
a bending of the protein, enabling a massive release of neurotransmitters into the
synaptic cleft. Neurotransmitters then diffuse to bind specific receptors on the mem-
brane of the postsynaptic neuron, yielding one of the two following scenari. In the
first case, receptors are directly controlling the aperture of ion-channels, enabling an
immediate effect on the postsynaptic potential. Alternatively, receptors are located
on intermediary transmembrane protein that triggers a slower long-lasting response
in the intracellular medium of the postsynaptic neuron. Interestingly, this kind of
synaptic transmission is seemingly crucial for learning and memory. In both cases,
within a 1ms [66], the synapse progressively deactivates through the clearance of
neurotransmitter achieved through diverse mechanisms (antagonist molecules bind-
ing the receptors, destruction, diffusion outside the synaptic cleft, etc.).

Despite their relative slowness, chemical synapses present the advantage of the
sophistication: there exists more than a hundred different kind of neurotransmitters
displaying various characteristic times. Hence, they are able to induce a wide range
of possible interactions, and notably enable inhibition. Moreover, the location of the
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Figure 1.4: Gap junctions, composed of the binding of two hemichannels. Image cour-
tesy Mariana Ruiz Villarreal (republished under open access license from Wikimedia
Commons) (left). Synaptic terminal for a chemical synapses with direct binding of the
neurotransmitters onto postsynaptic ionic channels. (Copyright c© 2002. Published
by Houghton Mifflin. All rights reserved.) (right).

synapse on the postsynaptic neuron’s dendrite modulate its transmission: it is all the
more effective than it is close from the soma. Hence, an inhibitory synapse located
near the soma can short-cut several excitatory synapses located farther on the same
dendrite. Furthermore, the size of the synapse is directly linked with the number of
vesicles it contains, and thus, to its impact on the postsynaptic neuron. Both these
properties shape the synaptic efficiency, which corresponds to the maximal transmis-
sion of a given terminal.

Many interesting and intricate phenomena can arise at the level of the synapse,
making them particularly difficult to model. For example, synaptic transmission de-
pends on the geometry of the synapse. Furthermore, the astrocytes that support
the synapse, and notably create the synaptic cleft, might actually play an important
role into the transmission [78, 187]. More importantly, the wiring of the brain is a dy-
namics process, as synapses are created and destroyed on a daily basis, while existing
synapses adjust their efficiency along time. This phenomenon, called synaptic plas-
ticity, was formalized by Donald O. Hebb [133], and has today become one of the most
important fields of research in neuroscience. It is of crucial importance for the good
functioning of the brain, in particular for learning and memory. All these complex
and interesting phenomena widely outrange the scope of this manuscript.

1.3 SPATIAL ORGANIZATION OF THE BRAIN

1.3.1 General overview

The mammalian nervous system is a three-dimensional object presenting a strong
spatial organization at every scale. It can be divided into two major parts. On one
hand, the Central Nervous System (CNS) - on which we will further insist - contains
the brain and spinal cord and shelters the higher cognitive functions. On the other
hand, the Peripheral Nervous System (PNS) is made of all the nerve cells and fibers ly-
ing outside the CNS. It is essentially involved in conveying sensory messages (touch,
pain, temperature), and motor commands (voluntary movements) between the spinal



11

cord and the different parts of the body. Moreover, the PNS ensures the good func-
tioning of the internal organs. This vital function, homeostasis, is achieved through
the careful regulation of the body constants (blood pressure, temperature, etc.).

In the CNS, the brain and spinal cords continuously join through the foramen
magnum. As vital organs, they display several level of protection. Firstly, they are
encapsulated into bone structures: the skull and spine. Secondly, they are wrapped
into three successive layers called meninges. The most external and toughest one is
the dura, that notably carries a venous network extracting the blood out of the CNS.
The second layer, arachnoid, contains the cerebrospinal fluid in which the CNS is
immersed. This fluid has both a shock-absorbing and a nutritive role. Eventually, the
pia is a delicate impermeable tissue tightly enclosing the brain and spinal cord.

Figure 1.5: General overview of the human nervous system, with PNS (blue) and
CNS (yellow). Reproduced from wikipedia Common, credit: William Crochot.

The brain can be divided into three main parts. At its base, the brainstem (medulla,
pons and midbrain) is the continuation of the spinal cord. Besides being an unavoid-
able pathway for corticospinal communications, it also notably controls respiration.
Behind it, at the rear of the head, lies the peach-size cerebellum involved in equilib-
rium and motor coordination. As the human cortex (see below) it displays a folded
surface, characterized by very deep sulci, and condenses fifty percents of the neurons
of the brain, justifying its name: ”little brain”. The forebrain is the rostral-most part
of the nervous system, connecting the brainstem at its extremity. It is composed of
the diencephalon and telencephalon or cerebrum. The former notably regroups the
thalamus - a relay station for incoming pathways to sensory and motor areas of the
cerebral cortex -, the hypothalamus regulating the autonomic nervous system, as well
as the retina. The cerebrum is composed of two symmetric hemispheres - right and
left - gathering the cortex as well as some subcortical areas: the olfactory bulb, the
hippocampus where lies memory, the almond-shaped amygdala controlling emotions,
and basal ganglia involved in procedural learning. These two hemispheres are linked
through a flat bundle of nerve fibers: the corpus callosum, ensuring their good com-
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munication.
The different part composing the nervous systems are complexly dependent, and

are intricately linked by tracts of nerve fibers. This wires are so intertwined that
tracking them is a difficult task. Let us insist on the presence of two different cir-
cuits: a local short-connections, far-reaching long-connections regrouping into thick
myelinated cables. The latter compose the white matter of the brain, responsible for
the good communication between distant areas, while the gray matter is character-
ized by a high density of cell bodies. Certain large fibers can be seen by the naked eye
and tracked on considerable distance, giving many insights on the function of the con-
nected regions. Nevertheless, while it was undertook for the entire nervous system
of C. Elegans composed of three hundred neurons, mapping the entire connectome of
the human brain is still out of technological reach [214].

Figure 1.6: General structure of the brain. c© 2014 WebMD, LLC. All rights reserved.
(left). White and gray matter. Reproduced from Wikipedia Commons (right).

1.3.2 The mammalian cortex: from functional localization to micro-
scopic organization.

The cerebral cortex is a thin extended sheet of tissue covering the outer surface of
the cerebrum. While almost inexistent for fishes and amphibians and very rudimen-
tary for reptiles, it displays for all mammals a stratified organization composed of
six distinct layers. In contrast with rats or mice presenting smooth hemispheres, the
human cortex is convoluted, forming cavities (sulci) and ridges (gyri), allowing its sur-
face to triple within the skull. The most important sulci divide each hemisphere into
four distinct regions: the frontal, parietal, temporal and occipital lobes, respectively
associated with the planning and organization of future actions, the processing of
sensory information, hearing and other aspects of language and memory, and vision.
The human cortex contains up to 28 billion neurons, is approximately 2600 square
centimeters wide and 3-4 mm thick. As the siege of the highest cognitive functions,
it is undoubtedly the most fascinating region of the human brain.

Its important functional role has been overlooked until the beginning of the nine-
teenth century. In fact, since the European Renaissance, only a few scientist were
keen to show the cortex any interest, and their work were largely ignored [127]. It
is not a detail that the meaning of cortex is bark. Ironically, it was the dubious
phrenology, developed by the German physician Franz Joseph Gall, that conceptu-
ally revolutionized our vision of the cortex by spatially dividing the cortex into dis-
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tinct functional areas. Still impregnated with dualist considerations, the scientific
community fiercely withstood this new depiction of human nature. This initiated one
of the most roaring controversies of the nineteenth century known as the holism ver-
sus localism debate. It ended with the prevailing of the latter. Indeed, in 1861, Paul
Broca, demonstrated the link between speech impairments with brain damage to the
left hemisphere. In 1870, German researchers Fritsch and Hitzig located the motor
cortex at the rear of the frontal lobes, and notably reopened an experimental high-
way: cortex electrical stimulation. This technique was then thoroughly put at use
by the Scottish neurologist David Ferrier to dramatically strengthen localism theory.
In 1875, Ferrier discovered the auditory cortex in the temporal lobe. This same year,
following the pioneer work of the Italian Bartholomeo Panizza, the German physician
Munk positioned the visual cortex in the occipital lobe. Furthermore, complementing
Broca’s research, the German Carl Wernicke found in 1874 another cortical region
associated with a new form of aphasia: unintelligible speech pattern with incapabil-
ity of comprehension. All these advances suggested that the cortex was divided into
distinct functional area, but also lateralized as speech was mainly present in the left-
hemisphere. Meanwhile these picture of the cortex should be mitigated in certain
regards, it has nevertheless proven largely valid until today.

From the anatomical viewpoint, the mammalian cortex is an homogeneous medium
organized both horizontally and vertically. At the horizontal level, it displays six dis-
tinct layers (laminae I to VI, the first being the most extern) that constitute the frame
of cortical pathways. Each layer has its own characteristic composition, and its spe-
cific set of connections with the other layers as well as the other cortical cortical and
subcortical areas. On top of this stratified organization is a vertical one whose small-
est anatomical and functional unit is the cortical microcolumn (or minicolumn).

Figure 1.7: Layered structure of the cortex. Each layer has its own composition and
typical connectivity. Left: drawing by Santiago Ramón y Cajal. Right: reproduced
from [125]

This microscopic structure consists of around a hundred preferentially intercon-
nected neurons, organized as column 20-60 micrometers wide, that vertically traverse



14 CHAPTER 1. NEUROSCIENCES

laminae II-VI. Within a microcolumn, neurons display an homogeneous level of activ-
ity. The diversity of the neurons in each column is representative of the cortex compo-
sition, with around 20 percents of inhibitory neurons playing a central role for its good
functioning. In various cortical regions, microcolumns gather into larger functional
unit called cortical column or macrocolumn, each specific of a given region and whose
variety has been reviewed in [177]. While these macro structures are quite versatile,
all have in common an approximate diameter of 0.5-1 mm. They are seemingly a well
preserved organizing principle of mammalian cortex. These columns have specific
functions and spatial locations resulting in the presence of delays in their interac-
tions due to the transport of information through axons and to the typical time the
synaptic machinery needs to transmit it. These delays have a clear role in shaping
the neuronal activity, as established by different authors (see e.g. [70, 213]). More-
over, neurons and microcolumns typically have two different scales of connections in
the cortex (see 1.8). At the microscopic level, they project many connections toward
their most proximate siblings, while they send a few far-away synapses to determined
areas.

B
C

25 µm 500 µm

Figure 1.8: Two different scales of connection in the primary visual cortex of a cat.
At the microscopic level, neurons connects many of their neighbors in a random fash-
ion (A). At a higher level, a patch of neurons will send connections to other patches
processing the same task. Colors correspond to preferred orientation of neurons
(B). Sketch of the two scales of connections for an abstract representations of mi-
crocolumns (C). Modified from [31]

Lorente de Nó, a former student of Ramón y Cajal, was the first to envision this
possibility of such a columnar organization [215]. It was latter evidenced electrophys-
iologically in the somato-sensory cortex of cat by Vernon MountCastle in [176]. Albeit
controversial [138, 145], microcolumns have been accounted for by diverse techniques
ranging from Nissl-staining method, optical density measurement, to metabolic 2-
deoxy-D-glucose methods, and might replace single neurons as the functional units
of the cortex. Several fact support this theory. First, while the synaptic transmis-
sion in the cortex is generally of 1-5 ms and might have an important impact on its
function, the latency in one column is very small making it an acceptable indivisible
structure [49, 177]. Furthermore, there is not enough myelinated connections in the
cortex for single neurons to form one to one long-range synaptic connections. For ex-
ample, in the primary visual cortex, callosal termination seems to correspond to the
output of an entire orientation hypercolumns. Lastly, microcolumns can display more
sophisticated behaviors than single neurons, making them very adaptable structures.
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1.4 MATHEMATICAL MODELS IN NEUROSCIENCE

When taken alone, a neuron already displays a complex dynamics. It was carefully
described in the seminal work of Hodgkin and Huxley in 1952 on the giant squid
[135]. This animal presents uncommonly large axon fibers, yielding the possibility to
wire it and record its excitable properties. Hodgkin and Huxley translated them into
equations, and tailored the canonical model - still widely studied - of the single neuron
dynamics: a set of four coupled non-linear ordinary differential equations, taking
into account both the membrane potential, the opening and closing dynamics of the
channels covering the surface (sodium and potassium), and the leak of the membrane.
Because these equations were quite intricate, some reductions have been proposed in
the next decades, such as Morris-Lecar model [175] and FitzHugh-Nagumo model
[109, 140]. These simpler models all presented the advantage of being tractable and
of preserving the excitability properties of neurons. As the present manuscript is
exclusively interested in the dynamics of neural networks, we refer to [60] for further
details on the intrinsic dynamics of single neurons.

Neural networks certainly fall into the scope of the theory of ”complex systems”.
These systems are generally composed of many elementary units (spins, oscillators,
neurons, etc.) interacting with each other through complex non-linear interactions
and possibly subjected to transmission delays. In fact, the human brain is made of
around 80 billiards neurons, each projecting up to 10 thousands synapses toward
other neurons. Besides the possible intricacy of the intrinsic behavior of the com-
ponents at play, the aim of complex systems theory is to discover, describe and cat-
egorize the possible dynamics of such large networks. One of its main insights is
that, due to the non-linearities in the model, the system is not equal to the sum of its
parts. It might indeed displays unexpected emergent behaviors, not deducible from
the properties of its elements taken alone. The flocking of bats, in which millions fly
coherently, is a striking example of such natural phenomena. Very often, the macro-
scopic behavior of the system is tuned by some parameters of the model, possibly
associated with bifurcations or phase transitions. The system is thus reducible, and
many details of the microscopic models become irrelevant. This can concern both the
intrinsic dynamics, microscopic interactions, and some heterogeneity parameter in
the model: a change in their value will not make a change! This conclusion - along
with mathematical tractability - justifies, in some sense, the poor biological relevance
of the intrinsic dynamics we will consider in our network equations. It also clarifies
what is at stake: the aim is not to perfectly describe a biological neural network, but
to capture something of its dynamics in the limit where the number of neurons is very
large (known as the thermodynamic limit). Before giving the microscopic dynamics of
the class of neural networks we will study, let us precise a few hypothesis concerning
the neural code and synaptic transmission.

1.4.1 The neural code and the firing-rate hypothesis

A very intricate and interesting issue in neurobiology concerns the neural code. In
fact, knowing that neurons communicate by electrical means does not tell us how,
exactly, the information is encoded. To gain some insights, neurobiologists have care-
fully recorded and categorized the temporal spiking patterns of neurons. It turns
out that these spike trains can take many forms: individual spikes, periodic fir-
ing, square-waves bursting, periodic spikes intertwined with small oscillations, etc...
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There is still no dictionary to translate this bestiary, but it certainly has an important
role in the encoding of neural information. Especially if one considers long-range con-
nections, with well identified source and target. If the precise temporal spike pattern,
we speak of a temporal code. We can compare this possible code to Morse, where the
interval between two flashes carry information.

The problem is that, if one wants to model a network composed of many neurons,
taking into account the spike trains of every one of them is an Herculean task, if pos-
sible. Even simulating the network’s trajectory with a computer seems prohibited.
Nevertheless, if one considers a local area of the brain containing only a few million
neurons (V1 is thought to contain around 140 millions in each hemisphere [157]),
each sending and receiving many connections, you might expect that some averaging
effect occurs, and that individual spike trains loose their importance. This is why a
common assumption to reduce this difficulty is to consider that in such integrative
networks, interactions between neurons can roughly be summarized as a non-linear
function of the instantaneous spiking frequency of the presynaptic neuron (integrated
on a short time window), also called firing-rate. This non-linearity is described in the
next subsection.

While a rough assumption, the firing-rate hypothesis actually makes sense in a
number of scenarios. First, it is compatible with modern non-invasive monitoring
techniques whose resolution is not precise enough to go beyond the local activity of
brain’s regions, containing many hundred neurons (EEG techniques, functional MRI,
etc.). In fact, in most experiments where a stimulus is presented to an animal, it is
possible to find a group of neurons whose firing rate will increase compared with the
background activity. Moreover, in certain precise case, the firing-rate seems to con-
dense all the information. For example, it has been demonstrated that the firing-rate
of a stretch receptor neuron associated to a muscle fiber is a function of the stretch-
ing force applied to the fiber [3, 4]. In these cases, the information is contained in the
firing-are of a set of neurons.

Without surprise, the significance of firing-rate hypothesis is quite limited: ne-
glecting (by definition) important temporal features of neuronal activity, it has been
challenged by many authors [1, 202, 219]. The real surprise comes from the successes
it did earn, providing insights into the mechanisms underlying both hallucinations
patterns, binocular rivalry, working memory or the emergence of up-down states in
the cortex [94, 99]. These achievements justify the respectability this model as earned
among the neuroscientific community, and explain why it is still at use today.

1.4.2 Synaptic models in Neural Networks

Synaptic transmission models are of chief importance in this manuscript. We will
thus describe their evolution in details. Nonetheless, the history of mathematical
modeling of neural network is a long one, and at least goes back to the 30s [130].
Interestingly, it shares a lot with the development of Artificial Intelligence (AI) and
Cybernetics, and it is notable that many early neuroscientists had made contribu-
tions to both disciplines. Let us begin in 1943, when the neurophysiologist Warren
S. McCulloch and logician Walter Pitts proposed one of the first formal equations for
neural integration [169]. Of logical inspiration, their article would become the start-
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Figure 1.9: Different electrophysiological classes of inhibitory neurons produce dif-
ferent trains of spikes. Reproduced from [166].
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ing point of the theory of neural networks, as it opened the possibility to study their
discrete time evolution. At the time, it was well known that neurons presented a spik-
ing behavior in order to implement complex representations of the world. Inspired
by this biological fact, McCulloch and Pitts suggested binary neurons, or formal neu-
rons, either excitatory or inhibitory, evolving in a discrete time, and whose activity
would be described at time t ∈N by a boolean 0 or 1 (or −1 and 1). Moreover, at each
time step, every neuron of the network updates its state through a nonlinear function
of the afferent activities with a threshold condition, unless inhibition occurs. For a
given neuron i receiving inputs from neurons j ∈ [[1,N]], this writes{

ui(t +1) = H
(

∑
N
j=1 x j(t)−θi

)
if no inhibition,

ui(t +1) = 0 if inhibition.

where H is the Heaviside step function, H(x) = 0,∀x ∈ R∗− (or alternatively −1) and
H(x) = 1,∀x ∈R+, and θi is the activation threshold of neuron i. We emphasize that
this nonlinear behavior is of chief importance in neuroscience, as the brain is def-
initely not the sum of its parts. In the 50s, an improved version of this synaptic
integration was then invented. Frank Rosenblatt notably put is at use for the imple-
mentation of its perceptron [206], one of the first learning machines, composed of one
layer of neuron and designed for image recognition. In his model, the inhibition was
no more absolute, and the afferent connections were weighted, so that a postsynaptic
neuron could listen preferentially to a few incoming signals (neurons or inputs) and
neglects others:

ui(t +1) = H
( N

∑
j=1

Ji ju j(t)−θi

)
.

Here, Ji j is the synaptic weight from j to i. It is positive for excitation, and nega-
tive for inhibition. This weighted integration thus permits the neuron to integrate a
great amount of contradictory messages in order to spike only when needed. This was
a very successful innovation that enabled Rosenblatt’s machine to discriminate lin-
ear features of images. It gave rise to several generations of learning machines, more
and more sophisticated: from multi-layers feed-forward perceptrons [10], until today
deep learning algorithms. All these models preserved weighted integration, but the
discontinuity of the Heaviside step function was sometimes a problem for both the
updating of synaptic connections, as well as for theoretical study of the dynamics. A
natural way to tackle this issue was to smoothen H into a sigmoid shape function S
taking value in [0,1], infinitely differentiable, increasing and odd (up to an additive
constant). Popular examples of sigmoid functions are e.g. x→ 1

1+e−gx , x→ erf(gx), or
tanh(gx)+1

2 , where g ∈R+ is the gain that controls the slope at the origin.
This new ingredient made the activity ui a continuous state variable. More interest-
ingly, the sigmoid being an invertible function, the latter somewhat abstract quantity
could now be unequivocally related to the most natural description of the state of a
neuron, being its real valued membrane potential xi:

xi(t) = S−1(ui(t)), ui(t) = S(xi(t)). (1.1)

In addition, the discrete time dynamics of the network could be advantageously de-
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scribed in term of the membrane potential:

ui(t +1) = S
(
xi(t +1)

)
= S
( N

∑
j=1

Ji ju j(t)−θi

)
,

xi(t +1) =
N

∑
j=1

Ji ju j(t)−θi =
N

∑
j=1

Ji jS
(
x j(t)

)
−θi,

giving the continuous time dynamics

dxi(t)
dt

=−xi(t)+
N

∑
j=1

Ji jS
(
x j(t)

)
−θi. (1.2)

This is the typical equation for the evolution of a large network. Remark that the
intrinsic dynamics is an exponential discharge of the neuron, that can be accounted
by a leaky membrane. You might want to replace this simplistic behavior by a more
realistic f (xi(t), t). Equation (1.2) is able to describe both the time evolution of inter-
connected neurons, or alternatively that of a family of interconnected subnetworks.
In the latter case, i is the index of a group of neuron, and xi represents the averaged
activity of the subnetwork i. In both cases, S(x j(t)) needs an interpretation, and the
refractory period had to be taken into account for this continuous time dynamics.
These both found a solution in the firing-rate hypothesis that has progressively im-
posed itself among the neuroscientific community. It has at least two interpretations.

When i represents a single neuron, xi(t) is seen as a smooth average on a short
time window of the otherwise spiky membrane potential of neuron i. If the neuron is
very excited, it will exactly emit one spike within a time τr, where τr is the refractory
period. Thus, S(xi(t)) represents either the probability that the neuron spike within a
time window of width τr, either its normalized frequency of spike. A heuristic deriva-
tion of the latter interpretation can, for example, be found in [5], [60, section V.A] or
[99, Chapter. 12]. In contrast, when i represents a subnetwork of many neurons, xi(t)
may represents the averaged membrane potential of its components, and S(xi(t)) the
instantaneous frequency of spike it generates. This view is especially natural when
considering a neural field, that is a continuous spatially extended neural network, for
which xi(t) accounts for the local membrane potential on a neighborhood containing
infinitely many neurons (see e.g. [245]). Note also that generally 0≤ S≤ 1 but, as for
the Heaviside function, this sigmoid some time takes value in the interval [−1,1].

Of course, these models are far from embracing the whole complexity of synaptic
transmission. Richer microscopic models take, for example, into account the reversal
potential of the synapse, the concentration of neurotransmitters within the synaptic
cleft, or the aperture’s dynamics of the channels covering the membrane of the postsy-
naptic neuron [99]. As already discussed, these omission are consistent with the fact
that we are dealing with a complex systems, and do not want to enter too much into
details. Nevertheless, a biological fact that should be taken into account is that the
synaptic transmission actually depends on the membrane potential of the postsynap-
tic neuron xi

t [99]. In this manuscript, we propose to address A synaptic transmission
of the form b

(
xi(t),x j(t)

)
through a mean-field analysis performed in chapter 5.
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Figure 1.10: Different types of neurons. Drawing by Ramón y Cajal. A. Purkinje
cell (a), B. granule cell (b) C. motor neuron (c), tripolar neuron (d), pyramidal cell (e),
chandelier cell (f), spindle neuron (g), and stellate cell (h). (Credit: Ferris Jabr; based
on reconstructions and drawings by Santiago Ramón y Cajal)

1.4.3 Heterogeneities and noise

The neural network equation (1.2) we have built so far is missing important aspects
of real nervous system: variability. In fact, the brain is a very disordered systems,
as it is made of highly heterogeneous components - from neurons to synapses, chan-
nels, and minicolumns of the neocortex - and displays a noisy dynamics at every level.
These features seem to play an important role in the functioning principle underly-
ing cognitive abilities, as well as in the emergence of pathological state. In order to
fully account for the biological observations, mathematical representations of neural
networks has to include these important traits.

Different neurons, different channels, etc.

The diversity of neurons composing the brain is one of its most striking feature. Some
of them are well known by neuroscientists, as the excitatory pyramidal cell of the cor-
tex or the inhibitory Purkinje cell of the cerebellum. Though, its doubtful that any
neuroscientist know them all, as more than 10.000 different kinds of neurons have
already been referenced [99].

Neurons can distinguish themselves in many ways. Two of their fundamental
characteristics certainly are the type of channels and synapses they involve. On the
one hand, channels are themselves very diverse, and can take up to a hundred forms
[99]. They are specific to a given ion (calcium, potassium, sodium, chloride, etc.), can
be voltage-gated, ion-gated, neurotransmitter-gated (NMDA, AMPA/kinase for glu-
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tamate) or passive. They may have activation or deactivation pathways, and can be
fast or slow. Along with the porosity of the membrane and the diameter of the neu-
ral fiber, they impact, through their type and density, the excitability properties of
the neuron: speed of conduction, threshold, refractory period, as well as the resting
membrane potential. Let us remark that a neuron generally involves more than two
type of channels.

On the other hand, synapses offer many possibilities. While electrical synapses
are the simplest and most stereotyped, chemical ones can involve a few neurotrans-
mitters among dozens of candidates, display various geometries, and adopt different
strategies to enhance deactivation (through pumping or destruction of neurotrans-
mitters). Their size relates to their number of vesicles and, along with their location
on the postsynaptic dendrite, importantly impact the synaptic efficiency. Moreover,
their neurotransmitters can either induce excitation or inhibition, directly bind to a
postsynaptic channel or trigger the G-protein, and are associated with different time
characteristics.

Note also that, while microcolumns present a clone-like composition and though
interconnections in the mammalian cortex seems to follow a robust pattern pre-
scribed by neurodevelopment, it appears that these structures and the connections
they display are also subject to variability [49, 151].

This microscopic diversity has certainly been a driving force in the evolution of the
animal reign, and has enabled the shaping of highly specialized neural components
such as the respiratory pacemakers of the brainstem, able to generate synchronized
oscillations for breathing control through persistent channels. For this reason, it
seems to be an unavoidable feature of nervous systems, that must necessarily impact
its functioning, even at the macroscopic level. Supporting this view, it was shown that
neurons of rats subject to febrile seizure displayed a similar mean resting potential
than ones of normal rats, but a much greater variance [13]. Hence, a problematic
is to identify which microscopic parameters are of importance in the emergence of
functions and pathologies of the brain, and which are not.

This is an intricate question, as it was for example shown that different networks
composed of very distinct types of neurons where nonetheless able to display very
similar behavior [193]. Among the many details present at the microscopic level, the
importance of multiple time scale for the emergence of rich circuit dynamics were
pointed out [120]. Moreover, in a different dynamical approach, Izhikevich very co-
herently addressed a similar issue at the level of the single neuron. The author
proposed to categorize them according to their dynamical properties and bifurcation
diagrams only. He was thus able to differentiate four classes of neurons through their
character monostable or bistable, as well as oscillator or resonator [139]. From our
mean-field viewpoint - presented in the next chapter 2 - the criterium is again dif-
ferent, as the parameters of importance are those that conserve an influence on the
macroscopic behavior of the system, when the number of neurons is very large. Even
more important are the microscopic characteristics associated with bifurcations, the
crossing of which causes drastic changes in the networks dynamics.

Such a phase transition was famously discovered by Sompolinsky, Crisanti and
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Sommers [221] in the context of a homogeneous population of firing-rate neurons
with leaky membrane, and displaying heterogeneous synaptic connections modeled
as centered independent Gaussian variables:

ẋi(t) =−xi(t)+
N

∑
j=1

Ji jS(x j(t)), i ∈ {1, . . . ,N}, (1.3)

with Ji j
L
=N

(
0, σ2

N

)
, and S = tanh.

Importantly in this model, the variance of the disordered connections scaled as 1
N

(we will come back on such scalings in chapter 3). The authors found that, in the limit
of an infinite number of neurons, the system displayed a sharp phase transition in the
level of the variance parameter σ . When σ was smaller that unity, all the individual
neural trajectories were attracted to the stable equilibrium 0. In comparison, when
σ was greater than 1, the mean activity of the network was still 0, but the individual
trajectories appeared to sustainably fluctuates around the origin in a very incoherent
way, a sign of deterministic chaos. This discovery was a shock to the neuroscientific
community, as chaos had already been observed in the rabbit olfactory bulb through
EEG techniques [18, 113]. Hence, despite some biologically irrelevant aspects such as
the all-to-all connectivity, this work strongly demonstrated the importance of taking
into account the heterogeneous character of nervous systems in order to unravel its
functioning.

Noise

It has been long known that the nervous system is an unreliable system, incapable to
accurately reproduce a given behavior. Around the 50s, trial-to-trial variability had
already been observed in frogs: the same stimulus repeatedly applied to the same
neuron evoked different time of first spike, and small shifts in the inter-spike inter-
val [38, 44]. This variability was attributed to noise, that was classically seen as
an unpredictable perturbation corrupting the signal. In comparison, machines of the
next decades appeared much sounder to accomplish orders.

Nevertheless, this negative understanding must be challenged in the context of
neuroscience. In fact, in the last few decades, noise has progressively been accepted
as one of the most important trait of biological system in general, and of the nervous
system in particular. If noise is indeed unpredictable, there is a gaining attention of
the community that it might also be of some benefits [96, 101, 170, 223], and con-
stitute a significant part of the neural code [223]. This could be explained by the
fact that nervous systems has seemingly adapted to noise and turned its unavoidable
presence to its advantage. These new insights might resolve the apparent paradox
formulated by John von Neuman in 1956 [242]: ”how can a reliable nervous system
be made out of unreliable elements?”, and are reminiscent of the cost effective ”opti-
mal control theory” proposed by Harris an Wolpert [131] to explain the unreliability
of motor control.

There are several source of noise in the brain [96, 101]. First, sensory noise ac-
counts for the stochastic character inherent to every stimulus received from the out-
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side world. In fact, when experiencing smell, taste, or visual stimulus, the precise
number of molecules captured by your olfactory receptors is subject to chemical noise,
while the number of photons absorbed by your retina is of quantal nature. Membrane
noise results from both the perpetual motion of ions, electrons, molecules and protein
due to thermal agitation within each cell, as well as the stochastic opening and closing
of ion channels on the surface of the neuron, resulting in transient current through
the membrane. These latter random events follow a Poisson law, and induce local
depolarizations of the membrane affecting the transmission and propagation of ac-
tion potential. Synaptic noise condensed the effects of chemical diffusion and binding
of neurotransmitter within the synaptic-cleft, and those of the random spontaneous
releases of vesicles inducing well accounted for postsynaptic current. Eventually, cal-
cium noise should also be taken into account [99] because of the combination of a low
inner concentration of calcium(10−4 millimolar), and a high sensitivity of calcium-
gated channels to its presence.

Perhaps one of the most well-understood and documented potential benefit of
noise to neural computation is the so called stochastic resonance. In fact, membrane
noise is thought to improve the acuity of neural integration by enabling subthresh-
old stimulus to prompt an action potential with a positive probability. Stochastic
resonance was notably discovered in the visual cortex of cats [159], and has since
attracted much attention (see [170] and reference there in). Mathematically, this
problem fall into the study of first-passage time of stochastic processes. Another pos-
sible noise-related advantage would be an increased adaptability of nervous system:
by permitting assembly of neurons to explore more thoroughly their state space, they
might overcome changing of the environment with more talent [101]. Noise might
also be an important component of a cost-effective strategy, improving the trade-off
of the nervous system which might result in an improved fitness. Strikingly, noise
might sometimes enhance the reliability of response of the system: in the case of a
frozen noise input, it was shown that the trial-to-trial variability of the response of
neural units was significantly reduced [96, 164]. Moreover, theoretical models sug-
gest that noise might also better the regularity of spikes, a phenomenon known as
stochastic coherence [155, 191]. For example, in the case of intrinsically oscillatory
neurons, Ermentrout argued that a correlated noise could facilitate the emergence of
synchronization [96, 99]. Similar conclusions were drawn in another theoretic work
[239], in which the effect of noise induced stabilization or destabilization of both fix
points, and limit cycles. Note, however, that noise might also be involved in patholog-
ical pathways, as noised-induced epilepsy was theoretically described [150].

As advocated by various authors [101, 170], understanding the role of noise in
neural computation and pathologies will require innovative stochastic mathematical
models. This motivates the incorporation of independent Brownian noise at the level
of each cell. Both the independence, and white noise hypothesis are convenient, as
they facilitate the mathematical tractability. They will be central in our proof. Never-
theless they are somewhat crude, as we have seen that thermal noise is not the only
source of stochasticity in the brain, and as there might exist correlations at least in
the sensory noise when group of neurons are processing the same stimulus. We point
out that some authors have considered models with more intricate colored Ornstein-
Uhlenbeck noise, displaying autocorrelation functions with exponentially decay, but
this choice did not drastically impact their conclusions [158].
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Figure 1.11: Noisy inputs cause reliable spiking in vitro and in vivo: steady-state
current injection into a cortical pyramidal cell in vitro results in trains of action po-
tentials shown as voltage traces (top) or spike rasters (bottom). On different trials
the first spike is evoked at the same time on each trial, but subsequent spikes are
unreliable. Reproduced from [96]

1.4.4 Neural fields

As accounted in the previous section, spatial architecture is a crucial feature of biolog-
ical neuronal networks at both the microscopic and macroscopic level. Dynamically
speaking, this topological extension offers the possibility for a wide repertoire of spa-
tial patterns of activity. Early physiological evidence accounted for their existence in
the nervous system [11, 47, 48, 87, 130, 132, 132, 199], including alpha, beta, and
delta rhythms as well as more complex spatio-temporal recording such as wave prop-
agations [11, 46], and thalamic undamped oscillations thought to encode external
stimuli [11, 91, 110, 192].

Around the same period, technological progresses and the emergence of computers
allowed to simulate the dynamics of discrete spatially extended randomly connected
networks of excitatory neurons. The first such contribution was made by Rochester
et al. [204], shortly followed by that of Farley and Clark [102] for a planar network.
Transient diffusive reverberations, oscillatory patterns, and traveling waves were ob-
served, but these networks were not able to display sustained activity: after a period
they were either saturated, or quiescent. This latter phenomenon, poorly represen-
tative of the biological brain, was known as the switching effect, and has notably
highlighted the tremendous importance of inhibition for the brain functioning [130].

In order to account for these interesting phenomena, a spatially continuous math-
ematical model of the nervous system - also called neural field - was needed. In 1956,
a pioneering contribution was made by Beurle [28] that derived a neural field equa-
tion for a network composed of excitatory synapses, and considered the firing-rates
of local populations as the quantities of interest. Moreover, in 1963, Griffith showed
sustained oscillations for a network including inhibition, in an attempt to solve the
switching effect [126]. Inspired by these works [69], HG Wilson and JD Cowan made
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the real breakthrough in 1972 [245, 246]. They proposed a set of two coupled non-
linear integro-differential equations describing the dynamics of interconnected exci-
tatory and inhibitory populations of neurons:

τE Ė(t) =−E(t)+(kE − rE(t))SE
(
JEEE(t)− JEII(t)+ kEP(t)

)
τI İ(t) =−I(t)+(kI− rI(t))SI

(
JIEE(t)− JIII(t)+ kIQ(t)

)
.

A spatially extended two-dimensional version of these equation followed in 1973
[246]. While mathematically intricate, their model successfully accounted for many
spatio-temporal patterns as it displayed multiple spatially inhomogeneous steady
states, hysteresis phenomena, sustained oscillations, traveling waves, and predicted
some of their features such as the wave velocity etc. Note also that at the same period,
Amari independently proposed similar equations for a two-populations inhibitory-
excitatory neural networks that also displayed sustained oscillations [5, 6] but with-
out spatial extension. The resolution of Wilson and Cowan’s model was then under-
taken in the context of a unidimensional neural field presenting lateral inhibition [7].

Recently, research on neural fields has attracted great endeavors that have built
upon these precursory work in order to mathematically describe the dynamics of large
spatially extended neural network. Some of them notably includes long-range con-
nections, bi-dimensional spatial extension, and transportation delays. They exhibit a
number of spatio-temporal dynamics such as solitary traveling fronts and pulses, sta-
tionary pulses, spatially localized oscillations (breathers), spiral waves, Turing-like
patterns, bumps [67, 68, 93]. Many of these spatio-temporal phenomena has been
physiologically accounted for. In vivo, traveling waves have been observed in the cat’s
primary and secondary visual cortex (V1 and V2), along with compressions and re-
flexions phenomena [250], while analysis of spatio-temporal patterns in the somato-
sensory cortex of rabbits [111], and rodents [65, 107, 190] has been performed. In
vitro, electrically evoked traveling waves are observed [61, 201, 249]. Furthermore,
these mathematical models have successfully accounted for a wide range of neurobio-
logical phenomena including hallucination patterns [37, 94], orientation tuning in V1
[25, 220], short-term memory [55, 156], control of head direction [251], and motion
perception [119].

Nevertheless, if these patterns are thought to be related with both normal func-
tioning, development of the brain along with pathological states, their computational
utility are, for their great majority, yet to be settled. As advocated by Paul Bressloff
in [32]:
”one of the major challenges in neurobiology is understanding the relationship be-
tween spatially structured activity states and the underlying neural circuitry that
supports them.”

In the brain’s development, calcium waves in glial cells might coordinate neu-
ronal division and migration, spontaneous retinal waves are seemingly related to an
activity-dependent development in retina, whilst traveling waves seem involved in
the maturation of neurons [33].Furthermore, we know that epilepsy induces cortical
waves as well as spatially localized oscillations [172]. All these phenomena are still
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waiting a full resolution.

In this manuscript, we will address the mean-field dynamics of a microscopic spa-
tially extended neural network (contained in an open set of Rd). It presents random
connections, transportation delays and is subject to Brownian noise at the level of
each cell (see 4). Importantly, the variance of the random connections scale as 1

N ,
where N is the number of neurons in the network. As a consequence, the effect of
these heterogeneities is still felt in the mean-field equation. In contract, classical
random connections with variance scaling as 1

N2 have no impact on the limit (this will
be discussed in Chapter 3 3). Moreover, the latter also accounts for the effect of noise.
Our motivations are two-folded. Our first objective is to rigorously address the mean-
field limit of a spatially extended network. Our second motivation is that the obtained
limit neural field equation takes into account both the heterogeneity parameter of the
connections, and the amplitude of noise. In fact, these two important aspects were
notably lacking in the Wilson-Cowan equation and many of its derivations. Inter-
estingly, heterogeneities seem to importantly impact the dynamics of neural fields
[34, 98, 149].

All the microscopic models of neural networks we have built so far are hard to
address. In fact, they constitute high dimensional nonlinear differential equations
involving random connections, possibly other sources of heterogeneities and noise.
Such a system can certainly be seen as a interacting particle system, for which mean-
field theory is very adapted. We now introduce this theory.



CHAPTER 2

THE MEAN-FIELD APPROACH

The anatomical picture of the cortex suggests that
we may usefully employ statistical methods in the
study of its function.

— Norbert Wiener, 1948

Since Ancient Greece until today, human species have strained to describe na-
ture and to understand its laws. This thousands-year-old quest, of which Thales of
Miletus has been one of the great initiators, has encountered radiant successes. The
Gravitation theory of Isaac Newton, the Electro-Magnetism of James Clark Maxwell,
and the Relativity theory of Albert Einstein are a few examples.

Still many systems provided by nature resist a full human understanding. In
particular those composed of a great number of interacting particles with nonlinear
interaction have constituted a longstanding challenge, as well as an important key
issue. In fact, for the Universe is discrete and hierarchically ordered, these systems
of many bodies are virtually present at every scale, in both physical and biological
systems. The Milky Way with its several hundreds of billiard of stars, the brain com-
posed of around 80 billiards neurons are only a few examples of such puzzling. With-
out mentioning the dynamics of fluids, and the vertigo caused by Avogadro number.
Especially if you take into account the interactions.

In these models, the microscopic laws governing the individual evolution of any
given particle are generally simple and well understood. For example, we can exactly
describe the influence of a star onto another, and perfectly solve the equation of move-
ment when the number of stars remains small. Nevertheless, when the number of
particles and thus interactions is so huge, the macroscopic behavior displayed by the
system is far from obvious, and might contain a bizarre phenomenology. In a micro-
scopic context, the underlying dynamics is generally inaccessible for scientists. It is
unobservable as the systems is composed of very tiny particles, whose state (position,
velocity) are changing fast, and very hard to measure. We could only observe macro-
scopic quantity, that are mean quantity averaged over a great number of particles,
the study of which has precisely been the object of classical thermodynamic.

Historically, the first known attempt to derive macroscopic properties from a mi-
croscopic model is due to Van der Walls, through its early work on the dynamics of
gas. Nevertheless, mean-field theory, as well as the emergence of statistical mechan-
ics, are more tightly linked with the equation of Ludwig Boltzmann for the descrip-
tion of the dynamics of rarefied gases. In this work, Boltzmann famously formulated
a pre-collisional independence hypothesis between two particles just before they col-
lide. Under this assumption, also known as molecular chaos or Stosszahlansatz, he
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Figure 2.1: Ludwig Eduard Boltzmann (February 20, 1844 – September 5, 1906).

computed the collision term of two particles, and reduced the dynamics of the gas
into its celebrated equation. A few decades later, its equivalent with Coulomb in-
teraction - the Vlasov equation - appeared to describe the dynamics of both plasmas
and galaxies with an astonishing accuracy. Justifying these two models have been
a permanent endeavor during the twentieth century, but only partial solutions were
found [141]. They still constitute the two main problems of statistical mechanics out
of equilibrium [173].

Mean-field theory has now found applications in many discipline. It could be de-
fined as the domain of Statistical Mechanics and Probability theory involved in the
rigorous derivation of mesoscopic descriptions for many-body systems. While these
latter are generally very difficult to solve exactly, the general approach is to reduce
the microscopic dynamics into a unidimensional one that drives a ”typical” particle,
and keeps tracks of the statistical properties of the system. The basic idea of mean-
field theory is to integrate the numerous interactions influencing the trajectory of a
given particle into an effective macroscopic term, that can be seen as a (mean)-field at
the level of each particle. Before putting this theory at use for our biological purpose,
let us now introduce the basic framework of the theory, and explain its key concepts.

2.1 MEAN-FIELD FORMALISM

In this section, we introduce the general framework of mean-field theory. For-
mally speaking, the latter deals with the behavior of large system in which every
particle is feeling, at all time, the contribution of a large number of other particles in
the system. It also reduces its scope to cases in which pairwise interactions vanish
in the thermodynamic limit, i.e. when the number of particles tends toward infinity.
Under these hypothesis, the effective interaction term driving each particle can be
described as a field accounting for the infinitesimal influences of all the other parti-
cles. This definition discards, in particular, the rarefied gas of hard spheres studied
by Boltzmann as, in his model, interactions only occur locally in time and space, dur-
ing the collision of two particles. Before giving our mathematical framework, let us
define three different scales at which a many-body system can be studied:

• the microscopic scale is attached to perfectly describe the state of the system,
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by taking into account the time evolution of all the particles in presence.

• the macroscopic scale describes emergent observable properties of the system,
when they exist. It mostly consists in a collection of local mean quantities, such
as magnetization for a collection of spins, or temperature for a gas.

• Between these two scale, is the mesoscopic scale. It keeps track of the statistics
on the particles, and gives access to the probability that a given event occurs. It
might be able to study the deviation from ”standard behaviors”.

We will mostly be interested into the third scale, as the first one is generally
too cumbersome - if even possible - and certainly unnecessary, and as the second is
too partial, and somewhat arbitrary as we actually choose the quantities of interest
among those that are observable.

Let us then consider a system of N interacting particles whose states at time t ∈R+

are described by the state-vector XN(t) := (x1
t , . . . ,x

N
t ) ∈ EN . Here E denotes the space

of all possible states accessible to a particle. We will generically assume that E ⊂Rd

for some d ∈N∗.

Among the wide variety of mean-field problems, we will for simplicity restrict our
attention to systems that evolve accordingly to the following class of first order mi-
croscopic dynamics, possibly noisy, and with additive nonlinear interactions:

dxi
t =
(

f (xi
t , t)+

N

∑
j=1

b(xi
t ,x

j
t )
)

dt +λdW i
t , 1≤ i≤ N. (2.1)

In this equation, f : E×R→Rd condenses the behavior of the free particle, b : E2→Rd

describes the structure of interactions, and W i accounts for the eventual sources of
randomness with λ ≥ 0. We also suppose good properties for the functionals f and b
in order to have existence and uniqueness of solutions for (2.1) for any initial condi-
tions.

In the context of a large system with many particles, a natural question arises
from this equation: knowing the initial states of every particle, are we able to de-
scribe the time evolution of the systems in the limit where the number of particles
becomes arbitrarily large? We would be particularly interested in the behavior of the
interaction term ∑

N
j=1 b(xi

t ,x
j
t ) when N → ∞. In fact, deriving its limit might lead to

a reduction of the dynamics: that is a mean-field equation. Moreover, studying the
solutions of this equation would inform us the behavior of a typical particle in the
thermodynamic behavior. Of course, the real system of interest is finite. We simply
hope that the thermodynamic limit satisfactorily approximates the system when N is
very large. Let us suppose that it does.

To be able to take the limit N→+∞, we have to cope with several issues. The first
issue is the scaling of equation (2.1): if the real system at study presents some kind
of observed stability, we want to make sure that the different terms in equation (2.1)
do not explode. To this purpose, scaling the equation - considering for example the
quantity yi := xi

N - might be necessary. We refer to [141, 173, 241] for these kind of
questions, as they will not be a problem in our analysis.
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A second issue is that the state-vector XN(t) is living in EN which grows with the
number of particles N. If we are to describe an asymptotic behavior for the system
when N goes to infinity, we need to find a proper space independent of N as well as an
alternative description of the state-vector XN(t) that would take value in this space.
A natural quantity could be the arithmetic mean: ∑

N
i=1 xi

t
N ∈ E, or more generally quan-

tities of the form
( 1

N ∑
N
i=1 φ(xi

t)
)

t≥0 for any relevant function φ : E →R. These objects
might converge in some sense, and provide information on the limit system. Nev-
ertheless, such an approach would not be able to account for a typical particle, or
quantify the probability that the systems deviates form its mean behavior. To obtain
such a mesoscopic description, we would like to condense all these partial descrip-
tions - also named statistics - into a unique object. It is, therefore very convenient to
introduce the empirical measure of the system that constitutes the ”true” density of
particles:

µ̂N(t) :=
1
N

N

∑
i=1

δxi
t
∈M+

1 (E) (2.2)

where M+
1 (E) is the set of probability measure on E, and ∀x ∈ E,δx denotes the ele-

ment of M+
1 (E) singular x (For any doubt, please refer to the General Notations 7.4.2

at the end of the manuscript). In order to avoid coping with a family of empirical
measure

(
µ̂N(t)

)
t∈R+

, we will prefer the alternative empirical measure taking into ac-
count the whole trajectory of the system:

µ̂N :=
1
N

N

∑
i=1

δxi ∈M+
1

(
C (R+,E)

)
(2.3)

where xi :=
(
xi

t
)

t∈R+
denotes the whole trajectory of particle i, C (R+,E) is the space of

continuous function from R+ to E.

If the system at study displays some kind of macroscopic behavior, we can hope
that there exists a probability measure µ ∈M+

1

(
C (R+,E)

)
such that the sequence

of empirical measure
(
µ̂N
)

N∈N would converge in some sense toward µ when N → ∞.
There are two approaches to characterize such a measure µ. The first one, favored
by probabilists, is to describe it as the solution of a mean-field stochastic differential
equation (SDE in the sequel) or equivalently a martingale problem. The second one,
more pleasant for specialists of partial differential equations, involves the evolution
of the densities of particles through a Fokker-Planck equation. Deriving and studying
these latter kind of equations is the object of Kinetic theory of gases that does not
enter the scope of this thesis.

Going back to the empirical measure, remark that it does not tell you anything on
the correlations of two, or more particles. In particular, assuming for example that µ

is the law of a Gaussian process with stationary mean and variance does not tell you
that the particles are also in a stationary state. They might, as well asynchronously
oscillates with a common frequency (so that correlations remain), or evolve in total
incoherence with each other. If one is interested in fixing this issue, it is always pos-
sible to introduce another kind of empirical measure:

µ̂
2,N =

1
N(N−1) ∑

i6= j
δxi,x j ,
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and more generally, µ̂k,N for k approaching N. Of course we never go to that point.
Moreover, if one wants to take into account other features of the particles into, for
example to know the distribution of their velocity, one has to extend the state space
and make the velocity appears in the empirical measure.

Furthermore, to be able to speak of convergence of the empirical measure toward
a probability measure µ, it will be necessary to introduce proper distance on proba-
bility spaces. That will be the object of the next subsection.

In order to obtain convergence results for the empirical measure, we will use the
family of p-Vasserstein distance on the space M+

1

(
C (R+,E)

)
. These distances are

compatible with the weak topology, that is with the convergence in law. They are
defined for any µ,ν ∈M+

1

(
C (R+,E)

)
by:

dV
R+,p(µ,ν) := inf

ξ∈Cµ,ν

{∫
C (R+,E)2

d(x,y)pdξ (x,y)
} 1

p

,

where Cµ,ν denotes the set of couplings of measures µ,ν , and where d is a proper dis-
tance on C (R+,E) that we will generically chose to be the supremum norm. For the
particular case of the 1-Vasserstein distance we also have the formula

dV
R+,1(µ,ν) = sup

f∈Cb(C (R+,E),R),1−lip

∣∣∣∣∫
C (R+,E)

f (x)(dµ−dν)(x)
∣∣∣∣.

More generally, for T > 0, µ,ν ∈M+
1

(
C ([0,T ],E)

)
and t ∈ [0,T ], we will denote:

dV
t,p(µ,ν) := inf

ξ∈Cµ,ν

{∫
C ([0,T ],E)2

sup
0≤s≤t

|xs− ys|pdξ (x,y)
} 1

p

. (2.4)

We will now discuss the suitable choices for initial conditions to equation (2.1), we
present another simpler criteria to obtain similar convergence results in the case of
symmetric particles.

2.2 INITIAL CONDITIONS AND PROPAGATION OF CHAOS

To solve the dynamics of the microscopic equation (2.1), we have to specify what
are the initial conditions for our system. This is not a trivial matter, as mean-field
approach is not classical in two ways.

First, our goal is not to confront the microscopic equation - already assumed valid
- with the experiment, but to understand what mesoscopic behavior will emerge from
it. Second, even if the experimentalist might want to test its model for the latter,
he/she would not be able to ”prepare” the system at the microscopic level, neither to
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access the approximate states of all the particles in a short time window for their
number is too large, and their evolutions too fast.

Hence, the question is more to understand what are the most probable initial con-
ditions than to actually ”choose” them - only nature does. On the one hand, it easy to
see why initial configuration is crucial for the convergence toward a mean-field equa-
tion. Consider for example N hard spheres in a cubic box. You can always suppose
that their initial velocities are all aligned and perpendicular to two of the six faces
of the box, and that the initial positions of the spheres are such that they will never
collide. In this setting, it is pretty unlikely that the system will converge toward
Boltzmann’s equation. On the other hand, this kind of pathological initial configura-
tions is so unlikely that you might never encounter it in nature, especially when N is
large.

As particles states cannot be known with precision due to the incertitude princi-
ple of Heisenberg, it makes sense for such problems to describe initial conditions in a
statistical fashion. That can be done through a probability measure µN

0 over the state
space EN . If we are dealing with homogeneous particle, it is also natural to assume
that this initial joint density is symmetric. Furthermore, as the system is ”prepared”
by nature, it is sensible to suppose that it is near thermodynamic equilibrium, that
is near maximal entropy. As a consequence, we often assume that the particles are
almost independent at initial time, that is µN

0 to be approximately equal to a tensor
product, configuration that makes the entropy of the system maximal [241].

Let us introduce the appropriate vocabulary:

Definition 2.2.1. A sequence of probability measure µN ∈M+
1 (EN) is chaotic if exists

(µi)1≤i∈N∗ ∈M+
1 (E)N

∗ such that for all k ∈ N∗, for all bounded continuous ϕ1, . . . ,ϕk :
E→R, for all distinct i1, . . . , ik ∈N∗∫

EN

( k

∏
j=1

ϕ j(xi j)
)

dµ
N(x1, . . . ,xN)→N→+∞

k

∏
j=1

(∫
E

ϕ j(x)dµi(x)
)
.

Moreover, if all the µi are equal to µ, then µN is µ-chaotic.

This notion was famously introduced by Mark Kac in 1956 in an attempt to derive
Boltzmann’s equation from the rarefied gas problem [146]. He simplified the prob-
lem into collision-less model where all the particles interact - making it a mean-field
problem - and propose the so-called master equation: in these, when two particles
interact, the parameter of the interactions are chosen at random. With this simple
model, he was able to precise Boltzmann’s concept of pre-collisional independence on
mathematical grounds. In this definition, it is important to remark that k is fixed
when N goes to +∞. Hence, µN being chaotic basically means that particles become
more and more independent when taken in sufficiently small number (for an im-
proved propagation of chaos, see [24]).

For example, (µ⊗N)N is the purest µ-chaotic sequence, as the property is already
valid for any finite N. Remark that it is possible to quantify how chaotic a distribu-
tion is by controlling the decay of the difference between each sides in definition 2.2.1.
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Moreover, it turns out that it is equivalent to prove the property for k = 2 only. This
is a consequence of the following famous result by Alain-Sol Sznitman [231], that also
crucially highlights the link between chaos and convergence in the symmetric case:

Theorem 2.2.1. Let (µN)N be a sequence of symmetric probability measures on EN re-
spectively, and µ ∈M+

1 (E). Let also (X1, . . . ,XN) have law µN . The following statements
are equivalent:

(i) (µN)N is µ-chaotic,

(ii) for any continuous bounded ϕ1,ϕ2 : E→R,∫
E2

ϕ1(x1)ϕ2(x2)dµ
N(XN)→

(∫
E

ϕ1(x)dµ(x)
)(∫

E
ϕ2(x)dµ(x)

)
,

(iii) µN ◦ µ̂
−1
N = µN

(
µ̂N ∈ ·

) L→ δµ .

This can be seen as an illustration of the Law of Large Numbers, as it suggests
that, for the empirical measure to converge toward its mean, particles should be
asymptotically independent. This theorem also justifies Boltzmann pre-collisional
chaos: it is indeed required to obtain the emergence of a macroscopic behavior.

As our goal is to obtain such an emergence for dynamics (2.1) at all time, we
might want to show that, starting from the chaotic initial condition µ

⊗N
0 for a given

µ0 ∈M+
1 (E), the chaotic property remains at all time t > 0. Hence, we would like the

dynamics to propagate chaos:

Definition 2.2.2. Let QN ∈M+
1

(
C (R+,E)N

)
be the solution of the dynamics (2.1) with

initial conditions µN
0 . We say that the dynamics propagates chaos if:

µ
N
0 is chaotic =⇒ QN is chaotic,

or alternatively if

µ
N
0 is chaotic =⇒ ∀t > 0, QN ◦π

−1
t is chaotic,

where πt : C
(
R+,E

)
→ E, and ∀x ∈ C

(
R+,E

)
,πt(x) = xt .

As a summary, we seek the propagation of chaos property in the symmetric case
for the following reason: - the empirical mean will become very close to the distribu-
tion of a typical particle with overwhelming probability in the thermodynamic limit.
Reciprocally, it turns out that asymptotic correlations often discard any possibility of
convergence toward a macroscopic description.
- it ensures that the independence is preserved asymptotically, furnishing statistical
information on the dynamics,
- it ensures that the empirical measure stays deterministic, so that a macroscopic
equation describing the evolution of this empirical measure hopefully exists.

Unfortunately, no such results exists when the symmetry is broken.
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2.3 HETEROGENEOUS SYSTEMS: AVERAGED AND QUENCHED
RESULTS

Suppose now every particle composing the system is unique and non-interchangeable.
This is for example, the case of neurons, as each of them displays a unique set of
connections in the network. For these disordered systems, Alain-Sol Sznitman theo-
rem 2.2.1 no more holds as the fundamental hypothesis of symmetry is not satisfied.
In order to simplify the analysis, one is then interested in symmetrizing the system in
some way by averaging over the disorder, allowing the derivation of averaged results.
Nevertheless, the latter results might not always apply to biologically or physically
relevant system presenting a given realization of the disorder: we would speak of
quenched results.

Let us precise the definition between these two kind of results with more details.
In our models, we shall distinguish between two kinds of heterogeneities. The first
type involves a family of random quantities (ri)1≤i≤N representing individual charac-
teristics of the particles. They are in number O(N). We will assume that the ri are
independently drawn from D ⊂Rd for some fixed d ∈N∗ with same law π ∈M+

1 (D).
The second type of heterogeneity depends on two particles and will be associated with
the strength of their connections (Ji j)1≤i, j≤N . They are i.i.d. random variables, with
mean and variance scaling as 1

N (so that the equation is properly scaled). We also
suppose that the Ji j, ri and Brownian paths are independent. Note that we speak of
quenched disorder, as the ri and Ji j are frozen in time. We thus deals (2.1) must be
modified into the N-dimensional SDE in random environment:

 dxi
t =
(

f (ri,xi
t , t)+∑

N
j=1 Ji jb(xi

t ,x
j
t ,ri,r j)

)
dt +λ (ri)dW i

t , 1≤ i≤ N

(xi
0)1≤i≤N

L
=
⊗N

i=1 µ0(ri),
(2.5)

where we have chosen heterogeneous chaotic initial conditions with µ0(ri) ∈M+
1 (E).

Under suitable hypothesis, this equation admits a unique solution QN
r (J)∈M+

1

(
C (R+,E)N

)
that depends on the realization of both Ji j and ri for 1≤ i, j ≤ N. Results under QN

r (J)
are called quenched.

Has these results are hard to obtain, it is often useful to put some symmetry in
the system. The usual trick to deal with the heterogeneity in number O(N) is to make
them appear in an extended two-layer empirical measure [74]:

µ̂N :=
1
N

N

∑
i=1

δxi,ri
∈M+

1

(
C (R+,E)×D

)
.

Moreover, as it is not obvious how to extend such a trick to the heterogeneities in
number O(N2), we introduce an averaged version of QN

r (J):

QN
r := EJ

(
QN

r (J)
)
,

where EJ denote the expectation over the Ji j only. We further define dQN := dQN
r (x)dπ⊗N(r)

provided that it exists, and observe that, under QN ∈M+
1

(
C (R+,E)×D

)
, every ran-

dom couple (xi,ri) has now the same law. Hence, we are dealing with a symmetric
system for which theorem 2.2.1, and many other useful tools hold. Results under QN
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are averaged.

To summarize:

• Quenched results directly deals with the probability measure QN
r (J), that only

considers random the Brownian paths and initial conditions whereas the quenched
disorder (r,J) remains fixed.

• In comparison, Average results are obtain under the symmetric probability QN ,
that considers random both the Brownian paths, initial conditions and the dis-
order (r,J).



36 CHAPTER 2. THE MEAN-FIELD APPROACH



CHAPTER 3

MEAN-FIELD THEORY FOR
NEUROSCIENCE

3.1 A SHORT HISTORY OF RIGOROUS MEAN-FIELD APPROACHES
FOR RANDOMLY CONNECTED NEURAL NETWORKS

This section present a short review of the mean-field approach in neuroscience.
For the purpose of this thesis, it mainly deals with the endeavor to build rigorous
derivation of mean-field equations from the microscopic network. It also emphasizes
the importance of a particular scaling for the random interactions present in the net-
work, as it is tightly linked with the emergence of a chaotic flow. We are well aware
of the partiality of such an approach, and apologize dearly for the piece of works we
have omitted, willingly or not.

The genesis of the mean-field approach in mathematical neuroscience must cer-
tainly be linked to the so called ”local chaos hypothesis”. It was seemingly formulated
for the first time in 1969 by the Russian scholar Rozonoer [207, 208, 209] and then
by Amari [5] in 1972. Though its precise origin in time remains somewhat blurry,
as Rozonoer’s series of work are found in original version only. Nonetheless, it is not
hard to infer the necessity of such an assumption. It doubtlessly emanates from un-
successful attempts to derive a macroscopic evolution from the microscopic dynamics
of random neural network. In fact, it states that, in the thermodynamic limit, the
complex correlations among both neurons and random synaptic efficiencies should
vanish, allowing to compute the effective limit of the interaction term ∑

N
i=1 Ji jS(x

j
t ) by

a simple use of the LLN (or CLT). In this sense, the ”local chaos hypothesis” can be
seen as the neuroscientific expression of Boltzmann’s molecular chaos.

At the time, the need to fill the gap between existing microscopic models of neural
networks with observed macroscopic behavior of both neurophysiological recording
and computer simulations had been expressed [72]. The beginning of the 70s gave
rise to important endeavors to put the mean-field approach at the heart of mathe-
matical neuroscience [5, 6, 8, 9, 71, 245, 246], unequivocally emphasizing the need to
unravel the microscopic parameters responsible for these observed macroscopic be-
havior [5, 9]. Moreover, properties that would be satisfied by random networks for
almost all realizations of their random parameters (quenched results), rather than
the properties valid on the average (averaged results), as well as convenient macro-

37
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scopic variables where also sought [8]. Though heuristic, the ”local chaos hypothesis”
importantly permitted the derivation of mean-field equation in a number of settings
involving fully connected network with asymmetrical random synapses, including
random thresholds, possibly multiple populations (in order to include both excitation
and inhibition), either in the case of analog or formal neurons. These limit equations
condensed a rich phenomenology, displaying multi-stable states, as well as oscilla-
tions in setting involving both an inhibitory and an excitatory population [5, 6, 245].

In an effort to put the ”local chaos hypothesis” on firm grounds, a notable con-
tribution was made in 1982 by S. Geman [115]. Extending his own results applica-
ble to linear systems [116], the author relied on a coupling argument to rigorously
prove - under a moment condition on the Ji j - that in a firing-rate setting, the macro-
scopic equation almost surely governed every individual neuron in the thermody-
namic limit. The result only concerned the case of what we shall call weakly random
interactions, presenting mean and variance scaling respectively as 1

N and 1
N2 , N be-

ing the size of the network. In fact, most of the above neuroscientific studies used
this scaling. In particular, the heterogeneity of connections was not felt in the ther-
modynamic limit for these networks. Geman also gave an intuition the asymptotic
behavior (valid for the linear case [116]) for another scaling of synaptic connection,
with both mean and variance scaling as 1

N , that we shall call strongly random in this
manuscript.

As mentioned above, this latter scaling, a breaking discovery was made by Som-
polinsky, Crisanti and Sommers [221] that applied heuristic mean-field methods from
physics literature (the so called dynamical mean-field theory introduced in [167], and
also developed in subsequent works [81, 82, 83, 143, 222]), in order to investigate
the thermodynamic limit of a homogeneous firing-rate network of neurons with leaky
membranes:

dxi
t

dt
=−xi

t +
N

∑
j=1

Ji jS(x
j
t ),

where ∀1≤ i, 6= j≤N, Ji j ∼N (0, σ2

N ), Jii = 0, and S= tanh(g·), with σ ,g> 0. In fact, in
the thermodynamics limit, they described a sharp transition from a stationary state
attracting every trajectories, toward a chaotic 1 flow in which neurons fluctuated in-
coherently around the origin, as the gain parameter gσ becomes greater than 1. The
authors showed that the mean field equation could be reduced to the movement of
a particle in a potential. They carefully studied the solutions after the transition,
and showed - by an argument involving the maximal Lyapunov exponent - that they
were infinitely many, including fixed points or limit cycle, but that only the solution
associated with a zero energy was stable. For this solution, the local-auto correlation
function displayed an exponential decay in time, symptomatic of chaos. Moreover,
simulations highlighted the fact that in the finite-size networks, existed an interme-
diary regime between the global attractor and chaotic flow, for whose width shrank
to zero in the thermodynamic limit. In this regime, progressively appear non zero
stationary solutions, and limit cycles, becoming increasingly more complex as gσ in-
creased.

1Let us emphasize that ”chaos” here stands for deterministic chaos in the sense of Lorentz, while the
”local chaos hypothesis” basically means independence of particles in the sense of Boltzmann.
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This article launched a considerable field of research, as such a chaotic behav-
ior had already been observed in the nervous system in sleep, epileptic seizure and
sensory-pattern retrieval [18, 19, 112, 218]. In [218], through EEG recordings, the
authors witnessed a spontaneous chaotic activity when the rabbit was not solicited.
Interestingly, when the rabbit was presented with a learned odor, the dynamics re-
duced from chaos toward attractor an of lower dimension. The authors argued that,
by a perpetual and thorough exploration of the state space, chaos acted as an effective
way to rapidly retrieve previously learned patterns, and to learn new ones.

Figure 3.1: Example of a route to chaos for a discrete-time neural network as the
gain parameter g is increased. The first bifurcation is a Hopf (N=128,K=16). (a) After
the first bifurcation, the zero fixed point has lost its stability. The series of points
(m(t),m(t + 1)) densely covers a cycle (g = 1). (b) After the second Hopf bifurcation:
projection of a T 2 torus (g = 1.23). (c) Frequency locking on the T 2 torus (g = 1.247).
(d) Chaos (g = 1.6). Reproduced from [89]

In an effort to better understand Sompolinsky’s transition and challenge its gener-
alization to more biologically relevant neural networks displaying sparse non-Gaussian
connections, numerical studies were realized on a ring with nearest neighbor connec-
tions [21], and for a randomly connected network [89]. Both article involved discrete
time with K input connections per neuron, and confirmed the existence of the chaotic
phase, using a criteria of sensitivity to initial condition. Moreover, they evidenced the
fact that, for finite N, the route to chaos was a quasi-periodic one, involving several
successive Hopf bifurcation has the gain parameter was increased. In [89], a theoreti-
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cal analysis was also provided to account for these bifurcations, and relied on random
matrix theory to discuss the possibility of pitch-fork and flip bifurcation occurrence
in the route to chaos. These results where then extended in the case of a fully con-
nected network with strongly random interactions and Gaussian random thresholds
breaking the reversal symmetry x→−x [58]. A bifurcation diagram was numerically
inferred in the gain and threshold parameter. More importantly, a ”local chaos hy-
pothesis” was adopted to derive mean-field Gaussian limit, as no rigorous derivation
existed for the case of strongly random interactions. This limit was them studied
through the dynamical equation for its mean and variance, and possible stationary
regime were investigated. Moreover, in a very similar setting, a strong analogy with
the Sherrington-Kirkpatrick (SK) spin glass model from physics was outlined by Ces-
sac [57]. In fact, he proposed a quadratic distance criteria between distinct initial
conditions to determine the entering into the chaotic phase, and discovered that, in
a particular setting, it was determined by the Almeida-Thouless line specific of SK
model. The author also showed that the two models shared some properties such as
the breaking of ergodicity, ultrametricity, and a sharp increase in complexity (the ex-
pected number of equilibria. See also [243]).

It is was well known since the notable work of Hopfield on the long-term memory
capacity of neural network presenting symmetric couplings [137], that there existed
intimate connections between neural networks and spin glasses. In fact, in the 80s,
many works involved symmetric synaptic connections for which the system presented
an Hamiltonian. These systems experienced an exponential increased of stable equi-
libria. Nevertheless, a Lyapunov function could be constructed, and thus systemati-
cally ensured a relaxation of the system toward a stable equilibria (see for example
[26, 60]). However, for biological neural networks, stable equilibrium are observed
in two cases: anesthesia or death. This observation, along with the discovery of the
chaotic phase created a regain of interest in asymmetrically connected model. Inter-
estingly, the ”local chaos hypothesis” has proven to be wrong in the case of symmetric
interactions, and in particular for the Sherrington-Kirkpatrick model in low temper-
ature. Indeed, the ill-obtained mean-field equation fail to capture a term that the
network induced on a given particle, in reaction to its effect on the network [57].

It was again from physics literature that the next breakthrough came from. In
the mid 90s, Gerard Ben Arous and Alice Guionnet rigorously addressed the mean-
field derivation of the continuous time dynamics of the soft spins SK model, in both
the asymmetric and symmetric case [16, 22, 23, 129]. They developed an original ap-
proach based on large deviations theory, stochastic and Gaussian calculus to derive
powerful results, going beyond that of Geman, in both the averaged and the quenched
case (see section 3.3). Though this quite technical proof only addressed the case of lin-
ear interactions and heavily relied on the presence of Brownian noise and Gaussian
interactions, this precursory work opened a paved alley to - at last - render a solid
foundations for the mean-field approach in neuroscience.

This generalization to the case of non-linear interactions was tackled in 2001 by
Moynot and Samuelides for the discrete (and finite) time dynamics of a firing-rate
neural network with asymmetric connections, and in the presence of white noise and
Gaussian thresholds [178]. Interestingly for biological relevance, their interactions
were not necessarily centered nor Gaussian, as they only necessitated to satisfy a
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sub-Gaussian tail condition. In particular, this condition allowed to consider family of
neurons almost exclusively inhibitory or excitatory [211], that is interactions charg-
ing negative (or positive) value with arbitrarily small probability. Without any short
time hypothesis, a full large deviation principle (LDP) was obtained for the averaged
network in the case of Gaussian interactions only, inducing, in an averaged sense, a
convergence of the empirical measure toward the unique minimum of the good rate
function, and a propagation of chaos. While the LDP was lost for non-Gaussian in-
teractions, the two latter results remained. The authors also derived an almost sure
quenched convergence through Borel-Cantelli lemma. This important contribution
thus validated the ”local chaos hypothesis” in the case of asymmetric interactions,
and supported several subsequent works involving sparse connections and several
populations [79], binary and spiking neurons [59].

Nevertheless, the large deviations approach of [178] did not apply to continuous
time setting. Moreover, rigorous mean-field results in neuroscience were still very
scarce. Building on [231], coupling methods were used to address the dynamics of a
time continuous networks of neurons involving multiple populations, Brownian noise,
and weakly random interactions [239]. Existence and uniqueness of the mean-field
equation were proved relying on a simple contraction argument à la Picard. More-
over, a convergence results was obtained for the whole network uniformly in time,
as well as a propagation of chaos result. A similar analysis was also undertaken to
rigorously derive a mean-field limit for a continuous time dynamics involving het-
erogeneous transmission delays [234], and spatial extension [237]. In [234], it was
importantly shown that the mean and variance of the heterogeneous delays impacted
the dynamics of the network.

In [51], we extended the large deviation approach of [22] to tackle the nonlin-
ear continuous-time dynamics of a multi-population setting with strongly random
Gaussian interactions. The dynamics also included deterministic delays - putting the
problem in infinite dimension - as well as a non-zero mean for the interactions. Aver-
aged convergence of the empirical measure and propagation of chaos were obtained.
Moreover, provided the initial conditions were Gaussian and the intrinsic dynamics
linear, the solution of the mean field equation was also Gaussian, enabling its study
through a set of implicit equations coupling its mean and variance. Moreover, the
mean of the Gaussian interactions was shown to be involved with a pitch-fork bifur-
cation. In part III, we will present various numerical results, including a transition
toward chaos, delay-induced oscillation, and mean-induced up-and-down states. No-
tably, large deviations were also used in a setting involving correlated strong synaptic
weights [105]. The authors considered a microscopic spatially extended network on
the torus, in which the neurons were regularly spaced. The system was invariant by
translation, and the correlation between synaptic weights was described as a func-
tion of the distance. The authors derived a unique mean-field equation (with no more
spatial extension) preserving the correlations in the thermodynamics limit.

We conclude this short overview with the continuous-time dynamics of spiking
networks. In fact, virtually all the above mentioned analysis were down under the
firing-rate hypothesis. Though, addressing the dynamics of large spiking networks
is promising, and has been the aim of several recent endeavors including numeri-
cal results on the dynamics of spiking networks [147, 186], a heuristic mean-field
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derivation for the case of strongly random interactions [147], and a rigorous one for
the case of positively charged neurons described as Poisson process, and displaying
weakly random interactions [203]. Importantly, it was shown that the dynamics of
spiking neurons with strong interactions also experienced a transition to chaos.

3.2 COUPLING METHODS FOR WEAK INTERACTIONS

In this section, we revisit powerful probabilistic coupling methods reviewed by
Alain-Sol Sznitman in his famous Saint-Flour lecture [231] and used in [234, 237,
239]. These will be useful to derive and prove - without much effort - the convergence
toward the mean-field equations in the case of a random fully connected neural net-
works presenting weak interactions (defined below).

The idea underlying these methods is to facilitate the comparison between the
solution of two SDEs by choosing the same realizations for the Brownian paths and
initial conditions. With this approach, proving the convergence of the network toward
the mean-field equation follows three steps:

(i) intuiting the mean-field equation by relying on the ”local chaos hypothesis”,

(ii) proving existence and uniqueness of solution for this heuristic mean-field equa-
tion,

(iii) ensuring that the networks converge to this solution in a suitable sense.

Remark also that similar techniques were used in [115] to obtain the convergence
of the network toward the mean-field equation in the context of ODEs in random en-
vironment. The author compared individual trajectories with an averaged over the
whole network. Here, we will rely on a different strategy, as we will compare directly
the network to N independent copies of the mean-field solution.

Let us now discriminate between two types of interactions. In all the manuscript,
we will speak of weakly random interactions, or weak interactions, connections Ji j

whose variance decays faster than 1
N , N being the number of components in the net-

work. In contrast, strongly random interactions, also called strong interactions, scale
exactly as 1

N . The reason to make such a difference comes from the CLT. In fact, let
the connections (Ji j)1≤i, j≤N be a family of independent copies of the same distribution
with mean and variance given by:

E
[
Ji j
]
=

J̄
N
, Var

(
Ji j
)
=

σ2

aN
,

where aN ∈ R, and aN →N→+∞ +∞. Set J̃i j =
√

aN
σ

(
Ji j − J̄

N

)
and consider the following

neural network: {
dxi

t = ∑
N
j=1 Ji jS(x

j
t )dt +λdW i

t

(xi
0)i=1,...,N

L
=µ

⊗N
0 .

(3.1)

where λ ∈R+ (possibly 0 to include the case without noise). Here, neurons present
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no intrinsic dynamics for simplicity. Nevertheless, the following analysis is straight-
forward by adding a Lipschitz-continuous intrinsic dynamics. In this section, we will
informally work on two concatenated probability spaces

(
Ω,F ,P

)
, and

(
Ω,FJ,PJ

)
.

The first one will include all the different randomness in presence, whereas the last
one only deals with the Ji j, i, j∈ [[1,N]]: the Brownian trajectories and initial conditions
are seen as deterministic under PJ. Moreover, we will denote by E the expectation
over P, and EJ that over PJ. Importantly, note that this hierarchy only holds in this
section, as the two space will be strictly separated in the core of our proofs. Let us de-
note by QN(J) the solution of (3.1) up to a given time T > 0, and by QN := EJ

(
QN(J)

)
its

averaged version (that we assume well-defined). To find the intuition about the limit
equation, we have to understand the asymptotic behavior of the interaction term. It
can be decomposed as follow:

N

∑
j=1

Ji jS(x
j
t ) =

J̄
N

N

∑
j=1

S(x j
t )︸ ︷︷ ︸

LLN→N J̄E[S(x̄t)]

+
σ
√

aN

N

∑
j=1

J̃i jS(x
j
t )︸ ︷︷ ︸

CLT→NσN
(

0,E[S(x̄t)2]
)
, when aN=N.

.

Here the limit are heuristic. Observe that the variance term vanishes as soon as
N = o(aN), and explodes when aN = o(N). Hence, the only scaling preserving a finite
non-zero contribution of the variance term in the mean-field equation is when aN = N,
that is for strong interactions. Hence, in the case of weak interactions, the limit equa-
tion seems to be

dx̄i
t = J̄E

[
S(x̄t)

]
dt +λdW i

t (3.2)

whereas for strong interactions, it is given by

dx̄i
t = Gx̄

t dt +λdW i
t , (3.3)

where Gx̄ is a Gaussian process with mean and covariance given by J̄E
[
S(x̄t)

]
and

σ2
E
[
S(x̄t)S(x̄s)

]
. A first observations is that these limits does not depends on the pre-

cises distribution of the Ji j. Underlying this universality is the CLT. Moreover, both
equations are implicit, as the effective interaction term depends on the law of the
solutions (provided it exists). Consequently, we need to ensure that these equations
are well-posed.

In what follows, we will try to push the coupling methods to their limits. In the
case of weak interactions, we will consider the classical case S(x j

t ) with S bounded and
KS Lipschitz-continuous. We will denote C := C ([0,T ],R), and dV

T,p the p-Vasserstein
distance on M+

1 (C ), and let µ0 ∈M+
1 (C ).

We now show existence and uniqueness of solutions for the (heuristic) mean-field
equation (3.2):
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Theorem 3.2.1. The following SDE is well-posed and admits a unique weak solution
in M+

1

(
C
)
: {

dx̄t = J̄Ez̄
[
S(z̄t)

]
dt +λdWt

x̄0
L
=µ0.

(3.4)

where (Wt)0≤t≤T is a Brownian motion, and z̄ is an independent copy of x̄.

The proof relies on a contraction principle involving the Vasserstein distance (see
equation (2.4)).

Proof. Let µ,ν ∈M+
1

(
C
)

and ξ ∈ Cµ,ν be a coupling of these measures. Let xµ ∈ C be
the strong solution of the following SDE{

dxt = J̄
(∫

C S(yt)dµ(y)
)

dt +λdWt

x0 = x0.

with L (x0) = µ0, and define similarly xν ∈ C with same Brownian motion and initial
condition. We denote their law by L(µ) ∈M+

1 (C ) and L(ν) ∈M+
1 (C ) respectively.

Then ∣∣xµ

t − xν
t

∣∣= ∣∣∣∣J̄ ∫ t

0

(∫
C

S(ys)dµ(y)−
∫

C
S(zs)dν(z)

)
ds
∣∣∣∣∣∣xµ

t − xν
t

∣∣≤ |J̄|∫ t

0

(∫
C 2

∣∣S(ys)−S(zs)
∣∣dξ (y,z)

)
ds≤ |J̄|KS

∫ t

0
dV

s,1(µ,ν)ds

where we have taken, in the right-hand side, the supremum in time and the infimum
in ξ , and the Vasserstein distance is define in 2.4. Now, taking the supremum in time,
and the expectation on the left-hand side yields

dV
t
(
L(µ),L(ν)

)
≤E

[
sup

0≤s≤t

∣∣xµ
s − xν

s

∣∣]≤ |J̄|KS

∫ t

0
dV

s (µ,ν)ds,

so that contraction of the map Lp with respect to the 1-Vasserstein distance and for p
big enough, follow by classical arguments. In particular, L admits a unique fix point,
solution of (3.4).

The third line of the proof is to demonstrate the convergence of the whole net-
work toward the solution of the mean-field equation. Let Q ∈M+

1 (C ) denote this
solution. Here, we give a proof for weakly random interactions admitting exponential
moments.

Theorem 3.2.2. Suppose that exists p ∈N∗, δ0 > 0,C > 0 such that

∀δ ≤ δ0, EJ

[
eδ |J̃i j|p

]
≤ eδC. (3.5)

Then, for 1
aN

= O
(
N−2

)
the probability measure µ̂N

L→ Q in probability under QN and
for the p-Vasserstein distance. In other words:

∀ε > 0, QN
(

dT,p
(
µ̂N ,Q

)
> ε

)
→N 0.

Furthermore, if p > 2, the convergence is almost sure.
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Remark 1. In particular, if the Ji j are

• Gaussian or bounded random variables, we obtain an almost sure convergence
in law of the empirical measure.

• the deterministic case can be treated taking aN =+∞.

Define ξ
N,p
i = ∑

N
j=1 |J̃i j|p, and ξ̄ N,p := maxi=1,...,N ξ

N,p
i . Before proving the result, we

will need a control on exponential moments of ξ̄ N,p, that will naturally arise in the
proof of the theorem:

Lemma 3.2.3. Suppose condition (3.5) holds. Then,

∀a ∈R+, E

[
eaξ̄ N,pN−1

]
= O(1).

Proof.

E

[
eaξ̄ N,pN−1

]
=
∫ +∞

0
eaxdP

ξ̄ N,pN−1(x) =
∫ +∞

0

(∫ x

−∞

aeaydy
)

dP
ξ̄ N,pN−1(x)

=
∫ +∞

−∞

aeay
P

(
ξ̄ N,p

N
> y
)

dy

P

(
ξ̄

N,p > yN
)
= 1−

{
1−P

(
ξ

N,p
i > yN

)}N Cheb.
≤ 1−

{
1−E

(
eδ0 ∑

N
j=1 |J̃i j|p

)
e−δ0Ny

}N

(3.5)
≤ 1−

{
1− e−Nδ0(y−C)

}N
= Ne−Nδ0(y−C)(1+o(1)).

Hence,

E

[
eaξ̄ N,pN−1

]
≤
∫ C

−∞

aeaydy+N(1+o(1))
∫ +∞

C
aeay−Nδ0(y−C)dy

≤ eaC
{

1+N(1+o(1))
∫ +∞

0
ae−(Nδ0−a)ydy

}
≤ eaC

{
1+

aN
Nδ0−1

(1+o(1))
}
.

Proof. of the theorem: Let (xi,0)1≤i≤N be N independent realization of µ0, and let(
X i

t ,0≤ t ≤ T
)

1≤i≤N be the strong solution of the network equation:

{
dxi

t = ∑
N
j=1 Ji jS(x

j
t )dt +λdW i

t
(xi

0)i=1,...,N = (xi,0)i=1,...,N ,
(3.6)

where
(
W i

t ,0≤ t ≤ T
)

1≤i≤N is a family of independent Brownian motions. Hence, it has
the same law as the original network equation (3.1). Let also, for any i ∈ {1, . . . ,N}, X̄ i

be the strong solution of the SDE{
dxi

t = J̄E
[
S(z̄t)

]
+λdW i

t
xi

0 = xi,0,
(3.7)
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with same initial conditions and Brownian motions. Remark that the x̄i are indepen-
dent. Now, observe that:

X i
t − X̄ i

t =
∫ t

0

N

∑
j=1

Ji j
(
S(X j

s )−S(X̄ j
s )
)
ds+

∫ t

0

N

∑
j=1

(
Ji jS(X̄ j

s )−
J̄
N
E
[
S(X̄s)

])
ds

=
∫ t

0

1
N

N

∑
j=1

J̄
(
S(X j

s )−S(X̄ j
s )
)
ds+

∫ t

0

σ
√

aN

N

∑
j=1

J̃i j
(
S(X j

s )−S(X̄ j
s )
)
ds+

∫ t

0

N

∑
j=1

(
Ji jS(X̄ j

s )−
J̄
N
E
[
S(X̄s)

])
ds.

As (X̄ i)1≤i≤N is independent from (Ji j)1≤i, j≤N , the
(

Ji jS(X̄
j

s )− J̄
NE
[
S(x̄s)

])
1≤ j≤N

are i.i.d.

centered random variables with variance σ2

aN
E
[
S(X̄s)

2
]
. Hence

ζ
N
i (s) :=

√
aN

N

N

∑
j=1

(
Ji jS(X̄ j

s )−
J̄
N
E
[
S(X̄s)

]) L→N
(

0,σ2
E
[
S(X̄s)

2]),
under EJ. They are also i.i.d. random variables under EJ. Thus

∣∣X i
t − X̄ i

t

∣∣p ≤Cp,t

{∫ t

0

1
N

N

∑
j=1

∣∣X j
s − X̄ j

s

∣∣pds+
∫ t

0

N p−1
√

aN
p

N

∑
j=1
|J̃i j|p

∣∣X j
s − X̄ j

s

∣∣pds+
∫ t

0
(Na−1

N )
p
2 |ζ N

i (s)|pds
}
.

1
N

N

∑
i=1

sup
s≤t

∣∣X i
s− X̄ i

s

∣∣p︸ ︷︷ ︸
=:g(t)

≤Cp,t

{∫ t

0
g(s)ds+

∫ t

0

1
N

N

∑
j=1

{
sup
u≤s

∣∣X j
u − X̄ j

u

∣∣p N p−1
√

aN
p

N

∑
i=1
|J̃i j|p

}
ds

+(Na−1
N )

p
2

∫ t

0

1
N

N

∑
i=1
|ζ N

i (s)|pds
}
.

As 1
N ∑

N
j=1

{
supu≤s

∣∣X j
u−X̄ j

u
∣∣p N p−1
√

aN
p ∑

N
i=1 |J̃i j|p

}
≤ g(s) N p−1

√
aN

p ξ̄ N,p, we can use Gronwall lemma

to obtain:

g(t)≤Cp,t exp
{

Cp,t

(
1+

N p
√

aN
p

ξ̄ N,p

N

)}
(Na−1

N )
p
2

∫ t

0

1
N

N

∑
i=1
|ζ N

i (s)|pds,

≤Cp,t exp
{

Cp,t
}
(Na−1

N )
p
2

∫ t

0

1
N

N

∑
i=1
|ζ N

i (s)|p exp
{

Cp,t
N p
√

aN
p

ξ̄ N,p

N

}
ds. (3.8)

Let sN(x) := 1
N ∑

N
i=1 δxi , where xi ∈ C ,∀i ∈ {1, . . . ,N} and with the notation x := (xi)1≤i≤N .

We thus have:

dV
t,p
(
sN(X),sN(X̄)

)p ≤ g(t)≤Cp,t exp
{

Cp,t
}
(Na−1

N )
p
2

∫ t

0

1
N

N

∑
i=1
|ζ N

i (s)|p exp
{

Cp,t
N p
√

aN
p

ξ̄ N,p

N

}
ds.

Now, observe that

P
(
dV

t,p
(
sN(X),Q

)
> ε
)
≤P

(
dV

t,p
(
sN(X̄),Q

)
>

ε

2
)
+P

(
dV

t,p
(
sN(X),sN(X̄)

)
>

ε

2
)

Markov
≤ Q⊗N

(
µ̂N ∈ BdV

t,p

(
Q,

ε

2
)c
)
+(2ε

−1)p
E

[
dV

t,p
(
sN(X),sN(X̄)

)p
]
.

Where BdV
t,p

(
Q, ε

2

)
is the open ball centered at Q with radius ε

2 for the distance dV
t,p, and

Ac denote the complement of subset of a Polish space A⊂ Σ. On the one hand, the first
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term of the right-hand side is summable by Sanov’s Theorem 9.5.1 and Borel-Cantelli
lemma. On the other hand, as Cp,t

N p
√

aN
p = O(1), lemma 3.2.3 ensures that:

EJ

[
exp
{

2Cp,t
N p
√

aN
p

ξ̄ N,p

N

}] 1
2

= O(1),

so that

EJ
(
dV

t,p
(
sN(X),sN(X̄)

)p) C.S.
≤ C̃p,t(Na−1

N )
p
2

∫ t

0

1
N

N

∑
i=1

EJ
(
|ζ N

i (s)|2p) 1
2 ds

C.S.
≤ C̃p,t

∫ t

0
(Na−1

N )
p
2 EJ

(
|ζ N

1 (s)|4pe−|ζ
N
1 (s)|

) 1
4
EJ

(
e|ζ

N
1 (s)|

) 1
4
ds.

As x→ x4pe−x is a bounded function, and as |ζ N
1 (s)| L→ N

(
0,σ2

E
[
S(x̄2

s )
])

, taking the
expectation over the Brownian paths and initial conditions yields:

E

(
dV

t,p
(
sN(X),sN(X̄)

)p
)
≤ C̃p,t

∫ t

0
(Na−1

N )
p
2︸ ︷︷ ︸

O(N−p)

E

[
e|ζ

N
1 (s)|

] 1
4︸ ︷︷ ︸

O(1)

ds = O(N−p)

In particular P
(
dV

t,p
(
sN(X),Q

)
tends toward 0 when N gos toward infinity. Moreover, it

is summable as soon as p > 1.

Note that these proofs can be easily extended to the case of bi-dependent interac-
tions of the form b(x,y) with b bounded and Kb Lipschitz-continuous in both variables,
by relying on a conditional CLT. Moreover, in the case of strongly random interac-
tions, coupling methods cannot be adapted for the convergence of the network equa-
tion toward the mean-field limit. Nevertheless, we are able to show existence and
uniqueness of the equation (3.3) in an averaged sense. Such results will be derived in
part II.

3.3 LARGE DEVIATIONS TECHNIQUES FOR SPIN GLASS DY-
NAMICS

We now shall introduce large deviations techniques developed by G. Ben Arous
and A. Guionnet in the context of spin glasses [16, 22, 129]. These techniques con-
stitute a paradigm to rigorously derive limit theorems in the case of strongly random
interactions, and have been notably adapted for neuroscience in the context of fully
connected neural networks evolving in discrete times [178]. In this manuscript, we
will build on such techniques to study continuous time dynamics of fully connected
networks presenting delays, spatial extension, and bi-dependent synapses.

3.3.1 Setting

In their publication of the year 1995 [22], Gerard Ben Arous and Alice Guionnet were
interested in the asymptotic behavior of an asymmetrical spin glass dynamics as the
number of spins tended toward infinity. For a glass composed of N soft spins taking
values in [−A,A], they addressed the following dynamics:dxi

t =
(
−∇U(xi

t)+
β√
N ∑

N
j=1 Ji jx

j
t

)
dt +dBi

t

(xi
0)1≤i≤N

L
=µ

⊗N
0 .

(3.9)
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Here U is a confining potential that tends to infinity sufficiently fast when |x| → A in
order to ensure that the spins stay in [−A,A]. Moreover, β is the inverse of the tem-
perature, the Bis are independent Brownian motions driving each spin, and µ0 is a
probability measure on C ([0,T ], [−A,A]) characterizing the initial conditions supposed
symmetric and chaotic. Furthermore, the Ji j are centered i.i.d. Gaussian variable
with variance σ2

N that account for the heterogeneous interactions between spins. Re-
mark that the variance of the Ji j is scaled as 1

N , so that we are dealing with strongly
random connections.

3.3.2 Frame of the analysis

We now present the authors analysis that mainly relies on large deviations theory,
stochastic and Gaussian calculus. It importantly relies on:

• Sanov’s theorem for the network without interactions,

• Girsanov’s theorem allowing to compare the coupled network with the uncoupled
one,

• An ad hoc version of Varadhan’s lemma, that furnishes a LDP for the coupled
network, and constitute the main part of the analysis.

Let us enter a bit more into the mathematical formalism. The authors work on
a finite time window [0,T ], with T > 0, and on two distinct probability spaces. The
first is a filtered complete probability space (Ω,F ,(Ft)0≤t≤T ,P) satisfying the usual
conditions, and that accounts for the randomness of both the Brownian paths

(
Bi

t ,0≤
t ≤ T

)
1≤i≤N and initial conditions. In contrast, the random Gaussian interactions Ji j

are drawn out of the complete probability space (Ω̃,F̃ ,P). Hence, there are two
distinct sources of randomness:

• A random environment: interactions J = (Ji j)1≤i, j leqN are random variables of
a probability space (Ω̃,F̃ ,P). They define the structure of the network, are
independent and frozen in time. Moreover, expectation on the interactions is
denoted E .

• A stochastic dynamics: states of spins are stochastic variables, solutions of a
SDE driven by a collection of independent (Ω,F ,(Ft)0≤t≤T ,P)-Brownian mo-
tions

(
Bi

t ,0≤ t ≤ T
)

1≤i≤N .

They denote by PN
β
(J) the unique weak solution in M+

1 (C ([0,T ], [−A,A])N) for the
dynamics (3.9). It obviously depends on the realization of the matrix J. The main
problem to tackle its analysis is the non-exchangeability of the different spins because
of the asymmetry which emanates from J. To cope with this difficulty, the authors
adopt an averaging strategy. They introduce the uncoupled networks dynamics for
which J = 0: {

dxi
t =−∇U(xi

t)dt +dBi
t

(xi
0)1≤i≤N

L
=µ

⊗N
0 .

(3.10)

As particles are independent and identically distributed in this network, the weak
solution is a tensorial product P⊗N . As we are working on a Polish space, these good
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property of independence and symmetry allow to rely on Sanov’s theorem 9.5.1: un-
der P⊗N the empirical measure of the spins states satisfies a full LDP principle with
good rate function I(·|P), the relative entropy with respect to P. This also induces a
convergence of the empirical measure toward P with exponential speed for the uncou-
pled network.

The strategy of the authors is now to compare the coupled network with the un-
coupled network to derive another LDP for the former. This step is two-folded. First,
Girsanov’s theorem ensure that PN

β
(J)� P⊗N with density:

dPN
β
(J)

dP⊗N = exp
{ N

∑
i=1

∫ T

0
β

( 1√
N

N

∑
j=1

Ji jx
j
t

)
dBi

t −
β 2

2

∫ T

0

( 1√
N

N

∑
j=1

Ji jx
j
t

)2
dt
}
.

allowing to define the averaged solutions of the networks (3.9) by integrating on the
Gaussian realizations of the interaction matrix:

QN
β
=
∫

PN
β
(J(ω))dγ(ω).

In particular, Fubini’s theorem ensures that QN
β
� P⊗N with density

dQN
β

dP⊗N = E

(
exp
{ N

∑
i=1

∫ T

0
β

( 1√
N

N

∑
j=1

Ji jx
j
t

)
dBi

t −
β 2

2

∫ T

0

( 1√
N

N

∑
j=1

Ji jx
j
t

)2
dt
})

,

giving, by independence of the Ji j

dQN
β

dP⊗N = exp

{
N

∑
i=1

log

(
E

[
exp
{∫ T

0
β

( 1√
N

N

∑
j=1

Ji jx
j
t

)
dBi

t −
β 2

2

∫ T

0

( 1√
N

N

∑
j=1

Ji jx
j
t

)2
dt
}])}

.

Because of the stability of Gaussian law, this density can be put into the form

dQN
β

dP⊗N = exp
{

NΓ(µ̂N)
}
,

with

Γ(µ) :=
∫

log
(∫

exp
{

β

∫ T

0
Gµ

t dWt(x)−
β 2

2

∫ T

0
Gµ

t
2dt
}

dγ

)
dµ(x),

where the (Gµ)µ∈M+
1 (C ) is a family of centered Gaussian processes of the space (Ω̃,F̃ ,P)

(actually, this formalism with µ as an exponent is borrowed from [129], but is equiv-
alent to the original one), whose covariance structure is given by:

Kµ(s, t) := σ
2
∫

C
xtxsdµ(x).

Thus the proof heavily relies on the Gaussian nature of the interactions, as well as
the noisy nature of the dynamics.
Second, this form for the density suggests the possible application of Varadhan’s
lemma 9.6.3. Unfortunately, Γ is neither bounded nor continuous, so that the lemma
does not readily applies. Nevertheless, the authors were able to demonstrate a LDP
for the sequence of probabilities

(
QN

β
(µ̂N ∈ .)

)
N with good rate function H := I(·|P)−Γ,

and obtain convergence results for the empirical measure. The proof follows three
important lines:
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• Proving that H is indeed a good rate function.

• Proving a LDP for the sequence
(
QN

β
(µ̂N ∈ .)

)
N with good rate function H.

• Characterizing the minima of H through a variational analysis, and proving
that this characterization admits a unique minimum Q.

The two first steps of the demonstrations were initially done through a time dis-
cretization, before being extended to the continuous case. We now state the main
results of [22].

3.3.3 Main results

The main result that G. Ben Arous and A. Guionnet obtained in [22] are valid under
the short time, or high temperature hypothesis β 2A2T < 1. It ensures the exponential
tightness of QN

β

(
µ̂ ∈ ·

)
, so that a full LDP follows. This full LPD, in turn induces a con-

vergence of the empirical measure and a propagation of chaos in the averaged case, as
well as a full LDP for the quenched sequence PN

β
(J), yielding a quenched convergence.

Moreover, it appears that H achieves its minimum at a unique non-markovian proba-
bility measure Q that satisfies an intricate implicit stochastic differential system. We
now state the mains results of the authors:

Theorem 3.3.1. There exists a good rate function H, such that if β 2A2T < 1, QN
β

(
µ̂ ∈ ·

)
satisfies a full LDP with good rate function H.

Theorem 3.3.2. H achieves its minimal value at a unique probability measure Q on
C ([0,T ], [−A,A]) which is implicitly given by the following procedure:
Let P(h) be the law of the diffusion on C ([0,T ], [−A,A]){

dxt =−∇U(xt)dt +dBt +βhtdt,

x0
L
=µ0

(3.11)

for a deterministic process h in L2
(
[0,T ],dt

)
.

Then, Q satisfy the non-linear equation

Q =
∫

P(GQ(ω))dP(ω),

where GQ is, under P, a centered Gaussian process with covariance∫
GQ

t GQ
s dP =

∫
C ([0,T ],[−A,A])

xtxsdQ(x).

Theorem 3.3.3. (i) If β 2A2T < 1, then QN
β

(
µ̂ ∈ ·

)
converges weakly to δQ, i.e.

∀F ∈Cb

(
M+

1

(
C ([0,T ], [−A,A])

))
, lim

N→+∞
E

(∫
C ([0,T ],[−A,A])N

F
(

1
N

N

∑
i=1

δxi

)
dPN

β
(J)(x)

)
=F(Q).

In particular, if f ∈ Cb
(
C ([0,T ], [−A,A])

)
,

lim
N→+∞

E

(∫
C ([0,T ],[−A,A])N

1
N

N

∑
i=1

f (xi)dPN
β
(J)(x)

)
=
∫

C ([0,T ],[−A,A])
f (x)dQ(x).
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(ii) As a consequence, if β 2A2T < 1, ∀k ∈N,∀ϕ1, . . . ,ϕk ∈ Cb
(
C ([0,T ], [−A,A])

)
,

lim
N→+∞

E

(∫
C ([0,T ],[−A,A])N

( k

∏
j=1

ϕ j(x j)
)

dPN
β
(J)(x)

)
=

k

∏
j=1

(∫
C ([0,T ],[−A,A])

ϕ j(x)dQ(x)
)
.

Theorem 3.3.4. There exists a good rate function H such that if β 2A2T < 1, for any
closed subset F of M+

1

(
C ([0,T ], [−A,A])

)
, for almost all J,

limsup
N→+∞

1
N

logPN
β
(J)
(
µ̂N ∈ F

)
≤− inf

F
H.

Theorem 3.3.5. If β 2A2T < 1,

(i) For any bounded continuous function F ∈ Cb

(
M+

1

(
C ([0,T ], [−A,A])

))
, and for

almost all J,

lim
N→+∞

∫
C ([0,T ],[−A,A])N

F
(

1
N

N

∑
i=1

δxi

)
dPN

β
(J)(x) = F(Q).

(ii) For any f ∈ Cb
(
C ([0,T ], [−A,A])

)
, for almost all J, for almost all

(
(xi)1≤i≤N

)
N∈N∗ ,

lim
N→+∞

E

(∫
C ([0,T ],[−A,A])N

1
N

N

∑
i=1

f (xi)dPN
β
(J)(x)

)
=
∫

C ([0,T ],[−A,A])
f (x)dQ(x).

Let us further precise that, relying on a replica argument, the authors show a
quenched propagation of chaos, that provides statistical properties on the quenched
single spin in the thermodynamic limit. Nevertheless, this analysis does not apply to
our setting, as it relies on the hypothesis that∫

xtdQ(x) = 0, ∀t ∈ [0,T ].

In our model, this hypothesis would write:∫
S(xt)dQ(x) = 0, ∀t ∈ [0,T ],

which is not likely to happen as S > 0.

In a more recent publication of Alice Guionnet [129], the approach is slightly dif-
ferent. The author is still interested in convergence and propagation of chaos results,
but intends to get rid of the high temperature and short time hypothesis. As a con-
sequence the full LDP is discarded, but the author manages to conserve the upper-
bound result for compact sets (see 9.4.3), and to obtain a tension result on QN

β
. This

again yields an averaged and quenched convergence of the empirical measure, as
well as an averaged propagation of chaos results. Moreover, a quenched propagation
of chaos result is obtained under further assumptions of symmetry for the potential
U and law µ0.

In the present manuscript, we have tried to capitalize on theses two publications
in order to prove similar results for our neural networks. In many ways, our demon-
stration is a mere adaptation of their results to our biological framework, so that the
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thread of the proof remains unchanged. As in [129] we shall not systematically re-
strict our results to a short time hypothesis, and thus shall not establish a full LDP
but an upper-bound for compact along with a tension result. This approach will be
adopted in Chapter 4. Nevertheless, it is always possible to prove that the empirical
law satisfies a full LDP, provided a short-time hypothesis as in [22]. We will prove
such a full LDP, along with quenched results in Chapter 5, as our analysis strongly
relies on short times.

Even so, we have succeeded to substantially extend the scope of G. Ben Arous
and A. Guionnet analysis. First of all, our networks are no longer homogeneous has
they admit a spatial extension that impacts the dynamics. Alternatively, we could
say that the network is composed of infinitely many different population (labeled by
a continuous parameter), each satisfying its own dynamics, even though they appear
to be quite similar. Remark that the case of a finite number of populations has al-
ready been addressed in [79] in the case of a discrete time dynamics. In addition, the
voltage is here only almost surely bounded, the interactions are nonlinear and we
introduce characteristic transportation delays depending on the position of the two
neurons at play. This sets the problem in an infinite-dimensional space, as initial con-
ditions are probability measure on the space of continuous function from a compact
interval to R. In addition, we consider synapses interactions depending on the state
of both particles at play in chapter 5 5. Eventually, the synaptic weights are still i.i.d
Gaussian variables, but are not centered. This was already addressed for strongly
random synapses in [178]). In Chapter 4 we go a bit further, their mean and variance
will be continuous maps of the heterogeneous positions of both neurons at play.



Part II

Large deviations for
heterogeneous neural networks
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CHAPTER 4

SPATIALLY EXTENDED NETWORKS

We investigate the asymptotic behavior of a spatially extended stochastic neural net-
works dynamics in random environment with highly random connectivity weights.
These systems model the spatiotemporal activity of the brain, thus feature (i) com-
munication delays depending on the distance between cells and (ii) heterogeneous
synapses: connectivity coefficients are random variables whose law depends on the
neurons positions and whose variance scales as the inverse of the network size. When
the weights are independent Gaussian random variables, we show that the empiri-
cal measure satisfies a large-deviation principle. The associated good rate function
achieves its minimum at a unique spatially extended probability measure, implying
convergence of the empirical measure and propagation of chaos. The limit is char-
acterized through complex non Markovian implicit equation in which the network
interaction term is replaced by a non-local Gaussian process whose statistics depend
on the solution over the whole neural field. We further demonstrate the universality
of this limit, in the sense that neuronal networks with non-Gaussian interconnection
weights converge towards it provided that synaptic weights have a sufficiently fast
decay. This universality results holds under a technical condition on time horizon,
noise and heterogeneity.

4.1 INTRODUCTION
We study the asymptotic behavior of spatially-extended neuronal networks

with heterogeneous interconnections at a mesoscopic scale in which averaging effects
occur but where one can still resolve fine spatial structures. In detail, we will consider
a stochastic network equation of size N in random environment, in which

• neurons have random locations on a compact set D⊂Rd ,

• the amplitude of the interaction between two cells are heterogeneous. Their
statistics depend on the cells positions and have a mean and a variance scaling
as 1/N,

• neurons communicate after a delay, also depending on the cells locations, asso-
ciated with transport and transmission of information.

Each network is characterized by a random configuration that does not evolve
in time. Within this fixed network configuration, the state of each neuron is de-
scribed by a stochastic nonlinear process. The motivation for developing this model
lies in the understanding of spatio-temporal patterns of activity of the cortex, as we
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review in section 4.1.1. For spatially extended networks with ”weak” interaction het-
erogeneities (variance of interconnection weights scaled as 1/N2), coupling methods
have been used to derive a non-local McKean-Vlasov thermodynamic limit [236, 237]
where the effective interaction term involves a non-local integral in space. This limit
depends explicitly on the averaged spatial structure of the brain, thus preserving im-
portant information on spatiotemporal patterns of activity [235]. In the context of
networks on lattices with non-random synapses and no delay, compactness methods
were used to show a convergence result towards a nonlinear Fokker-Planck equa-
tion [161]. For interacting heterogeneous diffusions with non-random interconnec-
tions, large-deviations techniques were developed [74] and convergence of double-
layer empirical distributions including state variance and heterogeneity was proved.
In all these cases, the heterogeneity of the interconnections was not sufficient to affect
the asymptotic behavior.

Strongly stochastic connections have been the object of intense studies in the do-
main of mathematical physics. Sophisticated techniques were developed in the con-
text of spin glasses (see e.g. the reference books [232, 233]). Of particular relevance
to our purposes, and in the same context, large-deviations techniques were devised
for randomly connected networks with strongly heterogeneous interactions [14, 16,
22, 129]. The methods were then adapted for biological neural networks in discrete
time settings in a number of models [60, 79, 104], and were recently extended to
continuous-time diffusions with multiple populations and delays [51]. In all these
contributions, synaptic weights were considered Gaussian and the limit found in-
volved an implicit effective interaction term that has a Gaussian law. Although meth-
ods of proof use Gaussian calculus, the Gaussian nature of the limit process does not
require weights to be Gaussian, but similarly to the central limit theorem, is valid
for a broad class of couplings. This was rigorously addressed in [178] in the case of
discrete-time dynamics for weights with sub-Gaussian tails. It proves surprisingly
complex to generalize their approach in a continuous-time setting.

We undertake in this manuscript the characterization of spatially extended net-
works with continuous-time dynamics and strongly heterogeneous synapses as moti-
vated by the study of the spatio-temporal cortical patterns of activity. To this pur-
pose, we combine large-deviations estimates and the methods developed for spa-
tially extended particle systems to demonstrate the thermodynamic convergence of
the network equation and identify their non-Markovian limit, for Gaussian and non-
Gaussian synaptic weights. Before we proceed to the exposition of the setting and
main results, we briefly review our motivations and model.

4.1.1 Biological background

It has been widely shown that mammalian brain displays precise spatiotemporal
patterns of activity that correlate with brain states and cognitive processes. Clas-
sical examples include transient and local activation of specific regions in the cortex
while recalling a memory (see e.g. [114]), visual illusions [142] or the propagation of
a localized stimulus [180]. A popular and very efficient approach to describe these
phenomena is the Wilson and Cowan neural field equation [245, 246], characterizing
the spatiotemporal evolution of the activity u(r, t) of cells at location r on the neural
field D through a simple integro-differential equation of type:

∂u
∂ t

=−u(r, t)+
∫

D
J(r,r′)S(u(r′, t))dr′+ I(r, t) (4.1)
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where I(r, t) represents the input to the population at location r, J(r,r′) is the aver-
aged interconnection weight from neurons at location r′ onto neurons at location r and
the non-decreasing map S associates to a level of activity u the resulting spiking rate.
This equation has been very successful in reproducing a number of biological phenom-
ena, in particular working memory [148] and visual hallucination patterns [37, 95].
However, randomness is not explicitly present in it, and the relationship between
the dynamics of individual cells and this macroscopic equation - a central problem in
neuroscience [36] - is still elusive.

The present paper pursues the endeavor of addressing rigorously this relation-
ship. Beyond its mathematical interest, this approach would provide a way to under-
stand, from the biological viewpoint, the importance of individual cells or synaptic
properties on brain’s emerging behaviors. Specifically, this would provide a way to
characterize the role of noise and heterogeneity, that were reported to be related to
pathologies such as febrile seizures [12]. From the phenomenological viewpoint, it
has also been shown that the variance of the weights can notably affect the behavior
of the network and lead to phase transitions from trivial to chaotic solutions [221] or
synchronization in two-populations networks [134].

The question of characterizing limits of large-scale dynamics of neuronal networks
has a long history in neuroscience, and several mathematical and statistical physics
methods were introduced. These range from PDE formalisms and kinetic equa-
tions [54, 197, 198] with deep applications to the visual system, moment reductions
and master equations [35, 162], but also the development of specific Markov chain
models reproducing in the thermodynamics limit the dynamics of Wilson-Cowan sys-
tems [35, 40, 41, 42, 43]. These techniques were generally developed in order to ob-
tain limits of interconnected neurons through weakly stochastic synapses (typically
constant or independent identically distributed synaptic weights with variance 1/N2,
with N the typical number of incoming connections), and do not hold in the case of
strongly stochastic synapses whereby synaptic weights have a variance scaled by 1/N.

4.1.2 Microscopic Neuronal Network Model

The macroscopic activity of cells relies on the collective activity emerging from a large
number N of neurons that are distributed over the cortex, seen as a d-dimensional
compact set D ⊂ Rd (d is generally considered to be equal to 2, sometimes 3). The
location of neuron i ∈ {1, · · · ,N} is denoted ri ∈ D, and we assume that locations are
independently drawn according to a probability measure π ∈M+

1 (D). The latter rep-
resents the density of neurons on the cortex, and is assumed to be absolutely con-
tinuous with respect to Lebsegue’s measure. The state of neuron i is described by a
variable X i,N ∈Rs, s ∈N∗, and we will assume here for simplicity that X i,N is a scalar
variable representing the voltage of each neuron and satisfying the equation:

dX i,N
t =

(
f (ri, t,X

i,N
t )+

N

∑
j=1

Ji jS(X
j,N

t−τi j
)

)
dt +λ (ri)dW i

t . (4.2)

The map f (r, t,x) describes the intrinsic dynamics of a neuron at location r, time
t and state x, λ (r) the level of noise at location r, and we assume each neuron to be
driven by an independent Brownian motions W i. The interactions between cells are
assumed, as in the classical firing-rate formalism [5, 245, 246], to be proportional to a
sigmoidal transformation of their membrane potential S(X j,N

t ). S is a smooth (at least
continuously differentiable) increasing map tending to 0 at −∞ and to 1 at ∞. The
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synaptic weight Ji j represents the amplitude and excitatory or inhibitory nature of
the interaction depending on whether Ji j > 0 or Ji j < 0. There is no connection form j
to i when Ji j = 0. The parameters τi j represent the delay of communication between
the two neurons, and is assumed to be equal to a deterministic function of the location
of neuron i and j: τi j = τ(ri,r j) (generally an affine function of the distance ‖ri− r j‖Rd

between cells when spikes are assumed to be transmitted at constant speed. Here
‖ · ‖Rd is the Euclidean norm on Rd).

The spatio-temporal activity of the cortex is obtained as a mesoscopic limit of cells
activity that resolves distinct locations on the cortex, but where averaging effects re-
lated to the large dimension of the network are taken into account. In order to char-
acterize these averaging effects, we will investigate the limit of the network as its size
diverges. We thus need to describe how synaptic weights scale with the network size.
Consistently with the underlying biological problem (see e.g. [236] and references
therein), we assume that the connectivity weights Ji j are random variables whose law
depends on the location of cells i and j, with mean J(ri,r j)/N and variance σ2(ri,r j)/N.
The scaling of the mean ensures that the interaction term does not diverge, while
the scaling on the variance, slower than usual cases in 1/N2 [231, 236] preserves a
non-trivial contribution of the heterogeneous nature of the synaptic weights. Note
that biologically, the synaptic weights cannot reach arbitrarily large or small values.

Before we proceed to rigorous developments, let us start by heuristically describ-
ing the large N behavior. One can generally get an intuition of the limit of such
interacting systems by considering that the (X j,N ,r j) are i.i.d. and independent of the
connectivity matrix, and that the network equation converges towards a spatially
extended process with law (X̄(r),r). This assumption is known as the Boltzman’s
“molecular chaos” (Stoßzahlansatz) hypothesis. Under these assumptions, one can
formally make the conjecture that the network interaction term ∑

N
j=1 Ji jS(X

j,N
t ) con-

verges, by virtue of a functional central limit theorem, towards a Gaussian process
U X̄

t (r) with mean and covariance that are non-local (i.e. depending on the process X
at all other locations), given by:{∫

D J(ri,r′)E
[
S(X̄ t(r′))

]
dπ(r′)∫

D σ(ri,r′)2E
[
S(X̄t(r′))S(X̄s(r′))

]
dπ(r′)

(4.3)

and one thus obtains the implicit equation on X̄ :

dX̄t(r) =
(

f (r, t, X̄t(r))+U X̄
t (r)

)
dt +λ (r)dWt(r). (4.4)

Interestingly, we recover an interaction term whose mean is exactly of the Wilson-
Cowan type (4.1). Moreover, when f (r, t,x) = −x, solutions are Gaussian and their
mean satisfies a Wilson-Cowan equation (4.1), in which the sigmoid function depends
dynamically on noise and heterogeneity. In particular, we will see that Boltzmann’s
molecular chaos asymptotically occurs for any finite set of neurons. Note that Boltz-
mann’s Stoßzahlansatz could indicate a certain degree of universality for the limit,
as is diplayed by the central limit theorem. In particular, it is possible that this
limit remains valid for synaptic weights with bounded second moment. Universality
will be partially addressed here, as we will prove the validity of the limit for sub-
Gaussian-tailed synaptic weights, as well as for Gaussian-tailed synaptic weights
under a short-time hypothesis.

The organization of the paper is as follows. We provide in section 4.2 the nota-
tions and main assumptions on the model, as well as a summary of the main results.
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Sections 4.3 and 4.4 deal with the case of Gaussian synaptic weights, and are re-
spectively dedicated to the demonstration of a large deviations principle and to the
identification of the limit. Section 4.5 is devoted to showing a general convergence re-
sult in the case where the synaptic weights are non-Gaussian, including in particular
the biologically relevant case of bounded coefficients.

4.2 STATEMENT OF THE RESULTS
We investigate the thermodynamic limit of the neuronal network equa-

tions (4.2). These equations are diffusions in random environment, and thus exhibit
two distinct sources of randomness:

• Random environment: the locations of neurons r := (ri)i≤N and synaptic weights
J :=

(
Ji j
)

i, j≤N are random variables of a probability space (Ω̃,F̃ ,P). They define
the structure of the network, and are independent of the time-fluctuation of the
states of the neurons.

• Stochastic dynamics: states of neurons are stochastic variables, solutions of
a SDE driven by a collection of independent (Ω,F ,(Ft),P)-Brownian motions
(W i

t )i∈N.

The dynamics of the X i thus depends both on the random environment (i.e., the
realization of locations r and weights J) and noise (the realization of the Brownian
motions). We will denote by E the expectation over the environment (i.e. with respect
to the probability distribution P) and introduce the shorthand notation PJ and EJ

the probability and expectation over the synaptic weights matrix J only (that is, P
and E conditioned over the positions r). We recall that J depends on r, but that the
inverse is not true.

We work under a few regularity assumptions. In particular, we assume that the
law of the synaptic weights is continuous in space. In details, although synaptic
weights Ji j and Ji′ j′ are independent for i 6= i′ or j 6= j′, we assume that their probability
distribution continuously depends on the spatial location of the cells, in the sense that
one can find a version J̃i′ j′ of Ji′ j′ such that:

EJ

(∣∣J̃i′ j′− Ji j
∣∣)≤ C

N

(
‖ri− ri′‖Rd +‖r j− r j′‖Rd

)
. (4.5)

for some C > 0 independent of the neurons locations. Moreover, the dynamics of
the neurons is assumed to satisfy the following assumptions:

(i) The function f is K f -Lipschitz continuous in its three variables.

(ii) The mean and variance of the weights J and σ are bounded and, respectively,
KJ and Kσ -Lipschitz continuous in their second variable. We denote

‖J‖∞ = sup
(r,r′)∈D2

|J(r,r′)|, ‖σ‖∞ = sup
(r,r′)∈D2

σ(r,r′).

(iii) τ : D2→R+ is Lipschitz continuous, with constant Kτ . It is in particular bounded,
by compactness of D. We denote by τ its supremum.

(iv) The diffusion coefficient λ : D→ R
∗
+ is Kλ -Lipschitz continuous and uniformly

lower-bounded: ∀r ∈ D, λ (r)≥ λ∗ > 0.
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Let Cτ := C ([−τ,0],R), and µ0 : D→M+
1

(
Cτ

)
be an initial probability distribution

mapping continuous in space in the sense that exists a random mapping x̄0 : D→ Cτ

on
(
Ω,F ,P

)
and C0 > 0 such that:

∀r,r′ ∈ D, L (x̄0(r)) = µ0(r), E

[
sup
−τ≤s≤0

∣∣x̄0
s (r)− x̄0

s (r
′)
∣∣2]≤C0‖r− r′‖2

Rd . (4.6)

In this chapter, we will denote by ‖ · ‖τ,∞ the supremum norm on Cτ . Throughout
the paper, we consider that the network’s initial conditions are independent realiza-
tions of µ0:

Law of (xt)t∈[−τ,0] =
N⊗

i=1

µ0(ri). (4.7)

It will often be useful to grant the existence of exponential quadratic moments to
the solutions, and thus we will make the assumption that initial condition has the
following moments condition:

∃υ > 0,sup
r∈D

{∫
Cτ

exp
{

υ‖x‖2
τ,∞

}
d
(
µ0(r)

)
(x)
}
< ∞. (4.8)

We further assume that their trajectories have the same regularity in time as
the Brownian motion. The first question that may arise at this point is the well-
posedness of the network system. Since the equations driving the network constitute
a standard delayed stochastic differential equation in dimension N with Lipschitz-
continuous drift and diffusion functions with linear growth property, standard theory
on delayed stochastic differential equations [73, 165] ensures existence, uniqueness
and square integrability of solutions:

Proposition 4.2.1. For each r ∈ DN , and J ∈RN×N and T > 0, there exists a unique
weak solution to the system (4.2) defined on [−τ,T ] with initial condition (4.7). More-
over, this solution is square integrable.

Remark 2. Note that if the initial condition was given by (X i,N
t )t∈[−τ,0] = ζ i with

ζ i L
=µ0(ri), we can of course prove strong existence and uniqueness of solutions.

We now work with an arbitrary fixed time T > 0 and denote by QN
r (J) the unique

law solution of the network equations restricted to the σ -algebra σ(X i,N
s ,1≤ i≤N,−τ ≤

s≤ T ). QN
r (J) is a probability measure on C N

τ where C is the space of real valued con-
tinuous functions of [−τ,T ]. This measure depends on the realizations of both the
connectivity matrix J, and the locations of neurons r. For any t ∈ [0,T ], we will denote
by ‖ · ‖∞,t the supremum norm on C

(
[−τ, t],R

)
. In order to characterize the behavior

of the system as the network size diverges, we will show a Large Deviations Prin-
ciple (LDP) for the empirical measure. This requires delicate estimates, combining
different elements.

First, Sanov’s theorem states that, for independent copies of the same law µ on
a Polish space Σ, the empirical measure satisfies a full LDP with good rate function
corresponding to the relative entropy I(.|µ) defined, for ν ∈M+

1 (Σ), by:

I(ν |µ) :=

{∫
Σ

log
( dν

dµ
(x)
)
dν(x) if ν � µ,

∞ otherwise .

Because of the connections, it is clear that Sanov’s theorem does not apply as the
states of neurons are not independent. Moreover, symmetry between cells is also
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broken by the choice of a realization of the interaction matrix. This motivates us to
introduce the system without interaction. When neurons are not coupled (i.e. Ji j = 0
for all (i, j)), and locations are known, the law of neurons in position r ∈ D is given by
the unique solution Pr of the one-dimensional standard SDE:{

dXt = f (r, t,Xt)dt +λ (r)dWt

(Xt)t∈[−τ,0]
L
=µ0(r).

(4.9)

We denote by Pr the law of this process restricted to the σ -algebra GT = σ(Xs,s≤ T );
it is a probability measure on the space C . Remark that, by a direct application of
Girsanov’s theorem, QN

r (J) is absolutely continuous with respect to Pr :=
⊗N

i=1 Pri , and
its density is given by the following equality:

dQN
r (J)

dPr
(x) = exp

(
N

∑
i=1

∫ T

0

( 1
λ (ri)

N

∑
j=1

Ji jS(X
j,N

t−τ(ri,r j)
)
)

dWt(xi,ri)

− 1
2

∫ T

0

( 1
λ (ri)

N

∑
j=1

Ji jS(X
j,N

t−τ(ri,r j)
)
)2

dt

)
, (4.10)

where

Wt(x,r) :=
xt − x0

λ (r)
−
∫ t

0

f (xs,r,s)
λ (r)

ds. (4.11)

Remark that, by (4.9),
(
Wt(.,r)

)
t is a Pr-Brownian motion. Moreover, under Pr the

Brownian motions
(
Wt(xi,ri),0≤ t ≤ T

)
i∈{1···N} are independent.

Under Pr neurons are independent but are not identically distributed as loca-
tions are heterogenous. We reduce this difficulty by averaging over locations. Let
P ∈M+

1 (C ×D) be defined by dP(x,r) := dPr(x)dπ(r). P properly defines a probability
measure on M+

1 (C ×D) (see Appendix 4.6.2), and is the law of the pairs (X i,N ,ri) when
there is no interaction. We also construct a symmetric law for the coupled network:

Lemma 4.2.2. The map

Q :
{

DN →M+
1 (C N)

r→ QN
r

where QN
r := EJ

(
QN

r (J)
)
, is continuous with respect to the weak topology. Moreover,

dQN(x,r) := dQN
r (x)dπ

⊗N(r)

defines a probability measure on M+
1

(
(C ×D)N

)
.

This result is proved in Appendix 4.6.2.

Remark 3. • The probability measure QN averages the solutions on the differ-
ent possible configurations (J,r). Although being a relatively abstract object,
it nevertheless provides relevant statistics as we make more explicit now. If
A ⊂

(
C ×D

)N is an event corresponding to e.g. a pathological behavior, then
QN(A) corresponds to the proportion of configurations (“brains”) presenting this
pathology. Conversely, as QN

r (J) is the law of one particular individual with a
given configuration (J,r), then QN

r (J)(A) provides the exact probability for him
to suffer from A.
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• Results under QN are called averaged, whereas those under QN
r (J) are called

quenched. Quenched results are much more involved to demonstrate than aver-
aged ones. Several methods have been developed to access these results, partic-
ularly based on replica [16, 22, 129]. We do not address these questions in the
present chapter.

We are interested in the behavior of the double layer empirical measure:

µ̂N :=
1
N

N

∑
i=1

δ(X i,N ,ri). (4.12)

Sanov’s theorem ensures that the empirical measure satisfies a full LDP under
P⊗N . In the case of Gaussian interactions, we will build upon this result and use an
ad hoc version of Varadhan’s lemma to derive a weak LDP under QN . We will then
characterize the possible minima of the associated good rate function, and prove by
a fixed point argument that it admits a unique one, denoted Q, characterized as the
non-Markovian solution of a MacKean-Vlasov SDE. Large deviations estimates will
then ensure that the empirical measure converges toward this minimum. In detail,
we show the following:

Theorem 4.2.3. Suppose interactions are Gaussian. Then, under
(

QN
(
µ̂N ∈ ·

))
N∈N∗

satisfies a weak Large Deviations Principle of speed N and converges towards δQ ∈
M+

1

(
M+

1

(
C ×D

))
as N goes to infinity.

Remark 4. Note that, for T < λ 2
∗

2‖σ‖2
∞

, a full large deviation principle can be demon-
strated, implying exponential speed for the convergence,

P−a.s., for almost all J,r,
1
N

N

∑
i=1

δ(X i,N ,ri)
L→ Q,

that is a quenched convergence. Indeed, under the short-time hypothesis, we can
readily prove exponential tightness of the averaged and quenched empirical mea-
sures, implying an upper-bound for closed sets, and almost sure convergence by a
Borel-Cantelli argument. Exponential tightness crucially relies on the existence of
greater moments than 1 of the radon-Nikodym density of dQN

dP⊗N under P⊗N (see [22]).
This kind of results will be addressed in chapter 5.

The quantitative estimates leading to this convergence result are summarized in
the following two results:

Theorem 4.2.4. Suppose interactions are Gaussian. There exists a good rate function
H on M+

1 (C ×D) such that for any compact subset K of M+
1 (C ×D),

limsup
N→∞

1
N

logQN(µ̂N ∈ K)≤− inf
K

H.

The convergence result also relies on the tightness of the sequence of empirical
measures:

Theorem 4.2.5. Suppose interactions are Gaussian. Then, for any real number ε > 0,
there exists a compact subset Kε such that for any integer N,

QN(µ̂N /∈ Kε)≤ ε.
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These two results imply convergence of the empirical measure towards the set of
minima of the rate function H. Their uniqueness and characterization is subject of
the following theorem demonstrated in section 4.4:

Theorem 4.2.6. The good rate function H achieves its minimal value at the unique
probability measure Q ∈M+

1 (C ×D) satisfying:

Q' P,
dQ
dP

(x,r) = E

[
exp
{

1
λ (r)

∫ T

0
GQ

t (r)dWt(x,r)−
1

2λ (r)2

∫ T

0
GQ

t (r)
2
dt
}]

where (Wt)t∈[0,T ] is a P-brownian motion, and GQ(r) is, under P, a Gaussian process
with mean and covariance{

E [GQ
t (r)] =

∫
C×D J(r,r′)S(xt−τ(r,r′))dQ(x,r′)

E [GQ
t (r)G

Q
s (r)] =

∫
C×D σ(r,r′)2S(xt−τ(r,r′))S(xs−τ(r,r′))dQ(x,r).

For non-Gaussian synaptic weights, the LDP does not hold anymore. Neverthe-
less, as for central limit theorems, the limit found in the Gaussian case is universal
when the weights are sufficiently concentrated. Here, we will handle the case of
weights having at most Gaussian tails:{

∃a,D0 > 0, ∀N ≥ 1, ∀J1 ∈ {Ji j(N), i, j ∈ [[1,N]]},
EJ

(
exp
{

aNJ2
1
})
≤ D0.

(HJ)

We will show in section 4.5 that for times T < λ 2
∗ a∧T ∗, with T ∗ = λ 2

∗
2‖σ‖2

∞

, the empir-
ical measure converges towards the process described in Theorem 4.2.6. For sub-
Gaussian synaptic weights (e.g., with bounded support), this convergence thus holds
for any T < T ∗. This indicates that the limit is universal to some degree. We ex-
pect that the universality of the Gaussian case goes beyond this case and may in-
clude synaptic weights having bounded polynomial moments (at least the two first
moments). These extensions are not in the scope of the present paper, and our ex-
ponential convergence result covers all realistic cases arising in neuroscience where
synaptic weights are bounded.

By symmetry of the law, the convergence result of Theorem 4.2.3 also implies
propagation of chaos, thanks to a result due to A.S. Sznitman [230, Lemma 3.1]:

Theorem 4.2.7. For any connectivity matrix satisfying hypothesis (HJ), the system
enjoys the propagation of chaos property. In other terms, QN is Q-chaotic, i.e. for any
bounded continuous functions ϕ1, · · · ,ϕm ∈Cb

(
C ×D

)
of C ×D, and any neuron indexes

(k1, · · · ,km), we have:

lim
N→∞

∫
(C×D)N

m

∏
j=1

ϕ j(xk j ,rk j)dQN(x,r) =
m

∏
j=1

∫
C×D

ϕ j(x,r)dQ(x,r).

We now proceed to the proof of our results.
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4.3 LARGE DEVIATION PRINCIPLE
The aim of this section is to establish the weak large deviation principle for

the network with Gaussian synaptic weights. It relies on three key points. First, we
will characterize the good rate function; the intuition for constructing this functional
comes from Varadhan’s lemma. In our case it does not readily apply and we need
to thoroughly demonstrate that the candidate is indeed a good rate function. Sec-
ond, we will show an upper-bound result for compact sets. The spatially-extended
framework will introduce new difficulties, necessitating to introduce an appropriate
distance on C ×D. Third, the tightness of our collection of empirical measures will
allow to conclude on a weak large-deviations principle.

4.3.1 Construction of the good rate function

Let us consider the interaction term of (4.2):

Gi,N
t (x,r) :=

1
λ (ri)

N

∑
j=1

Ji jS
(
x j

t−τ(ri,r j)

)
.

As stated in section (4.1.2), it shall behave as a Gaussian process in the large N
limit, with mean and covariance given by (4.3). With this in mind, we introduce,
for µ ∈M+

1 (C ×D), the two following functions defined respectively on [0,T ]2×D and
[0,T ]×D: 

Kµ(s, t,r) :=
1

λ (r)2

∫
C×D

σ(r,r′)2S(xt−τ(r,r′))S(xs−τ(r,r′))dµ(x,r′),

mµ(t,r) :=
1

λ (r)

∫
C×D

J(r,r′)S(xt−τ(r,r′))dµ(x,r′).

Here, µ can be understood as the putative limit law of the couple (x j,r j) if it exists.
Covariance and mean functions Kµ and mµ are well defined as for every fixed r ∈ D
the two maps

Ar : (x,r′)→ 1
λ (r)

J(r,r′)S(x·−τ(r,r′)), Ãr(x,r′)→
1

λ (r)2 σ(r,r′)2S(x·−τ(r,r′))S(x·−τ(r,r′))

are continuous for the classical product norm ‖(x,r)‖C×D := ‖x‖∞,T +‖r‖Rd . Hence, they
are Borel-measurable, and integrable with respect to every element of M+

1 (C ×D).
Remark that, since S takes value in [0,1], both functions are bounded:

|Kµ(s, t,r)| ≤
‖σ‖2

∞

λ 2
∗

, |mµ(t,r)| ≤
‖J̄‖∞

λ∗
.

Moreover, as µ charges continuous functions, Kµ and mµ are continuous maps by the
dominated convergence theorem.

Clearly enough, Kµ has a covariance structure. As a consequence, we can de-
fine a probability space (Ω̂,F̂ ,γ) and a family of independent stochastic processes(
Gµ(r)

)
µ∈M+

1 (C×D),r∈D for any measure µ ∈M+
1 (C ×D), such that Gµ(r) is a centered

Gaussian process with covariance Kµ(., .,r) under γ. This ensures continuity of the
map r→L

(
Gµ(r)

)
. We will denote by Eγ the expectation under this measure.

Remark 5. (i) As in [22, 51], we could alternatively have defined a family of prob-
ability measure

(
γµ

)
µ∈M+

1 (C×D)
, and a family of Gaussian processes

(
G(r)

)
r∈D

with covariance Kµ under γµ . This approach is equivalent to ours, but the latter
present the advantage of being very adapted to Fubini’s theorem.
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(ii) The family of processes
(
Gµ

t (r)
)

µ,r is intended to encompass possible candidates

for the effective asymptotic interactions limN

(
Gi,N(x,r)

)
i∈N∗

. In these interac-
tions, the Gaussian weights are independent for different particles, so that it
seems natural to assume independence of

(
Gµ

t (r)
)

for different locations. No-
tably in our proof, we can swap from a continuous version of Gµ

t (r) to an in-
dependent one very easily, as they are never taken jointly under γ. Thus, we
can literally choose their covariance structure. For the sake of measurability
under any Borel measure of M+

1

(
C ×D

)
, we will mainly work with the contin-

uous version of Gµ(r), and will explicitly introduce independent versions when
independence is needed.

We recall a few general properties on the relative entropy that are often used
throughout the paper. For p and q two probability measures on a Polish space E (see
equation (9.10) or e.g. [86, Lemma 3.2.13]), we have the identity:

I(q|p) = sup
{∫

E
Φ(x)dq(x)− log

∫
E

exp
{

Φ(x)
}

d p(x) ; Φ ∈ Cb(E)
}
,

which implies in particular that for any bounded measurable function Φ on E,∫
E

Φ(x)dq(x)≤ I(q|p)+ log
∫

E
exp
{

Φ(x)
}

d p(x). (4.13)

If Φ is a lower-bounded (or upper-bounded) measurable function this inequality holds
by monotone convergence.

We now state a key result to our analysis

Lemma 4.3.1.
dQN

dP⊗N (x,r) = exp
{

NΓ̄(µ̂N)
}
,

where

Γ̄(µ̂N) :=
1
N

N

∑
i=1

logEγ

[
exp
{∫ T

0

(
Gµ̂N

t (ri)+mµ̂N (t,ri)
)
dWt(xi,ri)−

1
2

∫ T

0

(
Gµ̂N

t (ri)+mµ̂N (t,ri)
)2dt

}]
,

with W defined as in (4.11).

Proof. Let, for all (x,r) ∈ (C ×D)N

XN
i (x,r) :=

∫ T

0
Gi,N

t (x,r)dWt(xi,ri)−
1
2

∫ T

0
Gi,N

t (x,r)
2
dt,

which is well defined under Pr. Going back to equation (4.10), we find:

dQN
r (J)

dPr
(x) = exp

( N

∑
i=1

XN
i (x,r)

)
.

Averaging on J and applying Fubini theorem, we find that QN
r � Pr, with density

dQN
r

dPr
(x) = EJ

[
exp
(

∑
N
i=1 XN

i (x,r)
)]

. Moreover, equalities dQN(x,r) = dQN
r (x)dπ⊗N(r) and

dP⊗N(x,r) = dPr(x)dπ⊗N(r) give

dQN

dP⊗N (x,r) =
N

∏
i=1

EJ
[

exp
(
XN

i (x,r)
)]

= exp
{ N

∑
i=1

logEJ

[
exp
(
XN

i (x,r)
)]}

,
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where we have used the independence of the synaptic weights Ji j. Note that here x

are coordinates, thus independent of the Ji j, and the fact that
{

Gi,N
t (x,r),0≤ t ≤ T

}
is,

under PJ, a Gaussian process with covariance Kµ̂N (t,s,ri), and mean mµ̂N (t,ri).

Following Varadhan’s lemma, this motivates to introduce and precise the domain
of definition of the maps:

X µ(x,r) :=
∫ T

0

(
Gµ

t (r)+mµ(t,r)
)
dWt(x,r)−

1
2

∫ T

0

(
Gµ

t (r)+mµ(t,r)
)2dt, (4.14)

Γ(µ) :=
∫

C×D
logEγ

[
exp
{

X µ(x,r)
}]

dµ(x,r),

for all (x,r) ∈ C ×D and µ ∈M+
1 (C ×D).

Proposition 4.3.2. The map

Γ := µ ∈M+
1

(
C ×D

)
→

{ ∫
C×D logEγ

[
exp
{

X µ(x,r)
}]

dµ(x,r) if I(µ|P)< ∞,

+∞ otherwise .
(4.15)

is well defined in R∪{+∞}, and satisfies

(i) Γ≤ I(·|P),

(ii) ∃ι ∈]0,1[,e≥ 0, |Γ(µ)| ≤ ιI(µ|P)+ e.

Proof. If I(µ|P) = +∞ the result holds. We will thus suppose that I(µ|P)<+∞, which
implies µ � P. As W (·,r) is a Pr-Brownian motion, Girsanov’s theorem ensures that
the stochastic integral

∫ T
0
(
Gµ

t (r)+mµ(t,r)
)
dWt(x,r) is well defined γ-almost surely un-

der µ.
(1):
Let Fµ := logEγ

[
exp
{

X µ(x,r)
}]

denote the integrand in the formulation of Γ (4.15). It
is measurable as a continuous function of (x,r)→

(
Kµ(t,s,r),0 ≤ t,s ≤ T

)
,
(
mµ(t,r),0 ≤

t ≤ T
)
,
(
Wt(x,r),0≤ t ≤ T

)
that are continuous maps. Nevertheless, because of the con-

tribution of the mean term mµ
1, it is not bounded from below, as was the case in [22].

Let us prove that it is still µ-integrable. In fact, for any M > 0

−F−µ (x,r)≤ F+
µ (x,r)−F−µ (x,r) = Fµ(x,r)≤ log

(
Eγ

[
exp{X µ(x,r)}

]
∨M−1

)
=: Fµ,M(x,r),

where F+
µ and F−µ respectively denote the positive and negative part of Fµ . As F−µ and

Fµ,M are measurable and bounded from below, inequality (4.13) applies. Let α ≥ 1. On
the one hand

α

∫
C×D

Fµ,M(x,r)dµ(x,r)≤ I(µ|P)+ log
{∫

C×D
exp
{

αFµ,M(x,r)
}

dP(x,r)
}

Jensen
≤ I(µ|P)+ log

{
M−α +

∫
C×D

Eγ

[
exp
{

αX µ(x,r)
}]

dP(x,r)
}

Fubini
≤ I(µ|P)+ log

{
M−α +Eγ

[∫
D

∫
C

exp
{

αX µ(x,r)
}

dPr(x)dπ(r)
]}

, (4.16)

1see the expression of Γ2 in Proposition 4.3.4
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with the right-hand side of the two latter inequalities being possibly infinite. On the
other hand,

α

∫
C×D

F−µ (x,r)dµ(x,r) = α

∫
C×D

(
− logEγ

[
exp
{

X µ(x,r)
}])+

dµ(x,r)

Jensen
≤ α

∫
C×D

(
−Eγ

[
X µ(x,r)

])+
dµ(x,r) =

∫
C×D

(
Eγ

[
−
∫ T

0

(
Gµ

t (r)+mµ(t,r)
)
dWt(x,r)

− 1
2

∫ T

0

(
Gµ

t (r)+mµ(t,r)
)2dt

]
+Eγ

[∫ T

0

(
Gµ

t (r)+mµ(t,r)
)2dt

])+

dµ(x,r)

(4.13)
≤ I(µ|P)+ log

{∫
C×D

exp
{

α

(
Eγ

[
X µ(x,r)

]
+T
‖J‖2

∞ +‖σ‖2
∞

λ 2
∗

)+}
dP(x,r)

}
Jensen, Fubini

≤ I(µ|P)+αCT + log
{

Eγ

[∫
D

∫
C

exp
{

αX µ(x,r)
}

dPr(x)dπ(r)
]}

. (4.17)

Remark that in all the manuscript, we shall denote
(4.13)
≤ and

Jensen
≤ to respectively

indicate that we have relied on equation (4.13) or Jensen’s inequality in order to
obtain the relation at stake.

Moreover, W (.,r) being a Pr-Brownian motion, the martingale property yields

Eγ

[∫
D

∫
C

exp
{

αX µ(x,r)
}

dPr(x)dπ(r)
]
≤
∫

D
Eγ

[
exp
{

α2−α

2

∫ T

0

(
Gµ

t (r)+mµ(t,r)
)2dt

}]
dπ(r).

(4.18)
Letting α = 1, we can see that Fµ is µ-integrable, with∫

C×D
|Fµ(x,r)|dµ(x,r) =

∫
C×D

F−µ (x,r)+Fµ,1(x,r)dµ(x,r)≤ 2I(µ|P)+CT + log(2). (4.19)

Moreover,

Γ(µ) :=
∫

C×D
Fµ(x,r)dµ(x,r)

(4.16)
≤ I(µ|P)+ log

{
M−1 +1

}
,

so that letting M→+∞ yields the result.
(2):

For α ≥ 1, inequalities (4.16), (4.17), and (4.18) ensure that

α|Γ(µ)| ≤ I(µ|P)+αCT +

∣∣∣∣ log
{∫

D
Eγ

[
exp
{

α2−α

2

∫ T

0

(
Gµ

t (r)+mµ(t,r)
)2dt

}]
dπ(r)

}∣∣∣∣.
We recall that basic Gaussian calculus gives

E

[
exp
{1

2
N (m,v)2

}]
=

1√
1− v

exp
{ m2

2(1− v)

}
= exp

{1
2

( m2

1− v
− log(1− v)

)}
as soon as v < 1. Jensen’s inequality and Fubini theorem yield

Eγ

[
exp
{(α2−α)T

2

∫ T

0

(
Gµ

t (r)+mµ(t,r)
)2 dt

T

}]
≤
∫ T

0
Eγ

[
exp
{(α2−α)T

2
(
Gµ

t (r)+mµ(t,r)
)2
}]dt

T
.
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As
√

(α2−α)T
(

Gµ

t (r)+mµ(t,r)
)
∼N

(√
(α2−α)T mµ(t,r),(α2−α)T Kµ(t, t,r)

)
un-

der γ then, for (α−1) small enough, exists a constant CT uniform in space such that

Eγ

[
exp
{(α2−α)

2

∫ T

0

(
Gµ

t (r)+mµ(t,r)
)2dt

}]
≤ exp

{
(α−1)CT + o(α−1)︸ ︷︷ ︸

uniform in r

}
≤ exp

{
(α−1)CT

}
.

This eventually yields
|Γ(µ)| ≤ ιI(µ|P)+ e,

with ι := 1
α

, and e := (2α−1)CT .

Remark 6. Remark that µ̂N 6� P, and Γ(µ̂N) = +∞ so that it is not equal to Γ(µ̂N) 6=
Γ̄(µ̂N). These objects are different in nature, as the latter is random and must be
considered under a proper probability measure on

(
C ×D

)N , making sense of the
stochastic integrals over the

(
Wt(xi,ri),0≤ t ≤ T

)
i∈{1···N} (which are well defined under

Pr).

As C ×D and M+
1 (C ×D) are Polish spaces, and as the (X i,N ,ri) are independent

identically distributed random variables under P⊗N , Sanov’s theorem ensures that
the empirical measure satisfies, under this measure, a LDP with good rate function
I(.|P). Furthermore, if Γ was bounded and continuous, Varadhan’s lemma would, as
a consequence of Lemma (4.3.1), entail a full LDP under QN , with good rate function
given by

H(µ) :=
{

I(µ|P)−Γ(µ) if I(µ|P)< ∞,
∞ otherwise .

At this point, it would be easy to conclude would Γ present a few regularity proper-
ties. Unfortunately, Varadhan’s lemma assumptions fail here, as Γ is not continuous
nor bounded from above. Obtaining a weak LDP as well as the convergence of the
empirical measure requires to come back to the basics of large deviations theory.

Observe that Γ is a nonlinear function of µ, involving in particular an exponen-
tial term depending on the mean and covariance structure of the Gaussian process.
In order to handle terms of this type, a key technique proposed by Ben Arous and
Guionnet is to linearize this map by considering the terms in the exponential as de-
pending on an additional variable ν ∈M+

1 (C ×D) [22, 129]. In our case, this family
of linearizations are given by the maps:

Γν := µ ∈M+
1

(
C ×D

)
→

{ ∫
C×D logEγ

[
exp
{

Xν(x,r)
}]

dµ(x,r) if I(µ|P)< ∞,

+∞ otherwise .

where µ,ν ∈M+
1 (C ×D).

Remark 7. Observe that Proposition 4.3.2 also applies to Γν for every ν ∈M+
1 (C ×D).

Moreover, observe that Γ(µ) = Γµ(µ) for any µ ∈M+
1 (C ×D).

Moreover, defining

Γ̄ν(δ(x,r)) := logEγ

[
exp
{

Xν(x,r)
}]

, Γ̄ν(µ̂N) :=
1
N

N

∑
i=1

logEγ

[
exp
{

Xν(xi,ri))
}]

,
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we note that Γ̄ν(µ̂N) =
1
N ∑

N
i=1 Γ̄ν(δ(xi,ri)). Introducing Qν ∈M+

1 (C ×D) by

dQν(x,r) := exp
{

Γ̄ν(δ(x,r))
}

dP(x,r) = Eγ

[
exp
{

Xν(x,r)
}]

dP(x,r), (4.20)

we thus have
dQ⊗N

ν (x,r) = exp
{

NΓ̄ν(µ̂N)
}

dP⊗N(x,r).

This equality highlights a connection between two distinct LDP. On the one hand,
applying again Sanov’s theorem, the empirical measure satisfies a full LDP under
Q⊗N

ν , with good rate function I(.|Qν). On the other hand, Vardhan’s lemma suggests
that µ̂N satisfies, under the same measure, a LDP with rate function

Hν : µ →
{

I(µ|P)−Γν(µ) if I(µ|P)<+∞,
+∞ otherwise.

This is, for now, only a supposition, as its original counterpart Γν , is not bounded from
above nor continuous, and as Γν(µ̂N) and Γ̄ν(µ̂N) are not equal. Still, assuming the
result is true, uniqueness of the good rate function would imply that Hν equals I(.|Qν).
We shall justify the definition of Qν , and proceed to the rigorous demonstration of the
latter equality in Theorem 4.3.6. For now, let us introduce some useful objects for the
general scope of our demonstration. For any Gaussian process (Gt)t∈[0,T ] of

(
Ω̂,F̂ ,γ

)
,

and any t ∈ [0,T ]

Λt(G) :=
exp
{
− 1

2
∫ t

0 G2
s ds
}

Eγ

[
exp
{
− 1

2
∫ t

0 G2
s du
}] . (4.21)

For any t ∈ [0,T ], r ∈D, and ν ∈M+
1 (C ×D) the following defines a probability measure

on
(
Ω̂,F̂

)
(see [183]):

dγK̃t
ν ,r
(ω) := Λt(Gν(ω,r))dγ(ω), ∀ω ∈ Ω̂.

As proven in [183], Gν(r) is still a centered Gaussian process under γK̃t
ν ,r

, with covari-
ance given by:

K̃t
ν ,r(s,u) := Eγ

[
Gν

u (r)G
ν
s (r)Λt

(
Gν(r)

)]
.

We also define for any ν ∈M+
1

(
C ×D

)
, (x,r) ∈ C ×D and t ∈ [0,T ], the processes

Lν
t (x,r) :=

∫ t

0
Gν

s (r)
(

dWs(x,r)−mν(s,r)ds
)
, V ν

t (x,r) :=Wt(x,r)−
∫ t

0
mν(s,r)ds. (4.22)

Here are a few properties for these objects:

Proposition 4.3.3. Exists a constant CT > 0, such that for any ν ∈M+
1

(
C ×D

)
, r ∈D,

t ∈ [0,T ],

sup
0≤s,u≤t

K̃t
ν ,r(s,u)≤CT , Λt

(
Gν(r)

)
≤CT , (4.23)

Eγ

[
exp
{
− 1

2

∫ T

0
Gν

t (r)
2dt
}]

= exp
{
− 1

2

∫ T

0
K̃t

ν ,r(t, t)dt
}
. (4.24)

Moreover, if (Gt)0≤t≤T and (G′t)0≤t≤T are two centered Gaussian processes of
(
Ω̂,F̂ ,γ

)
with uniformly bounded covariance, then exists C̃T > 0 such that for all t ∈ [0,T ],∣∣Λt(G)−Λt(G′)

∣∣≤ C̃T

{∫ t

0
Eγ

[(
Gs−G′s

)2
] 1

2
ds+

∫ t

0

∣∣G2
s −G′s

2∣∣ds
}
. (4.25)



70 CHAPTER 4. SPATIALLY EXTENDED NETWORKS

Proof. Observe that by Jensen inequality:

Λt
(
Gν(r)

)
≤ Eγ

[
exp
{
− 1

2

∫ t

0
Gν

s (r)
2du
}]−1 Jensen

≤ exp
{1

2

∫ t

0
Eγ

[
Gν

s (r)
2
]
du
}
≤ exp

{‖σ‖2
∞t

2λ 2
∗

}
.

As a consequence:

K̃t
ν ,r(s,u) = Eγ

[
Gν

u (r)G
ν
s (r)Λt

(
Gν(r)

)] C.S.
≤
√

Kν(s,s,r)Kν(t, t,r)exp
{‖σ‖2

∞t
2λ 2
∗

}
≤ ‖σ‖

2
∞

λ 2
∗

exp
{‖σ‖2

∞t
2λ 2
∗

}
,

For equality (4.24), let f (t) := Eγ

[
exp
{
− 1

2
∫ t

0 Gν
s (r)

2ds
}]

. As (t,ω)→ Gν
t (ω,r)2 exp

{
−

1
2
∫ t

0 Gν
s (ω,r)2ds

}
is a well defined, γ-a.s. continuous, and integrable under γ, we have

f ′(t) =−1
2
Eγ

[
Gν

t (r)
2 exp

{
− 1

2

∫ t

0
Gν

s (r)
2ds
}]

=−1
2

K̃t
ν ,r(t, t) f (t),

so that integrating f ′
f gives the result. Furthermore, letting (Gt)0≤t≤T and (G′t)0≤t≤T

be two centered γ-Gaussian processes with variance bounded by a common constant
CT , we have:

∣∣Λt(G)−Λt(G′)
∣∣= ∣∣∣∣ exp

{
− 1

2
∫ t

0 G2
s ds
}

Eγ

[
exp
{
− 1

2
∫ t

0 G2
s ds
}] − exp

{
− 1

2
∫ t

0 G′s
2ds
}

Eγ

[
exp
{
− 1

2
∫ t

0 G′s
2ds
}]∣∣∣∣

≤ exp
{‖σ‖2

∞t
λ 2
∗

}{∣∣∣∣Eγ

[
exp
{
− 1

2

∫ t

0
G2

s ds
}
− exp

{
− 1

2

∫ t

0
G′s

2ds
}]∣∣∣∣

+

∣∣∣∣exp
{
− 1

2

∫ t

0
G2

s ds
}
− exp

{
− 1

2

∫ t

0
G′s

2ds
}∣∣∣∣
}
,

≤ 1
2

exp
{‖σ‖2

∞t
λ 2
∗

}{∫ t

0
Eγ

[∣∣G2
s −G′s

2∣∣]ds+
∫ t

0

∣∣G2
s −G′s

2∣∣ds
}
,

where we have used the Lipschitz-continuity of exponential on R−. Consequently,
relying on Cauchy-Schwarz inequality, we obtain∣∣Λt(G)−Λt(G′)

∣∣ C.S.
≤ C̃T

{∫ t

0
Eγ

[(
Gs−G′s

)2
] 1

2
ds+

∫ t

0

∣∣G2
s −G′s

2∣∣ds
}
.

We now introduce a very useful decomposition of Γν based on Gaussian calculus.

Proposition 4.3.4. For every ν ∈M+
1 (C ×D), Γν admits the following decomposition:

Γν = Γ1,ν +Γ2,ν , (4.26)

where ∀µ ∈M+
1 (C ×D)

Γ1,ν(µ) :=−1
2

∫
C×D

∫ T

0

{
K̃t

ν ,r(t, t)+mν(t,r)2
}

dtdµ(x,r),
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and

Γ2,ν(µ) :=

{
1
2
∫
C×D

∫
Ω̂

Lν
T (x,r)

2dγK̃T
ν ,r

dµ(x,r)+
∫
C×D

∫ T
0 mν(t,r)dWt(x,r)dµ(x,r) if I(µ|P)< ∞,

+∞ otherwise .

In particular, we have Γ = Γ1 + Γ2 where Γi(µ) := Γi,µ(µ) for i ∈ {1,2} and any µ ∈
M+

1 (C ×D).

Proof. The equality is clearly satisfied outside {I(·|P) < +∞}. Let then µ ∈ {I(·|P) <
+∞}, and let us prove that Γ2,ν is well defined. Both integrands of the sum are mea-
surable, and the first one is positive implying integrability. Moreover, it is easy to see
that the second integrand is integrable as∫

C×D

(∫ T

0
mν(t,r)dWt(x,r)

)+
dµ(x,r)

(4.13)
≤ I(µ|P)

+ log
(∫

C×D
exp
{(∫ T

0
mν(t,r)dWt(x,r)−

1
2

∫ T

0
mν(t,r)2dt

)+
+
‖J‖2

∞T
λ 2
∗

}
dP(x,r)

)
≤ I(µ|P)+ ‖J‖

2
∞T

λ 2
∗

+ log
(

1+
∫

C×D
exp
{∫ T

0
mν(t,r)dWt(x,r)−

1
2

∫ T

0
mν(t,r)2dt

}
dP(x,r)

)
≤ I(µ|P)+ ‖J‖

2
∞T

λ 2
∗

+ log(2)<+∞,

by martingale property, and the negative part can be treated similarly. Now,

Γν(µ) =
∫

C×D
log
(∫

Ω̂

exp
{∫ T

0

(
Gν

t (ω,r)+mν(t,r)
)
dWt(x,r)

− 1
2

∫ T

0

(
Gν

t (ω,r)+mν(t,r)
)2dt

}
dγ(ω)

)
dµ(x,r)

=
∫

C×D
log
(

exp
{∫ T

0
mν(t,r)dWt(x,r)−

1
2

∫ T

0
(mν(t,r))2dt

}
×Eγ

[
exp
{
− 1

2

∫ t

0
Gν

u (r)
2du
}]∫

Ω̂

exp
{

Lν
T (ω,x,r)

}
dγK̃T

ν ,r
(ω)

)
dµ(x,r)

(4.24)
= Γ1,ν(µ)+

∫
C×D

∫ T

0
mν(t,r)dWt(x,r)dµ(x,r)+

∫
C×D

log
{∫

Ω̂

expLν
T (ω,x,r)dγK̃T

ν ,r
(ω)

}
dµ(x,r)

But standard Gaussian [183] calculus gives the P-a.s. equality:∫
Ω̂

exp
{

Lν
T (ω,x,r)

}
dγK̃T

ν ,r
(ω) = exp

{
1
2

∫
Ω̂

Lν
T (ω,x,r)2dγK̃T

ν ,r

}
so that,

Γν(µ) = Γ1,ν(µ)+
∫

C×D

∫ T

0
mν(t,r)dWt(x,r)dµ(x,r)+

1
2

∫
C×D

∫
Ω̂

Lν
T (ω,x,r)2dγK̃T

ν ,r
dµ(x,r)

= Γ1,ν(µ)+Γ2,ν(µ).

This decomposition has the interest of splitting the difficulties: while the first
term will be relatively easy to handle (see Proposition 4.3.7), the local martingale
term will require finer estimates based on Gaussian calculus and a number of tools
from stochastic calculus theory. It is also useful to prove the following lemma, central
for our analysis:
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Lemma 4.3.5.

dQν

dP
(x,r) = exp

{∫ T

0
Oν(t,x,r)dWt(x,r)−

1
2

∫ T

0
O2

ν(t,x,r)dt
}

(4.27)

where

Oν(t,x,r) = Eγ

[
Λt
(
Gν(r)

)
Gν

t (r)L
ν
t (x,r)

]
+mν(t,r).

Proof. We reproduce, here, the proof given in [22, Lemma 5.15]. Let us first, for any
r ∈ D, introduce the probability measure Qν ,r on M+

1 (C ) defined by

dQν ,r(x) := Eγ

[
exp
{

Xν(x,r)
}]

dPr(x), (4.28)

so that dQν(x,r) = dQν ,r(x)dπ(r). Using the decomposition of Γν , we find by Gaussian
calculus

dQν ,r

dPr
(x) (4.26)

= exp
{
− 1

2

∫ T

0

(
K̃t

ν ,r(t, t)+mν(t,r)2
)

dt
}

exp
{

1
2

∫
Ω̂

Lν
T (x,r)

2dγK̃T
ν ,r
+
∫ T

0
mν(t,r)dWt(x,r)

}
.

(4.29)

Itô’s formula implies

Lν
T (x,r)

2 = 2
∫ T

0
Gν

t (r)L
ν
t (x,r)dV ν

t (x,r)+
∫ T

0
Gν

t (r)
2dt, (4.30)

ΛT (Gν(r)) = 1+
1
2

∫ T

0
Λt(Gν(r))

(
K̃t

ν ,r(t, t)−Gν
t (r)

2)dt,

so that

Lν
T (x,r)

2
ΛT (Gν(r)) = 2

∫ T

0
Λt(Gν(r))Gν

t (r)L
ν
t (x,r)dV ν

t (x,r)+
∫ T

0
Λt(Gν(r))Gν

t (r)
2dt

+
1
2

∫ T

0
Lν

t (x,r)
2
Λt(Gν(r))

(
K̃t

ν ,r(t, t)−Gν
t (r)

2)dt.

On the one hand, a stochastic version of Fubini’s theorem (8.3.2) gives:

Eγ

[∫ T

0
Λt(Gν(r))Gν

t (r)L
ν
t (x,r)dV ν

t (x,r)

]
=
∫ T

0
Eγ

[
Λt(Gν(r))Gν

t (r)L
ν
t (x,r)

]
dV ν

t (x,r). (4.31)

This will be justified at the end of the demonstration. On the other hand, Isserlis’
theorem (8.2.4)

Eγ

[
Lν

t (x,r)
2
Λt
(
Gν(r)

)
Gν

t (r)
2
]
= Eγ

[
Lν

t (x,r)
2
Λt(Gν(r))

]
K̃t

ν ,r(t, t)+2Eγ

[
Λt
(
Gν(r)

)
Gν

t (r)L
ν
t (x,r)

]2
,

so that

1
2
Eγ

[
Lν

T (x,r)
2
ΛT (Gν(r))

]
− 1

2

∫ T

0
K̃t

ν ,r(t, t)dt =
∫ T

0
Eγ

[
Λt(Gν(r))Gν

t (r)L
ν
t (x,r)

]
dV ν

t (x,r)

− 1
2

∫ T

0
Eγ

[
Λt
(
Gν(r)

)
Gν

t (r)L
ν
t (x,r)

]2
dt. (4.32)
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Combining (4.29) and (4.32) gives the desired result.
We now justify that Fubini’s theorem for stochastic integrals 8.3.2 holds to give
(4.31). First observe it is easy to check that V ν

t (x,r) is a Pr-semimartingale in H 2,
and that the map of Ω̂× [0,T ]×C define as (ω, t,x)→ Λt

(
Gν(ω,r)

)
Gν

t (ω,r)Lν
t (ω,x,r) is

indeed F̂ ⊗P-measurable2. We thus just need to check that Λt(Gν(r))Gν
t (r)L

ν
t (x,r)

and Eγ

[
Λt(Gν(r))Gν

t (r)L
ν
t (x,r)

] 1
2 are in L

(
V ν
)
, that is:

∫
C

∫ T

0
Λs(Gν(r))2Gν

s (r)
2Lν

s (x,r)
2dsdPr(x)<+∞, γ−a.s.

and ∫
C

∫ T

0

∣∣∣Eγ

[
Λs(Gν(r))Gν

s (r)L
ν
s (x,r)

]∣∣∣dsdPr(x)<+∞.

On the one hand,∫
C

∫ T

0
Λs(Gν(r))2Gν

s (r)
2Lν

s (x,r)
2dsdPr(x)

C.S.
≤ 2T

∫ T

0
Λs(Gν(r))2Gν

s (r)
2
∫ s

0
Gν

u (r)
2mµ(u,r)2duds

+2
∫ T

0
Λs(Gν(r))2Gν

s (r)
2
∫

C

(∫ s

0
Gν

u (x,r)dWu(x,r)
)2

dPr(x)ds

B.D.G.
≤ CT

∫ T

0
Λs(Gν(r))2Gν

s (r)
2
∫ s

0
Gν

u (r)
2duds <+∞, γ−a.s..

where C.S. stands for Cauchy-Shwarz inequality. On the other hand, by Fubini’s
theorem∫

C

∫ T

0

∣∣∣Eγ

[
Λs(Gν(r))Gν

s (r)L
ν
s (x,r)

]∣∣∣dsdPr(x)
C.S.,(4.23)
≤ CT

(∫ T

0
Eγ

[∫
C

(∫ s

0
Gν

u (r)dWu(x,r)
)2

dPr(x)
]

ds
) 1

2

B.D.G.
< +∞.

where B.D.G. stands for Burkhölder-Davis-Gundy inequality.

We are now ready to state one of the main result of the chapter which proves the
intuitive equality between the two rate functions I(·|Qν) and Hν .

Theorem 4.3.6. Qν is a well defined probability measure on M+
1 (C ×D), and Hν(µ) =

I(µ|Qν). In particular Hν is a good rate function.

Proof. Fix r ∈ D, and define the probability measure Q̄ν ,r ∈M+
1 (C ) by:

dQ̄ν ,r

dPr
(x) := exp

{∫ T

0
mν(t,r)dWt(x,r)−

1
2

∫ T

0
mν(t,r)2dt

}
for which Novikov’s criterion holds by boundedness of mν . By Girsanov’s theorem,
V ν(·,r) (defined in (4.22)) is a Q̄ν ,r-Brownian motion, and we can use Novikov’s crite-
rion again to check that:

dPr

dQ̄ν ,r
(x) := exp

{
−
∫ T

0
mν(t,r)dV ν

t (x,r)− 1
2

∫ T

0
mν(t,r)2dt

}
,

2We work on the filtered space
(
C ,
(
F X

t
)

0≤t≤T ,B(C ),Pr

)
, where

(
F X

t := σ
(
xs,0≤ s≤ t

))
0≤t≤T

denotes

the canonical filtration of the coordinate process. In this setting, P denotes the σ -field generated by
adapted continuous processes.
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implying Q̄ν ,r'Pr. Moreover, let Q̄ν ∈M+
1 (C ×D) be such that dQ̄ν(x,r)= dQ̄ν ,r(x)dπ(r).

Then Q̄ν ' P, and by the previous lemma Qν � Q̄ν with density:

dQν

dQ̄ν

(x,r) = Eγ

[
exp
{∫ T

0
Gν

t (r)dV ν
t (x,r)− 1

2

∫ T

0
Gν

t (r)
2dt
}]

(4.27)
= exp

{∫ T

0
Eγ

[
Λt
(
Gν(r)

)
Gν

t (r)L
ν
t (x,r)

]
dV ν

t (x,r)− 1
2

∫ T

0
Eγ

[
Λt
(
Gν(r)

)
Gν

t (r)L
ν
t (x,r)

]2
dt
}

(4.26)
= exp

{
1
2

∫
Ω̂

Lν
T (x,r)

2dγK̃T
ν ,r
− 1

2

∫ T

0
K̃t

ν ,r(t, t)dt
}

(4.23)
≥ exp

{
−CT

}
> 0.

We will first prove that I(Qν ,r|Q̄ν ,r) is finite. This will bring, by applying the exact
same reasoning as in [22, Appendix B], the equality:

∀µ ∈M+
1 (C ×D), H̄ν(µ) = I(µ|Qν),

where

H̄ν : µ →

{
I(µ|Q̄ν)−

∫
C×D log

(
dQν

dQ̄ν

(x,r)
)

dµ(x,r) if I(µ|Q̄ν)<+∞,

+∞ otherwise.

We will then prove that for every µ ∈M+
1 (C ×D),

H̄ν(µ) = Hν(µ), (4.33)

which will conclude the proof.
For the first point, observe that Girsanov’s theorem ensures that the process

(
Bν

t (·,r) :=

V ν
t (·,r)−

∫ t
0 Eγ

[
Λs
(
Gν(r)

)
Gν

s (r)L
ν
s (·,r)

]
ds
)

0≤t≤T
is a Qν ,r-Brownian motion, so that

I(Qν ,r|Q̄ν ,r)

=
∫

C

{∫ T

0
Eγ

[
Λt
(
Gν(r)

)
Gν

t (r)L
ν
t (x,r)

]
dV ν

t (x,r)− 1
2

∫ T

0
Eγ

[
Λt
(
Gν(r)

)
Gν

t (r)L
ν
t (x,r)

]2
dt
}

dQν ,r(x)

=
∫

C

{∫ T

0
Eγ

[
Λt
(
Gν(r)

)
Gν

t (r)L
ν
t (x,r)

]
dBν

t (x,r)+
1
2

∫ T

0
Eγ

[
Λt
(
Gν(r)

)
Gν

t (r)L
ν
t (x,r)

]2
dt
}

dQν ,r(x)

=
1
2

∫ T

0

∫
C

Eγ

[
Λt
(
Gν(r)

)
Gν

t (r)
(∫ t

0
Gν

s (r)dV ν
s (x,r)

)]2

dQν ,r(x)︸ ︷︷ ︸
ϕν (t,r)

dt.

We now intend to bound ϕν(t,r) uniformly in order to obtain the result.

ϕ(t,r)≤
∫

C

{
Eγ

[
Λt
(
Gν(r)

)
Gν

t (r)
(∫ t

0
Gν

s (r)dBν
s (x,r)

)]2

+

(∫ t

0
K̃t

ν ,r(t,s)Eγ

[
Λs
(
Gν(r)

)
Gν

s (r)L
ν
s (x,r)

]
ds
)2
}

dQν ,r(x)

C.S.,(4.23)
≤ CT

∫
C

{
K̃t

ν ,r(t, t)Eγ

[(∫ t

0
Gν

s (r)dBν
s (x,r)

)2]

+
∫ t

0
K̃t

ν ,r(t,s)
2Eγ

[
Λs
(
Gν(r)

)
Gν

s (r)L
ν
s (x,r)

]2
ds

}
dQν ,r(x)

Fubini,(4.23)
≤ CT

{
Eγ

[∫
C

∫ t

0
Gν

s (r)
2dsdQν ,r(x)

]
+
∫ t

0
ϕ(s,r)ds

}
Fubini,(4.23)
≤ CT

{
1+

∫ t

0
ϕ(s,r)ds

}
,
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where we have used Itô isometry, and where CT is uniform in space. Relying on
Gronwall’s lemma, we find that ϕ(t,r) is uniformly bounded in space:

sup
0≤t≤T

ϕν(t,r)≤CT expCT .

This implies that exists a finite constant C̃T , uniform in space, such that I(Qν ,r|Q̄ν ,r)≤
C̃T .

Moreover, I(Qν ,r|Q̄ν ,r) is positive and π−measurable. We can thus integrate on D
to find:

I(Qν |Q̄ν) =
∫

D
I(Qν ,r|Q̄ν ,r)dπ(r)≤ C̃T < ∞.

Remark that the proof of Proposition 4.3.2 readily applies to show that exists 0 < ι < 1
and e > 0 such that ∫

C×D
log
(dQν

dQ̄ν

(x,r)
)

dµ(x,r)≤ ιI(µ|Q̄ν)+ e.

In particular, H̄ν is finite whenever I(·|Q̄ν) is. Moreover, we can directly apply [22,
Appendix B], to obtain:

∀µ ∈M+
1 (C ×D), H̄ν(µ) = I(µ|Qν).

We now show that equation (4.33) holds. If both I(µ|P) and I(µ|Q̄ν) are infinite the re-
sults is clear. We handle the other cases by remarking that {I(·|P)<+∞}= {I(·|Q̄ν)<
+∞}. In fact, let µ � P' Q̄µ , suppose that I(µ|Q̄ν) is finite, and observe that

I(µ|P) =
∫

C×D

{
log
( dµ

dQ̄ν

(x,r)
)
+ log

(dQ̄ν

dP
(x,r)

)}
dµ(x,r).

On the one hand, log
(

dµ

dQ̄ν

)
is µ-integrable as

∫
C×D

∣∣∣ log
( dµ

dQ̄ν

(x,r)
)∣∣∣dµ(x,r) =

∫
C×D

∣∣∣ log
( dµ

dQ̄ν

(x,r)
) dµ

dQ̄ν

(x,r)
∣∣∣dQ̄ν(x,r),

as ∀x ∈R+, x log(x) ≥ − 1
exp(1) , and as I(µ|Q̄ν) < +∞. Let us show that log

(
dQ̄ν

dP

)
is also

µ-integrable. In fact,∫
C×D

log
(dQ̄ν

dP
(x,r)

)−
dµ(x,r) =

∫
C×D

log
(

1∨ dP
dQ̄ν

(x,r)
)

dµ(x,r)

(4.13)
≤ I(µ|Q̄ν)+ log

(
1+

∫
C×D

dP
dQ̄ν

(x,r)dQ̄ν(x,r)
)
≤ I(µ|Q̄ν)+ log(2)<+∞,

whereas∫
C×D

log
(dQ̄ν

dP
(x,r)

)+
dµ(x,r)

(4.13)
≤ I(µ|Q̄ν)+ log

(
1+

∫
C×D

dQ̄ν

dP
(x,r)dQ̄ν

)
≤ I(µ|Q̄ν)+ log

(
1+

∫
D

∫
C

exp
{∫ T

0
mν(t,r)dV ν

t (x,r)− 1
2

∫ T

0
mν(t,r)2dt

}
dQ̄ν ,r(x)e

∫ T
0 mν (t,r)2dtdπ(r)

)
≤ I(µ|Q̄ν)+ log

(
1+ exp

{T‖J‖2
∞

2λ 2
∗

})
<+∞.
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Hence, I(µ|Q̄ν)<+∞ implies that

I(µ|P) = I(µ|Q̄ν)+
∫

C×D
log
(dQ̄ν

dP
(x,r)

)
dµ(x,r)< ∞,

and by symmetry, I(µ|P) < ∞ implies finiteness of I(µ|Q̄ν) with same equality. More-
over, we can apply a similar reasoning as in the proof of Proposition 4.3.2 to show
that exists constants 0 < ι < 1 and e > 0 such that∣∣∣∫

C×D
log
(dQ̄ν

dP
(x,r)

)
dµ(x,r)

∣∣∣≤ ιI(µ|Q̄ν)+ e,

and
|Γν(µ)| ≤ ιI(µ|P)+ e.

Hence, for µ ∈ {I(·|P)<+∞}= {I(·|Q̄ν)<+∞} these quantities are finite. Moreover:

Γν(µ) =
∫

C×D

{
log
(dQν

dQ̄ν

(x,r)
)
+ log

(dQ̄ν

dP
(x,r)

)}
dµ(x,r)

and we can split this integral as dQν

dQ̄ν

is bounded away from 0 and log
(

dQ̄ν

dP

)
is µ-

integrable to obtain:

Γν(µ) =
∫

C×D
log
(dQν

dQ̄ν

(x,r)
)

dµ(x,r)+
∫

C×D
log
(dQ̄ν

dP
(x,r)

)
dµ(x,r).

As a consequence, for any µ ∈ {I(·|P)<+∞}, we have

I(µ|P)−Γν(µ) = I(µ|Q̄ν)−
∫

C×D
log
(dQν

dQ̄ν

(x,r)
)

dµ(x,r),

which concludes the proof.

We have proved that Hν is a good rate function, and would like to extend this
property to H: Hν is seen in our proof as an intermediate quantity, equal to H when
I(µ|P) = ∞, but differing from it of Γ−Γν otherwise. We control this difference below
in Lemma 4.3.8.

Let us introduce two preliminary objects that will appear in the obtained upper-
bound. First, because of spatial extension, it is useful to introduce a proper distance
on C ×D:

Definition 4.3.1. The map

dT :


(C ×D)2 →R+(
(x,r),(y,r′)

)
→
{
‖r− r′‖2

Rd + sup
a,b∈[−τ,0],t∈[0,T ]
|b−a|≤Kτ ‖r−r′‖

Rd

∣∣xt+a− yt+b
∣∣2} 1

2

, (4.34)

is a distance on C ×D. Moreover,

dT
(
(xn,rn),(x,r)

)
→ 0 ⇐⇒ ‖x− xn‖∞,T +‖r− rn‖Rd → 0,

and
(
C ×D,dT

)
is complete.
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Remark 8. In particular, dT generates the natural Borel σ -field of C ×D, and
(
C ×

D,dT
)

is a Polish space.

Proof. Symmetry and separation are easy to obtain. The triangular inequality is a
consequence of the two following facts. First, for any (x,r),(y,r′),(z, r̃), we have

sup
a,b∈[−τ,0],t∈[0,T ]
|b−a|≤Kτ‖r−r′‖

Rd

∣∣xt+a− yt+b
∣∣≤ sup

a,b,c∈[−τ,0],t∈[0,T ]
|c−a|≤Kτ‖r−r̃‖

Rd ,|b−c|≤Kτ‖r̃−r′‖
Rd

∣∣xt+a− yt+b
∣∣

≤ sup
a,c∈[−τ,0],t∈[0,T ]
|c−a|≤Kτ‖r−r̃‖

Rd

∣∣xt+a− zt+c
∣∣+ sup

c,b∈[−τ,0],t∈[0,T ]
|b−c|≤Kτ‖r̃−r′‖

Rd

∣∣zt+c− yt+b
∣∣,

as the set {
a,b ∈ [−τ,0], |b−a| ≤ Kτ‖r− r′‖Rd

}
is contained in{

a,b ∈ [−τ,0],∃c ∈ [−τ,0], |c−a| ≤ Kτ‖r− r̃‖Rd , |b− c| ≤ Kτ‖r̃− r′‖Rd

}
.

Second, the triangular inequality ofR2 for the Euclidean norm gives ∀a1,b1,a2,b2 ∈R,{
(a1 +b1)

2 +(a2 +b2)
2
} 1

2 ≤
{

a2
1 +a2

2
} 1

2 +
{

b2
1 +b2

2
} 1

2 .

Hence, dT is a distance on C ×D. Let (xn,rn)n∈N ∈
(
C ×D

)N, and (x,r) ∈ C ×D. Taking
a = b in the supremum, we see that

‖r− r′‖Rd +‖x− y‖∞,T ≤ dT
(
(x,r),(y,r′)

)
, (4.35)

we have that dT
(
(xn,rn),(x,r)

)
→ 0 implies rn→ r, and xn→ x for the supremum-norm

on [−τ,T ]. Conversely, suppose that rn→ r, and xn→‖·‖∞,T x, and let η > 0 such that

s, t ∈ [−τ,T ], |s− t| ≤ η =⇒ |xt − xs| ≤ ε.

We then see that, we can find a n0 such that ∀n≥ n0,

dT
(
(xn,rn),(x,r)

)2 ≤ ‖r− rn‖2
Rd +2‖x− xn‖2

∞,T +2 sup
a,b∈[−τ,0],t∈[0,T ]

|b−a|≤η

∣∣xt+a− xt+b
∣∣2 ≤ 3ε

2.

The completion of
(
C ×D,dT

)
comes from that of

(
C ,‖·‖∞,T

)
, and

(
D, | · |

)
, and from

(4.35).

We also define the 2-Vaserstein distance on M+
1 (C ×D), associated with dT :

dV
T (µ,ν) := inf

ξ

{∫
(C×D)2

dT
(
(x,r),(y,r′)

)2dξ
(
(x,r),(y,r′)

)} 1
2

the infimum being taken on the laws ξ ∈ Cµ,ν . In the following, we will, for any
t ∈ [0,T ], denote by dt and dV

t the respective restrictions of dT and dV
T on

(
C
(
[−τ, t],R

)
×

D
)2.

Here are a few regularity properties of the covariance and mean of our Gaussian
interactions:
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Proposition 4.3.7. Exists CT > 0 such that for any µ,ν ∈M+
1 (C ×D), r ∈ D, t ∈ [0,T ]

and u,s ∈ [0, t]:∣∣mµ(t,r)−mν(t,r)
∣∣+ ∣∣Kµ(t,s,r)−Kν(t,s,r)

∣∣+ ∣∣K̃t
µ,r(s,u)− K̃t

ν ,r(s,u)
∣∣≤CT dV

T (µ,ν). (4.36)

Proof. Let ξ ∈Cµ,ν , and let
(
G,G′

)
be, under γ, a family of independent bi-dimensional

centered Gaussian processes with covariance Kξ (s, t,r) given by:

1
λ (r)2

∫
(C×D)2

(
σ2

rr′S(xs−τrr′ )S(xt−τrr′ ) σrr′σrr̃′S(xs−τrr′ )S(yt−τrr̃′ )
σrr′σrr̃′S(ys−τrr̃′ )S(xt−τrr′ ) σ2

rr̃′S(ys−τrr̃′ )S(yt−τrr̃′ )

)
dξ
(
(x,r′),(y, r̃′)

)
.

(4.37)
with the short-hand notations σrr′ := σ(r,r′), τrr′ = τ(r,r′). Let us first take care of the
mean difference:∣∣mµ(t,r)−mν(t,r)

∣∣= ∣∣∣∣ 1
λ (r)

∫
C×D

J(r,r′)S(xt−τ(r,r′))d(µ−ν)(x,r′)
∣∣∣∣

≤ 1
λ∗

∫
(C×D)2

∣∣∣J(r,r′)S(xt−τ(r,r′))− J(r, r̃′)S(yt−τ(r,r̃′))
∣∣∣dξ
(
(x,r′),(y, r̃′)

)
≤ 1

λ∗

∫
(C×D)2

{
KJ‖r′− r̃′‖Rd +‖J‖∞

∣∣S(xt−τ(r,r′)
)
−S
(
yt−τ(r,r̃′)

)∣∣}dξ
(
(x,r′),(y, r̃′)

)
≤ 1

λ∗

∫
(C×D)2

{
KJ‖r′− r̃′‖Rd +‖J‖∞KS sup

a,b∈[−τ,0],t∈[0,T ]
|b−a|≤Kτ‖r′−r̃′‖

Rd

∣∣xt−a− yt−b
∣∣}dξ

(
(x,r′),(y, r̃′)

)
C.S.
≤ CT

{∫
(C×D)2

dT
(
(x,r′),(y, r̃′)

)2dξ
(
(x,r′),(y, r̃′)

)} 1
2

.

Moreover,∣∣Kµ(t,s,r)−Kν(t,s,r)
∣∣= ∣∣∣Eγ

[
GsGt −G′sG

′
t

]∣∣∣≤CT

{
Eγ

[(
Gt −G′t

)2
] 1

2
+Eγ

[(
Gs−G′s

)2
] 1

2
}
.

and∣∣K̃t
µ,r(s,u)− K̃t

ν ,r(s,u)
∣∣ (4.23)
≤ CT

{
Eγ

[(
Λt(G)−Λt(G′)

)2
] 1

2
+Eγ

[(
Gs−G′s

)2
] 1

2
+Eγ

[(
Gu−G′u

)2
] 1

2
}

(4.25)
≤ CT

{(∫ t

0
Eγ

[(
Gv−G′v

)2
]
dv
) 1

2

+Eγ

[(
Gs−G′s

)2
] 1

2
+Eγ

[(
Gu−G′u

)2
] 1

2
}
.

Eγ

[(
Gt −G′t

)2
]
=

1
λ (r)2

∫
(C×D)2

(
σ(r,r′)S(xt−τ(r,r′))−σ(r, r̃′)S(yt−τ(r,r̃′))

)2
dξ
(
(x,r′),(y, r̃′)

)
.

Splitting the integrand of the right-hand side, we find:(
σrr′S(xt−τrr′ )−σrr̃′S(yt−τrr̃′ )

)2
≤ 2
{(

σrr′−σrr̃′
)2S(xt−τrr′ )

2 +σ
2
rr̃′
(
S(xt−τrr′ )−S(yt−τrr̃′ )

)2
}

≤ 2K2
σ‖r′− r̃′‖2

Rd +2‖σ‖2
∞K2

S sup
a,b∈[−τ,0]

|b−a|≤Kτ‖r′−r̃′‖
Rd

|xt+a− yt+b|2 ≤Cdt
(
(x,r′),(y, r̃′)

)2
,

so that

Eγ

[(
Gt −G′t

)2
]
≤CT

∫
(C×D)2

dt
(
(x,r′),(y, r̃′)

)2dξ
(
(x,r′),(y, r̃′)

)
.

Taking the infimum over ξ ∈ Cµ,ν yields (4.36).
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We have now introduced all the needed elements to state the following technical
lemma concluding on the fact that H is a good rate function.

Lemma 4.3.8. Let µ,ν ∈M+
1

(
C ×D

)
, then:

(i) there exists a positive constant CT such that:

(a) |Γ1,ν(µ)−Γ1(µ)| ≤CT dV
T (µ,ν).

(b) |Γ2,ν(µ)−Γ2(µ)| ≤CT
(
1+ I(µ|P)

)
dV

T (µ,ν).

(ii) H is a good rate function.

Proof. The main techniques were introduced in [22, Lemma 3.3-3.4] and used in a
neuroscience setting in [51, Lemma.5], but spatiality induces new issues essentially
impacting the proof of point (1.b). For the sake of completeness, we will here repro-
duce these techniques, and address the specific spatial difficulties.
Proof of Lemma 4.3.8.(1.a).

We define
Γ1(µ,r) :=−1

2

∫ T

0

(
K̃t

µ,r(t, t)+mµ(t,r)2
)

dt,

so that∣∣Γ1,ν(µ)−Γ1(µ)
∣∣= ∣∣∣∣∫

C×D

(
Γ1(ν ,r)−Γ1(µ,r)

)
dµ(x,r)

∣∣∣∣
≤ 1

2

∫ T

0

∣∣∣(mµ(t,r)−mν(t,r)
)(

mµ(t,r)+mν(t,r)
)∣∣∣+ ∣∣∣K̃t

ν ,r(t, t)− K̃t
µ,r(t, t)

∣∣∣dt
(4.36)
≤ CT dV

T (µ,ν).

(4.38)

Proof of Lemma 4.3.8.(1.b)

Note that if I(µ|P) = ∞ the inequality is obvious. Let then µ ∈M+
1 (C ×D) with

I(µ|P)< ∞ implying µ � P and finiteness of Γν(µ), and Γ(µ). This also implies that µ

has a measurable density ρµ with respect to B
(
C ×D

)
:

dµ(x,r) = ρµ(x,r)dP(x,r) = ρµ(x,r)dPr(x)dπ(r).

Hence, for r ∈ D such that cµ(r) :=
∫
C ρµ(x,r)dPr(x) 6∈ {0,+∞}, we can properly define

µr ∈M+
1 (C ) by dµr(x) := ρµ (x,r)

cµ (r)
dPr(x). Of course µr� Pr, and

dµ(x,r) = dµr(x)cµ(r)dπ(r). (4.39)

Remark that cµ is a measurable function of space such that
∫

D cµ(r)dπ(r) = 1, and that
the set {r ∈ D, cµ(r) ∈ {0,+∞}} do not impact the value of integrals over µ.

In order to obtain the proper inequality, we split the difference of interest into
different terms:∣∣Γ2,ν(µ)−Γ2(µ)

∣∣≤ 1
2

∣∣∣∣∫
C×D

{∫
Ω̂

Lν
T (x,r)

2dγK̃T
ν ,r
−
∫

Ω̂

Lµ

T (x,r)
2dγK̃T

µ,r

}
dµ(x,r)

∣∣∣∣
+

∣∣∣∣∫
C×D

∫ T

0
(mν −mµ)(t,r)dWt(x,r)dµ(x,r)

∣∣∣∣≤ 1
2

∣∣∣∣∫
C×D

∫
Ω̂

Lν
T (x,r)

2d
(
γK̃T

ν ,r
− γK̃T

µ,r

)
dµ(x,r)

∣∣∣∣
+

1
2

∣∣∣∣∫
C×D

∫
Ω̂

{
Lµ

T (x,r)
2−Lν

T (x,r)
2
}

dγK̃T
µ,r

dµ(x,r)
∣∣∣∣+∣∣∣∣∫

C×D

∫ T

0
(mν−mµ)(t,r)dWt(x,r)dµ(x,r)

∣∣∣∣.
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Let ξ ∈ Cµ,ν be such that∫
(C×D)2

dT
(
(x,r′),(y, r̃′)

)2dξ
(
(x,r′),(y, r̃′)

)
≤
(
dV

T (µ,ν)+ ε
)2
.

Moreover, let
(
G(r),G′(r)

)
r∈D be, under γ, a family of independent bi-dimensional cen-

tered Gaussian processes with covariance Kξ (s, t,r) as define in (4.37). Remark that
for any map f

Eγ

[
f
(
Gµ(r)

)]
−Eγ

[
f
(
Gν(r)

)]
= Eγ

[
f
(
G(r)

)
− f
(
G′(r)

)]
and as proved in Proposition 4.3.7,

Eγ

[(
Gt(r)−G′t(r)

)2
]
≤CT

(
dV

T (µ,ν)+ ε
)2
.

Let also
Lt(x,r) :=

∫ t

0
Gs(r)dV µ

s (x,r), L′t(x,r) :=
∫ t

0
G′s(r)dV ν

s (x,r).

Using inequality (4.23), we then obtain:

|Γ2,ν(µ)−Γ2(µ)|
C.S.
≤ CT

{ B1:=︷ ︸︸ ︷∫
C×D

Eγ

[∣∣ΛT (G(r))−ΛT (G′(r))
∣∣L′T (x,r)2

]
dµ(x,r)

+ ∏
ε=±1

(∫
C×D

Eγ

[(∫ T

0
(Gt(r)+ εG′t)dV µ

t (x,r)
)2
]

dµ(x,r)

) 1
2

︸ ︷︷ ︸
=:B2

+

∣∣∣∣∣
∫

C×D
Eγ

[(∫ T

0
Gt(r)dV µ

t (x,r)
)2

−
(∫ T

0
Gt(r)dV ν

t (x,r)
)2]

dµ(x,r)

∣∣∣∣∣︸ ︷︷ ︸
=:B3

+

(∫
C×D

∣∣∣∫ T

0
(mν −mµ)(t,r)dWt(x,r)

∣∣∣2dµ(x,r)
) 1

2

︸ ︷︷ ︸
=:B4

}
. (4.40)

Before bounding these four terms, we prove a useful inequality. For any h,m ∈
L2([0;T ],dt), with m bounded, and any r ∈ D with cµ(r) 6∈ {0,+∞},∫

C

(∫ T

0
ht(dWt(x,r)−m(t)dt)

)2
dµr(x)≤ 2

{∫
C

(∫ T

0
htdWt(x,r)

)2
+
(∫ T

0
htmtdt

)2
dµr(x)

}
.

(4.41)

Moreover, supposing that h 6= 0L2([0;T ],dt), then Φh(x)=

(∫ T
0 ht dWt(x,r)

)2

4
(∫ T

0 h2
t dt
) is a well-defined,

positive and measurable function of the σ -algebra B(C ), so that resorting to (4.13)
one obtains ∫

C
Φh(x)dµr(x)≤ I(µr|Pr)+ log

∫
C

expΦh(x)dPr(x).

As W (.,r) is a Brownian motion under Pr, Φh ∼N
(
0, 1

4

)2, so that Gaussian calculus
gives, for any C > 2:∫

C

(∫ T

0
htdWt(x,r)

)2
dµr(x)≤C

(
I(µr|Pr)+1

)(∫ T

0
h2

t dt
)



81

Remark that this inequality obviously holds when h = 0L2([0;T ],dt). Applying this
result in (4.41) one eventually finds:∫

C

(∫ T

0
ht(dWt(x,r)−m(t)dt)

)2
dµr(x)

C.S.
≤ 2

(
C
(
1+ I(µr|Pr)

)
+m2

∞T
)(∫ T

0
h2

t dt
)

≤CT
(
1+ I(µr|Pr)

)(∫ T

0
h2

t dt
)
. (4.42)

With this result in mind, we now control the first term. Recall that, by (4.25),∣∣ΛT (G(r))−ΛT (G′(r))
∣∣≤CT

(∫ T

0

∣∣Gt(r)2−G′t(r)2∣∣dt +
∫ T

0
Eγ

[(
Gt(r)−G′t(r)

)2
] 1

2
dt
)
.

Now, relying on the decomposition of µ, we find

B1
Fubini
=

∫
D

Eγ

[∣∣∣ΛT (G(r))−ΛT (G′(r))
∣∣∣{∫

C
L′T (x,r)

2dµr(x)
}]

cµ(r)dπ(r)

(4.42)
≤

∫
D

CT
(
I(µr|Pr)+1

)
Eγ

[∣∣∣ΛT (G(r))−ΛT (G′(r))
∣∣∣{∫ T

0
G′t(r)

2dt
}]

cµ(r)dπ(r)

≤CT

∫
D

(∫ T

0

∫ T

0
Eγ

[∣∣Gs(r)2−G′s(r)2∣∣G′t(r)2
](

I(µr|Pr)+1
)
dsdt +dV

T (µ,ν)+ ε

)
cµ(r)dπ(r)

≤CT

(∫
D

I(µr|Pr)cµ(r)dπ(r)+1
)(

dV
T (µ,ν)+ ε

)
.

where the last inequality is a consequence of Cauchy-Schwarz’s inequality, and
Isserlis’ theorem 8.2.4. Observe that:

∫
D

I(µr|Pr)cµ(r)dπ(r) =
∫

D

∫
C

log
(

ρµ(x,r)
cµ(r)

)
dµr(x)cµ(r)dπ(r)

=
∫

C×D
log(ρµ(x,r))dµ(x,r)−

∫
D

log(cµ(r))cµ(r)dπ(r)
Jensen
≤ I(µ|P).

As a consequence,

B1 ≤CT
(
1+ I(µ|P)

)(
dV

T (µ,ν)+ ε
)
.

Similarly, there exists a constant cT such that

B2 ≤ ∏
ε=±1

(∫
D

cT
(
1+ I(µr|Pr)

)
Eγ

[∫ T

0

(
Gt(r)+ εG′t(r)

)2dt
]

cµ(r)dπ(r)

) 1
2

≤CT
(
1+ I(µ|P)

) 1
2

(∫
D

(
1+ I(µr|Pr)

)∫ T

0
Eγ

[(
Gt(r)−G′t(r)

)2
]
dtcµ(r)dπ(r)

) 1
2

≤CT
(
1+ I(µ|P)

)(
dV

T (µ,ν)+ ε
)
.

To bound B3, we first use Cauchy-Schwarz inequality:

B3 ≤ ∏
ε=±1

{∫
C×D

Eγ

[∣∣∣∣∫ T

0
Gt(r)

(
(1+ ε)dWt(x,r)− (mν(t,r)+ εmµ(t,r))dt

)∣∣∣∣2
]

dµ(x,r)

} 1
2

.

(4.43)
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Then, again by Cauchy-Schwarz’s inequality, one observes that

Eγ

[∣∣∣∫ T

0
Gt(r)

(
mµ(t,r)−mν(t,r)

)
dt
∣∣∣2] (4.36)

≤ CT dV
T (µ,ν)

2.

Moreover, (4.42) gives:∫
C

{∫ T

0
2Gt(r)

(
dWt(x,r)−

mµ(t,r)+mν(t,r)
2

dt
)}2

dµr(x)≤ cT
(
1+ I(µr|Pr)

)∫ T

0
G2

t (r)dt.

Using Jensen’s inequality and injecting the last two inequalities in (4.43) gives:

B3 ≤CT
(
1+ I(µ|P)

) 1
2 dV

T (µ,ν)≤CT
(
1+ I(µ|P)

)
dV

T (µ,ν)

as I(.|P)≥ 0.
As of the last term, we have

B4
(4.42)
≤

(∫
D

cT
(
1+ I(µr|Pr)

){∫ T

0

(
mµ(t,r)−mν(t,r)

)2
dt
}

cµ(r)dπ(r)

) 1
2

(4.36)
≤ CT

(
1+ I(µ|P)

) 1
2 dV

T (µ,ν)≤CT
(
1+ I(µ|P)

)
dV

T (µ,ν).

Hence, we conclude that exists a constant CT satisfying

|Γ2,ν(µ)−Γ2(µ)| ≤CT
(
1+ I(µ|P)

)(
dV

T (µ,ν)+ ε
)
.

Sending ε to 0 thus gives the result.
Proof of Lemma4.3.8.(3): We proceed exactly as in Lemma 5.(vi) [51], remarking
that

(
C ×D,dT

)
is a Polish space with the same topology as the usual Borel one. In

order to demonstrate that H is a good rate function, we need to show that it is lower
semi-continuous and that it has compact level sets, i.e. {H ≤M} is a compact set for
any M > 0.

• lower semi-continuity:
Let (µp)p∈N ∈M+

1

(
C ×D

)N be a sequence of probability measures weakly con-
verging toward µ ∈M+

1

(
C ×D

)
, and choose a subsequence (µpm)m such that

limm→∞ H(µpm) = liminfp→∞ H(µp). Suppose first that I(µ|P) is bounded for large
m. we then have:

liminf
p→∞

H(µp) = lim
m→∞

(I−Γ)(µpm)≥ liminf
m→∞

(I−Γµ)(µpm)+ liminf
m→∞

(Γµ −Γ)(µpm).

As I(µpm |P) is finite for big m, Theorem 4.3.6 implies:

liminf
m→∞

(
I(µpm |P)−Γµ(µpm)

)
= liminf

m→∞
Hµ(µpm)≥ Hµ(µ) = H(µ).

What’s more, the first point of this lemma ensures the existence of a finite con-
stant CT such that,∣∣Γ(µpm)−Γµ(µpm)

∣∣≤CT (1+ I(µpm |P))dV
T (µ,µpm)

so that, as I(µpm |P) is bounded for large m, the above difference tends to zero.
Hence, liminfp→∞ H(µp)≥ H(µ).
Suppose now that I(µpm |P) is not bounded for large m, i.e. we can find a subse-
quence (pm(M))M∈N such that limM→+∞ I(µpm(M)

|P)=+∞. Consequently, H(µpm(M)
)→M→+∞

+∞, so that
liminf

p→∞
H(µp) = lim

M→+∞
H(µpm(M)

) = +∞≥ H(µ).

We proved that H is lower semi-continuous.
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• compact subsets:
As H is lower semi-continuous, {H ≤M} is a closed set. Moreover, Lemma4.3.2.(ii)
ensures that I(.|P) is bounded on this set. As C ×D is a Polish space, the level
sets of the relative entropy are compact for the weak topology (see Proposi-
tion 9.5.2 or [84, lemma 6.2.12]) so that {H ≤M} is also a compact set.

We have proved that H is a good rate function.

4.3.2 Upper-bound and Tightness

We have proved that H = I(·|P)−Γ is a good rate function, and we now want to show
that it is associated with a LDP. We demonstrate here a weak LDP relying on an
upper-bound inequality for compact subsets, and tightness of the family

(
QN
(
µ̂N ∈

·
))

N
. To prove the first point, we take advantage of the full LDP followed by µ̂N under

Q⊗N
ν , and have to control an error term. The second point will rely on the exponential

tightness of P⊗N . These proofs are inspired from those of Guionnet in a non-spatial
spin-glass model [129].

Theorem 4.3.9. For any compact subset K of M+
1 (C ×D),

limsup
N→∞

1
N

logQN(µ̂N ∈ K)≤− inf
K

H.

Proof. Let δ < 0. as,
(
M+

1 (C ×D),dV
T

)
is a Polish space, we can find an integer M and

a family (νi)1≤i≤M of M+
1 (C ×D) such that

K ⊂
M⋃

i=1

B(νi,δ ),

where B(νi,δ ) :=
{

µ|dV
T (µ,νi)< δ

}
. Lemma (9.2.4), ensures that

limsup
N→∞

1
N

logQN(
µ̂N ∈ K

)
≤ max

1≤i≤M
limsup

N→∞

1
N

logQN(
µ̂N ∈ K∩B(νi,δ )

)
. (4.44)

Lemma 4.3.1 yields:

QN(
µ̂N ∈ K∩B(ν ,δ )

)
=
∫

µ̂N∈K∩B(ν ,δ )
exp
{

NΓ̄(µ̂N)
}

dP⊗N(x,r)

=
∫

µ̂N∈K∩B(ν ,δ )
exp
{

N
(
Γ̄(µ̂N)− Γ̄ν(µ̂N)

)}
exp
{

NΓ̄ν(µ̂N)
}

dP⊗N(x,r).

Recall definition (4.14) and let (X̃ µ

i )1≤i≤N be a family of independent variables of(
Ω̂,F̂ ,γ

)
with same law as (X µ

i )1≤i≤N . We will denote by
(
G̃µ(ri)

)
1≤i≤N the associated

independent Gaussian processes. Then, for any conjugate exponents (p,q),

QN(
µ̂N ∈ K∩B(ν ,δ )

)
=
∫

µ̂N∈K∩B(ν ,δ )
exp
{

N
(
Γ̄(µ̂N)− Γ̄ν(µ̂N)

)}
dQ⊗N

ν (x,r)

≤ Q⊗N
ν

(
µ̂N ∈ K∩B(ν ,δ )

) 1
p

(∫
µ̂N∈K∩B(ν ,δ )

exp
{

qN
(
Γ̄(µ̂N)− Γ̄ν(µ̂N)

)}
dQ⊗N

ν (x,r)
) 1

q

≤ Q⊗N
ν

(
µ̂N ∈ K∩B(ν ,δ )

) 1
p

(∫
µ̂N∈K∩B(ν ,δ )

N

∏
i=1

Eγ

(
exp
{

X̃ µ̂N
i

}
Eγ

(
exp
{

X̃ν
i

}))q

dQ⊗N
ν (x,r)

) 1
q



84 CHAPTER 4. SPATIALLY EXTENDED NETWORKS

Jensen
≤ Q⊗N

ν

(
µ̂N ∈ K∩B(ν ,δ )

) 1
p

(∫
µ̂N∈K∩B(ν ,δ )

Eγ

[(
N

∏
i=1

exp
{

q
(
X̃ µ̂N

i − X̃ν
i
)}) ∏

N
i=1 exp X̃ν

i

Eγ

[
∏

N
i=1 exp X̃ν

i

]]dQ⊗N
ν (x,r)

) 1
q

≤ Q⊗N
ν

(
µ̂N ∈ K∩B(ν ,δ )

) 1
p

(∫
µ̂N∈K∩B(ν ,δ )

Eγ

[
N

∏
i=1

exp
{

q
(

X̃ µ̂N
i − X̃ν

i

)
+ X̃ν

i

}]
dP⊗N(x,r)︸ ︷︷ ︸

=:BN

) 1
q

.

(4.45)

The first term of the right hand side of (4.45) can be controlled by large deviations
estimates. Controlling the second term is the object of the following lemma:

Lemma 4.3.10. For any real number q> 1, there exists a strictly positive real number
δq > 0 and a function Cq :]0,δq[→R such that limδ→0Cq(δ ) = 0 and:

BN ≤ exp{Cq(δ )N}.

Proof. Using Hölder inequality with conjugate exponents (σ ,η), one finds:

BN ≤Eγ

[∫
(C×D)N

exp
{ N

∑
i=1

σ X̃ν
i

}
dP⊗N(x,r)

] 1
σ

︸ ︷︷ ︸
=:(BN

1 )
1
σ

Eγ

[∫
µ̂N∈B(ν ,δ )

N

∏
i=1

exp
{

qη
(
X̃ µ̂N

i − X̃ν
i
)}

dP⊗N(x,r)

] 1
η

︸ ︷︷ ︸
=:
(

BN
2

) 1
η

.

(4.46)

The first term is controlled by martingale property:

BN
1 = Eγ

[∫
DN

exp
{ N

∑
i=1

σ2−σ

2

∫ T

0

(
G̃ν

t (ri)+mν(t,ri)
)2dt

}

×
∫

C N
exp
{ N

∑
i=1

σ

∫ T

0

(
G̃ν

t (ri)+mν(t,ri)
)
dWt(xi,ri)−

σ2

2

∫ T

0

(
G̃ν

t (ri)+mν(t,ri)
)2dt

}
dPr(x)dπ

⊗N(r)

]
Jensen,Fubini

≤
∫

DN

N

∏
i=1

{∫ T

0
Eγ

[
exp
{

σ(σ −1)T
2

(
G̃ν

t (ri)+mν(t,ri)
)2
}]

dt
T

}
dπ
⊗N(r)

(8.1)
≤ exp

{
cT (σ−1)N

}
,

with cT uniform in space.
Let us control the second term, denoting κ = qη and supposing that δ is small

enough. By Cauchy-Schwarz’s inequality and Fubini’s theorem:

BN
2 ≤ Eγ

[∫
(C×D)N

N

∏
i=1

exp
{

2κ

∫ T

0

(
G̃µ̂N

t (ri)− G̃ν
t (ri)+

(
mµ̂N (t,ri)−mν(t,ri)

))
dWt(xi,ri)

−2κ
2
∫ T

0

(
G̃µ̂N

t (ri)− G̃ν
t (ri)+

(
mµ̂N (t,ri)−mν(t,ri)

))2
dt
}

dP⊗N(x,r)

] 1
2

×

{∫
µ̂N∈B(ν ,δ )

Eγ

[ N

∏
i=1

exp
{

2κ
2
∫ T

0

(
G̃µ̂N

t (ri)−G̃ν
t (ri)+

(
mµ̂N (t,ri)−mν(t,ri)

))2
dt

−κ

∫ T

0

(
G̃µ̂N

t (ri)+mµ̂N (t,ri)
)2
−
(

G̃ν
t (ri)+mν(t,ri)

)2
dt
}]

dP⊗N(x,r)

} 1
2
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The first term is equal to one by martingale property. For the second term, we remark
that:

−
∫ T

0

(
G̃µ̂N

t (ri)+mµ̂N (t,ri)
)2
−
(

G̃ν
t (ri)+mν(t,ri)

)2
dt ≤

δ
1
2

2

(
1
δ

∫ T

0

(
G̃µ̂N

t (ri)− G̃ν
t (ri)+

(
mµ̂N (t,ri)−mν(t,ri)

))2
dt

+
∫ T

0

(
G̃µ̂N

t (ri)+ G̃ν
t (ri)+

(
mµ̂N (t,ri)+mν(t,ri)

))2
dt
)

so that, by Cauchy-Schwarz’s inequality:

BN
2 ≤

{∫
µ̂N∈B(ν ,δ )

Eγ

[ N

∏
i=1

exp
{(

4κ
2 +κδ

− 1
2
)∫ T

0

(
G̃µ̂N

t (ri)− G̃ν
t (ri)+(mµ̂N −mν)(t,ri)

)2dt
}]

dP⊗N(x,r)

} 1
4

×

{∫(
C×D

)N

N

∏
i=1

Eγ

[
exp
{

κδ
1
2

∫ T

0

(
G̃µ̂N

t (ri)+ G̃ν
t (ri)+(mµ̂N +mν)(t,ri)

)2dt
}]

︸ ︷︷ ︸
(8.1)
≤ exp

{
cT κδ

1
2

} dP⊗N(x,r)

} 1
4

.

Let us control the first term of the product, by taking advantage of the fact that
µ̂N ∈ B(ν ,δ ). We have, for any ξ ∈M+

1

(
(C ×D)2

)
with marginals µ̂N and ν :

∣∣mµ̂N −mν

∣∣(t,ri)
(4.36)
≤ CT dV

T (µ̂N ,ν)≤CT δ ,

and similarly

Eγ

[(
G̃µ̂N

t (ri)− G̃ν
t (ri)

)2
]
≤Cδ

2.

Moreover, Jensen’s inequality gives(
G̃µ̂N

t (ri)− G̃ν
t (ri)+(mµ̂N −mν)(t,ri)

)2
≤Cδ

2 +2
(
G̃µ̂N

t (ri)− G̃ν
t (ri)

)2
,

so that by independence of the G̃ for different locations and (8.1)

Eγ

[ N

∏
i=1

exp
{(

4κ
2 +κδ

− 1
2
)∫ T

0

(
G̃µ̂N

t (ri)− G̃ν
t (ri)+(mµ̂N −mν)(t,ri)

)2dt
}]
≤ exp

{
CT
(
4κ

2 +κδ
− 1

2
)
δ

2N
}
.

Hence,

BN
2 ≤ exp

{
Cκ(δ )N

}
with Cκ(δ )→ 0 as δ → 0.

Let us now conclude the proof. We recall that µ̂N satisfies a full LDP under Q⊗N
ν ,

i.e. for any Borel set A⊂M+
1 (C ×D):

− inf
Ao

Hν ≤ liminf
N→∞

1
N

logQ⊗N
ν (µ̂N ∈ A)≤ limsup

N→∞

1
N

logQ⊗N
ν (µ̂N ∈ A)≤− inf

Ā
Hν .



86 CHAPTER 4. SPATIALLY EXTENDED NETWORKS

Then, taking δ < δq, we find

limsup
N→∞

1
N

logQN(µ̂N ∈ K∩B(ν ,δ ))≤ limsup
N→∞

1
N

(
1
p

logQ⊗N
ν (µ̂N ∈ K∩B(ν ,δ ))+

1
q

Cq(δ )N
)

≤−1
p

inf
K∩B(ν ,δ )

Hν +
1
q

Cq(δ )

Hence, by (4.44), for δ < δq,

limsup
N→∞

1
N

logQN(
µ̂N ∈ K

)
≤−1

p
inf

1≤i≤M
inf

K∩B(νi,δ )
Hνi +

1
q

Cq(δ )

≤−1
p

inf
1≤i≤M

inf
K∩B(νi,δ )

(
I(|P)−Γ

)
− 1

p
inf

1≤i≤M
inf

K∩B(νi,δ )
(Γ−Γνi)+

1
q

Cq(δ ).

Lemma (4.3.8) ensures the existence of a finite constant CT such that:∣∣Γνi(µ)−Γ(µ)
∣∣≤CT

(
I(µ|P)+1

)
dV

T (νi,µ).

In particular,

limsup
N→∞

1
N

logQN(µ̂N ∈ K)≤−1
p

inf
K

H− 1
p

inf
K

((
1+ I(µ|P)

)
CT δ

)
+

1
q

Cq(δ ).

Suppose I(.|P) is infinite everywhere on K. Then, proposition 4.3.8.(3) ensures that
H is also uniformly infinite on this compact set, so that

−1
p

inf
K

H− 1
p

inf
K

((
1+ I(µ|P)

)
CT δ

)
+

1
q

Cq(δ ) =− inf
K

H =−∞.

Now, if exists a probability µ ∈ K such that I(µ|P) < ∞. Then, H is also finite by the
same argument. In every cases, letting δ ↘ 0 yields

limsup
N→∞

1
N

logQN(µ̂N ∈ K)≤−1
p

inf
K

H.

One concludes by sending p↘ 1.

Theorem 4.3.11 (Tightness). For any real number ε > 0, there exists a compact set
Kε ⊂M+

1 (C ×D) such that, for any integer N,

QN(µ̂N /∈ Kε)≤ ε.

Proof. The proof of this theorem consists in using the relative entropy inequality (4.13)
and the exponential tightness of the sequence

(
P⊗N

(
µ̂N ∈ ·

))
N

. Indeed, defining A an

arbitrary set in
(
C ×D

)N and applying (4.13) to the function Φ = log(1+P⊗N(A)−1)1A

yields:∫
A

log(1+P⊗N(A)−1)dQN(x,r) = log(1+P⊗N(A)−1)QN(A)≤ I(QN |P⊗N)+ log(2),

so that

QN(A)≤ I(QN |P⊗N)+ log(2)
log(1+P⊗N(A)−1)

.
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The exponential tightness of P⊗N , which is a consequence of Sanov’s theorem and
(9.4.2), ensures that for any ε > 0 there exists a compact subset Kε of M+

1 (C ×D) such
that

P⊗N
(

µ̂N ∈ Kc
ε

)
≤ exp

{
− N

ε

}
.

The theorem is hence proved as soon as we show that there exists a finite constant C,
such that for any N, I(QN |P⊗N)≤CN.

dQN

dP⊗N (x,r) (4.3.1)
=

N

∏
i=1

Eγ

[
exp
{

X µ̂N (xi,ri)
}] (4.3.5)

=
N

∏
i=1

exp
{∫ T

0
Oµ̂N (t,x

i,ri)dWt(xi,ri)−
1
2

∫ T

0
Oµ̂N (t,x

i,ri)
2dt
}
,

where

Oµ̂N (t,x,r) := Eγ

[
Λt
(
Gµ̂N (r)

)
Gµ̂N

t (r)Lµ̂N
t (x,r)

)]
+mµ̂N (t,r).

Consequently, there exist N distinct QN
r -Brownian motion Bi(.,r),1 ≤ i ≤ N such

that:
Wt(xi,ri) = Bi

t(x,r)+
∫ t

0
Oµ̂N (s,x

i,ri)ds.

Using the symmetry of QN , and B1 we have:

I(QN |P⊗N) = N
∫
(C×D)N

{∫ T

0
Oµ̂N (t,x

1,r1)dWt(x1,r1)−
1
2

∫ T

0
Oµ̂N (t,x

1,r1)
2dt
}

dQN(x,r)

= N
∫

DN

∫
C N

{∫ T

0
Oµ̂N (t,x

1,r1)dB1
t (x,r)+

1
2

∫ T

0
Oµ̂N (t,x

1,r1)
2dt
}

dQN
r (x)dπ

⊗N(r)

=
N
2

∫
DN

∫
C N

∫ T

0

(
Eγ

[
Λt
(
Gµ̂N (r1)

)
Gµ̂N

t (r1)L
µ̂N
t (x1,r1)

)]
+mµ̂N (t,r1)

)2

dtdQN
r (x)dπ

⊗N(r)

Fubini
≤ N

{∫
DN

∫ T

0

∫
C N

Eγ

[
Λt
(
Gµ̂N (r1)

)
Gµ̂N

t (r1)L
µ̂N
t (x1,r1)

)]2

dQN
r (x)︸ ︷︷ ︸

ϕ(t,r)

dtdπ
⊗N(r)+

‖J‖2
∞T

λ 2
∗

}
.

(4.47)

We now intend to bound ϕ(t,r) uniformly in order to obtain the result.

ϕ(t,r) = 2
∫

C N

{
Eγ

[
Λt
(
Gµ̂N (r1)

)
Gµ̂N

t (r1)

(∫ t

0
Gµ̂N

s (r1)dB1
s (x,r)

)]2

+

(∫ t

0
K̃t

µ̂N ,r1
(t,s)Eγ

[
Λs
(
Gµ̂N (r1)

)
Gµ̂N

s (r1)Lµ̂N
s (x1,r1)

]
ds
)2
}

dQN
r (x)

C.S.,(4.23)
≤ CT

∫
C N

{
Eγ

[(∫ t

0
Gµ̂N

s (r1)dB1
s (x,r)

)2]
+
∫

C N

∫ t

0
Eγ

[
Λs
(
Gµ̂N (r1)

)
Gµ̂N

s (r1)Lµ̂N
s (x1,r1)

]2

ds

}
dQN

r (x)

Fubini
≤ CT

{
Eγ

[∫
C N

(∫ t

0
Gµ̂N

s (r1)
2ds
)

dQN
r (x)

]
+
∫ t

0
ϕ(s,r)ds

}
Fubini
≤ CT

{
1+

∫ t

0
ϕ(s,r)ds

}
.

So that Gronwall’s lemma ensures that exists a constant CT > 0 independent of r
such that:

sup
t≤T

ϕ(t,r)≤CT exp
{

CT
}
.
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4.4 IDENTIFICATION OF THE MEAN-FIELD EQUATIONS

In the Gaussian interaction case, we have seen that the series of empirical mea-
sures

(
µ̂N
)

N satisfies a large deviations principle of speed N, and with good rate func-
tion H. In order to identify the limit of the system, we study in this section the minima
of the functions H, and characterize them through an implicit equation. In the spin-
glass model investigated in [22], existence and uniqueness of solutions was made
difficult by the fact that the drift was not considered Lipschitz continuous. Moreover,
the characterization of the possible minima of the good rate function H was achieved
through an intricate variational study. Here, we propose another approach that sub-
stantially simplifies this characterization. Moreover, because of the regularity of our
dynamics, we propose an original contraction argument to show that the good rate
function H admits a unique minimum, proof that was yet to be developed in the con-
text of the neuronal equations3.

Lemma 4.4.1. Let Q be a probability measure on C ×D which minimizes H. Then

Q' P,
dQ
dP

(x,r) = Eγ

[
exp
{

XQ(x,r)
}]

. (4.48)

Proof. Let Q∈M+
1 (C ×D) that minimizes H, and define the probability measure QQ ∈

M+
1 (C ×D) as in (4.20):

∀(x,r) ∈ C ×D,
dQQ

dP
(x,r) := Eγ

[
exp
{

XQ(x,r)
}]

,

which is equivalent to P by Theorem 4.3.6. As H is a good rate function, its minimal
value must be 0, so that H(Q) = I(Q|P)−Γ(Q) = 0. This imply by Proposition 4.3.2
that I(Q|P) = Γ(Q) < +∞, which in turn implies Q� P. Theorem 4.3.6 ensures that
∀µ ∈M+

1 (C ×D), HQ(µ) = I(µ|QQ) = I(µ|P)−ΓQ(µ). In particular,

I(Q|QQ) = HQ(Q) = I(Q|P)−ΓQ(Q) = I(Q|P)−Γ(Q) = H(Q) = 0,

so that Q = QQ by Proposition 9.5.2. Furthermore QQ ' P is a consequence of Q̄Q ' P,
I(QQ|Q̄Q)<+∞ and dQQ

dQ̄Q
> 0.

We now prove that there exists a unique probability measure satisfying (4.48).
Let the map

L :=
{

M+
1

(
C ×D

)
→M+

1

(
C ×D

)
µ → Qµ .

where Qµ is defined as in (4.20) by

dL(µ)
dP

(x,r) :=
dQµ

dP
(x,r) = Eγ

[
exp{X µ(x,r)}

]
.

The main result of the section is the following:

Theorem 4.4.2. L admits a unique fixed point on M+
1 (C ×D).

3For instance, in the non-spatialized case treated in [51] was used a strong assumption of linearity
of the intrinsic dynamics (our function f ) which implied that solutions were Gaussian, special case for
which moment methods were used (see [103]).
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Proof. Lemma (4.3.5) gives

dL(µ)
dP

(x,r) = exp
{∫ T

0
Oµ(t,x,r)dWt(x,r)−

1
2

∫ T

0
Oµ(t,x,r)2dt

}
,

where

Oµ(t,x,r) := Eγ

[
Λt
(
Gµ(r)

)
Gµ

t (r)L
µ

t (x,r)
]
+mµ(t,r).

Let µ ∈M+
1

(
C ×D

)
,r ∈ D, and remark that x→ dL(µ)

dP (x,r) is a Pr-martingale. Hence
one can properly define dL(µ)r(x) := dL(µ)

dP (x,r)dPr(x) ∈M+
1 (C ). By Girsanov’s the-

orem L(µ)r is the law of
(
xµ

t (r)
)

t∈[0,T ], the unique strong solution of the SDE (see
lemma 4.4.3) {

dxµ

t (r) = f (r, t,xµ

t (r))dt +OW̃
µ (t,r)dt +λ (r)dW̃t(

xµ
s (r)

)
−τ≤s≤0 =

(
x̄0

s (r)
)
−τ≤s≤0.

(4.49)

where W̃ is a P-Brownian motion,

OW̃
µ (t,r) := λ (r)Eγ

[
Λt
(
Gµ(r)

)
Gµ

t (r)L̃
µ

t (r)
]
+λ (r)mµ(t,r),

L̃µ

t (r) :=
∫ t

0
Gµ

s (r)
(

dW̃s−mµ(s,r)ds
)
,

and x̄0(r) ∈ Cτ is the version of µ0(r) of hypothesis (4.6). Let also ν ∈M+
1

(
C ×D

)
, and

define similarly xν
t (r) the process defined by:{

dxν
t (r) = f (r, t,xν

t (r))dt +OW̃
ν (t,r)dt +λ (r)dW̃t(

xν
s (r)

)
−τ≤s≤0 =

(
x̄0

s (r)
)
−τ≤s≤0,

where both the initial condition x̄0(r) and the driving Brownian motion (W̃t) are the
same as for the definition of (4.49). We have(

xµ

t (r)− xν
t (r)

)
=
∫ t

0

(
f (r,s,xµ

s (r))− f (r,s,xν
s (r))+λ (r)(mµ(s,r)−mν(s,r)

)
ds

+λ (r)
∫ t

0
Eγ

[
Λs
(
Gµ(r)

)
Gµ

s (r)L̃
µ
s (r)−Λs

(
Gν(r)

)
Gν

s (r)L̃
ν
s (r)

]
ds. (4.50)

Let another ξ ∈ M+
1

(
(C ×D)2

)
with marginals µ and ν , and let

(
G,G′

)
be a bi-

dimensional centered Gaussian process on the probability space
(
Ω̂,F̂ ,γ

)
with co-

variance Kξ

(
·, ·,r

)
given in (4.37).

As in proposition 4.3.7 we can obtain:

λ (r)(mµ(s,r)−mν(s,r))≤CT dV
s (µ,ν).

Moreover, observe that

Eγ

[
Λt
(
Gµ(r)

)
Gµ

t (r)L̃
µ

t (r)−Λt
(
Gν(r)

)
Gν

t (r)L̃
ν
t (r)

]
= Eγ

[
Λs(G)GsLs−Λs(G′)G′sL

′
s

]
= Eγ

[(
Λt(G)−Λt(G′)

)
GtLt

]
+Eγ

[
Λt(G′)

(
Gt −G′t

)
Lt

]
+Eγ

[
Λt(G′)G′t

(
Lt −L′t

)]
C.S.
≤ Eγ

[
L2

t
] 1

2

(
Eγ

[(
Λt(G)−Λt(G′)

)2G2
t

] 1
2
+Eγ

[
Λt(G′)2(Gt −G′t

)2
] 1

2
)
+Eγ

[
Λt(G′)2G′t

2
] 1

2
Eγ

[(
Lt −L′t

)2
] 1

2
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where Lt :=
∫ t

0 Gsd
(
dW̃s−mµ(s,r)ds

)
, and L′t :=

∫ t
0 G′sd

(
dW̃s−mµ(s,r)ds

)
.

On the one hand, relying on (4.25), (4.23) and Isserlis’ theorem, we can show as in
Proposition 4.3.7 that there exists CT > 0 such that:

Eγ

[(
Λt(G)−Λt(G′)

)2
G2

t

]
+Eγ

[
Λt(G′)2(Gt −G′t

)2
]
≤CT

(∫
(C×D)2

dt
(
(y,r′),(z, r̃)

)2dξ
(
(y,r′),(z, r̃)

))
.

and

λ (r)Eγ

[
Λt(G′)2G′t

2
] 1

2 ≤CT .

On the other hand, remark that

Eγ

[(
Lt −L′t

)2
]
≤ 2Eγ

[(∫ t

0
Gs−G′sdW̃s

)2]
+2Eγ

[(∫ t

0
Gsmµ(s,r)−G′smν(s,r)ds

)2]
Jens., Fub.
≤ 2Eγ

[(∫ t

0
Gs−G′sdW̃s

)2]
+4t

∫ t

0

{
Eγ

[(
Gs−G′s

)2mµ(s,r)2
]
+Eγ

[
G′s

2(mµ(s,r)−mν(s,r)
)2
]}

ds

(4.36)
≤ CT

{
Eγ

[(∫ t

0
Gs−G′sdW̃s

)2]
+

(∫
(C×D)2

dt
(
(y,r′),(z, r̃)

)2dξ
(
(y,r′),(z, r̃)

))}
,

and also that

Eγ

[
L2

t
] C.S.
≤ 2Eγ

[(∫ t

0
GsdW̃s

)2]
+2t

∫ t

0
Eγ

[
G2

t mµ(t,r)2
]

︸ ︷︷ ︸
≤CT

.

Injecting these result in (4.50), we obtain:

∥∥xµ(r)− xν(r)
∥∥2

∞,t ≤CT

∫ t

0

{∥∥xµ(r)− xν(r)
∥∥2

∞,s +Eγ

[
sup
v≤s

(∫ v

0
Gu−G′udW̃u

)2
]

+

(
1+Eγ

[
sup
v≤s

(∫ v

0
GudW̃u

)2
])(∫

(C×D)2
dt
(
(y,r′),(z, r̃)

)2dξ
(
(y,r′),(z, r̃)

))}
ds,

so that by Gronwall’s lemma

dt

(
(xµ(r),r),(xν(r),r)

)2
≤CT

∫ t

0

{
Eγ

[
sup
v≤s

(∫ v

0
Gu−G′udW̃u

)2
]

+

(
1+Eγ

[
sup
v≤s

(∫ v

0
GudW̃u

)2
])(∫

(C×D)2
dt
(
(y,r′),(z, r̃)

)2dξ
(
(y,r′),(z, r̃)

))}
ds.

Taking the expectation over the Brownian path and initial condition, and using Fu-
bini’s theorem and Burkholder-Davis-Gundy’s inequality, we obtain

E

[
dt

(
(xµ(r),r),(xν(r),r)

)2
]
≤CT

∫ t

0
dV

s (µ,ν)
2
ds. (4.51)

Let us now show that we can integrate the term of the left-hand side over π. To this
purpose, fix r′ 6= r ∈ D, and let xµ

· (r′) be the strong solution of (4.49) with same W̃ but
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initial condition given by x̄0(r′) and intrinsic dynamics f (r′, ·,xµ
· (r′)). Then

∣∣xµ

t (r)− xµ

t (r
′)
∣∣≤ ∣∣x̄0

0(r)− x̄0
0(r
′)
∣∣+ (K f +Kλ

∣∣W̃t
∣∣)‖r− r′‖Rd +

∫ t

0

(
K f
∥∥xµ(r)− xµ(r′)

∥∥
∞,s

+CT
∣∣λ (r)mµ(s,r)−λ (r′)mµ(s,r′)

∣∣)ds

+
∫ t

0

∣∣∣∣Eγ

[
λ (r)Λt

(
Gµ(r)

)
Gµ

t (r)L̃
µ

t (r)−λ (r′)Λt
(
Gµ(r′)

)
Gµ

t (r
′)L̃µ

t (r
′)

]∣∣∣∣ds.

First, observe that

∣∣λ (r)mµ(s,r)−λ (r′)mµ(s,r′)
∣∣= ∣∣∣∫

C×D

(
J(r, r̃)S(ys−τ(r,r̃))− J(r′, r̃)S(ys−τ(r′,r̃))

)
dµ(y, r̃)

∣∣∣
≤ KJ‖r− r′‖Rd +‖J‖∞KS

∫
C×D

∣∣ys−τ(r,r̃)− ys−τ(r′,r̃)
∣∣dµ(y, r̃)≤C

∫
C×D

ds
(
(y,r),(y,r′)

)
dµ(y, r̃),

and we obtain similarly by choosing the proper covariance structure between Gµ(r)
and Gµ(r′):

Eγ

[(
λ (r)Λt

(
Gµ(r)

)
−λ (r′)Λt

(
Gµ(r′)

))2
Gµ

t (r)
2
]
+Eγ

[
Λt
(
Gµ(r′)

)2(
λ (r)Gµ

t (r)−λ (r)Gµ

t (r
′)
)2
]

≤CT

∫
C×D

dt
(
(y,r),(y,r′)

)2dµ(y, r̃).

As a consequence, by a similar analysis as previously, we obtain

∥∥xµ(r)− xµ(r′)
∥∥2

∞,t ≤CT

{∥∥x̄0(r)− x̄0(r′)
∥∥2

τ,∞
+
(
1+W̃ ∗t

2)‖r− r′‖2
Rd +

∫ t

0

∥∥xµ(r)− xν(r)
∥∥2

∞,sds

+
∫ t

0

(∫
C×D

ds
(
(y,r),(y,r′)

)2dµ(y, r̃)
)(

1+Eγ

[
sup
v≤s

(∫ v

0
Gµ

u (r)dW̃u

)2
])

ds

+
∫ t

0
Eγ

[
sup
v≤s

(∫ v

0
λ (r)Gµ

u (r)−λ (r′)Gµ
u (r
′)dW̃u

)2
]

ds
}
,

where W̃ ∗t = sup0≤s≤t |W̃s|. Hence, using Gronwall’s lemma, taking the expectation and
relying again on Fubini’s theorem and Burkholder-Davis-Gundy’s inequality, we ob-
tain:

E

[∥∥xµ(r)− xµ(r′)
∥∥2

∞,t

]
≤CT

{
E

[∥∥x̄0(r)− x̄0(r′)
∥∥2

τ,∞

]
+
(
1+E

[
W̃ ∗t

2])‖r− r′‖2
Rd

+
∫ t

0

∫
C×D

ds
(
(y,r),(y,r′)

)2dµ(y, r̃)ds
}
.

Hence E
[∥∥xµ(r)− xµ(r′)

∥∥2
∞,t

]
→ 0 as ‖r′− r‖Rd ↘ 0, by using (4.6), and the Monotone

Convergence Theorem. Now, observe that,

E

[
dt

(
(xµ(r),r),(xν(r),r)

)2]
︸ ︷︷ ︸

=:φ µ,ν
t (r)

=E
[∥∥xµ(r)− xν(r)

∥∥2
∞,t

]
,
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so that ∣∣φ µ,ν
t (r)−φ

µ,ν
t (r′)

∣∣= ∣∣∣E[∥∥xµ(r)− xν(r)
∥∥2

∞,t −
∥∥xµ(r′)− xν(r′)

∥∥2
∞,t

]∣∣∣,
C.S.
≤ ∏

ε=±1
E

[(∥∥xµ(r)− xν(r)
∥∥

∞,t + ε
∥∥xµ(r′)− xν(r′)

∥∥
∞,t

)2
] 1

2

≤
√

2
(
φ

µ,ν
t (r′)+φ

µ,ν
t (r)

)
E

[(∥∥xµ(r)− xµ(r′)
∥∥

∞,t +
∥∥xν(r)− xν(r′)

∥∥
∞,t

)2
] 1

2

≤ 2

√
CT

∫ t

0
dV

s (µ,ν)
2ds

√
E

[∥∥xµ(r)− xµ(r′)
∥∥2

∞,t

]
+E

[∥∥xν(r)− xν(r′)
∥∥2

∞,t

]
.

so that r→ φ
µ,ν
t (r) is continuous, and we can integrate inequality (4.51) over space

yielding:

dV
t
(
L(µ),L(ν)

)2 ≤E
[∫

D
dt

(
(xµ(r),r),(xν(r),r)

)2
dπ(r)

]
≤CT

∫ t

0
dV

s (µ,ν)
2
ds.

This inequality allows to develop the classical Picard’s iterations method to con-
clude on the existence and uniqueness of solution to the fixed point equation in
M+

1 (C ×D).

Lemma 4.4.3. For any r∈D and µ ∈M+
1 (C ×D), there exists a unique strong solution

to the SDE: {
dxµ

t (r) = f (r, t,xµ

t (r))dt +λ (r)OW̃
µ (t,r)dt +λ (r)dW̃t(

xµ
s (r)

)
−τ≤s≤0 = x̄0(r).

where W̃ is a P-Brownian motion, x̄0(r)∈Cτ is the continuous realization of the initial
law µ0(r) of (4.6), and

OW̃
µ (t,r) := Eγ

[
Λt
(
Gµ(r)

)
Gµ

t (r)
(∫ t

0
Gµ

s (r)
(
dW̃s−mµ(s,r)ds

))]
+mµ(t,r).

Proof. The proof relies on Picard’s iterations. Let x0 ∈ Cτ with x0 = x̄0(r), and define
recursively the sequence

(
xn

t ,0≤ t ≤ T
)

n∈N∗ by (xn
s )−τ≤s≤0 = x̄0(r), and

xn+1
t = x̄0

0(r)+
∫ t

0
f (r,s,xn

s )ds+
∫ t

0
λ (r)OW̃

µ (s,xn
s )ds+λ (r)W̃t , ∀t ∈ [0,T ].

Then, using the same analysis as in the precedent theorem, we find (see inequality
(4.51))

E

[
sup
s≤t

∣∣xn+1
s − xn

s

∣∣2]≤CT

∫ t

0
E

[
sup
u≤s

∣∣xn
u− xn−1

u

∣∣2]ds.

The conclusion relies on classical arguments.

4.4.1 Convergence of the process

We are now in a position to prove theorem 4.2.3.
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Proof. Let δ > 0 and B(Q,δ ) the open ball of radius δ centered in Q for the Vaserstein
distance dV

T . We prove that QN(µ̂N /∈ B(Q,δ )) tends to zero as N goes to infinity. Indeed,
for Kε a compact defined in theorem 4.3.11, we have for any ε > 0:

QN(
µ̂N /∈ B(Q,δ )

)
≤ ε +QN(

µ̂N ∈ B(Q,δ )c∩Kε

)
. (4.52)

The set B(Q,δ )c∩Kε is a compact, and theorem 4.3.9 now ensures that

limsup
N→∞

1
N

logQN(
µ̂N ∈ B(Q,δ )c∩Kε

)
≤− inf

B(Q,δ )c∩Kε

H

and eventually, theorem 4.2.6 ensures that the right-hand side of the inequality is
strictly negative, which implies that

lim
N→∞

QN(
µ̂N /∈ B(Q,δ )

)
≤ ε,

that is:
lim

N→∞
QN(

µ̂N /∈ B(Q,δ )
)
= 0.

4.5 NON GAUSSIAN CONNECTIVITY WEIGHTS

In this section, we relax the hypothesis that the synaptic weights are Gaussian.
We only consider that the Ji j are i.i.d. random variables with sub-Gaussian tails (con-
dition (HJ)), mean J(ri,r j)

N and variance σ(ri,r j)
2

N , whereas the J̃i j will denote independent
Gaussian variables with the same mean and variance. For technical reasons, we also
assume here that the map σ is bounded away from zero: ∃σ∗ > 0, σ(r,r′)≥ σ∗. In this
new setting, the LDP upper-bound of Theorem 4.2.4 no longer holds, its proof made
important use of Gaussian properties. Nonetheless, we will show that the empirical
measure for the network with non-Gaussian interactions still converges towards the
same process as in the Gaussian case: the unique minimum of the good rate function
H.

We revisit technical tools developed by Moynot and Samuelides in [178] where
they demonstrate similar results in a discrete time, non-spatialized setting. Their
central idea is to show that the non-Gaussian and Gaussian density are exponen-
tially close to one another, so that their quotient can be controlled by the exponential
convergence of the Gaussian empirical measure toward Q. In that purpose, we will
work with a finite discretization of the time interval, as their approach cannot be
readily applied to a continuous-time settings. Technically, the estimates in [178] con-
tain a sum of squares of standard centered Gaussian variables over all the partition’s
times, which would diverge with the discretization step going to zero. An additional
error term - comparing continuous and discrete Gaussian densities - arises from the
discretization which we need to control. Nonetheless, we will show that, under a
short-time hypothesis and when the partition is fine enough, the error becomes uni-
formly controllable. In all the demonstration, it is of crucial importance to track the
effect of the size of the partition in every constant obtained for our upper-bounds.

The synaptic weights are assumed independent and with a law satisfying the
Lindenberg-type hypothesis (HJ) introduced above and that we repeat here in an
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equivalent manner (see Appendix of [178]):
∃a,D0 > 0, ∀N ≥ 1, ∀m≤ N, ∀(J1, · · · ,Jm) ∈ {L (Ji j(N)), i, j ∈ [[1,N]]}m independent,
∀(λ1, · · · ,λm) ∈ [−1,1]m,

EJ

(
exp aN

m (λ1J1 + · · ·+λmJm)
2

)
≤ D0.

(4.53)
In the whole section, we will denote by QN

r (J) the solution of the original network’s
equation (6.1) with non-Gaussian synaptic weights

(
Ji j
)

1≤i, j≤N and by QN
r (J̃) its Gaus-

sian counterpart, involving Gaussian weights
(
J̃i j
)

1≤i, j≤N . Moreover, there averaged
versions will be denoted QN and QN

0 respectively. In the whole section we will work on
a finite time interval [0,T ], with the following time condition:

T <
λ 2
∗

2
(‖σ‖2

∞∧a). (4.54)

Moreover, we introduce our regular discretization of time: we choose 1
δ
∈N∗, and

define ∆δ := {tl = lδT, l ∈ [[0, 1
δ
]]}, a regular partition of [0,T ]. We denote by QN,δ

r (J)
and QN,δ the quenched and averaged solutions of the following discretized SDE with
non-Gaussian independent connectivity coefficients Ji j

dX i,N
t =

(
f (ri, t,X

i,N
t )+∑

N
j=1 Ji jS(X

j,N
t(l)−τ(ri,r j)

)
)

dt +λ (ri)dW i
t ,

t(l) := sup
{

tl ∈ ∆δ |tl ≤ t
}
,

Law of (xt)t∈[−τ,0] =
⊗N

i=1 µ0(ri),

and by QN,δ
r (J̃), QN,δ

0 their Gaussian counterparts.
For simplicity of notations, we introduce

Yi(x,r) :=
∫ T

0

( N

∑
j=1

1
λ (ri)

Ji jS
(
x j

t−τ(ri,r j)

)
︸ ︷︷ ︸

=:Ĝt(ri)

)
dWt(xi,ri)−

1
2

∫ T

0

( N

∑
j=1

1
λ (ri)

Ji jS
(
x j

t−τ(ri,r j)

))2
dt,

Y δ
i (x,r) :=

∫ T

0

( N

∑
j=1

1
λ (ri)

Ji jS
(
x j

t(l)−τ(ri,r j)

)
︸ ︷︷ ︸

=:Ĝδ
t (ri)

)
dWt(xi,ri)−

1
2

∫ T

0

( N

∑
j=1

1
λ (ri)

Ji jS
(
x j

t(l)−τ(ri,r j)

))2
dt,

and

Ỹ δ
i (x,r) :=

∫ T

0

( N

∑
j=1

1
λ (ri)

J̃i jS
(
x j

t(l)−τ(ri,r j)

)
︸ ︷︷ ︸

=:G̃δ
t (ri)

)
dWt(xi,ri)−

1
2

∫ T

0

( N

∑
j=1

1
λ (ri)

J̃i jS
(
x j

t(l)−τ(ri,r j)

))2
dt.

For ε > 0, we are interested in the probability QN
(
µ̂N ∈ B(Q,ε)c

)
. First remark

that, for any A ∈B(C ×D)

QN
(

µ̂N ∈ B(Q,ε)c
)
≤ QN(A∩{µ̂N ∈ B(Q,ε)c})+QN(Ac).
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In the same spirit as done in (4.45), let some conjugate exponents (ω1,ω2) and
remark that:

QN(A∩{µ̂N ∈ B(Q,ε)c})= ∫
{µ̂N 6∈B(Q,ε)}∩A

dQN

dQN,δ
(x,r)dQN,δ (x,r) =

∫
{µ̂N 6∈B(Q,ε)}∩A

N

∏
i=1

EJ

[
eYi(x,r)

]
EJ

[
eY δ

i (x,r)
]dQN,δ (x,r)

≤

(∫
(C×D)N

EJ

(
1A

N

∏
i=1

exp
{

ω1
(
Yi−Y δ

i
)}

exp
{

Y δ
i
})

dP⊗N(x,r)︸ ︷︷ ︸
=:Bδ

A

) 1
ω1

×

(∫
{µ̂N 6∈B(Q,ε)}∩A

dQN,δ

dQN,δ
0

(x,r)dQN,δ
0 (x,r)

) 1
ω2

≤ Bδ
A

1
ω1

(∫
A

(dQN,δ

dQN,δ
0

)q−1
dQN,δ (x,r)︸ ︷︷ ︸

=:ZN

) 1
qω2
(∫
{µ̂N 6∈B(Q,ε)}∩A

dQN,δ
0

dQN
0

(x,r)dQN
0 (x,r)

) 1
pω2

≤ Bδ
A

1
ω1 Z

1
qω2
N

(∫
(C×D)N

EJ

(
1A

N

∏
i=1

exp
{

ω1
(
Ỹ δ

i − Ỹi
)}

exp
{

Ỹi
})

dP⊗N(x,r)︸ ︷︷ ︸
=:B̃δ

A

) 1
pω1ω2

QN
0

(
µ̂N 6∈ B(Q,ε)

) 1
pω2

2 .

(4.55)

Building on the LDP satisfied by the averaged network with Gaussian synaptic
weights, we hope that QN

0

(
µ̂N ∈ B(Q,ε)c

)
decays exponentially fast. The idea would

then be to show that the terms Bδ
A, B̃δ

A, and ZN grow sufficiently slowly to be controlled
by that exponential. Yet, as appear in (4.52), we have no information on the decay
of QN

0

(
µ̂N ∈ B(Q,ε)c

)
. To cope with this issue, a solution is to work with T satisfying

(4.54). In fact, as proved in (5.3.8), this short time condition implies an exponential
tightness result for the sequence QN

0

(
µ̂N ∈ ·

)
. This, along with the upper-bound for

compact sets (4.45), and goodness of H implies an upper-bound for any closed set
following the result of [84, Lemma 1.2.18], and thus, the exponential decay of QN

0

(
µ̂N ∈

B(Q,ε)c
)

.

Hence, proving that the quotients dQN,δ

dQN,δ
0

, dQN

dQN,δ , and dQN,δ
0

dQN
0

are sufficiently close to 1

on a suitable set A, the terms in ZN , Bδ
A and B̃δ

A would be overridden by the exponential
decay. The proof will then be completed by showing that the extra term vanishes.

This is proven in the three following lemmas. The first one controls the term ZN ,
the second one copes with the terms Bδ

A and B̃δ
A, whereas the third proves that the

extra term vanishes. All this is done for a suitable choice of the set A.
Let

aδ
i (x,r) := EJ

[
exp
(
Y δ

i (x,r)
)]
, bδ

i (x,r) := EJ

[
exp
(
Ỹ δ

i (x,r)
)]
,

so that
dQN,δ

dQN,δ
0

(x,r) =
N

∏
i=1

aδ
i (x,r)

bδ
i (x,r)

.
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Lemma 4.5.1. There exists a set A2
N,δ ∈B

((
C ×D

)N
)

with P⊗N(A2
N,δ ) = 1, on which

the (aδ
i ) and (bδ

i ) satisfy the following properties:

∃A,B > 0,∀N,
1
δ
∈N, i≤ N, aδ

i (x,r)≥ Aexp
(
−
√

δB

1
δ

∑
l=1
|Btl (xi,ri)|

)
(H1)

∃λ < 1,C > 0,∀N,
1
δ
∈N, i≤ N, aδ

i (x,r)≤C exp
(

λ

2

1
δ

∑
l=1

B2
tl (xi,ri)

)
(H2)

∀η > 0,∃α ∈ [0,1],∀N ≥ 1,∀ 1
δ
∈N,k ≤ N, if

k
N
≤ α then, ∀s, injection from (H3)

{1, . . . ,k} into {1, . . .N}, ∀i 6∈ Im(s) = {s(1), . . . ,s(k)},∃ãδ
i depending only on

j 6∈ Im(s), such that,

sup
(aδ

i (x,r)
ãδ

i (x,r)
,
ãδ

i (x,r)
aδ

i (x,r)

)
≤ (1+η)exp

(
η

2

1
δ

∑
l=1

B2
tl (xi,ri)

)
∃D > 0,∀E > 0,∃N0,∀

1
δ
∈N,∀N ≥ N0,∀i ∈ {1, . . . ,N}, (H4)

aδ
i (x,r)

bδ
i (x,r)

≤ 1+E exp
{1

2

1
δ

∑
l=1

(
B2

tl (xi,ri)+D
√

δ |Btl (xi,ri)|
)}

,

where Btl (x,r) =
(

Wtl+1 (x,r)−Wtl (x,r)√
δT

)
.

Moreover, on A2
N,δ , choosing η0 > 0 such that α +2η0 < 1, η ≤ η0, α ≤ η , and conjugate

exponents (p,q) satisfying q ∈]1, 3
2 [ and λ +(q−1)< 1, then ∃C1,C2 > 0,ξ < 1 such that

ZN ≤
(
1+Eq−1Cα,δ

)N
(1+η)2N

(
exp
{

N
(√η

δ
+B

η
1
4

δ
1
2

)}
+C

N
δ

2 exp
{

N
ξ −1
4δ
√

η

})
,

where Cα,δ := max
(
C

1
αδ

1 , C
AC

1
δ

1 ,1
)
.

Remark 9. Sums of squares of centered standard Gaussian appear in an exponential
for the upperbound of (H2), (H3) and (H4). There are exactly as many Gaussians as
points in the partition ∆δ , so that in the continuous limit, these terms will diverge.

We will demonstrate that all the hypotheses of lemma 4.5.1 are valid in the case
of the randomly connected network. Their proof are postponed in Appendix 4.6.3.

Lemma 4.5.2. Suppose that T
λ 2
∗
< a and let 1

4 < β < 1
2 . Then for δ small enough, exists

a constant CT independent of N and δ , and a set A1
N,δ ∈B

((
C ×D

)N) such that:

∃δ0 > 0,∀δ < δ0,∀N, Bδ

A1
N,δ

+ B̃δ

A1
N,δ
≤ exp

{
CT Nδ

β

}
.

Restricting the integral on the set AN,δ := A1
N,δ ∩A2

N,δ will allow obtaining a proper
control on both the aδ

i , the bδ
i and the term Bδ

A1
N,δ

. It also makes QN
(
Ac

N,δ

)
appear in

(4.55). We must justify that this quantity goes to zero as N grows to infinity. This
is the purpose of the following lemma, whose proof is postponed to the end of the
section:



97

Lemma 4.5.3. For T < λ 2
∗ a, exists a constant δ0 > 0 such that ∀δ < δ0, QN

(
Ac

N,δ

)
de-

creases exponentially fast to zero as N goes to infinity, where AN,δ is the intersection
of A1

N,δ and A2
N,δ from lemmas (4.5.1) and (4.5.2).

We now state and prove the main result of the section:

Theorem 4.5.4. Let (Ji j) satisfy condition (HJ) and δ be small enough. Let λ be the
constant of condition (H2), and suppose that the conjugate exponents (p,q) satisfy
q∈]1, 3

2 [ and λ +(q−1)< 1. Then, under a short time hypothesis, the empirical measure
undergoes, under QN

(
µ̂N ∈ ·

) L→ δQ. In details, if T
λ 2
∗
< a, then,

∃b > 0,∃N0 ∈N,∀N ≥ N0, QN(
µ̂N ∈ B(Q,ε)c)≤ exp(−bN).

Proof of Theorem 4.5.4. We start by choosing in a specific order the parameters ap-
pearing in the previous estimates. Let 1

4 < β < 1
2 , and the associated set A1

N,δ as in
lemma 4.5.2. Let also b0 > 0 such that

QN
0
(
µ̂N ∈ B(Q,ε)c)≤ exp

{
−b0N

}
. (4.56)

Let η = δ 3, and αδ ≤ η as in hypothesis (H3). Remark that it is valid for any pair
( 1

δ
,N) with N ∈N. Moreover, let 0 < γ < 1

4 < β and fix ω1 = 1+ δ
γ

2 . Then, for δ small
enough and under the short time condition T

λ 2
∗
< a, the conditions of Lemmas 4.5.2

and 4.5.3, as well as η < η0 will be satisfied, with

Bδ
A + B̃δ

A ≤ exp
{

CT Nδ
β

}
.

Furthermore, inequality (4.55) gives

QN
(

µ̂N ∈ B(Q,ε)c
)
≤ exp

(
− b0N(ω1−1)2

pω2
1

)
exp
{

CT Nδ
1
4

}
Z

ω1−1
qω1

N +QN(Ac
N,δ ).

Lemma 4.5.1 ensures that for δ small enough, one has 1−ξ

4
√

η
> log(C2), so that

ZN ≤ 2exp
{

N log(1+Eq−1Cα,δ )
}

exp
{

2N
(
(1+B)δ

1
4 + log(1+δ

3)
)}

.

Moreover, for δ small enough, Cα,δ = C
1

αδ

1 , so that choosing E = C
−2
q−1
α,δ , ZN is at most of

order exp
{

CT δ
1
4 N
}

. As 0 < γ < 1
4 < β , one can see that for δ small enough, exists N0

such that ∀N ≥ N0

QN(
µ̂N ∈ B(Q,ε)c)≤ exp

(
−CNδ γ

p

)
exp
(
CNδ

β
)

exp
(
CN

δ
2γ+1

4

q

)
+QN(Ac

N,δ )

≤ exp
{
−C̃Nδ

γ
}
+QN(Ac

N,δ ).

We now prove Lemmas 4.5.2, 4.5.3 and then 4.5.1.

Proof of Lemma 4.5.2. By symmetry, we only prove the inequality for the term Bδ
A.

We use Hölder inequality with conjugate exponents (κ1,κ2), to split Bδ
A in two terms:

Bδ
A ≤

{∫
(C×D)N

N

∏
i=1

exp
{

κ1Yi
}

dP⊗N(x,r)︸ ︷︷ ︸
Bδ

1

} 1
κ1
{∫

A

N

∏
i=1

EJ

(
exp
{
(ω1−1)κ2

(
Yi−Y δ

i
)})

dP⊗N(x,r)︸ ︷︷ ︸
Bδ

2

} 1
κ2

.
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To control each of these terms, we will mainly rely on martingale property, as well as
on the hypothesis (HJ). For the control of the terms Bδ

1 , the idea is to chose κ1 suffi-
ciently close to 1 so that the expectation of the power of the martingale ∏

N
i=1 exp

{
Yi}

will be almost equal to 1. The smallness of the second term will be a consequence of
the Hölder continuity of solutions under P. In detail, we have:

Bδ
1 =EJ

(∫
(C×D)N

N

∏
i=1

exp
{

κ1

∫ T

0
Ĝδ

t (ri)dWt(xi,ri)−
κ1

2

∫ T

0
Ĝδ

t (ri)
2dt
}

dP⊗N(x,r)

)
Hölder
≤ EJ

(∫
(C×D)N

N

∏
i=1

exp
{

κ
2
1

∫ T

0
Ĝδ

t (ri)dWt(xi,ri)−
κ4

1
2

∫ T

0
Ĝδ

t (ri)
2dt
}

dP⊗N(x,r)

) 1
κ1

×EJ

(∫
(C×D)N

N

∏
i=1

exp
{

κ1

κ1−1
κ3

1 −κ1

2λ 2
∗

∫ T

0

( N

∑
j=1

Ji jS
(
x j

t(l)−τ(ri,r j)

))2
dt
}

dP⊗N(x,r)

) κ1−1
κ1

.

The first term of the right-hand side is equal to one by martingale property, so that
using Fubini theorem and Jensen’s inequality yields

Bδ
1 ≤

{∫
(C×D)N

N

∏
i=1

∫ T

0
EJ

(
exp
{

κ2
1 (κ1 +1)T

2λ 2
∗

( N

∑
j=1

Ji jS
(
x j

t(l)−τ(ri,r j)

))2})dt
T

dP⊗N(x,r)

} κ1−1
κ1

.

Moreover, using hypothesis (HJ) and the inequality T
λ 2
∗
< a, one can choose κ1−1 small

enough so to obtain (
Bδ

1
) 1

κ1 ≤ exp
{

CT (κ1−1)N}. (4.57)

We now deal with the second term:

Bδ
2 = EJ

(∫
A

N

∏
i=1

exp

{
(ω1−1)κ2

∫ T

0

(
Ĝt(ri)− Ĝδ

t (ri)
)

dWt(xi,ri)

− (ω1−1)κ2

2

∫ T

0
Ĝt(ri)

2− Ĝδ
t (ri)

2dt

}
dP⊗N(x,r)

)
C.S.
≤ EJ

(∫
(C×D)N

N

∏
i=1

exp

{
2(ω1−1)κ2

∫ T

0

(
Ĝt(ri)− Ĝδ

t (ri)
)

dWt(xi,ri)

−4(ω1−1)2
κ

2
2

∫ T

0

(
Ĝt(ri)− Ĝδ

t (ri)
)2

dt

}
dP⊗N(x,r)

) 1
2

×EJ

(∫
A

N

∏
i=1

exp

{
4(ω1−1)2

κ
2
2

∫ T

0

(
Ĝt(ri)− Ĝδ

t (ri)
)2

dt

− (ω1−1)κ2

∫ T

0
Ĝt(ri)

2− Ĝδ
t (ri)

2dt

}
dP⊗N(x,r)

) 1
2

.

As previously, the first term of the right-hand side is equal to 1 by the martingale
property. Moreover,

−
(
Ĝ2− (Ĝδ )2)= (Ĝδ − Ĝ)(Ĝ+ Ĝδ )≤ κ2

2
(Ĝδ − Ĝ)2 +

1
2κ2

(Ĝδ + Ĝ)2.
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Hypothesis (HJ) allow to control the first of these terms. Let 1
4 < β < 1

2 . Then:

(Ĝδ − Ĝ)2 ≤
K2

S δ 2β

λ 2
∗

(
N

∑
j=1

Ji j

S
(
x j

t−τ(ri,r j)

)
−S
(
x j

t(l)−τ(ri,r j)

)
KSδ β︸ ︷︷ ︸
λi j(t)

)2

.

Bδ
2

Fubini
≤

{∫
A

N

∏
i=1

EJ

(
exp
{K2

S (ω1−1)κ2
2 δ 2β

(
8(ω1−1)+1

)
2λ 2
∗

∫ T

0

( N

∑
j=1

Ji jλi j(t)
)2

dt

+
ω1−1

2

∫ T

0

(
Ĝt(ri)+ Ĝδ

t (ri)
)2dt

})
dP⊗N(x,r)

} 1
2

C.S.
≤

{∫
A

N

∏
i=1

EJ

(∫ T

0
exp
{

CT (ω1−1)κ2
2 δ

2β

( N

∑
j=1

Ji jλi j(t)
)2}dt

T

)
dP⊗N(x,r)

} 1
4

×

{∫
(C×D)N

N

∏
i=1

EJ

(∫ T

0
exp
{

CT (ω1−1)
( N

∑
j=1

Ji j

S
(
x j

t−τ(ri,r j)

)
+S
(
x j

t(l)−τ(ri,r j)

)
2

)2}dt
T

)
dP⊗N(x,r)

} 1
4

.

One sees that, for ω1−1 small enough, the second term in the right-hand side can be
handled using again Fubini theorem and hypothesis (HJ). We split the other term into
two parts: one in which we keep only the λi j that behave nicely, so that we can rely on
hypothesis (HJ), and the other one in which only pathological λi j appear: these may
bring large contributions, but they appear infrequently. Moreover, even for such λi j,
KSδ β |λi j| ≤ 2. Let then E j

N,δ :=
{

sup
t,s∈[−τ,T ],|t−s|≤δ

∣∣x j
t −x j

s
∣∣≤ δ β

}
. Let also cN,δ :=∑

N
j=1 1

(E j
N,δ )

c .

It is the number of indices j for which problems appear. Let A1
N,δ = {cN,δ ≤ δ 2β N}.

In particular, on the event E j
N,δ , every quantity |λi j(t)| is smaller than 1 for δ small

enough. Then

{∫
A1

N,δ

N

∏
i=1

∫ T

0
EJ

(
exp
{

CT (ω1−1)κ2
2 δ

2β

( N

∑
j=1

Ji jλi j(t)
)2})dt

T
dP⊗N(x,r)

} 1
4

C.S.
≤

{∫
(C×D)N

N

∏
i=1

∫ T

0
EJ

(
exp
{

CT (ω1−1)κ2
2 δ

2β

( N

∑
j=1

1E j
N,δ

Ji jλi j(t)
)2})dt

T
dP⊗N(x,r)

} 1
8

×

{∫
A1

N,δ

N

∏
i=1

∫ T

0
EJ

(∫ T

0
exp
{

CT (ω1−1)κ2
2

( N

∑
j=1

1
(E j

N,δ )
cJi j

KSδ β λi j(t)
2

)2})dt
T

dP⊗N(x,r)

} 1
8

.

Remark that, considered under P⊗N , the λi j are independent of the matrix J. Then,
for κ2 = O(δ−β ), hypothesis (HJ) yields

{∫
(C×D)N

N

∏
i=1

∫ T

0
EJ

(
exp
{

CT (ω1−1)κ2
2 δ

2β

( N

∑
j=1

1E j
N,δ

Ji jλi j(t)
)2})dt

T
dP⊗N

} 1
8

≤ exp
{

CT (ω1−1)κ2
2 δ

2β N
}
.
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Now for the other term, as cN,δ ≤ δ 2β N on A1
N,δ ,

{∫
A1

N,δ

N

∏
i=1

EJ

(∫ T

0
exp
{

CT (ω1−1)κ2
2

( N

∑
j=1

1
(E j

N,δ )
cJi j

KSδ β λi j(t)
2

)2}dt
T

)
dP⊗N(x,r)

}
≤{∫

A1
N,δ

N

∏
i=1

∫ T

0
EJ

(
exp
{

CT (ω1−1)κ2
2 δ

2β N
cN,δ

( N

∑
j=1

1
(E j

N,δ )
cJi j

KSδ β λi j(t)
2

)2})dt
T

dP⊗N(x,r)

}
.

Moreover, KSδ β |λi j(t)|
2 ≤ 1, so that for κ2 = O(δ−β ), we are also in the scope of hypothe-

sis (HJ).
To summarize, as soon as ω1−1 is small enough and for κ2 = O(δ−β ) one can use

Fubini Theorem and hypothesis (HJ) to obtain

(
Bδ

2
) 1

κ2 ≤ exp
{

CT

(
(ω1−1)κ2δ

2β +
(ω1−1)

κ2

)
N
}
≤ exp

{
CT (ω1−1)N

κ2

}
. (4.58)

Hence, using inequalities (4.57) and (4.58) with κ1 = 1+ δ β , ω1− 1 small enough,
then κ2 = O(δ−β ), and under a short time hypothesis T

λ 2
∗
< a, there exists a constant

CT independent of N and δ such that

Bδ

A1
N,δ
≤ exp

{
CT

(
(κ1−1)+

ω1−1
κ2

)
N
}
≤ exp

{
CT (κ1−1)N

}
= exp

{
CT δ

β N
}
.

Let us now take care of ZN appearing in the right-hand side of (4.55).

Proof of Lemma 4.5.1. We will demonstrate assumptions (H1)- (H4), and define the
set A2

N,δ ∈B
((

C ×D
)N
)

in Appendix 4.6.3.
We prove here the inequality involving ZN . Let λ be the constant of condition (H2).
Then, we chose in (4.55) conjugate exponents (p,q) satisfying q∈]1, 3

2 [ and λ +(q−1)<
1. Then,

ZN ≤
∫

A2
N,δ

N

∏
i=1

(
1+

aδ
i (x,r)−bδ

i (x,r)
bδ

i (x,r)

)q−1
dQN,δ (x,r).

Property (H4) implies that
∣∣aδ

i (x,r)−bδ
i (x,r)

bδ
i (x,r)

∣∣≤ E exp
{

1
2 ∑

1
δ

l=0

(
B2

tl (xi,ri)+D
√

δ
∣∣Btl (xi,ri)

∣∣))}.

Moreover, as (x+ y)q−1 ≤ xq−1 + yq−1 for any x,y > 0, one has

ZN ≤ 1+
N

∑
k=1

Ek(q−1)

k! ∑
s∈I k

N

Os,k, (4.59)

where I k
N is the set of injective application from [[1,k]] to [[1,N]], and

Os,k =
∫

A2
N,δ

k

∏
i=1

exp
{q−1

2

1
δ

∑
l=1

(
B2

tl

(
xs(i),rs(i)

)
+
√

δD
∣∣Btl
(
xs(i),rs(i)

)∣∣)}dQN,δ (x,r).

Let η > 0, and α ≤ η be as in (H3). Then, if k
N > α we can apply (H2) to obtain:
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Os,k ≤ Os,N ≤CN
∫

A2
N,δ

N

∏
i=1

(
exp
{

λ +(q−1)
2

1
δ

∑
l=1

B2
tl

(
xi,ri

)
+
√

δD
q−1

2

1
δ

∑
l=1

∣∣Btl
(
xi,ri

)∣∣})dP⊗N(x,r)

≤
(

C

1
δ

∏
l=1

∫
C×D

exp
{

λ +(q−1)
2

B2
tl

(
x,r)

)
+
√

δD
q−1

2

∣∣Btl
(
x,r
)∣∣}dP(x,r)

)N

≤C
N
δ

1

so that
Os,k ≤

(
C

1
αδ

1

)k
.

Suppose now that k
N ≤ α. We then use property (H3) for aδ

i , with i 6∈ {s(1), . . . ,s(k)},
and property (H2) for the other i, and obtain by independence

Os,k ≤ (1+η)NFNGN

where

FN =Ck
∫

A2
N,δ

k

∏
i=1

(
exp
{

λ +(q−1)
2

1
δ

∑
l=1

B2
tl

(
xs(i),rs(i)

)
+
√

δD
q−1

2

1
δ

∑
l=1

∣∣Btl
(
xs(i),rs(i)

)∣∣})dP⊗N(x,r),

and

GN =
∫

A2
N,δ

∏
i6∈Im(s)

ãδ
i (x,r)exp

{
η

2

1
δ

∑
l=1

B2
tl

(
xi,ri

)}
dP⊗N(x,r).

As previously, FN ≤C
k
δ

1 . Moreover, using (H3) and (H1) to recover every aδ
i , we obtain

GN ≤
(1+η)N

Ak

∫
A2

N,δ

(
N

∏
i=1

exp
{

η

1
δ

∑
l=1

B2
tl

(
xi,ri

)})( k

∏
i=1

exp
{

B
√

δ

1
δ

∑
l=1

∣∣Btl
(
xi,ri

)∣∣})dQN,δ (x,r).

Let now

IN =
∫

A2
N,δ

exp
{

η ∑
1≤l≤ 1

δ

1≤i≤N

B2
tl

(
xi,ri

)
+
√

δB ∑
1≤l≤ 1

δ

1≤i≤k

∣∣Btl
(
xs(i),rs(i)

)∣∣}1{
∑1≤l≤ 1

δ
1≤i≤N

B2
tl

(
xi,ri

)
≤ N√

ηδ

}dQN,δ (x,r),

and

JN =
∫

A2
N,δ

exp
{

η ∑
1≤l≤ 1

δ

1≤i≤N

B2
tl

(
xi,ri

)
+
√

δB ∑
1≤l≤ 1

δ

1≤i≤k

∣∣Btl
(
xs(i),rs(i)

)∣∣}1{
∑1≤l≤ 1

δ
1≤i≤N

B2
tl

(
xi,ri

)
> N√

ηδ

}dQN,δ (x,r),

so that

GN ≤
(1+η)N

Ak

(
IN + JN

)
.

As α ≤ η , and

∑
1≤l≤ 1

δ

1≤i≤k

∣∣Btl
(
xs(i),rs(i)

)∣∣ C.S.
≤

(
∑

1≤l≤ 1
δ

1≤i≤N

B2
tl

(
xi,ri

)) 1
2

.

√
k
δ
,

we finds

IN ≤ exp
{

N
(√η

δ
+B

η
1
4

δ
1
2

)}
.
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Moreover, for η ≤ η0, with λ +2η0 < 1, using (H2) we have

JN ≤
∫

A2
N,δ

exp
{

λ +2η

2 ∑
1≤l≤ 1

δ

1≤i≤N

B2
tl

(
xi,ri

)
+B
√

δ ∑
1≤l≤ 1

δ

1≤i≤N

∣∣Btl
(
xi,ri

)∣∣}1{
∑1≤l≤ 1

δ
1≤i≤N

B2
tl

(
xi,ri

)
> N√

ηδ

}dP⊗N(x,r).

Under P⊗N the
(

B2
tl

(
xi,ri

))
i,l

are independent centered standard Gaussian variables.

Hence, writting down their density, we see that exists ξ < 1 such that

JN ≤
∫

A2
N,δ

exp
{

ξ −1
2 ∑

1≤l≤ 1
δ

1≤i≤N

u2
i,l +B

√
δ ∑

1≤l≤ 1
δ

1≤i≤N

∣∣ui,l
∣∣}1{

∑1≤l≤ 1
δ

1≤i≤N

u2
i,l>

N√
ηδ

} du1,1 . . .duN, 1
δ√

(2π)
N
δ

,

JN ≤ exp
{

N
ξ −1
4δ
√

η

}∫
A2

N,δ

exp
{

ξ −1
4 ∑

1≤l≤ 1
δ

1≤i≤N

u2
i,l +B

√
δ ∑

1≤l≤ 1
δ

1≤i≤N

∣∣ui,l
∣∣}du1,1 . . .duN, 1

δ√
(2π)

N
δ

,

JN ≤C
N
δ

2 exp
{

N
ξ −1
4δ
√

η

}
.

Therefore, letting Cα,δ = max
(
C

1
αδ

1 , C
AC

1
δ

1 ,1
)
, we obtain ∀k ∈ {1, . . . ,N}

Os,k ≤ (1+η)2NCk
α,δ

(
exp
{

N
(√η

δ
+B

η
1
4

δ
1
2

)}
+C

N
δ

2 exp
{

N
ξ −1
4δ
√

η

})
and injecting this upperbound in (4.59) we get

ZN ≤
(
1+Eq−1Cα,δ

)N
(1+η)2N

(
exp
{

N
(√η

δ
+B

η
1
4

δ
1
2

)}
+C

N
δ

2 exp
{

N
ξ −1
4δ
√

η

})
.

Proof of Lemma 4.5.3. As P⊗N(A2
N,δ ) = 1 as soon as N ≥ 1

δ
(see (4.62)), it suffices to

show the result on A1
N,δ . Hölder inequality yields

∫
(C×D)N

1(A1
N,δ )

c
dQN

dP⊗N (x,r)dP⊗N(x,r)
C.S.
≤
(∫

(C×D)N
exp{κ1NΓ̄(µ̂N)}dP⊗N(x,r)

) 1
κ1

P⊗N((A1
N,δ )

c) 1
κ2 .

As done in the proof of Lemma 4.5.2, we obtain under a short-time hypothesis that(∫
(C×D)N

exp{κ1NΓ̄(µ̂N)dP⊗N(x,r)}
) 1

κ1
≤ exp

{
CT (κ1−1)N

}
,

where C̃T is independent of N and δ . Furthermore,

P⊗N
(
(A1

N,δ )
c
)
= P⊗N(cN,δ > δ

2β N
)
= P⊗N

(
∑

N
i=1 1

(E j
N,δ )

c−P
(
(E1

N,δ )
c
)

N
> δ

2β −P
(
(E1

N,δ )
c)).

Let us show that ∀m ∈N∗,∃CT,m > 0 such that P
(
(E1

N,δ )
c
)
< CT,mδ m( 1

2−β )−1, so that for

m big enough and δ small enough, P
(
(E1

N,δ )
c
)
< δ 2β .
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Remember that the semi-martingale decomposition of x under Pr

xt − xs =
∫ t

s
f (r,u,xu)du+λ (r)

(
Wt(x,r)−Ws(x,r)

)
so that using the Lipschitz continuity of S, one has

P
(
(E1

N,δ )
c)≤ P

(
sup

s∈[−τ,T−δ ],t∈[s,s+δ ]

∣∣∫ t

s
f (r1,u,x1

u)du
∣∣> δ β

2

)

+P

(
sup

s∈[−τ,T−δ ],t∈[s,s+δ ]

∣∣Wt(x1,r1)−Ws(x1,r1)
∣∣> δ β

2λ ∗

)
.

In fact suppose we are on (E1
N,δ )

c, that is there exist s∈ [−τ,T −δ ] and t ∈ [s,s+δ ] such
that |x1

t −x1
s |> δ β . Then, one scenario is that s(l) = t(l) or t = s(l)+δ , so that s and t are

in the same interval [s(l),s(l)+δ ], while the other possibility is that they belong to two
different consecutive such intervals. Then, by triangular inequality

P
(

sup
s∈[−τ,T−δ ],t∈[s,s+δ ]

∣∣W 1
t −W 1

s

∣∣> δ β

2λ ∗

)
≤ P

(
sup

t∈[−τ,T ]
max

(∣∣W 1
t −W 1

t(l)
∣∣, ∣∣W 1

t −W 1
t(l)+δ

∣∣)> δ β

4λ ∗

)

Markov
≤ (4λ

∗)m

E

[
sup

t∈[−τ,T ]
max

(∣∣W 1
t −W 1

t(l)
∣∣m, ∣∣W 1

t −W 1
t(l)+δ

∣∣m)]
δ mβ

≤ (4λ
∗)m

∑
T/δ

l=−τ

δ

E

[
sup

t∈[t(l),t(l)+δ ]

∣∣W 1
t −W 1

t(l)
∣∣m]+E[ sup

t∈[t(l)−δ ,t(l)]

∣∣W 1
t −W 1

t(l)
∣∣m]

δ mβ

≤ 2(T + τ)

δ mβ+1 (4λ
∗)m
E

[
sup

t∈[0,δ ]

∣∣W 1
t

∣∣m] B.D.G.
≤ CT,mδ

m( 1
2−β )−1,

where CT,m is a constant independent of δ and N. Moreover, Markov inequality gives:

P
(

sup
s∈[−τ,T−δ ],t∈[s,s+δ ]

∣∣∫ t

s
f (r1,u,x1

u)du
∣∣> δ β

2

)
≤ 2m

δ
m(1−β )

E

[
sup

t∈[−τ,T ]

∣∣ f (r1, t,X
1,N
t
)∣∣m].

Furthermore, it is proven in the Appendix 4.6.1 that sup
t∈[−τ,T ]

∣∣ f (r1, t,X
1,N
t
)∣∣ admits expo-

nential moments under P. Let σ2
N,δ := Var(1(E1

N,δ )
c) = P⊗N

(
(E1

N,δ )
c
)
(1−P⊗N

(
(E1

N,δ )
c
)
) ≤

CT,mδ m( 1
2−β )−1. Then, for δ small enough,

P⊗N((A1
N,δ )

c)≤ P⊗N
(

1
2σN,δ

√
N

∣∣∣ N

∑
i=1

1
(E j

N,δ )
c−P

(
(E1

N,δ )
c)∣∣∣> 1

4σN,δ

√
Nδ

2β

)
≤ exp{−C̃T,mNδ

2+4β−2m( 1
2−β )}E

[
exp
{1

4
N (0,1)2

}]
.

Hence∫
(C×D)N

1(A1
N,δ )

c
dQN

dP⊗N dP⊗N(x,r)≤ exp
{
−C̃T,m

(
δ

2+4β−2m( 1
2−β )+1

)
(κ1−1)N

}
.

For δ small enough, and m big enough, this term goes to zero exponentially fast with
N→ ∞.
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4.6 APPENDIX

4.6.1 A priori estimates for single neurons

Lemma 4.6.1. ∀r ∈ D, ‖ f (r, ·,x.)‖2
∞,T admits exponential moments under Pr.

Proof. Fix r ∈ D, and suppose first that t ∈ [0,T ]. Using the Lipschitz continuity of
f (r, ., .), we have∣∣ f (r, t,xt)

∣∣≤ ‖ f (r, ·,x.)‖τ,∞ +
∣∣ f (r, t,xt)− f (r,0, x̄0

0)
∣∣

≤
∣∣ f (r,0, x̄0

0)
∣∣+K f T +K f

∫ t

0

∣∣ f (r,u,xu)
∣∣du+K f λ

∗∣∣Wt(x,r)
∣∣

≤
∣∣ f (0,0,0)∣∣+K f (|x̄0

0|+T +dD)+K f

∫ t

0

∣∣ f (r,u,xu)
∣∣du+K f λ

∗∣∣Wt(x,r)
∣∣

so that by Gronwall’s lemma:

sup
t∈[0,T ]

| f (r, t,xt)|2 ≤CT
(
|x̄0|2 +1+W ∗T (r)

2), (4.60)

with W ∗T (r) := sup
t∈[0,T ]

|Wu(x,r)|. Moreover,

‖ f (r, ·,x.)‖2
τ,∞ ≤ 3K2

f
(
‖r‖2

Rd + τ
2 +‖x̄0(r)‖2

τ,∞

)
,

so that
‖ f (r, ·,x.)‖2

∞,T ≤CT
(
‖x̄0(r)‖2

τ,∞ +1+W ∗T (r)
2).

As W ∗T (r)
2 ≤ 2

(
sup

t∈[0,T ]
Wt(r)

)2
+2
(

sup
t∈[0,T ]

−Wt(r)
)2

, where each of the two terms of the left-

hand side of the last sum has the law of 2|WT (r)|2 under Pr, we have for α > 0

∫
C

exp
{

α‖ f (r, ·,x.)‖2
∞,T
}

dPr(x)
Hölder
≤ eα̃

(∫
Cτ

exp
{

3α̃‖x‖2
τ,∞

}
dµ0(r)(x)

) 1
3
(∫

C
exp
{

6α̃|WT (r)|2
}

dPr(x)
) 2

3

,

where α̃ = αCT . For α small enough,
∫
C exp

{
3α̃|x0|2

}
dPr(x) is finite by hypothesis

(4.8), and
∫
C exp

{
6α̃|WT (r)|2

}
dPr(x) is by (8.1), so that ‖ f (r, ·,x.)‖2

∞,T admits exponential
moments.

4.6.2 Proof of lemma 4.2.2: regularity of the solutions for the limit
equation

In this appendix we demonstrate the regularity in space of the solutions that is ex-
pressed in lemma 4.2.2. We start by showing a technical lemma on the uncoupled
system before proceeding to the proof of that result.

Lemma 4.6.2. (i) The map:

P :
{

D→M+
1 (C )

r→ Pr

is continuous with respect to the borel topology on D, and the weak topology on
M+

1 (C ), e.g. rn→ r =⇒ Prn

L→ Pr.
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(ii) Let W be the Wiener measure on C . Then, ∀A ∈B(C ),W (A) = 0 =⇒ Pr(A) = 0.

(iii) P is a well defined probability measure on C ×D.

Proof. The first point is the consequence of a coupling argument. Let W be a P-
Brownian motion, x̄0 : D→ Cτ be as in (4.6), and (rn)n∈N ∈ DN a sequence of positions
that converges toward r ∈D. We consider Xn and X , the respective strong solutions of
the SDEs:{

dXn
t = f (rn, t,Xn

t )dt +λ (rn)dWt

(Xn
t )t∈[−τ,0] = x̄0(rn)

{
dXt = f (r, t,Xt)dt +λ (r)dWt

(Xt)t∈[−τ,0] = x̄0(r)

driven by the same Brownian motion W .
Then, by Gronwall lemma, letting W ∗T = sup

t∈[−τ,T ]
|Wt |,

‖Xn−X‖∞,T ≤
(
‖x̄0(rn)− x̄0(r)‖τ,∞ +‖r− rn‖Rd K f T +Kλ‖r− rn‖RdW ∗T

)
e{K f T},

Hence, by (4.6):

E

[
‖Xn−X‖2

∞,T

]
→ 0, as rn→ r,

so that Prn = L (Xn) =⇒ L (X) = Pr as rn→ r.
In order to prove the second point, let Wr be the unique strong solution of{

dXt = λ (r)dWt

(Xt)t∈[−τ,0] = x̄0(r).

Following Exercise (2.10) of [200], we remark, by Lipschitz continuity of f , that ex-
plosion of Pr almost surely never occurs in finite time, so that Girsanov’s theorem
applies:

Pr�Wr,
dPr

dWr
= exp

{∫ T

0

f (r, t,Xt)

λ (r)
dXt −

1
2

∫ T

0

( f (r, t,Xt)

λ (r)

)2
dt
}
.

Consequently, ∀A ∈B(C ),

Pr(A) =EWr(
dPr

dWr
1A)

so that Pr(A) = 0 as soon as Wr(A) = 0. As λ (r)> λ∗, Wr(A) = 0 ⇐⇒ W (A) = 0.
The third point is now easy to settle. In fact, for any y ∈ C and ε > 0, W (∂B(y,ε)) =
W ({x ∈ C ,‖x− y‖∞,T = ε}) = 0. Hence, Portmanteau implies that r→ Pr(B(y,ε)) is a
continuous map, so that we can define

∫
D Pr(B(y,ε))dπ(r) univocally. As {B(y,ε)×

B,y ∈ C ,ε > 0,B ∈B(D)} form a Π-system that generates B(C ×D), P is a well defined
probability measure on C ×D.

We now proceed to prove lemma 4.2.2 that we repeat below:

Lemma 4.6.3. The map

Q :
{

DN →M+
1 (C N)

r→ QN
r

where QN
r := EJ

(
QN

r (J)
)
, is continuous with respect to the weak topology. Moreover,

dQN(x,r) := dQN
r (x)dπ

⊗N(r)

defines a probability measure on M+
1

(
(C ×D)N

)
.
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Remark 10. Q maps the positions r to the Gaussian averaged of the solutions QN
r (J),

so that its continuity seems to be a consequence of Cauchy-Lipschitz theorem with
parameter r. Yet, the equation depends on r through the synaptic weights Ji j which
only satisfy a continuity in law. Meanwhile the proof is not difficult, it must rely on
another argument. The one developed here is a coupling method.

Proof. We insist on the fact that N remains constant in this proof. Fix a deterministic
sequence

(
rn = (rn

i )1≤i≤N

)
n∈N∗

→n r = (ri)1≤i≤N ∈DN , let (W i
t ,0≤ t ≤ T )i∈[[1,N]] be a family

of independent P-Brownian motions, and x̄0,i : D→ Cτ ,1 ≤ i ≤ N, be N independent
initial condition as in (4.6). Let now XN

rn =
(
X i,N

rn

)
i∈[[1,N]]

and XN
r =

(
X i,N

r
)

i∈[[1,N]]
be the

respective strong solutions of the two following stochastic differential equations:{
dX i,N

rn (t) =
(

f (rn
i , t,X

i,N
rn (t))+∑

N
j=1 J̃rn

i j S
(
X j,N

rn (t− τrn
i rn

j
)
))

dt +λ (rn
i )dW i

t

(XN
rn(t))t∈[−τ,0] =

(
x̄0,i(rn

i )
)

1≤i≤N ,

{
dX i,N

r (t) =
(

f (ri, t,X
i,N
r (t))+∑

N
j=1 Jr

i jS
(
X j,N

r (t− τrir j)
))

dt +λ (ri)dW i
t

(XN
r (t))t∈[−τ,0] =

(
x̄0,i(ri)

)
1≤i≤N .

where Jr
i j ∼N

(
J(ri,r j)

N ,
σ(ri,r j)

2

N

)
, J̃rn

i j ∼ Jrn

i j satisfy (4.5), and where we used the short-hand

notation τrr′ := τ(r,r′). In particular, X i,N
rn has law QN

rn(Jrn
), and X i,N

r has law QN
r (J

r).
Then, we have for every t ∈ [0,T ],

(
X i,N

rn (t)−X i,N
r (t)

)
=
(
x̄0,i

0 (rn
i )− x̄0,i

0 (ri)
)
+

(∫ t

0

(
f (rn

i ,s,X
i,N
rn (s))− f (ri,s,X i,N

r (s))
)

ds

+
N

∑
j=1

{(
J̃rn

i j − Jr
i j
)∫ t

0
S
(
X j,N

rn (s− τrn
i rn

j
)
)
ds

+ Jr
i j

∫ t

0

(
S
(
X j,N

rn (s− τrn
i rn

j
)
)
−S
(
X j,N

r (s− τrir j)
))

ds

})
+
(
λ (rn

i )−λ (ri)
)
W i

t .

Let W ∗,iT = sup
t∈[0,T ]

|W i
t |. Then using Lipschitz continuity of f , λ , S, the fact that |S| ≤ 1,

and taking the supremum in time one obtains∥∥X i,N
rn −X i,N

r
∥∥

∞,t ≤ ‖x̄
0,i(rn

i )− x̄0,i(ri)‖τ,∞ +
(

K f t +KλW ∗,iT

)
‖rn

i − ri‖Rd

+
∫ t

0

{
K f
∥∥X i,N

rn −X i,N
r
∥∥

∞,s +KS

N

∑
j=1
|Jr

i j|
∥∥X j,N

rn −X j,N
r
∥∥

∞,s

}
ds+

N

∑
j=1

{
t
∣∣J̃rn

i j − Jr
i j

∣∣
+KS

∫ t

0
|Jr

i j| sup
a,b∈[−τ,0]

|a−b|≤2Kτ‖rn−r‖∞

∣∣∣X j,N
r (s+a)−X j,N

r (s+b)
∣∣∣ds

}
.

where ‖r‖∞ = sup1≤i≤N ‖ri‖Rd . Let us denote, for any X =
(
X i
)

1≤i≤N ∈ C N , t ∈ [−τ,T ],
‖X‖1

∞,t =∑1≤i≤N ‖X i‖∞,t , and for any r∈DN , ‖r‖1 =∑1≤i≤N ‖ri‖Rd . Summing over i∈ [[1,N]]
and using Gronwall’s inequality now yields
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∥∥XN
rn −XN

r
∥∥1

∞,t ≤CT exp
{

CT

N

∑
i, j=1
|Jr

i j|
}(
‖x̄0(rn)− x̄0(r)‖1

τ,∞ +
(

sup
1≤i≤N

W ∗,iT

)
‖rn− r‖1

+
N

∑
i, j=1

t
∣∣J̃rn

i j − Jr
i j

∣∣+( N

∑
i, j=1
|Jr

i j|
)∫ t

0
sup

1≤ j≤N

{
sup

a,b∈[−τ,0]
|a−b|≤2Kτ‖rn−r‖∞

∣∣∣X j,N
r (s+a)−X j,N

r (s+b)
∣∣∣}ds

)
.

(4.61)

Observe that exists a map χ : DN×DN→R such that χ(rn,r)→ 0, when n→∞, and
a constant CT,N such that:

EJ

[
exp
{

2CT

N

∑
i, j=1
|Jr

i j|
}] 1

2

+E
[(

sup
1≤i≤N

W ∗,iT

)2
]
+EJ

[( N

∑
i, j=1
|Jr

i j|
)2
]

(HJ)
≤ CT,N

E

[(
‖x̄0(rn)− x̄0(r)‖1

τ,∞

)2
]
+
(
‖rn− r‖1

)2
+

N

∑
i, j=1

t2EJ

[(
J̃rn

i j − Jr
i j
)2
] (4.6),(4.5)
≤ CT,N χ(rn,r).

Denoting EJ
[
·
]

:= E
[
EJ
[
·
]]

, we find taking the expectation in (4.61) and relying
on Cauchy-Schwarz’s inequality:

EJ

[[∥∥XN
rn −XN

r
∥∥1

∞,t

]
≤ C̃T,N

(
χ(rn,r)+EJ

[
sup

1≤ j≤N
sup

a,b∈[−τ,0],s∈[0,t]
|a−b|≤2Kτ‖rn−r‖∞

∣∣∣X j,N
r (s+a)−X j,N

r (s+b)
∣∣∣2]) 1

2

.

As solution areP-almost surely continuous, and N remains (here) finite, the Mono-
tone Convergence Theorem ensures that the right-hand side tends toward 0 when n
goes to infinity. It implies in particular that QN

rn converges in law toward QN
r when

n→ ∞, so that the map r→ EJ

[∫
C N φ(x)dQN

r (x)
]

is continuous and integrable with re-
spect to π⊗N . In particular, dQN(x,r) := dQN

r (x)dπ⊗N(r) defines a probability measure
on (C ×D)N .

4.6.3 Non-Gaussian estimates

We prove that the different assumptions (H1)-(H4) are valid.
(H1): By a direct application of Jensen’s inequality

aδ
i (x,r)≥exp

{∫ t

0
mµ̂N (t

(l),ri)dWt(xi,ri)−
1
2

∫ T

0

(
mµ̂N (t

(l),ri)
2 +K

µ̂N(t(l),t(l),ri)

)
dt
}

≥exp
{
− 1

2

(‖J‖2
∞ +‖σ‖2

∞

λ 2
∗

)
T
}

exp
{
− ‖J‖∞

√
δT

λ∗

1
δ

∑
l=1
|Btl (xi,ri)|

}
.



108 CHAPTER 4. SPATIALLY EXTENDED NETWORKS

(H2): Remark that

aδ
i (x,r) =exp

{1
2

1
δ

∑
l=1

Btl (xi,ri)
2
}

EJ

(
exp
{
− 1

2

1
δ

∑
l=1

(√
δT Ĝδ ,i

t(l)
(x,r)−Btl (x

i,ri)
)2})

,

Hölder
≤ exp

{1
2

1
δ

∑
l=1

Btl (xi,ri)
2
} 1

δ

∏
l=1

EJ

(
exp
{
− 1

2δ

(√
δT Ĝδ ,i

t(l)
(x,r)−Btl (x

i,ri)
)2})δ

.

Suppose first that Btl (x
i,ri)≥ 0. Then(

Btl (xi,ri)−
√

δT Ĝδ ,i
t(l)
(x,r)

)2
≥
(

Btl (xi,ri)−
√

δT Ĝδ ,i
t(l)
(x,r)

)2
1{

2
√

δT Ĝδ ,i

t(l)
≤Btl

}
≥ Btl (xi,ri)

2

4
1{

2
√

δT Ĝδ ,i

t(l)
(x,r)≤Btl (xi,ri)

},
so that

EJ

(
exp
{
− 1

2δ

(√
δT Ĝδ ,i

t(l)
(x,r)−Btl (xi,ri)

)2}) (HJ)

≤ exp
{
−

B2
tl (xi,ri)

8δ

}
+D0 exp

{
− λ 2

∗ a
4δT

B2
tl (xi,ri)

}
.

We obtain the same inequality under the hypothesis Btl ≤ 0, so that, making use of
hypothesis (HJ)

aδ
i (x,r)≤max

(
1,D0

)
exp
{1

2

1
δ

∑
l=1

Btl (xi,ri)
2
} 1

δ

∏
l=1

exp
{
− 1

4
min

(1
2
,
λ 2
∗ a
T

)
B2

tl (xi,ri)
}
.

(H3): Following the exact proof of Moynot and Samuelides [178], with constants q =
aλ 2
∗√

2T

√
N
k , and ε =

√
2 k

N , we obtain

ãδ
i (x,r)≤ exp

{( 1
2q

+
aλ 2
∗

2T q

) 1
δ

∑
l=1

B2
tl (xi,ri)

}(D0

A

) 1
q exp

{B
√

δ

q

1
δ

∑
l=1
|Btl (xi,ri)|

}
.

Remark that ∑

1
δ

l=1

√
δ |Btl (xi,ri)| ≤ 1

2

(
1+∑

1
δ

l=1 B2
tl (xi,ri)

)
, so that taking q large enough,

i.e. k
N small enough, yields the result.

(H4):

bδ
i (x,r) = exp

{1
2

1
δ

∑
l=1

B2
tl (xi,ri)

}
EJ

(
exp
{
− 1

2

1
δ

∑
l=1

(√
δT G̃δ ,i

t(l)
(x,r)−Btl (xi,ri)

)2})
.

Under EJ, Uδ
i (x,r) :=

(√
δT G̃δ ,i

t(l)
(x,r)

)
l∈[[1, 1

δ
]]

is a Gaussian vector of mean Ūδ
i (x,r) :=(√

δT mµ̂N (t
(l),ri)

)
l∈[[1, 1

δ
]]

and variance-covariance matrix Σδ
i (x,r) :=

(
δT Kµ̂N (tl, tm,ri)

)
(l,m)∈[[1, 1

δ
]]2

.

Let

A2
N,δ :=

{
(x,r) ∈

(
C ×D)N ,∀Y ∈R

1
δ \{0},∀i ∈ [[1,N]],∃ j ∈ [[1,N]],

( 1
δ

∑
l=1

ylS(x
j
tl−τ(ri,r j)

)
)2

> 0
}
.

(4.62)
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As

tY Σ
δ
i (x,r)Y =

δT
λ (ri)2N

N

∑
j=1

σ(ri,r j)
2
( 1

δ

∑
l=1

ylS(x
j
tl−τ(ri,r j)

)
)2

,

the matrix Σδ
i is positive definite on A2

N,δ . Being on this set basically mean that the
N random vectors

(
S(x j

tl−τ(ri,r j)
)
)

l∈[[1, 1
δ
]]
,1≤ j ≤ N are not contained in an hyperplane of

R
1
δ . For N ≥ 1

δ
, P⊗N

(
A2

N,δ

)
= 1 as, under Pr, the x j are independent semi-martingales.

Let B :=
(
Btl
)

l∈[[1, 1
δ
]]
. Hence, denoting

∥∥X
∥∥

2,δ =

√
∑

1
δ

l=1 x2
l for any X ∈R 1

δ , we have

bδ
i (x,r)= exp

{1
2

∥∥B
∥∥2

2,δ (xi,ri)
}

EJ

(
exp
{
− 1

2

∥∥Uδ
i (x,r)−Ūδ

i (x,r)+Ūδ
i (x,r)−B(xi,ri)

∥∥2
2,δ

})
,

bδ
i (x,r) =exp

{1
2

∥∥B
∥∥2

2,δ (xi,ri)
}

exp
{
− 1

2

∥∥Ūδ
i (x,r)−B(xi,ri)

∥∥2
2,δ

}
×
∫
R

1
δ

exp
{
−X .

(
Ūδ

i (x,r)−B(xi,ri)
)}exp

{
− 1

2 X .
(

I 1
δ

+(Σδ
i (x,r))−1

)
.X
}

√
(2π)N det

(
Σδ

i (x,r)
) dX ,

=

√
det
(

I 1
δ

+Σδ
i (x,r)

)−1
exp
{1

2

∥∥B
∥∥2

2,δ (xi,ri)
}

× exp
{1

2
(
Ūδ

i (x,r)−B(xi,ri)
)
.
(

Aδ
i (x,r)− I 1

δ

)
.
(
Ūδ

i (x,r)−B(xi,ri)
)}

,

where Aδ
i (x,r) = Σδ

i (x,r)
(

I 1
δ

+Σδ
i (x,r)

)−1
is a definite postive matrix with eigenvalues

strictly smaller than 1. Consequently,

(bδ
i (x,r))

−1 ≤
√

det
(

I 1
δ

+Σδ
i (x,r)

)
exp
{1

2

∥∥Ūδ
i (x,r)−B(xi,ri)

∥∥2
2,δ

}
︸ ︷︷ ︸

=:Ni(x,r)

exp
{
− 1

2

∥∥B
∥∥2

2,δ (xi,ri)
}
.

As

|aδ
i (x,r)−bδ

i (x,r)|= e

{
1
2 ∑

1
δ
l=1 B2

tl
(xi,ri)

}
Oi(x,r),

with

Oi(x,r) :=

∣∣∣∣∣EJ

(
e

{
− 1

2 ∑

1
δ
l=1

(√
δT Ĝδ ,i

t(l)
(x,r)−Btl (xi,ri)

)2}
− e

{
− 1

2 ∑

1
δ
l=1

(√
δT G̃δ ,i

t(l)
(x,r)−Btl (xi,ri)

)2})∣∣∣∣∣
then ∣∣∣aδ

i (x,r)−bδ
i (x,r)

bδ
i (x,r)

∣∣∣≤ Oi(x,r)Ni(x,r).

Remark that√
det
(

I 1
δ

+Σδ
i (x,r)

)
= exp

{1
2 ∑

λ∈sp
(

Σδ
i (x,r)

) log(1+λ )
}
≤ exp

{1
2

tr
(
Σ

δ
i (x,r)

)}
≤ exp

{‖σ‖2
∞T

2λ 2
∗

}
,

so that

Ni(x,r)≤ exp
{

T
‖σ‖2

∞ +‖J‖2
∞

2λ 2
∗

}
exp
{1

2

1
δ

∑
l=1

(
Btl (x

i,ri)
2 +2
√

δT
‖J‖∞

λ∗

∣∣Btl (x
i,ri)

∣∣)}.
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To obtain an upperbound for Oi we rely on [178, Lemma 4.2 ] where the fixed and
finite 1

δ
corresponds to their T . Following its proof, we define the function:

Φx,r(y1, . . . ,y 1
δ

) =

1
δ

∏
l=1

φ
(
yl +al(x,r)

)
,

where φ(z) := exp− z2

2 and al(x,r) :=
√

δT
λ (ri)

∑
N
j=1

J(ri,r j)
N S

(
x j

t(l)−τ(ri,r j)

)
−Btl (x

i,ri). One easily
sees that the three first derivatives of Φx,r are bounded by some constant C3 indepen-
dent of δ and (x,r). Let

Vj(x,r) =
(√

δT
λ (ri)

(
Ji j−

J(ri,r j)

N

)
S
(
x j

t(l)−τ(ri,r j)

))
1≤l≤ 1

δ

,

Ṽj(x,r) =
(√

δT
λ (ri)

(
J̃i j−

J(ri,r j)

N

)
S
(
x j

t(l)−τ(ri,r j)

))
1≤l≤ 1

δ

,

so that

Oi(x,r) =

∣∣∣∣∣EJ

(
Φx,r

( N

∑
j=1

Vj(x,r)
)
−Φx,r

( N

∑
j=1

Ṽj(x,r)
))∣∣∣∣∣.

Let ε > 0. Then

Oi(x,r)≤C3

(
ε

6

N

∑
j=1

EJ

(∥∥Vj(x,r)
∥∥2

2,δ

)
+

N

∑
j=1

EJ
(∥∥Ṽj(x,r)

∥∥3
2,δ

)
+

N

∑
j=1

EJ

(∥∥Vj(x,r)
∥∥2

2,δ 1{
‖Vj(x,r)‖2,δ≥ε

})).
But

EJ

(∥∥Vj(x,r)
∥∥2

2,δ

)
≤ δT

λ 2
∗

EJ

[(
Ji j−

J(ri,r j)

N

)2
] 1

δ

∑
l=1

S
(
x j

t(l)−τ(ri,r j)

)2 ≤ ‖σ‖
2
∞T

Nλ 2
∗

,

EJ

(∥∥Ṽj(x,r)
∥∥3

2,δ

)
=

(√
δT

λ (ri)

( 1
δ

∑
l=1

S
(
x j

t(l)−τ(ri,r j)

)2
) 1

2
)3

EJ

(∣∣∣J̃i j−
J(ri,r j)

N

∣∣∣3)≤ ‖σ‖3
∞T

3
2

N
3
2 λ 3
∗

EJ

(∣∣N (
0,1
)∣∣3),

EJ

(∥∥Vj(x,r)
∥∥2

2,δ 1{‖Vj(x,r)‖2,δ≥ε}

)
≤ 1

N
EJ

(
δT N
λ 2
∗

(
Ji j−

J(ri,r j)

N

)2
1{

δT
λ2∗

(
Ji j−

J(ri,r j)
N

)2
≥ε2
}).

Let Ca = supx≥0 x2 exp
{
−a λ 2

∗
2T x
}

. Then

EJ

(∥∥Vj(x,r)
∥∥2

2,δ 1{
‖Vj(x,r)‖2,δ≥ε

})≤ δλ 2
∗Ca

T N2 EJ

((
Ji j−

J(ri,r j)

N

)−2
e

aN
2

(
Ji j−

J(ri,r j)
N

)2

1{
δT
λ2∗

(Ji j−
J(ri,r j)

N )2≥ε2
})

≤ Caδ 2

N2ε2 exp
{

a
‖J‖2

∞

N

}
EJ

(
exp
{

aNJ2
i j

})
.

Choosing ε = N−
1
4 , and using hypothesis (HJ) yields the result.



CHAPTER 5

NETWORK WITH
STATE-DEPENDENT SYNAPSES

We investigate the role of the interaction amplitude disorder on the thermodynamic
limit of a class of particle systems arising in the modeling of neuronal networks and
interacting oscillators. The originality of the model is that the directed impact of one
particle onto another (i) depends on the state of both particles, and (ii) have an hetero-
geneous amplitude varying between the different cells considered. We focus here on
the case where the scaling of the fluctuations of interaction amplitude disorder pro-
vides this parameter a non-trivial role, i.e. when the variance of the synaptic weights
decays as the inverse of the network size. Under sufficient regularity assumptions,
we show that the empirical measure satisfies a large-deviation principle with good
rate function achieving its minimum at a unique probability measure. This technical
results implies in particular the convergence of the empirical measure, of the law of a
given particle, as well as a propagation of chaos property. The limit is characterized
through a complex non Markovian implicit equation in which the network interaction
term is replaced by a Gaussian field depending on the state of the particle.

5.1 INTRODUCTION
Interacting particle systems in random environments are ubiquitous in the

theory of complex systems. They are useful to model a broad range of phenomena,
from neural networks of the brain [221] to communication networks [30], internet
traffic [122], disordered physical systems [22], economics and social science [188]. A
particularly important model in life science is the Kuramoto model of coupled oscilla-
tors [152] which is one of the seldom models that are completely solvable in a mean-
field scaling (see the outstanding review of Strogatz [227] and, more recently, [160]).
All these models have in common to be described by a variable (X i,N

t )i=1···N ∈RN char-
acterizing each particle’s state, and that satisfies a stochastic differential equation of
type:

dX i,N
t =

(
f (ri, t,X

i,N
t )+

N

∑
j=1

Ji jb(X
i,N
t ,X j,N

t )

)
dt +λdW i

t , (5.1)

where:

• the map f denotes each particle’s intrinsic dynamics, which depends on time, on
the state of the particle, as well as on its intrinsic properties taken into account
through a disorder parameter ri ∈D⊆Rd that vary across the different particles;

• the terms (Ji jb(xi,x j)) represent the impact of particle j with state x j onto the
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particle i with state xi. The amplitude of this interaction is modulated by the co-
efficient Ji j ∈R that incorporates both the network topology and the variability
of interactions intensity;

• the stochastic fluctuations are driven by independent standard real-valued Brow-
nian motions (W i

t )t≥0, and λ > 0.

The main contribution of the present manuscript is to characterize the thermody-
namic limit of these systems when the interaction coefficients (Ji j)i, j∈{1,··· ,N}2 have a
slowly decaying variance, equivalent to σ2/N when N→ ∞.

In contrast to the well-studied mean-field regime where the variance typically
scales as O(1/N2) [85, 161, 171, 231] and where the fluctuations of the interaction
coefficients disappear in the limit, the present setting preserves a nontrivial contri-
bution of the microscopic disorder of the Ji j. This regime has been studied for several
decades: it is particularly rich, somewhat nonstandard, and still not fully understood.
Notable advances in the characterization of such systems revealed that level of dis-
order σ has an important impact on the macroscopic behavior, governing the glassy
transition in spin glass systems [216] or a transition to chaos in randomly connected
neural networks [221]. The Kuramoto model also displays a transition as a function
of the disorder level, the nature of which remains debated [76, 77, 224, 225].

Mathematically, important advances in the understanding of large systems in this
scaling regime were achieved in the context of Langevin spin glass systems by Ben
Arous, Dembo and Guionnet [14, 22, 23, 129]. These works are fundamental in the
field in that they introduce a general methodology to characterize systems of bounded
spins with linear interactions only depending on the state of the other particles (i.e.,
b(x,y) = y). They prove a Large Deviations Principle (LDP) for the empirical mea-
sure, averaged propagation of chaos and convergence towards a non-Markov implicit
equation. The same technique was used in neuroscience in order to understand the
dynamics of rate models with interactions of type b(x,y)= S(y) with S a sigmoidal func-
tion. This was first performed in discrete-time systems [104, 178], and then extended
to continuous time settings with spatial extension and delays [51, 52].

Here, we undertake the analysis of systems with general interactions b(x,y). The
main motivation for this extension is to address limit properties of a few biologically
relevant models such as coupled oscillators (e.g., the canonical Kuramoto model [152]),
collective animal behavior models [56] or neuronal networks [100, 117]. We will show
that the empirical measure of system (5.1), averaged over the disorder parameters,
satisfies a LDP, with an explicit good rate function that has a unique minimum.
This approach readily proves convergence of the network equations towards a non-
Markovian complex mean-field equation as in [14, 22, 23, 129]. Taking into account
general interactions introduces a number of specific difficulties. In particular, it in-
duces complex dependences between processes that prevents from isolating exponen-
tial martingales terms, which leads us to work on a finite time interval. Besides,
the regularity assumptions of biological models allows to propose an alternative and
somewhat more standard approach for showing existence and uniqueness of solutions
to the limit system.

The paper is organized as follows. We start by introducing the mathematical set-
ting and main results in Section 5.2. The proofs are found in the following sections.
Section 5.3 establishes a partial LDP for the averaged empirical measure, which re-
lies on the identification of the good rate function as well as on exponential tightness
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and upper-bounds on closed sets for the sequence of empirical measures. In Sec-
tion 5.4, we demonstrate that the good rate function admits a unique minimum Q
and prove the averaged and quenched convergence of the empirical measure towards
Q. We discuss these perspectives as well as a few open research directions in the
conclusion.

These results will also be applied to the randomly connected Kuramoto model in
Chapter 7. The study of the resulting equations exhibit the competition taking place
between the mean and the variance of the interactions intensity for reaching syn-
chrony. This new phenomenon may have applications in biology where interactions
are generally highly heterogeneous.

5.2 MATHEMATICAL SETTING AND MAIN RESULTS
Throughout the paper, we will denote by M+

1 (Σ) for a Polish space Σ the set
of Borel probability measures on Σ. The interacting particle system (5.1) is a diffusion
in random environment, and as such involves two probability spaces:

• The disorder parameter of the particles as well as their interaction amplitudes
are random variables on a complete probability space (Ω̃,F̃ ,P). These hetero-
geneities are taken into account through:

– independent identically distributed random variables (ri)i∈N∗ ∈ DN∗ with
distribution π ∈M+

1 (D) absolutely continuous with respect to Lebesgue’s
measure.

– the interaction coefficients J := (Ji j)i, j∈{1···N} that are independent and iden-
tically distributed real Gaussian random variables with mean J̄

N and vari-
ance σ2

N for all N ∈ N∗. These are assumed independent of the ri parame-
ters1.

These parameters constitute the random environment of the dynamic and are
frozen in time. Their realization do not depend on the evolution of the system.
We will denote E the expectation under P, and by EJ and PJ the expectation
and probability conditionally on the variables (ri)i∈N∗ (i.e., over the variables Ji j

only).

• The particles are driven by independent standard Brownian motions (W i
t ) on the

filtered probability space (Ω,F ,(Ft)t ,P) satisfying the usual conditions.

The particles state, given by equation (5.1), thus depends both on the random
environment and on the Brownian motions. We assume that the parameters of the
equation driving the dynamics of the network enjoy the following regularity assump-
tions:

(i) The map f : D×R×R 7→R is K f -Lipschitz continuous in all variables;

(ii) The map b :R×R 7→R is bounded (‖b‖∞ := supx,y∈R×R |b(x,y)|<∞) and Kb-Lipschitz-
continuous in all variables.

1We emphasize that the law of the Ji j depends on N. This does not necessary require to draw distinct
sequences of random variables for each N. For instance, one may define Ji j =

J̄
N + σ√

N
ξi j with ξi j a

sequence of iid standard Gaussian random variables.
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The initial conditions of the network will be considered independent for the different
neurons. The law of the initial condition of a given neuron at position r ∈ D may
however depend on this heterogeneity parameter: we denote it by µ0(r) ∈M+

1 (R).
Moreover, we will assume that the collection of measures

(
µ0(r)

)
r∈D is continuous

with respect to r ∈ D, in the sense that there exists a collection of random variable
(x̄0(r))r∈D such that for any r ∈ D, x̄0(r) has law µ0(r) and, r 7→ x̄0(r) is continuous:

∀r,r′ ∈ D, L (x̄0(r)) = µ0(r), lim
‖r−r′‖

Rd→0
|x̄0(r)− x̄0(r′)| → 0. (5.2)

where ‖·‖Rd denotes the Euclidean norm onRd . The network equations (5.1) are thus
completed by the initial condition:

(X i
0)i=1···N

L
=

N⊗
i=1

µ0(ri), (5.3)

The regularity assumptions on f and b classically ensure well-posedness of the net-
work equation:

Proposition 5.2.1. For any given J ∈ RN×N , r := (ri)i∈{1···N} ∈ DN , and T > 0, there
exists a unique weak solution to the system (5.1) defined on [0,T ] with initial condi-
tion (5.3). Moreover, this solution is square integrable.

Let T > 0, and QN
r (J) be this unique weak solution up to time T . QN

r (J) is a prob-
ability measure on C N , where C := C

(
[0,T ],R

)
is the set of continuous function from

[0,T ] to R. This solution depends on both realizations of J and r. We are interested in
proving a LDP for the double-layer empirical measure µ̂N ∈M+

1 (C ×D):

µ̂N =
1
N

N

∑
i=1

δ(X i,N ,ri), (5.4)

where δ(x,r) ∈M+
1 (C ×D) denotes the degenerate probability measure at (x,r)∈C ×D.

In the proof of the LDP, it will be useful to consider the system of N particles with no
interaction, i.e. system (5.1) with Ji j = 0 for all (i, j) ∈ {1 · · ·N}2. In this case, the law
of a node with heterogeneity parameter r ∈ D is given by the unique solution of the
one-dimensional SDE: {

dXt = f (r, t,Xt)dt +λdWt

X0
L
=µ0(r).

(5.5)

We denote by Pr ∈M+
1 (C ) the law of the solution up to time T . This family of probabil-

ities (Pr)r∈D is regular in r (see Appendix B. of chapter 4), and we can thus introduce
the probability measure P ∈M+

1

(
C×D

)
defined, for any couple (A,B) of Borel sets of

C and D respectively, by the equality:

P(A,B) :=
∫

B
Pr(A)dπ(r).

We will denote dP(x,r) = dPr(x)dπ(r). Under P⊗N , state and heterogeneity param-
eter of the particles are i.i.d. so that Sanov’s theorem ensures the existence of a
full LDP for the double-layer empirical measure of unconnected particles, with good
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rate function given by the relative entropy2 I(.|P). Following the approach proposed
in [22, 129], we will rely on this LDP to derive an analogous result for the interacting
system.

A direct application of Girsanov’s theorem yields that QN
r (J) is absolutely continu-

ous with respect to Pr :=
⊗N

i=1 Pri , with density:

dQN
r (J)

dPr
(x)= exp

(
N

∑
i=1

{∫ T

0

( 1
λ

N

∑
j=1

Ji jb(xi
t ,x

j
t )
)

dWt(xi,ri)−
1
2

∫ T

0

( 1
λ

N

∑
j=1

Ji jb(xi
t ,x

j
t )
)2

dt
})

,

(5.6)

where Wt(x,r) := xt−x0
λ
−
∫ t

0
f (r,s,xs)

λ
ds, ∀(x,r) ∈ C ×D and t ∈ [0,T ], so that W (.,r) is a Pr-

Brownian motion. Moreover, as done in Appendix B. of chapter 4, we can properly
introduce the averaged probability measure QN ∈M+

1

(
(C ×D)N

)
define for any Borel

sets A⊂ C N , and B⊂ DN by

QN(A×B) :=
∫

B
EJ
(
QN

r (J)(A)
)
dπ
⊗N(r) =

∫
DN

EJ

[∫
C N
1A×B(x,r)dQN

r (J)(x)
]

dπ
⊗N(r).

Remark 11. We have, for any Borel set A⊂ C N ,

QN(A×DN) = E
[
QN

r (J)(A)
]
.

Our results will hold under the condition that the horizon time T is such that

2σ2‖b‖2
∞T

λ 2 < 1. (5.7)

These may be summarized as follows:

Theorem 5.2.2. For T small enough for inequality (5.7) to hold, there exists a double-
layer probability distribution Q ∈M+

1 (C ×D) such that:

QN(µ̂N ∈ ·)
L→ δQ(·) ∈M+

1

(
M+

1 (C ×D)
)
,

exponentially fast.

The existence of Q and the exponential convergence results follow from three
points: (i) the exponential tightness of the sequence QN

(
µ̂N ∈ ·

)
, (ii) a partial LDP

for the empirical measure relying on an upper-bound for closed sets, and (iii) a char-
acterization of the set of minima of the good rate function.

Theorem 5.2.3 (Partial Large Deviation Principle).
For T small enough for inequality (5.7) to hold,

(i) for any real number M ∈ R, there exists a compact subset KM such that for any
integer N,

1
N

logQN(µ̂N /∈ KM)≤−M.

2We recall that if Σ is a Polish space, the relative entropy of ν ∈M+
1 (Σ) with respect to µ ∈M+

1 (Σ) is
defined by:

I(ν |µ) :=

{∫
Σ

log
( dν

dµ
(x)
)
dν(x) if ν � µ,

∞ otherwise .
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(ii) there exists a good rate function H : M+
1 (C ×D) such that for any closed subset F

of M+
1 (C ×D):

limsup
N→∞

1
N

logQN(µ̂N ∈ F)≤− inf
F

H.

This theorem is proved in section 5.3.

Theorem 5.2.4 (Minima of the rate function). The good rate function H achieves its
minimal value at a unique probability measure Q ∈M+

1 (C ×D) satisfying:

Q' P,
dQ
dP

(x,r) = E

[
exp
{

1
λ

∫ T

0
GQ

t (x)dWt(x,r)−
1

2λ 2

∫ T

0
(GQ

t (x))
2dt
}]

where (Wt(.,r))t∈[0,T ] is a Pr-Brownian motion, and GQ(x) is a (Ω̃,F̃ ,P), a Gaussian
process with mean:

E [GQ
t (x)] =

∫
C×D

J̄b(xt ,yt)dQ(y,r′)

and covariance:

E [GQ
t (x)G

Q
s (x)] =

∫
C×D

σ
2b(xt ,yt)b(xs,ys)dQ(y,r′).

This theorem will be demonstrated in section 5.4. Combining both results, the
general result of Sznitman [230, Lemma 3.1] implies that:

Theorem 5.2.5 (Propagation of chaos). For T small enough for inequality (5.7) to
hold, QN is Q-chaotic in the sense that for any m∈N∗, any collection of bounded contin-
uous functions ϕ1, . . . ,ϕm : C ×D→R and any set of nonzero distinct integers k1, . . . ,km,
we have:

lim
N→∞

∫(
C×D

)N

m

∏
j=1

ϕ j(xk j ,rk j)dQN(x,r) =
m

∏
j=1

∫
C×D

ϕ j(x,r)dQ(x,r).

Our results partially extends to the quenched case as stated in the following the-
orem:

Theorem 5.2.6 (Quenched results). For T small enough for inequality (5.7) to hold,
we have the following quenched upper-bound:

P−a.s., ∀ closed F ⊂M+
1 (C ×D), limsup

N→∞

1
N

logQN
r (J)(µ̂N ∈ F)≤− inf

F
H,

where H is the good rate function introduced in theorem 5.2.3. In particular, for almost
every realization of r and J, QN

r (J)(µ̂N ∈ ·) is exponentially tight and converges in law
toward δQ exponentially fast. Eventually, this implies joint P and P-almost sure
convergence of the empirical measure to Q.

These theoretical results are applied to the disordered Kuramoto model in chap-
ter 7 to provide an alternative representation to the ones proposed in the physics
literature [76, 77, 224, 225], and allow investigating the interplay between the mean
and variance parameters of the interactions coefficients on the synchronization of
oscillators.
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5.3 LARGE DEVIATION PRINCIPLE
This section is devoted to proving the existence of a partial large deviations

principle for the averaged empirical measure. We start by constructing the appropri-
ate good rate function before obtaining an upper-bound and an exponential tightness
result. Many points of the proof proceed as in precedent works [22, 51, 52, 129]. To
avoid reproducing fastidious demonstrations we will often refer to precedent contri-
butions and focus our attention on the new difficulties arising in our setting.

5.3.1 Construction of the good rate function

For µ ∈M+
1 (C ×D), we define the two following functions respectively on [0,T ]2×C

and [0,T ]×C : 
Kµ(s, t,x) :=

σ2

λ 2

∫
C×D

b(xt ,yt)b(xs,ys)dµ(y,r′)

mµ(t,x) :=
J̄
λ

∫
C×D

b(xt ,yt)dµ(y,r′).

Both functions are well defined as (y,r)→ b(xt ,yt)b(xs,ys) and (y,r)→ b(xt ,yt) are con-
tinuous for ‖·‖∞ the uniform norm on C ×D, and µ is a Borel measure. They are
bounded: |Kµ(s, t,x)| ≤ σ2‖b‖2

∞

λ 2 and |mµ(t,x)| ≤ J̄‖b‖∞

λ
. Moreover, as µ charges continuous

functions, Kµ and mµ are continuous maps by the dominated convergence theorem.
Since Kµ has a covariance structure, we can define a probability space (Ω̂,F̂ ,γ)

and a family of stochastic processes
(
Gµ(x)

)
x∈C ,µ∈M+

1 (C×D)
continuous in x, and such

that Gµ(x) is a centered Gaussian process with covariance Kµ(., .,x) under measure γ.
We denote Eγ the expectation under γ.

Remark 12.

• Let µ ∈M+
1

(
C ×D

)
, and let (eµ

i )i∈N∗ be an orthonormal basis of L2
µ

(
C ×D

)
. Let

also for any x∈C , t ∈ [0,T ], ρt,x ∈ L2
µ

(
C ×D

)
such that ρt,x(y,r) := b(xt ,yt). As stated

in [129, Remark 2.14], a possible explicit construction for the Gµ(x) is given by

Gµ

t (x) := ∑
i∈N

Ji〈ρt,x,e
µ

i 〉L2
µ (C×D) = ∑

i∈N
Ji

∫
C×D

b(xt ,yt)e
µ

i (y,r)dµ(y,r),

where the
(
Ji
)

i∈N∗ are independent centered Gaussian variables of the probabil-
ity space (Ω̂,F̂ ,γ) and with variance σ2.

• The family of processes
(
Gµ

t (x)
)

µ,x is intended to encompass possible candidates

for the effective asymptotic interactions limN

(
∑

N
j=1 Ji jb(xi

t ,x
j
t )
)

i∈N∗
. In these in-

teractions, the Gaussian weights are independent for different particles, so
that it would seem more natural to consider independent families of Gaussian
weights labeled by the particle

(
Ji(x)

)
i∈N∗,x∈C in the previous construction. No-

tably, we can swap from the continuous version to the independent one very
easily in our proof. Indeed, the Gµ

t (x) are never taken jointly under γ, so that
we can literally choose their covariance structure. For the sake of measurabil-
ity under any Borel measure of M+

1

(
C ×D

)
, we will exclusively work with the

continuous version of Gµ(x) which proves most convenient.
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We define for any N ∈N∗, (x,r) ∈ (C ×D)N

XN
i (x,r) :=

∫ T

0
Gi,N

t (x)dWt(xi,ri)−
1
2

∫ T

0
Gi,N

t (x)
2
dt

where Gi,N
t (x) := 1

λ
∑

N
j=1 Ji jb(xi

t ,x
j
t ). As for the spatial case, we have the following ex-

pression for the density of the averaged network:

Lemma 5.3.1.
dQN

dP⊗N (x,r) = exp
{

NΓ̄(µ̂N)
}
.

where,

Γ̄(µ̂N) :=
1
N

N

∑
i=1

logEγ

[
exp
{∫ T

0

(
Gµ̂N

t (xi)+mµ̂N (t,x
i)
)
dWt(xi,ri)−

1
2

∫ T

0

(
Gµ̂N

t (xi)+mµ̂N (t,x
i)
)2dt

}]
.

(5.8)

Proof. Averaging the expression (5.6) on J and applying Fubini’s theorem, we find
that QN � P⊗N with

dQN

dP⊗N (x,r) = EJ

[
dQN

r (J)
dPr

(x)
]
= EJ

[
exp
{ N

∑
i=1

XN
i (x,r)

}]
=

N

∏
i=1

EJ

[
exp
{

XN
i (x,r)

}]
,

by independence of the Ji j. Here, x is the coordinate process taken under P⊗N . It
displays no dependence with the Ji j. To conclude, we remark that

{
Gi,N

t (x),0≤ t ≤ T
}

is, under PJ, a Gaussian process with covariance Kµ̂N (t,s,x
i), and mean mµ̂N (t,x

i).

Following Varadhan’s lemma, this motivates to introduce and precise the domain
of definition of the maps:

X µ(x,r) :=
∫ T

0

(
Gµ

t (x)+mµ(t,x)
)
dWt(x,r)−

1
2

∫ T

0

(
Gµ

t (x)+mµ(t,x)
)2dt,

and
Γ(µ) :=

∫
C×D

logEγ

[
exp
{

X µ(x,r)
}]

dµ(x,r),

for all (x,r) ∈ C ×D and µ ∈M+
1 (C ×D).

Proposition 5.3.2. The map

Γ := µ ∈M+
1

(
C ×D

)
→

{ ∫
C×D logEγ

[
exp
{

X µ(x,r)
}]

dµ(x,r) if I(µ|P)< ∞,

+∞ otherwise .
(5.9)

is well defined in R∪{+∞}, and satisfies

(i) Γ≤ I(·|P),

(ii) If 2σ2‖b‖2
∞T

λ 2 < 1, ∃ι ∈]0,1[,e≥ 0, |Γ(µ)| ≤ ιI(µ|P)+ e.
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Proof. If I(µ|P) = +∞ the result holds. We will thus suppose that I(µ|P)<+∞, which
implies µ � P. As W (·,r) is a Pr-Brownian motion, Girsanov’s theorem ensures that
the stochastic integral

∫ T
0
(
Gµ

t (x)+mµ(t,x)
)
dWt(x,r) is well defined γ-almost surely un-

der µ.
(1):
Let Fµ := logEγ

[
exp
{

X µ(x,r)
}]

denote the integrand in the formulation of Γ (5.9). It is
measurable as a continuous function of (x,r)→

(
Kµ(t,s,x),0≤ t,s≤ T

)
,
(
mµ(t,x),0≤ t ≤

T
)
,
(
Wt(x,r),0 ≤ t ≤ T

)
that are continuous maps. Nevertheless, because of the mean

term mµ it is not bounded from below, as was the case in [22]. Let us prove that it is
still µ-integrable. In fact,

−F−µ (x,r)≤ F+
µ (x,r)−F−µ (x,r) = Fµ(x,r)≤ log

(
Eγ

[
exp{X µ(x,r)}

]
∨M−1

)
=: Fµ,M(x,r),

where F+
µ and F−µ respectively denote the positive and negative part of Fµ . As F−µ and

Fµ,M are measurable and bounded from below, inequality (4.13) applies. Let α ≥ 1. On
the one hand

α

∫
C×D

Fµ,M(x,r)dµ(x,r)≤ I(µ|P)+ log
{∫

C×D
exp
{

αFµ,M(x,r)
}

dP(x,r)
}

Jensen
≤ I(µ|P)+ log

{
M−α +

∫
C×D

Eγ

[
exp
{

αX µ(x,r)
}]

dP(x,r)
}

Fubini
≤ I(µ|P)+ log

{
M−α +Eγ

[∫
D

∫
C

exp
{

αX µ(x,r)
}

dPr(x)dπ(r)
]}

,

(5.10)

with the right-hand side of the two latter inequalities being possibly infinite. On the
other hand,

α

∫
C×D

F−µ (x,r)dµ(x,r) = α

∫
C×D

(
− logEγ

[
exp
{

X µ(x,r)
}])+

dµ(x,r)

Jensen
≤ α

∫
C×D

(
−Eγ

[
X µ(x,r)

])+
dµ(x,r) =

∫
C×D

(
Eγ

[
−
∫ T

0

(
Gµ

t (x)+mµ(t,x)
)
dWt(x,r)

− 1
2

∫ T

0

(
Gµ

t (x)+mµ(t,x)
)2dt

]
+Eγ

[∫ T

0

(
Gµ

t (x)+mµ(t,x)
)2dt

])+

dµ(x,r)

(4.13)
≤ I(µ|P)+ log

{∫
C×D

exp
{

α

(
Eγ

[
X µ(x,r)

]
+T

(J2 +σ2)‖b‖2
∞

λ 2

)+}
dP(x,r)

}
Jensen, Fubini

≤ I(µ|P)+αCT + log
{

Eγ

[∫
D

∫
C

exp
{

αX µ(x,r)
}

dPr(x)dπ(r)
]}

. (5.11)

Moreover, W (.,r) being a Pr-Brownian motion, the martingale property yields for
α = 1

Eγ

[∫
D

∫
C

exp
{

αX µ(x,r)
}

dPr(x)dπ(r)
]
= 1,

so that we can see that Fµ is µ-integrable, with∫
C×D
|Fµ(x,r)|dµ(x,r) =

∫
C×D

F−µ (x,r)+Fµ,1(x,r)dµ(x,r)≤ 2I(µ|P)+CT + log(2). (5.12)

Moreover,

Γ(µ) :=
∫

C×D
Fµ(x,r)dµ(x,r)

(5.10)
≤ I(µ|P)+ log

{
M−1 +1

}
,
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so that letting M→+∞ yields the result.
(2):
Let α > 1. As Gν(x) cannot be extracted from the integral on dPr(x), we rely on Hölder
inequality with conjugate exponents (α, α

α−1) to make use of a martingale property:

∫
C×D

Eγ

[
exp
{

αXν(x,r)
}]

dP(x,r)≤
{∫

C×D
Eγ

[
exp
{

α2(α +1)
2

∫ T

0

(
Gν

t (x)+mν(t,x)
)2dt

}]
dP(x,r)

} α−1
α

×
{∫

C×D
Eγ

[
exp
{

α
2
∫ T

0

(
Gν

t (x)+mν(t,x)
)
dWt(x,r)−

α4

2

∫ T

0

(
Gν

t (x)+mν(t,x)
)2dt

}]
dP(x,r)

} 1
α

.

The second term in the product of the right-hand side is equal to 1 by Fubini’s the-
orem and the martingale property. The short-time hypothesis 2σ2‖b‖2

∞T
λ 2 < 1 ensures

finiteness of the second term for α−1 small enough. Indeed, by Jensen and Fubini’s
inequalities, we have

Eγ

[
exp
{

α2(α +1)T
2

∫ T

0

(
Gν

t (x)+mν(t,x)
)2 dt

T

}]
≤
∫ T

0
Eγ

[
exp
{

α2(α +1)T
2

(
Gν

t (x)+mν(t,x)
)2
}]dt

T
.

Moreover, since
√

α2(α +1)T
(

Gν
t (x)+mν(t,x)

)
∼N

(√
α2(α +1)T mν(t,x),α2(α+1)T Kν(t, t,x)

)
under γ, we are able, for α−1 small enough and under the short time hypothesis, to
use (8.1). We thus conclude that as soon as 2σ2‖b‖2

∞T
λ 2 < 1, there exists a constant cT ,

uniform in x ∈ C , such that:∫
C×D

Eγ

[
exp
{

αXν(x,r)
}]

dP(x,r)≤ exp
{
(α−1)cT

}
. (5.13)

Inequalities (5.10), (5.11), and (5.13) ensure that, for α > 1 and under the condition
2σ2‖b‖2

∞T
λ 2 < 1

|Γ(µ)| ≤ ιI(µ|P)+ e,

with ι := 1
α

, and e := (2α−1)CT .

Let

H(µ) :=
{

I(µ|P)−Γ(µ) if I(µ|P)< ∞,
∞ otherwise ,

for any ν ∈M+
1

(
C ×D

)
:

Γν := µ ∈M+
1

(
C ×D

)
→

{ ∫
C×D logEγ

[
exp
{

Xν(x,r)
}]

dµ(x,r) if I(µ|P)< ∞,

+∞ otherwise ,

as well as the following probability measure on C ×D

dQν(x,r) := exp
{

Γ̄ν(δ(x,r))
}

dP(x,r) := Eγ

[
exp
{

Xν(x,r)
}]

dP(x,r). (5.14)

A key observation is that

dQ⊗N
ν (x,r) =

(
exp
{

Γ̄ν(δ(x,r))
}

dP(x,r)
)⊗N

= exp
{

NΓ̄ν(µ̂N)
}

dP⊗N(x),

where

Γ̄ν(µ̂N) :=
1
N

N

∑
i=1

logEγ

[
exp
{

Xν(xi,ri)
}]

.
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Sanov’s theorem ensures that Q⊗N
ν

(
µ̂N ∈ ·

)
satisfies a full LDP with good rate function

I(.|Qν). Shall Varadhan’s lemma apply, and supM+
1 (C×D)

{
Γν− I(·|P)

}
= 0, the good rate

function would also be given by the map Hν , defined for any µ ∈M+
1

(
C ×D

)
by

Hν : µ →
{

I(µ|P)−Γν(µ) if I(µ|P)<+∞,
+∞ otherwise.

This will be proven in theorem 5.3.4. For any Gaussian process (Gt)t∈[0,T ] of
(
Ω̂,F̂ ,γ

)
,

and any t ∈ [0,T ] we define

Λt(G) :=
exp
{
− 1

2
∫ t

0 G2
s ds
}

Eγ

[
exp
{
− 1

2
∫ t

0 G2
s du
}] . (5.15)

For any t ∈ [0,T ], x∈C , and ν ∈M+
1 (C ×D) the following defines a probability measure

on
(
Ω̂,F̂

)
(see [183]):

dγK̃t
ν ,x
(ω) := Λt(Gν(ω,x))dγ(ω), ∀ω ∈ Ω̂.

As proven in [183], Gν(x) is still a centered Gaussian process under γK̃t
ν ,x

, with covari-
ance given by:

K̃t
ν ,x(s,u) := Eγ

[
Gν

u (x)G
ν
s (x)Λt

(
Gν(x)

)]
.

We also define for any ν ∈M+
1

(
C ×D

)
, (x,r) ∈ C ×D and t ∈ [0,T ], the processes

Lν
t (x,r) :=

∫ t

0
Gν

s (x)
(

dWs(x,r)−mν(s,x)ds
)
, V ν

t (x,r) :=Wt(x,r)−
∫ t

0
mν(s,x)ds. (5.16)

Here are a few properties for these objects:

Proposition 5.3.3. Exists a constant CT > 0, such that for any ν ∈M+
1

(
C ×D

)
, x ∈C ,

t ∈ [0,T ],

sup
0≤s,u≤t

K̃t
ν ,x(s,u)≤CT , Λt

(
Gν(x)

)
≤CT , (5.17)

Eγ

[
exp
{
− 1

2

∫ T

0
Gν

t (x)
2dt
}]

= exp
{
− 1

2

∫ T

0
K̃t

ν ,x(t, t)dt
}
. (5.18)

Moreover, if (Gt)0≤t≤T and (G′t)0≤t≤T are two centered Gaussian processes of
(
Ω̂,F̂ ,γ

)
with uniformly bounded covariance, then exists C̃T > 0 such that for all t ∈ [0,T ],∣∣Λt(G)−Λt(G′)

∣∣≤ C̃T

{∫ t

0
Eγ

[(
Gs−G′s

)2
] 1

2
ds+

∫ t

0

∣∣G2
s −G′s

2∣∣ds
}
. (5.19)

Proof. Observe that by Jensen inequality:

Λt
(
Gν(x)

)
≤Eγ

[
exp
{
− 1

2

∫ t

0
Gν

s (x)
2du
}]−1 Jensen

≤ exp
{1

2

∫ t

0
Eγ

[
Gν

s (x)
2
]
du
}
≤ exp

{
σ2‖b‖2

∞t
2λ 2

}
.

As a consequence:

K̃t
ν ,x(s,u)=Eγ

[
Gν

u (x)G
ν
s (x)Λt

(
Gν(x)

)] C.S.
≤
√

Kν(s,s,x)Kν(t, t,x)exp
{

σ2‖b‖2
∞t

2λ 2

}
≤ σ2‖b‖2

∞

λ 2 exp
{

σ2‖b‖2
∞t

2λ 2

}
,



122 CHAPTER 5. NETWORK WITH STATE-DEPENDENT SYNAPSES

For equality (5.18), let f (t) := Eγ

[
exp
{
− 1

2
∫ t

0 Gν
s (x)

2ds
}]

. As (t,ω)→ Gν
t (ω,x)2 exp

{
−

1
2
∫ t

0 Gν
s (ω,x)2ds

}
is a well defined, γ-a.s. continuous, and integrable under γ, we have

f ′(t) =−1
2
Eγ

[
Gν

t (x)
2 exp

{
− 1

2

∫ t

0
Gν

s (x)
2ds
}]

=−1
2

K̃t
ν ,x(t, t) f (t),

so that integrating f ′
f gives the result. Furthermore, letting (Gt)0≤t≤T and (G′t)0≤t≤T

be two centered γ-Gaussian processes with variance bounded by a common constant
CT , we have:

∣∣Λt(G)−Λt(G′)
∣∣= ∣∣∣∣ exp

{
− 1

2
∫ t

0 G2
s ds
}

Eγ

[
exp
{
− 1

2
∫ t

0 G2
s ds
}] − exp

{
− 1

2
∫ t

0 G′s
2ds
}

Eγ

[
exp
{
− 1

2
∫ t

0 G′s
2ds
}]∣∣∣∣

≤ exp
{

σ2‖b‖2
∞t

λ 2

}{∣∣∣∣Eγ

[
exp
{
− 1

2

∫ t

0
G2

s ds
}
− exp

{
− 1

2

∫ t

0
G′s

2ds
}]∣∣∣∣

+

∣∣∣∣exp
{
− 1

2

∫ t

0
G2

s ds
}
− exp

{
− 1

2

∫ t

0
G′s

2ds
}∣∣∣∣
}
,

≤ 1
2

exp
{

σ2‖b‖2
∞t

λ 2

}{∫ t

0
Eγ

[∣∣G2
s −G′s

2∣∣]ds+
∫ t

0

∣∣G2
s −G′s

2∣∣ds
}
,

where we have used the Lipschitz-continuity of exponential on R−. Consequently,
relying on Cauchy-Schwarz inequality, we obtain

∣∣Λt(G)−Λt(G′)
∣∣ C.S.
≤ C̃T

{∫ t

0
Eγ

[(
Gs−G′s

)2
] 1

2
ds+

∫ t

0

∣∣G2
s −G′s

2∣∣ds
}
.

We can show as in Theorem 4.3.6 this intuitive result:

Theorem 5.3.4. Qν is a well defined probability measure on M+
1 (C ×D), and the two

maps Hν and I(.|Qν) are equal on M+
1 (C ×D). In particular Hν is a good rate function

reaching its unique minimum at Qν .

We introduce the Vaserstein distance on M+
1 (C ×D), compatible with the weak

topology:

dV
T (µ,ν) := inf

ξ

{∫
(C×D)2

(
‖x− y‖2

∞,T +‖r− r′‖2
Rd

)
dξ
(
(x,r),(y,r′)

)} 1
2

the infimum being taken on the laws ξ ∈ Cµ,ν . Moreover we will denote for any t ∈
[0,T ], and any (x,r),(y,r′) ∈ C ×D,

dt
(
(x,r),(y,r′)

)
:=
(
‖x− y‖2

∞,t +‖r− r′‖2
Rd

) 1
2
,

and also

dV
t (µ,ν) := inf

ξ

{∫
(C×D)2

dt
(
(x,r),(y,r′)

)2dξ
(
(x,r),(y,r′)

)} 1
2

.
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As in the delayed spatial case, the metric dV
T will control the regularity of the mean

and variance structure of the Gaussian interactions and, in the long run (see Theo-
rem 5.3.6), of the error between H and its approximation Hν :

Proposition 5.3.5. Exists CT > 0 such that for any µ,ν ∈M+
1 (C ×D), x ∈C, t ∈ [0,T ]

and u,s ∈ [0, t]:∣∣mµ(t,x)−mν(t,x)
∣∣+ ∣∣Kµ(t,s,x)−Kν(t,s,x)

∣∣+ ∣∣K̃t
µ,x(s,u)− K̃t

ν ,x(s,u)
∣∣≤CT dV

t (µ,ν). (5.20)

Proof. Let ξ ∈Cµ,ν , and let
(
G,G′

)
be, under γ, a family of independent bi-dimensional

centered Gaussian processes with covariance Kξ (s, t,x) given by:

σ2

λ 2

∫
(C×D)2

(
b(xs,ys)b(xt ,yt) b(xs,ys)b(xt ,zt)
b(xs,zs)b(xt ,yt) b(xs,zs)b(xt ,zt)

)
dξ
(
y,r′),(z, r̃′)

)
. (5.21)

Let us first take care of the mean difference:∣∣mµ(t,x)−mν(t,x)
∣∣= ∣∣∣∣ J̄

λ

∫
C×D

b(xt ,yt)d(µ−ν)(y,r′)
∣∣∣∣≤ J̄

λ

∫
(C×D)2

∣∣∣b(xt ,yt)−b(xt ,zt)
∣∣∣dξ
(
(y,r′),(z, r̃′)

)
C.S.
≤ J̄Kb

λ

{∫
(C×D)2

‖y− z‖2
∞,tdξ

(
(y,r′),(z, r̃′)

) } 1
2

.

Moreover,

∣∣Kµ(t,s,x)−Kν(t,s,x)
∣∣= ∣∣∣Eγ

[
GsGt −G′sG

′
t

]∣∣∣ C.S.
≤ CT

{
Eγ

[(
Gt −G′t

)2
] 1

2
+Eγ

[(
Gs−G′s

)2
] 1

2
}
.

and

∣∣K̃t
µ,x(s,u)− K̃t

ν ,x(s,u)
∣∣ (5.17)
≤ CT

{
Eγ

[(
Λt(G)−Λt(G′)

)2
] 1

2
+Eγ

[(
Gs−G′s

)2
] 1

2
+Eγ

[(
Gu−G′u

)2
] 1

2
}

(5.19)
≤ CT

{(∫ t

0
Eγ

[(
Gv−G′v

)2
]
dv
) 1

2

+Eγ

[(
Gs−G′s

)2
] 1

2
+Eγ

[(
Gu−G′u

)2
] 1

2
}
.

Eγ

[(
Gt −G′t

)2
]
=

σ2

λ 2

∫
(C×D)2

(
b(xt ,yt)−b(xt ,zt)

)2
dξ
(
(y,r′),(z, r̃′)

)
≤

σ2K2
b

λ 2

∫
(C×D)2

dt
(
(y,r′),(z, r̃′)

)2dξ
(
(y,r′),(z, r̃′)

)
.

Taking the infimum over ξ ∈ Cµ,ν yields (5.20).

Theorem 5.3.6.

(i) ∃CT > 0, such that for every µ,ν ∈M+
1

(
C ×D

)
,

|Γν(µ)−Γ(µ)| ≤CT
(
1+ I(µ|P)

)
dV

T (µ,ν).

(ii) If 2σ2‖b‖2
∞T

λ 2 < 1, H is a good rate function.
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Proof. The basic mechanism for the proof is similar as in Proposition 4.3.8 or [15,
Lemma 3.3-3.4]. However, the dependence in x of the Gaussian Gµ(x) is problematic,
as we cannot take it out of integrals on x. To cope with this difficulty, we will rely
on tools from probability theory, such as Fubini’s theorem for stochastic integrals, or
Dambis-Dubins-Schwarz theorem. We focus our attention on point 1., whereas point
2. previously shown without restriction on time in cases where b(x,y) = S(y), is now
only valid under the short-time hypothesis of Proposition 5.3.2 point 2.

As proven in Proposition 4.3.4, Γν writes Γν(µ) = Γ1,ν(µ)+Γ2,ν(µ) with

Γ1,ν(µ) :=−1
2

∫
C×D

∫ T

0

(
K̃t

ν ,x(t, t)+mν(t,x)2
)

dtdµ(x,r),

and

Γ2,ν(µ) :=

{
1
2
∫
C×D

∫
Ω̂

Lν
T (x,r)

2dγK̃T
ν ,x

dµ(x,r)+
∫
C×D

∫ T
0 mν(t,x)dWt(x,r)dµ(x,r) if I(µ|P)< ∞,

+∞ otherwise .

The previous decomposition has the interest of splitting the difficulties: |Γν(µ)−
Γ(µ)| ≤ |Γ1,ν(µ)−Γ1(µ)|+|Γ2,ν(µ)−Γ2(µ)|. The first term is easily controlled by CT dV

T (µ,ν)
using Proposition 5.3.5. Let us prove that

|Γ2,ν(µ)−Γ2(µ)| ≤CT (1+ I(µ|P))dV
T (µ,ν).

The inequality is trivial when I(µ|P) = ∞. We now assume that I(µ|P) < ∞ implying
µ � P and finiteness of Γ(µ) and Γν(µ). In particular, µ has a Borel-measurable
density ρµ with respect to P:

dµ(x,r) = ρµ(x,r)dP(x,r).

Let ε > 0, and let ξ ∈ Cµ,ν be such that{∫
(C×D)2

dT
(
(y,r′),(z, r̃)

)2dξ
(
(y,r′),(z, r̃)

)} 1
2

≤ dV
T (µ,ν)+ ε.

Let also
(
G(x),G′(x)

)
x∈C a family of bi-dimensional centered Gaussian process from

the probability space
(
Ω̂,F̂ ,γ

)
with covariance Kξ defined by (5.21). In the expression

of Γ2,ν(µ) and Γ2(µ) we can then replace the triplet (Gµ ,Gν ,γ) by (G,G′,γ), so that
we choose their covariance to be given by Kξ (see remark 12). As proved in Proposi-
tion 5.3.5, we can show that exist a constant CT > 0 such that for any t ∈ [0,T ], x ∈ C ,

Eγ

[(
Gt(x)−G′t(x)

)2
]
≤
(
dV

T (µ,ν)+ ε
)2
.

Let also for any t ∈ [0,T ]

Lt(x,r) :=
∫ t

0
Gs(x)dV µ

s (x,r), L′t(x,r) :=
∫ t

0
G′s(x)dV ν

s (x,r)

Then,

|Γ2,ν(µ)−Γ2(µ)| ≤
1
2

∣∣∣∣∫
C×D

Eγ

[
L′T (x,r)

2(
ΛT (G′(x))−ΛT (G(x))

)]
dµ(x,r)

∣∣∣∣
+

1
2

∣∣∣∣∫
C×D

Eγ

[(
LT (x,r)2−L′T (x,r)

2)
ΛT (G(x))

]
dµ(x,r)

∣∣∣∣+ ∣∣∣∫
C×D

∫ T

0
(mν −mµ)(t,x)dWt(x,r)dµ(x,r)

∣∣∣
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Observe that by inequality (5.19) we have∣∣∣∣∫
C×D

Eγ

[
L′T (x,r)

2(
ΛT (G′(x))−ΛT (G(x))

)]
dµ(x,r)

∣∣∣∣≤CT

{(
dV

T (µ,ν)+ ε
)∫

C×D
Eγ

[
L′T (x,r)

2
]
dµ(x,r)

+
∫

C×D

∫ T

0
Eγ

[∣∣Gt(x)2−G′t(x)
2∣∣L′T (x,r)2

]
dtdµ(x,r)

}
,

as Isserlis’ theorem (Theorem 8.2.4) ensures that,

Eγ

[(
G′t(x)−Gt(x)

)2L′T (x,r)
2
]
= Eγ

[(
G′t(x)−Gt(x)

)2
]
Eγ

[
L′T (x,r)

2
]
+2Eγ

[(
G′t(x)−Gt(x)

)
L′T (x,r)

]2

C.S.
≤ 3Eγ

[(
G′t(x)−Gt(x)

)2
]
Eγ

[
L′T (x,r)

2
]
≤ 3
(
dV

T (µ,ν)+ ε
)2

Eγ

[
L′T (x,r)

2
]
,

and similarly

Eγ

[(
G′t(x)+Gt(x)

)2L′T (x,r)
2
]
≤CT Eγ

[
L′T (x,r)

2
]
.

As a consequence,

|Γ2,ν(µ)−Γ2(µ)|
C.S.
≤ CT

{(
dV

T (µ,ν)+ ε
) B1︷ ︸︸ ︷∫

C×D
Eγ

[
L′T (x,r)

2
]
dµ(x,r)

+ ∏
ε=±1

(∫
C×D

Eγ

[(∫ T

0

(
Gt(x)+ εG′t(x)

)
dV ν

t (x,r)
)2
]

dµ(x,r)

) 1
2

︸ ︷︷ ︸
B2

+

(∫
C×D

∣∣∣∫ T

0
(mν −mµ)(t,x)dWt(x,r)

∣∣∣2dµ(x,r)
) 1

2

︸ ︷︷ ︸
B3

+ ∏
ε=±1

(∫
C×D

Eγ

[{∫ T

0
Gt(x)

(
(1+ ε)dWt(x,r)−

(
mµ(t,x)+ εmν(t,x)

)
dt
)}2]

dµ(x,r)

) 1
2

︸ ︷︷ ︸
B4

}
.

(5.22)

Remark that these four terms can be cast in the form∫
C×D

Eγ

[(∫ T

0
Ht(G,G′,µ,ν)(x)

(
αdWt(x,r)−Mt(µ,ν)(x)dt

))2
]

dµ(x,r)

with α equals 0 or 1. Controlling such terms is the aim of the following technical
lemma.

Lemma 5.3.7. Let µ ∈M+
1 (C ×D), with µ � P and let the filtration

(
F x

t
)

t∈[0,T ] on C ,
where F x

t := σ
(
xs,0≤ s≤ t

)
is the σ -algebra on C generated by the coordinate process

up to time t. Let also

• x ∈ C →
(
Mt(x)

)
t∈[0,T ] a bounded time-continuous process progressively measur-

able for the filtration (F x
t )t∈[0,T ] and continuous in x,
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• (x,ω) ∈ C × Ω̂→
(

Ht(x,ω)
)

t∈[0,T ]
a progressively measurable process for the fil-

tration
(
F x

t ⊗ F̂
)

t∈[0,T ], such that
(

Ht(x, ·), t ∈ [0,T ]
)

x∈C
is a continuous family of

γ-Gaussian processes (possibly deterministic) with uniformly bounded covari-
ance,

and define

A(µ) :=
∫

C×D

∫
Ω̂

(∫ T

0
Ht(x,ω)

(
αdWt(x,r)−Mt(x)dt

))2
dγ(ω)dµ(x,r)

with α ∈ {0,1}. Then, there exists a constant CT > 0 independent of µ such that

A(µ)≤CT

{
α
(
I(µ|P)+1

)
+ sup

x∈C ,t∈[0,T ]
M2

t (x)
}

sup
x∈C ,t∈[0,T ]

Eγ

[
H2

t (x)
]
, (5.23)

with the right-hand side being possibly infinite.

Proof. As (a+b)2 ≤ 2a2 +2b2, ∀a,b ∈R,

A(µ,ν)≤ 2
∫

C×D

∫
Ω̂

{
α

(∫ T

0
Ht(x,ω)dWt(x,r)︸ ︷︷ ︸

=:NT (x,ω,r)

)2
+
(∫ T

0
Ht(x,ω)Mt(x)dt

)2
}

dγ(ω)dµ(x,r)

Fubini,C.S.
≤ 2α

∫
Ω̂

∫
C×D

N2
T (x,ω,r)dµ(x,r)dγ(ω)+2

∫
C×D

∫ T

0
M2

t (x)Eγ

[
H2

t (x)
]
dtdµ(x,r).

Define the Radon-Nikodym density ρµ(x,r) := dµ

dP (x,r) and remark that for every
r ∈ D,

(
Nt(, ·, ·,r)

)
is, γ-a.s., a well-defined Pr-martingale. Itô calculus gives, γ-a.s., the

indistinguishable equality

N2
T (x,ω,r) = 2

∫ T

0
Ht(x,ω)Nt(x,ω,r)dWt(x,r)+

∫ T

0
H2

t (x,ω)dt, (5.24)

under Pr so that, γ-a.s.,∫
C×D

N2
T (x,ω,r)ρµ(x,r)dP(x,r) = 2

∫
C×D

∫ T

0
Ht(x,ω)Nt(x,ω,r)dWt(x,r)ρµ(x,r)dP(x,r)

+
∫

C×D

∫ T

0
H2

t (x,ω)dtρµ(x,r)dP(x,r).

Relying again on Fubini’s Theorem,

A(µ,ν)≤ 4α

∫
C×D

Eγ

[∫ T

0
Ht(x)Nt(x,r)dWt(x,r)

]
ρµ(x,r)dP(x,r)

+2
∫

C×D

∫ T

0
Eγ

[
αH2

t (x)
]
dtdµ(x,r)+2T

∫
C×D

∫ T

0
M2

t (x)Eγ

[
H2

t (x)
]
dtdµ(x,r). (5.25)

Under the favorable assumptions of the lemma, the last two terms of the right-hand
side of (5.25) are easily controlled taking the supremum of their integrand on C ×
[0,T ]. In order to control the first term, we rely on the stochastic Fubini’s theorem
[195, Theorem IV.65], to show that the equality

ÑT (x,r) :=
∫ T

0
Eγ

[
Ht(x)Nt(x,r)

]
dWt(x,r) = Eγ

[∫ T

0
Ht(x)Nt(x,r)dWt(x,r)

]
,

is well-defined, and holds P-almost surely. To do so, we need to ensure that:
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(i) ∀r∈D, (x,ω)→
(

H̃t(x,ω,r) :=Ht(x,ω)Nt(x,ω,r)
)

t∈[0,T ]
is F̂⊗P measurable, where

P is the σ -algebra generated by continuous
(
F x

t
)

t∈[0,T ]-adapted processes,

(ii) the following integrability condition holds ∀r ∈ D:∫
C

∫ T

0

∫
Ω̂

H̃t(x,ω,r)2dγ(ω)dtdPr(x)< ∞.

The first hypothesis is a direct consequence of the regularity and measurability
hypotheses of the lemma. We now demonstrate that the second hypothesis is valid.
Indeed, for any t ∈ [0,T ],∫

C

∫
Ω̂

H̃t(x,ω,r)2dγ(ω)dPr(x) =
∫

C
Eγ

[
Ht(x,r)2Nt(x,r)2

]
dPr(x)

C.S.,Fub.
≤

{∫
C

Eγ

[
H4

t (x)
]
dPr(x)

} 1
2

Eγ

[∫
C

N4
t (x,r)dPr(x)

] 1
2 B.D.G.
≤ CT Eγ

[∫
C
〈N〉2t (x)dPr(x)

] 1
2

C.S.,Fubini
≤ CT

{∫
C

∫ t

0
Eγ

[
H4

s (x)
]
dsdPr(x)

} 1
2

<+∞.

Hence, the theorem applies so that∫
C×D

Eγ

[∫ T

0
Ht(x)Nt(x,r)dWt(x,r)

]
dρµ(x,r)dP(x,r) =

∫
C×D

ÑT (x,r)dµ(x,r).

Observe that inequality (4.42) brings

∫
C×D

ÑT (x,r)dµ(x,r)
C.S.
≤ 2

(∫
C×D
〈Ñ〉T (x,r)dµ(x,r)

) 1
2
(

I(µ|P)+log
{∫

C×D
exp
{

Ñ2
T (x,r)

4〈Ñ〉T (x,r)

}
dP(x,r)

}) 1
2

.

As Ñ(·,r) is a Pr-local martingale for every r ∈ D, Dambis-Dubins-Schwarz (D.D.S.)

theorem ensures that ÑT (·,r)2

4〈Ñ(·,r)〉T
has the same law as

B2
〈Ñ〉T

4〈Ñ〉T
, where B is some Pr-Brownian

motion, so that exists a constant C > 0 satisfying

log
{∫

C×D
exp
{

Ñ2
T (x,r)

4〈Ñ〉T (x,r)

}
dP(x,r)

}
≤C.

We can therefore conclude that there exists two constants: C̃ > 0 independent of time,
and CT > 0 increasing with T such that:

∫
C×D

Ñt(x,r)dµ(x,r)≤ C̃
(∫

C×D

∫ T

0
Eγ

[
Ht(x)Nt(x,r)

]2

dtdµ(x,r)
) 1

2 (
I(µ|P)+1

) 1
2

C.S.,Fubini
≤ 2C̃ sup

(x,t)∈C×[0,T ]

{
Eγ

[
〈N〉t(x)H2

t (x)
]} 1

2
(∫ T

0
Eγ

[∫
C×D

N2
t (x,r)

4〈N〉t(x)
dµ(x,r)

]
dt
) 1

2 (
I(µ|P)+1

) 1
2

D.D.S,(4.42)
≤ CT sup

C×[0,T ]

{
Eγ

[
H2

s (x)H
2
t (x)

]} 1
2 (

I(µ|P)+1
)
.

We conclude by relying on Isserlis’ theorem 8.2.4.
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It is easy to check that B1, . . . ,B4 are of the form of the terms handled in lemma (5.3.7),
satisfying in particular the adaptability conditions (keep in mind that the law of Gν

t (x)
depends on the trajectory of x up to time t). To conclude, we then have to underline
that the quantities sup

x∈C ,t∈[0,T ]
Eγ

[(
Gt(x)−G′t(x)

)2
]
, and sup

x∈C ,t∈[0,T ]

(
mµ(t,x)−mν(t,x)

)2, are

bounded by
(
dV

T (µ,ν)+ ε
)2 (see equation (5.20) for the term involving means).

5.3.2 Upper-bound and Tightness

We are now in a position to demonstrate a partial LDP relying on an upper-bound
inequality for closed subsets, and exponential tightness of the family

(
QN
(
µ̂N ∈ ·

))
N

.

To prove the first point, we take advantage of the full LDP satisfied by µ̂N under Q⊗N
ν ,

and control an error. The second point will rely on the exponential tightness of P⊗N

induced by the short time hypothesis (5.7). These developments follow the approach
proposed by Ben Arous and Guionnet in [22, 129].

Theorem 5.3.8. Under the condition 2σ2‖b‖2
∞T

λ 2 < 1, we have:

(i) For any real number M ∈ R, there exists a compact set KM of M+
1 (C ×D) such

that, for any integer N,
1
N

logQN(µ̂N /∈ KM)≤−M.

(ii) For any closed subset F of M+
1 (C ×D),

limsup
N→∞

1
N

logQN(µ̂N ∈ F)≤− inf
F

H.

Proof. (1):
The proof of this theorem consists in using the exponential tightness of the se-

quence (P⊗N)N provided by Sanov’s Theorem and 9.4.2. Let KM be a compact of
M+

1 (C ×D) such that
1
N

logP⊗N(µ̂N /∈ KM)≤−M,

and remark that Hölder inequality yields for any conjugate exponents (p,q) with
(p+1)p2σ2‖b‖2

∞T
λ 2 < 1:

QN(µ̂N 6∈ KM)≤
(∫

(C×D)N
exp
{

pNΓ̄(µ̂N)
}

dP⊗N(x,r)
) 1

p

P⊗N(µ̂N 6∈ KM)
1
q

Jensen
≤

(∫
(C×D)N

N

∏
i=1

Eγ

(
exp
{

pX µ̂N (xi,ri)
})

dP⊗N(x,r)
) 1

p

P⊗N(µ̂N 6∈ KM)
1
q

Let (X̃ µ̂N ,i)1≤i≤N be independent copies of X µ̂N under the measure γ. Then, by indepen-
dence, Hölder inequality and martingale property, we have∫
(C×D)N

N

∏
i=1

Eγ

(
exp
{

pX µ̂N (xi,ri)
})

dP⊗N(x,r) = Eγ

[∫
(C×D)N

exp
{

p
N

∑
i=1

X̃ µ̂N ,i(xi,ri)
}

dP⊗N(x,r)
]

≤

(∫
(C×D)N

N

∏
i=1

Eγ

[
exp
{

p2(p+1)
2

∫ T

0

(
Gµ̂N

t (xi)+mµ̂N (t,x
i)
)2dt

}]
dP⊗N(x,r)

) p−1
p

.

(5.26)
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We can now proceed as in the proof of Proposition 5.3.2. point 2. to find that exists a
constant cT such that∫

(C×D)N

N

∏
i=1

Eγ

(
exp
{

pX µ̂N (xi,ri)
})

dP⊗N(x,r)≤ e(p−1)cT N .

As a consequence,

limsup
N→+∞

1
N

logQN(µ̂N 6∈ KM)≤ (p−1)cT −
M
q
.

(2): As
(
QN(µ̂N ∈ ·)

)
N is exponentially tight and H is good, it is sufficient to prove the

upper-bound for compact sets (see [84, Lemma 1.2.18 (a)]). Let then K be a compact
subset of M+

1 (C ×D) and δ < 0. We can find an integer M and a family (νi)1≤i≤M of
M+

1 (C ×D) such that

K ⊂
M⋃

i=1

B(νi,δ ),

where B(νi,δ ) =
{

µ|dV
T (µ,νi)< δ

}
. A very classical result (see 9.2.4 or e.g. [84, lemma

1.2.15]), ensures that

limsup
N→∞

1
N

logQN(µ̂N ∈ K)≤ max
1≤i≤p

limsup
N→∞

1
N

logQN(µ̂N ∈ K∩B(νi,δ )).

Lemma 5.3.1 yields:

QN(µ̂N ∈ K∩B(ν ,δ )) =
∫

µ̂N∈K∩B(ν ,δ )
exp
{

NΓ̄(µ̂N)
}

dP⊗N(x,r)

=
∫

µ̂N∈K∩B(ν ,δ )
exp
{

N
(
Γ̄(µ̂N)− Γ̄ν(µ̂N)

)}
exp
{

NΓ̄ν(µ̂N)
}

dP⊗N(x,r).

Hence, for any conjugate exponents (p,q),

QN(µ̂N ∈ K∩B(ν ,δ )) =
∫

µ̂N∈K∩B(ν ,δ )
exp
{

N
(
Γ̄(µ̂N)− Γ̄ν(µ̂N)

)}
dQ⊗N

ν (x,r)

≤ Q⊗N
ν

(
µ̂N ∈ K∩B(ν ,δ )

) 1
p

(∫
µ̂N∈K∩B(ν ,δ )

exp
{

qN
(
Γ̄(µ̂N)− Γ̄ν(µ̂N)

)}
dQ⊗N

ν (x,r)
) 1

q

.

(5.27)

Then, by definition of Γ and Γν :

∫
µ̂N∈K∩B(ν ,δ )

exp
{

qN
(
Γ̄(µ̂N)− Γ̄ν(µ̂N)

)}
dQ⊗N

ν (x,r) =
∫

µ̂N∈K∩B(ν ,δ )

(
N

∏
i=1

Eγ

[
exp
{

X µ̂N (xi,ri)
}]

Eγ

[
exp
{

Xν(xi,ri)
}]
)q

dQ⊗N
ν (x,r).

Let (X̃ν ,i)1≤i≤N (resp. (X̃ µ̂N ,i)1≤i≤N) be independent copies of Xν (resp. X µ̂N ) under the
measure γ. Then,∫

µ̂N∈K∩B(ν ,δ )
exp
{

qN
(
Γ̄(µ̂N)− Γ̄ν(µ̂N)

)}
dQ⊗N

ν (x,r) (5.28)

=
∫

µ̂N∈K∩B(ν ,δ )
Eγ

[
N

∏
i=1

(
exp
{

X̃ µ̂N ,i(xi,ri)− X̃ν ,i(xi,ri)

})
∏

N
i=1 exp

{
X̃ν ,i(xi,ri)

}
Eγ

[
∏

N
i=1 exp

{
X̃ν ,i(xi,ri)

}]
]q

dQ⊗N
ν (x,r)

Jensen
≤

{∫
µ̂N∈K∩B(ν ,δ )

Eγ

[
N

∏
i=1

exp
{

q
(

X̃ µ̂N ,i(xi,ri)− X̃ν ,i(xi,ri)
)}

exp
{

X̃ν ,i(xi,ri)
}]

dP⊗N(x,r)︸ ︷︷ ︸
BN

} 1
q

,
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so that
QN(µ̂N ∈ K∩B(ν ,δ ))≤ Q⊗N

ν

(
µ̂N ∈ K∩B(ν ,δ )

) 1
p B

1
q
N .

The first term of the right-hand side can be controlled by large deviations esti-
mates. The boundedness of the second term ensues from the following lemma. Based
on these two results, we can conclude exactly as in 4.3.9.

Lemma 5.3.9. For any real number q > 1, if 2σ2‖b‖2
∞T

λ 2 < 1, then exist a real number
δq > 0 and a function Cq :]0,δq[→R+ such that limδ→0Cq(δ ) = 0:

BN ≤ exp{Cq(δ )N}.

Proof. Using Holder inequality with conjugate exponents (ρ,η), one finds:

BN ≤

{ BN
1︷ ︸︸ ︷∫

(C×D)N

N

∏
i=1

Eγ

[
expρXν(xi,ri)

]
dP⊗N(x,r)

} 1
ρ

×

{∫
µ̂N∈B(ν ,δ )

Eγ

[ N

∏
i=1

expqη

(
X̃ µ̂N ,i(xi,ri)− X̃ν ,i(xi,ri)

)]
dP⊗N(x,r)︸ ︷︷ ︸

BN
2

} 1
η

. (5.29)

On the one hand, we can proceed exactly as in calculus (5.26) to obtain, under our
short time hypothesis (4.54), the existence of a constant cT uniform in ρ and N such
that

BN
1 ≤ eN(ρ−1)cT ,

so that one has to choose the proper relation between ρ−1 and δ . On the other hand,
no new difficulty arises from the second term, and we can show, as in [51], that exists
a function C2(δ ) →

δ→0
0 such that

BN
2 ≤ exp{C2(δ )N}.

Properly tuning the parameter (e.g. choosing ρ = 1+δ
1
4 , so that qηδ

1
2 ≤ 2qδ

1
4 ) yields

the result.

5.4 EXISTENCE, UNIQUENESS, AND CHARACTERIZATION
OF THE LIMIT

In this section follows the steps of 4.4. Whereas the characterization of the min-
ima of Q can be obtained exactly as in Lemma 4.4.1, to obtain the following equation

Q' P,
dQ
dP

(x,r) = Eγ

[
exp
{

XQ(x,r)
}]

, ∀(x,r) ∈ C ×D, (5.30)

the fixed point argument will be harder to develop because of the strong depen-
dence of Oµ(t,x,r) in x.
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The map (x,r)→ Eγ

[
exp
{

X µ(x,r)
}]

is non-negative and measurable for every µ ∈
M+

1 (C ×D). Hence, we can properly define

L :=

{
M+

1

(
C ×D

)
→M+

1

(
C ×D

)
µ → dL(µ)(x,r) := Eγ

[
exp
{

X µ(x,r)
}]

dP(x,r).

In fact, as exp
{

X µ(x,r)
}

is γ-almost surely finite, one can use Novikov criterion to
show that L(µ) defines a probability measure on C ×D. Equation (5.30) can be refor-
mulated as follow: any minimum of H must satisfy:

Q' P, Q = L(Q) = QQ.

with QQ defined as in Theorem 5.3.4.

Remark 13. It will appear in the proof of the below theorem that ∀r ∈ D, ∃Qr ∈
M+

1 (C ) such that Qr�Pr, dQr
dPr

(x)= dQ
dP (x,r)=Eγ

[
exp
{

XQ(x,r)
}]

, and dQ(x,r)= dQr(x)dπ(r).

Theorem 5.4.1. The map L admits a unique fixed point.

Proof. The proof of Lemma (4.3.5), can be readily apply to show that

dL(µ)
dP

(x,r) = exp
{∫ T

0
Oµ(t,x,r)dWt(x,r)−

1
2

∫ T

0
O2

µ(t,x,r)dt
}
,

where

Oµ(t,x,r) = Eγ

[
Λt
(
Gµ(x)

)
Gµ

t (x)L
µ

t (x,r)
]
+mµ(t,x).

Let µ ∈M+
1

(
C ×D

)
,r ∈ D, and remark that x→ dL(µ)

dP (x,r) is a Pr-martingale. Hence
one can properly define dL(µ)r(x) := dL(µ)

dP (x,r)dPr(x) ∈M+
1 (C ). Because of the form of

the density, Girsanov’s theorem naturally leads to introduce the following SDE whose
putative solution have a law equal to L(µ)r:{

dxµ

t (r) = f (r, t,xµ

t (r))dt +λOW̃
µ (t,xµ

t (r))dt +λdW̃t

xµ

0 (r) = x̄0(r).
(5.31)

where W̃ is a P-Brownian motion,

OW̃
µ (t,x) := Eγ

[
Λt
(
Gµ(x)

)
Gµ

t (x)L̃
µ

t (x)
]
+mµ(t,x),

L̃µ

t (x) :=
∫ t

0
Gµ

s (x)
(
dW̃s−mµ(s,x)ds

)
,

and x̄0(r) ∈R is the realization of the continuous version for the family of initial laws(
µ0(r)

)
r∈D evaluated at r (see (5.2)). We show in Lemma 5.4.2 that for any (r,µ) ∈

D×M+
1 (C ×D), there exists a unique strong solution (xµ

t (r))t∈[0,T ] to equation (5.31).
Let also ν ∈M+

1

(
C ×D

)
, and define similarly xν

t (r) the process defined by:{
dxν

t (r) = f (r, t,xν
t (r))dt +λOW̃

ν (t,xν
t (r))dt +λdW̃t

xν
0 (r) = x̄0(r),
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where both the initial condition x̄0(r) and the driving Brownian motion (W̃t) are the
same as for the definition of xµ

t (r). We have

(
xµ

t (r)− xν
t (r)

)
=
∫ t

0

(
f (r,s,xµ

s (r))+λmµ(s,xµ
· (r))− f (r,s,xν

s (r))−λmν(s,xν
· (r)

)
ds

+λ

∫ t

0

{
Eγ

[
Λs
(
Gµ(xµ

· (r))
)
Gµ

s (x
µ
· (r))L̃

µ
s (x

µ
· (r))

]
−Eγ

[
Λs
(
Gν(xµ

· (r))
)
Gν

s (x
µ
· (r))L̃

ν
s (x

µ
· (r))

]}
ds

+λ

∫ t

0

∫ s

0

(
K̃s

ν ,xµ
· (r)

(s,v)mν

(
v,xµ
· (r)

)
− K̃s

ν ,xν
· (r)

(s,v)mν

(
v,xν
· (r)

))
dvds

+λ

∫ t

0

{
Eγ

[
Λs
(
Gν(xµ

· (r))
)
Gν

s (x
µ
· (r))

(∫ s

0
Gν

v (x
µ
· (r))dW̃v

)]
−Eγ

[
Λs
(
Gν(xν

· (r))
)
Gν

s (x
ν
· (r))

(∫ s

0
Gν

v (x
ν
· (r))dW̃v

)]}
ds. (5.32)

Let ξ ∈ Cµ,ν . We have:

λ
(
mµ(t,xµ

· (r))−mν(t,xν
· (r))

)
= J̄

∫
(C×D)2

(
b(xµ

t (r),yt)−b(xν
t (r),yt)

)
+
(

b(xν
t (r),yt)−b(xν

t (r),zt)
)

dξ
(
(y,r′),(z, r̃)

)
≤ KbJ̄

(∣∣xµ

t (r)− xν
t (r)

∣∣+∫
(C×D)2

‖y− z‖∞,tdξ
(
(y,r′),(z, r̃)

))
≤C

(∣∣xµ

t (r)− xν
t (r)

∣∣+dV
t (µ,ν)

)
where we took the infimum on ξ .

Furthermore, let
(
G̃, G̃′

)
be a bidimensional centered Gaussian process on the

probability space
(
Ω̂,F̂ ,γ

)
with covariance given by:

σ2

λ 2

∫
(C×D)2

(
b(xµ

s (r),ys)b(x
µ

t (r),yt) b(xµ
s (r),ys)b(xν

t (r),yt)
b(xν

s (r),ys)b(x
µ

t (r),yt) b(xν
s (r),ys)b(xν

t (r),yt)

)
dν(y,r). (5.33)

Then

∣∣∣K̃t
ν ,xµ
· (r)

(t,s)− K̃t
ν ,xν
· (r)

(t,s)
∣∣∣= ∣∣∣Eγ

[(
Λt(G̃)−Λt(G̃′)

)
G̃tG̃s +Λt(G̃′)

(
G̃t − G̃′t

)
G̃s +Λt(G̃′)G̃′t

(
G̃s− G̃′s

)]∣∣∣
Moreover,

Eγ

[
Λt(G̃)

(
G̃t − G̃′t

)
G̃s

] C.S.,(5.17)
≤ CT Eγ

[(
G̃t − G̃′t

)2
] 1

2 ≤CT

(∫
C×D

(
b
(
xµ

t (r),yt
)
−b
(
xν

t (r),yt
))2

dν(y,r′)
) 1

2

≤CT
∣∣xµ

t (r)− xν
t (r)

∣∣ (5.34)

and

Eγ

[(
Λt(G̃)−Λt(G̃′)

)
G̃tG̃s

] (5.19),C.S.
≤ CT

∣∣xµ

t (r)− xν
t (r)

∣∣,
so that ∣∣∣K̃t

ν ,xµ
· (r)

(t,s)− K̃t
ν ,xν
· (r)

(t,s)
∣∣∣≤CT

∣∣xµ

t (r)− xν
t (r)

∣∣.
We now focus on controlling the second term of (5.32). Let another ξ ∈ Cµ,ν , and

let
(
G,G′

)
be a bidimensional centered Gaussian process on the probability space
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(
Ω̂,F̂ ,γ

)
with covariance Kξ

(
·, ·,xµ

· (r)
)

given in (5.21). Observe that

Eγ

[
Λs
(
Gµ(xµ

· (r))
)
Gµ

s (x
µ
· (r))L̃

µ
s (x

µ
· (r))

]
−Eγ

[
Λs
(
Gν(xµ

· (r))
)
Gν

s (x
µ
· (r))L̃

ν
s (x

µ
· (r))

]
= Eγ

[
Λs(G)GsLs−Λs(G′)G′sL

′
s

]
where Lt :=

∫ t
0 Gs

(
dW̃s−mµ(s,x

µ
· (r))ds

)
, and L′t :=

∫ t
0 G′s

(
dW̃s−mν(s,x

µ
· (r))ds

)
.

As in the proof of Theorem 4.4.2, we have

Eγ

[
Λt(G)GtLt −Λt(G′)G′tL

′
t

]
= Eγ

[(
Λt(G)−Λt(G′)

)
GtLt

]
+Eγ

[
Λt(G′)

(
Gt −G′t

)
Lt

]
+Eγ

[
Λt(G′)G′t

(
Lt −L′t

)]
C.S.
≤ Eγ

[
L2

t
] 1

2

(
Eγ

[(
Λt(G)−Λt(G′)

)2G2
t

] 1
2
+Eγ

[
Λt(G′)2(Gt −G′t

)2
] 1

2
)
+Eγ

[
Λt(G′)2G′t

2
] 1

2
Eγ

[(
Lt −L′t

)2
] 1

2

We can show, as in Proposition 5.3.5

Eγ

[
Λt(G)2(Gt −G′t

)2
]
≤CT

(∫
(C×D)2

‖y− z‖2
∞,tdξ

(
(y,r′),(z, r̃)

))
,

and

Eγ

[(
Λt(G)−Λt(G′)

)2G2
t

] (5.19),(8.2.4)
≤ CT

(∫
(C×D)2

‖y− z‖2
∞,tdξ

(
(y,r′),(z, r̃)

))
.

On the other hand,

Eγ

[(
Lt −L′t

)2
]
≤ 2Eγ

[(∫ t

0

(
Gs−G′s

)
dW̃s

)2]
+4t

∫ t

0

{
Eγ

[(
Gs−G′s

)2mµ(s,xµ
· (r))

2
]

+Eγ

[
G′s

2
(

mµ

(
s,xµ
· (r)

)
−mν

(
s,xµ
· (r)

))2
]}

ds

(5.20)
≤ CT

{
Eγ

[(∫ t

0

(
Gs−G′s

)
dW̃s

)2]
+
∫
(C×D)2

‖y− z‖2
∞,tdξ

(
(y,r′),(z, r̃)

)}
,

We thus obtain:∣∣∣∣Eγ

[
Λs
(
Gµ(xµ

· (r))
)
Gµ

s (x
µ
· (r))L̃

µ
s (x

µ
· (r))

]
−Eγ

[
Λs
(
Gν(xµ

· (r))
)
Gν

s (x
µ
· (r))L̃

ν
s (x

µ
· (r))

]∣∣∣∣2
≤CT

(
1+Eγ

[(∫ s

0
GvdW̃v

)2
])(∫

(C×D)2
‖y− z‖2

∞,sdξ
(
(y,r′),(z, r̃)

))
+CT Eγ

[(∫ s

0

(
Gv−G′v

)
dW̃v

)2]
.

Injecting these result in (5.32), we obtain:

‖xµ(r)− xν(r)‖2
∞,t ≤CT

∫ t

0

{
‖xµ(r)− xν(r)‖2

∞,s +Eγ

[(∫ s

0

(
Gv−G′v

)
dW̃v

)2]
+

(
1+Eγ

[(∫ s

0
GvdW̃v

)2
])(∫

(C×D)2
‖y− z‖2

∞,sdξ
(
(y,r′),(z, r̃)

))
+λ

2
∣∣∣∣Eγ

[
Λs
(
Gν(xµ

· (r))
)
Gν

s (x
µ
· (r))

(∫ s

0
Gν

v (x
µ
· (r))dW̃v

)]
−Eγ

[
Λs
(
Gν(xν

· (r))
)
Gν

s (x
ν
· (r))

(∫ s

0
Gν

v (x
ν
· (r))dW̃v

)]∣∣∣∣2
}

ds,
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so that relying on Gronwall’s lemma, taking the expectation over initial conditions
and the Brownian path, and making use of Fubini’s theorem, Itô isometry, and even-
tually taking the infimum in ξ yields:

E

[
‖xµ(r)− xν(r)‖2

∞,t

]
≤CT

∫ t

0

{
dV

s (µ,ν)
2 +λ

2
E

[∣∣∣∣Eγ

[
Λs
(
Gν(xµ

· (r))
)
Gν

s (x
µ
· (r))

(∫ s

0
Gν

v (x
µ
· (r))dW̃v

)]

−Eγ

[
Λs
(
Gν(xν

· (r))
)
Gν

s (x
ν
· (r))

(∫ s

0
Gν

v (x
ν
· (r))dW̃v

)]∣∣∣∣2
]}

ds,

To cope with the last term of the right-hand side, let again
(
G̃, G̃′

)
be a bidimen-

sional centered Gaussian process on the probability space
(
Ω̂,F̂ ,γ

)
with covariance

given by (5.33). Let also Eγ

[
·
]

:=E
[
Eγ

[
·
]]

. Then

E

[∣∣∣∣Eγ

[
Λs
(
Gν(xµ

· (r))
)
Gν

s (x
µ
· (r))

(∫ s

0
Gν

v (x
µ
· (r))dW̃v

)]
−Eγ

[
Λs
(
Gν(xν

· (r))
)
Gν

s (x
ν
· (r))

(∫ s

0
Gν

v (x
ν
· (r))dW̃v

)]∣∣∣∣2
]
=

E

[
Eγ

[
Λs(G̃)G̃s

(∫ s

0
G̃vdW̃v

)
−Λs(G̃′)G̃′s

(∫ s

0
G̃′vdW̃v

)]2
]

(5.35)

C.S.
≤ Eγ

[{
Λs(G̃)G̃s

(∫ s

0
G̃vdW̃v

)
−Λs(G̃′)G̃′s

(∫ s

0
G̃′vdW̃v

)}2
]

C.S.
≤ 3Eγ

[(∫ s

0
G̃vdW̃v

)4
] 1

2
(
Eγ

[(
Λt(G̃)−Λt(G̃′)

)4G̃4
t

] 1
2
+Eγ

[
Λt(G̃′)4(G̃t − G̃′t

)4
] 1

2
)

+3Eγ

[
Λt(G̃′)4G̃′t

4
] 1

2
Eγ

[(∫ s

0

(
G̃v− G̃′v

)
dW̃v

)4
] 1

2

. (5.36)

Gaussian calculus and (5.34) gives

Eγ

[(
G̃t − G̃′t

)4
]
=CEγ

[(
G̃t − G̃′t

)2
]2
≤CT

∣∣xµ

t (r)− xν
t (r)

∣∣2.
Then relying on (5.17), (5.19) and Burkhölder Davis Gundi inequality, we obtain:

E

[
‖xµ(r)− xν(r)‖2

∞,t

]
≤CT

∫ t

0

{
dV

s (µ,ν)
2 +E

[
‖xµ(r)− xν(r)‖2

∞,s

]}
ds.

Another use of Gronwall’s lemma then gives:

E

[
‖xµ(r)− xν(r)‖2

∞,t

]
≤CT

∫ t

0
dV

s (µ,ν)
2ds.

Let us now show the regularity in space of left-hand side in the above inequality.
To this purpose, fix r′ 6= r ∈ D, and consider xµ

· (r′) be the strong solution of (5.31)
with same W̃ but initial condition given by x̄0(r′) and intrinsic dynamics f (r′, ·,xµ

· (r′)).
Using the same analysis, one observes that

‖xµ(r)− xµ(r′)‖2
∞,t ≤CT

{(
x̄0(r)− x̄0(r′)

)2
+‖r− r′‖2

Rd +
∫ t

0
‖xµ(r)− xµ(r′)‖2

∞,sds
}
,

and thus conclude on continuity of r 7→ (xµ

t (r))t∈[0,T ] by Gronwall’s lemma and conti-
nuity of r 7→ x̄0(r). Hence the maps r→ xµ

· (r) and r→ xµ
· (r)− xν

· (r) are continuous for
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the uniform norm in C . As a consequence, r→ ‖xµ(r)− xν(r)‖∞,t is also continuous,
so that Fatou’s lemma ensures that r→ E

[
‖xµ(r)− xν(r)‖2

∞,t

]
is at least lower semi-

continuous. Integrating on r ∈ D, and remarking that (xµ
r ,xν

r ) is a particular coupling
of
(
L(µ)r,L(ν)r

)
yields:

dV
t
(
L(µ),L(ν)

)2 ≤CT

∫ t

0
dV

s
(
µ,ν

)2ds.

This inequality allows to develop the classical Picard’s iterations method to conclude
on the existence and uniqueness of solution to the fixed point equation in M+

1 (C ×
D).

Lemma 5.4.2. For any r∈D and µ ∈M+
1 (C ×D), there exists a unique strong solution

to the SDE: {
dxµ

t (r) = f (r, t,xµ

t (r))dt +λOW̃
µ (t,xµ

t (r))dt +λdW̃t

xµ

0 (r) = x̄0(r).

where W̃ is aP-Brownian motion, x̄0(r)∈R is the realization of the continuous version
for the family of initial laws

(
µ0(r)

)
r∈D, and

OW̃
µ (t,x) := Eγ

[
Λt
(
Gµ(x)

)
Gµ

t (x)
∫ t

0
Gµ

s (x)
(
dW̃s−mµ(s,x)ds

)]
+mµ(t,x).

Proof. The proof relies on Picard’s iterations. Let x0 ∈ C with x0
0 = x̄0(r), and define

recursively the sequence
(
xn

t ,0≤ t ≤ T
)

n∈N∗ by

xn+1
t = x̄0(r)+

∫ t

0
f (r,s,xn

s )ds+
∫ t

0
λOW̃

µ (s,xn
s )ds+λW̃t , ∀t ∈ [0,T ].

Then, using the estimate (5.36) obtained in the proof of theorem 5.4.1 and taking the
expectation, we find

E

[
‖
∣∣xn+1− xn‖2

∞,t

]
≤CT

∫ t

0
E

[
sup
u≤s

∣∣xn
u− xn−1

u

∣∣2]ds.

5.4.1 Convergence of the process and Quenched results.

We are now in a position to prove theorem 5.2.2.

Proof of Theorem (5.2.2). Let δ > 0 and B(Q,δ ) the open ball of radius δ centered in
Q for the Vaserstein distance. We prove that QN(µ̂N /∈ B(Q,δ )) tends to zero exponen-
tially fast as N goes to infinity. In fact, the upper-bound of the LDP for the closed set
B(Q,δ )c yields

limsup
N→∞

1
N

logQN(µ̂N /∈ B(Q,δ ))≤− inf
B(Q,δ )c

H < 0

where the last inequality comes from the fact that H attains its unique minimum
at Q. This implies that QN(µ̂N /∈ B(Q,δ ))→ 0 at least exponentially fast, so that the
result is proved.
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Proof of Theorem 5.2.6. For a given closed set F , we can obtain a quenched upper-
bound as a consequence of Theorem.3 and Borel-Cantelli, by proceeding exactly as in
[22, Theorem 2.7 of Appendix C.]. As M+

1 (C ×D) is Polish, we are able to define a
sequence of closed sets (Fi)i∈N of M+

1 (C ×D) such that for all closed set F ⊂M+
1 (C ×D)

there exists AF ⊂N, and
F =

⋂
i∈AF

Fi.

Moreover, as
{

F ⊂M+
1 (C ×D),∃AF ⊂N,F =

⋂
i∈AF

Fi
}

is countable and contains every
closed set, we obtain an P-almost sure upper-bound for every closed set:

P−a.s, ∀ closed set F ⊂M+
1 (C ×D), limsup

N→∞

1
N

logQN
r (J)(µ̂N ∈ F)≤− inf

F
H.

H being a good rate function, the P-almost sure exponential tightness is a conse-
quence of [84, Exercice 4.1.10 (c)] (citing the results of [163, Lemma 2.6] and [196,
Theorem P]), whereas the P-almost sure convergence of the empirical measure stems
from Borel-Cantelli lemma, noting that for any ε > 0,

QN
r (J)(µ̂N /∈ B(Q,ε)) = QN

r (J)(dT (µ̂N ,Q)≥ ε)

is summable.
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CHAPTER 6

NUMERICAL STUDY OF A NEURAL
NETWORK

6.1 INTRODUCTION

In [51], we analyzed randomly coupled neuronal networks and derived the limit
of the empirical averages as the number of neurons tends to infinity. To this purpose,
we showed that the system satisfies a large deviation principle and exhibited the re-
lated good rate function. This approach generalized the work of Gerard Ben Arous
and Alice Guionnet [22, 129] developed for spin glasses in three main directions: (i)
the synaptic weights are not centered, introducing additional, deterministic terms in
the coupling, (ii) interactions are delayed, which projects the problem into infinite di-
mensions, and (iii) the system is composed of several populations, which was handled
showing that empirical measures on each populations simultaneously satisfy a large
deviation principle. The proof is made on a particular model very popular in physics
and neurosciences, the Wilson and Cowan system, which is close of the famous Hop-
field model, but as mentioned, can be easily generalized to nonlinear neuron models.
Indeed, most of the proofs deal with a quantity which is related to the density of
the coupled network with respect to the uncoupled dynamics, and this quantity is
independent of the dynamics of individual cells. This approach can be also readily
extended to networks with distributed delays. Eventually, let us note that this result
provides large-deviations estimates on the convergence of deterministically coupled
networks as studied in [239].

For the neuroscience viewpoint, this approach had the interest to justify an ap-
proach widely used in the analysis of large-scale networks, and introduce in the sem-
inal paper of Sompolinsky and collaborators [221].

In this chapter, we will study the possible solution of the found limit equation.
Under the choice of Gaussian initial conditions and linear intrinsic dynamics, we can
show existence and uniqueness for the solutions, as these solutions are also Gaus-
sian. These Gaussian solutions are unequivocally characterized by their mean and
covariance functions, and these variables satisfy a closed set of deterministic equa-
tions. In the stochastic synaptic noise case, we will show in the second part of this
study that the mean and standard deviations satisfy a closed set of delayed differen-
tial equations where the heterogeneity and the noise coefficients appear as a param-
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eter. This will allow to uncover, using a bifurcation analysis, the qualitative effects of
noise on the solutions. In the static random heterogeneity case, the mean satisfies a
delayed differential equation coupled to the variance of the solution. Unfortunately,
in contrast with the case of stochastic noise, the variance does not satisfies an ordi-
nary differential equation but can be written as the solution of a fixed point equation.
This distinction is fundamentally related to the non-Markovian nature of the asymp-
totic equation. We will then develop a few analytical approaches to characterize the
solutions and a heuristic argument will allow demonstrating that noise is directly
related to the emergence of synchronized oscillations, a highly relevant macroscopic
state related to fundamental cortical functions such as memory, attention, sleep and
consciousness, and its impairments relate to serious pathologies such as epilepsy or
Parkinson’s disease [50, 240], and that may account for the results of Aradi and col-
leagues showing that increased heterogeneity was related with epilepsy.

6.2 MATHEMATICAL SETTING AND GAUSSIAN CHARACTER-
IZATION OF THE LIMIT

In all this chapter, we are working in a complete probability space (Ω,F ,P) en-
dowed with a filtration

(
Ft
)

t satisfying the usual conditions. We consider a network
composed of N neurons falling into P populations. We define by p :N 7→ {1, · · · ,P} the
population function associating to a neuron index the population label it belongs to.
The state of each neuron i in population p(i) = α ∈ {1, · · · ,P} is described by its mem-
brane potential xi ∈R. Its evolution is driven by the inputs it receive from the other
neurons, through a sigmoidal transformation of their membrane potential Sαγ(x

j
t ), as

well as external inputs Ip(i)(t). This sigmoidal function is specific to both post- and
pre-synaptic populations p(i) and p( j), and is assume to be smooth increasing func-
tions that tends to 0 at −∞ and to 1 at ∞. Moreover, this input from pre-synaptic
neuron j to post-synaptic neuron i is modulated by the synaptic efficiency Ji j. With-
out inputs, the membrane potential exponentially decreases with characteristic time
θα . We can now introduce the dynamic of xi

t of population p(i) = α:

dxi
t =

(
− 1

θα

xi
t +

P

∑
γ=1

∑
j:p( j)=γ

Ji jSαγ(x
j
t−ταγ

)

)
dt +λαdW i

t (6.1)

The Brownian motions W i
t are independent and account for the noisy input received

by all neurons. Moreover, λα denote the noise intensity specific of population α, ταγ is
the propagation delay between neurons of population γ and neurons of population α,
and where the synaptic weights Ji j are assumed to be independent Gaussian random

variables, with law N
(

J̄p(i)p( j)
Np( j)

,
σ2

p(i)p( j)
Np( j)

)
.

In [51], it was shown that the empirical measure of population α was converging
(in an averaged sense) toward a solution of:

dX̄α
t =

(
− 1

θα
X̄α

t +Uα,X̄
t

)
dt +λαdW α

t

Uα,X̄
t ∼N

(
∑

P
γ=1 J̄αγE

[
Sαγ(X̄

γ

t−ταγ
)
]
,∑P

γ=1 σ2
αγE

[
Sαγ(X̄

γ

t−ταγ
)2
])

pairwise independent.

(6.2)
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Nevertheless, existence and uniqueness of solution was not addressed in the gen-
eral case. An interesting property of these P implicit SDE is that its solutions are
Gaussian processes, provided that the initial conditions are Gaussian. In fact, if we
write down X̄α

t we find a sum of integrated independent Gaussian processes. Hence,
characterizing the solutions of (6.2) only requires to determine its mean and covari-
ance. The above theorem hence characterizes unequivocally the limits of the network
equations considered. The proof of this proposition was done in [106] starting from
equations (6.2) which were introduced using a heuristic argument.

Theorem 6.2.1. Consider that the initial conditions of (6.2) are Gaussian, and denote
by µα(t), Cαβ (t,s) =E[Xα

t Xβ
s ] the mean and variance of its solution. Then:

µ̇
α(t) =− 1

θα

µ
α(t)+

P

∑
γ=1

J̄αγ fαγ(µ
γ(t− ταγ),Cαα(t− ταγ , t− ταγ)) (6.3)

where fαγ(µ,v) =
∫
R

Sαγ(x) e−(x−µ)2/2v
√

2πv
. The covariance is equal to zero when β 6= α and:

Cα(t,s)= e−(t+s)/θα

[
Cα(0,0)+

θαλ 2
α

2
(exp2(t ∧ s)/θα−1)+

P

∑
γ=1

σ
2
αγ

∫ t

0

∫ s

0
e(u+v)/θα ∆

αγ

µ,C(u−ταγ ,v−ταγ)dudv
]

(6.4)
where ∆

αγ

µ,C(u,v) = E
[
Sαγ(X

γ
u )Sαγ(V

γ
v )
]

is a nonlinear function of µγ(u), µγ(v), Cγγ(u,v),
Cγγ(u,u) and Cγγ(v,v).

Moreover, there exists a unique solutions to these self consistent equations (6.3)
and (6.4).

Note also that if the initial condition is not Gaussian, the solutions are not Gaus-
sian. However, as time goes by, solutions get exponentially fast attracted to the Gaus-
sian solutions described in theorem 6.2.1. That description hence provides a handy
procedure to analyze the solutions of the mean-field equations and their dynamics as
a function of the parameters. In particular, we observe that the levels of heterogene-
ity, (σαγ), appear as parameters of the equations. The moment equations provided
above hence allow analyzing the qualitative effects of heterogeneity on the behavior
of the network.

All these results can be readily confirmed by numerical simulations of the net-
work equations. Considering for instance a two-populations network with parame-
ters given in section 6.3.3, we simulated a network of 12000 neurons (6000 in each
population) and considered the distribution of the values of the membrane potentials
as a statistical sample. The empirical distribution, superimposed with the theoret-
ical Gaussian distribution, is plotted in figure Fig. 6.1 and shows a very clear fit,
which we confirmed using the Kolmogorov-Smirnov test. For each population, the
Kolmogorov-Smirnov test comparing the sample obtained by numerical simulations
with the predicted Gaussian distribution ensures that the sample has indeed the
Gaussian distribution, with a p-value equal to 1. Moreover, we used a chi-square test
of independence which validates the independence between the two populations and
this independence test was validated with a p-value of 0.87.
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Figure 6.1: Empirical distribution (colored histogram with dotted lines) and theoret-
ical Gaussian distributions for a 2 populations neuronal network (parameters given
in section 6.3.3 with common heterogeneity parameter σ = 1 and noise λ = 0.5).

6.2.1 Qualitative effects of the heterogeneity parameters

In this section, we use the above derived limit equations to analyze the behavior of
networks, with a particular focus on the effect of the disorder parameters, namely
the standard deviations of the synaptic weights. This study was done in a one popu-
lation model with centered coefficients, centered sigmoidal functions S and no delays,
in the outstanding work of Sompolinsky, Crisanti and Sommers [221]. We start by
generalizing their equations in our context and discussing a particularly interesting
phase transition identified in their article, namely the transition from a stationary to
a chaotic behavior. We will then discuss the persistence of that phase transition when
the assumptions on the parameters (non-centered synaptic weights or sigmoids, de-
lays, multiple populations. . . ) are relaxed. We will then turn to the analysis of multi-
populations networks with no delay and we will show that the disorder parameter
can trigger or destroy oscillations.

In the present section, in order to revisit the results of SCS, we will sometimes
deal with deterministic equations with random coefficients and consider λα = 0. Rig-
orously, in that case, the proof of the large deviation principle and of the existence and
uniqueness of solutions to the mean-field equations no more hold. These non-noisy
regimes correspond to limits of the mean-field equations where λα → 0, and to a sort
of viscosity solution of the system: all the properties of convergence, existence and
uniqueness of solution hold for arbitrarily small λα and provide solutions that have a
limit when λα → 0.

6.2.2 The generalized Somplinsky-Crisanti-Sommers Equations

In their article, Sompolinsky, Crisanti and Sommers (SCS) introduce a set of equa-
tions governing the dynamics of covariance of possible stationary solutions to the
mean-field equations. These equations are used to analyze the dynamics of the limit
process and in particular to show a striking transition between stationary and chaotic
solutions. We derive here a generalized equation of the type of the SCS equations in
our framework with multiple populations and delays, and use these equations to ex-
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plore the boundaries of the SCS phase transition when considering different models.

Proposition 6.2.2. Possible stationary solutions are Gaussian with mean µ̄α and
covariance C̄α(τ) = Cαα(t + τ, t) for any t ≥ 0. These two variables satisfy the system
of equations: 

0 =− 1
θα

µ̄
α +

P

∑
γ=1

J̄αγ fαγ(µ̄
γ ,C̄α(0))

¨̄Cα(ζ ) =
C̄α(ζ )

θ 2
α

+
P

∑
γ=1

∆̄
αγ

µ̄,C̄(ζ )

(6.5)

Remark 14. Note that the above equations do not constitute a dynamical system,
but rather correspond to implicit equations. In particular, an important difficulty
is the choice of the initial condition Cα(0) which corresponds to the variance of the
stationary solution, which is obviously unknown. This quantity parametrizes both
the equation on the first moment and the form of the term ∆αγ on the second moment
equations.

Proof. The equation on the mean µ̄α is a simple rewriting of equation (6.3) under
stationarity condition. The equation on the stationary covariance requires more care.
For arbitrary time t, denoting Xα

t the solution of the mean-field equation with for all
α, λα = 0, we have, using equation (6.2):

Ċα(ζ ) =
d

dζ
E[(X̄α(t +ζ )−µ

α(t +ζ ))(X̄α(t)−µ
α(t))]

=−Cα(ζ )

θα

+E[X̄α(t)Uα,X̄(t +ζ )]. (6.6)

The second term is not easy to characterize. The method used by Sompolinsky and
collaborators to deal with this term is to derive a second time with respect to ζ .
However, the differential of Uα is unknown. Fortunately, we can express this term
as a function of δ α(ζ ) =E[X̄α(t +ζ )Uα(t)]. This function is way easier to handle since
using the differential equation (6.2) and differentiating this expression with respect
to ξ , one obtains:

δ̇
α(ζ ) =−δ α

θα

+
P

∑
β=1

σ
2
αβ

∆
αβ

µ̄,C̄(ζ )

where we denoted with a slight abuse of notations ∆
αβ

µ̄,C̄(ζ ) the common value of

∆
αβ

µ̄,C̄(t +ζ , t) for any t > 0 using the assumed stationarity of the solution.
In order to relate the second term of the righthand side of (6.6) with δ α , we com-

pute Ċ(ζ +ξ ) expressing it the differential with respect to ξ ofE[X̄α(t +ζ +ξ/2)X̄α(t−ξ/2)].
In this computation, most of the terms cancel out and we obtain the simple expression
at ξ = 0:

2Ċα(ζ ) =E[X̄α(t)Uα,X̄(t +ζ )]−δ
α(ζ ).

Plugging this expression into (6.6) we obtain:

Ċα(ζ ) =
Cα(ζ )

θα

−δ
α(ζ ).
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Differentiating this expression with respect to ζ and reinjecting the latter equation
in the obtained expression, we get:

C̈α(ζ ) =
Ċα(ζ )

θα

−

(
−δ α

θα

+
P

∑
β=1

σ
2
αβ

∆
αβ (ζ )

)

=
Cα(ζ )

θ 2
α

−
P

∑
β=1

σ
2
αβ

∆
αβ (ζ ). (6.7)

This equation is very similar to the original SCS equation. As they remarked,
this equation does not characterize the process. Indeed, we know that Ċα(0) = 0 us-
ing the fact that the covariance is even, but the initial condition Cα(0) is not fixed: it
is the asymptotic stationary variance of the process, when it exists, and this initial
condition is a parameter of both the stationary mean equation and stationary covari-
ance equation. However, Sompolinsky and collaborators showed very elegantly an
important phase transition taking place in this system, analyzing the shape of the
potential together with a stability analysis of the solutions. We revisit their results
in our more general framework, first in one population systems, and then in higher
dimensional systems, and particularly focus on the effects of delays, non-zero mean
connectivity and non-centered sigmoids.

6.3 NUMERICAL RESULTS ON RANDOM NEURAL NETWORKS

6.3.1 One population networks

The heterogeneity level appears as a parameter in (6.7). In SCS one-population set-
ting, equation (6.7) can be written as the equation of the position of a particle sub-
mitted to a force deriving from a potential Φ1 (the label 1 denotes the number of
populations) which is equal to −1

2C2+σ2ψ where ψ is a primitive of ∆ considered as a
function of C. The shape of the potential for σ < 1/(θS′(0)) ensures that the only pos-
sible stationary solution correspond to the case where all neurons are equal to zero.
When σ > 1/(θS′(0)), a number of solutions can appear depending on the value of C(0),
but all are shown unstable except one corresponding to chaotic regime where the co-
variance is non-zero. In what follows, we will consider that S(x) = erf(gx) =

∫ gx
0 e−x2/2.

Then it is easy to show using a change of variables (see [239]) that

f (x,σ) = erf

(
gx√

1+g2σ

)
.

Non-delayed networks with non-centered synapses

Let us start by a one-population network with no delays, θ = 1 and J̄ 6= 0. In that case,
it is easy to see that fixed point with mean µ = 0, C(ζ ) = 0 is a stationary solution
whatever the parameters. It is stable if and only if J̄ ∂ f

∂ µ
(0,0) = J̄S′(0) < 1. Therefore,

for fixed σ , the system undergoes a pitchfork bifurcation for J̄ = J̄∗ = ∂ f
∂ µ

(0,0)−1 = 1/g,
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the system undergoes a pitchfork bifurcation, and two new equilibria µ+ > 0 and
µ− < 0 appear, which are stable. For these equilibria, the null covariance is no more
a solution to the equations, and we observe a stationary behavior of neurons with a
non-zero standard deviation, i.e. a dispersion of the individual trajectories displaying
constant time course.

For fixed J̄, the system undergoes SCS-like phase transitions from stationary to
chaotic activity when the heterogeneity coefficient σ is increased. This bifurcation
occurs, for J̄ < J̄∗, when σ exceeds 1/(S′(0)), and for J̄ > J̄∗ when σ > ( ∂ f

∂ µ
(µ±,C(0)))−1,

implicitly defining a critical value for σ since C(0) depends on σ .

Since C(0) is an increasing function of function and the differential of S takes
its maximum at 0 and decreases to zero at ±∞, the value of σ corresponding to the
secondary phase transition to chaos is an increasing function of σ . Moreover, in that
case, the chaotic activity will be no more centered around zero but around the new
fixed point µ±. A hand-drawn bifurcation diagram reflecting this behavior, together
with simulations of the trajectories, is plotted in figure Fig. 6.2.

Delay-induced oscillations

We now consider a one-population network with delays. Without loss of generality,
we consider that the time constant is equal to 1. The solutions of the mean-field
equations with no heterogeneity are Gaussian processes whose moments reduce to a
dynamical system: {

µ̇ =−µ + J̄ f (µ(t− τ),v(t− τ))

v̇ =−2v+λ 2

and hence the variance converges towards λ 2/2. To fix ideas, we consider S(x) =
erf(gx), so that f (x,v) = erf( gx√

1+g2v
). Since for any v, f (0,v) = 0, the null mean is a

stationary solution of the equation. Its stability depends on the roots of the charac-
teristic equation (or dispersion relationship):

ξ =−1+ J̄
∂ f
∂ µ

∣∣∣∣
0, λ2

2

e−ξ τ =−1+ J̄
g√

1+g2 λ 2

2

e−ξ τ .

If all characteristic roots have negative real part, the fixed point µ = 0 is stable. As
a function of the parameters of the system, characteristic roots can cross the imag-
inary axis and yield a destabilization of the fixed point. Turing-Hopf instabilities
arise when there exists purely imaginary characteristic roots ξ = iω. In that case, we
obtain the following equivalent system:

−1+ J̄ g√
1+g2 λ2

2

cos(ωτ) = 0

ω =−J̄ g√
1+g2 λ2

2

sin(ωτ)

which has real solutions only for J̄ g√
1+g2 λ2

2

> 1. It is then easy to show that Turing-
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Figure 6.2: Behavior of a one-population system with non-centered synaptic coeffi-
cients. Center: Bifurcation diagram (hand-drawn) segmented into four regions: two
regions of stationary behavior (yellow: centered at zero and green: centered on µ±)
and two chaotic regions (pink: centered around zero and orange: centered around
µ±). The boundaries of these regions are: a pitchfork bifurcation (blue curve) sepa-
rating the stationary or chaotic regions centered on 0 to the ones centered on µ±, and
a generalized SCS phase transition (red curve) separating the stationary and chaotic
regimes. The subfigures (a)-(e) show the time course of 30 arbitrarily chosen neurons
among 10000 neurons in the network corresponding to the points a-e of the diagram:
θ = 1, S′(0) = 1, (a): J = 0.5, σ = 0.5, (b): J = 0.5, σ = 1.5, (c): J = 1.5, σ = 1.5, (d): J = 1.5,
σ = 1.7, (e): J = 1.5, σ = 2.

Hopf bifurcations arise when the parameters satisfy the relationship:

τ =

arccos

(√
1+g2 λ2

2
J̄g

)
√

J̄2g2

1+g2 λ2
2

−1

and these correspond to characteristic roots ω =

√
J̄2g2

1+g2 λ2
2

−1. These result into oscil-

lations of the solutions at a pulsation equal by ω.
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Oscillations

(a) Turing-Hopf bifurcation
curve
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(b) τ = 0.1, σ = 0.5
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(c) τ = 0.5, σ = 0.5
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(d) τ = 0.5, σ = 1

Figure 6.3: One population delayed system, θ = 1, S(x) = erf(gx), g = 3 and J̄ = −2.
(a) represents the curve of Turing-Hopf bifurcations in the plane (τ,λ ) obtained an-
alytically. (b): τ small: no oscillations. As the delays are increased, a Turing Hopf
bifurcation occurs and oscillations appear (b), which disappear when the heterogene-
ity σ is increased beyond a critical value in favor a chaotic activity (c).

Let us now return to the case of random coefficients with variance σ and no ad-
ditive noise λ = 0. The mean of the Gaussian solution satisfy the same equation as
the one studied above with λ = C(0), and as noted in the previous section, the sta-
tionary covariance is an increasing function of σ . For J̄ > ∂ f

∂ µ
(0,0), the fixed point 0

is unstable, and the covariance is non-zero. This implies that for sufficiently large
values of the delay, the network displays oscillations. Thanks to the propagation of
chaos property, all neurons have the same distribution, which is a Gaussian with os-
cillatory mean, and hence the network displays phase-locked oscillations. Eventually,
as noise is increased beyond a critical value, a SCS phase transition occurs and the
system no more displays phase locked oscillations but asynchronous chaotic activity.
This is illustrated in figure Fig. 6.3.

We conclude that in one population networks, the presence of non-centered synap-
tic coefficients or of interaction delays qualitatively shape the dynamics of the net-
work. We now turn to study related questions for multi-populations networks.



148 CHAPTER 6. NUMERICAL STUDY OF A NEURAL NETWORK

6.3.2 Multi-population networks

In this section, we analyze the dynamics of randomly coupled neuronal networks in
the case of the deterministic coupling of several original SCS networks, before turning
the analysis of the dynamics of a more biologically plausible neuronal network com-
posed of an excitatory and an inhibitory population. As demonstrated by Sompolinsky
and coworkers in [221], the study of the stationary states using equations (6.5) is very
useful to analyze the dynamics of their networks. Unfortunately, this method does
not persists in higher dimensions, since the equation does not necessarily derive from
a potential. Indeed, in order for the equation to derive from a potential ΦP :RP 7→R

in dimension P greater than 1, the following relationship shall be satisfied for any
α ∈ {1, . . . ,P}:

∂ΦP

∂Cα
=−Cα +

P

∑
β=1

σ
2
αβ

∆
β

The only case where this is possible is the case where σ2
αβ

= 0 for any α 6= β . In-

deed, shall the above relationship be true, the equality ∂ 2ΦP
∂Cα ∂Cβ

= ∂ 2ΦP
∂Cβ ∂Cα

directly yields
σ2

αβ

∂∆β

∂Cβ
= σ2

βα

∂∆α

∂Cα . The lefthand side is a function of Cα only and the righthand side
a function of Cβ only, they for α 6= β these functions are necessarily constant. For
regular functions S, this necessitates to have σαβ = σβα = 0. This is precisely the case
of deterministic lateral connections between randomly coupled networks, which will
now study.

Deterministic lateral coupling of SCS networks

In this section we analyze the coupling of different SCS networks, called lateral cou-
pling, with deterministic coefficients. The only randomness in the models is included
in the random synaptic coefficients between neurons belonging to the same popula-
tion. In that particular case, equation (6.7) derives from the potential ΦP(C1 · · ·CP) =

∑
P
α=1 Φ1(Cα), and in that case the analysis driven by Sompolinsky and collaborators

can be adapted to the multi-dimensional case. Since the potential is now the sum
of the individual potentials at each population, we observe a strange phenomenon of
localization of chaos in the populations that display a large heterogeneity (namely, in
our notations, when the SCS condition σ2

ααS′αα(0)τα > 1 is satisfied). Only the popu-
lations that individually would be in a chaotic state are in a chaotic state, and the
other populations converge to zero with a Dirac delta covariance at zero, and the in-
put received by such populations from chaotic populations do not perturb this state.
Let us for instance illustrate this phenomenon on a two-populations network with
parameters:

J̄ =

(
0 J21

J12 0

)
and σ =

(
σ1 0
0 σ2

)
Each population receives input from the neurons of the other population, with a con-
stant synaptic weight equal to Jαβ , and the intra-population synaptic weights are
noisy.

Further analysis of this networks as a function of the coupling reveals a simi-
lar phenomenon as the one described in the one-population network of section 6.3.1.
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(a) Shape of the potential
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Figure 6.4: Dynamics for a 2-populations network with Hamiltonian dynamics (no
variance on the cross-population synaptic weights): θ1 = θ2 = 1, σ1 = 3> 1, σ2 = 0.5< 1,
J12 = J21 = 3. The potential shows a double-well shape, corresponding to a chaotic state
on population 1 and a stationary state on population 2. Simulation of a 4000 neurons
network illustrate this phenomenon (right): blue (resp. red): 30 arbitrarily chosen
trajectories population from 1 (resp. 2).

Indeed, as the strength of the lateral coupling J12 and J21 are increased, additional
stationary solutions with non-zero covariance appear. Let us for instance denote by
µ∗ the mean of one of these stationary solutions. Following SCS analysis, we are en-
sured that the behavior of the trajectories of neurons in population α around µ∗α is
stationary as long as σα < 1

τα S′(µ∗α )
and chaotic otherwise, and this independently of the

behavior of the other population. This phenomenon is illustrated in figure Fig. 6.5.
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(a) Stationary States
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(b) Localized Chaos

Figure 6.5: Stationary and partially chaotic solutions of a two populations network
with deterministic lateral around non-zero fixed points. J12 = J21 = 4, σ2 = 0.5, (left):
σ1 = 2: both populations display a stationary behavior, (right): σ1 = 5: only population
1 is chaotic and the irregularity is not transmitted to population 2.



150 CHAPTER 6. NUMERICAL STUDY OF A NEURAL NETWORK

6.3.3 Heterogeneity-induced oscillations in two-populations networks

Let us eventually discuss the effect of heterogeneities in a more biologically plau-
sible neuronal network. Biologically realistic networks of the type of equation 6.1
analyzed in the present chapter involve at least two populations, one excitatory and
one inhibitory, i.e. synaptic coefficients are centered on positive or negative values
depending on the population they belong to. Moreover, these include strictly positive
sigmoidal transforms (since these functions model the input to firing-rate transfor-
mation), that tend to zero at −∞ and to 1 at ∞. The analysis of the present sections
justifies a result presented in [238]. For such networks, the dynamics of the station-
ary solutions no more derive from a potential, and rigorous analysis of the dynamics
of the mean-field equations are very involved. In order to uncover the dynamics of
such networks, we artificially consider that the solutions achieve a stationary vari-
ance Γα(σ) where σ is the multidimensional variable corresponding to the hetero-
geneity parameters (σαγ)(α,γ)∈{1···P}2 . Analyzing the dynamics of the average activity
as a function of these variables reduces to the analysis of a closed set of ordinary dif-
ferential equations:
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(d) σ = 3.5

Figure 6.6: Heterogeneity-induced oscillations in a two populations excitatory-
inhibitory network. (a) Bifurcation diagram of the system of ODEs (6.8) as a func-
tion of a presumably constant common value Γ(σ). LP: saddle-node bifurcation, H:
Hopf bifurcation, Sh: Saddle-homoclinic bifurcation, blue: fixed points (solid: stable,
dashed: unstable), magenta: limit cycles. (b)-(d): simulations of the heterogeneous
network with 2000 neurons per population, for increasing values of the heterogeneity
parameter σ displays a transition from stationary to periodic phase-locked behaviors,
and then to chaotic behavior. blue (resp. red): 30 arbitrary trajectories of population
1 (resp. 2), cyan (resp. magenta): average on all neurons of population 1 (resp. 2).
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µ̇α(t) =−
1

θα

µα(t)+
P

∑
β=1

J̄αβ fαβ (µβ (t),Γβ (σ))+ Iα(t) α = 1 . . .P (6.8)

Considering P = 2 populations, all sigmoids equal to erf(gx) =
∫ gx
−∞

e−y2/2/
√

2π dy (yield-
ing fαβ (x,v) = erf(gx/

√
1+g2v)), all time constants θα = 1, and the connectivity matrix,

inspired from the seminal article of Wilson and Cowan [245]:

J̄ =

(
15 −12
16 −5

)
.

These equations were studied as a function of the variance parameter Γα(σ) in [239]
and displayed transitions to oscillations through a homoclinic bifurcation as the vari-
ance increases, oscillations that disappeared through a Hopf bifurcation when that
parameter was further increased (see figure Fig. 6.6). Simulations of the network
equations show that this phenomenon persists in our case when the variance param-
eter is induced by heterogeneous connections. Considering all σαβ equal and denoting
σ the common value, we observe that for small heterogeneity parameter σ , the net-
work converges towards a stationary solution with non-zero mean. For intermediate
values of the heterogeneity, phase-locked perfectly periodic behaviors appear at the
network level, that disappear, as heterogeneity is further increased, through a SCS
phase transition yielding chaotic activity.

This phenomenon relates the level of heterogeneity to the presence of synchro-
nized oscillations in networks, an essential phenomenon, as we discuss in the conclu-
sion.

6.4 DISCUSSION

Our setting takes into account important features present in cortical networks:
interconnection delays, multiple populations with non-zero average synaptic connec-
tion. All these refinements allowed going deeper into the understanding of the dy-
namics of neuronal networks. In particular, we showed that delays can induce oscil-
lations in a one-population network modulated by the level of heterogeneity, and that
non-zero average connectivity yields non-trivial dynamics that were not present in
the original SCS model. Moreover, we showed that networks with multiple popula-
tions can show relative counter-intuitive phenomena such as the localization of chaos:
a few populations can have a chaotic behavior which is not transmitted to the other
populations, whatever the connection strength. Another phenomenon we illustrated
was the apparition of heterogeneity-induced oscillations, phenomenon first presented
in a very recent article [238]. As discussed, the latter phenomenon can be related
to experimental studies that showed that the cortex of developing rats subject to ab-
sence seizures (abnormal synchronization of some cortical areas) was characterized
by the same mean resting membrane potential, but an increased variance [13]. We
further showed here that such oscillations were facilitated by the presence of delays.
Let us eventually underline that the particular form of our system is not essential in
the apparition of such phenomena, and in [238], it is shown that the transition to syn-
chronized activity as a function of heterogeneity levels persists for realistic neuronal
networks made of excitable cells, the Fitzhugh-Nagumo model.
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An important observations is that in all the examples treated, the SCS phase tran-
sition to chaos is present as the heterogeneity is increased. This phenomenon seems
relatively universal in this kind of randomly coupled neuronal networks. This chap-
ter was restricted to the analysis of static random synaptic weights. As mentioned
in the introduction, precise analysis of the synaptic transmission reveals stochastic
variations of the synaptic efficacies that cannot be considered in the present frame-
work. The analysis of networks with stochastic synapses is the subject of the second
part of this paper.

The analysis of the present chapter underlines the fact that the structure of con-
nectivity maps is essential to the function of the networks, and illustrated the fact
that averaging effects do not cancel the structure into populations and allow serving
functions such as oscillations. However, actual brain connectivity maps are not recur-
rent, and can display different topologies, with different computational capabilities.
Moreover, our analysis did not take into account the plasticity mechanisms, resulting
in the slow evolution of the synaptic weights as a function of the activity of neurons,
which tends to correlate the synaptic weights to the voltage variables. Techniques to
rigorously address the dynamics of neuronal networks with non-recurrent connectiv-
ity, with specific topologies, or with correlated synaptic weights, are deep questions
that are still largely left unexplored, and we can expect that a wide range of novel
phenomena will arise from the analysis of such networks.



CHAPTER 7

STUDY OF THE RANDOM
KURAMOTO MODEL

7.1 INTRODUCTION

In South Asian forests, every night gives way to an astonishing phenomenon. Af-
ter sunset, when darkness has already well spread over the country, a few dim lights
coming from the trees and wild grasses begin to sparkle, each one at its own rhythm.
Slowly, more and more twinkling join this luminous performance until, all of a sud-
den, hundreds flashes of light reach a perfect unison.

It was a great surprise to scientists of the beginning of the twentieth century that
this uncommon spectacle was actually produced by fireflies. In fact, these insects are
capable of lighting their bulb, and instinctively adjust their flashing in order to re-
duce the delays they have with siblings. As puzzling as it may seems, many other
spontaneous examples of synchrony are to be found in nature, even involving nonliv-
ing entities. From Earth, achieving an entire rotation upon its axes in twenty four
hours, to humans naturally syncing their sleeping time on the disappearance of the
sun, our physical world is filled with such biological or physical temporal harmonies.

7.2 PRESENTATION OF THE MODEL

The Kuramoto model was first introduced by Yoshiki Kuramoto to describe the be-
havior of large assemblies of oscillators with heterogeneous natural frequencies [152,
153, 154, 247, 248]. It is now considered as the canonical model of coupled oscillators
(see the excellent reviews [2, 226, 227]). Its study provides insightful results in such
distinct domains as synchronization of pacemaker cells in the heart [189], synchro-
nization of fireflies flashes [39], arrays of lasers [144], power networks [88], rhythmic
applauses [181], and superconduction [244].

The Kuramoto consists of a large set of coupled nonlinear ODE in random envi-
ronment. Here is its original form as introduced by Kuramoto:

dθi

dt
(t) = ωi +

K
N

N

∑
j=1

sin(θ j−θi). (7.1)

153
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These equation describes N oscillators through there phase θi. As appears in the
model, it is convenient to work on the torus, by considering that θ = (θ1, . . . ,θN) ∈
[0,2π]N . In the classical model, the interactions are all-to-all, with same amplitude
K
N . This kind of interaction is generally called mean-field (remark that other models
with nearest neighbor interactions have also been studied [75, 210, 228]). The non-
linear entrainment term is calculated through a sine function. It has a tendency to
push the assembly towards synchronization. Furthermore, ωi denote the natural fre-
quency of oscillator i when it feels no interactions. The ωi are independent identically
distributed with density given by g(ω). This density is generally supposed centered,
as we can always make the change of variable θi→ θi−Ωt with Ω = E (ωi). Moreover,
g is also often assumed even and unimodal.

This quenched disorder is motivated by the fact that a group of manufactured
(metronomes, Josephson’s junctions) or biological (fireflies, runners, persons applaud-
ing etc.) oscillators is always composed by slightly distinct individuals with different
natural frequencies. For living individuals, this disparity might be important for the
survival of the species. Hence, the Kuramoto model is a disordered system. The
original question of Kuramoto was to understand in which extent synchronization
was possible in a system composed of many distinct oscillators. To answer this ques-
tion, he introduced a simple quantity describing the level of synchrony called order
parameter:

r(t)exp
{

iψ(t)
}

:=
1
N

N

∑
j=1

exp
{

iθ j(t)
}
. (7.2)

When r(t) ' 0, oscillators are well spread on the unit circle, so that the system
is near incoherence. In comparison, if r(t) ' 1, the phase of the oscillators are al-
most equal, so that the system is in coherence. Strikingly, in the limit of an infinite
number of oscillators, Kuramoto discovered a phase transition in the amplitude of
interactions. For t big enough, the system reaches a steady state in which exists a
critical value of this amplitude Kc ∈R+ such that:

• when K < Kc, the phases of the oscillators are uniformly distributed on [0,2π], a
state called incoherence. Moreover, this state is stable, and perturbations form
this equilibrium are subject to a Landau damping ([108, 229])

• when K > Kc, partially synchrony emerges in which part of the oscillators is
locked near the averaged phase ψ with θ̇i = 0, while the other part evolves out
of synchrony.

In this last phase, the locked oscillators are those whose natural frequency is
small enough in order to be attracted by the synchronized group. In fact, rewriting
equation (7.1) with the order parameter (7.2), we obtain:

dθi

dt
(t) = ωi +K Im

(
exp
{
− iθi(t)

} 1
N

N

∑
j=1

exp
{

iθ j(t)
})

= ωi +Kr(t)sin
(
ψ(t)−θi(t)

)
.

Hence, supposing that the order parameter has reached a steady state, θ̇i = 0
implies
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ωi = rK sin
(
θi−ψ

)
equation that can be satisfied only if |ωi| ≤ rK. Hence, in the partial synchrony
regime, the locked oscillators all have the same frequency, but their phase are locked
to slightly different positions distributed around the stationary averaged phase ψ,
and given by

θi = ψ + arcsin
( ωi

rK

)
.

In comparison, oscillators with large individual frequency ωi can never join this
group. Moreover, their velocity is subject to changes along time: they are all the more
rapid that their phase is near ψ. In the case of an even distribution of individual
frequency g(ω), the critical value of the interaction amplitude Kc was found to follow
the equation:

Kc =
2

πg(0)
.

Remark that this transition can also be seen to be dependent on the level of dis-
parity of individuals. In fact, assuming that the ωi are centered Gaussian variables
with variance µ2, and that K is fixed, one can see that exists a critical value of the
heterogeneity parameter µc governing the transition from partial synchrony to inco-
herence:

µc =
K
√

π

2
√

2
.

Despite the fact that important work that has been realized on the classical Ku-
ramoto model, the dynamics of the randomly coupled Kuramoto system in the scaling
considered in this thesis is still an open and debated issue [76, 77, 224, 225]. The re-
sults of chapter 5 provide a formal characterization of the limit, allowing to show how
disorder competes with deterministic connectivity for the emergence of synchrony. We
specifically apply these results to reveal how the disorder in the connections modifies
the macroscopic synchronization properties of the system. A trade-off between the
averaged connection amplitude and its fluctuations is quantitatively characterized
using numerical simulations, allowing to exhibit how the synchronization transition
is affected by the fluctuations of the interactions and intrinsic frequencies disorder of
the oscillators.

7.3 KURAMOTO MODEL IN NEUROSCIENCE

Applying some of our analysis developed for neural networks to the Kuramoto
model of coupled oscillators is not only anecdotal. Indeed, this model shares some
interesting links with neuroscience, as the brain has been shown to display oscil-
latory behaviors. In fact, besides the well-known Greek rhythms observed by EEG
recording, experimental studies have demonstrated that mammalian brain displayed
many oscillatory patterns in neural assemblies found in distinct regions such as the
olfactory, visual, and auditory cortex, the cerebellum and thalamus, as well as the ol-
factory bulb . Moreover, these patterns are also found in non-mammalian animals, as
the optic tectum of pigeon, or olfactory bulbs of insects behaved in the same fashion
[182].
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One pioneering experimental works in this filed is that of Gray, Singer, Eckhorn
and collaborators on the primary visual cortex of anesthetized cats [92, 123, 124].
Different electrodes were plugged to the animal’s brain, and the visual stimuli the
authors used were light bars traveling on a screen. They not only showed that stim-
uli induced synchronized oscillations of neurons within a cortical column, but also
that - when the animal was adequately stimulated - coherence was found for neigh-
boring hypercolumns (macrocolumns of the mammalian visual cortex), distant hyper-
columns (up to 7mm), but also remote hypercolumn located in two different region of
the cortex. These oscillatory responses were short-lasting (a few ms), with a fre-
quency ranging from 35 to 60 Hz, and both the bars orientation, direction, velocity
and position impacted the oscillations.

Because of this sensitivity to such characteristics, it was hypothesized in [123]
that this collaboration between nearby or far away assemblies of neurons might per-
mit to put into relation the different features of the presented stimulus. This would be
a possible solution to the binding problem, which could be formulated as follow: ”how
can the brain bind together all the features of one object, and segregate them from
those of another jointly perceived object?” [212, 217]. Under this hypothesis, also
named the labeling hypothesis [17], neuronal structures oscillating with the same
phase and/or frequency share the same label, and can be easily differentiated from
other labels presenting different kind of oscillations, thus resolving this associative
problem. Furthermore, other cognitive abilities such as memory, categorization, or
attention, may also involve coherent neural oscillations [182]. Moreover, mathemat-
ical models - involving oscillators model and neural networks - have been proposed,
that have accounted for several of these synchronization patterns [17, 128].

Ermentrout argued that Kuramoto model furnishes a useful framework to study
the synchrony observed throughout the nervous system. He emphasized the fact that
without stimulus, the natural observed patterns in the cortex are traveling waves. In
[97], he propose some possible computational benefits - unconcerned with the binding
effect - of these temporal patterns: while the waves could result in an better sensitiv-
ity to stimuli, oscillations might enhance synaptic plasticity. Moreover, in an analogy
between syncing cortical columns, and the coupled oscillators from the Kuramoto
model, Ermentrout argued that correlated noise could induce oscillations in cortical
areas, for macrocolumns computing the same feature of a stimulus [96].

7.4 APPLICATION OF OUR RESULTS TO THE RANDOM KU-
RAMOTO MODEL

We now apply the theoretical results obtain in chapter 5 to investigate the dynam-
ics of the randomly connected Kuramoto model. This system describes the phase of
one oscillator within its cycle, X i,N

t ∈ [0,2π), rotating at its own natural frequency ωi,
and constantly adjusting to the others phase through a simple sine function:

dX i,N
t =

(
ωi +

N

∑
j=1

Ji j sin(X i,N
t −X j,N

t )

)
dt +λdW i

t .

In recent years, important work was devoted to characterize the limits and fluc-
tuations of the system around the mean-field regime (low levels of fluctuations) [27,
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62, 63, 64, 118, 121, 136, 168, 174, 205].

The dynamics of the randomly connected Kuramoto model is much less under-
stood. This question was raised twenty years ago by physicists who showed, using
statistical physics methods and numerical simulations, a rich phenomenology [76,
77, 224, 225]. The model we studied here provides a mathematical approach to char-
acterize the averaged and quenched behavior of coupled oscillators with independent
non-centered random interactions with variance σ2/N.

In detail, the randomly interacting Kuramoto model corresponds to the case where
ω represents the intrinsic frequency of each oscillator, E (ω) = 0 (without loss of gen-
erality), E (ω2) = µ2, f (ω, t,x) = ω, and b(x,y) = sin(y−x), i.e. the dynamic of the finite-
size network reads:

dxi
t =
(

ωi +
N

∑
j=1

Ji j sin(x j
t − xi

t)
)

dt +λdW i
t , (7.3)

where the Ji js are independent, identically distributed Gaussian variables:

Ji j ∼N
( J̄

N
,
σ2

N

)
.

As proposed in the original work of Kuramoto [152], the dynamics can be well
understood by recasting the Kuramoto equation in a complex form and introducing
one complex variable, the order parameter. In the classical Kuramoto model (when
Ji j = J̄/N), the interaction term can indeed by expressed via a single complex variable
ZN(t) := 1

N ∑
N
j=1 eix j

t =: rN(t)eiψN(t) (the order parameter):

N

∑
j=1

J̄
N

sin(x j
t − xi

t) = J̄rN(t)sin(ψN(t)− xi
t). (7.4)

As appears in the above expression, all particles are attracted towards the argu-
ment of ZN with a strength proportional to its norm rN ∈ {z ∈C, |z| ≤ 1}. This last pa-
rameter provides a very convenient measure of the synchrony of the particles. From
the disorder in the interaction strength of the random Kuramoto model, the order
parameter ZN(t) is no more sufficient to describe the effect of other oscillators onto an
arbitrarily chosen oscillator. Actually, each oscillator feels a distinct effect of the net-
work which is due to the independence of the random connectivity coefficients. One
can thus no more reduce the dynamics to the one of a single complex variable. It is
convenient to introduce for each oscillator i its individuality parameter ZN,i(t), whose
definition is analogous to the one of the order parameter, but that incorporates the
unique way oscillator i interacts with the network:

ZN,i(t) :=
N

∑
j=1

(
Ji j−

J̄
N

)
eix j

t =: σ

N

∑
j=1

J̃i jeix j
t =: σρ

N
i (t)e

iφ N
i (t),

with J̃i j := 1
σ
(Ji j − J̄

N ) ∼ N
(
0, 1

N

)
are independent standard Gaussian variables. We

note that, in contrast to the modulus of the order parameter rN , the modulus of the
individuality parameter ρN

i may exceed 1.
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Figure 7.1: Trajectory of the order parameter in the complex plane, together with
the distributions of the real part and imaginary part of the depolarized individuality
parameters in a synchronized (top row) or desynchronized (bottom row) case. Param-
eters: N = 2500, σ = 1, µ = 1, simulated with dt = 0.01 over a period of T = 500. Top
row: J = 5, bottom row: J = 1.5. The statistics are taken over 30 independent real-
izations and across oscillators. The blue stars and curve correspond to the empirical
distribution obtained with the numerical simulations, and the red curve is the Gaus-
sian distribution with mean and variance evaluated on the same data. We observe
that the empirical distribution is indeed well described by a Gaussian variable.

With these two notations, it is easy to rewrite the dynamics of the random Ku-
ramoto model (7.3) in the following form:

dxi
t =
(

ωi + J̄rN(t)sin(ψN(t)− xi
t)+σρ

N
i (t)sin(φ N

i (t)− xi
t)
)

dt +λdW i
t . (7.5)

This microscopic equation reveals the interplay of coupling strength and disor-
der. The mean coupling strength has a synchronizing effect by driving all oscilla-
tors, through the order parameter ZN(t), to reach the phase ψN(t) with an intensity
rN(t)≤ 1. In contrast, whereas the disorder in the coupling strengths creates a similar
drive (individuality parameters (ZN,i(t))i=1···N attract oscillators (xi(t))i=1···N towards
the distinct phases (φ N

i (t))i=1···N with intensities (ρN
i (t))i=1···N), the heterogeneity of in-

dividuality parameters translates into a source of frustration for the synchronization
of the network. We further note that, as opposed to the common drive, these intensi-
ties are unbounded.

The theory does not provide the correlation between the parameters (ZN(t),(ZN,i(t))i=1···N),
but under the heuristic Boltzmann’s molecular chaos hypothesis, one may expect
the parameter ZN(t) to approach E

[
eix j

t
]
=: r̄(t)eiψ̄(t). If synchronization occurs, all

oscillators shall be polarized around a random phase ψ̄(t). Boltzmann’s molecular
chaos points towards the fact that the depolarized individuality parameters Z̃N,i(t) =
e−iψN(t)ZN,i(t) shall approach independent centered Gaussian variables. We confirmed
this intuition using numerical simulations in Figure 7.1 in a case where the oscilla-
tors do not synchronize and in a case where they do.

Based on this independence, we conclude that the two interaction terms of equa-
tion (7.5) play opposite roles of synchronization and desynchronization. We quanti-
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tatively study this competition using numerical simulations in section 7.4.2. Before
we proceed to this analysis, we start by comparing our limit equation with previous
works.

7.4.1 Comparison with previous results

The case treated previously in the physics literature corresponds either to σ = 0 for
the classical Kuramoto model, or to J̄ = 0 in the random one that extends to the case
where the Ji j may be dependent to the reciprocal connection J ji with a correlation η .
Using methods developed in the domain of the physical analysis of spin glasses, they
obtain for this latter setting a mean-field equation for the thermodynamic limit that
would write, in our notations, as:

dxt(ω) =
(

ω +σ Re(eixt(ω)
ζ (t))+ηR(t)

)
dt +λdWt (7.6)

where (Wt)t≥0 is a standard Brownian motion, ζ is a centered complex-valued Gaus-
sian process with covariance given by a self-consistent formula:{

E[ζ (t)ζ (t ′)] = K+(t, t ′) =E[eixt eixt′ ]

E[ζ (t)ζ ∗(t ′)] = K−(t, t ′) =E[e−ixt eixt′ ]

and R(t) is a term emerging from the symmetry of the interaction, made explicit
in [224], but whose complex expression is not given here since our techniques do not
allow to cover the case of partly symmetric interactions.

It is clear that the Kuramoto model enjoys the regularity hypotheses of the theo-
retical developments of the previous sections, in the case of independent non-symmetric
disorder of the connections. Theorems 5.2.2 and 5.2.3 ensures that the empirical mea-
sure satisfies a weak LDP and converges towards a unique law Q characterized by
Theorem 5.2.4. The object of this section is to derive more explicitly the limit of the
disordered Kuramoto system and to check the consistency with previously derived
limits.

The theory directly applies to the disordered Kuramoto equation (7.3). First of all,
a direct application of theorem (5.4.1) ensures that there exists a unique minimizer
Q to the associated good rate function. Furthermore, we know that this measure on
C ×D can be decomposed as dQ(x,ω) = dQω(x)dπ(ω) where Qω ∈M+

1 (C ) and Qω � Pω .
We will now provide a representation to this process as the solution of an implicit
stochastic differential equation similar to (7.6). To this purpose, we fix (eQ

j ) j∈N an
orthonormal basis of the real Hilbert space L2

Q(C ×D). We draw a sequence
(
J j
)

j∈N
of independent standard Gaussian

(
Ω̂,F̂ ,γ

)
-random variables with variance σ2, and

define the process (see (12)):

GQ
t (x) := ∑

j∈N
J j

∫
C×D

sin(yt − xt)e
µ

j (y,ω)dµ(y,ω). (7.7)

Theorem 7.4.1. Consider the random Kuramoto system (7.3) on the time interval
[0,T ] for any T < λ 2

2σ2 . We have the following convergence results

(i) Under QN , the law of each oscillator (xi
t)t≤T converges towards Q,
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(ii) Let X̄(ω) be the unique strong solution of the SDE restricted to the interval [0,T ]: dX̄t(ω) =
(

ω +mQ
(
t, X̄(ω)

)
+GQ

t
(
X̄(ω)

))
dt +λdWt

X̄0(ω)
L
=µ0(ω)

(7.8)

where (GQ
t )t≤T is given by (7.7) and mQ(t,xt) := J̄

λ

∫
C×D sin(yt−xt)dQ(y,ω ′) for x ∈ C

and t ∈ [0,T ]. Then, the law of (X̄t(ω))t≤T averaged over the realization of the
effective interactions GQ, is equal to Qω .

Proof. The convergence result (point 1.) is a direct consequence of Proposition (5.2.5).
In order to demonstrate point 2., we first need to show that there exists a unique
strong solution to equation (7.8). This is a simple result of the classical theory
of stochastic differential equations, once noted that mQ and GQ are γ-almost surely
Lipschitz-continuous in the variable x. Indeed, we have

sin(yt − xt)− sin(yt − zt) = sin(yt)
(

cos(xt)− cos(zt)
)
− cos(yt)

(
sin(xt)− sin(zt)

)
.

The conclusion follows from Girsanov’s theorem and the characterization of the solu-
tion (5.30).

In order to confront our result to the formula (7.6) given in [224], we remark that
GQ

t
(
X̄(ω)

)
can be written as the imaginary part of a complex process:

GQ
t
(
X̄(ω)

)
= ∑

j∈N
J j

∫
C×D

Im
(

ei(yt−X̄t(ω))
)

eQ
j (y,r

′)dQ(y,ω ′) = ∑
j∈N

Im
(

e−iX̄t(ω)J j

∫
C×D

eiyt eQ
j (y,ω

′)dQ(y,ω ′)
)

= Im

(
e−iX̄t(ω)

∑
j∈N

J j

∫
C×D

eiyt eQ
j (y,ω

′)dQ(y,ω ′)︸ ︷︷ ︸
=:ζ Q

t

)

where ζ
Q
t = aQ

t + ibQ
t is a well-defined non isotropic complex-valued process with cor-

related Gaussian imaginary and real parts:

aQ
t := ∑

j∈N
J j

∫
C×D

cos(yt)e
Q
j (y,ω

′)dQ(y,ω ′)∼N
(

0,σ2
∫

C×D
cos(yt)

2dQ(y,ω ′)
)

bQ
t := ∑

j∈N
J j

∫
C×D

sin(yt)e
Q
j (y,ω

′)dQ(y,ω ′)∼N
(

0,σ2
∫

C×D
sin(yt)

2dQ(y,ω ′)
)

E
[
aQ

t bQ
t
]
= σ

2
∫

C×D
cos(yt)sin(yt)dQ(y,ω ′).

Note that such processes with non isotropic distributions are not generally called
complex Gaussian processes. Nevertheless, the statistics are exactly those given
in [224]:

E
(

ζ
Q
t ζ

Q
s

)
=
∫

C×D
eiyt eiysdQ(y,ω ′), E

(
(ζ Q

t )∗ζ Q
s

)
=
∫

C×D
e−iyt eiysdQ(y,ω ′).

However, to the difference of the equation provided in [224], we find, in the centered
case J̄ = 0, an interaction term involving the imaginary part of the term e−ixt ζ

Q
t rather

than the real part of eixt ζ
Q
t . As explicit in the above calculations, the imaginary part
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directly comes from the sine nature of the interaction here, and we expect that the
same shall be true in [224].

When taking into account non-centered interactions, an additional term appears
in the limit equation. Interestingly, this mean term mQ(t, X̄t(ω)) can be written as
follow using the asymptotic order parameter

Z̄(t) :=
∫

C×D
eiyt dQ(y,ω ′) = r̄(t)eiψ̄(t),

mQ(t, X̄t(ω)) = J̄ Im
(

e−iX̄t(ω)Z̄(t)
)
= J̄r̄(t)sin(ψ̄(t)− X̄t(ω)).

Define now:
Ž(t) := ∑

j∈N
J j

∫
C×D

eiyt eQ
j (y,ω

′)dQ(y,ω ′) = ρ̄(t)eiφ̄(t).

Then, the general limit equation of the averaged network as the same law as the
solution of

dX̄t(ω) =
(

ω + J̄r̄(t)sin
(
ψ̄(t)− X̄t(ω)

)
+σρ̄(t)sin

(
φ̄(t)− X̄t(ω)

))
dt +λdWt (7.9)

averaged over γ. Observe that it can be directly compared to equation (7.5). In that
sense, Ž(t) provides an effective limit for the law of each individual order parameter
ZN,i(t) for which no classic limit theorem applies.

7.4.2 Numerical analysis of the phase transition

The classical Kuramoto model (Ji j =
J̄
N ,λ = 0) displays a celebrated phase transition

as a function of the coupling strength J̄: when J̄ is smaller than a certain critical value
J̄c, the system reaches a stable stationary state called incoherence. In this state, the
phase of the oscillators are uniformly distributed across all possible phases, so that
the order parameter tends towards 0 when N diverges. In contrast, when J̄ > J̄c, rN(t)
remains non trivial in the thermodynamic limit and a partially synchronized state
emerges locking all sufficiently slow oscillators at a common frequency. Moreover,
when the distribution of the heterogeneity parameters ωi ∈ D has an even density g,
the critical value can be expressed explicitly as J̄c =

2
πg(0) . In this section, we numeri-

cally investigate the effect of the heterogeneity parameter of the random connections
σ on this phase transition.

In order to illustrate this dependence, we characterize the dynamics of the dis-
ordered Kuramoto model with centered Gaussian natural frequencies N (0,µ2), cen-
tered standard Gaussian initial conditions for the particles. To isolate the role of
disorder, we consider similarly to the classical case a non-noisy network (λ = 0), for
which the large-deviation results do not hold. We performed extensive numerical
Monte-Carlo simulations to identify the possible transition from incoherence to par-
tial synchrony for varying σ and for µ ∈ {1,2}. The theory for σ = 0 predicts that
the transition occurs at the critical coupling value J̄c = 2µ

√
2
π

. For all values of σ

tested, we found a similar transition between incoherence and partial synchrony, but
the value of the critical coupling Jµ

c (σ) increases with both µ and σ (see Fig. 7.2). In
order to detect the transition, we have used the very different distributions of moduli
of ZN in the synchronized and incoherent regimes, owing to the fact that, in the inco-
herent phase, the order parameter fluctuates erratically around the origin, whereas
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Figure 7.2: Transition from incoherent to partially synchronized activity in the ran-
dom Kuramoto model. The curves have been obtained through extensive Monte-Carlo
simulations for N = 1500, total time T = 150 and timestep 0.01. We computed, for 20 in-
dependent realizations of the disorder, a critical transition value using a dichotomized
search. The transition curves are computed for μ = 1 and μ = 2: we observe the mono-
tonic shape of the transition curve as a function of σ , and the fact that the transition
occurs for strictly larger values of J̄ for μ = 2 compared to μ = 1.
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in the partially synchronized phase its modulus rN(t) accumulates at a specific posi-
tive value. Considering thus the distribution of the modulus of the order parameter
allows distinguishing between the trajectories that accumulate around the origin and
those being significantly peaked away from the origin.

The behavior of Jµ
c (σ) is consistent with the limit we have found, and is the expres-

sion of the competition between the entrainment of both ZN(t) and ZN,i(t) as appears
in equation (7.5).
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In this thesis, we have analyzed neural networks presenting different level of het-
erogeneity, and obtained limit theorem involving the convergence of the empirical
measure and propagation of chaos in the limit where the number of neurons tends to-
ward infinity. These models notably include nontrivial random synaptic connections
with variance scaling as the inverse of the number of neurons, case we have been
able to address through the establishment of large deviations principles. To this end,
we have generalized the large deviations approach developed in the context of spin
glasses by Gérard Ben Arous and Alice Guionnet [22, 129] to the case of nonlinear
interactions. Moreover, we have also further their results to incorporate: (i) non-
centered synaptic weights [51, 52, 53], introducing additional deterministic terms
in the coupling, (ii) transportation delays [51, 52], which projects the problem into
infinite dimensions, (iii) several populations, which was handled showing that empir-
ical measures on each populations simultaneously satisfy a large deviation principle
[51], (iv) spatial extension, which we addressed by considering a two layered em-
pirical measure [52, 53], (v) spatial dependence of transportation delays as well as
mean and variance of interactions [52] bringing some complex dependence between
time and space, (vi) non-Gaussian interactions with sub-Gaussian tails for which we
revisited previous work developed in discrete time [178], and (vii) bi-dependent inter-
actions [53] that we achieved through the use of sophisticated tools from Probability
theory. To these ends, we have proved large deviations principle, exhibited and stud-
ied the associated good rate functions, and characterized their minima that we have
shown to be unique. The proof proceeds by using a combination of Sanov’s theorem
and to extend Varadhan’s lemma to a functional that does not directly satisfies the
canonical assumptions. The limit of the system is a complex non-Markovian process
whose dynamics is relatively hard to understand in the general case. The model we
have worked with, the Wilson and Cowan system, is very popular in physics and
neuroscience and is close of the famous Hopfield model, but as mentioned, can be
easily generalized to nonlinear neuron models. Indeed, most of the proofs deal with
a quantity which is related to the density of the coupled network with respect to the
uncoupled dynamics, and this quantity is independent of the dynamics of individual
cells. Eventually, let us note that this result provides large-deviations estimates on
the convergence of deterministically coupled networks as studied in [239].

For the neuroscience viewpoint, this thesis has the interest to justify an approach
introduced in the seminal paper of Sompolinsky and collaborators [221] and widely
used in the analysis of large-scale networks. Let us mention that this approach is
also implicit in the study of neural fields. Important, while many of the previous
contribution was done in discrete time, our results holds in continuous time setting,
resolving a long-standing problem in neuroscience. Moreover, extending the scope
of firing-rate models, we addressed biologically relevant synapses depending on both
the presynaptic and postsynaptic neurons. Furthermore, the limit equation we ob-
tained fully takes into account various microscopic features such as the noise inten-
sity, the mean and variance of synaptic connections, and delays that was notably
lacking some mean-field descriptions of neural networks. Under the choice of Gaus-
sian initial conditions and linear intrinsic dynamics, he have been able - through
bifurcation diagram - to uncover interesting qualitative effect that was not known
in the literature. These notably include mean driven pitch-fork bifurcation leading
to stable up-and-down states, as well as heterogeneity-induced oscillations that may
account for the results of Aradi and colleagues showing that increased heterogeneity
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was related with epilepsy.

Applying this formalism, we gained insights on the role of connectivity disorder
for random oscillators in the Kuramoto model. Our approach therefore justified in a
mathematically rigorous way some results from the physics literature [76, 77, 224,
225], only in the case of non-symmetric connectivity coefficients, but in a slightly
more general setting. This has led us to uncover the dependence of the synchroniza-
tion transition in the disorder level. A number of results in the physics literature are
not covered by the present analysis. These include the case of non-noisy oscillators,
or of interacting oscillations with correlated or anti-correlated reciprocal interactions
(i.e., symmetric or asymmetric connectivity matrices respectively). The refined large
deviations techniques developed by Ben Arous and Guionnet in [23, 129] may provide
a way to address these results. We have evidenced numerically a number of transi-
tions due to disorder in the noiseless Kuramoto model.

However, the limits obtained are valid only in the presence of noise, since Gir-
sanov’s theorem is used to relate the dynamics of the coupled system to the uncoupled
system. The limit of randomly connected systems in the absence of noise is a complex
issue with numerous applications, and very little work have been done on this topic.
One outstanding contribution that addresses a similar question is the work of Ben
Arous, Dembo and Guionnet for spherical spin glass [14]. In that work, the authors
characterize the thermodynamic limit of this system and analyze its long term behav-
ior, providing a mathematical approach for aging. This approach uses the rotational
symmetry of the Hamiltonian allowing, by a change of orthogonal basis, to rely on
results on the eigenvalues of the coupling matrix. A similar approach seems unlikely
to readily extend to the setting of the present manuscript.

From the mathematical viewpoint, it shall not be hard to combine the methods
of the present article to those in [52, 53] and the specific methods developed here
to extend the present results to spatially-dependent interactions with space depen-
dent delays and bi-dependent synapses. Moreover, we expect that the limit obtained
is universal with respect to the distribution of the connectivity coefficient as soon as
their tails have a sufficiently fast decay, as demonstrated for a discrete-time neuronal
network in [179] and for coefficients with spatial dependence in [52]. In addition, the
results shall hold in cases where the intrinsic dynamics is not Lipschitz-continuous
as soon as sufficient non-explosion estimates are obtained on the solutions of the un-
coupled system, as was the case in [15, 129]. We however mention that in this case,
the original fixed-point method developed in the present article to prove existence
and uniqueness of solutions to the mean-field equations are no more valid and ade-
quate methods needs to be used as the ones presented in [15, 129]. Furthermore, it
preforming the study of the fluctuations of the convergence of the empirical measure
by establishing a Central Limit Theorem is to be done. This kind of question was for
example addressed in a similar simpler setting [74], using methods originally intro-
duced by Bolthausen, and that consists in showing strict positivity and finiteness of
the curvature of the good rate function at its unique minimum. From the dynamical
point of view, it would also be very interesting to to confront our limit equations ob-
tained in [52] with the phenomenology of heterogeneous neural fields, relying on the
same approach as in 6. In fact, for the same choice of Gaussian initial conditions and
linear dynamics, solutions are still Gaussian so that their study might provide many
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interesting insights.
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CHAPTER 8

GENERALITIES

8.1 A FEW CLASSICAL THEOREMS FROM PROBABILITY THE-
ORY.

Theorem 8.1.1 (PortManteau). The following properties are equivalent:

(i) PN
L→ P,

(ii) for every closed set F ⊂ Σ, limsupN PN(F)≤ P(F),

(iii) for every open set O⊂ Σ, P(O)≤ liminfN PN(O),

(iv) for every A⊂ Σ with P(∂A) = 0, limN PN(A) = P(A),

(v) for every bounded Lipschitz-continuous function f : Σ→R,
∫

Σ
f (x)dPn(x)→

∫
Σ

f (x)dP(x)

Theorem 8.1.2 (Girsanov). Let
(
Ω,F ,(Ft),P

)
be a filtered probability space, and

let (Lt , t ≥ 0) a continuous martingale such that L0 = 0. Let D := E(L), and suppose
E(D∞) = 1. Let Q be the probability measure on (Ω,F ) defined by Q := D∞ ·P. Then, for
every P-continuous local martingale M, the process M−〈M,L〉 is a Q-continuous local
martingale.

8.2 GAUSSIAN CALCULUS

Definition 8.2.1 (Gaussian variables). Let X be a random real number with E
[
X
]
=

m, Var(X) = σ2 ∈R. It is Gaussian iff

E
[

exp{tX}
]
= exp

{ t2σ2

2
+ tm

}
∀t ∈C.

Proposition 8.2.1 (Gaussian tail). Let X ∼N (0,1). Then for any x > 0,

1√
2π

(1
x
− 1

x3

)
e−

x2
2 ≤P(X > x)≤ 1√

2π

1
x

e−
x2
2 .
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Proof.

P(X > x) =
∫

∞

x

1√
2π

e−
u2
2 du≤ 1

x
√

2π

∫
∞

x
ue−

u2
2 du =

1√
2π

1
x

e−
x2
2 ,

=
∫

∞

x

u
u

1√
2π

e−
u2
2 du IPP

=

[
− 1

u
√

2π
e−

u2
2

]∞

x
−
∫

∞

x

1
u2
√

2π
e−

u2
2 du

≥ 1
x
√

2π
e−

x2
2 − 1

x3
√

2π

∫
∞

x
ue−

u2
2 du.

Proposition 8.2.2. Let ζ ∼N (µ,σ2) with σ < 1,µ ∈R. Then

E

[
exp
{1

2
ζ

2
}]

=
1√

1−σ2
exp
{

µ2

2(1−σ2)

}
= exp

{1
2

(
µ2

1−σ2 − log(1−σ
2)
)}

. (8.1)

Proposition 8.2.3. For any t ∈R+,

E

[
e
{

t
∣∣N (µ,σ2)

∣∣}]≤ et|µ|+ t2σ2
2
(
1+O(tσ)

)
Proof.

E

[
e
∣∣N (0,σ2)

∣∣]
= 2

∫ +∞

0

ex− x2

2σ2

√
2πσ2

dx = 2e
σ2
2

∫ +∞

0

e−
(x−σ2)2

2σ2

√
2πσ2

dx = e
σ2
2

(
1+

∫
σ2

−σ2

e−
x2

2σ2

√
2πσ2

dx
)

= e
σ2
2
(
1+O(σ)

)

Definition 8.2.2 (Gaussian vector). A random vector X =
(
X1, . . . ,Xk

)
is called Gaus-

sian if for every a ∈Rk, the random variable 〈X ,a〉 is Gaussian.

Definition 8.2.3 (Gaussian field, function). (i) A Gaussian process (field, function)
indexed by a set T is a collection of random variables (Xt)t∈T such that for any
t1, . . . , tk ∈ T , the random vector

(
Xt1 , . . . ,Xtk

)
is Gaussian.

(ii) If X has value in RN , it is degenerate in t ∈ T if Var(X(t)) /∈ GLN(R).

Definition 8.2.4 (Ck random processes). Let (Xt)t∈U be a random process on U ⊂
R

N ,N > 0. It is a Ck random process if exists Ω0 ⊂ Ω of probability 1, and such that
∀ω ∈Ω0, t→ Xt(ω) is a Ck function.

Theorem 8.2.4. (Isserlis) Let n ∈ N∗ and (X1, . . . ,X2n) be a centered Gaussian vector.
Then

E

[
X1X2 . . .X2n

]
= ∑

E∈Pn

n

∏
i=1
E

[
∏
k∈Ei

Xk

]
where Pn denote the set of partitions of [[1,2n]] made of n pairs:

Pn :=
{

E =
{

E1, . . . ,En
} ∣∣ n⋃

i=1

Ei = [[1,2n]], ∀1≤ i 6= j ≤ n,Ei∩E j = /0 Card(Ei) = 2
}
.
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8.3 STOCHASTIC FUBINI THEOREM

This subsection is devoted to give, in the most compact way, sufficient conditions
in order to apply a Stochastic Fubini Theorem. It is inspired of [194]. We will restrict
our scope to stochastic processes on a finite time horizon [0,T ] with T > 0, on a a fil-
tered probability space

(
Ω,F ,(Ft)0≤t≤T ,P

)
. The filtration (Ft)0≤t≤T will be assumed

continuous, and satisfy the usual conditions. L will denote the space of adapted con-
tinuous processes, and P the predictable σ -algebra onR+×Ω defined as the smallest
σ -algebra such that every element of L is measurable:

P := σ
{

H : H ∈ L
}
.

E will denote the expectation over P. Moreover, we will consider another proba-
bility space

(
Ω̂,F̂ ,γ

)
that will account for the second argument on which to integrate

(note that γ needs only to be a finite measure on
(
Ω̂,F̂

)
)

Definition 8.3.1 (Stopping-times). A random variable τ : Ω→ [0,∞] is a stopping time
if the event {T ≤ t} ∈Ft , for every 0≤ t ≤ ∞.

Definition 8.3.2 (Martingale). A real-valued, adapted process X = (Xt)0≤t≤∞ is called
a martingale (resp. supermartingale, submartingale) with respect to the filtration F
if

(i) E
[
|Xt |
]
< ∞.

(ii) if s≤ t, then E
[
Xt |Fs

]
= Xs a.s. (resp.E

[
Xt |Fs

]
≤ Xs, reps. E

[
Xt |Fs

]
≥ Xs).

Note that martingales are only defined on [0,∞[; that is, for finite t and not t = ∞. It is
often possible to extend the definition to t = ∞.

Definition 8.3.3 (Local Martingale). An adapted continuous process X is a local mar-
tingale if there exists a sequence of increasing stopping times, Tn, with limn→∞ Tn = ∞

a.s. such that Xt∧Tn1Tn>0 is a uniformly integrable martingale for each n. Such a se-
quence (Tn) of stopping times is called a fundamental sequence.

Definition 8.3.4 (FV processes). Let A = (At)t≥0 be a continuous process. A is a con-
tinuous increasing process if the paths of A : t → At(ω) are non-decreasing for almost
all ω. A is called a continuous finite variation process (FV) if almost all of the paths
of A are of finite variation on each compact interval of R+.

Definition 8.3.5 (semimartingale, special semimartingale). A continuous process X
is a (continuous) semimartingale if it can be written

X = N +A (8.2)

with N a continuous local martingale, and A a continuous adapted FV process. Equa-
tion (8.2) is called the canonical decomposition of X . Moreover, if A is predictable,
them X is a special semimartingale.

Definition 8.3.6 (Quadratic variation of a semimartingale). Let X be a continuous
semimartingale. Its quadratic variation is defined by

〈X〉= X2−2
∫

XdX .
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Definition 8.3.7. Let X be a semimartingale with canonical decomposition X = N+A.
The H 2-norm of X is defined as:

‖X‖H 2 :=E
[
〈N〉T

] 1
2 +E

[(∫ T

0
|dAs|dt

)2] 1
2

.

Moreover, the space H 2 consists of every special semimartingale with finite H 2-
norm. It is a Banach space.

Definition 8.3.8. Let a semimartingale X ∈H 2 with canonical decomposition X =
N +A, and a predictable process H ∈P. We say that H is

(
H 2,X

)
-integrable if and

only if

E

[∫ T

0
H2

s d〈N〉s
]
+E

[(∫ T

0
|Ht ||dAs|

)2]
<+∞.

Moreover, for a general semimartingale (not necessarily in H 2), we will say that
H ∈ L(X), or that H is X integrable if exists an increasing sequence of stopping times
(Tn)n∈N such that:

(i) Tn↗+∞ P-a.s.

(ii) ∀n≥ 1, XTn ∈H 2 and H is
(
H 2,XTn

)
-integrable.

The following results can be found in [194, IV.63-65]. Let X be a semimartingale
with X0 = 0 P-a.s., and

H :=
{

Ω× [0,T ]× Ω̂ →R

(ω, t, ω̂) → H(ω, t, ω̂)

be a F̂ ⊗P measurable map.

Theorem 8.3.1. Suppose that, for every ω̂ ∈ Ω̂, H(·, ·, ω̂) ∈ L(X). Then, there exists a
F̂ ⊗B

(
[0,T ]

)
⊗F -measurable function

Z :=
{

Ω× [0,T ]× Ω̂ →R

(ω, t, ω̂) → Z(ω, t, ω̂)

such that, for every ω̂ ∈ Ω̂,
(
Z(ω, t, ω̂)

)
0≤t≤T is a continuous version of

(∫ t
0 H(ω,s, ω̂)ds

)
0≤t≤T

.

Theorem 8.3.2. Stochastic Fubini Theorem Assume that(∫
Ω̂

H(ω, t, ω̂)2dγ(ω̂)

) 1
2

∈ L1(X).

Letting (ω, t, ω̂)→ Z(ω, t, ω̂) be as in the previous theorem. Then(
Yt(ω) :=

∫
Ω̂

Z(ω, t, ω̂)dγ(ω̂)

)
0≤t≤T

exists and is a continuous version (that is an indistinguishable process) of(∫ t

0

∫
Ω̂

H(ω, t, ω̂)dγ(ω̂)dXs(ω)

)
0≤t≤T

.



CHAPTER 9

LARGE DEVIATIONS

For their applications to interacting particles system, large deviations play a key role
in this manuscript. They will constitute our main tool to derive mean-field equations
for the dynamics of randomly connected neural networks, as they can contain a Law
of Large Number (LLN). One notable advantages of large deviations is that they ad-
dress dependent sequences of random variables much more readily than the Central
Limit Theorem do. Large deviations have been the object of numerous previous com-
pilations from which we will often borrow. Among these, notably appears a short
monograph by Franck Den Hollander [85] that very clearly gives the quintessence of
what large deviations are, the very complete book of A. Dembo and O. Zeitouni [84]
that addresses all the most difficult and abstract results on the topic, and also the
elegant book of Deuschel and Stroock [86].

Large deviations focus on the study of rare events. They furnish a set of use-
ful tools to analyze the probability of these events, generally by establishing a large
deviation principles (LDP). The framework for LDPs implies that we work on a mea-
surable space (Σ,B), where Σ is assumed to be topological, so that the open and closed
sets that generates the Borel σ -field B are well-defined. For convenience, we will here
restrict this short introduction to Polish spaces only, and refer to [84, 86] for broader
results. The LDP characterizes the limiting behavior of a family of probability mea-
sures (PN)N∈N defined on (Σ,B). It provides exponential asymptotic estimates for the
probabilities of Borel sets PN(Γ), Γ ∈B by bounding these quantities from above and
below using a rate function. We will use the following notation s: if Γ⊂ Σ, Γ̄,

◦
Γ and Γc

will respectively denote its closure, interior and complement.

9.1 PRELIMINARIES

Let (Xi)i∈N∗ be a sequence of i.i.d real integrable random variables with µ :=E
[
X1
]
.

Large deviations theory is typically interested in the asymptotic behavior of events
of the type

{
SN ≥ aN

}
, where SN := ∑

N
i=1 Xi, and a ∈ R. When a > µ, this event can

be understood as an excursion - or deviation - of the random walk SN from its mean
behavior µN. While the intuitive rarity of such excursions is a simple consequence of
the Strong Law of Large Numbers (SLLN):

P
(
SN ≥ aN

)
=P

(SN−µN
N

≥ (a−µ)
)
→N 0, (9.1)

large deviations theory goes further by finely estimating the speed of this conver-
gence. We insist on the fact that the size of the deviation - N - is of importance here.
Indeed, provided that σ2 := Var(X1) < +∞, the Central Limit Theorem ensures that

177



178 CHAPTER 9. LARGE DEVIATIONS

deviations of order
√

N are typical events:

P

(SN−µN√
N

≥ (a−µ)
)
→N P

(
N
(
0,σ2)≥ a−µ

)
6= 0.

This simple fact justifies the name of the theory: deviations of order N are called
”large” as opposed to normal ones, of order

√
N, usually referred to as fluctuations.

Let us build on CLT to estimate P
(
SN ≥ aN

)
. For large N, a non-rigorous calculus

gives

P
(
SN ≥ aN

)
=P

(SN−µN√
N

≥
√

N(a−µ)
)

'P
(
N
(
0,σ2)≥√N(a−µ)

)
∼N

σ

(a−µ)
√

N
e−

N(a−µ)2

2σ2 , (9.2)

where the equivalence arises from Proposition (8.2.1). This suggests an exponential
speed of convergence for (9.1), with rate H(a) := (a−µ)2

2σ2 depending on a. While this

heuristic is erroneous - the rate H(a) will not be given by (a−µ)2

2σ2 in general - it will
appear in the theory that this exponential decreasing is generally valid as we will
find:

P
(
SN ≥ aN

)
∼ cN(a)e−NH(a) (9.3)

for some ”rate function” H :R→ [0,+∞], and with 1
N log(cN(a))→N 0. 1

To give us a more solid insight of this fact, let us assume that X1 admits an expo-
nential moment:

∃t ∈R∗, E
[
etX1
]
< ∞,

and define the logarithmic moment generating function of X1,

∀t ∈R, φ(t) := logE
[
etX1
] Jensen
∈ ]−∞,+∞].

Then, an exponential Chebyshev’s inequality ensures that, for any t ∈ Dφ :=
{

t ∈
R,φ(t)< ∞

}
,

P
(
SN ≥ aN

)
≤ e−aNt

E
[
etX1
]N

= e−N(at−φ(t)),

so that
P
(
SN ≥ aN

)
≤ exp

(
−N sup

t∈Dφ

{
at−φ(t)

})
.

From this inequality it appears that the rate function H depends on L (X1), and
will thus not be given by H(a) = (a−µ)2

2σ2 in general 2. For the case of i.i.d. random vari-
ables, H will turn out to precisely be given by H(a) := supt∈Dφ

{
at−φ(t)

}
, also known

as the Legendre transform of φ . This result is the consequence of the paradigmatic
Cramér’s Theorem (9.3.1), which will constitute our first step into large deviations
theory. It will extend to much more abstract settings. Before entering the theory, we
will first give a few useful preliminary results and definitions, among which particu-
larly appears the Legendre transform that will ubiquitous in the theory.

1In their introduction [86] Deuschel and Stroock precisely define Large Deviations Theory as focusing
on the study of ”rare events” with exponential decay as in (9.3).

2Take for example X1
L
= log

(
ξ 2p), with p ∈R∗+, and ξ ∼N (0,1). In this case, φ(t) = logE

[
ξ 2pt] so that

Dφ =R, and for p small enough supt∈R
{

at−φ(t)
}
>

(a−µ)2

2σ 2 by the Dominated Convergence Theorem.
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9.2 PRELIMINARY RESULTS, AND LEGENDRE TRANSFORM

This section is devoted to introduce some essential notions of probability, continu-
ity and geometry, as well as proving a few results on which we will often rely. We will
insist on the chief properties of the Legendre transform, and prove a version of the
duality Fenchel-Legendre. Let us begin with a weak notion of continuity:

Definition 9.2.1. Let Σ be a topological space, and f : Σ→ R̄. Then f is lower semi-
continuous on Σ iff one of the following conditions is verified:

(i) ∀x ∈ Σ, ∀ε ≥ 0,∃U ∈ V (x),∀y ∈U, f (y)≥ f (x)− ε,

(ii) ∀x ∈ Σ, liminfy→x f (y)≥ f (x),

(iii) ∀M ∈R,
{

x ∈ Σ, f (x)≤M
}

is closed.

Moreover, f is upper semi-continuous iff − f is lower semi-continuous.

It is very easy to see why the three conditions are equivalent. While 1. =⇒ 2. =⇒
3. trivially holds, 3. =⇒ 1. amounts at choosing x ∈ Σ and ε > 0, setting M = f (x)− ε,
and remarking that x ∈ { f ≤ M}c which is open. With words, this definition basi-
cally means that the graph of a lower (upper resp.) semi-continuous function must
satisfy this simple requirement: at a discontinuity the function remains below the
points nearby (above resp.). Of course, this picture has its limits, as the notion exists
for very abstract Σ. A consequence of having closed level sets is that lower semi-
continuous function are measurable with respect to the Borel σ -field. In fact, the
family

(
]a,+∞]

)
a∈R forms a π-system that generates the Borel σ -field on R̄, and

f−1(]a,+∞]) = f−1(R̄\[−∞,a]) = f−1(R̄)\ f−1([−∞,a]) = f−1([−∞,a])c,

which is an open set of Σ.
Along with convexity, lower semi-continuity is stable by taking the supremum

over an uncountable family:

Proposition 9.2.1. (i) If
(
gα

)
α∈I is a family of convex functions from R to R̄, then

t→ supα gα(t) is convex from R to R̄.

(ii) If
(
gα

)
α∈I is a family of lower semi-continuous function from R to R̄, then t →

supα gα(t) is lower semi-continuous from R to R̄.

Proof. 1. For any α ∈ I, θ ∈ [0,1], and (x,y) ∈R2, one has gα(θx+(1−θ)y) ≤ θgα(x)+
(1−θ)gα(y), so that

sup
α

{
gα(θx+(1−θ)y)

}
≤ sup

α

{
θgα(x)+(1−θ)gα(y)

}
≤ θ sup

α

{
gα(x)

}
+(1−θ)sup

α

{
gα(y)

}
.

2. Let a ∈ R̄, and remark that(
sup
α∈I

gα

)−1(
[−∞,a]

)
=
⋂
α∈I

g−1
α

(
[−∞,a]

)
is a closed set.
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An interesting remark to link these two notions, is that a convex function f could
be modified into a lower semi-continuous map only by changing its values at the edge
of its domain of definition D f :=

{
x ∈ Σ, f (x) < ∞

}
. We now introduce the Legendre

transform for the simple case of real functions.

Definition 9.2.2 (Legendre transform). Let f :R→ R̄. When it exists, its Legendre
transform is the function f ∗ :R→ R̄ defined by

f ∗(z) := sup
t∈R

{
zt− f (t)

}
.

Applying Proposition (9.2.1) on the family of convex and continuous functions z→
zt− f (t), t ∈R, one immediately sees that the Legendre transform f ∗ :R→ R̄ is convex
and lower semi-continuous. To give us an idea of how the graph of f ∗ is connected
with the one of f , let us prove this elementary proposition containing a first easy
version of the Fenchel-Legendre duality.

Proposition 9.2.2. Let f :R→ R̄ be strictly convex and C 2 on the interior of D f :={
t ∈R, f (t)< ∞

}
. Then

(i) If f satisfies the steepness condition limt→∂D f | f ′(t)|=+∞, then f ∗ is strictly con-
vex and C 2 on R.

(ii) If D f = R, then f ∗ is strictly convex and C 2 on
◦

D f ∗ and satisfies the steepness
condition:

lim
t→∂D f∗

| f ∗′(t)|=+∞.

(iii) In both cases f ∗∗ = f .

Proof. 1-2. In both cases, the strict monotony of f ′ on
◦

D f implies that it is in bijection
from

◦
D f to f ′(

◦
D f ). Let ψ := f ′−1 : f ′(

◦
D f )→

◦
D f . Then, as f is strictly convex and C 2

on
◦

D f , f (2) is strictly positive, and ψ is a C 1 strictly increasing function. Moreover,
by taking the derivative of t→ zt− f (t), we find that for any z ∈ f ′(

◦
D f ), f ∗(z) = zψ(z)−

f (ψ(z)) < ∞. In particular f ∗ is C 1 on f ′(
◦

D f ) ⊂
◦

D f ∗ , with derivative f ∗′(z) = zψ ′(z)+
ψ(z)− f ′(ψ(z))ψ ′(z) = ψ(z), so that f ∗ is also strictly convex and C 2 on f ′(

◦
D f ) with

f ′−1 = f ∗′. Point 1. is proved by remarking that the steepness condition implies
f ′(

◦
D f ) =R. For the second point, recall that D f =R and suppose that f ′(

◦
D f ) 6=R, as

there is nothing to prove otherwise. Then, remark that ∀z /∈ f ′(R), zt− f (t) becomes
arbitrarily large for t going either to − or +∞, so that

◦
D f ∗ = f ′(

◦
D f ).

3. Remark that if f satisfies conditions 1. (resp 2.), then f ∗ satisfies condition 2.
(resp 1.), so that we can properly define f ∗∗ which is strictly convex and C 2 on

◦
D f ∗∗ .

Moreover, if f is steep, then D f ∗ =R and
◦

D f ∗∗ = f ∗′(R) =ψ(R) = f ′−1(R) =
◦

D f , whereas
if D f =R, then f ∗ is steep and D f ∗∗ =R. Hence, in both cases ∀t ∈

◦
D f ∗∗ =

◦
D f :

f ∗∗(t) = t f ′(t)− f ∗( f ′(t)) = t f ′(t)−
(

f ′(t)ψ
(

f ′(t)
)︸ ︷︷ ︸

=t

− f
(
ψ( f ′(t))

))
= f (t).

As the scope of large deviations will extend well beyond the case of real random
variables, we mention without proof the much more abstract Fenchel-Legendre dual-
ity result [86, Theorem 2.2.15]:
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Theorem 9.2.3 (Fenchel-Legendre Duality). Let X be a Hausdorff real topological
vector space, let X∗ be its dual, and let f : X →]−∞,∞] be convex and lower semi-
continuous. If f is not identically equal to +∞, then the function

g :=
{

X∗ → [−∞,+∞]
x → supt∈X

{
X∗〈x, t〉X − f (t)

}
is never −∞ and satisfies f (t) = supx∈X∗

{
X∗〈x, t〉X − g(x)

}
, where X∗〈·, ·〉X denote the du-

ality bracket.

We now introduce an important notion from probability theory:

Definition 9.2.3. Let Σ be a Polish space, and let B be its Boral σ -field. A family of
probability measures (PN)N∈N on (Σ,B) is said to be tight (resp. exponentially tight)
if for every 0 < M <+∞ there exists a compact set KM ⊂ Σ such that:

limsup
N→+∞

PN
(
Kc

M
)
≤ 1

M
,

respectively

limsup
N→+∞

1
N

logPN
(
Kc

M
)
<−M.

Remark 15. On a Polish space, Ulam’s Theorem allows one to change limsupN into
∀N ∈N.

For a family of measures, to be tight (resp. exponentially tight) means that the
probability mass that is not on compact sets decrease fast (resp. exponentially fast)
when N goes to infinity. Hence, the most of the mass remains trapped on compact
sets, and can’t escape toward infinity.

The following lemma will also be very useful for the theory.

Lemma 9.2.4. Let k∈N∗ sequences of strictly positive real numbers
(
a(1)N

)
N∈N,

(
a(2)N

)
N∈N,

. . .,
(
a(k)N

)
N∈N. Then

lim
N

1
N

log
( k

∑
l=1

a(l)N

)
− 1

N
max
1≤l≤k

log
(
a(l)N

)
= 0.

Proof. It suffices to remark that max1≤l≤k a(l)N ≤ ∑
k
l=1 a(l)N ≤ k max1≤l≤k a(l)N .

Remark 16. Remark in particular that

limsup
N

1
N

log
( k

∑
l=1

a(l)N

)
= max

1≤l≤k

{
limsup

N

1
N

log
(
a(l)N

)}
,

and

liminf
N

1
N

log
( k

∑
l=1

a(l)N

)
= max

1≤l≤k

{
liminf

N

1
N

log
(
a(l)N

)}
.

These inequalities will be particularly useful as large deviations theory makes a
great use of liminf and limsup.
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9.3 CRAMÉR’S THEOREM

Let us now state and prove the Cramér’s Theorem. While dealing with very simple
settings - that of i.i.d. sequences of real random variables - this theorem condenses
all the essential ingredients of Large Deviations, making it particularly appropriate
to gain some insights on the theory.

Theorem 9.3.1 (Cramér’s Theorem). Let
(
Xi
)

i∈N be an i.i.d. sequence of real random
variables such that

∀t ∈R, φ(t) := log
(
E

[
exp
{

tX1
}])

<+∞,

and let µ :=E
[
X1
]
. Then

(i) for every a > µ, limN→∞
1
N logP

(
SN ≥ aN

)
=−H(a),

(ii) for every a < µ, limN→∞
1
N logP

(
SN ≤ aN

)
=−H(a),

where H(z) := supt∈R
{

zt−φ(t)
}

is the Legendre transform of φ .

Remark 17. Observe that the case a = µ is absent of the theorem, as it does not
constitute an analysis of the large deviations of SN . Indeed, as X1 admits exponential
moments, we can rely on the CLT to obtain:

P
(
SN ≥ µN

)
=P

( 1√
N

N

∑
i=1

(
Xi−µ

)
≥ 0
)
→N→∞

1
2
.

In particular

lim
N→∞

1
N

logP
(
SN ≥ µN

)
= 0, (9.4)

suggesting H(µ) = 0. Moreover, following the idea of Proposition (9.2.2), the condition
Dφ :=

{
t ∈R,φ(t)< ∞

}
=R can been weakened in 0 ∈

◦
Dφ and limt→∂Dφ

|φ ′(t)|= ∞, with-
out having to change the proof too dramatically.

Let us, under the weaker assumptions of this remark, establish a few properties
on the logarithmic moment generating function φ and its Legendre transform H be-
fore turning to the proof of the theorem.

Proposition 9.3.2. Let Dφ :=
{

t ∈ R, φ(t) < ∞
}
⊂ R, DH :=

{
z ∈ R, H(z) < ∞

}
and

suppose that 0 ∈
◦

Dφ . Then

(i) φ is convex on R, C ∞ on
◦

Dφ , and satisfies φ(0) = 0, φ ′(0) = µ, φ (2)(0) = Var(X1).
Moreover, φ is strictly convex on

◦
Dφ iff Var(X1) 6= 0.

(ii) H :R→ [0,∞] is lower semi-continuous and convex on R with H(µ) = 0,

(iii) H has compact level sets.

Moreover, if Var(X1) 6= 0 and limt→∂Dφ
|φ ′(t)|= ∞, then

(i) DH = R and H is a smooth strictly convex function. In particular, it is strictly
decreasing on ]−∞,µ], and strictly increasing on [µ,+∞[,
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(ii) H(2)(µ) = 1
Var(X1)

.

Proof. 1. Let t− < 0 < t+ ∈
◦

Dφ . As X1 admits positive and negative exponential mo-
ments, Cauchy-Schwarz’s inequality ensures that it admits moment of every order
k ∈N∗

E
[
Xk

1
]
=E

[
Xk

11{X1≥0}
]
+E

[
Xk

11{X1<0}
]

C.S.
≤ E

[
1{X1≥0}X

2k
1 e−t+X1

] 1
2E
[
et+X1

] 1
2 +E

[
1{X1<0}X

2k
1 e−t−X1

] 1
2E
[
et−X1

] 1
2 < ∞

Moreover, by Hölder inequality, the maps (t,ω)→Xk
1 (ω)exp

{
tX1(ω)

}
= ∂ k

t
(

exp
{

tX1(ω)
})

are well-defined, a.s. continuous in t ∈
◦

Dφ and integrable in ω for all integer k ∈N∗.
Thus, by classical theorems φ(t) is C ∞ on

◦
Dφ . In particular,

φ(t) = log
(
E

[
exp
{

tX1
}])

, φ
′(t) =

E

[
X1 exp

{
tX1
}]

E

[
exp
{

tX1
}]

φ
(2)(t) =

E

[
X2

1 exp
{

tX1
}]
E

[
exp
{

tX1
}]
−E

[
X1 exp

{
tX1
}]2

E

[
exp
{

tX1
}]2

C.S.
≥ 0,

with equality iff Var(X1) = 0.
2. H being the Legendre transform of φ , it is convex and lower semi-continuous

by Proposition (9.2.2). Moreover, as 0 ∈
◦

Dφ , H(z) ≥ z× 0− φ(0) = 0, whereas Jensen
inequality ensures that H(µ) = supt∈Dφ

{
− logE

[
et(X1−µ)

]}
≤ supt∈Dφ

{
− tE

[
X1−µ

]}
=

0, yielding H(µ) = 0.
3. Let us show that Ka := H−1

(
[0,a]

)
is compact for any a ∈R+. As H is lower semi-

continuous, Ka is a closed set. As we work in finite dimension, it is sufficient to prove
it is bounded. Suppose that exists (xp)p∈N such that xpt−φ(t)≤ a,∀t ∈ Dφ and xp→ ∞.
Let then tp := a+1

xp
∈
◦

Dφ for p sufficiently large. Then a+ 1− φ(tp) = xptp− φ(tp) ≤ a,
so that φ(tp) ≥ 1 which contradicts the fact that φ(0) = 0 as φ is continuous in 0 and
tp→p 0.

4-5. Suppose now that X1 is not degenerate, and that φ is steep on
◦

Dφ . Then φ is
C ∞ and strictly convex so that Proposition (9.2.2) ensures that H is C 2 and strictly
convex on DH =R. Moreover, H ′ = φ ′−1, so that H is also C ∞. As H is strictly convex
and positive, H−1

(
{0}
)
= {µ}. Furthermore, ∀z ∈R

H(2)(z) =
1

φ (2)
(
φ ′−1(z)

) , so that H(2)(µ) =
1

Var(X1)

as φ ′(0) = µ, and φ (2)(0) =Var(X1) according to 1. (Remark that, if Var(X1) = 0, Dφ =R

and H(z) = supt∈R
{

t(z−µ)
}
= ∞×1{z6=µ}, so that

◦
DH = /0)

Remark 18. From this Proposition and Proposition (9.2.2), we obtain by Fenchel-
Duality that φ(t) := supz∈R

{
zt−H(z)

}
. Hence, H generates the logarithmic generating

function of X1, and thus encodes its law. This highlights the fact, at least for the
simple scope of Cramér’s theorem, the rate function is in a one to one correspondence
with L (X1). Though this will not generalize to the whole theory, H will in general be



184 CHAPTER 9. LARGE DEVIATIONS

closely related to sequence of probability measures whom it controls the deviations.
It will also turn out that, among the good properties displayed by rate function H in
Proposition (9.3.2), some will be needed to properly construct the theory (see (9.4.1)).

We now prove the theorem.

Proof. Let Yi = Xi − a. Then φY (t) = φX(t)− at, so that HY (0) = supt∈R
{

at − φX(t)
}
=

HX(a). Hence, it is sufficient to prove the result for the case a = 0. Moreover, as
φ−X(t) = φX(−t), points 1. and 2. are equivalent. Remark also that the result trivially
holds when Var(X1) = 0.

Let us then suppose that µ < 0, Var(X1) 6= 0, and define ρ := H(0) = − inft∈R φ(t).
To make ρ more explicit, we are interested in the shape of the function φ . Proposi-
tion 9.3.2 ensures that it is a strictly convex smooth function on R, whereas Jensen
inequality gives φ(t) ≥ tµ →t→−∞ +∞ as µ < 0. Hence, by strict convexity, there are
only two possible shapes for φ : L or U. In the first case, the infimum is attained at
+∞, whereas in the second case it is attained at a unique location. Remark that

φ(t) = log
{
E
[
1{X1<0}e

tX1
]
+E

[
1{X1>0}e

tX1
]
+P

(
X1 = 0

)}
Hence, the following holds:

(i) If P
(
X1 ≤ 0

)
= 1, then φ is strictly decreasing and the MCT ensures that ρ =

− limt→+∞ φ(t) =− log
(
P
(
X1 = 0

))
∈ [0,+∞[.

(ii) If P
(
X1 > 0

)
> 0, then limt→±∞ φ(t) = +∞ and there exists a unique τ ∈ R such

that ρ =−φ(τ), and φ ′(τ) = 0.

For the first case, P
(
SN ≥ 0

)
=P

(
X1 = . . .= XN = 0

)
=P

(
X1 = 0

)N , so that

1
N

log
(
P
(
SN ≥ 0

))
=−ρ =−H(0),

and the result holds.
The second case is more tricky and necessitate to introduce a particular ”tilted”

transformation Yi of the Xi. This new i.i.d. sequence will have the good property of
being centered. The idea is that, for these variables, we have shifted the mean to
zero without shifting the point a = 0 at which we are making the analysis, so that
according to 9.4, we will be able to build on the CLT. Let then the ”tilted” repartition
function FY (y) := eρ

∫ y
−∞

eτxdFX(x), so that

φY (t) := log
(∫
R

etydFY (y)
)
+ρ = logE

[
e(t+τ)X

]
+ρ = φ(t + τ)−φ(τ),

is C ∞ and strictly convex on R and attain its minimal value 0 at t = 0. Moreover, by
Proposition 9.3.2, Y1 is centered as E

[
Y1
]
= φ ′Y (0) = φ ′(τ) = 0, so that HY (0) = 0. Let

then,
(
Yi
)

i∈N be a i.i.d sequence of random variables with repartition function FY , and
define ŜN := ∑

N
i=1Yi. Then

P

(
SN ≥ 0

)
=E

[
e−ρN−τSN

( N

∏
i=1

eρeτXi
)
1SN≥0

]
= exp

{
−ρN

}
E

[
e−τ ŜN1ŜN≥0

]
,
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so that

1
N

logP
(

SN ≥ 0
)
=−ρ +

1
N

logE
[
e−τ ŜN1ŜN≥0

]
.

As the Yi are independent and centered r.v., the event ŜN ≥ 0 is typical whereas
SN ≥ 0 > µ is not. Let then C > 0 be a fixed number, and σ̂2 be the variance of Y1. The
CLT ensures that

1≥E
[
e−τ ŜN1ŜN≥0

]
=E

[
e−τσ̂

√
N ŜN

σ̂
√

N 1{ ŜN
σ̂
√

N
≥0
}]≥ e−τσ̂

√
NC
P

( ŜN

σ̂
√

N
∈ [0,C]

)
,

so that we obtain the desired result.

Remark 19. As infz∈[a,∞[ H(z) = 0 as soon as a ≤ µ and as H is strictly increasing on
[µ,+∞[, 1. of (9.3.1) is equivalent to:

∀a ∈R, lim
N

1
N

logP
(SN

N
∈ [a,+∞[

)
=− inf

z∈[a,+∞[
H(z). (9.5)

Remark that this limit equality also holds for interval of the form [a,b[ with µ <
a < b. Indeed

P

(SN

N
∈ [a,b[

)
=P

(SN

N
∈ [a,+∞[

)
−P

(SN

N
∈ [b,+∞[

)
,

so that

1
N

logP
(SN

N
∈ [a,b[

)
=

1
N

logP
(SN

N
∈ [a,+∞[

)
+

1
N

log
(

1−
P
(
SN ≥ bN

)
P
(
SN ≥ aN

)).
As P

(
SN ≥ bN

)
/P
(
SN ≥ aN

)
= e−N(H(b)−H(a)+o(1)),

lim
N

1
N

logP
(SN

N
∈ [a,b[

)
=−H(a) =− inf

z∈[a,b[
H(z).

This highlights an interesting fact: for any ε > 0, a > µ,

lim
N

1
N

logP
(SN

N
∈ [a,+∞[

)
= lim

N

1
N

logP
(SN

N
∈ [a,a+ ε[

)
=−H(a)

> lim
N

1
N

logP
(SN

N
∈ [a+ ε,+∞[

)
=−H(a+ ε).

This can be understood as follow: the larger a deviation is, the less likely it be-
comes. Hence, under the condition SN

N ≥ a, the most probable scenario is that SN
N has

deviated no further than a.

Here is a first insights of an interesting property of large deviations: they contain
a LLN.

Lemma 9.3.3. Let (Xi)i∈N be a sequence of r.v. such that exists µ ∈ R, a function
H :R→ [0,+∞] for which H−1({0}) = {µ} and

(i) for every a > µ, limN
1
N logP

(
SN ≥ aN

)
=−H(a),

(ii) for every a < µ, limN
1
N logP

(
SN ≤ aN

)
=−H(a).
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Then,
SN

N
a.s.→ µ.

Proof. Let p > 0 and Np ∈N such that ∀N ≥ Np,

1
N

logP
(SN−µN

N
≥ 1

p

)
≤−1

2
H
(
µ +

1
p

)
,

1
N

logP
(SN−µN

N
≤−1

p

)
≤−1

2
H
(
µ− 1

p

)
.

Hence

P

(∣∣∣SN−µN
N

∣∣∣≥ 1
p

)
=P

(SN−µN
N

≥ 1
p

)
+P

(SN−µN
N

≤−1
p

)
≤ 2e−

N
2

(
H
(

µ+ 1
p

)
∧H
(

µ− 1
p

))
,

which is summable as H
(
µ + 1

p

)
∧H
(
µ− 1

p

)
> 0. Hence, Borel-Cantelli Lemma ensures

that

P

(⋂
N0

⋃
N≥N0

{∣∣∣SN−µN
N

∣∣∣≥ 1
p

})
= 0,

so that the set
⋂

p≥1
⋃

N0

⋂
N≥N0

{∣∣∣SN−µN
N

∣∣∣< 1
p

}
is of measure one and the assertion holds

true.

Remark that this theorem does not makes any assumption concerning the inde-
pendence of the Xis, so that its conclusion does not fall in the classical SLLN. More-
over, one might expect that a CLT also holds provided that H is smooth on a neighbor-
hood of µ with H(2)(µ) = 1

σ2 > 0. In fact, this implies strict convexity in a neighborhood
of µ, uniqueness of the minimum H(µ) = H ′(µ) = 0, and

H(µ± ε) =
ε2

2σ2 +o(ε2),

for any ε > 0 small enough.
Now, letting x > 0, N large enough, and assuming that the converge (9.5) holds for

A := [µ + x√
N
,µ + x+dx√

N
[ with an error term as O( 1

N ), we find

P

(SN−µN√
N

∈ [x,x+dx[
)
= exp

{
−N

(
H
(
µ +

x√
N

)
+O(N−1)

)}
= exp

{
− x2

2σ2 +O(1)
}
,

so that, up to a multiplicative constant, we find the density of the centered Gaussian
variable with variance σ2.

9.4 GENERAL THEORY
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9.4.1 Basic definitions and properties

We now give the full formulation of large deviations principles that encompasses set-
ting much more general than the case of i.i.d. sequence of real random variable. For
convenience, we will restrict our attention to Polish spaces. More general settings in
[84]. Let then Σ be a Polish space endowed with its Borel σ -field B(Σ).

The starting point of large deviations is to define what are the nice properties that
we will require for our rate functions. We will distinguish between two notions, one
stronger than the other.

Definition 9.4.1 (rate function). (i) A rate function H is a lower semi-continuous
function taking value in [0,+∞] and non uniformly infinite.

(ii) A good rate function is a rate function with compact level sets.

Remark 20. A good rate function always attains its minimal value on a non empty
closed set F . In fact, if α = infF H, remark that the set

⋂
k≥1

H−1
([

α,α +
1
k

])
∩F = H−1({α})∩F

is compact and non-empty as the countable intersection of the sequence of decreasing
non-empty compact sets. In contrast, a rate function may never attain its infimum,
e.g. x→ e−x on R.

By convention, the infimum (resp. supremum) of a function over an empty set will
be equal to +∞ (resp. −∞). Moreover, as is traditional for large deviations theory, we
will denote H(Γ) := infΓ H 6=

{
x ∈ Σ,H(x)

}
when H is a rate function.

We are now able to fully state the definition of a full or strong large deviation principle
(FLDP):

Definition 9.4.2. Let (PN)N∈N be a sequence of probability measures on
(
Σ,B(Σ)

)
.

Then (PN)N∈N satisfies a large deviation principle with good rate function H iff for
every Borel set Γ ∈B(Σ),

− inf
x∈
◦
Γ

H(x)≤ liminf
N→∞

1
N

logPN(Γ)≤ limsup
N→∞

1
N

logPN(Γ)≤− inf
x∈Γ̄

H(x). (9.6)

The right and left-hand sides of (9.6) are referred to as the upper and lower-bound
of the FLDP.

As was expected by remark (18), the following proposition ensures that the good
rate function associated with a FLDP is unique.

Proposition 9.4.1. Let (PN)N be a sequence of probability measure on
(
Σ,B(Σ)

)
, and

two good rate functions H and I such that

∀Γ ∈B(Σ), limsup
N→∞

1
N

logPN(Γ)≤− inf
x∈Γ̄

H(x),

∀Γ ∈B(Σ), − inf
x∈
◦
Γ

I(x)≤ liminf
N→∞

1
N

logPN(Γ).

Then, H ≤ I. In particular, if (PN)N satisfies a FLDP, the rate function is unique.
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Proof. Define the decreasing sequence of open balls Bk := B
(
x, 1

k

)
,∀k ∈N. Then

−I(x)≤−I(Bk+1)≤ liminf
N

1
N

logPN(Bk+1)≤ limsup
N

1
N

logPN(Bk+1)

≤−H(B̄k+1)≤−H(Bk).

Letting k→ ∞, and using the lower semi-continuity of H, we get limk H(Bk) ≥ H(x)
so that I(x)≥ H(x).

A FLDP imposes further conditions to both the rate function and sequence of
probability it is associated with it is associated with. Indeed, this proposition shows
that (PN)N must be exponentially tight.

Proposition 9.4.2. A sequence (PN)N∈N satisfying a FLDP on a Polish space is expo-
nentially tight.

Proof. Let H denote the good rate function associated with the FLDP, and recall that
it attains its minimum on every non-empty closed set. Σ being a Polish space, it is
separable and exists a dense sequence of Σ (xi)i∈N∗ .

Let M,δ > 0, and define the non-decreasing sequence of closed sets
(

Fp :=
⋂p

i=1 B(xi,δ )
c
)

p∈N∗
.

By density of the sequence (xi), we have H
(⋂

p≥1 Fp

)
= +∞. Moreover, {H ≤M +δ−1}

and {H ≤ M + δ−1} ∩ Fp are compact sets with
⋂

p≥1
(
Fp ∩ {H ≤ M}

)
= /0. As Σ is a

complete space, then exists K ∈N∗ such that
(⋂K

p=1 Fp

)
∩{H ≤M+δ−1} is empty, im-

plying that ∀p ≥ K,H(Fp) > M + δ−1. Hence, the upper-bound of the FLDP ensures
the existence of n0 ∈N∗ such that ∀N ≥ n0

1
N logPN

(
FK
)
<−(M+δ−1). Moreover, as for

every µ ∈M+
1 (Σ), µ(Fp)→p 0, we can extend the previous inequality to every N ∈N∗.

Similarly, for every k ∈N∗, we can find Kk ∈N∗ such that

∀N ∈N∗, 1
N

logPN
( Kk⋂

i=1

B(xi,k−1)c)<−(M+ k).

Let

A :=
⋂
k≥1

Fk
Kk

c
=
⋂
k≥1

Kk⋃
p=1

B(xi,k−1),

which has compact closure as Σ is Polish (this classical result can be found in [29]),
and remark that

PN(Āc)≤ PN(Ac)≤ ∑
k≥1

e−(M+k)N = e−MN 1
eN−1

,

so that
limsup

N

1
N

logPN(Āc)<−M.

Moreover, remark that for any Borel set Γ∈B(Σ), H(Γ̄)> 0 implies an exponential
decay for PN(Γ) with rate lying between H(

◦
Γ) and H(Γ̄). PN being a probability mea-

sure, we necessarily have H(Σ) = 0, so that H−1({0}) is a non-empty compact set by
goodness of H (see remark 20).
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In definition 9.4.2, one sees that for Borel sets Γ satisfying H(
◦
Γ) = H(Γ̄) the two

inequalities become an equality:

lim
N

1
N

logPN(Γ) =−H(Γ). (9.7)

It seems tempting to replace the upper and lower-bound by this simple limit that
evokes Cramér’s theorem (see remark 9.5). Nonetheless, it will appear that the dif-
ference H(

◦
Γ)−H(Γ̄) is very relevant, in particular when dealing with Borel sets com-

posed of atoms. Suppose for example that PN has no atoms for every N ∈ N∗. Then
(9.7) would yield

∀x ∈ Σ, lim
N

1
N

logPN({x}) =−∞,

so that ∀x∈ Σ, H(x) =+∞, which is not an acceptable rate function according to defini-
tion (9.4.1). Moreover, take Γ= {x}∪ [a,∞[, with x< a, and suppose that H is increasing
on [x,∞[ with H(x)< H(a) (think for example of Cramér’s case for µ < x < a). Then, the
FLDP satisfied by (PN)N ensures that

lim
N

1
N

logPN(Γ) =− inf
z∈[a,∞[

H(z) =−H(a) 6=−H(x) =− inf
z∈{x}∪[a,∞[

H(z),

as PN(Γ) = PN([a,∞[), and {x} seems not not to be seen by the FLDP.

Theorem 9.4.3. Let (Xi)i∈N∗ be a sequence satisfying the hypothesis of Cramér’s The-
orem, and let φ(t) := logE

[
etX1
]

the logarithmic moment generating function of X1.
Further suppose that X1 admits not atoms.

Then, PN := L
(SN

N

)
satisfies a FLDP with good rate function H : z→ supt∈Dφ

{
zt −

φ(t)
}

given by the Legendre transform of φ .

Remark 21. It is very easy to see why the FLDP fails when X1 admits atoms. Indeed,
suppose that P(X1 = a) = p > 0. Then

P

(SN

N
∈ {a}

)
≥P(X1 = . . .= XN = a) = pN ,

so that
1
N

logP
(SN

N
∈ {a}

)
≥ log p >− inf

◦
{a}

H =−∞,

as
◦
{a}= /0.
Also remark that, provided the existence of the logarithmic moment generating

function φ , the upper-bound for the Legendre transform naturally arises from an
exponential Chebyshev’s inequality and an optimization over the parameter in the
exponential.

Proof. According to Proposition 9.3.2 we already that H is a good rate function. To
prove that (9.6) holds for any Γ ∈ B(R), first remark that if µ ∈

◦
Γ the equality is

obvious relying on the SLLN and on the fact that H(µ) = 0. Moreover, if µ 6∈
◦
Γ, we can

find two Borel disjoint sets Γ+ and Γ− such that Γ = Γ+∪Γ−, Γ+ ⊂ [µ,∞[, Γ− ⊂]−∞,µ].
Furthermore, supposing that (9.6) holds for Γ± Lemma (9.2.4) ensures that

limsup
N

1
N

logP
(SN

N
∈ Γ

)
= max

{
limsup

N

1
N

logP
(SN

N
∈ Γ−

)
, limsup

N

1
N

logP
(SN

N
∈ Γ+

)}
= max

{
− inf

Γ̄−
H,− inf

Γ̄+

H
}
=− inf

Γ̄

H,
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and

liminf
N

1
N

logP
(SN

N
∈ Γ

)
= max

{
liminf

N

1
N

logP
(SN

N
∈ Γ−

)
, liminf

N

1
N

logP
(SN

N
∈ Γ+

)}
= max

{
− inf
◦

Γ−

H,− inf
◦

Γ+

H
}
=− inf

◦
Γ

H,

so that proving (9.6) for Γ ∈B(R) with Γ⊂ [µ,+[ suffices by symmetry.
Choose then such a Γ, and let us prove the upper-bound by an exponential Cheby-

shev inequality. Let α := inf(Γ)≥ µ. Then

1
N

logP
(SN

N
∈ Γ

)
≤ 1

N
logE

[
1{ SN

N ∈Γ}e
tSN−Ntα

]
≤−αt +φ(t).

As this holds for any t ∈R, we find

1
N

logP
(SN

N
∈ Γ

)
≤ inf

t∈R

{
−αt +φ(t)

}
=−H(α) =− inf

Γ̄

H, (9.8)

by strictly monotony of H on [µ,∞[.
We now prove the lower bound for open sets only which will be sufficient as PN(Γ)≥

PN(
◦
Γ). Cramér’s Theorem (9.3.1) and equality (9.5) already ensure that the lower-

bound is satisfied for sets of the form [a,b[, with µ ≤ a < b≤+∞. As inf[a,b[ H = H(a) =
inf]a,b[ H, and P

(SN
N ∈]a,b[

)
=P

(SN
N ∈ [a,b[

)
, X1 admitting no atom., the lower-bound also

holds for sets of the form ]a,b[, with µ ≤ a< b≤+∞. Now, Γ being an open set of [µ,+∞[,
it can be decomposed in a countable union of disjoint sets of the form Ip =]ap,bp[, with
µ ≤ a1 < b1 ≤ . . .≤ ap < bp ≤+∞,∀p ∈N∗. We then conclude by remarking that, for any
P ∈N∗, Lemma (9.2.4) ensures

liminf
N

1
N

logP
(SN

N
∈ Γ

)
≥ liminf

N

1
N

logP
(SN

N
∈

P⋃
p=1

Ip

)
= max

1≤p≤P

{
liminf

N

1
N

logP
(SN

N
∈ Ip

)}
= max

1≤p≤P

{
−H(ap)

}
=−H(a1) =− inf

Γ
H.

The main interest of LDP is that, under good conditions, they contain a conver-
gence in law for the sequence of measures at stake. As in Lemma (9.3.3), such result
can go well beyond the scope of classical theorems from probability theory, encom-
passing in particular nonlinear cases. Note that the links of large deviations theory
with the weak convergence of probability measures has been the object of an intense
investigation (see e.g. [185], [184], and [90]). In this context, the upper and lower-
bound of (9.6) can be seen as exponential versions of that involved in PortManteau
Theorem. Taken conjointly, they give an equality for Borel set Γ satisfying a regular-
ity condition: P(∂Γ) = 0 in PortManteau theorem, and H(Γ̄) = H(

◦
Γ) for LDP. The fol-

lowing proposition makes explicit the good conditions required for the obtaining of a
convergence in law, and also stresses an important fact: when satisfying a FLDP, the
mass of the sequence of probability measures PN asymptotically concentrates around
the zeros of the rate function H.

Proposition 9.4.4. Let (PN)N∈N satisfies a FLDP with good rate function H on
(
Σ,B

)
.

Then
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(i) ∃x∗ ∈ Σ, H(x∗) = 0,

(ii) if PN
L→ P ∈M+

1 (Σ) and H is continuous, then P
(
H−1({0})

)
= 1,

(iii) if H−1({0}) = {x∗}, then PN
L→N δx∗ ,

where δx∗ is the probability measure of M+
1 (Σ) degenerated at x∗.

Proof. 1. As 1
N logPN(Σ) = 0 ≤ −H(Σ) so that H(Σ) = 0. Moreover, by remark (20), H

attains its infimum, so that the first point is proved, and H−1({0}) 6= /0.
2. Let ε > 0, and define the closed set Γε := {x∈Σ,H(x)≥ ε}. Then, the upper-bound

of the FLDP brings

limsup
1
N

logPN(Γε)≤−H(Γε)≤−ε < 0,

so that PortMantau theorem ensures that

0 = liminfPN(Γε)≥ P(Γε).

Taking ε → 0, we conclude by the Monotone Convergence Theorem.
3. Suppose now that H−1({0}) = {x∗}, and take any open set Γ ⊂ Σ. We want to

show that
liminf

N
PN(Γ)≥ δx∗(Γ)

and conclude by PortManteau Theorem. When x∗ /∈Γ, the proof is immediate. Suppose
that x∗ ∈ Γ. Then, using the upper-bound for the closed set Γc:

limsup
1
N

logPN(Γ
c)≤−H(Γc)< 0,

so that necessarily, PN(Γ
c)→ 0, and the proof is completed.

Remark 22. In Proposition (9.4.4) point 2., the continuity hypothesis of H can be
relaxed as follow: exists a decreasing positive sequence (εp)p∈N∗ such that

εP↘ 0, and ∀p ∈N∗, Γp :=
{

x ∈ Σ,H(x)≥ εp
}

is closed.

An alternative hypothesis could also be that the number of connected components of
H−1({0}) is finite, so that the infimum of H over the closed set

⋂
x∈H−1({0}) B(x,ε)c is

strictly positive.

As FLDP can be hard to obtain, there exists a weaker notion of LDP:

Definition 9.4.3. Let (PN)N∈N∗ be a sequence of probability measures on
(
Σ,B

)
. Then

(PN)N∈N∗ satisfies a weak large deviation principle (WLDP) with rate function H if and
only if

• for any set Γ ∈B with compact closure,

limsup
N→∞

1
N

logPN(Γ)≤− inf
x∈Γ̄

H(x). (9.9)

• ∀Γ ∈B,

− inf
x∈
◦
Γ

H(x)≤ liminf
N→∞

1
N

logPN(Γ).
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Remark 23. An alternative (and equivalent) formulation of the weak upper-bound (9.9)
is: for any compact set K ∈B(Σ)

limsup
N→∞

1
N

logPN(K)≤− inf
x∈K

H(x).

This weaker formulation looses most of the good properties of the FLDP. Whereas
the rate function associated with a WLDP is still unique (see [184]), it does not need
to be good anymore, so that (PN)N might not be exponentially tight, or even tight,
allowing cases where PN utterly vanish in the limit N→ ∞. Moreover the infimum of
H needs not to be 0 in general as Σ is not necessarily a compact set.

Example. The sequence
(
PN := e−Nδ0+(1−e−N)δN

)
∈M+

1 (R)
N
∗

satisfies a WLDP with
rate function H :R→ R̄ defined by H(0) = 1, H(x) = +∞ if x 6= 0.
In fact, for any Borel set Γ ∈B(R), H(Γ) = 1+(+∞)×1Γc(0), so that the lower-bound

∀N ∈N∗,−H(Γ)≤ 1
N

log(PN(Γ))

is trivial when 0 /∈ Γ, and still holds in the other case, as PN(Γ) is then greater than
1
N log(e−N) = −1. Moreover, the upper-bound for any compact set K also holds as
limN

1
N log(PN(K)) = −1+(−∞)×1Kc(0) = −H(K). Nevertheless, remark that (PN)N is

not tight and that infH = 1 6= 0.

The following lemma highlights the links between weak and full LDP:

Lemma 9.4.5. Let (PN)N be a sequence of probability measures on a Polish space Σ.
We have the equivalence:

(i) (PN)N is exponentially tight and satisfies a WLDP with rate function H,

(ii) (PN)N satisfies a FLDP with good rate function H.

Proof. By Proposition (9.4.2), we only have to prove 1. =⇒ 2.:
Let us prove first that H is a good rate function. Let M > 0, and consider the closed
set KM :=

{
H ≤M

}
, and a compact KM such that

limsup
N

1
N

logPN
(
Kc)≤−(M+1).

The lower-bound of the WLDP implies

−H(Kc)≤ liminf
N

1
N

logPN
(
Kc)≤−(M+1).

Hence, H(Kc)≥ (M+1), and KM ⊂ K. Then the set KM ∩K = KM is compact so that
H is a good rate function.
Let us now prove the upper-bound for closed sets. Let F be a closed set. Then F ∩K is
a compact set, and we have

limsup
N

1
N

logPN
(
F ∩K

)
≤−H(F ∩K)≤−H(F).

Moreover,

limsup
N

1
N

logPN(F)≤ limsup
N

1
N

log
(

PN(F ∩K)+PN(Kc)
)

≤max
(
−HF ,−M

)
,
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so that sending M towards infinity gives the result.

The advantage of WLDP is that they require very mild conditions to ensure a
convergence in law for the sequence (PN)N .

Proposition 9.4.6. Suppose that (PN)N∈N satisfies an upper-bound for compact sets
(9.9) with rate function H on

(
Σ,B

)
. If H−1({0}) = {x∗} and (PN)N is tight, then

PN
L→N δx∗ .

Remark 24. Remark here that we do not need a lower-bound for the convergence to
hold. Whereas these upper-bound and uniqueness of the 0 of H put sufficient con-
straint on the sequence (PN)N for ensuring its convergence, such a function H might
not be unique and do not characterize the speed of the convergence. As suggested by
Proposition (9.4.1) in the case of FLDP, it should nevertheless be smaller than the
rate function provided its existence. In particular, it implies that this latter can only
have one 0: the same as H.

Proof. Let ε,δ > 0, and choose a compact set Kε such that

∀N ∈N∗, PN(Kc
ε )< ε.

Then

PN(B(x∗,δ )c)≤ PN(B(x∗,δ )c∩Kε)+PN(Kc
ε )≤ PN(B(x∗,δ )c∩Kε)+ ε.

The upper-bound for compact sets ensures that

limsup
N

1
N

logPN(B(x∗,δ )c∩Kε) =−H(B(x∗,δ )c∩Kε)< 0,

so that limN PN(B(x∗,δ )c∩Kε) = 0, and

limsup
N

PN(B(x∗,δ )c)≤ ε.

Sending ε → 0, we find that limN PN(B(x∗,δ )c) = 0. Take now F ∈B(Σ) a closed set
of Σ. If x∗ ∈ F , then

limsup
N

PN(F)≤ δx∗(F) = 1

trivially holds. If x∗ 6∈F , then, exists δ > 0 such that F ⊂B(x∗,δ )c, so that limsupN PN(F)≤
limN PN(B(x∗,δ )c) = 0 = δx∗(F), and we conclude by PortManteau theorem.

Remark 25. Remark that the speed of the convergence might no more be exponential
as in Proposition (9.4.4).
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9.5 OBTAINING A LDP

Now we have an idea of the utility of large deviations principles, we
would like to know how to obtain them. The answer dwells in two theorems.

Sanov’s theorem deals with i.i.d. Polish-valued sequences of random variables. It can
be seen as an extension of the weak law of large numbers, and have the advantage
of encompassing a wide class of settings. We furnish here the general formulation of
the theorem, introduce important notions, and In order to give an idea of its meaning,
we also give a full proof of the theorem in the case of finite spaces at the end of the
appendix 9.7.1. On the other hand, Gartnër-Ellis theorem an be seen as a generaliza-
tion of Cramér’s theorem, and deals with dependent real random vectors. For readers
interested in the full proofs of these theorem, we refer to [84, 85].

9.5.1 Sanov’s theorem

In this section P ∈M+
1 (Σ) is a probability measure on a Polish space, and

X = (Xi)i∈N∗ is an i.i.d. sequence with law P. We first define the empirical
measure of X:

Definition 9.5.1 (Empirical measure). The empirical measures of the sequence
X = (Xi)i∈N∗ ∈ ΣN

∗ is given, for any N ∈N∗, by

µ̂
X
N :=

1
N

N

∑
i=1

δXi ∈M+
1 (Σ),

where for any x ∈ Σ, δx ∈M+
1

(
Σ
)

is the degenerate measure at x.

Remark in particular that if the Xis are random (which is the case here),
the empirical measure is a random element of M+

1 (Σ). A way of understand-
ing the empirical measure µ̂X

N ∈M+
1 (Σ) is to see it as a version of the classical empir-

ical mean
SX

N

N
:=

∑
N
i=1 Xi

N
∈ Σ.

Of course, one immediately sees that

µ̂
X
N =

SδX
N
N

.

More interestingly, SX
N/N might not be well-defined or lie in Σ, as Polish

spaces are not generally real vector spaces, or even to be convex ensembles.
In these problematic cases, µ̂X

N still exists and has value in the convex Polish space
M+

1 (Σ). It thus appears as the most natural quantity describing the averaged behav-
ior of the distribution P, and as a good candidate to follows some kind of law of large
number that Sanov’s theorem will make explicit.

To avoid confusion, we insist on the fact that when SX
N/N is a well-defined

element of Σ, µ̂X
N 6= L

(
SX

N/N
)

in general. For example, taking i.i.d. Bernoulli
variables, one sees that the empirical measure has support in {0,1}, whereas the
empirical mean can be equal to 1

2 with positive probability.
We now define what will be the good rate function of Sanov’s theorem,

namely the Kullback-Leibler divergence, or relative entropy:
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Definition 9.5.2. Let P,µ ∈M+
1 (Σ), where Σ is a Polish space. Then, the rela-

tive entropy of µ with respect to P is defined as follow

I(µ|P) =
{ ∫

Σ
log
(dµ

dP (x)
)
dµ(x) if µ � P,

+∞ else.

It is linked with information theory, and can be seen as a heuristic dis-
tance on the space M+

1 (Σ). Nevertheless, it is not symmetric nor does it fol-
low axiom the triangular inequality. Before proving that it is indeed a rate-function,
let us state now the theorem:

Theorem 9.5.1. The sequence of probability measures
(

P⊗N
(
µ̂X

N ∈ ·
))

N
∈M+

1

(
M+

1 (Σ)
)N∗

satisfies a FLDP with good rate function I(·|P).

Proposition 9.5.2. Let DI :=
{

µ ∈M+
1 (Σ), I(µ|P)< ∞

}
and µ ∈M+

1 (Σ). Then

(i) I(·|P)≥ 0,

(ii) I(·|P) is a lower semi-continuous and convex function,

(iii) I(µ|P) = 0 iff µ = P,

(iv) I(·|P) is strictly convex on
◦

DI,

(v) Moreover,

I(µ|P) = Λ
∗(µ) := sup

φ∈Cb(Σ)

{∫
Σ

φ(x)dµ(x)−Λ(φ)

}
, (9.10)

where Λ(φ) := log
∫

Σ
eφ(x)dP(x).

(vi) I(·|P) is a good rate function.

Remark 26. (i) This lemma reveals the true nature of the relative entropy: it is the
Legendre transform of a kind of logarithmic moment generating function of P. It
is then not that surprising that it constitutes the good rate function associated
with the FLDP of Sanov’s Lemma.

(ii) By Proposition (9.4.4), P⊗N
(
µ̂X

N ∈ ·
) L→ δP, as P is the unique minimum of I(·|P).

(iii) From the proof of this lemma appears a useful inequality for the relative en-
tropy: for any bounded measurable function φ on Σ,∫

Σ

φdµ ≤ I(µ|P)+ log
∫

Σ

expφdP. (9.11)

The monotone convergence theorem ensures that this inequality also holds for
positive measurable φ .

Proof. 1. Let µ � P, and remark that

I(µ|P) =
∫

Σ

dµ

dP
log
(dµ

dP

)
dP.

Then, as x→ x log(x) is a convex function, Jensen inequality gives the result.
2. Remark that, for any φ ∈ Cb(Σ), µ →

∫
Σ

φdµ is convex and continuous.
We then rely on (9.2.1).
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3-4. Remark that I(P|P) = 0. Uniqueness of the minimum and strict con-
vexity on

◦
DI are then obtained relying on the strict convexity of x→ x log(x)

and Jensen inequality.
5. Let µ 6� P. If Λ∗(µ) 6= ∞, we would have for any φ ∈ Cb(Σ):∫

Σ

φdµ− log
(∫

Σ

eφ dP
)
≤ Λ

∗(µ)< ∞, (9.12)

inequality that also holds for bounded measurable functions by the dominated con-
vergence theorem. Let Γ such that P(Γ) = 0, and define φ := r1Γ for a given r > 0.
Then, inequality (9.12) reads

rµ(Σ)− log
(∫

Γc
e0dP

)
= rµ(Σ)≤ Λ

∗(µ)< ∞,

so that, as r can be chosen arbitrary large, we necessarily have µ(Σ) = 0, which con-
tradicts µ 6� P. Suppose now that µ � P, and define f := dµ

dP . ∀t ∈ [0,1], also define
µt := tP+(1− t)µ. Then, µt � P, with ft := dµt

dP = t +(1− t) f , so that by convexity of
x→ x log(x) on the one hand, and as x→ log(x) is both non-decreasing and concave on
the other hand, we find

I(µt |P) =
∫

ft log ftdP≤ (1− t)I(µ|P),

and

I(µt |P) = t
∫

Σ

log
(

t +(1− t) f
)

dP+(1− t)
∫

log
(

t×1+(1− t) f
)dµ

dP
dP

≥ t log(t)+(1− t)2I(µ|P)

In particular, limt↘0 I(µt |P) = I(µ|P). Let us prove the same for Λ∗. It is
a convex and lower semi-continuous by Proposition 9.2.1, also positive as

0 ∈ Cb(Σ). Moreover, for any φ ∈Cb, Jensen inequality yields Λφ ≥
∫

Σ
φ(x)dP(x), so that

Λ∗(P) = 0, and
Λ
∗(µt)≤ (1− t)Λ∗(µ).

Let ε > 0, and choose φε such that Λ∗(µ)≤
∫

Σ
φε(x)dµ(x)−Λφε

+ ε. Then

Λ
∗(µt)≥ (1− t)

(
Λ
∗(µ)− ε

)
+ t
(∫

Σ

φε(x)dP(x)−Λφε

)
.

As
(∫

Σ
φε(x)dP(x)−Λφε

)
is bounded, taking the limit t→ 0 yields

Λ
∗(µ)− ε ≤ liminf

t↘0
Λ
∗(µt)≤ limsup

t↘0
Λ
∗(µt)≤ Λ

∗(µ),

so that limt↘0 Λ∗(µt) = Λ∗(µ). It is now sufficient to prove the result equality for µt

with t ∈]0,1[ or, more generally, for µ � P such that their density is bounded away
from 0. Suppose thus that exists η > 0 such that f ≥ η , and let us show that I(µ|P)≥

sup
φ∈Cb(Σ)

{∫
Σ

φ(x)dµ(x)−Λ f
}

. Let φ ∈ Cb and remark that

exp
{∫

Σ

φdµ− I(µ|P)
}
= exp

{∫
Σ

(
φ − log f

)
dµ

}
≤
∫

Σ

eφ

f
dµ =

∫
Σ

eφ dP,
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so that I(µ|P)≥Λ∗(µ). Set fM = f ∧M that is positive bounded and measurable so that

I(µ|P) =
∫

Σ

f log f dP =
∫

Σ

log f dµ
Fatou
≤ liminf

M→∞

∫
Σ

log fMdµ

(9.12)
≤ Λ

∗(µ)+ liminf
M→∞

log
(∫

Σ

fMdµ

)
MCT
= Λ

∗(µ),

which complete the proof of equality (9.10).
6. The goodness of I(·|P) is somewhat technical. We admit it here, and

refer to [86, Lemma 3.2.7].

9.5.2 Gartnër-Ellis Theorem

Let d ∈N∗, and (ZN) be a sequence of random vectors of the probability space(
R

d ,B(Rd),P
)
, where B(Rd) is the Borel σ -field onRd . Define for any t ∈Rd

the logarithmic moment generating function:

ΛN(t) := logE
[
eN〈t,ZN〉

]
,

where 〈., .〉 is the scalar product onRd , and let the probability measure PN :=P(ZN ∈ .).
The aim of Gartnër-Ellis theorem is to prove a FLDP for the sequence (PN). Before
stating the theorem, let us introduce a few definitions.

Definition 9.5.3 (Legendre transform and exposed points). Let f : Rd → R̄.
Its Legendre transform is defined by f ∗:

f ∗(x) = sup
t∈Rd

{
〈x, t〉− f (t)

}
, ∀x ∈Rd .

Moreover, a point x ∈Rd is called exposed for f ∗ iff exists t ∈Rd such that

f ∗(y)− f ∗(x)> 〈y− x, t〉, ∀y 6= x.

Such t is called an exposing hyperplane for x.

Remember that Proposition 9.2.1 ensures that f ∗ is a convex function.
In words, an exposing point for f ∗ is a point at which f ∗ is strictly convex,

while for an hyperplane exposing t ∈Rd is such that exists an affine sub-space with
direction {t}⊥ that tangents f ∗ at x without touching any other point of the graph of
f ∗.

Remark that for d = 1, and ZN := 1
N ∑

N
i=1 Xi with Xi i.i.d. random variables

with exponential moments, φN is stationary as we have

∀t ∈R, ΛN(t) = logE
[
et ∑

N
i=1 Xi ] = Nφ(t),

with φ defined as in Cramér’s theorem. In this simple setting, the rate function was
given by the Legendre transform of φ . Nevertheless, for dependent sequence, or even
more general ZN , 1

N φN generally depends on N. As a large deviations principle is
only interested in asymptotic behaviors, the natural hope is that provided 1

N φN → Λ

when N→ ∞, a FLDP will follows for (PN)N , with good rate function Λ∗. Gartnër-Ellis
theorem specify that this is indeed the case when Λ is sufficiently regular, and Λ∗ is
strictly convex.
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Theorem 9.5.3 (Gartnër-Ellis Theorem). Assume that

(a) ∀t ∈Rd , Λ(t) := limN
1
N φN(t) exists in R̄,

(b) 0 ∈
◦

DΛ, with DΛ :=
{

t ∈Rd : Λ(t)< ∞
}

.

Then, for any Γ ∈B(Rd)

(i) Λ∗ is a good rate function,

(ii) limsupN
1
N logPN(Γ)≤−Λ∗(Γ),

(iii) liminfN
1
N logPN(Γ)≥−Λ∗(Γ∩E),

where E is the set of exposed points of Λ∗ whose exposing hyperplane belongs
to

◦
DΛ. Moreover, if Λ is also lower semi-continuous, differentiable on

◦
DΛ with

either DΛ = Rd or a steep condition at ∂DΛ then,
◦
Γ∩E can be replaced by

◦
Γ in 3., so

that (PN) satisfies a FLDP with good rate function Λ∗.

Remark that Gartnër-Ellis theorem fails to establish a LDP when Λ∗ is
not strictly convex.

9.6 DERIVING A LDP

This section provides the general results of the theory that build a FLDP
out of another one. With this arsenal, it will be very easy to obtain FLDP

for complex cases presenting e.g. nonlinearities or dependent sequences. We begin
with the contraction principle, that deals with the continuous image of a sequence of
measures satisfying a FLDP.

Theorem 9.6.1 (Contraction Principle). Let (PN)N∈N satisfies a FLDP with
good rate function H on

(
Σ,B

)
,
(
Σ̃,B

Σ̃

)
another Polish space endowed with

its Borel σ -field, and f : Σ→ Σ̃ a continuous application. Then,
(
PN ◦ f−1

)
N∈N satisfies

a FLDP on
(
Σ̃,B

Σ̃

)
with good rate function:

J :=
{

Σ̃ → [0,∞]
y → H

(
f−1({y})

)
,

with the convention inf /0 =+∞.

Proof. Let Γ⊂ Σ̃, and remark that
(
PN ◦ f−1

)
(Γ)=

∫
Σ
1Γ( f (x))dPN(x)=PN

(
f−1(Γ)

)
.

As the property of being open or closed are preserved by f−1, and as Γ→
◦
Γ,

and Γ̄ commute with Γ→ f−1(Γ), we easily obtain the upper and lower bounds build-
ing on the FLDP of (PN)N :

−H
(

f−1(
◦
Γ)
)
≤ liminf

N

1
N

log
(
PN ◦ f−1)(Γ)≤ limsup

N

1
N

log
(
PN ◦ f−1)(Γ)≤−H

(
f−1(Γ̄)

)
.

We thus only need to prove that J is a good rate function. It is clear that
it has value in [0,∞]. Let x ∈ Σ such that H(x) = 0. Then, J( f (x)) ≤ H(x) = 0,

so that J is not uniformly infinite. Moreover, let KJ
a :=

{
J ≤ a

}
for a ∈ R, and define

KH
a similarly. It is clear that f (KH

a )⊂ KJ
a . Let then y ∈ KJ

a , and remark that the closed
set f−1({y}) 6= /0 so that H attains its minimum on it. Let x be such a point. Then
J(y) = H(x)≤ a, so that x ∈ KH

a , and f (KH
a ) = KJ

a is a compact set.
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Remark 27. We need to work more when dealing with WLDP as the recipro-
cal image of compact set by a continuous function is not necessarily compact,

and we need the goodness of H to conclude on the lower semi-continuity of J.

The following theorem, known as Varadhan’s Lemma, provides a control
on exponential integrals.

Theorem 9.6.2. Varadhan’s lemma
Let (PN)N∈N satisfies a FLDP with good rate function H on

(
Σ,B(Σ)

)
. Let

f : Σ→R. Then

(i) if f is lower semi-continuous, one has for every open set O ∈B(Σ)

−inf
O

{
H− f

}
≤ liminf

1
N

log
{∫

O
eN f (x)dPN(x)

}
(ii) if f is upper semi-continuous and bounded from above, one has for every closed

set F ∈B(Σ)

limsup
1
N

log
{∫

F
eN f (x)dPN(x)

}
≤−inf

F

{
H− f

}
.

(iii) if f is continuous and bounded from above, then

lim
N

1
N

log
{∫

Σ

eN f (x)dPN(x)
}
= sup

Σ

{
f −H

}
.

Proof. Remark first that 3. is a consequence of 1. and 2. applied to the open
and closed set Σ. Define, for any Γ ∈B(Σ), the quantity

Z f
N(Γ) :=

∫
Γ

eN f (x)dPN(x).

1. Let O ∈ B(Σ) be an open set, x ∈ O, and ε > 0. As f is lower semi-
continuous, exists δ > 0 such that B(x,δ ) ⊂ O and infy∈B(x,δ ) f (y) ≥ f (x)− ε.

Then,
Z f

N(O)≥ Z f
N(B(x,δ ))≥ eN( f (x)−ε)PN(B(x,δ )).

As (PN)N satisfies a FLDP, the latter implies that

liminf
1
N

logZ f
N(O)≥ f (x)− ε−H

(
B(x,δ )

)
≥ ( f −H)(x)− ε,

which proves the result.
2. Let F ∈B(Σ) be a closed set, ε > 0 and define Fa := F ∩{H ≤ a} for a

given a ∈R. As f is upper semi-continuous, and H is lower semi-continuous,
for any x ∈Fa exists δx > 0 such that infy∈B(x,2δx) H ≥ H(x)− ε and supy∈B(x,2δx) f ≤ f (x)+
ε. Moreover, as Fa := F ∩{H ≤ a} is compact, it can be covered by a finite union of
open balls. Let then K ∈ N∗, x1, . . . ,xK ∈ Fa, δx1 , . . . ,δxK ∈ R∗+ be such that Fa ⊂ O =⋃K

k=1 B(xk,δxk). As F ⊂ O∪ (F ∩Oc), we have

Z f
N(F)≤ Z f

N(F ∩Gc)+
K

∑
k=1

Z f
N

(
B(xk,δxk)

)
≤ eNMPN(F ∩Gc)+

K

∑
k=1

eN( f (xk)+ε)PN

(
B(xk,δxk)

)
,



200 CHAPTER 9. LARGE DEVIATIONS

where M ∈R is such that f (x)≤M, ∀x∈ Σ. As (PN) follows a FLDP, we then have using
Lemma 9.2.4

limsup
1
N

log
(
Z f

N(F)
)
≤
(

M−H(F ∩Gc)
)
∨ max

1≤k≤K

(
f (xk)+ ε−H

(
B(xk,δxk)

)
≤
(

M−H(F ∩Gc)
)
∨ max

1≤k≤K

(
f (xk)−H(xk)+2ε

)
.

Moreover, as Fa ⊂ G, H(F ∩Gc)≥ H(F ∩Fc
a )≥ a, so that

limsup
1
N

log
(
Z f

N(F)
)
≤
(
M−a

)
∨ sup

y∈Fa

(
f (x)−H(x)+2ε

)
.

Sending ε → 0 and a→ ∞ concludes the proof.

Remark 28. As stated in [86, Lemma 2.1.8] the above condition of bounded-
ness for cases 2.-3. can readily be replaced by:

lim
M→∞

limsup
N→∞

1
N

log
(∫

f≥M
eN f (x)dPN(x)

)
=−∞. (9.13)

Indeed, working with fM = f ∧M, and remarking that under this condi-
tion, for any closed set F

limsup
N

1
N

log
(∫

F
eN f (x)dPN(x)

)
= limsup

N

1
N

log
(∫

F
eN fM(x)dPN(x)

)
≤ sup

F

{
fM−H

}
≤ sup

F

{
f−H

}
.

As the contraction principle, Varadhan’s lemma furnishes a way of deriv-
ing a large deviation principle out of another one. It will only apply to ”tilted”

transformation of probability sequence (PN)N satisfying a LDP, i.e. probability mea-
sures absolutely continuous with respect to (PN)N , with exponential Radon-Nykodym
density. This corollary finds many applications in statistical physics as the Gibbs
measure naturally appears as a ”tilted” probability sequence of the independent sys-
tem. It will also be of chief importance in the manuscript, as it furnishes the main
intuition to our analysis on particle systems.

Theorem 9.6.3. Let (PN)N∈N be a sequence of measure on (Σ,B(Σ)) following
a FLDP with good rate function H, and f be continuous and bounded from

above. Denote Z f
N := Z f

N(Σ). Then, the sequence of ”tilted” probability measures

QN(Γ) :=
Z f

N(Γ)

Z f
N

, ∀Γ ∈B(Σ)

follows a FLDP with good rate function HQ(x) := supΣ

{
f −H

}
−
(

f −H
)
(x).

Proof. Let M ∈ R be such that f (x) ≤ M, ∀x ∈ Σ. Then, for every Γ ∈B(Σ),
0 ≤ Z f

N(Γ) ≤ eNM, with strict positivity as soon as Γ is of non-empty interior.
Hence, QN(Γ) is well-defined. Moreover, QN is σ -additive by the monotone conver-
gence theorem, so that it is a probability measure.

Let us show that HQ is indeed a good rate function. First HQ is positive, as
supΣ

{
f −H

}
≥ f (x)−H(x), ∀x∈ Σ. Moreover, as f is continuous, then, H+(− f )

is the sum of two lower semi-continuous functions so that HQ is also lower semi-
continuous. Moreover, as H is a good rate function, exists a x ∈ Σ such that H(x)< ∞,
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so that ∞ > M ≥ supΣ

{
f −H

}
≥ f (x)−H(x)>−∞ and HQ(x)< ∞. Furthermore, for any

a ∈R

{HQ ≤ a}=
{

H− f ≤ a− sup
Σ

{
f −H

}}
⊂
{

H ≤ a+M− sup
Σ

{
f −H

}}
.

Hence {HQ ≤ a} is a closed set contain in a compact set and is thus com-
pact. We now establish the lower and upper-bounds. Remark that, for any

Γ ∈B(Σ) we have

1
N

logQN(Γ) =
1
N

log
(∫

Γ

eN f (x)dPN(x)
)
− 1

N
log(Z f

N).

On the one hand, Σ is both open and closed, so that

−inf
Σ

{
H− f

}
≤ liminf

1
N

log(Z f
N)≤ limsup

1
N

log(Z f
N)≤−inf

Σ

{
H− f

}
,

Hence, limN
1
N log(Z f

N) = supΣ

{
f −H

}
. On the other hand

−inf
◦
Γ

{
H− f

}
≤ liminf

1
N

log
(∫

Γ

eN f (x)dPN(x)
)
≤ limsup

1
N

log
(∫

Γ

eN f (x)dPN(x)
)
≤−inf

Γ̄

{
H− f

}
.

Subtracting these two equations yields

−inf
◦
Γ

HQ ≤ liminf
1
N

logQN(Γ)≤ limsup
1
N

logQN(Γ)≤−inf
Γ̄

HQ.

Remark 29. In the proof of Cramér’s Theorem, we have precisely used a
”tilted” version of our original i.i.d. sequence (Xi)i∈N∗ . The function we used

was f : x→ τx, where τ ∈R is such that φ(τ) = infφ =−ρ =−H(0) in order to conclude.
In fact, in this case, PN = L

(SN
N ) so that

Zτ.
N =

1
N

logE
[
eNτ

SN
N

]
= eφ(τ) = e−Nρ .

Hence

dQN(x) :=
eNτx

Zτ.
N

dPN(x)

which precisely corresponds to the law of a sum of N independent copies of variable Y
of law with the repartition function

FY (y) = eρ

∫ y

−∞

eτxdFX(x).

As appear in the proof, the goal of introducing such a tilted measure it to
rely on the CLT arguments. In fact, we know that we can use a CLT at the

minimum of the good rate function (see remark (9.4)), and Varadhan’s lemma ensures
that

HQ(0) = φ(τ)− τ×0+H(0) = φ(τ)+ρ = 0.

Varadhan’s Lemma (for continuous bounded functions) admits a recipro-
cal theorem (proof can be found e.g. in [84, Section 4.4.]):
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Theorem 9.6.4 (Bryc’s Lemma). Let (PN)N be an exponentially tight family of
probability measures on

(
Σ,B(Σ)

)
such that, for any f ∈ Cb(Σ), the quantity

Λ( f ) := lim
N

1
N

log
(∫

Σ

eN f (x)dPN(x)
)

exists in R. Then (PN)N satisfies a FLDP with good rate function

H(x) = sup
f∈Cb(Σ)

{
f (x)−Λ( f )

}
.

Moreover, for any f ∈ Cb(Σ) we have Λ( f ) = sup
x∈Σ

[
f (x)−H(x)

]
.

Bryc’s theorem can be seen as an infinite dimensional version of Gartnër-
Ellis theorem (see [185]). Remark that it proves an interesting Fenchel du-

ality in a non-convex setting.

9.6.1 Remarks on Legendre transform and convex rate func-
tions

Because of the ubiquity of the Legendre transform in the theory, it seems im-
portant to fully understand in what extent good rate functions are all Legen-

dre transform of the logarithmic moment generating function. In this short section,
inspired from [86, Section 2.2.], we will gather our knowledge on the theory to answer
this question.

In order to encompass all the settings we have encountered so far, we will
work, in this section, on X , a locally convex Hausdorff real topological vector

space. We will denote its real topological dual space by X∗, and the associated duality
bracket by X∗〈·, ·〉X . Moreover, as done in we will let E ⊂ X be a closed convex subset,
Polish with respect to the inherited topology, and consider sequence of probability
measures (PN)N lying in M+

1 (Σ). In this theoretical framework, we will cite, without
proof, a few clarifying results from [86, Section 2.2.].

Here are the canonical examples one should have in mind:
Example. (i) X = E =Rd , X∗ =Rd , X∗〈·, ·〉X = 〈·, ·〉Rd is the Euclidean scalar product

on Rd . d ∈N∗. This encompasses Cramér’s and Gartnër-Ellis theorems.

(ii) X = M+(Σ), E = M+
1 (Σ), X∗ = Cb(Σ), and X∗〈φ ,µ〉X :=

∫
Σ

φ(x)dµ(x), where Σ is
Polish space. This setting accounts for Sanov’s theorem.

We first extend the definition of Legendre transform to real topological
Hausdorff spaces:

Definition 9.6.1. Let Λ be a convex map from X∗ to R̄. Then, its Legendre
transform is the map from X to R̄ defined by:

Λ
∗(x) := sup

t∈X∗

{
X∗〈t,x〉X −Λ(t)

}
,∀x ∈ X .

We will denote Λ∗E its restriction to the closed convex set E

Moreover, we introduce the logarithmic moment generating function of
probability measure µ ∈M+

1 (X):

Λµ(t) := log
(∫

X
eX∗ 〈t,x〉X dµ(x)

)
∈ [−∞,∞],∀t ∈ X∗. (9.14)
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With the many insights given by the theory on how to find the rate func-
tion, let us try to understand why and when it corresponds to a Legendre

transform. First, stepping back on what we have done in the above, it appears that
an upper-bound for closed sets involving the Legendre transform of the logarithmic
moment generating function (when it exists), naturally arises from an exponential
Chebyshev’s inequality. Moreover, in both Cramér’s and Sanov’s theorems, the good
rate function of the FLDP is precisely given by this Legendre transform. Because of
the inconvenient dependency in N, Gartnër-Ellis theorems, suggests another version
of asymptotic logarithmic moment generating function:

∀t ∈ X∗, Λ(t) := lim
N

1
N

ΛPN (Nt),

that condenses the asymptotic Laplace moments of the sequence (PN)N , should they
exist in R̄.

This intuition is also compatible with both Cramér’s and Sanov’s theorem.
Let X := (Xi)i∈N∗ be a sequence of independent random variables of law P.

In the first case P ∈M+
1 (R), PN = L (SN

N ) and provided the existence of exponential
moments, we find

1
N

ΛPN (Nt) =
1
N

logE
[
eNt SN

N

]
= ΛP(t),∀t ∈R.

In the second case, P ∈M+
1 (Σ), Σ being a Polish space, PN = P⊗N

(
µ̂X

N ∈ ·
)
∈

M+
1

(
M+

1 (Σ)
)
, and for any φ ∈ Cb(Σ),

1
N

ΛPN (Nφ) =
1
N

log
(∫

M+
1 (Σ)

eN
∫

Σ
φ(x)dµ(x)dPN(µ)

)
=

1
N

logE
[

eN
∫

Σ
φ(x)dµ̂X

N (x)
]

=
1
N

logE
[
e∑

N
i=1 φ(Xi)

]
= ΛP(δX∈·)(φ).

Hence, in these two independent cases, the sequence
( 1

N ΛPN (Nt)
)

N are sta-
tionary, and equal the logarithmic moment generating function originally

introduced in both theorems.
We now state some general results applying to the topological framework

introduced in the section.

Theorem 9.6.5. Let (PN)N ∈M+
1 (X)N

∗ , and assume that

Λ(t) := lim
N

1
N

ΛPN (Nt) ∈ [−∞,∞] (9.15)

exists for every t ∈ X∗. Then, Λ is convex on X∗. Moreover, its Legendre transform Λ∗

(in the sense of (9.6.1)) satisfies the upper-bound for closed sets:

∀Γ ∈B(E), limsup
1
N

logPN(Γ)≤− inf
Γ̄

{
Λ
∗
E
}
.

Proof. See [86, Section 2.2.].

This theorem only partially confirms our intuition. Its proof, fully per-
formed in [86], relies classically on an exponential Chebyshev’s inequality

and optimization in order to obtain an upper-bound for closed sets (see (21)). Never-
theless, supposing that (PN)N satisfies a FLDP with good rate function H, this upper-
bound dominated by Λ∗E only provides an inequality: Λ∗E ≤ H (see Proposition (9.4.1)).
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The lower-bound is more difficult to obtain, as illustrated by the demonstration of
Cramér’s Theorem. If it holds, the rate function must then be the Legendre trans-
form: Λ∗E = H, making H a convex function.

Nevertheless, the rate function has no particular reason for being convex!
While convex rate functions naturally arise for the large deviations of i.i.d.

sequences of random variables (see [86, Section 3.] and [85, Section III.7]), and is pre-
served by the contraction principle for linear transform, dependent sequences of ran-
dom variables generally produce non-convex rate functions. The contraction principle
9.6.1 and Theorem (9.6.3) furnish an opportune way of building counterexamples: we
can easily pick an f ∈ Cb(Σ) in order for the rate functions J(y) := H( f−1({y})) and
HQ(x) := supΣ

{
f −H

}
− ( f (x)−H(x)) to fail to be convex. Provided that (PN)N satisfies

a FLDP with a good rate function H that is convex, the following lemma ensures that
a tail condition brings the identity H = Λ∗E .

Lemma 9.6.6. Let (PN)N satisfy a FLDP with convex good rate function H on
a Polish space endowed with its Borel σ -field

(
X ,B(X)

)
, and suppose that

lim
M→∞

limsup
N→∞

1
N

log
(∫
{X∗ 〈t,x〉X≥M}

eX∗ 〈Nt,x〉X dPN(x)
)
=−∞,∀t ∈ X∗.

Then the limit function Λ(t) of (9.15) exists ∀t ∈ X∗, and satisfies H = Λ∗E .

Proof. Let us first extend H to the whole X by setting it to +∞ outside E. We
will denote HX this extension, which is also convex. We apply 3. of Varad-

han’s Lemma with the extended condition of remark 28 to the function ft : x→Σ∗ 〈t,x〉Σ
to obtain that Λ(t) = supx∈Σ

{
ft(x)−H(x)

}
= supx∈Σ

{
ft(x)−HX(x)

}
= H∗X(t). As HX satis-

fies the hypothesis of Theorem (9.2.3), it follows the Fenchel-Legendre duality equa-
tion: HX = H∗∗X = Λ∗, so that the proof is completed.

The case of Varadhan’s lemma and Bryc’s theorem is slightly more subtle.
In order to dwell in our topological framework, we would like to work with

probability measures on M+
1 (Σ) rather than Σ.

A natural way to do so is to define P̂N := PN
(
δx ∈ ·

)
= PN

(
{x ∈ Σ,δx ∈ ·}

)
.

Interestingly, for any φ ∈ Cb(Σ):

ΛP̂N
(Nφ) = log

(∫
M+

1 (Σ)
eN

∫
Σ

φ(y)dµ(y)dP̂N(µ)

)
= log

(∫
Σ

eN
∫

Σ
φ(y)dδx(y)dPN(x)

)
= log

(∫
Σ

eNφ(x)dPN(x)
)
,

which is precisely the kind of integrals found in Varadhan’s lemma. The following
promising lemma ensures that this comparison makes some sense. It is also an illus-
tration that good rate functions are not always Legendre transform.

Lemma 9.6.7. Let (PN)N be a sequence of probability measure on a Polish
space Σ, and define P̂N := PN(δx ∈ ·) ∈M+

1

(
M+

1 (Σ)
)
. Then, we have the equiv-

alence between the two following assertions:

(i) (PN)N satisfies a FLDP on
(
Σ,B(Σ)

)
,

(ii) (P̂N)N satisfies a FLDP on
(
M+

1 (Σ),B
(
M+

1 (Σ)
))

.
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If these hold, the respective good rate functions H and Ĥ satisfy

∀µ ∈M+
1 (Σ), Ĥ(µ) =

{
H(x) if exists x ∈ Σ, such that µ = δx,
+∞, if not. (9.16)

Moreover, if (P̂N)N is such that the limits

Λ(φ) := lim
N

1
N

ΛP̂N
(Nφ) = lim

N

1
N

log
(∫

Σ

eNφ(x)dPN(x)
)
∈ [min

Σ
φ ,max

Σ
φ ],

exists in R, then the Legendre transform Λ∗ : M+(Σ)→ R̄ exists and coincide with Ĥ
on Dirac masses δx,x ∈ Σ. Furthermore, we have the equivalence

Ĥ = Λ
∗
M+

1 (Σ) ⇐⇒ Ĥ is convex ⇐⇒ ∃x ∈ Σ, H−1(R) = H−1({0}) = {x}.

Remark 30. (i) We can show (see 9.7.2) that the map Λ∗ is uniformly +∞ on M+(Σ)\M+
1 (Σ),

and that, when H is sufficiently regular, we have for any µ ∈M+
1 (Σ)

Λ
∗(µ) =

∫
Σ

H(x)dµ(x).

Moreover, supposing that H is a Legendre transform of some kind (as suggested
by Bryc’s theorem) non infinite at at least two points, Ĥ would loose this good
property.

(ii) Suppose that (PN)N satisfies a FLDP with good rate function H, so that (P̂N)N

satisfies a FLDP with good rate function Ĥ. Then, if Ĥ is not a Legendre trans-
form, there is no point iterating the process. In fact, let ̂̂PN := P̂N(δx ∈ ·) = PN

({
x∈

Σ,δδx ∈ ·
})
∈M+

1

(
M+

1

(
M+

1 (Σ)
))

, that satisfies a FLDP with good rate function̂̂H. Observe that Ĥ is a Legendre transform if and only if ̂̂H is, that is when
H−1(R) admits only one element.

The relevance of this lemma, striving to include Varadhan’s setting into
the framework of locally convex Hausdorff topological vector spaces, is ques-

tionable. Firstly, its statement hide a powerlessness, as the condition for Ĥ to be
convex is extremely restrictive: H−1(R) = H−1({0}) = {x} for some x ∈ Σ! In this very
particular hardly representative case, their is no need to make such efforts as to
consider (P̂N)N . We would better choose the closed convex set E to be equal to {δx}.
Provided the existence of the logarithmic moment generating function Λ, the inequal-
ity 0 = H ≥ Λ∗E turns into an equality H = Λ∗E . But we know nothing of more general
cases where H−1(R) is not a singleton. Moreover, supposing that H has good proper-
ties (for example is a non-trivial Legendre-transform), Ĥ would automatically fail to
reproduce them.

Secondly, one striking characteristic of Varadhan’s and Bryc’s settings is
that they deal with non-convex and non-linear functions on a Polish space Σ

that has no reason to be a vector space. In this context, it seems hardly appropriate
to plunge them into the framework of real Hausdorff topological vector spaces, or to
even hope that the good rate function will be convex. One very interesting insights
of Bryc’s theorem nevertheless relates it with a form of Fenchel duality through the
equalities:

∀x ∈ Σ, H(x) = sup
φ∈Cb(Σ)

{
φ(x)−Λ(φ)

}
, ∀φ ∈ Cb(Σ), Λ(φ) = sup

x∈Σ

{
φ(x)−H(x)

}
.

This relation is investigated in the next section.
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9.6.2 Non-convex Fenchel duality

In this section, X denotes a (complete) metric space. We first introduce a
non-convex Fenchel duality for a class of functions from X → R̄ that includes

rate functions.

Definition 9.6.2. Let f be a function from X to R∪{+∞}. Its conjugate is the
function f× from Cb(X) to R̄ defined by

f×(φ) := sup
x∈X

{
φ(x)− f (x)

}
for any φ ∈Cb(X). The conjugate of any Λ : Cb(X)→ R̄ is the function Λ× : X→R∪{+∞}
defined by

Λ
×(x) := sup

φ∈Cb(X)

{
φ(x)−Λ(φ)

}
.

Moreover, f×× is called the second conjugate of f .

Remark 31. It is also possible to restrict these definitions to any subspace
A (X) of Cb(X) by considering only φ ∈ A (X). The obtained conjugate func-

tions of course depend on the choice of A (X).

Theorem 9.6.8. Let f : X →R∪{+∞} be bounded from below. Then

(i) f× is a convex Lipschitz-continuous function of
(
Cb(R),‖·‖∞

)
,

(ii) f×× is lower semi-continuous, bounded from below with f×× ≤ f ,

(iii) f×× = f if and only if f is not uniformly infinite and lower semi-continuous.

Proof. This corresponds to [20, Theorems 2.1-2] for the particular case A (X)=
Cb(X)

Remark 32. (i) For any f : X → R ∪ {+∞} lower semi-continuous, bounded from
above and non uniformly infinite, [20, Theorems 2.8-9] also ensures that f×

satisfies a notion of differentiability on a Gδ dense G ⊂ Cb(X). More precisely
∀φ ∈ G,∃x ∈ X

∀h ∈ Cb(X), lim
t→0+

1
t

(
f×(φ + th)− f×(φ)−Cb(X) 〈h,δx〉M+(X)

)
= 0,

and
φ(z)− f (z) = sup

y∈X

{
φ(y)− f (y)

}
⇐⇒ z = x.

(ii) Similar results hold for a number of subspaces A (X) ⊂ Cb(X). See [20] for fur-
ther details.

In the case of a Polish space
(
Σ,B(Σ)

)
endowed with its Borel σ -field,

theorem (9.6.8) ensures that virtually any rate function are some kind of
non-convex Legendre transform:

Lemma 9.6.9. Let (PN)N be a sequence of probability measures of
(
Σ,B(Σ)

)
.

Then, we have the following:
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(i) Any rate function H satisfies:

∀x ∈ Σ, H(x) = H××(x) = sup
φ∈Cb(Σ)

{
φ(x)−H×(φ)

}
.

(ii) If (PN)N is exponentially tight and admits a logarithmic moment generating
function:

Λ(φ) := lim
N

1
N

ΛPN (Nφ) := lim
N

1
N

log
(∫

Σ

eNφ(x)dPN(x)
)
∈ [min

Σ
φ ,max

Σ
φ ], (9.17)

then Λ×× = Λ and (PN)N satisfies a FLDP with good rate function Λ×.

Proof. These two assertions are easy consequences of Bryc’s theorem along
with Theorem (9.6.8).

Remark 33. With this in mind and supposing (9.17) holds, the form of the
inherited rate function HQ for the sequence of ”tilted” probability measures

(QN)N in Varadhan’s corollary, is elementary. In fact, let f ∈ Cb(Σ) and define the
”tilted” probability measure on Σ:

dQN :=
eN f

Z f
N

dPN .

We have, for any φ ∈ Cb(Σ)

ΛQN (Nφ) = log
(∫

Σ

eN( f (x)+φ(x))dPN(x)
)
− log

(∫
Σ

eN f (x)dPN(x)
)
,

so that the logarithmic moment generating function of QN also exists:

ΛQ(φ) := lim
N

1
N

ΛQN (Nφ) = Λ( f +φ)−Λ( f ),

and necessarily, HQ = Λ
×
Q . As H× = Λ×× = Λ, remark that for any x ∈ Σ,

Λ
×
Q(x) = sup

φ∈Cb

{
φ(x)−ΛQ(φ)

}
= Λ( f )− f (x)+ sup

φ∈Cb

{
( f +φ)(x)−Λ( f +φ)

}
= Λ( f )+Λ

×(x)− f (x) = sup
y∈Σ

{
f (y)−H(y)

}
−
(

f (x)−H(x)
)
.

9.7 LARGE DEVIATIONS APPENDIX

9.7.1 Sanov’s theorem for finite sequences.

In this section we will a toy version of Sanov’s Theorem in order to give the
general idea underlying the theorem and highlight its links with information

theory. It will apply to the very limited case of finite alphabet Σ =
{

a1,a2, . . . ,aK
}
,K ∈

N, for which the proof relies on combinatorial methods.
Let X :=

(
X1, . . . ,XN , . . .

)
be a sequence of Σ-valued i.i.d. random variables

with law P ∈M+
1 (Σ). When Σ =

{
a1,a2, . . . ,aK

}
is a finite alphabet, one can

identify M+
1 (Σ) with the fragment of the hyperplane of RK

{
y ∈ (R+)

K ,∑K
i=1 yi = 1

}
.

Define the support of P by ΣP :=
{

ai : P(ai)> 0
}
⊂ Σ.
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Definition 9.7.1 (Empirical measure). Let y be an element of Σd , d ∈ N̄∗. Its
sequence of empirical measures

(
µ̂N
)

N≤d ∈M+
1

(
Σ
)d is defined by

µ̂
y
N :=

1
N

N

∑
i=1

δyi ,

where δx ∈M+
1

(
Σ
)

is the degenerate measure at x ∈ Σ.

Let LN :=
{

µ̂
y
N , y ∈ ΣN

}
denote the set of all possible empirical measure

sequence of length N, so that µ̂X
N is a random element of LN .

Lemma 9.7.1. (i) Card
(
LN
)
≤ (N +1)K ,

(ii) ∀µ ∈M+
1 (Σ),

dV (µ,LN) := inf
ν∈LN

dV (µ,ν)≤
K

2N
,

where dV (µ,ν) := supA⊂Σ is the variational distance between the measure µ and
ν .

Proof. 1. It suffices to see that, given an element µ of LN and a ai ∈ Σ, the
quantity µ(ai) has at most N +1 possible values: k

N , k ∈ [[0,N]].
2. On a finite alphabet, we can get rid of the supremum in the expression of the
variational distance

∀µ,ν ∈M+
1 (Σ), dV (ν ,µ) =

1
2

K

∑
i=1
|µ(ai)−ν(ai)|.

In fact, as the subsets of Σ are of finite number, the supremum is attained. Let A⊂ Σ

in which it is attained. Then, for any ai ∈ A, µ(ai) ≥ ν(ai), whereas for any ai 6∈ A,
µ(ai)≤ ν(ai) by maximality. Remark now that

0 =
K

∑
i=1

µ(ai)−ν(ai) = dV (µ,ν)+ ∑
i:ai /∈A

µ(ai)−ν(ai),

so that
dV (µ,ν) = ∑

i:ai /∈A
|µ(ai)−ν(ai)|= ∑

i:ai∈A
|µ(ai)−ν(ai)|.

Fix then µ ∈M+
1 (Σ), and consider for any i ∈ [[1,K]] the quantity pi =

1
N bNµ(ai)c ≥

µ(ai)< pi +
1
N . Let k ∈ [[0,N]] such that ∑

K
i=1 pi =

k
N . Then, exists at least N− k distinct i

such that pi < µ(ai). For N− k such i define p̃i = pi +
1
N and set p̃i = pi for the others i.

Then ν ∈LN define by ν(ai) = p̃i satisfies our condition.

Definition 9.7.2. Let µ ∈ LN . Then its type class is defined by TN(µ) :={
(y1, . . . ,yN), µ̂

y
N = µ, y ∈ ΣN

}
⊂ ΣN .

We now define a central objects that will play the role of the good rate
function in Sanov’s Theorem:

Definition 9.7.3 (Entropy, relative Entropy). Let Σ =
{

a1,a2, . . . ,aK
}

be a finite
set, and µ,ν ∈M+

1 (Σ). Then, the entropy of a µ is defined by

I(µ) :=−
K

∑
i=1

µ(ai) log µ(ai).
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Moreover, the relative entropy of ν with respect to µ is defined by

I(ν |µ) :=
K

∑
i=1

ν(ai) log
ν(ai)

µ(ai)
.

A few insights of these notions are given in the next section.

Proposition 9.7.2. , Let µ,P∈M+
1 (Σ), and define DI(·|P) :=

{
µ ∈M+

1 (Σ), I(µ|P)<
∞
}

. Then

(i) µ → I(µ|P) is convex and lower semi-continuous,

(ii) I(µ|P)≥ 0 with equality iff µ = P.

(iii) I(µ|P) = ∞ ⇐⇒ µ 6� P,

(iv) µ → I(µ|P) is a good rate function.

Proof. If Σµ 6⊂ΣP, then exists i∈ [[1,K]] such that µ(ai)> 0=P(ai). This implies
µ(ai) log µ(ai)

P(ai)
= +∞, which proves the third point. To prove the first point,

first remark that µ → I(µ|P) is obviously continuous on DI(·|P). Suppose that µN → µ,
which implies in particular µN(ai)→ µ(ai) for every i ∈ [[1,K]]. If Σµ 6⊂ ΣP, this implies
µN 6∈ DI(·|P) for N large enough, so that I(µN |P)→ I(µ|P) = ∞. Moreover, if Σµ ⊂ ΣP

either exists infinitely many N such that µN ∈ DI(·|P) so that lower semi-continuity
hold by continuity of I(·|P) on DI(·|P), either such Ns are finite, in which case lower
semi-continuity trivially holds as liminf I(µN |P) = +∞. Furthermore, strict convexity
of x→ x log(x) yields strict convexity of I(·|P) on DI(·|P), so that 1. is proved. We now
suppose that Σµ ⊂ ΣP, that is µ ∈ DI(·|P). Jensen inequality yields

I(µ|P) =
K

∑
i=1

ν(ai)

µ(ai)
log

ν(ai)

µ(ai)
µ(ai)≥

( K

∑
i=1

ν(ai)

µ(ai)
µ(ai)

)
log
( K

∑
i=1

ν(ai)

µ(ai)
µ(ai)

)
= 0.

Moreover, if µ 6= P, then

0≤ I
(1

2
(µ +P)|P

)
<

1
2

I(µ|P)

which proves the second point. To prove the fourth point, it suffices to remark that
for any a > 0, the set Ka :=

{
µ, I(µ|P)≤ a

}
⊂ DI(·|P) is closed in finite dimension.

Lemma 9.7.3. (i) Let µ ∈LN , and yN := (y1, . . . ,yN) ∈ TN(µ). Then

P

(
XN = yN

)
= e−N

(
I(µ)+I(µ|P)

)
.

In particular, this probability does not depend on yN ∈ TN(µ).

(ii) (N +1)−KeNI(µ) ≤Card
(
TN(µ)

)
≤ eNI(µ),

(iii) (N +1)−Ke−NI(µ|P) ≤P
(
µ̂

XN
N = µ

)
≤ e−NI(µ|P)

Proof. 1. If µ 6� P, both sides equal 0 and the result trivially holds. Suppose
that µ � P, that is Σµ ⊂ ΣP. Then, as ai appears exactly Nµ(ai) times in yN ,

P

(
XN = yN

)
=

K

∏
i=1

P(ai)
Nµ(ai).
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Furthermore,

I(µ)+ I(µ|P) =−
K

∑
i=1

µ(ai) logP(ai),

so that the result holds.
2. Let Y1, . . . ,YN be an i.i.d. sequence of law µ. Then, using 1. and H(µ|µ) = 0,

1≥P
(
µ̂

YN
N = µ

)
=P

(
YN ∈ TN(µ)

)
= ∑

yN∈TN(µ)

P
(
YN = yN

)
= e−NH(µ)Card

(
TN(µ)

)
,

so that the upper bound holds. Let ν ∈ LN such that Σν ⊂ Σµ , and observe that
Card

(
TN(ν)

)
= N!

∏
K
i=1(Nν(ai))!

. Moreover,

P
(
µ̂

YN
N = µ

)
P
(
µ̂

YN
N = ν

) =
Card

(
TN(µ)

)
∏

K
i=1 µ(ai)

Nµ(ai)

Card
(
TN(ν)

)
∏

K
i=1 µ(ai)Nν(ai)

=
K

∏
i=1

(Nν(ai))!
(Nµ(ai))!

µ(ai)
N
(

µ(ai)−ν(ai)
)
.

As m!
l! ≥ lm−l for any (m, l) ∈ Z2

+, we have

P
(
µ̂

YN
N = µ

)
P
(
µ̂

YN
N = ν

) ≥ K

∏
i=1

NN
(

ν(ai)−µ(ai)
)
= NN ∑

K
i=1

(
ν(ai)−µ(ai)

)
= 1.

Hence, for every ν ∈LN ,
P
(
µ̂

YN
N = µ

)
≥P

(
µ̂

YN
N = ν

)
,

so that

1 = ∑
ν∈LN

P
(
µ̂

YN
N = ν

)
≤Card

(
LN

)
P
(
µ̂

YN
N = µ

)
≤ (N +1)Ke−NH(µ)Card

(
TN(µ)

)
.

3. By 1.,

P
(
µ̂

XN
N = µ

)
=Card(TN(µ))e

−N
(

I(µ)+I(µ|P)
)
,

so that the result is an immediate consequence of 2. .

We are now able to state Sanov’s Theorem:

Theorem 9.7.4 (Sanov’s Theorem for finite Alphabet). For every Borel set Γ of
M+

1 (Σ),

− inf
µ∈
◦
Γ

I(µ|P)≤ liminf
1
N

logP
(

µ̂
XN
N ∈ Γ

)
≤ limsup

1
N

logP
(

µ̂
XN
N ∈ Γ

)
≤− inf

µ∈Γ̄

I(µ|P).

Proof. Using the result of the previous lemma, we have

P
(
µ̂

XN
N ∈ Γ

)
= ∑

µ∈LN∩Γ

P
(
µ̂

XN
N = µ

)
≤ ∑

µ∈LN∩Γ

e−NI(µ|P)

≥Card(LN ∩Γ)e
−N inf

µ∈LN∩Γ

I(µ|P)
≤ (N +1)Ke

−N inf
µ∈LN∩Γ

I(µ|P)
. (9.18)

Similarly,

P
(
µ̂

XN
N ∈ Γ

)
≥ ∑

µ∈LN∩Γ

(N +1)−Ke−NI(µ|P) ≥ (N +1)−Ke
−N inf

µ∈LN∩Γ

I(µ|P)
.
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As 1
N log

(
(N + 1)K

)
→ 0, and LN ∩Γ ⊂ Γ̄, (9.18) yields, the upper bound of the LDP,

whereas we only have

liminf
N→∞

1
N

logP
(
µ̂

XN
N ∈ Γ

)
=− limsup

N→∞

{
inf

µ∈LN∩Γ

I(µ|P)
}

for the lower bound. Nevertheless, as Γ is open, for any µ ∈
◦
Γ,∃ηµ > 0 such that{

ν ,dV (µ,ν)≤ ηµ

}
⊂ Γ. By Lemma 9.7.1, exists µN ∈LN ∩Γ such that µN→N µ. Choose

now µ ∈
◦
Γ such that inf

ν∈
◦
Γ

H(ν |P)≥ H(µ|P)− ε. Then

inf
ν∈LN∩Γ

H(ν |P)≤ H(µN |P)→ H(µ|P)

limsup
N→∞

{
inf

ν∈LN∩Γ

H(ν |P)
}
≤ lim

N
H(µN |P)≤ inf

ν∈
◦
Γ

H(ν |P)+ ε,

so that sending ε ↘ 0 yields the lower bound.

9.7.2 Proof of abstract Varadhan setting

Proof. of Lemma (9.6.7): Define the map:

δ :=
{

Σ →M+
1 (Σ)

x → δx
(9.19)

which is continuous as δxp

L→p δx ⇐⇒ xp →p x. Remark that P̂N = PN ◦ δ−1. Then, 1.
=⇒ 2. is a consequence of the contraction principle. Let us now prove this is an
equivalence. In fact, suppose that P̂N satisfies a FLDP with good rate function Ĥ:

−Ĥ
( ◦
Γ
)
≤ liminf

1
N

log P̂N(Γ)≤ limsup
1
N

log P̂N(Γ)≤−Ĥ
(
Γ̄
)
,

and take a probability measure µ 6= δx, ∀x ∈ Σ. Then exists ε > 0 such that
the open ball B(µ,ε) ∈B

(
M+

1 (Σ)
)

contains no Dirac mass (indeed, if not we

could find a sequence δxp such that δxp

L→ µ implying in particular ∃x ∈ Σ,µ = δx, and
xp → x). As P̂N(B(µ,ε)) = 0, the lower-bound ensures that Ĥ

(
B(µ,ε)

)
= +∞, so that

Ĥ(µ) = +∞. Define

H :=
{

Σ → [0,+∞]
x → Ĥ ◦δ (x).

(9.20)

which is clearly lower semi-continuous and non uniformly infinite. Moreover, as δ :
Σ→ δ (Σ) is a bijective map with continuous inverse, and as the compact set

{
Ĥ ≤ a

}
⊂

δ (Σ) for any a ∈R, it follows that
{

x ∈ Σ, H ≤ a
}
= δ−1

({
Ĥ ≤ a

})
is also compact, so

that H is a good rate function. The FLDP of P̂N is easily converted into:

−H
( ◦
Γ
)
≤ liminf

N

1
N

logPN(Γ)≤ limsup
N

1
N

logPN(Γ)≤−H
(
Γ̄
)
.

Observe that Λ is convex by Hölder inequality, so that it satisfies the assumptions
of Theorem (9.2.3), and its Legendre transform Λ∗ indeed exists and satisfies the
equality of Fenchel-Legendre duality. Suppose now that (P̂N) satisfies a FLDP. On the
one hand, Lemma (9.6.7), Proposition (9.4.2) and Bryc’s theorem respectively ensure
that (PN)N satisfies a FLDP, is exponentially tight, and that the associated good rate
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is given by H : x ∈ Σ→ supφ∈Cb(Σ)

{
φ(x)−Λ(φ)

}
. On the other hand, Lemma (9.6.7)

ensures that the good rate function associated with the FLDP of (P̂N) is given by:

Ĥ :=


M+

1 (Σ) → R̄

µ →
{

supφ∈Cb(Σ)

{
φ(x)−Λ(φ)

}
if exists x ∈ Σ such that µ = δx,

+∞ if not.
(9.21)

Remark that Λ∗ and Ĥ indeed coincide on Dirac masses δx,x ∈ Σ. Moreover, remark
that if exists two distinct points x,y∈ Σ such that Ĥ(δx) = H(x), Ĥ(δy) = H(y)<+∞ then
Ĥ can not be convex, has

+∞ = Ĥ
(δx +δy

2
)>

H(x)+H(y)
2

,

so that it can not coincide with Λ∗ which is convex by Proposition (9.2.1). Indeed,
Ĥ is convex if and only if exists a unique x ∈ Σ such that H(x) = 0, and ∀y ∈ Σ, y 6=
x, H(y) = +∞. In this case, Varadhan’s lemma point 3.ensures that, for any φ ∈ Cb(Σ),
Λ(φ) = supy∈Σ

{
φ(y)−H(y)

}
= φ(x), so that

Λ
∗(ν) = sup

φ∈Cb(Σ)

{∫
Σ

(
φ(y)−φ(x)

)
dν(y)

}
,

which equals +∞ as soon as ν 6� δx.

Proof of remark (30).1

Proof. 1. Suppose that ν(Σ) > 1, and take the constant function φ = M ∈
Cb(Σ), with M ∈R∗+. Then

Λ
∗(ν)≥

∫
Σ

Mν(x)−Λ(M) = M(ν(Σ)−1),

so that sending M → ∞, we conclude that Λ∗(ν) = +∞. The same holds if ν(Σ) < 1,
choosing φ =−M ∈ Cb(Σ). Hence, Λ∗ =+∞ outside M+

1 (Σ).
2. Suppose that exists a point y ∈ Σ with µ({y}) > 0 and H(y) > 0. Then, exists ε > 0
such that H

(
B(y,ε)

)
> 2−µ({y})

2 H(y). For p ∈N∗, define a continuous positive function
φp : Σ→R with support in B(y, 1

p) and uniformly equal to its maximal value H(y) on
the ball B(y, 1

2p). Then, for p large enough so that B(y, 1
p)⊂ B(y,ε),

Λ
∗(µ)≥

∫
Σ

φp(z)dµ(z)− sup
x∈Σ

{
φp(x)−H(x)

}
=
∫

B(y, 1
2p )

φp(z)dµ(z)− sup
x∈B(y,ε)

{
φp(x)−H(x)

}
≥ H(y)µ

(
B(y,

1
2p

)
)∫

φp(z)dµ(z)− sup
x∈B(y,ε)

{
φp(x)

}
+H

(
B(y,ε)

)
≥ H(y)

µ({y})
2

.

3. Suppose that H is continuous on DH :=
{

x ∈ Σ,H(x) < ∞
}

. Then, for any M ∈ R+,
H ∧M is integrable with respect to µ, as it is continuous and µ is a Borel measure.
Furthermore, H ∧M ∈ Cb(Σ), supΣ

{
H ∧M−H

}
= 0, so that

Λ
∗(µ)≥

∫
Σ

H(x)∧Mdµ(x).

The Monotone Convergence theorem then yields,

Λ
∗(µ)≥

∫
Σ

H(x)dµ(x).
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Reversely, for any φ ∈ Cb(Σ), remark that supΣ

{
φ −H

}
≤ supΣ φ so that

∫
Σ

H(x)dµ(x) =
∫

Σ

φ(x)dµ(x)− sup
Σ

{
φ −H

}
+

{
sup

Σ

{
φ −H

}
−
∫

Σ

φ(x)−H(x)dµ(x)
}

︸ ︷︷ ︸
≥0

so that taking the supremum in φ ∈ Cb(Σ) gives

∫
Σ

H(x)dµ(x)≥ Λ
∗(µ).
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General Notations

LLN
SLLN
CLT
LDP
DCT
MCT
B.D.G.
C.S.
IBP
SDE
ODE
:=
a∧b
a∨b
⊂
L
=
L→
Q� P
Q' P⊗
Σ

M+(Σ)
M+

1 (Σ)
Cµ,ν

δx

Γ̄
◦
Γ

Γc

B(ν ,δ )
‖ · ‖∞,t

limN

N (m,v)
1A

x
Fubini
≤ ,

Fub.
≤

Law of Large Numbers.
Strong Law of Large Numbers.
Central Limit Theorem.
Large Deviations Principles.
Dominated Convergence Theorem.
Monotone Convergence Theorem.
Burkholder-Davis-Gundy.
Cauchy-Schwarz.
Integration By Part.
Stochastic differential equation.
Ordinary differential equation.
Defined as.
min(a,b).
max(a,b).
Subset of.
Equal in law.
Convergence in law.
Absolutely continuity of measures.
Equivalence of measures.
Tensorial product of measures.
A Polish space.
The set of positive Borel measures on Σ.
The set of positive Borel probability measures on Σ.
The set of measures ξ ∈M+

1

(
Σ×Σ

)
with marginal µ and ν .

The probability measure singular at x ∈ Σ.
Closure of Γ.
Interior of Γ.
Complement of Γ.
The open ball centered at ν with radius δ (various metrics).
In Chapter 4, the supremum norm on C

(
[−τ, t],R

)
.

limN→+∞.
The Gaussian distribution with mean m and variance v.
Indicator function of A.
Vector (x1, . . . ,xN).
Inequality obtained with Fubini’s theorem (this also function for
other theorem or inequalities and referenced equations).
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theory for random recurrent spiking neural networks. In NOLTA, volume 5,
pages 18–21, 2005.

[60] Bruno Cessac and Manuel Samuelides. From neuron to neural networks dy-
namics. EPJ Special topics: Topics in Dynamical Neural Networks, 142(1):7–
88, 2007.

[61] RD Chervin, PA Pierce, and BW Connors. Periodicity and directionality in the
propagation of epileptiform discharges across neocortex. Journal of Neurophys-
iology, 60(5):1695–1713, 1988.

[62] Hayato Chiba. A proof of the kuramoto conjecture for a bifurcation structure
of the infinite-dimensional kuramoto model. Ergodic Theory and Dynamical
Systems, 35(03):762–834, 2015.

[63] MY Choi, HJ Kim, D Kim, and H Hong. Synchronization in a system of globally
coupled oscillators with time delay. Physical Review E, 61(1):371, 2000.



BIBLIOGRAPHY 225

[64] Nikhil Chopra and Mark W Spong. On exponential synchronization of ku-
ramoto oscillators. IEEE Transactions on Automatic Control, 54(2):353–357,
2009.

[65] Eugene F Civillico and Diego Contreras. Integration of evoked responses in
supragranular cortex studied with optical recordings in vivo. Journal of neuro-
physiology, 96(1):336–351, 2006.

[66] JD Clements. Transmitter timecourse in the synaptic cleft: its role in central
synaptic function. Trends in neurosciences, 19(5):163–171, 1996.

[67] S. Coombes and M. R. Owen. Bumps, breathers, and waves in a neural network
with spike frequency adaptation. Phys. Rev. Lett., 94(14), 2005.

[68] Stephen Coombes. Waves, bumps, and patterns in neural fields theories. Bio-
logical Cybernetics, 93(2):91–108, 2005.

[69] Stephen Coombes, Peter beim Graben, Roland Potthast, and James Wright.
Neural Fields. Springer, 2014.

[70] Stephen Coombes and Carlo Laing. Delays in activity based neural networks.
Submitted to the Royal Society, 2011.

[71] Jack D Cowan. A statistical mechanics of nervous activity. Technical report,
DTIC Document, 1969.

[72] JD Cowan. Statistical mechanics of nervous nets. In Neural networks, pages
181–188. Springer, 1968.

[73] G Da Prato and J Zabczyk. Stochastic equations in infinite dimensions. Cam-
bridge Univ Pr, 1992.

[74] Paolo Dai Pra and Frank den Hollander. Mckean-vlasov limit for interacting
random processes in random media. Journal of statistical physics, 84(3-4):735–
772, 1996.

[75] Hiroaki Daido. Lower critical dimension for populations of oscillators with ran-
domly distributed frequencies: a renormalization-group analysis. Physical re-
view letters, 61(2):231, 1988.

[76] Hiroaki Daido. Quasientrainment and slow relaxation in a population of os-
cillators with random and frustrated interactions. Physical review letters,
68(7):1073, 1992.

[77] Hiroaki Daido. Algebraic relaxation of an order parameter in randomly coupled
limit-cycle oscillators. Physical Review E, 61(2):2145, 2000.
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modulation of apparent speed: a model based on the dynamics of feed-forward
and horizontal connectivity in v1 cortex. Vision research, 42(25):2781–2797,
2002.

[214] Sebastian Seung. Connectome: How the brain’s wiring makes us who we are.
Houghton Mifflin Harcourt, 2012.

[215] Gordon M Shepherd. Creating modern neuroscience: the revolutionary 1950s.
Oxford University Press, 2009.

[216] D. Sherrington and S. Kirkpatrick. Solvable model of a spin-glass. Physical
review letters, 35(26):1792–1796

[217] Wolf Singer. The formation of cooperative cell assemblies in the visual cortex.
Journal of experimental Biology, 153(1):177–197, 1990.

[218] Christine A Skarda and Walter J Freeman. How brains make chaos in order to
make sense of the world. Behavioral and brain sciences, 10(02):161–173, 1987.

[219] William R Softky. Simple codes versus efficient codes. Current opinion in neu-
robiology, 5(2):239–247, 1995.

[220] D.C. Somers, S.B. Nelson, and M. Sur. An emergent model of orientation se-
lectivity in cat visual cortical simple cells. Journal of Neuroscience, 15(8):5448,
1995.

[221] H. Sompolinsky, A. Crisanti, and HJ Sommers. Chaos in Random Neural Net-
works. Physical Review Letters, 61(3):259–262, 1988.

[222] H. Sompolinsky and A. Zippelius. Relaxational dynamics of the Edwards-
Anderson model and the mean-field theory of spin-glasses. Physical Review
B, 25(11):6860–6875, 1982.

[223] Richard B Stein, E Roderich Gossen, and Kelvin E Jones. Neuronal variability:
noise or part of the signal? Nature Reviews Neuroscience, 6(5):389–397, 2005.

[224] JC Stiller and G Radons. Dynamics of nonlinear oscillators with random inter-
actions. Physical Review E, 58(2):1789, 1998.



BIBLIOGRAPHY 235

[225] JC Stiller and G Radons. Self-averaging of an order parameter in randomly
coupled limit-cycle oscillators. Physical Review E, 61(2):2148, 2000.

[226] Steven Strogatz. Sync: The emerging science of spontaneous order. Hyperion,
2003.

[227] Steven H Strogatz. From kuramoto to crawford: exploring the onset of syn-
chronization in populations of coupled oscillators. Physica D: Nonlinear Phe-
nomena, 143(1):1–20, 2000.

[228] Steven H Strogatz and Renato E Mirollo. Phase-locking and critical phenomena
in lattices of coupled nonlinear oscillators with random intrinsic frequencies.
Physica D: Nonlinear Phenomena, 31(2):143–168, 1988.

[229] Steven H Strogatz, Renato E Mirollo, and Paul C Matthews. Coupled nonlin-
ear oscillators below the synchronization threshold: relaxation by generalized
landau damping. Physical review letters, 68(18):2730, 1992.

[230] AS Sznitman. Equations de type de boltzmann, spatialement homogenes. Prob-
ability Theory and Related Fields, 66(4):559–592, 1984.

[231] AS Sznitman. Topics in propagation of chaos. Ecole d’Eté de Probabilités de
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