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Abstract 

A silent speech interface (SSI) is a system to enable speech communication with non-

audible signal, that employs sensors to capture non-acoustic features for speech recognition 

and synthesis. Extracting robust articulatory features from such signals, however, remains a 

challenge. As the tongue is a major component of the vocal tract, and the most important 

articulator during speech production, a realistic simulation of tongue motion in 3D can 

provide a direct, effective visual representation of speech production. This representation 

could in turn be used to improve the performance of speech recognition of an SSI, or serve as 

a tool for speech production research and the study of articulation disorders. 

In this thesis, we explore a novel 3D tongue visualization framework, which combines the 

2D ultrasound imaging and 3D physics-based modeling technique. Firstly, different 

approaches are employed to follow the motion of the tongue in the ultrasound image 

sequences, which can be divided into two main types of methods: speckle tracking and 

contour tracking. The methods to track speckles include deformation registration, optical-

flow, and local invariant features-based method. Moreover, an image-based tracking re-

initialization method is proposed to improve the robustness of speckle tracking. 

Compared to speckle tracking, the extraction of the contour of the tongue surface from 

ultrasound images exhibits superior performance and robustness. In this thesis, a novel 

contour-tracking algorithm is presented for ultrasound tongue image sequences, which can 

follow the motion of tongue contours over long durations with good robustness. To cope with 

missing segments caused by noise, or by the tongue midsagittal surface being parallel to the 

direction of ultrasound wave propagation, active contours with a contour-similarity constraint 

are introduced, which can be used to provide “prior” shape information. Experiments on 

synthetic data and on real 60 frame per second data from different subjects demonstrate that 

the proposed method gives good contour tracking for ultrasound image sequences even over 

durations of minutes, which can be useful in applications such as speech recognition where 

very long sequences must be analyzed in their entirety. 
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Using speckle tracking, the motion information can be extracted by following the 

speckles, which can be used to drive a generic 3D Finite Element Model (FEM) directly. 

Modal reduction and modal warping techniques are applied to model the deformation of the 

tongue physically and efficiently in 3D, which can handle with large deformation while 

retaining calculation efficiency. Nevertheless, the performance of speckle tracking was found 

to be somewhat unstable with comparison to contour tracking method in ultrasound tongue 

image sequences, which leads to unrealistic deformation of the 3D tongue model. Contour 

tracking can be more stable for the characterization of the motion of the tongue. However, 

obtaining the correspondence between contours of different frames is of great difficulty and 

registration between the 2D ultrasound image and 3D tongue model a major challenge. In this 

thesis, we show that these challenges can actually be converted into a “3D shape search” 

problem, based on which a more robust and realistic simulation is achieved. Compared to 2D 

images, such a 3D tongue motion visualization system can provide additional visual 

information and a quantitative description of the tongue’s 3D motion. This work can be 

helpful in a variety of fields, such as speech production, articulation training, speech disorder 

study, etc. 
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Résumé 

Une interface vocale silencieuse (SSI) est un système permettant une communication 

vocale à partir d’un signal non audible. Un tel système emploie des capteurs qui enregistrent 

des données non-acoustiques, pour la reconnaissance et la synthèse vocales. Cependant, 

l’extraction des caractéristiques articulatoires robustes à partir de ces signaux reste un défi. 

La langue est une composante majeure de l'appareil vocal, et l'articulateur le plus important 

dans la production de parole. Une simulation réaliste du mouvement de la langue en 3D peut 

fournir une représentation visuelle directe et efficace de la production de parole. Cette 

représentation pourrait à son tour être utilisée pour améliorer les performances de 

reconnaissance vocale d'un SSI, ou servir d'outil dans le cadre de recherches sur la production 

de parole et de l'étude des troubles de l'articulation. 

Dans cette thèse, nous explorons un nouveau cadre de visualisation en trois dimensions de 

la langue, qui combine l'imagerie échographique 2D et une technique de modélisation 

tridimensionnelle fondée sur la physique. Tout d'abord, différentes approches sont utilisées 

pour suivre le mouvement de la langue dans les séquences d'images échographiques, qui 

peuvent être regroupées en deux principaux types de méthodes : le suivi de la granularité et le 

suivi de contour. Les méthodes de suivi du chatoiement (speckle tracking) comprennent le 

recalage de déformations (deformation registration), le flux optique, et la méthode de 

transformation de caractéristiques visuelles invariante à l'échelle (Scale-invariant feature 

transform, ou SIFT). En outre, une méthode de suivi réinitialisation basée sur l'image est 

proposée afin d'améliorer la robustesse du suivi du chatoiement. 

En comparaison avec le suivi de chatoiement, l'extraction du contour de la surface de la 

langue à partir d'images échographiques présente des performances supérieures et une 

meilleure robustesse. Dans cette thèse, un nouvel algorithme de suivi de contour est présenté 

pour des séquences d'images échographiques de la langue. Cet algorithme permet de suivre le 

mouvement des contours de la langue sur de longues durées avec une bonne robustesse. Pour 

résoudre la difficulté causée par les segments manquants dus au bruit ou celle causée par la 

surface mi-sagittale de la langue qui est parallèle à la direction de propagation de l'onde 

ultrasonore, nous proposons d’utiliser des contours actifs avec une contrainte de similitude de 
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contour, qui fournissent des informations  a priori sur la forme de la langue. Des expériences 

sur des données synthétiques et sur des images réelles acquises sur différents sujets à la 

cadence de 60 images par seconde montrent que la méthode proposée donne un bon contour 

de suivi pour ultrasons des séquences d'images, même sur des durées de quelques minutes. 

Cette technique peut par conséquent être utile dans des applications telles que la 

reconnaissance vocale où de très longues séquences doivent être analysées dans leur 

intégralité. 

Pour le suivi du chatoiement, l'information de mouvement peut être extraite en suivant 

des tavelures, qui peuvent être utilisées pour piloter un modèle 3D générique utilisant la 

méthode des éléments finis (Finite Element Model, ou FEM) directement. Des techniques de 

réduction et de déformation modales sont appliquées pour modéliser efficacement de manière 

physique la déformation de la langue en 3D, permettant de traiter avec une grande 

déformation tout en conservant l'efficacité de calcul. Néanmoins, les performances du speckle 

tracking a été jugée plutôt instable par rapport à la méthode de suivi de contour dans des 

séquences d’images échographiques de la langue, ce qui conduit à une déformation irréaliste 

du modèle 3D de la langue. Le suivi de contour peut être plus stable pour caractériser le 

mouvement de la langue. Cependant, l'obtention de la correspondance entre les contours des 

différentes images est d'une grande difficulté et trouver la correspondance entre l'image de 

l'échographie 2D et modèle de langue 3D est un défi majeur. Dans cette thèse, nous montrons 

que ces défis peuvent effectivement être convertis en un problème de "recherche de forme 

3D", sur la base duquel une simulation plus robuste et réaliste est atteinte. Par rapport à des 

images 2D, un tel système de visualisation de mouvement 3D de la langue peut fournir des 

informations visuelles supplémentaires et une description quantitative du mouvement 3D de 

la langue. Ce travail peut être utile dans une variété de domaines, tels que l’étude de la 

production de la parole, l’orthophonie, l’étude des troubles de la parole, etc. 
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Chapter 1 

Introduction 

1.1  Silent speech interface concepts 

Speech is the vocalized form for human-to-human communication, which is the most 

common and useful interface for human daily communication. Unfortunately, traditional 

natural speech interfaces present several problems: 

 Speech is one-to-many modality, which can give rise to problems of users’ interference 

and communication security; 

 If there is a high level of background noise, the quality of speech communication 

degrades rapidly; 

 The speech modality may be impossible when a speaker is incapacitated by illness or 

injury, either temporarily (laryngitis, flu, etc.) or permanently (cancer, laryngectomy, 

pulmonary insufficiency, accident, etc.); 

 Speech communication may be impossible when the parties involved do not share a 

common language. 

All of these difficulties arise from the propagation nature of the acoustic speech signal. 

The situation is similar with Automatic Speech Recognition (ASR) for machines, although 

this technique has suffered considerable evolution in last decades. When the audio signal is 

corrupted by environmental noise, the speech recognition performance degrades rapidly, 

which makes the communication unfeasible. 

Were it feasible, however, to capture an exploitable speech signal at the production stage, 

before an audible speech is produced, or indeed suppress completely the audible speech 

signal by interdicting the use of the vocal chords, which could overcome the abovementioned 

difficulties. Such a system is referred to as a silent speech interface (SSI) [1], which enables 
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speech communication with non-audible signals (Figure 1.1 gives the framework of the 

ultrasound and optical imaging-based SSI [2]), that employs sensors to capture non-acoustic 

features for speech recognition. As the SSIs system can capture the signals before the speech 

production, they have the potential to be background noise insensitive, natural sounding. 

Although the performance of SSI system is not stable yet, the potential applications of 

SSI seem evident in several different domains, just to name a few, telecommunication, 

medical fields, speech production (acoustic-articulatory inversion), et al. Over the past 

several years, such a SSI concept had gained more public acceptance, and more and more 

imaging techniques have been employed for the silent speech recognition problem. Indeed, 

the feasibility of SSIs for practical communication began to be shown. 

 

 

Figure 1-1 Ultrasound-based SSI (schematic). 

 

1.2  Related work 

To some sense, the SSIs are the speech recognition systems based on the analysis of the 

non-acoustical signal recorded during speech production. Thus, understanding and modeling 

the procedure that produces speech is essential to advance speech production science, which 

may also be helpful to improve the performance of SSI. Indeed, speech production has been 

studied over several decades using a variety of different types of sensors. During speech 

production, the tongue is the most important component of the vocal tract [3] for forming 

consonants and vowels. If we can recover the motion of the tongue motion quantitatively and 
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robustly, the SSI systems’ recognition performance may be further improved. However,

measuring tongue’s motion directly is difficult since the tongue lies within the oral cavity and 

is inaccessible to most instruments. Various imaging techniques have been used to analyze 

the movement indirectly, including Magnetic Resonance Imaging (MRI) [4] (as shown in 

Figure 1-2 (a), accessed from [5]), X-ray [6] (as shown in Figure 1-2 (b)), ultrasound [3] (as 

shown in Figure 1-2 (c)) and electromagnetic mid-sagittal articulography (EMA) [7] (as 

shown in Figure 1-2 (d), accessed from [8]). 

 

 

Figure 1-2 Different imaging techniques used to visualize the vocal tract. 

 

X-ray imaging has better temporal resolution, but exposes subjects to radiation and is a 

through-transmission technique, which projects the entire 3D head onto a single 2D image. 

MRI system captures tongue movement with good resolution (as can be seen in Figure 1-2 
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(b)), but requires summation of repetitions to get good spatiotemporal resolution. MRI 

images are recorded in supine position, which is atypical for speech. EMA data can provide 

directly motion information by measuring the motion trajectory of the tongue, however, its 

invasive property makes it difficult for natural speech production recording. Ultrasound is 

another widely used tool in the speech production research. Nevertheless, the Signal-to-Noise 

Ratio (SNR) of the ultrasound image is quite low, and the speckle noise degrades the images 

by concealing fine structures and reduces the signal to noise level. The strength of ultrasound 

imaging is that it images tongue motion at a fairly rapid frame rate (60Hz), which can capture 

subtle and swift movement during speech production. Furthermore, ultrasound imaging is 

noninvasive, less expensive than other imaging systems, and convenient for experimentation. 

In this thesis, due to its appealing properties, we employ the ultrasound to capture the motion 

information of tongue. To recover the continuous motion of the tongue, robust tracking 

approach is in high demand for ultrasound-based SSI system. 

Tracking the tongue in an ultrasound image sequence is a challenging task due to the poor 

image quality and fast, irregular motion. Many literatures aimed to solve aforementioned 

problems. The classical approach to quantify the motion of the tongue is to extract the upper 

surface of the contour in the ultrasound image sequences. A non-exhaustive literature 

summary (Table 1-1) is conducted on the contour tracking approaches in ultrasound tongue 

images. As can be seen from the table, a variety of processing techniques can be used to track 

the contours of the tongue in the ultrasound images, for example, active contour models (also 

called as “Snake” model) [9], [10]; active appearance models (AAM) [11]; machine leaning-

based tracking [12], [13], [14]; ultrasound image segmentation-based approaches. Most of the 

algorithms were applied to a static frame. 

Table 1-1 Summary of contour extraction methods in ultrasound tongue images 

Authors Title Methods 
Yusuf Sinan Akgul, Chandra 
Kambhamettu, and Maureen 
Stone [9]. (1999) 

Automatic extraction and tracking of 
the tongue contours. 

Active contour model 

Li Min, Chandra Kambhamettu, 
and Maureen Stone [10]. (2005) 

Automatic contour tracking in 
ultrasound images. 

Active contour model 

Anastasios Roussos, 
Athanassios Katsamanis, and 
Petros Maragos [11]. (2009) 

Tongue tracking in ultrasound 
images with active appearance 
models. 

Active appearance model 

Ian Fasel and Jeffrey Berry [12]. 
(2010) 

Deep belief networks for real-time 
extraction of tongue contours form 
ultrasound during speech. 

Machine-learning based 

Lisa Tang, Tim Bressmann, and Tongue contour tracking in dynamic Ultrasound image 
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Ghassan Hamarneh [15]. (2012) ultrasound via high-order MRFs and 
efficient fusion moves. 

segmentation-based 

Diandra Fabre, Thomas Hueber, 
Florent Bocquelet, and Pierre 
Badin [13]. (2015) 

Tongue Tracking in Ultrasound 
Images using EigenTongue 
Decomposition and Artificial Neural 
Networks. 

Machine-learning based 
method 

Aurore Jaumard-Hakoun, Kele 
Xu, Gerard Dreyfus, Pierre 
Roussel, Maureen Stone and 
Bruce Denby [14]. (2015) 

Tongue contour extraction from 
ultrasound images based on deep 
neural network. 

Machine-learning based 
method 

 

Since the revolution of the neural networks [16], machine-learning based contour tracking 

method has made great progress. However, the training depends on the large number of hand-

labeled frames, which are not easy to obtain. Due to their ability to be guided by constraint 

forces, active contours may be particularly useful for contour tracking in images of the 

tongue. Indeed, tongue contour tracking using energy-minimization-based active contours, or 

“Snake”, has been used extensively in previous research. In the contour tracking algorithm 

proposed in [9], the snake model was used on ultrasound tongue images for the first time, 

introducing gradient information in the definition of an external energy term. By including an 

intensity-related constraint, [10] proposed a new contour tracking system, named EdgeTrak, 

which works very well for sequences in which the entire contour always remains visible. If a 

part of the contour disappears in some images, however, due to poor acoustic coupling or a 

decrease in reflected energy, the obtained contour can become erroneous and require manual 

re-initialization to get back on track. This can become problematic for applications where 

long speech sequences are to be analyzed. 

To help cope with low SNR in ultrasound images, some researchers have proposed to use 

other imaging modalities (e.g., X-rays) to obtain prior tongue shape information [11]. 

However, these modalities may use different frame rates, and registration between different 

modalities can also be difficult, making such an approach impractical (the use of X-ray is also 

nowadays banned). Thus, the contour tracking problem still poses a challenge in ultrasound 

tongue image sequences. 

For a very long time, tongue motion analysis has been essentially limited to the 

midsagittal plane, but progress of the 3D imaging system (e.g. 3D MRI imaging system and 

3D ultrasound imaging system) and the progress of the 3D computer simulation in anatomical 

and physiological field, have brought into this domain led to the point where dynamic 3D 

visualization of tongue motion has been unavoidable. 3D tongue modeling based on finite-
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element-modeling (FEM) became more and more popular in the research field of speech 

production. Compared to the 2D image sequences, the effective 3D visualizing motion of the 

human tongue can provide extra visual information. A summary on the related literature of 

3D vocal tract modeling are given in the table below. 

Table 1-2 Related literature of 3D vocal tract modeling 

Authors Title 
Maureen Stone [17]. (1990) A three-dimensional model of tongue 

movement based on ultrasound and x-ray 
microbeam data. 

Reiner Wilhelms‐Tricarico [18]. (1995) 

 

Physiological modeling of speech 
production: Methods for modeling soft‐
tissue articulators. 

Olov Engwall [19]. (1999) Vocal tract modeling in 3D. 
Olov Engwall [20]. (2000) A 3D tongue model based on MRI data. 
Olov Engwall [21]. (2001) Using linguopalatal contact patterns to tune a 

3d tongue model. 
Olov Engwall [22]. (2003) Combining MRI, EMA and EPG 

measurements in a three-dimensional tongue 
model. 

Ian Stavness, John E. Lloyd, Sidney Fels [23]. 
(2012) 

Automatic prediction of tongue muscle 
activations using a finite element model. 

John E. Lloyd, Ian Stavness, Sidney Fels [24]. 
(2012) 

ArtiSynth: A fast interactive biomechanical 
modeling toolkit combining multi-body and 
finite element simulation. 

Yin Yang, Xiaohu Guo, Jennell Vick, Luis 
G.Torres, Thomas Campell [25]. (2013) 

Physical-based deformable tongue 
visualization. 

 

In brief, previous efforts made 3D tongue modeling focus on three categories: static 

tongue modeling using geometry data-driven method ( [17], [18], [19], [20], [21] and [22]), 

dynamic tongue modeling using muscle activation approach ( [23], [24]), and motion-driven 

3D tongue modeling [25]. In more detail, static tongue modeling aims to recover the 3D 

tongue shape using multi-slice using different imaging techniques, the slice come from both 

the midsagittal plane and the coronal plane. For dynamic tongue modeling, researchers aim to 

model the tongue’s motion by simulating the stimulus of muscle, which can be used to drive 

the 3D tongue model in a dynamic manner. But, the tongue is complicated to model due to its 

large global and local deformation and intrinsic muscular activation. However, the treatment 

of muscle activation in the tongue still presents a number of challenges, despite many 

attempts to characterize the bio-mechanical properties of the tongue. Indeed, our 

understanding of human tongue bio-mechanical property is still very limited. Motion-driven 

deformable model is an alternative method for dynamic tongue modeling, and it has been 
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widely used for computer animation. Rather than muscle-driven 3D tongue modeling, 

motion-derived 3D modeling is used in our framework, as an alternate type of dynamic 

tongue modeling. This kind of inverse dynamics-based [25] approach can govern the 

deformation of the tongue model by using the motion information as position constraints, 

then forward dynamics by using the prescribed target motion trajectory. 

As our goal is to recover the continuous motion of the tongue, the static modeling method 

may not be applicable in our case. Moreover, as the tongue’s movement is swift, the 3D 

dynamic tongue model should generate different gestures in a short time-step. Thus, muscle-

driven based approach may be also unsuitable for our work. 

1.3 The thesis work 

Based on the summary of previous work on contour tracking and 3D tongue modeling, 

we can see that 3D tongue modeling using ultrasound image sequences is a great challenge 

even through sustainable efforts have been made. However, if we can model the motion of 

the tongue quantitatively in 3D, extra information may be obtained to help improve the 

performance of the ultrasound-based silent speech interface. 

Indeed, up until now, ultrasound-based silent speech interfaces have remained 

experimental due to the difficulties in rendering the sensor data independent of experimental 

conditions. Ultrasound images are noisy and difficult to interpret even under the best of 

conditions, and are highly dependent on exact sensor placement. Moreover, the ultrasound 

imaging quality varies between subjects, the woman’s imaging quality is usually better than 

male subject is, the younger subject is always better than the elder [3]. Speaker-independent 

recognition (or multi-speakers’ recognition) poses a greater challenge, and how to extract the 

robust and distinctive feature is of importance for the success of the SSI recognition system. 

On the other hand, devising a stable sensor acquisition platform is an extremely challenging 

task, as is indeed the inverse procedure of trying to correct for sensing problems using real-

time post-processing. 

This can be accomplished by making use of non-acoustic sensing of the articulator 

movement to create an acoustic vocal tract model (the component in the rectangle with the 

dotted line in Figure 1-3), and driving the model in software with an artificial vocalization 
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signal. The breakthrough required in order to make this type of instrumentation viable for 

silent speech/song production modalities will consist of devising imaging processing 

techniques capable of accurately and reliably measuring articulator movement in real time in 

a series of standard video and ultrasound images of the vocal tract. This will require, for 

example, bringing image processing algorithms on the difficult problems of noise, occlusion, 

acoustic contact ambient lighting conditions, etc., and also incorporating a priori anatomical 

knowledge about the articulators via 3D finite element physical models of these organs. Thus 

the thesis topic, the development of an active real-time model of the vocal tract, sits at the 

crossroads of the data acquisition, image processing, feature extraction, 3D modeling and 

human anatomy. 

 

 

Figure 1-3 New potential ultrasound-based SSI framework. 

 

In this thesis, we propose a novel 3D tongue visualization framework based on ultrasound 

image sequences of the tongue, which combines the 2D motion information extraction from 

ultrasound imaging system and dynamic 3D physics-based modeling strategy. And it can be 

useful for speech production research and the enhancement of silent speech recognition. The 

framework of the thesis work is given in Figure 1-4. 
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Figure 1-4 Framework of the whole thesis. 

 

As can be seen from the Figure 1-4, the materials used throughout this thesis include 

ultrasound tongue image sequences and a generic 3D tongue Finite Element Model (FEM), 

which is extracted from Artisynth [24]. The original tongue model consists of 1,803 nodes 

and 8,606 tetrahedral elements. In this thesis, to create more smooth mesh and obtain a better 

visualization result, we subdivide the original generic tongue mesh, which consists of 12,967 

nodes and 43,930 tetrahedral elements. (as shown in Figure 1-5). 

 

Figure 1-5 The tetrahedral mesh used for the simulation, and smoothed generic tongue mesh 

consists of 12,967 nodes and 43,930 elements. 

 

In the early period of the thesis, we aims to track the continuous motion of the tongue 

using ultrasound with high robustness for long duration. The attempt is twofold: speckle 

tracking and contour tracking: 
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Speckle tracking: Speckle tracking methods aim to track the backscattered echoes 

produced by ultrasound scatters in the tissue of the tongue. The principle of speckle tracking 

is quite simple: two-dimensional speckle is defined as the spatial distribution of gray values 

in the ultrasound image, which is commonly referred as the speckle pattern. If the position 

within the segment of tongue tissue changes, it can assume that the position of its acoustic 

fingerprint (texture) will change accordingly. By tracking these patterns, we can follow the 

motions of tissue in real-time. In this thesis, we analyze the fundamental principles of speckle 

tracking. Then, different speckle tracking techniques have been implemented and tested on 

the ultrasound tongue sequences. Moreover, the complex wavelet structural similarity-based 

automatic speckle tracking re-initialization is also presented in this thesis. However, the 

performance of the speckle tracking was found to be somewhat unstable. 

Contour tracking: Compared to speckle tracking, the extraction of the contour of the 

tongue surface from ultrasound images exhibits superior performance and robustness. The 

goal of contour tracking is to track the surface of tongue in the ultrasound image. However, 

accurate, robust tongue contour extraction, remains a challenging problem for ultrasound 

sequences of long duration, due to acoustic effects, speckle noise and poor signal-to-noise-

ratio (SNR). Despite significant research efforts, manual refinement is usually needed, which 

is impractical for large-data tracking systems. Thus, in this thesis, a novel automatic contour 

tracking algorithm had been developed, wherein active contour model with contour group 

similarity constraint is used. Experiments on synthetic data and on real 60 frame per second 

(FPS) data from different subjects demonstrate that the proposed method gives good contour 

tracking for ultrasound image sequences even over durations of minutes, which can be useful 

in applications such as speech recognition where very long sequences must be analyzed in 

their entirety. Moreover, image-similarity-based contour tracking is also presented in this 

thesis, which achieves state-of-art performance with comparison to previous approaches. 

In the later part of the thesis, we aim to employ the motion information extracted by using 

speckle tracking or contour tracking to drive the 3D Finite-Element Model (FEM) to simulate 

the motion of the tongue. The 3D tongue modeling technique is based on the deformable 

modeling technique. In more detail, the 3D model can be driven by imposing extra positional 

constraints at specified finite element nodes to enforce their displacements to some user-

specified values. 
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Speckle tracking-based modeling: For speckle tracking, to drive the 3D tongue model, 

the modal displacement will be calculated by using the movement of the patterns directly, 

which will be transmitted to certain nodes of on the midsagittal tongue model surface in order 

to drive the 3D model at the acquisition rate of ultrasound image sequence. However, as 

mentioned above, the performance of speckle tracking is not robust yet, which make this kind 

of method unfeasible for practical application. 

Contour tracking-based modeling: Using contour tracking to drive the 3D tongue 

model is the alternative method. However, due to the change of the contour tracking quality, 

the length of the contour extracted changes dramatically between adjacent frames, which 

makes it difficult to obtain the correspondence between contours of different frames. Thus, 

the registration between the 2D ultrasound image and 3D tongue model poses a great 

challenge. In the thesis work, we show that these challenges can actually be converted into a 

“3D shape search” problem, and the deformation simulated with the “3D shape search” 

framework is informative and qualitatively realistic compared with speckle tracking-based 

animation. 

Overall, the main contributions of our work can be summarized as: 

1. Based on the framework of [25], which make use of EMA data to drive the 3D tongue 

model, a physics-based deformable tongue visualization framework is presented using the 

finite-element-method (FEM) driven by ultrasound image sequences. Compared to the 2D 

image sequences, this technique can deliver much enriched visual information and can be 

used for several different speech tasks. Compared to EMA-based motion visualization, 

extra visualization can be obtained. 

2. To overcome the problem of faint contour and against the signal-level noise, the 

similarity constraint is added to the active contour model. Moreover, complex wavelet 

structural similarity (CW-SSIM) measurement technique is used to reset contour tracking 

automatically, which can improve the robustness of the contour tracking algorithm. 

3. By employing the image similarity-based constraint, a novel contour tracking method is 

proposed in the work of the thesis, which achieves state-of-art performance. On the other 

hand, a comparative study is conducted on the different contour tracking algorithms with 

automatic re-initialization. 

4. Different motion tracking-based 3D tongue modeling methods are explored. By using the 

contour extracted from the ultrasound tongue image sequence, a novel shape similarity-
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based 3D tongue dynamic modeling technique is proposed, based on which a more 

realistic motion simulation is implemented. 

Moreover, although our original target is to design a platform to visualize the 3D tongue 

motion using the ultrasound data, this platform can also be extended to other imaging modals 

(e.g. MRI, EMA, X-Ray) to assist the studies on speech production. 

1.4  Structure of the thesis 

The organization of this thesis is given below, which is mainly based on our attempts to 

dynamic model the tongue motion in 3D using the ultrasound image sequences. 

In detail, in this chapter, after an initial introduction to the rich variety of SSI 

applications, the ultrasound-based SSI problem is discussed specifically. Then a non-

exhaustive literature review is conducted on both the contour tracking in ultrasound tongue 

image sequences and 3D tongue modeling technique. Then the thesis work is summarized, 

highlighting the contributions and improvements with comparison to previous solutions. 

Chapter 2 describes the fundamentals of B-model ultrasound tongue imaging, including 

the basic principles of B-mode ultrasound imaging, as well as the ultrasound-tongue tissue 

interaction, which laid the foundation of speckle tracking and contour tracking in ultrasound 

tongue image sequences. 

Chapter 3 presents the application of speckle tracking techniques in ultrasound tongue 

image sequences. Firstly, the fundamental principles of speckle tracking are given. Then, the 

practical implementations of speckle tracking techniques are discussed. Moreover, an image-

similarity-based automatic speckle tracking re-initialization method is proposed in this 

chapter. 

In chapter 4, the contour tracking approaches are investigated for ultrasound tongue 

image sequences. One of the methods is based on the modified active contour model, with the 

aim to cope with missing segments caused by noise, or by the tongue midsagittal surface 

being parallel to the direction of ultrasound wave propagation. Also, the image-similarity 

based automatic contour tracking re- initialization method is discussed in this chapter. 
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In chapter 5, the summary of the physical-based deformation modeling algorithm adopted 

in our framework is presented. Speckle tracking and contour tracking based 3D dynamic 

modeling of the tongue is given in this chapter. The experimental results and analyses are 

presented. 

The last chapter concludes the thesis, outlining the lessons drawn from our study, its 

limitations, and proposing directions for future research. 
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Chapter 2 

Principles of ultrasound tongue imaging 

2.1  Introduction 

Compared to other medical imaging modalities (such as MRI, X-ray or EMA), the 

ultrasound imaging system is portable, non-invasive and relatively inexpensive. Over the last 

decades, the ultrasound imaging has drawn widespread acceptance and witnessed continuous 

development in the diagnosis and more complex arrangements designed to have been be used 

to enhance the imaging performance [26]. The primitive display modes for ultrasound, such 

as A-mode, and static B-mode have given way to real-time, high-resolution and ultra-fast 

imaging [27]. Moreover, some new ultrasound systems can visualize the internal structures in 

three dimensions. In essence, the basic principles of ultrasound imaging are still used in the 

modern medical ultrasound systems. In this chapter, we begin with the basic principles of 

ultrasound imaging, including the physics basis and principles of ultrasound imaging, which 

laid the foundations for ultrasound tongue imaging. 

Ultrasound imaging has been used to image the human tongue for over three decades by 

phoneticians, predominately in a clinical context [17]. In the early stage, the ultrasound 

equipment was found in the hospitals, which made them difficult to be accessible for the 

speech production researchers. However, with the improvements in technology and reduced 

cost, the ultrasound is increasingly used as an imaging tool for the researchers in clinical 

linguists and phonetics fields [3], [28], [29]. Continuous efforts have been made to 

understand the motor control during speech production, and the ultrasound-based tongue 

motion analysis has witnessed great progress in last decades. 

The classical method for tongue motion analysis aims to extract the contours of the upper 

tongue surface using ultrasound imaging. Another potential feasible approach in deriving 

correspondence is speckle-tracking method. All the motion-tracking approaches are based 
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upon the characterization between the ultrasound waves and the tongue tissue. Thus, in the 

second part of this chapter, the interaction of the tongue muscle and the ultrasonic waves is 

analyzed, laying the foundation for speckle tracking and contour tracking, which are the main 

topics for the next two chapters. 

In more detail, the organization of this chapter is given as follows: firstly, in Section 2.2, 

the basic principles of the ultrasound B-mode imaging are presented, which include the basic 

physics of the medical ultrasound imaging, a brief introduction of the ultrasound pulse and a 

general preview of different ultrasound scan types. Section 2.3 discusses the interaction 

property between the tongue tissues and the ultrasound waves, and the data-acquisition 

platform is presented. While, in the last part of Section 2.3, the image distortions, which that 

may occur during the recording, are analyzed. In the end of this chapter, a conclusion is 

drawn. 

2.2 Basic principles of medical ultrasound imaging 

2.2.1 Basic physics of medical ultrasound imaging 

In brief, ultrasound image imaging is based upon the echo-location principle. However, 

the connection between the medical ultrasound sound and the echo-location principle was not 

made until the mature of the underwater acoustics, which made use of SONAR (Sound 

Navigation and Ranging) to measure the depth of water at sea. The inventions of SONAR and 

medical ultrasound imaging can be traced to the sinking of Titanic [30] when scientists tried 

to detect icebergs underwater using echo ranging. Nevertheless, at that time, there were no 

practical ways to implement the ideas until the discovery of piezoelectricity. In 1916 and 

1917, by making use of technologies of piezoelectricity, Paul Langevin and Constantin 

Chilowsky invented a high-power echo-ranging system to detect the submarines [31].  

The recognition that ultrasound could benefit medical diagnoses can be traced to World 

War I. Afterward, ultrasound is progressively applied to the therapy and the surgery. In the 

1970s, medical ultrasound witnessed a rapid expanding with the advent of 2D real-time 

systems. Color flow systems occurred in 1990s. Presently, active research field includes 

contrast agents, molecular imaging, tissue characterization, integration with other modalities, 

such as photo-acoustic imaging [32]. 
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Despite sustainable efforts been made, the basic principles of medical ultrasound imaging 

are almost the same today as they were several decades ago [33]. The basic medical 

ultrasound imaging system is shown in Figure 2-1. 

 

 

Figure 2-1 Framework of medical ultrasound imaging system. 

 

The pulse is generated from the ultrasound transducers (or probes), which contain multi-

piezoelectric crystals. When an electric field is applied to an array of piezoelectric crystal 

located on the surface of a transducer, mechanical vibration will happen in response. This 

phenomenon is called the piezoelectric effect, which was originally described by the brothers 

Pierre Curie and Jacques Curie [34]. The mechanical vibration will result in an ultrasound-

high frequency wave, which will propagate through a medium by compression and 

rarefaction. 

The pulse propagates into the body where it reflects off mechanical in the homogeneities 

regions. In more detail, like audible sound, the pulse will echo back from the interface 

between transmission mediums of different densities. Strong echoes mean large differences 

of densities, while weak echoes can occur at the tissues-to-tissues interfaces as they have 

similar density. Because the distance is the product between the velocity and the time, a 
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reflector at distance z from the transducer will cause a pulse echo at time 2t z c , where c is 

the sound velocity in the body.  

2.2.2 Ultrasound pulse 

The ultrasound waves can be described by three terms: frequency, wavelength and 

amplitude. The frequency and wavelength are inversely related. Modern medical ultrasound 

devices use sound waves in a range of 1-20 MHz. The wavelength of medical ultrasound 

varies from 1.5 mm at 1 MHz to 0.15 mm at 10 MHz, which enables good depth resolution. 

The propagation velocity is dependent on the compressibility of the medium. The average 

velocity of sound in soft tissues is 1540 meters/second. Frequency selection for the transducer 

is of importance to obtain optimal resolution for ultrasound images. High-frequency waves 

can image with higher axial resolution, but are more attenuated than the low frequency 

waves. Low-frequency provides images of lower resolution but can penetrate deeper in the 

structures.  

A pulse excites the transducer with a short pulse in a particular direction, and the 

ultrasound waves are generated in pulses, which consists of 2-3 sound cycles of the same 

frequency. The pulse is often modeled as an amplitude modulated sinusoid. 

     oi tp t a t e 
   (2.1) 

where 0 02 f   is the carrier frequency, and  a t  is the envelope. 

The emitted ultrasound pulse can be viewed as the impulse function of the ultrasound 

medical imaging system. Suppose the echo pulse is used to represent the output of the 

ultrasound system during interrogation of an ideal point target. The echo pulse can also be 

regarded as the ultrasound system’s point spread function (PSF), and received echo pulse can 

be considered as the impulse response of the biological medium. However, as the pulse travel 

along a straight path and it is quite short, the pulse is often referred as the ultrasound beam. 

2.2.3 Ultrasound scan types 

There are several different types of ultrasound scanning types, which include A-mode, B-

mode, M-mode and some other formats. The display formats are often selected based on the 
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practical applications. In this part, we will give the preview of A-mode and B-mode scanning 

types. 

 A-mode imaging 

The A-mode scan type is the simplest mode, which is the basic element for other 

ultrasound scans. A-mode transducer scans a line though the tissue, and displays the 

amplitude versus depth for the echo signal, which is used to measure the distance accurately. 

Echoes will be generated from the tissue interfaces or tissue-air interfaces. 

Suppose at depths 1, , nd d, , nd d, ,d d, , nd dn  there are interfaces with reflectivities  1R d  

      
1

N

n n
n

R d R d d d


    (2.2) 

The signal received by the transducer can be modeled as:  

      
1

2
N

n n
n

v t K R d p t d c


     (2.3) 

where K is the constant gain factor relating to the impedances of the transducer, electronic 

pre-amplification. A natural estimate of the reflectivity is 

    ˆ 2R d v d c    (2.4) 

where  v t  is the envelope of the received signal. The estimated reflectivity can be plotted 

by using the amplitude versus time, which can be regarded as a function of depth d . Hence, 

this type of ultrasound imaging is called as A-mode imaging [35]. 

The aforementioned model is a highly simplified model. However, in practical 

application, when ultrasound wave travels through tissues with different acoustic impedance 

(the definition is given below), reflection will occur. The acoustic impedances are the 

measures of the response of the medium to a given acoustic pressure, which is determined by 

the density  and stiffness of the medium. In the tissue, the acoustic impedance is defined as:  

 z c    (2.5) 
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For air, as the density and stiffness are low, thus, z is very small. While, for bone, z is 

much higher, as it has quite high density and stiffness. 

 B-mode scan 

The B-mode ultrasound image is produced by a transducer array, for example, a large 

number of small transducer elements are arranged in a straight line. B-mode scan can be 

viewed as a concatenation of A-mode scans. Normally, a complete B-model image is made 

up more than 100 lines.  

The reflected ultrasonic waves are detected by the same transducer and converted into an 

electrical signal (Radio Frequency signal). Pulses that returned later are displayed in the 

image as far away from the transducer. The received echo pulse can be viewed as the impulse 

response of the medium. The raw RF data for ultrasound waves is not well suited for the 

interpretation by users. The exemplar ultrasound-processing pipeline for RF signal to B-mode 

conversion is given in Figure 2-2. Firstly, the envelope of the RF signal is detected and coded 

in a way given as follows: high-amplitude reflections are the bright pixels in an image and 

low-amplitude reflection is represented by dark. After frequency compounding, the envelope 

of RF signal is detected to represent the original signal. Afterwards, a nonlinear intensity map 

is applied to decrease the range of the data. In the end, several different filters specific are 

used to create a B-model image. In one sense, the B-mode ultrasound imaging was 

constructed from the echoes to form a cross-sectional image representing tissues and organ 

boundaries within the body [35]. The brightness of each pixel is related to the amplitude of 

the reflected pulse. Hence, this type of ultrasound imaging is called as B-mode imaging 

(Brightness-mode imaging). 

 

Figure 2-2 Exemplar ultrasound processing pipeline for RF signal to B-mode image 

conversion. 
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The temporal resolution of B-mode ultrasound image ranges from 30 frame-per-second 

(FPS) to 80-90 FPS. Although, recently, there are some progress on ultrafast ultrasound 

imaging [27], the ultrasound machines typically collect up 30-60 FPS. To get a deeper scan, 

the ultrasound machine settings will employ slower imaging rates as longer time is needed to 

wait for the returning pulses. 

2.3 Ultrasound-tongue tissue interaction 

Since last several decades, B-mode ultrasound imaging has been employed to visualize 

the motion of the tongue with considerable success [29]. When the ultrasound waves travel 

through a medium, some effects may occur, which include attenuation, reflection, refraction 

and scattering. The interaction between the sound waves and the medium is determined by 

the acoustic properties of the medium and the ultrasound imaging system. In this section, 

firstly, we analyze the interaction between ultrasound and the tongue tissue. Then we present 

our data recording equipment used throughout this thesis. 

2.3.1 Ultrasound tissue interaction 

The quality of an ultrasound tongue image is of utmost importance in determining its 

usefulness. The overall quality of the ultrasound tongue image is the end product of a 

combination of many factors originating not only from the imaging system but also from the 

stability of the recording system and the performance of the operator. All of the components 

within the ultrasound tongue imaging system, including the transducer, image processing, 

display and recording devices, impact on the ultimate quality of the ultrasound tongue image. 

It is necessary to analyze the interaction between the ultrasound and tongue tissue, which can 

be helpful to make better use of ultrasound imaging. 

When we are employing ultrasound to measure the motion of the tongue, the transducer 

typically is placed under the chin (as can be seen from the Figure 2-3). The ultrasound waves 

will transmit through the tongue body until it is reflected back. 
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Figure 2-3 Ultrasound-tongue imaging. 

 

When ultrasonic waves travel through the tongue tissues, waves are partly transmitted to 

deeper structures, partly reflected back to the transducer as echoes, partly scattered, and 

partly transformed to heat. 

Reflection: Reflection of the ultrasound waves occurs when the sound reaches tissue 

boundaries (or tissue-air-interface) with different acoustic impedance. In the ultrasound 

tongue image, due to the difference of acoustic impedances between the air and the tissue, the 

brightest line in the B-mode ultrasound tongue image is  the interface between the tongue 

surface and the air (as shown in Figure 2-3). 

Scattering: In ultrasound tongue imaging, scattering refers to the interaction of 

ultrasound wave with microstructures of the tongue, which are much smaller than the 

wavelength. When the ultrasound wavelength is greater than the structure in the tongue, it 

will create a uniform amplitude scattering in all directions, which gives rise to the speckle 

phenomenon in the ultrasound tongue images (as shown in Figure 2-4). In brief, the “speckle” 

is the specific spatial distribution pattern of gray values in a local region of ultrasound tongue 

image. The “speckle” is also referred to as a speckle pattern. As the speckle is originated 

from the RF signal, the “speckle” can also be used to define the amplitude distribution of the 

RF signal. To distinguish between them, in the rest of this thesis, the gray-value distribution 

is referred as “speckle”. 



 

43 

Attenuation: Different tongue tissues have different acoustical properties, which enhance 

or decrease the propagation of the ultrasound waves. As the tongue contains considerable 

amounts of fat, refraction may occur and the returning echo is significantly attenuated. 

 

 

Figure 2-4 A particular segment of tongue results in a specific spatial distribution of gray 

values, the speckle pattern, in the ultrasound tongue images, which can be used as the 

acoustic marker of the tongue tissue. 

 

The imaging quality varies between different subjects: such as the image quality of 

female subject is better than the male subject, while the younger subjects are better than the 

older subjects [28]. On the other hand, it is worthwhile to note that: the tongue tip is not 

visible in most cases, which makes the characterization of the tongue’s motion more difficult. 

 

2.3.2 Ultrasound tongue image distortions 

Due to the sensitivity of the ultrasound imaging quality, there are several image 

distortions in ultrasound tongue images. In more detail, the distortions include speckle noise 

contamination, double edges, contour discontinuities, contour invisibility and inconsistent 

transducer placement and so on. Here, the focus is mainly on the influence of speckle and the 

contour invisibility. 



 

44 

Speckle noise: Due to the inherent contamination with the speckle noise, the analysis of 

ultrasound tongue image poses a great challenge. Although there are more attempts to employ 

this kind of information to follow the motion, speckle noise processing is still an open issue 

in ultrasound image processing. Indeed, the speckle noise degrades the ultrasound tongue 

image, concealing the fine structures [36], which leads to the difficulties in the motion 

tracking of the tongue. 

Hidden from the view (or faint contour): When the tongue tissue goes perpendicular to 

the propagation direction of ultrasound waves, the quality of image is good. While, when the 

tongue tissue goes parallel to the propagation direction of ultrasound waves, the quality of the 

image is poorly and missing occurs. Take the /i/ as an example, due to the natural motion of 

the tongue, part of the tongue is invisible. This kind of invisibility increased the difficulties of 

ultrasound tongue interpretation. 

2.3.3 Ultrasound tongue data acquisition 

The ultrasound data acquisition devices used in this thesis belong to our SSI system’s data 

acquisition part, which is comprised of a helmet to hold the ultrasound probe to capture the 

movement of the tongue at the frame rate of 60 Hz, a VGA, CMOS industrial camera for the 

lips, a microphone to record acoustic speech signals, an electroglottograph (EGG) to measure 

and record vocal fold contact movement during speech production. All the different modes of 

data are recorded synchronously [37]. 

The lightweight, adjustable helmet (Figure 2-4) is fitted with a micro-convex, 1 inch 

diameter, 128 element ultrasound probe for tongue imaging [37]. An adjustable platform is 

used to hold the ultrasound transducer in contact with the skin beneath the chin. The 

ultrasound machine chosen is the Terason T3000, a system which is lightweight and portable 

yet retaining high image quality, and allowing data to be directly exported to a PC via 

Firewire. Our entire SSI system can be placed in a small carrying case, thus enabling 

everyday applications. 
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Figure 2-5 Multi-sensor Hyper-Helmet: (1) Adjustable headband. (2) Probe height 

adjustment strut. (3) Adjustable US probe platform. (4) Lip camera with proximity and 

orientation adjustment. 

2.4  Conclusion 

In this chapter, we briefly went through the basic principles of medical ultrasound 

imaging. Moreover, the ultrasound pulse is discussed, and the ultrasound scan types are 

presented. In the second part of this chapter, the interaction between ultrasound and tongue is 

discussed, which include reflection, scattering and attenuation in the ultrasound tongue image 

sequences. Also, the definition of speckle is given in this part, which is a quite important 

topic for the next chapter. Based on the interaction between the ultrasound and the tongue, we 

discussed some distortions in the ultrasound images, such as: contour invisibility, which is a 

major problem for different previous proposed contour tracking methods. In the end of this 

chapter, we presented the ultrasound data-recording platform used throughout this thesis. 
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Chapter 3 

Speckle tracking in ultrasound tongue images 

3.1  Introduction 

In the speech production field, researchers have made sustainable efforts to improve the 

interpretation of the configurations of the articulators. As the tongue is one of the major 

components of the vocal tract, the quantification of the tongue’s motion is important to 

understand the change of articulators over time during the natural speech. As the main 

objective of this thesis is to model the 3D tongue motion in a dynamic manner, robust 

correspondences between continuous frames need to be established in the ultrasound tongue 

image sequences, which will be used to drive the 3D physics-based deformable model 

dynamically. However, compared to other imaging methods such as x-ray, electromagnetic 

articulography (EMA), the ultrasound imaging technique can provide limited information on 

the correspondences. Indeed, the nature of the tongue motion made it even harder to obtain 

correspondences due to several reasons: complex tongue shape, hidden from the view, high-

level speckle noise contamination and out-of-plane motion. 

To address the aforementioned difficulties, different approaches can be used in the 

ultrasound image sequences to obtain point correspondences, one of which is speckle 

tracking. Speckle tracking has been an active field in ultrasound imaging for the last several 

years [38]. Specifically, with the advance of ultrasound image quality and the calculation 

power of computer, the speckle tracking approach matures into practical research to follow 

the motion. In the cardiology field, speckle-tracking echocardiography (STE) [39] is used to 

characterize the motion of tissues in the heart, and the utilities of STE are increasing 

recognized. In the clinical setting, more and more evidence was shown that the assessment of 

the cardiac deformation by speckle tracking techniques can provide incremental information. 
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However, compared to the progress in the cardiac motion estimation, only few attempts 

have been made to explore the potential application of speckle tracking on the ultrasound 

tongue images. To the best knowledge of us, only [40] explored speckle tracking as a method 

to obtain the point correspondences in ultrasound tongue images. In more detail, [40] 

proposed a deformation registration-based method to obtain point correspondences in order to 

estimate the displacement in the ultrasound tongue images. This method enables us to 

calculate the motion and hence obtain the displacements from first frame to any frame in the 

image sequences. Moreover, the speckle tracking method can be used to estimate the 

displacement along the curve, which may be helpful for us to obtain “virtual flesh point 

markers” on the tongue surface [40]. This kind of information is of great interest for the 

linguist and clinical phonetics. Moreover, by following the motion of the “virtual flesh point 

markers”, 3D dynamic tongue modeling may be feasible. 

This chapter aims to explore the speckle tracking method to obtain point correspondences 

further. In more detail, the organization of this chapter is given as follows: in Section 3.2, 

based on the imaging principles of ultrasound imaging, we make a summary of the 

fundamental principles of speckle tracking firstly. Afterwards, we present the applications of 

the different speckle tracking implementation techniques which include deformation 

registration, optical flow and local invariant feature-based method. A comparative study is 

conducted on the different speckle tracking approaches. Moreover, as demonstrated in the 

comparative study, speckle tracking is not always stable and tracking failure occurs during 

the tracking processing. To address the tracking error accumulation, an image similarity-

based automatic speckle tracking re-initialization method is proposed in the Section 3.3, 

which aims to recover the tracking from the failure automatically. A conclusion is drawn in 

Section 3.4. 

3.2  Speckle tracking in ultrasound tongue images 

Two important categories of speckle tracking approaches have been used widely during 

the last decades, one is based on deformation registration, and the other is optical flow. 

Recently, the local invariant feature has been applied into tracking problem successfully. In 

this section, we first go through the fundamentals of speckle tracking, followed by the 
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implementation detail of different speckle tracking methods in the ultrasound tongue images. 

Then, a comparative study is conducted on tracking performance using different techniques. 

3.2.1 Fundamentals of speckle tracking 

The fundamental principle of 2D speckle tracking is quite simple: if the imaging system is 

of a sufficiently high frame rate (as aforementioned in previous chapter, in our data-recording 

platform, the Terason T3000 here is clocked at 60 FPS), the speckle patterns are preserved 

between subsequent image frames. Tracking characteristic speckle patterns can thus provide 

markers for tagging the soft-tissue motion. If the position of a segment of the tongue tissue 

changes, one may assume that, the position of its acoustic fingerprint (texture) will change 

accordingly. By tracking these patterns, we can follow the motions of tongue tissue in real-

time. 

Thus, before exploring the speckle tracking method further, we would like to discuss 

whether the assumption is reasonable or not, which are given in the followings. As presented 

in Chapter 2, ultrasound imaging is based upon the pulse-echo. The ultrasound reflections 

occur at tissue-air interface and the interface between different types of the tongue tissues. 

Moreover, as mentioned in Chapter 2, the scattering will also occur when the size of the local 

structures of the tongue (e.g., blood-muscle) is much smaller than the wavelength of 

ultrasound during the propagation. As tongue tissues may contain many scattering sites, the 

signal detected by the transducer is the interference of the individual reflections occurring at 

the individual scatters. Each scatter will reflect the incident wave but the amplitudes of the 

waves are relative low. As the distance between the transducer and the scatters is different, 

the reflected ultrasound waves will also be received at a different time. Thus, constructive 

interference and destructive interference occur occasionally. If the constructive interference 

occurs, a high-amplitude RF signal will be detected, while if destructive interference occurs, 

a low-amplitude RF signal will be detected [41]. 

The received RF signals will be converted to B-mode ultrasound tongue image. The 

speckles (spatial distribution of the gray values) are associated with the reflections from 

individual scatters within the tongue, which carry information about the unresolvable 

scattering structures. In other words, the characteristics of the speckle are determined by the 

positions of the exact scatter. Thus, the motion information and deformation of the tongue 

can be extracted by following the corresponding gray values distributions. If the segment of 
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the tongue is showing a scatter signal moving away from the transducer, the reflected waves 

will arrive later due to the increase of traveling time. However, an identical signal with time-

delayed will be detected, and the same distribution of the gray values will occur at a position 

further away from the transducer. Thus, tracking the motion of the “speckle” does indeed 

follow the motion of the underlying tissue [41]. 

Based on the previous reasoning, it can be seen that speckle can only be preserved if the 

interference between the individual scatters in the tongue remain identical, which means the 

relative position between the transducer and the scatterings’ sites should be the same. 

However, in practical applications, out-plane motion and deformations of the tongue will 

change the relative position of the particular tongue tissue and the transducer, which will 

induce speckle-decorrelation. To alleviate the speckle decorrelation, high imaging framerate 

is needed to limit the amount of the out-of-plane and deformation between adjacent frames 

[41]. 

3.2.2 Deformation registration 

Non-rigid deformation registration methods are often applied to estimate the 

correspondences between landmarks in adjacent frames. With this kind of method, the 

correspondence between the tissue points is obtained by minimizing a similarity measure. 

The local similarity measure is usually based on the 1L  or 2L  norms comparison on the 

intensities of image blocks, such norms are appropriate for the image sequences, which are 

characterized by Gaussian statistics. In [42], Kontogeorgatis et al. proposed to use the 

minimum absolute difference (MAD) to estimate the motion of the local blocks in the 

ultrasound images. In [43], Yeung et al. suggested using the sum of absolute differences 

(SAD) criteria, and the single scale motion estimation was expanded to multi-scales. While, 

[44] made a comparative study on different similarity indices and claimed that sum of 

squared differences provided superior performance in low-level noise contamination. In [45], 

the author suggested to use the normalized correlation coefficients (NCC) for block 

matching. 

However, the ultrasound image is contaminated by the multiplicative speckle noise, and 

the traditional approaches may be unsuitable in this case, as these methods assumed that the 

imaging system is contaminated by the Gaussian noise. Commonly, researchers proposed to 
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replace the assumptions of a Gaussian distribution by ultrasound-specific noise models, and a 

Rayleigh distribution is assumed. 

Based on this assumption, Strintzis and Kokkinidis [46] used maximum likelihood (ML) 

to estimate the motion in the ultrasound images. In the method proposed in [46], it was 

assumed that only one image contains speckle noise while the reference image is not 

contaminated by the noise. In [47], Cohen and Dinstein proposed a novel similarity measure 

using the maximum likelihood method based on the assumption that two consecutive 

ultrasound images are both corrupted by multiplicative Rayleigh noise and the probability 

density functions (PDF) of the noise are independent of each other. 

Suppose ,i jx and ,i jy is the intensity of every pixel in the two consecutive frames of 

ultrasound image, where i and j denote the position of the pixel in the image X andY . Assume 

that the displacement between the two pixels matched is ,i jv . 

  , , , ,arg max ,ML
i j i j i j i jv p x y v   (3.1) 

where the conditional probability density function depends on the noise model. In ultrasound 

image, the probability density function of the noise model is multiplicative Rayleigh. If the 

noiseless pixel is denoted by ,i js , the following model for the observed pixel in X and Y

stands: 

 1
, , ,i j i j i jx s   (3.2) 

 2
, , ,i j i j i jy s   (3.3) 

where 1
,i j and 2

,i j are two independent noise element with a Rayleigh density function given 

by: 
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Based on the Eq. (3.2), (3.3), (3.4) and (3.5), we can re-define the noise probability 

density function as follow: 
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 . Then we can obtain the following equation: 

 , , ,i j i j i jy x   (3.7) 

Taking the natural logarithm of both sides of (3.7), we can obtain the following model for 

the pixel in the ultrasound images: 

 , , ,i j i j i jy x  i j i j i jy xi j i j i jy xi j i j i ji j i j i ji j i j i ji j i j i j i j i j i j i j i j i jy x y xi j i j i jy xi j i j i j i j i j i jy xi j i j i ji j i j i ji j i j i ji j i j i j    (3.8) 

From Eq. (3.8), the original Rayleigh noise is transformed to an additive noise, whose 

probability density function is given as follows: 
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   (3.9) 

We suppose the independent noise of the successive frame follow the same distribution (

1 2  ). And the maximization of this equation (Eq. (3.10)) is equivalent to the Eq. (3.1). The 

objective function to measure the similarity of pixels is: 

      . , , , ,ln exp 1i j i j i j i j i jE v y x y x     ln exp 1ln exp 1ln exp 1ln exp 1ln exp 1ln exp 1ln exp 1ln exp 1ln exp 1i j i j i j i j i jln exp 1E v y x y xln exp 1E v y x y xln exp 1ln exp 1E v y x y xln exp 1ln exp 1E v y x y xln exp 1i j i j i j i j i jE v y x y xi j i j i j i j i jln exp 1i j i j i j i j i jln exp 1E v y x y xln exp 1i j i j i j i j i jln exp 1ln exp 1i j i j i j i j i jln exp 1E v y x y xln exp 1i j i j i j i j i jln exp 1ln exp 1i j i j i j i j i jln exp 1E v y x y xln exp 1i j i j i j i j i jln exp 1ln exp 1    ln exp 1ln exp 1    ln exp 1ln exp 1    ln exp 1ln exp 1    ln exp 1ln exp 1i j i j i j i j i jln exp 1    ln exp 1i j i j i j i j i jln exp 1E v y x y x    E v y x y xln exp 1E v y x y xln exp 1    ln exp 1E v y x y xln exp 1ln exp 1E v y x y xln exp 1    ln exp 1E v y x y xln exp 1ln exp 1E v y x y xln exp 1    ln exp 1E v y x y xln exp 1i j i j i j i j i jE v y x y xi j i j i j i j i j    i j i j i j i j i jE v y x y xi j i j i j i j i jln exp 1i j i j i j i j i jln exp 1E v y x y xln exp 1i j i j i j i j i jln exp 1    ln exp 1i j i j i j i j i jln exp 1E v y x y xln exp 1i j i j i j i j i jln exp 1ln exp 1i j i j i j i j i jln exp 1E v y x y xln exp 1i j i j i j i j i jln exp 1    ln exp 1i j i j i j i j i jln exp 1E v y x y xln exp 1i j i j i j i j i jln exp 1ln exp 1i j i j i j i j i jln exp 1E v y x y xln exp 1i j i j i j i j i jln exp 1    ln exp 1i j i j i j i j i jln exp 1E v y x y xln exp 1i j i j i j i j i jln exp 1 ln exp 1ln exp 1ln exp 1ln exp 1ln exp 1E v y x y xln exp 1ln exp 1    ln exp 1ln exp 1    ln exp 1ln exp 1    ln exp 1ln exp 1    ln exp 1ln exp 1E v y x y xln exp 1    ln exp 1E v y x y xln exp 1    (3.10) 

Follow the notation in [47], the motion estimator given in Eq. (3.10) is donated by CD2. 

In Figure 3-1, we use the deformation registration schema to estimate the deformation 

between consecutive frames and sample results are given here. The goal of this method is to 

determine the deformation map between continuous frames based on the local similarity 

measurement. The cubic B-spline function is used to model the deformation field. In [40], the 

author proposed to use sum of square difference (SSD) to measure the difference between the 
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deformed previous frame and the next frame. We conducted our experiments by using both 

SSD and CD2. 

 

 

Figure 3-1 Deformation registration of ultrasound tongue images. 

 

Based on visual observation, both SSD and CD2-based deformation registration work 

well even under large deformation, as no structures is visible in the difference images. Note, 

to highlight the difference, the time interval between the previous frame and the next frame is 

expanded while the experiment is conducted. By default, the time-interval should be identical 

to the imaging framerate of ultrasound machines (1/60s), while, the time interval is set to 1 

second here. 
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In the practical application of speckle tracking in ultrasound tongue images, the virtual 

markers on the tongue surface are of great interest for the researchers. Figure 3-2 is given to 

illustrate the utility of the deformation registration in tracking “tissue points”. The original 

tissue points are manually selected in the previous frame. Before the deformation registration, 

the location of the tissue points is shown in the next frame. After the registration, the tracked 

markers were shown in the deformed previous frame. As can be seen from the figure, all the 

tracked markers lie near the tongue surface, which demonstrates the feasibility of the 

deformation registration-based speckle tracking. 

 

Figure 3-2 Deformation registration-based virtual land markers tracking in ultrasound 

tongue images. 

 

In [40], the author proposed a qualitative analysis of deformation registration in the 

prosodic domain, In fact, a more comprehensive evaluation is needed to quantitatively assess 

the performance of deformation registration method, which will be given below after the 

general introduction of other speckle tracking methods. 
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3.2.3 Optical flow 

Optical flow is another widely used motion tracking method in the video. In order to 

compute the optical flow between two adjacent ultrasound tongue images, the following 

optical flow constraint equation need to be solved: 

 0x y tI u I v I      (3.11) 

where xI , yI  , and tI  are the spatiotemporal image brightness derivatives. u  is optical flow 

in the horizontal direction, while v  is the vertical optical flow. Several different methods 

have been proposed to solve Eq. (3.11), such as Horn-Schunck method [48] and Lucas-

Kanade [49] method. Here, we take the Lucas-Kanade method: to solve the optical flow 

constraint equation for u  and v . The Lucas-Kanade optical flow method sub-divides the 

original image into smaller sections and assumes that velocity in each section is a constant. 

Then, this method performs a weighted least-square fit of the constraint equation to a 

constant model for  
Tu v in each sub-region Ω. By minimizing the following equation, the 

fitting can be achieved. 
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where W  is a window function. Then, we can formulate this minimization problem as given 

follows: 
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In the Lucas-Kanade method, a difference filter is used to calculate tI . Then, for each 

pixel, we can solve the optical flow constraint equation for u  and v  by solving 2-by-2 linear 

equations using the following approach: 
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  (3.14) 

Then we can make use of the eigenvalues of A for optical flow estimation. Suppose the 

eigenvalues of A  can be represented by 1  and 2 . If both 1  and 2 are bigger than a set 

threshold, the equation can be solved directly by using Cramer’s rule as A is non-singular. If 
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A is singular (one of 1  and 2  is smaller than the threshold), the gradient flow should be 

normalized to calculate u  and v  . If both eigenvalues are smaller than the threshold, the  u  

and v  will be set as 0. An example of optical-flow-based speckle tracking experiment is given 

in Figure 3-3. 

 

 

Figure 3-3 Application of optical-flow in ultrasound tongue images. 

 

As can be seen on the figure, optical flow can capture some small motion from the 

ultrasound tongue images. However, the correctness of the motion vector calculated still 
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needs to be further explored, as there is no ground truth for evaluation. Similar to 

deformation registration, optical-flow can also be used to follow the tissue points on the 

surface of the tongue, whose performance can be evaluated. The detail evaluation and 

comparison will be given in the section 3.2.5. 

 

3.2.4 Local invariant feature 

Since last decade, local invariant feature has drawn many attentions due to its superior 

performance on several computer vision tasks, such as object tracking. Despite the numerous 

publications of studies on the image feature descriptors, the descriptors representing the 

distribution of small-scale features within the interest point neighborhood [50], which was 

introduced by Lowe, have shown robust performance to obtain points correspondences. 

In this part, we take the Scale-Invariant Feature Transform (SIFT) algorithm [50] as an 

example, a state-of-the-art method of local invariant feature description, which can be divided 

into three main steps: feature detection; feature description and feature match. Here, feature 

description corresponds to speckle pattern description, while the feature match can be 

regarded as a speckle pattern similarity measure. More specifically, SIFT keypoints are 

detected as local extrema in scale-space, and keypoints are assigned to one or more 

orientations based on local image gradient directions. Each keypoint is described as a vector 

using neighborhood oriented gradient histogram information. A 16x16 neighborhood around 

the keypoint is taken. The block is divided into 16 sub-blocks of 4x4 size. For each sub-block, 

8 bin orientation histogram is created. So a total of 128 bin values are available. It is 

represented as a vector to form keypoint descriptor. In addition to this, several measures are 

taken to achieve robustness against illumination changes, rotation. In the original step of 

feature matching, the Euclidean distances between vectors are calculated to obtain 

correspondences of the keypoint. 
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……

 

(a) Oriented Gradient  (b) Sub-blocks (c) Descriptor feature vector 

Figure 3-4 Describe the keypoints by using the feature vector. 

 

Despite the excellent performance of SIFT algorithms, only sparse correspondence can be 

obtained after the matching between the descriptors in the ultrasound image due to the poor 

quality (as can be seen from Figure 3-5). As mentioned earlier, the goal of speckle tracking is 

to analyze the motion of the tongue, especially the tissue points lying on the surface of the 

tongue. Thus, this kind of approach may not be feasible for our purpose. 

 

Figure 3-5 Examples of local invariant feature to obtain point correpondences. 
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Indeed, dense correspondence between two ultrasound tongue images is of a great need to 

characterize the deformation of the tongue. Analogous to optical flow, where an image is 

aligned to its temporally adjacent frame, [51] proposed SIFT flow to obtain dense point 

correspondences using SIFT descriptors. Here, we use SIFT flow, to build the dense 

correspondence between descriptors to estimate the motion of particular pattern. 

The initial objective of SIFT flow is to align the query image in the retrieved set which 

consists of a large collection of a variety of scenes. If the dataset is large enough to cover all 

the possible scenes, the nearest neighbors would be visually similar to the query image. 

Based on the hypothetical scenario, a SIFT descriptor is extracted at each pixel in the image 

and encoded the pattern information, and optical flow approach is used to build the 

correspondences of the descriptors in the two frames. The use of SIFT descriptor can allow 

robust matching. 

 

Figure 3-6 Application of SIFT flow on the ultrasound tongue images. 
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Based on the SIFT flow, some sample results are given in Figure 3-6. As can be seen 

from the figure, similar to the optical flow, the SIFT can capture some small motions in the 

ultrasound tongue image sequences. On the other hand, it can be observed from the figure 

that: the SIFT flow is more robust to the noise. Compared with the standard optical flow, 

SIFT works better (note the motion vectors in the black region in the ultrasound tongue 

images). The quantitative evaluation of SIFT flow-based speckle tracking method is given in 

next section. 

 

3.2.5 Comparison between different speckle tracking methods in ultrasound tongue 

images 

In the ultrasound tongue images, there is no ground truth to evaluate the performance of 

different speckle tracking methods, a specific evaluation method is to be designed. As the 

researchers are more interested in the upper surface of the tongue, an experiment has been 

carried out to compare the tracked speckles on the contour to hand-labeled curves. The idea 

behind this kind of evaluation is that: different speckle tracking method can be used to follow 

several “tissue point” on the tongue contour, and the virtual contour can be compared to with 

the hand-labeled curves. If the distance between the tracked contour and the labeled contour 

is small, the speckle tracking method is better in following the surface deformation. 

For validation, we follow the widely used: mean sum of distances (MSD), defined as: 

  
1 1

1MSD , min v u min u v
2

n n

i j i j
i in  

 
    

 
 U V  (3.15) 

where V is the contour extracted automatically and U is the result of hand-labelling. Note 

once again the points on the compared contours are not physical tissue points but simply 

representative positions on the contour; MSD simply compares the similarity of two contours 

i and j by finding, for each point on contour i, the closest point to it on contour j, which, in 

general, will not correspond to a reference point on contour j. The comparison is conducted 

on a consecutive sequence, of 150 frames. The data is the recording from the female subject, 

and all the frames are hand-labeled. The MSD error for different approaches on the 

continuous sequences is given in the figure below.  
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Figure 3-7 The MSD error of different speckle tracking methods. 

 

As can be seen from the figure, except for the optical-flow method, the speckle tracking 

methods provide similar MSD error. Deformation registration-based speckle tracking method 

gives better performance with comparison to SIFT flow, and CD2-based local similarity 

measurement gives a slightly better result obtained using the SSD. Based on the experiments, 

we can conclude that both deformation registration and the SIFT-flow-based speckle tracking 

methods can provide extra point correspondence information on the tongue surface with 

relative high robustness. On the other hand, optical flow or its variants may be unsuitable for 

the ultrasound tongue image due to the speckle decorrelation. Moreover, the deformation of 

the tongue is large and the motion of the tongue is quite fast, which poses an even greater 

challenge to follow the motion of the tongue by using the optical flow as standard optical 

flow cannot handle with large deformation. On the other hand, it is worthwhile to notice that 

the tracking error was accumulated during the tracking processing. If hand-refinement is done 

for the speckle tracking method, the performance can be further improved. 
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3.3 Similarity-based automatic speckle tracking re-initialization 

As demonstrated in previous sections, the tracking error was accumulated on the whole 

sequence. Thus, hand-refinement is often needed to reset the tracking [10]. The goal of this 

section is to explore this issue: is there a way to re-initialize the speckle tracking 

automatically, thus improving the robustness of the speckle tracking method. Unlike the 

general tracking problem in the natural video sequence (such as pedestrian detection), this 

similarity-based automatic reset method may be feasible in the ultrasound tongue image 

sequences as the tongue’s motion trajectory is limited. For example, the tongue goes back to 

the rest position frequently during the speech production. The key idea of automatic re-

initialization is the following (as shown in Algorithm 1): before speckle tracking is carried 

out, the image similarity coefficient (defined below) is calculated, between current frame and 

the hand-labeled frames (note that the number of frames can be more than 1). If this 

coefficient exceeds a set threshold, the points of the contour are reset to those which were 

input for the hand-labeled frames. This provides a method to prevent accumulation of errors 

over long sequences, which can lead to erroneous tracking, and amounts to a sort of 

“automatic re-initialization” of the tracking points based on initial a priori information. 

Algorithm 3-1: Tracking re-initialization method for the speckle tracking in the 

ultrasound tongue image sequences. 

1: load  labeled frames L (L1, L2, …)                                                           
2: for  frame-number F in [1, T] do                                                                                                                                             
3:     load Fn (n = 1, T) 
4:         if similarity index (Fn, L) > threshold 
5:               Reset the contour to the hand-label contour 
6:         else 
7:               do Speckle Tracking  
8:         end if 
9: end for 

 

In this section, we first introduce the image-similarity measurement method, and a 

comparative study is made on ultrasound tongue images using different image similarity 

indexes. Then, by making using of the more suited similarity index, the automatic speckle 

tracking re-initialization method is applied. To demonstrate the feasibility and robustness of 

the proposed method, the re-initialization method is incorporated into aforementioned speckle 



 

63 

tracking methods, and a quantitative comparison is made with and without automatic re-

initialization. The results demonstrate that, using the proposed method can improve the 

performance by reducing the MSD error. 

 

3.3.1 Ultrasound image similarity measurement 

Before digging into the automatic speckle tracking re-initialization, it is desirable to 

explore a robust and accurate similarity index to measure the similarity between the current 

frame and the hand-label reference frames.  

The simplest and most widely used similarity measure is the mean squared error (MSE), 

which calculates the mean of squared intensity differences between the input and reference 

image pixels. Let , 1,2, ,ix i N, 1,2, ,x i N, 1,2, ,x i N, 1,2, , and , 1,2, ,iy i N, 1,2, ,y i N, 1,2, ,y i N, 1,2, , be the intensity values of gray images 

X  and Y respectively. We can calculate MSE as: 
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     (3.16) 

Based on the MSE, the signal-to-noise ratio is another index, which can be used to 

measure the similarity. 

  2
1010log /PSNR peakval MSE    (3.17) 

where peakval is either specified by the user or taken from the range of the image datatype 

(the default value is set as 255). However, ultrasound images are influenced by speckle noise, 

which makes these methods unfeasible. 

 

Figure 3-8 Two frames used to calculate the similarity index, the size of the frame is 320

× 240. (c) is the difference between Frame 1 and Frame 46. (a) Frame number: 1; (b) Frame 

number: 46; (c) Frame 46 - Frame 1 (colormap). 
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As the milestone of image similarity measures and image quality measures, the structural 

similarity [52], makes significant progress compared to the previous methods. 

The SSIM index measures three kinds of visual impact of changes in luminance, contrast 

and structure between two images: 

      2 2
1 1, y 2 x y x yl x C C          (3.18) 

      2 2
2 2, 2 x y x yc x y C C          (3.19) 

      3 3, xy x ys x y C C        (3.20) 

where x , y , x , y , and xy  are the local means, standard deviations and cross-covariance 

for adjacent two frames x  and y  , and 1C , 2C and 3C are the constants. At each coordinate, 

the SSIM index is calculated within a local window. In our experiment, 11 11 circular-

symmetric Gaussian weighting function, with standard deviation of 1.5 pixels, is normalized 

to sum to unity (
1

1
N

i
i

w


 ). The statistics, x , y , x , y , and xy  are then redefined as: 
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where ix   is the intensity for the pixel i  in x  while and iy  is the intensity value of pixel j  

in y . The overall index of similarity is a multiplicative combination of the three terms. 
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        , , , ,SSIM x y l x y c x y s x y
  

               (3.26) 

If we set      and 3 2 / 2C C  , the index can be simplified as follows: 

          2 2 2 2
1 2 1 2, 2 + 2 + +x y xy x y x ySSIM x y C C C C      = + + +    (3.27) 

However, the SSIM index is very sensitive to the noise and the image distortions. During 

our recordings, as the tongue may not have the exact same appearance as in the previous 

position, there may be small distortions between the images of the same utterances, hence the 

SSIM’s performance may be not stable for our case (as demonstrated in the later 

experiments). Complex wavelet structural similarity (CW-SSIM; [53]) is an extension of the 

SSIM method to the complex wavelet domain, which is a novel image similarity 

measurement and robust to small distortions. 

To implement the CW-SSIM index for the comparison, the images are decomposed using 

a complex version of a multi-scale, multi-orientation steerable pyramid decomposition [54]. 

In more detail, to compute the CW-SSIM similarity between two ultrasound tongue images, 

suppose we can represent the complex wavelet coefficients of the two frames ( x  and y  ) by 

using  , | 1,...,x x lW w l L   and  , | 1,...,y y lW w l L  , which are extracted at the same 

spatial location in the same wavelet sub-bands of the two images being compared, L  is the 

level of decomposition (In our experiment, L  is set as 5). Then we calculate the complex 

transform of them. The CW-SSIM similarity index between x   and y  is: 
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   (3.28) 

where *w  is the complex conjugate of w  and K is a small positive stabilizing constant. Both 

SSIM index value and CW-SSIM index value range from 0 to 1, and 1 means the contents in 

two images compared are the same. 
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Figure 3-9 A quantitative comparison experiment was conducted on different similarity 

indexes using the synthetic image (the unit for the rotation is degree). 

 

 

Figure 3-10 Comparison between different similarity indices on different situations using 

real ultrasound tongue images. 
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A quantitative comparison experiment was conducted on different similarity indexes (as 

shown in Figure 3-9 by using synthetic data. The original image in (a) is a white rectangle 

surrounded by a thick black bounding box, while the sample frame with added speckle noise 

is given in (b), and the change of the similarity index in different situations are given in (c) 

and (d). As can be seen from the Figure 3-9, compared with SSIM and PSNR, CW-SSIM has 

superior performance with the occurrence of the speckle noise and rotation about the center 

of the image. Note that we normalized MSE values and PSNR values here (by dividing the 

biggest value of the similarity index); as PSNR can be obtained from MSE, only normalized 

PSNR is used in our figures. Similar to the experiment given in Figure 3-9, another 

experiment is conducted by adding the noise and rotation to real-ultrasound tongue images, 

the results are given in Figure 3-10, which also demonstrates that CW-SSIM gives better 

performance. 

The experiment given in Figure 3-11, is conducted on the sensitivity of the dissimilarity 

measurement. And the curves of the similarity index is given in the figure. In this thesis, the 

CW-SSIM will be used to explore the potential applications of the similarity measurement in 

automatic speckle tracking re-initialization. 

 

 

Figure 3-11 CW-SSIM index of the entire image in an ultrasound image sequence of five 

utterances of phoneme /k/. Three different levels of decomposition M are shown. 
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3.3.2 Ultrasound image-based speckle tracking re-initialization 

Following the evaluation procedure, the MSD will be used to measure the performance of 

different speckle tracking methods with proposed re-initialization. To make the comparison 

more effective, the parameter and data were kept the same as used in the previous section. 

The results are given in Figure 3-12. As can be seen from the figure, the re-initialization 

method can dramatically reduce the accumulated error, thus improve the performance of the 

speckle tracking, which demonstrate the feasibility of proposed methods. 

 

Figure 3-12 MSD error of speckle tracking methods with automatic re-initialization. 

3.4 Conclusion 

In this chapter, we first discussed the fundamental principles of the speckle tracking 

method, which presented the physical origin of the speckle. Then, different speckle tracking 

techniques have been tested on the ultrasound tongue image sequences, which include 

deformation registration, optical flow and local invariant feature. MSD is used to evaluate the 

performance, and the tracking error was accumulated during the tracking. To cope with this 

problem, by making use of the tongue’s repetitive motion, the global image similarity is 
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employed to reset the speckle tracking automatically, with the ultimate goal to increase the 

robustness of the speckle tracking in ultrasound tongue images. This re-initialization method 

may also be useful for the contour tracking in the ultrasound tongue images, which will be 

discussed in Chapter 4. On the other hand, the displacements of the speckles will be used to 

drive the 3D tongue model in a dynamic manner, which will be given Chapter 5.  
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Chapter 4 

Contour tracking in ultrasound tongue images 

4.1 Introduction 

Compared to the speckle tracking method, the contour tracking approach may be more 

robust to follow the motion of the tongue, as extra coherent motion information can be 

employed to guide the tracking procedure. Indeed, as aforementioned, a variety of processing 

techniques can be used to track the contour of the tongue, for example, active contour models 

[9], [10]; active appearance models [11]; machine learning-based tracking [12] [13]; and 

ultrasound image segmentation-based approaches [15]. More recently, some researchers have 

also proposed using physical properties of the tongue, contained in a realistic 3D model of the 

tongue, to help guide the contour extraction process [55]. Due to the physical motion of 

tongue, temporal prior shape information can be employed to help contour tracking 

processing. 

Despite sustainable efforts, robust contour tracking still poses a great challenge in the 

ultrasound tongue images. In this chapter, a new contour-tracking algorithm is presented for 

ultrasound tongue image sequences, which can follow the motion of tongue contours over 

long durations with good robustness. To cope with missing segments caused by noise, or by 

the tongue midsagittal surface being parallel to the direction of ultrasound wave propagation, 

active contours with a contour-similarity constraint are introduced, which can be used to 

provide “prior” shape information. The idea is to extract prior shape information from the 

ultrasound image sequence itself, included as an extra force to guide the evolution of the 

hypothetical tongue contour to better handle images with missing/vague contours. As the 

same with speckle tracking re-initialization, to alleviate the problem of accumulated tracking 

error over long sequences, which can necessitate manual re-initialization, we also follow the 

automatic procedure, based on the CW-SSIM index [53]. The resulting algorithm has been 

tested on both synthetic data and real ultrasound image sequences from multiple subjects. 
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Results obtained demonstrate that the proposed method can improve robustness of active 

contours against missing segments, and has the ability to re-initialize the contour tracking 

automatically without manual intervention. Such an automatic tracking approach can act as a 

complement to hand-scanning and more traditional (but more labor-intensive) contour 

extraction tools, such as EdgeTrak, and can be a valuable improvement for research in areas 

where longer sequences must be analyzed, such as speech production, speech recognition in 

silent speech interfaces [1]. 

In more detail, in section 4.2, we first present the modified active contour model. Then in 

section 4.3, a comparative study is conducted on different contour tracking algorithms with 

the automatic re-initialization method incorporated. Furthermore, in section 4.4, we extend 

the automatic re-initialization method to the extreme by using hundreds of labeled frames to 

“extract the contour.” In the end of this chapter, a conclusion is drawn based on our attempts 

on the contour tracking test on ultrasound tongue image sequences. 

4.2 Active contour model with Contour group-similarity 

constraint 

4.2.1 Active contour model with contour group-similarity constraint 

An active contour model is a spline function obtained by minimizing an energy function 

that is intended to fit the spline to edges present in the image while retaining a reasonably 

regular shape. Suppose we have an active model of the tongue contour that can be 

represented by n discrete points  1 2v ,v , ,vnV v ,v , ,vn , with the total energy for snakes defined as: 

 total int extE E E     (4.1) 

where intE is the total internal energy (sum over the n contour points of the local internal 

energies defined in Eq. 4.2) and extE is the total external energy (sum over the n contour 

points of the local external energies defined in Eq. 4.2). In this thesis, we follow the 

definition of local internal energy and local external energy used by [9]: 
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where 2, , 1j n 2, , 1j n2, , 1j n2, , 12, , 1 2, , 12, , 1j n2, , 1 2, , 1j n2, , 1, and ,  are the weighting parameters for the internal energy; d is the 

average distance between two consecutive points on the contour; v j is the jth point of the 

active contour;I is the gradient of the image intensity; and K is a normalization constant. 

Although EdgeTrak used dynamic programming in the optimization process, in practical 

applications, the performance of the active contour model is prone to corruption by missing 

boundaries due to movement of the tongue or to speckle noise. To help cope with this 

problem, a contour sequence similarity constraint is proposed in this work. In an ultrasound 

image sequence with a high frame rate (in our experiment, 60 fps), a contour extracted in a 

previous frame should normally be very similar to that obtained in the current frame, i.e., the 

deviation of contours extracted from adjacent frames should not exceed a certain threshold. 

Even when the local deformation of the tongue is large, a previous contour can act as a 

predictor to help regularize the movement of the active contour, since the true motion of the 

tongue must be physically reasonable. 

Before the contour-similarity constraint can be added to the active contour model, an 

appropriate similarity measure must be defined. A classical method of measuring the 

similarity between two contours is to calculate distances between corresponding points. 

However, this is not suitable in our case as there is no straightforward way to identify actual 

corresponding physical tissue points in contour tracking in ultrasound tongue image 

sequences. On the other hand, existing techniques to compare contours in the absence of strict 

point correspondence, such as MSD (defined in previous chapter), would be difficult to 

integrate into an energy-based active contour approach as there is no efficient optimization 

method to minimalize the energy function due to the fact that the MSD is non-convex. Here, 

we explore the use of the rank of a matrix formed from a set of contours to measure the 

similarity of the contours of a contour sequence, as in [56]. Let a set of m  consecutive 

contours be represented by vectors jc , for 1,2, ,j m1,2, ,j m1,2, ,j m1,2, ,  (the size of the vector is 2 1n  ). 

Each ,
Tx y

j j j   c c c  is obtained by concatenating vectors x
jc  and y

jc , where x
jc  is the orthogonal 

projection of vector jc  on the x axis, and y
jc  is the orthogonal projection on the y axis. For an 

image sequence of a sufficiently high frame rate, it can be assumed that jc  is generated from

j-1c via an affine transformation. The vectors form a matrix 1 2, , , , ,j m    , , , , , , , , , ,j m j m, , , , ,j m, , , , , , , , , ,j m, , , , ,   , , , , , , , , , , , , , , , , , , , ,j m j m j m j m, , , , ,j m, , , , , , , , , ,j m, , , , , , , , , ,j m, , , , , , , , , ,j m, , , , ,C = c c c c  (of size 2n
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m, where n is the number of discrete points and m is the number of consecutive contours), 

which is a low-rank matrix for any m. It was proved in [56] that . 

To enforce similarity between the contours extracted from adjacent frames, a constraint 

term is added to the energy defined in Eq. (4.1), resulting in a new energy Esim for each 

contour: 

 sim int ext  ( )E E E rank   C    (4.3) 

where   is a weighting parameter. Now, the rank of a matrix is a discrete quantity, which 

makes the optimization of Esim difficult. One way to solve this problem is to use the nuclear 

norm regularized linear least squares technique to rewrite the constraint term as [56]: 

 sim int ext *
E E E    C    (4.4) 

where 
*

C  is the nuclear norm of C  (the sum of singular values of the matrix C ). As the 

nuclear norm of a matrix is a good approximation to the rank of the matrix, it is common to 

substitute the rank minimization problem by the minimization of the nuclear norm, as has 

been widely done in low-rank modeling such as in [57]. The accelerated proximal gradient 

algorithm [56] is used for the optimization in this paper, as follows: the active contours are 

evolved at each iteration using image-based forces, after which the contour group similarity 

regularization is imposed by means of singular value thresholding. More detail can be found 

in [58] and [56]. Note that for the m-1 frames at the beginning of the sequence, no contour 

similarity constraint is added. 

Compared to extracting the contour from a single frame, the new force included with the 

active contour model acts as prior information that influences the movement of the contour. 

In the proposed algorithm, the internal energy is used to keep the continuity of the contour; 

the external energy is used to attract the active contour to the real contour in the ultrasound 

tongue image, while the similarity-constraint acts as an additional force to limit the degrees 

of freedom of the movements of the active contour. When several adjacent contours are clear 

in the ultrasound tongue image sequences, the external energy will be the dominant term; 

whereas if dramatic deformations of the tongue occur in some frames, the similarity-

constraint force dominates. In our experiments, the weight  was chosen by hold-out 

validation: the value of  that provided the minimum value for the Mean Sum of Distances – 

MSD, defined in Eq. (3.5) – for a subset of the data, and was subsequently used for the whole 

data set. As can be seen in Figure 4-1 (a) for synthetic contour data (with random speckle 

noise added), and Figure 4-1 (b) on some real ultrasound test data for frame when the tongue 

 rank 6C
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goes parallel to the ultrasound beam; the similarity constraint makes the active contour more 

robust and physical. 

 

Figure 4-1 Evaluation of contour tracking on synthetic data. (a) Validation on the 

synthetic data, each row represents the image sequences and the red line represents the 

contour extracted from the image. The red line in the top row shows the contour extracted 

without similarity constraint while the one in the bottom row is the one with similarity 

constraint. In our experiment, m = 6 and n = 24 (see discussion in text). (b) Validation on the 

ultrasound tongue data. The red line in the left column shows the contour extracted without 

similarity constraint while the one in the right column is the one with similarity constraint. 

 

4.2.2 Automatic re-initialization during contour tracking 

As with other techniques to extract tongue contours in ultrasound image sequences [15] 

and [10], the input of our algorithm consists of several points (in our work, at least 12) placed 

on the surface of the tongue in the first frame of the sequence (NB: As mentioned earlier, 

there is no fixed relation between the points chosen and physical tissue points). Using this 

input along with the technique of image similarity measurement, a novel automatic tracking 

re-initialization is presented in this section. In this way, we may hope to dispense with the 

need to manually re-initialize the contour finding process due to accumulated tracking error 

over long sequences. 
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In this paper, to avoid erroneous re-initialization and make a compromise between 

accuracy and complexity, the CW-SSIM index threshold is set to 0.8, and 4M  . In the 

ultrasound image sequences, if the index exceeds this threshold, the locations of the discrete 

points will be re-initialized to the positions that were set manually in the first frame, thus 

improving the contour tracking automatically, without manual intervention. The example 

given in Figure 4 (from “Female 2”, as defined in section 4) shows the automated re-

initialization process. Before applying the active contour model on Frame 93, the CW-SSIM 

index is calculated between 93 and the first frame (with manually chosen contour points). As 

the index (0.81) exceeds the threshold we set (0.80), the contour is reinitialized as the first 

frame (in our tests, always the rest position). Without the contour tracking, the execution time 

of CW-SSIM is about 0.19 second for each pair of frames in our tests. 

 

 

Figure 4-2 Example of automatic re-initialization in the contour tracking. As the CW-

SSIM index between the first frame and the Frame 93 exceeds the threshold, the contour is 

re-initialized to the original position in the first frame. (The CW-SSIM index between 

Frame1 and frame 92 is 0.79). 

 

4.2.3 Experiments and results 

Four datasets involving 5 speakers were used in our tests: 

 An unpublished dataset from speaker “Male 1”; 

 An unpublished dataset of isolated utterances from subject “Female 1”; 
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 Portions of a POLYVAR corpus recorded at our laboratory in 2011 on three 

speakers, “Female 2”, “Male 2”, and “Male 3; 

 Portions of a TIMIT corpus recorded in our laboratory in 2010, on speaker 

“Male 1” . 

Our algorithm is implemented using MATLAB 2014b on a Windows 8 desktop with Intel 

4-Core 3.7 GHz CPU, 16 GB RAM, and ATI Radeon HD 7800 with 6 GB DDR3 VRAM, 

Dual AMD Filepro 512 GB PCIe-based flash storage. Hand labelling for comparison to 

automatic tracking results was performed by a single labeller and took about 2 months. 

First we examine the execution time of the proposed algorithm. The size of C is 2nm, 

where n is the number of discrete points ( 12n  ) and m is the number of adjacent contours, 

here set to 10. The singular value decomposition calculation is fast, and the energy 

minimization using the decomposition in fact faster than the minimization processing without 

the contour similarity constraint; the computationally heaviest part of our work is the 

calculation of the similarity between the current frame and the first frame (the tongue in rest 

position) using CW-SSIM. The time performances for the different subjects are very similar, 

ranging from 220 milliseconds to 239 milliseconds per frame; thus, on average, a sustained 

rate of roughly 5 Hz can be maintained with the algorithm in its present form. On longer 

sequences, of course – and even more so with hand-scanning – hand re-seeding of contours 

will slow overall processing time down very dramatically, as compared to the proposed 

method. In this sense, the approach presented can be viewed as a complementary, more 

automatic approach, that can be of significant value in applications where long sequences 

must be analyzed in their entirety, as mentioned earlier. 

Figure 4-3 shows an example result, analogous to the test of Figure 4-1 on synthetic data, 

on twenty contiguous frames from Female 1, in a segment of the data where the contour is 

rather faint, due to the orientation of the tongue. Red lines show the results obtained with the 

contour similarity constraint; yellow, those without. 
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Figure 4-3 The comparison between the contour-extracted with contour similarity 

constraint (red line in second column) and without contour similarity constraint (yellow line 

in third column). As the number of frames is small, image-similarity-based re-initialization 

was not necessary here. 

 

The tracking of another example sequence (Female 2) is shown in Figure 4-3, which lasts 

more than 3 minutes (over 17000 frames). The Figure shows the contours from a selection of 

frames in the sequence. No manual re-initialization was made during the tracking, aside from 

the initial seeding done on frame 1. On visual inspection of the tracked contours, the 

algorithm works quite well. 
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Figure 4-4 The results (Female 2) of contour tracking in the sequences of long duration 

(green lines are the contour tracked in each frame, while the blue points represent the points 

to represent the curve). To keep the original result, no contour extrapolation is made. 

 



 

80 

Occasionally, tracking errors do occur, as shown in Figure 4-5, due to the presence of a 

high level of noise or other anomaly in a particular region of the image over an extended 

period, during which the tongue does not return to the rest position, and the contour therefore 

not automatically reset. 

 

 

Figure 4-5 Examples for poor tracking (Female 2). 

 

As our sequences consist of large numbers of image frames due to the high capture rate 

(60 fps), it is very laborious to extract contours manually for all frames. Therefore, 4000 

frames were chosen randomly for manual contour extraction from the data recording of 

Female 2, 1000 frames for Male 2, and 2000 frames for Male 3. Compared to the manually 

extracted contours, the MSD errors between the contours extracted automatically by different 

methods are given in Table 4-1. 
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Table 4-1 Errors by using different methods for different subjects (For Female 2,400 contours 

were extracted manually, for Male 2, 1000 contours were extracted manually, while 2000 

contours were extracted manually for Male 3.) The standard deviation is also given in this 

table. 

Methods MSD mean errors and standard deviation 
(pixels, 1 pixel = 0.295 mm)       

 Female 2 Male 2 Male 3 
Similarity constraint + CW-

SSIM 
3.36 ± 0.86 3.65 ± 1.02 2.96 ± 0.95 

Similarity constraint + SSIM 4.09 ± 2.01 4.29 ± 2.93 5.84 ± 3.40 
No similarity constraint + CW-

SSIM 
18.96 ± 1.08 16.46 ± 1.29 18.64 ± 1.07 

No similarity constraint + 
SSIM 

22.43 ± 2.68 19.43 ± 3.47 21.27 ± 4.55 

Similarity constraint 4.52 ± 2.53 5.52 ± 3.41 6.45 ± 2.87 
 

It can be observed that the proposed method, with contour similarity constraint and 

automatic re-initialization, has the best performance (smallest mean and smallest standard 

deviation of MSD error). Some other examples of tracking results for Female 1 are given in 

Figure 4-5, showing a variety of tracking qualities. Some results for Male 1, Male 2 and Male 

3 are given in Figure 4-6, Figure 4-7 and Figure 4-8. No manual re-initialization was 

performed on any dataset during the entire tracking procedure. The performance 

demonstrates the algorithm versatility on the different subjects. We note that since Male 3 

had undergone a laryngectomy, no hyoid bone or shadow of the hyoid bone can be observed 

in the image sequences of this speaker. 
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Figure 4-6 Some examples of results for Female 1 

 

 

Figure 4-7 Some examples of results for Male 1. 
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Figure 4-8 Some examples of results for Male 2. 
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Figure 4-9 Some examples of results for Male 3. 



 

85 

4.3 A comparative study on the different contour tracking 

algorithms 

4.3.1 Comparison of contour tracking methods with re-initialization 

In this section, we will conduct a comparative study on the different contour tracking 

algorithms in the ultrasound tongue image with CW-SSIM-based automatic re-initialization. 

To make a comparative study on different contour tracking algorithms, the re-initialization 

method is incorporated into EdgeTrak and TongueTrack and a quantitative comparison is 

made with and without automatic re-initialization. 

In more detail, as mentioned in the introduction section, unlike the general tracking 

problem in the video sequence, this automatic reset method may be feasible in the ultrasound 

tongue sequences as the trajectory of the tongue motion is repetitive (for example, the tongue 

goes back to the rest position frequently during speech production). If we label some contours 

manually in some frames, then these frames can be the seeds to trigger the automatic re-

initialization using similarity measurement. Theoretically, if the number of the hand-labeled 

frames is large enough, which can cover all the potential trajectories of the tongue, the 

tracking problem can be converted to the use of a robust similarity measurement to find the 

correspondences between label frames and the current frame pending processing. 

In more detail, the proposed comparison experiments are conducted as follows: Before 

contour tracking is carried out, the similarity coefficient is calculated, between the current 

frame and 5 hand-labelled reference frames, selected manually for each subject, in order to 

cover, in an ad-hoc way, the space of possible different tongue configurations for each 

speaker. If the similarity coefficient exceeds a set threshold (in our experiment, 0.85), the 

positions of the contour are re-initialized to those which were input for the reference frame. 

Following the previous work in [59], we conducted a comparative study on the error 

analysis. The data recorded two female and two male subjects of normal speaking abilities. 

The utterance is also the same for each subject, with saying “I owe you a yoyo”. The total 

number of images is 1145. Hand-labeled contours will be used as the ground-truth for 

evaluation. Our goal is not to compare the error induced by the tracers, but to evaluate 

whether the automatic re-initialization can improve the robustness of the contour tracking. In 



 

86 

this experiment, mean sum of distances (MSD) are used to evaluate the error. The 

experiments are conducted using different tracking algorithms with and without automatic re-

initialization method and the results are given in Table 4-2. 

Table 4-2 A comparison between with and without automatic re-initialization method (1 

pixel = 0.295 mm) 

MSD error (pixels) EdgeTrak TongueTrack Method proposed in 

Section 4.2 

Without automatic  

re-initialization 
7.06 ± 2.77 5.59 ±3.04 4.68 ±2.81 

With automatic re-

initialization 
3.46 ±1.04 3.60 ±0.96 4.05 ±0.97 

 

As can be seen from the table, the automatic re-initialization method can improve the 

tracking performance by only using 5 hand-labeled frames. We can expect that: with more 

hand-label frames, the MSD error can be reduced further, which will be demonstrated in next 

section. The results demonstrate that, using the proposed method initialization can improve 

the performance by reducing the average mean sum of distances (MSD). Furthermore, we 

extend the automatic re-initialization method to the extreme by using hundreds of labeled 

frames to “extract the contour”. 

4.3.2 Similarity-based contour extraction 

In this section, we expand the automatic re-initialization idea to the extreme for contour 

tracking: using hundreds of hand-labeled frames and CW-SSIM index to extract contours in 

ultrasound tongue image sequences. 

Before the extraction processing is conducted on the ultrasound tongue data, an image 

dictionary needed to be constructed, which consists of 2000 manual labeled frames for each 

subject (three subjects’ data are used in our experiment). The data used are the recordings of 

multi utterances from different subjects. Figure 4-10 gives an example of the label frames for 

different subjects in the database. 
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Figure 4-10 Sample frames from the image dictionary. The yellow curves represent the 

contours labeled manually. 

 

 

(a)                                               (b)                                               (c)  

Figure 4-11 The frame in (a) is the frame pending processing, while the two frames in (b) and 

(c) give the most similar hand-labeled frames selected from the database by using CW-SSIM 

index. The yellow lines are the contour label manually.  The similarity index between (a) and 

(b) is 0.9569, while the similarity index between (a) and (c) is 0.9636. 

 

In fact, the number of frames in the database, which need to be labeled, is directly linked 

to the degree of freedom of the tongue. Figure. 4-11 gives an example of most similar frames 

in the database of hand-label frames. 

As our sequences consist of large numbers of image frames due to the high capture rates 

(60 frames per second), it’s very difficult to label all frames for the validation on the whole 

dataset. Therefore, 500 extra frames were chosen randomly for hand labeling to evaluate the 

accuracy of the algorithm. Compared to the manually extracted contours, the MSD errors 

between the contours extracted automatically using different methods is given in Figure. 4-12. 

As can be seen from the figure, with 1000 hand-label frames as the database, the proposed 

similarity-based method achieves 2-3 pixels in MSD error. With 2000 hand-label frames, the 
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error drop to 1.5 – 2 pixels for different subjects. Moreover, we also noticed from the figure, 

the MSD error of contour extraction has faster error convergency for the subject who had 

under gone laryngectomy than the normal subjects, which may demonstrate that the degree of 

freedom of the tongue of this patient subject may be smaller than the normal subject. 

 

Figure 4-12 Errors by using different methods MSD Errors across (pixels, 1 pixel = 0.295 

mm) 

4.4 Conclusion 

In this chapter, different automatic contour-tracking algorithms are tested for ultrasound 

tongue image sequences. Firstly, based on the active contour model, a novel active contour 

method with temporal regularization is presented to address the problem of missing or faint 

contours with a contour similarity constraint. Moreover, the image similarity-based automatic 

re-initialization technique is also incorporated into the contour tracking algorithms in this 

chapter, which can increase the robustness of the tracking. This method serves as a 

complementary approach to hand-scanning and existing semi-automatic scanners (e.g., 

EdgeTrak), and can be an important tool for applications where analysis of long sequences is 

important, such as speech production, speech recognition and the like. 

Moreover, to make a comparative study between other different contour tracking 

algorithms, a comparative study is conducted on with and without automatic re-initialization 

method. The results demonstrate that, using the proposed method can improve the 
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performance by reducing the average mean sum of distances (MSD) from 5-6 to 4 pixels. 

Furthermore, we extended our automatic re-initialization method by using more frames, and 

select the labeled contour in the more similar frame to represent the contour in the current 

frame, which achieves superior performance compared with EgdeTrak and TongueTrack. 

Still, the scalability of the method is limited due to the necessity of extensive hand scanning. 
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Chapter 5 

Physics-based 3D tongue motion modeling 

5.1 Introduction 

In speech production research, a realistic 3D tongue motion visualization is of 

importance, and an accurately quantified description of the 3D tongue motion may be helpful 

for the SSI systems. Furthermore, 3D dynamic tongue modeling can serve as a tool to study 

articulation training. However, despite considerable efforts, “seeing speech”, as the process is 

often defined, remains a challenge. 

Recently, advances in physics-based 3D modeling technique have advanced the technique 

to a point where ultrasound-based 3D tongue modeling may be feasible. Based on the motion 

tracking presented in the previous two chapters, in this chapter, we explore a generic tongue 

visualization framework, which combines the 2D ultrasound imaging and a physics-based 3D 

modeling technique. Although our primary goal is to design a platform for ultrasound data, 

the system can also serve as an interface for other imaging modalities (e.g., Magnetic 

Resonance Imaging (MRI)) to assist studies of speech production. 

The organization of the chapter is given as follows: In section 5.2, we describe the 

principle of physics-based 3D modeling, based on which the overview of the interface is also 

presented in this section. The framework of the speckle tracking-based 3D tongue motion 

visualization is given in section 5.3, while in section 5.4, the contour tracking-based 3D 

tongue motion modeling method is presented, and section 5.5 provides conclusion. 
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5.2 Physics-based 3D tongue modeling 

5.2.1 Theoretical foundations of motion-driven based 3D tongue modeling 

Currently, existing state-of-the-art platforms (such as ArtiSynth [24]) focus on modeling 

driven by muscle activations. Nevertheless, despite many attempts to characterize the 

biomechanical properties of the tongue [60], our understanding of tongue muscle activations 

is still incomplete. Furthermore, most existing 3D tongue visualization frameworks are 

unable to simulate real-time tongue motion. Modal analysis based on a linear strain tensor is 

suitable for real-time simulation. However, it has been suggested that the deformation of the 

tongue could be large, and the hypothesis of small deformations may not be appropriate. 

Green’s nonlinear strain tensor can model large deformation; however, time stepping of the 

resulting nonlinear system can be computationally expensive. Modal warping [61] technique 

is a good solution to this problem, which explores to handle rotational parts of deformation in 

the framework of model analysis, thus uniting the benefits of both modal reduction and 

stiffness warping. This technique is used in our framework to animate the tongue 

deformation. 

The displacements of the nodes obtained from the motion tracking approaches are applied 

as a linear constraint, which can be integrated into the governing equation of the dynamic 

deformable tongue model using the Lagrange multiplier method [62]. 

This can be expressed as: 

Mu+Cu+Ku = fMu+Cu+Ku = f      (5.1) 

The mass, damping, and stiffness matrices M , C , K (of size 3n x 3n, where n is the 

number of nodes) are determined by the material’s intrinsic physical properties; u is the 

vector of the displacements of the nodes from their original positions on the mesh; f is the 

vector of external forces. Eq. (5.1) is a coupled system of ordinary differential equations, 

which typically cannot be solved in real-time. To address this problem, we adopted linear 

modal analysis to accelerate the computational efficiency by solving the generalized eigen 

problem. Suppose Φ and Λ (a diagonal matrix of eigenvalues) are the solution matrices for

KΦ= MΦΛ , where TΦ MΦ = I , TΦ KΦ = Λ . The modal displacement can be expressed as 

a linear combination of the columns of Φ . 
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 u = Φq      (5.2) 

Substitution of Eq. (5.2) into Eq. (5.1) followed by a left-multiplication by TΦ , results in: 

 T Tq + Φ CΦq + Λq = Φ fT Tq +Φ CΦq+Λq = Φ f
T T

Φ CΦq+Λq = Φ f
T T      (5.3) 

We can use only several dominant columns in Φ (e.g. the ones associated with the 

smallest eigenvalues), thus the computation load of Eq. (5.3) is considerably reduced. Under 

the commonly adopted Rayleigh damping condition:  TΦ CΦ = I + Λ  (where  and  are 

scalar weighting factors), the calculation can be carried out in nearly real-time. 

As the linear modal analysis cannot deal with large magnitude deformations, the modal 

warping technique [61] is used to compute the nonlinear deformation term, so that the new 

representation of the rotational part becomes: 

 w = WΦq        (5.4) 

where w is a vector representing the angular velocities of the nodes and W  is the curl of the 

linear displacement. And Eq. (5.3) can be simplified as a simple linear system of: 

Aq = bAq = b       (5.5) 

which is to be solved repeatedly at each time step. The Newmark-average acceleration 

method is used in our framework to solve the equation and we can get:  

    22 4h h  A M C K    (5.6) 

  *   *b f Cq Kq* *b f Cq Kq*b f Cq Kq*  b f Cq Kq     (5.7) 

where  * 2  q q q * 2      2 2 q q qq q qq q q q q q2q q q2 q q q  h  are two predictors. The superscript “-” represents the values in 

previous frame. The modal displacements and velocities can be calculated by using: 
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 * / 2h q q qq q q q q q/ 2q q q/ 2hq q qh q q q 
   (5.8) 

where h is the time interval which is set as 1/60 second, according to the actual data sampling 

rate of the ultrasound imaging devices. By using modal reduction and model warping, the 3D 

deformation of the tongue can be realistic and retain calculation efficiency. 
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5.2.2 Interface overview 

An interface of our whole tongue modeling visualization framework has been developed. 

Figure. 5-1 provides an overview of the interface devolved to implement the whole 

framework. The main 3D view is given in the left part of the whole interface. Three different 

orthogonal perspectives (top, front and lateral) are embedded into the interface, which lie 

next to the main 3D view. Next the three auxiliary views, the ultrasound image sequences as 

well as the displacement, velocity, and acceleration rate of the speckle tracked, changes of the 

tongue’s volume are also visualized in the right portion of the interface. All of the views are 

fully coupled. 

The described dynamic 3D tongue motion visualization platform is implemented in 

Microsoft Visual C++ 2010 in a Windows 7 environment, using a PC with Intel Core i7, 8G 

DDR3L and an NVIDIA GHTX862M. 

 

Figure 5-1 A snapshot of the user interface of the platform being developed. 
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5.3 Speckle tracking-based tongue motion simulation 

To drive the 3D tongue model, the displacements of the constraint nodes (as can be seen 

in Figure 5-2) needs to be obtained by using aforementioned different motion tracking 

methods. In this section, we will explore this kind of approach. 

5.3.1 Speckle tracking-based tongue motion visualization 

Firstly, we summarize the framework to employ speckle-tracking method to drive the 3D 

tongue model, which can be roughly divided into three modules: pre-alignment, speckle 

tracking and motion-driven 3D tongue model modeling. 

As the first step, the alignment is made between the generic tongue model and the 

ultrasound data in twofold: scale-alignment and angle alignment. The visible reference 

positions are selected in the vocal tract ultrasound sagittal scan (as shown in Figure 5-3), 

which include the “shadow” of hyoid bone and tendon. Based on the distance between the 

two reference positions, we can obtain the approximate scale ratio of between 3D tongue 

model and the 2D ultrasound image along the direction of X axis and Y axis (Suppose we can 

represent the scale ratio as : y xs s ). Also, we can make use of the contour extracted manually 

in the coronal scan to calculate the scale ratio in the direction of Y axis and Z axis and 

represent it by using y zs s . Then a scale matrix can be obtained as follows: 

 
1 0 0
0 0
0 0

y x

z x

S s s
s s

 
 
 
  

   (5.9) 

By multiplying the scale matrix with the coordinates of the nodes, a novel 3D tongue 

mesh can be obtained, which can roughly be aligned with the size of the tongue of the subject. 

Here, the alignment is of importance as the size of the tongue varies dramatically in different 

subjects. Without this step, the modeling framework will fail during our experiments.  

For the angle-alignment, suppose 1  donates the angle between the X axis and the vector 

which links the hyoid bone and tendon in the 3D tongue model, while 2  represents the same 

angle in the ultrasound image. We can use a rotation matrix R , which rotate the model 
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clockwise by an angle 1 2  , to minimize the angle difference between the tongue model 

and the real ultrasound data. Multiplying the generic tongue model by the scale matrix and 

rotation matrix, a new tongue’s geometry model can be obtained, which has been aligned 

approximately with the ultrasound image. 

 

Figure 5-2 Generic tongue model with anchor (yellow) and mid-sagittal constraint nodes 

(green), for driving the model, are shown in the rest configuration. Anchor nodes’ 

displacements are zero during the motion of the tongue model. 

 

 

Figure 5-3 Vocal tract ultrasound scan: (1) the “shadow” of Hyoid bone; (2) upper tongue 

surface; (3) tendon; (4) tongue surface; (5) central groove. 

 

After the alignment, for the second step, the speckle tracking method is applied to the 

ultrasound tongue images to obtain point correspondences. Theoretically speaking, the 
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displacement of the “tissue point”, extracted by using speckle tracking, can be subsequently 

transmitted to selected nodes on the midsagittal tongue model surface in order to drive the 3D 

model at the acquisition rate of the ultrasound image sequence. As speckle tracking can 

follow all the “tissue points” in the image sequences, we manually select several control 

points on the 3D tongue model, and all the points are associated with the speckle patterns 

tracked. 

 

5.3.2 Experimental results 

Although, as demonstrated in Chapter 3, optical flow-based speckle tracking method 

provide lower performance with comparison to other speckle tracking methods. In our 

framework, our initial test used optical flow to obtain correspondences between the patterns 

in 2D image sequences, from which the tongue’s motion is derived. The reason is that, 

optical-flow is computationally efficient, and this kind of method can track the “tissues” in 

real-time. Although somewhat unstable, the technique provides a simple method for initial 

tests of the 3D visualization platform, and some sample results are given in Figure 5-4. 

 

 

Figure 5-4 Some examples of the visualization results. 
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As the tongue should be volume-preserved, to test the change of tongue volume during 

deformations, an experiment was performed, with results as shown in Figure 5-5. It can be 

seen that the change in the tongue volume remains small, less than 2% in most cases. 

 

Figure 5-5 Volume change of the tongue model. 

 

Using 150 modal bases (the number of the columns in matrix Φ ), the simulation 

throughput is 43.2 fps. Thus although tongue deformation during speech can be rapid, the 

developed framework appears to be able to meet this demand, following the motion and 

generating tongue shapes in real-time with relatively good accuracy. However, as discussed 

in previous chapter, the tracking error was accumulated during the tracking even the image-

similarity-based re-initialization method was used. Thus, several unrealistic deformations are 

generated. To solve this issue, more robust tracking method is needed. Compared to speckle 

tracking, contour tracking can characterize the motion of the tongue with higher accuracy. 

Thus, in next section, we will use contour tracking as the motion tracking method. 
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5.4 Contour-guided 3D tongue motion visualization 

Here we use the extracted contours to drive the motion of the tongue, as the speckle 

tracking is found sometimes unstable, which will induce unrealistic deformation during the 

motion visualization. 

5.4.1 Contour-based 3D tongue motion visualization 

The 3D model can be driven by imposing extra positional constraints at specified finite 

element nodes to enforce their displacements to some user-specified values. To drive the 3D 

tongue model, the modal displacement needs to be calculated by making use of the contour 

extracted from the ultrasound image sequences. However, obtaining the correspondence 

between the tissue points of the contours of different frames is of great difficulty, and 

registration between the 2D ultrasound image and 3D tongue model is another challenge. 

Rather than using speckle tracking, in this section, we show that these challenges can actually 

be converted into a “3D shape search” problem. The detailed method is given as follows: 

Step 1: Initialization. Four constraint nodes are selected manually (as shown in Figure 5-

6(a)). In this section, we suppose the first and last nodes are associated to the starting points 

and ending points of the contour extracted from the 2D image (as shown in Figure 5-6 (b)). 

 

  

(a). 3D tongue model used in our framework.       (b). Ultrasound tongue image with contour extracted. 

Figure 5-6 Elements used for the 3D visualization. (a) The 3D model used in our framework, 

the green circles denote the constraint nodes, whose displacements are associated with the 

modal displacement. The yellow nodes are anchor nodes whose displacements are zero 
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during the deformation of the tongue model. (b) Target curve extracted from the image, the 

green lines are the surface of the tongue. 

 

 

Figure 5-7 Sample frames in the 3D tongue shape dataset. 

 

Step 2: Database Construction. Each constraint node on the 3D tongue model has 2 

degrees of freedom. At each time step, a constraint point will be assigned a random 

displacement along the X-axis and Y-axis in the midsagittal plane. Because the movement of 

the tongue is smooth, we set up an upper threshold to the magnitude of the displacement so as 

to eliminate any discontinuous deformation. The 3D tongue model will then generate 

different tongue shapes, which are used to construct a 3D tongue shape database (some 

samples from the dataset are given in Figure 5-7.). As the displacement is random, some 

unphysical 3D tongue shapes will be generated, which will be discarded manually. For every 

3D tongue shape in the database, a contour can be extracted from the model by using the 

nodes lying on the surface between the starting node and ending node in the mid-sagittal 
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plane. As the movement of the tongue can be viewed as symmetric, the 3D contours from the 

database can be projected into the mid-sagittal 2D plane, and compared to the target curve 

extracted from the 2D ultrasound image. In our experiment, the number of 3D sample tongue 

shapes in the database is 1000 presently. 

Step 3: Contour Extraction. The method proposed in Section 4-2 is used to extract the 

contour in the ultrasound tongue image (as shown in Figure 5-6 (b)). 

Step 4: Similarity Measurement. A measurement is made of the similarity between the 

contour extracted from the ultrasound image and the 2D contours projected from the 3D 

tongue shapes in the database. The definition of the similarity error is the mean sum of 

distances (MSD), which is defined in previous sections. The smaller the MSD error is, the 

better the similarity. Here, we review the detailed definition of MSD: 

  1 2 2 1
1 2

1 1

1MSD , min min
2

n n

i j i j
i i

V V v v v v
n  

 
    

 
     (5.10) 

where 1V is the contour extracted from the image and 2V  is the contour extracted from the 3D 

tongue shape in the database, 1
iv , 2

iv are the elements of the contour 1V and 2V  respectively. 

Here n  is the number of the elements of the contours (In our experiment, 12n  ). Four 

constraint points generate 2V , while 12 points are selected to represent 1V . Consequently, to 

make the MSD measurement feasible, 2V is re sampled equidistantly to keep the number of 

elements in the two contours the same. 

During simulations, very small distances between constraint points were found to 

generate pathological curves. To retain smoothness in the tongue model, a penalty term was 

therefore added to the MSD error, defined as follows: 

 2 2
2 1

1m

i i i

P
v v 

 
  

 
 

      (5.11) 

where m  is the number of constraint nodes before re-sampling (here m  is set as 4) and 2
iv is 

the i th constraint node. The overall objective function is now given as: 

    1 21 MSD , 1l V V P       (5.12) 
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where   and   are the weighting parameters (in our experiment, 0.8  and 0.2  ). 

At each time-step, this contour-based 3D deformation method is implemented to measure 

the similarity of the contour extracted from 2D image and the contours projected from the 3D 

tongue shape. The most similar 3D tongue shape (the biggest l ) will be selected to represent 

the target curve shape associated with the ultrasound frame. 

The key reason for selecting the contour similarity measurement to create an association 

between the 2D ultrasound image and 3D tongue model is that, compared to ultrasound 

image similarity measurements or other similarity measurements using a 3D tongue model, 

measuring the similarity between 2D curves is of high efficiency. At the same time, although 

motion feature extraction from ultrasound tongue image still has difficulties, the contour 

extraction method is fairly robust in comparison with tissue points tracking method (or 

speckle tracking). 

5.4.2 Experimental results 

The most time consuming step in our framework is the construction of the 3D tongue 

shape database, which was completed offline. The average processing time to build the 

association between current ultrasound frame and the 3D tongue model is about 1.2 seconds 

on our platform. 

Here we select only four constraint nodes to drive the motion of the tongue on the 3D 

model’s surface. In fact, the displacements of the constraint nodes must in reality be coupled 

since the tongue is a muscle-activated organ. However, the couple-relation is difficult to 

model. The compromise here is to use only four nodes to drive the model, with each node 

regarded as being independent of the others. Nevertheless, the deformation simulated with the 

proposed framework is informative and qualitatively realistic. Figure 5-8 presents some 

results of the visualization platform on different vocalizations. 
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Figure 5-8 Sample frames of 3D tongue modeling. The ultrasound images are given in the left 

column. The meaning of the color line and points is the same as Fig. 1. The 3D tongue shapes 

are given in the right column, which are selected from the 3D tongue database based on the 

method proposed in section 4. 

 

As there is no effective quantitative evaluation method for the 3D tongue motion 

visualization presently, to further demonstrate the feasibility of the proposed method, the 

midsagittal plane of the 3D tongue model can be extracted from the model after the 

deformation. If the midsagittal contour of the 3D model can be fit to the ultrasound image, 

the effectiveness of the method will be validated. Figure 5-9 gives some sample results, 

which demonstrate performance by visual observation. 
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Figure 5-9 Validation for the proposed method for 3D tongue modeling. The left column 

gives the 3D tongue model, while the right column gives the ultrasound tongue image with 

tongue extracted (the green lines denote the contour extracted). The midsagittal planes of the 

3D tongue model are placed over the ultrasound tongue images in transparency. 

 

5.5 Conclusion 

In this section, we first described the techniques used for the 3D tongue modeling, which 

include model reduction and model warping. Then speckle tracking-based tongue modeling 

method is given, which transits the displacements of the speckles to drive the 3D tongue 

model, but, as mentioned earlier, the speckle tracking error will be accumulated. Although 

real-time modeling can be achieved, but some unrealistic deformation was generated, thus an 

alternative method is needed to modeling the motion of the tongue. 
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Contour tracking is more stable to characterize the motion of the tongue, but the 

registration between the contour in 2D and 3D tongue model is of great difficulty. In this 

chapter, we explored how to convert this problem to “3D shape retrieve” problem. Firstly, we 

build a 3D tongue model database, which consists of 1000 different shapes of the tongue. 

Each different tongue shape is described by the assigned displacements for the constraint 

nodes. After contour tracking, the similarity is calculated between the curves tracked in the 

ultrasound tongue image, and the curve on the midsagittal plane in the 3D tongue models. For 

each time step, by search for the most similar shapes in the tongue base, a more realistic 3D 

tongue dynamic modeling is achieved. 
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Chapter 6 

Conclusions 

6.1 Conclusions 

Speech is perhaps the most important human bio-signal, but not all of the characteristics 

of speech production are fully understood. Ultrasound imaging provides such a tool to 

improve the interpretation of articulator configurations by providing the real-time human 

tongue movement. Using ultrasound tongue images, most of the traditional approaches to the 

analysis of the tongue motion (or deformation) stays in the 2-D dimension, which ignored 

lots of the motion information. As a new tool for understanding speech production, the 

proposed 3D tongue motion visualization platform has been developed, based on ultrasound 

images, using modal analysis and model warping to perform the simulation in real time. We 

believe this to be the first combination of ultrasound imaging with a 3D tongue model to 

visualize the motion in real time. 

The organization is based on our attempts to model the tongue motion using B-mode 

ultrasound tongue images in 3D, which can be roughly divided into two main parts: tongue 

motion tracking part and 3D tongue dynamic modeling part. 

Tongue motion tracking: Accurate, robust tongue motion tracking remains a 

challenging problem for ultrasound sequences of long duration, due to acoustic effects, 

speckle noise and poor signal-to-noise-ratio (SNR). In this thesis, to characterize the motion 

of the tongue, different tracking methods were tested, which can be divided into two kinds of 

methods: speckle tracking and contour tracking. For speckle tracking, deformation 

registration, optical flow and local invariant feature-based motion tracking methods were 

tested on the ultrasound tongue image sequence. By tracking the “tissue point” lied on the 

tongue surface, a comparative study was conducted to evaluate the performance of different 

speckle tracking methods in the ultrasound tongue images. Moreover, an image similarity-
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based speckle tracking re-initialization method is proposed to improve the robustness of the 

tracking. The tracking results demonstrate that speckle tracking can provide point 

correspondence information with relatively high robustness, but the tracking error will be 

accumulated during the tracking processing, and the tracking is sometimes unstable. 

Compared to speckle tracking, contour tracking can provide superior performance to 

follow the surface of the tongue in ultrasound tongue images. However, despite significant 

research efforts, long duration contour tracking still poses a challenge in ultrasound tongue 

images. Most previous efforts aimed to extract the contour from single frame, without taking 

the temporal information into accounts. However, as the deformation of the tongue is 

physical, prior motion information can be helpful to extract the contours. In this thesis, we 

tested a temporal regularization method as the prior information, to guide the contour 

tracking. Based on which, we obtain relatively robust contour tracking in the ultrasound 

tongue images. 

Both speckle tracking and contour tracking have their own advantages and disadvantages. 

For speckle tracking, the tracking performance is lower as it is not always stable during the 

whole sequence. However, this kind of method can provide extra points correspondences 

information, which is vital for the motion-driven 3D tongue modeling. Contour tracking gives 

better performance to characterize the motion of the tongue. Nevertheless, the contour cannot 

provide much point correspondence information. 

3D tongue dynamic modeling: Based on the motion tracking part, a general framework 

is presented for the 3D tongue motion modeling. Both speckle tracking-based and contour 

tracking-based modeling methods were explored in this thesis.  

For speckle-tracking-based 3D tongue modeling method: Speckle tracking-based 

modeling simulated the motion of the tongue in real-time, while retained relative realistic 

deformation in most cases. However, as the tracking error accumulated during the tracking 

processing, some unrealistic deformations occurred during our experiment.  

For contour-tracking-based 3D tongue modeling method: As contours cannot provide 

tissue point correspondence information, the registration between the 2D tongue image and 

the 3D tongue model is a great challenge. In this thesis, by converting the problem into a “3D 

shape retrieve” problem, we can avoid the registration processing step. The modeling work 

can be divided into three main modules: 1) 3D tongue shapes database construction; 2) 
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Contour extraction from the B-mode ultrasound tongue image; 3) Similarity measurement 

between the contour extracted from 2D ultrasound image and the contours projected from the 

3D tongue shapes. Based on this kind of method, a more realistic 3D tongue motion 

visualization is achieved. 

6.2  Perspectives 

The study has offered a promising approach to simple but practical 3D tongue motion 

visualization solution using ultrasound tongue image sequences. However, it also 

encountered certain limitations, as well as brought to light a number of new ideas, both of 

which could be addressed in our future work. 

 Firstly, for speckle tracking-based modeling method, the registration between 2D 

points in the ultrasound image and the nodes on the 3D tongue model is manual 

tweaking, while a more robust and feasible registration method is desired. 

 Secondly, for contour-based modeling approach, the MSD error measurement 

may not be the optimal choice to measure the similarity between curves, and a 

more specific measurement may need to be developed. Furthermore, there are 

non-midsagittal motions (or out-plane motions) of the tongue, and employing the 

motion information from the midsagittal plane only is not enough to generate fully 

accurate tongue shapes. 

 Thirdly, during speech production, the tongue should be volume-preserved. 

However, although the volume change is small during the motion modeling, a 

more explicit volume-preserving constraint needs to be added.  

 Fourthly, the performance of the tongue motion visualization framework still need 

to be evaluated quantitatively by making use of other imaging modalities such as 

MRI and EMA. 
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 Lastly, we would like to go back to the “Silent Speech Interface” concepts. 

Presently, the quality of 3D tongue motion modeling is still far from been used to 

improve the performance of the SSI systems, although the platform developed can 

provide extra visual information to understand the speech production. But, we 

believe that, with the advances in 3D ultrasound imaging of the tongue, other 

imaging modality, image processing techniques and physics-based modeling 

techniques, 3D tongue motion modeling can provide extra quantitative 

information, which can be helpful for the SSI systems. 
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