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Résumé

Bien que de nombreuses études géodynamiques et tectoniques aient été effectuées à partir
l’activité sismique en Equateur, il n’existait pas à ce jour une tomographie complète
utilisant l’ensemble des données du réseau sismologique Equatorien (RENSIG), mise à
part une étude prélimaire sur la partie centrale de l’Equateur menée en 1994 par Prévot
et coll. et de plusieurs profils sismiques déterminés à la suite des campagnes marines
SALIERI et SISTEUR. Inverser les centaines de millier de temps d’arrivées d’ondes P et
S, de qualité inégale, formant le catalogue RENSIG était le défi qu’a constitué le sujet
de cette thèse.

Nous décrivons comment nous avons complété le catalogue RENSIG par des données
provenant du Nord du Pérou et comment nous avons homogénéisé et filtré l’ensemble de
données résultant, comportant plus de 800 000 temps d’arrivée correspondant à plus de
50 000 séismes. Pour inverser ces données nous avons adopté une approche Bayésienne.
Nous montrons comment le problème peut être reformulé dans un contexte Gaussien par
un changement de variables, tout en imposant une statistique robuste aux données, qui
conduit à un problème de moindre carrés non linéaire. Nous détaillons particulièrement la
régularisation du problème au travers des noyaux de covariance qui conduit à définir des
paramètres de contrôle fort utils pour l’inversion. Nous montrons également qu’inverser
des différences de données revient à introduire des termes spécifiques de corrélation dans
la matrice de covariance des données, tout en conservant les données brutes. Nous
indiquons finalement comment le calcul de l’indice de restitution permet de définir une
zone de confiance du modèle résultant de l’inversion.

L’inversion a été menée pratiquement en utilisant les codes informatiques (en Fortran
2003 par B. Potin, B. Valette, V. Monteiller): LOCIN (localisation) et INSIGHT (to-
mographie). La région finale d’étude est constituée par une boite parallélipipédique de
dimension 590×770 km2 de base et de 252 km de hauteur qui contient la topographie de
la surface. Le modèle est constitué d’une part des valeurs de vP et vP/vS sur une grille
ayant 5 km de pas horizontal et 2 km de pas vertical et, d’autre part, des paramètres
d’identification spatiale et temporelle des séismes. Un ensemble de tests nous a permis
de déterminer des valeurs raisonables de ces paramètres au travers d’un analyse de type
courbe en L.

Nous avons obtenu une amélioration de la localisation de la sismicité, qui nous a
permis de mieux décrire les essaims superficiels comme ceux de Pisayambo, Macas et
du Reventador et d’identifier des linéaments en relation avec la Tectonique. Nous avons



également obtenu une image de la sismicité à profondeur intermédiaire qui est dominée
par la présence de 4 nids sismiques, ceux de Madonaldo, La Maná et de Guayaquil à des
profondeurs entre 75 et 115 km et celui de Puyo à de plus grandes profondeurs. La zone
de Wadati-Benioff nous a permis de définir la profondeur du slab jusqu’à des profondeurs
de 100-150 km en fonction de la latitude et d’observer la décroissance du pendage de 25◦

environ au nord et au centre de l’Equateur jusqu’à environ 10◦ au sud puis au nord du
Pérou. Par ailleurs, l’analyse du champ de vitesse des ondes P suggère fortement que
le slab est coupé en deux morceaux, le morceau sud passant sous le morceau nord au
niveau du nid sismique de Puyo. Le modèle vP/vS présente une forte anomalie positive
de ce rapport le long de la cordillère occidentale à des profondeurs entre 30 et 50 km qui
caractérise des matériaux partiellement fondus et correspond au réservoir d’alimentation
profond de l’arc volcanique. Enfin, nous avons déduit de notre modèle un modèle de
profondeur de Moho en prenant la profondeur de maximum de la norme du gradient
de vitesse entre les vitesses de 7.2 et 7.4 km/s et en incorporant l’information sur la
profondeur de Moho provenant des campagnes SALIERI et SISTEUR dans la marge
active.
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Abstract

Although there have been numerous studies on the geodynamics and the tectonics in
Ecuador based on the seismic activity, there has not been to date a comprehensive
tomography study using the entire database of the National Seismic Network (RENSIG).
Only a preliminary limited study was performed by Prevot et al. to infer a simple P
velocity model in central Ecuador, and several profiles in the South-Colombian-Ecuador
margin were also investigated by using travel time inversion of wide-angle seismic data
obtained during the two marine experiments SISTEUR and SALIERI. Inverting the
hundreds of thousands of arrival times of P and S waves of uneven quality that constitutes
the RENSIG catalogue is the challenging subject of this thesis.

We describe how we complemented the RENSIG catalogue with data from the North-
ern Peru network and how we homogenized and filtered the resulting dataset of more
than 800 000 first arrival times of P and S waves corresponding to more than 50 000
earthquakes. To invert these data for both the velocity models and the event locations
we adopted a Bayesian approach. We show how the problem can be recast in the Gaus-
sian framework by changes of variable while imposing a robust statistics to the data, and
how it leads to a generalized nonlinear least squares problem. We detail in particular
the regularization of the models through the smoothing and damping properties of the
covariance kernels. We also show that inverting differences in data instead of the raw
data amounts to the introduction of specific correlation terms in the data covariance
matrix, while keeping the same set of data. We finally indicate how the computation
of the averaging index allows the delimitation of a confidence region for the resulting
model.

The practical inversion has been carried out by using the two Fortran 2003 codes
(B. Potin, B. Valette, V. Monteiller): LOCIN (prior localization) and INSIGHT (tomog-
raphy). The final study region is a parallelepipedic box of 590×770 km2 area and 252
km height that contains the topography of the surface. The models consist of the vP
and vP/vS fields discretized over a grid, the spacing of which is 5 km in the horizontal
directions and 2 km in the vertical one, and of the spatial and temporal parameters of
the seismic events. A battery of tests allowed us to set reasonable values for these tuning
parameters through an L-curve analysis.

We obtained the spatial distribution of the seismicity with an improved accuracy
which allows us to describe with more details the shallow seismic clusters, as those of
Pisayambo, Macas, Reventador, and to identify lineaments in the seismicity in relation



with tectonics. We obtained also a clear image of the intermediate depth seismicity wich
is dominated by 4 nests, namely the Maldonado, La Maná, and Guayaquil nests, at
depths ranging between 75 km and 115 km, and the Puyo nest at much deeper depths.
The Wadati-Benioff zone allowed us to clearly defined the topography of the slab only
to a depth to about 110-150 km, depending on the latitude, and to observe the decrease
of the dip angle from about 25◦ in northern and central Ecuador down to about 10◦ in
southern Ecuador and northern Peru. On the other hand, the analysis of the P velocity
clearly suggests that the slab is broken in two pieces, the southern one passing under
the northern at the level of the Puyo nest. The vP/vS model presents a high anomaly
of the ratio along the western cordillera at a depth ranging between 30 km and 50 km
that characterized partially melted rocks and corresponds to the feeding reservoir of the
volcanic arc. Finally, we deduced the Moho depth from our model by taking the depth
for which the norm of the velocity gradient is maximum between 7.2 and 7.4 km/s and by
incorporating information on the Moho depth provided by the SISTEUR and SALIERI
experiments in the convergent margin.
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Introduction

The dynamics of the Nazca oceanic plate, which converges towards the South American
continental plate in aN83oE direction and 56mm/year (Kendrick et al., 2003), generates
an intense seismicity at both shallow and intermediate depths in Ecuador. There has
been a series of studies on the geodynamics and the tectonics in Ecuador based on this
seismic activity (e.g. Guiller et al., 2001; Legrand et al., 2005; Manchuel et al., 2011;
Font et al., 2013; Alvarado et al., 2014; Yepes et al., 2016). However, there has not been
to date a comprehensive tomography study using the entire database of the National
Seismic Network (RENSIG). The main objectives of the RENSIG are to locate seismic
events and monitor the activity of volcanoes, both phenomena being a source of seismic
hazard for the inhabitants of the country. However, the records of up to a hundred
stations of the network have given rise to hundreds of thousands of arrival times of P
and S waves over time, which now constitute a huge catalogue of data of uneven quality
that is available for a large-scale tomographic adventure.

A first attempt of seismic tomography at regional scale was performed in 1994 by
Prévot et al. to infer a seismic velocity model in central Ecuador. Although that study
was relatively limited in its approach and by the number of data inverted, it showed
the possibility to use the database of the National Seismological Network of Ecuador to
obtain tomographic images. Two additional local tomography studies of the Pichincha
and Tungurahua volcanoes, conducted by Molina et al., in 2005 and Garćıa-Aristizábal et
al. in 2007, have also demonstrated that obtaining a satisfactory tomographic resolution
is challenging.

In contrast, the south Columbian-Ecuador convergent margin has been intensively
studied by using travel time inversion of wide angle seismic data. These data were
acquired during two major marine seismic experiments: the SISTEUR cruise in 2000
(Collot et al. 2002) and the SALIERI (South American Lithospheric Transects Across
Volcanic Ridge) cruise in 2001 (Flueh et al., 2001). It allowed the study of the seismic
structure and of the crustal overthickening of the Carnegie ridge as well as of the seg-
mentation of the margin into three contrasted zones (Graindorge et al., 2004, Sallarés et
al.,2005; Gailler et al.,2007).

This thesis work is pioneering the inversion of the complete RENSIG database of
arrival times of waves since 1988 for imaging the crust and the mantle wedge beneath
Ecuador. A challenging task was to extract an optimal core of data from this very large
and heterogeneous database by using robust statistics.



INTRODUCTION

The region of Ecuador and northern Peru was modeled by several interesting geo-
dynamic phenomena that cause a structural complexity that can be unraveled by using
tomographic methods. To the process of subduction of the Nazca plate beneath the
South American plate must be added the change in the dynamics generated by the pro-
nounced curvature of the continental margin between northern Peru and the Gulf of
Guayaquil. The subduction of the Nazca plate in Ecuador occurs in the context of the
transition between a flat slab in Peru and a dipping slab in northern Colombia. The
subduction process has also been greatly influenced by the creation of the Cocos plate
(Londsdale et al. 2005) with an opening ridge that was subducting until 10 million years
ago, and by the Carnegie ridge that is still currently subducting. All these combined
phenomena created a zone of magmatic and tectonic activity of great complexity that
frames the main objectives of our research. These objectives are to obtain an image
of the subduction of the Nazca plate in Ecuador and to define the image of the Moho
in this region. These images result from the a priori localization of the seismicity by a
grid-search method followed by the inversion of the data for both the event locations and
the velocity models. These two major objectives at the regional scale are accompanied
by the detailed study of the main seismicity clusters directly linked to the subduction
and finally by a preliminary tomographic study of Cotopaxi volcano.

To achieve the objectives of our thesis work, we needed a deep understanding of
theoretical foundations of the inverse problem from a Bayesian approach (Valette, 2011)
that constitute the subject of the first part of the thesis and an essential requirement for
the proper application of location and tomography softwares (Potin and Valette, 2016).
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Chapter 1

Seismic data

1.1 Introduction to the studied area

From a topographical point of view, the studied region displayed in figure 1.1 can be
divided in 4 areas between the Pacific ocean and the Amazonian Basin. On the west side,
there is the continental margin and the low coastal region with several basins, such as the
Progreso and Sechura basins, and a coastal range in Ecuador and in northest Peru that
lies about 300 m above the sea level, and is separated by the opening of the Guayaquil
gulf. Eastward lies the narrow Andean range with a width increasing from 140 km at
the Colombian border to more than 300 km in Northern Peru. On its east side lies the
Sub-Andean Belt with a lower altitude, wich overthrusts the Amazonian Basin with an
altitude of about 300 m. North of 2oS, the Andean range reaches the highest average
altitude in the studied region, and corresponds to a volcanic arc, with two cordilleras
separated by the narrow interandean depression. The main active volcanoes of the
Ecuadorian part of the arc are from South to North: the Sangay, the Tungurahua (active
since 1999), the Cotopaxi (phreatic crises since August 2015 ), the Guagua Pichincha
(phreato-magmatic crisis since 1998 until 2001), the Cotocachi, the Reventador, and the
Chiles-Cerro Negro (active since 2014).

From a geodynamical point of view, the main feature is the obliquity of the sub-
duction, oriented N83o with a rate of 56 mm/yr (Kendrick et al. 2003), that induces,
by partitionning of the slip vector, the NE motion of the North Andean Block (Noc-
quet et al. 2014), which is a oceanic block mainly constituted of terranes accretated
more than 60 my ago (Jaillard et al., 2009), and delimited on the east by the Chingual-
Cosanga-Pallatanga-Puna (CCPP) transpressive right-lateral fault system at the limit
of the stable South American plate (Alvarado et al. 2016). Moreover, the presence of
the Carnegie ridge, an aseismic ridge with a height of about 2000 m which is subducting
under the North Andean Block. Symmetricaly, due to the convexity of the trench line
south of the Guayaquil gulf, the obliquity of the subduction causes the southeast motion
of the Inca sliver, a continental domain wedged between the Nazca plate and the South
American plate (Nocquet et al. 2016).
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Figure 1.1: Topographic map of the area concerned by the tomography study over the black box. The
topography allows one to identify easily the trench and the Carnegie ridge at sea, as well as the four
main geographical regions in Ecuador, namely the coastal region with coastal ranges on both sides of
the Guyaquil gulf, the Cordillera, the Eastern sub-Andean Belt, and the Amazonian basin. The blue
dotted line indicates the limit of the North Andean Block and the diamonds the active volcanoes. The
four seismic networks involved in the study are represented by triangles of different colors. Clearly, the
RENSIG network is the most important regarding the size of coverage and the number of stations.

Concerning the seismicity, the studied area is relatively close to the subduction trench,
and to the seismogenic zone, with a high rate of earthquakes especially in the high coupled
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segment corresponding to the Carnegie ridge (Font et al., 2013). The seismicity of the
subduction extends down to the Puyo cluster (or nest) at a maximum depth of 250 km,
with several other intermediate clusters. The crust in the region is marked by both
a large set of seismic faults (CCPP) that border the Andean block and produce events
down to a depth of 40km, and by relatively shallow clusters of eathquakes. In the central
northern part, an important source of seismicity comes from the active volcanic arc that
produces numerous volcano tectonics events.

1.2 Seismic networks

The data used for this tomography study are the arrival times of P and S waves at
seismic stations. They mainly come from the Red Nacional de Sismógrafos del Insti-
tuto Geof́ısico de la Escuela Politécnica Nacional del Ecuador (RENSIG). They were
complemented with data from the Red Śısmica Nacional del Instituto Geof́ısico del Perú
(RSN). Additionally, we had access to few data coming from two seismic experiments:
a seismological campaign developed in Ecuador Coast in the framework of ADN (Andes
Du Nord) project from 2008 to 2014 and a temporary network installed in Northern Peru
from 1996 to 2001 (Tavera, 2006). The location of these four networks are displayed in
figure 1.1.

For this study we have taken as reference basis the catalogue of the RENSIG network.
In this catalogue, the event duration magnitude ranges from MD = 3.5 (Beauval et al.,
2013) up to more than MD = 6.5 for major events.

1.2.1 RENSING Network

The RENSIG network began operating in the late seventies and since then it has been
progressively growing up to reach 161 permanent seismic stations today. The first ob-
jective of the RENSIG network was to insure the monitoring of the main volcanoes
which threaten the Interandean zone of Ecuador. Until 2011, the network consisted of
30 short period seismometers (L4C-1D and L4C-3D Mark Products) and 10 broad band
seismometers CMG-40T Guralp. Since 2011 the network has been complemented by 65
broad band seismometers (Trillum Compact, Trillum 120 and Guralp CMG-3T). The
recorded signals of most of the stations are now transmitted in real time and are auto-
matically processed first in order to insure seismic alerts and then manually checked to
improve the picking of P and S phases. The system used for the data acquisition was
successively Pickev until May 2001 (Alvarado, 2012), Earthworm (Alvarado, 2012), and
SeisComP now (Alvarado, 2012).

In order to insure the monitoring of volcanic activity, 69 stations of the network have
been installed over 9 volcanic edifices; namely the volcanic cone of Antisana, Cayambe,
Chimborazo, Cotopaxi, Igualata, Pichincha, Quilindaña, Reventador and Tungurahua.
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Figure 1.2: Positions of RENSIG stations used in tomography study and location of seismicity recorded
in these stations. Geographical distribution of seismic events point to the presence of clusters linked
to subduction process: La Maná, Guayaquil and Puyo; to crustal active faults: North Quito, Pujiĺı,
Pisayambo and Macas; and to volcanoes in eruption process: Guagua Pichincha, Reventador and Tun-
gurahua.
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This point must be carefully taken into account and imposes to consider a site effect
term when performing a regional tomography with data from these stations.

Including temporary experiments, The RENSIG dataset was provided by 172 seismic
stations of the network in total. The location of these stations are displayed in figures
1.1, and 1.2, indicated by a red triangle. Besides the location of the network, the figure
1.2 shows the location of the seismicity recorded by this network. We can observe that
this seismicity is relatively concentrated in clusters that originate from crustal activity
as for the Pisayambo, Pujiĺı or North Quito swarms, or from volcanic processes as for
the Reventador, Tungurahua, Guagua Pichincha and Cotopaxi volcanoes, or from mag-
matic processes. Other seismic nests are related to the subduction process either in the
seismogenic zone or at intermediate depths as the La Maná, Guayaquil, or Puyo nests.
The names chosen for the clusters are related to towns close to the mean location of
epicenters (Instituto Geof́ısico, 2013).

The set of data was provided by the Instituto Geof́ısico (IG) in different files contain-
ing the first arrival time of P and S waves, picked by hand for most of them, correspond-
ing to seismic events with magnitude greater than 2.5. Each file, which corresponds
to a stage of development of the network and of the process of data picking, had first
to be checked to solve the specific format problems. The period of time covered by
these files are respectively: April 1988-August 2011, May 2011-October 2012, January
2011-October 2012, March 2013-December 2013, January 2013-June 2014, and

2009 2010 2011 2012 2013 2014 2015 2016
 

 

April 1988 − August 2011
May 2011 − October 2012
January 2011 − October 2012
March 2013 − December 2013
January 2013 − December 2013
January 2014 − March 2016

Figure 1.3: Graphical representation of the time intervals of the six files containing the picked phases
furnished by the Instituto Geofisico. We can observe time periods for which several different files are
avalaible. The year of the onset of the national seismic catalogue is 1988.

19



SEISMIC DATA

January 2014-March 2016. As can be seen in figure 1.3 different files, and data, may
correspond to a same period of time between 2011 and 2014, due notably to the change
of acquisition system. Consequently, we had to develop a strategy to obtain a coherent
data base for periods where different data were available.

Basically, two cases arise. In the first one, the arrival time data common to the two
considered files are strictly equal. Taking one of this file as reference, we complement it by
the data of the other file that are not existing in the reference file, and that correspond to
either a common event or to an event not recorded in the file. This operation is relatively
easy since the common data are strictly the same, and consequently the identification of
common events is obvious. In the second case, corresponding to a change of operating
system between the two files, the common data for a same event and a same station
may be not exactly the same. Consequently we have first to identify the common events
in the two files by retaining those for which the differences in arrival time for the same
phase at the same station in the two files are all less than one minute. We assign the
value corresponding to the newest acquisition system for the arrival time in the case
when two data where available for the same phase at the same station. After that, the
procedure is the same as for the first case. We had also to eliminate artificial duplication
of data that occured for some periods.
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Figure 1.4: Location of stations of Peru Red Śısmica Nacional RSN and events recorded by the network
that have been used in our tomography study.
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1.2.2 RSN Network

The Seismological Peru Network consists, in its northern part, of short period seis-
mometers of type: SS-1 and WR1 Ranger Kinemetrics and Mark Products L4C. The
transmission of recorded signal is done in real time to the Instituto Geof́ısico del Perú in
Lima, where first wave arrival time are picked by hand. We have data from 9 stations of
the network corresponding to 3163 seismic events recorded between January 2010 and
November 2014.

The locations of those stations of the RSN network, the data of which have been used
in our study, are displayed in figure 1.4. The figure also shows the a priori location of
the seismicity determined by this network. We have defined the South and East limits
of our study box by taking the location of these stations and events into account.

1.2.3 North Peru temporary network

This seismic temporary network was deployed with the specific objective to study and
define the slab geometry in Northern Peru (Tavera, 2006). It was composed of 7 short
period stations with Kinemetrics SS-1(vertical component) seismometers. The network
has been operating from 1996 until 2001 and we obtained the picked P and S phases
corresponding to 1005 seismic events that occurred between March and December 1998.
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Figure 1.5: The seven stations of the temporary seismic network in the north Peru added to RSN and
the seismic events registered with the help of this temporary network.

3 stations of this network were incorporated to the RSN network (Tavera et al.,
2006). That explains why in figure 1.1 only four stations of this network are specified in
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blue color to distinguish them from the other ones of the RSN network. The seismicity
recorded by the temporary network is displayed in figure 1.5. The events are clearly
limited to a narrow area.

1.2.4 The ADN network

The stations of this network (represented in yellow in figure 1.1) was devoted to the
study of the oceanic margin seismicity and are located in the Ecuadorian coastal area.
The nine seismic stations of the campaign consisted of Kephren digitizers with Guralp
CMG3-ESP broadband sensors (Ponce, 2014).
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Figure 1.6: Location of the 53 events for which we obtained arrival times of the 9 stations of the ADN
network.

We obtained from Marc Régnier arrival times picked picked with a good quality from
the records of the ADN network corresponding to 53 events with magnitude greater than
4.5 that occurred between October 2009 and June 2013. Figure 1.6 displays the location
of these events and shows that they are well distributed over the study area.

22



1.3 Building up the data set

1.3 Building up the data set

To build up the data set we have to put together all the arrival times of the different
networks corresponding to a same event. Merging the different data set thus imposes
to identify the events that are the same in the various catalogue and to harmonize the
different evaluations of the observational errors.

1.3.1 Harmonizing observational uncertainty

When inverting seismological data the observational uncertainties represent an impor-
tant amount of information. But they are unfortunately very difficult to determine when
picking phases arrival times, and mostly depend of the appreciation of the observer. The
observational uncertainties are differently evaluated depending on the network consid-
ered, either in the form of a standard deviation in second or in the form of weight.
Usually this weigh is a natural number, ranging from 0 for good quality up to 3 for
poor quality, and the value 4 indicates that the indicated value must not be taken into
account. This is the case for the RENSIG catalogue between 1988 and 2010 and for the
temporal networks in northern Peru and in the coastal region of Ecuador. We took this
way of evaluating uncertainty as reference scale in building up our data set.

The protocol of the RENSIG network was changed a first time in 2011, and a second
one in 2014. For years 2011, 2012, 2013, the data are given with only two levels of
quality, 0 or 1. Since 2014, the arrival times are given with three quality levels. For
these data we kept the weight furnished by RENSIG for P waves, but increased by one
the weight for S waves.

The data of the RSN network were furnished with only two weights: 0 or 4. We
decided to replace 0 by 1 and 4 by 3 for P phases, and to keep only S data with 0 weight
that we increased to 2.

Finally, as the inversion procedure requires standard deviation in seconds, we set the
following correspondance (1.1) between the quality weights and the standard deviations.

Weight σ(s)

0 0.15
1 0.3
2 0.5
3 0.8

Table 1.1: Values of standard deviations as function of the quality weights
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1.3.2 Merging the different data sets

In order to merge two data sets we have to identify the events that have been recorded
in both catalogues. Different criteria can be used to identify such events. For instance,
the arrival times in the two catalogues must belong to a common time window, the two
locations must be close to each other in space and in time or the stations having detected
the event must belong to the same area, the size of which depends on the magnitude.

For this study we have used the following strategy. In a first step, we have retained
the events for which the gap between the two sets of arrival time is less than a given
value, 90 s in our case, taking account of the distance between North Peru networks
and RENSIG network. In a second step, when two subsets of arrival times have been
identified as corresponding to the same event by the first criterion, a new localization
of this event is performed with the whole set of the corresponding arrival times in the
two catalogues. The root mean square of the difference between observed and computed
arrival times weighted by a modeling error allows the detection of wrong gathering of
events. More precisely, the regrouping that yields a RMS greater than 2 are rejected.
The location of events was performed with the HypRef code (Thouvenot and Frechet,
2006), which is derived from Hypo71 (USGS, 1975) in a layered half space down to a
depth of 250 km and and with velocities given in (Tab.1.2). For the S waves velocities
we took a VP/VS ratio of 1.74.

P wave velocity (km/s) Depth (km)

5.3 0.0
5.92 3.0
6.60 27.0
8.0 35.0

Table 1.2: Values of P wave velocity of the layered half space used to the preliminary localization of
seismic events with HypRef

Using the aforementioned criteria for merging northern Peruvian data with RENSIG
catalogue, 163 out of 1004 events were found to correspond to an event of the RENSIG
catalogue for the year 1998, and 343 out of 3163 for the years 2010-2014. Thus about
88% of the events of the Northern Peruvian catalogues correspond to new events and
where directly incorporated in our data set. The data associated to the 12% of common
events were added to the data of the corresponding events of the RENSIG catalogue in
our data set.

For the 53 events registered by the ADN network, the data were incorporated by
hand in our data set, event by event, controlling for each of them the time propagation
of waves through the whole set of stations and checking the RMS corresponding to the
new location determined in adding the new data.
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1.4 Time and space coverage of seismic network

Figure 1.7 displays the number of data available each year in our data set composed with
the four aforementioned catalogues over the period ranging from 1988 to 2016. We can
observe a jump in the number of data in 1995 and 2013 corresponding to the increase of
stations of the RENSIG network.
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Figure 1.7: Number of P and S arrival times for each year of the period of the data set used for the
study. We may observe the low level of S picking compared to that of P, especially since 2013 due to the
introduction of the automatic picking procedure

The high number of data in year 1998 can be explained by two facts: firstly it is the
year during which the Guagua Pichincha volcano started its activity, and secondly it is
the only year for which we had data of the temporary Network in North Peru.

Then the volcanic activity was reinforced by the awakening of the Tungurahua volcano
in 1999 and by the seismic (but not eruptive) activity of the Cotopaxi volcano in 2001-
2002. This coincidence during which three main volcanoes produced seismic signals
ended in 2005, and consequently the level of data dramatically decreased in 2006.

Considering now the spatial distribution of stations, figure 1.1 shows an heterogeneous
coverage of the tomography area, with most of the stations concentrated in the volcanic
central-north inter Andean zone and no station at all in the Amazonian basin and in
the Progreso basin north of Guayaquil city. We can observe clusters of stations over the
main active volcanoes Pichincha, Tungurahua and Cotopaxi due to the monitoring of
volcanic activity. It is also worth noting that the seismic coverage of the northern part
of the coastal seismic region and of the southern Ecuador has been improved only over
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the last few years, and that the Progreso and Amazonian basins remain without any
station. We could incorporate in our study the data of the few stations over Northern
Peru only for a restricted period of time.

The Voronoi tessellation provides an efficient way to display the density of the seismic
array considered as a net (see figure 1.8). It is built up by considering the triangles linking
neighbouring points of the net. The Voronoi cells are obtained by joining with straight
lines the barycenters of those triangles. Thus each cell of the Voronoi tessellation is
associated to a station (a nod of the net) and corresponds to the set of points that are
closer to this station than to the others. Consequently, each of these cells represents, in
a way, the area monitored by the corresponding station.
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Figure 1.8: Voronoi tessellation of the whole set of seismic stations used for the study. The positions
of stations are indicated by black dots. The Voronoi cells are drawn in various colors over the white
coast and border lines.
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Figure 1.9: Location of the whole set of stations and of the seismicity as a priori determined by the
HypRef code. The epicenters are represented by black dots, and the station by triangles the color and
size of which depend on the logarithm of the number of data (P and S phases) recorded at the station.
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The temporal and spatial coverage of the study region by the seismic networks gives
the density of data represented in figure (1.9). It confirms that the maximum concentra-
tion of data is reached by the set of stations settled in the Interandean volcanic region
of Ecuador, notably by the stations represented by blue triangles in figure 1.9). This
fact determines that is the north central region of Ecuador where we expect the best
resolution of the tomographic study.

1.5 Filtering the data base

The data set that we obtained by merging different catalogues of unequal quality contains
some outliers. A first tool to find these blunders is to perform a Wadati diagram. This
diagram (figure 1.10) is obtained by comparing for each event and each pair of stations
the difference in arrival times of P and S waves between the stations. Moreover it gives
an estimation of the mean value of VP/VS in the domain of wave propagation.
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Figure 1.10: Wadati diagram of S arrival time differences versus P differences between two stations.
The color scale indicates the density of pairs of stations for which P and S phases were both measured.
The straight line and its slope correspond to the linear regression of the point cloud.
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The arrival time of a wave at a station may be expressed as :

t = t0 +

∫
R

ds

v(s)
(1.1)

where t0 is the initial time of the event, s is the curvilinear abscissa of the ray linking
the source to the station, and v is the local velocity of the waves. Thus the difference of
arrival times t1 and t2 of a same wave between two stations is expressed as :

t1 − t2 =

∫
R1

d(s)

v(s)
−
∫
R2

ds

v(s)
(1.2)

Under the assumption that the ratio vP/vS is constant, which may be justified by
the fact that this ratio remains relatively close to

√
3 in the lithosphere, the rays of P

and S waves are identical. It then follows from (1.2) that :

tS1 − tS2 =

∫
R1

ds

vS(s)
−
∫
R2

ds

vS(s)
' vP
vS

[∫
R1

ds

vP (s)
−
∫
R2

ds

vP (s)

]
=
vP
vS

(tP1 − tP2 ) (1.3)

Consequently, representing for all events the values of tS1 − tS2 versus the ones of
tP1 –tP2 for all pairs of stations that have recorded the P and S waves of this event, we
obtain a point cloud in the neighborhood of a straight line passing through the origin.
Moreover the slope of this line provides an estimation of the ratio vP/vS in the zone of
wave propagation.

This representation also allows outliers to be detected. Such an outlier yields a set
of points along a line that is parallel to the mean line of the cloud, but that does not
pass by the origin. Moreover, each point of this set is associated to a pair containing the
same station which is the one associated to the outlier. Then the picked phases must be
revisited one by one and corrected when possible, for example when it corresponds to
an error of minutes or to a change of day. The Figure 1.10 displays the Wadati diagram
obtained after removing all the outliers and shows that the corresponding estimation of
the ratio vP/vS is 1.74.

After this analysis, we have performed a localization of the events with the HypRef
code and removed all the data (P or S) with a RMS greater than a value that we took
equal to 7 after some tests. We remove all the events located outside the inversion box
(Fig. 1.1), with a margin of tolerance of 0.1o in each direction. We also removed all the
events with less than 5 data or with less than 3 P data. Finally the data set consists of
404 097 P phases and 167 245 S phases corresponding to 45 941 events.
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Chapter 2

The Bayesian approach of inverse
problems

The probabilistic approach of the inversion uses the concepts of probability measure
and of random elements to describe the level of available information on the observable
(i.e physically measurable) parameters that constitute the data space, and on the non-
measurable parameters that constitute the model space. The inversion of the new data,
i.e. taking account of obervation of new physical quantities depending of the model
through a physical theory, is achieved by using the concept of conditionnal probability.
The probability measures are generally defined by probability density functions (pdf) in
the case of finite dimentional spaces; which is always the case for the data space.

2.1 The various interpretations of the Bayesian ap-

proach of the inverse problem

There are basically two ways to interpret these probability measures (Valette 2011): the
one named subjective and the other one objective.

In the subjective point of view, the probability measure is considered as strictly repre-
senting the state of information over the considered space at a given stage of knowledge.
The probability density then represents the probability of occurence of the true value
for the physical quantity we consider. It accounts either for the inaccuracy of the phys-
ical measurements in the case of data, or for the level of information on parameters of
the model. The probability density function is then centered either on a mean physical
measure in the case of a datum, or on an a priori value in the case of a parameter. Since
the true value of the physical quantity is unknown, it is considered as a random variable
associated with the probability measure. This does not mean that we consider the value
of the physical quantity as the result of a random draw; this random variable simply
represents the statistics of the possible real value around the measured or a priori value,
at the stage of information considered. In this approach, the concept of probability
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measure representing the current state of information is highlighted rather than that of
random variable representing the possible value of the physical quantity at the given
stage of information.

In the objective point of view, the probability measure is considered as the law of
a statistical estimator, that is to say a random variable, or more generally a random
element that is associated to a random process of physical measurement or to a random
draw, the expectation of which is the true value of the physical quantity. That means
that the deterministic true value of the physical quantity is given by the expected value
of the estimator, i.e that the estimator is unbiased. Of course, this true value is unknown
and the only information available is the conditionnal law of the estimator of the physical
quantity given its true value, along with a particular realization of this estimator. This
realization is either the result of a physical measurement, considered as a random process,
or the result of a prior inversion in the case of a chain of processing.

Thus the subjective interpretation highlights the concept of measure to represent the
currently available information. Consequently, the associated random vector is centered
on a mean value without any specific relation with the true value, whereas the objective
interpretation prefers the concept of random estimator which is assumed to be unbiased,
that is to say, centered on the unknown (but deterministic) true value.

As a result of these two points of view there are three ways to address the stochastic
inverse problem that we will detail in the following paragraphs. We will denote by D
the data space and by M the model space, i.e. the space of physical parameters that are
involved in the considered experiment and that we want to infer, though they are not
directly observable. Both of these spaces will be first assumed to be finite dimensional.
Then we will consider the case of an infinite dimensional model. The corresponding
generic data and model vectors will be denoted by d ∈ D and m ∈M.

2.1.1 The classical Bayesian approach

In the Bayesian standard approach d is considered as an estimator and m as a random
vector associated to a probability measure of information. Thus we have the probability
density ρprior(m) that describes the a priori information on the model, on the one hand,
and a particular realization dobs of an estimator d with its conditional probability law
ρ(d|dt) given the true data dt, on the other hand. If we consider that the theoretical
mapping that links the model vector m to the true data vector dt is exact,i.e. that it
can be written as dt = g(m), where g is a mapping from M into D, then we get:

ρ(d|m) = ρ(d|g(m)) (2.1)

and this pdf only represents the uncertainty related to the process of physical measure-
ment.

If now we consider that the theory is not exact, but we can represent it in the form
of a conditional pdf Θ(d′|m) given the true model m, we get:
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ρ(d|m) =

∫
D

ρobs(d|dt)Θ(dt|m)ddt (2.2)

It follows that in these two cases, we can deduce the joint probability density function
of (d,m) ∈ D×M :

ρ(d,m) = ρ(d|m)ρprior(m) (2.3)

and the Bayes rule yields the expression of the posterior pdf of m, i.e the conditionnal
pdf of m given the particular realization dobs of d:

ρpost(m) ∝ ρ(dobs|m)ρprior(m) (2.4)

where the proportionality accounts for the normalization to 1 of the pdf .

2.1.2 The approach by merging probability measures

In this approach, the data and the parameters are treated in the same manner, and are all
considered as physical parameters with specific information. We have a priori measure of
information over D and over M in the same way. The one over D, with pdf ρobs(d), results
from a physical measurement made during the experiment we are studying; the other
one over M, with pdf ρprior(m), represents the information available before considering
the new dataset. As the measurement uncertainty of these data is clearly independent
of the a priori information on the model, the two laws are independent in probability,
and the joint pdf of (m,d) can be written as :

ρ(m,d) = ρprior(m)ρobs(d) (2.5)

Note that here d and m are the true data and model parameters, which are unknown
and thus considered as random vectors at this stage of information.

If we assume that the theoretical mapping g connecting m to d is exact, then it can
be written as t = d − g(m) = 0. This amounts to considering that t ∈ D, which is a
priori a random vector because it depends of the random vectors d and m, is actually
exactly null. It leads to consider the conditionnal pdf of m given that t = 0 as posterior
pdf over M; which yields (Valette, 2011) :

ρpost(m) = ρ(m|t = 0) = ρprior(m)ρobs(g(m)) (2.6)

which is equivalent to expression (2.4).

If we now consider that the theoretical mapping is not exact, but can be written as
t = d− g(m)−n = 0, where n is a noise vector, with a pdf ρT (n), which is independent
in probability from m and d, the joint pdf of (m,d,n) is:
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ρ(m,d,n)) = ρprior(m)ρobs(d)ρT (n) (2.7)

from which we can deduce by a change of variable that the joint pdf of (m, t,n) is:

ρ(m, t,n)) = ρprior(m)ρobs(t + g(m) + n)ρT (n) (2.8)

It shows finally that the posterior pdf over M, which is defined as the conditionnal
pdf given that t = 0 can be written as :

ρpost(m) = ρ(m|t = 0) = ρprior(m)

∫
D
ρobs(g(m) + n)ρT (n)dn (2.9)

This latter expression is equivalent to the equations (2.2), (2.4), but here dobs corre-
sponds to the centre of ρobs.

If, more generally, we consider that the theory is represented by a pdf Θ(d,m)
in the product space D × M, we are faced with two independent pdf in this product
space: the one coming from the a priori information on parameters and data, the other
one representing the physical theory. Tarantola and Valette (1982b) have proposed a
method for merging these two pieces of information that is comparable in its results to
the classical Bayesian approach.

2.1.3 The estimation approach

In the third approach, dobs and mprior are both considered as unbiased estimators, and a
new estimator of the true model m is searched for, assuming that it is only function of dobs

and mprior, and it is unbiased with a law as much centered as possible. From a pratical
point of view, this approach can be easily followed only in the case of a linear theoretical
mapping, and of Gaussian estimators dobs and mprior. The new posterior estimator mpost

of m is then determined by supposing that: (i) it depends linearly of dobs and mprior;
(ii) it is unbiased; (iii) it minimizes the expected value of its squared deviation from the
expected true model E (||mpost −mtrue||2) among all the linear estimators. It is named
the Best Linear Unbiased Estimator (BLUE) and is obtained through the same least
squares algebra as the two previous approaches in this very restrictive case. Only the
interpretation of dobs and mprior differs.

2.2 Bayesian approach and data differences

In many fields, it is more interesting to inverse the differences of data rather than the
raw data. This may indeed lead to weaken and even sometimes to remove the influence
of some parameters, while strengthening the influence of others, and consequently their
resolution.
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2.2 Bayesian approach and data differences

Let us consider n physical quantities, and an estimator d associated to a measurement
process of these quantities, d ∈ Rn ≡ D, with conditional pdf given the true vector dt

as:

ρ(d|dt) = ϕ(d− dt) (2.10)

where ϕ is a function from Rn to R+.

Let us now suppose that we are only interested in the data differences, instead of the
raw data, and let us define the new vector d′ ∈ Rn−1 by:

d′i = di+1 − di 1 ≤ i ≤ n− 1 (2.11)

so that:

di = d1 +
i−1∑
k=1

d′k 1 ≤ i ≤ n (2.12)

We can easily deduce the image pdf of d through the mapping (2.11) to obtain the
conditionnal pdf of d′ given dt. It yields:

ρ(d′|dt) =

∫
R

ρ(s, ..., s+
i−1∑
k=1

d′k, ...|dt)ds

=

∫
R

ϕ(s− dt1, ..., s+
i−1∑
k=1

d′k − dti, ...)ds
(2.13)

and, by making the change of variable t = s− dt1 :

ρ(d′|dt) =

∫
R

ρ(t+ d1, ..., t+ di, ..., t+ dn|dt)dt

=

∫
R

ϕ(t+ d1 − dt1, ..., t+ di − dti, ..., t+ dn − dtn|dt)dt
(2.14)

This shows that the pdf of the data differences d′ given the true value of dt is deduced
by a simple integration of the one of d

Now let us suppose that the vector d depends on the model m ∈ M we want to
infer, through an exact theoretical mapping g. When considering raw data, the standard
Bayesian approach leads to (see 2.4):

ρpost(m) ∝ ρ(dobs|m)ρprior(m) = ϕ(dobs − g(m))ρprior(m) (2.15)
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where dobs is the observed realization of the estimator d. Inverting now data differences,
the Bayesian approach yields :

ρpost(m) ∝ ρprior(m)ρ(d′obs|m)ρprior(m) = ρ(d′obs|dt = g(m))

∝ ρprior(m)

∫
R

ϕ(dobs1 − g1(m) + t, ..., dobsi − gi(m) + t, ..., dobsn − gn(m) + t)dt

(2.16)

in taking the relation (2.9) between d′obs and dobs into account.

Thus we see that considering data differences, when tranferring the probability mea-
sure, leads to a new posterior pdf on m which can be easily deduced by a simple inte-
gration of the pdf obtained from the raw data.

Adopting the point of view of measure of information for the data, i.e. considering
a pdf ρobs(d) = ϕ(d− dobs) representing the possible true values of d around the mean
vector dobs instead of the conditionnal pdf of an unbiased estimator given the true vector,
we can obtain in the same way that :

ρobs(d
′) =

∫
R

ρobs(t+ d1, ..., t+ di, ..., t+ dn)dt

=

∫
R

ϕ(t+ d1 − dobs1 , ..., t+ di − dobsi , ..., t+ dn − dtn|dobs)dt
(2.17)

and :

ρpost(m) ∝ ρprior(m)

∫
R

ϕ(g1(m)−dobs1 +t, ..., gi(m)−dobsi +t, ..., gn(m)−dobsn +t)dt (2.18)

which is equivalent to the previous results. Only the interpretation of the ingredients
differs.

2.3 Exploring the a posteriori density function

We have seen that the Bayesian approach of the inverse problem yields an a posteriori
pdf over the model space once given the prior information on the model and data. This
posterior pdf may be considered as the final result of the inversion; nevertheless it remains
to explore it. In the case of a model space of small dimension, it is very easy to display
the various marginal density of physical interest. For intermediate dimensions, random
Markov walks or simulated anhealing techniques can be used to describe the pdf or to

36



2.3 Exploring the a posteriori density function

determine maximum likelihood model, i.e. the set of values of the model parameters
for which the pdf reaches its maximum (see e.g. Mosegaard and Tarantola, 2002, for a
review). In the case of very large dimensions, the use of analytical techniques is the only
possible way to search for local maximum likelihoods. Considering Gaussian laws is very
useful in this approach.

2.3.1 Gaussian random vectors

A random vector x is Gaussian, or has a Gaussian pdf ρ(x), when:

ρ(x) =
1√

(2π)ndet(C)
exp

{
−1

2
(C−1(x− x0)|x− x0)

}
(2.19)

where x0 is the mean vector, i.e. the expectation of x, and C its covariance operator
in the n-dimensional space X, and where det denotes the determinent. Thus, a Gaussian
vector is fully described by its expectation and its covariance.

2.3.2 Searching for maxima of the posterior pdf

Of particular interest are the area in M where the values of the a posteriori pdf are
large. A first step in the study of the posterior density is thus to identify the models m̂,
commonly refered to as maximum likelihood, for which the density is locally maximum.
Taking advantage of the positivity of the density, we can rewrite it as:

ρpost(m) ∝ exp(- E(m)) (2.20)

where the scalar function E(m) will be assumed twice continuously differentiable, i.e.
g twice continuously differentiable. A local maximum of ρpost corresponds to a local
minimum of E, for which the gradient of E vanishes. Let us consider a model m̂ that
makes vanish grad(E(m)), and write the Taylor expansion of E at the second order
around it. It leads to:

E(m)− E(m̂) =
1

2
(H(m̂)(m− m̂)|m− m̂) + o(‖m− m̂‖2) (2.21)

where H denotes the Hessian of E, i.e. the derivative of the gradient, which can be
written in matrix notation as:

Hi,j =
∂2E

∂mi∂mj

(m̂)

and where o(‖m− m̂‖2) denotes a function such that o(‖m− m̂‖2)/‖m− m̂‖2 vanishes
with ‖m− m̂‖. H(m̂) is a self-adjoint (symmetrical) operator, which is positive when E
is minimum at m̂, as can be deduced from (2.21). In that case, substituting (2.21) into
(2.20) yields :
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THE BAYESIAN APPROACH OF INVERSE PROBLEMS

ρpost(m) ∝ exp(o(‖m− m̂‖2))exp

{
1

2
(H(m̂)(m− m̂)|m− m̂)

}
which shows that the posterior pdf is locally tangent to a Gaussian density, the expecta-
tion and covariance of which are respectively the maximum likelihood m̂ and the inverse
H(m̂)−1 of the Hessian. Thus, when the posterior pdf is sufficiently regular to present
only one maximum, or a few maxima, it can be correctly approximate by a few Gaussian
distributions. The point is then to determine the models for which these maxima are
reached.

2.4 The Gaussian case

We will now assume that both the data and the model vector d, and m are Gaussian
with expectations dobs and mprior, and with covariances Cd and Cm, respectively. By a
change of variable it is always possible to set the inverse problem in this framework.

Taking expressions (2.19), (2.21), and (2.4) or (2.6) into account, we deduce that:

E(m) =
1

2

{
(C−1

d (g(m)− dobs)|g(m)− dobs) + (C−1
m (m−mprior)|m−mprior)

}
(2.22)

Assuming that the theoretical function g is continuously differentiable, and denoting
by Gm its derivative operator at model parameter m, the stationnarity equation that
corresponds to the nullity of the gradient :

∇m(E) = G∗mC−1
d (g(m)− dobs) + C−1

m (m−mprior) (2.23)

can be written as the following implicit equation:

m−mprior = CmG∗mC−1
d (dobs − g(m)) (2.24)

where G∗m denotes the adjoint of Gm with respect to the usual scalar products in D and
M, which verifies :

(Gmv|u)D = (v|G∗mu)M ∀(v,u) ∈M× D

As shown by (Tarantola and Valette 1982a, Valette 2011) this equation may be
equivalently written in the following form:

m−mprior = CmG∗m(Cd + GmCmG∗m)−1(dobs − g(m) + Gm(m−mprior)) (2.25)
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2.4 The Gaussian case

which becomes explicit in the linear case, for which g(δm) ≡ Gmδm ≡ Gδm. Thus,
for weakly non linear g, the equation can be easily solved by means of a fixed point
algorithm that takes the following form :

mk+1 −mprior = CmGk(Cd + GkCmGka)−1(dobs − g(mk) + Gk(mk −mprior)) (2.26)

where Gk ≡ Gmk
, and which can be initialized at different m0, and in particular at

mprior. Each iteration imposes to solve a linear system in the data space D. But, by
taking the following standard formulae into account:

CmG∗(Cd + GCmG∗)−1 = (C−1
m + G∗C−1

d G)−1G∗C−1
d (2.27)

Cm −CmG∗(Cd + GCmG∗)−1GCm = (C−1
m + G∗C−1

d G)−1 (2.28)

the algorithm can be rewritten as :

mk+1−mk = −(C−1
m +G∗kC

−1
d Gk)

−1(G∗kC
−1
d (g(mk)−dobs)+C−1

m (mk−mprior)) (2.29)

From the expression (2.23) of the gradient of E, we deduce by derivation that the
Hessian of E is approximately :

H(m) ' G∗mC−1
d Gm + C−1

m (2.30)

in neglecting the term of second order related to the derivative of G∗m. This shows
that, in its formulation (2.29), the algorithm is a quasi Newton algorithm, implying
the resolution of a linear system in the model space M at each iteration. We can also
conclude that if H(m) is definite positive the posterior pdf is locally tangent to the
Gaussian distribution, the expectation of which is the model m̂, limit of the algoritm
(2.26), (2.29), and solution of (2.24) or (2.25), and the covariance of which is the inverse
of the Hessian at m̂:

Ĉm = H(m̂)−1 ' (C−1
m + G∗m̂C−1

d Gm̂)−1

= Cm −CmG∗m̂(Cd + Gm̂CmG∗m̂)−1Gm̂Cm

(2.31)

It is important to remark that this evaluation of the uncertainty through the a pos-
teriori covariance of the model is correct only if the a priori covariance truly corresponds
to physical properties, and has been correctly estimated. In the case of tomography
problems, the a priori covariance operator is designed in order to smooth the posterior
resulting model and to avoid numerical oscillations, while obtaining a good fit of the
data. It must therefore be clearly distinguished from the physical covariance operator
from which it is deduced through a renormalization operation depending on the length of
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smoothing, as we will see later on. Furthermore, the computation of the posterior covari-
ance implies the inversion of a matrix in the model space which is very time expensive, or
even impossible, in the case of a very large dimension. In that case of tomography prob-
lems, it is much more judicious to use the concept of resolution operator, introduced by
Backus and Gilbert (1970), in order to evaluate the degree of confidence in the reliability
of the posterior model.

2.4.1 The resolution operator

This operator links the a posteriori model m̂ to the true one m at first order, in the
case of a non linear mapping g. It is easily obtained through a first order development
of d = g(m) in the neighbourhood of m = m̂ and by remarking that the true data d
(or dt when adopting the classical Bayesian approach) is equal to g(m) where m is the
true model, since the physical theory is assumed to be perfectly exact. It yields:

dobs − g(m̂) + Gm̂(m̂−mprior) = dobs − d + Gm̂(m−mprior) + o(‖m− m̂‖)

and, upon substituting it into the stationnarity equation (2.25):

m̂−mprior = Rm̂(m−mprior)−Km̂(d− dobs) + o(‖m̂−m‖) (2.32)

where:
Km̂ = CmG∗m̂(Cd + Gm̂CmG∗m̂)−1

and where

Rm̂ = Km̂Gm̂ = CmG∗m̂(Cd + Gm̂CmG∗m̂)−1Gm̂

= (C−1
m + G∗m̂C−1

d Gm̂)−1G∗m̂C−1
d Gm̂

(2.33)

is the resolution operator.

Equation (2.32) shows that, correct to first order, the improvement in the prior model,
m̂−mprior, is equal to the true one, m−mprior, filtered by the resolution operator Rm̂,
plus a noise term proportional to the observational errors. Thus, we can see that the
posterior model is the result of a trade of between the discrepency of the resolution
operator with the identity, on the one hand, and the amplitude of the noise term coming
from the errors in the data, in the other hand :

m̂−m = (Rm̂ − Id)(m−mprior)−Km̂(d− dobs) + o(‖m̂−m‖)

It is also important to notice that, in the case of several maxima of the posterior pdf ,
the resolution operator associated to each of this maxima only describes the resolving
quality of the corresponding possible ”solution”.
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2.4 The Gaussian case

2.4.2 Inverting data differences in the Gaussian framework

We have seen in section 2.2 that inverting differences of data d′, when transporting
correctly the statistics of errors, amounts to the change of the pdf of errors in the data
through an integration, while keeping the raw data d in the inversion process (equation
2.17, or 2.14 for the classical Bayesian approach). In the framework of a Gaussian law
for the data, we can explicitely compute the pdf accounting for the data differences :

ρobs(d
′) =

∫
R

ρobs(t+ d1, ..., t+ di, ..., t+ dn)dt

Assuming that the vector d is gaussian in the n dimensional space D, with expectation
dobs and covariance operator C, (2.34) can be rewritten as:

ρobs(d
′) ∝

∫
R

exp

[
−1

2

(
C−1(δ − tu)

∣∣δ − tu)] dt

where δ = d − dobs and u ∈ D, with : ui = 1 (i = 1, ..., n). Following a calculation
similar to that of the appendice of (Tarantola and Valette, 1982b), it successively leads
to:

ρobs(d
′) ∝

∫
R

exp

[
−1

2

(
at2 − 2b(δ)t+ c(δ)

)]
dt

=

∫
R

exp

[
−1

2

(
a

(
t− b(δ)

a

)2

+ c(δ)− b2(δ)

a

)]
dt

with a = (C−1u|u), b(δ) = (C−1u|δ), c(δ = (C−1δ|δ), and to:

ρobs(d
′) ∝ exp

[
−1

2

(
c(δ)− b2(δ)

a

)]
which can be rewritten as:

ρobs(d
′) ∝ exp

[
−1

2

((
C−1δ

∣∣δ)− (C−1δ|u)
2

(C−1u|u)

)]
(2.34)

The cost function which appears in (2.34):

J (δ) =
(
C−1δ

∣∣δ)− (C−1δ|u)
2

(C−1u|u)
(2.35)

can be rewritten in two more significant ways. Firstly, a simple development yields:
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J (δ) =

(
C−1

(
δ − (C−1δ|u)

(C−1u|u)
u

)∣∣∣∣δ − (C−1δ|u)

(C−1u|u)
u

)
(2.36)

But, we can write it in an alternative way. Denoting by v⊗v the operator acting in
D, defined by:

∀w ∈ D, w −→ v⊗v(w) = (w|v) v

and putting :

v =
C−1/2u

‖C−1/2u‖

we can deduce that:

(C−1δ|u)
2

(C−1u|u)
=
(
C−

1/2(v⊗v)C−
1/2δ
∣∣δ) (2.37)

since

C−
1/2(v⊗v)C−

1/2δ = C−
1/2 C

−1/2u⊗C−1/2u

(C−1u|u)
C−

1/2δ = C−1u
(C−1δ|u)

(C−1u|u)

Taking (2.35) and (2.37) into account it follows that J (δ) may be rewritten as:

J (δ) =
(
C−

1/2(I− v⊗v)C−
1/2δ
∣∣δ) (2.38)

The operator:

P = I− v⊗v (2.39)

is an orthogonal projector in D since P2 = P and it is selfadjoint (or symmetrical) for the
usual scalar product of D. Moreover, its null space, which corresponds to its direction
of projection, is the 1-D subspace RC−1/2u in D, since:

Pw = 0⇔ w = v⊗v(w) = (v|w) v =

(
C−1/2u

∣∣w)
(C−1/2u|u)

C−
1/2u

Thus, the operator C−1/2PC−1/2 is self-adjoint and positive, but not definite positive
as its null space is the 1-D subspace Ru:

C−
1/2PC−

1/2w = 0⇔ PC−
1/2 = 0⇔ C−

1/2w ∈ RC−
1/2u⇔ w ∈ Ru
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2.4 The Gaussian case

This shows that considering differences of the data only amounts to the assignation of
a new inverse covariance operator to the raw data, such that adding a constant term
to each component of the data vector d does not change the cost function. This can
be simply understood since adding such a term does not change the data differences.
Actually, it amounts evaluating the original cost function only within the hyperplan
orthogonal to vector u in the data space D, as can be shown by:

P2 = P P∗ = P =⇒ J (δ) =
(
C−

1/2PC−
1/2δ
∣∣δ) =

(
PC−

1/2δ
∣∣PC−

1/2δ
)

In summary, the posterior pdf of d′ is Gaussian, degenerate in D:

ρobs(d
′) ∝

∫
R

exp

[
−1

2
(D(d− dobs)|d− dobs)

]
dt

where the initial operator C−1 relevant for the raw data is replaced by the operator :

D = C−
1/2PC−

1/2 = (PC−
1/2)∗PC−

1/2with: P = I− C−1/2u⊗C−1/2u

(C−1u|u)
(2.40)

2.4.3 Accounting for non Gaussian statistics in the data and
robustness

Let us now show how we can recast non Gaussian statistics into the Gaussian framework.
It is especially important for data. Indeed, in some specific cases the pdf corresponding
to a physical quantity is obtained through repeated measurements, and is thus the inter-
polation of a sampling. It may also present two maxima when some uncertainty exists
either between two possible mean values depending on other data, or in the interpreta-
tion of the measurement. In the case of large datasets, there exist surely outliers due to
errors in measurement, and copy or transcription errors in files. A gaussian pdf cannot
account for these blunders.

Moreover, from a practical perspective, the least squares approach, which consists in
minimizing the cost function (2.22) in the Gaussian framework, is not robust in the sense
that an outlier strongly affects the inverted model. This point can be simply undertstood
since the gradient (2.23) of the cost function is proportionnal to the misfit between the
theoretical value corresponding to a component of g(m) (2.23) and the outlier corre-
sponding to the same component in dobs. Thus, the outliers play a significant role in the
equation of stationnarity imposing the nullity of the gradient, and consequently bias its
solution.

There exist a lot of solution to enhance the robustness of the inversion process. A
well known solution consists in using Huber M-estimators (Huber 1964), which amounts
to minimizing the following cost for a single datum d:
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E(d) =


(d− dobs)2/2 if |d− dobs| ≤ k

k(|d− dobs| − k/2) if |d− dobs| ≥ k
with k ≥ 0 (2.41)

instead of the usual quadratic cost everywhere. In this way, the derivative of the cost
remains finite and constant for large value of |d − dobs|. It is also well known that the
use of exponential law yields more robust estimation. For instance, in the case of 1-D
distributions it yields the median instead of the mean value. An alternative way is thus
to consider pdf that are tangeant to a Gaussian one near the origin and to an exponential
one at infinity, as the hyperbolic secant pdf (Crase et al., 1990), defined as:

f(d) =
1

πσ

1

cosh
(
d−dobs
σ

) (2.42)

More generally, let us consider that the information on a particular physical quantity
x is represented by the pdf ρ(x), and let us search for (Valette 2011) a new variable
y(x) such that the pushforward pdf of y is Gaussian centered. Assuming that y is a non
decreasing function of x, it leads to:

ρ(x) dx =
1√
π
exp(−y2) dy (2.43)

then, by integrating:

∫ x

x0

f(t)dt =
1√
π

∫ y(x)

0

exp(−t2)dt =
1

2
Erf(y) (2.44)

where x0 is the median of the x distribution and Erf denotes the error function defined
as:

Erf(x) =
2√
π

∫ x

0

exp(−t2) dt

We finally obtain that:

y = Erf−1

[
2

∫ x

x0

f(t)dt

]
(2.45)

and check a posteriori that this change of variable is strictly increasing with x. More
precisely (2.43) yields:

dy

dx
=
√
π exp(y2)ρ(x) (2.46)
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The inverse problem can then be recast with this new variable y = y(x(m)), the pdf
of which is Gaussian, and that corresponds in probability to the exact law of the raw
datum x. The derivative of y with respect to the model m is readily obtained by using
the chain rule and (2.46).

2.5 Infinite dimensionnal model spaces in the Gaus-

sian framework

As noted by (Valette 2011) the issue of inverse problems follows various lines according to
the kind of physical problems that are considered. For instance, in the case of dynamical
sytems, the theory of control provides means to compute easily the adjoint operator
that is associated to an adjoint problem and to back propagation. In the meteorology
forecasting problem, the data must be incorporated time after time. This leads to
a sequential analysis of the data space, which is the topic of data assimilation. We
are here interested in tomography problems, for which the model parameters that we
want to identify depend on the usual space (R3). The model space thus consists of
random functions of space. Let us first recall briefly the definition and main properties
of Gaussian random functions (Loève, 1965; Neveu, 1968). We will follow Valette (2011)
.

2.5.1 Gaussian random functions

A random function is a set of random variables m(r) depending on the position r within a
domain V ⊂ Rq. The random function is Gaussian if for any integer n and any positions
r1,r2,..., rn, the joint pdf of the variables m(r1),m(r2),...,m(rn) is Gaussian. A Gaussian
function can thus be regarded as the generalisation of a Gaussian vector to a continuous
index. Given a Gaussian function, we can define the covariance function (or kernel)
C(r,r’) which is the covariance of m(r) and m(r’) when r and r’ vary within V. Clearly,
a covariance function is symmetric with respect to (r,r’), and is characterized by the fact
it is a positive definite function, i.e.:

∀n ∈ N, ∀(r1, r2, ..., rn) ∈ Vn, ∀(v1, v2, ..., vn) ∈ Rn :
n∑

i,j=1

C(ri, rj)vivj ≥ 0 (2.47)

It shows that if C is a covariance kernel, (i) the restriction of C to any subset of V is
a covariance kernel, and (ii) for any function f defined over V C(r,r’)f(r)f(r’) is also a
covariance kernel. Consequently, it is sufficient to consider covariance kernel in Rq to
deduce covariance kernel in any subset V ∈ Rq, and we can only considered correlation
kernel such that Cor(r, r) = 1 for any point r, and for which:

C(r, r′) = Cor(r, r)σ(r)σ(r′)
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is a covariance function for any function σ(r) (here assumed positive), and then:

σ2(r) = C(r, r)

is the variance of the corresponding random function at point r. The Cauchy-Schwartz
inequality applied to the definite positive matrix obtained by restricting Cor(·, ·) to the
points r and r’ shows that Cor(r, r′) ranges in [− 1, 1].

From a practical point of view, it is important to characterise positive definite func-
tions, or positive symmetric matrices. Simple criterions can be obtained only for partic-
ular classes of functions or matrices.

2.5.1.1 Continuous homogeneous correlation kernels and self-correlation op-
erators

A correlation function is homogeneous (or stationnary) if it only depends on the difference
in position, and can thus be written as :

Cor(r, r′) = φ(r− r′)

where φ is an even (since Cor is symmetric) function defined over Rq. The function φ,
which verifies the property equivalent to (2.47), is also referred to as definite positive.
We have the following characterisation (Valette 2011):

A (real) function φ defined over Rq, which is continuous, even, and absolutely integrable
(∈ L1(Rq)), is positive definite if, and only if, its Fourier transform is positive.

This result corresponds to a particular case of Bochner’s theorem which characterises
positive definitiveness for even, continuous functions in general. It allows an easy cal-
culation of correlation functions in dimension q = 1. Simple examples of correlation
functions are :

φ(r) = e−|r| F(φ)(k) ∝ 2

1 + k2
φ(r) = e−r

2 F(φ)(k) ∝
√
πe−k

2/4 (2.48)

or

φ(r) =
1

ch(r)
F(φ)(k) ∝ π

ch(kπ/2)
(2.49)

when taking the following definition of the Fourier transform :

F(f)(k) =
1

2π

∫
R
eikxf(x)dx (2.50)
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It is important to note that a function of positive type is not necessarely positive
everywhere. For instance the sinc (cardinal sine) function is of positive type since its
Fourier transform is a box type function, whereas a box type function is not. Given
correlation function in 1D, we can construct correlation functions in upper dimension by
tensorial product :

φ(r) =

q∏
i=1

φi(ri) (2.51)

where the functions φi (i = 1, ..., q) are one dimensional correlation functions. Given
a stationary correlation function Cor(r, r′) = φ (r− r′) in Rq, by applying the Fourier
transform we can remark that the function

φ

(
r− r′

ξ

)
is also a correlation function. The positive scalar ξ is a length that gives the scale of the
correlation zone around a point.

Finally, the operator of self-correlation Cor is defined by convolution in the case of
a positive definite function φ ∈ L1(Rq). It follows from standard results on convolution
that this operator can be defined in the space of square integrable functions L2(Rq) as :

∀f ∈ L2(Rq), f −→ Cor(f)(r) =

∫
Rq

φ(r− r′)f(r′)dV (r′) ∈ L2(Rq) (2.52)

and is bounded and self-adjoint positive.

2.5.1.2 Continuous isotropics correlation kernels

A particular case of stationnary correlation functions are the isotropic ones that are
defined as :

Cor(r, r′) = φ(r− r′) = ψ(‖r− r′‖)

where ψ is assumed to be even (by convention) over R and ‖ · ‖ denotes the usual
euclidean norm in Rq. Restricting oneself to the usual space (q=3) and taking account
of the following result that holds in R3:

F(φ)(k) = −2π

k

d

dk
(ψ)(k) for k = ‖k‖ 6= 0 (2.53)

the preeceding characterization of stationnary kernels takes the following formulation for
isotropic ones in R3 (Gaspari and Cohn, 1999; Valette, 2011):
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A (real) function φ(r) = ψ(‖r‖) defined over R3, where ψ is continuous, even, and r2ψ
is absolutely integrable over R (∈ L1(R)), is positive definite if, and only if, the Fourier
transform of ψ is a decreasing fonction of the wave number k, for k ≥ 0.

We can remark that then ψ is surely absolutely integrable since it is continuous and
r2ψ(r) is absolutely integrable. Thus F(ψ) is continuous and vanishes at ∞ by the
Riemann-Lebesgue lemma. This shows that F(ψ) is also positive if φ is positive definite.

We can also remark that the one dimensional functions given above as examples may
be used for isotropic correlation function in dimension 3, and thus also in dimension 2.

Actually, we can use such isotropic functions to account for anisotropic correlation.
Indeed, considering a continuous even function φ from R3 into [− 1, 1] which is definite
positive (and thus associated to a stationnary kernel), we define the function φξ, where
ξ = (ξ1, ξ2, ξ3) is a 3-tuple of positive numbers, by :

φξ(r) = φ

(
r1

ξ1

,
r2

ξ2

,
r3

ξ3

)
(2.54)

By taking its Fourier transform in R3, and through a change of variable, we obtain:

F(φξ)(k) = ξ1ξ2ξ3F(φ)(k′) (2.55)

where:

k′ = (ξ1k1, ξ2k2, ξ3k3)

This shows that the Fourier transform of φξ is also everywhere positive, and consequently
that the kernel:

Cor(r, r′) = φ

(
r1 − r′1
ξ1

,
r2 − r′2
ξ2

,
r3 − r′3
ξ3

)
is also a stationnary correlation kernel. In particular, for an isotropic kernel with
Cor(r, r′) = φ(r− r′) = ψ(‖r− r′‖) we deduce that the kernel

Cor(r, r′) = ψ

−( 3∑
i=1

(ri − r′i)2

ξ2
i

)1/2
 (2.56)

is also a correlation one. The lengths ξ1, ξ2, ξ3 now give the scale of correlation in each
direction.

2.5.1.3 The exponential kernel in R3

The exponential kernel φ(r) = exp(−‖r‖) is of particular interest in R3 since we may ex-
plicitely compute the square root of the inverse correlation operator (Tarantola , Valette
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2011). Applying the preeceding results, we see, by using successively (2.48), (2.53), and
(2.55), that :

F(φ)(k) =
8π

(1 + ‖k‖2)2

and

F(φξ)(k) =
8πξ1ξ2ξ3

(1 + ξ2
1k

2
1 + ξ2

2k
2
2 + ξ2

3k
2
3)

2 (2.57)

Considering now the correlation operator (2.52) associated to φξ, defined as:

∀f ∈ L2(R3) f → g = Cor(f) = φξ ∗ f

where the star denotes the convolution, we get by taking the Fourier transform:

F(g)(k) = F(φξ)(k)F(f)(k)

Then, by using (2.57) we deduce:

F(f(k)) =
1

8πξ1ξ2ξ3

(
1 +

3∑
j=1

k2
j ξ

2
j

)2

F(g)(k)

=
1

8πξ1ξ2ξ3

F
(
(I−∆ξ)

2g
)

(k)

where ∆ξ denotes the modified Laplacian defined as:

∆ξ =
3∑
j=1

ξ2
j ∂

2
j

and thus:

f =
1

8πξ1ξ2ξ3

(I−∆ξ)
2 g (2.58)

This gives the expression of the inverse of the correlation operator as well as its square
root :

Cor−1 =
1

8πξ1ξ2ξ3

(I −∆ξ)
2 Cor−

1/2 =
1√

8πξ1ξ2ξ3

(I −∆ξ) (2.59)

Finally, the covariance operator C associated to the covariance kernel C(r, r′) =
σ(r)σ(r′)Cor(r)r′) can be written as the following composition of operators :
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C = Σ Cor Σ (2.60)

where Σ is the multiplication operator by σ: f → Σf : (Σf)(x) = σ(x)f(x)

It follows that :

C−1 = Σ−1Cor−1Σ−1 = (Cor−
1/2Σ−1)

∗
Cor−

1/2Σ−1 (2.61)

with:

Cor−1/2Σ−1(f) =
1√

8πξ1ξ2ξ3

(I −∆ξ)

(
f

σ

)

2.5.2 Regularization of tomography problems

Let us now consider an inverse problem where D = Rn and where the model space
consists of square integrable scalar functions defined in a domain V ∈ R3 representing a
physical quantity depending on the position. Let us assume that the theoretical mapping
g is continuously differentiable in L2(V), thus the derivative operateur Gm at model m
can be written as:

∀i ∈ {1, ..., n} δdi = (Gmδm)i =

∫
V

him(r)δm(r)dV (2.62)

where the n functions him ∈ L2(V) are the Fréchet kernels related to the data. From :

(Gmδm|d) =
n∑
i=1

di

∫
V

him(r)δm(r)dV = (δm|
n∑
i=1

dih
i
m)L2

we deduce the expression of the adjoint G∗ :

G∗md =
n∑
i=1

dih
i
m (2.63)

We have seen that in the finite dimensional case the Bayesian approach leads to
search for the mimimum of a cost function in the model space:

E(m) =
1

2

(
||C−1/2

d (dobs − g(m))||2D + ||C−1/2
m (m−mprior)||2M

)
(2.64)

that corresponds to the maximum likehood estimator. In the case when the model is
infinite dimensional, this type of optimisation problem is called a Tikhonov problem.
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The operator C
−1/2
m is the regularisation operator and RC

1/2
m (the range, or image of

C
1/2
m ) is the space of regularisation, i.e. the space where the problem may be set.

If we assume that the correlation kernel φξ for the model space is in the form (2.48)
where φ is a positive definite function in R3 and ξ = (ξ1, ξ2, ξ3) are the 3 correlation
lengths, the covariance operator Cm defined by :

∀f ∈ L2(V ), f −→ Cm(f)(r) = σ(r)

∫
V

φξ(r− r′)σ(r′)(f(r′)dV ′ ∈ L2(V) (2.65)

is bounded, self-adjoint, and positive definite. Its range, and that of its square root,
consist of functions more or less smooth depending of the lengths of correlation; the
greater are the correlation lengths the smoother are the functions of the regularization
space.

As in the case of a finite dimensional model space, the stationarity equation of the
cost function gradient (∇mE(m) = 0) takes the form :

m−mprior = CmG∗m(Cd + GmCmG∗m)−1(dobs − g(m) + Gm(m−mprior)) (2.66)

since we are in a Hibert space setting. Writing explicitly this equation, a model m̂ that
minimizes the cost function verifies :

m̂(r)−mprior(r) = σ(r)
n∑
i=1

vi

∫
V

φξ(r− r′)σ(r′)him̂(r′)dV ′ (2.67)

where the vector v = (vi)i=1,n defined as :

v = M−1(dobs −Gmprior)

with :

M = Cd + GmCmG∗m

verifies :

n∑
j=1

Mijvj = diobs − g(m̂) +

∫
V

him(r) (m̂−mprior)(r)dV,

with

Mij = Cij
d +

∫
V×V

σ(r)him̂(r)φξ(r− r′)σ(r′)hjm̂(r′)dV dV ′ (2.68)
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Furthermore, as in the case of finite dimensional model space, the equation (2.66) can
be solved through a fixed point algorithm, the formal formulation of which is strictly the
same as (2.26), and which can be explicitely formulated as (2.67), (2.68). This algorithm
implies at each iteration the solution of a linear system, the matrix of which is analogous
to (2.68), in the finite dimensional data space D.

2.5.3 Smoothing, damping and a priori Information

The experience shows that if we assign reasonable values to the a priori variances and
correlation lengths ξi, we obtain for most datasets excessively oscillating models. Conse-
quently, in order to regularize the resulting models we must take greater ξ and/or smaller
variances. It is thus important to clearly distinguish the true physical covariance Cphys,
related to the real level of prior information, from the smoothing covariance Cm used to
calculate the model m̂. Once a type of correlation function has been chosen according
to the width of the scale range we want to consider, we must take a reference length ξ0

which corresponds more or less to the smallest scale we have to consider, or to the nu-
merical mesh. It also corresponds to the scale for which it is reasonable to assign a value
for the standard variation of the physical parameter. The physical a priori covariance is
thus defined by the reference correlation length ξ0 and the physical standard deviation
field σphys(r). We have now to specify Cm, i.e. the correlation (smoothing) lengths ξi
and the effective standard deviation σ(r). These values cannot be taken independently
of each other. A first point on this concern is to observe that by making ξ = (ξi)i=1,3

tends toward 0 in the expression (2.59) of Cm, we can deduce:

Cm(f)(r) ∼
ξ→0

ξ1ξ2ξ3 σ
2(r)f(r)

∫
Rq

φ(r)dV

as can be seen by using the change of variable yi = (r’- r)i/ξi (i = 1, ...q). It suggests
that σ2(r) must be taken as proportional to the inverse of ξ1ξ2ξ3 in the limit of small
correlation lengths, to make converge Cm towards a white noise covariance. Furthermore,
the inspection of equation (2.67) :

(m̂−mprior)(r) =

∫
V

σ(r)φξ(r− r′)σ(r′)︸ ︷︷ ︸
regularization

data influence︷ ︸︸ ︷{
n∑
i=1

vi h
i
m̂(r′)

}
dV ′

shows that for homogeneous inference of the data (constant him) and a constant prior
standard deviation σ, the resulting improvement in the model at point r:

(m̂−mprior)(r) ∝
∫
V

φξ(r− r′)dV
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is proportional to the volume of the correlation zone around r from which the information
is gathered at r, and which is proportional to ξ1ξ2ξ3. This shows that, all other factors
being equal, the estimated improvement in the model is roughtly proportional to ξ1ξ2ξ3.
Consequently, in order to correct this artifact and to maintain the amplitude of the
correction of the prior model indepently of the correlation lengths, we have to renormalize
the standard deviation in function of the smoothing lengths by putting:

σ2(r) =

(
ξ3

0

ξ1ξ2ξ3

)
σ2
phys(r) (2.69)

In this way, the effective standard deviation corresponds to the physical one when
considering correlation lengths equal to ξ0. From a numerical point of view, ξ0 controls
the damping of the regularization, i.e. the amplitude of the second term of the cost
function E(m) (2.64) for a fixed value of the lengths of correlation; and these lengths
control the smoothing of the resulting model for a fixed ξ0.

2.5.3.1 Resolution Kernel and averaging index

The expression of the resolution operator is derived from (2.66) in the same way as for
the finite dimensional case, and yields the same expression:

m̂−mprior = Rm̂(m−mprior)−Km̂(d− dobs) + o(‖m̂−m‖) (2.70)

with:

Rm̂ = Km̂Gm̂ and Km̂ = CmG∗m̂(Cd + Gm̂CmG∗m̂)−1

Taking (2.62), (2.63) and (2.65) into account, the expression of R reads:

(Rm̂δm)(r) =σ(r)
n∑

i,j=1

∫
V×V

φξ(r− r′′)σ(r′′) him̂(r′′)(M−1)ij hjm̂(r′) δm(r′)dV ′dV ′′

=

∫
V×V

R(r, r′)δm(r′)dV ′

(2.71)

with:

R(r, r′) = σ(r)
n∑

i,j=1

(M−1)ijhjm̂(r′)

∫
V

φξ(r− r′′)σ(r′′) him̂(r′′)dV ′′ (2.72)

where the matix M is defined as (2.68):
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Mij = Cij
d +

∫
V×V

σ(r)him̂(r)φξ(r− r′)σ(r′)hjm̂(r′)dV dV ′

The resolution kernel can be simply rewritten as:

R(r, r′) = σ(r)
n∑
i=1

si(r)him̂(r′) (2.73)

by defining the vector fields k(r), s(r) respectively by:

ki(r) =

∫
V

φξ(r− r′)σ(r′)him̂(r′)dV ′ (2.74)

and by :

n∑
j=1

Mijsj(r) = ki(r) (2.75)

With these notation, the equation (2.70) can also be explicitely reformulated as:

(m̂−mprior)(r) ' σ(r)
n∑
i=1

si(r)


∫
V

him̂(r′)(m−mprior)(r
′))dV ′ − (di − diprior)

 (2.76)

Equations (2.70) and (2.71) show that the improvement in model, m̂ − mprior, is equal
to the true model correction, m - mprior, filtered through the resolution kernel, and
contaminated by a noise term coming from the discrepancy between true and a priori
data. More precisely the value of m̂ − mprior at point r is an average of the values of
the true model correction all around, weighted by the resolution kernel. Clearly, the
resolution would be perfect if this kernel was equal to the Dirac distribution δ(r − r′).
Given a point r, R(r, r′) is generally a peaked function of r′, centered near r = r′, with
possibly few negative small lobes. In dimension 1 or 2, it can be very informative to
display the resolution kernel at different positions within V.

A useful concept is the concept of averaging (or restitution) index (Rodgers, 2000;
Vergely et al., 2010; Valette, 2011) which is defined as the total weight of the resolution
kernel at a given point in V:

I(r) =

∫
V

R(r, r′)dV ′ = σ(r)
n∑
i=1

si(r)

∫
V

hi(r′)dV ′ (2.77)
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If the resolution at a point r is good, the resolution kernel is strongly centered around
r, and (2.71) yields:

(m̂−mprior)(r) ' (m−mprior) I(r)

where (m−mprior) denotes the (spatial) mean value of the true model correction around
r. In area in which the data provide poor information, I(r) takes very low values, and
hence, the resulting model remains close to the prior one, independently of the value of
the true model correction. In contrast, in area in which the index is close to one, the
resulting model corresponds at each point to the mean value of the true model over the
neighbourhood of the point. Thus, this index provides an efficient tool to delimit the
zone outside which its value is lower than a given value, and consequently outside which
the resolution is surely poor.
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Chapter 3

Earthquake localisation

To obtain an acceptable tomography model, accurate a priori locations of seismic events
are necessary. In this study, events locations are determined by a grid search method
based on a stochastic approach, as described in chapter 2. To proceed, two problems
have to be solved. The first one concerns the tracing of seismic rays and the computation
of travel times using an heterogeneous media. The second one is the choice of an a priori
velocity model over the studied region. Both of these points are discussed in the present
chapter.

3.1 Numerical methods for travel times calculation

Most algorithms used to compute travel times of seismic waves through non homoge-
neous media are based on a finite differences solution of the seismic wave equation. A
simplification of this problem consist of considering only plane front waves propagating in
the medium. Rays joining seismic hypocenter and station are deduced from the perpen-
dicular direction of these plane waves. This approximation is equivalent to considering
an infinite frequency ω → ∞ for the seismic wave, which allows to despise scattering
and diffraction phenomena (Nolet, 2008).

Following (MIT, 2008), lets consider the solution of the wave equation
..

φ = α2∇2φ
as:

φ(x, t) = A(x)ei(k·x−ωt)

which can be written as a function of the wave travel time T (x):

φ(x, t) = A(x)e−iωT (x)

In order to use this solution, we calculate:

∇φ = ∇AeiωT − iωA∇Te−iωT

∇2φ =
(
∇2A− ω2A|∇T |2 − i(2ω∇A · ∇T + ωA∇2T )

)
e−iωT



EARTHQUAKE LOCALISATION

..

φ = −ω2Ae−iωT

and the wave equation becomes:

∇2A− ω2A|∇T |2 − i(2ω∇A · ∇T + ωA∇2T ) = −Aω
2

α2

Dividing by ω2:

∇2A

ω2
− A|∇T |2 − i

ω
(2∇A · ∇T + A∇2T ) = − A

α2

By taking the limit for the infinity frequency ω →∞, we obtain:

|∇T |2 =
1

α2
(3.1)

Commonly, this equation is parametrized by the slowness s = 1/α which is more
practical than the speed. In order to clarify this introduction, we will develop the
numerical method for the two dimensions scheme but as shown by Belayouni (2013), the
problem is the same for the three dimensions case.

The two dimensional Eikonal equation can be written as:(
∂T

∂x

)2

+

(
∂T

∂z

)2

= s(x, z)2 (3.2)

3.1.1 TIME3D software

In order to numerically solve this equation we use the TIME3D algorithm developed by
Podvin and Lecomte (1991). This algorithm computes the travel times at each point of
a regularly spaced grid, given a discrete velocity field. TIME3D is based on a Cartesian
coordinate system. This algorithm makes use of three different methods to compute the
propagation of the travel times.

3.1.1.1 2-D transmission

The first method of propagation is called the 2-D transmission. The travel time of a
seismic wave at a grid knot is determined using the travel times previously determined
at three neighbour knots as shown in figure 3.1.

On the figure 3.2, we present the method used by TIME3D to compute propagation
times of a front wave in the grid element HCDV . In the case presented here, the front
wave reaches the point D first, passes through the point H and then the point C. Angles
α and β represented on figure 3.2 let us define two congruent triangles. The length of
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D

H C

V

Figure 3.1: Scheme of transmission in 2D for TIME3D. Time at point C is determined from times at
points H, D and V. Two times are possibles.

catheti can be expressed as functions of a constant slowness of the front wave s and the
propagation times:

minor cathetus =
TH − TD

s

major cathetus =
TC − TH

s

The length of the hypotenuse is equal to the grid size length h:

h2 =

(
TC − TH

s

)2

+

(
TH − TD

s

)2

Which leads to rewrite the equation under the following form:(
TC − TH

s

)2

+

(
TH − TD

s

)2

= s2 (3.3)

representing the discretized eikonal equation in the triangle CDH.

If the following condition, called illumination criterion, is stated:

0 ≤ (TH − TD) ≤ hs√
2

(3.4)

then the time TC at point C is deduced from equation 3.3:

TC = TH +
√

(hs)2 − (TH − TD)2 (3.5)
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D

H C

V

α

αβ

β

T D

T
H

T
C

h

Figure 3.2: Front plane wave transmission for the Podvin-Lecomte two dimensional scheme. h is the
grid size length. TD, TH and TC are the times when the front wave reaches the vertex D, H and C.

Similarly, for the HV C triangle of the figure 3.1:

TC = TV +
√

(hs)2 − (TV − TD)2 (3.6)

With the illumination condition:

0 ≤ (TV − TD) ≤ hs√
2

(3.7)

3.1.1.2 1-D Transmission

The Podvin-Lecomte algorithm also introduces the possibility of a wavefront displacing
along cells interface. This type of displacement corresponds to a refraction wave propa-
gating at the interface between two different media. For the Podvin-Lecomte algorithm,
the slowness is supposed constant in each cell as it is represented on figure 3.3.

The 1D transmission operator (figure 3.3) computes the time TC at point C from the
times TV and TH and the slowness (s, s′) and (s, s′′) respectively, as:

TC = TV + h ·min(s, s′)

or:

TC = TH + h ·min(s, s′′)
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s”

s S'

H

C

V

Figure 3.3: 1D transmission along interfaces for Podvin-Lecomte algorithm. Time at point C is
calculated from time at point H or point V . Colored squares represent the cells with different slowness
s, s′ and s′′. Arrows represent the front waves displacing at interfaces.

3.1.1.3 2-D Diffraction

Finally, a last operator is used when illumination conditions of the 2−D transmission are
not verified and 1−D transmission does not correspond the front wave. This operator
is the 2 − D diffraction represented on figure 3.4. This operator is introduced to treat
the case when point D behaves like a secondary source from a wave reaching point C
with slowness s.

TC = TD +
√

2hs

3.1.2 TIME3D implementation

The TIME3D algorithm propagate the times by the mean of concentric rings centred at
source point, but the source is not necessary on a grid point. These rings gradually cover
the entire domain, as represented on figure 3.5. Times are computed from the source to
each point of the smaller ring, and then to the next ring and so on. As different times
can be calculate at each point, the ”correct” time is obtained through a minimum time
criteria.

An important information which as to be taken into account at each step of calcu-
lation is the direction of propagation: operators can be considered in two directions in
the 2D case (four in the 3D case). The algorithm proceed as follow to compute the time
propagation:
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D

C

Figure 3.4: Podvin-Lecomte 2D diffraction operator. Time at point C is calculated from the time at
point D.

1. Transmission 1D and 2D from inner to outer ring. Minimum times are retained.

2. Sweeping directions (right to left) for 1D and 2D and uses diffraction operators.
Minimum time criterion again.

3. Same as step 2 but in the opposite direction (left to right). Time are actualized
only if they are smaller than the precedent ones.

The Podvin-Lecomte code is written as a subroutine named TIME3D which is used
by the localisation program LOCIN (Potin, 2016). Time precision computed by the
Podvin-Lecomte algorithm can be improved after completion of this algorithm. These
improved times are computed by numerical integration of the slowness field along the
rays (Latorre et al., 2004). The rays are deduced from the gradient of the times obtained
using Podvin-Lecomte algorithm. The Latorre et al. (2004) approach reduces the error
on travelling time but is quite expensive in computation time. For this reason, this
approach is used only in case of tomography computation to calculate travel time in
the a posteriori model. For the localisation determination, the times are determined
for a quasi-1D uniform model so the accuracy of the Latorre et al. (2004) algorithm is
unnecessary.
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Figure 3.5: Concentric rings to compute time propagation by the Podvin-Lecomte algorithm. First
time defined is at the green point, then times at red points are computed from the green one, and then
times at blue points are computed from the red ones, and so on.

3.2 Seismicity localisation by probability density func-

tion

An approach to locate seismic events consists in determining a probability density func-
tion of its spatial location. In order to locate an event, one can proceed by ”grid search”
which consist in determining this function at each node of a grid covering a spatial do-
main. This approach replaces classical location methods which define an earthquake
location as a point in space without a correct uncertainties estimation. A grid search is
more consistent with modern physics idea that we need not only to know the position of
an physical phenomenon as a point, but also a complete probability density function of
this phenomenon in space. The computation we adopted for the a posteriori probability
density function of seismic event location is perform by mean of the stochastic approach
theory of the inverse problem we developed in Chapter 2.

3.2.1 The inverse problem of localisation

In the particular case of seismic localisation, we note M ≡ R4 the model space and m =
(x, t0) the vector of M containing both space parameters x(x, y, z) and time parameter t0
of an event location. The data consist of a set of P-wave arrival times tp and delay times
∆t = ts − tp observed at each station. The benefit of using these delay times instead of
the S-wave arrival times ts is double: delays do not depend on origin time t0 and also
eliminate an eventual time shift that might occur at the station. We note d the data
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vector defined in D ≡ Rm+n and consisting of vectors dS−P = (ts − tp)i=1,m ∈ Rn and
d = (tp)i=m+1,m+n ∈ Rn. The ideal theoretical relationship g between data and model
takes the form:

d =

[
dS−Pi

dPi

]
= g(x, t0) =

[
T Si (x)− T Pi (x)
T Pi (x) + t0

]
i ≤ i ≤ m

m+ 1 ≤ i ≤ m+ n
(3.8)

and the conditional law of estimator d (cf. 2.10):

ρ(d′|m) =ϕ(d− g(x, t0))

=ϕ
(
..., ∆ti − T Si (x) + T Pi (x), ...︸ ︷︷ ︸

i≤i≤m

, ..., tpj − T Pj (x)− t0 + t, ...︸ ︷︷ ︸
m+1≤j≤m+n

)
(3.9)

which leads, by a similar calculation of 2.16, to:

ρpost(x) ∝
∫
R

ϕ
(
..., ∆ti − T Si (x), ..., ..., tPj − T Pj (x)− t0 + t, ...

)
dt (3.10)

where the variable t occurs only in the n last entries of function ϕ. Moreover, making
the variable change t = t0 + t leads to:

ρpost(x) ∝
∫
R

ϕ
(
..., ∆ti − T Si (x) + T Pi (x), ..., ..., tPj − T Pj (x)− t, ...

)
dt (3.11)

which is the marginal density in x of the a posteriori law of (x, t0) given the physical
measured data. Considering data differences provides a mean to eliminate the origin
time t0 which is generally less important than the spatial location. This approach is
equivalent to considering an a posteriori marginal density in x, as long as the probabilities
are properly transported. However, it should be noted that in some cases, it is possible
to directly measure differences between arrival times of same wave front at two nearby
stations by intercorrelation. In this case, the data are differences for which the accuracy
is better than in our case. In the case of intercorrelation, the approach developed above
does not apply.

The probability density function 2.10 has to be chosen in order to localize seismic
events. It can either be chosen through equation 2.2 for which we have to distinguish the
measurement uncertainties and the uncertainties resulting from the theoretical modeling,
or fixed immediately. The first approach is easily applicable only with Gaussian laws.
Therefore, it is most suitable for localisation in a 3 − D model of vP and vP/vS fields,
produced by a tomographic study. In this particular case, a Gaussian modelling of errors
is reasonable as we consider a relatively accurate model. At this point, we only want to
determine the a priori location of the seismic events in order to initiate a tomographic
study. As we do not yet have an accurate model, we compute these locations using a
smooth 1 −D velocity model. Therefore, it is more reasonable to directly fix ϕ, firstly
because the theoretical uncertainties might be large and secondly because a Gaussian
modelling of these errors is not suitable.
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3.2.2 Localisation in an a priori velocity model

In the case of the a priori localisation, we adopted a conditional density on d of the form:

ρ(d|x, t0) =
m∏
i=1

1

2σ(x)
exp

[
−|∆ti − T

S
i (x) + T Pi (x)|
σi(x)

]

×
m+n∏
i=m+1

1

2σ(x)
exp

[
−|∆ti − T

S
i (x)− t0|

σi(x)

] (3.12)

where σ2
i (x) = σ2

i obs+σ2
i th, σ

2
i obs representing the observational uncertainty and σ2

i th the
uncertainty on travel times Ti(x) which is due to the approximation of the 1−D velocity
model in comparison with the true velocity of the waves.

Here, we assume the data independent from each other. For observational data,
this is justified as both picks and uncertainties only depends on the signal observed
at the station considered. However, in the case of theoretical errors, it is only true
at first order since the uncertainties are correlated when the seismic stations are close
from each other in comparison to the event location. In this particular configuration,
seismic rays between this earthquake and the two stations are very similar, implying the
theoretical uncertainties due to velocity model approximation being roughly identical.
Such a configuration leads to a strongly correlated theoretical error in comparison with
data corresponding to distant stations. However, the approach in which we consider
independent errors seems sufficient in the case of the a priori localisation, for which the
velocity model is quite simple. Moreover, the exponential form of the law is sufficient to
overcome this approximation and is also well suitable to deal with possible outlier data.
We now have to determine the shape of σth(x).

Let us suppose that the uncertainty on the slowness n(x) = 1/v(x) can be modelled
by a stationary Gaussian random function, with a null mean and a covariance kernel of
the form:

C(x,x′) = σ2
nf

(
||x− x′||

ξ

)
(3.13)

where ξ is the characteristic length of the autocorrelation function f . The variance of
the travel time T (x) between a source x and the station corresponding to the data we
consider is:

σ2
th =

L∫
0

L∫
0

C(x(s),x(s′)) ds ds′

=σ2
n

L∫
0

L∫
0

f

(
||x− x′||

ξ

)
ds ds′

(3.14)

where L is the ray length.

Let us analyse the asymptotic behavior of this expression as a fonction of the length
ratio ξ/L. for the large values of ξ/L, the correlation function remains close to 1 when
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x(s) and x(s′) describe the ray, so σ2
th is of the order of σ2

nL
2. Now, for small values of

ξ/L, if we write:

σ2
th = σ2

n

L∫
0

ds

L∫
0

f

(
||x(s)− x(s′)||

ξ

)
ds′ (3.15)

and if we make the variable change t = ||x(s)−x(s′)||
ξ

, we obtain, regarding:

dt

ds′
=

1

ξ

(x(s′)− x(s)) · τ(s)

||x(s′)− x(s)||
=

1

ξ
cos(x(s′)− x(s), τ(s)) (3.16)

where τ(s) is the unit tangent vector to the ray at point x(s), by replacing in 3.15:

σ2
th = σ2

nξ

L∫
0

ds

(x(1)−x(s))/ξ∫
(x(0)−x(s))/ξ

f(t)
dt

cos(x(s′)− x(s), τ(s))
(3.17)

and ||x(s′)− x(s)|| = ξt. Then, for the limit ξ/L→ 0:

σ2
th ∼

ξ→0
σ2
nξL

+∞∫
−∞

f(t)dt (3.18)

In conclusion, σth ∝ L for the small values of L and σth ∝
√
L for the large values of L.

This implies that σth is proportional to T or
√
T depending on the value of T .

Regarding this result, we adopt for σth the following function:

σth(T ) =

{
kT T ≤ Tc

k(2
√
TTc − Tc) T > Tc

(3.19)

where k and TC are control parameters. In the case of a first localisation study in the
Western Alps region (Potin, 2016), these parameters were set as k = 0.05 and Tc = 6 s.
The choice of these values was based on the geographic configuration of earthquakes and
station, data quality analysis, and series of test samples. Our study area is geographically
more extended than the one of Potin (2016) resulting on average in larger travel times.
Based on this information and some test we performed, we fixed these values to k = 0.04
and Tc = 8 s, which correspond to a relative error of 4 % for travel times lower than 8 s.
We represented the corresponding function on figure 3.6.

Regarding the differences tS−tP , the theoretical error on the ∆T (x) = TS(x)−TP (x)
data depends not only on the vP velocity model but also on the vP/vS model. In the
case of the a priori location, this error must be estimated based on a model where vP/vs
is constant, with:

∆T (x) =

L∫
0

(
vp
vs

(x(s))− 1

)
ds

vp(x(s))
(3.20)
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Figure 3.6: σth as function of travel time T .

Let us suppose that the error on vP/vS(x) is modelled by a random, stationary and

Gaussian function, with a null mean and a covariance σ2
vP /vS

f
(
||x−x′||

ξ

)
. Let us suppose

as we that this function has the same correlation kernel f
(
||x−x′||

ξ

)
that of np = 1/vP (x).

We can deduce the variance on ∆T (x) is:

σ2
∆T =

L∫
0

L∫
0

(
σ2
nP

(
vP
vS
− 1

)2

+
σ2
vP /vS

vP (x(s))vP (x(s′))

)
f

(
||x(s)− x(s′)||

ξ

)
ds ds′ (3.21)

leading to:

σ2
∆T ∼

((
vP
vS
− 1

)2

+
σ2
vP /vS

σ2
nP

nP
2

)
σ2
TP

(3.22)

where nP is a mean value of nP in our smooth model and σTP is the theoretical error
of the travel time of the P -wave. For vP/vS ∼ 1.7 and σvP /vS ∼

σnP

nP
, we obtain:

σ2
∆T ∼

3

2
σ2
TP

(3.23)

In order to be conservative, we adopted for σ∆T the value corresponding to σTS , which
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is of the order of
√

3σTP . This value is slightly greater than the estimate obtained above
but it seems reasonable since S-wave data are generally of poor quality.

Now, let us come back to the computation of the a posteriori density on x. From
equation 3.12, we can deduce:

ρpost(x) ∝

(
m+n∏
k=1

1

σk(x)

)
exp

[
−

m∑
j=1

|∆tobsj − T Sj (x) + T Pj (x)|
σj(x)

]

×
∫
R

exp

[
−

m+n∑
i=m+1

|tobsi − T Pi (x)− t|
σi(x)

]
dt

(3.24)

The last factor of this expression which contains the integral can be analytically calcu-
lated. By taking ti = T Pi (x)− tobsi , this factor becomes:∫

R

exp

[
−

m+n∑
i=m+1

|t− ti|
σi

]
dt (3.25)

Let us suppose that the ti are in an increasing order: tm+1 ≤ tm+2 ≤ ... ≤ tm+n.
Position of t compared to ti allows to explicit the absolute values |t− ti|, leading to:

- For t ≤ tm+1: ∏
1
σi∑
1
σi

exp

(
m+n∑
i=m+n

tm+1 − ti
σi

)
(3.26)

- For tm+j−1 ≤ t ≤ tm+j, with j = 2, ..., n:

- If
m+n∑
i=m+j

1
σi
−

m+j∑
i=m+1

1
σi
6= 0:

∏
1
σi

m+n∑
i=m+j

1
σi
−

m+j∑
i=m+1

1
σi

exp

(
−
m+j−1∑
i=m+1

t− ti
σi

+
m+n∑
i=m+j

t− ti
σi

)
(3.27)

- If
m+n∑
i=m+j

1
σi
−

m+j∑
i=m+1

1
σi

= 0:

(tm+j − tm+j−1)
∏ 1

σi
exp

(
−
m+j−1∑
i=m+1

ti
σi

+
m+n∑
i=m+j

ti
σi

)
(3.28)

- For t ≥ tm+n : ∏
1
σi∑
1
σi

exp

(
m+n−1∑
i=m+n

ti − tm+1

σi

)
(3.29)
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3.3 Definition of the computation grid

In order to solve the Eikonal equation and determine the travel times needed to locate
a seismic event, we have seen in section 1 that we chose to use the TIME3D algorithm
(Podvin and Lecomte, 1991). This algorithm uses a Cartesian grid to propagate the
travel time. Each cell of this grid is a cube in which we assume a constant velocity. The
computational grid is a parallelepiped box constituted by these cells and if the cells are
small enough, the velocity model can be relatively smooth. As the area of study is several
hundred kilometres wild, the true shape of the Earth can not be ignored. Therefore, we
need to project the Earth shape on this grid and also to identify every node by both its
local Cartesian coordinates and its geographical coordinates.

The shape of the Earth is generally modelled as a revolution ellipsoid, which is close
to the shape of the Earth geoid. In this study, we chose to base our work on the GRS80
ellipsoid. On the figure 3.7, we represented schematically a cross-section of the Earth
on which the computational grid is drawn. As we can see, our approach preserves the
true shape of the Earth as we do not introduce any geometrical deformation. The box
is centred on a point M which is located on the ellipsoid. M geographical coordinates
are (φ, λ, h). It is important to note that the geographical latitude λ depends on the
local vertical at point M . This latitude differs from the geocentric latitude θ which is
the angle between the equatorial plane and the line between the center of the ellipsoid
and M (see figure 3.8).

The Cartesian computational grid is a parallelepiped tangent the the ellipsoid at
point M . Local Cartesian system is centred on M and its three dimensions are oriented
towards the East (x), the North (y) and to the depth (z).

3.3.1 About the reference revolution ellipsoid

Reference ellipsoid GRS80 is a revolution ellipsoid around the North-South axis of the
Earth. Two semiaxes define this ellipsoid1: the Equatorial semiaxe a = 6 378, 137 km
and the Polar semiaxe b = 6 356, 752 314 14 km.

The expression of the ellipsoid equation using an orthonormal generic coordinate
system takes the form:

X2

a2
+
Y 2

a2
+
Z2

b2
= 1 (3.30)

The generic coordinates of the point M , located on the ellipsoid, are (XM , YM , ZM)
and its geocentric coordinates are θ ∈

[
−π

2
, π

2

]
and φ ∈ [π, π]. The difference between

geocentric latitude θ and geographic latitude λ is clearly represented on the figure 3.8.

At point M , two different curvature radius exist: one following meridians direction
and one following parallels direction. Let us express these two radius. The equation of

1The a constant is exact as it is part of the definition of the GRS80 ellipsoid. The b constant derives
from a and other definition constants, so its precision is rounded to twelve digits
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Figure 3.7: Cross-section of the earth through the reference point M . (φ, λ, h) represent the geographic
coordinate system and (x, y, z) the Cartesian coordinate system, which is centred on M and is used to
define the computational grid, represented by the blue box.
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Figure 3.8: The ellipsoid The GRS80 reference ellipsoid. Magnitudes used in transformation from
geographic (φ, λ, h) to grid computing system (x, y, z) are introduced.
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the ellipse corresponding to the meridian plan φ = 0 takes the form:

X2

a2
+
Z2

b2
= 1 (3.31)

If we search the intersection of this ellipsoid with the straight line Z = X tanθ, we find
the coordinates of the generic point of this ellipse as a function of θ:

−−−→
OM0 =

ab√
b2 + a2tan2θ


1

0

tanθ

(3.32)

and the components of the normal −→n0 to this ellipse at point M0 is:

−→n0 =
1√

b4 + a4tan2θ


b2

0

a2tanθ

(3.33)

A rotation of this ellipse by an angle φ around the Polar axis let us deduce the coordinates
of point M(θ, φ) and the components of the corresponding normal −→n :

−−→
OM =

ab√
b2 + a2tan2θ


cosφ

sinφ

tanθ

−→n =
1√

b4 + a4tan2θ


b2cosφ

b2sinφ

a2tanθ

(3.34)

The principal curvatures of a surface are the eigenvalues of Weingarten symmetric
operator, defined as the derivative operator following the tangent plane Σ of the normal
−→n . Base vectors of this tangent plane to the ellipsoid are ∂M

∂φ
and ∂M

∂θ
, and by definition:

D−→n
(
∂M

∂φ

)
=
∂~n

∂φ
and D~n

(
∂M

∂θ

)
=
∂~n

∂θ
(3.35)

From expressions 3.34, we deduce:

∂~n

∂φ
=
b

a

√
b2 + a2tan2θ

b4 + a4tan2θ

∂M

∂φ
(3.36)

and:

∂M

∂θ
=

ab

(b2 + a2tan2θ)3/2


−a2tanθcosφ

−a2tanθsinφ

b2

∂~n

∂θ
=

a2b2

(b4 + a4tan2θ)3/2


−a2tan2θcosφ

−a2tan2θsinφ

b2

(3.37)
Therefore:

∂~n

∂θ
= ab

(
b2 + a2tan2θ

b4 + a4tan2θ

)3/2
∂M

∂θ
(3.38)
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We deduce from this development that the vectors ∂M
∂φ

and ∂M
∂θ

are the eigenvectors of
the Weingarten operator and the radius of curvature in the meridian direction is:

Rθ =
1

ab

(
b4 + a4tan2θ

b2 + a2tan2θ

)3/2

(3.39)

and the one in the parallel direction:

Rφ =
a

b

√
b4 + a4tan2θ

b2 + a2tan2θ
(3.40)

3.3.2 Radius of curvature

For the calculations, it is natural to use the geocentric latitude as it is part of the
spherical coordinate system. However, coordinates on the Earth are generally given
using the geographical latitude, which differs from the geocentric latitude as we shown
earlier (see figure 3.8). Taking advantage of the symmetry of revolution, let us come
back to the ellipse of meridian plane φ = 0 (Y = 0). Considering the λ correspond to
the slope of the normal −→n at point M , we deduce intermediately from 3.33 that:

tanλ =
a2

b2
tanθ

and therefore:

cosλ =
b2

√
b4 + a4tan4θ

(3.41)

The components of
−−−→
OM0 (equation 3.32) can then be written as:

−−−→
OM0 = Rφ


cosλ

0
a2

b2
sinλ

(3.42)

from which we deduce the components of
−−→
OM by rotation around the OZ axis of an

angle φ ∈ [−π, π]:

−−→
OM = Rφ


cosλcosφ

cosλsinφ
a2

b2
sinλ

(3.43)

Moreover, in the meridian plan φ = 0 and its ellipse, we see that:

‖CM0‖ = Rφ
b2

a2

and:
‖IM0‖ = Rφ
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from which we deduce:

‖IC‖ =
a2 − b2

a2
Rφ

‖OC‖ =Rφ
a2 − b2

a2
cosλ =

b2

a2

a2 − b2

√
b4 + a4tan2θ

3.3.3 Conversion between geographic and local coordinates

3.3.3.1 From geographic to Cartesian coordinates

Passing the geographic coordinates of a point m(φm, λm, hm) to the local Cartesian co-
ordinates system M(x, y, z) is achieved through the use of a Cartesian geocentric system
(O,X, Y, Z) (see figure 3.8). As it is more common to manipulate geographic latitude λ
than geocentric latitude θ, we write the curvature radius Rφ from the equation 3.40:

Rφ =
a

cosλ
√

1 + (b2/a2) tan2λ
(3.44)

The coordinates of the origin of the Cartesian system M , located on the surface of
the ellipsoid, and expressed in the geocentric system are:

M


a√

1+(b2/a2)tan2λM
cosφM

a√
1+(b2/a2)tan2λM

sinφM

b2/a√
1+(b2/a2)tan2λM

tanλM

(3.45)

and the point in space m, defined by its geographic coordinates (φm, λm, hm):

m


(Rφ + hm)cosφmcosλm

(Rφ + hm)sinφmcosλm

(Rφ(b2/a2) + hm)sinλm

(3.46)

From the coordinate differences X ′ = XM −Xm, Y ′ = YM − Ym and Z ′ = ZM − Zm, we
define the coordinates of m(xm, ym, zm) in the local Cartesian system (M,x, y, z):

m


−X ′sinφM + Y ′cosφM

−X ′sinλMcosφM − Y ′sinλMsinφM + Z ′cosλM

X ′cosλMcosφM + Y ′cosλMsinφM + Z ′sinλM

(3.47)

3.3.3.2 From Cartesian to geographic coordinates

The inverse operation, consisting in the conversion of coordinates in the local Cartesian
system (M,x, y, z) to the geographic coordinates is a bit more complex. From the coor-
dinates of point m (equation 3.47) in the local Cartesian system (M,x, y, z), we deduce
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its coordinates in the geocentric system (O,X, Y, Z):

m


XM − xmsinφM − ymsinλMcosφM + zMcosλMcosφM

YM + xmcosφM − ymsinλMsinφM + zmλMsinφM

ZM + ymcosλM + zmsinλM

(3.48)

We obtain the longitude φm from the components the Xm and Ym with a subtlety:

φm

arcos
Xm√
X2

m+Y 2
m

Ym ≥ 0

−arcos Xm√
X2

m+Y 2
m

Ym < 0
(3.49)

The geographic latitude λm is more delicate to determine because we do not know
the local normal n at the ellipsoid surface directly at the geographical vertical of m. To
determine λm, we make use of an iterative process which converge to its value. As the
ratio a

b
is very near to 1 for the Earth, we take as first approximation:

λm ' θm =
Zm√

X2
m + Y 2

m

(3.50)

To determine λm value, we define lk=0 = θm and we recursively calculate lk+1 as function
of lk, from k = 0:

lk+1 =
Zm√

X2
m + Y 2

m

[
1− ae2√

X2
m + Y 2

m

√
1 + (b2/a2)l2k

]
(3.51)

with e the ellipsoid eccentricity
√
a2+b2

a
. The latitude λm is:

λm = arctan l∞ (3.52)

In practice, the first approximation is already close to the solution and, therefore, less
than ten iterations are sufficient to converge to a reasonable solution, as the increment
lk+1 − lk is of the order of 10−15 when k → 10.

Finally, the altitude hm is given by:

hm =
1

cosλm

[√
X2
m + Y 2

m −
a√

1 + (b2/a2)tan2λ

]
(3.53)

3.4 Localisation of the seismicity of Ecuador and

Northern Peru

3.4.1 About the study region

A first insight on the localisation of the seismicity of Ecuador was introduced in Chapter
1, showing the main features of the region. We defined the study area dimension based
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Figure 3.9: Seismicity location in the study region over the period 1988-2014, as established by the
Incorporated Research Institutions for Seismology (IRIS) which is obtained by the analysis of data coming
from the Global Seismological Network. Earthquakes of this data base are of magnitude M ≥ 3.

on the geographical repartition of the seismicity and the seismological station. The
parallelepiped box used for this study encompass a region extending from 76oW to 82oW
and from 1.5oN to 7.3oS (figure 3.9).

3.4.1.1 Extension of the domain

The center of the parallelepiped box (reference point M as described in the previous
paragraph) is located at 79.0oW , 2.9oS. South-North extension is −338 km ≤ x ≤
337 km and West-East extension is −490 km ≤ y ≤ 490 km.

In a second stage of our study we define another parallelepiped centered at 79.4oW ,
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1.7oS. This new parallelepiped has the same extension in depth that the first one, that is
244 km in the z axis. In the West-East direction its extension is −295 km ≤ x ≤ 295 km
and its South-North extension is −385 km ≤ y ≤ 385 km. We will use this smaller
inversion box in the next sections.

Concerning the vertical extension of the parallelepiped, the origin point is located
on the ellipsoid. The altitude of the surface topography above this point is 2530 m. As
earthquakes can be located anyFunderneath the surface topography, we must insure that
this entire surface is in the parallelepiped box. As we can see on figure 3.7, the height
of a point in the parallelepiped box depends on its geographic altitude and its distance
to the reference point M . Therefore, in order to fix the vertical extension of the box,
we had to convert the altitude of the entire topography surface to the local Cartesian
coordinate system. The highest point we obtained was the Chimborazo volcano with a
geographical altitude of 6 268 m, and a height in the box of z = 4 241 m. As a precaution,
a security margin has to be added on the sides of the box in order to avoid side effects
in the TIME3D algorithm. Therefore, the highest limit of the box has been fixed 8 km
above the reference point M .

In order to set the lower bound of the study box, we considered the locations obtained
by previous studies which identified deep events around z = 240 km at maximum in the
study box coordinate system. These events correspond to the Puyo seismic swarm clearly
identified on figure 3.9. Considering the same security margin than for the top bound
of the study box, we fixed the lower bound to 244 km deep. Therefore, the vertical
extension of the parallelepiped box is −8 km ≤ z ≤ 244 km as we take the vertical axis
oriented toward the center of the Earth.

One can notice that we did not take into account the shape of the seismic rays for
the determination of the lower bound of the parallelepiped box. Of course, not only
the seismic events and the stations have to be in the domain to be studied, but also the
corresponding seismic rays as they represent the time-shortest path followed by the waves
to propagate. Therefore, we need to make sure no rays goes deeper than z = 240 km in
the box. The curvature of a seismic ray is expressed in general as the radius of curvature:

R =
1

p

dz

dv
(3.54)

Where p is the ray parameter and v = v(z) is the velocity of the seismic wave.
This radius has a simple analytically meaning only when the velocity v(z) is a simple
velocity gradient function. In general case, a simple numerical test may be used to
determine the seismic rays deepest point (Potin, 2016). However, a useful simple first
approximation based on a linear velocity model v(z) = v0 + kz can be computed. Such
a model is relatively accurate in the crust and the upper mantle (Udias, 2000). In order
to estimate the parameters v0 and k, we took the AK135 reference model (Kennet at al.,
1995). In this model, v(0) ∼ 6 km/s, which is the velocity near the Earth surface and
v(200) ∼ 8 km/s around 200 km depth. Then:

k ∼ 8− 6

200− 0
∼ 1

50
(3.55)
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Figure 3.10: A circular seismic ray in a medium with linear variation of velocity with depth.

The maximum depth zp of the ray, corresponding to its turning point let determine the
ray parameter:

p =
1

v0 + kzp
(3.56)

According to 3.54 the curvature radius is:

R =
1

p

1

k

R =
v0

k
+ zp

(3.57)

R is then constant and the ray is a circular arc as seen in figure 3.10.

Concerning the domain of study, we can express the curvature radius corresponding
to a ray crossing the entire domain:

R =

[(
d

2

)2

+
(v0

k

)2
]1/2

(3.58)

with d the horizontal distance between the source and the receiver. The corresponding
maximum depth is then:

zp = R− v0

k
(3.59)

Using these expressions, we find that the maximum depth for a ray crossing the
domain is zp ≈ 124 km in the East-West direction, zp ≈ 232 km in the North-South
direction. Both these depth are below the lower bound which reaches 244 km. In the
extreme case of a ray crossing the box in a diagonal direction we find zp ≈ 317 km for
this first estimation and therefore we need to obtain a numerical solution of the seismic
rays to ensure our preliminary calculations for the inversion box depth.
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The numerical test takes account also the problem of rays for deep events and we get
this using the tomography code described in the next section. With some iterations of
the tomography code, we can look that the number of seismic rays which reach the lower
limit of the inversion box is negligible for the established of 244km. In the eventually
that a ray reaches the inversion box borders this will be artificially deformed and LOCIN
and tomography codes do not take it in account for the calculations.

3.4.1.2 Discretization of the domain

The last parameter needed to define the computation grid is the length of the cubic
cells composing it. In those cells, the Podvin-Lecomte algorithm considers a constant
velocity so in order to optimize the quality of computation, their size should be as small
as possible. The only limitation concerns the computation itself as the number of cells
increases rapidly when their size decreases. Moreover, the LOCIN algorithm (Potin,
2016) virtually duplicate this grid for each data of a single event the memory limitation
not only depends on the number of cells but also the maximum number of data per
event. Regarding these constraints, we fixed the cell size to h = 1 km, which leads to a
number of grid cells of 676× 981× 253 = 167 778 468.

3.4.2 A priori velocity model

The a priori velocity model we chose is a 1-D model, taken as a function of the geo-
graphical depth. As the domain of study covers both the crust and the upper mantle,
this velocity model is constituted of three parts: one for the crust, one for the upper
part of the mantle et one for the rest of the mantle which is simply the model proposed
by Kennet et al. (1995). We did not use any Moho topography model in the definition
of the velocity model, as we do not want to input any a priori information about its
topography. Therefore, the velocity jump between the crust and the upper mantle is
reproduced by a smooth change of velocity along a reasonable depth range. The model
presented here is a P-wave velocity model.

Concerning the crust, The velocity between the surface topography and the GRS80
ellipsoid is defined by a linear increment from a surface velocity vsurf = 4 km/s to an
intermediate velocity at the ellipsoid surface v0 = 4.5 km/s. Below the ellipsoid, we
adopt a model determined by an exponential decay in function of depth d:

v(d) = v0 + δvc

[
1− exp

(
d

d0

)]
(3.60)

Parameters d0 and δvc are control parameters. The first one has an impact on the
decay of the exponential function and the second one is set in order to obtain a velocity
v0 + δvc close to the value expected at the bottom of the lower crust. In our case,
δvc = 2.6 km/s and d0 = 25 km. This crustal velocity model is represented on the figure
3.11 as a blue line.
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Figure 3.11: 1-D a priori velocity model defined after physical a priori parameters and the AK135
model (Kennet et al., 1995). Here, we represent only the upper part of the model in order to highlight
the variation close to the surface.

Deeper, at a depth range corresponding to the crust-mantle transition, the velocity
given by our model progressively rises to reach upper mantle velocities and match the
AK135 model (Kennet et al., 1995). This AK135 model is represented on the figure 3.11
as a black line. The depth range at which the transition occurs correspond to the depth
range of the Moho beneath Ecuador and Northern Peru. There, the thickness of the
crust is highly variable: it reaches about 60 km underneath the Andes Cordillera but
decreases down to 5 km near the oceanic plate subduction zone. As the continental wedge
is a particular zone underneath which we do not directly encounter mantle material, we
chose to joint the crust and the upper mantle velocity model at a depth d′0 = 25km. The
transition function take the form:

∆v(d) = δvm
(d− d′0)2

l2 + (d− d′0)2
(3.61)

with δvm = 0.95 km/s was set so v0 + δvc + δvm is close to the velocity expected in
upper mantle, between 8.04 km/s and 8.05 km/s between 25 km and 120 km depth
(AK135, Kennet et al., 1995). The parameter l = 13 km correspond to the transition
zone thickness. This transition zone is represented on the figure 3.11 as a red line.

The third part of our 1-D velocity model, between 120 km and 244 km depth, is the

79



EARTHQUAKE LOCALISATION

AK135. In this depth range, the AK135 model is constituted by two linear functions
corresponding to a velocity change between 8.05 km/s to 8.3 km/s between 120 km and
210 km, and 8.3 km/s and 8.67 km/s between 210 km and -244 km.

Finally, the velocity model of S-waves is obtained from the model of P-waves divided
by the mean vP/vS ratio obtained through the Wadati diagram analysis (figure 10). As
a reminder, the mean value obtained for the Ecuador and Northern Peru region was
vS = 1.7406vP .

3.4.3 Surface topography

The regional surface topography is an important feature of the model as it has a role
in the definition of the velocity model and also because it represent the upper limits
for earthquake location. For this study, the surface topography was extracted from the
ETOPO1 model provided by Amante and Eakins, (2009) for the entire Earth. In order to
take the surface topography into account in the model, this surface was interpolated on
the computational grid. The interpolation was performed in the geographic coordinate
system and then transported to the Cartesian one. This approach is almost manda-
tory because in the box, the geographical vertical orientation changes, depending on the
relative position to the reference point M . This geometrical problem makes the inter-
polation very tricky in the box. In order to proceed with this interpolation, we followed
the algorithm:

- Cartesian coordinates (x, y, z = 0) for x and y describing the entire grid are converted
to the geographic coordinate system. For a random point of the grid, the new set
of coordinates is (φ, λ, h0).

- The altitude of the surface topography h1 is interpolated at the random point (φ, λ).
The interpolation we performed is based on a barycenter determination:

h1 =
1∑4
k=1

1
dk

4∑
k=1

HETOPO 1

dk
(3.62)

where k successively represents the four vertices of the ETOPO1 model cell containing
the current random point, dk is the horizontal distance between this point and each of
the ETOPO1 cell summits, and HETOPO 1

k is their respective altitude.

- The new coordinates (φ, λ, h1) of the random point is converted back to the Cartesian
system, giving a new point (x+ δx, y + δy, z1).

- This operation is repeated but with the new random point (x, y, z1), and so on until
the increment zi − zi−1 ' 0, which corresponds to the iteration where δx ' 0 and
δy ' 0.
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Figure 3.12: To the left: topography of the studied region. To the right: surface topography interpolated
from the ETOPO1 model on the computation grid. ztopo represent the depth of the topography in the
computational box

In our case, the convergence to the machine precision is reached in nearly fifty iterations,
as the first approximation h0 is very bad for the points located on the edges of the
model. The resulting surface topography represented in the parallelepiped box is shown
on figure 3.12.

3.4.4 Computational application: the LOCIN algorithm

The theoretical developments presented in the chapter 2 are implemented in the LOCIN
software (Potin, 2016), which is a localisation program that follows the approach pre-
sented in this chapter. The locations are performed in two steps:

- First, we calculate a ”time table” for each couple phase-station present in the dataset.
These time tables are files containing the travel time of a front wave propagating
from the station to each node of the computational grid. The computation grid has
167 778 468 nodes, and each value is stored as a single precision real number as the
precision of these times do not need more than 6 or 7 significant digits. These time
tables represent in term of memory usage 167 778 468× 4 ' 671 Mb for each time
table, and 671 Mb× 194 stations× 2 phases ' 260 Gb in total. The computation
of these time tables is only performed once for a velocity model, as the different
files will be directly used during the localisation process.
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- The LOCIN software then computes the probability density function (equation 3.24)
of source location at each grid point, using the time tables. Has it was introduced
earlier, this density takes into account both the observational and the theoretical
uncertainties.

In practice, the algorithm adopts an optimisation strategy and runs only roughly through
the grid (one point out of three in each direction) to approximately determine the density
(3.24). Then, the algorithm determines the density in a sub-domain around the max-
imum previously identified and the final location is determined by interpolation of the
density between the nodes. By considering the extension and the shape of the zone of
significant values of the density, we can estimate a spatial uncertainty of the localisation.

3.4.5 Earthquake localisation in the a priori velocity model

localisations of the 44, 316 seismic events was performed with the LOCIN software. The
resulting locations are presented on figure 3.13.

Earthquake Locations determined by mean of the grid search approach implemented
in the LOCIN software are in good agreement with the previous knowledge of the seis-
micity in the region, as for example the locations provided by the Global Seismology
Network (figure 3.9). The algorithm produces high precision locations in both horizon-
tal and vertical directions, allowing us to observe shallow seismicity clusters with depth
lower than 35 km which are due to volcanoes activity during the study period of 1988-
2014 (Chiles, Reventador, Guagua Pichincha and Tungurahua). The Cotacachi-Cuicocha
volcanic complex presents as well a clear activity, although this complex has not been
in eruption during the period of study. Other important shallow seismicity clusters are
related to crustal faults activity (North Quito, Pujiĺı, Pisayambo and Macas).

The trench region seismicity produced by the subduction of the Nazca plate un-
derneath the South America Plate is ordered around three clusters: Galera, Jama and
Manta-Puerto López (Font et al., 2013 ).

Three mid-depth clusters are also identifiable and correspond to normal manifestation
of the subduction process: Guayaquil (50 km to 100 km), Maldonado (80 km to 100 km)
and La Maná (80 km to 100 km).

Finally, the deep Puyo cluster is also well identifiable with depths greater than 150 km
and some events reaching 240 km.
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Figure 3.13: Location map of the 44, 316 earthquakes used in this study. Location were determined
by LOCIN software. The names correspond to the seismic clusters. Shallow clusters due to volcanoes
are Chiles, Reventador, Cotacachi, Guagua Pichincha and Tungurahua. Shallow clusters due to crust
faults are North Quito, Pujiĺı, Pisayambo and Macas. The three clusters of trench are Galera, Jama and
Manta-Puerto López. The three subduction mid-depth clusters are Maldonado, La Maná and Guayaquil.
The deepest cluster is Puyo.
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Chapter 4

The inverse problem of travel time
tomography

Our approach of the travel time tomography is similar to the one we have followed for
the localization of seismic events. It is a Bayesian approach in which we consider both
models and data as Gaussian random elements. The introduction of the velocity fields
in the model space leads us to consider Gaussian random functions over the Euclidean
space. Thus, the formal results of section 2.5 can be applied in the inversion. We will
detail in this chapter how it is practicaly achieved for very large datasets with up to one
million of data, as that of Ecuador, which strategy is followed for the discretization, and
how it was implemented in the INSIGHT codes (B. Potin, B. Valette, and V. Monteiller,
2016), in the development of which I was partly involved. Let us firstly set the travel
time tomography problem.

4.1 Setting the travel time tomography problem

4.1.1 The data space

The data are provided by the catalogue of wave arrival times that we have built up, and
which is described in the first chapter. Practically, we have used as data, the P-waves
arrival times tP, and the difference of arrival times of S and P waves, ∆t = tS − tP , at a
same station. We prefer to use as data these differences instead of the S arrival time to
eliminate the possible errors of clock drift at stations. Thus, the generic data vector d
is defined in D = Rm+n and can be split into two subvectors dS−P = (tS − tP )i=1,m ∈ Rm

and dP = (tP )i=m+1,m+n ∈ Rn.

4.1.2 The model space

The model space M comprises the functional parameters vP and vp/vs defining the
velocity fields in the domain V and the scalar parameters (localisations and initial times)
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identifying the seismic events (x, t0). We have also included as scalar parameters in the
model space some time delays (∆P ,∆S−P) that are attached to each station, and are
added to the theoretical travel times TP or ∆t. The number of scalar parameters is thus
equal to 4ne + 2ns in noting by ne the number of events and ns the number of stations.

The use of vP/vS rather than that of vS is justified by the fact that this ratio is
relatively well constrained and that an a priori value can be easily obtained through
a Wadati diagram analysis, as shown in the first chapter. The station delays ∆P and
∆S−P account for possible site effects in the close vicinity of stations. Indeed, the local
resolution of velocity is very poor just beneath a station due to a lack of intersection of
rays in this zone, within which all the rays joining the station are more or less parallel
to each other. Thus the inversion does not allow the identification of possible veloc-
ity anomalies localized just below the stations, such as a thin layer of unconsolidated
sediment or volcanic materials. Introducing station delays provides a way to take such
possible concentrated anomalies into account, in avoiding its spreading deeper into the
model resulting of the inversion.

We will denote by m =
[
vP , vP/vS,x, t0,∆

P ,∆S−P
]
∈ L2×L2×R4ne+2ns the generic

vector of the model space M.

4.1.3 The travel time equations

The theoretical mapping d = g(m) can be written as:

d =

 dS−P

dP

 = g(m)

=

 ∆Ti(vP , vP/vS,xj(i)) + ∆S−P
k(i)

TP
i (vP ,xj(i)) + t0i + ∆P

k(i)

 1 ≤ i ≤ m

m+ 1 ≤ i ≤ m+ n

(4.1)

where the travel times TP
i verify:

TP
i =

∫
RP

i

ds

vP (s)
(4.2)

and the difference of travel times ∆Ti:

∆Ti =

∫
RS

i

vP
vS

(s)
ds

vP (s)
−
∫
RP

i

ds

vP (s)
(4.3)

In these equations :
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• RP
i or RS

i denotes respectively the ray of the P or S wave linking the event with
index j(i) localized at xj(i) to the station with index k(i), and with station delay
∆P
k(i) or ∆S−P

k(i) , where both the station and the event correspond to the ith datum.

• s denotes the curvilinear abcissa along the rays.

g is a non-linear mapping since the rays depend on the velocity model. But, as a
consequence of the so called Fermat principle, a first order perturbation of the ray does
not change the travel time. The derivative operator Gm of g can thus be easily evaluated
by perturbation from (4.1, 4.2, 4.3)). More precisely, it yields:

δg(m) =

[
δtS−P

δtP

]
= (Gm(δvP, δvP/vS, δx, δt0, δ∆

P , δ∆S−P) =

∫
RS

i

1

vP

(
δ

(
vP

vS

)
− vP

vS

δvP

vP

)
ds+

∫
RP

i

δvP

v2
P

ds+ (τP
i − τ S

i ) · δxj(i) + δ∆S−P
k(i) 1 ≤ i ≤ m

−
∫
RP

i

δvP

v2
P

ds− τP
i · δxj(i) + δt0j(i) + δ∆P

k(i) m+ 1 ≤ i ≤ m+ n

(4.4)

with the same notation as in (4.1) (4.2) (4.3), and where

• δ denotes the perturbation of a scalar or vectorial quantity,

• τP
i and τ S

i respectively denotes the unit vector tangent to the P or S ray corre-
sponding to datum i in the direction of increasing propagating time, respectively
divided by the P or S velocity, vP(xj(i)) or vS(xj(i)), at the hypocenter xj(i) of the
event j(i),

• · denotes the usual Euclidean scalar product in R3

4.1.4 The a priori information

The vector dobs of data, provided by our catalogue, has to be complemented by a pdf
representing the errors in measurement. The corresponding standard deviations are
firstly set according to the quality weight as indicated in Table 1.1. For difference
data of S and P arrival times, the standard deviation is the square root of the sum
of the corresponding S and P data, since the two measurements may be considered as
independent.

But, as all the data are the results of picking of P or S phases in seismograms, there
exist surely outliers among them, mainly due to misidentified P or S phases (see e.g.
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Nolet, 2008), and consequently, as already indicated in paragraph 2.4.3, the correspond-
ing pdf cannot be Gaussian. We have also shown in the paragraph 2.4.3 that a way to
enhance the robustness of the inversion, in avoiding the bias induced by the outliers, is
to take for each of the data, d, an hyperbolic secant pdf (2.42) that can be rewritten as:

ρobs(d) =
1

2σobs

1

cosh
(
π
2
d−dobs
σobs

) (4.5)

where σobs is the standard deviation. This pdf is equivalent to either a Gaussian or to a
decreasing exponential function according to |d− dobs| is large or small :

ρobs(d) ∼
∞

1

σobs
exp

(
−π

2

|d− dobs|
σobs

)
ρobs(d) ∼

0

1

2σobs
exp

(
−π

2

8

(d− dobs)2

σ2
obs

)

x
0 5 10 15

f(
x
)

0

1

2

3

4

5

6

Erf-1

Huber : k = 1
Huber : k = 1.33
Huber : k = 1.66
Huber : k = 2

Figure 4.1: Comparison of the secant hyperbolic pdf with the Huber M-estimator (2.41). In
green the least-square variable corresponding to the secant hyperbolic pdf for a datum d, y(x) =
Erf−1 (2/πarctan(sinh(πx/2))) as function of the variable x = |d − dobs|/σobs; in blue-purple, the
least-square variable corresponding to the Huber M-estimator (2.41) for various values of k: y(x) =
x/
√

2 for x ≤ k and y(x) =
√
k(x− k/2) for x ≥ k.

The corresponding change of variable y(d) (2.45, 2.46) then reads :
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y(d) = Erf−1

[
2

π
arctan

(
sinh

(
π

2

d− dobs
σobs

))]
(4.6)

with:

dy

dd
=

√
π

2σobs

exp(y2)

cosh
(
π
2
d−dobs
σobs

) (4.7)

By using standard asymptotic developments (e.g. NIST handbook of mathematical
functions, Olver et al., 2010), an easy calculation yields :

y ∼
0

√
π

2

d− dobs
σobs

y ∼
∞

√
π

2
sgn(d− dobs)

√
|d− dobs|
σobs

(4.8)

and:

dy

dd
∼
∞

1

2

√
π

2σobs

sgn(d− dobs)√
|d− dobs|

(4.9)

where sgn denotes the sign function (equal to 1 or -1 according to the sign). It shows that
using these new variables instead of the initial variables is equivalent to using Huber M-
estimator (Huber, 1964, and equation 2.41), while remaining in the Gaussian framework.
We can also remark that the product y dy

dd
converges toward the finite limit π

4σobs
for large

|d− dobs|/σobs. This confirms that the outliers then do not play an important role in the
equation of stationnarity of the cost function, which is now quadratic in y.

The two random fields vP and vP/vS are assumed to be Gaussian, with mean prior
model corresponding to the one used for the a priori localisation described in chapter 3.
The correlation kernel of each of these two random functions, assumed to be independent,
is the exponential kernel, described in paragraph 2.5.3. The a priori physical standard
deviation of the two fields are assumed to be constant over the study domain, thus the
effective standard deviations are also constant. As a consequence, the covariance kernel
of each of the two fields can be written as:

C(r, r′) = σ2exp

−( 3∑
i=1

(ri − r′i)2

ξ2
i

)1/2
 (4.10)

with the same various lengths of correlation ξ1, ξ2, ξ3 that corresponds to the three di-
rections of the Euclidean space, and where, in taking (2.69) into account:

σ2 =

(
ξ3

0

ξ1ξ2ξ3

)
σ2
phys (4.11)
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The other scalar parameters, i.e. location and initial time of the events, and time
delays attached to the stations, are all assumed to be Gaussian and pairwise independent.

4.2 Inversion strategy

As we have shown in chapter 2, the Bayesian approach leads to a Tikhonov problem, i.e.
searching for the minimum over a regularization space of a cost function which can be
written in the general form:

||C−1/2
d (dobs − g(m))||2D + ||T(m−mprior)||2M (4.12)

where T is the regularization operator, D(T) ⊂ M is the regularization space (i.e. the
domaine of the operator T in M), and mprior a reference model. In the stochastic case,
mprior corresponds to the a priori expectation, and T to the square root of the inverse of

the prior covariance operator C
−1/2
m of the model. It leads to the stationnarity equation

(2.66) and the algorithm (2.67) that involves the solution of a linear system with matrix
M (2.68) in the finite dimensional data space D. A relatively long, but easy calculation
that takes (4.4) into account and that the kernels hm are actually distributions over the
rays, allows the explicitation of the entries of the matrix M:

• for 1 ≤ i ≤ m and 1 ≤ j ≤ m :

Mij = Cd
ij + σ2

P

∫
RS
i

∫
RS
j

ϕ

(
‖x− x′‖

ξ

)
dsi(x)

vS(x)vP(x)

dsj(x
′)

vS(x′)vP(x′)

+ σ2
P

∫
RP
i

∫
RP
j

ϕ

(
‖x− x′‖

ξ

)
dsi(x)

v2
P(x)

dsj(x
′)

v2
P(x′)

− σ2
P

∫
RS
i

∫
RP
j

ϕ

(
‖x− x′‖

ξ

)
dsi(x)

vS(x)vP(x)

dsj(x
′)

v2
P(x′)

− σ2
P

∫
RP
i

∫
RS
j

ϕ

(
‖x− x′‖

ξ

)
dsi(x)

v2
P(x)

dsj(x
′)

vS(x′)vP(x′)

+ σ2
vP/vS

∫
RS
i

∫
RS
j

ϕ

(
‖x− x′‖

ξ

)
dsi(x)

vP(x)

dsj(x
′)

vP(x′)

+
3∑

α=1

((τP
i )α − (τS

i )α)((τP
j )α − (τS

j )α)(σα`(i))
2δ
`(j)
`(i) + (σ∆S−P

k(i)
)2 δ

k(j)
k(i)

(4.13)
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• for m+ 1 ≤ i ≤ m+ n and m+ 1 ≤ j ≤ m+ n :

Mij = Cd
ij + σ2

P

∫
RP
i

∫
RP
j

ϕ

(
‖x− x′‖

ξ

)
dsi(x)

v2
P(x)

dsj(x
′)

v2
P(x′)

+

(
3∑

α=1

(τP
i )α(τP

j )α(σα`(i))
2 +

(
σt0`(i)

)2
)
δ
`(j)
`(i) + (σ∆P

k(i))
2 δ

k(j)
k(i)

(4.14)

• for m+ 1 ≤ i ≤ m+ n and 1 ≤ j ≤ m :

Mij = Cd
ij + σ2

P

∫
RP
i

∫
RP
j

ϕ

(
‖x− x′‖

ξ

)
dsi(x)

v2
P(x)

dsj(x
′)

v2
P(x′)

+ σ2
P

∫
RP
i

∫
RS
j

ϕ

(
‖x− x′‖

ξ

)
dsi(x)

v2
P(x)

dsj(x
′)

vS(x′)vP(x′)

+

(
3∑

α=1

(τP
i )α((τP

j )α − (τS
j )α)(σα`(i))

2

)
δ
`(j)
`(i)

(4.15)

where:

• δk′k is the usual Kronecker symbol,

• the index `(i), in (4.14) is the index of the event corresponding to the ith datum
(to avoid any confusion with index j),

• RP
i and RS

i represents respectively the P, and possibly S, ray involved in the ith
datum,

• σP, σvP/vS , σα`(i), σ
t0
`(i), σ

∆P
k(i) , σ∆S−P

k(i) respectively denote the prior standard deviation

of the vP and vP/vS fields, of the 3 components of the position vector and of the
initial time corresponding to the `(i)th event, and of times delays attached to the
k(i)th station.

When using the variables yi associated to a secant hyperbolic pdf for the data, all the
terms at the right hand side of (4.13), (4.14), (4.15), excepting Cd

ij, must be multiplied

by dyi
ddi

dyj
ddj

(4.7).

Thus, each entry of the matrix needs the computation of a double integral over rays
within the study domain; which is relatively time expensive. A first attempt was made
in this way by (Nercessian et al., 1984) with a very small dataset of 480 P-phases,
by adopting a first order approach, and by assuming Gaussian correlation kernels and
straight rays that allow for analytical integration of the matrix entries. But, despite the
dramatic increase in computer power, this approach cannot be practically used for large
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datasets, such as seismic catalogue with up to one million data. All the more so because
it would be currently almost impossible to solve a full linear system of about 1 million
equations in a reasonable time.

An alternative way is to use the algorithm in its quasi-Newton formulation :

mk+1−mk = −(C−1
m +G∗kC

−1
d Gk)

−1(G∗kC
−1
d (g(mk)−dobs)+C−1

m (mk−mprior)) (4.16)

which needs, that time, the solution of a linear inversion in an infinite dimensional space.
This involves discretizing the model space, and consequently the study domain, while
keeping in background the functional character of the fields, especially for correlations.
Furthemore, it leads to a linear system, the matrix of which is of huge order (greater than
the data number and than twice the number of grid nodes within the study domain).
But, the key point is that this matrix is made very sparse when using exponential
kernel for the covariance, since C−1

m (2.59, 2.61) is then a differential operator that is
easily sparsely discretized by finite difference, and since the acting of operator Gk, and
of its adjoint, only involves the model values at the grid nodes in the vicinity of the
ray corresponding to each datum. This approach is thus the only workable one when
considering tomography problems with a large number of data, except for very specific
cases where some simplification may be done (Vergely et al., 2010).

4.3 The INSIGHT computer code package

There exist numerous computer codes to perform regional travel time tomography. One
of the most commonly used is the SIMULPS code (Thurber, 1983; Um and Thurber,
1987, Eberhart and Phillips, 1986, 1990; Evans et al., 1994). But other codes may be used
as the LOTOS code (koulakov, 2009), or the code of (Benz et al., 1996). The algorithms
of these codes generally amount to minimizing a cost function in the neighbourhood
of an initial or prior model, i.e. to a Tikhonov problem. The cost function (eqn 4.12)
contains a term corresponding to the adjustment of the data and most of the time another
one corresponding to the regularization of the model, i.e. a term that depends on the
discrepancy of the model with respect to a prior one and/or on the smoothness of the
model through an operator T. From a practical point of view, it may be thought of as
introducing additional regularization data corresponding to the vanishing of this term
T(m −mprior). The minimum of the cost is usually obtained through a quasi Newton
algorithm in a discretized model space.

In the case of the SIMULPS code, there is no regularization term in the cost function.
The stability of the quasi-Newton algorithm is insured by adding a positive term in the
diagonal of the quasi-Hessian matrix, in a way analogous to the Levenberg-Marquardt
algorithm. The value of this term is determined by trade off between the fit of the data
and the smoothness of the model. Moreover the level of smoothness of the model is
basically controlled by the grid spacing of the study domain. Each cell of the grid must
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be sufficiently large to be crossed by a minimum number of rays. It raises a number of
problems; from a practical perspective, the variability in size of the grid can make its
geometry very complex, and consequently, accuracy in the forward computation of the
traveltimes may be lost. Since there is no regularisation term in the cost function, there
is no prior model. Only an initial model is needed to start the algorithm. That makes
this choice crucial. This initial model is generally a 1-D model determined along with
the location of events through a prior inversion (Kissling et al., 1994). In this case, it is
very important to take into account the modelling error due to the 1-D assumption in
order to avoid over-fitting of the data; which would bias the model.

In the case of the LOTOS code, the regularization term corresponds to the H1 norm
of the velocity model. (

∫
v2dV +

∫
‖∇‖2dV . That means that the additional regularizing

data are the values of the velocity, and of their differences in each direction and between
adjacent points of a regular grid.

The algoritm of Benz is relatively hybrid. Assuming that a reference model is given,
the events are firstly localized by a standard least squares approach. Then the prob-
lem of tomography is linearized with respect to both velocity fields and event locations
around these reference values. Following (Pavlis and Booker, 1980) a set of new data
is determined as linear combinations of the data in order to eliminate the first order
influence of the earthquake locations. This is theoretically possible if the number of in-
dependent data is greater than the number of event location parameters, but it requires
the computation of a vector basis of the null space of the adjoint of the operator of
partial derivative of the data with respect to the event parameters, which is very time
consuming for only a first order approximation. These new data are complemented by
regularizing data that correspond to the Laplacian of the velocity fields discretized by
finite difference over the grid. From a Tikhonov point of view, it corresponds to the first
iteration of a minimizing process of a Tikhonov cost, the regularization term of which
is the L2 norm of the Laplacian of the velocity field (which corresponds to only a semi
norm for the velocity).

All these codes do not allow for managing large datasets of variable quality. They
are commonly used for dataset containing at most a few thousands of data carefullly
selected. Unfortunately, there are no perfect dataset in seismology, and as shown in the
first chapter, outliers or errors in files may be very hard to detect. We have thus used the
new package of computer codes INSIGHT, which has been designed by B. Valette and B.
Potin, and written by B. Potin in Fortran 2003 during his PHD, and in the development
of which I have been involved as well as V. Monteiller.

The goal of the codes INSIGHT is to perform the travel time tomography from
regional earthquakes. They are designed to invert large (up to one million) catalogue of
data, with variable quality, for local structure. It allows the use of all the data available
over the study zone, which offers two advantages. Firstly, it provides maximal coverage
of the study domain by the rays, and secondly, we may raisonably expect that the
information is stabilized by the ”large numbers” of data. The origin of the code comes
back to a double difference tomography code developped by V. Monteiller (Monteiller
et al., 2005; Monteiller, 2005), initialy dedicated to the Hawäı volcanic dome. The

93



THE INVERSE PROBLEM OF TRAVEL TIME TOMOGRAPHY

density of the Hawäı seismic network and the quality of the data allow the mesurement
of arrival time differences between two events at a same station, by cross correlation
of the signals, which considerably increases the accuracy of measurement (Poupinet et
al., 1984; Frechet, 1985; Got et al., 1994) with repect to hand picking. Thereafter, a
variant of this code was developped by V. Monteiller and B. Valette to perform direct
travel time tomography. This variant was used for regional tomography of the western
Alps (Potin et al., 2012, 2014, 2015a,b), and of Ecuador (Araujo et al., 2014). The main
points of this code is the use of the analytical form of the inverse covariance operator
for an exponential kernel, the introduction of clear tuning parameters for the smoothing
and damping, the use of an hyperbolic secant pdf for data, and the decorrelation of
the crust with the mantle. The code was written by V. Monteiller, and upgraded with
B. Valette, in Fortan 77. It was completly restructured, and rewritten in Fortan 2003
by B. Potin (2016), with a good level of efficiency in the parallelisation, based on the
OpenMP and MPI libraries, and an improvement of the accuracy and stability, due to
the introduction of the ”double precision”. A variant of this code allows for inverting
differences of data, related either to a same event or to a same station. It allows the
relocalization of a seismic swarm or the precise tomography of a sub-domain related to
an object of interest, as the sub-structure of a volcano, below a dense sub-network.

Let us now described the discretization of the model space, and of the tomography
process, implemented in these codes.

4.3.1 Discretization of the functional parameters, and model
space

As described in chapter 3, the study zone is a parallelipipedic domain, the base direction
of which is parallel with the tangent plan to the reference ellipsoid GRS80 at a reference
point for the zone, and the upper plan of which is a few kilometers higher than this
tangent plan in order to include the topograhy within the domain. Each point of the
domain is identified by either its geographical coordinates (latitude, longitude, altitude)
or by its cartesian coordinates in the parallelipipedic box, as shown in chapter 3. A
regular grid in defined within the box, with parallelipipedic cells. A finer grid is also
defined for the Podvin Lecompte algorithm, usualy with an exact number of Podvin-
Lecomte cubic cells in each reference cell, to insure a good accuracy of the travel time
calculation. The fields vP and vP/vS are dicretized into the finite dimensional vectors of
their values at each nodes of the reference grid. Since we need their values at any point
inside the parallelipidic box to compute the travel times, or to evaluate the derivative
operator, the values at the grid nodes must be interpolated. The trilinear interpolation
(linear in each direction) yields simple formula, and is sufficiently precise when using a
tigh grid spacing. Given the set of values f(xi, yj, zk) of a scalar function at each nodes
(i, j, k) of this regular grid, the trilineral interpolation yields
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f(x, y, z) = f(xi, yj, zk) (1− rx) (1− ry) (1− rz)
+ f(xi+1, yj, zk) rx (1− ry) (1− rz)
+ f(xi, yj+1, zk) (1− rx) ry (1− rz)
+ f(xi+1, yj+1, zk) rx ry (1− rz)
+ f(xi, yj, zk+1) (1− rx) (1− ry) rz
+ f(xi+1, yj, zk+1) rx (1− ry) rz
+ f(xi, yj+1, zk+1) (1− rx) ry rz
+ f(xi+1, yj+1, zk+1) rx ry rz

(4.17)

with:

rx =
x− xi
xi+1 − xi

ry =
y − yj
yj+1 − yj

rz =
z − zk

zk+1 − zk

and where (i, j, k), (i + 1, j, k), (i, j + 1, k), (i + 1, j + 1, k), (i, j, k), (i + 1, j, k + 1),
(i, j+ 1, k+ 1), (i+ 1, j+ 1, k+ 1) are the 8 3-tuples corresponding to the vertices of the
parallelipidic cell in wich lies the point (x, y, z). It can be more compactly rewritten as:

f(x, y, z) =
8∑

α=1

ciα(x, y, x)fα (4.18)

where the functions cα are the interpolating functions attached at each vertice, indepen-
dently of the function f . These functions cα take different expressions in the different
cells admitting the considered node as vertex, but they can be continuously defined over
the reunion of these (generally) 8 cells.

Then, given the geometry of the rays, the wave travel times (4.2) (4.3) may be easily
computed by interpolating the slowness which can be evaluated at each node from the
values of vP and vP/vS. For example, in the case of P-waves, it yields:

TP =
nc∑
i=1

8∑
α=1

1

(vP)i,α

∫
Ri

P

cα(s)ds (4.19)

where nc is the number of cells and Ri
p is the intersection of the ray with the ith cell, and

cα is the interpolating function attached to the vertex α(i). But, as the model vector is
indexed by the grid nodes rather than the cells, the expression may be rewritten as:

TP =
nn∑
i=1

1

vP i

∫
Ri

P

ci(s)ds (4.20)

where nn is the number of nodes, Ri
p is, this time, the intersection of the ray with the

reunion of the cells having the ith node as vertex, and where ci is the interpolation
function attached to this node.
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In the same way, we obtain that the travel time difference (4.3) may be computed
through:

∆T =
nn∑
i=1

1

vP i

(vP

vS

)
i

∫
Ri

S

ci(s)ds−
∫
Ri

P

ci(s)ds

 (4.21)

where Ri
P, Ri

S, and ci are repectively the part of the rays and the interpolation functions
attached to the ith node.

From a practical perspective, the model m is now represented by a vector in R2nn+4ne+2ns :

m =



(vP)i

(vP/vS)i

xi

t0i

∆P
i

∆S−P
i



1 ≤ i ≤ nn

nn + 1 ≤ i ≤ 2nn

2nn + 1 ≤ i ≤ 2nn + 3ne

2nn + 3ne + 1 ≤ i ≤ 2nn + 4ne

2nn + 4ne + 1 ≤ i ≤ 2nn + 4ne + ns

2nn + 4ne + ns + 1 ≤ i ≤ 2nn + 4ne + 2ns

(4.22)

where nn is the number of nodes of the inversion grid, ne is the number of seismic events
in the box and ns the number of stations.

Actually, the code allows for defining a sub-grid of the reference grid as inversion
grid, in the case when we want only to infer the structure in a specific area, while taking
into account the seismic events over a larger domain. In that case, the propagating
times and the rays may be computed in the whole domain through the interpolation
of the values of the reference grid, but these values are modified by the inversion only
inside the inversion box, and all the events, inside or outside the inversion box, may
be relocated by the inversion process. The code also allows for introducing the Moho
discontinuity, and decoupling the crust from the mantle. In this case the reference grid
and the corresponding velocity values are duplicated, the ones corresponding to to the
crust, down to the bottom of the box, the other ones to the mantle, up to the top of
the box. The inversion is performed on both the boxes at the same time, but for sure,
the travel times, the rays and the derivatives are computed by considering the values of
the crust grid above the moho discontinuity, and the values of the mantle grid below the
Moho discontinuity.

4.3.2 Discretization of the derivative operator Gm

The discretization of the derivative operator could be done as above for the direct travel
time computation involved in the expression of the mapping g, by starting directly from
(4.4). But for consistency with the evaluation (4.20) of TP and (4.21) of ∆T , we replace
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in the expressions (4.4), the derivative of TP and ∆T with respect to the fields vP and
vP/vS by the derivatives of the dicretized expressions (4.20) and (4.21). This leads to the
following expressions of the coefficients of a raw of the matrix Gm (Monteiller, 2005):

• for the ith tP datum :

∂tP
∂vPj

= − 1

v2
Pj

∫
Rj

P

cj(s)ds
∂tP

∂(vP/vS)j
= 0 (4.23)

for 1 ≤ j ≤ nn,

∂tP
∂xα

= −(τP
`(i))α = − 1

vP(x)
uP
α (4.24)

in the column corresponding to the location x = (xα)α=1,2,3 of the seismic event
`(i) corresponding to the P arrival time, and where uPα are the components of the
unit vector tangent to the starting ray .

∂tP
∂t0

= 1 (4.25)

in the column corresponding to the initial time t0 of the corresponding `(i)th event
,

∂tP
∂∆P

= 1
∂tP

∂∆S−P
= 0 (4.26)

in the column corresponding to the time delays attached to the k(i)th station of
the P datum,

• for the ith raw (tS − tP delay):

∂(tS − tP)

∂vPj

=
1

v2
Pj

∫
Rj

P

cj(s)ds−
1

vPj
vSj

∫
Rj

S

cj(s)ds

∂(tS − tP)

∂vP/vS

=
1

vPj

∫
Rj

S

cj(s)ds

(4.27)

for 1 ≤ j ≤ nn,

∂(tS − tP)

∂xj
= (τP

`(i))α − (τS
`(i))α =

1

vP(x)
uP
j −

1

vS(x)
uS
j (4.28)

in the columns corresponding to the locations x = (xα)α=1,2,3 of the seismic event
`(i) corresponding to the S− P datum, and where uP

α and uS
α are respectively the

components of the unit vector tangent to the starting P and S ray,
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∂(tS − tP)

∂t0
= 0 (4.29)

in the column corresponding to the initial time t0 of the corresponding `(i)th event,

∂(tS − tP)

∂∆P
= 0

∂(tS − tP)

∂∆S−P = 1 (4.30)

in the column corresponding to the time delays attached to the k(i)th station of
the S-P datum.

4.3.3 The discretization of the covariance operator

From a practical point of view, the discretization of the covariance operator for the
velocity fields is made in considering Cor−

1/2 (2.59), because this operator is involved
in the cost function E(m) (4.12), (2.64). The inspection of the regularisation term of
E(m) (2.64) yields :

‖Cor−
1/2Σ−1(m−mprior)‖2 =

1

8πξ1ξ2ξ3

∫
V

[
(I−∆ξ)

(
m−mprior

σ

)]2

dV (4.31)

=
1

8π

3∏
α=1

(
hα
ξα

) nn∑
i=1

[
(I−∆ξ)

(
m−mprior

σ

)]2

i

(4.32)

where hα is the grid length in the αth space direction. This shows that the σ values of
the fields must be renormalized by the square root of the volume element h1h2h3:

(σeff )i =
σi√
h1h2h3

=
3∏

α=1

(
ξ0

ξαhα

)1/2

(σphy)i

in taking account of the renormalization (4.11) as functions of the smoothing lengths
ξ1, ξ2, ξ3. This finally yields:

(σeff )i = µ(σphy)i with µ =
3∏

α=1

(
ξ0

ξαhα

)1/2

(4.33)

where µ is a parameter for the tuning of the damping of the fields vP and vP/vS.

The discretization of the operator I −∆ξ = I −
∑3

j=1 ξ
2
j ∂

2
j , which is involved in the

expression (2.59) of Cor−
1/2, can be simply obtained by finite differences. It yields the

following expression when applied to a generic function f :
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[(I−∆ξ)(f)]i,j,k = fi,j,k −
(
ξ1

h1

)2

(fi+1,j,k − 2fi,j,k + fi−1,j,k)

−
(
ξ2

h2

)2

(fi,j+1,k − 2fi,j,k + fi,j−1,k)

−
(
ξ3

h3

)2

(fi,j,k+1 − 2fi,j,k + fi,j,k−1)

(4.34)

The global covariance matrix is thus block diagonal. Concerning the block C
−1/2
m

corresponding to the scalar parameters, as they are assumed to be independent with
each other, it is purely diagonal. Consequently:(

Cor−
1/2Σ−1

)
i,i

= 1/σi 2nn + 3ne + 1 ≤ i ≤ 2nn + 4ne + 2ns

where σi is the physical standard deviation of the parameter, except for the location of
the events, for which we introduce a tuning parameter λ such that:(

Cor−
1/2Σ−1

)
i,i

= λ/σi (2nn + 1 ≤ i ≤ 2nn + 3ne)

and which, as µ or ξ0 for the velocity fields, controls the damping in the inversion process.

4.3.4 Implementation of the quasi Newton algorithm

The quasi-Newton algorithm (4.16) that is written as:

mk+1 −mk = −(C−1
m + G∗kC

−1
d Gk)

−1(G∗kC
−1
d (g(mk)− dobs) + C−1

m (mk −mprior))

requires the solution of a linear system in the model space. Following (Monteiller et al.,
2005), it is performed by using the LSQR algorithm (Paige and Saunders, 1982). This in
turn requires rewriting each iteration in normal form by using the decomposition (2.60),
(2.61) of the covariance operator:

mk+1 −mk = (A∗kAk)
−1A∗kvk (4.35)

with:

Ak =

[
C
−1/2
d Gk

Cor−
1/2Σ−1

]
vk =

[
C
−1/2
d (g(mk)− dobs)

Cor−
1/2Σ−1(mk −mprior)

]
and Cm = Σ Cor Σ

The linear system solved by the LSQR code thus takes the form:
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A∗Ax = A∗v (4.36)

It is numerically uneasy since the orders of magnitude of the various parameters strongly
differ, and consequently the system is relatively ill-conditioned. To improve the condi-
toning, the matrix A is decomposed as A = A′Λ where Λ is a matrix diagonal. Thus
(4.4.35) becomes:

A′∗A′Λx = A∗v (4.37)

It amounts to replacing A by A′ as input into the LSQR code, and to applying the
diagonal matrix Λ−1 to the returned vector.

The INSIGHT code allows two possible choices for the matrix Λ. The first choise
consists in putting:

Λii =

√√√√ n∑
k=1

A2
ki (4.38)

in analogy with the computation of the standard deviations of a covariance matrix, for
the positive-definte matrix A∗A. The second one consists in putting:

Λii = max
j∈Pi

√√√√ n∑
k=1

A2
kj

 (4.39)

where Pi is a subset of indices, which the index i belongs to, and that corresponds to
a same family of physical parameters (velocity, events, or time delays parameters). For
the tomography of Ecuador-Northern-Peru that we have conducted, we have used this
second block pre-conditioning.

The INSIGHT code also allows the inversion of differences in data, either correspond-
ing to a same event at different stations, or to a same station for different events (in that
case the so called ’double differences’, Waldhauser and Ellsworth, 2000). The prior data
must be assumed to be Gaussian. We have seen in paragraph 2.4.2 that the only modi-
fication for the inversion consists in replacing the inverse of the covariance operator C−1

d

by the operator (2.40):

C
−1/2
d PC

−1/2
d = (PC

−1/2
d )∗PC

−1/2
d

for the block of corresponding data, i.e. the set of arrival times of a same phase corre-
sponding to an event, or the set of events for which a phase of a same kind has been
recorded at a same station. In this expression the vector u verifies ui= 1 or 0 according
to the ith datum belongs to this set or not. The only resulting modification in the normal
decomposition (4.34) consists in replacing C

−1/2
d by PC

−1/2
d (2.40). In that case, the first

pre-conditionning column by column must be used.
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4.4 Implementing the INSIGHT code for the tomog-

raphy of Ecuador

As described in chapter 3 we have considered two domains, one including Northern Peru,
the other one centered on Ecuador. In both cases the size of the inversion cells is 5× 5
km × km horizontally in the box and 2 km in the vertical direction. The size of the
cubic Podvin-Lecomte mesh is 1 km.

The values assigned to the physical standard deviations of the fields vP and vP/vS are
σP = 750 m/s and σvP/vS = 0.15 that represent relative uncertainties of about 10% of the
a priori model, a little more for the P velocity in the crust, a little less in the mantle. The
corresponding reference length ξ0, which may also be thought of as a damping parameter
for these fields, is of the order of a few kilometers.

Concerning the standard deviation of the location of events, the assigned values to
the horizontal components are σx = σy = 30km to let a great degree of freedom in
longitude and latitude. The vertical standard deviation σz depends on the depth h of
the event with respect to the topographic surface according to:

σz =


σmin + (σmax − σmin)

[
a
(
h
hc

)3

+ b
(
h
hc

)2

+ c h
hc

]
for 0 ≤ h ≤ hc

σmax for h > hc

(4.40)

with:

a = 8p− 6 b = −16p+ 11 c = 8p− 4 with:
1

2
≤ p ≤ 7

8

We can remark that this function verifies:

σz(0) = σmin , σz

(
hc
2

)
= (1− p)σmin + p σmax , σz(hc) = σmax , σ′z(hc) = 0

and is increasing from σmin to σmax for 1/2 ≤ p ≤ 7/8. For p = 1/2 :

σ′z(0) = 0 , σz

(
hc
2

)
=
σmin + σmax

2

and the point
(
hc
2
, σmin+σmax

2

)
is a center of symmetry of the graph. For p = 7/8, σ′′z (hc) = 0.

This function accounts for the simple fact that the events a priori lie within the
Earth. The non-null value of the function at the surface allows for a minimal degree of
freedom for the depth of the events a priori located at very shallow depth. Moreover in
the INSIGHT code, the events that jump over the surface during an iteration are put
back to the surface while keeping the same a priori location. The values chosen for the
parameters of the function are: σmin = 0.5 km, σmax = 30 km, hc = 30 km and p = 0.6.
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Concerning the initial times t0 of the seismic events the value set for the standard
deviation is σt0 = 1000s to let a complete degree of freedom.

For the time delays attached to the stations, the standard deviations depend on the
number of recorded data at the station. For the stations having recorded a small number
of data this value must be very small in order to avoid any bias in the inversion. On the
contrary, for stations having recorded a large number of data we may expect that this
delay is correctly averaged, and consequently we may assign a greater standard deviation
to it. The form chosen is:

σ = σmax

√
min(n, nc)

nc
(4.41)

where n is the number of P or S data, depending on the type of delay considered,
recorded at the the station, nc is a limit number of data, which is set at 20 000, and σmax
is the maximum value of the standard deviation which is reached for n ≥ nc, and set
at 5 · 10−2s. (in taking into account that the number of data S-P is actually equivalent
to that of data S for most of the catalogues). For the P data, n ranges between 1 and
37 226 and consequently σ between 3.54 10−4s and 5 10−2s according to the station. For
the S (or S-P) n ranges between 1 and 13 183 and σ between 3.54 10−4s and 4.1 10−2s.

4.4.1 Iterations and indicators of convergence

We have performed numerous tomographies with various datasets, and differents damp-
ing and smoothing parameters in order to obtain realistic models. At each iteration,
the data with a misfit greater than 20 standard deviations or 3 seconds are temporarly
eliminited; they may be put back in the dataset at a next iteration according to their
misfits. The events may also be localized outside the box during an iteration. If it is
above the surface, as already indicated in the previous paragraph, they are relocated at
the surface, while keeping the same a priori. If it is sideways or below the bottom of
the box, up to three times they are then relocated at their prior location. If these 3
relocations are not sufficient enough to stabilize them, they are definitely eliminated.

To follow the convergence of the algorithm, the code computes the following indicators
that are displayed in figure 4.2:

- RMS of the filtered data misfit in hyperbolic secant variable

- RMS of the normalized filtered misfit of the arrival times (filtered and unfiltered)

- RMS of the arrival times in seconds;

- Number of effective data for the iteration (unfiltered data);

- Effective number of earthquakes taken into account for the iteration
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Figure 4.2: Exemple of sequence of values of the inversion indicators throughout the iterations of the
tomography process. On the left: convergence of the RMS of the normalized data adjustment (unfiltered
in green, filtered in red, in Sech variables (4.6) in blue); in the middle: effective number of events
throughout the iterations; on the right: number of data corresponding to the remaining events, before
(light blue) and after (blue) filtering according to their misfits (20 standard deviation or 3 seconds),
throughout the iterations.

The code computes also the L1, L2 and L∞ norms of the difference between the
current vP and vP/vS models with the prior ones, as well as the median, mean and RMS
of the distances between the current and prior locations of the earthquakes (figure 4.3).

These indicators allow checking the convergence and the determination of the tuning
parameters for which the process is stable. A representative example of convergence of
these indicators of data fitting and of behaviour of model is displayed in figures (4.2),
(4.3). It concerns a set of 143 785 data (112 931 P and 30 854 S) for a subset of 10
332 events well localized in the box centered on Ecuador. Generally, 10 iterations are
sufficient to obtain a good fit of the data, but a few dozen of iterations are needed to
obtain a negligible increment in the model at each step.
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Figure 4.3: Convergence of the norms L1, L2 and L∞ of the perturbation of the model with respect to
the a priori, throughout the iterations. On the left for the VP fields; in the middle, for the VP/VS field;
on the right, median, mean and RMS distances of the hypocenters to their a priori locations.

All the computations were performed on the FROGGY cluster of the centre of Cal-
cul Intensif, Modélisation, Expérimentation Numérique et Technologique (CIMENT) at
Grenoble University. The parallelization of the INSIGHT code over 64 cores allows an
iteration involving up to 850 000 data to be run in approximatively one hour.

4.4.2 Tuning parameters and L-curves

As detailed in the paragraph 4.3.3, several tuning parameters are available to control
the regularization of the inversion process: the 3 correlation lengths ξ1, ξ2, ξ3 for the
smoothing of the velovity fields and 2 damping parameters, λ for the event localization
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and (4.32):

µ =
3∏

α=1

(
ξ0

ξαhα

)1/2

for the velocity fields. From a practical perspective, once the smoothing lengths has
been chosen, the change of the value of µ amounts to the change of that of ξ0. On the
contrary, if the value of ξ0 has been fixed, then a change in the smoothing lengths varies
the damping µ in such a way that the order of magnitude of the resulting velocity fields
is globaly the same. For most of the inversion, we don’t consider the moho discontinuity,
thus we have only one set of parameters to fix. After several tests, we chose to put
ξV = 20 km and ξ1 = ξ2 = ξH for most of the runs.

In the case of the largest study domain (box) that contains Northern Peru, we found
by varying the value of the location damping λ for different sets of reasonable values
assigned to the other tuning parameters, that an efficient (and constant with respect to
the set of other chosen values) value for the damping λ is 0.7. This leaves two unassigned
tuning parameters: the horizontal correlation length ξH and the reference length ξ0 (in
the order of magnitude of a few kilometers) for the smoothing and damping of the velocity
fiels.

To illustrate how ξH acts on the resulting model, the figure 4.4 displays the East-
West cross-section, at approximately the latitude of Quito, of 4 models of P-velocity
resulting of a common value of ξ0 = 6 km and of 4 different values of ξH (30, 35, 50,
100 km). The dramatic change in thickness of the crust at the west of the Andean
range, marking the transition with the coastal area, is all the more smoothed out that
the horizontal smoothing length is increased, while the global order of magnitude of the
velocity is maintained. On the other hand, if we now keep unchanged the value of ξH =
35 km and vary the value of the velocity damping (ξ0 = 2, 4, 8, 10 km), we obtain 4 new
cross-sections, displayed in figure 4.5, that can be compared to the one on the top right
of the figure 4.4 corresponding to ξ0 = 6 km for the same ξH = 35 km. It shows that
lower values of ξ0 reduce the oscillation pattern, whereas greater ones induce oscillations
of large amplitude in the model. Taking much greater value of ξ0 would make the inverse
process become unstable. We can also remark a relative correlation between the effects
of a small value of ξ0 and those of a great length of smoothing ξH on the resulting model.

A useful tool to determine reasonable values of the tuning parameters consists in
representing the various models in the diagram of data adjustment versus norm of the
incremental model with respect to the prior one (figure 4.6). For a given value of ξH
we obtain classical L-curves (Hansen, 1992) for the models obtained by varying ξ0 (dots
with the same color on the left or in the middle of figure 4.6). For small values of
ξ0, the adjustement of the data is poor, whereas the model is smooth and close to the
prior one. On the contrary, for large values of ξ0 the adjustment of the data is better,
while the model is less smooth. The figure (4.6) also shows that for a given value of the
damping parameter ξ0, the adjustment of the data increases when the smoothing length
decreases, while the norm of the model keeps the same order of magnitude (in virtue of
the renormalization of the damping by the smoothing described in paragraph 2.5.3).
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Figure 4.4: West-East cross sections at the latitude of Quito of the P velocity of 4 models obtained
with different horizontal smoothing lengths ξH , and the same damping parameter ξ0 = 6 km (and ξV =
20 km). On the top left ξH = 30 km, on the top right ξH = 35 km, on the bottom left ξH = 50 km, and
on the bottom right ξH = 100 km.
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Figure 4.5: West-East cross sections at the same latitude of Quito as figure 4.4 of the P velocity of
4 models obtained with different damping parameter ξ0 = 6 km, and the same horizontal smoothing
lengths ξH = 35 km (and ξV = 20 km). On the top left ξ0 = 2 km, on the top right ξ0 = 4 km, on the
bottom left ξ0 = 8 km, and on the bottom right ξ0 = 10 km.
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Thus the diagram allows the determination of a good trade off between the data
adjustment and the smoothness of the model. A reasonable choice in this example
consists in choosing ξ0 = 6 km and ξh = 30 or 35 km, or values of these parameters
yielding a model close to these points in the diagram.

4.5 Evaluation of the uncertainty in the model, sub-

sets of data

The more common way to test the resolving power of the dataset in imaging study
is to perform a checkboarder test, though it is not infallible (Leveque et al., 1993).
Another simple approach consists in delimiting the region where the intersection of rays
is sufficiently dense. A more sophisticated way consists in evaluating the restitution (or
averaging ) index introduced in the paragraph (2.5.3.1) and which provides an efficient
and fast way to delimit the volume outside which the resolution is surely very poor. We
can also theoretically evaluate the kernel of resolution at each point of the domain, but
since it involves an amount of computation at least equivalent to that of an iteration, it
may only be envisioned for specific points of interest. But, for sure, the improvement in
data adjustment must also be taken into account when evuating the model (or data !)
quality.

4.5.1 Adjustment of arrival times

The adjustments of the arrival times tP and tS, before and after the tomography for the
whole set of data and the events within the box centered on Ecuador, is displayed in
figure (4.7). The a priori adjustments are obtained with the prior model and the LOCIN
code described in chapter 2. The data set consists of 641 036 P and 215 134 S arrival
times, and corresponds to 59 883 events localized by the code LOCIN within the box.

The histogram of prior S adjustments is very asymmetric, with a mean shift toward
the negative values. This shift can be explained by the fact that the initial times are
determined by the LOCIN code only from the P-arrival times, independently of the S
ones, and is completely rectified by the tomography. The adjustment of the P arrival
times is globaly good with about 31% smaller than 0.05 s, 63% smaller than 0.15 s and
77% smaller than 0.25 s. For the S-arrival times the global fit is far from being so good,
with 31% smaller than 0.15 s, 47% smaller than 0.25 s and 54% smaller than 0.35 s.

4.5.2 Filtering a posteriori the events and new data sets

Due to the great heterogeneity of the spatial repartition of the stations, many event
localizations are inaccurate, even those resulting from the tomography. We thus defined
a geometrical filter to eliminate the poorly localized events. It consists in imposing that

108



4.5 Evaluation of the uncertainty in the model, subsets of data

−1.5 −1 −0.5 0 0.5 1 1.5
0  %

5  %

10 %

15 %

20 %

25 %

30 %

residual P waves (s)

P
er

ce
nt

ag
e 

of
 d

at
a

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0  %

2  %

4  %

6  %

8  %

10 %

12 %

residual S waves (s)

P
er

ce
nt

ag
e 

of
 d

at
a

Figure 4.7: Histogram of the adjustment of arrival times for P waves (on le left) and S waves (on
the right) after removing the misfits greater than 3 seconds or 20 standard deviations considered as
correponding to outliers. The continuous lines for the prior adjustments and the bar charts for the
adjustments after tomography.

among at least 4 data better fitted than k times their standard deviations, there exist
3 data for which the angles between the associated rays at the event location are all
greater than α, and for which at least one of these angles is greater than β. We have
performed many tests to define the values of k and of the critical angles α and β allowing
the elimination of obviously poorly localized events while keeping an acceptable number
of events for the two boxes and sets of data we have considered.

For the largest box including Northern Peru and after having removed the data
recorded on volcanic edifices, the data set consists of 345 052 P and 118 801 S data
corresponding to 44 317 events. Setting k = 1.25, α = 21o and β = 25o yields a new
set consisting of 112 931 P and 30 854 S data associated to 10 332 events. This latter
dataset has been used for figures 4.4, 4.5, 4.6.

For the smallest box centered on Ecuador, with all the data available until April
2016, the prior set consists of 641 036 P and 215 134 S data corresponding to 58 060
events. The histograms displayed in figure 4.7 correspond to this whole data set. Setting
k = 1.4, α = 17o and β = 20o yields a new set consisting of 336 012 P and 111
536 S data associated to 25 462 events. The figure (4.8), which displays the resulting
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sismicity located in the vicinity of an East-West cross-section at about 1.5oS, exemplifies
the effect of the filter in this case. We can observe that most of the obviously poorly
localized hypocenters are removed by the filter.
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Figure 4.8: Location of the seismic events in the vicinity of a East-West cross section at about 1.5oS
(top) as resulting of the tomography in the Ecuadorian box with the set of 58 060 events, (bottom) after
applying the geometrical filter. We can observe that the deep Puyo nest is not affected by filtering.

With this new set of 447 548 data we have computed new L-curves (Figure 4.9)
to adapt the values of the two damping parameters ξ0 and λ, while keeping the same
smoothing lengths ξV = 20 km and ξH = 35 km. The figure 4.9 shows that the various L-
curves corresponding to a given value of ξ0 can be approximately deduced by translation
from each other, and allows us to assign the new values of ξ0 = 9 km and λ = 0.5 to the
damping parameters.

In summary, we have obtained two models :

• the first one over the largest box (including Northern Peru) by inverting 143 785
data (without any stations on volcanic edifice) with ξV = 20 km, ξH = 35 km,
ξ0 = 6 km and λ = 0.7
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Figure 4.9: L-curves corresponding to the filtered set of 447 548 data over the smallest box centered
on Ecuador. The corresponding values (in km) of ξ0 are indicated near the blue dots, and those of λ
near the green dots. The red diamond corresponds to the chosen model, with λ = 0.5 and ξ0 = 9 km.

• the second one over the box centered on Ecuador by inverting 447 548 data (until
April 2016) with ξV = 20 km, ξH = 35 km, ξ0 = 9 km and λ = 0.5

4.5.3 Computing the restitution index

We have introduced the restitution index in the paragraph (2.5.3.1) equation (2.77).
When discretizing, the resolution operator becomes finite dimentionnal, the expression
of which is (2.33):

Rm̂ = (C−1
m + G∗m̂C−1

d Gm̂)−1G∗m̂C−1
d Gm̂ = I− (C−1

m + G∗m̂C−1
d Gm̂)−1C−1

m (4.42)

The restitution index is defined for the parameters vP and vP/vS. The inspection of
equation (2.33) shows that its expression for one a these parameters at a given node that
correspond to the ith component of the model space is:

Ii = (Rw)i

where w is the model vector defined by wi = 1 or 0 according to the component i
corresponds whatever the node to this parameter or not in the model space. Taking the
decomposition (4.35) and (4.42) into account, we deduce that:

R = I− (A∗A)−1C−1
m

where A is defined as in (4.35). It follows that:

Ii = 1− xi
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Figure 4.10: East West cross section at 1.5oS (as figure 4.8) of restitution indices and velocity fields
of the resulting model of the inversion of the filtered dataset of the Ecuadorian box. From top to bottom:
vP , restitution index for vP , vP /vS, restitution index for vP /vS. The restitution indices allow delimiting
the area outside which the resolution is surely very poor
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with x solution of (4.36)
A∗Ax = A∗v

and:

v =

[
0

Cor−
1/2Σ−1(w)

]

This shows that the practical computation of the restitution index at each point of
the domain is equivalent to performing an iteration of the inversion process.

The figure (4.9) displays the restitution index of vP and vP/vS over the same cross
section at 1.5oS as figure (4.8) and the corresponding velocity models. We can observe
that the Puyo nest generates a zone where the index is greater than 0.7.
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Chapter 5

Geodynamical context

Ecuador is located above one of the world’s major subduction zones east of the Pacific
Ocean, where the Nazca oceanic plate and the South American continental plate con-
verge. This feature is noteworthy because western South America provides a prime case
where the subduction of an oceanic lithosphere under a major continental plate can be
observed in detail.

The studied region is situated in the northern limit of this wide subduction zone as
is evident in figure (5.1). The major regional geodynamic elements are shown in figure
(5.1) and described hereafter.

The Nazca Plate resulted from the breakup of the Farallon Plate approximately
20Ma ago. At that time, the new oceanic crust of both Cocos and Nazca plates started
to form along the Cocos-Nazca spreading ridge and the East Pacific Rise (Szary, 2014).
As an example of oceanic crust, the Nazca Plate is in average ∼ 7km -thick and is
formed by a very thin layer of non-consolidated sediments, a volcanic layer with a marked
seismic velocity gradient, and an oceanic layer which consists of mafic rocks where seismic
velocities increase slowly with depth (Daniel et al., 2006). Toward the south, the Nazca
plate meets the Antarctic Plate, while in the north the boundary with the Cocos plate
is currently the Panama fracture zone.

The Nazca Plate moves in a N80oE direction and subducts beneath the South Amer-
ican Plate from −45oS to 5oN with a convergence velocity that varies slightly along
the margin. This convergence velocity is about 79mm/year along the Chilean margin,
77mm/year along the southern and central Peruvian margin and 65mm/year along
the northern Colombian margin (Rhea et al., 2010). In the study area, this velocity
is 73mm/year along the North Peru margin, and 68mm/year along the Ecuadorian
margin (Rhea et al., 2010). More precise measurements within the study area point to
convergence velocities between 56mm/year at 1oN and 60mm/year at −6oS , in the
N82oE direction (Nocquet et al., 2015).
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Figure 5.1: Geodynamics and tectonics features in the study region showing velocity of convergence as
orange arrows and velocities of sliver escapes as yellow arrows. The velocities are in mm/year . The
Nazca and Cocos plates are shown as well as the corresponding spreading center.

5.1 Peculiarities of the Nazca Plate

An important structure to take into account in the geodynamics of region is the Carnegie
Ridge, which is an aseismic volcanic ridge that was progressively generated above the
Galapagos Hot Spot. The Carnegie Ridge is transported by the Nazca plate (fig. 5.1),
which makes it enter subduction along a portion of the trench located west of Ecuador.
The Carnegie Ridge trends E-W, being located between latitudes 0oN and −2.5oS, and
longitudes −91oW and −80.5W . It is 282km across strike and 1045km along strike, and
occupies an area of approximately 325 000km2. The ridge comprises two segments, to
the west and to the east, where its topography is prominent, and a depressed segment
inbetween (Pazmiño and Michaud, 2009). The top of the ridge culminates 657m below
sea level. Its southern flank is marked by a morphological lineament trending N85oE
(Collot et al., 2009). This southern flank includes a terrace that is 3000m deep and
100− 150km wide (Collot et al., 2009).

Another morphological accident of the sea floor is the Grijalva Fracture Zone (GFZ)
(fig. 5.1), which marks the boundary between depth lower than 3000m to the north,
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made of Neogene oceanic crust associated with the Cocos center expansion and the
Galapagos hot spot, and older oceanic crust of Oligocene age in the south, with a depth
greater than 3000m. The GFZ appears as a scarp trending N60oE and slightly concave
southwards (Collot et al., 2009).

The subduction trench separates the Nazca Plate from the continental plate. The
morphology of the Ecuadorian Trench (i.e., the segment of the trench that extends west
of Ecuador) and its western wall reflects the large-scale segmentation of the Nazca plate
imposed by the existence of the GFZ and Carnegie Ridge (Collot et al., 2009). The
depth of the Ecuadorian Trench is 5000m west of the Gulf of Guayaquil (−3oS) but
decreases down to 2000m northwards due to the subduction of the Carnegie Ridge. The
Ecuadorian Trench has a very steep wall along its continental side; it has an approximate
width of 20km in the Gulf of Guayaquil, and 8km west of Manta (−1oS). The trench
receives terrestrial sediments discharged by the coastal rivers, especially through the
canyons of the Esmeraldas River to the north and the Guayas River to the south (Goyes,
2009) .

The Cocos-Nazca spreading center forms the boundary between the Cocos and Nazca
plates (fig. 5.1). The spreading center originated when the Farallon Plate split into the
Cocos and Nazca plates, ∼ 23My ago in the Oligocene (Meschede and Barckhausen,
2000).

Figure 5.2: Changes in the directionality of CNS from Oligocene to the present. Direction changes
from NE to WE and it is stopped in the Panama Fracture Zone nowadays. Figure from Meschede and
Barckhausen, 2000.

A study of the past history of the Cocos-Nazca spreading center (CNS) concluded that
spreading initially occurred along a NE-trending ridge, but later switched to the current
W-E ridge, which abruptly stops against the Panamá fracture zone at about −83oW,4oN
(Meschede and Barckhausen, 2000) (figure 5.2). This results in that what remains of
the original CNS is currently mainly located south of the Equator; in particular, the
NE-trending Grijalva Fracture Zone separates a younger oceanic crust in the northwest,
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which started to form in the earliest Miocene, from an older crust in the southeast
(Meschede et al., 1998; Londsdale, 2005) (figure 5.3).

Activity of the CNS contributed to thicken the oceanic crust. To the south, this
influence is clearly recognizable where the GFZ exhibits a sudden change of almost
700m in the bathymetry, which reflects a contrast in crustal thickness (Londsdale, 2005).
Because this thickened crust is also subducted, two dissimilar subduction regime have to
be distinguished: (1) north of the GFZ, where the subducting oceanic crust is 22Ma-old;
and (2) south of GFZ, where this crust is 30Ma-old (Lonsdale, 2005; Yepes et al., 2015).

Figure 5.3: Abrupt discontinuity in magnetic profiles at Gijalva Fracture Zone from 22Ma to 30Ma
due to the original CNS. Possible extrapolation of GFZ coincides with the position of Puyo seismic
cluster. Figure from Londsdale,2010.
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5.2 Effects of subduction along the margin of Ecuador

Subduction of the Nazca Plate has had a significant bearing on the morphology of the
continental margin, along which it caused the formation of mountain ranges that are
generally parallel to the margin: the Coastal Cordillera, Western Cordillera, Interandean
Zone, and Eastern Cordillera. East of the latter extends the Guyana Shield or the
Brazilian Shield (Daniel et al., 2006). In the study region, these megastructures are
shown in figure (5.4). The Ecuadorian Coastal Cordillera has a maximum height of
∼ 800m and a length of 600km (Reyes, 2011). The two main Cordilleras (Western and
Eastern) are parallel and trend roughly NS: they are topographically elevated, between
4000−4400m, and separated by the inter-Andean Depression (2000−2700m) (Alvarado,
2012).

Another important characteristic of Ecuador north of −2oS is the existence of a
volcanic arc, which is ∼ 120km wide. It is divided into three areas: the volcanic front
along the Western Cordillera, the magmatic arc proper along the Eastern Cordillera, and
a backarc area in the Subandean, eastern lowlands. The volcanoes of the main volcanic
arc and the backarc area show mainly andesitic products, but volcanoes along the active
volcanic front are rather dacitic (Alvarado, 2012).

The volcanic arc of Ecuador is well-developed, to the point that the question of
whether an arc orogeny has occurred is worth investigating. A relation of this arc orogeny
with the subduction regime has been suggested by the steepness of the slab from 1oN to
1.5oS (Guillier et al., 2001). The main reservoirs of the magma produced by subduction-
related melting are estimated to be located approximately at the crust-mantle boundary
and about 20− 40km depth (Michaud et al., 2009).

5.3 Characteristics of the continental crust along the

margin

Ecuador and northern Peru regions are characterized by the presence of the North An-
dean Block (NAB). This is a crustal sliver formed by fragments of the Caribbean Plate
that were accreted to the South American Plate 85 to 60 millions years ago (Jaillard et
al., 2009).

The main accreted terranes are the Guaranda, Piñón-Naranjal oceanic terranes and
the Macuchi island arc (Jaillard et al., 2009). They serve as a basement for the sedi-
mentary basin of Borbón in Colombia-Ecuador north-west border (Borrero et al., 2011),
the Manabi and Progreso sedimentary basins in Ecuador (Witt and Bourgois, 2010), the
Guayaquil-Tumbes basin in the Guayaquil Gulf (Witt and Bourgois, 2010), the Lancones
basin in the Ecuador-Peru border area (Jaillard et al., 2009), and the Zorritos basin in
northern Peru (Witt and Bourgois, 2010). The Talara and Sechura basins extend south of
4oS, and continue southwards of 7oS into the Trujillo basin (Higley, 2004). The location
of some of these sedimentary basins is shown in figure (5.4).
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Figure 5.4: Cordilleras, sedimentary basins and seismic faults in our study region.

The main geological structures are parallel to the oceanic trench and trend approx-
imately N-S. From west to east, the Coastal area, the Western Cordillera, the narrow
Inter-Andean valleys, the Eastern Cordillera, the Sub-Andean belt, and finally the Ori-
ente Basin, are usually distinguished (Baldock, 1982). There is a clear opposition be-
tween (1) the Western region, which is characterized by a basement comparable in com-
position to ocean or island arcs, and includes the Coastal area and Western Cordillera,
and (2) the Amazonian region, which is characterized by a sialic basement and com-
prises the Eastern Cordillera, the Sub-Andean belt and the Amazonian region (Mégard,
et al., 1987). The eastern limit of the accreted oceanic terranes is still debated, because
it is probably located in the Inter-Andean valleys, which is filled by Neogene to recent
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volcanic and volcaniclastic deposits that obscure the basement geology. However, the
Eastern Cordillera and Sub-Andean belt appear to be well delimited by two eastern
Andean major faults (Guillier et al., 2001).

The boundary between the NAB and South America is unclear in detail and might
be diffuse, but overall it runs from the Gulf of Guayaquil to the Eastern Cordillera,
extending into the northeastern area of the Eastern Cordillera of Ecuador (figure5.1).
The NAB does not coincide with a block formed by the oceanic accreted terranes, since it
presently involves part of the sialic Eastern Cordillera (Alvarado et al., 2016). This fault
system (figure (5.4) ) runs from the Puná island in the Gulf of Guayaquil and prolongates
into the continent through the Pallatanga fault following a N60oE direction. In northern
Ecuador and at the Colombian border, the Cosanga-Chingual fault system strikes N20oE
(Alvarado et al., 2016).

5.4 Motion of the North Andean Block as a conse-

quence of oblique subduction

The oblique subduction regime is responsible for the current escape of the NAB toward
the northeast, the rate of which is 9.5mm/year (Nocquet el al., 2014). This oblique
subduction is verified by GPS measurements (Trenkamp et al., 2002), the moment tensor
analysis of the seismicity in the area (Corredor, 2003) and the presence of undoubted
tectonic peculiarities such as the pull-apart-like basin active in the Gulf of Guayaquil
(Deniaud et al., 1999). The oblique subduction has been active since at least the Miocene,
and provides a new kinematic model for the NAB (Alvarado et al., 2016).

Oblique subduction occur when the angle ϕ between the convergence direction and
the trench is different from 90o, as outlined in figure (5.5). This phenomenon, which
implies an oblique displacement on the motion plane is not very common, and therefore
most of the faults are only reverse, only normal, or only strike-slip (Jolivet and Nataf,
2001). But if oblique subduction exists, two parallel lithospheric structures are devel-
oped: the subduction trench absorbs the normal component, and the strike-slip area,
shown in blue lines in fig. 5.5, absorbs the parallel component (Jolivet and Nataf, 2001)

The oblique velocity of the subducting plate Vc is transmitted to the continental plate
because there is a friction stress τn between the two plates. When a friction force Ff is
generated, it can be decomposed into 3 components: horizontal, tangential, and vertical.
It is the tangential component of this friction force Fft that is responsible for the the
sliver scape. If β is the dip subduction angle, the components of the friction force are
(Chemenda et al., 2000):

Fft =Ffsinϕ

Ffv =Ffcosϕsinβ

Ffh =− Ffcosϕcosβ
(5.1)
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Figure 5.5: Schema of the northward escape of the crustal sliver formed by the North Andean Block
(NAB), thanks to oblique subduction of the Nazca plate beneath South America. Figure adapted from
Chemenda, A., S. Lallemand and A. Bokun, 2000.

The condition for sliver escape is that the tangential component must beat the force
Fa generated when the block tries to resist the strike-slip displacement τ :

Fft ≥ Fa (5.2)

Analog modeling of oblique subduction (Chemenda et al., 2000), shows that slip
partitioning is able to move a sliver parallel to trench if there is high interplate friction
and previous weakening of the upper plate. In the case of the NAB, the first requirement
is accomplished thanks to the known seismic asperities in the subduction zone (Chlieh et
al., 2014). Crustal weakening is related to contact of the NAB with the South American
Plate through the Guayaquil-Dolores Megashear (Egbue and Kellog, 2010).

The motion of the NAB generated a system of crustal faults parallel to the trench
and to the Western and Eastern cordilleras (Veloza et al., 2012), the Pallatanga fault
being located at its southern tip (Baize et al., 2015).

5.5 The Carnegie Ridge and the dynamics of slab

It is necessary to address the entire process of subduction before focusing on the effects of
the subduction of the aseismic Carnegie Ridge. The Earth’s mantle behaves like a fluid
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submitted to a convective regime. Therefore equations of fluid mechanics are needed to
describe its motion (Turcotte and Schubert, 2002).

Three kinds of equations are needed to describe this fluid mechanics (Billen, 2008).
In the case of an incompressible fluid, the equation of mass conservation leads to the
well-known continuity equation of fluid velocity u:

∇ · u = 0 (5.3)

The equation for the momentum conservation relates the fluid stress σ to the external
forces f and the internal fluid pressure P :

∇ · σ + f + P = 0 (5.4)

Finally, the equation for the heat-energy conservation provides the evolution on fluid
temperature T in space and time. This equation has the general form:

∂T

∂t
= −u · ∇T + κ∇2T +Q (5.5)

Q is the internal heating of slab; it can be neglected because it is very small in com-
parison to heat exchanges between the slab and surrounding mantle. κ is the coefficient
of thermal conductivity.

These equations must be resolved in a three-dimensional space and numerical meth-
ods should be used. An acceptable approximation of these equations are the two-
dimensional case cartooned in figure (5.6).

The simplification of fluid motion equations to 2D allows us to obtain in first approx-
imation a comprehension of why the slab dip angle is not 90o (Turcotte and Schubert
2002). Two fluid pressures are developed in the upper part and in the lower part of the
slab. These two pressures contribute to lift the slab against the gravity force, and to
give it its particular dip angle.

In a more advanced modeling of the slab in 2D, the effects of the aseismic ridge can
be considered (Gerya et al., 2009). Results of this modeling show that the slab dip angle
is not directly influenced by changes in the slab composition and density caused by the
ridge. A noticeable effect of an aseismic ridge in the slab subduction only appears when
subduction is nearly flat, the positive buoyancy provided by the ridge acting in this case
to reinforce the flat subduction already under development but not triggering it.

On the other hand, subduction of an aseismic ridge indubitably uplifts the topography
of the overriding plate, at least near the trench. This uplift can be transient if the
ridge is subducted under the accretionary wedge, but it may remain as a permanent
modification of the topography if the overriding plate is a continental plate (Gerya et
al., 2009). Uplifts produced by ridge subduction are also observed in analogue models
(Martinod et al., 2012).
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Figure 5.6: Two-dimensional simplification for the slab subduction dynamics. The problem is to solve
the fluid equations for the mantle flow. Modified from Turcotte and Schubert, 2002.

In Ecuador, subduction of the Carnegie Ridge clearly caused the uplift of the Manta
Peninsula and La Plata Island (Pedoja et al., 2006 a). Similar uplifts extended through-
out the Talara region from 2oN to 6.5oS (Pedoja et al., 2006 b). The subduction of the
Carnegie Ridge is however not the only cause of these uplifts: another important param-
eter is the concave shape of the subduction trench, as illustrated in numerical models
(Bonnardot et al., 2008). This aspect has been used to explain uplifts along the entire
Ecuadorian margin (Dumont et al., 2014).

Therefore the results of aseismic ridge subduction modeling (Gerya et al., 2009) imply
that the Carnegie Ridge cannot be held responsible for the initiation of flat subduction
west of Ecuador. The idea of the flat slab was proposed on the basis of seismicity
localization using Global Network (Gutscher et al., 1999) but could not be confirmed
with a more refined seismic experiment using a dense network situated directly above the
region where the slab dip angle is 25o− 35o down to 200km depth (Guillier et al., 2001).
Seismic evidence of flat-slab subduction is however confirmed in southern Ecuador, south
of 3oS (Beathe et al., 2001), and in northern Peru (Tavera et al., 2006).

A wider description of the slab dip angle in Ecuador has been possible by using
the complete RENSIG catalog to localize seismicity more precisely (Yepes et al., 2015).
The dip angle is 20o at −1oS latitude, according to the information provided by the La
Maná seismic cluster. It dips to 35o at −2oS latitude according to the Puyo cluster, and
decreases to 12o at −30S. North of the Equator, Yepes et al.’s (2015) re-localization
does not provide a good definition on the slab dip angle. This change in the subduction
slope might be related to a different subduction regime across the Grijalva boundary, as
explained above, rather than to the influence of the Carnegie Ridge subduction (Yepes
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et al., 2015).

The Carnegie Ridge is characterized by a a thickened oceanic crust, which reaches
almost 14km in the subduction zone (Graindorge, 2004) but, as stressed above, this over-
thickness is not sufficient to create a buoyancy capable to produce flat-slab subduction.

The main reason to dismiss the Carnegie Ridge as a major factor in the general
dynamics of the NAB is that transmission of vertical strain generated by the ridge
subduction are inefficient, and that all features that may be attributed to its influence
can find other explanations (Michaud, 2009).

5.6 The Mohorovičić discontinuity

The Mohorovičić discontinuity, simply called Moho, is the boundary between crust and
mantle. It was discovered by examining the refraction patterns of seismic waves. This
refraction is due to marked changes in Earth’s density structure, i.e. changes in its
refraction index. Other geophysical techniques, like seismic reflexion, electrical conduc-
tivity, and gravity potential, concur to confirm the existence and location of the Moho
boundary (Cook et al. 2010).

The physical behavior of the Moho boundary is not well understood yet. If the crust
is envisioned as a brittle elastic medium (Scholz, 2002) and the mantle as a visco-elastic
medium, the Moho is expected to exhibit an intermediate solid-fluid phase (Machetel,
2008). Another idea, known as the metamorphic (or metasomatic) front hypothesis,
posits that the Moho is overprinted by a phase transformation (Eaton, 2006). However,
this hypothesis may be an oversimplification as it requires to recognize the Moho discon-
tinuity to have been produced by other more complex geophysical phenomena, such as:
the relict Moho hypothesis posits that the oceanic Moho is preserved during continental
assembly; the magmatic underplating hypothesis posits that a new Moho is formed by
episodic emplacements of sill-like intrusive bodies; and the regional décollement hypoth-
esis posits that the Moho behaves as a structural detachment (Eaton, 2006).

One of the surprising Moho characteristics of the tremor generated in its neighbor-
hood (Katsumata and Kamaya, 2003). This seismic phenomenon is a low-frequency
signal that is not directly associated with fracture episodes. Therefore a fluid flow model
was proposed to explain it (Katsumata and Kamaya, 2003), but a shear slip motion of
the crust over the mantle has later appeared as a more plausible explanation (Shelly et
al. 2006).

In Ecuador, no direct experiment has been undertaken yet in order to elucidate the
Moho issue. In spite of this lack of information, three previous studies indirectly address
the question. A summary of the main characteristics of the Ecuadorian Moho is presented
hereafter, in chronological order.
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Figure 5.7: Moho model from gravity 0.1 degree model. The main problem for this model is the
excessive oscillation in the Andes.

5.6.1 Gravimetric Moho in Ecuador

This study was based on geopotential and topography data inversion with a 0.1o reso-
lution (Chambat, 1996). The model is global and a window over the study region has
been chosen.

In this model, the Moho is 15km-deep beneath the oceanic crust, but deepens down
to 20km below the Carnegie Ridge. The crust of the North Andean Block is 35km-
thick in the coastal region, but this thickness decreases to 30km beneath the Borbón
and Manab́ı basins. Two apparent gravity anomalies are observed, one in the Gulf of
Guayaquil, due to presence of sediments, and another one in the El Progreso Basin. A
narrow, 45km-deep, transition belt exists along the Andean Cordillera, where the Moho
appears to be 55− 60km-deep. In the Amazonian region, the Moho is about 40km-deep
beneath the Guiana Shield. Between the Central Ecuadorian Andes and the Guiana
Shield, a marked anomaly apparently suggests a locally shallow Moho, which is however
unexplained and might reflect a numerical artefact. All these features are visible in figure
(5.7).

5.6.2 GEMMA Moho

This global Moho model is based on GOCE satellite measurements of the Earth’s gravity
field (Reguzzoni and Sampietro, 2012). These data were inverted and interpolated until
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−83 −82 −81 −80 −79 −78 −77 −76 −75 −74

−5

−4

−3

−2

−1

0

1

2

 

 

C
ru

st
 b

ot
to

m
 (

km
)

−60

−55

−50

−45

−40

−35

−30

−25

−20

−15

Figure 5.8: GEMMA model of the Moho in Ecuador. An advantage of this model is the reduction of
anomalous oscillations during the inversion process. Moho depths for the Coast and Amazonian Basin
seem however to be overestimated.

obtaining a 0.1 degree resolution grid of crustal thickness. The resulting models, called
GEMMA MODELS, are in free access.

A window encompassing the Ecuador region is presented in figure (5.8). The base
of the oceanic crust is 15km-deep but no contrast is apparent between the Carnegie
Ridge and the North Andean Block because the area where the Moho is 20−25km-deep
is continuous over these two domains. Gravity anomalies corresponding to the Gulf of
Guayaquil and El Progreso Basin are visible. Along the transitions to the Western and
Eastern cordilleras, crustal thickness reaches 32−45km. The Moho depth is about 60km
beneath the Ecuadorian Andes, and 30km beneath the Oriente Basin.

5.6.3 3D a-priori seismic Moho

This Moho model is based on a compilation of previous gravity studies specifically de-
signed for the Ecuador region in order to provide a three-dimensional velocity model for
P seismic waves (Font et al., 2013), and thus not a Moho representation. However, it has
been the most detailed synthesis on this issue until now, providing an explicit description
of each geodynamic area.

Starting from the north, the Moho beneath the oceanic crust is 5km-deep in southern
Colombia, deepens down to 19km below the Carnegie Ridge, and decreases to 14km
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Figure 5.9: Moho model obtained from a 3D ad-hoc velocity model. The model originally published does
not extends east of 77◦W . From west to east, the oceanic crust, North Andean Block, Andes Cordillera,
and Oriente Basin can be distinguished.

south of the ridge. The oceanic Moho is defined here in a general sense, i.e. as an abrupt
velocity gradient from 7 to 7.8km/s over 1km.

More to the east, the Moho is 22− 30km deep in the coastal region of the North An-
dean Block, where it is characterized by an interface at about 7km/s. In the Ecuadorian
Andes (Western and Eastern cordilleras, and inter-Andean region), it is suggested that
the crustal thickness is 55− 65km and the crust-mantle interface about 7− 8km/s. On
both sides of the Andean Cordillera, the lowlands present a 30km-deep Moho, with an
interface at 7−7.8km/s. Beneath the Oriente basin, the crustal thickness of the Guiana
Shield is apparently 30 − 35km, and a change in P-waves velocity between crust and
mantle occur at 6.8km/s.

Relying on these data, a model of Moho was obtained using the following parame-
ters for 3DVM filtering: P-wave maximum velocity: 8km/s; P-wave minimum velocity:
6.8km/s; minimum crustal thickness: 5km; maximum crustal thickness: 60km. The
resolution from this 3DVM model is 12km in latitude, 12km in longitude, and 6km in
depth. The result is presented in figure (5.9).

5.6.4 Discussion of the three models presented above

The three models presented above may be scrutinized under the scope of the known
geodynamic context in Ecuador (Jaillard et al., 2002; Jaillard et al., 2009). In the Pacific
Ocean, the Moho is about 10 km-deep. Along the coastal lowlands, the Moho depth is
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almost the same, but volcanic-sedimentary rocks and Cenozoic sediments crop out. The
Western Cordillera, where crustal thickness can reach 40km, consists of accreted oceanic
crust and exposes volcanic-sedimentary rocks. Crustal thickness along the Inter-Andean
valleys is apparently 45−50km; in these areas, Cenozoic and Mesozoic sediments overlie
pre-Mesozoic, partly metamorphosed rocks and accreted oceanic crust. The Eastern
Cordillera, where the Moho apparently rises up to 40km, displays Mesozoic sediments,
Paleozoic rocks and the same Precambrian basement. Crustal thickness is 35km in the
Sub-Andean hills, where the upper consists of Precambrian basement, Paleozoic rocks,
and Cenozoic and Mesozoic deposits. Finally, the Moho is only 30km-deep beneath the
Amazonian lowlands, which include the same strata and rocks as the Sub-Andean hills.

Combining these geodynamical characteristics, it appears that the three models fairly
coincide regarding the oceanic and Andean regions. However, in the coastal and Ama-
zonian regions, the GEMMA model seems to underestimate the Moho depth, whereas
the Gravity model and the 3D models are in agreement, and more compatible with the
regional structure.

Given that the current knowledge regarding the North Andean Block and Guiana
Shield is relatively good and consensual (Cediel et al., 2003; Taboada et al., 2000), their
geostructural characteristics can be used in order to complete information about the
Moho in the coastal and Amazonian regions. This allows a comparison between the
depths of the Ecuadorian Moho with those of other regions that have been studied in
more detail, such as Colombia, where crustal thickness in the northern Andes can reach
almost 45km, and 40km in the Guiana Shield (Cediel et al., 2003). Differences are
however apparent, since in Ecuador the Moho shows depths of only 5 − 15km beneath
the Borbón Basin, of 15− 20km beneath the Manab́ı Basin, and of 20− 25km beneath
the El Progreso Basin (Cediel et al., 2002).

Regarding the Guiana Shield in Ecuador, the Moho is deeper than 30km (Cediel et
al., 2002). Once again Chambat-Valette and 3DVM models agree with Moho depths
lower in the Coast and Amazonian Basins, whereas GEMMA does not give accurate
values in the Progreso Basin. Regarding the Amazonian Basin, Chambat-Valette and
3DVM give again more accurate depths.

A preliminary model of the Ecuadorian Moho could be established by combining the
best characteristics of these three models (Araujo, 2013).

5.6.5 A priori seismic information regarding the Moho in Ecuador

Previous seismological experiments have obtained information about the Moho by means
of seismic reflection, at least along the margin of Ecuador. Two important marine seismic
experiments were achieved: SISTEUR (Seismic Reflection-Refraction Experiment) in
2000, and SALIERI (South American Lithospheric Transects Across Volcanic Ridges),
which allowed to obtain many seismic profiles (Gailler, 2005). Among them, three across-
strike transects were acquired west of Ecuador, and one west of southern Colombia. A
trench-parallel seismic transect was also recorded over the Carnegie Ridge.
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Profiles across the Ecuadorian coastline were located at Esmeraldas, Carnegie Ridge,
and Gulf of Guayaquil and they provided an invaluable knowledge about the Moho depth
in these three regions (Gailler et al., 2007; Graindorge et al., 2004). The corresponding
data contributed to assess more accurately the Moho depth in the region comprised
between the trench and the North Andean Block. The trench-parallel seismic profile
clearly showed that, west of the trench, the Moho deepens under the Carnegie Ridge to
almost 20km (Sallarés et al., 2004).

Bathymetry measurements and a posteriori mapping of the margin of southern Colom-
bia and northern Ecuador (Collot et al., 2006 a), and within the margin of central and
southern Ecuador (Collot et al., 2006 b), provide valuable knowledge about the topog-
raphy and depth of the trench and adjacent oceanic plate. These topographical features
can be used to estimate the Moho depth using isostasy as a principle.
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Chapter 6

The Tomographic Results

Previous local tomographic inversions over this study area are very scarce. Actually,
only one very preliminar 3-D tomography (Prevot et al., 1996) was performed over
continental Ecuador by using 14 684 P-arrival times obtained by the RENSIG network
between 1990 and 1993, and by using a prior 1-D model derived from the models of
Ocola et al. (1975), Fluh et al. (1981) and Leeds (1977). Despite the poor level of
resolution of this tomography, for which parallelipipedic cells 60× 60 km wide and with
thickness ranging from 5 to 25 km were used, the authors were abble to identify high
P velocities beneath the Western Cordillera, and low velocities beneath the Interandean
depression and the Eastern cordillera. They also identified a low velocity zone beneath
the Pisayambo nest that they interpreted as a possible upwelling of hot materials.

In contrast, the south Colombian-Ecuador convergent margin has been intensively
studied by using travel time inversion of wide angle seismic data. These data were
acquired during two major marine seismic experiments: the SISTEUR cruise in 2000
(Collot et al. 2002) and the SALIERI (South American Lithospheric Transects Across
Volcanic Ridge) cruise in 2001 (Flueh et al., 2001). In particular, Sallares et al. (2005)
investigated the seismic structure and the crustal overthickening of the Carnegie ridge
along two profiles of the SALIERI experiment, and deduced some constraints on the
process for the formation of this aseismic ridge. One of this profile, running alongside
the Ecuadorian coast, West of the trench, provides crucial informations at the western
limit of our study region. Moreover, three transects across the trench, acquired during
these experiments, SAL-6 North of Ecuador, SIS-4 at 1.4◦S and SAL-2 off the Guayaquil
gulf, allow Graindorge et al., 2004 to investigate the crustal velocity structure of the
margin wedge and of the Carnegie Ridge across the trench. They also allowed Gailler
et al. (2007) to detail the segmentation of the margin into three contrasted zones (see
figure 6.39).

By using the Prevot et al. model, Guiller et al. (2001) analysed the spatial distri-
bution of seismicity beneath central Ecuador from a temporary network of 53 stations
deployed between 77.4 - 80 W and 0.1 - 1.5 S in the beginning of 1995. Complement-
ing these localizations by the locations of the 1964-1995 seismic events (Mw ≤ 5.2)
determined by Engdahl et al. (1998), they concluded that the oceanic plate is plunging
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continuously down to a depth of about 200km (actually 150 km, except for the Puyo
nest), contrary to Gutscher et al. (1999) proposition of a flat slab extending eastwards
at a depth of 80-100 km as far as 500 km from the trench. They also interpreted the
parallel features dipping eastward with an angle of about 35◦ that exhibits the seismic
activity around 1◦S and 78.5◦W as the reactivation of the sutures related to the Late
Jurassic to Early Tertiary accretions of oceanic terranes.

Manchuel et al. (2011) analysed the seismicity recorded by a combined onshore off-
shore temporary seismic network (ESMERALDAS) involving 26 OBS and 31 seismic
stations deployed during 3 months in 2005 from the trench up to the cordillera in North-
ern Ecuador. They found a Wadati-Benioff plane well defined down to a depth varying
between 100 km and 140 km with a dip angle of about 25◦ that also clearly contradicts
Gutscher’s hypothesis in Northern Ecuador. Font et al. (2013) also constructed a 3-D
velocity model based on the integration of geophysical and geographical data to upgrade
the image of the seismicity distribution over the margin in the interseismic period.

Two local tomographies have also focussed on volcano structures by using the Benz
et al. (1996) method that was intialy developped for studying the Redoubt volcano and
that we briefly described at the beginning of chapter 4. On the one hand, the tomography
of the Tungurahua (Molina et al., 2005) identified a high velocity zone within the central
base of the edifice under the vertically aligned hypocenters between 1 and 4 km below the
summit, and was interpreted as the feeding conduit system. The authors also suggested
the existence of an old lateral dike system due to the identification of two other high
anomalies under the lower northeastern and southern flanks of the edifice, one them
connected to the central conduit. On the other hand, the tomography of the Guagua
Pichincha volcano (Garcia Aristizabal et al., 2007 ) was performed with few stations to
characterize the crisis of 1999. In contrast with the other study, a low velocity anomaly
was identified beneath the caldera and was interpreted to be an active volcanic conduit.

6.1 Comparing results in the two inversion boxes

As already detailed at the end of chapter 4, we have performed tomographic inversions
in two different parallelipipedic domains (boxes) with two different data set. We firstly
considered a large boxe containing Northern Peru in order to incorporate data from the
RSN and of a temporary network that are essential for identifying the geometry of the
subduction in the southern region of Ecuador. We removed all the data acquired by
stations settled on volcano edifices to avoid any bias due to site effects, especially for
very long travel times associated to Peruvian events. After filtering, the remaining data,
which are all prior to 2014, correspond to 10 332 events. Then, we decided to invert the
increasing amount of data, that we received each year from the RENSIG, in a smaller
box centered on Ecuador (see Figure 6.1). We also realized that there is no clear bias
in the travel times for stations over volcanic edifices, except for few events within the
edifice, due to the high velocity usually localized in the central part of the edifices crossed
by most of the rays. We therefore took all the stations of this second box into account.
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Figure 6.1: The two inversion boxes are delimited by black or red lines. The traces of the cross-sections
are indicated by thin lines with crosses every 50km. The cross sections, with an azimuth of N83oE, are
centered at −79.4oW every 0.5o in latitude.

Thus, after filtering, the resulting dataset (until April 2016) corresponds to 25 462 events.

To compare the results of tomography in the two boxes, we have first computed the
restitution indices corresponding to these two types of inversion. Figures 6.2 displays
these restitution indices for Vp over cross sections centered on the longitude of -79.4◦

W (Figure 6.1) with the direction of convergence of the subduction (N83oE, Kendrick
et al. 2003) as azimuth, and with a length of 600 km over all the width of the smallest
inversion box (figure 1). The results, which are very similar for the other indices, clearly
show that the resolving power of the data is greater for the smallest box north to 3oS,
and conversely for the largest box.

We can also see in Figure 6.2 that the models resulting of the inversion in the two
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boxes are very consistent at the latitudes for which they are both correctly resolved,
that is between 0oN and −3oS down to 100 − 150km depth, eventhough the length of
resolution is shorter for the more accurately determined model in the small box with
three times more data.

The main contribution of the large box is south to -4◦S where the resolution of the
inversion in the Ecuadorian box begins to be poor (figure 6.2) and where the Peruvian
data allow a better identification of the slab.
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Figure 6.2: Cross-sections of the restitution index (4 figures at the top of each column) and of P
velocities (at the bottom). The results for the largest box including Northern Peru are represented in
the left column, and that of the smallest one in the right column. The cross-sections are centered at
79.4 W and at the latitude indicated at the left bottom of each figure, with an azimuth of N 83◦E. The
confidence region, with an index greater than 0.5, are denoted by a greater transparency in the figures
at the bottom

For all these reasons, we will mainly focus on the results over the Ecuadorian box for
interpretation.
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6.2 Results for the models vP and vP/vs

The cross sections of the P velocities, in absolute values and in relative values with
respect to the prior model, and the ratio vP/vS are displayed between 0.5◦ N and 3.5◦

S in latitude (for the centre of the section) every 0.5◦ in figures 6.3-6.9. The seismicity
indicated in each of these cross sections corresponds to the hypocenters located at less
than 18 km from the section.

We can observe that the highest P velocities (greater than 8.2) are clearly localized
within the slab south to 1.5◦ S in agreement with the usual conception of a cold-rigid plate
downgoing into hotter and less dense surrounding materials (e.g. Stein and Wyssesion,
2003). Theoretical studies, taking into account a great variability of thermodynamical
parameters of minerals in the Earth mantle, predict velocities vP between 7.8 km/s to
8.5 km/s from 100 km to 300 km depth (e.g. Cammanaro et al., 2003 ). North to 1.5◦

S, a second domain arises in complement of this one at the East of the Wadati-Benioff
zone, a little higher than the virtual continuation of this zone. We can also observe very
high velocities in the mantle wedge between about the latitudes of 0◦ and 2◦ S, with
a striking contrast with the low velocities beneath the Andean range. In the coastal
region, the basins are clearly associated to low velocities in the upper crust.

The analysis of the vP/vS values is crucial to characterize partial melting and con-
sequently the feeding process of the volcanic range. The generation of magma by the
subduction of an oceanic plate follows a standard schema known as the genetic model
(Daniel et al., 2006). Melting of hydrated mantle begins between 1000◦C and 1100◦C at
a depth of about 100 km. This depth is not invariable but lies in the window between
65 and 130 km, depending on the structure of the volcanic arc (England et al., 2003).
Actually, among all the parameters considered, the descent velocity of the slab is the one
that shows the highest correlation rate with the volcano positions. Thus, considering
this velocity as the leading phenomenological parameter amounts to considering that the
partial melting of the mantle is produced at a critical temperature rather than a critical
pressure (England et al., 2003). But this critical temperature depends on the quantity
of water within the mineral. The water responsible of mantle hydration are fixed in
specific minerals and transported down by the subduction process. These two minerals
are the magnesian amphibole type pargasite and the magnesian mica type phlogopite.
Once arrived to a depth of about 100 - 110 km, pargasite is destabilized and releases its
incompatible elements and its water, which in turn causes the melting of the overlaying
mantle wedge (Daniel et al., 2006). The partially melted materials produced by this
magma genesis accumulate within large primary reservoir, elongate in the direction of
the volcanic range at a depth of few tenth of kilometers beneath the volcano chains, as
in Central Volcanic Andean Zone or in Java (Koulakov et al., 2009, 2011, Nur Abdullah,
2016). The partially melted materials are expected to present a low rigidity with respect
to their bulk modulus, and thus can be characterized by great values of vP/vS. It allows
the localization of these deep reservoirs along the range insuring the feeding of volcanoes.
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West East

Figure 6.3: Cross-sections of the P velocities in absolute values (km/s) or in relative values (%) with
respect to the prior model, and of the vP /vS ratio. The cross sections are centered at 79.4◦ W and a
latitude of 0.5◦ N (top) or 0◦ (bottom) with an azimuth of N 83◦ E. The two connected components of
the Maldonado seismic nest can be easily identified at the latitude of 0◦ and at a depth of about 100 km.
The scales are in kilometers and the confidence regions are denoted by a greater transparency
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West East

Figure 6.4: The same as figure 6.3, except for the latitude of 0.5◦ S. Based on the Wadati-Benioff
zone we could dream to a slab broken in 3 segments at this latitude.
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West East

Figure 6.5: . The same as figure 6.3, except for the latitude of 1◦ S.The La Maná seismic nest is
clearly identifiable between about 110 km and 120 km depth. Note also the low values of the vP /vS ratio
(about 1.69) within the slab at 135 km depth.
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West East

Figure 6.6: The same as figure 6.3, except for the latitude of 1.5◦ S.The Puyo seismic nest is clearly
identifiable between 165 km and 240 km depth, with a greater dip of about 40◦. Low values of vP /vS are
still discernible within the slab at about 135 km depth.
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West East

Figure 6.7: The same as figure 6.3, except for the latitude of 2◦ S.The Puyo seismic nest is identifiable
between 150 km and 210 km depth, with a lower dip than at 1.5◦S. The Guyaquil nest is clearly identified
at about 90 km depth. Low values of vP /vS are still discernible within the slab at about 135 km depth.
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West East

Figure 6.8: The same as figure 6.3, except for the latitude of 2.5◦ S.

141



THE TOMOGRAPHIC RESULTS

West East

Figure 6.9: The same as figure 6.3, except for the latitude of 3◦ S at the top and of 3.5◦ S at the
bottom.
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The cross sections along the volcanic range that are displayed in figures 6.10, 6.11,
6.12, 6.13 clearly show great values of the vP/vS ratio within an elongate zone between
2◦ S and 0.5◦ N at depths between 35 and 80 km. We can observe that the south limit of
this zone, which is lateraly centered on the western cordillera, coincides with the latitude
(2.005◦ S) of the Sangay that is the southest volcano of the arc, as can be seen in figures
6.11, 6.12. To precise the spatial distribution of the high values of vP/vS, the domains
corresponding to values greater than 1.8 are displayed in figure 6.14, and those to values
greater than 1.82 in figure 6.15.

It confirms that the greastest values of the ratio correspond to the reservoir beneath
the western cordiera. We can also observe that apart from two small domains relativelly
shallow, the one localized at about 3.5◦ S and 79.2 W and the other at the East of
the Antisana volcano, the other large connex domain where the ratio is greater than
1.8 is located in the portion of the slab at about 150 km depth south to 2◦ S that is
continuously connected to the flat Peruvian slab (Figure 6.14).

We can also observe low values for the velocity ratio in the uppermost part of the
crust along the volcanic range that characterize cold volcanic materials. A relativelly
low value of this ratio is also discernible within the slab at a depth of about 135 km
between 0.5◦ S and 2◦S.

Finally the figures 6.11, 6.12, 6.13 show that the part of the Andean range which
corresponds to the volcanic arcs clearly coincide with a thickening of the crust suggesting
an involvement of the magmatism in the orogenesis of this part of the Andes.
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Figure 6.10: Position of the traces of the 3 cross sections along the Andean range centered at the
latitude of 1.7◦ S with an azimuth of N 20◦ E and with a cross every 100 km. The longitudes of the 3
centres are respectively 78.55◦ W, 78.83◦ W and 79.1◦ W.
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6.2 Results for the models vP and vP/vs

  
Figure 6.14: The 4 domains corresponding to vP /vS ≥ 1.8
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Figure 6.15: The 2 domains corresponding to vP /vS ≥ 1.82
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6.3 The localization of the seismicity

Since the arrival times are inverted for both the velocity fields and the event locations, we
obtain, as a result, new locations of the seismicity. The figures 6.16 and 6.17 respectively
display the spatial distribution of the seismicity shallower or deeper than 75 km depth.
The general pattern of these distribution is evidently similar to the one obtained a priori
in chapter one and three, but nevertheless, the inversion enhances the accuracy of the
locations and allows a better resolution of this pattern.

The figure 6.17, which displays the seismicity at the so called intermediate depths
and that is mainly located in the slab, allows the clear identification of 4 seismic nests
that form an almost perfect geometric figure, with 3 of them, Maldonado, La Maná and
Guayaquil at depths between 80 and 115 km, and the last one, Puyo, at deeper depths,
between 160 and 240 km. We will come back to the detail of these seismic nests further
on when describing the slab geometry and will now focus on the shallower seismicity.

The seismicity of the margin is concentrated in clusters relatively perpendicular to
the coast line between about 1.5◦ N and 1.5◦ S and that define a clear segmentation of
the margin in relation with the carnegie ridge which has been the subject of numerous
experiments and studies (e.g. Manchuel et al., 2011; Font et al., 2013). The shallow seis-
micity in the Cordilleras region can be explained by three sources, the volcanic crisis, the
current volcano-tectonic events and the tectonic deformations. The volcanic crisis that
occured during the study period (table 6.1) concern the Chiles-Cerro Negro (November
2014 to present), the Guagua Pichincha (1991-2001), the Reventador (2002 to present),
the Cotopaxi (August 2015 to present) and the Tungurahua (1999 to present). This
kind of seismic activity, which, though spatially concentrated, is not permanent, must
be catalogued as seismic swarms.

There are other shallow seismic clusters beneath volcano edifices that clearly corre-
spond to volcano-tectonic activity (see also figure 6.11) as for the Cotacachi in the north,
the Illiniza, and the Atacazo-Ninahuilca and the Corazón located between the Pichincha
and the Illiniza.

Volcano Activity Latitude Longitude
Chiles-Cerro Negro Hydrothermal 0.817oN −77.938oW

Cotacachi None 0.364oN −78.351oW
Reventador Strombolian, vulcanian −0.077oS −77.656oW

Guagua Pichincha Lava dome, ash explosions −0.171oS −78.598oW
Atacazo-Ninahuilca None −0.353oS −78.617oW

Corazón None −0.539oS −78.669oW
Cotopaxi Phreatic, ash explosion −0.677oS −78.436oW
Illiniza None −0.659oS −78.714oW

Tungurahua Strombolian, vulcanian −1.467oS −78.442oW

Table 6.1: Volcanoes related to seismic clusters during the study period.

149



THE TOMOGRAPHIC RESULTS

−82˚

−82˚

−81˚

−81˚

−80˚

−80˚

−79˚

−79˚

−78˚

−78˚

−77˚

−77˚

−5˚ −5˚

−4˚ −4˚

−3˚ −3˚

−2˚ −2˚

−1˚ −1˚

0˚ 0˚

1˚ 1˚

0 < km < 20 

20 < km < 35

35 < km < 60

60 < km < 75

Figure 6.16: Final localization of the seismicity shallower than 75 km depth.
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Figure 6.17: Final distribution of the intermediate seismicity.
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But the intense shallow seismic activity around volcano edifices along the Western
Cordillera must be related to the Quito-Latacunga fault-fold system that defines the
western edge of the Quito-Latacunga microblock (Alvarado et al., 2016). In figure 6.16
we can clearly follow the seismicity of this Quito-Latacunga fault-fold system down to its
connection, south of the Chimborazo, with the Chingual-Cosanga-Pallatanga-Puna fold
system (CCPP), and observe that it contains not only this volcano-tectonic activity but
also some purely tectonic clusters as the one located (around 1.08◦ S, 78.4◦ W) south of
the city of Pujiĺı.

There are also several large shallow clusters clearly related to tectonic deformations.
The Pisaymbo cluster (at about 1◦ S, 78.5◦ W) which is the principal source of released
seismic energy in Ecuador. A preliminary relocalization of the event cluster by using a
double difference approach allowed us to determine a mean N 70◦ E principal direction
of the cluster (Araujo, 2009) that approximately corresponds to the local strike of the
CCPP that crosses the cluster. Another important cluster is the one located South-east
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Figure 6.18: Cross sections of the seismicity and P velocities in the crust, perpendicular to the
cordilleras, between 0◦ and 1.5◦ S with an azimuth E 20◦ S. The latitude indicated at the bottom left
of each figure corresponds to that of the centre of the cross-section. The traces of the sections are
represented in the figure at the top left
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of the city of Macas and centered at approximately 2.7◦ S and 78◦ W. This cluster (figure
6.16) has a principal direction of N 10◦ W, orthogonal to the direction of subduction
convergence, which corresponds to the one observed (Figure 6) by Legrand et al. (2005)
during their 1999-2000 experiment involving 10 seismic stations. This cluster is related
to Napo-Cutucú fault system and is basically generated by the thrust corresponding
to the eastwards continental wedge propagation at the Eastern Subandean Belt (ESB)
(Legrand et al., 2005; Alvarado et al., 2016). We can clearly follows in figure 6.14 the
seismicity related to the ESB. We can also observe that the cluster located at about 0◦

and 77.7◦ W with a principal azimuth of N 40 ◦ W, and which contains the volcano-
tectonic seismicity of the Reventador volcano, is also clearly related to the ESB. Another
smaller tectonic shallow cluster is discernible in figure 6.14 north of Guayaquil, in the
south part of Progresio basin.

Clear lineaments in the seismicity are also discernible in figure 6.16, as the CCPP
system (see Alvarado et al, 2016, figures 1 and 6a) notably near the Guayaquil gulf and
near Pallatanga (see also the cross section, figure 6.11 at the abcissa about -70 km). We
can also observe a seismicity lineament starting from the CCPP system East-North of
Pallatanga (small cluster) and bordering the Western cordillera at west up to Colombia.

In order to have a look at the sutures related to the accretion of the oceanic terranes
(Guiller et al. 2001), we zoom into the crust model in figure 6.18 that displays cross-
sections, perpendiculary to the cordilleras, of the seismicity and P velocities. We can
observe a clustering of the seismicity around a plan that dips westward, with an increasing
angle between 0◦ and 1.5◦ S. We can also observe that this plan is associated to a dipping
westward of the lower crust as in a continental collision setting, notably around the
latitudes of the Pisayambo cluster (between 0.75◦ S and 1.25◦ S◦).

6.3.1 Evaluating the localization of some specific events

In order to evaluate the impact of the tomography on the localization of the earthquakes,
and as we cannot consider 25 462 events one by one, we will focus on 5 sufficiently well
observed events that occured during our study period and are of specific interest, either
because of their large magnitude or tectonic setting, or with respect to seismic hazard.
Notably, we will compare our prior and final localisations, respectively obtained with
the LOCIN and the INSIGHT code, with those provided by the Instituto Geof́ısico (IG)
and by the United States Geological Survey (USGS).

• The Pujiĺı earthquake (Mw = 5.9) occured the 28th March 1996 in the Interandean
region, 100 km south of Quito. The earthquake, which produced important damage
in adobe buidings, was located at 1.02◦ S, 78.78◦ W at a depth of 15 km by the
IG (Guéguen et al., 1998), while the USGS localized it at 1.04 S, 78.74 W and
at a depth of 33 km. Our localization after tomography at 1.03◦ S, 78.70◦ W
and a depth of 28.5 km is very close to the prior one, at the western limit of the
interandean depression (figure 6.19).
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km10

Figure 6.19: The various Pujiĺı earthquake locations. Our localization after tomography (1.03◦ S,
78.70◦ W, depth of 28.5 km) put the hypocentre at the limit of the Interandean depression at an inter-
mediate depth between those determined by the IG and by the USGS.

• On the 4th August 1998 an earthquake (MW = 7.1) occurred near the city of Bah́ıa
de Caráquez in an area of intense seismic activity which lies between Cabo Pasado
and Manta (about 0.25◦S - 0.75◦ S) in the Ecuadorian margin. This segment of
the coastal margin produced two other large earthquakes over the last century,
the 1896 (Ml = 7.0) and the 1956 (MS = 7.3) events (Segovia et al., 1998). The
IG localized the earthquake at 0.55◦ S, 80.53◦ N and at a depth of 20 km, while
the USGS gave 0.59◦ S, 80.39◦ W and a depth of 33 km. Our localization after
tomography is in between: 0.56◦ S, 80.47◦ W, at a depth of 28.7 km (figure 6.20).

km10

Figure 6.20: Bah́ıa earthquake locations. Our final location (0.56◦ S, 80.47◦ W, depth of 28.7 km)
lies in between those of the IG and USGS.
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• On the 12th August 2014 occured an eartquake (MW = 5.1) north-west of Calderón
city near Quito, with a maximum intensity of 6 ems corresponding to slight dam-
ages as thin cracks in walls and masonry (IG, 2014).

The source of this seismic event can be related to the Quito Fault System (IG,
2014), over which the compressive deformation is localized in the Interandean De-
pression and is now considered as the western limit of the Quito-Latacunga mi-
croblock (Alvarado et al., 2016). The Quito Fault System is also connected with
the Guayllabamba Fault System at the east in the north of the city (Alvarado et
al., 2014). The survey of these fault systems close to Quito is obviously crucial in
regard of seismic hazard for the city.

Our location of the earthquake (0.06◦ S, 78.42◦ W, depth of 14.9 km) is about 4
km westwards from the localisation of IG (0.06◦S, 78.38◦ W, depth 4 km) and 10
km deeper, while the USGS put the hypocenter 8 km north-east of the IG location
(0.02 S, 78.32 W) at a depth of 11.9 km (figure 6.21).

km10

Figure 6.21: Locations of the Quito (12th August 2014) earthquake. Our location after tomography is
0.06◦ S, 78.42◦ W, at a depth of 14.9 km.

• The Pisayambo seismic cluster constitutes the greatest source of seismic energy
released in Ecuador (IG, 2012; 2013) producing about 250 events with magni-
tudes greater than 2.8 each year (Araujo, 2012). The precise location of the event
Mw ' 5.0 that occured on 26th March, 2010 in the area of the Pisayambo lake
is very interesting to consider since the INSAR data evidenced a slip event, with
a maximum displacement of 40cm, along the Bolichuco-Taurisacha fault (BTF)
during a period compatible with this event (Champenois et al., 2014).

Moreover, a field work (Baize et al. 2014) allowed the ground verification of cu-
mulative displacements and of the 2010 faulting along the BTF on the one hand
and, on the other hand, the results of the INSAR inversion (Champenois et al.
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2014) are in agreement with the GCMT focal mechanism of the 26th March 2011.
Consequently, Baize et al. considered that there is a large chance that this ob-
served ground displacement corresponds to this seismic event, even though the IG
location is about 12 km west of the fault and the USGS one 30 km east. More
precisely, the IG localized the event at 1.14◦ S, 78.47◦ W and 2.6 km depth, and
the USGS at 1.10◦ S, 78.13 W and 10 km depth. Our localization at 1.15◦ S,
78.36◦ W and 8.8 km depth (very close to the prior one) fits very well with the
BTF (Figure 6.22) and does confirm the connection of the ground displacements
with the seismic event.

km10

Figure 6.22: Localizations of 26th March 2010 Pisayambo earthquake. Our final location (1.15◦ S,
78.36◦ W and 8.8 km depth) fits very well with the trace of the BFT, the approximative position of which
is represented by a straight line (after Baize et al. 2014).

• The Macas cluster also represents a large shallow seismic activity in the eastern
subandean belt. In this area, located a few tenth kilometers southeast from Macas
near the cordillera de Cutucu, a Mw ' 7.0 shallow earthquake occured the 3rd
October 1995. Due to its magnitude, the event was widely recorded, even though
there was no RENSIG station nearby. It allows us to measure the impact of the
tomography on the prior localization since 20 P phases have still been recorded by
the RENSIG. The event was localized at 77.95 W, 2.81 S and 16 km depth by the
IG, at 77.88 W, 2.75 S and 24.4 km by the USGS, at 77.82 W, 2.77 S and 23.6 km
depth by Engdahl et al. (1998). Our prior localization is close to that of the IG,
77.98 W, 2.83 S and at an altitude of 0.5 km, while the location after tomography
is 77.86 W, 2.91 S and at an altitude of 0.3 km, about 15 km away from the prior
one, and about 20 km south from that of the USGS. Our final location is only a few
kilometers west of the trace of the Morona frontal thrust (Figure 6.23 and Legrand
et al., 2005, figure 3) to which is related the earthquake according to Legrand et
al. (2005).
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km20

Figure 6.23: Localizations of 3rd October 1995 Macas earthquake. Our final location (77.86 W, 2.91
S, at an altitude of 0.3 km) is close to the Morona frontal thrust.

6.3.2 Investigating the slab

By considering the Wadati-Benioff zone, the figures 6-3,...,6-9 and 6.17 allow an investiga-
tion of the geometry of the slab between 0.5◦ N and 3.5◦ S with a good lateral resolution
as only the earthquakes located less than 18 km of each cross-section are represented. It
defines for the positive latitudes a continuously dipping slab down to a depth of about
125 km with an angle of about 23◦ that corresponds to the results of Guillier et al.,
2001 and Manchuel et al., 2011. Between 0.25◦ N and 0.25◦ S, a first intermediate nest
is discernible between depths of 90 and 120km that we will name Maldonado because
it is located beneath the city of Pedro Vicente Maldonado, 70 km west of Quito (see
also figure 6.17). This nest cannot be detected from the international data due to the
relatively low magnitude (Mw ≤ 4).

Around latitude of 0.5◦ S the Wadati-Benioff zone is not very clearly defined every-
where. The segment of the Wasdati-Benioff zone between the depths of 60 km and 110
km has a dip angle of 31◦. Moreover the velocity anomaly (vP ≥ 8.2) could suggest a
flatter slab below.

At about 1◦ S, the Wadadati zone can be clearly defined with the second intermediate
nest (la Maná) at depths between 90 and 120 km. The corresponding dip angle is again
about 25◦. This angle is almost the same at 1.5◦ S down to 120 km, but the third nest
(Puyo), which begins to be discernible at this latitude, presents a dip angle of about 40
◦ at depths ranging between 160 and 240 km. That represents a sudden change in dip
angle, unless considering this plan as inside the slab and related to tearing, in which
case the slab may be considered as continuous from the trench. Alternativelly one may
consider that the slab is broken in two pieces. One from the trench, down to 130 km
depth, the other one with a dip angle of 40 ◦ up to about 90 km and appriximately
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associated to the eastern high velocity anomaly. We will try to analyze this scenario
afterwards with the tomography of seismic clusters.

At 2◦ S the situation is much better with a clear continuity of the slab and the
emergence of the fourth intermediate nest (Guayaquil) that ranges between 75 and 110
km. South to 2◦ S, the Puyo nest is no longer visible, and the dip angle decreases down
to 10◦ at 3◦ S.

6.3.3 Mapping the slab

Based on the definition of the Wadati-Benioff zone, we have constructed a net of points
corresponding to the surface of the slab in the large inversion box (between about 1.5◦

N and 5◦ S) by using the seismicity obtained either in this box or in the small one
depending on the latitude. We have adopted a conservative point of view in regard to
the Puyo nest in stopping the net at the change of dipping. Practically, every 25 km
in the direction corresponding to the geographic meridian we have pointed the top of
the Wadati-Benioff zone every 20 km in the direction corresponding to the parallel of
latitude as far as possible.

To interpolate the data and to obtain a smooth surface, we use the Gaussian for-
malism of the inverse problem by using the algorithm in the data space (equation 2.29),
which in this case is equivalent to krigging. We use the following correlation kernel :

Cor(x,x′) =
1

1 + c

{
ϕ

(
||x− x′||

L

)
+ cϕ

(
||x− x′||

l

)
+ ϕ

(√
(x− x′)2

l2NS
+

(y − y′)2

l2EW

)}

for any x = (x, y) and x′ = (x′, y′) in the reference plan of the box, and where:

• ϕ is the real function defined by ϕ(r) = 1/cosh(r),

• 0 ≤ c ≤ 1 is a positive constant,

• L, lEW , lNS are three correlation lengths.

L is the greater length and insures the smoothing at long wave-length; lEW and lNS
are two small lengths corresponding respectively to the East-West and the North-South
direction that insure the fitting of the small wave-lengths. We use two different lengths
at this scale due to the greater variability of the slab in the E-W direction than in the
N-S direction.

To obtain a sufficiently smooth model while keeping the main feature of the raw data
whe chose: lEW = 45km, lNS = 70km, L = 300km, c = 0.1, and a damping parameter
σd/σm = 1/15 The resulting slab surface is displayed in figure (fig. 6.24).

The general pattern of this slab model is broadly similar to that of the global model
Slab 1.0 (Hayes et al., 2012) in our study zone. The main common feature is the kind of
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Figure 6.24: Depth of the slab derived of our tomography results. The western boundary corresponds
to the oceanic trench and the eastern boundary to the deepest part of the Wadati-Benioff zone detected
by our tomography seismicity, aside from the Puyo nest.

promontory that forms the surface at about 3.5◦ S-4◦ S at the latitude of the main
concavity of the trench line, and which can be interpretated as an ondulation of the
slab to accomodate the bending while keeping the same surface. Actually our model
presents two other smaller ondulations with two clear trough lines and two ridge lines
that respectively passes through the Maldonado and the La Mana nests. The line linking
the Guayaquil and the Puyo nests, which approximately coincides with the extrapolation
of the Grijalva fracture zone, i.e. to the initial spreading center between the Cocos and
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Nazca plates, and could corresponds to a weakening of the plate (Yepes et al. 2016),
leads to the southern trough line.

We can also observe that the starting slope near the trench of tle Slab 1.0 model
is steeper than that of our model and much steeper than those observed by the SAL2,
SAL6, and SIS4 transects (Graindorge et al., 2004, Gailler et al., 2007; Salares et al.,
2005)

6.4 The intermediate-depth seismic nests

The intermediate seismicity consists of those earthquakes with depths ranging between
50 km and 300 km (Frohlich, 2006; Houston, 2007). In the study area this interme-
diate depth seismicity concentrates into 4 clusters (see figure 6.17), Puyo, La Maná,
Maldonado and Guayaquil, which may be catalogued as nests since their activity is per-
manent and isolated from the nearby one (Prieto et al., 2012; Beauval et al., 2013);
which distinguished them from aftershock sequences or swarms. The intermediate-depth
seismicity occurs at temperature and pressure conditions that should not allow ordinary
fracturation, and although it represents approximately 25 % of the global seismicity, the
underlying physical mechanism remains unclear (Frohlich, 1989, 2006; Houston, 2007;
Prieto et al. 2012) A first proposed mechanism is the dehydration embrittlement in
which the dehydration of the slab generates high fluid pore pressure that counteracts the
high ambient normal stress that inhibits the microcrack propagation (Houston, 2007).
The viability of this mechanism was showed by experiments in serpentinite (Rayleigh
and Patterson, 1965). The fluid could come from hydrated sediments embedded in the
subduction or from phase transition in the oceanic plate at depth (Kirby et al., 1996;
Davies, 1999). The popularity of this mechanism is due to thermo-mechanical model that
theoretically explain the double seismic zone in various conditions (Seno and Yamanaka,
1996; Yamasaki and Seno, 2002). Despite of the success of dehydration embrittlement hy-
pothesis, the difficulty to reproduce the experimental conditions in laboratory makes the
cause of intermediate-depth seismicity a relatively open question. Other phenomeno-
logical models exist, as, for instance, the model of anticrack faulting in a metastable
phase in which it is the volume change and heat release due to a phase transformation,
rather than a fluid release, that trigger a shear instability (Houston, 2007). A third pos-
sible mechanism is a thermal shear instability produced when a feedback between the
temperature-dependent rheology and the shear deformation generates viscous heating
giving raise to an apparently abrupt failure on a very thin shear zone (Houston, 2007).

As the primary mechanism of this seismicity is not well understood, the empirical
study of nest seismicity is crucial to bring a sufficient amount of data (Prieto et al., 2012).
Deep nests constitute a relatively rare phenomenon, which should indicate exceptional
conditions. For instance, the deep nest closest from the Puyo one is the well documented
Bucaramanga nest (Vargas and Mann, 2013) 1100 km away. This unusual phenomenon
could be the tear or breaking of the slab as it had been proposed in the case of Gribraltar
Arc, the Lesser Antilles and the Tonga Trench (see Meighan et al., 2013) or in case of
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Bucaramanga nest (Vargas and Mann, 2013). However, this latter nest lies in a very
particular geodynamical setting, which has also been interpreted as the collision of the
Nazca and Caribbean slabs (Zafiri et al., 2007). In any case, seismic nests indicate a
discontinuity in the slab structure that can be analyzed by seismic tomography. For
example, in the case of slab delamination, they could be related to a low P-velocity
anomaly that could results of tearing or of the strengthening of slab dehydration due to
the upwelling of hot asthenosphere materials (Bernal-Olaya et al., 2015).

We will now focus on the 4 Ecuadorian nests by using the double difference variant
of the INSIGHTcode, described in section 2.4.2, that allows the relocalization of the
earthquakes The code inverses differences of arrivall times at each station for both the
event location and the velocity field inside a small box containing the nest (figure 6.25),
with the results of regional tomography as prior model and prior locations.
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Figure 6.25: Positions of the four seismic nests analyzed by differencial tomography. The traces of the
inversion boxes are denoted by white thin line. The traces of the considered cross sections are represented
by dashed black lines.
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• The La Maná nest

La Maná is a small city located at the limit between coastal plains and Western
Cordillera 110 km southwest of Quito.The inversion box is centered at 0.95◦ S,
79.2◦ W and at a depth of 104 km. The dimensions of the inversion box are 91 km
in the E-W direction, 46 km in the N-S direction and 67 km in the vertical direction
(figure 6.25). The nest inside the box consists of 509 earthquakes. We have assigned
the values of 10 km to the smoothing lengths ξH , ξV , and respectively 250 m/s and
0.05 to the physical standard deviations of vP and vP/vS. To determine the tuning
parameter for the regularization we have computed L-curve diagrams for various
values of the damping parameters ξ0 and λ related to the velocity model and
locations (figure 6.26)
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Figure 6.26: RMS of the fitting variable versus the norm of the increment of the P velocity field with
respect to the prior one (top), and versus the mean distance between the hypocenters and the prior ones
(bottom). The values near each point correspond to λ on the left panel and to ξ0 (in km) on the right
one.
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The analysis of these L-curves leads to the values of ξ0 = 10km and λ = 0.17 for
the tuning parameters. The set of inversion parameters is thus:

σVP σVP /VS ξH ξV ξ0 λ

250m/s 0.05 10km 10km 10km 0.17

The figure 6.27 displays 3 cross sections oriented WE, SN and N 20◦ E (see figure
6.25) of the nest. It shows that the nest is clustering on a mean almost vertical
plan, oriented W-E. It also confirms the low values of the P velocity in the mantle
above the slab, even though we can observe a numerical oscillation in the velocity.
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Figure 6.27: Vertical cross sections of the La Maná nest in the W-E direction (left), S-N (middle),
N-20◦ E (right). All the seismicity is represented and z is the vertical coordinate in the reference box.

• The Maldonado nest

Pedro Vicente Maldonado is a small city located 70 km west of Quito. The corre-
sponding inversion box is centered at 0.15◦ N, 78.9◦ W and at a depth of 95 km,
with dimensions of 61km E-W, 76 km N-S and 41km in the vertical direction. The
nest contains 224 events inside the box. The values of the inversion parameters are
set as follows:
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σVP σVP /VS ξH ξV ξ0 λ

250m/s 0.05 10km 10km 12km 0.2

The relocalization displayed in figure 6.28 shows the normal dipping of the Benioff
zone in the W-E cross section. It also shows that the seismicity is spread between
to components lying in vertical plans.
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Figure 6.28: Vertical cross sections of the Maldonado nest in the W-E direction (left), S-N (middle),
N-20◦ E (right). All the seismicity is represented and z is the vertical coordinate in the reference box.

• The Guayaquil nest

This cluster, which a priori presents the greatest spatial dispersion and is the
shallowest of the four nests, is located beneath the city of Guayaquil. We identified
126 events within the inversion box of 86 km N-S, 101 km E-W and 45 km heigth,
centered at 2.25◦ S, 79.72◦ W and at a depth of 84 km. The parameters obtained
for the regularization are as follows:

σVP σVP /VS ξH ξV ξ0 λ

250m/s 0.05 10km 10km 9km 0.17

The cross sections displayed in figure 6.29 show a P velocity structure corresponding
to the Wadati-Benioff directionality in agreement with the standards of subduction
zones. Despite relocalization the cluster remains widespread.
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Figure 6.29: Vertical cross sections of the Guayaquil nest in the W-E direction (left), S-N (middle),
N-20◦ E (right). All the seismicity is represented and z is the vertical coordinate in the reference box.

• The Puyo nest

The Puyo cluster is the unique source of deep seismicity in Ecuador and is, properly
speaking, the only deep nest in Ecuador. Its name is related to the Puyo city
located 160 km southeast of Quito. The inversion box is centered at 1.5◦ S, 78.0◦

W and at a depth of 171 km, with dimensions of 131 km E-W, 111 km S-N and a
heigth of 143 km .

721 seismic events are a priori located within the box. Based on a L-curve analysis
(figure 6.30) we set the damping parameters at ξ0 =7 km and λ = 0.2.
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green lines

The complete list of inversion parameters is as follows :
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σvP σvP /vS ξH ξV ξ0 λ

250m/s 0.05 10km 10km 7km 0.2

The figure 6.31 displays the 3 cross sections oriented W-E, E 20◦ S and E 30◦ N (see
figure 6.25) of the nest. This latter orientation points out a preferential direction
of the relocalization of the nest (right of figure 6.31) which is associated with a
normal structure of the velocities, and approximately coincides with the direction
of the Grijalva Fracture Zone. (figure 6.24). The orientation E 20◦ S corresponds
to the line joining the La Mana and the Puyo nests.
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Figure 6.31: Vertical cross sections of the Puyol nest respectively oriented W-E (left), E 20◦ S (mid-
dle), E 30◦ N (right). All the seismicity is represented and z is the vertical coordinate in the reference
box.

The relocalization shows that the nest is actually well concentrated over a plan, and
allows a precise determination of this clustering plan with a strike angle of about
N 30◦ W and a dip angle of about 40◦. Furthermore, the Harvard CMT catalogue
shows that the focal normal mecanisms of the 24 Mw ≥ 5 events available on the
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website are very homogeneous with a strike of the nodal plans compatible with
that of the nest.

6.5 A discontinuous slab ?

Let us now come back to the topology of the slab in trying to adopt the opposite point
of view of the conservative and mainstream paragraphs 6.3.2-6.3.3. Let us start by
considering the cross section oriented N 20◦ E that passes through the 3 nests of Guyaquil,
La Maná and Maldonado and the perpendicular one that joins the La Maná and the Puyo
nests (figure 6.32).

−82˚

−82˚

−81˚

−81˚

−80˚

−80˚

−79˚

−79˚

−78˚

−78˚

−77˚

−77˚

−5˚ −5˚

−4˚ −4˚

−3˚ −3˚

−2˚ −2˚

−1˚ −1˚

0˚ 0˚

1˚ 1˚

0 < km < 20 

20 < km < 50

50 < km < 100

100 < km < 150

150 < km < 200

200 < km < 250

Figure 6.32: Positions of the two orthogonal cross sections centered near La Maná with orientations
N 20◦ E and E 20◦ S. The shallow seismicity beneath and at the east of the Andean range has been
removed.

The figure 6.33 shows that the La Maná nest corresponds to a discontinuity of the
domaine vP > 8.2 km/s of the P wave velocity model that would suggest a discontinuity
between a northern slab and a southern slab or at lest a change in the constitution of
the slab.
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South North

Figure 6.33: Cross section of the P velocity model centered at the La Maná cluster and oriented
N20◦E.

To follow this anomaly let us have a look at the perpendicular cross section oriented
E 20◦ S that connects the La Maná with the Puyo nest (figure6.32). The discontinuity
extends down to 170 km depth (figure6.34) and a new high velocity domain arises above
the Puo cluster. The Wadati-Benioff zone is well defined down to the La Maná nest, but
between this cluster and the Puyo nest the seismicity is sparse and not in the continuity
of the slab (6.34).

West East

Figure 6.34: Cross section of the P velocity model centered at the La Maná cluster and oriented
E20◦S. The La Maná and Puyo nests are clearly identifiable.
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To go further on in the exploration of this high velocity discontinuity the figure 6.35
displays in 3-D the domain defined by vP ≥ 8.1 km/s that gives us a rough representation
of the subducted Nazca plate. The figure at the top does replace in the 3-D context the
two cross sections 6.33 and (6.34).

Figure 6.35: Velocity isovolumes vP ≥ 8.1km/s in the result model. Seismicity represented as dots.
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Furthermore, the intermediate-depth seismicity, superimposed in 6.35 shows that the
Guayaquil and Maldonado clusters are directly related with changes in the dip of the
subduction (bottom figure 6.35). Instead, the La Maná cluster is directly situated in the
zone of low velocity which connects with the Puyo cluster (figure 6.35).

We can also observe that the Puyo nest is continuously connected to the southern
slab without any discontinuity in the slope, but rather by a continuous seismicity from
the Peruvian flat slab to an increasingly sloping southern slab passing under the northern
structure. (midle and bottom, figure 6.35),

To make this latter point completely clear, the figure displays in 3-D the seismicity
as seen from the south-east and from the north-west. It shows the continuity of the
seismicity of the Peruvian slab down to the Puyo nest, and from the Puyo nest up to
the Guayaquil cluster.

Figure 6.36: Seismicity of the Puyo seismic nest showing a continuity of the southern slab

In order to try to explain the velocity difference between 8 km/s and 8.2 km/s that is
related to this apparent gap of the slab at the level of the La Maná nest, let us consider
the relation between the P wave velocity and the pressure (depth) and temperature in
the mantle (Cammanaro, Goes, Vacher and Giardin, 2003 and figure 6.37). The left
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graphic shows that a decrease in velocity from 8.2 to 8 km/s corresponds to an increase
in temperature of about 500◦C at a depth of 100 km and for the same rheology.

Figure 6.37: Theoretical values of P wave velocity (left) and its standard deviations (right) for the
Earth mantle. Results are reported in function of pressure and depth in vertical axes and temperature
(◦C) in horizontal axis. Figure from Cammanaro, Goes, Vacher and Giardin, 2003.

This low velocity anomaly in the slab does not allow us to claim that there exist a
tearing of the slab up to the trench. It could rather exhibit a zone where the subducted
Nazca plate is hotter. Moreover, our present dataset does not allow a very accurate reso-
lution of the slab near the trench. The incorporation of the data of the ADN experiments
and of the last sequence following the April 2016 earthquake would surely substancially
improve the resolving power of the whole data set. The Puyo cluster, however, clearly
represents a zone where the slab has broken since in the three dimensional representa-
tion we can see the southern slab passing beneath the northern slab (figure 6.35). This
could confirm and clarify the high velocity zone above the Puyo cluster as showed in the
tomographic P velocity images of this cluster (figure 6.31).

The orientation about E 20◦ S of this gap cannot be related to the Grijalva Fracture
Zone, which corresponds to the initial spreading center between the Cocos and Nazca
plates, and the orientation of which is approximately that of a line joining the Guayaquil
with the Puyo nest. But, although the opening of this ridge has been stopped between
the coastal subduction zone and the Panama fault to the West for about 10 million years
( Londsdale, 2005), the opening ridge, when subducting, swept before all the shallower
mantle beneath central and northern Ecuador.

6.6 Mohography

The velocity model, displayed in figures (6.3,...,6.9) allows us to build a model of Moho
depth. Since this depth usually corresponds to a jump in P velocity between about 6.9-7.0
km/s and 7.9-8 km/s, we search at each latitude and longitude the depth corresponding
to the maximum of the norm of the velocity gradient in the range of velocity between 7.2
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km/s and 7.4 km/s. This approach is thus a trade off between the strategy consisting
in identifying the Moho with an iso-velocity surface and the one consisting in taking the
depth of maximum norm of the gradient.

We have tested the approach with a lot of models corresponding to a wide range of
tuning parameters, varying the damping length ξ0, the vertical and horizontal smoothing
lengths ξV and ξH . We observed a relative stability for the resulting Moho depths. Our
final choice corresponds to the following set of tuning parameters for the model (resulting
of the data inversion): ξ0=5 km, ξH =35 km, ξV = 15km that yields the raw model
displayed in Figure 6.38. You can observe that we prefered to use a stronger damping (a
lower ξ0) and a shorter vertical smooting length (ξV = 15km) than for the tomographic
model diplayed in figures (6.3,...,6.9) to obtain a better vertical resolution near the base
of the crust.
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Figure 6.38: Maximum of gradient velocity norm between isovelocities 7.2km/s and 7.4km/s for the
resulting tomography model of vP .

This raw Moho model (figure 6.38) must be clearly smoothed and complement with
information in the North East and the West to compensate the lack of resolution of our
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tomography in these areas.

6.6.1 Complementing information on Moho depth

For the west area over the Pacific ocean and the margin, we took advantage of the seismic
profiles determined by travel time inversion of wide angle seismic data acquired during
the marine seismic experiments SISTEUR (Collot et al. 2002) and SALIERI (Flueh et
al., 2001) off the Ecuadorian coastine. More precisely we used (Figure 6.39):

Figure 6.39: Positions of the three seismic profiles used for the mohography profile 2 SALIERI (white
line, Sallares et al., 2005), SIS-4 and SAL-2 (Gailler et al., 2004; Graindorge et al. 2004). The figure
is from Gailler et al., 2004.

• the results of the profile2 (SALIERI) across the Carnegie ridge, running alongside
the Ecuadorian coast at the west of the trench (Sallares et al., 2005, Figure 3 and
Gailler et al., 2007, figure 5).
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• The SIS(TEUR)4 transect at 1.4◦S along the southern flank of the Carnegie ridge
(Gailler et al., 2007, figure 5).

• The SAL(IERI)2 transect in the Guayaquil gulf between about 2.5◦ S, 82◦ W and
3◦ S, 80.5 W (Gailler et al., 2007, figure 5, Graindorge et al., 2004, figure 4).

From the figures of these three profiles indicating the Moho discontinuity, we have
built a N-S profile of the oceanic crust thickness at 81.875◦ W between 1.5◦ N to 3.5◦ S.
(figure 6.40). This profile approximately corresponds to the crust thickness of the profile
2 (SALIERI) given by Sallares et al. (2004) between 1◦ N and 1◦ S. It rougthly matches
the thickness of Graindorge et al. (2004) and Gaillet et al. (2007) at about 2.6◦ S and
reaches a thickness of 7.5 km at the northern side (3◦ S) of the Grijalva Fracture Zone
(GFZ). At the south of the GFZ the thickness is set at 5.5 km taking the jump of 500
m across the GFZ of the bathymetry (Londsdale, 2005) into account through a simple
isostasy evaluation. At the northern limit the extrapolated value is 7 km.

  

Figure 6.40: Left: the crust thickness profile at 81.875◦ W deduced from the three wide-angle seismic
profiles (SALIERI and SISTEUR). Right: map of the bathymetry (the trace of the left cross section is
indicated in red).

To obtain the Moho depth down to a depth of 35 km, the general strategy was to
propagate this reference profile of crust thickness following the azimuth of convergence
(N 83◦ E) and to add either the local bathymetry or the depth of the slab as determined
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in paragraph (6.3.3), depending on the position with respect to the trench. We also
virtually propagate the GFZ across Ecuador to take the corresponding jump in crust
thickness into account. The precise algorithm is as follows:

1. In the North of the GFZ and to the West of the trench, the 81.875◦ W crust
thickness (fig. 6.40) is propagated in the direction of the azimuth of N 83◦ E
throughout the area, and the local bathymetry is added at each point to obtain
the local Moho depth.

2. In the South of the GFZ and to the West of the trench, the thickness of the crust is
set at the constant value of 5.5 km, and as in the previous item the local bathymetry
is added to obtain the Moho depth.

3. In the north of the GFZ and to the East of the trench, the value of the crust
thickness is, as in the first item, the reference thickness (at 81.875◦ W) propagated
following the azymuth N 83◦ E, but, this time, multiplied by the factor 1 − |λ −
λ(trench)|/2, where λ and λ(trench) stands respectively for the longitude of the
point and the longitude of the trench at the latitude of the point in degree. This
correcting factor encounts for the thinning of the crust when subducting. The
depth of Moho is obtained by adding this resulting thickness to the depth of our
slab model instead of the bathymetry.

4. In the south of the GFZ and to the East of the trench, the evaluation is the same
as in the previous item but in assigning the value of 5.5 km to the crust thickness
before correction.

In the North-East of the box, we use the Isostasy approach to complement the in-
formation. Taking as reference a crust at the sea level with a thickness of 35 km, the
simple isostasy yields :

∆ = kh with k =
ρs

ρm − ρc
and ∆ = z − 35

where z is the depth of Moho (in km), h is the altitude, ρs, ρc, ρm are respectively
the density at the top, the bottom of the crust and at the top of the mantle. Taking
respectively for these latter densities the values of about 2.7, 3.0, 3.3 yields k of the
order of 9. Based on our model of the depth of Moho and on the model Etopo1 we have
sampled this coefficient k in a domain between 0.5◦ S and 0.5◦ N, 77.5◦ W and 79.2◦ W
adjacent to the zone to infer, and obtained a median value of 8.7133 that confirms our
Moho model. Based on this value of k we have extrapolated the depth of Moho over the
N-E of the box by using the above formula and a locally averaged altitude.

The resulting models of the Moho depth, West and North-East of the box, are dis-
played in figure 6.41. We have also incorporate 11 values of the Moho depth derived from
the profile SAL2 in the Guayaquil gulf (Gailler et al., 2007) because our model does not
fit well these data, as can be seen in the figure 6.41.
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Figure 6.41: Moho depth model derived from seismic profiles SALIERI and SISTEUR (West of the
box), and by isostasy (Nort-East of the box). The 11 depths values derived from the profile SAL2 (Gailler
et al., 2007) are represented by disc, the color of which corresponds to the scale on the right.

6.6.2 Matching Moho information

To match all this information we adopt the same stochastic formalism as for the slab
depth in (6.3.3). The data are the various depth values coming from either our raw
model (figure 6.38) or the complementary models (figure 6.41). The correlation kernel
is the kernel :

Cor(x,x′) =
1

cosh
(
||x−x′||

L

)
for any x = (x, y) and x′ = (x′, y′) in the reference plan of the box, and where L is the
smoothing length.
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To set the standard deviation of the data, we have analytically defined a weight
function w(x, y) (figure 6.42) ranging between 0 and 1 and that takes the value 1 in the
area in which the influence of the raw model must be enhanced and 0 where it must be
removed.
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Figure 6.42: The weight function w(x, y) for standard deviations

By using this function w(x, y) the standard deviation σd(x, y) of a datum d located
at (x,y) are given by:

σd(x, y) = σmind +


w(x, y)(σmaxd − σmind ) for data of the raw model

(1− w(x, y))(σmaxd − σmind ) for data of a complementary model

except for the data corresponding to the SAL2 profile for which σd increases linearly
from 1.5 km to 4 km when going eastward. We set σmin = 1 km and assigned the value
20 km to σmax for the western region and 30 km for the North-eastern area; so that the
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standard deviations of the raw data ranges from 1km in the red area to 30 km in the
northern blue area and to 20 km in the western; those of the northern complementary
data from 1 km in the northern region to 30 km in the other ones, and those of the
western complementary data from 1km in the western region to 20 km in the other ones.

We have tested a wide range of values of L between ten and a few hundred of kilo-
meters for various values of σm and finally set: L = 35 km and σm = 10 km to obtain
the model displayed in figure 6.43.
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Figure 6.43: Map of the Moho. The color scale for the depth is on the right side
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The figure allows the identification of the three sedimentary basins in the coastal
region, namely the Borbón, Manab́ı and el Progreso basins, and further South the basin
of Celica-Lancones. We can also observe the dramatic transition between the coastal
plains and the Cordilleras, the InterAndean depression (outside the N-E zone), and the
two holes in the continental margin North and South of the Carnegie ridge. The Eastern
Andean Belt is also visible. We can also observe the impact of the points of the SAL2
profile on the model at the western limit of the Guayaquil gulf.

Finally, given the models of topography of the Moho and of the slab, we can compute
the model of thickness of the mantle wedge over the region, which is displays in figure
6.44. The pattern of the figure is strongly correlated with the quasi-rigid part of the
motions of the called Inca and North Andean slivers (Nocquet et al. 2014). It suggests
that the promontory of the slab at the latitude of the Guayaquil gulf plays a key role in
the Ecuadorian deformation at the surface.
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Figure 6.44: Thickness of the mantle wedge as deduced from the slab and Moho models.
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6.7 Differential Tomography of the Cotopaxi vol-

cano

To test the tomography by differences of arrival times between stations of a dense network
described in paragraphs 2.4.2 and 4.3.4, we now focus on a relatively dense network
settled on a geological object of interest: the Cotopaxi volcano.

Cotopaxi volcano (5897m) is situated 60 km south of Quito between the interandean
valley and the rim of Chalupas caldera, which is part of Eastern Ecuadoran Cordillera.
This active andesitic volcano, with a base diameter of 22 km and almost 3000 m of relief
over the Limpiopungo plain, is covered by an icecap over the uppermost 1000 m of the
cone. Rhyolitic and andesitic bimodal magmatism has occurred periodically during the
past 0.5 Ma (Hall and Mothes, 2007; Mothes and Hall, 2008), and the volcanic edifice
partly collapsed during the Colorado canyon episode (4,500 years BP) in the north-east
sector of the volcano. The present andesitic episode that began following this event,
is characterized by VEI=3-4 (Volcanic Explosivity Index) events approximately every
100-150 years (Hall and Mothes, 2008). Initial rhyolites of the 4,500 years BP Colorado
canyon episode have a close chemical affinity with magmas emitted by Chalupas caldera.
Interpreting U-Th isotopic data, Garrison et al. (2006) proposed that ryholites from
Cotopaxi volcano are the result of partial melting of residual solidified Chalupas caldera
magma. Based on the seismic monitoring of the volcano, Ruiz et al. (1998) pointed out
a constant occurence of Long-Period (LP) events yielding a low activity in the volcano.
This activity was located below the summit, from an altitude of 4 km down to a depth
of 8 km under sea level. Métaxian et al. (2003) analyzed LP events by comparing events
recorded on ice near the summit, and on rock near the snout of the north flank glacier.
They pointed out that icequakes can be mixed up with volcanic LP events, when recorded
far away from the glacier, because of similarities in waveform and spectral content. The
seismicity significantly changed after 2000 with an increase of the number of LP events in
January 2001, followed by a swarm of Volcano-tectonics (VT) earthquakes in November
2001 (Molina et al.,2008). Very Long-Period (VLP) events, presenting a broad spectral
peak around 2s, were recorded by Molina et al.(2008) in 2002. By waveform inversion of
these signals they determined a vertical crack extending north-south, at a depth ranging
between 2 and 3 km below the north-east flank. They interpreted the VLP/LP seismicity
as a magmatic intrusion that triggered a swarm of VT events. LP events were thought
of as resonance of cracks located above the magma system. Since August 2015 Cotopaxi
volcano has presented high phreatic activity with episode of steam explosions and ash
emissions.

The strategy of tomography consists in defining a local inversion box that contains
the roots of the Cotopaxi and the stations of a dense network and, based on the regional
model and on the global event localisations, in inverting the differences of travel times
between the stations for the structure and the locations of the events within the inversion
box. The structure and the location of the events outside the inversion box remain
unchanged through the inversion, but the P and S rays must be computed at each
iteration over the whole reference box. For the events which are localized far away from
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the box, the difference of travel times between two stations of the box is mainly function
of the local stucture as the rays almost coincide with each other near the source.

The inversion box is centered at 0.68◦ S and 78.43◦ W with a base of 36 km× 36 km
and a vertical heigth of 30 km. Based on the local seismicity, the bottom of the box
lies at a depth of 22 km below the reference ellipsoid at the center. The box contains
22 stations of the RENSIG network and 12 seismic stations of a temporary experiment
conducted in 1996-1997 (Métaxian et al., 1999). Retaining only among the catalogue of
25 422 events, those of the events for which at least 5 phases were recorded by stations
of the box, it remains 8 821 events for the tomography.
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Figure 6.45: Cotopaxi seismic stations used in study of differences tomography. Dashed lines gives
direction of tomography cross sections.

After several tests, we set the physical and tuning parameters as follows:

σvP σvP /vS ξH ξV ξ0 λ

750m/s 0.10 3km 3km 1.5km 0.3

The resulting model is displayed in figure 6.46 along three cross sections, E-W, S-N
and N 45◦ E.
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The results for the vP models (top figure 6.46) show a basement with velocity vP '
6 km/s slopping westward toward the InterAndean valley, overlaid with lower velocity
layers reaching vP ' 2.5km/s near the surface in the south west flank of the edifice
at the apex of the quasi vertical cluster of seismicity. This cluster of seismicity takes
place in a region of low vP/vS ' 1.6 ratios that characterize gas-bearing rocks, i.e. high
fluid compressibility, while high values of this ratio characterize liquid-bearing rocks, i.e.
high fluid compressibility (Vanorio et al., 2005, and its bibliography). This suggests a
seismic activity triggered by gaz activity rather than partial melted rocks and magma
transport. The only zone of relatively high values of the ratio vP/vS is localized under
the flank N-E of the edifice that coincides with the position of the seismic activity of long
period and volcano-tectonic earthquakes detected during the unrest period of Cotopaxi
in 2001-2002, and interpreted as triggered by a magmatic intrusion associated to a crack
ranging at a depth of 2 or 3 km (Molina et al., 2008). We can also observe very low
values (down to 1.54) of the ratio vP/vS beneath the S-W flank of the edifice and the
Chalupas caldera situated to the east that are absolutely incompatible with the presence
of partially melted rocks.
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Mapas del margen continental del Norte de Ecuador y del Suroeste de Colombia :
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las islas Galápagos. Editores Jean-Yves Collot, Valenti Sallares, Nelson Pazmiño.
INOCAR.

[56] Graindorge, D., A., Calahorrano, P., Charvis, J.-Y. Collot, N., Bethoux, 2004,
Geophy. Res. Letters, Vol. 31, doi:10.1029/2003GL018803, 2004.
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[99] Monteiller, V., J-P Métaxian, B. Valette, S. Araujo, 2010, Seismic tomography of
Cotopaxi Volcano, Ecuador: a two-scale approach, Preprint submitted to Earth
and Planetary Science Letters January 22, 2010.

[100] Monteiller, 2005, Tomographie à l’aide de décalages temporels d’ondes sismiques
P : développements méthodologiques et applications, Thése Doctoral, Université
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as natural laboratories for the study of intermediate-depth earthquake mechanics,
Tectonophysics 570–571 (2012) 42–56.

[121] Reguzzoni M., Sampietro D, 2012, Moho estimation using GOCE data: a numerical
simulation. In: International Association of Geodesy Symposia, Geodesy for Planet
Earth, Kenyon SC, Pacino MC, Marti U (eds), 136:205-214.

[122] Reyes, P., O. Dauteuil, F. Michaud, 2011, Cuantificación relativa del levantamiento
de la Cordillera Costera (Ecuador): resultados preliminares a partir de geomor-
foloǵıa cuantitativa, 7 Jornadas en Ciencias de la Tierra. Noviembre 2011, Quito.

[123] Rhea, S., G. Hayes, A. Villaseñor, K. P. Furlong, Tarr, A.C., and Harley Benz,
2010, Seismicity of the Nazca Plate and South America: U.S. Geological Survey
Open-File Report XXXX, scale 1:12,000,000.

[124] Rodgers, C.D., 2000, Inverse Methods for Atmospheric Sounding: Theory and
Practice, World Scientific Publishing Co. Ltd.

[125] Ruiz, M., B. Guillier, J. Chatelain, H. Yepes, M. Hall, P. Ramon, 1998, Possible
causes for the seismic activity observed in Cotopaxi volcano, Ecuador, Geophys.
Res. Lett., 25, 2305–2308.

[126] Sallarès V., P. Charvis, E.R. Flueh, J. Bialas and the SALIERI Scientific Party,
2004, Seismic structure of the Carnegie ridge and the nature of the Galápagos
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