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Évaluation de la résistance mécanique du béton dans les ouvrages existants en 
utilisant les tests non-destructifs et carottes: analyse de la méthodologie courante 

et recommandations pour évaluation plus fiable 

Résumé   

Pour évaluer la résistance mécanique du béton dans un ouvrage existant, la méthodologie 

courante combine des mesures non destructives (CND) comme le rebond ou/et la vitesse des 

ondes ultrasoniques avec la technique destructive (carottes) afin de produire une relation 

‘‘modèle de conversion” entre la résistance mécanique et les mesures CND. Le modèle de 

conversion est utilisé pour estimer la valeur locale de résistance mécanique à chaque 

emplacement de test en utilisant la valeur CND correspondante. Ensuite, on calcule les 

estimations de la résistance moyenne et/ou de l’écart-type de la résistance  (variabilité de la 

résistance du béton). Cependant, la fiabilité d’estimation est toujours discutable en raison des 

incertitudes associées à l’évaluation de la résistance basée sur les mesures CND. Pour 

améliorer la fiabilité, les incertitudes doivent être réduites en spécifiant et en contrôlant leurs 

facteurs d’influence. Par conséquent, l’objectif de cette thèse est d’analyser la méthodologie 

d’évaluation courante  afin de fournir des recommandations pratiques qui peuvent améliorer 

la fiabilité de l’évaluation de la résistance in-situ du béton dans les ouvrages existantes par des 

tests non destructifs et des carottes.  

Pour ce but, un simulateur a été construit afin d’analyser les effets des facteurs les plus 

influents en utilisant une vaste campagne de données provenant de sources différentes (études 

in situ ou en laboratoire et données synthétiques générées). 

La première contribution de ce travail est le développement d’une nouvelle approche 

d’identification du modèle ‘‘bi-objectif” qui peut efficacement capturer la variabilité de la 

résistance mécanique en plus de la moyenne. Après avoir étudié l’effet du mode de sélection 

des emplacements pour les carottes, une méthode a été proposée pour sélectionner ces 

emplacements en fonction des mesures CND ‘‘sélection conditionnelle” qui améliore la 

qualité de l’évaluation sans coût supplémentaire. Une dernière innovation est l’établissement 

de courbes de risque qui quantifient la relation entre le nombre de carottes et la précision de 

l’estimation. Enfin, des recommandations ont été formulées afin de fournir des estimations 

plus fiables.  

 

Mots-clés: résistance in-situ du béton, résistance mécanique moyenne, variabilité du béton, 

vitesse des ondes ultrasoniques, rebond, CND, combinaison, simulation, incertitude, stratégie 

d’évaluation, fiabilité d’évaluation 
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Assessment of concrete strength in existing structures using nondestructive tests 
and cores:  analysis of current methodology and recommendations for more 

reliable assessment 

Abstract  

To assess concrete strength in an existing structure, the current methodology combines 

nondestructive measurements (NDT) like rebound hammer or/and pulse velocity with 

destructive technique (cores) in order to implement a relationship ‘‘conversion model” 

between the compressive strength and NDT measurements.  The conversion model is used to 

estimate the local strength value at each test location using the corresponding NDT value. 

Then the estimated mean strength and/or estimated strength standard deviation (concrete 

strength variability) values are calculated. However, the reliability of these estimated values is 

always a questionable issue because of the uncertainties associated with the strength 

assessment based upon NDT measurements. To improve the reliability, the uncertainties must 

be reduced by specifying and controlling their influencing factors. Therefore, the objective of 

this thesis is to analyze the current assessment methodology in order to provide practical 

recommendations that can improve the reliability of assessing the in-situ strength in existing 

concrete structures by nondestructive tests and cores. 

To this end, a simulator was built in order to analyze the effects of the most influencing 

factors using a large campaign of datasets from different sources (in-situ or laboratory studies, 

and generated synthetic data). 

The first contribution of this work is the development of a new model identification approach 

“bi-objective” that can efficiently capture the strength variability in addition to the mean 

strength. After studying the effect of the way of selection the core locations, a method was 

proposed to select these locations depending on the NDT measurements “conditional 

selection” that improves the quality of assessment without additional cost. A third innovation 

was the development of a procedure to identify the relation between the number of cores and 

the accuracy of the estimation. Finally recommendations were derived in order to provide 

more reliable estimated values. 

 

Keywords : in-situ concrete strength, mean strength, concrete variability, ultrasonic pulse 

velocity, rebound hammer, NDT, combination, simulation, uncertainty,  assessment strategy,  

assessment reliability 
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RÉSUMÉ SUBSTANTIEL 

Introduction 

La méthodologie actuelle pour évaluer la résistance mécanique du béton d’un ouvrage 
existant combine des mesures non destructives (CND) comme la mesure du rebond au 
marteau d’impact (R) et/ou la mesure de la vitesse de propagation des ondes ultrasonores (V) 
avec des mesures destructives (sur carottes) de manière à développer une relation, nommée 
“modèle de conversion”, entre la résistance mécanique (��) et les mesures non destructives. Le 
modèle de conversion est utilisé pour estimer ensuite la valeur locale de la résistance en 
chaque emplacement de test à partir de la valeur de la propriété ND qui a été mesurée. On 
peut alors calculer la résistance moyenne estimée et/ou l’écart-type de la résistance estimée 
(variabilité de la résistance du béton). Toutefois, la fiabilité de ces estimations reste une 
question ouverte. Améliorer cette fiabilité impose de réduire les incertitudes, de préciser et de 
contrôler les facteurs influents. L’objectif de cette thèse est d’analyser en détail les différentes 
étapes de la méthodologie d’évaluation afin de proposer des recommandations pratiques pour 
améliorer la fiabilité de l’estimation sur site de la résistance mécanique du béton, en 
combinant carottes et mesures non destructives. 

Méthodes et Outils 

Les analyses qui seront conduites dans ce travail s’appuient sur une logique et des outils que 
l’on retrouvera tout au long du mémoire. 

Dans un premier temps, on définira les éléments principaux de la stratégie d’évaluation dans 
laquelle on distinguera deux étapes : le programme d’investigation et l’estimation de la 
résistance.  

Le programme d’investigation est conditionné par les ressources disponibles (budget, délais) 
et couvre :  

(a) la sélection de la technique CND utilisée (mesure de rebond, mesure de vitesse ou 
combinaison des deux),  

(b) le choix du nombre de mesures de chaque type, non destructives et destructives, et du 
nombre de répétitions pour les essais ND (c’est à dire du nombre de mesures que l’on fait 
pour en déduire un résultat d’essai),  

(c) la manière dont on choisit les emplacements de tests, soit de manière prédéfinie ou 
arbitrairement pour les mesures ND et soit de manière prédéfinie ou arbitrairement ou sur 
la base des résultats des mesures ND pour les carottes (on parle alors de “carottage 
conditionnel”). 

L’estimation de la résistance a trait à l’analyse des résultats d’essais et à leur traitement pour 
en déduire et utiliser un modèle de conversion. Elle passe par : 

(a) le choix de la forme de modèle de conversion (les modèles explicites peuvent avoir une 
forme linéaire, polynomiale, exponentielle…) et de l’approche d’identification de ses 
paramètres (on peut utiliser un modèle a priori sans calibration, ou bien utiliser une 
approche  de calibration, ou bien encore identifier un modèle directement par l’approche 
de régression), 

(b) l’utilisation du modèle retenu pour estimer la résistance mécanique locale aux 
emplacements où l’on ne dispose que des résultats des essais ND. Ces valeurs estimées 
peuvent enfin être utilisées pour estimer la résistance moyenne et la variabilité de la 
résistance. 
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Le travail de recherche reposera concrètement sur l’analyse de ressources, sous la forme de 
séries de données (résultats d’essais ND, résistance mécanique sur carottes). Trois familles de 
séries de données seront exploitées au fil de ce travail : des données issues de travaux de 
laboratoire, des données issues de structures réelles, des données synthétiques.  

Dans les deux premiers cas, les données seront issues de la littérature existante ou de 
partenariats avec d’autres chercheurs. Nous exploiterons au total 39 jeux de données réelles 
qui couvrent une large gamme de bétons. Ces données correspondent à 3922 emplacements de 
tests, où les informations disponibles peuvent se présenter sous la forme d’une mesure ND et 
de la résistance ((V,��), ou (R,��)) ou de deux mesures ND et de la résistance (V,R,��). Sur 
l’ensemble de ces emplacements de tests, 358 sont issues de mesures sur ouvrages. Une 
collaboration avec le Pr. S. Kenai et K. Ali-Benyahia (Algérie) nous a donné accès aux 
résultats d’un programme d’investigation systématique conduit sur un bâtiment avant leur 
destruction. Une collaboration avec l’Université de Budapest (Pr. A. Borosnyói, K. Szilágyi) 
nous a donné accès à plus de 2900 résultats d’essais (R,��) issus de différents travaux de 
laboratoire. Ces jeux de données montrent une grande diversité des caractéristiques du béton 
(composition, âge, conditions de cure…) et des conditions de mesure. Tous ces jeux 
contiennent aussi bien les valeurs des résultats d’essai (valeur du rebond) que celle des 
mesures individuelles (il faut 10 répétitions de la mesure du rebond pour déduire un résultat 
d’essai). Cette information est essentielle pour étudier la qualité des mesures (répétabilité des 
mesures). 

Tous les jeux de données existants, aussi exhaustifs soient-ils, ont des limites, ne serait-ce que 
par l’impossibilité qu’il y a à étudier séparément chacun des facteurs pouvant avoir une 
influence sur la qualité finale de l’évaluation. C’est la raison pour laquelle nous avons aussi 
travaillé avec des données synthétiques. Nous avons développé une procédure de simulation, 
sur la base des propositions de (Breysse D. , 2012; Breysse & Martínez-Fernández, 2014). Les 
simulations synthétiques offrent de multiples avantages: 

(a) la capacité de modifier chacun des facteurs influents (c’est à dire chacun des degrés de 
liberté cités ci-dessus en définissant la stratégie d’évaluation) pour étudier comment la 
qualité de l’évaluation de la résistance est affectée, 

(b) la possibilité de générer un nombre illimité de mesures (résultats ND, résistance) alors que    
les limites budgétaires et opérationnelles rendent ceci impossible sur ouvrage réel, 

(c) la possibilité de quantifier l’écart entre la résistance estimée à l’issue de la procédure et la 
résistance simulée (“vraie” pour les données synthétiques), ce qui est bien entendu 
impossible avec des données réelles. 

L’ensemble de ces avantages confère une grande souplesse à l’emploi de données 
synthétiques, et les conclusions tirées des données synthétiques seront confrontés, autant que 
possible, à des résultats obtenus sur des jeux de données réelles. 

La procédure de simulation s’appuie sur un simulateur développé en langage VBA (Visual 
Basic for Applications) sous Excel. Le simulateur a deux fonctions principales : la génération 
des données synthétiques, et la simulation et l’analyse des stratégies d’évaluation. Cette 
seconde fonction sera utilisée pour les jeux de données synthétiques et réelles. 

Analyse de la méthodologie d’évaluation actuelle  

Cette analyse est divisée en trois parties. Dans un premier temps, on étudie l’effet de plusieurs 
facteurs influents sur la qualité de l’évaluation. Ces facteurs sont :  
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- le nombre NC d’emplacements où l’on prélève des carottes qui seront utilisées pour 
identifier le modèle de conversion,  

- la qualité des mesures ND, via leur répétabilité, 

- la variabilité en place de la résistance du béton, 

- la forme mathématique du modèle de conversion, 

- le choix d’une estimation sur la base d’un seul type de mesures ND ou de mesures 
combinées. 

Pour analyser ces effets, les différents types de données (réelles de labo ou sur ouvrage, 
synthétiques) seront considérés. Pour quantifier la qualité du modèle de conversion et son 
aptitude à évaluer la résistance, on calculera les coefficients de détermination r

2
 et l’erreur 

quadratique moyenne RMSE. Ces valeurs seront calculées de deux manières : en considérant 
uniquement les emplacements de tests avec des carottes servant à identifier le modèle (erreur 
d'ajustement) et en considérant toutes les emplacements de tests avec des mesures ND mais 
sans carottes (erreur de prédiction). 

Les résultats de ces analyses montrent l’effet majeur du nombre d’emplacements de tests pour 
les carottes utilisées pour identifier le modèle, NC, sur l’erreur. Pour de petites valeurs de NC, 
l’erreur d’ajustement est faible (voire nulle) mais l’erreur de prédiction est forte. Cependant, 
quand NC augmente, l’erreur de prédiction se réduit progressivement, même si elle demeure 
toujours strictement supérieure à l’erreur d’ajustement. On en déduit que seule l’erreur de 
prédiction doit être utilisée comme une mesure représentative de la qualité de l’évaluation. 

La variabilité in-situ de la résistance (via l’écart-type vrai �ሺ����ሻ)  joue aussi un rôle: 
augmenter �ሺ����ሻ conduit à une augmentation de RMSE, mais à un taux tel que l’erreur 
relative RMSE/�ሺ����ሻ diminue. Cela conduit à être vigilant quant à la manière d’exploiter les 
résultats, puisque l’on peut parvenir à des conclusions contradictoires selon que l’on considère 
une erreur absolue ou une erreur relative. 

L’analyse montre aussi l’impact significatif de la qualité des mesures sur la qualité de 
l’évaluation finale, alors que le choix de la forme du modèle de conversion a peu d’effet : il 
est limité aux faibles valeurs de NC, pour lesquelles un modèle linéaire réduit l’erreur. Le 
dernier facteur étudié est l’efficacité de combiner deux techniques ND (mesure de vitesse et 
mesure de rebond) avec les mesures de résistance sur carottes. Les résultats montrent que la 
combinaison n’est pas toujours efficace, et que son efficacité dépend du NC et de la qualité 
des mesures. 

La seconde partie de cette étude repose sur l’analyse de différentes stratégies qui ont été 
définies et employées par des experts dans le cadre d’un benchmark international mené au 
sein du TC ISC 249 de la RILEM. L’objectif du benchmark est de comprendre quels sont les 
facteurs qui déterminent l’efficacité de ces stratégies et de quantifier cette efficacité pour 
l’estimation de la résistance moyenne aussi bien que pour celle de la variabilité. Cette 
efficacité est quantifiée en répétant des séries de 1000 simulations de structures synthétiques 
possédant les mêmes propriétés statistiques et en définissant des indicateurs pertinents pour 
l’efficacité des estimations. 

L’analyse des stratégies illustre que les valeurs estimées montrent une dispersion significative 
au fil des simulations, qui ne peut être négligée : répéter une même stratégie sur un bâtiment 
différent, mais possédant les mêmes caractéristiques d’un point de vue statistique peut 
conduire à des estimations qui s’écartent plus ou moins des valeurs vraies. L’intérêt des 
simulations synthétiques est de révéler cette propriété, et d’en permettre la quantification. On 
montre en particulier qu’aucune des stratégies ne permet d’estimer de manière fiable la 
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variabilité du béton (écart-type de la résistance). Après avoir étudié l’effet du mode de 
sélection des emplacements pour les carottes, une méthode a été proposée pour sélectionner 
ces emplacements en fonction des mesures CND “sélection conditionnelle” qui améliore la 
qualité de l'évaluation sans coût supplémentaire. 

La troisième partie s’intéresse aux approches existantes pour identifier le modèle de 
conversion : identification par régression ou par calibration d’un modèle a priori, avec deux 
variantes, par translation (méthode-Δ) ou affinité (méthode-k)). Ces approches sont 
appliquées à huit bases de données réelles (quatre bases avec des mesures de rebond et quatre 
bases avec des mesures de vitesse) pour estimer la résistance moyenne et l’écart-type des 
résistances. Les résultats obtenus montrent que toutes les approches (régression ou 
calibration) peuvent estimer de manière efficace la contrainte moyenne. Dans tous les cas, 
augmenter NC améliore la précision de l’estimation. Cependant ces approches sont toutes 
limitées ou défaillantes pour l’estimation de la variabilité, que l’on dispose de mesures de 
rebond ou de vitesse. Cette conclusion revêt un caractère général et impose une approche 
originale. 

Développement d’une nouvelle approche d’identification de modèle: approche bi-
objectif 

L’inaptitude des approches existantes d’identification à estimer la variabilité du béton a été 
confirmée. Nous proposons dans cette partie une procédure innovante, nommée “approche bi-
objectif” qui permet d’estimer à partir des mêmes données et de manière simultanée la 
résistance moyenne et son écart-type. L’idée de départ repose sur le constat que tout 
programme d’investigation combinant des mesures non destructives et des carottes fournit un 
jeu de données de NC paires (x,��), où x et ��   sont respectivement les valeurs des résultats 
d’essais et des résistances mécaniques au même emplacement de test. Ce jeu de données est 
employé pour identifier les paramètres du modèle de conversion entre les valeurs de mesures 
ND et les résistances en compression. Les formes usuelles des expressions mathématiques des 
modèles (linéaire, exponentiel, polynomial du second degré) ont deux paramètres. 
Analytiquement, le respect de deux conditions explicites (égalité entre valeurs mesurées et 
valeurs dérivées du modèle de conversion de la résistance moyenne ET de l’écart-type des 
résistances) permet d’identifier les deux paramètres du modèle de conversion. Ainsi, d’un 
point de vue mathématique, la méthode bi-objectif peut être utilisée avec n’importe quelle 
technique ND pour identifier les paramètres d’un modèle de conversion à deux paramètres. 
Cette méthode innovante d’identification a été mise en œuvre dans le cas d’un modèle linéaire 
et dans le cas d’un modèle puissance. 

La validité de cette approche est confirmée par son application à plusieurs jeux de données 
pour estimer la résistance moyenne et son écart-type. Les résultats obtenus montrent que 
l’approche bi-objectif est aussi efficace que les autres approches pour identifier la résistance 
moyenne et qu’en outre, elle permet d’identifier la variabilité du béton, et ce d’une manière 
d’autant plus fiable que NC augmente. Cette méthode peut être employée aussi bien avec des 
mesures de rebond que de vitesse, et pour des modèles linéaires aussi bien que pour des 
modèles puissance, quoique ces derniers génèrent plus d’incertitudes si NC est faible. 

Analyse de la qualité de l’évaluation 

Dans ce qui précède, les effets des facteurs influençant le plus la qualité de l’estimation de la 
résistance ont été confirmés. L’objectif est dans cette partie d’avancer vers une quantification 
de ces effets, afin de parvenir à établir des liens explicites entre la précision des estimations et 
ces facteurs : nombre d’emplacements de carottage NC, qualité des mesures ND (répétabilité 
des mesures), manière de sélectionner les emplacements de carottage, type de technique ND, 



27 

utilisation d’une seule technique ou combinaison de plusieurs, approche d’identification du 
modèle de conversion. Dans ce but, une vaste base de données synthétiques a été générée. 
Elle contient 36000 triplets ሺ�, �, ��ሻ et couvre une large gamme de bétons en termes de 
résistance moyenne et de variabilité. Les résultats obtenus sur cette base synthétique ont 
ansuite été confirmés par une étude, plus limitée, sur une base de données réelles contenant 
environ 2500 paires ሺ�, ��ሻ. 

Le concept de précision de l’estimation a été introduit, qui repose sur la définition d’une 
marge d’incertitude (absolue ou relative) sur chacune des deux cibles : résistance moyenne et 
écart-type de la résistance. L’ensemble des facteurs influents étant défini, les simulations de 
Monte-Carlo permettent de quantifier dans quelle mesure la valeur estimée se trouve (ou pas) 
dans l’intervalle défini par la marge d’incertitude et, en conséquence, le risque d’erreur, c’est 
à dire d’estimation hors tolérance. On peut ainsi tracer des courbes quantifiant le risque 
d’erreur, pour une tolérance acceptée prédéfinie, correspondant à chaque situation spécifique, 
et en faisant varier le NC. Ces courbes sont qualifiées de “courbes de risque”. 

L’utilisation des courbes de risque permet de déduire le NC minimum qu’il est nécessaire 
d’avoir pour une précision requise de l’estimation, avec un degré de confiance donné. On a pu 
ainsi vérifier que la valeur minimale de NC ne peut pas se réduire à une prescription unique, 
comme l’indiquent les codes (ACI 228.1R, 2003; EN 13791, 2007), et que ce nombre dépend 
du contexte. Nous pensons que ce constat implique une révision sérieuse des 
recommandations, qui conduira à indiquer un nombre minimal (via des formules ou des 
tables) qui dépende de la situation : qualité des mesures, variabilité du béton, méthode 
d’identification du modèle… Nous montrons par exemple que pour une tolérance relative  
donnée sur les valeurs à estimer (±U%) la variabilité du béton joue un rôle négatif pour 
estimer la résistance moyenne, mais un rôle positif pour estimer cette variabilité. 

Recommandations pour de meilleures pratiques 

A partir de l’ensemble de ces travaux et résultats, nous proposons quelques recommandations 
pour améliorer la pratique des ingénieurs:  

a. Une attention particulière doit être portée à la qualité des mesures (répétabilité de 
l’essai) sur site et autant que possible à son amélioration, vu sa très forte influence sur 
la qualité de l’évaluation de la résistance.  

b. Le nombre approprié d’emplacements de carottage NC peut être estimé en fonction de 
: la marge d’incertitude acceptée sur les valeurs estimées (et du niveau de confiance 
attaché à cet intervalle), la variabilité in-situ du béton et la qualité des mesures. En 
l’absence actuelle de prescriptions par les standards, le Tableau 6.2 peut servir de 
première base pour quantifier ce nombre. 

c. La méthode de sélection conditionnelle des emplacements de prélèvement des 
carottes, sur la base des résultats des mesures ND préalables, est recommandée dans la 
mesure où elle améliore la qualité des estimations sans induire de coût. 

d. A contrario, le choix d’une forme particulière de l’expression mathématique du 
modèle d’inversion a peu d’importance sur la qualité des estimations.  

e. Le recours à l’emploi de techniques combinées (vitesse ultrasonique / rebond) doit être 
limité au cas d’un nombre suffisant de carottes et quand les deux techniques ont une 
qualité de mesure proche. 

f. Pour l’estimation de la résistance moyenne, toutes les approches (régression, 
calibration, bi-objectif) peuvent être employées pour  identifier le modèle de 
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conversion. Si l’on utilise une approche de calibration, il faut cependant veiller à ce 
que le modèle a priori ait été établi sur un béton comparable et pour les mêmes 
gammes de valeurs que celui en cours d’étude. 

g. La procédure bi-objectif est la seule qui puisse être employée pour estimer la 
variabilité du béton. 

h. Pour estimer la qualité des estimations de la résistance, l’erreur quadratique moyenne 
(RMSE) peut être employée. Elle doit être calculée à partir de valeurs qui n’ont pas été 
exploitées en phase d’identification du modèle de conversion. Si l’on souhaite 
comparer des modèles employés sur différents bétons, il convient d’utiliser l’erreur 
quadratique moyenne relative (RMSE/ �ሺ��ሻ). 
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CHAPTER ONE 

1 INTRODUCTION 

 

 

1.1 Problem statement 

Concrete is a widely used composite material in the field of constructions due to its strength 
and durability, the availability and cheapness of the raw materials, and the ability to be 
formed in the desired architectural shape. Consequently, nowadays, there are a huge number 
of existing concrete structures and day by day this number is in evolution. Among the 
concrete mechanical and physical properties, the concrete compressive strength is the most 
important property because it is essential for designing a structural member or calculating its 
load bearing capacity. The compressive strength is not a fixed value during the concrete life 
due to several effects like curing at the earlier ages and internal cracks developed (due to 
environmental or loading effects) at latter ages. Therefore, assessing the in-situ concrete 
compressive strength is required in many situations such as: 

- the quality control of concrete to ensure the compliance with specification for the case 
of new construction, 

- contractual disputes after the non-compliance of standard specimens,  
- when there is a doubt about the quality of concrete in a new construction, 
- the change in the use (or function) of a structure requires the assessment of the 

concrete strength in order to accurately calculate the structural capacity, 
- damage resulting from fire, fatigue, overload, or environmental degradation, 
- seismic retrofitting issue arising nowadays in several countries (like Italy and Turkey) 

also emphasizes the need for an accurate in-situ assessment of concrete strength in 
existing structures (Biondi & Candigliota, 2008; Gunes, 2015).  

It is clear that the first three situations concern the new structures while the last three belong 
to in-situ assessment in existing structures. Many test methods are available to estimate the in-
situ strength. The core test is the most direct method used for this purpose. However, it has 
many drawbacks since it is expensive, time consuming, sometimes limited due to difficult 
access of coring machine, only representative of small volume of concrete and it has locally 
destructive effect on the structure (Meynink & Samarin, 1979). 

Other testing methods that are used to assess the in-situ concrete strength are the 
nondestructive methods, such as: rebound hammer, ultrasonic pulse velocity, probe 
penetration, pullout, and break off. The main features of these methods (as compared with the 
core test) are their simplicity, rapidness and low cost. However, their main drawback is that 
they are indirect methods since they cannot measure the in-situ strength directly. They 
measure other properties and strength is derived from a correlation “conversion model” 
between the strength and measured properties. Due to the fact that concrete is a largely 
heterogeneous material, a unique model for all concretes does not exist (Breysse, 2012). 

Therefore, the current methodology is based on establishing a conversion model for each 
particular case using both destructive and nondestructive tests. Then, the derived model is 
used to estimate the concrete strength at the test locations where the nondestructive measured 
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values are available for the concrete under investigation. This methodology has many degrees 
of freedom:  

- How many test locations are required for cores? 
- Which nondestructive method or methods?  
- How many test locations are required for nondestructive method? 
- What is the way for selecting these test locations? 
- What is the mathematical type (or form) of the conversion model? 
- Which model identification approach? 
- Using single or combination of nondestructive methods? 
- What is the quality of assessment of the predicted strength value? 
- How can the quality of assessment vary when any answer to the above questions 

changes? 

Standards (ACI 228.1R, 2003; EN 13791, 2007) try to provide answers to some of these 
questions, however, they fail to supply a general methodology which provides the answers to 
all above questions.  

1.2 Scope of thesis 

The general problem presented in the above section cannot be the focus of a single PhD 
thesis, therefore several refinements are considered. Firstly, this research deals with the 
assessment of in-situ strength in existing structures because it is more essential nowadays 
with the arising needs for the seismic retrofitting. For example in Turkey, there are several 
millions of buildings that were classified as risky buildings and consequently reliable 
information about their strength is required for any decision about the retrofitting or renewing 
(Gunes, 2015). To distinguish between the new and existing structures, the following 
definition is adopted herein for the existing structures, in agreement with the RILEM TC 249 
ISC guidelines: the existing reinforced concrete structures are defined as structures where age 
effects (crack, concrete delamination due to reinforcement corrosion, etc.) and reinforcing 
steel bars have a great influence on the NDT results and the predicted strength. Another 
feature of existing structures is the common lacks in the detailed information about the 
concrete used and the missing of companion specimens which could be used for comparison. 

The actual in-situ strength at any test location in a concrete structure is always unknown, 
therefore in the present work the reference value for this unknown strength will be the 
core strength at this test location. 

As it was stated in the previous section, there are several nondestructive techniques that can 
be used to assess the concrete compressive strength. However, in this PhD work, only the 
rebound hammer and ultrasonic pulse velocity methods are considered because they are 
the widely used methods on existing reinforced concrete structures. 

In the real practice, the mean compressive strength and the characteristic compressive strength 
are the most common assessed values. The latter being an important input for structural 
computation. The assessment of characteristic strength depends on the mean strength and on 
the standard deviation of the compressive strengths (concrete strength variability), thus the 
concrete variability is also a required value. The (ACI 214.4R, 2003) reported that the 
coefficient of variation, ��ሺ��ሻ, due to in-situ concrete strength variation within a structure 
(i.e. concrete variability/mean strength) is 13%. However (Masi & Chiauzzi, 2013) found a ��ሺ��ሻ value of 21% within one member of a structure. (Masi & Vona, 2009) studied the 
concrete variability in many buildings in Italy and they observed that the probable values of ��ሺ��ሻ range between 15-35%. (Pucinotti, 2013) also stated that in many cases the ��ሺ��ሻ 
reaches 35%. That is why the assessment of concrete variability is needed in addition to mean 
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strength value. The present PhD work focuses on the estimation of local strength values, 
mean strength and concrete strength variability. The characteristic strength can be derived 
once these properties are known, but it is out of our focus.  

When the concrete strength variability is high or when available information indicates that the 
concrete in whole structure (or the parts under consideration) having different composition or 
quality, standards (ACI 228.1R, 2003; EN 13791, 2007) recommend to divide the investigated 
structure into several test regions. To this end, researchers (Giannini, et al., 2014; Masi, et al., 
2016) have been proposed criteria for dividing the investigated structure into concrete 
homogenous zones (test regions). In the present work, each dataset that will be used in the 
analysis is considered to be belonged to one test region i.e. the subdivision issue is out of 
our scope.  

As stated in Section 1.1, in the current methodology, a conversion model between concrete 
strength and nondestructive measurements is identified. In the common form of this model, 
the concrete strength represents the dependent (response) variable while the nondestructive 
measured properties represent the independent variables (inputs). However, a possibility 
promoted by some researchers, see for examples (Kheder, 1999; Atici, 2011; Szilágyi, et al., 
2011; Martínez-Molina , et al., 2014), is to use (in addition to nondestructive measurements) 
several concrete characteristics (water-to-cement ratio, aggregate-to-cement ratio, admixture 
content, concrete density, age, etc.) as independent variables in the model. However the main 
drawback of this type of models is the need to know the concrete characteristics as inputs into 
the model while they usually remain unknowns in old structures. Therefore, in this study, 
models with only nondestructive measurements as the inputs will be considered.  

1.3 Objective and general research methodology 

This thesis aims to study the current assessment methodology in order to provide practical 
recommendations that can improve the reliability of assessment of in-situ strength in existing 
concrete structures by nondestructive tests and cores. 

In order to achieve this objective, the present thesis will follow the research methodology 
shown in Figure 1.1.  After synthetizing the problem and its influencing factors, we will 
define the main elements of the assessment strategy. Then the tools required for the analysis 
through this thesis will be provided. The first tool is the construction of a simulator using 
VBA code. This simulator has two objectives: the generation of synthetic data, and the 
simulation of the assessment strategy, that can be repeated many times. The second tool is 
regarding the datasets that will be used in the analysis. Many datasets will be made available; 
they were collected from collaboration with other researches and from the scientific literature. 
The details will be presented in Chapter 3.  

The study in this thesis can be classified into three main axes. The first axis (Chapter 4) will 
be the analysis of the existing assessment methodology. This analysis will be subdivided into 
three main parts: the analysis of the most influencing factors of the assessment methodology, 
the analysis and comparison of several assessment strategies from an international benchmark 
carried out by RILEM TC 249 ISC, and the analysis of the existing model identification 
approaches.  

Our work will also cover original contributions in the second and third axes. We will first 
develop a new model identification approach to capture both the mean strength and concrete 
strength variability in the second axis (Chapter 5). Then, in the third axis, the quality of 
assessment will be analyzed in relation with the main factors of the assessment methodology 
(Chapter 6). Finally we will provide practical recommendations for engineers (Chapter 6). 
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Figure 1.1 General research methodology 
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CHAPTER TWO 

2 CONCRETE STRENGTH ASSESSMENT IN THE 

EXISTING STRUCTURES: LITERATURE REVIEW 

 

 

2.1 Introduction 

The diagnosis of existing structures is an important issue in order to ensure the proper safety 
and serviceability conditions during their life. Depending on the objective of the diagnosis, 
the in-situ assessment of reinforced concrete existing structure may include one or more 
activities, such as: checking the concrete homogeneity, checking the steel reinforcement 
corrosion, detecting the cracks and measuring their depth, detecting the concrete deterioration 
(due to environmental effects, chemical attack, fire damage, fatigue and overloading), 
detecting the surface carbonation and measuring its depth, estimating the elastic and 
mechanical properties of concrete (modulus of elasticity, flexural strength and the 
compressive strength).    

Among these activities, the assessment of compressive strength of concrete is our concern in 
this study since it is essential for the structural computation. To achieve this target, different 
destructive and nondestructive methods are applied. Core test (as destructive method) and 
rebound hammer and ultrasonic pulse velocity (as nondestructive methods) are considered 
herein due to their widespread use in real practice. 

 The assessment of concrete compressive strength includes the estimation of one or more of 
the following properties: local strengths, mean strength, concrete strength variability and the 
characteristic strength. In the present work, the first three properties are considered while the 
characteristic strength (which can calculate if the mean and concrete variability values are 
knowns) will be out of our focus. 

This chapter presents the current methodologies in the real practice for assessing the in-situ 
strength in existing structures with their usefulness, limitations and standards requirements. It 
is subdivided into four main sections, where each section is dedicated to a specific option for 
the assessment of in-situ strength: using cores only, using nondestructive methods only, using 
cores with a single nondestructive method, and using cores with a combination of 
nondestructive methods.  

2.2 Strength assessment using cores only 

Core test is the most direct technique to assess the concrete compressive strength in existing 
structures. Many standards and guidelines are available that guide engineers and investigators 
in real practice. The widely used ones are: (EN 12504-1, 2000; EN 13791, 2007) in Europe 
and (ACI 214.4R, 2003; ASTM C42, 2012) in the USA. 

The assessment methodology for assessing the concrete strength using cores can be 
summarized in the following main steps: 

- Planning an investigation program 
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- Drilling cores 
- Testing cores 
- Interpreting the core strengths 

In this section, each of these steps is discussed before drawing some conclusions.  

2.2.1 Planning an investigation program: number and location of cores 

Planning a testing program includes specifying the number of cores and selecting their 
locations in the structure. In order to select a suitable number of cores it is necessary to bear in 
mind two questions: what is the size of the test region covered by the investigation (one 
member, several members in one floor, one floor or the whole building)? and what is the 
accepted uncertainty level associated with the measured strength? i.e. what is the reliability of 
the final results?   

Standard (EN 12504-1, 2000) tells nothing about the number of cores and it focuses on the 
process of taking cores, examining them and testing cores in compression. Standard (EN 
13791, 2007) requires at least 15 cores (with minimum nominal diameter 100 mm) for 
strength assessment using an approach (named approach A in this standard, this approach is 
devoted to assess the characteristics in-situ strength using cores only). Nevertheless, it accepts 
using 3 to 14 cores when applying another approach (named approach B which is also 
provided in this standard in order to assess the characteristics in-situ strength using cores 
only). However,  (EN 13791, 2007) cautions that the reliability of approach B is less than that 
of approach A due to the uncertainty associated with small number of cores. In any case for 
each test region these numbers of cores should be multiplied by three when using 50 mm 
cores.  

(ACI 214.4R, 2003) is more detailed regarding this issue since it provides a formula for 
calculating the number of cores corresponding to a  specific concrete strength variability and 
an accepted predetermined error between the estimated mean strength and population mean 
strength as given in Equation (2.1) (for 95% confidence): �� = [ʹ ��ሺ��ሻ/�]ଶ                                                                                                      (2.1) 

NC: the recommended number of cores,  
e: the predetermined maximum error expressed as a percentage of the population mean, and ��ሺ��ሻ: the concrete strength variability (in terms of coefficient of variation) for the whole 
population, in percent. 
In Figure 2.1, the error curves as a function of number of cores for different values of ��ሺ��ሻ 
were plotted. These curves show that, for a specific value of error, the concrete having a 
larger variability requires more cores for estimating the mean strength. Using more cores 
leads to more accurate assessment however the cost and destructive effect are the main 
constraints against the excessive use of cores. 

The selection of core locations is governed by the purpose of the in-situ strength assessment. 
For example, if  the purpose is the assessment of load bearing capacity of a structure then the 
test locations are concentrated on the most stressed parts of the structure (coring in these 
elements should be selected with care to avoid weakening them). However if the purpose is 
the assessment of damaged area, the test locations are selected within this area and the results 
may be compared with those from a comparable undamaged area. Generally, the parts of the 
structure considered by the investigation program should be divided into test regions 
(populations) and within each test region the test locations should be selected randomly (EN 
13791, 2007). 
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Figure 2.1 Error of the estimated mean strength as a function of number of cores, (ACI 214.4R, 2003) 

Moreover, when selecting a test location within a structural member, several factors should be 
considered due to their effects on the measured compressive strength. These factors are:  

- the core orientation with respect to concrete casting, with lower strength obtained from 
horizontally drilled core, 

-  the concrete at the bottom of member is generally stronger than concrete at the top, 
-  the location of steel reinforcement in the member which needs to be avoided (ASTM 

C42, 2012).  It is also necessary to avoid coring near edges or joints of the structural 
member.  

2.2.2 Drilling cores 

Before drilling a core it is necessary to choose its dimensions (diameter and length) and as a 
result the preferable length-to-diameter ratio (L/D). The selection of core diameter is governed 
by several effects. The most important one is the core diameter-to-maximum aggregate size 
ratio (D/A). The uncertainty increases as D/A decreases. (EN 12504-1, 2000) requires the core 
diameter-to-maximum aggregate size ratio to be equal or more than 3.0 while (ASTM C42, 
2012) accepts a value of 2.0 or more for this ratio. The second effect is the member 
dimensions which can control the core diameter when the member has small dimensions. The 
spacing between the steel reinforcement can also lead to lower core diameter. In many 
countries a minimum diameter of 100 mm is used, with 150 mm preferred, although in 
Australia 75 mm is considered to be generally acceptable (Bungey, et al., 2006).  

Core length is controlled by the L/D ratio and core diameter. L/D ratio should be between 1.0 
and 2.0 (Neville & Brooks, 2010). Standards (EN 12504-1, 2000) and (ASTM C42, 2012) 
prefer L/D ratio of 1.0 when the resulted strength is to be compared with cube strength and 2.0 
for the comparison with cylinder strength. For cores having L/D ratio less than 2 and the 
resulted strength is to be compared with cylinder strength, a suitable correction factor should 
be applied. L/D ratio less than 1.0 is not allowed to be used for compressive test whilst the 
ratio more than 2.0 can be reduced to 2.0 by trimming the core length.  

Core specimen is extracted from the structural member using a cutting tool having diamond 
bits attached to the core barrel, see a core drilling equipment in Figure 2.2. Since any 
movement during drilling may lead to damaged core so the rig should be firmly anchored to 
the concrete member. Moreover it should be perpendicular to the surface from which the core 
is taken off in order to avoid cutting a distorted core. The drill bit is usually lubricated or 
cooled with water.  
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(EN 12504-1, 2000) and (ASTM C42, 2012) require that the core specimens used for 
determining compressive strength shall not contain embedded reinforcement whenever 
possible. Whilst (BS 1881: Part 120, 1983) and the Concrete Society (Concrete Society 
Technical Report No.11, 1987) suggest a correction factor to be applied to core strength in 
order to account for the presence of bar reinforcement perpendicular to the axis of the core. 
Cores containing bar reinforcement in or close to the longitudinal axis of core are not allowed 
for strength assessment (EN 12504-1, 2000; ASTM C42, 2012).  Since the correction factor is 
derived from an empirical formula so applying this factor to the core strength will add some 
uncertainty. Consequently it is better to avoid using the correction factor by using 
nondestructive tools like covermeter or GPR (Ground Penetrating Radar) to locate suitable 
position among the reinforcements before drilling core. The other possibility to avoid using 
the correction factor is to drill a core with sufficient length and to remove the portion 
containing the reinforcement (of course if the remaining portion has accepted length to 
diameter ratio). Finally, the produced hole in the member after the drilling process should be 
filled with concrete or epoxy or other suitable fillers. 

From above it is obvious that a skilled operator is mandatory in order to obtain a core 
specimen that is undamaged and representative of the in-situ concrete. 

 

Figure 2.2 Core drilling rig 

2.2.3 Testing cores 

In the laboratory, cores should be visually examined in order to check their condition and to 
have information that can assist the interpretation of core strength obtained from compressive 
testing later. The visual inspection can provide information about: the aggregate size and 
shape, presence of voids, depth of carbonation, presence of crack and its depth and width, 
presence of reinforcement, drilling damage or defects and any abnormalities in the specimen 
(True, 2003). The calculation of approximate core density can also be helpful in the 
interpretation of the measured core strength. In addition, core testing by measuring the 
ultrasonic pulse velocity can provide more insight on the concrete uniformity and highlight 
any internal invisible defects.  

Before testing core by compression, each core specimen should be prepared by sawing its 
ends so as to produce a specimen having suitable length, flat ends and perpendicular to the 
longitudinal axis of core. When the specimen does not conform to flatness and 
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perpendicularity requirements of the standards (EN 12390-1, 2000; ASTM C39, 2014), it 
should be prepared by grinding or capping the ends. Thereafter, core dimensions (diameter 
and length) are measured so as to use these values for calculating L/D ratio and the cross 
sectional area of core.  

During the drilling and the preparation of specimen, water is used to lubricate the cutting 
tools. Consequently, this wetting water changes the moisture condition of core (as compared 
to the original moisture in the structure) and also induces a moisture gradient within the 
specimen. The measured core strength at saturated condition is lower than that of a 
comparable dry specimen by 10-15% (Bungey, et al., 2006). Therefore, testing core having 
moisture condition other than that in the structure will produce core strength divergence from 
the true in-situ strength. There is no standard method to ensure an identical moisture condition 
between the core, at compression test time, and the structure. However (ASTM C42, 2012) 
provides a procedure to minimize the moistening effects of drilling and preparation processes. 
(EN 12504-1, 2000) requires testing core at saturated condition (according to this standard the 
saturation is obtained after at least 40 hours of soaking in water (20 ± 2)° C. (EN 13791, 
2007) recommends testing core at a moisture condition depending on that in the structure i.e. 
testing core in dry condition if the condition in the structure is dry; however where the 
condition is wet in the structure, core is tested in saturation condition. It is obvious that there 
is no clear consensus regarding this issue which induces some additional uncertainty on the 
assessment of true in-situ strength. 

Compression test of core is carried out in accordance with standards (EN 12390-3, 2009; 
ASTM C39, 2014) and the core compressive strength is obtained by dividing the maximum 
load by the core cross sectional area based on average core diameter.  

2.2.4 Interpreting the core strengths  

 Core compressive strength obtained from compressive test differs from the corresponding in-
situ strength in the structure at the location where the core was extracted. This difference is 
due to the effects of several factors such as: core moisture condition, excess voids percentage 
in core specimen, length-to-diameter ratio, core diameter, drilling direction relative to 
concrete casting direction, presence of reinforcement, and drilling effect. Therefore, suitable 
correction factors can be used in order to obtain the equivalent in-situ strength. Defining these 
factors was the objective of many research works (Concrete Society Technical Report No.11, 
1987; Bartlett & MacGregor, 1994; Ergün & Kürklü, 2012; Masi, et al., 2013; Uva, et al., 
2013). The most popular formula for converting the compressive strength measured on core 
specimen ���  into the equivalent estimated in-situ cube strength is that presented in (BS 1881: 
Part 120, 1983) and shown in Equation (2.2): ��������� �� − ���� ���� �������ℎ = ��ଵ.ହ+�/� × ������ × ���                       (2.2)    

where DD represents the drilling direction parameter: DD is 2.5 for cores drilled horizontally, 
and 2.3 for cores drilled vertically.  ������ is a correction factor which accounts for the presence of reinforcing bar in the core 
specimen in the direction perpendicular to the core axis, with ������ = ͳ for the case of core 
free of reinforcement, otherwise ������ = ͳ.Ͳ + ͳ.ͷ ሺ∅� ℎሻ ሺ� �ሻ⁄  where: ∅� is the bar 
diameter, ℎ is the distance of bar axis from the nearer end of core, � is core diameter, L is the 
core length (after end preparation). The term ሺ∅� ℎሻ is replaced by ሺ∑ ∅� ℎሻ when there are 
more than one bar. Close bars with spacing less than the diameter of the larger one, only the 
bar having the larger value of ሺ∅� ℎሻ should be considered. 
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(ACI 214.4R, 2003) provides an alternative formula in order to derive the equivalent 
estimated in-situ cylinder strength from the compressive strength of core specimen ��� , see 
Equation (2.3): ��������� �� − ���� �������� �������ℎ = ሺ��/����������ሻ × ���                (2.3) 

Where ��/� , ���� , ���  and �� are correction factors for the effects of respectively: length-to-
diameter ratio, core diameter, moisture condition of core, and sustained damage due to the 
drilling process. The values of these factors are given in Table 2.1 as provided by (ACI 
214.4R, 2003). 

It is necessary to underline here that no one knows the true in-situ concrete strength of a 
structure and the values provided by Equations (2.3) and (2.4) are only an estimation obtained 
from multiplying the strength of core specimen by several correction factors.  

If the target is the concrete strength value used in the structural computation (i.e. the 
characteristic strength in the European standards or specified compressive strength �� ′ in 
American standards), then each standard provides methods for getting these values using the 
estimated in-situ strengths obtained from Equation (2.2) or Equation (2.3).  

Table 2.1 Strength correction factors values as provided by ACI 214.4R-03, (��� in MPa) 

Factor Condition Mean value ��/�  
 

As-received 1- (0.130 - 0.00043���) (2 - L/D)2 

Soaked 48h 1- (0.117 - 0.00043���) (2 - L/D)2 

Air dried 1- (0.144 - 0.00043���) (2 - L/D)2 

���� 

50 mm 1.06 

100 mm 1.00 

150 mm 0.98 

��� 

As-received 1.00 

Soaked 48h 1.09 

Air dried 0.96 �� - 1.06 

 

2.2.5 Conclusion of the assessment methodology when using cores only 

Core test is the most direct method to evaluate the concrete strength in the existing structure. 
However, it is obvious that this method suffers from many drawbacks:   

a) The number of cores required by the standards is large which leads to high 
investigation cost, 

b) When planning the core locations in the structures, we are not fully free in selecting 
these locations due to: structural considerations because drilling excessive cores in the 
high stressed members can weaken the structure and consequently affect its capacity 
to bear the applied loads; drilling considerations because the access of large and heavy 
drilling machine may be difficult (or impossible) in several situations, 
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c) Drilling is a complicated process because it includes setting up the machine, checking 
the perpendicularity and extracting core and for each step the standards provide 
several requirements to be respected. Consequently, a skill operator is mandatory in 
order to obtain a core specimen that is undamaged and representative of the in-situ 
concrete.  

d) Before the compressive testing, it is required to follow several preparation and storage 
conditions and the shortening in any of these conditions leads to misleading core 
strength. Therefore this is another reason for the expensive cost of core test. 

e) Core test takes a lot of time as compared with the other tests due to drilling, 
preparation, testing processes,  

f) The obtained strength of core specimen differs from the true in-situ value existing in 
the structure at location where the core was extracted. 

2.3 Strength assessment using nondestructive tests only 

Nondestructive techniques are widely used as indirect methods for assessing the concrete 
properties (surface hardness, strength, dynamic modulus of elasticity, homogeneity, etc.). 
Among many existing nondestructive methods, rebound hammer and ultrasonic pulse velocity 
are the most common ones. Therefore, this section focuses on these two methods. For each 
method, firstly, the main principle behind the method is illustrated. Next, a brief description 
of the testing procedure and its limitations is provided. Then, the factors affecting the test 
results are pointed out. After that, the correlation between the concrete compressive strength 
with the test result from nondestructive method is discussed. Finally, the main conclusions 
that summarize the advantages and limitations are presented.  

2.3.1 Rebound hammer method  

The rebound hammer (or Schmidt hammer) was developed by the Swiss engineer Ernst 
Schmidt in 1948 as a surface hardness method. The earlier developed surface hardness 
methods (like Testing Pistol by Williams, Spring Hammer by Frank and Pendulum Hammer 
by Einbeck) were based on measuring the indentation which resulted from the impact on the 
concrete surface by a specified mass having specified kinetic energy (Malhotra, 2004). 
However, the principle of the rebound method mainly differs from that of the indentation type 
surface hardness methods because it measures the rebound of a specified mass having 
specified kinetic energy when it impacts the concrete surface. Nowadays, the rebound 
hammer is the most popular NDT surface hardness technique in the concrete testing practices. 

2.3.1.1 Operating principle of rebound hammer instrument and its types 

As mentioned above, the instrument is based on the rebound principle that depends on the 
surface hardness of concrete. Figure 2.3a shows the main components of the instrument: outer 
body, specified mass or hammer, plunger, spring, rebound indicator and the latching system. 
Figures 2.3(b, c, d) illustrate how the instrument works. After positioning the plunger 
perpendicular to the concrete surface at the required test location, the instrument is pushed 
toward the concrete surface and as a result the mass moves away from the concrete surface 
producing the spring stretching as shown in Figure 2.3b. When the mass reaches the 
maximum displacement, it is released to impact the plunger shoulders (Figure 2.3c), however 
due to the concrete hardness the mass rebounds and it takes with it a slide indicator as shown 
in Figure 2.3d (Carino, 2008).  On an arbitrary scale ranged from 10 to 100, the rebound 
distance is indicated as a value so-called “rebound number” which represents the rebound 
distance as a percentage of maximum mass displacement (before impact) (Fischli & Moczko, 
2012).  
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Figure 2.3 Schematic sectional view of rebound hammer illustrating the operation process 

Original Schmidt hammer (usually known as type N model) has a weight of 1.7 kg and impact 
energy of 2.207 Nm and can be used for testing concrete having a compressive strength range 
10-70 MPa (Proceq SA, 2016). Currently, several other models of the device are 
manufactured with different characteristics depending on the purpose for which it is designed. 
For testing the thin walled concrete elements with a thickness (50-100) mm, type L device is 
manufactured with impact energy of one-third of type N and less weight (1.4 kg). Another 
model is type P device, or pendulum type, which is recommended for testing low strength 
concrete. In 2007, the Silver Schmidt hammer was manufactured. The main feature in this 
new device is the ability to record, beside the rebound number, the ratio of the kinetic energy 
of the hammer mass after impact to that before the impact (Szilágyi & Borosnyói , 2009). 
Through the present report, the considered rebound hammer device is the standard type i.e. 
type N. 

2.3.1.2 Testing procedure and its limitations 
Testing hardened concrete using the rebound hammer is a rapid and simple process. Several 
standards (EN 12504-2, 2012; ASTM C805, 1997) and recommendations reports (RILEM TC 
7- NDT, 1977; RILEM TC 43-CND, 1983) were established in order to manage the testing 
procedure.  

Firstly, a suitable test location, usually 300×300 mm (150mm in diameter according to 
(ASTM C805, 1997)), should be selected. The test locations should be located in the structure 
on members 100 mm thick or more. If testing smaller thickness member is unavoidable then it 
must be rigidly supported. Rebound hammer reading is significantly affected by the concrete 
surface condition and its finishing method (trowelled or formed). Therefore, the tested surface 
should be clean, smooth and dry with preference to formed finish. Moreover, surface grinding 
using abrasive stone should be applied to heavily textured, soft, or loose mortar surfaces in 
order to prepare these surfaces before testing. 

Secondly, the test is performed by holding the device firmly and perpendicularly to the 
concrete surface with gradually pushing it toward the surface until the hammer impacts, then 
the rebound number reading is recorded. The reading is affected by the surface layer condition 
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so applying the plunger on subsurface void or a coarse aggregate particle can lead to 
misleading reading (Carino, 2008). To account for these effects, the test is repeated several 
times (9 replicates according to (EN 12504-2, 2012) or 10 replicates according to (ASTM 
C805, 1997)) within the test location with a minimum spacing of 25 mm between each two 
testing points and a minimum edge distance of 25 mm. The rebound number value that 
corresponds to a test location, usually so-called test result, is calculated as the average of the 
readings within this test location (the median of the readings according to EN 12504-2). 
Abnormal readings should be discarded according to the standards provisions. Another 
essential value calculated from the readings corresponding to a test location is their standard 
deviation (or coefficient of variation) which represents the within-test variability. This value 
is also known as test result precision or repeatability. 

It is necessary to check the device just before and after carrying out the tests campaign using a 
steel anvil provided for this purpose. Also, the ambient temperature during testing should be 
within the interval (0-50) °C.  

2.3.1.3 Factors affecting the test results 
As mentioned above, the rebound number depends on the hardness of the surface layer of the 
concrete member. However, several other factors can also affect the rebound number and its 
correlation with strength. Some of them are summarized below: 

- the effect of gravity: this effect presents when applying the hammer vertically (upward 
or downward), while it can be avoided if the hammer is applied in the horizontal 
direction, 

- test surface smoothness: as discussed above, smooth and clean test surface being 
mandatory, 

- the effect of concrete moisture condition: dry surface gives higher rebound number as 
compared to wet surface. The difference in rebound numbers can be up to 10-12 points 
(Malhotra, 2004), 

- the surface carbonation effect: this effect significantly exists in old structures. Several 
millimeters of carbonation depth (usually no more than 20 mm) can lead to an increase 
in the rebound number up to 50% (IAEA, 2002),   

- the effect of coarse aggregate type: for example the rebound number for siliceous 
gravel concrete may be significantly higher than that resulted from crushed limestone 
concrete. Moreover, for the same type of aggregate the difference in the sources can 
lead to different rebound number/strength correlations (Bungey, et al., 2006), 

-  the effect of type of cement: high alumina cement can have a compressive strength 
100% higher than that resulted from using a correlation curve based on ordinary 
Portland cement (IAEA, 2002),  

- the effect of cement content: the error in the estimation of strength resulting from a 
change in the cement content is unlikely to exceed ±10% (RILEM TC 7- NDT, 1977), 

- member rigidity effect: as discussed above, slender member should be rigidly 
supported to avoid any effect on the rebound number value, 

-  other factors may have some effects like the curing and compaction conditions. 
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2.3.1.4 Correlation between concrete strength and rebound number  
There is a little apparent theoretical relationship between the rebound number and the 
concrete compressive strength (Malhotra, 2004). Therefore, empirical conversion curves (or 
models) that correlate the concrete strength with the rebound number are widely used as an 
alternative. Since 1954, Proceq SA has been manufacturing the rebound hammer device that 
earlier invented by Ernst Schmidt. Proceq SA provides several conversion curves 
corresponding to different devices (type N, type L, etc.) and specimen shape (cube or 
cylinder), Figure 2.4 shows the conversion curves corresponding to hammer type N and 
cylinder specimens (Proceq SA, 2016). As shown, the effect of direction of testing (horizontal 
or vertical up/downward) is taken into account. Moreover, (Proceq SA, 2016) provides 
correction factors for the shape and carbonation effects. However, as illustrated above, it may 
exist other factors that affect significantly the rebound number values. Therefore, using these 
curves for assessing the concrete strength in structures produces seriously unreliable 
estimations. 

 For the last 60 years, a lot of research works have been devoted to build empirical models 
between the concrete compressive strength and rebound number.  After a survey regarding the 
existing models, more than 60 empirical models were listed by (Szilágyi & Borosnyói , 2009), 
while more than 80 different models were found by (Breysse, 2012). Several of these models 
are shown in Figure 2.5. Clearly, these curves are widely scattered, which emphasizes the 
important effects of the influencing factors mentioned above and indicates that using models 
for cases other than that from which they were derived can lead to misleading estimations. In 
other wording, general empirical model correlating the concrete strength and rebound value 
does not exist and the model calibration for the case study under consideration is a mandatory 
requirement. 

 

Figure 2.4 Conversion curves for estimating the average compressive strength of a cylinder from rebound 

number, (Proceq SA, 2016) 
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Figure 2.5 Some conversion curves identified by different researchers for estimating the cube compressive 

strength from rebound number 

2.3.1.5 Conclusion of assessing concrete strength using rebound hammer only 

Rebound hammer technique is the most simple, rapid and cheapest nondestructive method for 
assessing the concrete strength both in-situ and in laboratory. Identifying a theoretical 
correlation between the concrete compressive strength and the rebound value is difficult so 
alternatively empirical correlation is commonly used. However, the value derived from this 
test, rebound value, is affected by several mix and member characteristics in addition to the 
concrete strength. Consequently, using a general model between concrete strength and 
rebound number for assessing a real structure leads to unreliable estimations and calibration is 
mandatory. Therefore, rebound hammer technique cannot be used alone in assessing the 
concrete strength and it should be combined with the destructive tests in order to 
derive/calibrate a model for the case under consideration.   

2.3.2 Ultrasonic pulse velocity method 

This technique is one of the stress wave propagation methods that is based on the 
determination of the longitudinal wave pulse velocity where pulses are generated in concrete 
by an electro-acoustical transducer. After the Second World War, the earlier devices 
(Soniscope in Canada and Ultrasonic Concrete Tester in England) were developed (Carino, 
1994). Since that, the method and its device have been progressively developed to become a 
widespread use nondestructive method for testing concrete in-situ as well as in laboratory.  

2.3.2.1 Physical principle of the ultrasonic pulse velocity method 

The application of an impulse to a large solid elastic media generates propagating stress 
waves that are classified, according to the particles motion with respect to propagation 
direction, in three main types: longitudinal waves (P-waves), transverse waves (S-waves) and 
Rayleigh waves (R-waves) (Naik, et al., 2004). These waves travel at different velocities with 
the longitudinal waves being the quicker.    

The principle of ultrasonic pulse velocity method is to introduce generated pulses into 
concrete using transmitting transducer which is held on the concrete surface and to measure 
the arrival time, transit time t, of the first waves (longitudinal waves) to a receiving 
transducer. A schematic diagram of the device is shown in Figure 2.6. After measuring the 
distance between the two transducers, path length l, the ultrasonic pulse velocity of 
longitudinal waves, Vp, can be simply calculated using Equation (2.4): 
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�� = �/�                                                                                                                            (2.4)                              

  

Figure 2.6 Ultrasonic pulse velocity device (schematic diagram), (ASTM C597, 2002) 

2.3.2.2  Testing procedure 
Many countries have standardized procedures for testing concrete using ultrasonic pulse 
velocity. (Komlos, et al., 1996) listed more than 20 standards published between 1972 and 
1994. The most popular standards are the European standard (EN 12504-4, 2004) and the 
American standard (ASTM C597, 2002). 

The testing procedure should start by verifying that the device measures the transit time, t, 
properly. A reference bar is usually provided by the manufacturer for this purpose. At the 
selected test location, it is necessary to ensure a perfect coupling between the transducers and 
the concrete surface because the presence of air pockets leads to misleading reading of the 
transit time. Many existing viscous materials can be used as a coupling agent like: grease, 
petroleum jelly, soft soap and oil. A thin layer of coupling agent should be applied to the 
transducer face or the concrete surface. For rough surfaces, the preferred coupling agent is 
thick grease. However, for very rough surface, a surface preparation by grinding or using a 
quick setting mortar is recommended (Bungey, et al., 2006).    

After the application of the coupling agent, the transducers are pressed firmly against the 
concrete surface and the minimum transit time reading is recorded from several repeated 
readings (transducers are removed then re-applied at the same points) in order to avoid 
reading resulted from insufficient coupling. The distance between the transducers should be 
accurately measured and consequently the ultrasonic pulse velocity is calculated. 

At each test location, in order to reduce the measurement uncertainty, the test is repeated 
several times (replicates) i.e. at different points within the small area of test location and 
consequently the test result for this test location is the mean value of these replicates. 
According to (ACI 228.1R, 2003) five replicates are required for the case of existing 
construction while three are sufficient for new construction. On contrary, the (EN 12504-4, 
2004)  and (ASTM C597, 2002) standards say nothings about this important issue and this is 
one of their shortcomings. 
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Most standards describe three possible ways of transducers arrangements (Komlos, et al., 
1996), these are: direct transmission, semi-direct (or diagonal) transmission and indirect (or 
surface) transmission, see Figure 2.7. The direct transmission is the most accurate and should 
be used when it is possible (Garnier, 2012). When the access to opposite faces of concrete 
member is impossible or when there is reinforcement congestion, semi-direct transmission 
can be used. However, when only one surface is accessible, the transducers are applied on the 
same surface (indirect transmission). Due to uncertain measured path length and the fact that 
the calculated velocity represents the surface layer, the indirect configuration should be 
avoided when it is possible (ASTM C597, 2002).  

In order to carry out the testing procedure efficiently and to produce accurate test results, an 
experienced operator is necessary.  

 

 

Figure 2.7 Transducers arrangements in ultrasonic pulse velocity test 

2.3.2.3 Factors affecting the test results 
The calculated pulse velocity at each test location is affected by several factors: 

- coarse aggregate: since the wave velocity is larger in the aggregates than in the cement 
paste, the aggregate-to-cement ratio affects significantly the pulse velocity versus 
concrete compressive strength relationship. For a given strength, the pulse velocity 
increases as the aggregate-to-cement ratio increases (Wheen, 1974), 

- moisture content: for a given strength, wet concrete shows higher pulse velocity as 
compared with dry concrete (Bungey, 1980),  

- water-to-cement ratio: as the water-to-cement ratio decreases, the compressive 
strength and the pulse velocity increase (Kaplan, 1959). However, the ratio of 
increases in compressive strength and pulse velocity are not the same (Lin, et al., 
2007), 

- concrete age: the velocity increases with the concrete age but with a decreasing rate 
(Popovics, et al., 1990). This effect is significant at earlier ages, therefore it can be 
neglected in the case of existing old structures, 

- concrete temperature: when the concrete temperature varies within the interval (10-
30)°C, no significant changes take place in the pulse velocity unless the occurrence of 
changes in elastic properties or strength (EN 12504-4, 2004), 
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- cracks and voids: the presence of cracks and voids leads to longer travel path of the 
propagated wave and as a result the transit time increases (Carino, 2008), 

- path length: generally, the path length has no effect on the pulse velocity, however for 
small path lengths, the pulse velocity may be significantly affected by the 
heterogeneous nature of concrete (Jones & Fącąoaru , 1969). Therefore, (EN 12504-4, 
2004) recommends that the minimum path length is 100 mm for concrete having 
maximum aggregate size ≤ 20 mm. While for maximum aggregate size within the 
interval (20-40) mm, the minimum path length should be 150 mm, 

- transducer frequency: the frequency of the commonly used transducer is 54 kHz. 
However, for laboratory specimens or in-situ concrete members that have small lateral 
dimensions, the frequency should be selected carefully in order to be sure that the 
lateral dimension (path length)  is equal or greater than  the wavelength (wavelength = 
pulse velocity/frequency) (Bungey, et al., 2006),  

- reinforcing bars: the pulse velocity of reinforced concrete in the vicinity of 
reinforcement is higher as compared with that of plain concrete. Consequently, 
wherever possible, reinforcing bars parallel and close to the path between transducers 
(or transverse bars that intersect this path) should be avoided when selecting the 
transducers testing positions (BS 1881: Part 203, 1986).    

2.3.2.4 Correlation between concrete strength and pulse velocity 
From the concepts of wave propagation in solids, there is a direct theoretical relation between 
the pulse velocity of longitudinal waves, Vp, and the elastic properties of the solid where they 
propagate through (Oixian & Bungey, 1996), as given in Equation (2.5): 

�� = √ ��ሺଵ−��ሻ�ሺଵ+��ሻሺଵ−ଶ��ሻ                                                                                                     (2.5) 

where �� , ��  and  � are respectively the dynamic modulus of elasticity, dynamic Poisson’s 
ratio and density of the solid. However for composite material like concrete (which have two 
main constituents: cement paste and aggregate), the attempts to relate theoretically the 
modulus of elasticity with strength and consequently the pulse with strength faced difficulties.  
This is because of the complexity to define this relationship for composite material by 
considering the individual constituent properties (elastic and strength properties) in relation to 
their proportions (Bungey, 1980). Other researchers (Popovics, 2001; Naik, et al., 2004) 
stated that there is no physical relationship between the strength and pulse velocity. Therefore 
empirical relationship (or model) is usually established between the pulse velocity and 
concrete compressive strength.  

Based on their laboratory studies, many researchers have identified models correlating the 
concrete strength with pulse velocity in order to be used in estimating the in-situ concrete 
strength from the ultrasonic pulse measurements. In a state of art paper (Breysse, 2012) 
Breysse found more than 70 models of different types (linear, power, exponential, polynomial 
and miscellaneous). Some conversion models are shown in Figure 2.8. These curves are 
widely dispersed and consequently there is no general concrete strength-pulse velocity model 
which can be applied anywhere. This observation confirms the significant effects of the 
influencing factors listed above and points out that models should be used only for the cases 
from which they derived. In other wording, the model calibration for the concrete under 
investigation is a mandatory requirement. 
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Figure 2.8 Some conversion curves identified by different researchers for estimating the cube compressive 

strength from ultrasonic pulse velocity 

2.3.2.5 Conclusion of assessing concrete strength using pulse velocity only 

Ultrasonic pulse velocity technique is a relatively simple and cheap nondestructive method for 
assessing the concrete strength both in-situ and in laboratory. It is a fully nondestructive 
method which enables retesting at the same point while this is impossible with rebound 
hammer due to local damage that may be produced by the impact energy. The output of this 
test, pulse velocity, has indirect correlation with the compressive strength. However, 
identifying this correlation theoretically is complicated (if not impossible) so alternatively 
empirical correlation is used. Unfortunately, the pulse velocity is affected by several mix, 
member and testing characteristics factors in addition to the concrete strength. Consequently, 
using a general concrete strength -pulse velocity model for assessing a real structure leads to 
unreliable estimations and calibration remains mandatory. Therefore, Ultrasonic pulse 
velocity technique cannot be used alone in assessing the concrete strength and it should be 
combined with the destructive tests in order to derive/calibrate a model for the case under 
investigation.   

2.4 Strength assessment using cores and single nondestructive technique 

The two previous Sections (2.2 and 2.3) have identified several drawbacks associated with the 
use of either destructive (DT) or nondestructive (NDT) techniques alone for assessing the 
concrete strength. Therefore, to overcome these drawbacks the cores are used together with 
rebound hammer or/and pulse velocity for the strength assessment in the existing structures. 

The idea is based on carrying out nondestructive tests, according to procedures illustrated 
above in Section 2.3, at test locations selected carefully in order to cover the part of the 
structure under investigation. Next, cores are extracted, in accordance with Section 2.2, from 
NC test locations that were already tested by NDT measurements and then compressive 
strengths of these cores are obtained in laboratory using the compressive test. NC represents 
the number of test locations with cores (or the number of cores considering one core is 
extracted from each test location). The pairs of (NDT measurement, core strength) are used to 
establish an empirical model using model identification approaches (two approaches are 
available: regression and calibration that will be presented in the following subsections). The 
produced model can then be used to estimate the concrete compressive strengths at the test 
locations where only NDT measured values are available (i.e. no core).  
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This methodology is widely adopted by engineers in real practice for assessing strength in 
existing structures. Many case studies have been presented in scientific papers (Biondi & 
Candigliota, 2008; Luprano, et al., 2008; Pucinotti, 2015). The widespread standards that deal 
with the assessment of concrete strength using combination of DT and NDT techniques are 
(EN 13791, 2007) in Europe and (ACI 228.1R, 2003) in USA. 

The number of cores is the main controlling factor in this methodology. According to the 
requirements of the European standard (EN 13791, 2007), the minimum number of cores is 
respectively 18 for regression analysis approach (Alternative 1 as so-called in this standard) 
and 9 for calibration approach (Alternative 2). (ACI 228.1R, 2003) standard also requires at 
least 12 cores (six test locations with two cores at each location) to develop an adequate 
strength relationship. 

The way of selection the NC test locations for cores may also play a role on the reliability of 
assessment. The common way for selecting core locations within the NDT test locations is 
independent of the NDT test results. However studies, like (Pfister, et al., 2014; Breysse, et 
al., 2017), propose to define the core locations depending on the NDT test results. Through 
the present study, the NDT results based selection will be called “conditional selection”.  

The existing model identification approaches will be presented in this section with an 
overview on the possible types of models. The factors affecting the assessment methodology 
will also be discussed. Then, the sources of uncertainty and the assessment reliability of the 
estimated strengths are pointed out. 

2.4.1 Model identification approaches: Regression approach 

Regression approach is the most popular statistical approach that is used to identify the 
conversion model between the core strengths and NDT measurements, test results, and it is 
recommended by almost all the standards and guide reports (RILEM TC 7- NDT, 1977; 
IAEA, 2002; ACI 228.1R, 2003; EN 13791, 2007). The basic principles of this approach will 
be illustrated herein. 

2.4.1.1 Simple linear regression model 

As stated above, after an investigation program, a set of NC-( �, ��) pairs are obtained, where 
x represents the NDT measurement and ��  is the core strength that corresponding to one test 
location. Considering ��  as the dependent variable (response variable) and x as independent 
variable, the ( �, ��) pairs can be plotted on a scatter diagram as shown, as an example, in 
Figure 2.9. Assuming a linear model between the strength and NDT measurement, Equation 
(2.6): �� � = � + � �� + ��                                    � = ͳ, ʹ, … . , ��                                     (2.6) 

where α and β are the unknown parameters of the true regression model, and �� is a random 
error with mean value of zero and unknown variance (Montgomery & Runger, 2003). There 
are many possibilities for the estimators of α and β that can satisfy Equation (2.6). Least 
squares method is used to provide the estimators a and b for the unknowns α and β 

respectively. This method is based on minimizing the sum of squares of the vertical distance 
between the true regression line and data points (i.e. ��, see Figure 2.9). Consequently the 
values of a and b, corresponding to this method, are as given by Equations (2.7) and (2.8) 
(Walpole, et al., 2012): 

 � = [�� ∑ ���� � −���=ଵ (∑ �����=ଵ )(∑ �� ����=ଵ )] [�� ∑ ��ଶ −���=ଵ (∑ �����=ଵ )ଶ]⁄         (2.7)                                                                                                  
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� = ��̅ − � �̅                                                                                                                    (2.8) 

where ��̅  and �̅  are respectively the average values of ��  and x values. Therefore, the fitted 
regression model that can be used to estimate strength from NDT measurement is: ����� = � + � �                                                                                                               (2.9) 

 
Figure 2.9 Scatter diagram of the (�, ��) pairs with a regression model 

2.4.1.2 Nonlinear regression model 

 The above discussion for linear regression model can be extended to nonlinear models 
(specific nonlinear forms, for details see (DeCoursey, 2003)) using logarithmic transformation 
(Montgomery & Runger, 2003). For example, the power model in Equation (2.10) can be 
transformed as follows: �� � = � �����                                                                                                                 (2.10) �� �� � = �� � + � �� �� + ����                                                                                    (2.11) 

 Clearly, Equation (2.11) is linear in its parameters and looks similar to Equation (2.6). 
Consequently estimators �ଵ and �ଵ for the unknown coefficients α and β can be calculated as 
follows:  �ଵ = �� ,   �ଵ = �                                                                                                         (2.12) 

where a and b are calculated from Equations (2.7) and (2.8) after replacing �� with �� �� and �� � with �� �� �. Therefore, the fitted regression model that can be used to estimate strength 
from NDT measurement is: ����� = �ଵ ��1                                                                                                               (2.13) 

For nonlinear models that cannot be transformed into linear form, iterative numerical methods 
can be used for the least squares minimizations in order to derive the values of the unknown 
coefficients (DeCoursey, 2003). 
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2.4.1.3 Fitting error 
The statisticians usually use the coefficient of determination r

2 as an indication about the 
adequacy of the fitted regression model. It represents the ratio of the variation in the response 
variable that is explained by the fitted regression model to the total variation in this variable. 
r

2 is calculated as shown in Equation (2.14) (Devore & Berk, 2007): �ଶ = ͳ − ������                                                                                                                 (2.14) 

where SST is the total sum of squares and it represents the total variation in values of the 
response variable. While SSE is the error sum of squares (or sum of squares of residuals) and 
it measures the amount of variation unexplained by the fitted regression model. SST and SSE 
are calculated from the following equations: ��� = ∑ (�� � − ��̅ )ଶ���=ଵ                                                                                               (2.15) ��� = ∑ ሺ�� � − ����� �ሻଶ���=ଵ                                                                                         (2.16)       

The values of r
2 are between 0 and 1. While r

2=1 means that the model fits all NC-( �, ��) 
pairs perfectly, it does not guarantee a good prediction capacity of the model. The coefficient 
of determination is widely used by NDT researchers as an indicator of the quality of fitting. 
However, other researchers (Meynink & Samarin, 1979; Brozovsky, et al., 2013; Martínez-
Molina , et al., 2014) use also the correlation coefficient, r, which measures the strength and 
direction of the linear association between the dependent (response) and independent 
variables. In fact, the coefficient of determination is the square of the correlation coefficient. 

Another indicator that may be used for this purpose by NDT experts (Liu, et al., 2009) is the 
Root Mean Square Error (RMSE):  

���� = √∑ ሺ�� � − ����� � ሻଶ���=ଵ /��                                                                      (2.17) 

As shown in Equation (2.17), RMSE has the strength units and it should be as small as 
possible. Its practical interest is that it more directly provides the magnitude of error 
associated with the estimated strengths. 

2.4.2 Model identification approaches: Calibration approach 

In real practice, the calibration approach can also be used to identify model between the 
strength and NDT measurement (EN 13791, 2007; Kheder, 1999; Breysse, 2012; Breysse, et 
al., 2017; Pucinotti, 2015). The principle is to calibrate an existing prior model selected from 
literature or standards using the NC-( �, ��) pairs. Two possibilities for calibration are often 
used in real practice:  

- multiplying factor method, and  

- shifting factor method.  

2.4.2.1 Multiplying factor method (k-method) 

The principle comes to update an uncalibrated prior model by a coefficient k to produce a 
calibrated model,  ����� ሺ�ሻ = � ∗ �� �����.ሺ�ሻ                                                                                          (2.18) 
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Where �� �����. is the estimated compressive strength calculated from the selected 
uncalibrated prior model. The coefficient k is calculated as in the following steps: 

a) Calculate the mean value of core strengths  ��̅ , 

b) Use the uncalibrated prior model to calculate the estimated strengths at core locations using 
the corresponding NDT measurements and then take the mean of these values,   ��̅ �����. 
c) Calculate the calibration factor 

  � = ��̅ ��̅ �����.⁄                                                                                                            (2.19) 

2.4.2.2 Shifting factor method (Δ-method) 
The concept here is to shift the uncalibrated prior model by a coefficient Δ,  ����� ሺ�ሻ = �� �����.ሺ�ሻ + �                                                                                        (2.20)  

The coefficient Δ is calculated as in the following steps: 

a) Use the uncalibrated prior model to calculate the estimated strength at each core location �� �����.  � then, 

b) Calculate the shifting factor Δ 

  ∆= ∑ ሺ�� � − �� �����.�  ሻ���=ଵ ��⁄ = ሺ��̅ − ��̅ �����. ሻ                                         (2.21) 

Figure 2.10 shows the scatter diagram of the dataset presented in Figure 2.9 with an 
uncalibrated model selected from literature and the calibrated models that result from using 
the two calibration methods (k-method and Δ-method).  

Regarding the quality of the identified model using the calibration approach, the same 
indicators (i.e. r

2, r and RMSE) that presented above in Subsection 2.4.1.3 can be applied 
herein. 

 
Figure 2.10 Scatter diagram of the (�, ��) pairs with models obtained by the calibration approach 
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2.4.3 Types of models 

As stated above, many factors can affect the relationship between the compressive strength of 
concrete and the NDT measurement (rebound number or the pulse velocity). Additionally 
many sources of uncertainty prevent a perfect fit of a model. Consequently, the problem of 
model identification has not a unique solution (or curve shape). The scientific literature offers 
a large variety of models that have been identified by different researchers. This variety 
indicates that nobody known the form of the true model and that all model types are less or 
more equivalent. The model forms are linear, power, exponential, polynomial or 
miscellaneous. Table 2.2 shows several models derived by different researchers. 

Table 2.2 Several models derived by different researchers in order to estimate strength using single NDT 

technique 

Model (�����  in MPa, V in km/s) Reference ����� = ͳ.ʹͷ� − ʹ͵    ʹͲ ≤ � ≤ ʹͶ  ����� = ͳ.͹͵� − ͵Ͷ.ͷ   ʹͶ ≤ � ≤ ͷͲ  
(EN 13791, 2007) ����� = Ͳ.ͲͻͶ͸ �ଵ.଺ସ଼ସ  (Brozovsky, et al., 2013) ����� = ͷ.ͳ͸ͻͺ �଴.଴ଷସଵ�    (D’Ambrisi, et al., 2008) ����� = −Ͳ.ͲͲͳͺ͸�ଶ + ʹ.ͲͶͶͻ� − Ͷ͸.Ͷʹ͸  (Knaze & Beno, 1984) ����� = −Ͳ.ͲͲͲ͵ �ଷ + Ͳ.Ͳ͵ͻͻ�ଶ − Ͳ.ͳͷʹͷ� + ͵.ͻͻ͹͸  
(Schmidt, 1950) after 
(Szilágyi & Borosnyói , 2009) ����� = ͵͸.͹ʹ� − ͳʹͻ.Ͳ͹͹            (Qasrawi, 2000) ����� = Ͳ.Ͳ͵ͺ �ସ.଼ହ                   (Rojas-Henao, et al., 2012) ����� = Ͳ.ͲͲͺ �ଶ�             (Demirboğa, et al., 2004) ����� = ͸ʹ.ͷ�ଶ − Ͷͻ͹.ͷ� + ͻͻͲ     Ͷ ≤ � ≤ Ͷ.ͺ  (EN 13791, 2007) 

2.4.4 Factors affecting the quality of assessment 

The assessment methodology is affected by all factors that influence the core strengths 
(Section 2.2) and NDT measurements (Section 2.3). In addition to these factors, the 
characteristics of the assessment methodology can also play a significant role. Therefore, we 
classify the influencing factors in accordance with the possibility to control them in the 
methodology into two groups: 

- Uncontrolled factors: they include all factors that may affect the quality of assessment 
and that cannot be controlled because they are not included in the conversion model 
(due to the difficulty to assess accurately these factors in the existing structures) like: 
concrete mix characteristics (aggregate type/size/percentage, cement type/percentage, 
water-to-cement ratio, and additives), concrete moisture condition, concrete surface 
carbonation, concrete temperature, and voids. 

- Controlled factors: they include all factors that can affect the quality of assessment, 
but that can be controlled (changed) in order to modify the quality of assessment, such 
as: number of test locations for cores used to identify the conversion model, number of 
test locations for NDT measurements, the way of selecting the test locations, the 
quality of measurements (within-test variability), the type of NDT technique, using 
single or combination of NDT techniques, the model identification approach and the 
model type (or shape). Since these factors represent the inherent characteristics of the 
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assessment methodology, they will be also so-called “methodology inherent 
characteristics” through this study.  

Our concern in the present work will be the controlled factors, and any uncontrolled factor 
will be considered as a source of uncertainty in the assessment methodology.  

2.4.5 Sources of uncertainty 

The uncertainty is a quantity intended to characterize a range of values which contains the 
reference value, where the latter may be either the true value or the expectation (EUROLAB 
Technical Report 1/2006, 2006). In other wording, the range (estimated value ± uncertainty) 
represents the interval within which the true value will be assured to lie with a specified 
confidence level. Uncertainty differs from error which represents the difference between the 
estimated and true values  (Bell, 2001). Since the true strength or true NDT measurement are 
unknowns in the real structures, the error cannot be determined and the uncertainty is the only 
way to measure the quality of assessment. 

For the strength assessment issue, many sources of uncertainty are expected to feed the global 
uncertainty of the estimated strength. These are: 

- in-situ concrete strength variability (intrinsic variability); the concrete strength 
variability is induced in the structure due to: quality control (mixing, casting, 
compacting and curing processes), the uneven environmental effects on the structure, 
and the cracks and deterioration development in the structure (Szilágyi , et al., 2014).  
These elements can induce strength variability in three scales: batch-to-batch 
variability, member-to-member variability, and within member variability (Pereira & 
Romao, 2016). To understand the effect of the concrete variability on the uncertainty, 
let’s consider, as an example, the assessment of the mean strength in a structure using 
a sample of NC cores shown in Figure 2.1. From this figure, it is clear that, for a 
specific NC value, the percentage error (or uncertainty) of the estimated mean strength 
increases with the increase in the concrete strength variability.  

- sampling uncertainty: it is associated with sample size i.e. in any investigation 
program, tests are carried out at limited number of test locations while many other 
possible test locations within the investigated structure (or the investigated part of 
structure) are left untested. The lack of knowledge associated with non-surveyed test 
locations generates uncertainty (Pereira & Romao, 2016). In any investigation 
program, this uncertainty arises from two sources: the first one concerns the selection 
of test locations for NDT measurements (NT test locations) from all possible test 
locations, and the second relates to the selection of NC test locations for cores from 
the NT test locations that already selected for NDT, 

- measurement uncertainty: it is a parameter associated with the result of a measurement 
that characterizes the dispersion of the values that could reasonably be attributed to a 
measured quantity (rebound number, pulse velocity, etc.) (JCGM 100, 2008). At any 
test location, the uncertainty of a test result (average of several replicates) is a function 
of number of replicates and within-test variability (ACI 228.1R, 2003),  

- model uncertainty: as discussed in Subsection 2.4.3, the true shape for the curve 
(model) that correlates the concrete strength with the NDT measurements is unknown, 
therefore any proposed model will already have an error due to this uncertainty. 
Moreover, the uncertainty associated with the model identification approach also feeds 
the model uncertainty. Another source of the model uncertainty is the influencing 
factors that are not considered in the model due to difficulty or impossibility to 
measure these factors (uncontrolled factors) (Der Kiureghian & Ditlevsen, 2009). For 
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example, including the mix characteristics in the model is usually impossible in the 
existing structures due to the missing information from the construction period.    

2.4.6 Quality of assessment 

For decades, studying the quality of assessment (i.e. how close the estimated value to the true 
one) of the concrete strength by NDT measurements has been the objective of many scientific 
researches. However, this issue is quite controversial (Proverbio & Venturi , 2005; Fischli & 
Moczko, 2012).  

Regarding rebound hammer technique, some researchers (Carino, 2008; Brencich, et al., 
2013; Pucinotti, 2015) are pessimistic, considering that rebound hammer is unable to provide 
a reliable estimate of the concrete strength. On contrast, other researchers like (Malhotra, 
2004) consider that the accuracy of estimation of compressive strength of test specimens cast, 
cured, and tested under laboratory conditions by a properly calibrated hammer lies between 
±15 and ±20%. Furthermore, the probable accuracy of estimation of concrete strength in a 
structure is ±25% (Malhotra, 2004; Ministry of railways-India, 2009). Szilágyi and Borosnyói 
(Szilágyi & Borosnyói , 2009) indicate that the expected error of the strength estimation by 
the Schmidt rebound hammer under general service circumstances is about ±30%. FHWA 
(FHWA, 1997) states that the accuracy of rebound hammer for estimating in-situ compressive 
strength is between ±30% and ±40%.  

Regarding ultrasonic pulse velocity technique, using model established/calibrated for the case 
under consideration, the strength can be estimated with a ±20% accuracy (Bungey, 1980; 
Popovics, et al., 1990; Komlos, et al., 1996). 

Some other studies (Kheder, 1999; Qasrawi, 2000; Hobbs & Kebir, 2007) have reported that 
the combination of rebound hammer with the ultrasonic pulse velocity can improve the 
quality of assessment.  

All these numbers illustrate that: there is no consensus between the specialists, and the quality 
of concrete strength assessment using NDT measurements is still low even after the model 
identification/calibration with the core strengths. Consequently the quality of assessment 
remains an open question and needs to be improved or at least really known. The only way to 
do this is by controlling the sources of uncertainty stated above in Subsection 2.4.5. To this 
end, it is necessary to correlate the uncertainty with the methodology inherent characteristics 
in order to study how the quality of assessment can vary with any change in these factors. 

2.4.7 Conclusion of assessing concrete strength using cores and single nondestructive 
technique  

a) From the basics of the existing approaches (regression and calibration) illustrated 
above, it is obvious that none of these approaches has the objective to capture the 
concrete variability although the standards recommend the estimation of the concrete 
strength variability since it is an essential parameter in the calculation of the 
characteristic strength of concrete. 

b) The minimum number of cores required by standards (18 for regression approach and 
9 for calibration approach according to (EN 13791, 2007), and (ACI 228.1R, 2003) 
requires at least 12 cores) is variable and generally high. A consequence is the slow 
development of strength assessment using NDT and cores. 

c) The assessment methodology is affected by all factors that influence the core strengths 
and NDT measurements. In the existing structures, influencing factors (like concrete 
mix characteristics, concrete moisture condition, concrete surface carbonation, 
concrete temperature, and voids) are difficult to assess accurately. Therefore, these 
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factors are usually not included in the conversion model and consequently they are 
considered as uncontrolled factors. Therefore, these factors will be considered as a 
source of uncertainty in the assessment methodology.  

d) The methodology inherent characteristics (number of test locations for cores used to 
identify the conversion model, number of test locations for NDT measurements, the 
way of selecting the test locations, the quality of measurements, the type of NDT 
technique, using single or combination of NDT techniques, the model identification 
approach and the model type) can also affect the uncertainty of assessment. Since the 
methodology inherent characteristics factors can be controlled in the assessment 
methodology, therefore these factors deserve a more comprehensive analysis. 

e) The quality of assessment of concrete strength using NDT measurements remains low 
even after the model identification/calibration with the core strengths. Consequently 
the quality of assessment remains an open question and needs to be improved or at 
least really known. The only way to do this is by controlling the sources of uncertainty 
(in-situ concrete strength variability, sampling uncertainty, measurement uncertainty, 
model uncertainty). To this end, it is necessary to correlate the uncertainty with the 
methodology inherent characteristics (controlled factors) in order to study how the 
quality of assessment can vary with any change in these factors. Therefore this issue 
needs farther studies.  

2.5 Strength assessment using cores and combination of nondestructive 
techniques 

Instead of using a single NDT technique with cores for assessing the concrete, the NDT 
techniques can be used in combination (in addition to the cores). The theoretical principle of 
combination is that when two or more NDT techniques are affected inversely by an 
influencing factor, combining these techniques can reduce or eliminate this effect and as a 
result improve the reliability of strength estimation (Soutsos, et al., 2012; Sbartaï , et al., 
2012). As an example the effect of the concrete moisture condition which produces an 
increase in pulse velocity and decrease in rebound number when it increases. However, the 
benefit of this improvement in reliability resulted from using the combination of NDT 
techniques should be assessed against the additional time, cost, and complexity of using this 
combination (Samarin, 2004).  

Combining the ultrasonic pulse velocity and rebound hammer techniques is the most popular 
combination which is known as SONREB. RILEM Technical Committee (TC 43) played a 
major role in the development of the SONREB method. Its recommendation (RILEM TC 43-
CND, 1993) provided a procedure to establish iso-strength curves for a reference concrete 
(concrete has the materials and composition from a particular region or country for which the 
curves are devoted), as an example of these curves, see Figure 2.11. For different concrete 
compositions, correction factors are used for this purpose. When the composition is unknown 
(as it is the case for old structures), the correction factor should be estimated using cores 
extracted from the structure under investigation (RILEM TC 43-CND, 1993). In fact, the iso-
strength curves represent specific conversion models that correlate the concrete strength with 
NDT values (pulse velocity and rebound number) and the correction factor looks like the 
calibration factor that was illustrated in Subsection 2.4.2.1. The nomogram shown in Figure 
2.11 is not unique and many other versions were developed by researchers all around the 
world [see examples (Cianfrone & Facaoaru, 1979; Knaze & Beno, 1984; Schickert, 1984) for 
iso-strength curves, (Qasrawi, 2000; IAEA, 2002) for iso-rebound number curves, and (Galan, 
1984) for iso-pulse velocity curves]. 
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The variety of these iso-curves emphasizes that they can give a correct strength prediction 
only for the particular cases that they derived for it. Therefore, to assess concrete on site, the 
strengths should be predicted using model derived for the concrete under consideration. The 
assessment methodology is similar to that illustrated in Section 2.4. It includes: carrying out 
the NDT measurements, extracting cores, establishing a model using the dataset of (pulse 
velocity V, rebound number R, compressive strength ��) values, and estimating strength at any 
test location from applying V and R values (corresponding to this test location) in the model. 

In this section, an extension to the discussion of using single NDT technique detailed in 
Section 2.4 will be provided with a focus on the modifications for the case of combined NDT 
techniques. Finally, the efficiency of combination will be discussed.  

 

Figure 2.11 Iso-strength curves for a reference concrete in SONREB method (IAEA, 2002) 

2.5.1 Model identification approaches 

Regression approach illustrated above for the case of single NDT technique as an independent 
variable can be extended to the case of more than one NDT technique as independent 
variables. Therefore Equation (2.6) is modified as shown:  �� � = � + �ଵ ��ଵ + �ଶ ��ଶ + ⋯ + �� ��� + ��     � = ͳ, ʹ, … , ��                      (2.22) 

where q is the number of independent variables (�ଵ, �ଶ …). Using the least squares 
minimizations (Ross, 2009), the estimators ሺ�, �ଵ, �ଶ, … , ��ሻ of the true regression model 
parameters (�, �ଵ, �ଶ, … , ��ሻ are obtained and consequently the fitted regression model that 
can be used to estimate strength is: ����� = � + �ଵ �ଵ + �ଶ �ଶ + ⋯ + ��  ��                                                                  (2.23) 
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Statistical software (Excel, Minitab, Matlab, etc.) is available for performing the least squares 
minimizations and providing the estimated model parameters.  

Regarding the case of nonlinear regression model, the same principle of logarithmic 
transformation (Montgomery & Runger, 2003) illustrated above in Subsection 2.4.1.2 can be 
applied here. Moreover, the calibration methods (k-method and Δ-method) can be used 
directly for the case of NDT combination because the only difference is the uncalibrated 
model. 

2.5.2 Types of models 

For combining the pulse velocities and rebound numbers with cores, different model forms 
have been considered by the researchers, such as: bilinear, double power, exponential, 
polynomial and other miscellaneous form. In the state of art paper (Breysse, 2012), Breysse 
has gathered about 69 models from literature. Table 2.3 shows several models derived by 
different researchers. 

A possibility promoted by some researchers, see for examples (Kheder, 1999; Atici, 2011), is 
to combine (in addition to NDT measurements) several concrete characteristics (water-to-
cement ratio, aggregate-to-cement ratio, admixture content, concrete density, age, etc.) in the 
model. However the main drawback of this type of models is the need to know the concrete 
characteristics as inputs in the model while they usually remain unknowns in old structures.  

Another possibility is to combine more than two NDT techniques. For example, the French 
National Project SENSO (Balayssac, et al., 2012; Sbartaï , et al., 2012) developed a 
methodology for combining ultrasonic pulse velocity with electrical resistivity and ground 
penetrating radar (GPR) for the evaluation of compressive strength and other concrete 
characteristics as porosity, elasticity and saturation rate. However, it is out of our scope. In 
this study, models with only NDT measurements (V and R) as inputs will be considered. 

Table 2.3 Several models derived by different researchers in order to estimate strength using combination of 

rebound hammer and pulse velocity techniques 

Model units Reference ����� = ͺ.͸͵Ͳ � + ͳ.Ͷͳ͸� − ͷͳ.ͷͺͳ   �����  in MPa  

V in km/s 
(Soshiroda, et al., 2006) ����� = ͹.͸ͻͷ × ͳͲ−ଵଵ �ଶ.଺ �ଵ.ସ                              �����  in MPa  

 V in m/s 
(RILEM NDT4, 1993) 
after (Fiore, et al., 2013)  ����� =  �଴.ସସ଺�+଴.଴ସ଼�                                               �����  in MPa  

V in km/s 
(Machado , et al., 2009) ����� =  Ͳ.͸͹�଴.଻ଶ�+଴.଴ସ�   �����  in MPa  

V in km/s 
(Sravindrajah, et al., 
1988) ����� = Ͳ.Ͷʹ �଴.଺ଷ �଴.ହ଼�                                           �����  in MPa  

V in km/s 
(Al-Ameeri, et al., 2013) ����� = −ͳ͹͵.ͲͶ + Ͷ.Ͳ͹�ଶ + ͷ͹.ͻ͸ � + ͳ.͵ͳ�      �����  in MPa  

V in km/s 
(Shariati , et al., 2011) ����� = −ʹͶ.ͳ + ͳ.ʹͶ� + Ͳ.Ͳͷͺ�ସ                         �����  in MPa  

V in km/s 
(Meynink & Samarin, 
1979) ����� = −͹͸.͵Ͳ + Ͳ.ͳ͹ �଴.ସ଺ �଴.଻                            �����  in MPa  

V in m/s 
(Proverbio & Venturi , 
2005) ����� = (�/ሺ͵.͸Ͷ + Ͳ.Ͳʹ͵� − Ͳ.ͷ͸�ሻ)ଶ

                 �����  in kg/cm2
  

V in km/s 
(Postacioglu, 1985) 
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2.5.3 Factors affecting the quality of assessment 

The assessment methodology using combination of NDT techniques is affected by all factors 
illustrated above in Subsection 2.4.4 (controlled and uncontrolled factors) i.e. the factors that 
influence the core strengths, NDT measurements and the methodology inherent 
characteristics.  

2.5.4 Sources of uncertainty 

As discussed above in Subsection 2.4.5, the main sources of uncertainty are: in-situ concrete 
strength variability, sampling uncertainty, measurement uncertainty and the model 
uncertainty.  

2.5.5 Quality of assessment 

According to RILEM TC 43 (RILEM TC 43-CND, 1993), the accuracy of SONREB method 
is 12-15% (for a 90% confidence level) when SONREB curves (or models) are calibrated 
according to the core strengths while the concrete composition is unknown. This accuracy 
level is derived from laboratory studies, therefore it cannot be assured for the case of in-situ 
assessment due to the effect of many uncontrolled factors that presence on site. 

2.5.6 Efficiency of combination 

Combination of NDT techniques has received a lot of attention during the last decades.  
However, there is no general consensus about the efficiency of combination. Some 
researchers found that combining ultrasonic pulse velocity and rebound hammer yields more 
reliable and results closer to the true strengths (Wheen, 1974; Qasrawi, 2000; Hobbs & Kebir, 
2007), while others did not find a significant improvement in the concrete assessment by 
combining methods (Komlos, et al., 1996; Luprano, et al., 2008). In any case, the combination 
is not an end in itself and it should be applied in the cases where such combination is the most 
beneficial way of assessing the concrete strength (Leshchinsky, 1991). 
 
In common practice, in order to study the efficiency of combination, the coefficient of 
determination r

2 for the model derived for the combination of NDT techniques is usually 
compared with those corresponding to the models established from using these techniques 
separately.  Table 2.4 gives the r

2 values provided by different research works for models 
derived for the cases of using rebound hammer technique, ultrasonic pulse velocity technique 
and their combination. It is clear that r2 value for the combination case is always the best (i.e. 
r

2 combined > r2 single) and consequently one could conclude that the combination gives a 
more reliable assessment as compared with the use of the techniques separately. In fact this is 
a hasty conclusion because, from the statistical viewpoint, adding new term (new independent 
variable) to the model decreases error degrees of freedom and, as a result, increases r2 or at 
least does not decrease it (Walpole, et al., 2012; Montgomery & Runger, 2003). Therefore, 
the increase in r2 cannot confirm that the model produced from combination is better than that 
obtained from using single technique. We think that r2 can be a misleading indicator about the 
efficiency of combination and may lead to wrong conclusions. Thus, assessing the model 
prediction capability is the only way to decide whether combination is better than single 
technique.  
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Table 2.4 r
2
 values as provided by different researchers for models derived for: single rebound hammer 

technique, single ultrasonic pulse velocity technique and their combination 

Reference Single R Single V Combined V+R 

(Proverbio & Venturi , 2005) 0.82 0.46 0.86 

(Mahmoudipour, 2009) 0.25 0.61 0.67 

(Pucinotti, 2015) 0.24 0.82 0.89 

(Shariati , et al., 2011) 0.94 0.92 0.95 

(Kheder, 1999) 0.67 0.18 0.85 

(Soshiroda, et al., 2006) 0.93 0.81 0.94 

(Hobbs & Kebir, 2007) 0.93 0.90 0.95 

(Nash't, et al., 2005) 0.77 0.59 0.80 

(Al-Ameeri, et al., 2013) 0.96 0.98 0.99 

(Machado , et al., 2009) 0.90 0.64 0.99 

 

2.5.7 Conclusion of assessing concrete strength using cores and combination of 
nondestructive techniques  

a) Using combination of rebound hammer and ultrasonic pulse velocity techniques with 
cores for assessing the concrete strength is a common practice. However, there is no 
general consensus about the efficiency of this combination. Some researchers found 
that it yields more reliable results while others did not find a significant improvement 
in the concrete assessment by combining methods. Moreover, information about 
combination from standards is very poor. Therefore, the efficiency of combination 
needs to be studied. Also, the effect of the methodology inherent characteristics 
(controlled factors) on the efficiency of combination has to be studied. 

b) In real practice, in order to study the efficiency of combination, the coefficient of 
determination r

2 for the model derived for the combination of NDT techniques is 
compared with those corresponding to the models established from using these 
techniques separately. In fact, r2 can be a misleading indicator about the efficiency of 
combination and may lead to wrong conclusions. Thus, assessing the model prediction 
capability is the only way to decide whether using combined techniques is better than 
using single NDT technique. 
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2.6  Conclusions 

a) The methodology inherent characteristics (number of test locations for cores used to 
identify the conversion model, number of test locations for NDT measurements, the 
way of selecting the test locations, the quality of measurements (within-test 
variability), the type of NDT technique, using single or combination of NDT 
techniques, the model identification approach and the model type) can affect the 
uncertainty of assessment. Since the methodology inherent characteristics factors can 
be controlled in the assessment methodology, therefore these factors deserve a more 
comprehensive analysis. 

b) Using combination of rebound hammer and ultrasonic pulse velocity techniques with 
cores for assessing the concrete strength is a common practice. However, there is no 
general consensus about the efficiency of this combination. Some researchers found 
that it yields more reliable results while others did not find a significant improvement 
in the concrete assessment by combining methods. Moreover, information about 
combination from standards is very poor. Therefore, the efficiency of combination 
needs to be studied. Also, the effect of the methodology inherent characteristics 
factors (controlled factors) on the efficiency of combination has to be studied. 

c) In real practice, in order to study the efficiency of combination, the coefficient of 
determination r

2 for the model derived for the combination of NDT techniques is 
compared with those corresponding to the models established from using these 
techniques separately. In fact, r2 can be a misleading indicator about the efficiency of 
combination and may lead to wrong conclusions. Thus, assessing the model prediction 
capability is the only way to decide whether using combined techniques is better than 
using single NDT technique. This issue needs more focusing on. 

d) From the basics of the existing approaches (regression and calibration) illustrated 
above, it is obvious that none of these approaches has the objective to capture the 
concrete variability although the standards recommend the estimation of the concrete 
strength variability since it is an essential parameter in the calculation of the 
characteristic strength of concrete. Thus the improvement of the model identification 
process is necessary.  

e) The quality of assessment of concrete strength using NDT measurements remains low 
even after the model identification/calibration with the core strengths. Consequently 
the quality of assessment remains an open question and needs to be improved or at 
least really known. The only way to do this is by controlling the sources of uncertainty 
(in-situ concrete strength variability, sampling uncertainty, measurement uncertainty, 
model uncertainty). To this end, it necessary to correlate the uncertainty with the 
methodology inherent characteristics in order to study how the quality of assessment 
can vary with any change in these factors. Therefore this issue needs a farther study. 
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   CHAPTER THREE 

3 MEANS AND TOOLS 

 

 

3.1 Introduction 

This chapter deals with the scientific tools that are adopted in the present thesis in order to 
analyze and improve the strength assessment methodology. It begins by defining the 
assessment strategy and its elements. Then, sources of datasets used through the present work 
are detailed. Finally, the simulator that has been built for this study is illustrated showing how 
its main algorithm works.   

3.2 Definition of the assessment strategy 

From the previous chapter, there is evidence that the methodology of strength assessment 
using destructive and nondestructive tests has many degrees of freedom (type of test method, 
number of measurements, type of model, model identification approach, etc.). Therefore, 
there are many possible combinations of the values of these elements. In the present thesis, 
each combination of these values is so-called “assessment strategy”. For example, if one 
defines his strategy to have specified characteristics (number of test locations for ultrasonic 
pulse velocity measurements =40, number of test locations for cores NC=5, cores locations 
are randomly selected, using regression approach to identify a power model). Then any 
change in these characteristics produces a new assessment strategy.  Consequently, the 
assessment methodology can be achieved using many possible strategies.  

Therefore, through the different analysis presented in this thesis, any assessment strategy 
follows the general definition presented in Figure 3.1. As shown, the assessment strategy is 
defined to consist in two main parts: the investigation program and the strength assessment. 
The investigation program includes: 

-  Selecting the suitable NDT method such as using rebound hammer or ultrasonic 
pulse velocity or a combination of NDT methods. This selection depends on many 
factors, among them is the investigation budget. Due to the difference in the cost 
between the test methods (or between using single and combination of NDT 
techniques), for fixed budget, the number of possible tests using rebound hammer 
will be larger than that when using the pulse velocity method. It is necessary also 
to select the number of replicates for each test method (i.e. number of times the 
measurement is repeated within a test location in order to derive a test result) 
which depends on the within-test variability of the test method and the 
investigation budget.  

- Selecting the number of test locations for each type of measurements (DT and 
NDT). Regarding the number of test locations for cores, NC, as discussed in 
Chapter 2, standards provide the minimum limits. However concerning the number 
of test locations for NDT measurements, NT, for assessing the existing structures, 
standards do not give any specified values (only for new construction, the ACI 
228.1R recommends specified values for testing different structural members 
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using different test methods). Nevertheless, the number of NDT test locations 
generally depends on the investigation budget, the in-situ concrete strength 
variability, and the reliability of the final results of assessment (ACI 228.1R, 
2003). 

- The way of defining the test locations is also an essential issue in the investigation 
program. On site, the investigation program usually starts by selecting the NT test 
locations for carrying out NDT measurements. The selection of these locations can 
be “random” or “predefined” by the investigator according to specific constraints 
(like, for example, focusing on exterior columns or choosing to test all the selected 
columns at mid-height). Regarding the selection of NC core locations from the NT 
test locations, it is usually either random or predefined selection (i.e. selection 
independent of NDT test results). However, studies, like (Pfister, et al., 2014; 
Breysse, et al., 2017), propose to define core locations depending on the NDT test 
results i.e. “conditional selection”.  

- The last stage in the investigation program is carrying out on site measurements 
and laboratory tests in order to provide the final investigation results. 

The second part of the assessment strategy “strength assessment” deals with the analysis and 
the interpretation of the test results obtained during the investigation stage. It consists in the 
following steps: 

-  Selecting the model type and the model identification approach. As discussed in 
Chapter 2, several model types are used by the investigators in the real practice 
and there is no general consensus on a specific type. Regarding the model 
identification approaches, it was discussed that people usually uses either prior 
model without any calibration, or prior model after calibration using one of the 
calibration methods described in Chapter 2, or identifying models using the 
regression analysis. 
 

 

 Figure 3.1 Definition of the assessment strategy 
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- Using the established model to predict the strength at the test locations where there 
are the NDT measured values. These estimated local strengths can be used to 
determine the estimated mean strength and the estimated concrete strength 
variability.  

3.3 Sources of data  

3.3.1 In-situ on structure and laboratory studies data  

In order to analyze the current assessment methodology and the most influencing factors, 
datasets in form of (NDT measurement, compressive strength) are required. Through the 
different phases of the present study, two sources of experimental datasets will be used:  
laboratory studies and in-situ investigation on structures. Table 3.1 gives a summary about 39 
datasets (S1, S2, S3,…, S39) used in the present PhD work. These datasets include 3922 test 
locations. The test results at each test location may be (V,��), (R,��) or (V, R,��). Among these 
test locations, the in-situ datasets have 358 test locations that cover concretes with mean 
strength, ��̅ , varying from 13.4 to 32.6 MPa and concrete strength variability, �ሺ��ሻ, ranging 
from 2.1 to 13.3 MPa. Regarding the laboratory studies datasets, they cover a wider range of 
concrete strengths (mean strength ranges from 21 to 77.4 MPa and strength variability varies 
from 4.8 to 18.3 MPa). Some of the datasets presented in Table 3.1 are collected from 
scientific literature while the others are from research collaborations with Algerian 
researchers (Said Kenai and Khoudja Ali Benyahia) and with Hungarian researchers (Katalin 
Szilágyi, Adorján Borosnyói). 

The Algerian data originate from a full investigation program carried out on an existing 
building before the demolition. It was situated in Blida (70 km from the capital of Algeria). 
The building consisted of two blocks; block 1 was a 3-story reinforced concrete frame while 
block 2 had a 2-story frame. The in-situ tests consisted in NDT measurements (pulse velocity 
and rebound hammer) that were carried out at 205 test locations distributed over the members 
(beams and columns) of each story in the two blocks (120 test locations for block 1 and 85 for 
block 2). 75mm diameter cores were also extracted from these 205 test locations for 
compressive strength test.  

The collaboration with the Hungarian team provided the test result pairs (R,��) for more than 
2900 test locations produced from different laboratory studies. These laboratory studies have 
a large variety of concrete characteristics (mix properties, age, curing, and admixture) and 
testing conditions. The dataset sizes vary from 100 to 216 test result pairs. They cover a wide 
range of concrete mean strength ��̅ (34.5-77.4 MPa) and concrete strength variability (in terms 
of strength standard deviation, �ሺ��ሻ, from 6.7 to 18.3 MPa or in terms of strength coefficient 
of variation, ��ሺ��ሻ, from 11 to 33%). Regarding the rebound number, each dataset has a 
mean value, �̅, within the range (32-48) and the variability in rebound number within each 
dataset, s(R), falls within the range (2.1-7.5). Moreover, these datasets include the values of 
individual readings at each test location (10 rebound hammer readings on the same surface of 
a concrete specimen during the laboratory tests and R, test result value, represents the average 
value of these 10 replicates). Therefore, within-test variability (or repeatability) of rebound 
measurements at each test location (in terms of the coefficient of variation) is known for each 
test result. This information is necessary for studying the effect of quality of measurements. 

To evaluate the quality of assessment, the strength estimations are necessary to be compared 
with the true in-situ strengths. However, as discussed in Chapter 2, the true in-situ strengths 
are always unknowns in the real structures and core strengths can only be considered as true 
reference values to these strengths. Therefore, through this study, the strengths (local 
strengths, mean strengths, and strength variabilities) provided by the datasets given in Table 
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3.1 will be called “true reference” values that will be used as references (i.e. the strength 
estimations will be compared with these true reference strengths). 

Of course, in-situ dataset is preferable for analyzing the assessment methodology because it is 
more representative of the situation in real structures. However, due to the cost, time, 
structural and aesthetic considerations, the availability of the well-documented and reliable in-
situ datasets remains limited. In addition, the sizes of these datasets are usually small (except 
for the cases of demolition) as it is shown in Table 3.1. For the statistical stability reason, 
larger datasets are required. Laboratory studies datasets can meet this requirement, however 
they are less representative of the situation in real structures due to several reasons:   

- Due to the effect of quality control conditions, the in-situ strength in a structure is 
usually less than the strength of the standard specimens produced from the same 
concrete and compacted and cured in a standard laboratory control conditions,  

- The difference between the sources of strength variability for laboratory dataset and 
the sources for in-situ dataset. The in-situ strength variability in the structure 
results from within-member variability (for instance, strength at lower part of the 
column is higher than that at higher part), batch to batch variability, and/or due to 
strength variation between the weak and normal undamaged zones in the structure. 
While the strength variability in a laboratory dataset is resulted from using 
different mix characteristics and/or from testing specimens at different ages. 

Therefore, the application of in-situ dataset or laboratory study dataset has its own limitations. 
It is the reason why, besides these two types of data, synthetic data derived from synthetic 
simulations will be also used in the present PhD work.  
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Table 3.1 Summary of the collected datasets 

Dataset 
Symbol 

Dataset 
size 

Source of 
dataset 

Dataset characteristic 
Reference �̅ �ሺ�ሻ �̅ m/s �ሺ�ሻ m/s ��̅   MPa �ሺ��ሻ MPa 

S1 205 in-situ 34.27 5.80 3671 434 18.81 6.50 (Ali-Benyahia, et al., 2017)  

S2 23 in-situ 41.41 4.50 3769 280 14.09 4.72 (Pucinotti, 2015) 

S3 22 in-situ __ __ 3095 421 16.21 5.29 (Giannini, et al., 2014) 

S4 21 in-situ __ __ 3739 170 32.57 5.51 (Giannini, et al., 2014) 

S5 21 in-situ 36.33 2.74 __ __ 19.74 3.76 (Monteiro & Gonçalves, 2009) 

S6 18 in-situ 25.61 1.75 3840 73 13.41 2.14 (Hannachi & Guetteche, 2012) 

S7 18 in-situ 26.33 7.45 2765 928 18.07 8.50 (Masi & Vona, 2008) 

S8 16 in-situ 39.21 4.39 3225 467 26.26 13.33  (Nobile, 2015) 

S9 14 in-situ 28.07 8.01 3309 673 23.99 6.23  (Masi, et al., 2016) 

S10 80 Lab. 36.46 5.47 5079 179 51.53 11.89 (Cianfrone & Facaoaru, 1979) 

S11 63 Lab. 37.09 2.26 4206 156 27.17 4.76  (Knaze & Beno, 1984) 

S12 60 Lab. 30.52 4.47 4461 416 23.61 7.73 (Oktar, et al., 1996) 

S13 40 Lab. 39.41 8.41 4721 319 37.70 12.04 (Jain, et al., 2013) 

S14 30 Lab. 43.74 4.67 4450 200 47.94 10.76 (Rojas-Henao, et al., 2012) 

S15 20 Lab. 30.48 4.01 4037 168 27.35 7.42 (Nikhil, et al., 2015) 

S16 16 Lab. 31.38 5.25 4656 184 37.33 12.63  (Sbartaï, et al., 2012) 

S17 120 Lab. __ __ 4409 223 31.37 11.16  (Musmar & Abedalhadi, 2008) 

S18 60 Lab. __ __ 4436 96 61.83 9.36 (El Mir & Nehme, 2016) 

S19 24 Lab. __ __ 4513 181 20.96 7.20  (del Rio, et al., 2004) 
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S20 120 Lab. 33.68 5.26 __ __ 22.45 5.88  (Hajjeh, 2012) 

S21 144 Lab. 39.30 2.95 __ __ 35.95 6.69 (Szilágyi , 2013) 

S22 118 Lab. 48.14 3.64 __ __ 63.30 11.74 (Szilágyi , 2013) 

S23 114 Lab. 32.34 2.62 __ __ 41.73 9.35 (Szilágyi , 2013) 

S24 144 Lab. 48.38 2.12 __ __ 77.41 11.70 (Szilágyi , 2013) 

S25 100 Lab. 47.29 3.39 __ __ 67.19 7.65 (Szilágyi , 2013) 

S26 136 Lab. 37.11 4.68 __ __ 45.78 9.71 (Szilágyi , 2013) 

S27 120 Lab. 36.96 5.21 __ __ 44.50 11.29 (Szilágyi , 2013) 

S28 120 Lab. 37.84 4.24 __ __ 42.62 10.26 (Szilágyi , 2013) 

S29 118 Lab. 46.53 6.29 __ __ 65.35 12.77 (Szilágyi , 2013) 

S30 172 Lab. 46.04 3.64 __ __ 69.20 11.88 (Szilágyi , 2013) 

S31 208 Lab. 46.44 4.68 __ __ 71.12 14.34 (Szilágyi , 2013) 

S32 216 Lab. 46.81 4.84 __ __ 70.25 16.38 (Szilágyi , 2013) 

S33 160 Lab. 44.18 3.90 __ __ 60.72 11.87 (Szilágyi , 2013) 

S34 212 Lab. 39.07 5.64 __ __ 54.71 15.13 (Szilágyi , 2013) 

S35 212 Lab. 37.39 5.77 __ __ 45.82 14.71 (Szilágyi , 2013) 

S36 204 Lab. 40.07 5.64 __ __ 63.55 18.30 (Szilágyi , 2013) 

S37 136 Lab. 39.48 5.38 __ __ 55.16 13.57 (Szilágyi , 2013) 

S38 167 Lab. 39.95 7.49 __ __ 34.69 11.08 (Szilágyi , 2013) 

S39 130 Lab. 48.79 2.57 __ __ 66.74 10.78 (Szilágyi , 2013) 
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3.3.2 Synthetic data 

Another data type adopted in this study is the synthetic data. These data are generated by 
Monte-Carlo simulation using the procedure proposed by (Breysse, 2012; Breysse & 
Martínez-Fernández, 2014). The main interests of synthetic simulation are: (a) its ability to 
consider many influencing factors and its flexibility in changing the values of these factors, 
(b) its ability to generate a huge number of (NDT measurement, compressive strength) pairs 
within a synthetic building while it is impossible with real building due to the cost and time 
constraints, (c) the ability to repeat the simulations many times in order to reduce the 
influence of chance, and (d) the easiness to quantify the error in the estimated strength since 
the “true in-situ strength” is known at each test location in the synthetic building and 
consequently the difference between this value  and estimated value can be calculated. 
However, as stated in the previous subsection, for real experimental datasets given in Table 
3.1, the core strength (or standard specimen strength for the laboratory datasets) is used as a 
true reference to calculate the error.  

The basic idea herein is to simulate statistically a synthetic building having the following 
information at each test location: 

- True in-situ strength and NDT values, 

- Measured values for core strength and NDT measurements, 

Generally, the main steps in the simulation are: defining the simulation input variables and 
their domains, generating random values for the input variables using the suitable probability 
distributions, calculating the values of the output variables using the synthetic relationships 
between the inputs and outputs and finally repeating the simulation many times. 

(Breysse, 2012) considered the true in-situ strength, ����, and concrete moisture content, ��, as 
simulation inputs. Of course, other possible influencing factors (i.e. carbonation, cracking, 
aggregate type and size, etc.) may also exist. However, it is very complex (if not impossible) 
to consider all the influencing factors.  

Regarding the generation of the input variables, there is no general consensus about the 
statistical distribution of concrete strength in a structure, (ACI 214.4R, 2003; Bungey , et al., 
2006) stated that the distribution is normal when the control is excellent while for poor quality 
concrete (high concrete variability) the distribution is lognormal. However, (Celik, et al., 
2012) studied the strength distribution obtained from various diameter cores and they 
indicated that Weibull distribution for almost all of the core sample data were found to 
characterize the compressive strength well. In the present study, the true in-situ concrete 
strength ����  is generated by assuming a normal distribution N(��̅�� , �ሺ����ሻሻ while a truncated 
normal distribution, N(��̅ , �ሺ��ሻሻ with  0 ≤ �� ≤ 100%, is used to generate the values for the 
degree of saturation ��.  

After an in-depth literature review of available experimental results, (Breysse, 2012) 
developed synthetic models in order to correlate the inputs with the true in-situ ultrasonic 
pulse velocity �� and true in-situ rebound number ��: �� = ����ሺ���� �����⁄ ሻଵ ��⁄ ሺ ��  �����⁄ ሻଵ ��⁄                                                                (3.1) �� = ����ሺ���� �����⁄ ሻଵ ��⁄ ሺ ��  �����⁄ ሻଵ ��⁄                                                                (3.2) 
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It must be pointed that these models (Equations 3.1 and 3.2) do not pretend to be “general 
models” and they can be considered as models that only represent a case study from many 
case studies existing in the real practice. 

The reference values (���� , ���� , ����� , �����) in Equations (3.1) and (3.2) are arbitrary values 
introduced in order to normalize the equations, and have no influence on the general behavior. 
The reference values are ����= 40, ����= 4000 m/s, �����= 85% and �����= 40 MPa. The 
exponents quantify the relative sensitivity of �� and �� to the variations in strength and 
humidity. Their values have been carefully chosen in order to accurately describe what is 
observed in practice. The strength sensitivity exponents bf and cf have been respectively taken 
equal to 4.90 and 2.10. The humidity sensitivity exponents bs and cs have been respectively 
taken equal to 7.14 and -3.33 (Breysse & Martínez-Fernández, 2014). The bs and cs values 
respectively correspond to an increase of 6% in pulse velocity and a decrease of 12%  in 
rebound number as the concrete humidity changes from air-dry specimen (assumed at 
Sr=65%) to fully saturated condition (Sr=100%.). These values are in agreement with what we 
have found in literature. For example, for pulse velocity, (ASTM C 597, 2002) stated that the 
pulse velocity in saturated concrete may be up to 5% higher than in dry concrete. (Lencis , et 
al., 2013) found an increase of 19% in pulse velocity between totally dry and maximum 
saturated conditions i.e. 6.65% between Sr=65% and saturated conditions. Experimental 
results from (Kheder, 1999) showed an increase in pulse velocity of (200-400) m/s between 
air dry and wet conditions. Also for rebound number, the results from (Kheder, 1999) showed 
a decrease of (3-4) points in rebound values i.e. less than 10%. (Malhotra , 2004) stated that 
well-cured, air-dried specimens, when soaked in water and tested in the saturated surface-
dried condition, show rebound readings 5 points lower than when tested dry. 

As it was illustrated in Chapter 2, measurement uncertainties always exist. Therefore, random 
errors (ƐV, ƐR and Ɛf) are added to the generated true in-situ values (�� , �� , and ����) in order 
to produce what will be measured values (�, �, and ��) that corresponding to what would be 
obtained in the real practice after a routine investigation program. These last values represent 
the simulation outputs. � = �� + ƐV                                                                                                                     (3.3) � = �� + ƐR                                                                                                                    (3.4) �� = ���� + Ɛf                                                                                                                   (3.5) 

The magnitude of these errors are obtained by assuming a normal distributions N(0, ���), 
N(0, ���) and N(0, ���) with zero average and standard deviations, ���, ��� and ���, 
represent the within-test variability of the measurements. The possible range of within-test 
variability has been widely documented in the literature (ACI 228.1R, 2003; Breysse, 2012; 
Szilágyi , et al., 2014). Depending on the values of ���, ��� and ��� (Breysse, et al., 2017) 
classify the measurements to three quality levels: high (HQ), average (AQ) and low (LQ). The 
values of ���, ��� and ��� are respectively 50 m/s, 1 unit, and 1 MPa for high quality 
measurements while the values corresponding to average quality are 100 m/s, 2 units, and 1.5 
MPa. For low quality the values are 200 m/s, 4 units, and 2 MPa. 

Each data simulation produces the outputs (�, �, and ��) corresponding to one test location, 
therefore it should be repeated a number of times equal to the required total number of test 
locations (dataset size) in the synthetic building. Figure 3.2 shows the steps of data simulation 
used to generate a synthetic dataset.  
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3.4  The simulator developed in the present thesis 

To perform the analysis in the present study, a simulator was built. It was coded using the 
programming language VBA (Visual Basic for Applications) that integrated with Excel. This 
simulator has two main objectives: 

- Generating the synthetic dataset following the algorithm illustrated in Figure 3.2, 
- Simulating and analyzing the assessment strategy defined in Figure 3.1 using 

synthetic or real experimental datasets. 

Calculating �� �  and �� � using Eqs. (3.1) & (3.2) 

Calculating the �� , �� , and �� � using Eqs. (3.3), (3.4)  & (3.5) 

j=j+1 

Generating ���� � and �� � 
                        
                                                     

N(�̅� , �ሺ��ሻሻ 

�� � 100% 

N(��̅�� , �ሺ����ሻሻ 

���� � 

Generating random errors ƐV j, ƐR j and Ɛf j   
 
 
 
 
 
 

0 
ƐV +
+ 

ƐV − 

N(0, ���) 

ƐV j 0 
ƐR +
+ 

ƐR − 

N(0, ���) 

ƐR j 0 
Ɛf +
+ 

Ɛf − 

N(0, ���) 

Ɛf j 

Repeat while j < dataset size 

Inputs: ��̅�� , �ሺ����ሻ,  ��̅ , �ሺ��ሻ, ���, ���, ��� and dataset size 

Output: Synthetic dataset 

Figure 3.2 Algorithm for generating dataset using synthetic simulation 



Ch.3 Means and Tools 

 

70 

The flowchart in Figure 3.3 shows the main algorithm in this simulator. It begins with the 
selection of the dataset (NDT measurements, strengths from destructive tests DT) that will be 
used through the following steps of the simulation. As detailed in Section 3.3, two main 
sources of data are used in the present study: experimental (either from laboratory studies or 
from in-situ investigation) and synthetic datasets. Therefore, the simulator has been designed 
to deal with any of these options. If the synthetic dataset option is selected, the simulator 
follows the algorithm in Figure 3.2 to generate the dataset. Regarding this issue, two choices 
were considered, see Figure 3.3: (a) generating only one dataset and using it for all simulation 
repetitions, (b) generating a new dataset for each new simulation repetition. The first choice 
represents the simulation of one given building, while the second choice is devoted to 
simulate many buildings having the same statistical properties. The second choice will be 
applied to Section 4.3 where the efficiency of specific assessment strategy (i.e. all the 
elements of strategy remain unchanged through all simulation repetitions) is required to be 
analyzed. Whilst, the first choice will be used through all other sections and chapters of this 
thesis. When the experimental dataset option is selected, an Excel sheet is used to enter the 
dataset into the simulator. In this case, the same dataset will be used through all simulation 
repetitions (i.e. similar to the first choice for the case of synthetic data).  

As discussed in Section 3.2, planning any on site investigation program requires defining the 
NT test locations for carrying out NDT measurements. The selection of these locations can be 
“random” or “predefined” by the investigator to follow specific constraints. To reproduce this 
feature, these two options are considered in the simulator. Regarding the further selection of 
NC core locations from the NT test locations, the simulator can deal with the three options 
presented in Section 3.2: random, predefined, and conditional. 

In the real practice, after the in-situ measurements and strength testing in laboratory, these 
results are used to identify a conversion model between the NDT measurements and concrete 
strengths. This stage is reproduced in the simulator with several options regarding the choice 
of the model type and that of the model identification approach used to identify the model. In 
each simulation, the simulator can identify simultaneously several models using different 
identification approaches. Each identified model is used to estimate the local strengths which 
are used to calculate the estimated mean strength, ��̅���, estimated strength standard deviation 
(strength variability),  sሺ��eୱ୲ሻ , and errors. The error is calculated from the differences 
between the estimated local strengths, ��eୱ୲, and the corresponding “true in-situ strengths, ����, 
for the case of synthetic dataset. For the experimental dataset, the true in-situ strengths remain 
unknown and consequently the true reference strengths, �� ,  provided by the dataset will be 
used for the calculation of error. 

Due to the measurement uncertainties and/or the random components of the process 
illustrated in Figure 3.3 (i.e. the random selection of the test locations), the estimated values 
are not unique (i.e. repeating the simulation leads to new estimated values). Therefore, to 
reduce the influence of chance and obtain the relevant statistical information, the simulator is 
designed to repeat the simulation a certain number of times. The number of simulation 
repetitions (NI) is an input data for the simulator and the value is chosen in each analysis in 
order to ensure the stability of the results within a specified confidence level (see Appendix 
C).   

The process can be applied for a single value of NC that is provided to the simulator or for a 
series of NC values and in the latter case the whole process is repeated for each value of NC 
as shown in Figure 3.3, where NCmax is an input value that represents the upper limit of the 
NC values.  
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i=i+1 

Dataset (NDT, DT) 

Generating synthetic dataset 
(NDT, DT) using the algorithm 

illustrated in Figure 3.2 

Entering the experimental 
dataset (NDT, DT) from Table 

3.1 
  or 

Random or predefined selection of NT test locations from the whole 
dataset; then the selection (randomly or predefined or conditionally) of 

NC locations for DT from these NT locations 

 

Applying the model identification approach to produce a model 

Using the identified model to estimate local strength values at NT test 
locations: ����� ଵ , ����� ଶ ,……….., ����� ��  

 

Using the estimated local strengths to calculate the outputs of this 
simulation: ��̅��� � ,  sሺ��eୱ୲ሻ� , ��ଶand �����  

 

Repeating simulation while i < NI 

Statistical analysis on the outputs from NI simulations 

 

NC=NC+1 

Repeating while NC < NCmax 

Figure 3.3 Main algorithm of the simulator prepared for the analysis in the present study 
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For each NC value, the simulator stores the results from each simulation, therefore, after NI 
simulations, the simulator outputs (for each used model identification approach) will be NI 
values of ��̅��� ,  sሺ��eୱ୲ሻ, and errors. These outputs are post-processed in different ways 
through the chapters of this thesis. In Section 4.2, the focus is on the average values of errors 
in the estimated local strengths. In Section 4.3 all the estimated mean strength and the 
estimated strength standard deviation (strength variability) values resulting from each strategy 
are used for the comparison with the stored true in-situ values and with the results from other 
strategies. In Section 4.4 and Chapter 5, the average and standard deviation of the NI-values 
of the estimated mean strength and the estimated strength standard deviation are derived. 
Finally, for the reliability analysis (Chapter 6), the outputs are used to plot the cumulative 
distribution curves of the estimated mean strength and the estimated strength standard 
deviation. These curves are used for constructing what we will call “risk curves”. 

The analysis results of Sections 4.2 and 4.3 obtained from using the first version of the 
simulator show that for several simulation repetitions one of or both the situations shown in 
Figure 3.4 are occurred. Figure 3.4a shows that, for dataset having the true strengths and pulse 
velocities (shown in gray), when selecting randomly four cores (NC=4) from this population 
one of the possible choices is the four points shown in black. After identifying a conversion 
model using these NC pairs of (�, ��), this model predicts a zero value and several negative 
values of the estimated local strengths when it is used to assess the strength values of the 
dataset under consideration. While Figure 3.4b shows another possible choice for four cores 
that leads to identify a model has a negative slope for the case of linear model or (negative 
exponent for power model). This means that the strength decreases while the NDT value 
increases, which generally has no physical meaning with ultrasonic pulse velocity and 
rebound hammer measurements. Therefore, the NC pairs of (�, ��) which are used for the 
model identification may produce a very bad or even physically impossible conversion model.  

The risk of having the above situations is larger if NC is small, and if the measurement 
uncertainties are relatively large as compared to the range of variation of concrete strength in 
the domain of investigation.  

 

 

Figure 3.4 Two cases identified wrong conversion models obtained from the analysis of real dataset using 
NC=4 cores selected randomly from the whole dataset size=60 
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In this study, another version of the simulator has been developed. It includes (in addition to 
the characteristics described for the first version) two conditions (if ����� ≤ Ͳ or if slope < 0) 
for linear model and (if ����� ≤ Ͳ or if exponent < 0) for power model. For each model type, 
when one or both of these conditions is satisfied, the simulator will reject this model and 
return to select new test locations for cores in order to identify another model. Consequently, 
this version of the simulator will repeat the simulation more than NI repetitions in order to 
provide the results for NI repetitions all having correct models. Counters are added to the 
simulator in order to quantify the number of failed repetitions (i.e. the repetitions identify 
wrong models) for each approach. The percentage of failed repetitions for each approach with 
respect to the total number of repetitions will be one of the simulator outputs. This issue will 
be discussed in detailed in Chapter 5. 

Since the first version of the simulator is used to obtain the analysis results of Sections 4.2 
and 4.3, the second version of the simulator is used for carrying out the analyses through the 
other parts of this thesis (i.e. Section 4.4, Chapter 5, and Chapter 6).  
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CHAPTER FOUR 

4 ANALYSIS OF CURRENT METHODOLOGY FOR 

CONCRETE STRENGTH ASSESSMENT  

 

 

4.1 Introduction 

This chapter is devoted to analyze the current methodology for assessing the concrete strength 
in the existing structures presented in Chapter 2. It includes three main parts. The first one 
focuses on studying the effects of several methodology inherent characteristics (controlled 
factors, see Subsection 2.4.4). The second part of this chapter analyzes and compares several 
assessment strategies presented in an international benchmark in order to provide some 
remarks about the efficient strategy when the investigation budget is fixed. The third part 
analyzes the existing model identification approaches (regression and calibration) and 
compares their efficiency for assessing the mean strength and concrete strength variability.  

4.2 Studying the effect of several key influencing factors  

In this section, the effects of several methodology inherent characteristics (controlled factors, 
see Subsection 2.4.4) are studied. The considered factors are: the number of test locations for 
cores, NC, which are used for the regression/calibration of the model, the quality of NDT 
measurements (or within-test variability), the type of model, and the combination of NDT 
techniques. In addition to these factors, the uncontrolled factor of the in-situ concrete strength 
variability is also considered. For analyzing all these effects, all sources of data illustrated in 
Chapter 3 (real in-situ data, laboratory studies data, and generated synthetic data) are 
considered. In order to assess the quality of fitted model and its ability to estimate strength, 
RMSE and r2 errors are calculated for the estimated local strengths. We have published this 
study in “Construction and building Materials” Journal with an analysis based on synthetic 
data only (the paper is available in Appendix A). We will synthesize here the simulation 
procedure, the main results of the analysis (for all sources of data considered in this study), 
and the final conclusions. 

4.2.1 Effect of number of test locations for cores 

As stated in Chapter 2, the fitting error is commonly used as an indicator regarding the 
adequacy of the fitted model. To study the effect of number of test locations for cores, NC, on 
the fitting error in the local strengths, the in-situ dataset S1 (selected from Table 3.1) was 
analyzed. To this end, the process illustrated in Figure 3.3 was followed with NT=205 and NC 
varies from 2 to 20. After the random selection of NC from NT test locations, the regression 
analysis was used to identify three linear models corresponding to three cases: using pulse 
velocity method V, using rebound hammer method R, and using combined method (V+R). 
Then, r

2 and RMSE were calculated using respectively Equations (2.14) and (2.17). This 
process was repeated NI times (NI=1000). Therefore, for each NC, the final results were the 
average of NI values of r

2 and the average of NI values of RMSE. Figure 4.1a shows the 
average of NI values of r2 as a function of NC and the averages of NI values of RMSE were 
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plotted on Figure 4.1b. Each figure shows three Fitting Error Curves (FEC) corresponding to 
three cases (single technique V, single technique R and combination of V+R). From Figures 
4.1a and 4.1b, the following observations can be noted: 

- the general features are identical for the three cases (V and R measurements alone or in 
combination), 

- it is clear that the r2 values decrease (i.e. fitting error increases) as NC increases. The 
same observation is drawn with the fitting error RMSE where RMSE increases as NC 
increases. This is rational because the number of points to be fitted using a model 
having a fixed number of parameters is increased. 

- the other interesting observation is about the points with r2 =1 or RMSE=0 when NC=2 
for the case of single technique and NC=3 for the case of combination of NDT 
techniques. This means that, when NC equal to the number of model parameters, the 
model parameters can be identified without any fitting error. 

 

Figure 4.1 Fitting error, FEC, as a function of NC resulted from analyzing the dataset S1 

In real practice, the model identified for the test locations with cores is used to predict the 
strength at test locations where there are only NDT measurements. Therefore, the prediction 
ability of the model is an important issue. Statistic provides many measures of forecasting, see 
(Hyndman & Koehler, 2006; Shcherbakov , et al., 2013).  Among these measures, RMSE is 
used by the NDT experts for evaluating the prediction error (Huang, et al., 2011; Nobile, 
2015). The prediction error (RMSE) can be calculated for (NT-NC) test locations using the 
following modified form of Equation (2.17): 

���� = √∑ ሺ����� � − �� � ሻଶ��−���=ଵ /ሺ�� − ��ሻ                                              (4.1) 

Following the same process used to calculate and plot the FEC, the Prediction Error Curves 
(PEC) obtained from analyzing the dataset S1 were identified and plotted on Figure 4.2. For 
comparison, the FEC presented in Figure 4.1b were also plotted on Figure 4.2. From Figure 
4.2, the following observations can be noted: 

- the general features are identical for the three cases (V and R measurements alone or in 
combination),  

- the prediction error exhibits an adverse pattern to that of fitting error, since it 
decreases while NC increases: by increasing NC, despite of increasing fitting error, the 
model provides a better picture of true strengths. Thus, by considering only the fitting 
error, one would obtain a totally wrong picture, 
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- one must point here that when NDT strength assessment is studied in the scientific 
literature, authors often limit their analysis to the first (fitting) stage, considering the r2 
and RMSE from fitting as a criterion of the assessment quality. However it is clear that 
the values of PEC are always larger than the corresponding values of FEC, therefore 
using the fitting error is misleading, 

- for each of the three cases (V and R measurements alone or in combination), the 
difference between the FEC and PEC decreases as NC increases,  

- for the cases where the fitting errors = 0 (NC=2 for the case of single technique and 
NC=3 for the case of combination of NDT techniques) the prediction errors are large 
i.e. the models have poor predictive ability. This discrepancy must be pointed, since a 
very low number of cores is a common practice. Scientific literature offers many cases 
in which the model in such a situation is said to be good, this statement being just 
based on r2 fitting value, when the predictive ability would in fact be very poor, but 
has not been quantified.  

 

Figure 4.2 Fitting and prediction errors (FEC and PEC) as a function of NC resulted from analyzing the in-

situ dataset S1 

4.2.2 Effect of quality of measurements 

To study the effect of within-test variability (or repeatability) on the prediction error in the 
estimated local strengths, a synthetic dataset was considered. Following the algorithm 
illustrated in Figure 3.2, the simulator generated a synthetic dataset having the following 
characteristics: ��̅�� = Ͷͷ MPa, �ሺ����ሻ = ͷ MPa,  ��̅ = ͺͲ%, �ሺ��ሻ = ͷ%. Then, the 
algorithm in Figure 3.3 was followed in order to produce the final results (at each NC value, 
the average of NI-values of RMSE from NI-repetitions), for more details about this simulation 
see Appendix A. As stated in Chapter 3, according to the amount of within-test variability, 
(Breysse, 2012) has classified the quality of measurements into three levels: high (HQ), 
average (AQ) and low (LQ). Figure 4.3 shows the prediction error curves, PEC, that 
correspond to these three quality levels obtained from the case of using the pulse velocity 
method with cores for identifying linear regression models. It is clear that for the same 
concrete, using low quality measurements (higher within-test variability) produces larger 
prediction error in the estimated strengths. This confirms the need to control the measurement 
uncertainty in order to improve the quality of assessment.  
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Figure 4.3 Effect of quality of measurements on the Predictive RMSE, PEC, after analyzing a synthetic 

dataset (�̅��� = �� ���, �ሺ����ሻ = � ���) with single NDT technique (pulse velocity) 

 

4.2.3 Effect of in-situ concrete strength variability 

The in-situ concrete strength variability is one of the inherent properties of concrete that 
depends on many factors like the mixing procedure, curing, and compacting processes in 
addition to the environmental effects. To study its effect on the final prediction error resulted 
in the estimated strengths, the simulator was used to generate (following the algorithm in 
Figure 3.2) and analyze (following the algorithm in Figure 3.3) ten synthetic datasets. These 
datasets have the same characteristics (��̅�� = Ͷͷ MPa, ��̅ = ͺͲ%, �ሺ��ሻ = ͷ%, and AQ 
measurements) except the �ሺ����ሻ value which was varied from �ሺ����ሻ = ͳ MPa for the first 
dataset to �ሺ����ሻ = ͳͲ MPa for the last one. For all datasets, the core locations were selected 
randomly, while NC remains constant with (NC=10), and the regression approaches were used 
to identify linear models. After the NI repetitions for each dataset, the final predictive RMSE 
values (the average of NI values of RMSE from NI repetitions) were plotted on Figure 4.4a for 
the ten datasets (for more details about this simulation, see Appendix A). Three cases for 
NDT measurements were considered in Figure 4.4: V and R measurements alone or in 
combination.  

It is obvious that, for the three cases, the increase in the in-situ strength variability leads to a 
simultaneous increase in predictive RMSE. However, the behavior appears to be different 
when the RMSE/�ሺ����ሻ values (i.e. relative error) are plotted for the ten datasets since the 
relative error decreases as �ሺ����ሻ increases (Figure 4.4b). This indicates that the predictive 
RMSE consists in two parts: the error due to the in-situ concrete variability, and the error due 
to the other sources of uncertainties. This observation coincides with our earlier discussion 
about the sources of uncertainty, see Subsection 2.4.5. In short wording, one must pay 
attention to how the quality of the assessment is quantified: looking at absolute error RMSE or 
relative error RMSE/�ሺ����ሻ would lead to different conclusions. 
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Figure 4.4 Effect of true in-situ strength variability on the predictive RMSE for single and combined NDT 

techniques with average qualities and for NC=10 

4.2.4 Effect of type of model (linear or nonlinear) 

In the above subsections the regression approach was used to identify linear models. This 
section is devoted to study the effect of model type by comparing the predictive RMSE 
curves, PEC, obtained from nonlinear models (power model) with those corresponding to 
linear models. In order to analyze this issue comprehensively and provide more robust 
conclusions, four real datasets (S1, S10, S11, and S12) were selected from Table 3.1. They 
were selected due to the variety in their characteristics: they are from different sources of data 
(S1 obtained from in-situ study while the others belong to laboratory studies), they have a 
wide range of mean strengths (ranging from 18.8 to 51.5 MPa) and different concrete strength 
variabilities (coefficient of variation ranging from 17.5 to 34.5 %), see Table 3.1. Moreover, 
these datasets provide the test results for both NDT techniques (rebound hammer and pulse 
velocity) in addition to the core strengths. Consequently, the effects of the type of NDT 
technique and of the use of single or combination of NDT techniques can be considered in 
this analysis. 

The methodology illustrated in Figure 3.3 was applied for each dataset and for three cases 
(single technique V, single technique R, and combination of V+R) with NT equals to the 
dataset size, as given in Table 3.1. NC varies from 4 to 20 with random selection of these 
locations. For each dataset, for each NC, the regression approach was used to identify 
simultaneously linear and power models. After NI repetitions, the final predictive RMSE 
curves that correspond to each dataset were plotted on Figures 4.5-4.8 respectively. Each 
point on these curves represents the average of NI values of RMSE from NI repetitions. From 
these figures, the following observations can be noted: 

- for the case of single NDT technique, for each technique, the curves for linear and 
power models are very close. However, there is generally a significant divergence 
between these curves when NC < 5. Furthermore, for the curves corresponding to 
the case of pulse velocity technique shown in Figure 4.7, some divergence exists 
even when NC ≥ 5. This behavior is due to the effect of measurement uncertainty 
(or quality of measurement) associated of the NDT technique because in the same 
figure the PEC curves (for linear and power models) for rebound hammer show no 
divergence. 

- for the case of combination of NDT techniques, it is clear that, when NC > 5, there 
is no significant effect of the model type. However, when NC < 5, the PEC curves 
of power models diverge from the curves corresponding to linear models.    
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A more detailed focus on the case where the curves diverge (typically at low NC, NC < 5) 
shows that the power models lead to higher RMSE values. This means that, when NC < 5, the 
probability to identify models that are not well representative to the concrete under 
consideration is higher for the case of power model. This is due to the effect of the uncertainty 
in the values of power model parameters and more specifically in the exponent of the power 
model. This uncertainty can lead, at the prediction stage, to strength estimations significantly 
far from true values. However, as NC increases, the difference between linear and power 
models vanishes and when NC > 5, the type of model has generally no significant effect on 
the prediction error in the local strengths. 

 

 

Figure 4.5 Effect of model type on the predictive RMSE for single and combined techniques when analyzing 

in-situ dataset S1 

 

 

Figure 4.6 Effect of model type on the predictive RMSE for single and combined techniques when analyzing 

laboratory study dataset S12 
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Figure 4.7 Effect of model type on the predictive RMSE for single and combined techniques when analyzing 

laboratory study dataset S10 

 

Figure 4.8 Effect of model type on the predictive RMSE for single and combined techniques when analyzing 
laboratory study dataset S11 

4.2.5 Effect of combining NDT techniques  

The aim of combining NDT techniques is to improve the quality of assessment. The 
efficiency of combination points out whether using combined techniques is more efficient 
than using a single NDT technique or not. The efficiency of combination studied herein is 
limited to the case of combining the rebound hammer and pulse velocity and any other 
combination is out of our scope. In real practice, in order to study the efficiency of 
combination of (V+R), the coefficient of determination r

2 for the model derived from the 
combination of NDT techniques is usually compared with those corresponding to the models 
established from using these techniques separately. As discussed in Chapter 2, due to 
statistical aspects, r2 for combination is always, at the fitting stage, higher than that resulting 
from using the NDT techniques alone. Therefore r

2 can be a misleading indicator about the 
efficiency of combination and may lead to wrong conclusions. Moreover, from the above 
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discussion in Subsection 4.2.1, it is clear that when r
2 is large (i.e. small fitting error), the 

prediction error is large, which also highlights the shortcoming of r2 as an indicator about the 
efficiency of combination. Consequently, comparing the prediction capacity (prediction error) 
of the model identified for combination with that identified for each NDT technique 
separately is the only way to decide whether using combination of NDT techniques can 
improve the quality of assessment or not. 

To emphasize on this issue, thirteen in-situ and laboratory studies datasets (S1, S2, S6, S7, S8, 
S9, S10, S11, S12, S13, S14, S15, and S16) were selected from Table 3.1 to be analyzed here. 
The methodology illustrated in Figure 3.3 was followed with NT equals to the dataset size and 
a fixed value of NC (NC=6). For each dataset, for each simulation, the NC was selected 
randomly in order to identify a linear regression model for each of three cases: single 
technique pulse velocity, single technique rebound hammer, and their combination. At the end 
of each simulation, the fitting errors, r2, and the prediction errors, RMSE, were calculated for 
these three cases. The simulation was repeated NI repetitions (NI=1000) and the average of NI 
values of r2 and the average of NI values of RMSE corresponding to each case are given in 
Table 4.1.  

The results at fitting stage show that the r2 for combined method is, as expected, larger than 
that for single techniques. However, the analysis of RMSE values at predictive stage confirms 
that this first statement is clearly meaningless. Depending on the considered datasets, RMSE 
can be either better or poorer for combination than for single technique. It is only in three 
cases (datasets S8, S9, and S16) that the combination has a positive effect on the quality of 
assessment (i.e. it is efficient). Consequently, the prediction error must be used as the only 
indicator about the efficiency of combination. 

Table 4.1 Studying the efficiency of combination, bold numbers indicate the minimum RMSE values 

corresponding to each dataset 

Dataset 

symbol 
NT NC 

Fitting error in terms of r2 
Prediction error in terms of 

RMSE (MPa) 

Single 
V 

Single 
R 

Combined 
V+R 

Single 
V 

Single 
R 

Combined 
V+R 

S1 205 6 0.71 0.74 0.86 4.3 3.8 3.8 

S2 23 6 0.64 0.23 0.70 3.9 5.3 4.6 

S6 18 6 0.27 0.31 0.43 2.5 2.5 3.5 

S7 18 6 0.57 0.78 0.84 6.8 4.9 6.2 

S8 16 6 0.79 0.68 0.92 8.2 9.2 5.8 

S9 14 6 0.81 0.88 0.97 3.6 2.2 1.6 

S10 80 6 0.51 0.83 0.87 10.1 5.6 6.5 

S11 63 6 0.84 0.54 0.89 2.2 5.1 2.7 

S12 60 6 0.69 0.64 0.83 5.0 6.0 5.2 

S13 40 6 0.79 0.97 0.98 8.0 2.5 3.1 

S14 30 6 0.24 0.20 0.41 13.5 13.3 16.3 

S15 20 6 0.73 0.77 0.89 5.7 4.0 4.9 

S16 16 6 0.68 0.76 0.93 9.0 7.3 5.6 
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To study the efficiency of combination, Figures 4.5-4.8 can be good examples in which the 
prediction errors corresponding to single and combination of NDT techniques are plotted. The 
following observations can be noted: 

- the prediction errors due to the case of combination reduce as the NC increases, 
however, when NC is larger than 10 or 12 the curves stabilize and there is no 
significant reduction in the prediction errors, 

- from Figures 4.5 and 4.6, when NC > 6, the case of combination gives the 
minimum error as compared with the cases of single NDT techniques. In contrast, 
when NC < 6, using single NDT technique (rebound hammer in Figure 4.5 and 
pulse velocity in Figure 4.6) is the best,  

- from Figures 4.7 and 4.8, it is clear that the combination cannot assess the 
strengths better than the single NDT techniques for all values of NC considered in 
this analysis. From Figures 4.7, it is obvious that PEC of pulse velocity technique 
is significantly higher than that corresponding to rebound hammer technique. 
Since for each dataset (each figure) the effects of the sources of uncertainty other 
than the measurement uncertainty are the same (the same concrete, sample size, 
NC, etc.) on both techniques. Therefore the difference between PEC of pulse 
velocity technique and that of rebound hammer technique is mainly due to 
measurements uncertainty (or the quality of measurements). For Figure 4.8 the 
same issue can be observed but with higher PEC is provided by the rebound 
hammer technique. Consequently, the reason of the inefficient behavior of 
combination shown in Figures 4.7and 4.8 is due to the difference in quality of 
measurements of the combined two techniques, 

- Some researchers find that the pulse velocity method is more efficient than the 
rebound hammer method or versus versa. However, the comparison of the curves 
of single technique show that the rebound hammer technique is the best in some 
cases (Figures 4.5 and 4.7) while in other cases the pulse velocity is the best 
(Figures 4.6 and 4.8). Therefore, we think that the superiority of any of the two 
techniques is affected considerably by the quality of measurements.  

In summary, the efficiency of combination must be studied using the prediction error. The 
combination of pulse velocity and rebound hammer techniques is not always efficient and this 
efficiency depends on number of test locations for cores and the quality of measurements. 
This explains the reasons why in the literature the efficiency of combining NDT is 
controversial (combination is said to bring some added-value in some cases but not in others). 

4.2.6 Conclusions 

In order to understand the effects of several factors which affect the assessment of concrete 
strength in existing structures by NDT measurements a parametric study has been performed 
using both synthetic and real datasets. Through this study several factors remained 
unchanged, such as: all models were identified using regression approach and cores were 
selected randomly.  From this analysis, the following conclusions can be drawn: 

- errors in the estimated strengths are affected by the number of test locations for cores, 
NC. For a small NC, the fitting error is small while the prediction error is large, but 
increasing NC leads to an increase in the fitting error while the prediction error is 
progressively reduced. These errors depend on the quality of measurement as, for the 
same NC, they decrease with better quality of measurements. The prediction error is 
always larger than the fitting error, therefore fitting error is a misleading indicator 
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about quality of assessment and prediction error must be used for this purpose. In 
practice, the prediction error can be estimated by using additional cores.  

- as the true in-situ concrete strength variability increases, �ሺ����ሻ, the predictive RMSE 
increases while the ratio RMSE/�ሺ����ሻ decreases. Consequently, one must pay 
attention to how the quality of the assessment is quantified: looking at the absolute 
error, RMSE, or relative error, RMSE/�ሺ����ሻ, would lead to different conclusions. 

- the effect of the model type (linear or power) depends mainly on NC. It can be 
significant for a small NC but it reduces as NC increases, 

- the efficiency of combination must be studied using the prediction error (and not the 
fitting error). The combination of pulse velocity and rebound hammer techniques is 
not always efficient and the efficiency depends on NC and the quality of 
measurements. This explains the reasons why in the literature the efficiency of 
combining V and R is a controversial issue, combination being said to bring some 
added-values in some cases but not in others. Finally, it is important to point out that 
this conclusion is related to the combination of V and R and cannot be generalized to 
others combination methods.  

4.3 Analyzing several assessment strategies presented in an international 
benchmark 

In common practice, the real challenge for engineers is the selection of an assessment strategy 
among a large number of alternative strategies using the same investigation budget. 
Therefore, we will focus here on this issue by analyzing several strategies proposed by NDT 
experts, presented in an international benchmark, in order to assess concrete strength in a 
synthetic building (synthetic dataset). The properties targeted in this simulation are the 
concrete mean strength and concrete strength variability. This work has been published in 
“Materials and Structures” Journal (see the paper in Appendix B). Therefore the present 
section synthesizes the simulation methodology, the main results, and the final conclusions 
while more detailed information is available in Appendix B.  

4.3.1 The benchmark in brief 

A RILEM Technical Committee TC-249 ISC (nondestructive in-situ strength assessment of 
concrete) was created with the aim of establishing guidelines for an efficient use of 
nondestructive techniques for in-situ concrete strength assessment. TC members have decided 
to carry out a benchmark whose objectives were to identify and compare the expert practices 
regarding NDT assessment of concrete strength. The main elements of this benchmark have 
been detailed in (Breysse, et al., 2017). In this benchmark, depending on the amount of 
available resources, three knowledge levels (KL1, KL2 and KL3) were considered. Sixteen 
different strategies have been proposed by the benchmark contributors in order to assess the 
concrete strength of a synthetic building. Each strategy has provided two values for each 
knowledge level: 

- the estimated mean strength, 

- the estimated strength standard deviation (concrete strength variability).  

For knowledge level KL3, these two values, as provided by each strategy, are plotted on 
Figure 4.9. 
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Figure 4.9 Estimation of mean strength and strength standard deviation (concrete variability) for 16 

strategies at KL3 (Breysse, et al., 2017) 

4.3.2 Simulation of the assessment strategies 

In fact, if the same strategy is applied to another building having the same properties 
(statistically speaking) different estimated values of mean strength and standard deviation 
would be derived. They correspond to a different point on Figure 4.9. Hence, a general 
conclusion about the efficiency of any strategy cannot be simply drawn from this single result 
because the effect of chance. Therefore, using Monte-Carlo simulations appears to be an 
adequate approach in order to assess and compare the efficiency of several strategies proposed 
in the benchmark. Each simulation corresponds to a different building (but having the same 
statistical properties) on which the strategies are carried on.  

Five strategies have been selected among those proposed by the contributors to the 
benchmark. The selection criterion was the exhaustiveness of information they had provided 
about the process (i.e. about how the measured values are exactly processed and how 
estimations are derived), and the fact that the process would be fully automatic without any 
expert interaction. These five strategies (namely B, E, F, J and O5 in (Breysse, et al., 2017)) 
have the advantage of covering the three main possibilities regarding the conversion model 
identification: 

- using a prior model without any calibration (strategy F),  

- calibrating a prior model by using NDT test results and core strengths (strategies E, J and 
O5), 

- fitting a specific model  between NDT test results and core strengths using the regression 
analysis (strategy B). 

Three of these strategies use a single NDT (rebound R for strategies J and O5, ultrasonic 
velocity V for the strategy B), while strategies F and E use combined NDT. Each of the five 
selected strategies has been reproduced within the simulator so that it works as proposed by 
the contributor. 

The simulation process is exactly the same as that presented and detailed in (Breysse, et al., 
2017). The only difference is that the process is repeated herein NI times (NI=1000), thus 
generating NI synthetic buildings instead of a single one. This means that the algorithm 
presented in Figure 3.3 is applied with the option of generating a new synthetic dataset for 
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each simulation. Therefore, after NI simulations, for each strategy, the results are NI pairs of 
true in-situ values of mean strength and concrete strength variability, ሺ��̅��, �ሺ����ሻሻ, and the 

corresponding estimated NI pairs, ቀ��̅���, �ሺ�����ሻቁ. Since for the synthetic building the true 

in-situ strengths are known, so the estimated values will be compared with the true in-situ 
strengths.  

As an example, the results obtained from NI simulations of strategy B are shown in Figure 
4.10, while the details of the five strategies with the final results are given in Appendix B. 
Looking only at the results provided by the contributor of strategy B shown in Figure 4.9, one 
could conclude that this strategy is not efficient because its point is far from the true point. 
However, when looking at Figure 4.10, different conclusion can be reached, since the center 
of the estimated cloud is close to the center of true cloud. An additional important issue is the 
scatters of both clouds (those of true values and those of estimated values) which cannot be 
captured when only a single simulation is available. This observation emphasizes our above 
statement that one single application of an assessment strategy is not enough to deliver a 
relevant indication about the efficiency of the strategy. 

 

Figure 4.10 Comparison of estimated (mean strength and strength standard deviation) to the true values; 

results from 1000-simulations of contributor’s strategy B at KL3 

 

4.3.3 Analysis of simulation results 

4.3.3.1 Indicators of estimation quality 
In order to evaluate the quality of assessment (or the efficiency) of each strategy, two types of 
indicators are considered. They respectively correspond to (a) the difference between true in-
situ values and estimated values, (b) the scatter of estimated values.  

The first indicator is the NRMSE (Normalized Root Mean Square Error) (Ris, et al., 1999) 
which is devoted to quantify the accuracy of forecasting. For each estimated cloud, two values 
of NRMSE are calculated regarding mean strength and strength standard deviation, 
respectively: 
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������� = ቆ√∑ (��̅��� � − ��̅�� �)ଶ���=ଵ ��⁄ ቇ / �̅���̅̅ ̅̅ ̅                                                  (4.2) 

������� = ቆ√∑ [�ሺ����� ሻ� − �ሺ����ሻ�]ଶ���=ଵ ��⁄ ቇ / �ሺ����ሻ̅̅ ̅̅ ̅̅ ̅̅                                    (4.3) 

 

where �̅���̅̅ ̅̅ ̅ and �ሺ����ሻ̅̅ ̅̅ ̅̅ ̅̅  are respectively the averages of NI values of true in-situ mean strength 
and true in-situ strength standard deviation (i.e. the center of true cloud). For the presented 
case study, the values of �̅���̅̅ ̅̅ ̅ and �ሺ����ሻ̅̅ ̅̅ ̅̅ ̅̅  are respectively equal to 25.6 MPa and 1.8 MPa.  

The second indicator quantifies the horizontal and vertical scatters of the estimated cloud i.e. 
the standard deviation of the mean strengths �ሺ��̅���ሻ, and the standard deviation of the 
strength standard deviations �ሺ�ሺ����� ሻሻ. The values corresponding to the true cloud are �ሺ��̅��ሻ = 0.66 MPa and �ሺ�ሺ����ሻሻ = 0.30 MPa. The scatters of the true cloud correspond to 
the randomness of the simulation process, for a given set of concrete properties. 

Table 4.2 summarizes the main features of the selected five strategies and the values of the 
four indicators. The efficiency of the strategy increases as normalized indicators decrease and 
as the two other indicators are closer to true in-situ values. 

Table 4.2 Characteristics of the five strategies at KL3 and values of the quality indicators 

Str. Q 

No.of 
measurements Way of 

core 
select. 

Model 
identification 

approach 

Quality indicators  

Core V R 
NRMSEav 

% 
NRMSEsd 

% 
�ሺ��̅���ሻ 

MPa 
�ሺ�ሺ�����ሻሻ

MPa 

B LQ 5 17 0 CC 
Regression 

analysis 
6 54 1.30 0.92 

E AQ 3 6 12 PC 
calibration  

(k-method) 
5 55 1.45 0.57 

F AQ 3 9 12 PC 
No  

calibration 
4 116 0.93 0.61 

J AQ 3 0 29 PC 
calibration  

(k-method) 
8 129 2.22 0.64 

O5 AQ 2 0 40 CC 
Calibration 

 (∆-method) 
14 121 1.78 0.48 

Q: quality of measurements (LQ: low quality, AQ: average quality, HQ: high quality) 
PC: core locations predefined before the starting of the investigation program 
CC: conditional core locations i.e. defined after the first series of NDT measurements  

4.3.3.2 Comparison of the strategies efficiency 
From the results synthesized in Table 4.2, regarding the estimation of mean concrete strength, 
all strategies can be considered efficient since the normalized error NRMSEav is less than 10% 
(strategies B, E, F, J) and 15% for the strategy O5. However, some strategies are not robust, 
with a significant probability of having a large over or under estimation, directly linked to the �ሺ��̅���ሻ value. This problem is particularly relevant with Strategy J and, to a lower extent, 
with Strategy O5. Strategy F appears to be the most efficient because it has the minimum 
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values of RMSEav and �ሺ��̅���ሻ but this strategy deserves further comments. It must be pointed 
that it uses an uncalibrated model. With such a method, the uncalibrated model can in some 
situations (by the effect of chance) more or less fit with the true properties, but it can also be 
very far from these true properties. As discussed in Chapter 2, the issue of calibration has 
been widely documented (IAEA, 2002; EN 13791, 2007) and uncalibrated models are risky. 
Therefore the most efficient strategies regarding mean strength estimation are strategies B and 
E. 

Regarding the strength variability estimation, there is a general tendency to overestimate, with 
particularly very bad indicators for strategies F, J and O5, for which the overestimation 
exceeds 100% (notwithstanding with a large scatter). Strategies E and B get better results, 
with a lower overestimation. This is probably the beneficial consequence of options privileged 
in these approaches: (a) the combination of two NDT for strategy E, (b) the conditional 
coring, using 5 cores, and the weighted average of strength estimates for strategy B. However, 
the scatter �ሺ�ሺ�����ሻሻ is larger for strategy B due to the uncertainty arising from using low 
quality measurements. Nevertheless, with NRMSEsd values always larger than 50%, these 
strategies are not fully satisfactory regarding the estimation of concrete strength variability.  

4.3.3.3 Analyzing the effects of several factors 
The analysis of the five strategies highlights the effects of several influencing factors on the 
quality of assessment. We will analyze in more details these effects, by considering them in a 
more systematic way and focusing on three items: the quality of measurements, the way of 
selecting the location of cores and the amount of resources allocated to the investigation 
program. The general idea is to keep all main features of the strategies while simply varying 
one of these influencing factors and analyzing how the quality of the assessment is affected. 
Table 4.3 summarizes all results, which can be compared to those obtained with original 
strategies (Table 4.2). 

- Effect of amount of resources 
Three cost levels (KL1, KL2 and KL3) have been considered in the benchmark (Breysse, et 
al., 2017) corresponding to a progressively increasing amount of resources. All results 
discussed above (in this section) had been obtained at KL3. It seems interesting to see how the 
quality of assessment varies when KL changes. Therefore two strategies (B, E) have been 
selected to be analyzed at level KL1 (amount of resources at KL1=1/3 KL3). The numbers of 
measurements are globally divided by a factor 3 and are provided in Table 4.3, which can be 
compared to the numbers for the same strategies at KL3 in Table 4.2. All other characteristics 
(quality of measurements, the way of core selection and model identification approach) of 
these two strategies remain unchanged.  

The final results presented in Table 4.3 show that reducing the amount of resources from KL3 
to KL1 increases significantly all the metrics (NRMSEav NRMSEsd , �ሺ��̅���ሻ and �ሺ�ሺ�����ሻሻ. 
This behavior is expected since reducing the number of measurements (DT and NDT) causes 
the uncertainties to grow up. For example, strategy B herein is affected by a dramatical 
increase in the model uncertainty due to the fact that the two parameters of the regression 
model are derived from information gathered on only two cores instead of three (Strategy B) 
or one core instead of two (Strategy E). The result of the identification is thus highly affected 
by the uncertainties. 
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Table 4.3 Characteristics of the selected strategies for the parametric study and values of the quality 

indicators (in bold: characteristics differ from those in Table 4.2) 

Str. Q 

No.of 
measurements Way of 

core 
select. 

Model 
identification 

approach 

indicators of quality  

Core V R 
NRMSEav 

% 
NRMSEsd 

% 
s(fc̅est)
 MPa 

s(s(fcest))
MPa 

Studying the effect of amount of resources (KL1) 

B LQ 2 4 0 CC 
Regression 

analysis 
8 114 2.01 2.03 

E AQ 1 2 6 PC 
calibration  

(k-method) 
10 59 2.71 0.86 

Studying the effect of quality of measurements (KL3) 

B AQ 3 11 0 CC 
Regression 

analysis 
7 82 1.60 1.47 

E HQ 2 4 8 PC 
calibration  

(k-method) 
4 28 1.24 0.54 

J HQ 2 0 20 PC 
calibration  

(k-method) 
7 54 1.59 0.48 

Studying the effect of way of core selection (KL3) 

E AQ 3 6 12 CCA 
calibration  

(k-method) 
5 55 1.40 0.57 

J AQ 3 0 29 CCA 
calibration  

(k-method) 
7 134 1.48 0.62 

O5 AQ 2 0 40 CCA 
Calibration 

 (∆-method) 
6 121 1.68 0.48 

 

- Effect of quality of measurements 
In the benchmark three quality levels of measurements are considered. These levels are: high 
quality (HQ), average quality (AQ) and low quality (LQ) with the values of within-test 
variability as that provided in Chapter 3. In order to further study this effect, three strategies 
(B, E and J) have been selected among the five strategies considered in this section. 
According to the rules of the benchmark, the cost of measurements increases as the quality 
level improves. The available amount of resources being fixed, the number of measurements 
reduces when the quality level improves. For the selected three strategies, the quality level has 
been improved (from LQ to AQ for strategy B and from AQ to HQ for strategies E and J). 
Consequently the numbers of measurements have been reduced accordingly. These numbers 
are provided in Table 4.3 and can be compared with the initial values given in Table 4.2. 

From Table 4.3, it is clear that improving the quality of measurements has a slightly positive 
effect on the indicators of the mean strength, NRMSEav and �ሺ��̅���ሻ, for strategies E and J, 
while this effect is negative for strategy B. This positive effect is more remarkable for the 
concrete strength variability: for strategies E and J, NRMSEsd reduces to one half their values 
in Table 4.2 while the reduction in �ሺ�ሺ�����ሻሻ is small. On the contrary, for strategy B, 
NRMSEsd and �ሺ�ሺ�����ሻሻ significantly increase in comparison with the corresponding values 
given in Table 4.2. These apparently inconsistent results can be explained by the controversial 
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effects of improving the quality of measurement on one hand while the number of tests is 
reduced on the other hand. Depending on which influence is the more important, the result 
may be either positive for strategies (E, J) or negative for strategy B. The measurement 
uncertainty has a predominant effect for strategies E and J in which the quality increased from 
average to high. However, for strategy B, improving the quality of measurement (from low to 
average) reduced the number of cores from 5 to 3 and this second factor had a predominant 
effect (it can be noted that this strategy is based on a regression model which requires to 
identify two model parameters). These results confirm that capturing the coupled effects of 
measurement uncertainty and number of cores will deserve a further interest. 

- Effect of the way of core selection 
Two ways for selecting the core locations have been considered by the benchmark 
contributors: predefined core locations “PC” and conditional core locations “CC”. The idea of 
the conditional cores is to select core locations that cover, as much as possible, the whole 
range of the NDT measurements distribution. Thus we propose the following rule for 
selecting core locations: (a) rank all NDT test results from the lowest to the highest, (b) 
subdivide the set into NC subsets, (c) take a core at the location which has the NDT value 
closest to the median value of the subset. This rule will be denominated “CCA” in this 
section. To study the effect of the way of core selection on the quality of estimation, three 
strategies (E, J and O5) have been selected. The contributors of strategies (E, J) used the PC 
option, while contributor O5 used CC but following a different rule (see Appendix B). The 
proposed CCA rule will be applied to these three strategies. The other characteristics of the 
strategies remain unchanged including the number of measurements, since CCA implies no 
additional cost. 

It appears that conditional cores can improve both the accuracy and precision (reducing the 
scatter) of the mean strength estimation while it generally has no effect on the accuracy and 
precision of the estimated concrete variability. Moreover, for the strategy E that already 
obtained good results, it has effect neither on mean strengths nor on concrete variability 
estimations. The main effect is the decrease of the horizontal scatter of the cloud of the 
estimated strength, which is particularly visible for strategy J. The explanation is that when 
one has a small number of cores (NC = 3 here), the model uncertainties resulting from a too 
narrow range of variation of the NDT test results may be very large. Conditional cores, by 
ensuring a better coverage of the strength range reduce these uncertainties. Since conditional 
cores induce no additional cost and since it can have only positive effect, this process must be 
strongly recommended. 

4.3.4 Conclusions 

In this section, several strategies defined by experts in an international benchmark devoted to 
assess the concrete strength and its variability have been selected. The efficiency of these 
strategies has been studied by simulating their application to a series of 1000 synthetic 
buildings having the same statistical properties and by defining quality indicators of the 
assessment, in terms of accuracy and precision.  
The comparison of the simulated results with those provided by the contributors to the 
benchmark confirmed that it is irrelevant to evaluate a strategy from a unique result (“one shot 
study”). This statement is derived from synthetic datasets but it can, for the same reasons, be 
extended to real in-situ datasets, since the effect of chance (or lack of chance) may prevent 
any valid statement. This work has confirmed that:  

- it is very dangerous to consider only the estimated strengths (mean value, standard 
deviation) without considering the variability of these estimations, 
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- the quality of assessment obviously improves when both quantity and quality of test 
results increase. However when the total amount of resources is fixed, the optimal 
balance between quantity and quality of test results does not follow simple rules and 
deserves to be studied through a more comprehensive analysis, 

- properly assessing the concrete strength variability is a much more difficult challenge 
than assessing the mean concrete strength. All strategies considered here have shown a 
handicap for assessing the concrete strength variability. Thus, correctly assessing 
concrete strength variability remains an ambitious challenge. We will come back to 
this issue in the next section and in Chapter 5 of this document, 

- the quality of measurements, or measurement uncertainty, is a key factor regarding the 
quality of assessment,   

- the proposed method for the conditional selection of core locations can improve the 
quality of assessment without any additional cost so it is strongly recommended.  

4.4 Analyzing the existing model identification approaches 

As discussed in Chapter 2, the existing model identification approaches can be classified into 
two main categories: regression approach when a specific model is identified using the least 
squares method, and calibration approaches when a prior model is modified for best 
agreement with a given dataset. We will analyze and compare in this section the estimation 
capacity of the existing model identification approaches regarding the assessment of mean 
strength and concrete strength variability. 

4.4.1 Comparing the prediction capacity of the existing model identification 
approaches 

For this purpose, eight real datasets (S3, S5, S17, S18, S19, S20, S38 and S39) were selected 
from Table 3.1 with four datasets with ultrasonic pulse velocity measurements and the others 
with rebound hammer measurements. Datasets S3 and S5 were obtained from in-situ studies 
while the other six datasets resulted from laboratory studies. These eight datasets cover a wide 
range of mean strength (from 16.21 MPa to 66.74 MPa) and concrete strength variability 
(with coefficients of variation from 15.1% to 35.6%). 

In this section, a linear model was adopted for the three model identification approaches. For 
the calibration approaches, an uncalibrated prior model is required. For each of the eight 
datasets considered in this section, a linear uncalibrated model was selected from literature. 
The selection criterion was: the model has a range of NDT values close or larger than that of 
the dataset. Table 4.4 summarized the selected uncalibrated model corresponding to each 
dataset.  

Each dataset was analyzed following the procedure illustrated in Figure 3.3. Firstly, all pairs 
(NDT, DT) of the dataset were considered in each simulation (i.e. NT = dataset size). 
Secondly, NC test locations (i.e. NC pairs of (NDT, DT)) were selected randomly from the 
total available test locations (NT) in order to identify models. The value of NC was varied 
from 1 to 20, however for the analysis of some datasets (S3, S5, and S19), NC was changed 
from 1 to 10 due to the limited size of these datasets. Thirdly, the model identification 
approaches (regression, calibration with Δ-method, and calibration with k-method) were used 
to identify three linear models. Each model was used to estimate the local strength values (for 
NT test locations) and consequently to calculate the values of estimated mean strength ��̅��� , 
and estimated concrete strength variability (in terms of standard deviation) sሺ��eୱ୲ሻ. The 
whole procedure was repeated NI times (NI=1000). At each repetition, new test locations 
were selected for NC which leads to a new conversion model for each approach and 
consequently to new values of estimated mean strength and estimated strength variability.  
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Table 4.4 Uncalibrated models selected from literature for the present analysis when using the calibration 

approaches 

Dataset symbol Uncalibrated model Reference of model 

S18 ������. = ͵͸.͹ʹ� − ͳʹͻ.Ͳͺ (Qasrawi, 2000) 

S17 ������. = ͵͸.͹ʹ� − ͳʹͻ.Ͳͺ (Qasrawi, 2000) 

S19 ������. = Ͷͳ.ͳͲ� − ͳͶͻ.ͺͶ* (Musmar & Abedalhadi, 2008) 

S3 ������. = ͺ.͵Ͳ� − ͵.͵Ͷ* (Masi, et al., 2016) 

S39 ������. = ͳ.ͷ͹� − ͳͺ.ͷͶ (Al-Ameeri, et al., 2013) 

S38 ������. = ͳ.ͷ͹� − ͳͺ.ͷͶ (Al-Ameeri, et al., 2013) 

S20 ������. = Ͳ.ͻ͵� − ͳ.ͳʹ (Mahmoudipour, 2009) 

S5 ������. = ͳ.͹͵� − ͵Ͷ.ͷͲ (EN 13791, 2007) 

              *models are not provided directly in the assigned reference, however, we derived them from the data     
                  provided in the corresponding reference 
 
Therefore, after NI repetitions, the final results for each dataset, each identification approach 
and each NC value were: 

- the mean value and standard deviation of the estimated mean concrete strengths, i.e. 

respectively  ��̅���̅̅ ̅̅ ̅̅  and �ሺ��̅��� ሻ,  

- the mean value and standard deviation of the estimated standard deviation values of 

concrete strength (concrete strength variability), i.e. respectively sሺ��eୱ୲ሻ̅̅ ̅̅ ̅̅ ̅̅ ̅ and sሺsሺ��eୱ୲ሻሻ,  

For each one of the eight datasets considered in this section, the values of ��̅���̅̅ ̅̅ ̅̅  that 
corresponding to the three identification approaches were plotted on Figure 4.11 as a function 
of NC values. However, the sሺ��eୱ୲ሻ̅̅ ̅̅ ̅̅ ̅̅ ̅ values were plotted on Figure 4.12. In addition, for 
comparison, reference lines (line in red) were also plotted on these figures. The reference 
lines represent the mean strength or the concrete strength variability values that corresponding 
to each dataset as provided in Table 3.1. The variabilities in mean strengths, �ሺ��̅��� ሻ, and 
concrete strength variability, sሺsሺ��eୱ୲ሻሻ are given in Table 4.5 for two datasets, S18 and S39, 
(i.e. one dataset with ultrasonic velocity measurements and the other with rebound hammer 
measurements).  

Regarding the assessment of concrete mean strength, from Figure 4.11 and Table 4.5 the 
following observations can be noted: 

- it is obvious that all approaches are able to predict the mean concrete strength with 
acceptable accuracy when NC ≥ 3 for all datasets except for the dataset S38 (Figure 
4.11f) when applying the Δ-method where a larger NC is required. In fact this 
confirms the significant effect of the prior uncalibrated model on the final results when 
applying the calibration approaches: the same model was used for the datasets S38 and 
S39, and it was efficient with S39 (Figure 4.11e) while being less efficient with S38. 
However, increasing NC has a significant effect on the prediction capability of the 
calibration approaches. 
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Figure 4.11 Predicting mean strength using the regression and calibration approaches 



Ch.4 Analysis of current methodology for concrete strength assessment 

94 

 

Figure 4.12 Predicting strength variability using the regression and calibration approaches 
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Table 4.5 Standard deviation values of NI values of mean strength and concrete variability estimated by 

regression and calibration approaches (all linear models) for the datasets S18 and S39 – all results are in 

MPa 

NC 

Dataset S18 (pulse velocity) Dataset S39 (rebound hammer) �ሺ��̅��� ሻ sሺsሺ��eୱ୲ሻሻ �ሺ��̅��� ሻ sሺsሺ��eୱ୲ሻሻ 

k-
app. 

Δ-

app. 
Reg. 
app. 

k-
app. 

Δ-

app. 
Reg. 
app. 

k-
app. 

Δ-

app. 
Reg. 
app. 

k-
app. 

Δ-

app. 
Reg. 
app. 

1 5.6 6.5 - 0.6 0.0 - 9.3 9.2 - 0.6 0.0 - 

2 3.9 4.7 4.5 0.4 0.0 4.1 6.2 6.3 7.5 0.4 0.0 6.6 

3 2.9 3.6 3.5 0.3 0.0 3.5 5.1 5.2 5.9 0.4 0.0 5.6 

4 2.6 3.1 2.9 0.3 0.0 3.1 4.4 4.5 4.9 0.3 0.0 4.9 

5 2.3 2.9 2.5 0.2 0.0 3.0 4.0 4.0 4.1 0.3 0.0 4.2 

6 2.0 2.4 2.1 0.2 0.0 2.8 3.7 3.7 3.9 0.3 0.0 3.9 

7 1.8 2.3 1.9 0.2 0.0 2.5 3.4 3.5 3.4 0.2 0.0 3.8 

8 1.8 2.2 1.9 0.2 0.0 2.5 3.1 3.1 3.1 0.2 0.0 3.6 

9 1.6 2.0 1.7 0.2 0.0 2.5 2.9 3.0 2.9 0.2 0.0 3.5 

10 1.5 1.9 1.5 0.2 0.0 2.3 2.7 2.8 2.8 0.2 0.0 3.3 

11 1.4 1.8 1.5 0.1 0.0 2.2 2.6 2.6 2.6 0.2 0.0 3.0 

12 1.4 1.8 1.5 0.1 0.0 2.1 2.4 2.4 2.4 0.2 0.0 3.0 

13 1.4 1.7 1.4 0.1 0.0 2.1 2.4 2.4 2.4 0.2 0.0 2.9 

14 1.3 1.6 1.3 0.1 0.0 2.0 2.2 2.3 2.2 0.2 0.0 2.8 

15 1.2 1.5 1.2 0.1 0.0 1.9 2.2 2.2 2.2 0.2 0.0 2.8 

16 1.2 1.4 1.2 0.1 0.0 1.9 2.1 2.1 2.1 0.1 0.0 2.7 

17 1.1 1.4 1.2 0.1 0.0 1.8 2.0 2.1 2.0 0.1 0.0 2.6 

18 1.1 1.3 1.1 0.1 0.0 1.7 1.9 1.9 1.9 0.1 0.0 2.6 

19 1.0 1.3 1.1 0.1 0.0 1.6 1.9 1.9 1.9 0.1 0.0 2.5 

20 1.0 1.2 1.0 0.1 0.0 1.6 1.8 1.8 1.8 0.1 0.0 2.4 

 

- from Table 4.5, for all approaches, for small NC, the values of �ሺ��̅��� ሻ are 
significantly high and they decrease as NC increases with more or less identical 
decreasing rate. Therefore, the decision about the suitable value of NC requires 
looking at both the values presented in Figure 4.11 and that given in Table 4.5.   

Regarding the assessment of concrete strength variability, from Figure 4.12 and Table 4.5 the 
following observations can be highlighted: 

- from the curves of the concrete strength variability estimations presented in Figure 
4.12, it is clear that the regression approach underestimates the concrete variability by 
an amount that varies from 10% for S18 to 40% for S39, see Figures 4.12a and 4.12e 
respectively. It can also be noted that increasing NC has no significant effect on 
improving the prediction capability and may even have a negative effect as shown in 
Figure 4.11e,  

- regarding the calibration approaches (k-method and Δ-method), it is obvious that they 
are unable to estimate correctly the concrete strength variability. Their behavior is 
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similar for the all datasets with nearly horizontal lines but with different values i.e. in 
some cases they overestimate the concrete variability while in the others they 
underestimate it. These differences are due to the prior model ability to represent the 
concrete under consideration. Since this ability cannot be evaluated in the real 
building, the efficiency of estimation by the calibration approaches mainly depends on 
chance,  

- the sሺsሺ��eୱ୲ሻሻ values given in Table 4.5 decrease as the NC increases for all 
approaches except the Δ-method in which the values are constant (all have zero value) 
for all NC values. To understand this result for Δ-method, it is necessary to come back 
to Equation (2.20) and consider the variance of the estimated strength: ���ሺ��eୱ୲ሻ =���ሺ�� �����. + �ሻ = ���ሺ�� �����.ሻ, this means that the variation of the estimated 
strengths is independent of Δ and consequently it is independent of cores (because in 
Δ-method the effect of cores is taken into account by Δ), 

Finally, from Figures 4.11 and 4.12, the comparison of the assessment results obtained for 
the datasets with ultrasonic pulse velocity measurements (S3, S17, S18, and S19) with 
those produced from using rebound hammer measurements (S5, S20, S38, and S39), one 
can conclude that there is no significant effect of the type of NDT technique on the quality 
of assessment. 

4.4.2 Conclusions 

In this section, the prediction capacity of the calibration and regression approaches was 
studied. They were used for assessing the concrete mean strength and concrete strength 
variability (in terms of standard deviation). Eight real datasets were considered. From the final 
results, the following conclusions can be drawn:  

- all approaches (regression, calibration) can efficiently estimate the mean concrete 
strength even with NC lower than the minimum number required by the standards. 
Furthermore, increasing NC can significantly improve the quality of assessment, 

- the regression approach remains limited in capturing the concrete strength variability, 
it always underestimates the concrete variability and increasing NC has no significant 
effect on the quality of assessment. Regarding the calibration approaches, they 
produce unstable results (estimation efficiency varies as the prior model is changed) so 
their efficiency depends on chance. Moreover, increasing NC could not improve the 
results of calibration approaches especially for Δ-method which is proved its 
independence from the effect of NC, 

- there is no significant effect of the type of NDT technique (rebound hammer or pulse 
velocity) on the quality of assessment. 
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CHAPTER FIVE 

5 DEVELOPING NEW MODEL IDENTIFICATION 

APPROACH: BI-OBJECTIVE APPROACH 

 

 

 

5.1 Introduction 

In this chapter, we propose a new model identification approach named “bi-objective 
approach” that is able to capture both the concrete mean strength and concrete strength 
variability. We have already published this work in “Construction and Building Materials” 
Journal with an analysis based on synthetic data, using a linear model only and for three 
targets of concrete strength characteristics (local strengths, mean strength, and strength 
variability). The paper is available in Appendix C. We will synthesize here the development 
of the proposed approach with the derivation of model parameters for both linear and power 
models. Then, the validity of the proposed approach will be studied by analyzing several in-
situ and laboratory studies datasets. Some general conclusions will be finally derived.  

5.2 Development of the bi-objective approach 

From the analysis of the current assessment methodology presented in Chapter 4, it was 
possible to conclude that the existing model identification approaches are generally able to 
estimate properly the mean strength with an improving efficiency of estimation as NC 
increases. In contrast, regarding the estimation of concrete strength variability, the calibration 
approaches are unable to assess it while the regression approach remains limited.  

We propose here an innovative approach, named “bi-objective”, which is devoted to capture 
the concrete strength variability in addition to the mean strength. 

The basic idea is that any investigation program with NDT and DT (cores) techniques 
provides NC pairs of (x,��), where x and ��  are respectively the NDT test result and core 
strength corresponding to one test location. These pairs are used to identify the parameters of 
a conversion model between the concrete strength and the NDT test results. As discussed in 
Chapter 2, usual mathematical shapes of such models have two parameters. It is the case for 
the most common ones:  

(a) linear models ����� = � + ��,  

(b) power models ����� = �ଵ ��1, and  

(c) exponential models ����� = �ଶ ��� ሺ�ଶ�).  

Analytically, two conditions are required in order to derive the values of the two model 
parameters. For bi-objective approach, we consider our two objectives as the conditions for 
obtaining the unknown parameters, i.e. by ensuring that both mean strength and strength 
standard deviation are identical for true reference values and estimated ones: 
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��̅��� = ��̅                                                                                                                           (5.1) �ሺ����� ሻ = �ሺ��ሻ                                                                                                               (5.2) 

where ��̅��� , ��̅  are respectively the estimated and measured (on cores) mean strength values, 
while �ሺ�����ሻ , �ሺ��ሻ are respectively the estimated strength variability and the variability 
calculated from the core strengths. Therefore, the values for the two model parameters can be 
derived from applying simultaneously Equations (5.1) and (5.2). The derivation for the cases 
of linear and power models will be presented herein.   

5.2.1 Derivation of the model parameters for the case of linear model 

In order to derive the model parameters for the case of linear model the two conditions in 
Equations (5.1) and (5.2) are used. For a linear model: ����� = � + ��                                                                                                   (5.3) 

the application of the first condition, Equation (5.1), leads to: ��̅��� = � + � �̅ = ��̅                                                                                                      (5.4) 

while the second condition, Equation (5.2), is applied as follows: �ሺ����� ሻ = �ሺ��ሻ                                                                                                (5.5a) 

 �ଶሺ�����ሻ = �ଶሺ��ሻ                                                                                           (5.5b) 

 ���ሺ�����ሻ = ���ሺ��ሻ                                                                                      (5.5c) ���ሺ� + � �ሻ = ���ሺ��ሻ                                                                                  (5.5d)                                  �ଶ ���ሺ�ሻ = ���ሺ��ሻ                                                                                       (5.5e) 

Consequently, the values of the unknown parameters are: � = �ሺ��ሻ/�ሺ�ሻ                                                                                                                (5.6)         � = ��̅ − � �̅                                                                                                                     (5.7) 

 where �̅, sሺ�ሻ are respectively the mean and standard deviation values of x test results 
corresponding to the core locations. 

5.2.2 Derivation of the model parameters for the case of nonlinear model 

The above derivation can be extended to the case of nonlinear model using the idea of 
logarithmic transformation discussed in Chapter 2 for the development of the regression 
model. As stated in Subsection 2.4.1.2, logarithmic transformation can be applied with certain 
model forms like power and exponential models (for more details about these forms see 
(DeCoursey, 2003)). We will derive herein the parameters for the case of power model, 
however the same procedure can be applied for the case of exponential model. For a power 
model with two parameters:  

 ����� = �ଵ ��1                                                                                                                  (5.8) 
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by taking the logarithm of both sides, we get:  �� ����� = �� �ଵ + �ଵ �� �                                                                                               (5.9) 

Clearly, Equation (5.9) is linear in its parameters and looks similar to Equation (5.3). 
Consequently, Equations (5.6) and (5.7) can be applied after replacing ��  and x with 
respectively ���� and �� �. As a result the values of �ଵ and �ଵ can be calculated as follows: 

 �ଵ = �ሺ����ሻ/�ሺ�� �ሻ                                                                                                  (5.10)          �� �ଵ = ���̅̅̅̅ �̅ − �ଵ ���̅̅ ̅̅                                                                                     (5.11a)    �ଵ = ��� �1                                                                                                                  (5.11b) 

where �ሺ����ሻ and �ሺ�� �ሻ are the standard deviation of ���� and �� � values respectively, 
while ���̅̅̅̅ �̅ and �� �̅̅ ̅̅ ̅ are the mean of ���� and �� � values respectively.  

Since in the above derivation of the model parameters there are no constraints related to the 
type of NDT technique, the bi-objective approach can be used (from a mathematical 
viewpoint)  with any NDT technique (rebound hammer, ultrasonic pulse velocity, etc.) which 
would be combined with DT technique (cores) in order to identify a conversion model. 

5.3 Validation of the bi-objective approach 

5.3.1 Case of linear model 

In order to assess the validity of the bi-objective approach, the analysis of the existing model 
identification approaches (regression, calibration with Δ-method, and calibration with k-
method) that was carried out in Section 4.4 was duplicated herein for the proposed bi-
objective approach. The analysis has thus the following characteristics: eight real datasets (S3, 
S17, S18 and S19 with pulse velocity measurements while S5, S20, S38 and S39 with 
rebound hammer measurements), following the procedure illustrated in Figure 3.3, identifying 
linear models, NT = dataset size, random selection of core locations, NI=1000, assessment of 
mean strength ��̅���  and concrete strength variability sሺ��eୱ୲ሻ.  

After NI repetitions, the final results obtained with the bi-objective approach for each dataset 

and each NC value are plotted on Figure 5.1 and Figure 5.2 for ��̅���̅̅ ̅̅ ̅̅  and sሺ��eୱ୲ሻ̅̅ ̅̅ ̅̅ ̅̅ ̅ respectively. 

In addition, for comparison purposes, the curves of  ��̅���̅̅ ̅̅ ̅̅  corresponding to the existing 
identification approaches presented in Figure 4.11 are also shown in Figure 5.1 and the curves 
of sሺ��eୱ୲ሻ̅̅ ̅̅ ̅̅ ̅̅ ̅ from Figure 4.12 are plotted on Figure 5.2. Furthermore, the reference lines that 
represent the mean strength or the concrete strength variability values corresponding to each 
dataset as provided in Table 3.1 are drawn on Figures 5.1 and 5.2. The variabilities in mean 
strengths, �ሺ��̅��� ሻ, and concrete strength variability, sሺsሺ��eୱ୲ሻሻ were given in Table 5.1 for 
datasets S18 and S39 (i.e. one dataset with ultrasonic measurements and the other with 
rebound hammer measurements). Beside the values of �ሺ��̅��� ሻ and sሺsሺ��eୱ୲ሻሻ resulted from 
using the bi-objective approach, the values that obtained from the regression approach (given 
in Table 4.5) are also provided in Table 5.1 for comparison purposes.  
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Figure 5.1 Predicting mean strength using the regression, calibration, and bi-objective approaches, all linear 

models 
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Figure 5.2 Predicting strength variability using the regression, calibration, and bi-objective approaches, all 

linear models 
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Table 5.1 Standard deviation values from NI values of mean strength and concrete variability estimated by 

regression and bi-objective approaches (linear models) for the datasets S18 and S39 – all results are in MPa 

NC 

Dataset S18 (pulse velocity) Dataset S39 (rebound hammer) �ሺ��̅��� ሻ sሺsሺ��eୱ୲ሻሻ �ሺ��̅��� ሻ sሺsሺ��eୱ୲ሻሻ 

Reg. 
app. 

Bi-obj. 
app. 

Reg. 
app. 

Bi-obj. 
app. 

Reg. 
app. 

Bi-obj. 
app. 

Reg. 
app. 

Bi-obj. 
app. 

1 - - - - - - - - 
2 4.5 4.5 4.1 4.1 7.5 7.5 6.6 6.6 

3 3.5 3.4 3.5 3.5 5.9 6.4 5.6 5.7 

4 2.9 2.8 3.1 3.1 4.9 5.5 4.9 4.9 

5 2.5 2.4 3.0 3.1 4.1 4.7 4.2 4.4 

6 2.1 2.1 2.8 2.9 3.9 4.3 3.9 3.9 

7 1.9 1.9 2.5 2.7 3.4 3.9 3.8 3.7 

8 1.9 2.0 2.5 2.8 3.1 3.6 3.6 3.3 

9 1.7 1.7 2.5 2.8 2.9 3.4 3.5 3.1 

10 1.5 1.6 2.3 2.6 2.8 3.2 3.3 2.8 

11 1.5 1.5 2.2 2.5 2.6 2.9 3.0 2.5 

12 1.5 1.5 2.1 2.4 2.4 2.8 3.0 2.4 

13 1.4 1.4 2.1 2.3 2.4 2.7 2.9 2.4 

14 1.3 1.4 2.0 2.2 2.2 2.6 2.8 2.3 

15 1.2 1.3 1.9 2.1 2.2 2.5 2.8 2.2 

16 1.2 1.3 1.9 2.1 2.1 2.4 2.7 2.1 

17 1.2 1.2 1.8 2.0 2.0 2.3 2.6 2.0 

18 1.1 1.1 1.7 1.9 1.9 2.2 2.6 1.9 

19 1.1 1.1 1.6 1.9 1.9 2.1 2.5 1.9 

20 1.0 1.0 1.6 1.9 1.8 2.1 2.4 1.7 

 

From the results presented in Figures 5.1 and 5.2 and Table 5.1 the following observations 
can be highlighted: 

- regarding the mean strength estimation, Figure 5.1, the bi-objective approach appears 
to be as efficient as other approaches for capturing the mean strength, with curves that 
are very close from those with the regression approach. Looking at Table 5.1, one can 
observe that the variability in the estimated mean strength, �ሺ��̅��� ሻ, decreases as NC 
increases with close values obtained from the bi-objective and regression approaches.  

- regarding the strength variability estimation, Figure 5.2, it is clear that the bi-objective 
approach is the only one which can efficiently capture the true reference value of  
concrete strength variability. The convergence of the bi-objective curve to the true 
reference line (red line) is from above for datasets S5, S18 and S39 while it is from 
bottom for the other datasets. Looking at the values of strength variability in terms of 
coefficient of variation, ��ሺ��ሻ, it is clear that these three datasets have smaller ��ሺ��ሻ values as compared with the other datasets. Therefore, bi-objective approach 
overestimates the concrete strength variability for the less variable concrete and 
underestimates the concrete variability for the more variable concrete. Regarding the 
variability in the estimated strength variability, sሺsሺ��eୱ୲ሻሻ in Table 5.1, the behavior 
of bi-objective approach is similar to that of regression approach i.e. sሺsሺ��eୱ୲ሻሻ values 
decrease as NC increases. 
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- the bi-objective and regression approaches always have the same value for NC=2 
(bold numbers in Table 5.1). This is logical due to the mathematical fact that for 
identifying a linear model with two unknown parameters and only two pairs of (�, �� ), 
there is a unique solution whatever the approach, bi-objective or regression. 

- the analysis results that based on datasets with either ultrasonic pulse velocity 
measurements (S3, S17, S18, and S19) or rebound hammer measurements (S5, S20, 
S38, and S39) confirm that the bi-objective approach  can work well with these NDT 
techniques. 

5.3.2 Case of power model 

In section 5.2, the derivation of the bi-objective model parameters was extended to the case of 
nonlinear model (power model) so it is necessary to check the validity of the power model 
derived using the bi-objective approach. To this end, the in-situ dataset S1 was selected from 
Table 3.1. This dataset consists of 205 test locations with the test results of rebound hammer, 
pulse velocity and core measurements at each test location. Since bi-objective model has been 
developed for a case of single NDT technique, in this subsection only the pulse velocity and 
core measurements of dataset S1 were considered i.e. 205 pairs of (V,��).  

The analysis procedure follows the algorithm illustrated in Figure 3.3. From NT=205 test 
locations, the NC locations were selected randomly. The NC pairs of (V,��) were used to 
identify four models corresponding to four approaches (calibration with Δ-method, calibration 
with k-method, regression, and bi-objective). For the calibration methods the prior 
uncalibrated model that had been selected from the literature was the model (����� =ʹ.Ͳͷ͹ʹ �ଵ.଻ସସ଻, with V in km/s and �����  in MPa) provided by (Kheder, 1999). For 
comparison purposes, two linear models corresponding to regression and bi-objective 
approaches were also derived. Consequently, six models were identified corresponding to six 
cases: Δ-method, k-method, regression (linear), regression (power), bi-objective (linear), and 
bi-objective (power). Each derived model was used to calculate the local strength values and 
consequently to provide the mean strength and strength standard deviation (strength 
variability). After NI repetitions of this process, for each case, we have NI values of ��̅��� and 

NI values of �ሺ�����ሻ. These results were post-processed to provide the ��̅���̅̅ ̅̅ ̅̅ , �ሺ��̅��� ሻ for the 
mean strength estimation and �ሺ�����ሻ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , �ሺ�ሺ�����ሻሻ for strength variability estimation. These 
four quantities were calculated for each case for NC varies from 1 to 20. 

Figure 5.3a shows ��̅���̅̅ ̅̅ ̅̅  curves for the six cases as a function of NC while �ሺ�����ሻ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  curves are 
shown in Figure 5.3b. Table 5.2 provides the values of �ሺ��̅��� ሻ and �ሺ�ሺ�����ሻሻ that 
correspond to regression and bi-objective approaches for both linear and power models.  
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Figure 5.3 Predicting mean strength and strength standard deviation (strength variability) using the 

regression, calibration, and bi-objective approaches, linear and power models 

 

Table 5.2 Standard deviation values from NI values of mean strength and concrete variability estimated by 

regression and bi-objective approaches (linear and power models) for the datasets S1 – all results are in MPa 

NC 

�ሺ��̅��� ሻ sሺsሺ��eୱ୲ሻሻ 

Linear Power Linear Power 

Reg. 
app. 

Bi-obj. 
app. 

Reg. 
app. 

Bi-obj. 
app. 

Reg. 
app. 

Bi-obj. 
app. 

Reg. 
app. 

Bi-obj. 
app. 

1 - - - - - - - - 
2 3.3 3.3 5.9 5.9 2.1 2.1 5.0 5.0 

3 2.4 2.3 2.8 3.7 1.8 1.7 2.4 3.0 

4 2.1 2.0 2.2 2.1 1.6 1.4 1.9 1.7 

5 1.8 1.8 1.8 1.7 1.5 1.2 1.6 1.3 

6 1.6 1.6 1.6 1.6 1.4 1.2 1.5 1.3 

7 1.4 1.4 1.4 1.5 1.2 1.1 1.3 1.3 

8 1.3 1.3 1.3 1.3 1.0 1.0 1.1 1.0 

9 1.2 1.2 1.2 1.2 1.0 1.0 1.1 1.0 

10 1.2 1.2 1.1 1.2 0.9 0.9 1.0 0.9 

11 1.1 1.1 1.1 1.1 0.9 0.9 1.0 0.9 

12 1.1 1.1 1.1 1.1 0.9 0.9 1.0 0.9 

13 1.0 1.0 1.0 1.0 0.8 0.8 0.9 0.8 

14 1.0 1.0 0.9 1.0 0.8 0.8 0.9 0.8 

15 0.9 0.9 0.9 0.9 0.8 0.8 0.8 0.8 

16 0.9 0.9 0.9 0.9 0.8 0.8 0.8 0.7 

17 0.8 0.9 0.8 0.8 0.7 0.7 0.7 0.7 

18 0.8 0.8 0.8 0.8 0.7 0.7 0.7 0.6 

19 0.8 0.8 0.8 0.8 0.7 0.7 0.7 0.7 

20 0.8 0.8 0.7 0.8 0.7 0.7 0.7 0.7 
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Regarding the assessment of mean strength, the observations from Figure 5.3a and Table 5.2 
can be outlined as follows: 

- bi-objective and the existing approaches appear to be able to predict the mean strength 
with acceptable accuracy as soon as NC ≥ 3. However this decision about the suitable 
value of NC to predict the mean strength may be changed if we consider the variability 
in estimated mean strength, �ሺ��̅��� ሻ, given in Table 5.2. The �ሺ��̅��� ሻ values decrease 
as NC increases with more or less identical decreasing rate for all approaches and for 
both types of models (linear and power shapes). As an example, �ሺ��̅��� ሻ is lower than 
10% of the mean strength as soon as NC ≥ 5, 

- like the above observation in Subsection 5.3.1, the curves obtained for bi-objective 
and regression approaches are very close to each other for both cases: linear and 
power models, 

- for NC=2, the bi-objective and regression approaches show estimation uncertainties 
(especially for power model) higher than that produced by calibration approaches. 
This indicates that the use of regression or bi-objective with NC equal to the number 
of parameters in the model will lead to an unreliable estimation (this issue was earlier 
discussed in Chapter 4 and will be developed in Chapter 6). It is necessary to 
emphasize here that using (NC=2) with the calibration approaches is also risky since 
the behavior of calibration approaches depends essentially on the prior model. 
However, increasing NC has a significant effect on the prediction capability of these 
approaches.  

Regarding the estimation of concrete strength variability, from Figure 5.3b and Table 5.2 the 
following observations can be noted: 

- the regression approach underestimates the concrete variability by about 20%, and 
increasing NC has no significant effect on the prediction capability. Regarding the 
calibration approaches (k-method and Δ-method), the behavior is similar, with nearly 
horizontal lines but with different values. Since this behavior mainly depends on the 
prior model and its ability to represent the concrete under consideration, calibration 
approaches are inadequate for capturing the concrete variability. It is only due to the 
effect of chance that such approaches could (sometimes) lead to the good estimation of 
concrete variability, 

- it is thus clear that the bi-objective approach is the only one which can capture (with 
linear model is a little bit more efficient than power model in this case study) the 
concrete strength variability (the true reference value) even with NC lower than the 
minimum number required by the standard (18 for regression approach and 9 for 
calibration approach according to (EN 13791, 2007)). However, the selection of 
adequate NC value needs to have a look on the �ሺ�ሺ�����ሻሻ values accompanying this 
approach, see Table 5.2, which decrease with increasing NC. Moreover, the �ሺ�ሺ�����ሻሻ values are larger for the power model when NC is small and become 
nearly similar for linear and power models when NC ≥ 8. 

In summary, from the analyses that have been carried out in Subsections 5.3.1 and 5.3.2, the 
validity of the bi-objective approach has been approved for estimating the mean strength and 
concrete strength variability using linear or power models. Furthermore, one must add that 
this innovation is costless, since it only concerns the post-processing of test results, and has no 
impact on the investigation program. 
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5.3.3 Failure of the model identified by each approach 

A last criterion that deserves to be analyzed when comparing the relative merits of the 
approaches is related to the fact that, in some situations, the NC pairs of (�, �� ) which are used 
for identifying a model may produce a very bad or even physically impossible conversion 
model (this issue has been already discussed in Section 3.4). It is the case for instance in the 
following situations: 

(a) when the estimated concrete strength at a test location obtained from applying the 
conversion model has a zero or negative value, see Figure 3.4a, 

(b) when the model has a negative slope for the case of linear model (or negative exponent for 
power model), see Figure 3.4b, which would mean that the strength decreases while the NDT 
value increases, which generally has no physical meaning with rebound hammer and 
ultrasonic velocity measurements. This situation can be encountered only with regression 
approach because the other approaches always guarantee a positive slope (or exponents).  

The risk of having the above situations (i.e. identifying a “wrong model”) is larger if the NC is 
small, and if the measurement uncertainties are relatively large when compared to the range of 
variation of concrete strength in the domain of investigation.  

As stated in Section 3.4, the simulator has included two conditions (if ����� ≤ Ͳ or if slope < 
0) for linear model and (if ����� ≤ Ͳ or if exponent < 0) for power model. For each model 
type, when one or both of their conditions is satisfied, the simulator will reject this model and 
return to select other NC pairs of (�, �� ) in order to identify another model. Counters are 
inserted in the simulator to count the number of failed repetitions (repetitions identify wrong 
models) for each approach. The percentages of failed repetitions with respect to the total 
number of repetitions are given in Table 5.3 for the analyses of datasets S1, S18, and S39 
presented in Section 5.3. For each dataset, this table provides three columns for the regression 
approach where the first and second columns represent the contribution of each one of the two 
conditions to the final failure percentages (i.e. the third column “sum”). However, for bi-
objective approach the failure percentages that correspond to the condition (if ����� ≤ Ͳ) are 
only provided since bi-objective approach identifies always model with positive slope. 

This table shows large failure percentages when NC=2 with larger values for the regression 
approach. This is due to the fact that with NC=2 the probability of identifying a model with 
negative slope or obtaining an estimated strength with negative (or zero) value is high. 
However, the failure percentages reduce with increasing NC. From the comparison of the 
failure percentages for regression approach (i.e. the column “sum”) with those for bi-objective 
approach, it is clear that the decreasing rate is higher for the regression approach for dataset 
S1 and dataset S18. On contrary, the bi-objective approach has the higher decreasing rate for 
dataset S39.  

Regarding the regression approach, for dataset S39, the contribution of the condition (slope < 
0) to the final failure percentage (i.e. “sum”) is more dominating as compared with the 
condition (����� ≤ Ͳ) and the vice versa for the datasets S1and S18. This indicates that, for 
regression approach, there is no general statement about the domination of any of the two 
conditions.  

Regarding the bi-objective approach, for datasets S18 (��ሺ��ሻ=15%) and S39 (��ሺ��ሻ=16%) 
the failure percentages are relatively small (as compared with dataset S1) and they decrease 
rapidly as NC increases. While for the more variable concrete (dataset S1which has ��ሺ��ሻ=35%) the decreasing rate becomes slower and the failure percentages remain 
significant even with NC=20. Therefore, it appears that, for bi-objective approach, the 
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decreasing rate of the model failure percentages with increasing NC depends mainly on the 
strength variability of the concrete under consideration.  

Table 5.3 Model failure percentages when identifying linear models using regression and bi-objective 

approaches for datasets S1, S18, and S39. 

NC 

Dataset S1 Dataset S18 Dataset S39 

Reg. app. 

Bi-
obj. 
App. 

Reg. app. 

Bi-
obj. 
App. 

Reg. app. 

Bi-
obj. 
App. 

Slope 
≤ 0 

�����≤ Ͳ 
sum 

�����≤ Ͳ 
Slope 

≤ 0 

�����≤ Ͳ 
sum 

�����≤ Ͳ 

Slope 

≤ 0 

�����≤ Ͳ 
sum 

�����≤ Ͳ 

1 - - - - - - - - - - - - 

2 16.3 29.9 46.2 37.2 13.0 24.6 37.6 31.9 27.5 12.2 39.7 20.2 

3 6.3 26.5 32.8 38.4 4.6 13.8 18.4 21.8 20.5 4.5 25.0 10.2 

4 2.5 16.6 19.1 31.1 2.0 12.0 14.0 20.5 15.3 0.6 15.9 4.8 

5 2.1 14.4 16.5 29.8 0.7 7.3 7.9 14.2 11.9 0.3 12.2 1.6 

6 0.3 11.1 11.4 22.4 0.3 4.4 4.7 9.7 8.6 0.3 8.9 1.2 

7 0.1 10.4 10.5 25.4 0.0 2.4 2.4 8.7 8.9 0.0 8.9 0.4 

8 0.1 8.5 8.6 24.8 0.0 2.2 2.2 6.5 7.5 0.0 7.5 0.2 

9 0.0 6.0 6.0 21.9 0.0 1.0 1.0 4.8 6.2 0.0 6.2 0.1 

10 0.0 7.1 7.1 21.2 0.0 1.1 1.1 3.9 3.8 0.0 3.8 0.2 

11 0.0 4.1 4.1 21.7 0.0 0.5 0.5 1.8 4.0 0.0 4.0 0.0 

12 0.0 3.6 3.6 15.7 0.0 0.2 0.2 1.9 3.1 0.0 3.1 0.0 

13 0.0 2.8 2.8 18.6 0.0 0.1 0.1 2.0 2.2 0.0 2.2 0.0 

14 0.0 3.1 3.1 14.8 0.0 0.2 0.2 1.0 1.4 0.0 1.4 0.0 

15 0.0 1.9 1.9 11.9 0.0 0.1 0.1 1.1 1.5 0.0 1.5 0.0 

16 0.0 1.4 1.4 11.6 0.0 0.1 0.1 0.4 0.6 0.0 0.6 0.0 

17 0.0 1.0 1.0 14.1 0.0 0.0 0.0 0.6 0.5 0.0 0.5 0.0 

18 0.0 1.7 1.7 12.6 0.0 0.0 0.0 0.1 0.7 0.0 0.7 0.0 

19 0.0 0.5 0.5 10.8 0.0 0.0 0.0 0.2 0.2 0.0 0.2 0.0 

20 0.0 1.0 1.0 12.7 0.0 0.0 0.0 0.0 0.4 0.0 0.4 0.0 
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5.4 Conclusions 

In this chapter, a new model identification approach, called “bi-objective”, has been 
developed in order to capture concrete strength variability in addition to mean strength. This 
innovation works at the test results post-processing stage, and has no effect on the cost of the 
investigation.  

The validity of this approach was studied by applying it on several datasets from in-situ and 
laboratory studies in order to assess the mean strength and concrete strength variability. 
Moreover, the prediction ability of the bi-objective approach was compared with that of the 
existing approaches (calibration and regression). From the obtained results, the following 
conclusions can be drawn:  

- the bi-objective approach and the existing approaches (regression and calibration) can 
efficiently estimate the mean concrete strength. Furthermore, increasing NC can 
significantly improve the estimation efficiency, 

- when trying to quantify concrete strength variability, the bi-objective approach is the 
only one that can capture the true concrete variability. On the contrary, the regression 
approach remains limited in capturing the concrete variability: it always 
underestimates the concrete variability and increasing NC has no significant effect on 
the estimation efficiency. Regarding the calibration approaches, they produce unstable 
results (estimation efficiency varies as the prior uncalibrated model is changed) so 
their efficiency depends only on chance, 

- too low number of test locations for cores is a source of problems. We had seen in 
previous chapter that it leads to large prediction error. This has been confirmed in this 
chapter when looking at the variability of estimates (i.e. �ሺ��̅��� ሻ and �ሺ�ሺ�����ሻ), 
which may be very large when NC is only 2. In addition, the risk of getting an 
unphysical model is also high for low NC values. The suitable NC depends on the 
estimated concrete property (i.e. mean strength or concrete strength variability) and on 
the accepted level of uncertainty in the estimated value. This issue is complex and will 
be addressed in a more systematic way in the next Chapter, 

- the bi-objective approach can be used (from a mathematical viewpoint) with any NDT 
technique (rebound hammer, ultrasonic pulse velocity, etc.) combined with DT 
technique (cores) in order to identify a conversion model. Furthermore, the results of 
analyzing datasets with ultrasonic pulse velocity measurements and that with rebound 
hammer measurements confirm the efficiency of the bi-objective approach with these 
two NDT techniques, 

- the bi-objective approach can work with a power model as well as with the linear 
model but the uncertainty arising from using power model is larger than that of linear 
model when NC is small and we did not identified any convincing argument in favor 
of nonlinear models. 
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CHAPTER SIX 

6 QUALITY OF ASSESSMENT AND 

RECOMMENDATIONS FOR BETTER PRACTICE 

 

 

 

6.1 Introduction 

Reliability of the estimated value is a real challenge for engineers when assessing the in-situ 
strength of concrete structures. From the analysis of inherent characteristics of the assessment 
methodology carried out in the previous chapters, there is evidence that the changes in the 
values of these factors have significant effect on the quality of assessment. Therefore, to have 
more detailed and accurate evaluation of the quality of assessment, it is necessary to analyze 
its correlation with its affecting factors: number of test location for cores (NC) used to identify 
the model, quality of measurements (within-test variability), the way of selection the core 
locations, true in-situ strength variability, the type of NDT technique, using single or 
combination of NDT techniques, and the model identification approach. This chapter is 
devoted to achieve this goal.  

A large campaign of synthetic datasets (36000-ሺ�, �, ��ሻ test results) having different 
characteristics were generated for the analysis in this chapter. The synthetic data have been 
selected due to their flexibility to provide large datasets with different characteristics that can 
be used to analyze the above listed factors simultaneously whereas this is difficult and 
expensive with the real datasets. However, in order to confirm the robustness of the findings 
with the synthetic datasets, the analysis of the factors listed above has also been done using 
real datasets but with rebound hammer only (2500-ሺ �, ��ሻ test results selected from Table 
3.1). We have published the analysis using real datasets in “Construction and building 
Materials” Journal. The paper is available in Appendix D, however the final conclusions of 
this paper are given herein. 

At the end of the present chapter, several recommendations for better practice will be 
provided for engineers on site. These recommendations have been derived from all the 
analyses that had been presented in this document.  

6.2 Analysis of quality of assessment using synthetic datasets 

6.2.1 Datasets 

In order to derive more general conclusions about the reliability of assessment 36 synthetic 
datasets that cover a wide range of concrete mean strengths and concrete strength variabilities 
and three measurements quality levels were considered. Through this chapter, each synthetic 
dataset will be represented by the letter “D” followed by the true in-situ mean strength, ��̅��, 
then the true in-situ concrete strength variability (in terms of coefficient of variation, ��ሺ����ሻ) and the abbreviation of the measurement quality levels provided in Subsection 3.3.2 
(i.e. HQ or AQ or LQ). The characteristics of these datasets are given in Table 6.1. These 
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datasets were generated using the synthetic simulation procedure detailed in Chapter 3 and 
illustrated graphically in Figure 3.2. Using the dataset characteristics, Table 6.1, the simulator 
generated 1000-ሺ�, �, ��ሻ test results for each dataset (i.e. each dataset includes the test results 
for 1000 test locations). 

Figure 6.1 shows some clouds of generated test results (each cloud includes 1000-ሺ�, ��ሻ 
pairs) that correspond to several datasets selected from Table 6.1. These datasets show the 
changes in the dispersion of the points within each cloud due to the variety in the datasets 
characteristics. Figures 6.1a, 6.1b and 6.1c compare the dispersions within datasets having 
two different values of ��̅��  (20 MPa and 50 MPa) and three different values of ��ሺ����ሻ (10%, 
20%, and 30%) while these datasets have the same quality of measurements (AQ). However, 
the comparison between the Figures 6.1b and 6.1d illustrates the change in the dispersion as 
the quality of measurements changes from AQ (Figure 6.1b) to LQ (Figure 6.1d) while the 
other characteristics of datasets remain unchanged. From Figure 6.1, it is clear that for a more 
variable concrete the dispersion increases in the direction of the longitudinal axis of the cloud 
while using bad quality measurements increases the dispersion in the direction of the 
transverse axis of the cloud.  

Table 6.1 Characteristics of 36 synthetic datasets considered for analyzing the quality of assessment 

Datasets symbols 

Datasets characteristics ��̅��  

MPa 

�ሺ����ሻ  

MPa 

��ሺ����ሻ 
% 

Measurements quality 
level 

D20-10-HQ D20-10-AQ D20-10-LQ 20 2 10 

high quality (HQ), or 
average quality (AQ), or 

low quality (LQ), 
according to the 

classification provided in 
Subsection 3.3.2 

depending on the within-
test variability of the 

measurements (���, ���, ���) 

D20-20-HQ D20-20-AQ D20-20-LQ 20 4 20 

D20-30-HQ D20-30-AQ D20-30-LQ 20 6 30 

D30-10-HQ D30-10-AQ D30-10-LQ 30 3 10 

D30-20-HQ D30-20-AQ D30-20-LQ 30 6 20 

D30-30-HQ D30-30-AQ D30-30-LQ 30 9 30 

D40-10-HQ D40-10-AQ D40-10-LQ 40 4 10 

D40-20-HQ D40-20-AQ D40-20-LQ 40 8 20 

D40-30-HQ D40-30-AQ D40-30-LQ 40 12 30 

D50-10-HQ D50-10-AQ D50-10-LQ 50 5 10 

D50-20-HQ D50-20-AQ D50-20-LQ 50 10 20 

D50-30-HQ D50-30-AQ D50-30-LQ 50 15 30 
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Figure 6.1 Clouds of 1000-ሺ�, ��ሻ for several generated datasets 

6.2.2 Assessing mean strength and strength standard deviation (concrete variability) 
and developing the cumulative distribution functions (CDF) 

As shown in Chapters 4 and 5, the estimated mean strength, ��̅���, and estimated concrete 
strength variability, �ሺ�����ሻ, scatter with standard deviations �ሺ��̅���ሻ and �(�ሺ�����ሻ) 
respectively. These scatters are due to the sources of uncertainty discussed in Subsection 2.4.5 
(in-situ strength variability, sampling uncertainty, measurements uncertainty, and model 
uncertainty). Consequently, to study the quality of assessment, it is necessary to analyze the 
scatter in the estimated quantity. 

To this end, each of the datasets given in Table 6.1 was analyzed using the procedure 
illustrated in Figure 3.3. For the analysis of a dataset, the dataset size corresponds to 1000 test 
locations (the population size). From these test locations, NT test locations were selected 
randomly as a sample size (NT=100). Then, the NC test locations for cores were selected 
randomly from the NT test locations. The test results ሺ�, �, ��ሻ of NC test locations were used 
to identify three linear models (for single V, single R, and combination of V+R) using the 
regression approach and two linear models (for single V and single R) using the bi-objective 
approach. Thus, there were five cases (models). For each case, the model was used to assess 
the local strengths at the NT test locations and consequently to calculate the mean strength, ��̅��� , and concrete strength variability, �ሺ����� ሻ, corresponding to this model. This process 
was repeated NI times (NI=1000) so the final outputs were, for a specific NC value and each 
case, a series of 1000 values of  ��̅���   and a series of 1000 values of �ሺ�����ሻ. The whole 
process was repeated for values of NC varying from 2 to 20 in order to have the series of 
results corresponding to different NC values.  

The adopted way to show these outputs is to draw each series in terms of cumulative 
distribution function CDF. Therefore, for each dataset, each NC value, each approach and 
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each NDT technique (single V or single R or combined V+R) a series of 1000 values of ��̅��� 
and a series of 1000 values of �ሺ�����ሻ were plotted in terms of cumulative distribution 
function CDF. Since it is impractical to display herein the plots for all outputs, only four 
figures that correspond to dataset D20-20-AQ and for the case of using pulse velocity as NDT 
measurements are shown in Figure 6.2. Figures 6.2a and 6.2b refer respectively to the mean 
strength estimation, ��̅���, by regression and bi-objective approaches while Figures 6.2c and 
6.2d refer to strength variability estimation, �ሺ����� ሻ, with the same two approaches.  

Figure 6.2 displays how the CDF curves vary with NC. In fact the analysis was performed for 
NC values (2-20), however to avoid the curves congestion, the figures show only the curves 
that correspond to some NC values (2, 6, 10, 14, and 20). On the four figures the red vertical 
line represents the true in-situ value for the dataset which is the target of assessment, given in 
Table 6.1, respectively 20 MPa for ��̅�� and 4 MPa for �ሺ����ሻ. Therefore the quality of 
assessment is better as the CDF curve is closer to the red line (i.e. less scatter). In an ideal 
situation (no scatter), the CDF curve would coincide with the red line, but the sources of 
uncertainty always exist and as a result some scatter is unavoidable. However, as shown in 
Figures 6.2a and 6.2b, the scatter decreases as NC increases. Moreover, the reduction in the 
scatter (i.e. improvement in quality of assessment) appears remarkable for low values of NC 
while it becomes almost negligible (i.e. expensive without being effective) for higher NC 
values. The comparison of CDF curves of regression approach with those of bi-objective 
approach indicates that these two approaches are close in their reliability for assessing the 
mean strength.  

 

Figure 6.2 CDF curves of mean strength and concrete strength variability estimations for dataset D20-20-AQ 

and when the NDT technique is the pulse velocity 



Ch.6 Quality of assessment and recommendations for better practice 

 

113 

However, regarding strength variability assessment presented in Figures 6.2c and 6.2d, the 
result is different. For the regression approach, Figure 6.2c, increasing NC reduces the scatter 
but does not guarantee the convergence towards the true in-situ value. The CDF curves show, 
even with large NC, a left bias (meaning general underestimation of strength variability). In 
contrast, the CDF curves corresponding to bi-objective approach, Figure 6.2d, show a 
significant reduction in the scatter on both sides and a tendency to converge, however slower 
than for mean strength, towards the true in-situ value as NC increases. This finding confirms 
that the common regression approach cannot be used to estimate efficiently the strength 
variability and that the bi-objective approach answers this need as previously demonstrated in 
Chapter 5. 

6.2.3 Assessing the quality of estimation by developing “Risk Curves”  
As shown in the above subsection, due to many sources of uncertainties, the estimated values 
are scattered and their CDF can be plotted. The quality of estimation is improved as the 
scatter reduces. As shown in Subsection 2.4.6, a common indication about the quality of 
assessment is providing the estimated value with an error (uncertainty level). In other 
wording, providing the interval (estimated value ± uncertainty level) with a specific 
confidence level that the true value will be assured to lie within lowest and highest bound of 
this interval. The uncertainty level is usually a relative value ±U% as shown in Subsection 
2.4.6, however an absolute value can also be used. To derive this information from the CDF 
curves, it is preferable to proceed in two steps: 

- using the CDF curve, fix an interval ±(U×T) around the true target value, T, 
- quantify the probability (or risk) that the estimated value lies outside the fixed interval. 

Therefore, the idea is for a specific uncertainty level (or error) around the true value, what is 
the risk (probability) to have an estimated value which lies outside this target interval. The 
concept to derive the risk values (or the confidence level, confidence level = 1 - risk) from 
CDF curve is illustrated in Figure 6.3 (Figure 6.3a illustrates the proposed concept while 
Figure 6.3b demonstrates how the change in the scatter of CDF curve can change the risk 
value). Risk values can be finally plotted as a function of NC to establish new curves that we 
are named “Risk curves”. 

 

Figure 6.3 Proposed concept to derive risk value corresponding to a specific uncertainty level using CDF 

curve: graph (a) illustrates the proposed concept, while graph (b) displays how the change in the scatter of 

CDF curve changes the risk value 
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6.2.3.1 Analysis of risk curves corresponding to mean strength estimation 
To construct the risk curves of mean strength estimation from the CDF curves, it is necessary 
to specify an uncertainty level, U%. There is no unique value for U and the selection of U 
depends on how much uncertainty (or error) we accept in the final estimated value. Looking 
at  Figure 6.3 it is obvious that selecting a large value for U, for the same value of T, reduces 
the segments of the CDF curve that are outside the interval ±(U×T) (i.e. reduces the risk 
values) and vice versa. In the present study, (U=±10%) is adopted for all datasets used for the 
assessment of mean strength. 

Figure 6.4 shows the risk curves that obtained from analyzing the 12 datasets with average 
quality of measurements (AQ), see Table 6.1. For clarity, these datasets were arranged in 
three groups according to the ��ሺ����ሻ values: 10% (curves in green), 20% (curves in orange) 
and 30% (curves in blue). Furthermore, within each group the line style was varied in order to 
distinguish between curves having different values of ��̅��. Figures 6.4a, 6.4b, and 6.4c display 
the risk curves corresponding to the use of the regression approach to identify the models for 
three cases of NDT measurements (single V, single R, and combined V+R) combined with 
cores. Figures 6.4d, 6.4e show the curves corresponding to the use of bi-objective approach 
for two cases of NDT measurements (single V and single R) combined with cores. From these 
figures the following observations can be noted: 

- for all datasets, risk values decrease as NC increases. This behavior can be explained 
using Figure 6.2a in which, for a specific dataset, increasing NC makes the CDF curve 
less scattering and consequently leads to lower risk values for a specific uncertainty 
level (U×T), as shown in Figure 6.3b. Moreover, the reduction in risk values due to 
the increase in NC is significant for low values of NC and becomes negligible for 
higher NC,  

- in each figure, each curve in blue is above the corresponding curves (i.e. curves having 
the same ��̅�� value) in orange and green, moreover each curve in orange is above the 
corresponding curve in green (see as an example the curves: D20-30-AQ, D20-20-AQ, 
and D20-10-AQ). This indicates that, for the datasets having the same ��̅�� but with 
different ��ሺ����ሻ values, the risk values increase with increasing the true in-situ 
concrete variability �ሺ����ሻ, �ሺ���� ሻ = ��ሺ����ሻ × ��̅��. This behavior can be explained 
with the aid of Figure 6.3. As discussed in Chapter 2, the true in-situ concrete 
variability �ሺ����ሻ is a source of uncertainty and consequently its increase leads to 
more scattered CDF curve, see Figure 6.3b. Since the interval ±(U×T), herein T = ��̅��, 
will be the same for datasets having the same ��̅��, more scatter in CDF curve gives 
higher risk values, 

- in each figure, within each group of curves having the same ��ሺ����ሻ but different 
values of ��̅�� (for example the group: D20-30-AQ, D30-30-AQ, D40-30-AQ, and 
D50-30-AQ), the risk values decrease as ��̅�� increases. To understand this behavior it 
is necessary to have in mind two issues: on one hand, although ��ሺ����ሻ is the same 
for these datasets, �ሺ����ሻ increases as ��̅�� increases and consequently the CDF curves 
are more scattered. On the other hand, for these datasets the interval ±(U×T) is not the 
same but it increases as ��̅�� increases. Therefore, increasing ��̅�� leads to a higher 
scatter of the CDF curve (i.e. leads to increase the risk if the interval of ±(U×T) is 
fixed) and to a wider interval of ±(U×T) (i.e. leads to decrease the risk if the scatter is 
fixed), however it appears that the later effect is dominating that leads to decrease the 
final risk values, 

- the risk curves resulted from using the bi-objective approach and the corresponding 
curves obtained from the regression approach show the ability of the two approaches 
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to provide a reliable assessment of mean strength. This observation confirms what we 
have already concluded in Chapter 5,  

- for both approaches (regression and bi-objective) the type of NDT technique (pulse 
velocity or rebound hammer) that is combined with DT (cores) to identify the model 
has no significant effect on the risk values,  

 

Figure 6.4 Risk curves of all datasets with (AQ) for mean strength estimation with: U=±10%, NT=100, and 

random core selection 
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- for all figures with single technique, it is clear that for risk=10% (i.e. confidence level 
90%) the minimum NC required to assure the assessment of mean strength with a 
maximum relative error of 10% (U=10%) is 8 cores for concrete with ��ሺ����ሻ =͵Ͳ%. This number can be reduced to 6 cores for concrete with ��ሺ����ሻ = ʹͲ%. 
Furthermore, for the case of combination of NDT techniques (V+R), the minimum NC 
reduces to 6 cores for concrete with ��ሺ����ሻ = ͵Ͳ% which indicates the efficiency of 
combination. However, to be fair in the evaluation of this efficiency, it is necessary to 
balance this reduction in NC on one hand and the increase in the cost of combination 
as compared with that of single technique on the other hand.  

6.2.3.2 Analysis of risk curves corresponding to strength variability estimation 
In order to study the quality of assessment of concrete strength variability, 12 datasets 
analyzed for mean strength assessment (i.e. datasets having average quality of measurements) 
were considered. For each dataset, the risk curve that corresponds to uncertainty level 
(U=±25%) was built. In fact, this uncertainty level (U=±25%) is greater than that selected for 
the case of mean strength estimation (U=±10%) due to the difficulty to assess the strength 
variability with reasonable confidence level and smaller uncertainty as it will be shown 
hereafter. Figures 6.5a, 6.5b, and 6.5c show the risk curves obtained from using the regression 
approach to identify models when the NDT techniques are respectively single V, single R, and 
combination of V+R. Figures 6.5d and 6.5e display the risk curves corresponding to the bi-
objective approach for two cases of NDT techniques (single V, single R). For clarity, in each 
figure, the same curves colors and line styles convention that adopted in Figure 6.4 has been 
applied herein. From the graphs of Figure 6.5, the following observations can be noted: 

- Figures 6.5a and 6.5b illustrate the limited ability of regression approach (with single 
NDT technique) in estimating the strength variability. They also show the handicap of 
regression approach when the datasets have low strength variability (��ሺ����ሻ=10%) 
since increasing NC offers no guarantee regarding the reduction of risk values (the 
convergence is slow or even lacking when the concrete variability is small). Moreover, 
using combination of NDT techniques (V+R), Figures 6.5c, can improve the quality of 
assessment for datasets having (��ሺ����ሻ=20% and 30%) as compared with the case of 
single technique. However, this improvement in the quality of assessment needs to 
balance the additional cost due to the second added technique,   

- on contrary, the bi-objective approach, Figure 6.5d and 6.5e, shows a good ability to 
assess the strength variability with an increasing efficiency when NC increases. 
Furthermore, the quality of assessment using bi-objective approach is better than that 
provided by regression approach even with the case of combination of NDT 
techniques, 

- for both approaches (regression and bi-objective) the type of NDT technique (pulse 
velocity or rebound hammer) that combined with DT (cores) to identify the model has 
no significant effect on the risk values, 

- in each figure, within each group of curves having the same ��ሺ����ሻ but different 
values of ��̅�� (for example the group: D20-30-AQ, D30-30-AQ, D40-30-AQ, and 
D50-30-AQ), the risk values decrease as ��̅�� increases. This behavior is similar to that 
observed in Figure 6.4 for the case of mean strength estimation, 

- in each figure, each curve in green (��ሺ����ሻ=10%) is above the corresponding curves 
(i.e. curves having the same ��̅�� value) in orange (��ሺ����ሻ=20%)  and in blue 
(��ሺ���� ሻ=30%). Furthermore, each curve in orange is above the corresponding curve 
in blue (see as an example the curves: D20-10-AQ, D20-20-AQ, and D20-30-AQ). 
This indicates that, for the datasets having the same ��̅�� but with different ��ሺ����ሻ 
values, the risk values decrease with increasing the true in-situ concrete variability 



Ch.6 Quality of assessment and recommendations for better practice 

 

117 

�ሺ����ሻ. As discussed earlier, �ሺ����ሻ is a source of uncertainty and consequently its 
increase leads to a more scattered CDF curve, see Figure 6.3b. However, for these 
datasets the interval ±(U×T), herein T= �ሺ����ሻ, is not the same but it also increases as �ሺ����ሻ increases. Therefore, increasing �ሺ���� ሻ leads to more scatter of the CDF curve 
and to wider interval of ±(U×T), the second consequence has more impact and leads to 
a final decrease in the risk values when �ሺ���� ሻ increases.  

 

Figure 6.5 Risk curves of all datasets with (AQ) for strength variability estimation with: U=±25%, NT=100, 

and random core selection 
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It can be noted that this behavior is adverse than that presented in Figure 6.4 for the case of 
mean strength estimation; i.e. decreasing the concrete variability makes the mean strength 
assessment more reliable, but the concrete variability assessment less reliable. For the case of 
mean strength estimation, the behavior is rational because capturing mean strength is easier in 
a less variable concrete. Whilst, for the case of strength variability estimation, the behavior 
(i.e. assessing the strength variability is easier in a more variable concrete) seems irrational. 
To understand the second behavior, one can consider the case study shown in Figure 6.6. 
Figure 6.6a shows three risk curves (D30-10-AQ, 30-20-AQ, and D30-30-AQ) selected from 
Figure 6.5d in which the results are obtained from fixing a relative uncertainty level 
(U=±25%). This means that the absolute value of uncertainty level, ±(U×T), used in the 
analysis for each dataset was:  

for D30-10-AQ: T=3 MPa (from Table 6.1), (U×T)=0.25×3=0.75 MPa 

for D30-20-AQ: T=6 MPa (from Table 6.1), (U×T)=0.25×6=1.50 MPa 

for D30-30-AQ: T=9 MPa (from Table 6.1), (U×T)=0.25×9=2.25 MPa 

As shown in Figure 6.6a, the more variable dataset (i.e. D30-30-AQ) is more reliable (lower 
risk values), but it also corresponds to a larger absolute uncertainty level. If one chooses to fix 
the absolute uncertainty level for the three datasets by selecting an absolute uncertainty level 
(0.75 MPa for example) and to reanalyze the datasets, the resulting risk curves are different, 
as shown in Figure 6.6b. While in this case the curve for D30-10-AQ is the same as that on 
Figure 6.6a, the two other risk curves for D30-20-AQ and D30-30-AQ move upwards and 
change their order. According to this absolute uncertainty criterion, the more variable dataset 
D30-30-AQ becomes less reliable. Consequently, the statement about the effect of true in-situ 
concrete variability on the reliability of assessing the concrete strength variability must be 
done carefully, since it depends on how the uncertainty level is represented. In the present 
work, the relative uncertainty level is adopted because it is more common in the literature and 
in engineering practice. 

 

 

Figure 6.6 Comparing the risk curves obtained from absolute and relative uncertainty levels for the case of 

strength variability estimation with: average quality measurements, NT=100, and random core selection 
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6.2.4 Studying the effect of the quality of measurements on the quality of assessment  

The risk curves for mean strength estimation and those for strength variability estimation 
shown in Figures 6.4, 6.5, and 6.6 are corresponding to datasets having average quality 
measurements (AQ). In order to study the effect of quality of measurements, it is necessary to 
construct the risk curves that correspond to other quality of measurements (i.e. HQ and LQ). 
To this end, the CDF curves obtained from the analysis of datasets with HQ and LQ, see 
Table 6.1, have been used to build the risk curves corresponding to these qualities of 
measurements with respectively U=±10% for mean strength assessment and U=±25% for 
strength variability assessment.  

Regarding the mean strength assessment, the general behavior of these new risk curves are 
similar to that shown in Figures 6.4 for the case of average quality measurements, i.e. both 
approaches (regression and bi-objective) show good ability to provide a reliable assessment of 
mean strength. Furthermore, the type of NDT technique (pulse velocity or rebound hammer) 
that combined with DT (cores) to identify the model has no significant effect on the risk 
values. Consequently, Figure 6.7 shows the new risk curves that correspond to quality of 
measurements (HQ and LQ) for the regression approach and when NDT technique is single V. 
In addition, for comparison purposes, the risk curves corresponding to the same case (but with 
AQ) and presented in Figure 6.4a are also shown in Figure 6.7.  

Regarding the strength variability assessment, the situation with HQ and LQ is similar to that 
shown in Figure 6.5 for the datasets with AQ, i.e. the bi-objective approach is significantly 
better than the regression approach. Furthermore, using ultrasonic pulse velocity or rebound 
hammer as NDT technique has no significant effect on the risk values. As a result, the risk 
curves for the datasets with HQ and LQ and corresponding to the bi-objective approach with 
the case of single V are shown in Figure 6.7 beside the curves corresponding to the AQ that 
already presented in Figure 6.5d. 

In fact Figure 6.7 shows, for datasets with wide range of mean strength and strength 
variability, the relation between the risk values (or quality of assessment) and: the quality of 
measurements, the number of test locations for cores (for the case of random core selection), 
the true in-situ concrete variability, the approach used to identify the model, and the concrete 
property required to be assessed (mean strength or strength variability).  

The risk curves in Figures 6.7a, 6.7b, and 6.7c (concerning the mean strength assessment with 
different quality of measurements) show the same tendencies i.e. the risk values decrease as 
NC increases and that the assessment of mean strength is easier for a less variable concrete. 
However, as shown, the quality of measurements has an important effect on the risk values 
which decrease dramatically as the quality of measurements is changed from LQ to HQ. As 
an example, for NC=3 for dataset D20-30-LQ the risk value is 48% however this value 
decreases to 35% for the dataset D20-30-AQ and reaches 19% for dataset D20-30-HQ. 
Furthermore, for each NC value, the differences between the risk values corresponding to 
various datasets having the same quality of measurements decrease as this quality is varied 
from LQ to HQ. 

Figures 6.7d, 6.7e, and 6.7f display the risk curves for strength variability assessment that 
correspond to the three qualities of measurements (HQ, AQ, and LQ). Like Figure 6.5, the 
risk values decrease with increasing NC (but with a slower rate than those in Figures 6.7a, 
6.7b, and 6.7c) and the assessment is more reliable for the more variable concrete. Moreover, 
the risk values decrease as the quality of measurements is varied from LQ to HQ but with less 
significant reduction as compared with the case of mean strength estimation. As an example 
for NC=3, the risk value for dataset D20-30-LQ is 50% and it becomes 45% for D20-30-AQ 
and reaches 33% for D20-30-HQ. As shown in Figures 6.7d, 6.7e, and 6.7f, the risk values for  
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Figure 6.7 Studying the effect of quality of measurements on the risk curves corresponding to each of mean strength and strength variability estimations with NT=100, 

and random core selection 
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the case of strength variability assessment are high which indicates the difficulty to ensure a 
reasonable confidence level (confidence level=1 - risk) associated with the predicted value. 
As an example for risk value ≤ 10% and NC ≤ 20, we can assess the concrete variability for 
concrete having (��ሺ����ሻ=30% or 20%) for HQ measurements while for AQ and LQ 
measurements the ability of assessment is restricted to concrete having (��ሺ����ሻ=30%). This 
means that to assess the strength variability in the concrete having (��ሺ����ሻ=10% or 20%) it 
is necessary either to use NC >> 20 or to increase the selected value of U% (i.e. the 
acceptance of wider error interval associated with the estimated value). Figure 6.8 shows the 
effect of selecting larger value for U (U=±35%) on the risk values for the case of HQ 
measurements, Figure 6.8a, and the case of LQ measurements, Figure 6.8b. As shown, the 
situation is improved for both cases in which the risk values are lower than the corresponding 
values in Figures 6.7d and 6.7f.  

 Regarding Figure 6.7e the risk curve of D20-10-AQ diverges slightly from the other curves 
and it seems less sensitive to the increase in NC. Whilst the curve of dataset D20-10-LQ, 
Figure 6.7f, is nearly horizontal when NC ≥ 5 (i.e. its behavior is independent of NC) with 
large risk value of 65%. This situation corresponds to the case of low variability of concrete 
(��̅��=20 MPa and ��ሺ����ሻ=10%) and illustrates that, in such a case, low quality 
measurements are unable to capture the concrete strength variability. This behavior is due to 
the fact that the noise in these measurements makes them unable to detect the low variability 
of concrete (�ሺ����ሻ=2 MPa) and to provide a reliable estimation with a small margin of error         
((U×T) = ±0.5 MPa). Furthermore, the acceptance of larger value for the uncertainty level 
U% cannot improve the ability to capture the strength variability for D20-10-LQ as shown in 
Figure 6.8b.  

From the present discussion, there is evidence that among the factors affecting the quality of 
assessment, the quality of measurements (or within-test variability) plays the most important 
role.  

 

 

Figure 6.8 Risk curves corresponding to the uncertainty level U=±35% for the strength variability estimation 

with: two different quality of measurements (HQ and LQ), NT=100, and random core selection 
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6.2.5 Studying the effect of the way of selection the NC test locations on the quality of 
assessment  

All the previous results of this chapter are limited to the case of random selection of core 
locations. However these NC locations can be defined in accordance with certain conditions 
applied on the NDT results “conditional selection”. The idea of the conditional selection is to 
select the NC test locations that cover, as much as possible, the whole range of the NDT 
measurement distribution. The way of selecting the NC test locations for cores was studied in 
Chapter 4 (Subsection 4.3.3.3) when analyzing the results of an international benchmark 
carried out by RILEM TC-249 committee. It has been concluded that using the conditional 
selection has a beneficial effect on the quality of assessment. Since in Subsection 4.3.3.3 the 
analysis was limited to one dataset, we will deepen the analysis here by applying the 
conditional selection on other datasets having different characteristics.  

To this end, the analysis procedure described in Subsection 6.2.2 was duplicated here for the 
case of conditional core selection. It means that the datasets from Table 6.1 was re-analyzed 
following the algorithm in Figure 3.3 but with the option of conditional cores. The same 
method proposed in Chapter 4 for selecting the cores conditionally has been applied herein. 
This method is as follows: (a) rank all NDT test results from the lowest to the highest value, 
(b) subdivide the set into NC subsets, (c) select a test location where the NDT value is closest 
to the median value of each subset. Except the way of core selection, the other analysis 
characteristics applied with random selection remain unchanged in the analysis with the 
conditional selection (i.e. NT=100 for NDT measurements, linear model, NI=1000, and NC 
varying from 2 to 20). The final resulting CDF curves were used to construct the risk curves 
corresponding to the case of conditional core selection.  

For the assessment of mean strength for dataset with HQ, Figure 6.9a shows three selected 
risk curves corresponding to the conditional selection of cores beside the risk curves for the 
same datasets obtained from using the random selection which were earlier provided in Figure 
6.7a (for the case of pulse velocity). These datasets are D20-10-HQ, D20-20-HQ, and D20-
30-HQ which are selected because each one represents the extreme curve within its group (i.e. 
the group that has the same ��ሺ����ሻ value), see Figure 6.7a. For the same reason, the risk 
curves of the corresponding datasets but with AQ and LQ are plotted on Figures 6.9b and 6.9c 
respectively for mean strength estimation. From these three figures, there is evidence that the 
conditional selection of cores can considerably reduce the risk values (or improve the quality 
of assessment) for all datasets when the quality of measurements is HQ. However, the 
significant of this effect is reduced as the quality of measurement reduces to AQ or LQ. 
Furthermore, the effect of using conditional selection is significant only for low NC values 
(NC ≤ 10 or 12) and it becomes negligible for the high NC values.  

Regarding the strength variability estimation, the risk curves of conditional selection that 
correspond to the same datasets are plotted on Figures 6.9d, 6.9e and 6.9f besides the risk 
curves of random selection from Figures 6.7d, 6.7e and 6.7f. As shown, the use of conditional 
selection reduces the risk values with amounts of reduction increase as the quality of 
measurements changes from LQ to HQ. On contrary to the situation in Figures 6.9a, 6.9b and 
6.9c, in general, the effect of using conditional selection (for strength variability estimation) is 
more significant for high NC values than for low NC values.  

Consequently, since proposed method for conditional selection induces no additional cost and 
since it can improve the reliability of assessment for both estimated quantities (mean strength 
and strength variability), this process must be strongly recommended. It must be noted that 
this method is fully compatible with in-situ concrete assessment: it only requires that the 
preliminary NDT investigation is carried out before the core location is easily decided. 
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Figure 6.9 Studying the effect of the way of core location selection on the risk curves corresponding to each of mean strength and strength variability estimations with 

NT=100, and for the three quality of measurements: HQ, AQ, and LQ 
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6.2.6 What is the minimum number of test locations for cores that can ensure a specific 
quality of assessment? 

In real practice, to carry out an investigation program, engineer needs to specify the number 
of test locations for cores, NC, which is necessary to identify adequate model between 
concrete strength and NDT measurements. For many reasons (economical, destructive, etc.) 
this number should be as small as possible. (ACI 214.4R, 2003) provides a formula  for 
calculating the NC (with 95% confidence) corresponding to a  specific concrete strength 
variability and an accepted predetermined error between the estimated mean strength and 
population mean strength as given in Eq. (2.1). The shortcomings of this formula are that: it is 
restricted to the case of mean strength assessment, it does not consider the quality of 
measurements, it provides high NC values because it was essentially derived for the case of 
assessment using cores only. 

According to the requirements of the European standard (EN 13791, 2007), the minimum 
number of cores is 18 for regression analysis approach (Alternative 1 as so-called in this 
standard). (ACI 228.1R, 2003) requires a minimum of six to nine test locations for cores (with 
two cores that should be drilled from each location). As shown, each of these standards 
provides a single value for NC without any consideration about the type of concrete or the 
estimated quantity and without any information about the error associated with the estimated 
value.  

From the analysis of quality of assessment that has been carried out in this chapter, there is 
evidence that the minimum NC is related to many influencing factors: true in-situ concrete 
variability, quality of measurements, the prescribed error (or uncertainty level), the way of 
selecting the core locations, the quantity to be assessed, and the confidence level in the 
estimated value. Using Figure 6.9, the minimum values that related to these limitations can be 
derived as shown in Table 6.2. Any value of NC in this table can be interpreted as the NC 
value that leads to estimated values (for example: the mean strength) which we are sure that 
90% (confidence level = 90% as an example) of the estimated values will have an error ≤ ±Ͳ.ͳͲ��̅���. In order to show the effect of the confidence level on the NC values, Table 6.2 
provides the values corresponding to two different confidence levels: confidence level ≥ 90% 
and confidence level ≥ 95%. 

From this table, regarding the mean strength estimation, it is clear that the required minimum 
NC increases in two directions: as the true in-situ concrete variability varies from 10% to 30% 
and as the quality of measurements changes from HQ to LQ. However, it decreases as the 
conditional core selection method is applied. Therefore, for confidence level ≥ 90% (or risk ≤ 
10%), the NC values range from 3 to 15 which are all less than that required by the (EN 
13791, 2007) standard (NC=18).  

Regarding the strength variability assessment, the NC increases as the quality of 
measurements changes from HQ to LQ and, on contrary to the case of mean strength, as the 
in-situ concrete variability reduces from 30% to 10%. However, NC decreases as the 
conditional core selection method is applied. As shown, for many cases, the value is marked 
by “N/A” i.e. “not available” which means that the required NC value is either greater than 20 
or that we are unable to provide an estimation within the prescribed error for this quality of 
measurements and confidence level. For confidence level ≥ 90%, the lower limit of NC range 
is 5 while the upper limit is unknown.  

The wide range of NC values provided in Table 6.2 for each estimated quantity indicates that 
the minimum NC is not a simple unique value that can be applied in all situations, as provided 
by the standards (ACI 228.1R, 2003; EN 13791, 2007). Our conclusion is that this issue needs 
to be seriously revised in the current standards in order to provide minimum NC values (in 



Ch.6 Quality of assessment and recommendations for better practice 

 

125 

tables or formulas), like Table 6.2, with detailed information about their application 
limitations.  

Table 6.2 Minimum NC as a function of true in-situ concrete variability, quality of measurements and the 

way of core locations selection for sample size NT=100, and NC ≤ 20, (N/A means value is not available) 

Confidence level ≥ 90% 

Estimated 
quantity 

Error         
(uncertainty level) 

��ሺ����ሻ 
HQ AQ LQ 

rand cond rand cond rand cond 

��̅���  ±Ͳ.ͳͲ��̅��� 

10% 3 3 5 4 6 5 

20% 4 3 7 6 11 10 

30% 5 3 9 7 15 15 

�ሺ�����ሻ ±Ͳ.ʹͷ�ሺ�����ሻ 

10% N/A N/A N/A N/A N/A N/A 

20% 13 9 N/A 20 N/A N/A 

30% 9 5 11 9 16 14 

Confidence level ≥ 95% 

Estimated 
quantity 

Error         
(uncertainty level) 

��ሺ����ሻ 
HQ AQ LQ 

rand cond rand cond rand cond 

��̅���  ±Ͳ.ͳͲ��̅��� 

10% 4 3 6 5 8 7 

20% 5 4 10 9 14 13 

30% 7 4 12 10 N/A 20 

�ሺ�����ሻ ±Ͳ.ʹͷ�ሺ�����ሻ 

10% N/A N/A N/A N/A N/A N/A 

20% 19 15 N/A N/A N/A N/A 

30% 13 9 16 13 N/A 20 

 

6.3 Analysis of quality of assessment using real datasets 

In this section, in order to confirm the robustness of the analysis using synthetic datasets and 
to emphasize our findings, the quality of assessment was studied using real datasets of NDT 
measurements (rebound hammer technique) and destructive tests. More than 2500 test results 
pairs (R,��) from seventeen real datasets (S21 to S37 in Table 3.1) were considered. These 
datasets cover a wide range of true mean strength ��̅ (36-77 MPa) and true strength variability 
(in terms of strength coefficient of variation) ��ሺ��ሻ (11-33%).  

Similar to the case of synthetic datasets, two estimated quantities (mean strength and strength 
variability) had been the target of the assessment using two model identification approaches: 
regression and bi-objective. The factors analyzed with synthetic datasets, in Section 6.2, were 
considered herein for analyzing the quality of assessment with the real datasets. These factors 
are: quality of measurements (or within-test variability of rebound measurements), true 
concrete strength variability, NC, way of selection the NC test locations (random or 
conditional), and the model identification approach (regression or bi-objective). We have 
published this analysis using real datasets in “Construction and building Materials” Journal. 
The paper is available in Appendix D. However, its most important results are summarized in 
Table 6.3, these results confirm that:  
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- the assessment of concrete strength variability using the regression approach provides 
limited or unreliable assessment,  

- regarding the effect of NC, reducing NC leads to less reliable estimations of the mean 
strength and concrete strength variability whatever the model identification approach 
(regression or bi-objective),  

- reducing the within-test variability of the rebound measurements (improving the 
quality of measurements) leads to more reliable assessment,  

- regarding the true strength variability of the concrete under investigation, less variable 
concrete gives more reliable estimation of concrete mean strength. However the 
estimation of the concrete strength variability is less reliable for a less variable 
concrete (this statement is based on considering relative uncertainty level or error),  

- regarding the method of conditional selection of core locations, it improves the 
reliability of assessment for both estimated quantities (mean strength and strength 
variability). 

All these results are in full agreement with our findings with synthetic data, which confirms 
the ability of synthetic datasets to draw conclusions similar to that derived from real datasets. 

 

Table 6.3 Summary of the effects of factors considered in this study on the quality of assessment analyzed 

using real datasets 

factor 
mean strength estimation strength variability estimation 

regression bi-objective regression bi-objective 

Reducing NC worsening worsening 

approach provides 
unreliable 
assessment 

worsening 

Reducing within-test variability of 
rebound measurements (improving 

quality of measurements)  
improvement improvement improvement 

Reducing the true concrete strength 
variability  

improvement improvement worsening 

Using conditional selection method 
for NC test locations instead of 

random selection 
improvement improvement improvement 
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6.4 Conclusions 

Reliability of the assessment is a real challenge for engineers when assessing the in-situ 
strength of concrete structures. Therefore, in this chapter, the quality of assessment was 
analyzed and it was correlated with its affecting factors: number of test locations for cores 
(NC) used to identify the conversion model, quality of measurements (within-test variability), 
the way of selecting the core locations, the in-situ concrete variability, the type of NDT 
technique, using single or combination of NDT techniques, and the model identification 
approach.  

To this end, a large campaign of synthetic datasets (36000-ሺ�, �, ��ሻ test results) having 
different characteristics were generated for the analysis. The analysis findings with the 
synthetic datasets have been confirmed by using additional real datasets but with rebound 
hammer only (2500-ሺ �, ��ሻ test results selected from Table 3.1). 

The following conclusions can be drawn: 

- the bi-objective and the regression approaches show a good  ability to provide a 
reliable assessment of mean strength. This reliability is improved as NC increases with 
more significant improvement at low values of NC. Furthermore, the combination of 
NDT techniques (V+R) improves also the reliability as compared with that of single 
technique, however this benefit should be compared with the growing in the cost due 
to the combination of techniques,  

- regression approach is limited in some cases and handicapped in others for assessing 
the strength variability. Moreover, using combination of NDT techniques (V+R), can 
improve the quality of assessment for datasets having (��ሺ����ሻ=20% and 30%) as 
compared with the case of single technique. However, this improvement in the quality 
of assessment should be compared with the additional cost due to the combination of 
techniques. On contrary, the bi-objective approach shows a good ability to assess the 
strength variability with more significant effect of the increase in NC on the quality of 
assessment. Furthermore, the quality of assessment using bi-objective approach is 
better than that provided by regression approach even in the case of combination of 
NDT techniques, 

- Assessing the mean strength in less variable concrete is more reliable. On contrary, the 
assessment of concrete strength variability in less variable concrete is less reliable 
(this statement is based on considering a relative uncertainty level or error), 

- there is evidence that among the factors affecting the quality of assessment, the quality 
of measurements (or within-test variability) plays the most important role,  

- using the method of conditional selection of core locations instead of the random 
selection improves the quality of assessment for both estimated quantities (mean 
strength and strength variability) while it induces no additional cost. Therefore, this 
process is strongly recommended,  

- the minimum NC is not a simple unique value that can be applied in all situations, as 
recommended by the standards (ACI 228.1R, 2003; EN 13791, 2007). Consequently, 
this issue needs to be seriously revised in the current standards in order to provide 
minimum NC values (in tables or formulas), with detailed information about their 
application limitations. Our risk curve concept can be used to provide more detailed 
practical information regarding the recommended NC values. 
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6.5 Recommendations for better practice 

In Chapter 4, the inherent characteristics of the current assessment methodology were 
analyzed while in Chapter 5 a new model identification approach was proposed in order to 
improve the reliability of assessment. Chapter 6 has been devoted to analyze the quality of 
assessment and to relate it with the inherent characteristics of the assessment methodology. 
From the analyses carried out in these three chapters, we can provide the following 
recommendations for improving the engineering practice: 

a. Quality of measurements (or within-test variability) should receive special attention on 
site by improving it as far as possible because this improvement has an important 
effect on the quality of assessment. In any case, it can be quantified through the simple 
repetition of the measurement process within the test location. 

b. Number of test locations for cores should be selected depending on: the in-situ 
concrete variability, the quality of measurements, the quantity to be assessed, the 
accepted uncertainty level (error) in the estimated value, and the confidence level. 
Since detailed recommendations are not available in the current standards, Table 6.2 
can be used to provide the first estimate. 

c. The method of conditional selection of core locations (NDT based selection) should be 
used to define the core locations since it can improve the quality of assessment 
without any additional cost. 

d. The selection of a model type (linear or nonlinear) does not deserve a lot of attention 
since the other sources of uncertainty have a more significant effect on the quality of 
assessment than this source of uncertainty. 

e. For the assessment of mean strength the regression and bi-objective approaches can be 
applied to identify model between concrete strength and NDT measurements. 
Calibration approaches can be used but with attention that should be payed to the 
selection of the prior model which should be already derived from a concrete similar 
to that under consideration and has the range of NDT values close to that obtained 
with the concrete under consideration. 

f. For the assessment of concrete strength variability, the bi-objective approach should 
be applied for this purpose. 

g. To assess the quality of the identified model, the prediction error (RMSE) should be 
calculated using additional cores extracted for this purpose since the fitting error leads 
to misleading conclusions. Furthermore, for comparing the qualities of models 
identified from concretes with different variabilities, the relative prediction error 
(RMSE/�ሺ��ሻ) should be used instead of the absolute error (i.e. RMSE). 

h. The use of combination of ultrasonic pulse velocity and rebound hammer should be 
restricted to the case of high number of cores and when the two techniques have close 
quality of measurements.  

Consequently, according to these recommendations, the assessment methodology for 
evaluating concrete strength in the existing structures can be improved to be as shown in 
Figure 6.10. 
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Using the model to estimate local strengths at test locations with NDT 
measurements 

 

Regression 

 
Bi-objective 

 
Calibration 

 

Applying the selected model identification approach to provide a model 

Selecting NC from Table 6.2 

 Selecting the NC locations for cores depending on the NDT 
measurement (conditional selection)  

 

Bi-objective 

 

Using estimated local strengths to calculate the outputs:  ��̅���  and/or sሺ��eୱ୲ሻ  
 

Selecting the model identification approach:  

If �ሺ�����ሻ is required? 

Identifying the quality of measurements on site 

Carrying out the NDT measurements 

Selecting the quantity and locations for NDT measurements  

Selecting the type of NDT technique (s) 

Yes 

 
No 

 

Figure 6.10 Assessment methodology for evaluating concrete strength in the existing structures 

that proposed in the present study 
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CHAPTER SEVEN 

7 CONCLUSIONS AND PERSPECTIVES 

 

 

 

Assessment of in-situ strength in the existing structures is always a challenge for engineers. 
The current methodology consists in carrying out nondestructive measurements (NDT) like 
rebound hammer or/and pulse velocity on several test locations in the structure. Then, cores 
are extracted from some of these locations for compressive tests in order to implement a 
relationship ‘‘conversion model” between the compressive strength and NDT measurements. 
The conversion model is used to estimate the local strength value at each test location using 
the corresponding NDT value. Then the estimated mean strength and/or estimated strength 
standard deviation (concrete strength variability) values are calculated. However, the 
reliability of these estimated values is always a questionable issue because of the uncertainties 
associated with the strength predictions based upon NDT measurements. To improve the 
reliability, the uncertainties must be reduced by specifying and controlling their influencing 
factors. In this study, the focus was given mainly to the controlled factors (i.e. factors that can 
be modified or changed) in order to improve the quality of assessment. Therefore, the 
objective of this thesis was to study the current assessment methodology in order to provide 
practical recommendations that can improve the reliability of assessing the in-situ strength in 
existing concrete structures by nondestructive tests and cores. 

The first axis of this thesis was devoted to analyze the current assessment methodology. This 
analysis was subdivided into three main stages. The first one focused on studying the effects 
of several of the methodology controlled factors.  The considered factors were: the number of 
test locations for cores (NC) which are used for identifying the conversion model, the quality 
of NDT measurements (within-test variability), the true in-situ variability of the concrete 
strength, the model type, and the combination of NDT techniques. For analyzing these effects, 
three sources of datasets (in-situ data, laboratory studies data, and generated synthetic data) 
were considered. RMSE and r2 errors were calculated for the estimated local strengths in order 
to be as indicators about the quality of fitted model and its ability to estimate strength. The 
errors were calculated in two ways: considering only the test locations with cores that used to 
identify the model (fitting error), and considering all test locations with NDT measurements 
but without cores (prediction error). 

From the analysis at this stage, we showed that the errors in the estimated strengths are 
affected by the number of test locations for cores, NC. For small NC, the fitting error is small 
while the prediction error is large, but as NC increases the prediction error is progressively 
reduced, however it is always larger than the fitting error. This important issue warns 
engineers to avoid using the fitting error (usually r

2) as an indication about the quality of 
assessment and they should use the prediction error for this purpose. Furthermore, it was 
shown that the true in-situ concrete strength variability, �ሺ����ሻ, has significant effect on the 
quality of assessment. As �ሺ����ሻ increases, the predictive RMSE increases while the ratio 
RMSE/�ሺ����ሻ decreases. Consequently, one must pay attention to how the quality of the 
assessment is quantified: looking at the absolute error, RMSE, or relative error, RMSE/�ሺ����ሻ, 
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would lead to different conclusions. Regarding the quality of measurements, we found that it 
has significant effect on the prediction error so it deserves a lot of attention on site. As 
compared to the previous three effects, it was found that the effect of model type (linear or 
power) is less significant since it is generally limited to the case of small NC with smaller 
error provided by the linear model. The last effect that was analyzed in this stage was the 
efficiency of combining two NDT techniques (pulse velocity and rebound hammer) with the 
destructive tests (cores). It was shown that the combination is not always efficient and its 
efficiency depends on NC and the quality of measurements. This explains the reasons why in 
the literature the efficiency of combining NDT is controversial (combination is said to bring 
some added-value in some cases but not in others). 

In common practice, one of the challenges for engineers is the selection of an assessment 
strategy among many possible strategies having the same investigation budget. Therefore, in 
the second stage of the first axis, several strategies defined by experts in an international 
benchmark devoted to assess the concrete mean strength and strength variability were 
analyzed. The efficiency of these strategies was studied by simulating their application to a 
series of 1000 synthetic buildings having the same statistical properties and by defining the 
indicators of the quality of assessment.  

It was shown that the scatters in the estimated mean strength and estimated strength 
variability values confirm that it is impossible to evaluate a strategy from a unique result “one 
shot study” as provided by the contributors to this benchmark. These scatters also emphasize 
that the variabilities in the estimated mean strength and estimated strength variability are 
significant and cannot be neglected whatever the assessment strategy. The other finding of 
this analysis was that the assessment of strength variability is a much more difficult challenge 
than the assessment of the mean strength. The strategies analyzed here have shown a handicap 
for assessing the concrete strength variability. This analysis has also confirmed the significant 
effect of the quality of measurements on the quality of assessment. After studying the effect 
of the way of selecting the core locations, a method was proposed for selecting these locations 
depending on NDT measurements “conditional selection”. The main finding of this analysis 
was that this method can improve the quality of assessment without any additional cost, 
therefore it is strongly recommended for real practice.  

The third stage of the first axis was devoted to analyze the existing model identification 
approaches (regression approach and calibration approaches (Δ-method and k-method)). 
These approaches were applied to eight real datasets (4 with rebound measurements and 4 
with pulse velocity measurements) in order to assess the mean strength and strength 
variability. From comparing the quality of assessment of these approaches, it was found that 
all approaches (regression, calibration) can efficiently estimate the mean concrete strength. 
Furthermore, increasing NC can significantly improve the estimation efficiency. On contrary, 
it was shown that the regression approach remains limited in capturing the concrete strength 
variability, it always underestimates the concrete variability and increasing NC has no 
significant effect on the quality of estimation. Regarding the calibration approaches, it was 
found that they produce unstable results (quality of assessment varies as the prior model is 
changed) so their efficiency depends on chance. Moreover, increasing NC could not improve 
the results of calibration approaches especially for Δ-method which was proved its 
independence from the effect of NC. These findings were obtained from both type of NDT 
techniques (rebound hammer or pulse velocity) which indicate the generality of them.  

In the first axis, the handicap of the existing approaches for assessing strength variability was 
confirmed. Therefore, the second axis of this thesis was directed to propose a new model 
identification approach “bi-objective” in order to capture concrete strength variability in 
addition to mean strength. The derivation of the bi-objective approach was provided for both 
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linear and power models. The validity of this approach was proved by applying it on several 
datasets (some datasets with rebound hammer and other with pulse velocity) from in-situ and 
laboratory studies in order to predict the mean strength and concrete variability. Moreover, the 
prediction ability of the bi-objective approach was compared with that of the existing 
approaches.  

It was found that the bi-objective approach shows high efficiency (on contrary to other 
approaches) in capturing the concrete strength variability in addition to its efficiency in 
capturing the mean strength with better efficiency as NC increases. It was shown that the bi-
objective approach is valid with both the ultrasonic pulse velocity and rebound hammer 
measurements. Furthermore, from mathematical viewpoint, it can be used with any NDT 
technique combined with DT technique (cores) in order to identify a conversion model. 
Regarding the model type, it was found that the bi-objective approach works with power 
model as well as with the linear model but the uncertainty arising from using power model is 
larger than that of linear model when NC is small.  

In the third axis of this thesis, the quality of assessment was analyzed and it was correlated 
graphically with its affecting factors: number of test location for cores (NC) used to identify 
the model, quality of measurements (within-test variability), the way of selecting the core 
locations, the true in-situ concrete variability, the type of NDT technique, using single or 
combination of NDT techniques, the model identification approach, and the quantity to be 
assessed (mean strength or strength variability). A large campaign of synthetic datasets 
(36000-ሺ�, �, ��ሻ test results) having different characteristics were generated for this analysis.  
Furthermore, in order to confirm the robustness of the analysis findings with the synthetic 
datasets, the analysis of the factors listed above were also done using real datasets but with 
rebound hammer only (2500-ሺ �, ��ሻ test results).  

From these analyses, the significant effects of these factors on the quality of assessment were 
confirmed with the most important role played by the quality of assessment. Furthermore, it 
was shown that, for prescribed relative error or uncertainty level around the true value (±U%), 
assessing the mean strength in less variable concrete is more reliable. On contrary, the 
assessment of concrete strength variability in less variable concrete is less reliable. From the 
graphical correlation between the quality of assessment and the affecting factors, we derived 
the minimum values for NC. It was found a wide range of NC values for each estimated 
quantity. As a result, the minimum NC is not a simple unique value that can be applied in all 
situations, as recommended by the standards (ACI 228.1R, 2003; EN 13791, 2007). 
Consequently, we think that this issue needs to be seriously revised in the current standards in 
order to provide minimum NC values (in tables or formulas) with detailed information about 
their application limitations.  

Since the proposed bi-objective approach gives encouraging results with single NDT 
techniques for assessing efficiently the mean strength and strength variability, our first 
perspective is to develop this approach to be applicable for the case of combination of NDT 
techniques.  We think that this development provides more improvement in the quality of 
assessment. 

The second perspective is studying the effect of the number of test locations for NDT 
measurements (NT) (i.e. sample size) on the quality of the assessment. From statistical aspects 
the scatter of sampling distribution of mean strength (for example) depends on the 
ratio � √��⁄ , where  � is the standard deviation of concrete strength population. Therefore 
increasing the sample size leads to reduce one of the uncertainty sources (sampling 
uncertainty) and, as a result, reduces the scatter in the estimated values. This factor was not 
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considered in the present study, however we think that it deserves to be considered in future 
works. 

The quality of assessment obviously improves when both NC and quality of measurements 
increase. However, when the total amount of resources is fixed (fixed investigation budget), 
the optimal balance between these factors does not follow simple rules and it deserves to be 
studied through a more comprehensive analysis. 
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INTRODUCTION GÉNÉRALE 

Problématique  

Le béton est un matériau composite couramment utilisé dans le domaine de la construction en 
raison de sa résistance et de sa durabilité, de sa disponibilité, du faible prix des matières 
premières, et du fait de sa capacité à se couler dans des formes architecturales complexes. Par 
conséquent, de nos jours, il existe un nombre important de structures en béton et, jour après 
jour, ce nombre est en constante évolution. Parmi les propriétés mécaniques et physiques du 
béton, sa résistance à la compression est la propriété la plus importante car elle est essentielle 
pour concevoir un élément structurel ou calculer sa capacité portante. La résistance à la 
compression n'est pas une valeur fixe pendant la durée de vie du béton en raison de plusieurs 
effets comme le durcissement au jeune âge et des fissures internes développées (en raison des 
effets environnementaux ou de chargement) à l’âge avancé. Par conséquent, l'évaluation de la 
résistance à la compression in situ du béton est requise dans de nombreuses situations telles 
que: 

- le contrôle de la qualité du béton pour assurer la conformité avec les spécifications pour le 
cas de nouvelles constructions, 

- les litiges après la non-conformité du matériau testé, 

- le doute sur la qualité du béton dans une nouvelle construction, 

- la modification de l'utilisation (ou de la fonction) d'une structure afin de calculer avec 
précision la capacité structurelle, 

- les dommages résultant d'un incendie, d'une fatigue, d'une surcharge ou d'une dégradation 
par l'environnement, 

- la question de la réhabilitation sismique qui se pose aujourd'hui dans plusieurs pays (comme 
l'Italie et la Turquie) et qui nécessite également une évaluation in situ précise de la résistance 
du béton dans les structures existantes (Biondi & Candigliota, 2008; Gunes, 2015). 

Il est clair que les trois premières situations concernent les nouvelles structures alors que les 
trois dernières font l'objet d'une évaluation in situ dans les structures existantes. De 
nombreuses méthodes d'essai sont disponibles pour estimer la résistance in situ. Le test sur 
des carottes est la méthode la plus directe utilisée. Cependant, elle présente de nombreux 
inconvénients : coûteuses, parfois limitée en raison de l'accès difficile de la machine à 
carottage, seulement représentatif d'un petit volume du béton et il a un effet localement 
destructeur sur la structure ( (Meynink & Samarin, 1979). 

D'autres méthodes d'essai utilisées pour évaluer la résistance in situ du béton sont les 
méthodes non destructives, telles que : le rebond, la vitesse d'impulsion ultrasonore, le test de 
pénétration, le pullout, etc. Les principales caractéristiques de ces méthodes (par rapport aux 
tests destructifs) sont leur simplicité, leur rapidité et leur faible coût. Cependant, leur principal 
inconvénient est que ce sont des méthodes indirectes puisqu'elles ne peuvent pas mesurer 
directement la résistance in situ. Ils mesurent d'autres paramètres physiques (ex : vitesse 
ultrasonore, indice rebond, force d’arrachement, etc.) et la force est dérivée d'un "modèle de 
conversion" de corrélation entre la résistance et les propriétés mesurées. En raison du fait que 
le béton est un matériau largement hétérogène, il n'existe pas un modèle unique pour tous les 
bétons (Breysse, 2012). 

Par conséquent, la méthodologie actuelle repose sur l'établissement d'un modèle de 
conversion pour chaque cas particulier à l'aide de tests destructifs et non destructifs. Ensuite, 
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le modèle dérivé est utilisé pour estimer la résistance du béton aux emplacements de tests non 
destructifs. Cette méthodologie présente de nombreux degrés de liberté : 

- Combien d’emplacements de tests sont nécessaires pour les prélèvements destructifs ? 

- Quelle (s) méthode (s) non destructive (s) utiliser ? 

- Combien d’emplacements de tests sont nécessaires pour les tests non destructifs ? 

- Quelle est la manière de choisir les emplacements de tests ? 

- Quelle est la forme mathématique du modèle de conversion ? 

- Quelle approche d'identification du modèle ? 

- Utiliser une ou combiner plusieurs méthodes non destructives ? 

- Quelle est la qualité de l'évaluation de la résistance prédite ? 

- Comment la qualité de l'évaluation peut-elle varier lorsqu'une réponse aux questions ci-
dessus change ? 

Les normes  (ACI 228.1R, 2003; EN 13791, 2007) tentent de fournir des réponses à certaines 
de ces questions, mais elles ne fournissent pas une méthodologie générale qui permette de 
répondre à toutes ces questions. 

La portée de ce travail 

Le problème général présenté dans la section ci-dessus ne peut pas être résolu avec une seule 
thèse de doctorat, par conséquent cette thèse a eu pour objectifs de traiter une partie de cette 
problématique générale. Premièrement, cette recherche porte sur l'évaluation de la résistance 
in situ dans les structures existantes, car elle est plus essentielle aujourd'hui avec les besoins 
de la réhabilitation sismique. Par exemple, en Turquie, plusieurs millions de bâtiments ont été 
classés comme des bâtiments à risque et, par conséquent, des informations fiables sur leur 
résistance sont requises pour toute décision concernant le réaménagement ou le 
renouvellement (Gunes, 2015). Afin de faire la distinction entre les structures existantes et les 
structures nouvelles, on adopte la définition suivante pour les structures existantes, en accord 
avec les directives de la RILEM TC 249 ISC : les structures en béton armé existantes sont 
définies comme des structures où les effets d'âge (craquage, corrosion, etc.) et les barres 
d'acier de renforcement ont une grande influence sur les résultats des  mesures non 
destructives et la résistance prédite. Une autre caractéristique des structures existantes est le 
manque dans les informations détaillées sur le béton utilisé. 

La résistance mécanique du béton d’une structure réelle à n'importe quel emplacement de test 
est toujours inconnue. Par conséquent dans le présent travail, la valeur de référence pour cette 
résistance inconnue sera la résistance mesurée sur des prélèvements (carottes) à ce même 
emplacement de test. 

Comme il a été indiqué dans la section précédente, il existe plusieurs techniques non 
destructives qui peuvent être utilisées pour évaluer la résistance à la compression du béton. 
Cependant, dans ce travail de doctorat, seules les méthodes du rebond et celle de la vitesse 
ultrasonore sont considérées car elles sont les méthodes les plus largement utilisées sur les 
structures en béton armé. 

Dans la pratique, la résistance à la compression moyenne et la résistance à la compression 
caractéristique sont les valeurs les plus couramment évaluées, ces dernières étant des entrées 
importantes pour le calcul structurel. L'évaluation de la résistance caractéristique dépend de la 
résistance moyenne et de l'écart-type des résistances à la compression (variabilité de la 
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résistance du béton). La variabilité du béton est donc également une valeur requise. Le 
coefficient de variation, ��ሺ��ሻ, dû à la variation in-situ de la résistance du béton au sein 
d'une structure (c.-à-d. La variabilité du béton / résistance moyenne) est de 13% (ACI 214.4R, 
2003). Cependant (Masi & Chiauzzi, 2013) ont trouvé une valeur ��ሺ��ሻ de 21% dans un 
élément d'une structure. (Masi & Vona, 2009) ont étudié la variabilité du béton dans de 
nombreux bâtiments en Italie et ont observé que les valeurs probables de ��ሺ��ሻ se situent 
entre 15 et 35%. (Pucinotti, 2013) a également montré que dans de nombreux cas le ��ሺ��ሻ 
atteint 35%. C'est pourquoi l'évaluation de la variabilité du béton est nécessaire en plus de la 
valeur moyenne de la résistance. Le présent travail de doctorat porte donc sur l'estimation des 
valeurs de résistances locales, de la résistance moyenne et de la variabilité de la résistance du 
béton. La résistance caractéristique peut être déduite une fois que ces propriétés sont connues, 
mais elle n’est pas traitée dans le cas de ces travaux de thèse. 

Lorsque la variabilité de la résistance du béton est élevée ou lorsque les informations 
disponibles indiquent que le béton dans la structure entière (ou les parties considérées) ayant 
une composition ou une qualité différente, les normes (ACI 228.1R, 2003; EN 13791, 2007) 
recommandent de diviser la structure étudiée aux plusieurs régions de tests. À cette fin, des 
chercheurs (Giannini, et al., 2014; Masi, et al., 2016) ont proposé des critères pour diviser la 
structure étudiée en zones homogènes (régions de tests). Dans le présent travail, chaque jeu de 
données qui sera utilisé dans l'analyse est considéré comme appartenant à une région de test, 
c'est-à-dire que la question de la subdivision est hors de notre portée. 

Dans la méthodologie actuelle, un modèle de conversion entre la résistance du béton et les 
mesures non destructives est identifié. Dans la forme courante de ce modèle, la résistance du 
béton représente la variable dépendante (réponse) tandis que les propriétés mesurées non 
destructives représentent les variables indépendantes (entrées). Cependant, une possibilité 
proposée par certains chercheurs, voir par exemple (Kheder, 1999; Atici, 2011; Szilágyi, et 
al., 2011; Martínez-Molina , et al., 2014) consiste à utiliser (en plus des mesures non 
destructives) plusieurs caractéristiques du béton (rapport eau / ciment, rapport agrégat / 
ciment, teneur en mélange, densité du béton, âge, etc.) comme variables indépendantes dans 
le modèle. Cependant, le principal inconvénient de ce type de modèles est la nécessité de 
connaître les caractéristiques du béton pour alimenter le modèle alors qu'ils restent 
généralement inconnus dans les structures anciennes. Par conséquent, dans cette étude, les 
modèles avec des mesures non destructives seulement comme des entrées seront considérés. 

Objectif et méthodologie générale de recherche  

Cette thèse vise à étudier la méthodologie d'évaluation actuelle afin de fournir des 
recommandations pratiques qui peuvent améliorer la fiabilité de l'évaluation de la résistance 
des bétons dans les structures existantes par des essais non destructifs et des prélèvements 
destructifs (carottes). 

Pour atteindre cet objectif, la présente thèse suivra la méthodologie de recherche présentée sur 
la Figure 1. Après avoir synthétisé le problème et les facteurs d'influence, nous définirons les 
éléments de la stratégie d'évaluation. Ensuite, les outils nécessaires à l'analyse de cette thèse 
seront fournis. Le premier outil est la construction d'un simulateur utilisant le code VBA. Ce 
simulateur a deux objectifs: la génération de données synthétiques, et la simulation de la 
stratégie d'évaluation, qui peut être répétée plusieurs fois. Le deuxième outil concerne les 
ensembles de données de mesures réelles qui seront utilisés dans l'analyse. De nombreux 
ensembles de données seront mis à disposition. Ils ont été recueillis à partir de la collaboration 
avec d'autres recherches et de la littérature scientifique. Les détails seront présentés dans le 
Chapitre 3. 
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L'étude de cette thèse peut être classée en trois axes principaux. Le premier axe (Chapitre 4) 
sera l'analyse de la méthodologie d'évaluation actuelle. Cette analyse se subdivise en trois 
parties principales : l'analyse des facteurs les plus influents de la méthodologie d'évaluation, 
l'analyse et la comparaison de plusieurs stratégies d'évaluation à partir d'un benchmark 
international effectué par la RILEM TC 249 ISC et l'analyse des différentes approches 
existantes de l'identification du modèle. 

Notre travail couvrira également les contributions originales dans les deuxième et troisième 
axes. Nous allons d'abord développer une nouvelle approche d'identification de modèle pour 
évaluer à la fois la résistance moyenne et la variabilité de la résistance du béton dans le 
deuxième axe (Chapitre 5). Ensuite, dans le troisième axe, la qualité de l'évaluation sera 
analysée en relation avec les principaux facteurs de la méthodologie d'évaluation (Chapitre 6). 
Enfin, nous proposons quelques recommandations pour améliorer la pratique des ingénieurs 
(Chapitre 6). 

 

 

 

Figure 1. Méthodologie générale de recherche 
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CONCLUSION GÉNÉRALE 

L'évaluation de la résistance à la compression des bétons dans les structures existantes est 
toujours un défi pour les ingénieurs. La méthodologie actuelle consiste à effectuer des 
mesures non destructives (ND) comme le rebond ou / et la vitesse d'impulsion ultrasonore sur 
plusieurs emplacements de tests dans la structure. Ensuite, des prélèvements destructifs 
(carottes) sont extraits de certains de ces emplacements pour des essais de compression afin 
de mettre en œuvre un “modèle de conversion” entre la résistance à la compression et les 
mesures ND. Le modèle de conversion est utilisé pour estimer la valeur de résistance locale à 
chaque emplacement de test en utilisant la valeur ND correspondante. Ensuite, on calcule les 
valeurs de résistance moyenne estimée et / ou de l'écart type de la résistance estimée 
(variabilité de la résistance du béton). Cependant, la fiabilité de ces valeurs estimées est 
toujours une question discutable en raison des incertitudes associées aux prédictions de 
résistance basées sur les mesures ND. Pour améliorer la fiabilité, les incertitudes doivent être 
réduites en spécifiant et en contrôlant leurs facteurs d'influence. Dans cette étude, l'accent a 
été mis principalement sur les facteurs contrôlés (c'est-à-dire les facteurs qui peuvent être 
modifiés) afin d'améliorer la qualité de l'évaluation. L'objectif de cette thèse était donc 
d'étudier la méthodologie d'évaluation actuelle afin de fournir des recommandations pratiques 
susceptibles d'améliorer la fiabilité de l'évaluation de la résistance in-situ des structures en 
béton par des essais non destructifs et des prélèvements. 

Le premier axe de recherche de cette thèse a été consacré à l'analyse de la méthodologie 
d'évaluation actuelle. Cette analyse a été subdivisée en trois étapes principales. La première a 
portée sur l'étude des effets de plusieurs facteurs contrôlés par la méthodologie. Les facteurs 
considérés sont : le nombre d'emplacements de tests pour les carottes utilisées pour identifier 
le modèle (NC), la qualité des mesures ND (répétabilité des mesures), la variabilité in-situ de 
la résistance du béton, la forme du modèle et la combinaison de techniques de CND. Pour 
l'analyse de ces effets, trois sources de données (données in-situ, données d'études de 
laboratoire et données synthétiques générées) ont été examinées. Les erreurs RMSE et r2 ont 
été calculées pour les résistances locales estimées afin d'être des indicateurs de la qualité du 
modèle ajusté et de sa capacité à estimer la résistance. Les erreurs ont été calculées de deux 
manières: en considérant uniquement les emplacements de tests avec des carottes servant à 
identifier le modèle (erreur d'ajustement) et en considérant toutes les emplacements de tests 
avec des mesures ND mais sans carottes (erreur de prédiction). 

À partir de l'analyse de cette étude, nous avons montré que les erreurs dans les résistances 
estimées sont affectées par le nombre d'emplacements où l'on prélève des carottes, NC. Pour 
un petit NC, l'erreur d'ajustement est faible alors que l'erreur de prédiction est importante, 
mais à mesure que NC augmente, l'erreur de prédiction est progressivement réduite mais elle 
est toujours plus grande que l'erreur d'ajustement. Cette importante question avertit les 
ingénieurs d'éviter d'utiliser l'erreur d'ajustement (habituellement r

2) comme indication de la 
qualité de l'évaluation et ils devraient utiliser l'erreur de prédiction à cette fin. De plus, il a été 
démontré que la variabilité in-situ de la résistance du béton, �ሺ����ሻ, a également un effet 
significatif sur la qualité de l'évaluation. Comme �ሺ����ሻ augmente, la RMSE prédictif 
augmente tandis que le rapport RMSE/�ሺ����ሻ diminue. Par conséquent, il faut prêter attention 
à la façon dont la qualité de l'évaluation est quantifiée: en regardant l'erreur absolue, RMSE, 
ou l'erreur relative, RMSE/�ሺ����ሻ, conduirait à des conclusions différentes. En ce qui 
concerne la qualité des mesures, il a été constaté que ceci a un effet significatif sur l'erreur de 
prédiction de sorte qu'il mérite une attention particulière. Par rapport aux trois effets 
précédents, on a constaté que l'effet de la forme du modèle (linéaire ou de puissance) est 
moins significatif puisqu'il est généralement limité au cas de NC petite avec une erreur plus 



 

 

140 

petite fournie par le modèle linéaire. Le dernier effet qui a été analysé à cette étape était 
l'efficacité de la combinaison de deux techniques de mesures ND (vitesse d'impulsion et 
indice rebond) avec les tests destructifs (carottes). Il a été démontré que la combinaison n'est 
pas toujours efficace et que son efficacité dépend du NC et de la qualité des mesures. Cela 
explique les raisons pour lesquelles, dans la littérature, l'efficacité de la combinaison de CND 
est controversée (la combinaison apporte une valeur ajoutée dans certains cas, mais pas dans 
d'autres). 

Dans la pratique courante, l'un des défis pour les ingénieurs est la sélection d'une stratégie 
d'évaluation parmi les stratégies possibles avec le même budget d’auscultation. Par 
conséquent, dans la deuxième étape du premier axe, plusieurs stratégies définies par des 
experts dans un benchmark international consacré à l'évaluation de la résistance moyenne et 
de la variabilité de la résistance du béton ont été analysées. L'efficacité de ces stratégies a été 
étudiée en simulant leur application à une série de 1000 bâtiments synthétiques ayant les 
mêmes propriétés statistiques et en définissant les indicateurs de la qualité de l'évaluation. 

Il a été démontré que les dispersions dans les valeurs estimées de la résistance moyenne et de 
la variabilité de la résistance confirment qu'il est impossible d'évaluer une stratégie à partir 
d'un seul résultat tel que fourni par les contributeurs à ce benchmark international. Ces 
dispersions soulignent également que la variabilité de la résistance moyenne estimée et la 
variabilité de la variabilité de la résistance estimée sont importantes et ne peuvent être 
négligées quelle que soit la stratégie d'évaluation. L'autre conclusion de cette analyse était que 
l'évaluation de la variabilité de la résistance est un défi beaucoup plus difficile que 
l'évaluation de la résistance moyenne. Les stratégies analysées ici ont montré un handicap 
pour évaluer la variabilité de la résistance du béton. Cette analyse a également confirmé l'effet 
significatif de la qualité des mesures sur la qualité de l'évaluation. Après avoir étudié l'effet du 
mode de sélection des emplacements pour les carottes, une méthode a été proposée pour 
sélectionner ces emplacements en fonction des mesures CND “sélection conditionnelle” qui 
améliore la qualité de l'évaluation sans coût supplémentaire, il est donc fortement 
recommandé.  

La troisième étape du premier axe a été consacrée à l'analyse des approches existantes 
d'identification de modèles (approche de régression et approches de calibration (méthode-Δ et 
méthode-k)). Ces approches ont été appliquées à huit ensembles de données réelles (4 avec 
des mesures de rebond et 4 avec des mesures de vitesse ultrasonore) afin d'évaluer la 
résistance moyenne et la variabilité de résistance. En comparant la qualité de l'évaluation de 
ces approches on a constaté que toutes les approches (régression et calibration) peuvent 
estimer efficacement la résistance moyenne du béton. En outre, l'augmentation de NC peut 
améliorer significativement l'efficacité d'estimation. Au contraire, il a été démontré que 
l'approche de régression reste limitée pour évaluer la variabilité de la résistance du béton et 
elle sous-estime toujours la variabilité du béton et l'augmentation de NC n'a pas d'effet 
significatif sur la qualité de l'estimation. En ce qui concerne les approches de calibration, on a 
constaté qu'elles produisaient des résultats instables (la qualité de l'évaluation varie en 
fonction du modèle a priori), de sorte que leur efficacité dépend du hasard. De plus, 
l'augmentation de NC ne pouvait pas améliorer les résultats des approches de calibration en 
particulier pour la méthode Δ qui a prouvé son indépendance par rapport à l'effet de NC. Ces 
résultats ont été obtenus à partir de deux types de techniques de mesures ND (rebond ou 
vitesse ultrasonore).  

Dans le premier axe, le handicap des approches existantes pour évaluer la variabilité de la 
résistance a été confirmé. Par conséquent, le deuxième axe de cette thèse visait à proposer une 
nouvelle approche d'identification de modèle “approche bi-objectif” afin d’évaluer la 
variabilité de la résistance du béton en plus de la résistance moyenne. La dérivation de 
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l'approche bi-objectif a été fournie pour les modèles linéaires et puissances. La validité de 
cette approche a été prouvée en l'appliquant sur plusieurs ensembles de données (certains jeux 
de données avec le rebond et d’autres avec la vitesse ultrasonore) à partir d'études in situ et en 
laboratoire afin de prédire la résistance moyenne et la variabilité du béton. De plus, la 
capacité de prédiction de l'approche bi-objectif a été comparée à celle des approches 
existantes. 

Il a été constaté que l'approche bi-objectif montre un résultat plus fiable (contrairement à 
d'autres approches) pour évaluer la variabilité in-situ du béton en plus de son efficacité à 
évaluer la résistance moyenne avec une meilleure efficacité quand NC augmente. Il a été 
démontré également que l'approche bi-objectif est valide avec les mesures de la vitesse 
d'impulsion ultrasonore et du rebond. De plus, du point de vue mathématique, elle peut être 
utilisée avec n'importe quelle technique de CND combinée avec la technique destructive 
(carottage) afin d'identifier un modèle de conversion. En ce qui concerne la forme du modèle, 
on a constaté que l'approche bi-objectif fonctionne avec le modèle de puissance ainsi qu'avec 
le modèle linéaire, mais l'incertitude découlant de l'utilisation du modèle de puissance est plus 
grande que celle du modèle linéaire lorsque NC est faible. 

Dans le troisième axe, la qualité de l'évaluation a été analysée et elle a été corrélée 
graphiquement avec ses facteurs affectants: nombre d'emplacements de tests pour les carottes 
utilisées pour identifier le modèle NC, qualité des mesures (répétabilité des mesures), mode 
de sélection les emplacements de tests pour les carottes, la technique CND, l'utilisation d'une 
ou de plusieurs techniques de CND, l'approche d'identification du modèle et la quantité à 
évaluer (résistance moyenne ou variabilité). Une grande campagne d'ensembles de données 
synthétiques (36000-ሺ�, �, ��ሻ) ayant des caractéristiques différentes a été générée pour cette 
analyse. Cependant, afin de confirmer la robustesse des résultats de l'analyse avec les 
ensembles de données synthétiques, l'analyse des facteurs énumérés ci-dessus a été effectuée 
en utilisant des ensembles de données réelles, mais avec la technique de rebond seulement 
(2500- ሺ�, ��ሻ). 

A partir de ces analyses, les effets significatifs de ces facteurs sur la qualité de l'évaluation ont 
été confirmés avec le rôle le plus important joué par la qualité des mesures. En outre, il a été 
démontré que, pour une erreur relative prescrite ou un niveau d'incertitude autour de la valeur 
réelle (± U%), l'évaluation de la résistance moyenne en béton moins variable est plus fiable. 
Au contraire, l'évaluation de la variabilité de la résistance du béton moins variable est moins 
fiable. À partir de la corrélation graphique entre la qualité de l'évaluation et les facteurs 
affectants, nous avons calculé les valeurs minimales de NC. On a trouvé un large éventail de 
valeurs NC pour chaque quantité estimée. Par conséquent, le NC minimum n'est pas une 
valeur unique qui peut être appliquée dans toutes les situations comme le prévoient par les 
normes (ACI 228.1R, 2003; EN 13791, 2007). Par conséquent, nous pensons que cette 
question doit être sérieusement révisée dans les normes actuelles afin de fournir des valeurs 
minimales NC (dans les tableaux ou les formules) avec des informations détaillées sur leurs 
limites d'applications. 

Étant donné que l'approche bi-objectif proposée donne des résultats encourageants avec des 
techniques de mesures ND pour évaluer efficacement la résistance moyenne et la variabilité 
de résistance, notre première perspective est de développer cette approche pour être 
applicable pour le cas de combinaison de techniques de mesures ND. Nous pensons que cette 
évolution permet d'améliorer davantage la qualité de l'évaluation. 

La deuxième perspective consiste à étudier l'effet du nombre d'emplacements de tests pour les 
mesures ND (c'est-à-dire la taille de l'échantillon, NT) sur la qualité de l'évaluation. Pour les 
aspects statistiques, la répartition de la distribution de la résistance moyenne (par exemple) 
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dépend du rapport  � √��⁄ , où σ est l'écart-type de la population de la résistance du béton. 
Par conséquent, l'augmentation de la taille de l'échantillon conduit à réduire l'une des sources 
d'incertitude (incertitude d'échantillonnage) et réduit donc la dispersion des valeurs estimées. 
Ce facteur n'a pas été pris en compte dans la présente étude. Cependant nous pensons qu'il 
mérite d'être pris en compte dans les travaux futurs. 

La qualité de l'évaluation évidemment s’améliore lorsque NC et la qualité des mesures 
augmentent. Cependant, lorsque le montant total des ressources est fixé (budget 
d'investigation fixe), l'équilibre optimal entre ces facteurs ne suit pas des règles simples et 
mérite d'être étudié par une analyse plus complète. 
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This appendix includes our published paper:  

Alwash, M., Breysse, D., Sbartaï, ZM., 2015. Non-destructive strength evaluation of concrete: 
Analysis of some key factors using synthetic simulations. Construction and Building 
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h i g h l i g h t s

! Fitting error cannot be a real indication about the quality of concrete strength assessment by NDT.
! A misleading model is produced if we fit using cores number equal to the number of model parameters.
! To assess a fitted model, looking at: r2, RMSE or RMSE/s(fc) leads to different conclusions.
! To fit a SonReb model there is a minimal number of cores above which the combination is efficient.
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a b s t r a c t

Non-destructive techniques (NDT) like rebound hammer (RH) and ultrasonic pulse velocity (UPV) are
widely used in conjunction with destructive techniques (core tests) for assessing the concrete strength
in existing buildings. The methodology consists in fitting regression models between NDT techniques
and destructive tests on a limited number of cores. The quality of the model is affected by many influenc-
ing factors such as: the number of cores, the quality of NDT measurements, the variability in concrete
strength, the existence and magnitude of possible uncontrolled factors (like saturation rate) and the com-
bination of techniques. In this paper, the effects of these factors are studied using a synthetic simulation
approach in order to well understand them and consequently to develop a methodology for improving
the quality of strength assessment. In order to assess the quality of fitted model and its ability to estimate
strength, RMSE and r2 errors are calculated and it is found that the calculation of r2 alone may give
misleading indication since r2 is very sensitive to the scattering of the explanatory variable. Another
important result of the present study is that there is a critical minimal number of cores which makes
the combination efficient while for a lower number the use of single technique is preferable. This number
depends on the qualities of the two techniques to be combined.

! 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In the real practice, the structural engineer always needs to
carry out tests in existing structures in order to make the right
decision about the condition of the structure. The testing of exist-
ing structures is usually related to an assessment of structural
integrity. When the assessment is based only on destructive testing
(DT) by extracting cores for compression testing, the cost of coring
and testing may allow only a relatively small number of tests to be
carried out on a large structure, which may be misleading [1]. Thus
non-destructive techniques (NDT) are used for the assessment of

concrete strength in existing building in conjunction with destruc-
tive tests. Many guidelines and specifications are available [1–4],
which indicate the increasing use of NDT in real practice. The
strength estimation requires a model which can be identified by
establishing a statistical correlation between DT and NDT results.
Many works have been published in which each author has identi-
fied his/her specific model [5–11]. State of the art papers [12,13]
have recently identified a huge number of models that have been
proposed by different researchers.

The ultrasonic pulse velocity and rebound hammer methods are
frequently combined for a better estimation of concrete strength.
This is very convenient since these two techniques are sensitive
to the variations in some concrete properties in opposite direc-
tions. For instance, the increase in moisture content of concrete
raises the pulse velocity but lowers the rebound number [14].
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The combination of NDT techniques was proposed firstly by RILEM
(Technical committees 7 and 43) based on seminal work from
Facaoaru [15]. There is a huge number of works that deal with
the combination of NDT methods and provide mathematical mod-
els [16–20]. These works lead to controversial conclusions about
the efficiency of combination. Some works found that ‘‘the com-
bined use of ultrasonic pulse velocity and rebound hammer greatly
improves the accuracy of the process of assessment of concrete
strength especially if information about concrete mix proportions
and density are available” [21], while others did not find a signifi-
cant improve in the concrete assessment by combining methods
[22,23].

The effectiveness of combination is studied in the present paper
in order to explain the controversial results obtained by different
researchers.

It is commonly agreed that none of the produced models is able
to predict the concrete strength with enough accuracy for using the
assessed value for further structural computations [24]. The reason
is, on one hand, the influence of both measurements uncertainties
and uncontrolled factors (like concrete humidity, carbonation. . .),
and on the other hand, the lack of certainty upon the ‘‘best way”
to establish the conservation model (number of cores, calibration
method, the use of a single NDT method or of a combination. . .).

A synthetic simulation approach has been proposed [12] in
order to deepen the analysis of this issue since the ability of real
data sets (experimental work) for deepening the analysis remains
limited. In this paper, the effects of some influencing factors such
as: the number of cores which are used for the regression/calibra-
tion of the model, the quality of NDT measurements, the variability
in the concrete strength, the variability in the concrete degree of
saturation and the combination of NDT techniques are studied.
The synthetic simulation approach is used in order to well under-
stand these effects and consequently to improve the methodology
of model development and, as a result, to improve the quality of
concrete strength assessment.

2. Synthetic simulation approach

The basic idea of this approach is to simulate statistically the
problem of concrete strength evaluation using NDT techniques
within the computer by creating a synthetic world which mimics
as closely as possible the real world, in order to make possible an
in-depth analysis and a parametric study of influencing factors.
While it is of course not possible to reproduce in silico the real
world, the simulation must point what influencing factors (input
data of the synthetic model) are considered, and how they influ-
ence (sign, magnitude, possible coupling effects) the physical prop-
erties measured with NDT methods (outputs of the synthetic
model). In the version used in this paper, the synthetic model
has been developed in order to correctly reproduce the relation-
ships between:

- strength and moisture content considered as input data on one
hand,

- ultrasonic pulse velocity and rebound value considered as out-
put data on the other hand.

Other possible influencing factors (carbonation, cracking, aggre-
gate type and size. . .) are not considered. While they may be con-
sidered in a next version of the synthetic model (a revised version,
work under progress, including the influence of carbonation is pre-
sently developed by the authors for an international benchmark
prepared for RILEM committee TC 249-ISC), it must be pointed that
the present model does not pretend to be ‘‘the truth”.

It is however the conviction of the authors that most
conclusions drawn in this study have very probably a high level
of generalization, that will remain to be confirmed in the future.

The detailed principles of the synthetic approach have already
been published [12,24,25], to which the reader is invited to refer.
In order to avoid duplication, only main patterns of the numerical
process are described here.

The first step is the generation of concrete properties: true con-
crete strength f c is generated by assuming a Gaussian distribution
Nðf cm; sðf cÞÞ while a truncated Gaussian distribution, NðSrm; sðSrÞÞ
with Sr 6 100%, is used to generate the values for the degree of
saturation Sr which appears as an uncontrolled factor, see
Appendix B for more numerical details.

True values (in the synthetic world) for the velocity V (ultra-
sonic pulse velocity technique) and the rebound number R

(rebound hammer technique) which represent the NDT measure-
ments are produced using relationships established after an in-
depth literature review of available experimental results, Eqs. (1)
and (2) as proposed by Breysse [24]:

V ¼ V ref ðf c=f cref Þ
1=bf

ðSr=Srref Þ
1=bs ð1Þ

R ¼ Rref ðf c=f cref Þ
1=cf

ðSr=Srref Þ
1=cs ð2Þ

where the reference values (ref) are arbitrary values introduced in
order to normalize the equations, and have no influence on the gen-
eral behavior. The exponents quantify the relative sensitivity of V
and R to the variations in strength and humidity. The reference val-
ues are Rref ¼ 40; V ref ¼ 4000 m=s; Srref ¼ 85% and f cref ¼ 40MPa.

The exponent values have been carefully chosen, in order to accu-
rately describe what is observed in practice. The strength sensitivity
exponents bf and cf have respectively been taken equal to 4.90 and
2.10. The humidity sensitivity exponents bs and cs have respectively
been taken equal to 7.14 and %3.33 [24]. The bs and cs values
respectively correspond to an increase of 6% in V and a decrease
of 12% in R as the concrete humidity changes from dry-air specimen
(assumed at Sr ¼ 65%) to fully saturated condition ðSr ¼ 100%Þ.
These values are in agreement with what we have found in litera-
ture. For example for V, [26] states that the pulse velocity in
saturated concrete may be up to 5% higher than in dry concrete.
[27] finds an increase of 19% in V between totally dry and maximum
saturated conditions i.e. 6.65% between Sr ¼ 65% and saturated
conditions. Experimental results from [21] show an increase in V

of (200–400) m/s between air dry and wet conditions. Also for R,
the results from [21] show a decrease of (3–4) points in R values
i.e. less than 10%. [28] states that well-cured, air-dried specimens,
when soaked in water and tested in the saturated surface-dried
condition, show rebound readings 5 points lower than when tested
dry. Czech Standard CSN 731373 after [29] indicates a 20% decrease
in R.

The relationships (1) and (2) can be combined together in order
to obtain an equation in the form (fc = f(V,R)). One thus gets:

f c ¼ f cref ð1=V ref Þ
%bsk=csð1=Rref Þ

kV%bsk=csRk ð3Þ

where : k ¼ cf & bf & cs=ðcs & bf % cf & bsÞ ð4Þ

Eq. (3) provides the true (synthetic) value of strength that could
be identified by: (a) measuring rebound and velocity on at least
two measurement points without any measurement error, (b)
choosing a double-power law conversion model. Errors on strength
estimates will result from both measurement errors (the main
part) and possible choice of a model having a different mathemat-
ical shape.

Eq. (3) is used to produce the iso-strength curves shown in
Fig. 1a whose shape can be compared with the curves used in prac-
tice by engineers like those provided by RILEM TC-43 [15], see
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Fig. 1b. The fact that synthetic curves do not exactly fit empirical
curves is not a problem since several other empirical curves can
be used as an alternative [1,5,30,31].

The chart built with the synthetic model, Fig. 1a, exhibits fea-
tures (sign and magnitude of variations) similar to those exhibited
in various empirical charts available in the literature. For instance,
the induced changes in R and V values when the saturation degree
varies within the limits of its practical range have the same magni-
tude as those exhibited in practical studies. We must emphasize
that this chart does not intend to be the ‘‘real” one, but it only
shows the ability of synthetic process in producing data that have
similar features as the real data.

As it is the case in the real world, measurement errors (eV and
eR) are added to the generated true values of V and R. The magni-
tude of these errors are obtained by assuming a Gaussian distribu-
tion N(0, s(V)) or (0, s(R)) with zero average and standard deviation,
s(V) or s(R), represents the local variability of the measurements.
The possible range of measurement uncertainties for R and V mea-
surements has been widely documented in literature [12,32].

Table 1 gives the values for these standard deviations for different
quality levels. The magnitude of the measurement error decreases
as the measurement quality increases. Since the ‘‘measurement
quality” results from a variety of causes (among which the fulfill-
ment to standards or guidelines, the expertise of operators. . .),
the equivalence between a high ‘‘measurement quality” and low
‘‘measurement variability” can be seen as a shortcut. We will use
it and consider that these two concepts have the same meaning
for avoiding too long considerations. The main interest of ‘‘mea-
surement variability” is that it provides a quantified value, which
can easily be quantified in practice by repeating the samemeasure-
ment in a close neighborhood of a given point.

From the data set of cores strengths (which are selected ran-
domly from the generated strengths values) and the corresponding
NDT measurements, a regression analysis can be carried out. A lin-
ear model is thus identified by using the least squares method,
then it is used to calculate the estimated strengths from NDT val-
ues. The quality of assessment is determined by calculating the
errors, RMSE (root mean squared error) and r2 (coefficient of deter-
mination), see Appendix A, between true and estimated strengths.

Because of the random character of the random process (ran-
dom generation of true properties and of errors, and random choice
of cores), these results (identified set of model parameters, RMSE

and r2) vary from one simulation to another. To have representa-
tive outputs, it is required to repeat the simulation NR times for
each data set, and to analyze the distribution of results. Average
values and standard deviations of all results (values of model
parameters, RMSE and r2) are calculated. All results discussed in
this study have been obtained with NR = 200, for which the conver-
gence and stability has been observed.

In order to create the synthetic world and perform the simula-
tion process a computer program has been developed using VBA
software. The flowchart in Fig. 2 illustrates how the process works.

The objective is to analyze the effects of several factors which
have a significant influence on the quality of strength assessment
in the real world practice. Simulations are carried out by varying
some parameters and analyzing how RMSE and r2 on assessed
strengths varies. Five varying parameters are considered in this
study: (a) the number of cores (NC) for model calibration, (b) the
quality of NDT measurements, (c) the range of concrete strength,
(d) the variability of concrete saturation rate, and (e) the possibility
of combining two NDT methods. Some parameters remain fixed in
all simulations:

– The models identified are linear models (respectively f c = a1 + b1
V, f c = a2 + b2 R, f c = a + b V + c R, depending on the fact that
strength is estimated either from one or two NDT
measurements),

– The average concrete saturation rate Srm ¼ 80% which
corresponds to a rather humid concrete, when unspecified,
the standard deviation is sðSrÞ ¼ 5%,

– Maximum number of NDT tested points (NT) = 100,
– The simulations are repeated (NR = 200) times in order to obtain
relevant statistical information. Convergence analysis has
empirically proved that this number is much larger than the
one necessary to get stable results.

Fig. 1a. Iso-strength curves produced by synthetic simulation, Eq. (3).

Fig. 1b. Iso-strength curves produced by RILEM TC-43 [15].

Table 1

The values of standard deviation s(V) and s(R) for different quality levels of
measurements [12].

Measurements quality level s(V) m/s s(R)

High 50 1
Average 100 2
Low 200 4
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When unspecified, the concrete with f cm = 45 MPa and
sðf cÞ = 5 MPa is supposed. Otherwise, the effect of strength vari-
ability is studied by varying the value of sðf cÞ from 1 to 10 MPa.
The effect of variability in concrete saturation rate is studied by
varying the value of sðSrÞ from 1% to 10%. One must underline here
that the selection of linear model does not mean that this form of
model is the best one, although it’s widely used in practice. We
select this form here because it is a simple way in the synthetic
simulations to account for model error, since this model differs
from that used for the generation of ‘‘true” values, Eqs. (1) and (2).

3. Results and discussion

3.1. The effect of number of cores

In Figs. 3–5, the effect of core number on the RMSE values for
NDT measurements with different quality levels (high, average
and low) is studied. For each quality level, the core number is var-
ied from 3 to 20 and for each core number two values of RMSE are
calculated: one for the set of NC cores on which the model has been
fitted, and the other for (NT-NC) points at which only NDT is avail-
able i.e. where the model is used in a predictive way. Two curves

are drawn, one (on cores) quantifies the fitting error FEC, while
the other PEC (FEC and PEC are defined in Appendix A) quantifies
the effective capacity of the process to estimate strength from
NDT only (prediction error), which is the real issue of concern.
The difference between the two (predictive and fitting) is the
extrapolation error. All RMSE plotted on the figures correspond to
average values calculated from the series of NR = 200 repetitions
for each data set configuration. From Figs. 3–5 the following notes
can be drawn:

– The general features are identical for all strategies (V and R

measurements alone or in combination),
– One must point here that when NDT strength assessment is
studied in the scientific literature, authors often limit their anal-
ysis to the first (fitting) stage, considering the r2 and RMSE from
fitting as a representative of assessment quality. However it is
clear that the values of PEC are always larger than the
corresponding values of FEC thus using the fitting error cannot
represent the reality.

– RMSE values for fitting error increase with the core number
because the number of points to be fitted using a model having
a fixed number of parameters is increased. However, the predic-
tion error exhibits an adverse pattern, since it decreases while

Fig. 2. Flowchart of the synthetic simulation approach.
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Fig. 3. RMSE versus core number for different qualities of UPV measurements.

Fig. 4. RMSE versus core number for different qualities of RH measurements.

Fig. 5. RMSE versus core number for different qualities of combined (UPV + RH) measurements.
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the number of cores increases: by increasing the core number,
despite of increasing fitting error, the model provides a better
picture of true strengths. By considering only FEC, one would
obtain a totally wrong picture. It must be noted that, in practical
studies, the assessor balances between contradictory objectives,
since he must (a) increase the number of cores for model cali-
bration, in order to reinforce the stability of the conversion
model, (b) increase the number of additional cores for checking
the model and evaluating PEC, while (c) limiting the total num-
ber of cores to an acceptable economical level. One interest of
synthetic simulations is that the effect of changing both NC

and NT can be analyzed efficiently without any cost.
– For any quality level, the difference between the two curves
(extrapolating error) reduces as the number of cores increases.
Also, the value of this error depends on the quality of measure-
ment, and decreases when the quality increases.

– Measurement of a lower quality (with more measurement
noise) results in a larger predictive RMSE.

– On Fig. 5 one can see that, with 3 cores, the RMSE value is zero,
which means that one has enough data to identify the three
parameters (a, b, c) of the model, without any fitting error.
However, the model has a very poor predictive ability and the
predictive error is large. This discrepancy must be pointed, since
a very low number of cores is the usual practice in current engi-
neering. Scientific literature offers many cases in which the
identified model in such a situation is said to be good, this state-
ment being just based on r2 fitting value, when the predictive
ability is in fact very poor.

In order to illustrate and emphasize the practical consequences
of this statement, this situation was reproduced on data drawn
from a real case-study (original data are taken frommeasurements
collected by Nobile and Bonagura [33]). They consist in a set of 9
combinations of in-situ core strength, velocity and rebound
number (Table 2). The standard deviation of strengths is 4.4 MPa.
A linear regression model identified on the full data set comes
to: f cest ¼ 0:00988 V r þ 1:0211 Rr % 47:592, with r2 = 0.62 and
RMSE = 2.5 MPa. Then it was decided to randomly select 3 subsets
of 3 cores, and to identify a model for each subset (this mimics the
case where only 3 cores are taken on the structure), while calculat-
ing the PEC value on the remaining 6 cores (not used for fitting the
model). The data and models summarized in Table 2 respectively
lead to PEC values of 9.8, 5.9 and 4.7 MPa, which are varying a
lot and are even larger than the original standard deviation. Of
course, selecting other subsets would have led to different values,
but this suffices to point the risk of relying on a too small number
of cores, and on fitting error estimates only (in this case, the mod-
els perfectly fit the available data, r2 = 1, but this is meaningless).

3.2. The effect of strength variability

Effect of strength variability on the values of predictive RMSE

and r2 is respectively illustrated on Figs. 6 and 7. On both figures,
the error values from single and combined average quality tech-
niques and with NC = 10 cores are plotted as the standard deviation
of strength is varied from 1 to 10 MPa. These figures show that the
increase in the strength variability leads to a simultaneous increase
in predictive RMSE and r2. From the determination coefficient evo-
lution [34], also see Appendix A, it appears that r2 is better for a
concrete having large strength variability (see Appendix B for the
numerical illustration of this observation), while the RMSE

increases at the same time. This apparent contradiction can be fur-
ther analyzed: on one hand, a larger scatter in concrete strength
has a ‘‘stabilizing effect” on the model regression, thus increasing
r2, while on the other hand, this does not imply that the strength
is accurately assessed, since RMSE still increases with s(fc).

From Fig. 7, r2 values are negative for small values of variability
(less than 3 MPa) because for small values of strength variability
the probability for obtaining a wrong model (even with negative
slope) is large. Such a wrong model leads to produce SSE value
(error sum of squares) larger than SST value (total sum of squares)
and, as a result, a negative value of r2 (see Appendix A for the def-
inition of r2) [34]. In this case, one could say that (even with num-
ber of cores NC = 10) we have a risk of obtaining a wrong model.
One can also realize that the RMSE/s(fc) ratio decreases, meaning
that the absolute error increases while the relative error decreases.
This confirms that one must pay attention to how the quality of the
model is quantified: looking at r2, absolute error RMSE or relative
error RMSE/s(fc) would lead to different conclusions.

3.3. The effect of variability in concrete saturation rate

Fig. 8 shows the effect of variability in concrete saturation rate
on the values of predictive RMSE. In this figure, the error values
from single and combined techniques with average qualities are
plotted as the standard deviation for degree of saturation is varied
from 1% to 10%. From these curves the following notes can be
drawn:

– Larger values of RMSE values are obtained for single techniques
when the saturation variability increases because saturation
rate is an uncontrolled factor which induces more noise when
it is not explicitly accounted for in the model.

– When the strength variability changes from 1 to 10 MPa the
error increases by 400% (Fig. 6), while the increase in the error
as the saturation rate variability varies from 1% to 10% is only
14% (Fig. 8), thus the variability in saturation rate has a much
smaller effect on the values of RMSE than variability in strength.

– The curve of combined techniques is nearly horizontal which
means that the noise induced by this uncontrolled factor (vari-
ability of saturation rate) can be eliminated by using a proper
combination of NDT techniques.

3.4. The efficiency of combination of techniques

Figs. 9–11 illustrate how using techniques in combination
affects the quality of estimation as the number of cores varies from
3 to 20, when UPV is used alone or if rebound (RH) is added in com-
bination. The figures illustrate how the quality of techniques influ-
ences the results, and the efficiency of combination. Similar results
would have been obtained with RH as the first single technique.

Fig. 9 shows that, considering the first (UPV) technique has a
high quality, when a second technique is used in combination, it
always leads to a more accurate assessment if the number of cores
(NC) is equal or greater than 9. The better the quality of this second
technique, the more efficient the combination. However, when NC

Table 2

The analysis of real data set provided by [33] to show the risk of using three cores
only to fit a SonReb regression model.

Real in-situ measurements Regression model estimated from
a subset of three cores

f cr MPa V r m/s Rr

17.8 3250 31.9
f cest ¼ %0:0274V r þ 0:3094Rr þ 96:912 r2 ¼ 127.8 2965 39

23.25 3140 39.78

18.7 2930 38.83
f cest ¼ 0:0026V r þ 0:1731Rr þ 4:302 r2 ¼ 118.9 3285 34.61

18.5 2960 37.22

25.6 3500 36.84
f cest ¼ 0:0193V r þ 0:9301Rr % 76:132 r2 ¼ 129.3 3470 41.44

20.6 3120 39.34
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Fig. 6. The effect of strength variability on the values of predictive RMSE for single and combined techniques with average qualities (No. of cores = 10).

Fig. 7. The effect of strength variability on the values of predictive r2 for single and combined techniques with average qualities (No. of cores = 10).

Fig. 8. The effect of variability in concrete saturation rate on the values of RMSE for single and combined techniques with average qualities (No. of cores = 10).
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Fig. 9. Efficiency of NDT, alone or in combination, for UPV with high quality and different quality levels of RH measurements, NC = 10 cores.

Fig. 10. Efficiency of NDT, alone or in combination, for UPV with average quality and different quality levels of RH measurements, NC = 10 cores.

Fig. 11. Efficiency of NDT, alone or in combination, for UPV with low quality and different quality levels of RH measurements, NC = 10 cores.
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is between 5 and 9, the combination is efficient only if the quality
of a second technique is high or average. For such NC values, com-
bining a (second) low quality technique to the (first) high quality
technique would lead to larger RMSE and would be prejudicial, like
it was found in some cases in the literature. If one has no more than
4 cores, the only efficient combination is with a second high qual-
ity technique. This simple graph explains the reasons why in the
literature the efficiency of combining NDT is controversial (combi-
nation is said to bring some added-value in some cases but not in
others): the reason lies in the relative quality of the two techniques
(and the result also depends on the number of cores).

Figs. 10 and 11 show the results when the quality of the first
technique (UPV) is respectively average and low. They exhibit a
very similar pattern to that shown on Fig. 9.

It can be noted (for NCP 9) that the minimum value of RMSE is
obtained from the combination of two techniques with high
qualities while this error reaches its maximum value when both
qualities are low. Thus the qualities of measurement widely
control the efficiency of combination.

From above, it seems that there is a critical minimal number of
cores above which the combination is efficient while for a small
number of cores the use of single technique will be better. This
number is affected by the qualities of the two techniques to be
combined. We think that this important observation is a general
property but it needs further investigations to be approved.

4. Conclusions

In order to understand the effects of several factors which affect
the assessment of concrete strength in existing structures by NDT
measurements a parametric study has been performed using the
synthetic simulation approach. The synthetic simulation is a pow-
erful approach making it possible to explain the (sometimes appar-
ently controversial) results that NDT researchers obtain on site or
in laboratory when they make the NDT measurements, while pro-
viding a more general view on the problem treated. The following
conclusions can be drawn:

– Errors in the estimated strength are affected by the number of
cores. For small number of cores, the fitting error is small while
the prediction error is large, but as the number of cores
increases the prediction error is progressively reduced. This
error depends on the quality of measurement as, for the same
number of cores, it decreases with better quality measure-
ments. For the set of examples treated in this study, it appears
that the added-value of increasing the number of cores beyond
7 or 8 is only limited.

– Using three cores to fit a model having three parameters will
produce a fitting error equal to zero, which means that one
has enough data to identify the three parameters of the model.
However, the model has a very poor predictive ability (the pre-
diction error is large). Real practice offers many cases in which

the identifiedmodel in such a situation is considered to be good,
this statement being just based on r2 fitting value, when the
predictive ability is in fact very poor.

– The quality of the model produced after calibration is affected
by the concrete variability. When the concrete variability is
small, a wrong model is obtained and the fitted model has a
very low r2 value even with a large number of cores (NC = 10
in our case).

– In order to assess the quality of fitted model, one must pay
attention to how this quality is quantified: looking at r2,
absolute error RMSE or relative error RMSE/s(fc) would lead to
different conclusions. The calculation of r2 alone may give mis-
leading indication since this parameter is very sensitive to the
scattering of the explanatory variable. RMSE provides a more
straightforward estimation of the differences between f creal
and f cest and appears to be the most appropriate estimation.

– In practice, the relevant RMSE is the prediction error, which can
be much larger than fitting error, and can be estimated only
with additional cores.

– The concrete saturation rate is an uncontrolled factor and
increasing its variability adds noise to the system. Its effect on
RMSE appears (for the set of examples treated in this study), less
significant than that of variability in strength.

– The effect of uncontrolled factors, like moisture has been
considered in this study, can be efficiently removed by using
the combination of NDT techniques.

– For the present case study, it has been shown that, a first tech-
nique being given, there is a critical minimal number of cores
for making the NDT combination efficient. This number
depends on the quality of the second technique and decreases
when this quality increases. Synthetic simulations have
explained why the combination can worsen the assessment if
the number of cores is too small or if the quality of measure-
ments is too poor. This points the main reasons why various
experimental studies on this issue have led to controversial
results about the interest of combining two NDT.

The synthetic approach had not the ambition of covering all the
complexity of real concrete structures. Regarding the conclusions
drawn in this paper, our opinion is that all conclusions are correct
from a qualitative viewpoint, while they must be considered with
some care regarding quantitative statements (critical number of
cores, RMSE values, quantitative estimates of sensitivity. . .), whose
estimates probably depends on how the synthetic models Eqs. (1)
and (2) are close from real structure.

Many other parameters (not considered in the present paper)
are known to influence the investigation strategy and its efficiency.
Among them, one can cite for instance the carbonation effect, the
existence of damaged zones, or the multi-scale variability (within
member, between components, between floors in a multi-story
building. . .). Some work is in progress in order to develop synthetic
simulations based on information captured in real case studies. It is

Table A1

Definitions of several terms appeared in this study.

Name Symbol Definition

Degree of saturation Sr A ratio described the amount of humidity in the hardening concrete and it is changed from 100% for fully saturated condition to 0%
for totally dried condition

Root mean squared
error

RMSE
Its formula from statistic:RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1ðf ci % f cestiÞ

2
=n

q

where f ci; f cesti respectively the true generated strength at point i and the

corresponding estimated strength resulted from the regression model
Coefficient of

determination
r2 Its formula from statistic: r2 ¼ ðSST % SSEÞ=SST where SST ¼

Pn
i¼1ðf ci % f cÞ

2
, f c ¼ ð

Pn
i¼1f ciÞ=n ; SSE ¼

Pn
i¼1ðf ci % f cestiÞ

2

Fitting error curve FEC Error calculated for cores points only, using the above formulas with n = NC

Prediction error
curve

PEC Error calculated for all points (except cores points), using the above formulas with n = (NT % NC)
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thus possible to reproduce specific properties like the NDT values
distribution or the estimated measurement uncertainty. The
general (and ambitious) objective is to contribute to guidelines
for optimal investigation strategies for on-site concrete structures.

Appendix A. Definitions

The definitions for several terms appeared in the manuscript are
given in Table A1.

Appendix B. Illustrated numerical examples

B.1. An example illustrates the process of generating strengths and

NDT values

As it is stated in Section 2, the true concrete strength f c is
assumed to be Gaussian distributed with mean value f cm and stan-
dard deviation sðf cÞ, while a truncated Gaussian distribution (mean
value Srm and standard deviation sðSrÞ) with Sr 6 100%, is assumed
for the degree of saturation Sr . Using the cumulated normal distri-
bution function (in VBA) we generate values for f c and Sr corre-
sponding to random probabilities (Random function in VBA).
Applying these generated values to Eqs. (1) and (2), the true values
for V and R are produced. The measurements errors (eV and eR) are
assumed to be distributed in the form of Gaussian distribution
with zero mean value and standard deviation (from Table 1): s(V)
for velocity test and s(R) for rebound test. Again, using the cumu-
lated normal distribution function (in VBA) we generate values
for (eV and eR) corresponding to random probabilities (Random
function in VBA). The errors values are added to the corresponding
true values of measurements to produce the measured values of
measurements Vmeas and Rmeas. A numerical example is presented
in Table B1 below for the generated values from one simulation
with the following input data:

Table B1

A numerical example presents a sample of generated strengths and NDT values for
one simulation.

f c MPa Sr V m/s R Vmeas m/s Rmeas

47.7 0.804 4114 44.2 4134 43.1
42.4 0.838 4040 41.3 3820 42.7
49.5 0.828 4162 44.6 3993 44.2
50.5 0.840 4188 44.8 4155 48.4
50.7 0.721 4102 47.0 4266 46.3
45.3 0.836 4094 42.7 3933 43.1
44.6 0.774 4036 43.3 4068 44.1
41.8 0.771 3982 42.1 4077 44.0
46.1 0.910 4158 41.9 4292 40.4
47.6 0.903 4179 42.7 4109 42.8

Fig. B1. Studying the effect of concrete strength variability on r2, concrete with s(f c) = 5 MPa.

Fig. B2. Studying the effect of concrete strength variability on r2, concrete with s(f c) = 10 MPa.
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f cm ¼ 45 MPa; sðf cÞ ¼ 5 MPa; Srm ¼ 80%; sðSrÞ ¼ 5%;

sðVÞ ¼ 100 m=s; sðRÞ ¼ 2 and NT ¼ 10

B.2. A numerical example explaining why the large scatter in concrete

strength has a stabilizing effect on r2

Two concretes are considered with strength variability of 5 MPa
for the first one and 10 MPa for the other. The clouds of points
(Rmeas; f c) for the two concretes are shown in Figs. B1 and B2. For
each case a regression model is produced using 10 cores, then this
model is used to calculate the estimated strengths and the values
of SST, SSE (see definition of r2 in Appendix A) and corresponding
prediction errors r2 (all these values are presented in Figs. B1 and
B2). It can be noted that increasing s(f c) from 5 to 10 increases
SST value more than three times while SSE is less than twice. Thus
when the concrete variability s(f c) increases, while SST and SSE

both increase, the increase rate is larger for SST, and as a result r2

value increases.
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Abstract An international benchmark comparing a

large variety of concrete strength assessment strate-

gies was proposed by NDT experts of the RILEM

committee TC-249. It was based on synthetic data and

devoted to the estimation of average strength and

concrete strength variability of a series of concrete

columns of a single floor building using fixed budget.

Based on information gathered after this benchmark,

the main contribution of this paper is to simulate, using

Monte Carlo simulation, the experts’ assessment

strategies (i.e. NDT investigation program and data

analysis process). These strategies are repeated a

certain number of times in order to establish a

representative assessment of each strategy. The qual-

ity of estimation by each strategy is evaluated using

several indicators. The results show that this quality

can be improved by using/changing several control-

ling factors: improving the quality of measurements,

selecting core locations depending on the NDT test

results (conditional cores), combining several NDT

techniques and increasing the amount of resources.

Keywords Benchmark ! Concrete strength !
Engineering practice ! Non-destructive techniques !

Monte Carlo simulation ! Assessment strategy

1 Introduction

A RILEM Technical Committee TC-249 ISC (nonde-

structive in situ strength assessment of concrete) was

created with the aim of establishing guidelines for an

efficient use of non-destructive techniques (NDT) for

concrete strength assessment. TC members have

decided to carry out a benchmark whose objectives

were to identify and compare the expert practices

regarding NDT assessment of concrete strength. In

this benchmark, depending on the amount of available

resources, three knowledge levels (KL1, KL2 and

KL3) were considered [1]. Eighteen contributors have

proposed different strategies in order to assess the

concrete strength of a synthetic building. The main

elements of this benchmark have been detailed in [2].

Each strategy has provided two values for each

knowledge level:

– the average value of estimated strengths

– the standard deviation of estimated strengths

(concrete strength variability).

These two values were given in [2] for all strategies.

It is important to highlight the fact that if each

strategy is applied to another building having the same
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properties (statistically speaking) then different esti-

mated values of average strength and standard devi-

ation might be derived. Hence, a general conclusion

about the efficiency of each strategy cannot simply be

drawn from this single result because the effect of

chance. The random component of the result cannot be

neglected and can be estimated only by repeating the

simulation a certain number of times. This would be

time-consuming and unpractical without an automatic

process.

In this study, using Monte-Carlo simulations [3–6],

we will study the efficiency of several strategies

proposed in the benchmark after repeating each one

1000 times. For each strategy, the results will be a

distribution of 1000-pairs of estimated average

strength and standard deviation. These results will be

analyzed in order to reach general statements about the

efficiency of each strategy and the role of most

influencing factors.

Five strategies have been selected among those

proposed by the contributors to the benchmark. The

selection criterion was the exhaustiveness of informa-

tion about the process (i.e. about how the measured

values are exactly processed and how estimations are

derived) and the fact that the process would be fully

automatic without any expert interaction. These five

strategies (namely B, E, F, J and O5 in [2]) have the

advantage of covering the three main possibilities

regarding the conversion model identification:

– using a prior model without any calibration

(contributor F),

– calibrating a prior model by using NDT test results

and core strengths (contributors E, J and O5),

– fitting a specific model between NDT test results

and core strengths using the regression analysis

(contributor B).

Three of these strategies use a single NDT (rebound

R for contributors J and O5, ultrasonic velocity V for

the contributor B), while contributors F and E use

combined NDT.

2 Monte-Carlo simulation

The simulation process adopted in the present study is

exactly the same as that presented and detailed in [2].

The case study is also identical i.e. the same synthetic

building (dimensions, properties and applied rules).

The only difference is that the process is repeated

herein 1000 times, thus generating 1000 synthetic

buildings instead of a single one.

A software coded in VBA has been built by the

authors in order to perform the simulation process. Each

of the five selected strategies is reproduced within the

computer so that it works like proposed by the contrib-

utor (i.e. the same type, number, location and quality of

measurements and the same method for strength

estimation). The flowchart in Fig. 1 illustrates the main

steps of the simulation produced in the software.

As it is shown, after selecting a contributor’s

strategy and the corresponding characteristics, the

simulation process is repeated 1000 times. For each

simulation, synthetic true strengths are generated at all

test locations in the building (i.e. 620 test locations)

then the average and standard deviation pair of

strengths is derived ð!fc; sðfcÞÞ.

On the same simulation, strength can be estimated

from the processing of NDT measurements according

to the selected strategy. As a result a pair of average and

standard deviation values for the estimated strengths

ð!fcest; sðfcestÞÞ is also derived. After 1000 simulations,

for any given strategy, the result is a dataset of 1000

pairs for true strengths ð!fc; sðfcÞÞ and a dataset of 1000

pairs for estimated strengths ð!fcest; sðfcestÞÞ.

3 Simulation of strategies and the obtained results

The details of the five strategies (B, E, F, J, O5) as

proposed by the contributors are presented in this

section. Furthermore, the results obtained from sim-

ulating and repeating 1000 times these strategies are

shown in Figs. 2, 3, 4, 5 and 6. In each figure, two

clouds of points are plotted: the cloud of true values

1000 pairs of ð!fc; sðfcÞÞ and the cloud of estimated

values [1000 pairs of ð!fcest; sðfcestÞÞ]. The results

provided by the contributor during the benchmark

are added as a single point within the estimated cloud.

3.1 Strategy of contributor B

The contributor identified a specific power model

(fc ¼ aVb) between ultrasonic velocity V measure-

ments and core compressive strengths using regression

analysis. He selected 17 test locations for carrying out

17 V measurements having low quality (the options
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regarding measurement quality were presented in [2]).

These V measurements were used to select five low

quality cores, whose location was defined based on the

value of V measurements, with a specific attention to

extreme values: two cores were taken at locations of

lowest V, two were taken at locations of highest V and

one was taken at a location of median V. Therefore the

contributor selected cores in order to cover the whole

range of NDT measurements. Cores selected depend-

ing on NDT test results are called ‘‘conditional cores’’

in this paper.

When the model was built, the strengths corre-

sponding to 12 V measurements were calculated (test

locations without cores). The weighted average

strength !fcest and weighted strength standard deviation

s(fcest) values were calculated from 17 strength values,

with weight = 1 for core strengths (five strength

values) and weight = 1/3 for calculated estimated

strengths (12 strength values). The reason of weight-

ing lies on the confidence attributed to the values,

which is higher for direct measurements (on cores)

than for derived values (from NDT and model).

This strategy is exactly reproduced in the simulator

(Fig. 1). The resulting 1000 pairs of ð!fcest; sðfcestÞÞ and

the corresponding true values !fc; sðfcÞ are plotted on

Fig. 2. The point !fcest ¼ 27:6 MPa , s fcestð Þ ¼ 3:7MPa

that was provided by the contributor is also shown in

this figure.

Counter for repetition: I=I+1 

Generation 

Creation of a synthetic building having 620 test locations with the true in-situ strength, 

core strength and NDT measurements values at each test location

Statistical Analysis 

On 1000 pairs of (f
cest

, s(f
cest

)) and (f
c
, s(f

c
)) 

Strength assessment 

Calculation of estimated strengths according to the method proposed by the selected 

strategy (using prior model without calibration, or using prior model with calibration 

or building a specific model using regression analysis)

Calculation & Storage 

Calculating the average & standard deviation values of the estimated strengths 

(f
cest

, s(f
cest

)) and the synthetic true strengths (f
c
, s(f

c
)) then storing these values  

Repeating the simulation while I < 1000   

Input Data

The selection of contributor’s strategy and input the corresponding characteristics for 

performing the simulation: type, location, number and quality of measurements (both 

destructive and non-destructive)

Fig. 1 Flowchart illustrating the main steps of the simulation process
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3.2 Strategy of contributor E

The strategy used average quality measurements (six

test locations for V and 12 for R). Three cores were

selected by the contributor at predefined test locations

(along one diagonal of the building plan: two at

extreme corners and the third core at the column

closest to the center). The contributor’s approach was

based on calibrating the prior bivariate power model

given in Eq. 1 [5]:

fcest ¼ kV2:6R1:3 ð1Þ

where k was calculated according to the core strengths

and corresponding NDT test results (for more details

about the calculation of k see [4]. The model in Eq. 1

was used to assess the estimated strengths at all test

locations from NDT test results. Since V and R had

been measured together at only six test locations, at

additional test locations where only R test result was

available, the average of all V values was substituted in

Eq. 1 for estimating the strength.

The simulation of this strategy produces the

estimated cloud of values shown in Fig. 3. The point
!fcest ¼ 25:6 MPa, s fcestð Þ ¼ 2:3MPa provided by the

contributor is also plotted on this figure.

3.3 Strategy of contributor F

The approach was based on the use of prior mono-

variate models for ultrasonic velocity V and rebound

hammer R measurements without calibration, Eqs. 2

and 3:

fcest ¼ 0 :0228V%65:1 ð2Þ

fcest ¼ 1:76R%35:4 ð3Þ

The contributor used average quality measurements

with 9 V values (seven on site and two on cores) and 12

R values (ten on site and two on cores) in addition to

three cores having predefined locations (one on an inner

column and the others on side-columns: one column on

the long side and the second on the short side of the

building). The final average strength and standard

deviation of concrete strengths (concrete variability)

were calculated from 24 strength values resulting from:

Eq. 2 (9 estimates), Eq. 3 (12 estimates) and cores

strengths (3 direct strengths on cores).

Figure 4 shows the results from 1000 simulations,

where the point provided earlier by the contributor

ð!fcest ¼ 23:1 MPa, sðfcestÞ¼ 3:7MPa) is also

highlighted.

3.4 Strategy of contributor J

The approach was based on a prior model which had been

identified from a large set of previous data, Eq. 4, [7]:

fcest ¼ k 0:013R2:2271
! "

ð4Þ

The contributor selected 29 test locations that cover

all columns in the building in order to carry out

rebound average quality measurements. Three cores

were selected at predefined test locations (one at a

corner column and the others at two different interior

columns in the building). Like for strategy E, the

parameter k was calculated according to the core

strengths and corresponding NDT measurements.

Each fcest value was multiplied by 0.81 in order to

adjust it to the case of cylindrical sample (Eq. 4 gives

the strength of cube samples).

Both clouds (true and estimated) and the point

provided by the contributor ð!fcest ¼ 22:7MPa,

sðfcestÞ¼ 4:4MPa) are plotted on Fig. 5.

3.5 Strategy of contributor O5

The contributor selected 40 test locations. The first 20

test locations were located at the mid-height of all

columns. The other 20 locations were selected to study

the variation along the height of several columns. At

each test location, average quality rebound measure-

ment was carried out. Two cores were taken at test

locations selected according to R test results (condi-

tional cores). However the way of core selections

differs from that proposed by contributor B. The cores

were chosen at locations respectively corresponding to

the median and minimum values of the first 20 R test

results. The contributor adopted the prior model

provided by EN 13791 standard [8] with calibrating

it by a shifting factor D, Eq. 5:
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fcest ¼ 1:73R%34:5þD ð5Þ

D was calculated according to the core strengths and

the corresponding R test results (for more details about

the calculation of D see [4].

The calibrated model was used to assess the

estimated strengths at the 40 test locations. Then the

average strength and strength standard deviation

values were calculated.

The estimated cloud resulting from 1000 simula-

tions is shown in Fig. 6 together with the true cloud

and the point provided by the contributor

ð!fcest ¼ 28:7 MPa, sðfcestÞ ¼ 4:1MPa).

Fig. 2 Comparison of

estimated (average strength

and strength standard

deviation) to the true values;

results from

1000-simulations of

contributor’s strategy B at

KL3

Fig. 3 Comparison of

estimated (average strength

and strength standard

deviation) to the true values;

results from

1000-simulations of

contributor’s strategy E at

KL3
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Fig. 4 Comparison of

estimated (average strength

and strength standard

deviation) to the true values;

results from

1000-simulations of

contributor’s strategy F at

KL3

Fig. 5 Comparison of

estimated (average strength

and strength standard

deviation) to the true values;

results from

1000-simulations of

contributor’s strategy J at

KL3
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4 Analysis of simulation results

From Figs. 2, 3, 4, 5 and 6, one can note that the

location of the unique point provided by each

contributor during the benchmark is not representative

of the strategy efficiency. Because of chance, some of

these points are close to the center of the estimated

cloud, while others lay on its border. This emphasizes

that the application of an assessment strategy only

once (one point) cannot provide a real picture about

the efficiency of this strategy. This justifies the need of

simulation for getting a more representative result.

A more refined look on ‘‘true clouds’’ in Figs. 2, 3,

4, 5 and 6 reveals tiny variations between these clouds.

This is due to the fact that simulations for the five

strategies have been carried on independently, thus

resulting in different sets of synthetic buildings.

However the statistical properties of these five ‘‘true

clouds’’ are similar, with the same average values (!!f c

and sðf cÞ are respectively equal to 25.6 and 1.8 MPa),

the same shape and extension.

The comparison between these figures also high-

lights that the location of the estimated clouds differ

from one strategy to another. Furthermore, the shapes

change from one strategy to another but in all cases

estimated clouds are more scattered than true clouds.

So to evaluate the efficiency of any strategy it is

necessary to quantify the location and shape of its

estimated cloud using indicators of estimation quality.

4.1 Indicators of estimation quality

In order to evaluate the quality of the estimation

(accuracy and precision) of each strategy, two types of

indicators are considered. They respectively corre-

spond to (a) the difference between true values and

estimated values (b) to the scatter of estimated values.

The first indicator is the root mean square error

(RMSE) which is devoted to quantify the accuracy of

forecasting [9, 10]. For each estimated cloud, two

values of RMSE are calculated regarding average

strength and standard deviation, respectively:

RMSEav ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

NI

i¼1

!fcesti % !fcið Þ
2
=NI

v

u

u

t ð6Þ

RMSEsd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

NI

i¼1

sðfcestÞi % sðfcÞi
$ %2

=NI

v

u

u

t ð7Þ

where NI is the number of simulation repetitions

(NI = 1000). These indicators are normalized [11]:

NRMSEav ¼ RMSEav=
!!f c ð8Þ

Fig. 6 Comparison of

estimated (average strength

and strength standard

deviation) to the true values;

results from

1000-simulations of

contributor’s strategy O5 at

KL3
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NRMSEsd ¼ RMSEsd=sðf cÞ ð9Þ

where !!f c and sðf cÞ are the respective averages of 1000
values of true average strength and strength standard

deviation.

The second indicator quantifies the horizontal and

vertical scatters of the estimated cloud i.e. the standard

deviation of the average strengths sð!fcestÞ, and the

standard deviation of the strength standard deviations

sðsðfcestÞÞ. The reference values corresponding to

the true cloud are sð!fcÞ ¼ 0:66MPa and sðsðfcÞÞ ¼

0:30MPa. The scatters of the true cloud correspond to

the randomness of the simulation process, for a given

set of concrete properties.

Table 1 summarizes the main features of the

selected five strategies and the values of the four

indicators. The efficiency of the strategy increases as

normalized indicators decrease and as the two other

indicators are closer to reference values.

The efficiency of each strategy can be analyzed

through the values of the four indicators given in

Table 1 and through the location and shape of the

estimated clouds in Figs. 2, 3, 4, 5 and 6.

4.2 Comparison of the strategies efficiency

In order to directly compare the five strategies, in

addition to Table 1, the cumulative distributed func-

tions (CDF) of estimated average strengths are drawn

on Fig. 7 for all strategies. Figure 8 presents the CDF

curves of the estimated concrete variability.

Regarding the estimation of average concrete

strength, all strategies can be considered efficient

since the normalized error NRMSEav is less than 10 %

(strategies B, E, F, J) and 15 % for the strategy O5.

However, some strategies are not robust, with a

significant probability of having a large over or under

estimation, directly linked to the sð!fcestÞ value. This

problem is particularly relevant with Strategy J and, to

a lower extent, with Strategy O5. Strategy F appears to

be the most efficient because it has the minimum

values of RMSEav and sð!fcestÞ but this strategy

Table 1 Characteristics of the five strategies at KL3 and the values of the quality indicators

Str. Q No. of measurements Way of

core

select

Model

identification

approach

Quality indicators

Core V R NRMSEav

%

NRMSEsd % sð!fcestÞ MPa sðsðfcestÞÞ MPa

B LQ 5 17 0 CC Regression analysis 6 54 1.30 0.92

E AQ 3 6 12 PC Calibration

(k-method)

5 55 1.45 0.57

F AQ 3 9 12 PC No

calibration

4 116 0.93 0.61

J AQ 3 0 29 PC Calibration

(k-method)

8 129 2.22 0.64

O5 AQ 2 0 40 CC Calibration

(D-method)

14 121 1.78 0.48

Q: quality of measurements (LQ: low quality, AQ: average quality, HQ: high quality)

PC: core locations predefined before the starting of the investigation program

CC: conditional core locations i.e. defined after the first series of NDT measurements

Fig. 7 CDF curves of estimated average strength of the five

strategies as compared with the true curve; results from

1000-simulations of contributors’ strategies at KL3
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deserves further comments. It must be pointed that it

uses an uncalibrated model. With such a method, the

uncalibrated model can in some situations (by the

effect of chance) more or less fit with the true

properties, but it can also be very far from these true

properties. The issue of calibration has been widely

documented [8, 12, 13] and uncalibrated models are

risky. In other words, in this study the contributor was

lucky in his arbitrary of the prior model, which was (by

chance) convenient for the concrete under consider-

ation. To analyze this issue more into details, the

simulation of strategy F was done again using various

alternative models selected from literature. The qual-

ity indicators resulting from these simulations are

given in Table 2.

Table 2 shows some very bad results (model 3) and

some very good results (model 4). Good results are

obtained when, because of chance, the prior model fits

well with the specific context. Since there is no

guarantee for such a good fit, using an uncalibrated

model is by no way a robust method and must be

avoided. Therefore the most efficient strategies

regarding average strength estimation are strategies

B and E.

Regarding the variability of strength, there is a

general tendency to overestimate it, with particu-

larly very bad indicators for strategies F, J and O5,

for which the overestimation exceeds 100 %

(notwithstanding with a large scatter). Strategies E

and B get better results, with a lower overestimation.

This is probably the beneficial consequence of

options privileged in these approaches: (a) the

combination of two NDT for strategy E, (b) the

conditional cores, using five cores and the weighted

average of strength estimates for strategy B. How-

ever, the scatter sðsðfcestÞ is larger for strategy B due to

the uncertainty arising from using low quality mea-

surements. Nevertheless, with NRMSEsd values

always larger than 50 % these strategies are not fully

satisfactory regarding the estimation of concrete

variability.

5 How the efficiency of assessment strategies can

be improved?

The simple answer to this question is to reduce as

much as possible the uncertainty. Many sources of

uncertainty exist and affect the global estimation

process and the final quality of the diagnostic:

statistical uncertainties of sampling [14],

Table 2 Simulation results for alternative models applied with strategy F

No. Alternative models References Quality indicators

NRMSEav

%

NRMSEsd % sð!fcestÞ MPa sðsðfcestÞÞ MPa

1 fcest ¼ 0:03672V%129:077

fcest ¼ 1:353R% 17:393

[17] 23 218 0.79 0.56

2 fcest ¼ 0:05418V%206:27

fcest ¼ 1:47R% 16:85

[18] 25 448 1.00 0.84

3 fcest ¼ 0:07692V%310

fcest ¼ 2:5R% 46

[19] 32 844 1.48 1.23

4 fcest ¼ 0:0189V%42:04

fcest ¼ 0:9294R% 1:1219

[20] 2 36 0.51 0.32

A conversion factor (0.8) was applied to transform the cube strength into the equivalent core strength

Fig. 8 CDF curves of estimated concrete variability of the five

strategies as compared with the true curve; results from

1000-simulations of contributors’ strategies KL3
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measurement uncertainties [15], influence of uncon-

trolled factors [16] and model uncertainties. The

analysis of the five strategies presented in this paper

highlighted the effects of several influencing factors

on the quality of estimates. We will analyze in more

details these effects, by considering them in a more

systematic way. The focus will be given on three

items: the quality of measurements, the way of

selecting the location of cores and the amount of

resources allocated to the investigation program. The

general idea is to keep all main features of the

strategies while simply varying one of these influenc-

ing factors and analyzing how the quality of the

assessment is affected. Table 3 summarizes all results,

which can be compared to those obtained with original

strategies (Table 1).

5.1 Effect of amount of resources

Three cost levels (KL1, KL2 and KL3) have been

considered in the benchmark [2] corresponding to a

progressively increasing amount of resources. All

results discussed above had been obtained at KL3. It

seems interesting to see how the quality of assessment

varies when KL changes, Therefore two strategies (B,

E) have been selected to be analyzed at level KL1

(amount of resources at KL1 = 1/3 KL3). The num-

bers of measurements are globally divided by a factor

3 and are provided in Table 3, which can be compared

to the numbers for the same strategies at KL3 in

Table 1. All other characteristics (quality of measure-

ments, the way of core selection and model identifi-

cation approach) of these two strategies remain

unchanged.

The selected strategies are simulated within the

computer and repeated 1000 times. The final results of

estimated average strengths and estimated concrete

variabilities are respectively plotted on Figs. 9 and 10

besides with the CDF curves provided at KL3. The

curves show that reducing the amount of resources

from KL3 to KL1 increases significantly the metrics

(NRMSEav NRMSEsd, sð!fcestÞ and sðsðfcestÞÞ, see

Table 3. This behavior is expected since the reduction

in the number of measurements (DT and NDT) causes

the uncertainties to grow up. For example, strategy B

herein is affected by a dramatical increase in the model

uncertainty due to the fact that the two parameters of

the regression model are derived from information

Table 3 Characteristics of the selected strategies for the parametric study and the values of the quality indicators (in bold:

characteristics differ from those in Table 1)

Str. Q No. of measurements Way of

core select

Model

identification

approach

Indicators of quality

Core V R NRMSEav

%

NRMSEsd % sð!fcestÞ MPa sðsðfcestÞÞ MPa

Studying the effect of amount of resources (KL1)

B LQ 2 4 0 CC Regression analysis 8 114 2.01 2.03

E AQ 1 2 6 PC Calibration

(k-method)

10 59 2.71 0.86

Studying the effect of quality of measurements (KL3)

B AQ 3 11 0 CC Regression analysis 7 82 1.60 1.47

E HQ 2 4 8 PC Calibration

(k-method)

4 28 1.24 0.54

J HQ 2 0 20 PC Calibration

(k-method)

7 54 1.59 0.48

Studying the effect of way of core selection (KL3)

E AQ 3 6 12 CCA Calibration

(k-method)

5 55 1.40 0.57

J AQ 3 0 29 CCA Calibration

(k-method)

7 134 1.48 0.62

O5 AQ 2 0 40 CCA Calibration

(D-method)

6 121 1.68 0.48
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gathered on only two cores instead of three (Strategy

B) or one core instead of two (Strategy E). The result

of the identification is thus highly affected by

uncertainties.

5.2 Effect of quality of measurements

In the benchmark three quality levels of measurements

are considered according to the local variability of

repeating measurements within small area. These

levels are: high quality (HQ), average quality (AQ)

and low quality (LQ). In order to further study this

effect, three strategies (B, E and J) have been selected

among the five strategies considered in this paper.

According to the rules of the benchmark the cost of

measurements increases as the quality level improves.

The available amount of resources being fixed, the

number of measurements reduces when the quality

level improves. For the selected three strategies, the

quality level has been increased (from LQ to AQ for

strategy B and from AQ to HQ for strategies E and J).

Consequently the numbers of measurements reduced

accordingly. These numbers are provided in Table 3

and can be compared with the initial values given in

Table 1.

After 1000 simulations, CDF curves for the three

strategies are plotted in Figs. 11 and 12 for average

strength and concrete variability respectively. As a

comparison, the original CDF curves for these three

strategies, fromFigs. 7 and 8, are also plotted herein. The

metrics of estimation quality (NRMSEav NRMSEsd,

sð!fcestÞ and sðsðfcestÞÞ are given in Table 3. From

Figs. 11 and 12, Tables 1 and 3, it is clear that

improving the quality of measurements has a slightly

positive effect on the indicators of the average

strength, NRMSEav and sð!fcestÞ, for strategies E and

J, while this effect is negative for strategy B. This

Fig. 10 Effect of KL level on the CDF curves of estimated

concrete variability of the B, E strategies as compared with the

true curve (1000 simulations)

Fig. 11 Effect of improving the quality of measurements on the

CDF curves of estimated average strength of the B, E, J

strategies

Fig. 12 Effect of improving the quality of measurements on the

CDF curves of estimated concrete variability of the B, E, J

strategies

Fig. 9 Effect of KL level on the CDF curves of estimated

average strength of the B, E strategies as compared with the true

curve (1000 simulations)
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opposite effect is more remarkable for the concrete

variability: for strategies E and J, NRMSEsd reduces to

one half their values in Table 1 while the reduction in

sðsðfcestÞÞ is small. On the contrary, for strategy B,

NRMSEsd and sðsðfcestÞÞ significantly increase in

comparison with the corresponding values given in

Table 1.

These apparently inconsistent results can be

explained by the controversial effects of improving

the quality of measurement on one hand while the

number of tests is reduced on the other hand. The

result may be either positive for strategies (E, J) or

negative for strategy B. The measurement uncertainty

has a predominant effect for strategies E and J in which

quality increased from average to high.

However, for strategy B improving the quality of

measurement (from low to average) reduced the

number of cores from 5 to 3 and this second factor

had a predominant effect (it can be noted that this

strategy is based on a regression model which requires

to identify two model parameters).

5.3 Effect of the way of core selection

Two ways of selecting the core location have been

considered by the benchmark contributors: predefined

cores ‘‘PC’’ and conditional cores ‘‘CC’’. The idea of

the conditional cores is to select cores that cover, as

much as possible, the whole range of the NDT

measurements distribution. Thus we propose the

following rule for selecting cores: (a) rank all NDT

test results from the lowest to the highest, (b) subdivide

the set into NC subsets (NC = number of cores),

(c) take a core at the location which has the NDT value

closest to the median value of the subset. This rule will

be denominated ‘‘CCA’’. To study the effect of the

way of core selection on the quality of estimation,

three strategies (E, J and O5) have been selected. The

contributors of the strategies (E, J) used the PC option,

while contributor O5 used CC but following a

different rule (see §3.5). The CCA rule will be applied

to these three strategies. The other characteristics of

the strategies are unchanged including the number of

measurements, since CCA implies no additional cost.

After 1000 simulations the results obtained with the

conditional cores CCA rule for average strength and

concrete variability are respectively plotted in Figs. 13

and 14. The values of the indicators (NRMSEav,

NRMSEsd, sð!fcestÞ and sðsðfcestÞÞ are given in Table 3

and can be compared with those of Table 1. It appears

that conditional cores can improve both the accuracy

and precision (reducing the scatter) of the average

strength estimation while it generally has no effect on

the accuracy and precision of the estimated concrete

variability. Moreover, for the strategy E that already

obtained good results, it has effect neither on average

strengths nor on concrete variability estimates. The

main effect is the decrease of the horizontal scatter of

the cloud of the estimated strength, which is partic-

ularly visible for strategy J. The explanation is that

with a small number of cores (NC = 3 here), the

model uncertainties resulting from a too narrow range

of variation of the NDT test results may be very large.

Conditional cores, by ensuring a better coverage of the

strength range reduce these uncertainties. Since con-

ditional cores induce no additional cost and since it

can have only positive effect, this process must be

strongly recommended.

Fig. 13 Effect of conditional cores on the CDF curves of

estimated average strength of the E, J, O5 strategies

Fig. 14 Effect of conditional coring on the CDF curves of

estimated concrete variability of the E, J, O5 strategies
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6 Conclusions and perspectives

In this work, several strategies defined by experts in an

international benchmark devoted to assess the con-

crete strength and its variability have been selected.

The efficiency of these strategies has been studied by

simulating their application to a series of 1000

synthetic buildings having the same statistical prop-

erties and by defining quality indicators of the

assessment, in terms of accuracy and precision.

The comparison of the simulated results with those

provided by the contributors to the benchmark,

confirmed that it is impossible to evaluate a strategy

from a unique result (‘‘one shot study’’). This state-

ment is valid for synthetic values but can, for the same

reasons, be extended to real in situ studies, since the

effect of chance (or lack of chance) may prevent any

valid statement.

Monte-Carlo simulations are a good tool to study

the efficiency of strategies and to get more represen-

tative results. The influence on the quality and

precision of the assessment of the main parameters

which define what is an ‘‘assessment strategy’’ has

been analyzed. This work has confirmed that:

– it is very dangerous to consider only the estimated

strengths (average values, standard deviation)

without considering the variability of these esti-

mates. This will justify to define and quantify the

confidence level attached to any uncertainty inter-

val around a true value. With average or HQ test

results, few cores with a properly defined strategy

may be enough to get a reasonably accurate

estimate of average strength. The magnitude of

uncertainty related to a given number of cores will

be systematically quantified in future studies.

– the quality of estimates obviously increases when

both quantity and quality of test results increase.

However when the total amount of resources is

fixed, the optimal balance between quantity and

quality of test results does not follow simple rules

and deserves to be studied through a more

comprehensive analysis.

– properly assessing the concrete variability is a

much more difficult challenge than assessing the

average concrete strength. The strategies proposed

here have shown a general tendency to overesti-

mate the standard deviation, which is conservative

but not economically safe.

– the quality of test results, or test result uncertainty,

that can be easily assessed on site by simply

repeating the test several times is a key factor

regarding the efficiency of assessment.

– conditional cores can improve the quality of

assessment without any additional cost and must

be strongly recommended,

– similarly, the weighted average, combining

strength measured directly on cores with estimated

strength obtained from NDT test results and a

calibrated conversion models, has a positive

effect, since it reduces uncertainty.

These results will contribute to improve the engi-

neering practice. The RILEMTC ISC-249 is preparing

guidelines that will take profit of these conclusions.

The quantitative results are probably too case-specific

to be considered as general, but a more systematic

analysis for a variety of concretes is currently under

progress and will lead to quantify the phenomena

identified in this paper. The expected result will be a

series of quantified relationships between the test

result uncertainty and the number of test results on one

hand and the final uncertainty on local strength values,

average strength and strength variability on the other

hand. Once this information will be validated, it will

be possible to define an investigation program com-

patible with the quality of assessment which is looked

for.
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h i g h l i g h t s

! Bi-objective approach shows high efficiency in capturing the concrete strength variability.

! Regression approach has limited ability in capturing the concrete strength variability.

! Calibration approaches cannot be used to estimate the concrete strength variability.

! Bi-objective, regression and calibration approaches can efficiently assess the mean strength.
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a b s t r a c t

Using non-destructive techniques (NDT) like rebound hammer in combination with destructive tech-

niques (DT) like core test is a common practice. Two approaches are widely used to produce a model

for assessing the concrete strength. The first approach consists in fitting a specific model between NDT

measurements and cores using the regression analysis. The second approach uses a prior model which

is calibrated according to measured core strengths. The EN 13791 and ACI standards require a large num-

ber of cores to estimate mean concrete strength and concrete strength variability and consequently to

calculate the characteristic strength value which depends on these two inputs. In this work, we propose

a new approach for identifying the models based on NDT and DT tests in order to capture both mean

strength and concrete strength variability. This approach is first illustrated by synthetic simulations

which are a good way to study a problem having many degrees of freedom. The proposed approach is

then tested on a real data set. In both cases, it is confirmed that the common approaches are able to esti-

mate the mean strength but they fail, even with a large number of cores, to accurately estimate the con-

crete variability and hence the characteristic strength. Reversely, the new approach shows its high

efficiency in capturing the concrete variability (in addition to the mean strength) with a number of cores

lower than that prescribed by the standards.

! 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Evaluating the concrete compressive strength in existing struc-

tures is a common requirement. For example, the change in the use

of a structure may require the determination of the concrete

strength to accurately assess the structural capacity. There also

may be a need to evaluate concrete strength after a structural fail-

ure like fire damage or environmental degradation [1]. The seismic

retrofitting issue arises nowadays in several countries (like Italy

and Turkey) that also emphasizes the need for an accurate in situ

assessment of concrete strength in existing structures [2,3].

Destructive technique DT (core test) has many drawbacks: it is

expensive, time consuming, sometimes difficult access of coring

http://dx.doi.org/10.1016/j.conbuildmat.2016.03.120

0950-0618/! 2016 Elsevier Ltd. All rights reserved.
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strength, corresponding to one test location; f cest , estimated individual strength of

concrete, corresponding to one test location; f c uncal: , estimated individual strength

of concrete, corresponding to one test location, produced from using an uncali-

brated prior model; R, Rebound number, test result, it is the mean of rebound

hammer readings corresponding to one test location; NC, Number of cores; NI,

Number of repetitions; NR, Number of test locations for rebound hammer

measurements; RMSE, Root Mean Squared Error.
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machine, only representative of small volume of concrete and has

some locally destructive effect on the structure [4]. To overcome

these drawbacks, non-destructive techniques NDT can be com-

bined with cores in order to provide more economical evaluation

of the concrete compressive strength in the structure. The main

challenge is to identify a relationship ‘‘conversion model” between

the NDT test results and the concrete strength. The existing model

identification approaches can be classified into two main cate-

gories: regression approaches by identifying a specific model using

a limited data set of core strengths and NDT results, and calibration

approaches in which a prior model is modified for best agreement

with an experimental data.

In the real practice, the mean compressive strength and the

characteristic compressive strength are the most common assessed

values. The assessment of characteristic strength depends on the

mean strength and on the standard deviation of the compressive

strengths (concrete variability), thus the concrete variability is also

a required value. Furthermore, the ACI 214.4R-03 [5] reported that

the coefficient of variation (CV) due to in situ concrete strength

variation within a structure (i.e. concrete variability/mean

strength) is 13%. However Masi and Chiauzzi [6] found a CV value

of 21% within one member of a structure. Masi and Vona [2] stud-

ied the concrete variability in many buildings in Italy and they

observed that the probable values of CV range between 15% and

35%. Pucinotti [7] also stated that in many cases the CV reaches

35%. That is why the assessment of concrete variability within

some homogenous zones (one floor for example) or the whole

structure is needed in addition to mean strength value.

Using NDT methods, European Standard EN 13791 [8] allows

two approaches (Alternative 1 and 2) for assessing the individual

compressive strength values then the mean strength and concrete

variability and as a result the characteristic strength. According to

the requirements of this standard, the minimum number of cores

(NC) is respectively 18 for Alternative 1 (regression analysis

approach) and 9 for Alternative 2 (calibration approach). ACI

228.1R-03 standard [1] also requires at least 12 cores (six test loca-

tions with two cores at each location) to develop an adequate

strength relationship.

In this paper, we present a new model identification approach

‘‘bi-objective” that is devoted to capture two material characteris-

tics: the mean and standard deviation of the concrete strength val-

ues. Then the prediction capability of bi-objective approach is

compared with that of the existing approaches.

The synthetic simulation [9–14] is adopted here to generate a

data set (NDT test result and strength values) representative of a

synthetic building. These data are used through the present study

for testing and validating the proposed approach. The new

approach is also applied on a real data set obtained from the scien-

tific literature. In this paper the linear shape of conversion model is

considered for all model identification approaches (calibration,

regression and bi-objective).

2. Existing approaches for assessing the compressive strength

by NDT techniques

The assessment of concrete strength always needs a conversion

model establishing the relationship between the compressive

strength of concrete and the test results drawn from NDTmeasure-

ments. There is a consensus to say that there is no universal con-

version model that could be used whatever the concrete. In

practice, two groups of model identification approaches are widely

used to produce a conversion model for assessing the compressive

strength.

2.1. Regression approaches

These approaches consist in fitting a specific model between

NDT measurements and compressive strength of cores using ordi-

nary least squares method [15–17] or its modified form developed

by Mandel [1,18].

2.2. Calibration approaches

They use a prior model (many models exist in literature or stan-

dards [8,19–24]) which is calibrated according to the measured

core strengths. Two possibilities for calibration are often used in

real practice: (1) multiplying factor method, and (2) shifting factor

method. In this section, a brief description of each method is pre-

sented for the case of rebound hammer technique as an example.

However, the same principles are also valid for any other NDT

technique like for instance ultrasonic wave pulse velocity.

2.2.1. Multiplying factor method (k-method)

The principle comes to update an uncalibrated prior model by a

coefficient k to produce a calibrated model,

f cestðRÞ ¼ kfc uncal: ð1Þ

The coefficient k is calculated as in the following steps:

(a) Calculate the mean value of core strengths !f ccore,

(b) Use the uncalibrated prior model to calculate the estimated

strengths at core locations then take the mean of these val-

ues, !f c uncal:

(c) Calculate the calibration factor k ¼ !f ccore=!f c uncal:

2.2.2. Shifting factor method (D-method)

The concept here is to shift the uncalibrated prior model by a

coefficient D,

f cestðRÞ ¼ f c uncal:ðRÞ þ D ð2Þ

The coefficient D is calculated as in the following steps:

(a) Use the uncalibrated prior model to calculate the estimated

strength at each core location f c uncal: i then,

(b) Calculate the shifting factor D ¼
PNC

i¼1ðf ccore i " f c uncal: iÞ=NC

where f ccore i is the compressive strength of core i.

3. The principles of bi-objective approach

From the basics of the existing approaches, it is obvious that

none of these approaches has the objective to capture the concrete

variability although the standards recommend some of these

approaches to estimate the concrete variability because it is an

essential parameter in the calculation of the characteristic strength

of concrete. Thus we propose here a new ‘‘bi-objective” approach

which is devoted to capture the variability of concrete strengths

in addition to their mean value.

The basic idea is that any investigation program with NDT tech-

nique (rebound hammer for example) provides a data set of NC-

pairs of (R, f ccore), where the rebound measurements and core

strengths are measured at the same test locations. This data set

is used to identify a relationship (conversion model) between con-

crete strength and the rebound number test results. Usual mathe-

matical shapes of such models have two parameters [9,25]. It is the

case for the most common ones: (a) linear models f cest ¼ aRþ b, (b)

exponential models f cest ¼ a expðbR), (c) power-law models

f cest ¼ aRb. Analytically, two conditions are required in order to
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derive the values of the parameters a and b. For bi-objective

approach, we consider our two objectives as the conditions for

obtaining the unknown parameters, i.e. by ensuring that both

mean strength and standard deviation are identical for real values

and estimated ones:

!f cest ¼ !f ccore ð3Þ

sðf cestÞ ¼ sðf ccoreÞ ð4Þ

where !f cest; !f ccore are the estimated and measured (on cores) mean

strength values respectively, while sðf cestÞ, sðf ccoreÞ are the estimated

strength variability and the variability calculated from the core

strengths respectively.

Applying the first condition on a linear model f cest ¼ aRþ b, we

get:

!f cest ¼ a!Rþ b ¼ !f ccore ð3
0
Þ

while the second condition can be rewritten in the form:

sðf cestÞ ¼ sðf ccoreÞ ! s2ðf cestÞ ¼ s2ðf ccoreÞ ! varðf cestÞ ¼ varðf ccoreÞ

varðaRþ bÞ ¼ varðf ccoreÞ

a2varðRÞ ¼ varðf ccoreÞ ð4
0
Þ

Consequently, the values of the unknown parameters are:

a ¼ sðf ccoreÞ=sðRÞ ð5Þ

b ¼ !f ccore " a!R ð6Þ

where !R; sðRÞ are respectively the mean and standard deviation val-

ues of R test results corresponding to the core locations.

The bi-objective approach is presented here with the rebound

hammer as NDT technique. However the same principles remain

valid for other NDT techniques such as the ultrasonic pulse veloc-

ity. This is because in the above development of the parameters (a

and b) there are no constraints related to the type of NDT approach.

4. Prediction capability of bi-objective approach as compared

with the existing approaches

4.1. Source of data

In order to compare the prediction capability of the abovemodel

identification approaches, a data set is required. In this study, syn-

thetic simulation is used to provide a synthetic data by creating a

synthetic building in which all information is known: relationships

betweenNDT test results and strength, strength values andNDT test

results. Toadequatelymimicwhathappens in real life, syntheticdata

consider both variability multi-scale patterns like they are docu-

mented in real case studies andmeasurementuncertainty. Synthetic

data have already been used by the authors in series of applications

and have shown their high potential for improving the analysis of

data [10,14]. Several publications have detailed how the simulation

works, which will not be described here [9,11–13].

The synthetic building considered in this study is a one-story

concrete structure in which only columns are considered, as shown

in Fig. 1. Each column has 31 test locations distributed along its

elevation so the size of data set generated for this building corre-

sponds to (20 ' 31 = 620) test locations. This means that we have

620-pairs of (R; f ccore) and the corresponding true (in the synthetic

simulation) values, see Fig. 2 as an example of generated synthetic

data. The details of this synthetic building and the generation pro-

cess were well illustrated in [11].

The main interests of synthetic simulation are: (a) its ability to

consider many influencing factors and its flexibility in changing the

values of these factors, (b) its ability to generate a huge number of

(NDT, DT) pairs within a synthetic building while it is impossible

with real building due to the cost and time constraints, (c) the abil-

ity of repeating the simulations many times in order to reduce the

influence of chance, and (d) the easiness to quantify the efficiency

of the approach since ‘‘true strength value” is known for each test

location in the synthetic building and consequently the difference

between ‘‘true” and estimate values can be calculated.

4.2. Characteristic of the synthetic data case study

The considered case study has the following characteristics:

– synthetic building having: true concrete mean strength of

25 MPa, true concrete standard deviation of 4.8 MPa. Many

influencing factors can affect the NDT evaluation of concrete

strength in the concrete structures such as concrete humidity

and carbonation. However in this synthetic building the effect

of carbonation is considered to be non-significant and only

the effect of humidity is taken into account assuming a mean

value of concrete saturation rate of 65% (air dried condition)

with a coefficient of variation of 4%. The generated synthetic

data for this case study is shown in Fig. 2,

– Cores are considered to be extracted horizontally from the con-

crete zones between the steel reinforcement and they have a

standard length to diameter ratio. In order to maintain their

internal humidity, cores are assumed to be sealed in a tight

envelope,

Fig. 1. Synthetic building.

Fig. 2. Synthetic data for a synthetic building having: true mean strength 25 MPa,

true concrete variability 4.8 MPa and true mean of concrete saturation rate 65%

with a coefficient of variation 4%.
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– single NDT technique: rebound hammer (hammer applied hor-

izontally), NR = 160, i.e. 160 test locations selected in each sim-

ulation from the total test locations (620),

– test locations are selected randomly.

In this study, all approaches (calibration, regression and bi-

objective) deal with linear models. Therefore for calibration

approaches several uncalibrated prior linear models are selected

from scientific literature [26–29]. Table 1 shows the testing condi-

tions of these models. Moreover, they are illustrated graphically in

Fig. 3 with the range of R for which they are derived (the solid part

of each line). These four models are selected because they have dif-

ferent slopes that cover a wide range of the existing models for the

rebound - strength relationship [9,25].

4.3. Algorithm of comparison between the approaches

In order to illustrate the process of comparison between the

approaches, an algorithm has been developed which is presented

in Fig. 4. As it is shown, after the generation of the synthetic data

the test locations of NDTmeasurements and cores are selected ran-

domly. Thus NC-pairs of (R; f ccore) are specified. These pairs are

used by each approach to produce a conversion model for this

approach and to calculate the individual strength values and con-

sequently the values of mean strength, concrete variability and

errors RMSE in the individual strengths.

Because this process includes the random selection of the test

locations, any conclusion requires its repetition a large number

of times (from the selection of test locations to the calculation of

errors). Hence this process is repeated NI times. At each repetition,

new test locations are selected from the whole synthetic data and

as a result new NC-pairs of (R; f ccore), which leads to a new conver-

sion model for each approach and consequently to new values of

mean strength, concrete variability and RMSE. The number of rep-

etitions NI depends on the required width of the confidence inter-

val, see Appendix A for the selection criterion of NI. In the present

case study NI = 2500 is selected to ensure that the one-half width

of confidence interval will be less than 0.1 MPa, see Figs. A1 and

A2. After the NI repetitions, for each approach, we have NI values

of !f cest , sðf cestÞ and RMSE. Finally, these results are post-processed

in order to derive:

– !f cest and sð!f cestÞ, which are respectively the mean value and stan-

dard deviation of estimated mean concrete strengths, the sð!f cestÞ

is so-called ‘‘standard error of mean” by the statisticians,

– sðf cestÞ and sðsðf cestÞÞ which are respectively the mean value and

standard deviation of estimated standard deviation values of

concrete strength, the sðsðf cestÞÞ is so-called ‘‘standard error of

standard deviation” by the statisticians, and

– RMSE, sðRMSEÞ which are respectively the mean value and stan-

dard deviation of the root mean square error calculated on each

repetition for the estimated individual strength values.

These six values are calculated for each approach and for sev-

eral values of NC (from 1 to 20). The results are summarized in

Figs. 5–7 and Table 2.

In order to create the synthetic building and perform the pro-

cess illustrated in this algorithm we developed a computer pro-

gram using VBA.

4.4. Results and discussion

In this study, we aim to compare the prediction capability of the

approaches in estimating three elements: Concrete strength vari-

ability, Mean concrete strength and Errors ‘‘RMSE” in the estimated

individual strengths.

4.4.1. Concrete strength variability

The concrete variability estimations resulting from applying dif-

ferent approaches are compared in Fig. 5. It shows four cases L1, L2,

L3 and L4 that are identical except regarding the prior model

applied with the calibration approaches. Therefore each case corre-

sponds to one of prior models that were selected from scientific lit-

erature [26–29], see Fig.3 and Table 1 for more details about these

models.

Table 1

Testing conditions of the uncalibrated prior models selected from literatures.

Symb. Authors Rebound

number

Cube

strength

(MPa)

Specimen Concrete

age (days)

Concrete humidity Hammer

direction

L1 Qasrawi, 2000 [26] 20–44 6–42.5 cubes

15 cm

Concrete cubes of unknown history

made under site conditions were also

brought from various sites for testing.

All cubes were immersed under water for a min

period of 24 h before testing, just before testing,

the cubes were rubbed with a clean dry cloth

Horiz.

L2 Al-Ameeri et al., 2013 [27] 22–55 16–72 Cubes

15 cm

and

10 cm

28 24 h after the casting the specimens were

demolded and put in water for curing at temp.

(24 ± 3) "C until the testing day

Horiz.

L3 Cianfrone et al., 1979 [28] 20–46 16–76 Cubes

15 cm

and

16 cm

1–30 Testing program that was carried out on samples

prepared and kept in standard conditions

Horiz.

L4 Mikulic et al., 1992 [29] 23.2–

39.2

13–50 Cube

15 cm

28 Not specified Not

specified

Fig. 3. Uncalibrated prior models selected from literatures [26–29].
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The interest of using four prior models is to compare the esti-

mations provided by the approaches that are independent from

the prior model (regression and bi-objective approaches) with dif-

ferent cases of the calibration approaches. As a consequence we

can get a clear picture about the behavior of the calibration

approaches. Each point in Fig. 5 is the mean of NI values of concrete

variability, sðf cestÞ, while the standard deviation of these values,

sðsðf cestÞÞ, is given in Table 2, for case L1 only, in order to avoid

the congestion that will be produced if we plot them on Fig. 5.

From Fig. 5, it is clear that the bi-objective approach is the only

one which can capture the true concrete variability even with a

number of cores lower than the minimum number required by

the standards (18 for regression approach and 9 for calibration

approach according to EN 13791, and 12 for regression approach

according to ACI 228.1R-03).

Furthermore, as NC increases, Fig. 5 shows that the bi-objective

curve stabilizes near the value of 5 MPa i.e. it could not reduce the

difference from the red line whatever the increase in NC, (the red

line represents the true strength variability in the synthetic build-

ing considered in the present study, 4.8 MPa). In fact this is not a

shortcoming in the bi-objective approach because it well captures

its input data (variability of core strengths 5 MPa) which already

have uncertainty due to the effects of coring process and other

influencing factors. This is interesting because it indicates that

the bi-objective approach can accurately capture their inputs.

For the regression approach, it underestimates the concrete

variability by about 20%, and increasing NC has no significant effect

on the prediction capability. It can also be noted that the curves of

regression approach are nearly similar in the four cases (the same

observation can be noted for the curves of bi-objective approach)

because they are independent of the prior models, however the

slight differences being only due to the random effect of

repetitions.

Regarding the calibration approaches (k-method and D-

method), the behavior is similar in the four cases, nearly horizontal

lines but with different values i.e. in some cases they are overesti-

mating the concrete variability while in the other they are under-

estimating or perfectly fit the true value as it is shown in case L2.

These differences are due to the prior model ability to represent

the concrete under consideration. Since this ability cannot be eval-

uated in the real building, the efficiency of estimation by the cali-

bration approaches mainly depends on chance.

As it is mentioned above, each point in Fig. 5 is the mean of NI

values of estimated concrete variability, sðf cestÞ, however it is inter-

esting to know the estimation interval within which the estimated

concrete variability value will fall if one has only one iteration (as it

is the case in practice). This interval depends on the values of

sðsðf cestÞÞ, in addition to the values of sðf cestÞ, which are presented

in Table 2.

The sðsðf cestÞÞ values given in Table 2 decrease as the NC

increases for all approaches except the D-method in which the val-

ues are constant as the NC increases. To understand this result of

D-method, let’s come back to Eq. (2) and take the variance of the

estimated strength: varðf cestÞ ¼ varðf c uncal: þ DÞ ¼ varðf c uncal:Þ, this

means that the variation of the estimated strengths is independent

of D and consequently it is independent of cores (because in D-

method the effect of cores is taken into account by D).

4.4.2. Mean concrete strength

A comparison between the mean strengths predicted by all

approaches for the four cases L1, L2, L3 and L4 is illustrated in

Fig. 6. Like Fig. 5, each point in Fig. 6 is the mean of NI values of

mean strength, !f cest , while the standard deviation of these values,

sð!f cestÞ, is given in Table 2 for case L1 only. It is obvious that all

approaches are able to predict the mean strength with acceptable

precision as soon as NCP 3 (cases L1, L2, L3) or NCP 6 (case L4).

However the decision about the suitable value of NC to predict the

mean strength also depends on s ð!f cestÞ which controls the estima-

tion interval that corresponds to a single iteration. From Table 2,

for all approaches, the values of sð!f cestÞ decrease as NC increases

with more or less identical decreasing rate.

The bi-objective and regression approaches always have the

same value for NC = 2 (bold numbers in Table 2). This is logical

due to the mathematical fact that for identifying a linear model

with two unknown parameters and only two pairs of (R; f ccore),

there is a unique solution whatever the approach, bi-objective or

regression. Moreover, the behavior of the bi-objective and regres-

sion approaches is quite similar and the two curves are very close

especially as NC increases.

For the calibration approaches, the behavior essentially

depends on the prior model and its ability to fit the true values

of the concrete under consideration. However, increasing NC has

a significant effect on the prediction capability of the calibration

approaches.

4.4.3. Errors ‘‘RMSE” in the estimated individual strengths

In fact there are two types of errors which can be calculated

using the individual strength values (individual strength is the

strength value corresponding to one test location): fitting error

(error calculated for strengths estimated at the test locations

where cores are available and have been used for fitting a model)

and prediction error (error calculated for strengths estimated at

Fig. 4. Algorithm of comparison between the approaches.
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test locations where only NDT measurements are available) [12].

The second type is more representative of the prediction capability

because it measures the errors in values other than those used to

derive the model. Thus the prediction error is adopted here to cal-

culate the RMSE in the estimated individual strengths. Fig. 7 syn-

thesizes the results (mean RMSE values for NI repetitions, RMSE)

for all approaches and the four linear prior models while Table 2

gives the values of s(RMSE) for case L1 only.

In all cases, in Fig. 7, the prediction error reduces as the number

of cores NC increases. However, no general rule can be derived

about the more efficient approach i.e. there is no approach which

always produces the minimum error in the four cases. The bi-

objective and regression approaches give curves which are close

to each other with a better estimation efficiency of strength values

by the regression approach as NC increases. The behavior of the bi-

objective approach (the same observation is noted for regression

approach) is similar in the four cases, since they are independent

of the prior model and the only differences are due to the random-

ness of repetitions. Regarding the calibration approaches, in two

cases (L1 and L2) the curves of the two methods are nearly identi-

cal while in the two other cases (L3 and L4) the k-method is the

better. It seems that the k-method is more efficient than the D-

method but we cannot confirm the generality of this statement.

Moreover, for case L4, the error values resulting from applying

the calibration approaches are larger than those given by the other

cases. This can be explained by comparing the R-values range of

the synthetic data (22–42) shown in Fig. 2 with the applicable

ranges for the models L1 to L4 shown in Fig. 3 and given in Table 1.

It is clear that the synthetic data range is within the applicable

ranges for models L1 to L3, while this is not the case for model

L4. Consequently it is recommended to use the models within their

applicable ranges.

4.4.4. Failure of the model identified by each approach

A last criterion that deserves to be analyzed when comparing

the relative merits of the approaches is related to the fact that, in

some situations, the NC-pairs of (R; f ccore) which are used for model

identification may produce a very bad or even physically impossi-

ble conversion model. It is the case for instance in the following

situations:

(a) when the estimated concrete strength at a test location

obtained from using the conversion model has zero or neg-

ative value,

(b) when the conversion model has a negative slope, which

would mean that the strength decreases while the NDT

value increases, which generally has no physical meaning.

This situation can be encountered only with regression

approach because the other approaches always guarantee a

positive slope.

The risk of having the above situations is larger if the number of

cores is small, and if the measurement uncertainties are relatively

large as compared to the range of variation of concrete strength in

the domain of investigation.

In this study, the developed software includes two conditions (if

f cest 6 0 or if slope < 0). When one or both of them is satisfied, the

software will reject this model and return to identify another one.

Counters are inserted in the software to count the number of failed

repetitions (repetitions identify wrong models) for each approach.

Fig. 5. Concrete variability estimated by different approaches (synthetic data case study).
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The percentage of failed repetitions with respect to the total num-

ber of repetitions for each approach is given in Table 3 for case L4.

For regression and bi-objective approaches, this table shows

large failure percentages when NC is small, however these values

reduce with increasing NC. The values corresponding to calibration

approaches are high due to fact that the prior model L4 has a high

slope and as a result the risk of producing a wrong model is high.

On the contrary, these values become zero for the case L1 which

emphasize the dominative role of the prior model.

When the regression approach and bi-objective approach are

compared, the first one appears to be more robust. This criterion

provides additional information to be taken into account when

choosing the number of cores and the model identification

approach. For instance, if the target is the mean strength, the

regression approach will be sufficient. On the other hand, if the

concrete standard deviation is a target, the bi-objective approach

is the only one adapted, but it implies to increase a little bit the

number of cores to reduce the risk of having a wrong model.

5. Application of bi-objective approach on a real data set

In order to test the prediction capability of the approaches on

real data, a case study is selected from scientific literature. This real

data set was provided by [28] as a result of an extensive laboratory

testing program that was carried out on samples prepared and kept

in standard conditions. It consists in values of concrete strength

obtained by carrying out the compressive test on 80 cube samples

(tested at ages from 1 to 30 days), and the corresponding R test

results (each test result is the mean value of 18 readings of

rebound hammer test applied horizontally on each cube). In the

synthetic case, the true values of mean strength and concrete vari-

ability were known but they are unknown in this real case. Conse-

quently, they are replaced by the mean and standard deviation

values calculated from all cube strengths which are respectively

51.5 MPa and 11.9 MPa.

The algorithm illustrated in Fig. 4 is applied here but with: real

data set instead of synthetic one, NR = 80, number of samples

(cubes) used to identify a model varying from 1 to 10 and for case

L1 only, the results are shown in Figs.8 and 9. Each point in Fig. 8 is

the mean of NI values of concrete variability, sðf cestÞ, while the stan-

dard deviation of these values sðsðf cestÞÞ, is given in Table 4. As the

results of synthetic simulation, the bi-objective approach shows its

capability to capture the real concrete variability (11.9 MPa in this

case) with a number of samples, used to identify a model, much

lower than the minimum number required by standards. The

regression approach tends to underestimate the concrete variabil-

ity while the good or bad results of the calibration approaches are

only due to the chance (the prior model effect).

Fig. 9 shows the estimated mean strength by all approaches as a

function of the number of samples. Each point represents the mean

of NI values of mean strength, !f cest , and the standard deviation of

these values, sð!f cestÞ, is presented in Table 4. It confirms that the

approaches are able to estimate the real mean strength

(51.5 MPa in this case) with an acceptable precision when NCP 3.

Fig. 6. Mean strength estimated by different approaches (synthetic data case study).
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Like the case of synthetic data (Table 2), the values in Table 4

decrease as NC increases and for the D-method the values of

sðsðf cestÞÞ exhibit an independent behavior from the changes in

NC. However, the values in Table 4 are larger than the correspond-

ing values in Table 2. The last observation can be understood from

the following statistical relations: sð!f cestÞ ¼ r=
ffiffiffiffiffiffiffi

NR
p

and

sðsðf cestÞÞ ( r=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðNR" 1Þ
p

where r is the standard deviation of

the estimated strength population [15,30].

Fig. 7. RMSE in the individual strengths estimated by different approaches (synthetic data case study).

Table 2

Standard deviation values of NI-values of concrete variability, mean strength and RMSE estimated by each approach (L1 prior model for k-app. and D-app.) – all results in MPa

(synthetic data case study).

NC sðsðf cestÞÞ sð!f cestÞ sðRMSEÞ

k-app. D-app. Reg. app. Bi-obj. k-app. D-app. Reg. app. Bi-obj. k-app. D-app. Reg. app. Bi-obj.

1 0.6 0.2 – – 3.2 2.9 – – 1.7 1.3 – –

2 0.5 0.2 2.1 2.1 2.1 2.0 2.5 2.5 0.9 0.8 1.4 1.4

3 0.4 0.2 1.7 1.7 1.8 1.7 1.9 1.9 0.6 0.6 0.9 1.0

4 0.4 0.2 1.5 1.5 1.5 1.4 1.6 1.6 0.5 0.5 0.8 0.8

5 0.3 0.2 1.4 1.3 1.3 1.3 1.4 1.4 0.4 0.4 0.7 0.7

6 0.3 0.2 1.3 1.2 1.2 1.2 1.3 1.3 0.4 0.3 0.6 0.6

7 0.3 0.2 1.2 1.2 1.1 1.1 1.2 1.2 0.3 0.3 0.5 0.6

8 0.3 0.2 1.1 1.1 1.0 1.0 1.1 1.1 0.3 0.3 0.4 0.6

9 0.3 0.2 1.1 1.0 1.0 1.0 1.0 1.1 0.3 0.3 0.4 0.5

10 0.3 0.2 1.0 1.0 1.0 0.9 1.0 1.0 0.3 0.2 0.4 0.5

11 0.3 0.2 1.0 0.9 0.9 0.9 1.0 1.0 0.2 0.2 0.4 0.5

12 0.3 0.2 0.9 0.9 0.9 0.9 0.9 0.9 0.2 0.2 0.3 0.4

13 0.3 0.2 0.9 0.9 0.9 0.9 0.9 0.9 0.2 0.2 0.3 0.4

14 0.3 0.2 0.8 0.8 0.8 0.8 0.8 0.8 0.2 0.2 0.3 0.4

15 0.3 0.2 0.8 0.8 0.8 0.8 0.8 0.8 0.2 0.2 0.3 0.4

16 0.3 0.2 0.8 0.8 0.8 0.7 0.8 0.8 0.2 0.2 0.3 0.4

17 0.3 0.2 0.8 0.7 0.7 0.7 0.7 0.8 0.2 0.2 0.3 0.4

18 0.3 0.2 0.7 0.7 0.7 0.7 0.7 0.8 0.2 0.2 0.2 0.4

19 0.3 0.2 0.7 0.7 0.7 0.7 0.7 0.7 0.2 0.2 0.2 0.4

20 0.3 0.2 0.7 0.7 0.7 0.7 0.7 0.7 0.2 0.2 0.2 0.3
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6. Conclusions

In this work, the efficiency of calibration and regression

approaches is compared with the bi-objective approach (proposed

in the present study) for predicting the concrete mean strength and

concrete variability (standard deviation of strength). Synthetic data

and real data case studies are considered. From both cases, the fol-

lowing conclusions can be drawn:

– All approaches (regression, calibration and bi-objective) can

efficiently estimate the mean concrete strength even with NC

lower than the minimum number required by the standards.

Furthermore, increasing NC can significantly improve the esti-

mation efficiency.

– When trying to quantify concrete strength variability, the bi-

objective approach is the only one that shows high efficiency

in capturing the true concrete variability even with a number

of cores (NC) lower than the minimum number required by

the standards. On the contrary, the regression approach remains

limited in capturing the concrete variability, it always underes-

timates the concrete variability and increasing NC has no signif-

icant effect on the estimation efficiency. Regarding the

calibration approaches, they produce unstable results (estima-

tion efficiency varies as the prior model is changed) so their effi-

ciency depends on chance. Moreover, increasing NC could not

improve the results of calibration approaches especially for D-

method which is proved its independence from the effect of NC.

– For all approaches, the prediction error in the individual

strengths reduces as NC increases. However, the comparison

between the prediction error curves from various approaches

could not lead to a general statement about the best approach

for estimating the individual strengths. However, it seems that

the regression approach has better estimates of individual

strengths than the bi-objective approach.

In order to generalize these conclusions, the bi-objective

approach needs a further analysis by testing variety of real data

sets that cover a wide range of concrete strengths.

Appendix A. Criterion for selecting the number of repetition NI

The process illustrated in Section 4.3 and Fig. 4 is repeated NI

times in order to have more representative results from each

approach because the application of an approach one time cannot

give real picture about its efficiency. From single application

of an approach, one value of !f cest is produced. Let

Table 3

Model failure percentage for case L4.

NC k-app. D-app. Reg. app. Bi-obj.

1 26.3 49.8 – –

2 26.0 49.3 41.2 29.3

3 26.8 48.7 20.7 20.3

4 26.0 48.6 12.4 17.2

5 25.8 48.3 7.4 12.9

6 25.6 47.9 4.4 10.0

7 26.1 47.9 3.0 9.4

8 26.9 47.9 2.2 8.1

9 25.4 46.7 1.5 6.7

10 25.3 46.6 1.3 6.2

11 26.6 47.5 0.7 4.9

12 26.0 46.9 0.7 4.4

13 25.6 45.8 0.5 4.1

14 24.4 45.6 0.6 3.5

15 25.9 46.3 0.3 3.4

16 24.9 46.7 0.2 2.9

17 25.9 46.3 0.1 2.4

18 25.1 47.0 0.1 2.6

19 24.5 45.9 0.1 2.4

20 26.2 47.8 0.2 2.5

Fig. 8. Concrete variability estimated by different approach (real data case study).

Fig. 9. Mean strength estimated by different approach (real data case study).

Table 4

Standard deviation values of NI-values of concrete variability and mean strength

estimated by each approach (L1 prior model for k-app. and D-app.) – all results in

MPa (real data case study).

NC sðsðf cestÞÞ sð!f cestÞ

k-app. D-app. Reg. app. Bi-obj. k-app. D-app. Reg. app. Bi-obj.

1 1.1 0.0 – – 4.8 5.7 – –

2 0.8 0.0 4.2 4.2 3.5 4.1 4.3 4.3

3 0.6 0.0 3.5 3.3 2.7 3.3 3.2 3.2

4 0.5 0.0 3.0 2.7 2.3 2.7 2.5 2.5

5 0.5 0.0 2.7 2.4 2.1 2.5 2.3 2.3

6 0.4 0.0 2.4 2.1 1.8 2.2 2.0 2.0

7 0.4 0.0 2.2 1.9 1.7 2.0 1.8 1.8

8 0.4 0.0 1.9 1.7 1.5 1.9 1.6 1.7

9 0.3 0.0 1.8 1.6 1.4 1.8 1.5 1.6

10 0.3 0.0 1.6 1.4 1.4 1.7 1.5 1.5
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!f cest1; !f cest2; !f cest3; . . . ;!f cestNI be a random sample from a population

with unknown mean l and variance r2. Now if the sample size

NI is large, the central limit theorem implies that !f cest has approx-

imately a normal distribution with mean l and variance r2/NI.

Therefore Z ¼ ð!f cest " lÞ=ðr=
ffiffiffiffiffi

NI
p

Þ has approximately a standard

normal distribution. This ratio could be used as a pivotal quantity

to produce an approximate confidence interval for l. However, the

standard deviation r is unknown. It turns out that when NI is large,

replacing r by the sample standard deviation sð!f cestÞ has little effect

on the distribution of Z. This leads to the following confidence

interval [15–16],

ð!f cest " za=2sð!f cestÞ=
ffiffiffiffi

N
p

I 6 l 6 !f cest þ za=2sð!f cestÞ=
ffiffiffiffi

N
p

IÞ ðA1Þ

so for 95% the one-half width of this interval is 1:96 sð!f cestÞ=
ffiffiffiffiffi

NI
p

. In

the same way we can find the one-half width of the confidence

interval corresponding to concrete variability to be:

1:96 sðsðf cestÞÞ=
ffiffiffiffiffi

NI
p

. For the case study characteristics described in

Section 4, using bi-objective approach these two quantities are

drawn as a function of NI for (2–10) cores as shown in Figs. A1

and A2. From these figures, for the desired half with of the confi-

dence interval the corresponding NI value can be determined.
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h i g h l i g h t s

! Selecting core locations based on rebound measurements improves the assessment reliability.

! Reducing repeatability of rebound measurements improves the assessment reliability.

! Increasing the number of cores improves the assessment reliability.

! Concrete intrinsic variability plays an important role on the assessment reliability.
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a b s t r a c t

To assess concrete strength in a structure, nondestructive technique (NDT) like rebound hammer is com-

bined with destructive technique (coring tests) in order to implement a relationship ‘‘conversion model”

between the compressive strength and, NDT measurements. The conversion model is used to estimate

the local strength value at each test location using the corresponding NDT value. Then the estimated

mean strength and/or estimated strength standard deviation (concrete strength variability) values are

calculated. However, the reliability of these estimated values is always a questionable issue because of

the uncertainties associated with the strength predictions based upon NDT measurements. To improve

the reliability, the uncertainties must be reduced by specifying and controlling their influencing factors.

The objective of this paper is to study the reliability of assessment by analyzing the effects of several

influencing factors: number of test locations used to identify a conversion model between strength

and rebound measurement NC (number of cores), true value of concrete strength variability, within-

test variability of rebound measurements, accepted uncertainty level, quantity to be assessed (mean

strength, strength variability), model identification approach (like regression) and the way of selection

core locations (random or conditional i.e. selection based on NDT measurements from preliminary inves-

tigation). To this end, a large campaign of laboratory studies datasets (1700 test results) was considered

for the analysis in the present study.

Results show that NC, within-test variability of rebound measurements and true concrete strength vari-

ability have significant effects on the assessment reliability. Conditional selection of cores has also an

important effect on improving the reliability so it is strongly recommended.

! 2017 Elsevier Ltd. All rights reserved.
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1. Introduction

Assessment of in-situ concrete strength in structures is always a

challenge for engineers. In the current methodology, nondestruc-

tive techniques (NDT) are combined with destructive techniques

(coring tests) in order to implement a relationship ”conversion

model” between the compressive strength and NDT measure-

ments. Regression approach is the most popular approach that is

used to identify the conversion model [1–5]. However, in real prac-

tice, engineers also use ‘‘calibration approach” as a model identifi-

cation approach [5–7]. This approach is based on calibrating a prior

model or basic curve (from literature or standards) according to

the measured core strengths. Alwash et al. [7] have recently pro-

posed a new model identification approach so-called ‘‘bi-

objective approach” which is devoted to capture the concrete

strength variability in addition to mean strength, Appendix A pro-

vides the principle of this approach.

Thereafter, the conversion model, whatever the model identifi-

cation approach, is used to estimate the local strength value at

each test location using the corresponding NDT value. Then the

estimated mean strength and the estimated strength standard

deviation (concrete strength variability) values are calculated.

However, the reliability of these estimated values is always a ques-

tionable issue because repeating an investigation program (i.e.

same number of measurements, same techniques for the same

building) several times will produce different estimated values.

For decades, studying the reliability of assessing the concrete

strength by rebound hammer measurements has been the objec-

tive of many scientific researches. However, this issue is quite con-

troversial [8–9]. Some researchers [10–12] are pessimistic

considering that rebound hammer is unable to give a reliable esti-

mate of the concrete strength. However, the combination of

rebound hammer with the ultrasonic pulse velocity may improve

the reliability of assessment [13–14]. On contrast, other research-

ers like [15] consider that the accuracy of estimation of compres-

sive strength of test specimens cast, cured, and tested under

laboratory conditions by a properly calibrated hammer lies

between ±15 and ±20%. Furthermore, the probable accuracy of esti-

mation of concrete strength in a structure is ±25% [15–16]. Szilágyi

and Borosnyói [17] indicate that the expected error of the strength

estimation by the Schmidt rebound hammer under general service

circumstances is about ±30%. FHWA [18] states that the accuracy of

in-situ strength assessment with rebound hammer is between ±30

and 40%.

Many sources of uncertainty exist and affect the global concrete

strength prediction process and the final reliability of the assess-

ment: measurement uncertainties [2,19], true strength variability

[20], model uncertainties [20], statistical uncertainties of sampling

[21], and influence of uncontrolled factors such as concrete degree

of saturation and carbonation [1,22–24].

Moreover, it is necessary to indicate here that the effects of the

sources of uncertainty in old structure can differ from that in

newly-built structure due to the age effects (i.e. cracks, local dam-

age, steel reinforcement corrosion, etc.). Because of the age effects,

more uncertainty is expected in the case of old structure and con-

sequently less reliable assessment.

To improve the reliability, the uncertainties must be reduced by

controlling their influencing factors. The objective of this paper is

to study the reliability of assessment by analyzing the effects of

several influencing factors: number of test locations used to iden-

tify a conversion model between strength and rebound measure-

ment NC (number of cores), true value of concrete strength

variability, within-test variability of rebound measurements,

accepted uncertainty level, quantity to be assessed (mean strength,

strength variability), model identification approach (regression,

bi-objective) and the way of selection core locations (random or

conditional i.e. NDT based selection). To this end, a large campaign

of laboratory studies datasets was considered for the analysis in

the present study.

2. Datasets

In order to study the assessment reliability, datasets are

required to perform the analysis. Seventeen datasets that belong

to different laboratory studies presented in [25] were considered

in this paper. Each dataset resulted from one specific laboratory

study and specific testing conditions, but the specific study can

include one or several mixes with variety of concrete characteris-

tics (mix properties, age, curing, and admixture). The size of data-

sets varies from 100 to 216 test result pairs (rebound number R,

cube strength f c), i.e. in total more than 2500 test result pairs.

For comparison purposes and avoiding statistical biases due to

the effect of sampling uncertainty [21], we reduce the size of each

dataset by selecting only 100 test result pairs from its original

results. Consequently we have a fixed size for all datasets

(NT = 100). For each dataset, the selection was carried out by rank-

ing R values from minimum to maximum then subdivided them

into 100 groups and the median value of each group was selected

to be in the reduced dataset. This process of selection ensures that

the reduced datasets (each have NT = 100) well represented their

original datasets.

Table 1 gives the necessary information about these datasets.

They cover a wide range of concrete mean strength !f c (36–

77 MPa) and concrete variability (in terms of strength standard

deviation sðf cÞ from 6.4 to 17.4 MPa or in terms of strength coeffi-

cient of variation CVðf cÞ from 11 to 33%). Regarding the rebound

number values R (test results), the range of R corresponding to each

dataset is also shown in Table 1. Moreover, each R test result value

represents the average value of 10 replicates (10 rebound hammer

readings on the same surface of a concrete specimen during the

laboratory tests). Therefore, within-test variability (or repeatabil-

ity) of rebound measurements (in terms of the coefficient of varia-

tion, CVR) is known for each test result and the average values of

CVR for each dataset is given in Table 1. Through this study each

dataset is represented by the letter D followed by the mean

strength value then the value of strength coefficient of variation.

The mean strength and concrete variability values given in Table 1

will be called ‘‘true or reference” values and used as a reference:

estimated strengths will be compared to these true strengths.

3. Research methodology

The methodology adopted in this research was subdivided into

three main steps:

- assessing mean strength and strength standard deviation and

plotting the cumulative distribution function (CDF) curves,

- Assessing the quality of these estimates by developing risk

curves

- Studying the effect of the way of selection the NC test locations

on the reliability of assessment.

3.1. Assessing the values of !f cest and sðf cestÞ for all datasets and plotting

the CDF curves

In real practice, to assess the concrete strength in a structure,

the engineer establishes an investigation program: he carries out

NDT measurements (rebound hammer in this study) at a number

of test locations (NR) and from some of these test locations (NC)
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cores are extracted. Then he identifies a model between the con-

crete strength and NDT measurements using one of the model

identification approaches (regression, calibration or bi-objective).

In order to mimic the reality this process was simulated according

to the flowchart shown in Fig. 1. This flowchart illustrates how the

process was applied to each dataset given in Table 1. For each data-

set (NT = 100) two successive random selections were carried: (a)

the choice of NR test locations (NR < NT, here NR = 60), (b) the

choice of the NC core locations, NC being iteratively increased from

3 to 15. Since the specimens in this study are cubes, then NC rep-

resents the number of cubes used in the model identification pro-

cess. For each NC, and each simulation, two linear models

(f cest ¼ aRþ b) were identified using regression and bi-objective

approaches. Then, each model was used to calculate the estimated

strength values, test results, at NR test locations and as a result to

calculate the estimated mean strength !f cest and estimated concrete

variability sðf cestÞ. This process was repeated NI times (NI = 1000) so

the final outputs were, for each NC value and each approach, a

Fig. 1. Algorithm assessing the values of !f cest and sðf cestÞ.

Table 1

Datasets characteristics (NT = 100 for each dataset).

Dataset No. Symbol !f c (MPa) sðf cÞ, MPa CVðf cÞ % R-Range CVR %

1 D67-11 67.19 7.65 11.38 40–55 3.24

2 D77-15 77.40 11.24 14.52 42–53 3.12

3 D69-17 69.11 12.05 17.43 34–53 2.93

4 D36-18 35.78 6.42 17.95 32–44 5.77

5 D60-19 59.96 11.34 18.92 34–51 3.79

6 D63-19 63.24 12.02 19.00 42–57 3.39

7 D72-20 71.62 14.11 19.71 32–55 3.28

8 D65-20 64.92 12.88 19.84 34–59 5.12

9 D46-21 45.84 9.74 21.26 25–46 5.00

10 D42-22 41.82 9.29 22.21 27–38 8.84

11 D71-23 70.60 16.46 23.32 35–56 3.11

12 D43-24 42.50 10.16 23.90 29–45 4.82

13 D55-25 55.11 13.79 25.03 25–48 5.25

14 D44-25 44.36 11.18 25.21 24–45 5.33

15 D55-27 54.91 14.9 27.13 26–50 4.06

16 D63-27 63.45 17.35 27.34 23–49 4.86

17 D46-33 45.55 14.87 32.66 21–49 4.84
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series of 1000 values of !f cest and a series of 1000 values of sðf cestÞ

were produced. The adopted way to show these results is to draw

each series in terms of cumulative distribution function CDF.

To achieve this process a simulator was built. It was coded using

the programming language VBA (Visual Basic for Applications) that

integrated with Excel, for details information about VBA see [26].

3.2. Assessing the quality of estimation by developing ‘‘Risk Curves”

As explained in the introduction, a common indication about

the reliability of assessment using NDT is providing the estimated

value with a ±U% relative error (uncertainty). In fact, due to many

sources of uncertainties, the estimated values are scattered and

their CDF can be plotted. The reliability of estimation is improved

as the scatter reduces. Therefore factors affecting the scatter can

also control the reliability. To correlate these factors with the reli-

ability of assessment it is preferable to proceed in two steps:

(a) Using the CDF curve, fix an interval ±(U # T) around the true

reference/target value, T,

(b) Quantify the probability (or risk) that the estimated value

lies outside the fixed interval.

The concept to derive the risk values (i.e. probability of a wrong

prediction, outside the fixed interval) from CDF curve is illustrated

in Fig. 2. Risk values can be finally plotted as a function of NC to

establish new curves so-called ‘‘Risk curves”.

3.3. Studying the effect of the way of selection the NC test locations on

the reliability of assessment

The way of selection the NC test locations may also play a role

on the reliability of assessment. Methodology presented in Fig. 1

is based on the random selection of the NC test locations. However

these NC locations can be defined in accordance with certain con-

ditions applied on the NDT results ‘‘conditional selection”. The idea

of the conditional selection is to select the NC test locations that

cover, as much as possible, the whole range of the NDT measure-

ments distribution. The flowchart of Fig. 1 was thus applied with

a simple change (conditional selection instead of random selection

of NC locations). The following conditional selection rule was

applied: (a) rank all NDT test results from the lowest to the highest

value, (b) subdivide the set into NC subsets, (c) select a test location

where the NDT value is closest to the median value of each subset.

The same rule for the conditional core selection was earlier applied

on a synthetic dataset (generated dataset using Monte-Carlo simu-

lation) presented in a benchmark carried out by the members of

RILEM TC-249 committee [27–28]. It shows an improvement in

the reliability of the assessment so it is desired herein to apply it

on real laboratory datasets. However, this is not the only possible

rule for the conditional selection of cores depending on the NDT

values. For example, [29] proposes a method that is based on iden-

tifying the location of a set of NC coring points which can provide a

statistical distribution of NDT measurements similar to that pro-

vided by all NDT measurements.

4. Results and discussion

4.1. Cumulative distribution function CDF of !f cest and sðf cestÞ

As illustrated in Section 3.1, for each dataset each NC value and

each approach, a series of 1000 values of !f cest and a series of 1000

values of sðf cestÞ were produced and presented in terms of cumula-

tive distribution function CDF. For each dataset, the simulator pro-

vided CDF curves in four figures corresponding to the two

estimated quantities (!f cestand sðf cestÞ) with two approaches (regres-

sion and bi-objective) for each estimated quantity. Since it is

impractical to display herein the figures for all datasets, only the

figures corresponding to dataset D42-22 are shown in Fig. 3.

Fig. 3 illustrates how the CDF curves vary with NC. In fact the

analysis was performed for NC values (3–15) however to avoid

the curves congestion, the figures show only the curves that

corresponding to NC values (3, 6, 9, 12, 15). Fig. 3a and b refer

respectively to the mean strength estimation by regression and

bi-objective approaches while Fig. 3c and d refer to strength vari-

ability estimation. On the four figures the reference line (red verti-

cal line) represents the true reference value of the dataset which is

the target of assessment, given in Table 1, respectively 41.82 MPa

for !f c and 9.29 MPa for sðf cÞ. Therefore the reliability of assessment

is better as the CDF curve is closer to the reference line (i.e. less

Fig. 2. Proposed concept to derive risk value that corresponding to certain uncertainty using CDF curve.
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scatter). In an ideal case (no scatter), the CDF curve would coincide

with the reference line, but the sources of uncertainty (model

uncertainty, statistical uncertainty of sampling, measurement

uncertainty, uncontrolled factors) always exist and as a result

some scatter is unavoidable. However, as shown in Fig. 3a and b,

the scatter decreases as NC increases. Moreover, the reduction in

the scatter (i.e. improvement in reliability) appears remarkable

for low values of NC while it becomes almost negligible (i.e. expen-

sive without being effective) for higher NC values. The comparison

of CDF curves of regression approach with those of bi-objective

approach indicates that these two approaches are close in their

reliability for assessing the mean strength.

However, regarding strength variability assessment presented

in Fig. 3c and d, the result is different. For the regression approach,

Fig. 3c, increasing NC reduces the scatter but does not guarantee

the convergence towards the reference. The CDF curves show, even

with large NC, a left bias (meaning general underestimation of

strength variability). In contrast, the CDF curves corresponding to

bi-objective approach, Fig. 3d, show a significant reduction in the

scatter on both sides and a tendency to converge towards the true

reference value as NC increases. This finding confirms that the

common regression approach cannot be used to estimate the

strength variability and that the bi-objective approach answers

this need as previously shown by [7].

4.2. Analysis of the control factors using the risk curves

From previous section, it is clear that there is a relationship

between the reliability of assessment and the sources of uncer-

tainty so to quantify this relation and deepen the analysis the

CDF curves are used to establish risk curves as illustrated in Sec-

tion 3.2. The idea is for a certain interval of error (or accepted level

of uncertainty) around the true reference value, what is the risk

(probability) to have an estimated value outside this target

interval.

4.2.1. Analysis of risk curves corresponding to mean strength

estimation

To construct the risk curves of mean strength estimation, the

accepted uncertainty level was fixed (U = ± 10%) for the 17 datasets

considered in this study. Fig. 4a illustrates the risk curves that

belong to regression approach while curves corresponding to bi-

objective approach are shown in Fig. 4b. Looking at these graphs,

it is clear that the two approaches provide very similar results with

an improvement in reliability (reduction in risk) as NC increases for

all datasets. In accordance with the statistical aspects, the true con-

crete strength variability affects the scatter in estimated values

[30–31] and as a result it plays as a controlling factor in the assess-

ment reliability. Therefore, in the legend of Fig. 4, the 17 datasets

were arranged from 1 to 17 according to the true strength variabil-

ity (in terms of CVðf cÞ). Hence, we expected that the dataset with

the smallest variability (D67-11) produces the lowest risk values

because the small strength variability leads to CDF curve having

small scatter and as a result small risk (see Fig. 2). The risk curves

for dataset D67-11 in Fig. 4a and b are in agreement with our

expectation. However, the dataset with the largest variability

(D46-33) does not provide the highest risk values, which is pro-

duced by the dataset D42-22. This indicates the presence of other

control factors that have a significant role. From Table 1, it can be

seen that D42-22 the within-test variability CVR = 8.84% which is

higher than the value corresponding to D46-33 (CVR = 4.84%).

Hence beside the true strength variability, the within-test variabil-

ity (or repeatability) also plays as a control factor.

The effects of these controlled factors (concrete variability, NDT

within-test variability), in addition to uncontrolled factors, are

implicitly shown in Fig. 4 where the contribution of each factor

Fig. 3. CDF curves of concrete strength mean and variability estimation for concrete D42-22.
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is difficult to analyze. Additional figures were plotted to get a

clearer view upon this issue, by varying only one factor while the

other is fixed as much as possible. Fig. 5a and b show four risk

curves (corresponding to four datasets) selected from Fig. 4. The

two datasets in each figure (D67-11 and D72-20 in Fig. 5a and

D77-15 and D71-23 in Fig. 5b) have nearly the same within-test

variability (i.e. CVR). As a consequence, in each figure, the difference

between the two risk curves illustrates the effect of concrete vari-

ability on the assessment reliability. It is obvious that, for the same

value of NC, for the more variable dataset, the assessment of mean

strength is less reliable. However, the absolute difference between

the risk values decreases as NC increases and becomes negligible

when NC > 9.

Fig. 5c and d study the effect of within-test variability, CVR, on

the assessment reliability by comparing risk curves corresponding

to four datasets respectively D72-20 and D65-20 in Fig. 5c and

D60-19 and D63-19 in Fig. 5d. In each figure the two curves have

nearly the same true concrete variability, CVðf cÞ, and a close value

of mean strength. From Fig. 5c one can deduce that, for the same

NC, using bad measurement (i.e. larger CVR) leads to less reliable

Fig. 4. Risk curves of all datasets: for mean strength estimation with U = ±10%.

Fig. 5. Risk curves showing the effects of controlled factors on the assessment reliability of mean strength when U = ±10%, for each dataset CVR is indicated between

parentheses.
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assessment of mean strength. Fig. 5d shows that the curves for two

cases with a similar concrete variability and similar within-test

variability are very close.

4.2.2. Analysis of risk curves corresponding to strength variability

estimation

Risk curves of strength variability estimation for an accepted

uncertainty level (U = ± 25%) for the 17 datasets were shown in

Fig. 6a and b. Fig. 6a illustrates the handicap of regression approach

in estimating the strength variability since increasing NC offers no

guarantee regarding the reduction of risk values. On the contrary,

NC has significant effect on the risk curves with bi-objective

approach, as presented in Fig. 6b. For the risk curves of strength

variability estimation, the implicit effects of the factors deduced

in the case of mean strength (concrete variability, within-test vari-

ability) can also be noted.

To analyze these effects, several datasets selected from Fig. 6b

were shown in Fig. 7. These datasets are the same as those ana-

lyzed in Fig. 5a–d. From Fig. 7a and b for same NC and comparable

within-test variability CVR, the assessment reliability is better for

the concrete having more strength variability. It can be noted that

this effect is adverse than that presented in Fig. 5a and b for the

case of mean strength estimation; decreasing the concrete variabil-

ity makes the mean strength assessment more reliable, but the

concrete variability assessment less reliable. For the case of mean

strength estimation, the behavior is rational because capturing

Fig. 6. Risk curves of all datasets: for strength variability estimation with U = ±25%.

Fig. 7. Risk curves showing the effects of controlled factors on the assessment reliability of strength variability when U = ±25%, for each dataset CVR is indicated between

parentheses.
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mean strength is easier in a less variable concrete. Whilst, for the

case of strength variability estimation, the behavior (i.e. assessing

the strength variability is easier in a more variable concrete) seems

irrational. To understand the second behavior, it is necessary to

bear in mind the fact that the risk curves in this study were derived

from fixing a relative value for the accepted uncertainty level (i.e.

fixing U% consequently the absolute value (U # T) varies depending

on T). However fixing an absolute value for the uncertainty level

(i.e. using a fixed value instead of (U # T) in Fig. 2) leads to reverse

behavior i.e. the strength variability assessment becomes easier in

a less variable concrete. Therefore the statement about the effect of

true concrete variability on the reliability of assessing the concrete

strength variability depends on the way in which the accepted

uncertainty level is represented.

The effect of within-test variability on the assessment of

strength variability is illustrated in Fig. 7c and d. This effect is qual-

itatively identical to that was shown for mean strength assess-

ment, since a better (smaller) within-test variability decreases

the risk values (Fig. 7c) while the risk curves for two similar con-

cretes are very close to each other, Fig. 7d.

The comparison between risk curves plotted on Figs. 4 and 6

also shows that the convergence is slower for variability assess-

ment than for mean strength assessment. Thus for the same values

of uncertainty U% and prescribed risk, the NC value required for the

assessment of strength variability will be larger than that required

for the mean strength assessment.

4.3. Effect of the way of selection the NC test locations on the reliability

of assessment

All above results were obtained from the random selection of

the NC test locations. However, in this section the conditional

selection process detailed in Section 3.3 was applied in order to

see its effect on the assessment reliability. All steps of the method-

ology illustrated in Fig. 1 were followed with the only change

regarding the conditional selection of the NC test locations. There-

fore, after reanalyzing the 17 datasets considered in this study, ser-

ies of 1000 values of !f cest and a series of 1000 values of sðf cestÞ were

obtained for each dataset, each NC value and each approach. The

risk values were calculated and used to build risk curves as previ-

ously mentioned.

To study the effect of conditional selection of NC test locations

on the mean strength estimation, the risk curves corresponding

to two datasets (respectively D42-22 and D77-15) that were the

extreme cases on Fig. 4 were selected, and the two approaches

(regression or bi-objective method) were used. The curves with

random selection were redrawn on Fig. 8 beside the corresponding

risk curves built with the conditional selection. The comparison

between random and conditional cases shows a significant reduc-

tion in the risk values (improvement in reliability) when using the

conditional selection. The behavior is very similar for regression

and bi-objective approaches. The magnitude of risk reduction is

high for the case of highly initial risk values. However for all cases

the amount of reduction decreases as NC increases.

Regarding the strength variability estimation, the risk curves

resulted from the two options of NC selection (random and condi-

tional) are plotted on Fig. 9 for two datasets that represented the

extreme curves in Fig. 6b. Regression approach is not considered

since it fails to address the strength variability. Fig. 9 shows a

reduction in risk values (improvement in reliability) when NC loca-

tions are selected conditionally as compared with the values corre-

sponding to the case of random selection. The magnitude of the

reduction is larger for the dataset with high initial risk values.

Consequently, since conditional selection induces no

additional cost and since it can improve the reliability of assess-

ment for both estimated quantities (mean strength and strength

variability), this process must be strongly recommended. It must

be noted that conditional selection is fully compatible with in-

situ concrete assessment: it only requires that the preliminary

NDT investigation is carried out before the core location is effec-

tively decided.

Fig. 8. Risk curves showing the effect of the way of selection the NC test locations on the assessment reliability of mean strength when U = ±10%.

Fig. 9. Risk curves showing the effect of the way of selection the NC test locations

on the assessment reliability of strength variability when U = ±25%.
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Other factors exist that may improve the reliability of assess-

ment. One of these factors is the number of test locations for

NDT measurements (NR) or in statistician wording ‘‘sample size”.

From statistical aspects the scatter of sampling distribution

[30–31] of mean strength depends on the ratior=
ffiffiffiffiffiffiffi

NR
p

, where r

is the standard deviation of concrete strength population.

Therefore increasing the sample size leads to reduce one of the

uncertainty sources (sampling uncertainty [21]) and, as a result,

reduces the scatter of CDF curves. In this study all the results have

been obtained with NR = 60 and larger NR may have some reduc-

tion effect on the risk values.

Finally, it is necessary to note that all risk values presented in

this paper were corresponding to fixed values of accepted uncer-

tainty level, (U = ± 10%) for mean strength estimation and

(U = ± 25%) for strength variability estimation. Changing these val-

ues would of course lead to different risk values as illustrated in

the Fig. 2 since widening the accepted uncertainty interval reduces

the risk values and vice versa. However all effects illustrated in this

study would keep unchanged.

5. Conclusions

Reliability of assessing the concrete strength using NDT mea-

surements (rebound hammer in this study) and destructive tests

was studied in this paper. Seventeen datasets that covered a wide

range of true mean strength !f c (36–77 MPa) and true strength

variability (in terms of strength standard deviation sðf cÞ

(6.4–17.4 MPa) or in terms of strength coefficient of variation

CVðf cÞ (11–33%) were considered. Two estimated quantities (mean

strength and strength variability) had been the target of the assess-

ment using two model identification approaches: regression and

bi-objective. The effects of several factors on the reliability of

assessment were analyzed. These are: within-test variability of

rebound measurements, true concrete strength variability, number

of test locations used to identify the model between strength and

rebound measurement NC (number of cores in the case of real

structure), way of selection the NC test locations (random or

conditional), and the model identification approach (regression

or bi-objective). The effects of these factors on the reliability of

assessment have been confirmed and are summarized in Table 2.

As shown in Table 2, the assessment of concrete strength vari-

ability using the regression approach provides unreliable assess-

ment. Regarding the effect of NC, reducing NC leads to less

reliable estimations of the mean strength and concrete strength

variability whatever the model identification approach (regression

or bi-objective). Whilst reducing the within-test variability of the

rebound measurements leads to more reliable assessment. Regard-

ing the true strength variability of the concrete under investiga-

tion, less variable concrete gives more reliable estimation of

concrete mean strength. However the estimation of the concrete

strength variability will be less reliable (this statement is based

on considering relative uncertainty or error around the true value).

Concerning the way of selection core locations, since conditional

selection requires no additional cost and since it can improve the

reliability of assessment for both estimated quantities (mean

strength and strength variability), this process must be strongly

recommended.

The NC plays a major role since the increase of this factor always

ensures a better reliability. To obtain assessed values of mean

strength and strength variability having the same reliability, the

NC value required for the assessment of strength variability should

be larger.

Application of the bi-objective approach on datasets that cov-

ered a wide range of concrete mean strength and strength variabil-

ity has confirmed the robustness of this approach and its ability in

assessing concrete strength variability in addition to mean

strength.

While playing an important role, the concrete intrinsic variabil-

ity is usually not a degree of freedom during the investigation: it

can be assessed, but not changed. On the contrary, the interest of

minimizing the within-test variability has been confirmed. This

issue will be addressed further by comparing the reliability of

assessment with NDT methods having different values of within-

test variability (typically rebound hammer versus ultrasonic

velocity).

This analysis also paves the way towards practical rules for

quantifying the relation between the number of cores NC and the

reliability of the assessment, or for defining the practical number

of cores required to reach a prescribed reliability.

Appendix A. The principle of bi-objective approach

Any investigation program with NDT technique (rebound ham-

mer for example) provides a data of NC-pairs of (R, f c) i.e. NC-test

locations with the rebound measurement, R, and core strength,

f c , values corresponding to each test location. This data is used to

identify a conversion model between concrete strength and the

rebound number test results. Usual mathematical shapes of such

models have two parameters [6,17]. For the case of linear model,

the model formula is f cest ¼ aRþ b. Analytically, two conditions

are required in order to derive the values of the parameters a

and b. For bi-objective approach, we consider our two objectives

as the conditions for obtaining the unknown parameters, i.e. by

ensuring that both mean strength and standard deviation are iden-

tical for real values and estimated ones:

!f cest ¼ !f c ðA1Þ

sðf cestÞ ¼ sðf cÞ ðA2Þ

where !f cest;!f c are the estimated and measured (on cores) mean

strength values respectively, while sðf cestÞ, sðf cÞ are the estimated

strength variability and the variability calculated from the core

strengths respectively.

Applying the first condition on a modelf cest ¼ aRþ b, we get:

!f cest ¼ a!Rþ b ¼ !f c ðA10Þ

while the second condition can be rewritten in the form:

sðf cestÞ ¼ sðf cÞ ! s2ðf cestÞ ¼ s2ðf cÞ ! varðf cestÞ ¼ varðf cÞ

Table 2

Summary of the effects of factors considered in this study on the reliability of assessment.

Factor Mean strength estimation Strength variability estimation

Regression Bi-objective Regression Bi-objective

Reducing the number of test locations used to identify the model between strength

and rebound measurement NC

Worsening Worsening Approach provides unreliable

assessment

Worsening

Reducing within-test variability of rebound measurements CVR Improvement Improvement Improvement

Reducing the true concrete strength variability CVðf cÞ Improvement Improvement Worsening

Using conditional selection for NC test locations instead of random selection Improvement Improvement Improvement
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varðaRþ bÞ ¼ varðf cÞ ðA20Þ

a2varðRÞ ¼ varðf cÞ

Consequently, the values of the unknown parameters are:

a ¼ sðf cÞ=sðRÞ ðA3Þ

b ¼ !f c " a!R ðA4Þ

where !R; sðRÞare respectively the mean and standard deviation val-

ues of R test results corresponding to the core locations (i.e. NC

locations).

References

[1] RILEM NDT-7, Recommendations for testing concrete by hardness methods,
Tentative recommendation, 7-NDT committee – nondestructive testing, Mater.
Struct. 10 (5) (1977) 313–316.

[2] Pessiki SP (chair). In-place methods to estimate concrete strengths. ACI
228.1R-03 report; 2003.

[3] IAEA International Atomic Energy Agency. Guidebook on non-destructive
testing of concrete structures. Testing Training Course Series No. 17; 2002.

[4] A. Masi, L. Chiauzzi, V. Manfredi, Criteria for identifying concrete homogeneous
areas for the estimation of in-situ strength in RC buildings, Constr. Build.
Mater. 121 (2016) 576–587.

[5] EN 13791, Assessment of in situ compressive strength in structures and precast
concrete, CEN, Brussels, 2007.

[6] D. Breysse, Nondestructive evaluation of concrete strength: an historical
review and new perspective by combining NDT methods, Constr. Build. Mater.
33 (21) (2012) 139–163.

[7] M. Alwash, Z.M. Sbartai, D. Breysse, Non-destructive assessment of both mean
strength and variability of concrete: a new bi-objective approach, Constr Build
Mat 113 (2016) 880–889.

[8] Proverbio E, Venturi V. Reliability of nondestructive tests for on site concrete
strength. 10th International Conf. on Durability of Building Materials and
Components, Lyon, 17–20 April 2005.

[9] M. Fischli, A. Moczko, Rebound hammer, in: D. Breysse (Ed.), Non-Destructive
Assessment of Concrete Structures: Reliability and Limits of Single and
Combined Techniques, State-of-the-Art Report of the RILEM Technical
Committee TC 207-INR, Springer, 2012, pp. 101–110.

[10] N.J. Carino, in: E.G. Nawy (Ed.), Concrete Construction Engineering Handbook,
CRC press, Boca Raton, FL, Nawy, 1997. chapter 19, 19/1-68.

[11] A. Brencich, G. Cassini, D. Pera, G. Riotto, Calibration and reliability of the
rebound (Schmidt) hammer test, Civil Eng. Archit. 1 (3) (2013) 66–78.

[12] R. Pucinotti, Reinforced concrete structure: nondestructive in situ strength
assessment of concrete, Constr. Build. Mater. 75 (2015) 331–341.

[13] G.F. Kheder, A two stage procedure for assessment of in situ concrete strength
using combined non-destructive testing, Mater. Struct. 32 (1999) 410–417.

[14] H. Qasrawi, Concrete strength by combined nondestructive methods simply
and reliably predicted, Cem. Concr. Res. 30 (2000) 739–746.

[15] V.M. Malhotra, N.J. Carino, Handbook on Non Destructive Testing of Concrete,
CRC Press, 2004.

[16] Ministry of railways (India). Guidelines on non-destructive testing of bridges
BS – 103 August, 2009.

[17] K. Szilágyi, A. Borosnyói, 50 years of experience with the Schmidt rebound
hammer, Concrete Structures 10 (2009) 46–56.

[18] FHWA. Guide to non-destructive testing of concrete, FHWA-SA-97-105,
USDOT, Washington DC, 1997.

[19] K. Szilágyi, A. Borosnyói, I. Zsigovics, Extensive statistical analysis of the
variability of concrete rebound hardness based on a large database of 60 years
experience, Constr. Build. Mater. 53 (2014) 333–347.

[20] N.J. Carino, Nondestructive testing of concrete: history and challenges, SP 144–
30, in: P.K. Mehta (Ed.), Concrete Technology – Past, Present and Future, ACI,
Detroit, MI, 1994, pp. 623–678.

[21] N. Pereira, X. Romao, Assessment of the concrete strength in existing buildings
using finite population approach, Constr. Build. Mater. 110 (2016) 106–116.

[22] ASTM C805–97. Standard test method for rebound number of hardened
concrete. ASTM Standards, West Conshohocken; 1997.

[23] J.H. Bungey, S.G. Millard, Testing of Concrete in Structures, 3rd edition.,
Chapman and Hall, 1996.

[24] M. Alwash, D. Breysse, Z.M. Sbartai, Non-destructive strength evaluation of
concrete: analysis of some key factors using synthetic simulations, Constr.
Build. Mater. 99 (2015) 235–245.

[25] K. Szilágyi, Rebound surface Hardness and Related Properties of Concrete (P.hD.
thesis), Budapest University of Technology and Economics, 2013.

[26] J. Walkenbach, Excel VBA Programming for Dummies, John Wiley & Sons Inc.,
USA, 2013.

[27] Breysse D et al. Comparing investigation approaches and NDT methodologies
for concrete strength estimation: an international benchmark. NDT-CE conf.
Berlin, 15–17 Sept. 2015.

[28] M. Alwash, D. Breysse, Z. Sbartaï, Using Monte-Carlo simulations to evaluate
the efficiency of different strategies for nondestructive assessment of concrete
strength, Mater. Struct. 50 (2017) 14p, http://dx.doi.org/10.1617/s11527-016-
0962-x.

[29] V. Pfister, A. Tundo, V. Luprano, Evaluation of concrete strength by means of
ultrasonic waves: a method for the selection of coring position, Constr. Build.
Mater. 61 (2014) 278–284.

[30] D. Montgomery, G. Runger, Applied Statistics and Probability for Engineers,
John Wiley & Sons Inc., USA, 2003.

[31] B. Harding, C. Tremblay, D. Cousineau, Standard errors: a review and
evaluation of standard error estimators using Monte Carlo simulations,
Quant. Methods Psychol. 10 (2) (2014) 107–123.

M. Alwash et al. / Construction and Building Materials 140 (2017) 354–363 363

http://refhub.elsevier.com/S0950-0618(17)30324-0/h0005
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0005
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0005
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0020
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0020
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0020
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0025
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0025
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0025
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0025
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0030
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0030
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0030
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0035
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0035
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0035
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0045
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0045
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0045
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0045
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0045
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0045
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0050
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0050
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0050
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0050
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0055
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0055
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0060
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0060
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0065
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0065
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0070
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0070
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0075
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0075
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0075
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0085
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0085
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0095
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0095
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0095
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0100
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0100
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0100
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0100
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0100
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0105
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0105
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0115
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0115
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0115
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0120
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0120
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0120
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0125
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0125
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0125
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0130
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0130
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0130
http://dx.doi.org/10.1617/s11527-016-0962-x
http://dx.doi.org/10.1617/s11527-016-0962-x
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0145
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0145
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0145
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0150
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0150
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0150
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0155
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0155
http://refhub.elsevier.com/S0950-0618(17)30324-0/h0155


Résumé   

Pour évaluer la résistance mécanique du béton dans un ouvrage existant, la méthodologie courante 

combine des mesures non destructives (CND) comme le rebond ou/et la vitesse des ondes 
ultrasoniques avec la technique destructive (carottes) afin de produire une relation ‘‘modèle de 
conversion” entre la résistance mécanique et les mesures CND. Le modèle de conversion est utilisé 
pour estimer la valeur locale de résistance mécanique à chaque emplacement de test en utilisant la 
valeur CND correspondante. Ensuite, on calcule les estimations de la résistance moyenne et/ou de 

l’écart-type de la résistance  (variabilité de la résistance du béton). Cependant, la fiabilité d’estimation 
est toujours discutable en raison des incertitudes associées à l’évaluation de la résistance basée sur les 

mesures CND. Pour améliorer la fiabilité, les incertitudes doivent être réduites en spécifiant et en 
contrôlant leurs facteurs d’influence. Par conséquent, l’objectif de cette thèse est d’analyser la 
méthodologie d’évaluation courante  afin de fournir des recommandations pratiques qui peuvent 

améliorer la fiabilité de l’évaluation de la résistance in-situ du béton dans les ouvrages existantes par 
des tests non destructifs et des carottes. Pour ce but, un simulateur a été construit afin d’analyser les 
effets des facteurs les plus influents en utilisant une vaste campagne de données provenant de sources 

différentes (études in situ ou en laboratoire et données synthétiques générées). La première 
contribution de ce travail est le développement d’une nouvelle approche d’identification du modèle 
‘‘bi-objectif” qui peut efficacement capturer la variabilité de la résistance mécanique en plus de la 
moyenne. Après avoir étudié l’effet du mode de sélection des emplacements pour les carottes, une 

méthode a été proposée pour sélectionner ces emplacements en fonction des mesures CND ‘‘sélection 
conditionnelle” qui améliore la qualité de l’évaluation sans coût supplémentaire. Une dernière 
innovation est l’établissement de courbes de risque qui quantifient la relation entre le nombre de 

carottes et la précision de l’estimation. Enfin, des recommandations ont été formulées afin de fournir 
des estimations plus fiables.  

 

Mots-clés: résistance in-situ du béton, résistance mécanique moyenne, variabilité du béton, vitesse des 

ondes ultrasoniques, rebond, CND, combinaison, simulation, incertitude, stratégie d’évaluation, 
fiabilité d’évaluation 

 

Abstract  
To assess concrete strength in an existing structure, the current methodology combines nondestructive 

measurements (NDT) like rebound hammer or/and pulse velocity with destructive technique (cores) in 

order to implement a relationship ‘‘conversion model” between the compressive strength and NDT 
measurements.  The conversion model is used to estimate the local strength value at each test location 

using the corresponding NDT value. Then the estimated mean strength and/or estimated strength 

standard deviation (concrete strength variability) values are calculated. However, the reliability of 

these estimated values is always a questionable issue because of the uncertainties associated with the 
strength assessment based upon NDT measurements. To improve the reliability, the uncertainties must 

be reduced by specifying and controlling their influencing factors. Therefore, the objective of this 

thesis is to analyze the current assessment methodology in order to provide practical recommendations 
that can improve the reliability of assessing the in-situ strength in existing concrete structures by 

nondestructive tests and cores. To this end, a simulator was built in order to analyze the effects of the 

most influencing factors using a large campaign of datasets from different sources (in-situ or 
laboratory studies, and generated synthetic data). The first contribution of this work is the 

development of a new model identification approach “bi-objective” that can efficiently capture the 
strength variability in addition to the mean strength. After studying the effect of the way of selection 

the core locations, a method was proposed to select these locations depending on the NDT 
measurements “conditional selection” that improves the quality of assessment without additional cost. 
A third innovation was the development of a procedure to identify the relation between the number of 

cores and the accuracy of the estimation. Finally recommendations were derived in order to provide 
more reliable estimated values. 

 

Keywords : in-situ concrete strength, mean strength, concrete variability, ultrasonic pulse velocity, 

rebound hammer, NDT, combination, simulation, uncertainty,  assessment strategy,  assessment 
reliability 
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