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1) Introduction

Depuis leur développement il y a 30 ans, les pinces optiques et les pièges

optiques  sont  devenus  des  outils  incontournables  pour  manipuler  de  manière

non-invasive des objets à l’échelle nanométrique. Ces outils ont donc essaimé

dans un grand nombre de disciplines, allant de la physique fondamentale à la

biologie en passant par la chimie. En biologie en particulier, les pinces optiques

ont été cruciales pour mesurer les forces moléculaires, les propriétés mécaniques

de l’ADN, caractériser les dynamiques de moteurs moléculaires spécifiques, etc

[1].

De nombreuses configurations expérimentales de pièges optiques ont été

développées.  La  grande  variété  de  systèmes  a  permis  d’atteindre  un  contrôle

extrêmement  efficacement  de  l’objet  piégé  et  les  systèmes  de  détection  en

position associés ont atteint des niveaux de résolution exceptionnels. A l’heure

actuelle,  un  nouveau  domaine  d’étude  a  émergé,  exploitant  au  maximum  la

maîtrise  que  ces  outils  optiques  uniques  permettent  d’atteindre.  Ce  domaine

consiste à utiliser les objets micro- ou nanométriques piégés optiquement comme

sondes  locales  de  processus  stochastiques  spécifiques  pour  tester  un  certain

nombre  de  prédictions  dans  le  domaine  de  la  thermodynamique  physique

statistique hors-équilibre [2]. De nombreuses expériences ont ainsi été réalisées

avec des résultats très importants rendus possibles par la capacité de mesurer la

position instantanée et microscopique de l'objet piégé. Avec ces outils, un grand

nombres  de  théorèmes  de  la  thermodynamique  ont  été  vérifiés  et  un  grand

nombres d’inégalités (telles de Crookes, Jarzynski, etc) ont pu être étudiées avec

une résolution jamais atteinte. Un point en particulier qui a retenu l’attention de

la communauté récemment est la possibilité offerte dans une configuration de

piège  optique  de  mesurer  exactement  les  échanges  de  chaleur  et  de  travail

réalisés par l'objet piégé dans un grand ensemble de potentiels dynamiques. Un

cas  particulier  de  tels  potentiels  est  le  cas  des  potentiels  dits  bistables  qui

comprennent de potentiels  attractifs  séparés par une barrière.  La bille partage

donc son temps entre deux positions spatiales métastables [3].

2) Résultats et discussion

Les  travaux  présentés  dans  cette  thèse  explorent  différentes  propriétés

dynamiques de l'objet piégé dans de tels potentiels. Ces potentiels sont réalisés à

l'aide d'un piston optique. 

Fig. 1 Schéma du montage expérimental. Le laser à 785 nm est focalisé sur un miroir au

travers d’une cellule fluidique, piégeant en son col une bille diélectrique de diamètre typique 1

micron. La diffusion vers l’avant du laser sur la bille, réfléchie sur le miroir, est renvoyée sur une



photodiode rapide (PIN) ou une caméra CCD pour reconstruction de la trajectoire de la bille

piégée.

Un  tel  piston  consiste  en  une  pince  optique  proche  d'une  surface

réfléchissante  dont  l'onde  incidente  et  réfléchie  vont  interférer  permettant  de

sélectionner le type de potentiel dans lequel un objet va évoluer – Fig. 1. Un

changement dans la position du miroir  va permettre d’altérer continûment les

propriétés du potentiel d'interaction. Il sera montré comment le type de régime

dynamique de l'objet évolue à travers le contrôle précis de cette variable externe.

Une transformation continue du potentiel d'interaction est également associée à

des  transitions  dynamiques  dont  les  propriétés  thermodynamiques  sont

déterminées  et  mesurée  avec  une  grande  précision  relative  à  l’énergie  de  la

fluctuation  thermique.  Finalement  le  contrôle  du  potentiel  optique  offre  par

l'ajout d'un faisceau supplémentaire la possibilité d'étudier les différents régimes

dynamiques de l'objet dans un potentiel bistable en régime de forçage.

Dans  une  première  partie  du  travail,  les  systèmes  hors  équilibre

stationnaires sont présentés dans leur généralité puis le cas de la bistabilité est

discuté plus en détail ainsi que le problème directement lié dit de Kramers [4].

Une introduction sera également donnée sur différents potentiels optiques non

linéaire et la dynamique de particule brownienne piégée qui y est associée, en

tenant compte en particulier du fait que la particule piégée agit comme une sonde

locale  cartographiant  dans  l’espace  et  le  temps  au  cours  de  sa  diffusion  le

potentiel  de  piégeage.  Un  rapide  résumé  de  protocoles  thermodynamiques

intéressants  ayant  été  réalisé  ces  dernières  années  est  présenté  et  le  régime

mécanique dans lequel les expériences sont réalisées dans cette thèse est spécifié

en  détail.  Nous insistons  en  particulier  sur  le  caractère  sur-amorti  du régime

dynamique de nos expériences.

Le deuxième chapitre présente le piston optique en tant que tel. Ce piston

optique  est  réalisé  à  partir  d'une  onde  stationnaire  formée  par  un  faisceau

incident  et  sa  réflexion sur  un miroir  –  voir  Fig.  2.  Les  spécificités  de cette

configuration par rapport aux pinces optiques conventionnelles sont discutées en

détail  et  illustrées  par  quelques  exemples.  Après  avoir  décrit  le  montage

expérimental  lui-même,  la  structure  du  champ  et  de  l’onde  stationnaire  sont

définis afin de pouvoir mesurer la dynamique, à une dimension, de l'objet piégé

suivant  l'axe  optique.  Le  potentiel  dans  lequel  la  bille  évolue  est  formé par

l'interaction entre le champ optique et la réponse diélectrique de la nano sphère.

La modulation de la position du miroir permet la construction d’interférences

constructives  ou  destructives  par  rapport  au  col  (waist)  du  faisceau  gaussien

focalisé  et  offre  un  piège  stable  pour  la  bille  à  cet  endroit  (interférence

constructive) ou instable (interférence destructive). Dans ce dernier cas, la bille

sera piégée devant ou derrière le col et pour une intensité de laser bien choisie

elle partagera dynamiquement son temps entre ces positions moyennes. Sur une

telle séparation des temps, il est possible d’observer une dynamique de la bille

réellement  bistable.  Par  la  mesure  des  temps  de  résidence  dans  ce  potentiel

bistable ainsi que les propriétés locales de confinement de la bille, le problème

de Kramers est alors parfaitement spécifié et permet de décrire quantitativement

la dynamique associée à de tels processus bistables stationnaires. Il nous permet

de  déterminer  entièrement  le  potentiel  d'interaction  de  la  bille.  La  figure  3

montre l’enregistrement typique du signal de saut de la bille entre les 2 minima

locaux de piégeage.



Fig. 2 : (a) Schéma du piston optique. La bille (rayon R=500 nm) est piégée par un

faisceau  Gaussien  focalisé  au  travers  de  l’objectif  de  microscope.  Le  miroir  positionné  au

voisinage  du  col  du  faisceau  détermine  l’évolution  cohérente  du  potentiel  optique  (b).  En

fonction de la distance entre le miroir et l’objectif, le potentiel optique correspond à un piège

harmonique (c) ou un piège bistable (d).

Le  troisième  chapitre  utilise  ce  contrôle  sur  les  différents  potentiels

optiques afin d'étudier la transition dynamique de la bille d’un potentiel stable,

quasi harmonique vers un potentiel bistable. Pour ce faire, la position du miroir

du  piston  est  changée  pas  à  pas,  laissant  la  bille  relaxer  dans  sa  position

d'équilibre dans chacune de ces nouvelles configurations. Exploitant la méthode

de  résolution  de  potentiel  du  chapitre  précédent,  il  est  alors  possible  de

déterminer  la  trajectoire  de  configuration  lorsque  l'objet  piégé  traverse  une

région  de  bistabilité.  La  mesure  de  cette  transition  réversible  permet  la

détermination des quantités thermodynamiques qui y sont associées, à savoir le

travail et la chaleur.

Le  quatrième  chapitre  exploite  la  capacité  à  placer  la  bille  dans  une

dynamique bistable pour appliquer sur le système bistable une force extérieure

de fréquence et  amplitude donnée afin  d’étudier  le  degré  de synchronisation,

c’est a dire la capacité mécanique de la bille à suivre la perturbation extérieure

[5]. Dans l’étude usuelle de la dynamique de systèmes mécaniques en régime de

forçage,  la  force  extérieure  prend  une  forme  sinusoïdale,  ce  qui  implique

d'appliquer  une  force  parfois  positive  ou  négative  sur  le  système.

Expérimentalement  une  telle  dynamique  est  délicate  à  réaliser  vu  la

configuration de montage utilisée, c’est pourquoi le système est placé dans une

configuration telle que le potentiel de piégeage, sur lequel est superposée une

force  extérieure  constante  de  pression  de  radiation,  induit  une  dynamique

bistable symétrique. Comme le potentiel formé par le laser de piégeage est dans

une enveloppe quasi harmonique, une diminution de la pression de radiation par

le  second  faisceau  est  équivalente  à  l'application  d'une  force  négative  sur  le

système. Après obtention d'une dynamique bistable avec les deux faisceaux, le

second laser de poussée est modulé autour de sa valeur constante de pression de

radiation  et  la  dynamique  de  synchronisation  induite  est  étudiée.  Une  telle

configuration permet d’étudier les régimes de faible perturbation extérieur (une

trop  forte  perturbation  pousse  la  bille  hors  du  piège  et  la  force  de  pression



constante ne doit pas être trop grande pour rester "linéaire" dans le potentiel de

piège). Les forces appliquées sur la bille piégée sont mesurées en plaçant la bille

dans un potentiel  quasi harmonique puis déterminés via le déplacement de la

bille.  La  seconde  partie  du  chapitre  explore  également  les  régimes  de

synchronisation, mais cette fois à travers la modulation dynamique de la position

du miroir. Ce régime permet de changer continûment le potentiel d’interaction de

la bille et donc de passer d’un potentiel bistable symétrique a un potentiel très

fortement  asymétrique.  Une telle  approche permet  d'atteindre  des  régimes  de

forçage  fort,  c'est  à  dire  des  régimes  ou  l’amplitude  de  la  force  externe  est

grande. En effet une très grande perturbation du potentiel, donc de la position du

miroir, pousse la bille  dans le potentiel  stable le plus proche.  Dans une telle

configuration la dynamique de la bille est mesurée à travers la diffusion vers

l'avant  d'un faisceau sonde de faible  intensité  envoyée sur  la  bille  et  dont  la

transmission est collectée sur une photodiode à quadrants.

Fig. 3 : Trace temporelle associée à la dynamique bistable de la bille piégée, telle qu’elle est

acquise  par  la  photodiode rapide  de  la  figure 1.  Le  temps  d’acquisition  est  de  60s,  à  une

fréquence d’échantillonnage de 262 kHz.

Dans le cinquième et dernier chapitre,  les futurs développements du montage

optique actuel sont présentés ainsi qu'un ensemble de perspectives de recherche.

Tout d'abord la résolution minimale pour la détection d'une force externe par

pression de radiation est discutée [6]. Afin de réaliser ces mesures, une nano-

sphère  d'or  de diamètre  150 nm est  piégée.  Le  piégeage d’une nanoparticule

métallique de petit  diamètre présente des difficultés pour garantir  la présence

d'un objet unique dans le piège et non un agrégat où de multiples particules. Pour

discriminer ces différentes possibilités un système d'imagerie interférométrique à

été  ajouté sur le montage.  Via l'imagerie,  l'approche des objets  avant  d'entrer

dans le piège peut être suivi en temps réel. En suivant également l'intensité de

contraste du motif d'interférence de l’objet piégée, sa nature peut être résolue en

déterminant  la  présence  d'agrégats  où  de  multiples  particules.  Pour  une

nanoparticule unique piégée, une force la pression de radiation est appliqué sur

l'objet par un second laser et cette force est mesurée à travers le déplacement de

la bille dans le piège. L'objectif de cette mesure est de déterminer la plus petite

force  mesurable  à  une  fréquence  donnée  à  travers  le  déplacement  de  l'objet

piégée. Pour ce faire un système d'amplification par verrouillage de phase est

utilisé pour extraire la modulation périodique de déplacement de la bille piégée



du  mouvement  de  diffusion  brownien.  Cette  configuration  expérimentale

présente une très bonne résolution dans la mesure de forces faibles sur l'objet

piégé.  Ce montage optique et  ce  système de détection  de forces  faibles  sont

ensuite  exploités  dans  le  cadre  de  la  mesure  de  forces  optiques  chirales.

L’expérience ici consiste à piéger un objet chiral devant un miroir dichroïque,

d’injecter dans le piève un deuxième faisceau de longueur d’onde résonante avec

le  dichroïsme circulaire  de  l'objet  chiral  piégé.  La  polarisation  de  ce  second

faisceau  est  ensuite  périodiquement  modulée.  Une  étude  théorique  faite  au

laboratoire montre que la chiralité de l'objet se couple avec la chiralité du champ

optique  pour  faire  émerger  une  composante  de  force  ne  dépendant  que  du

couplage chiral entre l'objet et la particule chirale. Suivant la chiralité du champ

le  signe  de  la  force  s’inverse.  Finalement  des  perspectives  plus  techniques

d'amélioration  du  montage  expérimental  sont  présentés,  en  particulier

l'amélioration de la détection par imagerie interférométrique ainsi que la méthode

de  modulation  utilisée  pour  la  mesure  des  forces  chirales,  en  particulier  par

l'introduction d'un modulateur photoélectrique.

3) Conclusion

Cette thèse présente une nouvelle configuration de piégeage optique qui

permet la mise en œuvre d’un grand nombre de protocoles physiques. Le haut

degré de contrôle du piston optique décrit  dans ce travail  permet en effet de

couvrir expérimentalement des situations relevant aussi bien des systèmes hors-

équilibres  stationnaires  (chapitres  sur  la  bistabilité  opto-mécanique  et  sur  la

synchronisation)  que  des  problématiques  des  machines  de  force  à  haute

résolution  (chapitre  5).  Ce  travail  fait  la  démonstration  de  l’intérêt  de  la

configuration, en démontrant notamment une résolution de mesures de forces de

pression  de  radiation  optiques  sans  précédent.  Si  les  résultats  sur  les  forces

chirales  optiques  ne  sont  pas  encore  au  niveau  du  contrôle  nécessaire  pour

détecter  les  forces  au  niveau  de  nanoparticules  chirales  uniques,  les  données

obtenues à ce jour permettent à l’issue de ce travail d’identifier clairement les

marges de progression disponibles. C’est dans ce contexte de la chiralité optique

que  ce  travail  se  conclut  et  qu’il  ouvre  des  perspectives  uniques  qui  seront

évidemment au centre des expériences futures qui seront menées au laboratoire

sur ce système de piston optique.

4) Références

[1] D. Grier, Nature 424, 810 (2003)

[2] U. Seifert, Rep. Prog. Phys. 75, 126001 (2012)

[3] A. Berut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, and E.

Lutz, Nature 483, 187 (2012)

[4] L.I. McCann, M. Dykman, and B. Golding, Nature 402, 785 (1999)

[5] A. Simon and A. Libchaber, Phys. Rev. Lett. 68, 3375 (1992)

[6] L. Liu, S. Kheifets, V. Ginis, and F. Capasso, Phys. Rev. Lett.  116, 228001

(2016)

Liste des présentation et des conférences :

Les Houches, Août 2013 – Ecole d'été : Optique quantique et nanophotonique + Poster : 

Optical Tweezing Above a Mirror, Gabriel Schnoering, Cyriaque Genet and Thomas 

Ebbesen



Nanoplasmonics: Faraday Discussion 178, 16 - 18 February 2015, London, United 

Kingdom + Poster : Inducing dynamical bistability by reversible compression of an optical

piston, Gabriel Schnoering, Cyriaque Genet and Thomas Ebbesen

Nanolight 2016, Mar 06 -- Mar 12, Benasque + Poster : Inducing dynamical bistability by 

reversible compression of an optical piston, Gabriel Schnoering, Cyriaque Genet and 

Thomas Ebbesen

Liste des publications :

Gabriel Schnoering and Cyriaque Genet, "Inducing dynamical bistability by reversible 

compression of an optical piston", Phys. Rev. E 91, 042135

R. O. Behunin, D. A. R. Dalvit, R. S. Decca, C. Genet, I. W. Jung, A. Lambrecht,

A. Liscio, D. López, S. Reynaud, G. Schnoering, G. Voisin, and Y. Zeng, "Kelvin

probe  force  microscopy  of  metallic  surfaces  used  in  Casimir  force

measurements", Phys. Rev. A 90, 062115

G.  Schnoering,  H.  Wendehenne,  A.  Canaguier-Durand,  C.  Genet  "Measuring

weak radiation pressure forces below the brownian diffusion noise level" –  en

prépartion

http://journals.aps.org/pre/abstract/10.1103/PhysRevE.91.042135
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.91.042135
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.91.042135
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.91.042135
http://benasque.org/2016nanolight/
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.91.042135
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.91.042135




CONTENTS

1 implementing dynamic processes with opti-

cally trapped brownian particles 5
1.1 Optical forces 6
1.2 Optical trapping in the Mie regime 7
1.3 Standing wave optical traps 7
1.4 Langevin dynamics 10

1.4.1 Spectral analysis 11
1.5 Some examples of processes 12

1.5.1 Thermodynamic laws 13
1.5.2 Brownian heat engines 15
1.5.3 Statistical physics and Information the-

ory 16
1.5.4 Kramers-type dynamics 18

1.6 Summary 20
2 the optical piston 23

2.1 Experimental setup 23
2.1.1 Optical setup 23
2.1.2 Photodiode-based detection 24
2.1.3 Amplification and acquisition 25
2.1.4 Modeling the acquisition chain 26
2.1.5 Calibration 29
2.1.6 Numerical reconstruction of the dynam-

ics 30
2.2 The optical piston 33

2.2.1 Experimental scheme and stationary wave
structure: towards bistability 35
2.2.1.1 Axial 1D displacement 35
2.2.1.2 Temporal timetraces 37

2.3 Solving the interaction potential 38
2.3.1 Optical fields and bistable potential 38
2.3.2 Rayleigh regime and conservative forces 40
2.3.3 Method of resolution: Kramers rate equa-

tions 40
2.4 Power spectral density 43

2.4.1 Noise floor 47
2.5 Stationarity and residency probability density 48
2.6 Hilbert phase portraits 50
2.7 Conclusion 54

iii



contents iv

3 reversible compression of the optical piston 56
3.1 Axial displacement of the piston 57

3.1.1 Setup and protocol 57
3.1.2 Reversibility / incremental changes of con-

figurations 58
3.2 Motional mapping of interaction potentials 59

3.2.1 Exploring the energy landscape with time 59
3.2.2 The harmonic regime 61

3.3 The cross-over 65
3.3.1 Parameter space and trajectories from both

sides of the cross-over 66
3.4 Thermodynamic quantities : work, heat and en-

ergy 69
3.4.1 Defining heat for a single dynamical real-

ization 70
3.4.2 Measurement uncertainties and high spa-

tial resolution 75
3.5 Conclusion 77

4 synchronization and stochastic resonance 79
4.1 Synchronization and stochastic resonance 81
4.2 External forcing and continuously deformed po-

tentials 83
4.2.1 Periodic compression of the piston 83
4.2.2 External harmonic forcing 84

4.3 Numerical experiments on synchronization pro-
cesses 85
4.3.1 Amodel for bistability: the Duffing poten-

tial 86
4.3.2 Statistical nature of bistability in the ab-

sence of drive 88
4.3.3 External periodic forcing in a Duffing bistable

potential 90
4.3.3.1 The Mandel factor 91
4.3.3.2 Evolution of the Mandel factor in

the absence of an external forc-
ing 93

4.3.3.3 Evolution of the Mandel Q factor
with an external harmonic forc-
ing 93

4.3.3.4 Monitoring the onset of ergodic-
ity 96

4.3.4 Increasing the external forcing amplitude 97
4.3.5 Transition time delay analysis 99



contents 1

4.4 Experiments 101
4.4.1 End-mirror modulation 102
4.4.2 External force drive 105

4.4.2.1 Detailed experimental protocol 107
4.4.2.2 Allan variance 108

4.4.3 Synchronization, time-traces, and PSD 110
4.4.4 Mandel Q factors 113
4.4.5 Time-traces and time delay analysis 116

4.5 Conclusion 121
5 experimental developments and perspectives 123

5.1 Interferometric scattering microscopy 124
5.2 High-resolution optical forcemeasurements 127

5.2.1 Mie cross-section evaluations 128
5.2.2 Experimental setup 129
5.2.3 Trap susceptibility 131
5.2.4 Allan variance analysis 131
5.2.5 Measuring optical forces 132
5.2.6 Lock-in detection 134
5.2.7 Experimental lock-in error 138

5.3 Single chiral nanopyramids: trapping and chiral
recognition 139
5.3.1 Trapping single chiral nanostructures 139
5.3.2 Chiral recognition by in-situ polarization

experiment on trapped objects 142
5.3.3 Experimental protocol 143

5.4 Conclusion 149
6 general conclusion 151

Appendix 153
a the discrete langevin equation 154
b force calibration 160
bibliography 162



INTRODUCT ION

Since its first developments [1, 2], optical trapping has
impacted many different fields of research, with new applica-
tions covering a broad range of topics. For instance, optical
traps have become invaluable tools for measuring biophysical
and biochemical processes with unprecedented resolution [3] or
DNA manipulation [4]. The demonstration of genuine molecu-
lar motors has been achieved in optical trapping configurations
[5].

Optically trapped Brownian particles constitute ideal test
systems for non-equilibrium statistical physics with a great va-
riety of stochastic protocols under external force fields that can
be implemented [6]. A particular attention has been devoted to
measuring thermal fluctuation-induced escape over an optical
potential barrier and exploring Kramers rate theory, including
the observation of stochastic synchronization [7–10]. More
recently, quantitative tests of so-called fluctuation theorems
have involved optically trapped nanoparticles, both in the over-
and under-damped regimes [11–14]. Bistable optical potentials
are currently exploited for developing Szilard-types engines
and studying the connections between information theory and
thermodynamics [15–17].

These results rely on the capacity of optical traps to work
as reliable and precise force transducers. Central to this is the
possibility to reduce the trap stiffness (simply by decreasing the
trapping laser intensity) to low values, gaining a versatility that
cannot be be reached with atomic force microscopes where the
cantilever stiffness is fixed for a given configuration. In this
context, a whole body of work have emphasized the unique
capacity of optical tweezers to perform high-resolution force
spectroscopy, in particular in the context of colloidal physics
[18–20] and more recently in the context of Casimir physics
[21].

In this thesis, we have studied the Brownian dynamics of
a particle, optically trapped in a bistable potential. The bistabil-
ity, induced optically and therefore precisely controllable, is the
source of various dynamical properties that we have explored in
details. The work has been structured in 5 different chapters.

2
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• The first chapter aims at summarizing, very briefly, some
important elements that are central to optical trapping,
from the basic description of forces involved, to the impor-
tant tool of power spectral density analysis. Such a spec-
tral-based approach emphasizes the fluctuating essence of
the dynamics of the particle, and solving the Langevin
equation associated with the optical interaction potential
yields all the relevant experimental quantities to measure.
Trappingmicro- and nano-particles has rapidly nourished
a broad range of research topics. This first chapter tries
to illustrate as efficiently as possible one aspect of the
landscape of recent studies that are unveiling the rich
thermodynamics that emerges from manipulating single
Brownian objects in tailored optical environments.

• The second chapter describes the realization of one-di-
mensional bistable potentials by means of an optical pis-
ton. Our piston consists in an optical tweezer placed in
front of a reflecting movable mirror, inducing a stand-
ing wave pattern. Shifting the position of the mirror
allows shaping different dynamical regimes, from stable
to metastable regimes continuously. A one micrometer
dielectric bead is trapped within such a standing wave
field. The knowledge of the optical profile of the trapping
beam permits, for bistable dynamics, to fully resolve the
interaction potential thermally explored by the bead. In
such regimes, the dynamics of the bead is well described
by Kramers rate equation which we fully solve. The
stationarity of our potential configurations is experimen-
tally verified and we close this chapter by drawing phase
space-like representations of the metastable dynamics,
that can be drawn despite the fact the diffusive character
of the motion of the bead.

• In the third chapter, the piston length is now incre-
mentally compressed, causing a progressive deformation
of the interaction potential. The bead is let to relax
in each different potential configurations. A reversible
cross-over is performed from two stable trapping regions
separated by a whole region of bistability. Potentials
are entirely determined throughout the compression by
exploiting the method of the second chapter. Over the
course of a complete cross-over, the bead comes back
to its initial spatial position but its potential energy has



contents 4

changed. This leads us to study the thermodynamic
distribution of the work injected by the piston. We show
how this work is mainly consumed as a potential energy
change, with some production of heat generated by the
optical deformation of the potential while the bead is
relaxing to new configurations along the compression.

• The fourth chapter studies the continuous compression
and decompression of the piston around a bistable con-
figuration. A periodic modulation of the position of the
mirror corresponds to an external harmonic forcing of
the bistable dynamics of the trapped bead. This leads
to stochastic resonance-like phenomena that we study by
characterizing the stochastic resonance via the synchro-
nization of the bead stochastic trajectory with the external
modulation. This is done experimentally but also through
numerical realizations of the bead dynamics (using a
discrete Langevin equation formulation). We introduce
Mandel factors in order to interpret the evolution of the
distribution of residency times in each of the bistable
states. With an external sinusoidal drive, three main
types of dynamical responses are identified in simulations
and experiments. A regime of rectified bistability at low
frequency, while at high frequencies the drive becomes
transparent to the motion of the bead. For frequencies
matching the non-driven thermal activation frequency,
the regime of synchronization is observed. We deepen our
analysis with a time delay approach, which provides the
evolution of the probability distributions associated with
the hopping events with respect to the drive and yields
remarkable signatures.

• As examples of the versatility of the optical piston, the
fifth chapter presents (i) the trapping of gold nano-spheres,
including a description of a real time interferometric
imaging scheme, (ii) an experiment measuring weak op-
tical forces with a sub-fN level of resolution based on
a lock-in detection method, and (iii) the trapping and
polarization-based recognition of single chiral nano-enan-
tiomers, demonstrating that the optical piston offers in-
teresting possibilities when dealing with more exotic opti-
cally trapped nano-objects, such as chiral nanopyramids.



1
IMPLEMENT ING DYNAMIC PROCESSES WITH
OPT ICALLY TRAPPED BROWNIAN PART ICLES

While optical tweezing was growing as a powerful nonin-
vasive tool in particular in the fields of biology and physics, it
was realized that optical tweezers also leads to the possibility to
shape the optical trapping landscapes in such ways as to imple-
ment specific interaction potentials within which the trapped
Brownian particle will evolve. One of the early demonstration
of the relevance of this approach was done in the context of
Kramers dynamics [7].

Recently, a whole field of research has emerged where
optical tweezers give the possibility to implement experimen-
tally a great number of dynamic processes with tailored optical
potentials, usually of the double-well types (as in [7, 8, 22]).

Obviously, monitoring in real time the motional trajecto-
ries of Brownian particles coupled to a thermal bath has given
new experimental opportunities in the context of stochastic
thermodynamics. Here, microscopic nanoparticles which mo-
tion and position noise can be controlled optically, and at the
level of which random forces (external vs. internal) can be care-
fully tuned, constitute new probes for studying fundamental
issues, among which the connection between statistical physics
and information theory has attracted much attention [16].

Following these trends, we propose in this thesis a new
configuration for controlling the optical interaction potential
of an overdamped Brownian particle: the optical piston (Ch.2).
This thesis has focused on the concept of dynamic bistability,
in close relation with the so-called Kramers’ problem [23, 24].
A central point of the thesis is to discuss the situation where
some work is injected on the particle by an external drive, and
to analyze different processes depending on whether they are
performed quasi-statically (stable vs. bistable crossover -Ch.3)
or in a time-dependent way (stochastic resonance -Ch.4).

5
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Naturally in the context of optically trapped systems,
optical forces are simple actuators that can easily play the role
of the external source of driving. This is precisely where the
thesis makes the connection with the topic of optical force
spectroscopy and gives us the opportunity to focus more pre-
cisely on the problem of detecting weak external optical forces
and measuring them with the highest resolution level available
(Ch.5), given the limits imposed by the over-damped motion of
the bead in the fluid.

1.1 optical forces

The basis of optical trapping can be simply understood
by looking at the nature of the optical forces exerted on an
electric dipole (Rayleigh regime) by an electromagnetic field
[25]. We consider an electric dipole P (Rayleigh particle) in
a homogenous medium of refractive index n(ω), assuming
monochromatic electromagnetic fields E and H of angular
frequency ω. The force excerted on the object by the general
real electric field E and the magnetic field H field is given by
the Lorentz law,

F= (P · ∇)E+µ0Ṗ×H. (1.1)

The electric dipole P is related to the electric field through its
complexe polarizability α(ω).

Applying eq. (1.1) to our dipole leads to the time averaged
force excerted on the object. This force is decomposed in
two components, the reactive force Freactive associated with the
intensity gradient of the field,

Freactive =
n2

4
Re[α]∇

(

‖E‖2
)

, (1.2)

The second costribution is the dissipative force Fdissipative which
provides the radiation pressure component of the force,

Fdissipative = n
2ωµ0 Im[α]

(

Π−
∇×Φ2

E

2ωµ0

)

, (1.3)

with Π = 〈E ×H〉T the time-averaged Poynting vector, ΦE =

E× Ė/ω the time-independent electric polarization ellipticity
and µ0 the vacuum permeability.
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While the dipole is pushed by a radiation pressure term,
the presence of a field gradient leads to localize the dipole in
regions where the field is high. In this regime, trapping is
achieved when the gradient is strong enough as to win over the
destabilizing radiation pressure, in particular along the optical
axis.

1.2 optical trapping in the mie regime

This simple picture drawn in the Rayleigh regime remains
valid in the Mie regime, although the physical interpretation is
not as straightforward. Ashkin, when proposing the idea of op-
tical trapping, developed an elegant and very efficient approach
to the physics of optical tweezers, based on a refraction-based
momentum exchange argument [2].

In his description, Ashkin calculated the resulting force
from an optical ray construction done at the level of a spherical
object of refractive index larger than the surrounding medium
exposed to an incident Gaussian TEM00 intensity profile. In
such conditions, the force is decomposed in orthogonal gradient
and scattering contributions. This decomposition is shown on
Fig. 1.1 with the gradient force Fgrad perpendicular to the
beam propagation and the scattering force Fscat acting along the
optical axis. In the case of a highly focused Gaussian beam, i.e.
through a high NA objective, the resulting forces point towards
an equilibrium position nearby the waist of the beam.

When the forces applied on the object are stronger than
the thermal fluctuation and the scattering contribution points
towards the waist because of the tight focusing of the beam the
object is held by a single focused laser beam.

1.3 standing wave optical traps

One way to favor gradient forces over scattering contri-
butions is simply to compensate the latter as much as possible.
This can be done using counter propagating beams, as proposed
by Ashkin [26]. In such a configuration, the dielectric bead is
trapped at the position where the two scattering force contribu-
tion balance. Stable trapping is then achieved if, as always, the
gradient force is strong enough to win over thermal fluctuations.
This scheme is also applicable to trap large dielectric objects,
although remaining challenging to align and exploit [27–29].
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Figure 1.1: Diagram showing the ray optics interpretation of
the optical trapping of a transparent spherical
particle. The high index sphere is immersed in
a lower index medium. The gradient Fgrad and
scattering Fscat forces emerge form differences in
refraction angles when illuminated by a TEM00
Gaussian beam. This illustration is directly taken
from [26].

An alternative idea, proposed and extensively studied by
Zemanek in 1998 is to form this counter propagating configura-
tion by a mere reflection of the Gaussian laser beam incident
on a mirror [30, 31]. The incident laser beam is focused in
the vicinity of the reflective surface and even when not exactly
focused on the mirror, the axial contributions of the scattering
force are partially compensated, but sufficiently well to enable
the trapping of a single particle. In such a configuration,
optical trapping becomes much easier and achievable with
lower numerical apertures.

This configuration is exploited throughout this thesis. The
principal reason for its use is its versatility. It can be adapted
to trapping objects with various numerical apertures, objects
of different sizes and even of different materials. The presence
of the mirror renders the precise alignment easy to achieve via
the beam reflection (autocollimation procedure of the incident
beam). This trapping scheme also allows working with different
types of mirror (as illustrated in this thesis) and at different
distances from them. It allows measuring forces induced by
the presence of the mirror: either from drag contributions
[32, 33] or when complex field landscape are created [34].
The standing wave nature of the trap can yield various stable
trapping positions around the beam waist. With trapped object
that can be larger than the distance between two interference
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Figure 1.2: Diagram showing the field intensity (in blue) of a
Gaussian beam focused at a distance ℓ behind the
mirror (a few µm). The beam has a numerical
aperture of 0.85 and a wavelength of 785 nm.
Continuous purple lines illustrated the beam enve-
lope.

fringes, specific averaging effects occur on the trapping volume,
with possible modifications of the stable position, depending on
the object size [35].

The node vs. anti-node structure of the intensity profile
along the optical axis also gives the ability to trap metallic
nano-spheres. Recently, extensive work has been devoted to
the trapping gold nano-objects [36]. It was experimentally
demonstrated that trapping gold nano-objects poses no issues
in the Rayleigh regime (object sizes below 60 nm), the object
size being an order of magnitude smaller than the trapping
wavelength [37, 38].

Trapping of larger Au spheres is more difficult. Stable
trapping of Au sphere of sizes up to 250 nm using a single beam
tweezer has been demonstrated [39–41]. These results have
however been debated with recent theoretical claims stressing
that trapping such large spheres is not feasible using conven-
tional single beam optical tweezer [42, 43] and that the source
of stable trapping must stem from the asymmetric (polyhedral,
e.g.) shapes of real particles, just as Au nano-rods align in the
optical trapping field [44].

In this context of trapping metallic objets, other inter-
esting approaches have been proposed, for instance trapping
metallic particles against a plane, leaving in-plane motions
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free for large objects (radius of 200 nm) [45, 46] and with the
possibility to trap objects of different shapes [47].

A capacity to trap Au nanoparticles will turn central in
the thesis. We will therefore exploit this appealing feature of
the standing wave trap configuration. In such a configuration,
we have been able to trap Au nanospheres of sizes up to 150
nm. Interestingly, we have never been able to trap the same
Au nanospheres in a conventional optical trap (single beam),
even using high NA immersion objective. he trapping of the
same objects with high NA objectives proved impossible in a
conventional optical configuration (by removing the mirror).

Trapping Au nanosphere is only possible in the standing
wave configuration because the sphere is not trapped at a
maximum of intensity but rather at a minimum, i.e. on
a node of the standing wave pattern. The two anti-nodes
surrounding the node in the intensity distribution will thus
form a kind of cage for the nanosphere. The lateral confinement,
from which the stability of the trap will derive, stems from
the attractive gradient contribution in the force. Both forces
combined provide a force field around the waist that offers
a single stable position between the two intensity maxima
surrounding the waist.

1.4 langevin dynamics

The dynamics of a single objects trapped in an attractive
potential U(z) created by the focusing of a laser beam in
a thermalized medium is well described by the equation of
motion of the center-of-mass of the object. This was first
proposed by Langevin [48] and provided one of the first “intu-
itive” understanding of the seemingly erratic motion of small
object in hot bath. In his work, Langevin modeled the bath
contribution to the motion as an uncorrelated (and scaled)
Gaussian distributed noise.

In this view, the complete equation of motion writes as:

mB
d2z

dt2
+γ

dz

dt
−∇U(z) = F(T ,z,t), (1.4)

with mB the mass of the bead in kg, γ the drag coefficient in
Ns/m= kgs−1, −∇U(z) the force deriving from the potential
gradient in N. Assuming that the motion of the bead remains
localized on the optical axis of the focused Gaussian beam, the
interaction potential is linearized to a harmonic shape and the
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force becomes a linear restoring force−∇U(z) = κT ·z of stiffness
κT expressed in N/m.

The noise contribution, given by the fluctuation-dissipation
theorem [49] is in the case of a 1D motion of the object
F(T ,z,t) ≃

√
2kbTγ · η(t). We assume the bath as homogeneous

(with a constant drag coefficient) and the observed dynamical
range long with respect to molecular collision characteristic
times. On average, these collisional contributions on the larger
trapped object cancel and the bath contribution is considered
uncorrelated in time with 〈η(t)η(t ′)〉time = δ(t− t ′).

Considering the sizes and masses of our trapped objects,
the timescale associated with inertial motion dynamics mB

γ is
around 10−7s, way faster than what our acquisition setup can
monitor. For simplicity in the notations, the inertial term is The inertial term

can be kept when
solving the
equation of
motion both
temporally and in
frequency but
their contribution
becomes
negligible with
respect to others.

then neglected, the dynamical regime used throughout all of the
presented experiments stays over-damped and simply writes

γ
dz

dt
+ κTz= F(T ,z,t). (1.5)

1.4.1 Spectral analysis

Spectral analysis of such dynamics offers the advantage
that the dynamical parameters of the trapped bead are deter-
mined similarly to doing a direct time correlation analysis but
without the computational burden associated. The important Computing the

correlation
function of a few
millions sample
acquisitions
counts in hours.
The spectral
counterpart is
seconds.

requirement though is to have a recorded signal stationary and
we note that this property is often met in most cases.

With this assumption valid, we use the usual Fourier
transform definitions, with

g[f] =

∫+∞

−∞

g(t)e−2iπft dt (1.6)

and its inverse transform as

g(t) =

∫+∞

−∞

g[f]e2iπft df. (1.7)

Fourier transformed, the over-damped equation of motion
z[f] -Eq. (1.5)- writes as the mechanical susceptibility of the
system times the drive source F[f],

z[f] = F[f]
1

(κT + 2iπγf)
. (1.8)
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The bath force term F[f] =
√
2γkbT · η[f] which is uncorrelated

in time has a flat spectral signature because |η̂(f)η[f]|
2
= 1. This

family of noise sources is called white because all frequencies
excite the system with the same intensity.

The power spectrum is obtained by taking the modulus

squared of the Fourier transform Sz[f] = |z[f]z[f]|
2
and writes as

a Lorentzian with: We consider here
the twosided
spectral density.Sz[f] =

D

2π2
1

(f2T + f
2)
, (1.9)

withD= kbT
γ the diffusion coefficient in m2 s−1 and fT =

κT
2πγ the

roll-off frequency of the trap in Hz. In the context of spherical
objects, the Stokes drag expression is used for spherical beads
of radius R, γ = 6πρνR in kgs−1 with ρ the density of the fluid
(in kg/m3) and ν the kinematic viscosity (in m2 s−1). Numerically the

power spectral
density is
normalized to be
independent of
both the length of
the signal
(number of
samples) and the
sampling rate.

The Lorentzian spectral signature of the trapped object
is decomposed in two parts, below the roll-off frequency, the
bead is confined and held by the laser beam, all frequencies
have equal strength. Above the roll-off frequency, the spectral
signature is 1/f2, the one of a freely diffusing (non-trapped)
Brownian object.

1.5 some examples of processes

The point of view of considering the optically trapped
particle as a Brownian probe for a wide range of processes
perfectly fits within the framework of the Langevin equation.
As we will discuss later in the manuscript, a whole field of
research, namely stochastic energetics [50] has recognized in
the Langevin formulation an extremely rich methodological
approach towards stochastic thermodynamics.

Through the Langevin dynamics therefore, one under-
stand how optically trapped Brownian particles have become
privileged systems to probe thermodynamic processes. A clear
picture of the current trends can be drawn from a few specific
experimental work. Our purpose is obviously not to provide an
exhaustive review of the domain which gathers a large number
of work, both from theoretical and experimental sides. We
rather aim to highlight how recent experiments have demon-
strated the relevance of this approach.
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1.5.1 Thermodynamic laws

A new generation of experiments has indeed emerged
recently, capable of probing the laws of thermodynamics for
such small systems as optically trapped particle and on such
short time scales as to reach a resolution at the level of the
fluctuations themselves.

A striking illustration is provided by the work of Wang
et al. [51] demonstrating a fluctuation theorem predicting a
violation of the Second Law, by studying carefully on the short
time scale, the fluctuations of a trapped 6.3 µm latex bead in
water. The piezo stage holding the sample is displaced at low
frequency, moving the fluid around the trapped object while the
trajectory of the bead is recorded. For long time scales (seconds)
no production of entropy was measured when analyzing the
bead trajectories. This is in accordance with the Second Law of
(macroscopic) thermodynamics. It was however observed that
for short timescales some trajectories produce entropy while
some others are entropy consuming trajectories. This violates
for short periods usual thermodynamics concepts. On average
however, the number of consuming and producing trajectory
is such that when considering time or ensemble averages the
second law is recovered [52].

These fluctuating thermodynamic quantities are further
studied in order to understand irreversibility in out-of-equilib-
rium systems. Giesler et al. [14] have explored these regimes
with a small silica nano-particle trapped in high vacuum, study-
ing in great details the relaxation of this under-damped nano-
particle from a non-equilibrium steady sate to an thermal
equilibrium state. Using a feedback cooling mechanism, the
nano-particle is brought out of equilibrium, prepared in a local-
ized position in space before it is released in the (non-cooled)
trap potential, relaxing to its equilibrium distribution. The
whole evolution of the process towards the equilibrium state
is monitored and the associated thermodynamical quantities
are determined. This experiment is also performed for the
nano-particle spatially far from its equilibrium position by
applying an external drive on the object before the beginning
of the relaxation process.

A closely related experiment was performed by Lee et al.

[53] with a 2 µm dielectric bead (PMMA) in dodecane. In this
experiment, the trap stiffness is periodically modulated, driving
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Figure 1.3: A bead is prepared in an out-of-equilibrium position
via feedback-cooling. At time t=0 it is let to relax
in the trapping potential. The upper graph shows
a few bead trajectories, it takes some time for
individual objects to reach their equilibrium energy
kBT . The lower graph represents trajectory positions
as a density plot. This illustration is directly taken
from [14].

the system out of equilibrium, the work production is measured
and associated microscopic fluctuation theorems is verified [52].

These recent advances in the field of optical tweezers have
allowed tomeasure a large variety of processes, and to test many
of the recent theoretical predictions derived from stochastic
thermodynamics, among which the so-called fluctuation theo-
rems have a central importance [12].

Recently, new experimental techniques have been pro-
posed that enable to inducing and controlling an effective
kinetic temperature of the bath via the control of an external
source of noise density. Such techniques have allowed the
implementation of so-called adiabatic processes. Such pro-
cesses are important to understand: they are central in the
context of molecular and biological micro- and nano-engines.
They are remarkable in the mean sense, where no heat flow
is involved through a given non-isothermal sequence (one of
the sequence composing the Carnot cycle) by virtue of an
averaging procedure over many trajectories. Optical tweezers
offer a unique way to repeat, on a single particle, similar
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dynamic sequences, while fixing initial state conditions. Such
an approach provides full control on trajectories and the means
to perform controlled averaging procedures [54].

1.5.2 Brownian heat engines

Working in fluids gives a simple way for modifying the
temperature of the thermal bath within which the Brownian
dynamics evolves. Combining this with a control of the stiffness
of the optical trap has led to the realization of a Stirling engine
where an optically trapped particle diffuses in different thermal
baths, coupled periodically through a time-dependent optical
potential [55]. The approach has been extended, where a
charged microsphere, optically trapped, is subjected to a noisy
electrostatic force [56]. This additional noise source defines an
effective kinetics temperature that can be precisely controlled
and through which adiabatic processes can be implemented
[57]. With such adiabatic paths in the cycle (absent in a Stirling
cycle), the energetics of a genuine single-particle Carnot engine
have been given.

In their work, Blickle and Bechinger have realized an
(external) heat engine of a system consisting of a 2.94 µm
Melamine bead trapped by a near IR (1064 nm) laser beam
in a fluidic cell of 4 µm. A periodic work is injected in the
system through a full thermodynamic cycle which is presented
on Fig. 1.4. It consists of first, an increase in the trap stiffness,
a compression done by the increase of the trap laser intensity.
The sudden heating of the surrounding medium by a strong
laser irradiation of water (exciting absorption bands) provides
an isochoric transition. After that an isothermal expansion is
once again performed by decreasing the trap laser intensity
and finally room temperature is recovered, completing the
Stirling cycle. The study of a cycle with duration provides the
determination of the maximum power the extracted out of the
system.

Martinez et al. performed a similar experiment but with
the different steps of the cycle, in particular with the intro-
duction of isentropic transitions in place of the isochoric of
the Stirling cycle. The temperature of the fluid is effectively
heated by injecting an electrostatic noise source on the bead.
This external force will add itself with to thermal fluctuations
providing an effective kinetic temperature higher than the one
of the bath. Simultaneously, the trap stiffness is controlled in
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Figure 1.4: Schematic representation of a Stirling cycle and its
microscopic realization with a trapped dielectric
colloid. This illustration is directly taken from [55].

such a way as to lead adiabatic transitions [54]. Performing a
large number of cycles at low frequencies, these authors recover
the behavior of a genuine Carnot engine. They also notice
that on short times, the Carnot bound can be surpassed, a
typical thermodynamical behavior of small systems fluctuating
in environment of high bath noise amplitude [52].

1.5.3 Statistical physics and Information theory

Another fascinating aspect that can be explored with
optical tweezers is the relation between stochastic thermody-
namics and information. It was stressed indeed long ago by
R. Landauer [58] that an overdamped particle in a double-well
potential can be seen as a model for a one-bit memory. This
picture has been central in recent tests of the Landauer’s
principle. The exact form of the double-well potential created
by standard dual beam optical tweezers is controlled by the
laser intensity and by the distance between the optical axis
associated with each beams. Under such control, erasure
protocols have been implemented with stochastic trajectories
of the trapped particle recorded at each step of the erasure
cycle. Utilizing the experimental setup of Jop et al., Bérut et
al. [15] were able to implement a sequence of preparation,
erasing and writing protocols. Such a sequence was performed
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by considering each of the bistable potential wells as one bit
of the binary system. Under such frame work, a bead is
placed in one of the bistable potential well under a strong
beam intensity, is thus confined to a well defined state/bit.
The intensity is then reduced and the potential tilted, erasing
the previous state memory and forcing the bead to change
well (state/bit), finally the intensity is increased again, the
bead has changed state and the system has experienced a bit

flip. Thermodynamics of this irreversible process provides the
quantity of heat given to the bath and the quantity of entropy
produced. Here too, a careful analysis of the thermodynamics
associated with the experimental trajectories of the bead, that
can be monitored in real time, has led to determine an average
dissipated heat in agreement with the so-called fundamental
Landauer bound putting a minimal amount of heat dissipation
per bit at kBT ln(2).

Figure 1.5: Schematic representation of the experimental
Landauer erasure protocol. A bead is prepared
in a state by being confined in a high intensity
field. Intensity is lowered and the potential is
tilted, forcing the bead to change well. After the
state change, the intensity is increased again. This
illustration is directly taken from [15].

Recent experiments on the notion of symmetry breaking
in the context of double-well potential (i.e. the abrupt choice
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taken by the trapped bead to chose one of the metastable
state with respect to the other) have also been proposed. By
displacing progressively the laser beams with respect to one
another, it is possible to induce a continuous transition from
a single to a double-well optical potential. Monitoring the
trajectory of the bead at the onset of the double-well potential,
and cyclically repeating the protocol, it is possible to acquire
an ensemble of trajectories displaying the statistics associated
with the fall of the bead in one of the metastable state. Taking
this as a symmetry breaking event, it becomes possible to
measure the ensemble entropy production associated with the
symmetry breaking. For their experiments, Roldan et al. [16]
considered averaged trajectories of 1 µm polystyrene beads in
an optical trap composed of two beams with one of them being
mobile. Here too, the thermodynamic limits to information
erasure, so-called Landauer’s bound, was measured, with inter-
esting connection made in relation with the original picture of
Maxwell’s demon.

1.5.4 Kramers-type dynamics

Optical traps can also work as model systems for testing
Kramers’ theory on thermally activated escape from a potential
well. This thesis will largely focus on the Kramers process,
developing an approach based on a standing wave optical trap.
This approach contrasts with the previous experimental work
performed in this context, where the double-well potential is
realized via two spatially separated attractors.

Such double-well optical potentials have been induced
either by using two laser beams [8] or by the rapid displacement
of the optical trap beam [22]. Using the two-beam technique,
the predictions of Kramers’ theory have been verified by moni-
toring the Brownian dynamics of the trapped particle, recorded
in 3 dimensions. McCann et al. [8] setup is a dual beam trap
formed by focusing two beams through a single 100x high 1.4
NA objective. Silica beads of 0.6 µm in size are dispersed in
water and trapped, exhibiting a dynamical activation from one
focal position to the other. One bead trajectory is imaged by a
CCD camera and assuming a linear calibration in all three spa-
tial directions the potential is determined through Boltzmann
distribution at equilibrium. Considering the plane of bistable
dynamics, the potential is fit with a 4th order polynomial
(Duffing-type potential) and the extracted coefficients provide
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a measurement of Kramers activation rate. Measured values
match with rates measured from residency times.

Figure 1.6: Schematic representation of the two Gaussian beam
forming a 3D bistable landscape to trap a dielectric
bead. The transverse displacement of the bead
exhibits a interwell activation of the bead. The
associated time trace for the lateral displacement
shows a typical bistable dynamics. Illustration
directly taken from [8].

The double-well potential has also been studied in relation
with the problem of stochastic synchronization or stochastic res-
onance. With a small amplitude modulation of the power of the
divided laser beams, it is possible to modulate the depths of the
well. Synchronization of the escape rates has been observed and
measured. Simon and Libchaber [7] use an experimental setup
similar to the one of McCann et al., trapping 1 µm silica beads
with the addition that beam intensities are controlled by the
use of rotating optical densities. Periodic changes in the beams
intensities tilts the potential. This simulates the addition of an
external sinusoidal force applied on the bead. It is observed that
when the drive period matches half Kramers natural residency
times, the probability of changing state increases compared to
slower or faster potential modulations.

Recently, the work and dissipation fluctuations associated
with such a synchronization process have been measured pre-
cisely. A time shared dual trap was setup by Jop et al. [22]
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where a single NIR laser (1064 nm) is dispatched over two
positions by an acousto-optic deflector (AOD) at 5 kHz. A 2
µm bead sees, and explores effectively, a two well potential
separated by a barrier. A Duffing-like potential is fit and
Kramers rate coefficients are extracted. The depth of the
potential is changed with an unequal ratio of light exposition
on the two trap positions (by biasing the AOD intensity dis-
tribution). This asymmetry is periodically modulated and is
equivalent to the application of a periodic force on top of the
unperturbed potential. The probability for the bead to change
state by following the drive at different frequencies is deter-
mined and the associated consumption of the injected work
is computed. At frequencies approximately half the natural
Kramers state change rate the maximum of work consumption
is reached. Comparing the distribution of work and dissipated
heat through the resonance, these authors have been able to
test the validity of the steady-sate fluctuation theorem for a
non-linear potential.

1.6 summary

The impressive experimental versatility and power of
optical tweezing in defining a large variety of highly control-
lable configurations has led to build genuine experimental
platforms where key concepts of fundamental physics can be
easily probed and verified. These work have clearly shown
the potential and promises of optically trapped particles as
test-systems for fundamental statistical physics.

In this thesis, we will be particularly interested in the
description of the stochastic motion of a nano-particle trapped
in a bistable interaction potential. We will try to make the best
use of some specific tools available in the context of optical
trapping in order to study with precision the interplay between
thermal fluctuations and dynamical non-linearities.

We note that recent experiments have clearly stressed the
relevance of the phenomenon of stochastic resonance in preci-
sion measurements, in particular when measuring weak forces
at the level of mechanical systems. For instance, a stochastic res-
onance effect has been studied in non-linear bistable nanome-
chanical resonators (doubly-clamped) with the fundamental
mode of the vibrating beams of the resonator excited by an
external periodic optical force [59]. The system was described
with a Duffing-type forced dynamics and the signatures of
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Figure 1.7: Schematic representation of the effective potential
obtained from variations of the effective potential
intensity by biasing the time ratio the trap beam
is exposed. The potential is mapped for the two
extreme potential configurations (separated by half
a period). The experimental time trace for one
realization with a drive amplitude matching the
natural transition frequency. Illustration directly
taken from [22].

the stochastic resonance were measured both in the time and
frequency domains. Another work has exploited the phe-
nomenon on a torsional oscillator leading to an increase of the
signal-over-noise ratio (SNR) at the synchronization threshold
[60]. The torsional oscillator was coupled to a cavity to have
its rotational dynamics evolve in a bistable potential. The
deflection of a weak probe laser beam provides a measurement
of the angle of the torsion bar. Applying periodical electrostatic
forces on the metallic oscillator exhibit a non linear response in
the SNRwith a maximum increase for drive frequencies half the
natural rotation state change frequency (i.e. Kramers rotational
frequency).

Considering that optical trapping combines two impor-
tant ingredients:

• the possibility to induce well-controlled bistable poten-
tials -as we discuss in our Ch. 2, 3 and 4
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• and the fact that an optically trapped nano-particle can
turn into a highly sensitive force transducer -as described
in our Ch. 5,

it becomes clear that such perspectives on stochastic non-linear
systems are important to study in the context of optical trap-
ping. They justify, at our level, the precise study on bistable in-
teraction potentials and metastable dynamics in the framework
of optical tweezing.



2
THE OPT ICAL P I STON

In this chapter, we determine the interaction potential of a
thermalized over-damped Brownian particle, at room tempera-
ture, optically trapped in front of a mirror in both stable and
bistable potentials. For specific positions of the mirror, the
coherent superposition of the incident trapping beam and the
reflected beam induces dynamical bistability where the particle
is thermally activated between two distinct positions along the
optical axis. We demonstrate that the whole interaction poten-
tial can be solved by interpreting the two positions as distin-
guishable metastable states. Diffusion limited escape rates and
associated activation energies are extracted, together with the
actual distance separating the metastable states. Remarkably,
this is performed without any preliminary spatial calibration of
our optical setup.

2.1 experimental setup

In this section, the optical setup is presented together
with the acquisition scheme that we have developed in order
to measure most accurately the fluctuating axial displacement
of the bead inside the optical trap.

2.1.1 Optical setup

The optical setup used for the experiments that will be
presented in the following chapters is sketched in Fig. 2.1. A lin-
early polarized TEM00 beam from a CW diode-laser (Excelsior
Spectra-Physics, wavelength λ= 785 nm, power 45 mW) is sent
into a dry objective (Nikon CFI Plan Fluor 60X, 0.85 NA) and
focused in a water cell (deionized water, 80 µm thick) enclosing
mono-dispersed dielectric polystyrene beads (Thermoscientific
Fluoro-Max Red Dyed, refractive index 1.58) of radius 500 nm.

23



2.1 experimental setup 24

The cell is topped by a 170 µm thick cover slip. Spherical
aberrations are compensated by the objective (correction ring
set to 0.2 mm).

The laser beam traps a single bead in the vicinity of a
movable mirror (300 nm thick evaporated gold film on a glass
substrate). The beam is reflected by the mirror and recollected
by the objective. It is sent to a non-polarizing cube beam splitter
where it is equally divided. Along one arm, the intensity signal
is vignetted by a pin-hole and recorded by a PIN photodiode
(Thorlabs Det10A). This port provides intensity time-traces that
measure the instantaneous axial displacement z(t) of the bead
inside the optical trap. The second port is sent to a CCD camera
(Allied Guppy Pro F-031) that images the recollected beam
spot or to a quadrant photodiode detector when 3-dimensional
(x,y,z) position measurements are needed.

The CW diode-laser is optically isolated using a free-space
Faraday isolator (Thorlabs IO-5-NIR-LP). The isolation is fur-
ther improved by injecting the laser beam into the objective
using a polarizing cube beam splitter coupled to a quarter-wave
plate (QWP). This prevents as much as possible the recollected
signal to be send back to the injection port. Working with an
input beam that is reflected requires the capacity to reduce by 6
orders of magnitude with respect to the laser emission intensity
any light stray traveling in the backward direction towards the
diode.

In this beam splitter-QWP configuration, the optical land-
scape created between the objective lens and the mirror is the
coherent superposition of a forward right-handed circularly po-
larized beam and a backward left-handed circularly polarized
beam.

2.1.2 Photodiode-based detection

In general, position tracking is performed either by video
tracking of the Brownian object or using a PIN photodiode-
based detection scheme. Video tracking allows the simultane-
ous tracking of many particles and a direct and easy spatial
calibration for translational motion of the object with respect to
the optical axis. But the acquired video must then be treated
using pattern recognition and specific tracking software that
are often heavy to handle. For single beam optical trapping,
a photodiode detector offers a few important advantages over
video tracking. First, it enables to follow easily the PIN signal
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Figure 2.1: Schematics of the experimental setup, indicating in
particular the second isolation stage at the level of
the polarizing beam splitter (PBS) and the added
quarter-wave plate (λ/4). The two ports from
the non-polarizing beam splitter (NPBS) used for
recording the recollected beam are also represented.
In the chosen frame, a right-handed circularly
polarized field propagating along the z > 0 direction
is described with σ+ = (x̂− iŷ)/

√
2.

in real time using an oscilloscope. Then, a PIN detector yields
better sensitivities at higher acquisition rates. This is of im-
portance for measuring Brownian motions over a wide spectral
range, when high frequency contributions of the motion to
the signal are small and quickly fall down to the noise floor.
We however have to keep in mind that in order to have field
intensity variations properly measured by the photodiode cell
on a few micro-second timescale, high optical field intensities
are needed. This simply comes from the mere fact that it
is easier to look for small variations in a strong signal than
to look for the useful signal on top of a dark background.
This constraint added to the bandwidth requirement justifies
to exploit the strong signal of the forward scattered light of the
trap.

2.1.3 Amplification and acquisition

The recollected intensity (which contains the forward
scattered light signal reflected on the mirror of the SWOT)
is measured by both the QPD and the PIN photodiode. The
associated output tensions are then sent to low noise preampli-
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fiers (SR560). The PIN signal that records axial displacements
through the measured recollected intensity is recorded in AC
mode and filtered through a 0.3 Hz high-pass filter at 6 dB/oct
in order to remove the continuous DC component of the signal.
A low-pass filter at 100 kHz at 6 dB/oct is also used to avoid
aliasing for all detectors. This is an important step to take, as
emphasized in [61].

High-pass filtering poses no issue since the signal of
interest is the dynamical fluctuations and not the continuous
component of the intensity. This filtering stage actually permits
to span the acquisition card input range with high resolution
over the whole dynamics. The exponential decrease of slow
varying signals is later taken care of numerically to reconstruct
the whole signal (to within a constant), as we will discuss
further down.

In order to acquire the signal, the analog tension is digi-
tally converted using an NI PCI-6251 analog-to-digital conver-
sion acquisition card. The tension issued from the amplification
stage corresponding to the light intensity on the photodiode is
maximized to all the 16 bits available on the acquisition card in
order to record the signal as accurately as possible.

2.1.4 Modeling the acquisition chain

We can justify our data acquisition scheme with a simple
modeling of the whole physical chain, going from the light
beam incident on the photodiode to the acquired tension.

Let x(t) be the physical displacement of the bead at a
time t.The intensity I(t) incident on the photodetector is the
intensity laser which confines the bead after being reflected on
the mirror and sent to the photodetector. This intensity can
be classically expressed as I(t) = I0 + δI(t) where the small
intensity fluctuations δI(t) comes from the forward scattering
fluctuating signal coming from the Brownian displacement of
the bead in the fluid (we neglect any optical noise sources as
they are smaller than the thermal noise). This implies that
δI(t) a functional of the bead displacement. For small objects,
like metallic nanoparticles, the measured intensity stems from
the interference between the laser beam and the spherical
wave scattered in the forward direction by the object and then
reflected by the mirror towards the detector.

Intensity variations δI(t) on the detector are in fact built
on two contributions that interfere: the forward scattered
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light and the reflected trapping light. A precise relationship
between the measured intensity and the displacement zB of the
bead along the optical axis has been derived in the Rayleigh
approximation for a Gaussiam beam in ref. [62]. The measured
intensity on the detector turns out to be equal to

Iz(zB)∝
sin

(

arctan
(

zB
zR

2
))

√

(

1+ zB
zR

)

. (2.1)

The relation shows that the signal is linear in zB around the
waist for displacements much smaller than the Rayleigh range
zR. As the numerical aperture increases the Rayleigh range
dicreases, in our case, using a NA = 0.85 this range is

zR =
λ

π NA2 (2.2)

=
589

π 0.852
(2.3)

= 260 nm. (2.4)

The Rayleigh range is of the same order of magnitude as
inter-well displacements measured in the bistable configura-
tion. This analysis, even though in the Rayleigh regime justifies
the precautions employed when measuring distances along the
optical axis. Some methods have been proposed to calibrate
the intensity response with respect to the bead position[63] for
direct position measurement.

In the case of larger dielectric objects, the beam waist
is smaller than the diameter of the bead which acts as a lens
for the gaussian trapping beam. At different bead positions
the transmitted beam at the objective entrance is more or less
expanded . The collected intensity is then vignetted by the
objective, leaving only the center of the beam to be transmitted.
This phenomenon is clearly illustrated on Fig. 2.6. Regardless
of the bead size and material used, the measured intensity is a
complex function of the bead displacement. In our case a direct
measurement of the bead position is not attempted over the
full space of explored positions. Nevertheless linearity between
the measured intensity and the bead position is assumed at the
bottom of the wells.

Over a given time interval, the photodetector converts the
laser intensity I(t) into an electron flux, eventually measured
as a potential in Volts. The detector response is assumed to
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be linear, i.e. the light intensity reaches levels corresponding
to a regime where voltage and intensity are related by a simple
affine function V(t) =DI(t)+V0 with V0 some voltage offset and
D the coefficient converting Joules to Volts. This linearity also
assumes that the measured signal is slower than the detector
bandwidth.

Since V(t) is very weak in our experiments, it is necessary
to amplified it with an additional small offset coming from the
amplification chain. This small offset can become significant
after amplification with respect to the amplitude of the signal
intensity itself. We define S(t) = BV(t)+S0 as our new linearly
amplified signal with B the amplification gain (dimensionless)
and S0 a constant offset induced by the amplification stage.
Replacing V(t) into S(t) yields

S(t) = B(D(δI(t)+ I0)+V0)+S0 (2.5)

= BDδI(t)+C, (2.6)

with C = BDI0 + BV0 + S0 a constant signal independent of
time. While the signal of interest is contained within δI(t), the
constant term C turns out to be large.

There are two common approaches to deal with this large
DC component. A first approach is to split the whole signal
S(t) by differential measurements in two then subtracted to
each other such that the constant term is nullified. The second
approach is to use a high pass filter which in practice cuts the
constant term C by exponentially decaying low frequency sig-
nals to zero. This approach is more constraining since any low
frequency contribution that could be relevant on δI(t) will get
cut and therefore harder to notice. In practice, and regardless of
themethod chosen, this “zero” has always a residual finite value
F0 in Volts. Furthermore, the acquisition card does not have the
exact same 0 V reference as the preamplifier but is assumed to
have its own constant voltage offset G0.

The resulting signal after applying one of the two method
becomes S(t) = BDδI(t)+K0, with K0 = F0+G0. If the amplifiers
and acquisition card are properly calibrated, the offset K0

should be bellow 0.1 % of the acquisition range. In practice
again, one grounds the preamplifier after having all other
parameters properly set (amplification and filters frequencies)
and then performs an acquisition through the acquisition card
to determine K0. This K0 offset is then subtracted from all time
traces measured afterwards.
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2.1.5 Calibration

In our experiments, the study of the dynamics of the bead
in space is performed by measuring its positions and forces,
implying therefore the acquired voltage to be converted back
in meters. This is the central issue of calibration that demands
specific care in any optical trapping experiment.

Going ahead with our initial analysis, we assume that
δI(t) = Aδx(t), with A in J ·m−1, holds for small bead displace-
ments, i.e. at the bottom of the trapping potential where the
detection response is linear.

We then want to determine the linear term β converting
the measured Volts into spatial displacements of the bead in
meters: A(t) = βδx(t) with β = BDA. There are several
methods available for determining this coefficient which are
described in the literature [64, 65].

One common approach is to assume that the intensity is
linear with the bead displacement over the whole acquisition
range and apply one of various possible calibration schemes,
either by comparing the bead confinement with the equipar-
tition and a theoretically known drag coefficient [64] or by a
more sophisticated method which proposes to circumvent the
necessity of an a priori knowledge of the drag by applying a
completely known external drive on the trapped object in order
to determine its position and force calibration [65]. The different

calibration
methods are
compared in [66].

The whole point of our acquisition chain is to construct
a signal linear with the bead displacement (and with decent
resolution) in order to calibrate our system most easily. This
is directly done for lateral displacements using the QPD. The
beam, centered on the 4 quadrants will have all constant
and continuous components compensated when computing the
differences between the quadrants, with therefore the constant
C equals 0 for all frequencies without need for a high-pass filter.
The axial displacement (movements along the optical axis) is
obtained by removing, through high-pass filtering, any slow
variations of the large constant background. This procedure
leads to a signal that only contains the dynamical information
because all contributions unrelated to the bead displacement
like the direct transmission from the laser are almost entirely
cut after 3 times constant of the high-pass filter (i.e. 3s when
the high-pass filter has a cut-off frequency of 1s). This way C is
effectively considered to be 0 in our experiments. Because the 3
signals each associated with a spatial dimension are similar (the
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dynamics is for all centered around 0), they are analyzed in the
same way.

Obviously all of this makes sense only if the computed
Power Spectrum has the proper normalization so that we can
link its amplitude with the physical displacement δx(t).

To summarize, the approach is to construct a signal that
is as linear as possible (around its origin) with the variations
of the bead displacement. Such a construction is obtained
1) by the use of balanced photodetection (in our single beam
tweezer configuration, a quadrant photodiode) for transverse
displacements and 2) by high-pass filtering the light intensity
for axial displacements. Our method turns out to be interesting
because all three axial displacement signals have the same
shape, only the bead dynamics is recorded and centered on 0V.
This way the exact same treatment is applied on all of them.

2.1.6 Numerical reconstruction of the dynamics

This section discusses inmore details the procedure through
which the acquisition signal is high-pass filtered, its implica-
tions and the numerical treatment performed after acquisition
to reconstruct the recollected signal intensity on the photodi-
ode.

High-pass filtering is mandatory to acquire intensity fluc-
tuations coming from the bead displacement with good resolu-
tion. Such fluctuations correspond to meaningful values only
if they span the whole acquisition card dynamical range. But
our experiments are confronted to another difficulty: dealing
with bistable signals implies to be able tomonitor changes in the
mean intensity values while keeping track of the fluctuations at
a high resolution level. It is precisely this mean intensity value
that changes each times the particle jumps from one potential
well to the other and it is that same mean that changes in time
as the dynamical configuration progressively evolves under the
external action of the displacement of the mirror.

Since such a mean intensity value is cut-off by the high-
pass filtering stage, we need to find a trade-off where configura-
tion changes can be properly filtered while dynamical changes
are recorded despite the fact that the signal is distorted. In fact,
we are able to correct for this distortion numerically, after the
acquisition sequence, by using the scheme now described.
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A first order high-pass filter is described by an RC electric
circuit with the following temporal expressions






Vout(t) = I(t)R

Qc(t) = C(Vin(t)−Vout(t))

I(t) =Dt(Qc(t))

(2.7)

This yields to

Vout(t) =Dt(Qc(t))R=Dt(C(Vin(t)−Vout(t)))R (2.8)

=
Dt(Vin(t)−Vout(t))

τ
, (2.9)

with τ = RC the characteristic time of the filter. The temporal

C

Vin Vout

R

Figure 2.2: Schematic of a typical first order RC high pass filter.
(source: wikimedia)

response of the filter is a first-order differential equation. We
define K(t) = Vin(t) − Vout(t) and solve the equation for K(t).
We then transform it back to have the response written as:

Vout(t) = Vin(t)

− e
− t/τ

(∫ t

t0

Vin(t
′)

τ
e
t ′/τdt ′+(Vin(t= t0)−Vout(t= t0))

)

,

(2.10)

taking t0 = 0 and Vout(t = t0) = 0 so that the integration
constant equals to Vin(t = t0). To illustrate this expression,
one can take Vin(t) = Vi0 a constant and obtain that Vout(t) =
e

− t/τVi0 which tends to zero after some time with decay constant
τ. The filter will tend to subtract Vin(t) to its integrated history
(ignoring the initial condition) thus removing after some time
any slow or constant amplitude in the signal. The expression for
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the input signal as a function of the output is also analytically
obtained for a characteristic time of the filter.

Vin(t) = Vout(t)+

∫ t

t0

Vout(t
′)

τ
dt ′+(Vin(t= t0)−Vout(t= t0))

(2.11)

Expression (2.9) is the operation performed by the high
pass filter in the pre-amplifier looked from a “local” perspec-
tive, by infinitesimal steps. From the measured signal Vout(t),
the “true” signal Vin(t) at the output of the photodiode is
recovered by solving the equation

Dt(Vin(t)) =
Vout(t)+ τ Dt(Vout(t))

τ
. (2.12)

Whenever the filtered signal is well recorded with an
acquisition time step smaller than the high-pass filter time
constant, the exponential decrease of the acquired signal can
be easily corrected. Although this procedure does not allow
recovering the constant amplitude of the original signal which
was already cut before the acquisition started, as discussed
above, our analysis does not require this constant value. The
correction procedure is illustrated on Fig. 2.3. The orange curve
is the signal directly recorded after filtering. It is striking to
observe the expected decay (see Eq. (2.10) of the acquired signal
after the bead has jumped to another well along the optical axis.
The blue curve is the same signal after the correction of the
filter (2.12) is performed. This correction leads to the expected
separation of the instantaneous positional signal of the trapped
bead trajectory into two mean positions.

Of course, this correction is implemented numerically. To
perform it, the following scheme is applied to the filtered signal.
We first change variables X(t) = Vin(t) and Y(t) = Vout(t) and
by discretisation of the differential operator Dt() as the τ is
big with respect to the acquisition rate (τ ≫ ∆t) we will solve
eq (2.12) by iteration. Variables are then transformed to their
discrete equivalent, X(t) = xi, Y(t) = yi, Dt(X(t)) =

xi−xi−1
∆t and

Dt(Y(t)) =
yi−yi−1
∆t , the yi being the acquired point of our signal

and the xi points represent the unfiltered signal. The discrete
equation becomes,

xi = Γyi−yi−1+ xi−1, (2.13)
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with Γ = ∆t+τ
τ . The actual results are presented in Figure

(2.3) where the acquired signal that is high-pass filtered (time
constant of one second) is displayed in orange and in blue
the result after removing numerically the contribution coming
from the filter.

Figure 2.3: The orange curve corresponds to the direct time-
trace of the recorded signal. We can clearly observe
the exponential decay of the signal after the bead
has “jumped” to another metastable position of the
bistable potential due to the high-pass analog filter
with characteristic time τ of 1 second. The blue
curve displays the same time-trace signal after the
filtering effect is removed numerically by applying
Eq. (2.13) to the orange time-trace.

2.2 the optical piston: controlling optical poten-

tials with an external parameter

In our experiment, a single polystyrene bead is optically
trapped by a focused Gaussian beam in a water cell at a typical
2 µm distance from a metallic mirror. The trapping beam,
characterized by a fixed waist w0 located at z = 0, propagates
in the fluid along the z > 0 optical axis with a wave vector +k
-see Fig. 2.4 (a). It is M× magnified through the transparent
bead acting as a lens and reflected with a reflection amplitude
r[λ] by the mirror placed at a distance ℓ from w0. This creates
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a coherent optical landscape at the position of the bead z

measured from the waist

I
opt
M (z,ℓ)∝ |E+k(z)+ r[λ] ·E−k

M (z− 2ℓ)|2, (2.14)

displayed in Fig. 2.4 (b) as a function of z and ℓ for a fixed
value ofM. As expected from its interfering nature, the optical
landscape profile changes with the waist-mirror distance ℓ.

Figure 2.4: (a) Sketch of the trapping configuration. A
micron-size bead (radius R = 500 nm) is trapped
by a Gaussian beam (λ = 785 nm) focused through
a microscope objective. The position of the bead z
is defined with respect to the beam waist w0. The
end-mirror is positioned at a distance ℓ from the
waist. (b) Evolution of the optical landscape in
the vicinity of the waist (z = 0) and as a function
of ℓ. Blue colors correspond to regions of higher
intensity, i.e. deeper potential energy and thus to
stable positions. The case of a stable landscape
corresponds to the distance ℓ1 (green line) and a
bistable landscape is crossed at ℓ2 (blue line). Plots
of the force diagrams associated with ℓ1-stability (c)
and ℓ2-bistability (d).
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2.2.1 Experimental scheme and stationary wave structure: to-

wards bistability

The corresponding evolution has direct consequences on
the dynamics of the trapped bead in the vicinity of the waist.
Although the approach we develop below is fully general, these
consequences are most easily described in a dipolar approach.
Here, the non-absorbing bead is modeled by a real dipolar po-
larizability α and the optical interaction potential is UM(z,ℓ) =
−A · α · IoptM (z,ℓ)/(2ε0n2c), with n2 the refractive index of the
fluid. The coupling constant A allows accounting for bead
size effects, with A≪ 1 beyond the dipolar limit [67]. Within
such an approach, the time-averaged conservative optical forces
acting on the bead directly derive from the potential energies
Fopt(z,ℓ) = −∂zUM(z,ℓ). The dipolar approach therefore reveals
in a straightforward way the crucial property that the optical
force field is directly determined from the optical landscape, for
every choice of ℓ.

Because of the coherent nature of Eq. (2.14), one dynam-
ical configuration can be selected from the distribution of the
successive resonant phase conditions in the (z,ℓ) space. For
instance, picking at ℓ1 a resonant phase condition precisely on
the waist as shown in Fig. 2.4 (b) leads to restoring forces that
will maintain the bead in a stable trapped position at z = 0 as
displayed in Fig. 2.4 (c). But a mere decrease of the waist-mirror
distance to ℓ2 brings a bistable configuration where the resonant
phase evolution induces regions of local stability from both
sides of the waist separated by an unstable point at z = 0, as
seen in the bistable force diagram Fig. 2.4 (d). This roots the
analogy with a piston-like action exerted by the mirror on the
Brownian bead, where the walls confining the bead are of an
optical nature.

2.2.1.1 Axial 1D displacement

The stochastic trajectory z(t) of the bead evolves in every
such ℓ-configuration, modulating, by forward scattering of
the trapping beam, the intensity recollected by the objective.
The time-traces of these modulations allow us to retrieve the
essential features of the potentials explored by the bead. The
bistable behavior of the bead can be monitored on the CCD
camera because the motion of the bead along the optical axis
and across the bistability barrier changes the Gaussian envelope
of the reflected beam and thus the diffraction pattern of the
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Figure 2.5: Experimental intensity time traces respectively asso-
ciated with a Brownian motion in a quasi-harmonic
well (a) and in a bistable potential between two
distant spatial positions (c). The plots (in units of
kBT ) in (b) and (d) are the potentials associated with
the time traces (a) and (c), respectively.

recollected beam imaged on the camera, as shown in Fig (2.6).
Thus, by the sole measurement of the recollected intensity, one
can access part of the bead dynamics. Nevertheless, the low
acquisition rate of the CCD camera is a strong limitation for
analyzing precisely the stochastic motion of the bead. Other

experiments have
reported bistable
dynamics along
the optical axis
[68].

In this experiment, the recollected beam is spatially fil-
tered before the PIN photodiode through a pinhole (typical
aperture of about 1 mm2). This spatial filtering is useful since
it actually enhances the separation between the two average
intensities in the bistable configurations. Note that this is
a mere enhancement effect since even without any spatial
filtering, we still detect clearly a difference in intensity values
that is therefore solely related to the positional dynamics of
the bead. The same difference is observed simply using a
lens to focus the beam on the PIN. This lens-based scheme
however distorts even more the relationship between intensity
and distance over the full measurement range.
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Figure 2.6: Recollected spots imaged on the CCD camera in the
case of a bead trapped in a bistable configuration.
with same exposition time. Panel (a) shows the
bead in its most distant position from the mirror,
i.e. the position behind the waist (z < 0). Panel
(b) shows the bead in front of the waist, thus closer
to the mirror. The recollected intensity is higher
near the mirror (image (b)) than away from it. The
central area of the recollected spot is indicated by
the superimposed circles, with a 44 pixel-diameter
for (a) and 50 for (b).

2.2.1.2 Temporal timetraces

For the stable ℓ1-configuration of Fig. 2.4 (c), the time-
trace is displayed in Fig. 2.5 (a) and corresponds to a Brownian
motion performed in an quasi-harmonic potential probed by
the bead at the bottom of the whole optical potential shown
in Fig. 2.5 (b). The time-trace displayed in Fig. 2.5 (c)
corresponds to the bistable ℓ2-configuration of Fig. 2.4 (d).
The intermittency of the intensity signal between the two
distinguishable mean values is the signature of the activation
of the bead between two metastable positions along the optical
axis. There are indeed clearly two different time scales: a
short one associated with Brownian fluctuations, and a much
longer one on which take place activating events from one to the
other of these two positions. In each metastable states, similar
time-traces as those of Fig. 2.5 (a) reveal a quasi-harmonic
motion, expected for local equilibrium. Therefore, while the
bead performs its Brownian motion within a local well, it dif-
fuses across the potential barrier through rare events thermally
assisted [69].
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2.3 solving the interaction potential

This section details the methodology that we developed in
order to determine the actual experimental potentials presented
in Fig. 2.5. The optical fields and potential expressions are
first given and the method of resolution using Kramer’s rate
equation then formulated. Finally, important properties of the
dynamics are explored with (i) a study of aging and stationarity
features of the bistable configuration, (ii) a description of the
power spectral signatures of bistability, and (iii) a discussion
of the possibility to visualize the phase portrait of the bistable
Brownian dynamics based on a Hilbert transform approach.

2.3.1 Optical fields and bistable potential

The optical field Etot created inside the optical piston
(i.e. between the objective lens and the mirror) is given by the
coherent superposition of an incident and a reflected Gaussian
beams. The incident beam is, as explained above, right-handed
σ+ circularly polarized and described by its Rayleigh range zR
and its waist w0 position fixed at z= 0

E+k(z) = E00
w0

w(z;zR)
exp(ikz− iξ(z;zR))σ+ (2.15)

with

w(z;zR) =w0

√

1+
(

z

zR

)2

(2.16)

ξ(z;zR) = arctan
(

z

zR

)

(2.17)

and zR = πw2
0/λ, n2λ = λ0, the optical wavelength in water

(refractive index n2) and πw0 = λ/NA.
The reflected field, counter-propagating k → −k with

respect to the incident beam, is multiplied by a reflectivity coef-
ficient r[λ]. Its waist position is the mirror-image of the incident
waist position. But before being reflected, the incident beam is
intercepted by the bead because the bead diameter is larger than
the incident waist w0. Considering that the refractive index of
the bead (polystyrene) is different from that of the fluid (water),
the incident beam transmitted through the bead is magnified,
the bead considered to act as a lens-doublet. We account of
this effect by introducing an effective magnification parameter
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M on the reflected beam itself. This leads to changing the
Rayleigh range zR→M2zR andwaistw0 →Mw0 of the reflected
beam with respect to the incident beam. The reflected beam,
left-handed σ− circularly polarized, is then expressed as:

E−k
M (z− 2ℓ) =E00

Mw0

w(z;M2zR)
×

exp
(

−ik(z− 2ℓ)+ iξ(z− 2ℓ;M2zR)
)

σ−. (2.18)

The coherent superposition of the incident and the magni-
fied reflected Gaussian beams determines the optical landscape
of the problem. The corresponding optical intensity writes as

I
opt
M (z,ℓ)/αp = |E+k(z)+ r[λ] ·E−k

M (z− 2ℓ)|2

= E200
w2

0

w2(z;zR)
+ ρ2E200

w2
0

w2(z− 2ℓ;M2zR)

+
2ρE200Mw

2
0

w(z;zR)w(z− 2ℓ;M2zR)
×

cos(2k(z− ℓ)− ξ(z;zR)−

ξ(z− 2ℓ;M2zR)+ψ
)

.

(2.19)

with an interference term between the two beams and αp the In the published
paper αp was
forgotten in
expression (2.19),
nevertheless the
resulting potential
has the correct
expression.

particle polarizability. In the vicinity of the waist, it shows that
the modulations of the optical landscape (that will eventually
correspond to the local potential barriers, as discussed below)
are determined from a harmonic cos term. This immediately
stresses that a standard 4th order polynomial description of the
barrier is not appropriate for our optical piston configuration.
Such a 4th order polynomial description is however the one
adopted in a majority of work that resort to a simple Duffing
potentialU(x) = 1/4αx4−1/2βx2 (α,β > 0) because in this case,
Kramers rate equations are analytically solvable.

But as we checked using the scheme described in the next
section below, the interaction potential that can be determined
when considering a Duffing potential for our experimental data
simply yields unrealistic values. When injecting our experimen-
tal values into the Duffing-based rate equations, inconsistencies
occur: both rate equations can not be verified simultaneously,
the inter-well distance is much smaller than the fringe spacing
of the standing wave, and the barrier height is only of the
order of the thermal fluctuation kbT . These inconsistencies with
respect to the experimental data clearly show that, the bead
deviating strongly from the bottom of the well, it is not possible
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to assume that all forces modeling the potential are of the −κiz
type as is the case with a Duffing potential, the shape of the
optical field does not permit it.

2.3.2 Rayleigh regime and conservative forces

In the dipolar regime, the bead is characterized by an
electric polarizability αp. Neglecting any source of dissipation
within the bead, i.e. assuming that Im[αp] ∼ 0, the gradient force
is the only force exerted on the bead

Fopt =−∂zUM(z,ℓ). (2.20)

It directly derives from the interaction potential energy deter-
mined from the optical landscape intensity as

UM(z,ℓ) = −AαpI
opt
M (z,ℓ), (2.21)

with αp = α
2ǫ0n2c

and α= 4πǫ0n2
2a

3[(n1/n2)
2−1]/[(n1/n2)

2+2],
n1 the refractive index of the bead, n2 the refractive index of the
fluid, a the radius of the bead and ǫ0 the vacuum permittivity.

Despite the fact that it is related to the bead geometry,
the M parameter value for the magnification by the bead is
not necessarily a constant of the model as it depends on the
width of the beam intercepted by the bead. The A parameter
quantitatively corrects the value of the potential calculated in
our Rayleigh-based model due the finite size of the bead that
should be accounted for in a more realistic description of the
optical interaction. In fact, the interaction potential turns out
to be smaller by approximately 3 orders of magnitude for a
1 µm bead. This value is in good agreement with existing
evaluations for the size effect [67]. We stress that because A is
a parameter of the model that characterizes the intensity of the
coupling of the bead with the optical intensity, it is kept fixed
once determined for a given bead.

2.3.3 Method of resolution: Kramers rate equations

Kramers theory is based on a couple of conditions that are
clearly met in our experiment. The theory first is limited to
situations where local attractors separated by one single saddle
point are well defined in the dynamical potential landscape.
Then, it is crucial that the transitions between the two local
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ℓ (µm) M A ∆z (nm) Ub1 (kbT ) κb (pN/µm)
1.811 1.505 2.92e-3 285 2.98 2.81

κ1 (pN/µm) κ2 (pN/µm) ∆U (kbT ) τ1 (s) τ2 (s)
3.35 (3.12) 3.51 (3.85) -7e-4 (-7e-4) 0.505 (0.526) 0.494 (0.474)

Table 2.1: Parameters of the interaction potential extracted
from the resolution method applied to the bistable
ℓ2-configuration. Values directly obtained experi-
mentally are indicated in brackets.

minima are rare, in the sense that the time scale of escape
from one attractor to the other is much larger than all other
times scales, in particular the typical relaxation time of the bead
inside each attractor. This condition on a separation of time is a
condition on the ratio between the energy scale associated with
the fluctuations that make the bead hoping from one attractor
to the other and the barrier energetic height Eb. In our situation
of a bead in a thermalized fluid, the fluctuation energy scale is
simply given by kbT so that the separation of time corresponds
to the kbT/Eb << 1 conditions [23].

As soon as the process is stationary with a sufficient
number of recorded activating events, Kramers’ theory connects
escape rates evaluated from averaged residency time τi within
each {i= 1,2} well [70]

1
τi

=

√
κi
√
κb

2πγ
exp

(

−
UM(zb,ℓ)−UM(zi,ℓ)

kBT

)

(2.22)

to local trap stiffnesses κi = ∂2zUM(z,ℓ)|zi that fix the curvature
at the bottom of each well, and to the actual shape of the
barrier (position zb and height) through the absolute value of
its curvature κb =−∂2zUM(z,ℓ)|zb . Taking the ratio of both rates
therefore leads to measuring the potential energy difference
between the local equilibrium positions ∆U = UM(z2,ℓ) −
UM(z1,ℓ) = kBT ln(τ1/τ2

√

κ1/κ2).
The corresponding trap stiffness is measured by a power

spectral density (PSD) analysis [61]. At low Reynolds numbers,
this only relies on the determination of the roll-off trapping
frequency and on the knowledge of the fluid friction coefficient
γ. Note that we neglect the ∼ 20% systematic error on the
perpendicular viscosity when working at a 2 µm distance from
the surface [33].
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Measured κ1,2 and τ1,2 provide a non-linear system of
equations which solution fixes the three (M, ℓ, A) parameters
needed for a definition of the interaction potential. Experimental
values having their own uncertainty, the precision on ∆U is
below kBT/2 and below 6 nm for ℓ (see uncertainties determina-
tion in the next chapter). We also extract from the resolution
algorithm the barrier position zb, inverted curvature κb and
height, measured as Ub1 = UM(zb,ℓ) −UM(z1,ℓ). The barrier, 3
times higher than kBT , is still shallow enough to allow the bead
mapping, through thermal fluctuations, the bistable potential
around z = 0. The distance ∆z over which the bead is activated
is also measured. From the parameter values gathered in Table
I, the interaction potential profile can be plotted as a function
of the bead displacement as in Fig. 2.5 (d) in units of kBT . We
stress that the phase structure of IoptM forbids a simple 4th-order
potential (i.e. Duffing type). This method is

general and a
more accurate
optical potential
could be used [71,
72].

Monitoring the instantaneous motion I(z(t)) of the bead
in the bistable phase, mean residency times τ1,2 and stiffnesses
κ1,2 are extracted from experimental intensity time traces for
each well. Kramers rate equations provide the following system
fed with the extracted values:






∂2zUM(z,ℓ)|z=z1 = κ1

∂2zUM(z,ℓ)|z=z2 = κ2√
κ1

√
κb

2πγ
exp

(

−
UM(zb,ℓ)−UM(z1,ℓ)

kBT

)

=
1
τ1√

κ2
√
κb

2πγ
exp

(

−
UM(zb,ℓ)−UM(z2,ℓ)

kBT

)

=
1
τ2

(2.23)

(2.24)

(2.25)

(2.26)

where Eqs. (2.25) and (2.26) are escape equations given by
Kramers theory in the over-damped regime for each of the
metastable states of the bistable phase. Resolution of this
system gives access to the remaining unknown quantities of our
model: themirror waist distance ℓ, the beadmagnification effect
M and the size correction parameter A related to the coupling
between the light field and the finite size bead.

The energy difference between the two metastable wells
can be derived from the extracted residency times and stiff-
nesses as

∆U= kBT ln
(

τ1

τ2

√

κ1

κ2

)

. (2.27)
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Taking the ratio of equations 2.25 and 2.26 then removes the
dependency of the system on the properties of the barrier
but requires the knowledge of A. Fixing A and using the
simplex algorithm, the external variable ℓ (piston length) and
the magnification parameterM are determined. This therefore
gives the entire potential UM(z,ℓ) for a given A. Iterating this
resolution over A until the rate equations are verified provides
the triplet (ℓ,M,A) that best solves the whole system. Once
determined in one ℓ-configuration (say the symmetric bistable
configuration), the parameter A is then kept constant when
solving other bistable configurations (for instance varying ℓ).

Exploiting this strategie, it is the coherent nature of the
optical landscape that provides in our experiments a built-in
spatial reference. Because the bistable potential is directly
formed by the constructive interferences between the incident
and reflected beams, the inter-well distance becomes, for a fixed
configuration (i.e. fixed mirror-waist distance), a function of
only the laser wavelength and the objective NA.

With a proper modeling of the Gaussian beam passing
through the objective we are able to extract from the inten-
sity signal parameters that determine uniquely the potential.
Auto-correlations of the intensity signal (i.e. related to the
PSD) provide trap stiffnesses and therefore the second order
derivatives of the potential at the bottom of each well as given
by eq. 2.23 and eq. 2.24.

In addition to the stiffnesses, the measure of residence
lifetimes (τ1, τ2) in each wells leads to determine the energy
difference ∆U between the 2 wells, as discussed above and
expressed by eq. 2.27. This, together withvalues for the optical
parameters (laser wavelength, objective numerical aperture)
enables to know the distance between the attractors.

Our original solving approach can reconstruct the inter-
action potential of the bead for any length of the optical piston,
without resorting to any position density probability of the bead
along the optical axis. This is an important capacity of our
method since it does not require an absolute calibration of the
setup.

2.4 power spectral density

The PSD is exploited to determine the trap stiffness of the
bead in each of its wells. To do so, the full time trace, depicted
on Fig. 2.7 is cut on the top of the barrier and the dynamic of
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Figure 2.7: Time trace associated with a bistable motion of the
bead as recorded by the PIN photodiode on the
reflected beam intensity. The acquisition time is set
to 60 s, at a rate of 262 kHz.

Figure 2.8: Concatenated time traces associated with each of the
mean values measured in the time trace of Fig. 2.7.
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each side is concatenated forming two new time traces (Fig. 2.8).

Figure 2.9: PSD taken on each of the concatenated time traces
given in Fig. 2.8. Upper curve is the PSD for the
I(t)> 0 concatenated time trace and the bottom one
the PSD of the concatenated time trace when the
bead is in the well further away from the mirror
(corresponding to I(t) < 0). The black solid line
is the Lorentzian fit of the data and the vertical
line gives the roll-off frequency of each of the
quasi-harmonic trap associated with each locally
stable positions.

Assuming that the recorded stationary intensity time traces
are ergodic, meaning that a time trace is independent of the
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Figure 2.10: PSD taken directly from the full time trace
shown in Fig. 2.7 for an acquisition time of a
minute. The bottom PSD (dark) corresponds to the
experimental noise floor.

initial position of the bead and leads to the same distribution
for different realizations with identical parameters, a spectral
density analysis can then be performed [73] on each of these
trace. The trap stiffness is then directly extracted from this
analysis. This standard approach has the advantage of being
straightforward to apply on rapidly fluctuating and voluminous
data.

It clearly appears that the PSDs associated with the bead
motion in each of the attractors, presented as concatenated
time traces of Fig. 2.8, follow the typical Lorentzian shape
of a Brownian motion performed in an harmonic trap in the
over-damped regime. This is shown in Fig. 2.9. The two wells
of the bistable potential, separated by the activation barrier, are
thus quasi-harmonic, with stiffnesses κ1,2 = 2πγ f1,2 that can
be determined directly from the fluid drag γ and the so-called
roll-off frequency f1,2 of the trap measured on each PSD [61].

In the full PSD signal shown in Fig. 2.10, these quasi-
harmonic traps are seen through the Lorentzian fit at high-
frequencies and the roll-off frequency is the residency time
pondered trap stiffness of each well. But the spectrum within
these local wells does not exhaust the bistable dynamics. Low
frequencies indeed reveal a strong increase in the power spec-
trum which is due to the activation process of the bead over
the bistable barrier and broadly spread, occurring on a typical
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∼ 1 Hz regime even though it is not entirely resolved at lower
frequencies (this would require longer acquisition times). In
other words, the crucial separation of time scales discussed
above is readily observed on the PSD associated with the
bistable motion of the bead.

The frequency associated to the activation process over
the barrier is around 1 Hz, the trap stiffness at 100 Hz and
the thermal fluctuations have constant spectral amplitude on
the studied region (the PSD tail has a perfect 1/f2 decay). It is
worth noticing that the activation rate cannot be increased (by
decreasing the optical intensity or increasing the thermal noise).
This would lead to an overlap between the activation signature
and the trap confinement/relaxation processes, breaking the
timescale separation criterion.

2.4.1 Noise floor

The dark curve on Fig. 2.10 shows the noise floor of the
acquired PSD. Shot noise is visible at low frequencies which is
small compared to the amplitude of our measurements. The
peak slightly above 100 Hz comes from the intensity control
loop of the laser. Above this value the spectrum is basically
flat, the bottom of the dynamic range of the acquisition card
being reached. Throughout our experiments, the noise floor
always arises either by reaching the bottom of the dynamical
range of the electronics or from the thermal noise. The radiation
pressure noise from the laser sources is negligible, as rapidly
evaluated.

The energy of a single photon is:

Ephoton =
hc

λ
, (2.28)

with h the Planck constant, c the speed of light and λ the light
wavelength. It gives in our case an energy of:

Ephoton =
6.62 · 10−34 3.00 · 108

(785 · 10−9)
(2.29)

= 2.54 · 10−19 J. (2.30)
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For a laser of power P = 45mW, the average number of photons
per second I is,

I= P/Ephoton785nm (2.31)

= 45 · 10−2/(2.54 · 10−19) (2.32)

= 1.78 · 1018. (2.33)

The coherent laser source has a radiation pressure noise δFrad,

δFrad = 2
h

λ

√

I (2.34)

= 2
E

c

√

I (2.35)

= 2
2.54 · 10−19

3.00 · 108 1.33 · 109 (2.36)

= 2.25 · 10−3 fN/
√
Hz. (2.37)

This must be compared with the thermal force noise δFTh
evaluated from the fluctuation-dissipation theorem as:

δFTh ≃
√

2kbTγ (2.38)

=

√

2
4 · 10−21

1.0 · 10−9 (2.39)

= 2.83 fN/
√
Hz. (2.40)

These values imply that a spectral analysis performed on our
setup is limited by the thermal fluctuations and not by the laser
noise. This justifies well that the intensity monitored is a direct
function of the bead dynamics only.

2.5 stationarity and residency probability density

The whole analysis of the bead time traces assumes that
the system under study is in a non equilibrium steady-state
regime, as seen previously. More precisely, it is assumed that
the system, which does not have a single equilibrium position
to relax to, keeps the same dynamical rates with time. This
assumption is verified by constructing the cumulative evolution
CT of the time τ spent by the bead in each of the (j =up, down)
states as

CT (k)
j =

k∑

i=0

τ
j
i. (2.41)
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Such a construction is presented in figure (2.11) for the previ-
ously presented one minute long acquisition. One observes that
for each of the up and down states, the evolution is almost linear
with time. This means that on average the mean residency
time in each state remains the same all through the experiment
time. A change of slope in the cumulant evolution would mark
the non-stationary character of the system observed over that
acquisition time.

That our system is proven to be in a non-equilibrium
steady state using such a cumulative construction is important
since it allows using spectral analysis in order to treat the
signal associated with the instantaneous motion of the bead.
It is also clear that the studied system is ergodic: measuring
another bead at another time in the same configuration would
give the exact same dynamical values because the trapped
objects always relaxes to its position around the Gaussian beam
waist. The probability density distribution of finding the bead

Figure 2.11: Experimental cumulative evolution of the time
spent in a given state with “high state” in orange
and “low state” in blue. The evolution is almost
linear and thus it allows us to say that the system
is a non-equilibrium steady-state system.

in state up or down is also constructed from the individual
time trace in each of the states and is displayed in Fig. 2.12.
Pup/down(τ) = Prob{τup/down > τ} quantifies the probability
of staying in the same state after some time τ already spent
in the state. The probability distribution fits an exponential
decay of time constant the mean residency time in each state (to
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experimental and fitting inaccuracies), therefore the dynamics
of the bead can be considered to follow a Poisson dynamics. On
average the bead stays a given time in a well but the knowledge
of this residency time gives no hint on the following one. As it is
the case for both wells it is equivalent saying that the transition
is uncorrelated to the previous one.

2.6 hilbert phase portraits

Although density probabilities clearly illustrate the time
spent by the bead in each well, they provide no hint on the
instantaneous dynamics of the motion and in particular on the
exact nature of the barrier crossing. In the ballistic regime, a
phase space representation displays trajectories that connect
all the successive states through which the system evolves in
time. In this regime, the phase space is simply built on a
(position,momentum) space.

However, the notion of an averaged velocity (and there-
fore momentum) becomes ill-defined for a diffusive system.
The Brownian motion of the bead along the optical axis z is

Figure 2.12: Experimental probability of leaving a “state” for
the other after a given time already spent within it.
The bead is highly confined after arriving in a well
and will not diffuse to the other state before a time
lag of the order of a second. The shape follows a
typical Poisson distribution of time constant equal
to the mean residency time.
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Figure 2.13: Simulated and experimental intensity Hilbert
phase space trajectories of the bead dynamics along
the optical axis for different mirror positions, i.e,
for different energy configurations schematized in
the first row. Second long time traces illustrating
the typical dynamical of the bead motion for three
potential shapes in their Hilbert configuration
space. The red curves represent experimental
data acquired during the phase transition while
blue traces are simulated traces (in meters) of the
potential matching the data. Graphs a) and d)
represent the stable single well potential like the
ℓ1 position in Fig. 2.4. Figures c) and f) illustrate a
typical cycle in a bistable potential (ℓ ∼ ℓ2 from Fig.
2.4) from the lower position to the upper one and
coming back to the initial well. We clearly observe
both in the data and theoretically that barrier
crossing by diffusion involves a big amplitude in
the Hilbert component of the signal. Figures b)
and e) illustrate the transition between stable and
bistable potentials where the bead moves out of its
stable well for a very short amount of time.
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characterized by a mean square displacement measured over a
time t 〈(∆z(t))2〉= 2Dt proportional to the diffusion constantD.
Defining amean velocity of the bead over the same time interval
as v̄ =

√

〈(∆z(t))2〉/t leads to a ∼ 1/
√
t diverging velocity.

This implies that it is not possible to construct a phase space
representation that would be independent of the band width
chosen for sampling the bead trajectory.

To circumvent this problem, we have implemented the
analytical signal method well known for processing complex
signals, in particular in biological systems [74, 75]. The method
consists in forming, for the instantaneous position of the bead
z(t), an effective quadrature z̃(t) = H[z(t)] based on a Hilbert
transform H of the signal, explicitly calculated as

z̃(t) =
1
π

+∞∫

−∞

dτ
z(τ)

τ− t
. (2.42)

This leads to build the so-called analytic signal Qz(t) = z(t) +

i H[z(t)] = ρ(t)eiϕ(t) which defines in an unique way both the
instantaneous amplitude ρ(t) and phase ϕ(t) associated with
the bead motion z(t). Our central point is that, contrasting with
the standard (z, ż) phase space, the (z(t), z̃(t)) phase portrait can
still be perfectly defined for a diffusive motion and computed
over any chosen bandwidth with the same trajectory patterns.

In the simplest case of a ballistic harmonic motion z(t) =
ρcos(ωt), one has z̃(t) = ρsin(ωt) and the phase portrait draws
a mere circle in the (z(t), z̃(t) coordinates. This is different
from the elliptical trajectories in the (z, ż) phase space for the
harmonic oscillator.

For 3 different potential configurations -corresponding
to the stable and bistable phases and the transition region
between them- drawn in panels (a)-(c) of Fig. 2.13, we extract
a 1 s-long excerpt of the bead dynamics z(t) data which we
Hilbert transform via 2.42. The corresponding phase portraits
displayed in panels (d)-(f) are then compared with numerical
simulations performed on stochastic Langevin equations with
the equivalent potential determined either by resolving the
bistable dynamics as detailed above, or by estimating the dis-
tance ℓ when the potential configuration is outside the bistabil-
ity region, such as in the case of panel (a). Importantly, these
simulations have been performed with an identical bandwidth
as the experimental one. From the simulated z(t) trajectories,
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Hilbert transforms are computed together with the phase por-
traits in panels (g)-(i).

As expected from the Brownian motion in a (quasi-)har-
monic well, a Gaussian distribution of positions z(t) should be
characterized by a circle in the phase portrait. This is clearly
observed both from the experimental and numerical realization
of Qz(t) in Figs. 2.13 (a) and 2.13 (d). Then by construction,
the hopping dynamics back and forth between the two local
minima and through the barrier of the bistable configuration
corresponds to a closed circulation of the bead quadrature.
In that bistable phase, the barrier-crossing connects the two
attractors following an oriented trajectory at the periphery of
the quadrature space.

This analytical signal approach enables to directly reveal
the diffusive character of the barrier-crossing process. In panel
(f), it is even possible to track some recrossing events [69] where
the bead, diffusing across the barrier, gets however pushed
back into its initial minima by thermal fluctuations. Also, this
approach directly leads to a remarkable connection with the
amplitude of the Hilbert transform being an increasing function
of the activation speed through the barrier (or residency time in
the opposite well, since both times are naturally connected in a
bistable configuration). Yet, this connection should deserve to
be quantitatively discussed in more details.

When evaluating the experimental quadratures z̃(t), one
has to keep in mind, as seen for instance on Fig.2.7, the
overlap between the tails of the time-traces of the reflected
intensity associated with the diffusion motion of the bead in
each potential well. This overlap will necessarily show up in the
quadrature representation Qz(t), as seen in particular Fig. 2.13
(f) where there is no net separation between the two attractors.
Comparing simulated and experimental Hilbert transforms on
Fig. 2.13, the crossing dynamics that connects the intensity
mean values is clear and the overall shapes of the quadrature
plots are in good agreement with the simulation. It is indeed
an advantage of this method, even when the dynamical signal
within both well overlaps, the movement of the bead when
crossing the barrier is well resolved and accessible.

Finally, this Hilbert approach has the advantage to allow
us discriminating the trajectory sequences associated with intra-
well dynamics from trajectories that develop on the barrier as
they has stronger amplitude in the quadrature space.
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2.7 conclusion

We describe in this chapter our optical piston setup,
formed by a Gaussian beam focused in front of a movable
mirror. Depending on the position of the mirror with respect
to the waist of the Gaussian beam, the interference between
the incident and reflected beam can be either constructive or
destructive. This gives us the possibility to generate either
a strong quasi-harmonic interaction potential or a bistable
interaction potential, within which evolves an over-damped
Brownian 1 µm polystyrene bead, immersed in water, at room
temperature.

With the piston tuned to induce a bistable interaction
potential, we study in details the metastable dynamics of the
trapped bead, in particular through fluctuating time-traces
recorded from the recollected intensity signal that are directly
related to the stochastic motion of the bead.

We show how the bistable dynamics of the bead can be
describedwith a two-statemodel where the bead residesmost of
the time at twometastable positions in space, with rare hopping
events induced by the thermal fluctuations. With metastable
states long-lived compared to the intra-well relaxation dynam-
ics, the formalism set up by Kramers can be applied.

We model the interaction potential induced by the opti-
cal piston in the dipolar (Rayleigh) regime. By constraining
Kramers rate equations with a few dynamical, thus measurable,
quantities (i.e. mean residency lifetimes and trap stiffnesses in
each of the two metastable wells), we show how such a model
can actually be fully resolved, including an effective correction
factor accounting for the deviations with respect to a more
rigorous Mie-based approach.

We also carefully verify the steady-state nature of the
interaction potential. It is important indeed to ensure that
the bead, not having a single equilibrium position to relax to,
keeps the same dynamical rates with time. This stationarity
condition, together with the ergodic character of the dynamics,
are necessary when performing power spectral analysis of the
bistable regime.

We finally propose a definition of phase portraits appro-
priate for a stochastic bistable system built on an effective
quadrature evaluated from the Hilbert transform of the bead
motion. Such phase portraits, displayed for different interac-
tion potential profiles, provide simple illustrations of the dy-
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namical evolution of the bead, with a clear separation between
intra- and inter-wells dynamics. In particular, recrossing events
over the barrier of the potential are perfectly identified.



3
REVERS IBLE COMPRESS ION OF THE OPT ICAL
P I STON

In the previous chapter, the optical piston was described
together with the different methods available to us for dis-
cussing with a high precision the associated bistable dynamics
that an optically trapped bead can probe. In this chapter, we
actually operate the piston as a source of mechanical work
exerted on the trapped bead. We thus look at the evolution of
the interaction potentials as a function of what we will call the
piston length ℓ -defined in the previous chapter as the distance
between the trapping beam waist and the end-mirror.

In this chapter, we turn this distance as a dynamical exter-
nal variable in order to induce reversible cross-overs between
stable and bistable phases of the over-damped Brownian bead
inside the optical piston. With the instantaneous position of the
particle being a stochastic process, the position of the mirror
controls the piston length ℓ and therefore the optical force field
applied to the particle.

We show that the movable mirror injects quasi-statically
reversible work into the system (defined as the trapped bead)
in the form of Helmholtz free energy. We are able to measure
the progressive deformation of the optical potentials exploiting
the method based on Kramers’ theory described in the previous
chapter. This deformation, performed through the incremental
displacement of the piston, lead to some reversible heat pro-
duction. On the experimental time scales that are involved
in this work, the reversible piston changes corresponds to an
isothermal process. But as expected thermodynamically, the
fact that a constant temperature is maintained in the system
necessarily implies that some heat is transferred in the process.
Interestingly, it is through the optical deformation that we
can measure precisely this quantity of heat generated in our
experiment.

56
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3.1 axial displacement of the piston

In this chapter, we now look at our trapping configuration
as a system that enables to evolve through different energetic
configurations by the external control of the piston length
variable ℓ. The experimental setup is the one described in the
previous chapter, the bead is first trapped 2 micrometers away
from the surface at the ℓ1 position from Fig. 2.4 and the mirror
approaches the waist by infinitesimal steps, compressing the
piston. The system is let to relax to its lowest energy config-
uration after each displacement of the mirror and before an
acquisition is started. Only steady state regimes are measured.

3.1.1 Setup and protocol

Such a relaxation time is important to insure since it is
actually imposed by our detection technique. The trapping
beam is also used for the detection of the bead position by
measuring the reflected beam intensity. A small displacement
of the mirror will change the mean intensity on the PIN pho-
todiode. We want the measured signal to contain on the
dynamical signature and centered on zero. It is obtained by
waiting 6 seconds before an acquisition after a configuration
change, enough to let the high-pass filter (set to 1 second) reject
the continuous component of the signal (the mean recollected
intensity). Changes at low frequencies or for the continuous
component of the signal are filtered out before the start of the
next acquisition. The choice of the filter time constant is only
chosen by the constraints of our experiment, i.e. a short time
between different configurations. The filtered signal is sampled
at a frequency much higher than the filter roll-off (262 kHz).
The exponential decrease of the signal because of the filter can
properly be corrected using the scheme describe in chapter 2,
subsection 2.1.6.

Each configuration explored by the bead is sampled for
30 seconds. Even though it may appear short as only about
30 state changes are recorded within a configuration, one has
to compose with the experiment stability and drifts as time
passes. In this experiment, 10 minutes is the upper time limit
considering fluidic drifts from the cell as well as other objects
approaching the trapped bead after an initial bead is trapped.
The stability of the fluidic cell is around an hour, fluid leakage
from the cell or below the spacer changes the optical path length
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and thus the repeatability of the experiment. Furthermore, long
waiting times decrease the probability of trapping, given the
fact that the suspended beads tend to adhere on the surfaces of
the walls of the fluidic cell.

3.1.2 Reversibility / incremental changes of configurations

An incremental change dℓ of the length of the piston
pushes the bead out of equilibrium and forces it to relax in the
new ℓ+ dℓ configuration with a stiffness κ and a fluid friction
η on a time tD ∼ 2πη/κ set by diffusion, typically ca. 10−2 s
in our conditions. Hydrodynamic effects on the bead due to
the motion of the mirror can be neglected since the incremental
shift of the mirror by |dℓ|= 20 nm, performed with a speed V of
1 mm/s set for the piezo-actuator, is associated with a low 10−9

Reynolds number [76]. Putting numbers in the computation of
the Reynolds number Re yields,

Re = ρVd
µ (3.1)

≃ 10−9, (3.2)

with ρ is the fluid density (1000 kg ·m−3 for water), µ is the
kinematic viscosity (10−3 kg ·m−1 · s−1) and d the diameter of
the object (10−6 m).

Accordingly, the displacement of the fluid remains purely
diffusive and the moving piston therefore has no direct mechan-
ical action on the bead. Under such conditions, the only source
of mechanical loss in the system is given by the relaxation
process from one configuration to the other.

We emphasize that z(t) does not map the entire canonical
equilibrium distribution associated with an ℓ-configuration. It
only maps a thermally accessible subset of it, that can be
resolved for sufficiently long acquisition times (30 s in our
experiment). The notion of stability then corresponds to local
stable wells much deeper than kBT while bistability corre-
sponds to local barrier heights of the order of kBT over which
the bead can be activated. In this picture, stable phases can be
identified from bistable phases, as drawn in Fig. 3.5 (a) in the
M− ℓ parameter space.
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3.2 motional mapping of interaction potentials

Brownian trajectories in optical trapping experiments typ-
ically last for a few seconds only, or minutes at best. It is
therefore clear that the probe bead can only explore a limited
amount of space during this finite time and hence a limited re-
gion within the entire interaction potential fixed by the optical
conditions. The difficulty when studying non trivial potentials
is to have a proper mapping by the bead of the energy landscape.
It is in fact this mapping that will define the actual interaction
potential within which the bead evolves. The term mapping

is often use to describe the fact that, through its motion, the
Brownian object will sample all accessible positions in space
such that the probability density of positions is a functions of
the potential energy levels via Boltzmann statistics.

The lower energy levels of the potential are obviously
more often visited by the bead than higher ones. It is worth
noticing that this property for the bead is specific to the over-
damped nature of its motion, considering the bath as both the
driving and the dissipative medium:

• A lossless bead in the same potential (i.e. the bead without
the bath) would indeed only explore one energy level fixed
by the initial conditions.

• A lossy but inertial system would never reach levels
higher than the initial one.

3.2.1 Exploring the energy landscape with time

There is a close relation between the energy landscape
characterizing a physical process and the time needed for a
system to manifest that process. It is indeed only through the
exploration of the energy landscape performed by the system
that the given process will be recognized as emergent by the
experimentalist. The phenomenon of metastability provides
a striking illustration of that connection. Radioactivity for
instance, where an excited atom can appear stable on short
times and seen to decay on much larger time scales.

Metastability is rooted in the existence of bistable po-
tentials. When aiming at studying experimentally bistable
potentials, it is important, as emphasized in [50] (see p. 56), to
run the experiment over sufficiently long acquisition times in
order to properly map a thermodynamically accessible region
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of the whole energy landscape that can characterize the bistable
regime. In this situation, it becomes possible to determine
accurately the interaction potential through the record of the
instantaneous motion of the probe bead.

In order to illustrate the discussion and clarify its meaning,
let us consider as an example a bistable potential with very
deep wells, separated by a barrier of energy much larger than
the thermal energy kBT . The likelihood for the bead to escape
the well at the bottom of which it has been initially confided is
very low for a finite experimental time τexp that is much shorter
that the mean escape time τesc from the well. The recorded
signal will hence suggest that the interaction potential trapping
the bead is a perfectly single well, harmonic potential. If the
second well is not readily accessible to the bead via thermal
fluctuations, there can however be bunches of fluctuations that,
cumulating on very short time scales, allow the crossing of the
barrier. Note that, like tossing 10 successive heads with a coin,
the chance for such bunches decreases exponentially with the
height of the barrier, in such a way that they become actually
extremely rare. While the image of bunches (i.e. trains) is
simple indeed, we are mostly confronted to giant fluctuations of
a Poissonian nature (the number of coin toss would also change
by units of time).

Even then with such occasional bunches, the bead would
not have probed sufficiently the potential when aiming at
mapping it properly, in particular in the region near the barrier
top. Would the barrier height be lower, thermal fluctuations
would allow for an exploration of both wells within much
shorter times than the whole duration of the experiment and
in this case, the barrier would be properly sampled. For a
barrier of intermediated height (slightly higher than kBT set by
the thermal fluctuations) a proper sampling is possible and all
condition aremet to study the bead dynamics through its escape
times. As exposed in the previous Chapter, this is precisely
where the formalism developed by Kramers is key, allowing to
link rigorously residency times with the energy landscape of the
bead. In this formalism, for a barrier height of the order of a
few kBT , the so-called escape times correspond to the average
residency time the bead, i.e. the time the bead will spend in a
well before leaving to the neighboring one by diffusing over the
barrier.
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3.2.2 The harmonic regime

There are no simple expressions characterizing the rela-
tion between probed energy levels and the time needed to probe
them. But in the case of attractive potentials, taking a simple lin-
ear restoring force, it was shown that the time needed to explore
higher energy levels of the potential increases exponentially
with energy [77]. With respect to our experimental schemes,
it is clear that the highest energy levels probed by the bead and
driven by the thermal bath can be reached in a reasonably small
characteristic experimental time, but that reaching other higher
levels is unlikely or requires τexp so large that it eventually falls
outside the time of stability of the experiment itself.

It is possible to give an estimate of this time-energy
relation in the case of a bead trapped in a harmonic potential.
To this aim, we simply start from the Maxwell-Boltzmann
(MB) distribution giving the probability density of reaching an

energy ε as Z−1 exp
(

−ε
kBT

)

with Z =
∑
i exp

(

−εi
kBT

)

the partition
function. Our idea is to put this probability in relation with the
characteristic time of the trap τT = 1

fT
given as the inverse of

the roll off frequency of the trap. This frequency is defined by
the ratio κ/2πγ between the trap stiffness κ and the Stokes drag
γ. Such a frequency is characteristic of the bead dynamics and
it separates it into two domains: one at low frequencies f < fT
where the bead motion is confined by the trap, theother one at
high frequencies f > fT where the motion of the bead is a free
Brownian motion and the trap becomes transparent to the bead
dynamics.

In this harmonic approach, and as presented in the first
Chapter, the power spectral density (PSD) Sz[f] of the trapped
bead is a simple Lorentzian with

Sz[f] =
D

2π2
1

f2+ f2T
, (3.3)

with D= kBT/γ the diffusion coefficient.
Our point is to determine how the driving source of

energy, namely thermal fluctuations, is distributed across the
frequency domain by the modulation of the bead Brownian
motion. To do so, we split the position variance, given by the
Wiener-Khinchine theorem, over two intervals separated by the
roll off frequency of the trap fT as 2× Sz[f] is the

onesided power
spectral density.
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〈

δz2
〉

= 2×
∫+∞

0
Sz[f]df

= 2×
(∫+fT

0
Sz[f]df+

∫∞

+fT

Sz[f]df

)

. (3.4)

With a normalized variable u = f/fT , the split variance can be
easily computed considering that the primitive function of 1

1+u2
is known analytically as atan(u)+ cst for all real u. The result
of the calculation is for the full variance,

〈

δz2
〉

=
D

f2Tπ
2

∫+∞

0

1
1+u2

du=
D

f2T2π
, (3.5)

and for the split variance,

〈

δz2
〉

=
D

f2Tπ
2

[∫1

0

1
1+u2

du+

∫+∞

1

1
1+u2

du

]

=
D

f2T4π
+

D

f2T4π
. (3.6)

This calculation reveals the interesting fact that the posi-
tion variance of the trapped bead is equally distributed from
both sides of fT . The equipartition argument links the noise
power spectrum associated with the variance of the trapped
object to the thermal energy via the trap stiffness as κ

〈

δz2
〉

=
D
f2T2π

= kBT . Figure 3.1 provides an illustration of this decom-

position. Interpreted through this equipartition argument, our
simple analysis therefore leads us to the time-energy relation
we were looking for, here that a (mean) energy level εT =

kBT
2 is

explored by the Brownian system in a time τT = 1/fT .
We now link the characteristic time τT with the potential

mapping problem, following the spirit of [50]. We use indeed
this initial time-energy relation in order to estimate the conver-
gence between the potential probed by the Brownian bead over
an experimental time τexp and the actual equilibrium interac-
tion potential that determines the whole energy landscape of
the problem. To this aim, our simple assumption is that the MB
probability density for reaching an energy level ε is inversely
proportional to the time needed to reach that energy level
through thermal diffusion of the bead in the trap, considering
an energy ε and a time τexp larger than the characteristic trap
energy εT and time τT .
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Figure 3.1: Typical power spectral density obtained in our
experiments in units of distance multiplied by the
trap stiffness. The surface of the colored area is kBT2 .
Thermal energy is split equally between the trapped
region and the one of free Brownian diffusion.

This idea is in fact related to the mean first escape time
problem, which leads to determine the time τε taken on average
for the bead to reach a certain position in space (and therefore
in energy for an attractive potential) starting from a position
near the bottom of the well. Note that a formal derivation of
the mean first escape time for a harmonic trap is derived in [77].
The result of this derivation is that the mean first escape time
is an exponential function of the energy. Despite the simplicity
of our approach, our time-energy based analysis will come to a
similar conclusion.

In order to express the statistical relation between time
and maximal reached (mean) energy, we write the probability
τε as τε = C exp(βε), with C a constant independent of τε
-but depending on the interaction potential. If we compare two
times τε and τε ′ within the same potential, the ratio between
them is directly computed as τε

τε ′

= exp(β(ε − ε ′)), where all
constant factors compensate because we work within the exact
same potential.

From the above analysis, the harmonicity of the optical
trap precisely yields a connection between the relaxation time
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τT and the mean diffusion energy εT . This allows us looking
at energy levels ε = nεT given as multiples of εT = kBT/2.
Reporting these relations yields a simple scaling for the time
ratio as

τnεT
τεT

= exp((β(nεT − εT )) (3.7)

= exp((βεT (n− 1)) (3.8)

= exp

(

(n− 1)
2

)

. (3.9)

This clearly reveals that reaching higher energy levels has
an exponential cost in time. As an example, we consider an
harmonic optical trap of stiffness of 200 Hz, typical of our
experiments, and characterized by a relaxation time τT ∼ 5 ms.
In such conditions, the mean first escape time needed to reach
an energy level of 4× kBT is almost 35× τT (i.e. ca. 200 ms).
This value is precisely of the same order as the time measured
in our experiment.

This relation also gives the evolution of the mean highest
energy level that can be reached by the diffusive bead as a
function of time. Starting from τε

τεT
= exp(β(ε− εT )) and now

writing τε as a multiple of τT gives
nτεT
τεT

= exp(β(ε− εT )) which

can be solved for ε. The solution writes as

ε= β−1log(n)+ εT (3.10)

= kBT

(

log(n)+
1
2

)

(3.11)

≃ kBT log(1.65 n). (3.12)

This relation is plotted on Fig. 3.2 in normalized units
of kBT . It is an affine function on a semi-log scale. The
slope is of 2.3kBT per decade meaning that, in an experiment,
exploring roughly 2 additional quanta of kBT requires 10×
more time than what has been already spent to reach a targeted
maximal level of mean energy. It is worth emphasizing again
as in Section 3.2 that because of the overdamped nature of the
dynamics of the bead with a thermal driving bath, all energy
levels are explored, up to the highest ones.

Finally, we emphasize that our analysis only works on
average, for experiments which are conceived as multiple runs
with identical initial positions. In this framework, the possibil-
ity for a rare event to occur more quickly than on average does
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Figure 3.2: Graphical representation of eq. (3.12) in a semi-log
scale. The energy is expressed in units of thermal
energy kBT and the time is a multiple of τt, the
characteristic time of the trapped object. The
slope is of 2.3kBT per decade meaning that in an
experiment, exploring roughly 2 more kBT requires
10 ×the time already spent to reach the current
mean maximal level.

exist, but is not sufficient to characterize the dynamics which is
essentially determined by mean time and mean energy values.

3.3 the cross-over

Our coherent optical piston configuration gives a unique
capacity in monitoring the cross-over between these phases.
Indeed, a continuous compression of the piston connecting two
stable configurations forces the bead to go through a whole
phase of bistability, starting for a piston length ℓi with the bead
in an initial stable position at the incident waist z = 0 and
ending for ℓf < ℓi with the bead in the very same spatial position
but within a different stable potential.
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Figure 3.3: Transverse view of the fields intensity along the
optical for 3 different mirror positions ℓ. The piston
is compressed, starting from a stable position ℓ1 up
to position ℓ3 crossing through the bistable position
ℓ2.

3.3.1 Parameter space and trajectories from both sides of the cross-

over

From our resolution method, the bistable dynamics of the
bead can be solved for each step in ℓ in a dedicated parameter
space (M, ℓ, A). These parameters fix each potential throughout
the bistable phase from which they are extracted. The actual
steps of the entire path followed by the system between ℓi
and ℓf can be plotted in the M − ℓ plane. It is worth noting
that the resolved ℓ values follow precisely the mirror actuation
command and that the path shows only a small dispersion in
M values. This important an outcome of the analysis: it gives
the possibility to determine the potential profiles even in the
stable phase from a simple extrapolation on the variable ℓ. This
is done for instance for the stable ℓ1-configuration of Fig. 2.4
with the measured potential profile plotted in Fig. 2.5 (b).

As shown in Fig. 3.5 (b), the path can also be represented
through intensity probability densities calculated from the evo-
lution of the reflected intensity of the trapping beam as a func-
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Figure 3.4: Trapping potential energy the bead evolves within
for 3 different positions of the cross-over. The first
curve in green corresponds to the initial position of
the cross-over, the ℓ1 position from Fig. 2.4 (b) with
minimal energy position at the beam waist. The
blue curve is the ℓ2 position from Fig. 2.4 (b), the
potential has local minima at both sides of the waist,
the dynamic is bistable. The purple curve ends the
cross-over, the piston is compressed over an inter
fringe and the bead comes back to a stable single
welled potential at the beam waist (mirror position
ℓ3). It is worth noticing that over the cross-over and
although the bead comes back to its same spatial
position, the potential energy changes. Optical field
illustrating these positions are given on Fig. 3.3.

tion of ℓ. These densities link each probability density extrema
to a local minima (a local well) of the resolved potentials. These
plots clearly reveal the progressive onset of a bistable dynamics
of the bead along the optical axis of the setup.

We want to stress here a clear advantage of our statistical
method: this cross-over dynamics can be probed with a high
precision, despite the unknown exact relation between the
measured intensities and the bead positions along the optical
axis.
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In standard treatments [8, 78] the interaction potential
V(z) is recovered from the probability density of position p(z)
of the trapped bead from a MB distribution approach as

V(z) ∼−kBT · log(p(z)) (3.13)

when the bead is observed for a sufficiently long time, leading
to well-defined position histograms. This method assumes
however:

• that each configuration is at thermal equilibrium

• that the bead dynamics is sufficiently well sampled in
order to properly map its successive positions in space

• that the bead position is properly calibrated in space
throughout the whole accessible positions of the bead in
the fluid

This last assumption turns out to be crucial but it is
inoperative within our framework. This comes from the very
specific detection scheme we use in our experiments that was
described in Ch. 2. This schemes leads to an overlap between
the temporal dynamics of the bead in each local well with
intensity levels that are equal to the intensity signal related
to the events associated with the barrier crossing. This typical
overlap is clearly seen when looking back at the Hilbert phase
portrait representation of the bistable configuration displayed
in Fig. 2.13 (c) and (f). Due to this overlap, the approach of Eq.
(3.13) cannot give neither the correct waist-mirror separation
distance ℓ corresponding to the interaction potential of the
experiment, nor the correct barrier height.

In fact, and as already discussed in Ch. 2, section 2.3, we
do not measure in our experiments any distance from intensity
histograms but the spatial calibration is obtained through the
resolution of our complex potential, exploiting its coherent
nature which sets the interference fringe as a natural meter of
the problem.

After the interaction potentials are solved in the bistable
region giving parameters A, M and ℓ1 it becomes straight-
forward to illustrate the potential evolution as a function of
the mirror position ℓ. Such a representation is given on Fig.
3.4 where the potential energy U(z,ℓ) is given for 3 difference
mirror positions, ℓ1, ℓ2 and ℓ3 corresponding to the start of the
cross-over, a compression of the piston half way through the
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cycle and the end of the compression respectively. At the initial
piston position, the bead spends most of its time at the waist as
it is the potential minimum. This potential is represented by the
green curve on Fig. 3.4. By compressing the piston the bead is
then pushed backward behind the waist and another metastable
position emerges in front of the waist. This emerging well is
explored as soon as the bead can be thermally activated over
the induced barrier. The blue curve on Fig. 3.4 depicts the
potential for a compression halfway through the cycle. At this
position of the piston, the bead explores both metastable wells
and its dynamic is clearly bistable, as illustrated on Fig. 2.5 (c).
Here, both wells are populated and the bead is activated over
the barrier sufficiently often in order to properly characterize
the bistable configuration. Finally, once the cycle has been
completed, the bead reaches its equilibrium position back at
the waist of the trapping beam. The associated potential is
presented in purple on Fig. 3.4. It is worth noting that while
the minima of the initial and final position match, their energy
slightly differ. This difference is a clear indication that some of
the work injected in the system by the compression of the piston
is consumed as a potential energy difference. In the next section,
a precise thermodynamic analysis of this compression process
is given where the associated thermodynamical quantities are
derived and evaluated.

3.4 thermodynamic quantities : work, heat and en-

ergy

It is possible to give a thermodynamic description of
the path from an incremental energy balance point of view.
This is at the core of the field of Stochastic Energetics [50].
Following this approach, the thermodynamic description of our
system can be drawn from the Langevin equation describing the
over-dampedmotion of the bead inside the optical piston where

γż=−∂zUM(z,ℓ)+ FTh, (3.14)

with γ the viscous Stokes drag, UM(z,ℓ) the internal energy and
FTh the random thermal force.
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Figure 3.5: (a) Regions of stability and bistability in the ℓ−M
parameter space. Experimentally solved bistable
configurations are displayed in open circles as ℓ
is varied. The points in the stable region (open
squares) are extrapolated from the extreme bistable
points according to the 20 nm piezo-actuation. The
color map in the bistable phase codes the asym-
metry of the bistable potential as ∆U/(UM(z1,ℓ) +
UM(z2,ℓ)) positive in red, negative in blue. (b)
Intensity probability densities (for 30 s acquisition)
as the mirror distance ℓ is reduced, crossing over the
bistability region between two stable bead dynamics.
The six central bistable plots correspond to the six
open circles plotted in (a).

3.4.1 Defining heat for a single dynamical realization

Heat represents a quantity of energy that is transferred
from a system to its surrounding environment in a different
way than work is. Heat -usually denoted dQ- expresses an
exchange of energy between two systems and is not a state
function of the system, in contrast with the internal energy U.
The standard example describing the process of heat exchange
consists of two separated bath at different temperatures that are
mixed together: particle exchanges of both baths will occur such
that, through mechanical diffusion of the constituents of each
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bath and collisions between them, the bath now shared by both
initial systems will have, at equilibrium, a single temperature
in between the two initial ones (pondered by the ratio of fluid
volume for each initial bath).

In the case of a single microscopic object immersed in
a fluid at equilibrium, defining the heat is more challenging.
For macroscopic objects the notion of temperature is directly
accessible by, for example, touching the object (i.e. an ice block).
In the microscopic world, it is apparent that it is the jiggling
motion of the fluid molecules that will define the temperature
of the system. Considering a Brownian particle in thermalized
bath, the motion of the particle is driven by the colliding
particles of the fluctuating bath, giving to the large particle
its momentum. This newly acquired momentum is then given
back to the bath by friction via the term −γdzdt . Microscopically,
the particle collides with bath particles moving in opposite di-
rection transferring its momentum and therefore being slowed
down. Both friction and random fluctuating forces have on
average a zero contribution on the Brownian particle.

The work done by the particle on the thermal bath on
a small displacement change dz(t) is −

(

−γdzdt + FTh(t)
)

dz(t)

where the sign convention stems from the action/reaction prin-
ciple: the force−γdzdt+FTh(t) exerted by the bath on the particle
is the opposite of the force that the particle exerts on the bath.
As it is clear that from the environment standpoint, an energy of
(−γdzdt + FTh(t))dz(t) is transferred from the bath to the system.
This energy lost to the Brownian particle is defined as heat dQ=

(−γdzdt + FTh(t))dz(t). A positive heat exchange dQ > 0 means
that energy is received by the system from environment. Again,
it is the law of action and reaction allows us to identify this
term as an energy transfer, despite the fact that the microscopic
motion of the thermal environment is not explicitly expressed
in the Langevin equation.

This is summarized on Fig. (3.6) illustrating the interplay
between the change of internal energy dE of our system, the
Brownian object optically trapped. In our case the energy dE
is only potential energy dU, the bead has no internal degrees
of freedom. Heat, as discussed above, comes from exchanges
with the bath and work is injected in the system through the
compression of the piston, our external parameter.
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Figure 3.6: Diagram depicting the energy balance between the
internal energy δE, the heat δQ and the work δW.
Adapted from [50] (page 139).

In order to study the interplay between these quanti-
ties the Langevin equation is multiplied by dz and adding
∂ℓUM(z,ℓ)dℓ yields a first principle relation

dUM(z,ℓ) = dQ+∂ℓUM(z,ℓ)dℓ, (3.15)

with dUM(z,ℓ) = ∂zUM(z,ℓ)dz+∂ℓUM(z,ℓ)dℓ and dQ= FThdz−
γdzdtdz. Compressing the mirror provides a change in dUM(z,ℓ),
the potential energy of the bead. It is illustrated on Fig. 3.4
by the blue arrow when integrated over a cross-over cycle.
This change comes from two sources: (i) the heat balance
dQ = FThdz − γżdz between fluctuation (determined by a
thermal stochastic force FTh) and friction (related to γ), and
(ii) the external work dW = ∂ℓUM(z,ℓ)dℓ done on the bead by
the displacement of the piston where the external variable ℓ
controls the evolution of the potential configurations.

By waiting over time much longer than tD between each
incremental change dℓ, the steady-state of every new configura-
tion is reached through mechanical relaxation of the bead. This
insures that the system evolves through the configurations in
an isothermal and quasi-static way. Moreover, all incremental
changes in the optical potential are kept smaller than kBT .
This implies that the bead would go back exploring the same
configurations if the displacement of the piston would be
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reversed. As a consequence, the whole path in Fig. 3.5 is
thermodynamically reversible.

Under such conditions, the averaged external work is
directly related to the Helmholtz free energy with [79, 80]

〈∂ℓUM(z,ℓ)〉{z}dℓ= dF(ℓ). (3.16)

The averaging process is performed over the positions occupied
by the bead in the given configuration. The free energy is then
only function of the external variable ℓ.

The total amount of work performed by the piston through
the isothermal reversible process is directly given by the free
energy difference between the initial ℓi and final ℓf positions of
the piston which can be calculated from the (ℓi,ℓf) canonical
partition functions as

W = F(ℓf)− F(ℓi) = −kBT ln
[

Z(ℓf)

Z(ℓi)

]

. (3.17)

For both initial and final stable configurations, the par-
tition functions can be expanded to second order around the
waist. Starting from the partition function

Z(ℓi,f) =

∫+∞

−∞

exp
(

−
UM(z,ℓi,f)
kBT

)

dz (3.18)

the potential is expanded around its minimum at z= 0. Because
the force is null at the bottom of the stable well, it has the
expressionUM(z,ℓ) =UM(z= 0,ℓ)+ 1

2

(

∂2zUM(z,ℓ)|z=0
)

z2+o(z2)

and introducing κi,f = ∂2zUM(z,ℓi,f)|z=0 the stiffnesses of the
(ℓi,ℓf) stable potentials the partition function becomes

Z(ℓi,f)≃ exp
(

−
UM(z= 0,ℓi,f)

kBT

)∫+∞

−∞

exp

(

−
1
2

(

∂2zUM(z,ℓi,f)|z=0
)

kBT

)

dz

(3.19)

= Z(ℓi,f)≃ e−
UM(0,ℓi,f)

kBT ·
√

2πkBT
κi,f

. (3.20)
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These approximate expressions are then replaced in the expres-
sion of the work

W =−kBT ln
[

Z(ℓf)

Z(ℓi)

]

(3.21)

=−kBT ln







e
−

UM(0,ℓf)
kBT

√

2πkBT
κf

e
−

UM(0,ℓi)
kBT

√

2πkBT
κi






(3.22)

=UM(z= 0,ℓf)−UM(z= 0,ℓi)−kBT log
[√

κi
κf

]

(3.23)

so that the total energy balance writes ∆UM =W+Qrev with

∆UM =UM(0,ℓf)−UM(0,ℓi)

Qrev = kBT ln
[√

κi
κf

]

. (3.24)

This balance connects, along the path, the total amount of
energy change ∆UM to the heat Qrev produced by the whole
reversible process. For the cross-over of Fig. 3.5, ∆UM =

(−6.41+ 6.176)× 10−20 = −2.34× 10−21 J (±3%). As clearly
seen, a stiffness difference between the initial ℓi and final ℓf
configurations is directly related to the production of heat. We
unambiguously calculate a quantity of reversible heat Qrev =

−2.48 × 10−22 J (±10%) transferred to the fluid by the bead
along the path.

The negative Qrev value means that friction dominates
over fluctuation as the source of heat. This is consistent with
the fact that the bead is displaced from an initial stable ℓi-
configuration to a final ℓf one which is optically more confined.
The small Qrev value quantifies the deviation from adiabaticity
with W > ∆UM. This deviation stems from the mechanical
deformation of the interaction potential at both ends of the path
which is due to an increase in the optical intensity as the mirror
gets closer to the waist.

The cross-over study is performed here in a reversible and
isothermal way. Usually, in order to maintain the temperature
throughout the process, a certain quantity of heat must be
generated. In our situation, the heat is actually measured from
the optical deformation of the potentials from the initial to the
final stable phases of the entire cross-over. In essence therefore,
our optical piston configuration enables to control the source
of heat. This could lead to the possibility to reach adiabaticity
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with W = ∆UM in a simple way, with consequences in terms
of effective temperature of the system yet to be explored. For
instance, in a pure standing wave configuration, both ends of
the path have identical trapping stiffnesses leading to Qrev = 0.
In this context, tailoring the optical landscape is particularly
appealing. It leads to the possibility to induce and probe
all kinds of thermodynamic processes through the control of
both heat production and potential energy differences. Because
these quantities are optically determined, the level of control
available is expected to be much smaller than kBT .

3.4.2 Measurement uncertainties and high spatial resolution

This section explicits the method used to determine the
measurement uncertainties associated with the different ther-
modynamical quantities, in particular the free energy and
the heat exchange, through the propagation of experimental
uncertainties.

We assume that the distribution of themeasured residency
times are Poissonian, implying that their mean values τ1,2 equal
their variances στ1,2 . Measuring a given N= 25 number of back
and forth activations of the bead through the barrier (over an
acquisition time of T = 30 s) for the bistable configurations de-
scribed in the main text, leads to an experimental uncertainty in
the τ1,2 determination of δτ1,2 = στ1,2/

√
N = 0.2 στ1,2 . Because

the signal is stationary (see Chapter 2 for a detailed discussion),
τ1+ τ2 =

T
N and therefore τ2 = T

N − τ1.
In addition, by taking the expression of the perpendicular

viscosity [33] and its derivative, and neglecting the systematic
error in the region where the bead evolves, the uncertainty
in the change of viscosity along the displacement of the bead
can be estimated at a 3% level over 300 nm bed displacement.
To this uncertainty, 1 % is added from the extraction of the
roll-off frequency at the level of the PSD coming from the
fit uncertainty. These uncertainties leads to a global stiffness
uncertainty of about δκ1,2 = 0.04 κ1,2.

The 6 resolvedM values have mean and sample deviation
respectively of M = 1.508 and σM = 0.071. The uncertainty
therefore is δM = σM/

√
6 = 0.029 andM =M± δM = 1.508±

0.029 which is an uncertainty of 4% of the value.
These uncertainties are propagated [81] to determine the

uncertainty on ∆U used as an input (through κ1,2 and τ1,2)
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in our system solver. Propagation of δτ1 and δκ1,2 in ∆U in
bistable configurations where τ1 ∼ τ2 lead to

(

δ∆U

kBT

)2

=

(

∂∆U

∂τ1

)2

(δτ1)
2+

(

∂∆U

∂κ1

)2

(δκ1)
2+

(

∂∆U

∂κ2

)2

(δκ2)
2

= (0.2)2
(

1+
τ21
τ22

+ 2
τ1

τ2

)

+

(

0.04
2

)2

+

(

0.04
2

)2

≃ 0.16.

Remarkably, because the propagation of uncertainties is
logarithmic for δ∆U, resolution of energy differences between
the two well is lower than half a kBT despite the uncertainty on
average lifetimes.

Taking M = M (given the small δM value) allows us
computing the sensitivity of ∆U as a function of ℓ. The
computation yields ∂∆U/∂ℓ = 0.07 kBT ·nm−1. Combining
this sensitivity with the uncertainty δ∆U of 0.4 kBT gives an
uncertainty on the waist-mirror position δℓ of 6 nm only. We
can highlight this rather high spatial resolution as an interesting
by-product of our approach.

The reversible heat measured with our method on our
experimental configuration through the cross-over path (see
main text) is computed from trap stiffnesses which depend on
the waist-mirror distance ℓ. The measured heat uncertainty
δQrev produced along the path is thus estimated from the
determination of δℓ. The trap stiffness of the stable positions
(around z = 0) is computed for an incremental displacement
of ℓ of ±δℓ. A worse-case scenario is then followed, taking
the highest differences in trap stiffnesses between κ(ℓ) and
κ(ℓ + δℓ). The heat uncertainty can then be computed as

δQrev =
∣

∣

∣
kBT ln

[

√

κ(ℓ)/κ(ℓ+ δℓ)
]∣

∣

∣
≃ 2.2× 10−23 J with κ(ℓ) =

6.47 × 10−6 N · m−1 and κ(ℓ + δℓ) = 6.40 × 10−6 N · m−1.
Similarly, the worse-case uncertainty for the potential energy
δ∆UM =UM(0,ℓ+ δℓ)−UM(0,ℓ) is determined and is about 6×
10−23 J that can be compared with kBT = 4× 10−21 J at room
temperature.
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3.5 conclusion

In this chapter, the piston length becomes a dynamical
parameter that enables the incremental deformation of the in-
teraction potential. After each displacement of the end-mirror
of the piston, the bead is let to relax in the newly formed
potential.

Using the resolution method exposed in the previous
Chapter, we solve the bistable interaction potential at each
increment of the piston length. The resolution of the potential
parameters in the bistable region gives us access to the potential
in the nearby stable regions.

We then monitor the cross-over between regions of sta-
bility and bistability, simply by compressing the optical piston
through a whole phase of bistability. This leads to study in de-
tails the progressive onset of dynamical bistability. Remarkably,
while the positions of the minima in the stable potentials match
on the optical axis at both ends of the compression cycle, their
energy differ. This difference in energy clearly indicate that
some work is injected in the system (the trapped bead) by the
compression of the piston.

This is taking us to a thermodynamic interpretation of the
results:

• from the progressive deformation of the potential we draw
an energy-time relation between the energy landscape
defined by the interaction potential and the time needed
for the bead to map the potential through its stochastic
motion. Our analysis gives a simple estimation for the
convergence between the region of the potential probed
by the Brownian bead over a given experimental time and
the actual equilibrium interaction potential determining
the entire energy landscape of the problem.

• from a thermodynamic description of the bead by the
Langevin equation describing its stochastic motion inside
the piston at a fixed length, we measure the quantity of
work injected in the system, the heat produced by the
whole reversible cross-over cycle and from a first principle
energy balance, the total amount of energy change. These
quantities are measured with a remarkable ca. kBT/100
precision level. Throughout our reversible process, most
of the injected work is consumed as a potential energy
difference, the few remaining percent are lost as heat
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when a configuration change occurs and the bead needs
to relax to a new equilibrium position.

The thermodynamic approach, only touched upon in this
Chapter, emphasizes how controlling and tailoring an optical
landscape leads, through the control of the production of heat
and potential energy differences, to the appealing possibility to
induce any kind of thermodynamic processes.



4
SYNCHRONIZAT ION AND STOCHAST IC
RESONANCE

In Chapter 3, the bistable dynamics of the bead was
discussed in the quasi-static regime. In this Chapter, we
carry on with the study of the Brownian dynamics of the bead
immersed in a bistable optical potential but with an external
forcing potential that forbids the bead to relax in the energy
landscape associated with each sequence of motion.

The regime of an externally driven bistable potential is
determined by the natural bistable dynamics of the bead on
which is exerted an externally modulated force, derived from
a time-harmonic potential Fdrive(t) = −∇Udrive(t), so that the
force does not depend on the position of the bead:

Fdrive(t) = F0 sin(2π fd t), (4.1)

where F0 is the force amplitude and fd the drive frequency.
With the addition of Udrive(t), the resulting potential

probed by the bead is not static. This is clearly illustrated in
Fig. 4.1 taken from [24] in the simplest case of a symmetrical
potential. The depth of the wells are modulated by the har-
monic external drive. The resulting potential is displayed for
4 different positions of the external force within a drive period
Td = 1/fd. Starting at the top, when the time t is a multiple
of the drive frequency, the bistable symmetric potential is
unaltered. After a quarter of period, on the right hand-side, the
sine is 1 and a positive force is applied on top of the potential.
The potential is hence deformed and the ratio of the well depth
changes, with one metastable state favored over the other. After
half a period, the potential becomes symmetrical again as the
sine goes back to 0. Finally, with a−1 sine after three-quarter of
period, a (negative) force is applied on the potential, deforming
it again with the opposite metastable state this time favored, as
the new lowest potential energy position.

79
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Figure 4.1: Schematic representation of a periodically mod-
ulated bistable potential. Every half period of
the drive, the potential asymmetry changes wells.
When the potential is biased, one well is favored
within which the bead spends the longest amount
of time. Illustration directly taken from [24].

Looking back at Fig. 3.5, the cross-over studied in Ch. 3
is made of a compression - decompression sequence, with (i)

a compression stage where the piston is moved from an initial
stable position to half of the cross-over configuration and, once
a symmetrical bistable potential is reached, (ii) a decompression
performed along the exact same path (easy to perform when
considering a 1D displacement). The crucial difference with
the dynamics studied in this Chapter lies in the facts that
in Ch. 3, the crossing of configurations is one-directional
and that the bead is allowed relaxing in each of the explored
potential configurations throughout the reversible cross-over.
With respect to Fig. 4.1, this is equivalent to having a very slow
drive period or step-wise increments.

This picture however does not account for the fact that the
bead itself evolves in a stochastic manner within the bistable
potential thermally accessible, be it symmetric or asymmetric.
The Brownian bead therefore has its own dynamics, character-
ized by the interaction landscape (local traps’ relaxation times,
mean escape times, etc.). The central question in this context
of external forcing is to understand how, and under which
conditions, the periodic modulation of the potential illustrated
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in Fig. 4.1 is actually followed by the bead. This is at the core of
the study of the phenomenon of stochastic resonance and this
analysis constitutes the main objective of this Chapter.

4.1 synchronization and stochastic resonance

It is known [24] that a bistable potential, when periodi-
cally modulated, can lead to a rich variety of phenomena, with
the possibility to synchronize the stochastic inter-well dynamics
of the bead whenever the drive frequency matches the so-called
natural (Kramers) escape rate of the system. Going back to
Kramers’ formulation of a symmetric bistable potential (see Ch.
2), the escape rate writes as

kK = kre
−Eb/kBT (4.2)

kr =

√
κwκb

2πγ
(4.3)

where Eb is the height of the bistable barrier, κb the effective
stiffness associated with the (negative) curvature of the poten-
tial at the barrier maximum, κw the stiffness associated with
the wells, and γ the Stokes drag. The rate kr characterizes the
intra-well rate of relaxation. That kr ∝

√
κb and not merely

proportional to
√

κ2w precisely corresponds to the influence
of the barrier as an open channel for escape, breaking the
harmonic approximation that can be performed at the bottom
of each metastable state.

From the separation of times argument presented in Ch. 2,
Kramers’ theory implies that kK ≪ kr, which writes in the time
domain as τr≪ τK where τK correspond to an averaged waiting
time between two inter-well transitions induced by the thermal
fluctuations, in other words to a natural mean residency life-
time in one metastable state of the bistable potential.

In the case of a periodic drive exerted on the particle,
a matching condition emerges when the forcing period Td
matches τK, more precisely when

2τK = Td. (4.4)

At this condition, the bead synchronizes its position with the
external drive. Depending on the strength of the external drive
this synchronization effect is more or less marked. Remarkably
in the case of a weak forcing, where forces induced on the
particle are smaller than thermal forces, the thermal fluctua-
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tions -that are the main source of state changes in the system-
actually help to lock the bead activation over the barrier, in
phase with the drive. In this regime, noise-activated jumps
over the barrier become synchronized with the weak drive: one
refers to stochastic synchronization or stochastic resonance.

This phenomenon of stochastic resonance has already
been largely studied and exploited, in particular in the context
of dual optical traps [7, 15, 54]. It can be studied from
various angles, thermodynamically with the determination of
the external work consumed by the system [15], or from the
point of view of the evolution of the probability distribution
of residency times [7]. It can also be viewed as a signal over
noise ratio enhancement effect where the driven system, when
synchronized, emerges out of the thermal noise floor [24] with
interesting consequences in the context of weak force detection
strategies [60].

Our optical piston configuration appears ideal in order to
study such forcing dynamics. In our setup indeed, the bead
evolves in a continuous potential, contrasting with experiments
based on time shared traps (usually performedwith amotorized
mirror or acousto-optical deflector (AOD)). The singular aspect
of our scheme is the truly one-dimensional (1D) nature of
the motion of the bead along the optical axis, which differs
from configurations where the bistable potential is generated
laterally using two beams and the depth of the wells modulated
by varying the beams’ intensities.

In this Chapter, we will explore the different regime
of forcing accessible with our setup. From the time-scale
separation (4.3), the stochastic resonance is reached in the
adiabatic regime Td≫ τr where the short-time dynamics within
each metastable state is fully decoupled from the drive. In
this regime, for forcing period larger than the synchronization
time 2τK, it becomes possible to actually rectify the motion
of the bead within the bistable potential. This regime will be
discussed in details in subsubsection 4.3.3.3. But, as we will
show below, the possibility to drive at high frequencies leads to
reaching a non-adiabatic regime with Td ≪ τr. In this regime,
the inter- and intra-well dynamics becomes mixed with specific
motional signatures.

Our approach will be based on analyzing the residency
time distributions in each of the metastable states and their
evolutions as a function of the forcing parameters. The anal-
ysis of such residence-time distributions is an efficient tool
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when studying stochastic resonance [7]. As emphasized by
Gammationi et al. [24], this approach naturally stems from
considering “stochastic resonance as a ‘resonant’ synchronization

phenomenon”. In this view, stochastic resonance is a “physical

synchronization effect” where the periodic drive acts as an exter-
nal clock for the bistable system.

4.2 external forcing and continuously deformed po-

tentials

The continuous deformation of the potential is a central
characteristic of our optical piston setup. The description of
such a deformation is done through the introduction of time as
a new dynamical parameter in the potential itself. This implies
that the potential U(z(t),t) becomes a function of both space
and time. Contrasting with the previous discussion (Ch. 2 and
3), the bead here does not evolves in successive fixed potential
configurations.

With the necessity of separating spatial and temporal vari-
ables, the bistable dynamics of the bead is entirely fixed by the
static part of the potential U0(z(t)) while the periodic driving
contribution Udrive(z(t),t) alternatively pushes and pulls the
bead. The potential writes therefore as:

U(z(t),t) =U0(z(t))+Udrive(z(t),t). (4.5)

4.2.1 Periodic compression of the piston

A natural way for exerting a periodic forcing to the bead
is to put the optical piston into periodic motion by considering
here the mirror position ℓ(t) as a continuous function of the
time, periodically modulated around an average position ℓ0 by
a time dependent harmonic function δℓ(t)

ℓ(t) = ℓ0+ δℓ(t) (4.6)

= ℓ0+ ℓmodsin(2π fd t), (4.7)

with ℓmod the amplitude of the modulation and fd the drive
frequency.

As was discussed in the previous chapters, the interaction
potential in the optical piston experiment has a rich structure
that cannot be expressed in a polynomial way. Nevertheless,
assuming that (i) the potential shape is independent of the bead
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position and that (ii) all possible dynamical back action from
lensing effects (or photonic jets) created by the trapped object
can be neglected, the interaction potential is given by:

U(z(t),ℓ(t)) =UM(z(t),ℓ0+ δℓ(t)) (4.8)

=U0(z(t))+U
′
drive(z(t),t), (4.9)

with U0(z(t)) = UM(z(t),ℓ0) the unperturbed static bistable po-
tential andU′

drive(z(t),t) =Udrive(z(t),δℓ(t)) the time-dependent
modulated potential.

It is clear for the optical piston that U′
drive(z(t),t) can not

be expressed in a simple form like an amplitude × a sinusoidal
drive. Nevertheless, a first order development of the potential
around the mirror position ℓ0 yields

U(z(t),ℓ(t)) =UM(z(t),ℓ0+ δℓ(t)) (4.10)

≃U0(z(t))+
∂UM(z(t),ℓ)

∂ℓ

∣

∣

∣

∣

ℓ=ℓ0

δℓ(t). (4.11)

Taking both expressions 4.8 and 4.11 leas to identify a first
order development of the perturbed potential as

U′
drive(z(t),t)≃

∂UM(z(t),ℓ)
∂ℓ

∣

∣

∣

∣

ℓ=ℓ0

δℓ(t). (4.12)

It is important to stress here that the driving potential depends
on the instantaneous position z(t) of the center-of-mass of the
bead. As such, this forcing is of a parametric nature.

4.2.2 External harmonic forcing

This parametric situation contrasts with the usual Duffing
potential UDuffing(z) = αz4 + βz2 where modulating the trap
potential is equivalent to applying a linear sinusoidal force on
the bead Udrive(z(t),t) = UAz(t)cos(2π f t). The exerted force
is then a function of time only, and not anymore of the bead
position z(t). In such regimes the total force becomes:

Ftot(z(t),t) = −∇zUtot(z(t),t) (4.13)

=−∇zUDuffing(z(t))−∇zUdrive(z(t),t) (4.14)

= FDuffing(z(t))+ Fdrive(t). (4.15)

The possibility to separate the potential in two terms,
one term representing the rest potential, the other the exter-
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nal drive, is critical. This is especially true when the force
associated with the external drive has no dependency with
respect to the bead position -as it is the case when considering
the bead under the influence of an external periodical force
field. Such conditions are not met in the optical piston forcing
mode induced by modulating the position of the mirror. In
this configuration, as described above, the driving force varies
with the position of the bead in the trap. This marks a clear
difference between the dynamical response of the trap under
an external drive (independent of the bead position) and its
parametric response when the forcing contribution is a function
of the bead instantaneous position.

4.3 numerical experiments on synchronization pro-

cesses

We now study numerically the dynamics of a Brownian
bead trapped in a bistable potential via the resolution of the
Langevin equation

mBDtt(z(t))+γDtz(t) = F(T ,z(t),t)−∇U(z(t)) (4.16)

that describes the center-of-mass motion z(t) of the bead.
Here, as fully detailed in Appendix A, we use differential

operators with Dt the linear differential operator, Dtt = DtDt,
mB the mass of the bead, γ the viscosity of the fluid, U(z(t))
the potential energy exerted on the bead and F(T ,z(t),t) =√
2kbTγη(z(t),t) the Gaussian white noise with η(z(t),t) a

Wiener process.
Note that despite the fact that the inertial term has a

completely negligible contribution to the bead dynamics in our
conditions, it is included in our simulation for the sake of
generality. When depending on time, the potential U(z(t),t)
will combine, as in eq.(4.5), a static term that will describe the
metastable interaction potential induced by the optical piston
and a driving contribution.

The typical displacements of micron-sized objects being
around the tens of nanometers, some of the dynamic variables
have very small values. Moreover, the thermal energy kBT
in SI units is ca. 10−20 J/K and the mass of the polystyrene
1 µm bead of the order of 10−16kg. In order to avoid possible
numerical hindrances occurring when operating with very big
or small values, we propose to change the unit system and use
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micrometers, micrograms, seconds and absolute temperature in

Kelvins. In this system, kB has a value of 1.380650310−2 µgµm2

s2

and the mass of the bead around 10−7µg. The unit of force asso-
ciated with our system is the femtoNewton (fN) which is exactly
the order of magnitude of the forces measured experimentally
(see Ch. 5 in particular). Similarly, the energy scale is at the
zepto 10−21 Joule level, precisely the order of magnitude of the
thermal fluctuation energy kBT .

4.3.1 A model for bistability: the Duffing potential

We will perform our numerical experiments by resorting
to the standard Duffing-type potential which allows discussing
in a well-controlled manner the regime of bistability, in partic-
ular regarding the influence of the potential depths. The force
associated to this class of potentials is written as:

F(z) =A ∗ (−1× 104 z3+ 5× 102 z), (4.17)

withA an amplitude giving the strength of the force. Coefficients
are chosen such that the orders of magnitude in the simulated
signals are similar to the experimental data obtained in our
experiments (see below).

Written under this form the potential is symmetrical with
respect to the barrier, with a barrier-top located at a position
z = 0 where both force and energy cancel. Integrating the force
expression leads to the potential expression:

U(x) = −A ∗
(

−1× 104

4
x4+

5
2
× 102 x2

)

. (4.18)

Such a potential and its associated force are drawn in Fig.
4.2 with an amplitude parameter A of 1. The red curve depicts
the potential with a depth around 7 zJ (a bit less than 2 kBT ) and
the force in blue is of the order of 100 fN.

We gather in Fig. 4.3 a few trajectories that we simulated
from eq.(4.16) using a Duffing potential with different ampli-
tudes A, in order to visualize the effect of the potential depth
on the bead trajectory. The bath and the bead properties are
kept constant.

For very small amplitudes (panel 4.3a, A= 0.01), the bead
loosely diffuses in a localized region of space. The bead is
trapped but the trajectory does not provide any hint regarding
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Figure 4.2: Duffing-type potential and derived force profile
calculated with an amplitude parameter A= 1

the presence of two distinct attractors or regarding a fixed
inter-well distance. It is not even clear that the bead avoids the
central (repulsive) region of the barrier of the bistable potential.

For a moderately small amplitude (panel 4.3b, A = 0.21),
the bead starts sharing its time between the two wells (at
±0.220 µm). Furthermore, the shading in the central region
of the time trace around z ≃ 0 appears lighter. The bead
is mapping the potential well, but there is not yet a clear
separation that would allow one talking about metastable states
localized at the two wells positions.

Increasing the potential amplitude (panel 4.3c, A = 1.41)
reduces the variance of the bead position in each of the wells
and improves on the determination of the well positions. Because
the spread in position is smaller, the rejection induced by the
barrier becomes more apparent. The residency times in each
of the wells increases. The large number of noise-induced
hopping events between the two wells leads to start having
a well-defined mean residency time. This trajectory perfectly
illustrate the conditions of Kramers’ theory based on a clear
separation of intra- vs. inter-well dynamic times.

When the potential amplitude become too strong (panel
4.3d, A= 4.91), the bead barely hops between the wells, so that
over the time of observation, only few transitions occur. The
two attracting positions are sharply defined and unambiguously
identifiable as well as the bottom position of each well. When
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no transition occurs (or scarcely), there are long time intervals
where the potential probed by the bead is only the potential at
the bottom of the well, which is quasi-harmonic (although the
general shape of the Duffing potential is not).

(a) Amplitude A= 0.01 (b) Amplitude A= 0.21

(c) Amplitude A= 1.41 (d) Amplitude A= 4.91

Figure 4.3: Simulated trajectories for a bead in the same
environment but with different Duffing potential
amplitudes A. All figures present the trajectory
of the center-of-mass of the trapped bead for 60
seconds, with an associated time step equivalent to
a sampling rate of 262 kHz.

4.3.2 Statistical nature of bistability in the absence of drive

It appears from this description that the evolution of the
bead dynamics can be monitored looking at the the changes
in the residency time statistics associated with each of the two
attractors. In the context of an escape problem, it is critical to be
able to properly validate what a hopping event is and how the
escape is numerically accounted for.

One possibility is to define the escape position at the exact
top of the barrier with a strict condition such as (if [z > 0] then
[state has changed]). But this choice of condition neglects the
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fact that the bead sees a reduced force when approaching the
top of the barrier. This implies an increased probability for the
bead to come back, through thermal fluctuations, to its initial
well after having crossed the barrier. Such a possibility is of
no importance when considering only the escape time from one
well and whenmapping the potential through the time-traces of
the bead, i.e. by integrating the trajectory as an histogram. But
it definitely bias any residency time-based analysis performed
over a whole acquisition.

Indeed, because the force applied on the bead is null or
weak in a small region around the top of the barrier, the bead
can recross the barrier a few times through mere Brownian dif-
fusion. The strict condition becomes problematic: a short time
later, the bead crosses the barrier backwards through diffusion,
with the consequence that the state change condition becomes
valid again. It is also problematic in the other (less frequent)
recrossing scenario where the bead, coming from the first well
and crossing the barrier, starts moving down-hill towards the
second well but nevertheless, at some point, re-crosses the
barrier to come back to the initial well, without having actually
reached the bottom of the second well, despite the fact that it
went down close to it.

These situations make clear why such a top-barrier con-
dition leads to simulated mean residency times many times
smaller than what is naively observed on the simulated trajec-
tory plots in Fig 4.3. A criteria to circumvent this limitation was
implemented in the previous chapter by defining an arbitrary
time constant in order to separated fast fluctuations from the
average bead motion. This separating time leads to filter out
recrossing phenomena that occur on a shorter time scale than
the typical relaxation time of the bead in one of the wells.

In this Chapter, we adopt another approach for identify-
ing state changes. A change of state is only validated when
the bead reaches the bottom of the opposite well. With this
scheme, recrossing effects are fully taken into account: the bead
can explore the region around the barrier and can come back
to its original well without accounting for any state change.
A slight drawback of our method is that time measurements
happen to lag with respect to barrier crossing events. The lag is
however systematic and therefore not critical for any statistical
analysis when considering many realizations of noise-induced
barrier crossings. But one clear numerical advantage of our
criterion lies in the possibility to determine a change of state
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while the signal is recorded (i.e. simulated) without having to
store previous position values or having to take into account
future events. This is exactly is necessary to implement with
top-barrier condition, when the bead, in its near future, does
not explore the opposite well but rather returns to its original
state. For such scenario, the state change must be canceled
a posteriori in order to be numerically consistent with mean
residency time measurements.

4.3.3 External periodic forcing in a Duffing bistable potential

We now turn to numerical simulations of the trajectory
of the bead trapped in a bistable Duffing potential in presence
of an external periodic forcing. We define the rest potential in
the absence of drive, with a bead trajectory simulated in Fig.
4.4 for a Duffing potential (4.18) with an amplitude A = 2.
The trajectory displays well defined attractors and therefore a
good time separation between the characteristic short time of
the bead in the trap and its activation over the barrier which is
defined on a slower time scale. In such a regime of clear time
separation, Kramers’ theory is valid.

Figure 4.4: One-minute long simulated trajectory of a bead
trapped in a Duffing potential of amplitude A = 2
in the absence of the external drive.
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4.3.3.1 The Mandel factor

As emphasized above, our aim is to monitor the influence
of the external drive on the statistical properties of the state
residency lifetimes. Our approach is to analyze the evolution
of the successive lifetime values computed along a given time-
trace of the bistable trajectory of the bead. This series will be, as
always, characterized by its two first momenta, namely lifetime
mean values (those involved in Kramers’ theory) and associated
variances (that characterize the spread of the lifetime values).

Escape phenomenon from attractive (harmonic) potentials
usually imply for the residency lifetime in the trap to follow
a Poisson distribution [77] for which the mean is equal to
the variance. The Poisson distribution is characteristic of
non-correlated processes. It can be expected that in a bistable
regime, the hopping mechanism could induce correlations in
the distribution of residency lifetime in each metastable states.

A standard tool implemented in the field of quantum op-
tics for characterizing induced correlations on initially indepen-
dent processes is the Mandel Q factor. This factor describes the
enhancement (Q > 0 - photon bunching signature of thermal
light) or reduction (Q < 0 - antibunched non-classical light)
of the photon noise with respect to the Poisson distribution
[82]. We adapt this tool to our bistable dynamics defining a
Mandel factor associated with the upper (up) and lower (down)
metastable states

Qup/down =
Var(τup/down)

Mean(τup/down)
− 1 (4.19)

with the mean and variance computed for, respectively, the
upper and lower residency times τup and τdown. How these
times are actually measured from the time-traces within the
framework of our state change identification method is ex-
plained in Fig. 4.5.

With Q = 0, the distribution of residency lifetimes is
Poissonian, where all successive residencies are independent to
each other. Correlations appear as soon as Q , 0.

• For Q < 0, the variance is smaller than the mean. With
a small spread of lifetimes around the mean, successive
values tend to be similar. In the time domain, this implies
that successive events tend to be evenly separated. In our
experiments, this sub-Poissonian regime will obviously
be a feature of a synchronization mechanism, with a
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Figure 4.5: Simulated time trace for a potential amplitude
parameter of 2. An external force of 80 fN is applied
on the object and modulated at 0.5 Hz, the Kramers
mean escape frequency of the non-driven potential.
The blue curves shows the position time trace of the
object and the orange curve is the applied drive. The
figure also illustrates one residency time τ in a state
(the low positions state) and a transition delay ∆
between two successive escapes of the same kind.

mean residency lifetime well defined in the sense that
its dispersion around the mean is minimal. |Q| values
increase as the synchronization gets stronger (down to the
Q=−1 perfect synchronization limit).

• For Q > 0, the variance is larger than the mean, and
the statistics becomes super-Poissonian. The spread of
values being large with respect to the mean, a sequence of
events is characterized by successive short events followed
by long ‘blanks’. In our experiments, positive Q factors
imply that one well is favored over the other. This is
the signature of a localization process within the bistable
potential that can be interpreted as a rectified bistable
dynamics for the bead.

Note that theMandel factor has the dimension of the quan-
tity under study. Because of this, no normalization is performed
via Q: experiments that compare different dynamical regimes
through the Mandel factor have to be expressed in the proper
dimension.
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4.3.3.2 Evolution of the Mandel factor in the absence of an

external forcing

It is interesting to look at the evolution of the Q factor as
the potential amplitude A is varied (that is, the depth of the po-
tential is changed). Figure 4.6 shows the mean, the variance and
the Q factor of the residency lifetimes of the upper metastable
states. On this figure, 64 realizations of the bead trajectory
in every potentials are simulated. The statistical parameters
are then extracted and averaged, with corresponding error bars.
We only show the statistics for one of the two well since the
potential is perfectly symmetric. As observed, there is one
single point (around A = 2.1) where mean and variance cross,
i.e. where the bistable dynamic is strictly Poissonian. This
is seen on the Mandel Q factor with Q = 0 on the right axis.
We therefore conclude that even for simple Duffing potentials,
there is a unique combination of inter-well distance, barrier
height and thermal energy that provide a truly Poissonian
statistics of the residency lifetimes. The sub-Poissonian regime
(Q < 0) is the region of low potential depths where more state
transition events occur and the super-Poissonian regime (Q> 0)
emerges in regions of deep potential wells.

4.3.3.3 Evolution of the Mandel Q factor with an external har-

monic forcing

An external drive is now added to the bistable potential
that has been carefully prepared in the symmetric configura-
tion, characterized by a rest Mandel factor Qrest. Different
dynamical regimes can be distinguished over the parameter
plane (amplitude, frequency) of the external forcing. These
regimes are schematized in the diagram 4.7. As already ex-
plained in the introduction of the Chapter, three frequency
regimes can be identified: the adiabatic regime, over which
the frequency of the drive fd > fK the natural Kramers fre-
quency, the synchronization regime where fd ≃ fK/2, and the
non-adiabatic regime where fd ≪ fR the intra-well relaxation
frequency. Depending on the strength of the forcing (i.e. the
amplitude of the external drive), the evolutions of the statistical
distributions of the mean residency lifetimes correspond to
specific dynamical phenomena.

Our simulations will enable us to explore these regimes
and illustrate these phenomena. We will start with an ini-
tial Duffing potential amplitude A = 2 for which the mean
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Figure 4.6: The mean, the variance and the Mandel Q factor
are presented for a non-driven bistable potential
with various potential depth A. 64 simulations
of 128 minutes each, are realized with a sampling
rate of 262 kHz and the statistical properties of
each averaged. Simulations are run with the same
bath parameters for each varying amplitude. The
blue curve shows the averaged residency lifetime
while the green curve is the averaged variance. The
resulting Mandel Q factors are displayed in red.

residency lifetime distribution is close to be Poissonian with
Qrest ≃−0.06.

A first pool of simulations are performed varying the
driving frequency and fixing the external drive at two different
amplitude levels: a strong drive of 80 fN and a moderate one
of 20 fN. For these simulations, very long runs are considered
with each of the 64 realizations, representing 512 minutes of
trajectory. Such a large pool is important in particular when
aiming to study the low frequency regimes where events occur
less frequently. This is leading to averaged values with error
bars that are determined over many realizations of the same
potential, with identical initial conditions, but performed with
different baths.

The results of these numerical experiments are displayed
in Fig. 4.8. As presented in the diagram 4.7, three distinct
regimes are identified. The region centered around the Kramers
frequency fK = 1

τK
= 1

0.99 ≃ 1.0 corresponds to the synchroniza-
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Figure 4.7: Diagram illustrating the different statistical regimes
that a bead can explore in a bistable potential
as a function of the external drive frequency and
amplitude. These regimes are simply characterized
by their Mandel Q factor with respect to Qrest, the
Mandel factor of the initial unperturbed bistable
potential.

tion regime whereQ< 0 is belowQrest. As expected, the lowest
Q factor in this region is around 0.5 Hz which is indeed near the
natural activation frequency of the bead over the barrier such
that fd ≃ fK/2. Yet, synchronization is not perfect (Q = −1):
in fact, thermal fluctuations still randomize the precise time at
which the bead hops over the barrier.

At high frequencies, the drive is so fast that in the case
of a moderate drive amplitude, one recovers the initial bistable
statistics: this is the so-called transparency limit. However, for
a larger drive amplitude, Q ≃ 0, implying that the distribution
of residence events becomes Poissonian. Such conditions corre-
spond to the non-adiabatic regime where the forcing cannot be
considered as an external perturbation adiabatically separated
from the bistable potential. The drive happens on such a
short time scale that the bead does not relax in a well-defined
metastable state.

The low frequency regime appears particularly interest-
ing. With large Q > 0, the super-Poissonian distribution
corresponds to a rectified bistable dynamics. Here, the drive
frequency being much smaller than the natural transition fre-
quency, the bead tends to be forced to stay in one of the two
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metastable states. Thermal fluctuations still lead to hopping
events through the slowly varying drive. But these occurrences
are short lived and the bead soon returns to its initial well
to follow the drive. While it is clear that the combination of
short and long residency times increase their variances, leading
to Q > 0 values, the rectified motion implies that when the
bead escapes a metastable well, its probability to come back to
that initial well is very high. This is a typical non-Markovian
situation where the nature of one event essentially determines
the outcome of the next one.

Figure 4.8: Evolution of the Mandel Q factor for strong (80 fN
-red) and moderate (20 fN -blue) drive amplitudes
over a wide range of frequencies. 64 simulations
of 512 minutes each, are realized with a sampling
rate of 262kHz and the statistical properties of each
averaged. The horizontal dashed line is set at the
value of the initial Mandel factor Qrest = −0.06 of
the unperturbed bistable potential.

4.3.3.4 Monitoring the onset of ergodicity

We observe that at low driving frequencies (0.01 Hz), the
Mandel factors associated with the upper and lower residency
time distributions are different (the error bars do not overlap),
despite the symmetric character of the bistable potential. This
contrasts with what is seen at higher frequencies, with exactly
similar Q up/down factors. The deviation between the Q
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factors associated with the up and down metastable states
observed at low frequencies is plotted in Fig. 4.9 as a function
of the simulation time T (given in units of 512 minutes).

These plots show how the initial localization of the bead
determines, over a certain time, the whole dynamics. The initial
metastable state in which the bead is placed in the beginning
of the simulation thus biases the symmetric distribution of Q
factors expected from the perfectly symmetric shape of the
bistable potential.

It turns out that by performing the simulation over long
enough times, both Q factors eventually converge, as seen on
the Figure: both values have perfectly merged for a time T =

512×16= 8192 minutes. In the condition of these simulations,
the separation is still visible after 2048 minutes, implying that
one has to wait more than 103 periods in order to lose any
dependence on the initial position of the simulated trajectories.
This numerical result actually stresses the huge sensitivity of
the bistable dynamics towards single irregular events with an
external drive at low frequencies. But it also nicely brings
forward a simple way to look at how ergodic conditions can be
ensured at the level of our numerical experiments.

4.3.4 Increasing the external forcing amplitude

A second pool of numerical experiments explores the
influence of the forcing amplitude on the frequency evolution
of the Q factors. The results are gathered in Fig. 4.10. A clear
departure from the resting Q parameter (dotted line) appears
even for a low driving amplitude around the synchronization
frequency. At a driving amplitude of 5 fN, the synchronization
bandwidth is smaller than 1 Hz.

With increasing amplitude in the driving force, the strength
of the synchronization (measured by |Q|) increases together
with the synchronization bandwidth. Remarkably, an increase
in the drive amplitude shifts the maximal frequency of syn-
chronization to higher values. We will confirm this trend
experimentally below.

As already observed, the non-driven dynamics is recov-
ered at higher frequencies. At low frequencies with Q > 0, the
bistable dynamics is rectified by the drive.

At strong forcing amplitudes, the bead can still follow the
drive as the driving frequency increases. One therefore can
expect that the mean residency time in one metastable state
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Figure 4.9: Evolution of the Mandel Q factor for both upper
and lower metastable states as a function of the
acquisition time, when the bistable potential is
driven at a very low drive frequency (0.01 Hz,
amplitude 80 fN). 64 simulations of 512×T minutes
each, are realized with a sampling rate of 262kHz.
The statistical properties of each realization is then
averaged.

will decrease. Nevertheless, as we have seen, the regime of
maximal synchronization occurs at a specific frequency near the
natural transition Kramers frequency fK associated with the rest
potential. Figure 4.11 confronts the frequency evolution of the
mean residency lifetime in one of the two metastable states to
the evolution of its Mandel Q factor. Only the characteristic
parameters for one state are displayed because they are the
exact same for the other state in the considered frequency range.

As observed, the lifetimeminimum occurs at a higher driv-
ing frequency (around 8 Hz) than the frequency of maximum
synchronization. This can be simply understood: the bead
is still synchronized at this frequency and therefore partially
follows the drive. In such regimes, the state transition does
not occur for every drive period but the drive provides enough
opportunities to help in activating a state change, often at
multiple of the period. On average, because more state changes
occur, themean residency lifetimewill become smaller but state
changes become more spread. This interesting effect will, too,
be observed in our experiments.
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Figure 4.10: Evolution of the Mandel Q factor as a function
of increasing external drive amplitudes. 64
simulations of 128 minutes each, are realized with
a sampling rate of 262 kHz and the statistical
properties of each averaged. The external drive
amplitudes range from 5 fN (in red) to 80 fN (in
blue). Intermediate amplitudes are: 15, 20, 25,
35, 45, 55 fN. The frequency range [0.1− 4] Hz is
centered on 0.5 Hz, the natural Kramers frequency
associated with the non driven bistable potential.
The minimal Q parameter recorded on each curve
is represented as black triangles. The rest Mandel
factor Qrest is given by the dotted line.

4.3.5 Transition time delay analysis

There is another approach to analyze the evolution of
the distributions of hopping events that consists in building
probability histograms associated with the time delays between
successive changes of metastable states of the same kind: either
transitions from lower to upper metastable states or transitions
from upper to lower states. This yields two series of data for
a given drive frequency, as schematized in Fig. 4.5. As we
now show, a delay-based analysis is a good complement to the
Mandel Q factor description.

In our simulations, the phase of the external drive can
be recorded at the exact time when a hopping event occur.
Then, the delays between successive changes of the same kind
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Figure 4.11: Comparison between the Mandel Q factor and the
mean the residency lifetime in onemetastable state,
considering an external drive amplitude of 80 fN
at different frequencies. 64 simulations of 512
minutes each, are realized with a sampling rate
of 262kHz and the statistical properties of each
averaged. The maximum of synchronization, i.e.
where Q is minimal (red curve, axis on the left),
differs from the shortest residency life time (green
curve, axis on the right) of the bead in the state.
Dashed lines represent the values without drive for
both quantities in their respective colors.

are determined with respect to the drive periodicity. Fig. 4.5
summarizes the measurement of the phase delay ∆. This delay
in a bistable potential reduces to computing the difference in
the two successive instants the object reaches the opposite state.

The time delays are then converted in “drive delays” by
simply normalizing the time between two event of the same
kind with the drive period T . This enables us to built a
distribution of the transition probability of changing state as
a function of the number of period between two state changes
of the same kind.

Such a construction is presented on Fig. 4.12 for the
same rest potential, with four significant regimes that can be
identified:

• when the drive period is much longer than the natural
Kramers residency lifetime of the bead in a metastable
state (the low frequency regime of rectified motion). In
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such a regime, as shown in panel 4.12a, a state change
occurs before the end of a single period T of the drive. This
implies that there is still a strong signature of the natural
distribution (close to Poissonian) at short times,

• when the drive period is slightly reduced, we observe in
panel 4.12b a progressive depletion of the initial short-
time distribution which start populating multiple har-
monics of the drive period. This marks the onset of
synchronization,

• when the drive frequency starts matching the natural
Kramers transition frequency, the synchronization phe-
nomenon is clearly visible on panel 4.12c. State changes
mainly occur at multiples of the drive period with a
severe reduction in the short time probability distribution.
Synchronized transitions are observed up to five periods
of the drive. This means that the drive is slightly too
fast, forcing the bead to wait over multiple periods before
hopping to the next metastable state. Obviously, the
probability to remain in the same state decreases with
the number of waiting periods, as observed indeed in
the simulation with a probability envelop that decays
exponentially,

• when the drive period is much shorter than the natural
Kramers residency lifetime, panel 4.12d reveals that the
distribution of state changes becomes much larger, with
transitions occurring up to 100 times the drive period.
Although the bead still follows partially the external drive,
it progressively becomes transparent.

4.4 experiments

We now present the experiments corresponding to the ex-
ternal forcing of the bistable potential that we performed inside
our SWOT configuration. Two different types of experiments
have been done:

• A first experiment where the bead is inserted in our
optical piston which length is adjusted in order to obtain
a rest bistable potential as symmetric as possible. The
end-mirror of the piston is then moved periodically, mod-
ulating the potential around the initial symmetric configu-
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(a) Period T = 0.1 Hz (b) Period T = 0.5 Hz

(c) Period T = 1 Hz (d) Period T = 20 Hz

Figure 4.12: Simulated histograms of the transition probabili-
ties for state change of the same kind, for a drive
amplitude of 80 fN, as a function of the number of
drive periods.

ration. This experiment corresponds to a parametric drive
nd is described by eq. (4.8).

• A second experiment, where the piston is again adjusted
to a bistable configuration but this time, the external
forcing is done by a second laser injected in the SWOT
that exerts a strong, external, optical force on the trapped
bead. This is similar to eq. (4.15) but the rest potential is
the one of the optical piston.

4.4.1 End-mirror modulation

In this first experiment, a 1 µm polystyrene bead is
trapped in a SWOT formed between a (0.85 NA, 60×) air-
objective and a gold mirror using a 785 nm trapping laser beam.
The beam reflected by the mirror is recollected by the objective
and sent to a PIN photodiode after being spatially filtered by a
pinhole. A schematic representation of the experimental setup
is given on Fig. 4.13.
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Figure 4.13: Schematic of the experimental setup for the
parametric perturbation of the potential. The
bead is trapped in a standing wave in front of
a gold mirror (SWOT). The mirror position is
periodically modulated at a given amplitude δℓ(t)
and frequency.

The mirror, mounted on a piezo stage, oscillates at a given
frequency and amplitude δℓ(t) in order to deform periodically
the potential U(z(t),t) around the rest mirror position ℓ0,

U(z(t),t) =UM(z(t),ℓ0+ δℓ(t)). (4.20)

As we discussed in subsection 4.2.1, this method of external
forcing corresponds to an effective parametric excitation of the
system, the drive term being proportional to the instantaneous
position of the bead.

For this experiment, the long-range step piezo motor
(Newport PZA12) used to move the fluidic cell over millimeter-
distances is actuated in an open loop mode, yielding a 30 nm
position resolution. Because the open loop mode does not allow
sinusoidal displacement of the mirror, a fine grained closed-
loop piezo actuator (Newport NPA50SG) is added. This new
piezo actuator has a short displacement range of 50 µm with a
of 1nm resolution in position. The long-range stepper actuator
is installed on a secondary translation stage that holds the new
closed loop actuator in contact with the sample translation
stage. Using this strategy, the coarse mm-long displacement
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of the mirror is preserved while the new actuator offers the
requirements to drive the mirror harmonically. When per-
forming an experiment, the long range piezo is first displaced,
its position is locked before the closed loop piezo motor is
actuated. This actuator is driven by a frequency generator in
order to generate a sinusoidal displacement of the mirror with a
chosen frequency and amplitude, around a rest value chosen in
such a way that the bead exhibits a quasi symmetrical bistable
dynamics.

To do so, the mirror is approached towards the trapping
beam waist (using the stepper actuator) and its position ad-
justed about 3 µm behind the waist (using the closed loop
actuator). By finely tuning the position of the mirror ℓ0,
a symmetric bistable regime is obtained and the associated
Kramers mean residency times are determined.

Themirror position is then periodically modulated at a fre-
quency matching Kramers residency times. In our experiment
the drive period is of 1 Hz and the amplitude of 80 nm. Under
such conditions, a strong synchronization is recorded as shown
in Fig. 4.14. The intensity time trace exhibits a whole region
where state transitions are well synchronized with the drive.

Note that, while the signal separation between the two
states is widely marked thanks to the collection pinhole (see
Ch. 2), the intensity signal keeps trace of the mirror position
when this one is modulated. This makes the determination
of the instantaneous position of the bead difficult. A solution
would be to subtract to the time-trace a sinusoid proportional
to the drive to the signal. But in our configuration, where the
measured intensity is not linear with the bead position, such a
simple substraction scheme would be unreliable.

Another difficulty with this experiment arises when the
drive frequency is increased (with a fixed amplitude). It turns
out that for increasing frequencies, the displacement of the
mirror δℓ(t) increases with a maximum observed around 100
Hz. Throughout a wide frequency range (up to 1 kHz), the
feedback control of the piezo reports the selected constant
drive amplitude. This suggests the existence of a mechanical
resonance in one of the translation setup (one of the stage or a
coupling between both).

These shortcomings have led us to adapt the optical setup
in order to be able to drive the bistable potential by a genuine
external force.
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Figure 4.14: Illustration of a 30 s long time-trace recorded
with a 1 Hz drive of 80 nm. The orange
curve gives the time-variation of the intensity
measured by the PIN photodiode, corresponding
to the instantaneous trajectory of the bead. The
blue curve is the instantaneous position of the
closed-loop piezo actuator. The intensity trace,
function of the bead position follows the external
drive with synchronized state changes clearly
visible.

4.4.2 External force drive

These difficulties have led us to modify our setup in order
to reach simpler conditions where the external forcing of the
interaction potential U(z(t),t) is done via an external optical
force directly exerted on the bead. This approach corresponds
to the simple expression of a time-dependent potential asso-
ciated with the external driving force superimposed to a rest
bistable potential:

U(z(t),t) =U0(z(t))+Udrive(z(t),t). (4.21)

The experimental setup described in Fig. 4.15 is adapted
in such a way as to permit the addition of a second laser beam
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Figure 4.15: Schematic setup of the experimental configuration
used to apply an external force on a trapped bead
in a bistable potential. The gold mirror is replaced
by a 0◦ dichroic mirror used to form a SWOT with
the 785 nm (Excelsior, 45 mW) laser beam. A
second beam at 639 nm (Thorlabs laser diode, 70
mW) is inserted collinear to the trapping beam
by a 45◦ dichroic mirror. This second beam is
modulated at a given amplitude and frequency
acting as the external driving force.

that can act as the source of the external pushing optical force,
without perturbing the trapping conditions. To do so,

• The gold mirror is replaced by a 0◦ dichroic mirror that is
reflective from 700 nm to the near infrared regime and
transparent below. This ensures that the 785 nm laser
beam is reflected and a SWOT is formed on top of the
mirror.

• A second beam at 639 nm is inserted in a collinear way to
the trapping beam by a 45 ◦ dichroic mirror (with a cut off
frequency of 710 nm) transparent to the trap beam. This
laser, perfectly transmitted through the 0◦ angle dichroic
mirror, will act as the external drive.

• The trapped probe particle, previously a 1 µm polystyrene
bead, is replaced by a 1 µm melamine bead (from Fluka).
We observed indeed that melamine beads (with higher
refractive index than polystyrene -1.68 vs 1.57) are more
stable in the SWOT than polysterene beads, withmean res-
idency times obtained in bistable regimes slightly shorter.
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• All the recollected light from the trap beam is sent to the
PIN photodiode. There is no filtering (pinhole) needed
anymore in order to observe a good state separation in
bistable regimes, since the higher refractive index of mel-
amine gives a better contrast in the recollected signal.

4.4.2.1 Detailed experimental protocol

The following protocol is implemented in order to (i)

reach a bistable dynamics and (ii) perform the synchronization
experiment.

In a first stage, the stepper actuator brings the waist of the
trapping beam on the mirror, before the closed loop actuator is
moved to generate the trap a few micrometers away from the
surface. After a bead enters in the trap, the “pushing” laser is
turned on -but not yet modulated- and its intensity tuned to
keep the bead stable in the trap. The mirror position is then
adjusted to obtain, with both lasers active, a symmetric bistable
dynamics where the bead shares its time equally between the
two metastable states.

Once the appropriate initial conditions of symmetric bista-
bility are reached with the two lasers on, a frequency generator
is used to modulate the pushing laser beam intensity (through
a modulation of the current supplied to the laser diode) at a
given frequency. This approach is useful in order to simulate a
negative force acting on the bead. Indeed, in this configuration,
reducing the pushing laser intensity is equivalent to pulling
the bead backward. This resolves the difficult, but necessary
in our 1D configuration, task of creating a negative force on
the bead. It is clear that in the bistable regime, even without
driving the system, the potential created by the trapping beam
is not a bistable symmetrical potential. It is only with the
addition of the second pushing beam that the bead spends an
equal time on both sides of the waist. Increasing or reducing
the intensity around this mean value for the pushing laser beam
effectively adds or subtracts a force applied on the bead. It is
the combination of potentials associated with each beams that
yields our effective symmetric bistable potential.

Care is taken to ensure that the second 639 nm laser beam
only acts as a pusher. This beam is focused 3 to 5 micrometers
before the waist of the trapping beam (a shorter wavelength for
the pushing laser helps in achieving this!) and does not entirely
fill the entrance of the objective. This decreases the effective NA
and as a consequence, reduces the gradient force contribution
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of the pushing laser beam. We verified that the 639 nm beam
does act as a pusher and is totally unable to trap the bead. For
instance, it does push immediately the bead against the mirror
as soon as the 785 nm trapping beam is switched off. We will
make the reasonable assumption, although this is difficult to
fully guarantee, that the pushing force is constant over the 300
nm spanned by the axial displacement of the bead.

4.4.2.2 Allan variance

Figure 4.16: Allan standard deviation computed from a 1
minute long acquisition for a 1 µm trapped
melamine bead. The bead is trapped with a
mirror configuration such that the potential is
quasi-harmonic. The red line represents the
thermal noise limit.

An important limitation in our experiments comes from
the fact that reaching a clear bistable (symmetrical) regime is
difficult and does not last for too long, mainly because of slow
drifts in the experiment. Drift of the fluidic cell in particular
have obliged us to improve on our cell design, but despite our ef-
forts, we have been limited in the synchronization experiments
to a ca. 10 s long integration time for each sequence. This can
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be compared to the stability of the experiments of Ch. 2 and 3
performed over 30− 60 s.

The Allan variance is an interesting tool that leads to
measure the time over which the experiment can be considered
as statistically stable [83–85]. The Allan variance is computed
from normalized (3 points) variances of a signal at different
bandwidth for a given delay τ in the series of points,

σ2y(τ) =
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(4.22)

The time of stability (i.e. the optimal measurement time)
corresponds to the minimum in the Allan variance.

In practice, the long time-trace is subsampled in order to
provide various shorter traces of a given length which variance
is computed using eq. (4.22) and averaged over all down-
sampled series of the same delay:

σ2Allan(τ) = 〈σ2y(τ)〉 (4.23)

The Allan standard deviation (the square root of the
variance) of a trapped melamine bead is shown in Fig. 4.16.
The variance of the measured intensity (almost proportional to
the displacement of the bead) follows the thermal limit (red
curve) for short time scales (below 1 s). In this region, the
stability is optimal and the main source of noise is the bath
which also drives the dynamics. Above 1 s, the Allan variance
departs slightly from being thermally limited but stays low, up
to at least 10 seconds. From this curve, it is apparent that an
acquisition time of 10 seconds is fully valid, the noise associated
with the measured intensity variance remaining at a low level.

Dispersion in the variance makes higher time delays non-
significant. Our acquisition card does not permit longer acqui-
sitions at our usual sampling rate. Computing the variance
above 15 seconds gives dispersed values even for successive
time delays. We consider this region as non significant because
it is statistically ill defined (too few samples are available when
computing the variance). Nevertheless, the determination of
the trap stability at longer times is interesting. Empirically, we
estimate 30 s as a good upper limit, when all other cultural noise
sources are minimal.
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4.4.3 Synchronization, time-traces, and PSD

As explained above, a synchronization measurement is
performed only when a symmetric bistable interaction potential
has been formed in the SWOT including the contribution of the
pushing laser, not yet modulated. That the potential profiles are
all similar is important in oder to be able to compare different
residency lifetime / time-delays distributions. But this obliges
us to go through a tedious protocol.

Starting from an apparently robust bistable dynamics (as
observed on a oscilloscope with a good separation of times), we
retract the mirror 20 nm away from the initial position and
acquire a first time-trace over 10 s. We then move step-wise
the mirror back forward, by steps of 2 nm. Doing this, we
actually cross the bistable region (see Ch. 3). At each step, a
10 s time-trace is recorded.

This sequence is repeated for each modulating frequency
of the pushing laser, over the chosen frequency bandwidth. All
the time-traces and associated histograms of all the acquisitions
are then displayed, from which all the traces stemming from
non-symmetric histograms are simply discarded. This is how
we are able to ensure (up to experimental errors and limitations)
that the potential exerted on the bead is bistable and on average

residency lifetimes are evenly symmetric, throughout the drive
frequency scan.

Typical validated data are shown in Figs. 4.17 and 4.18.
The histogram representation in particular is helpful in check-
ing the symmetric character of the bistable dynamics. Such
data are then exploited through the residency time statistical
analysis in order to study the bead dynamics with a high level
of precision.

It is interesting to look at the PSD associated with the
time-trace of Fig. 4.17 acquired by the PIN photodiode. This
is done in panel 4.19a which clearly displays the complex
dynamics observed at low frequency on the time trace: bistable
transitions do not exactly occur at the same frequency each time.
The contribution state changes is actually strongly observed at
2 Hz. As expected from the fact that state changes are fast
hopping events, their contribution does not follow a regular
sine curve.

The PIN photodiode can be complemented by a quadrant
photodiode (QPD) in order to measure transverse displace-
ments of the bead in the SWOTwith the presence of the external
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Figure 4.17: Experimental time-trace of 10 s recorded by the
PIN photodiode. A 1 µmmelamine bead is trapped
in a bistable potential under an external drive at 2
Hz. The bead dynamics is strongly synchronized
with the external displayed in orange.

Figure 4.18: Histogram associated with the intensity time trace
presented on Fig. 4.17. This histogram shows
two regions of high intensity associated with
two attracting positions for the trapped bead.
Each attractor is considered as a metastable state
populated by the bead. Both metastable states
are approximately equally populated, the bead
spending half of its time in each states.
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(a)

(b)

Figure 4.19: Power spectral density of a 1µm melamine bead
trapped in a bistable potential under the influence
of an external sinusoidal drive at 2 Hz. Panel (a)
displays the PSD calculated from the PIN signal.
Panel (b) the transverse PSD acquired via the QPD.

drive. The transverse PSD is shown in panel 4.19b.The curve
follows a proper Lorentzian shape, even at low frequencies.
This suggests that the overall transverse dynamics is similar to
the one of a bead trapped in a harmonic potential.

Interestingly, the presence of the driving force is clearly
seen on the PSD as a peak at 2 Hz in both longitudinal (z-axis)
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and transverse PSD traces. The sharp character of the peak
insures that this contribution does not come from the bistable
dynamics itself, in which case one would expect a broader
response. It is however unclear whether the strength of the
signal originates only from the bead displacement in the trap
or whether some of the contribution to the spectral density
at 2 Hz could come from cross-talks between the acquisition
channels used on the NI acquisition card (one channel for the
PIN signal, two others for the x− and y−QPD outputs). The
acquisition card works in a time-shared mode when performing
multiple channels acquisition, in which case cross-talk must be
accounted for. It is estimated that cross-talks can contribute to
the signal up to 1/100 - 1/50 part of it. While it is expected that
the strong drive has an impact and a signature on the transverse
displacements spectral signature, all the sources contributing
to that amplitude are difficult to determine. Looking at the
amplitude of the peak in both panels 4.19a and 4.19b, taking
the lorentzian shape as a reference, we estimate that the peak
reaches ca. 3 orders of magnitude along the optical axis and ca.
2 transversely, i.e. typically a 1/5 ratio between the channels,
from which we cannot exclude any cross-talk effect.

4.4.4 Mandel Q factors

Similarly to what we did numerically, we now analyze
the evolution of the experimental Mandel factors associated
with each of the metastable states as a function of the driving
frequency fd, for a fixed driving amplitude. The 639 nm
pushing laser induces on the bead an external force

FP(t) = FDC+ FAC sin(2πfdt) (4.24)

where FAC corresponds to the driving amplitude. The ex-
perimental determination of both DC and AC amplitudes is
presented in the Appendix B with the results that FDC ≃ 2 pN
and FAC ≃ 700 fN.

We start the experiment with an unperturbed symmetric
bistable rest potential -displaying an histogram similar to the
one presented in Fig. 4.18. As we explained in subsubsec-
tion 4.4.2.1, the rest potential is induced with the DC compo-
nent of the pushing force acting on the bead (i.e. the pushing
laser is not yet modulated). We carefully adjust both the
pushing laser intensity and the end-mirror position in order to
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have equal mean residency lifetime in both metastable states
with τup ≃ 0.27 and τdown ≃ 0.29 s (natural Kramers mean
residency time). The associated Kramers natural frequency is
3.7 Hz and 3.5 Hz respectively.

The rest potential is also characterized by the associated
Mandel factors Qrest which, despite the fact that τup ≃ τdown
are not identical for both metastable states. In such non-driven Considering the

relative
uncertainty
associated with
the determination
of Q, both value
are close.

conditions, we measure Qrest,up ≃ −0.7 and Qrest,down ≃ −0.6.
These negative values denote an initial tendency to bunch the
residency time in bothmetastable states. This stems from a com-
bination of effects: first, the potential walls are not harmonic, so
that the restoring force is not linear with respect to the potential
wells. Then, in our configuration, the potential depth lies at the
limit of a clear separation of time necessary to apply Kramers
formalism. It turns out indeed that the characteristic time,
associated with metastable state changes, is only slightly longer
than the relaxation time inside each metastable states. The
dynamics of our rest potential is similar to the one simulated in
Fig. 4.3c, corresponding to amoderately deep bistable potential,
where state changes are readily observed but with a negative
small Q factor (Fig. 4.6).

In such resting conditions, we modulate the pushing laser
around its DC value and record the evolution of the Mandel
factorsQup/down as a function of the driving frequency. Lists of
residency times for both the upper and lower states are formed,
and when multiple acquisitions are validated (in the sense
of subsection 4.4.3) with the same external drive frequency,
their values are concatenated to form larger lists. This helps
in reducing the experimental uncertainty. The results are
presented in Fig. 4.20.

The evolution observed experimentally is well consistent
with our numerical simulations of Fig 4.8. The experimental er-
ror bars are given by the relative uncertainties of the Mandel Q
factors computed from the number of state transitions recorded.
Considering a pool of N independent residency times, the
relative uncertainty of both the mean and the variance is set
to 1√

N
of their value. Using the propagation of errors formula Note that the

errors are
computed
assuming the
independence of
the measured
values (mean
residency times)
in throughout the
recorded series.
But this is not was
is observed
experimentally.
For that reason,
we can only
provide error
estimates.

for product [81], the uncertainty becomes

δQ

Q
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N
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√

2
N
. (4.25)
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Figure 4.20: Evolution of the Mandel Q factors for the upper
and lower state residency times. A 1 µm melamine
bead is trapped in a rest symmetric bistable
potential and the frequency of the external drive
is changed while the amplitude remains constant.
The blue curve represents the lower state and the
red curve the upper state. The dotted lines display,
in the same color code, the values Qrest,down ≃
−0.6 (blue) and Qrest,up ≃ −0.7 (red) of the rest
Mandel factors.

Within the error bars, both the upper and lower curves
show similar values which separate, as expected from the
simulations, three distinct regimes:

• At low frequencies, it is difficult to prove that the super-
poissonian regime is reached, considering the large error
bars. These large error bars are due to the small number of
state changes that can be recorded over only two periods
in a 10 s-long experiment at a driving frequency of 0.2
Hz. Only ca. twenty transitions where extracted in total
from the acquisitions. This small number naturally gives
a large relative uncertainty. Nevertheless, it is clear that
the dynamics of the bead is starting to be rectified by the
drive, with MandelQ factors at 0.2 Hz significantly larger
than the rest ones.

• At frequencies associated with the Kramers mean resi-
dency time (around 2 Hz), the Mandel Q factors of both
states are minimal and approach −1. In this regime
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the Q factors are much below the rest values obtained
without external drive. As clearly seen, the presence of the
external drive causes a strong synchronization of the bead
dynamics with the drive. Remarkably, both up/down
curves have similar values in the synchronization regime.
More precisely, we measure minimal Qs at 5 Hz, with
values below −0.96 s for both curves. At 5 Hz, the
associated mean residency time (in case of a perfect syn-
chronization) is expected, from eq. (4.4), to be 0.1 second,
that is three times shorter than the values obtained in
the rest potential (without drive). This clearly illustrate
the frequency blue-shift associated with the maximum
of synchronization that we predicted under strong drive
conditions in Fig. 4.10.

• At high frequencies, the Q parameters tend to the rest
ones. The dynamics start becoming transparent to the
external drive, with a bead that does not follow the
external drive anymore. Working below the kHz, it
does not seem that we can observe any signature of a
non-adiabatic coupling between the external forcing and
the bistable potential.

It is interesting to stress that our experiments confirm
another effect that our simulations have revealed (see subsec-
tion 4.3.4): namely that the minimal mean residency time is
reached at a higher frequency than the maximum synchroniza-
tion frequency. This is clearly visible in Fig. 4.21 which gathers
the mean residency lifetimes of both metastable states as a
function of the external drive frequency. The minimum of
mean residency time is obtained around 10 Hz in both states,
clearly above the maximum synchronization frequency. At low
frequencies, in the rectified regime, the mean residency life-
times increase above the rest mean residency lifetimes in both
states, while at high frequencies, they progressively approach
the limiting rest values of the transparency regime.

4.4.5 Time-traces and time delay analysis

All these properties that we have been discussing are
directly visible on the intensity time-traces experimentally ac-
quired for different drive frequencies. Fig. 4.22 gathers some of
the analyzed time-traces.
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Figure 4.21: Evolution of the mean residency lifetimes of both
metastable states as a function of the driving
frequency, in the same conditions as in Fig. 4.20.
The blue curve represents the lower state and the
red curve the upper state. Dotted lines (same color
code) display the mean residency lifetimes in the
rest potential.

(a) fdrive = 0.2 Hz (b) fdrive = 0.5 Hz

(c) fdrive = 1 Hz (d) fdrive = 5 Hz

Figure 4.22: Experimental time traces of 10 seconds with
different external drive frequencies.
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Periodic components are clearly apparent in these time-
traces. In particular, we see that transitions between metastable
states only occur at specific instants with respect to the drive.
This behavior is readily visible on panel 4.22b and even panel
4.22c where the bead quite strictly follows the external drive.

A Mandel Q factor provides a good measure on the level
of synchronization. Nevertheless, it becomes less efficient for
understanding how synchronization emerges from the external
drive. Panel 4.22d gives a clear example of these limitations. At
this driving frequency, we observe (for instance in the 4-5 s time
interval) that the bead can miss a jump with respect to the drive
frequency. The mean residency time distributions will witness
an increased spread in the lifetime value. But looking at the
trace, it seems that after a few missed jumps, there is a high
probability to jump in the next period of the drive. The Mandel
Q factor cannot characterize this behavior. Here, one has to
resort to the approach described in subsection 4.3.5 where one
monitors the evolution of the time delays between successive
transitions of the same kind.

Just as exposed in that Section, we now adopt the time-
delay point of view and build the histograms of the probability
of state changes of the same kind (see above) as a function of
the number of drive periods. These histograms are plotted in
Fig. 4.23 for driving frequencies ranging from 0.2 to 50 Hz. The absolute

phase difference
[86] between the
drive and state
changes was not
studied here.

• At low frequency (panels 4.23a 4.23b) no state transitions
is observed after one drive period. As is expected from
the notion of rectification, the bead can hop between
metastable states many times before a drive cycle is com-
pleted, i.e. hop many time per drive but for short times
only. In other words, the bead follows the slow drive
and the transition to the other metastable state are short
lived. This is exactly what the simulations revealed (see
Fig. 4.12). The only difference is that, experimentally,
the small number of transitions available over the time of
the experiment (10 s) makes the histogram badly defined.
Nevertheless, the sharp cut above T is perfectly clear. For
a drive frequency of 0.5 Hz, one third of the transitions
occurs around one drive period of time and the rest is
distributed at shorter times only.

• For driving frequencies at 1 and 2 Hz (panels 4.23c and
4.23d), we clearly observe the strongest tendency for the
bead to change state every drive period exactly, with most
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(a) Period T−1 = 0.2 Hz (b) Period T−1 = 0.5 Hz

(c) Period T−1 = 1 Hz (d) Period T−1 = 2 Hz

(e) Period T−1 = 5.0 Hz (f) Period T−1 = 10.0 Hz

(g) Period T−1 = 20.0 Hz (h) Period T−1 = 50.0 Hz

Figure 4.23: These histograms show the transition probabilities
for state changes of the same nature (down to
up) as a function of the number of drive periods.
The time τ between successive state changes is
normalized by the drive period. Very strong syn-
chronization is observed (Fig. 4.23c, 4.23d) then
partial synchronization emerges with increasing
frequencies (Fig. 4.23e, 4.23f) before progressively
losing the synchronization with broad transition
probabilities (Fig. 4.23h).
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of the transitions centered around 1. Remarkably, there is
a strong depletion of the short-time distribution without
any harmonic structure. This corresponds to the regime
of “complete synchronization” with very low Q factors
at high forcing amplitude (see our diagram 4.7). Note
that “perfect” synchronization would be associated with
negligibly small spread around 1.

• Interestingly, the smallest Mandel Q factors have been
measured for a drive period of 5 Hz. The associated
histogram, displayed in panel 4.23e, reveal that, while
almost all the probability density is sharply distributed
around 1 -as expected in a complete synchronization
regime- few transitions are occurring outside the first
drive cycle. These transitions do not occur randomly
since they clearly peak at 2 × T . This means that the
rare occasions where the bead “missed” its jump with the
external drive, it waits for the following cycle to effectively
perform the transition between the metastable states. It
is important to emphasize that an analysis purely based
on a Mandel factor approach would have missed this
important possibility of the synchronization dynamics.
We note that a similar behavior has been reported by
Libchaber et al. [7].

• This catch-up behavior after a missed drive cycle is much
more clearly seen in panel 4.23f with an external drive of
10 Hz. At this drive frequency, the bead can change state
up to 5 drive cycle after the previous one. Transitions
remain well synchronized with the drive, not only at its
fundamental period but also at multiples of the drive pe-
riod. The most remarkable feature is that the probability
of changing state outside of the appropriate drive “wave”
becomes very small. These experimental observations are
confirming our simulations presented in panel 4.12c.

• Increasing further the external drive frequency leads to
the regimes of transparency where the bead is desynchro-
nized, losing any periodicity in its state transition time
delays with respect to the drive (panel 4.23g). At high
frequencies above 50 Hz, the distribution gets closer to
a Poisson distribution (panel 4.23h). It is not obvious,
in particular from the Mandel analysis in Fig. 4.20, that
this distribution can be taken as an indication of the
non-adiabatic regime.
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4.5 conclusion

In this chapter, we have studied the regime of an ex-
ternally driven bistable potential. Considering the stochastic
evolution of the bead within the bistable potential, an external
periodic forcing can lead to the phenomenon of stochastic reso-
nance as described from a synchronization point of view. The
conditions under which such a phenomenon can be observed
in our optical piston setup have been carefully studied in this
Chapter.

In our optical piston setup, the external forcing can be
performed in two ways:

• by putting the end-mirror of optical piston into periodic
motion. This amounts to define a driving potential which
eventually depends on the instantaneous position of the
bead. The forcing has thus a parametric nature

• by exerting on the bead an external, modulated, force. In
this situation, the forcing can merely be derived from a
time-harmonic potential, with no dependence on the bead
position.

Starting with a Langevin equation and a standard model
for bistability, the Duffing potential, we study numerically the
phenomenon of stochastic resonance by adding an external pe-
riodic force. We carefully look at the evolution of the statistical
properties of the residency lifetimes in both metastable states
as a function of the drive frequency and amplitude. This leads
us exploring different statistical regimes:

• for a weak drive: going through a regime of rectified bista-
bility at low frequency, a regime of partial synchroniza-
tion at a frequency close to the natural Kramers frequency,
and a regime of transparency at higher frequency,

• for a strong drive: going through an adiabatic regime of
strong rectification, a regime of full synchronization at
the Kramers frequency, and a regime of non-adiabatic
coupling at high frequency.

We exploit for this detailed analysis an efficient tool for
characterizing the residency lifetime distributions: the Mandel
factor. This factor describes the onset of correlations in the
statistics and enables us looking in particular at the onset of
ergodicity under the influence of the external forcing.
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We also develop an alternative approach based on a tran-
sition time delay analysis in order to study the evolution of
the probability distributions associated with the hopping events
themselves.

In the second part of the Chapter, we gather the exper-
iments that we perform in this context. Experimentally, the
external forcing is induced by a pushing laser added to the
optical piston. This pushing laser, that can be modulated in
frequency and amplitude, exerts an optical force on the trapped,
over-damped, bead.

For all our experiments, we took great care that the
bistable potential is symmetric with the trapping and the push-
ing laser on before modulating the amplitude of the latter.
This is an important condition in order to be able to compare
the different experimental results in the different conditions of
drive.

Using the same methodology of the Mandel factor and
the time delays, our experimental results turn out to be in
good agreement with our simulations. We demonstrate the
regime of rectification, and even reached the regime of complete
synchronization. At high forcing frequencies, harmonics in
the state change transition probability histograms are observed,
corresponding to missed state transitions. These signatures are
present up to the level of desynchronization reached at higher
frequencies.



5
EXPER IMENTAL DEVELOPMENTS AND
PERSPECT IVES

The experiments on stochastic synchronization performed
in Ch. 4 have led to improve our optical piston configuration
with respect to the experiments done in Ch. 2 and 3. Essentially,
we have implemented a control of the position of the piston end-
mirror at a nm level of accuracy. We have also added in the
setup a second laser (called below the pushing laser) in order to
be able to perform experiments in the presence of an external
forcing. This forcing is induced by this second laser that exerts
an optical force on the bead trapped in our SWOT.

This is precisely here that our setup meets one important
topic in optical tweezing: high-resolution force measurements.
Optical tweezers have indeed revealed a unique capacity to
monitor force fields in fluidic environments with a high level of
resolution [87–89]. For force measurements, the state-of-the-art
level of control on optical tweezers is such that optical trapping
can compete with other types of methods, such as atomic force
microscopy (AFM) [19–21].

One appealing aspect of our SWOT is the possibility to
trap small metallic nanoparticles (NPs). We will exploit a
remarkable feature of the SWOT. where the scattering forces
induced on the NP immobilized on an anti-node of the standing
wave pattern (induced by the reflection of the trapping beam on
the end-mirror) actually stabilizes the trapping dynamics rather
than ejecting the Au NP from the waist -as it would happen in
the case on conventional single beam traps [42].

This possibility important in the context of force measure-
ments because resorting to small NPs gives a way to reduce
the Stokes drag, and hence an efficient way to improve force
resolution levels. The metallic character of the NPs is also im-
portant when it comes to trap and push small beads in standard
laser intensity conditions, ca. 10−2 mW · µm−2. Metals give
the possibility to tune the second laser, acting as a pushing
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laser, at a maximum of the extinction cross-section, i.e. the
possibility to overcome the limit set on optical force strengths
by the R3 dependence of the NP extinction cross-section. In
this Chapter, combining these advantages of our optical piston,
we will present a series of experiments that measure, in a fluid,
optical forces on single Au NPs with a fN resolution.

We will finally show that our setup is ready for manip-
ulating more exotic nano-scale metallic objects. Chiral Au
nanopyramids fabricated in the group of Prof. D.J. Norris, at
the ETH-Zurich are the perfect systems for demonstrating this.
In this Chapter, we will trap single chiral nanopyramids and we
will propose an experimental polarization analysis strategy that
enables the recognition of the enantiomeric form of the optically
trapped single chiral object.

5.1 interferometric scattering microscopy

Trapping small objects however leads to some difficulties.
With sizes below the diffraction limit, it becomes hard to get
any reliable information by simply looking at the recollected
intensity of the SWOT beam -as it was done for the large
polysterene or melamine micron-sized beads of Ch. 2, 3, and 4.
At these sizes with our standard method, it becomes practically
impossible to determine the actual number of objects inside the
trap. Depending on the stability of the colloidal dispersion,
various types of aggregates can be formed that can all be
trapped, stressing the importance of being able to discriminate
between them all.

One interesting approach that can help in overcoming
these difficulties is the so-called interferometric scattering mi-
croscopy (iSCAT), as developed in particular in the group of
Prof. V. Sandoghdar [90–92]. We have therefore equipped
our SWOT setup with an iSCAT imaging line, as described in
Fig. 5.1. This addition consists in a third laser focused, at
low power, at the back focal plane of an objective behind the
dichroic mirror. This allows to have this third beam almost
like a plane wave between the two objectives. The interference
formed between (i) the partial reflection of a transmitted plane
wave at the dichroic mirror / water interface and (ii) the field
back scattered by an object in the fluid is imaged on a CCD
camera.

The interference process is schematized in panel 5.2 (a).
A scatterer is illuminated (from below) by a plane wave Ei. A
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Figure 5.1: Schematics representation of the experimental ad-
dition of the iSCAT imaging line. A laser beam
at 594 nm (50 mW, Excelsior, Spectra Physics) is
focused at the back focal plane of an objective (NA
0.6, 40×) behind the dichroic end-mirror of our
SWOT. The power of this laser is reduced down
to 15 µW. A fraction of this light is scattered back
at the mirror/water interface and another fraction
from the trappedNP. These scattered beams are sent
back to a CCD camera for imaging and tracking.

fraction of this light is reflected at the glass/water interface
forming the backward propagating reference field Er. Some of
the transmitted light is also back scattered by the illuminated
object as Es. The two backward propagating fields Er and Es
interfere.

As for any interfering setup with two beams, 3 terms are
involved when computing the resulting intensity (imaged on
the CCD camera). The first term is the constant and dominant
contribution |Er|

2 = |r|2|Ei|
2 coming from the reflection of the

incident beam on the mirror’s interface, characterized by a
reflection amplitude r. A second term arises from the field
Es = sEi scattered by the trapped object. Because |s| ≪ |r|,
this term is considered as a negligible second-order term in
|s|/|r|. The cross-term however, stemming from the interference
between Er and Es, is a first-order term. It is this term that
yields the relevant iSCAT signal. The intensity measured on
the camera then writes as:

IiSCAT ∝ |Ei|
2(r2− 2r|s|sin(φ)), (5.1)

with φ the phase between the two interfering fields.
The iSCAT approach offers a label-free detection of objects

in the fluid against a bright background (contribution from
|r|2|Ei|

2). It turns out to be an extremely useful technique that
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Figure 5.2: (a) Schematic representation of the iSCAT detection
scheme. A scatterer is illuminated (from bellow) by
a plane wave. A fraction of this light is reflected at
the glass/water interface. Some of the transmitted
light is also backscattered by the illuminated object.
The two fields Er and Es, propagating backwards,
interfere. Schematics adapted from [90]. (b) CCD
image taken on our optical steup, for a 1 µm
melamine bead, diffusing in water. The presence of
the object is clearly seen by the contrast localized on
the background light.

helps in determining the size of an object dispersed in the fluid
through (i) the size of the imaged spot and its contrast, and
(ii) through the blinking dynamics of the image on the CCD
video, which strongly depends on the size of the object. Small
objects, with large average diffusion rates, will span the phase
φ -a function of the distance between the object and the mirror
surface- through diffusion more rapidly than larger ones.

The iSCAT technique is very useful in our experiments
at the level of dielectric beads which provide a strong phase
contrast. Polystyrene, melamine and silica beads have been
used throughout our experiments and iSCAT actively helped in
all of them. An illustration of a diffusing particle observed with
our iSCATmicroscope is presented in panel 5.2 (b). It shows a 1
µm melamine bead in water, diffusing nearby the surface. The
contrast and the visibility of the object is sharp and much better
defined than with a simple bright field imaging approach.

Exploiting the informations brought by the iSCATmethod
has turned out to be very important when dealing with small
moving metallic scatterers, just as in our optical force exper-
iments described in the next Section. It has indeed given
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us a valuable tool in order to “diagnose” the quality of our
metallic NP dispersions. For recollected intensities from the
SWOT measured as identical on the PIN photodiode, iSCAT
helps determining the nature of the trapped object in the trap,
as well as counting how many objects are actually trapped.
This capacity has allowed us to use Au NP dispersions at low
concentrations, which is important for reducing the probability
of having aggregates formed in the dispersion too rapidly.

The iSCAT technique is offering a straightforward way of
doing the experiments: the imaging configuration enabled us
going literally “fishing” by moving the sample holder with the
piezo actuators. Note however that this simple approach only
works for experiments that are not alignment sensitive. A shift
of the sample position, changing the reference distances along
the optical axis, can cause slight offsets between the different
beams that can become detrimental.

5.2 high-resolution optical force measurements

Very recently, Lui and colleagues [20] have demonstrated
the possibility to implement on an total internal reflection
force microscope a detection strategy analogous to dynamic
mode (DM) atomic force microscopy which has been extensively
used in the context of weak force measurements [93]. In
a DM operation, the external force is modulated at a fixed
frequency f0 and the amplitude of the signal is measured
with a lock-in amplifier driven at the modulation frequency.
The DM is particularly interesting in the context of weak
force measurements since it can yield a better sensitivity, in
particular as far as 1/f noise limitation is concerned. Using
this method, Lui et al. have have measured forces exerted
on optically trapped dielectric particles by an evanescent field
down to 7 fN, with an error smaller than 1 fN for the smallest
(0.5 µm diameter) dielectric beads [20].

We propose here to push the resolution of DM optical
trapping further down and to improve the experimental sen-
sitivity in force detection. These improvements are reached by
combining three intertwined ingredients:

• Our SWOT allows trapping a single Au NP of radius R =

75 nm in a stable way. As already stressed above, it is
important for such experiments to be able NPs as small as
possible in order to reduce the Stokes drag.
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• Our SWOT allows trapping in stable conditions small
objects that offer an extinction cross-section as high as pos-
sible. With low extinction cross-sections, dielectric NPs
are not ideally suited when performing optical force mea-
surements in standard laser intensity conditions. Metallic
NPs, and Au NPs in particular, are much better probes,
particularly when the pushing laser is tuned to the extinc-
tion cross-section maximum.

• Our SWOT is characterized by a spectral response such
that it is possible to reject the modulation frequency f0 far
away from the roll-off frequency fT of the trap.

A radius of R = 75 nm for an Au NP is a compromise between
these three ingredients: the Stokes drag reduction argument,
the limit set on optical force strengths by the R3 dependence of
the NP extinction cross-section, and the trap stability condition
determining an appropriate roll-off frequency. As we will
calculate below, this combination directly leads to optimizing
the thermally limited force resolution of the SWOT in the DM
operation.

5.2.1 Mie cross-section evaluations

Our experiments consist in illuminating a trapped NP
with a pushing laser in order to exert an optical force on the
NP independently from the restoring force at play inside the
SWOT.

One difficulty when dealing with a single small object, is to
reach, despite its small size, a good extinction cross-section with
respect to the pushing beam. A Mie calculation is performed to
determine the optimal wavelength to use for an optical force
experiment. The results of the calculations [94–97] for an Au
nanospheres of radius of R = 75 nm (assuming an incident
plane wave) for the absorption, scattering and extinction cross-
sections are displayed in Fig. 5.3.

The extinction maximum is around 640 nm and its con-
tribution mainly comes from the scattering of the incident
light field. The wavelength chosen at 639 nm for our pushing
laser is therefore optimal for this experiment, leading to a
maximized force at a given intensity with minimal heating
(minimal absorption cross-section).
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Figure 5.3: Cross-sections for absorption, scattering and extinc-
tion calculated for a R = 75 nm Au sphere as a
function of wavelength computed using the Mie
theory. They are normalized to the sphere diameter.

5.2.2 Experimental setup

A schematics of the setup is shown on Fig. 5.4 where, as
discussed in CH. 4, the end-mirror of the SWOT is replaced
by a dichroic end-mirror such that the trapping laser at λT =

785 nm is reflected, while the pushing laser - tuned at λP =

639 nm- is transmitted. The trapping beam goes through a
water immersion objective and forms the SWOT by reflection
on the dichroic mirror. The trapping laser reflected intensity
is recollected and sent to a PIN photodiode. As always, the
instantaneous motion of the bead inside the trap is monitored
from the recollected intensity modulations. The pushing laser
at 639 nm is injected along the optical axis using a 45◦ dichroic
mirror transparent to the trapping beam. This 639 nm beam
pushes the bead along the optical axis without trapping it (see
Ch. 4), thus not perturbing the SWOT dynamics. To avoid any
possible intensity signature of the modulated pushing beam on
the PIN signal, an additional high-pass filter at 650 nm is added.

The experiment is performed on an AuNPwith a diameter
of 150 ± 15 nm (i.e. taken from the same commercial mono
disperse suspension). The NP is illuminated by the pushing
laser, focused slightly behind the trap position. The pushing
beam does not overfill the objective entrance pupil, so that the
effective NA at the output of the objective is reduced. In such
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Figure 5.4: Schematics of the experimental setup. A SWOT op-
tical trap is formed by a water immersion objective
(NA 1.2, 100×) on top a dichroic mirror (cut-off at
700 nm). Gold nanospheres are trapped by a near
IR laser (785 nm, 45 mW Excelsior-Spectra Physics
laser diode, optically isolated). The recollected
reflection carries the displacement signature of the
object in the trap and is sent to a PIN photodiode
(Thorlabs det10A70 mW) and recorded. A second
beam (639 nm, 70 mW Thorlabs laser diode) is
injected along the optical path using a 45◦ dichroic
mirror (cut-off at 710 nm), transparent to the
trapping beam. The 639 nm beam is used to
push the bead along the optical axis. To avoid
any intensity signature of the modulated signal on
the photodiode, a high-pass filter (HPF) at 650 nm
is added. The iSCAT microscope is not shown
here. The setup is similar to the one in Ch. 4,
with however melamine beads are replaced by Au
nano-spheres.

situations, both gradient and scattering forces are at play but it
is crucial to stress that the pushing laser never traps the NP and
thus never perturbs the SWOT dynamics. The control on the
pushing laser focalization on the NP is a simple way to tune the
intensity flow incident on the NP and therefore the strength of
the acting optical force with similar laser amplitudemodulation
levels.
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5.2.3 Trap susceptibility

Fig. 5.6 displays the measured PSD Sz[f] = |z[f]|2 associ-
ated with the overdamped axial displacement z(t) of the NP
described inside the SWOT by the spectral Langevin equation
z[f] = χ[f]Fth[f]where χ[f] is the mechanical susceptibility of the
NP inside the trap and Fth[f] the Langevin force responsible for
the Brownian motion of the NP.

Assuming that the response is harmonic, the susceptibility
is Lorentzian with

χ[f] =
1

κT − i2πγf
. (5.2)

At thermal equilibrium, the Langevin force spectral density is
given by the fluctuation-dissipation theorem with [98],

Sth[f] = −2kBT Im(χ−1[f])/f= 2πkBTγ. (5.3)

We fit the PSD with this Lorentzian susceptibility and hence
extract the roll-off frequency of the trap fT = 1300 Hz.

This provides a thermally limited spatial resolution δz =
√

kBT/κT ≃ 20 nm where κT = 2πγfT is the trap stiffness
determined from fT and the Stokes drag γ = 6πηR, with
η ∼ 10−3 Pa· s−1 the dynamical viscosity of water at room
temperature.

With a trapping position typically located at a few (ca.
3) microns from the mirror surface, such a distance for the
positional fluctuation of the bead within the SWOT is important
to reach in order to be able to neglect any z-dependent surface-
induced Faxen-like correction to η [33].

5.2.4 Allan variance analysis

As emphasized already in Ch. 4, the limits of stability
of the whole experimental setup in standard conditions put a
lower bound on the available bandwidth. This is particularly
true in our experimental configuration where the interfero-
metric nature of the SWOT trap makes it very sensitive to
all external perturbations such as flow drift and evaporation
inside the fluidic cell, uncontrolled suspensions inside the cell,
cultural noise, etc. Despite the fact that a single Au NP can be
kept in the SWOT over a few minutes, the low frequency drift
of our optofluidic system can impact the overall trap dynamics.
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To measure the optimal data acquisition time, we evaluate
from an Allan variance σ2z(τ) analysis, as presented in Ch. 4,
the optimal measurement time topt. As seen in Fig. 5.5, this
minimum falls at topt ∼ 10 s for our system.

Figure 5.5: Allan variance evaluation for the trapped Au NP,
following the procedure described in Ch. 4.

As a result, it is clear that the usual method for improving
the experimental sensitivity by averaging a large number of
measurements repeated throughout long acquisition times [99]
can be counterbalanced by the drift of our system. It is therefore
important here to work at the optimal acquisition time: the PSD
shown in Fig. 5.6 has been recorded over topt and all our force
measurements are performed with a corresponding bandwidth
fixed at ∆fa = 0.1 Hz.

5.2.5 Measuring optical forces

In the DM operation of the SWOT, the pushing laser
power is modulated at a frequency f0 around a mean intensity
value with PP = 〈P〉t + Pmod cos(2πf0t). We carefully isolated
and verified that the modulation of the pushing laser at λP
does not contaminate the recollected scattered signal at λT from
which z(t) is recorded. In such conditions, the overdamped
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dynamics of the NP is therefore determined, in addition to the
Langevin force, by a static (DC) force component FDC -induced
by 〈P〉t- and a modulated (AC) force component FAC related to
Pmod. The spectral displacement then simply writes as

z[f] = χ[f] (Fth[f] + FDCδ[0] + FACδ[f− f0]) . (5.4)

Figure 5.6: Experimental PSD acquired over τopt. The
Lorentzian fit is shown in red. The external drive
amplitude is associated with a modulation tension
of 900 mV. It has a strong spectral signature around
97579 Hz. The height of the peak is large and
well-above the signal variance. The spectral height
of this contribution leads to a measure of the force
via the trap calibration.

Experimentally, the output signal from the PIN photodi-
ode is sent into our low noise preamplifier (SRS560) with a
high-pass filter frequency at 0.03 Hz. This simply removes the
DC component of the force from the signal. The PSD Sz[f] then
simply displays a resonant peak centered at the modulation
frequency f0 with

Sz[f] =
1

(

f2+ f2T
)

(

D

2π2
+

F2AC
16π2γ2

δ(f− f0)

)

, (5.5)

where D = kBT/γ is the diffusion coefficient. This approach
has similar expression to experiments where an external drive
is applied on the bead to calibrate the system [65].
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The corresponding force resolution is limited by the PSD
signal measured at the modulation frequency f0 over a fre-
quency bandwidth ∆f that cannot be smaller than the optimal
bandwidth ∆fa = 0.1 Hz determined from the Allan analysis. In
a first series of experiments, we exert optical forces on the NP
with sufficiently strong modulation amplitudes so that the peak
amplitude associated with FAC clearly emerges above the PSD
noise level.

With amplitudes FAC directly proportional to P2mod, we
measure the power spectral intensity I of the peak in the
PSD associated with the optical force. The spectral density
associated with FAC actually spreads over a few peaks Ii, i.e.
over a slightly larger bandwidth with ∆fAC = 0.4 Hz. We
convert each frequency contribution of the peaks Ii in m2 ·Hz−1

through a calibration factor β.
The calibration is done by fitting the experimental PSD by

the Lorentzian model |χ[f]|2 which provides best-fitted values
for D and fT . From the diffusion coefficient calculated from
the FDT (assuming known temperature and viscosity) DFDT =

kBT/γ, the calibration factor is simply β =
√

DFDT/D = 1.5×
10−7 m ·V−1. We are thus led to the force value calculated via
Hooke’s law δF=−κTδz for each spectral contributions Ii To properly

measure forces,
one has to use the
onesided
expression of the
spectral density.

FAC =
∑

i

2
√
2π(β

√

Ii)γ

√

f20+ f
2
T . (5.6)

directly measured from the PSD written in Eq. (5.5).
The evolution of the measured force for different modu-

lation amplitudes FAC at the same drive frequency f0 is given
in Fig. 5.7. This force is extracted from the PSD peak at
the drive frequency and shown as scattered red dots. Their
distribution shows the expected linear evolution between the
measured force and the modulation amplitude. Remarkably,
the linear fit is consistent with the experimental force resolution
determined above from the position noise measured on the PSD.

5.2.6 Lock-in detection

The PSD measurements already showed the advantage
in measuring force signals at the modulation frequency f0,
improving through the low-pass response of the PSD itself the
sensitivity level when f0 > fT . But a lock-in detection becomes
particularly interesting to implement in a context where the
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Figure 5.7: Evolution of the force measured by the intensity
peak on the PSD at themodulation frequency f0, as a
function of the modulated pushing beam amplitude
given by the function generator. The force is, as
expected, linear with intensity variations. This
method allows measuring directly the force above
50 fN. The error bars are given by the determined
force resolution which gives the minimal force value
that can be measured, as indicated by the long-
dashed threshold line on the graph and a dotted
area. The two additional lines (in pink) represent
the error (at 1 standard deviation) associated with
the linear fit of the points.

acquisition time is limited by the stability of the whole system.
It will allow indeed detecting the modulated force signal below
the noise level set by the PSD at f0 with bandwidth limited to
∆fa.

The lock-in amplifier outputs a tension proportional to
the sinusoidal amplitude measured in the input signal at a
given reference frequency fref. It is basically a hardware and
real time way to “select” the amplitude of the PSD peak. In
practice the device performs a 0 delay temporal correlation
between the input signal and a reference sinusoidal signal
Sreft = sin(2πfreft+φ) (with frequency fref and phase φ). The
resulting amplitude is then red out. The signal Sref comes
from the function generator driving the pushing laser, the phase
being left to zero. The lock-in has the huge advantages that its
resolution level will increase with the acquisition time, and that
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the phase component in the signal allows extracting the force
signal even below the PSD noise level, for the same bandwidth.
This will immediately lead to improve the force resolution level.

The dynamical range of the acquisition card and the
lock-in amplifier (SRS830) involved in these measurements is
limited to 16 bits. In order to properly exploit them, it is
important to send to the card only the signal of interest, i.e.
the signature of the forces. We have implement a detection
chain such that the signal at the output of the pre-amplifier is
high-pass filtered (SRS, SIM965). The filter is a Butterworth 48
dB/octave high-pass filter with a cut-off at 40 kHz. The PSD
below fT is cut in order to remove from the time-dependent
intensity signal all high amplitude contributions (the plateau
seen on the full PSD). These high amplitude contributions are at
low frequencies and they are removed from the time trace. With
this filtering procedure, the position noise signal containing
the force modulation signature can be spanned over the entire
dynamical range of the devices.

In such conditions, we model the lock-in amplifier as a
Lorentzian band-pass filter L[f] centered on the modulation fre-
quency f0 with a sufficiently narrow spectral bandwidth ∆f≪
f0 such that the position noise becomes δzmin ∼

√

∆f · Sz[f0].
Again, the position noise determines, via Hooke’s law δF =

−κTδz, the thermally limited force resolution of our DM-SWOT
as

δFmin ∼
√
∆f · fT

f0

√

kBTγ. (5.7)

From this relation, it becomes clear that the resolution can
be improved (i) by modulating the external force at relatively
high frequencies with respect the the SWOT roll-off frequency
in order to minimize the fT/f0 ratio as much as possible, and
(ii) by decreasing the Stokes drag γ -which we do by resorting
to smaller objects. In typical conditions of trapping with fT =

1.3 kHz and force modulation at f0 ≃ 97.6 kHz (100 kHz is
avoided because the laser diode becomes noisy at that precise
frequency), our setup is characterized by a sensitivity as low as
2× 10−2 fN/

√
Hz.

An important part of the experiment is to properly cali-
brate the lock-in output signal as a function of the modulation
amplitude of the pushing laser. To do so, we calibrate the
lock-in signal against the force values FAC measured directly
by the PSD approach (presented on Fig 5.7). In practice
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the intensity recorded by the lock-in amplifier is measured
simultaneously to the acquisition of the complete time-traces
(at the same bandwidth). We verify that the lock-in response
is indeed linear with the drive amplifier and from the forces
measured on the PSDs, the associated lock-in scaling factor is
extracted. We emphasize that the calibration performed above
the PSD noise level remains operational below considering that
the lock-in amplifier has linear response to the amplitude of the
measured signal.

Figure 5.8: Evolution of the measured force through the lock-in
amplifier as a function of the modulating amplitude
of pushing beam. As expected, the force is
linear with intensity variations and goes down to a
measured value of 2 fN. Error bar are the recorded
values from the error channels of the lock-in
amplifier. The force detection threshold (computed
from the error on lock-in) is shown by the dashed
line. They give the standard deviation associated
with the measurement done at one modulation
tension. The two lines (in pink) represent the error
(at 1 standard deviation) associated with the linear
fit of the points.

The modulation amplitude of the pushing laser can be
reduced even further while still measuring a proportional lock-
in output tension. This output signal is converted, through
the calibration, into a force signal. The measurements related
to this experiment are presented in Fig. 5.8. In the optical
configuration of the pushing laser focused on the NP, the
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smallest modulation tension applied to the laser corresponds
to forces below 5 fN. As seen from the graphs, the experimen-
tal resolution (smallest detectable force) is at the 2 fN level.
Exploiting the error channel from the lock-in amplifier the
experimental limit on the resolution of force measurement is ca.
0.6 fN. This value is consistent with the minimal value of the
detected force (2 fN) here. It is associated with a displacement
amplitude of 0.1 nm. Below this value, the detection noise of the
lock-in dominates over the force noise, putting an experimental
limit on the force resolution level below which the lock-in
reaches its noise level.

The following table 5.1 summarizes for position and force,
the levels of sensitivity and resolution at a ∆fa = 0.1 Hz
bandwidth determined from experimental noise level measured
on Fig. 5.6 or calculated from the theoretical position noise
thermal limit at the driving frequency f0 (Eq. (5.7)).

√

Sz[f0]
√

S
exp
z [f0] FAC Flock−in

δz (nm/
√

(Hz)) 4.3× 10−3 1.9× 10−2 8.6 0.33
δF (fN/

√

(Hz)) 5.3× 10−2 2.4× 10−1 72 7.75
∆zmin (nm) 1.4× 10−3 6.1× 10−3 2.7 0.2
Fmin (fN) 1.7× 10−2 7.5× 10−2 22.9 2.45

Table 5.1: Table summarizing the sensitivity and resolution
obtained for the different methods presented. The
smallest measurable force Fmin shows an improve-
ment of 1 order of magnitude compared to the PSD
FAC measurement. The object displacement ∆zmin
associated with the smallest measured force is at the
ångström level.

5.2.7 Experimental lock-in error

The resolution of the lock-in is determined experimentally.
Our lock-in amplifier has an error channel which provides
the standard deviation of successive measurement performed
at our set-point bandwidth. To do so, the lock-in amplifier
acquisitions are 10 times longer than the bandwidth. We have
seen that for times up to 10 seconds the stability of the system
is good but stability at longer times is unknown. Fortunately
the dispersion of successive measurements for different drive
amplitudes is distributed linearly, as expected. This suggests
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that it is still reasonable to perform successive measurement
at the same drive amplitude, before determining the associated
variance.

The standard deviation measured with this scheme is
ca. 0.65 fN. An interesting observation is that the standard
deviation measured at different small drive amplitudes gives a
similar standard deviation. This provides an actual sub-fN res-
olution of the whole detection scheme. Experimentally, forces
below the fN were not measured simply because it proved
difficult to have a sufficiently wide modulation amplitude to
successively visualize a strong force peak on the spectral density
(to properly calibrate) and at the same time weak amplitude
modulations for the lock-in detection scheme. The laser diode
could not be modulated at lower or much higher amplitudes.

The experimental force resolution using a lock-in ampli-
fier is one order of magnitude better than acquiring the whole
PSD and handpicking the value on the spectrum.

5.3 single chiral nanopyramids: trapping and chi-

ral recognition

The capacity to trap small metallic nano-objects in our
3 lasers SWOT setup opens interesting perspectives in the
context of optical chirality and polarization recognition of
chiral nano-objects. We present here recent experiments that
have been performed in close collaboration with the group of
Prof. D.J. Norris, at ETH-Zurich. These experiments have
consisted in setting up a polarization analysis strategy that
allows recognizing the enantiomeric form of a single chiral Au
nanopyramids (size ca. 150 nm) optically trapped in our SWOT.

5.3.1 Trapping single chiral nanostructures

A dispersion of chiral nano objects is prepared in water
in presence of (trisodium citrate) (10% wt) to stabilize them (to
avoid aggregation between them). The gold chiral nano objects,
pictured by a SEM on Fig. 5.9 (image taken from [100]) are
about 150 nm in size and have the shape of a thin walled open 4
sided pyramids. A clever fabrication strategy developed in the
group of Prof. Norris has led to the fabrication of nanopyramids
(NPys) with specific handedness that can be selected from the
choice of high-index off-cut silicon wafers [100]. With all facet



5.3 single chiral nanopyramids: trapping and chiral recognition 140

edges of different sizes, the pyramids have no axis and no center
of symmetry and are thus chiral.

An important circular dichroism (CD) signal around 630
nm as been reported on these objects, with a clear sign inversion
of the CD spectra observed between two opposite enantiomeric
forms of the NPys (see Fig. 3 in [100]). Important for the
experiments, the CD response of the chiral NPys matches the
second laser beam at 639 nm available in our experimental
setup.

Figure 5.9: Scanning electron microscope (SEM) image of a
dense film of left-handed Au nanopyramids similar
to the one we use in our experiments. The image is
taken from [100].

When immersed in fluids, metallic NPs are particularly
keen to stick to the walls of the fluidic cell, rendering trapping
difficult, if not simply impossible. The NPs become so much
attracted by surface walls that the optical trap is simply not
strong enough to hold them. As a consequence, the quality
of the dispersion degrades rapidly in such a way that, after a
few minutes, no more objects in the fluidic cell are available for
trapping.

One way to reduce this effect is to charge negatively the
metallic NPs. To do so, we use a citrate buffer solution at pH
ca. 7.5. We also dip-coat the 0◦ dichroic mirror (end-wall
of SWOT, that is also the fluidic cell) for 5 min in a 5% wt
PSS solution (15 mL water and 5mL of PSS 30%). This allows
charging negatively the surface of the dichroic mirror, so that
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the electrostatic sticking mechanism is reduced by a charge
repulsion component.

Under such conditions, the chiral NPys are trapped in
our SWOT configuration about 3 µm away from the dichroic
mirror surface. For these experiments, we use the same high 1.2
NA water immersion objective used for the force experiments.
The iSCAT microscopy has been an important tool in order for
characterizing the type of object trapped in the SWOT. The
dispersion of chiral NPys, although mono disperse initially,
displays indeed, when imaged under the iSCAT, a fairly broad
population of objects of various sizes and diffusion velocities.
But these NPys have a clear tendency to cluster and form pairs
(more rarely trimers) in the buffer solution, aggregated forms
that can not be separated with ultra-sound bathing. In our
experiments, we took the highest precautions in order to be
sure that the studied trapped objects are the ones corresponding
to the smallest iSCAT scattering signature and with diffusive
behaviors similar to those observed for single 150 nm gold
nanospheres -implying that our trapped objects at least have
a similar size and are not larger. Nevertheless, despite our
precautions, we cannot totally warrant that the objects studied
are composed of a genuine single chiral NPy. The concave shape
of the chiral pyramids gives the possibility, not excluded, of a
piling of 2 pyramids together.

With the mirror adjusted in a position such as to obtain
the most stable trapping dynamics (that is a distribution of
the fluctuations of the trap recollected intensity as Gaussian
as possible when measured by the PIN photodiode -signal
sent to an oscilloscope), the PSD associated with the 3 spatial
directions, as well as the intensity histogram along the optical
axis, are shown in Fig. 5.10.

Remarkably, we clearly observe a strong departure from
the expected Lorentzian dynamics -such as the one measured
for a trapped conventional nano object like a Au nanosphere-
at low frequencies (below the trap roll-off frequency). This
deviation is particularly well seen along the optical axis in panel
5.10a. The power dependence of the low frequency spectral
response appears particularly clearly with Sz[f]∝ f−1/2.

We are tempted to connect this low frequency signature,
lying just between the low frequency plateau of the Lorentzian
PSD and the 1/f shot noise spectral signature, to a signal
stemming from the faceted-type geometry of the NPys. It is
seen from panel 5.10b -displaying a Gaussian-like distribution
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of positions- that the NPy is trapped and we know that in
our SWOT, when considering metallic objects, the pyramid is
trapped in a minimum of intensity. But every time, through
Brownian diffusion, that one of the anti-node of the standing
wave is hit by the NPy (the anti-node acting for the NPy as
a light-wall), a sudden tumbling of the pyramid is induced.
The NPy now exposes to the trapping beam a new facet with
a different cross-section (we remind that each facet are different
for the chiral NPy). This can lead to a modulation of the
light scattered by the pyramid that could correspond to the low
frequency noise signal observed.

While we still have to better understand this mechanism,
it remains clear that we are able to trap a chiral NPy over suf-
ficiently long time in order to perform real-time measurements
on the trapped chiral object, in particular using the second laser
beam at 639 nm.

5.3.2 Chiral recognition by in-situ polarization experiment on

trapped objects

One such a measurement consists in performing a chiral-
recognition experiment by analyzing the polarization of the 639
nm laser light scattered by the faceted NPys. To do this, we
propose a very simple scheme based on monitoring the differ-
ence in left vs. right circularly polarized light on the scattered
intensity signal recorded for two different enantiomers optically
trapped (chiral NPy of left or right handedness). More precisely,
we will probe the relation between the enantiomeric form and
the third component of the Stokes vector S3 = 〈I− − I+〉 built
on the difference between the averaged intensities measured on
the scattered light field when analyzed in the left − and in the
+ circular polarization state.

In a sense, this strategy is to scattered light what Circularly
Polarized Luminescence Spectroscopy (CPLS) is to emitted
light. The technique of CPLS is widely exploited in the context
of chiroptical spectroscopy in order to give information about
the excited states of a chiral molecule [101]. A closely related
approach has also recently been proposed by the group of Prof.
D.J. Norris where the same Stokes parameter is involved at
the level of the conservation law of optical chirality for lossy
dispersive media and in relation with the measure of the optical
chirality flux [102].



5.3 single chiral nanopyramids: trapping and chiral recognition 143

(a) On-axis (z) PSD (b) On-axis histogram

(c) Horizontal (x) PSD (d) Vertical (y) PSD

Figure 5.10: Power spectral densities along the 3 spatial axis
for a trapped chiral NPy. Signals are taken from
different detectors, the QPD for the transverse
horizontal/vertical (x/y) components and the PIN
photodiode for the axial z component. The pink
curves represent the intensity PSDs averaged 8
time (for the sake of visibility). The blue curve
gives the best Lorentzian fit of the data. The red
line in panel (a) gives the best fit of the data on the
low frequency part of the spectrum (from 1 to 200
Hz). The slope associated with the fit is −0.5. The
intensity histogram along the optical axis shows
a Gaussian like distribution of positions, meaning
that the chiral NPy is well localized in space, and
therefore well trapped.

5.3.3 Experimental protocol

Our experimental scheme can be described in a straight-
forward way. We start with a chiral NPy, optically trapped in
the SWOT, which is illuminated by a second laser at 639 nm
(wavelength tuned to the CD resonance of the chiral NP). This
illumination laser is linearly polarized, a state of polarization
that can be written in the basis of the circularly polarized states
with |in〉 = 1√

2
(σ+ + σ−) where σ± correspond to the right/left



5.3 single chiral nanopyramids: trapping and chiral recognition 144

circularly polarized state. We will characterize the chiral NPy
by its Jones matrix

J+ =

(

α 0
0 β

)

(5.8)

J− =

(

β 0
0 α

)

(5.9)

written for the two possible± eniantomers in that same circular
basis.

In this purely paraxial framework, the scattered polar-
ization will simply write as |out〉 = 1√

2
(ασ+ + βσ−) for the +

enantiomer and |out〉 = 1√
2
(βσ+ + ασ−) for the − enantiomer.

This implies that the chiral object breaks the balance between
right and left component of the input linear polarization. It is
this balance that can be measured through the S3 component
of the Stokes vector of the scattered light, with S3+ = |β|2 −

|α|2 = −S3−. The sign inversion emphasis how the recognition
between the ± forms is eventually done.

A chiral NPy is trapped with our 785 nm laser beam in
a quasi harmonic potential by carefully adjusting the SWOT.
The second laser beam at 639 nm is turned on and linearly
polarized. Its wavelength is resonant with the CD maximum
of the trapped pyramid and the intensity is kept as low as the
detection scheme permits. This beam is indeed simply used
to probe the polarization property of the NPy. The forward
scattered signal is then sent, as a direct transmission line, in the
polarization analysis setup. Note that the direct transmission
contains both the linearly polarized light field not intersected
by the NPy, as well as the light scattered by the NPy in the
forward direction. The probe 639 nm beam is focused on the
trapped NPy in order to maximize the cross-section of the field
with the NPy, the aim being to maximize the contribution of
small polarization changes against the strong linearly polarized
background.

A schematic representation of the experimental setup is
given in Fig. 5.11. The incident probe is prepared linearly
polarized (vertical) using a Glann-Taylor polarizer. The probe
beam is inserted collinear to the trap beam with a 45◦ dichroic
mirror. This beam, transmitted through the high NA trapping
objective, is focused on the trapped NPy. The direct trans-
mission is then collected using an imaging objective (NA 0.6,
40×). The transmitted light is sent to the analysis setup which
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is composed of a quarter-wave plate (QWP) at 45◦, followed by
a half-wave plate (HWP) and a Wollaston prism.

The Wollaston prism is the key element of our setup.
It separates the incident beam in two linear (vertical and
horizontal) polarized beams by an angle of 20◦. Both output
channels of the Wollaston prism are then sent to a balanced
photodetector which will enable substracting the two signals.
This scheme is used to (i) subtract the high intensity (and
irrelevant) contribution coming from the directly transmitted
porbe beam, and (ii) to measure directly the S3 component of
the Stokes vector without any rotation of the different wave
plates, as described in [103, 104].

Figure 5.11: Scheme representing the experimental setup used
for the chiral recognition experiment. This scheme
is similar to the one presented for the trapping
of chiral nano-objects but a polarization analysis
part is developed behind the second (collection)
objective. The iSCAT beam is still available but
injected with a flipping mirror so that it can be
removed once the chiral nanopyramid is trapped.
The S3 component of the Stokes vector is measured
by injecting a linearly polarized beam on a trapped
object. This probe beam is then decomposed on the
circular polarization basis and both left and right
circular polarization contributions are subtracted
by the balanced photodiode detector (Newfocus
2307).

The main difficulty of the experiment stems from a mea-
sure given as a difference between two signals. This implies that
any slight change in the alignment or in a polarization element
can yield a signal that will give, on the balanced photodetector,
a different sign despite the fact that the the sample under study
has not been changed. It is therefore very important that we can
provide an alignment scheme easily reproducible throughout
the different experiments, providing therefore reliable results.
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The alignment and preparation procedures of the polarization-
optics elements go as follow:

• An object is first trapped for the sole purpose of adjusting
the perfect overlap between both the trap beam and the
probe beam. The trap turned off, the object is then
released. Starting from now, the sample holder is fixed im-
mobile. The trap is reopened and the iSCAT microscope
is used in order to track the arrival of the trapped object
and its quality (monomer, dimer, etc.) of it.

• While the trap is still empty, the incident linearly po-
larized beam is adjusted such that the reflection on the
dichroic mirror is minimized by measuring the maximal
transmitted intensity after reflection.

• The probe beam is then transmitted through the objec-
tives. The Wollaston prism is rotated (in the absence of
the HWP and the QWP) such that both the output beams
are at the same altitude with respect to the horizontal
plane set by the optical table. They hit thereby the two
photodiodes of the balanced detection in their center.

• The HWP analyzer is inserted on the optical axis and
rotated to have the input linear polarization maximized
in the vertical output channel of the Wollaston. The
measured (negative) intensity on the balanced detection
is maximized on the oscilloscope.

• The gain of the balanced photodetector is set to its max-
imum and the probe beam is periodically modulated
around its mean intensity at 10 kHz using a function
generator. The oscilloscope trigger is synchronized with
the function generator. We do this in order to have an
external and robust procedure to determine the QWP
angle. To do so, we rotate the QWP until the difference
in amplitude between the two channels is minimized in
the absence of any trapped object. The signal measured
on an oscilloscope becomes completely flat. The rotation
angle of the QWP is close to 45◦.

• With this approach, and despite our best efforts, the
amplitude at the output of the balanced detection is not
exactly zero. Adjusting the output of the balanced detec-
tion to remove this offset proved difficult. For practical
reasons, this offset is subtracted using a tension generator,
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centering the signal on the oscilloscope to properly fill the
dynamical range of the oscilloscope.

Under this scheme, two configurations of interest are
taken care properly:

• A incident linear polarization becomes circular after pass-
ing through the QWP. The circularly polarized beam is
then decomposed in its two orthogonal linear components
by the Wollaston prism, with equal intensity that are
subtracted by the balanced detection scheme.

• A circular polarized beam incident on the QWP is changed
into a linearly polarized beam. The Wollaston prism will
output all the intensity in one of its channel. In our
experiment, the vertical polarization that goes to the left
at the output of the prism is measured as negative by the
balanced detection.

In this detection scheme, most of the light intensity con-
tribution collected on the balanced detection comes from the
non-scattered (linearly polarized) direct transmission of the
probe beam and is directly subtracted by the balanced detection.
This ensures that the signal is essentially proportional to the
difference in circular polarizations.

Furthermore and importantly, this polarization analysis
procedure yields, with respect to the reference intensity on the
balanced detection, a lower mean value when the light beam
is elliptically polarized with right handedness (a dominant
right helicity) while left circularly polarized contribution will
increase the mean value.

In order to perform this polarization analysis, two iden-
tical samples are prepared, at the same time, using similar
dichroic mirrors, the same type of fluidic cell and cover glasses.
One cell is filled with a dispersion of right-handed NPy, while
the other with the opposite enantiomeric dispersion (all dis-
persions, again, prepared in the laboratory of Prof. Norris).
This pair of sample is then probed in a sequenced way. First,
a right chiral NPy is trapped and the analysis procedure is
performed. Then, the sample is changed for the cell containing
the left chiral NPy. The trap is opened and a NPy is trapped.
Nothing is moved on the optical part, and the alignment is
perfectly preserved. Combining the interference imaging with
the recollected intensity from the trap beam, it was also ensured
that the trapped NPys in both cases had the same scattering
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intensities and imaging signature (thus same size). In addition
and again, only the data corresponding to the smallest trapped
object in our dispersions have been considered.

The trigger synchronization fixes the phase of the signal
between the the modulated probe beam and the balance pho-
todetector signal. This phase-locks the recorded intensities
for both chiral enantiomeres. Two five-periods intensity time-
traces are presented for both right and left trapped NPys in Fig.
5.12.

Figure 5.12: Time-traces recorded over five intensity modula-
tion periods for two chiral NPys of opposite hand-
edness. The signals are synchronized using the
modulation trigger. The blue curve corresponds to
a chiral right NPy while the red curve is the left
enantiomer. The signal exhibits non overlapping
intensity differences as well as phase opposition.

As observed in Fig. 5.12, the mean intensity measured
for a right-handed chiral NPy is much below the one associ-
ated with a left-handed NPy. This implies that the former
signal is essentially right-handed elliptically polarized, while
the latter left-handed elliptically polarized. In addition, a
slight inversion in the phase of the signal is observed. In
theory, without our experimental limitations (intensity offset
on the balanced detection), both signal should have a entirely
symmetrical signature with respect to 0. The signal is indeed
expected to have a negative or positive mean intensity value for
respectively right- or left-handed NPys. Moreover, because the
intensity is modulated, a stronger probe field induces a stronger
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response on the balanced detection, leading to measure the two
sinusoidal response in phase opposition.

These limitations being well-understood, it is perfectly
clear that our scheme enables performing the recognition of
chiral enantiomers. Central to this capacity is the fact that
we have been able to immobilize in the SWOT a single chiral
nano-object which handedness can therefore be determined
by measuring the degree of circular polarization of the field
scattered by this trapped chiral object.

5.4 conclusion

The versatility of the SWOT is exploited in this Chapter in
3 directions:

• optical trapping of metallic NPs of small (but still, moder-
ate) sizes

• high-resolution force spectroscopy

• polarization-based recognition of nano-enantiomers

Because small metallic objects (smaller than visible light
wavelength) are difficult to observe, we expand our setup with
an interferometric imaging microscope in the iSCAT frame-
work. This method allows us imaging and characterizing easily
our Au NPs (R= 75 nm) diffusing in the fluid.

We show how to measure weak optical forces in a fluid,
by implementing in our SWOT a dynamic mode approach,
analogous to what is routinely done in atomic force microscopy
[105]:

• we measure optical forces directly from a power spectral
density analysis,

• we measure optical forces involving a lock-in amplifier,
improving the force resolution level. With this approach,
we measure forces down to 2 fN, with a sub-fN error.

We stress that these measurements have not involved any
PSD averaging throughout long acquisition times. Such long
acquisition times are hardly available in our fluidic system,
where low frequency drifts limit the available measurement
bandwidth. Our measurements are acquired on the optimal
acquisition time that is derived from the calculated Allan
variance for our system.
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Finally, we also trap in our setup more exotic nano-objects
such as chiral metallic nanopyramids. We perform chiral
recognition measurements at a single nano-enantiomer level,
developing at the level of optically trapped chiral nanopyra-
mids, a specific polarization analysis scheme adapted to our
optical piston setup.



6
GENERAL CONCLUS ION

In this thesis, we have developed an original optical trap,
the optical piston, which versatility has been explored through
different experiments.

By carefully positioning the end-mirror, we are able to
tune the interfering phase between the incident and reflected
beams inside the piston in order to study one-dimensional
bistability. We showed how the monitoring of the metastable
trajectory of an optically trapped Brownian bead leads to solve
entirely the interaction potential. We emphasized in partic-
ular that such bistable optical potentials cannot be described
with simple Duffing-type potentials but demonstrated how the
Kramers rate equations become an appropriate tool for the
determination of the potential.

We have then looked into the thermodynamics associated
with a step-wise reversible compression of the piston. This has
led us to study the cross-over between a region of dynamical
stability (i.e. harmonic optical trapping) and a region of
dynamical bistability (i.e. optical trapping in the presence of
two metastable states). This analysis concluded that while the
piston injects work on the bead when compressed, most of
that work is consumed as potential energy, the remaining few
percent being given to the bath as heat. Remarkably, the heat
produced is directly determined from the optical deformation
induced though the compression.

The stochastic nature of themotion of the optically trapped
bead is also keen to different types of statistical approaches
and analysis. In the context of stochastic resonance, where the
end-mirror of the piston is modulated periodically for instance,
a Mandel factor approach and a time-delay analysis on the hop-
ping events between metastable states have proven efficient in
interpreting the different results acquired in different regimes
of drive. This has led us to observe and analysis regimes as
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different as rectifiedmotion, synchronization and non-adiabatic
coupling.

In the last part of the thesis, we have also emphasized
some of the many possibilities that an optical piston offers as
far as trapping is concerned. We have shown how metallic
nanoparticles can be trapped fairly easily, up to size of the
order of 150 nm. On such metallic nanoparticle, we have also
demonstrated the capacity of our configuration to act as a weak
force measurement system.

This brought us to trap more exotic metallic objects. In a
collaboration with the group of Prof. D.J. Norris, at ETH-Zurich,
we have optically trapped chiral nanopyramids at the single
enantiomer level. With such chiral objects, we developed a
specific setup that can perform a circular polarization analysis
of light signal scattered off the optically trapped nanopyramid
in order to do polarization-based chiral recognition of single
enantiomers.

These experiments draw a clear perspective for the near
future, illustratating the potential of our setup in the growing
field of chiral nano-optics [106]. In particular, one pressing
objective is to combine our two approaches on high-resolution
force spectroscopy and chiral optical trapping in order to study
these so-called chiral optical forces, recently predicted theoret-
ically [107–109], observed at the micron-scale [110], but still
elusive at the nano-scale.
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A
THE DI SCRETE LANGEV IN EQUAT ION

This appendix describes how the usual inertial Langevin
equation

mBz̈(t)+γż(t) = −∂zU(z(t))+ FTh(t) (A.1)

is numerical solved, following the scheme presented in the next
section.

Technically the modern computers processors ability to
run a work on multiple cores is exploited. For given simulation
parameters the numerical “experiment” is run multiple times
and the results form each run are averaged to give an error esti-
mate on themeasured parameters, similarly to the experimental
error obtained from an experiment repeated multiple times. In
fact for such experiments ergodicity is valid and one would
obtain the same result from a long time trace than N different
runs N times shorter then concatenated in one single long time
trace.

Simulations are performed using parameters similar to
experimental ones, a potential that has similar residency times
and spatial separation, and the same time step as for ex-
perimental acquisitions. The interaction potential derived in
the previous chapters is not used here but a simple Duffing
potential is used, the only reason for this is that performing
such simulations is computationally intensive and performing
polynomial computations is orders of magnitude faster than
complex expression with exponential, division and trigonomet-
ric terms. The precision used throughout the simulations is
floating point numbers of 32 bits which is largely sufficient for
the operations performed in the code.

An important aspect of such simulations is the bath sim-
ulation, in other word we require the bath to be entirely
uncorrelated in time yet, because we perform a computer sim-
ulation, two runs at different times with the same parameters
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must yield the exact same result. To meet this criteria a
pseudo random number generator1 is used to simulate the
bath Gaussian white noise source. A seed is determined to
characterize the bath initial point. This seed also uniquely
characterizes the number sequence. The same seed is kept
for each of the many runs performed with a given system set
of parameters. It allows comparing potential or dynamical
parameters on single realizations of the bead trajectory across
amplitude or frequency changes of the external drive.

In our usual case 64 numerical “experiments” are realized
simultaneously. Each of these realization has a distinct bath
but nevertheless the general properties of the bath must be
preserved, mainly that the temporal trace is Gaussianly dis-
tributed and secondly this signal is temporally uncorrelated, in
other word its frequency spectrum is flat, all frequencies are
equally present. All these requisites aremet by the used random
number generator. These properties are illustrated on Fig. A.1
which presents the power spectral density for one minute long
random sequence. The number sequence has a PSD that is flat
at an amplitude of 2, signature of a Gaussian white noise. (todo
compute it).

Simulations study rare events with respect to the sam-
pling time step, namely the instant the bead switches states.
Therefore the simulation run time is long (we have here no issue
of fluidic or thermal drift !). Modern computer can simulate
hours of bistable experiment in a few minutes. Recording time
traces would produce terabytes of data every minute with little
value to them but a few points (less than 1 point every 100000).
Moreover these time traces later need to be treated, usually by
correlation techniques. For such simulations time correlation
is prohibited because of its slowness, power spectral density
would be suited to provide the mean residency time of the bead
in a perfectly symmetrical configuration but otherwise the PSD
averages two characteristic times does not offer information on
the directivity of the transitions.

We want to perform the statistical analysis at the same
time as the simulation is run. Another characterization of
the dynamics is therefore needed, one that only depend on
the knowledge of the previous positions. To characterize the
bistable dynamics one first needs to determine the instant the

1 The random number generator function used is gsl_ran_gaussian () from
the GNU Scientific Library. [111]
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Figure A.1: Power spectral density of the generated (fixed)
random sequence for a minute long signal @
262kHz. A Gaussian white noise has a PSD
amplitude of 2. The generated sequence presents
a good white spectral signature.

bead changes state during its time evolution in the potential
which as is discussed later is not inconsequential.

To “simulate” the metastable dynamics of a trapped bead
by a numerical resolution of the Langevin equation of the bead
motion. The general expression of a Langevin equation for the
bead center of mass z(t) is rewritten using differential operators
as:

mBDtt(z(t))+γDtz(t)−∇U(z(t)) = FTh(T ,z(t),t) (A.2)

with Dt the linear differential operator, Dtt = DtDt, mB the
mass of the bead, γ the viscosity of the fluid, U(z(t)) the
potential energy exerted on the bead and FTh(T ,z(t),t) =√
2kbTγη(z(t),t) the Gaussian white noise with η(z(t),t) a

Wiener process. Even though the inertial term has a completely
negligible contribution to the bead dynamics there is no reason
to remove it from the numerical simulation, making it less
general.

The Wiener Process involves "stochasticity" thus "random
numbers", there is no easy way to solve the equation analytically
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as each bead position will (partially) change independently of
the previous positions. For this reason we “solve” this equation
step by step , by small time increments. We should also not be
too concerned about the initial conditions of the bead, position
and velocity when starting a simulation for long time series. In
this case, a stationary dynamics emerges and the same mean
dynamics are obtained for simulations (of identical parameters)
regardless of the initial conditions, they become negligible.

Our discretization approach follows the one described in
[112]. Time and space are discretized using the simplest finite
difference scheme. The simulation evolves by iterations with
a fixed time step. For a given time dependent variable z(t)
we associate a discrete counterpart zi with i being the discrete
time coordinate of the signal z such that i×∆t ≃ t. Expressed
differently, the discrete variable is the nearest sampled value of
position z(t) and its index is i≃ t

∆t .
Using the usual differentiation definition, application of

the differential operator Dt transforms a signal z(t) as

Dt(z(t)) = lim
∆t→0

(

z(t)− z(t−∆t)

∆t

)

. (A.3)

Note that it is the “lagged” expression of the differentiation but
the “forward” expression

Dt(z(t)) = lim
∆t→0

(

z(t+∆t)− z(t)

∆t

)

, (A.4)

is exactly equivalent for z(t).
Following this scheme we also compute the second time

derivative Dtt by mixing the “forward” and “lagged” expres-
sions to obtain a symmetric relation:

Dtt(z(t)) =Dt(Dt(z(t))) (A.5)

=Dt lim
∆t→0

(

z(t)− z(t−∆t)

∆t

)

(A.6)

= lim
∆t→0

(

1
∆t

(Dt(z(t))−Dt(z(t−∆t)))

)

(A.7)

= lim
∆t→0

(

1
∆t

(

z(t+∆t)− z(t)

∆t
−
z(t)− z(t−∆t)

∆t

))

(A.8)

= lim
∆t→0

(

1
∆t2

(z(t+∆t)− 2z(t)+ z(t−∆t))
)

(A.9)
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These expressions, dependent on continuous variableare
the transposed to their discrete counterparts considering an
infinitesimal time ∆t. The discrete coordinates at step i for both
differential operators are,

Dit(x) =
1
∆t

(zi+1− zi) (A.10)

Ditt(x) =
1
∆t2

(zi+1− 2zi+ zi−1) . (A.11)

The noise function η(z(t),t) is assumed to be independent
to the position z(t) and thus η(z(t),t) = η(t). This noise
function is written Wi in the discrete case and has a normal
distribution (N(0,1)) with zero as mean value and a variance of
one. The list of the Wi values is uncorrelated so there is little
concern to have about the initial value of the index denoting
this function. Subsiding the previous derivative operators
expressions in their discrete form as well as discretized time
and bead positions in the Langevin equation (A.2) yields,

mB

(

zi− 2zi−1+ zi−2

∆t2

)

+γ

(

zi− zi−1

∆t

)

−∇U(zi−1) =
√

2kbTγWi−1.

(A.12)
We should take a bit of time to discuss in the previous

relationship the index dependency. An index shift i → (i− 1)
is performed or in other words all relations are “lagged”. It
is because we wanted to derive an expression for the center of
mass position at “time” i and for this only information coming
from previous steps k < i can be used but nothing after, it
would render the scheme non-causal. This is the reason why
it is critical to express the current position as a function of the
potential at the previous position which indeed is equivalent
and induces no changes in the continuous case when the limit
is taken but is of great implication in the discrete case. The
dependency of the potential on previously computed position
allows us to use any form of potentials, even non continuous
potentials transparently in our code. The noise function is
indexed with i − 1 just for consistency with other variables.
Reoganization of the discrete Langevin equation (A.12) and
factorizing zi the next position gives:

zi = C0 (C−1zi−1− zi−2+Cpot∇U(zi−1)+CstochWi−1) (A.13)
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with C0 = 1
1+∆tγ

mB

, C−1 = 2 + ∆tγ
mB

, Cpot = ∆t2

mB
and Cstoch =

∆t2

mB

√
2kbTγ. The coefficient in front of zi−2 being just −1 it was

not worth to introduce one more coefficient.
Now that we have derived a discrete expression for the

Langevin equation that is solvable by iteration it is critical to
look at the quantities manipulated, at their value. We study
small systems of micrometric size and the typical displacements
of these objects is around the tens of nanometers. Some of
variables have very small values, this is without talking about
kBT which is around 10−20 J/K or the mass of the bead of
10−16kg.

For all these reasons and to avoid possible numerical hin-
drances occurring when operating with very big or small values
we propose to change the unit system and use micrometers,
micrograms, seconds and absolute temperature in Kelvins. This

way kB has a value of 1.380650310−2 µgµm2

s2 and the mass, the
smallest value is around 10−7µg such that the factor ∆t

mB
is not

too small nor too big when ∆t around the microsecond as is
used here. The unit of the force associated to this system of unit
is the femtoNewton which is exactly the order of magnitude of
the forces studied experimentally. Similarly the energy range is
at the zepto Joules, the unit of thermal fluctuation energy kBT .



B
FORCE CAL IBRAT ION

This appendix present the data used in Chapter 4 toim-
plement the force measurement method of Ch. 5 in order to
determine experimentally the amplitude of the external driving
force exerted on the bistable bead.

The main requisite to properly apply our force measure-
ment scheme is that the bead is trapped in a quasi-harmonic
potential. To achieve this conditions when performing the
bistable measurements, before or after the experiment, the
mirror is displaced such that the nearest single welled potential
is reached. Once the bead is confined in this quasi-harmonic
potential, acquisitions are performed and the sinusoidal force
applied on the bead in the bistable configuration applied on
the bead in the stable trap.The spectral density is then taken
from the intensity time trace, calibrated and the value of the
peak appearing at the drive frequency measured, giving the
associated drive force. This drive force being a fraction of the
laser diode intensity the constant pushing force contribution is
also obtained by linearity of the force with the field intensity.

Figures B.1a and B.1b present the measured intensity time
trace and its associated histogram for the bead trapped in a
quasi-harmonic potential under an external drive of 10 kHz.
The power spectral density of the intensity time trace (Fig. B.1c)
follows a Lorentzian shape, the influence of the potential is
considered as harmonic and the external drive is strong enough
to leave a sharp contribution at the drive frequency. The choice
of a higher frequency to measure the force is discussed in details
in the next chapter in particular it helps that the bead is in its
free brownian diffusion regime.

The measured force applied on the bead by the external
is determined to be of about 700 fN while the constant contri-
bution from the pushing beam is of 2 piconewtons. The drive
amplitude justifies that the applied external force is strong.
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(a) Intensity time trace (b) Intensity distribution

(c) PSD of the recorded intensity, a Lorentzian shape
for the trapped bead followed and the external drive
source visible at 10 kHz.

Figure B.1: Experiment time trace, intensity distribution his-
togram and PSD for a 1 µm melamine bead trapped
in a quasi-harmonic potential in the presence of an
external drive at 10 kHz. The time trace presents
data clustered by packs of 1024 points while the
PSD is not averaged.
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Gabriel SCHNOERING

On the Brownian dynamics of a
particle in a bistable optical trap

Résumé

Cette thèse présente la réalisation d’un piège optique dans une configuration originale, le piston
optique, où le contrôle sur la phase de l’interférence d’un faisceau incident avec sa réflexion sur un
miroir permet de réaliser différents types d’expériences. Nous avons d’abord étudié les propriétés
thermodynamiques d’une compression progressive du piston qui  fait  passer  la  dynamique de la
particule piégée d’une région de stabilité vers une région de bistabilité mécanique. Dans le contexte
de la résonance stochastique où une force extérieure périodique est appliquée sur cette dynamique
bistable, une approche exploitant le facteur de Mandel ainsi qu’une analyse des délais entre les
transitions  d’états  métastables  se  révèle  efficace  pour  interpréter  nos  mesures  dans  différents
régimes de forçage. Nous montrons également comment des nanoparticules métalliques peuvent
être piégées aisément dans un tel piston optique et nous exploitons notre configuration pour mesurer
de faibles effets de forces optiques. Enfin, nous piégeons des nano-objets chiraux uniques et nous
montrons  comment  la  configuration  de  notre  piston  permet  de  réaliser  des  expériences  de
reconnaissance chirale par polarimétrie différentielle.

Mots  clés:  bistabilité,  pince  optique,  thermodynamique,  résonance  stochastique,  synchronisation
stochastique, mesure de forces faibles, chiralité.

Résumé en anglais

This thesis describes the experimental realization of an original optical trap, the optical piston, where
controlling the phase of the interference of an incident beam with its reflection on a mirror allows
achieving various experiments.  We have first  looked into the thermodynamics associated with a
progressive compression of the piston leading the dynamics of a trapped particle from a region of
stability to a region of mechanical bistability. In the context of stochastic resonance where a periodic
external force is applied on this bistable dynamics, an approach exploiting the Mandel factor and a
time-delay  analysis  on  the  hopping  events  between  metastable  states  have  proven  efficient  in
interpreting the different results acquired in different regimes of drive. We have also shown how
metallic nanoparticles can be trapped fairly easily in this kind of optical piston and we exploit our
configuration to measure weak optical forces. Finally, we trap unique chiral nano-objects and we
show how the configuration of our piston allows the realization of chiral recognition experiments by
differential polarimetry.

Keywords:  bistability,  optical  tweezer,  thermodynamics,  stochastic  resonance,  stochastic
synchronization, high-resolution optical force measurments, chirality.


