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soutien tout au long de cette thèse ont fait de ces années une expérience stimulante et
particulièrement enrichissante. Je lui en suis extrêmement reconnaissant.

Ensuite je voudrais remercier Gilles Ouanounou. Il a pris le temps de m’enseigner
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Bartosz Teleńczuk fut d’une grande aide tout au long de cette thèse : de la charpenterie
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ont été de précieux atouts pour façonner une grande partie du contenu de cette thèse.
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Summary

The neocortex of awake animals displays an activated state in which cortical
activity manifests highly complex, seemingly noisy behavior. At the level of
single neurons the activity is characterized by strong subthreshold fluctua-
tions and irregular firing at low rate. At the network level, the activity is
weakly synchronized and exhibits a chaotic dynamics. Yet, it is within this
regime that information is processed reliably through neural networks. This
regime is thus crucial to neural computation. In this thesis, we contribute to
its understanding by investigating how the biophysical properties at the cel-
lular level combined with the properties of the network architecture shapes
this asynchronous dynamics.

This thesis builds up on the so-called mean-field models of network dy-
namics, a theoretical formalism that describes population dynamics via a self-
consistency approach. At the core of this formalism lie the neuronal trans-
fer function: the input-output description of individual neurons. The first
part of this thesis focuses on deriving biologically-realistic neuronal transfer
functions. We first formulate a two step procedure to incorporate biological
details (such as an extended dendritic structure and the effect of various ionic
channels) into this transfer function based on experimental characterizations.

First, we investigated in vitro how layer V pyramidal neocortical neurons
respond to membrane potential fluctuations on a cell-by-cell basis. We found
that, not only individual neurons strongly differ in terms of their excitability,
but also, and unexpectedly, in their sensitivities to fluctuations. In addi-
tion, using theoretical modeling, we attempted to reproduce these results.
The model predicts that heterogeneous levels of biophysical properties such
as sodium inactivation, sharpness of sodium activation and spike frequency
adaptation account for the observed diversity of firing rate responses.

Then, we studied theoretically how dendritic integration in branched
structures shape the membrane potential fluctuations at the soma. We found
that, depending on the type of presynaptic activity, various comodulations
of the membrane potential fluctuations could be achieved. We showed that,
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when combining this observation with the heterogeneous firing responses
found experimentally, individual neurons differentially responded to the dif-
ferent types of presynaptic activities. We thus propose that, because this
mechanism offers a way to produce specific activation as a function of the
input properties, biophysical heterogeneity might contribute to the encoding
of the stimulus properties during sensory processing in neural networks.

The second part of this thesis investigates how circuit properties, such
as recurrent connectivity and lateral connectivity, combine with biophysical
properties to impact sensory responses through effects mediated by popula-
tion dynamics.

We first investigated what was the effect of a high level of ongoing dynam-
ics (the Up-state compared to the Down-state) on the scaling of post-synaptic
responses. We found that the competition between the recruitment within
the active recurrent network (in favor of high responses in the Up-state) and
the increased conductance level due to background activity (in favor of re-
duced responses in the Up-state) predicted a non trivial stimulus-response
relationship as a function of the intensity of the stimulation. This prediction
was shown to accurately capture measurements of post-synaptic membrane
potential responses in response to cortical, thalamic or auditory stimulation
in rat auditory cortex in vivo.

Finally, by taking advantage of the mean-field approach, we constructed
a tractable large-scale model of the layer II-III network including the hori-
zontal fiber network. We investigate the spatio-temporal properties of this
large-scale model and we compare its predictions with voltage sensitive dye
imaging in awake fixating monkey. Notably, we re-construct a typical experi-
mental paradigm of multi-input integration in visual processing: the apparent
motion protocol. The model exhibited a similar spatio-temporal pattern of
suppression such as the one observed in vivo, suggesting that the integra-
tive properties of the network captured by our approach combined with the
horizontal fiber network are the key components of this phenomena.

Taken together, those results emphasize the explanatory power of biologically-
realistic theoretical models of population dynamics. Because they seem to
offer a solid theoretical basis to account for the strong effects mediated by
population dynamics during neocortical processing, this framework opens
the way toward the understanding of the more subtle aspects of neocortical
computations.
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Résumé

Le néocortex possède un état activé dans lequel l’activité corticale manifeste
un comportement complexe. Au niveau cellulaire, l’activité est caractérisée
par de fortes fluctuations sous-liminaires du potential membranaire et une
décharge irrégulière à basse fréquence. Au niveau du réseau, l’activité est
marquée par un faible niveau de synchronie et une dynamique chaotique.
Néanmoins, c’est dans ce régime que l’information est traitée de manière
fiable par les réseaux neuronaux. Ce régime est donc crucial pour le traite-
ment de l’information par le cortex. Dans cette thèse, nous contribuons à sa
compréhension en examinant comment les propriétés biophysiques au niveau
cellulaire combinées avec les propriétés d’architecture des réseaux façonnent
cette dynamique asynchrone.

Cette thèse repose sur les modèles de dynamique de réseaux appelés mod-
èles de champ moyen, un formalisme théorique qui décrit la dynamique de
population grâce à une approche auto-consistante. Au coeur de ce formal-
isme se trouve la fonction de transfert neuronale : la fonction entrée-sortie
d’un neurone. La première partie de cette thèse s’attache à dériver des fonc-
tions de transfert biologiquement réalistes en incorporant des caractérisations
expérimentales.

Dans un premier temps, nous avons examiné in vitro comment les neu-
rones néocorticaux pyramidaux de la couche V du cortex visuel répondent
à des fluctuations du potentiel membranaire. Nous avons observé que les
neurones individuels ne diffèrent pas seulement en termes d’excitabilité,
mais qu’ils diffèrent aussi par leurs sensibilités aux paramètres des fluctu-
ations. Dans un deuxième temps, nous avons étudié de manière théorique
comment l’intégration dendritique dans des structures arborescentes façonne
les fluctuations au soma. Nous avons observé que, en fonction des pro-
priétés de l’activité présynaptique, différentes comodulations des paramètres
des fluctuations pouvaient être obtenues. En combinant cette observation
avec nos mesures expérimentales, nous avons observé que cela induisait des
couplages différents entre activité synaptique et décharge neuronale pour
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chaque neurone. Nous proposons donc que, puisque ce mécanisme offre un
moyen d’activer spécifiquement certains neurones en fonction des propriétés
de l’entrée, l’hétérogénéité biophysique pourrait contribuer à l’encodage de
propriétés des stimuli dans les traitements de l’information sensorielle.

La deuxième partie de cette thèse examine comment les propriétés
d’architecture des réseaux neuronaux se combinent avec les propriétés bio-
physiques et affectent les réponses sensorielles via des effets de dynamiques
de populations.

Nous avons tout d’abord examiné de manière théorique comment un haut
niveau d’activité spontanée impactait les réponses post-synaptiques dans le
cortex. Nous avons observé que la compétition entre le recrutement dans le
réseau cortical activé et les effets de conductances associés prédisaient une
relation non-triviale entre l’intensité des stimuli et l’amplitude des réponses.
Cette prédiction fut observée dans des enregistrements de réponses post-
synaptiques dans le cortex auditif du rat in vivo en réponse à des stimuli
corticaux, thalamiques et auditifs.

Pour finir, en tirant avantage des approches de champ moyen, nous avons
construit un modèle grande échelle du réseau des couches II-III incluant le
réseau des fibres horizontales. Nous avons examiné les propriétés intégra-
tives spatio-temporelles du modèle et nous les avons comparées avec des
mesures par imagerie optique de l’activité cérébrale chez le singe éveillé. En
particulier, nous avons reconstruit une expérience typique du traitement sen-
soriel: le mouvement apparent. Le modèle prédit un fort signal suppressif
dont le profil spatio-temporel correspond quantitativement à celui observé in
vivo. Cela suggère que la combinaison des propriétés intégratives du réseau
capturées par notre approche et du réseau des fibres horizontales sont les
ingrédients clefs de ce phénomène.

Dans leur ensemble, ces résultats soulignent le pouvoir explicatif des mod-
èles biologiquement-réalistes de dynamique de populations neuronales. Parce
que ces modèles semblent offrir un solide socle théorique pour décrire les
forts effets de dynamique de populations associée au traitement corticale, ce
cadre ouvre la voie à la compréhension des aspects plus subtils du traitement
néocortical.
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Part I

Introduction
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Generalities on neocortical physiology
The nervous system is the part of an animal’s body that controls the body’s
functions (its voluntary and involuntary actions), it coordinates and trans-
mits signals to and from different parts of the body (see the diagram in Figure
1B). The neocortex (Latin for new bark) is the superficial sheet of the cerebral
cortex, the latter being the upper layer of the cerebral hemisphere (see Fig-
ure 2A), it appeared with the evolution of mammals and it is the structure
where the most complex cerebral functions (sensory perception, language,
generation of motor commands, etc. . . ) are performed. Understanding the
physiological mechanisms that render those performances possible is a fun-
damental question in modern biology.

Figure 1: Organization and functions of the human nervous system.
(A) The nervous system is made of the central nervous system (containing
the brain and spinal cord) and the peripherical nervous system (contain-
ing the spinal and cranial nerves). (B) Diagram of the major components
of the central and peripheral nervous systems and their functional relation-
ships. Stimuli from the environment convey information to processing circuits
within the brain and spinal cord, which in turn interpret their significance
and send signals to peripheral effectors that move the body and adjust the
workings of its internal organs. Adapted from Purves D, Augustine GJ,
Fitzpatrick D, et al. (2001).
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Figure 2: Anatomical and functional organization of a sensory sys-
tem: example of the human somato-sensory system. (A) Somatosen-
sory information from the body surface is mapped onto dorsal root ganglia
(DRG), schematically depicted here as attachments to the spinal cord. The
various shades of purple indicate correspondence between regions of the body
and the DRG that relay information from the body surface to the central ner-
vous system. Somatosensory information travels from this peripheral sensory
receptors toward the spinal cord and brainstem, ultimately sending sensory
information to the thalamus, from which it is relayed to the somatic sensory
cortex in the postcentral gyrus. (B) Somatotopic organization of sensory
information. (Top) The locations of primary and secondary somatosensory
cortical areas on the lateral surface of the brain. (Bottom) Cortical repre-
sentation of different regions of skin. Reproduced and adapted from Purves
D, Augustine GJ, Fitzpatrick D, et al. (2001).
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The basic design of the neocortex is conserved across all mammals: 1)
it is subdivided into functional areas called cortical areas having a precise
cognitive function (see Figure 2B) and 2) the cortical surface corresponds to
the juxtaposition of cortical columns comprising about 10000-50000 neurons
being each around 500 µm wide. A notable difference between small mam-
mals (e.g. rodents) and larger mammals (e.g. primates, see Figure 2B) is the
presence of folds of the neocortical sheet that allow an important increase of
the neocortical surface given the limited skull size.

Neocortical tissue is mainly composed of neurons as well as glial cells,
the human brain contains about 100 billions neuronal cells and 500 billions

Figure 3: Cellular diversity and laminar organization organization
of the neocortex. (A) Major neuronal cell types of the adult cerebral
cortex. Cortical neurons (shown here for primates) are categorized into two
major classes: spiny excitatory (glutamatergic) neurons and non-spiny in-
hibitory (GABAergic) interneurons. Reproduced from Kwan et al. (2012).
(B) Canonical neocortical circuitry. Green arrows indicate outputs to the
major targets of each of the neocortical layers in humans; orange arrow in-
dicates thalamic input (primarily to layer IV); purple arrows indicate input
from other cortical areas; and blue arrows indicate input from the brainstem
modulatory systems to each layer. Reproduced from Purves D, Augustine
GJ, Fitzpatrick D, et al. (2001).
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glial cells. Neuronal cells process information and transmit signals thanks to
their electrophysiological and chemical properties. Neurons are highly inter-
connected via synapses forming recurrent and feedforward networks whose
activation corresponds to cognitive processes. Glial cells (from Greek glue)
are traditionally thought to: 1) surround neurons, hold them in place and in-
sulate one neuron from another 2) supply nutrients and dioxygen to neuronal
cells and 3) destroy pathogens and remove dead neurons. Though recent ev-
idences suggest that glial processes might have a more direct role in neocor-
tical function, this potential aspect of neocortical processing will be largely
ignored within this thesis, we hypothesize that glial cells only participate to
neocortical function by maintaining the homeostasis in neuronal assemblies:
insuring the stability of neuronal properties and synaptic transmission. We
will therefore focus on the neuronal aspect of neocortical processes.

A prominent feature of the neocortex is its laminar organization. It can
be divided into six layers according to different types of neuronal cells (see
Figure 3A) and different connectivity properties (afferent, recurrent and pro-
jecting connections). The functional role of this laminar organization is still
largely unresolved, but the layer specific connectivity scheme (see Figure 3B)
suggests that supra-granular networks underlie cross-modality communica-
tion while infra-granular networks might perform computations related to
local cortical features.

InWork 1 andWork 2, we investigate how the biophysical and morpho-
logical properties of layer V pyramidal neurons in mice visual cortex shape
their functional properties in a regime mimicking active neocortical process-
ing. In Work 4, we model a large-scale excitatory-inhibitory Layer II-III
network (∼100mm2) including the horizontal fiber network that intercon-
nects areas responding to different sensory features.

Sensory processing as a model of neocortical
computation
Cortical computation can be defined as the operations performed between
cortical representations (in a general sense, including brain state, sensory
stimuli, etc. . . ). Sensory systems are of particular interest as cortical repre-
sentations encode information coming from the physical world. The exper-
imentalist can therefore manipulate those physical quantity in a controlled
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fashion to establish relationships between sensory stimuli and its neural rep-
resentation. In particular, in primary sensory areas, the relation with the
physical world keeps a relatively simple form. For example, the somatotopic
map in the primary somatosensory cortex, see Figure 2C, reflects the fact
that neurons respond to a stimulus at a given location on the skin, while
higher order area along the somatosensory pathway would be sensitive to
more abstract features in the tactile stimulus.

Primary sensory areas therefore provide a good experimental system to
investigate the principles of cortical computation. This strategy naturally
implies the use of an appropriate recording technique to image the neural
representation, such as intracellular recording, extracellular recordings, opti-
cal imaging, etc. . . In Work 3, we investigate how the neural representation
in the primary auditory cortex of a simple auditory stimulus (a click of white
noise) is affected by the level of ongoing activity using intracellular recordings
in vivo. In Work 4, we investigate how two distinct neural representations
(encoding a single flash in two distinct visual locations) interacts by using
optical imaging in vivo.

Neocortical processing and population dynam-
ics
Neuronal assemblies represent and process information through the emission
of stereotyped electrophysiological events: the actions potentials. The in-
formation encoded by an assembly within a time window is thus contained
in its raster activity: the set of spike trains across neurons. What are the
quantities within this set that are relevant for a downstream readout ? This
is still an open and very controversial question. As an example, an influen-
tial theory (Shadlen and Newsome, 1994), rate-based coding states that the
information is carried by the temporal variation of the population firing rate
(defined over a short time bin). On the other-hand, the more general spike-
based theory states that the temporal patterns of individual spikes carry the
information so that the population rate is a very limited description of the
neuronal assembly. I will not review here the arguments in favor of one
view or the other, insightful reviews can be found in the classical paper from
Shadlen and Newsome (1994) (in favor of the rate-based theory) or in Brette
(2015) (in favor of the spike-based theory). The purpose of this thesis is not
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to take position in favor of one or the other theory (also given that a defini-
tive answer is unlikely to hold in the cortex in general, e.g. olfactory system
vs. visual system). Nonetheless, we briefly argue here that, whatever the
neural code, an accurate description of population dynamics in neocortical
networks is a necessary prerequisite to the understanding of cortical compu-
tation. In a rate coding scheme, population dynamics constitute the neural
code, the increase of the firing of a given cortical sub-population encodes a
given sensory feature, the relevance of understanding population dynamics is
thus straightforward. In a temporal coding scheme, the population activity is
not sufficient, it is important to have a very precise description in the spike
timings and one should know exactly which neurons are spiking. Nonethe-
less, in a temporal coding scheme (or in a stochastic temporal coding scheme,
see Rossant et al. (2011)), the robustness of the code relies on the ability
of neurons to behave as coincidence detectors (Softky and Koch, 1993) and
this feature has been shown to critically rely on the properties of the back-
ground activity (Rudolph and Destexhe, 2003; Rossant et al., 2011), i.e. on
effects mediated by population dynamics. Finally, several canonical effects
are mediated by population dynamics: e.g. the response-dependency on on-
going activity levels (Arieli et al., 1996; Deweese and Zador, 2004; Scholvinck
et al., 2015; Lin et al., 2015), or gain modulation of sensory responses pu-
tatively mediated by top-down modulation of cortical activity (Zagha et al.,
2013; Harris, 2013).

We now give the precise definition of population dynamics adopted in this
thesis, as well as its relevance and limitations for the description of neocortical
processes. We define population dynamics as the temporal variations of the
instantaneous firing rate at the population level. This definition is already
problematic as an instantaneous rate can not be defined, a firing rate has to
be sampled over a given time window. The question of the time-window thus
becomes critical, especially in the rate vs. temporal coding debate. We take
a rather low value: dt ∼ 10ms, meaning that we focus on slow dynamics, up
to the ∼ 100Hz frequency range. For a population of size N , the population
firing rate is thus given by ν(t) = S(t)/N/dt, where S(t) is the number of
spikes between t and t+dt, we give an example of how such a quantity can be
determined using extracellular recordings in Figure 4 (the 1ms bins followed
by the 12ms Gaussian smoothing approximates our ∼ 10ms timescale).

Because we define this firing rate as a firing probability (within each time
bin), we assume that neurons fire in an irregular manner where this proba-
bilistic view is relevant (see next section). This also puts constraints on the

14



range of firing rate values described by population dynamics, values should
not exceed 100Hz (probability of 1 in 10ms time bin). All cortical processes
that corresponds to instantaneous firing rate larger than 100Hz do not fit in
our framework of population dynamics. The precise spiking response seen
in various models of sensory processing, e.g. the response to single tones in
auditory cortex (Wehr and Zador, 2003) or the response to natural stimuli
in primary visual cortex (Baudot et al., 2013) typically represent such pro-
cesses. For those precise responses, our modeling framework is inefficient and
only the precise modeling of the precisely-timed afferent stimulation could
capture this type of responses. This thesis thus focuses on describing slow

Figure 4: Spontaneous activity in awake mice visual cortex exhibits
strong fluctuations of population activity. (a) Schematic of a single
shank of silicon electrode array, and spike waveforms of four example wide-
spiking neighbor neurons measured with the array in deep layers of V1 of an
awake mouse. (b) Population raster of spontaneous activity in 66 neurons
recorded from the whole array. (c) Population rate measured by summing all
the spikes detected on the entire array (both well-isolated units and multi-
unit activity) with 1ms resolution and smoothed with a Gaussian of half-
width 12ms (N.B. the smoothing can be seen as a way to reduce the narrow
sampling of the population). Reproduced from Okun et al. (2015).
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population dynamics and will thus have an explanatory power for all physi-
ological processes mediated by this slow dynamics (stimuli of low frequency
content, effects of ongoing activity, top-down modulations, lateral interac-
tions, etc. . . ).

In Work 3, we investigate how the post-synaptic response to low am-
plitude stimuli is amplified by a strong level of ongoing recurrent dynamics.
In Work 4, we show that such a description in terms of population dynam-
ics accurately reproduce the response to brief flashed stimuli in the primary
visual cortex of fixating monkey recorded by optical imaging.

Theoretical models of neocortical dynamics
On the theoretical side, much effort has been devoted to design theoreti-
cal models reproducing the characteristics of neocortical activity in vivo. In
particular, the regime characterizing the awake state has attracted much
attention. In this regime, spontaneous activity is characterized by irregu-
lar and weakly synchronized spiking (Softky and Koch, 1993; Shadlen and
Newsome, 1994; Ecker et al., 2010; Renart et al., 2010) as well as strong
membrane potential fluctuations at the neuronal level (reviewed in Destexhe
et al. (2003)).

Such a stochastic-like regime has been successfully achieved in balanced
recurrent networks (Tsodyks and Sejnowski, 1995; van Vreeswijk and Som-
polinsky, 1996; Amit and Brunel, 1997). The mechanism underlying this
regime within this architecture can be easily understood. If single neurons
have irregular spiking, they will produce fluctuating excitatory and inhibitory
input to a single neuron via recurrent connections. Then, provided the net-
work is balanced, so that excitation and inhibition cancel each other sta-
tistically, neurons will spike irregularly because spiking will result from the
fluctuations (a near random walk toward the threshold). We conclude that,
if the input of the neuron is irregular, it will produce irregular spiking. This
situation therefore enables the existence of an asynchronous state where ir-
regular spiking sustains itself in a recurrent network. The core idea has
been initially formulated in networks of binary neurons (van Vreeswijk and
Sompolinsky, 1996), since then, theoretical work has increased the biological
realism of this picture (Amit and Brunel, 1997; Brunel and Hakim, 1999;
Brunel, 2000; Vogels and Abbott, 2005; El Boustani et al., 2007; Kumar
et al., 2008).
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The balanced network will be used as a theoretical basis all along the
thesis, either to reproduce synaptic input (Work 1 and Work 2) or to
build networks (Work 3 and Work 4). In Work 4, we adapt the clas-
sical randomly sparsely connected balanced network model by including an
asymmetry in the electrophysiological properties of excitatory and inhibitory
cells.

Analytical descriptions of collective dynamics
Thanks to their relative simplicity, those reduced theoretical model of cortical
assemblies have a notable advantage: they allow an analytical description of
the emergent collective dynamics (via several well-chosen approximations,
see Renart et al. (2004) for a review). Indeed, the reasoning of the previous
section can be formalized mathematically to obtain equations describing the
population dynamics. Those self-consistency approaches describing recurrent
dynamics are called mean-field approaches (originally, the same kind of self-
consistent approach allowed to derive the magnetization in spin glasses, i.e.
the mean magnetic field). Similarly to the situation of spin-glasses, they
predict the conditions of the regime’s stability and they allow to calculate
the mean firing rate of the network as a function of its parameters (van
Vreeswijk and Sompolinsky, 1996; Amit and Brunel, 1997; Brunel, 2000;
Latham et al., 2000; El Boustani and Destexhe, 2009). For example, mean-
field analysis predicts the conditions leading to run-away activity (similar to
epileptic discharge) (Amit and Brunel, 1997; Brunel, 2000) or the emergence
of fast oscillations (Brunel and Hakim, 1999; Brunel, 2000; Brunel and Wang,
2003).

Interestingly, they also describe the network response to a given afferent
input (van Vreeswijk and Sompolinsky, 1996; Amit and Brunel, 1997; Ledoux
and Brunel, 2011) and therefore offer a very interesting possibility to describe
neocortical computation.

This last point is the main motivation behind this thesis. Work 1 and
Work 2 contributes to making those mean-field formalism more biologically-
realistic. In Work 4, we also investigate the explanatory power of one of
those form of analytical descriptions (a Markovian formalism combined with a
semi-analytical approach, see El Boustani and Destexhe (2009)) in a network
showing asymmetric electrophysiological properties between excitation and
inhibition.
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The transfer function of neocortical neurons
At the core of mean-field formalisms lies the cellular transfer function, i.e.
the function that translates the presynaptic release frequencies into a spiking
probability (the transfer function is defined within our population dynamics
framework). Those transfer functions account for the cellular computation
and, within the mean-field picture (that might fail at capturing network dy-
namics, see e.g. Ostojic (2014)), the network dynamics is solely the recurrent
amplification of this cellular computation.

The transfer function is thus the key ingredient of network dynamics
within this framework. This is also the important insight of the mean-field
description: having highlighted the crucial features at the cellular level that
controls population dynamics. The hypothesis behind this thesis is there-
fore that by accurately describing the neuronal transfer function, we will
accurately predict emergent phenomena at the network level.

Characterizing the transfer functions of neocortical neurons is the focus
of Work 1 and Work 2. Neocortical cells are very complex units: they are
characterized by a extended dendritic arborization while the spike initiation
mechanism lies at the axon initial segment, close to the soma. To deal with
this complexity, we formulated an approximation that arbitrarily separate the
problem into two distinct problem to make it amenable to analysis. First,
dendritic integration of irregular excitatory and inhibitory synaptic input will
shape the properties of the membrane potential fluctuations at the soma. We
performed this analysis in Work 2 by using cable theory (Rall, 1962, 1977).
Then, we investigate how those membrane potential fluctuations at the soma
are translated into spikes. This is the focus of Work 1, we performed this
analysis in vitro on layer V neocortical cells of young mice visual cortex1.

1Why performing experimental cellular biophysics 60 years after the ground-breaking
study of Hodgkin and Huxley (1952) ? Since then, the dynamics of ionic-channels have
been extensively studied and characterized in isolated preparations. This analysis could
thus be done numerically. Nonetheless, cellular biophysics in mammalian neocortical neu-
rons does not easily reduce to ionic-channels dynamics, either because of compartmental-
ization specificities (McCormick et al., 2007; Kole and Stuart, 2008; Brette, 2013) or ex-
otic channel-gating properties (Naundorf et al., 2006, 2007). As those mammalian-specific
properties (for which there is no theoretical consensus) might have a critical impact on
the transfer function (Ilin et al., 2013), it requires an experimental determination.
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Work 1: Heterogeneous firing response of
layer V mice neocortical neurons in the
fluctuation-driven regime

Reference: Zerlaut Y, Teleńczuk B, Deleuze C, Bal T , Ouanounou G
& Destexhe A. Heterogeneous firing response of layer V mice neocortical
neurons in the fluctuation-driven regime, Journal of Physiology, in press

French summary
Caractériser les propriétés entrée-sortie des neurones néocorticaux est

d’une importance cruciale pour comprendre les propriétés émergentes au
niveau du réseau. Dans le régime de décharge irrégulière qui caractérise
l’état éveillé, determiner ces propriétés représente un problème théorique et
expérimental complexe.

Dans ce travail, nous étudions in vitro le taux de décharge de neurones
individuels de la couche V du cortex visuel de jeunes souris en réponse à des
fluctuations du potentiel membranaire. Nous conduisons cette étude grâce
a des enregistrements électrophysiologiques intracellulaires en combinant le
dynamics-clamp et la technique du patch perforé.

Nous avons observé que les neurones ne diffèrent pas uniquement par leur
excitabilité, mais aussi par leurs sensibilités aux propriétés des fluctuations.
Nous avons essayé de reproduire ces caractéristiques sur des modèles neu-
ronaux théoriques établis. Le modèle prédit que des niveaux hétérogènes de
propriétés biophysiques telles que l’inactivation sodique, la force du courant
sodique et le courant d’adaptation reproduisent nos mesures expérimentales.

Parce que la réponse en taux de décharge détermine la dynamique de
population dans le régime asynchrone, nos résultats montrent que les assem-
blées neuronales sont fonctionnellement très inhomogènes dans le cortex de
la souris jeune, ce qui devrait avoir des conséquences importantes dans la
phase initiale du traitement visuelle.
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Heterogeneous firing rate response of mice layer V
pyramidal neurons in the fluctuation-driven regime

Y. Zerlaut1,2, B. Telenczuk1,2, C. Deleuze1, T. Bal1, G. Ouanounou1* & A. Destexhe1,2*

April 5th 2016. Journal of Physiology, in press

I Key points summary
• We recreate in vitro the fluctuation-driven

regime observed at the soma during asyn-
chronous network activity in vivo and we
study the firing rate response as a function
of the properties of the membrane potential
fluctuations.

• We provide a simple analytical template that
captures the firing response of both pyramidal
neurons and various theoretical models.

• We found a strong heterogeneity in the firing
rate response of layer V pyramidal neurons.
In particular, individual neurons do not only
differ by their mean excitability level, but also
by their sensitivity to fluctuations.

• Theoretical modeling suggest that this ob-
served heterogeneity might arise from vari-
ous expression levels of the following biophysi-
cal properties: sodium inactivation, density of
sodium channels and spike frequency adapta-
tion.

II Abstract
Characterizing the input-output properties of neo-
cortical neurons is of crucial importance to un-
derstand the properties emerging at the network
level. In the regime of low-rate irregular firing
(such as in the awake state) determining those
properties for neocortical cells remains, however,
both experimentally and theoretically challenging.
Here, we studied this problem using a combina-
tion of theoretical modeling and in vitro experi-
ments. We first identified, theoretically, three so-
matic variables that describe the dynamical state
at the soma in this fluctuation-driven regime: the
mean, standard deviation and time constant of
the membrane potential fluctuations. Next, we
characterized the firing rate response of individual
layer V pyramidal cells in this three-dimensional

1 Unité de Neurosciences, Information et Complexité, Centre
National de la Recherche Scientifique, FRE 3693, Gif sur Yvette,
France

2 European Institute for Theoretical Neuroscience, 74 Rue du
Faubourg Saint-Antoine, 75012 Paris

correspondance : destexhe@unic.cnrs-gif.fr

space by means of perforated patch recordings
and dynamic-clamp in the visual cortex of juve-
nile mice in vitro. We found that, not only, in-
dividual neurons strongly differ in terms of their
excitability, but also, and unexpectedly, in their
sensitivities to fluctuations. Finally, using theoret-
ical modeling, we attempted to reproduce these re-
sults. The model predicts that heterogeneous lev-
els of biophysical properties such as sodium inac-
tivation, sharpness of sodium activation and spike
frequency adaptation account for the observed di-
versity of firing rate responses. Because the firing
rate response will determine population rate dy-
namics during asynchronous neocortical activity,
our results show that cortical populations are func-
tionally strongly inhomogeneous in young mice vi-
sual cortex, which should have important conse-
quences on the strategies of cortical computation
at early stages of sensory processing.

III Introduction
The neocortex of awake animals displays an activated
state in which cortical activity manifests highly complex,
seemingly noisy behavior. At the level of single neurons
the activity is characterized by strong subthreshold fluc-
tuations and irregular firing at low rate: this constitutes
the fluctuation-driven regime, which is believed to be
central to cortical computations (Destexhe and Contr-
eras, 2006). Sensory processing of natural stimuli also
evoke sparse response at low population rates, see for
example Crochet et al. (2011) in mice somato-sensory
cortex or Baudot et al. (2013) in cat visual cortex. Un-
derstanding the dynamical and computational proper-
ties of this regime at the cellular and network level is
a key challenge in systems neuroscience. Because the
reliable computation performed during this regime hap-
pens on top of strong effects mediated by slow popula-
tion dynamics (such as variable levels of ongoing activ-
ity at time scales T>30-50ms), that in turn, determine
the integrative and computational properties at the cellu-
lar level (Destexhe and Paré, 1999; Chance et al., 2002;
Rudolph and Destexhe, 2003; Rossant et al., 2011;
Altwegg-Boussac et al., 2014) , an accurate quantitative
description of population dynamics (and its correlate in
terms of membrane potential fluctuations) appears to be a
necessary prerequisite to the comprehension of this regime.
In the present paper, we investigate the firing rate re-

sponse as a response to membrane potential fluctuations:
a form of neuronal transfer functions that lie at the core of
theoretical models of population dynamics , see e.g. Amit
and Brunel (1997).
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The sparse firing regime nonetheless constitute a diffi-
culty for experimentalists as responses are of low amplitude
and render experimental characterization challenging. In
particular, characterizing the firing rate response of single
neurons at low rates requires long recording times and
stable properties. Here, we propose a characterization of
the low rate response of single neurons that was made
possible by the combination of the stability offered by
the perforated patch technique technique and a simple
theoretically-driven fitting procedure for the spiking re-
sponse.

We identified three somatic variables to investigate single
neuron response: the mean, standard deviation and time
constant of the membrane potential fluctuations at the
soma. In comparison with previous work, reviewed in La
Camera et al. (2008), our approach allows 1) to investigate
the response to fast membrane potential fluctuations char-
acterizing the high conductance state of cortical networks
(Destexhe et al., 2003) and 2) to perform a cell-by-cell
comparison because of its formulation in terms of mem-
brane potential variables. This characterization focuses on
how these fluctuations are translated into output spikes
on top of subthreshold integration effects (Kuhn et al.,
2004) and therefore highlights the contribution of active
membrane properties . In addition, we also investigated
the putative biophysical origin of the measured responses
in established theoretical models of single neurons.

IV Material and Methods
This methods section is organized as follows: 1) we present
the intracellular recording method used in this study: the
perforated-patch technique, 2) we show how analytical calculus
combined with the dynamic-clamp technique allowed us to con-
trol the membrane potential fluctuations on a cell-by-cell basis,
3) we explain the rationale behind our theoretical estimate of
the firing rate response that led to the semi-analytical template
used for fitting experimental responses.

IV.1 Experimental preparation
Experiments were performed at the Unité de Neurosciences,
Information et Complexité. Experimental procedures with ani-
mals were performed following the instructions of the European
Council Directive 2010 86/609/EEC and its French transpo-
sition (Décret 2013/118). Swiss wild-type mice of either sex,
8–13 days old, were anesthetized with inhaled isoflurane and
decapitated, their brain was rapidly removed and immersed
in cold “cutting” solution (∼ 4oC) containing the following
(in mM): 110 Choline Chloride, 2.5 KCl, 1.25 NaH2PO4, 26
NaHCO3, 8 MgCl2, 1 CaCl2, 10 glucose, pH equilibrated to
7.3 with O2/CO2 (95%/5%). Coronal slices (300 µm thick)
were prepared with a vibratome (Leica VT1200 S, Leica Mi-
crosystems) and stored at room temperature in oxygenated
aCSF containing the following (in mM): 126 NaCl, 2.5 KCl, 1.5
NaH2PO4, 26 NaHCO3, 2 MgCl2, 2 CaCl2 and 10 glucose, pH
7.4. The slices were then transferred to the recording chamber
(perfused with the same solution) where the temperature was
maintained at 34oC. Slices containing primary visual cortex
were taken as the first four slices containing brain cortex start-
ing from the most caudal one. The mice visual cortex was
chosen as this experimental model is the subject of intense

investigation (see e.g. Okun et al. (2015)) and would there-
fore provide a very interesting system to test the accuracy of
the theoretical models of cortical dynamics constrained by the
following results.

IV.2 Electrophysiological recordings

We performed intracellular recordings of visually identified
pyramidal cells located in the layer V of mice cortex using the
perforated patch technique.

Patch electrodes (tip resistance: 1.5–2.5 MΩ) were pulled
on a Sutter P-1000 apparatus (Sutter Instruments) and filled
in a two step procedure. The pipettes were pre-filled with a
solution containing the following (in mM): 130 K-Gluconate,
KCl 7, NaCl 1, MgCl2 4, HEPES 10, pH adjusted to 7.3 with
KOH (osmolarity 260 mOsm). The pipette was then back-
filled with the same solution to which was added Amphotericin-
B (Sigma Aldrich) previously dissolved in DMSO, the final
concentration of Amphotericin-B was 60 µM . The reason for
this two step procedure is to allow a current flow out of the
pipette (to preserve the tip from dirt) without pouring the
perforant onto the target cell during the pipette approach.
The perforation could therefore happen only after diffusion
of Amphotericin-B through the "clean" solution, this usually
took 5-10 minutes after the pipette filling, thus allowing the
cell-attached configuration to form in absence of the perforant
molecule.

We recorded from n=30 cells. After perforation, the access
resistance RS was 14.7MΩ ± 6.9. This value was plugged in
into the amplifier-build bridge compensation system during the
current-clamp recordings. At -75 mV, the recordings exhibited
a leak current of -31.9 pA ± 26.8 (minimum observed resting
potential: -76 mV), this current value was then set for each
neuron as the holding current during the recording. Recorded
pyramidal cells had an input resistance Rm of 355.9 MΩ ±184.1
and a membrane time constant at rest of : 31.4ms ±12.0.
Recordings lasted 36.7 min ±20.9. In the absence of current
injection, cells presented a quiescent activity.

The liquid junction potential was measured to be 6 mV
and membrane potential recordings were corrected accordingly.
Note that there might be anyway an unknown constant shift
in the voltage value because the Amphotericin-B pores are
selective channels (so that a non-zero reversal potential could
appear if the cellular medium and our pipette medium are
different). The absolute values of the membrane potential
presented here should therefore be interpreted carefully (but
this would only affect the 〈V effthre〉D quantity reported in this
study).

IV.3 Measuring firing rate

We measured the firing rate simply by counting spikes over a
fixed time window. Spikes were detected as a upward crossings
of -20mV. The first 100ms after fluctuating current onset were
removed to avoid transient effects associated to the membrane
potential rise. The duration of the stimulation was usually 5s,
therefore the minimum (non zero) rate was 0.2 Hz. Also an
online analysis was counting spikes and the stimulation was
stopped when 20 spikes were reached (see in Figure 4E, the
middle episode is shorter than the two other ones), this to
avoid spending too much recording time in the high firing rate
range.
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IV.4 Dynamic-clamp
Our dynamic-clamp system consists of an Intel Quad-Core
computer equipped with an acquisition card (NI PCI-6251
ADC/DAC,Mseries, National Instruments) connected to the
amplifier operating in current-clamp mode. The dynamic-
clamp software is based on a custom ADC/DAC (analog-to-
digital/digital-to-analog) program used for data acquisition and
analysis [Elphy2, developed at Unité de Neurosciences, Infor-
mation et Complexité (UNIC) by Gérard Sadoc] and interfaced
with the NEURON simulator version 6.0 (Hines and Carnevale,
1997). NEURON was modified and recompiled to run under the
INtime (TenAsys), a Real Time Operating System running
alongside Microsoft Windows. The recordings were performed
using a Multiclamp 700B amplifier (Molecular Devices). Stimu-
lation protocols were run in real time with the acquisition card
at 10 kHz. Acquisition and filter frequencies were set at 10
and 4 kHz, respectively. An unfiltered copy of the membrane
potential signal was feeding the dynamic clamp system.

IV.5 Single compartment approximation
Both for the experimentally recorded neurons and for the theo-
retical models, we will use the single compartment membrane
equation. The passive properties of a neuron are therefore
described by a leak conductance gL, a capacitance Cm and a
resting potential EL. With an additional current I(V, t), the
membrane potential thus follows:

Cm
dV

dt
= I(V, t) + gL (EL − V ) (1)

Passive properties were fitted from the response to a hyper-
polarizing current step for the recorded neocortical neurons in
the subthreshold domain (around -75 ±5mV).

Though this approximation was found to be satisfactory
(Figure 4C), monitoring possible deviations is important in this
study as the approximation is used to shape the fluctuations
of the membrane potential. We therefore performed a cell-
by-cell quantification of the accuracy of the approximation as
follows. We take the protocols that were used to determine the
membrane properties: prior to each protocol, we recorded and
averaged the response to 10 current pulses of ∼ 500ms and of
∆I ∼ 15pA amplitude, not the (noisy) continuous monitoring
presented in Figure 4. We average over trials the membrane
potential response and fit an exponential curve to this mean
response V fitsc (t), we get a membrane time τ0

m and a membrane
resistance R0

m. For all cells, we calculated the integral of the
residual trace with respect to the RC circuit approximation.
This allowed us to investigate whether the quality of the ap-
proximation had an impact on the excitability and sensitivities
presented in the Results, we found no significant correlations
between those quantities and the quality of the recordings
(c<0.2 and p>0.2 for all characteristics, Pearson correlations),
thus suggesting that the results of our study were not impacted
by deviations from the single compartment approximation.

IV.6 Global autocorrelation time
We present here a theoretical estimate for the speed of the
membrane potential fluctuations.

In the case of a fluctuating synaptic input with temporal dy-
namics (e.g. resulting from a shotnoise of exponential synapses
considered in this study, unlike the delta synapses considered
in other studies, see Amit and Brunel (1997) for an example),
the autocorrelation function is not an exponential function.
Consequently, the resulting membrane fluctuations can not
be characterised by a single time constant τV (see the inset

in Figure 1). Nevertheless, the time constant taken from an
exponential approximation of the normalized autocorrelation
function corresponds to a first order description of the auto-
correlation and will be the main contributor to the temporal
dynamics of the fluctuations.

As a theoretical prediction for this global autocorrelation
time, we take the half integral of the normalized autocorrelation
correlation function:

τV = 1
2

∫

R
dτ
A(τ)
A(0) (2)

where A(τ) is the autocorrelation function of the Vm fluc-
tuations (see an example of A(τ)/A(0) in Figure 1). From
shotnoise theory (Daley and Vere-Jones, 2007), we will obtain
the power spectral density of the Vm fluctuations PV (f), so
we re-express the global autocorrelation time as:

τV = 1
2
(∫R PV (f) df

PV (0)
)−1 (3)

In this study, this formula reduces to a very simple form (see
next section). Note that the relations presented in this paper
rely on the following convention for the Fourier transform:
F̂ (f) =

∫
R F (t) e−2iπft dt.

IV.7 A stimulation to investigate the de-
pendency on the variables of so-
matic fluctuations

We aim at reproducing the dynamical state at the soma in the
fluctuation-driven regime by reproducing membrane potential
fluctuations with the control of the mean µV , the standard
deviation σV of the subthreshold fluctuations as well as a global
autocorrelation time τV .

Our "input space" is already a response of the neuron, thus
we need a stimulation that would reliably produce this re-
sponse. There exists multiple types of input that would
lead to a given set of the (µV , σV , τV ) variables. In the
present study, to best characterize the dependency on those
precise variables, we wanted a stimulation that would min-
imize the higher order terms appearing for realistic synap-
tic inputs, e.g. when injecting excitatory and inhibitory
Ornstein-Uhlenbeck conductances (Destexhe et al., 2001;
Fernandez et al., 2011). We chose the following stimulation.

The mean membrane potential is achieved through a constant
current input:

IµV = gL (µV − EL) (4)
Varying the speed of the fluctuations τV is achieved by

changing the total input conductance at soma µG (an increasing
conductance reduces the effective membrane time constant of
the membrane, events are integrated faster and this renders
fluctuations faster). The total conductance µG is changed by
introducing a current Iµ G of static conductance gS=µG - gL
and of reversal potential µV :

IµG(V ) = gS
(
µV − V

)
(5)

We introduce here the effective membrane time constant
τeffm = Cm/(gS + gL).

An additional noisy current of zero mean creates the fluctu-
ations around µV to control the standard deviation σV . This
current is generated from two independent Poisson processes
convolved with an exponential kernel: one excitatory, one in-
hibitory. They have the same presynaptic rate νin, the same
time constant for the exponential decay τS and opposite cur-
rent increments QI and -QI. This corresponds to the current
Ifluct(t):
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τS
dIfluct
dt

= −Ifluct +QI

(∑

k

δ(tke − t)−
∑

k

δ(tki − t)
)

(6)

Where {tke}k∈N and {tki }k∈N are two sets of uncorrelated
presynaptic events generated by the frequency νin.

A single excitatory or inhibitory post-synaptic potential
event arriving at t = 0 will have the following time course:

PSP (t) = ±QI τS (e−
t
τS − e

− t

τ
eff
m )

gL (τeffm − τS)
H(t) (7)

where H is the Heaviside function.
From shotnoise theory (Daley and Vere-Jones, 2007) (see

also El Boustani et al. (2009) for an application similar to ours),
we can obtain the power spectral density of the Vm fluctuations
PV (f) as a response to the stimulation Equation 6:

PV (f) =
∑

syn

νsyn ‖ ˆPSP (f)‖2

= 2νin
Q2
I τ

2
S/µ

2
G(

1 + 4π2f2τ2
S

)(
1 + 4π2f2(τeffm )2

)
(8)

The variance of the membrane potential fluctuations is the
integral of the power density spectrum :

(
σV
)2 =

∫

R
PV (f) df = νin · (QI τS)2

(µG)2 (τS + τeffm )
(9)

And the global autocorrelation time takes the very simple
form, see Equation 3 :

τV = 1
2
(∫R PV (f) df

PV (0)
)−1 = τS + τm (10)

We rescale this relation with respect to the resting membrane
time constant τ0m:

τNV = τV
τ0
m

= τS
τ0
m

+ gL
µG

(11)

Because the mean synaptic conductance µG should scale
with the size of the membrane (because of the constant sur-
facic density of synapses), as does gL (because of the constant
surfacic density of leak channels), when the presynaptic bom-
bardment increases, it is the rescaled quantity µG/gL that
increases. Therefore we investigated a fixed domain of the
τV /τ0m quantity.

Finally, the time- and voltage-dependent current I(V, t)
inserted into the membrane Equation 1 or injected via the
dynamic-clamp technique takes the form:





I(V, t) = IµV + gS (µV − V ) + Ifluct(t)

τS
dIfluct
dt

= −Ifluct +QI

(∑

k

δ(tke − t)−
∑

k

δ(tki − t)
)

(12)
The three variables (µV , σV , τNV ) are achieved through the

five variables of the input (IµV , gS , νin, τS , QI). We have two
additional degrees of freedom, so 1) to force the input to remain
in the fluctuation-driven regime (many events of low amplitude)
we arbitrarily set the presynaptic frequency to νin = 2kHz
and 2) we fixed the current time constant to: τS/τ0

m=15% (i.e.
τS=4.5ms for τ0

m=30ms).
Thus, when we want to study the firing rate response as

a function of (µV , σV , τNV ), with the membrane parameters
(gL, τ0

m, EL), we send an input of the form Equation 12, where
(IµV , gS, τS, QI, νin) follow:





τS = 0.15 τ0
m

νin = 2.103

IµV = gL (µV − EL)

gS = gL
(
(τNV −

τS
τ0
m

)−1 − 1
)

QI =
(gL + gS)σV

√
τ0
m

√
τNV

τS
√
νin

(13)

IV.8 Monitoring the stability of the cel-
lular properties

Because the stimulation depends on the membrane properties
(see the previous section IV.7), it was crucial to insure the
stability of those properties during the experiments. We there-
fore monitored the cellular properties in time in an analogous
manner to Köndgen et al. (2008).

In between the episodes, we use the resting period to measure
the resting membrane potential EL and we inject a short current
pulse to calculate the membrane resistance. Those quantity
over time are then smoothened over a sliding window of 20
points to remove the error introduced by the evaluation over a
rather short time window (Figure 4E).

The data kept in the dataset had to keep variations within
± 3 mV for EL and below 10 % for Rm.

In addition, we quantified and monitored the stability of
the firing rate response. Here, the fitted response was found
to be very useful (see ResultsV.2). When we fit, we do not
discriminate between the early and the late measurements, the
fitted function F therefore provides a mean of the response
across the measurement. Then we can detect variations around
this mean behavior by computing the coefficient of variation of
the response:

CV ν(~x, ti) = νout(~x, ti)−F(~x)√
F(~x)/Ti

(14)

where ~x represents a combination of the input (µV , σV , τNV ),
ti the time of the measurement and Ti the duration of the
measurement. Because of the intrinsic irregularity of the spiking
process, we expect strong fluctuations within this curve (see
Figure 4D), but the smoothen version of this curve allow to
detect changes on a long time scale. For example, a strong run-
down would correspond to a strongly decreasing CV ν curve.
The criteria to insure stability was to remain close enough from
a stationary Poisson process, i.e. the smoothen curve should
not cross ± 1.

Given those criteria, we expect that the effect of the re-
maining variability in the properties would be canceled by
the randomization of the scanned input points and the use of
multiple seeds.

IV.9 Theoretical models of neurons
The general model considered in this study is the inactivating
Adaptative Exponential and Fire model. It is constructed
by combining the theoretical models proposed in Brette and
Gerstner (2005) and Platkiewicz and Brette (2011).





Cm
dV

dt
= gL (EL − V ) + Isyn(V, t) + kae

V−θ
ka − Iw

τw
dIw
dt

= −Iw +
∑

ts∈{tspike}

b δ(t− ts)

τi
dθ

dt
= Vthre − θ + ai (V − Vi)H(V − Vi)

(15)
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where Isyn(V, t) is the current emulating synaptic activity
that will create the fluctuations, Iw reproduces the Im current
(McCormick et al., 1985) and θ(t) is a variable threshold whose
temporal dynamics and voltage dependence accounts for the
fast decrease in sodium channel availability at depolarized lev-
els (Hille, 2001). The spiking mechanism is the following: when
V (t) reaches θ(t)+5 ka, this triggers a spike ts ∈ {tspike}, this in-
creases the adaptation variable Iw by b, the membrane potential
is then clamped at EL for a duration τ refrac=5ms. Following
Platkiewicz and Brette (2011), the steady-state threshold is
described by a piecewise linear function (H is the Heaviside
function).

The temporal dynamics of sodium inactivation and spike
frequency adaptation were fixed to τ i=5ms and τw = 500ms
respectively. Also the threshold of the inactivation curve was
fixed relative to the sodium activation threshold as Vi = Vthre−
8mV .

The leak potential of theoretical models was set to EL=-
70mV. All other parameters are varied along the study (see
figure legends).

Finally, because of the variability of membrane time con-
stants in the experimental data (indeed, the data show varia-
tions not only in input resistance, also in τ0m), the comparison
for the firing rate response between data and theoretical mod-
els requires a careful treatment. Because when the synaptic
bombardment raises, the ratio of input conductance with re-
spect to the leak conductance µG/gL raises, we scanned a fixed
range in terms of τNV =τV /τ0m (see previous section IV.7). But
this means that for a given range of τNV =τV /τ0m, there will
be different range of τV when there is a change in membrane
time constant τ0m, and consequently a different range of output
frequency. The solution that we adopted for a relevant com-
parison between data and theoretical models is to simulate the
models with different membrane time constants τ0m reproduc-
ing the variability in experimental data. Only in Figure 2, a
single model was numerically simulated with the parameters
(gL = 2.5 nS, Cm = 80pF to get τ0m=32ms as the average
of the intracellular data). For all other figures (Figures 3, 6
and 7), where the sensitivities are presented, we simulated
three models, all with the same leak conductance gL = 2.5
nS, but with varying capacitance to reach τ0m ∈ [20,32,44] ms
to reproduce the standard deviation of the data (see previous
section IV.2). The presented sensitivities were then the average
of the sensitivities of the three models. Note that, even if
the scaling of the firing response with the resting membrane
time constant is clear in theoretical model (νout ∝ 1/τ0m for
a given τNV space), this effect was not significantly visible in
the data (Pearson correlations between mean excitability and
membrane time constants, p>0.1) presumably masked by the
heterogeneity discussed in this paper.

IV.10 Starting from a simple approxima-
tion for the firing rate

The starting approximation for the firing rate given some fluc-
tuation properties is similar to the one introduced in Amit and
Brunel (1997). Because our situation is different (our input
has a temporal dynamics and includes additional conductance),
we justify here the refinement that led to the estimate used in
our study.

If a neuron has membrane potential fluctuations described
by a mean µV , a variance σV and a typical autocorrelation time
τV , then we can divide a time axis of length T (with T � τV )
into N bins of length τV . Within each of this bin, we consider
that a reorganization of the membrane potential values occurs,
then the bins can be considered independently, and in each,

we sample randomly from the Gaussian distribution defined
by µV and σV . We remain in the low firing regime (νout ≤ 30
Hz) , so that we can neglect the repolarization dynamics and
saturation effects. Then, if a spike occurs when the membrane
potential crosses a threshold V effthre, the probability to have a
spike within a bin is the probability to be above this threshold
Pr(V > V effthre). The number of spikes during the time T =
NτV is k = N ·Pr(V > V effthre). The definition of the stationary
firing rate is νout = k/T , so that we get:

νout = Pr(V ≥ V effthre)
τV

(16)

i.e. in the case of a Gaussian distribution for the membrane
potential:

νout = 1
2 τV

· Erfc(V
eff
thre − µV√

2σV
) (17)

where the subthreshold variables µV , σV and τV can be
calculated as a response to the synaptic input as detailed in
the previous section IV.7.

IV.11 Fitting
To render the fitting the phenomenological threshold easier, we
insured that the linear coefficients of Equation 19 take similar
values by normalizing the (µV , σV , τNV ) space. The normaliza-
tion factors µ0

V=-60mV, δµ0
V=10mV, σ0

V=4mV, δσ0
V = 6mV,

τN0
V =0.5, δτN0

V = 1 arbitrarily delimits the fluctuation-driven
regime (a mean value x0 and an extent δx, ∀x ∈ {µV , σV , τNV }).
It is kept constant all along the study.

The fitting consisted first in a linear regression in the phe-
nomenological threshold space of Equation 19, followed by a
non-linear optimization of Equation 18 on the firing rate re-
sponse. Both fitting were performed with the leastsq method
in the optimize package of SciPy.

IV.12 Numerical simulations
All numerical simulations of single cell dynamics have been
performed with custom code written in the numerical library
of python : numpy and optimized with the numba library. For
the neuronal model, each point (a mean output frequency and
its standard deviation across trials) corresponds to numerical
simulations running with a time step dt=0.01ms, for a duration
of 10s and repeated 4 times with different seeds (one simulation
duration: ∼ 2s of real time on a Dell Optiplex 9020 desktop
computer).

V Results
The paper is organized as follows: we start by we defining
the fluctuation-driven regime at the soma and designing a
method to reproduce this somatic dynamical state under
dynamic-clamp experiments. We also derive a flexible
template for the firing rate response, whose accuracy is
demonstrated on various theoretical models. Then, we
investigate the firing rate response of layer V pyramidal
cells in mice juvenile cortex and we analyze the individual
features of single neuron responses. Finally, we explore
the putative biophysical origin of the observed response
in theoretical models of neocortical neurons.
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Figure 1: Investigating somatic computation in
the fl uctuation-driven regime (A) Schematic illustra-
tion on a layer V pyramidal cell in cat V1 (Contreras et al.,
1997) together with theoretical distribution of inhibitiory
(red) and excitatory (green) synaptic inputs. Synaptic
and dendritic integration of pre-synaptic spike trains (two
sample spike trains in upper right) produce membrane po-
tential fluctuations at the soma as recorded intracellularly
in current-clamp. (B) A sample trace of membrane poten-
tial integrating inputs from all inhibitory and excitatory
synapses (black trace). We characterize those fluctuations
by a mean µ V (dashed horizontal line), a standard devi-
ation σ V of sub-threshold oscillations (gray background)
and global autocorrelation time τ V (determined from the
normalized autocorrelation function in the inset, see Meth-
ods IV.6). The properties of those fluctuations determine
the spiking probability of the neuron (three spikes visible
in the membrane-potential trace).

V.1 A three-dimensional description of
the dynamical state at the soma in
the fluctua tion-driven regime

Determining the cellular input-output functions is complex
because input of neocortical neurons are mostly in den-
drites and output spikes are generated in initial segments
of an axon as reviewed in Stuart and Spruston (2015)
and Debanne et al. (2011) input will therefore crucially
shape their input-output relationship. Various parameters
of presynaptic activity can arbitrarily control the proper-
ties of the membrane potential fluctuations at the soma.
Those properties can be quantified by identifying three
somatic variables that provide a reduced description of
the dynamical state at the soma in the fl uctuation-driven
regime: the mean µ V , the standard deviation σ V of the
membrane potential fluctuations and their typical auto-
correlation time τ V (see Methods IV.6). For example, the
excitatory/inhibitory balance controls the mean depolar-
ization at the soma µ V , the mean synaptic bombardment
impacts the standard deviation σ V and the speed of the
membrane potential fluctuations τ V . Other effects such as
synchrony in the presynaptic spike trains or ratio between
distally and proximally targeting synaptic activity also
affect the statistical properties of the fluctuations. The
effects of synaptic input and its dendritic integration on
somatic variables can be investigated theoretically using
cable theory (Tuckwell et al., 2002) and will be the focus
of a future communication.

Because the spike initiation site lies electrotonically close

to the soma (Debanne et al., 2011), we assume that those
three purely somatic variables will define the firing rate
uniquely. In this study we investigate the firing response
in terms of those somatic variables (illustrated in Figure
1).

We therefore designed a stimulation protocol to repro-
duce awake-like dynamical state at the soma and inves-
tigate the firing rate response in this three dimensional
space. We evaluate the parameters of stochastic current
and static conductance that would result in a particular
configuration of the Vm fluctuations (µ V , σ V andτ V ) for
passive membrane using a single-compartment approxima-
tion (Kuhn et al., 2004). This procedure allows to focus
on how active currents convert fluctuations into spikes.
Another advantage of this approach is that it naturally
rescales the input with respect to the individual cellular
properties (Rm, Cm and EL) and therefore allows a cell-
by-cell comparison. In addition, we investigated domains
of the dimensionless variable τ NV = τ V / τ 0m instead of
absolute values for membrane time constant τ V to account
for scaling of the synaptic inputs with membrane area
(Equation 11 in Methods IV.7).

V.2 Template for the fi ring rate response
of single neurons

A key challenge for the in vitro characterization of
input-output relationship is to extract a reliable quan-
titative estimation of its functional form from a lim-
ited number of experimentally sampled points. One
approach consists in fitting the response to the for-
mula derived from a specific theoretical model, such
as leaky integrate-and-fire neuron (Rauch et al., 2003;
Lundstrom et al., 2009). This strategy has three draw-
backs: 1) the complexity of the analytical formula requires
a careful numerical determination and thus render fitting
procedures non trivial, 2) it does not generalize easily to
biophysically-realistic synaptic input (e.g. reproducing
synaptic dynamics, see Brunel and Sergi (1998)) and 3)
the low number of parameters of simple theoretical models
(e.g. a single spike threshold for the leaky integrate-and-
fire model) imposes that the membrane parameters (e.g.
leak conductance and membrane capacitance) are free
parameters to have enough degrees of freedom.
We propose here a different strategy: we introduce a

flexible analytical template fully determined by membrane
parameters, which are experimentally measured, and some
free parameters, which can be fitted using a simple two-
step minimization procedure.
The basis for the template rely on a simple estimate,

analogous to Amit and Brunel (1997), for the firing rate
response of the LIF model:

ν out = Pr(V > Vthre)
τ V

= 1
2 τ V

· Erfc(Vthre − µ V√
2 σ V

) (18)

It is obtained heuristically by splitting the time axis
in bins of length τ V , the spiking probability is then the
probability that the membrane potential is above the
threshold Vthre (see Methods IV.10). In comparison with
earlier approach (Amit and Brunel, 1997), we take here
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the global autocorrelation time instead of the membrane
time constant. We used this approximation as a baseline
trend for the firing rate response and the properties of an
individual cell will be described by deviations from this
baseline behavior.
We found that those deviations could be accurately

accounted for by replacing the hard threshold of the ap-
proximation Vthre by a linear phenomenological threshold:

V effthre(µV , σV , τ
N
V ) = P0+

Pµ
µV − µ0

V

δµ0
V

+ Pσ
σV − σ0

V

δσ0
V

+ Pτ
τNV − τN0

V

δτN0
V

(19)

The quantities: (µ0
V , δµV , σ

0
V , δσV , τ

N0
V , δτNV ) are con-

stant rescaling factors of the (µV , σV , τNV ) space, see Meth-
ods IV.11.
A practical advantage of the template (Equation 18)

is that, given some data νout(µV , σV , τNV ), we can invert
the equation to get the phenomenological threshold as a
function of the output firing rate:

V effthre(νout, µV , σV , τ
N
V ) =

√
2σV Erfc−1(2 τNV τ0

m νout) + µV , ∀ νout > 0
(20)

Where Erfc-1 is the inverse of the complementary error
function.
We used this property to design the final fitting proce-

dure: given some data νout(µV , σV , τNV ), we calculate the
phenomenological threshold data using Equation 20 and fit
coefficients P0, PµV , PσV , PτV by linear regression. Then
starting from those coefficients we perform a non-linear
least-square fitting. Those two steps guarantee that the
non-linear optimization starts from a good initial guess
and ensures that the gradient-descent method converges
close to the global minimum.

V.3 Firing rate response of theoretical
models

We start by demonstrating the accuracy and flexibility
of this phenomenological description on the firing rate
response for various theoretical models (Figure 2).
The model considered in this study is the inactivating

adaptative exponential and fire (Methods IV.9), which
extends the model of Brette and Gerstner (2005) by adding
an inactivation mechanism (Platkiewicz and Brette, 2011).
Several widespread theoretical models are special cases
of this model: the leaky integrate and fire (LIF), the
exponential integrate and fire (EIF, Fourcaud et al. (2003)),
the inactivating leaky integrate and fire (iLIF, Platkiewicz
and Brette (2011)). We also define a LIF model with
spike-frequency adaptation only (sfaLIF).
We show on Figure 2 that the template is able to de-

scribe the firing rate response of those various theoretical
models. The impact on firing of those different biophysical
properties of those models could all be accurately captured
by differences in the linear phenomenological threshold
(Figure 2D).

Table 1: Fitted coefficients of the linear phe-
nomenological threshold for the theoretical mod-
els shown in Figure 2

model P0(mV) Pµ(mV) Pσ(mV) Pτ (mV)
LIF -49.74 1.71 0.31 -0.51
EIF -46.9 1.69 1.47 -3.6
sfaLIF -49.49 4.29 3.91 0.56
iLIF -46.11 2.33 -1.06 3.62
iAdExp -48.78 4.72 5.25 -1.35

We compared the four-parameter description to simpler
and more complex models in which the phenomenological
threshold is: constant (1 parameter), linear function (4
parameters) or second-order polynomial of µV , σV and
τNV (10 parameters). The goodness to fit of the single-
parameter description was 84.6% ± 8.9; it increased to
99.0%± 0.5 for the four-parameter description; and then to
99.6% ± 0.2 for the quadratic phenomenological threshold
with 10 parameters. We conclude that the four-parameter
fit is a good compromise between goodness-to-fit and num-
ber of parameters.
In absence of active mechanisms, membrane potential

fluctuations are statistically identical in all theoretical
models (by design, they are the same leaky RC circuit).
The active mechanisms may nonetheless have an impact
on the membrane potential fluctuations themselves and
will, by this mean, impact the firing response. In our de-
scription, those effects are captured in the dependency of
phenomenological threshold on input variables. For exam-
ple, the stationary spike-frequency adaptation level induces
a net hyperpolarizing current, which, in our description,
leads to an increased phenomenological threshold (sfaLIF
vs. LIF in Figure 2D).

V.4 Link between the biophysical proper-
ties and the characteristics of the fir-
ing rate response in theoretical mod-
els

To capture the particular features determining the prop-
erties of neuronal computation in the fluctuation-driven
regime, we now turn to analyzing firing rate responses of
the models. We define four simple quantities that provide
a reduced description of the response of a single neuron: a
mean excitability (mean phenomenological threshold) and
average sensitivities to variations of mean µV , standard
deviation σV and speed of the fluctuations τNV . These
quantities were average for all combination of the three
input variables consistent with awake-like conditions (low-
rate, 1 - 15 Hz, fluctuation-driven regime, D domain in
Figure 3).
The LIF model provides a basic picture for the firing

rate response (see LIF in Figure 2 and Figure 3A). Spiking
in the LIF model increases with mean depolarization and
the standard deviation (bottom panels in Figure 3A), while
it decreases with the global autocorrelation time (top right
panel in Figure 3A). More sophisticated biophysical mech-
anisms implemented in the considered theoretical models
(exponential activation, adaptation, etc.) affect those base-
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Figure 2: The analytical template (Equations 18 and 19) can capture the fi ring rate response of various
theoretical models. Shown for the Leaky Integrate and Fire model (LIF) with Vthre=-47mV (kept for all following
models), the EIF with ka = 2mV , the sfaLIF with b = 20pA, the iLIF with ai = 0.6 and the iAdExp model that
combines all the previously mentioned mechanism with ka = 2mV , b = 6pA, ai = 0.6. (A) Response of the models
to a current step. Plain line: response to depolarizing current step, dashed line: response to hyperpolarizing current
step. For the iLIF and iAdExp models, we show in red the dynamics of the threshold θ (t). (B) Firing rate response
in the ( µ V , σ V ) space. Color indexes variation of the global autocorrelation ratio τ V /τ 0

m. (C) Projections along the
standard deviation σ V axis for different mean polarization levels µ V . Data (points) and fitted analytical template (thick
transparent lines). Note the shifts in the scanned µ V domain to reach a comparable firing range despite a reduced
excitability (see main text). (D) Phenomenological threshold Veff

thre that leads to the fitted firing rate response, the
coefficients of the linear functions can be found in Table 1.
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Figure 3: Extracting the mean properties of a single neuron response: excitability and sensitivities to
the variables of the fl uctuation-driven regime. (A) Illustration for the LIF model. From the fitting procedure
we obtain an analytical description of the firing rate response (center plot). We focus the analysis on the domain D of
the low rate fluctuation-driven regime (see main textV.4), its extent is delimited by the white square in the bottom
and top-right insets. The mean phenomenological threshold in the D domain quantifies the excitability (top left: large
dashed line). Then for each variable (top right: τ NV , bottom left: σ V , bottom right: µ V ), we show the projections of
the firing response along this dimension for different combinations of the two other variables within the D domain
(dotted lines). The mean derivative (represented by arc angle and large dashed line) with respect to the variable
in x-axis over different combinations of the remaining variables quantifies the mean sensitivity to this variable. (B)
Excitabilities for the LIF, EIF, sfaLIF and iLIF models (parameters as in Figure 2). (C) Mean sensitivities to µ V .
(D) Mean sensitivities to σ V . (E) Mean sensitivities to τ V /τ 0

m for the four models.
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line characteristics. First of all, such mechanisms suppress
spiking and therefore reduce the mean excitability of all
the models (Figure 3B). The effect on average sensitivities
is more complex.
The substitution of the hard threshold of LIF with an

exponential function in EIF imitates the gradual opening of
sodium channels in time. This property has a very strong
impact on the dependency on the speed of the fluctuations
(Figure 3E). In contrast to LIF, fast fluctuations do not
lead to an increase of spiking. This effect, which occurs
due to the inability of smooth sodium activation curve to
extract fast varying fluctuations (Fourcaud et al., 2003),
is well captured by our analysis: the sensitivity to τNV is
much reduced for the EIF with respect to the LIF model.
The spike frequency adaptation of sfaLIF reproduces

the effect of a calcium-dependent potassium current (Im
current) that tend to hyperpolarize neocortical pyramidal
neurons at each spike occurrence (McCormick et al., 1985).
This is an effect that attenuates firing and because it is
proportional to firing itself we expected it would reduce
the dependencies to all variables. Indeed the sensitivities
to µV and σV are strongly attenuated with respect to LIF
(Figure 3C-D). In contrast, the sensitivity τNV is only mildly
affected. The temporal dynamics of the hyperpolarizing
current (τW=500ms) impedes short inter-spike intervals
in the output spike train, consequently slow fluctuations
are more strongly dampened than fast fluctuations which
restores the sensitivity to τNV (Figure 3E).
The iLIF model reproduce the fast inactivation prop-

erties of sodium channels (see Hille (2001) for a review).
Close to threshold, sodium channels tend to rapidly inac-
tivate (τ inact=5ms). This mechanism clearly favors fast
and high amplitude fluctuations, which allow to trigger a
spike before the channels become unavailable. Indeed, the
sensitivity to σV and τNV is strongly enhanced (see Figure
3D-E).

V.5 Response of juvenile mice layer V
pyramidal neurons in vitro with the
perforated-patch technique

We now use the above analytical tools to determine exper-
imentally firing rate responses in vitro.
Scanning the response of neocortical neurons in the

fluctuation-driven regime is experimentally challenging
because it is characterized by an irregular firing at low
rates (∼ 0.1-20 Hz). To obtain a meaningful estimation of
the firing rate response we need long and stable recordings
(Rauch et al., 2003; Köndgen et al., 2008). Both to obtain
this stability and to ensure the integrity of the intracellular
medium (in particular to maintain a physiological Ca2+
dynamics), we chose the perforated patch technique (Rae
et al., 1991; Lippiat, 2009), in which electrical access is
obtained by inserting a conducting pore (Amphotericin
B protein permeant only to monovalent ions) in a patch
of membrane (Wendt et al., 1992; Kyrozis and Reichling,
1995). Although the technique may sometimes limit the
quality of the electrical access to the cell, we achieved very
low ratios between the access resistance and the membrane
resistance (4.7 ± 2.6 %, see also Rae et al. (1991)), thus

allowing for reliable use of the dynamic-clamp technique
(Destexhe and Bal, 2009).

We monitored the stability of recordings by means of
three quantities: 1) the resting membrane potential, 2) the
membrane resistance and 3) the variations of the firing rate
probability and formulated strict criteria for the stability
of the recordings (see Figure 4E).
The resulting dataset contains n=30 cells, it totals

to 65455 spikes fired at an average frequency of 3.62Hz,
i.e. within the low-rate, fluctuation-driven regime defined
above (0.2-15 Hz). This relatively large amount of data
was necessary to extract the biophysical relations between
the fluctuations properties and the stationary firing rate.

We investigated whether the combination of the analyt-
ical template (and its fitting procedure) with our experi-
mental recording protocols was able to produce a reliable
characterization of the firing rate response of layer V neo-
cortical neurons in juvenile mice visual cortex.
For each of the n=30 cells, we obtained a given scan

of the µV , σV , τNV space and applied our fitted procedure.
We show the data and the fit for four examples in Figure
5. The goodness-to-fit of our template was high (goodness-
to-fit of 88.6% ± 9.4, compared to only 38.4% ± 35.3 for
the constant threshold and 90.6% ± 9.2 for the quadratic
phenomenological threshold), the small divergence is due
to intrinsic irregularity of the low-rate spike process (sam-
pled over 5 s per episode, Figure 4E). In spite of this
variability, the linear threshold averages the intrinsic firing
irregularity and produces a reliable characterization of the
firing rate response.

We quantified the robustness of the experimental charac-
terization with cross-validation: we splitted the measure-
ments into two sets and investigated whether the first half
of data would give the same phenomenological threshold as
the second half. We found a good agreement if the number
of scanned configuration of input space (µV , σV , τV ) was
npoints ≥ 70 (Pearson correlations, c>0.8 and p<1e-5
for the correlations between first and second half of data,
Figure 5B). The high Pearson correlations between the re-
sponse characteristics in the two subsets indicates that the
characterization is robust for npoints ≥ 35 scanned com-
binations of input parameters. Among the 30 cells used
for further analysis, the cell with the minimum number of
points had npoints=42 scanned combinations meeting the
above criterion for the robustness.

V.6 Single neurons show strongly hetero-
geneous firing rate responses

A striking feature in the response of the recorded cells is
the differences in their response.

We illustrate this property on the four examples shown
in Figure 5A. Cells 1 and 4 show a very strong dependency
on speed of the fluctuations τV , whereas cells 2 and 3 are
almost insensitive to to this parameter (different colors
in 5A). The dependency on the standard deviation of
fluctuations σV is steeper for cell 2 than for 3 and 4.
Also the sensitivity to µV seems to be variable, a 10 mV
depolarization has stronger effect on responses of cell 4
than 3. Finally, the cell excitabilities are also highly
variable, so that they reach the 1-15Hz firing range at
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Figure 4: The exploration of a physiologically-relevant space in layer 5 pyramidal neurons of juvenile
mice. From B to E, an example of a single cell. (A) A typical layer 5 pyramidal neuron in the primary visual
cortex of juvenile mice. Picture from additional experiments: marking with 2% Biocytin (Sigma Aldrich) in whole
cell configuration. (B) After diffusion of the perforant molecule toward the patch of membrane, a step voltage clamp
protocol estimates the quality of the seal and perforation (see details in the Methods IV.2). (C) A step current clamp
protocol estimate the passive membrane properties. Those properties are used by the stimulation protocols to constrain
the Vm fluctuations (see Methods IV.7). (D) All along the recording, we monitor the cellular properties: the resting
membrane potential EL, the membrane resistance Rm and the variations of the firing rate with respect to the stationary
behavior CV ν (see details in the main textV.5 and in the Methods IV.8). The smoothened data (red curve) show the
global trend, it removes the measurement error due to the short sampling time for Rm and EL (see E), for CV ν , it
removes the intrinsic spiking irregularity. For the CV ν curve we have added the standard deviation (mean ± std in
red) for comparison with a stationary Poisson process (mean ± std in black). (E) Sample of the membrane potential
Vm, the injected current I and the total conductance µ G at the beginning of the recording (left,t=17.7min, blue star in
D) and one hour after (right, t=71.8min, red star in D). Within an episode, we scan one combination of the ( µ V , σ V ,
τ NV ) variables. For example, the middle episode corresponds to the most depolarized level µ V (hence the lower spike
amplitude due to Na inactivation) with the fastest fluctuations τ NV (i.e. an high input conductance µ G, also shunting
the spikes, see the strong opposite current) and an intermediate variance σ V . In between the two first episodes, one
can see rest period (to monitor EL) followed by a current pulse (to monitor Rm).
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Figure 5: Characterization of the fi ring rate response of the recorded neocortical pyramidal neurons.
(A) Four examples of the firing rate response of single neurons, data (diamonds, error bars indicate variability estimated
as the standard deviation from responses to multiple trials where available) and fitted template function (plain line),
the cells are indexed from 1 to 4 to identify them in the heterogeneity analysis (Figure 6). (B) For 21 neurons scanned
with at least of 70 different combinations of input statistics, we split the dataset into two and investigate the similarity
of the coefficients between the two subsets. The relatively high and significant (p<0.05, Pearson correlation) correlation
coefficients between characterizations in the first and second datasets indicate a robust characterization of the firing
rate response.
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Figure 6: Heterogeneity and underlying structure of the fi ring response of neocortical cells (A) Histogram
over recorded cells of the mean excitabilities and sensitivities to the variables of the fluctuations. The dashed color
lines show the values of theoretical models for comparison. (B) Scatter plot of the mean excitability and sensitivities
to the variables of the fluctuation-driven regime, we highlighted the cells shown in Figure 5 with larger markers. (C)
Principal component analysis, in the inset, the vector coordinates of the two first components

13
33



Heterogenous firing response of mice pyramidal cells • Zerlaut et al. • April 6, 2016

various depolarization levels (e.g. compare cell 2 and 3).
Similar differences are present in all recorded pyramidal
cells (Figure 6A).
This strong heterogeneity raises the question whether

there is an underlying structure in the variations of the
characteristics of the firing rate response and how could it
be explained by diverse biophysical mechanisms.
First, when plotted in four-dimensional space of the

firing rate response characteristics the data did not seem
to distribute into distinct clusters (Figure 6B). Presented
on two dimensional projections, the excitability and sensi-
tivities to input variables of different cells co-vary (Pearson
correlation, c, Figure 6B). We then looked for the four-
dimensional structure of those co-variations in the response
characteristics by means of a principal component analysis
(Figure 6C). No single co-variation of the sensitivities could
explain a strong percentage of the observed heterogeneity,
suggesting that the correlation structure is weak.

Nonetheless, two vectors explained 75% of the variations
in the data. The first vector corresponds to a co-variation
of the sensitivities to mean and amplitude of the fluctu-
ations. This co-variation can be achieved in the sfaLIF
model, varying the weight of spike frequency adaptation
concomitantly varies the sensitivities to µV and σV (Fig-
ure 7C). The second vector corresponds to a co-variation
of a decrease in the excitability and an increase in the
sensitivity to the speed of the fluctuations. The variability
in excitabilities is quite remarkable, to reproduce it in the
LIF model one needs variations of the threshold Vthre that
spans nearly 15 mV (see Figure 7). The variability in the
sensitivity to τV covers a wide range of parameters in the-
oretical models, from an EIF model with a smooth curve
(ka=2mV) to a strongly inactivating iLIF model (ai=0.7).
Increasing the threshold while increasing the impact of
sodium inactivation and increasing the sharpness of the
sodium activation curve would therefore reproduce the
second component of the principal components analysis.

VI Discussion
In this paper, we have provided a study of the spiking re-
sponses of mouse cortical neurons, in the fluctuation-driven
regime, using injection of synthetic synaptic bombardment
using dynamic-clamp in vitro. In our view, the principal
contributions of the present paper are the following: (1)
to have identified, theoretically, a set of three somatic
variables that characterize the response to fluctuating
input; (2) having determined, theoretically, an analytic
template for the spike response using these variables, which
renders the experiment feasible; (3) to have designed an
experimental protocol where these variables could be fully
implemented by current and conductance injection to char-
acterize the spiking response; (4) to have performed a full
characterization of the spiking response of pyramidal cells
in juvenile mouse cortex in vitro; (5) to have identified
possible biophysical origin for the observed diversity in the
firing responses, using computational models. We discuss
below the implications of these findings, and how they
relate to previous work.

Compared to previous studies (La Camera et al., 2008),

we focused on the low rate regime and we extended the
domain of somatic in vivo-like conditions to cover a broad
range of synaptically-induced activity. In particular, we
investigated the dependency on the firing rate for high
somatic conductance and low autocorrelation time of the
membrane potential fluctuations. Scanning the response
to low autocorrelation time allowed to highlight the impact
of sodium inactivation because this is the regime where
the temporal dynamics of this features is likely to play
(τ inact ∼ 5ms).

We formulated a two-step procedure to circumvent the
issue of spatially distributed inputs in neocortical neurons
where the intermediate quantities are the properties of the
Vm fluctuations at the soma. Other investigators studied
the response to the noisy current input properties at the
soma and then addressed the problem of how dendritic
integration shape the properties of this current (La Camera
et al., 2008; Giugliano et al., 2008). Our approach can be
seen as a way to include the mean conductance effect due
to changes in background synaptic activity. The reason
we presented the data as a function of the Vm fluctuations
properties and not the quantity that the experimentalist
actually controls (the current and the conductance) is that
it allows to compare individual cells and that the spiking
response is dominated by subthreshold integration effects,
e.g. for a same variance of input current, an increasing
conductance would decrease the Vm fluctuations amplitude
by shunting effects (Kuhn et al., 2004). The effects of the
spike-related mechanisms are then difficult to de-intricate
from those subthreshold effects. Here, we used calculus
to design a stimulation protocol that allows to control
the fluctuations and therefore to focus on understanding
the single neuron computation on top of the fluctuations
properties.
Starting from a simple approximation, we showed that

bringing the problem into a phenomenological threshold
space was a simple way to describe the firing rate response
of neocortical neurons. Other investigators already re-
ported that a shift in the threshold was a convenient way
to account for increasing biophysical complexity (Brunel
and Sergi, 1998; Platkiewicz and Brette, 2010). Unlike the
two mentioned studies, the form of our phenomenological
threshold was not derived mathematically (it was arbi-
trarily taken as linear) but we believe that the descriptive
power of this very simple form further confirms the idea
that the threshold space is a convenient space to work in.
We showed that this template is able to describe the

response of neuronal models of varying complexity. We
then used this simple description to design a robust char-
acterization of the firing rate response of single neurons
experimentally. This approach, combined with the long
and stable recordings provided by the perforated patch
technique, was our way to circumvent the experimental
and theoretical difficulties of assessing a relevant firing
rate response in a low rate irregular firing regime.
We now discuss the biophysical mechanisms relevant

for the firing rate response of layer V pyramidal cells in
juvenile mice visual cortex.
First, spike frequency adaptation was shown to be an

important mechanism to the firing rate response. Notably,
all models lacking spike frequency adaptation (LIF, EIF,
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Figure 7: Variations in the expression of biophysical mechanisms explain the observed cellular het-
erogeneity in their fi ring rate response. (A) Increasing the threshold Vthre of the LIF model. Note that this
only affects the excitability and negligibly the sensitivities to µ V , σ V and τ NV . (B) Decreasing the sharpness of the
sodium activation curve in the EIF model, ka=0mV corresponds to the LIF model, ka=3.7mV corresponds to a very
smooth activation. Note the strong impact on the sensitivity to τ NV . (C) Increasing spike frequency adaptation in the
sfaLIF model, b=0 mV corresponds to the LIF model, b=35pA corresponds to a strongly adapting model. Note the
concomitant variations of the sensitivities to µ V and σ V . (D) Increasing sodium inactivation in the iLIF model, ai=0
corresponds to the LIF model, ai=0.7 corresponds to a strongly inactivating model. Note the strong impact on the
increase in sensitivity to sigmaV and τ NV . (E) Histogram of the data from the n=30 neurons.
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iLIF) had a sensitivity to µV higher than all recorded
cell. This mechanism is therefore crucial to reproduce
the attenuated sensitivity to depolarizations of layer V
pyramidal cells in mice visual cortex.
Many cells showed a weaker sensitivity to the speed of

the fluctuations than the LIF model (n=20 out of 30).
This could be reproduced in theoretical models by im-
plementing a smoother activation curve for the sodium
channels (EIF models of varying sharpness). This observa-
tions contrasts with reports from studies in more mature
pyramidal neurons in rat neocortex (Köndgen et al., 2008;
Ilin et al., 2013), where it was found that pyramidal cells
could have a very sharp activation curve that would enable
them to extract very fast input. Nevertheless, even at the
soma, the neurons of our recordings show a rather smooth
activation curve: ka ∼ 1.5 mV (not shown) from the dy-
namic I-V curve analysis (Badel et al., 2008) rendering
this possibility unlikely.
Surprisingly some cells showed a stronger sensitivity

to the speed and amplitude of the fluctuations than the
LIF model (n=10 out of 30). By penalizing slow and
low amplitude fluctuations, sodium inactivation seem to
be able to explain this phenomena. Our observation is
thus analogous to the phenomena described in Fernandez
et al. (2011) for pyramidal cells in rat CA1, where the
authors found that a high conductance state (correspond-
ing to fast fluctuations in our study) could evoke more
spikes than a low conductance state (slow fluctuations
here). Their study provides evidence for the role of fast
sodium inactivation in the sensitivity to the speed of the
fluctuations and is therefore compatible with our modeling
results. Because of its role in promoting large amplitude
and/or fast fluctuations, sodium inactivation seems to be
a key property in shaping the input-output properties of
layer V pyramidal cells in the fluctuation-driven regime.

Finally, we did not discuss the impact of other subthresh-
old non-linearities usually present in pyramidal cells such
as the Ih current. This mechanisms is weakly expressed
in the pyramidal cells of our recordings (see response to
current steps in Figure 4C). Nevertheless, we investigated
its effect on the firing response (not shown). Because of its
high pass filtering behavior, it would have an effect very
similar to the one of sodium inactivation: penalizing slow
fluctuations and therefore increasing the sensitivity to τV .

It must be noted that the present analysis was performed
on data acquired on immature neurons (P8-P13) during
the most rapid phase of electrophysiological maturation
(McCormick and Prince, 1987). We investigated whether
the firing response properties correlated with the post-
natal day of the recording (Pearson correlation). We
found no significant correlation for the three sensitivities to
fluctuations (p>0.1) and a weak correlation (c=0.4,p=0.02)
for the excitability. Various developmental stages therefore
poorly explain the observed variablity, suggesting that the
firing response heterogeneity is an intrinsic property of
the pyramidal cell population all along the P8-P13 period.
A possibility is still that this is a phenomena specific
to this post-natal period that would disappear in adult
phenotypes. Nonetheless, variability in cellular excitability
(as evaluated from action potential threshold) is routinely
found in cortical cells in adult mice (Crochet et al., 2011;

Okun et al., 2015; Yang et al., 2015), thus suggesting
that electrophysiological heterogeneity is, at least partially,
preserved in adult cortex and constitutes an important
property of cortical assemblies. Its precise extent remains
to be evaluated and should be the focus of future studies.
The main perspective for future work is to further ex-

plore the variable sensitivities of neurons to fluctuations
and their putative functional consequences. We introduced
new quantitative measures to quantify the sensitivity of
cells to various properties of the fluctuations, which sug-
gest several applications to the present work. First, the
present analysis should be combined with a model of den-
dritic integration to understand how different sensitivities
may have an impact on the cellular input-output function.
Second, at the network level, previous theoretical work
(Mejias and Longtin, 2012) investigated how variability
in the excitability level had an impact on network com-
putation, this should be generalized to the variability in
the additional quantities introduced in this paper. Our
results and measurements should thus be incorporated
into mean-field descriptions of cortical dynamics to un-
derstand the properties emerging at the population level.
Last, our study provided a simple and tractable response
function of high empirical accuracy that could be usefull
for biologically-inspired algorithmic computation.
In conclusion, the present work shows that the spik-

ing response of cortical neurons is highly inhomogeneous
in juvenile mice visual cortex, not only at the level of
neuronal excitabilities but also about their sensitivity to
fluctuations. This provides quantitative insight on how
neuronal diversity may impact population dynamics in the
low rate fluctuation-driven regime.
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Work 2: Heterogeneous firing responses
induce specific coupling to presynaptic
activity properties

French summary

Le traitement néocortical repose sur l’activation spécifique de sous-
populations dans les réseaux néocorticaux. Bien que des connectivités spé-
cifiques soient, a priori, le mécanisme principal qui sous-tend ce principe
fonctionnel, nous étudions dans ce travail un mécanisme possiblement com-
plémentaire: est-ce que des propriétés biophysiques différentes peuvent don-
ner lieu à des activations différentes.

Dans ce but, nous construisons un modèle simplifié d’arborescence den-
dritique (que nous calibrons sur des mesures in vitro) basé sur la règle de
Rall. Nous proposons une dérivation analytique pour calculer les propriétés
des fluctuations au soma en fonction des propriétés de la stimulation synap-
tique dans les dendrites. Cette description mathématique permet d’émuler
diverses formes d’activités synaptiques: balancées, non-balancées, purement
proximales, purement distales ou synchronisées.

Nous avons en effet observé que, parce qu’ils ont des propriétés bio-
physiques différentes, différents neurones répondaient différemment à ces
types d’activités. Mais l’unique contribution significative est, trivialement, la
différence d’excitabilité de ces différents neurones. Une exception intéressante
apparaît néanmoins pour l’activité proximale: une augmentation de l’activité
proximale peut augmenter l’activité pour certains neurones ou la diminuer
pour d’autres quelle que soit leur activité. Cette propriété est expliquée par
leur sensibilité à la vitesse des fluctuations que nous avions précedemment
reliée au niveau de densité des canaux sodiques et à l’inactivation des canaux
sodiques.
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Heterogenous firing responses lead to diverse couplings to
presynaptic activity
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I Abstract
Neocortical processing of sensory input rely on
the specific activation of subpopulations within
the cortical network. Though specific circuitry
is thought to be the primary mechanism under-
lying this functional principle, we investigate here
a putative complementary mechanism: whether
diverse biophysical features in single neurons con-
tribute to such differential activation.
In a previous study (Zerlaut et al., 2016), we re-

ported that, in young mice visual cortex, individ-
ual neurons differ not only in their excitability but
also in their sensitivities to the properties of the
membrane potential fluctuations. In the present
work, we analyze how this heterogeneity is trans-
lated into diverse input-ouput properties (i.e. in
the relation from presynaptic quantities to spik-
ing probability) in the context of low synchrony
population dynamics.
To this purpose, we designed a simplified mor-

phological model of layer V pyramidal neurons
with a dendritic tree following Rall’s branching
rule. We first show that we are able to calibrate
this simplified model on in vitro measurements of
somatic input impedance. We then propose an
analytical derivation for the membrane potential
fluctuations at the soma as a function of the prop-
erties of the synaptic bombardment. This mathe-
matical description allows to easily emulate var-
ious forms of presynaptic activities: either bal-
anced, unbalanced, synchronized, purely proximal
or purely distal synaptic activity.
We found that those different forms of activ-

ity led to various comodulations of the membrane
potential fluctuation properties, thus raising the
question whether individual neurons might differ-
entially couple to specific forms of activity because
of their various firing responses to fluctuations.
We indeed found such an heterogenous response,

but trivially, the only significant contribution to
the various firing response was the different levels
of cellular excitability. A notable exception ap-
peared for proximal activity: increasing proximal
activity could either promote firing response in
some cells or suppress it in some other cells what-
ever their individual excitability. This behavior
could only be explained by various sensitivities to
the speed of the fluctuations, that was previously
linked to heterogenous levels of sodium inactiva-
tion and sodium channels density.
In addition to giving quantitative insight on the

impact of various excitability levels in individual

neurons, the present study suggests a new func-
tional impact of biophysical heterogeneity: var-
ious levels of density of sodium channels and
sodium inactivation will control the response of
individual neurons to proximal activity.

II Introduction
Neocortical processing of sensory input rely on the spe-
cific activation of subpopulations within the cortical net-
work. The details of how such specific activations hap-
pen are key questions in systems neuroscience. As a
primary source for specific activation, the neocortex is
characterized by some degree of specific circuitry: neurons
differ in their afferent connectivity. A classical exam-
ple can be found in the primary cortex, layer IV simple
cells specifically sample their input from ON and OFF
cells in the thalamic nucleus (Hubel and Wiesel, 1962;
Ferster et al., 1996). Neocortical neurons also vary in their
electrophysiological properties: for example, heterogenous
levels in the action potential threshold are routinely mea-
sured in vivo (Crochet et al., 2011; Okun et al., 2015;
Yang et al., 2015). Thus, an emerging refinment is that
the sensitivity of a neuron to a given feature do not only re-
sults from its circuit specificity (relative to this feature, e.g.
orientation selectivy), but from the combination of its cir-
cuit specificity and its biophysical specificity. The somato-
sensory cortex studies of Crochet et al. (2011) and Yang
et al. (2015) illustrates this point precisely. In Crochet et
al. (2011), during active touch, the response probability
of a neuron (its sensitivity to whisker touch) follows from
the combination of the reached level of synaptically-driven
membrane potential deflection (resulting from its circuit-
specificity) and its threshold for action potential triggering
(its biophysical specificity). The same result hold for tex-
ture recognition in the study of Yang et al. (2015) where
only the combination of those two quantities was shown
to predict choice-related spiking. Those results therefore
suggest that heterogeneity in the electrophysiological or
biophysical properties of neocortical neurons might have an
impact on their functional role during sensory processing.

In the present work, we further investigate this putative
interaction in the light of the variability in the biophysical
features reported in our previous communication, namely
that single neurons in juvenile mice cortex not only vary in
their excitability (linked to the action potential threshold)
but also in their sensitivity to the properties of the mem-
brane potential fluctuations. Our previous communication
introduced those new dimensions in the biophysical speci-
ficity and we now aim at understanding their functional
impact.

To highlight the impact of the biophysical specificity, we
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will investigate single neuron responses in a framework
where the circuit specifi city of individual neurons is null, i.e.
with the hypothesis that all neurons sample statistically
equally their input.
In the context of low synchrony population dynam-

ics (Ecker et al., 2010; Renart et al., 2010), where the
neuronal response can be described as a spiking prob-
ability and the input can be described by presynaptic
firing rates, we implemented various types of presynap-
tic activity: either unbalanced (to emulate net excitatory
input), purely proximal (to emulate local network input
(Spruston, 2008)), purely distal (to emulate long-range or
thalamic input (Spruston, 2008)) or of increased synchrony
(to emulate changes in input statistics (Baudot et al., 2013;
El Boustani and Destexhe, 2009)). We found that those
various types of activity corrresponds to different variations
of the properties of the membrane potential fluctuations
(mean depolarization, standard deviation and autocorrela-
tion time). The various firing responses (as a function of
the fluctuation properties) for individual neurons found
in our previous study then led to diverse coupling to each
activity type.
We designed a theoretical model for passive dendritic

integration that allows an analytical treatment and thus
easily enables the implementation of various types of presy-
naptic activity. It is based on a symmetrical morphology
where branching follows the Rall’s 3/2 exponent rule (Rall,
1962), the analytical derivation relies on adapting the
equivalent cylinder transformation (Rall, 1962) to the
properties of the high conductance state (Destexhe et al.,
2003).

We suggested in our previous study that the properties
of the fluctuations could follow various comodulations
depending on the type of presynaptic activity, what we
demonstrate in this study.

III Results
The results are organized as follows. We first formulate
our theoretical framework for cellular computation which
arbitrarily separate the question of dendritic integration
and spiking probability. Then we present our simplified
model of dendritic morphology which we calibrated on in
vitro measurements. We derive an analytical approxima-
tion for the membrane potential fluctuations at the soma
that we compare to numerical simulations using standard
compartemental modeling. We implement various types of
presynaptic activity we analyze the individual responses of
the layer V pyramidal cells characterized in our previous
study for those various types of presynaptic activities.

III.1 A theoretical framework for single
cell computation in the fluct uation-
driven regime

In the fluctuation-driven regime, the cellular input-output
function of a neocortical neuron corresponds to the func-
tion that maps the presynaptic variables to the spiking
probability of the neuron (this is true both in a rate coding
paradigm (Shadlen and Newsome, 1994) or in a stochastic

Figure 1: A theoretical framework for single cell
computation in the fl uctuation-driven regime. (A)
Theoretical paradigm: to get the input-output function of
a single cell, we split the relation from presynaptic quan-
tities (the input) to the spiking probability (the output)
into two steps. 1) passive dendritic integration shape the
membrane potential at the soma and 2) how those fluc-
tuations are translated into spikes is captured by a firing
response function determined in vitro (Zerlaut et al., 2016)
(B) Theoretical model for dendritic integration. A single
cell is made of a lumped impedance somatic compartment
and a dendritic tree. The dendritic tree is composed of
B branches (here B=5), the branching is symmetric and
follow Rall’s 3/2 rule for the branch diameters. Synapses
are then spread all over the membrane according to physio-
logical synaptic densities. We define 3 domains: a somatic
and proximal domain as well as a distal domain, excita-
tory and inhibitory synaptic input can vary independently
in those domains. An additional variable: synaptic syn-
chrony controls the degree of coincidents synaptic inputs.
(C) A given presynaptic stimulation (here ν pe=ν de=0.2Hz,
ν pi = ν di =1.2Hz and s=0.05) creates membrane potential
fluctuations at the soma characterized by their mean µ V ,
their amplitude σ V and their autocorrelation time τ V .
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temporal coding paradigm (Rossant et al., 2011)). In ad-
dition, because our study focuses on effects resulting from
population dynamics, the presynaptic variables will have
a simple description: firing rates and a synchrony degree.

III.2 A simplifie d morphological model
for dendritic integration

The morphology of our theoretical model is a lumped
impedance somatic compartment in parallel with a den-
dritic arborization of symmetric branching following Rall’s
3/2 branching rule (see Figure 1B and MethodsV.1). This
morphology is of course a very reductive description of
pyramidal cells: it does not discriminate between the dis-
tinct apical trunk and the very dense basal arborization.
Also, branching in pyramidal cell morphologies have been
shown to deviate from Rall’s 3/2 branching rule. Nonethe-
less this simplified model contains the important ingredi-
ent for our study: the fact that the transfer impedance
to the soma of a synaptic input will strongly depend on
its location on the dendritic tree. Indeed, as observed
experimentally (Magee, 2000), distal events will be more
low-pass filtered than proximal events in this model.

We spread synapses onto this morphology according to
physiological densitities (taking lower bounds of DeFelipe
et al. (1992)) and describe synaptic events as transient
permeability changes of ion-selective channels (see Meth-
odsV.2).
We arbitrarily separate the dendritic tree into two do-

mains: a proximal and a distal domain (delimited by theur
distance to the soma, see Figure 1B). The main motivation
for this separation is to distinguish between two types of
projections onto neocortical pyramidal neurons: synaptic
inputs from the local network are thought to be more prox-
imal while the distal apical tuft receives input from more
distant cortical areas and thalamic locations (Spruston,
2008).

Following experimental evidences (Magee, 2000), we
set a higher synaptic efficacy for distal synapses. The
synaptic parameters take physiological values (Destexhe
et al., 1998) and can be found on Table 1. The passive
and morphological parameters will be estimated from in
vitro measurements.

The model has five variables. Four of them are presy-
naptic firing rates. To investigate their differential contri-
bution, the proximal and distal parts of the dendritic
trees have been separated and each of them has two
presynaptic rates corresponding to the excitatory and
inhibitory populations (hence four rate variables: ν pe ,
ν pi , ν de , ν di ). Additionally, a global synchrony variable
has been introduced for presynaptic events. This re-
produces the effect of pairwise correlations observed in
neocortical assemblies (Peyrache et al., 2012) and/or
the multi-innervation of a cell by its presynaptic af-
ferent. The synchrony degree in the presynaptic ac-
tivity has been suggested to vary with stimulus statis-
tics in the primary visual cortex (Baudot et al., 2013;
El Boustani and Destexhe, 2009) and justifies its introduc-
tion as a variable.

Figure 2: Calibrating the model on in vitro mea-
surements: the simplifi ed model and its size vari-
ations provides an approximation for the somatic
input impedance and its heterogeneity. (A) Input
impedance (left: modulus and right: phase shift) mea-
sured at the soma in intracellular recordings with sine-
wave protocols in current-clamp (inset). The color code
indicates the input resistance and is likely to result from
size variations of individual cells. (B) A medium size
model accounts for the average data and varying the size
of the dendritic tree and soma reproduces the trend in
the individual measurements. Large cells (blue) have a
lower modulus and a lower phase shift while small cells
(red) have both a higher modulus and phase shift. (C)
We obtain a map between input resistance and size of the
morphological model. (D) Representation of the medium-
size model. (E) Additionally the synaptic weights are
rescaled with respect to the cell’s somatic input resistance.
Because the mean transfer resistance to soma is linked to
the input resistance, this rescalings insures that the mean
synaptic efficacy at soms is the same for all cells.

III.3 Model calibration on in vitro mea-
surements

We will use the firing response function of our previous
study, we therefore wanted a characterization of the passive
and morphological properties on the same experimental
system: layer V pyramidal neurons in the primary visual
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cortex of young mice. To this purpose, we performed
measurements of the input impedance at the soma with
intracellular recordings in vitro in n=13 cells. The key
property on which this characterization relies is the fact
that the input impedance at the soma can not be ac-
counted for only by the isopotential somatic compartment
(i.e. a RC circuit). The input impedance also shows the
contribution of the dendritic tree in parallel to the soma
(Rall, 1962). Indeed, both the modulus and the phase of
the imput impedance show deviations from the deviations
from the RC circuit impedance (see the comparison in
Figure 2B): see for example the exponent of the power law
scaling of the modulus (-1 for the single compartment and
∼ 0.7 for pyramidal cells ) or the decreased phase shift at
100Hz.

We first average all data (shown on Figure 2A) to obtain
a mean input impedance (shown on Figure 2B) representa-
tive of a mean cellular behavior. We then perfomed a min-
imization procedure to obtain both the passive properties
and the morphology corresponding to this average behavior
(see MethodsV.9). The obtained passive properties were
compatible with standard values, e.g. the resulting specific
capacitance was 1.05 µF/cm2 close to the 1 µF/cm2 stan-
dard, thus suggesting that the procedure could capture
the physiological parameters of pyramidal cells, see Table
1 for the other parameters. Also the obtained morphol-
ogy seems realistic (B=5 generation of branches, a total
tree length of Lt = 550µm and a root branch diameter of
the tree Dt = 2.25µm) given what can be observed after
histological work (Zerlaut et al., 2016). Most importantly,
the surface area was physiologically realistic, so that when
using synaptic densities, we obtain an accurate number of
synapses. A representation of this mean morphology can
be seen on Figure 2D.
Pyramidal cells show a great variablity in input

impedance, for example their input resistance almost
spans one order of magnitude (both in the present n=13
cells, see the low frequency modulus values in Figure
2A, as well as in the firing response dataset, see bottom
in Figure 2C). We found that varying the size of the
morphological model within a given range around the
mean morphological model could partially reproduce
the observed variability in the input impedance profiles
(see Figure 2B). Size variations corresponds to a linear
comodulation of the 1) tree length Lt, 2) the diameter
of the root branch Dt and 3) the length of the somatic
compartment LS (see Figure 2C for the range of their
variations). On Figure 2A, the cells have been colored as
a function of their input resistance while on Figure 2B,
we vary the size of the size of the morphological model.
Large cells (blue, low input resistance) tend to have a
lower input resistance and phase shift than the small cells
(red, high input resistance). Note that this very simplistic
account of morphological variations only very partially
describes the observed behavior in pyramidal cells. In
particular, it strongly underestimates the variations of
phase shifts at medium and high frequencies (f>20Hz).
This discrepancy is likely to be due to the details of
dendritic arborescence that are not captured by the strong
constraints of our dendritic model (symmetric branching,
diameter rules, number of branches, etc. . . ). Despite

those discrepancies, size variations in our morphological
model constitute a reasonable first approximation to
account for cellular variety within the layer V pyramidal
cell population.
This characterization, combined with the analytical

tractability of the model (see V.8) allow us to construct
a map between input resistance at the soma and size of
the morphological model (the passive properties are set as
identical, the one fitted on the mean impedance behavior).
Thus, for each neuron in our previous "firing response
dataset", because we have its input resistance at the soma,
we can associate a given morphology. The association rule
is shown in Figure 2C.

We now check what is the number of synapses obtained
from the combination of our fitted morpholgies with the
physiological synaptic densities. We found a mean number
of synapses: 3953 ± 1748 with a ratio of excitatory to
inhibitory numbers of synapses of 4.5 ± 0.1. The fact that
those numbers fall within the physiological range offers a
validation of our approach.

III.4 An analytical approximation for
the properties of the membrane
potential fluctuations at the soma

For each cell, we now want to translate the five variables
of the model in terms of membrane potential fluctuations
properties at the soma (µV, σV, τV) on which we will
apply the cell’s firing response function. To obtain a final
map between the input (the five model variables) and the
output (the spiking probability).

Investigating dendritic integration for detailed morpho-
logical structures is made difficult by the fact that this has
to be done numerically with a relatively high spatial and
temporal discretization. In the fluctuation-driven regime,
one also needs to sample over long times (T� τV ∼ 10ms)
to obtain the statistical properties of the somatic Vm re-
sulting from dendritic integration. In addition, we have
n=27 different morphologies in this study and we will ex-
plore a five dimensional parameter space (the five variable
of our model). Under those conditions, if performed nu-
merically, the computational cost of such a study is clearly
prohibitive. We briefly describe here, why, in our simpli-
fied model, an analytical treatment is nonetheless possible
and thus render this investigation feasible (see details in
the MethodsV.5 and in the Supplementary Material). The
key ingredient is the ability to reduce the dendritic tree
to an equivalent cylinder (Rall, 1962), we only adapted
this reduction to the changes in membrane permeability
associated to the high conductance state (Destexhe et al.,
2003). Two approximations underlie our estimation: 1)
the driving force during an individual synaptic event is
fixed to the level resulting from the mean bombardment
(Kuhn et al., 2004) and 2) the effect at the soma of an
synaptic event at a distance x in a branch of generation
b, corresponds to 1/2b−1 the post-synaptic response to
the stimulation made of synchronous events at distance
x in all the 2b−1 branches of the generation b. Luckily,
the combination of those approximation is a favorable
situation. Indeed, hypothesis 1) overestimates the size of
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Figure 3: Accuracy of the analytical estimate for
the properties of the membrane potential fl uctu-
ations at the soma: comparison between numeri-
cal simulations and the analytical approximation.
Shown for the medium size model of Figure 2D. (A) In the
numerical simulation, we explicitely simulate the whole
dendritic arborization, we show the membrane potential
variations for the three locations shown on the left. (B)
Properties of the membrane potential fluctuations for dif-
ferent configuration of presynaptic activity: analytical pre-
dictions and output from numerical simulations in NEURON.
In each column, one variable is varied while the other
variables are fixed to the mean configuration value corre-
sponding to ν pe=ν de=0.2Hz, ν pi =ν di =1.2Hz and s=0.05.

post-synaptic events (because the driving force is not fixed,
it diminishes during the PSP time course) while hypothesis
2) underestimates the size of post-synaptic events (because
of the 2b− 1 − 1 synchronous events in neighboring branches,
the membrane conductance is higher than in the case of
a single event, consequently neighboring events have a
shunting effect that artificially descreases the response).
In addition, both of those approximation are likely to hold
when single events are of low amplitude compared to the
amplitude of the massive synaptic bombardment (see e.g.
Kuhn et al. (2004) for the validity of the first hypothesis).
In Figure 3, we compare the analytical approximation

to the output of numerical simulations performed with the
NEURON software (Hines and Carnevale, 1997). We varied
the five variables of the model around a mean synaptic
bombardment configuration (see next section). Some dis-
crepancies between the approximation and the simulations
appeared, in particular one can see a ∼ 1mV shift in the
standard deviation σ V of the fluctuation. Because the syn-
chrony controls the amplitude of the fluctuations (Figure
3B and Figure 4B), the analytical estimate could there-
fore be seen as an accurate estimate, modulo a shift in

the synchrony. Nonetheless, the trend in the variations
of the fluctuations as a function of the model variables
is globally kept between the analytical estimate and the
numerical simulations. This relatively good agreement
therefore shows that our analytical estimate is a valid tool
to study dendritic integration in the fluctuation-driven
regime.

III.5 Properties of the fl uctuations for
different types of presynaptic activ-
ity

We now implement various types of presynaptic activity
and investigate the properties of the resulting membrane
potential fluctuations at the soma. In addition, we rep-
resent the variations of the somatic input conductance
(relative to the leak input conductance) because, as it is
routinely measured in intracellular studies in vivo, this
quantity allows a comparison between the model and ex-
perimentally observed activity levels. On Figure 4, we
present those different protocols, on the left one can see
how the five variables of the model are comodulated for
each protocol (color coded, see bottom legend) and one
the left, one can see the resulting properties of the mem-
brane potential fluctuations. We present those results
only for the medium-size model, but it was calculated for
the morphologies associated to all cells. The variability
introduced by the various morphologies is studied in the
Supplementary Material and we found that the qualitative
behavior discussed in this section was preserved in all cells.

We first introduce a baseline level of presynaptic activity
corresponding to a low level of network activity: gsoma

tot /gL
∼ 1.7, compared to ∼ 3-4 in activated states, reviewed
in Destexhe et al. (2003). This baseline activity is a
mix of proximal and distal activity with a low degree
of synchrony (s=0.05). Similarly to (Kuhn et al., 2004),
the inhibitory activity is adjusted to obtain a balance of
the Vm fluctuations at -55mV. The firing values of this
baseline level are very low ( ν de= ν pe=0.2Hz for the excitation
and ν di =ν

p
i =1.2Hz for the inhibition) in accordance with

the sparse activity characterizing mammalian neocortical
dynamics (Crochet et al., 2011; Peyrache et al., 2012). On
top of this non-specific background activity, we will now
add a specific stimulation.
We start with unbalanced activity. We define it as

a stimulation that brings the mean membrane potential
above -55mV corresponding to the previously defined bal-
ance. The stimulation corresponds to an increase of the
excitatory synaptic activity (still running within a very
sparse range of activity, ν d

e = ν p
e ∈ [0.05, 0.5]Hz) with an

increasing inhibitory activity adjusted to linearly disrupt
nthe balance between -55mV and -52mV (see Figure 4).
The synchrony is kept constant and the activity indifferen-
tially raises in the proximal and distal part. This increase
of total activity raises the input conductance ratio close
to four. In this moderate range, the variations of the
amplitude of the fluctuations σ V remains a monotonic
increase (unlike the non-monotonic variations found in the
single-compartment study of Kuhn et al. (2004) and the
case of a proximal stimulation, see below), the fluctuations
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Figure 4: Properties of the membrane potential
fl uctuations for different types of presynaptic ac-
tivity: either unbalanced, purely proximal, purely
distal, synchronized (color code). A common base-
line configuration of low balanced proximal and distal
activity gives rise to baseline fluctuations properties, then
we increase a given type of activity. (A) Model variables
to achieve varying levels of those different types of ac-
tivity. (B) Membrane potential fluctuations properties
and somatic input conductance at the soma for the dif-
ferent protocols. Shown for the medium-size model, see
Supplementary Material for the variability introduced by
variations in cell morphologies.

gets approximately twice faster (the normalized autocor-
relation time τ V/τ 0m decays from 100% to 50%) and, of
course (by design), the mean depolarization has a linear
increase of 3mV.
We now emulate purely proximal activity. To this pur-

pose, we fix the distal presynaptic firing frequencies ( ν de
and ν di ) as well as the synchrony to their baseline levels. To
remain in a sparse activity level, we increase the proximal
excitatory activity from the baseline level to 1.7Hz and we
adjust proximal and somatic inhibitory activity to keep the
balance at the soma. This would nonethless correspond to
large network activity level, as can be seen from the input
conductance ratio (that raises up to 8). This situation
gives results comparable to the single-compartment study
of Kuhn et al. (2004). The amplitude of the fluctuations

has a non-monotonic profile and the autocorrelation time
strongly decreases. A notable difference is that, even if
we investigated high activity levels, the autocorrelation
time does not goes to zero and the amplitude of the fluc-
tuations has only a moderate decrease. This discrepancy
is due to 1) the choice of non-negligible synaptic time
constants compared to the membrane time constants (here
τ syn=5ms and τ 0m ∼ 25ms, then τ V/tau0m would saturate
at τ syn/tau0m = 20%) and 2) the fact that the synaptic
input is distributed attenuates the strong shunting effects
observed in the single compartment case.

For distal activity, we keep the proximal presynaptic
frequencies ( ν pe and ν pi ) as well as the synchrony to their
baseline levels. We increase the distal excitatory activity
from the baseline level to a moderate level: 0.7Hz. The
distal inhibitory frequency is again adjusted to keep the
balance at the soma. Here, we get a different picture
than in the proximal case, the increase in activity leads
to negligible increase of the somatic input conductance as
expected from electrotonically distant input (Koch et al.,
1990). Also, the decrease of the speed of the fluctuations is
much attenuated, the reason for this is that only the distal
part has a high conductance, consequently post-synaptic
events are strongly low-pass filtered by the proximal part
of the arborization before reaching the soma. Here, the
amplitude of the fluctuations strongly increases as a func-
tion of the input and do not show the non-monotonic
relation found for proximal input. This is explain by the
combination of the fact that 1) distal events are of higher
amplitude and 2) the shunting of post-synaptic events is
much reduced due to the relatively narrow localization of
the synaptic conductances.

Finally, we emulate an increase in the presynaptic syn-
chrony. Here, all synaptic frequencies are kept constant
with respect to the baseline level and we simply increase
the probability of coincident events for each synaptic spike
train. Because there is no change in synaptic activity, this
stimulation does not affect the input conductance ratio,
neither the mean membrane potential or the speed of the
fluctuations. However, presynaptic synchrony strongly
affects the amplitude of the fluctuations in a near linear
manner.

Note, that in addition to the sparse activity constraints
or the balance constraints, the criteria for the ranges
of the model variables was manually choosen to have
the fluctuations in the same domain. For example, we
investigated a lower activity range for the distal part than
for the proximal part to avoid an explosion of σ V, the
range for the synchrony increase follow the same criteria.

We thus demonstrated here, that, in a theoretical model
of dendritic integration, the properties of the fluctuations
( µ V, σ V, τ V) can follow various comodulations, depending
on the properties of the synaptic stimulation. This behav-
ior is what motivated to fully scan the three dimensional
space (µ V, σ V, τ V) in our previous study.
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Figure 5: Examples of the fi ring response of 4 dif-
ferent cells for the different synaptic inputs (color-
coded) shown in Figure 4. The abcissa corresponds to
the variations of the model variables shown in Figure 4A

III.6 Heterogeneous fir ing responses in-
duce diverse coupling to presynap-
tic activity

For each one of the n=27 cells of our previous study (Zer-
laut et al., 2016), we now have 1) a morphological model
and 2) a firing response function ν out = F( µ V , σ V , τ V ).
Thanks to the analytical approximation, we can translate
the five model variables (ν p

e , ν
p
i , ν

d
e , ν

d
i , s) into the station-

ary fluctuations properties ( µ V , σ V , τ V ) that, in turn, the
firing response trsanslate into a spiking probability. Thus,
we finally get the full input-output function (within our
theoretical framework) as illustrated on Figure 1A.
We show on Figure 5 the response of four cells to the

different types of presynaptic activity described in the
previous section. The responses show qualitative and
quantitative differences, we briefly discuss them here and
we perform a more rigorous analysis in the next section.

First, we can see that individual cells have a very dif-
ferent level of response to the baseline level of synaptic
activity (initial response in Figure 5). Cell 1 has a baseline
at ∼ 10-2 Hz while Cell2 or Cell3 have response above 1Hz,
i.e. two orders of magnitude above.
Importantly, those cells have different preferences for

particular types of stimulations. Cell 1 responds more to
unbalanced activity whereas Cell 2 and Cell 4 respond
more to an increase in synchrony and Cell 3 responds pref-
erentially to proximal activity (within this range). This is
what we mean by preferential coupling: individual neurons
will respond preferentially to a particular type of synaptic
activity. An even more pronounced discrepancy appears
for proximal activity: the response can be either increased
(Cell 1 and Cell 3) or decreased (Cell 2 and Cell 4) with
respect to the baseline level.
Given the relative invariance of the fluctuations prop-

erties for each cell (see previous section, despite the vari-
ous morphologies, the same input creates the same fluc-

tuations), those differences are the consequences of the
heterogeneity in the firing responses, we conclude that
heterogeneous fi ring responses induce diverse coupling to
presynaptic activity.

III.7 Biophysical origin of the heteroge-
nous couplings to presynaptic activ-
ities

We now make this analysis more quantitative by comput-
ing the responses for all n=27 cells. We get their response
to the baseline level ν bsl and their mean response change
for each stimulation type (the mean over the range of
scanned presynaptic input): δ ν ubl for the unbalanced ac-
tivity, δ ν prox for the proximal activity, δ ν dist for the distal
activity and δ ν synch for an increased sychrony. We show
the histogram of those values in the left column of Figure 6.
We also look for the origin of the individual couplings by
correlating them with the characteristics of the neuronal
firing responses (Zerlaut et al., 2016).
We first analyze the response to baseline activity ν bsl.

When log-scaled (Figure 6A), the distribution is approxi-
mately normal and spans 2-3 orders of magnitude. This
log-normal distribution of pyramidal cell firing rates during
spontaneous activity seems to be a hallmark of mammalian
neocortical dynamics (see e.g. (Peyrache et al., 2012) in
human neocortex). We investigated what properties of
the firing responses could explain this behavior, we there-
fore looked for correlations between our measures of the
firing responses in the fluctuation-driven regime (Zerlaut
et al., 2016) and the baseline responses. Not surprisingly,
we found a very strong linear correlation between the ex-
citability 〈 V eff

thre 〉 D and the baseline response level, the
other characteristics semt to have no impact (Pearson
correlations, see values in Figure 6A). Again, it should
be stressed that presynaptic connections are non-specific,
those results therefore show that the typical log-normal
distribution of firing rates could very naturally emerge as
a result of the normal distribution observed in pyramidal
cell’s excitabilities (Zerlaut et al., 2016), thus suggesting
that no specific circuitry is needed to explain this neocor-
tical property.
Despite the important differences in the fluctuations

they create (see Figure 4B), the responses over cells to
unbalanced activity, distal activity and an increased syn-
chrony share a very similar behavior. Their firing increases
show a strong heterogeneity over cells, covering two orders
of magnitude (see log y-axis on Figure 6B,D,E). This vari-
ability in responses was again highly correlated with the
excitability. Surprisingly, the response was not dependent
on any other of the characteristics of the firing response.
For example, the variability observed during an increase
in synchrony could have been linked to the to the sensi-
tivity to the standard deviation σ V 〈 ∂ ν /∂ σ V 〉 D, but this
effect was not significant (p>0.05, Pearson correlation).
This analysis therefore revealed that, for those type of
synaptic activities, those properties of the firing response
have negligible impact compared to the very strong effect
of the variability in excitabilities. In the Supplementary
Material we also investigated whether, after accounting for
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Figure 6: Diverse cellular responses to synaptic stimulation and their link to the chracteristics of their
fi ring response function. Note the logarithmic scale for the firing respones in B,C,D. (A) Diverse response to
baseline stimulation. (B) Diverse response to unbalanced activity. (C) Diverse response to proximal activity. Note
that because the response also show negative changes of firing rate, the data can not be log-scaled. Instead, they have
been rescaled by the baseline response. (D) Diverse response to distal activity. (E) Diverse response to a synchrony
increase.
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the variability due to the excitability, the residual variabil-
ity would be explained by the characteristics of the firing
response. Again, correlations were not significant, sug-
gesting that those quantities have a very low explanatory
power on the firing responses for those types of stimuli.
The response to proximal activity also showed a great

variability but with a qualitatively different behavior (Fig-
ure 6C). Notably, firing could be suppressed or increased.
This variability was independent of the excitability of the
cells but was correlated with the sensitivity to the speed of
the fluctuations 〈∂ν/∂τN

V 〉D. Indeed, the proximal stimu-
lation implies a strong variations of the fluctuations speed
(i.e. decreasing τV, while keeping moderate variations
of σV and, by design, a constant µV) thus rendering the
sensitivity to the fluctuation speed the critical quantity
for this stimulation type.

IV Discussion
In this paper, by introducing an analytically tractable den-
dritic model, we presented the final form of our theoretical
framework for single cell computation in the fluctuation-
driven regime. We used it to investigate how the hetero-
geneity in firing responses to fluctuating input shape the
diverse input-output functions of neocortical pyramidal
cells. Focusing on the regime of near asynchronous popu-
lation dynamics, we emulated various type of presynaptic
activity in a theoretical model of dendritic integration. We
found that those different types of synaptic stimulation
corresponds to various comodulations of the fluctuations
properties, and that, because of their different response to
the same fluctuations, individual neurons would respond
differently to those stimulation.

The proposed theoretical framework for single-cell com-
putation nonetheless suffers from several weaknesses. First
the dendritic morphology is not so realistic, deviations from
the symmetric branching and Rall’s branching rule can
have a significant impact on dendritic integration. Most
importantly, there is no active mechanisms in dendrites
(see London and Häusser (2005) for a review). Future
work should try to implement dendritic non-linearities
within this framework. Also it only enables to investigate
dendritic integration in a context where information is
processed through population rate (Shadlen and Newsome,
1994) and where it can be converted into temporal mod-
ulations of the membrane potential fluctuations. Future
work could also investigate an extension yoward a temporal
coding scheme. Because the core of the analytical calculus
comes from an event-based strategy, this is theoretically
feasible.

Despite those weaknesses, we believe that having an an-
alytical model for dendritic integration in the fluctuation-
driven regime is a useful tool for many problems in theoreti-
cal neuroscience. The main advantage of this model is that
you can very naturally plug in physiological parameters
(because surface area is physiological as well as transfer
resistance to soma) and still it remains analytical (though
see deviations of the approximations in Figure 3). In the
field of neural network dynamics, the literature is exclu-
sively based on the reduction to the single-compartment.

Though being approximative, our framework thus opens
the path toward an analysis of recurrent networks (see
Renart et al. (2004) for a review) for extended dendritic
structures.
Very naturally, a key quantity to explain the various

neuronal responses was the cellular excitability. Indeed,
the response to unbalanced activity, distal activity or an
increase in synchrony was strongly correlated with cellu-
lar excitability. Also the sensitivity to the speed of the
fluctuations had a crucial impact on the response to prox-
imal activity. The present analysis therefore sheds light
on the physiological relevance of the properties that we
introduced in our previous study. In all four measures
characterizing the cellular properties in the fluctuation-
driven regime that we introduced in our previous study,
only two of them seems to be physiologically relevant: the
excitability and the sensitivity to the speed of the fluctu-
ations (at least for the protocols that we tested). In our
previous communication, theoretical modeling suggested
that a high sensitivity to the speed of the fluctuations
was enable by a high level of sodium inactivation. The
present analysis thus proposes a functional role for sodium
inactivation: controlling the response level to proximal
activity.

In this study, the rescaling rule between input resistance
at the soma and the size of the morphological model has
led to the invariance in the relation between input (presy-
naptic variables) and the fluctuation properties. Thus the
heterogeneity in morpholgies (here only cell sizes) had very
little effects on the heterogeneity of cell responses. The
variability in responses could only come from the various
firing response functions. This confirms that we achieved
a situation where the circuit specificity was null and re-
sponses varied because of various biophysical specificities.

We emphasize here that the introduction of the biophys-
ical specificity is a refinment to explain the response of
individual neurons. In response to a given stimulus, the
circuit specificity relative to this stimulus will be the main
contributor to the response. Taking back the example of
the mice somato-sensory study of Crochet et al. (2011), ac-
tive touch can elicit depolarizations in a sim 20mV range
(from no depolarization to a 20mV depolarization) while
action potential threshold spans a sim 5mV range (see
Figure 5D in Crochet et al. (2011)). Thus there is a factor
about 4 between the circuit specificity (how much one neu-
ron will be depolarized in response to active touch) and
its biophysical specificity (its action potential threshold).
Nnote that we employed the term depolarization term
to simplify the discussion, this actually corresponds to a
reached level of membrane potential Vrev, see Crochet et
al. (2011).

We now speculate about a putative link between a recent
observation and the present findings. The in vivo study in
mice visual cortex of Okun et al. (2015) reported a strong
heterogeneity in the coupling between individual cell’s
responses and the locally recorded population activity. The
authors explained those observations by a variabiliy in the
local recurrent connectivity and argued that this diverse
coupling did not seem to be explained by biophysical
heterogeneity (e.g. the coupling was independent from
the action potential threshold, somehow a measure of the
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excitability). However, as local connectivity is thought to
target more proximal regions (Spruston, 2008), our study
proposes a biophysical mechanism that could contribute
to their observation. The diverse coupling to proximal
activity was explained by the sensitivity to the speed of the
fluctuations, and similarly to their results, this coupling
was found to be independent on the cellular excitability
(see Figure 6). Note that two strong hypothesis underlie
the previous reasoning: 1) that local population activity
correspond to the proximal activity modeled our study, i.e.
the activity should remains balanced, elicits strong changes
in the speed of the fluctuations while limiting variations
of σV and 2) that the biophysical heterogeneity for the
sensitivity to τV observed in young mice cortex is at least
partially preserved in adult animals. Future work could
therefore adress this hypothesis by combining recordings of
population activity with a more subtle and functionnally-
relevant analysis of single cell properties (analogous to
that of our previous communication).

V Material and Methods

V.1 Morphological model
The morphology of our theoretical model is the following (de-
picted in Figure 1B): it is made of an isopotential somatic
compartment (i.e. a leaky RC circuit) in parallel with a den-
dritic structure. The dendritic tree is an arborization of total
length Lt containing B generation of branches. For simplicity
all branches of a generation b ∈ [1, B] have a length Lt/B.
From one generation to the other, a branch divides into two
branches where the diameter of the daughter branches follows
Rall’s 3/2 branching rule (Rall, 1962): (db+1) 3

2 = (db) 3
2 /2, i.e.

db = 2− 2
3 dt where dt in the diameter of the root branch of the

dendritic tree.
The parameters of the model are presented on Table 1.

V.2 Model equations: synaptic input
and passive properties

The cable equation describes the temporal evolution and spatial
spread of the membrane potential along the branches of the
dendritic tree (Rall, 1962):

1
ri

∂2v

∂x2 = im(v, x, t) = cm
∂v

∂t
+ v − EL

rm
− isyn(v, x, t) (1)

the membrane current im(v, x, t) is a linear density of cur-
rent (the presented cable equation already includes the radial
symmetry). Though the modeled system has several branches,
the equation can be written as a single spatial dependency x
because the symmetry of the model across branches imply that
the properties of the input are identical at a given distance to
the soma.

Synaptic input is modeled by local (infinitely small) and
transient changes of membrane permeability to selective ionic
channels. Both excitatory (accounting for AMPA synapses)
and inhibitory synapses (accounting for GABAa synapses)
are considered, their reversal potential is Ee=0mV and Ei=-
80mV respectively. Each synaptic event is generated by a
shotnoise and its effect on the conductance is a jump followed
by an exponential decay. The form of the synaptic current is
therefore:





isyn(v, x, t) = ge(x, t)(Ee − v) + gi(x, t)(Ei − v)

ge(x, t) =
∑

{
xe,{te}

}
δ(x− xe)

∑

te

H(t− te)Qe(x) e−
t−te
τe

gi(x, t) =
∑

{
xi,{ti}

}
δ(x− xi)

∑

ti

H(t− ti)Qi(x) e−
t−ti
τi

(2)
where ge and gi are linear densities of conductances. Each

synapse, indexed by s, has a position xs and a set of presynaptic
events {ts}, hence the iteration over

{
xs, {ts}

}
for the sum

over synapses for each synaptic type. H is the Heaviside
step function. The presynaptic events {ts} are generated by
point processes at fixed frequencies νs with a given degree of
synchrony, see details in the next sectionV.3.

The model distinguishes two domains : a proximal domain
with the upper index p and a distal domain with the upper
index d (see Figure 1). Then the space-dependent quantities
(presynaptic frequencies, synaptic quantal and synaptic decay
time constant) can be written as :





νe(x) = νP
e + (νd

e − νp
e )H(x− lp)

νi(x) = νP
i + (νd

i − νp
i )H(x− lp)

Qe(x) = QP
e + (Qd

e −Qp
e)H(x− lp)

Qi(x) = QP
i + (Qd

i −Qp
i )H(x− lp)

(3)

The continuity of the membrane potential and of the current
at the boundaries between the proximal and distal part imply:




v(l−p , t) = v(l+p , t)
1
ri

∂v

∂x l−
p

= 1
ri

∂v

∂x l+
p

(4)

where the limit with upper index ± indicate the limit taken
from the left or the right respectively.

At the soma, (x = 0), we have a lumped impedance com-
partment. It has leaky RC circuit properties and also receives
synaptic inhibition, the somatic membrane potential therefore
follows :





CM
dV

dt
+ V − EL

RM
+GI(t) (V − Ei) + I(t) = 0

Gi(t) =
∑

Ni

∑

{ti}

Qp
i e
−−(t−ti)

τ
p
i H(t− ti)

(5)

where I(t) is the time-dependent input current from the
soma into the dendrite. RM and CM are the RC properties
of the lumped compartment (capital letters will indicate the
somatic properties throughout the calculus). Ni is the number
of somatic synapses, each of them generates a point process {ti}
of inhibitory synaptic events. The properties of the somatic
synapses (νS

i , Q
S
i ) are equivalent to the proximal ones.

This equation with the membrane potential continuity will
determine the boundary condition at the soma (x=0). We
identify V (t) = v(0, t), then I(t) is the current input into the
dendritic tree at x = 0 so it verifies:

∂v

∂x |x=0
= −ri I(t) (6)

So:
∂v

∂x |x=0
= ri

(
CM

∂v

∂t |x=0
+ v(0, t)− EL

Rm
+GI(t) (v(0, t)−Ei)

)

(7)
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Table 1: Model parameters.

Parameters Parameter Name Symbol Value Unit

passive
leak resistivity density rm 325 µS/cm2

intracellular resistivity ri 30 Ω .cm
specific capacitance cm 1.05 µF/cm2

leak reversal potential EL -65 mV
synaptic

inhibitory reversal potential Ei -80 mV
excitatory reversal potential Ee 0 mV
somatic excitatory density Dsoma

e 0 synapses/(100µm2)
somatic inhibitory density Dsoma

i 20 synapses/(100µm2)
tree excitatory density Dtree

e 30 synapses/(100µm2)
tree inhibitory density Dtree

i 6 synapses/(100µm2)
prox. excitatory weight Q0,p

e 0.7 nS
prox. inhibitory weight Q0,p

i 1. nS
distal excitatory weight Q0,d

e 1.05 nS
distal inhibitory weight Q0,d

i 1.5 nS
excitatory decay τ e 5 ms
inhibitory decay τ i 5 ms

Mean morphology
soma length LS 5.0 µm
soma diameter DS 15.0 µm
root branch diameter Dt 2.25 µm
tree length Lt 550.0 µm
branch number B 5
Proximal tree fraction fprox 7/8

Finally, the last boundary condition is that all branches
terminate with an infinite resistance that impede current flow
(sealed-end boundary conditions):

∂v

∂xx=l
= 0 (8)

Together with the biased Poisson process for event genera-
tion (see the next sectionV.3), the final set of equations that
describes the model, is therefore:





1
ri

∂2v

∂x2 = cm
∂v

∂t
+ v − EL

rm
− isyn(v, x, t)

∂v

∂x |x=0
= ri

(
CM

∂v

∂t |x=0
+

v(0, t)− EL

Rm
+GI(t) (v(0, t)− Ei)

)

v(l−p , t) = v(l+p , t)
∂v

∂x l−
p

= ∂v

∂x l+
p

∂v

∂xx=l
= 0

(9)

V.3 Model of presynaptic activity
Presynaptic activity is modelled as a discrete set of presynaptic
events. Because of the apparent random spiking activity in the
fluctuation-driven regime, the basis for the generation of those
discrete events is the Poisson process. Nonetheless, we want
to reproduce the additional degree of presynaptic synchrony
found in neocortical asssemblies that result mainly for two
phenomena: 1) pairwise correlation between neurons and 2)

muti-innervation of a cell by a presynaptic neuron. We therefore
introduce a variable s that will bias the event generation of
the Poisson process (s ∈ [0, 1]). For simplicity in the analytical
treatment, synchrony in presynaptic activity is not shared
across different synapses. We arbitrarily limit the number
of coincident events to four events, therefore for a degree of
synchrony s: single events have a probability 1 − s, double
events have a probability s − s2, triple events events have a
probability s2 − s3 and quadruple events have a probability
s3. To generate a biased Poisson process of frequency ν with a
degree of synchrony s, we therefore generate a Poisson process
of frequency:

νsynch = ν

1 + s+ s2 + s3 (10)

and we duplicate (from up to four events) each event accord-
ing to their probabilities of occurence.

This is a very simplistic and limited model of presynaptic
synchrony but it is sufficient for reproducing the impact of
synchrony on the quantities investigated in this paper (only
the variance of the membrane potential fluctuations).

V.4 Numerical implementation
The full model has been implemented numerically using the
NEURON software. The branched morhology was created and
passive cable properties were introduced (see Table 1). The
spatial discretization was nseg=30 segments per branch. On
each segment, one excitatory and one inhibitory synapse were
created, the shotnoise

frequency was then scaled according to the segment area and
the synaptic density to account for the number of synapses on
this segment (using the properties of the Poisson process, N
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synapses at frequency ν is a synapse at frequency Nν). Custom
event generation was implemented to introduce correlations
(instead of classical NetStim) and fed NetCon objects attached
to each synapses (ExpSyn synapses). Each simulation had a
time step dt=0.01ms and a length of 10s, the simulation was
repeated over 4 seeds to yield a mean and a standard deviation
in the estimate of the membrane potential fluctuations at the
soma (see Figure 3B).

V.5 Analytical derivation of the fluctua-
tion properties: strategy

We present here a derivation that provides an analytical approx-
imation for the properties of the fluctuations of the membrane
potential at the soma for our model. Summing up its properties,
we get: 1) a morphology with a lumped somatic compartement
and a dendritic tree of symmetric branching following Rall’s
rule 2) conductance-based synapses 3) independent excitatory
and inhibitory shotnoise input spread all over the morphology
4) assymetric properties between a proximal part and a distal
part and 5) a certain degree of synchrony in the pre-synaptic
spikes.

The properties of the membrane potential fluctuations at
the soma correspond to three stationary statistical properties
of the fluctuations: their mean µV , their standard deviation
σV and their global autocorrelation time τV . Following Zerlaut
et al. (2016), we emphasize that the global autocorrelation time
is a partial description of the autocorrelation function (as the
autocorrelation function is not exponential) but it constitutes
the first order description of the temporal dynamics of the
fluctuations.

A commonly adopted strategy in the fluctuation-driven
regime to obtain statistical properties is to use stochastic cal-
culus after having performed the diffusion approximation, i.e.
approximating the synaptic conductance time course by a
stochastic process, see e.g. (Tuckwell et al., 2002)). This ap-
proach is nonetheless not easily generalizable to conductance
input in an extended structure and render the inclusion of
assymetric properties (proximal vs distal) complicated. We
rather propose here an approach that combines simplifying
assumptions and analytical results from shotnoise theory, it
constitutes an extension of the approach proposed in Kuhn et
al. (2004).

For each set of synaptic stimulation {νe
p, ν

p
i , ν

d
e , ν

d
i , s}, the

derivation corresponds to the following steps:

• We transform the dendritic structure to its equivalent
cylinder. The reduction to the equivalent cylinder is
"activity-dependent" and captures the changes in mem-
brane properties that results from the mean synaptic
conductance levels.

• We derive a mean membrane potential µV (x) correspond-
ing to the stationary response to constant densities of
conductances given by the means of the synaptic stimula-
tion. We use this space-dependent membrane potential
µV (x) to fix the driving force all along the membrane for
all synapses. The relation between synaptic events and
the membrane potential now becomes linear.

• We derive a new cable equation that describes the varia-
tions of the membrane potential around this µV (x) solu-
tion.

• We calculate the effect of one synaptic event on a branch
b, b ∈ [1, B] at a distance x. We calculate the post-synaptic
membrane potential event PSPb(x, t) at the soma result-
ing from b synchronous synaptic events occuring at the

distance x from the soma. We approximate the effect of
only one event by rescaling the response by the number
of input PSPb(x, t)/b.

• We use shotnoise theory to compute the power spectrum
density of the membrane potential fluctuations resulting
from all excitatory and inhibitory synaptic events (includ-
ing the synchrony between events).

The full derivation has been conducted with the help of the
python modulus for symbolic computation: sympy (deriving
homogenous solutions is relatively simple but computing co-
efficients with the boudaries conditions give rise to complex
expressions because of the number of parameters). The re-
sulting expression were then exported to numpy functions for
numerical evaluation. The ipython notebook that presents the
full derivation is available on the following link.

V.6 From fluctuation properties to spik-
ing probability

How layer V pyramidal neurons translate membrane potential
fluctuations into a firing rate response was the focus of our pre-
vious communication, see Zerlaut et al. (2016). We re-use here
the same dataset. Note that in the main text, we removed the
n=4 cells that had too low or too high excitabilities firing rates,
as it is hard to conduct an analysis on 7 orders of magnitudes
from ν ∈ [10−5, 102]Hz (especially for data visualization). This
reduction reduced the output variations to ν ∈ [10−1, 101]Hz.
In the supplementary material, we reintroduce the discarded
cells to show that they do not affect the results of the main
text.

V.7 Experimental preparation and elec-
trophysiological recordings

Experiments were performed at Unité de Neurosciences, Infor-
mation et Complexité, Gif sur Yvette, France. Experimental
procedures with animals were performed following the instruc-
tions of the European Council Directive 2010 86/609/EEC
and its French transposition (Décret 2013/118). Experimen-
tal methods were identical to those presented in Zerlaut et
al. (2016). Very briefly, we performed intracellular recordings
in the current-clamp mode using the perforated patch tech-
nique on layer V pyramidal neurons of coronal slices of juvenile
mice primary visual cortex. For the n=13 cells presented in
this study, the access resistance RS was 13.3MΩ ±5.4, the leak
current at -75mV was -25.7pA ±17.3, cells had an input resis-
tance Rm of 387.3MΩ ±197.2 and a membrane time constant
at rest of 32.4ms ±23.1.

V.8 Input impedance characterization
To determine the input impedance at the soma, we injected
sinusoidal currents in the current-clamp mode of the ampli-
fier (Multiclamp 700B, Molecular Devices), we recorded the
membrane potential response to a current input of the form
I(t) = I sin(2π f t), we varied the frequencies f and amplitudes
$I over 40 episodes per cell. The frequency range scanned was
[0.1, 500] Hz. For each cell, we determined manually the cur-
rent amplitude I0 that gave a ∼ 5mV amplitude in a current
step protocol, from this value, the value of I was scaled expo-
nentially between I0 at 0.1 Hz and 50I0 at 500Hz. The reason
for varying the current amplitude (and not only the oscillation
frequency) in those input impedance protocols is to anticipate
for the low pass filtering of the membrane and insure that the
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membrane potential response at high frequencies is far above
the electronic noise level (∼ 0.1 mV).

After removing the first 3 periods of the oscillations (to avoid
transient effects), we fitted the membrane potential response
to the form:

V (t) = EL +RI sin(2π f t− φ) (11)
where EL, R and φ were fitted with a least-square minimiza-

tion procedure. The frequency dependent values of R and
φ give the modulus and phase shift of the input impedance
presented in Figure 2A.

V.9 Fitting passive properties and a
mean morphology

Because the variables combined discrete (the branch number)
and continuous variables, the minimization consisted in taking
the minimum over a grid of paramters. The parameter space
has 7 dimensions (given here with the considered range): the
branch number (B ∈ [2, 7]), the somatic length (LS ∈ [5, 20]µm),
the total length of the tree (Lt ∈ [300, 800]µm), the diameter of
the root branch (Dt ∈ [0.5, 4]µm), the leak specific resistance
(rm ∈ [100, 1000]µS/cm2), the intracellular resistivity (ri ∈ [10,
90]Ω.cm), the specific capacitance (cm ∈ [0.8, 1.8]µF/cm2).

Each dimension was discretized in 5 points, the scan of
the 7 dimensional space then consisted in finding the least
square residual of the product of the modulus and phase of the
impedance over this 57 points. The resulting parameters are
shown on Table 1.

VI Supplementary information

VI.1 Supplementary material
Supplementary material contains the detailed mathematical
derivation of the membrane potential fluctuations
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{νep, νpi , νde , νdi , s}

{
gpe0 = π dDe νpe τpe Qpe ; gpi0 = π dDi νpi τpi Qpi
gde0 = π dDe νde τde Qde ; gdi0 = π dDi νdi τdi Qdi

De Di

λp =

√
rm

ri(1 + rmg
p
e0 + rmg

p
i0)

λd =

√
rm

ri(1 + rmgde0 + rmgdi0)
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For a dendritic tree of total length l, whose proximal part ends at lp and
with B evenly spaced generations of branches, we de�ne the space-dependent
electrotonic constant:

λ(x) =
(
λp +H(x− lp)(λd − λp)

)
2−

1
3 bB x

l c (3)

where b.c is the �oor function. Note that λ(x) is constant on a given gener-
ation, but it decreases from generation to generation because of the decreasing
diameter along the dendritic tree. It also depends on the synaptic activity and
therefore has a discontinuity at x = lp.

Following Rall (1962), we now de�ne a dimensionless length X:

X(x) =

∫ x

0

dx

λ(x)
(4)

We de�ne L = X(l) and Lp = X(lp), the total length and proximal part
length respectively (capital letters design rescaled quantities).

3 Mean membrane potential

We derive the mean membrane potential µV (x) corresponding to the station-
ary response to constant densities of conductances given by the means of the
synaptic stimulation. We obtain the stationary equations by removing tempo-
ral derivatives in Equation, the set of equation governing this mean membrane
potential in all branches is therefore:





1

ri

∂2µv
∂x2

=
µv(x)− EL

rm
− gpe0 (µv(x)− Ee)− gp0i (µv(x)− Ei) ∀x ∈ [0, lp]

1

ri

∂2µv
∂x2

=
µv(x)− EL

rm

− gde0 (µv(x)− Ee)− gd0i (µv(x)− Ei) ∀x ∈ [lp, l]

∂µv
∂x |x=0

= ri
(µv(0)− EL

Rm
+GSi0 (µv(0)− Ei)

)

µv(l
−
p , t) = µv(l

+
p , t)

∂µv
∂x l−p

=
∂µv
∂x l+p

∂µv
∂x x=l

= 0

(5)

Because the reduction to the equivalent cylinder conserves the membrane
area and the previous equation only depends on density of currents, the equation
governing µv(x) in all branches can be transformed into an equation on an
equivalent cylinder of length L. We rescale x by λ(x) (see Equation 4) and we
obtain the equation veri�ed by µV (X):
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∂2µv
∂X2

= µv(X)− vp0 ∀X ∈ [0, Lp]

∂2µv
∂X2

= µv(X)− vd0 ∀X ∈ [Lp, L]

∂µv
∂X
|X=0 = γp

(
µv(0)− V0

)

µv(L
−
p ) = µv(L

+
p )

∂µv
∂X L−

p

=
λp

λd
∂µv
∂X L+

p

∂µv
∂X X=L

= 0

(6)

where:

vp0 =
EL + rmg

p
e0Ee + rmg

p
i0Ei

1 + rmg
p
e0 + rmg

p
i0

vd0 =
EL + rmg

d
e0Ee + rmg

d
i0Ei

1 + rmgde0 + rmgdi0

γp =
riλ

p (1 +G0
iRm)

Rm

V0 =
EL +G0

iRmEi
1 + +G0

iRm

(7)

We write the solution on the form:

{
µv(X) = vp0 +A cosh(X) + C sinh(X) ∀X ∈ [0, Lp]

µv(X) = vd0 +B cosh(X − L) +D sinh(X − L) ∀X ∈ [LpL]
(8)

� Sealed-end boundary condition at cable end implies D = 0

� Somatic boudary condition imply: C = γp (vp0 − V0 +A)

� Then v continuity imply : vp0 +A cosh(Lp) + γp (vp0 − V0 +A) sinh(Lp) =
vd0 +B cosh(Lp − L)

� Then current conservation imply: A sinh(Lp)+γ
p (vp0−V0+A) cosh(Lp) =

λp

λd B sinh(Lp − L)

We rewrite those condition on a matrix form:

(cosh(Lp) + γp sinh(Lp) − cosh(Lp − L)
sinh(Lp) + γp cosh(Lp) −λp

λd sinh(Lp − L)
)
·
(
A
B

)
=
(
vd0 − vp0 − γp (vp0 − V0) sinh(Lp)
−γp (vp0 − V0) cosh(Lp)

)

(9)

5
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And we solved this equation with the solve_linear_system_LU method of
sympy

The coe�cients A and B are given by:

A =
α

β
B =

γ

δ
(10)

where:

α = V0γ
PλD cosh (Lp) cosh (L− Lp) + V0γ

PλP sinh (Lp) sinh (L− Lp)
− γPλDvd0 cosh (Lp) cosh (L− Lp)− γPλP vd0 sinh (Lp) sinh (L− Lp)
− λP vd0 sinh (L− Lp) + λP vp0 sinh (L− Lp)

β = γPλD cosh (Lp) cosh (L− Lp) + γPλP sinh (Lp) sinh (L− Lp)+
λD sinh (Lp) cosh (L− Lp) + λP sinh (L− Lp) cosh (Lp)

γ = λD
(
V0γ

P + γP vd0 cosh (Lp)− γP vd0
− γP vp0 cosh (Lp) + vd0 sinh (Lp)− vp0 sinh (Lp)

)

δ = γPλD cosh (Lp) cosh (L− Lp) + γPλP sinh (Lp) sinh (L− Lp)
+ λD sinh (Lp) cosh (L− Lp) + λP sinh (L− Lp) cosh (Lp)

(11)

4 Membrane potential response to a synaptic

event

We now look for the response to nsrc = bB xsrc

l c synaptic events at position
xsrc on all branches of the generation of xsrc, those events have a conductance
g(t)/nsrc and reversal potential Erev. We make the hypothesis that the initial
condition correspond to the stationary mean membrane potential µV (x). This
potential will also be used to �x the driving force at the synapse to µv(xsrc)−
Erev, this linearizes the equation and will allow an analytical treatment. To
derive the equation for the response around the mean µv(x), we rewrite Equation
9 in main text with v(x, t) = δv(x, t)+µv(x), we obtain the equation for δv(x, t):
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1

ri

∂2δv

∂x2
= cm

∂δv

∂t
+
δv

rm
(1 + rm g

p
e0 + rm g

p
i0)

− δ(x− xsrc)
(
µv(xsrc)− Erev

) g(t)
nsrc

, ∀x ∈ [0, lp]

1

ri

∂2δv

∂x2
= cm

∂δv

∂t
+
δv

rm
(1 + rm g

d
e0 + rm g

d
i0)

− δ(x− xsrc)
(
µv(xsrc)− Erev

) g(t)
nsrc

, ∀x ∈ [lp, l]

1

ri

∂δv

∂x |x=0
= CM

∂δv

∂t |x=0
+
δv(0, t)

Rm
(1 +RmG

S
i0)

δv(l−p , t) = δv(l+p , t)

∂δv

∂x l−p
=
∂δv

∂x l+p

∂δv

∂x x=l
= 0

(12)

Because this synaptic event is concomitant in all branches at distance xsrc,
we can use again the reduction to the equivalent cylinder (note that the event
has now a weight multiplied by nsrc so that its conductance becomes g(t)), we
obtain:





∂2δv

∂X2
=
(
τpm + (τdm − τpm)H(X − Lp)

)∂δv
∂t

+ δv

−
(
µv(Xsrc)− Erev

)
δ(X −Xsrc)×

g(t)

cm

(τpm
λp

+ (
τdm
λd
− τpm
λp

)H(Xsrc − Lp)
)

∂δv

∂X |X=0
= γp

(
τSm

∂δv

∂t |X=0
+ δv(0, t)

)

δv(L−p , t) = δv(L+
p , t)

∂δv

∂X L−
p

=
λp

λd
∂δv

∂X L+
p

∂δv

∂X X=L
= 0

(13)

where we have introduced the following time constants:

τDm =
rm cm

1 + rm gde0 + rm gdi0

τPm =
rm cm

1 + rm g
p
e0 + rm g

p
i0

τSm =
Rm Cm

1 +RmGSi0

(14)
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Now used distribution theory (see Appel (2008) for a comprehensive text-
book) to translate the synaptic input into boundary conditions at Xsrc, phys-
ically this corresponds to: 1) the continuity of the membrane potential and 2)
the discontinuity of the current resulting from the synaptic input.





δv(X−src, f) = δv(X+
src, f)

∂δv

∂X X+
src

− ∂δv

∂X X−
src

= −
(
µv(Xsrc)− Erev

)
×

(τpm
λp

+ (
τdm
λd
− τpm
λp

)H(Xsrc − Lp)
) g(t)
cm

(15)

We will solve Equation 13 by using Fourier analysis. We take the following
convention for the Fourier transform:

F̂ (f) =

∫

R
F (t) e−2iπft dt (16)

We Fourier transform the set of Equations 13, we obtain:





∂2δ̂v

∂X2
=
(
αpf + (αdf − αpf )H(X − Lp)

)2
δ̂v

∂δ̂v

∂X |X=0
= γpf δ̂v(0, f)

δ̂v(X−src, f) = δ̂v(X+
src, f)

∂δ̂v

∂X X−
src

=
∂δ̂v

∂X X+
src

−
(
µv(Xsrc)− Erev

)
×

(
rpf + (rdf − rpf )H(Xsrc − Lp)

) ˆg(f)

δ̂v(L−p , f) = δ̂v(L+
p , f)

∂δ̂v

∂X L−
p

=
λp

λd
∂δ̂v

∂X L+
p

∂δ̂v

∂X X=L
= 0

(17)

where

αpf =
√

1 + 2iπfτpm rpf =
τpm
cm λp

αdf =
√

1 + 2iπfτdm rdf =
τdm
cm λd

γpf = γp (1 + 2iπfτSm)

(18)

To obtain the solution, we need to split the solution into two cases:

1. Xsrc ≤ Lp

8
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Let's write the solution to this equation as the form (already including the
boundary conditions at X = 0 and X = L):

δ̂v(X,Xsrc, f) =




Af (Xsrc)
(
cosh(αpf X) + γp sinh(αpf X)

)

if :0 ≤ X ≤ Xsrc ≤ Lp ≤ L
Bf (Xsrc) cosh(α

p
f (X − Lp)) + Cf (Xsrc) sinh(α

p
f (X − Lp))

if :0 ≤ Xsrc ≤ X ≤ Lp ≤ L
Df (Xsrc) cosh(α

d
f (X − L))

if :0 ≤ Xsrc ≤ Lp ≤ X ≤ L

(19)

We write the 4 conditions correspondingto the conditions in Xsrc and Lp
to get Af , Bf , Cf , Df . On a matrix form, this gives:

M =




cosh(αpf Xsrc) + γpf sinh(αpf Xsrc) − cosh(αpf (Xsrc − Lp)) − sinh(αpf (Xsrc − Lp)) 0

αpf
(
sinh(αpf Xsrc) + γpf cosh(αpf Xsrc)

)
−αpf sinh(α

p
f (Xsrc − Lp)) −αpf cosh(α

p
f (Xsrc − Lp)) 0

0 1 0 − cosh(αdf (Lp − L))

0 0 αpf −αdf λ
p

λd sinh(αdf (Lp − L))




(20)

M ·




Af
Bf
Cf
Df


 =




0
−rpfIf

0
0


 (21)

And we will solve it with the solve_linear_system_LU method of sympy.
For the Af (Xsrc) coe�cient, we obtain:

Af (Xsrc) =
a1f (Xsrc)

a2f (Xsrc)
(22)

with:
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a1f (Xsrc) = Ifr
P
f

(
−αDf λP cosh

(
LαDf − LpαDf − LpαPf +Xsα

P
f

)

+ αDf λ
P cosh

(
LαDf − LpαDf + Lpα

P
f −Xsα

P
f

)

+ αPf λ
D cosh

(
LαDf − LpαDf − LpαPf +Xsα

P
f

)

+ αPf λ
D cosh

(
LαDf − LpαDf + Lpα

P
f −Xsα

P
f

)

a2f (Xsrc) = αPf
(
−αDf γPf λP cosh

(
−LαDf + Lpα

D
f + Lpα

P
f

)

+ αDf γ
P
f λ

P cosh
(
LαDf − LpαDf + Lpα

P
f

)
−

αDf λ
P sinh

(
−LαDf + Lpα

D
f + Lpα

P
f

)

+ αDf λ
P sinh

(
LαDf − LpαDf + Lpα

P
f

)

+ αPf γ
P
f λ

D cosh
(
−LαDf + Lpα

D
f + Lpα

P
f

)

+ αPf γ
P
f λ

D cosh
(
LαDf − LpαDf + Lpα

P
f

)

+ αPf λ
D sinh

(
−LαDf + Lpα

D
f + Lpα

P
f

)

+ αPf λ
D sinh

(
LαDf − LpαDf + Lpα

P
f

)

(23)

2. $ Lp ≤ Xsrc$

Let's write the solution to this equation as the form (already including the
boundary conditions at X = 0 and X = L:

δ̂v(X,Xsrc, f) =




Ef (Xsrc)
(
cosh(αpf X) + γp sinh(αpf X)

)

if :0 ≤ X ≤ Lp ≤ Xsrc ≤ L
Ff (Xsrc) cosh(α

d
f (X − Lp)) +Gf (Xsrc) sinh(α

d
f (X − Lp))

if :0 ≤ Lp ≤ X ≤ Xsrc ≤ L
Hf (Xsrc) cosh(α

d
f (X − L))

if :0 ≤ Lp ≤ Xsrc ≤ X ≤ L

(24)

We write the 4 conditions correspondingto the conditions in Xsrc and Lp
to get Af , Bf , Cf , Df . On a matrix form, this gives:

We rewrite this condition on a matrix form:

M2 =




cosh(αpf Lp) + γpf sinh(αpf Lp) −1 0 0 0

αpf
(
sinh(αpf Lp) + γpf cosh(αpf Lp)

)
0 −αdf λ

p

λd 0

0 cosh(αdf (Xsrc − Lp)) sinh(αdf (Xsrc − Lp)) − cosh(αdf (Xsrc − L))

0 αdf sinh(αdf (Xsrc − Lp)) αdf cosh(αdf (Xsrc − Lp)) −αdf sinh(αdf (Xsrc − L))




(25)
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M ·




Ef
Ff
Gf
Hf


 =




0
0
0

−rdfIf


 (26)

And we will solve it with the solve_linear_system_LU method of sympy.
For the Ef (Xsrc) coe�cient, we obtain:

Ef (Xsrc) =
e1f (Xsrc)

e2f (Xsrc)
(27)

with:

e1f (Xsrc) = 2Ifλ
P rDf cosh

(
αDf (L−Xs)

)

e2f (Xsrc) = −αDf γPf λP cosh
(
−LαDf + Lpα

D
f + Lpα

P
f

)

+ αDf γ
P
f λ

P cosh
(
LαDf − LpαDf + Lpα

P
f

)

− αDf λP sinh
(
−LαDf + Lpα

D
f + Lpα

P
f

)

+ αDf λ
P sinh

(
LαDf − LpαDf + Lpα

P
f

)

+ αPf γ
P
f λ

D cosh
(
−LαDf + Lpα

D
f + Lpα

P
f

)

+ αPf γ
P
f λ

D cosh
(
LαDf − LpαDf + Lpα

P
f

)

+ αPf λ
D sinh

(
−LαDf + Lpα

D
f + Lpα

P
f

)

+ αPf λ
D sinh

(
LαDf − LpαDf + Lpα

P
f

)

(28)

3. PSP at the soma

The main text writes a solution for the PSP at soma of the form:

δ̂v(X = 0, Xsrc, f) = Kf (Xsrc)
(
µv(Xsrc)− Erev

) ˆg(f) (29)

The correspondance with the previous calculus is to take a unitary current
If = 1 and Kf (Xsrc) given by:

Kf (Xsrc) =

{
Af (Xsrc)∀Xsrc ∈ [0, Lp]

Ef (Xsrc)∀Xsrc ∈ [Lp, L]
(30)

5 Variability in the �uctuations properties intro-

duced by the di�erent morphologies

In Figure 2, we investigate what is the variability introduced by the di�erent
morphologies for the implemented protocols. We �x (νpe , ν

p
e , s) and µV, the
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Work 3: Gain Modulation of Synaptic Inputs
by Network State in Auditory Cortex In Vivo

Reference: Reig, R., Zerlaut, Y., Vergara, R., Destexhe, A., & Sanchez-
Vives, M. V. (2015). Gain modulation of synaptic inputs by network state
in auditory cortex in vivo. The Journal of Neuroscience : The Official Jour-
nal of the Society for Neuroscience, 35(6), 2689–702. 10.1523/JNEUROSCI.
2004-14.2015

French summary

Les circuits récurrents corticaux génèrent de l’activité spontanée qui os-
cille entre état activé et état quiescent dans le sommeil à ondes lentes ou sous
anésthésie. Ces différents états d’activation modulent le gain de la transm-
mission synaptique. Cependant la modulation imposée par les états activés
est disparate dans la littérature, on reporte dans certains cas une augmen-
tation du gain et une diminution dans d’autres cas. Dans ce travail, nous
testons l’hypothèse que ces différentes observations dépendent de l’intensité
de la stimulation. Nous avons comparé les potentiels post-synaptiques dans
les états activés et quiescents en réponse à de stimulations corticales, thala-
miques et auditives dans le cortex auditif du rat. Dans les états activés, les
faibles réponses étaient potentiées par l’état activé alors que pour des fortes
intensités, elles étaient atténuées par rapport à l’état quiescent. Nous avons
examiné de manière théorique comment un haut niveau d’activité spontanée
impactait les réponses post-synaptiques dans le cortex. Nous avons observé
que la compétition entre le recrutement dans le réseau cortical activé et les
effets de conductances prédisait une relation non-triviale entre l’intensité des
stimuli et l’amplitude des réponses. Ce scénario explique quantitativement
et qualitativement les observations expérimentales.
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Systems/Circuits

Gain Modulation of Synaptic Inputs by Network State in
Auditory Cortex In Vivo

X Ramon Reig,1 X Yann Zerlaut,2 X Ramiro Vergara,1 X Alain Destexhe,2 and X Maria V. Sanchez-Vives1,3

1Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain, 2Unité de Neurosciences, Information et Complexité, CNRS, 91198 Gif
sur Yvette, France, and 3Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain

The cortical network recurrent circuitry generates spontaneous activity organized into Up (active) and Down (quiescent) states during
slow-wave sleep or anesthesia. These different states of cortical activation gain modulate synaptic transmission. However, the reported
modulation that Up states impose on synaptic inputs is disparate in the literature, including both increases and decreases of responsive-
ness. Here, we tested the hypothesis that such disparate observations may depend on the intensity of the stimulation. By means of
intracellular recordings, we studied synaptic transmission during Up and Down states in rat auditory cortex in vivo. Synaptic potentials
were evoked either by auditory or electrical (thalamocortical, intracortical) stimulation while randomly varying the intensity of the
stimulus. Synaptic potentials evoked by the same stimulus intensity were compared in Up/Down states. Up states had a scaling effect on
the stimulus-evoked synaptic responses: the amplitude of weaker responses was potentiated whereas that of larger responses was
maintained or decreased with respect to the amplitude during Down states. We used a computational model to explore the potential
mechanisms explaining this nontrivial stimulus–response relationship. During Up/Down states, there is different excitability in the
network and the neuronal conductance varies. We demonstrate that the competition between presynaptic recruitment and the changing
conductance might be the central mechanism explaining the experimentally observed stimulus–response relationships. We conclude
that the effect that cortical network activation has on synaptic transmission is not constant but contingent on the strength of the
stimulation, with a larger modulation for stimuli involving both thalamic and cortical networks.

Key words: cerebral cortex; computational model; oscillations; synaptic inputs; thalamocortical; Up states

Introduction
Cortical spontaneous activity varies with the brain’s functional
state. During slow-wave sleep and anesthesia, this activity is or-
ganized in slow oscillations (Steriade et al., 1993) generated
through the recurrent connectivity between cortical neurons
(Lorente de Nó, 1938). These slow oscillations are characterized
by active periods of high synaptic activity, depolarized membrane
potential, and neuronal firing (Up states) interspersed with silent
periods of low synaptic activity and hyperpolarized membrane
potential or Down states (Metherate and Ashe, 1993; Steriade et
al., 1993; Cowan and Wilson, 1994; Sanchez-Vives and McCor-
mick, 2000; Petersen et al., 2003). Network activity has an impact
on different properties of the network itself, including intrinsic

(Paré et al., 1998; Steriade, 2001) and circuit properties (Boud-
reau and Ferster, 2005; Crochet et al., 2005; Crochet et al., 2006;
Reig et al., 2006; Haider et al., 2007; Reig and Sanchez-Vives,
2007). One of these network properties is synaptic responsive-
ness. Different studies have analyzed how cortical states affect
synaptic responsiveness (Timofeev et al., 1996) and sensory
transmission (Azouz and Gray, 1999; Petersen et al., 2003; Sach-
dev et al., 2004; Crochet et al., 2005; Crochet et al., 2006; Haider et
al., 2007; Hasenstaub et al., 2007; Reig and Sanchez-Vives, 2007;
Rigas and Castro-Alamancos, 2009), yielding diverse and some-
times contradictory results. Depending on the cortical areas and
on the protocols used, Up states have been reported either to
decrease (Petersen et al., 2003; Sachdev et al., 2004; Crochet et al.,
2006; Hasenstaub et al., 2007; Rigas and Castro-Alamancos,
2009) or to increase (Azouz and Gray, 1999; Haider et al., 2007;
Reig and Sanchez-Vives, 2007) cortical responsiveness with re-
spect to Down states.

Understanding gain modulation during Up states is also im-
portant because cortical dynamics during wakefulness shares
properties with Up states (Steriade et al., 2001; Destexhe et al.,
2007; Constantinople and Bruno, 2011). Computational models
suggest that several features of Up states may provide interesting
computational properties such as making neurons probabilistic
and thus controlling their gain and transfer function (Hô and
Destexhe, 2000; Destexhe and Contreras, 2006). It is therefore of
primary importance to understand such interactions.
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To understand quantitatively the neuronal transfer function
during Up states, we recorded intracellularly from A1 (auditory
cortex) neurons in vivo synaptic potentials evoked by either au-
ditory or electrical stimulation (intracortical or thalamocortical)
over a wide range of intensities. The activation of cortical neuro-
nal populations by auditory stimuli and during spontaneous ac-
tivity under anesthesia has been described previously (Luczak et
al., 2009; Sakata and Harris, 2009). However, the extent to which
cortical activation imposes a modulation of synaptic inputs de-
pending on the intensity of the stimulus has not been reported.
We find that Up states can gain-modulate synaptic responses by
either enhancing or decreasing synaptic potentials contingent on
the intensity of stimulation. The result is a global scaling of the
evoked responses. To understand the network mechanisms me-
diating this stimulus–response relationship, we modeled differ-
ent ensembles of the full recurrent and feedforward sensory
pathway to account for the auditory, intracortical, and thalamo-
cortical stimulation. We provide a quantitative mechanism that
produces the gain modulation of synaptic responses during Up
states.

Materials and Methods
Ethics approval
The experiments described here have been approved by the Animal Eth-
ics Committee of the University of Barcelona under the supervision of
the Autonomous Government of Catalonia and following the guidelines
of the European Communities Council (86/609/EEC).

Intracellular recordings from rat auditory cortex
Adult male Wistar rats (200 –340 g; n � 29) were used for recordings in
auditory cortex (A1). Anesthesia was induced by injection of ketamine
(80 mg/kg) and xylazine (8 mg/kg). Anesthesia levels were monitored by
the heart rate (240 –300 bpm), blood O2 concentration (95%), the re-
cording of low-frequency electroencephalogram, and the absence of re-
flexes. The animals were not paralyzed. The maintenance dose of
ketamine was 30 –50 mg/kg/h and xylazine 1–2 mg/kg/h. Intraperitoneal
maintenance doses of anesthesia were given with intervals of 30 –70 min
and an overdose was given at the end of the experiment. Rectal temper-
ature was maintained at 37°C during the experiment. Once in the stereo-
taxic apparatus, a craniotomy (2 � 2 mm) was made at coordinates AP
�4.30 from bregma, L 7 mm (Paxinos and Watson, 2005). After opening
the dura, intracellular recordings were obtained with borosilicate glass
capillaries 1 mm outer diameter � 0.5 inner diameter (Harvard Appara-
tus). For stability and to avoid desiccation agar (4%) was used to cover
the area.

Sharp intracellular recording electrodes were formed on a Sutter In-
struments P-97 micropipette puller from medium-walled glass and bev-
eled to final resistances of 50 –100 M�. Micropipettes were filled with 2 M

potassium acetate. Only very stable recordings were included (average
duration 58 min) and they all had overshooting action potentials and a
stable input resistance. Recordings were digitized, acquired, and ana-
lyzed using a data acquisition interface and software from Cambridge
Electronic Design and its commercial software Spike 2. Further details of
the procedure can be found in Reig and Sanchez-Vives (2007).

Conductance measurement
By means of intracellular injection of DC current, the membrane poten-
tial of auditory neurons was current clamped at different membrane
potentials as in Compte et al. (2009). The bridge was carefully balanced at
each DC level to compensate for the electrode resistance. The distribution of
subthreshold membrane potential values was obtained for each membrane
potential level, yielding a bimodal distribution corresponding to Up and
Down states (Fig. 1D). An I–V relationship between the Up and Down state
peak values of the bimodal distribution and the value of the DC-injected
current was built, the inverse of the slope being the conductance.

Electrical stimulation
Electrical stimulation (0.2 ms, 10 –300 �A) was delivered by means of a
WPI A-360 stimulus isolation unit that prevents electrode polarization.

Thalamocortical (TC) or intracortical (IC) fibers were stimulated with
bipolar electrodes made of sharpened tungsten wires. The stimulation
electrode was placed in the medial geniculate nucleus of the thalamus
(�5.6 mm AP, �3.4 mm L, 5.2– 6.2 mm D). To ensure that the location
was correct, first, the electrode was used to record thalamic responses to
auditory stimulation and then it was switched to the stimulation mode.
Thalamocortical electrical stimulation evoked onset postsynaptic poten-
tials with latencies ranging between 2.3 and 5 ms. Intracortical electrical
stimulation was delivered by means of a bipolar electrode in the vicinity
of the intracellularly recorded neuron (0.5–1.5 mm as in Reig et al.,
2006). This stimulation evoked postsynaptic potentials with latencies
ranging between 1.7 and 3.5 ms.

In the series of electrical stimulation, for each one of the intensities, a
minimum of 100 shocks were given at 0.2– 0.33 Hz. The stimulation
could randomly occur during Up or Down states and were sorted out
during the offline analysis.

Auditory stimulation
A click of white noise of 5 ms of duration was used to stimulate. White
noise was generated by a MATLAB sequencer and recorded with the data
acquisition system. Stimuli onset and duration were controlled by a com-
puter. The stereotaxic frame had hollow ear bars and the loudspeakers
were placed inside them (Sanchez-Vives et al., 2006). Therefore, stimuli
were delivered binaurally through a closed acoustic system based on Sony
MDR E-868 earphones housed in a metal enclosure and surrounded by
damping material that fit into the Perspex specula (Rees et al., 1997). The
output of the system for each stimulus was calibrated to be between 55
and 85 dBSPL. We used a series of 90 –100 clicks at 0.2– 0.33 Hz for each
intensity value, the stimulus occurring on different phases of the oscilla-
tory cycle. The analysis was done offline and the synaptic responses were
sorted for different periods of the cycle (Up states, Down states, etc).

Detection of Up and Down states
Up and Down states were detected using an algorithm described in
Seamari et al. (2007). This algorithm calculates the two exponential mov-
ing averages of the membrane potential, a slow and a fast one. The size of
the windows for averaging are calculated for each particular signal and
the system uses the information of the previous dynamics of the system to
predict the future transitions. The crossing of the slow and fast moving
averages provides a good estimation of the Up/Down states transitions. A
more precise method is also integrated to better determine the moment
of Up/Down transition based on the momentum. These two combined
methods are reliable and work better than other detection methods even
in noisy conditions (Seamari et al., 2007). The classification of responses
was done following Reig and Sanchez-Vives (2007) into those occurring
during Up and during Down states. This classification of responses was
checked on a single response basis by hand.

Analysis
The amplitude of the postsynaptic potentials (PSPs) was measured at the
peak, which had latencies between 4 and 10 ms. PSP slope and amplitude
were highly correlated (Reig et al., 2006). When normalization was nec-
essary to compare synaptic potentials evoked in Up versus Down states, it
was done with respect to the amplitude of the PSPs during Down states.
Next, the normalized values for individual neurons were averaged to provide
population data; these values were depicted in the scatter diagrams in the
different figures. Absolute values are also provided. Data are given in the text
as mean � SD. Error bars in the figures correspond to the SEM.

Model
In this section, we propose a quantitative description of how the cell and
network properties during Up and Down states shape the postsynaptic
response to a given stimulation. Two cases are considered, intracortical
and thalamocortical stimulation. We performed this study using analyt-
ical approximations of the different processes.

The general strategy that we adopt is related to the probabilistic theo-
retical framework that was described previously (Hô and Destexhe, 2000;
Destexhe and Contreras, 2006).

The information needed to derive the effect of the stimulus on a net-
work is as follows. At the cellular level, we need to know the relationship
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between the input intensity and the firing probability, this is the “activa-
tion function.” A given stimulus has a differential effect over cells within
the network (e.g., in the case of an electrical stimulation, the distance to
the electrode or in the case of an afferent network the wiring realizations
to the different cells), so we will compute the histogram over cells of the
effect of this stimulus. We will finally apply the “activation function” on
the histogram of the stimulus effect to get the number of spiking cells and
then derive the postsynaptic response.

Cell properties. We use the Leaky Integrate and Fire model (later
adapted from Lapicque (1907)) to describe the neurons. For simplicity,
the three populations considered here (excitatory cortical neurons, in-
hibitory cortical neurons, and thalamocortical neurons) have identical
properties and the parameters can be found in Table 1.

The subthreshold dynamics results from passive and synaptic cur-
rents. The passive properties are described by a simple RC circuit, the
capacitive current is characterized by a membrane capacitance Cm, the

leak current is set by a conductance gL and a reversal potential EL.
The membrane equation below threshold is therefore:

Cm

dV

dt
� gL �EL � V� � Isyn�V, t� (1)

The synaptic currents Isyn�V, t� integrate excitatory and inhibitory input
with reversal potentials Ee and Ei. Their respective conductances, Ge and
Gi, will be determined by the sum of the background and stimulus-
evoked activity. The synaptic current is given by:

Isyn�V, t� � Ge�t� � �Ee � V� � Gi�t� � �Ei � V� (2)

The spiking mechanism is described by a simple threshold crossing: we
consider that a spike is emitted when V�t� reaches the threshold mem-
brane potential value Vthre and from that moment the neuron is at rest
during a period �ref before the subthreshold dynamics can restart.

Table 1. Parameters of the model

Name Symbol Value

Cellular properties
Leak conductance gL 10 nS
Membrane capacitance Cm 200 pF
Leak reversal potential EL �65 mV
Threshold potential Vthre �50 mV
Refractory period �ref 5 ms

Synapses
Excitatory cortical weight Qe,cort 0.4 nS
Inhibitory cortical weight Qi,cort 1.2 nS
Excitatory thalamic weight Qe,thal 2 nS
Excitatory time constant �e 7.3 ms
Inhibitory time constant �i 5 ms
Excitatory reversal potential Ee 0 mV
Inhibitory reversal potential Ei �80 mV

Background activity: cortical network
Mean excitatory conductance: Up state g�e

Up 7 nS
Mean inhibitory conductance: Up state g�i

Up 20 nS
Standard deviation excitatory conductance: Up state �e

Up 3 nS
Standard deviation inhibitory conductance: Up state �i

Up 8 nS
Mean excitatory conductance: Down state g�e

Down 1 nS
Mean inhibitory conductance: Down state g�i

Down 2 nS
Standard deviation excitatory conductance: Down state �e

Down 0.1 nS
Standard deviation inhibitory conductance: Down state �i

Down 0.5 nS
Background activity: thalamic network

Mean membrane potential: Up state �V,thal
Up �61 mV

Standard deviation membrane potential: Up state �V,thal
Up 5 mV

Mean membrane potential: Down state �V,thal
Down �64 mV

Standard deviation membrane potential: Down state �V,thal
Down 4 mV

Network architecture
Cortical recurrent connectivity probability �cort 2%
Thalamocortical afference probability �thal 2%
Number of cells: cortical network Ncort 10000
Percentage of cortical inhibitory neurons g 25%
Number of excitatory cells: thalamic network Nthal 2000

Electrical stimulation model
Cortical maximal radius rmax,cort 1 mm
Cortical minimal radius r0,cort 300 �m
Depolarization relation: cortical stimulation 	Vcort�I, r�

0.6 �
I

1 � � r

r0,cort
�2 � 1

Thalamic maximal radius rmax,thal 200 �m
Thalamic minimal radius r0,thal 60 �m
Depolarization relation: thalamic stimulation 	Vthal�I, r�

0.056 �
I � 316.2

1 � � r

r0,thal
�2 � 315.3
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Architecture of the network models. The cortical network is modeled as
a random recurrent network of Ncort � 10000 cells, where g � 25% are
inhibitory neurons and with a probability of connection �cort � 2%. In
the thalamic network, we consider only the Nthal � 2000 excitatory
thalamocortical cells that project onto the cortical network with a con-
nection probability �thal � 2%.

Background cortical activity. The cortical network activity is made of
excitatory and inhibitory recurrent input and we describe this back-
ground input as Ornstein-Uhlenbeck processes. So, in general:

dGsyn
bg � �gsyn � Gsyn

bg � �
dt

�syn
� �2�syn�syn � dW (3)

where dW is a Wiener process and syn � 
e, i� is the index for the exci-
tation and the inhibition, respectively.

This input varies considerably between Up and Down states. The Up
state is characterized by a very high synaptic bombardment, whereas the
synaptic activity is almost null in the Down state. This can be seen in
the values of Table 1. The autocorrelation time �syn is taken as the
same as the synaptic decay time in the explicit model of synaptic
conductance time course.

The membrane potential fluctuations resulting from this input have been
studied analytically (Richardson, 2004; Rudolph and Destexhe, 2005) and
we use the Gaussian approximation formulated in Rudolph et al. (2004) for
the stationary membrane potential distribution 	s�V� as follows:

	S�V� �
1

�V
S �2


e

��V��V
S �2

�2�V
S (4)

With the mean �V
S , standard deviation �V

S , and effective membrane time
constant �m

S given by the following:

�
�V

S �
g� e

SEe � g� i
SEi � gLEL

g� e
S � g� i

S � gL

�m
S �

Cm

g� e
S � g� i

S � gL

��V
S �2 � ��e

S�m
S

Cm
� 2 �e

�m
S � �e

��V
S � Ee�

2 � ��i
S�m

S

Cm
� 2 �i

�m
S � �i

��V
S � Ei�

2

(5)

Here, S indexes the dependency of the network state, either Up or Down.
Background thalamic activity. We do not consider the effect of input

within the thalamic network, so we do not explicitly describe the conduc-
tance state. The effect of the network state (Up or Down) will be de-
scribed by a change of the Gaussian membrane potential distribution
(Table 1); the mean and variance of the membrane potential are slightly
increased in the Up state with respect to the Down state (Contreras et al.,
1996).

Effect of the electrical stimulation. Our goal is to translate the electrical
current injected through the bipolar stimulation into an histogram of
depolarization across the considered network (cortical or thalamic).
Modeling the complexity of such a phenomenon is not straightforward
(Ranck, 1975), so we adopt an heuristic approach and derive simple
expressions based on qualitative features. The parameters of those ex-
pressions are manually adjusted to bring the output of the model to
approximate to the experimentally observed response in the Down state.

Our area of interest is the local network around the electrode, a net-
work that is delimited by a crown of minimal radius (r0) and maximal
radius (rmax) of 0.3 and 1 mm, respectively, for the cortical network and
60 and 200 �m, respectively, for the thalamic network. The neuronal
depolarization is linked to the intensity of the extracellular electric field
(Ranck, 1975). Given the bipolar nature of the stimulation and the ap-
proximately isotropic resistive nature of gray matter (Logothetis et al.,
2007), the electric field at r� in the extracellular medium follows:

E� �r�� �
I

4
�
��r� � r�0�/�r� � r�0�

3 � �r� � r�0�/�r� � r�0�
3� (6)

Where � is the extracellular conductivity, I is the injected current, r� is
the position in spherical coordinates, and the two electrodes are located
in r�0 and � r�0.

This is a rather complicated expression and the final depolarization
also depends on many factors, such as cellular orientation, myelination,
and stimulus duration (Ranck, 1975). We do not need this level of de-
tail—we only want to model the decaying impact of the stimulus within
the local network of interest.

Therefore, from the previous expression, we will only keep the approx-
imate quadratic decay of the modulus with distance (valid because we
remain in a domain close enough from the stimulation electrode, be-
tween r0 and rmax).

To this extracellular field, we associate a maximum depolarization
value via an affine relation (the parameters of which are adjusted manu-
ally; Table 1). Our heuristic expression for the depolarization as a func-
tion of the injected current and distance from the electrode is then:

	V�I, r� � � �
I � �

1 � �r/r0�
2 �  (7)

To get the histogram of depolarization over the network, we need the radial
density of neurons. Because of the laminar organization of the cells, we make

the hypothesis of an homogenous surface density D �
N


 � �rmax
2 � r0

2�
,

where N is the number of neurons within the network, we get a radial
density:

N�r� � 2
 � r � D (8)

For a given current stimulation value, the depolarization– distance rela-
tion is monotonic (Equation 7) so we can easily apply the law of conser-
vation of probability dr � N�r� � NI�	V� � d	V to calculate the
histogram of depolarization NI�	V� for an injected current I as follows:

NI�	V� �
N � r0

2

�rmax
2 � r0�

2 � � �
I � �

�	V � �2 (9)

The quantity NI�	V� � d	V represents the number of neurons in which
the depolarization level lies between 	V and 	V � d	V for a current
input I. The few closest neurons will be maximally depolarized by
	V�I, r0� whereas the more numerous neurons at rmax will be depolarized
by a much smaller quantity: 	V�I, rmax�. Increasing the current level I
shifts the histogram toward high depolarization. Examples for the shape
of NI�	V� can be seen in Figure 5B.

Recruitment of a stimulation within the neural network. Given a histo-
gram of depolarization over the neural network (as provided by Equation
9), we wanted to estimate what fraction of the cells will fire as a response
to this stimulus-evoked depolarization.

We consider a time bin of �5 ms around the mean time of maximum
depolarization induced by the stimulus. Within this time bin (as it is
equal to the refractory period), the neurons can fire only once and we will
split them between spiking and nonspiking. This temporal window is
also lower than the membrane time constant (approximately 20 ms in
the Down state and 5 ms in the Up state) so that the membrane
potential fluctuations are weak within this window and we can classify
the neurons according to their stationary membrane potential distri-
bution 	S�V� (as given by Equation 4 and 5). According to this clas-
sification, in the absence of stimulus, a fraction of neurons is firing
due to background activity and the rest are silent. We then divide those
silent neurons into two groups: the ones that the stimulus brings to fire
and the ones that remain silent. The number of neurons that have a
membrane potential above threshold (in the Up state in particular) is:

Nbg � N � �
V

thre


	S�V�dV � Ntot�1 � Erf�Vthre � �V

S

�2 � �V
S ���2, where

Nbg corresponds to neurons that participate in the baseline firing rate and
will induce the background (bg) conductance level in the next time bin.
For those neurons, the stimulation will not affect their behavior within
this time bin. We are interested in the evoked response that is due to the
remaining neurons, those that would all be silent in the absence of stim-
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ulation. In the absence of stimulation, their membrane potential follows
the distribution:

	�S�V� �
�2

�
 � �VS � �1 � Erf�Vthre � �V
S

�2 � �V
S �� � e

�� V��V
S

�2 � �V
S� 2

(10)

Within a time bin, they would take a random value from this distribu-
tion. So their probability to get above threshold in response to an evoked
depolarization 	V is given by:

f�	V� � �
Vthre�	V

Vthre

	�S�V� � dV

�

Erf �Vthre � �V
S

�2 � �V
S � � Erf �Vthre � �V

S � 	V

�2 � �V
S �

1 � Erf �Vthre � �V
S

�2 � �V
S � (11)

We call this function the “activation function” of the network and it is an
analytical analogous of the quantity introduced in the numerical study of
Hô and Destexhe (2000). We use this quantity to calculate the number of
activated neurons Nact as a result of a stimulation (synaptic or electrical)
that produces the histogram of depolarization N�	V�. This number is
given by the following convolution:

Nact � �
	Vmin

	Vmax

f�	V� � N�	V� � d	V (12)

Where 	Vmin and 	Vmax are the minimum and maximum values of the
stimulation, respectively.

Calculus of the PSP induced by the stimulus-evoked synaptic activity. On
top of the stochastic background input, the cortical cells will be stimu-
lated by the synaptic input resulting from the activity induced by the
stimulation. We analyze how a deterministic synaptic input triggers a
PSP response (as typically recorded in our experiments) depending on
the network state. A synaptic event is modeled as a transient conductance
change: an instantaneous jump of value Qsyn followed by an exponential
decay of time constant �syn (the so-called “exponential synapse” model);
syn � 
e, i� is the index for the excitation and the inhibition, respectively.

For this calculation, we use the approximation presented in Kuhn et al.
(2004), namely that the driving force is not modified within the time
course of the response to the synaptic event. We consider that synaptic
driving forces are constant �Esyn � V�t�� 	 �Esyn � �V

S � because they
are fixed by the mean membrane potential �V

S . Therefore, we can rewrite
Equation 1 as follows:

�m
S

dV

dt
� �V

S � V�t� �
�m

S

Cm


syn

�Gsyn�t� � �Esyn � �V
S � (13)

With this approximation, the effect of different synaptic events do not
interact within each other (via the variation of the driving force) so that
they sum independently. Therefore, we calculate the effect of one event
and then sum linearly.

For one event starting at t � 0, the synaptic conductance variations will
be �Gsyn�t� � Qsyne � t/�synH�t�, so for t � �0, �, we get the membrane
equation:

�m
S

dV

dt
� �V

S � V�t� �
�m

S

Cm
� �Esyn � �V

S � � Qsyn � e
�t/�syn

(14)

That has the following solution (given V�0� � �V
S and �m

S ��syn):

� V�t� � �V
S � Asyn � �e

�t/�m
S

� e
�t/�syn�

Asyn �
�m

S � Qsyn � �syn

Cm � ��m
S � �syn�

� �Esyn � �V
S �

(15)

We next calculate the postsynaptic response in case of Ne and Ni excit-
atory and inhibitory events, respectively. For simplicity, all events arrive
at the same time. The total membrane potential response is as follows:

V�t� � �V
S � Ne � Ae � � e

�t/�m
S

� e
�t/�e�

� Ni � Ai � � e
�t/�m

S

� e
�t/�i� (16)

From this, we obtain that the time of maximum amplitude tmax is the
solution of:

�
�Ne � Ae � Ni � Ai� � e

�tmax/�m
S

�m
S �

Ne � Ae � e
�tmax/�e

�e

�
Ni � Ai � e

�tmax/�i

�i
� 0 (17)

In practice, we will solve this using a Newton method and then compute
the maximum amplitude response by evaluating V�tmax�.

Results
Twenty-four intracellular recordings from primary auditory cor-
tex in the ketamine/xylazine-anesthetized rat were included in
the analysis (Fig. 1A). Neurons were classified into electrophysi-
ological types following the method of Nowak et al. (2003). We
identified 21 regular spiking (six of them “thin regular spiking”), one
intrinsic bursting, and two fast-spiking neurons. The average input
resistance was 28.7 � 11.3 M�. Spontaneous and periodic Up states
were interspersed with Down states generating an oscillatory rhythm
(Fig. 1A,B), the intracellular potential showing the classical bimodal
distribution (Fig. 1C; Steriade et al., 1993; Cowan and Wilson, 1994).
The average duration of Up states was 0.43 � 0.04 s and that of
Down states 0.28 � 0.02 s, resulting in an oscillatory frequency of
1.39 � 0.11 Hz.

The conductance of six regular spiking neurons was estimated
for both Up and Down states for different membrane potentials
held by DC current injection (Paré et al., 1998; Waters and Helm-
chen, 2006). The bimodal distribution of membrane potential
values at these different depolarization levels (Fig. 1D) was used
to obtain the membrane potential values for Up and Down states
and to construct the I–V relationships. In this way we estimated
that the conductance (G) values were higher for Up than for
Down states, with GUp/GDown of 2.5, 3.3, 2.7, 1.3, 2.2, and 2.6.
Four of these examples are illustrated in Figure 1E.

The objective of the study was to determine how the occur-
rence of Up and Down states influenced the amplitude of synap-
tic potentials evoked by different intensities of stimulation—in
other words, how the activity (Up states) or quiescence (Down
states) in the cortical network influence synaptic transmission.
With the purpose of analyzing the respective contributions to this
modulation of the different blocks of the sensory pathway, syn-
aptic potentials were evoked in three different ways: auditory
stimulation (Fig. 2), electrical stimulation of intracortical con-
nections (Fig. 3), and electrical stimulation of thalamocortical
connections (Fig. 4).

Auditory stimulation
Auditory synaptic potentials were evoked by 5 ms clicks (see Ma-
terials and Methods) that were given every 3–5 s. The evoked
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auditory synaptic responses had an onset latency of 11.6 � 2.2 ms
and a peak latency of 21.8 � 3.4 ms (n � 9 cells). Stimulus-
evoked synaptic potentials occurred during Down or during Up
states. Synaptic potentials occurring during Down states could
also recruit the cortical network and thus evoke a new Up state. In
those cases, the amplitude of the evoked synaptic potential is
difficult to measure because the recruitment of the local network
induces a further depolarization (Fig. 6C–E in Reig and Sanchez-
Vives, 2007). For that reason, the stimulus-evoked synaptic po-
tentials were sorted offline into those occurring during Down
states and not evoking an Up state and those occurring during Up
states (Fig. 1D,E). Auditory responses were evoked by seven dif-
ferent intensities (55, 61, 67, 72, 77, 82, and 85 dB), that were
given at random (90 –100 stimuli per intensity). At least 10
sound-evoked synaptic potentials were averaged for each of the
intensities and part of the cycle (Up or Down state). Those cases
in which a synaptic potential during the Down state induced an
Up state (Reig and Sanchez-Vives, 2007) have not been illustrated
here and were excluded from the analysis given that the ampli-
tude of the evoked synaptic potential cannot be disentangled
from the network recruitment. Figure 2A illustrates raw traces of
four different intensities with PSPs occurring during either Up or
Down states, the average PSP for each intensity being averaged in
Figure 2B. The average PSP’s amplitude for each intensity for

Down and Up states are represented for this particular neuron in
Figure 2C.

For sound stimuli of intensities ranging between 55 and 85 dB,
the average amplitudes of the evoked PSPs during Down states
for the population ranged between 1 and 9 mV, the amplitude
increasing with the stimulus intensity. However, those evoked by
the same stimulus intensities during Up states varied within a
narrower range of amplitudes: 4.3– 6.5 mV. The stimulus–re-
sponse relationship was thus attenuated during Up states with re-
spect to Down states. Figure 2D shows a reduced stimulus–response
relationship during Up states with respect to Down states. This is a
representative example of the global scaling that takes place during
Up states: for auditory stimuli and within these range of intensities,
scaling occurs mostly as potentiation of small responses. The stimu-
lus–response relationship, however, is maintained (Fig. 2C for an
example of a single case), although reduced.

For lower intensities of stimulation (55 and 61 dB), the syn-
aptic potentials evoked during Up states were significantly larger
than those evoked during Down states (p � 0.02 for 55 dB and
p � 0.05 for 61 dB; Fig. 2E). For louder stimuli (�67 dB), the
difference between the amplitudes of synaptic potentials evoked
in the Up and Down states disappeared. In some cases, for louder
stimuli, we observed the inverted phenomenon; namely larger
PSPs in Down than in Up states. This was the case, for example, in

Figure 1. Slow oscillations in auditory cortex and auditory membrane conductances. A, Simultaneous LFP (top) and intracellular recording (bottom) of slow oscillations in A1. Note the neuronal
firing during Up state and the decreased activity during Down state. B, Autocorrelogram of the neuronal firing illustrating the rhythmicity of the slow oscillations. C, Distribution of the membrane
potential values resulting in the classical bimodal distribution that corresponds to Up (depolarized) and Down (hyperpolarized) states. Bin size � 1 mV. D, Distribution of the membrane potential
values in one neuron for three different levels of DC current injection (grayscale for current). Notice that Up states (circles) had a larger overall conductance compared with Down states (squares).
E, I–V plots for four different regular spiking neurons in A1. The inverse of the slope corresponds to the conductance ( G) and GUp/GDown is indicated for each case on top of the I–V. Notice that, in all
cases, the conductance is larger in the Up states.
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the average in Figure 2B response to 77 dB. That trend is also
apparent in the population average (Fig. 2D, 82– 85 dB), although
the difference was not significant.

In conclusion, cortical synaptic potentials evoked by auditory
stimulation had larger amplitudes in Up than in Down states for
low-intensity stimulations (�61 dB). For louder stimuli, no dif-
ference between the evoked potentials was found between the Up
and Down states. Interestingly, the average intensity/response
relationship observed during Down states was diminished during
Up states, where a scaling of the auditory responses occurred.

Intracortical activation
Intracortical electrical stimulation of the intracellularly recorded
neurons evoked synaptic potentials with an average onset latency
of 2.89 � 1.16 ms and a latency to the peak of 7.75 � 2.54 ms (n �
9). The rank of amplitudes of the synaptic potentials evoked by
different stimulus intensities (30 –90 �A) in these connections
was larger than for the sound-evoked and thalamocortical ones:
0.3–29 mV. We also observed larger excitatory amplitudes
evoked by intracortical than by either sensory or thalamocortical
activation. One reason could be that sensory and thalamocortical
activations recruit larger feedforward inhibition than intracorti-
cal synapses (Gil and Amitai, 1996).

The experimental design was similar to the one used for audi-
tory stimulation: at least six different intensities were used (30,
40, 50, 60, 70, and 90 �A) in different time periods of the oscil-
latory cycle. The amplitude of synaptic potentials evoked with
stimuli of lower intensities (Fig. 3B–E; 30 – 40 �A) was signifi-
cantly larger when occurring during Up than during Down states.
For intensities between 50 and 70 �A, there was no significant
difference between those occurring in Down versus Up states.
However, when intensities were increased further, in this case to
90 �A, the relative amplitude of the normalized evoked potential
during the Up state was significantly smaller than that during the
Down state, thus inverting the trend (Fig. 3E).

As observed for auditory stimulation, intracortical synaptic
potentials evoked during Up states showed a weaker dependence
on the intensity of stimulation (ranging on average between 1.5
and 12.3 mV) than those evoked during Down states (ranging on
average between 0.7 and 17.5 mV; Fig. 3D). For weak stimulation,
the evoked potentials were 2.1 times larger in the Up than in the
Down states, but for more intense stimuli, amplitudes were larger
during Down states (1.4 times). This is again largely suggestive of
the scaling effect that the active cortical network imposes over
inputs.

A

B

C D E

Figure 2. Synaptic potentials evoked by auditory stimulation during Up and Down states. A, Raw traces of intracellular recordings displaying synaptic responses in one neuron. Responses to
different intensities of auditory stimulation (55, 61, 72, and 77 dB) during Up and Down states (top and bottom, respectively). The black arrows indicate the time of occurrence of the auditory stimuli.
B, Waveform average of the synaptic potential evoked by the corresponding intensity (in A) during Up (top traces) and Down states (bottom traces). C, Amplitudes of the sound-evoked synaptic
responses during Up and Down states against intensity of stimulation in the neuron illustrated in A and B. Inset shows the normalized values with respect to the Down state for this neuron. D, Average
amplitude of auditory synaptic responses during Down and Up states for different stimulation intensities (n � 9 cells). E, Average of the cell-by-cell normalization of the PSP amplitudes with respect
to the ones in the Down state. t test *p � 0.05; **p � 0.02; ***p � 0.01.
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Thalamocortical activation
In this part of the study, postsynaptic potentials were evoked by
means of electrical stimulation of the auditory thalamus (n � 10),
their average onset latency being 3.85 � 1.32 ms and a peak latency
of 9.24 � 1.58 ms. Four different stimulation intensities were tested
(90, 120, 150, and 200 �A). Synaptic potentials evoked during both
the Up and Down states had a significant stimulus–response rela-
tionship, their amplitudes increasing for larger intensities (Fig.
4A,B). A thalamic stimulus intensity of 90 �A evoked an average
synaptic response of 1 mV during the Down state and 3.8 mV during
the Up state. In general, for the three lower intensities (90, 120, and
150 �A), the synaptic potentials evoked during the Up states had in
all cases significantly larger amplitudes than those occurring during
Down states. However, synaptic potentials evoked by larger intensi-
ties (200 �A) were not significantly different in amplitude when
evoked during Up versus during Down states (Fig. 4D,E). Similar to
what we have described for sound-evoked potentials, the gain of
synaptic potentials varied in the Up versus Down states and was
stimulus dependent: weaker stimuli invariably evoked synaptic re-
sponses that were larger during Up states than those during Down
states, the difference disappearing for stronger stimuli.

Modeling synaptic transmission during Up and Down states
Based on an idea introduced previously (Hô and Destexhe, 2000),
we considered that the experimentally observed gain modulation
could be understood as a result of the interaction between the

Up/Down variations in network excitability and input imped-
ance. To test this possibility, we used the tools presented in the
Model section of Materials and Methods to investigate the mod-
ulation predicted by artificial neural networks displaying either
the Up state or the Down state activity. We illustrate this modu-
lation on the effect of electrical stimulation of the cortical and the
thalamic network consecutively. We derive the relationship be-
tween the current intensity value and the postsynaptic response
in those two stimulation paradigms. The different steps that con-
struct this relationship are detailed next.

Gain modulation in a cortical model: postsynaptic response to
intracortical stimulation
We started by modeling the effect of the electrical stimulation.
The bipolar stimulation in Figure 5A spreads over the local cor-
tical network (the 1 mm circumference around the stimulation
electrode where the recorded cell also lies). Each neuron within
this network will be depolarized by the local extracellular current
according to Equation 7. The extracellular field decays as stated
by Equation 6 because of resistive dissipation, whereas the
number of neurons reached raises with distance from the elec-
trode (Equation 8). Those two factors lead to the histogram of
induced depolarization across the cortical network (Equation
9) such that many distant neurons are weakly depolarized,
whereas the few neurons close from the electrode are strongly
depolarized. The histograms of activated neurons for three

Figure 3. Synaptic potentials evoked by intracortical electrical stimulation during Up and Down states. A, Raw traces of intracellular recordings displaying synaptic responses in one neuron.
Responses to different intensities of intracortical stimulation (30, 40, 50, 70 �A) during Up and Down states (top and bottom, respectively). The black arrows indicate the time of occurrence of the
electrical stimuli. B, Waveform average of the synaptic potential evoked by the corresponding intensity (in A) during Up (top traces) and Down states (bottom traces). C, Amplitudes of the
intracortically evoked synaptic responses during Up and Down states against intensity of stimulation in the neuron illustrated in A and B. In the inset, the normalized values with respect to the Down
state for this neuron. D, Average amplitude of intracortical synaptic responses during Down and Up states for different stimulation intensities (n�9 cells). E, Average of the cell-by-cell normalization
of the PSP amplitudes with respect to the ones in the Down state. t test *p � 0.05; **p � 0.02; ***p � 0.01.
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different levels of injected current I are represented in Figure
5B.

The cortical network translates this stimulation into different
firing intensities for the two different network states. In the Up
state, the background activity amplifies the effect of the stimula-
tion. The evoked depolarization brings many neurons to su-
prathreshold levels and evokes firing because of membrane
potential fluctuations and initial depolarization (Nowak et al.,
1997). This is not the case in the Down state, where only the few
neurons depolarized above threshold by the stimulus reach the
threshold and fire. Following the method of Hô and Destexhe
(2000), we introduce the “activation function” of the network
that translates the stimulus value into the probability to evoke a
spike. This can be calculated explicitly from the fluctuations of
the membrane potential and a basic threshold mechanism for
spiking (Equation 11). The comparison of the functions between
Up and Down states is illustrated in Figure 5C. The activation
function is convoluted with the histogram of depolarization to
obtain the number of activated neurons (Equation 12). Note that
in the Up state, this “activation function” should be applied only
to the neurons that would be silent in the absence of stimulation.
To calculate the number of cells responding to the evoked input,
we first discard the fraction of the network that participates in the
baseline firing rate and therefore to the baseline conductance and
depolarization levels (see Materials and Methods). An example of
this procedure is presented in Figure 5D for a stimulus current of

60 �A. We show the distribution of “available” neurons, (those
that do not participate in the baseline rate), and we convolute this
distribution with the activation function, to get the number of
activated neurons (the shaded parts of the histogram). We repeat
this procedure for all stimulation levels and count the total num-
ber of activated neurons within the cortical network, leading to
the plot in Figure 5E. Therefore, for every stimulation level I, we
have a number of activated neurons Nact�I�. To obtain the post-
synaptic response, we first calculated the number of afferent ac-
tivated neurons onto the recorded cell. Given a random recurrent
connectivity �cort � 2% (the connectivity of the network is consid-
ered homogenous within the defined local cortical network) and a
fraction of inhibitory neurons g � 25%, the recorded neuron will
have Ne � Nact�I� � �1 � g� and Ni � Nact�I� � g excitatory and
inhibitory active synapses, respectively. The maximum depolar-
ization value induced by this stimulation is then given by calcu-
lating the time of maximum amplitude (Equation 17) and
evaluating the membrane potential time course (Equation 16) at
that time. The synaptic and membrane parameters used in this
calculation can be found in Table 1. The whole procedure results
in Figure 5, F and G, where the postsynaptic response and the
modulation factor for evoked intracortical postsynaptic poten-
tials in Up versus Down states are represented. The gain modu-
lation imposed by the Up and Down states results in a scaling of
the responses, potentiating the smaller responses and dampening
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Figure 4. Synaptic potentials evoked by thalamocortical electrical stimulation during Up and Down states. A, Raw traces of intracellular recordings displaying synaptic responses in one neuron.
Responses to different intensities of thalamocortical stimulation (90, 120, 150, 200 �A) during Up and Down states (top and bottom, respectively). The black arrows indicate the time of occurrence
of the electrical stimuli. B, Waveform average of the synaptic potential evoked by the corresponding intensity (in A) during Up (top traces) and Down states (bottom traces). C, Amplitudes of the
thalamocortically evoked synaptic responses during Up and Down states against intensity of stimulation in the neuron illustrated in A and B. In the inset, the normalized values with respect to the
Down state for this neuron. D, Average amplitude of thalamocortical synaptic responses during Down and Up states for different stimulation intensities (n � 10 cells). E, Average of the cell-by-cell
normalization of the PSP amplitudes with respect to the ones in the Down state. t test *p � 0.05; **p � 0.02; ***p � 0.01.
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the larger ones in a similar way to the experimental intracortical
stimulation (Figs. 3E, 7).

Gain modulation in a thalamocortical model: cortical postsynaptic
response to thalamic stimulation
We investigated the impact of the thalamic processing of the
input on the gain modulation. To that end, we included the
change of the excitability properties of the thalamic network be-
tween Up and Down states. Indeed, the in vivo intracellular study
of (Contreras et al., 1996) shows that the Up state has an impact
in the thalamic neurons (membrane depolarization and conduc-
tance increase). Therefore, the recruitment effect that we de-
scribed for the intracortical stimulation case (see above) applies
not only for the cortical, but also for the thalamic network. We
implemented this idea in a model, simplifying the thalamocor-
tical model presented in Destexhe (2009) to adapt it to our
situation (see Materials and Methods). To construct the
current-depolarization relationship, we first model the TC stim-
ulation that recruits thalamic neurons in a state-dependent man-
ner (Fig. 6B, shown for Ithal � 145 �A) following their different

activation function (Fig. 6A). This results in a mean number of
activated TC neurons Nact

thal�Ithal� as a function of the injected
current. We hypothesize a random projection between the tha-
lamic network of size Ntot

thal � 2000 and the cortical network of
size Ntot

cort � 10000 with a probability �thal � 2%. The number of
activated synapses onto cortical neurons will result from the sam-
pling of Nact

cort�Ithal� neurons with a connection probability �thal,
which means that the number of activated synapses over the cor-
tical network will follow a binomial distribution (Fig. 6C, shown
for Ithal � 145 �A). With the parameters of the thalamocortical
synapse (Table 1), we translate a number of activated excitatory
synapses into a maximum depolarization using Equation 17 (ex-
pression for the time of maximum amplitude) and Equation 16
(time course of the membrane potential variations). In this way,
we generate a histogram of depolarization over the available neu-
rons on which we can apply the activation function (Fig. 6D,
shown for Ithal � 145 �A) to get the number of activated neurons
in the cortical network Nact

cort�Ithal�. In Figure 6E, we show the
number of activated TC neurons (inset) and cortical neurons

Figure 5. Modeling the effect of intracortical electrical stimulation on cortical postsynaptic potentials. A, We define a local cortical network that is sensitive to the stimulation; the recorded cell
is part of it and receives recurrent input from this network. B, Recruitment of neurons for different stimulation intensities. Stimulation NI�	V� (Equation 16) of the local cortical network given the
decaying stimulus intensity I(r) and the increasing cell density N(r). C, The activation function represents the excitability of the cortical network. It estimates the probability to elicit a spike as a
response to the stimulation (for the cell’s fraction that does not participate in the background activity level in the considered time bin, see Materials and Methods) D, The number of recruited neurons
by the IC stimulation is the convolution of the depolarization histogram with the activation function. We show for I � 80 �A how the recruitment differs between Up and Down states. E, Repeating
the procedure of D for all intensity levels provides the number of activated neurons within the network as a function of the current stimulation. F, For given network parameters, we can estimate the
network input to the recorded cell and deduce the maximum postsynaptic potential to be compared with the experimental results of Figure 2C. G, Modulation factor (amplitude of PSP in Up state
divided by amplitude of PSP in Down state) as a function of the stimulus intensity.
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(main plot) for all values of stimulation intensities. Finally, as in
the previous section, we calculate the mean postsynaptic response
resulting from the activation of those Nact

cort�Ithal�. This is shown in
Figure 6F for a whole range of stimulus intensities.

Comparing the modulation in the different stimulation types
In the models, we get an equal postsynaptic response of 2 mV in
the Down state for Ithal � 116.9 �A and for Icort � 36.1 �A. In the
Up state, this stimulation intensity corresponds to two different
postsynaptic responses: 2.6 and 4.9 mV for the IC and TC stim-
ulation, respectively. Because the cortical network has the same
activation function in the two situations, the origin of this poten-
tiation in the TC case comes from the enhanced excitability of the
thalamic network in the Up state (as can be seen in the activation
function; Fig. 6A). Indeed, in this model, only two phenomena
can lead to a difference between the IC and TC stimulation cases:
the enhanced excitability of the thalamic network and the scaling
of the thalamocortical postsynaptic effect on cortical cells be-
cause of the conductance state of the cortical cells. The first one
potentiates the Up state response and the second one attenuates
it. We found that, for our parameters, the combination of those
two effects is in favor of the Up state potentiated response. We
plot in Figure 6G the modulation as a function of the Down state
response in the IC and TC cases. The deviation between the two
curves is the trace of the modulation that happens in the thalamic
nucleus.

To compare with the experimental data in Figure 7, we
represented the modulation factor of postsynaptic responses
as a function of the Down state for both IC and TC stimula-
tion. As predicted by the model (Fig. 6G), the increase in the
modulation in the TC case with respect to the IC is evident, as is
the scaling of the postsynaptic responses. The introduced model
provides a feasible mechanistic explanation for this experimental
observation.

Discussion
Cortical dynamics during Up states are similar in various aspects
to those during cortical activated states or wakefulness (for a
review, see Destexhe et al., 2007). That is one reason why the
study of synaptic responsiveness during Up and Down states is
relevant for understanding information transmission and pro-
cessing in different brain states, in particular during wakefulness.
In this study, we have recorded Up and Down states in the audi-
tory cortex. In different cortical areas, the transition from anes-

Figure 6. Modeling the effect of thalamocortical electrical stimulation on cortical postsynaptic potentials. A, Activation functions of the thalamic cells that represent the difference of excitability
of the thalamic network in the Up and Down states, respectively. B, The recruitment within the cortical network is done as in the cortical case (see Fig. 4). The procedure allows to have a number of
activated thalamic cells in the Up and Down states, shown for Istim

thal � 145 �A. C, Histogram over the cortical network (binomial distribution) of the number of activated afferent TC synapses
per cortical neuron, shown for the same level of stimulation. D, Each number of activated synapses can be translated into a depolarization level. This provides the histogram of the depolarization over
the cortical network. The number of activated cortical neurons is calculated (as in the IC stimulation case) by convolution of the depolarization histogram with the activation function. E, We repeat
this procedure for all levels of the TC stimulation levels and get the number of activated TC cells (inset) and the number of activated cortical cells as a function of the stimulation level in the Up and
Down states, respectively. F, Amplitude of PSP as a function of the current stimulation level. G, Modulation factor as a function of the PSP amplitude in the Down state. Shown is a comparison
between the model of IC stimulation and TC stimulation. The gain modulation between Up and Down state is greatly increased with respect to the cortical case as a consequence of the cumulative
effect of the increased excitability of the cortical and thalamic networks.

Figure 7. Experimental modulation factor for TC and IC synaptic inputs. Comparison of the
input modulation factor as a function of the Down state response for TC and IC stimuli. The TC
stimulation paradigm displayed a larger modulation than the IC stimulation. Auditory and TC
stimulation involve the thalamocortical pathway while the IC stimulation only involves the
recurrent cortical network. A mechanism such as the one discussed in the text and illustrated in
Figure 5 could explain this increased modulation by taking into account the impact of both the
thalamic and cortical network excitability in the Up state.
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thesia or deep sleep to awake has been described as an elongation
or persistence of the Up states (Steriade et al., 2001; Constanti-
nople and Bruno, 2011). Even when slow oscillatory activity has
been also studied by others in the auditory cortex under anesthe-
sia (Sakata and Harris, 2009), Hromádka et al. (2013) reported
that Up states are rare in the awake auditory cortex. The possibil-
ity exists that auditory cortex would be a special case on this
regard. However, it is known that the dynamics of the network
slow oscillatory activity are very sensitive to the brain state. In a
study by Deco et al. (2009), the emergent activity in both deep
and light anesthesia is described in auditory cortex. There, when
in light anesthesia, the silent state is more depolarized and the
dynamics of Down/Up transitions are radically different from
those in deep anesthesia, the membrane potential remaining for
longer periods in depolarized values. Furthermore, the content of
high frequencies during silent states is larger in light than in deep
anesthesia. In Figure 5 of Hromádka et al. (2013), the silent state
also shows both more depolarized values and larger high-
frequency activity in the awake than under anesthesia. Based on
this, one could argue that in the awake auditory cortex the silent
state does not exactly correspond to a “classical” Down state.

The influence that Up states have on sensory or synaptic trans-
mission has been studied in different systems (see Introduction).
However, there is no consensus as to whether synaptic transmis-
sion during cortical Up states is increased or decreased with re-
spect to Down states (see below). In the study that we present
here, we have evoked synaptic potentials in primary auditory cortex
in vivo by three means: auditory stimulation and intracortical and
thalamocortical electrical stimulation with stimuli of different inten-
sities. Synaptic potentials evoked during Up states were compared
with those evoked during Down states with the same stimulus inten-
sity. For all types of stimulation, we found that the relative synaptic
transmission in Up versus Down states is critically dependent on the
intensity of stimulation. Our results show that, during Up states,
there is gain modulation of synaptic responses such that the trans-
mission of small inputs is potentiated and very strong inputs are
attenuated, resulting in a scaling of the responses. This was the case
for all forms of stimulation and it was especially evident for intracor-
tical stimulation.

Synaptic transmission in Up versus Down states: increased
or decreased?
The issue of how Up states and therefore network activity affects
synaptic inputs has been discussed by different investigators.
Studies in the visual cortex generally found increased responses
during Up states, both suprathreshold and subthreshold (Arieli et
al., 1996; Azouz and Gray, 1999; Haider et al., 2007; Reig and
Sanchez-Vives, 2007). However, several studies in barrel cortex
reported that, during Up states, responsiveness was decreased
with respect to that during Down states (Castro-Alamancos and
Oldford, 2002; Sachdev et al., 2004; Crochet et al., 2006; Hasen-
staub et al., 2007; Rigas and Castro-Alamancos, 2009).

An increase in responsiveness during Up states is quite
straightforward to explain: during these periods, the excitability
of the thalamocortical network is increased and thus any stimulus
recruits more presynaptic inputs. Postsynaptically, neurons are
depolarized and are thus closer to threshold during Up states and
are therefore more responsive to inputs. These arguments have
been used to explain increased responsiveness in visual cortex
(Arieli et al., 1996; Azouz and Gray, 1999; Haider et al., 2007; Reig
and Sanchez-Vives, 2007).

Different mechanisms can also be invoked to explain the op-
posite, why synaptic responses may decrease during Up versus

Down states. That both thalamocortical and intracortical synap-
tic responses depress with activity has been used as an argument
supporting why synaptic transmission is attenuated during Up
states (Castro-Alamancos and Oldford, 2002). A smaller driving
force for glutamatergic transmission during Up states (Castro-
Alamancos, 2002; Petersen et al., 2003; Sachdev et al., 2004),
increased membrane conductance (Hasenstaub et al., 2007), an
increase in the action potential threshold (Sachdev et al., 2004),
or low calcium during Up states (Crochet et al., 2005), are among
the other possible mechanisms that might override the increased
excitability during Up states.

Differences in intrinsic properties across cortical areas could
contribute to differences across areas. For example, the apparent
input resistance in Up states appears to be very low in cat associ-
ation cortex (Paré et al., 1998) but high in rat barrel cortex (Zou
et al., 2005; Waters and Helmchen, 2006). Our conductance mea-
surements in auditory cortical neurons reported above find a
1.3–3.3 times larger conductance in Up than in Down states in
regular spiking neurons, probably due to the accumulation of
excitatory and inhibitory synaptic events described in A1 during
Up states (Compte et al., 2009). Such differences in input resis-
tance may also contribute to the observed differences of respon-
siveness, which further emphasizes the need to precisely measure
the conductance state in Up/Down states.

Despite the different mechanisms just mentioned, we propose
here two possible explanations supporting the disparate results
reported so far in the literature about cortical activation and its
effects on responsiveness. One is the relevance of the stimulation
intensity because we find that, in the same system (auditory, in
the present study), one can observe both increases and decreases
of the synaptic response depending on the stimulus intensity.
Therefore, different intensities of stimulation used by different
groups could generate different results.

Another critical element is the degree of network recruitment
integrated in the synaptic response evoked during Down states
that is taken as a reference. Given that synaptic responses during
Up states are evaluated against those during Down states, the
measurements of synaptic responses during Down states is cru-
cial. Synaptic potentials occurring during Down states can trigger
or not a new Up state. The probability to induce an Up state is
larger for larger-intensity stimuli. When a synaptic response is
large enough to recruit the local network and activate an Up state,
the evoked synaptic amplitude includes the postsynaptic poten-
tial plus the reverberation of activity in the network (Fig. 6 in Reig
and Sanchez-Vives, 2007). To correctly compare synaptic re-
sponses in Down versus Up states, it is critical to include only
synaptic responses in Down states, and not the evoked synaptic
reverberation. When the intensity of stimulation is large but not
maximum, the synaptic potential occurring during the Down
state is immediately followed by an Up state (Reig and Sanchez-
Vives, 2007). In these cases, the amplitude of the synaptic poten-
tial is still well segregated in time from that of the Up state and can
be measured separately. For still larger intensities, the network
recruitment by the stimulus is immediate and therefore the net-
work activation cannot be separated from the synaptic potential.
In some of the studies discussed above, the stimulation was such
that the responses during Down states always included the net-
work response. This can result in a mistaken detection of a large
synaptic response during Down states such that the one during
Up states appears decreased in comparison.

In the present study, we only included stimulus intensities that
did not trigger an Up state. This limits the use of high-intensity
stimuli. This was the case for auditory and thalamocortical stim-
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ulation, whereas intracortical stimuli could be of large ampli-
tudes without recruiting Up states. This is probably why
intracortical stimuli was the one where an actual decrease of the
synaptic potential amplitudes during Up states was more obvious
for high-intensity stimuli. When the intensity of stimulation is
low, this problem does not arise because Up states are not re-
cruited by the stimulation. For low-intensity stimulation, the re-
sponses during Up states were invariably increased with respect
to those during Down states (Figs. 2, 3, 4). This increment was
independent of how the synaptic potential was evoked (auditory,
intracortical, or thalamocortical stimulation).

Scaling of synaptic inputs during Up states
The effect of network state that we have described here results in
gain modulation of the incoming inputs, enhancing small inputs
and attenuating very large ones while still maintaining the inten-
sity–response relationship. This change in the input/output slope
during activated states of the cortex could have a function ex-
panding the range of inputs that can be processed, improving
detectability of weak inputs.

The model that we introduce here provides a possible mech-
anism to explain the experimentally observed properties. We find
that Up and Down states represent different modes of treatment
of the synaptic input: the first uses the depolarization and the
fluctuations to amplify the input at the network level and the
latter makes use of a low conductance state to generate strong
postsynaptic responses.

To explain the results of thalamocortical inputs, we had to
consider a double gain modulation in both thalamic cells
(Wolfart et al., 2005) and cortical recipient cells. Our model
shows that the combined action of synaptic noise on these two
interconnected networks can lead to a duplication of the gain
modulation effects on synaptic responsiveness. The feedforward
arrangement of excitable neural networks is a powerful mecha-
nism to enhance the propagation of the Up state response com-
pared with the Down state response. It also suggests that such
combined effects may need to be taken into account for interpret-
ing responses in areas downstream to A1, which should be inves-
tigated in future studies. Furthermore, our model results suggest
the need of precise measurements of synaptic noise in different
areas to correctly reconstruct the combined effect of integrating
information from different networks.
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Work 4: Spatio-temporal dynamics of
multi-input integration in primary visual
cortex: comparison between a mean-field
model and optical imaging of population
activity in vivo

French summary

L’imagerie VSD s’est révélée un outil majeur pour explorer comment la
dynamique de populations neuronales façonne les fonctions corticales. Néan-
moins, à notre connaissance, il n’existe pas de modèle théorique qui offre
une explication du lien entre les sources de signaux imagés et la dynamique
neuronale pour les échelles spatiales associées à l’imagerie optique. Dans ce
travail, nous tirons parti du travail théorique effectué à l’échelle mésoscopique
(les approches mean-field) pour construire un modèle large-échelle de la dy-
namique de population tout en gardant un correlat en terme de dynamique
cellulaire (en particulier en terme de potentiel membranaire) pour pouvoir
générer des prédictions pour le signal imagé par la technique VSD.

La première partie de ce travail étudie la validité et les faiblesses du for-
malisme théorique pour décrire l’activité d’une colonne corticale. Nous avons
construit un modèle grande échelle du réseau des couches corticales II-III in-
cluant le réseau des fibres horizontales. Nous avons examiné les propriétés
intégratives spatio-temporelles du modèle et nous les avons comparées avec
des mesures par imageries optiques de l’activité cérébrale chez le singe éveillé.
En particulier, nous avons reconstruit une expérience typique du traitement
visuel: le mouvement apparent. Le modèle prédit un fort signal suppressif
dont le profil spatio-temporel correspond quantitativement à celui observé
in vivo. Ce qui suggère que la combinaison des propriétés intégratives du
réseau capturées par notre approche et du réseau des fibres horizontales sont
les ingrédients clefs de ce phénomène.
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A Markovian model for spatio-temporal population
dynamics in neocortex

Collab.: S. Chemla1 & F. Chavane1 (in vivo VSD imaging)

Y. Zerlaut2 & A. Destexhe2

Abstract
While voltage sensitive dye imaging (VSDi) has
been shown to be a decisive tool in the exploration
of how neural population dynamics shape cortical
function, to our knowledge, no theoretical model
offers a detailed account of the link between neural
dynamics and the source signal at the large spatial
scale imaged by optical imaging (∼ 100mm2).
In this communication, we take advantage of the

extensive theoretical work performed at the meso-
scopic scale (∼ 10000 neurons, 0.25mm2) to ana-
lytically describe population dynamics in terms of
few variables (the so-calledmean-field approach to
network dynamics) to build a large scale model of
population dynamics but still with a correlate in
terms of single-cell dynamics (in particular mem-
brane potential dynamics) so that the model can
directly generate predictions for the signal imaged
by the VSDi technique.
The first part establishes the validity and weak-

nesses of the mesoscopic description of network
dynamics used to model the activity of a single
cortical column. By comparing its prediction with
numerical simulations of artificial neural networks,
we investigate whether the markovian formalism
proposed in El Boustani and Destexhe (2009) al-
lows to describe the dynamics of a network of
excitatory and inhibitory neurons with different
electrophysiological properties. In particular, we
investigate whether this formalism generalizes to
the description of network dynamics in the pres-
ence of time-dependent inputs.
We next analyze the integrative properties of

the model: how does it responds to increasing
stimuli strength or how is it modulated by an in-
crease in external background activity. We found
that, while the firing response scales linearly the
response in terms of membrane potential varia-
tions over the population exhibits a strong sup-
pression. We then embed this local network de-
scription in a ring geometry to describe the spatial
integration across the neocortical sheet. We first
show that this simple model accurately predicts
the emergence of propagating waves in response
to simple stimuli (Muller et al., 2014).

1 Team InVibe, Institut de Neurosciences de la Timone, UMR
7289, CNRS and Aix-Marseille Université, Marseille, France

2 Unité de Neurosciences, Information et Complexité, Centre
National de la Recherche Scientifique, FRE 3693, Gif sur Yvette,
France

Finally we re-construct a typical experimental
paradigm of multi-input integration in visual pro-
cessing: the apparent motion protocol. We com-
pare the model’s response to optical imaging of
spatio-temporal dynamics in the primary visual
cortex of fixating monkey (Chemla & Chavane,
unpublished observations). The model exhibited
a similar spatio-temporal pattern of suppression
such as the one observed in vivo, our study there-
fore proposes that the horizontal fib re network
combined with the strongly sublinear relation be-
tween membrane potential deflection and activity
in the local network appears as a putative suf-
ficient explanation for the observation found in
VSDi recordings during an apparent motion stim-
ulus in fixating monkeys.

Introduction
Recent advances in imaging technique, in particular
voltage-sensitive dye imaging (VSDi), have revealed fun-
damental properties of neocortical processing (Arieli et
al., 1996; Contreras and Llinas, 2001; Petersen and Sak-
mann, 2001; Ferezou et al., 2006; Civillico and Contreras,
2012): subthreshold responses to sensory inputs are locally
homogeneous in primary sensory areas, depolarizations
tend to spread across spatially neighboring regions and
responses to sensory stimuli are strongly affected by the
level of ongoing activity. It also appears as great tools to
unveil how the spatio-temporal dynamics in the neocortex
shape canonical cortical operations such as normalization
(Reynaud et al., 2012).

On the other hand, the literature lacks, to the best of
our knowledge, theoretical models that provides a detailed
account of those phenomena with a clear relation between
how this signal is generated and those physiological phe-
nomena at that spatial scale (i.e. at the millimeters or
centimeters scale). Detailed model of a neocortical column
(i.e. ∼0.5mm2 scale) have been recently proposed, see
Chemla and Chavane (2010) for the link with the VSDi
signal or more generally Markram et al. (2015), but their
computational cost impedes the generalization to higher
spatial scale. The aim of the present communication is
thus to design a theoretical model of neocortical dynam-
ics with the following properties: 1) it should operate at
the temporal and spatial scales of optical imaging and 2)
it should have a correlate in terms of single-cell dynam-
ics (in particular membrane potential dynamics), so that
the model can directly generate predictions for the signal
imaged by the VSDi technique (Berger et al., 2007).

More specifically, our study focuses on network dynamics
in activated cortical states, thus the desired model should

1
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describe neocortical computation in the asynchronous
regime, where cortical activity is characterized by irregular
firing and strong subthreshold fluctuations at the neuronal
level (Steriade et al., 2001; Destexhe et al., 2003). The
strategy behind the present model is to take advantage of
the mean-fi eld descriptions of network dynamics in this
regime. Via self-consistent approaches, those descriptions
allow to capture the dynamical properties of population
activity in recurrent networks (Amit and Brunel, 1997;
Brunel and Hakim, 1999; Brunel, 2000; Latham et al., 2000;
El Boustani and Destexhe, 2009). The present model thus
relies on the following scheme: 1) we consider the ran-
domly connected network of 10000 neurons as a unit to
describe a cortical column and 2) we embedded the an-
alytical description of this cortical column model into a
ring geometry with physiological local connectivity profiles
to model spatio-temporal integration on the neocortical
sheet.
A prerequisite was therefore to establish the accuracy

of the analytical description of the cortical column model.
This is the focus of the first part of this paper: by com-
paring analytical prediction of the model with numerical
simulations, we can precisely evaluate the accuracy and/or
weaknesses of the analytical description to evaluate its
potential impact on the modeling of the network.

The second part of the paper investigates the integrative
properties of the model, i.e. the relation between the
network response and the properties of the input. Finally
we compare the model prediction with VSDi recordings
in awake behaving monkey in a stereotypical paradigm of
visual processing: the apparent-motion protocol.

Material and Methods
We describe the equations and parameters used for the neu-
ronal, synaptic and network modeling. We present our heuristic
treatment of the neuronal transfer functions: the quantity that
accounts for the cellular computation in mean-fi eld models
of population activity. Then, we present the specific marko-
vian model of population activity used in this study. Finally,
we embed this description of local population dynamics in
a ring model to describe spatio-temporal integration on the
neocortical sheet.

Single neuron models
The neuronal model used in this study is the adaptative expo-
nential and fire (AdExp) model (Brette and Gerstner, 2005).
The equation for the membrane potential and the adaptation
current therefore reads:





Cm
dV

dt
= gL (EL − V ) + Isyn(V, t) + kae

V − Vthre
ka − Iw

τ w
dIw
dt

= − Iw +
∑

ts ∈ { tspike }

b δ (t − ts)

(1)
where Isyn(V, t) is the current emulating synaptic activity

that will create the fluctuations, Iw reproduces the Im current
(McCormick et al., 1985). The spiking mechanism is the fol-
lowing: when V (t) reaches Vthre + 5 ka, this triggers a spike
ts ∈ {tspike}, this increases the adaptation variable Iw by b,

Figure 1: Schematic of the local network architec-
ture. The network is made of Ne = (1 − g)Ntot excitatory
and Ni = g Ntot inhibitory neurons. All excitatory connec-
tions (afferent and recurrent) onto a neuron corresponds to
Ke = ε (1 − g)Ntot synapses of weight Qe. All inhibitory
connections (afferent and recurrent) onto a neuron corre-
sponds to Ki = ε g Ntot synapses of weight Qi

the membrane potential is then clamped at EL for a duration
τ refrac=5ms. We consider two versions of this model: a regular
spiking neuron for the excitatory cells and a fast spiking neuron
for the inhibitory cells (see Figure 2). The parameters of those
two models can be found on Table 1.

Synaptic model
The time- and voltage-dependent current that stimulate the
neuron is made of the sum of an excitatory and inhibitory
currents (indexed by s ∈ { e, i} and having a reversal potential
Es):

Isyn(V, t) =
∑

s∈ { e,i}

∑

ts ∈ { ts }

Qs e
− t
τ s (Es − V )H(t − ts) (2)

where H is the Heaviside function.
This synaptic model is referred to as the conductance-based

exponential synapse. The set of events { te } and { ti } are the
set of excitatory and inhibitory events arriving to the neuron.
In numerical simulations of single neurons, it will be generated
by stationary Poisson processes. In numerical simulations of
network dynamics it will correspond to the set of spike times
of the neurons connecting to the target neurons, both via
recurrent and feedforward connectivity.

Numerical network model
All simulations of numerical network were performed with
the brian2 simulator (Goodman and Brette, 2009), see http:
//brian2.readthedocs.org. For all simulations, the network
was composed of Ntot=10000 neurons, separated in two popula-
tions, one excitatory and one inhibitory with a ratio of g=20%
inhibitory cells. Those two populations we recurrently con-
nected (internally and mutually) with a connectivity probability
ε =5%.

Because this network did not display self-sustained activity
(see Figure 3, in contrast to Vogels and Abbott (2005)), an
excitatory population exerted an external drive to bring the
network out of the quiescent state. This population targeted
both the excitatory and inhibitory neurons. Note that the
firing rate of this population was linearly increased to avoid

2
86



A markovian model for spatio-temporal population dynamics in neocortex • Zerlaut, Destexhe, Chemla & Chavane • April 11, 2016

Table 1: Model parameters.

Parameters Parameter Name Symbol Value Unit

cellular properties
leak conductance gL 10 nS
leak reversal potential EL -65 mV
membrane capacitance Cm 150 pF
leak reversal potential EL -65 mV
AP threshold Vthre -50 mV
refractory period τrefrec 5 ms
adaptation time constant τw 500 ms

excitatory cell
sodium sharpness ka 2 mV
adaptation current increment b 20 pA
adaptation conductance a 4 nS

inhibitory cell
sodium sharpness ka 0.5 mV
adaptation current increment b 0 pA
adaptation conductance a 0 nS

synaptic properties
excitatory reversal potential Ee 0 mV
inhibitory reversal potential Ei -80 mV
excitatory quantal conductance Qe 1 nS
inhibitory quantal conductance Qi 5 nS
excitatory decay τe 5 ms
inhibitory decay τi 5 ms

numerical network
cell number Ntot 10000
connectivity probability ε 5%
fraction of inhibitory cells g 20%
external drive νdrive

e 4 Hz
ring model

total extent Ltot 40 mm
excitatory connectivity extent lexc 5 mm
inhibitory connectivity extent linh 1 mm
propagation delay vc 300 mm/s

a too strong initial synchronization (see Figure 4). Finally,
an excitatory population of time varying firing rate could was
added to evoke activity transients in the population dynamics.
This last stimulation targeted only the excitatory population.
The number of neurons in those two excitatory populations
was taken as identical to the number of excitatory neurons (i.e.
(1− g)Ntot) and created synapses onto the recurrent network
with the same probability ε. After temporal discretization, the
firing rates of those afferent populations were converted into
spikes by using the properties of a Poisson process (i.e. eliciting
a spike at t with a probability ν(t) dt). All simulations were
performed with a time-step dt=0.1ms.

Estimating the transfer functions of sin-
gle neurons

The transfer function F of a single neuron is defined here as
the function that maps the value of the stationary excitatory
and inhibitory presynaptic release frequencies to the output
stationary firing rate response, i.e. νout = F(νe, νi). Note the
stationary hypothesis in the definition of the transfer function
(see discussion in main text).

Because an analytical solution of this function for the single
neuron models considered in our study is a very challenging

mathematical problem, we adopted a semi-analytical approach.
We performed numerical simulations of single cell dynamics at
various excitatory and inhibitory presynaptic frequencies (νe
and νi respectively) (see the output in Figure 2) on which we
fitted the coefficients of an analytical template to capture the
single cell model’s response.

The procedure relied on fitting a phenomenological thresh-
old V effthre that accounts for the single neuron non-linearities
(spiking and reset mechanism, adaptation mechanisms) on top
of the subthreshold integration effects (Zerlaut et al., 2016).
This phenomenological threshold is then plugged-in into the
following formula (analogous to Amit and Brunel (1997)) to
become our firing response estimate:

νout = 1
2 τV

· Erfc(V
eff
thre − µV√

2σV
) (3)

Where (µV , σV , τV ) are the mean, standard deviation and
autocorrelation time constant of the membrane potential fluc-
tuations. How to calculate those quantities as a response to a
stationary stimulation is the focus of the next section.

The phenomenological threshold was taken as a second order
polynomial in the three dimensional space (µV , σV , τV ):
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V effthre(µV , σV , τ
N
V ) = P0 +

∑

x∈{µV ,σV ,τNV }

Px ·
(
x− x0

δx0

)
+

∑

x,y∈{µV ,σV ,τNV }2

Pxy ·
(
x− x0

δx0

)(
y − y0

δy0

) (4)

Where the normalization factors µ0
V=-60mV, δµ0

V=10mV,
σ0
V=4mV, δσ0

V = 6mV, τN0
V =0.5 and δτN0

V = 1 arbitrarily de-
limits the fluctuation-driven regime (a mean value x and an
extent δx, ∀x ∈ {µV , σV , τNV }). They render the fitting of
the phenomenological threshold easier, as they insure that the
coefficients take similar values. It is kept constant all along the
study. The phenomenological threshold was taken as a second
order polynomial and not as a linear threshold, for two reasons:
1) unlike in an experimental study (Zerlaut et al., 2016), we
are not limited by the number of sampling points, the number
of fitted coefficients can thus be higher as the probability of
overfitting becomes negligible 2) it gives more flexibility to
the template, indeed the linear threshold was found a good
approximation in the fluctuation-driven regime, i.e. when the
diffusion approximation holds, however, for low values of the
presynaptic frequencies, we can be far from this approxima-
tion, the additional coefficients are used to capture the firing
response in those domains.

The fitting procedure was identical to Zerlaut et al. (2016),
it consisted first in a linear regression in the phenomenological
threshold space of Equation 4, followed by a non-linear opti-
mization of Equation 3 on the firing rate response. Both fitting
were performed with the leastsq method in the optimize
package of SciPy.

Calculus of the subthreshold membrane
potential fluctuations

Here, we detail the analytical calculus that translate the input
to the neuron into the properties of the membrane potential
fluctuations. The input is made of two Poisson shotnoise: one
excitatory and one inhibitory that are both convoluted with an
exponential waveform to produce the synaptic conductances
time courses.

Conductances fluctuations
From Campbell’s theorem (Papoulis, 1991), we first get the
mean (µGe, µGi) and standard deviation (σGe, σGi) of the exci-
tatory and inhibitory conductance fluctuations:

µGe(νe, νi) = νeKe τeQe

σGe(νe, νi) =
√
νeKe τe

2 Qe

µGi(νe, νi) = νiKi τiQi

σGi(νe, νi) =
√
νiKi τi

2 Qi

(5)

The mean conductances will control the input conductance
of the neuron µG and therefore its effective membrane time
constant τm:

µG(νe, νi) = µGe + µGi + gL

τm(νe, νi) = Cm
µG

(6)

Mean membrane potential
Following Kuhn et al. (2004), the mean membrane potential
is obtained by taking the stationary solution to static con-
ductances given by the mean synaptic bombardment (for the
passive version of Equation 1, i.e. removing the adaptation
and spiking mechanisms). We obtain:

µV (νe, νi) = µGeEe + µGiEi + gLEL
µG

(7)

We will now approximate the driving force Es − V (t) of
synaptic events by the level resulting from the mean conduc-
tance bombardment: Es − µV . This will enable an analytical
solution for the standard deviation σV and the autocorrelation
time σV of the fluctuations.

Power spectrum of the membrane potential fluc-
tuations

Obtaining σV and τV is achieved by computing the power
spectrum density of the fluctuations. In the case of Poisson
processes, the power spectrum density of the fluctuations re-
sulting from the sum of events PSPs(t) at frequency Ks νs
can be obtained from shotnoise theory (Daley and Vere-Jones,
2007):

PV (f) =
∑

s∈{e,i}

Ks νs ‖ ˆPSPs(f)‖2 (8)

where ˆPSPs(f) is the Fourier transform of the time-varying
function PSP(t). Note that the relations presented in this
paper rely on the following convention for the Fourier transform:
F̂ (f) =

∫
R F (t) e−2iπft dt.

After fixing the driving force to Es − µV , the equation for a
post-synaptic membrane potential event s around µV is

τm
dPSPs
dt

+ PSPs = UsH(t) e
−t
τs (9)

where Us = Qs
µG

(Es−µV ) and H(t) is the Heaviside function.
Its solution is:

PSPs(t) = Us
τs

τm − τs
(
e
−t
τm − e

−t
τs

)
H(t) (10)

We take the Fourier transform:

ˆPSPs(f) = Us
τs

τm − τs
( τm

2 i π f τm + 1 −
τs

2 i π f τs + 1
)

(11)

We will need the value of the square modulus at f = 0:

‖ ˆPSP(0)‖2 = (Us · τs)2 (12)
As well as the integral of the square modulus:

∫

R
df ‖ ˆPSP(f)‖2 = (Us · τs)2

2 (τ effm + τs)
(13)

Standard deviation of the fluctuations
The standard deviation follows:

(σV )2 =
∫

R
df PV (f) (14)

Using Equation 13, we find the final expression for σV :

σV (νe, νi) =
√∑

s

Ks νs
(Us · τs)2

2 (τ effm + τs)
(15)
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Autocorrelation-time of the fluctuations

We defined the global autocorrelation time as (Zerlaut et al.,
2016):

τV = 1
2
(∫R PV (f) df

PV (0)
)−1 (16)

Using Equations 13 and 12, we find the final expression for
τV :

τV (νe, νi) =
( ∑

s

(
Ks νs (Us · τs)2)

∑
s

(
Ks νs (Us · τs)2/(τ effm + τs)

)
)

(17)

Therefore the set of Equations 7, 15 and 17 translate the
presynaptic frequencies into membrane fluctuations properties
µV , σV , τV .

The previous methodological section allowed to translate the
fluctuations properties µV , σV , τV into a spiking probability
thanks to a minimization procedure. The combination of the
present analytical calculus and the previous fitting procedure
(on numerical simulations data) constitute our semi-analytical
approach to determine the transfer function of a single cell
model: νout = F(νe, νi).

Master equation for local population dy-
namics

An analytical description of the cellular transfer function is the
core of theoretical descriptions of asynchronous dynamics in
sparsely connected random networks (Amit and Brunel, 1997;
Brunel, 2000; Renart et al., 2004).

Because we will investigate relatively slow dynamics (τ>25-
50ms) (and because of the stationary formulation of our transfer
function), we will use the Markovian description developed in
El Boustani and Destexhe (2009), it describes network activity
at a time scale T , for which the network dynamics should be
Markovian. The choice of the time-scale T is quite crucial in
this formalism, it should be large enough so that activity can be
considered as memoryless (e.g. it can not be much smaller than
the refractory period, that would introduce memory effects)
and small enough so that each neuron can fire statistically
only once per time interval T . Following El Boustani and
Destexhe (2009), we will arbitrarily take T=5ms all along
the study as it offers a good compromise between those two
constraints.

The formalism describes the first and second moments of
the population activity for each populations. We consider
here two populations: one excitatory and one inhibitory, the
formalism thus describes the evolution of five quantities: the
two means νe(t) and νi(t) of the excitatory and inhibitory
population activity respectively (the instantaneous population
firing rate, i.e. after binning in bins of T=5ms, see discussion in
El Boustani and Destexhe (2009)), the two variances cee(t) and
cii(t) of the the excitatory and inhibitory population activity
respectively and the covariance cei(t) between the excitatory
and inhibitory population activities. The set of differential
equations followed by those quantities reads (El Boustani and
Destexhe, 2009):





T
∂νµ
∂t

=(Fµ − νµ) + 1
2 cλη

∂2Fµ
∂νλ∂νη

T
∂cλη
∂t

=Aλη + (Fλ − νλ) (Fη − νη)+

cλµ
∂Fµ
∂νλ

+ cµη
∂Fµ
∂νη

− 2cλη

(18)

with:

Aλη =





Fλ (1/T −Fλ)
Nλ

if λ = η

0 otherwise
(19)

Note that, for the concision of the expressions, we used
Einstein’s index summation convention: if an index is repeated
in a product, a summation over the whole range of value is
implied (e.g. we sum over λ ∈ {e, i} in the first equation, note
that, consequently, λ does not appear in the left side of the
equation). Also the dependency of the firing rate response
to the excitatory and inhibitory activities has been omitted:
yielding Fµ instead of Fµ(νe, νi), ∀µ ∈ {e, i}.

We will also use the reduction to first order of this system
(for the phase-space analysis, see Results). This yields:

T
∂νµ
∂t

= Fµ − νµ (20)

Ring model
We now embed the previous markovian description of popula-
tion dynamics in a ring geometry to model spatio-temporal inte-
gration on the neocortical sheet. The ring geometry corresponds
to a one dimensional spatial description with an invariance
by translation, i.e. for all quantities f , f(x) = f(x+ L)(also
termed one dimensional periodic boundary conditions), where
L is the length of the ring model. For simplicity, we consider
here only the first moments of the second-order description:
i.e. the means of the excitatory and inhibitory population
activities: νe(t) and νi(t) respectively.

We introduce the Gaussian connectivity profiles (see Figure
10) that defines the connectivity across cortical columns (i.e.
local networks described in the previous section):

Ne(x) = 1√
2πlexc

e
−( x√

2lexc
)2

; Ni(x) = 1√
2πlinh

e
−( x√

2linh
)2

(21)
where lexc and linh are the excitatory and inhibitory extent

of the connectivity profiles respectively.
We also introduce the effect of a finite axonal conduction

speed vc, this will introduce delays for the propagation of
activity across cortical columns: for a network at a distance x,
the afferent activity will arrive delayed by x/vc.

Finally, the equations that govern the activity in space and
time are given by:





νinpute (x, t) =νdrivee +
∫

R
dyNe(x− y) νe(y, t− ‖y − x‖/vc)

νinputi (x, t) =
∫

R
dyNi(x− y) νi(y, t− ‖y − x‖/vc)

T
∂νe(x, t)

∂t
=− νe(x, t)+

Fe(νaffe (x, t) + νinpute (x, t), νinputi (x, t))

T
∂νi(x, t)

∂t
=− νi(x, t) + Fi(νinpute (x, t), νinputi (x, t))

(22)
where νdrivee is the external drive and νaffe (x, t) is the afferent

(thalamic) stimulation.
The local correlate in terms of mean membrane potential

µV (x, t) is given by Equation 7.
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Afferent stimulation
In the case of the local population model, the afferent input
was chosen as a piecewise double Gaussian waveform:

νaffe (t) = A
(
e
−( t−t0√

2τ1
)2
H(t0 − t) + e

−( t−t0√
2τ2

)2
H(t− t0)

)
(23)

Thus, we independently control: 1) the maximum amplitude
A of the stimulation, its rising time constant τ1 and its decay
time constant τ2.

In the case of the ring model, this temporal waveform was
multiplied by a Gaussian profile in space of extent lstim to
yield the waveform:

νaffe (x, t)) = Ae
−( x−x0√

2lstim
)2 (

e
−( t−t0√

2τ1
)2
H(t0−t)+e

−( t−t0√
2τ2

)2
H(t−t0)

)

(24)

Results
The results are organized as follows. We first construct
the analytical model that will describe the dynamics of
a single cortical column. In particular, we describe the
semi-analytical workflow that enables the derivation of the
cellular transfer function: the core of the population model.
Next, we investigate whether the analytical description
accurately describe population dynamics by comparing its
prediction to numerical simulations. Then, we investigate
the integrative properties of the network model. Finally
we embed the cortical column model into a ring model
and we compare its predictions to VSDi recordings in the
visual cortex of awake behaving monkey.

Modeling a single cortical column
Because optical imaging presumably sample most of its sig-
nals from superficial layers, we model here the layer II/III
network: it is characterized by a strong recurrent connec-
tivity and an important cellular diversity, in particular one
finds many types of interneurons (Markram et al., 2004;
Ascoli et al., 2008). We adopt here a very simplistic
description of this network, it is made of two neuronal
population: one excitatory and one inhibitory comprising
8000 and 2000 neurons respectively. All neurons within
the two population synaptically interconnect randomly to
each other with a connectivity probability of 5%. The
excitatory and inhibitory cells have the same passive prop-
erties. We nonetheless include an asymmetry between
the excitatory and inhibitory populations: because the
inhibitory population includes Fast-Spiking cells that can
exhibit very high firing frequencies (Markram et al., 2004),
we set its spiking mechanism sharper (more precisely its
sodium activation activation curve is steeper, see Meth-
ods) than that of excitatory cells, additionally we add a
strong spike-frequency adaptation current in excitatory
cells that is absent in inhibitory cells. Those two effects
render the inhibitory neurons more excitable (see the dif-
ferent responses to the same current step in Figure 2). All
parameters of the cortical column can be found in Table
1.

A Markovian model to describe popula-
tion dynamics

We now want to have an analytical description of the col-
lective dynamics of this local network. We adopted the
formalism presented in El Boustani and Destexhe (2009).
Two reasons motivated this choice: 1) because 10000 neu-
rons is still far from the large network limit, finite-size
effects could have a significant impact on the dynamics and
2) because of the relative complexity of the cellular models,
an analytic treatment of the type Amit and Brunel (1997)
is, to our knowledge, not accessible and would be extremely
challenging to derive. The Markovian framework proposed
in El Boustani and Destexhe (2009) positively respond to
those two constraints: it is a second-order description of
population activity that describes fluctuations emerging
from finite-size effects and it is applicable to any neuron
model as long as its transfer function can be characterized.
In a companion study (Zerlaut et al., 2016), we developed
a semi-analytical approach to characterize those transfer
functions (see next section), we will therefore incorporate
this description into the formalism.
Nonetheless, the study of El Boustani and Des-

texhe (2009) only investigated the ability of the formalism
to describe 1) the stationary point of the network
activity and 2) in a situation where the neuronal models
models had an analytic estimate for the transfer function
(current-based integrate-and-fire model). Investigating
whether this description generalizes to transient dynamics
and transfer functions estimated with a semi-analytical
approach is investigated in the next sections.

Transfer functions of excitatory and in-
hibitory cells

We briefly describe here the semi-analytical approach used
to characterize the transfer function (see details in the
Methods).

The transfer function F of a single neuron is defined here
as the function that maps the value of the stationary exci-
tatory and inhibitory presynaptic release frequencies to the
output stationary firing rate response, i.e. νout = F(νe, νi).
This kind of input-output functions lie at the core of mean-
field models of population dynamics, reviewed in Renart
et al. (2004) and is consequently the main ingredient of the
formalism adopted here (El Boustani and Destexhe, 2009).
Note here that the formulation of the transfer function
imply a stationary hypothesis: both for the input (station-
ary Poisson processes) and the output firing (a stationary
firing rate). We will study in the following what are the
limitations introduced by this stationary hypothesis in the
description of the temporal dynamics of network activity.
In a previous communication (Zerlaut et al., 2016), we

found that the firing rate response of several models (in-
cluding the adaptative exponential integrate and fire con-
sidered in this study) would be captured by a fluctuations-
dependent threshold in a simple approximation of the firing
probability (see Methods).

The semi-analytical approach thus consisted in making
numerical simulations of single-cell dynamics for various
presynaptic activity levels (i.e. scanning various νe, νi con-
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Figure 2: Single cell models of the excitatory and inhibitory populations. Top: response to a current step
of 200pA lasting 300ms. Bottom: transfer function of the single cell, i.e. output firing rate as a function of the
excitatory (x-axis) and inhibitory (color-coded) presynaptic release frequencies. Note that the range of the excitatory
and frequencies assumes numbers of synapses (Ke=40 and Ki=10 for the excitation and inhibition respectively). (A)
Excitatory cells. Note the presence of spike-frequency adaptation and subthreshold adaptation. (B) Inhibitory cells.
Note the very narrow spike initiation dynamics (ka=0.5mV). Also, note the steepest relation to excitation (with respect
to the excitatory cell) at various inhibitory levels as a result of the increased excitability as a result of the increased
excitability of the inhibitory cell (with respect to the excitatory cell).

figurations) and measuring the output firing rate ν out. All
those configurations corresponded to analytical estimates
of ( µ V , σ V , τ V ), we then fitted the fl uctuations-dependent
threshold that bring the analytical estimate to the mea-
sured firing response. This procedure resulted in the
analytical estimates shown in Figure 2 and compared with
the results of numerical simulations.

Spontaneous activity in the cortical col-
umn

The combination of the transfer function and the marko-
vian formalism (Equation 18 in the Methods) yields our
analytical description of the layer II-III population dynam-
ics in a single cortical column.
We first use this analytical description to look for

a physiological configuration of spontaneous activity.
There exists two qualitatively different types of sponta-
neous asynchronous activity (Vogels and Abbott, 2005;
Kumar et al., 2008): either the network is dominated
by inhibition and the network needs an asynchronous
external excitatory drive to exhibit spontaneous activ-
ity (Amit and Brunel, 1997; Brunel, 2000) or the net-
work exhibits an asynchronous self-sustained activity state
and just needs an initial "kick" to exit from the quies-
cent state (Vogels and Abbott, 2005; Kumar et al., 2008;
El Boustani and Destexhe, 2009). In the latter case,
the network is globally dominated by excitation and
strong shunting conductance effects prevents the net-
work from an excitatory runaway (Kuhn et al., 2004;

Kumar et al., 2008). Those two behaviors are thus deter-
mined by the membrane, synaptic and connectivity param-
eters. We therefore investigate how the chosen network
parameters in this study would determine the qualitative
nature of the spontaneous activity state.
In the case of a single electrophysiological type (e.g.

excitatory and inhibitory neurons taken as the same
integrate-and-fire model), it was shown that a sim-
ple mean-fi eld analysis allow to predict in which situa-
tion the network parameters corresponds (Brunel, 2000;
Kumar et al., 2008), here we generalized this approach
to the two populations considered in this study and we
investigate the behavior of our network model given the
parameters of Table 1. To this purpose, we simplified the
dynamical system describing population activity (Equa-
tion 18) to its first order so that we get a two dimensional
system describing the population spiking activity ν e(t)
and ν i(t). We then plotted the vector field of the time
evolution operator in the phase space of the dynamical
system direction and launched some trajectories with dif-
ferent initial conditions (see Figure 3). The result of this
analysis is that, in absence of external input ( ν drive

e =0Hz),
the only fixed point of the system is the quiescent state
(see Figure 3A). This prediction of the mean-field analysis
was indeed confirmed by numerical simulations, whatever
the initial external "kick", the activity rapidly decayed
(T<50ms) to the quiescent state.

We conclude that, given the parameters of Table 1, our
network model does not have the ability to self-sustain ac-
tivity and will need an external excitatory drive to exhibit
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Figure 3: Using the analytical description to look for a stable confi guration of spontaneous network
activity. Phase space of the dynamical system resulting from the first order of the markovian description, shown for
two levels of external excitatory drive ν drive

e . The lines represents trajectories resulting from different initial conditions.
The vector field correspond to the time-evolution operator (the arrows represent the direction in the two-dimensional
space and the color codes for the norm of the vector). (A) Phase space in the absence of an external drive ν drive

e =0Hz,
the stable fixed point of the dynamics correspond to the quiescent network state ν e = ν i=0Hz. (A) Phase space with
an external drive ν drive

e =4Hz, the stable fixed point of the dynamics correspond now corresponds to an active state
with asymmetric activity levels: ν e=1.6Hz and ν i=8.9Hz (round marker).

spontaneous activity (note that this is also consistently
with recent in vivo observations in mice visual cortex, see
Reinhold et al. (2015)). Indeed, when raising the external
drive, a non-quiescent fixed point appears (see Figure 3B
for ν drive

e =4Hz). Numerical simulations confirmed the
existence of such a fixed point at those levels of activity
(see Figure 4).

The particularity of this stationary fixed-point is its
asymmetry in terms of population activity, it corresponds
to ν e=1.6Hz and ν i=8.9Hz (i.e. corresponding to a factor
5-6 between the their respective firing rates). The ori-
gin of this asymmetry is very naturally the asymmetry
in electrophysiological properties as the excitatory and
inhibitory neurons sample statistically the same recurrent
and external input. This phenomena has been observed
in extracellular recordings in human cortex (Peyrache et
al., 2012), cells categorized as Fast-Spiking (such as our
inhibitory cells) were shown to fire 6-7 times more than
cells categorized as Regular-Spiking (such as our excita-
tory cells), an asymmetry in excitabilities thus naturally
provides a putative explanation for this phenomena (rather
than specific circuitry).

Accuracy of the description of the spon-
taneous activity state

We compare more closely the numerical simulation (Figure
4) to the prediction of the Markovian description.

First, we see that there is a transient period of ∼ 400ms
resulting from the onset of the external drive (see Figure
4B-D), we will therefore evaluate stationary properties
after discarding the first 500ms of the simulation.

After this initial transient, the population activities ( ν e

and ν i) fluctuates around the stationary levels (see Figure
4). The Markovian description predicts this phenomena
as it contains the impact of finite size effects (the network
comprises 10000 neurons). In Figure 5A, we can see that
the distributions of the excitatory and inhibitory popula-

tion activities are rather well predicted by the formalism
(it slightly overestimates the means of the population ac-
tivities).

We also investigated whether the average neuronal and
synaptic quantities were well predicted by the Markovian
formalism. Indeed, we found a very good match for all
quantities (see Figure 5B,C, mean and variance of mem-
brane potential and synaptic conductances). Only the
standard deviation of the membrane potential fluctuations
was underestimated (Figure 5C), presumably because of
residual synchrony in the dynamics whereas the Markovian
formalism assumes a purely asynchronous regime.

Description of the response to time-
varying input

We now examine whether the formalism captures the re-
sponse to time-varying input. Here again, we set the input
and examine the response after 500ms of initial simulation
to discard transient effects.
We first choose an afferent input of relatively low fre-

quency content ( ∼ [5-20]Hz, τ 1=60ms and τ 2=100ms in
Equation 23). The afferent input waveform, formulated in
terms of firing rate, was translated into individual afferent
spikes targeting the excitatory population. The response
of the network to this input is shown in Figure 6 in com-
parison with the prediction of the Markovian formalism.
The excitatory population activity raises and immediately
entrains a raise of the inhibitory population. The analyti-
cal description captures well the order of magnitude of the
deflection, it only slightly underestimates the peak value
(Figure 6B). But the numerical simulations also show a
marked hyperpolarization after the stimulation, the return
to the baseline level happens only ∼ 200-300 ms after the
end of the stimulus, and not immediately as predicted by
the Markovian framework. Here this strong hyperpolariza-
tion is the result of the strong spike-frequency adaptation
current that remains as a consequence of the high activ-
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Figure 4: Numerical simulations of the dynamics
of a recurrent network of 10000 neurons (see pa-
rameters in Table 1). Note that all plots have the same
x-axis: time. (A) Sample of the spiking activity of 500 neu-
rons (green, 400 excitatory and red, 100 inhibitory). (B)
Population activity (i.e. spiking activity sampled in 5ms
time bins across the population) of the excitatory (green)
and inhibitory (red) sub-populations. We also show the
applied external drive ( ν drive

e (t), black line), note the slow
linear increase to reach ν drive

e =4Hz and try to reduce the
initial synchronization that would result from an abrupt
onset. (C) Membrane potential (top) and conductances
(bottom, excitatory in green and inhibitory in red) time
courses of three randomly chosen inhibitory neurons. (D)
Membrane potential and conductances time courses of
three randomly chosen excitatory neurons.

Figure 5: Mean fi eld prediction of the stationary
activity. Those quantities are evaluated after discarding
the initial 500ms transient. (A) Gaussian predictions of
the population activities (filled curve) compared to those
observed in numerical simulations (empty bars). (B)Mean
of the membrane potential and conductances time courses.
Evaluated over 3 cells for the numerical simulations (empty
bars, mean and standard deviation). (C) Standard de-
viation of membrane potential and conductances time
courses.

ity evoked by the stimulus. In the Markovian there is
no memory of the previous activity and therefore this
phenomena can not be accounted for. This typically illus-
trates a limitation of the analytical description provided
here. Note that this is not a fundamental limitation of the
Markovian formalism, it is a limitation of this version of
the formalism, that contains only variables related to the
instantaneous activity (see Discussion).
To study more precisely the temporal validity of the

formalism, we modulated the network activity by sinu-
soidal input and compared the response predicted by the
analytical description.

The numerical simulations showed a marked resonance
at ∼ 50Hz. Given the relatively high strength (compared
to the external input) of the excitatory-inhibitory loop,
the network is close to a bifurcation toward oscillations
that are typically in the gamma range (Brunel and Wang,
2003). A sinusoidal input therefore amplifies those frequen-
cies (Ledoux and Brunel, 2011). Because the individual
excitatory and inhibitory post-synaptic currents approxi-
mately match each other, the theoretical study of Brunel
and Wang (2003) would predict oscillations at 50-60Hz
(the bifurcation would be achieved by reducing τ e), thus
compatible with the present observation.
More importantly, the main insight of this analysis
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Figure 6: Network response to a time-varying in-
put and associated prediction of the Markovian
formalism. For all plots, the x-axis corresponds to time.
Shown after 500ms of initial stimulation. (A) Sample
of the spiking activity of 500 neurons (green, 400 excita-
tory and red, 100 inhibitory). (B) Population activity (in
5ms bins) of the excitatory (green) and inhibitory (red)
sub-populations. Superimposed is the mean and standard
deviation over time predicted by the Markovian formalism.
We also show the applied external stimulation ( ν aff

e (t),
dotted line). (C) Membrane potential time courses of
three excitatory cells (green, top) and three inhibitory
cells (red, bottom) with the prediction of the mean and
standard deviation in time. (D) Conductance time courses
of the six cells in C with the predictions of the fluctuations
superimposed.

is to show that the network can track very fast tempo-
ral variations in the input, even at time scales smaller
than the integration time constant of the single neurons
(van Vreeswijk and Sompolinsky, 1996). Recurrent neu-

Figure 7: Limitations of the Markovian descrip-
tion in the frequency domain. Response of the net-
work (numerical simulation and analytical description)
to sinusoidal stimulation of the form ν aff

e = 5Hz
(
1 −

cos(2 π f(t − t0))
)
/2. The stimulation was set on at

t0=500ms. The response was fitted by a function of the
form ν (t) = A

(
1 − cos(2 π f(t − t0) − φ )

)
/2. (A) Ampli-

tude of the sinusoidal response (A in the fitted response)
for various frequencies. (B) Phase shift of the sinusoidal
response ( φ in the fitted response) for various frequencies.

ral networks globally behave as low-pass filters (though
see (Ledoux and Brunel, 2011) for a detailed treatment
of the appearance of resonances), but with a high cutoff
frequency compared to the frequency content of thala-
mic input for classical artificial stimuli (e.g. in the visual
system: drifting gratings, supra-10ms flashes, etc. . . ).

Leaving apart the failure of capturing the network reso-
nance (that is linked to this special configuration of synap-
tic parameters), we conclude that in the frequency range
that will be used in the following (f<50-100Hz) the descrip-
tion of the formalism gives a relatively accurate description
of the network response in the sense that it accurately pre-
dicts that there should not be a frequency filtering within
this range. Again, in vivo experiments in awake mice sug-
gested that V1 cortical networks had a cut-off frequency
above this range (∼ 100Hz in Reinhold et al. (2015)).

This section concludes the comparison between numeri-
cal simulations of network dynamics and the Markovian for-
malism. We showed that, despite some discrepancies, this
analytical framework describes both the spontaneous ac-
tivity and the response in the [0,100]Hz range of a sparsely
connected recurrent network of distinct excitatory and
inhibitory cells.

Integrative properties of the network
As the computational cost of the analytical description
is negligible, we can now perform a detailed analysis of
the network model. We want to investigate the integrative
properties of the network, i.e. the relation between the net-
work response and the stimulus properties. We analyzed
two quantities in the network response: 1) the population
activity ν (t) = (1 − g)ν e(t) + gν i(t), i.e. the firing rates
weighted by the fraction of neurons in each population,
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Figure 8: Integrative properties of the network
model. For all stimuli the waveform (Equation 23) keeps
the temporal characteristics: τ 1=60ms and τ 2=100ms. For
both A and B: (i) Time courses of the stimulus, the net-
work response and the normalized membrane potential
(see main text) (ii) Maximum of the population rate re-
sponses as a function of the amplitude. (iii) Maximum of
the normalized membrane potential deflection as a func-
tion of the amplitude. (A) Stimulus-response relationship.
We increase the amplitude of the stimulus from 0 to 15Hz.
In (iii), we show the linear prediction (dashed line) for
comparison. (B) Modulation of the response to a stimulus
by various levels of background activity (external drive
varied from 0 to 15Hz).

this is the kind of signals sampled by multi-unit record-
ings, and 2) the normalized membrane potential over the
population δ V (t)/V0 = (1 − g) (V exc

m (t) − V stat
m, )/V stat

m +
g(V inh

m (t) − V stat
m, )/V stat

m where V exc
m (t) and V inh

m (t) are
the time courses of the excitatory and inhibitory mem-
brane potential respectively and V stat

m is the stationary
membrane potenial value before stimulus onset. This quan-
tity provides a first approximation of the signal recorded
by voltage-sensitive dye imaging (Berger et al., 2007), see
Chemla and Chavane (2010) for a more detailed treatment
of the relation between neural activity and VSDi signals
in a cortical column.
First, we investigated the relation between stimulus

Figure 9: A spatial model of the cortical sheet. The
balanced network units are embedded in a ring geometry.
The lateral connectivity follows two Gaussian profile of
extent lexc=5mm and linh=1mm for the excitation and
inhibition respectively.

intensity and network response, see 8A. On top of the
external drive, we added a time-varying stimulus with
various amplitudes, see Figure 8A(i). We found that the
population activity scaled linearly with the strength on the
input. Therefore despite the highly nonlinear dynamics
of single neurons (see Figure 2), the network exhibits a
linear response (van Vreeswijk and Sompolinsky, 1996).
On the other hand, the normalized membrane potential
deflection (the "vsd-like signal" in Figure 8A(i,iii)) behave
non linearly, it exhibits a strong sublinear behavior (see
the distance to the linear prediction, dashed line in Fig-
ure 8A(iii)). This behavior follows from the non-linear
relation that associate the mean membrane potential to
the excitatory and inhibitory activities (Equation 7): the
mean membrane potential is not a linear combination of
the excitatory and inhibitory contribution it is strongly
shunted by the total activity.

Another important integrative property is how a given
input will be modulated by changes in local ongoing ac-
tivity (that could either come from local spontaneous
fluctuations or from afferent activity). The response in
terms of population activity was found to be unaffected
by the level of background activity, again, in accordance
with the characteristics of a linear system. On the other
hand the membrane potential response exhibited a strong
suppression (up to 60% of the response in absence of addi-
tional drive). This phenomena also naturally follows from
the previously described non-linear relationship between
population activity and mean membrane potential.

Embedding the model in a ring model to
describe spatial integration

We now embed this local population dynamics description
into a spatial model to investigate the emergence of spatio-
temporal integrative properties.
The ring model (see e.g. (Hansel and Sompolinsky,

1996)) offers a simple framework to implement such inter-
actions. The local balanced network units are intercon-
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Figure 10: Model response to a local stimulus. An early response line (see main text) indicates whether the
signal exhibits propagation over space (vertical meaning no propagation), the line stops when the response is below 1%
of the maximum signal over space. The yellow dotted line on the right of each plot represents to conduction velocity
(300mm/s) for comparison. (A) Afferent stimulation: an input of the form Equation 24 with the parameters A=10Hz,
τ 1=50ms, τ 2=150ms and lexc=1.5mm. (B) Population response in terms of population firing rate ( ∼ multiunit signal).
(C) Population response in terms of normalized membrane potential deflection (∼ VSDi signal).

nected to each other via two Gaussian connectivity profiles
(see Figure 9 and Methods) according to anatomical con-
nectivity estimates (Buzás et al., 2006). Importantly, we
integrate distance-dependent propagation delays due to
the finite velocity of axonal conduction of action potentials
(see Methods), we took here an axonal conduction velocity
of 300mm/s.
We stimulated this large-scale model with an external

input mimicking thalamic stimulation. We took a separa-
ble spatio-temporal waveform as an input (see Equation
24). In space, the profile was a Gaussian curve, in time,
it was a piecewise double Gaussian function. Despite its
various amplitude over space, it should be emphasized
that this input does not propagate: e.g. its maximum is
achieved at all position at the same time. To highlight
this feature, we implemented a simple analysis of propa-
gation: we normalize the responses with respect to their
local amplitude and we look for a specific crossing of the
normalized amplitude. To focus on early responses, we
highlight the initial crossing of the fourth of the normal-
ized amplitude over space, we call it the early response line
(drawn with a white dashed-line, see Figure 10). In Figure
10A, the horizontal early response line indeed show that
the input does not propagate, the fourth of the maximum
of the normalized response is achieved everywhere at the
same time.
The response of the model in terms of population dy-

namics showed a marked propagation (see the V-shape of
the early response line in Figure 10B). This is naturally
the result of the local connectivity profiles implemented in
the model (see Figure 9 and Table 1), the excitation has a
broad spatial extent, it can depolarizes neighboring loca-
tions and evoke spiking (both of excitatory and inhibitory
populations). This propagated activity nonetheless ex-
hibits a very strong attenuation over space, this is due to
the strong non-linear relationship between depolarizations
and firing response (see previous sections). Confirming
this picture, the normalized membrane potential responses
indeed exhibits the same propagation profile but with a
much weaker attenuation over space. Naturally, the prop-
agation dynamics in the model is led by the conduction

velocity, see its representation (yellow dotted line) in Fig-
ure 10B,C. A strong prediction of the model is therefore
that the detectability of responses in multiunit recordings
have a lower spatial extent than for VSDi responses (see
the lower range of the early response line that stops when
the maximum local response is below 1% of the maximum
response).
The propagating wave in the model are thus very sim-

ilar to those detected in primary visual cortex of awake
monkey, either in spontaneous activity or following visual
stimulation, as recently shown by a phase-based analysis
applied at single-trial level (Muller et al., 2014). Note
that, to highlight this qualitative similarity between model
and in vivo VSDi recordings, the spatio-temporal parame-
ters of the input ( τ 1=50ms, τ 2=150ms, lexc=1.5mm) have
been manually calibrated to reproduce the properties of
the response observed as a response to a single Gaussian
blob in the visual space of 0.5o spatial extent.

Deintricating the cortical operation un-
derlying the response to an apparent mo-
tion stimulus

The presence of traveling waves detected in the VSDi
signal in response to simple stimuli (Muller et al., 2014)
raises the question of a putative physiological role during
the integration of complex stimuli. Indeed, such transient
depolarization of excitatory and inhibitory neurons carried
by the horizontal fiber network of the superficial cortical
layers might affect the processing of future stimuli at
distant points in visual cortex.

To investigate this possibility, a convenient paradigm is
the apparent motion protocol: two individual stimuli are
successively flashed at two neighboring visual locations
(see Figure 11A). If the interval between the two stimuli
and the distances in visual space are low enough, this give
rise to the visual illusion of one moving object instead of
two different flashed objects, hence the name: apparent
motion stimulus.

Using voltage-sensitive dye imaging in the primary vi-
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Figure 11: Deintricating the cortical operation underlying the response to an apparent motion (AM)
stimulus: comparison between the model and VSDi recordings in fi xating monkeys. (A) The apparent
motion protocol. During a single trial, the monkey had to fixate on a central red dot for 1–2s. The animal’s gaze was
constrained in a window of 2o × 2o. Two Gaussian blob stimuli (each of 0.5o spatial extent) at two different position
were successively presented during fixation. (B) VSDi allows for a real-time visualization of large neuronal population
in primary visual cortex of fixating monkeys. (C) To deintricate the cortical computation, both in the theoretical
model and in fixating monkey in vivo, we show the VSDi signal of different quantities: (i) the response to the first
stimulus alone (ii) the response to the second stimulus alone, (iii) the linear prediction of the signal resulting from
the two stimuli alone, (iv) the response to the two stimuli (AM stimulus) and (v) the spatio-temporal profile of the
suppression signal (the linear prediction minus the observed response to the AM stimulation). The dashed magenta
line in the model plot represents the conduction velocity. Note that the spatial scale in the model is higher than in the
recordings (i.e. the model shows an enlarged region).

13
97



A markovian model for spatio-temporal population dynamics in neocortex • Zerlaut, Destexhe, Chemla & Chavane • April 11, 2016

sual cortex of awake monkey (see Figure 11B), Chemla
& Chavane (unpublished observations) showed that two
visual stimuli in different positions in space and time evoke
two distinct propagating waves, which can collide, see Fig-
ure 11C(iv). To understand the computation performed
during this collision, they recorded the response to the
two simple stimuli alone, see Figure 11C(i,ii), and then
computed the linear prediction of the expected spatio-
temporal profile in the absence of cortical operations, see
Figure 11C(iii).

Notably, they found that the interaction between the two
waves always results in the propagation of a suppressive
(sub-linear) wave at a speed compatible with horizontal
propagation (0.1-0.6 m/s). The suppression affected the
second stimulus first and then propagated toward the first
stimulus location.
We therefore tried to explain those observations in the

light of our theoretical model. As previously mentioned, we
calibrated the afferent input (mimicking thalamic input)
to obtain a spatio-temporal responses similar to those
observed in vivo (i.e. the cortical distance between the
two stimuli was estimated as 8.1mm for a 2o separation in
the visual space). We next investigated the prediction of
the theoretical model in response to the apparent motion
stimulus, see Figure 11C.

Similarly to what was observed experimentally, we found
that the normalized membrane potential response ( ∼
VSDi signal) to the two successive inputs collided, see Fig-
ure 11C(iv), and resulted in a strongly dampened signal
with respect to the linear prediction, see Figure 11C(v).
This suppression signal was also found to propagate from
the second stimulus location toward the first stimulus lo-
cation. To investigate quantitatively the properties of this
propagation, we implemented the same early response line
analysis than previously described (see previous section).
We found that the propagation of the suppression was led
by the conduction velocity (see comparison with the dotted
magenta line in Figure 11C(v)). Importantly, it should be
noted that in addition to this qualitative similarity, the
quantitative prediction of the model seems to match those
of the experimental recordings: the suppression peaks
at ∼ 50 % of the response to a single stimulus both in
the model and in the VSDi recordings (for the experi-
mental recordings, response to first and second stimulus
have a maximum of ∆F/F ∼ 12 %�, suppression peaks
at ∆F/F ∼ 6 %�, in the model, the "VSDi-like" signal
response to first and second stimulus have a maximum of
δV/V0 ∼ 6%, suppression peaks at δV/V0 ∼ 3%) .

We conclude that the the horizontal fiber network com-
bined with the strongly sublinear relation between mem-
brane potential deflection and activity in the local network
(see Figure 8) appears as a putative sufficient explanation
for the observation found in VSDi recordings during an
apparent motion stimulus in fixating monkeys.

Discussion
The present study has two main contributions.

In a first part, we investigated whether the Markovian
formalism proposed in El Boustani and Destexhe (2009)

is able to describe the temporal dynamics of artificial
neural networks. Though this formalism was shown to
be a relatively accurate description of the response simu-
lated in numerical networks, we highlighted two example
phenomena that were missed by our description. The
relative complexity of the theoretical problem should be
stressed, indeed no exact treatment of this situation could
be achieved as this represents a really tough mathematical
problem.

In a second part, by taking advantage of this theoretical
work performed at the mesoscopic level (∼ 10000 neurons)
to analytically describe population dynamics in terms of
few variables, we were able to design a tractable model of
population dynamics in Layer II-III at the ∼ 30 millimeter
scale of the neocortical sheet. We studied the properties
of this model in the context of multi-input integration. In
particular, we implemented a typical paradigm of visual
processing: the apparent motion protocol. Similarly to
what is observed in vivo we found a strong suppression
signal originating in the second stimulus that propagated
toward the first stimulus.
Unlike previous studies (Brunel, 2000; Vogels and Ab-

bott, 2005; Kumar et al., 2008; El Boustani and Destexhe,
2009), we introduced asymmetric electrophysiological prop-
erties between excitatory and inhibitory cells. The reason
was twofold: first it was an insightful step to demonstrate
the relative accuracy of the markovian formalism (with
the semi-analytical approach) in a situation including this
increased complexity, but more importantly, this asym-
metry in the excitabilities was the mechanism that led
to a very strong suppression in the response to multiple
inputs. When the external stimulation increases the local
excitatory activity, inhibition is recruited via recurrent
connections and because of its higher excitability this re-
cruitment is stronger than for the excitatory population
(see e.g. Figure 6B).This feature, combined with the inter-
play of driving forces, produced an inhibitory control of
the mean membrane potential fluctuations.
Other suppressive mechanisms were present in this

model: conductance shunting of the external input
due to background activity (Hô and Destexhe, 2000;
Chance et al., 2002) (where an increase in background
activity is evoked by the first stimulus) as well spike-
frequency adaptation currents (as least its stationary ef-
fect). The effect of those mechanisms has been investigated
in absence of the electrophysiological asymmetry (i.e. by
considering pure FS cells networks and pure RS cell net-
work), they indeed produced a suppression with a similar
spatio-temporal pattern such as the one observed in the
experimental data. Nonetheless, when keeping their value
to estimated physiological range, the amplitude of the
suppression was at least one order of magnitude lower
than that observed in experimental recordings (not shown,
but the slight suppression for the firing activity in Figure
8B(ii) is the trace of this effect), thus suggesting that they
weakly participate to the very strong suppression effect
observed in VSDi recordings.
An important remark is that the strong suppressive

mechanism had to be cortico-cortical to account for the
experimental observations. Depression at the thalamo-
cortical synapses can contribute to the suppression of
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cortical responses (see Carandini et al. (2002) for cross-
orientation suppression), but this seems unlikely to play
here as the sensory stimuli are well separated in the visual
space and are likely to also be well separated in the thala-
mus, thus ruling out the hypothesis of synaptic depression
at the thalamo-cortical synapse.
We envision several future directions for the present

model.
First, the theoretical descriptions of the local cortical

network could be improved. For example the strong hy-
perpolarization of population activity after a transient rise
(see Figure 6B) was shown to be missed by the formalism
under this version. Indeed, this version does not have a
memory of the previous activity levels and thus can not
account for the effect of the long-lasting spike-frequency
adaptation mechanism that has been strongly activated by
the activity evoked by the stimulus. This is easily solvable
within the Markovian framework, one can introduce a new
variable: the "population adaptation current", that can
directly be derived from the equation of the AdExp model
(not shown). The simplicity and high tractability of this
model in its current form would allow several inclusion
without running into the drawback of a high computational
cost.

Finally, we would like to test the model ability to explain
other typical cortical properties. In particular, similar
propagation of suppressive interactions have already been
shown but using bipartite stationary stimuli (Reynaud et
al., 2012), unveiling the cortical dynamics subtending the
so-called surround suppression. What is the explanatory
power of the model in the surround suppression framework
? As an additional example, the response to a stimulus
depends on the level of ongoing activity (Arieli et al., 1996)
dependency on the level of ongoing activity. When the
the ongoing activity is modulated by the level of afferent
activity is this model sufficient to describe the spatio-
temporal variability in evoked response ? Answering those
questions will be the focus of future work.
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In this thesis, we aimed at understanding how the biophysical and circuit
properties characterizing neocortical assemblies shape population dynamics
in neural networks.

While investigating how layer V pyramidal cells respond to membrane
potential fluctuations, we found a strong heterogeneity between cells in their
firing response. Consequently, we developed an analytical framework includ-
ing dendritic integration to investigate the putative functional consequences
of this cell-to-cell variability. In parallel, we studied how recurent and lateral
connectivity might influence neocortical processing. We now discuss those
results.

Heterogeneity in neocortex
We found a strong heterogeneity in the firing response of neocortical neurons
in the visual cortex of juvenile mice in Work 1. Many factors could underlie
this variability, notably: 1) recording at different days (between P8 and P13),
2) recording over different animals (see e.g. Schulz et al. (2006)) or 3) there
is indeed an intrinsic variability within the layer V neocortical network in
juvenile mice. We could quantify the impact of hypothesis 1) and it was
found relatively small, on the other hand hypothesis 2) is hard to quantify
because of the low number of recorded cells per animal.

Even in the hypothesis of the intrinsic heterogeneity in juvenile mice cor-
tex, a natural question is whether this feature disappears in more mature
animals. This is hard to answer from the litterature as experimental charac-
terization usually report results with respect to a control situation. Nonethe-
less, the heterogeneity seems much reduced in adult animals. Köndgen et al.
(2008) studied the response of mature layer V neurons in somato-sensory
cortex to modulated noisy input. The quantity that will shape this response
is somehow similar to our "sensitivity to the speed of the fluctuations", and as
visually estimated from the presented errorbars, the variability seems much
reduced, although still present (and all inputs were adjusted to reproduce
a baseline trend). On the other hand, at least ∼4mV standard deviation
in action potential threshold levels seems to be routinely measured in adult
mice cortex (Crochet et al., 2011; Okun et al., 2015; Yang et al., 2015).

An important remark is that we performed this study using the perfo-
rated patch technique and not the with widespread whole cell technique. A
possibility is that, because of the dialysis of the intracellular medium, whole
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cell recordings render the electrophysiological properties more homogenous.
The perforated patch technique would thus reveal the true heterogeneity. On
the opposite, maybe the perforated patch technique introduces cell-to-cell
variability. A precise quantification of those possible effects appears as a
necessary step for future studies.

Consequently, we believe that the main contribution of our work was
only to 1) design a functionnally relevant space to scan neuronal responses
and 2) evidence its ability to capture cell-to-cell variability in a relatively
favorable system (because immature), but the evidence and extent of the
intrinsic functional heterogeneity in neocortical networks remains a fairly
open problem.

Putative functional impact of heterogeneity
In Work 2, we speculated that the biophysical heterogeneity that we re-
ported could offer a multiplexing mode to cortical computation. Some neu-
rons would preferentially respond to local network activity (proximally tar-
getting activity), while some other neurons would respond either to long-
range stimulation or an increased synchrony due to a change in stimulus
statistics. The core of this mechanism would be that neurons possess vari-
ous levels of sodium inactivation. Slow fluctuations due to distal or medium
conductance input do not allow a neuron with strong inactivation to fire.
On the other hand, the strong conductance (because localized) associated
to proximal input produces very fast fluctuations and allows to deinactivate
sodium channels and thus to elicit spikes. At this stage, this is a very spec-
ulative statement, it should be investigated whether neocortical dynamics in
vivo and its associated modulations of the membrane potential fluctuations
render those effects possible.

Previous theoretical work (Mejias and Longtin, 2012) in recurrent net-
works suggested that a given heterogeneity level in action potential threshold
could optimize network information transmission for the rate coding strat-
egy. This value was found to be around 4mV, quite close from the ∼ 5-6mV
from our characterization of Work 1. Evidencing such a contribution in
vivo would be extremely challenging, it would require to reduce or increase
the excitability variations on a whole population and then study its ability
to transmit/amplify a given sensory input.

On the other hand, because neural networks lie in a very high dimensional
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space (including electrophysiological, synaptic, neuromodulatory and circuit
properties), one can not exclude that this heterogeneity is not compensated
by an other variability so that the effect on network dynamics cancels, see
Prinz et al. (2004) for an example of such an effect (reviewed in Marder and
Goaillard (2006)).

On the need of analytical descriptions of den-
dritic integration
In Work 2, we presented an analytical description of dendritic integration
in the fluctuation-driven regime (whose weaknesses were also emphasized).
We suggested that it could be of great use to theoretical analysis in systems
neuroscience. We present here such an example.

It was proposed that the recurrent circuitry of neocortical networks could
self-sustain activity (i.e. maintain activity in the absence of an external drive)
(Kuhn et al., 2004; Vogels and Abbott, 2005; Kumar et al., 2008). It is thus
an important question to evaluate whether cortical activity is self-sustained
during asynchronous dynamics or whether it is driven by an asynchronous
input (e.g. a thalamic drive) as those two scenarii will surely lead to different
computations of afferent input.

The mechanism by which this self-sustained activity emerges is the fol-
lowing (see Kuhn et al. (2004) for details): we have a recurrent network
globally dominated by excitation and the excitatory run-away is avoided by
a very strong shunting conductance that reduces the post-synaptic poten-
tials at high activity levels. Examining the plausibility of this mechanism
can therefore be reduced to examining whether this shunting effect can hap-
pen in a physiological range. This hypothesis was formulated in the single-
compartment approximation, thus rendering the comparison with neocortical
cells difficult. On the other hand, we have a theoretical model that has an
accurate surface area and a relatively accurate distribution of transfer resis-
tances to the soma. We used physiologically-realistic synaptic and membrane
parameters (identical to those of Work 2) and examined whether a strong
enough shunting could appear in the physiological range. The criteria for
this physiological range was that the somatic input conductance should be
no more than four times the leak conductance (reviewed in Destexhe et al.
(2003)). In this range, we found that the model predicted a too weak shunt-
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ing to enable such an effect (not shown, but see the effects on σV and τV

in Figure 4 of Work 2). This analysis predicts that cortical networks can
not self-sustain activity. In accordance with this view, recent evidences ac-
cumulate to show that during asynchronous activity the cortex is driven by
a thalamic drive (Poulet et al., 2012; Reinhold et al., 2015).

We believe that many other theoretical questions could benefit from the
quantitative insight offered by this model.

Modulation of sensory responses by network
state
In Work 3, we proposed a general mechanism, that might be an important
principle for information processing in neural networks.

The amplitude of the response to a sensory stimulus result from the com-
petition between:

• cellular gain modulation. Background activity and its associated con-
ductance level has a shunting effect on post-synaptic responses (Hô
and Destexhe, 2000; Chance et al., 2002; Altwegg-Boussac et al., 2014).
This mechanism favors high responses in the quiescent-state.

• recruitment within the network. A given afferent stimulus will be am-
plified by the recurrent activity in the presence of ongoing activity.
This mechanism is in favor of the active-state. Importantly, the poten-
tiation exerted by the active state (with respect to the quiescent state)
increases as a function of the number of networks when arranged in a
feedforward manner (e.g. A1 -> A2 ->etc. . . )

This also tells us that interpreting measurements requires to take care
about what is actually measured. Somatic intracellular do not predict the
same effect as multi-unit activity. The predictions of this model is that in
terms of multi-unit activity, the response should be systematically lower in
the Down-state than in the Up-state. Note that this property was visible in
the data of Work 3, in the spikes recorded during intracellular recordings
(Reig, Vergara and Sanchez-Vives, private communication).

A notable exception would appear for very strong stimuli (Hô and Des-
texhe, 2000) (see also Figure 4 in Work 3), at very high levels the spiking
probability is higher in the Down state, but this would presumably result in
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a pathological state (e.e. epileptic seizure) as this effect appears when all
neurons respond.

Rationale behind a bottom-up approach: mod-
els of high empirical content
In Work 4, we have built a large-scale model of the supra-granular network,
the modeling procedure to build this model can be seen as a kind of bottom-
up approach: starting from the cellular level we build-up the dynamical
system describing the mesoscopic scale (the cortical column) via the mean-
field approach, finally we embed this description into a spatial model to reach
the macroscopic scale (the sensory area).

It is worth comparing the theoretical model resulting from our bottom-up
approach to other models in the literature. Competing models for macro-
scopic population dynamics are phenomenological models, the most promi-
nent example being the model of Rubin et al. (2013) for primary visual
cortex computation. This model has only two variables: the excitatory and
inhibitory population activities (comparable to our two population model).
It has also very few parameters: the 3 parameters of their power law input-
output function and the connectivity parameters. This very low number
of parameters might be seen as a clear advantage because it will allow a
parameter scan to investigate the robustness of the findings. The number
of parameters is a lot larger in our model (30 parameters: ionic channel pa-
rameters, synaptic quantities, membrane quantities, morphology parameters,
circuit properties, . . . ) and clearly prevents such a procedure. Nonetheless,
we argue here that it has a notable advantage: it has a higher empirical
content (Popper, 2005), i.e. because it generates predictions at all scales, it
can be falsified (or confirmed) by several measurements at all scales (from
intracellular recordings to large scale optical imaging). Those theoretical
models thus offer a very convenient (because highly testable) framework to
understand neocortical computation.
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