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Multiphysics coupling is becoming of large interest in the nuclear engineering and computational science elds. The ability to obtain accurate solutions to realistic models is important to the design and licensing of novel reactor designs, especially in design basis accident situations. The physical models involved in calculating accident behavior in nuclear reactors includes neutron transport, thermal conduction/convection, thermo-mechanics in fuel and support structure, and fuel stoichiometry, among others. However, this dissertation focuses on the coupling between two models, neutron transport and thermal conduction/convection. The goal of this dissertation is to develop a multiphysics solver for simulating accidents in nuclear reactors. The focus is both on the simulation environment and the data treatment used in such simulations. This work discusses the development of a multiphysics framework based on the Jacobian-Free Newton-Krylov (JFNK) method. The framework includes linear 4.1 Summary of Characteristics for Homogenization Methods . . . . . 74 4.2 Material Concentrations for the Homogeneous UO 2 and Borated Water Mixture . . . . . . . . . . . . . . .

Résumé

Le couplage multiphysique devient important dans les domaines de l'ingénierie nucléaire et de l'informatique. La capacité d'obtenir des solutions précises pour des modèles réalistes est essentielle à la conception et l'autorisation des conceptions nouvelles de réacteurs nucléaires, surtout dans des situations d'accidents graves. Les modèles physiques qui décrivent le comportement des réacteurs nucléaires dans des conditions accidentelles sont : le transport des neutrons, la conduction/convection thermique, la thermomécanique du combustible et des structures de support, la st÷chiométrie du combustible, et d'autres encore. Cependant cette thèse se concentre sur le couplage entre deux modèles, le transport des neutrons et la conduction/convection thermique.

Le but de cette thèse est de développer un solveur multiphysique pour la simulation des accidents de réacteurs nucléaires. Le travail s'est focalisé à la fois sur l'environnement de simulation et sur le traitement des données pour de telles simulations.

Ces travaux discutent le développement d'un solveur multiphysique basé sur la méthode Newton-Krylov sans la jacobienne (JFNK). Ce solveur inclut des solveurs linéaires et non-linéaires, accompagné des interfaces par le calcul des résidus aux codes existantes pour le transport des neutrons et la thermo hydraulique (APOLLO3 et MCTH respectivement). Une nouvelle formulation pour le résidu du transport de neutrons est explorée, qui réduit la taille de la solution et l'espace de recherche par un facteur important ; le résidu, au lieu d'être basé sur le ux angulaire, est basé sur la source de ssion.

La question de savoir si l'utilisation d'un ux fondamental pour l'homogénéisation des sections ecaces est susamment précise pendant les simulations transitoires rapides est aussi explorée. Il est montré que, dans le cas d'un milieu inni et homogène, l'utilisation des sections ecaces fabriquées avec un ux fondamental est signicativement diérente d'une solution de référence. Cette erreur est diminuée en utilisant un ux de pondération alternatif qui vient d'un calcul à dépendance temporelle ; soit avec un ux intégré en temps soit avec une solution asymptotique. Le ux intégré en temps vient d'une solution multiphysique sur un sous-domaine de l'accident et intégrée en temps. L'intégration en temps peut être réalisée sur plusieurs morceaux qui ont le même comportement temporel.

La solution asymptotique vient d'un calcul de valeur propre alpha et emploie un ou plusieurs modes alpha comme ux de pondération. Entre les deux méthodes, la méthode avec un ux intégré en temps est plus précise, mais prend plus de temps.

Le domaine d'application de ces nouvelles méthodes est étendu en étudiant les eets d'hétérogénéités spatiales et la discrétisation des macro-intervalles en temps. Premièrement, un cas avec des hétérogénéités spatiales et une perturbation locale est utilisé pour montrer que ces méthodes peuvent être utilisées pour l'homogénéisation au niveau des assemblages. Ces nouvelles méthodes fonctionnent mieux que la méthode traditionnelle avec un ux fondamental. Deuxièmement, une estimation a priori pour une discrétisation optimale est obtenue pour la méthode avec le ux intégré en temps. Il est montré que d'autres divisions du i domaine en temps réduisent l'erreur sur plusieurs métriques jusqu'au moment où les erreurs numériques deviennent dominantes.

Pour montrer que le solveur multiphysique fonctionne bien pour des calculs de grande taille, un calcul sur un c÷ur REB réduit est eectué. Cette simulation est basée sur un accident de chute de grappe dans un REB au démarrage. Des sections ecaces en deux groupes d'énergie homogénéisées sur des assemblages sont utilisées, et montrent que le solveur multiphysique peut produire des solutions multiphsyiques.

Mots clés: multi-physique, homogénéisation, transport des neutrons, thermohydraulique and nonlinear solvers, along with interfaces to existing numerical codes that solve individually neutron transport and thermal hydraulics models (APOLLO3 and MCTH respectively) through the computation of residuals. A new formulation for the neutron transport residual is explored, which reduces the solution size and search space by a large factor; instead of the residual being based on the angular ux, it is based on the ssion source.

The question of whether using a fundamental mode distribution of the neutron ux for cross section homogenization is suciently accurate during fast transients is also explored. It is shown that, in an innite homogeneous medium, using homogenized cross sections produced with a fundamental mode ux dier significantly when comparing the homogeneous solution to a reference solution. The error is remedied by using an alternative weighting ux taken from a time dependent calculation; either a time-integrated ux or an asymptotic solution. The time-integrated ux comes from the multiphysics solution of the accident on a subdomain and an integration in time. The integration can be broken into several chunks that capture similar time-dependent behavior. The asymptotic solution comes from an alpha-eigenvalue calculation and uses one or several alpha modes as the weighting ux. Between the two methods, the time-integrated ux is more accurate, but takes longer to obtain a solution.

The usability of these new homogenization methods is further developed by studying the eects of spatial heterogeneities and of the discretization of the time-chunks. First, a case with spatial heterogeneities and a localized perturbation is used to show that these methods can be applied to heterogeneous lattice homogenization. The new methods are shown to perform well with spatial heterogeneities when compared to using a traditional, fundamental mode, homogenization method. Second, an a priori estimate for an optimal time discretization is obtained for the time-integrated ux method. It is shown that further divisions of the time domain reduce the error for several metrics until numerical errors become dominant.

To show that the multiphysics framework works well for industrial sized calculations, a reduced size BWR core calculation is performed. This simulation iii is based on a rod-drop accident in the core during startup. Two energy group assembly homogenized cross sections are used, which show that the framework is capable of producing coupled physics solutions.
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The nuclear engineering domain encompasses a vast array of subjects such as the transport of particles through media, the transfer of heat within a nuclear power plant, and the formation of hydrogen gas during a severe accident. The accurate solution to such physical models allows scientists and engineers to build more ecient power generation stations [START_REF] Clarno | The AMP (Advanced MultiPhysics) Nuclear Fuel Performance code[END_REF], as well as predict the eects of radiation exposure [START_REF] Chen-Mayer | Simulation of Radiation Dose from Diagnostic X-ray Beams[END_REF], study the eectiveness of using magnetic connement for fusion reactors [START_REF] Cary | Concurrent, Parallel, Multiphysics Coupling in the FACETS Project[END_REF], and understand the process of collapsing supernovae [START_REF] Mezzacappa | Neutrino transport in core collapse supernovae[END_REF][START_REF] Zwart | A Multiphysics and Multiscale Software Environment for Modeling Astrophysical Systems[END_REF], among others.

Often the physical processes being studied by nuclear engineers and scientists are composed of many separate but coupled physical processes. The focus of this work is on the development of simulation strategies which can be used to produce high delity solutions to coupled physics problems encountered in nuclear engineering. The objective of this Ph.D. work is to show how physics component codes may be adapted to work within a multiphysics framework based on a Jacobian-Free Newton-Krylov (JFNK) method, and to develop homogenization procedures which reduce errors when applied to transient simulations. This work began with the intention of studying multiphysics coupling strategies applicable to industrial calculations in nuclear engineering, but as is often the case in research, it was discovered that the treatment of cross section homogenization for transient calculations was lacking in development. The focus of this work was then shifted to exploring cross section homogenization methods which were applicable to multiphysics transient simulations. The current chapter introduces the domain of study for this work, discusses the current state of this domain, and species which improvements to this domain are considered in this work.

Behavior of Nuclear Reactors

Nuclear reactor power plants are characterized by their primary heat source coming from a nuclear process; presently this is limited to ssion events in commercial power plants. Depending on the design, a nuclear power plant consists of a primary coolant loop and possibly several secondary coolant loops. The primary CHAPTER 1. INTRODUCTION coolant is heated by passing directly through the reactor core, which generates its heat from nuclear processes. In boiling water reactors (BWRs) the coolant in the primary loop passes forthwith through the turbine generator, resulting in a Rankine power cycle [START_REF] Todreas | Nuclear Systems I: Thermal Hydraulic Fundamentals[END_REF]. In pressurized water reactors (PWRs), the pressure in the primary coolant loop is high enough to maintain the coolant below the saturation temperature. The thermal energy of the primary coolant is transferred to a secondary loop at a lower pressure, which then passes through a turbine generator.

The interior of a reactor core is a rich environment for physics simulations because of the complexities of high turbulence ows, uid structure interactions, and material behavior under irradiation, among others. In addition to this rich environment of physical phenomena, many of these physical phenomena interact with one another. As an example, the power of the nuclear reactor is directly related to the way in which neutrons are distributed throughout the core. The distribution of neutrons can be determined based on the geometry of the core, the material composition within the core, and the temperature distribution in the core. However, the temperature distribution in the core can be determined by the power distribution within the core, the core geometry, and the entering coolant conditions. Furthermore, the geometry of the core is determined by the temperature distribution (from thermal expansion), vibrations caused by the interaction of the uid and structure material, and others. This interaction of physical components can be treated as a multiphysics system, of which much eort has been devoted to its study recently [710].

Multiphysics Simulations

Obtaining solutions to coupled physics problems is becoming a large interest in many scientic domains. The United States Department of Energy started the Nuclear Engineering Advanced Modeling and Simulation (NEAMS) program, an international collaboration to produce a toolkit for modeling the multiphysics and multiscale behavior in nuclear reactors [START_REF] Neams | The Nuclear Energy Advanced Modeling and Simulation Program[END_REF]. This program supports the Consortium for Advanced Simulation of Light Water Reactors (CASL) research hub focused on developing advanced simulation tools for understanding phenomena which limit the performance of Light Water Reactors (LWRs). The European based NUclear REactor SAFEty simulation platform (NURESAFE) aims to deliver reliable software for the analysis of design basis accidents. The NURESAFE program extends the advances made by the NUREISP and NURESIM programs in the simulation of multiscale and multiphysics phenomena during light water reactor accidents [START_REF] Chauliac | NURESIM A European simulation platform for nuclear reactor safety: Multi-scale and multiphysics calculations, sensitivity and uncertainty analysis[END_REF]. Such recent interest in resolving coupled physics problems has produced several software frameworks available for special purposes:

MOOSE [START_REF] Gaston | A parallel computational framework for coupled systems of nonlinear equations[END_REF], LIME [START_REF] Schmidt | Foundational Development of an Advanced Nuclear Reactor Integrated Safety Code[END_REF], and SALOME [START_REF] Bergeaud | SA-LOME: a software integration platform for multi-physics, pre-processing and visualisation[END_REF] to name a few.

Depending on the constraints of obtaining a coupled solution from several physics components, numerous choices are available, but three will be discussed:

Operator Splitting, Multiphysics Toolkits, and JFNK. If the primary constraint is code reuse, an operator splitting technique can be used [START_REF] Keyes | Multiphysics simulations: Challenges and opportunities[END_REF]. This technique leverages the many years of experience that went into the development of each an operator splitting method which controls the input and output between component codes; this design maximizes code reuse and minimizes the modications needed in component codes.

In the commercial simulation community, multiphysics toolkits are becoming prominent where the focus is on ease of use at the application level. These toolkits provide a framework in which multiphysics simulations can be performed. Typically these frameworks provide interfaces to existing codes which then manipulate the existing code, based on the desired computational scheme. These interfaces can either be provided by the toolkit, making only supported component codes usable within the framework, or be generated by the toolkit based on the existing code, as is the case for SALOME [START_REF]Salome Documentation[END_REF]. The calculation schemes will specify the ow of data between physics components during the simulation, and will generally only treat weak coupling between physics components. Higher order time discretizations are possible, but are prone to instabilities [START_REF] Ropp | Stability of operator splitting methods for systems with indenite operators: reactiondiusion systems[END_REF]. These types of frameworks are excellent choices for scoping studies to determine the general behavior of a coupled system, but fall short when applied to strongly coupled physics components and situations which require higher order time discretizations.

Several recent projects are based on a JFNK method, where each physics component is required to return a solution residual [START_REF] Gaston | A parallel computational framework for coupled systems of nonlinear equations[END_REF][START_REF] Schmidt | Foundational Development of an Advanced Nuclear Reactor Integrated Safety Code[END_REF][START_REF] Balay | PETSc Users Manual[END_REF]. These methods treat physics components as strongly coupled and support high order time discretization methods. However, existing physics codes are generally not equipped to return a solution residual without heavy modication. The frameworks that provide coupling through a JFNK method will generally either provide separate physics component codes designed to work within the coupling framework, or users can build their own physics component codes from base libraries provided within the framework. Adapting existing codes to operate within a JFNK multiphysics environment is generally a dicult task, and will be a large focus of this work.

Severe Accidents

In the design of nuclear reactors, special attention is paid to how reactors will perform in unlikely but largely detrimental situations. These situations form the class of Design Basis Accidents (DBA) for which reactors must be shown to survive without loss of integrity to systems, structures, and components necessary to ensure public health and safety [START_REF] Glossary | [END_REF]. These accidents include large power excursions induced by neutronic control failure or loss of primary coolant, large earthquakes, ooding, and other possible scenarios.

A failure of the neutronic control or some other perturbation of the state of the reactor has the possibility to induce a large power excursion. A neutronic control failure may come from the mechanical failure of a control rod drive during the start-up phase, or through insucient mixing of the soluble neutron absorber present in PWRs. Additional perturbations can come through the state of the coolant entering a core; a turbine trip in a BWR will cause a large pressure increase and induce a large power excursion. A large increase in power can weaken the cladding in the fuel, which is the rst containment barrier. There are three main levels of containment designed into reactor facilities to protect the public from undue radiation exposure; these levels are listed from interior to exterior: the fuel cladding, the primary system loop, and the containment building. The more severe accidents involve the second and third levels of containment.

During such accidents, various physical phenomena can appear at dierent stages of the accident. A prolonged loss of primary coolant accident can eventually lead to risks of hydrogen gas formation due to a chemical reaction between zirconium cladding with an elevated temperature and a water based coolant [START_REF]Mitigation of Hydrogen Hazards in Severe Accidents in Nuclear Power Plants[END_REF].

The modeling of the distribution and combustion of hydrogen gas is an important area of research because of the possibility for a hydrogen deagration event, which can compromise the integrity of the containment structure [START_REF] Studer | International standard problem on containment thermal-hydraulics ISP47 Step 1 -Results from the MIS-TRA exercise[END_REF]. The process of reactor design involves treating how to safely vent or convert hydrogen-rich air to be far from an ignition concentration.

If a severe accident progresses far enough, the structural integrity of the core will be compromised and the formation of molten core material (Corium) will begin to interact with the pressure vessel and eventually the concrete structure of the containment oor [START_REF] Seiler | Viscosities of corium-concrete mixtures[END_REF]. The modeling of the progression of the Molten Corium Concrete Interaction (MCCI) involves many physical and chemical processes [START_REF] Lee | Modeling of Corium/Concrete Interaction[END_REF].

The design consideration of such an accident is to ensure that the molten Corium will be suciently cooled before melting through the containment oor. The MCCI phase of a severe accident can be modeled by a multiphysics system with strong coupling between physics components [START_REF] Allelein | Considerations on Ex-Vessel Corium Behavior: Scenarios, MCCI and Coolability[END_REF].

The computational methods reviewed in this work will be applied to design basis accidents involving large power excursions that can impact the integrity of nuclear fuel because of their eect on the rst level of containment. This choice is based on the availability of component codes which solve the underlying physics of the problem and on the importance of ensuring the integrity of the rst and arguably most important level of containment. However, these computational methods can also be used to explore the behavior of more serious accidents such as the formation of hydrogen gas in the containment vessel or the interaction between molten core material and the concrete of the containment oor.

State of the Art in Nuclear Engineering

The current state of the methods available to the simulation community will be reviewed in this section. The state of the art will focus on main areas of development in the resolution of coupled physics problems in nuclear engineering. First the active research in neutronics and thermal hydraulics is reviewed with an emphasis on time dependent problems. Next, two ways of treating coupled physics problems are reviewed. This section nishes with the application of parallel methods and how data is treated in time dependent problems.

Time Dependent Neutronics

Without taking into account the thermal feedback eects which aect a nuclear system during a transient, there has been much work devoted to resolving the time dependent neutron transport equation. Time dependent methods typically depend on expanding the time dependent ux onto an orthogonal basis [START_REF] Roberts | A High-Order, Time-Dependent Response Matrix Method for Reactor Kinetics[END_REF],

or decomposing the time dependent ux into a product of two functions [START_REF] Dulla | The quasi-static method revisited[END_REF].

The diculty in expanding onto an orthogonal basis is in nding appropriate orthogonal functions which accurately capture the features of a transport solution. Usually a reduced model in 0-D is required to nd an appropriate basis on which to expand; the solutions to the α-eigenvalue problem provide such a basis [START_REF] Mika | Fundamental Eigenvalues of the Linear Transport Equation[END_REF][START_REF] Betzler | Calculating alpha Eigenvalues in a Continuous-Energy Innite Medium with Monte Carlo[END_REF]. This basis has been used to show how the energy spectrum is shifted from the fundamental mode distribution during a transient [START_REF] Dall'osso | Neutron spectrum kinetics in the innite homogeneous reactor[END_REF]. Decomposing the ux into the product of a shape and amplitude function has been applied

to the solution of space-time kinetics; this method is commonly referred to as the quasi-static method [START_REF] Dulla | The quasi-static method revisited[END_REF]. The amplitude function depends only on time, and changes rapidly with time. This function dictates the global behavior of the time dependent transport solution. The shape function depends on all variables, but is slowly varying in time. The shape function is updated on longer time scales and is used to update parameters which drive the evolution of the amplitude function.

Thermal Hydraulics

The development of accurate thermal hydraulic models is important to the continued progression of advanced reactor design. Thermal hydraulic phenomena in a nuclear reactor system operate on disparate time and space scales, which make the solution process dicult. The trend in thermal hydraulic research is to produce ever ner solutions on these time and space scales.

Thermal hydraulic phenomena which occur outside the reactor core are typically treated with a 1-D lumped parameter model [START_REF] Valette | Revisiting large break LOCA with the CATHRE-3 three-eld model[END_REF]. This treatment gives an integral perspective of the thermal hydraulic phenomena which occur excore. The interior of the core contains more complex thermal hydraulic phenomena, which require more elaborate modeling techniques to resolve their detail. The thermal hydraulics of an entire reactor core is typically modeled by a set of coupled 1-D channels which resolve the 3-D spatial dependence. Turbulence and mixing within the channels is handled by Reynolds Averaged Navier Stokes (RANS) models such as the k-ε model [START_REF] Fillion | FLICA-OVAP: A new platform for core thermal-hydraulic studies[END_REF]. On ever smaller spatial scales, more detail may be modeled in the heat transfer and uid ow. However, for the general behavior of a reactor core, such detailed models become prohibitively expensive and lower order models are needed [START_REF] Pothukuchi | Sub-channel analysis of rod bundle thermal hydraulics: Eect of eccentricity and blockage[END_REF].

Thermal hydraulic modeling aims to predict the behavior of uid ows and heat transfer in novel reactor designs. There is a large demand on advanced ther-CHAPTER 1. INTRODUCTION mal hydraulic models to predict the behavior of novel generation-IV reactors [START_REF] Cheng | European activities on crosscutting thermal-hydraulic phenomena for innovative nuclear systems[END_REF].

The complex ow around fuel in pebble bed reactors for example, requires robust methods able to treat the conduction, convection, and radiative heat transfer within such environments.

Operator Splitting

Once a time dependent model is produced, an eective way to acquire coupled physics solutions, with minimal modications to the existing physics component codes, is to use an operator splitting technique. In this approach, each physics component interacts with other physics components through I/O channels. This is typically the rst method used for scoping studies in the behavior of coupled systems [START_REF] Ober | Studies on the accuracy of time-integration methods for the radiation-diusion equations[END_REF][START_REF] Ropp | Studies of the accuracy of time integration methods for reaction-diusion equations[END_REF]. These methods usually do not accurately treat the nonlinear coupling terms of the multiphysics problems, requiring smaller time steps during the simulation to maintain accurate solutions [START_REF] Ragusa | Consistent and accurate schemes for coupled neutronics thermal-hydraulics reactor analysis[END_REF]. This can lead to expensive simulations because of the increased number of steps which must be taken to produce a time dependent solution. Some of the errors encountered through operator splitting may be reduced by using higher order time integration methods, but will also not completely converge nonlinear terms between physics components [START_REF] Mahadevan | A verication exercise in multiphysics simulations for coupled reactor physics calculations[END_REF]. To remove more errors from a coupled physics simulation, a strongly coupled method is needed. An additional concern for operator splitting methods has been the appearance of instabilities when applied to certain propagation problems [START_REF] Ropp | Stability of operator splitting methods for systems with indenite operators: reactiondiusion systems[END_REF].

Operator splitting methods have been applied to a variety of problems in the nuclear engineering eld. The time dependent radiation-diusion equations present phenomena which are dicult to resolve without special attention to time step size control [START_REF] Ober | Studies on the accuracy of time-integration methods for the radiation-diusion equations[END_REF]. The ecacy of using operator splitting methods in nuclear reactor applications was applied to reduced dimensional problems [START_REF] Ragusa | Consistent and accurate schemes for coupled neutronics thermal-hydraulics reactor analysis[END_REF].

Several operator splitting variations were applied to couple thermal hydraulics and neutronics in both 0-D and 1-D. It was shown that to reduce errors due to the stiness of the coupled system, higher order time integration methods need to be used. Also, to converge nonlinearities between physics components, an iteration among physics components is needed. However, when analyzing accidents of nuclear reactors, it is customary to use a 3-D neutron diusion model coupled to a 3-D thermal hydraulic model to accurately capture spatial eects important to the transient [START_REF] Lee | Analysis of the OECD/NRC BWR Turbine Trip Transient Benchmark with the Coupled Thermal-Hydraulics and Neutronics Code TRAC-M/PARCS[END_REF]. The focus on using high order operator splitting methods is not yet pursued in application level computations.

Jacobian-Free Newton-Krylov Method

As was stated earlier, an ecient way to resolve strong coupling between physics components is to use a JFNK method, with all relevant physics components combined in a single numerical system. While there has been much work on producing computational frameworks based on a JFNK method, the physics components used within these frameworks are limited to those which are provided by the framework and those which are built inside the framework.

STATE OF THE ART IN NUCLEAR ENGINEERING

A signicant portion of the work in developing an ecient simulation of a multiphysics system is in the acceleration techniques used to converge to a solution faster. In JFNK methods, this acceleration is realized through preconditioners on the linear system. It has been shown that using preconditioners, which are based on the physics of the underlying components, work very well [START_REF] Knoll | Jacobian-free Newton-Krylov methods: a survey of approaches and applications[END_REF]. This type of preconditioner will generally solve an uncoupled (or weakly coupled) version of the multiphysics system.

Other considerations when building a multiphysics framework can focus on the design of software within the framework. The complexity of multiphysics problems requires many pieces of software to work together seamlessly. This type of complexity demands a modular architecture for the framework. A modular design contains well dened interfaces at boundaries of individual modules. Well dened interfaces also allow modular components to be easily exchanged. For example, a linear solver module could contain several linear solver algorithms from which to choose. Furthermore, well dened interfaces allow for the use of external numerical libraries such as PETSc [START_REF] Balay | PETSc Users Manual[END_REF] or Trilinos [START_REF] Heroux | An overview of the Trilinos project[END_REF].

Parallel Computing

With increased demand placed on the ever detailed solution in nuclear reactors, parallel solution methods are becoming necessary and viable options. The rst level of parallel computing consists of processes which are nearly independent of each other, such processes are referred to as embarrassingly parallel processes [START_REF] Foster | Designing and Building Parallel Programs[END_REF]. An example of such processes is the transport sweeps along given directions in a medium. The scalability of such parallelization is limited by the number of independent processes available. In the example of transport sweeps, scalability is limited to the number of directions used to discretize the angular ux. Additional levels of parallelization may be implemented, each with more complex requirements on communication between parallel processes. It is becoming evident with the increased demand placed on detailed solutions of neutron transport and thermal hydraulics within nuclear reactors, more levels of parallelism will be sought [START_REF] Evans | A New Three-Dimensional Parallel Discrete Ordinates Code in SCALE[END_REF][START_REF] Towara | MPI-Parallel Discrete Adjoint OpenFOAM[END_REF].

There are many numerical linear algebra libraries available to harness the power of parallel computing [START_REF] Balay | PETSc Users Manual[END_REF][START_REF] Heroux | An overview of the Trilinos project[END_REF]. These libraries may be used in developing multiphysics simulations, however the bottleneck in such simulations often comes from underlying serial physics codes. To harness the power of parallel computing in multiphysics simulations, the underlying physics component codes must also be parallel. The work presented in this dissertation only touches on the use of parallel algorithms because the underlying physics component codes used in this work are implemented as serial processes. The parallelization of such codes falls outside the scope of this subject. However, the use of parallel methods in multiphysics simulations is of great importance and should be investigated in the continuation of this work.

CHAPTER 1. INTRODUCTION

Cross Section Homogenization

In reactor analysis, the cost of computing a detailed solution is typically prohibitive. Cross section homogenization provides a means to pretreat the data before a simulation to reduce the number of unknowns. In many cases, cross section homogenization involves producing an approximate solution which can be used to attain average cross section values, typically over the space and energy domains. This approximate solution will generally come from steady state calculations for various congurations of temperature and material composition, which are interpolated during the larger reactor calculation.

Cross section homogenization is optimized for static calculations, which represent the majority of operation time for commercial reactors. To be computationally advantageous, cross section homogenization is performed at the assembly level in 2-D. Early work in homogenization focuses on how to conserve reaction rates when transitioning between transport calculations on assemblies to diusion calculations on the core. Reaction rates can be better conserved by introducing discontinuities of the ux at homogenized region boundaries [START_REF] Smith | Assembly homogenization techniques for light water reactor analysis[END_REF] or through a procedure which iteratively adjusts cross sections [START_REF] Hébert | Development of a Third-Generation Superhomogénéisation Method for the Homogenization of a Pressurized Water Reactor Assembly[END_REF].

Much of the recent work in homogenization methods involves producing homogenized cross sections where the global solution can be largely dierent from the solution produced by an isolated assembly [START_REF] Clarno | Capturing the Eects of Unlike Neighbors in Single-Assembly Calculations[END_REF]. This situation arises when neighboring assemblies are very dierent in material composition; this case occurs in MOX fuel assemblies. In such a case, the approximate solution is far from what the global solution is, and cross sections homogenized with the approximate solution will poorly represent reality. Methods which take into account the neighboring assemblies should be used, such as the color-set method.

Cross section homogenization techniques may be applied to time dependent problems by using on-the-y homogenization techniques. Such methods update homogenized cross sections at certain times in the transient when the cross sections are deemed in error [START_REF] Jung | Investigation of Conditional Transport Update in Method of Characteristics Base Coarse Mesh Finite Dierence Transient Calculation[END_REF]. On-the-y calculations can take into account the eects of a time dependent ux when it remains close to the fundamental mode ux.

Improvements to the State of the Art

The goal of this work is to extend the current state of methods used in the numerical simulation community. These improvements to the state of the art will be introduced presently. Two large themes for these improvements in current simulation methods will be explored within this work. The rst is on coupling methods which treat physics components. The second theme focuses on how data is treated during the simulation of transients.

Jacobian-Free Newton-Krylov Methods

The JFNK method has been successfully applied to couple physics components with physics solvers that are built within a robust JFNK based framework.

1.5. IMPROVEMENTS TO THE STATE OF THE ART However, it is desirable to include computer codes which are highly optimized for specic physics models; it is desired to reuse the substantial eort that has been put into developing smaller domain specic codes. This work will focus on how an existing numerical code can be adapted to work within a JFNK framework when this feature was not in the original intent of the code.

The existing codes will be connected to a JFNK framework through the resid- 

Cross Section Homogenization

As was mentioned earlier, cross section homogenization provides a way to reduce the number of unknowns of the numerical system in reactor analysis. Many of the advancements in cross section homogenization methods are oriented towards homogenization in steady state calculations. The majority of a reactor's operation history is performed at steady state, with rare excursions which last a short time compared to normal operation. The study of the impact of applying such homogenization methods during transient calculations has not largely appeared in the literature surrounding reactor analysis. Only a single report was found which mentions using dierent eigenvalue problems during homogenization for dierent congurations [START_REF] Velarde | A Comparison of the Eigenvalue Equations in k, α, λ and γ in Reactor Theory. Application to Fast and Thermal Systems in Unreected and Reected Congurations[END_REF].

A question that arose during this work was, Will homogenized cross section intended for steady state calculations perform adequately during transient simulations? It was soon discovered that during very rapid transients, where the reactor is far from critical, these cross sections can introduce large errors in the time dependent power. This realization prompted the author to explore ways to CHAPTER 1. INTRODUCTION reduce the error introduced by homogenized cross sections.

Two methods, which are designed to reduce the error introduced when using cross sections intended for steady state calculations, are developed and tested.

One method is based on an expansion of the time dependent ux over a basis that comes from an eigenvalue problem which accounts for time dependent behavior.

The expansion method has the freedom to choose how large the expansion basis is and the relative weight between vectors in the expansion basis. These weights can be determined through a minimization over the expansion subspace and some chosen solution, typically the initial condition. The other method is based on a time integrated ux over large time intervals of the transient simulation. The time intervals are free to be chosen and should generally coincide with important changes of the solution: time of perturbation, maximum power, delayed neutron decay, etc. This method, in addition to capturing the time dependent behavior of the solution, captures thermal feedback eects from changes in temperature during the simulation. These two methods are tested against reference solutions for a variety of available transients.

Organization

The remainder of this dissertation is organized thusly. Chapter reveals that multiple α-eigenvectors must be taken to produce homogenized cross sections which will reproduce the time dependent power of a reference solution.

A spatially heterogeneous domain with 26 energy groups is also used to study a heterogeneous reactivity insertion and whether the Fluence method will perform better than a classical homogenization method. The optimal discretization of time intervals is studied with this geometry and reveals that rening the time discretization reduces the errors in the transient power up to a point, whereafter interpolation errors begin to become dominant.

Chapter 5 explores using the multiphysics framework on a more realistic problem of a reduced BWR core during a startup accident. The reduced core demonstration problem is meant to show how the multiphysics framework is capable of producing accurate multiphysics solutions to industrial sized applications. Several simplifying assumptions are made to the physics models based on the accident starting from Cold Zero Power. The framework is able to produce coupled physics solutions on larger simulations, however the computation time becomes prohibitive even when using 2 group assembly homogenized cross sections. The continued expansion of using such a multiphysics solver will need to incorporate improvements in computational eciency, including parallelization of the under- Chapter 2

Physical Models

Describing the behavior of nuclear reactors involves modeling the interchanges between several physical processes (neutron transport, heat transfer, solid mechanics, etc). These interchanges between physical processes manifest as couplings between models. For example, heat transfer models are coupled to neutron transport through the ssion rate in the fuel, which serves as a heat source.

Likewise, the neutron transport model is coupled to heat transfer models through the temperature dependence of material cross sections, which change how likely a neutron is to interact with the nucleus of the background material. This coupling between physics components produces systems of equations that are dicult to solve with current tools and require special attention.

The present chapter details the physical models used throughout this dissertation (neutron transport and heat transfer). There are many models that could be applied to describe the behavior of a nuclear reactor. The following is a non-exhaustive list of physical phenomena that can aect reactor behavior.

The ballooning of fuel under irradiation and strong temperature gradients change both the shape and density of fuel [START_REF] Clarno | The AMP (Advanced MultiPhysics) Nuclear Fuel Performance code[END_REF]. In PWRs, the soluble boron in the coolant can deposit on the cladding of fuel elements and aect the behavior of neutrons in that part of the core [START_REF] Gaston | Physics-based multiscale coupling for full core nuclear reactor simulation[END_REF]. Under irradiation, the stoichiometry of fuel changes, which can account for changes in thermal properties [START_REF] Ainscough | Gap Conductance in Zircaloy-Clad LWR Fuel Rods[END_REF]. Additionally, the state of a reactor is dependent on the incoming coolant, which can be aected by how much heat is extracted from the coolant on the system side [START_REF] Ivanov | Pressurized Water Reactor Main Steam Line Break (MSLB) Benchmark Final Specications[END_REF]. The state of the coolant can also be altered if the soluble boron is not homogeneously mixed at the entrance, producing uctuations in the neutron density [START_REF] Marguet | La physique des réacteurs nucléaires[END_REF].

The objective of this work is to improve the methods used to solve multiphysics systems. In this light, only the most prominent physical models that impact the behavior of a nuclear reactor under a reactivity initiated accident will be taken: the time dependent transport of neutrons in a medium, and the heat transfer between solid fuel and liquid coolant. These models are important in the simulation of the behavior of LWRs during transients.
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Neutron Transport

The distribution of neutral particles in a medium is governed by a transport model in which the density of particles is low enough that the possibility of two particles interacting is negligible. The low density assumption allows a linear transport model to be used; otherwise, a nonlinear interaction term would need to be included. The probability of particles interacting with the background medium is captured by macroscopic cross sections. These macroscopic cross sections are given in units of interactions per neutron path length, so that when multiplied by the scalar ux in units of neutron path length per phase space volume, the product is an interaction density. The integro-dierential form of the described transport model, called the linear Boltzmann equation, is shown in Equation 2.1.

The linear Boltzmann equation is derived as a particle density balance equation over a dierential control volume [START_REF] Duderstadt | Transport Theory[END_REF]. The derivation consists of describing each type of interaction a neutron can have within an arbitrary volume of phase space.

1 v(E) ∂ψ( r, E, Ω, t) ∂t + Ω • ∇ψ( r, E, Ω, t) + Σ t ( r, E, t)ψ( r, E, Ω, t) = ∞ 0 4π dΩ dE Σ s ( r, E → E, Ω • Ω, t)ψ( r, E , Ω , t)+ χ(E) 4π (1 -β) ∞ 0 dE νΣ f ( r, E , t)φ( r, E , t)+ 1 4π N d j=1 χ j D (E)λ j C j ( r, t) + S ext ( r, E, Ω, t) (2.1) φ( r, E, t) = 4π dΩ ψ( r, E, Ω, t) (2.2) ∂C j ( r, t) ∂t = β j ∞ 0 dE νΣ f ( r, E, t)φ( r, E, t) -λ j C j ( r, t) j = 1, 2, . . . , N d (2.3)
The rst term of Equation 2.1 accounts for the change in time of the neutron density, where the neutron density is the angular ux divided by the neutron speed. The second term ( Ω • ∇ψ) accounts for the streaming of particles from a dierential phase space volume to other points in the phase space. The last term on the left side of the equality accounts for the total interaction between neutrons and the material they are streaming through.

The right side of Equation 2.1 contains the scattering term, which accounts for particles being transferred from a phase space volume in energy and direction to other phase space volumes. The scattering cross section (Σ s ) describes a double dierential probability in energy and angle, meaning the cross section depends on the incoming and outgoing angle and energy. For the cases relevant to nuclear reactor analysis, there are enough small and randomly oriented single crystals in polycrystalline material, giving no preferential direction for streaming in such a medium [START_REF] Stacey | Nuclear Reactor Physics[END_REF]. In these cases, cross sections will not depend on the incident neutron direction. Additionally, the scattering cross section only depends on the angle formed between incident and outgoing directions; this is reected in the scattering cross section shown in Equation 2.1. The second term accounts for prompt ssion, which occurs shortly after interaction (∼ 10 -15 s). This prompt ssion term in general depends on the specic isotope undergoing ssion, and the total prompt ssion source is a summation of all ssile isotopes undergoing ssion. Rigorously written, this term should include a sum over ssile isotopes with χ, νΣ f , and β being isotope dependent. The third term accounts for the decay of delayed neutron precursors, which emit neutrons on a longer time scale than prompt ssion (from tens of milliseconds to seconds). Again, the rigorous denition of this term involves a sum over isotope with χ D , λ, and C also being dependent on isotope. The last term accounts for any xed source of neutrons which are independent on the state of the nuclear system.

The dependent variable in Equation 2.1 is the angular ux, ψ, which occupies the six dimensional phase space volume {space( r), energy(E), and direction( Ω)} and is a function of time t. The scalar ux φ, dened in Equation 2.2 and appearing in the prompt ssion term (containing νΣ f ), is the integration of the angular ux over all directions. While the linear Boltzmann equation seeks to model every type of interaction a neutron can experience while traveling through a medium, several simplifying assumptions are made. Namely the linear transport model of Equation 2.1 makes the following assumptions:

• Inuence of gravity ignored ( Straight paths of travel between interactions)

• No neutron-neutron collisions 

Delayed Neutron Precursors

Fission events release neutrons on two time scales. Prompt neutrons are those that are released within femtoseconds of the ssion event. These neutrons allow nuclear systems to respond quickly to changes in material composition and the system geometry. Delayed neutrons are those neutrons that are released milliseconds to seconds after the ssion event. They are released after several beta decays of the ssion products produced from the ssion event. The isotope in the chain of beta decays which is just before the release of a neutron is called a delayed neutron precursor. The concentration of these delayed neutron precursors is modeled in Equation 2.3 by a balance equation of the sources and sinks for radioactive elements. The delayed neutron concentration (C j ) for the j-th delayed neutron group depends on space and time, β j is the delayed neutron fraction giving the fraction of neutrons produced that will appear in the j-th delayed neutron group, and λ j is the probability of decay for the j-th delayed neutron group. The ssion cross section and β j being dependent on isotope makes the delayed neutron precursor concentration also dependent on isotope. Consequently, for the models described in this work, the delayed neutron precursor concentration will be dened with the sum over isotopes included for each delayed precursor group.

There are approximately 100 ssion products, produced from the thermal ssion of 235 U, that can potentially release a neutron after a series of β decays [START_REF] Baum | Nuclides and Isotopes: Chart of the Nuclides[END_REF].

Tracking all of these 100 ssion product concentrations would be needlessly expensive; instead delayed neutron precursors are sorted into groups that have a similar decay constant. Generally six or eight groups are needed to accurately model the behavior of delayed neutron emission [START_REF] Duderstadt | Nuclear Reactor Analysis[END_REF][START_REF] Spriggs | An 8-group Delayed Neutron Model Based on a Consistent Set of Half-lives[END_REF]. The β j for a delayed neutron group are given by an average over energy of the ratio between the delayed neutron emission (ν d ) and the total neutron emission (ν) for isotopes in delayed group j. The β that appears in Equation 2.1 is the sum of β j over all delayed neutron groups.

Because delayed neutron precursors are released at a later time, their presence gives a stabilizing eect to nuclear systems. The absence of delayed neutrons would make any small positive reactivity insertion to the system result in a very fast transient, uncontrollable by human reactions. In a critical conguration, the combination of prompt and delayed neutrons work together to maintain a constant neutron population. The nuclear system can be in a supercritical state but still need delayed neutrons to maintain its critical state. However, if the nuclear system is far enough from the critical state such that delayed neutrons are not needed to maintain criticality, the system is said to be in a super-promptcritical state. A nuclear system in this state behaves as if delayed neutrons were not present, and the neutron population increases rapidly. These dierent states are depicted in Figure 2.1.

The conditions in Figure 2.1 show the limits for the super-prompt-critical cuto. An additional parameter is introduced in the gure: ρ. This parameter is known as the reactivity and measures the departure from criticality. There are several ways to dene the reactivity of the system, depending on which eigenvalue problem is used to describe the nuclear system. To illustrate the eect of the presence of delayed neutron precursors, a relation to the k-eigenvalue is chosen ρ = k-1 k [START_REF] Cacuci | Eigenvalue-Dependent Neutron Energy Spectra: Denitions, Analyses, and Applications[END_REF]. In reactor kinetics, transients are initiated by inserting or removing reactivity from the system; this corresponds to changing the system in some way which aects the value of k eff .

Determining the delayed neutron parameters is generally performed through pulsed or saturated neutron irradiation experiments, where group constants are determined from the neutron ux decay after irradiation [START_REF] Keepin | Physics of Nuclear Kinetics[END_REF]. These experiments treat the aggregate behavior of a sample of a given ssile isotope; this is referred to as a macroscopic treatment of delayed neutron precursor data generation.

More recently, a microscopic treatment of generating delayed neutron precursor data has been explored, where the group constants are generated based on the physics of the individual precursor isotope [START_REF] Brady | Delayed Neutron Data and Group Parameters for 43 Fissioning Systems[END_REF][START_REF] Blachot | Status of Delayed Neutron Data -1990[END_REF]. More accurate representations States: Critical, Supercritical, and Super-prompt-critical have been produced based on a synergistic method using both a macroscopic and microscopic treatment to produce group constants [START_REF] Parish | Status of Six-Group Delayed Neutron Data and Relationships Between Delayed Neutron Parameters from the Macroscopic and Microscopic Approaches[END_REF]. In the general case, since ν d ν is energy dependent, the delayed neutron group constants depend on the incident neutron energy [START_REF] Piksaikin | Energy dependence of relative abundances and periods of delayed neutrons from neutron-induced ssion of 235 U, 238 U, 239 Pu in 6-and 8-group model representation[END_REF]. However, this dependence on incident energy is weak and the implementation of this dependence greatly complicates the use of the time dependent neutron transport model. For this work, the delayed neutron data is assumed to be independent of incident neutron energy. 

Ω • ∇ψ( r, E, Ω) + Σ t ( r, E)ψ( r, E, Ω) = ∞ 0 4π dΩ dE Σ s ( r, E → E, Ω • Ω)ψ( r, E , Ω )+ 1 k 1 4π (1 -β)χ(E) + N d j=1 χ j D (E)β j ∞ 0 dE νΣ f ( r, E )φ( r, E ), (2.4)
known as the criticality equation and has the same boundary conditions as Equation 2.1. The term within square brackets is the average ssion emission spectrum from both prompt and delayed neutrons. A parameter, k, is added to the neutron production term to permit a solution for any physically valid material composition. There are innitely many solutions which satisfy Equation 2.4, where a solution consists of a pair between a value k and a function ψ. There may be more than one function ψ which corresponds to a value k, in which case the value k is said to be degenerate. The largest k-eigenvalue corresponds to a function which is positive everywhere, and given the symbol k eff . For a value of k eff < 1,

the system is said to be subcritical and any neutron population present will eventually be extinguished. For k eff = 1, the nuclear system is said to be critical and will sustain a constant average neutron population in time. For a value of k eff > 1, the system is said to be supercritical and the average neutron population will increase to innity. The eigenfunction ψ of Equation 2.4 is determined up to a multiplicative constant; this suggests that the criticality of a system is not dependent on the neutron population present, but only on the conguration of the system itself. The magnitude of the eigenfunction must be determined by other information, such as the power or other reaction rates.

Notice that there is no xed source present in Equation 2.4. The criticality equation is used to obtain information about the nuclear system itself, in the absence of external sources. Inserting a xed source into Equation 2.4 will only produce solutions when the nuclear system is subcritical, where the asymptotic

ux tends to ψ ∼ Q 1-k eff .
For the two other states, the ux does not have an asymptotic limit and must be studied using the time dependent transport equation, Equation 2.1. For example, adding a constant source to a critical nuclear system will cause the average ux to increase linearly in time.

The boundary conditions for the transport equation specify the incoming ux for the spatial domain being modeled, i.e. on all outer boundaries. There are two main types of boundary conditions for the transport equation: Dirichlet and

Reecting [START_REF] Case | Linear Transport Theory[END_REF]. The boundary may be composed of surfaces, each with a dierent 

Dirichlet : ψ( r, E, Ω) = ψ inc ( r, E, Ω)        ∀ r ∈ ∂V ∀ Ω | Ω • n < 0 , (2.5) 
where ∂V is the boundary of the spatial region, and n is the outward normal vector for the spatial region. Vacuum boundaries are a special case of Dirichlet conditions where ψ inc = 0. Vacuum boundary conditions specify that the particles exiting the boundary are lost and cannot reenter the problem; care must be taken for reentrant geometries where particles have the possibility to exit a geometry and reenter at a dierent location.

Reecting boundary conditions specify the incoming ux at the boundary as a function of the exiting ux. Reecting boundary conditions can be dened as

Refl : ψ( r, E, Ω) = Ω • n>0 dΩ A( Ω → Ω)ψ( r, E, Ω )        ∀ r ∈ ∂V ∀ Ω | Ω • n < 0 , (2.6) 
where A( Ω → Ω) is a special case of an albedo function that relates the outgoing to the incoming directions. In its general form, the albedo function would be dened with spatial and energy dependence to account for particles entering the volume at a dierent location, and with a dierent energy than the exiting particles; that is A( r → r, E → E, Ω → Ω). The albedo function can describe many dierent types of reections. Specular reection corresponds to the exiting direction being reected about the surface normal. The albedo function representing specular reection can be described by a Placzek delta [START_REF] Case | Introduction to the Theory of Neutron Diusion[END_REF], dened as

δ 2 ( Ω • Ω) = 0 Ω = Ω 4π d Ω δ 2 ( Ω • Ω)f ( Ω ) = f ( Ω), (2.7) 
where f ( Ω) is some function of angle. The albedo function of Equation 2.6 is then written as

A( Ω → Ω) = δ 2 ( Ω • Ω r ), (2.8) 
where

Ω r = Ω -2 n( n • Ω).
(2.9)

The specular reection boundary condition works well in Cartesian fuel cells where a circular fuel pin is surrounded by a rectangular moderator boundary.
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This geometry models an innite lattice of rectangular pin cells. However, if the square pin cell is transformed to an equivalent circular pin cell, through the Wigner-Seitz approximation for example, a specular reection boundary can produce travel directions which do not behave the same. A travel direction, chosen in the square pin cell, which intersects the fuel after a number of reections on the boundary may not intersect the fuel at all in the circular pin cell. To improve such behavior in circular pin cells, a white boundary can be used [START_REF] Bell | Nuclear Reactor Theory[END_REF]. The white boundary states that the incoming ux is isotropically distributed. Thus, the albedo function in Equation 2.6 is dened as

A( Ω → Ω) = b π | Ω • n|, (2.10) 
where b is a constant between zero and one to account for any losses outside the region of interest.

Cross Section Data

Microscopic cross sections represent the probability of a neutron with a specic energy interacting with a given nucleus. Microscopic cross sections depend strongly on energy with the general trend of increasing for lower energy, decreas- The cross sections used in Equation 2.1 are not the microscopic cross sections shown in Figure 2.2, but macroscopic cross sections dened as

Σ x = i∈I N i σ i x , (2.11) 
where Σ x is the macroscopic cross section for reaction x, N i is the atom density for isotope i, σ i x is the microscopic cross section for reaction x of isotope i, and I

is the set of isotopes in the background material.

In addition to the large variations in energy, the macroscopic cross sections are aected by the temperature of the background medium. This temperature dependence is the result of both the change in atom density, and of thermal vibrations of the medium nuclei. When a nucleus vibrates, the relative velocity between the neutron and nucleus is changed. This change in relative velocity manifests as a broadening of the resonance peaks, which will absorb more neutrons because of the larger energy band covered.

If we zoom in on the lowest energy resonance of 238 U in Figure 2.2 for illus- tration, the temperature dependence can be more precisely seen as in Figure 2.3. The probability of interaction is plotted against the incident neutron energy in Figure 2.3. As a material is heated from absolute zero, the atoms begin to vibrate introducing a distribution of the relative velocity. As the temperature is increased, the resonance in Figure 2.3 shows two behaviors: the width of the resonance is increased, and the height is decreased. The temperature dependent cross section can be dened as a convolution of a temperature dependent velocity distribution (typically Maxwellian) and the energy dependent microscopic cross section times the relative velocity. The resonant peak decreases because for any relative velocity, the convolution will produce a cross section which is less than the maximum. Conversely at energies further from the peak energy, the convolution will produce a cross section which is larger than the value at absolute zero.

This behavior results in the broadened resonances depicted in Figure 2.3. The increased width of resonances leads to a larger probability that a neutron will be scattered into the resonance. 

Integro-Dierential Transport Approximations

The integro-dierential form of the neutron transport equation discussed in Section 2.1 is not in a form that is readily solvable for realistic scenarios. Equation 2.1 must be discretized into a form that is readily solvable on numerical computers. Some common approximations and discretizations of independent variables will be discussed in the present section.

Multigroup Approximation

The rst approximation involves a discretization of the energy domain by use of discrete energy groups. The energy domain is partitioned between E 0 , the highest possible energy, and E G , the lowest possible energy; this partition is shown in Figure 2.4. The partitioning of the energy domain seeks to optimize the energy structure to reduce the error in computed reaction rates. For example, the energy mesh for use in fast spectrum reactors will have many groups in the high energy range, while thermal reactors will require many groups in the thermal and lower resonance range.

Starting from the criticality equation (Equation 2.4), the multigroup angular ux for group g can be dened as the total ux within the energy interval

[E g , E g-1 ] 2.1. NEUTRON TRANSPORT E E G E G-1 E G-2 E 2 E 1 E 0 Figure 2.4. Multigroup Energy Mesh ψ g ( r, Ω) = E g-1 Eg dE ψ( r, E, Ω) g = 1, 2, . . . , G, (2.12) 
with the scalar ux sharing a similar denition. Multigroup cross sections are dened in a way that will preserve reaction rates within a given energy interval in the transport equation. For example, a multigroup cross section for reaction x is dened by

Σ x,g ( r) = E g-1 Eg dE Σ x ( r, E)φ( r, E) E g-1 Eg dE φ( r, E) g = 1, 2, . . . , G, (2.13) 
or a weighted average taking the weight function to be the scalar ux. The inverse velocity of Equation 2.1 can be treated as a cross section of type x. The scattering cross section is dened in a similar manner, but because of the integration over the energy domain for exiting energies, the scattering cross section includes an integration over these energies as well

Σ s,g →g ( r, Ω • Ω) = E g-1 Eg dE E g -1 E g dE Σ s ( r, E → E, Ω • Ω)φ( r, E ) E g -1 E g dE φ( r, E ) g, g = 1, 2, . . . , G. (2.14)
Using these denitions and integrating over the energy domain between E g and E g-1 , the continuous energy integro-dierential transport equation (Equation 2.4) can be written in its multigroup formulation

Ω • ∇ψ g ( r, Ω) + Σ t,g ( r)ψ g ( r, Ω) = G g =1 4π dΩ Σ s,g →g ( r, Ω • Ω)ψ g ( r, Ω )+ 1 k 1 4π (1 -β)χ g + N d j=1 χ j D,g β j G g =1 νΣ f,g ( r)φ g ( r). (2.15)
In a rigorous sense, the multigroup cross sections will depend on direction because Equations 2.13 & 2.14 should be dened with the angular ux [START_REF] Bell | Nuclear Reactor Theory[END_REF]. There has been work on treating anisotropy for multigroup cross sections. This work showed that CHAPTER 2. PHYSICAL MODELS using the angular ux to produce anisotropic multigroup cross sections is better at recovering the local reconstructed ux distribution, where using a scalar ux experienced convergence diculties [6769]. The inclusion of these anisotropic cross sections could be implemented through a modication of the anisotropic scattering cross section, but for the problems studied in this work the gain is expected to be small. For this work, it is assumed that the anisotropic term from using an angular ux in the multigroup cross section denition is small, and the scalar ux can be used to dene multigroup cross sections. This is a common practice in LWR analysis to retain the independence of cross sections on incident angle [START_REF] Duderstadt | Nuclear Reactor Analysis[END_REF].

The multigroup transport equation (Equation 2.15) represents a system of G coupled equations, coupled through the scattering and ssion terms. A way to solve for the multigroup ux is to repeatedly invert the left hand side of Equation 2.15 for each group g while updating the right hand side with the new value of ψ g . This process is known as source iteration, and is used in current deterministic transport methods. For these methods, the scattering source is

split into three contributions G g =1 S g →g ( r, Ω) = g-1 g =1 S g →g ( r, Ω) known source + S g→g ( r, Ω) current group + G g =g+1 S g →g ( r, Ω) upscattering (2.16) 
S g →g ( r, Ω) = 4π dΩ Σ s,g →g ( r, Ω • Ω)ψ g ( r, Ω ).

(2.17)

The contribution labeled known source is known from previous inversions of the left hand side for groups with energies higher than the current group. The contribution labeled current group contains the current group solution which can be combined with the total interaction cross section during the inversion. The last term labeled upscattering is responsible for scattering from groups of lower energy to higher energy. If there is no upscattering, this term is zero, otherwise the upscattering source needs to be resolved simultaneously for the upscattering group range or through an iterative process within each iteration over the ssion source.

The iterations through the energy domain require a large computational eort and involve many transport sweeps through the spatial geometry. Acceleration methods have been studied which reduce the number of iterations required to converge the scattering source; two of these methods are thermal group rebalancing, and multigrid in energy.

Rebalancing is a method, where during thermal iterations the resultant ux is normalized to ensure neutron conservation [START_REF] Cacuci | Handbook of Nuclear Engineering[END_REF]. 

(J + g -J - g ) + Σ t,g ψ g f g = g ∈thermal Σ s,g →g ψ g f g + Q g g ∈ thermal Σ x,g ψ g = r Σ x,g,r ψ g,r V r , (2.18) 
where J ± g are the partial currents through the surface, V r is the volume of the region r, and Q g is a source from ssion and energy groups where no upscattering is present. The factors f g are the rebalance factors which ensure neutron conservation. Equation 2.18 forms a system of equations the size of the number of thermal groups and can be inverted to nd the rebalance factors after each pass through the thermal groups. As the solution converges, the rebalance factors should approach unity [START_REF] Adams | Fast Iterative Methods for Discrete-Ordinates Particle Transport Calculations[END_REF].

A novel multigrid in energy acceleration technique was applied to the Krylov solvers in the Denovo code [START_REF] Slaybaugh | Multigrid in energy preconditioner for Krylov solvers[END_REF]. Multigrid methods work by successively projecting an error vector of the solution to coarser grids. At the coarsest level, the solution is computed quickly because of the small number of discretized points; the solution is then successively prolongated to the original ne grid. Multigrid methods use a stationary iterative solver which is eective at reducing the error in high frequency modes but is ineective at reducing the error in low frequency modes; this ineectiveness at reducing the error in low frequency modes causes the convergence of stationary iterative solvers to drastically slow after several iterations. Projecting errors to a coarser mesh causes low frequency modes to have a high frequency. On this coarse mesh, the stationary iterative solver is again eective at reducing the error in the now high frequency modes. This process is repeated through several levels, then the error is prolongated back to the nest mesh; this process is referred to as a V-cycle [START_REF] Wesseling | Introduction to Multigrid Methods[END_REF]. Multigrid methods have been shown to be of O(N ) computational complexity, which is optimal [START_REF] Janssen | Adaptive Multilevel Methods with Local Smoothing for H 1 -and H curl -Conforming High Order Finite Element Methods[END_REF]. Their optimal complexity makes multigrid methods ideal preconditioners. Additionally when used as a preconditioner for Krylov subspace methods, multigrid methods have been shown to keep the number of Krylov iterations constant while the computational problem domain is rened.

Angular Discretization

The discretization of the angular variable is conducted in two principal ways: P N or S N . The P N method involves constructing the angular ux as an expansion of spherical harmonics in the angular variable. Truncating this expansion yields a nite set of coupled equations for which the expansion coecients can be solved.

Whereas the S N , or discrete ordinates, method chooses a set of quadrature directions to solve the transport equation along. The integrals over direction are then approximated with quadrature sums over the chosen directions [START_REF] Duderstadt | Transport Theory[END_REF].

The P N method is used in industrial applications, but may require signicant storage for highly heterogeneous problems [START_REF] Palmiotti | VARIational Anisotropic Nodal Transport for Multidimensional Cartesian and Hexagonal Geometry Calculation[END_REF]. The numerical system which results from the P N approximation produces (N + 1) 2 coupled equations for an anisotropy order of N . Hence the numerical system size will grow as N 2 for each order added to the P N method.

One of the largest problems with the S N method is ray eects, but these are more prominent when concentrated sources are present, like in shielding calculations [START_REF] Lathrop | Ray Eects in Discrete Ordinates Equations[END_REF][START_REF] Lathrop | Remedies for Ray Effects[END_REF]. In reactor analysis, where the neutron sources are distributed, ray eects are not signicant. Another disadvantage of the S N method is in the quadrature used to discretize the angular domain. For a level-symmetric quadrature set, the order is limited due to the apparition of negative quadrature weights.

Increasing to higher orders requires using a dierent quadrature set. However, the S N method has many redeeming qualities over the P N method. First, the discrete directions chosen in the S N method can be swept independently of the others, lending well to parallelization. Second, as the method order increases, the system size will grow linearly compared to quadratically for the P N method. These benets make the S N method the most widely used method in the transport community and the method used in this work. The multigroup transport equation, discretized by the S N method, is

Ω d • ∇ψ g,d ( r) + Σ t,g ( r)ψ g,d ( r) = S scatt,g,d ( r) + 1 k 1 4π (1 -β)χ g + N d j=1 χ j D,g β j G g =1
νΣ f,g ( r)φ g ( r), (2.19) where S scatt is the scattering source. The scattering source is formulated using spherical harmonics in the angular domain. The assumption that the medium is invariant under rotation allows for an expansion of the scattering cross section over Legendre polynomials

Σ s,g →g ( r, Ω • Ω) ≈ L l=0 2l + 1 4π σ g →g s,l ( r)P l ( Ω • Ω) (2.20) σ g →g s,l ( r) = 2π 1 -1 dµ 0 Σ s,g →g ( r, µ 0 )P l (µ 0 ), (2.21) 
where P l are Legendre polynomials, and µ 0 = Ω • Ω. Using the addition theorem for spherical harmonics [START_REF] Duderstadt | Transport Theory[END_REF], the Legendre polynomials may be written as

P l ( Ω • Ω) = 4π 2l + 1 l m=-l Y * lm ( Ω )Y lm ( Ω) (2.22) Y lm ( Ω) = Y lm (θ, η) = 2l + 1 4π (l -|m|)! (l + |m|)! P lm (cos θ)e imη , (2.23) 
where the associated Legendre functions (P lm ) are dened in terms of the m-th derivative of the Legendre polynomial P l . Using the Legendre expansion for the scattering cross section, the scattering source becomes

S scatt,g,d ( r) = G g =1 4π d Ω L l=0 2l + 1 4π σ g →g s,l ( r)P l ( Ω • Ω d )ψ g ( r, Ω ).
(2.24)

The angular ux is also expanded in terms of spherical harmonics as

ψ g ( r, Ω) ≈ L l=0 l m=-l Y lm ( Ω)φ g lm ( r) (2.25) φ g lm ( r) = 4π d Ω Y * lm ( Ω)ψ g ( r, Ω) ≈ d w d Y * lm ( Ω d )ψ g,d ( r), (2.26) 
where the expansion coecients are used to evaluate the angular dependence of the ux in calculations. Through this denition, the scalar ux is equivalent to the rst ux moment φ g 00 ( r). The formulation in Equation 2.24 allows an arbitrary level of anisotropy to be contained in the anisotropic scattering cross sections, however it has been shown that using a P 2 scattering anisotropy approximation is sucient for LWR analysis. A higher anisotropy order of P 3 can be used as a reference and is comparable to results obtained from Monte Carlo calculations [START_REF] Yamamoto | Simplied Treatments of Anisotropic Scattering in LWR Core Calculations[END_REF].

Ultimately, the spatially continuous transport equation for a single energy group can be written as

Ω d • ∇ψ i g,d ( r) + Σ t,g ( r)ψ i g,d = L l=0 σ g→g s,l ( r) l m=-l Y lm ( Ω d )φ g,i-1 lm ( r) + Q g,d ( r), (2.27) 
where the within group scattering term is evaluated using ux moments φ g,i-1 lm ( r)

from the previous inner iteration. Equation 2.27 denes an iterative scheme to resolve the self scattering term by repeatedly inverting the streaming and total interaction operators, a process which will be discussed in the next section.

Spatial Discretization

The spatially continuous, one group S N transport equation for a given iteration over the self scattering source can be formulated as

Ω d • ∇ψ d ( r) + Σ t ( r)ψ d ( r) = Q d ( r), (2.28) 
where Q combines the contribution from the scattering and ssion sources. The spatial discretization of Equation 2.28 begins with a partition of the spatial domain with non-overlapping cells. Each cell is assumed to have a spatially uniform material composition.

A balance equation can be produced by integrating Equation 2.28 over each cell of the partitioned domain. The resulting balance equation in Cartesian coordinates, after applying the divergence theorem, is

ψ + x -ψ - x ∆x Ω x + ψ + y -ψ - y ∆y Ω y + ψ + z -ψ - z ∆z Ω z + Σ t ψ = Q, (2.29) 
where the direction dependence and cell index have been suppressed for clarity.

The (ψ ± u , u = x, y, z) are angular uxes averaged on cell boundaries for the outgoing (+) and incoming (-) directions. The total interaction is taken to be constant within a spatial cell. In solving the balance equation (Equation 2.29), the incoming ux (ψ u ) and the volume-averaged source ( Q) are known; the source and incoming ux depend on the volume-averaged ux ( ψ), but this dependence is resolved through iterations on the balance equation. The outgoing and volumeaveraged uxes are sought by solving Equation 2.29. A standard way to evaluate the spatial dependence of the angular ux is to start at the boundary and, given a direction, traverse the geometry in that direction. This method is known as a transport sweep. When all sweeps are completed, the angular ux can be used to update the source Q and incoming ux.

The balance equation contains too many unknowns, and closure relations must be used to relate the volume-averaged ux to boundary uxes. A straight forward closure relation states that the ux varies linearly across the cell; this closure relation is named the Diamond Dierence method. While this closure relation works well in 1-D problems, it suers from stability issues in multidimensional cases [START_REF] Lathrop | Spatial dierencing of the transport equation: Positivity vs. accuracy[END_REF].

An improvement over using closure relations and a balance equation is through the use of the nite element method. The nite element method consists of multiplying Equation 2.28 by a trial function and integrating over all cells of the partitioned domain. This operation produces the weak form of the equation, which only satises projections of Equation 2.28 onto a function space. The solution is then approximated as a projection onto a basis of functions spanning the nite dimensional approximation space. The solution approximation can then be inserted into the weak form, which produces a sparse matrix system.

It is desirable to have trial and basis functions which have only local support and cause spatial points to only be coupled locally. The local support of these functions is what results in a sparse matrix system. In Galerkin nite element methods, the trial and basis functions span the same space [START_REF] Flaherty | Finite Element Analysis[END_REF]. Continuous nite element schemes force the continuity of the solution at cell interfaces. While a continuous solution may be appealing, the forcing of continuity at interfaces reduces the degrees of freedom available to specify the solution. Discontinuous methods however do not force the solution to be continuous at cell interfaces, leaving more degrees of freedom to specify the solution. Some discontinuous methods have been shown to be unstable in multidimensional, optically thick 2.1. NEUTRON TRANSPORT problems unless certain geometrical and function space criteria are met [START_REF] Adams | Discontinuous Finite Element Transport Solutions in the Thick Diusion Limit in Cartesian Geometry[END_REF].

A more stable and accurate method for spatial discretization accounts for particle transport within cells. Equation 2.28 can be analytically integrated along the path of neutron travel Ω d , or characteristic, to obtain

ψ g,d ( r) = ψ g,d ( r )F( r, r ; Ω d ) + | r-r | 0 ds Q g,d ( r -s Ω d )F( r, r -s Ω d ; Ω d ) (2.30) F( r, r ; Ω d ) = e -| r-r | 0 ds Σt,g( r-s Ω d ) , (2.31)
where the ux at r and the source distribution are presumed to be known. Equation 2.30 makes no assumption about the partitioned domain with constant cross sections within cells, which allows the total cross section in Equation 2.31 to vary piecewise continuously. The integrals in Equation 2.30 may be numerically integrated in two principal ways, leading to two versions of the same numerical method: the Method of Short/Long Characteristics. In the Method of Short Characteristics, Equation 2.30 is evaluated within each spatial cell given some expansion of the volumetric source and incoming boundary ux. Given these expansions, and assuming some expansion for the spatially dependent ux and outgoing boundary ux, the integrals may be analytically evaluated [START_REF] Evans | A New Three-Dimensional Parallel Discrete Ordinates Code in SCALE[END_REF][START_REF] Zmijarevic | Multidimensional Discrete Ordinates Nodal and Characteristics Method for APOLLO2 Code[END_REF].

Alternatively for the Method of Long Characteristics, given a direction and a spacing between trajectories, the ux for the given direction is evaluated along trajectories throughout the domain. The spatially dependent ux within cells may then be computed by using the ux along trajectories within a cell. Additionally, the currents on cell faces may be calculated given the ux on cell boundaries by numerical integration [START_REF] Boyd | The OpenMOC Method of Characteristics Neutral Particle Transport Code[END_REF][START_REF] Santandrea | Improvements and validation of the linear surface characteristics scheme[END_REF]. Collectively these versions can be referred to as the Method of Characteristics (MoC). Because of the explicit treatment of the streaming term in the transport equation, the method of characteristics performs especially well in deep penetration problems where scattering is less dominant [START_REF] Sanchez | A Review of Neutron Transport Approximations[END_REF]. Also because of the exponential attenuation provided within spatial cells, errors are damped when sweeping through the domain; this makes for a robust transport sweep.

A straight forward parallelization of transport sweeps will perform sweeps in each direction independently and collect all uxes when updating sources. A more complex eort at parallelization of transport sweeps can be accomplished by also splitting the spatial domain into subdomains. The transport sweeps can then be performed in a traveling wave algorithm. Two such parallel algorithms are the Koch-Baker-Alcoue (KBA) algorithm [START_REF] Baker | An S n Algorithm for the Massively Parallel CM-200 Computer[END_REF] and the Parallel-Block-Jacobi (PBJ) method [START_REF] Rosa | Fourier Analysis of Parallel Block-Jacobi Splitting with Transport Synthetic Acceleration in Two-Dimensional Geometry[END_REF]. The Denovo code [START_REF] Evans | A New Three-Dimensional Parallel Discrete Ordinates Code in SCALE[END_REF] uses the KBA method and the approximations discussed earlier in this section. This code has been applied to large transport problems and exhibits high parallel performance on a large number of parallel cores O(10 5 ) [START_REF] Davidson | Massively Parallel, Three-Dimensional Transport Solutions for the k-Eigenvalue Problem[END_REF].

CHAPTER 2. PHYSICAL MODELS Time Discretization

A straight forward way to discretize the time variable is to approximate the time derivative as a nite dierence. Taking an implicit form of this discretization applied to Equation 2.1, with the previously discussed approximations, produces

1 v g ψ n+1 g,d ( r) -ψ n g,d ( r) ∆t + Ω d • ∇ψ n+1 g,d ( r) + Σ n+1 t,g ( r)ψ n+1 g,d ( r) = Q n+1 g,d ( r), (2.32) 
where the solution at the current time step (ψ n g,d ( r)) is known either from an initial condition or the previous evaluation of the angular ux. All other time dependent parameters are evaluated at the next time step. This produces a method that is unconditionally stable in terms of the time step size. Equation 2.32 can be rearranged by combining the solution at the previous time step with the xed source and combining the 1 ∆tvg term with the total cross section [START_REF] Tyobeka | Application of Time-Dependent Neutron Transport Theory to High-Temperature Reactors of Pebble Bed Type[END_REF].

Many dierent methods exist to increase the convergence order of temporal discretization; one such method class is Runge-Kutta methods [START_REF] Lambert | Numerical Methods for Ordinary Dierential Systems[END_REF]. Runge-Kutta methods take ordinary dierential equations of the form

∂u ∂t = F (u, t), (2.33) 
where F (u, t) is some function which describes the rate of change of the solution.

For neutron transport, F (u, t) would be formulated by moving the streaming and total reaction terms to the right hand side and multiplying by v g . Once in the form of Equation 2.33, the Y -formulation of a general s-stage Runge-Kutta method is dened as

Y i = u n + ∆t s j=1 a ij F (Y j , t n + c j ∆t) i = 1, 2, . . . , s u n+1 = u n + ∆t s i=1 b i F (Y i , t n + c i ∆t), (2.34) 
where the {a, b, c} are values dependent on the specic Runge-Kutta method used. The coecients {a, b, c} appearing in Equation 2.34 are chosen to optimize the Runge-Kutta method. The coecients are subject to order conditions based on the structure of the method and the convergence order sought. The order conditions will, in general, not completely specify the coecients of the system, and other constraints must be imposed to determine these coecients. Additional constraints could be based on ensuring linear or absolute stability, or on the minimization of higher order terms in a Taylor expansion [START_REF] Butcher | Numerical Methods for Ordinary Dierential Equations[END_REF]. These values can be stored in a Butcher Tableau with the general form There has been an eort to parallelize the time domain through an iterative process [START_REF] Baudron | Towards a time-dependent neutron transport parallel solver[END_REF]. The eort was mildly successful because of the diculty to parallelize a physically serial process.

Solution Method

The approximations and discretizations discussed previously can be implemented and brought together in a deterministic transport code. Industrial deterministic transport codes have a nested algorithm, which consists of several levels of iteration to produce a converged solution. The innermost level is one of a transport sweep that, given a source distribution, produces the corresponding angular ux by solving Equation 2.28, after an appropriate spatial discretization, throughout the computation domain and for every direction in the quadrature set.

The level above transport sweeps and inner iterations involves iterations over the energy domain and scattering source. At this level, the angular source for each energy group is computed using the previous iteration's solution. Iterations over the energy domain only occur if there is upscattering present, or Σ s,g →g = 0 for g > g. Otherwise the multigroup ux can be computed with a single sweep through the energy domain.

The last and exterior level is either an iteration on the eigenvalue/eigenvector of the nuclear system, or a loop over the discretized time domain. The dominant eigenvalue/eigenvector pair can be computed through a power iteration algorithm.

This embedded solution scheme is depicted in Figure 2.5.

The methods to solve the neutron transport equation, developed over the past and well into the current century, have produced solution processes optimized for the solution of the linear transport equation. In addition to the numerical approximations discussed in this section, there are many more details to the timely solution of the transport model. These details include accelerations, material data processing, and cross section homogenization, among others.

Heat Transfer

The transfer of heat in a nuclear reactor is important in determining the spatial dependent temperatures in the core. Such temperatures are used to determine whether the materials within the reactor core will be below certain limits which guarantee the structural integrity of the fuel. Given the spatial temperature distribution, the location of the maximum cladding temperature, which is the likely failure location in LWRs during reactivity initiated accidents, can be found [START_REF]Nuclear Fuel Behaviour Under Reactivity-initiated Accident (RIA) Conditions[END_REF][START_REF] Dias | Realistic Scoping Study of Reactivity Insertion Accidents for Typical PWR and BWR Cores[END_REF]. Additionally the spatial temperatures can be used to compute eective cross sections, and temperature coecients for the fuel and moderator, among others. This section will discuss the two heat transfer models used for simulations in this work. The rst model is a simple lumped capacitance model [START_REF] Incropera | Fundamentals of Heat and Mass Transfer[END_REF]. The second model is a more complex two phase subchannel model that accounts for boiling in the coolant and exchanges between neighboring coolant channels [START_REF] Sanchez | UW Version of the Canal Subchannel Code[END_REF].

Lumped Capacitance Model

A lumped capacitance model is used here to describe the heat transfer in an innite homogeneous medium. A lumped capacitance model simply assumes that the temperature gradient within a region is negligible [START_REF] Incropera | Fundamentals of Heat and Mass Transfer[END_REF]; thus there is no conduction within the material. Consequently a full energy balance is performed on the system which yields

∂T ∂t = κP (t) -Q(t), (2.35) 
where κ is a heat generation constant, P is the time dependent power, and Q is some time dependent heat sink. The heat sink is added to allow for an equilibrium condition when the power is non-zero. In the cases discussed in Chapter 4, the heat sink will be equal to the heat generation constant times the initial power.

This condition produces a temperature which is initially stable until the power changes. For this setup, the value of the heat generation constant will signicantly aect the behavior of the time dependent temperature. A small value of κ will cause a small change in temperature for a large deviation in power. Likewise a large value of κ will result in a large change in temperature for a small deviation in power. In the context of large positive reactivity insertions, for a small value of κ, the power will increase largely before the temperature has risen high enough to counteract the reactivity insertion. Conversely for a large value of κ, a small increase in power will be enough to increase the temperature to a point which counteracts the reactivity insertion.

Subchannel Model

Computational Fluid Dynamics (CFD) is the study of physical models which describe the details of uid ow through regions of space. Often these regions include complex geometries and cause intricate ow patterns. One such type of complex region is that of a fuel assembly from a nuclear reactor. In addition to all of the intricate paths through the fuel assembly from the array of parallel fuel rods, fuel assemblies contain spacer grids over the length of the fuel assembly.

These spacer grids serve two purposes: rst is to provide structural support to fuel rods, and second is to introduce turbulence to the uid owing through the assembly which consequently increases the ecacy of the coolant to remove heat from the fuel assembly. Resolving the details of these types of ow patterns can be achieved at several levels. In addition to complex ow patterns induced by structural material, the presence of boiling will alter the way heat is removed from the system. The thermal hydraulics of forced convection systems will change for dierent ow regimes. Within a reactor core, there are four principle ow regimes as pictured in Figure 2 to model the behavior of system components such as turbines, heat exchangers, and main steam lines [START_REF] Bestion | The physical closure laws in the CATHARE code[END_REF]. The thermal hydraulic model discussed in this section is a coupled 1-D porous medium model. Each subchannel is averaged over the cross sectional area and coupled to neighboring subchannels through interfaces.

The following discusses the area and time averaged mass, momentum, and 2.2. HEAT TRANSFER energy balances. These three balance equations and experimental correlations are used to produce the two-phase thermal hydraulic model used in this work. In models designed for use in BWR cores, generally two species of coolant are taken because of the large amount of vapor present in the core. Additional species can be dened to give more delity to the physical models. For example, balance relations can be written for the continuous liquid, dispersed gas, continuous gas, and dispersed liquid phases. The latter two phases are only prevalent when the ow is beyond the Bubbly ow regime.

The mass balance for species x is

∂ ∂t V ρ x dV + ∂V ρ x V x • d A = - x Γ x→x , (2.36) 
where ρ x is the density of species x, V is the control volume, and V x is the velocity for species x. Γ x→x is the net rate at which species x transforms into species x in control volume V . This transformation rate depends on the ow conditions and on the rate at which heat is added to the control volume. For the case of treating two species (liquid water and steam) the relation Γ x→x = -Γ x →x comes from mass conservation. Equation 2.36 simply says that the rate of change of mass is equal to the net mass ux coming into the control volume; the entrance can be from a physical boundary or the boundary between species [START_REF] Pritchard | Fox and McDonald's Introduction to Fluid Mechanics[END_REF].

The gamma function appearing in Equation 2.36 can be approximated from a thermodynamic relation involving the heat addition rate and the latent heat of vaporization of water. This relation gives the rate at which liquid water turns to steam at saturation conditions.

The momentum balance equation is given by

∂ ∂t V ρ x V x dV + ∂V V x ρ x V x • d A = F S + F B , (2.37) 
where F S and F B are the resultant surface and body forces on the control volume. Equation 2.37 is a vector equation and would have three components in a 3-D Cartesian geometry. In an LWR, friction between the uid and structural material, as well as the forces due to pressure on the surface, manifest as surface forces while gravity is the only body force.

Equation 2.37 is written for a species x, but in the treatment of thermal hydraulics in this work, we will simplify the momentum equation to be that of the mixture (liquid water and steam). Hence the density ρ x becomes ρ m = αρ v +(1-α)ρ l , and the species velocity becomes the mixture velocity [START_REF] Todreas | Nuclear Systems I: Thermal Hydraulic Fundamentals[END_REF]. The void fraction α is dened as the volume fraction of vapor in a xed volume. However unequal velocities of the liquid water and steam can be introduced through a drift ux model where the velocity of the vapor is given by the sum of the mixture velocity and a drift velocity. The drift velocity can be determined by correlations depending on the characteristics of the two-phase ow regime

V v = V m + V vd . (2.38) CHAPTER 2. PHYSICAL MODELS
The surface forces can be split into contributions from the pressure and frictional forces. The pressure can be expressed as the integral over the surface of the control volume,

F pressure s = - ∂V P d A.
(2.39)

This formulation states that the pressure P is always applying a force toward the interior of the control volume. The friction force due to the interaction between the mixture and the structural material is given by

F friction s = - ∂V τ w |d A • n|.
(2.40)

The factor τ w is given by correlations depending on the velocity, mixture density, the contact surface, and others [START_REF] Todreas | Nuclear Systems I: Thermal Hydraulic Fundamentals[END_REF]; the formulation used in this work is given in Equation 2.41. The direction of the vector quantity τ w is in the same direction as the velocity.

τ w = f tp 4 G 2 m 2ρ + m V m V m = f tp 4 1 2 ρ v αV 2 v + ρ l (1 -α)V 2 l V m V m (2.41)
Here f tp is a parameter depending on an empirical correlation of the product between a single-phase friction factor and a two-phase ow multiplier. The singlephase ow friction factor is a function of the Reynolds number; the subchannel code used in this work uses a relation from Marinelli and Pastori [START_REF] Marinelli | Pressure Drop Calculations in BWR Rod Bundles[END_REF]. The twophase ow multiplier is drawn from assumptions about the two-phase ow regime.

The thermal hydraulic model from this work uses the Jones correlation [START_REF] Todreas | Nuclear Systems I: Thermal Hydraulic Fundamentals[END_REF][START_REF] Jones | Hydrodynamic Stability of a Boiling Channel[END_REF].

The energy balance equation is given by

∂ ∂t V e x ρ x dV + ∂V e x ρ x V x • d A = Qx -Ẇx e x = u + V 2 2 + g∆z, (2.42) 
where e x is the total energy, Q is the heat input to the system, and Ẇ is the work done by the system. The work done by the system can be broken into the work done by normal stress on the control volume, and other work ( Ẇ = Ẇn + Ẇother ).

The rate of normal work is produced by a normal stress on the surface of the control volume moving with a velocity

Ẇn = - ∂V σ n V • d A, (2.43) 
where σ n is the normal stress on the control surface. Rearranging the terms in Equation 2.42 gives 44) where ν = 1 ρ is the specic volume, and h x ≡ u x + σ n ν x is dened to be the enthalpy of species x.

∂ ∂t V e x ρ x dV + ∂V   u x + σ n ν x hx + V 2 x 2 + g∆z   ρ x V x • d A = Q -Ẇother (2.
As with the momentum balance, species x is taken to be the mixture of liquid water and steam. This statement requires that the two species be in thermal Equations 2.36, 2.37, and 2.44 describe the heat exchange between the uid and walls of the fuel, but are not suited for describing the heat transfer in the fuel. Heat transfer within the fuel is governed by conduction as in

1 ρC p ∂T ∂t -∇k∇T = q , (2.45)
where ρ is the fuel density, C p is the fuel heat capacity, k is the conductivity, and q is the volumetric heat generation rate. Equation 2.45 can be coupled to the uid equations by the rate at which heat crosses the exterior surface of the fuel. The remaining boundary condition for cylindrical fuel rods can be taken as a vanishing temperature gradient at the center of the fuel rod. This means that a cylinder in r-z geometry is simulated with azimuthal symmetry.

The CFD models described at the beginning of this section are generally expensive in both computation time and storage when applied to assembly or core level calculations. Many improvements over the years focus on the parallelization of such CFD models. Simulations using RANS or porous medium models exploit parallelization through domain decomposition methods, which split the spatial CHAPTER 2. PHYSICAL MODELS domain into subdomains that are controlled by a single processor [START_REF] Jaregeg | Development of an integrated deterministic neutronic/thermalhydraulic model using a CFD solver[END_REF]. Communication between processors happens at the boundaries of these subdomains. The thermal hydraulic model used in this work does not exploit any parallelization and thus is limited to smaller sized domains.

This section presented two heat transfer models which can be applied in either a homogeneous or heterogeneous case. The rst lumped capacitance model is used in a homogeneous problem where conduction cannot occur because of the lack of a temperature gradient. The second model of a coupled set of subchannels can be applied to heterogeneous problems. The accidents treated in this work are rapid and occur during startup conditions where the fuel and coolant temperatures are low. These accidents produce near adiabatic conditions for heat transfer, and the two models discussed are expected to have similar behavior.

Feedback Mechanisms

The safe operation of nuclear power plants relies heavily on how the reactor will respond to perturbations in its operating state. For example, a higher electrical demand from the power grid will draw more energy from the steam turbine, causing the coolant which enters the reactor core to be cooler than nominal conditions. These types of small perturbations will cause the reactor system to respond; nuclear engineers strive to design stable systems which will respond slowly to perturbations in operating state.

Understanding and modeling these physical mechanisms which cause changes in reactor behavior is important for the design of safe nuclear power plants. This section discusses several mechanisms which can cause changes in reactor behavior and focuses on the accurate modeling of these mechanisms.

The most predominant feedback mechanism in uranium fueled reactors is the thermal absorption of 238 U. This isotope of uranium has a large resonance at what reactor designers are seeking because of its stabilizing eects; it will oppose any perturbations to the system. As an example, an increase in power causes an increase in temperature. This temperature increase causes more thermal absorption in 238 U, which removes neutrons from the system and the reactor can eventually reach a new equilibrium. Conversely, if an increase in temperature caused less thermal absorption in 238 U, there would be more ssion events be- cause more neutrons would be available to be absorbed by 235 U. More ssion events would increase the power and fuel temperature, and the reactor could not reach a new equilibrium.

FEEDBACK MECHANISMS

Doppler broadening is not the only form of feedback present in nuclear reactors, but it does respond very quickly to perturbations in operating state. Some of the ssion products from the ssion events will produce isotopes which have enormous absorption cross sections. Two such isotopes are 135 Xe and 149 Sm. Given a constant power, these isotopes will naturally build up to an equilibrium concentration over the operating time of a reactor. However perturbations in the power can lead to these concentrations being o equilibrium and can invoke oscillations in the power over medium sized time intervals. The longer time intervals over which the power changes will require more accurate thermal hydraulics models because of the possibility of the coolant species to be out of thermal equilibrium.

As mentioned in the introduction of this section, perturbations of the coolant entering the reactor core can drive changes in reactor behavior. These perturbations can be from the temperature of the coolant, which will aect the moderation power of the coolant. In LWR cores, a higher coolant temperature leads to less moderation which causes the power to decrease. Conversely a decrease in coolant temperature, like the scenario presented with an increased electrical demand, will cause more moderation and increase the power. Like Doppler broadening of resonances, this is a negative feedback mechanism which introduces stability in the reactor. In addition to the temperature of the coolant, in PWR designs a neutron absorber is dissolved in the coolant to control the reactor during operation. A perturbation of the concentration of this absorber would cause changes in the reactor behavior.

The feedback mechanisms presented thus far can be modeled with coupled neutron transport and thermal hydraulic modes. The reactor poisons presented can be modeled by introducing rate equations for the concentration of each isotope which can be produced from ssion and lost from neutron absorption; additionally 135 Xe can be lost through radioactive decay. The accurate simulation of the behavior of nuclear reactors is essential to the design process which produces inherently safe reactors. The accurate simulation of such behavior includes resolving the nonlinear feedback present during reactor transients, both operational and accident.

Beyond operational and accident transients, severe accidents involve long term damage to the reactor core and are generally dicult to model. These accidents (Three Mile Island, Chernobyl, and Fukushima) occur rarely, and last for long times on the order of days to months. The characteristic common in severe accidents is the irreparable damage to the reactor core, usually in the form of fuel melting. When core melt occurs, physio-chemical interactions between the core material and structural material become important and must be accounted for [START_REF] Seiler | Viscosities of corium-concrete mixtures[END_REF]. These types of accidents result in complicated models which require special attention to produce accurate results.

This work will focus on operational and accident transients because of their more common occurrence and lower severity. These transients aect the integrity of the rst level of containment, and should be thoroughly investigated. The physical models to describe such transients are readily available in the form of computer codes and can be modied to work together to produce a high delity multiphysics solution.

Chapter 3

Numerical Methods

The physical manifestation of coupling was discussed in the previous chapter. This chapter discusses two numerical methods available for resolving multiphysics systems: simultaneous and sequential coupling methods. Sequential coupling methods are ones in which each physics component is solved independently and coupled to other physics components through data transfers of the physics components' solutions. Simultaneous coupling methods treat the multiphysics system as a single system and obtain a solution to all physics components through nonlinear iterations. Each method has its drawbacks and strengths which will be discussed in the present chapter.

Sequential System

The most readily available method for coupling stand alone physics models is through a sequential coupling manner; which may also be referred to as Operator Splitting. This method involves solving each physics component separately with the other physics components' solutions as input. There are variations of this method based on which input solution is used from other physics components: either at the previous time step, or the most recent solution. This method is advantageous when there are separate physics models for each physics component that are optimized to treat the length and time scales characteristic to that physics component. There are generally several years of combined experience that manifest in a computer code to solve a given physics component; this method builds directly on that experience.

Operator Splitting is generally a noniterative process, meaning that at each time step, only a single pass through the physics models is performed. This does not converge the nonlinearities between physics components, and can be at best a rst order in time method [START_REF] Ragusa | Consistent and accurate schemes for coupled neutronics thermal-hydraulics reactor analysis[END_REF]. However several modications, such as predictor-corrector steps, to the noniterative operator split technique can be made to improve the convergence of nonlinearities and stability of this explicit scheme [START_REF] Mahadevan | A verication exercise in multiphysics simulations for coupled reactor physics calculations[END_REF][START_REF] Ragusa | Consistent and accurate schemes for coupled neutronics thermal-hydraulics reactor analysis[END_REF][START_REF] Mahadevan | High-resolution coupled physics solvers for analysing ne-scale nuclear reactor design problems[END_REF]. This method is depicted in Figure 3.1, where the neutronics model takes the temperature from the previous time step as input. The power produced from the neutronics method is fed into the thermal hydraulic model, which produces an updated temperature distribution. Often this lagged method will not accurately capture the nonlinearities produced from the temperature dependent cross sections at each time step. The convergence of such a method can come into question, especially if the physics components operate on signicantly dierent time scales [START_REF] Calleja | X-TREAM project: Task 1b -Survey of the state-of-theart numerical techniques for solving coupled non-linear multi-physics equations[END_REF]. Additionally, because of the explicit nature of this numerical scheme, oscillations can be observed in certain cases [START_REF] Kotlyar | Numerically stable Monte Carlo-burnupthermal hydraulic coupling schemes[END_REF][START_REF] Kotlyar | Monitoring and preventing numerical oscillations in 3D simulations with coupled Monte Carlo codes[END_REF].

Thermal

Hydraulics

Thermal

Hydraulics

Neutronics Neutronics While this process does converge the nonlinearities between each physics component, the rate of convergence is linear and can become computationally expensive.

t n-1 t n t n+1 t n+2 T (t n-1 ) P (t n ) T (t n ) P (t n+1 ) T (t n+1 )
It is generally necessary to accelerate this type of method to have an acceptable computation time [START_REF] Mahadevan | High-resolution coupled physics solvers for analysing ne-scale nuclear reactor design problems[END_REF]. The iterative process between physics components produces an unconditionally stable numerical method, which removes the oscillations observed from the lagged version of operator splitting [START_REF] Kotlyar | Numerically stable Monte Carlo-burnupthermal hydraulic coupling schemes[END_REF][START_REF] Kotlyar | Monitoring and preventing numerical oscillations in 3D simulations with coupled Monte Carlo codes[END_REF].

Sequential coupling methods are common methods used to couple existing codes because of the low overhead involved in implementing these methods [START_REF] Tyobeka | Application of Time-Dependent Neutron Transport Theory to High-Temperature Reactors of Pebble Bed Type[END_REF][START_REF] Verdú | Peach Bottom Transients Analysis with TRAC/BF1-VALKIN[END_REF][START_REF] Kaya | A Nodal Kinetics and Thermohydraulics Analysis (NOKTA) Code for Analyzing Rod-Ejection Accidents and Other Transients in Nuclear Power Reactor Cores[END_REF]. The real challenge presented from these methods is in how to transfer solutions to other physics component models accurately. The solution transfer can be accomplished through some type of interpolation or projection onto another physics component's mesh [START_REF] Johnson | The role of data transfer on the selection of a single vs. multiple mesh architecture for tightly coupled multiphysics applications[END_REF].

While the Operator Splitting method may have its drawbacks in obtaining a multiphysics solution, it is useful as a preconditioner to simultaneous methods.

The use of Block or Physics Based preconditioners have been shown to be essential 
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Operator Splitting Schematic with Iteration Between

Two Coupled Physics Components in solving simultaneous multiphysics problems [START_REF] Knoll | Jacobian-free Newton-Krylov methods: a survey of approaches and applications[END_REF][START_REF] Benzi | Preconditioning Techniques for Large Linear Systems: A Survey[END_REF]. Preconditioners will be discussed in Section 3.2.2.

Simultaneous System

A large body of recent work has been devoted to studying the numerics of a simultaneous system approach [START_REF] Gaston | A parallel computational framework for coupled systems of nonlinear equations[END_REF][START_REF] Mahadevan | A verication exercise in multiphysics simulations for coupled reactor physics calculations[END_REF][START_REF] Dugan | Dynamic Adaptive Multimesh Renement for Coupled Physics Equations Applicable to Nuclear Engineering[END_REF][START_REF] Charrier | Schéma implicite pour un modèle d'hydrodynamique radiative multigroupe 2D. Technical report[END_REF]. The simultaneous system is constructed by forming a nonlinear residual for each physics component and placing each residual component in a global residual for the coupled system. This global residual has the form

F ( U ) =          f 1 (u 1 , u 2 , . . . , u n ) f 2 (u 1 , u 2 , . . . , u n ) . . . f n (u 1 , u 2 , . . . , u n )          , (3.1) 
where each f i is the residual and u i is the solution from the i-th physics component in the system. The nonlinear coupled physics problem can then be stated as

given F ( U ) : R n → R n , find U * ∈ R n such that F ( U * ) = 0, (3.2) 
which can be described as a zero search method of which there are many algorithms to choose from: xed point iteration, Picard, Broyden, Newton, among others.
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In this work Newton's method is used exclusively to nd the solution of Equation 3.2, which consists of a linearization of the nonlinear residual and an iterative process to nd a solution which makes the linearization of the residual zero. Newton's method is derived from the multivariate Taylor expansion of the residual

F F ( U + δ U ) = F ( U ) + J( U )δ U + 1 2 T( U )δ U δ U + . . . , (3.3) 
where T is a rank-3 tensor of second derivative terms, and J is a matrix of rst derivative terms, called the Jacobian matrix, and dened as

J =          ∂f 1 ∂u 1 ∂f 1 ∂u 2 • • • ∂f 1 ∂un ∂f 2 ∂u 1 ∂f 2 ∂u 2 • • • ∂f 2 ∂un . . . . . . . . . . . . ∂fn ∂u 1 ∂fn ∂u 2 • • • ∂fn ∂un          . (3.4)
Newton's method is constructed from the truncation of Equation 3.3 after the linear term and solving for the update δ U that will make the residual approximation zero. Newton's method consists of computing the Jacobian and residual for the current iterate U and inverting the Jacobian matrix to nd the appropriate update vector δ U which is added to the current solution; the method is expressed in Equation 3.5.

δ U = -J( U n ) -1 F ( U n ) U n+1 = U n + δ U (3.5)
This process is repeated until the residual or the update vector is suciently small. A commonly used denition of suciently small is some absolute tolerance plus a fraction of the original residual size [117]. This denition of the nonlinear tolerance allows Newton's method to converge even if the original residual is large; in such a case, a signicant reduction in the residual size is sought.

The second order tensor term in Equation 3.3 can be used if the Jacobian matrix is singular, resulting in a local quadratic model for the residual [START_REF] Bader | Robust Large-Scale Parallel Nonlinear Solvers for Simulations[END_REF].

However the Jacobians found in reactor accident analysis are generally nonsingular and well behaved at the solution, thus only a rst order linearization will be used for the problems encountered in this work.

Newton's method is locally q-quadratic convergent, meaning if the initial iterate for the method is suciently close to the solution, the method will converge quadratically. The requirement for the initial iterate to be suciently close to the converged solution is not as constraining as might be expected. In the application of Newton's method for solving implicitly integrated PDEs, the initial iterate is taken as the solution from the previous time step [START_REF] Kelley | Solving Nonlinear Equations with Newton's Method[END_REF][START_REF] Isaacson | Analysis of Numerical Methods[END_REF]. If the time step is made small enough, the solution will be close to the solution at the previous time 3.2. SIMULTANEOUS SYSTEM step.

To ensure Newton's method converges to the correct solution, even when the initial iterate is far from the solution, a globalization technique must be used [START_REF] Kelley | Solving Nonlinear Equations with Newton's Method[END_REF].

There are two main globalization techniques used for Newton's method: trust region and line search. The trust region method builds a local quadratic model around the current iterate and solves the quadratic model within a trusted region of a certain radius. The trust region requires signicant modications in the Newton algorithm to incorporate this globalization [START_REF] Sorensen | Newton's Method wih a Model Trust Region Modication[END_REF]. The line search globalization however, only requires small modications if the Newton algorithm is already locally convergent; hence the line search method will be preferred in this work.

The line search method assumes that the solution update is oriented in the correct direction (meaning a descent direction) but may overshoot the target solution. The goal of the line search method is to reduce the magnitude of the solution update until the residual norm is suciently reduced. The reduction factor for the solution update can be obtained through the Armijo rule [START_REF] Armijo | Minimization of Functions Having Lipschitz Continuous First Partial Derivatives[END_REF].

Thus the update relation of Equation 3.5 is transformed to

U n+1 = U n + λδ U , (3.6) 
where λ = 2 -j for some j ≥ 0 until the residual satises the sucient decrease condition

F ( U + λδ U ) < (1 -αλ) F ( U ) . (3.7)
For the methods used in this work, α is taken to be 10 -4 as suggested by [START_REF] Dennis | Numerical Methods for Unconstrained Optimization in Nonlinear Equations[END_REF].

Additionally the index j is limited to 15 iterations, but experience shows that ve reductions is sucient for the problems in this work. The small number of reductions required supports the idea that for time dependent problems, the solution from the previous time step is reasonably close to the converged solution.

Linear System Inversion

Newton's method is built on repeatedly solving the linear system Jδ U = -F , which will be written as A x = b in this section. The linear system A x = b can be solved in a multitude of ways. Direct inversion using a variant of Gaussian Elimination can be applied if one has access to the matrix elements and the matrix A is not prohibitively large. Gaussian Elimination requires O(n 3 ) operations to invert matrix A, where n is the size of A [START_REF] Demmel | Applied Numerical Linear Algebra[END_REF].

Conversely an iterative method can be used to invert A, of which there are two categories: stationary and nonstationary. Stationary linear solvers are ones for which the next solution iterate does not depend on the history of solution iterates. This category includes methods like Jacobi and Gauss-Seidel, where these methods are generally based on a decomposition of the system matrix. For example the Jacobi method uses the decomposition

A = D + L + U, (3.8) 
where D is the diagonal of the matrix while L and U are the lower and upper triangular portions respectively. Jacobi iteration can then be applied as

x n+1 = -D -1 (U + L) x n + D -1 b. (3.9)
This method will converge if the matrix A is diagonally dominant and requires O(n 2 ) operations [START_REF] Demmel | Applied Numerical Linear Algebra[END_REF]. Jacobi iteration is normally the slowest converging stationary iterative method, with the convergence rate diminishing as the size of A increases.

The second category of iterative linear methods, nonstationary methods, have some dependence on previous iterates. The current iterate is given as some linear combination of previous iterates.

A popular class of nonstationary linear solvers are the Krylov subspace solvers, which build approximations to the current iterate over a Krylov subspace dened as

K k (A, b) = span r 0 , A r 0 , A 2 r 0 , . . . , A k-1 r 0 , (3.10) 
where A is the system matrix to be inverted, b is the right hand side, and r 0 = b -A x 0 is the initial linear residual for a given initial guess x 0 . The most recent approximation to the solution is then a linear combination of the basis vectors for the current subspace K k ,

x k = x 0 + k-1 j=0 γ j v j , (3.11) 
where the v j are basis vectors for the current subspace, and the coecients γ j are determined in dierent ways for dierent Krylov subspace methods.

The Generalized Minimum Residual (GMRes) method will be the linear solver of choice for inverting Jacobian matrices for the problems studied in this work [START_REF] Saad | GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems[END_REF][START_REF] Saad | Iterative Methods for Sparse Linear Systems[END_REF]. The GMRes method produces a sequence of solution iterates that minimize the linear residual over the current Krylov subspace, and does not have the constraint of needing a symmetric system matrix like MINimum Residual (MINRes) method or positive deniteness like the Conjugate Gradient (CG) method [START_REF] Paige | Solution of Sparse Indenite Systems of Linear Equations[END_REF].

Unfortunately the freedom to solve nonsymmetric matrices requires GMRes to store all basis vectors of the subspace since no recurrence relations exist between the basis vectors. This means that the storage requirements for GMRes grow as the iteration process progresses. To reduce the storage requirements of GMRes, a restarted version can be used where, after a set number of iterations, the iteration process is restarted with the most recent iterate as the new initial guess.

The price to pay for reducing the storage in this way is to possibly have a slower convergence rate, which may stagnate [START_REF] Saad | GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems[END_REF][START_REF] Embree | The Tortoise and the Hare Restart GMRes[END_REF]. Where possible, a full GM-Res method will be used to minimize the eect of linear convergence stagnation.

GMRes involves minimizing the linear residual over the current Krylov subspace min

x k ∈ x 0 +K k b -A x k .
(3.12)

In GMRes, the basis vectors for the Krylov subspace are computed using a Gram-Schmidt process adapted to Krylov subspaces called the Arnoldi process [START_REF] Arnoldi | The principle of minimized iteration in the solution of the matrix eigenproblem[END_REF].

The orthonormal basis vectors are stored as columns of a matrix V k of size n × k, with n being the size of the square system matrix A. The coecients from the Arnoldi process are stored in an upper Hessenberg matrix H k of size (k + 1) × k.

The Arnoldi process gives the relation

AV k = V k+1 H k , (3.13) 
which means that if x k ∈ x 0 + K k , then x k = V k y + x 0 for some coecient vector y. The minimization problem Equation 3.12 can be transformed using the relation in Equation 3.13

A x k = AV k y + A x 0 = V k+1 H k y + A x 0 . (3.14)
The rst basis vector of the Krylov subspace is constructed from the original linear residual r 0 , thus

r 0 = βV k+1 e 1 , (3.15) 
where β = r 0 is the norm of the initial linear residual, and e 1 is the rst vector from the canonical basis. Equation 3.14 and Equation 3.15 can be used to reduce the size of the minimization problem in Equation 3.12 as min

x k ∈ x 0 +K k b -A x k = min y∈R k β e 1 -H k y . (3.16)
This transformation reduces the size of the minimization problem from size n to size k, which can be signicant if n is large. Additionally, the QR algorithm for nding the linear least squares solution to Equation 3.16, with an upper Hessenberg matrix H k , can be done with a single Given's rotation, or a single Householder reector per column vector.

The transformation of the linear least squares problem in Equation 3.16 depends on the matrix V k+1 being unitary, or the columns of V k+1 need to be orthonormal. However the Gram-Schmidt process, used to compute the columns of V k+1 , suers from numerical errors that lead to a loss of orthogonality. Two methods exist to reduce the loss of orthogonality: Modied Gram-Schmidt and reorthogonalization [START_REF] Trefethen | Numerical Linear Algebra[END_REF][START_REF] Giraud | The loss of orthogonality in the Gram-Schmidt orthogonalization process[END_REF]. The modied Gram-Schmidt algorithm reorders the classical Gram-Schmidt algorithm to reduce the introduction of round-o errors, while re-orthogonalization repeats the orthogonalization process once to reduce the round-o errors. The cost of re-orthogonalization is then twice as much as the modied Gram-Schmidt, however the re-orthogonalization procedure allows the algorithm to more adequately exploit parallel computer architectures [START_REF] Giraud | The loss of orthogonality in the Gram-Schmidt orthogonalization process[END_REF]. Because of the added expense incurred by re-orthogonalization, methods have been studied to check for the loss of orthogonality and only re-orthogonalize when a CHAPTER 3. NUMERICAL METHODS loss of orthogonality is suspected [START_REF] Parlett | The Symmetric Eigenvalue Problem[END_REF].

Linear System Preconditioning

The convergence of the solution to the linear system A x = b is dependent on the condition number of A [117,[START_REF] Ipsen | Numerical Matrix Analysis: Linear Systems and Least Squares[END_REF]. If I -A 2 < 1, then the convergence rate can be expressed as

e k 2 e 0 2 ≤ κ 2 (A) r k 2 r 0 2 , (3.17) 
where e k = x k -x * is the solution error, r k = b -A x k is the linear residual, and a zero subscript denotes the initial iterate. The relative condition number with respect to inversion, κ(A) is dened as

κ p (A) = A p A -1 p , (3.18) 
where a condition number close to unity corresponds to a well-conditioned system.

Preconditioning provides a way to reduce the condition number of the linear system, hence increasing the convergence rate of the linear solver. There are three versions of preconditioning available to linear systems:

• Left Preconditioning

M -1 L A x = M -1 L b, (3.19) 
• Right Preconditioning AM -1 R (M R x) = b, (3.20) 
• Split Preconditioning

M -1 L AM -1 R (M R x) = M -1 L b. (3.21) 
Split preconditioning will be discussed presently as it is a generalization of both Left and Right preconditioning; both methods can be recovered by setting M R and M L to the identity respectively. Eective preconditioners are ones for which

I -M -1 L AM -1 R 2 < 1 and for which the condition number of M -1 L AM -1
R is signicantly smaller than A. Additionally, the preconditioner should be easy to invert. Left preconditioning changes the residual vector, which will aect the estimation of convergence for the linear system. A preconditioned GMRes algorithm is presented in Algorithm 1. Notice that the cost is the same to apply a left or right preconditioner.

In all cases of preconditioning, the matrix M L,R is an approximation to the matrix A. With preconditioning there is always a trade-o between obtaining a good approximation of A and the cost of obtaining such an approximation. The most eective preconditioner is the matrix itself, however the cost to invert this 
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preconditioner is much too expensive; likewise the most cost-eective preconditioner is the identity matrix, but may be a terrible approximation for A. Many methods have been proposed to precondition the linear system: (Block)Jacobi, (Block)Gauss-Seidel, ILU, Multigrid, etc.

Since the present work is focused on multiphysics solutions, the preconditioner will be based on the physics of the components of the system. This type of preconditioner manifests as a Block Jacobi or Block Gauss-Seidel preconditioner.

The Block Jacobi preconditioner involves partitioning the matrix A into blocks and inverting each block diagonal. For example a 3×3 block matrix is inverted by repeatedly applying the relation

      x 1 x 2 x 3       n+1 =       A -1 11 A -1 22 A -1 33                   b 1 b 2 b 3       -       0 A 12 A 13 A 21 0 A 23 A 31 A 32 0             x 1 x 2 x 3       n       . (3.22)
Likewise a Block Gauss-Seidel method would repeatedly apply

             x n+1 1 = A -1 11 b 1 -A 12 x n 2 -A 13 x n 3 x n+1 2 = A -1 22 b 2 -A 21 x n+1 1 -A 23 x n 3 x n+1 3 = A -1 33 b 3 -A 31 x n+1 1 -A 32 x n+1 2 , (3.23) 
where each equation in Equation 3.23 is solved sequentially and thus not easily parallelized. The order in which these equations are solved is arbitrary, but must be specied. The convergence rate for Equation 3.23 should be higher than for Equation 3.22. However, the convergence rate may not be able to justify not using these methods in parallel. The main objective of a preconditioner is to provide an easily invertible approximation to the system matrix. Thus, the application of Equation 3.22 or Equation 3.23 can be limited to a small number of applications. The residual error for methods like Jacobi or Gauss-Seidel generally decreases rapidly in the rst few iterations and then slows for the remainder of the iteration process. Thus when using this type of preconditioner, the number of applications will be limited to one or two.

Inexact Newton Methods

A way to reduce the computational resources of the nonlinear solution method is to use an inexact Newton method, which progressively reduces the linear solution tolerance as the iterative solution approaches the converged solution. In solving the linear system A x = b, the relative norm of the linear residual r = A x -b gives an estimate of how close the current solution x is to the exact solution x * .

The relation given in Equation 3.17 states that if the condition number is low, the 3.2. SIMULTANEOUS SYSTEM relative residual gives a good estimate for how close the current solution is to the true solution in a relative sense. Iterative solvers repeat their iteration process until the residual is below a given tolerance. The tolerance is often compared to the readily available relative residual on the right hand side of Equation 3.17.

Choosing this tolerance wisely can improve the convergence and computation time in the simulation. A tighter tolerance requires more iterations to converge, while a looser tolerance can be reached with fewer iterations. Since the goal of the linear solver in this work is to solve the solution update for the nonlinear solver, the linear solver tolerance will depend on the precision required of the nonlinear solver. This linear tolerance relation is given by

τ k ≤ η k F ( U k ) , (3.24) 
where η k is some forcing term chosen as 0 ≤ η k ≤ 1 for the k-th nonlinear iteration [134136]. Thus the tolerance for the linear solver is reduced as the solution of the nonlinear system approaches the exact solution [117]. A guard is added to the denition in Equation 3.24 for small residuals. If the nonlinear residual is already small, a larger tolerance is used to exit the linear solver faster and to avoid needless iterations. The full denition of the linear tolerance is

τ k =                10 F ( U k ) ; F ( U k ) ∈ (0, τ N L ] 10 -5 ; F ( U k ) = 0 0.1 F ( U k ) ; otherwise . ( 3.25) 
The tolerance denition given in Equation 3.25 is a simple denition that successively tightens the linear tolerance as the nonlinear solution approaches the converged solution. More sophisticated denitions for the forcing term η k in Equation 3.24 have been studied which compare successive nonlinear residual norms and guard against rapid decreases in η k . However, in results from multiple test cases, the simplistic tolerance denition like that of Equation 3.25 can improve the convergence results over choosing a very small tolerance [START_REF] Eisenstat | Choosing the forcing terms in an inexact Newton method[END_REF].

Jacobian-Free Newton-Krylov Method

A signicant drawback to Newton's method is in having to calculate and store the Jacobian matrix of Equation 3.5. In some cases the Jacobian matrix may not be readily available if the residual formulation is constructed from an inaccessible computation routine. This section describes a variation of Newton's method that can be used when the Jacobian is either prohibitively large to store and compute or is inaccessible.

Krylov subspace linear solvers only require the result of applying the linear system matrix to a given vector. Given that the Jacobian is a matrix of rst order derivatives, the Jacobian vector product can be approximated by a nite dierence relation with the residual

J v ≈ F ( U + ε v) -F ( U ) ε , [1 st order] (3.26) J v ≈ F ( U + ε v) -F ( U -ε v) 2ε , [2 nd order] (3.27)
where ε is a small parameter that is optimized for truncation and round-o error [START_REF] Knoll | Jacobian-free Newton-Krylov methods: a survey of approaches and applications[END_REF]. The class of nonlinear solvers that use this approximation for the Jacobian inversion is called Jacobian-Free Newton-Krylov (JFNK) methods [START_REF] Knoll | Jacobian-free Newton-Krylov methods: a survey of approaches and applications[END_REF]. The nite dierence approximation can be computed with higher order formulations which require multiple evaluations of the residual vector, but are less susceptible to numerical errors; the subtraction of two numbers that are close together in nite precision can be unstable. In this work the default nite dierence relation is a centered dierence scheme giving 2 nd order convergence in the small param- eter ε. This centered dierence scheme requires two evaluations of the residual for every matrix vector product, but is less susceptible to instabilities from nite precision subtraction. The small parameter ε is computed using relations found in [START_REF] An | On nite dierence approximation of a matrix-vector product in the Jacobianfree Newton-Krylov method[END_REF] ε

= 1 + U v ε ε =        √ ε mach ; forward difference 3 ε mach 2 ; centered difference , (3.28) 
where ε mach is ∼2×10 -16 for double precision. The relation in Equation 3.28 is similar to the one given by Knoll & Keyes in [START_REF] Knoll | Jacobian-free Newton-Krylov methods: a survey of approaches and applications[END_REF], but extended to the central dierence scheme [START_REF] An | On nite dierence approximation of a matrix-vector product in the Jacobianfree Newton-Krylov method[END_REF].

The subtraction in nite dierence relations, used to approximate the derivative of a function, can suer from numerical errors in nite precision arithmetic [START_REF] Trefethen | Numerical Linear Algebra[END_REF]. Computers represent real numbers as a nite array of binary bits, meaning that the oating point representation of a real number introduces rounding approximations

x = x(1 + ε), (3.29) 
where x is the oating point representation of x ∈ R, and ε is the rounding error bounded by machine precision (|ε| < ε mach ). This rounding error incurred by the oating point representation becomes noticeable when subtracting two numbers that are close together. The errors due to round o are sporadic and not easily predicted.

To illustrate the errors incurred when using nite precision nite dierences, the function

f (x) = e x √ sin x , (3.30) 
is taken and its derivative is evaluated numerically at x = 0.5. The third method shown in Figure 3.3 is a recently studied method for numerically evaluating the derivative of a function. This method, called the complex step method by Martins et al. [START_REF] Martins | The complex-step derivative approximation[END_REF], eliminates the round o errors by evaluating the numerical derivative in the complex plane

J v ≈ Im F ( U + iε v) ε . (3.31)
When this method is applied to Equation 3.30, the error in Figure 3.3 experiences the same truncation error as the centered dierence scheme, but never experiences the inuence of round o error. The numerical error remains stable at ε mach as ε is decreased. This method however has a large drawback, in that if the residual CHAPTER 3. NUMERICAL METHODS is not able to be computed in complex arithmetic, the method is not applicable.

In the case of this work, the residuals from physics components are computed using external algorithms and are not readily transformed to work in complex arithmetic. Thus, the complex step method will not be used in this work, but instead focus on higher order nite dierences to remedy numerical instabilities from nite precision subtraction.

Preconditioning with JFNK

The focus on Block Jacobi and Block Gauss-Seidel in Section 3.2.2 is based on the idea of using optimized physics components to invert the preconditioner. This preconditioning method can be translated to a JFNK method by partitioning the multiplying vector v to the Jacobian. For example, to compute an approximate inverse of the rst block in Equation 3.22, the right hand side is modied by subtracting the o-diagonal matrix vector product

J 12 v 2 + J 13 v 3 ≈ f 1       U + ε       0 v 2 v 3             -f 1 U ε , (3.32) 
where the A ij in Equation 3.22 appears as Jacobian subblocks. The residual for the rst physics component is denoted by f 1 as in Equation 3.1. Likewise, the evaluation of the inverse of the block diagonal term is given by

J 11 v 1 ≈ f 1       U + ε       v 1 0 0             -f 1 U ε , (3.33) 
where again the subblocks of A appear as parts of the Jacobian matrix. The block diagonal terms can then be inverted in the same way as the full Jacobian.

The Block Jacobi algorithm for a matrix-free preconditioner is given by Algorithm 2: Apply Matrix-Free Block Jacobi Preconditioner 1 for each physics block i do 2 v = w 1 + w 2 where w 1 = 0, . . . , 0, v i , 0, . . . , 0

T and

w 2 = v 1 , . . . , v i-1 , 0, v i+1 , . . . , v N T 3 b i = b i -f i ( U +ε w 2 )-f i ( U ) ε 4 invert diagonal block using J ii v i ≈ f i ( U +ε w 1 )-f i ( U ) ε 3.2. SIMULTANEOUS SYSTEM
The algorithm can be slightly modied to use a Block Gauss-Seidel method, but then a specic order to the physics components must be imposed.

The preconditioners described were tested on a 26 energy group, spatially heterogeneous problem. The identity preconditioner is equivalent to not having a preconditioner, while the physics-based Block Jacobi (PB-Jacobi) and Block

Gauss-Seidel (PB-Gauss-Seidel) operate as previously described. An order must be chosen, for the Block Gauss-Seidel preconditioner, in which to solve the physics components. The solution order is chosen as Temperature, Precursor, and Flux.

This order was chosen because the temperature dependence does not depend on the precursor concentration and multiplying the most recent update by a zero matrix does not improve convergence. It is desirable that the most coupled component be solved last; in this case, the Flux depends strongly on the other components. A preconditioner aims to improve the convergence rate of the inversion of the Jacobian matrix. In this light, the preconditioner should not have any eect on the number of nonlinear iterations required per time step. The gure shows that there is little dierence between the three preconditioners tested. At certain points through the transient one method performs better than the others, but on average the number of nonlinear iterations is the same among preconditioners. The number of nonlinear iterations is unaected by the preconditioner because the preconditioner only aects the solution of the local linear model in Newton's method; a preconditioner will not improve the error of the local linear model.

To really compare the ecacy of preconditioners, the number of linear iterations per nonlinear iteration must be compared. A good preconditioner will reduce the number of linear iterations needed to invert the Jacobian matrix. It is clear that this ratio for the physics-based preconditioners is signicantly smaller than the ratio for the identity preconditioner. The physics-based preconditioners consistently have an average ratio of about 2 for the transient, while the identity preconditioner is consistently between 3 and 7 linear iterations per nonlinear iteration. Looking closer at the physics-based preconditioners, the Block Gauss-Seidel preconditioner experiences times where the average ratio is larger than the Block Jacobi preconditioner. Based on the 26 energy group and spatially heterogeneous problem, a Block Jacobi preconditioner performs the best.

There may be more optimal choices for preconditioners, but the Block Jacobi preconditioner can serve as an eective default for the multiphysics system.

Residual Formulation

The advantage of the JFNK method in storage reduction and quadratic convergence prompt the use of this method for the analysis used in this work. The superior convergence to operator splitting and tight coupling assure the accurate solution to reactor analysis problems. This section is dedicated to how the nonlinear residual for each physics component is constructed from existing computer codes developed to solve a single physics component.

The physics components most inuential to reactor accident transient analysis are the transport of neutrons and the transfer of heat within the reactor.

Additionally the concentration of delayed neutron precursors will be treated as a separate physics component, even if the delayed neutron precursors could be contained within the neutron transport model. Thus the global residual for the system will be

F ( U ) =       f φ ( u φ , u c , u T ) f c ( u φ , u c , u T ) f T ( u φ , u c , u T )       , (3.34) 
where φ denotes neutron transport, C denotes delayed neutron precursors, and T denotes heat transfer. This section will describe the process of building each physics component residual for use in the JFNK framework presented earlier.

Neutron Transport Residual

The transport equation from the previous chapter (Equation 2.1) after spatial, angular, and energy discretization is written in matrix form for compactness

1 v ∂ ψ ∂t = -L ψ + H ψ + P β ψ + X d Λ C + Q, (3.35) 
where ψ is the angular, group, and spatial dependent ux. The matrix L accounts for the Ω • ∇ and Σ t terms, H is the discretized scattering matrix, P β is the discretized prompt production matrix, X d Λ C is the contribution from delayed neutron precursors, and Q accounts for a xed source. An implicit Euler method can be applied to Equation 3.35 to discretize the time variable, where matrices operate on the solution at the next (n + 1) time step

ψ n+1 -ψ n v∆t + L ψ n+1 = H ψ n+1 + P β ψ n+1 + X d Λ C + Q. (3.36)
The implicit formulation implies that an explicit form of the solution cannot be obtained, and an iterative method must be used to obtain the solution at the next time step. This should not be viewed as a drawback because of the need to use an iterative method for resolving the nonlinear coupling between physics components. Equation 3.36 can readily be placed into a residual form by rearranging all terms to be on one side of the equality. A complication arises when an existing transport code is to be used for constructing the residual. First order S N or MOC transport codes do not generally apply matrices L and H directly, but only eectively apply the inverse matrix (L -H) -1 through sweeping and iterations on the scattering source. The algorithms in transport codes are written to produce an angular ux given a source distribution. If we are to use an existing transport code, the formulation of the transport residual must be modied to t within an existing code.

We begin by rearranging Equation 3.36 so that the previous ux can be combined with the xed source, and the loss and scattering matrices can be combined with the discretized time derivative operating on the current solution

   1 v∆t + L -H B    ψ n+1 = X (1 -β) F ψ n+1 + X d Λ C +     Q + ψ n v∆t Q     . (3.37)
Equation 3.37 groups the streaming, scattering, and time matrices into the matrix B, and creates a new xed source Q which is only updated when the current time step has converged. The prompt production matrix has been split into two matrices: F which takes the angular ux and gives an isotropic source from ssion, and X which maps the isotopic ssion source to the angular and energy dependent source. The inverse of matrix B in Equation 3.37 is similar to the matrix available from existing S N transport codes. The only modication to the existing transport code is to modify the total cross section to include the 1 v∆t term. This term acts as a homogeneous absorber applied to all media in the problem and is group dependent from the velocity [START_REF] Tyobeka | Application of Time-Dependent Neutron Transport Theory to High-Temperature Reactors of Pebble Bed Type[END_REF]. Equation 3.37 can be readily transformed into a residual such as

f * φ = ψ n+1 -B -1 X (1 -β) F ψ n+1 + X d Λ C + Q , (3.38) 
and can be used in the nonlinear methods discussed previously. Only having the inverse transport matrix (L-H) -1 available, limits the time discretization to rst order. For example, trying to formulate Equation 3.35 in terms of a second order Crank-Nicolson method requires applying the matrix (L -H) to the previous angular ux, which is not available in standard S N neutron transport codes.

A drawback to the residual formulation in Equation 3.38 is that the size of this residual equation is the size of the angular ux, which can be large; the size of N regions * N groups * N spatial components * N directions . This large size poses several problems in numerical simulation, one of which is the storage requirements for the Krylov linear solver. GMRes requires the storage of the basis vectors for the Krylov subspace, which would require storing several vectors at least as large as the angular ux. In fact, the size of the basis vectors would be much larger than the angular ux because of the concatenation with the precursor and temperature residuals. With these motivations in mind, an alternative form for Equation 3.38

is obtained which has a smaller size.

The ssion source within the nuclear system provides a clear link between the neutron transport model, and the heat transfer model by way of the power. The ssion source is also generally of a smaller size (N fission regions * N spatial components * N fissile isotopes ) than the angular ux. The number of ssion regions is always a subset of the number of regions, and the number of ssile isotopes is very likely smaller than the product of the number of energy groups and number of directions.

Even with a modest number of directions like an S 8 angular quadrature and a medium number of energy groups of 100, the number of ssile isotopes is generally limited to 50, giving a reduction by a factor larger than 1000. 

f φ = F ψ n+1 f -FB -1    X (1 -β) F ψ n+1 f +X d Λ C + Q   , (3.39) 
where f is the current ssion integral and is imposed for the neutron transport solver for each evaluation of the residual.

This formulation of the residual can be implemented by slightly modifying an existing S N transport code that can solve eigenvalue or xed source problems.

The largest modication is in having to impose the current ssion integral instead of it being calculated from the angular ux, and being able to apply the ssion matrix F after the inverse matrix B -1 is applied. These modications allow for the procedure in Algorithm 3 to be implemented for calculating the neutron transport residual. The procedure in Algorithm 3 highlights that the residual construction depends on each physics component. In Steps 1-3, the current iterate for the multiphysics solution is used to modify parameters in the neutron transport code. The transport code is then called in components to apply the available operators.

Delayed Neutron Precursor Residual

The delayed neutron precursor evolution equation is presented in matrix form

∂ C ∂t = -Λ C + BF ψ, (3.40) 
where C is the delayed neutron precursor concentration from all precursor groups, F is the operator which takes the angular ux and gives the isotropic ssion source without the (1 -β) term, B takes a ssion source and gives the delayed precursor production rate, and all other symbols retain their meaning from the transport residual. The time derivative is implicitly discretized to yield the residual equation

f C = 1 ∆t I + Λ C n+1 -B F ψ n+1 f - 1 ∆t C n . (3.41) CHAPTER 3. NUMERICAL METHODS
The term for the ssion integral appears in this residual also, making its construction compatible with the form of the transport residual in Equation 3.39.

The current iterate for the precursor concentration is multiplied by the factor

( 1 ∆t + λ j ) for the precursor group j, the ssion integral f is multiplied by the delayed neutron fraction corresponding to group j, and the previous solution is normalized by the time step size and subtracted.

The residual construction presented in Algorithm 3 and the residual in Equation 3.41 were tested to have been correctly implemented by verifying the convergence rate of the solution error versus the time step size ∆t. An innite homogeneous medium was taken with one energy group and two delayed neutron precursor groups to allow an exact solution to be obtained for the kinetic problem. Temperature dependence was not accounted for in this verication exercise; accounting for temperature dependence makes obtaining an analytic solution impossible. The exact solution can be obtained by computing the eigenvalues (η i ) and eigenvectors (E i ) of the resulting matrix system U = A U , where A is given by

      v (Σ s -Σ t + (1 -β)χνΣ f ) χ d,1 λ 1 χ d,2 λ 2 β 1 νΣ f -λ 1 β 2 νΣ f -λ 2      
.

The exact solution to the resulting matrix system is then of the form

      φ C 1 C 2       (t) = α 1 E 1 e η 1 t + α 2 E 2 e η 2 t + α 3 E 3 e η 3 t , (3.42) 
where the constants α i can be determined by the initial condition. Comparing the error of the solution at the end of the simulation when the time step is decreased yields the convergence plot shown in Figure 3.6.

The norm of the error of the solution at the end of the simulation is expected to converge linearly as the time step size is decreased. 

f T =    α f ∆t + h -h -h αw ∆t + h       T n+1 f T n+1 w    - 1 ∆t    α f T n f α w T n w    -    P (t n+1 ) -Qout (t n+1 )    , (3.43) 
by implicitly discretizing the time derivative and moving all terms to one side of the equality.

The multichannel model discussed in Section 2.2.2 is more complicated than the lumped capacitance model and is constructed in a similar manner to the neutron transport residual. The ssion integral from the transport residual is used to obtain the spatial power distribution, which is specied in the multichannel code. Additionally the material temperatures are set, and the new temperature distribution in the fuel and water is produced. The multichannel code can be conceptualized as a function

   T out f T out w    = G(P, T in f , T in w ), (3.44) 
that accepts temperature and power distributions and returns a corresponding temperature distribution. The input temperature distribution is used to evaluate material properties throughout the domain. The residual can then be constructed by obtaining the dierence between the input and output temperature distributions. Thus the residual is

f T =    T in f T in w    -    T out f T out w    =    T in f T in w    -G(P, T in f , T in w ). (3.45)
This simple residual construction allows for minimal modications to the existing code to construct the residual vector.

As mentioned for operator splitting, the residual construction for simultaneous systems encounters data transfer between the physics components. For the construction of residuals in this work, the data transfer is accomplished by a series of averages to connect each physics components' solution to the others' mesh.

For the transfer of the power and temperature between the multichannel and transport codes, the power is given to the multichannel code as the total power and a pin-wise fraction. Thus in the residual construction for the temperature component, the power and spatial distribution is computed by the transport code and, given a map between the two spatial meshes, is assigned in the multichannel code. The same map is used to impose the temperature for the macroscopic cross sections in the transport code.

The map between the neutron transport and thermal hydraulics models is based on user input and is dierent for each geometry studied. A more precise data transfer method could be prepared, but would require large modications to the existing physics models. For example the two physics components could be discretized using the nite element method, where transfers between meshes could be accomplished through projections onto an opposing physics components' mesh [START_REF] Johnson | The role of data transfer on the selection of a single vs. multiple mesh architecture for tightly coupled multiphysics applications[END_REF]. This would require the spatial temperature distribution in the thermal hydraulics model to be projected onto a nite element space, which is not readily available in the current version.

The present work focuses on two dimensional transport with three dimensional thermal hydraulics. To relate the reduced dimension transport to the thermal hydraulics model, an axial prole needs to be either computed or assumed. Results involving the multichannel thermal hydraulics model either have a at axial prole, or a prole that was computed from an initially critical three dimensional transport calculation. This axial prole is assumed constant through the simulation process.

The present chapter has discussed the numerical methods necessary to produce a multiphysics framework with the goal of obtaining accurate solutions to reactor physics problems. The numerical methods presented in this chapter are used to obtain multiphysics solutions presented in remaining chapters.

Chapter 4

Homogenization

Homogenization methods play a central role in the study of reactor analysis. The accurate generation of homogenized cross sections is of the utmost importance to reduce the introduction of model errors in reactor simulations.

This chapter focuses on the traditional homogenization methods used in reactor analysis, and modications needed to use homogenized cross sections in time dependent multiphysics simulations.

Motivation

Homogenization methods are used regularly in reactor analysis when a detailed calculation is too costly. For instance for a PWR core, there are 193 fuel assemblies 4 m tall, each containing 289 rods (264 fuel rods and 25 non-fuel rods). A moderate spatial resolution (one spatial point per rod and one point per centimeter in axial direction) would result in about 22 million spatial points. Additionally for each spatial point, an accurate resolution of the angular and energy dependence is needed to calculate the angular ux. For thermal reactors, about 300 energy groups are used to discretize the energy domain. For fast reactors, this number can be as large as 2000. The angular domain can be discretized using discrete directions, which for an S 8 quadrature in three dimensions results in 80 angular directions [START_REF] Lewis | Computational Methods of Neutron Transport[END_REF]. This leads to an angular ux with 535×10 9 unkowns, which is typically not stored for static calculations but is for transient calculations. Simply storing the angular ux in double precision would require about 4 terabytes of memory, which is not feasible on all but the highest performance super computers. This insight leads engineers and reactor physicists to develop methods which reduce the memory consumption and computation time while obtaining an accurate solution. Cross section homogenization is one of the ways to reduce the size of the problem being solved while still maintaining important characteristics of the solution. Typically reaction rates and the value of k eff are the quantities of interest that are to be preserved in homogenization processes, since often engineers are interested in the power or absorption rate in a region of the reactor and the criticality state.

The procedure used for homogenization in reactor analysis involves several steps: self-shielding with pin cells, detailed ux calculation on lattice, cross section weighting, full core calculation, and a possible iteration sequence over these steps [START_REF] Stacey | Nuclear Reactor Physics[END_REF][START_REF] Ade | TRITON Primer: A Primer for Light Water Reactor Lattice Physics Calculations[END_REF]. Deterministic transport codes are typically employed in the self shielding and detailed lattice calculation, however Monte Carlo codes have been used as an alternative to a deterministic calculation [START_REF] Cai | Condensation et homogénéisation des sections ecaces pour les codes de transport déterministes par la méthode de Monte Carlo : Application aux réacteurs à neutron rapides de GEN IV[END_REF]. Monte Carlo codes have only been used in validation practices since a deterministic calculation is usually faster than a Monte Carlo calculation.

An underlying assumption with homogenization methods is that the solution obtained during the detailed lattice calculation should approximate the heterogeneous solution in the larger global problem. However, recent work [START_REF] Dall'osso | Neutron spectrum kinetics in the innite homogeneous reactor[END_REF] and simple analysis shows that during transient situations, the time dependent and static solutions can be signicantly dierent. Nonetheless, current practice is to use a static calculation in the detailed lattice calculation, even when performing time dependent calculations on the reactor problem. Given that the time dependent and static solutions are not equivalent, cross sections which are produced from a static solution may not accurately represent the time dependent solution.

This chapter explores these errors and studies new homogenization methods designed to produce more accurate homogenized cross sections for time dependent calculations.

Classical Formulation

The topic of cross section homogenization covers a wide range of methods. In the simplest case, homogenization is a process of taking the weighted average of cross sections to obtain averaged values. The weighting function is typically a ux, so that the weighted average preserves reaction rates, which were dened in Section 2.1. Cross section homogenization that uses the heterogeneous solution from the global problem as the weighting function can be referred to as equivalence theory [START_REF] Smith | Assembly homogenization techniques for light water reactor analysis[END_REF]. However using the global heterogeneous solution is of little interest because of the diculty to obtain it. Homogenization becomes practical when using reference solutions from representative subdomains in what is referred to as general equivalence theory [START_REF] Smith | Assembly homogenization techniques for light water reactor analysis[END_REF]. For the cases studied in this chapter, the problem domain is small enough to obtain a global solution as the reference solution. For these solutions, general equivalence theory will not be necessary.

Another class of homogenization methods is based on the asymptotic limit of an expansion of the heterogeneous angular ux. The angular ux is expanded about a small parameter of some characteristic length or energy scale. This expansion, performed at dierent length scales, is used to deconstruct the global heterogeneous solution into the product of local and global solutions [142144].

Starting from the multigroup transport equation (Equation 2.15), average valued cross sections can be dened as follows

4.2. CLASSICAL FORMULATION σ G,R x = g∈G r∈R σ g,r x φ g,r V r g∈G r∈R φ g,r V r (4.1) σ G →G,R s = g∈G g ∈G r∈R σ g →g,r s φ g ,r V r g ∈G r∈R φ g ,r V r (4.2) χ G = g∈G χ g , (4.3) 
where G and R refer to the group and spatial region of the homogenized problem, g and r correspond to the group and spatial region of the detailed problem, and V r corresponds to the volume of the spatial region r. The cross section σ x represents reactions of type x, such as the total interaction σ t or the ssion production cross section νσ f . For time dependent problems, the inverse velocity can be treated as a cross section and homogenized as σ x . The ux used as a weighting function is supposed to approximate the ne solution ux within the homogenized region. In many reactor analysis methods, this ux comes from a detailed lattice calculation with reecting or albedo boundary conditions.

As discussed in Section 2.1.4, a more accurate denition for Equations 4.14.3 is to use the angular ux instead of the scalar ux. However in this case, the homogenized cross sections become dependent on direction [START_REF] Won | Discrete ordinates method-like transport computation with equivalent group condensation and angle-collapsing for local/global iteration[END_REF]. While it has been shown that using direction dependent cross sections does reduce errors in highly heterogeneous or anisotropic media, reactor analysis generally disregards the use of direction dependent homogenized cross sections because of the added computational complexity and small gain in accuracy. The homogenized cross sections produced for the present work will use the scalar ux and conform to the current norm in reactor analysis.

The leakage term in the transport equation does not lend itself to the same homogenization rules as the interaction cross sections because of the gradient operator. Homogenization of the leakage term dictates that the net current density for a homogenized region boundary must be equivalent in both the heterogeneous and homogeneous problems. This is generally not possible with the constraint of having a continuous ux and current density at homogeneous boundaries. General equivalence theory removes the constraint of having a continuous ux at homogenized region boundaries. The amount of discontinuity can be determined in the homogenization process through the computation of discontinuity factors;

possibly as a combination of contributions from dierent length scales [START_REF] Zhang | A Multiple-Scales Systematic Theory for the Simultaneous Homogenization of Lattice Cells and Fuel Assemblies[END_REF]. The computation of discontinuity factors depends on the desired leakage model used in the homogeneous calculation. Smith [START_REF] Smith | Assembly homogenization techniques for light water reactor analysis[END_REF] dened ux discontinuity factors to be used in low order diusion calculations by the ratio of the heterogeneous and homogeneous uxes at the homogeneous boundaries. Later, Sanchez [START_REF] Sanchez | Assembly homogenization techniques for core calculations[END_REF] considered discontinuity factors for the current density based on the heterogeneous and homogeneous current densities at surfaces of homogeneous regions. Alternatively, discontinuity factors may be avoided by applying a super homogenization routine [START_REF] Hébert | Development of a Third-Generation Superhomogénéisation Method for the Homogenization of a Pressurized Water Reactor Assembly[END_REF]. This method involves iteratively adjusting the homogenized cross sections until the reaction rates in the homogeneous domain equal that of the reference domain. Because of the cost of performing the iterative procedure, super homogenization is typically not used in industrial calculations.

In all homogenization methods, the weighting ux is the central source of error; if the weighting ux is far from the actual ux, there can be signicant errors introduced. This can be seen in many examples, one of which is the case when a homogenized region is surrounded by very dierent regions. In this case the reective boundary conditions are a poor approximation for the state of the system [START_REF] Clarno | Capturing the Eects of Unlike Neighbors in Single-Assembly Calculations[END_REF]. One way to improve the solution in this situation is to estimate an albedo condition to impose on the boundaries. Another way to incorporate the eect of unlike neighbors is by taking several homogenization regions during the process to give a better representation of the ux gradients across boundaries where the material changes dramatically; this is known as the color-set method [START_REF] Yamamoto | Cell homogenization methods for pin-by-pin core calculations tested in slab geometry[END_REF].

Homogenization methods are shown to work relatively well in most reactor analysis calculations. However this only directly applies to static calculations.

Static calculations can be useful for many applications in reactor analysis, such as fuel shuing optimization, shutdown margin calculations, or nding the point of maximum power during steady state operation. However, in the analysis of severe accidents, such as those induced by large reactivity insertions, these methods may break down.

When producing homogenized cross sections for use in reactor analysis, the cross sections are tabulated for various operating conditions (Fuel/Moderator Temperature, Boron Concentration, Burnup, etc.). During the full core calculation, this cross section table is interpolated to reect the operating conditions of the core. The temperature of the Fuel/Moderator will inuence the cross sections, especially in the resonance energy range; this dependence is accounted for through self shielding calculations performed at each tabulated statepoint. This usage of tabulated cross sections have been repeatedly applied to diusion calculations with transport calculations during homogenization. However, the use of such tables in transport calculations with transport calculations during homogenization has yet to be shown valid. The author presumes that the use of such tabulated homogenized cross sections is valid for transport to transport calculations with no explicit verication that such tables do not introduce signicant errors.

Self shielding is an operation conducted during the homogenization process to account for the inuence of cross section resonances on the energy-dependent ux.

Normally self shielding is performed during the construction of homogenized cross section tables to account for temperature and material composition changes. [START_REF] Verdú | Peach Bottom Transients Analysis with TRAC/BF1-VALKIN[END_REF]. In a rigorous sense, the self shielding calculation should be performed at each change of temperature in the reference calculation. This however becomes costly, and the assumption is made that the eects of shelf shielding may be interpolated.

Transient Formulations

Recent work has shown that an insertion of reactivity causes a shift in the energy spectrum of the transport solution [START_REF] Dall'osso | Neutron spectrum kinetics in the innite homogeneous reactor[END_REF]. This shift is not captured by criticality calculations and requires special treatment. Thus if cross sections, produced by a homogenization process using a ux from a criticality calculation, are used in a transient calculation, signicant errors can be introduced due to the failure to capture this shift. Two new methods are studied to obtain a more accurate weighting ux for transient calculations: the rst is based on a timeintegrated ux or uence (Fluence method), and the second on an asymptotic ux expansion (Alpha method).

Fluence Method

The rst method studied to reduce errors in transient calculations, involves introducing a weighted average in the time domain to the original homogenization equation (Equation 4.1), which then becomes σ G,R,T x = g∈G r∈R t∈T σ g,r,t x φ g,r,t V r ∆t g∈G r∈R t∈T φ g,r,t V r ∆t

T = T 1 , T 2 , . . . , T P , (4.4) 
for the cross section σ x ; the scattering cross section has a similar denition. Now, just as one is free to choose the homogeneous regions (R) and homogeneous energy structure (G), one is free to choose the homogeneous time mesh (T ) on which time dependent cross sections are constant. The time dependence of the cross sections will generally come from their temperature dependence, which will change throughout a transient simulation.

This formulation however, could become costly because of the need to perform a homogenization routine at each time step when the ux and cross sections have changed. To reduce the cost of this homogenization method, it is assumed that the cross section is constant over time intervals T i [START_REF] Dugan | Cross-Section Homogenization for Reactivity-Induced Transient Calculations[END_REF]. This allows the integration over time to be performed independently of the behavior of the cross section. With this approximate weighted average taken into account, the method becomes

σ G,R,T x = g∈G r∈R σ g,r x t∈T φ g,r,t ∆t V r g∈G r∈R t∈T φ g,r,t ∆t V r T = T 1 , T 2 , . . . , T P , (4.5) 
with the cross section being chosen at each state point in the cross section set.

This adds another dimension to the existing cross section Usually, homogenization methods are focused on conserving reaction rates;

here the conservation of a similar quantity is sought: the total reaction density over a time interval. Since the goal of this method is to explicitly conserve total reaction density over a time interval, it is desired to see if the approximation introduced in Equation 4.5 will aect the conservation of the total reaction density.

The total reaction density will be dened as

T RD = t 1 t 0 σ T (t) φ(t)dt, (4.6) 
where the integral is introduced to represent a more accurate evaluation of the reaction rate. The time dependence of the cross section is present through its dependence on the time dependent temperature. Since the cross sections are interpolated linearly between temperature values, the cross section can be represented as a linear function of the temperature

T RD = t 1 t 0 σ 0 + α T (t) -T 0 φ(t)dt, (4.7) 
where α is the derivative of the cross section dependence on temperature. The α is valid between two evaluated temperature values T 0 and T 1 , for which α is constant. Equation 4.7 makes the assumption that the temperature remains in the range [T 0 , T max ] during the time interval [t 0 , t 1 ]. However, if the temperature falls outside this range, the integral may be split into intervals for which a constant α is valid. Grouping constant terms

T RD = (σ 0 -αT 0 ) t 1 t 0 φ(t)dt + α t 1 t 0 T (t)φ(t)dt, (4.8) 
reveals that the temperature dependence can be bound by the temperature extremes for which α is constant. Meaning that the true reaction rate is bound as

4.3. TRANSIENT FORMULATIONS T RD min = (σ 0 -αT 0 ) t 1 t 0 φ(t)dt + αT 0 t 1 t 0 φ(t)dt = σ 0 t 1 t 0 φ(t)dt T RD max = σ 0 + α (T 1 -T 0 ) t 1 t 0 φ(t)dt T RD min < T RD < T RD max , (4.9) 
assuming that T 1 > T 0 . This also leads to the observation that the closer the temperature evaluations are, the smaller the allowed deviation in the evaluated reaction density. There are two factors that will aect the accuracy of the computed reaction density: the size of the time interval, and the distance between statepoint temperatures. The preceding development also applies when cross sections are interpolated in the square root of temperature instead of linearly, as is often the case for thermal reactor analysis.

Theory of α -Eigenvalue Problem

The second method that was studied is based on an asymptotic expansion of the ux in the time domain. The time dependent neutron transport equation is

shown in matrix form ∂ ψ ∂t = v (Σ s -Σ t -T + P β M) ψ + vX d Λ C ∂ C ∂t = F β M ψ -Λ C, (4.10) 
where v is the diagonal matrix of group-wise velocities, Σ s is the group/spacewise scattering cross section, Σ t is the group/space-wise total interaction cross section, T is the diagonal matrix of streaming terms, P β is the matrix of prompt ssion terms, X d is a matrix containing columns of delayed neutron emission spectra, Λ is the diagonal matrix of delayed neutron precursor decay constants, F β is the matrix of delayed neutron production terms, and M is the matrix which maps the angular ux to the scalar ux. If the cross sections are assumed to be constant in time, a solution can be postulated of the form

   ψ C    (t) ∼ Ee αt , (4.11) 
which when inserted into Equation 4.10, yields the following eigenvalue problem

   v (Σ s -Σ t -T + P β M) vX d Λ F β M -Λ    L    ψ C    = α    ψ C    . (4.12)
This type of eigenvalue problem is referred to as the α-eigenvalue problem [START_REF] Bell | Nuclear Reactor Theory[END_REF]. In contrast to the k-eigenvalue problem, that is usually solved to obtain the ux distribution in stationary problems, the α-eigenvalue problem takes into account the dynamic nature of reactors in o critical congurations. In addition to Dall'Osso showing that there is a spectral shift in time dependent problems [START_REF] Dall'osso | Neutron spectrum kinetics in the innite homogeneous reactor[END_REF],

Cacuci et al. showed that the critical spectrum diers signicantly from the spectrum that comes from an α-eigenvalue problem [START_REF] Cacuci | Eigenvalue-Dependent Neutron Energy Spectra: Denitions, Analyses, and Applications[END_REF].

The spectral properties of the neutron transport operator have been extensively studied to gain insight into the behavior of such operators when numerical methods are applied to the solution of equations containing these operators. One early analysis of the spectrum of the operator L in Equation 4.12 gave several insights into the kinetic behavior of the eigenvalue spectrum [START_REF] Porsching | On the Spectrum of a Matrix Arising from a Problem in Reactor Kinetics[END_REF]. Porsching's analysis showed that for the monoenergetic spatially dependent neutron diusion equation, there were n eigenvalues that lie within the bounds of the -λ values in Equation 4.12 (elements of -Λ). The n corresponds to the number of spatial points used in the spatial discretization of the problem domain. The properties of the multigroup transport operator showed that, provided the lowest energy a neutron can possess is bound away from zero, the eigenvalue spectrum consists of point and line spectra [START_REF] Larsen | On the Spectrum of the Linear Transport Operator[END_REF]. However, if neutrons are allowed to exist at arbitrarily low speeds, the upper bound for the continuum is the negative of the minimum value of vΣ t (v) [START_REF] Betzler | Calculating Alpha Eigenvalues and Eigenfunctions with a Markov Transition Rate Matrix Monte Carlo Method[END_REF].

Normally, to approximate the time dependent solution to Equation 4.10, one would need a complete set of eigenvectors on which to project the solution. The expansion based on Equation 4.11 can be better described as

φ(t) = M i=1 a i E i e α i t + ζ(t), (4.13) 
where ζ(t) is a residual term from the expansion. The residual term goes to zero as t approaches innity despite the incompleteness of the expansion space because of the asymptotic behavior of the solution [START_REF] Betzler | Calculating Alpha Eigenvalues and Eigenfunctions with a Markov Transition Rate Matrix Monte Carlo Method[END_REF]. Additionally, if the minimum neutron velocity is bound away from zero, the eigenvalue spectrum does not include a continuum, which reduces the size of the residual term.

Obtaining all of the eigenvectors for the α-eigenvalue problem could be costly, but for the type of problems of interest, not all eigenvectors are important. The eigenvalues of Equation 4.12 are all negative, except for possibly one value, and most are more negative than the value of the minimum velocity times total cross section. These values are largely negative and will only contribute to the solution during very short times. To reduce the cost of obtaining α-eigenmodes, only the calculation of the N d + 1 principal eigenmodes is considered.

TRANSIENT FORMULATIONS

In studying the behavior of the eigenvectors from the α-eigenvalue problem, it was observed that there are N d + 1 eigenvectors that have a constant positive sign for the ux portion of the eigenvector, where N d is the number of delayed neutron precursor groups. These vectors correspond to the N d + 1 principal eigenvalues in the spectrum. This set of eigenvectors with a uniform ux sign seem to correspond to the clustering of inhour modes of Henry [START_REF] Henry | The Application of Inhour Modes to the Description of Nonseparable Reactor Transients[END_REF]. Henry showed that the eigenvalues for Equation 4.12 cluster within the bounds of the negative of delayed neutron decay constants with a single largest eigenvalue present in each bound; the largest eigenvalue in each interval is referred to as a principal eigenvalue. All other eigenvalues within the bounds of two consecutive decay constants are smaller than the principal eigenvalue but larger than the lower bound.

Alpha-eigenmodes can be computed by eliminating the precursor concentration equation of Equation 4.12 and rearranging terms [START_REF] Singh | Iterative Method for Obtaining the Prompt and Delayed Alpha-Modes of the Diusion Equation[END_REF][START_REF] Hoogenboom | Numerical Calculation of the Delayed-α Eigenvalue Using a Standard Criticality Code[END_REF]. The resulting equation is

Σ t + αv -1 + T ψ = Σ s + P β + X d Λ (αI + Λ) -1 F β M ψ, (4.14)
which is nonlinear in the eigenvalue α. When α = 0, Equation 4.14 reduces to the criticality equation with k = 1. In this case, the αand k-eigenvalue problems describe the same system and the dominant eigenvector ψ will be equivalent for both problems.

Alpha-eigenmodes can be computed using a standard criticality code by modifying the total cross section and ssion spectrum for given values of α. The criticality code can then be used with a zero search routine to nd values of α which produce a value of k = 1 [START_REF] Hoogenboom | Numerical Calculation of the Delayed-α Eigenvalue Using a Standard Criticality Code[END_REF]. Kaper also shows that the dominant values of α are bound by the precursor decay constants (-Λ). Hence, an eective way to search for these α values is to partition the search space by the diagonal elements of -Λ and search for the principal eigenvalues in each interval [START_REF] Kaper | The Initial-Value Transport Problem for Monoenergetic Neutrons in an Innite Slab with Delayed Neutron Production[END_REF].

Alpha -Method

The Alpha homogenization method is a novel technique to produce homogenized cross sections which can be used in time dependent calculations [START_REF] Dugan | Cross-Section Homogenization for Reactivity-Induced Transient Calculations[END_REF]. This method takes eigenvectors from the α-eigenvalue problem of Equation 4.12 and uses them as a replacement for the fundamental mode of the k-eigenvalue problem for static calculations. Using a ux that comes from an eigenvalue problem which takes into account the dynamic behavior of the system should produce homogenized cross sections that also account for spectral shifts observed for time dependent solutions.

The discussion of the previous section shows that there are many eigenvectors from the α-eigenvalue problem which can be used as a weighting ux. Characteristics of the nuclear system and transient will determine which eigenvectors are useful for homogenization.

When delayed neutron precursors are suppressed, there is a dominant eigenvalue whose sign is determined by the criticality of the system. All other eigenvalues are largely negative, which will cause these modes to be extinguished shortly after a transient starts. For problems where delayed neutron precursors are suppressed, only this dominant eigenvector is taken for the weight ux.

When delayed neutrons are present however, there are multiple eigenvalues which inuence the time dependent solution long after the transient begins. Contrary to the case with no delayed neutron precursors, these modes are not extinguished shortly after the transient begins. When delayed neutrons are present, a combination of several modes is used to produce a weighting ux for the homogenization process.

One way to combine eigenvectors for the alpha method would be to use the expansion Equation 4.13 with the residual term ignored as the time dependent ux appearing in the Fluence method. The expansion coecients are calculated based on the initial condition. The integral of the time dependent ux can be performed analytically as

t 1 t 0 dt φ(t) = M i=1 a i (e α i t 1 -e α i t 0 ) α i E i + t 1 t 0 dt ζ(t) assumed zero , (4.15) 
where the residual term ζ(t) is approximated as zero, and the value of M can be an integer between 1 and N d + 1, inclusive. This combination of eigenvectors incorporates the tools of both the α-eigenvalue problem, and the Fluence method.

It reduces the cost of obtaining a time dependent solution for the Fluence method, and produces time dependent cross sections which provide important eigenvectors when they are most inuential during a transient.

Another way to apply the Alpha method is through constructing a linear combination of α-eigenvectors to use in the homogenization problem like

φ = M i=1 a i φ i , (4.16) 
where the a i are coecients determined from a minimization of the initial condition projected onto the subspace spanned by the eigenvectors. The linear combination can be constructed using all N d + 1 principal eigenvectors, or a subset of these vectors. Several subsets will be used throughout the results portion of this The next subset which is investigated takes both the eigenvector with the largest eigenvalue, and with the smallest principal eigenvalue (extrema). This subset was investigated to incorporate two time constants of the transient simultaneously: the fast behavior of prompt ssion, and longer lived delayed neutron behavior. These two eigenvectors are chosen to take into account the fast behavior present just after the transient begins as well as the behavior associated with the asymptotic mode longer after the transient begins. An important aspect of choosing these modes as a weighting ux, is the relative weight given to each mode. These weights are chosen based on the initial condition, much like how expansion coecients would be chosen for time dependent problems. However, since the two eigenvectors will not form a complete set, a minimization is performed to obtain the expansion coecients. In this way, the eigenvectors are weighted in a way which would best reproduce the initial condition given the set of expansion vectors. Alternatively, a solution other than the initial ux could be used to determine expansion coecients. However, since the initial condition for the ux is specied for the calculation, this solution is chosen for obtaining the expansion coecients.

The third subset is similar to the previous subset of the extrema of principal eigenvalues, however all principal eigenvectors are taken to produce a weighting ux for homogenization. This subset is expected to cover a wider time range than the previous subsets because of the larger number of eigenvectors present in the set. The expansion coecients are obtained in the same way: a minimization problem with the initial condition.

In the preceding discussion, several homogenization techniques are introduced. • Single dominant α-eigenvector * State point -A combination of state parameters for which the characteristics of the system are pre-calculated. This assumes that the system may be found exactly at a state point or in its vicinity so that characteristics may be approximated by interpolation between state points. * * RHP: Reference Homogenization Problem -Geometric subdomain (assembly or color-set, possibly with leakage model, that is representation of subdomain within core). Used to obtain weighting ux for homogenization. Flux calculation may be static or time-dependent, depending on homogenization method. 

Homogeneous Medium

The rst application of kinetic homogenization focuses on a homogeneous spatial geometry of a uranium dioxide (3.4% 235 U) and borated water mixture, which was previously studied by the author in [START_REF] Dugan | Cross-Section Homogenization for Reactivity-Induced Transient Calculations[END_REF]. The nominal material concentrations for this mixture are given in Table 4.2. Macroscopic cross sections in 281 energy groups were generated by APOLLO3 [START_REF] Schneider | APOLLO3: CEA/-DEN Deterministic Multi-purpose Code for Reactor Physics Analysis[END_REF]. APOLLO3 uses its base cross section library generated by the GALILE [START_REF] Coste-Delclaux | GALILE: A nuclear data processing system for transport, depletion and shielding codes[END_REF] nuclear data processing system, which is based on the CALENDF [START_REF] Ribon | Statistical probability tables CALENDF program[END_REF] and NJOY [START_REF] Macfarlane | The NJOY Nuclear Data Processing System[END_REF] packages.

GALILE is managed as a separate project, external to APOLLO3 , which also produces pointwise cross section data for the Monte Carlo code TRIPOLI4 [START_REF] Brun | TRIPOLI-4.8.1 version 8 User Guide[END_REF].

Raw microscopic cross section data used in these results is taken from the JEFF-3.1 [START_REF] Santamarina | The JEFF-3.1.1 Nuclear Data Library[END_REF] evaluated nuclear data le set. The initial condition for this simulation is that of a steady state critical system with a uniform temperature. The critical system is developed by performing a criticality calculation at the nominal state point; the system is made critical by normalizing the ssion cross section by the value of k eff . To avoid introducing a bias between state points, the ssion cross section for all state points is normalized by the same value of k eff . The initial uniform temperature is set at 650 • C and the scalar ux is normalized such that the power is 10 W • cm -3 . The system is perturbed at 0.1 s by instantaneously changing the boron concentration by a certain percentage, where the concentration of boron remains constant. Later in the transient, at 0.2 s, the boron concentration is returned to its original value which produced a critical conguration; the system is likely to be subcritical at this point because of the temperature deviation. This reactivity insertion is driven by a step function of the boron concentration; more realistic reactivity insertions can be used such as a ramp insertion to simulate rod movement, but a step insertion is sucient to explore the behavior of kinetic homogenization techniques.

The adiabatic temperature model (Equation 2.35), described in Section 2.2.1, is used for this homogeneous problem. The power for the homogeneous medium is explicitly given in the adiabatic model as

∂T ∂t = κ r g ε g Σ f,g,r (t)φ g,r (t) V r -κP 0 , (4.17) 
where κ is a heat generation constant, ε g is a ssion energy deposition constant, φ g,r is the scalar ux for group g in a region r, V r is the volume of the region r, and P 0 is the initial power level. The time dependent heat sink of Equation 2.35 becomes the initial power times the heat generation constant to force an steady state solution when the simulation starts.

The homogeneous geometry is used in two cases where either delayed neutron precursors are enabled or suppressed to see their eect on the homogenization schemes presented. 

Case Without Delayed Neutron Precursors

The simpler case with delayed neutrons suppressed is discussed presently.

Delayed neutrons can be suppressed by setting the delayed neutron fraction (β) to zero, which will physically mean that all neutrons are released immediately from the ssion event. The suppression of delayed neutrons aects the kinetics by removing slower evolving modes and allowing the time dependence to be governed solely by the neutron generation time. The kinetics are then governed principally by the slowest moving prompt alpha mode, and all other modes vanish much more quickly.

The subsequent power and temperature proles, Figures 4. are denoted as such in the gures.

For these transients, the time interval boundaries used in the Fluence method are ∂T = {0.0, 0.1, 0.14, 0.16, 0.2, 0.3}. The initial state of the system is one of equilibrium, where the power and temperature are constant in time. This state is achieved by evaluating the k-eigenvalue of the nominal state point and normalizing the production cross section, νΣ f , by this value at each state point. The normalization of all state points biases the cross sections at each state point in the same direction. Thus an equivalent reactivity insertion can be observed despite the normalization of the nominal cross section set. This normalization is also performed when using homogenized cross sections, however since the normalization is propagated through the homogenization process, this normalization is on the level of machine precision. initially, all homogenization methods yield exactly the correct value for the power and temperature. This supports the observation that the classical homogenization method is useful in static reactor analysis. There is also good agreement when the ux is near zero at the end of the transient, however this is due to the low value of the ux during this time. The system at the end of the transient is in a subcritical state due to the rise in temperature; since the nuclear system is not in a critical state, the ux for each method will dier slightly. However since at this point the power is nearly zero, the dierences among uxes are not noticeable. Quantitatively it can be seen that the power transient for the case with classi-cally homogenized cross sections does not follow the reference power very closely once the system is perturbed; this behavior is also observed in the temperature.

Conversely, the Alpha & Fluence methods seem to work very well at following the power of the reference calculation. The temperature increase in this simulation is small in magnitude due to the simplied heat transfer model. The moderator will typically have a larger feedback constant than the fuel temperature in LWRs, and a small increase in the moderator temperature will have a large impact on the reactivity of the system. Since the moderator and fuel temperature are linked in this homogeneous case, a small increase of the medium temperature will cause a large reduction in the reactivity of the system.

To more quantitatively characterize the transients, several metrics are displayed in Table 4.4. Additionally, two more reactivity insertions are introduced which correspond to 98%(ρ = 220 pcm), and 94%(ρ = 661 pcm) of the nominal boron concentration. The metrics used to compare the various homogenization methods are the relative error in: maximum power, time of maximum power, total deposited energy, and the maximum temperature. The error for the time of maximum power sometimes shows as zero; this is a consequence of the time discretization used for the simulation. The error of being o by a single time step is ∼0.13% which is the value shown for many of the Fluence calculations. Here, a constant time step of 1.5e-4 s is used and further renement does not signicantly inuence the remaining metrics.
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The results in Table 4.4 show that the Alpha and Fluence methods reduce the errors, when compared to the Critical method, for each metric signicantly and for the three reactivity insertions studied. Compared to the Critical method, the Alpha method reduces the error in maximum power by about 90% and the deposited energy error is reduced by about 75% for all reactivity insertions. The reduction of the deposited energy error translates to a similar reduction in the maximum temperature error. An exception occurs for the largest reactivity insertion for which a 78% reduction in the deposited energy error results in a 98% reduction in the maximum temperature error; because of this discrepancy, it is suspected that the transient is evolving too quickly for the chosen time step size and thus there is not a great estimate of the deposited energy presented in Table 4.4. The Alpha method seems to work very well in the situation where delayed neutron precursors are suppressed. In this conguration without delayed neutron precursors, the asymptotic solution is reached very quickly due to the large negative values of the non-dominant eigenvalues of Equation 4.12. Hence, the solution to this situation is dominated by a single eigenmode for nearly the entire simulation. However, because of the temperature dependence, the spectrum is constantly changing throughout the simulation. If the solution is smoothly varying between statepoints, the interpolation between state points will not introduce large errors during the simulation.

The Fluence method also performs well in this situation. The maximum power error is reduced by 97% from the Critical method, and the deposited energy error is reduced by 99%. Again, the reduction in deposited energy error translates to a reduction in maximum temperature error. Since the Fluence method is based on the time integrated ux during a transient, the estimate for the deposited energy should be accurate. Additionally, the temperature deviation is small compared to the distance between state points: 6.2 • C 1450 • C. This implies that, in this case, the total reaction density estimated at a state point will accurately estimate the total reaction density during the entire simulation.

To quantify the metrics used in Table 4.4, the reference values are also included to give an idea of the size of each metric. Note that the relative errors are calculated with an absolute value of the dierence from the reference value. In general, the use of the classical homogenization technique performs the worst for all cases studied. The Fluence method performs the best, especially in the total energy deposited because of this quantity's strong dependence on the integral of the time dependent ux. In such prompt transients, the energy deposition in the fuel is a close indication of the maximum temperature, which is generally the basis for many safety regulations on the fuel [162]. Hence obtaining a precise result for this parameter is important when considering the modeling of severe accident transients.

Several energy group structures are evaluated and compared to determine if there is any impact on the new homogenization methods; results from using these group structures are shown in Tables 4.5 & 4.6. Among all energy group structures, the eectiveness of the new homogenization methods seem to be weakly dependent on the reactivity insertion. This weak dependence on reactivity is the case for no delayed neutron precursors, because the time-dependent solution reaches the asymptotic solution very quickly after the perturbation. Similar behavior is observed when using a larger number of groups in the homogenized cross sections; the new methods outperform the Crit-4.4. APPLICATION OF KINETIC HOMOGENIZATION ical method. An interesting theme to note is that as the group structure for the Critical method increases, the errors are reduced. In the limiting case where the number of homogenized cross section groups is increased to 281, the weight ux would have no impact and the original reference cross sections would be recovered.

However, the Critical method does not outperform the new methods, even when comparing the Critical method in 6 groups to the new methods in 2 groups. The reduction in error for the critical case when the number of groups is increased indicates that the larger group structure is able to better capture the spectral shift from the reactivity insertion, but the transient spectrum is still not well represented by a critical fundamental mode ux.

From the results studied using a very simple model (innite homogeneous medium with no delayed neutron precursors), it is evident that using cross sections homogenized with a fundamental mode ux from a k-eigenvalue calculation introduces signicant errors when used in a transient calculation. The ux during the transient is simply far from the fundamental mode ux.

Case With Delayed Neutron Precursors

Delayed neutron precursors are those isotopes which release a neutron after several beta decays of ssion products, much later than neutrons emitted directly from the ssion event. Their presence causes reactors to respond in much more manageable times, on the order of seconds rather than femtoseconds. Their presence also changes the spectrum of the α-eigenvalue problem operator. Instead of there being a single dominant eigenvalue, whose sign is determined by the sign of the reactivity insertion, and all other eigenvalues being orders of magnitude smaller, there are eigenvalues distributed between the negative of delayed neutron decay constants (-Λ). The existence of several principal eigenmodes will alter the way the Alpha method is used. In the case of the innite homogeneous problem, there is a single eigenvalue bound between each decay constant of -Λ. to increase slowly until the boron concentration is returned to its original value.

The slow increase in power is not visible in Figure 4.4, but is present because the decrease in temperature slowly adds reactivity to the system. In this regard, the temperature feedback shows its stabilizing properties to keep the reactor power constant. The quick reduction in power is synonymous with the prompt drop described by point reactor kinetics, but often the reactivity insertion is much larger than what the decrease in temperature can counteract.

The prompt drop (or jump) can be approximated by assuming the delayed neutron precursor concentration remains constant for times just after the instantaneous reactivity insertion and that the neutron population responds instantaneously to the reactivity insertion. By rearranging terms in Equation 4.12 after setting α = 0, we have the relation 

P + = P (Σ t + T -Σ s -P β M) -1 X d F β M ψ 0 , (4.18) 
which gives the power just after the reactivity insertion. The matrix P maps a ux to the integral power; note that ψ 0 is normalized such that P ψ 0 gives the initial power. Applying Equation 4.18 to the subcritical case gives a power just after the insertion of 6.33 W • cm -3 . This value of ∼60% of the initial power, is higher than the value that is quoted in texts referring to a system of only 235 U which is ∼6% [START_REF] Lamarsh | Introduction to Nuclear Reactor Theory[END_REF]. However, the value quoted in texts is also for a reactivity insertion to shutdown the reactor; these insertions are typically much larger than the insertion shown here. 4.8 & 4.9 takes the time dependent ux expansion and analytically evaluates the integral over time intervals (Equation 4.15) for the Fluence method. For this case, it is shown that the combination of the Fluence and Alpha methods performs much better than the two methods separately.

To better quantify the transients shown in Figures 4.4 4.9, Table 4.8 shows the various metrics discussed previously for the case with no delayed neutron precursors. Additionally, there are three versions of the Alpha method presented in the table; these correspond to projecting onto the space of all N d + 1 dominant vectors (N ), projecting onto the space made of the extrema eigenvectors (2), and using the N d + 1 expansion as the time dependent solution in the Fluence method (F).

The subcritical transient presents a special case because the maximum power is reached after the boron concentration is returned to its nominal value. Since the temperature decreases while the boron concentration is in a perturbed state, when the boron concentration is returned to its nominal concentration, the reactor is in and Fluence methods perform the best.

For the super critical transient (90% boron concentration), the Critical homogenization method performs surprisingly well. Among all the metrics, it performs consistently second best. The best is shared between the Alpha(F) and the Fluence method making it dicult to choose among the two methods. The Alpha(F)
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version was proposed as an approximation to the Fluence method and performs well except in the deposited energy metric. Thus the Alpha(F) method seems to work well as an approximate Fluence method. The dierence between these two methods is subtle; the Fluence method uses a ux which contains the inuence of temperature feedback throughout the transient, while the Alpha method assumes the cross sections are constant through the entire transient.

In the super prompt critical case (80% boron concentration), the Critical method is largely in error and should not be used as a homogenization method during a super prompt critical transient. The Alpha method using N d + 1 vectors performs as bad as the Critical method at predicting the maximum power, but signicantly improves the deposited energy error. Again, the Alpha(F) and

Fluence methods perform the best, as is the case for a super critical transient.

From the test with a spatially homogeneous region with and without the inuence of delayed neutron precursors, several generalities can be observed. First for the case of modeling the transient due to an instantaneous insertion of reactivity above the prompt critical threshold (ρ > β), using homogenized cross sections produced using a k-eigenvalue calculation is inadequate. Their use introduces signicant errors when estimating the maximum power, deposited energy, and maximum temperature. Second, using homogenized cross sections produced using a k-eigenvalue calculation can adequately predict the maximum power, deposited energy, and maximum temperature if the reactivity insertion is below the prompt critical threshold (ρ < β). This result can be used to justify the continued use of critically homogenized cross sections to model operational transients. Third, the new homogenization methods, introduced to reduce errors in predicting various transient quantities, perform well in all situations. The time integrated ux (Fluence) method performs well, but requires a potentially expensive solution. The Alpha(F) method correctly predicts the maximum power, but does not predict the deposited energy to a high accuracy.

Heterogeneous Medium

The previous section explored homogenization applied to a spatially homogeneous medium to introduce the concept of kinetic homogenization. The present section expands on the methods previously introduced by treating a spatially heterogeneous domain with a subchannel model to treat heat transfer.

The geometry for this heterogeneous problem is shown in Figure 4.10a, where fuel pins are in red and borated water is in blue or orange. The geometry has a heterogeneous lattice of eight square fuel pins (0.8907 cm wide) surrounding a water hole, which is denoted as Region 1 in the gure. The size of the square fuel pins was chosen to conserve the area of circular fuel pins with a diameter of 1.005 cm. This heterogeneous lattice is placed in a 3×3 array, and this 3×3 array is repeated indenitely. A more realistic representation of circular fuel pins can be achieved through a stair step approximation, shown in Figure 4.11, but the increased detail of the spatial mesh will increase the computational cost. It is obvious that the physical model is biased away from the real situation. From a neutronic point of view, the fuel to moderator ratio is preserved, but this alters the contact surface for the exchange of heat. However, since the same heterogeneous mesh is used for both the reference calculation and the homogenization, any physical bias in the geometry will disappear when comparing to the reference calculation.

As for the homogeneous case, reference cross section tables are produced by APOLLO3 for various statepoints. For the heterogeneous case, the fuel and water temperature can be interpolated independently, contrary to the homogeneous case of the previous section. Again a reference cross section table is generated, however for this case the reference calculation is performed with 26 energy groups.

Obtaining a reference calculation, even for this relatively simple spatial geometry, with 281 energy groups is computationally intensive (> 2 weeks of calculation).

The reduction in energy groups brings the computation time for the reference The reactor is initially at steady state, achieved as in the previous case by normalizing the production cross section by k eff , with a power of 10 W • cm -3 .

The coolant is at 1 MPa with a ow rate of 0.188 kg • s -1 and a temperature of 88.80 • C. These coolant conditions and low power produce a steady state fuel temperature that is slightly above the coolant temperature (88.81 • C). These low power conditions correspond to a cold zero power condition, where the power is low enough to not increase the temperature of the fuel [START_REF] Dias | Realistic Scoping Study of Reactivity Insertion Accidents for Typical PWR and BWR Cores[END_REF]. Because of the low fuel temperature, the power can rise signicantly before Doppler broadening of the resonances or nucleate boiling have enough time to counteract the reactivity insertion. This situation makes for a more severe accident than a reactivity insertion from full power or hot zero power [START_REF]Nuclear Fuel Behaviour Under Reactivity-initiated Accident (RIA) Conditions[END_REF]. Using Four Time Intervals Between 0.1 s and 3.0 s for Fluence Method.

Figure 4.12 shows the power as a function of time for the reference calculation and calculations with homogenized cross sections produced from two methods.

The time discretization for the Fluence method is represented by vertical lines; there are quasi-evenly spaced intervals where the boron concentration is perturbed, between 0.13.0 s.

Homogenized cross sections were obtained using the heterogeneous solution from Figure 4.10a. As was mentioned earlier, homogenization methods become practical when performed on subdomains of the global problem. The results presented in this section however do no use the ux from subdomains of the problem. Instead, the solution from the entire geometry is used in the homogenization process. These two versions of homogenization (using subdomains or the entire geometry) were tested with the critically homogenized cross sections.

The dierences between the two versions were negligible and thus it was decided to use the entire solution for homogenization. It is suspected that because of the size of the geometry and the relative similarity between Regions 1, 2, & 3 in Figure 4.10a, the ux gradients at the interface are suciently small as to not aect the homogenization. This supposition was veried by performing static calculations using homogenized cross sections; for several state point congurations, the k eff was the same in the heterogeneous and homogenized problems.

Additionally, the same transport angular discretization is used in the reference 4.4. APPLICATION OF KINETIC HOMOGENIZATION and homogenized calculations, which introduces less error than using a low order diusion operator in the homogenized calculation.

To investigate the usability of the Fluence method, it was tested using subdomains to obtain the homogenized cross sections. This test is to understand if the Fluence method can be used in industrial reactor analysis problems. It was found that using the same boron concentration perturbation in the subdomain as in the reference problem resulted in a power excursion that was not representative of the reference problem. To remedy this inconsistency, the surrounding heterogeneous regions were replaced by a spatially homogeneous buer. This modication allowed the non-uniform boron concentration perturbation to more closely resemble that of the reference problem. Once this homogeneous buer was added, the Fluence method performed like the case when using the solution from the entire geometry for homogenization. This modication to the reference problem is similar to what is performed in the color-set method. An alternative way to possibly remove the homogeneous buer would be to introduce a leakage model so that the reference transient is reproduced in the subdomain. This alternative however, is dependent on having a reference solution available, which is not practical for reactor analysis. Thus if subdomains are used in the homogenization process, the author will privilege using the homogeneous buer. The Fluence method however, is better at estimating the early part of the transient, but also introduces discontinuities in the power due to the time discretization. The power in these intervals follows an average power within these regions, which is expected from the denition of uence generated cross sections.

The Fluence method seeks to conserve the total reaction density over a time interval. A way to reduce the discontinuities in this simulation could be to introduce a dierent interpolation law for the time variable. The law used for these results is an upstream law, which gives constant cross sections within a time interval. Using a linear interpolation law over the time interval could reduce the discontinuities introduced in this simulation. convection of the coolant and also the higher specic heat capacity. Because of the small increase in coolant temperature, the gure shows no dierence between the reference and homogenized calculations. The fuel temperature, which reacts more quickly to changes in power, shows large dierences between the reference and critically homogenized transients. The Fluence method however follows the reference fuel temperature more closely.

The small geometry and reecting boundary conditions cause the power shape to remain nearly constant through the simulation. Even with the localized perturbation in the boron concentration, the power does not experience a signicant amount of tilt. This eect causes the time dependent temperature in fuel rods at the center of the geometry and on the periphery to be nearly identical.

The eect of the time discretization for the Fluence method is explored for this spatially heterogeneous case. To more quantitatively compare the transients presented, Tables 4.9, 4.10, & 4.11 show the relative errors for important metrics of the transients. Table 4.9

shows the relative errors in maximum power, time of maximum power, total energy, and the L 2 norm. With the exception of the L 2 norm, these metrics were used to analyze the previous homogeneous case. The cumulative L p norm, dened as is introduced because the integral quantity of the total energy (corresponding to p = 1) can have a low value even if the transients are largely dierent. The L 2 norm shows how close the two transients are over the entire simulation. In Equation 4.19, p will have an integer value of either 1 or 2, and T is the maximum value for the time range. For the L p norms presented in the following tables, the cumulative L p norm is evaluated at the end of the simulation (t = T ). The Fluence method is presented in Table 4.9 with the various discretizations of the time domain. The numbers correspond to the number of quasi-evenly sized time intervals between 0.13.0 s. interval during the transient range is taken Fluence(1) ; across all metrics, it performs worse than the Critical method. However with subsequent subdivisions, the errors are reduced. After 4 subdivisions, the relative errors are below those of the critical method. The reduction in error is not monotone however, which means that other sources of error become dominant, or the discretization is introducing numerical errors. For example, the total energy and L 2 norm experience a minimum error with 16 divisions, afterwhich the errors increase. Because of the increase, it is believed that the ne discretization introduces numerical errors either from the integration of the time dependent ux or the interpolation of a larger cross section table .   Table 4.10 shows the various metrics for the central fuel temperature. The total energy is replaced by the L 1 norm. In reality these metrics are equivalent, but there is no physical meaning of the time integrated temperature.

P i p (t) = t t 0 P i (τ ) -P ref (τ ) p dτ T t 0 [P ref (τ )] p dτ 1 p , (4.19 
The fuel temperature in Table 4.10 shows a similar trend to the power in Table 4.9; the Fluence method outperforms the critical method only after 4 divisions. Again, for the L 1 and L 2 norms there is a minimum at 16 divisions.

The central water temperature is shown in Table 4.11, where the same metrics from Table 4.10 are compared. Because the coolant temperature responds slower to the change in power, the maximum temperature occurs at the end of the transient; all relative error values for the time of maximum temperature are thus 0.00%. However, even though the coolant temperature responds dierently to the change in power, the L 1 and L 2 norms still exhibit a minimum at 16 divisions.

The preceding calculations were performed on a single core Intel(R) Xeon(R)-X5550(2.67 GHz) CPU with 8.2 MB of cache memory and 6.1 GB of random access memory. Table 4.12 shows the execution times for the Critical and Fluence methods. The timing shows the large cost associated with obtaining the reference heterogeneity. The solution is used to produce the homogenized cross section for the Fluence method, which is the main retractor for this method.

The generation of cross section tables takes longer for the Fluence method than for the Critical method. The Fluence method is calculating a cross section table The enormous cost for computing the time dependent ux of the Fluence method warrants either the incorporation of parallel methods used to evaluate this time dependent ux, or developing an approximate solution method. A promising approximation for the Fluence method could be the use of the αeigenvalue problem to generate a time dependent expansion. The expansion in the basis of α-eigenvectors however, does not take into account the temperature dependence throughout the transient. Since the temperature deviation in this simulation is much larger than that of the homogeneous case, this approximation may be in error.

Conclusions

This chapter explored homogenization methods applied to time dependent reactor analysis. It was shown, for both a spatially homogeneous and heterogeneous case, that using homogenized cross sections produced with a weighting ux from a criticality calculation can introduce signicant errors in the transient. Two new methods for producing homogenized cross sections, appropriate for time dependent calculations, were introduced and studied: one based on an asymptotic expansion of the time dependent ux (Alpha), and another based on the time integrated ux (Fluence).

Both methods performed well when delayed neutron precursors were suppressed, but the Alpha method had to be modied when delayed neutron precursors were introduced. The Alpha method needed to include contributions from 4.5. CONCLUSIONS both short and long-lived delayed neutron precursors groups. It was observed that for a reactivity insertion below the prompt critical threshold (ρ < β), the cross sections produced from using a criticality calculation performed well; the errors for the super critical transient were smaller than for the super prompt critical transient. However, the new methods still produced smaller errors than the Critical method in all cases.

When spatial heterogeneities were introduced, the Fluence method continued to perform well, but the delicate portion of this procedure will be in choosing an appropriate reference homogenization problem. To recover the behavior of non-uniform reactivity insertions, a homogeneous buer can be added to the homogenization region of interest. It was also shown that rening the time discretization used in the Fluence method reduced the errors of various metrics until a point, where further subdivision increased the errors. It is thought that this increase in error is the result of the accumulation of numerical errors due to the larger interpolation table induced by the ner time discretization.

The time required to produce cross sections is discouraging for industrial applications, and for this method to be useful, improvements will need to be explored. One possible route for obtaining the multiphysics solution required for this method is to implement parallel algorithms throughout the models employed.

The transport method used an S 8 quadrature set, and parallelizing the transport sweeps through the domain has the potential to reduce the computation time by a signicant fraction. Alternatively, an approximate time dependent solution can be obtained through an expansion over α-eigenmodes. This approximation however does not take into account the eects of temperature changing over the transient, and may be considerably in error.

Chapter 5

Reduced Core Case

The present chapter discusses a reduced core problem that was studied to show how the multiphysics framework performed in accident simulations of a reactor core. The reduced core problem is made of 16 assemblies surrounding a central control blade, which is removed to simulate a Rod Drop accident in a BWR during startup. The Rod Drop accident introduces a prompt critical reactivity insertion, causing the reactor to enter into a power transient. The reduced core geometry experiences larger power gradients than the previous cases studied in Chapter 4.

Studying such an accident shows that the multiphysics framework can produce coupled physics solutions, but many improvements can be made.

Reduced Core Description

Geometry

The reduced core is adapted from an ATRIUM-10 (10-9Q) type assembly [165]. power, the coolant in the water column is at a lower temperature than the coolant surrounding fuel pins. Because of this large heat sink during steady state operation, condensation around the water column will be present. However, since the accidents studied in this work are during startup, there is not a large temperature dierence between water in the column and water in contact with fuel elements.

During startup, condensation on the exterior of the water column will be negligible and removing the structural material to separate the assembly from the water column will not introduce large modeling errors. Because of the startup conditions, where the uid is largely subcooled, the intricacies of the structural Additionally, the circular cross sectional fuel has been transformed to square cross sectional fuel with a side length such that the cross sectional area is conserved. This approximation is introduced because of the simplied transport solver used that requires a Cartesian spatial mesh. This reduced core has a water reector around the exterior of the 16 assemblies which has a width equal to the assembly pitch. The assembly pitch and fuel pitch are conserved from the original benchmark specication (15.25 cm and 1.295 cm respectively). The fuel, shown in red, is 0.8907 cm wide so that the cross sectional area is conserved from the circular fuel. The control blade has the same width of 0.637 cm, but the length has been increased from 12.24 cm to 12.6029 cm so that the edge of the control blade coincides with the ninth fuel pin edge. This modication removes long slender spatial cells from the geometry that contribute to slow convergence.

The fuel material is taken to be Uranium Dioxide with enrichments ranging from 2.68% 235 U to 5.01% 235 U. The isotopic concentrations for the fuel ma- terials of this simulation are given in Table 5.1. These isotopic concentrations are approximately what would be found in a commercial BWR-UOX assembly.

The original ve fuel enrichments are homogenized into an average fuel material, which is used throughout the domain. This homogenization procedure is performed before hand with APOLLO3 to produce the base cross section table for this case. The highlighted subchannel and fuel rod in the peripheral assembly correspond to a median power level in the outer assemblies.

Taking more locations of the temperature for evaluating the temperature dependent cross sections can produce a more detailed eect on the spatial dependent power. However, the implementation for how temperature is accounted for in the neutron transport solver limits this number. Each material corresponds to a specic temperature interpolation; to increase the number of temperature points used, unique media must be dened causing a large increase in the size of the cross section table used. This increase in macroscopic cross section data used by the transport solver has the potential to slow the construction of the transport residual due to the increase in memory access. To limit the size of this cross section table, only two points are taken for the fuel and water temperatures.

Transient Conditions

The reduced core calculation starts in a state equivalent to a Cold Zero Power (CZP) startup, with low fuel and coolant temperature. The thermal hydraulic and neutronic states are identical to that discussed in Section 4.4.2 and will be repeated here. The reactor is in a critical state with a low power of 10 W; the control blade is completely inserted. The coolant is at 1 MPa, with a ow rate of 0.188 kg • s -1 , and a temperature of 88. 

C).

The transient is initiated after 0.1 s with a perturbation of the concentration of boron in the control blade. Since the neutron transport calculation is conducted in 2D, the movement of control blades through the axial direction is approximated by diluting the concentration of the neutron absorber with coolant material. The dilution is accomplished by interpolating cross sections between the fully inserted control blade and the control blade replaced with water. In the simulation presented, the nal concentration of blade material is 70% of the nominal concentration. This perturbation produces a reactivity insertion of 892.3 pcm ($1.17). The β for this reduced reactor problem is 762.1 pcm. The β for this case is computed by comparing the system reactivity with delayed neutrons present and suppressed using

β = k -k p kk p × 10 5 , [pcm] (5.1)
where k is the k eff with delayed neutrons present, and k p is the k eff with delayed neutrons suppressed.

The movement of control rods during rod ejection transients in PWR cores is usually modeled as an instantaneous insertion of reactivity because of the parameters of the accident. A PWR rod ejection accident is dened as a mechanical failure of the control rod housing mechanism by which the control rod is moved out of the core from the motion of the coolant. The coolant in a PWR core travels from the bottom of the core to the top of the core with a speed of ∼7 m • s -1 [START_REF] Buttereld | Dynamics and Control in Nuclear Power Stations[END_REF].

The friction from the high speed of the coolant will push a control rod out of the core in ∼100 ms. The high velocity of the control rod out of the core warrants the use of an instantaneous reactivity insertion approximation.

The control blades of BWRs operate in a dierent way, however. The control blades enter the core from the bottom due to the steam separators and dryers being within the core vessel. A control blade drop accident in a BWR is initiated by the control blade jamming while the drive mechanism continues to withdraw.

At a later time, the control blade is freed and falls to the height of the drive mechanism. Thus, for the control blade of a BWR to be ejected from the core, gravity must pull the control bade down against the ow of coolant. The control blade can take up to ∼4 s to completely exit the core [START_REF] Dias | Realistic Scoping Study of Reactivity Insertion Accidents for Typical PWR and BWR Cores[END_REF]. The slow rod movement in the case of BWRs suggests that a ramp insertion is more adequate for modeling the reactivity insertion. The ramp insertion for this accident consists of a linear interpolation between the initial nominal concentration of 100% and the nal concentration over a period of ∆t. A four second ramp insertion for the present simulation required a long simulation to be performed. To reduce the computational intensity of such a simulation, the ramp insertion is shortened to have ∆t = 0.4 s. The short reactivity insertion time is not synonymous with BWR accidents, but still provides for a slower reactivity insertion than the instantaneous insertion.

The base cross section data for this accident simulation was generated by APOLLO3 in 6 energy groups, with an averaged fuel material used throughout the domain. The generation of 6 group cross sections includes a detailed lattice calculation in 281 energy groups with critical leakage for various fuel and water temperatures and with the control blade present or replaced with water.

The homogenization routine includes self shielding evaluations for each temperature state. This 6 group cross section set was then homogenized to produce a central assembly medium, a peripheral assembly medium, and a water reector region, with 2 energy groups. The control blade material is incorporated into the central assembly medium because of the geometric overlap between the two media. Homogenization of the reector region cannot typically be accomplished 

Results

The previously described accident was simulated using a uniform time step size of 2×10 -3 s. The spatial mesh for the transport calculation is discretized with a maximum mesh size of 0. The boron concentration is inserted as a ramp insertion, where the ramp portion of the insertion takes 0.4 s. The boron concentration during the simulation is shown in Figure 5.4, where the minimum boron concentration during the tran-sient is 70% of the nominal concentration. At 1.9 s, the control blade is inserted instantaneously to simulate a SCRAM1 event. The total power of the reactor through the simulation is given in Figure 5.5.

The initial power before the control blade is dropped remains constant until 0.1 s, whereafter reactivity is slowly added to the system, increasing the power. The early portion of the transient resembles a transient whose behavior is synonymous with a super critical reactivity insertion (ρ < β); there is a prompt jump followed by an exponential increase. However, after the reactivity is fully inserted, the power increases rapidly until the temperature increase is sucient to counteract the reactivity insertion. The SCRAM event at 1.9 s is seen as the power rapidly decreases before beginning a slow exponential decrease.

The power increases from 10 W to just below 2 kW, which corresponds to an energy release of 2.13 kJ. This transient is signicantly less energetic than previous transients studied. For comparison, the transient studied for the heterogeneous lattice of Chapter 4 had a maximum power of 774 W • cm -3 and a deposited energy of 811 J • cm -3 . Taking into account the size of the active fuel region of this geometry produces a maximum power of 720 kW and a deposited energy of 754 kJ. The less violent transient can be attributed to the localized than what would be present if the channel boxes remained. However, even with mixing between assemblies, the uid temperature is not signicantly changed during the transient due to the forced convection and higher heat capacity; the uid maintains its initial uniform distribution.

The fuel temperature remaining similar through the transient can be attributed to the shape of the spatial power during the transient. Even though there is a removal of a localized absorber (the centralized control blade), the reduction in concentration does not have a signicant impact on the shape of the spatial power for the perturbation needed to produce a prompt critical transient. The power shown in these two gures is computed by a static k-eigenvalue calculation and normalized such that the total power is 10 W. The power shapes in these two states are very similar, which implies that there is not a signicant amount of power tilt for this reactivity insertion. The perturbation of the localized absorber does aect the behavior of the reactor, but since there is still A more signicant amount of power tilt can be seen in Figure 5.8, where a much lower concentration of the boron in the control blade is used. The lower boron concentration used in the control blade allows for a higher thermal ux to exist closer to the center of the geometry. This creates a shift in the location of the maximum power from the exterior of the central assembly to a more centralized location.

The spatially dependent power is shown at various times in the transient in shows a High Degree of Power Tilt.

The active fuel region is shown in colors ranging from light blue to red, with red denoting higher power levels. In all gures, there is diagonal symmetry from the symmetry of the problem domain. The initial power distribution is shown in Figure 5.9, where the orientation of the gure puts the control blade in the top corner; this also applies to the remaining gures. Because of the presence of the control blade, the power is depressed at the center of the geometry. This central depression moves the maximum power location to the exterior of the central assembly. The maximum power is located in a band around the central assembly, which will become more apparent in subsequent gures. The total power is initially at 10 W and the maximum power is 0.8 W.

While the central control blade is being withdrawn, the power starts to increase. Figure 5.10 shows the power at 0.318 s, which is about the midpoint of the control blade withdrawal. The total power at this time is 272 W, with a maximum power of 23 W. The power increase along the exterior of the central assembly is more noticeable here and is again the result of the power depression due to the central control blade's presence. The power in the peripheral assemblies has a signicant gradient due to the presence of the surrounding water reector.

Once the control blade is fully withdrawn, the power increases quickly to a maximum. Figure 5.11 shows the power at 1.005 s, where the total power the peripheral assemblies is more pronounced.

The maximum power is reached at 1.485 s with a value of 1.99 kW. The elevated temperature in each region has not caused a signicant amount of power tilt due to the small temperature gradient across the core. Hence the power shape is similar at the maximum and at lower power levels. The maximum power along the exterior of the central assembly is at 166 kW. This power increase is large enough to produce a fuel temperature which is elevated enough to counteract the eect of withdrawing the control blade. At this point the central fuel temperature is at 153.33 • C and the central subchannel temperature is at 88.96 • C. This corresponds to a temperature dierence of 64.52 • C and 0.16 • C for the fuel and subchannel respectively. Since the subchannel temperature increase is small, the majority of the reactivity feedback comes from the increased fuel temperature.

After the fuel temperature has reached a sucient amount to counteract the control blade movement, the power begins to decrease. Figure 5.13 shows the spatially dependent power at 1.730 s, where the total power is 1.95 kW, with a maximum power of 163 W. The power shape is similar to that in Figures 5. 

F (t i ) = i j=0 f (t j ), (5.2) 
where F (t i ) is the cumulative computation time for a given simulation time t i , and f (t j ) is the time required to compute the interval with an end time of t j .

To evaluate the performance of the mulitphysics framework during the simulation, and to gain insight to the areas where improvements can be made, the number of linear and nonlinear iterations are analyzed through the simulation.

The number of nonlinear iterations performed for each time step is shown in The average number of linear iterations per nonlinear iteration for each time step is shown in Figure 5.17. The average number of linear iterations remains relatively constant throughout the simulation at around 2 linear iterations per nonlinear iteration. This low number of linear iterations is a result of the eective physics-based preconditioner used in the simulation.

The time spent for this simulation is prohibitively expensive for industrial sized applications, and improvements will need to be made to the multiphysics framework before more detailed calculations can be conducted. The largest problem area is the increase in nonlinear iterations required to converge later in the simulation (between 1.6 s and 1.7 s). The increase from about 5 nonlinear iterations to 15 nonlinear iterations adds a full day of computation. A possible reduction in the number of nonlinear iterations could come from a reduced time step in this interval; a smaller time step means that the initial Newton iterate is closer to the converged solution. Conversely, an increased time step size could be used in the interval between 0.1 s and 1.2 s, given the low number of linear and nonlinear iterations required to converge. The implementation of a more sophisticated adaptive time step formulation would help in this regard [START_REF] Butcher | Numerical Methods for Ordinary Dierential Equations[END_REF].

Even outside this range of increased nonlinear iterations, where the number of nonlinear iterations is around 3 with 3 min per time step, improvements can be made. The residuals for each physics component are evaluated many times during the simulation. The average time spent computing the Transport, Precursor, and Temperature residuals is shown in Table 5.3. With an average of 2 linear iterations per nonlinear iteration, each residual is evaluated 4 times per nonlinear iteration because of the centered dierence formulation in the Jacobian vector product. The central dierence formulation for the Jacobian vector product is repeated from Section 3.2.4

J v ≈ F ( U + ε v) -F ( U -ε v) 2ε .
[2 nd order] (3.27) About 73% of the computation time during a nonlinear iteration is spent inverting the physics-based preconditioner, with 70% of that time spent evaluating the precursor residual. A signicant improvement in this computation could be accomplished by improving the speed of inverting the preconditioning matrix.

Since the majority of the time spent inverting the preconditioner is in evaluating the precursor residual, a substantial amount of eort should be further devoted to optimizing the precursor residual evaluation. Another option for a faster preconditioner inversion is through evaluating the inverse preconditioner in parallel;

since the Jacobian is approximated as a block diagonal matrix, each diagonal block can be inverted simultaneously. Additionally, for each physics component, a coarser spatial mesh could be used to reduce the size of each physics block needing to be inverted.

The computation of the residual, which is evaluated many times during the simulation can be further optimized. The evaluation of the precursor residual is the dominant evaluation among the physics components in this simulation. The computation of the precursor residual involves the manipulation of a large vector with a size of the number of delayed neutron precursor groups times the size of the ssion source; for this calculation 8 delayed neutron precursor groups are used and the ssion integral contains 7,688 entries. The construction involves repeatedly scaling the ssion source vector by delayed neutron constants for each precursor group; splitting this operation among several processors has the potential to bring this residual's evaluation down to the time of the transport residual evaluation.

An 8× reduction in the precursor computation time could signicantly reduce the overall computation time, given the large number of times this residual is evaluated.

Conclusions

The reduced core demonstration problem, computed with 2 group assembly homogenized cross sections, was completed and shows that the multiphysics solver can produce solutions to larger cases. While the framework was able to produce a solution to a larger problem, the calculation took a considerable amount of time to obtain. The reduced core problem with 2 group assembly homogenized cross sections took over 3 days to compute. This level of computation time is not suitable for use in industrial calculations.

A readily available modication to improve the computation speed could be to model an eighth core instead of a quarter core, reducing the number of spatial points the transport solver must sweep and the number of spatial points in the precursor residual evaluation. However, reducing the transport sweep time is not expected to have a large impact on the overall computation time. The evaluation of a single transport residual took an average of 0.5 s, while the evaluation of a single precursor residual took much longer, averaging 3.0 s. Reducing the cost of evaluating the precursor residual will have a larger impact on the overall computation time.

The simulations performed for this demonstration calculation were performed on a single processing core, not exploiting parallel methods. The increasing level of detail sought for multiphysics simulations in this work will inevitably require the use of parallel methods. There are several processes in this simulation which could benet from the implementation of parallel methods; these processes constitute the class of embarrassingly parallel processes [START_REF] Foster | Designing and Building Parallel Programs[END_REF]. One such process is the 5.3. CONCLUSIONS construction of the delayed neutron precursor residual. This evaluation involves repeated manipulations of the ssion source, which are independent for each delayed neutron precursor group. The separation of this task among a number of processors has the potential to increase the evaluation speed by 8×. Another signicant computation cost comes from the inversion of the preconditioning matrix, which can be considered an embarrassingly parallel process. While the preconditioner is eective at reducing the average number of linear iterations per nonlinear iteration, the cost of inverting this preconditioner is expensive. An immediate improvement can be made by inverting the block diagonal matrices for each physics component in parallel. Since these block inversions are independent of other physics components, each inversion can be computed in parallel. The use of parallel transport sweeps and of domain decomposition methods within the thermal hydraulics residual computations will additionally reduce the computation cost, but will have less of an immediate impact than the two previously mentioned modications.

Several improvements to the models used to treat the case in this chapter can be made. A signicant drawback to the model produced is the limited number of temperature points used to evaluate cross sections in the transport solver. There was only a single fuel and uid temperature used for each material in the transport solver (central and peripheral assemblies). A more accurate model would take into account the spatial temperature distribution on a smaller scale. Increasing the detail of the temperature distribution within the domain has the eect of increasing the memory required to store spatially dependent macroscopic cross sections. A temperature variation in a medium will eectively increase the number of media used in the transport solver. This increased memory consumption could aect the speed of obtaining the transport solution due to the rise in memory access. For the present demonstration, the number of media could increase from three to nearly 8500.

To simulate a dierent type of accident, starting from HZP for example, will require a more complex thermal hydraulics model. The simulation shown in this chapter was heavily simplied thanks to the accident starting from CZP. A transient starting from HZP will require modeling the channel boxes, which decouple the thermal hydraulics between assemblies and modeling the water column present in each assembly. At HZP, there is signicantly more vapor present around the fuel pins and will thus induce condensation around the heat sink provided by the water column. Additional correlations accounting for this condensation will need to be introduced to the thermal hydraulics model.

Chapter 6

Conclusions

The work discussed in this dissertation focuses on the accurate simulation of reactivity insertion accidents. The objective of this work was to show how physics component codes may be coupled together in a multiphysics framework based on JFNK and to study the impact of using homogenized cross sections in transient calculations. The methods developed in this work can be eectively applied to treat the simulation of severe accidents where the reactivity insertion is such that the nuclear system is super prompt critical. In such a case, the nuclear system is far from a fundamental mode conguration and large feedback eects are present, which drive the solution.

The homogenization methods developed in this work have been tested on smaller scale simulations to show their potential use in nuclear engineering applications. The transfer to industrial sized calculations will require a number of additional studies for these methods to be deemed useful in industrial codes.

One such study should test the behavior of the methods when a neutron diusion model is used in the homogenized calculation. In the cases treated for this work, a neutron transport model was used in both the reference calculation and the homogenized calculation. Another large advancement required for the Fluence method will be to obtain a time dependent ux in a reasonable time. This can be accomplished through parallelization or forming an appropriate approximation to the time dependent ux. The present chapter summarizes the results of this work, draws several conclusions, and gives the author's vision for the future developments of this work.

Multiphysics Coupling

One of the main goals of this work was to develop a framework in which multiple physics codes, which were not originally intended to operate in a multiphysics simulation, could be coupled. The typical way to implement such a multiphysics framework is to use an operator splitting technique where the coupling between component codes is treated through I/O. This type of coupling scheme treats only weak coupling between physics components and may experience convergence dif-culties. The method of choice for this work was based on the JFNK method, where all physics components are treated in a single large system. This type of method resolves the coupling between physics components at each time step of the solution process through nonlinear iterations. A Newton method is used as the nonlinear iterator because of its superior convergence over other nonlinear methods like Fixed point and Picard.

The weak point of implementing a JFNK method to drive multiphysics simulations is in the potentially heavy modications needed in the component codes.

The JFNK method requires a solution residual be returned from each physics component, which is typically not an operation that component codes will supply.

These solution residual computations must then be either implemented within the codes or computed exterior the codes by controlling operations within a component code.

Implementing the residual computation within component codes requires each Two physics-based preconditioners, which only require manipulations of the solution residual, were tested. The two physics-based preconditioners (Block Jacobi and Block Gauss-Seidel) were tested against an identity preconditioner.

The physics-based preconditioners were shown to reduce the average ratio of linear 6.2. HOMOGENIZATION to nonlinear iterations during a transient. The power behind such preconditioners, which only manipulate the solution residual, is that the underlying physics is not needed to produce an eective preconditioner. The supplier of the multiphysics framework can also supply eective physics-based preconditioners without having to know which physics components will be used within the framework.

The multiphysics framework developed for this work was tested on a reduced core BWR calculation to show the ability of the framework to produce solutions in accident simulations. The reduced core problem simulates a rod drop accident during startup from CZP. Several simplications were introduced based on the transient starting from a CZP state, including the removal of some structural material and a low number of temperature points being used for cross section interpolation. Using 2 group assembly homogenized cross sections shows that the framework produces multiphysics solutions to the simulated accident. Additionally several improvements were suggested to more accurately and more eciently obtain such solutions.

Homogenization

A power excursion in an innite homogeneous medium with 281 energy groups was initially studied. It was shown that for fast transients, where a reactivity greater than β is inserted, using homogenized cross sections produced with a fundamental mode ux introduces signicant errors in the time dependent power and temperature. These errors were still present, but not as signicant when the reactivity insertion was below β.

Two new homogenization methods were developed to reduce the errors incurred from using a fundamental mode ux in the homogenization process. The rst method (Alpha) relied on obtaining eigenvectors from an α-eigenvalue problem instead of the usual k-eigenvalue problem. The α-eigenvectors, which correspond to the N d + 1 principal eigenvalues, were used in several combinations as a weighting ux in the homogenization process. The second method (Fluence) used a time integrated ux, which comes from a multiphysics solution on subdomains of the problem. The time integrated ux serves as the weighting ux in the homogenization process.

In the innite homogeneous medium case, where spatial dependence does not appear, both new methods signicantly reduced the error incurred when using critically homogenized cross sections. Initially, delayed neutrons were suppressed to explore the behavior of fast transients. Under this approximate situation, the Fluence and Alpha method performed well. The Alpha method only used the dominant eigenvector as the weighting ux. Both methods perform well because the time dependent solution reaches the asymptotic solution very quickly after the perturbation. It was also shown that the new methods are not aected by the size of the reactivity insertion or homogenized group structure.

Delayed neutrons were activated in the neutron transport model, which produce behavior that more closely resembles what is observed in reactor analysis.

The addition of delayed neutrons caused the Alpha method to require more than a single eigenvector be taken as the weighting ux to capture the long term be-123 CHAPTER 6. CONCLUSIONS havior of the transient. Several eigenvectors were combined to produce a single weight ux; three versions of this combination were explored. The version which worked the best used an integration of the time dependent solution, constructed from an expansion over the α-eigenmodes. The Fluence method was not aected by the addition of delayed neutrons. It was observed that for reactivity insertions less than β, using critically homogenized cross sections performed suciently well. This observation can justify the use of critical cross sections when modeling operational transients. However, when modeling super prompt critical transients, critically homogenized cross sections can introduce large errors.

A spatially heterogeneous problem was investigated to test whether such methods would perform well with a non-uniform reactivity insertion. The addition of spatial heterogeneities did not impact the performance of the new methods.

The Fluence method was tested on a subdomain of the reference problem. It 

Future Work

Several paths are available for exploration beyond the work presented in this dissertation. The following is a discussion on the author's vision for the continued development in this area of research.

Multiphysics Coupling

In terms of the multiphysics simulations studied in this work, several improvements can be explored. Such improvements are both in the modeling of physical components and in the design of software used in the simulations.

The thermal hydraulic model used in these calculations uses a drift ux approximation for the velocities of steam and water. This model does not represent reality closely when applied to fast transients, where a full two species model is more appropriate. In the simulations presented for this work, the system was operating initially at CZP, where the uid and fuel are nearly in thermal equilibrium. The rapid power transient did not raise the temperature of the uid signicantly. In performing calculations where signicant steam were present, 6.3. FUTURE WORK at HFP for instance, the power excursion could signicantly aect the thermal hydraulics of the steam. To study these accidents, a more complex 6-equation model should be used.

The residual formulations presented in this work were discretized in time using rst order methods. In reducing the size of the transport residual by eliminating the angular ux, the residual was limited to a rst order in time discretization, where higher order methods would require the manipulation of the angular ux.

However, higher order methods can be advantageous when applied to sti problems, like those of large reactivity insertion accidents. A possible way to achieve this extension is by using the Runge-Kutta methods described in Section 2.1.4.

Such methods allow for a exible way to increase the method order without signicant modications to the algorithm. An interesting study would be to observe the eect of the increased residual size on the convergence for the Krylov linear solver. The increase in residual size would be justied if the linear iterations did not signicantly increase and larger time steps could be taken with the higher order Runge-Kutta method.

The BWR core calculation performed introduced several simplifying assumptions which should be addressed to produce more accurate solutions for a wider range of accidents. The reintroduction of structural material (channel boxes and assembly water columns) will require more complex thermal hydraulic modeling.

The channel boxes, which decouple the thermal hydraulics of assemblies, will produce more localized eects in the uid temperature. The water column within assemblies provides a heat sink where vapor can condense. Modeling accidents at higher powers will require incorporating condensation correlations for the inuence of the central water column when more vapor is present. Modeling such accidents at higher powers could bring into question the use of a drift ux model due to the possibility of having disparate vapor and uid velocities, at which point the thermal hydraulic model will need to be heavily modied. Additionally, a small number of temperature points are used to evaluate the temperature dependence of cross sections. Increasing the number of points used in the current implementation of the transport solver will signicantly increase the number of materials present in the cross section data. This increase in cross section data storage could slow the transport solution due to the increase in memory access from the higher number of media required.

Software Design

During the design of the numerical framework to resolve multiphysics systems, special care was taken to provide well dened boundaries in the software.

All components are programmed to well dened interfaces, making it easier to swap appropriate algorithms when necessary. For example, there are several linear solver algorithms under the linear solver interface; by programing to the linear solver interface, GMRes can be replaced with Gaussian elimination with minimal changes in the code. This design feature makes the software exible and extensible; the use of external commercial numerical libraries is possible through this design. A direction the author would like to continue is in developing adapters so that the power of these commercial numerical libraries can be used in the multiphysics framework.

Typically when solving large scale numerical simulations, signicant amounts of parallelization are sought in the codes used. Parallel codes make use of the 

Cross Section Homogenization

The homogenization methods explored in this work have shown promise in their ability to reduce errors incurred from methods currently in practice. The development of such methods still has improvements which can be made in how the methods are applied, and to which problems these methods are applied.

When computing the weights for each eigenvector of the Alpha method, a minimization was performed with some reference ux; in the results of this work, the initial ux was chosen. This choice of reference ux was made based on the idea of nding the expansion coecients for a time dependent solution and the availability of the initial ux. An excellent extension to the Alpha method would be to study the eect of using dierent reference uxes to determine weighting coecients. For example, if an estimate for the temperature were available, the ux could be estimated at various points through the transient and used to generate weighting coecients for the Alpha method.

One of the most prominent advancements in homogenization methods came through the addition of extra degrees of freedom through discontinuity factors.

These factors remove the assumption of a continuous ux at homogenized region interfaces to better conserve reaction rates within these regions. Adding discontinuity factors to the Fluence method can be straight forward by evaluating the 6.3. FUTURE WORK fraction of the time-integrated volume ux and of the time-integrated boundary ux. However for the Alpha method, because of the multiple eigenvectors used, there are more choices in the application of discontinuity factors. One might apply the same coecients to the discontinuity factors, but there may be more optimal choices in how to apply these discontinuity factors. This extension is more applicable when the homogenized problem is modeled with neutron diusion since discontinuity factors are intended to be used when applying a lower order operator in the homogenized problem.

When applying the Fluence method to spatially heterogeneous problems, a homogeneous buer was added to the subdomain which made reactivity insertions similar in the reference problem and subdomain calculation. While this homogeneous buer did accurately represent the surrounding assemblies, it was still required to sweep through this domain during the simulation. A less expensive option would be to approximate the surrounding media by an albedo boundary condition. If an accurate time-dependent albedo condition were available, the calculation of a time dependent solution on subdomains for the Fluence method could be performed faster.

The large drawback to the Fluence method is the cost in computing the time dependent ux used in the homogenization process. For the spatially heterogeneous case of Chapter 4, the solution took 4 days to obtain. For this method to be applied to industrial sized simulations, a reduction in the time required to obtain a time dependent ux is essential. A promising direction to pursue is in the parallelization of the calculation to obtain this solution. Parallelization of the transport sweep algorithm could provide signicant speedup in this calculation.

The homogenization methods were applied to a reduced core calculation.

While this application shows that these methods have the potential to be useful in transient reactor analysis, much is left to be explored. The Expert Group on Radiation Transport and Shielding (EGRTS) under the Working Party on Scientic Issues of Reactor Systems as part of the Nuclear Energy Agency is developing a time dependent benchmark problem based on the mixed oxide PWR benchmark (C5G7) [START_REF] Boyarinov | Deterministic Time-Dependent Neutron Transport Benchmark without Spatial Homogenization (C5G7-TD)[END_REF]. Once this benchmark is available to the public, it would be desired that the new methods are applied to this case to compare the reduction in error these new methods bring. ainsi que de prédire les eets de l'exposition aux rayonnements [START_REF] Chen-Mayer | Simulation of Radiation Dose from Diagnostic X-ray Beams[END_REF], d'étudier l'ecacité de l'utilisation de connement magnétique pour les réacteurs de fusion [START_REF] Cary | Concurrent, Parallel, Multiphysics Coupling in the FACETS Project[END_REF], et de comprendre le processus d'eondrement supernovae [START_REF] Mezzacappa | Neutrino transport in core collapse supernovae[END_REF][START_REF] Zwart | A Multiphysics and Multiscale Software Environment for Modeling Astrophysical Systems[END_REF].

Souvent, les processus physiques étudiés par les ingénieurs nucléaires et les scientiques sont composés de nombreux processus physiques distincts mais couplés.

Ce travail porte sur le développement de stratégies de simulation qui peuvent être utilisées pour produire des solutions de haute délité à des problèmes de physique couplés rencontrés en génie nucléaire. L'objectif de cette thèse est de montrer comment les codes de composants physiques peuvent être adaptés pour travailler dans un cadre multiphysique basé sur une méthode de Jacobi-Free Newton-Krylov Au cours de ces accidents, divers phénomènes physiques peuvent apparaître à diérents stades de l'accident. Une perte prolongée de refroidissement primaire peut éventuellement conduire à des risques de formation d'hydrogène par réaction chimique entre la gaine en zirconium à température élevée et le réfrigérant à base d'eau [START_REF]Mitigation of Hydrogen Hazards in Severe Accidents in Nuclear Power Plants[END_REF]. La modélisation de la distribution et de la combustion de l'hydrogène gazeux est un domaine de recherche important en raison de la possibilité d'un événement de déagration d'hydrogène, qui peut compromettre l'intégrité de la structure de connement [START_REF] Studer | International standard problem on containment thermal-hydraulics ISP47 Step 1 -Results from the MIS-TRA exercise[END_REF]. Le processus de conception du réacteur consiste à traiter en toute sécurité la façon d'évacuer ou de convertir l'air riche en hydrogène pour être loin d'une concentration inammabilité.

Si l'accident grave progresse, l'intégrité structurelle du coeur sera compromise et le Corium (coeur fondu) commencera à interagir avec la cuve et éventuellement l'enceinte de connement en béton [START_REF] Seiler | Viscosities of corium-concrete mixtures[END_REF] . La modélisation de l'interaction béton-Corium (MCCI) implique de nombreux processus physiques et chimiques [START_REF] Lee | Modeling of Corium/Concrete Interaction[END_REF]. La prise en compte de la conception d'un tel accident est de veiller à ce que le corium fondu soit susamment refroidi avant de fondre à travers l'enceinte de connement. La phase MCCI d'un accident grave peut être modélisée par un système de multiphysique avec couplage fort entre les composantes de la physique [START_REF] Allelein | Considerations on Ex-Vessel Corium Behavior: Scenarios, MCCI and Coolability[END_REF].

Les méthodes de calcul étudiées dans ce travail sont appliquées aux accidents de base de conception impliquant de grands modications de puissance qui peu- 

Neutronique et dépendance temporelle

Sans prendre en compte les contre réactions thermique, qui aectent un système nucléaire pendant un régime transitoire, il y a eu beaucoup de travail consacré à la résolution de l'équation du transport des neutrons en fonction du temps.

Les méthodes dépendent du temps sont généralement liées au développement du ux en fonction du temps sur une base orthogonale [START_REF] Roberts | A High-Order, Time-Dependent Response Matrix Method for Reactor Kinetics[END_REF] ou ou à la décomposition du ux temporel en un produit de deux fonctions [START_REF] Dulla | The quasi-static method revisited[END_REF]. La diculté dans le développement sur une base orthogonale est de trouver des fonctions orthogonales appropriées qui représentent, avec précision, les caractéristiques d'une solution de transport. Habituellement, un modèle réduit en 0-D est nécessaire pour trouver une base appropriée pour le développement; les solutions au problème de α-valeur

propre fournissent une telle base [START_REF] Mika | Fundamental Eigenvalues of the Linear Transport Equation[END_REF][START_REF] Betzler | Calculating alpha Eigenvalues in a Continuous-Energy Innite Medium with Monte Carlo[END_REF]. Cette base a été utilisée pour montrer comment le spectre d'énergie est décalé par rapport à la distribution du mode fondamental pendant un transitoire [START_REF] Dall'osso | Neutron spectrum kinetics in the innite homogeneous reactor[END_REF]. La décomposition du ux en un produit d'une fonction de la forme et de l'amplitude a été appliquée à la solution de la cinétique espace-temps; cette méthode est communément appelée la méthode quasi-statique [START_REF] Dulla | The quasi-static method revisited[END_REF]. inférieur sont nécessaires [START_REF] Pothukuchi | Sub-channel analysis of rod bundle thermal hydraulics: Eect of eccentricity and blockage[END_REF].

La modélisation thermohydraulique vise à prédire le comportement des écoulements de uides et le transfert de chaleur dans les nouveaux modèles de réacteurs.

Il existe une forte demande sur les modèles thermohydrauliques avancés pour prédire le comportement des nouveaux réacteurs de génération-IV [START_REF] Cheng | European activities on crosscutting thermal-hydraulic phenomena for innovative nuclear systems[END_REF]. Par exemple, l'écoulement complexe autour du combustible dans les réacteurs à lit de boulets, nécessite des méthodes robustes capables de traiter la conduction, la convection et le transfert de chaleur par rayonnement au sein de tels environnements.

Fractionnement d'opérateur

Une fois qu'un modèle dépendant du temps est produit, un moyen ecace pour obtenir des solutions physiques couplées, avec un minimum de modications des codes actuels des composants physiques, consiste à utiliser une technique de fractionnement d'opérateur. Dans cette approche, chaque composante physique interagit avec d'autres composants physiques par les canaux I/O. Cela est généralement la première méthode utilisée pour des études de cadrage dans le comportement des systèmes couplés [START_REF] Ober | Studies on the accuracy of time-integration methods for the radiation-diusion equations[END_REF][START_REF] Ropp | Studies of the accuracy of time integration methods for reaction-diusion equations[END_REF]. Ces méthodes ne traitent généralement pas avec précision les termes de couplage non linéaires des problèmes multiphysiques, nécessitant un pas de temps plus petit pendant la simulation pour assurer des solutions précises [START_REF] Ragusa | Consistent and accurate schemes for coupled neutronics thermal-hydraulics reactor analysis[END_REF]. Cela peut conduire à des simulations coûteuses en raison de lorsqu'elles sont appliquées à certains problèmes de propagation [START_REF] Ropp | Stability of operator splitting methods for systems with indenite operators: reactiondiusion systems[END_REF].

Les méthodes de fractionnement d'opérateur ont été appliquées à une variété de problèmes dans le domaine de l'ingénierie nucléaire. Les équations de rayonnement-diusion temporelles présentent des phénomènes qui sont diciles à résoudre sans une attention particulière au contrôle de la taille de pas de temps [START_REF] Ober | Studies on the accuracy of time-integration methods for the radiation-diusion equations[END_REF]. L'ecacité de l'utilisation des méthodes de fractionnement d'opérateur dans des applications de réacteurs nucléaires a été appliquée à des problèmes de dimensions réduites [START_REF] Ragusa | Consistent and accurate schemes for coupled neutronics thermal-hydraulics reactor analysis[END_REF]. Plusieurs variantes du fractionnement d'opérateur ont été appliquées pour coupler la thermohydrauliqe et la neutronique en 0-D et Par exemple, un module de solveur linéaire peut contenir un choix de plusieurs algorithmes de solveur linéaire. En outre, des interfaces bien dénies permettent l'utilisation des bibliothèques numériques externes tels que PETSc [START_REF] Balay | PETSc Users Manual[END_REF] ou Trilinos [START_REF] Heroux | An overview of the Trilinos project[END_REF].

Calcul parallèle

Avec la demande grandissante de solutions encore plus détaillées pour les réacteurs nucléaires, les méthodes de solution parallèles deviennent les options nécessaires et viables. Le premier niveau de calcul parallèle se compose de processus quasiment indépendants les uns des autres; de tels processus sont appelés processus parallèles embarrassants [START_REF] Foster | Designing and Building Parallel Programs[END_REF]. Un exemple de ces processus est les balayages de transport le long des directions données dans un milieu. L'évolutivité de ces parallélisation est limitée par le nombre de processus indépendants disponibles.

Dans l'exemple des balayages de transport, l'évolutivité est limitée au nombre de directions utilisées pour discrétiser le ux angulaire. Des niveaux supplémentaires de parallélisation peuvent être mis en ÷uvre, chacun avec des exigences plus complexes en matière de communication entre les processus parallèles. Il devient évident, par rapport à la demande accrue de solutions détaillées de transport neutronique et thermohydraulique au sein des réacteurs nucléaires, que plusieurs niveaux de parallélisme seront recherchés [START_REF] Evans | A New Three-Dimensional Parallel Discrete Ordinates Code in SCALE[END_REF][START_REF] Towara | MPI-Parallel Discrete Adjoint OpenFOAM[END_REF].

Il existe de nombreuses bibliothèques numériques d'algèbre linéaire disponibles pour exploiter la puissance des calculs parallèles [START_REF] Balay | PETSc Users Manual[END_REF][START_REF] Heroux | An overview of the Trilinos project[END_REF] La méthode de Newton est localement q-quadratique convergente, ce qui signie que, si l'itération initiale pour la méthode est susamment proche de la solution, la méthode convergera quadratiquement. L'exigence pour l'itération initiale d'être susamment proche de la solution convergée n'est pas aussi contraignante que ce à quoi pourrait s'attendre. Dans l'application de la méthode de Newton pour résoudre des PDEs implicitement intégrés, l'itération initiale est considérée comme la solution au pas de temps précédent [START_REF] Kelley | Solving Nonlinear Equations with Newton's Method[END_REF][START_REF] Isaacson | Analysis of Numerical Methods[END_REF]. Si le pas de temps est susamment petit, la solution convergée est proche de la solution au pas de temps précédent.

Pour s'assurer que la méthode de Newton converge vers la solution correcte, même lorsque l'itération initiale est loin de la solution, une technique de globalisation doit être utilisée [START_REF] Kelley | Solving Nonlinear Equations with Newton's Method[END_REF]. Il existe deux techniques principales de globalisation utilisées pour la méthode de Newton: la région de conance et la recherche en 

  ual computation, which will be specic to each physics component. The residual computation will provide a transparent interface with which physics components may interact. Once a residual for a physics component is dened, the physics component can be used in a simulation. Additional physics components can be added to the simulation by dening a residual computation module for the physics component. Special attention will be devoted to a new formulation for the residual for neutron transport. The neutron transport solution size can be prohibitively large, and the new residual formulation aims to reduce the size of this solution. The new formulation of the neutron transport residual will be shown to be correctly implemented and reduces the size of the sought solution. The reduction in size provides more benets than just reducing memory consumption. A vector of a smaller size resides in a smaller search space; any Krylov solver which builds successive subspaces will converge faster if the subspace can accurately approximate the full search space.A physics-based preconditioner which is truly matrix-free is explored. Generally physics-based preconditioners require direct manipulation of the underlying physics code. The desire to operate in a modular framework and only interact with physics codes through residual computation requires modied preconditioners which only manipulate the solution residual. Both a Block Jacobi and a Block Gauss-Seidel preconditioner are developed from manipulations of the solution residual.

  2 discusses the models used to describe each physics component treated in simulations for this work. The focus is on the physical aspects of the models which are coupled together, and how this coupling manifests in the models. The models discussed are Neutron Transport, which describes how neutrons are expected to distribute within a medium, and Thermal Hydraulics, which describes how heat is transferred within a nuclear reactor core. Many of the approximations made when solving the neutron transport equation are developed and discussed. The problems in this work are treated by transport, and hence other models often used in neutronics such as diusion or simplied P N are not discussed. Two thermal hydraulics models are discussed. One largely simplied 1 point model is used in simplied geometries. The other is a more complicated subchannel model which involves multiple coupled 1-D channels. This model is applied to heterogeneous spatial geometries. The physical manifestation of coupling between these models through temperature dependent macroscopic cross sections is also discussed. Chapter 3 discusses the numerical methods used to resolve the coupling between the models discussed in Chapter 2. The numerical methods include operator splitting methods along with JFNK methods. All the linear and nonlinear solvers included within the JFNK framework are discussed. Special attention is devoted to building eective preconditioners which are manipulated from within the JFNK framework; meaning a preconditioner is sought which does not require knowledge of the underlying physical behavior of the solution residual. Two physics-based preconditioners (Block Jacobi and Block Gauss-Seidel) are discussed, which rely only on manipulations of the solution residual. These preconditioners are tested on a spatially heterogeneous problem against an identitiy preconditioner. The physics-based preconditioners are shown to reduce the average ratio of linear iterations per nonlinear iteration when compared to the identity

  lying physics component models. Further improvements can be achieved through parallelization of the residual computations and inversion of the preconditioning matrix. Chapter 6 nishes this dissertation with a few conclusions on modeling multiphysics phenomena with strong nonlinear coupling and on the applicability of the new transient homogenization methods. The possibility to couple existing physics component codes in a JFNK framework is discussed, along with the use-CHAPTER 1. INTRODUCTION fulness of the new homogenization method in industrial applications. As with any amount of research, there are many more crevasses which remain to be explored. Several directions for the further study of multiphysics modeling and transient homogenization techniques are outlined at the end of this work.
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 21 Figure 2.1. Pictorial of the Relationship Between Nuclear System

  ing for higher energy, and having large resonances in the mid energy range. Lower energies experience the cross section varying with a 1 √ E relation. The resonances in the mid energy range can experience a large increase or decrease in probability, sometimes by several orders of magnitude, for very small variations in energy.
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 2 Figure 2.2 gives example plots of the total interaction cross section as a function of energy for 238 U, 90 Zr, and 1 H. We see the large variations for the 238 U and 90 Zr in the mid energy range; the hydrogen cross section is one exception to the general rule on resonances. The cross sections shown in Figure 2.2 were produced by the JANIS application through the OECD [65].
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 22 Figure 2.2. Energy Dependent Total Interaction Microscopic Cross Sections
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 23 Figure 2.3. Doppler Broadening for 238 U [66].

  b and c are vectors of size s, and A is a matrix of size s×s. For example, the time discretization in Equation2.32, discussed previously, would have the following Butcher Tableau.

  equilibrium. A four equation model (2 mass, 1 momentum, and 1 energy balance) is often applied to nearly steady state transients. These slow transients allow the steam and liquid to remain near thermal equilibrium. For fast transients, a two uid model would be needed to allow for thermal non-equilibrium between the two species. This description of a six equation model reduces the modeling errors of the four equation model applied to fast transients. However in this work a six equation model is not available in the thermal hydraulic code chosen for this work. Only a four equation model is available to be applied to fast transients. Consequently, the accidents simulated in Chapters 4 & 5 are all from startup conditions. Startup conditions are such that the uid and fuel are at low temperatures, and the liquid and steam are likely to not move far from thermal equilibrium even in prompt critical transients. In the transients studied in this work, the power increases quickly which increases the fuel temperature quickly. The eect of Doppler broadening in the fuel causes the power to eventually decrease at a modest rate. All this change in fuel temperature happens before the uid can react to the perturbation in power. This type of transient is near adiabatic and hence the four equation model presented earlier will introduce minimal model error.

Figure 3 . 1 .

 31 Figure 3.1. Operator Splitting Schematic with Updated Solution (Gauss-Seidel) Showing Two Coupled Physics Components: Neutronics and Thermal Hydraulics
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 2 SIMULTANEOUS SYSTEM Algorithm 1: Right Preconditioned GMRes with Reorthogonalization in Arnoldi Input : Linear System Matrix A, right-hand side b, initial iterate x 0 Output: Converged Solution x 1 r 0
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 33 Figure 3.3. Convergence of Three Finite Dierence Formulations in the Small Parameter ε
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 34 Figure 3.4. Comparison of Nonlinear Iterations to Produce Converged Solution per Time Step Required When Using an Identity or Physics-Based Preconditioner During the Simulation of Heterogeneous Problem Discussed in Section 4.4.2 with a Time Size of 0.004 s.
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 35 Figure 3.5. Comparison of Average Linear Iterations per Nonlinear Iteration Required per Time Step to Produce a Converged Solution When Using an Identity or Physics-Based Preconditioner During the Simulation of Heterogeneous Problem Discussed in Section 4.4.2 with a Time Size of 0.004 s.
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 3 [START_REF] Todreas | Nuclear Systems I: Thermal Hydraulic Fundamentals[END_REF] shows that as the number of time steps increases, the error is reduced in a linear trend. The green line in Figure3.6 indicates a linear reduction in error. As the number of time steps increases (consequently the timestep size decreases), the relative error asymptotically approaches the linear trend until a point where it begins to drift.The drift as the number of time steps increases beyond ten thousand is due to the accumulation of nite precision errors. This point corresponds to a time step size of 1.83e-5 s. From the convergence displayed in Figure3.6, the residuals are determined to have been implemented correctly.
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 36 Figure 3.6. Convergence of Neutron Transport and Precursor Residuals

  work. A few examples include the single dominant eigenvector, the largest and smallest principal eigenvectors (extrema), and all N d + 1 vectors. Using the eigenvector associated to the single largest eigenvalue is used for cases where delayed neutron precursors are suppressed. This subset works well because the less dominant modes for the transient are extinguished quickly after the transient begins, and much of the transient is governed by the evolution of this single mode. It will be shown however, that when delayed neutrons are present this subset is inadequate in producing homogenized cross sections which reproduce characteristics of the reference transient. This behavior can be attributed 4.3. TRANSIENT FORMULATIONS to the transient being governed by non-dominant modes for longer times after the transient begins.

4. 4 .

 4 APPLICATION OF KINETIC HOMOGENIZATION 4.4 Application of Kinetic Homogenization As was stated in the previous section, the crucial point in homogenization is to correctly predict the heterogeneous ux used to weight cross sections. This section explores several examples where the ux used to weight cross sections is not suciently close to the reference ux. A spatially homogeneous geometry with energy dependence is rst studied to open the idea of examining homogenization techniques for time dependent problems. The second is a spatially heterogeneous geometry to introduce more complications in the homogenization process and set the stage for future work in the domain of kinetic homogenization.

  The state points are chosen to envelop the expected temperature range for the transient. The cross sections are interpolated linearly between state points during the transient simulation. The interpolation law for each parameter is specied 4.4. APPLICATION OF KINETIC HOMOGENIZATION in the cross section table. The choices of laws are: constant, linear, quadratic, and upstream. A constant interpolation law is a nearest neighbor interpolation, while the linear and quadratic laws use a linear or quadratic interpolation function between state points along a given axis. The upstream interpolation law is one that uses the lower bound of an interpolation interval as the result of the interpolation. This upstream law is useful for having a constant interpolation parameter during the full interval; contrary to the constant law, which will switch interpolation values at the midpoint of the interpolation interval. This upstream law is primarily used to interpolate along the time axis where cross sections are constant within the time interval. The interpolation routine was developed based on the assumption of a Cartesian grid of state points with n parameters. The n parameters form an n-dimensional interpolation space. The multidimensional interpolation is performed by recursively reducing the interpolation space along a given interpolation axis.
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 43 were generated by rst performing a reference calculation with 281 energy groups. The same transient was then repeated using homogenized cross sections generated from the various methods discussed earlier. The classical homogenization method is denoted as Critical because of the use of a k-eigenvalue or criticality calculation to obtain the weighting ux. The new homogenization methods (Fluence & Alpha)
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 42 Figure 4.2. Transient Power. Spatially Homogeneous Geometry with No Delayed Neutron Precursors. Boron Concentration Reduced to 99% of Nominal Value.
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 443 Figures 4.2 & 4.3 show the power and temperature for the transient performed with three homogenization techniques. The transients in Figures 4.2& 4.3 cor-
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 44 Figure 4.4. Transient Power. Spatially Homogeneous Geometry with Delayed Neutron Precursors and a Reactivity Removal.
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 45 Figure 4.5. Transient Temperature. Spatially Homogeneous Geometry with Delayed Neutron Precursors and a Reactivity Removal.

Figure 4 .

 4 [START_REF] Mezzacappa | Neutrino transport in core collapse supernovae[END_REF] shows that the critical homogenization method represents the power transient well in this situation. This close agreement suggests that the time dependent ux is close to the fundamental mode ux during this transient. The Alpha method however seems to drift from the reference transient and deviates signicantly in Figure4.5. In the gures presented, the single dominant eigenvector is taken for the Alpha method to show the inadequacy of the Alpha method version when delayed neutron precursors are present. This behavior suggests that the time dependent solution does not reach the asymptotic alpha solution quickly during the transient.The second transient studied in this section is a supercritical transient for which 0 < ρ < β. Figures 4.6& 4.7 show the power and temperature, where the power increases quickly to a maximum value then decreases slowly until the boron concentration is returned to its nominal value.
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 4 [START_REF] Todreas | Nuclear Systems I: Thermal Hydraulic Fundamentals[END_REF] does not show a prompt jump followed by a slower increase in power as is expected in reactor kinetics due to the temperature feedback introduced. The slow decrease in power is characteristic of a subcritical reactor with delayed neutron precursors present.Again looking atFigures 4.6
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 4746 Figure 4.6. Transient Power. Spatially Homogeneous Geometry with Delayed Neutron Precursors and a Reactivity Insertion ρ < β.

Figure 4 . 7 .Figure 4 . 8 .

 4748 Figure 4.7. Transient Temperature. Spatially Homogeneous Geometry with Delayed Neutron Precursors and a Reactivity Insertion ρ < β.
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 49 Figure 4.9. Transient Temperature. Spatially Homogeneous Geometry with Delayed Neutron Precursors and a Reactivity Insertion ρ > β.
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 4 10 shows a quarter of this geometry, where all edges have reecting boundaries. Region 3, in orange, is at the center of this geometry. During the transient simulation, the boron concentration is partitioned into Central Boron (Region 3) and Peripheral Boron (Regions 1 & 2) where the boron concentration is perturbed by dierent amounts for these two partitions. The homogenized spatial geometry is shown in Figure 4.10b, were region B (orange) corresponds to a homogenized Region 3 in Figure 4.10a. Region A corresponds to the homogenization of Regions 1 & 2.

  Heterogeneous Pin Array. Fuel pins are red, borated water is orange or blue. Fuel is 0.8907 cm wide and the pitch is 1.295 cm.

  Homogeneous Regions. Region B corresponds to Region 3 in (a), while Region A corresponds to Regions 1 & 2 in (a).
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 410 Figure 4.10. Geometry and Homogenized Regions for Spatially Heterogeneous Problem [164].
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 4411 Figure 4.11. Stair Step Pin Cell Approximation for Heterogeneous Lattice Calculation.
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 4 [START_REF] Schmidt | Foundational Development of an Advanced Nuclear Reactor Integrated Safety Code[END_REF], is initiated at 0.1 s as in the previous case by a reduction in the boron concentration. The reduction in the boron concentration is non-uniform, where the central assembly's boron concentration is reduced to 36% of the original value and the peripheral assemblies' boron concentration is reduced to 97% of the original value. This perturbation corresponds to a reactivity insertion of 501.1 pcm ($1.05); for this problem, β = 479.3 pcm. The boron concentration is returned to the original values at 3.0 s, and the simulation nishes at 4.0 s. All transients are simulated with the same time step size of 0.004 s.
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 412 Figure 4.12. Transient Power. Spatially Heterogeneous Geometry with Delayed Neutron Precursors and a Reactivity Insertion ρ > β.

Figure 4 .

 4 Figure 4.12 shows that the critically homogenized cross sections fail to capture the rst part of the reference power, but approach the reference power later in the transient. The later part of the transient is governed principally by long lived delayed neutron precursors which were distributed in a critical conguration.This again supports the observation that when delayed neutrons are dominant, critically homogenized cross sections may produce suciently accurate results in transient calculations. However, in the early part of the transient, when prompt neutrons and short lived delayed neutron precursors are dominant, critically homogenized cross sections perform poorly. Additionally, unlike in the previous homogeneous case, the error is not in the conservative direction. This eliminates the possibility to use critically homogenized cross sections as a worst-case calculation.

Figure 4 .Figure 4 . 13 .

 4413 Figure 4.13 shows the temperature of a fuel rod and a subchannel in the central assembly. The fuel temperature is shown to increase signicantly until the power is lower than the cooling power of the coolant. The coolant temperature increases only slightly over the transient from 88.80 • C to 95.26 • C. The coolant temperature increases much less than the fuel temperature due to the

Figures 4 .

 4 14 & 4.15 show the same transient as before, but where the Fluence method uses 58 quasi-even intervals between 0.1 3.0 s, which corresponds to an interval size of 0.05 s. Because of the ner time discretization, the Fluence method more closely follows the reference calculation when compared toFigures 4.12 

  & 4.13.

  )

Figure 4 . 14 .

 414 Figure 4.14. Transient Power. Spatially Heterogeneous Geometry with Delayed Neutron Precursors and a Reactivity Insertion ρ > β.Using 58 Time Intervals Between 0.1 s and 3.0 s for Fluence Method.

Figure 4 . 15 .

 415 Figure 4.15. Transient Temperature. Spatially Heterogeneous Geometry with Delayed Neutron Precursors and a Reactivity Insertion ρ > β. Using 58 Time Intervals Between 0.1 s and 3.0 s for Fluence Method. Fuel Denotes Temperature in Corner Fuel Rod of Central Lattice, Water Denotes Temperature in Central Water Hole.

Figure 5 .

 5 Figure 5.1 shows the original spatial geometry from a benchmark calculation on Plutonium recycling; dimensions are given in millimeters. The material composition was changed from MOX to UOX because it was discovered that the MOX fuel composition resulted in a positive temperature feedback coecient during startup. This positive temperature coecient made controlling the transient simulation unattainable. With an ever increasing reactivity insertion, the power grows unbounded until an overow error is encountered. It is possible to simulate such transients for short times, but without a stabilizing feedback mechanism, the simulated power is not bound throughout the transient. Additionally some of the structural material was removed to simplify the geometrical and thermal hydraulic modeling of this fuel assembly.The channel boxes, which decouple the thermal hydraulics of assemblies from each other, were removed; consequently with this geometry, uid mixing is allowed between assemblies. The interior water column separator has also been removed to facilitate thermal hydraulic modeling. The water column presents a unique type of physics to the problem. During steady state operation at full

Figure 5 . 1 .

 51 Figure 5.1. Original Geometry Specication for BWR Benchmark Calculation [165]

5. 1 .

 1 REDUCED CORE DESCRIPTION material should not impact the transient studied. Studying transients where the initial state is at Hot Zero Power (HZP), for instance, would require the modeling of such structural material.

Figure 5 .

 5 2 shows the reduced core geometry adapted from the ATRIUM-10 assembly design of Figure 5.1.

Figure 5 . 2 .

 52 Figure 5.2. Geometry of Reduced BWR Core. Four BWR Assemblies Surrounding a Central Control Blade with Water Reector.

2

 2 The geometry used in the thermal hydraulics model is shown in Figure5.3, where an eighth of the core is shown; the bottom and diagonal edges are reected. The fuel pins and subchannel layout are delimited by solid lines. Fuel pins are shown in red, while subchannels are shown in blue. The location where temperatures are taken for interpolating temperature dependent cross sections are highlighted in yellow. The highlighted subchannel and fuel rod in the central assembly correspond to the peak power locations. The power is peaked in this location because of the inuence of the water reector and the central control blade.

5. 1 .Figure 5 . 3 .

 153 Figure 5.3. Geometry for Thermal Hydraulics. Highlighted Points Mark the Locations Where Temperature is Used to Evaluate Material Temperature for Transport Solver.

  5 cm. This results in 93 spatial cells in each direction, 62 of which contain ssile material with two ssile isotopes. A constant spatial dependence within each cell is used, resulting in a ssion integral size of 62 × 62 × 2 × 1 = 7688. There are 8 delayed neutron precursor groups with each concentration the size of the ssion integral; this produces a precurosr residual size of 8 × 7688 = 61504. While the thermal hydraulics model contains 198 subchannels and 189 fuel rods, with 100 axial planes. Each spatial point has a single temperature value producing a temperature residual size of (198 + 189) × 100 = 38700. These discretizations produce a global residual with 107,892 entries. The details of each residual component size are given in Table5.2.

Figure 5 . 4 .

 54 Figure 5.4. Boron Concentration During Simulation Within the Center Assembly. Minimum Concentration for Central Boron is 70%.

Figure 5 . 5 .

 55 Figure 5.5. Total Power During Reduced Core Simulation.

Figure 5 .

 5 Figure 5.7a shows the shape of the power with the control blade fully inserted, which corresponds to 100% of the nominal boron concentration. Likewise Figure 5.7b corresponds to the shape of the power when the control blade is in the dropped position, which corresponds to 70% of the nominal boron concentration.

Figure 5 . 6 .Figure 5 . 7 .

 5657 Figure 5.6. Fuel and Water Temperatures in the Central(C) and Peripheral(P) Assemblies for Reduced Core Calculation.

Figures 5 .

 5 Figures 5.95.13. The reector region has a power of zero due to the absence of ssile material; this zero power level is indicated as blue in Figures 5.95.13. 

5. 2

 2 Figure 5.8. Spatial Power for the Nominal Control Blade Position and the Perturbed Control Blade Position. Comparing (a) to (b)

Figures 5 . 9 & 5 .

 595 10 use a more zoomed in perspective to accentuate more details of the solution while the power is low. The remaining gures are more zoomed out due to the large increase in power. Each gure corresponds to a dierent time in the simulation, noted by the time bar in the lower left corner. The times correspond to the initial time, a time while the control blade is being moved, just before and after the maximum power, and at the maximum power.

Figure 5 . 9 .

 59 Figure 5.9. Spatially Dependent Power at Initial Time for Reduced Core Calculation. Total Power: 10 W.

Figure 5 . 10 .

 510 Figure 5.10. Spatially Dependent Power During Control Blade Movement. Total Power: 272 W.

  & 5.12, but the magnitude has decreased from that of Figure5.12.

Figure 5 .

 5 Figure 5.11. Spatially Dependent Power Before Maximum Total Power. Total Power: 1.68 kW.

Figure 5 . 12 .

 512 Figure 5.12. Spatially Dependent Power When Total Power is at Maximum. Total Power: 1.99 kW.

Figure 5 . 13 .Figure 5 . 14 .

 513514 Figure 5.13. Spatially Dependent Power After Maximum Total Power. Total Power: 1.95 kW.

Figure 5 . 16 .Figure 5 . 15 .Figure 5 . 16 .

 516515516 Figure 5.16. The computation time for each time step in Figure 5.15 has many of the same features as the number of nonlinear iterations per time step. The computation time is greatly increased when the number of nonlinear iterations is increased between 1.6 s and 1.7 s. A signicant improvement in computation

Figure 5 . 17 .

 517 Figure 5.17. Average Number of Linear Iterations per Nonlinear Iteration for Each Time Step During Simulation for Reduced Core Calculation.

  component code be able to manipulate a solution from other component codes; the residual function for a single physics component depends on the solution from all physics components. Each physics component could then simply accept the entire multiphysics solution and return the solution residual for that physics component. This implementation is more robust and modular, but it requires that each time a physics component is added to the simulation, all physics component codes must be modied. At the outset of this work, it was not known if the author would have the opportunity to heavily modify component codes, so this method was not chosen. Alternatively, computing the solution residual exterior to the component codes oers more exibility in computing residuals. The component codes are driven through function calls, which control the various steps needed to produce a solution residual. Once these function calls are established, modications to existing component codes are not needed if additional physics components are added to the simulation. This is the way residuals are computed within the results of this work. The delicate portion of this strategy is the correct implementation of the function calls to physics components. The code must be modied to facilitate extracting information from other solutions. Exterior to the component codes, solutions must be correctly mapped to a form that component codes are expecting. A new formulation for the neutron transport residual was developed based on the ssion source instead of the angular ux. The reduction in residual size with this formulation is signicant. This new version of the neutron transport residual reduces the size of the solution by a large factor; a factor of 3120 in the heterogeneous results presented in Section 4.4.2. The residual was shown to be correctly implemented by tracking the error convergence through the renement of the time domain. The reference solution was computed analytically from a 1 point, 1 energy group model with 2 delayed neutron precursor groups.

  was observed that the Fluence method needed a homogeneous buer to simulate the environment of the reference problem to produce eective homogenized cross sections. Without the homogeneous buer, the same boron concentration perturbation from the reference calculation produced a much larger reactivity insertion in the isolated region calculation. The eect of the discretization of time intervals was tested for this heterogeneous problem. It was shown that errors are reduced with successive renement of the time interval discretization until a point where interpolation errors become dominant.The results from this work show that in certain cases, using homogenized cross sections intended for steady state calculations in transient calculations may introduce signicant errors. A way to remedy the introduction of such errors is to use the new methods developed in this work which take into account the time dependent behavior of coupled physics solutions. The most eective method to apply depends on the type of transient simulated.

  largest and fastest computers currently available. A signicant weakness of the simulations presented in this work is the lack of parallel methods. A large amount of work could be devoted to adding parallel capability to the underlying physics component codes and the multiphysics framework. In the neutron transport model, a parallel sweeping algorithm could improve the size of transport problems able to be tractably solved. Domain decomposition methods can allow larger problems to be solved using large parallel machines. In the thermal hydraulic model, subchannels can be split among several processes which communicate to evaluate mixing among channels. On the level of the multiphysics framework, signicant amounts of parallelization are possible. Chapter 5 demonstrated that a signicant amount of time was devoted to evaluating the delayed neutron precursor residual, which involves several manipulations of the ssion source. Splitting these manipulations over several processes has the potential to signicantly reduce the time spent evaluating this residual. The evaluation of other residuals can also be performed in parallel, especially if the underlying physics components have parallel capabilities. The linear solvers can be made to use parallel capabilities through manipulations of matrix vector products in parallel. Furthermore, the physics-based preconditioner used in Chapter 5, which is a block diagonal matrix, can be inverted in parallel by simultaneously inverting each block diagonal matrix. Implementing such parallel methods will be essential for the continued used of the present multiphysics framework.

  l'ingénierie nucléaire englobe une vaste gamme de sujets tels que le transport de particules à travers les milieux, le transfert de chaleur dans une centrale nucléaire, et la formation d'hydrogène lors d'un accident grave. Une solution précise à ces modèles physiques permet aux scientiques et aux ingénieurs, entre autres, de construire des stations de production d'énergie plus ecaces[START_REF] Clarno | The AMP (Advanced MultiPhysics) Nuclear Fuel Performance code[END_REF],

  vent avoir un impact sur l'intégrité du combustible nucléaire en raison de leurs eets sur le premier niveau de connement. Ce choix est basé sur la disponibilité des codes composants qui résolvent la physique sous-jacente du problème et sur l'importance d'assurer l'intégrité du premier, et sans doute le plus important niveau, de connement. Cependant, ces méthodes de calcul peuvent également être utilisées pour étudier le comportement des accidents graves, tels que la formation d'hydrogène dans l'enceinte de connement ou l'interaction entre le matériau de coeur fondu et le béton du plancher de connement.A.1.4 État de l'art en ingénierie nucléaire L'état actuel des méthodes disponibles pour la communauté de simulation sera examinée dans cette section. L'état de l'art se concentrera sur les principaux domaines du développement dans la résolution des problèmes de physique couplés en génie nucléaire. D'abord la recherche active en neutronique et ther-A.1. INTRODUCTION mohydraulique est discutée en mettant l'accent sur les problèmes dépendant du temps. Ensuite, deux façons de traiter les problèmes de physique couplés sont examinées. Cette section se termine avec l'application de procédés parallèles et comment les données sont traitées dans des problèmes en fonction du temps.

  La fonction d'amplitude dépend uniquement du temps, et change rapidement avec le temps. Cette fonction décrit le comportement global de la solution de transport dépendant du temps. La fonction de la forme dépend de toutes les variables, mais varie lentement dans le temps. La fonction de forme est mise à jour sur des échelles de temps plus longues et est utilisée pour mettre à jour les paramètres qui entraînent l'évolution de la fonction d'amplitude. Thermohydraulique Le développement de modèles thermohydrauliques précises est important pour la progression continue de la conception des réacteurs à venir. Les phénomènes thermohydrauliques dans un système de réacteur nucléaire fonctionnent sur des échelles de temps et d'espace disparates, ce qui rend la résolution dicile. La tendance dans la recherche thermohydraulique est de produire des solutions toujours plus nes sur ces échelles de temps et d'espace. Les phénomènes thermohydrauliques qui se produisent en dehors du coeur du réacteur sont généralement traités avec un modèle réuni de 1-D [29]. Ce traitement donne une perspective intégrale des phénomènes thermohydrauliques qui se produisent en dehors du coeur. A l'intérieur du coeur, des phénomènes thermohydrauliques plus complexes interviennent, ce qui nécessite des techniques de modélisation plus élaborées pour leurs résolutions. La thermohydraulique d'un assemblage de réacteur est généralement modélisée par un ensemble de canaux à 1-D couplés qui résolvent la dépendance spatiale à 3-D. Les turbulence et le mélange dans les canaux est géré par des modèles de Reynolds moyenné Navier Stokes (RANS) tels que le modèle k-ε [30]. Sur des échelles spatiales encore plus nes, davantage de détails peuvent être modélisés dans le transfert de chaleur et l'écoulement du uide. Cependant, pour le comportement général d'un coeur de réacteur, ces modèles détaillés deviennent trop coûteux et des modèles d'ordre

  l'augmentation du nombre d'étapes qui doivent être prises en compte pour produire une solution en fonction du temps. Certaines des erreurs rencontrées par le fractionnement d'opérateur peuvent être réduites en utilisant des méthodes d'intégration de temps d'ordre supérieur, mais cela ne converge pas non plus complètement les termes non linéaires entre les composantes physiques [9]. Pour supprimer davantage d'erreurs d'une simulation de physique couplée, une méthode fortement couplée est nécessaire. Une préoccupation supplémentaire concernant les méthodes de fractionnement d'opérateur a été l'apparition d'instabilités
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 1 D. Il a été montré que, pour réduire les erreurs dues à la rigidité du système couplé, les méthodes d'intégration en temps d'ordre plus élevé doivent être utilisées. De plus, pour faire converger les non linéarités entre les composantes physiques, une itération entre les composantes physiques est nécessaire. Cependant, lors de l'analyse des accidents de réacteurs nucléaires, il est de coutume d'utiliser un modèle de diusion de neutrons 3-D couplé à un modèle thermohydraulique 3-D an de saisir avec précision les eets spatiaux importants pour A.1. INTRODUCTION le transitoire [36]. L'accent mis sur l'utilisation des méthodes de fractionnement d'opérateur d'ordre élevé n'a pas encore été mis en oeuvre dans les calculs au niveau des applications. Méthode de Jacobian-Free Newton-Krylov Comme mentionné précédemment, un moyen ecace de résoudre un fort couplage entre les composantes physiques est d'utiliser une méthode de JFNK, avec toutes les composantes physiques pertinentes combinées dans un système numérique unique. Bien qu'il y ait eu beaucoup de travail sur la production de cadres de calcul basés sur une méthode de JFNK, les composantes physiques utilisées dans ces cadres sont limitées à celle qui sont fournies par le cadre et celles qui sont construites à l'intérieur du cadre. Une partie importante du travail dans le développement d'une simulation ecace d'un système de multiphysique repose sur les techniques d'accélération utilisées pour converger vers une solution plus rapidement. Dans les méthodes JFNK, cette accélération est réalisée par des préconditionneurs sur le système linéaire. Il a été démontré que l'utilisation de préconditionneurs, qui sont basés sur la physique des composants sous-jacents, fonctionne très bien [37]. Ce type de préconditionneur résoudra généralement une version découplée (ou faiblement couplée) du système multiphysique. D'autres considérations lors de la construction d'un cadre multiphysique peuvent se concentrer sur la conception de logiciels dans le cadre. La complexité des problèmes multiphysiques nécessite que beaucoup de morceaux de logiciel travaillent ensemble de façon transparente. Ce type de complexité exige une architecture modulaire pour le cadre. Une conception modulaire contient des interfaces bien dénies au niveau des limites de chaque module. Des interfaces bien dénies permettent également d'échanger facilement les composants modulaires.

A. 3 . 3

 33 Formulations transitoiresDes travaux récents ont montré qu'un changement de réactivité provoque un décalage dans le spectre d'énergie de la solution de transport[START_REF] Dall'osso | Neutron spectrum kinetics in the innite homogeneous reactor[END_REF]. Ce décalage n'est pas visible lors de calculs de criticité et nécessite un traitement spécial.Ainsi, si des sections ecaces, produites par un procédé d'homogénéisation utilisant un ux provenant d'un calcul de criticité, sont utilisés dans un calcul transitoire, des erreurs signicatives peuvent être introduites en raison de l'échec à capturer ce décalage. Deux nouvelles méthodes sont étudiées pour obtenir un ux de pondération plus précis pour les calculs transitoires: le premier est basé sur un ux intégré dans le temps ou uence (méthode uence), et le second sur une développement de ux asymptotique (méthode alpha).Méthode uenceLa première méthode étudiée pour réduire les erreurs dans les calculs transitoires, consiste à introduire une moyenne pondérée dans le domaine temporel dans l'équation d'homogénéisation d'origine. A ce stade, tout comme les régions homogènes et la structure énergétique homogène peuvent être librement choisies, le maillage de temps homogène sur lequel les sections ecaces dépendant du temps sont constantes peut être librement choisi. La dépendance temporelle des sections ecaces proviendra généralement de leur dépendance à la température, ce qui changera au cours d'une simulation transitoire. Cette formulation peut cependant être coûteuse en raison de la nécessité d'exécuter un calcul d'homogénéisation à chaque intervalle de temps lorsque les sections ecaces et le ux ont changé. Pour réduire le coût de ce procédé d'homogénéisation, on suppose que la section ecace est constante sur des grands intervalles de temps [148]. Ceci permet d'exécuter l'intégration dans le temps indépendamment du comportement de la section ecaces. Cette moyenne ajoute une autre dimension à la
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 3 HOMOGÉNÉISATION TRANSITOIRE d'intervalles de temps dans le domaine d'intervalle de temps macro. Le principal inconvénient de cette méthode est le coût associé à l'obtention du ux en fonction du temps utilisé pour homogénéiser les sections ecaces. Une façon de réduire le coût d'obtention d'une telle solution consiste à eectuer le calcul en fonction du temps sur des sous-domaines du problème.Habituellement, les méthodes d'homogénéisation sont axées sur la conservation des taux de réaction; ici, la conservation d'une quantité similaire est recherchée: la densité totale de réaction pendant un intervalle de temps.Méthode alphaLa méthode d'homogénéisation alpha est une nouvelle technique pour produire des sections ecaces homogénéisées qui peuvent être utilisées dans les calculs dépendant du temps[START_REF] Dugan | Cross-Section Homogenization for Reactivity-Induced Transient Calculations[END_REF]. Cette méthode considère des vecteurs propres du problème-α et les utilise comme remplacement pour le mode fondamental du problème k-valeur propre pour les calculs statiques. L'utilisation d'un ux qui provient d'un problème de valeur propre prenant en compte le comportement dynamique du système devrait produire des sections ecaces homogénéisées qui représentent également les décalages spectraux observés pour les solutions en fonction du temps.Il existe de nombreux vecteurs propres problème α-valeur propre qui peuvent être utilisés comme ux de pondération. Les caractéristiques du système nucléaire et transitoire permettront de déterminer quelles vecteurs propres sont utiles pour l'homogénéisation.Lors que les précurseurs de neutrons retardés sont supprimés, il y a une seule valeur propre dominante dont le signe est déterminé par le caractère critique du système. Toutes les autres valeurs propres sont largement négatives, ce qui provoquera l'extinction de ces modes peu après le début du transitoire. Pour des problèmes où les précurseurs de neutrons retardés sont supprimés, seul ce vecteur propre dominant est considéré comme ux de pondération.Cependant, lorsque les neutrons retardés sont présents, il existe plusieurs valeurs propres qui inuencent la solution dépendant du temps après le début du transitoire. Contrairement au cas sans précurseur de neutrons retardés, ces modes ne sont pas disparus peu après le début du transitoire. Quand les neutrons retardés sont présents, une combinaison de plusieurs modes est utilisée pour produire un ux de pondération pour le processus d'homogénéisation.Une façon de combiner les vecteurs propres pour la méthode alpha serait d'utiliser un développement. Les coecients de développement sont calculés en fonction de la condition initiale. L'intégrale du ux dépendant du temps peut être eectuée de manière analytique.Cette combinaison de vecteurs propres inclut à la fois les outils du problèmeα-valeur propre, et ceux du procédé de uence. Elle réduit le coût de l'obtention d'une solution en fonction du temps pour la méthode de uence, et produit des sections ecaces dépendant du temps qui fournissent des vecteurs propres importants quand ils sont le plus inuents lors d'un transitoire. Une autre façon d'appliquer la méthode alpha consiste à construire une combinaison linéaire de valeurs propres α à utiliser dans le problème de l'homogé-néisation, où les coecients de développement sont déterminés à partir d'une minimisation de la condition initiale, projetée sur le sous-espace engendré par les vecteurs propres. La combinaison linéaire peut être construite en utilisant tous les N d + 1 principaux vecteurs propres, ou un sous-ensemble de ces vecteurs. Ici, N d est le nombre de groupes de précurseurs de neutrons retardés. Plusieurs sous-ensembles sont utilisés dans la partie de ce travail présentant les résultats, par exemple: le vecteur propre dominant seul, le plus grand et le plus petit des vecteurs propres principaux (extrema), et l'ensemble des N d + 1 vecteurs. L'association du vecteur propre et de la plus grande valeur propre est utilisée pour les cas où les précurseurs de neutrons retardés sont supprimés. Ce sous-ensemble fonctionne bien car les modes moins dominants sont disparus rapidement après le déclenchement du transitoire, et une grande partie du transitoire est gérée par l'évolution de ce mode unique. Il sera montré cependant que, lorsque les neutrons retardés sont présents, ce sous-ensemble est insusant pour produire des sections ecaces homogénéisées qui reproduisent les caractéristiques du transitoire de référence. Ce comportement peut être attribué au fait que le transitoire est géré par des modes non-dominants bien après le début du transitoire.Le prochain sous-ensemble étudié considère à la fois le vecteur propre avec la plus grande valeur propre, et les plus petites valeurs propres principales (extrema).Ce sous-ensemble a été étudié pour incorporer simultanément deux constantes de temps du transitoire: le comportement rapide de la ssion prompte, et le comportement plus lent de l'émission des neutrons retardés. Ces deux vecteurs propres sont choisis pour prendre en compte le comportement rapide présent juste après le début du transitoire ainsi que le comportement associé au mode asymptotique bien après le début du transitoire. Un aspect important de choisir ces modes comme ux de pondération, est le poids relatif accordé à chaque mode.Ces poids sont choisis en fonction de l'état initial, tout comme la façon dont les coecients de développement seraient choisis pour des problèmes dépendant du temps. Cependant, étant donné que les deux vecteurs propres ne forment pas un ensemble complet, une minimisation est eectuée pour obtenir les coecients de développement. De cette façon, les vecteurs propres sont pondérés d'une manière qui reproduirait le mieux la condition initiale, étant donné l'ensemble des vecteurs de développement. En variante, une solution autre que le ux initial pourrait être utilisée pour déterminer des coecients de développement. Cependant, étant donné que l'état initial pour le ux est spécié pour le calcul, cette solution est choisie pour l'obtention des coecients de développement.Le troisième sous-ensemble est similaire au sous-ensemble précédent des extrema des valeurs propres principales, mais tous les vecteurs propres principaux sont considérés pour produire un ux de pondération pour l'homogénéisation.Ce sous-ensemble est pris pour couvrir une plage de temps plus large que les sous-ensembles précédents en raison du plus grand nombre de vecteurs propres présents dans l'ensemble. Les coecients de développement sont obtenus de la même façon: un problème de minimisation avec la condition initiale.Les méthodes décrites dans cette section ont été appliquées à plusieurs transitoires, à la fois dans les milieux homogènes et hétérogènes. Il a été montré, à la fois pour un cas spatialement homogène et pour un cas spatialement hétérogène, A.4. CONCLUSIONS que des sections ecaces homogénéisées produites avec un ux de pondération provenant d'un calcul critique peuvent introduire des erreurs importantes dans le transitoire. Les deux méthodes produisent de bons résultats lorsque les précurseurs de neutrons retardés ont été supprimés, mais la méthode alpha a dû être modiée lorsque les précurseurs de neutrons retardés ont été introduits. La méthode alpha a besoin d'inclure les contributions des précurseurs de neutrons retardés à vie court et à vie longue. Il a été observé que pour une insertion de réactivité audessous du seuil prompt critique (ρ < β), les sections ecaces produites à partir d'un calcule critique fonctionnent bien; les erreurs pour le transitoire supercritique étaient plus petites que pour le transitoire super prompt critique. Cependant, les nouvelles méthodes ont toujours produit des erreurs plus petites que la méthode critique dans tous les cas. Lorsque des hétérogénéités spatiales ont été introduites, la méthode uence a continué à bien fonctionner, mais la partie délicate de cette procédure sera dans le choix d'un problème d'homogénéisation de référence approprié. Pour récupérer le comportement des insertions de réactivité non uniformes, un tampon homogène peut être ajouté à la zone d'homogénéisation d'intérêt. Il a également été démontré que le ranage de la discrétisation de temps utilisée dans le procédé de uence réduit les erreurs de divers paramètres jusqu'à un point où plus de subdivisions ont augmenté les erreurs. Cette augmentation de l'erreur peut être le résultat de l'accumulation d'erreurs numériques en raison de la plus grande table d'interpolation induite par la discrétisation temporelle plus ne. Le temps nécessaire pour produire des sections ecaces est décourageant pour les applications industrielles, et pour que cette méthode soit utile, des améliorations devront être explorées. Une voie possible pour obtenir la solution multiphysique requise pour cette méthode consiste à mettre en ÷uvre des algorithmes parallèles dans l'ensemble des modèles utilisés. La méthode de transport utilisé une quadrature S 8 , et la parallélisation des balayages de transport à travers le domaine a le potentiel de réduire le temps de calcul par une fraction signicative. Alternativement, une solution en fonction du temps approximative peut être obtenue par un développement sur des modes propres α. Cependant, cette approximation ne prend pas en compte les eets du changement de la température pendant le transitoire et peut être considérablement dans l'erreur. A.4 Conclusions Les travaux discutés dans cette thèse se concentrent sur la simulation précise des accidents d'insertion de réactivité. L'objectif de ce travail est de montrer comment les codes de composants physiques peuvent être couplés dans un cadre multiphysique basé sur JFNK et d'étudier l'impact de l'utilisation des sections ecaces homogénéisées dans les calculs transitoires. Les méthodes développées dans ce travail peuvent être ecacement appliquées pour traiter la simulation des accidents graves où l'insertion de réactivité est telle que le système nucléaire est super prompt critique. Dans un tel cas, le système nucléaire est loin d'une conguration en mode fondamental et de grands eets de contre réactions qui poussent la solution sont présents. Les méthodes d'homogénéisation développées dans ce travail ont été testées sur des simulations de petite échelle pour montrer leur utilisation potentielle dans des applications de génie nucléaire. Le transfert à des calculs de taille industrielle nécessitera un certain nombre d'études supplémentaires pour que ces méthodes soient jugées utiles dans les codes industriels. Une telle étude devra tester le comportement des méthodes lorsqu'un modèle de diusion de neutrons est utilisé dans le calcul homogénéisé. Dans les cas traités dans ce travail, un modèle de transport de neutrons a été utilisé à la fois dans le calcul de référence et dans le calcul homogénéisé. Un autre grand progrès requis pour la méthode uence sera d'obtenir un ux en fonction du temps dans un délai raisonnable. Ceci peut être accompli grâce à la parallélisation ou la formation d'une approximation appropriée au ux dépendant du temps. La présente section résume les résultats de ce travail, tire plusieurs conclusions, et donne la vision de l'auteur pour les futurs développements de ce travail. A.4.1 Couplage multiphysique L'un des principaux objectifs de ce travail était de développer un cadre dans lequel plusieurs codes physiques, qui ne sont pas prévus à l'origine pour fonctionner dans une simulation multiphysique, pourraient être couplés. La façon typique de mettre en ÷uvre un tel cadre multiphysique est d'utiliser une technique de fractionnement d'opérateur où le couplage entre les codes des composants est traité par le biais d'I/O. Ce type de schéma de couplage ne traite que le couplage faible entre les composants physiques et peut éprouver des dicultés de convergence. La méthode de choix pour ce travail a été basée sur la méthode JFNK, où toutes les composantes physiques sont traitées dans un seul grand système. Ce type de méthode résout le couplage entre les composantes physiques à chaque pas de temps du processus de solution par des itérations non-linéaires. Une méthode de Newton est utilisée comme itérateur non linéaire en raison de sa convergence supérieure par rapport aux autres méthodes non linéaires, comme le point xe et Picard. Le point faible de mettre en ÷uvre une méthode de JFNK pour conduire des simulations multiphysiques est dans les modications potentiellement lourdes nécessaires dans les codes de composants. Le procédé JFNK nécessite qu'une solution résiduelle soit renvoyée par chaque composant physique, ce qui n'est généralement pas une opération que les codes composants fourniront. Ces calculs de résidus doivent être soit mis en ÷uvre dans les codes soit calculés à l'extérieur des codes en contrôlant les opérations dans un code de composant. La mise en ÷uvre du calcul résiduel dans les codes de composants nécessite que chaque code de composant soit capable de manipuler une solution provenant d'autres codes de composants; la fonction résiduelle pour un seul composant physique dépend de la solution de tous les composants physiques. Chaque composant physique pourrait alors simplement accepter la solution multiphysique complète et retourner la solution résiduelle pour ce composant physique. Ce mode de réalisation est plus robuste et modulaire, mais il exige qu'à chaque fois qu'un élément physique est ajouté à la simulation, tous les codes de composant physique soient modiés. A.4. CONCLUSIONS En variante, le calcul de la solution résiduelle à l'extérieur des codes composants ore une plus grande souplesse dans le calcul de résidus. Les codes de composants sont gérés par des appels de fonctions, qui contrôlent les diérentes étapes nécessaires pour produire une solution résiduelle. Une fois que ces appels de fonction sont établis, les modications des codes composants existants ne sont pas nécessaires si les composants physiques supplémentaires sont ajoutés à la simulation. Ceci est la façon dont les résidus sont calculés dans les résultats de ce travail. La partie délicate de cette stratégie est la mise en ÷uvre correcte des appels de fonction à des composants physiques. Le code doit être modié pour faciliter l'extraction d'informations provenant d'autres solutions. A l'extérieur des codes de composants, les solutions doivent avoir la forme que les codes composants attendent. Une nouvelle formulation pour le résidu du transport de neutrons résiduel a été développée sur la base de la source de ssion au lieu du ux angulaire. La réduction de la taille du résidu avec cette formulation est importante. Cette nouvelle version du résiduel du transport des neutrons réduit la taille de la solution par un facteur important; un facteur de 3120 dans les résultats hétérogènes présentés au paragraphe 4.4.2. Il a été montré que le résidu est correctement mis en ÷uvre en suivant la convergence de l'erreur par le ranement du domaine temporel. La solution de référence a été calculée analytiquement à partir d'un modèle 1 point, 1 groupe d'énergie avec 2 groupes de précurseurs de neutrons retardés. Deux Préconditionneurs basés sur la physique, qui ne nécessitent que des manipulations de la solution résiduelle, ont été testés. Les deux préconditionneurs basés sur la physique (Bloc Jacobi et Bloc Gauss-Seidel) ont été testés et comparés au préconditionneur d'identité. Il a été montré que les préconditionneurs basés sur la physique réduisent le rapport moyen du nombre d'itérations linéaires d'itérations non-linéaires lors d'un transitoire. La puissance derrière ces préconditionneurs, qui ne manipulent que la solution résiduelle, est que la physique sous-jacente n'est pas nécessaire pour produire un préconditionneur ecace. Le fournisseur du cadre multiphysique peut également fournir des préconditionneurs ecaces basés sur la physique sans avoir à connaître les composants physiques qui seront utilisés dans le cadre. A.4.2 Homogénéisation Un changement de puissance dans un milieu inni homogène avec 281 groupes d'énergie a été étudié initialement. Il a été montré que, pour les transitoires rapides où une réactivité supérieure à β est insérée, l'utilisation de sections ecaces homogénéisées produites avec un ux du mode fondamental introduit des erreurs signicatives dans la puissance et de la température en fonction du temps. Ces erreurs étaient toujours présentes, mais pas aussi importantes lorsque l'insertion de réactivité était inférieure à β. Deux nouvelles méthodes d'homogénéisation ont été développées pour réduire les erreurs liées à l'utilisation d'un ux de mode fondamental dans le processus d'homogénéisation. La première méthode (Alpha) fondée sur l'obtention de vecteurs propres d'un problème de α-valeur propre au lieu du problème habituel de k-valeur propre. Les α-valeurs propres, qui correspondent aux N d + 1 valeurs propres principales, ont été utilisés dans diérentes combinaisons comme ux de pondération dans le processus d'homogénéisation. La deuxième méthode (uence) utilise un ux intégré en temps, qui provient d'une solution multiphysique sur les sous-domaines du problème. Le ux temporel intégré sert de ux de pondération dans le processus d'homogénéisation. Dans le cas d'un milieu inni homogène, où la dépendance spatiale n'existe pas, les deux nouvelles méthodes ont considérablement réduit l'erreur induite lors de l'utilisation des sections ecaces homogénéisées critiques. Dans un premier temps, les neutrons retardés ont été supprimés pour explorer le comportement des transitoires rapides. Dans cette situation approximative, la méthode uence et la méthode alpha fonctionnent bien. La méthode alpha a utilisé uniquement le vecteur propre dominant comme ux de pondération. Les deux méthodes fonctionnent bien car la solution en fonction du temps atteint la solution asymptotique très rapidement après la perturbation. Il a également été montré que les nouvelles méthodes ne sont pas aectées par la taille de l'insertion de réactivité ou par la structure du groupe homogénéisé. Les neutrons retardés ont été activés dans le modèle de transport des neutrons, ce qui produit un comportement qui ressemble plus à ce qui est observé dans l'analyse du réacteur. L'addition de neutrons retardés a entraîné pour la méthode alpha la nécessité de considérer plus d'un vecteur propre comme ux de pondération, pour saisir le comportement à long terme du transitoire. Plusieurs vecteurs propres ont été combinés pour produire un seul ux de pondération; trois versions de cette combinaison ont été explorées. La version qui fonctionne le mieux utilise une intégration de la solution en fonction du temps, construite à partir d'un développement sur des α-modes propres. La méthode uence n'a pas été aectée par l'addition de neutrons retardés. Il a été observé que, pour les insertions de réactivité inférieurs à β, l'utilisation des sections ecaces homogénéisées critiques fonctionne susamment bien. Cette observation peut justier l'utilisation de sections ecaces critiques lors de la modélisation des transitoires de fonctionnement. Cependant, lors de la modélisation des transitoires super prompt critiques, les sections ecaces homogénéisées critiques peuvent introduire des erreurs importantes.Un problème spatialement hétérogène a été étudié an de déterminer si de tels procédés fonctionneraient bien avec une insertion de réactivité non-uniforme. L'ajout d'hétérogénéités spatiales n'a pas d'incidence sur la performance des nouvelles méthodes. Le procédé de uence a été testé sur un sous-domaine du problème de référence. Il a été observé que la méthode de uence a besoin d'un tampon homogène pour simuler l'environnement du problème de référence pour produire de bonnes sections ecaces homogénéisées. Sans le tampon homogène, la même perturbation de la concentration de bore dans le calcul de référence produit une insertion de réactivité beaucoup plus grande dans le calcul de la région isolée. L'eet de la discrétisation des intervalles de temps a été testé pour ce problème hétérogène. Il a été montré que les erreurs sont réduites par anages successifs de l'intervalle de temps jusqu'au point où les erreurs d'interpolation deviennent dominantes.Les résultats de ce travail montrent que dans certains cas, l'utilisation des sections ecaces homogénéisées destinées à des calculs d'équilibre dans des calculs transitoires peut introduire des erreurs importantes. Un moyen de remédier à l'introduction de ces erreurs est d'utiliser les nouvelles méthodes développées dans ce travail, qui prennent en compte le comportement dépendant du temps des solutions physiques couplées. La méthode la plus ecace à appliquer dépend du type de transitoire simulé.A.4.3 Travaux à venirPlusieurs directions sont disponibles pour l'exploration au-delà du travail présenté dans cette thèse. Ce qui suit est une discussion sur la vision de l'auteur pour la poursuite du développement dans ce domaine de recherche.Couplage multiphysiqueEn termes de simulations multiphysiques étudiées dans ce travail, plusieurs améliorations peuvent être explorées. Ces améliorations portent à la fois sur la modélisation des composants physiques et sur la conception des logiciels utilisés dans les simulations.Le modèle thermohydraulique utilisé dans ces calculs utilise une approximation du ux otté pour les vitesses de vapeur et d'eau. Ce modèle ne représente dèlement pas la réalité lorsqu'il est appliqué aux transitoires rapides, où un modèle complet de deux état est plus approprié. Dans les simulations présentées dans ce travail, le système fonctionne initialement au CZP, où le uide et le combustible sont presque en équilibre thermique. Le changement rapide de puissance n'a pas élevé la température du uide de manière signicative. En eectuant des calculs où la vapeur était présente de manière importante, à HFP par exemple, le changement de puissance pourrait aecter de manière signicative la thermohydraulique de la vapeur. Pour étudier ces accidents, un modèle plus complexe à 6 équations doit être utilisé.Les formulations du résidu présentées dans ce travail ont été discrétisées dans le temps en utilisant des méthodes de premier ordre. En réduisant la taille du résidu de transport en éliminant le ux angulaire, le résidu a été limité à un premier ordre dans la discrétisation du temps, où les méthodes d'ordre supérieur nécessiteraient la manipulation du ux angulaire. Cependant, les méthodes d'ordre supérieur peuvent être avantageuse lorsqu'elles sont appliquées à des problèmes raides, comme ceux des accidents de grande insertion de réactivité. Une voie possible pour réaliser cette extension est à l'aide des méthodes de Runge-Kutta décrites au paragraphe 2.1.4. Ces méthodes permettent de manière souple d'augmenter l'ordre de la méthode sans modication importante de l'algorithme.Une étude intéressante serait d'observer l'eet de la plus grande taille du résidu sur la convergence pour le solveur linéaire Krylov. L'augmentation de la taille du résidu serait justiée si les itérations linéaires n'augmentient pas de manière signicative et de plus grands pas de temps pourraient être pris avec la méthode d'ordre supérieur de Runge-Kutta. et à quels problèmes ces méthodes sont appliquées.Lors du calcul des poids pour chaque vecteur propre de la méthode alpha, une minimisation a été réalisée avec un certain ux de référence; dans les résultats de ce travail, le ux initial a été choisi. Ce choix de ux de référence a été fait sur la base de l'idée de trouver les coecients de développement d'une solution en fonction du temps et de la disponibilité du ux initial. Une excellente extension de la méthode alpha serait d'étudier l'eet de l'utilisation de diérents ux de référence pour déterminer les coecients de pondération. Par exemple, si une estimation de la température était disponible, le ux pourrait être estimé à diérents points au transitoire et être utilisé pour générer des coecients de pondération pour la méthode alpha.L'un des progrès les plus importants dans les méthodes d'homogénéisation a été par l'ajout de degrés de liberté supplémentaires grâce à des facteurs de discontinuité. Ces facteurs éliminent l'hypothèse d'un ux continu au niveau des interfaces des régions homogénéisées an de mieux conserver les taux de réaction à l'intérieur de ces régions. L'ajout de facteurs de discontinuité à la méthode de uence peut être simple en évaluant la fraction du ux intégré dans le temps dans la région su le ux intégré dans le temps aux limites de la région. Toutefois, pour la méthode alpha, en raison des multiples vecteurs propres utilisés, il y a plus de choix dans l'application de facteurs de discontinuité. On pourrait appliquer les mêmes coecients pour les facteurs de discontinuité, mais il peut y avoir des choix plus optimaux dans la façon d'appliquer ces facteurs de discontinuité. Cette extension est plus applicable lorsque le problème homogénéisé est modélisé par diusion de neutrons étant donné que les facteurs de discontinuité sont destinés à être utilisés lors de l'application d'un opérateur d'ordre inférieur dans le problème homogénéisé. Lors de l'application de la méthode de uence à des problèmes spatialement hétérogènes, un tampon homogène a été ajouté au sous-domaine, ce qui rend les insertions de réactivité similaires dans le problème de référence et dans le calcul du sous-domaine. Bien que ce tampon homogène représentait avec précision les assemblages environnants, il était encore nécessaire de balayer ce domaine au cours de la simulation. Une option moins coûteuse serait d'approcher les milieux environnants par une condition aux limites de l'albédo. Si une condition d'albédo exacte dépendant du temps état disponible, le calcul d'une solution en fonction du temps sur les sous-domaines par la méthode de uence pourrait être réalisé plus rapidement. Le grand inconvénient de la méthode de uence est le coût dans le calcul du ux en fonction du temps, utilisé dans le processus d'homogénéisation. Pour le cas spatialement hétérogène du chapitre 4, la solution a pris 4 jours pour être obtenue. Pour que cette méthode soit appliquée à des simulations de taille industrielle, une réduction du temps nécessaire pour obtenir un ux dépendant du temps est essentielle. Une voie prometteuse à poursuivre est la parallélisation du calcul pour obtenir cette solution. La parallélisation de l'algorithme de balayage de transport pourrait fournir une accélération signicative dans ce calcul. Les procédés d'homogénéisation ont été appliqués à un calcul de coeur réduit. Bien que cette application montre que ces méthodes ont le potentiel d'être Titre: Développement d'un solveur multiphysique dans le code APOLLO3 et applications à l'homogénéisation des sections ecaces Mots clés: multi-physique, homogénéisation, transport des neutrons, thermo-hydraulique Résumé: Le comportement des réacteurs nucléaires dépend sur plusieurs composants physiques qui s'interagissent fortement. La solution aux problèmes d'analyses réacteurs doit prendre en compte ses interactions pour produire des estimations encore plus précises. Ces travaux concernent un méthode pour obtenir des solutions de haute précision à des simulations multiphsyiques pour le comportement des réacteurs nucléaires aux situations accidentelles. En plus d'étudiant des méthodes numériques à la solution aux systèmes physiques fortement couplées, le traitement des données utilisées aux simulations a été étudié. Il est montré que les sections ecaces peuvent introduire des erreurs importantes en fonction du transitoire simulé. En utilisant des section ecaces homogénéisées avec un méthode traditionnel, optimisé pour des calculs statiques, des erreurs importantes sont introduits quand l'insertion de réactivité est audessus de prompte critique. Deux méthodes sont étudiés pour réduire telles erreurs dans un cas homogène. Un méthode est basé sur l'integration du ux en temps, et le seconde est basé sur une expansion asymptotique en temps. Les deux méthodes sont montrés à réduire les erreurs introduits avec les sections ecaces générées avec un ux fondamentale. Le méthode avec le ux intégré est appliqué à un cas hétérogène, où des modèles plus complexes sont utilisées. L'eet de ranement du domaine d'intégration en temps est montré de réduire des erreurs jusqu'à un moment où d'autres erreurs deviennent dominantes. Le solveur multiphysique est aussi montré d'être capable de obtenir des solution aux problèmes de grand taille en traitant un accident de chute de grappe d'un REB au démarrage. Title: Developing a Multiphysics Solver in APOLLO3 and Applications to Cross Section Homogenization Keywords: multiphysics, homogenization, neutron transport, thermal hydraulics Abstract: The behavior of nuclear reactors depends on many physical processes which interact and strongly aect one another. The solution to problems in reactor analysis should take into account these interactions to produce increasingly accurate estimates of reactor behavior. This work studies a method to obtain high delity solutions to strongly coupled physics components in solutions to the behavior of nuclear reactors in accident transient situations. In addition to studying the numerical methods used to resolve such strongly coupled physics systems, the treatment of data used in such simulations is studied. It is discovered that homogenized cross sections used in transient simulations may introduce signicant errors depending on the transient being simulated. Using a traditional homogenization method which is intended for static calculations is shown to introduce signicant er-rors in a simulation when the reactivity insertion is above the prompt-critical threshold. Two methods are explored to reduce such errors in a spatially homogeneous case. One method is based on the time integrated ux, while the other is based on an asymptotic expansion of the ux in the time domain. Both methods are shown to reduce the errors introduced through using cross sections generated with a fundamental mode ux. The time integrated ux method is further tested on a spatially heterogeneous geometry, where more complex physical models are utilized. The impact of renement of the time integration domain is shown to reduce simulation errors until a point where other errors become dominant. The multiphysics simulation framework is also shown to be capable of obtaining solutions to larger problems, more suited to reactor analysis by treating a Rod Drop accident in a BWR during startup. Université Paris-Saclay Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 91190 Saint-Aubin, France
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  1.3. SEVERE ACCIDENTS physics component code. Presently, multiphysics solutions are sought in the application domain where heavy modication to component codes becomes risky and error prone. This consideration creates a large focus on producing stable operator splitting methods. Additionally, the component codes are generally written without extensibility in mind and extending such codes to operate in a multiphysics environment can be problematic. It is reasonable that the easiest path to a multiphysics solution is to use a driver program with le Input/Output (I/O) between physics component codes. The driver program should be based on

  1.6. ORGANIZATION preconditioner. While these preconditioners may not be the optimum choice for acceleration, they perform well and are an acceptable starting point. A novel neutron transport residual formulation is developed based on the ssion source. α-eigenvalue problem is studied and used to develop various versions of the Alpha homogenization method. Several combinations of α-eigenvectors are used in the Alpha method with varying levels of success depending on characteristics of the transient simulated. The two methods, described in Section 1.5.2, are tested on a variety of transients. The rst tests are in an innite homogeneous

	This new formulation is veried to be correctly implemented by comparing the
	rate of temporal convergence to the analytic solution of a 1 point, 1 energy group
	solution with 2 delayed neutron precursor groups.
	Chapter 4 details the new homogenization methods developed to treat cross
	section homogenization during transient simulations. The eigenvalue spectrum of

the medium with 281 energy groups. The eect of suppressing and activating delayed neutron precursors is investigated. It is found that when suppressing delayed neutron precursors in this geometry, a single dominant α-eigenvector is adequate in producing homogenized cross sections. Both the Fluence and Alpha methods perform well when compared to a classical homogenization method in reproducing a reference power transient. It is also shown that the new methods perform well for a variety of reactivity insertions and homogenized group structures when delayed neutron precursors are suppressed. Activating delayed neutron precursors

  2. PHYSICAL MODELS initial condition for the distribution of delayed neutron precursors. The initial condition for the coupled Equations 2.1 & 2.3 is composed of a given distribution for the angular ux and precursor concentration at a specic time, corresponding to the beginning of the simulation. The initial angular ux depends on space, energy, and angle, while the initial delayed neutron precursor concentration only depends on space. A time independent form of Equation 2.1 is

	2.1.2 Boundary & Initial Conditions

Equation 2.1 is accompanied by boundary conditions which dene the angular ux incident on the spatial region being modeled, and an initial condition which species the initial angular ux distribution within the modeled region. Equation 2.3 contains a single rst order derivative in time which requires a single CHAPTER

  The use of self shielding in the present work diers from the norm by performing self shielding while producing a base cross section table. The base cross section table

contains cross sections in the ne space and group structure. This cross section table is used to perform reference calculations and homogenization is performed on the cross section sets in the base table, without additional application of self shielding. The cross section table produced by homogenizing the reference table is similar to what is used in current transient reactor analysis

  table, which produces a larger table. The number of state points in the new cross section table is the number of state points in the base table multiplied by the number of time intervalsin T . The main drawback to such a method is in the cost associated in obtaining the time dependent ux used to homogenize cross sections. One way to reduce the cost of obtaining such a solution is to perform the time dependent calculation on subdomains of the problem, which will be discussed in Section 4.4.2.
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1 shows a summary of the homogenization methods treated in the next section.
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 4 1. Summary of Characteristics for Homogenization Methods

	Homogenization Treatment of Method Self Shielding	Weighting Flux			Cross Sections Used in RHP * *	Cross Sections Produced
		Pre-calculated prior to	Fundamental k-eigenvalue	Fixed based on state	Table of cross sections
	Critical	homogenization for	for each state point	*		point *	corresponding to state
		each state point *				points	*
		Evaluated with each	• Time-dependent ux	Interpolated between	Table of cross sections
		change of temperature	• Result of transient		state points	* at each	corresponding to state
	Fluence	during transient or pre-calculated for each	calculation in RHP and,	* *	evaluation of solution residual (time dependent	points * per time interval
		state point	*	• Integrated over time	through temperature)
				interval		
		Pre-calculated prior to	• Time dependent			Fixed based on state	Table of cross sections
		homogenization for	expansion of α-eigenmodes,	point	*	corresponding to state
		each state point *	integrated over time intervals	points * or state points *
				• Combination of			per time interval
	Alpha			α-eigenvectors, weighted
				based on initial condition
				or,		
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 4 2. Material Concentrations for the Homogeneous UO 2 and each time step where the temperature had deviated. However, to reduce the cost of this treatment, self shielding eects are computed at the state points specied in the cross section table when the base cross section table is produced. In standard reactor analysis, self shielding is accounted for during the homogenization and group condensation step to produce a cross section table that has self shielded cross sections at each state point. Here there is an intermediate step to create the reference cross section table. The reference cross section table is used in the reference calculation, afterwhich the reference cross section table is put through the homogenization and condensation routine. In all cases, whether using reference or homogenized cross section values, the table produced

	Borated Water Mixture	
	Material Nominal Conc. [b -1 • cm -1 ]
	235 U	7.0669e-4
	238 U	2.1811e-2
	16 O	4.5035e-2
	H 2 O	2.3709e-1
	10 B	2.2120e-5
	11 B	8.9037e-5
	Homogeneous cross sections were generated by APOLLO3 , using the solution
	from a representative LWR lattice as a weight function, for various temperature
	and boron concentration values. The temperature of the mixture is dened by
	the uranium and water temperatures individually. However, the cross section
	table is generated in such a way that the mixture temperature can be related to

a single temperature; in this example, the uranium temperature is chosen as the reference temperature for the mixture. The statepoints at which cross sections are evaluated are shown in Figure 4.1, where interpolation parameters are given as the mixture temperature deviation (∆T) and the boron concentration as a percentage of the nominal value. T U (T H 2 O ) [ • C] State Point Space with Interpolation Parameters: Fuel Temperature Deviation (∆T ) and Percent Boron (%). Central Point (green) Corresponds to the Nominal State. Absolute Values of Interpolation Values Included on Respective Axes.

All cross sections are generated taking into account cross section self shielding eects based on the specied state point conguration. The self shielding routine is not further conducted during the energy condensation and spatial homogenization routines studied in this chapter. Implementing the self shielding routine in the homogenization process is more straight forward for the Alpha method presented earlier because of its similarity to classical homogenization methods. The structure of the cross section table produced by the Alpha method is identical to the table produced by the Critical method; meaning any features of the critical method can be translated to the Alpha method. However, the Fluence method poses more diculties because of the changing temperature over the time intervals. A rigorous treatment of the temperature dependence would recalculate self shielding eects at is similar to what is used in current reactor analyses

[START_REF] Verdú | Peach Bottom Transients Analysis with TRAC/BF1-VALKIN[END_REF]

.
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	3. Energy Group Structure for Homogenization Routines
	Used in Homogeneous Medium Geometry. The Group Cuto Refers
	to the Group Number of the 281 Energy Group Structure
	Groups Energy Cuto [eV] Group Cuto
	2	0.21	260
	3	0.21 0.04	260 272
		951e3	22
		9.5	143
	6	0.21	260
		0.09	266
		0.015	276
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	Neutron Precursors.				
				Relative Error * [%]	
	Boron Method Max Power Peak Time Energy Max Temp.
		Reference	84 W • cm -3	0.116 s	2.56 J	651.1 • C
	99%	Critical	22.53	1.03	4.90	2.17e-2
		Alpha	2.04	0.13	1.39	4.58e-3
		Fluence	0.66	0.13	0.08	2.61e-5
		Reference	256.7 W • cm -3	0.112 s	3.59 J	652.1 • C
	98%	Critical	27.37	0.94	7.97	4.28e-2
		Alpha	2.46	0.00	1.88	9.09e-3
		Fluence	0.77	0.13	0.05	4.98e-5
		Reference	1.93 kW • cm -3	0.106 s	8.00 J	656.2 • C
	94%	Critical	29.60	0.57	10.90	1.22e-1
		Alpha	2.78	0.00	2.42	2.65e-3
		Fluence	0.69	0.14	0.04	2.58e-4
	* Relative error calculated with absolute value of dierence, normalized by reference value

4. Comparison of Three Homogenization Methods By Relative Error in Maximum Power, Peak Time, Total Energy, and Maximum Temperature. Homogeneous Medium Case, Collapsing Fom 281 to 2 Energy Groups Without Delayed

Table 4

 4 

.3 shows the homogenized group structures that were tested. In all group structures, the energy is bound by 19.6 MeV, and the group cut-o shown in the table refers to the group number of the 281 group structure.
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 4 5. Comparison of Three Homogenization Methods By Relative Error in Maximum Power, Peak Time, Total Energy, and Maximum Temperature. Homogeneous Medium Case, Collapsing Fom 281 to 3 Energy Groups Without Delayed

	Neutron Precursors.				
				Relative Error * [%]	
	Boron Method Max Power Peak Time Energy Max Temp.
		Critical	19.75	1.03	3.39	1.66e-2
	99%	Alpha	1.01	0.00	0.69	2.29e-3
		Fluence	0.80	0.13	0.10	3.23e-5
		Critical	23.95	0.94	5.90	3.27e-2
	98%	Alpha	1.23	0.00	0.94	4.54e-3
		Fluence	0.94	0.13	0.06	2.64e-6
		Critical	25.78	0.71	8.23	9.22e-2
	94%	Alpha	1.39	0.00	1.21	1.32e-2
		Fluence	0.90	0.14	0.04	2.87e-4
	Neutron Precursors.				
				Relative Error * [%]	
	Boron Method Max Power Peak Time Energy Max Temp.
		Critical	5.66	0.26	1.16	5.47e-3
	99%	Alpha	0.67	0.00	0.46	1.50e-3
		Fluence	0.51	0.13	0.06	2.04e-5
		Critical	6.84	0.27	1.97	1.08e-2
	98%	Alpha	0.81	0.00	0.62	2.98e-3
		Fluence	0.59	0.13	0.04	1.98e-6
		Critical	7.31	0.14	2.74	3.06e-2
	94%	Alpha	0.91	0.00	0.79	8.68e-3
		Fluence	0.54	0.00	0.03	1.94e-4
	* Relative error calculated with absolute value of dierence, normalized by reference value

* Relative error calculated with absolute value of dierence, normalized by reference value Table 4.6. Comparison of Three Homogenization Methods By Relative Error in Maximum Power, Peak Time, Total Energy, and Maximum Temperature. Homogeneous Medium Case, Collapsing Fom 281 to 6 Energy Groups Without Delayed
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	7. Delayed Neutron Precursor Constants Generated by
	APOLLO3 .	281 group Delayed Emission Spectra Omitted for
	Brevity.						
	Group		Fraction (β) 235 U 238 U	Decay Constant (λ) [s -1 ]
	1	0.0002131	0.0001626	0.0124667	
	2	0.0010004	0.0020126	0.0282917	
	3	0.0005938	0.0007257	0.0425244	
	4	0.0012798	0.0026513	0.133042	
	5	0.0021502	0.0056895	0.2924672	
	6	0.0005866	0.0038319	0.6664877	
	7	0.0005275	0.0024771	1.634781	
	8	0.0001488	0.0018017	3.5546	
		0.0065002	0.0193525		
	0 .0 0	0 .0 5	0 .1 0	0 .1 5	0 .2 0	0 .2 5	0 .3 0
				Tim e [s ]		
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 4 8. Comparison of Three Homogenization Methods By Relative Error in Maximum Power, Peak Time, Total Energy, and Maximum Temperature. Homogeneous Medium Case, Collapsing Fom 281 to 2 Energy Groups With Delayed

	Neutron Precursors. Reactivity Insertions are 110%(Removal), 90%(ρ < β), and
	80%(ρ > β).				
				Relative Error * [%]	
	Boron Method	Max Power Peak Time Energy Max Temp.
		Reference	10.40 W • cm -3 0.230.24 s	3.57 J	650.0 • C
		Critical	1.03		0.37	
	110%	Alpha (N )	0.75		1.82	
		Alpha (2)	0.77		0.38	
		Alpha (F)	0.00		0.00	
		Fluence	0.01		0.00	
		Reference	23.9 W • cm -3	0.105 s	4.16 J	651.1 • C
		Critical	0.72	0.43	0.65	2.06e-3
	90%	Alpha (N )	5.65	0.43	1.13	8.98e-3
		Alpha (2)	8.70	0.43	2.50	1.69e-2
		Alpha (F)	0.16	1.72	1.15	4.69e-3
		Fluence	1.21	0.43	0.003	3.65e-5
		Reference	668.4 W • cm -3	0.106 s	9.40 J	655.9 • C
		Critical	14.73	0.28	6.30	7.59e-2
	80%	Alpha (N )	18.89	0.14	1.70	1.37e-2
		Alpha (2)	9.34	0.00	3.88	4.20e-2
		Alpha (F)	0.40	0.00	5.20	5.27e-2
		Fluence	6.35	0.43	0.13	1.51e-3
	2 s and
	reach a maximum. Additionally the time spent at this power level stretches over
	several time steps making a comparison unsatisfying; this is why the peak time
	column is empty for this reactivity insertion. Likewise the maximum temperature
	occurs at the beginning of the transient, so this column is also empty. A more
	meaningful comparison for this reactivity insertion would be the relative error
	of the nal temperature. For the other metrics, there is reasonable agreement
	of the Critical method; a 1% error is larger than the other methods, but is still
	reasonable for many engineering calculations. The rst two versions of the Alpha
	method produced close to the same error in maximum power, and the Alpha(F)

* Relative error calculated with absolute value of dierence, normalized by reference value a supercritical condition. This causes the power to increase slightly after 0.
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 4 9. Comparison of Fluence Method to Critical Homogenization Method By Relative Error in Maximum Power, Peak Time, Total Energy, and L 2 Norm. Transient Corresponds to Reactivity Insertion ρ > β and Various Subdivisions of Interval Between 0.1 s and 0.3 s are Compared.

			Relative Error * [%]	
	Method	Max Power Peak Time Total Energy L 2 norm
	Reference	774.15 W • cm -3	0.61 s	811.30 J	529.07
	Critical	39.94	23.53	11.24	36.30
	Fluence(1)	73.89	389.54	75.23	91.47
	Fluence(2)	50.08	67.32	22.57	56.17
	Fluence(4)	15.41	0.65	4.03	10.84
	Fluence(8)	15.42	0.65	3.72	9.04
	Fluence(16)	6.97	0.65	3.50	5.65
	Fluence(29)	7.16	2.61	3.78	6.28
	Fluence(58)	6.09	2.61	3.90	6.78
					

* Relative error calculated with absolute value of dierence, normalized by reference value
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 4 10. Comparison of Fluence Method to Critical Homogenization Method By Relative Error in Maximum Temperature, Peak Time, L 1 Norm, and L 2 Norm. Transient Corresponds to Reactivity Insertion ρ > β and Various Subdivisions of Interval Between 0.1 s and 0.3 s are Compared. Temperature Taken From Corner Fuel Rod of Central Lattice.

			Relative Error * [%]	
	Method	Max Temperature Peak Time L 1 norm L 2 norm
	Reference	187.26 • C	2.63 s	642.01	327.76
	Critical	3.97	14.00	6.51	7.56
	Fluence(1)	34.91	14.31	36.71	39.76
	Fluence(2)	9.04	14.00	11.86	13.05
	Fluence(4)	2.00	14.00	2.05	2.24
	Fluence(8)	1.68	2.74	1.80	1.91
	Fluence(16)	1.63	0.30	1.65	1.74
	Fluence(29)	1.75	0.61	1.79	1.88
	Fluence(58)	1.80	0.61	1.86	1.94
	Interval Between 0.1 s and 0.3 s are Compared. Temperature Taken From Central
	Water Hole.				
			Relative Error * [%]	
	Method	Max Temperature Peak Time L 1 norm L 2 norm
	Reference	95.26 • C	4.00 s	365.97	183.04
	Critical	0.99		0.60	0.70
	Fluence(1)	5.56		2.64	3.32
	Fluence(2)	1.81		1.00	1.18
	Fluence(4)	0.32		0.17	0.20
	Fluence(8)	0.28		0.14	0.17
	Fluence(16)	0.26		0.13	0.15
	Fluence(29)	0.28		0.14	0.17
	Fluence(58)	0.29		0.14	0.17
	* Relative error calculated with absolute value of dierence, normalized by reference value
	solution; this is the full multiphysics solution in 26 energy groups with full spatial

* Relative error calculated with absolute value of dierence, normalized by reference value Table 4.11. Comparison of Fluence Method to Critical Homogenization Method By Relative Error in Maximum Temperature, Peak Time, L 1 Norm, and L 2 Norm. Transient Corresponds to Reactivity Insertion ρ > β and Various Subdivisions of

Table 4 .

 4 12. Execution Time for Critical and Fluence Methods on 26 Energy Group, Spatially Heterogenous Problem.

	Calculation	Method	Time [ d -hr : min : sec ]
	Reference		4 -18 : 25 : 20.39
		Critical	10 : 55.31
	Homogenization	Fluence(1)	28 : 23.56
		Fluence(58)	9 : 34 : 06.25
		Critical	16 : 30.10
	Homogenized	Fluence(1)	16 : 24.40
	Transient	Fluence(58)	22 : 44.26

that is n× larger than the Critical cross section table, where n is the number of time intervals. For the Fluence cases shown, the number of time intervals is the number of subdivisions given in the table plus two to account for both ends of the transient. The calculation for the transient using homogenized cross sections takes close to the same time in each case. The Fluence method with 58 subdivisions takes slightly longer than the other cases because of the larger interpolation table. The algorithm used to nd the enveloping state points along a larger interpolation axis has a time complexity of O(n log n) because of the sort performed on state point values along each axis.
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	1. Isotopic Concentrations for BWR Material
		Nominal Conc. [b -1 • cm -1 ]
	Material	235 U	238 U	16 O
	Fuel 1	5.9378e-4 2.1537e-2 4.4262e-2
	Fuel 2	7.6282e-4 2.1371e-2 4.4266e-2
	Fuel 3	9.5226e-4 2.1183e-2 4.4270e-2
	Fuel 4	1.0531e-3 2.1083e-2 4.4274e-2
	Fuel 5	1.1091e-3 2.1028e-2 4.4274e-2
			H 2 O	
	Coolant		3.3360e-2	
		10 B	11 B	C
	Control Blade			

  80 • C. The low power and these

	coolant conditions produce a fuel temperature which is slightly above the coolant
	temperature (88.81	•

  5.2. RESULTSin an isolated calculation. Because of the lack of ssile material present in the reector, either part of the neighboring assembly must be included in the calculation or an incident ux must be used on the boundary corresponding to the ux leaving the neighboring fueled assemblies. In this homogenization process, The goal of this exercise is to demonstrate that the multiphysics framework is able to produce coupled physics solutions in reactor accidents. Additionally, in studying this exercise, a cost analysis of the required execution times is performed to indicated the possibility of using this framework in industrial applications. Further studies are expected to improve the accuracy of such solutions by using cross sections generated by the Fluence method.

	the entire geometry is used to accurately account for the eects of neighboring
	assemblies, and to obtain homogenized cross sections in the reector region. The
	delayed neutron precursor data contains 8 delayed neutron precursor groups, with
	2 ssile isotopes.
	While in Chapter 4, the Fluence method of homogenization was shown to
	produce more accurate cross sections for transient simulations, time constraints
	have warranted using the less accurate Critical method to produce homogenized
	cross sections.

Table 5 .

 5 2. Number of Entries in Each Physics Component Residual

	for Reduced Core Calculation	
	Physics Component	Number of Entries
	Neutron Transport	7,688
	Delayed Neutron Precursor	61,504
	Thermal Hydraulics	38,700
	Total	107,892

Table 5 .

 5 3. Average Time Spent Computing the Physics Component

	Residuals.	
	Physics Component	Computation Time [s]
	Neutron Transport	0.5
	Delayed Neutron Precursor	3.0
	Thermal Hydraulics	0.05

  .1. INTRODUCTION transitoire lorsque les sections ecaces sont soupçonnées d'être erronées[START_REF] Jung | Investigation of Conditional Transport Update in Method of Characteristics Base Coarse Mesh Finite Dierence Transient Calculation[END_REF]. Les calculs à la volée peuvent prendre en compte les eets d'un ux en fonction du temps quand il reste proche du ux fondamental. La nouvelle formulation du résidu pour le transport de neutrons se révèle être correctement mise en place et réduit la taille de la solution recherchée. La réduction de la taille ore plus d'avantages que la réduction de la consommation de mémoire. Un vecteur de plus petite taille se trouve dans un espace de recherche plus petit; tout solveur Krylov qui construit des sous-

	A.2. SIMULATION MULTIPHYSIQUE
	A.2.1 Système séquentiel certain type d'interpolation ou de projection sur le maillage d'un autre composant
	La méthode la plus facilement disponible pour coupler des modèles physiques physique [113].
	. Ces bibliothèques peu-indépendants est par une manière de couplage séquentiel, qui peut aussi être Bien que le processus de fractionnement d'opérateur puisse présenter des in-
	vent être utilisées dans le développement de simulations multiphysiques, mais le bouchon dans ces simulations provient souvent des codes de physique en série sous-jacents. Pour exploiter la puissance des calculs parallèles en simulations mul-tiphysiques, les codes des composants physiques sous-jacents doivent également A.1.5 Améliorations de l'état de l'art convénients pour l'obtention d'une solution multiphysique, il est utile en tant que désigné comme fractionnement d'opérateur. Cette méthode implique la résolu-préconditionneur pour des processus simultanés. L'utilisation de précondition-tion de chaque composant physique séparément avec les solutions des autres com-posants physiques en données d'entrée. Il existe des variantes de cette méthode, neurs Bloc ou Physiquement Basé a été montrée comme étant essentielle dans la Le but de ce travail est d'étendre l'état de l'art des méthodes utilisées dans la basé sur la solution d'entrée utilisée provenant des autres composants physiques: résolution de problèmes multiphysiques simultanés [37, 114]. communauté de la simulation numérique. Ces améliorations à l'état de l'art sont être parallèles. Le travail présenté dans cette thèse ne porte que sur l'utilisation d'algorithmes parallèles car les codes de composants physiques sous-jacents util-présentées dans ce paragraphe. Deux grands thèmes pour ces améliorations des soit la solution au pas de temps précédent, soit la solution la plus récente. Cette A.2.2 Système simultané méthode est avantageuse quand il y a des modèles physiques distincts pour chaque méthodes de simulation actuelles seront explorés dans ce travail. Le premier est isés dans ce travail sont traités en tant que processus en série. La parallélisation composant physique qui sont optimisés pour traiter les échelles de la longueur Un grand nombre de travaux récents ont été consacrés à l'étude d'une approche sur les méthodes de couplage qui traitent des composants physiques. Le deuxième de ces codes ne fait pas partie du cadre de cette étude. Cependant, l'utilisation de temps caractéristiques pour cette composante physique. Il y a généralement de système simultané [8, 9, 115, 116]. Le système simultané est réalisé en formant thème porte sur la façon dont les données sont traitées au cours de la simulation de méthodes parallèles dans les simulations multiphysiques est d'une grande im-plusieurs années d'expérience qui se manifestent dans un code informatique pour un résidu non-linéaire pour chaque composante physique et en plaçant chacun de des transitoires. portance et devra être étudiée pour faire suite à ce travail. résoudre une composante physique donnée; cette méthode se construit directe-ces résidus dans un résidu global pour le système couplé. Le problème physique
	Homogénéisation des sections ecaces ment sur cette expérience. non-linéaire couplé peut alors être déni comme: trouver la solution qui produit Méthode de Jacobian-Free Newton-Krylov un vecteur résidu nul.
	Ensuite, la solution la plus récente pour le modèle thermohydraulique est in-
	troduite dans le modèle neutronique. Le processus est répété jusqu'à ce qu'un
	Une grande partie des travaux récents sur les méthodes d'homogénéisation niveau de convergence susant entre les deux modèles soit atteint. Bien que ce
	consiste à produire des sections ecaces homogénéisées où la solution globale peut procédé fasse converger les non-linéarités entre chaque composant physique, la
	être largement diérente de la solution produite pour un assemblage isolé [44]. vitesse de convergence est linéaire et peut devenir coûteuse. Il est généralement
	Cette situation se produit lorsque les assemblages voisins sont très diérents en espaces successifs convergera plus rapidement si le sous-espace peut approcher nécessaire d'accélérer ce type de méthode pour avoir un temps de calcul accept-
	composition des matériaux; ce cas se produit dans des assemblages de combustible avec précision l'espace de recherche complet. able [107]. Le processus itératif entre les composantes physiques produit une
	MOX. Dans ce cas, la solution approchée est loin de la solution globale, et des Un préconditionneur sans matrice, basé sur la physique, est exploré. Générale-méthode numérique inconditionnellement stable, ce qui élimine les oscillations
	sections ecaces homogénéisées avec la solution approchée représenteront mal la ment, les préconditionneurs basés sur la physique exigent la manipulation directe observées avec la version décalée du fractionnement d'opérateur [109, 110].
	réalité. Les méthodes qui prennent en compte les assemblages voisins doivent du code de la physique sous-jacente. La volonté d'opérer dans un cadre modu-Les méthodes de couplage séquentiel sont des méthodes couramment utilisées
	être utilisées, telles que la méthode color-set.

Dans l'analyse de réacteurs, le coût de calcul d'une solution détaillée est généralement rédhibitoire. L'homogénéisation des sections ecaces fournit un moyen pour prétraiter les données avant une simulation an de réduire le nombre d'inconnues. Dans de nombreux cas, l'homogénéisation des sections ecaces consiste à produire une solution approchée qui peut être utilisée pour atteindre des valeurs des sections ecaces moyennes, typiquement sur les domaines de l'espace et d'énergie. Cette solution approchée proviendra généralement de calculs à l'état d'équilibre pour diverses congurations de température et de composition des matériaux, qui sont interpolés lors du calcul du plus grand réacteur. L'homogénéisation des sections ecaces est optimisée pour les calculs statiques, qui représentent la majeure partie du temps de fonctionnement des réacteurs commerciaux. Pour être informatiquement avantageuse, l'homogénéisation des sections ecaces est eectuée au niveau de l'assemblage en 2-D. Les premiers travaux sur l'homogénéisation se concentrent sur la façon de conserver les taux de réaction lors de la transition entre les calculs de transport sur des assemblages à des calculs de diusion sur le coeur. Les taux de réaction peuvent être mieux conservés en introduisant des discontinuités du ux dans les limites des régions homogénéisées

[START_REF] Smith | Assembly homogenization techniques for light water reactor analysis[END_REF] 

ou par le biais d'une procédure qui permet d'ajuster de manière itérative les sections ecaces

[START_REF] Hébert | Development of a Third-Generation Superhomogénéisation Method for the Homogenization of a Pressurized Water Reactor Assembly[END_REF]

.

L'homogénéisation des sections ecaces peut être appliqué à des problèmes en fonction du temps en utilisant l'homogénéisation à la volée. Ces méthodes mettent à jour les sections ecaces homogénéisées à certaines moments dans le ALa méthode JFNK a été appliquée avec succès à des composants physiques construits dans un cadre à base de JFNK robuste. Cependant, il est souhaitable d'inclure des codes informatiques qui sont fortement optimisés pour leurs modèles spéciques de la physique et de réutiliser les eorts importants qui ont été consacrés à leur développement. Ce travail se concentrera sur la façon dont un code numérique existant peut être adapté pour fonctionner dans un cadre de JFNK lorsque cette fonction n'a pas été dans l'intention initiale du code. Les codes existants sont raccordés à un cadre JFNK par le calcul du résidu, qui sera spécique à chaque composante physique. Le calcul du résidu fournira une interface transparente avec laquelle les composants de la physique peuvent interagir. Une fois qu'un résidu d'une composante physique est déni, celle-ci peut être utilisée dans une simulation. Des composants physiques supplémentaires peuvent être ajoutés à la simulation en dénissant un module de calcul du résidu pour chaque composant physique supplémentaire. Une attention particulière est consacrée à une nouvelle formulation du résidu pour le transport de neutrons. La taille de la solution de transport de neutrons peut être rédhibitoire, et la nouvelle formulation du résidu vise à réduire la taille de cette solution. laire et d'interagir seulement avec des codes de physique par un calcul de résidu nécessite des préconditionneurs modiés, qui ne manipulent que le résidu. Des préconditionneurs Bloc Jacobi et Bloc Gauss-Seidel sont développés à partir de manipulations de la solution résiduelle.

Le fractionnement d'opérateur est généralement un processus non-itératif, ce qui signie que, à chaque pas de temps, un seul passage à travers les modèles physiques est eectué. Cela ne converge pas les non-linéarités entre les composantes physiques, et peut être au mieux à premier ordre à la discrétisation de temps

[START_REF] Mahadevan | A verication exercise in multiphysics simulations for coupled reactor physics calculations[END_REF][START_REF] Mahadevan | High-resolution coupled physics solvers for analysing ne-scale nuclear reactor design problems[END_REF]

. Cette méthode est décrite dans la gure 3.1, où le modèle neutronique prend la température de l'étape précédente en tant que donnée d'entrée. La puissance produite par le modèle neutronique est introduite dans le modèle thermohydraulique, qui produit une nouvelle distribution de la température. Souvent, cette méthode décalée ne résoudra pas avec précision les non-linéarités produites par des sections ecaces dépendant de la température à chaque pas de temps. La convergence d'un tel processus peut être remis en question, en particulier si les composants physiques fonctionnent à des échelles de temps signicativement différentes

[START_REF] Calleja | X-TREAM project: Task 1b -Survey of the state-of-theart numerical techniques for solving coupled non-linear multi-physics equations[END_REF]

. En outre, en raison de la nature explicite de ce schéma numérique, des oscillations peuvent être observées dans certains cas

[START_REF] Kotlyar | Numerically stable Monte Carlo-burnupthermal hydraulic coupling schemes[END_REF][START_REF] Kotlyar | Monitoring and preventing numerical oscillations in 3D simulations with coupled Monte Carlo codes[END_REF]

.

La méthode de fractionnement d'opérateur peut être itérée jusqu'à ce que les non-linéarités entre les composantes physiques soient totalement convergées. Ce processus est décrit dans la gure 3.2 où, à chaque pas de temps, la solution la plus récente du modèle neutronique est introduite dans le modèle thermohydraulique. pour coupler les codes existants en raison des faibles modications nécessaires à la mise en ÷uvre de ces méthodes

[START_REF] Tyobeka | Application of Time-Dependent Neutron Transport Theory to High-Temperature Reactors of Pebble Bed Type[END_REF][START_REF] Verdú | Peach Bottom Transients Analysis with TRAC/BF1-VALKIN[END_REF][START_REF] Kaya | A Nodal Kinetics and Thermohydraulics Analysis (NOKTA) Code for Analyzing Rod-Ejection Accidents and Other Transients in Nuclear Power Reactor Cores[END_REF]

. Le véritable dé que représente ces méthodes est dans la façon de transférer avec précision les solutions à d'autres modèles de composants physiques. Le transfert de solution peut être réalisé par un Dans ce travail, la méthode de Newton est exclusivement utilisée pour trouver la solution du système non-linéaire, qui se compose d'une linéarisation du résidu non-linéaire et un processus itératif pour trouver une solution amenant la linéarisation du résidu à zéro. La méthode de Newton est dérivée du développement de Taylor à plusieurs variables du résidu, dans lequel la perturbation linéaire contient une matrice de termes dérivés du premier ordre appelée la jacobienne.

La méthode de Newton est construite à partir de la troncature du développement Taylor après le terme linéaire et de la résolution du système linéaire qui rendra l'approximation du résidu nulle. La méthode de Newton consiste à calculer la jacobienne et le résidu pour l'itération en cours, et à inverser la matrice jacobienne pour trouver le vecteur de mise à jour approprié, qui est ajouté à la solution courante.

Ce processus est répété jusqu'à ce que le résidu ou le vecteur de mise à jour est susamment petit. Une dénition couramment utilisée de susamment petit est une certaine tolérance absolue plus une fraction de la norme du résidu original

[117]

. Cette dénition de la tolérance non-linéaire permet à la méthode de Newton de converger même si le résidu d'origine est grand; dans ce cas, une réduction signicative de la taille du résidu est recherchée.

  A.2. SIMULATION MULTIPHYSIQUE ligne. La méthode de la région de conance construit un modèle quadratique local autour de l'itération actuelle et résout le modèle quadratique dans une région de conance d'un certain rayon. La région de conance nécessite des modications importantes dans l'algorithme de Newton pour intégrer cette globalisation[START_REF] Sorensen | Newton's Method wih a Model Trust Region Modication[END_REF].La globalisation de la recherche en ligne, quant à elle, ne nécessite que des petites modications si l'algorithme de Newton est déjà localement convergent; par conséquent, la méthode de recherche en ligne est préférable dans ce travail.La méthode de recherche en ligne suppose que la mise à jour de la solution est orientée dans le bon sens (c'est-à-dire une direction descendante), mais peut dépasser la solution ciblée. L'objectif de la méthode de recherche en ligne est de réduire l'ampleur de la mise à jour de la solution jusqu'au moment où la norme du résidu est susamment réduit. Le facteur de réduction pour la mise à jour de la solution peut être obtenu par la règle Armijo[START_REF] Armijo | Minimization of Functions Having Lipschitz Continuous First Partial Derivatives[END_REF].Un inconvénient important de la méthode de Newton est d'avoir à calculer et à stocker la matrice jacobienne. Dans certains cas, la matrice jacobienne peut ne pas être facilement disponible si la formulation du résidu est construite à partir d'une routine de calcul inaccessible. Ce travail utilise une variante de la méthode de Newton, qui peut être utilisée lorsque la jacobienne est soit de taille rédhibitoire pour calculer ou stocker, soit inaccessible. la méthode de Newton. Il est montré que les préconditionneurs basés sur la physique amènent le nombre moyen d'itérations linéaires par itération nonlinéaire à deux, tandis que le préconditionneur identité comprend toujours entre 3 et 7 itérations linéaires par itération non-linéaire. 'avantage de la méthode JFNK par la réduction de stockage et de la convergence quadratique invite l'utilisation de cette méthode pour l'analyse étudiée dans ce travail. La convergence supérieure par rapport au fractionnement d'opérateur et au couplage fort assure une solution plus exacte aux problèmes d'analyse de réacteurs. Cette section est dédiée à une nouvelle formulation du résidu du transport de neutrons qui utilise un code de transport de neutrons existant et réduit la taille du résidu par un facteur important. et H directement, mais utilisent uniquement de manière ecace la matrice inverse (L -H) -1 par balayage et itération sur la source de diusion. Les algorithmes dans les codes de transport sont écrits pour produire un ux angulaire à partir d'une distribution de source donnée. La formulation est modiée en combinant d'une part le terme de temps inversé avec l'opérateur de perte et d'autre part, .3. HOMOGÉNÉISATION TRANSITOIRE aussi grands que le ux angulaire. En eet, la taille des vecteurs de base serait beaucoup plus grande que celle du ux angulaire en raison de l'enchaînement avec les résidus de la température et des précurseurs de neutrons retardés. Avec ces motivations à l'esprit, une forme alternative de taille plus petite est obtenue. La source de ssion au sein du système nucléaire fournit un lien clair entre le modèle de transport de neutrons, et le modèle de transfert de chaleur par l'intermédiaire de la puissance. La source de ssion est aussi généralement de taille plus petite (N régions fissiles * N composants spatiaux * N isotopes fissiles ) que le ux angulaire. Le nombre de régions de ssion est toujours un sous-ensemble du nombre de régions, et le nombre d'isotopes ssiles est très probablement plus petit que le produit du nombre de groupes d'énergie et du nombre de directions. Même avec un petit nombre de directions comme une quadrature angulaire S 8 et un nombre moyen de groupes d'énergie de 100, le nombre d'isotopes ssiles est généralement limité à 50, donnant une réduction d'un facteur de plus de 1000.Le résidu du transport peut être formulé en termes de la source de ssion en intégrant sur toutes les directions et en multipliant par la section ecace de ssion. Cette formulation du résidu peut être réalisée en modiant légèrement le code de transport S N existant, qui peut résoudre les problèmes de sources , qui n'est généralement pas stocké pour les calculs statiques, mais qui l'est pour les calculs transitoires. Simplement stocker le ux angulaire en double précision, nécessiterait environ 4 téraoctets de mémoire, ce qui est impossible sur tous les ordinateurs à part sur les super-ordinateurs de haute performance. Cette mogénéisation devient pratique lors de l'utilisation des solutions de référence de sous-domaines représentatifs dans ce qui est appelé théorie générale de l'équivalence[START_REF] Smith | Assembly homogenization techniques for light water reactor analysis[END_REF]. ux dépendant de l'énergie. Normalement, l'auto-protection est réalisé lors de la construction de tables de sections ecaces homogénéisées pour tenir compte des changements de température et de composition des matériaux. L'utilisation de l'auto-protection dans le présent travail dière de la norme en eectuant l'autoprotection tout en produisant une table de sections ecaces de base. La table de sections ecaces de base contient des sections ecaces dans la structure de l'espace et groupe ne. Cette table de sections ecaces est utilisé pour eectuer des calculs de référence et l'homogénéisation est eectuée sur l'ensemble des sections ecaces dans la table de base, sans application supplémentaire de l'autoprotection. La table de sections ecaces produite en homogénéisant la table de référence est similaire à ce qui est utilisé dans les analyses transitoires actuelles du réacteur[START_REF] Verdú | Peach Bottom Transients Analysis with TRAC/BF1-VALKIN[END_REF]. De façon rigoureuse, le calcul d'auto-protection devrait être eectué à chaque changement de température dans le calcul de référence. Cela devient cependant coûteux, et on fait l'hypothèse que les eets d'auto-protection peuvent être interpolés.

	Un autre type de méthodes d'homogénéisation est basée sur la limite asymp-
	D'après le problème spatialement hétérogène avec 26 groupes d'énergie, un idée conduit les ingénieurs et les physiciens des réacteurs à développer des méth-totique d'une développement du ux angulaire hétérogène. Le ux angulaire
	préconditionneur bloc Jacobi présente le meilleur résultat. Il peut y avoir des odes qui réduisent la consommation de mémoire et le temps de calcul, tout en est développé autour d'un petit paramètre d'une certaine échelle de longueur ou
	choix plus optimaux pour le préconditionnement, mais le préconditionneur bloc obtenant une solution précise. L'homogénéisation des sections ecaces est l'une de l'énergie caractéristique. Cette développement, réalisée à diérentes échelles
	Jacobi peut servir de préconditionneur ecaces par défaut pour un système mul-des façons de réduire la taille du problème, tout en conservant les caractéris-de longueur, est utilisée pour décomposer la solution hétérogène globale en un
	tiphysique. tiques importantes de la solution. Typiquement, les taux de réaction et la valeur produit de solutions locales et globales [142144].
	de k eff sont les quantités d'intérêt qui doivent être conservées dans les procédés Dans tous les procédés d'homogénéisation, le ux de pondération est la prin-A.2.3 Formulation des résidus d'homogénéisation, car, souvent, les ingénieurs sont intéressés par la puissance cipale source d'erreur; si le ux de pondération est loin du ux réel, des erreurs
	ou le taux d'absorption dans une région du réacteur et par l'état de critique du importantes peuvent être introduites. Ceci peut être constaté dans de nombreux
	réacteur. exemples, dont l'un est le cas où une région homogénéisée est entourée par des
	régions très diérentes. Dans ce cas, les conditions limites rééchissantes sont
	une mauvaise approximation de l'état du système [44]. Une façon d'améliorer la
	solution dans cette situation est d'estimer une condition d'albédo à imposer aux
	frontières. Une autre façon d'intégrer l'eet d'un environnement diérent est en
	prenant plusieurs régions d'homogénéisation au cours du processus pour donner
	Résidu du transport des neutrons
	Les méthodes d'homogénéisation jouent un rôle central dans l'étude de l'ana-
	lyse du réacteur. La génération précise des sections homogénéisées est de la plus
	haute importance pour réduire l'introduction d'erreurs de modèle dans les simula-
	tions de réacteurs. Cette section se concentre sur les méthodes d'homogénéisation
	traditionnelles utilisées dans l'analyse du réacteur, et sur les modications néces-
	saires pour utiliser des sections ecaces homogénéisées dans des simulations mul-Lors de la production des sections ecaces homogénéisées pour une utilisation
	tiphysiques dépendant du temps. dans l'analyse du réacteur, les sections ecaces tabulées pour diérentes condi-
	tions de fonctionnement (température combustible/modérateur, concentration en A.3.1 Motivation section explore ces erreurs et introduit de nouvelles méthodes d'homogénéisation bore, taux de combustion, etc.). Lors du calcul au niveau du coeur, cette table de
	Le petit paramètre de perturbation est calculée en utilisant les relations trouvées Les méthodes d'homogénéisation sont régulièrement utilisées dans l'analyse conçues pour produire des sections ecaces homogénéisées plus précises pour les sections ecaces est interpolée pour reéter les conditions de fonctionnement du
	dans [137] du réacteur lorsqu'un calcul détaillé est trop coûteux. Par exemple, pour un calculs en fonction du temps. coeur. La température du mélange combustible/modérateur aura une inuence
	Préconditionnement avec JFNK coeur de REP, il y a 193 assemblages combustibles de 4 m de haut, contenant chacun 289 crayons (264 crayons combustibles et 25 crayons non combustibles). sur les sections ecaces, notamment dans la gamme d'énergie de résonance; cette A.3.2 Formulation classique dépendance est prise en compte grâce à des calculs d'auto-protection réalisés à
	Une méthode bloc de préconditionnement peut être étendue à un environ-le ux précédent avec le terme de source xe. La modication de l'opérateur de Une résolution spatiale modérée (un point spatial par crayon et un point par cen-Le thème de l'homogénéisation des sections ecaces couvre un large éven-chaque point tabulé. Cette utilisation des sections ecaces tabulées a été ap-
	nement JFNK en divisant le vecteur qui multiplie la matrice jacobienne dans le perte permet au nouvel opérateur de perte d'être inversé en utilisant une méthode timètre dans le sens axial) se traduirait par environ 22 millions points spatiaux. tail de méthodes. Dans le cas le plus simple, l'homogénéisation est un procédé pliquée de façon répétée à des calculs de diusion avec des calculs de transport
	solveur Krylov. Le vecteur de multiplication est remis à zéro pour les indices de balayage de transport classique. En outre, pour chaque point de l'espace, une résolution précise de la dépendance considérant la moyenne pondérée des sections ecaces pour obtenir des valeurs pendant l'homogénéisation. Cependant, l'utilisation de ces tables dans les calculs
	qui ne correspondent pas au bloc étant inversé. Cela permet uniquement au Un inconvénient d'une telle formulation du résidu est que la taille de cette angulaire et énergétique est nécessaire pour calculer le ux angulaire. Pour les moyennes. La fonction de pondération est typiquement un ux, de sorte que de transport avec des calculs de transport pendant l'homogénéisation n'a pas en-
	vecteur de multiplication d'agir sur le bloc qui doit être inversé. Cette méthode équation correspond à celle du ux angulaire, qui peut être importante (la taille de réacteurs thermiques, environ 300 groupes d'énergie sont utilisés pour discré-la moyenne pondérée conserve les taux de réaction, qui sont dénies au para-core été montrée valide. L'auteur suppose que l'utilisation de ces sections ecaces

Les solveurs linéaires des sous-espaces Krylov ne nécessitent que le résultat de l'application de la matrice du système linéaire à un vecteur donné. Étant donné que la jacobienne est une matrice de dérivés du premier ordre, le produit vectoriel de la jacobienne peut être approchée par une diérence nie avec le résidu. La classe des solveurs non-linéaires qui utilisent cette approximation pour l'inversion de la jacobienne est appelée méthodes Jacobian-Free Newton-Krylov (JFNK)

[START_REF] Knoll | Jacobian-free Newton-Krylov methods: a survey of approaches and applications[END_REF]

.

L'approximation des diérences nies peut être calculée avec des formulations d'ordre supérieur qui nécessitent plusieurs évaluations du résidu, mais qui sont moins sensibles aux erreurs numériques; la soustraction de deux nombres qui sont rapprochés dans la précision nie peut être instable. Dans ce travail, la relation de diérence nie par défaut est un schéma de diérence centrée, qui est convergent de l'ordre 2 dans le paramètre des perturbations petites. Ce schéma de diérence centrée nécessite deux évaluations du résidu pour chaque produit vectoriel de la matrice, mais est moins sensible aux instabilités de soustraction de précision nie. de préconditionnement est testée sur un problème spatialement hétérogène avec 26 groupes d'énergie. Les préconditionneurs n'aectent pas le nombre d'itérations non-linéaires nécessaires pour produire une solution convergée. Ce comportement est attendu car les préconditionneurs agissent uniquement sur le modèle linéaire local de LL'équation de transport (Equation 2.1), après discrétisation temporelle, spatiale, angulaire, et énergétique, écrite sous forme de matrice pour la compacité, est montrée dans l'équation 3.36. La formulation implicite de l'équation 3.36 implique qu'une forme explicite de la solution ne peut pas être obtenue, et une méthode itérative doit être utilisée pour obtenir la solution à l'étape suivante. Cela ne doit pas être considéré comme un inconvénient en raison de la nécessité d'utiliser une méthode itérative pour résoudre le couplage non-linéaire entre les composantes physiques. L'équation 3.36 peut être facilement réécrite sous forme de résidu en déplaçant tous les termes d'un côté de l'égalité. Une complication survient lorsqu'un code de transport existant doit être utilisé pour la construction du résidu. Les codes de transport de premier ordre (S N ou MOC) n'utilisent généralement pas les matrices L N régions * N groupes * N composants spatiaux * N directions ). Cette grande taille pose plusieurs problèmes dans la simulation numérique, dont l'un est l'exigence de stockage pour le solveur linéaire Krylov. GMRes nécessite le stockage des vecteurs de base pour le sous-espace Krylov, ce qui nécessiterait de stocker plusieurs vecteurs au moins Axes ou de valeurs propres. La plus grande modication est d'avoir à imposer l'intégrale de ssion présente au lieu qu'elle soit calculée à partir du ux angulaire, et d'appliquer la matrice de ssion après l'inversion de la matrice de transport par le balayage. A.3 Homogénéisation transitoire tiser le domaine de l'énergie. Pour les réacteurs rapides, ce nombre peut monté jusqu'à 2000. Le domaine angulaire peut être discrétisé en utilisant des directions distinctes, ce qui, pour une quadrature S 8 en trois dimensions correspond à

80 directions angulaires [139]. Cela conduit à un ux angulaire avec 535×10 9 in- connuesLa procédure utilisée pour l'homogénéisation dans l'analyse du réacteur comporte plusieurs étapes: l'auto-protection avec des cellules de crayons, le calcul de ux détaillé sur réseau, la pondération des sections ecaces, le calcul au niveau du coeur, et une potentielle séquence d'itération sur ces étapes [52, 140]. Les codes de transport déterministes sont généralement employés dans le calcul d'autoprotection et du ux détaillé de réseau. Cependant les codes Monte Carlo ont été utilisés comme alternative à un calcul déterministe [141]. Les codes Monte Carlo ont été utilisés uniquement dans les pratiques de validation puisqu'un calcul déterministe est généralement plus rapide que le calcul de Monte Carlo. Une hypothèse sous-jacente avec des méthodes d'homogénéisation est que la solution obtenue lors du calcul du réseau se rapproche de la solution hétérogène dans le problème global plus large. Cependant, des travaux récents [28] et une analyse simple montrent que, lors de situations transitoires, les solutions dépendant du temps et statiques peuvent être sensiblement diérentes. Néanmoins, la pratique actuelle est d'utiliser un calcul statique dans le calcul du réseau, même lorsque les calculs en fonction du temps sont eectués sur un problème de réacteur. Étant donné que les solutions dépendant du temps et statique ne sont pas équivalentes, les sections ecaces produites à partir d'une solution statique peuvent ne pas représenter exactement la solution en fonction du temps. Cette graphe 2.1. L'homogénéisation des sections ecaces qui utilise la solution hétérogène du problème complet comme fonction de pondération peut être appelée théorie d'équivalence [42]. Cependant, l'utilisation de la solution hétérogène globale présente peu d'intérêt en raison de la diculté pour l'obtenir. L'ho-une meilleure représentation des gradients de ux à travers les frontières où les matériaux changent de façon important; ceci est connu sous le nom de méthode color-set [147]. Il est montré que les méthodes d'homogénéisation fonctionnent relativement bien dans la plupart des calculs d'analyse du réacteur. Cependant cela ne vaut directement que pour des calculs statiques. Les calculs statiques peuvent être utiles pour de nombreuses applications dans l'analyse du réacteur, telles que l'optimisation du réarrangement combustibles, le calcul de la marge d'arrêt, ou pour trouver le point de puissance maximale pendant le fonctionnement en régime permanent. Cependant, dans l'analyse des accidents graves, tels que ceux induits par les changements importantes de réactivité, ces méthodes peuvent échouer. homogénéisées tabulées est valable pour les calculs de transport à transport, sans vérication explicite que ces tableaux n'introduisent pas d'erreur signicative. L'auto-protection est une opération eectuée au cours du processus d'homogénéisation pour tenir compte de l'inuence des résonances des sections ecaces sur le

  table des sections ecaces existante, ce qui produit une table plus grande. Le nombre de points dans la nouvelle table de sections ecaces correspond au nombre de points dans la table de base multiplié par le nombre

2.1. NEUTRON TRANSPORT

3.2. SIMULTANEOUS SYSTEM

end

A SCRAM is the process of rapidly inserting neutron absorber to interrupt the ssion chain reaction. The term is commonly cited as being an acronym for Safety Control Rod Axe Man, but NRC Historian Tom Wellock concludes that the more likely origination of this word comes from an order to scram (run) if there was a problem during the testing of the Chicago Pile (CP-1) reactor. https://public-blog.nrc-gateway.gov/2011/05/17/putting-the-axe-to-thescram-myth/

Computers & Fluids, 123[START_REF] Seiler | Viscosities of corium-concrete mixtures[END_REF]:122145 (December 2015).
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Homogénéisation des sections ecaces

Comme mentionné précédemment, l'homogénéisation des sections ecaces fournit un moyen de réduire le nombre d'inconnues du système numérique dans l'analyse du réacteur. Beaucoup de progrès dans les méthodes d'homogénéisation sont orientées vers l'homogénéisation dans les calculs à l'état d'équilibre. La majorité des opérations d'un réacteur est eectuée à l'état d'équilibre, avec des variations rares qui durent peu de temps par rapport à un fonctionnement normal. L'étude de l'impact de l'application de ces méthodes d'homogénéisation lors des calculs transitoires n'a pas largement apparu dans la littérature relative à l'analyse du réacteur. Un seul rapport a été trouvé, mentionnant utilisation de diérents problèmes de valeurs propres pendant l'homogénéisation pour différentes congurations [START_REF] Velarde | A Comparison of the Eigenvalue Equations in k, α, λ and γ in Reactor Theory. Application to Fast and Thermal Systems in Unreected and Reected Congurations[END_REF]. Une question qui s'est posée au cours de ce travail fut, Des sections ecaces homogénéisées, destinées aux calculs à l'état d'équilibre, peuvent-elles être utilisées pour des simulations transitoires ? . Il a été vite découvert que lors des transitoires très rapides, où le réacteur est loin d'être critique, ces sections ecaces peuvent introduire des erreurs importantes dans la puissance en fonction du temps. Cette prise de conscience a incité l'auteur à explorer des façons de réduire l'erreur introduite par ces sections ecaces homogénéisées.

Deux méthodes, conçues pour réduire l'erreur introduite lors de l'utilisation des sections ecaces destinées à des calculs à l'état d'équilibre, sont développées et testées. L'une de ces méthodes est basée sur le développement du ux en fonction du temps sur une base qui provient d'un problème de valeur propre qui représente le comportement en fonction du temps. La méthode de développement présente la liberté de choisir la taille de la base de développement et le poids relatif entre les vecteurs de la base de développement. Ces coecients peuvent être déterminés par une minimisation sur le sous-espace de développement et une solution choisie, typiquement la condition initiale. L'autre méthode est basée sur un ux intégré en temps sur de grands intervalles de temps de la simulation dynamique. Les intervalles de temps sont librement choisis et doivent généralement coïncider avec des changements importants de la solution: durée de la perturbation, puissance maximale, émission des neutrons retardés, etc. Cette méthode, en plus de capturer le comportement dépendant du temps de la solution, capture les eets des contre-réactions dus aux variations de température au cours de la simulation. Ces deux méthodes sont testées et comparées à des solutions de référence pour une série de phénomènes transitoires disponibles. 

A.2 Simulation multiphysique

Homogénéisation des sections ecaces

Les méthodes d'homogénéisation explorées dans ce travail ont montré des résultats prometteurs dans leur capacité à réduire les erreurs provenant de méthodes actuellement utilisées. Le développement de ces méthodes a encore des améliorations qui peuvent être apportées sur la façon dont les méthodes sont appliquées, utile dans l'analyse du réacteur à l'état transitoire, il reste beaucoup à explorer.

Le Groupe d'Experts sur le Transport de Rayonnements et la Radioprotection (EGRTS), dans le cadre du groupe de travail sur les questions scientiques des systèmes de réacteurs pour l'Agence pour l'Energie Nucléaire, développe un problème de référence en fonction du temps sur la base du problème de référence REP MOX (C5G7) [START_REF] Boyarinov | Deterministic Time-Dependent Neutron Transport Benchmark without Spatial Homogenization (C5G7-TD)[END_REF]. Une fois que ce problème de référence sera à disposition du public, il serait souhaitable que les nouvelles méthodes soient appliquées à ce cas an de comparer la réduction de l'erreur que ces nouvelles méthodes apportent.

APPENDIX B SELECTED ALGORITHMS OF MULTIPHYSICS FRAMEWORK

The following is a selection of important algorithms used within the multiphysics framework developed for this work. The selected algorithms are: Newton Iterations with line search globalization, GMRes, and QR.

B.1 Newton Iterations

Newton iterations consist of consecutive linearizations of the nonlinear residual around the current approximate solution. This method is detailed in Algorithm 4.

Newton's method is given a function that computes the solution residual associated to a solution and the initial solution iterate. The initial solution residual is then computed from the residual function and the initial solution. The convergence tolerance is determined by the sum of an absolute tolerance and some fraction of the original residual size.

If the solution is suciently close to the exact solution, as estimated by the norm of the residual function, the current solution is returned. Newton's method repeatedly calculates an solution update by applying the inverse Jacobian to the current residual vector. A damping parameter α is computed which ensures a sucient reduction to the norm of the residual. The damping parameter is applied when updating the current solution. Newton's method is repeated until the residual norm is below the convergence tolerance, or when the maximum number of iterations have been reached.

The Jacobian inversion shown in Algorithm 4 is accomplished by applying a linear solver with the Jacobian matrix evaluated at the current iterate U .

The globalization method used in this work is a line search method, presented in Algorithm 5. This method used, is an implementation of the Armijo rule, where the parameter α is repeatedly reduced by a factor of 2 if the size of the residual is not suciently reduced.

The combination of Newton's iterations and a line search globalization produces a stable nonlinear solver which can be applied to time dependent multiphysics simulations.

B.2 Linear Solvers

The principle linear solver used in this work to invert the Jacobian in Newton's Method is the GMRes solver. The algorithm for this method is outlined in Algorithm 6, which is repeated from Section 3.2.2. GMRes successively builds approximations to the solution space through a Gram-Schmidt orthogonalization process. The featured algorithm includes a re-orthogonalization step, which helps to ensure that the basis vectors are in fact orthogonal to each other [START_REF] Giraud | The loss of orthogonality in the Gram-Schmidt orthogonalization process[END_REF].

In the minimization problems performed for the Alpha method, a QR algorithm is used to solve the system of equations. A minimization problem occurs when the right hand side vector is not contained within the column space of the matrix. This happens when a matrix is rectangular, with more rows than columns. The minimization nds the solution when the right hand side vector is FRAMEWORK Algorithm 4: Nonlinear Newton Iteration Input : Residual Function F ( U ), initial solution U 0 Output: Converged Solution U // If Newton's method does not converge, throw a warning and return the best estimate for solution projected onto the column space of the matrix.

An eective algorithm at solving minimization problems is the QR algorithm, which successively applies orthogonal matrices to the matrix and the right hand side to produce an upper triangular matrix. The resulting upper triangular matrix can then be inverted with backward substitution.