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Résumé

La propagation au sein d’un réseau est un sujet d’étude pour de nombreux domaines
scienti�ques. Épidémies, marketing viral ou propagation d’information au sein d’un réseau
social sont autant de phénomènes réels modélisés par l’évolution d’une caractéristique
se propageant à travers un réseau de proche en proche. Ainsi, être capable d’agir sur
ces phénomènes de di�usion est un enjeu capital dans de nombreux domaines. Malgré
l’abondance de la littérature à ce sujet sur le plan théorique, et notamment la détermina-
tion d’un seuil épidémique au dessous duquel la propagation se résorbe, un certain nombre
de limitations réduisent l’impact pratique de ces travaux. Dans cette thèse, nous avons tra-
vaillé à réduire la distance séparant pratique et théorie, et ce suivant trois axes: la général-
isation de résultats théoriques à une classe plus large et réaliste de modèles de propaga-
tion, le développement de méthodes de contrôle dynamique e�caces utilisant de manière
judicieuse la structure du réseau, et en�n la dé�nition de nouveaux outils mathématiques
faisant le lien entre méthodes spatiales et de réseau en épidémiologie. Plus particulière-
ment, nos travaux permettent l’analyse rigoureuse du comportement des caractéristiques
d’un réseau lorsque celui-ci se rapproche, au niveau de sa structure, d’un espace métrique
donné, et pourrait permettre l’application de méthodes de contrôle sur réseau à des don-
nées spatiales et macroscopiques (notamment à l’aide de données démographiques et de
transport) du réseau de contact au sein d’une population.





Abstract

The propagation of a characteristic through a network is the subject of study of many
scienti�c �elds. Epidemics, viral marketing or information propagation through a social
network are among the many examples of real phenomena modeled by the evolution of a
characteristic propagating through the edges of a network. Thus, being capable of acting
on these di�usion processes is of capital interest for many �elds. Despite the large litera-
ture on the theoretical aspects of di�usion processes, and more speci�cally the discovery
of an epidemic threshold under which the propagation is not sustainable, a number of
practical limitations prevent the use of these studies in real-life scenarios. In this thesis,
we work on reducing the distance separating theory from practice, following three distinct
research directions: the generalization of theoretical results to a larger and more realistic
class of di�usion models, the development of e�cient dynamic control measures utilizing
the structure of the network to its advantage, and, �nally, the de�nition of new mathe-
matical tools bridging the gap between spatial and network approaches in epidemiology.
More speci�cally, our work allows the rigorous analysis of the behavior of a network’s
characteristics when it converges, in a structural sense, to a given metric space, and could
open the way to the application of control strategies that have been developed for net-
works to scenarios in which only spatial and macroscopic information is available (e.g.
transportation or demographic data).
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Notations
General

card(X) Number of elements of X p. 40
P(X), Pn(X) Set of all subsets of X, and subsets of size n of X p. 40
[|n|] {1, ...,n} p. 40
1{·} Indicator function p. 40
A a.s. A holds almost surely, i.e. P(A) = 1 p. 40
An a.a.s. An holds asymptotically almost surely, i.e. limn→+∞ P(An) = 1 p. 40
ρ(M) Spectral radius (i.e. largest eigenvalue) of the matrix M p. 42
f (n)= θ(g(n)) C1g(n) ≤ f (n) ≤ C2g(n) for some C1 and C2 p. 43
0, 1 All zeros and all ones vectors p. 110

Graphs

G = (V ,E) Graph with node set V and edge set E p. 40
A or A Adjacency matrix p. 41
n or N Number of nodes, i.e. card(V) p. 41
G(n, A) Random graph of size n and adjacency matrix A p. 44
C∗(`) Maximum cut in the ordering ` p. 124

Di�usion processes

β,δ Epidemic parameters for the SI, SIS and SIR models p. 50
X(t) State vector of the di�usion process at time t p. 49
ρ(t) Resource allocation vector at time t p. 105
σI (t) In�uence of the set I at time t in a di�usion process p. 49

In�uence bounds

H Hazard matrix p. 57
L(s) Laplace Hazard matrix p. 87
ρn Hazard radius p. 57
σ(I) In�uence of the set I in a random graph p. 58

Convergence of networks

X Metric and measureable space (mm-space) p. 153
dX and µX Metric and measure of X p. 153
sizep(X ) p-size of X p. 154
∆∆p(X ,Y) Gromov-Wasserstein distance between X and Y p. 156
∆∆p( f , g) Mapping distance between the functions f and g p. 154
∆∆p(F, G) Mapping distance between the operators F and G p. 168
Xp Set of all mm-spaces of �nite p-size p. 156
Optp(X ,Y) Set of optimal couplings between µX and µY w.r.t. ∆∆p p. 156





1
Introduction (version française)

“Si nous savions ce que nous faisons, cela

ne s’appellerait plus de la recherche,

n’est-ce pas ?”

— Albert Einstein

Le concept d’approximation est une notion centrale dans les sciences, et trouver le
juste niveau d’abstraction est souvent l’élément clé de la réussite d’une théorie. Dans
de nombreux domaines scienti�ques, dont l’économie, la sociologie ou encore la biolo-
gie, l’in�nie complexité d’un individu est souvent réduite à son expression la plus simple:
un nœud anonyme et indi�érenciable au sein d’un gigantesque réseau. Bien que cette
approximation puisse sembler trop forte pour être source d’intuition, les réseaux réels,
qu’ils soient informatiques, sociaux ou bancaires, partagent un certain nombre de carac-
téristiques macroscopiques indépendamment des traits individuels de leurs éléments. En
un sens, les caractéristiques macroscopiques de ces systèmes complexes sont formés, non
par les propriétés locales de leurs éléments, mais par la structure complexe de leurs inter-

actions. Prédire le comportement des épidémies, di�usion d’information ou crises �nan-
cières, nécessite donc de comprendre cette structure et comment celle-ci agit sur les aspects
dynamiques du réseau. Autrement dit, il s’agit de comprendre comment la propagation
d’individu à individu le long des chemins complexes du réseau va in�uer sur l’évolution
temporelle d’une di�usion, et ainsi imposer son comportement macroscopique à l’échelle
d’une population.

Les réseaux sociaux o�rent aux scienti�ques une occasion unique d’observer de tels
processus di�usifs en temps réel et avec précision. La propagation d’une information entre
utilisateurs, lorsque celle-ci est à caractère publique, est mise à disposition de la commu-
nauté scienti�que dans d’énormes bases de données. Cette profusion de données a per-
mit le développement rapide du domaine et de ses applications pratiques en marketing.
Cependant, l’analyse théorique de ces processus de di�usion n’a pas béné�cié de cet es-
sor, et une partie du travail réalisé au cours de cette thèse a consisté à comprendre quelles
caractéristiques structurelles du réseaux déterminent le comportement macroscopique de
ces cascades d’information.

En épidémiologie, l’analyse théorique ne constitue qu’une première étape permettant
la prédiction précise des épidémies futures, et ne saurait se substituer au développement
de mesures préventives. La principale limitation de la littérature à ce sujet consiste à sup-
poser le réseau de contacts entre individus connu. Bien que les algorithmes d’inférence
puissent fournir de bonnes approximations d’un réseau lorsque de grandes quantités de
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données sont disponibles (par exemple dans le cas des réseaux sociaux), le réseau sous-
jacent est parfois, bien malheureusement, au-delà de notre portée. A�n de contourner
cette di�culté, une pratique courante consiste à simpli�er le réseau de contacts dans une
population par un réseau de villes ou états, sur lesquels un modèle simple d’épidémie est
appliqué. Une partie de notre travail dans cette thèse a été consacrée à réduire la dis-
tance entre modèles simpli�és et modèles exacts, dans l’optique de créer des modèles plus
ra�nés à l’intersection de ces deux approches.



2
Synthèse des contributions

Cette thèse est organisé en trois parties. Premièrement, nous analyserons les modèles
de cascades de di�usion et présenterons de nouveaux résultats théoriques concernant
l’in�uence, une caractéristique essentielle de ces processus, dans plusieurs scénarios de
contagion. Ces résultats génériques nous permettront d’établir de nouvelles bornes supé-
rieures en percolation, épidémiologie et cascades d’information. Ensuite, nous analyserons
les propriétés dynamiques des processus de di�usion, et plus particulièrement leur temps

critique, à savoir l’instant précis à partir duquel la contagion atteint des dimensions macro-
scopiques à l’échelle du réseau entier. Deuxièmement, nous développerons de nouvelles
stratégies pour le contrôle des processus de di�usion, et des épidémies plus spéci�quement,
utilisant des ressources de traitement de manière dynamique. Dans un deuxième temps,
nous analyserons l’e�cacité d’une large classe de stratégies de contrôle, et montrerons
qu’une caractéristique du réseau appelée maxcut, ou coupe maximale, est étroitement liée
à l’e�cacité de ces stratégies. En�n, nous développerons de nouveaux outils mathéma-
tiques pour l’analyse des réseaux et des processus de di�usion capables de décrire les pro-
priétés limites des réseaux lorsque ceux-ci tendent vers des espaces continus. Ces outils
mathématiques pourraient servir de base pour une analyse plus avancée et un contrôle
des épidémies sur de très grands réseaux pour lesquels seules les données macroscopiques
sont disponibles.

2.1 Analyse des modèles de di�usion

À l’intersection de la physique statistique, de l’épidémiologie et de l’informatique, la lit-
térature relative aux processus de di�usion est vaste et variée. Du fait de leurs contraintes
et particularités propres, chaque domaine a dé�ni ses propres modèles de di�usion, et les
avancées dans un domaine ne se répercutent pas toujours aux autres. Par exemple, les
épidémiologistes connaissent depuis longtemps l’impact du rayon spectral de la matrice
d’adjacence (voir Dé�nition 5.5) sur le caractère explosif des épidémies, et leur capacité
à se maintenir dans une population (Wang et al., 2003). Des résultats similaires ont été
découverts pour les processus de Hawkes, pour lesquels le processus explose en temps �ni
lorsque le rayon spectral d’une certaine matrice dépasse 1. Cependant, une telle analyse
faisait encore défaut pour les cascades d’information (voir Modèle 5.12), un modèle plus ré-
cent de contagion spécialement conçu pour les réseaux de communication et la di�usion
d’information (Gomez-Rodriguez et al., 2011).

Le chapitre 5 résume les principaux concepts et modèles de réseaux et processus de
di�usion, et servira d’introduction aux éléments clés de la littérature correspondante. Le
reste de la thèse utilisera abondamment les modèles présentés dans cette section. Dans le
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chapitre 6, nous développerons de nouvelles bornes supérieures pour l’in�uence dans un
réseau aléatoire, et appliquerons nos résultats à plusieurs processus de di�usion, y compris
la percolation, le modèle épidémiologique SIR ainsi que les cascades d’information. En�n,
dans le chapitre 7, nous étudierons les propriétés dynamiques des cascades d’information,
notamment à travers la caractérisation d’un moment critique à partir duquel la cascade
devient sur-critique et atteint de vastes parties du réseau.

2.1.1 Comportement long-terme de l’in�uence

Dans le chapitre 6, nous introduirons la notion de réseaux aléatoires avec corrélation posi-

tive locale (CPL) (voir Dé�nition 6.6) et en déduirons des bornes supérieures non asympto-
tiques pour l’in�uence dans ce type de réseau. Le concept de réseau aléatoire avec corréla-
tion positive locale généralise, en un sens, la description des phénomènes observés dans les
domaines de la percolation, de l’épidémiologie et des cascades d’information. Les bornes
supérieures obtenues dépendent du rayon spectral ρn d’une matrice particulière construite
à partir des probabilités d’occurrence de chaque arête du réseau, appelée la matrice des

risques. Nous montrerons que ces bornes révèlent trois régimes: sous-critique, critique et
sur-critique, en fonction de la valeur du rayon spectral ρn. Pour les réseaux aléatoires de
taille n, nous montrerons que l’in�uence est tout au plus un O(

√
n) lorsque ρn < 1, et en

moyenne un O(1). Cependant, quand ρn > 1, le régime devient sur-critique et l’in�uence
devient potentiellement linéaire en n. Plus précisément, nous montrerons que l’in�uence
est bornée supérieurement par γ0(ρn)n+ o(n), où γ0(ρn) ∈ [0,1] est une fonction simple
(voir Dé�nition 6.3) et que cette borne est satisfaite pour certains réseaux aléatoires. En�n,
dans le régime transitoire où ρn ≈ 1, l’in�uence est au plus un O(n2/3), et en moyenne
un O(

√
n). De plus, on obtient également que la taille de ce régime intermédiaire par

rapport à ρn est proportionnel à n−1/3. Tab. 2.1 résume les di�érents comportements des
bornes supérieures pour l’in�uence dans les réseaux aléatoires avec CPL, dans les régimes
sous-critiques, critiques et sur-critiques, obtenus en Sec. 6.3. Dans le scénario aléatoire A,
un ensemble de n0 in�uenceurs sont tirés au hasard, alors que dans le scénario aléatoire B

chaque nœud est in�uenceur avec une probabilité indépendante égale à q.

Régimes

Scenario Sous-critique (ρn < 1) Critique (ρn ≈ 1) Sur-critique (ρn > 1)

(I) Pire cas O(
√

n) O(n2/3) γ0(ρn)n + O(
√

n)

(II) Aléatoire A O(1) O(
√

n) γ0(ρn)n + O(1)

(III) Aléatoire B O(qn) O(
√

qn) γ0(ρn)n + O(qn)

Table 2.1: Résumé des résultats concernant l’in�uence au sein des réseaux aléatoires à
corrélation positive locale.

En corollaire, nous obtenons des bornes supérieures pour la taille de la composante
géante en percolation qui améliorent de manière signi�cative les résultats de Bollobás et al.
(2010). Plus précisément, nous montrerons que le rayon spectral ρn est une quantité clé
en percolation, et que la taille de la composante géante C1(G) est, en moyenne, bornée
supérieurement par O(

√
n) quand ρn < 1, par O(n2/3) quand |ρn − 1| = O(n−1/3), et

par γ0(ρn)n + o(n) quand ρn > 1. De plus, nous montrerons qu’une composante géante
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ne peut exister que si limsupn→+∞ ρn > 1, puis analyserons la répartition de la taille des
composantes connexes en bornant supérieurement le nombre N(m) de composantes con-
nexes de taille supérieure à m en moyenne. Tab. 2.2 résume les di�érents comportements
des bornes supérieures pour la percolation dans les régimes sous-critiques, critiques et
sur-critiques.

Régimes

Quantité Sous-critique (ρn < 1) Critique (ρn ≈ 1) Sur-critique (ρn > 1)

E[C1(G)] O(
√

n) O(n2/3) γ0(ρn)n + O(
√

n)

E[N(m)] O(nm−2) O(nm−3/2) γ0(ρn)n/m + O(nm−3/2)

Table 2.2: Résumé des résultats en percolation: C1(G) est la taille de la composante géante,
et N(m) est le nombre de composantes connexes de taille supérieure à m.

En�n, nous appliquerons nos bornes supérieures aux propriétés long-terme du modèle
d’épidémies connu sous le nom de Susceptible-Infecté-Retiré (SIR), ainsi que des cascades
d’informations en temps continu et en temps discret. Plus précisément, nous améliorerons
de manière signi�cative les résultats de Draief et al. (2008) dans le régime sous-critique,
et montrerons que, près du seuil épidémiologique, le nombre de nœuds infectés dans le
modèle SIR est un O(n2/3). De plus, nous étendrons le seuil épidémiologique traditionnel
βρ(A) = δ, où β et δ sont les taux de transmission et de guérison du modèle et A est la
matrice d’adjacence du graphe sous-jacent, à des modèles SIR plus réalistes dans lesquels
la période d’incubation peut suivre une distribution non-exponentielle.

2.1.2 Propriétés dynamiques de l’in�uence

Dans le chapitre 7, nous étendrons la notion de matrice des risques a�n d’analyser les pro-
priétés dynamiques des cascades d’information en temps continu. Plus précisément, nous
dé�nirons la transformée de Laplace de la matrice des risques et montrerons que l’in�uence
à l’instant T d’un ensemble de nœuds dépend fortement de son rayon spectral. De plus,
nous dé�nirons et caractériserons le comportement d’un temps critique à partir duquel les
processus sur-critiques explosent. Nous montrerons que, avant ce temps, les processus sur-
critiques se comportent de manière sous-critique et infectent au plus un o(n) nœuds. Nous
appliquerons ensuite nos bornes génériques à quatre modèles de cascades particulières
dans lesquelles nos limites peuvent être explicitées: les cascades d’information en temps
continu avec des probabilités de transmission exponentielles, les cascades d’information en
temps discret, les modèles épidémiques Susceptible-Infecté et Susceptible-Infecté-Retiré.
Tab. 2.3 résume les bornes sur le temps critique obtenues pour chaque modèle.

En outre, des bornes sur l’in�uence seront données pour tout temps T dans le cadre
générique des cascades d’information en temps continu,

σI (T) ≤ n0 +
√

n0(n− n0) min
{s≥0 | ρ(s)<1}

(√
ρ(s)

1− ρ(s)
esT

)
,

où σI (T) est l’in�uence du groupe de nœuds I de taille n0 à l’instant T (voir Dé�nition
5.10), et ρ(s) est le rayon spectral de la transformée de Laplace de la matrice des risques
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Modèle Borne inférieure sur le temps critique

Temps continu lnn/2ρ−1
n (1)

Temps discret lnn/2lnρα

Transmissions exponentielles lnn/2λ(ρα − 1)

Susceptible-Infecté-Retiré lnn/
(

2(δ + β)(ln(1 + β
δ )ρ(A)− 1)

)
Susceptible-Infecté 1

β

√
lnn

2ρ(An)
(1− e−

√
lnn

2ρ(An) )

Table 2.3: Résumé des résultats concernant les bornes inférieures sur le temps critique des
processus de di�usion en temps continu. ρn(s) désigne le rayon spectral de la transformée

de Laplace de la matrice des risques (voir De�nition 7.1), ρα le rayon de la matrice des
risques, λ le paramètre de la loi exponentielle, et δ et β sont les paramètres de l’épidémie.

(voir Dé�nition 7.1). Bien qu’il ne soit pas possible, en général, d’expliciter ce minimum,
nous fournirons ensuite des bornes supérieures explicites dans deux cas particuliers: les
cascades d’information en temps discret

σI (T) ≤ n0 +
√

n0(n− n0)

√
2eT
T0

ρ
T
T0
α ,

où ρα est le rayon spectral de la matrice des risques (Dé�nition 6.2), et les cascades d’informa-
tion en temps continu avec probabilités de transmission exponentielles

σI (T) ≤ n0 +
√

n0(n− n0)
√

2eTλραeλT(ρα−1),

où λ est le paramètre des lois exponentielles.
Ces résultats peuvent être utilisés de diverses façons. D’abord, ils fournissent un

moyen d’évaluer les algorithmes de maximisation de l’in�uence sans avoir à tester tous
les ensembles possibles d’in�uenceurs, ce qui est impossible pour de grands réseaux. Deu-
xièmement, le temps critique permet aux décideurs de savoir combien de temps une con-
tagion restera dans sa phase initiale, avant de prendre des proportions pandémiques et
di�cilement contrôlables. En�n, nos résultats fournissent la première formule fermée
pour l’estimation, à un temps �xé, de l’in�uence d’une cascade d’information en temps
continu. En e�et, nos résultats empiriques indiquent que nos bornes sont optimales pour
une grande famille de réseaux au début et à la �n du processus de di�usion.

2.2 Contrôle de processus di�usifs

L’analyse des processus de di�usion et le développement de stratégies de contrôle sont
complexes et dépendent fortement de facteurs tels que: i) le type de processus de di�u-
sion, par exemple, chaque nœud peut être sujet à des infections simples ou multiples, ii)
la structure du réseau, et iii) le type d’actions de contrôle dont disposent les autorités.
Notre objectif est de réaliser un contrôle dynamique d’une épidémie à l’aide de l’allocation

de ressources en temps réel. A chaque instant, un certain budget de ressources est disponible
et les autorités doivent décider quels nœuds vont les recevoir en fonction de l’état actuel
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du réseau. Ce cadre de contrôle s’applique aussi aux processus di�usifs indésirables dans
un réseau social, comme la propagation de fausses rumeurs, comportements malveillants
(par exemple, la violence ou le racisme) ou encore certains comportements à risques ou
troubles médicaux tels que l’obésité (dont Christakis and Fowler (2007) ont récemment
démontré la di�usivité dans un réseau social) ou le tabagisme.

Dans le chapitre 8, nous étudierons le contrôle de processus di�usifs, avec comme cadre
de référence l’épidémiologie. Dans le chapitre 9, nous analyserons une classe partic-
ulière de stratégies de contrôle appelé plani�cation prioritaire, et en tirerons des résultats
théoriques sur l’e�cacité de ces stratégies.

2.2.1 Contrôle dynamique d’épidémies SIS

Dans le chapitre 8, nous proposerons tout d’abord un modèle pour le contrôle dynamique
des processus de di�usion à l’aide de l’allocation dynamique de ressources. Deuxièmement,
nous étudierons les stratégies d’allocation dynamique et proposerons la stratégie de con-
trôle nommée Réduction Maximale des Arêtes Infectieuses (ou Largest Reduction in Infectious

Edges en anglais) basée sur la minimisation d’une approximation de second ordre du coût
associé à un processus de di�usion. Cette stratégie tire son nom du fait qu’elle minimise à
court-terme le nombre d’arêtes infectieuses capables de transmettre l’épidémie aux nœuds
sains du réseau. De cette manière, elle réduit la di�usion de l’épidémie à travers le réseau et
permet un contrôle e�cace du processus de di�usion. Troisièmement, notre étude expéri-
mentale sur des réseaux réels ainsi que générés aléatoirement montre que cette stratégie
se montre plus e�cace que les méthodes basées sur la notion de centralité.

2.2.2 Une analyse détaillée de la plani�cation prioritaire

Dans le chapitre 9, notre contribution majeure se situe dans l’introduction et l’analyse
d’une classe particulière de stratégies pour supprimer une épidémie du type Susceptible-
Infecté-Susceptible (SIS). L’administrateur du réseau a accès à un ensemble de ressources de
traitement dont il peut choisir la distribution tout au long de l’épidémie. Chaque ressource
a une action locale et temporelle qui peut in�uer sur le comportement d’un nœud du
réseau. Réagir en temps réel à une di�usion rapide peut être di�cile. A�n de simpli-
�er le travail nécessaire au moment de la di�usion, nous considérons une classe simple
d’allocation dynamique de ressources reposant sur un ordre de priorité calculé en amont
de l’épidémie. En se focalisant sur les premiers nœuds infectés dans l’ordre de priorité,
une telle stratégie supprime progressivement la di�usion jusqu’à son extinction totale. Le
rôle de la coupe maximale (ou maxcut) d’un ordre de priorité est mis en évidence par des
résultats théoriques le reliant étroitement au temps d’extinction de l’épidémie, lorsque le
budget est limité et le réseau est totalement infecté au départ de l’épidémie. Plus précisé-
ment, nous montrerons que, sous quelques hypothèses techniques, si r est le budget de
ressources disponible, β la vitesse de transmission de l’épidémie et C∗(`) la coupe maxi-
male de l’ordre ` utilisé par la stratégie de plani�cation prioritaire, alors

r = βC∗(`)

est un seuil critique pour le temps d’extinction de l’épidémie (voir Dé�nition 8.3.1, Théo-
rème 9.4 et Théorème 9.5), séparant les régimes sous-critique et sur-critique de l’épidémie.
Par conséquent, la largeur de coupe (ou cutwidth, voir Dé�nition 9.5) du réseau détermine
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le budget de ressources nécessaire pour mettre �n à une épidémie à l’aide de la plani�ca-
tion prioritaire, et la stratégie que nous proposons, appelée Maxcut minimisation (MCM),
apparaît comme une utilisation naturelle et simple de nos résultats théoriques.

2.3 Convergence des processus di�usifs

Cette partie est consacrée à l’analyse de la convergence des réseaux. Plus généralement,
notre objectif est de fournir de nouveaux outils mathématiques pour la convergence des
matrices et des réseaux, et montrer que ces outils fournissent des résultats nouveaux et
intuitifs, tout en étant faciles à utiliser. La convergence des espaces métriques n’est pas
un sujet nouveau, et, déjà en 1981, Gromov (1981) dé�nit et analyse une distance entre
espaces métriques basée sur la projection des deux espaces métriques dans un espace
commun. Toutefois, cette quantité reste relativement complexe et inadaptée aux espaces
métriques non bornés. En s’appuyant sur les travaux en transport optimal et leur utilisa-
tion judicieuse des couplages probabilistes, nous analyserons dans ce chapitre un distance
plus récemment introduite par Sturm (2006, 2013) et Mémoli (2011, 2014), à l’aide d’une
approche nouvelle mettant l’accent sur la notion de mapping probabiliste, une manière élé-
gante et puissante permettant de représenter une “quasi-isométrie” entre deux espaces de
cardinalité di�érente.

Dans le chapitre 10, nous présenterons les principaux concepts utilisés pour la conver-
gence des espaces métriques et mesurables (notées mm-espaces), notamment la distance de
Gromov-Wasserstein entre deux mm-espaces, et donnerons quelques exemples de conver-
gence de réseaux vers des espaces continus. Dans le chapitre 11, nous montrerons que de
nombreuses caractéristiques de réseaux et de matrices (et leur généralisation sous forme
d’opérateurs dans un mm-espace), tels que leur spectre ou les processus dynamiques qui
lui sont associés, sont continues par rapport à la distance de Gromov-Wasserstein.

2.3.1 Sur la convergence des réseaux

Dans le chapitre 10, nous présenterons d’abord une nouvelle distance entre fonctions se
trouvant dans deux mm-espaces di�érents, appelée distance de mapping, basée sur la com-
paraison des valeurs des deux fonctions via un couplage probabiliste entre les deux es-
paces. En utilisant cette distance, nous reformulerons la notion de distance de Gromov-
Wasserstein comme une distance de mapping entre les mesures des deux mm-espaces.
Cette nouvelle représentation de la distance de Gromov-Wasserstein nous permettra, dans
le chapitre 11, de généraliser les théorèmes de continuité, non seulement aux opérateurs
qui dépendent de la métrique du mm-espace, mais aussi à toute séquence d’opérateurs
qui convergent par rapport à une nouvelle distance entre opérateurs, également appelée la
distance de mapping en raison de son lien étroit avec la distance de mapping pour les fonc-
tions. Cette distance entre opérateurs peut s’interpréter comme une généralisation de la
norme d’opérateur permettant de comparer deux opérateurs se trouvant dans deux espaces
di�érents. Nous montrerons ensuite que les réseaux de type grille, réseaux totalement con-
nectés et réseaux aléatoires géométriques convergent au sens de Gromov-Wasserstein, et
l’un des nouveaux résultats de cette section est que les réseaux non dirigés sont denses
dans l’espace de tous les mm-espaces. Cela signi�e que tout espace continu muni d’une
distance et d’une mesure de probabilité est la limite d’une suite de réseaux non dirigés. Ces
nouveaux outils mathématiques pourraient fournir une intuition nouvelle et de précieux
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résultats en théorie des matrices aléatoires, ainsi que pour l’analyse de grands réseaux,
notamment les réseaux sociaux.

2.3.2 Continuité de caractéristiques clé et processus

Dans le chapitre 11, nous montrerons que les caractéristiques macroscopiques d’un réseau
convergent lorsque le réseau converge au sens de Gromov-Wasserstein. Plus précisément,
nous analyserons la convergence du degré moyen, le volume des boules de rayon �xé, la
distribution des degrés, le rayon spectral et le diamètre. De plus, nous montrerons la con-
vergence des propriétés spectrales de la matrice d’adjacence, y compris son spectre et ses
valeurs propres, et généraliserons ce résultat aux séquences de matrices convergeant par
rapport à une nouvelle notion de distance entre opérateurs, appelée distance de mapping.
En�n, nous analyserons la convergence de nombreux processus dynamiques lorsque leurs
espaces sous-jacents converge, y compris les systèmes dynamiques discrets, systèmes dif-
férentiels, marches aléatoires et processus de di�usion markoviens. Ces résultats justi�ent
l’utilisation de la distance de Gromov-Wasserstein en épidémiologie, notamment lorsque
le réseau de contact est très grand, et ouvrent la voie vers des modèles plus ra�nés de
di�usion utilisant un mm-espace comme approximation du réseau de contact sur lequel
l’épidémie se propage. L’un des principaux résultats de cette section est que, lorsqu’une
séquence de matrices symétriques converge vers un opérateur d’un espace continu par
rapport à la distance de mapping, leur spectre converge, au sens de la distance de Haus-
dor�, vers le spectre de l’opérateur limite. Ce résultat est assez général et pourra peut-être
trouver des applications dans des domaines aussi divers que la théorie des matrices aléa-
toires ou les statistiques en grande dimension (en fournissant un comportement limite des
matrices de covariance pour des données de grande dimension).

Corollaire 11.6 (Spectre des matrices symétriques). Soit Fn une séquence de matrices

symétriques, et F : L2,µX → L2,µX un operateur d’un mm-espace X . Si lim∆∆2(Fn, F) = 0,

dH(sp(Fn) ∪ {0}, sp(F) ∪ {0}) ≤ ∆∆2(Fn, F), (2.1)

et sp(Fn) ∪ {0} converge vers sp(F) ∪ {0}.

Dans ce corollaire, sp(F) est le spectre (ponctuel) de l’opérateur linéaire F, L2,µX est
l’espace des fonctions f : X → R de p-norme �nie || f ||p,µX , dH est la distance de Haus-
dor� entre sous-ensembles d’un espace, et ∆∆2(F, G) est la distance de mapping entre deux
opérateurs F et G de leurs espaces respectifs. Lorsque les opérateurs dépendent des dis-
tances de leurs espaces (par exemple les matrices d’adjacence), et que les deux espaces sont
proches au sens de Gromov-Wasserstein, alors ce résultat implique que les spectres de ces
opérateurs seront également proches.
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Introduction (english version)

“If we knew what it was we were doing, it

would not be called research, would it?”

— Albert Einstein

Approximation is a central notion in science, and �nding the right level of abstraction
is often the key to a theory’s success. In many scienti�c �elds, including economy, soci-
ology and biology, the in�nite complexity of an individual is often reduced to the most
simple of all creatures: a plain and anonymous node in a gigantic network. Although
this approximation may seem too strong to provide any valid intuition, real-life networks,
whether computer networks, social networks or bank networks, tend to share common
characteristics and behave in a similar way, irrespective of the individual traits of their
entities. In a certain sense, the macroscopic characteristics of these complex systems are
driven, not by the local properties of its elements, but by the complex structure of their

interactions. Predicting the behavior of epidemics, information di�usion or �nancial crises
thus requires to understand this structure and how it impacts the dynamic properties of
the network. In other words, understanding how propagation from one person to the
other through the complex paths of a network may in�uence the temporal evolution of a
di�usion, and thus drive its macroscopic behavior.

Social networks give scientists a unique opportunity to observe such di�usion pro-
cesses in real-time and with a high precision. The propagation of a message among its
users, when its content is public, is made available to the research community in very
large databases. This wealth of data allowed the fast development of the �eld and its ap-
plications in marketing. However, the theoretical analysis of these di�usion processes did
not bene�t from it, and part of this thesis consisted in understanding which structural
characteristics of networks determine the macroscopic behavior of such information cas-
cades.

In epidemiology, theoretical analysis is only the �rst step towards e�ective prediction
and preventive measures. The main problem with the corresponding literature is that most
works assume that the network of interactions is known. Although inference algorithms
may provide good network candidates in situations in which data is available in large
quantities (e.g. social networks), sometimes the underlying network is way beyond our
reach. In epidemiology, a common practice to circumvent this di�culty is to simplify the
contact network in a population by a network of cities or states, upon which the epidemic
is assumed to follow a simple epidemic model. Part of our work in this thesis was devoted
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to bridging the gap between simpli�ed and exact epidemic models, and may allow to create
more re�ned models at the intersection of both approaches.



4
Summary of contributions

This thesis is organized in three parts. First, we analyze models of di�usion cascades
and derive new theoretical results concerning the in�uence -a key characteristic of such
processes- in several contagion scenarios. These results allow us to derive new upper
bounds in percolation theory, epidemiology, and information cascades. Moreover, we char-
acterize the dynamic properties of di�usion processes by analyzing their critical time, i.e.
the time when the contagion reaches a non-negligible size. Second, we develop new strate-
gies for the control of di�usion processes, and more speci�cally epidemics, using treatment
resources dynamically. Then, we analyze the quality of a large class of control strategies,
and show that a particular network characteristic can e�ectively describe their e�ciency.
Third, we develop new mathematical tools for the analysis of networks and di�usion pro-
cesses capable of describing limit properties of networks when these tend to continuous
spaces. We consider these mathematical tools as the foundation of more advanced analysis
and control of epidemics on extremely large networks for which only macroscopic data is
available.

4.1 Analysis of di�usion processes

At the intersection of many scienti�c �elds, including statistical physics, epidemiology,
computer science and data mining, the literature of di�usion processes is large and di-
verse. Unfortunately, due to their speci�c constraints and limitations, each �eld de�ned
its own models of di�usion, and the new discoveries in one �eld are not always applied to
the others. For example, the epidemiology literature discovered the impact of the spectral
radius of the adjacency matrix (see De�nition 5.5) on di�usion processes, and their ability
to explode and sustain in a network, more than ten years ago in the work of Wang et al.
(2003). A similar analysis was available for Hawkes processes, for which the process ex-
plodes in �nite time if the spectral radius of a certain matrix reaches 1. However, such an
analysis was still lacking for information cascades (see Model 5.12), a newer model of con-
tagion speci�cally designed for communication networks and the spread of information
(Gomez-Rodriguez et al., 2011).

Chap. 5 summarizes the main concepts and models of networks and di�usion pro-
cesses, and will serve as an introduction to the key elements of the literature. The rest
of the thesis will use the models presented in this section and heavily depend on them.
In Chap. 6, we will develop new upper bounds for the in�uence in random networks, and
apply them to several di�usion processes including percolation, epidemiology models and
information cascades. Finally, Chap. 7 will investigate the dynamic properties of informa-
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tion cascades, notably through the characterization of a critical time at which the cascade
becomes super-critical and reaches large areas of the network.

4.1.1 Long-term behavior of the in�uence

In Chap. 6, we introduce the notion of random graphs with Local Positive Correlation (LPC)
(see De�nition 6.6) and derive non-asymptotic upper bounds for the in�uence in this setup.
The concept of random graphs with LPC uni�es, in some sense, the description of the phe-
nomena observed in the �elds of percolation theory, epidemiology and information cas-
cades. The upper bounds obtained depend on the spectral radius ρn of a particular matrix
built from the edge probabilities, called the Hazard matrix. We show that such bounds
reveal three regimes: subcritical, critical and supercritical, depending on the value of the
spectral radius ρn. For random graphs with n vertices, we show that the in�uence is at
most a O(

√
n) when ρn < 1, and in average a O(1). However, when ρn > 1, the regime

becomes supercritical as the in�uence becomes potentially linear in n. More speci�cally,
we show that the in�uence is upper bounded by γ0(ρn)n + o(n), where γ0(ρn) ∈ [0,1]
is a simple function (see De�nition 6.3) and that this bound is met for particular random
graphs. Finally, in the transitional regime where ρn ≈ 1, the in�uence is at most a O(n2/3),
and in average a O(

√
n). Moreover, we also obtain that the size of this intermediate regime

w.r.t. ρn is proportional to n−1/3. Tab. 4.1 summarizes the di�erent behaviors of upper
bounds for in�uence in random graphs with LPC, in the subcritical, critical and super-
critical regimes, as provided in Sec. 6.3. In the Random A scenario, a set of n0 in�uencers
are drawn at random, while in Random B each node belongs to the in�uencer set with
independent probability q.

Regimes

Scenario Subcritical (ρn < 1) Critical (ρn ≈ 1) Supercritical (ρn > 1)

(I) Worst-case O(
√

n) O(n2/3) γ0(ρn)n + O(
√

n)

(II) Random A O(1) O(
√

n) γ0(ρn)n + O(1)

(III) Random B O(qn) O(
√

qn) γ0(ρn)n + O(qn)

Table 4.1: Summary of results for in�uence in random graphs with LPC.

As a corollary, we derive upper bounds for the size of the giant component in bond and
site percolation which signi�cantly improve the previous results of Bollobás et al. (2010).
More speci�cally, we show that the spectral radius ρn is a key quantity for percolation, and
that the size of the giant component C1(G) is, in expectation, upper bounded by a O(

√
n)

when ρn < 1, by a O(n2/3) when |ρn − 1| = O(n−1/3), and by γ0(ρn)n + o(n) when
ρn > 1. Moreover, we prove that a giant component can only exist if limsupn→+∞ ρn > 1.
Also, we analyze the distribution of the size of connected components by upper bounding
the number N(m) of connected components of size bigger than m in expectation. Tab. 4.2
summarizes the di�erent behaviors of the upper bounds in the subcritical, critical and
supercritical regimes, derived for percolation.

Finally, we apply our upper bounds to the late-time properties of the Susceptible-
Infected-Removed (SIR) epidemic model, as well as discrete and continuous-time infor-
mation cascades. More speci�cally, we signi�cantly improve the results of Draief et al.
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Regimes

Quantity Subcritical (ρn < 1) Critical (ρn ≈ 1) Supercritical (ρn > 1)

E[C1(G)] O(
√

n) O(n2/3) γ0(ρn)n + O(
√

n)

E[N(m)] O(nm−2) O(nm−3/2) γ0(ρn)n/m + O(nm−3/2)

Table 4.2: Summary of results for bond and site percolation: C1(G) is the size of the giant
component, and N(m) is the number of connected components of size bigger than m.

(2008) in the subcritical regime, and show that, near the epidemic threshold, the number
of infected nodes in the SIR model is a O(n2/3). Furthermore, we extend the traditional
epidemic threshold in βρ(A) = δ, where β and δ are the transmission and recovery rates
and A is the adjacency matrix of the underlying graph, to more realistic SIR models in
which the incubation period may follow a non-exponential distribution.

4.1.2 Dynamic properties of the in�uence

In Chap. 7, we extend the notion of Hazard Matrix in order to analyze the dynamic proper-
ties of continuous-time information cascades. More speci�cally, we de�ne the Laplace Haz-
ard matrix and show that the in�uence at time T of any set of nodes heavily depends on its
spectral radius. Moreover, we reveal the existence and characterize the behavior of critical
times at which super-critical processes explode. We show that, before these times, super-
critical processes will behave sub-critically and infect at most o(n) nodes. We then apply
our generic bounds to four particular cascade models in which our bounds can be made
explicit: continuous-time information cascades with exponential transmission probabil-
ities, discrete-time information cascades, Susceptible-Infected and Susceptible-Infected-
Removed epidemic models. Tab. 4.3 summarizes the bounds obtained on the critical time
for each model.

Model Critical time lower bound

Continuous-time lnn/2ρ−1
n (1)

Discrete-time lnn/2lnρα

Exponential transmissions lnn/2λ(ρα − 1)

Susceptible-Infected-Removed lnn/
(

2(δ + β)(ln(1 + β
δ )ρ(A)− 1)

)
Susceptible-Infected 1

β

√
lnn

2ρ(An)
(1− e−

√
lnn

2ρ(An) )

Table 4.3: Summary of results for lower bounds on the critical time in continuous-time
information cascades. ρn(s) denotes the spectral radius of the Laplace Hazard matrix (see
De�nition 7.1), ρα the Hazard radius, λ the parameter of the exponential probabilities, and
δ and β are epidemic parameters.

Furthermore, in�uence bounds are provided for any time T in the generic setting of
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continuous-time information cascades,

σI (T) ≤ n0 +
√

n0(n− n0) min
{s≥0 | ρ(s)<1}

(√
ρ(s)

1− ρ(s)
esT

)
,

where σI (T) is the in�uence of the set I of n0 nodes at time T (see De�nition 5.10), and
ρ(s) is the spectral radius of the Laplace Hazard matrix (see De�nition 7.1). Although this
minimum may not be explicit in general, we then provide explicit upper bounds in two
particular cases: the discrete-time information cascades

σI (T) ≤ n0 +
√

n0(n− n0)

√
2eT
T0

ρ
T
T0
α ,

where ρα is the Hazard radius (De�nition 6.2), and the continuous-time information cas-
cade with exponential transmission probabilities

σI (T) ≤ n0 +
√

n0(n− n0)
√

2eTλραeλT(ρα−1),

where λ is the parameter of the exponential probabilities.
These results can be used in various ways. First, they provide a way to evaluate in�u-

ence maximization algorithms without having to test all possible set of in�uencers, which
is intractable for large graphs. Secondly, critical times allow decision makers to know
how long a contagion will remain in its early phase before becoming a large-scale event,
in �elds where knowing when to act is nearly as important as knowing where to act. Fi-
nally, they can be seen as the �rst closed-form formula for anytime in�uence estimation
for continuous-time information cascades. Indeed, we provide empirical evidence that our
bounds are tight for a large family of graphs at the beginning and the end of the infection
process.

4.2 Control strategies for di�usion processes

The analysis of di�usion processes and the design of control strategies are complex and
depend heavily on factors such as: i) the type of the di�usion process, e.g. each node can
be prone to single or multiple infections, ii) the network structure, and iii) the type of
control actions available to authorities. Our aim is to perform dynamic epidemic control

using real-time resource allocation. At each instant in time, a certain budget of resources is
available and the authorities need to decide which nodes should receive them based on the
current state of the network. This setting is particularly representative for the control of
undesired di�usion processes in a social network, such as the spread of particular interests,
malicious behaviors (e.g. violence, racism) or even health related behaviors such as obesity
(recently shown to be di�usive through a social network by Christakis and Fowler (2007))
or smoking.

In Chap. 8, we study the control of di�usion processes and use the epidemic control as
reference. In Chap. 9, we analyze a particular class of control strategies called priority

planning, and derive theoretical results on the quality of such strategies.
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4.2.1 Dynamic control of SIS epidemics

In Chap. 8, we �rst propose a model formulation for the dynamic control of di�usion
processes as a dynamic resource allocation (DRA) problem. Second, we investigate DRA
strategies and propose the novel Largest Reduction in Infectious Edges (LRIE) control strat-
egy based on the minimization of a second-order approximation of the cost associated
with a di�usion process. We explain that LRIE greedily minimizes the number of infec-
tious edges that can transmit the infection from infected to healthy nodes of the network.
This way, it reduces the scattering of the infection across the network and allows for e�-
cient di�usion process control. Third, our experimental study on randomly generated and
real-world networks shows that LRIE outperforms well-known centrality-based strategies,
whose performance is suboptimal for this particular problem.

4.2.2 A detailed analysis of priority planning

In Chap. 9, our major contribution is the introduction and analysis of a particular class
of strategies for suppressing an undesired Susceptible-Infected-Susceptible (SIS) di�usion
process. We allow the network administrator to change the distribution of a set of treat-
ment resources during the di�usion. Each resource represents a targeted and temporal ac-
tion that can a�ect the behavior of an individual node of the network. Since reacting to
fast spreading phenomena is di�cult to achieve, we consider a simple class of dynamic
resource allocation (DRA) strategies that rely on a priority-order precomputed o�ine. By
focusing on the �rst infected nodes in the priority-order, such a strategy gradually sup-
presses the di�usion and eventually removes the contagion. The role of the maxcut of a
considered priority-order is highlighted by developing tight bounds for the extinction time
of the epidemic, when the budget is bounded and the starting state is the total infection.
More speci�cally, we show that, under technical constraints, if r is the available resource
budget, β the infection rate of the epidemic and C∗(`) the maxcut of the order ` used by
the priority planning strategy, then

r = βC∗(`)

is a critical threshold for the extinction time of the epidemic (see De�nition 8.3.1, Theo-
rem 9.4 and Theorem 9.5), separating the sub-critical and super-critical behaviors of the
epidemic. Hence, the network’s cutwidth (see De�nition 9.5) determines the resource bud-
get required to suppress such epidemic under priority planning, and our proposed DRA
strategy, called maxcut minimization (MCM), comes as a natural and straightforward uti-
lization of our theoretical �ndings.

4.3 Limiting behavior of di�usion processes

This part is devoted to the analysis of the convergence of networks. More generally, our
aim is to provide new mathematical tools for the convergence of matrices and networks,
and show that these tools provide novel and intuitive results, while being easy to use.
The convergence of metric spaces is not new and, already in 1981, Gromov (1981) de�ned
and analyzed a distance between metric spaces based on the projection of the two met-
ric spaces in a common space. However, this quantity remains relatively complex, and
unsuited to unbounded metric spaces. Relying on the works of optimal transport and
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their judicious use of probabilistic couplings, we analyze in this chapter a distance more
recently introduced by Sturm (2006, 2013) and Mémoli (2011, 2014), using a novel presen-
tation highlighting the notion of probabilistic mapping, an elegant and powerful way to
represent “near isometries” between spaces of di�erent cardinality.

In Chap. 10, we present the main concepts used for the convergence of metric and mea-
surable spaces (denoted as mm-spaces), notably the Gromov-Wasserstein distance between
two mm-spaces, and give a few examples of convergence of networks to continuous spaces.
In Chap. 11, we show that many characteristics of networks and matrices (and generic
operators of mm-spaces), such as their spectrum or associated dynamical processes, are
continuous with respect to the Gromov-Wasserstein distance.

4.3.1 On the convergence of networks

In Chap. 10, we �rst present a novel distance between functions lying in two di�erent mm-
spaces, called the mapping distance, by comparing the values of the two functions through
a probabilistic coupling. Using this distance, we reformulate the notion of Gromov-Wasser-
stein distance as a mapping distance between the metrics of the two mm-spaces. This
new understanding of the distance will allow us, in Chap. 11, to generalize the continuity
theorems, not only to operators that depend on the metric of the mm-space, but to any
sequence of operators that converge with respect to a new distance between operators,
also named the mapping distance for its relation to the mapping distance between function.
This distance between operators can be seen as a generalization of the operator norm to
operators lying in two di�erent spaces. We then show that grid graphs, totally connected
graphs and geometric random graphs converge in the Gromov-Wasserstein sense, and
one of the new results of this section is that undirected graphs are dense in the space
of all mm-spaces. This means that every continuous space equipped with a metric and a
probability measure is the limit of a converging sequence of undirected graphs. These new
mathematical tools may provide a new intuition and valuable results for random matrix
theory and the analysis of large graphs such as social networks.

4.3.2 Continuity of key characteristics and processes

In Chap. 11, we show that the macroscopic characteristics of a network converge when
the network converges in the Gromov-Wasserstein sense. More speci�cally, we analyze
the convergence of the average degree, volume of balls of �xed radius, degree distribution,
spectral radius and diameter. Moreover, we show the convergence of the spectral proper-
ties of the adjacency matrix, including its spectrum and eigenvalues, and generalize this
result to any sequence of matrices that converge with respect to a novel notion of distance
between operators, called the mapping distance. Finally, we analyze the convergence of
many dynamic processes when their underlying space converges, including discrete dy-
namical systems, di�erential systems, random walks and Markovian di�usion processes.
These results motivate the use of the Gromov-Wasserstein distance for epidemiology stud-
ies on very large networks, and open the way to more re�ned models of di�usion using
mm-spaces as an approximation of the contact graph on which the epidemic is propagat-
ing. One of the major results of this section is that, when a sequence of symmetric matrices
converges to an operator of a continuous space with respect to the mapping distance, then
their spectrum converge in the Hausdor� sense to the spectrum of the limit operator. This
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result is fairly general and may �nd applications in �elds as diverse as random matrix the-
ory or high-dimensional statistics (by providing a limiting behavior of covariance matrices
of high-dimensional data).

Corollary 11.6 (Spectrum of symmetric matrices). Let Fn be a sequence of symmetric

matrices, and F : L2,µX → L2,µX an operator on an mm-space X . If limn→+∞ ∆∆2(Fn, F) =
0, then

dH(sp(Fn) ∪ {0}, sp(F) ∪ {0}) ≤ ∆∆2(Fn, F), (4.1)

and sp(Fn) ∪ {0} converges to sp(F) ∪ {0}.

In this corollary, sp(F) is the (point) spectrum of the linear operator F, L2,µX is the
space of functions f : X → R of �nite p-norm || f ||p,µX , dH is the Hausdor� distance
between subsets, and ∆∆2(F, G) is the mapping distance between two operators F and G
on their respective spaces. When the operators depend on the distances of their spaces (e.g.
adjacency matrices), and the two spaces are close with respect to the Gromov-Wasserstein
distance, then this result implies that the spectrums of these operators will also be close.
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5
Models of networks and di�usion

“Thought is an infection. In the case of

certain thoughts, it becomes an epidemic.”

— Wallace Stevens
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5.1 Introduction

Our aim in this chapter is to present the main concepts and de�nitions of network theory
and di�usion processes, as clearly and as precisely as possible. We will then use these
de�nitions in the next chapters for the analysis and control of di�usion processes. This
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chapter is also the occasion to present a coherent view of the literature, which has the
disadvantage of being at the intersection of many di�erent �elds including epidemiology,
computer science and statistical physics. Thus de�nitions can sometimes be incoherent be-
tween two �elds, or too speci�c (e.g. restricted to undirected networks, suited to epidemic
processes only or a de�nition of random graphs restricted to constructive algorithms). We
will thus put a particular emphasis on using a unique mathematical framework through-
out this entire manuscript, and give proper mathematical de�nitions of the concepts used
in the literature.

General notations

For any set X, we will denote as card(X) its number of elements, Pn(X) the set of all
subsets of X of size n and X \ Y the complementary subset of Y in X. We will also use
the abbreviation [|n|] = {1, ...,n} the set of all integers between 1 and n, and 1{·} the
indicator function. We will say that a property A holds almost surely (abbreviated as a.s.)
if P(A) = 1, and that a sequence of properties An holds asymptotically almost surely

(abbreviated as a.a.s.) if limn→+∞ P(An) = 1.

5.2 Network models and characteristics

The notion of a network is used in many contexts and scienti�c �elds (biological networks,
contact networks, neural networks), technological applications (sensor networks, com-
puter networks, the internet), as well as day-to-day discussions (social networks, trans-
portation networks, business “networking”). All these concepts share a common property,
that can be considered as the core de�nition of a network: they form a set of interconnected
entities. The simplest way to encode such a notion, are arguably the most widely used an
accepted, is through a mathematical concept called a graph.

5.2.1 Basic de�nitions

A graph describes a network by specifying pairs of entities, denoted a nodes, that are con-
nected to one another. This connection can be symmetric (e.g. neighborhood or friendship)
or asymmetric (e.g. prey vs. predator in a food web, or followee vs. follower in an online
social network). We now provide de�nitions for directed, undirected and weighted graphs.

De�nition 5.1 (Directed graph). A directed graph G = (V ,~E) is de�ned via a �nite set

of nodes V and a set of edges ~E ⊂ V × V , i.e. pairs of nodes that are considered neighbors.
The size of G denotes the number of nodes of G , i.e. card(V).

We will always assume that a graph has no self-loops (i.e. ∀u ∈ V ,(u,u) < E ), and no
multiple edges on the same pair of nodes. The following de�nition encodes the notion of
a graph whose connections between entities are symmetric.

De�nition 5.2 (Undirected graph). An undirected graph G = (V ,E) is a directed graph

whose edge set is symmetric, i.e. ∀(u,v) ∈ E , (v,u) ∈ E .
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(a) Directed graph (b) Undirected graph (c) Weighted graph

Figure 5.1: Graphical representation of a directed (a), undirected (b) and weighted (c) graph.
Directed edges are represented by arrows, and the color intensity represents the weight of
the edge.

The outgoing (resp. ingoing) degree of a node v will denote the number of outgoing
(resp. ingoing) edges from this node:

dO
v = card({(u,w) ∈ E : u = v}), (5.1)

dI
v = card({(u,w) ∈ E : w = v}). (5.2)

In the case of undirected graphs, these two quantities are equal, and we will use the term
degree of node v, noted dv, for this value. In many applications, the importance of a con-
nection between two nodes is variable (e.g. close friends and distant relations will not have
the same impact on a person’s decisions), and providing each edge with a weight is a very
natural way to take this imbalance into account.

De�nition 5.3 (Weighted graph). A weighted graph G = (V ,~E ,w) is a directed graph

and a weight vector w ∈ R
card(~E)
+ that assigns a non-negative weight for each edge of the

network. For each edge e ∈ E , we will denote the weight assigned to edge e.

Unless speci�ed otherwise, we will use the generic term “graph” for a undirected graph,
and specify with directed or weighted otherwise. Also, we will usually assume that the
nodes of a graph G = (V ,~E) of size n are indexed from 1 to n, i.e. V = {v1,v2, ...,vn},
and node i will refer to node vi. A compact and very usefull description of the edge set is
called the adjacency matrix.

De�nition 5.4 (Adjacency matrix). Let G = (V ,~E) be a directed graph of size n, and
V = {v1,v2, ...,vn} an indexing of the nodes from 1 to n. The adjacency matrix A of G is an

n× n matrix whose coe�cients are: ∀i, j ∈ {1, ...,n},

Aij =

{
1 if (vi,vj) ∈ E
0 otherwise

. (5.3)

Many characteristics of graphs can be de�ned using this matrix, making it a corner-
stone of network analysis. For example, the number of edges E = card(E) = ||A||1 =

∑i,j Aij, and the outgoing (resp. ingoing) degree of a node is dO
i = ∑j Aij (resp. dI

i =

∑j Aji). Note that the notion of adjacency matrix can also be extended to weighted graphs
by associating each edge e to its weight we instead of 1 in the matrix.
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Networks of billions of nodes, such as modern social networks, can be extremely high-
dimensional objects, and very di�cult to represent. A large number of characteristics were
thus de�ned in order to provide a better understanding of such graphs, as well as intuition
on the structure of the network. We now discuss several characteristics of particular inter-
est for di�usion processes.

5.2.2 Spectral radius

One of the most important characteristics for describing the behavior of di�usion processes
is the spectral radius (see for example Van Mieghem et al. (2009); Prakash et al. (2012);
Lemonnier et al. (2014); Scaman et al. (2015b)). This quantity is tightly connected to the
explosive behavior of di�usion process, and was found to act as a threshold value between
sub-critical and super-critical epidemics (see Chap. 6 for more details).

De�nition 5.5 (Spectral radius). The spectral radius ρ(G) of an undirected graph G is the

spectral radius of its adjacency matrix A:

ρ(G) = max
i
|λi|, (5.4)

where {λ1, ...,λn} are the eigenvalues of A.

Note that, for undirected networks, the adjacency matrix A is symmetric and, thus,
can be diagonalized. Since epidemiology is mostly interested in undirected networks, the
spectral radius was mainly designed for such networks, and a widely adopted generaliza-
tion to directed networks is still lacking. Our research indicates that the spectral radius of
the symmetrized adjacency matrix A+A>

2 is a good candidate (or, in a more general setting,
the symmetrized Hazard matrix, see Sec. 6.2).

5.2.3 Connected components

For an undirected graph, a connected component is a maximal set of nodes in which each
node is connected to any other via a path.

De�nition 5.6 (Path). Let G = (V ,E) be a (possibly directed) graph, and u,v ∈ V two

nodes. A path from u to v in G is a sequence (v0, ...,vK) of nodes such that:

• v0 = u and vK = v,

• ∀k ∈ {0, ...,K− 1}, (vk,vk+1) ∈ E .

The set of all paths from u to v in G is denoted QGu,v.

Using paths, we can now give a formal de�nition of connected components:

De�nition 5.7 (Connected component). Let G = (V ,E) be an undirected graph. A

connected component VC ⊂ V is a set of nodes such that: ∀u ∈ VC,

• ∀v ∈ VC,QGu,v , ∅,

• ∀v < VC,QGu,v = ∅.



5.2. NETWORK MODELS AND CHARACTERISTICS 43

The whole graph is a partition (i.e. disjoint union) of connected components, and the
largest connected component is sometimes referred to as giant component. The number

of connected components, and their respective sizes, informs us about the connectivity of a
network, and the size of the largest component is a important quantity for understanding
the potential spread of di�usion processes (this is one of the main quantities studied by
percolation theory, see Sec. 6.4). Finally, when a graph has only one connected component,
it is said to be connected.

5.2.4 Diameter

The diameter of a graph is the distance between its two most separated nodes:

diam(G) = max
u,v∈V

d(u,v), (5.5)

where d(u,v) is the shortest-path distance between u and v, i.e.

d(u,v) = min{K ≥ 0 : ∃(v0, ...,vK) ∈ QGu,v}. (5.6)

When the graph is not connected, its diameter is in�nite, and the diameter of its connected
components may provide useful information. In real social networks such as Twitter or
Facebook, the diameter of the giant component was shown to be relatively low, of the
order of logn, where n is the size of the network (Ugander et al., 2011).

5.2.5 Degree distribution

The degree distribution provides valuable information about the local characteristics of a
network: How connected is it? Is the network uniform or presenting denser areas? Are
there hubs in the network? Does the network verify some scale-free property?

De�nition 5.8 (Degree distribution). The degree distribution of a graph G = (V ,E) of
size n is the empirical distribution of its degrees:

πD =
1
n ∑

v∈V
δdv , (5.7)

where dv is the degree of node v and δx is the Dirac probability measure centered on x (i.e.

for every borel set A of R, δx(A) = 1{x ∈ A}).

While networks with a small maximum degree will tend to have a relatively uniform
structure (e.g. without extremely large hubs that completely dominate the evolution of
di�usion processes), a skewed degree distribution indicates a network with denser areas
(called center) and more sparse regions (called periphery). Also, the graph is called scale-

free when the degree distribution exhibits a power-law behavior:

πD (]x,+∞)) = θ(x−η), (5.8)

for a �xed parameter η > 0, that is, πD(]x,+∞))xη is lower and upper bounded for x
su�ciently large. Such a power-law degree distribution was observed on many real net-
works including modern social networks (Ugander et al., 2011) and the internet (Barabási
and Albert, 1999), and may indicate a certain preferential attachment procedure for the
generation of such graphs (also known as “the rich get richer” e�ect, see Sec. 5.3.2).
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5.2.6 Other characteristics

Due to the large number of network characteristics used in the literature, we omit here
many quantities describing the connectedness, clustering, or homogeneity of networks. The
interested reader will �nd information about cliques, clusters, k-cores or centrality mea-
sures in the excellent introductory books by Newman (2010) and Kolaczyk (2009).

5.3 Random networks

For any n > 0, let Gn be the set of all graphs G = (V ,E) of size n, and G = ∪n>0Gn the
set of all possible graphs. Since each set Gn is �nite, G is countable, and G can be turned
into a probability space using the discrete sigma-algebra Σ = P(G). Note that this sigma-
algebra is the only sigma-algebra that contains single elements, i.e. ∀G ∈G, {G} ∈ Σ, and
this choice is thus rather natural. A random graph is then a random element in this set of
all possible graphs.

De�nition 5.9 (Random graph). A random graph G is a random variable in the space of

all possible graphs G equipped with the discrete sigma-algebra Σ = P(G).

We will usually consider random graphs of �xed size, i.e. random graphs G = (V ,E)
such that card(V) = n a.s. for a certain n > 0. These random graphs are entirely char-
acterized by their random adjacency matrices A ∈ {0,1}n2 . We will thus use the notation
G(n, A) to denote a random graph of size n and random adjacency matrix A, where Aij
are Bernoulli random variables indicating the presence or absence of edge (i, j) in the ran-
dom graph. We will call undirected a random graph whose adjacency matrix is symmetric

almost surely, i.e. ∀i, j, Aij = Aji a.s.. Note that, in general, the edge variables Aij are
correlated.

Random graphs are usually created in a constructive way, by providing a (randomized)
algorithm capable of creating an instance of the random graph. We now provide four
standard random graphs of the network literature.

5.3.1 Erdös-Rényi random graphs

The simplest example of undirected random graph is the graph named after Erdös and
Rényi (1960). This undirected random graph is usually constructed by connecting each
pair of nodes with independent and identical probability p ∈ [0,1]. We now provide a
more formal de�nition of such a random graph.

Model 5.1 (Erdös-Rényi random graph). For n > 0 and p ∈ [0,1], an Erdös-Rényi

random graph GER(n, p) is an undirected random graph of �xed size n such that its sym-

metric adjacency matrix A has independent and identically distributed (i.i.d.) coordinates

{Aij : i < j} and E[Aij] = p.

When p = 1/2, GER(n,1/2) is uniformly distributed over the set Gn of all graphs of
size n, and is thus the most random possible graph. This is, along with its simplicity, one of
the main reasons for its popularity, and why much attention was devoted to its analysis.
As such, the Erdös-Rényi random graph gives intuition into average graphs of size n and
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Figure 5.2: Erdös-Rényi random graph of 1000 nodes and parameter p = 0.004. The net-
work is unstructured and highly entangled (dark colors indicate high degrees).

the structure of the vast majority of graphs. Note that the original de�nition of Erdös-
Rényi random graphs considered a �xed number of edges m, although this de�nition is
less practical and has very similar properties.

5.3.2 Preferential attachment

Preferential attachment graphs were introduced by Barabási and Albert (1999), in order to
model a growing network whose new edges tend to concentrate on nodes with the highest
degree. Thus an accumulation e�ect appears and the degree distribution of such networks
tends to be skewed, with a central region of the network containing highly connected hubs,
and more peripheral regions of nodes with only a few connections. More speci�cally, the
degree distribution was shown to exhibit a power law, which made this model a particularly
well-chosen candidate for social networks generative models (Barabási and Albert, 1999).
We now provide the Barabási-Albert model for preferential attachment graphs.

Model 5.2 (Preferential attachment model). Start with a graph GPA(1, A1) of one node
and no edges (A1 = 0). Then, at each iteration, add one node of degree m > 0 to the graph,

and connect this node to other nodes of the network with probability proportional to their

degree:

An+1
ij =


1{j ∈ Nn+1} if i = n + 1

1{i ∈ Nn+1} if j = n + 1

An
ij otherwise

, (5.9)

where Nn+1 is a set of exactly m nodes between 1 and n (or Nn+1 = {1, ...,n} if m ≥ n)
chosen at random, so that

P(i ∈ Nn+1) ∝ di. (5.10)

The resulting random graph GPA(n, An) at iteration n has n nodes and nm−m(m + 1)/2
edges almost surely (when n ≥ m).
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Figure 5.3: Preferential attachment graph of 1000 nodes and parameter m = 4. High
degree nodes tend to cluster and form a highly connected center (dark colors indicate high
degrees).

Figure 5.4: Con�guration model of 1000 nodes with 10 nodes of degree 100 and 990 of
degree 2 (dark colors indicate high degrees).

5.3.3 Con�guration model

Erdös-Rényi and preferential attachment graphs tend to have a �xed degree distribution
(a Bernoulli distribution of parameters n and p for Erdös-Rényi, and a power-law for pref-
erential attachment). However, real networks usually exhibit more complex degree dis-
tributions, and, in order to improve the accuracy and predictive power of random graph
models, Bender and Can�eld (1978), and later Molloy and Reed (1995, 1998), introduced
the con�guration model. This random graph models a purely random graph in the set of
all random graphs of �xed degree distribution.
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Figure 5.5: Geometric random graph of 1000 nodes on the 2D square [0,1]2 and neighbor-
hood radius r = 0.05. The structure of the underlying space is clearly visible (dark colors
indicate high degrees).

Model 5.3 (Con�guration model). The con�guration model GCM of size n and degree

distribution πD = ∑v δdv is a graph drawn uniformly at random among the graphs of size n
and degree distribution πD.

The con�guration model is usually generated by considering that each node v has dv
half-edges attached to it, and then pairing half-edges together at random, until no half-
edge is left. the resulting graph (except for eventual self-loops that should be removed) is
drawn according to the con�guration model.

5.3.4 Geometric random graphs

The main modeling issue with the three previous random graphs is that they tend to create
locally tree-like graphs, i.e. graphs whose neighborhoods around each node resembles a
tree. For example, these random networks have a very low number of triangles, although
triangles are largely present in real social networks (Ugander et al., 2011). We thus present
one alternative that maps nodes on a metric space (usually a two-dimensional space) and
derives edges based on the distances between pairs of nodes.

Model 5.4 (Geometric random graph). Let (X ,d) be a metric space equipped with a

probability measure µ, and r > 0 a positive value. The geometric random graph GGR(X ,n,r)
is an undirected random graph of size n and adjacency matrix

Aij = 1{d(Xi, Xj) ≤ r}, (5.11)

where (Xi)i∈{1,...,n} are n i.i.d. random variables drawn according to µ.

These networks are useful for representing sensor or contact networks, that are largely
determined by the underlying space in which the agents (sensors or people in a popula-
tion) interact. A generalization of this model is known as inhomogeneous random graphs
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Figure 5.6: Inhomogeneous random graph of 1000 nodes drawn randomly on the 2D square
[0,1]2 and kernel function κ(x,y) = exp(−20||x − y||2). Compared to the geometric
random graph, long distance edges can appear and perturb the structure of the network
(dark colors indicate high degrees).

(Bollobás et al., 2007), in which a generic kernel function κ replaces the metric d, and edges
between nodes i and j are drawn independently at random with probability κ(Xi, Xj).

Model 5.5 (Inhomogeneous random graphs). Let (X ,µ) be a measurable space, and

κ : X ×X → R+ a symmetric measurable kernel function, and V = (x1, x2, ...) ⊂ X a

countable node set. An inhomogeneous random graph GVIR(n,κ) is an undirected random

graph of size n and adjacency matrix A, where each Aij is an independent Bernoulli random

variable of parameter E[Aij] = κ(xi, xj).

It is moreover assumed that the empirical distribution of the node set V converges
weakly to the measure µ of X , i.e.

1
n ∑

i
δxi

d→ µ. (5.12)

A detailed analysis of percolation in such networks when κ(x,y) = θ(1/n) is available in
the seminal work of Bollobás et al. (2007).

5.3.5 Other models of random graphs

While our aim in this section was to provide an overview of the some of the random graph
models used in this document, the corresponding literature also contains a large number
of other random graphs. To name a few, the Stochastic Block Model was introduced by
Holland et al. (1983) and is often used for the theoretical analysis of clustering, small world

random graphs provide a simplistic representation of communication networks (Watts and
Strogatz, 1998), and parametric models such as the Exponential Random GraphModel allow
the inference of a network using macroscopic information (Robins et al., 2007).
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5.4 Di�usion processes

A di�usion process can be described as a sequence of events that propagates through a
network by means of interconnection. For example, an epidemic spreads through a pop-
ulation by contact between individuals, and this process can be captured by relatively
simple mathematical models. In all generality, a di�usion process on a graph G = (V ,E)
is a multivariate stochastic process {Xv(t) : v ∈ V , t ≥ 0} where X(t) ∈ S is the state
of node v at time t, and S is a �nite set of possible states (e.g. infected or healthy). While
each model has its own equations of evolution, the key quantity is usually the number of
nodes in a particular state s ∈ S , called the in�uence. For epidemiology, the goal will be to
reduce the number of infected nodes, while for information cascades it will be to increase
the reach of an information.

De�nition 5.10 (In�uence). Let s ∈ S be a state, t ≥ 0 and x ∈ Sn
an initial state vector.

The in�uence of x at time t, denoted σx,s(t), is the number of nodes in state s when the process
was initialized at X(0) = x:

σx,s(t) = E

[
∑
v∈V

1{Xv(t) = s}
∣∣∣∣∣ X(0) = x

]
. (5.13)

Usually, the initial state will be a set of initially infected nodes I ⊂ V , and we will use
the notation σI ,s(t) = σxI ,s(t) where xI is a state vector in which only the nodes of I are
infected. Also, we will usually omit the state s (being the infected state in most cases) and
use the notation σI (t) hereafter. In Chap. 6, we show that, in many di�usion processes,
the long-term in�uence limt→+∞ σI (t) is equivalent to the size of connected components
of particular random graphs, and then provide upper bounds for the in�uence in this more
general setting. Also, an analysis of the dynamic properties of the in�uence in the speci�c
setting of information cascades (see Sec. 5.4.3) is available in Chap. 7. We now present
several models of di�usion processes used in physics, epidemiology and social network
analysis.

5.4.1 Percolation models

Strictly speaking, percolation theory, i.e. the study of connected components of random
graphs, is not devoted to the analysis of di�usion processes. However, strong connections
can be made between percolation and epidemic models or information cascades (see e.g.
Newman (2002) or Bollobás et al. (2007)). More speci�cally, one of the main results of
Chap. 6 is the precise mathematical connection between percolation and the limiting be-

havior of several di�usion processes (Susceptible-Infected-Removed model and informa-
tion cascades, see the following sections) using the notion of in�uence in random graphs.
We thus give a precise de�nition of bond and site percolation graphs.

Model 5.6 (Bond percolation). A bond percolation graph is an undirected random graph

G = G(n, A) of size n with independent edge variables {Aij : i < j}.

Model 5.7 (Site percolation). A site percolation graph consists in removing the nodes of

an undirected graph G = (V ,E) independently and with probability 1− pi.
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Intuitively, a bond (resp. site) percolation graph consists in removing edges (resp.
nodes) of an original graph independently at random. Then, percolation theory describes
the size (and number) of connected components of the resulting graph. A recent survey of
the �eld can be found in the work of Saberi (2015).

5.4.2 Epidemic models

In epidemiology, several models for the propagation of a disease in a population have been
developed (Newman, 2010; Kermack and McKendrick, 1932; Prakash et al., 2012), ranging
from simple (e.g. SI, SIS, SIR, see Newman (2010) and Kermack and McKendrick (1932)) to
more complex (e.g. SIRS, SEIR, SEIV, see Prakash et al. (2012)) di�usion mechanisms. These
di�usion processes are usually modeled using Markov processes (Van Mieghem et al., 2009),
i.e. memoryless stochastic processes entirely de�ned by their transition matrix. This tran-
sition matrix de�nes the probability for each node to change state during an in�nitesimal
time window [t, t + dt] (the simultaneous change of more than one node’s state is consid-
ered improbable). In the following, we will thus use the notation

Xi(t) : A→ B at rate Ci(t)

to denote the transition rate Ci(t) ≥ 0 of node i ∈ [|n|] at time t ≥ 0 from state A ∈ S to
state B ∈ S . We here focus on three standard models of contagion: Susceptible-Infected
(SI), Susceptible-Infected-Removed (SIR) and Susceptible-Infected-Susceptible (SIS) mod-
els. For more information on the vast epidemiology literature, we refer the reader to the
very recent review by Pastor-Satorras et al. (2015).

Susceptible-Infected model

The Susceptible-Infected (SI) model is the simplest epidemic model, in which nodes can be
either Susceptible or Infected (usually represented by 0 and 1, respectively). Each infected
node can transmit the disease to one of its neighboring susceptible node with a rate β, and
infected nodes remain infected, and thus contagious.

Model 5.8 (SImodel). Let G be a (possibly weighted) graph of n nodes and adjacencymatrix

A. The Susceptible-Infected model is a continuous-time Markov process X(t) ∈ {S, I}n
with

the following transition rate:

Xi(t) : S→ I at rate β∑
j

AjiXj(t), (5.14)

where β is the transmission rate of the epidemic.

Since the nodes remain infected, the network is totally infected at the end of the con-
tagion and limT→+∞ σA(T) = n. However, the dynamics of the epidemic are far more
complex, and an analysis of this model, and more speci�cally its explosiveness and di�u-
sion speed, is provided in Sec. 7.4.3.

Susceptible-Infected-Removed model

The Susceptible-Infected-Removed (SIR) model (Kermack and McKendrick, 1932) is a wide-
ly used epidemic model designed for epidemic scenarios in which patients present some
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immunity to the disease after their recovery. In such a case, a recovered person will not
transmit the disease anymore, nor will it be subject to a potential infection. An additional
state is thus added to the SI model, and each node of the network is either : susceptible
(S), infected (I), or removed (R). At t = 0, a subset I of n0 nodes is infected. Then, each
infected node will transmit the disease to its neighbors at rate β, and recover at rate δ.

Model 5.9 (SIR model). Let G be a (possibly weighted) graph of n nodes and adjacency

matrix A. The Susceptible-Infected-Removed model is a continuous-time Markov process

X(t) ∈ {S, I, R}n
with the following transition rate:

Xi(t) : S→ I at rate β ∑j AjiXj(t)

Xi(t) : I→ R at rate δ,
(5.15)

where β is the transmission rate of the epidemic.

The graph is usually undirected, and each edge has the same transmission rate. How-
ever, more complex scenarios can be modeled using the inhomogeneous SIR model, in which
each edge has its own transmission rate βij, and each node its recovery rate δi.

This epidemic model is increasing, in the sense that, if we order the infection states as
follows: S < I < R, then X(t) is increasing w.r.t. the natural partial order on {S, I, R}n

(i.e. X ≤ Y ⇔ ∀i, Xi ≤ Yi). One of the e�ects of this property is that each node will be

infected at most once, and removed at most once. We can thus de�ne, for each node i, the
time τ I

i at which a node is infected, and the time τR
i at which it is removed. Note that

these time may be in�nite if these events never happen.

Proposition 5.1. For an SIR epidemic, the infection times τ I
i of not initially infected nodes

verify the following equality:

∀i < I ,τ I
i = min

{j∈[|n|]:Tji<Dj}
(τ I

j + Tji), (5.16)

where Tij and Di are independent exponential random variables of expected value 1/β and

1/δ, respectively, and τ I
i = +∞ if the set {j ∈ [|n|] : Tji < Dj} is empty. Furthermore, the

recovery time of each node i is
τR

i = τ I
i + Di.

Upper bounds for the in�uence of such di�usion processes are provided in Sec. 6.6,
while an analysis of its dynamic properties is available in Sec. 7.4.3.

Susceptible-Infected-Susceptible model

Contrary to the SIR model, the Susceptible-Infected-Susceptible (SIS) model is designed
for scenarios in which infected people do not develop permanent immunity and remain
prone to multiple infections (Van Mieghem et al., 2009). Each node is either Susceptible or
Infected, and the transition rates are similar to that of the SIR model, except that a recovered
node is now susceptible again.
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Model 5.10 (SIS model). Let G be a (possibly weighted) graph of n nodes and adjacency

matrix A. The Susceptible-Infected-Removed model is a continuous-time Markov process

X(t) ∈ {S, I}n
with the following transition rate:

Xi(t) : S→ I at rate β ∑j AjiXj(t)

Xi(t) : I→ S at rate δ,
(5.17)

where β is the transmission rate of the epidemic.

Similarly to the SIR model, the inhomogeneous SIS model is a generalization of SIS
that allows non-uniform transmission and recovery rates. In Chap. 8 and Chap. 9, we will
consider control strategies for the containment of an SIS epidemic by adding an additional
control action to the model.

5.4.3 Information cascades

In information propagation theory, information cascades have emerged as a relevant model
for viral di�usion of ideas and opinions (Kempe et al., 2003; Chen et al., 2009; Rodriguez
and Schölkopf, 2012; Gomez-Rodriguez et al., 2011). Instead of modeling the transmission
along edges via transmission rates, these models capture the precise temporal dependen-
cies between infection events of neighboring nodes, and are thus better suited to situations
in which a large training dataset is available to �t the parameters of the model. Information
cascades are of two types:

Model 5.11 (Discrete-Time InformationCascades DTIC(P)). At time t = 0, only a set
I of in�uencers is infected. Given a matrix P = (pij)ij ∈ [0,1]n×n

, each node i that receives
the contagion at time t may transmit it at time t + 1 along its outgoing edge (i, j) ∈ E with

probability pij. Node i cannot make any attempt to infect its neighbors in subsequent rounds.

The process terminates when no more infections are possible.

Model 5.12 (Continuous-Time Information Cascades CTIC(F , T)). At time t = 0,
only a set I of in�uencers is infected. Given a matrix F = ( fij)ij of non-negative integrable

functions, each node i that receives the contagion at time t may transmit it at time s > t
along its outgoing edge (i, j) ∈ E with stochastic rate of occurrence fij(s− t). The process
terminates at a given deterministic time T > 0.

Information cascades are, similarly to the SIR model, increasing stochastic processes,
and each node can be infected only once. We can thus de�ne, for each node i, the time τi at
which it is infected. Note that this time may be in�nite if the node is not infected during
the contagion.

Proposition 5.2. For a continuous-time information cascade CTIC(F , T), the infection

times τi of non-in�uencer nodes verify the following equality:

∀i < I ,τi = min
j∈[|n|]

(τj + Tji), (5.18)

where Tij ∈R+ ∪ {+∞} are independent random variables of sub-probability density

pij(t) = fij(t)exp
(
−
∫ t

0
fij(u)du

)
.
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Proof. See for example the work of Du et al. (2013a).

Note that, in general, pij(t) is not a probability density over R+ as it does not integrate
to one, and P(Tij = +∞) = 1−

∫ +∞
0 pij(t)dt = exp(−

∫ +∞
0 fij(t)dt). Upper bounds for

the in�uence of such di�usion processes are provided in Sec. 6.7, while an analysis of its
dynamic properties is available in Chap. 7.

5.4.4 Multivariate Hawkes processes

Multivariate Hawkes processes (Oakes, 1975; Liniger, 2009) have emerged in several �elds
as the gold standard to deal with sequences of correlated events, e.g. earthquake prediction
(Vere-Jones, 1978), biology (Reynaud-Bouret et al., 2014), �nancial (Bauwens and Hautsch,
2009; Alfonsi and Blanc, 2015) and social interactions studies (Crane and Sornette, 2008).
The main advantage of this model compared to information cascades is to allow multiple
events (e.g. posts, likes or shares in the case of a social network) on a single node. For
this reason, more and more attention is devoted to this model in the information cascades
community (see for example the recent papers of Farajtabar et al. (2014) and Lemonnier
et al. (2016a)).

In a multivariate Hawkes process, an event of type u (e.g. a user posting a new message
on a social network) occurring at time t, will increase the conditional rate of occurrence
of events of type v at time s ≥ t by a rate guv(s− t).

Model 5.13 (Multivariate Hawkes process). A multivariate Hawkes process N(t) =
{Nu(t) : u=1, ...,d, t ≥ 0} is a d-dimensional counting process, where Nu(t) represents the
number of events along dimension u that occurred during time [0, t]. Each one-dimensional

counting process Nu(t) can be in�uenced by the occurrence of events along the other dimen-

sions. If we denote as (um, tm)n
m=1 the event history of the process indicating, for each single

event m, its type um and time of occurrence tm, then the non-negative stochastic rate of oc-

currence of each Nu(t) is de�ned by:

λu(t) = µu(t) + ∑
m:tm<t

gumu(t− tm). (5.19)

In the above, µu(t)≥0 is the natural occurrence rate of events of type u (i.e. along
that dimension) at time t, and the triggering kernel function evaluation gvu(s− t) ≥ 0
determines the increase in the occurrence rate of events of type u at time s, caused by an
event of type v at a past time t≤ s.

Remark 5.1. Amajor limitation of multivariate Hawkes processes is that they cannot model

super-critical di�usion processes, i.e. contagions that, initialized on a few nodes, can reach a

large part of network due solely to its di�usive properties. Examples of such super-critical pro-

cesses are pandemics in epidemiology, or “buzz” e�ects in information networks (see Sec. 6.1

for more information on super-critical processes). In such a case, a multivariate Hawkes pro-

cess would explode in �nite time, and a constraint on the parameters of the process is usually

added in order to avoid this problem.





6
Long-term behavior of the in�uence

“If the facts don’t �t the theory, change the

facts.”

— Albert Einstein
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6.1 Introduction

Propagation models over graphs are very popular and particularly well suited to the anal-
ysis of epidemics and information cascades. Although di�erent in many technical aspects,
the models used in these two �elds are similar and can be considered as particular in-
stances of a more generic framework: the analysis of the in�uence of reachable sets in
random networks.

6.1.1 Related works

In epidemiology, the study of di�usion models such as SI, SIS or SIR (Newman, 2010; Ker-
mack and McKendrick, 1932) highlighted the impact of a spectral characteristic on the size
of the epidemic: the spectral radius of the underlying network. Moreover, it was shown
that this quantity acted as a critical threshold for the size of the epidemic (Van Mieghem
et al., 2009; Prakash et al., 2012), and recent work by Draief et al. (2008) provided upper
bounds that depend highly on this spectral quantity. Our work can be seen as a general-
ization of these works, by providing the right spectral quantity to consider in the case of
more generic di�usion and percolation models.

In percolation theory, the concept of reachability characterizes the connected com-
ponents of undirected graphs and the behavior of such components has been the object
of several studies. For homogeneous random graphs G(n, p) where removal of edges in
the fully connected graph with n vertices occurs independently for every edge with con-
stant probability 1− p, Erdös and Rényi (1960) showed that a phase transition occurred
for p = 1

n , and their results were later re�ned by Bollobás (1984) and Łuczak (1990) for the
case pn = O(1). For inhomogeneous graphs, we refer to the work by Bollobás et al. (2007)
in the special case where the number of edges E is O(n), and Bollobás et al. (2010) when
E = O(n2). These references contain a number of asymptotic results (i.e. when n→ ∞)
including the critical value of the percolation threshold, and upper bounds on the size of
connected components.

6.1.2 Outline

This chapter is organized as follows. In Sec. 6.2, we recall the notions of reachable set
and in�uence in random networks, and introduce a generic type of random graphs with
Local Positive Correlation (LPC). In Sec. 6.3, we derive theoretical bounds for the in�uence
in random graphs with LPC. Finally, in Sec. 6.4, Sec. 6.5, Sec. 6.6 and Sec. 6.7, we show that
the previous results apply respectively to the �elds of bond percolation, site percolation,
epidemiology and information cascades, and improve existing results in these �elds. This
chapter is joint work with Rémi Lemonnier and Nicolas Vayatis, and is an extended version
of the paper (Lemonnier et al., 2016b).

6.2 Hazard matrix, in�uence and LPC property

In this section, we introduce the main notations and de�nitions. In particular, we de�ne
two novel concepts: the Hazard matrix, that will play a key role in the analysis of in�uence
in random graphs, and a generic class of random graphs with Local Positive Correlation

(LPC).
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6.2.1 Hazard characteristics of random graphs

For many di�usion models, the spectral features of the underlying graph were shown
to have a drastic impact on the amplitude of the spread (see for example in the work of
Van Mieghem et al. (2009) and Prakash et al. (2012) the role of the spectral radius of the
adjacency matrix in the epidemiology literature). In order to generalize such results to
a broader class of di�usion and percolation phenomena, we introduce two spectral char-
acteristics that extend the spectral radius of the adjacency matrix to the analysis of the
in�uence in random graphs: the Hazard matrix and the Hazard radius.

De�nition 6.1 (Hazard matrix). For a random graph model G(n, A), the Hazard matrix
H is the n× n matrix whose coe�cientsHij are de�ned as:

Hij = − ln(1−E[Aij]) . (6.1)

The spectral radius of this matrix will play a key role in the quanti�cation of the in�u-
ence. We recall that for any square matrix M of size n, its spectral radius ρ(M) is de�ned
as the largest of the eigenvalues of M.

De�nition 6.2 (Hazard radius). For a random graph model G(n, A) with Hazard matrix
H, we de�ne the Hazard radius as:

ρn = ρ

(
H+H>

2

)
. (6.2)

Remark 6.1. Let P = (E[Aij])ij be the expected adjacency matrix. When the Pij’s are small,

the Hazard matrix is very close to P. This implies that, for small values of Pij, the spectral

radius ofH will be very close to that of P. More speci�cally, a simple calculation holds

ρ(P) ≤ ρ(H) ≤ − ln(1− ‖P‖∞)

‖P‖∞
ρ(P), (6.3)

where ‖P‖∞ = maxi,j Pij. The relatively slow increase of
− ln(1−x)

x for x→ 1− implies that

the behavior of ρ(P) and ρ(H) will be of the same order of magnitude even for large (but

lower than 1) values of ‖P‖∞. Moreover, when considering a sequence of random graphs Gn,

if limn→+∞ ‖Pn‖∞ = 0, then ρ(Hn) ≈ ρ(Pn) and the subcriticality of the in�uence is also

induced by limsupn→+∞ ρ( Pn+P>n
2 ) ≤ 1 (see Sec. 6.3).

In addition, we introduce here a useful function that will allow the simpli�cation of
the upper bounds derived in this chapter.

De�nition 6.3 (Hazard function). let ρ ≥ 0 and a > 0. The Hazard function γ(ρ, a) is
de�ned as the unique solution in [0,1] of the following equation:

γ− 1 + exp (−ργ− a) = 0 . (6.4)

We will also use the notation γ0(ρ) = lima→0+ γ(ρ, a) for the limit of the Hazard function

at 0.

Fig. 6.1 reveals the behavior of γ0(ρ) and γ(ρ, a) w.r.t. ρ. For more information on the
Hazard function and the bounds used to derive the subcritical, critical and supercritical
regimes, we refer to Appendix 6.9.1.
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Figure 6.1: Behavior of γ0(ρ) and γ(ρ, a) w.r.t. ρ.

6.2.2 Reachability and in�uence

In this section, we de�ne the in�uence as the size of a reachable set. A node u is reachable
from another node v if there is a path connecting u to v in the considered graph (Kolaczyk,
2009). As we will see later, this de�nition generalizes the notion of long-term in�uence
limT→+∞ σI (T) for di�usion processes de�ned in Sec. 5.4, in the case of percolation, in-
formation cascades and the SIR epidemic model.

De�nition 6.4 (Reachable set). Consider a random graph G(n, A). We call in�uencers a

�xed set I ⊂ [|n|] of nodes and we de�ne the reachable set of in�uencers I in G(n, A) as
the random set of nodes R(I , A) such that:

i ∈ R(I , A) ⇐⇒ i ∈ I or ∏
q∈QI ,i

1− ∏
(j,k)∈q

Ajk

 = 0 . (6.5)

where, for any node i ∈ [|n|], the collection QI ,i = {{(i0, i1), (i1, i2), ..., (ik−1, ik)} : k ∈
N, i0 ∈ I , ik = i and all ij are distinct} is the set of directed paths (removing the loops) from

the set I to node i.

Informally, a node i belongs to the reachable set of I if and only if there is a path
from I to i in the random graph. By extension, we will call the reachable set of node i the
reachable set of {i}. This de�nition will be used to characterize the asymptotic behavior
of the state vector in a contagion process over a graph, as well as connected components
of random undirected networks. As we will see in sections 6.4, 6.6 and 6.7, this setting is
general enough to include many reference models used in the �elds of percolation theory,
epidemiology and information cascades.

We now introduce the notion of in�uence of a set I of nodes, denoted as σ(I), as the
expected size of the reachable set of I with respect to the random graph model G(n, A).
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De�nition 6.5 (In�uence). Given a random graph model G(n, A) and a �xed set of in-
�uencers I ⊂ [|n|], the in�uence of I in G(n, A) is de�ned as the quantity:

σ(I) = E[card(R(I , A))] , (6.6)

where R(I , A) is the reachable set of I in G(n, A).

Remark 6.2. For information cascades and the SIR model, a node is infected at T = +∞ if

and only if its it connected to the initially infected nodes by a path of edges that transmitted

the contagion. Hence, this transmission graph is a random graph whose in�uence is the

long-term in�uence of the respective di�usion processes:

σ(I) = lim
T→+∞

σI (T).

Examples of random graphs and their Hazard radiuses

In order to illustrate the previous concepts, we now relate Hazard radiuses to critical
thresholds for in�uence in four particular random graphs. In the �rst two, we will show
that the critical threshold for in�uence can be restated as ρn = 1. The other two examples
are cases in which the threshold may di�er, sometimes signi�cantly, from ρn = 1.

Example 6.1 (Erdös-Rényi randomgraphs). For the Erdös-Rényi random graphs G(n, c
n )

de�ned in Sec. 5.3.1, percolation theory (Erdös and Rényi, 1960) states that a threshold phe-

nomenon occurs for c = 1. Moreover, using De�nition 6.1,Hn
ij = − ln(1− c

n ) and we have:

ρn = −n ln
(

1− c
n

)
. (6.7)

Hence, for G(n, c
n ), criticality arises when ρn→ 1 as n tends to in�nity.

Example 6.2 (Poissonian graph processes). We now consider a particular random graph,

called the Poissonian graph process or Norros-Reittu model (Norros and Reittu, 2006) and

closely related to random graphs of �xed degree distribution known as the con�guration
model (see Sec. 5.3.3). More speci�cally, let w = (wi)i∈[|n|] be a weight vector, and G(n,w)
an undirected random graph of n nodes and adjacency matrix A, where, for i ≤ j, Aij are

independent Bernoulli random variables of parameter Pij = 1− exp
(
− wiwj

∑k wk

)
. Note that

self-loops are allowed, but they hardly occur when the weight distribution is close to uniform.

Such a random graph has a Hazard radius equal to

ρn =
∑i w2

i

∑k wk
. (6.8)

Previous results of Bollobás et al. (2007) showed that, for such graphs, a giant component exists

if and only if ∑i w2
i > ∑i wi, which is equivalent to ρn > 1.

Example 6.3 (Homogeneous percolation on regular grids). Let G = (V ,E) be a reg-
ular cubic grid of n nodes in dimension d, and A its adjacency matrix. The random graph

G(n, A) is the result of homogeneous percolation on G if {Aij : {i, j} ∈ E} are i.i.d. Bernoulli
random variables of �xed parameter p ∈ [0,1], and Aij = 0 otherwise. The Hazard radius
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of such a network is ρn = −ρ(A) ln(1− p)→n→+∞ −2d ln(1− p). For d > 2, there are
no known exact formula for percolation thresholds on cubic grids, although experimental ap-

proaches by Grassberger (2003) provided high precision numerical estimates. These estimates

seem to coincide rather well with p = 1− e−1/2d
(i.e. the value such that limn→+∞ ρn = 1)

for high-dimensional grids (for d = 13, p∗ = 0.040 compared to 1 − e−1/2d = 0.038),
while being rather di�erent for lower-dimensional grids (for d = 2, p∗ = 0.5 compared to

1− e−1/2d = 0.22).

Example 6.4 (Star-shaped network). For homogeneous percolation on a star-shaped net-

work centered around 1, the exact in�uence of I = {1} can be derived explicitly and we have:
σ({1}) = 1 + p(n− 1). As, for i < j, the Hazard matrix coe�cients are Hij = − ln(1−
p)1{i = 1}, the Hazard radius is given by ρn = −

√
n− 1ln(1− p). When p = c/

√
n,

the in�uence is always sublinear in n, and the threshold value is in�nite (c∗ = +∞). Hence

limn→+∞ ρn = c = 1 does not bring any particular change in the behavior of the in�uence.

6.2.3 Random graphs with Local Positive Correlation (LPC)

The analysis developed in this chapter concerns a particular class of random graphs that
display correlation at a local scale only.

De�nition 6.6 (Random graphs with Local Positive Correlation (LPC)). We consider

a random graph G(n, A). For any node pair (i, j) ∈ [|n|]2, we de�ne A−ij to be the subcollec-

tion of edge variables {Akl : (k, l) , (i, j)}, andNij = {(j, i)} ∪ {(k, l) : k = i or l = j} to
be the neighborhood that contains the edge (j, i) plus all edges which share with (i, j) either
the same head or the same tail. The random graph G(n, A) is a random graph with Local
Positive Correlation (LPC) if the two following conditions hold:

(H1) ∀i, j,k, l such that (k, l) <Nij, Aij is independent of Akl .

(H2) ∀i, j, the mapping a 7→ E[Aij|A−ij = a] is non-decreasing w.r.t. the natural partial

order on {0,1}n2−1
(i.e. a ≤ a′ if and only if ∀i ≤ n2 − 1, ai ≤ a′i).

The �rst assumption (H1) can be interpreted as a property of long range independence
between remote edges, while the assumption (H2) properly states the local positive corre-
lation of neighboring edges. When the random variables Aij are interpreted as indicator
variables of the occurrence of transmission events from node i to node j in a di�usion
process, then the long range independence assumption implies pairwise independence for
transmission events on nonadjacent edges, and the local positive correlation sets positive
correlations at the local level for the transmission events on adjacent edges conditionally
to the state of all other edges.

Remark 6.3. Since independence implies positive correlation, all random graphs which as-

sume independence of the edge variables also verify LPC. Hence, most standard models of

random networks, including Erdös-Rényi (see Sec. 5.3.1) and the very general class of inho-
mogeneous random graphs (see Sec. 5.3.4), verify LPC.

The following lemma indicates that the notion of random graphs with LPC covers in
particular homogeneous and inhomogeneous percolation.
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Lemma 6.1 (Undirected random graph). An undirected random graph G(n, A) is a ran-
dom graph with LPC if and only if the edge variables {Aij : i < j} are independent.

Proof. Since independence implies positive correlation, the LPC property is a direct conse-
quence of {Aij : i < j} being independent. Now, if an undirected random graph G(n, A)
is a random graph with LPC, then, since Aij = Aji, (H1) holds for all (k, l) <Nij ∩Nji =
{(i, j), (j, i)}, and {Aij : i < j} are independent.

We will see later that the conditions of LPC are ful�lled for many popular random
graph models used in epidemiology (Sec. 6.6) and in information propagation (Sec. 6.7).

6.3 Non-asymptotic upper bounds on the in�uence

In this section, we provide tight upper bounds on the in�uence under three scenarios on
the set of in�uencers:

I) Deterministic (worst-case) scenario: corresponds to a �xed set I of in�uencers,

II) Random A with parameter n0 < n: the set I of in�uencers is random and drawn ac-
cording to a uniform distribution U ([|n|],n0) over the subsets of [|n|] of cardinality
n0,

III) Random B with parameter q ∈ [0,1]: the set I of in�uencers is random and drawn
with a distribution D([|n|],q) such that, for all i ∈ [|n|], the random variables Bi =
1{i ∈ I} are independent Bernoulli with parameter q.

In both cases (II) and (III), the in�uencer set is drawn independently of the particular graph
sampled under the random graph model G(n, A).

6.3.1 Deterministic (worst-case) scenario

The �rst result (Theorem 6.1) applies to any �xed set of in�uencers I such that card(I) =
n0. Intuitively, this result corresponds to a worst-case scenario since the bound does not
depend on I .

Theorem 6.1. Let G(n, A) be a random graph with LPC. For any �xed set of in�uencers I
such that card(I) = n0 ≤ n, the in�uence σ(I) is upper bounded by:

σ(I) ≤ n0 + γ1

(
ρn,

n0

n− n0

)
(n− n0) , (6.9)

where γ1(ρ, a) = γ1 is the smallest solution in [0,1] of the following equation:

γ1 − 1 + exp
(
−ργ1 −

ρa
γ1

)
= 0 , (6.10)

and ρn is the Hazard radius of the random graph G(n, A).

A re�ned analysis of the parameter γ1 in the previous theorem leads to the description
of the behavior of the in�uence with respect to three regimes as shown in the following
corollary.
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Corollary 6.1. Under the same conditions as in Theorem 6.1, we have:

σ(I) ≤



n0 +

√
ρn

1− ρn

√
n0(n− n0) , if ρn < 1− δn

n0 + 24/3n1/3
0 (n− n0)

2/3 , if |ρn − 1| ≤ δn

n0 + (n− n0)γ0(ρn) + cn

√
n0(n− n0) , if ρn > 1 + δn

where δn =

(
n0

4(n− n0)

)1/3

, and cn =

√
(1− γ0(ρn))ρn

1− (1− γ0(ρn))ρn
.

Remark 6.4. When considering a �xed set of in�uencers I , one can remove the ingoing edges

of the in�uencers in order to get slightly improved results. In such a case, the Hazard matrix

is replaced byHij(I) = 1{j < I} · Hij.

6.3.2 Random in�uencer set with �xed size

The second result (Theorem 6.2) applies in the case where the set of in�uencers is drawn
from a uniform distribution over the subpartition of sets of n0 nodes chosen amongst n.
This result corresponds to the average-case scenario in a setting where the initial in�u-
encer nodes are not known and drawn independently of the random graph.

Theorem 6.2. Let G(n, A) be a random graph with LPC. Assume the set I of in�uencers is

drawn from an independent and uniform distribution U ([|n|],n0) over Pn0([|n|]). Then, we
have the following result:

E[σ(I)] ≤ n0 + γ

(
ρn,

n0ρn

n− n0

)
(n− n0) , (6.11)

where γ(ρ, a) is de�ned as in De�nition 6.3.

Corollary 6.2. Under the same conditions as in Theorem 6.2, we have:

E[σ(I)] ≤



n0

1− ρn
, if ρn < 1− δ′n

n0 +
√

8n0(n− n0) , if |ρn − 1| ≤ δ′n

(n− n0)γ0(ρn) +
n0

1− ρn(1− γ0(ρn))
, if ρn > 1 + δ′n

where δ′n =

√
n0

2(n− n0)
.
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6.3.3 Random in�uencer set with random size

The third result (Theorem 6.3) applies in the case where each node of the network is an
in�uencer independently and with a �xed probability q ∈ [0,1]. This result corresponds
to the randomized scenario in which the initial in�uencer nodes are not known and drawn
independently of the random graph.

Theorem 6.3. Let G(n, A) be a random graph with LPC. Assume each node is an in�uencer

with independent probability q ∈ [0,1] and denote by I ∼ D([|n|],q) the random set of

in�uencers that is drawn. Then, we have the following result:

E[σ(I)] ≤ γ(ρn,− ln(1− q))n, (6.12)

where γ(ρ, a) is de�ned as in De�nition 6.3.

Corollary 6.3. Under the same conditions as in Theorem 6.3, we have:

E[σ(I)] ≤



− ln(1− q)n
1− ρn

, if ρn < 1− dq

n
√
−8ln(1− q) , if |ρn − 1| ≤ dq

nγ0(ρn) +
− ln(1− q)(1− γ0(ρn))n

1− ρn(1− γ0(ρn))
, if ρn > 1 + dq

where dq =

√
− ln(1− q)

2
.

6.3.4 Lower bounds

The following proposition shows that the upper bounds in Corollary 6.1 are tight, in the
sense that, for any Hazard radius, there is a random graph on which the in�uence has the
exact same behavior as the upper bounds in the worst case scenario.

Proposition 6.1. For all ρ > 0, there exists a constant Cρ > 0 and a sequence of LPC random

graphs (Gn)n>0 with n vertices and Hazard radius ρn, and such that limn→+∞ ρn = ρ. For
n su�ciently large, the in�uence σn({1}) of node 1 in Gn is lower bounded by:

σn({1}) ≥


Cρ
√

n if ρ < 1

Cρn2/3
if ρ = 1

γ0(ρ)n− o(n) if ρ > 1

. (6.13)

This proposition relies on “random star-networks”, i.e. undirected random graphs such
that the {Aij : i < j} are independent Bernoulli random variables of parameter a ∈ [0,1] if
i = 1 and b < a otherwise. Intuitively, such a network is the addition of a star network and
an Erdös-Rényi random graph. Our theoretical bounds on the in�uence are particularly
tight on this class of random graphs.
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6.4 Application to bond percolation

Bounding the in�uence of reachable sets in random graphs allows to derive non-asymptotic
bounds on a celebrated quantity in bond percolation which is the size of the giant compo-
nent, as well as the distribution of the size of connected components of undirected random
graphs. We �rst recall the inhomogeneous bond percolation model. We recall that, accord-
ing to Lemma 6.1, the bond percolation graph G = G(n, A) of Model 5.6 is a random graph
with LPC. For k ≥ 1, we denote by Vk ⊂ [|n|] the kth-largest connected component of G.
We also introduce Ck(G) = card(Vk), the size of the connected component with kth great-
est cardinality and N(m) the number of connected components of G of cardinality greater
than or equal to m.

6.4.1 Size and existence of the giant component

Let a > 0. The key observation is that if each node of G is an in�uencer with indepen-
dent probability 1− exp(−a), we can relate the total size of infection and the size of the
connected components of G in the following way:

E[card(R(I , A)) | A] = ∑
k

Ck(G)P(Vk ∩ I , ∅ | A) = ∑
k

Ck(G)
(

1− e−aCk(G)
)

Therefore, we have

E

[
∑

k
Ck(G)

(
1− e−aCk(G)

) ]
= E[σ(I)] ≤ γ(ρn, a)n (6.14)

The next argument leads to non-asymptotic bounds on the size of the giant component
for the inhomogeneous bond percolation model:

Theorem6.4 (Size of the giant component). Let G(n, A) be an undirected random graph

of size n with independent edge variables {Aij : i < j}. Let a > 0, and ρn the Hazard radius of

G. The probability distribution of the size of its largest connected component C1(G) veri�es:

E[C1(G)(1− e−a(C1(G)−1))] ≤ n
(

1− e−ρnγ(ρn,a)
)

(6.15)

where γ(ρ, a) is de�ned as in De�nition 6.3.

Corollary 6.4. Under the same conditions as in Theorem 6.4, we have:

E[C1(G)] ≤



1
2
+

√
1
4
+

nρn

1− ρn
, if ρn < 1− κn−1/3

γ0(ρn)n +
n2/3
√

κ
, if |ρn − 1| ≤ κn−1/3

γ0(ρn)n + cn
√

n + 2 , if ρn > 1 + κn−1/3

where cn =
2√

e

√
(1− γ0(ρn))2ρn

1− ρn + γ0(ρn)ρn
and κ =

(
2e
27

)2/3

.
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Remark 6.5 (Homogeneous percolation). Let G = (V ,E) be an undirected graph and

p ∈ [0,1]. IfE[Aij] = p1{(i, j) ∈ E}, then ρn = − ln(1− p)ρ(A)whereA is the adjacency

matrix of the underlying graph G .

Whereas the latter results hold for any n ∈N, classical results in percolation theory
study the asymptotic behavior of sequences of graphs when n→∞. Up to our knowledge,
the best result in the inhomogeneous bond percolation model (Bollobás et al., 2007, Corol-
lary 3.2 of section 5) states that: under a given subcriticality condition, C1(Gn) = o(n)
asymptotically almost surely (a.a.s.). Combining our previous theorem and Markov’s in-
equality, we are in position of obtaining a signi�cant improvement on the previous result.

Corollary 6.5. Denote by Gn = G(n, An) a sequence of undirected random graphs and ρn
the sequence of spectral radiuses of the corresponding Hazard matrices. Let ωn be a sequence

such that limn→∞ ωn = +∞. We have:

C1(Gn) =


o(n1/2ωn) a.a.s. , if limsupn→∞ ρn < 1

o(nmax(1−β,2/3)ωn) a.a.s. , if ρn − 1 = O(n−β)

Moreover, Corollary 6.4 also implies a result of non-existence of the giant component,
in the sense that no component has a size proportional to the size of the network.

Corollary 6.6 (Existence of a giant component). Denote by Gn = G(n, An) a sequence
of undirected random graphs and ρn the sequence of spectral radiuses of the corresponding

Hazard matrices. If limsupn→∞ ρn ≤ 1, then

E[C1(Gn)] = o(n), (6.16)

and there is no giant component in Gn a.a.s..

Proof. Combining the second equation of Corollary 6.4 (valid for all ρn ≥ 0) and Lemma 6.4,
we obtain E[C1(Gn)] = o(n). Markov’s inequality implies the result in probability.

6.4.2 Number of components of cardinality larger than m

The following result focuses on discovering the expectation of N(m), the number of con-
nected components of G having cardinality greater than or equal to m. A straightforward
observation yields E[N(m)] ≤ n

m . For critical and subcritical random graphs, we are able
to show that the expectation of N(m) is in fact decreasing much faster with respect to m.

Theorem 6.5. Let G(n, A) be an undirected random graph of size n with independent edge

variables {Aij : i < j}. Let m > 0. The expected number of connected components N(m) of
cardinality greater than or equal to m is upper bounded by:

E[N(m)] ≤ n
m

min
a>0

{
1− e−ρnγ(ρn,a)

1− ea(m−1)

}
(6.17)

where γ(ρ, a) is de�ned as in De�nition 6.3.
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Corollary 6.7. Under the same conditions as in Theorem 6.5, we have:

E[N(m)] ≤



n
m(m− 1)

ρn

1− ρn
, if ρn < 1− κ1m−1/2

n
m3/2

1
κ1

, if |ρn − 1| ≤ κ1m−1/2

n
m

(
γ0(ρn) +

c′n√
m− 1

+
cn

m− 1

)
, if ρn > 1 + κ1m−1/2

where cn = (1−γ0(ρn))2ρn
1−ρn+γ0(ρn)ρn

, c′n =
√

γ0(ρn)cn and κ1 =
√

η
8

(√
1 + 8

2η−1 − 1
)
where η is

the strictly positive solution of eη = 2η + 1 (κ1 ≈ 0.32).

6.5 Application to site percolation

In this section, we show that the results of the previous section can further be applied to
site percolation as de�ned in Model 5.7. Although the resulting undirected random graph
GSP is not LPC, the size of connected components in GSP can be bounded by the size of
reachability sets of a random graph with LPC. Let Aij = Xj1{(i, j) ∈ E}, where Xi are
the Bernoulli random variables indicating the presence or absence of a node i in GSP, and
G′SP = G(n, A).

Proposition 6.2. G′SP is a random graph with LPC. Furthermore, if R(I , A) is the reachable
set of I ⊂ [|n|] in G′SP, then

card(R(I , A)) ≥∑
k

Ck(GSP)1{Vk ∩ I , ∅} a.s., (6.18)

where Vk is the kth
-largest connected component of GSP and Ck(GSP) = card(Vk).

Proof. Since the Xi are independent, for all i, j, i′, j′, Aij and Ai′ j′ are positively correlated
if j = j′ and independent otherwise, which proves the LPC assumption. In order to prove
the inequality, it su�ces to see that, if there is an in�uencer in a connected component Vk
of GSP (i.e. Vk ∩ I , ∅), then Vk is in reachable set R(I , A).

Since the inequality in Proposition 6.2 is the same starting point as the results derived
for bond percolation, all the results of Sec. 6.4 also apply to site percolation with the fol-
lowing Hazard radius:

ρn = ρ

(
−

ln(1− pi) + ln(1− pj)

2
1{(i, j) ∈ E}

)
. (6.19)

6.6 Application to epidemiology

We here focus on the Susceptible-Infected-Removed (SIR) model (see Model 5.9), and show
that its long-term behavior is a particular case of LPC random graphs.
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6.6.1 Subcritical behavior in the standard SIR model

We show here that Theorem 6.1 (through Corollary 6.1) further improves results on the
SIR model in epidemiology. In order to determine the long-term behavior of the epidemic,
the following theorem shows that the set R∞ of recovered nodes at the end of the epidemic
is the reachable set of a random graph with LPC.

Proposition 6.3. Let τR
i be the removal times of an SIR epidemic with transmission times

Tij and recovery times Di (see Proposition 5.1). Then, the random graph GSIR = G(n, A)
with adjacency matrix Aij = 1{{i, j} ∈ E and Tij < Di} is a random graph with LPC and,

if R(I , A) is the reachable set of I in GSIR, then the set of recovered nodes at the end of the

epidemic R∞ = {i ∈ [|n|] : τR
i < +∞} is equal to R(I , A).

Proof. GSIR is a random graph with LPC since only outgoing edges of a node are correlated
together, and this correlation is positive due to the fact that E[Aij|A−ij = a] = P(Tij <

Di | maxk∈N 1
ij (a) Tik < Di ≤ mink∈N 0

ij (a) Tik), where N b
ij(a) = {k , j such that (i,k) ∈

E and aik = b} for b ∈ {0,1}, which is non-decreasing w.r.t. a. Finally, R∞ = {i ∈ [|n|] :
τ I

i < +∞}, and a node i is in R∞ if and only if i ∈ I or i has an infected neighbor j that
transmitted the disease, i.e. such that j ∈ R(I , A), {j, i} ∈ E and Tji < Dj, or equivalently
Aji = 1.

The direct consequence of this proposition is that the number of infected (and then
removed) nodes through the epidemic limT→+∞ σI ,R(T) is the in�uence σ(I) of I in the
random graph GSIR. The Hazard matrix H of GSIR is given by ln(1 + β

δ ) · A and hence
ρn = ln(1 + β

δ ) · ρ(A). A direct application of Corollary 6.1 leads to the following result.

Corollary 6.8. We consider an SIR epidemic with δ > 0. We denote by A the symmetric

adjacency matrix of G , by ρn = ln(1 + β
δ ) · ρ(A) its Hazard radius, and by I the initial set

of in�uencers of size n0. If
β
δ < exp( 1

ρ(A) )− 1, then we have

σ(I) ≤ n0 +

√
ρn

1− ρn

√
n0(n− n0) . (6.20)

It was recently shown by Draief et al. (2008) that, in the case of undirected networks,
and if βρ(A) < δ, we have the following bound on the in�uence for a �xed set of in�uencer
nodes:

σ(I) ≤
√

nn0

1− β
δ ρ(A)

. (6.21)

As we will show now, Corollary 6.8 improves the result of Draief et al. (2008) and Prakash
et al. (2012) in two directions: weaker condition and tighter constants in the upper bound.
Indeed, when ρ(A)� 1, 1

ρ(A) is a good approximation of exp( 1
ρ(A) )− 1. However, the

two quantities may di�er substantially on very sparse networks, for which ρ(A) is close
to 1. For example, for an n-cycle graph, we have Aij = 1{j = i± 1 mod n} where mod
is the modulo operator, which leads to ρ(A) = 2 and exp( 1

ρ(A) )− 1 ≈ 0.65 > 0.5. Now,
as far as the comparison between the two rates is concerned, we o�er the following lemma
which assesses the tightness of Corollary 6.8 with respect to the upper bound in Eq. 6.21.
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Lemma 6.2. We use the same notations as in Corollary 6.8. If βρ(A) < δ, then we have:

n0 +

√
ρn

1− ρn

√
n0(n− n0) ≤

√
nn0

1− β
δ ρ(A)

. (6.22)

Proof. First, ρn = ln(1 + β
δ )ρ(A) ≤

β
δ ρ(A). Then, we introduce the function

f : r→ n0 +

√
r

1− r

√
n0(n− n0)−

√
nn0

1− r
.

A simple analysis shows that maxr∈[0,1] f (r) = n0

(
1− 3

4

√
n
n0
− 1

4

√
n0
n

)
≤ 0 when n0 ≤

n, which proves the lemma.

Moreover, these new bounds capture with increased accuracy the behavior of the in-
�uence in extreme cases. In the limit β → 0, the di�erence between the two bounds is
signi�cant, because Theorem 6.1 yields σ(I)→ n0 whereas Eq. 6.21 only ensures σ(I) ≤√

nn0. When n = n0, Theorem 6.1 also ensures that σ(I) = n0 whereas Eq. 6.21 yields
σ(I) ≤ n0

1− β
δ ρ(A)

. Secondly, Theorem 6.1 also describes the explosive behavior in the SIR
model and leads to bounds in the case where βρ(A) ≥ δ, as we will see below.

6.6.2 Behavior near the epidemic threshold

The regime around 1 of ln(1 + β
δ ) · ρ(A) can also be derived from the generic results of

Sec. 6.3.

Corollary 6.9 (Critical behavior of SIR). We use the same notations as in Corollary 6.8.

If |ρn − 1| ≤
(

n0
4(n−n0)

)1/3
, then we have

σ(I) ≤ n0 + 24/3n1/3
0 (n− n0)

2/3 . (6.23)

Proof. This is also a direct application of Corollary 6.1 to GSIR.

More speci�cally, the behavior when βρ(A) = δ depends on the rate at which the
spectral radius of the adjacency matrix diverges w.r.t. n.

Corollary 6.10. We use the same notations as in Corollary 6.8. Assume n0 = O(1) and
ρ(A) = O(nα) for α ≥ 0. If βρ(A) = δ, then we have

σ(I) = O
(

nmin{ 1+α
2 , 2

3 }
)

. (6.24)

Proof. If the graph is empty, then σ(I) = 0. Otherwise, ρ(A) ≥ 1 and ρn = ln(1 +
1

ρ(A) )ρ(A) ≤ 1− 1−ln2
ρ(A) , the critical bound of Corollary 6.1 implies that σ(I) = O(n2/3),

while the subcritical bound implies that σ(I) = O(n
1+α

2 ).

The behavior in O(n2/3) of the size of the epidemic in the critical regime was already
shown for the more simple N-intertwined SIR model by Ben-Naim and Krapivsky (2004)
(in which the three populations are assumed to be mixed uniformly). However, this result
is, up to our knowledge, the �rst to prove such a behavior in the more general case of
epidemics on networks. Finally, note that Proposition 6.1 implies that the behavior in
O(n2/3) is tight, in the sense that some networks do behave accordingly in the critical
regime.
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6.6.3 Generic incubation period

Theorem 6.1 applies to more general cases than the classical homogeneous SIR model, and
allows infection and recovery rates to vary across individuals. Also, our model allows for
incubation times which display a non-exponential behavior, and thus is more adapted to
realistic scenarios. Indeed, incubation periods for di�erent individuals generally follow a
log-normal distribution (Nelson, 2007), which indicates that SIR with a log-normal recov-
ery rate of removal might be well-suited to model real-world infections.

For each node i, let the incubation time Di (i.e. the time for an infected node to recover)
be a random variable drawn according to a certain probability distribution PD. In such a
case, the Hazard radius is

ρn = −ρ(A) ln
(

E[e−βD]
)

, (6.25)

and a su�cient condition for subcriticality is βρ(A)E[D] < 1, where E[D] =
∫

xPD(x)dx.

Corollary 6.11 (Generic incubation period). We consider a graph of contaminated nodes

obtained after the realization of an SIR contagion process with incubation times drawn ac-

cording to the probability distribution PD. We denote by A its symmetric adjacency matrix,

by I its initial set of in�uencers of size n0 = O(1), and E[D] =
∫

xPD(x)dx.
If βρ(A)E[D] < 1, then we have

σ(I) = O(
√

n) . (6.26)

Proof. Since, for GSIR = G(n, A), E[Aij] = P(Tij < Di) = 1 − E[e−βD], a direct ap-
plication of Corollary 6.1 to GSIR returns that the epidemic is subcritical if ρn < 1, i.e.
−ρ(A) ln

(
E[e−βD]

)
< 1. Jensen’s inequality on E[e−βD] leads to the desired result.

In the log-normal case, Corollary 6.11 gives the following bound on the epidemic
threshold:

Corollary 6.12 (Log-normal incubation period). We consider a graph of contaminated

nodes obtained after the realization of an SIR contagion process with incubation times drawn

according to a log-normal distribution of parameters µD and σD. We denote by A its sym-

metric adjacency matrix, and by I its initial set of in�uencers of size n0 = O(1).

If µD +
σ2

D
2

< − ln (βρ(A)), then we have

σ(I) = O(
√

n) . (6.27)

6.7 Application to Information Cascades

Predicting, and then maximizing, the in�uence of information cascades (see Model 5.11 and
Model 5.12) are among the main goals in information propagation theory, and the subject
of many scienti�c works. In this section, we show that our generic results also apply to
these di�usion processes, and allow to derive upper bounds for the long-term in�uence of
a set of in�uencers. Let It ⊂ [|n|] be the set of infected nodes at time t. In DTIC(P) and
CTIC(F ,∞), It is non-decreasing w.r.t. t and reaches a limit set I∞ = limt→+∞ It. Due to
the independence of transmission events along the edges of the graph, I∞ is the reachable
set of I in a random graph GIC = G(n, A) with independent edge variables Aij. Hence
GIC is a random graph with LPC and the results of Sec. 6.3 are applicable.
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Proposition 6.4. Let I be a set of in�uencers, P = (pij)ij ∈ [0,1]n×n
a matrix of transmis-

sion probabilities and F = ( fij)ij a matrix of non-negative integrable functions. Then, under

DTIC(P) and CTIC(F ,∞), the set of infected nodes at the end of the di�usion process is

the reachable set R(I , A) of I in a random graph with LPC, and Theorems 6.1, 6.2 and 6.3

are applicable with the following Hazard matrix:

Hij =

{
− ln(1− pij) for DTIC(P)∫ ∞

0 fij(t)dt for CTIC(F ,∞)
. (6.28)

Proof. Since transmission events are independent, we can, prior to the epidemic, draw,
respectively, the transmission Xij ∼ B(pij) along each edge (i, j) ∈ [|n|]2 for DTIC(P),
and time to transmit along each edge Tij for CTIC(F , T) (see Proposition 5.2). Then,
a node i belongs to I∞ if and only if there is a path between I and i such that each of
its edges transmitted the information. Hence, I∞ is the reachable set of I in the random
graph G(n, A) s.t. Aij = Xij for DTIC(P), and Aij = 1{Tij < +∞} for CTIC(F , T).
These are independent Bernoulli random variables of parameter pij for DTIC(P), and
1− exp(−

∫ ∞
0 fij(t)dt) for CTIC(F , T), which implies that G is a random graph with

LPC and the above mentioned Hazard matrices.

6.8 Discussion

In this chapter, we established new bounds on the in�uence in random graphs, and applied
our results to three quantities of major importance in their respective �elds: the size of the
giant component in percolation, the number of infected nodes in epidemiology and the in-
�uence of information cascades. These bounds are a strong indication that the Hazard

radius plays an important role in the dynamics of di�usion processes in random graphs,
and lead to several open questions. First, one may wonder if the LPC property is a nec-
essary condition for the bounds to hold. For example, relaxing the local correlation and
allowing positive correlation on larger neighborhoods may still provide random graphs in
which criticality is controlled by the Hazard radius. Second, an important class of di�usion
models, based on randomized versions of the Linear Threshold model, is so far absent of
this analysis, and being able to describe such models by a well chosen LPC random graph
may lead to new and valuable results. Finally, the Hazard radius may drive the behavior of
other di�usion-related quantities in random graphs, such as the volume of neighborhoods
of �xed size. Such results would prove critical for understanding the temporal dynamics
of di�usion processes in networks.

6.9 Proofs

6.9.1 Behavior of the Hazard function

When ρ ≥ 0 and a > 0, γ − 1 + exp (−ργ− a) = 0 always has a solution in [0,1]
and γ(ρ, a) is well de�ned. γ and γ0 are non-decreasing w.r.t. ρ, limρ→+∞ γ(ρ, a) =
limρ→+∞ γ0(ρ) = 1 and, for ρ ≤ 1, γ0(ρ) = 0.

Moreover, we have the following upper bounds for γ(ρ, a), that we will use to deter-
mine the subcritical, critical and supercritical behavior of the in�uence.



6.9. PROOFS 71

Lemma 6.3. ∀ρ , 1 and a > 0,

γ(ρ, a) ≤ γ0(ρ) +
a(1− γ0(ρ))

1− ρ(1− γ0(ρ))
, (6.29)

and ∀ρ > 0 and a > 0,

γ(ρ, a) ≤ γ0(ρ) +
√

2amin

{
1,

√
1
ρ

}
. (6.30)

Eq. 6.29 is particularly tight, except when ρ ≈ 1 (i.e. the critical case). In order to derive
upper bounds in the critical case, we will thus use the second upper bound.

Proof. By de�nition of γ(ρ, a),

γ(ρ, a) = 1− exp (−ργ0(ρ)− ρ(γ(ρ, a)− γ0(ρ))− a)

≤ 1− (1− γ0(ρ)) (1− ρ(γ(ρ, a)− γ0(ρ))− a)

= γ0(ρ) + (1− γ0(ρ)) (ρ(γ(ρ, a)− γ0(ρ)) + a) ,

(6.31)

hence

γ(ρ, a) ≤ γ0(ρ) +
a(1− γ0(ρ))

1− ρ(1− γ0(ρ))
. (6.32)

For the second inequality, �rst observe that γ(ρ, a) ≥ 1 − 1
ρ since γ(ρ, a) = 1 −

exp(−ργ(ρ, a) − a) ≥ 1− 1
1+ργ(ρ,a) =

ργ(ρ,a)
1+ργ(ρ,a) which leads to ργ(ρ, a) ≥ ρ − 1. The

second inequality follows from an approximation of the derivative of γ(ρ, a) w.r.t. a:

∂γ(ρ, a)
∂a

=
1− γ(ρ, a)

1− ρ(1− γ(ρ, a))
≤ 1

1− ρ(1− γ(ρ, a))
. (6.33)

Multiplying the two terms by 1− ρ(1− γ(ρ, a)) > 0 and integrating between 0 and a, we
get

(1− ρ)(γ(ρ, a)− γ0(ρ)) +
ρ

2
(γ(ρ, a)2 − γ0(ρ)

2) ≤ a (6.34)

which leads to

γ(ρ, a) ≤ 1− 1
ρ
+

√
(γ0(ρ)− 1 +

1
ρ
)2 +

2a
ρ
≤ γ0(ρ) +

√
2a
ρ

. (6.35)

using that, ∀a,b ≥ 0,
√

a + b ≤
√

a +
√

b. Finally, noting that γ(ρ, a) is non-decreasing,
we get that ∀ρ ≤ 1,γ(ρ, a) ≤ γ(1, a) ≤

√
2a, and ∀ρ ≥ 1,

√
2a
ρ ≤
√

2a.

We will also use the follwing bound on γ0(ρ):

Lemma 6.4. ∀ρ ≥ 1, γ0(ρ) ≤ 2(ρ− 1).
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Proof. A simple calculation holds that γ0 is concave on (1,+∞). Thus, it implies that,
∀ρ > 1,

γ0(ρ) ≤ γ′0(1
+)(ρ− 1). (6.36)

Finally, ∀ε > 0,

γ′0(1 + ε) =
γ0(1 + ε)(1− γ0(1 + ε))

1− (1 + ε)(1− γ0(1 + ε))
=

γ′0(1
+)

γ′0(1+)− 1
+ o(ε), (6.37)

which leads to γ′0(1
+) ∈ {0,2}, and γ′0(1

+) = 0 is impossible since γ0 is concave on
(1,+∞) and γ0(ρ) > 0 for all ρ > 1. Hence, γ′0(1

+) = 2 and γ0(ρ) ≤ 2(ρ − 1) for
ρ ≥ 1.

6.9.2 Proofs of the upper bounds on in�uence

In this section, we consider G(n, A) a random graph with LPC and R(I , A) the reachable
set of a set of in�uencers I in G. We will also de�ne Xi = 1{i ∈ R(I , A)} the indicators
of the reachable set. First, note that all the bounds provided in Sec. 6.3 are in�nite when
there exists an edge (i, j) such that E[Aij] = 1 (since, in such a case, ρn = +∞). Hence, we
will assume that ∀(i, j) ∈ [|n|]2,E[Aij] < 1. In the following paragraphs, we will prove
our results for random graphs having a strictly positive measure, i.e. such that every graph
of n nodes has a non-zero probability. When this assumption is not satis�ed, the next two
lemmas show that we can still derive the desired results by considering a sequence of such
graphs converging to G.

De�nition 6.7 (Perturbed random graph). Let G(n, A) be a random graph and ε > 0.
The ε-perturbed version of G, Gε = (n, Aε), is a random graph such that Aε

ij = Aij(1−
Xij) + YijXij where Xij and Yij are, respectively, i.i.d. Bernoulli random variables with pa-

rameter ε and 1/2, and independent of G.

These noisy versions of G have a strictly positive measure, while still verifying the
LPC property.

Lemma 6.5. Let ε > 0, G(n, A) a random graph and Gε = (n, Aε) its ε-perturbed version.
Then Gε

has a strictly positive measure and, if G is a random graph with LPC, then so does

Gε
.

Proof. Let X and Y be the random matrices of De�nition 6.7. ∀a ∈ {0,1}n2 , P(Aε = a) ≥
P(X = 1,Y = a) = ( ε

2 )
n2

> 0, where 1 is a vector of size n �lled with ones. Also, since
Xij and Yij are independent, then (H1) and (H2) of the LPC property are still veri�ed for
Gε (see De�nition 6.6).

Furthermore, the in�uence and Hazard radius are continuous w.r.t. ε, and thus our
results on strictly positive measures can be generalized to any random graph with LPC.

Lemma 6.6. Let I be a set of in�uencers, ε > 0, G(n, A) a random graph and Gε =
G(n, Aε) its ε-perturbed version. Let also σ(I) be the in�uence of I in G, σε(I) the in-
�uence of I in Gε

, ρn the Hazard radius of G and ρε
n the Hazard radius of Gε

. Then the

following results hold:

lim
ε→0

σε(I) = σ(I), (6.38)
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and

lim
ε→0

ρε
n = ρn. (6.39)

Proof. Let X and Y be the random matrices of De�nition 6.7. ∀a ∈ {0,1}n2 , P(Aε = a) =
P(X = 0, A = a) + P(X , 0, Aε = a), where 0 is the vector of size n �lled with zeros.
Hence,

|P(Aε = a)−P(A = a)| = |P(X , 0, Aε = a)−P(X , 0)|
≤ 2P(X , 0)

≤ 2(1− (1− ε)n2
)

→ε→0 0.

(6.40)

Since {0,1}n2 is �nite, Aε converges to A in law, and for any function f : {0,1}n2 → R

we have:
lim
ε→0

E[ f (Aε)] = E[ f (A)]. (6.41)

Selecting f (A) = card(R(I , A)) = card(I)+∑i<I

(
1−∏q∈QI ,i

(1−∏(j,l)∈q Ajl)
)

(see
De�nition 6.4) implies that limε→0 σε(I) = σ(I). The second result comes from the con-
tinuity of the spectral radius and that

Hε
ij = − ln

(
1− (1− ε)E[Aij]−

ε

2

)
→ε→0 Hij. (6.42)

Proofs of Theorem 6.1 and Corollary 6.1

We develop here the full proofs for Theorem 6.1 and Corollary 6.1 that apply to any set of
in�uencers. Due to Lemma 6.5 and Lemma 6.6, without loss of generality, we will restrict
ourselves to random graphs G that have a strictly positive measure. We will �rst need
to prove two useful results: Lemma 6.7, that proves for j ∈ [|n|] a positive correlation
between the events ’node i is not reachable from I through node j’ and Lemma 6.9, that
bounds the probability that a given node is reachable from I .

Lemma 6.7. ∀i < I , {1− Xj Aji}j∈[|n|] are positively correlated.

Proof. We will make use of a generalization of the FKG inequality due to Holley (1974) (see
also otto Georgii et al. (1999) for a more recent presentation of the inequality), that only
requires the positive correlation of the edge presence variables Aij (hypothesis (H2) of the
LPC property, see De�nition 6.6):

Lemma 6.8 (FKG inequality, Theorem 4.11 of otto Georgii et al. (1999) adapted
to our notations)). Let L be �nite, S a �nite subset of R, µ a strictly positive probability

measure on SL, and X ∈ SL a random variable with probability measure µ. If µ is monotone,
i.e. ∀i ∈ L and a ∈ S, ξ 7→ Pµ(Xi ≥ a|XL\{i} = ξ) is non-decreasing w.r.t. the natural

partial order on SL\{i}, then it also has positive correlations: for any bounded non-decreasing
functions f and g on SL

Eµ[ f (X)g(X)] ≥ Eµ[ f (X)]Eµ[g(X)]. (6.43)
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In our setting, L = [|n|]2, S = {0,1}, and µ is the probability measure of the adja-
cency matrix A. For a given set of in�uencers I , the indicator values of the reachable set
Xi = 1{i ∈ R(I , A)} are deterministic functions of the random variables Aij. Thus, let
fij({Ai′ j′}(i′,j′)) = 1− Xj Aji. In order to apply the FKG inequality, we �rst need to show
that each fij : {0,1}n2 → {0,1} is non-increasing with respect to the natural partial order
on {0,1}n2 (i.e. X ≤ Y if Xi ≤ Yi for all i). Let u ∈ {0,1}n2 be a given state of the edges of
the network. In order to prove the non-increasing behavior of fij, it is su�cient to show
that fij(u) is non-increasing with respect to every u(i,j).

But from De�nition 6.4, it is obvious that Xi(u) = 1−∏q∈Qi
(1−∏(j,l)∈q u(j,l)) is

non-decreasing with respect to every u(i,j). This implies that fij(u) = 1 − Xj(u)u(j,i)

is non-increasing with respect to every u(i,j) and that fij : {0,1}n2 → {0,1} is non-
increasing with respect to the natural partial order on {0,1}n2 .

Finally, since the LPC property implies that the probability measure of A is monotonic,
we can apply the FKG inequality to {1 − Xj Aji}j∈[|n|], and these random variables are
positively correlated.

The next lemma ensures that the variables Xi satisfy an implicit inequality that will
be the starting point of the proof of Theorem 6.1.

Lemma 6.9. For any I such that card(I) = n0 < n and for any i < I , the probability
E[Xi] that node i is reachable from I in G veri�es:

E[Xi] ≤ 1− exp
(
−∑

j
HjiE[Xj]

)
(6.44)

Proof. We �rst note that a node i < I is reachable from I if and only if one of its neighbors
is reachable from I in the graph G \ {i}, and the respective ingoing edge transmitted the
contagion. Let X−i

j be a binary value indicating if j is reachable from I in G \ {i}. Then

Xi = 0⇔ ∀j ∈ [|n|] \ {i}, X−i
j = 0 or Aji = 0, (6.45)

which implies the following alternative expression for Xi:

1− Xi = ∏
j,i

(1− X−i
j Aji). (6.46)

Moreover, the positive correlation of {1− X−i
j Aji}j∈[|n|]\{i} implies that

E[∏
j,i

(1− X−i
j Aji)] ≥∏

j,i
E[1− X−i

j Aji] (6.47)

which leads to
E[Xi] ≤ 1−∏j,i E[1− X−i

j Aji]

= 1−∏j,i

(
1−E[X−i

j ]E[Aji]
)

≤ 1−∏j
(
1−E[Xj]E[Aji]

) (6.48)
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since X−i
j and Aji are independent, due to hypothesis (H1) of the LPC property (see Def-

inition 6.6) and X−i
j only depends on (Akl)(k,l)<Nji

.The second inequality comes from the
fact that X−i

j ≤ Xj a.s.. Finally,

E[Xi] ≤ 1− exp
(

∑j ln(1−E[Xj]E[Aji])
)

≤ 1− exp
(

∑j ln(1−E[Aji])E[Xj]
)

= 1− exp
(
−∑jHjiE[Xj]

) (6.49)

since we have on the one hand, for any x ∈ [0,1] and a < 1, ln(1− ax) ≥ ln(1− a)x, and
on the other hand E[Aji] = 1− exp(−Hji) by de�nition ofH.

Using Lemma 6.9, we are now ready to start the proof of Theorem 6.1.

Proof of Theorem 6.1. In order to simplify notations, we de�ne Zi =
(
E[Xi])i that we col-

lect in the vector Z = (Zi)i∈[1...n]. Using Lemma 6.9 and convexity of the exponential
function, we have for any u ∈Rn such that ∀i ∈ I ,ui = 0 and ∀i < I ,ui ≥ 0,

u>Z ≤ |u|1
(

1−
n−1

∑
i=1

ui

|u|1
exp(−(H>Z)i)

)
≤ |u|1

(
1− exp

(
− Z>Hu
|u|1

))
(6.50)

where |u|1 = ∑i |ui| is the L1-norm of u.
Now taking u = (1i<IZi)i and noting that ∀i,ui ≤ Zi, we have

Z>Z− n0

|Z|1 − n0
≤ 1− exp

(
− Z>HZ
|Z|1 − n0

)
≤ 1− exp

(
− ρn(Z>Z− n0)

|Z|1 − n0
− ρnn0

|Z|1 − n0

)
(6.51)

where ρn = ρ(H+H>
2 ). De�ning y = Z>Z−n0

|Z|1−n0
and z = |Z|1 − n0 = σ(I)− n0, the afore-

mentioned inequality rewrites

y ≤ 1− exp
(
− ρny− ρnn0

z

)
(6.52)

But by Cauchy-Schwarz inequality applied to u, (n − n0)(Z>Z − n0) ≥ (|Z|1 − n0)2,
which means that z ≤ y(n− n0). We now consider the equation

x− 1 + exp
(
− ρnx− ρnn0

x(n− n0)

)
= 0 (6.53)

Because the function f : x → x − 1 + exp
(
− ρnx + ρnn0

x(n−n0)

)
is continuous, veri�es

f (1) > 0 and limx→0+ f (x) = −1, Eq. 6.53 admits a solution γ1 in ]0,1[.
We then prove by contradiction that z ≤ γ1(n− n0). Let us assume z > γ1(n− n0).

Then y ≤ 1− exp
(
− ρny− ρnn0

γ1(n−n0)

)
. But the function h : x→ x− 1 + exp

(
− ρnx +

ρnn0
γ1(n−n0)

)
is convex and veri�es h(0) < 0 and h(γ1) = 0. Therefore, for any y > γ1,

0 = f (γ1) ≤ γ1
y f (y) + (1− γ1

y ) f (0), and therefore f (y) > 0. Thus, y ≤ γ1. But z ≤
y(n− n0) ≤ γ1(n− n0) which yields the contradiction.
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Proof of Corollary 6.1. Using Lemma 6.3 and observing that:

γ1 = γ

(
ρn,

ρnn0

γ1(n− n0)

)
≤ γ

(
ρn,

ρnn0

(γ1 − γ0(ρn))(n− n0)

)
,

we obtain the following bounds:

γ1 ≤ γ0(ρn) +
ρnn0(1− γ0(ρn))

(γ1 − γ0(ρn))(n− n0)(1− ρn(1− γ0(ρn)))
, (6.54)

and

γ1 ≤ γ0(ρn) +

√
2n0

(γ1 − γ0(ρn))(n− n0)
, (6.55)

which lead to

γ1 ≤ γ0(ρn) +

√
ρn(1− γ0(ρn))

1− ρn(1− γ0(ρn))

√
n0

n− n0
, (6.56)

and

γ1 ≤ γ0(ρn) +

(
2n0

n− n0

)1/3

. (6.57)

The subcritical and supercritical regimes are obtained using Eq. 6.56 (recall that γ0(ρ) = 0
when ρ ≤ 0) and the critical regime using Eq. 6.57 and Lemma 6.4.

Proofs of Theorem 6.2 and Corollary 6.2

In this subsection, we develop the proofs for Theorem 6.2 and Corollary 6.2 in the case
when the set of in�uencers I is drawn from a uniform distribution over Pn0([|n|]).

We start with an important lemma that will play the same role in the proof of Theo-
rem 6.2 than Lemma 6.9 in the proof of Theorem 6.1.

Lemma 6.10. Assume I is drawn from a uniform distribution over Pn0([|n|]). Then, for
any i ∈ [|n|], the probability E[Xi] that node i is reachable from I in G satis�es the following

implicit inequality:

E[Xi] ≤ 1− n− n0

n
exp

(
− n

n− n0
∑

j
HjiE[Xj]

)
(6.58)

Proof.

E[Xi] = E[1{i∈I}] + E[1{i<I}]E[E[Xi|I ]|i < I ]

≤ n0

n
+

n− n0

n

(
1−E[exp

(
−∑

j
HjiE[Xj|I ]

)
|i < I ]

)
≤ n0

n
+

n− n0

n

(
1− exp

(
−E[∑

j
HjiE[Xj|I ]|i < I ]

))
= 1− n− n0

n
exp

(
−∑

j
HjiE[Xj|i < I ]

)

≤ 1− n− n0

n
exp

(
− n

n− n0
∑

j
HjiE[Xj]

)
(6.59)
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where the �rst inequality is Lemma 6.9 and the second one is Jensen inequality for condi-
tional expectations.

Proof of Theorem 6.2. We de�ne Zi =
(
E[Xi])i that we collect in the vector Z = (Zi)i∈[1...n].

Then, using Lemma 6.10, and convexity of exponential function, we have:

Z>Z
|Z|1

≤ 1− n− n0

n

n

∑
i=1

Zi

|Z|1
exp

(
− n

n− n0
(H>Z)i

)
≤ 1− n− n0

n
exp

(
− n

n− n0

Z>HZ
|Z|1

)
≤ 1− n− n0

n
exp

(
− nρn

n− n0

Z>Z
|Z|1

)
,

(6.60)

which leads, due to the monotonicity of x 7→ 1− n−n0
n exp(− nρn

n−n0
x), to

Z>Z
|Z|1

≤ γ

(
nρn

n− n0
,− ln(1− n0

n
)

)
= (1− n0

n
)γ

(
ρn,

ρnn0

n− n0

)
+

n0

n
. (6.61)

Finally, we have by Cauchy-Schwarz inequality σU = |Z|1 ≤ n Z>Z
|Z|1 , which proves the

proposition.

Proof of Corollary 6.2. Using Lemma 6.3, we obtain the following bounds:

γ

(
ρn,

ρnn0

n− n0

)
≤ γ0(ρn) +

ρnn0(1− γ0(ρn))

(n− n0)(1− ρn(1− γ0(ρn)))
, (6.62)

and

γ(ρn,
ρnn0

n− n0
) ≤ γ0(ρn) +

√
2n0

n− n0
, (6.63)

The subcritical and supercritical regimes are obtained using Eq. 6.62 (recall that γ0(ρ) = 0
when ρ ≤ 0) and the critical regime using Eq. 6.63 and Lemma 6.4.

Proofs of Theorem 6.3 and Corollary 6.3

In this subsection, we develop the proofs for Theorem 6.3 and Corollary 6.3 in the case
when each node belongs to the set of in�uencers I independently at random with proba-
bility q.

We start with an important lemma that will play the same role in the proof of Theo-
rem 6.3 than Lemma 6.9 in the proof of Theorem 6.1.

Lemma 6.11. Assume each node is an in�uencer with independent probability q ∈ [0,1] and
denote by I the random set of in�uencers that is drawn. Then, for any i ∈ [|n|], the proba-
bility E[Xi] that node i is reachable from I in G satis�es the following implicit inequality:

E[Xi] ≤ 1− (1− q)exp
(
−∑

j
HjiE[Xj]

)
(6.64)
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Proof.

E[Xi] = E[1{i∈I}] + E[1{i<I}]E[E[Xi|I ]|i < I ]

≤ q + (1− q)
(

1−E[exp

(
−∑

j
HjiE[Xj|I ]

)
|i < I ]

)
≤ q + (1− q)

(
1− exp

(
−E[∑

j
HjiE[Xj|I ]|i < I ]

))
= 1− (1− q)exp

(
−∑

j
HjiE[Xj|i < I ]

)

≤ 1− (1− q)exp

(
−∑

j
HjiE[Xj]

)
(6.65)

where the �rst inequality is Lemma 6.9, the second one is Jensen’s inequality for condi-
tional expectations, and the third is the positive correlation of Xj and 1{i ∈ I}.

Proof of Theorem 6.3. We de�ne Zi =
(
E[Xi])i that we collect in the vector Z = (Zi)i∈[1...n].

Then, using Lemma 6.11, and convexity of exponential function, we have:

Z>Z
|Z|1

≤ 1− (1− q)
n

∑
i=1

Zi

|Z|1
exp

(
− (H>Z)i

)
≤ 1− (1− q)exp

(
− Z>HZ
|Z|1

)
≤ 1− (1− q)exp

(
− ρn

Z>Z
|Z|1

)
,

(6.66)

which leads, due to the monotonicity of x 7→ 1− (1− q)exp(−ρnx), to

Z>Z
|Z|1

≤ γ(ρn,− ln(1− q)). (6.67)

Finally, we have by Cauchy-Schwarz inequality σR = |Z|1 ≤ n Z>Z
|Z|1 , which proves the

proposition.

Proof of Corollary 6.2. Using Lemma 6.3, we obtain the following bounds:

γ(ρn,− ln(1− q)) ≤ γ0(ρn) +
− ln(1− q)(1− γ0(ρn))

1− ρn(1− γ0(ρn))
, (6.68)

and
γ(ρn,− ln(1− q)) ≤ γ0(ρn) +

√
−2ln(1− q), (6.69)

The subcritical and supercritical regimes are obtained using Eq. 6.68 (recall that γ0(ρ) = 0
when ρ ≤ 0) and the critical regime using Eq. 6.69 and Lemma 6.4.
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Proof of Proposition 6.1

Proof of Proposition 6.1. Let Ga,b = G(n, A) be a “random star-network”, i.e. an undirected
random graph such that {Aij : i < j} are independent Bernoulli random variables of pa-
rameter a ∈ [0,1] if i = 1 and b < a otherwise. Then, the next Lemma shows that the
in�uence of node 1 in Ga,b is lower bounded by the size of the giant component of an
Erdös-Rényi graph.

Lemma 6.12. Let Ga,b = G(n, A) be a “ random star-network” of parameters a and b, and
G(n, p) an Erdös-Rényi graph of size n and parameter p. The in�uence σa,b({1}) of node 1
in Ga,b is lower bounded by

σa,b({1}) ≥ 1− 1
ae

+ na + (1− a)E[C1(G(n− 1,b))], (6.70)

where C1(G) denotes the size of the giant component of G.

Proof. Since the edge presence variables Aij are independent, the set of nodes linked to 1
in Ga,b is a random set I(a) such that each node in {2, ...,n} belongs to it independently
with probability a. Also, I(a) is independent from the subgraph restricted to {2, ...,n}, and
since each edge in {2, ...,n} is drawn independently and has probability b, this subgraph is
an Erdös-Rényi graph of size n− 1 and parameter b. Hence, if E[σb(I(a))] is the in�uence
of a random set I(a) in G(n− 1,b) as de�ned in Theorem 6.3, then

σa,b({1}) = 1 + E[σb(I(a))]. (6.71)

Hence, Eq. 6.14 and the same derivation as in Theorem 6.4 gives that:

σa,b({1}) ≥ 1 + na + (1− a)E[C1(G(n− 1,b))(1− (1− a)C1(G(n−1,b))−1)]

≥ 1 + na + (1− a)E[C1(G(n− 1,b))]− 1
− ln(1− a)e

≥ 1 + na + (1− a)E[C1(G(n− 1,b))]− 1
ae

.
(6.72)

However, a simple calculation holds ρn =
(n−2)b′+

√
(n−2)2b′2+4(n−1)a′2

2 , where a′ =
− ln(1− a) and b′ = − ln(1− b). We now conclude in the three regimes:

Subcritical regime (ρn < 1): In this case, we take b = 0 and a = ρ√
n−1

, for ρ ∈ [0,1).
Then ρn = ρ + O( 1√

n ) and σa,b = 1 + ρ
√

n− 1≥ ρ
2
√

n for n su�ciently large.

Critical and supercritical regime (ρn ≥ 1): In this case, we take a = 1√
n lnn

and b = ρ
n .

Then ρn = ρ + O( 1
lnn ) and

σa,b ≥O(
√

n lnn) + E[C1(G(n− 1,b))]. (6.73)

However, classical results in percolation theory (Erdös and Rényi, 1960) state that, for
η > 0 and ω(n) any function s.t. limn→+∞ ω(n) = +∞,

C1(G(n,
1
n
)) ≥ n2/3

ω(n)
a.a.s. (6.74)
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and ∣∣∣∣∣C1(G(n, ρ
n ))

n
− γ0(c)

∣∣∣∣∣ ≤ η a.a.s. (6.75)

Hence, in the �rst case, Markov’s inequality gives E[C1(G(n− 1,b))] ≥ n2/3

ω(n) (1− o(1)),
which leads to, for n su�ciently large,

E[C1(G(n− 1,b))] ≥ Cρn2/3, (6.76)

for some Cρ > 0, since assuming liminfn→+∞
E[C1(G(n−1,b))]

n2/3 = 0 and taking ω(n) =

maxm≤n

√
n2/3

E[C1(G(n−1,b))] leads to liminfn→+∞

√
E[C1(G(n−1,b))]

n2/3 ≥ 1, which contradicts
the assumption. For the second case, Markov’s inequality gives

E[C1(G(n− 1,b))] ≥ (γ0(ρ)n− ηn)P(C1(G(n− 1,b)) ≥ γ0(ρ)n− ηn)

≥ γ0(ρ)n− ηn− o(n).
(6.77)

Taking the limit inferior leads to, for all η > 0:

liminf
n→+∞

E[C1(G(n− 1,b))]− γ0(ρ)n
n

≥ liminf
n→+∞

{−η − o(1)} = −η , (6.78)

and thus liminfn→+∞
E[C1(G(n−1,b))]−γ0(ρ)n

n ≥ 0, which can be rewritten as E[C1(G(n−
1,b))] ≥ γ0(ρ)n− o(n).

6.9.3 Proofs of the percolation theorems

The aim of this section is to prove the results obtained in section 6.4 for the bond percola-
tion problem from the general results on reachablity sets of section 6.3. We recall that we
consider an undirected random graph G(n, A) of size n with independent edge presence
variables {Aij : i < j}, and denote by Ck(G) the size of its kth-largest connected compo-
nent, as well as N(m) the number of connected components of G of cardinality greater
than or equal to m. We also recall that we are able to relate the distribution of the sizes
of connected components of G to the Hazard function through equation 6.14. Let a > 0,
then:

E[ ∑
k

Ck(G)
(

1− e−aCk(G)
)
] ≤ γ(ρn, a)n

Proofs of Theorem 6.4 and Corollary 6.4

Proof of Theorem 6.4. Theorem 6.4 is simply obtained by combining equation 6.14 and the
following observation:

∑
k

Ck(G)
(

1− e−aCk(G)
)
≤ C1(G)

(
1− e−aC1(G)

)
+ (n− C1(G))(1− e−a)

Therefore,

E[C1(G)(1− e−a(C1(G)−1))] ≤ nea (γ(ρn, a)− 1 + e−a) = n
(

1− e−ρnγ(ρn,a)
)

.
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Proof of Corollary 6.4. We �rst prove the subcritical result. Let a ≥ 0. When ρn < 1, we
have γ(ρn, a) = 0 and therefore Lemma 6.3 implies γ(ρn, a) ≤ a

1−ρn
. By convexity of

exponential function, we get:

E[C1(G)(1− e−a(C1(G)−1))] ≤ naρn

1− ρn
.

This inequality between two derivable functions of a such that f (a) ≤ g(a) for all a ≥ 0
and f (0) = g(0) implies that ∂ f

∂a (0) ≤
∂g
∂a (0) which yields:

E[C1(G)(C1(G)− 1)] ≤ nρn

1− ρn
.

The �rst equation of Corollary 6.4 is then a straightforward resolution of a second-order
equation, using the fact that E[C1(G)2] ≥ E[C1(G)]2.

For the critical and supercritical results, we will make use of the fact that, for all a > 0,
C1(G)e−aC1(G) ≤ 1

ae , which yields:

E[C1(G)] ≤ ea

ae
+ n

(
1− e−ρnγ(ρn,a)

)
(6.79)

which rewrites E[C1(G)] + (n − E[C1(G)])(1 − e−a) ≤ 1
ae + nγ(ρn, a) and therefore

implies:
E[C1(G)] ≤ 1

ae
+ nγ(ρn, a) (6.80)

From Lemma 6.3, we know that for ρn , 0, γ(ρn, a) ≤ γ0(ρn) +
√

2a. We therefore get
the critical result using equation 6.80:

E[C1(G)] ≤ nγ0(ρn) + min
a>0

{
1
ae

+ n
√

2a
}
= nγ0(ρn) + n2/3

(
27
2e

)1/3

.

For the supercritical result, we use equation 6.79 and the fact that

1− e−ρnγ(ρn,a) = 1− e−ρnγ0(ρn)
(

1− e−ρn(γ(ρn,a)−γ0(ρn))
)

≤ γ0(ρn) + ρn (1− γ0(ρn)) (γ(ρn, a)− γ0(ρn))

≤ γ0(ρn) +
aρn (1− γ0(ρn))

2

1− ρn + ρnγ0(ρn)
.

We then choose

a =

√
2(1− ρn + ρnγ0(ρn))

2eρn (1− γ0(ρn))
2 n + 1− ρn + ρnγ0(ρn)

which gives us

E[C1(G)] ≤ nγ0(ρn) +
2
e

√
enρn(1− γ0(ρn))2

1− ρn + ρnγ0(ρn)
+

1
2
+

1
e
+

ea − 1
ae

,

Using the fact that a <
√

2 and √x + y ≤
√

x +
√

y, we �nally get:

E[C1(G)] ≤ nγ0(ρn) +
2√

e

√
nρn(1− γ0(ρn))2

1− ρn + ρnγ0(ρn)
+

1 +
√

2 + e
√

2
√

2e
,

which yields the supercritical result.
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Proofs of Theorem 6.5 and Corollary 6.7

Proof of Theorem 6.5. Let a > 0. In order to prove Theorem 6.5, we start again from equa-
tion 6.14 and use the fact that:

∑
k

Ck(G)
(

1− e−aCk(G)
)

1{Ck(G) ≥ m} ≤ (1− e−am)∑
k

Ck(G)1{Ck(G) ≥ m} and

∑
k

Ck(G)
(

1− e−aCk(G)
)

1{Ck(G) < m} ≤ (1− e−a)

(
n−∑

k
Ck(G)1{Ck(G) ≥ m}

)
.

Therefore, we have:

∑
k

Ck(G)1{Ck(G) ≥ m} ≤ nea (γ(ρn, a)− 1 + e−a)

1− e−a(m−1)
=

n
(

1− e−ρnγ(ρn,a)
)

1− e−a(m−1)
.

which proves the theorem, noting that mN(m) ≤ ∑k Ck(G)1{Ck(G) ≥ m}

Proof of Corollary 6.7. In the subcritical case, we have γ(ρn, a) ≤ a
1−ρn

which means that,
for all a > 0, ρn < 1:

N(m) ≤ n
m

aρn

(1− ρn)(1− e−a(m−1))

The right-hand side function of a is increasing on the semi-line, and we therefore takes its
limit when a→ 0 to get the subcritical result.

For the critical case, we note that Theorem 6.5 implies that, for all a > 0:

(1− e−am)mN(m) + (1− e−a)(n−mN(m)) ≤ nγ(ρn, a)

and therefore

N(m) ≤ n
m

γ(ρn, a)
1− e−am ≤

n
m

γ0(ρn) +
√

2a
1− e−am =

n
m3/2

γ0(ρn)
√

m +
√

2am
1− e−am .

The function x 7→
√

2x
1−e−x admits a unique minimum for x > 0 in η which is the strictly

positive solution of eη = 2η + 1. Setting a = η
m yields:

N(m) ≤ n
m3/2

γ0(ρn)
√

m +
√

2η

1− e−η

Hence, if ρn ≤ 1− νm−1/2 for a �xed ν > 0, Lemma 6.4 implies:

N(m) ≤ n
m3/2

2ν +
√

2η

1− e−η
.

The critical result is given by �nding the value ν for which the �rst orders of the subcritical
and critical bounds are equal at the threshold value ρ = 1− νm−1/2, i.e. ν is the solution

of 1
ν =

2ν+
√

2η

1−e−η .

For the supercritical result, we will make use of the fact that

1− e−ρnγ(ρn,a) ≤ γ0(ρn) +
aρn (1− γ0(ρn))

2

1− ρn + ρnγ0(ρn)
.
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Introducing B = ρn(1−γ0(ρn))
2

1−ρn+ρnγ0(ρn)
, Theorem 6.5 gives:

N(m) ≤ n
m

(
γ0(ρn) + Ba
1− ea(m−1)

)
(6.81)

Deriving the right-hand side with respect to a and setting x = a(m− 1), we �nd that the
minimizer x? is given by the unique strictly positive solution of ex = 1 + x + B

γ0(ρn)
(m−

1). Therefore, we now in particular that x? ≤
√

2(ex? − 1− x?) =
√

2γ0(ρn)(m− 1)/B.
The supercritical result is obtained by plugging

a =

√
2γ0(ρn)

B(m− 1)

into equation 6.81.





7
Dynamic properties of the in�uence

“We are all in the gutter, but some of us are

looking at the stars.”

— Oscar Wilde
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7.1 Introduction

Di�usion networks capture the underlying mechanism of how events propagate through-
out a complex network. In marketing, social graph dynamics have caused large transfor-
mations in business models, forcing companies to re-imagine their customers not as a mass
of isolated economic agents, but as customer networks (Trusov et al., 2009). In epidemiol-
ogy, a precise understanding of spreading phenomena is heavily needed when trying to
break the chain of infection in populations during outbreaks of viral diseases. But whether
the subject is a virus spreading across a computer network, an innovative product among
early adopters, or a rumor propagating on a network of people, the questions of interest
are the same: how many people will it infect? How fast will it spread? And, even more
critically for decision makers: how can we modify its course in order to meet speci�c
goals?

7.1.1 Related works

Several papers tackled these issues by studying the in�uence maximization problem. Given
a known di�usion process on a graph, it consists in �nding the top-k subset of initial seeds
with the highest expected number of infected nodes at a certain time distance T. This prob-
lem being NP-hard (Kempe et al., 2003), various heuristics have been proposed in order to
obtain scalable suboptimal approximations. While the �rst algorithms focused on discrete-
time models and the special case T = +∞ (Chen et al., 2009, 2010), subsequent papers by
Gomez-Rodriguez et al. (2011) and Du et al. (2013b) brought empirical evidences of the key
role played by temporal behavior. Existing models of continuous-time stochastic processes
include multivariate Hawkes processes (Hawkes and Oakes, 1974) where recent progress
in inference methods (see for example Zhou et al. (2013) and Lemonnier and Vayatis (2014))
made available the tools for the study of activity shaping (Farajtabar et al., 2014), which
is closely related to in�uence maximization. However, in the most studied case in which
each node of the network can only be infected once, the most widely used model remains
the Continuous-Time Information Cascade (CTIC) model introduced by Gomez-Rodriguez
et al. (2011). Under this framework, successful inference (Gomez-Rodriguez et al., 2011) as
well as in�uence maximization algorithms have been developed (Rodriguez and Schölkopf,
2012; Du et al., 2013a).

However, if recent works by Gomez-Rodriguez et al. (2015) and Pouget-Abadie and
Horel (2015) provided theoretical foundations for the inference problem, assessing the
quality of in�uence maximization remains a challenging task, as few theoretical results
exist for general graphs. In the in�nite-time setting, studies of the SIR di�usion process
in epidemiology by Draief et al. (2008) or percolation for speci�c graphs by Bollobás et al.
(2007) provided a more accurate understanding of these processes. In Chap. 6, we showed
that the spectral radius of the Hazard matrix played a key role in the long-term in�uence
of information cascades, and this chapter investigates the dynamic properties induced by
this quantity.

7.1.2 Outline

The rest of this chapter is organized as follows. In Sec. 7.2, we recall the de�nition of Infor-
mation Cascades Model and introduce useful notations. In Sec. 7.3, we derive theoretical
bounds for the in�uence. In Sec. 7.4, we illustrate our results by applying them on speci�c
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cascade models. In Sec. 7.5, we perform experiments in order to show that our bounds
are sharp for a family of graphs and sets of initial nodes. All proof details are provided in
Sec. 7.6. This chapter is an extended version of the paper (Scaman et al., 2015b) published
at the NIPS 2015 conference in collaboration with Rémi Lemonnier and Nicolas Vayatis.

7.2 Continuous-Time Information Cascades

7.2.1 Information propagation and in�uence in di�usion networks

Continuous-Time Information Cascades are di�usion processes that were developed for
the analysis of communication networks, and more speci�cally for processes during which
each node can be infected only once. The precise de�nition of this model is given in
Sec. 5.4.3, and pij(t) will denote the sub-probability density of the transmission times Tij
of Proposition 5.2. For each node v ∈ V , we will denote as τv the (possibly in�nite) time
at which it is reached by the infection. We also recall that the in�uence of I at time T,
denoted as σI (T), is de�ned as the expected number of nodes reached by the contagion
at time T originating from I , i.e.

σI (T) = E

[
∑
v∈V

1{τv ≤ T}
]

, (7.1)

where the expectation is taken over cascades originating from I (i.e. τv = 0 ⇔ v ∈ I).
See De�nition 5.10 for a generic de�nition of this quantity. Following the percolation
literature, we will di�erentiate between sub-critical cascades whose size is o(n) and super-

critical cascades whose size is proportional to n, where n denotes the size of the network.
In this chapter, we will focus on upper bounding the in�uence σI (T) for any given time T
and characterizing the critical times at which phase transitions occur between sub-critical
and super-critical behaviors.

7.2.2 The Laplace Hazard Matrix

We extend here the concept of Hazard matrix of Chap. 6 which plays a key role for the
in�uence of the information cascade.

De�nition 7.1. Let G = (V ,E) be a directed graph, and pij be integrable edge transmission

probabilities such that

∫ +∞
0 pij(t)dt < 1. For s ≥ 0, let L(s) be the n× n matrix, denoted

as the Laplace Hazard matrix, whose coe�cients are

Lij(s) =

 − p̂ij(s)
(∫ +∞

0 pij(t)dt
)−1

ln
(

1−
∫ +∞

0 pij(t)dt
)

if (i, j) ∈ E

0 otherwise

, (7.2)

where p̂ij(s) denotes the Laplace transform of pij de�ned for every s ≥ 0 by p̂ij(s) =∫ +∞
0 pij(t)e−stdt. Note that the long term behavior of the cascade is retrieved when s = 0

and coincides with the concept of Hazard matrix of De�nition 6.1.
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7.2.3 Existence of a critical time of a contagion

In the following, we will derive critical times before which the contagion is sub-critical,
and above which the contagion is super-critical. We now formalize this notion of critical
time via limits of contagions on networks.

Theorem 7.1. Let (Gn)n∈N be a sequence of networks of size n, and (pn
ij)n∈N be transmis-

sion probability functions along the edges of Gn. Let also σn(t) be the maximum in�uence

in Gn at time t from a single in�uencer. Then there exists a critical time Tc ∈ R+ ∪ {+∞}
such that, for every sequence of times (Tn)n∈N:

• If limsupn→+∞ Tn < Tc
, then σn(Tn) = o(n),

• If liminfn→+∞ Tn > Tc
, then limsupn→+∞ σn(Tn)/n > 0.

Moreover, such a critical time is unique.

In other words, the critical time is a time before which the regime is sub-critical and
after the contagion is super-critical. In order to simplify notations, we will omit in the
following the dependence in n of all the variables whenever stating results holding in the
limit n→ +∞.

7.3 Theoretical bounds for the in�uence of a set of nodes

We now present our upper bounds on the in�uence at time T and derive a lower bound
on the critical time of a contagion.

7.3.1 Upper bounds on the maximum in�uence at time T

The next proposition provides an upper bound on the in�uence at time T for any set of
in�uencers I such that |I| = n0. This result may be valuable for assessing the quality of
in�uence maximization algorithms in a given network.

Proposition 7.1. De�ne ρ(s) = ρ(L(s)+L(s)
>

2 ). Then, for any I such that |I| = n0 < n,
denoting by σI (T) the expected number of nodes reached by the cascade starting from I at

time T:

σI (T) ≤ n0 + (n− n0)min
s≥0

γ1

(
ρ(s),

n0

n− n0

)
esT. (7.3)

where γ1(ρ, a) is as de�ned in Theorem 6.1.

Corollary 7.1. Under the same assumptions:

σI (T) ≤ n0 +
√

n0(n− n0) min
{s≥0 | ρ(s)<1}

(√
ρ(s)

1− ρ(s)
esT

)
, (7.4)

Proof. This is a direct consequence of Corollary 6.1.
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Note that the long-term upper bound in Theorem 6.1 is a corollary of Proposition 7.1
using s = 0. When ρ(0) < 1, Corollary 7.1 with s = 0 implies that the regime is sub-
critical for all T ≥ 0. When ρ(0) ≥ 1, the long-term behavior may be super-critical and
the in�uence may reach linear values in n. However, at a cost growing exponentially with
T, it is always possible to choose a s such that ρ(s) < 1 and retrieve a O(

√
n) behavior.

While the exact optimal parameter s is in general not explicit, two choices of s derive
relevant results: either simplifying esT by choosing s = 1/T, or keeping γ(s) sub-critical
by choosing s s.t. ρ(s) < 1. In particular, the following corollary shows that the contagion
explodes at most as exp(ρ−1(1− ε)T) for any ε ∈ [0,1].

Corollary 7.2. Let ε ∈ [0,1] and ρ(0) ≥ 1. Under the same assumptions, the two following

bounds hold:

σI (T) ≤ n0 +

√
n0(n− n0)

ε
exp

(
ρ−1(1− ε)T

)
. (7.5)

and

σI (T) ≤ n0 + (2n0)
1/3(n− n0)

2/3 exp
(

ρ−1(1)T
)

. (7.6)

Remark. Since this section focuses on bounding σI (T) for a given T ≥ 0, all the afore-
mentioned results also hold for pT

ij(t) = pij(t)1{t ≤ T}. This is equivalent to integrating
everything on [0, T] instead of R+, i.e.

Lij(s) = − ln(1−
∫ T

0
pij(t)dt)(

∫ T

0
pij(t)dt)−1

∫ T

0
pij(t)e−stdt.

This choice of L is particularly useful when some edges are transmitting the contagion
with probability 1, see for instance the SI epidemic model in Sec. 7.4.3.

7.3.2 Lower bound on the critical time of a contagion

The previous section presents results about how explosive a contagion is. These �ndings
suggest that the speed at which a contagion explodes is bounded by a certain quantity,
and thus that the process needs a certain amount of time to become super-critical. This
intuition is made formal in the following corollary:

Corollary 7.3. Assume that ∀n ≥ 0, ρn(0) ≥ 1. If the sequence (Tn)n∈N is such that

limsup
n→+∞

3ρ−1
n (1)Tn

lnn
< 1. (7.7)

Then,

σI (Tn) = o(n). (7.8)

In other words, the regime of the contagion is sub-critical before lnn
3ρ−1

n (1)
and

Tc ≥ liminf
n→+∞

lnn
3ρ−1

n (1)
. (7.9)

Under an additional technical constraint, this lower bound can be further improved:
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Corollary 7.4. With the additional constraint that limn→+∞
ρ−1

n (1− 1
lnn )

ρ−1
n (1)

= 1,

Tc ≥ liminf
n→+∞

lnn
2ρ−1

n (1)
. (7.10)

The technical condition limn→+∞ ρ−1
n (1− 1

lnn )/ρ−1
n (1) = 1 imposes that, for large n,

limε→0 ρ−1
n (1− ε)/ρ−1

n (1) converges su�ciently fast to 1 so that ρ−1
n (1− 1

lnn ) has the
same behavior as ρ−1

n (1). This condition is not very restrictive, and is met for the di�erent
case studies considered in Sec. 7.4. This result may be valuable for decision makers since it
provides a safe time region in which the contagion has not reached a macroscopic scale. It
thus provides insights into how long do decision makers have to prepare control measures.
After Tc, the process explodes and immediate action is required.

7.4 Application to particular contagion models

In this section, we provide several examples of cascade models that show that our theo-
retical bounds are applicable in a wide range of scenarios and provide the �rst results of
this type in many areas, including two widely used epidemic models.

7.4.1 Fixed transmission pattern

When the transmission probabilities are of the form pij(t) = αij p(t) s.t.
∫ +∞

0 p(t) = 1
and αij < 1,

Lij(s) = − ln(1− αij) p̂(s), (7.11)

and
ρ(s) = ρα p̂(s), (7.12)

where ρα = ρ(0) = ρ(− ln(1−αij)+ln(1−αji)
2 ) is the Hazard radius de�ned in the previous

chapter (see De�nition 6.2). In these networks, the temporal and structural behaviors are
clearly separated. While ρα summarizes the structure of the network and how connected
the nodes are to one another, p̂(s) captures how fast the transmission probabilities are
fading through time.

When ρα ≥ 1, the long-term behavior is super-critical and the bound on the critical
times is given by inverting p̂(s)

Tc ≥ liminf
n→+∞

lnn
2p̂−1(1/ρα)

, (7.13)

where p̂−1(1/ρα) exists and is unique since p̂(s) is decreasing from 1 to 0. In general, it
is not possible to give a more explicit version of the critical time of Corollary 7.4, or of the
anytime in�uence bound of Proposition 7.1. However, we investigate in the rest of this
section speci�c p(t) which lead to explicit results.

7.4.2 Exponential transmission probabilities

A notable example of �xed transmission pattern is the case of exponential probabilities
pij(t) = αijλe−λt for λ > 0 and αij ∈ [0,1[. In�uence maximization algorithms under this
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speci�c choice of transmission functions have been for instance developed by Rodriguez
and Schölkopf (2012). In such a case, we can calculate the spectral radii explicitly:

ρ(s) =
λ

s + λ
ρα, (7.14)

where ρα = ρ(− ln(1−αij)+ln(1−αji)
2 ) is again the long-term Hazard matrix. When ρα > 1,

this leads to a critical time lower bounded by

Tc ≥ liminf
n→+∞

lnn
2λ(ρα − 1)

. (7.15)

The in�uence bound of Corollary 7.1 can also be reformulated in the following way:

Corollary 7.5. Assume ρα ≥ 1, or else λT(1− ρα) <
1
2 . Then the minimum in Eq. 7.4 is

met for s = 1
2T + λ(ρα − 1) and Corollary 7.1 rewrites:

σI (T) ≤ n0 +
√

n0(n− n0)
√

2eTλραeλT(ρα−1). (7.16)

If ρα < 1 and λT(1− ρα) ≥ 1
2 , the minimum in Eq. 7.4 is met for s = 0 and Corollary 7.1

rewrites:

σI (T) ≤ n0 +
√

n0(n− n0)

√
ρα

1− ρα
. (7.17)

Note that, in particular, the condition of Corollary 7.5 is always met in the super-
critical case where ρα > 1. Moreover, we retrieve the O(

√
n) behavior when T < 1

λ(ρα−1) .
Concerning the behavior in T, the bound matches exactly the in�nite-time bound when T
is very large in the sub-critical case. However, for su�ciently small T, we obtain a greatly
improved result with a very instructive growth in O(

√
T).

7.4.3 SI and SIR epidemic models

Both epidemic models SI and SIR are particular cases of exponential transmission probabil-
ities, and their respective model de�nitions are provided in Sec. 5.4.2. When the removing
events are not observed, SIR is equivalent to CTIC, except that transmission along outgo-
ing edges of one node are positively correlated. However, our results still hold in case of
such a correlation, as shown in the following result.

Proposition 7.2. Assume the propagation follow an SIR model of transmission parameter

β and removal parameter δ. De�ne pij(t) = βexp(−(δ + β)t) for (i, j) ∈ E , and let A =(
1{(i,j)∈E}

)
ij be the adjacency matrix of the underlying undirected network. Then, results of

Proposition 7.1 and subsequent corollaries still hold with ρ(s) given by:

ρ(s) = ρ

(
L(s) + L(s)>

2

)
= ln

(
1 +

β

δ

)
δ + β

s + δ + β
ρ(A) (7.18)

From this proposition, the same analysis than in the independent transmission events
case can be derived, and the critical time for the SIR model is

Tc ≥ liminf
n→+∞

lnn

2(δ + β)(ln(1 + β
δ )ρ(A)− 1)

. (7.19)
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Proposition 7.3. Consider the SIR model with transmission rate β, recovery rate δ and ad-

jacency matrix An. Assume liminfn→+∞ ln(1 + β
δ )ρ(An) > 1, and the sequence (Tn)n∈N

is such that

limsup
n→+∞

2(δ + β)(ln(1 + β
δ )ρ(An)− 1)Tn

lnn
< 1. (7.20)

Then,

σI (Tn) = o(n). (7.21)

This is a direct consequence of Corollary 7.4 and ρ−1(1) = (δ+ β)(ln(1+ β
δ )ρ(An)−

1). The SI model is a simpler model in which individuals of the network remain infected
and contagious through time (i.e. δ = 0). Thus, the network is totally infected at the end
of the contagion and limn→+∞ σI (T) = n. For this reason, the previous critical time for
the more general SIR model is of no use here, and a more precise analysis is required.
Following the remark of Sec. 7.3.1, we can integrate pij on [0, T] instead of R+, which
leads to the following result:

Proposition 7.4. Consider the SI model with transmission rate β and adjacency matrixAn.

Assume liminfn→+∞ ρ(An) > 0 and the sequence (Tn)n∈N is such that

limsup
n→+∞

βTn√
lnn

2ρ(An)
(1− e−

√
lnn

2ρ(An) )

< 1. (7.22)

Then,

σI (Tn) = o(n). (7.23)

In other words, the critical time for the SI model is lower bounded by

Tc ≥ liminf
n→+∞

1
β

√
lnn

2ρ(An)
(1− e−

√
lnn

2ρ(An) ). (7.24)

If ρ(An) = o(lnn) (e.g. for sparse networks with a maximum degree in O(1)), the critical
time resumes to Tc ≥ liminfn→+∞

1
β

√
lnn

2ρ(An)
. However, when the graph is denser and

ρ(An)/lnn→ +∞, then Tc ≥ liminfn→+∞
lnn

2βρ(An)
.

7.4.4 Discrete-time Information Cascade

A �nal example is the discrete-time contagion (see Model 5.11) in which a node infected
at time t makes a unique attempt to infect its neighbors at a time t + T0. This de�nes the
Information Cascade model, the discrete-time di�usion model studied by the �rst works on
in�uence maximization by Kempe et al. (2003), Leskovec et al. (2007) and Chen et al. (2009,
2010). In this setting, pij(t) = αijδT0(t) where δT0 is the Dirac distribution centered at T0.
The spectral radii are given by

ρ(s) = ραe−sT0 , (7.25)

and the in�uence bound of Corollary 7.1 simpli�es to:
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(d) T = 100

Figure 7.1: Empirical maximum in�uence w.r.t. the spectral radius ρα de�ned in Sec. 7.4.2
for various network types. Simulation parameters: n = 1000, n0 = 1 and λ = 1.

Corollary 7.6. Let ρα ≥ 1, or else T ≤ T0
2(1−ρα)

. If T < T0, then σI (T) = n0. Otherwise,

σI (T) ≤ n0 +
√

n0(n− n0)

√
2eT
T0

ρ
T
T0
α . (7.26)

Moreover, the critical time is lower bounded by

Tc ≥ liminf
n→+∞

lnn
2lnρα

T0. (7.27)

A notable di�erence from the exponential transmission probabilities is that Tc is here
inversely proportional to lnρα, instead of ρα in Eq. 7.4.2, which implies that, for the same
long-term in�uence, a discrete-time contagion will explode much slower than one with a
constant infection rate. This is probably due to the existence of very small infection times
for contagions with exponential transmission probabilities.

7.5 Experimental results

This section provides an experimental validation of our bounds, by comparing them to
the empirical in�uence simulated on several network types. In all our experiments, we
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simulate a contagion with exponential transmission probabilities (see Sec. 7.4.2) on net-
works of size n = 1000 and generated random networks of 5 di�erent types (for more
information on the respective random generators, see the introductory book written by
Newman (2010)): Erdös-Rényi networks, preferential attachment networks, small-world
networks, geometric random networks (Penrose, 2003) and totally connected networks
with �xed weight b ∈ [0,1] except for the ingoing and outgoing edges of a single node
having, respectively, weight 0 and a > b. The reason for simulating on such totally con-
nected networks is that the in�uence over these networks tend to match our upper bounds
more closely, and plays the role of a best case scenario. More precisely, the transmission
probabilities are of the form pij(t) = αe−t for each edge (i, j) ∈ E , where α ∈ [0,1[ (and
λ = 1 in the formulas of Sec. 7.4.2).

We �rst investigate the tightness of the upper bound on the maximum in�uence given
in Proposition 7.1. Fig. 7.1 presents the empirical in�uence w.r.t. ρα = − ln(1− α)ρ(A)
(where A is the adjacency matrix of the network) for a large set of network types, as well
as the upper bound in Proposition 7.1. Each point in the �gure corresponds to the maxi-
mum in�uence on one network. The in�uence was averaged over 100 cascade simulations,
and the best in�uencer (i.e. whose in�uence was maximal) was found by performing an
exhaustive search. Our bounds are tight for all values of T ∈ {0.1,1,5,100} for totally con-
nected networks in the sub-critical regime (ρα < 1). For the super-critical regime (ρα > 1),
the behavior in T is very instructive. For T ∈ {0.1,5,100}, we are tight for most network
types when ρα is high. For T = 1 (the average transmission time for the (τij)(i,j)∈E ), the
maximum in�uence varies a lot across di�erent graphs. This follows the intuition that this
is one of the times where, for a given �nal number of infected node, the local structure of
the networks will play the largest role through precise temporal evolution of the infection.
Because ρα explains quite well the �nal size of the infection, this discrepancy appears on
our graphs at ρα �xed. While our bound does not seem tight for this particular time, the
order of magnitude of the explosion time is retrieved and our bounds are close to optimal
values as soon as T = 5.

In order to further validate that our bounds give meaningful insights on the critical
time of explosion for super-critical graphs, Fig. 7.2 presents the empirical in�uence with
respect to the size of the network n for di�erent network types and values of T, with
ρα �xed to ρα = 4. In this setting, the critical time of Corollary 7.4 is given by Tc∗ =

lnn
2(ρα−1)λ . We see that our bounds are tight for totally connected networks for all values
of T ∈ {0.2,2,5}. Moreover, the accuracy of critical time estimation is proved by the
drastic change of behavior around T = Tc∗, with phase transitions having occurred for
most network types as soon as T = 5Tc∗.

7.6 Proofs

7.6.1 Proof for the de�nition of critical time

Proof of Theorem 7.1. Let S = {T ∈ R+ | σn(T) = o(n)}. S is an interval containing 0
since σn(0) = 0 and, if T ∈ S, then ∀T′ ≤ T, σn(T′) ≤ σn(T) and T′ ∈ S. Thus S is of the
form [0, Tc[ or [0, Tc], and let Tc = supS (where Tc ∈R∪ {+∞}). For all time sequences
(Tn)n∈N such that limsupn→+∞ Tn < Tc, ∃T < Tc and n′ ≥ 0 s.t. , ∀n ≥ n′, Tn ≤ T.
Hence, by de�nition of Tc, σn(Tn) ≤ σn(T) = o(n). Conversely, if liminfn→+∞ Tn > Tc,
then ∃T > Tc and n′ ≥ 0 s.t. , ∀n ≥ n′, Tn ≥ T. Hence limsupn σn(Tn) ≥ limsupn σn(T)
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Figure 7.2: Empirical maximum in�uence w.r.t. the network size for various network types.
Simulation parameters: n0 = 1, λ = 1 and ρα = 4. In such a setting, Tc∗ = lnn

2(ρα−1)λ . Note
the sub-linear (a) versus linear behavior (b and c).

> 0. Now let Tc ′ verify the two constraints of Theorem 7.1. The �rst constraint im-
plies that ∀T < Tc ′, T ∈ S and T ≤ Tc, which leads to Tc ′ ≤ Tc. Moreover, ∀T > Tc ′,
limsupn σn(T) > 0, hence T < S and T ≥ Tc using the second constraint. As a result,
Tc ′ = Tc and the critical time is unique.

7.6.2 Proofs of the upper bounds on in�uence

Let X(t) ∈ {0,1}n be the state vector of a continuous-time information cascade at time t.
Proposition 5.2 implies the following equation: ∀t > 0 and i < I ,

Xi(t) = 1−∏
j∈V

(
1− 1{τj + τji < t}

)
, (7.28)

where τi ∈R+ ∪ {+∞} is the infection time of node i, Tij ∈R+ ∪ {+∞} is the transmis-
sion time from node i to node j, and I is a set of in�uencers. We now develop the proofs
for Proposition 7.1 and Corollary 7.1, which rely on upper bounding the Laplace transform
of σI (T).

Lemma 7.1. De�ne ρ(s) = ρ(L(s)+L(s)
>

2 ). Then, for any I such that |I| = n0 < n, de-
noting by σ̂I (s) =

∫ +∞
0 σI (t)e−stdt the Laplace transform of the expected number of nodes

reached by the cascade starting from I at time T:

sσ̂I (s) ≤ n0 + γ1

(
ρ(s),

n0

n− n0

)
(n− n0), (7.29)

where γ1(ρ, a) is de�ned as in Theorem 6.1.

This result requires two intermediate lemmas: Lemma 7.2, that proves for i ∈ V and
t > 0 a positive correlation between the events ’node j did not infect node i before time t’
and Lemma 7.4, that bounds the probability that a given node gets infected before t.

Lemma 7.2. ∀i < I and t > 0, {1− 1{τj + τji < t}}j∈V are positively correlated.

Proof. Denoting by QI ,i the collection of directed paths in G from the in�uencers I to
node i, we get the following expression for variables (τi)i∈V (Du et al., 2013a):

τi = min
q∈QI ,i

∑
(j,l)∈q

τjl (7.30)
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Therefore, for all i < I and t > 0, the functions fij(τkl)(k,l)∈E = {1− 1{τj + τji < t}}j∈V
are increasing with the partial order on (τkl)(k,l)∈E . We will then make use of the FKG
inequality (Fortuin et al., 1971) :

Lemma 7.3. (FKG inequality) Let L be a �nite distributive lattice, and µ a nonnegative

function on L, such that, for any (x,y) ∈ L2
,

µ(x ∨ y)µ(x ∧ y) ≤ µ(x)µ(y) (7.31)

Then, for any non-decreasing function f and g on L(
∑
x∈L

f (x)g(x)

)(
∑
x∈L

µ(x)

)
≥
(

∑
x∈L

f (x)µ(x)

)(
∑
x∈L

g(x)µ(x)

)
(7.32)

Due to the independence of (τkl)(k,l)∈E , the condition in Lemma 7.3 is met by their
joint distribution, which is a product measure on the product space RE . Lemma 7.2 is then
obtained by applying Lemma 7.3 to any couple of functions ( fij, fik)(i,j)∈E ,(i,k)∈E . More
speci�cally, in our problem setting, L is the set of all (τkl)(k,l)∈E , µ(x) = ∏(k,l)∈E P(τkl =
tkl) is the joint probability distribution of the τkl when x = (tkl)(k,l)∈E .

We then show the following lemma that reveals an implicit inequality satis�ed by the
infection probabilities E[Xi(t)].

Lemma 7.4. For all (i, j) ∈ V2
, let pij be an integrable function such that

∫ +∞
0 pij(t)dt < 1.

For any I such that |I| = n0 < n and for any i < I , the probability E[Xi(t)] that node i
will be reached by the contagion originating from I veri�es:

E[Xi(t)] ≤ 1− exp
(
−∑

j
(Hji ∗E[Xj])(t)

)
, (7.33)

where ( f ∗ g)(t) =
∫

f (s)g(t− s)ds stands for the convolution of f with g and Hji(t) =
− ln(1−

∫ +∞
0 pji(s)ds)∫ +∞

0 pji(s)ds
pji(t).

Proof. Eq. 7.28 and the positive correlation of {1− 1{τj + τji < t}}j∈{1,...,N} (Lemma 7.2)
imply that

E[Xi(t)] = 1−E[∏
j
(1− 1{τj + τji < t})] ≤ 1−∏

j
E[1− 1{τj + τji < t}] (7.34)

which leads to

E[Xi(t)] ≤ 1−∏j
(
1−E[1{τj + τji < t}]

)
= 1−∏j

(
1−E[E[Xj(t− τji)|τji]]

)
,

= 1−∏j

(
1−

∫ +∞
0 E[Xj(s)]pji(t− s)ds

)
,

(7.35)

since ∀i, j ∈ V , τj and τji are independent and pji is the probability density of τji. Note
that, in our setting, we consider that in�uencer nodes are infected at time 0, and thus are
not infectious before t = 0. We then linearize the product in Eq. 7.35:
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E[Xi(t)] ≤ 1− exp
(

∑j ln(1−
∫ +∞

0 E[Xj(s)]pji(t− s)ds)
)

≤ 1− exp
(

∑j
ln(1−

∫ +∞
0 pji(s)ds)∫ +∞

0 pji(s)ds

∫ +∞
0 E[Xj(s)]pji(t− s)ds

)
= 1− exp

(
−∑j(Hji ∗E[Xj])(t)

)
,

(7.36)

since we have on the one hand, for any x ∈ [0,1] and a < 1, ln(1− ax) ≥ ln(1− a)x

(in Eq. 7.36, we chose a =
∫ +∞

0 pji(s)ds and x =
∫ +∞

0 E[Xj(s)]pji(t−s)ds∫ +∞
0 pji(s)ds

), and on the other

hand Hji(t) =
− ln(1−

∫ +∞
0 pji(s)ds)∫ +∞

0 pji(s)ds
pji(t) by de�nition of H. Note that − ln(1−

∫ +∞
0 pji(s)ds)∫ +∞

0 pji(s)ds
is

approximately 1 when
∫ +∞

0 pji(s)ds is close to 0.

Proof of Lemma 7.1. Let fi(s) =
∫ +∞

0 E[Xi(t)]se−stdt, then, using Jensen’s inequality, ∀i <
I and s ≥ 0,

fi(s) ≤ 1− exp
(
−∑

j
Lji(s) f j(s)

)
, (7.37)

where Lji(s) =
∫ +∞

0 Hji(t)e−stdt is the Laplace transform of Hji. Note also that ∀i ∈
I , fi(s) = 1. We are thus is the same scenario as Lemma 6.9 of the previous chapter, and
the proof of Theorem 6.1 is directly applicable by substituting fi(s) to E[Xi] and Lji(s) to
Hji. This leads to the desired result since ∑i fi(s) = sσ̂I (s).

Using Lemma 7.1, we may now prove Proposition 7.1:

Proof of Proposition 7.1. ∀s ≥ 0, T ≥ 0 and t ≥ 0, e−st ≥ e−sT1{t<T}, and using Lemma 7.1,
sσ̂I (s) = ∑i E[e−sτi ] ≥ n0 + (σI (T)− n0)e−sT which leads to the desired inequality.

7.6.3 Proofs of the upper bounds on critical time

Proof of Corollary 7.2. Since e−st is decreasing w.r.t. s, Lij(s) is decreasing. Thus, the
Perron-Frobenius theorem implies that ρ(s) is decreasing. When ρ(0) ≥ 1, ρ−1(1− ε)
exists and is uniquely de�ned, and using Corollary 7.1 and Proposition 7.1, σI (T) ≤
n0 + (n − n0)γ(ρ−1(1 − ε))eρ−1(1−ε)T ≤ n0 +

√
n0(n−n0)

ε eρ−1(1−ε)T . Eq. 7.6 is a direct
consequence of the critical bound in Corollary 6.1.

Proof of Corollary 7.4. If limsupn→+∞
2ρ−1(1)Tn

lnn < 1, then ∃α > 0 and n′ ≥ 0 s.t. ∀n ≥ n′,
ρ−1(1)Tn ≤ (1−α) lnn

2 . Furthermore, limn→+∞
ρ−1(1− 1

lnn )

ρ−1(1) = 1, thus ∃n′′ ≥ n′ s.t. ∀n ≥
n′′, ρ−1(1 − 1

lnn ) ≤
1−α/2

1−α ρ−1(1). Using Corollary 7.2 with ε = 1
lnn , σI (T) ≤ 1 +√

lnn(n− 1)eρ−1(1− 1
lnn )T ≤ 1 +

√
lnnn1−α/4 = o(n).

7.6.4 Proofs for the particular contagion models

Proof of Corollary 7.5. Taking ρ(s) = λ
λ+s ρα, Corollary 7.1 rewrites

σI (T) ≤ n0 +
√

n0(n− n0)min
s≥0

(√
λ

s + λ(1− ρα)
esT

)
. (7.38)
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The function f (s) =
√

λ
s+λ(1−ρα)

esT admits a unique minimum in smin =
1

2T + λ(ρα− 1).
The minimum for s ≥ 0 is therefore met for s = smin if λT(1 − ρα) < 1

2 and s = 0
otherwise. The results follow immediately.

Proof of Proposition 7.2. In order to prove Proposition 7.2, it is su�cient to show that Lemma 7.4
still holds for the SIR model, with pij(t) = βexp(−(δ+ β)t) for (i, j) ∈ E . With the nota-
tions of Proposition 5.1 andQG

I ,i the collection of directed paths in G from the in�uencers
I to node i:

τi = min
q∈QG

I ,i

∑
(j,k)∈q

Tjk1{Tjk < Dj}+ (+∞)1{Tjk ≥ Dj} (7.39)

Therefore ∀i < I and t > 0, the functions fij(T, D) = {1 − 1{τj + Tji < t}1{Tji <

Dj}}j∈V are increasing with respect to the partial order on RE × RV de�ned for any
X1 = (T1, D1), X2 = (T2, D2) ∈RE ×RV by:

X1 ≥ X2 ⇐⇒
{

T1
ij ≥ T2

ij for any (i, j) ∈ E
D1

i ≤ D2
i for any i ∈ V

. (7.40)

Variables (Tij)(i,j)∈E and (Di)i∈V being independent, we can still apply FKG inequality
(Lemma 7.3) and deduce the positive correlation, for any i < I and t > 0, of the random
variables {1− 1{τj + Tji < t}1{Tji < Dj}}j∈V . We then introduce, for any (i, j) ∈ E :

Tji =

{
Tji if Tji < Dj

+∞ if Tji ≥ Dj
. (7.41)

It is straightforward that each Tji is a random variable over R+ ∪ {+∞} with probability
distribution pij, and that Tji is independent of τj. We also have, for any i < I , t > 0 and
(i, j) ∈ E :

{1− 1{τj + Tji < t}1{Tji < Dj}} = {1− 1{τj + Tji < t}}, (7.42)

and Lemma 7.4 for the SIR case (and therefore Proposition 7.2 and its subsequent corollar-
ies) are then proved from following the same steps than in the independent transmission
events case, except replacing (Tji)(i,j)∈E by (Tji)(i,j)∈E .

Proof of Proposition 7.4. ρ(s) = βTn
1−e−βTn

β
β+s (1− e−(β+s)Tn)ρ(A) ≤ β2Tnρ(A)

(1−e−βTn )s , which im-

plies ρ−1(1)Tn ≤ (βTn)2ρ(A)
1−e−βTn . Let f (x) = x2

1−e−x , f is increasing and ∀a ≥ 0, f (x) =

a =⇒ x ≥
√

a(1− e−
√

a). Hence, if limsupn→+∞
βTn√

lnn
2ρ(An)

(1−e
−
√

lnn
2ρ(An) )

< 1, then ∃α > 0

s.t. βTn ≤ (1 − α)
√

lnn
2ρ(An)

(1 − e−
√

lnn
2ρ(An) ), and the concavity of 1 − e−x implies that

βTn ≤
√

(1−α) lnn
2ρ(An)

(1− e−
√

(1−α) lnn
2ρ(An) ). Finally, f (βTn) ≤ (1−α) lnn

2ρ(An)
and 2ρ−1(1)Tn

lnn ≤ 1− α.
Applying Corollary 7.4 proves the desired result.

Proof of Corollary 7.6. Taking ρ(s) = ραe−sT0 , Corollary 7.1 rewrites

σI (T) ≤ n0 +
√

n0(n− n0)min
s≥0

(√
ραe−sT0

1− ραe−sT0
esT

)
. (7.43)
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and s = 1
T0

(
lnρα − ln(1− T0

2T )
)

gives

σI (T) ≤ n0 +
√

n0(n− n0)

√
2T
T0
− 1

(
ρα

1− T0
2T

) T
T0

. (7.44)

The �nal result follows by upper bounding
(

1− T0
2T

) 1
2−

T
T0 by

√
e due to the monotonic

increase of x→ (x− 1) ln(1− 1
x ) on [1,+∞[ and its limit when x→ +∞.
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8
Dynamic control of SIS epidemics

“The work of epidemiology is related to

unanswered questions, but also to

unquestioned answers.”

— Patricia Bu�er
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8.1 Introduction

This chapter investigates the control of a di�usion process by utilizing real-time infor-
mation. More speci�cally, we allow the network administrator to adjust the allocation of
control resources, a set of treatments that increase the recovery rate of infected nodes,
according to the evolution of the di�usion process.

8.1.1 Related work

The control of di�usion processes has been studied in various �elds in the past, including
epidemiology and computer networks resilience. The respective literature can generally
be divided in three complementary lines of research, the third of which is the line where
our work lays:

a) Static vaccination strategies. Most of the epidemic literature focuses on static control
actions such as permanently removing a set of edges or nodes of the network (Cohen
et al., 2003; Tong et al., 2012; Wang et al., 2003; Schneider et al., 2011; Preciado et al.,
2013a). In this case, the available budget is considered �xed, and the e�ect of a
control action permanent (Preciado et al., 2013b; Chung et al., 2009).

b) Budget optimization. Complementary to resource allocation, the determination of
the budget size to be spent at each time step, which aims to ful�ll cost and e�ciency
constraints, is critical for the resulting strategy. Several such studies assume that
the network administrator is capable of storing resources for later use (Klepac et al.,
2012; Forster and Gilligan, 2007; Khouzani et al., 2011). Also, a usual simplifying
assumption is the uniform mixing, i.e. the infected nodes are uniformly scattered in
the network. Therefore, these studies do not address the problem of how exactly to
allocate the resources on the nodes of the network, but rather estimate the budget
size that can cause a desired macroscopic result.

c) Dynamic resource allocation. A few studies consider dynamic strategies for allocating
resources for dealing with epidemics. One of the most well-known such strategy is
contact-tracing (Borgs et al., 2010) that consists in healing the neighbors of infected
nodes. In practice, this approach was shown ine�cient in containing an epidemic,
especially when it is beyond a very initial state. In the de�nition of e�cient strate-
gies, among many graph features, the role of the cutwidth has already been under-
lined by Drakopoulos et al. (2014a,b) and Scaman et al. (2014b) independently. In
Chap. 9, we further explore the power of this particular concept to analyze and con-
trol epidemics in a large variety of contexts from the viewpoint of the di�usion and
the resource allocation process.

8.1.2 Outline

This chapter is organized as follows: Sec. 8.2 presents the model of controlled epidemic
used in this chapter, while Sec. 8.3 describes several quality metrics for control actions
aiming at reducing the spread of an epidemic. In Sec. 8.4, we de�ne a new class of DRA
strategies based on scoring the nodes of a network, and then propose the Largest Reduction
in Infectious Edges (LRIE) control strategy which is based on a greedy minimization of the
cost associated to the undesired di�usion, and has the bene�ts of being e�cient and easy
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to implement. Finally, Sec. 8.5 provides a comparison between several DRA strategies, and
show that the LRIE strategy substantially outperforms its competitors in a wide range of
scenarios. This is an extended version of the paper (Scaman et al., 2015a) in collaboration
with Argyris Kalogeratos and Nicolas Vayatis.

8.2 Epidemic and control model

We consider the standard Susceptible-Infected-Susceptible (SIS) model (see Model 5.10),
and model the control action using local and expensive treatments. These treatments will
be distributed in the network in order to reduce the epidemic under prede�ned cost con-
straints. Among other application examples, controlling epidemics using antidotes, lim-
iting rumors via targeted action, or allocating resources geographically to �ght against a
societal problem, seem valid scenarios for such a di�usion and control model. We now
introduce the setup formally and recall the SIS model.

8.2.1 Notations

Let G=(V ,E) be a network of N = |V| nodes with adjacency matrix A, where Aij =1
if i, j and edge (i, j)∈E , else Aij =0. Let also 0 and 1 be vectors of size N that are,
respectively, all-zeros and all-ones, and 1{·} be the indicator function.

8.2.2 Epidemic model

A state vector X(t)∈RN represents the state of the di�usion process via the nodes’ in-
fection states: for each node i∈{1, ..., N}, Xi(t)=1 if node i is infected at time t, else
Xi(t)=0. We assume no incubation period, therefore, a node becomes contagious upon
infection. Let the control action be represented as a resource allocation vector ρ(t), where
ρi(t)>0 i� a resource is being given to node i at time t. In such a case, we say that node i
is being healed by the resource. Following the formalism of Ganesh et al. (2005), we model
an epidemic under a control action as a stochastic process:

Model 8.1 (SIS epidemic under control action). Consider ρ(t) a vector-valued stochas-
tic process on RN

+ . The state vector X(t) of an epidemic under the control action ρ(t) is a
stochastic process on {0,1}N

evolving with the following transition rates:

Xi(t) : 0→ 1 at rate β ∑j AjiXj(t);

Xi(t) : 1→ 0 at rate δ + ρi(t),
(8.1)

where β is the transmission rate over an edge, and δ is the self-recovery rate, both being

essential characteristics of the infection.

Dimensionless parameters. We de�ne two dimensionless parameters: r= β
δ the e�ective

spreading rate of the DP, and e= ρ
δ the treatment e�ciency.

8.2.3 Control model

We consider dynamic resource allocation (DRA) strategies that take as input the network
G , the SIS di�usion characteristics β and δ, the current and past network states X(t′≤ t),
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and return the distribution of the treatment resources ρ(t) (Eq. 8.1). In other words, a DRA
strategy uses the information available up to time t in order to determine a control action
ρ(t). This constraint is made formal in the following de�nition.

De�nition 8.1 (DRA strategy). A dynamic resource allocation strategy ρ(t) is a stochastic
process that is adapted to the natural �ltration associated to X(t).

Note that, if ρ(t) only depends on the current state of the network X(t), then X(t) is a
Markov process. We will see in Sec. 9.2.1 that priority planning is a class of such strategies,
that allow us to limit the analysis to the simpler case of continuous-time Markov processes.
In addition to this constraint, we also introduce a resource budget limitation on the amount
of resource available for distribution at each time instance, and a resource accumulation

limitation regarding the amount of resource that can be allocated on a single node.

De�nition 8.2 (Control action under resource budget). Let r : R+→R+ be a time-

dependent resource budget such that r(t) accounts for the available resources budget at time t,
and ρ∗≥0 be a �xed resource threshold limiting the amount of resource that can be allocated

on a single node. A control action ρ(t) under limited budget r(t) and resource threshold ρ∗

is a DRA strategy such that: ∀t ≥ 0,

‖ρ(t)‖1 = ∑
i∈V

ρi(t) ≤ r(t) and ‖ρ(t)‖∞ = max
i∈V

ρi(t) ≤ ρ∗.

Example 8.1 (Timewise constant budget). Set r > 0. Here we assume that: r(t)= r,
∀t.

Example 8.2 (Finite budget). This case corresponds to a resource budget pro�le which
is a positive Lebesgue integrable function s.t.

∫ ∞
0 r(t) dt < ∞.

Example 8.3 (Fixed number of treatments). With the additional constraints that

||ρ(t)||0= ∑
i

1{ρi(t)>0}≤q(t)

and that ∀i,ρi(t)∈{0,rt}, we may consider a setting in which a number q(t) of treatments
of resource e�ciency rt are administrated to infected nodes at time t. This control action
corresponds to the resource budgets r(t)=q(t)rt and ρ∗= rt.

Assumption 8.1 (Constant resource budget). Throughout the rest of this chapter, we
focus on the constant resource budget setting r(t)= r (Example 8.1). However, the strate-
gies developed hereafter can also be applied to the case of lower bounded varying resource
budget r(t)≥ r by simply considering r instead of r(t).

8.3 Quality metrics for the control action

The purpose of a DRA strategy is to minimize a di�usion process using the available re-
source budget and current information on the epidemic. This minimization is usually per-
formed using a cost function (either due to infected people needing extra medical treat-
ments, the cost of the control action, or the negative impact of the epidemic on a pop-
ulation). Hence, an e�cient DRA strategy is a strategy that is able to lower the desired
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cost function signi�cantly and consistently (i.e. with high probability). Several quality met-
rics exist in the literature, which usually capture the characteristics of the in�uence, i.e.
the number of infected nodes during the epidemic. We here mention the major quality
metrics and their precise de�nition.

8.3.1 Extinction time

The extinction time, i.e. the time needed to suppress the epidemic, describes the speed of
convergence to a healthy network (see Ganesh et al. (2005)).

De�nition 8.3 (Extinction time). For a di�usion process X(t) under control action with

initial state X(0) = x, the extinction time of the di�usion process is the random quantity

de�ned as:

τx = min{t∈R+|X(0)= x, X(t)=0} .

The extinction time depends on the chosen DRA strategy, and the main quality mea-
sure that we will consider for priority planning (see Chap. 9) is its expectation E[τx]. Note
that this expectation is never in�nite, and may present sub-critical (respectively super-
critical) behavior (Ganesh et al., 2005), in the sense that E[τx] may be upper bounded
by a polynomial function (respectively lower bounded by an exponential function) of the
network size N. In the sub-critical regime, we say that the DRA strategy removes the epi-
demic in reasonable time, and that, in the super-critical regime, the DRA strategy is not
su�ciently e�cient to remove the epidemic in reasonable time.

8.3.2 Cumulative costs

Cumulative quality metrics represent the overall cost of an epidemic by penalizing high
values of the in�uence through time (see Forster and Gilligan (2007)):

Cγ =
∫ +∞

t=0 e−γt ∑i Xi(t)dt, (8.2)

where γ≥0 is a parameter that reduces the impact of the long-term behavior of the num-
ber of infected nodes. These quality metrics describe how many nodes were infected dur-
ing the whole process, with an emphasis on short-term e�ects if γ is high. The expecta-
tion E[Cγ], which can be rewritten as the Laplace transform of the in�uence (see De�ni-
tion 5.10), will be the main quality metric considered for the LRIE strategy (see Sec. 8.4.3).
Note that, when the behavior of the epidemic is super-critical, these quality metrics are
extremely large (exponential in the number of nodes), and thus non-informative. In such
a case, one might prefer the stable infection state metric de�ned below.

8.3.3 Area Under the Curve (AUC)

This is a special case of cumulative metrics with γ=0 representing the overall cost of an
epidemic. However, AUC uses equal temporal weighting for short- and long-term behav-
ior, thus gives the total number of infected nodes during the DP.
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8.3.4 Stable infection state

For a particularly aggressive DP, the epidemic becomes super-critical and the number of
infected nodes ∑i Xi(t) converges, for a reasonably large time period, to a stable non-zero
value. Of course, this is not a true stationary value since, as explained above, limt→+∞

∑i Xi(t)=0. However, in the case of a super-critical DP, this convergence happens after
an exponentially long time period (Ganesh et al., 2005), while the DP reaches a non-zero
stable state in reasonable time. The stable infection state is thus de�ned as

N∞ = ∑
i

Xi(T∞), (8.3)

for a su�ciently large T∞ value (see e.g. Cohen et al. (2003)). In practice, such a quantity
is computed by waiting for the in�uence to reach a stationary value. This can be achieved
using a simple statistical test for stationarity.

8.4 DRA Control Strategies

In this section, we present simple strategies for the dynamic resource allocation problem,
a greedy optimal strategy called LRIE, and discuss the feasibility of optimal strategies in
the context of large networks. See Chap. 9 for the more advanced control strategies called
priority planning.

8.4.1 Intractability of optimal strategies

In theory, optimal strategies can be found using the framework of Markov decision pro-
cesses (MDP) and optimal control. However, such approaches are computationally in-
tractable due to the very large state space: 2N states for a network of N nodes. A basic
MDP approach would require to store a parameter for each element of the state space,
which would be prohibitive in practice for even a network of 50 nodes. For this reason,
we investigate other strategies and, speci�cally, a greedy heuristic for solving the DRA
problem presented in Sec. 8.4.3.

8.4.2 Score-based strategies

A wide class of strategies can be described in terms of a scoring function S that takes
as input the current infection state X(t) and returns a priority order for the nodes of the
network. More speci�cally, we de�ne a strategy based on score S as a selection of the d r

ρ∗ e
top ranked nodes according to S(X(t)):

ρi(t) =


ρ∗ if Si(X(t)) > θ(t);

r− ρ∗b r
ρ∗ c if Si(X(t)) = θ(t);

0 otherwise,
(8.4)

where θ(t) is a threshold value, set so that the distributed resources do not exceed the
budget, i.e. ∑i ρi(t)= r. Note that, while the above formulation is quite general, simple
scoring functions that rank the nodes based on their local properties are not well-suited
for planning coordinated actions, e.g. taking advantage of the position of other treatments
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Algorithm 1 Applying a score-based DRA strategy
Input: infection state vector X(t), budget size r, e�ciency limit ρ∗,

scoring function S.
Output: the resource allocation vector ρ(t).
if ∑i Xi(t) < d r

ρ∗ e then
return X(t)

end if
Let ρ(t) a zero N-dimensional vector
Let V←{Si(X(t))}N

i=1 a vector containing the node scores
Sort the elements of V in descending order

and let I the node indexes of the ranking
for i = 1 to d r

ρ∗ e do
ρI(i)(t)← ρ∗

end for
return ρ(t)

a
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Figure 8.1: Example network with healthy (white) and infected (red) nodes. Dashed edges
denote infectious edges on which the disease might spread.

when deciding where to allocate the current one. In the rest of the text, we will refer to the
strategies that use scoring functions that are independent of the current state X(t) as static
strategies; they will form a baseline to assess the signi�cance of real-time information for
the DRA problem.

Alg. 1 presents a simple pseudocode for applying a score-based strategy. In general,
its complexity is O(E+N log N) due to the sorting of N score values, where E is the
number of edges and N the number of nodes of the network. However, when the scoring
function depends on local properties of the network and DP, the computational cost can
be drastically reduced by partially updating the previous calculated node ranking, since
only one node can change state at a time and only the scores of its neighboring nodes
need to be updated. Any type of node attribute, or measurement associated to each node
individually, can potentially be used to de�ne a scoring function S. Sec. 8.5.2, along with
Tab. 8.1, presents simple scoring functions compared in the experimental section of this
chapter.

Fig. 8.1 shows the infection state of a network. Node h is the most connected, d has the
highest di�usion rate (three healthy neighbors), e and h are the least and most probable
to get reinfected if they recover. Scores that would give emphasis to properties like node
centrality or degree, would tend to assign the highest priority to node h, while a strategy
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focusing on the most di�usive nodes would prefer to give a higher priority to node d.

8.4.3 LRIE – A greedy approach to DRA

Optimization problem

In order to suppress a di�usion process as quickly and e�ciently as possible, we consider
the minimization of the cumulative cost (see Sec. 8.3 for a discussion on the quality met-
rics):

minρ E[Cγ(X0,ρ)] =
∫ +∞

t=0 e−γtσX0,ρ(t)dt, (8.5)

where σX0,ρ(t) = E[∑i Xi(t) | X(0) = X0] is the in�uence under a valid DRA strategy ρ
(see Sec. 8.2) and initial state vector X0, and γ≥0 is a parameter that reduces the impact
of the long-term behavior of the in�uence. Since the process is Markovian, it is straight-
forward that such an optimal strategy also minimizes E[Cγ(X,ρ)] for all state vectors
X∈{0,1}N . In the following, we achieve this optimization by approximating the short-
term behavior of σX,ρ(t).

The LRIE solution

Using a second-order approximation of σX,ρ(t), we obtain the following approximation of
E[Cγ(X,ρ)]:

E[Cγ(X,ρ)] = 1
γ ∑i Xi + 1

γ2 σ′X,ρ(0)

+ 1
γ3 σ′′X,ρ(0) + O( 1

γ4 ),
(8.6)

The minimization of the �rst and second order derivatives can be achieved simultaneously,
and the resulting strategy, which we name Largest Reduction in Infectious Edges (LRIE),
selects infected nodes according to the following scoring function (Scaman et al., 2014a,
2015a):

SLRIE(X(t)) = A(1− X(t))− A>X(t)

=
[
∑j[Aij(1− Xj(t))− AjiXj(t)]

]N

i=1
,

(8.7)

where 1−X(t) is the vector indicating the healthy nodes, and 1 is the vector with ones
for all coordinates.

This value can be seen as the di�erence in the number of infectious edges (i.e. edges
that can transmit the disease from an infected to a healthy node) after healing a speci�c
node. For the situation of Fig. 8.1, �ve infectious edges would be added if node h was
healed. Respectively, one infectious edge would be added if node d was healed, while, if the
infection was removed from node e, then the number of such edges would decrease by two.
In essence, minimizing the number of infectious edges reduces the scattering of the infection
across the network. Consequently, a smaller front is created separating the healthy region
from the infected nodes, and enables better control over the DP. The pseudocode of Alg. 1
can be used for applying the LRIE strategy.

Note that, in theory, the method is also applicable to higher-order approximations of
E[Cγ(X,ρ)]. However, the mathematical complexity of the derivation of even third-order
derivatives makes these improvements less practical, and better left to future investigation.
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Scalability of LRIE

Eq. 8.7 can be easily computed for the needs of Alg. 1 by updating the score vector of the
current state. When a node i changes state, only this node and its neighbors need an update
of their scores. Then, sorting the scores will only cost O(di log N), where di is the degree
of node i, provided the (N−di) other nodes are already sorted.

Technical details

We now provide the derivation of the SLRIE score by computing the �rst and the second
order derivatives of σX,ρ(t). From the formulation of Eq. 8.1, we derive the following for-
mulas:

d
dt E[Xi(t)] = −δE[Xi(t)]−E[Xi(t)ρi(t)] + β ∑j AjiE[(1− Xi(t))Xj(t)]. (8.8)

And, for two di�erent nodes i, j:

d
dt E[Xi(t)Xj(t)] = −2δE[Xi(t)Xj(t)]

−E[Xi(t)Xj(t)(ρi(t)+ρj(t))]

+β ∑k AkiE[(1− Xi(t))Xj(t)Xk(t)]

+β ∑k AkjE[Xi(t)(1− Xj(t))Xk(t)].

(8.9)

Using Eq. 8.8, we can write the derivative of σX,ρ(t) as:

σ′X,ρ(t) = −δσX,ρ(t)−E[X(t)>ρ(t)] + βE[X(t)>A(1− X(t))], (8.10)

and
σ′X,ρ(0) = −δ∑

i
Xi − X>ρ(0)− βX>A(1− X). (8.11)

Minimizing this derivative w.r.t. ρ(0) is thus equivalent to only selecting nodes which
are infected. In the following, we consider that Xi(t) = 0 ⇒ ρi(t) = 0 and ∑i ρi(t) =
min(r,ρ∗∑i Xi(t)) (i.e. ρ(t)minimizes σ′X(t),ρ(0)). Using Eq. 8.9 and 8.10, the second order
derivative of σX,ρ(t) can be written as:

σ′′X,ρ(t) = −δσ′X,ρ(t)− d
dt E[X(t)>ρ(t)] + β d

dt E[X(t)>A(1− X(t))]

= −βE[{A(1− X(t))−A>X(t)}>ρ(t)] + E[Ξ(X(t))],
(8.12)

where Ξ : {0,1}n→R is a function taking a state vector X as input and returning a value
(see Sec. 8.6 for the complete derivation) . We thus have:

σX,ρ(t)′′(0) = −β{A(1− X)− A>X}>ρ(0) + Ξ(X), (8.13)

and minimizing the second order approximation of E[Cγ(X,ρ)] is equivalent to select-
ing infected nodes that maximize the following score: SLRIE,i = ∑j[Aij(1 − Xj(t)) −
AjiXj(t)].
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8.4.4 MCM – an optimal priority planning strategy

The Maxcut minimization strategy is a strategy based on a novel analysis of a large class of
DRA strategies called priority planning. These strategies are similar to score-based strate-
gies except that their score is �xed and precomputed before the epidemic. While this
constraint may seem to lead to a substantial drop in e�ciency, we show in Chap. 9 that
these strategies achieve very good performances and are able to compete, and even out-
perform, more dynamic strategies that recompute the score at each instant in time. The
complete analysis of priority planning strategies is too large to provide here, and we refer
the reader to Chap. 9 for more details on these strategies. Also, since the whole purpose
of Chap. 9 is the presentation of the MCM strategy, experimental results for this strategy
will be provided in Sec. 9.5.

8.5 Experimental results

The DRA strategies were compared using simulations on various random and two real-
world networks. To measure the performance of a strategy on a network, 10 to 100 simu-
lations were performed, starting from the same �xed overall infection level of the network
(%), but with di�erent random initializations of the nodes’ infection state when infection
is less than 100%. In all cases we set δ=1. In order to conduct our simulations we de-
veloped a software package in Matlab that we made publicly available for research use at:
http://kalogeratos.com/material/lrie-dra/.

8.5.1 Quality assessment for DRA strategies

In literature, many quality metrics are available related to di�usion processes (DP). In our
experiments, we used the following metrics: time to extinction, Area Under the Curve
(AUC) and stable infection state (see Sec. 8.3 for precise de�nitions). Regarding the simu-
lation results, they are being illustrated using the following �gure types:

• Line plots represent, as solid lines, the expected number of infected nodes for each
strategy, and their surrounding area is the 95% con�dence interval under Gaussian
hypothesis1 (e.g. Fig. 8.2).

• Heat maps compare two strategies for a wide range of parameter values for the DP’s
e�ective spreading rate r and treatment e�ciency e (see Sec. 8.2.2). In these sim-
ulations, we consider a total infection at the initial stage. The color of each point
(e.g. Fig. 8.3) depicts the ratio R(r, e) of an employed quality metric on the perfor-
mance of two strategies, for a set of values (r, e). Here AUC is used as quality metric:∫ T∞

t=0∑i Xi(t)dt, where T∞ denotes a su�ciently long time period. Contrary to the
general AUC de�nition of the previous paragraph, here we stop the integration after
a relatively long simulation period T∞ in order to compare the quality of stable non-
zero behaviors as well. In this case, the ratio is equal to the ratio of stable infection
state metrics.

1For Ntests simulations, this is 2 σNtests√
Ntests

, where σNtests is the standard deviation of the measurements.
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Strategy Scoring function Si(X) for node i

RAND σ(Xi)+Ri, where Ri is i.i.d. uniform in [0, 1]
MN σ(Xi)+∑j Aij

PRC σ(Xi)+Pi, where Pi is the PageRank score for
node i

LRSR σ(Xi)+(λ1−λ
G\i
1 ), where λ1 is the largest eigen-

value of A, and λ
G\i
1 the largest eigenvalue of

the matrix AG\i for the network without node i

MSN σ(Xi)+∑j Aij(1− X)j

LIN σ(Xi)−∑j AjiXj

LRIE σ(Xi)+∑j[Aij(1− X)j−AjiXj], sums MSN and LIN

Table 8.1: Various derived DRA scoring functions. In all strategies, σ(1)=0 and
σ(0)= −∞. Also, recall that X(t) is the infection state vector and (1 − X(t)) is the
vector indicating the healthy nodes (see Sec. 8.4.3).

Technical details. In practice, the duration of the simulation plays a fundamental role in
the quality of our results due to the integral de�nition of AUC. If the behavior is convergent
to 0, then the simulation should run until convergence to the absorbent state. Otherwise,
∑i Xi(t) is stationary for relatively long time, and the simulation can be terminated when
stable behavior is reached. We used a statistical test to assess, with a 99% con�dence,
the non-zero value of the slope of ∑i Xi(t) under a linear regression assumption. When
the slope is su�ciently small, we consider ∑i Xi(t) to be stationary and we terminate the
simulation. In such a case, the AUC is approximately T∞N∞, where N∞ is the stable value
of the number of infected nodes.

8.5.2 Competing strategies

The proposed Largest Reduction in Infectious Edges (LRIE) method is compared to several
other heuristic scoring functions:

• Random (RAND): selects nodes uniformly at random, without replacement, among
infected nodes.

• Most Neighbors (MN): selects the infected nodes with the largest number of neigh-
bors.

• PageRank Centrality (PRC): selects the most central infected nodes according to
PageRank algorithm (Newman, 2010).

• Largest Reduction in Spectral Radius (LRSR): selects the infected nodes which lead to
the largest drop in the �rst eigenvalue of the adjacency matrix of the network.

• Most Susceptible Neighbors (MSN): selects the infected nodes with the most non-
infected neighbors.

• Least Infected Neighbors (LIN): selects the infected nodes with the lowest number of
infected neighbors.
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Tab. 8.1 provides the expressions to compute the scoring function that are experimentally
compared. MN, PRC, and LRSR come from the static vaccination literature, and we will
later refer to them as centrality-based strategies since they focus on nodes that are central
in the network topology.

MSN and LIN are intuitive heuristics based on the assumptions that a node with many
susceptible neighbors will spread the virus quickly, while a node with many infected neigh-
bors will get infected with high probability. Notably, MSN and LIN are complementary to
each other. Indirectly, the former focuses on ‘central’ nodes with large degree, while the
latter tends to target nodes at the network ‘periphery’. Thus, MSN and LIN capture di�er-
ent aspects of how critical a node is for the di�usion. The proposed LRIE strategy can also
be seen as a combination of MSN and LIN, since it essentially seeks for nodes which are
both di�usive for many healthy neighbors and, at the same time, safe in a mildly infected
neighborhood.

8.5.3 Experiments on simulated networks

We used two types of random networks: i) Erdös-Rényi networks (see Model 5.1, parameter:
the edge probability p), ii) scale-free networks generated by the Barabási-Albert preferential
attachment approach (see Model 5.2, parameter: the number of added edges with each node
m). We generated a di�erent network for each simulation using the same values for model
parameters).

Erdös-Rényi random networks

Fig. 8.2 presents simulation results on Erdös-Rényi networks with the same parametriza-
tion of the generator, while using di�erent parameter values for r, e, btot, and two di�erent
cases of initial infected population. In all simulations LRIE performs better than the com-
peting strategies. We observe two di�erent behaviors depending on the percentage of
initially infected population. If this is low (30% in Fig. 8.2(a)), then centrality-based strate-
gies (MN, PRC, LRSR) perform well and eliminate the DP. However, when this percentage
is large (100% in Fig. 8.2(b)) and the budget btot is low, only LRIE is able to eliminate
the DP. More importantly, MN, PRC, and LRSR seem counter-e�ective, as they present
worse results than the random strategy. The reason, in this case, is that central nodes
have many infected neighbors which makes them prone to quick reinfection. Fig. 8.2(c)
presents a scenario with only moderately e�ective treatments (e=5). Note that Fig. 8.2
presents worse case scenarios for centrality-based strategies, whereas they do not provide
insights whether those situations are usual or rare extreme cases.

In order to allow for more general observations, we present heat maps that compare
LRIE to LRSR (the best among the competitors of LRIE) for a range of parameter values.
Note that all the presented heat maps consider totally infected networks at the initial stage,
and display three characteristic regions: i) the lower-left region in which both strategies
are not able to eliminate the DP, ii) the middle blue region where LRIE eliminates the
DP but its competitor fails to do the same, and iii) the upper-right region in which both
strategies converge to ∑i Xi(t)=0.

Fig. 8.3(a) considers a range of realistic parameter values (a low treatment e�ciency,
and moderate budget of resources). We can see that LRIE is always more e�cient than
LRSR (i.e. ratio<1) and, in a large region of the space of parameter values, LRIE increases
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(a) r=2, e=4000, btot =10 (b) r=2, e=3000, btot =10

(c) r=0.2, e=5, and btot =200

Figure 8.2: Results for Erdös-Rényi networks: N=104 nodes, p=0.001.

the relative quality of DP control by 10% or more. Also, there is a thin line where the ratio
decreases to 0 indicating that LRIE eliminates the DP while LRSR fails to do so.

Finally, Fig. 8.3(b) compares LRIE to LRSR for a larger range of parameter values. In
this setting, the e�ciency of LRIE increases and the blue region becomes larger than that
in Fig. 8.3(a). The fact that such a region is approximately of the form aβ≤ρ≤bβ, with
a,b∈R, is characteristic of the DRA problem and indicates that, similarly to the epidemic
threshold in δ/β in the absence of control (Wang et al., 2003), the di�usion process also
displays a sudden switch in its behavior when ρ/β reaches a certain threshold, depending
on the strategy.

Scale-free random networks

Scale-free networks are extremely prone to epidemics due to the existence of highly con-
nected nodes. The behavior of the compared strategies are similar to the Erdös-Rényi case
(see Fig. 8.4 and Fig. 8.5), except that the DP is more aggressive. In Fig. 8.4(a), some of the
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Figure 8.3: E�ciency of LRIE compared to LRSR for an Erdös-Rényi network: N=1000,
p=0.01. Small and large ranges of values are used for r=β/δ, e=ρ/δ.

(a) e=4000 (b) e=3000

Figure 8.4: Results for random scale-free networks: N=104 nodes, m=5, r=2, and
btot =10 resources.

strategies do not manage to converge, despite initiated with a low percentage of infected
nodes. As expected, MN is more e�cient in this case compared to PRC and LRSR since
node degree is more signi�cant attribute in a scale-free network than in a network with
uniform random connections. Heat maps in Fig. 8.5 present similar characteristics to those
of Fig. 8.3 for Erdös-Rényi networks, except there is a slightly improved performance for
LRIE relatively to LRSR.
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Figure 8.5: E�ciency of LRIE compared to LRSR for a scale-free network: N=1000, m=5.
Small and large ranges of values are used for r=β/δ and e=ρ/δ.

8.5.4 Simulations on real-world networks

Speci�cally:

• The US air tra�c for the year 2010, containing 2,939 nodes and 30,501 edges. The
nodes correspond to the US airports that serviced domestic and international �ights,
and those non-US airports that serviced �ights to US, during that year2.

• A Twitter subgraph extracted from 1,000 ego-networks of the social network by
McAuley and Leskovec (2012). The resulting network contains 81,306 nodes and
1,342,303 edges.

Tab. 8.2 summarizes the simulation results on these networks, where three scenarios
were considered:

• High treatment e�ciency: For the most e�cient strategies, the DP reaches zero in
reasonable time. In this case, AUC and extinction time are good quality metrics for
the comparison of strategies.

• Moderate treatment e�ciency: Only LRIE is able to eliminate the DP, thus showing
the substantial improvement of the method over its competitors.

• Low treatment e�ciency: In this case, the considered strategies suppress the epidemic
but none of them eliminates it. However, LRIE still achieves a far lower stable state
infection than its competitors.

In all three regions, LRIE seems robust and substantially outperforms its competitors.
Note that for low treatment e�ciency, centrality-based strategies become counter-e�ective

2Source of data: OpenFlights, http://Openflights.org.
Available at T. Opsahl’s web post: http://wp.me/poFcY-Vw.
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Network
DP scenario

Strategy AUC↓ Text↓ ∑i Xi(T)↓
δ r e btot

Twitter 1 0.2 300 100 RAND ∞ ∞ 30.6%
subgraph MN ∞ ∞ 33.4%

LRSR 246,476 7.70 0%
MSN 89,671 2.52 0%
LRIE 64,425 2.07 0%

1 0.2 200 100 RAND ∞ ∞ 37.3%
MN ∞ ∞ 42.3%
LRSR 161,195 5.11 43.2%
LRIE 87,600 3.03 0%

1 0.2 50 100 RAND ∞ ∞ 46.4%
MN ∞ ∞ 48.5%
LRSR ∞ ∞ 48.9%
MSN ∞ ∞ 44.4%
LRIE ∞ ∞ 29.2%

US air 1 2 210 50 RAND ∞ ∞ 26.1%
tra�c MN ∞ ∞ 73.8%

LRSR 3,723 1.81 0%
MSN 3,235 1.65 0%
LRIE 493 0.43 0%

1 2 150 50 RAND ∞ ∞ 38.9%
MN ∞ ∞ 76.6%
LRSR ∞ ∞ 76.5%
MSN ∞ ∞ 76.4%
LRIE 863 1.08 0%

1 2 100 50 RAND ∞ ∞ 49.7%
MN ∞ ∞ 79.0%
LRSR ∞ ∞ 79.2%
MSN ∞ ∞ 77.4%
LRIE ∞ ∞ 23.1%

Table 8.2: Results of the simulations on two real networks. An in�nite value for AUC and
extinction time Text means that the number of infected nodes reached a non-zero stable
infection state ∑i Xi(T) in our simulations. T=16 for the Twitter subgraph, and T=2
for the US air tra�c dataset.

with even higher stable infection level than that of RAND. Intuitively, this result is due to
the fact that at the beginning of the DP the whole network is infected. Although central
nodes have many infected neighbors and are prone to fast reinfections, these strategies
will keep their focus on these highly connected nodes and will hence fail to clear the
central part of the network, which results in a high stable infection level. Contrary, LRIE
indirectly tends to contain the infected nodes in clusters and reduces infection’s scattering.
Even with low treatment e�ciency, LRIE will �rst focus on the periphery and gradually
contain the DP to the central part of the network, achieving a signi�cantly lower stable
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infection percentage.

8.6 Proofs

The second order derivative of the number of infected nodes is computed as the sum of
three derivatives:

σ′′X,ρ(t) = −δσ′X,ρ(t)−
d
dt

E[X(t)>ρ(t)] + β
d
dt

E[X(t)>A(1− X(t))]. (8.14)

In the following, we show that only the third derivative d
dt E[X(t)>A(1 − X(t))] is

not of the form E[Ξ(X(t))] when ρ(t) already minimizes σ′X(t),ρ(0). First, Eq. 8.10 shows
that σ′X,ρ(t) is of the form E[Ξ(X(t))] since σX,ρ(t) = E[∑i Xi(t)] and X(t)>ρ(t) =

min(r,ρ∗∑i Xi(t)). Second, let H(t) = min(r,ρ∗∑i Xi(t)), then d
dt E[X(t)>ρ(t)] can be

computed as follows:

d
dt E[X(t)>ρ(t)] = lim

∆t→0

E[H(t+∆t)]−E[H(t)]
∆t . (8.15)

Let ∆t be a su�ciently small time interval. Three scenarios are possible:

• either a node is infected during t′∈ [t, t+∆t], and ∑i Xi(t′) increases by one,

• either a node heals during t′∈ [t, t+∆t], and ∑i Xi(t′) decreases by one,

• or nothing happens during [t, t+∆t] (all other scenarios are negligible when ∆t→
0).

Let 1{c}∈RN be a vector with unit values at dimensions where a certain condition c
is true, and 1−X(t) be the vector indicating the healthy nodes of the network. We can
then write:

E[H(t + ∆t)|X(t)] = H(t) + Ψ(∑i Xi(t))
[
δ ∑i Xi(t)− X(t)>ρ(t)

]
∆t

−Ψ(∑i Xi(t) + 1)βX(t)>A(1− X(t))∆t

+o(∆t),

(8.16)

where Ψ(x) = min(r,ρ∗x)−min(r,ρ∗(x− 1)). We thus have:

d
dt E[X(t)>ρ(t)] = lim∆t→0

E[E[H(t+∆t)|X(t)]]−E[H(t)]
∆t

= −E[Ψ(∑i Xi(t))[δ ∑i Xi(t) + H(t)]]

+E[Ψ(∑i Xi(t) + 1)βX(t)>A(1− X(t))],

(8.17)

which is of the form E[Ξ(X(t))].
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Finally, d
dt E[X(t)>A(1− X(t))] is derived using Eq. 8.8 and Eq. 8.9:

d
dt E[X(t)>A(1− X(t))] = ∑i,j Aij

d
dt E[Xi(t)(1− Xj(t))]

= ∑i,j Aij

(
d
dt E[Xi(t)]− d

dt E[Xi(t)Xj(t)]
)

= −δ ∑i,j AijE[Xi(t)]

−∑i,j AijE[Xi(t)ρi(t)]

+β ∑i,j,k Aij AkiE[(1− Xi(t))Xk(t)]

+2δ ∑i,j AijE[Xi(t)Xj(t)]

+∑i,j AijE[Xi(t)Xj(t)(ρi(t) + ρj(t))]

−β ∑i,j,k Aij AkiE[(1− Xi(t))Xj(t)Xk(t)]

−β ∑i,j,k Aij AkjE[Xi(t)(1− Xj(t))Xk(t)].

(8.18)

This equation is simpli�ed by the fact that, in order to minimize σ′X,ρ(0), resources are
only given to infected nodes, which implies Xi(t)ρi(t)=ρi(t). We can thus rewrite this
derivative as:

d
dt E[X(t)>A(1− X(t))] = −∑i,j AijE[ρi(t)] + ∑i,j AijE[Xj(t)ρi(t) + Xi(t)ρj(t)] + E[Ξ(X(t))]

= −E[1>A>ρ(t)] + E[X(t)>A>ρ(t) + X(t)>Aρ(t)] + E[Ξ(X(t))]

= −E[{A(1− X(t))− A>X(t)}>ρ(t)] + E[Ξ(X(t))],
(8.19)

where Ξ : {0,1}n→R is a function taking a state vector X as input and returning a value.
This leads to the second order derivative of σX,ρ(t) given in Eq. 8.12.
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9.1 Introdution

In this chapter, we analyze, theoretically and experimentally, a particular class of Dynamic
Resource Allocation (DRA) strategies called priority planning. These strategies are based
on a priority order computed prior to the epidemic, and distribute the resources to the
�rst infected nodes according to the precomputed order. Based on the theoretical analysis
of priority planning, we also provide an optimal priority planning strategy called Maxcut

Minimization (MCM), whose priority order minimizes the maxcut, a quantity shown to
drive the explosive behavior of the epidemic.

9.1.1 Related works

The most related method to MCM is the recent CURE policy by Drakopoulos et al. (2014a)
which was developed independently to our work. The di�erences between our work and
that of Drakopoulos et al. (2014a) are summarized in the following points: i) we consider a
more general setting that models important additional aspects such as node self-recovery
and the allocation of multiple treatment resources, ii) we derive tighter bounds for the
expected extinction time, iii) in contrast with the theoretical work by Drakopoulos et al.
(2014a), we also provide a test bed for experimental assessment of healing strategies on
benchmark real networks and others arti�cially generated, including a robustness analysis
to various noise pro�les on the network structure, and iv) we experimentally show that
MCM is more e�cient than CURE as well as other possible approaches to create a priority-
order based on related literature.

9.1.2 Outline

This chapter is organized as follows: Sec. 9.2 describes the class of control actions analyzed
in this chapter. Sec. 9.3 provides our derived upper and lower bounds on the extinction
time of the di�usion process under a priority-order. These results both give insight into
the e�ciency of those strategies and motivate an e�cient strategy developed in Sec. 9.4.
Sec. 9.5 presents experimental results and show that: i) the derived bounds are tight, thus
validating the fundamental role of the maxcut in the evaluation of such strategies, ii) the
proposed MCM strategy outperforms its competitors in a wide range of scenarios that are
of special interest for practical application of epidemic control policies. Finally, Sec. 9.6
provides an analysis of the behavior of the MCM strategy under various noise pro�les,
and show the robustness of the method with respect to uncertainties in the location of
individuals in contact networks. This is an extended version of the papers (Scaman et al.,
2014b) and (Kalogeratos et al., 2015) in collaboration with Argyris Kalogeratos and Nicolas
Vayatis.

9.2 Priority planning

9.2.1 A healing plan to gradually remove a contagion

According to De�nition 8.1, the control action ρ(t) of a dynamic resource allocation (DRA)
strategy depends on the history of variations of the contagion process X(t). Among the
novelties of our work, we introduce strategies that involve an ordering on the network
nodes that accounts for the criticality of each node w.r.t. the overall contagion process. We
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name the class of DRA strategies that are based on a priority-order as priority planning.
These concepts are formally de�ned below.

De�nition 9.1 (Priority-order). A priority-order is a bijective mapping ` : V→{1, ..., N}
of the N nodes of the network s.t. `(v) is the position of node v in the priority-order.

De�nition 9.2 (Priority planning). Priority planning is a DRA strategy under limited

budget r and resource threshold ρ∗ that distributes resources to the top-q infected nodes ac-

cording to a �xed priority-order ` of the network nodes, where q is the number of nodes such

that the allocated amount of resources matches the available resource budget r. More specif-

ically, the strategy heals the �rst q(t)= min
{
d r

ρ∗ e,∑i Xi(t)
}
infected nodes according to

the respective mapping `, and allocates the resource budget as follows:

ρi(t) =


r
d r

ρ∗ e
if Xi(t) = 1 and `(vi) ≤ θ(t);

0 otherwise,
(9.1)

where θ(t) is a threshold adjusted s.t. ∑i 1{ρi(t)>0}=q(t).

This de�nition may be regarded as a description of a class of simple planning strategies
for the removal of a contagion: a healing plan, i.e. a priority-order for healing the nodes,
is determined prior to the beginning of the di�usion and is followed no matter how the
di�usion process evolves. The plan proceeds from the �rst to the last node in the priority-
order, hence aims to remove gradually the contagion from the network. In what follows,
we refer interchangeably to a priority-order and its corresponding mapping `.

Remark 9.1. Note that changes in the distribution of the resources will only appear when
there is a change in the network state (i.e. a new node infection/recovery). Thus, in prac-
tice, the distribution of the resources needs to be updated only at those speci�c times.

9.2.2 Maxcut and cutwidth

The concept of cutwidth is well known in graph theory (see for instance Chung and Sey-
mour (1989)). The importance of this concept for containing epidemics on graphs has been
pointed out very recently by Drakopoulos et al. (2014a) and Scaman et al. (2014b). We recall
here its de�nition that we adapt with our notations of the priority-order.

De�nition 9.3 (Cut of a set of nodes). For an undirected network G=(V ,E) with adja-

cency matrix A, the cut of a set of nodes I ⊂ V is the number of edges between nodes of I
and nodes of its complementary in V :

C(I) = ∑
i,j

Aij1{vi∈I ,vj<I}. (9.2)

For a priority-order `, we refer to as cut at position c, Cc(`), the cut of the set of nodes
before position c in `:

Cc(`) = ∑
i,j

Aij1{`(vi)<c≤`(vj)}. (9.3)



124 CHAPTER 9. A DETAILED ANALYSIS OF PRIORITY PLANNING

a b c d e
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(a) Priority-order ` : V→{1,2,3,4,5}
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cut = 3(b) Priority-order `′ : V→{1,3,4,2,5}

Figure 9.1: Two priority-orders (from left to right) leading to di�erent maxcuts: C∗(`)=3 for (a) and
C∗(`′)=1 for (b). The cut (vertical red line) separates the nodes in two sets (white and red). The second
priority-order `′ is optimal and the network has a cutwidthW=1.

De�nition 9.4 (Maxcut of a priority-order). For a network with N nodes and adjacency

matrix A, and for a given priority-order `, the maxcut of ` is de�ned as:

C∗(`) = max
c=1,...,N

Cc(`). (9.4)

Finally, the minimal value of the maxcut over all possible priority-orders is an inherent
property of the network structure known as cutwidth.

De�nition 9.5 (Cutwidth). The cutwidth of a network with N nodes and adjacency matrix

A is de�ned as:

W = min
`
C∗(`). (9.5)

We will see in Sec. 9.3 that this quantity characterizes networks in which priority plan-
ning is e�ective. Fig. 9.1 illustrates two priority-orders for a small network and their re-
spective maxcut (see De�nition 9.4). The priority-order of Fig. 9.1(b) is better, indeed op-
timal, and its maxcut matches the cutwidthW of the network.

9.3 Tight bounds on the extinction time

This section contains a detailed theoretical analysis of priority planning strategies. Since a
priority-order is a prede�ned healing plan that is followed throughout the whole process of
suppressing the contagion, the question of whether the contagion will be removed or not
depends on the capacity of the control action to accomplish each of the steps of the plan.
Intuitively, the most di�cult step is at the position(s) where the maxcut of the priority-
order lays, where we �nd the maximum number of infectious edges during the plan. Our
results prove the determinant role of the maxcut of the priority-order for the expected
extinction time of an epidemic. It is thus justi�ed that this is the right quantity to minimize
in order to enforce the removal of a contagion.
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9.3.1 Theoretical bounds for the extinction time

Denote by 1 the vector of ones in RN . Theorem 9.1 below states an upper bound for
the expected extinction time E[τ1] under a considered priority-order, when the budget
is bounded and the starting state is a total infection x=1. Above a threshold value, it
indicates that the di�usion process converges in reasonable time to its absorbent state.
This threshold depends on the maxcut, denoted as C∗(`), of a considered priority-order.
Detailed proofs for the theorems are provided in Sec. 9.7.

Theorem 9.1. Let G be a totally infected network of N>1 nodes, i.e. Xi(0)=1,∀i, and d
is the maximum node degree of the network. Consider a priority planning ` under constant
resource budget r>0 as in Assumption 8.1. We set:

• q=d r
ρ∗ e the number of treated nodes, and

• ε= d(3+2ln N+4q)
C∗(`) .

Assume that:

r + δq > βC∗(`)
(
1 + 2

√
ε + ε

)
(9.6)

Then the following upper bound holds for the expected extinction time E[τ1]:

E[τ1] ≤
3N + 6q(1 + lnq)

r + δq− βC∗(`)
(
1 + 2

√
ε + ε

) . (9.7)

Eq. 9.7 relates E[τ1] to the number of infectious edges in the worst step of the plan (i.e. its
maxcut). The next theorem is a simpli�ed version of Theorem 9.1.

Theorem 9.2. Under the hypotheses of Theorem 9.1, the same de�nitions for ε and q values,

and the same assumption:

r+δq>βC∗(`)
(
1+2
√

ε+ε
)

,

we have:

E[τ1] ≤
6N
β

. (9.8)

Remark 9.2. Due to the increase of x 7→ E[τx] (see Lemma 9.1), Theorems 9.1 and 9.2 also
hold for any initial infection state X(0)= x∈{0,1}N . Thus, when the resource budget is
su�ciently high, priority-planning strategies are e�cient regardless of the initial infection
state.

The next theorem shows that, when there is no self-recovery (δ=0) and when the
resource budget is below a threshold value, the expected extinction time is lower bounded
by the exponential of the maxcut.

Theorem 9.3. Let G be a totally infected network of N>1 nodes, i.e. Xi(0)=1,∀i, and d
is the maximum node degree of the network. Let also δ=0, and consider a priority planning

` under constant resource budget r>0 as in Assumption 8.1. We set:

• q=d r
ρ∗ e the number of treated nodes, and
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• η∈ [0, 1
2 ].

Assume that q< C
∗(`)
d and

r< (1− η)βC∗(`)(1− dq
C∗(`) ) (9.9)

Then the following lower bound holds for the expected extinction time E[τ1]:

E[τ1] ≥
1
r

exp
(

η2

12

(C∗(`)
d
− q
))

. (9.10)

We will see in the next section that, under further assumptions on the network type,
Theorem 9.3 implies the explosive behavior of the extinction time over the resource thresh-
old βC∗(`). These results do verify our intuition that completely removing a contagion
requires the resource strength to be as high as needed in order to proceed through the worst

step of the speci�ed plan (see further discussion in Sec. 9.3.3).

9.3.2 Relationship between critical behavior and maxcut

In order to make more apparent the relationship between critical behavior of the expected
extinction time and maxcut of the priority-order used for control, we now derive theo-
rems in the restricted setting in which the maximum degree is small w.r.t. the maxcut (see
Sec. 9.3.3 for precise examples in which the assumption holds):

Assumption 9.1. Let (GN) be a sequence of networks of N nodes and rN >0 be a se-
quence of resource budgets. Let also qN =d rN

ρ∗N
e, dN be the maximum node degree of GN ,

and assume liminfN rN >0. In the two following theorems, we will assume that:

∃α > 0 s.t. qNdN

C∗(`N)
= O(N−α) . (9.11)

Under Assumption 9.1, the two next theorems show that βC∗(`) acts as a threshold
between a sub-critical and a super-critical regime for the resource budget r. Below this
threshold, the epidemic is removed in reasonable time. Above this value, the epidemic
cannot be removed by the considered priority planning.

Theorem 9.4 (Sub-critical behavior). Under the hypotheses of Assumption 9.1, if

liminf
N

rN

βC∗(`N)
> 1 , (9.12)

then

E[τ1] = O(N) . (9.13)

Theorem9.5 (Super-critical behavior). Let δ=0 (no self-recovery). Under the hypotheses
of Assumption 9.1, if

limsup
N

rN

βC∗(`N)
< 1 , (9.14)

then

E[τ1] ≥ exp
(

Nα/2
)

, (9.15)

for N su�ciently large.
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These results show the existence of a threshold βC∗(`) similar to the epidemic thresh-
old of the epidemiology literature (Tong et al., 2012), and are fundamental for understand-
ing the behavior of the di�usion process and designing e�cient DRA strategies. The sim-
ulations in Sec. 9.5 attest that minimizing this resource threshold is an e�cient way to
dynamically control a di�usion process.

Remark 9.3. While these results consider a �xed priority planning, they also provide
a quantitative measure of the quality of priority planning strategies as a whole. More
speci�cally, Theorems 9.4 and 9.5 imply that, under Assumption 9.1, priority planning
strategies are unable to suppress an epidemic if the resource budget is below βW (see
De�nition 9.5). Above this value, a priority-order can be found that achieves this speci�c
goal.

9.3.3 Interpretation of results

Comparison to previous results

A recent work by Drakopoulos et al. (2014a) investigates the use of the cutwidth for de-
signing e�cient DRA strategies. Their work introduces a DRA strategy, called the CURE

policy, using a formalism similar to priority-orders called crusades. However, the CURE
policy works in a setting with no self-healing (δ=0) and no limitation on the number of
resources that can be allocated to a single node (ρ= +∞). As a result, all the resources
are always given to one single node, and the CURE policy is only applicable when the
number of treatments to distribute is equal to 1 (i.e. q=d r

ρ∗ e=1, see Sec. 9.2). The model
considered in the present paper is thus more general and closer to realistic settings. Also,
our theoretical results are tighter, as we present a threshold four times smaller than that of
Drakopoulos et al. (2014a), matching βC∗(`) in the restricted setting of Assumption 9.1.
More speci�cally, their analysis can be seen as a particular case of ours, as Theorem 9.1
implies the following result, similar to Theorem 1 and Corollary 1b of Drakopoulos et al.
(2014a):

Corollary 9.1. Let q=1, δ=0, β=1 and N≥20. Consider a priority planning ` and as-

sume that:

r ≥ 4C∗(`) and r ≥ 16d log2 N. (9.16)
Then the following upper bound holds for the expected extinction time E[τ1]:

E[τ1] ≤
26N

r
. (9.17)

Particular bounds for speci�c graph models

We present three application examples for our theoretical results.

Example 9.1 (Sparse networkswith bounded degrees). The condition qNdN
C∗(`N)

=O(N−α)

is veri�ed for sparse networks with bounded node degrees such that the cutwidthW is a
power of N (recall that C∗(`)≥W , see De�nition 9.5), and when the number of treatments
qN is bounded by ln N, i.e. qN =O(ln N). The condition onW is veri�ed for many stan-
dard networks (e.g.

√
N for 2D grids, N−1

2 for star networks and N2

4 for complete graphs),
with the notable exception of trees (W is of the order of ln N). See the work of Díaz et al.
(2002) for more information on the cutwidth of speci�c graphs.
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Example 9.2 (2D grids). For regular 2D grids of N nodes,W=
√

N and dN =4. Hence,
if the number of treated nodes is bounded by qN =O(Nα) where α< 1

2 , then Assump-
tion 9.1 holds. For example, as in Example 8.3, �xing ρ∗N = rN

q where q ∈ N is su�cient
for Assumption 9.1 to hold. Sec. 9.3.2 implies that, if rN <β

√
N, then no priority-order

will manage to remove the epidemic in reasonable time. However, if rN >β
√

N, then at
least one priority-order (see Sec. 9.4) can remove the epidemic.

Example 9.3 (Complete networks). Complete networks are trivial settings for which all
priority-orders lead to the same e�ciency, since all nodes have the same connectivity. We
haveW= N2

4 (or (N+1)(N−1)
4 if N is odd) and dN =N−1, hence, if the number of treated

nodes is bounded by qN =O(Nα) where α<1, then Assumption 9.1 holds. Sec. 9.3.2 im-
plies that, if rN <β N2

4 , then no priority-order will remove the epidemic in reasonable time.
However, if rN >β N2

4 , all priority-orders will.

9.4 TheMaxCut Minimization strategy

Based on the analysis of the previous section that uncovered a strong dependency between
the critical behavior of the di�usion process and the maxcut, we propose a novel DRA
algorithm for arbitrary networks. The main idea is to distribute resources to infected nodes
in the priority-order that minimizes C∗(`), and optimally reaches the cutwidthW of the
network. Given a network G , we compute, prior to the di�usion process, a priority-order

`MCM(G) with minimum maxcut C∗(`):

`MCM(G) = argmin
`
C∗(`), (9.18)

using any available optimization algorithm for this problem. Then, during the di�usion,
the strategy distributes the resource budget to the infected nodes according to the order
`MCM(G). Alg. 2 presents the pseudocode of our strategy.

9.4.1 Maxcut optimization

Linear arrangement

Minimizing C∗(`) in a network is a standard combinatorial problem which is usually
solved under the framework of linear arrangement (LA) problems (Díaz et al., 2002; Pantrigo
et al., 2012; Pardo et al., 2013). Formally, a linear arrangement is a mapping `: V→{1, ..., N}
of the nodes of G on N discrete positions arranged on a line, by assigning one position (or
label) to each node (Fig. 9.1). This is a class of combinatorial optimization problems, which
are altogether usually referred to as graph layout problems (Díaz et al., 2002), and whose
purpose is to minimize some functional φ over the space L of all possible node permuta-
tions: `∗= argmin`∈L φ(G,`). Indicative applications are the graph drawing, VLSI design,
and network scheduling (Díaz et al., 2002).

The minimummaxcut linear arrangement (MMLA) is an LA problem in which the goal
is to minimize the maxcut. MMLA is an NP-hard problem, however, approximation heuris-
tics do exist in literature (Pantrigo et al., 2012; Pardo et al., 2013). One of the major di�-
culties of this problem is that the cost function to optimize is extremely �at in the search
space, i.e. slight changes in the arrangement will most probably not change C∗(`).
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Algorithm 2 MCM strategy
B Prior to the di�usion process:
Compute the priority-order `= `MCM (G) by minimizing the maxcut C∗(`)
Order the nodes of G according to `, i.e. compute the node list (v1, ...,vN) s.t. ∀i∈{1, ..., N},
`(vi)= i
B During the di�usion process:
Input: network G , state vector X(t), resource budget r,

resource threshold ρ∗

Output: the resource allocation vector ρ(t)

q← d r
ρ∗ e

if ∑i Xi(t) < q then
return r

q X(t)
end if
ρ(t)← 0 // a zero vector inRN

budget← q
i← 1
while budget > 0 do

if Xvi (t) = 1 then
ρvi (t)← r

q
budget← budget− 1

end if
i← i + 1

end while
return ρ(t)

Relaxation of the MMLA problem

For the latter reasons, we propose to relax the MMLA problem by optimizing the sum of

the cuts instead of their maximum. This problem is known as the minimum linear arrange-

ment problem (MLA) and is part of the larger class of minimum p-sum linear arrangement

problems (MpLA) (Harper, 1964; Adolphson and Hu, 1973) that minimize the following
functional:

MpLA : φ(G,`) =
(

∑
i,j

Aij
∣∣`(vi)− `(vj)

∣∣p)1/p
. (9.19)

For p=1, a simple calculation shows that MLA minimizes the average cut in the linear
arrangement, instead of its maximum for MMLA (see De�nitions 9.3 and 9.4). MLA is
easier than MMLA and more suited to gradient descent or simulated annealing methods,
and it produces a smoother priority-order w.r.t. the cuts at each position of the ordering.

Practical implementation

MLA is a very challenging problem and, interestingly, most related works conduct exper-
iments on relatively small benchmark networks for which the optimal cost is not known
(the same for MMLA). Designing a procedure that can be applied on large social networks
with tens of thousands of nodes is by itself a remarkable contribution. We should also
note that MCM strategy seeks for an priority-order with as low as possible maxcut, but
not necessarily the optimal one. The solver we developed for our simulations follows the
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Figure 9.2: Resource threshold w.r.t. the maxcut C∗(`) quantity for various random network types of 1,000
nodes, and DRA strategies (δ=1). The dashed line indicator has slope equal to 1.

steps below and uses a hierarchical approach to take advantage of the group structure of
social and contact networks:

s1) �rst, we identify dense clusters by applying spectral clustering and we order those
clusters (considered as high-level nodes) using spectral sequencing (Juvan and Mo-
har, 1992),

s2) then, we compute a good ordering of the nodes inside each cluster independently us-
ing spectral sequencing followed by an iterative approach which is based on random
node swaps (swap heuristics inspired by the work of Rodriguez-Tello et al. (2008)),

s3) �nally, the swap-based approach is reapplied to optimize the overall ordering.

Scalability

The scalability of the MCM strategy is highly dependent on the employed o�ine algorithm
for �nding the optimal node order. The whole process described above achieves fairly good
results (see for example Tab. 9.1) in reasonable time. Since spectral clustering and spectral
sequencing depend on the computation of eigenvectors for the highest eigenvalues of an
N×N sparse matrix with |E | non-zero entries, the overall complexity of the algorithm is
O(|V|+ |E |) (Arora et al., 2005). Hence, MCM is generally scalable to the size of real social
and contact networks. Worth to note that, for networks that are close to planar and can
be embedded in the 2D plane without many edge intersections (e.g. contact networks),
the clustering step could be skipped since the spectral sequencing method is already a
good initial approximation that can be further re�ned with a subsequent node swapping
process.
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9.5 Experimental results

9.5.1 Setup and competitors

In the experimental study, we compare MCM against �ve DRA strategies, which are grouped
into three types:

A. Static vaccination

We compare to centrality-based strategies and simple heuristics by considering the output
of state-of-the-art static vaccination methods as priority-orders:

• Most neighbors (MN): gives priority to high degree nodes, hence aims to �rst remove
the contagion from the network’s core before dealing with the periphery.

• Least neighbors (LN): gives priority to low degree nodes and works conversely to
MN.

• Largest reduction in spectral radius (LRSR): gives priority to nodes whose removal
will lead to the maximum decrease of the spectral radius of the adjacency matrix of
the resulting network, and is a state-of-the-art method from the vaccination litera-
ture developed by Tong et al. (2012).

B. Uniform mixing

We compare to strategies that assume uniform mixing by considering a random allocation
of resources.

• Random baseline (RAND): the resource budget is assigned to d r
ρ∗ e nodes at random

at each time.

One of the primary questions we address in this perspective is whether targeting speci�c
nodes in the network can lead to substantial improvement of the suppression, compared
to the treatment of random infected nodes.

C. State-of-the-art direct competitors

• CURE policy (CURE): this is a state-of-the-art method developed by Drakopoulos
et al. (2014a) in parallel to our work. CURE follows a healing plan with minimal
maxcut, called crusade. A crusade can be considered to be a priority-order similar to
that of MCM, however in the work of Drakopoulos et al. (2014a) this was formulated
as a sequence of nested bags which di�er by one node each time.

A brief summary of the di�erences between our work and the work of Drakopoulos et al.
(2014a) is given in Sec. 9.1 and a technical discussion regarding the bounds of extinction
time can be found in Sec. 9.3.3. Moreover, one of the most signi�cant practical di�erences
between CURE and MCM is that, when many reinfections occur, CURE enters a waiting

phase in order to return to a previous step of the removal plan. This waiting phase is
triggered when the number of infected nodes before the front exceeds r

8d . In practice, this
threshold value can be very small, and we will see in our experiments that this may lead
to substantial delay, or even failure of the healing plan.
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(b) high resource budget: r=250

Figure 9.3: Simulation of an SIS epidemic in the GermanSpeedway network, under the control of various
DRA strategies. N=1168, δ=0, ρ∗= r (thus q=1), β=1.

For all our experiments, we consider a constant budget r(t)= r as in Assumption 8.1,
and a �xed number of treatments q ∈ {1, ...,100}, as in Example 8.3.

9.5.2 Quality of the theoretical bound

Fig. 9.2 shows the relationship between the maxcut C∗(`) and the resource threshold r∗

under a speci�c priority planning and budget. The resource threshold is computed by
running simulations with a �xed number of treatments q, and �nding the resource budget
above which the strategy is able to remove the epidemic. Each plotted point is a simulation
with �xed network, number of treatments, and epidemic parameters β and δ. To cover a
wide range of scenarios, each of the 100 points plotted in each sub�gure of Fig. 9.2 involves:

i) the priority-order of a DRA control strategy, randomly chosen among MCM, RAND,
MN, LN, and LRSR,

ii) a �xed q value, set at random in {1, ...,100}, and

iii) a random network of 1,000 nodes, constructed by employing at random a genera-
tor for: Erdös-Rényi, preferential attachment, small-world, geometric random, and 2D

regular grids (details on these networks are available in Sec. 5.3 and the introductory
book written by Newman (2010)).

According to the results illustrated in Fig. 9.2, the resource threshold is always below,
but very close, to βC∗(`) which seems to be a very good approximation of the former.
The very stable, nearly linear, behavior holds even for low infectivity where the random
self-recoveries of nodes become more signi�cant (Fig. 9.2(b)). Overall, this result justi�es
the minimization of C∗(`) as a proxy for removing a contagion with less resources.

9.5.3 Empirical evaluation of simulated contagion on real networks

In this section, we perform simulations on three real networks matching di�erent use
cases of DRA strategies: the GermanSpeedway network (Kaiser and Hilgetag, 2004) for
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Figure 9.4: Simulation of an SIS epidemic in the OpenFlights airport network, under the control of various
DRA strategies. N=2939, δ=0, ρ∗= r (thus q=1), and β=1.

analyzing the growth of an epidemic through the road network, the OpenFlights airport
network1 for epidemics spreading through air routes, and a subgraph of the Twitter net-
work (McAuley and Leskovec, 2012) for the undesired spread of information in a social
network (e.g. rumors).

In order to compare to the CURE policy, we consider a simpli�ed setting (matching
the limitations set in the work of Drakopoulos et al. (2014a)) for the experiments on the
GermanSpeedway network and OpenFlights aiport network: we use only one treatment
(q=1) and let no self-healing (δ=0). On the TwitterNet, we use a more realistic scenario
with 100 treatments and self-healing to show the robustness of the MCM strategy.

GermanSpeedway network

This is the German Autobahn network from the work of Kaiser and Hilgetag (2004). Due
to the spatial properties of road networks, the respective graph is symmetric, with a single
connected component, and close to being planar (i.e. a graph embedding on the plane
would create only very few edge intersections other than the endpoint connections). It
contains 1,168 nodes and 1,243 edges, while the degree distribution is particularly �at:
101 nodes are leaves, 971 nodes have degree 2, and 96 nodes have degree 3. Finally, the
maximum degree is d=12.

Two scenarios of SIS epidemics with di�erent resource budget r are shown in Fig. 9.3.
In both of them, MN and RAND are the worst strategies. MCM is the best performing
strategy, and all the other strategies are strongly a�ected by the resource budget. LRSR
is the second best performing strategy, although the low budget causes an increase in the
extinction by a factor of 7. The CURE policy presents a behavior with characteristic ups-
and-downs, which is due to its waiting phase. Even for a high resource budget, entering the
waiting phase can happen with non negligible probability (see Fig. 9.3(b) for an example
of such a scenario) and largely degrade the performances of the CURE policy.

1Source of data: OpenFlights, http://Openflights.org.
Available at T. Opsahl’s web post: http://wp.me/poFcY-Vw.
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The capacity of the strategies to remove the epidemics is correctly predicted by their
maxcuts (except CURE whose behavior depends on whether or not the strategy enters its
waiting phase): 650±50 for RAND, 379 for MN and LN, 104 for LRSR, and 29 for CURE
and MCM.

OpenFlights airport network

This network represents the US air tra�c for the year 2010. The nodes are the US airports,
plus those non-US airports connected through �ights with the former. We used a sym-
metric, undirected, and unweighted version of this network containing 2,939 nodes in a
single connected component with 30,501 edges. For this network, d=242.

Fig. 9.4 presents two epidemic scenarios similarly to Fig. 9.3. MCM is the best perform-
ing strategy and the least a�ected by the variation in the resource e�ciency. LRSR, on the
other hand, fails completely with a low resource budget, which is due to the fact that its
maxcut is located at the beginning of the considered node ordering (see more details in
the experiment in Fig. 9.5). The CURE strategy presents again an unstable behavior as an
e�ect of its waiting phase, which also shows that the conditions under which this policy
gets into the waiting phase are not rare at all and can be catastrophic. Indeed, CURE is
outperformed even by RAND in these simulations.

Again, the capacity of the strategies to remove the epidemics is correctly predicted
by their maxcuts (except CURE): 7,800± 100 for RAND, 7,504 for MN and LN, 6,223 for
LRSR, and 2,231 for CURE and MCM.

TwitterNet social network

This network consists of 1,000 ego-networks extracted from the Twitter social network
by McAuley and Leskovec (2012). We use a symmetrized and undirected version of the
network which has 81,306 nodes, 1,342,303 edges, and d=3,383. This network has a
single connected component and contains a rich community structure.

Regarding Theorem 9.1, the maximum degree d=3,383 in the network leads to an
ε=20 for the MCM strategy (ε=2.1 for RAND). Tab. 9.1 summarizes the characteristics
of the di�erent priority-orders of the compared strategies, where MCM achieves a �ve

times smaller C∗(`) value than the second best LRSR. This implies that MCM would need
a �ve times smaller resource budget compared to LRSR so as to contain a di�usion process
on this network.

The cuts at every position of the LRSR and MCM plans are shown in Fig. 9.5(c) (rotated
plot). Fig. 9.5(a)-9.5(b) show two scenarios of full initial infection, varying in the resource
e�ciency, where MCM performs best in removing the di�usion over time.

Furthermore, Fig. 9.5(d)-9.5(e) provide more insights about the scenario of Fig. 9.5(b).
The evolution of each di�usion is illustrated as follows: each line of the �gure contains
the state of one node of the network throughout the simulation (black: contagious, white:
healthy), and the nodes are sorted in the y-axis according to the considered priority-order
(aligned y-axis with Fig. 9.5(c)). We can observe that the maxcut acts as a barrier for LRSR:
the large cuts at the beginning of the LRSR order prevent the strategy from healing more
than the �rst 5,000 nodes of the priority-order (βC5,000(`LRSR)≈ r=12,000 for the 5,000-
th node). Contrary, MCM gradually reduces the contagion, which is visible by the clear
advancement of the front. Note also that some nodes become healthy beyond the front
due to self-recovery.
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Strategy Maxcut Maxcut Expected resource threshold

% w.r.t. RAND (δ=1, β=0.1, q=100)

RAND 670,000 ± 1000 100.0 % 67,000
MN 628,571 93.8 % 62,957
LN 628,571 93.8 % 62,957
LRSR 349,440 52.2 % 34,944
MCM 71,956 10.7 % 7,196

Table 9.1: Maxcut values (C∗(`)) for di�erent DRA strategies in the TwitterNet dataset (McAuley and
Leskovec, 2012). According to Theorem 9.4 and the empirical validation of Fig. 9.2, the expected resource
threshold is βC∗(`).

In agreement with our previous analysis, our results show that: i) the uniform mix-
ing hypothesis leads to a massive drop in e�ciency, since MCM substantially outperforms
the RAND strategy, ii) despite being e�cient in the static vaccination problem, centrality-
based priority-orders are suboptimal for the DRA problem, iii) the βC∗(`) value can be
used as a good criterion for assessing the quality of a priority-order, iv) the CURE policy
fails to be e�ective in practical applications due to its waiting phase, and v) MCM outper-
forms all its competitors in all our experiments.

9.6 Robustness of MCM

Consider that the authorities are prepared to react to an epidemic outbreak using the MCM
priority planning approach. They have thus precomputed a priority-order ` for the net-
work under threat, which is optimized to have the minimum maxcut, i.e. C∗(`)=W and,
without loss of generality, let us assume that the maxcut value is unique along `. In essence,
the robustness analysis for MCM reduces to a study of how robust the priority-order ` is, in
the presence of noise or perturbations in the network structure. Speci�cally, one needs to
analyze how the maxcut property is a�ected by such modi�cations, since it is the quantity
that determines the expected extinction time of the epidemic.

Under this perspective, we brie�y discuss about cases where the observed network,
utilized by the MCM strategy to compute the priority-order, di�ers from the real underly-
ing network in which the epidemic is spread. This situation can arise for several reasons,
including:

1) Malicious modi�cation of the network in order to lessen the e�ciency of an em-
ployed treatment strategy.

2) Uncertainty in the data used for inferring the network, e.g. the position of people
when considering contact networks.

3) Misclassi�cation of edges when inferring a network from relational data.

4) Use of outdated data, i.e. a past observation of the network structure which may
have changed since then (edges may have appeared or been removed).
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(d) network state under LRSR
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(e) network state under MCM

Figure 9.5: (a)-(b) Simulation of a di�usion process in the TwitterNet subset of 81,306 nodes (McAuley and
Leskovec, 2012). δ=1, β=0.1 and q=100 (recall ρ∗= r/q). MCM clearly outperforms the other heuristics.
(c) Cuts for LRSR and MCM. (d)-(e) Visualization of the di�usion of (b) at the node level (infected nodes in
black). Nodes are ordered according to LRSR and MCM priority-orders, respectively. The inset �gure provides
a closer look in (e).

The aforementioned scenarios produce quite di�erent noise pro�les, with the mali-
cious intervention (1) as the worst case scenario where the worst modi�cations are applied
to the network intentionally. However, we will see in Sec. 9.6.3 that the MCM exhibits
robustness for the very natural scenario of type (2), where there is uncertainty for the po-
sition of nodes on the space in which a contact network is formed. The misclassi�cation
of edges (3) may, as a �rst approximation, be modeled by a purely random noise that is
adequate in most cases. Nevertheless, correlated noise may appear in practice because an
inference algorithm may consistently fail to recover particular structures of edges.

Interestingly, we will see in Sec. 9.6.2 that adding random noise is very similar to ma-
licious modi�cations w.r.t. the maxcut. Finally, the dynamic evolution of the network can
be seen as an intermediate scenario between (1) and (2) since edges can appear anywhere,
but, in contact or social networks, they will tend to appear at already strongly connected
neighborhoods (i.e. increasing the local edge density by creating triangles).

9.6.1 Malicious modi�cation of the network

Knowing the priority-order ` that the authorities use, a malicious agent can make K ad-
versarial modi�cations to the edges of the network. Removing edges may destroy the
optimality of `. However, it cannot cause the increase of the maxcut. As for adding new
edges, in the worst case, each of them would increase the maxcut by one (by linking one
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node before and one node after the maxcut in the ordering). Thus, for the maliciously
modi�ed network, we have:

C∗MAL(`) = C
∗(`) + K. (9.20)

Thus, for networks with large minimum C∗(`) (e.g. linear w.r.t. network size, see
Sec. 9.3.2 for examples), a noticeable reduction of the e�ectiveness of the MCM strategy
requires the addition of a very large number of edges (e.g. proportional to the size of the
network).

9.6.2 Random additive noise

Consider that, for each node pair (i, j), the edge state changes with probability p∈ [0,1].
The expected maxcut will then be bounded by:

C∗(`)(1− 2p) + pc∗(N − c∗) ≤ E[C∗RAND(`)] ≤ C∗(`) +
pN2

2
, (9.21)

where c∗= argmaxc Cc(`) is the position where C∗(`) is located in the priority-order (see
Eq. 9.3). When the maxcut does not lay at the beginning or end of the priority-order,
c∗=αN where α∈ ]0,1[, which leads to C∗(`)(1−2p)+ pc∗(N− c∗)=C∗(`)(1−2p)+
α(1− α) pN2

2 . Note that, since the number of modi�ed edges is in expectation K= pN(N−1)
2 ,

adding random edges is of the same order of magnitude as maliciously adding edges in or-
der to increase the maxcut. This is understandable since, if the maxcut is in the middle of
the priority-order, then choosing two nodes at random will give with 50% probability a
pair that lays on both sides to the cut position, and hence increase the maxcut by one.

9.6.3 Uncertainty in the localization of nodes in contact networks

For contact networks, a usual scenario consists in acquiring information on the approxi-
mate positions of infected, and sometimes healthy, individuals, and then according to it to
infer the contact network. Due to the scarcity of the data and the amount of noise, a large
scale description of the network is usually preferred, for example by computing the num-
ber of cases in large areas, instead of spotting each infected individual. In such a setting,
localizing the nodes plays a key role in identifying the overall structure of the network, e.g.
how cities are connected to one another, while the local structure of the contact network
is unobservable and highly variable. However, a good property of the MCM strategy is
that the optimized priority-order may bene�t from the overall structure of the network,
even though the local node connectivity may be inaccurate. In order to investigate this
characteristic, we performed simulations on random geometric networks (Penrose, 2003)
generated in the following way:

i) the N nodes are �rst placed at a position drawn uniformly in the square [0,1]2, and
then

ii) each node is connected to all other nodes that lay within a distance r away from
them.

These networks are simple models imitating real contact networks, in which people that
are closer than a distance r are considered to be in contact.
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Figure 9.6: The e�ect of noise in the node locations of a contact network to the maxcut C∗(`): (a) Compar-
ison between the C∗(`) of a random priority-order (green), the optimal priority-order that uses the correct
node locations (red), and the MCM ordering computed on a noisy version of the network (blue), (b) changes
in the network due to the added noise.

Now, we will consider that the position of the nodes used for �nding a priority-order
` were noisy, and subject to an additive Gaussian noise of standard deviation σ. Hence,
the quality of the computed priority-order ` becomes poorer as σ grows. The protocol we
use is the following. We �rst generate a random geometric network and compute ` by
optimizing the maxcut (we use the MLA relaxation, see Sec. 9.4.1). Then we add Gaussian
noise to the location of the nodes, recompute the edges of the network, and �nally assess
the new value of the maxcut along the precomputed priority-order `.

Fig. 9.6(a) shows the increase in the maxcut for the priority-order ` as a function of
noise intensity. First, we can see that, without any noise, the maxcut of the optimized
priority-orders is some orders of magnitude lower than that of a random node ordering
(red and blue lines vs. green line). This is expected for networks embedded in 2D spaces
(e.g. 2D-grids). Second, as σ increases to become three times bigger than the neighborhood
size r, the maxcut of both optimized priority-orders (for the exact and noisy network; red
vs blue line) are of the same order of magnitude, and remain low compared to the random
ordering.

Finally, using Fig. 9.6(b), one can compare the increase in the maxcut to the number
of modi�cations in edges due to noise. The number of changes increases rapidly w.r.t. σ
(note the scale di�erence between Fig. 9.6(a)-9.6(b)), and for σ=3r, most of the edges of
the original network are removed. From the perspective of local connectivity and edge
to edge comparison, the original network has almost nothing in common with its noisy
counterpart. However, the priority-order computed on the noisy contact network is still
valid in terms of the large-scale network structure. Therefore, this is a very sound empirical
�nding for the robustness of the MCM strategy, which testi�es that it can deliver good
performance in realistic settings where there is high uncertainty for the localization of
nodes in a contact network. Note also that this situation is much better than the malicious
and random cases, in which the increase in the maxcut is of the same order than the number
of the added edges.
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9.7 Proofs

Since the main results hold for any priority-order, we may reorder the nodes of G according
to the priority-order `, and thus consider that `(vi)= i without loss of generality.

Notations. First, let x∈{0,1}N be a state vector of size N (i.e. describing the state of the
network during the di�usion process), 0 and 1 vectors of size N that are all-zeros and all-
ones, respectively, and x̄=1− x. For s⊂{1, ..., N} a subset of nodes, let also 1s =(1{i∈s})i
be the indicator vector with ones for nodes in the set s. Then, we de�ne τx as the extinction
time of the di�usion process starting from the state x, i.e. the time needed for the Markov
process to reach its absorbent state X(t=τx)=0 when X(t=0)= x. We also denote the
number of infected nodes in network state x as NI(x)=1>x, while EI−S(x)= x>Ax̄
as the number of edges from a contagious to a healthy node, which edges we also re-
fer to as infectious edges. We will also make use of the following variables: q=d r

ρ∗ e,
b(x)= min{q, NI(x)} and ρ′= r

q + δ is the e�ective healing rate of a healed node.

We now de�ne infection states that will be useful for proving our main results.

De�nition 9.6. For n ∈ {1, . . . , N}, let xn =1{n,...,N} be a state vector such that all nodes

before n are healthy, and all nodes after n are infected.

Informally, xn can be seen as the nth step of an ideal removal of the epidemic such that
all the nodes after the front remain infected while the nodes are healed one by one follow-
ing the priority-order. Starting with xn, adding new infected nodes can either increase or
decrease the expected recovery time. In order to bound these changes, we de�ne best and
worst additional infections. We will use the following notation for the set of nodes that
are possible supports for the increment of infection:

Sj
n = {s ∪ {n, ..., N} : s ⊂ {1, ...,n− 1}, |s|= j} .

De�nition 9.7. Let zj
n be the worst state vector after j additional infections from xn:

zj
n = argmax

s∈Sj
n

E[τ1s ] . (9.22)

De�nition 9.8. Let yj
n be the best state vector after j additional infections from xn:

yj
n = argmin

s∈Sj
n

E[τ1s ] . (9.23)

In the following, zj
n is used for proving upper bounds (Theorems 9.1 and 9.2) and yj

n
lower bounds (Theorem 9.3). Theorems 9.4 and 9.5 of the article are simple corollaries of
Theorems 9.1 and 9.3, respectively. The proofs of Theorems 9.1, 9.2, and 9.3 rely on the
following lemmas.

9.7.1 Main intermediate results and lemmas

Lemma 9.1. Under priority planning, the function x 7→E[τx] is monotonically increasing

with respect to the natural partial order on {0,1}N
(i.e. x≤y if ∀i, xi≤yi).
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Lemma9.2. Let x,y∈{0,1}N
be two state vectors such that x≤y. Then, denoting j= ∑i yi x̄i

as the number of infected nodes in y that are not infected in x, the following inequalities hold:

EI−S(x)− jd ≤ EI−S(y) ≤ EI−S(x)+ jd, (9.24)

where d= maxi ∑j Aij is the highest degree of the network.

Lemma 9.3. Let `(vi)= i for all nodes vi ∈ V , and xn be de�ned as in De�nition 9.6. Then,

the maxcut of ` is equal to:
C∗(`) = max

n
EI−S(xn). (9.25)

Lemma 9.4. For every state vector x, we have:

E[τx] = E[T1+τX(T1)], (9.26)

where T1= min{t≥0 : X(t),x}.

Proposition 9.1. Set uj
n =E[τzj

n
] where zj

n is de�ned as in De�nition 9.7. We have the

following recurrence inequality

ρ′b(zj
n)(u

j
n − uj−1

n ) ≤ 1 + βEI−S(z
j
n)(u

j+1
n − uj

n), (9.27)

Proposition 9.2. Let zj
n be de�ned as in De�nition 9.7. Then the following bound for the ex-

pected extinction time under the `-priority planning and starting from a total infection holds:

∀K≥1, ∀η∈ ]0,1[ and r+δq> max
{
(1+ 1

η )βdq,
[

1
1−η ∑N

n=1+q ∏K
j=0 βEI−S(z

j+q
n )

] 1
K+1
}
,

E[τ1] ≤
∑K

k=0 f (k) + 2q(1 + lnq)
(r + δq)(1− η − f (K + 1))

, (9.28)

where

f (k) =
N

∑
n=1+q

k−1

∏
j=0

βEI−S(z
j+q
n )

r + δq
. (9.29)

Lemma 9.5. Let a≥0 and ξ be the (unique) positive solution to ξ− ln(1 + ξ)= a. The

following inequality holds:

ξ ≤ a + 2
√

a. (9.30)

9.7.2 Proofs of theorems

Proof of Theorem 9.1. Using Lemma 9.2 and Proposition 9.2, we obtain a bound on the
extinction time depending on C∗(`)= maxn EI−S(xn) (using Lemma 9.3),

∀K≥1, ∀η∈ ]0,1[ and ρ′> max{(1+ 1
η )βd,

[
N

1−η ∏K
j=0

βEI−S(z
j+q
n )

q

] 1
K+1

},

E[τ1] ≤
∑K

k=0 f (k) + 2q(1 + lnq)
ρ′q(1− η − f (K + 1))

, (9.31)

where

f (k) = N
k−1

∏
j=0

β(C∗(`) + (q + j)d)
ρ′q

, (9.32)
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using
N

∑
n=1+q

k−1

∏
j=0

β(EI−S(xn) + (q + j)d)
ρ′q

≤ N
k−1

∏
j=0

β(C∗(`) + (q + j)d)
ρ′q

. (9.33)

Finally, we need to select proper values for K and η and derive the �nal result. Let
η∗=1− e−1, ξ be the unique solution of ξ− ln(1+ ξ)= d(ln N+1)

Ĉ∗ where Ĉ∗=C∗(`)+qd,
and K∗=b Ĉ∗d ξc. Using the particular value of K∗,

∑K∗
j=0 ln(1 + j d

Ĉ∗ ) ≤
∫ K∗+1

0 ln(1 + x d
Ĉ∗ )dx

= (K∗ + 1 + Ĉ∗
d ) ln(1 + (K∗ + 1) d

Ĉ∗ )− (K∗ + 1)

≤ (K∗ + 1) ln(1 + (K∗ + 1) d
Ĉ∗ ) +

Ĉ∗
d (ln(1 + ξ)− ξ)

= (K∗ + 1) ln(1 + (K∗ + 1) d
Ĉ∗ )− ln(N)− 1,

(9.34)

where the second inequality is due to d
Ĉ∗ (K

∗+1)≥ ξ and the monotonic decrease of x 7→
ln(1+ x)− x for x≥0.

From Eq. 9.34, we derive that f (K∗+1)≤ (1 − η∗)
[

β
ρ′q (Ĉ∗+(K∗+1)d)

]K∗+1
. We

thus have:
For r+δq>β(C∗(`)+((1 + 1

η∗ )q + K∗ + 1)d),

E[τ1] ≤ ∑K∗
k=0 f (k)+2q(1+lnq)

ρ′q(1−η∗− f (K+1))

≤
N ∑K∗

k=0

[
β

ρ′q (Ĉ
∗+(K∗+1)d)

]k
+2q(1+lnq)

ρ′q(1−η∗)(1− f (K∗+1))

≤ 3N
ρ′q−β(Ĉ∗+(K∗+1)d)

+ 6(1+lnq)
ρ′(1− f (K∗+1))

≤ 3N+6q(1+lnq)
ρ′q−β(Ĉ∗+(K∗+1)d)

.

(9.35)

Finally, using Lemma 9.5, dK∗≤Ĉ∗ξ≤d(ln N + 1) +2
√
Ĉ∗d(ln N + 1), and

(1 + 1
η∗ )q + K∗ + 1

≤ 3q + ln N + 2 + 2
√
C∗(`)

d (ln N + 1)(1 + qd
C∗(`) )

≤ 4q + 2ln N + 3 + 2
√
C∗(`)

d (ln N + 1)

≤ C
∗(`)
d (ε + 2

√
ε),

(9.36)

using
√

a + b≤
√

a+
√

b and 2
√

ab≤ a+b, and where ε= d(3+2ln N+4q)
C∗(`) . This �nal in-

equality proves the desired bound.

Proof of Theorem 9.2. For r+δq>βC∗(`)(1+2
√

ε+ε), Eq. 9.35 leads to:

E[τ1] ≤ 3N+6q(1+lnq)
r+δq−β(Ĉ∗+(K∗+1)d)

≤ η∗(3N+6q(1+ln N))
βqd

≤ η∗(3N+6(1+ln N))
β

≤ 6N
β ,

(9.37)
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since q+K∗+1≤ C
∗(`)
d (ε+2

√
ε)− q

η∗ according to Eq. 9.36 and 1+ ln N≤N.

Proof of Theorem 9.3. Similarly to Proposition 9.2, the expected extinction time of an
epidemic starting from a state vector X can be written as the sum of three terms (recall
δ=0 and see proof of Proposition 9.2 for de�nitions of T1 and E):

E[τx] =
1

ρ′b(x)+βEI−S(x)

+ ρ′b(x)
ρ′b(x)+βEI−S(x)E[τX(T1)|E = 2]

+ βEI−S(x)
ρ′b(x)+βEI−S(x)E[τX(T1)|E = 3].

(9.38)

where b(x)= min{q, NI(x)} is the number of treatments distributed in the network.
Let uj

n =E[τyj
n
]where yj

n is de�ned as in De�nition 9.8. Using Lemma 9.1 and Lemma 9.2,
∀j≥q,

ρ′q(uj
n−uj−1

n ) ≥ 1+β(EI−S(xn)− jd)(uj+1
n −uj

n)

≥ β(EI−S(xn)− jd)(uj+1
n − uj

n),
(9.39)

and, ∀K<n−1,

uq
n−uq

n+1 ≥∏K
j=q

β(EI−S(xn)−jd)
r (uK+1

n −uK
n )

≥ 1
r ∏K

j=q
β(EI−S(xn)−jd)

r ,
(9.40)

since uj+1
n ≥uj

n using Lemma 9.1 and thus r(uK+1
n −uK

n )≥1, and ρ′q= r. In particular, let
n=n∗ be the index of the maxcut, i.e. C∗(`)=EI−S(Xn∗). We thus have:

u0
1 = uq

q+1

= ∑N
n=1(u

q
n−uq

n+1) + uq
N+1

≥ uq
n∗−uq

n∗+1

≥ 1
r ∏K

j=q
β(C∗(`)−jd)

r .

(9.41)

The third line is due to the positivity of each (uq
n−uq

n+1)which is derived from Lemma 9.1.
Let η∈ ]0, 1

2 [, ε∈ ]0,η[, and assume that q≤ C
∗(`)
d . Let also K∗=q+

⌊
(η−ε)( C

∗(`)
d −q)

⌋
.

Then K∗≥q, K∗< C
∗(`)
d ≤ n∗−1 due to Lemma 9.2, and the choice of K∗ is valid. Eq. 9.41

leads to:
u0

1 ≥
1
r

(
β(C∗(`)−K∗d)

r

)K∗−q+1

≥ 1
r

(
(1− η + ε) β(C∗(`)−qd)

r

)K∗−q+1
.

(9.42)

If r< (1− η)β(C∗(`)− qd), then

u0
1 ≥

1
r

(
1 + ε

1−η

)K∗−q+1

≥ 1
r eln(1+ ε

1−η )(η−ε)( C
∗(`)
d −q).

(9.43)

Finally, chosing ε∗= argmaxε ln(1+ ε
1−η )(η−ε) leads to ln(1+ ε∗

1−η )(η−ε∗)≥ ( η
2(1+ln2) )

2

and the desired result.
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Proof of Corollary 9.1. Let q=1, δ=0, β=1 and N ≥ 20. If 4C∗(`) ≥ 16d ln2 N, then,
with the notation of Theorem 9.1,

ε =
d(7 + 2ln N)

C∗(`) ≤ ln2
2

(1 +
7

2ln N
), (9.44)

and
1 + 2

√
ε + ε ≤ 4. (9.45)

Hence, if r ≥ 4C∗(`), Theorem 9.1 is applicable and

E[τ1] ≤
3N + 6

r− C∗(`)
(
1 + 2

√
ε + ε

) ≤ 26N
r

. (9.46)

On the contrary, if 4C∗(`) < 16d ln2 N, then

C∗(`)(1 + 2
√

ε + ε)

= C∗(`) + 2
√
C∗(`)d(7 + 2ln N) + d(7 + 2ln N)

≤ d
(

7 + 2(1 + 2
ln2 ) ln N + 4√

ln2

√
ln N(7 + 2ln N)

)
≤ 16d ln2 N,

(9.47)

by a simple function analysis. Hence, if r ≥ 16d ln2 N, Theorem 9.1 is applicable and

E[τ1] ≤
3N + 6

r− C∗(`)
(
1 + 2

√
ε + ε

) ≤ 26N
r

. (9.48)

9.7.3 Proofs of propositions and lemmas

Proof of Lemma 9.1. Let x,y∈{0,1}N be two initial states of the network such that
x≤y. If X(t), Y(t) are di�usion processes such that X(0)= x and Y(0)=y, then the
strong monotonicity of the Markov process X(t) implies that ∀t≥0, P(X(t)=0)≥
P(Y(t)=0), which may be rewritten as P(τx≤ t)≥P(τy≤ t). This means that τy dom-
inates τx and thus E[τx]≤E[τy]. The strong monotonicity derives from a standard cou-
pling argument.

Proof of Lemma 9.2. The set of infected nodes at state y consists of the infected nodes
at state x and exactly j additional nodes. Since a node can have at most d neighbors, then
each of the j additional nodes can add or remove at most d edges to the set of infectious
edges of the network. More formally,

|EI−S(y)− EI−S(x)| = |∑i,j Aij(yi(1− yj)− xi(1− xj))|
≤ ∑i,j Aij|yi(1− yj)− xi(1− xj)|.

(9.49)

However, since x ≤ y, |yi(1− yj)− xi(1− xj)| simpli�es to yi(1− xi)(1− yj) + yj(1−
xj)xi. Due to the symmetry of A, we hence have:

|EI−S(y)− EI−S(x)| ≤ ∑i,j Aijyi(1− xi)(1− yj) + ∑i,j Aijyi(1− xi)xj

= ∑i,j Aijyi(1− xi)(1− yj + xj)

≤ ∑i,j Aijyi(1− xi)

≤ jd.

(9.50)
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Proof of Lemma 9.3. Since xn =1{n,...,N}, we have
EI−S(xn)= ∑ij Aijxni(1− xnj)= ∑ij Aij1{j<n≤i} and the maximum over all n ∈ {1, . . . , N}
matches De�nition 9.4 of C∗(`) when `(vi)= i (since A is symmetric).

Proof of Lemma 9.4. The lemma follows from the Markov property of the process X(t)
when the control action is a priority planning. The extinction time after T1, i.e. the �rst
change of the state vector from X(0)= x to a certain value x′, is equal to the extinction
time of the process assuming that X(0)= x′, hence

E[τx] = E[E[τx|T1, X(T1)]] = E[T1 + τX(T1)]. (9.51)

Proof of Proposition 9.1. Three types of events can happen: i) either a node recovers by
itself (at a rate δ), ii) a node is healed by a resource (at a rate ρ′), or iii) a node is infected
(at a rate β). Let E be a random variable representing the type of event that happened at
T1:

E =


1 if a node healed by itself at T1

2 if a node is healed by a resource at T1

3 if a node is infected at T1

. (9.52)

Thus:
E[τx] =

1
δ(NI(x)−b(x))+ρ′b(x)+βEI−S(x)

[
1

+δ(NI(x)− b(x))E[τX(T1)|E = 1]

+ρ′b(x)E[τX(T1)|E = 2]

+βEI−S(x)E[τX(T1)|E = 3]
]

.

(9.53)

Using Lemma 9.1, we get that E[τX(T1)|E=1]≤E[τx] which leads to:

(ρ′b(x) + βEI−S(x))E[τx] ≤ 1 + ρ′b(x)E[τX(T1)|E = 2]

+ βEI−S(x)E[τX(T1)|E = 3].
(9.54)

We �nally set uj
n =E[τzj

n
] to reach the reccurence inequality. Indeed, we have, for all

j≥q (and j≥1 if n=N+1), by de�nition of xj−1
n and xj+1

n , E[τX(T1)|E=2]≤uj−1
n and

E[τX(T1)|E=3]≤uj+1
n . This comes from the fact that, as the order is static, the j infected

nodes that are among {1, ...,n−1} will receive a resource �rst.

Proof of Proposition 9.2. By iterating Eq. 9.27, we obtain when n ≤ N:

ρ′q(uq
n − uq

n+1)

≤ ∑K
k=0 ∏k−1

j=0
βEI−S(z

j+q
n )

ρ′q + ρ′q(uK+q+1
n − uK+q

n )∏K
j=0

βEI−S(z
j+q
n )

ρ′q

≤ ∑K
k=0 ∏k−1

j=0
βEI−S(z

j+q
n )

ρ′q + ρ′qu0
1 ∏K

j=0
βEI−S(z

j+q
n )

ρ′q ,

(9.55)
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since uK+q+1
n ≤u0

1 using Lemma 9.1 and u0
1=E[τ1].

We can now sum over n and use in the following the de�nition f (k)= ∑N
n=1+q ∏k−1

j=0
βEI−S(z

j+q
n )

ρ′q :

ρ′q(1− f (K + 1))E[τ1] ≤ ρ′quq
N+1 +

K

∑
k=0

f (k). (9.56)

The �nal step consists in upper bounding uq
N+1. Using Eq. 9.27 and Lemma 9.2, ∀k ≤ q,

uk
N+1 − uk−1

N+1 ≤ ∑
q
j=k

1
ρ′ j (

βd
ρ′ )

j−k + (uq+1
N+1 − uq

N+1)(
βd
ρ′ )

q−k+1

≤ ∑
q
j=k

1
ρ′ j (

βd
ρ′ )

j−k + u0
1(

βd
ρ′ )

q−k+1,
(9.57)

and, if ρ′ > βd,

uq
N+1 ≤ ∑

q
k=1 ∑

q
j=k

1
ρ′ j (

βd
ρ′ )

j−k + u0
1 ∑

q
k=1(

βd
ρ′ )

q−k+1

≤ ∑
q
k=1

1
k

1
ρ′−βd + u0

1
βd

ρ′−βd

≤ 1+lnq
ρ′−βd + u0

1
βd

ρ′−βd .

(9.58)

Replacing uq
N+1 with this expression in Eq. 9.56 gives:

E[τ1] ≤
∑K

k=0 f (k) + q(1+lnq)ρ′
ρ′−βd

ρ′q(1− βd
ρ′−βd − f (K + 1))

, (9.59)

when 1− βd
ρ′−βd − f (K + 1) > 0.

Let η∈ ]0,1[. When ρ′> max{(1+ 1
η )βd,

[
1

1−η ∑N
n=1+q ∏K

j=0
βEI−S(z

j+q
n )

q

] 1
K+1

},

βd
ρ′ − βd

< η, (9.60)

1− η − f (K + 1) > 0, (9.61)
and �nally

ρ′

ρ′ − βd
< 1 + η < 2, (9.62)

which leads to the desired inequality.

Proof of Lemma 9.5. x− ln(1+ x) is convex, thus always above its tangent line:
∀x0 > 0,

a = ξ − ln(1 + ξ) ≥ (x0 − ln(1 + x0)) +
x0

1 + x0
(ξ − x0), (9.63)

and thus,
ξ ≤ 1+x0

x0
(a + ln(1 + x0))− 1

≤ 1+x0
x0

a + x0.

(9.64)

The �nal result is obtained by setting x0=
√

a.
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On the convergence of networks

“To every complex question there is simple

answer . . . and it is wrong.”

— H.L. Mencken
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Figure 10.1: The characteristics of a transportation network are highly dependent on the
topology of the space in which it is embedded. NASA Earth Observatory/NOAA NGDC.

10.1 Introduction

In this chapter, our aim is to describe the characteristics of large graphs that display a cer-
tain notion of regularity. More speci�cally, one may argue that a network of millions or
billions of nodes will not be a�ected by adding or removing one node, and that the charac-
teristics of interest have reached a sort of limiting behavior. Hence, the description of such
a large network may not require the knowledge of each and every node of the network,
and its macroscopic properties may converge to that of a limit space whose description is
simpler and more compact. Such an endeavor is motivated by three reasons:

1. First, running complex algorithms (i.e. whose complexity is more than linear in the
number of nodes) becomes prohibitive for real-world social networks, and a possible
solution to this problem is to �nd simpler representations of such networks.

2. Second, the actual network may be impossible to acquire, and working on approx-
imate representations of the network may provide more robust and practical algo-
rithms in real-life applications. A notable example of such a scenario is the control
of epidemics using density data.

3. Third, the analysis of limits of graphs provides new insights and results for random
graphs, which is of particular interest in many practical applications including graph
clustering.

We will see in this chapter that a natural way to create such a notion of limit is to de-
�ne a distance between graphs and continuous spaces, and we will investigate an elegant
and powerful method for achieving this using probabilistic mappings. A byproduct of our
analysis is the de�nition of convergence for matrices and operators of functional spaces
that are easy to use and powerful analytical tools (see Sec. 11.1.1).

10.1.1 Related works

The literature of network convergence is relatively large, and can be divided into four
groups: kernel-based distances, graphons and limits of dense graphs, local weak conver-
gence using random rooted graphs, and Gromov-Hausdor� and related distances. A good
introduction to network convergence is available in the book by Lovász (2012).
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The simplest notions of convergence are based on local characteristics such as the
number of triangles, stars, cliques or any particular subgraph of a network. More gener-
ally, Borgs et al. (2006, 2008) de�ned a notion of convergence for dense graphs based on
the convergence of the number of subgraphs of any �xed size. However, these notions
of convergence usually miss the macroscopic structure of the network which drives the
large-scale behavior of di�usion processes. One of the most famous notion of limits of
graphs is called a graphon, and was introduced by Lovász and Szegedy (2006) in order to
study the limit of dense graphs in a rigorous way. These objects are very similar to the
inhomogeneous random graphs de�ned in Model 5.5, in which nodes are drawn at ran-
dom in a certain space ([0,1] for graphons) and then edges are drawn independently at
random according to a kernel function. One of the problems of such limits is that they are
locally tree-like, i.e. the structure of the network is, on a local level, completely random,
and triangles are very scarce. However, the contact networks encountered in epidemiol-
ogy are closer to geometric random networks (see Model 5.4) and have many triangles. As
a consequence, graphons are not particularly well-suited to our setup.

A growing body of theoretical works is centered around the local weak convergence

introduced by Benjamini and Schramm (2001) and later analyzed by Elek (2007, 2012),
which describes a graph using random rooted subgraphs whose roots are chosen uniformly
at random across the network. While this notion of convergence is relatively strong and
a large part of the random matrix literature and theoretical analysis of random networks
is based on it, the limiting space is not easy to handle, nor intuitive, and this notion of
convergence tends to favor local characteristics instead of the macroscopic properties of
the network.

In order to impose a more global convergence of the structure of a network, one may
consider the convergence of a graph as a metric space. The �rst works to investigate metric
space comparison are probably the works of Gromov (1981, 1999). These theoretical works
de�ned a distance between metric spaces known as the Gromov-Hausdor� distance. Sev-
eral later articles considered the convergence of networks using the Gromov-Hausdor�
distance (e.g. Addario-Berry et al. (2012)), in the restricted case of particular random net-
works.

Finally, the Gromov-Wasserstein distance discussed in this thesis was analyzed in sev-
eral recent articles, though not for network convergence. In image analysis and object
recognition, Mémoli (2011, 2014) used the Gromov-Wasserstein distance to compare 3D
objects, and provided interesting and e�cient approximations of such distance. In a more
theoretical perspective, Sturm (2006, 2013) investigated the properties of the space of spaces
equipped with the Gromov-Wasserstein distance. More speci�cally, Strum proved a num-
ber of results concerning geodesics, Ricci curvature, tangent space and other geometric
characteristics of the space of spaces. More generally, the recent paper by Sturm (2013) is
an excellent introduction to this notion of distance, and provides an intuitive discussion
and valuable results.

10.1.2 Outline

In Sec. 10.2, we present the notion of Gromov-Wasserstein distance between metric and
measurable spaces, along with the mathematical tools needed for its analysis. We also
de�ne the concept of mapping distance between functions lying in two di�erent spaces,
which will be necessary for the convergence of di�usion processes when their underlying
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space converges. While the notion of Gromov-Wasserstein distance is not new, the pre-
sentation given in this section using mapping distances is novel and has the advantages of
highlighting the important characteristics of this distance, as well as allowing generaliza-
tion of such distances based on probabilistic mappings. Sec. 10.3 provides several examples
of graphs converging to continuous spaces. Sec. 10.4 provides a discussion on the proposed
framework and open problems for future work, while proofs are gathered in Sec. 10.5.

10.2 Probabilistic mapping for network convergence

In this section, we present the main concepts for our analysis of network convergence,
as well as a justi�cation of why these speci�c mathematical concepts were used. More
speci�cally, we consider the problem of network convergence through the perspective of
probabilistic mapping, that is by comparing two spaces by mapping the �rst into the second
using a coupling of random variables (see De�nition 10.1). This approach, in essence very
similar to optimal transport theory (see, for example, Villani (2009)), leads to powerful and
elegant notions of distance between functions, operators and spaces, that will be used in
Chap. 11 to derive a number of continuity theorems for the characteristics of networks.

10.2.1 Notations

Let (X ,µ) be a probability space, p ≥ 1 a positive number and f : X →R a µ-measurable
function. Then, the p-norm of f is the (possibly in�nite) value

|| f ||p,µ = Eµ [| f (X)|p]1/p =

(∫
X
| f (x)|pdµ(x)

)1/p

, (10.1)

and let Lp,µ = { f : X → R | || f ||p,µ < +∞} be the space of functions with bounded
p-norm. Similarly, we de�ne the almost sure maximum value of f as

|| f ||∞,µ = inf{C ∈R∪ {+∞} | f (x) ≤ C a.s.} , (10.2)

and L∞,µ = { f : X →R | || f ||∞,µ < +∞} the corresponding functional space. If µX and
µY are two measures on the spaces X and Y , respectively, then µX ⊗ µY is the product
measure on the product space X × Y . We now de�ne the coupling of two probability
measures (see, for example, Villani (2009)):

De�nition 10.1 (Coupling). Let µX and µY be two probability measures on X and Y
(respectively). A coupling of µX and µY is a probability measure on X × Y such that the

marginals over X and Y are respectively µX and µY . The set of all couplings of µX and µY
is denoted as Π(µX ,µY ).

Informally, a coupling is a mapping between two probability measures, and is a natural
extension of bijective mappings to measure spaces. The most simple example of coupling is
the product measure, that creates no correlation between the two measures. For simplicity,
when f : X → R is a µ-measurable function on X and π ∈ Π(µX ,µY ) is a coupling of
µX and µY , we will implicitly extend f toX ×Y by f̃ (x,y) = f (x) for all (x,y) ∈ X ×Y
and use the notation || f ||p,π = || f̃ ||p,π .
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Figure 10.2: Isometry problem: can we map one space into another is a way that preserves
distances?

10.2.2 Quantifying near-isometries

The intuition behind the Gromov-Wasserstein distance is to compare two metric spaces by
�nding a correspondence between points of X and Y that preserves distances, and can be
seen as a relaxation of the concept of isometric spaces.

De�nition 10.2 (Isometric spaces). Two metric spaces (X ,dX ) and (Y ,dY ) are called
isometric if there exists a mapping φ : X → Y such that:

• φ is bijective,

• φ is an isometry: ∀(x1, x2) ∈ X 2
, dY (φ(x1),φ(x2)) = dX (x1, x2).

Isometric spaces are totally equivalent in terms of topology, and would be a natural
candidate to compare metric spaces. However, using this notion to compare spaces has
several drawbacks:

1. Isometries can only identify perfectly similar spaces, and do not measure how far

two spaces are from being isometric.

2. The bijection assumption is rather strong, as it imposes the spaces to have the same
cardinality. Notably, it is impossible to compare discrete spaces (e.g. graphs) with
uncountable spaces (e.g. the real plane R2) since no bijection can exist between a
countable and an uncountable set.

The Gromov-Wasserstein distance provides a natural solution to these two limitations
by relaxing the bijective assumption using a probabilistic mapping (i.e. coupling) between
the two spaces. The distance then compares the two metrics with a standard Lp-norm and
is, in spirit, very similar to the Wasserstein distance between probability measures used in
optimal transport theory (Villani, 2009).

10.2.3 The space of spaces

In order to compare two metrics, our strategy is to use a probabilistic coupling between the
two spaces. We will thus consider that the metric spaces are equipped with a probability
measure. This concept of metric and measurable space is formally de�ned in the work of
Sturm (2013), and we use here the same assumptions.

De�nition 10.3 (Mm-space). A metric and measurable space (mm-space for short) is a

triple (X ,dX ,µX ) such that:
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• (X ,dX ) is a Polish metric space (i.e. complete and separable metric space),

• µX is a Borel probability measure on X .

Remark 10.1. In the work of Mémoli (2014), (X ,dX ) is assumed to be a compact metric

space. This assumption can be rather restrictive (e.g. excluding in�nite spaces such asX = R),

and is not needed for our purpose.

Remark 10.2. Requiring the metric space to be complete and separable allows the use of

advanced probability theory and imposes the measurability of all the sets and functions con-

sidered hereafter. This assumption is standard and is also made in optimal transport theory

(Villani, 2009).

In the following, we will always denote as µX and dX the measure and distance of an
mm-space X , and will only refer to X instead of (X ,dX ,µX ) when there is no ambiguity.
The diameter diam(X ) of a metric space X is the maximum distance between any two
points of the space. In order to evaluate how large an mm-space is, we de�ne its size as
the average distance between two points of the space taken at random, or more formally:

De�nition 10.4 (Size). The p-size of an mm-space X is the quantity

sizep(X ) = ||dX ||p,µX⊗µX (10.3)

where µX ⊗ µX is the product measure of µX and µX .

Note that, ∀p ≥ 1, sizep(X ) ≤ diam(X ) = ||dX ||∞, and hence bounded mm-spaces have
a �nite p-size.

10.2.4 The mapping distance

In order to compare functions lying in di�erent mm-spaces, we now de�ne a distance
between functions under a �xed coupling. This distance will later help us de�ne distances
between operators and mm-spaces under the probabilistic mapping setting.

De�nition 10.5 (Mapping distance for functions). LetX and Y be two mm-spaces, and

f ∈ Lp,µX and g ∈ Lp,µY two functions on X and Y respectively. Then, the (p,π)-mapping

distance between f and g is the p-norm of the di�erence between the two functions with

respect to the coupling π:

∆∆p,π( f , g) =
(∫
X×Y
| f (x)− g(y)|pdπ(x,y)

)1/p

, (10.4)

where π ∈ Π(µX ,µY ) and Π(µX ,µY ) is the set of all couplings between µX and µY (see

De�nition 10.1). Then, the p-mapping distance between f and g is theminimum of∆∆p,π( f , g)
over all possible couplings:

∆∆p( f , g) = inf
π∈Π(µX ,µY )

∆∆p,π( f , g). (10.5)

Intuitively, this distance compares the values of f and g through a probabilistic map-
ping (i.e. coupling) between X and Y . Note that ∆∆p( f , g) can also be seen as the Wasser-
stein distance between the probability distributions of f (X) and g(Y), where X ∼ µX and
Y ∼ µY (see the book of Villani (2009) for more information on this quantity).
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Figure 10.3: Probabilistic mapping between a graph and the 2D square [0,1]2. Each node
is mapped to a probability distribution (here uniform measures over distinct subsets for
simplicity) that add up to the uniform measure on [0,1]2.

Remark 10.3. The Wasserstein distance Wp(µ,ν) between two probability measures µ and

ν of R can also be seen as a mapping distance between identity functions of R equipped with

the probability measures µ and ν, respectively:

Wp(µ,ν) = ∆∆p(Id(R,µ), Id(R,ν)),

where Id(R,µ)(x) = x. Hence, the mapping distance is a general framework able to describe

the Wasserstein distance, the Gromov-Wasserstein distance, and a generalization of the oper-

ator norm for operators of an mm-space (see Sec. 11.1.1).

The mapping distance, as for Lp-norms and their induced distances, is a pseudo-metric
for the space of Lp,µX functions of all mm-spaces X , and one can de�ne a space Lp of
equivalence classes for ∆∆p in which the mapping distance is indeed a distance.

Theorem 10.1. ∆∆p is a pseudometric for the set of Lp,µX functions of all mm-spaces X .

Proof. First, ∆∆p( f , g) is well de�ned since | f (x)− g(y)|p ≤ 2p−1( f (x)p +g(y)p) by con-
vexity of |x|p, and thus ∆∆p( f , g) ≤ 2p−1(|| f ||p,µX + ||g||p,µY ) < +∞. Second, note that
∆∆p,π = || f̃ − g̃||p,π where f̃ (x,y) = f (x) and g̃(x,y) = g(y). The symmetry, positivity
and triangular inequality follow immediately.

De�nition 10.6. Let Lp be the quotient space of the space of all Lp,µX functions of all mm-

spaces X by the equivalence relation f ∼p g⇔ ∆∆p( f , g) = 0:

Lp = ∪X∈X Lp,µX / ∼p, (10.6)

where X is the set of all mm-spaces. Then, ∆∆p is a distance in Lp.

Also, two functions f and g are part of the same equivalence class if and only if there
exists a coupling such that f (X) = g(Y) a.s. .

Lemma 10.1. Let X and Y be two mm-spaces, and f ∈ Lp,µX and g ∈ Lp,µY two functions

on X and Y respectively. Then the following assertions are equivalent:

• ∆∆p( f , g) = 0.

• There exists X and Y two random variables of marginal probability measure µX and

µY , respectively, such that f (X) = g(Y) a.s.
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10.2.5 The Gromov-Wasserstein distance

In this section, we de�ne the notion of Gromov-Wasserstein distance between mm-spaces,
and give a few preliminary results on this quantity. This notion was de�ned to compare
metric and measurable spaces, and is simply the distance between the metrics of the two
mm-spaces, up to a probabilistic mapping.

De�nition 10.7 (Gromov-Wasserstein distance). Let p ≥ 1, and X and Y two mm-

spaces of �nite p-size. The p-Gromov-Wasserstein distance between X and Y is de�ned as

follows:

∆∆p(X ,Y) = inf
π∈Π(µX ,µY )

∆∆p,π⊗π(dX ,dY ), (10.7)

where Π(µX ,µY ) is the set of all couplings of µX and µY , and π⊗π is the product measure.

This distance is also referred to as Lp-distortion distance by Sturm (2013), and can be rewrit-
ten as:

∆∆p(X ,Y) = inf
π∈Π(µX ,µY )

||d̃X − d̃Y ||p,π⊗π, (10.8)

where dX and dY are extended to take values in (X ×Y)2 as follows: d̃X (x1,y1, x2,y2) =
dX (x1, x2) and d̃Y (x1,y1, x2,y2) = dY (y1,y2). As for the mapping distance, the Gromov-
Wasserstein distance is a pseudometric in the space of all mm-spaces, and becomes a dis-
tance on the space of equivalence classes w.r.t. ∆∆p.

Theorem 10.2. ∆∆p is a pseudometric for the set of all mm-spaces of �nite p-size.

Proof. First, ∆∆p(X ,Y) is well de�ned since |dX (x1, x2)− dY (y1,y2)|p ≤ 2p−1(dX (x1, x2)p

+dY (y1,y2)p) by convexity of |x|p, and thus ∆∆p(X ,Y) ≤ 2p−1(sizep(X )+ sizep(Y)) <
+∞. The symmetry, positivity and triangular inequality follow immediately from Eq. 10.8.

De�nition 10.8. Let Xp be the quotient space of the space of all metric and measurable

spaces of �nite p-size by the equivalence relation X ∼p Y ⇔ ∆∆p(X ,Y) = 0. Then, ∆∆p is a

distance in Xp.

An important result of the literature is that the in�mum in Eq. 10.7 is met by a particular
coupling (Sturm, 2013). This result will be useful for our analysis and allow us to remove
the in�mum in Eq. 10.7 and directly refer to one of the optimal couplings.

Lemma 10.2. For each p ≥ 1 and pair of mm-spacesX and Y , the in�mum in the de�nition

of ∆∆p(X ,Y) can be reached. That is, there exists a coupling π ∈Π(µX ,µY ) such that

∆∆p(X ,Y) = ∆∆p,π⊗π(dX ,dY ) (10.9)

Proof. See (Sturm, 2013, Lemma 1.7).

De�nition 10.9. A coupling is called optimal (for ∆∆p) if Eq. 10.9 is satis�ed. Moreover, we

will denote as Optp(X ,Y) the set of all such couplings.
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Figure 10.4: Probabilistic mapping of Example 10.2 between a line and a 2D stripe. A point
on the former is mapped to a line segment on the latter.

10.2.6 Examples of distances and mm-spaces

We now provide a few simple examples to make the reader familiar with the aforemen-
tioned concepts.

Example 10.1. Let {0} be the mm-space with only one element. Then, the size of any mm-

space X is equal to its distance to {0}:

∆∆p(X ,{0}) = sizep(X ). (10.10)

The mm-space {0} plays a similar role to that of the zero value of a vector space, and this

intuition is used by Sturm (2013) to de�ne scale-invariant distances between mm-spaces.

Example 10.2. Let X = [0,1] and Y = [0,1] × [0, a] where a > 0. When a � 1, a
very reasonable coupling is to map each point x ∈ [0,1] uniformly to the horizontal line

{(y1,y2) ∈ Y : y1 = x and y2 ∈ [0, a]} (see Fig. 10.4). In mathematical terms, this is equiv-

alent to the coupling

dπ(x,y) = δ{y1=x}dx
dy2

ε
, (10.11)

where δ{·} is the Dirac measure. Then, the Gromov-Wasserstein distance is upper bounded by:

∆∆p(X ,Y) ≤ ∆∆p,π⊗π(dX ,dY ) = a
(

23/2

(p + 1)(p + 2)

)1/p

. (10.12)

This imposes that lima→0[0,1]× [0, a] = [0,1] w.r.t. ∆∆p.

More generally, one can show that, if limn→+∞ sizep(Yn) = 0, then, under mild technical
constraints, limn→+∞X ×Yn = X using the following result.

Theorem 10.3. Let X and Y be two mm-spaces, and let X ×Y be the mm-space equipped

with a coupling measure µX×Y ∈ Π(µX ,µY ) and a metric dX×Y ((x,y), (x′,y′)). Further-
more, let us assume that dX×Y veri�es the following constraints:

• ∀(x, x′,y) ∈ X 2 ×Y , dX×Y ((x,y), (x′,y)) = dX (x, x′),
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Figure 10.5: Mapping f (θ) = eiθ of Example 10.3 between the interval [0,2π[ and the unit
circle. While the blue distance is well preserved, the green one (passing through θ = 0)
incurs a large error.

• ∀(x,y,y′) ∈ X ×Y2, dX×Y ((x,y), (x,y′)) = dY (y,y′).

Then the Gromov-Wasserstein distance between X and X ×Y is bounded by the size of Y :

∆∆p(X ,X ×Y) ≤ sizep(Y). (10.13)

Example 10.3. Let X = [0,2π[ be an interval and Y = {x ∈ C : |x| = 1} the unit circle.
A deterministic coupling exists between these two spaces: f (θ) = eiθ

for θ ∈ X (see Fig. 10.5).

This gives the following bound on the p-Gromov-Wasserstein distance between X and Y :

∆∆p(X ,Y) ≤ 2π

(4(p + 1)(p + 2))1/p . (10.14)

10.2.7 Application to network comparison

Let G = (V ,E) be a weighted and undirected network of n nodes and adjacency matrix
A. G has a natural topology (made of the neighborhoods in G) and uniform probability
measure. However, in order to create an mm-space from G , a metric between elements of
V should be speci�ed. We thus consider three metrics on graphs:

• The shortest path distance dSP(u,v) = min(c1,...,cK)∈Puv ∑k Ackck+1 where Puv is the
set of paths in G from u to v. This is a very natural distance and will be our default
metric throughout this document. However, it is very sensitive to noise in the ad-
jacency matrix, and in practical applications we may prefer more robust distances
such as the random walk distance.

• The random walk distance dRW(u,v) = E[τuv + τvu] where τuv is the time taken
by a random walk with initial state u to reach v. In practice, dRW can be computed
by taking the pseudo-inverse of the Laplacian matrix K, and return dRW(vi,vj) =√

Kii + Kjj − 2Kij.

• Any inferred metric based on the adjacency matrix A, e.g. using a maximum likeli-
hood over a certain parametric model of random graphs.
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In the following, we assume that a metric dG is chosen, and we denote (G,dG ,U (V))
the mm-space of the graph G , where U (V) is the uniform distribution over the discrete
set V and, unless speci�ed otherwise, the distance dG is the shortest-path distance. When
comparing two graphs, the Gromov-Wasserstein distance has the following matrix form:

Theorem 10.4. Let G and G ′ be two graphs of size n and n′ respectively. Then, the Gromov-
Wassertstein distance between G and G ′ can be rewritten as:

∆∆p(G,G ′) = inf
P ∈ [0,1]n×n′

s.t.

P1 = 1
n 1

P>1 = 1
n′ 1

(
∑

i,j,k,l
|Dij − D′kl |pPikPjl

)1/p

, (10.15)

where D and D′ are the distance matrices of G and G ′ (i.e. Dij = dG(i, j)).

Note that the optimization problem to solve is quadratic in the projection matrix P, and
not necessarily convex. Hence, in general, this problem is NP-hard. However, a number
of heuristics are available for solving this problem approximately (Mémoli, 2014).

An interesting intuition for generic mm-spaces is that, properly re-normalized, undi-
rected graphs are dense in the space of all mm-spaces Xp. This means that mm-spaces
can be seen as limits of graphs, and that all the characteristics of graphs that are continuous
w.r.t. ∆∆p can also be de�ned for generic mm-spaces.

Theorem 10.5. The subset of undirected graphs equipped with a distance metric of the form

αdSP for α > 0 is dense in the space of mm-spaces Xp with respect to ∆∆p.

For sparse networks, rescaling distances is usually required in order for the network
to converge to a continuous space, and, for any α > 0, we will use the notation αX for the
rescaled mm-space (X ,αdX ,µX ).

10.3 Limits of several popular graphs

10.3.1 Grid graphs

Grid graphs are among the simplest examples of converging networks, and their conver-
gence to Rd made them practical tools for approximating continuous processes and par-
tial di�erential equations for numerical simulations. However, an interesting result of our
theory is that grids do not converge to the same metric space, and although d-dimensional
grids always tend to Rd, the induced metric on Rd depends on the number of neighbors
of the grid. For example a 2d-regular grid, or Cartesian grid, GCG(n,d) of nd nodes, in
which each node is positioned on the integer coordinates of a d-dimensional space and
connected to its left and right neighbor in each dimension, leads to the Manhattan dis-
tance ||x− y||1 = ∑i |xi − yi|:

∆∆p

(
1
n
GCG(n,d) , ([0,1]d, ||x− y||1,U[0,1]d)

)
≤ d

n
, (10.16)

and the rescaled grid graph 1
nGCG(n,d) = (GCG(n,d), 1

n dSP, U (V)), where dSP is the
shortest-path distance and U (V) is the uniform distribution over the nodes of GCG(n,d),
converges to [0,1]d equipped with the Manhattan distance and uniform distribution.
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10.3.2 Totally connected graph

A totally connected graph Tn = (V ,E) is a graph for which each pair of nodes is connected,
i.e. E = V2. In this network, the shortest-path distance between each node is exactly 1,
and dij = 1{i , j}. Strictly speaking, totally connected graphs do not converge since, if
they did, they would converge to ([0,1],1{x , y},U[0,1]), which is not a separable metric
space. This is actually a simple proof to show that Xp is not complete, as is can be shown
that Tn is a Cauchy sequence (Sturm, 2013).

However, the notion of Gromov-Wasserstein distance can be extended to gaugedmetric

spaces in which Tn converges (see Sturm (2013)). In our formalism, we can observe that, if
d[0,1](x,y) = 1{x , y}, then

∆∆p(dTn ,d[0,1]) =
1

n1/p , (10.17)

and all the continuity results of the next chapter are applicable. In a loose sense, totally
connected networks tend to in�nite spaces in which each element is at the same distance
from any other element. Note also that dTn converges to d[0,1] if and only if p < +∞,
and this is an example for which the Gromov-Hausdor� distance does not converge (Gro-
mov, 1999), while the Gromov-Wasserstein distance does. This fact was expected since a
classical result of the Gromov-Hausdor� distance is that it is a complete metric (Gromov,
1999), and thus the convergence w.r.t. Gromov-Hausdor� would imply the separability of
the metric space [0,1] equipped with d[0,1], which yields a contradiction.

10.3.3 Random sampling from an mm-space

When dealing with processes taking place in a continuous space, sampling is a very nat-
ural choice, and data processing will usually start by selecting a set of query points in the
desired space. The assumption is that the query points are su�ciently many and properly
spaced so that they represent the continuous space with su�cient accuracy. For example,
a water-distribution company may monitor its distribution network by placing several
water quality sensors, and the interesting questions that arise are: do these sensors give
a truthful view of the water quality in the whole network? Is prediction possible using
these sensors? Another example is that of a social network in which a company may have
gathered information about a subgroup of users (e.g. the age of the few clients that �lled
an online form), and would like to infer data on its whole customer base.

We will thus consider the convergence of samples of an mm-space, and will focus on
the random sampling method. This sampling consists in drawing n i.i.d. samples (Xi)i≤n
from an mm-space X according to its probability measure µX . The next theorem shows
that this sampled discrete space converges to the original mm-space.

Theorem 10.6. Let X ∈ Xp be an mm-space, and (Xi)i∈N a sequence of i.i.d. random

variables with probability distribution µX . Then, if Xn is a (random) discrete mm-space of n
elements, uniform measure and metric dXn(i, j) = dX (Xi, Xj), then:

∆∆p(Xn,X ) ≤ 2Wp(µ̂n,µX ), (10.18)

where Wp(µ,ν) is the Wasserstein distance between the two measures µ and ν, and µ̂n =
1
n ∑i δXi is the empirical distribution of the samples (Xi)i∈N in X . As a result,

∆∆p(Xn,X )→ 0 a.s.,
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and Xn converges to X almost surely.

Hence, the continuity theorems of the next chapter apply to random sampling. This
implies that, intuitively, sampled data have a similar structure as the original sampled
space. Note that other sampling methods can be used, for example following a grid struc-
ture, and the comparison of the convergence rates of each sampling method would be an
interesting work for the future. Moreover, a direct consequence of Theorem 10.6 is that the
set of discrete mm-spaces is dense in Xp, and a natural question that arises is whether the
convergence rate of random sampling is optimal, i.e. if there exists a sequence of discrete
spaces Xn of size n converging to a continuous space X faster than Wp(µ̂n,µX ).

10.3.4 Geometric random networks

Geometric random graphs are designed to model contact networks, in which edges rep-
resent nodes closer than a certain threshold in a certain metric space. A formal de�nition
is given in Model 5.4. These graphs can be seen as the unweighted equivalents of random
sampling, and, under technical assumptions, the shortest-path distance in these graphs
tends to the distance in the original space (under proper renormalization by the radius rn).
We �rst de�ne the concept of geodesic mm-space.

De�nition 10.10 (Geodesic mm-space). A geodesic mm-space X is an mm-space such

that, for each pair of points (x,y) ∈ X 2
, there exists a continuous function γ : [0,1]→ X

such that γ(0) = x, γ(1) = y, and dX (γ(a),γ(b)) = dX (x,y)|b− a| for all a,b ∈ [0,1].

Informally, a geodesic mm-space is a connected mm-space such that shortest paths
exist between any pair of points. In order for geometric random networks to converge,
an additional constraint is required: that the volume of balls of �xed radius are lower
bounded. More speci�cally, we will assume that the minimum volume of balls of radius
ε, B(ε) = minx∈X PµX (dX (x, X) ≤ ε), are positive for any ε > 0. This will imply the
existence of an inverse, denoted as B−1(x) = max{ε > 0 : B(ε) ≤ x}. Note that the
function B(ε) is closely related to the dimension of the space, and will typically have the
form B(ε) = Cεd for spaces of dimension d, and hence B−1(x) = C′x1/d.

Theorem 10.7. Let X ∈ Xp be a geodesic mm-space, and GGR(X ,n,rn) a sequence of

geometric random graphs equipped with the shortest-path distance. If limn→+∞ rn = 0 and

limn→+∞
rn

B−1

(
4lnn−ln B−1( 4lnn

n−2 )

n−2

) = +∞, then rnGGR(X ,n,rn) converges to X a.s.

Hence, the continuity theorems of the next chapter are, again, applicable. More speci�-
cally, this result implies the convergence of epidemics on contact networks to their con-
tinuous equivalent on R2 equipped with the population’s density as probability measure.
The technical constraint limn→+∞ rn = 0 requires that the size of neighborhoods tends to
zero, while the second constraint imposes that each node is connected to a large number of
neighbors (at least 4lnn− ln B−1( 4lnn

n−2 )), in order to ensure that the network is connected
with a high probability.

10.3.5 Erdös-Rényi random networks and the stochastic block model

Erdös-Rényi random graphs G(n, p) (see Model 5.1) are dense when p > 0, and of average
degree np. Hence, every node is connected to a fraction p of the whole network and,
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with high probability, the distance between two di�erent nodes is either 1 if they are
neighbors, or 2 otherwise. Unfortunately, Erdös-Rényi random graphs do not converge
w.r.t. ∆∆p. A lesser statement could be that their adjacency matrices converge w.r.t. the
mapping distance de�ned in De�nition 11.3, although this is also false. An analysis of this
very interesting example would require a chapter of its own and is left for future work,
although a few insights can be provided for it.

As stated in Sec. 11.1, the de�nition of the mapping distance for operators generalizes
the distance induced by the operator norm, and convergence with respect to this norm is
among the strongest notion of convergence for operators. A weaker notion of convergence
is called the strong convergence (as opposed to the weak convergence, a yet weaker form of
convergence for operators), and is de�ned as the Lp convergence of the mappings f 7→
F( f ) for each function f ∈ Lp,µX . A detailed analysis of dense Erdös-Rényi random graphs
shows that their adjacency matrices converge strongly to the operator in [0,1] de�ned as:

∀x ∈ X , [Op( f )](x) = pE[ f (X)], (10.19)

where X is a uniform random variable in [0,1]. However, the adjacency matrices do not
converge to Op in the mapping distance sense, and thus Erdös-Rényi random networks
cannot converge w.r.t. ∆∆p. However, early results seem to indicate that strong conver-
gence still yields interesting results including the convergence of dynamic processes and a
partial result for spectral properties, and the rigorous analysis of the properties of strong
convergence would be a notable addition to this work.

10.4 Discussion and open problems

The subject of network convergence is extremely vast, and work is still needed to investi-
gate the theoretical properties and practical advantages of the notions developed herein.
We now highlight several open problems and interesting directions for future research:

• First, Erdös-Rényi random graphs do not converge in the Gromov-Wasserstein sense,
and relaxing the notion of convergence (by extending the notion of strong conver-
gence of operators instead of the operator norm as in Sec. 11.1.1) may be su�cient
to allow the convergence of this class of random graphs while being strong enough
to provide continuity theorems similar to that of Chap. 11.

• In addition, proving the convergence of the Stochastic Block Model (Holland et al.,
1983) in such a relaxed notion of convergence would be of high practical interest,
and may improve our understanding of this random graph model.

• The precise convergence rate of random sampling remains unknown. More gen-
erally, one may wonder if random sampling is an optimal approximation strategy.
Are there better ways to approximate the structure of a continuous space using a
discrete space?

• E�cient algorithms to compute the Gromov-Wasserstein distance are necessary in
order to use it in practical applications. Also, an experimental analysis would help
to draw lines between our work and the existing literature of network convergence.
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• Approximation is central in computer science due to the fact that any simulation
performed by a computer is necessarily discrete in nature. Hence, providing good
inference algorithms for the structure of a space may provide good approximations of

large relational datasets such as social networks and improve the e�ciency and speed
of computation in these high dimensional objects.

• Finally, our analysis may provide interesting insights for the clustering problem, in
the sense that the network made by aggregating each cluster into a single node
should be a good approximation of the original network in terms of distances.

10.5 Proofs

In all the following proofs, and unless speci�ed otherwise, (X,Y) ∼ π and (X′,Y′) ∼ π
are independent pairs of random variables, each of them drawn according to the coupling
π ∈Π(µX ,µY ) between the two mm-spaces X and Y .

10.5.1 Proof of the convergence of product mm-spaces

Proof of Theorem 10.3. For all quadruples (x, x′,y,y′) ∈ X 2 ×Y2,

|dX (x, x′)− dX×Y ((x,y), (x′,y′))| = |dX×Y ((x,y), (x′,y))− dX×Y ((x,y), (x′,y′))|
≤ dX×Y ((x′,y), (x′,y′))

= dY (y,y′).
(10.20)

Hence, using the coupling dπ(x′, (x,y)) = δ{x′=x}dµX×Y (x,y) ∈ Π(µX ,µX×Y ), we get
that

∆∆p(X ,X ×Y) ≤ ||dX − dX×Y ||p,µX×Y⊗µX×Y

≤ ||dY ||p,µY⊗µY

= sizep(Y).
(10.21)

10.5.2 Proof of the density of undirected graphs

Proof of Theorem 10.5. First, note that weighted graphs (with uniform measure and shortest-
path distance) are dense due to the convergence of random sampling on any mm-space (see
Theorem 10.6). Thus, it is su�cient to show that undirected graphs are dense in the set of
weighted graphs.

Let G = (V ,E ,w) be a weighted graph of n nodes. In order to generate a sequence
of undirected graphs converging to G , we will use two types of structures: cliques and
chains. More speci�cally, for each k > 0, we create an undirected graph Gk = (Vk,Ek) by
associating each node in V to a clique (i.e. a totally connected subgraph) of k2 nodes, and
each edge (i, j) ∈ E to a chain of size dk

ij = bkdSP(i, j)c − 1 (in order to impose the correct
distances between the cliques), as presented in Fig. 10.6. Since the cliques are substantially
larger than the chains, the uniform measure over the nodes of Gk will give an almost-zero
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Figure 10.6: Example of a weighted graph (left) and its undirected approximation (right).

weight to the chains, thus providing a good approximation of the original graph G . The
exact de�nitions of Vk and Ek are given by:

Vk = ∪i∈V{vi,1, ...,vi,k2}
⋃
∪(i,j)∈E{vij,1, ...,vij,dk

ij
} (10.22)

Ek = ∪i∈V{(vi,l ,vi,m) : 1≤ l < m ≤ k2}⋃∪(i,j)∈E{(vij,l ,vij,l+1) : 1≤ l < dk
ij}⋃∪(i,j)∈E{(vij,1,vi,l) : 1≤ l ≤ k2}⋃∪(i,j)∈E{(vij,dk

ij
,vj,l) : 1≤ l ≤ k2}.

(10.23)

By construction, each node in clique i is at distance dk
ij + 1 from any node in clique j.

Thus, by coupling each node of a clique vi,l to its original node vi and each node of a chain
to the uniform measure over V , we obtain the following bound on ∆∆p(G, 1

kGk):

∆∆p(G,
1
k
Gk)

p ≤∑
ij

k4

card(Vk)2

∣∣∣∣∣d
k
ij + 1

k
− dSP(i, j)

∣∣∣∣∣
p

+
card(Vk)

2 − n2k4

card(Vk)2 (size∞(Gk) + size∞(G))p

≤ n2k4

card(Vk)2
1
kp +

card(Vk)
2 − n2k4

card(Vk)2 (3d∗ + d∗)p

≤ 1
k
+

(nk2 + ∑ij dk
ij)

2 − n2k4

(nk2 + ∑ij dk
ij)

2
(4d∗)p

≤ 1
k
+

n3k2d∗ + n4d∗2

n2k4 (4d∗)p

= O
(

1
k

)
,

(10.24)
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where d∗ = maxij dSP(i, j) is the diameter of G , and thus limk→+∞ ∆∆p(G, 1
kGk) = 0 which

leads to the desired density result.

10.5.3 Proofs of the convergence of popular graphs

Proof of Theorem 10.6. Let (I, X) ∼ π and (I′, X′) ∼ π be independent couplings be-
tween Xn and X . Since, for any quadruple (x, x′,y,y′) ∈ X 4, |dX (x, x′)− dX (y,y′)| ≤
dX (x,y) + dX (x′,y′), we have

∆∆p(Xn,X ) = infπ∈Π(µXn ,µX ) Eπ⊗π[|dX (XI , XI′)− dX (X, X′)|p]1/p

≤ infπ∈Π(µXn ,µX ) Eπ⊗π[(dX (XI , X) + dX (XI′ , X′))p]1/p

≤ 2infπ∈Π(µXn ,µX ) Eπ[dX (XI , X)p]1/p

= 2Wp(µ̂n,µX ),

(10.25)

where µ̂n = 1
n ∑i δXi is the empirical distribution of the samples (Xi)i∈N in X (note that

the (Xi) are considered �xed in the above equation). Finally, the Glivenko-Cantelli the-
orem states that the empirical distribution µXn converges weakly to µX as n tends to
in�nity, which implies the convergence of the Wasserstein distance to zero (Villani, 2009,
Theorem 6.8). For precise convergence rates in Rd, we refer the reader to Horowitz and
Karandikar (1994) and Fournier and Guillin (2015).

Proof of Theorem 10.7. In order to prove the almost-sure convergence of geometric random
networks, we will approximate every geodesic by paths in the geometric random graph and
show that, with high probability, such approximations exist using the following lemma.

Lemma10.3. Let GGR(X ,n,r) be a geometric randomnetwork on themm-spaceX , (Xi)i∈[|n|]
its associated set of points in X , dSP(i, j) the shortest-path distance in GGR(X ,n,r), and
ε ∈ (0,r). Then, with probability at least 1− n2

size1(X )
r−ε exp (−(n− 2)B(ε)), the random

graph GGR(X ,n,r) is connected and, for any pair of nodes (i, j) ∈ [|n|]2,∣∣rdSP(i, j)− dX (Xi, Xj)
∣∣ ≤ r +

ε

r− ε
dX (Xi, Xj). (10.26)

Proof. For each pair of nodes (i, j), let γij : [0,1]→X be the geodesic from Xi to Xj. Then,
let Kij =

⌈
dX (Xi ,Xj)

r−ε

⌉
and, for k ∈ {0, ...,Kij}, γij,k = γij(

k
Kij
) is the approximation of the

geodesic as a chain of Kij points. By de�nition, we have dX (γij,k,γij,k+1) =
dX (Xi ,Xj)

Kij
≤

r − ε, and, if there exists nodes of the graph that are at distance ε from each γij,k, then
these nodes will be connected and form a chain between i and j in GGR(X ,n,r). This
happens with probability

P(∀(i, j) ∈ [|n|]2,∀k ∈ {1, ...,Kij − 1},∃l ∈ [|n|]s.t. dX (Xl ,γij,k) ≤ ε)

≥ 1−∑i,j P(∃k ∈ {1, ...,Kij − 1}s.t. ∀l ∈ [|n|],dX (Xl ,γij,k) > ε)

≥ 1− n2E[∑
Kij−1
k=1 P(∀l < {i, j},dX (Xl ,γij,k) > ε | Xi, Xj)]

≥ 1− n2E[(Kij − 1)(1− B(ε))n−2]

≥ 1− n2size1(X )
r−ε (1− B(ε))n−2

≥ 1− n2size1(X )
r−ε exp (−(n− 2)B(ε)) .

(10.27)



166 CHAPTER 10. ON THE CONVERGENCE OF NETWORKS

Hence, with probability at least 1− n2size1(X )
r−ε exp (−(n− 2)B(ε)), we have

dSP(i, j) ≤ Kij ≤
dX (Xi, Xj)

r− ε
+ 1, (10.28)

and, if i0, ..., idSP(i,j) is a shortest-path from i to j,

dX (Xi, Xj) ≤
dSP(i,j)−1

∑
k=0

dX (Xik , Xik+1) ≤ rdSP(i, j). (10.29)

Hence, with probability at least 1− n2size1(X )
r−ε exp (−(n− 2)B(ε)), we obtain the desired

result: ∣∣rdSP(i, j)− dX (Xi, Xj)
∣∣ ≤ r +

ε

r− ε
dX (Xi, Xj). (10.30)

Let εn = B−1
(

4lnn−ln B−1( 4lnn
n−2 )

n−2

)
. By assumption, εn = o(rn) and, for n su�ciently

large, B−1( 4lnn
n−2 ) < 1 and thus εn ≥ B−1

(
4lnn
n−2

)
. Again, for n su�ciently large, εn < rn/2

and the probability in Lemma 10.3 is lower bounded by

1− n2size1(X )
rn−εn

exp (−(n− 2)B(εn))

≥ 1− 2n2size1(X )
εn

exp (−(n− 2)B(εn))

≥ 1− exp (ln(2size1(X )) + 2lnn− lnεn − (n− 2)B(εn))

≥ 1− exp
(

ln(2size1(X )) + 2lnn− lnεn − 4lnn + ln B−1( 4lnn
n−2 )

)
≥ 1− exp (ln(2size1(X ))− 2lnn))

= 1− 2size1(X )
n2 .

(10.31)

Hence, with probability at least 1− 2size1(X )
n2 , we have

∆∆p(X ,rnGGR(X ,n,rn)) ≤ ∆∆p(X ,Xn) + ∆∆p(Xn,rnGGR(X ,n,rn))

≤ 2Wp(µ̂n,µX ) + ∆∆p(Xn,rnGGR(X ,n,rn))

≤ 2Wp(µ̂n,µX ) + rn +
εn

rn−εn
sizep(Xn)

≤ 2Wp(µ̂n,µX ) + rn +
2εn
rn

(
sizep(X ) + Wp(µ̂n,µX )

)
,

(10.32)
where Xn is the sampling space de�ned in Theorem 10.7 and µ̂n is the empirical mea-
sure of the (Xi)i∈[|n|]. The second inequality is a direct application of Theorem 10.7, and
the third inequality is deduced from Lemma 10.3. Since 2size1(X )

n2 is summable, Borel-
Cantelli’s lemma implies that, with probability equal to one, only a �nite number of val-
ues of ∆∆p(X ,rnGGR(X ,n,rn)) will be above the upper bound of Eq. 10.32, and since this
upper bound converges to 0 almost surely (see Theorem 10.7), this implies that

∆∆p(X ,rnGGR(X ,n,rn))→ 0 a.s.
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Continuity of key network

characteristics and processes
“Success is not �nal, failure is not fatal: it

is the courage to continue that counts.”

— Winston Churchill
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11.1 Operators of an mm-space

Matrix theory is a key ingredient of linear algebra and functional analysis, and matrices
are used to de�ne multivariate stochastic processes, structural properties of networks, or
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perform signal analysis in graphs. In this chapter, we denote as operator a function over

the space of functions.

De�nition 11.1 (Operator). An operator over the mm-space X is a function F : Lp,µX →
Lp,µX , i.e. an endomorphism of the space of Lp,µX functions on X .

In the next sections, we will show a number of continuity results for such operators
using an extension of the operator norm to situations in which the two operators lie in
two di�erent mm-spaces. Also note that proofs are provided in Sec. 11.5.

11.1.1 Mapping distance for operators

The notion of distance presented in Sec. 10.2.4 can be extended to operators F : Lp,µX →
Lp,µX and G : Lp,µY → Lp,µY . In order to compare two operators F and G, one would like
to compare F( f ) and G( f ), with the same function f . However, this is not possible since
F and G do not lie in the same space, and this di�culty is avoided using projections of f
on X and Y , respectively. We now provide a formal de�nition for such a projection.

De�nition 11.2 (Projection). Let f : X ×Y → R be a function, and π ∈ Π(µX ,µY ) a
coupling. The projection of f on X (resp. Y ), denoted f |πX (resp. f |πY ), is de�ned as:

f |πX (x) = Eπ[ f (X,Y) | X = x];

f |πY (y) = Eπ[ f (X,Y) | Y = y].
(11.1)

The mapping distance between F and G is then simply the maximum of the distance
between F( f |πX ) and G( f |πY ) over the space of functions on X ×Y .

De�nition 11.3 (Mapping distance between operators). Let X and Y be two mm-

spaces, F : Lp,µX → Lp,µX and G : Lp,µY → Lp,µY two operators on X and Y respectively,

and π ∈Π(µX ,µY ) a coupling. Then, the (p,π)-mapping distance between F and G is the

maximum over all Lp,π functions of X ×Y of the following quantity:

∆∆p,π(F, G) = max
f∈Lp,π : || f ||p,π,0

∆∆p,π(F( f |πX ), G( f |πY ))
|| f ||p,π

, (11.2)

where f |πX and f |πY are projections of f on X and Y , respectively (see Eq. 11.1). Then, the p-
mapping distance between F and G is the minimum of ∆∆p,π(F, G) over all possible couplings:

∆∆p(F, G) = min
π∈Π(µX ,µY )

∆∆p,π(F, G). (11.3)

Remark 11.1. The operator norm |||F||| = max f∈L2 : || f ||2,0 ||F( f )||2/|| f ||2 can also be

rewritten as |||F||| = ∆∆2(F,0), where 0 is the constant operator equal to 0. Also, if F and G
are matrices of size n, then ∆∆2,In(F, G) = |||F−G||| where In is a coupling s.t. dIn(x,y) =
1
n 1{x = y}.

We will see in the following sections that this distance between operators provides new
and interesting results for many network related characteristics including the spectrum of
an operator and the evolution of a dynamic process. In order to relate ∆∆p(F, G) to the
distance between their respective spaces, we de�ne a natural Lipschitz-like constraint on
operators.
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De�nition 11.4 (Lipschitz-like inequality). Two operators F and G onX and Y , respec-
tively, are said to satisfy a Lipschitz-like inequality if there exists L > 0 such that:

∆∆p(F, G) ≤ L∆∆p(X ,Y). (11.4)

When such an inequality is veri�ed, L is called the Lipschitz constant of F and G.

11.1.2 Linear operators

The most simple linear operator is the identity operator, denoted IdX , or simply Id when
the underlying space is clear, and de�ned by

IdX ( f ) = f .

Although ∆∆p(IdX , IdY ) ≥ 2, this simple operator is not, in general, continuous w.r.t.
∆∆p(X ,Y). For example, with X = {0} and Y = [0,ε], one can show that ∆∆p(X ,Y) ≤ ε
for all p ≥ 1, although ∆∆p(IdX , IdY ) ≥ 1/2 (by taking f = 1{y ∈ [0,ε/2]}). However,
when the spaces are homeomorphic, and π is a deterministic coupling (i.e. a bijection from
X to Y ), then ∆∆p(IdX , IdY ) = 0.

Lemma 11.1. If X and Y are two mm-spaces and π ∈ Π(µX ,µY ) is a deterministic cou-

pling, then

∆∆p,π(IdX , IdY ) = 0. (11.5)

Proof. Let (X,Y) ∼ π be random variables of coupled distribution π. Since π is deter-
ministic, there exists a bijection ψ : X → Y such that Y = ψ(X). Then f (X,Y) =
f (X,ψ(X)) = f (ψ−1(Y),Y) is µX -measurable and µY -measurable. Hence f |πX (X) =

f |πY (Y) = f (X,Y) and ∆∆p,π(IdX , IdY ) = max f
|| f |πX− f |πY ||p,π

|| f ||p,π
= 0.

For the convergence of graphs to continuous spaces, such a bijection is not possi-
ble since the spaces do not have the same cardinality. However, the graph G can be re-
placed by the continuous space [0,1] equipped with the proper pseudo-distance such that
∆∆p(G, [0,1]) = 0. This trick will allow us to provide results on characteristics that are
invariant w.r.t. the equivalence relation X ∼ Y ⇔ ∆∆p(X ,Y) = 0. As we can see, the
quantity ∆∆p(F, G) can be hard to evaluate, even for operators as simple as the identity.
However, a large class of linear operators, called integral operators (or Hilbert-Schmidt
operators), are more regular, and allow upper bounds on the mapping distance.

Theorem 11.1 (Integral operators). Let p ≥ 1, q = max{p, p
p−1}, X an mm-space, and

kX ∈ Lq,µX⊗µX a kernel function. The integral operator FkX : Lp,µX → Lp,µX is the linear

operator de�ned by: ∀ f ∈ Lp,µX , ∀x ∈ X ,

[FkX ( f )](x) =
∫

kX (x, x′) f (x′)dµX (x′). (11.6)

Also, if kX and kY are two kernels on, respectively, X and Y , the mapping distance between

FkX and FkY is upper bounded by the mapping distance between the kernels:

∆∆p(FkX , FkY ) ≤ inf
π∈Π(µX ,µY )

∆∆q,π⊗π(kX ,kY ). (11.7)
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Figure 11.1: Value of the parameter q w.r.t. p in Theorem 11.1. For p ≥ 2, q = p.

Integral operators generalize the notion of matrices to mm-spaces. Since the adjacency
matrix is central to network analysis, we now provide a generalization of the adjacency
matrix applicable to any mm-space, and show that, when two spaces are close w.r.t. ∆∆p,
then the respective adjacency operators are also close.

Theorem 11.2 (Adjacency operators). Let p ≥ 1, q = max{p, p
p−1}, X an mm-space,

and φ : R+ → R a real function such that φ ◦ dX ∈ Lq,µX⊗µX . The adjacency operator

AX ,φ : Lp,µX → Lp,µX is the linear operator de�ned by: ∀ f ∈ Lp,µX , ∀x ∈ X ,

[AX ,φ( f )](x) =
∫

φ(dX (x, x′)) f (x′)dµX (x′). (11.8)

Also, if φ is L-Lipschitz andX ,Y ∈Xq, AX ,φ veri�es the following Lipschitz-like inequality:

∆∆p(AX ,φ, AY ,φ) ≤ L∆∆q(X ,Y). (11.9)

Proof. Since φ ◦ dX is a kernel function, Theorem 11.1 implies that, for π ∈ Optp(X ,Y),
∆∆p(AX ,φ, AY ,φ) ≤ ∆∆p,π⊗π(φ ◦ dX ,φ ◦ dY ) ≤ L∆∆p,π⊗π(dX ,dY ) = L∆∆p(X ,Y).

This property ensures the convergence of characteristics of adjacency operators when
the underlying space converges w.r.t. ∆∆q, where q depends on p as in Fig. 11.1. When the
underlying space is discrete (e.g. a graph), adjacency operators become matrices such that
each element in the matrix is of the form φ(Dij)

n , where Dij is the distance matrix and n
the size of the space, and a particular choice of φ returns the adjacency matrix, hence the
name of this class of operators.

Lemma 11.2 (Adjacency matrix). Let G = (V ,E) be an undirected and connected graph

of size n with shortest-path distance dSP. Then, the adjacency matrix Aij = 1{{i, j} ∈ E} is
an adjacency operator of the form A = AG,φ where φ is n-Lipschitz.

Proof. Let φ(x) = n(x1{x < 1} + (2 − x)1{1 ≤ x < 2}). Then φ is n-Lipschitz and
A = AG,φ.
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11.2 Convergence of network characteristics

In this section, we show that a number of characteristics commonly used to describe net-
works are continuous with respect the Gromov-Wasserstein distance.

11.2.1 Average degree

The average degree of a network is the mean volume of balls of radius one, and can be
seen as the norm one of the adjacency matrix. In this section, we thus focus on balls of
�xed radius, and show that their volume is continuous w.r.t. ∆∆p. More speci�cally, we
extend the notion of volume of balls by integrating any function φ of the distances of the
considered space.

De�nition 11.5 (Volume of a φ-ball). Let φ : R+→R+ be a positive function, X ∈X1
an mm-space of �nite 1-size, and x ∈ X . The volume of a ball of radius φ centered around

x, denoted Bx,φ, is de�ned by

Bx,φ = E[φ(dX (x, X))] = AX ,φ(1)(x), (11.10)

where 1(x) = 1 is a constant function. The mean volume of balls of radius φ is then the

integration of Bx,φ over the whole space:

BX ,φ = E[φ(dX (X, X′))] = ||AX ,φ(1)||1. (11.11)

The case φ(x) = 1{x ≤ r} gives the standard volume of balls of �xed radius r, and will
be denoted Bx,r and BX ,r. In order to prove the continuity of such characteristics, we now
provide a more generic which shows the relation between the p-norm of two operators
and their ∆∆p distance.

Theorem 11.3. Let F and G be two operators of X and Y , respectively, π ∈ Π(µX ,µY ) a
coupling, f ∈ Lp,µX a function in X and f |πY its projection on Y through the coupling π as

in De�nition 11.2. Then, if q ≥ p,∣∣||F( f )||p − ||G( f |πY )||p
∣∣ ≤ ∆∆q,π(F, G)|| f ||q . (11.12)

Intuitively, if two operators are close w.r.t. ∆∆q,π , then their values are also close, pro-
vided that we map the input function from X to Y . Applying this result to adjacency
operators with p = 1 and q = 2 leads to the approximation of balls of �xed radius.

Corollary 11.1. The following assertions are true:

• If φ is L-Lipschitz, then

∣∣BX ,φ − BY ,φ
∣∣ ≤ L∆∆2(X ,Y).

• If φ is bounded and Xn
∆∆2→n→+∞ X is a converging sequence of mm-spaces, then

limn→+∞ BXn,φ = BX ,φ.

• If Gk = (Vk,Ek) is a sequence of (undirected) graphs of nk nodes and Ek edges converg-

ing to X w.r.t. ∆∆2, then:

i) lim
k→+∞

1
n2

k
∑

(i,j)∈V2
k

1{dSP(i, j) ≤ r} = BX ,r,
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ii) lim
k→+∞

2Ek

n2
k
= BX ,1.

Proof. Since BX ,φ = ||AX ,φ(1)||1, a direct application of Theorem 11.3 implies that:

|BX ,φ − BY ,φ| ≤ ∆∆2(AX ,φ, AY ,φ)||1||2 ≤ L∆∆2(X ,Y). (11.13)

Thus, for any Lipshitz function φ, X 7→ BX ,φ is continuous w.r.t. ∆∆2. However, since Lip-
schitz functions are dense in bounded functions and φ 7→ BX ,φ is a continuous mapping,
this continuity result can be extended to bounded functions φ. The last two results follow
by considering φ(x) = 1{x ≤ r} and φ(x) = 1{x = 1}.

From Corollary 11.1, we can see that, if a sequence of graphs Gk converges w.r.t. ∆∆2,
then necessarily:

• either the graphs are dense and the mean degree is linear in the number of nodes,
i.e. Ek = θ(n2

k),

• or re-normalizing the graph by dividing the distances by a �xed factor is necessary,
otherwise the graph can only converge to a totally disconnected space such that,
d(x, x′) ≥ 2 a.s.

11.2.2 Degree distribution

Using the formalism of the previous section, the degree distribution can be extended to the
distribution of balls of �xed radius. The following result shows that the weak convergence
of the distribution of degrees is imposed by the convergence of the spaces.

Theorem 11.4. Let φ be a bounded function, Xn
∆∆2→n→+∞ X a converging sequence of mm-

spaces and Xn ∼ µXn and X ∼ µX independent random variables distributed according to

the measures of their respective spaces. Then BXn,φ converges weakly to BX,φ.

Proof. Let µn (resp. µ) be the measure of the random variable BXn,φ = [AXn,φ(1)](Xn)
(resp. BX,φ = [AX ,φ(1)](X)). Then

Wp(µn,µ) = ∆∆p(AXn,φ(1), AX ,φ(1)) ≤ ∆∆p(AXn,φ, AX ,φ)||1||p ≤ L∆∆p(Xn,X ),

and, since convergence w.r.t. the Wasserstein distance Wp(µn,µ) implies weak conver-
gence (Villani, 2009, Theorem 6.8), µn converges weakly to µ.

This means that the degree distribution, and more generally the distribution of volumes
of balls, is preserved through the convergence of the spaces.

11.2.3 Spectral radius

For any matrix M, its operator norm |||M||| = maxx : ||x||2=1 ||Mx||2 is equal to its largest
singular value. Furthermore, a simple calculation holds |||M||| = ∆∆p(M,0), hence the
operator norm, and more generally any p-norm, is 1-Lipschitz (and thus continuous) w.r.t.
∆∆p.
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Theorem 11.5. For any p ≥ 1, the p-norm is 1-Lipschitz w.r.t. ∆∆p, and ∀F, G operators on

X resp. Y , ∣∣|||F|||p − |||G|||p∣∣ ≤ ∆∆p(F, G), (11.14)

where |||F|||p = max f : || f ||p,0
||F( f )||p
|| f ||p .

Hence, the spectral radius of adjacency operators converges when the spaces converge.

Corollary 11.2. Let X and Y be two mm-spaces and φ an L-Lipschitz function, then:

|ρ(X ,φ)− ρ(Y ,φ)| ≤ L∆∆2(X ,Y), (11.15)

where ρ(X ,φ) = |||AX ,φ||| is the spectral radius of the operator AX ,φ (see De�nition 5.5).

More speci�cally, when a graph converges w.r.t. ∆∆2, then so does its spectral radius
divided by n:

Corollary 11.3. Let G be an undirected graph and X an mm-space, then∣∣∣∣ρ(G)n
− ρ(X ,φ)

∣∣∣∣ ≤ ∆∆2(G,X ), (11.16)

where φ(x) = x1{x < 1} + (2− x)1{1 ≤ x < 2}, and ρ(G) is the spectral radius of G
(see De�nition 5.5). Moreover, if Gn is a sequence of graphs that converges to X , then

lim
n→+∞

ρ(Gn)

n
= ρ(X ,1{x = 1}) . (11.17)

11.2.4 Diameter

The p-size of an mm-space is Lipschitz w.r.t. ∆∆p.

Theorem 11.6. The function X 7→ sizep(X ) is 1-Lipschitz w.r.t. ∆∆p, i.e. for all X,Y ∈Xp,∣∣
sizep(X )− sizep(Y)

∣∣ ≤ ∆∆p(X ,Y). (11.18)

Proof. This is a direct consequence of Theorem 11.2 and Theorem 11.3, with F = AX ,Id,
G = AY ,Id, q = p, and f = 1 the constant function equal to 1.

When p = +∞, the size of an mm-space X corresponds to its diameter, i.e. the largest
distance between two points of X (in an almost sure sense).

Corollary 11.4. If Gn is a sequence of graphs converging to the mm-spaceX w.r.t. ∆∆∞, then

lim
n→+∞

diam(Gn) = size∞(X ). (11.19)

More usually, social network analysis focuses on the approximate diameter, i.e. the
distance under which the vast majority of pairewise distances lie. We may de�ne this
notion as follows:

diamε(X ) = min{r ≥ 0 : P(dX (X, X′) ≤ r) ≥ 1− ε}. (11.20)

This notion of approximate diameter converges also when the graphs (or mm-spaces) only
converge w.r.t. ∆∆p, where 2≤ p < +∞.
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Corollary 11.5. If p ≥ 2, and Gn is a sequence of graphs converging to the mm-space X
w.r.t. ∆∆p, then:

lim
n→+∞

diamε(Gn) = diamε(X ). (11.21)

Proof. The diameter can be rewritten as diamε(X ) = min{r ≥ 0 : BX ,r ≥ 1− ε}, and
the convergence of BX ,r (see Corollary 11.1) implies the desired result.

11.3 Spectral properties of compact self-adjoint operators

In this section, we prove the continuity, and even Lipschitz continuity, of the spectrum
of compact self-adjoint operators with respect to ∆∆2. Using this result, we will be able to
prove the convergence of the spectrum of symmetric matrices when the sequence of graphs
converges w.r.t. ∆∆2. We now give a formal de�nition of the (point) spectrum, eigenvalues,
eigenvectors and eigenspaces.

De�nition 11.6 (Spectrum). Let F : L2,µX → L2,µX be a linear operator. The spectrum of

F, noted sp(F) ⊂R, is the set of real values λ such that ∃ f ∈ L2,µX s.t. F( f ) = λ f . Such a

value λ is called an eigenvalue of F, and the corresponding function f an eigenvector of F.

Note that the de�nition given here is also called point spectrum, and another de�nition
exists for the spectrum of more generic linear operators (see Section 6.3 of the book by
Brézis (2011)). However, since we focus on compact self-adjoint operators, the two de�ni-
tions are equivalent, and for the sake of clarity, we will use the aforementioned de�nition
only (Brézis, 2011, Theorem 6.8).

De�nition 11.7 (Eigenspace). Let F : L2,µX → L2,µX be a linear operator on X , and λ ∈
sp(F) an eigenvalue of F. Then, the eigenspace ev(F,λ) ⊂ L2,µX is the set of all eigenvectors

of eigenvalue λ,

ev(F,λ) = { f ∈ L2,µX : F( f ) = λ f }. (11.22)

Since a spectrum is a subset of R, we will use the Hausdor� distance dH in order to
compare one to another.

De�nition 11.8 (Hausdor� distance). Let X,Y ⊂ X two subsets of a spaceX . The Haus-

dor� distance between X and Y is the maximum distance between a point of X and its closest

match in Y (and respectively for points of Y):

dH(X,Y) = max{sup
x∈X

inf
y∈Y

d(x,y), sup
y∈Y

inf
x∈X

d(x,y)}. (11.23)

Intuitively, the Hausdor� distance describes how far is at least one point of Y of the
subset X, or how far is at least one point of X of the subset Y. Hence, upper bounding this
quantity dH(X,Y) ≤ C is equivalent to saying that, for each point x ∈ X, there exists a
point y ∈ Y such that d(x,y) ≤ C (and similarly for points of Y).

Lemma 11.3. dH(X,Y) = 0⇔ X = Y.

Proof. For all x ∈ X, there exists a y ∈ Y such that d(x,y) = 0, hence x = y and x ∈ Y.
Thus X ⊂ Y, and the symmetry of dH(X,Y) implies Y ⊂ X, and X = Y.
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11.3.1 Convergence of spectrum

The major result of this section is that, for compact self-adjoint operators, the spectrum is
Lipschitz w.r.t. ∆∆2:

Theorem 11.7. Let F and G be two compact self-adjoint linear operators on X and Y ,
respectively. Then, the Hausdor� distance between their spectrum is bounded by ∆∆2(F, G):

dH(sp(F) ∪ {0}, sp(G) ∪ {0}) ≤ ∆∆2(F, G). (11.24)

Remark 11.2. Note that adding {0} to the spectrum is necessary. For example, taking

Xn = {0,1} with the uniform measure and dXn(0,1) = 1/n leads to lim∆∆2(Xn,{0}) = 0.
However, for φ(x) = 1 − x, sp(AXn,φ) = { 1

2n ,1 − 1
2n} while sp(A{0},φ) = {1}, and

sp(AXn,φ) does not converge to sp(A{0},φ).

Although compactness may be quite restrictive for linear operators in continuous mm-
spaces, this assumption is automatically veri�ed for graphs, and hence the result can be
generalized to any sequence of converging symmetric matrices.

Corollary 11.6. Let Fn be a sequence of symmetric matrices, and F : L2,µX → L2,µX an

operator on an mm-space X . If limn→+∞ ∆∆2(Fn, F) = 0, then

dH(sp(Fn) ∪ {0}, sp(F) ∪ {0}) ≤ ∆∆2(Fn, F), (11.25)

and sp(Fn) ∪ {0} converges to sp(F) ∪ {0}.

Proof. Each matrix Fn has �nite rank, and is thus compact. Let πn ∈ Π(µGn ,µX ) be a se-
quence of couplings such that limn→+∞ ∆∆2,πn(Fn, F) = 0, and F̃n ∈ L2,µX an operator de-
�ned by F̃n( f ) = Fn( f |πn

Gn
)|πn
X . Then F̃n has �nite rank, and |||F̃n− F||| ≤ ∆∆2,πn(Fn, F)→

0. Hence, F is the limit of �nite rank operators, and is thus compact (Brézis, 2011, Corol-
lary 6.2). Also, F is linear and self-adjoint as a limit of linear and self-adjoint operators,
and the conditions for Theorem 11.7 are met.

This result is quite generic and may provide interesting and novel results in random
matrix theory. The result also holds for symmetric integral operators, and more speci�cally
for adjacency operators.

Corollary 11.7. Let X and Y be two mm-spaces, and kX ∈ L2,µX⊗µX and kY ∈ L2,µY⊗µY
two symmetric kernels. Then

dH(sp(FkX ) ∪ {0}, sp(FkY ) ∪ {0}) ≤ min
π∈Π(µX ,µY )

∆∆2,π⊗π(kX ,kY ). (11.26)

Proof. Integral operators are compact (Brézis, 2011, Theorem 6.12), and since the kernels
are symmetric, then FkX and FkX are self-adjoint and compact. Hence, the conditions of
Theorem 11.7 are met, and Theorem 11.1 gives the �nal bound in ∆∆2,π⊗π(kX ,kY ).

Corollary 11.8. If φ is L-Lipschitz, then X 7→ sp(AX ,φ) ∪ {0} is Lipschitz w.r.t. ∆∆2 and

the Hausdor� distance:

dH(sp(AX ,φ) ∪ {0}, sp(AY ,φ) ∪ {0}) ≤ L∆∆2(X ,Y). (11.27)

Proof. The adjacency operator AX ,φ is an integral operator with a symmetric kernel φ ◦
dX , and Theorem 11.2 gives the �nal bound in ∆∆2(X ,Y).
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11.3.2 Convergence of eigenspaces

When the operators converge, the eigenspaces also converge in the Hausdor� sense.

Theorem 11.8. Let F (resp. G) be a compact self-adjoint linear operator in X (resp. Y ), and
π ∈ Π(µX ,µY ) a coupling. Let also λ ∈ sp(F) \ {0} and λ′ ∈ sp(G) \ {0} be non-zero
eigenvalues of F and G, respectively. Then, ∀ f ∈ ev(F,λ), ∃g ∈ ev(G,λ′) such that

∆∆2,π( f , g) ≤ |λ− λ′|+ ∆∆2,π(F, G)

min{|λ′|, eg(G,λ′)} || f ||2 , (11.28)

where eg(G,λ′) = infλ′′∈sp(G) : λ′′,λ′ |λ′′ − λ′| is the eigengap of G for the eigenvalue λ′.

Hence, the convergence of Fn to F w.r.t. ∆∆2 and λn ∈ sp(Fn) to λ ∈ sp(F) implies the
convergence of the corresponding eigenspaces in the Hausdor� sense.

Corollary 11.9. Let F be a compact self-adjoint linear operator on X , and (Fn)n∈N a se-

quence of compact self-adjoint linear operators on Xn converging to F w.r.t. ∆∆2. Let also

λ ∈ sp(F) \ {0} an eigenvalue of F and λn ∈ sp(Fn) \ {0} a sequence of eigenvalues of Fn
converging to λ. Then,

lim
n→+∞

dH(ev1(Fn,λn), ev1(F,λ)) = 0, (11.29)

where ev1(F,λ) = { f ∈ ev(F,λ) : || f ||2 = 1} is the set of eigenvectors of norm 1.

This result may be useful to provide approximation and convergence results for Fourier
transforms and convolution for graph signals, and hence justify their use as tools perform-
ing operations similar to that of functional analysis in Rd.

11.4 Convergence of dynamic processes

Simulating a continuous process on a computer requires to discretize the underlying space
(usually using a uniform grid or a triangulation) and a large research community is devoted
to the study of when and how is such an approximation valid. In this section, we will use
the Gromov-Wasserstein distance in order to present new and intuitive results for such
an endeavor and show that, in a certain sense, convergence of a process only requires the
convergence of the space on which it lies w.r.t. ∆∆p. While the approximation of continuous
processes using discrete spaces is not new, a second application of such theoretical results
is to �nd limits of processes on graphs, e.g. epidemic processes. In order to achieve this,
we will need to compare functions on di�erent spaces, and optimal couplings are natural
mappings between the two spaces that will help us compare functions.

11.4.1 Discrete dynamical systems

Let X be an mm-space, F : Lp,µX → Lp,µX an operator on X , and f ∈ Lp,µX a function on
X . We say that a sequence of functions fn ∈ Lp,µX is an (F, f )-discrete dynamical system

if f0 = f and fn is subject to the following equation of evolution: ∀x ∈ X , ∀n ∈N,

fn+1(x) = [F( fn)](x), (11.30)



11.4. CONVERGENCE OF DYNAMIC PROCESSES 177

When the operator F only depends on the distances between points, for example when
F is an adjacency operator, then two processes of similar initial value will tend to stay
close if the spaces are similar. In order to show this behavior, we consider two spaces X
and Y , and relate the distance between two dynamical processes fn and gn to the distance
between their respective operators. Since we would like their initial value to be similar,
we use f0 = f |πX and g0 = f |πY , where f ∈ Lp,π is a function in X ×Y .

Theorem 11.9. Let L ≥ 1, F (resp. G) an L-Lipschitz operator in X (resp. Y ), π ∈
Π(µX ,µY ) a coupling, f ∈ Lp,π a function on X ×Y , and fn (resp. gn) an (F, f |πX )-
dynamical system (resp. (G, f |πY )-dynamical system). Then, the distance between the two

processes is bounded by the distance between F and G:

∀n > 0, ∆∆p,π( fn, gn) ≤ nLn−1 (|| f ||p,π + n||G(0)||p
)

∆∆p,π(F, G). (11.31)

This theorem implies the convergence of dynamical systems when the corresponding
operators converge and their Lipschitz constants are upper bounded by a �xed value.

Corollary 11.10. Let L > 0, f ∈ Lp,µX a function on X , F an L-Lipschitz operator, and
Fk a sequence of L-Lipschitz operators converging to F w.r.t. ∆∆p. Let also f k

n (resp. fn) an

(Fk, f |πXk
)-dynamical system (resp. (F, f )-dynamical system). Then, f k

n converges to fn for

all positive n:
∀n > 0, lim

k→+∞
∆∆p( f k

n , fn) = 0. (11.32)

Proof. If L < 1, then F and Fk are also 1-Lipschitz, and applying Theorem 11.9 leads to the
desired result.

11.4.2 Random walks

One notable example of the previous result is the convergence in probability of random
walks on X . More speci�cally, we allow the random walker to jump to neighboring posi-
tions with a probability that depends on the distance.

De�nition 11.9 (Random walk on X ). Let X be an mm-space and φ : R+ → R+ a

non-negative function. A φ-random walk on X is a sequence of random variables Xn in X
such that, for each n > 0 and conditionally on Xn = y, Xn+1 is distributed according to a

probability density function proportional to φ(dX (x,y)):

pXn+1|Xn=y(x) ∝ φ(dX (x,y)).

In the case of graphs (or discrete spaces equipped with a uniform probability measure),
a random walk is simply a Markov chain such that P(Xn+1 = x|Xn = y) ∝ φ(dX (x,y)).
More generally, a φ-random walk on X is a Markov chain of transition operator equal to
the integral operator with kernel

kRW
X ,φ(x, x′) =

φ(dX (x, x′))∫
φ(dX (x′, x′′)dµX (x′′)

,

and thus applying our previous result to a (FkRW
X ,φ

, f )-dynamical system, where f is the
initial distribution of the random walk, leads to the convergence of the random walk Xn
in probability.
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Theorem 11.10. Let φ be a non-negative L-Lipschitz function, X and Y two mm-spaces,

and Xn (resp. Yn) a φ-randomwalk onX (resp. Y ) with initial value X0 (resp. Y0) distributed

according to the density pX0 = p|πX (resp. pY0 = p|πY ), where π ∈ Opt1(X ,Y) is an optimal

coupling betweenXk andX , and p ∈ L1,π is a density function inX ×Y . Then, if pXn (resp.

pYn ) is the density of Xn (resp. Yn),

∆∆1(pXn , pYn) ≤ nL∆∆∞(X ,Y) size∞(X ) + size∞(Y)
MX ,φ MY ,φ

, (11.33)

where MX ,φ = minx∈X E[φ(dX (X, x))] and MY ,φ = miny∈Y E[φ(dY (Y,y))].

As a result, random walks converge when the underlying spaces are converging w.r.t.
∆∆∞. Also, the bound gives intuition into the quality of the approximation with respect to
the convergence rate. For example, for renormalized 2D grid graphs 1

mGCG(m,2) of m2

nodes, the distance to the limit space is inferior or equal to 2
m (see Sec. 10.3.1). Hence, the

approximation error is proportional to n
m , which provides a natural way of selecting the

size of the grid m for a certain time window n.

11.4.3 Di�erential systems

For all times t ≥ 0, let ft ∈ Lp,µX be a function subject to the following equation of evolu-
tion: ∀x ∈ X , f0(x) = f (x), and ∀t ≥ 0,

∂

∂t
ft(x) = [F( ft)](x), (11.34)

where F : Lp,µX → Lp,µX is a Lipschitz operator on X , and f ∈ Lp,µX is a function on
X . We will denote as (F, f )-di�erential system the solution ft(x) of Eq. 11.34 and, under
proper regularity assumptions on F, we will see that the associated di�erential system
converges in the sense of ∆∆p. Note that the existence (and uniqueness) of a solution for
all t ≥ 0 si due to the global Cauchy-Lipschitz theorem and the fact that F is Lispchitz.

Theorem 11.11. Let F (resp. G) be an L-Lipschitz operator onX (resp. Y ), π ∈Π(µX ,µY )
a coupling, f ∈ Lp,µX a function on X , and ft (resp. gt) the solution of an (F, f )-di�erential
system (resp. (G, f |πY )-di�erential system). Then, the distance between the original process

ft and its approximation gt|πX is bounded by the distance between F and G:

∀t ≥ 0, || ft − gt|πX ||p ≤ teLt
(
|| f ||p +

||G(0)||p
L

)
∆∆p,π(F, G) . (11.35)

Intuitively, this theorem means that it is possible to perform the evolution of the
di�erential system with another operator (for example on a discretized space), and then
project back to the original space, as long as the two operators are su�ciently close to
one another. Thus, this theorem implies the convergence of di�erential systems when the
corresponding operators converge and their Lipschitz constants are upper bounded by a
�xed value.

Corollary 11.11. Let f ∈ Lp,µX a function on X , F an L-Lipschitz operator, Fk a sequence

of L-Lipschitz operators converging to F w.r.t. ∆∆p, and πk ∈Π(µX ,µXk) a sequence of cou-

plings such that limk→+∞ ∆∆p,πk(F, G) = 0. Then, if f k
t (resp. ft) is an (Fk, f |πk

Xk
)-di�erential



11.5. PROOFS 179

system (resp. (F, f )-di�erential system), f k
t |

πk
X converges to ft for all positive times:

∀t > 0, lim
k→+∞

|| f k
t |

πk
X − ft||p = 0. (11.36)

Proof. Using Theorem 11.3, ||Fk(0)||p = ||F(0)||p, and applying Theorem 11.11 leads to
the desired result.

11.5 Proofs

In all the following proofs, and unless speci�ed otherwise, (X,Y) ∼ π and (X′,Y′) ∼ π
are independent pairs of random variables, each of them drawn according to the coupling
π ∈Π(µX ,µY ) between the two mm-spaces X and Y .

11.5.1 Proofs of the convergence of operators

Proof of Theorem 11.1. Let us �rst prove that Fk( f ) is well de�ned and in Lp,µX for all
f ∈ Lp,µX . Indeed, x′ 7→ k(x, x′) f (x′) is almost surely integrable w.r.t. µX : let g(x) =
E[|k(x, X) f (X)|] ∈R∪ {+∞},

g(x) ≤ ||k(x, ·)||r,µX || f ||p,µX , (11.37)

where r = p
p−1 using Hölder inequality. Although ||k(x, ·)||r,µX may not be �nite for every

x, its p-norm is, and thus g(x) is in�nite at most on a negligible subset of X .

||g||p,µX ≤ || f ||p,µXE[|E[|k(X′, X)|r | X′]|p/r]1/p

≤ || f ||p,µX ||k||q,µX⊗µX

< +∞,

(11.38)

where q = max{p,r} and the second inequality is Jensen inequality on |x|p/r concave
(resp. convex) when p < 2 (resp. p ≥ 2). Hence Fk( f ) is well de�ned and

||Fk( f )||p,µX ≤ || f ||p,µX ||k||q,µX⊗µX < +∞. (11.39)

Now, let π ∈ Π(µX ,µY ) a coupling, f ∈ Lp,π a function on X ×Y and x ∈ X . By
de�nition,

FkX ( f |πX )(x) = E[kX (x, X) f |πX (X)]

= E[kX (x, X)Eπ[ f (X,Y)|X]]

= Eπ[kX (x, X) f (X,Y)]

= Fk̃X ( f ),

(11.40)

where k̃X (x,y, x′,y′) = kX (x, x′) is a function on X ×Y . Hence,

∆∆p,π(FkX ( f |πX ), FkY ( f |πY )) = ||Fk̃X ( f )− Fk̃Y ( f )||p,π

= ||Fk̃X−k̃Y ( f )||p,π

≤ || f ||p,π||k̃X − k̃Y ||q,π⊗π

= || f ||p,π∆∆q,π⊗π(kX ,kY ),

(11.41)
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using Eq. 11.39. Since f is any function in Lp,π , we obtain an upper bound for ∆∆p,π(FkX , FkY ):

∆∆p,π(FkX , FkY ) = max
f∈Lp,π : || f ||p,π,0

∆∆p,π(FkX ( f |πX ), FkY ( f |πY ))
|| f ||p,π

≤ ∆∆q,π⊗π(kX ,kY ).
(11.42)

and taking the minimum over Π(µX ,µY ) returns the desired result.

Proof of Theorem 11.3. Let f̃ (x,y) = f (x) and q ≥ p. Then

∣∣||F( f )||p − ||G( f |πY )||p
∣∣ =

∣∣||F( f )||p,π − ||G( f |πY )||p,π
∣∣

≤ ||F( f )− G( f |πY )||p,π

= ∆∆p,π(F( f ), G( f̃ |πY ))
≤ ∆∆q,π(F( f ), G( f̃ |πY ))
≤ ∆∆q,π(F, G)|| f̃ ||q,π

= ∆∆q,π(F, G)|| f ||q .

(11.43)

11.5.2 Proofs of the convergence of spectral properties

Proof of Theorem 11.7. Let X and Y be two mm-spaces and π ∈Π(µX ,µY ) be a coupling
of µX and µY . The proof relies on three steps:

• First, we show that the spectra of F and G are equal to the spectra of two operators
on X ×Y (except for zero).

• Second, we show that an eigenvector for one operator is nearly an eigenvector for
the second operator.

• Finally, we show that this implies the existence of an eigenvalue of the second op-
erator close to that of the �rst one.

Let F̃ and G̃ be linear operators on X ×Y de�ned by:
∀φ ∈ L2(X ×Y),∀(x,y) ∈ X ×Y ,

[F̃( f )](x,y) = F( f |πX )(x),

[G̃( f )](x,y) = G( f |πY )(y).
(11.44)

where f |πX and f |πY are de�ned as in Eq. 11.1.

Lemma 11.4. For H ∈ {F, G},

sp(H) ⊂ sp(H̃) ⊂ sp(H) ∪ {0}. (11.45)
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Proof. First, note that, if f (x,y) = g(x) (i.e. f only depends on the variable x), then
f |πX (x) = Eπ[g(X) | X = x] = g(x). Now, let λ ∈ sp(F) and f ∈ L2(X ) s.t. F( f ) = λ f ,
and f̃ ∈ L2(X ×Y) s.t. f̃ (x,y) = f (x). Then ∀(x,y) ∈ X ×Y ,

[F̃( f̃ )](x,y) = F( f̃ |πX )(x)

= F( f )(x)

= λ f (x)

= λ f̃ (x,y),

(11.46)

and λ ∈ sp(F̃), hence sp(F) ⊂ sp(F̃).
Conversely, let λ ∈ sp(F̃) and f̃ ∈ L2(X ×Y) s.t. F̃( f̃ ) = λ f̃ . Then ∀(x,y) ∈ X ×Y ,

λ f̃ (x,y) = [F̃( f̃ )](x,y)

= [F( f̃ |πX )](x),
(11.47)

and λ f̃ (x,y) does not depend on y. So either λ = 0, or f̃ (x,y) does not depend on y. In the
second case, let f (x) = f̃ (x,y) for any y. Then F( f )(x) = F( f̃ |πX )(x) = F̃( f̃ )(x,y) =
λ f̃ (x,y) = λ f (x) and λ ∈ sp(F), hence sp(F̃) ⊂ sp(F) ∪ {0}. The proof for Y is iden-
tical.

Let π ∈Π(µX ,µY ), λ ∈ sp(G̃) and f ∈ L2(X ×Y) s.t. G̃( f ) = λ f . Then,

||F̃( f )− λ f ||2,π = ||F̃( f )− G̃( f )||2,π

= ∆∆2,π(F( f |πX ), G( f |πY ))
≤ ∆∆2,π(F, G)|| f ||2,π ,

(11.48)

by de�nition of ∆∆2,π(F, G). Finally, Eq. 11.48 implies that there is an eigenvalue of F̃,
denoted λ′, such that |λ′ − λ| ≤ ∆∆2,π(F, G) due to the following lemma:

Lemma 11.5. Let F be a self-adjoint and compact operator on a Hilbert spaceH, λ ∈R and

C ≥ 0. If ∃x ∈ H s.t. ||Fx− λx||2 ≤ C||x||2, then

inf
λ′∈sp(F)

|λ′ − λ| ≤ C. (11.49)

Proof. Due to the spectral theorem (Brézis, 2011, Theorem 6.11), a self-adjoint and compact
operator on a Hilbert space can be diagonalized on an orthonormal basis (ei)i∈I where I
is a countable index set. So Fx − λx = ∑i∈I(λi − λ) < ei, x > ei where < ·, · > is
the scalar product associated to H. Now ||Fx − λx||22 = ∑i∈I(λi − λ)2 < ei, x >2≥
||x||22 infi∈I(λi − λ)2, which leads to the desired result.

Since F̃ is compact and using Lemma 11.5, infλ′∈sp(F) |λ′ − λ| ≤ ∆∆2,π(F, G). Since
the same result holds for eigenvalues of G̃, we get that:

dH(sp(F̃), sp(G̃)) ≤ ∆∆2,π(F, G), (11.50)

which leads to the desired result using Lemma 11.4 and observing that the result holds for
any coupling π ∈Π(µX ,µY ).
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Proof of Theorem 11.8. Let F̃ and G̃ be the extensions of F and G to X ×Y de�ned by
[F̃( f )](x,y) = F( f |πX )(x) and [G̃( f )](x,y) = G( f |πY )(y). Let also λ ∈ sp(F) \ {0},
λ′ ∈ sp(G) \ {0} and f ∈ ev(F,λ). Then, f̃ (x,y) = f (x) is an eigenvector of F̃ of
eigenvalue λ, and let g̃ ∈ ev(G̃,λ′) be the orthogonal projection of f on ev(G̃,λ′). Since
G̃ is a compact self-adjoint operator, there exists an orthonormal basis of eigenvectors of
G̃, denoted (ei)i∈N, with corresponding eigenvalues (λi)i∈N, and

||G̃( f̃ − g̃)− λ′( f̃ − g̃)||22,π = ∑i(λi − λ′)2 < ei, f̃ − g̃ >2

≥ infλ′′∈sp(G̃) : λ′′,λ′(λ
′′ − λ′)2|| f̃ − g̃||22,π,

(11.51)

Also, the quantity ||G̃( f̃ − g̃)− λ′( f̃ − g̃)||2,π is upper bounded by

||G̃( f̃ − g̃)− λ′( f̃ − g̃)||2,π = ||G̃ f̃ − λ′ f̃ ||2,π

≤ |λ− λ′||| f̃ ||2,π + ||G̃ f̃ − F̃ f̃ ||2,π

≤ (|λ− λ′|+ ∆∆2,π(F, G)) || f ||2.

(11.52)

Combining Eq. 11.51 and Eq. 11.52 leads to

|| f̃ − g̃||2,π ≤
|λ− λ′|+ ∆∆2,π(F, G)

infλ′′∈sp(G)∪{0} : λ′′,λ′ |λ′′ − λ′| || f ||2 ,

and noting that g̃(x,y) only depends on y (since λg̃(x,y) = G(g|πY )(y)) implies that g|πY
is an eigenvector of G of eigenvalue λ′ and || f̃ − g̃||2,π = ∆∆2,π( f , g̃|πY ) which leads to the
desired result.

Proof of Corollary 11.9. First of all, the spectral theorem (Brézis, 2011, Theorem 6.8) implies
that the spectrum of F, sp(F) = (λi)i∈N is either discrete or limi→+∞ λi = 0, and thus,
since λ , 0, eg(F,λ) > 0. For every eigenvector fn in ev1(Fn,λn), Theorem 11.8 implies
that there is an eigenvector f ∈ ev(F,λ) such that

∆∆2,π( fn, f
|| f ||2 ) ≤ ∆∆2,π( fn, f ) + || f − f

|| f ||2 ||2
= ∆∆2,π( fn, f ) + | || f ||2 − 1 |
= ∆∆2,π( fn, f ) + | || f ||2 − || fn||2 |
≤ 2∆∆2,π( fn, f )

≤ 2
|λn − λ|+ ∆∆2,π(Fn, F)

min{|λ|, eg(F,λ)} .

(11.53)

Similarly, for every eigenvector f in ev1(F,λ), there is an eigenvector fn ∈ ev(Fn,λn)
such that

∆∆2,π( f , fn
|| fn||2 ) ≤ 2∆∆2,π( f , fn)

≤ 2
|λn − λ|+ ∆∆2,π(Fn, F)
min{|λn|, eg(Fn,λn)}

≤ 2
|λn − λ|+ ∆∆2,π(Fn, F)

min{|λ|, eg(F,λ)} − |λn − λ| − ∆∆2,π(Fn, F)
,

(11.54)
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when min{|λ|, eg(F,λ)} − |λn − λ| − ∆∆2,π(Fn, F) > 0 (which happens when n is su�-
ciently large since limn→+∞ |λn − λ| = 0 and limn→+∞ ∆∆2,π(Fn, F) = 0). Thus,

dH(ev1(Fn,λn), ev1(F,λ)) ≤ 2
|λn − λ|+ ∆∆2(Fn, F)

min{|λ|, eg(F,λ)} − |λn − λ| − ∆∆2(Fn, F)
, (11.55)

which tends to zero as n tends to in�nity.

11.5.3 Proofs of the convergence of dynamic processes

Proof of Theorem 11.9. Let [F̃( f )](x,y) = [F( f |πX )](x) and [G̃( f )](x,y) = [G( f |πY )](x)
be the extensions of F and G to the space X ×Y , respectively. Then, for all n > 0,

fn(x) = f̃n(x,y) and gn(x) = g̃n(x,y),

where f̃n and g̃n are (F̃, f )- and (G̃, f )-discrete dynamical systems, respectively. Thus,

∆∆p,π( fn, gn) = || f̃n − g̃n||p,π

= ||F̃( f̃n−1)− G̃(g̃n−1)||p,π

≤ ||F̃( f̃n−1)− F̃(g̃n−1)||p,π + ||F̃(g̃n−1)− G̃(g̃n−1)||p,π

≤ L|| f̃n−1 − g̃n−1||p,π + ∆∆p,π(F(g̃n−1|πX ), G(g̃n−1|πY ))
≤ L∆∆p,π( fn−1, gn−1) + ∆∆p,π(F, G)||g̃n−1||p,π.

(11.56)

A simple recursion leads to

∆∆p,π( fn, gn) ≤ Ln|| f̃0 − g̃0||p,π + ∆∆p,π(F, G)∑n−1
k=0 ||g̃k||p,π Ln−k−1

≤ ∆∆p,π(F, G)∑n−1
k=0 ||g̃k||p,π Ln−k−1,

(11.57)

since f̃0 = g̃0 = f . However, for k ≤ n,

||g̃k||p,π = ||G̃(g̃k−1)||p,π

≤ L||g̃k−1||p,π + ||G(0)||p,π

≤ Lk|| f ||p,π + ∑k−1
i=0 Li||G(0)||p,π

≤ Lk (|| f ||p,π + n||G(0)||p,π
)

.

(11.58)

since L ≥ 1. Using Eq. 11.58, Eq. 11.57 becomes

∆∆p,π( fn, gn) ≤ ∆∆p,π(F, G)∑n−1
k=0 Ln−1 (|| f ||p,π + n||G(0)||p,π

)
≤ ∆∆p,π(F, G)nLn−1 (|| f ||p,π + n||G(0)||p,π

)
.

(11.59)

Proof of Theorem 11.11. Similarly to the proof of Theorem 11.9, let [F̃( f )](x,y) =
[F( f |πX )](x) and [G̃( f )](x,y) = [G( f |πY )](x) be the extensions of F and G to the space
X ×Y , respectively. Also, let f̃ (x,y) = f (x), g̃(x,y) = g(x), and h(t) = || ft − gt|πX ||p
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be the distance between the two processes at time t. The function h(t) is di�erentiable
and

d
dt h(t) = lim

∆t→0

1
∆t
(
|| f̃t+∆t − g̃t+∆t|πX ||p,π − || f̃t − g̃t|πX ||p,π

)
≤ lim

∆t→0

1
∆t
|| f̃t+∆t − g̃t+∆t|πX − f̃t + g̃t|πX ||p,π

= lim
∆t→0

∣∣∣∣∣
∣∣∣∣∣
(

f̃t+∆t − f̃t

∆t
− g̃t+∆t − g̃t

∆t

)∣∣∣∣π
X

∣∣∣∣∣
∣∣∣∣∣

p,π

≤ lim
∆t→0

∣∣∣∣∣∣∣∣ f̃t+∆t − f̃t

∆t
− g̃t+∆t − g̃t

∆t

∣∣∣∣∣∣∣∣
p,π

= ||F̃( f̃t)− G̃(g̃t)||p,π

≤ ||F̃( f̃t)− F̃(g̃t)||p,π + ||F̃(g̃t)− G̃(g̃t)||p,π

≤ Lh(t) + ∆∆p,π(F, G)||gt||p.

(11.60)

Now, ||g̃t||p can also be bounded using

d
dt ||gt||p ≤ ||G(gt)||p

≤ ||G(0)||p + L||gt||p,
(11.61)

and hence
||gt||p ≤ −

||G(0)||p
L

+

(
|| f ||p +

||G(0)||p
L

)
eLt. (11.62)

Using this bound in Eq. 11.60, we obtain

d
dt

h(t) ≤ Lh(t) + ∆∆p(F, G)

[
−
||G(0)||p

L
+

(
|| f ||p +

||G(0)||p
L

)
eLt
]

, (11.63)

which leads to the desired result by considering h(t) = a(t)eLt and integrating the bound
on d

dt a(t).

Proof of Theorem 11.10. First, let us verify that pXn+1 = FkRW
X ,φ

(pXn). For all functions f ∈
L1,

EµX [ f (X)pXn+1(X)] = E[ f (Xn+1)]

= E[E[ f (Xn+1)|Xn]]

= E[E[ f (X)
φ(dX (Xn, X)

E[φ(dX (Xn, X)|Xn]
|Xn]]

= E[ f (X)
φ(dX (Xn, X)

E[φ(dX (Xn, X)|Xn]
]

= E[ f (X)
φ(dX (X′, X)

E[φ(dX (X′, X)|X′] pXn(X′)]

= E[ f (X)E[
φ(dX (X′, X)

E[φ(dX (X′, X)|X′] pXn(X′)|X]]

= E[ f (X)FkRW
X ,φ

(pXn)(X)],

(11.64)

where X and X′ are independent random variables drawn according to µX (and indepen-
dent of Xn). Since this equality holds for all functions f ∈ L1, this implies that pXn+1 =
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FkRW
X ,φ

(pXn). Also, FkRW
X ,φ

is 1-Lipschitz since it is linear and, for all f ∈ L1,

||FkRW
X ,φ

( f )||1 = E

[∣∣∣∣E[
φ(dX (X′, X)

E[φ(dX (X′, X)|X′] f (X′)|X]

∣∣∣∣]
≤ E[

φ(dX (X′, X)

E[φ(dX (X′, X)|X′] | f (X′)|]

= E[E[
φ(dX (X′, X)

E[φ(dX (X′, X)|X′] | f (X′)| |X′]]

= E[| f (X′)|]
= || f ||1.

(11.65)

Thus, the conditions for Theorem 11.9 are met, and

∀n > 0, ∆∆1,π(pXn , pYn) ≤ n∆∆1,π(FkRW
X ,φ

, FkRW
Y ,φ
). (11.66)

In order to derive the desired result, we now need to upper bound the distance between
FkRW
X ,φ

and FkRW
Y ,φ

. Since these operators are integral operators, Theorem 11.1 implies that

∆∆1,π(FkRW
X ,φ

, FkRW
Y ,φ
) ≤ ∆∆∞,π(kRW

X ,φ,kRW
Y ,φ)

≤
∣∣∣∣∣∣∣∣ φ ◦ dX

E[φ(dX (·, X)]
− φ ◦ dY

E[φ(dY (·,Y)]

∣∣∣∣∣∣∣∣
∞,π

≤
||E[φ(dY (·,Y)]φ ◦ dX −E[φ(dX (·, X)]φ ◦ dY ||∞,π

MX ,φ MY ,φ

≤ L∆∆∞,π(X ,Y) (size∞(X ) + size∞(Y))
MX ,φ MY ,φ

.

(11.67)
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Résumé : La propagation au sein d'un réseau 

est un sujet d'étude pour de nombreux domaines 

scientifiques. Épidémies, marketing viral ou 

propagation d'information au sein d'un réseau 

social sont autant de phénomènes réels 

modélisés par l'évolution d'une caractéristique 

se propageant à travers un réseau de proche en 

proche. Ainsi, être capable d'agir sur ces 

phénomènes de diffusion est un enjeu capital 

dans de nombreux domaines. Malgré 

l'abondance de la littérature à ce sujet sur le plan 

théorique, et notamment la détermination d'un 

seuil épidémique au dessous duquel la 

propagation se résorbe, un certain nombre de 

limitations réduisent l'impact pratique de ces 

travaux. Dans cette thèse, nous avons travaillé à 

réduire la distance séparant pratique et théorie, 

et ce suivant trois axes : 

la généralisation de résultats théoriques à une 

classe plus large et réaliste de modèles de 

propagation, le développement de méthodes de 

contrôle dynamique efficaces utilisant de 

manière judicieuse la structure du réseau, et 

enfin la définition de nouveaux outils 
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espace métrique donné, et pourrait permettre 

l'application de méthodes de contrôle sur réseau 
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démographiques et de transport) du réseau de 
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Abstract : The propagation of a characteristic 

through a network is the subject of study of 

many scientific fields. Epidemics, viral 

marketing or information propagation through 

a social network are among the many examples 

of real phenomena modeled by the evolution of 

a characteristic propagating through the edges 

of a network. Thus, being capable of acting on 

these diffusion processes is of capital interest 

for many fields. Despite the large literature on 

the theoretical aspects of diffusion processes, 

and more specifically the discovery of an 

epidemic threshold under which the 

propagation is not sustainable, a number of 

practical limitations prevent the use of these 

studies in real-life scenarios. In this thesis, we 
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theory from practice,  

following three distinct research directions: the 

generalization of theoretical results to a larger 

and more realistic class of diffusion models, the 

development of efficient dynamic control 
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