
HAL Id: tel-01531841
https://theses.hal.science/tel-01531841

Submitted on 2 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design of a Fast Antenna Characterization Method
Exploiting Echoes

Mouad Djedidi

To cite this version:
Mouad Djedidi. Design of a Fast Antenna Characterization Method Exploiting Echoes. Electromag-
netism. Université Paris Saclay (COmUE), 2016. English. �NNT : 2016SACLS348�. �tel-01531841�

https://theses.hal.science/tel-01531841
https://hal.archives-ouvertes.fr


NNT: 2016SACLS348

Thèse de Doctorat
de

l’Université PARIS-SACLAY

préparée à

CentraleSupélec

ÉCOLE DOCTORALE No : 575
Physique et Ingénierie : Électrons, Photons, Sciences du vivant (EOBE)

Spécialité de doctorat : Génie Électrique

Par

Mouad DJEDIDI

Design of a Fast Antenna Characterization Method Exploiting Echoes

Thèse présentée et soutenue à Gif-sur-Yvette, le 17/10/2016

Composition du Jury :

M. Jean-Yves DAUVIGNAC Directeur de Recherche, LEAT President du jury
M. Ala SHARAIHA Professeur, Université de Rennes 1 Rapporteur
Mme. Susana LOREDO Professeur, Université d’Oviedo Rapporteur
M. Lars FOGED Directeur Scientifique, SATIMO Examinateur
M. Andrea COZZA Professeur, CentraleSupélec Directeur de thèse
M. Florian MONSEF Maître de Conférences, Université Paris Sud Encadrant et Invité





To my mother and father...
I hope you are always proud.





Acknowledgements

The works of this thesis have been carried out at the Laboratory of the Group of electrical
engineering, Paris (GeePs), Pole of Electromagnetism (PIEM). I had the privilege of being
surrounded by outstanding people, who had faith in me, and supported me throughout this
journey, and to whom I ’ll be forever indebted for helping me come to this achievement.

First, I would like to express my deep gratitude for my thesis director, Prof. Andrea Cozza,
who I would not be able to thank enough for all what he did during my thesis. Thank you
for believing in me, even when I did not. Thank you for your faith, help, understanding, and
devotion. Thank you for your precious advises as well. I really consider myself lucky having
you as a thesis director.

I would also like to thank my supervisor Dr. Florian Monsef. What an exceptionally nice
person to work with. Thank you for your endless patience, support and guidance. I learned a
lot working by your side both at professional and personal level.

I would like to thank Prof. Susana Loredo from University of Oviedo and Prof. Ala Sharaiha
from Université de Rennes for accepting to review and evaluate my work. Many thanks to Prof.
Jean Yves Dauvignac from Université de Nice Sophia-Antipolis and to Mr. Lars Foged, scientific
director at MVG for accepting our invitation to take part of the defense committee.

I wish to address special thanks to all the GeePs and L2S laboratories staffs who crossed
my path during this thesis. Many thanks to directors Prof. Claude Marchand and Prof. Silviu
Niculescu who provided all necessary conditions for the success of this work, and to Prof. Lionel
Pichon, director of PIEM, who was very supportive and always available to help us.

The list of amazing people who crossed my path is fortunately long. It was a joy sharing my
office with Henri Vallon, Philippe Meton, and Guillaume Defrance. Thank you for your help,
and for the memories. Special thanks to Mohamed Farouq, Moussa Kafal, Mohammed Serhir,
Abdulrahman Yusuf, Mohammad-Waseem Arab, Mohammad Ibrahim, Djawad, Sofiane, Seif,
Fethi, Abdelkerim and all who I did not mention but took any part of this amazing journey.

Words cannot express how deep I am grateful to be the son of Abdelkamel and Ouafa.
Making you forever happy and proud is my ultimate dream.

I am grateful to my wife Saida, and to my little angle Khadija, simply for taking part in my
life, giving me reasons to smile, and to move on everyday.

I thank God for his endless Mercy and blessings, among which the fulfillment of this work.





Summary

Current antenna radiation pattern measurement techniques share a common paradigm which
states that useful information is exclusively carried by the generated test signal. This implies an
excessive, time consuming, mechanical effort by rotating the antenna under test or displacing the
probe system in order to cover different measurement angles until a complete scan is performed;
a limitation that is typically overcome using costly multi-probe systems. Moreover, any reflection
from the measurement site and test equipment is considered spurious as it perturbs the test
signal and thus is minimized.

In this thesis, an antenna radiation pattern measurement concept challenging this common
paradigm is introduced as a mean of accelerating the characterization process using cost-efficient
systems. The proposed paradigm consists in the generation of a set of controlled echoes, using
set-ups involving highly-reflective plates, which would directly contribute to the measurement
alongside the line-of-sight signal by covering different measurement angles, and retrieving the
ARP information carried by the set of all generated signals concurrently. Frequency diversity is
used in order to generate a balanced system of equations where the unknown ARP vector is
retrieved by inverting a matrix problem. Consequently, a considerable attention is paid into the
conditioning of the mathematical model in order to ensure the system stability and accuracy.

Three configurations of different complexity levels in terms of controlled echoes are studied,
with focus on the simplest configuration involving a single controlled echo. Models have been
developed with design guidelines for the proposed configurations in terms of set-up dimensions
and operating frequency bandwidth highlighting the mathematical viability of the concept.
Practical issues were also assessed by studying the tolerance of developed models to systematic
practical errors, as well as to the impact of an applied set of simplifying assumptions. The
feasibility of the concept as well as its usefulness in accelerating the measurement process with
respect to classical techniques were highlighted via numerical simulations. This thesis opens
the door for exploiting echoes, generally regarded as a nuisance, in an antenna measurements
context.
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General Introduction

The work of this dissertation relates to the field of Antenna Measurement, more precisely
Antenna Radiation Pattern (ARP) Measurement. ARP measurement aims at determining the
antenna radiation pattern, which describes the angular distribution of the radiated energy by
the antenna. This key characteristic is very relevant for applications involving antennas of all
types, and is used in order to retrieve other important properties such as directivity and gain.

The fast development and growth of the telecommunication industry, especially over the last
decade, and its generalization to everyday life have extended the role of antennas from classical
fields, such as radio broadcasting and defense, to a larger scale of applications. The development
and commercialization of modern intelligent systems, and the rise of connectivity concepts such
as the Internet of Things (IoT), helped antennas conquering modern electronic devices and
equipment. For instance, modern cars can have up to 24 different antennas installed up and on
the vehicle [1]. A number that is expected to further rise in the upcoming years. Accordingly, a
reliable knowledge of the radiation characteristics of deployed antennas is crucial for the proper
functioning of the integral system. These characteristics, which include the ARP, the radiation
efficiency, the operating bandwidth, etc., are generally retrieved and tested via measurement.
This explains the relevance of the antenna measurement field in radio engineering from both
industrial and academic point of views.

Several ARP measurement schemes and procedures have been developed and enhanced
during the last century [2]. They are generally classified in terms of measurement conditions
implied -in part- by the distance at which the measurement is performed into two categories:
Far-Field (FF) techniques [3], and Near-Field (NF) techniques [4]. Although these techniques are
exposed to different sets of non-idealities, they share the same type of anechoic measurement
environment in which only the generated test signal is considered, whereas specular reflections
from the measurement site and test equipment are minimized and discarded during the charac-
terization process [5]. This follows from the common measurement paradigm forming the basis
of classical measurements, which consists in acquiring the information carried by the generated
test signal in order to retrieve the Antenna-under-Test (AUT) radiation characteristics in the
corresponding measurement direction. Accordingly, any sort of reflection from the measurement
site and test equipment is considered spurious as it perturbs the test signal value. In view
of this, two main limitations of classical ARP measurement techniques may be outlined. The
first limitation consists in the mechanical displacement effort needed to perform a complete
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measurement. Commonly, either the AUT is rotated or the probe system is moved in order to
acquire ARP information corresponding to different directions until a complete scan is achieved.
This would result in an excessive measurement time which may be too expensive from an
industrial point of view. Several techniques have been developed in order to overcome this
limitation, most commonly multi-probe systems [6], which however come with higher cost with
respect to traditional systems. The second limitation is related to the cancellation of echoes and
specular reflections from the measurement site. Typically, ARP measurements take place indoor
in Fully Anechoic Chambers (FAC) whose walls, floor and ceiling are covered with microwave
absorbing material which in addition to its high cost, its maintenance should be taken into
account.

Very recently, efforts have been made in order to characterize antennas in diffusive envi-
ronments, i.e., in Reverberation Chambers (RC) [7][8][9][10][11]. The main advantage of
RCs with respect to FACs is their relatively low installation and maintenance cost. However,
counter-intuitive as it may seem, the developed techniques are performed in diffusive environ-
ments essentially to emulate free-space measurement conditions; as the targeted information
is exclusively carried by the Line-of-Sight (LOS) signal between the source and the AUT, and
hence contributions of various reflections resulting in the measurement site are discarded.
Accordingly, these techniques share the same limitations in terms of mechanical displacement
and measurement time as classical techniques.

The main thrust of this thesis is the growing need for faster ARP measurement capabilities.
A novel rapid ARP measurement concept based on a principle of a spatial diversity that allows
the acquisition of several ARP values corresponding to different measurement angles in each
mechanical displacement is developed. The proposed concept provides a substantial novel contri-
bution in the sense that the highlighted spatial diversity allowing to accelerate the measurement
process is generated by exploiting echoes. Although echoes are exploited in other fields, such as
in telecommunication with the notion of multi-path propagation [12] [13], to our knowledge
the present work is the first contribution to exploit echoes in an antenna measurement context
in order to accelerate the characterization process. The particularity of the proposed concept
with respect to techniques performed in RCs is that echoes are generated in a controlled fashion.
Hence, a deterministic approach is used in order to retrieve their characteristics rather than the
statistical approach applied in reverberating environments. The concept have been numerically
validated with promising results. A patent application on the concept has been published by the
French Institut National de la Propriété Industrielle under the number WO2016055739 (A3).

The manuscript is organized as follows. The first chapter introduces basics of ARP mea-
surement theory and necessary tools in order to develop the proposed concept. Then, classical
measurement techniques as well as recently developed concepts are briefly presented with a
discussion of common limitations. A global insight into the proposed concept is then provided
with an outline of the thesis objectives.
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The remaining chapters may be split into two parts. Chapters 2, 3 and 4 handle in detail
the simplest form of the proposed concept in terms of controlled echoes, the single-plate
configuration. In this case, a single controlled echo is generated and its contribution into
the ARP measurement along with the LOS signal is assessed. Chapter 2 presents a detailed
study of the model viability from a pure mathematical point of view. The problem being in
matrix form, a conditioning study of the system matrix is conducted to verify the possibility of
achieving well-conditioned systems using affordable measurement parameters in terms of set-up
dimensions and operating bandwidth. A study of the configuration usefulness in reducing the
mechanical displacement effort and thus accelerating the measurement process is also presented,
with AUT rotation algorithms allowing to achieve maximum efficiency with respect to classical
measurement, thus by cutting the measurement time by a factor of 2. Once the mathematical
viability is assessed, a study of the model practical limitations is conducted in Chapter 3 in order
to verify its physical viability. The tolerance of the developed model to practical systematic errors,
and the impact of physical phenomena that are not taken into account in the mathematical
formulation are assessed. After that, Chapter 4 presents numerical results highlighting the
soundness of the concept and the effectiveness of the adopted model.

The second part, Chapter 5, explores the possibility of extending the proposed concept
to more complex configurations involving more than a single controlled echo. After a brief
discussion about possible methods of generating multiple controlled echoes, two configurations
are studied based on results obtained with the single-plate configuration. The first configuration,
the right dihedral configuration, allows the generation of three controlled reflections, while the
second, the parallel plates configuration, allows the generation of an infinite set of controlled
echoes. The soundness of developed models as wells as their theoretical efficiency in accelerating
the measurement process are highlighted via numerical results.

Finally, a general conclusion regrouping the achievements of this thesis, as well as perspec-
tives for future work are provided.
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This chapter introduces the thesis research topic, Antenna Radiation Pattern Measurement.
A theoretical background is first provided with definitions of key terms and basics of ARP
measurement theory. Then, classical ARP measurement techniques and facilities are briefly
presented, with focus on common limitations due to the underlying concepts. The objectives of
the thesis are then detailed with a global insight into the proposed concept.
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1.1 Introduction

The main objective of this thesis work is the development of a rapid ARP measurement concept
challenging the common measurement paradigm forming the basis of state-of-the-art techniques
which states that useful information is exclusively carried by the generated test signal. In this
chapter, a brief introduction into ARP measurement theory is provided with definition of key
terms and necessary tools to develop the proposed concept. An insight into common ARP
measurement techniques is also provided in order to highlight their limitations in terms of
mechanical effort and measurement time, which can be overcome using solutions involving
expensive systems. It should be pointed out that antenna measurements bibliography is very
wide and keeps expanding systematically with novel works aiming to improve the performance
of classical techniques. However, the measurement paradigm being essentially the same as in
classical techniques, the focus of this chapter is on classical techniques. Recent efforts aiming at
performing ARP measurements in reverberating environments are briefly outlined in order to
shed light on a possible misleading similarity with the proposed concept.

1.2 Theoretical Background

An antenna may be defined as any device capable of radiating or receiving electromagnetic
waves [14]. Radiation characteristics of an antenna are defined by several figures, among which
the ARP which describes the angular distribution of the radiated energy. Common types of ARPs
are the field pattern which describes the angular distribution of the electric field intensity, and
power pattern which is the radiated power per unit solid angle. In the present manuscript, ARP
refers to the field pattern.

Other figures of merit characterizing antennas include the directivity D which compares the
antenna radiated power in the direction of maximum emission to the power radiated by a lossless
isotropic antenna. An isotropic antenna is a hypothetical antenna that radiates power uniformly
in all directions. The radiation efficiency εR measures how much power is actually radiated by
an antenna given an injected power by a transmitter. Multiplying the directivity by the radiation
efficiency yields the antenna Gain Ga, which is more commonly quoted in antenna data-sheets
as it regroups the two parameters. The operating bandwidth is the frequency range [ fmin, fmax]
over which the antenna can operate properly; it is generally defined by an accepted return
loss level, most commonly S11 < −3dB. The operating bandwidth is commonly specified by the
Fractional Bandwidth (FBW), which is defined with respect to the central working frequency f0
[15],

FBW =
fmax − fmin

f0
. (1.1)
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Among the antenna characteristics affected by frequency is the ARP, whose sensitivity to the
working frequency changes as function of the antenna type.

The ARP is a far-field concept; it describes the distribution of the radiated field at large
distances from the antenna, commonly referred to as the far-field region. This region is charac-
terized by a number of properties outlined hereafter,

• The absence of the radiated field radial component. The ARP, often expressed in spherical
coordinates, is only function of the transverse components F⃗ = [Fθ , Fφ].

• The ARP is assumed unchanged with distance. Hence, each of the ARP transverse compo-
nents only depends on the angular parameters θ and φ: Fθ ,φ(θ ,φ).

• The electric field is dominated by the radiating component which represents the transmitted
energy and whose amplitude dies off as the inverse of the radial distance r−1. Reactive

fields which represent the stored energy die off more rapidly as r−2 and r−3, and hence
are neglected in the far-field region.

• Assuming the AUT to be at the origin of the spherical coordinates system, the radiated
electric field E⃗(r⃗) at some position in space r⃗ and the ARP value at the corresponding
direction of generation are related by the far-field equation 1,

E⃗(r⃗) = G(r, f )F⃗(θ ,φ), (1.2)

where G(r, f ) is the free-space Green’s function which, in addition to the radial distance
r, is function of the operating frequency,

G(r, f ) =
e

r

−jkr
, (1.3)

where k is the wavenumber,

k =
2π

λ
=

2πc

f
, (1.4)

λ being the wavelength and c the speed of light. The free-space Green’s function expresses
the inverse distance dependence as well as the field phase. Note that the ARP vector is
a complex quantity. However, most applications are concerned with the amplitude ARP
rather than the complex representation.

• The radiated wave is locally plane and may be approximated B a plane wave. The
electric and magnetic fields are perpendicular to each other and to the direction of
propagation. The figure traced by the electric-field vector, while propagating, defines

1Notation: Arrow notation (A⃗) stands for geometrical vectors, bold notation (A) stands for matrix quantities,
including one dimensional matrices (row and column vectors), whereas automatic font (A) describes scalar quantities.
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Figure 1.1 3D representation of a normalized ARP of a half-wave dipole operating at 1GHz
retrieved via numerical simulation.

another fundamental antenna parameter, the polarization, which can either be linear,
circular or elliptical.

A complete radiation pattern is three dimensional, and is obtained by scanning azimuthal
angles between 0◦ and 360◦ and polar angles between 0◦ and 180◦. An example of a 3D
pattern is shown Fig. 1.1, which plots the ARP of a Half-Wave Dipole (HWD) operating at 1GHz.
In practice, it is more convenient, and often sufficient, to measure a couple of 2D cuts over
orthogonal planes. Common planar cuts are the E-plane which contains the electric field and
the direction of maximum radiation, and the H-plane which contains the magnetic field and the
direction of maximum radiation.

To conclude, the antenna radiation characteristics may be retrieved in transmit or receive
modes. This follows from the principle of reciprocity, which is applicable to most antenna types,
and which states that the antenna characteristics are the same in both modes. If the antenna is
used in receive mode, the measurement requires the AUT to be illuminated by a uniform plane
wave. The measurement direction (θ ,φ) is estimated with respect to the antenna phase center,
which is considered as the apparent radiation point [16].

1.3 Classical ARP Measurement Techniques

Several ARP measurement techniques have been developed -or are in the process of development-
in order to retrieve ARPs. Depending the measurement conditions, implied in part by the distance
at which the measurement is performed, theses techniques may be classified into two main
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Figure 1.2 Estimating the the far-field distance as function of the AUT dimensions and the
maximum tolerated phase tapper kδ.

categories: far-field techniques and near-field techniques. In this section we are going to focus
on classical measurement ranges, i.e., ranges that have been commonly used in order to perform
ARP measurements.

1.3.1 Far-Field Range

Far-field techniques were naturally the first type of measurement techniques to be developed
and used in order to perform ARP measurements. In the far-field range, the measurement
distance is chosen such that far-field conditions are met. Although the actual far-field distance
varies as function of the antenna type, a common criterion to estimate the far-field distance is
given by the Fraunhofer distance,

dF F =
2D2

max

λ
, (1.5)

where Dmax is the maximum linear dimension of the radiating antenna. Although this criterion
works well for a large scale of applications, it is an approximation that is based on a rather
coarse assumption which is a maximum phase tapper of 22.5◦ over the tested aperture [17]. In
order to understand this, refer to Fig. 1.2 which shows a measurement scenario where the AUT
is in receive mode. The radii of spherical wavefronts radiated by the source augment as they
propagate towards the AUT. Ideally, the AUT-source separation r would be infinite such that the
incident wavefront on the AUT is planar. This not being the case, the incident wavefront on the
AUT aperture is characterized by some curvature δ such that, [18],
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(r +δ)2 = r2 +
D2

max

2
.

δ = r
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Assuming the AUT-source separation much larger than the AUT dimensions, Eq. 1.6 reduces to,

δ = r

 

1+
1

2

�

Dmax

2r

�2

− 1

!

=
D2

max

8r
(1.7)

Setting the maximum tolerated phase tapper to 22.5◦,

kδ ≤
π

8
, (1.8)

and using Eq. 1.7 to update the expression of δ yields the Fraunhofer distance (Eq. 1.5). This
criterion is intended to reduce the far-field distance required to perform far-field measurements
which, despite the applied approximation, may be very large for low frequency applications, or
when the AUT size is large.

As function of the measured antenna and the working frequency, the far-field range may be
installed outdoor or indoor. If installed outdoor, the AUT, generally in receive mode, is mounted
over an elevated structure, such as a tower, real estate, or a mountain in order to protect it from
environmental error sources mainly the specular reflections from objects surrounding the test
zone. Guidelines on the measurement parameters, such as the range distance, heights of the
AUT and the source above the ground, the type of the source antenna, etc., are detailed in[3].

An elevated range is characterized by the source antenna being also mounted over a high
structure. A graphical representation of an elevated range is depicted in Fig. 1.3a [19]. The
source antenna is chosen such that the corresponding field amplitude tapper over the AUT is
less than 0.25dB, with its null being oriented towards the test tower base in order to minimize
ground reflections. The height of the test tower is typically greater than4Dmax . An alternative
configuration requiring less real estate is the slant range, in which the source antenna is located
close to the ground while pointing towards the AUT. Both configuration are generally referred
to as free-space ranges as only the LOS signal is considered during the measurement whereas
reflections from the ground and objects in the surrounding environment are minimized.

Another type of outdoor far-field ranges is the ground reflection range, in which the specular
reflection from the ground is considered, as shown in Fig. 1.3b [20] [21, p. 1003]. This type of
range is suitable in order to test antennas with large main lobes which would be very sensitive to
ground reflections in free-space ranges. Hence, the range distance and the two antennas heights
are adjusted such that the LOS signal and the specular reflection from the ground interfere
constructively in the AUT region. This would yield wavefronts of uniform amplitude and phase
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(a)

(b)

Figure 1.3 Typical outdoor far-field ranges allowing to preform direct ARP measurement (Images
retrieved from [21]): (a) elevated range (b) ground reflection range.
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distributions creating a quiet zone around the AUT. It is important to keep in mind that during the
post-processing step only the LOS contribution is exploited in the characterization process. The
ground reflection range requires the range surface to be smooth, along with reliable estimation
of the ground reflection coefficient. In Fig. 1.3b, image theory [22, pp. 103-106] is used in
order to model the specular reflection from the ground as if it were generated by a virtual source
antenna, commonly referred to as the antenna image.

Generally, the measurement procedure in the presented ranges consists in fixing the source
antenna orientation towards the center of the AUT, while rotating the AUT around the θ and φ
rotational axes in order to retrieve the ARP sample corresponding to each targeted direction
(θ ,φ). Clearly, this procedure requires excessive mechanical rotation effort in order to perform
a conventional measurement which results in a long measurement time.

Other limitations of traditional outdoor far-field ranges include,

• The range is exposed to several error sources, mainly the various reflections from the
ground and objects in the surrounding environment, and parasitic electromagnetic radia-
tions coming from other applications, making it difficult to keep the overall measurement
error below an accepted level.

• The measurement is limited by climatic conditions.

• The range distance may be too large for measurements involving large AUTs or low
operating frequencies.

Performing ARP measurements indoor, typically in fully anechoic chambers (FAC), provides
the advantage of a more protected environment against spurious reflections, parasitic electro-
magnetic radiation, and climatic conditions. Far-field distances may be adapted to typical FAC
dimensions for applications involving AUTs of small dimensions.

1.3.2 Compact Range

Compact Antenna Test Ranges (CATR) were developed in the sixties in order to allow performing
direct far-field measurements in indoor facilities [21, pp. 1006-1014]. The CATR concept consists
in creating far-field measurement conditions at distances considerably smaller than conventional
far-field distances. This is accomplished by using a parabolic reflector which transforms the
spherical wave generated by the source antenna into a plane wave propagating as a collimated
beam towards the AUT, as shown in Fig. 1.4a. The AUT is positioned within a quiet zone whose
dimensions are dictated by the size of the reflector (typically 50%− 60% of the reflector size),
and over which the waves’ amplitude and phase tappers depend on the reflector surface quality
[23]. The CATR requires meeting free-space conditions for a reliable measurement, which is
implied by the paradigm stating that useful information is exclusively carried by the test signal;
the collimated signal from the parabolic reflector in this case. Accordingly, the LOS signal
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between the source and the AUT, reflected signals from the test equipment and chamber walls,
floor, and ceiling, as well as the diffracted fields by the reflector edges are all minimized. CATRs
are generally installed in anechoic chambers [24] whose interior is fully covered by microwave
absorbers in order to meet free-space requirements. The edge diffraction problem is minimized
by using reflectors of special shapes intended to direct diffracted fields away from the quiet
portion of the test zone. Figs. 1.4b-1.4c show respectively two of the most commonly used
reflector types: the serrated-edge reflector which offers a good performance at medium and high
frequencies for a relatively low price, and the rolled-edge reflector which offers a considerably
better performance but for a higher price [25].

(a)

(b) (c)

Figure 1.4 CATR allowing to perform direct far-field ARP measurement indoor: (a) graphical
representation of the measurement scheme (b) serrated edge reflector (c) rolled edge reflector2.

2Commercial reflectors designed by MVG, http://www.orbitfr.com/
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As for traditional free-space far-field ranges, the CATRs are limited in terms of mechanical
rotation and measurement time. This follows from the highlighted fact that only the collimated
test signal is considered useful for the measurement whereas all other signals likely to interfere
with the test signal are treated as spurious and are minimized. This implies one measured ARP
sample per mechanical rotation. Another limitation of CATRs is generally its low performance
at low frequencies (less than 1GHz). The lower frequency of operation of a CATR is determined
by the size of the reflector to be typically about 25λ1 − 30λ1, λ1 being the largest operating
wavelength. Apart from the fact that this would dictate larger reflector size, the amplitude
ripple is generally higher at low frequencies. Moreover, as we are going to show in Chapter 3,
the edge diffraction problem is amplified at low frequencies, which reduces the accuracy of the
measurement.

Recent research works investigated the synthesis of plane waves for CATRs using other
means mainly an array of source antennas [26] [27] and feed scanning [28]. In the first
technique the phases of the fields generated by the different source antennas are adjusted
such that they interfere constructively creating a quiet zone in the AUT region. This method
requires sophisticated electronics for the feed system and shares the same limitations in terms of
mechanical displacement and measurement time as the traditional CATR. In the second technique,
a single source antenna is moved to different positions and the corresponding measurements are
weighted in order to retrieve the ARP value corresponding to a single direction, which obviously
requires more mechanical displacement effort and results in an even longer measurement time
with respect to classical techniques.

1.3.3 Near-Field Range

The near-field range allows performing ARP measurements at very short distances from the
AUT without fulfilling far-field conditions [4]. The ARP is retrieved by performing analytical
NF-FF transforms. Based on Huygens principle [29], the tangential components of the near
field generated by the AUT, which is generally in transmit mode, form a set of sources which
reproduce the AUT radiation characteristics. A probe is used to measure these fields over a
preselected surface, which may be planar, cylindrical or spherical. The complexity of analytical
transforms, the sophistication of the measurement software and equipment, and the range of
applications of the NF model augment from the planar to the cylindrical, and from the cylindrical
to the spherical models. Sampling formulas for the probe positions exist for each model. The
modal expansion principle [30] is then used in order to predict the field distribution at any
distance from the AUT, including infinity which corresponds to the far-field ARP.

Near-field techniques are very popular and has attracted the attention of both industry
and academia due to the advantages they offer, mainly the measurement accuracy and the
small range dimensions, which resulted in a systematic improvement of the developed models.
Nevertheless, one main limitation of NF techniques is the necessary mechanical displacement
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effort to move the probe over the specified grid of positions which increases the measurement
time. Multi-probe systems [6] have been developed in order to overcome this limitation. These
systems, which involve complex microwave multiplexers are however considerably expensive.
Alternative solutions to accelerate the measurement with less complex systems are the so called
indirect NF methods, as opposed to the described classical approach which is referred to as the
direct NF method [31]. Indirect measurements make use of the Modulated Scatterer Technique
(MST) in which the field diffracted by a small probe is used in order to retrieve the AUT radiation
characteristics [32]. Using an array of modulated probes requires a cost-effective low frequency
modulator. However, such a technique have other limitations such as the mutual coupling
between the different array elements.

1.4 Characterization Environments

1.4.1 Anechoic Environment

Except the ground reflection range, all of the presented ARP measurement techniques share a
measurement environment free from echoes. Free-space outdoor ranges are typically installed in
open, isolated regions, whereas typical indoor measurements take place in anechoic chambers.
Any sort of reflection from the measurement range is regarded as spurious and is minimized.

1.4.2 Reverberating Environment

Recent efforts were made in order to perform ARP measurements in diffusive environments,
which unlike free-space environments, are characterized by a very large number of specular
reflections having uniform amplitude distribution and generated in random directions. Such
techniques were tested in reverberation chambers whose main advantage with respect to
anechoic chambers is their relatively low installation and maintenance cost.

One such a technique was proposed in [7], which consists in extracting the LOS information
by performing the same measurement for different stirrer orientations such that the scattered
field has zero mean distribution [33]. Another technique was proposed in [9], and consists
in performing the measurement for different AUT positions lying in the LOS path linking it to
a probe. The ARP sample corresponding to the tested direction is retrieved by averaging the
performed measurements in order to extract the LOS information. The same author proposed
an improved technique [10] intended to reduce the additional measurement time implied by the
number of necessary measurements required to retrieve a single ARP sample. This technique
consists in performing a single measurement while moving the AUT over the LOS path linking
it to a source antenna. Based on the Doppler effect, signals received by the AUT undergo
different frequency shifts depending on their angles of arrival (AoA) which takes its maximum
at the LOS signal level. This allows to filter out contributions of the different reflections and
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evaluate the AUT response to the LOS signal exclusively in order to retrieve the associated ARP
sample. The last technique [11] uses the Time Reversal Electromagnetic Chamber (TREC) in
order to coherently synchronize the generated echoes such that a deterministic plane wave with
high angular resolution is created. The developed concept proposes an interesting method for
accelerating ARP measurements. After a characterization step of the test zone in the presence
of the AUT, it consists in using a set of test signals each generating a different field distribution
inducing different incidence angles of the synthesized plane waves. The concept is intended
to characterize Ultra-Wideband (UWB) antennas as the related application of time reversal
requires large operating bandwidths.

From what preceded, one may notice that, counterintuitive as it may seem, ARP measure-
ments are performed in reverberating environments essentially in order to emulate free-space
conditions, as echoes do not directly contribute into the measurement and useful information is
exclusively carried by the test signal (generally the LOS signal). Accordingly, we may conclude
that, generally, recent ARP measurement techniques in reverberating environment share the
same limitations in terms of mechanical displacement and measurement time as traditional
measurement techniques. The last concept, in particular, proposes an improved method in
order to accelerate the measurement process, which is however limited by the preliminary
characterization step of the test zone, which requires un automated system.

1.4.3 Controlled-Echo Environment

The last measurement environment which, up to this work, only counted the ground reflection
range, is the controlled-echoes environment. This environment is characterized by the generation
of echoes that are involved in the measurement. However, unlike the reverberating environment,
echoes in this case are controlled, i.e., their characteristics are known and predictable in a
deterministic fashion. The ground reflection range counted a single controlled echo which,
however, does not directly contribute into the measurement and is used to in order to create a
quite zone around the AUT.

1.5 General ARP measurements Limitations

Each measurement technique has its own advantages and limitations. In this section, interest is
on general limitations that are shared at least by most of state-of-the-art techniques.

1.5.1 Mechanical Displacement and Measurement Time

From what preceded, it is clear that the common measurement paradigm adopted by traditional
concepts, stating that useful information is exclusivity carried by the generated test signal,
generally the LOS signal, implies excessive mechanical displacement effort in order to retrieve
ARP samples corresponding to different directions which results in a long measurement time.
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The common adopted solution to overcome this limitation consists in introducing a spatial
diversity allowing to measure several ARP samples in each mechanical displacement using
multi-probe systems. Such systems require complex software and hardware implementation
and usually come with high price.

1.5.2 Measurement Errors

All ARP measurements are subject to sets of systematic practical errors which depend on the
adopted range, on the used equipment, and on the tested antenna. This makes it difficult to
quantify the impacts of the different error sources in a general context. Moreover, quantifying
error requires comparing the measurement to some reference that would be an ideal direct far-
field measurement, which is clearly unfeasible. Nevertheless, adequate error analysis combining
analytical and experimental approaches have been performed providing a general insight into
contributions of different error sources [34] [35]. The cited efforts have been performed in
indoor anechoic environments in a context of near-field measurements. Such environment
provides the advantage of a more controlled measurement with respect to outdoor far-field
ranges which are subject to a number of random environmental error sources.

Based on these analysis, and excluding errors specific to near-field measurements, we may
classify general practical error sources that are common to all types of ranges into four main
categories,

• Mechanical errors: This family regroups errors related to the positioning and orientation
of the antennas involved in the measurement. It includes axes pointing and orthogonality,
alignment between the AUT and the probe, and measurement distance errors.

• Electrical Errors: This family regroups error related to the radiated field, such as the
amplitude and phase drift and noise, the non-uniformity of the measured field, leakage
and crosstalk, etc.

• Probe-related errors: Practical radiation characteristics of the used probes may deviate
from the assumed ones.

• Stray signals: This family mainly includes the set of echoes and specular reflections from
the measurement site and test equipment.

Experiments have shown that, generally, the last family is the largest source of ARP mea-
surement error [34]. This explains the considerable attention that echo identification and
cancellation techniques were given with respect to other error sources [5].
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Figure 1.5 Configuration showing how controlled echoes bear useful information which is the
ARP value at the corresponding angle of generation

1.6 Proposed Concept: Rapid ARP Measurement Exploiting Echoes

In the present thesis, an ARP measurement concept intended to accelerate the characterization
process is proposed. The concept consists in the generation of a spatial diversity that allows
retrieving several ARP samples for each mechanical displacement by exploiting controlled echoes.
The measurement environment is then a controlled-echoes environment, but unlike the ground
reflection range, echoes in this case directly contribute to the measurement. The key idea behind
the concept is that echoes bear useful information: the ARP value at the corresponding direction
of generation. The challenge is then how to retrieve this information.

A graphical representation of the proposed concept is depicted in Fig. 1.5. An AUT and a
probe are placed within a set-up involving highly reflective plates. The AUT may be in transmit
or receive modes. A transmit mode is considered throughout this work. By controlling the set-up
dimensions, characteristics of generated echoes become predictable, including their number,
angles of generation and paths traveled up to the probe. Using image theory, each echo may
be modeled as a LOS signal generated by a corresponding image having the same radiation
characteristics as the actual AUT. Hence, the configuration is equivalent to deploying several
virtual sources which contribute into the measurement, as opposed to conventional multi-probe
systems where the spatial diversity is created using real sources.

The field intercepted by the probe is the superposition of the fields generated by each source,

E⃗ =
Na
∑

i

E⃗i, (1.9)
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where each field is weighted by the ARP value of the corresponding direction of generation, Na

being the total number of sources, and thus the number of covered angles, which is equal to the
number of generated echoes (images) Ni plus the LOS field,

Na = Ni + 1. (1.10)

Mathematically, the ability of retrieving the ARP samples corresponding to all considered
signals requires generating a number of equations at least equal to the number of unknowns, i.e.,
Na equations. One possible method to do so is to scale the set-up dimensions by moving the plates
and the probe such that generated signals in the new configuration cover the same angles as the
original configuration, and repeating the same process Na times. This would, however, require an
additional mechanical displacement effort with respect to traditional measurements which clearly
contradicts the concept main objective, which is reducing the measurement time. The method
proposed in this work to balance the mathematical model without introducing mechanical effort
consists in scaling the set-up dimensions electrically by varying the operating frequency. Hence,
the spatial diversity under-determining the mathematical model, is compensated by introducing
frequency diversity. A closer insight into the proposed concept and to the related mathematical
formulation is provided in the next chapter.
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This chapter presents the proposed concept using the simplest configuration in terms of
controlled echoes: the single-plate configuration. As a first step, the model is simplified in
order to assess its viability from a pure mathematical point of view. The focus of this chapter
is then the study of conditioning issues related to the mathematical model. Practical physical
considerations are studied in the next chapter.
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2.1 Model Presentation

The basic configuration in terms of controlled echoes generation is the single-plate configuration,
which allows the generation of a single controlled echo, as shown in Fig. 2.1a. An AUT, in
transmit mode, is positioned in the vicinity of a metallic plate, which is supposed lossless and
sufficiently large to be considered as a perfect electric conducting (PEC) ground. If the AUT is
assumed dimensionless, i.e., treated as a point source, then this configuration would result in
the generation of two signals, the LOS signal which would directly impinge on the probe, and
a reflected echo from the plate. If we assume a given radiation pattern F (see Fig. 2.1a), the
wavefronts radiated by the AUT have amplitudes weighted by the ARP. As a consequence, the
echo also bears a quite useful information: the value of the ARP at the corresponding angle of
generation (black dots in Fig. 2.1a).

(a)

(b)

Figure 2.1 Configuration allowing the generation of a single controlled echo showing the related
ARP information contained in it: (a) Physical representation (b) Equivalent representation using
image theory.

With no loss of generality, the AUT and the probe are positioned in a common working 2D
plane, namely the azimuthal x-y plane. The plate is parallel to the y-z plane at a distance d
from the AUT. Controlling the set-up dimensions yields the ability of predicting the two signals
path’s characteristics. While predicting the LOS path is forward, the echo path is predicted by
applying the law of reflection which implies that the echo angle of incidence on the plate is
equal to the angle of reflection [36]. To simplify the procedure, it is convenient to model the
configuration using image theory [22, pp. 103-106].

The equivalent image theory model of the configuration is shown in Fig. 2.1b. The effect
of the PEC plate is modeled by an image of the AUT which is equidistant to the plate from
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the shadow region. The set-up is then equivalent to handling two sources whose respective
distances to the probe ri and their angles of incidence φi can easily be expressed as follows,

ri =
�

(x − x i)
2 + (y − yi)

2
�1/2

, i = 0,1, (2.1)

φi = arctan

�

y − yi

x − x i

�

, i = 0,1, (2.2)

the index 0 standing for the real source, whereas the index 1 stands for the virtual source. In
this work the AUT will always be considered at the origin of the cartesian plane, hence x1 = 2d,
and y1 = y0 = 0. Placing both the AUT and the probe in the x-y plane with the plate being
orthogonal to this plane implies that all the considered fields lie in this plane1. This particular
configuration allows to perform measurement cuts over the azimuthal x-y plane.

Boundary conditions on the plate impose continuous transversal and null tangential fields.
Consequently, the image excitation components Jy1 and Jz1 are reversed with respect to their
AUT excitation counterparts, while the x component is unchanged. The plate has a mirror effect
on the radiation pattern, i.e., the image ARP F∗ is flipped left-to-right with respect to the AUT
ARP. Analytically, this may be expressed as follows (refer to Fig. 2.1b),

F(θ ,φ1) = F∗(θ ,π−φ1). (2.3)

Besides the ground reflection range, the configuration presented herein, i.e., a radiating
element in front of a ground plane already exists in literature [37] [21, pp. 184–205] and
have widely been used in practice, namely with grounded and ground plane antennas such
as monopoles [38] which have several applications such as mobile antenna systems [39] and

MAST radiators [40]. However, in these systems the ground is considered part of the antenna
and is included in order to alter the radiating element free-space radiation characteristics to
produce new characteristics. In this work, a different purpose is contemplated as the interest
is about the radiating element free-space radiation pattern, and the plate is used in order to
supply additional information about it rather than to produce a new radiation pattern. Another
use of the proposed configuration was found in [41] where the author generated an intentional
reflection using a rectangular metallic plate in a near-field anechoic measurement site in order
to assess an echo suppression algorithm, and thus treating the reflection as a spurious noise. To
our knowledge, generating an intentional echo in order to supply additional information about
the radiating element free-space ARP, and thus treating it the same way as the LOS signal, is
first being proposed in this work.

1Strictly speaking, the azimuthal angle φ is defined from 0 to 2π, whereas the range of the arctan function is
Rarctan = [−

π

2
, π

2
]. As a matter of fact, non of the inverses of the three usual trigonometric functions span a 2π range.

To overcome this, an adjustment angle is added as function of the probe position with respect to the AUT.
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2.2 Mathematical Model

The proposed concept is applied to a far-field model. This means that the dimensions of the
set-up, more precisely the distance between the AUT and the probe are such that far-field
conditions are met. It should be pointed out, however, that the concept may as well be applied
to a near field model. The work conducted here being essentially a feasibility study, the choice
to adopt a far-field model was motivated by its simplicity compared to near field models.

2.2.1 Reference Coordinates System

The goal of the mathematical formulation of the proposed physical problem is to express the
unknown spherical ARP vector F⃗ = [Fθ , Fφ]T as function of the measurable cartesian field
vector E⃗ = [Ex , Ey , Ez]T . Being in the far-field region, the formulation is based on the far-field
equation (Eq. 1.2). The reference 3D coordinate system is shown in Fig. 2.2a [42]. The ARP
vector is defined by its angular components. The azimuthal angle φ is defined between the
x-axis and the projection of the radial vector r⃗ on the azimuthal x-y plane. The polar angle θ is
defined between the z-axis and the radial vector.

(a) (b)

Figure 2.2 Spherical coordinates system (a) 3D representation (b) Azimuthal cut.

The general 3D problem is decomposed into transverse modes [43, pp. 362-366], i.e., Trans-
verse Magnetic (TM) and Transverse Electric (TE) polarizations. The TM case is characterized
by a single field component perpendicular to the incidence plane, and hence is a scalar case.
Whereas the TE case is characterized by two field components parallel to the incidence plane
and hence is a vectorial case. As we will show later, this approach is advantageous as it simplifies
the mathematical study without any loss of generality. This approach is particularly advanta-
geous as the AUT and the probe are both positioned in the azimuthal plane, i.e., θ = π

2
whose

corresponding coordinates system is shown in Fig. 2.2b. In this case, each ARP component is
treated separately, with Fθ being exclusively dependent on Ez (TM), and Fφ on Ex and Ey (TE).



2.2 Mathematical Model 25

2.2.2 TM Case

According to Fig. 2.2b, ẑ = −θ̂ . This is a forward consequence of working exclusively in the
azimuthal plane, otherwise, a projection operator would be necessary to relate the two terms. As
a consequence, in a free-space scenario Fθ would be directly related to Ez through the free-space
Green’s function,

Ez(r, f ) = −Eθ (φ) = −G(r, f )Fθ (φ). (2.4)

The polar angle parameter θ was omitted from the ARP term as it does not change over the
azimuthal plane. Unless otherwise stated, this will be the case allover this text.

Taking into account both the AUT and the image contributions, modeled in Fig. 2.1b, the field
intercepted by an ideal ẑ-polarized probe at a given working frequency f is the superposition of
the individual fields radiated by each source:

Ez( f ) = −[G(r0, f )Fθ (φ0)− G(r1, f )F∗θ (π−φ1)]

= −G(r0, f )Fθ (φ0)
︸ ︷︷ ︸

AUT
contribution

+G(r1, f )Fθ (φ1)
︸ ︷︷ ︸

image
contribution

. (2.5)

The (-) sign inside the brackets stands for the reversed imageJz1 excitation with respect to the
AUT Jz0 excitation. Notice that while the two ARP samples Fθ (φ0) and Fθ (φ1) are unknown, the
two measurement angles φ0 and φ1 are known and totally predictable from the measurement
set-up, as is the case for the two distances r0 and r1 defining the free-space Green’s function
(Eqs. 2.1 and 2.2).

Eq. 2.5 is composed of two unknowns. For the system to be well defined, at least an
additional equation is needed. The method adopted herein is using frequency diversity by
varying the working frequency such that at least two frequencies are used. Let us suppose for
the moment that the ARP is frequency independent. Although this assumption may be valid for
certain antenna types [44][45], the vast majority of antennas are frequency dependent, and as
function of the working bandwidth, changing the operating frequency may dramatically alter
the AUT radiation characteristics. As stated at the beginning of this chapter, at this stage we
are mainly interested in the mathematical viability of the concept, which motivates the set of
applied simplifying assumptions. One simple, but yet practical model is the model with two
frequencies: the reference working frequency f0 and an additional frequency f1 which is used
to balance the system,

�

Ez( f0)
Ez( f1)

�

=

�

−G(r0, f0) G(r1, f0)
−G(r0, f1) G(r1, f1)

��

Fθ (φ0)
Fθ (φ1)

�
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�

Ez( f0)
Ez( f1)

�

Ez

=





− e
r0

−j 2π
c f0r0 e

r1

−j 2π
c f0r1

− e
r0

−j 2π
c f1r0 e

r1

−j 2π
c f1r1





GT M

�

Fθ (φ0)
Fθ (φ1)

�

Fθ

, (2.6)

where Fθ is the unknown ARP vector made up by the two measured samples, Ez is the electric
field vector measured at the two frequencies, and GT M is the system matrix containing samples
of the free-space Green’s functions corresponding to each source at each frequency. According
to Eq 2.6, the ARP at some given working frequency f0 is retrieved thanks to information
obtained at a different frequency, f1. With no loss of generality, f1 is assumed larger than f0.
The motivation behind this choice is provided in the next chapter. The working frequency band
is defined by the frequency step ∆ f = f1 − f0. Normalizing this quantity with respect to f0
yields the upper fractional bandwidth (UFBW):

∆ fu =
∆ f

f0
(2.7)

Note that in this work, the UFBW is not fixed depending on the usual S11 < −3dB criterion, but
is rather varied within the tolerated FBW range taking into account another important factor
which is the mathematical system conditioning. Accordingly, the UFBW should be adapted to
the AUT type. For instance wide-band antennas [46] offer a larger degree of freedom in terms
of UFBWs than narrow-band antennas [47]. Conditioning issues are treated in the next section.

2.2.3 TE Case

The TE model in free space is by default overdetermined: each ARP component Fφ is related to
two Cartesian field components Ex and Ey . This suggests that the corresponding model may be
balanced without introducing frequency diversity.

Unlike the TM case, the spherical and Cartesian unit vectors are related by a base change
operator M which, according to Fig 2.1b, is expressed as follows:

�

x̂
ŷ

�

=

�

Mxφ

Myφ

�

M

φ̂ =

�

− sinφ
cosφ

�

φ̂ (2.8)

The free-space situation applies for the LOS field in the proposed model:

�

Ex0

Ey0

�

Ecar

=

�

Mx0φ0

My0φ0

�

M0

Eφ(φ0) =

�

− sinφ0

cosφ0

�

M0

Eφ(φ0) (2.9)
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Figure 2.3 Spherical to cartesian base change of the TE field in the image case.

The image situation is slightly less forward as the corresponding base change operator has to
obey boundary conditions implied by the plate. The geometry of the situation is shown in Fig.
2.3. The image field Eφ(φ1) is set such that it cancels out the LOS y-component along with
ensuring the continuity of the x-component when their two corresponding angles are equal, i.e.,
for hypothetical positions over the plate. This leads to:

�

Ex1

Ey1

�

=

�

Mx1φ1

My1φ1

�

M1

E∗φ(π−φ1) =

�

− sinφ1

− cosφ1

�

M1

E∗φ(π−φ1),

�

Ex1

Ey1

�

Ecar

=

�

− sinφ1

− cosφ1

�

M1

Eφ(φ1), (2.10)

where the (-) sign in M1(2) highlights the reversed image Jy1 excitation with respect to the LOS
Jy0 excitation. Superposing the LOS and the image contributions yields the following system:

�

Ex

Ey

�

=

�

Mx0φ0
Mx1φ1

My0φ0
My1φ1

��

Eφ(φ0)
Eφ(φ1)

�

�

Ex

Ey

�

Ecar

=

�

− sinφ0 − sinφ1

cosφ0 − cosφ1

�

M

�

Eφ(φ0)
Eφ(φ1)

�

Eφ

(2.11)

Each field component is related to the corresponding ARP value through the free-space Green’s
function:

�

Ex

Ey

�

=

�

G f ,r0Mx0φ0
G f ,r1Mx1φ1

G f ,r0My0φ0
G f ,r1My1φ1

��

Fφ(φ0)
Fφ(φ1)

�
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�

Ex

Ey

�

Ecar

=





− e
r0

−jkr0 sinφ0 −
e
r1

−jkr1 sinφ1
e
r0

−jkr0 cosφ0 − e
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(2.12)

Hence, the problem is balanced without introducing frequency diversity. Like in the TM case,
Eq. 2.12 describes a well defined system, where the unknown ARP vector Fφ is related to the
measurable cartesian field vector Ecar through the system matrix GT E which is totally predictable
from the set-up parameters. The system matrix is formed by a applying a Hadamard product
[48, p. 710] between the projection matrix M and a 2× 2 matrix, G0, containing samples of the
free-space Green’s function corresponding to each source arranged by column:

GT E = Go ◦M (2.13)

with

Go =

�

G f ,r0 G f ,r1

G f ,r0 G f ,r1

�

=





e
r0

−jkr0 e
r1

−jkr1

e
r0

−jkr0 e
r1

−jkr1



 .

2.2.4 General 3D Model

It is convenient to examine a general 3D model which would be valid for a random probe
position in the Cartesian plane, and in which the four unknown ARP samples, i.e., the Fθ and Fφ
components of both the LOS and image samples, are retrieved simultaneously. The procedure
to develop such a model is quite similar to the developed transverse models; the goal is to find
the unknown ARP vector in spherical form as function of the measurable field in Cartesian
form. In free space, the spherical ARP vector is related to its Cartesian counterpart through a
spherical-to-Cartesian base change operator,


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with M=


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cos(θ ) cos(φ) − sin(φ)
cos(θ ) sin(φ) cos(φ)
− sin(θ ) 0






(2.15)

The free space model applies to the LOS case. Taking into account the image contribution,
and paying attention to the polarization of its related components due to boundary conditions
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implied by the plate, the electric field intercepted by the probe is related to the ARP samples
through the free-space Green’s function,
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(2.16)
Note that tangential components (y and z) corresponding to the image field are multiplied by a
(-) sign in order to obey boundary conditions implied by the plate. The system described by
Eq. 2.16 contains four unknowns versus three equations. An additional equation is required in
order to balance the system, which is performed by applying Frequency diversity. Introducing an
additional frequency results in an overdetermined systems of six equations for four unknowns,
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(2.17)
Eq. 2.17 describes a well defined system where the four unknown ARP samples are retrieved
thanks to a measurable field vector and a totally predictable system matrix. However, as we are
going to show in the next section, the accuracy of the calculated ARP results depends on a very
important factor: the conditioning of the system matrix which is function of the configuration
parameters. Studying conditioning based on Eq. 2.17 would be very tedious due to both the
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matrix dimensions and complexity. The problem is simplified by exclusively working in the
azimuthal plane (θ0 = θ1 =

π
2

). In this case, the system reduces to,
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(2.18)
which offers the possibility of decomposing the problem into the developed transverse models
(Eqs. 2.6 and 2.12) without loss of generality, as retrieving ARP samples corresponding to
different elevation levels may be performed by rotating the AUT rather than moving the probe.
The adopted transverse decomposition provides the advantage of a much simpler conditioning
study due to the reduced dimensions of the system matrices. Conditioning issues are treated in
the next section.

2.3 Conditioning Issues

Retrieving the ARP samples corresponding to both the TM and TE cases consists in inverting the
corresponding matrices equations (Eqs. 2.6 and 2.12):

F= G−1E. (2.19)

However, as discussed in Sec. 1.5.2, and by recalling that any measurement is subject to
a set of systematic errors, attention must be given to the robustness of the system and to its
stability against errors [49, p. 36-38] in order to avoid their amplification while proceeding
with the inversion.

2.3.1 Mathematical Stability: The Condition Number

The robustness of a matrix equation Ax = b against input errors is indicated by the condition
number of the system matrix κ(A). The condition number measures how sensitive the solution x
would be to error in the observation b or to error in the system matrix A itself [50, p. 345-347].
A well-conditioned system is described by a low condition number, and corresponds to a system
where the input error is little -or not- amplified. Ideally κ(A) would be equal to unity, and this
corresponds to a matrix whose rows (and columns) form an orthogonal set. An ill-conditioned
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system, in the contrary, is described by a high condition number and is characterized by a large
input error amplification. As the condition number rises, the system matrix tends towards
singularity, the limiting case, when κ(A) =∞, is characteristic of a singular matrix where no
-unique- solution exists. Hence, a necessary -but not sufficient- condition for a matrix to be
well-conditioned is that the matrix is non-singular, i.e., of full rank. Analytically, the condition
number relates the norm of the relative input error, to the norm of the relative solution error
[51, p. 475-478]. In the context of the proposed model, it may be expressed as follows,

Error in observation, E :
∥∆F∥
∥F∥
≤ κ(G)

∥∆E∥
∥E∥

Error in Matrix, G :
∥∆F∥
∥F+∆F∥

≤ κ(G)
∥∆G∥
∥G∥

.
(2.20)

It is important to keep in mind that the norm of the relative input error multiplied by the
condition number provides un upper bound of the solution error. The observation error ∆E
corresponds to the set of measurement errors which perturb the correct field value, and which
combine with computer roundoff error. On the other hand, error in the system matrix∆G comes
from the model limitations in describing the actual physical behavior of the radiated fields, and
which also combines with roundoff error that emerges during the elimination steps processed by
the solving algorithm [52]. Consequently, studying the model conditioning is central to assess
its viability as the amplification of those errors could make the ARP error unacceptable.

The condition number κ(G) is a property of the G matrix, and thus is impacted by the set-up
dimensions and frequency parameters defining the matrix. The exact definition of the condition
number is given as the ratio of the matrix norm with respect to the norm of its inverse, which is
equal to the ratio of the largest to smallest matrix singular values [51],

κ(G) =
∥G∥




G−1






=
σmax

σmin
, (2.21)

where σmax and σmin are respectively the matrix maximum and minimum singular values.
Studying the condition number based on this formula is complicated as expressing the singular
values analytically is tedious. An alternative approach adopted herein to bypass this difficulty
is by studying of the degree of orthogonality of the matrix rows and columns by assessing the
corresponding projection factors. A well-conditioned matrix corresponds to a small projection
factor, and vice versa. The goal is then to minimize the projection factor in order to ensure the
system stability. This is presented in the next two sections for each transverse case separately,
the objective being to be able in each case to predict, as function of the system parameters,
the optimal probe position in terms of conditioning, and to verify the possibility of generating
well-conditioned positions using practical set-up dimensions and adaptable UFBWs to the various
antenna types.
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2.3.2 TM model

2.3.2.1 Projection Study and Optimal positions

The TM system matrix is exclusively made up by the free-space Green’s samples defined by the
LOS and image distances and the two working frequencies,

GT M =





− e
r0

−j 2π
c f0r0 e

r1

−j 2π
c f0r1

− e
r0

−j 2π
c f1r0 e

r1

−j 2π
c f1r1



 (2.22)

The projection factor ρ is calculated by performing a dot product between the two normalized
rows, such that its amplitude is up-bounded by unity,

ρ =

�

1

r−2
0 + r−2

1

�





e−j 2π
c ∆ f r0

r2
0

+
e−j 2π

c ∆ f r1

r2
1



 (2.23)

By factorizing the first term inside the second set of brackets, and rearranging the equation, we
get,

ρ = e−j 2π
c ∆ f r0







1+
�

r0

r1

�2
e−j 2π

c ∆ f∆r

1+
�

r0

r1

�2






, (2.24)

with ∆r = r1 − r0. Conditioning is related to the magnitude of the projection factor2. Conse-
quently the exponential term outside the brackets does not have an impact and the equation is
simplified as follows,

ρ =

�

�

�

�

�

1+ γ2e−jβ

1+ γ2

�

�

�

�

�

,

with γ=
r0

r1
,

β = 2π∆ fu∆r.

(2.25)

The distances ratio γ is by definition less than unity as the image distance is always greater than
the LOS distance. In the phase term β , distances are normalized with respect to the central
working wavenumber λ0 and the frequency step is normalized with respect to the reference
working frequency f0.

The value of ρ is minimized by minimizing the numerator, which is the sum of two complex
numbers as shown in Fig. 2.4. The expression of the numerator suggests two extreme condition-

2The term ρ will refer to the amplitude of the projection factor.
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Optimal case: β = (2n+ 1)π → ∆r =
2n+ 1

2∆ f

Worst case: β = 2nπ → ∆r =
n

∆ f
, n ∈ N

(2.26)

Figure 2.4 Representation of the numerator of ρ as the sum of two complex numbers and the
corresponding expressions of extreme conditioning cases.

ing cases. An optimal case when the complex term becomes real negative, i.e., when its phase
is equal to an integer multiple of π. In this case the numerator, and thus ρ take its minimum
value. In the contrary, if the complex term becomes real positive, i.e., when its phase is equal
to an integer multiple of 2π, this results in a worst case as ρ takes a maximum value. These
two cases correspond to optimal and worst positions respectively, and are both defined by the
related ∆r term expressed in Eq. 2.26. The locus of points defined by a constant difference of
distances from two fixed points, referred to as the foci and which, in our case, are the AUT and
the image positions, is either a straight line or a hyperbola.

The straight line case, which is a particular case, corresponds to ∆r = 0, and according
to Eq. 2.26 is a worst case (n=0). This is the locus of points equidistant from the foci and
is defined by the perpendicular bisector of the line segment defined by the foci, which in our
model corresponds to hypothetical positions over the plate. Although this case is physically
unrealizable, it helps us understand the condition number behavior. Over the plate, the two
distances r0 and r1 are equal, which results in the two columns of GT M being identical and
thus breaking their linear independence. Accordingly, GT M becomes singular and the system is
unsolvable. This suggests that positions near the plate are ill-conditioned as GT M tends towards
singularity in this region.

The general solution to Eq. 2.26 is a set of hyperbolas having positions of the AUT and
the image as focal points and the plate as a conjugate axis. Equations of optimal and worst
hyperbolas are then the following [53, pp. 101-104],

(x − d)2

a2 −
y2

b2 = 1

an =
∆r

2
=

(

2n+1
4∆ fu

, n ∈ N optimal hyperbolas
n

2∆ fu
, n ∈ N∗ worst hyperbolas

bn =
q

d2 − a2
n, bn > 0. (2.27)
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The term an, referred to as the real semiaxis, is the determining factor of the hyperbola class.
Eq. 2.27 suggests the existence of two classes of positions of particular interest, and which both
follow hyperbolic spatial distributions. One class is the set of worst hyperbolas of positions
over which the system can only be ill-conditioned, and thus are positions to avoid. The second
class of hyperbolas in the other hand define optimal positions where conditioning is locally
optimal. The level of conditioning over optimal hyperbolas is determined by the magnitude
of the complex term of Eq. 2.25, γ2 (refer to Fig. 2.4). This is highlighted by expressing ρ
corresponding to optimal hyperbolas,

ρ =
1− γ2

1+ γ2 . (2.28)

Eq. 2.28 suggests an inverse proportionality between the distances ratio γ and the condition
number: when γ approaches unity conditioning improves as this decreases ρ and vice versa.
Expressing γ as function of ρ yields,

γ=

√

√1−ρ
1+ρ

. (2.29)

In other words, Eq. 2.29 states that the system stability defines the ratio of distances separating
the AUT and the image from the probe. The locus of points defined by a constant ratio of
distances from two fixed points (foci) is either a straight line or a circle [54]. The straight line
case is defined by γ = 1 and, as discussed earlier, corresponds to the set of equidistant positions
that falls on the plate. This case is both physically unrealizable and by definition ill-conditioned
as the set of corresponding points cannot counside with any optimal hyperbola which have the
plate as their common conjugate axis. The solution is then a circle, which is commonly known as
the circle of Apollonius [55] and which, in this text, will be referred to as the conditioning circle
as its parameters depends on the chosen stability factor and define the level of conditioning
over optimal hyperbolas. The conditioning circle parameters are listed below,

center=
−γ2

1− γ2 2d,

radius=
γ

1− γ2 2d.
(2.30)

To summarize, for a given set-up, mainly characterized by the AUT-plate separation d, the
working UFBW defines a set of hyperbolas of positions where conditioning is locally optimal.
The level of conditioning over optimal hyperbolas is governed by the chosen stability factor
which defines a circle of positions. The optimal position is then the intersection between the
optimal hyperbola and the conditioning circle. An example of optimal positions is shown in
Fig. 2.5 which highlights the relationship between the projection factor (Fig. 2.5a) and the
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Figure 2.5 Relationship between the projection factor ρ and the condition number κ(GT M ) and
example of different optimal positions showing the impact of optimal hyperbolas (dashed) and
conditioning circles (solid). Plate at xp = 10λ0, UFBW = 4%: (a) ρ (b) κ(GT M ).

condition number (Fig. 2.5b). Note that the condition number is truncated at κ(GT M )max = 5
for a proper plot. In this example the configuration parameters, i.e., d = 10λ0 and UFBW=4%
allowed the generation of a single optimal hyperbola (dashed). As we are going to show later,
the number of optimal hyperbolas depends on the configuration parameters. Four conditioning
circles corresponding to ρ = [0.2, 0.4, 0.6, 0.8] are also plotted in the figures. Optimal positions
related to each projection factor is the point of intersection of the corresponding conditioning
circle with the optimal hyperbola. Properties of optimal hyperbolas and conditioning circles are
discussed in detail hereafter.

2.3.2.2 Properties of Optimal Hyperbolas

Optimal hyperbolas are defined to the phase of the complex term of Eq. 2.25, which is the
difference of the phases of the original GT M entries. Consequently optimal hyperbolas depend
on two parameters defining the configuration: frequency parameters, which are encompassed
in the UFBW, and distances distribution which is controlled by the AUT-plate separation d. The
expression of bn, referred to as the imaginary semiaxis, in Eq.2.27 imposes a mutual condition
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on the minimum distance d separating the plate from the AUT, and for the minimum operating
UFBW in order to ensure the existence of at least a single optimal hyperbola,

bn > 0 −→ d∆ fu >
1

4
(2.31)

The AUT-plate separation is limited by the measurement site, while the applied UFBW depends
on the AUT type. Hence, a trade-off has to be achieved between the two parameters in order
to ensure the existence of optimal positions. A general relationship to indicate the number of
generated optimal hyperbolas is expressed by the hyperbola eccentricity which, by definition, is
greater than unity,

en =
d

an
=

4d∆ fu
2n+ 1

> 1. (2.32)

If the condition for e0 is not fulfilled, no optimal hyperbola exists. Beyond that, the number of
existing optimal hyperbolas depend on the fulfillment of the condition corresponding to each
hyperbola order. Raising the number of optimal hyperbolas is achieved by augmenting either
the AUT-plate separation or the UFBW. However, it is important to note that rising the number
of optimal hyperbolas rises the number of forbidden hyperbolas as well, as the latter follow a
similar existence condition,

e∗n =
2d∆ fu

n
> 1. (2.33)

The d.∆ fu product also determines the hyperbolas positions and shapes.

The hyperbola position is indicated by the position of the vertex which is located at a distance
an away from the hyperbola center, i.e., the plate position. According to the expression of an in
Eq. 2.27, the distance between the vertex and the plate is inversely proportional to the UFBW.
The same can be seen in Fig. 2.6a where the first order optimal hyperbola is plotted for different
UFBWs while the AUT-plate separation is fixed ( d = 10λ0). On the other hand, the AUT-plate
separation impacts the distance between the vertex and the AUT,

dAU T−ver tex
n = d − an, (2.34)

an being independent from d, Eq. 2.34 suggests direct proportionality between the AUT-plate
and AUT-vertex separations. In other words, rising the AUT-plate separation pushes optimal
hyperbolas away from the AUT and closer to the plate. This is shown in Fig. 2.6b where the first
order optimal hyperbola is plotted for different AUT-plate separations while fixing the UFBW
(∆ fu = 4%). These remarks are also useful for determining positions of optimal hyperbolas as
function of their order. Eq. 2.27 states that an is directly proportional to n, the hyperbola order.
This means that as the order augments, the corresponding hyperbola moves further from the
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Figure 2.6 Position and slope of the optimal hyperbola as functions of the configuration pa-
rameters: (a) as function of the UFBW, d = 10λ0 (b) as function of the AUT-plate separation,
∆ fu = 4%.

plate towards the AUT. The same can be seen in Fig. 2.7 where the configuration parameters,
d = 10λ0 and ∆ fu = 20%, allowed the generation of four optimal hyperbolas.

The shape of the hyperbola is indicated by the slope of its asymptote, which is defined as
the ratio of the imaginary semi-axis to the real semi-axis, and may be expressed in terms of
the hyperbola eccentricity. The expression of the asymptote slope mn of the nth order optimal
hyperbola is the following,

mn =
bn

an
=

√

√

√

�

d

an

�2

− 1=
q

e2
n − 1. (2.35)

The eccentricity being proportional to the d.∆ fu product, this yields the following relationships
regarding optimal positions with respect to the plate,

d.∆ fu→
2n+ 1

4
: mn→ 0⇒ positions far from the plate,

d.∆ fu �: mn→∞⇒ positions near the plate.

Fig. 2.6 highlights these relationships as augmenting either the AUT-plate separation or the
UFBW augments the hyperbola asymptote slope making optimal positions move closer to the
plate, whereas reducing either of the two parameters pushes optimal positions towards the
x-axis. The rate of change of the hyperbola slope with respect to ∆ fu and d is assessed by
studying its derivative with respect to e,

dm

de
=

d
p

e2 − 1

de
=

e
p

e−1
(2.36)
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Figure 2.7 Assessment of optimal hyperbola orders and zones of good conditioning as function
of the hyperbola position, d = 10λ0, ∆ fb = 20%, (a) ρ, (b) κ(GT M).

According to this formula, we can distinguish two main cases,

e→ 1 (d ≈ a, m→ 0 : positions far from the plate) :
dm

de
→∞

e >> 1 (d �, m→∞ : positions near the plate) :
dm

de
→ 1

This highlights the fact that the slope of the hyperbola asymptote changes very rapidly for
positions far from the plate (near the x-axis) and gets slower as the hyperbola approaches the
plate. We may conclude by deduction that zones of good conditioning are larger for positions far
from the plate, and get tighter as optimal positions approach the plate. The level of conditioning,
however, depends on the conditioning circle intersecting the hyperbola on the position in
question. Theses remarks are highlighted in Fig. 2.7 where zones of good conditioning related
to higher order hyperbolas are larger than those related to lower order hyperbolas, the latter
being closer to the plate. However, lower order hyperbolas show better conditioning levels as
they are more likely to intersect conditioning circles corresponding to lower projection factors
in regions closer to the plate. Properties of conditioning circles are discussed in the next section.

2.3.2.3 Properties of Conditioning Circles

Conditioning circles are related to the magnitude of the complex term of Eq. 2.25 which
takes into account the distances distribution defining the magnitudes of the GT M entries.
Consequently, conditioning circles exclusively depend on the set-up parameters, mainly defined
by the AUT-plate separation as well as the probe position which sets the distances distribution
expressed by the ratio term γ as revealed by Eq. 2.30. The LOS distance being smaller than the
image distance, this leads to the AUT being inside the conditioning circle as shown in Fig. 2.8.
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Figure 2.8 Example of a conditioning circle corresponding to a distances ratio γ= 1
2

showing
the AUT positioned inside the circle.
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Figure 2.9 Radius of the optimal circle as functions of the AUT-plate separation.

Ideally, the set-up dimensions would be adjusted in order to achieve good conditioning circles
of smaller radii in order to achieve good conditioned positions using realistic set-up dimensions.

Eq. 2.30 suggests direct proportionality between the circle’s radius and the AUT-plate
separation. This is shown in Fig. 2.9, where a ρ = 0.6 conditioning circle is plotted for
different AUT-plate separations. This property is clearly advantageous as reducing the AUT-
plate separation pushes optimal positions towards the AUT. In this example optimal positions
corresponding to ρ = 0.6 are achieved at distances lower than 15λ0 for an AUT-plate separation
d = 8λ0.

Eq. 2.30 also suggests direct proportionality between the conditioning circle radius and the
distances ratio γ, the latter being inversely proportional to the projection factorρ. This means
that achieving a better stability requires larger AUT-probe separations as the conditioning circle
radius augments when reducing the projection factor. The same is depicted in Fig. 2.5. As ρ
approaches zero, γ approaches unity (Eq. 2.29) making the circle radius tends toward infinity
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(a straight line). In this case, it is still possible to use the circle segment near the plate which is
always at a distance less than d from the AUT. However, as discussed in the previous section,
this requires pushing the optimal hyperbola towards the plate by rising the working UFBW
which, depending on the AUT type and the targeted stability, may not be feasible in practice.
The limiting conditioning case (ρ = 0), discussed in Sec. 2.3.2.1, is a straight line coinciding
with the plate. Hypothetical positions on the plate are however by default ill-conditioned as
they cannot coincide with optimal hyperbolas. These remarks are summarized below:

ρ→ 0
�

d �
�

: positions far from the AUT

ρ→ 1

�

d →
1

4∆ f

�

: positions near the AUT

To summarize, achieving an ideal position is impossible as is the case for the singular case;
the former corresponding to either a position infinitely far from the AUT or to an infinite working
UFBW, whereas the latter corresponds to a position over the plate. Otherwise, conditioning is
inversely proportional to the distances spread: it declines when the image distance is relatively
larger than the LOS distance, which is the case near the AUT. On the other hand, conditioning
improves when the two distances get closer to each other, which is the case near the plate
and far away from the AUT. The former requires larger working bandwidths, while the later
requires larger set-up dimensions. Hence, in order to ensure that a relatively good conditioning
circle intersects an optimal hyperbola at a realistic distance, a compromise between the set-up
dimensions, frequency parameters and the choice of the projection factor has to be made.

2.3.3 TE Model

2.3.3.1 Basic Model

Unlike the TM case, the conditioning study of the TE model is less forward and rather qualitative
due to the complexity of the system matrix:

GT E =





− e
r0

−jkr0 sinφ0 −
e
r1

−jkr1 sinφ1
e
r0

−jkr0 cosφ0 − e
r1

−jkr1 cosφ1



 (2.37)

As suggested by Eq. 2.37, GT E is only affected by the set-up dimensions which impact the
distances and angles distributions. Ideally, we would proceed like in the TM case by applying
a dot product between the two rows and minimizing the corresponding projection factor in
order to find the optimal position. This approach is however tedious as it requires eliminating
the angles terms and replacing them with distances terms using the usual triangular identities,
which complicates the procedure. An alternative approach to simplify the procedure is adopted
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by recalling, as discussed in Sec. 2.2.3, that GT E is formed by applying a Hadamard product
between the projection matrix M which takes into account the angles distribution, and Green’s
matrix Go which takes into account the distances distribution. The contribution of each matrix
into conditioning is assessed separately, and optimal positions are retrieved by combining the
impact of both matrices.

The impact of the projection matrix is highlighted by studying the projection factor corre-
sponding to GT E columns,

ρM =
e−jk∆r

r0r1

sinφ0 sinφ1 − cosφ0 cosφ1
s

( sin2φ0

r2
0
+ cos2φ0

r2
0
)( sin2φ1

r2
1
+ cos2φ1

r2
1
)
. (2.38)

Factorizing the distances terms outside the square root, and recalling that, for having a magnitude
of unity, the exponential term does not contribute into conditioning, the projection factor
simplifies to,

ρM =
sinφ0 sinφ1 − cosφ0 cosφ1

Æ

(sin2φ0 + cos2φ0)(sin2φ1 + cos2φ1)
. (2.39)

As we can see, the projection factor ignores the impact of the distances separating the AUT and
the image from the probe, and only takes into account the angles distribution. The projection
factor is then minimized by minimizing the numerator,

sinφ0 sinφ1 − cosφ0 cosφ1 = 0 (2.40)

The left-hand term corresponds to a a common trigonometric identity which simplifies Eq. 2.40
to,

cos(φ0 +φ1) = 0 (2.41)

The solution to this equation is the set of angles whose sum is equal to an integer multiple of π
2

:

φ0 +φ1 = nπ−
π

2
, n ∈ Z. (2.42)

The locus of points satisfying this equation are positions which form a right triangle with the
AUT and image positions. This corresponds to a circle of radius d that passes through the AUT
and image positions, as shown in Fig. 2.10a. By analogy to the TM case, this circle will be
refereed to as the optimal circle, as the projection factor takes minimum values over this circle,
as shown in Fig. 2.10b. This translates the fact that the projection matrix is best conditioned
when the two field vectors Eφ(φ0) and Eφ(φ1) are orthogonal to each other (Fig. 2.10a). The
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Figure 2.10 Optimal positions introduced by the projection matrix: (a) sketch showing the
optimal circle as the locus of points forming a right triangle with the AUT and image positions
(b) ρ, plate at xp = 10λ.

overall conditioning is locally optimal over the optimal circle; its level depending, like in the TM
case, on the distances spread.

The distances distribution highlights the impact of Green’s matrix, and affects conditioning
the same way as in the TM case, via conditioning circles. Properties of conditioning circles
where detailed in Sec. 2.3.2.3; to summarize: conditioning is inversely proportional to the
distances spread, which in its turn is inversely proportional to the conditioning circle radius.
Privileged conditioning circles have larger radii and are closer to the plate. The shape of the
projection factor is then biased by the distances spread shown in Fig. 2.11a. Consequently, the
overall conditioning combines both effects, and optimal positions are the intersection between
the optimal circle and conditioning circles, as shown in Fig. 2.11b. This figure suggests that
privileged positions are those closer to the plate around a distanced from the horizontal axis.

To conclude, optimal positions in the basic TE case are exclusively governed by the AUT-plate
separation and fall in the vicinity of the plate around a distance d from the horizontal axis.
Otherwise, the condition number rises gradually as the radial distance from the optimal region
augments. This provides the advantage of being able to achieve excellent condition numbers
using typical set-up dimensions. However, the inability of moving optimal positions away from
the plate might be disadvantageous in some cases, for instance, in a complete measurement
scenario as positions near the plate are generally ill-conditioned in the TM model and require
large UFBWs or AUT-plate separations in order to improve conditioning, or when using multiple
probe positions. To overcome this issue, frequency diversity may be introduced in order to
improve the overall conditioning pattern.
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Figure 2.11 Impact of the distances spread on the overall condition number xp = 10λ: (a) γ−1

(b) κ(GT E), optimal circle (dashed), and conditioning circles (solid).

2.3.3.2 Applying frequency Diversity

It is possible to introduce frequency diversity in order to supply additional information about
the system. Although this is not necessary in order to balance the mathematical model, it is
advantageous in terms of conditioning as supplying additional information can only improve
conditioning. For instance, using two frequencies like in the TM model, yields the following
system,
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The new system matrix is a 4× 2 matrix highlighting the over-determination of the problem
with four equations against two unknowns. Breaking down the system matrix, we have the new
projection matrix:
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Switching the 2nd and 3rd rows we can see that the new projection matrix is a double con-
catenation of the basic projection matrix. Consequently, it has the same behavior in terms of
conditioning, i.e., the corresponding projection factor is minimized over the optimal circle. This
can be understood by recalling that the projection matrix only depends on the set-up dimensions,
hence, it is not affected by frequency parameters. This is not the case, however, for the Green’s
matrix, as varying the frequency induces a phase variation between its complex entries:
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The new Green’s matrix is a double concatenation of a similar matrix to the TM case, the
difference lying in the absence of the polarization (-) sign in the first column. However, this
does not affect conditioning as the (-) sign is canceled once carrying out the calculations for the
projection factor. This suggests that frequency diversity contributes with a new set of optimal
positions in addition to the optimal circle: a set of optimal hyperbolas with exactly the same
properties as in the TM case. To highlight this, the projection factor corresponding to GT E

columns is plotted in Fig. 2.12a, where a UFBW = 4% is used with the plate being at a distance
d = 10λ0 from the AUT. The resulting set of optimal positions is a superposition of the optimal
circle and the optimal hyperbola. The projection factor ignores the impact of the distances
distribution that defines conditioning circles. The pattern of the overall condition number, which
takes into account all conditioning parameters, is plotted in Fig. 2.12b, showing a better spatial
distribution than the basic model due to the contribution of the optimal hyperbola. Introducing
frequency diversity in the TE case allows achieving optimal positions with satisfying conditioning
levels at regions other than the default optimal circle. This is particularly advantageous in a
complete measurement scenario as using the same frequency parameters for both the TM and
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Figure 2.12 Introducing frequency diversity to the TE model and the contribution of the optimal
hyperbola (dot-sashed) to conditioning in addition to the optimal circle (dashed), xp = 10λ,
UFBW= 4%: (a) ρM , (b) κ(GT E).

TE modes allows generating sets of common optimal positions. If this is not case, a mechanical
displacement effort would be necessary in order to move the probe to different optimal positions
corresponding to each transverse model.

Retrieving the ARP vector in the overdetermined TE model consists in solving the corre-
sponding pseudo-inverse problem. The Least-Squares (LS) solution is an optimal solution for
such a problem,

F̂= Argmin
F
∥GF− E∥2, (2.46)

where the double vertical line symbol stands for the L2 norm.

2.3.4 Relationship Between the Projection Factor and the Condition Number

The conditioning study was carried based on the projection factor ρ. However, recalling that
the precise indicator of the system stability being the condition number, it is convenient to study
the relationship between the projection factor and the condition number in order to judiciously
decide on the configuration parameters.

An approximative relationship between κ and ρ is achieved by exploring the following
matrix identity [56, pp. 475-478]:

ΛAHA = σ
2
A, (2.47)
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with A being an m-by-n matrix. Eq. 2.47 states that the eigenvalues Λ of the product of the
hermitian transpose of some matrix with itself are the squares of the singular values σ of the
matrix A. Suppose A is a 2-by-2 matrix whose product with its hermitian transpose gives,

AHA=

�

a11 a12

a21 a22

�

, (2.48)

a11 and a22 being by definition real positive. The eigenvalues of AHA are found by solving
det(AHA−ΛAHA I) = 0, I being the identity matrix, which yields,

ΛAHA1,2
=

a11 + a22 ±
Æ

(a11 − a22)2 + 4|a12|2

2
(2.49)

Assuming a11 ≈ a22, which means that the norms of the two rows of A are approximately equal,
and which can be translated in the GT M and GT E cases as having the two distances separating the
AUT and image from the probe being approximately equal. This assumption is of interest in our
case as it as it characterizes optimal positions which have a low distances spread. Consequently,
we have 4|a12|2 >> (a11 − a22)2 and Eq. 2.49 simplifies to,

ΛAHA1,2
=

2a11 ±
Æ

4|a12|2

2
= a11 ± 2|a12|. (2.50)

One can easily verify the following expression relating the projection factor of A to the entries
of AHA:

ρA =
|a12|
a11

. (2.51)

|a12| is simply the projection between the two rows of the original matrix A, and a11 is the
square of the norm of the first row, which is assumed to be approximately equal to the norm of
the second row. Hence a11 can stand for the product of the norms of the two rows. Accordingly,
this further simplifies Eq. 2.50 to:

ΛAHA1,2
= a11(1±ρA). (2.52)

Applying the identity of Eq. 2.47, the singular values of A are the square roots of the eigenvalues
of AHA:

σA1,2
=
Æ

a11(1±ρA). (2.53)

Finally, the mathematical expression of Eq. 2.21 defining the condition number as the ratio of
the largest to the smallest matrix singular values is used to express κ(A) as function of ρA:

κ(A) =

√

√1+ρA

1−ρA
. (2.54)

This expression suggests, as shown in Fig. 2.13, that up to ρ = 0.6 the condition number is
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Figure 2.13 Approximative relationship between ρ and κ for a 2× 2 square matrix assuming
equality between diagonal elements.

fairly low (<2) and augments slowly with ρ. Between ρ = 0.6 and ρ = 0.8, the condition
number is averagely low (<3) and keeps augmenting slowly with ρ. Beyond ρ = 0.8, the
condition number undergoes dramatic amplification and the matrix tends towards singularity.
These observations may be verified using the results carried in the conditioning study. In the
TM case, Eq. 2.54 is exact over the optimal hyperbola (refer to Eq. 2.28) and the condition
number is exactly equal to the distances spread,

κ(GT M )opt =

√

√

√

1+ρGT M

1−ρGT M

=
1

γ
=

r1

r0
. (2.55)

This is verified in Fig. 2.5 which plots the projection factor and the associated condition number
in exact agreement with Eq. 2.54 over the optimal hyperbola. In the basic TE case (no frequency
diversity), the agreement is quite good over the optimal circle as shown in Fig. 2.11b, where
κ(GT E)≈ 1.5 for ρ = 0.6, and κ(GT E)≈ 2.2 for ρ = 0.8.

As a rule of thumb, optimal positions with projection factors up to 0.6 are considered well
conditioned. Over ρ = 0.6 conditioning is tolerated up to 0.8 which is considered the limit of
accepted optimal positions. The TM optimal position corresponding to ρ = 0.6 in Fig. 2.5b was
achieved at a distance 12λ0 from the AUT with d = 10λ0, and a UFBW= 4% which may be
applied even to narrowband antennas. The conditioning study carried over this section proved
the mathematical viability of the proposed concept and showed that it is possible to achieve
good stability using typical measurement set-up dimensions and quite narrow FBWs.

2.4 Concept Objective: Reducing Mechanical Effort

The presented concept aims at accelerating the measurement process by introducing a spacial
diversity that allows measuring several ARP samples in each acquisition. In the single-plate case,
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the ability of measuring two ARP samples simultaneously suggests the possibility of cutting the
measurement time up to one half with respect to classical techniques.

A range of measurement angles is spanned by introducing a mechanical effort either by
moving the probe or by rotating the AUT. In order to achieve maximum efficiency in terms
of mechanical effort reduction, and thus in terms of measurement time, no interference be-
tween covered angles should occur. This requires controlling the two measurement angles
corresponding to each scenario and adapting them to the measurement sampling angle φs which
is supposed to be constant over the measured range.

2.4.1 Positions-Angles Mapping

The relationship between the two measurement angles as function of the probe position is
determined using the sine law [57, pp. 101-104]. This law relates the lengths of the sides of a
triangle to the sines of its angles. Applying the sine law to the triangle whose vertices are the
AUT, image, and probe positions, as shown in Fig. 2.14, yields:

sinφ0

sinφ1
=

r1

r0
(2.56)

Accordingly, the ratio of the sines of the measured angles is equal to the inverse of the ratio
of the distances separating corresponding sources to the probe. Near the plate, the distances
spread is reduced and hence the two angles become approximately equal. This situation would
be of interest in the TE case where conditioning improves near the plate. Otherwise, it is easier
to handle Eq. 2.56 if the two angles have an integer ratio, say ma:

φ0 = maφ1, ma ∈ N− {0,1}. (2.57)

As we are going to show next, an integer ratio of the measurement angles is also advantageous
for the measurement procedure. Accordingly, Eq. 2.56 becomes,

sin maφ1

sinφ1
=

r1

r0
, (2.58)

This equation, although looking simple, is quite complicated to solve when replacing the angles
and distances terms by the cartesian variables x and y in order to find the corresponding probe
position. One situation that allowed us achieve a canonical form is when the LOS angle is a
double of the image angle, i.e., ma = 2. In this case, Eq. 2.58 reduces to,

cosφ1 =
r1

2r0
. (2.59)

Developing Eq. 2.59 yields,
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Figure 2.14 The relationship between the two measured angles as function of the probe position
is obtained using the sine law.

2d
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(2d − x)2 + y2
=
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(2d − x)2 + y2

2
Æ

x2 + y2

⇒ (2d − x)2 + y2 = 4d
Æ

x2 + y2

⇒
�

(2d − x)2 + y2
�2
= 16d2

�

x2 + y2
�

. (2.60)

Eq. 2.60 is a quartic equation that has four possible solutions. However, only one solution
respects the initial constraint φ0 = 2φ1; the remaining solutions appear due to the applied
trigonometric identities to develop the problem, and which are valid for other angles pairs than
the suitable one. The accepted solution is a hyperbola with the following parameters:

(x −∆x)2

a2 +
y2

b2 = 1,

with: ∆x =
4d

3
(2.61)

a2 =
4d2

9

b2 =
4d2

3
.

Higher integral ratios of the two angles have hyperbola similar shapes, as shown in Fig. 2.15.
However, they are difficult to express in canonical form. The choice of ma = 2 offers the
advantage of being able to analytically predict the corresponding positions as function of the
AUT-plate separation. Positions yielding angles corresponding to higher integral ratios are
however easily retrieved by numerically spanning the test zone. Once an angles ratio is chosen,
the configuration parameters may be adjusted such that the optimal hyperbola is pushed closer
to targeted positions in order to improve their conditioning level. An example is shown in Fig.
2.15 where the configuration parameters, d = 10λ0 and ∆ fu = 6%, made the targeted positions
corresponding to ma = 2 fall in the vicinity of the first order optimal hyperbola.
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Figure 2.15 Ratios of measured angles φ0

φ1
as function of the probe position for an AUT-plate

separation d = 10λ0, and verification of the developed formula for ma = 2 (dashed) with
example showing the possibility of adjusting the configuration parameters (∆ fu = 6%) such
that the optimal hyperbola (dot-dashed) is very close to targeted positions.

2.4.2 Algorithms for Maximum Efficiency

Maximum mechanical effort reduction is attained by cutting the overall mechanical displacement
effort to a half of that of a classical measurement. This requires no interference between targeted
angles and already covered angles, which is achievable by controlling the relationship between
the two measurement angles and the sampling angle φs for each displacement. Accordingly,
the choice of rotating the AUT is privileged rather than moving the probe as it keeps the two
measurement angles constant with respect to the reference coordinates system.

A forward rotation algorithm is characterized by a sampling angle equal to the difference
between the two measurement angles, φs = φ0−φ1, and a rotation angle to φr = 2φs. Such an
algorithm would be adequate for positions near the plate which yields close measurement angles
and hence a reasonably small sampling angles. An example of the distribution of the difference
of measurement angles is plotted in Fig. 2.16a for a set-up characterized by an AUT-plate
separation d = 10λ0. The figure shows that generally a horizontal probe-plate separation
less than 2λ0 is required in order to generate sampling angles smaller than 10◦. Otherwise,
the vertical AUT-probe separation has to be kept relatively small compared to the horizontal
AUT-probe separation (Eq. 2.2). Ideally the targeted range would be an integer multiple of the
sampling angle, otherwise a minimum additional effort would be required in order to cover the
remaining angles. For instance, achieving maximum efficiency in terms of mechanical rotation
in a measurement spanning the azimuthal plane would require that the sampling angle is an
integer ratio of 360◦. An example of the application of the algorithm is depicted in Figs. 2.16b
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Figure 2.16 Example of the application of the forward rotation algorithm in order to avoid
interference between targeted angles and already covered angles while rotating an AUT with
directive ARP. φs = φ0 −φ1 = 10◦ (dashed), φ0 = 60◦, φ1 = 50◦: (a) φ0 −φ1, d = 10λ0 (b)
Two sets of consecutive orientations separated by a rotation angle φr = 2φs (d) Covered angles
corresponding to both sets of orientations.
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and 2.16c for a sampling angle φs = 10◦. A rotation angle φr = 2φs = 20◦ is systematically
introduced in order to avoid interference between already covered angles and angles yet to
cover. Accordingly, two linearly spaced, different angles are covered in each rotation, allowing
to cut down the overall mechanical rotation effort to a half with respect to classical techniques.
This algorithm is more adapted to the TE case where optimal positions are by default near the
plate. The TM case requires the application of relatively large UFBWs in order to push the first
order optimal hyperbola towards the plate. For instance, by comparing Figs 2.16a and 2.6a, one
may notice that an UFBW> 10% is required in order to locate the first order optimal hyperbola
inside the region characterized by φs < 10◦. Alternately, it is possible to use the lower portion
of the optimal conditioned region when applying a narrow UFBW. For instance, by applying an
UFBW= 4% (with d = 10λ0), positions with small vertical separations with respect to the AUT
in the region x ∈ [4λ0, 7λ0] show conditioning levels below 3.

A more general algorithm for achieving maximum efficiency is possible by choosing an
integer ratio between the LOS and image angles, ma, along with setting an integer ratio between
the image and sampling angles, say mb =

φ1

φs
. The developed algorithm is shown in Fig.2.17.

The AUT is rotated by φr = φs a number of times before applying a jump in order to avoid
interference between already covered angles and angles yet to cover. The algorithm predicts
as function of the chosen parameters (φ0, φ1, and φs) rotations where new targeted angles
interfere with already covered angles and perform an adapted jump to avoid this interference.
For a complete azimuthal span, this algorithm is only valid when the number of sampling angles
ns is an integer multiple of mb(ma − 1):

ns = n[mb(ma − 1)], n ∈ N∗. (2.62)

If this condition is not satisfied, a minimum additional effort would be required to measure the
remaining angles. An example of the application of the rotation algorithm is shown in Fig. 2.18,
where φs = 15◦, φ1 = 45◦, and φ0 = 90◦. These parameters imply performing sets of three
rotations (mb = 3) before introducing a jump of 60◦ (φs[ms(ma − 1) + 1]). For each rotation,
two samples are measured, and are shown with the same color in Figs. 2.18b and 2.18d. In this
scenario, 12 samples spanning 180◦ are covered by performing 6 rotations, highlighting the
efficiency of the proposed concept.
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Figure 2.17 Algorithm for achieving maximum rotation efficiency based on integer ratios between
the measurement angles
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(a) (b)

(c) (d)

Figure 2.18 Example of the application of the general rotation algorithm in order to avoid
interference between targeted angles and already covered angels while rotating an AUT with a
directive ARP. φs = 15◦ (dashed), φ1 = 3φs = 45◦, φ0 = 2φ1 = 90◦: (a) First set of rotations
(b) Covered angles corresponding to the first set of rotations (c) Second set of rotations applied
after an adapted jump (d) Covered angles corresponding to the both set of rotations.
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Conclusion

This chapter presented the proposed concept using the simplest configuration in terms of con-
trolled echoes: the single-plate configuration which allows the generation of a single controlled
echo. The model was simplified in order to assess its viability from a mathematical point of
view. The conditioning study highlighted the possibility of achieving mathematically stable
systems using typical configuration parameters. General guidelines regarding optimal and worst
positions in terms of conditioning are summarized in Table 2.1.

 

 
 

 
Optimal Regions 

 

 
Worst Regions 

 
 
 
 
 

TM Model 
 

 
 
Conditioning locally optimal over a 
set of optimal hyperbolas which 
are defined by the AUT-plate 
separation and the working UFBW. 
 
Conditioning level indicated by 
conditioning circles: it improves 
for larger AUT-probe separations. 

_ Set of worst hyperbolas 
which are defined by the AUT-
plate separation and the 
working UFBW. 
 
_ Immediate vicinity of the 
AUT. 
 
_ Near the plate (region width 
inversely proportional to the 
AUT-plate separation and to 
the working UFBW). 

 
 
 
 
 

 
TE Model 
 

 
 
 
 

Basic Model 

Conditioning locally optimal over 
an optimal circle which is 
exclusively defined by the AUT-
plate separation. 
 
Conditioning level indicated by 
conditioning circles: it improves 
near the plate at a vertical distance 
equal to the AUT-plate separation. 

 
_ Immediate vicinity of the 
AUT. 
 
_ Far from the AUT (vertical 
distances much larger than the 
AUT-plate separation). 
 
_ Far from the plate. 

Introducing 
Frequency 
Diversity 

Frequency diversity introduces 
sets of optimal hyperbolas in the 
same fashion as in the TM case. 

Set of worst hyperbolas which 
are defined by the AUT-plate 
separation and the working 
UFBW. 

Table 2.1 General guidelines regarding optimal and worst positions in terms of conditioning.

The theoretical efficiency of the proposed concept in accelerating the measurement process
was also discussed and algorithms for achieving maximum efficiency were presented. The next
chapter highlights practical limitations of the developed models.
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Chapter 2 presented a simplified model of the proposed concept in order to assess its viability
from a mathematical point of view. In this chapter, a study of the model practical limitations is
conducted in order to verify its physical viability. Practical error sources are classified into two
categories: general error sources which are in common with classical measurement techniques,
and model-related errors which are the focus of this chapter. Model-related errors are quantified
and limited either by reducing their impact or by updating the simplified model in order to take
them into account.
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3.1 Introduction

From a practical point of view, the proposed concept, like any measurement technique, is subject
to a set of inevitable errors sources due to uncertainties related to the measurement system and
practical limitations of used equipment. The tolerance of the proposed method to this type of
error is assessed with emphasis on error factors with higher impacts, highlighting the importance
of conditioning models developed in Chapter 2. The error spread between the ARP LOS and
image samples is assessed as well, and an analytical formula is retrieved assuming an error
factor with a Gaussian distribution which may conveniently model a general term combining
the set of practical systematic errors [34]. Moreover, the models developed in Chapter 2 were
based on a set of approximations and simplifying assumptions which may be summarized in: the
coherence of the far-field model, the generation of only the LOS and image fields corresponding
to the AUT free-space ARP, the infinite conductivity of the reflecting plate, and the ARP frequency
independence. This approach was advantageous in simplifying the mathematical conditioning
study yielding analytical formulas for optimal positions in terms of conditioning. Although
these assumptions may hold under certain conditions, they cannot be systematically maintained
as they ignore the effect of several physical phenomena that characterize the concept. Model
limitations are studied and related error sources are quantified as function of the measurement
parameters. Finally, linear regression is introduced in order to enhance the proposed method
by reducing the ARP error resulting from phenomena that are not taken into account in the
model, and by optimizing the model as well through the estimation of the frequency impact on
the free-space ARP. Synthetic results to highlight these aspects are presented using a half-wave
dipole (HWD).

3.1.1 Tested Antenna

The main AUT used in order to synthetically test the model is a half-wave dipole whose ARP is
shown in Fig. 3.1. The dipole may exclusively be used in each transverse mode as function of
its orientation with respect to the working azimuthal plane. TM operation is ensured when the
dipole is parallel the z-axis. In this case the ARP over the azimuthal plane is isotropic, i.e., a
circle. TE operation on the other hand is ensured when the dipole is parallel to the azimuthal
plane. In this case the ARP is directive, with a directivity Dr = 1.64 (2.15 dBi). Assuming
independence between the different error factors, the impact of frequency diversity on the
free-space ARP is neglected when studying remaining error sources.

3.1.2 Test Zone

The basic tested configuration is characterized by an AUT-plate separation d = 10λ0 and a
20λ0 × 20λ0 test zone bounded from the bottom by the AUT position, the origin, and from the
right by the plate. A synthetic reference field is generated based on the far-field model using the
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Figure 3.1 Normalized ARP azimuthal cuts of a HWD oriented parallel to the z-axis (dashed)
and to the x-axis (solid), corresponding to TM and TE modes respectively.

reference ARP shown in Fig. 3.1. Then it is modified as function of tested parameters before
proceeding with the inversion in order to retrieve the calculated ARP samples based on the
proposed concept. The ARP error is then estimated by comparing the calculated ARP to the
reference ARP. Unless otherwise stated, the local relative ARP amplitude error is considered
throughout this chapter,

εF =

�

�

�





Fmodel





−




Fref







�

�

�





Fref







. (3.1)

where Fmodel is the ARP vector calculated using the proposed concept, and Fref is the reference
ARP vector.

3.2 Model Tolerance to General Practical Errors

Common practical limitations of classical ARP measurements were presented in Sec. 1.5.2.
These limitations are essentially related to the measurement system and vary as function of
the adopted range. The concept being limited in this work to a far-field model, only related
error sources are of concern. These may be summarized in probe parameters errors, impedance
mismatch errors, receiver errors, alignment errors, unintentional reflections, and position errors.
The first three error sources impact the concept pretty much like any other measurement
technique. An alignment error, characterized by an elevation rotation error between the probe
and the AUT coordinates systems would perturb the transverse models decomposition making
longitudinal components contribute in the TM mode and the transversal component contributes
in the TE mode. In the case of unintentional reflections, which are generally considered as
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the most important error source, the concept may be considered advantageous as the plate
is supposed to generate only controlled echoes, and thus it reduces the overall unintentional
echoes budget. On the other hand, position errors may impact all the proposed set-up elements
which result in perturbing the distances separating the AUT and the image from the probe. The
field phase being sensitive to distance change, this would result in an error between predicted
and measured fields when superposing the LOS and image contributions, which might induce
a large ARP error. A synthetic evaluation of the mentioned error sources may be performed
by combining their impacts using a Gaussian model [34]. This method is adopted herein and
synthetic results are presented in Sec. 3.2.2. Position errors, in particular, are separately studied
in Sec. 3.2.1 due to their suspected serious impact.

3.2.1 Impact of Position Uncertainty

Position errors induce an error on distances separating the AUT and the image from the probe:

r ′i = ri +δri, (3.2)

where δri is the distance error term corresponding to each source. This would impact the LOS
and image fields magnitudes which are inversely proportional to the corresponding distances,
but most importantly their corresponding phases which are more sensitive to distance errors:

δβi = kδri =
2π

c
f δri. (3.3)

The distance error term is amplified by the working frequency which would induce a large
phase error if one of the two terms is high. In a classical measurement context, this would
not be a serious matter as the focus is generally on the field magnitude. However, this is not
the case in the present concept as the reference field is the vector sum of the two useful fields
(E⃗ = E⃗LOS+ E⃗image). Consequently, an error on the fields phases perturb their summation adding
another error term to the direct magnitude error.

Position uncertainty impacts all the set-up elements, but mainly the AUT as the physical
position uncertainty is coupled with uncertainty over the AUT phase center position. The latter
being considered as the apparent radiation point, it is function of the measurement direction and
the working frequency [58]. It is then important to study the tolerance of the proposed model
to position errors. To do so, a position uncertainty factor is used to alter original positions using
a Gaussian model and the corresponding ARP error is recorded. The outcome is averaged over
1000 trials. Results are shown in Fig. 3.2 where a position uncertainty factorσpos = 3mm is used
to perturb the AUT, plate and probe positions assuming a TM model. Figs 3.2a and 3.2b show
the ARP error for an operating frequency f0 = 1GHz, for which the position uncertainty factor is
equal to σpos = 10−2λ0. The impact is very weak in the optimal conditioning region introducing
an error below −50dB. As suggested by Eq. 3.3, the position error impact is proportional to the
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working frequency. The same can be seen in Figs. 3.2c and 3.2d where an operating frequency
f0 = 10GHz is used and for which the position uncertainty factor is equal to σpos = 10−1λ0.
Error in this case is considerably high exceeding, for the image case, −35dB in the optimal
conditioning region and −20dB near regions of ill-conditioning.
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Figure 3.2 ARP error as function of position uncertainty. TM case, SNR = ∞, σpos = 3mm,
Nt = 1000, ∆ fu = 4%, d = 10λ0: (a) ε(F)los, f0 = 1GHz (b) ε(F)im, f0 = 1GHz (c) ε(F)los,
f0 = 10GHz (d) ε(F)im, f0 = 10GHz.

These results highlight the important impact position errors could have if the position
uncertainty factor is high with respect the working wavelength. One may notice that the
image error is larger than the LOS error. This may be explained by noticing that the image
position is determined as function of both the AUT and the plate positions. Consequently, their
corresponding error factors are superposed at the image level amplifying as a result the image



62 Single plate Configuration: Practical Considerations

position error. However, as we are going to show later, this is not the only explanation as the
problem formulation defines the error spread between the LOS and image samples. These results
also highlight the importance of conditioning models when error impacts the measurement. For
instance, at 10GHz only positions around the optimal hyperbola show tolerable error levels
(> −30dB) for both LOS and image sample.

3.2.2 Impact of Generalized noise

Assuming ideal conditions, i.e., that no noise impacts the measurement (SNR =∞), the ARP
vector is error clear independently of conditioning, as shown in Fig. 3.3. Figs. 3.3a and 3.3b
show the conditioning patterns corresponding respectively to a TM case with an UFBW = 4%
and to the basic TE case (UFBW = 0%).
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Figure 3.3 Performing the inversion assuming ideal conditions, d = 10λ0: (a) κ(GT M ), UFBW
= 4% (b) κ(GT E) (c) average ARP error ε(F)av, TM (d) average ARP error ε(F)av, TE.



3.2 Model Tolerance to General Practical Errors 63

In the TM case, the system is well conditioned over the optimal hyperbola and improves
as the AUT-probe separation grows attaining optimal values (κ(GT M )< 2) near the upper left
corner. In the TE case, optimal values are achieved near the plate at a vertical distance y ≈ d
(κ(GT E)< 1.5), otherwise the condition number rises gradually as the probe is radially moved
outward the optimal region. Notice that condition numbers are up-bounded by 10 for proper
plot. Figs. 3.3c and 3.3d show the corresponding relative ARP error levels as function of the
probe position, averaged in both cases between the LOS and image samples errors,

ε(F)av =
ε(F)LOS + ε(F)im

2
. (3.4)

The practically null error levels reveal that computer roundoff error may be neglected even if
the system is ill-conditioned.

Practical conditions are described by a certain noise level due to measurement systematic
errors which are modeled by introducing a constant additive white Gaussian noise (AWGN).
The noise level is adjusted by setting a Signal-to-Noise ratio (SNR) with respect to the reference
field. The outcome is averaged over Nt = 1000 trials. Fig. 3.4 shows the impact of noise on
ARP results as function of the probe position in the TM case (U<ZSFBW = 4%), for three SNR
values: 60dB, 40dB, and 30dB. The corresponding conditioning pattern is shown in Fig 3.3a.
One may immediately notice the impact of conditioning on ARP results: error patterns are
identical in the three cases and follow the conditioning pattern, with their levels being consistent
with corresponding noise levels. The LOS samples show quite stable error levels compatible
with the inserted noise levels except in the singular region near the plate where it undergoes
rapid amplification. The impact is however more important over image samples where error is
amplified almost all-over positions outside the optimal conditioning region. The image error
is particularly high in the vicinity of the AUT which is not the case over LOS samples. These
results highlight the importance of the conditioning models in ensuring the viability of the
calculated ARP results in the presence of the inevitable measurement noise. It is rather hard
to give values for typical SNRs characterizing classical measurements as they depend on each
measurement site and on the set of used equipment. However, 40dB seems a quite realistic
choice in regrouping all the set of systematic errors encountered in practice. Accordingly, the
proposed model is viable using optimal positions where the calculated ARP maintains the same
error level over both LOS and image samples.

One may notice from Fig. 3.4 that the image error is generally higher than the LOS error for
the same perturbation factor. At this stage, it is convenient to analytically study the error spread
between the LOS and image ARP samples.
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Figure 3.4 Impact of practical systematic errors on the calculated ARP as function of the probe
position, TM case. Nt = 1000, ∆ fu = 4%, d = 10λ0: (a) ε(F)los, SNR = 60dB (b) ε(F)im,
SNR = 60dB (c) ε(F)los, SNR = 40dB (d) ε(F)im, SNR = 40dB (e) ε(F)los, SNR = 30dB (f)
ε(F)im, SNR= 30dB.
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3.2.3 Error Distribution

The formulation of the mathematical model allows to analytically express the relationship
between the ARP LOS and image errors. Suppose that the reference field is subject to some
noise,

E= Es + n, (3.5)

where Es is the reference field which is the sum of the LOS and image fields, and n is a random
noise vector. It follows that the calculated ARP vector F̂ is the sum of the correct ARP vector Fs

and an ARP error vector δF :

F̂= G−1E

F̂= G−1Es
︸ ︷︷ ︸

Fs

+G−1n
︸︷︷︸

δF

, (3.6)

where G is the system matrix. Each component of the ARP error vector, i.e., the LOS and image
errors, is related to the noise vector through a row of the inverse of the system matrix G−1:

δFi =
�

G−1
�

i n, (3.7)

By recalling that the error term regrouping practical systematic errors may be modeled using
a Gaussian distribution, let us assume for simplicity that the noise vector follows a standard
normal distribution n ∼ N (0,1). By definition if X = σn+ µ, then X ∼ N (µ,σ2). It follows
from Eq.3.7:

δFi ∼N (0,
∑

j

|
�

G−1
�

i j |
2), (3.8)

Eq. 3.8 states that the LOS and image ARP errors follow a Gaussian distribution with a variance
equal in each case to the sum of the square of the entries of each row of the inverse of the system

matrix. A useful figure of merit is N =
σ2

1

σ2
0

describing the ratio of the perturbation observed at
the ARP sample corresponding to the image to that corresponding to the LOS. The simplicity of
the problem allows to analytically express N as expressing the inverse of the system matrix is
forward:

G−1 =
1

|G|

�

G22 −G12

−G21 G11

�

, (3.9)

where |G| is the determinant of the matrix G. It follows,

N =
|G22|2 + |G12|2

|G11|2 + |G21|2
. (3.10)
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It is easily verified that Eq. 3.10 gives the square of the ratio of distances separating the image
and the AUT from the probe in both the TM and TE models:

N =
r2
1

r2
0

(3.11)

The square root of the last term yields the ratio of the Standard Deviations (SD) at the image
and LOS levels which is equal to the ARP error spread:

p
N =

r1

r0
= γ−1. (3.12)

This states that an error following a Gaussian distribution affects more the image sample than
the LOS sample, and that the ratio of the respective ARP errors is expressed by the ratio of
distances separating the image and the AUT from the probe. This highlights the importance of
the distances spread which also governs conditioning through conditioning circles. Consequently,
the ARP error spread pattern in this case is a duplicate of conditioning circles. This is verified
in Fig. 3.5 where the ARP error at the image level is compared to the ARP error at the LOS
level after introducing an AWGN corresponding to an arbitrary SNR (60dB in this case) and
averaging over 1000 trials. The agreement is excellent with conditioning circles.
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Figure 3.5 Verification of the standard deviation formula expressing the ARP error spread
between the image and LOS samples in terms of the distances spread. d = 10λ0, SNR= 60dB,
Nt = 1000 trials: (a) ε(F)im

ε(F)los
(b) r1

r0
.

To conclude, optimal positions in terms of conditioning are characterized by a small ARP
error spread between the LOS and image samples. As the condition number rises, image samples
tend to become more vulnerable to error than LOS samples. As a general rule of thumb, images
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samples are more vulnerable to noise than LOS samples. The ARP error spread is proportional
to the distances spread.

3.3 Model Systematic Errors

Model related limitations are due to the set of assumptions applied to simplify the model. One
forward limitation comes from the fact that the developed formalism is based on a far-field
model. The far-field expression being itself an approximation, this assumes placing the probe
at very large electric distances from the AUT. Otherwise, the far-field approximation does not
precisely describe the field intercepted by the probe, and the assumption that the ARP does
not change with distance may become too approximate. Moreover, in Chapter 2 the AUT was
assumed dimensionless and the plate infinitely large, which is not the case in practice. Waves
vertically impinging on the plate are reflected back towards the AUT. The latter having finite
physical dimensions, this would stimulate two phenomena: an induced current by the reflected
wave which would modify the AUT radiation resistance, and a field diffracted by the AUT
aperture. On the other hand, the plate being of finite dimensions, it diffracts incident fields on
its edges and corners. These considerations are depicted in Fig. 3.6.

Figure 3.6 Practical considerations relative to the single-plate configuration: impact on the AUT
free-space radiation characteristics and diffracted fields by the AUT aperture and plate edges
and corners (solid) which interfere with the useful fields (dashed).

Changing the AUT radiation resistance means changing its free-space radiation characteristics
inducing an error in the free-space ARP information acquired in the presence of the plate. On the
other hand, the diffracted fields by the AUT aperture and the plate edges and corners interfere
with the LOS and image fields. In the current formalism, the diffracted fields do not contribute
into the measurement and thus are considered as spurious fields. Consequently, these fields
are not taken into account in the mathematical model. Instead, their impact is quantified and
minimized in order to produce the most accurate results.
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The model is optimized by integrating losses due to the finite conductivity of the metallic
plate. This is performed by inserting an adapted reflection coefficient in the image column of the
systems matrices. It should be noted that for radio frequencies, metals with good conductivity
introduce very small losses which may be neglected in the single-plate scenario. Studying
aspects related to the plate losses becomes a priority when considering multiple reflections.
Nevertheless, the impact of the plate infinitesimal losses on the ARP results is assessed in Sec.
3.3.5. The model is further optimized by integrating the frequency impact to account for changes
in the field amplitude and phase as function of the working frequency. The method adopted
herein to estimate this change is by applying linear regression. The same technique is used
in order to enhance the proposed method by reducing the ARP error acquired by the direct
inversion. The application of linear regression in order to both enhance the method and optimize
the model is presented in Sec. 3.4.

3.3.1 Error due to the Far Field Model Assumption

The common criterion for the far-field distance is given by the Fraunhofer distance which is
based on a maximum phase tapper ∆βE = 22.5◦ over the tested aperture (see Sec. 1.3.1).
Although this criterion works well for a large scale of applications, one may easily notice that it
does not guarantee that far-field conditions are absolutely met. It should be noted that, apart
of the AUT dimensions which set the Fraunhofer distance, the "actual" far-field distance over
which error due to the far-field model assumption may be neglected changes as function of the
tested antenna. In order to highlight the model limitation due to the far-field assumption, a
Hertzian dipole is used. This elementary source, which has infinitesimal dimensions, has the
corresponding free-space radiated field expressed as follows, when it is oriented parallel to the
z-axis [59],

Eθ =
Iℓ

4π jε0ω

�

1

r3 +
jk

r2 −
k2

r

�

e− jkr sin(θ ), (3.13)

Er =
Iℓ

2πjε0ω

�

1

r3 +
jk

r2

�

e− jkr cos(θ ), (3.14)

Eφ = 0, (3.15)

where Iℓ is the dipole moment, ε0 the free-space permittivity, ω the working angular frequency,
and k the wavenumber. The radial component Er is generally neglected when assuming far-field
conditions as it decays more rapidly compared to transverse components. Considering the
fields on the working azimuthal plane (θ = π/2), which correspond to the TM case, the fields
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Figure 3.7 Error due to the far-field assumption using a TM-operating Hertzian dipole as function
of the measurement distance: (a) Magnitude error (b) Phase error.

expressions reduce to,

Eθ = A

�

1

r3 +
jk

r2 −
k2

r

�

e− jkr , (3.16)

with A=
Iℓ

4π jε0ω
,

Er = Eφ = 0. (3.17)

As we would expect, only the polar component exist and the corresponding radiation pattern is
isotropic. The far-field region is characterized by the absence of reactive fields; i.e., the field
components which decay as function of r−2 and r−3. Accordingly, the far-field model of the TM
radiated field is expressed as follows,

EF F
θ = −

e− jkr

r
Ak2. (3.18)

Error due to the far-field model assumption is then calculated by comparing the latter far-field
expression with the more precise expression of Eq. 3.16. Results are shown in Fig. 3.7. The
magnitude error is large in the vicinity of the antenna, attaining −26dB at r = λ/2 but converges
rapidly towards very low levels as the distance grows attaining−50dB at r = 2λ. However, by
recalling that the antenna has infinitesimal length, typically ℓ < λ/50 [21, pp. 151–170], the
Fraunhofer distance would correspond to the immediate vicinity of the antenna which shows
a large magnitude error. The phase error is quite larger exceeding 5◦ at r = 2λ and 1◦ up to
around r = 10λ. These results highlight the possible error that could emerge when relying on
the Fraunhofer distance in order to apply the far-field model.

The studied example shows that error due to the far-field model assumption is only function
of the radial distance separating the measurement point from the antenna. This is not true if the
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Figure 3.8 Error due to the far-field assumption using a TE-operating Hertzian dipole as function
of the measurement point position: (a) Magnitude error (b) Phase error.

antenna is oriented otherwise, say when it is oriented parallel to the x-axis corresponding to a
TE mode. In this case, the field components over the working azimuthal plane are expressed as
follows,

Eφ = A

�

1

r3 +
jk

r2 −
k2

r

�

e− jkr sin(φ), (3.19)

Er = 2A

�

1

r3 +
jk

r2

�

e− jkr cos(φ), (3.20)

Eθ = 0. (3.21)

Unlike the TM case, the TE case is characterized by the contribution of the radial component
making the reference field the sum of Eqs. 3.19 and 3.20. Consequently, this would amplify
error due to the far-field model assumption as it does not take into account the radial component
contribution, whereas according to the far-field model, the TE radiated field is expressed as
follows,

EF F
φ = −

e− jkr

r

�

Ak2 sinφ
�

. (3.22)

According to Eq. 3.22, the ARP is sinusoidal with the nulls being directed towards the x-axis,
which corresponds to the limits of the φ = [0◦, 180◦]-range. Hence, error due to the far-field
model assumption in this case is also function of the measurement angle which defines the
intensities of the different field components. The same can be seen in Fig. 3.8 where error due
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to the far-field model assumption is plotted as function of the measurement point position. The
figure shows that both amplitude and phase errors are dramatically amplified over positions
corresponding to weak power emission (directions near the nulls) even at distances as large
as 10λ0. This may be explained by noting that the radial component takes its maximum value
over these positions (cos(φ)), whereas the far-field model, neglecting the contribution of the
radial component, predicts very weak transverse component levels (sin(φ)).

These results highlight a further limitation of the far-field model which does not take into
account the impact of the radiation patterns corresponding to the different field components,
including the radial component. Accordingly, care must be given to the probe position in the
context of the proposed concept in terms of the radial distance and ARP nulls in order to limit
errors due to the far-field model assumption. The study carried in this section is useful to
understand the same issues when handling antennas with similar behaviors such as the HWD
later in this document.

3.3.2 Interaction with the Plate: Impact on the Free Space Radiation Resistance

The current generated in the AUT in the proposed set-up is the superposition of two components,
the amplitude of the first depends on the power supplied by the transmitter and the free-space
radiation resistance, while the second depends on the amplitude of the normally reflected wave.
The amplitude of the normally reflected wave depends on the AUT-plate separation d as well as
on the ARP value in the direction towards the plate. Changing the total generated current in
the AUT is equivalent to changing its free-space radiation resistance. Ideally, the amplitude of
the normally reflected wave would be as small as possible to ensure a minimum variation of the
AUT free-space radiation characteristics. This suggests augmenting the AUT-plate separation.
However, the fact that the amplitude of the current component relative to the transmitter is by
default greater than the amplitude of the current component due to the reflected wave suggests
that minimizing the latter with respect to the former requires moderate AUT-plate separations.
In [37] it is suggested that distances in the order of a half wavelength are sufficient to neglect
the contribution of the normally reflected wave. To verify this, Friis transmission equation [60]
is used in order to determine the ratio of the reflected power by the plate Pr to the free-space
radiated power by the AUT Pt , which may be denoted as the AUT propagation return loss Sp

11:

Sp
11 =

Pr

Pt
=

Ga(0◦).Ga(0◦)
[4π(2d)]2

=
Ga(0◦)2

(8πd)2
, (3.23)

where Ga(0◦) stands for the gain of the AUT in the horizontal direction towards the plate
(φ = 0◦), and d is normalized with respect to the working wavelength. If the AUT is lossless
and omnidirectional (Ga = 1), Eq. 3.23 reduces to:

Sp
11 =

1

(8πd)2
. (3.24)
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Figure 3.9 Intensity of the normally reflected wave with respect to the free-space generated
wave as function of the AUT-plate separation accounting for the impact of the plate on the AUT
free-space radiation resistance.

According to this expression, the propagation return loss is inversely proportional to the square
of the AUT-plate separation. Fig.3.9 shows the evolution of the propagation return loss as
function of the AUT-plate separation. It shows that as soon as d approaches 1λ the reflected
power is considerably smaller than the free-space radiated power (Sp

11 = −30dB). For AUT-plate
separations larger than 4λ the impact of the reflected power becomes very weak (Sp

11 < −40dB),
highlighting the possibility of minimizing the plate impact on the AUT free-space radiation
resistance using small AUT-plate separations.

3.3.3 Diffraction by the AUT Aperture

In addition to the circuit impact, which is modifying the AUT radiation resistance, the normally
reflected wave has a propagation impact as it is diffracted by the AUT aperture, interfering as
a result with the useful LOS and image fields. According to results carried over the previous
section, the power density of the normally reflected wave at the AUT level, which depends
on the AUT-plate separation and the AUT radiation pattern, is small compared to the power
density of the free-space radiated wave for useful AUT-plate separations. For example, the power
density of the normally reflected wave is −40dB below the power density of the free-space
radiated power for an AUT-plate separation d > 4λ0 (Fig. 3.9). However, the intensity of the
AUT-diffracted wave is also function of the AUT Radar Cross Section (RCS) which may limit
or amplify the diffraction impact. In order to verify the AUT diffraction impact, it is useful
to express the ratio of the useful signals powers to the diffracted signal power, which may be
denoted as the Signal-to-Noise Ratio (SNR) relative to the AUT diffraction. This is performed
by expressing the field intensity of the AUT-diffracted wave at the probe level using the Radar
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Range equation [21, pp 96-98],

Pd =
Pt Ga(0◦)
4π(2d)2

.
Arσ

4πr2
0

, (3.25)

where Pd is the diffracted signal power measured by the probe, Pt the transmitted power to the
AUT, Ar the effective aperture of the probe, and σ the AUT RCS. The first ratio term corresponds
to the incident power density of the normally reflected wave on the AUT, say Winc, such that,

Pd =Winc
Arσ

4πr2
0

,

with Winc =
Pt Ga(0◦)
4π(2d)2

.

(3.26)

The incident power density on the AUT may alternatively be expressed as function of the incident
field intensity Einc and the free-space intrinsic impedance η0,

Winc =
||Einc||2

η0
=
||G( f , 2d)F(0◦)||2

η0
, (3.27)

where G( f , 2d) stands for the free-space Green’s function corresponding to the path taken by
the normally reflected wave before impinging on the AUT, andF(0◦) is the value of the ARP in
the corresponding direction (φ = 0◦). The far-field expression is applied in Eq. 3.27 to describe
the incident wave which is locally plane due to the reflection. Replacing Winc in Eq. 3.26 by the
expression of Eq. 3.27 yields,

Pd =
||G( f , 2d)F(0◦)||2

η0

Arσ

4πr2
0

. (3.28)

The diffracted power measured by the probe may as well be expressed as function of the
diffracted wave power density Wd ,

Pd = ArWd ,

with Wd =
||Ed ||2

η0
,

(3.29)

where Ed stands for the diffracted field by the AUT measured at the probe level. It follows that
the amplitude of the diffracted field may be expressed as follow,

||Ed ||=
p

η0Wd =

√

√η0Pd

Ar
. (3.30)
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Finally, replacing the diffracted power in Eq. 3.30 by its expression in Eq. 3.28 yields,

||Ed ||=




G( f , 2d)F(0◦)






√

√ σ

4πr2
0

=
















e− jk2d

4dr0
F(0◦)
















s

σ

π
.

(3.31)

According to this expression, the amplitude of the diffracted field is directly proportional to
the square root of the AUT RCS and inversely proportional to approximately seven times the
product of the AUT-probe and AUT-plate separations (4

p
πdr0), suggesting a rapid attenuation

of the diffracted field when augmenting the AUT-plate separation. It should be noted that this
expression assumes uniform diffraction by the AUT aperture, which may be regarded as a worst
case as practically the diffracted field pattern would be characterized by a certain directivity
[61]. It should also be noted that Eq. 3.31 describes the diffracted field directly impinging
on the probe, i.e., the LOS AUT diffraction. The presence of the plate implies the generation
of a reflected signal relative to the AUT-diffracted field in the same fashion as for the useful
LOS and image fields. Strictly speaking, the proposed configuration results in an infinite set
of AUT-diffracted fields as each diffracted wave normally impinging on the plate is reflected
back towards the AUT resulting in a new LOS and reflected AUT diffractions. However, the
oscillating normally reflected wave being rapidly attenuated, only the first order diffracted LOS
and reflected fields are taken into account. The amplitude of the sum of these two fields is
then considered. This is done by taking into account the phase terms of the two fields, i.e., the
complete free-space Green’s function corresponding to each diffracted signal path, which yields,

||Ed ||=
















G( f , 2d)F(0◦)
√

√ σ

4πr2
0

e− jkr0 − G( f , 2d)F(0◦)
√

√ σ

4πr2
1

e− jkr1
















=
















e− jk2d

4d
F(0◦)

s

σ

π

�

e− jkr0

r0
−

e− jkr1

r1

�
















. (3.32)

The (-) sign inside the brackets stands for the 180◦ phase shift of the reflected wave which is
implied by boundary conditions on the plate. To account for the impact of the AUT diffraction,
an SNR relative to the LOS and image cases is expressed as follows:

SNRi =













Ei

Ed













2

=






















e− jkri

ri
F(φi)

e− jk2d

4d
F(0◦)

q

σ
π

h

e− jkr0

r0
− e− jkr1

r1

i






















2

, i = 0, 1. (3.33)
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The index 0 standing for the LOS case and the index 1 standing for the image case. Rearranging
the right-hand term yields the SNR corresponding to each case:

SNR0 =
16πd2

σξ2
0





1− γe−j2π∆r






2 ,

with ξ0 =
F(0◦)
F(φ0)

.

(3.34)

SNR1 =
16πd2

σξ2
1





1− γ−1ej2π∆r






2 ,

with ξ1 =
F(0◦)
F(φ1)

,

(3.35)

γ being the distances ratio introduced in Chapter 2 and distances being normalized with respect
to the working wavelength. Eq. 3.34 and Eq. 3.35 logically suggest that the SNRs are directly
proportional to the AUT-plate separation and inversely proportional to the AUT RCS. They also
propose sets of optimal and worst positions in term of the AUT diffraction in the same fashion as
for conditioning in the TM case, i.e., in the form of hyperbolas. Maximizing the SNRs requires
minimizing the corresponding denominators which is done by setting the phase of the complex
term to an integer multiple of 2π. This corresponds to a situation where the two diffractions
are out of phase so their contributions nearly cancel each other. Minimizing the SNRs on the
other hand requires maximizing the corresponding denominators which is done by setting the
phase of the complex term to an integer multiple of π, corresponding to a situation where the
two diffractions are in phase such that their contributions add. These remarks correspond to
the following situations,

Optimal case: ∆r = n

Worst case: ∆r =
1

2
+ n, n ∈ N

(3.36)

Eq. 3.36 defines two sets of optimal and worst hyperbolas of positions in term of the AUT
diffraction where SNRs are respectively locally highest and locally lowest. Equations of these
hyperbolas and their parameters are expressed as follows,

(x − d)2

a2
n
−

y2

b2
n
= 1

an =
∆r

2
=











n
2
, optimal hyperbolas

1+2n
4

, worst hyperbolas
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bn =
q

d2 − a2
n, bn > 0. n ∈ N. (3.37)

These hyperbolas have globally the same parameters as the TM case conditioning hyperbolas
(refer to Sec. 2.3.2.2), which may be summarized as: the number of hyperbolas is directly
proportional to d, with their slopes approaching infinity, i.e., becoming vertical, when they
approach the plate. The level of SNR over optimal hyperbolas is defined by the amplitude
of the complex term of Eqs. 3.34 and 3.35, which is the distances ratio. This corresponds
to conditioning circles defined by γ for the LOS case and γ−1 for the image case. The SNR
is optimized when both terms approach unity, i.e., when the two distances r0 and r1 are
approximately equal. This corresponds to positions near the plate and far away from the AUT.
In other words, optimal positions in terms of the AUT-diffraction coincide with optimal positions
in terms of conditioning, as both are governed by the distances spread. Fig. 3.10 highlights the
mentioned remarks over the 20λ×20λ test zone using a vertical HWD which implies an isotropic
ARP, i.e., ξi = 1. Figs. 3.10a to 3.10d show the SNRs as function of the AUT-plate separation
assuming a hypothetical isotropic RCS σ = 1λ2. As one would expect, the LOS SNRs are
generally higher than the image SNRs as the image fields are more attenuated due to the higher
distances separating images from the probe. For an AUT-plate separation d = 5λ, the LOS SNR
exceeds 40dB over optimal hyperbolas up to around 60dB near the plate at vertical distances
around 20λ from the AUT. Otherwise, the SNR may go down to 26dB over worst hyperbolas.
The image SNR is generally lower than the LOS SNR and gets extremely low in regions around
the AUT (<10dB) but improves relatively as the AUT-probe separation grows reaching values
near the LOS case over certain optimal positions. Rising the AUT-plate separation to d = 10λ
improves both the general SNR pattern and the corresponding levels for both the LOS and image
cases. Figs. 3.10e and 3.10f show the SNRs for a smaller RCS σ = 0.5λ2 with an AUT-plate
separation d = 10λ. The LOS SNR is considerably high showing worst values around 40dB and
attaining maximum values around 70dB at optimal positions near the plate. The image SNR is
quite high for positions outside the region surrounding the AUT, showing values between 40dB
and 60dB at optimal positions.

Results of the impact of the AUT-diffracted field on the calculated ARP samples, which are
also impacted by conditioning, are shown in Fig. 3.11 for a TM model with an UFBW = 4%
using the same configurations of Fig. 3.10 1. Figs. 3.11a and 3.11b show the ARP results
for an isotropic RCS σ = 1λ2

0 and an AUT-plate separation d = 5λ0. The impact is generally
important over the test zone. The optimal region with respect to the AUT diffraction, which
is the vicinity of the plate, coincides with the worst region with respect to conditioning given
the used parameters for the TM model, as pushing the first order optimal hyperbola towards
the plate requires enlarging either the the UFBW or the AUT-plate separation. Consequently,

1Note that contour lines are deactivated in Fig. 3.11 for better plot; as will be the case whenever necessary
throughout this text.
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Figure 3.10 Power ratios of useful fields to the AUT-diffracted field as function of the probe
position for different AUT-plate separations and AUT RCSs: (a) SNR0, d = 5λ, σ = 1λ2 (b)
SNR1, d = 5λ, σ = 1λ2 (c) SNR0, d = 10λ, σ = 1λ2 (d) SNR1, d = 10λ, σ = 1λ2 (e) SNR0,
d = 10λ, σ = 0.5λ2 (f) SNR1, d = 10λ, σ = 0.5λ2.
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Figure 3.11 ARP error as function of the probe position for different AUT-plate separations and
AUT RCSs, TM case, ∆ fu = 4%: (a) ε(F)los, d = 5λ0, σ = 1λ2

0 (b) ε(F)im, d = 5λ0, σ = 1λ2
0 (c)

ε(F)los, d = 10λ0, σ = 1λ2
0 (d) ε(F)im, d = 10λ0, σ = 1λ2

0 (e) ε(F)los, d = 10λ0, σ = 0.5λ2
0 (f)

ε(F)im, d = 10λ0, σ = 0.5λ2
0.
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error is largely amplified over worst AUT-diffraction hyperbolas in this region, exceeding −5dB
in the immediate vicinity of the plate in the image case. The remaining worst AUT-diffraction
hyperbolas in the image case all exceed−25dB of error, which however is gradually attenuated as
the probe is moved away from the plate. On the other hand, optimal AUT-diffraction hyperbolas
present very low error levels in both the LOS and image cases, being below −40dB up to −60dB
at certain probe positions. These results reveal the obligation to position the probe over optimal
AUT-diffraction hyperbolas when the RCS is relatively high or when the AUT-plate separation
is small. The error patterns generally improve when augmenting the AUT-plate separation.
Figs. 3.11c and 3.11d show the results for d = 10λ0 using the same RCS. Error at the optimal
conditioning region is bounded at −35dB in the LOS case and at −32dB in the image case over
worst AUT-diffraction hyperbolas. The same may be achieved for lower AUT RCS levels, as
shown in Figs. 3.11e and 3.11f where an RCS σ = 0.5λ2

0 is used with an AUT-plate separation
d = 10λ0. In this case, the image error is bounded at values around −36dB in the optimal
conditioning region.

The AUT ARP and its orientation with respect to both the plate and the probe also plays
an important role in determining the intensity of the AUT-diffracted field with respect to the
useful fields, as stated by Eqs. 3.34 and Eq. 3.35. In order to verify this, the horizontal HWD
(TE-directive case) is rotated and ARP errors are recorded for a fixed probe position. The optimal
position with respect to conditioning is chosen by placing the probe in the vicinity of the plate at
a vertical distance equal to the AUT-plate separation d = 10λ, hence (xopt , yopt) = (9.5λ, 10λ)
(refer to Table 2.1). Over this position, the system matrix has a very low condition number
κ(GT E) = 1.05. Results are shown in Fig. 3.12a for the basic TE model (using a single frequency
n f = 1) where the ARP error levels are plotted against the AUT orientation φo. The reference
AUT orientation with respect to the azimuthal plane is shown in Fig. 3.1, the main lob being
oriented towards the y-axis and the nulls towards the x-axis. The LOS error is generally very
small except in the region where φo = [45◦, 50◦] where it explodes. In this region the ARP null
is oriented towards the measurement angles (φ0 ≈ φ1), which implies that the useful fields are
comparable or even weaker than the AUT diffraction. The ideal situation corresponds to the
reference ARP orientation where the null is oriented towards the plate. In this case both the
LOS and image errors may be neglected. The image error is generally important. It undergoes
rapid amplification when the null is being directed towards φ1, which corresponds to the region
where φo = [0◦, 40◦]. In this region the image error exceeds −25dB after a 30◦ rotation. On the
other hand, when the lobe is being directed towardsφ1, or when the null is closer to the plate
direction i.e., φo = [50◦, 180◦] the image error is reduced. However, the current parameters
allow achieving image errors below −40dB only for 17% of possible AUT orientations. This
would clearly be an important limitation once an azimuthal scan is performed, recalling that
rotating the AUT is the privileged choice rather than moving the probe as it allows controlling
the two measurement angles (see Sec. 2.4). It is however interesting to note the advantage
carried by introducing frequency diversity in minimizing the ARP error. This is shown in Fig.
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Figure 3.12 ARP error as function of the AUT orientation for a fixed optimal probe position
(xopt , yopt) = (9.5λ, 10λ) and impact of the AUT-diffracted field. TE case, d = 10λ, κ(GT E) =
1.05 , σ = 1λ2 (a) basic TE model, n f = 1 (b) introducing frequency diversity, n f = 2,
UFBW=4%

3.12b, where two frequencies are used with an UFBW= 4%, allowing to achieve image errors
below −40dB for 60% of possible AUT orientations. We shall point out that in this study the
ARP was assumed unchanged as function of frequency, which is not true in the dipole case. The
interest being here to highlight the advantage carried by frequency diversity in improving the
ARP results, its impact on the free-space ARP is neglected for the moment and will be studied
in a later section. Frequency diversity was initially introduced to the TE model in order to
improve the general conditioning pattern by over-determining the system. From a conditioning
point of view, this is not necessary in this scenario as the probe is already positioned on the
optimal conditioning position. Consequently, the condition number is barely affected. However,
the over-determination of the problem allows improving ARP results as the pseudo-inverse
algorithm applies some sort of error averaging in order to solve the system. This approach
is referred to as regression and will be presented later as it is used in order to enhance the
robustnesses and the accuracy of the proposed method.

These results highlight the important impact the AUT diffraction could have if the tested
antenna has larger RCS than 1λ2. In this case larger AUT-plate or AUT-probe separations are
required in order to reduce the AUT diffraction impact. If this approach is unfeasible due
to measurement site limitations, an alternative possible approach could be using microwave
absorbers, such as absorbing foams, at the point of the normal reflection over the plate in order
to reduce the intensity of the normally reflected wave. These types of absorbers have optimal
performance at normal incidence. Another possible solution could be truncating the plate at
a certain distance above the AUT vertical level such that the horizontal ra y is not reflected
back towards the AUT. However, in this case care must be given to fields diffracted by the plate
discontinuity. This topic is treated in the next section.
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3.3.4 Diffraction by the Plate Edges and Corners

The metallic plate introduced in the proposed set-up is assumed very large compared to the
AUT-probe separation in order to approach an ideal image model. In practice, this may require
unpractical physical dimensions. In this case, the geometrical and electrical discontinuities
resulting from truncating the plate introduce diffracted fields that interfere with the useful fields,
perturbing as a result the measurement. The intensity of the diffracted fields mainly depends on
positions of the AUT and the probe with respect to the plate discontinuities. Assuming that the
plate has a rectangular shape, diffracted fields are caused by the plate four edges and corners.
Several techniques to model diffracted fields have been developed, giving different degrees of
accuracy in terms of measurement regions[62]. A brief theoretical background is presented in
order to account for the main high-frequency techniques that aim to describe the propagation
of electromagnetic waves in the presence of discontinuities. Then, a general insight into the
impact of diffracted fields in the context of the proposed concept is provided.

3.3.4.1 Theoretical background

The main high-frequency methods to describe the propagation of electromagnetic waves in the
presence of geometrical and electrical discontinuities are listed below:

• Geometrical Theory of Diffraction (GTD): Developed by J. B. Keller in the 1950s, the
GTD is an asymptotic high-frequency method considered as an extension to Geometrical
Optics (GO) [63]. GO is based on Fermat’s principle which states that light traveling
between two points takes the path that requires the least time, i.e., the shortest path
[64]. If the medium is homogeneous then the path is a straight line, which brings the
definition of rays. According to GO, electromagnetic radiation incident on some medium
with different electric properties may either be reflected or refracted. If the medium is PEC,
incident rays on the medium undergo total internal reflection. Accordingly, GO predicts
no electromagnetic radiation in the shadow region and fails to describe diffracted fields
if the medium contains any sort of discontinuities. The GTD introduces diffracted ray
fields in addition to the usual GO ray fields whenever an electromagnetic wave hits an
edge, corner, vertex or any discontinuity. The diffracted fields propagate in all directions,
including the shadow region, and depend on diffraction coefficients in the same fashion
as for GO ray fields which depend on reflection and refraction coefficients. However, in
its original development, the GTD was valid only at regions far from ray-shadow and
reflection boundaries where it exhibited singular behavior predicting infinite diffracted
fields [65].

• Uniform Geometrical Theory of Diffraction (UTD): Soon after the development of GTD,
R. G. Kouyoumjian and P. H. Pathak worked on improving its performance and extended
the solution to all regions in space [66]. They introduced transition functions in order to
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keep the diffraction coefficients bounded and continuous across shadow boundaries. The
UTD was then systematically updated to handle, in addition to edge diffraction, a wider
class of problems such as the scattering by smooth convex surfaces, corner diffraction,
and double diffractions [65].

Ray tracing techniques (GO, GTD and UTD) describe high frequency electromagnetic
radiation without requiring surface current integrations over excited objects and have the
advantage of providing an intuitive picture of the propagation mechanism of electromag-
netic waves.

• Physical Theory of Diffraction (PTD) : This method was developed by P. Y. Ufimtsev who,
unlike Keller, worked on extending the Physical Optics (PO) theory in order to include
diffraction phenomenae [67]. The PO approximation uses ray optics in order to determine
the illuminated and shadow regions of a PEC body of an arbitrary shape. The field
equivalence theory is then used in order to estimate the surface currents which define the
scattered field via surface current integration [22, pp. 125–128]. Accordingly, PO like GO
predicts no electromagnetic radiation into the shadow region and thus it fails to describe

diffracted fields. To overcome this, Ufimtsev introduced correction currents in order to
approximate the actual scattering currents. PO is an intermediate method between GO
which does not take into account the wave aspect of electromagnetic radiation, and full
wave electromagnetism, considered as the precise theory. One commonly used full wave
computational method is briefly presented hereafter.

• Method of Moments (MoM): The MoM is a frequency domain method which provides a
full wave solution to Maxwell’s equations in integral form. Generally, the MoM is used to
solve problems of the form [68],

L ( f ) = g, (3.38)

where g is a known excitation, f an unknown response, and L a linear operator relating
the two quantities. R. F. Harrington introduced the MoM into electromagnetics in order to
solve Maxwell’s equations. He used it to solve for the source electric current in the electric
field integral equation (EFIE). The EFIE expresses the electric field at some point of space
as function of the electric current distribution over the radiating object, which may be
a scattering element. Accordingly, the unknown source current is expressed as function
of a known excitation field defining the boundary conditions of the problem. The source
current J(r′) is expressed using a series of well-known basis functions fn referred to as
expansion functions,

J(r⃗ ′) =
N
∑

n

αn fn, (3.39)
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where αn are constants to be determined. It follows that the surface of the radiating object
is discretized into N pieces or cel ls. The accuracy of the method depends on the choice of
the expansion function and the number of discretization cells, the latter being function of
the excitation frequency. In numerical simulation this is referred to as meshing, which
defines, in addition to the simulation precision, the required computational resources.
Weighting functions are then introduced in order to balance the mathematical problem by
generating a system of N equations resulting in a matrix equation where the unknown cur-
rent is determined by inverting the problem. Once the current distribution is determined,
the generated electric field at any point in space may be calculated using the EFIE. The
system matrix, commonly referred to as the impedance matrix has to be well-conditioned
in order to ensure reliable results. The MoM may be used in order to predict all the
scattering properties of structures of arbitrary shapes including higher order terms such
as edge and corner diffractions. However, it is more adapted to problems involving small
radiating/scattering surfaces, otherwise large computational resources are required in
order to obtain satisfying results.

3.3.4.2 Estimation of the Impact of the Plate Diffracted Fields Using GTD

A simple insight into the impact of higher order scattered fields by the plate is synthetically
presented here. The impact of diffracted fields is mainly caused by the plate edges rather
than corners whose contributions are very weak compared to the edges [25]. The impact
of the (y+)-edge diffracted field is assessed using the GTD method due to the easiness of its
implementation. This method allows us to estimate the level of the diffracted field as function
of the probe position with respect to the edge.

According to the GTD, edge diffracted rays corresponding to the same incident ray form
a cone known as Keller’s cone [63]. The ray angle of incidence on the edge is equal to the
diffraction angle of each ray defining the cone. If the incident ray is normal to the edge, all
diffracted rays lie in the plane of incidence forming a cylindrical wave centered at the edge. By
recalling that the plate in the proposed set-up is parallel to the y-z plane and orthogonal to the
working azimuthal plane, these two cases correspond respectively to rays diffracted by edges
parallel to the azimuthal plane (+z and -z edges), and rays diffracted by edges normal to the
azimuthal plane (+y and -y edges). The two situations are depicted in Fig. 3.13. The diffracted
fields are expressed as function of edge diffraction coefficients. In the normal incidence case,
the diffracted cylindrical wave is expressed as follows,

Ed = Eed ge
e−jkrd

p
rd

D (3.40)
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(a) (b)

Figure 3.13 Edge diffracted rays (dashed) assuming a rectangular plate: (a) Oblique incidence
case: diffraction by edges parallel to the azimuthal plane (z+ and z-) (b) Normal incidence
case: diffraction by the edges normal to the azimuthal plane (y+ and y-).

where Eed ge is the field incident on the edge diffraction point, rd the distance separating the
measurement point from the edge diffraction point, and D is the diffraction coefficient. D
depends on the edge incidence angleφ′e, the diffraction angleφd (refer to Fig. 3.13b), and on
the working frequency,

D = −
ei π

4

2 (2πk)
1
2

�

sec
1

2

�

φe −φd

�

± csc
1

2

�

φe +φd

�

�

, (3.41)

where φe = φ′e −π/2. The upper sign holds for the TM polarization, commonly referred to
as soft polarization, while the lower sign holds for the TE polarization, referred to as the hard
polarization. Fig. 3.14 compares the (y+)-edge diffraction coefficient corresponding to each
case as function of the diffraction angle φd . For a better visualization, the diffraction coefficients
are up-bounded to unity in order to avoid their explosion in the singularity region where the
GTD fails. The singularity region is the boundary between the region where no reflected rays
exist (to the right of the singularity region) and the region where reflected rays exist (to the
left of the singularity region) which is thus the region of interest with respect to the proposed
concept. Consequently, the limitation of the GTD in the singularity region has no serious impact
on the study carried herein as the probe is by definition moved away from the singularity region
towards the reflection region in order to ensure the image contribution via the reflected ray. Fig.
3.14 highlights the impact rising frequency has on reducing the magnitude of the diffraction
coefficient. Fig. 3.14 also highlights an interesting fact which is that optimal positions with
respect to edge diffraction are positions near the plate (φd → −90◦) which, as discussed in
previous sections, is the region of existence of optimal positions with respect to conditioning
(TE case) and AUT-diffraction. This is also true for the remaining three edges. The TM case (soft
polarization) is less impacted by edge diffraction with respect to the TE case (hard polarization).

The impact of the y+ edge diffraction is assessed by expressing the ratio of the useful fields
powers to the power of the diffracted field, i.e., the SNRs with respect to edge diffraction.
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Figure 3.14 Diffraction coefficients corresponding to the y+ edge. The plate being truncated at
hy+ = 10λ, d = 10λ: (a) TM-soft polarization (b) TE-hard polarization.

Assuming that the AUT-edge separation is sufficiently large such that the field incident on the
edge is expressed using the far-field model, Eq. 3.40 may be rewritten as follows,

Ed =
e−jkre

re
F(φ′e)

e−jkrd

p
rd

D,

=
e−jk(rd+re)

re
p

rd
F(φ′e)D, (3.42)

where re is the distances separating the edge diffraction point from the AUT. Accordingly, the
SNRs corresponding to the LOS and image cases are expressed as follows,
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with ξi =
F(φ′e)

F(φi)
, i = 0,1. (3.43)

Eq. 3.43 suggests that image SNRs are lower than LOS SNRs; both being inversely proportional
to distances separating the AUT and the image from the probe. Eq. 3.43 also suggests that
the SNRs are improved for positions away from the diffraction point (rd �) but near the
corresponding source (ri

� ). Taking into account the diffraction coefficient impact, it follows
that optimal positions with respect to the (y+)-edge diffraction are positions in the vicinity
of the AUT in the LOS case, and positions in the vicinity of the plate in the image case. This
is verified in Fig. 3.15 where the SNRs corresponding to different situations are plotted for
an AUT-plate separation d = 10λ. Figs 3.15a to 3.15d show the SNRs using a HWD with an
operating frequency f0 = 1GHz in both TM and TE modes with the plate being truncated at
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Figure 3.15 Power ratios of useful fields to the (y+)-edge diffracted field as function of the
probe position for two operating frequencies, f1 = 1GHz and f2 = 10GHz. di = 10λi , h= 10λ1:
(a) SNR0, TM case, f0 = 1GHz (b) SNR0, TE case, f0 = 1GHz (c) SNR1, TM case, f0 = 1GHz
(d) SNR1, TE case, f0 = 1GHz, (e) SNR1, TE case, f ′0 = 10GHz (f) SNR1, TE case, f ′0 = 10GHz.
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hy+ = 10λ0, which corresponds to a physical length of 3m. For the TM polarization, it is possible
to achieve good SNR levels (>40dB) for both the LOS and and image cases only at positions
between the AUT horizontal level and the plate, and vertically up to few wavelengths below the
edge level. Recall that the TM case corresponds to an isotropic ARP, so the SNRs patterns are
mainly dependent on the diffraction coefficient patterns. This is not in the TE-directive case
where SNRs patterns are altered the ARP. The SNRs in this case are very low for valid positions,
i.e., for positions sufficiently far from the AUT in order to respect the far-field model. The LOS
SNR is merely high in the vicinity of the AUT in the main lob direction, and very low towards
the nulls. The edge level being at a vertical distance equal to hy+ = 10λ1, only positions below
y = 5λ1 show tolerable SNRs (>35dB). In the image case, the SNR is generally very low for
the chosen parameters oscillating around 30dB at its best between the singularity region and
regions pointed by the image ARP null. It follows that the y+ truncation should be pushed
away to distances greater than hy+ = 10λ in order to achieve satisfying SNR levels. Moreover,
it is important to recall that the studied impact corresponds only to the y+ edge. By taking
into account the impacts of the remaining edges and corners the SNRs are further reduced,
which may, as function of the plate dimensions, make the impact of the plate diffracted fields
intolerable. Notice that Figs. 3.15a and 3.15c depict the singularity region where the GTD fails,
which show lower SNR levels than 0dB (white region).

The edge diffraction problem is reduced at higher frequencies. This is due in part to the
impact of frequency on the diffraction coefficient, as shown in Fig. 3.14, but also due to the fact
that the same plate physical dimensions correspond to larger electrical dimensions at higher
frequencies. For instance, if the same plate is used at a frequency f ′0 = 10GHz, this would
imply that the edge is at a distance hy+ = 100λ′0. Consequently, the optimal region with respect
to edge diffraction is enlarged over the test zone, and the impact of the AUT directivity is
minimized. This is shown in Figs. 3.15e and 3.15f for the TE case, the plate being at d = 10λ′0.
In this case the image SNR is no less than 70dB over the majority of the test zone. If enlarging

the plate dimensions is not possible, alternative solutions to reduce the diffracted fields may be
applied, such as curved edge or serrated edge reflectors. The later are widely used in CATRs
(see Sec. 1.3.2). They are intended to direct diffracted signals away from the quite zone, where
only the useful specular signal from the reflector should exist. This is somewhat quite similar to
the requirements of the concept proposed herein as the goal is to create a test zone where only
the useful LOS and image signals shall exist.

The impact of the (y+)-edge diffracted field at the ARP level using the same configurations
is shown in Fig. 3.16. Figs 3.16a and 3.16b depict the ARP error in the TM case with a working
frequency f0 = 1GHz and an UFBW=4%, showing a very weak impact on LOS samples with
error being below −40dB almost all-over positions in the reflection region. This is not the case
for image samples, where positions with tolerated error are mainly below the edge level. The
impact is more important in the TE case where even LOS samples are subject to error that may
exceed −25dB outside the optimal conditioning region, whereas image samples show large
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Figure 3.16 ARP error due the (y+)-edge diffracted field for two operating frequencies: f0 =
1GHz and f ′0 = 10GHz. di = 10λ, h = 10λ0 : (a) ε(F)los, TM case, f0 = 1GHz (b) ε(F)im,
TM case, f = 0GHz, UFBW=4% (c) ε(F)los, basic TE case, f0 = 1GHz, UFBW=4% (d) ε(F)im,
basic TE case, f0 = 1GHz, (e) ε(F)los, basic TE case, f ′0 = 10GHz (f) ε(F)im, basic TE case,
f ′0 = 10GHz.
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Figure 3.17 ARP error as function of the AUT orientation for a fixed probe position (x , y) =
(8λ, 10λ) and impact of the (y+)-edge-diffracted field. TE case, f0 = 1GHz, d = 10λ0, hy+ =
15λ0, κ(GT E) = 1.4: (a) Basic TE model, N f = 1 (b) Introducing frequency diversity, N f = 2,
UFBW= 4%.

error levels exceeding −20dB almost all-over the test zone. It is important to recall that TE
results are impacted by the directivity of the corresponding ARP, since all positions below the
edge correspond to a weaker ARP level with respect to the edge ARP level given the default
ARP orientation. The advantage of the TE case is that optimal regions with respect to both
conditioning and plate diffraction are both near the plate. This however requires that the
(y+)-edge be situated at a distance greater than d from the AUT horizontal level, otherwise
it results in truncating the optimal conditioning region which limits positions with tolerated
error, as is the case in this scenario (hy+ = d). Rising the working frequency while maintaining
the plate physical dimensions largely improves the ARP results. Figs 3.16e and 3.16f show the
TE results for a working frequency f ′0 = 10GHz. In this case the edge diffraction problem is
practically eliminated, with ARP error being generally below −60dB for both LOS and image
cases. Nevertheless, it is worth mentioning that although at high frequencies the edge diffraction
problem is minimized, in this case the plate surface quality becomes a concern as any non-ideality
over the plate surface may produce spurious fields [69].

To conclude, the vulnerability of the TE case to the edge diffraction problem may be reduced
by introducing frequency diversity which both improves conditioning and minimizes ARP error by
over-determining the model. Fig. 3.17 compares the ARP error between the basic TE model and
when introducing frequency diversity using a well-conditioned probe position (x , y) = (8λ, 10λ)
having κ(GT E) = 1.4 and a reference working frequency f0 = 1GHz. The ARP error is recorded
as function of the AUT orientation in order to highlight the impact of the directivity to the
ARP results. The plate is truncated at hy+ = 15λ0 and the probe is vertically shifted below the
optimal position (yopt = d = 10λ0) in order to reduced the intensity of the edge diffracted field
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with respect to the useful fields. The efficiency of frequency diversity in reducing the ARP error
is very clear as the LOS error is reduced by a factor of about −20dB and the image error by
a factor of −30dB compared to the basic model. The used parameters along with frequency
diversity allowed achieving ARP error below −40dB over 96% of spanned angles, highlighting
the utility of introducing frequency diversity to the TE model, as well as the manageability of
the edge diffraction problem in a general context.

3.3.5 Impact of the plate losses

Up to this point, the plate was assumed PEC, allowing to model the proposed concept using image
theory. Although metals with good conductivity may be approximated as perfect conductors, it
is convenient to study the impact of infinitesimal losses due to the plate finite conductivity.

The reflected signal from the plate, Er , may be expressed in terms of a scalar reflection
coefficient Γ which takes into account the magnitude reduction due losses resulting from the
finite conductivity of the plate:

Er = ΓEi, Γ < 1, (3.44)

where Ei is the incident field on the plate. Notice that this is not a reflection coefficient in the
strict sense, as reflection coefficients depend on the angle of incidence, and take into account
the polarization of the incident field [21, pp. 151–230]. Recall that the polarization of the
reflected field is already taken into account in the system matrices assuming PEC conditions.
The PEC approximation is maintained and the impact of small perturbations at the reflected
field magnitude level is assessed. It is also worth mentioning that as function of the frequency of
the incident field, the plate introduces losses due to the skin effect. These losses are however too
small at microwave frequencies for good conductors. Accordingly, the image signal is weighted
by a scalar reflection coefficient modeling the magnitude reduction due to the reflection. This is
done by multiplying the image columns of the system matrices by the reflection coefficient,

G=

�

G11 ΓG12

G21 ΓG22

�

. (3.45)

Let us now study the impact an error in estimating the real value of the reflection coefficient
would have on ARP results. Assuming ideal conditions, the correct ARP vector would be
expressed as follows,

F= G−1E,

where G−1 =
1

|G|

�

ΓG22 −ΓG12

−G21 G11

�

, (3.46)

and |G|= Γ
�

G11G22 − G12G21

�

. (3.47)
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Suppose the ARP vector is calculated using a system matrix characterized by a different reflection
coefficient Γ ′. It follows,

F′ = G′−1E

where G′−1 =
1

|G′|

�

Γ ′G22 −Γ ′G12

−G21 G11

�

(3.48)

and |G′|= Γ ′
�

G11G22 − G12G21

�

. (3.49)

The ARP error terms corresponding to the LOS and to the image may be found by comparing
the calculated ARP components to the correct ARP components. In the LOS case this yields,

F′(1)
F(1)

=
|G|
|G′|
Γ ′
�

G22 G12

�

E

Γ
�

G22 G12

�

E

F′(1)
F(1)

=
Γ
�

G11G22 − G12G21

�

Γ ′
�

G11G22 − G12G21

�

Γ ′

Γ

F′(1)
F(1)

= 1=⇒ ε(|F|)los = 0%. (3.50)

Accordingly, the LOS samples are not affected by reflection coefficient errors. The image error
may be found in the same fashion,

F′(2)
F(2)

=
|G|
|G′|

�

G21 G11

�

E
�

G21 G11

�

E

F′(2)
F(2)

=
Γ
�

G11G22 − G12G21

�

Γ ′
�

G11G22 − G12G21

� =
Γ

Γ ′

ε(|F|)im = 100

�

�

�

�

Γ

Γ ′
− 1

�

�

�

�

[%]. (3.51)

Eq. 3.51 states that an error in the estimation of the reflection coefficient is translated with the
same amount to an error over image samples. These results are verified in Fig. 3.18, where a
reflection coefficient error δΓ = 1% is inserted by performing the inversion with Γ ′ = 1 instead
of Γ = 0.99 using a TM model with an UFBW= 4%. The LOS samples are not affected as they
show a practically null error level. On the other hand, a constant 1% error independent of
conditioning is noticed at the image samples level. These results are useful in highlighting the
impact of the plate infinitesimal losses on the ARP results while assuming PEC conditions.
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Figure 3.18 ARP error as function of the probe position given an error in the estimation of the
plate’s reflection coefficient. TM case, UFBW=4%, d = 10λ0, Γ = 0.99, Γ ′ = 1 (a) ε(|F|)los, (b)
ε(|F|)im.

3.3.6 Combining Error Sources

At this stage, impacts of the main error sources were separately studied, the question of combining
them arises naturally. It is worth emphasizing that the goal of such studies is to provide a general
insight into the impact of error sources on the proposed model; the actual impact would be
function of several parameters such as the quality of the measurement range and used equipment
in addition to the operation frequency and the tested antenna. Let us take for instance a scenario
where measurement conditions are characterized by an SNR=40dB with an AUT having a
hypothetical isotropic RCS σ = 0.5λ2

0 and the plate being truncated at hh+ = 15λ0. Suppose
also that the measurement is characterized by an error of 0.5% in the estimation of the reflection
coefficient and a position uncertainty factor σpos = 3mm. Results are shown in Fig. 3.19
applying an operating frequency f0 = 1GHz for both transverse models, the TE model being
used in the updated form (N f = 2). The LOS error is generally tolerable over the majority of the
test zone, oscillating around −40dB on optimal conditioning regions for both the TM and TE
cases. The importance of conditioning models is highlighted over image results, which show that
only optimal regions with respect to conditioning show levels of tolerable error. This is especially
true for the TE case where optimal regions with respect to conditioning, AUT diffraction, and
edge diffraction all lie in the vicinity of the plate, showing error levels around −40dB in this
region. The TM case offers a larger low-error zone, mainly due to the lower impact of edge
diffraction, but error levels are generally unstable, oscillating between tolerable levels and high
levels in this region. This is mainly due to the fact that the optimal conditioning region does not
coincide with optimal regions with respect to AUT and edge diffractions.
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Figure 3.19 ARP error as function of the probe position combining the different error sources.
f0 = 1GHz, d = 10λ0, h= 15λ0, σ = 0.5λ2

0, SNR = 40dB, σpos = 3mm: (a) ε(|F|)los, TM case,
UFBW= 4% (b) ε(|F|)im, TM case, UFBW= 4% (c) ε(|F|)los, TE case, N f = 2, UFBW= 4% (d)
ε(|F|)im, TE case, N f = 2, UFBW= 4%.
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Rising the working frequency is advantageous in terms of edge diffraction, but disadvanta-
geous in terms of the plate surface quality and position uncertainty. For instance, a plate having
10λ0×10λ0 dimensions, which would correspond to 3m×3m for f0 = 1GHz, may be considered
infinite for a frequency equal to 10GHz. So we may conclude that in terms of measurement
site requirements, the concept is more adapted to high frequencies, as physically small test
zones guarantee the viability of the far-field model and small plate dimensions eliminate the
edge diffraction problem. However, in this case attention should be payed to position errors as
position uncertainty factors augment with respect to the working wavelength. This is highlighted
in Fig. 3.20 where an operating frequency f0 = 10GHz is used in a TM model maintaining
essentially the same parameters used in the previous scenario expect for the plate truncation
which is situated at a distance hy+ = 30λ0 (90cm). Results are plotted for different position
uncertainty factors. Figs. 3.20a and 3.20b show the ARP error for σpos = 3mm= λ0/10 which
is relatively high resulting in an averagely high error level on image samples, which oscillates
around −30dB in the optimal conditioning region. A more realistic scenario is realized by a
applying a different position uncertainty factor at the AUT level in order to model the uncertainty
which would arise over the phase center. Suppose that the plate and the probe are positioned
with an uncertaintyσpos = 3mm= λ0/10, but the uncertainty over the AUT phase center rises
the AUT position uncertainty to σAU T = 6mm= 1/5λ0. Results are plotted in Figs. 3.20c and
3.20d showing a slightly higher error than the previous case oscillating between −40dB and
35dB over LOS samples and between 30dB and −25dB over image samples in the optimal
conditioning region, while exceeding −25dB outside this region for image samples. These
results highlight the important impact position errors could have at high frequencies.

Globally, we may conclude that the different model limitations are manageable and sev-
eral solutions to limit their impacts are possible. The importance of conditioning models are
highlighted showing, as function of measurement conditions, cases where only optimal probe
positions could be used. In the upcoming section, the robustness of the proposed method is
enhanced by introducing linear regression which is used in order to reduce the ARP error. The
same technique is applied in order to estimate the remaining outlined model limitation, the
ARP dependence on the working frequency.

3.4 Enhancing the Method Robustness

As discussed in the previous sections, the impact of the different error sources may dramatically
reduce the accuracy of the ARP results. This is especially true for probe positions corresponding
to weak power emission which are vulnerable to all types of error sources and may be regarded
as singular positions. Moreover, image samples are more vulnerable to error than LOS samples.

One method to reduce the ARP error is by introducing linear regression. Unlike the direct
inversion method which is processed locally, i.e., in which ARP samples are retrieved via
independent calculations relative to each measurement, i.e., relative to each probe position or
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Figure 3.20 ARP error as function of the probe position combining the different error sources.
TM case, f0 = 10GHz, d = 10λ0, h= 30λ0, σ = 0.5λ2

0, SNR = 40dB: (a) ε(|F|)los, σpos = 3mm
(b) ε(|F|)im, σpos = 3mm (c) ε(|F|)los, σpos = 3mm, σAU T = 6mm (d) ε(|F|)im, σpos = 3mm,
σAU T = 6mm.
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AUT orientation, linear regression retrieves ARP samples by combining information acquired
at a number of measurements by means of a set of basis functions referred to as regression
functions, and hence the inversion is processed globally.

3.4.1 Introduction to Linear Regression

Linear regression is a modeling method generally used in order to fit a model to a set of observed
data [70]. The most widely used regression technique is the linear Least-Squares (LS) regression
[71]. This technique may be very efficient in reducing the ARP error provided that a sufficient
number of ARP samples is acquired. In order to do so, the dependent variable, the field vector,
corresponding to a set of Nm measurements is expressed in terms of a set of Nr well-known
regression functions instead of the ARP vector (Eq. 2.19),

E= GRβ , (3.52)

where G is an N f Nm×NaNm block diagonal matrix formed by the system matrices corresponding
to each measurement, R an NaNm×Nr regression matrix retrieved by interpolating the regression
functions at the global set of measurement angles, and β is an unknown Nr×1 vector containing
the regression coefficients which weights the independent input data (GR) in order to produce
the desired output (E) 2. For the regression to be efficient, the number of ARP samples NaNm

would be larger than the number of regression functions Nr , such that input data contains
enough information to estimate the unknown regression coefficients that best fits the model
into the set of observed data. This would yield an over-determined system where the fitted ARP
samples are retrieved by solving for β ,

β̂ = Argmin∥GRβ − E∥2. (3.53)

Hence, the performance of the regression depends on the input data on the one hand, and on
regression parameters on the other hand.

Input data may be modeled by ARP samples retrieved via direct inversion. For the regression
to be efficient, calculated ARP samples should be well dispersed around the reference ARP, which
is most likely to occur when the number of ARP samples is large. In the single-plate case, this
requires performing several measurements, either by rotating the AUT or by moving the probe,
the global number of ARP samples being the double of the number measurements.

Regression parameters may be summarized in the type and number of regression functions.
These parameters define how regression functions are distributed over a given angular range.
Two extreme cases may be distinguished. The first being the disjoint regression functions

2Note that the term β has previously been used in order to refer to phase quantities, as will be the case over the
rest of the text. Exclusively in this section, the common notation of the weights vector β is maintained in order to
refer to the regression coefficients.
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case where each regression function covers a different angle and may be modeled by a set of
Kronecker δ functions covering adjacent discrete angles [72, pp. 5–6],

Ri(φ j) = δi j, (3.54)

where,

δi j =







0 if i ̸= j,

1 if i = j.
(3.55)

This type of basis functions may be referred to as local functions as each function exists within a
limited angular range, which in this case is defined by the corresponding pointed angle. Hence,
ideally an infinite number of δ functions would be necessary to cover any continuous angular
range. An approximative graphical representation of this case is depicted in Fig. 3.21a, showing
each basis function pointing to a different measurement angle with no interference between
adjacent basis functions. This extreme case models the direct inversion method, as each basis
function contains information about a single data sample which would yield an inversion where
ARP samples are retrieved via independent calculations. The second extreme case is theglobal
regression functions case where all regression functions are dispersed over a 2π-range, and
hence each basis function would cover the entire measurement angular range. An example of
this type of basis functions are Fourier regression functions which are -by default- defined over
a 2π-range,

Rn(φ) = e jnφ, n ∈ [0, Nr − 1] (3.56)

where n is the mode number defining the phase distribution of each function; the total number
of modes being defined by the chosen number of regression functions Nr . An example of a set
of Fourier regression functions is shown in Fig. 3.21b forNr = 5. In this case, the performance
of the regression may be limited as fitting the model to a set of observed data may become
difficult with each basis function containing different information about the global data set. An
adequate regression functions set would offer a compromise between the two extreme cases; it
would be a set of local basis functions reasonably interfering with each other such that each
subset would contain information about a different subset of data samples. One type of local
regression functions that offer control over their patterns are Gaussian Radial Basis Functions
(RBFs) [73],

Rn(φ) = e−
(φ−φn)2

2s2 . (3.57)

where φn is the central angle pointed by each basis function and s is the spread which defines
the range of covered angles around φn. This type of regression functions may be confined in
a limited angular range that would correspond to the exact range spanned by ARP samples
(half the azimuthal plane for example), and offer the advantage of controlling their number and
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Figure 3.21 Example of regression functions (a) Approximation to Kronecker δ functions
spanning 360◦-range (b) Fourier, real part, Nr = 5 (c) Gaussian RBFs confined in a 180◦-range,
Nr = 5, s = 36◦.
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spread in order to best fit the model to the set of ARP samples. An example of five Gaussian
RBFs with a spread s = 36◦ confined in half the azimuthal plane is shown in Fig. 3.21c.

3.4.2 Application to ARP Results

Examples highlighting the usefulness of linear regression in reducing the ARP error and related
issues are presented in synthetic scenarios where the reference field is perturbed using an AWGN
based on a low SNR=20dB calculated with respect to the maximum field power over a set
of 10 probe positions linearly spaced between x ∈ [−9λ0, 9λ0] at a constant vertical distance
y = 5λ0, the plate being at a distance d = 10λ0 from the AUT. The perturbed field is averaged
over Nt = 1000 trials.

Ideally, one of the regression functions would approximately match the reference ARP for a
given regression coefficient in order to fit all ARP samples with high accuracy. This would be
possible if some a priori information about the tested ARP is available. The same can be seen
in Fig. 3.22a where a single Fourier basis function corresponding to the lower mode (a circle)
is very efficient in reducing the ARP error corresponding to the HWD TM-isotropic case from
±5dB to less than ±0.1dB. Notice that image samples (φ < 30◦) retrieved via direct inversion
show larger error levels than LOS sample. The efficiency of Fourier regression in this case is
however reduced if additional basis functions are included, highlighting the limitation of global
regression functions pointed out in Sec 3.4. This is shown in Fig. 3.22b where three basis
functions are used, reducing the ARP error to around ±1dB.

The TE-directive case with the HWD being oriented parallel to x̂ is characterized by even
larger absolute error levels over image samples retrieved via direct inversion (|ε(|F|)im|> 7dB)
as they correspond to directions of weak power emission (Figs. 3.22c-3.22f). Using Fourier
regression with Nr = 5 reduces ARP error up to ±3dB, as shown in Fig. 3.22c. Gaussian
RBF regression functions, being local, are more efficient in this case as sets of ARP samples
corresponding weak and strong power emissions are pointed by different regression functions,
such that the model is locally fitted to each section of the ARP. A reasonable interference between
the basis functions is however required such that different sections are not fitted independently.
The same can be seen in Fig. 3.22d where a set of five RBF basis functions with a spread
s = 36◦ confined in half the azimuthal plane (Fig. 3.21c) reduce the absolute error up to around
±1dB. However, as discussed earlier, the basis functions parameter should be chosen with care
in order for the regression to be efficient. For example, reducing the spread would limit the
information acquired by each basis function as they would point to smaller sets of data samples.
The opposite case, which is enlarging the spread, would approximate the global regression
functions case as the different basis functions would strongly interfere with each other such
that each basis function would contribute with different information about the global data set.
The number of basis functions is also important given the chosen spread. A small number of
weakly-interfering basis functions would make sections of data samples independent of each
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Figure 3.22 Introducing linear regression to the proposed model in a synthetic scenario using
a HWD and 10 probe positions (x , y) = (−9λ0 : 2λ0 : 9λ0, 5λ0), d = 10λ0, SNR = 20dB.
Isotropic-TM case, UFBW=4%: (a) Fourier regression, Nr = 1 (b) Fourier regression, Nr = 3.
Directive-TE case, N f = 1 (c) Fourier regression, Nr = 5 (d) RBF regression, Nr = 5 (e) RBF
regression, Nr = 3 (e) RBF regression, Nr = 90, s = 1◦ (e) RBF regression, Nr = 10 (f) RBF
regression, Nr = 5, with 8 probe positions.



3.4 Enhancing the Method Robustness 101

other and thus would fit the model locally in each section, as shown Fig. 3.22e, where Nr = 3.
On the other hand, enlarging the number of basis functions would result in anover-fitting case
where the different informations provided by different basis functions about the same data sets
make the regression coefficients misleading, as shown in Fig. 3.22f where Nr = 10. The extreme
case, as pointed earlier, when a large number of non-interfering basis functions is used, which
implies a small spread, would make each basis function contain exclusive information about
a single data sample, yielding independent calculations in order to retrieve the ARP samples
in the same fashion as in the direct inversion method. The same can be seen in Fig. 3.22g,
where a set of 90 basis functions with s = 1◦ yielded the same ARP samples retrieved via direct
inversion. Finally, the number of measurements, and thus input data samples, also impacts
the performance of the regression, as less data is equivalent to less information collected by
basis functions. This is shown in Fig. 3.22h, where 8 probe positions are used with optimal
regression parameters (those used in Fig. 3.22d), limiting the performance of the regression in
the LOS region (φ > 30◦) to ±5dB.

Globally, we may conclude that, in a noisy environment, if a sufficient number of measure-
ments is performed, regression may be very efficient in reducing ARP error to levels below ±1dB
provided that regression parameters are well chosen.

3.4.3 Estimating the ARP Frequency Dependence

An additional application of linear regression, other than reducing the ARP error, is the esti-
mation of the frequency impact on the ARP. Up to this point, the ARP was assumed frequency-
independent; an assumption that is not valid for most antenna types as generally the ARP
is frequency-dependent. The simplified model described by Eq. 2.19 may be updated by
introducing a new matrix α that takes into account the frequency impact on the ARP,

E= αGF, (3.58)

with αT M =

�

1 0
0 α

�

, (3.59)

and αT E =







αT M | 0
−−− −−−

0 | αT M






, (3.60)

where α is a complex term that models the amplitude and phase variations underwent by the
ARP when operating the AUT at the second working frequency f1. In order to highlight the
importance of well estimating α to the accuracy of the proposed method, consider the examples
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shown in Fig. 3.23, where a synthetic TM-field is generated using some α-term modifying
exclusively its phase at the second operating frequency (UFBW=4%), while ARP samples are
calculated assuming frequency independence (d = 10λ0). Figs. 3.23a-3.23b show the ARP error
for an estimation error of the phase variation of 1◦. The LOS error is quite low, being below
−40dB almost all-over the test zone. The image error, however, exceeds −40dB as soon as the
probe is moved outside the optimal conditioned region. The ARP error is amplified for larger
estimation errors of the frequency impact, as shown in Figs. 3.23c-3.23d where an estimation
error of the phase variation of 3◦ amplified the LOS error to levels below −40dB and image error
up to levels around −25dB in the optimal conditioned region. Taking into account contributions
of the remaining error sources, a reliable estimation of the frequency impact is necessary in
order to ensure a satisfying accuracy of the calculated ARP results.

Eq. 3.58 describes a non-linear system of equations in α containing two sets of unknowns,
the ARP vector F and α. Regression is introduced in order to solve for the two quantities,

(β̂ , α̂) = Arg min∥αGRβ − E∥2. (3.61)

Global optimization techniques may be used in order to solve Eq. 3.61 [74]; an issue that is
not covered in this work and is left as a perspective. In this section a study of the convexity of
the cost function is conducted in order to assess the possibility of existence of optimal solutions.
The formal approach consists in studying Hessian matrix of the cost function which contains
the corresponding second partial derivatives [75]. This approach, being cumbersome, is also
left as a perspective due to time constrains. An alternative simpler approach is considered
by numerically spanning the space of solutions by assessing different values of α (amplitude
and phase) and looking for possible minima. This requires choosing an adequate set of probe
positions and regression parameters in order for the regression to best fit the model for each
tested α value. An example of a synthetic scenario where an α = 1.1e j10◦ is used in order to
generate the field at the second working frequency is shown in Fig. 3.24 for various situations
in a configuration characterized by an AUT-plate separation d = 10λ0. Fig. 3.24a corresponds
to a TM-isotropic case using a single probe position (x , y) = (0λ0, 20λ0) with a single Fourier
basis function corresponding to the lower mode. The cost function in this case is convex, with
the minima corresponding exactly to the inserted α value. This is however a particular situation
as the used basis function matches the tested ARP. A more general case would necessitate more
probe positions in order to acquire sufficient information about the ARP, as is the case in the
TE-directive mode. Using five Gaussian RBF basis functions with a spread s = 36◦, neither one
nor two probe positions were sufficient to generate a convex cost function, as shown in Figs.
3.24b-3.24c. Three probe positions, in the contrary, generated a convex cost function with the
minimum corresponding to the correct α value, as shown in Fig. 3.24d. These results highlight
the possibility of solving for the unknown α-term and the ARP vector by adequately applying
linear regression provided that a sufficient number of measurements is performed.
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Figure 3.23 ARP error due to error in estimating α which models the ARP frequency dependence.
Synthetic scenario, TM case, d = 10λ0, UFBW=4% (a) ε(|F|)los, 1◦ phase error (b) ε(|F|)im, 1◦

phase error (c) ε(|F|)los, 3◦ phase error (d) ε(|F|)im, 3◦ phase error.
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Figure 3.24 Assessment of the the convexity of the cost function of the proposed model taking
into account the frequency impact in a synthetic scenario where the field at the second frequency
is generated using α = 1.1e j10◦ . d = 10λ0 (a) TM-isotropic case, single probe position (x , y) =
(0λ0, 20λ0), Fourier regression, Nr = 1 (b) TE-directive case, single probe position (x , y) =
(0λ0, 20λ0), RBF regression, Nr = 5, s = 36◦ (c) TE-directive case, 2 probe positions (x , y) =
(−6λ0 : 6λ0 : 0λ0, 20λ0), RBF regression, Nr = 5, s = 36◦ (d) TE-directive case, 3 probe
positions (x , y) = (−6λ0 : 3λ0 : 0λ0, 20λ0), RBF regression, Nr = 5, s = 36◦

The presented scenario showed that the proposed approach allowed the estimation of the
ARP frequency dependence with success using a minimum number of measurements and without
a priori information about the ARP.
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Conclusion

In this chapter the various practical limitations of the adopted model were theoretically studied
in order to verify the physical viability of the proposed concept. A study of the impact of the
set of approximations applied in order to simplify the mathematical formulations predicted
the manageability of the different model related errors sources. General remarks regarding
model-related errors are recapitulated in Table 3.1.

 
Model-Related 
Error Source 

 

 
General Remarks 

Far-field 
approximation 

The Fraunhofer criterion should be applied with care especially if the 
ARP is directive as the contribution of the field radial component may 
become important in directions of weak power emission. 

Impact of the plate 
on the AUT radiation 
resistance 
 

 
Moderate AUT-plate separations (d>2𝜆0) are sufficient to consider free 
space radiation characteristics. 

 
Diffraction by the 
AUT aperture 

The AUT diffracted field is dominated by the first order LOS diffraction 
and the corresponding reflection from the plate defining optimal and 
worst hyperbolas of positions with respect to the AUT diffraction. The 
optimal region is defined in the vicinity of the plate. 

 
Diffraction by the 
plate edges and 
corners 
 

Diffracted fields by the plate are dominated by the edge-diffractions. The 
edge diffraction coefficients dictate that optimal positions are near the 
plate.  The TE (hard polarization) case, which is more affected by the 
edge diffraction than the TM case, is enhanced by introducing frequency 
diversity.  Generally, the edge diffraction problem is reduced at high 
frequencies. 

Impact of the plate 
losses 
 

Infinitesimal losses introduced by the plate exclusively impact image 
samples with the same amount of error of the estimation of the plate’s 
reflection coefficient 

 

Table 3.1 General remarks regarding model-related error sources.

The tolerance of the developed models to the inevitable practical systematic errors was
assessed as well, highlighting the importance of conditioning models developed in the previous
chapter. Linear regression was then introduced in order to enhance the robustness of the
proposed method by reducing the ARP error associated to the direct inversion. Regression was
used in order to optimize the model as well by estimating the ARP frequency dependence. The
adopted approach consisted in numerically spanning the space of solutions minimizing the
corresponding cost function. Global optimization techniques may be used in order to solve the
problem in a more formal fashion.
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Chapter 3 presented a synthetic validation of the proposed concept based on the assumption
of the coherence of the adopted model. In this chapter, the feasibility of the concept is numerically
validated using an electromagnetic simulation software: FEKO. A brief presentation of the
software and its features is first provided before presenting the set of tested antennas. Then,
a set of simulations is performed prior to the application of the concept in order to measure
the impact of systematic error sources. The far-field distance, the impact on the AUT radiation
resistance, and the AUT diffraction are assessed in terms of tested antennas. After that, the
proposed method is validated by performing the inversion using an infinite PEC ground with
an estimation of the frequency impact whenever needed. Finally, more realistic configurations
involving finite metallic plates are considered to highlight the feasibility of the concept.
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4.1 Software Presentation: FEKO

4.1.1 Introduction

The various simulations to numerically validate the concept and assess related issues are
mainly performed using FEKO. The name FEKO stands for the abbreviation of the German
translation of Field computations involving bodies of arbitrary shape [76]. As suggested by the
name, FEKO is a comprehensive electromagnetic simulation software intended for applications
involving electromagnetic field analysis of structures of arbitrary shapes. It integrates a set
of multiple numerical methods to solve Maxwell’s equations which makes it suited for a wide
range of electromagnetic applications such as antenna design and analysis, EMC analysis, and
Bio-Electromagnetics and Biomedical Applications.

The core of the FEKO solver is the Method of Moments, which was presented in Sec. 3.3.4.1.
However, FEKO allows to hybridize it with other techniques or even replace it as function of the
simulated model. In the context of the proposed concept, one main criterion in choosing the
numerical simulation method is the size of the plate which may potentially impact computational
resources, i.e., memory, CPU and time resources, required to perform the simulation. Techniques
used to handle the plate in configurations simulated in the present chapter are described
hereafter. Further references may be found in Sec. 3.3.4.1.

4.1.2 Metallic Structures Handling in FEKO

FEKO provides several options to handle metallic structures that are present in the calculation
domain. These options allow to deal with reflected and diffracted fields depending on the
problem in question, as is the case with the plate considered in our model, and whose dimensions
imply that one option may be more suitable than the other.

• MoM: This is the full wave option. In this case the plate is considered as a radiating
structure and is discretized to calculate the current distribution over its surface. Although
this may be the most accurate option, as discontinuities characterizing the plate are taken
into account independently of their shape, it is disadvantageous in terms of memory
requirements and processing time. If the plate dimensions are large with respect to the
wavelength, which is basically the case in the proposed concept, the number of cells
necessary to mesh the plate augment as well, implying the allocation of a large memory
space and performing a large number of calculations which result in a long simulation
time. Moreover, some FEKO licenses are memory restricted, which means that if the
number of configuration cells exceeds some level, the configuration may not be simulated.

The MoM is best suited for free-space simulations. This is due to the fact that it is a source
method, which means that only the radiating structure -the AUT in this case- is meshed.
This is in contrast with field methods which require meshing the propagation domain
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even if it is free space. Accordingly, the MoM is used in order to retrieve AUTs free-space
characteristics and to assess the far-field distances and the image models as well.

• Multilevel Fast Multipol Method (MLFMM) [77]: This technique is an alternative for-
mulation of the MoM to make it applicable to larger structures with almost the same
accuracy. The logic behind MLFMM is the iterative subdivision of the computational space,
which is modeled by the impedance matrix, into smaller subspaces, i.e., smaller matrices.
Then, only non-empty matrices are considered in the calculations which results in efficient
computational resources reduction. MLFMM is best suited for electrically large structures
having geometries with low complexities. If the complexity of the simulated geometry is
high, the MoM is a better option. In this chapter, the MLFMM is used in order to simulate
a curved edge plate intended to reduce the edge diffraction problem.

• UTD: FEKO allows the design of UTD polygonal plates which, unlike the default plates, are
not discretized by the MoM. Instead, the solver only takes into account reflection points
from the plate surface and diffraction points from the edges and corners. This technique is
well suited for electrically large structures, and has the advantage of considerably reducing
computational resources independently of the size of the simulated structure. However,
the current formalization of this option doest not take into account edges of complex
shapes as only flat edges are supported [76]. This makes the UTD option the most suited
for simulations involving rectangular finite plates.

• Infinite ground plane: FEKO proposes several types of infinite ground planes, including a
PEC ground plane. This option is very effective in terms of computational resources as
no discretization is performed over the ground surface. Instead, the free-space Green’s
function corresponding to the model is used to calculate the radiated field. This option is
very useful as it removes the edge diffraction problem, allowing to effectively assess other
issues, such as the impact of the plate on the AUT free-space radiation resistance, and the
AUT diffraction.

4.2 Tested Antennas

Two antennas are used in order to numerically validate the concept: a HWD which was already
introduced in Chapter 3 for the synthetic validation, and a biconical antenna which may be
considered as a wideband version of the dipole. The choice of adopting these two antennas was
motivated by a number of reasons outlined hereafter:

• Both antennas are very simple to design as implementing wires (HWD) and conic sections
(bicone) is forward under FEKO. The two antennas are shown in Fig. 4.1a. Both AUTs
are designed to operate over a working frequency f0 = 1GHz, the bicone having larger
dimensions in order to highlight aspects related to the far-field distance approximation.
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Figure 4.1 Antennas used for the numerical validation of the proposed concept: (a) AUTs
dimensions (b) Corresponding reflections coefficients and operating bandwidths.

• As already mentioned, the HWD is a narrow-band antenna, while the bicone is wideband.
Reflection coefficients of the two designed AUTs as function of frequency are shown in
Fig. 4.1b. It shows that the bicone is very well adapted over the conventional 20% FBW
fixed to characterize wideband antennas [78], whereas the S11 corresponding to the HWD
is below −15dB over a narrow FBW= 8% and below −10dB over a FBW= 12%. These
properties allow to highlight the frequency impact on the free-space radiation pattern as
function of the AUT type, and to asses the adopted approach to solve this issue.

• The two antennas have similar omnidirectional radiation patterns which, as function of the
AUT orientation, allow verifying aspects related the ARP directivity. Figs. 4.2a and 4.2b
show the azimuthal ARP cuts when both AUTs are parallel to the z and x axes respectively,
for a voltage excitation of a magnitude equal to 1V.

• Both antennas may exclusively be operated under TM or TE polarization as function of
their orientation. As presented in Sec. 3.1.1 for the HWD, TM operation is ensured when
the AUT is parallel to ẑ, and corresponds to an isotropic ARP, while TE operation is ensured
when the AUT is parallel to the azimuthal plane, and corresponds to a directive ARP. This
allows to study each proposed transverse model separately, without loss of generality.

• Finally, the phase centers of both AUTs are easily located and correspond to the excitation
point at the center of each AUT axis. Controlling the phase center position allows to
numerically eliminate position errors in order to focus the feasibility study on model
related issues.

These advantages allows to highlight various aspects related to the developed models. The basic
20λ0×20λ0 test zone used in the previous chapter is maintained, with the plate being generally
at a distance d = 10λ0 from the AUT.
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(a) (b)

Figure 4.2 ARP cuts [V] of tested antennas as function of their orientation (a) Isotropic ARP cut,
AUT parallel to ẑ (b) Directive RP cut, AUT parallel to ŷ

4.3 Simulation Error Budget

The objective of this section is to assess the different error factors that could affect the simulations
and to measure their corresponding impacts. The studied error sources are essentially related
to model limitations, namely the far-field model assumption, the impact of the plate on the
AUT free-space radiation characteristics, and the AUT diffracted field. This allows, as a first
step, to have an estimate of the possible error that could emerge when testing the proposed
method using a rather theoretical configuration characterized by an infinite plate. More realistic
configurations are then simulated in order to assess the impact of truncating the plate.

4.3.1 Far-Field Distance Assessment

A set of free-space simulations are performed in order to quantify error due to the far-field model
assumption as function of the probe position. This allows to locate valid positions with respect
to the adopted far-field model before processing the measurement simulation. The viability
of the theoretical criterion given by the Fraunhofer distance is also assessed in terms of tested
antennas. The Fraunhofer distances corresponding to tested antennas are easily calculated by
applying Eq. 1.5, given their dimensions shown in Fig. 4.1a,

dHWD
FF =

λ0

2
,

dBicone
FF = 2λ0.

(4.1)

The largest linear dimension of the bicone being the double of that of the dipole, its related
Fraunhofer distance is consequently four times larger. Theoretically, based on distances predicted
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by Fraunhofer’s criterion, the adopted test zone dimensions shall allow the fulfillment of far-field
conditions. Error related to the far-field model assumption is quantified by comparing the
simulated free-space electric field at each probe position to a field calculated using the far-field
expression based on the simulated AUT free-space radiation pattern,

εF F =





Esim −GFsim











GFsim







. (4.2)

The study is carried for the TM-isotropic and TE-directive cases separately.

4.3.1.1 TM-Isotropic Case

Results for the isotropic case are shown in Fig. 4.3. Error patterns are homogeneous and
decay as function of the radial distance from the AUT. This suggests that error due to the
far-field model assumption in the considered TM-isotropic scenarios is only function of the
AUT-probe separation. Error levels corresponding to the same physical dimensions are higher
in the biconical case due to its larger dimensions, which is in a general accordance with the
Fraunhofer criterion. However, the exact Fraunhofer distances corresponding to both antennas
show large error levels, namely −10dB in the dipole case and −17dB in the bicone case. This
highlights the facts that the "actual" far-field distance is function of the operating antenna, and
that the Fraunhofer distance may be too approximative for several antenna types. One may
notice that error levels are relatively high even at several multiples of the Fraunhofer distance.
For instance, the error at r = 3dFF is around −18dB in the dipole case and −25dB in the bicone
case. This is mainly due to the phase error which is considerably high in the vicinity of the AUT.
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Figure 4.3 Free-space field error [dB] due to the far-field model assumption, TM-isotropic case:
(a) ε(Ez)HWD (b) ε(Ez)bicone
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Figure 4.4 A more detailed figure of the free-space field error due to the far-field model assump-
tion, TM-isotropic case: (a) Relative amplitude error (b) Absolute phase error

A more detailed error figure is shown in Fig. 4.4 where the relative amplitude and absolute
phase errors are plotted separately. Fig. 4.4a shows very low amplitude errors especially in the
dipole case where it is around −40dB at distances as small as 2λ0 and around −60dB at 5λ0.
The global error is amplified by the phase error, shown in Fig. 4.4b, which is very high at small
distances exceeding 10◦ at r = 1λ0 in the dipole case, and 5◦ at r = 2λ0 in the bicone case.
In Chapter 3, it was stated that the proposed method is very sensitive to phase errors which
perturb the fields vector sums. The phase error impact was highlighted when studying position
errors which modify the phases of both useful fields but mainly the image field. However, this is
not the case with error due to the far-field model assumption which is reduced at the image
field given the fact that images are by definitions situated at larger distances from measurement
points compared to the AUT. Consequently, positions with tolerable LOS phase error would
result with a moderate global amplitude error. By recalling that most applications are concerned
with the antenna amplitude radiation pattern, the resulting global phase error would not be a
serious issue. Taking these considerations into account, we may consider the distancer = 4dFF

as a reliable far-field distance for both tested antennas in the TM mode.

4.3.1.2 TE-Directive case

Before assessing error at the measurable cartesian Ex and Ey field components, it is convenient
to have knowledge about their corresponding cartesian radiation patterns. The latter are easily
retrieved from the TE azimuthal ARP component Fφ through the base change operator presented
in Sec 2.2.3. Fig. 4.5 show the cartesian ARP components corresponding to the reference TE
orientation (AUT axis parallel to x̂). Both patterns are directive with Fx containing a single lob
in each half-plane with nulls pointing towardsφ = 0◦ and φ = 180◦, whereas Fy contains two
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(a) (b)

Figure 4.5 Free space Cartesian ARPs of TE operated AUTs [V]: (a) Fx (b) Fy

lobes in each half-plane and two additional nulls pointing towards φ = 90◦ and φ = 270◦. Ex

is the dominant component for both AUTs.

Corresponding error patterns are plotted in Fig. 4.6. As one would expect, error generally
decays as function of the radial AUT-probe separation, and is more important in the bicone
case due to its larger dimensions. However, unlike the TM-isotropic case, error dramatically
grows in directions of weak power emission and totally explodes towards the nulls. This is
in agreement with observations carried in Sec. 3.3.1 when studying the model limitation due
to the far-field model assumption using a Hertzian dipole. Considering the similar radiation
characteristics of the tested antennas which may be modeled as a superposition of a large
number of Hertzian dipoles, error amplification in directions of weak emission is logically
explained by the contribution of the field radial component which is ignored in the far-field
model. Consequently, even larger distances would be required in order to reduce error due to
the far-field model assumption in these directions, which may be unpractical. Furthermore,
recalling the studies conducted in the previous chapter in order to assess the different error
sources, and which predicted a common important impact in directions of weak power emission,
we would expect that the global ARP error in these directions would be very large in the intended
simulations. Otherwise, error levels seem tolerable at the chosen reliable far-field distance
(r = 4dFF) attaining values below −30dB in the lobes’ directions for both AUTs in the dominant
Ex component. Directions of very weak power emission may be considered as singular directions
and related ARP results may be improved using linear regression.
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Figure 4.6 Free space field error [dB] due to the far-field model assumption, TE-directive case:
(a) ε(Ex)HWD (b) ε(Ey)HWD (c) ε(Ex)bicone (d) ε(Ey)bicone

4.3.2 Impact of the plate on the AUT Free Space Radiation Resistance

The impact of the plate on the AUT free-space radiation resistance is verified by comparing the
return loss in the presence of an infinite PEC ground with the free-space return loss. Results
are plotted in Fig. 4.7 for various AUT-plate separations. The impact is most notable for the
smallest assessed distance d = 2λ0, which, in the HWD case, moves the resonance frequency
closer to 1GHz without really changing the return loss pattern. The impact on the return
loss pattern is more important in the bicone case where the resonance around the reference
frequency f0 = 1GHz disappears. However, the AUT remains well adapted over the studied
20% FBW (S11 < −20dB). For AUT-plate separations greater than d = 2λ0, the impact of
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Figure 4.7 Impact of the AUT-plate separation on the AUT return loss: (a) HWD (b) Bicone.

the plate on both the return loss shape and levels becomes very weak. This is in accordance
with the study conducted in Sec.3.3.2 where we derived a theoretical expression based on
Friis formula suggesting a very weak impact of the plate on the AUT radiation resistance for
AUT-plate separations greater than d = 2λ0. This may further be verified by comparing the
radiated power in the presence of the plate to the free-space radiated power. Assuming equal
excitations in both cases, this is expressed as follows for the reference working frequency f0:

P
′

r( f0)
Pr( f0)

=
1− |Γ ′|2

1− |Γ |2
, (4.3)

where the prime stands for the case characterized by the presence of the plate. Fig. 4.8 shows
the relative power error as function of the AUT-plate separation. Error being below 0.1% for
AUT-plate separations equal or greater than d = 2λ0, the impact of the plate on the AUT
free-space radiation resistance in the simulated configurations may be neglected.
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Figure 4.8 Relative power error with respect to the free-space radiated power as function of the
AUT-plate separation.
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4.3.3 Impact of the AUT-diffraction on the Image Model

Simulating the concept using an infinite plate allows to effectively verify the impact of the AUT
diffraction on the image model. In this case, the AUT diffracted field is the only spurious field
interfering with the useful LOS and image fields.

Before assessing the levels of the AUTs diffractions, it is convenient to have an idea about
the RCS’s of tested antennas. Fig. 4.9 plots azimuthal cuts of the simulated RCS’s using a
plane wave linearly polarized parallel to the AUTs axes, which may model both transverse
modes. The figure shows relatively low RCS’s levels, being below 0.4λ2

0 in the bicone case, and
around 0.85λ2

0 in the dipole case whose RCS over the working azimuthal plane is isotropic, and
which may be approximated as a Rayleigh diffraction as the cross section of the wire elements
forming the dipole is very small with respect to the wavelength (radius= λ0/225). Recalling
the theoretical study conducted in Sec. 3.3.3 and the order of tested RCS’ s, we would expect a
low impact of the AUT diffraction for both AUTs.

Figure 4.9 Azimuthal cuts of the simulated RCS’s [λ2
0] of tested antennas using a plane wave

linearly polarized parallel to the AUTs axes

The simulated AUT-diffracted field is retrieved by subtracting from the field in the presence
of the infinite plate the sum of the simulated free-space fields of the AUT in its original position
and the AUT at the image position,

EAU T
d =








Eh∞
sim − ELOS+im

sim








 , (4.4)

with ELOS+im
sim = ELOS

sim + Eim
sim
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where Eh∞
sim is the simulated field in the presence of the infinite plate, and ELOS

sim and Eim
sim are the

simulated useful LOS and image fields retrieved via separate free-space simulations. The AUT
feed orientation is reversed when the AUT is placed at the image position in the TM mode and
when oriented parallel to ŷ in the TE mode, and kept unchanged when using the reference TE
mode orientation (// x̂) in order to obey boundary conditions implied by the plate. The impact
of the AUT diffracted field is then measured by comparing its intensity to the intensity of each
simulated useful field,

εd
i =
















EAU T
d

Ei
















2

, i = 0,1, (4.5)

the index 0 standing for the LOS case and the index 1 standing for the image case. Results are
shown in Figs. 4.10 and 4.11 using the basic test zone characterized by an AUT-plate separation
d = 10λ0. Fig. 4.10 compares error levels of both AUTs operated in TM mode. One may notice
an excellent agreement between the error patterns of Fig. 4.10 and SNR patterns generated
in the theoretical study conducted in Sec. 3.3.3 where we assumed isotropic radiation and
scattering characteristics of the tested antenna. This agreement is especially close in the dipole
case which has both an isotropic ARP and an isotropic RCS over the working azimuthal plane. As
predicted by the developed analytical formula, the diffracted field is essentially made up by the
contribution of two components; the LOS diffraction and the reflected diffraction by the plate.
These two components interfere constructively and destructively defining sets of locally optimal
and worst positions in terms of the AUT diffraction in forms of hyperbolas, as shown in Fig.
4.10. Moreover, the level of error is defined by the same set of circles which define conditioning
levels, resulting in optimal positions with respect to the AUT diffraction being pushed away
from the AUT and closer to the plate. This may be clearly noticed in Fig. 4.10b which plots
error with respect to the image field in the dipole case, and shows that the region in the vicinity
of the plate is dominated by a low error level (< −40dB) unlike the remaining regions where
error oscillates between low and relatively higher levels described by the mentioned hyperbolas.
However, error is generally quite low given the testing parameters, which are characterized
by a low RCS level, and a sufficiently large AUT-plate separation. This is true except for the
region surrounding the AUT at the image field level where the AUT diffracted field becomes
comparable to the image field. Consequently, we would expect image samples to undergo large
error in this region. The impact of the AUT diffraction is about 5dB-10dB higher in the dipole
case with respect to the bicone case due to its larger RCS.

The dipole is used in order quantify the impact of the AUT diffraction in the TE mode. Results
are shown in Fig. 4.11 using two orientations. Figs 4.11a and 4.11b show error over the Ex

component using the reference AUT orientation which is the optimal orientation in terms of
the AUT diffraction as the null is directed towards the plate. The LOS error is extremely weak
being below −70dB allover the test zone. The image error is generally very weak as well, except
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in the immediate region surrounding the AUT where it exceeds −20dB. If the AUT is oriented
otherwise, error levels generally increase over both the LOS and image fields. The same can be
seen in Figs 4.11c-4.11f where error over both TE components is plotted with the AUT being
oriented parallel to ŷ . Error is generally tolerable in directions of strong power emission (around
−40dB), but dramatically grows in directions of weak power emission and totally explodes near
the nulls. These results highlight again the vulnerability of positions corresponding to weak
power emission to model systematic errors.
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Figure 4.10 Field error as function of the probe position and impact of the AUT-diffracted field.
TM mode, plate at xp = 10λ0: (a) Impact on the LOS field, HWD (b) Impact on the image field,
HWD (c) Impact on the LOS field, bicone (d) Impact on the image field, bicone.
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Figure 4.11 Field error as function of the probe position and impact of the AUT-diffracted field
as function of the AUT orientation using a HWD in TE mode, plate at xp = 10λ0: (a) Impact on
the LOS field, Ex , HWD // x̂ (b) Impact on the image field, Ex , HWD // x̂ (c) Impact on the LOS
field, Ex , HWD // ŷ (d) Impact on the image field, Ex , HWD // ŷ (e) Impact on the LOS field,
Ey , HWD // ŷ (f) Impact on the image field, Ey , HWD // ŷ .



4.3 Simulation Error Budget 121

Generally, we may conclude that the impact the AUT diffracted field in terms of tested
antennas is very low for positions relatively far from the AUT, except for positions corresponding
to weak power emission.

4.3.4 Combining Error Impacts

Taking into account observations carried in what preceded, we may outline the following
conclusions regarding the infinite plate scenario:

• The impact of the plate on the AUT free-space radiation characteristics may be neglected
for both antennas given the adopted test zone dimensions.

• Positions in the vicinity of the AUT show large error levels over both the LOS and image
fields. The LOS error is due to the non-validity of the far-field model assumption for
distances in the order of the Fraunhofer distance corresponding to each AUT. Whereas the
image error is due to the impact of the AUT-diffracted field whose level is comparable to
the image field level near the AUT.

• As function of the AUT orientation, positions corresponding to low-power emission show
very large error levels. This large error is due to the superposition of the contributions
of reactive fields, the radial field component, and the AUT diffracted field which are not
taken into account in the mathematical models and whose levels become even larger than
the reference field level near the ARP nulls. The impact of this error is minimized at the
calculated ARP level by introducing linear regression.

These remarks are highlighted by verifying the overall error impact of the infinite plate scenario,
which is performed by comparing the simulated field in the presence of the infinite plate to the
sum of the useful fields calculated using the proposed model. Results are plotted in Fig. 4.12
for the three Cartesian field components. Figs. 4.12a and 4.12b show relatively low error levels
(around −30dB) in the TM-isotropic case for positions respecting the chosen reliable far-field
distance (r = 4dFF). Error corresponding to the HWD is very low over the majority of the test
zone, oscillating between−50dB and −60dB for AUT-probe separations larger than10λ0. Figs.
4.12c-4.12d plot results corresponding to the reference TE orientation showing large error in
directions of weak power emission. For instance, error over the dominant Ex component is
very high (< 20dB) over a 25◦ range starting from each half x-axis. Otherwise, the accordance
between the simulation and the model is is very good with error oscillating between −40dB and
−50dB over the Ex component and around −30dB over the Ey component.

Accordingly, the proposed method shall perform well in positions respecting the chosen
reliable far-field distance, with results corresponding to singular directions of low-power emission
to be improved using linear regression. However, it is important to keep in mind that the final
ARP error is also function of conditioning which, as function of the probe position, may further
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Figure 4.12 Estimation of the overall error perturbing the infinite plate scenario by comparing the
simulated field in the presence of infinite plate to the field calculated using the proposed model,
xp = 10λ0: (a) ε(Ez)HW D [dB] (b) ε(Ez)bicone [dB] (c) ε(Ex)HW D [dB] (d) ε(Ex)bicone [dB] (e)
ε(Ey)HW D [dB] (f) ε(Ey)bicone [dB]
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amplify the highlighted error. Moreover, the validity of the results in the TM case depend on the
accuracy of estimating the ARP frequency dependence.

4.4 Infinite Plate Scenario

The proposed method is tested in a hypothetical noise free environment using an infinite PEC
ground. It should be noted that FEKO allows the generation of infinite PEC grounds only over
the z = 0 plane. Consequently, proper frame transformation is applied in order to resolve fields
characteristics in the working reference frame. The impact of frequency diversity, necessary for
the application of the TM model, is first estimated before proceeding with the inversion.

4.4.1 α Estimation

The α-term corresponding to each working UFBW is estimated using the approach developed
in Sec. 3.4.3. RBF regression with Nb = 5 and s = 36◦ is applied to data collected from three
measurements performed by moving the probe: x = −9λ0,−2λ0, 5λ0; the vertical distance y
being varied as well in order to assess the impact of error due to the far field model assumption
on the estimation. Fig. 4.13 show examples of the minimization of the cost function by spanning
the space of solutions in a TM-isotropic scenario for both tested AUTs (UFBW= 4%). It clearly
shows that the HWD is more impacted by the frequency change compared to the bicone, whose
corresponding α is closer to unity.
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Figure 4.13 Example of the estimation ofα using RBF regression with Nb = 5 and s = 36◦ over
3 probe positions, (x , y) = (−9λ0 : 7λ0 : 5λ0, 20λ0). TM-isotropic case, UFBW= 4%: (a) HWD
(b) Bicone.

Detailed results are shown in Table 4.1 highlighting the higher sensitivity of the HWD to
frequency diversity compared to the bicone which is mainly affected over the field phase. Results
are generally stable in terms of the AUT-probe separation except in the bicone case at larger
UFBWs than 6%, where the closest set of probes to the AUT show a phase error of 0.5◦ compared
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y [λ0]
UFBW 5 10 20

HWD
1% 0.99e− j5.6◦ 0.99e− j5.5◦ 0.99e− j5.5◦

2% 0.95e− j10.7◦ 0.96e− j10.6◦ 0.96e− j10.6◦

3% 0.91e− j14.3◦ 0.92e− j14.3◦ 0.92e− j14.3◦

4% 0.89e− j17.1◦ 0.89e− j17.2◦ 0.89e− j17.1◦

6% 0.85e− j24.1◦ 0.84e− j24.1◦ 0.84e− j24.1◦

Bicone
1% 1e− j0.8◦ 1e− j0.8◦ 1e− j0.7◦

2% 1e− j1.8◦ 1e− j1.8◦ 1.01e− j1.8◦

4% 0.99e− j3.7◦ 0.99e− j3.7◦ 0.99e− j3.8◦

6% 0.99e− j4.6◦ 0.98e− j4.9◦ 0.99e− j4.8◦

8% 0.98e− j6.7◦ 0.97e− j7.2◦ 0.98e− j7.0◦

Table 4.1 Estimating α corresponding to the simulated field as function of the operating UFBW
and the AUT-probe vertical separation.

to the further sets, which is due to the fact that far-field conditions are not conveniently met
at such distances from the AUT (< 8λ0) in the bicone case. Results corresponding to the most
distant set (y = 20λ0) will be considered in the calculations.

4.4.2 Performing the Inversion

TM and TE models are tested separately. In both cases the reference radiation pattern is retrieved
via free-space simulation. The calculated ARP samples are then locally compared to the reference
ARP values in order to estimate the ARP error.

4.4.2.1 TM-Isotropic Case

Both AUTs are first tested using an UFBW= 4% with adapted α values shown in Table. 4.1.
The corresponding condition number pattern over the basic test zone was already presented in
Chapter 2 and 3 (Figs 2.5 and Fig. 3.3a), and is characterized by a good distribution of low
values over the majority of the test zone except in the singular regions around the AUT and near
the plate. ARP error patterns of the LOS and image samples as function of the probe position are
shown in Fig. 4.14. In this figure both the amplitude and phase errors are taken into account,

εF =





Fmodel − Fref











Fref







. (4.6)

Taking into account the conditioning impact, which is amplifying error near the AUT and the
plate for both LOS and image samples, results are in accordance with observations carried
in the previous section. As shown in the figure, the LOS error is directly related to the AUT
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dimensions, being higher in the bicone case than in the dipole case. Levels below −40dB in the
optimal conditioned region are achievable at distances higher than 7λ0 in the dipole case which
is about 14 times the corresponding Fraunhofer distance, and at distances larger than 14λ0

in the bicone case which is about 7 times the corresponding Fraunhofer distance. The image
error is higher than the LOS error in the dipole case due to the impact of the AUT diffraction,
oscillating between −35dB and −40dB in the optimal conditioned region. This is not the case
with the bicone whose corresponding AUT diffraction is very weak. Consequently, image error
is lower than the LOS error given the fact that image samples are more protected against error
due to the far-field model assumption than LOS samples.
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Figure 4.14 ARP error as function of the probe position in a hypothetical scenario characterized
by an infinite PEC plate. TM case, xp = 10λ0, UFBW= 4%: (a) LOS error, HWD (b) Image error,
HWD (c) LOS error, bicone (d) Image error, bicone.
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Figure 4.15 ARP amplitude error as function of the probe position in a hypothetical scenario
(infinite PEC plate). TM case, xp = 10λ0, UFBW= 4%: (a) LOS error, HWD (b) Image error,
HWD (c) LOS error, bicone (d) Image error, bicone.

Globally, we may conclude that the method performs well in optimal conditioned regions if
the configuration parameters are carefully chosen in order to reduce the overall system error, as
practical systematic errors combined with the edge diffraction may dramatically amplify the
measurement error.

The considered results also highlight the ability of the proposed method to measure the ARP
phase in addition to the amplitude. By considering exclusively amplitude radiation patterns,
which are the most relevant for most applications, interest will be on the relative amplitude error
calculated using Eq. 3.1. Results for the relative amplitude error for the same configurations
are plotted in Fig. 4.15. Error is considerably reduced by omitting the phase error contribution,
attaining levels below −40dB over the majority of the test zone in the dipole case, and enlarging
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the useful LOS region up to half of the test zone in the bicone LOS case. These results further
highlight the feasibility of the proposed method in retrieving ARP values with satisfying precision
provided that the system parameters are well adapted to the measurement conditions. Let us
for instance assess the impact of conditioning on the ARP results given the considered low-noise
environment. In the previous example, the impact of conditioning was limited to narrow regions
near the AUT and the plate because the chosen working bandwidth together with the AUT-plate
separation were such that the optimal hyperbola crosses the test zone diagonally. Accordingly,
the optimal conditioned region was well distributed over the test zone. This would not be the
case if other d-UFBW pairs are used. For instance, if a narrower UFBW is used, as discussed
in Sec. 2.3.2, this may prevent the existence of optimal hyperbolas, which would limit the
region of tolerable condition numbers away from the plate, and thus would require larger set-up
dimensions. In the contrary, if a wider UFBW is used, this would lead to the generation of
worse conditioning hyperbolas, near which the condition number explode, and which are then
positions to avoid. These considerations are shown in Fig. 4.16 where the relative amplitude
error is plotted for a couple of UFBWs. In this figure, the amplitude error is averaged between
the LOS and image samples in order to provide a general insight on the conditioning impact,

εF =
εFlos

+ εFim

2
. (4.7)

Figs. 4.16a and 4.16b show results when applying a UFBW= 1%. In this case, the ill-
conditioned region near the plate is enlarged up to almost half of the test zone with error levels
being generally above −30dB. This would be disadvantageous in a complete measurement
context by recalling that the region near the plate is by definition the optimal conditioned region
for the basic TE model. Figs. 4.16c and 4.16d show results when applying an UFBW= 8%. In
this case two optimal hyperbolas exist generating two optimal regions near and far from the
plate where error is generally below −40dB, and between which a worst hyperbola yields an ill-
conditioned region where error is amplified up to levels as high as−3dB. Augmenting the UFBW is
advantageous in enlarging the optimal region near the plate, but may be disadvantageous if probe
displacements are to be performed due to the existence of quite large ill-conditioned regions
within the test zone. These results highlight the importance of well setting the measurement
parameters in terms of set-up dimensions, the working UFBW, and probe positions as more
realistic configurations are characterized by a larger error level which would be otherwise
amplified to unaccepted levels.
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Figure 4.16 ARP amplitude error as function of the probe position for different UFBWs impacting
the global conditioning pattern. Hypothetical scenario (infinite PEC plate), bicone, TM case,
xp = 10λ0: (a) κ(GT M ), UFBW= 1% (b) Average amplitude error, UFBW= 1% (c) κ(GT M ),
UFBW= 8% (d) Average amplitude error, UFBW= 8%.

4.4.2.2 TE-Directive case

The condition number pattern over the test zone for the basic TE case was already introduced
in Chapters 2 and 3 (Figs. 2.11 and 3.3b), and is characterized by an optimal region situated
near the upper right corner around the optimal position which is near the plate at a vertical
distance yopt = d = 10λ0. Otherwise, the condition number augments far from the plate and
explode at low vertical AUT-probe separations. The latter ill-conditioned region corresponds to
the singular directions of low-power emission of the reference TE orientation. Accordingly, the
highlighted large error in this region is further amplified by conditioning in this case. The same
can be seen in Figs. 4.17a-4.17d where the LOS and image amplitude errors are plotted for
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both tested antennas as function of the probe position. The impact of conditioning is clearer at
the image level where error undergoes more amplification in the left half of the test zone. LOS
samples away from the nulls are generally calculated with satisfying precision, < −40dB in the
dipole case and < −30dB in the bicone case. Error is more important over image samples, being
tolerated almost exclusively in sections of the optimal conditioned region pointed out by the lobe.
This may be clearly seen in Figs 4.17e and 4.17f where the bicone is rotated with φo = −45◦

with respect to the reference orientation such that the ARP lobe is oriented towards the optimal
region. In this case, error over both LOS and image samples in the optimal conditioned region is
below−40dB, with directions corresponding to weak power emission being always characterized
by large error levels (< −20dB). These results highlight two limitations of the direct inversion
method. The first being exclusively related to the basic TE model, which is the fact that optimal
conditioned positions are located in a limited region near the plate. Whereas the second is a
general limitation of the proposed model which is the vulnerability of positions corresponding
to weak power emission to different sorts of error sources.

The limitation of the basic TE model with respect to conditioning may be overcome by
introducing frequency diversity which, as function of chosen parameters, allows the generation
of optimal positions in different regions of the test zone. As discussed in Chapter 2, this would
allow the generation of common optimal positions for both transverse models which would be
advantageous in reducing mechanical displacement and thus the measurement time. Moreover,
introducing frequency diversity has an additional advantage of improving the overall ARP
results, which is a consequence of the over-determination of the problem which yields the
application of an error averaging through regression by the LS solving algorithm. An example
of the advantages carried by introducing frequency diversity to the TE model is shown in Fig.
4.18 where two frequencies are applied with a UFBW = 3% using the HWD in the reference TE
orientation. Fig. 4.18a plots the corresponding condition number pattern which is characterized
by a larger optimal region with respect to the basic TE model, which is induced by the generated
optimal hyperbola. In this example, a relatively narrow UFBW is applied such that the generated
optimal hyperbola is directed far from the plate in order to effectively extend the optimal region
over the test zone. Consequently, ill-conditioned positions are limited over narrow regions
around the AUT and near the bottom right corner. Corresponding error patterns are plotted in
Figs. 4.18b and 4.18c showing generally very low error levels. The LOS error is below −40dB
almost all-over the test zone except in the mentioned narrow ill-conditioned regions. One can
see how frequency diversity effectively reduced the ARP error even in positions corresponding
to singular directions of weak power emission. Image error is relatively higher but widely
improved with respect to the basic TE model, oscillating between values below −30dB and
−50dB outside the ill-conditioned regions. These results highlight the advantage carried by
frequency diversity in overcoming the limitation of the basic TE conditioning model, and in
improving results corresponding to weak power emission.
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Figure 4.17 Performing the inversion with a hypothetical infinite PEC plate and related ARP
amplitude error. Basic TE case, no frequency diversity, xp = 10λ0: (a) LOS error, HWD (b)
Image error, HWD (c) LOS error, bicone (d) Image error, bicone (e) LOS error, bicone, φo = −45◦

(f) Image error, bicone, φo = −45◦.
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Figure 4.18 ARP error as function of the probe position in a hypothetical scenario characterized
by an infinite PEC plate and impact of introducing frequency diversity to the basic TE model.
HWD, xp = 10λ0, UFBW= 3%: (a) κ(GT E) (b) LOS amplitude error (c) Image amplitude error
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The limitation of the direct inversion method in positions corresponding to weak power
emission may further be overcome by applying linear regression. As discussed in Sec. 3.4,
the performance of the regression technique depends on several factors related to the set of
measured data, and to the regression parameters including the type and number of regression
functions. An example highlighting the efficiency of regression is shown Fig. 4.19 for an infinite
plate scenario using the HWD in the reference TE orientation. A horizontal cut of 10 equally
spaced probe positions is used, with y = 5λ0 and x i = −10λ0 : 2λ0 : 8λ0. Referring to Fig.
4.17, one can see that image samples, especially those corresponding to probes in the left half
of the test zone, show very large error levels that exceed 0dB at certain positions. An RBF
regression is used with 5 regression functions distributed over the upper half of the azimuthal
plane with each basis function having a spread of 36◦. Figs 4.19b and 4.19c show the calculated
ARP samples and related error for the basic TE model. The impact of regression in improving
results corresponding to image samples is very clear. Relative error is generally stabilized at
−30dB preventing image samples from drifting away from the reference ARP. This example
shows that even LOS samples, which show low error levels, are further improved by regression,
which however may not be a general case. Figs 4.19d and 4.19e show results corresponding to
the same configuration when applying frequency diversity with a UFBW= 3%. In this case the
original error is relatively low which limits the regression performance, making it essentially
vital exclusively at certain positions with relatively large error levels.

Globally, the regression is very efficient in reducing the ARP error. In this scenario, the
absolute ARP error was reduced from ±15dB to ±0.5dB in the basic TE case, and from ±2dB to
±0.5dB when introducing frequency diversity. The studied example highlights the limitation
of moving the probe in order to perform angular scans. In this scenario, image samples cover
a narrow 20◦ range while LOS samples cover 120◦. The efficiency of the proposed concept in
reducing mechanical displacement is highlighted via a rotation scenario hereafter.

4.4.3 Rotation Scenario

In Sec. 2.4.2, two rotation algorithms were developed in order to achieve maximum efficiency in
terms of mechanical rotation. Both algorithms are based on the idea of avoiding the redundancy
of covering already-covered angles. In this section, the efficiency of the proposed concept in
reducing mechanical displacement is highlighted by applying the general rotation algorithm
based on integer ratios of measurement angles (refer to Sec. 2.4.2). In order to visualize the
rotation steps, the HWD in TE mode is used due to its directivity. An angles ratio ma =

φ0

φ1
= 2

is chosen by placing the probe at a distance equal to the double of the AUT plate separation at
the same horizontal level as the AUT, i.e., (x , y) = (0,20λ0), as shown in Fig. 4.20a. In this
case, φ0 = 90◦ and φ1 = 45◦. Frequency diversity is introduced in order to improve the system
conditioning by applying an UFBW = 4% such that the optimal hyperbola is closer to the probe
position. Conditioning levels are plotted at the same figure showing the optimal conditioning
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Figure 4.19 Applying linear regression to improve ARP results corresponding to directions of
weak power emission using a HWD in the reference TE orientation with 10 probe positions
(x i, yi) = (−10λ0 : 2λ0 : 8λ0, 5λ0), xp = 10λ0: (a) Regression functions, RBF, nb = 5, spread
= 36◦ (b) Calculated ARP samples, basic TE mode (c) Relative ARP error, basic TE mode (d)
Calculated ARP samples, n f = 2, UFBW=3% (e) Relative ARP error, n f = 2, UFBW=3%.
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region
�

κ(GT E)< 2
�

extended over the chosen probe position. These parameters ensure the
system stability during all the rotation steps.

The sampling angle is set equal to φs = 9◦, consequently the ratio between the image angle
and the sampling angle is equal to ms =

φ1

φs
= 5. This implies the application of 5 rotations,

equal to φs each, covering a range of 90◦ before introducing a jump equal to 6φs = 54◦ in
order to avoid interference between already covered angles and angles yet to be covered. Then,
another set of of 5 rotations is performed in order to measure the next 45◦ range, covering an
overall range of 180◦. The algorithm may very well be applied to the whole azimuthal plane. In
this scenario, it is restricted to half the plane due to the symmetry of the measured ARP. These
considerations are shown in Fig. 4.20b where each rotations set is plotted using a different
color.
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Figure 4.20 Parameters of the algorithm for achieving maximum efficiency in terms of me-
chanical rotation: (a) probe position with respect the measurement angle ratio and the system
conditioning (dashed) (b) AUT rotations to be performed given a sampling angle φs = 9◦.

The measured ARP samples corresponding to each orientation as well as the combination of
all measured samples are shown in Fig.4.21. The initial AUT orientation was taken at φo = −90◦

with respect to the reference AUT orientation. Consequently, the LOS sample corresponding to
the initial orientation exactly coincides with the null. However, one can see that it is calculated
with satisfying precision (around −60dB). Samples corresponding to remaining orientations
are calculated with excellent precision, yielding a good agreement between the overall set of
data calculated using the proposed method and the reference ARP. This may be verified by
examining Fig. 4.22 which plots both relative and absolute ARP errors as function of the AUT
orientation. Error corresponding to the initial orientation was not included in the graph because
it yields a large value given that the calculate LOS sample is compared to a null reference level.
The relative error is generally below −32dB whereas the absolute error is below 0.25dB. This
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Figure 4.21 Rotation scenario with using a HWD in TE mode, plate at xp = 10λ0, UFBW= 4%;
φs = 9◦, ms = 5, ma = 2 (results in [V]) (a) φo = −90◦ (b) φo = −81◦ (c) φo = −72◦ (d)
φo = −63◦ (e) φo = −54◦ (f) φo = 0◦ (g) φo = 9◦ (h) φo = 18◦ (i) φo = 27◦ (j) φo = 36◦ (k)
Orientations combined [dB].
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Figure 4.22 ARP error as function of the AUT orientation of the rotation scenario. Error
corresponding to the initial orientation omitted the calculated value is compared to a null
reference value yielding a very large error: (a) Relative amplitude error (b) Absolute amplitude
erro.r

highlights once again the usefulness of introducing frequency diversity to the TE model which
improves both conditioning and ARP results.

In this scenario, 10 AUT orientations were required in order to measure 20 ARP samples
uniformly distributed over the measurement range. This would take 20 AUT orientations in a
classical measurement, showing the usefulness of the proposed method in reducing mechanical
displacement and thus the measurement time. The simulated scenario with the relatively large
sampling angle would correspond to validation processes performed to rapidly investigate the
targeted radiation characteristics of designed antennas.

4.5 Finite Plate Scenarios

More realistic configurations involving plates of finite dimensions are simulated in order to have
a closer insight into the impact of edge diffracted fields on ARP results. As mentioned earlier,
several techniques to minimize the impact of diffracted fields exist in practice, most commonly
the serrated edge reflectors which are widely used in CATRs and allow achieving precisions in
the order of ±0.5dB over the quiet zone [79]. However, in order to stress on the manageability
of the edge diffraction problem, a quite simpler technique is tested herein which is the curved
edge reflector.

4.5.1 Impact of Edge and Corner Diffracted Fields

The basic test configuration is simulated using a finite rectangular plate truncated in the
y+ direction at hy+ = 10λ0, and in the y− direction at hy− = −5λ0, and symmetrically
at hz± = ±5λ0 along the z-axis, as shown in Fig. 4.23. This would correspond to physical
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Figure 4.23 Realistic configuration containing a finite rectangular plate in order to assess the
impact of edge diffracted fields.

dimensions of 4.5m×3m, which is quite large given the relatively low working frequency. The
HWD is used in both transverse modes and the corresponding ARP error is plotted in Fig.
4.24. In agreement with the study conducted in Sec. 3.3.4, the figure shows considerably
weak impact on LOS samples which generally maintain error levels below −40dB in zones of
good conditioning, and in the lobe direction in the TE case. Nevertheless, numerical results
partially disagree with the theoretical study near the reflection boundary where theoretical
results, based on GTD, predicted an important impact even over LOS samples. This clearly
follows from the limitation of the GTD in this region. On the other hand, the impact is very
serious over image samples showing error levels below −20dB over the majority of the test
zone. The impact is especially severe in the TE case as the plate is truncated exactly at the
optimal position level eliminating as a result the upper half of the optimal conditioning region.
These results highlight the vulnerability of image samples to edge diffracted fields, suggesting
that rectangular plates with dimensions in the order of10λ0-20λ0 are too small to assume the
validity of the image model. If the AUT-plate separation is reduced, then the optimal region
with respect to edge diffraction is improved by connecting the LOS optimal region which, is
near the AUT, with the image optimal region, which is near the plate. However, this has the
inconvenience of augmenting the AUT diffraction level and eventually perturbing the AUT
free-space radiation characteristics. A more effective approach would be modifying the plate
edges such that diffracted waves are directed away from the test zone.
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Figure 4.24 ARP error as function of the probe position and impact of edge and corner diffracted
fields on ARP samples, the plate being truncated at hy = [−5λ0, 10λ0] and hz = ±5λ0, and
positioned at xp = 10λ0. HWD. (a) TM LOS amplitude error, UFBW = 4% (b) TM image
amplitude error UFBW= 4% (c) TE LOS amplitude error, basic model (d) TE image amplitude
error, basic model.
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4.5.2 Curved Edge Plate

One forward solution to reduce the edge diffraction problem is to minimize the edge discontinuity
with respect to the illuminating wave by curving the edge. An example of a curved edge reflector
designed starting from the rectangular plate used in the previous scenario is shown in Fig. 4.25.
Each edge is extended curvedly up to 2λ0 in each direction such that waves hitting on edges
are smoothly directed away from the test zone. Ideally, the curvature angle would be too small
with the edge extension being as large as possible in order to effectively minimize the edge
discontinuity.

Figure 4.25 Curved edge reflector designed in order to reduce the edge diffraction problem.

ARP results corresponding to this configuration are depicted in Figs. 4.26a-4.26d. The
image error is widely improved especially in the TM case where error over the majority of valid
positions is below −40dB. Error is relatively reduced in the TE case as well, being below −30dB
over the narrow optimal conditioning region pointed by the lobe. The TE results highlight
the fact that valid positions in the basic model are very dependent on the plate dimensions.
Accordingly, care must be given to the AUT-plate separation given the (y+)-edge position in
order to ensure the existence of the optimal conditioned position and the well expansion of the
optimal region around it. This implies that the (y+)-edge is at a larger vertical distance with
respect to the AUT then the AUT-plate separation, i.e.,

hy+ > d. (4.8)
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This is verified by examining the results plotted in Figs. 4.26e-4.26f, which correspond to a
curved edge plate whose flat section has a (y+) dimension equal to hy+ = 15λ0. One may easily
notice how the region of tolerated error is effectively enlarged in this case compared to the
previous scenario. The performance of the curved edge reflector in the TE case may further be
improved by introducing frequency diversity, which in addition to improving the ARP results,
provides more freedom in terms of the optimal conditioning region with respect to the plate
dimensions.

To conclude, we have shown that rectangular plates with dimensions in the order of 10λ0-
20λ0 introduce important diffracted fields that strongly perturb ARP image samples making
their corresponding results too approximate. However, we have shown as well that the edge
diffraction problem is totally manageable and may be minimized by several methods.
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Figure 4.26 Example of the reduction of the edge diffraction problem using a curved edge
reflector. The plate flat section having dimensions of hy = [−5λ0, 10λ0] and hz = ±5λ0.
xp = 10λ0. HWD. (a) TM LOS amplitude error, UFBW = 4% (b) TM image amplitude error
UFBW = 4% (c) TE LOS amplitude error, basic model (e) TE image amplitude error, basic model,
hy+ = 15λ0 (f) TE image amplitude error, basic model hy+ = 15λ0.
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Conclusion

In this chapter, the feasibility of the proposed concept of exploiting controlled echoes in ARP
measurements was numerically validated using a comprehensive electromagnetic simulation
software, FEKO. Different aspects related to the concept were also verified such as the importance
of the developed conditioning models in ensuring the mathematical systems stability, as well as
the various model systematic limitations which were proven to be manageable using typical
measurement configurations. The usefulness of the concept in accelerating the measurement
process was highlighted by applying a developed rotation algorithm that allowed to cut down
the mechanical rotation effort to a half with respect to classical measurements. It is important
to point out that the presented numerical results does not take into account the impact of
practical systematic error sources which are inevitable in real-life measurements. The presented
results are however useful in shedding light about measurement guidelines and the different
precautions to be taken regarding the set-up dimensions, the working frequency bandwidth, the
probe position, and the model approximations in order to count for the practical viability of the
proposed concept.
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This chapter explores the possibility of extending the proposed concept to more complex
configurations involving more than a single controlled reflection. The objective being to extend
the spatial diversity in order to be able to measure several ARP samples at a time, which would
-theoretically- further accelerate the measurement process. A preliminary study is conducted
essentially to verify the theoretical viability of a couple of models developed based on the
single-plate model.
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5.1 Introduction

The first part of this work presented a study of the proposed measurement concept exploit-
ing echoes based on the single-plate configuration which may be considered as the simplest
configuration in terms of controlled echoes generation. The simplicity of the proposed set-up
involving a single controlled echo conveniently justified a set of approximations that were
applied in order to simplify the developed models, and which proved to hold under manageable
conditions. This approach offered many advantages, mainly a solid analytical study in order to
predict optimal probe positions that guarantee the stability of the mathematical systems, which
is necessary for the validity of the output results. The study showed that such optimal probe
positions are generated using typical measurement parameters. Moreover, the simplicity of the
single-plate configuration allowed to highlight the usefulness of the concept in accelerating the
measurement process. Rotation algorithms in order to achieve maximum efficiency in terms of
mechanical displacement were developed and showed that mechanical displacement effort may
be cut to a half of that of a classical measurement, which would theoretically result in cutting
the measurement time to a half as well.

In this chapter, a preliminary study is conducted in order to verify the possibility of extending
the concept to more complex configurations involving larger sets of controlled reflections. A
brief discussion about possible methods of extending the basic single-plate configuration in
order to generate multiple controlled reflections is first presented. After that, two configurations
of different complexity levels are taken as examples, and are separately studied based on results
carried over the single-plate configuration. The study conducted in the present chapter is essen-
tially theoretical and focuses on the mathematical viability of each model, and on the eventual
usefulness carried by configurations involving multiple reflections in further accelerating the
measurement process.

5.2 Extending the Basic Configuration

Multiple controlled reflections may be generated by introducing a set of additional plates to the
single-plate configuration. In this work, we will consider introducing one additional plate which
would result in a two-plate configuration. Let us suppose that the new plate is also perpendicular
to the working azimuthal plane such that all generated reflections would lie on the working
plane. Keeping these considerations in mind, two main classes of configurations are considered:
configurations of intersecting plates, which will be referred to as dihedral configurations, and
configurations of non-intersecting plates.

Dihedral configurations are mainly characterized by the dihedral angle which is the intersec-
tion angle between the two plates seen by the AUT, say φin, which determines the number of
reflected signals. The intersection angle must be in this case smaller than 180◦ to ensure the
generation of multiple reflections. Image theory can be used in order to predict the number
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of generated reflections provided that the intersection angle is equal to 180◦ divided by any
positive integer [80],

φin =
180◦

n
, n ∈ N∗. (5.1)

In the limiting case, n = 1 (φin = 180◦), the configuration is transformed back to the single-
plate configuration. Hence, n should be greater than unity in order to ensure the generation
of multiple reflections. If the intersection angle does not obey Eq. 5.1, other methods may be
used to analyze the generated reflections such as interpolation in order to handle intermediate
angles [81], or analysis involving cylindrical functions in order to handle arbitrary angles[82].
The number of generated images Ni corresponding to Eq. 5.1 is expressed as follows,

Ni = 2n− 1. (5.2)

Examples of dihedral configurations are shown in Figs. 5.1a and 5.1b for n = 2 and n = 3
respectively. The first configuration corresponds to a right intersection angle φin = 90◦, and
results in the generation of three images, while in the second configuration φin = 60◦ which
generates five images. It should be made clear that, as for the single-plate configuration, dihedral
configurations are widely used in practice, most commonly the Active (Kraus) Corner Reflector
[83]. However, once again, interest in these applications is generally in altering the radiating
source free-space characteristics in order to produce new characteristics such as larger gain and
wider operating bandwidth, whereas in this work the aim is at retrieving the radiating source
free-space characteristics and exploiting echoes in order to accelerate the process.

If the two plates do not intersect, such as in Fig. 5.1c, the configuration may generally
be approximated as a dihedral configuration provided that the two plates are of sufficiently
large dimensions. One particular configuration of non-intersecting plates is the parallel-plate
configuration which allows the generation of an infinite set of controlled echoes. In this chapter,
the right dihedral configuration (φin = 90◦) and the parallel-plate configuration are studied
in order to explore the possibility of extending the concept to configurations involving sets of
multiple echoes of finite and infinite dimensions.

5.3 Dihedral Configuration

A closer insight into the right dihedral configuration is provided in Fig. 5.2. The AUT may a
priori be placed anywhere between the two plates, which is unlike the active corner reflector,
where the radiating source is generally placed near the corner symmetrically between the two
plates. Assuming PEC conditions, positions of the three generated virtual sources are easily
retrieved by using image theory. Taking the AUT position as the origin of the working azimuthal
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(a) (b)

(c) (d)

Figure 5.1 Extending the single-plate configuration in order to generate multiple controlled
reflections (a) Dihedral configuration, φin = 90◦ (b) Dihedral configuration, φin = 60◦ (c)
Non-intersecting plates configuration (d) Parallel-plate configuration.
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Figure 5.2 Graphical representation of the dihedral configuration with insight into excitation
polarizations related to each image.

plane, and assuming the vertical and horizontal plates are positioned at distances dv and dh

from the AUT, then the three images positions are expressed as follows,

image 1 : (x1, y1) = (2dv, 0),

image 2 : (x2, y2) = (2dv, 2dh),

image 3 : (x3, y3) = (0, 2dh).

It follows that the distance separating each source from the measurement point ri and the
corresponding measurement angles φi may be retrieved by applying a Cartesian-to-spherical
coordinates transformation with care to the ARP orientation of each source as shown in Fig. 5.2.

5.3.1 Mathematical Model

As for the single-plate configuration, the model is simplified in order to assess the concept
mathematical viability. Accordingly, the two plates are considered lossless and of infinite extent
and the AUT dimensionless and frequency independent. Assuming far-field conditions, the
E = GF model is maintained, the difference being only in the system dimensions and the sources
excitations polarizations. The number of unknowns in the right dihedral case being four, i.e.,
the ARP LOS plus the three images samples, this sets the dimension of the unknown ARP vector,
which is the second dimension of the system matrix, and a lower bound of the first dimension
of the system matrix which is the dimension of the measured field vector.
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5.3.1.1 TM case

A minimum of four frequencies is necessary to balance the mathematical system. The corre-
sponding GT M matrix is then a 4× 4 matrix formed by applying a Hadamard product between
the free-space Green’s matrix Go and a polarization matrix P,

G= Go ◦ P, (5.3)

The free-space Green’s matrix Go contains the free-space Green’s function samples corresponding
to each source at each frequency,

Go(i, j) =
1

r j
e−j 2π

c fi r j , 0≤ i, j ≤ 3

The distribution model of frequency samples making the working frequency vector impacts the
system conditioning as it defines the degree of orthogonality between each two rows of the
system matrix. The model adopted in this work has frequency samples linearly distributed over
the working bandwidth with the reference frequency being the smallest frequency,

f= [ f0 f1 f2 f3]
′, (5.4)

with
fi+1 − fi

f0
=

UFBW

3
, 0≤ i ≤ 2.

As we are going to show later, the choice of the uniform distribution of frequency samples was
motivated by its simplicity regarding the conditioning study, whereas the choice of setting the
reference frequency as the smallest working frequency is, as for the single-plate case, motivated
by the fact that the proposed concept is more adapted to high frequencies in terms of set-up
requirements.

The polarization matrix P is formed by concatenating a row polarization vector p along the
first dimension four times in order to effectively sum up the contributions of the four sources at
each of the four frequencies. The polarization vector is easily retrieved from Fig. 5.2 by noticing
that the first and last images correspond to a single reflection, making their corresponding Jz

excitations out of phase by 180◦ with respect to the AUT excitation, while the second image
corresponds to a double reflection making its Jz excitation in phase with the AUT excitation,

P=











−1 1 −1 1
−1 1 −1 1
−1 1 −1 1
−1 1 −1 1











.
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The overall system is then expressed as follows,











E( f0)
E( f1)
E( f2)
E( f3)






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Ep
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

− 1
r0

e−j 2π
c f0r0 1

r1
e−j 2π

c f0r1 − 1
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e−j 2π
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r3
e−j 2π
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− 1
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− 1
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c f2r2 1

r3
e−j 2π
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− 1
r0

e−j 2π
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r3
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
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
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





GT M
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





F(φ0)
F(φ1)
F(φ2)
F(φ3)











F

. (5.5)

5.3.1.2 TE case

The minimum number of required frequencies in order to balance the mathematical system in the
TE case is half the number of unknowns, that is, two. This is due to the default overdetermination
of the TE problem having two measurable field components for each ARP sample. The system
matrix is formed by a similar Hadamard product to the TM case but with the introduction of the
projection matrix M:

GT E = Go ◦M ◦ P (5.6)

The projection matrix of the basic TE model (N f = 2) is expressed as follows,

M=







Mx

−−−
My






=

















− sinφ0 − sinφ1 − sinφ2 − sinφ3

− sinφ0 − sinφ1 − sinφ2 − sinφ3

−−−−− −−−−− −−−−− −−−−−
cosφ0 cosφ1 cosφ2 cosφ3

cosφ0 cosφ1 cosφ2 cosφ3

















If more then two frequencies are used, then each section of the matrix is extended by introducing
a similar row accounting for the new frequency. The polarization matrix of the basic model
is easily retrieved from Fig. 5.2, and may be extended the same way when introducing new
frequencies, i.e., by introducing similar rows in each section to account for the new frequencies,

P=







Px

−−−
Py






=

















1 1 −1 −1
1 1 −1 −1
− − − −
1 −1 −1 1
1 −1 −1 1

















,
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The overall system of equations is expressed as follows,
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(5.7)

One may notice how the systems complexities in both transverse models naturally grows
when the number of contributing images rises.

5.3.2 Conditioning Issues

Retrieving ARP samples corresponding to both the TM and TE cases consists in inverting
the corresponding matrices equations (Eq. 5.5 and Eq. 5.7). This brings the discussion of
conditioning which measures the concept mathematical viability. The objective being to know if
it is possible to achieve well-conditioned systems using typical measurement parameters, and
whether it is possible, as function of these parameters, to predict optimal positions in terms of
conditioning. However, unlike the single-plate configuration, it seems very difficult to opt for
an analytical approach in studying conditioning due to the complexity of the system matrices.
The approach adopted herein to overcome this difficulty is mainly qualitative and is based on
the study carried over the single-plate configuration.

The dihedral configuration may theoretically be decomposed into three single-plate configu-
rations in order to handle the contribution of each image. The first and last images correspond
to physical single-plate configurations as they are generated by the vertical and horizontal
plates respectively. On the other hand, the second image, which corresponds to the double
reflection by the two plates, may be modeled as being generated by a hypothetical diagonal plate
perpendicularly bisecting the line segment between the AUT and the second image. Accordingly,
results of the single-plate conditioning study may be projected over each image in order to
understand the global conditioning behavior of the dihedral configuration.
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5.3.2.1 TM Model

Conditioning in the basic single-plate TM model is governed by two parameters: the working
UFBW which defines optimal hyperbolas, and the distances spread which defines conditioning
circles. In the right dihedral case, the frequency vector is characterized by a set of three UFBWs.
The first being the global working UFBW which is defined by the smallest and highest working
frequencies, and which thus defines the degree of orthogonality between the first and last
system matrix rows. The two remaining UFBWs are respectively one third and two thirds of
the global UFBW defining the degree of orthogonality between the first and second, and first
and third system matrix rows respectively. The choice of the uniform distribution of frequency
samples is advantageous in simplifying the conditioning study in the sense that it is sufficient to
study the degree of orthogonality between the first row and each of the remaining rows rather
than assessing all possible two-row combinations. For example, the degree of orthogonality
between the first and second rows is exactly the same as the degree of orthogonality between
each two consecutive rows as they yield exactly the same projection factor given the same
fractional bandwidth characterizing each two consecutive rows. This would not be the case
if the four frequency samples were distributed otherwise. Recalling the properties of optimal
hyperbolas discussed in Sec. 2.3.2.2, as function of the AUT-plate separation with respect
to the working UFBW, there exists three possibilities for the existence of optimal hyperbolas:
non existence, existence of the first-order hyperbola, and existence of higher order hyperbolas.
Accordingly, three families of optimal hyperbolas are considered in the right dihedral case, each
family corresponding to each UFBW, which in terms of the three plates positions determines
the existing hyperbolas corresponding to each plate. By the same token, each distances spread
defines three conditioning circles corresponding to the three plates. As discussed in Sec. 2.3.2.3,
the conditioning circle corresponding to the hypothetical diagonal plate would by default
have the larger diameter as the related AUT-plate separation is always larger compared to the
remaining plates. Keeping these considerations in mind, regions of optimal conditioning are
then regions where optimal hyperbolas from the three families and the three conditioning
circles are most likely to intersect, modeling the fact that the system matrix rows form a closely
orthogonal set.

In order to highlight these aspects, results of an example of a right dihedral configuration are
shown in Figs. 5.3a-5.3d. The set-up in this example is symmetrical with dv = dh = 10λ0, and
the global UFBW is set equal to 6%. The test zone is enlarged with respect to the single-plate
test zone having 40λ0 × 40λ0 dimensions bounded from the right and top by the plates. Figs.
5.3a-5.3c plots in order the projection factors between the first and each of the remaining rows
with the corresponding optimal hyperbola families (dashed). Each hyperbola family is plotted
using a different color (green, red, black in ascending UFBW order). An example of conditioning
circles corresponding to ρ = 0.6, which was taken as the maximum tolerated value in the
single-plate case, is plotted in all the figures (dotted). The covered test zone dimensions allow
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to clearly visualize large sections of conditioning circles. In the first figure which corresponds to
the narrower UFBW (UFBW1 = 2%), only the first-order optimal hyperbola corresponding to the
hypothetical diagonal plate exists, pointing towards the down left corner where it intersects with
optimal conditioning circles creating an optimal region. The projection factor takes high values
around the AUT and near the dihedral corner (upper right corner). In the second figure, the
UFBW2 = 4% is wide enough in order to generate first-order optimal hyperbolas corresponding
to the three plates, the one corresponding to the hypothetical plate being pushed near the corner
where it creates a small optimal region. Optimal hyperbolas corresponding to the physical
plates point towards the down left corner where they intersect with optimal conditioning circles
creating once again an optimal zone in this region. The projection factor takes high values in
this case near the two plates, in the immediate vicinity of the dihedral corner, and once again
around the AUT. Finally, in the third figure the UFBW= 6% pushes first-order hyperbolas towards
the corresponding plates and generates the second order hyperbola related to the hypothetical
plate. Consequently, the optimal region near the upper right corner is rather enlarged with
respect to the precedent figure, and diagonal positions pointing towards the down left corner
become ill-conditioned. It is interesting to note that the second order hyperbola corresponding
to the hypothetical plate at UFBW= 6%, coincides with the first-order hyperbola corresponding
to the same plate at UFBW=2%. This is easily verified by referring to Eq. 2.27 that expresses
the real semiaxis an which is the determinant factor of the hyperbola shape,

at ∆ fu1 = 2%=
∆ fu

3
−→ a0 =

1

4∆ fu1
=

3

4∆ fu
,

at ∆ fu = 6% −→ a1 =
2+ 1

4∆ fu
=

3

4∆ fu
.

The global conditioning is somewhat a superposition of the three projection factors maps.
Optimal conditioned zones are areas where the three projection factors take optimal values.
Whereas ill-conditioned zones are areas where at least one of the three projection factors take
high values. This is to translate the fact that the system is well-conditioned only when the matrix
rows are all -closely- orthogonal to each others. The same can be seen in Fig. 5.3d which plots
the condition number pattern of the studied configuration. The condition number takes it lowest
values (< 10) in two symmetrical regions near the diagonal in the bottom left corner where the
three projection factors take their lowest vales. Otherwise, the condition number takes high
values and dramatically grows around the AUT, near the plates and the dihedral corner, and
along the diagonal. Positions around the AUT are by default ill-conditioned because of the large
distances spread between the small LOS distance and the relatively larger images distances.
Positions near the plates are also ill-conditioned as the matrix tends towards singularity having
the LOS distance and the distance of the image generated from each plate being approximately
equal, which creates a redundancy in the matrix columns. Positions near the corner create a



5.3 Dihedral Configuration 153

0
.4

0
.5

0
.6

0.7

0.8

0.9

0
.9

-30 -20 -10 0 10

probe x position [λ
0
]

-30

-20

-10

0

10

p
ro

b
e

 y
 p

o
s
it
io

n
 [
λ

0
]

0

0.2

0.4

0.6

0.8

1

|ρ
r 1
2
|

(a)

0.4

0.5

0.5

0
.6

0.6

0
.7

0.7 0.7

0
.7

0
.8

0.8

0
.8 0.

9

-30 -20 -10 0 10

probe x position [λ
0
]

-30

-20

-10

0

10

p
ro

b
e

 y
 p

o
s
it
io

n
 [
λ

0
]

0

0.2

0.4

0.6

0.8

1

|ρ
r 1
3
|

(b)

0
.2

0.2

0
.3

0.3

0.3

0
.4

0.4

0.4

0
.5

0.5

0.5

0
.6

0.6

0.6

0.7

0
.7

0.7

0.8

0
.8

0.8

0
.9

0.9

0.
9

-30 -20 -10 0 10

probe x position [λ
0
]

-30

-20

-10

0

10

p
ro

b
e

 y
 p

o
s
it
io

n
 [
λ

0
]

0

0.2

0.4

0.6

0.8

1

|ρ
r 1
4
|

(c)

6

6

8

8

1
0

10 1
212

1
4

14

1
6

16

18

18

1
8

18

1
8

-30 -20 -10 0 10

probe x position [λ
0
]

-30

-20

-10

0

10
p
ro

b
e
 y

 p
o
s
it
io

n
 [
λ

0
]

2

4

6

8

10

12

14

16

18

20

κ
(G

T
M

)

(d)

4

4

6

6

8

8 1
010

1
2

12

1
4

14

1
6

16

18
18

18

1
8

18

18

18

1
8

18

1
8

18

18

1
8

18

-20 -10 0 10

probe x position [λ
0
]

-25

-20

-15

-10

-5

0

5

10

15

p
ro

b
e

 y
 p

o
s
it
io

n
 [
λ

0
]

2

4

6

8

10

12

14

16

18

20

κ
(G

T
M

)

(e)

6

6

8

8

1
0

10

12

1
2

1
2

12

14

14

1
4

14

16

1
6

16

16

18 1
8

1
8

18

18 18

18

18

18

-20 -10 0 10 20

probe x position [λ
0
]

-20

-10

0

10

20

p
ro

b
e

 y
 p

o
s
it
io

n
 [
λ

0
]

2

4

6

8

10

12

14

16

18

20

κ
(G

T
M

)

(f)

Figure 5.3 Conditioning patterns and impact of optimal hyperbolas (dashed) and conditioning
circles (dotted) as function of the set-up dimensions. Dihedral configuration, TM case, FBW =
6%, N f = 4: (a) ρr

12(GT M ), dv = dh = 10λ0 (b) ρr
13(GT M ), dv = dh = 10λ0 (c) ρr

14(GT M ),
dv = dh = 10λ0 (d) κ(GT M ), dv = dh = 10λ0 (e) κ(GT M ), dv = dh = 15λ0 (f) κ(GT M ),
dv = dh = 20λ0.
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redundancy between all the matrix columns with all sources being approximately equidistant
from the probe. Finally, diagonal positions are ill-conditioned in this scenario because the system
matrix is singular in this region due to the symmetry of the set-up making the first and last
images equidistant from diagonal positions. If the set-up is not symmetrical, then positions
equidistant from the first and last images are deviated from the diagonal.

One may notice that the global condition number in this scenario is relatively high even with
the quite large test zone dimensions, attaining an optimal valueκ(GT M )opt ≈ 5.2. This may be
explained by noticing that the system parameters make optimal hyperbolas corresponding to the
three families less likely to fall in the same zone. In order to overcome this, one of three solutions
may be applied. The first is by pushing the probe to further positions from the AUT in order to
reduce the distances spread such that optimal hyperbolas intersect with conditioning circles
corresponding to lower projection factors. This however may require large set-up dimensions in
order to achieve suitable conditioning levels. Alternatively, the two remaining solutions consists
in adapting the working UFBW to the AUT-plate separations in order to effectively distribute
optimal hyperbolas over the test zone, either by augmenting the AUT-plate separations or by
augmenting the working UFBW.

An example of the impact of augmenting the AUT-plate separations while keeping the same
test zone dimensions, which may be performed by moving the AUT, is shown in Fig. 5.3e where
dv = dh = 15λ0. In this case the global condition number pattern is improved reducing the
ill-conditioned area and improving the optimal conditioning level to around κ(GT M )opt ≈ 3.3.
This is mainly because the chosen AUT-plate separations allowed the generation of a higher
number of optimal hyperbolas with first-order hyperbolas being pushed closer to the plates and
second order hyperbolas being directed towards the diagonal improving as a result the global
conditioning. However, augmenting the AUT-plate separations is not necessarily advantageous
as it may, once becoming too large, introduce a large number of worst hyperbolas which would
intersect with optimal hyperbolas corresponding to other families reducing as a result the
optimal zones. The same can be seen in Fig. 5.3f where dv = dh = 20λ0. One may notice that
the majority of optimal hyperbolas are concentrated near the plates generating two symmetric
narrow optimal regions, while the rest of the test zone is dominated by an ill-conditioned region
due to the impact of wost hyperbolas. These set-up dimensions are adapted for a narrower
global UFBW, typically 4%.

The same impacts may be achieved by rising the working UFBW, as shown in Fig 5.4. Figs
5.4a-5.4f shows results when adapting the working UFBW to the original configuration having
dv = dh = 10λ0, by applying a UFBW= 9%. Unlike the previous scenario, in this case the first
hyperbolas family corresponding to UFBW1 = 3% contains first-order hyperbolas related to the
three plates. Moreover, the third hyperbolas family corresponding to the global UFBW contains
second order hyperbolas related to the physical plates and even a third order hyperbola related
to the hypothetical plate. The higher number of intersecting optimal hyperbolas improves the
global conditioning shape and levels, pushing positions with relatively low conditioning levels
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Figure 5.4 Conditioning patterns the impact of optimal hyperbolas (dashed) and conditioning
circles (dotted) as function of the operating UFBW. Dihedral configuration, TM case, dv =
dh = 10λ0: (a) ρr

12(GT M ), UFBW=9% (b) ρr
13(GT M ), UFBW=9% (c) ρr

14(GT M ), UFBW=9% (d)
κ(GT M ), UFBW=9% (e) κ(GT M ), UFBW=4% (f) κ(GT M ), UFBW=12%.
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towards the plates and the corner, and improving the optimal level over the test zone to attain
κ(GT M )opt ≈ 2.2. If the UFBW is not adapted to the AUT-plate separations, whether being too
narrow or too large, this would negatively impacts conditioning. For instance, Fig. 5.4d shows
the condition number pattern when applying a global UFBW= 4%. In this case the matrix is
ill-conditioned almost all-over the test zone (κ(GT M )≥ 25). The same UFBW has worked well
with the single-plate configuration using the same AUT-plate separation. It did not work in
this case because the first hyperbolas family corresponding to UFBW/3 is actually an empty
set with no AUT-plate separation respecting the criterion of generation of optimal hyperbolas.
Consequently, the projection factor between the first and second rows is generally high allover
the test zone, amplifying the global condition number as a result. On the other hand, rising the
working UFBW has a similar effect as enlarging the AUT-plate separations may introduce worst
hyperbolas which intersect optimal hyperbolas from other families. This is shown in Fig. 5.4e,
where an UFBW= 12% is used. The impact of worst hyperbolas is clear as it reduces the size of
optimal conditioning zones.

Globally, we may conclude that achieving well-conditioned systems in the TM case is possible
provided that the UFBW is adapted to the set-up dimensions. Relatively larger operating UFBWs
or set-up dimensions are required in order to achieve condition numbers of the same level as
in the single-plate configuration. The required larger UFBWs are due to the higher number of
used frequency samples (4) which need to be well spaced in order for the matrix rows to form a
closely orthogonal set. If a narrow UFBW is implied, then the AUT-plate separations should be
enlarged to guarantee the generation of optimal hyperbolas. The studied examples showed that
using typical narrow UFBW (< 6%), AUT-plate separations in the order of 10λ0 − 20λ0 allowed
to achieve condition number below 4 using a 40λ0×40λ0 test zone. Positions near the dihedral
corner and in the immediate vicinity of the two plates are generally ill-conditioned and require
very large UFBWs or AUT-plate separations in order to -partially- improve conditioning. If the
set-up is symmetric, then diagonal positions are systematically ill-conditioned as the matrix is
singular over these positions.

5.3.2.2 TE Model

Conditioning in the basic single plate TE model is governed by optimal circles over which
the projection matrix M is unitary and whose conditioning is biased by conditioning circles
defined by the distances spread. When introducing frequency diversity, optimal hyperbolas
defined by the working UFBW also contribute to conditioning by enlarging the optimal zone.
In the right dihedral case, an optimal circle is generated relative to each plate resulting in a
total of three optimal circles. Moreover, frequency diversity which is necessary to balance the
mathematical system introduces optimal hyperbolas relative to each plate. Perusing with the
same reasoning as in the TM case, zones of optimal conditioning would be zones where the
three optimal circles are most likely to intersect with the generated optimal hyperbolas and
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conditioning circles corresponding to low projection factors. Recalling the conditioning pattern
of the basic single-plate TE model, optimal zones are essentially in the vicinity of the plates
where optimal circles intersect conditioning circles corresponding to lowest projection factors.
Optimal hyperbolas may then be generated either to enlarge the optimal zone by using narrow
UFBWs such that they are oriented far from the corresponding plates, or in order to optimize
the conditioning level in the narrow region near the plate by using a high UFBW.

An example highlighting the discussed considerations is shown in Figs. 5.5a-5.5g for the
same set-up used in the TM scenario (dv = dh = 10λ0) with a UFBW=3%. Figs. 5.5a-5.5c
plot respectively the projection factors between the first column and each of the remaining
columns of the projection matrix highlighting the optimal circles corresponding to each plate.
Correlation coefficients are calculated using the matrix columns rather than rows in order to
eliminate the impact of the distances spread which is visualized using conditioning circles. The
three optimal circles are located in the vicinity of the dihedral corner depending exclusively on
distances separating each plate from the AUT. Figs. 5.5e-5.5f plot respectively the projection
factors between the first column and each of the remaining columns of the free-space Green’s
function highlighting the generated first-order optimal hyperbolas corresponding to each plate.
Except for the hypothetical plate which is relatively far from the AUT, the chosen UFBW directs
the optimal hyperbolas far from the corresponding plates. The global condition number pattern
is plotted in Fig. 5.5g showing, as expected, optimal regions near the plates with lowest values
in regions where optimal hyperbolas intersects optimal circles. In this scenario the chosen
parameters allowed achieving an optimal value κ(GT E)opt ≈ 5. It is interesting to note that
diagonal positions in the basic TE model are also ill-conditioned as is the case for the TM model.
The matrix singularity in the TE case being less forward and may be spotted by noticing that
the LOS and second image angles are either equal to π

4
or 3π

4
, hence,

{φ0,φ2}= {
π

4
,
3π

4
} ⇒







sinφ0 = cosφ0

sinφ2 = cosφ2

On the other hand, the first and last images angles are complementary, it follows,

φ1 +φ3 =
π

2
⇒







cosφ3 = sinφ1

sinφ3 = cosφ1
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Figure 5.5 Conditioning patterns and impact of optimal hyperbolas (dashed), optimal circles
(dot-dashed), and conditioning circles (dotted). dihedral configuration, TE case, FBW = 3%,
dv = dh = 10λ0: (a) ρc

12(M), N f = 2 (b) ρc
13(M), N f = 2 (c) ρc

14(M), N f = 2 (d) ρc
12(G), N f = 2

(e) ρc
13(G), N f = 2 (f) ρc

14(G), N f = 2, (g) κ(GM ), N f = 2 (h) κ(GT E), N f = 3 (i) κ(GT E),
N f = 4.
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Accordingly, the system matrix may be rewritten as follows,

Gdiag
T E =





















− e
r0

−j 2π
c f0r0 sinφ0

e
r1

−j 2π
c f0r1 sinφ1 − e

r2

−j 2π
c f0r2 sinφ2

e
r1

−j 2π
c f0r1 cosφ1

− e
r0

−j 2π
c f1r0 sinφ0

e
r1

−j 2π
c f1r1 sinφ1 − e

r2

−j 2π
c f1r2 sinφ2

e
r1

−j 2π
c f1r1 cosφ1

−−−−− −−−−− −−−−− −−−−−
e
r0

−j 2π
c f0r0 sinφ0 − e

r1

−j 2π
c f0r1 cosφ1

e
r2

−j 2π
c f0r2 sinφ2 − e

r1

−j 2π
c f0r1 sinφ1

e
r0

−j 2π
c f1r0 sinφ0 − e

r1

−j 2π
c f1r1 cosφ1

e
r2

−j 2π
c f1r2 sinφ2 − e

r1

−j 2π
c f1r1 sinφ1





















.

(5.8)
One may easily notice that the sum of the first and third rows is equal to the sum of the
second and fourth rows, implying that one row may be expressed as a linear combination
of the remaining rows. However, unlike the TM case, the singularity in the TE case is not
systematic; it may be overcome by introducing new rows to the matrix by using more than two
frequencies such that a linearly independent set of four rows is created. This is shown in Fig.
5.5h where three frequencies are used with the same global UFBW (3%). The figure shows that
the singularity over diagonal positions between the AUT and the bottom left corner is clearly
overcome attaining condition numbers in the order of 4.5 over certain positions. Rising the
number of working frequencies further is not necessarily advantageous as it introduces narrower
UFBWs between consecutive frequency samples that may yield no optimal hyperbolas and hence
would not improve the global conditioning pattern. This is highlighted in Fig. 5.5i where four
frequencies are used with the same UFBW, showing generally higher condition number levels
with respect to the previous scenario. However, one may notice that in both scenarios diagonal
positions near the dihedral corner are still ill-conditioned despite the non-singularity of the
matrix. This is in fact due to the global UFBW applied in both scenarios (UFBW = 3%) which, as
discussed earlier, generates optimal hyperbolas directed far from corresponding plates leaving
the zone near the dihedral corner free from optimal hyperbolas. This may be overcome by
applying a higher UFBW such that optimal hyperbolas are pushed towards the corresponding
plates. An example is shown in Fig. 5.6 by applying two larger UFBWs (9% and 12%) and
setting N f = 4 such that the same TM-frequency parameters are used. The figure shows how
rising the working UFBW improves conditioning near the dihedral corner, especially at 12%.
However, an UFBW= 9% allowed to achieve a better global conditioning pattern due to the
better distribution of optimal hyperbolas over the test zone given the set-up dimensions. In
this scenario, optimal condition numbers as lows as κ(GT E)opt ≈ 2.2 are achieved around the
diagonal near the test zone bottom-left corner, which keep improving as the distance from the
AUT rises, and which is the same optimal zone for the TM model.

We may conclude that achieving well-conditioned systems in the TE model is easier with
respect to the TM model as it is less restricted by requirements in terms of set-up dimensions
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Figure 5.6 Adapting frequency parameters to the set-up dimensions. Dihedral configuration, TE
case, dv = dh = 10λ0, N f = 4 (a) κ(GT E), UFBW= 9% (b) κ(GT E), UFBW= 12%.

and operating UFBWs. Conditioning in the basic TE model is somewhat the dual of the TM
model as optimal regions are near the plates. However, diagonal positions in the basic TE model
are also ill-conditioned if the set-up is symmetric. Using the same frequency parameters for
both models allows achieving common optimal regions, along with improving the general TE
conditioning pattern by eliminating the singularity over diagonal positions.

5.3.3 Angles Distribution and Mechanical Displacement Reduction

In what preceded it was shown that achieving well-conditioned systems is possible at specific
positions depending on configuration parameters for each transverse model. At this level it is
convenient to assess the usefulness of the proposed configuration in reducing the mechanical
effort as function of valid positions. The objective being to know whether it is possible to
develop rotation scenarios with maximum efficiency, i.e., allowing to theoretically cut the
classical mechanical effort by four, or at least to be able to generally quantify the eventual
mechanical effort reduction.

Evaluating the efficiency of the method requires a knowledge of the measured angles as
function of the chosen probe position. Developing a position-angles mapping in the right
dihedral case seems very difficult given the complexity of the configuration. Recall that the
analytical formulation of the position-angles mapping in the single-plate configuration (Sec.
2.4.1) yielded a quartic equation for the simplest case. Hence developing a general algorithm
in order to achieve maximum efficiency in the right dihedral case seems cumbersome. The
complexity of the right dihedral configuration makes it convenient to assess the covered angles
distribution as function of the probe position qualitatively, with the aim of developing rotation
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scenarios specific to certain effective positions in terms of the covered angles, which may be
retrieved numerically.

Globally, three configurations in terms of covered angles may be derived from the right
dihedral configuration as function of the probe position in each of the four azimuthal quarter-
planes. These configurations are depicted in Fig. 5.7, and may be summarized as follows,

• Configuration 1: The probe positioned in the quarter-plane containing the dihedral corner.
In this case all covered angles lie in the same quarter-plane containing the dihedral corner,
as shown in Fig. 5.7a.

• Configuration 2: The probe positioned in one of the quarter-planes adjacent to the quarter
plane containing the dihedral corner. In this case covered angles are distributed over the
half-plane formed by the two previous quarter-planes, as shown in Figs. 5.7b and 5.7c.

• Configuration 3: The probe positioned in the diagonal quarter-plane with respect to the
quarter plane containing the dihedral corner. In this case covered angles are distributed
allover the azimuthal plane with each angle being in a different quarter-plane as shown
in Fig. 5.7d.

A rotation algorithm would generally be possible in one of three cases. The first when the
four covered angles are linearly spaced such that the difference between each two consecutive
angles ∆φ is constant. Setting the sampling angle φs as an integer ratio of ∆φ,

mb =
∆φ

φs
. (5.9)

The AUT would be rotated mb−1 times before applying a jump of (3mb+1)φs in order to avoid
interference between already covered angles and angles yet to be covered. Such an algorithm is
most likely possible using configurations 1 and 3 where it seems theoretically possible to achieve
uniform angles distribution. Using configuration 1, this algorithm would yield a maximum
rotation efficiency if the covered range by the measurement angles is an integer ratio of 2π,

φ3 −φ1 =
2π

n
, (5.10)

n being typically greater than 4 as all covered angles in this case lie in the first quadrant. This
algorithm would perform well in this case for the TE model as it is possible to achieve well
conditioned systems using positions in the first quadrant. Unfortunately, it would be hard to
apply it in the TM model as positions in the first quadrant are generally ill-conditioned unless
very large UFBWs or AUT-plates separations are introduced. This should not be the case when
using configuration 3 as the probe is positioned in the third quadrant where optimal condi-
tioned positions are easily achieved for both transverse models when using common frequency
parameters. Achieving maximum efficiency in this case requires that the four measurement
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(a) (b)

(c) (d)

Figure 5.7 Angles distribution as function of the probe position: (a) All angles in the quarter-
plane containing the dihedral corner (b) Angles distributed over a half-plane, first case (c)
Angles distributed over a half-plane, second case (d) Angles distributed over all the azimuthal
plane.
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angles are uniformly distributed over the azimuthal plane, i.e., ∆φ = π
2

which seems hard to
achieve. Alternatively, it is easily verified that a mechanical rotation reduction factor of 3 is
achievable by neglecting the contribution of the first image and positioning the probe such that
the remaining three measurement angles are uniformly distributed over an angular range ∆φr

which is equal to an integer ratio of the azimuthal range,

∆φr = φ0 −φ2 = 2(φ3 −φ2) =
2π

n
. (5.11)

In this case the AUT would be rotated mb − 1 times before applying a jump of (2mb + 1)φs in
order to avoid interference between already covered angles and angles yet to be covered.

The second case where it is theoretically possible to develop an effective rotation algorithm
is most related to configuration 2, where as shown by Figs. 5.7b and 5.7c, measurement angles
are split into two groups each being in a different quarter-plane. Suppose that angles of the
same group are characterized by a constant difference say ∆φ1, which for instance would be
expressed as follows using configuration 2 as depicted by Fig. 5.7b,

φ0 −φ3 = φ2 −φ1 =∆φ1. (5.12)

A rotation algorithm of maximum efficiency would be possible if the difference between the
two groups is an integer multiple of ∆φ1,

φ3 −φ2 =∆φ2 = n∆φ1, (5.13)

along with the global covered range by the measurement angles being an integer ratio of the
azimuthal range,

φ0 −φ1 =∆φr =
2π

m
. (5.14)

In this case, a sampling angle equal to an integer ratio of ∆φ1 should be applied,

φs =
∆φ1

mb
, (5.15)

and hence a jump of (mb + 1)φs is performed after each mb rotations, and a jump of ∆φ2 +φs

is performed after each nmb rotations. This algorithm has the advantage of being related to
configuration 2 which requires placing the probe in either the second or the fourth quadrant
which are characterized by the easiness of achieving well-conditioned positions. However, it has
the inconvenience of the apparent difficulty of finding positions whose corresponding angles
respect the set of listed criteria (Eqs. 5.12-5.15).

The last case where an effective rotation algorithm is conceivable, and where a theoretical
mechanical rotation reduction factor of 3 is achievable consists in using diagonal positions,
which is possible using either configuration 1 or 3. In this case, the contribution of the second
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image is neglected; the remaining three angles being uniformly distributed over the covered
angular range,

∆φ = |φ3 −φ0|= |φ0 −φ1|, (5.16)

the AUT would be rotated in the same fashion as in the first case algorithm that targeted a
rotation effort reduction of 3. Unfortunately, this algorithm cannot be used in a TM model as
diagonal positions are systematically ill-conditioned due to the system matrix singularity.

Globally, we may conclude that effective mechanical effort reduction is achievable in the
right dihedral case using specific probe positions that yield uniform distributions of measurement
angles. These positions and related angles may be retrieved numerically and may be tabulated
for standard set-up dimensions.

5.3.4 Discussion about Practical Considerations

At this stage the mathematical viability of the simplified model of the right dihedral configuration
and its theoretical usefulness in accelerating the measurement process being assessed, it is
convenient to discuss the practical limitations of the proposed model. Generally, these are the
same limitations discussed in the single-plate case and which may be amplified in the right
dihedral case due to the configuration complexity. A brief discussion is presented here with
focus on model related limitations.

The first limitation comes from the adopted far-field model, which is however independent
from the configuration complexity level and is solely function of the tested antenna and the
operating frequency. Hence, discussions held when dealing with the single-plate configuration
also hold for the right dihedral configuration. The second limitation comes from the impact
of the plates on the AUT free-space radiation resistance, and which was considered negligible
in the single-plate configuration for useful AUT-plate separations. The presence of the second
plate in the dihedral case amplifies the induced current by the normally reflected waves but
the overall impact shall remain very weak for useful AUT-plate separations. The author of
[81] noted that a separation between a HWD and the corner of a right dihedral reflector equal
to S = 0.35λ is sufficient to consider the dipole radiation resistance equal to its free-space
radiation resistance. Next there are diffracted fields by the AUT aperture and the plates edges
and corners which are naturally amplified due to the impact of the second plate. The study
conducted in the single-plate case showed that positions near the plate are generally the best
protected against the two types of diffractions. Keeping the same reasoning for the dihedral
case, this would mean that positions near the corner in particular are very suitable in terms of
diffracted fields, while positions diagonally away from the corner are very exposed to diffracted
fields. As shown earlier, theses are -in general- respectively ill-conditioned and well-conditioned
positions. Consequently, care must be given to these two error sources which were shown to
be manageable with several solutions to reduce their respective impacts. Another error source
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which is amplified in the right dihedral case is the infinitesimal losses introduced by the plates
due to their finite conductivity, which would be amplified at the second image level. For instance,
assuming that both plates have a common scalar reflection coefficient Γ modeling the amplitude
attenuation of the reflected wave,

Γ = 1−δ, (5.17)

where δ is the corresponding amplitude attenuation which is assumed very small. The second
image would be characterized by the square of this reflection coefficient,

Γ 2 ≈ 1− 2δ, (5.18)

Consequently, infinitesimal losses introduced by the plates, are doubled at the second image level.
The proposed models need to be updated by applying a Hadamard product between the simplified
system matrices and a scalar reflection coefficients matrix modeling losses corresponding to
each image. An error on estimating these losses would then be amplified at the ARP sample
corresponding to the second image.

Finally, the developed models need also to be updated in order to take into account the
frequency impact on the free-space ARP. Considering the general TM and TE models which
involve the use of four frequency samples, the simplified system matrices may be updated by
multiplying them with a diagonal matrix containing the three adapted α-terms,

G= αGsimplified, (5.19)

with αT M =











1 0 0 0
0 α1 0 0
0 0 α2 0
0 0 0 α3











(5.20)

and αT E =







αT M | 0
−−− −−−

0 | αT M






(5.21)

The approach adopted in order to estimate the frequency impact in the single-plate case, which
involves a single α-term, and which consisted in spanning the space of solutions worked because
the corresponding problem showed to be convex. The same approach may be applied in the
basic right dihedral TE model which involves the use of two frequency samples, and thus a
single α-term. In order to be able to solve for the three α-terms in the general right dihedral
problem the corresponding error function should be assessed in order to verify if the problem is
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convex. Global optimization methods may be used to solve this issue. This effort has not been
performed in the present work and is left as a perspective.

5.3.5 Numerical Results

Numerical results to highlight the viability of the proposed method are presented for a right
dihedral configuration using plates of infinite extent 1. The α terms modeling the frequency
impact on the free-space ARP are retrieved from Table 4.1 where they were calculated using the
approach adopted in the single-plate model.

Results for the TM case are shown in Fig. 5.8 which compares the relative amplitude ARP
error corresponding to the HWD and the bicone. In this scenario the configuration of Fig.
5.3e is used, which is characterized by equal AUT-plate separations dv = dh = 15λ0 and an
UFBW= 6%. The considered test zone is a 20λ0 × 10λ0 zone located below the diagonal at
the positions shown in Fig. 5.8. The condition number pattern over the test zone is plotted in
Fig. 5.8a showing relatively accepted values (< 5) over almost half the test zone and average
values over the rest of the test zone < 12. Interestingly, error is generally lower in the bicone
case than in in the dipole case. This is explained by the low level of the AUT-diffraction in
the bicone case compared to the dipole case, as it was shown in Sec. 4.3.3; the impact of the
AUT-diffraction in the present scenario being higher due to the contribution of the second plate.
The LOS error in both cases is generally weak being below −40dB in the bicone case and below
−35dB in the dipole case. Image error in the bicone case is more important at the second
image level, oscillating between −32dB and values as low as −70dB in the well conditioned
zone, and rises up to values in the order of −22dB in the ill-conditioned region at the right
of the test zone. Otherwise error is higher over samples corresponding to the third image,
where it is up-bounded by −24dB, then samples corresponding to the first images where it
is up-bounded by −28dB. These results may be explained by extending the error spread rule
retrieved for the single-plate model, and which stated that error spread is generally governed
by the distances spread making image samples more vulnerable to error than LOS samples.
In the dihedral case, the vulnerability of image samples to error is ordered by the distance
separating each image from the probe. Accordingly, the second image samples are by default
the most vulnerable to error due to the larger distance separating the second image from the
test zone, while distances corresponding to the first and third images depend on the probe
position with respect to the vertical and horizontal plates respectively. The test zone being
closer to the first plate in the considered scenario, distances corresponding to the first image
are consequently smaller than distances corresponding to the third image, making the related
error lower. However, the error spread rule, which was developed based on a Gaussian model,
should not be systematically generalized for the dihedral case independently of the considered

1Strictly speaking, the used plates are of finite dimensions as FEKO allows the generation of a single infinite PEC
ground. The infinite plates are modeled by deactivating edge and corner diffracted rays, which is possible in FEKO
using UTD plates, such that only direct and reflected rays are considered.
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error source. This is highlighted by considering image errors corresponding to the dipole, where
the third image error is generally higher than the second image error. The error pattern of the
third image samples, being higher in the middle of the test zone where it rises to values above
−30dB, and decays symmetrically as the probe is moved horizontally to the sides, suggests that
the third image samples are impacted by the AUT position, which in this case is located between
the test zone and the third image. Given the higher RCS of the dipole, the AUT is considered
as an obstacle for vertically incidenting rays from the third image. This adds another criterion
for choosing valid probe positions as each image has a related shadow region as function of its
position with respect to the AUT and which depends on the AUT RCS.

Results for the TE case using the same configuration and frequency parameters are shown
in Fig. 5.9 where both AUTs are oriented to the reference TE orientation (parallel to x̂).
Conditioning in this case is better than in the TM case which, as discussed earlier, follows from
the system over-determination, being up-bounded by around 5.5. However, error is generally
larger in the TE case than in the TM case; which is mainly due to the contribution of the field
radial component. The LOS error is very low for both AUTs being below −40dB over the majority
of the test zone. Error corresponding to the first and second images is considerably lower in the
dipole case, whereas error corresponding to the third image is relatively lower in the bicone
case. A general explanation of these observations is the low impact of the AUT diffraction
over results corresponding to the dipole compared to the TM case, which is exclusively caused
by the contribution of the horizontal plate; the ARP null being oriented towards the vertical
plate. Hence, error is mainly due to the far-field model assumption, which holds better for the
dipole due to its smaller dimensions. The first image error is particularly high in the bicone
case, oscillating around −20dB over the majority of the test zone while error corresponding to
samples of the remaining images for the same antenna is generally lower than −30dB. This may
be explained by noticing that the first image samples correspond to angles closer to directions of
weak power emission, which are characterized by a stronger impact of the field radial component,
and a larger relative error as well; error being compared locally. On the other hand, error
corresponding to the third image is larger in the dipole case, with values above −30dB over
the majority of the test zone, most probably due to the impact of the AUT position given the
error pattern which is similar to the TM error pattern corresponding to the same image. The
dipole having larger RCS, it forms an obstacle to rays related to the third image with larger
impact than in the bicone case. These results highlight the efficiency of the proposed method
in retrieving ARP samples once optimal conditions are combines; that is when using optimal
positions in terms of conditioning and applying the correctα terms, along with controlling the
impact of the the various diffracted fields.

An additional advantage of the larger spatial diversity created by the dihedral configuration,
other than further accelerating the measurement, is improving the performance of the regression.
This is shown in Fig. 5.10 where a Gaussian RBF regression was applied to a set of eleven
probes linearly spaced by 2λ0, corresponding to a horizontal cut at the top of the studied test
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Figure 5.8 ARP error as function of the probe position in a hypothetical scenario (infinite PEC
plates). Right dihedral configuration, TM case, xpv = xph = 15λ0, FBW = 6%: (a) κ(GT M ) (b)
ε(F)los, HWD (c) ε(F)los, bicone (d) ε(F)im1, HWD (e) ε(F)im1, bicone (f) ε(F)im2, HWD (g)
ε(F)im2, bicone (h) ε(F)im3, HWD (i) ε(F)im3, bicone.



5.3 Dihedral Configuration 169

3.4

3.6

3.8

4

4
.2

4
.4

4.6

4
.6

4
.8 5

5
.2

-10 -5 0 5 10

probe x position [λ
0
]

-25

-20

-15

p
ro

b
e
 y

 p
o
s
it
io

n
 [
λ

0
]

3

4

5

6

κ
(G

T
E
)

(a)

-10 -5 0 5 10

probe x position [λ
0
]

-25

-20

-15

p
ro

b
e
 y

 p
o
s
it
io

n
 [
λ

0
]

-80

-60

-40

-20

0

ǫ(
|F

|)
lo

s
 [
d
B

]

(b)

-10 -5 0 5 10

probe x position [λ
0
]

-25

-20

-15

p
ro

b
e
 y

 p
o
s
it
io

n
 [
λ

0
]

-80

-60

-40

-20

0

ǫ(
|F

|)
lo

s
 [
d
B

]

(c)

-10 -5 0 5 10

probe x position [λ
0
]

-25

-20

-15

p
ro

b
e
 y

 p
o
s
it
io

n
 [
λ

0
]

-80

-60

-40

-20

0

ǫ(
|F

|)
im

1
 [
d
B

]

(d)

-10 -5 0 5 10

probe x position [λ
0
]

-25

-20

-15

p
ro

b
e

 y
 p

o
s
it
io

n
 [
λ

0
]

-80

-60

-40

-20

0

ǫ(
|F

|)
im

1
 [
d
B

]

(e)

-10 -5 0 5 10

probe x position [λ
0
]

-25

-20

-15

p
ro

b
e

 y
 p

o
s
it
io

n
 [
λ

0
]

-80

-60

-40

-20

0

ǫ(
|F

|)
im

2
 [
d
B

]

(f)

-10 -5 0 5 10

probe x position [λ
0
]

-25

-20

-15

p
ro

b
e

 y
 p

o
s
it
io

n
 [
λ

0
]

-80

-60

-40

-20

0

ǫ(
|F

|)
im

2
 [
d
B

]

(g)

-10 -5 0 5 10

probe x position [λ
0
]

-25

-20

-15

p
ro

b
e

 y
 p

o
s
it
io

n
 [
λ

0
]

-80

-60

-40

-20

0

ǫ(
|F

|)
im

3
 [
d
B

]

(h)

-10 -5 0 5 10

probe x position [λ
0
]

-25

-20

-15

p
ro

b
e
 y

 p
o
s
it
io

n
 [
λ

0
]

-80

-60

-40

-20

0

ǫ(
|F

|)
im

3
 [
d
B

]

(i)

Figure 5.9 Performing the inversion with hypothetical infinite PEC plates, right dihedral con-
figuration, TE case, xpv = xph = 15λ0, FBW = 6%: (a) κ(GT M ) (b) ε(F)los, HWD (c) ε(F)los,
bicone (d) ε(F)im1, HWD (e) ε(F)im1, bicone (f) ε(F)im2, HWD (g) ε(F)im2, bicone (h) ε(F)im3,
HWD (i) ε(F)im3, bicone.



170 Extensions to the Basic Configuration: Preliminary Study

0 60 120 180 240 300 360

φ [°]

0

0.2

0.4

0.6

0.8

1

R
B

F

(a)

0 60 120 180 240 300 360

φ [°]

-1

-0.5

0

0.5

1

A
R

P
 [
d
B

]

reference

direct inversion

regression applied

(b)

0 60 120 180 240 300 360

φ [°]

-1

-0.5

0

0.5

1

A
R

P
 [
d
B

]

reference

direct inversion

regression applied

(c)

0 60 120 180 240 300 360

φ [°]

-15

-10

-5

0

A
R

P
 [
d
B

]

reference

direct inversion

regression applied

(d)

0 60 120 180 240 300 360

φ [°]

-15

-10

-5

0

A
R

P
 [
d
B

]

reference

direct inversion

regression applied

(e)

Figure 5.10 Applying linear regression to reduce the ARP error with 11 probe positions (x i, yi) =
(−10λ0 : 2λ0 : 10λ0,−15λ0): (a) Regression functions, Gaussian RBFs, Nr = 10, s = 36◦ (b)
Calculated ARP samples, TM mode, HWD (c) Calculated ARP samples, TM mode, bicone (d)
Calculated ARP samples, TE mode, HWD (e) Calculated ARP samples, TE mode, bicone.
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zone. As shown in the figure, the large number of measured samples improve the performance
of the regression which reduces the maximum absolute error from ±0.6dB to ±0.2dB, and
from ±0.4dB to ±0.1dB for the HWD and the bicone respectively in the TM mode. An equally
adequate performance is observed is the TE mode, where regression reduced the maximum
absolute error from ±0.5dB to ±0.2dB in the dipole case, and from ±1.5dB to ±0.5dB in the
bicone case. Note that we are referring to the absolute error here rather than the relative error.
One may notice the usefulness of extending the single-plate configuration in further accelerating
the measurement. In this scenario, the measured samples are split into two groups, the LOS and
the first image samples in one group (to the right in the figures), and the second and third image
in the other group (to the left in the figures). Hence, samples of the first group correspond to a
single-plate configuration, while samples of the second group represent the extension carried by
the right dihedral configuration, which covers an angular range 250% larger than the range
covered by samples of the first image. Although this scenario does not highlight the maximum
efficiency that could be carried using an effective rotation scenario, it is however useful in
highlighting the advantage of the right dihedral configuration with respect to the single-plate
configuration.

5.4 Parallel-Plate Configuration

The parallel-plate configuration has the particularity of generating an infinite set of controlled
echoes. A graphical representation of the set-up and the corresponding image theory model
is shown in Fig. 5.11. The AUT is positioned between the two plates at distances d1 and d2

from the first and second plates respectively. If we refer to the source order by the number
of reflections underwent by the corresponding echo, then as shown in Fig. 5.11, the image
theory models this configuration by extending the original set-up horizontally in both directions
with a mirror effect alternating the source orientation and position within the virtual set-up
corresponding to each order [84]. Accordingly, horizontal positions of the virtual sources are
retrieved by a simple algorithm that takes into account the mirror effect, the vertical positions
being the same as the AUT vertical position. Images’ positions may be expressed by the following
equations,

odd order images: xn =







(n+ 1)d1 + (n− 1)d2 right images

−
�

(n+ 1)d2 + (n− 1)d1

�

left images
, n ∈ 2N∗ + 1 (5.22)

even order images: xn =







n(d1 + d2) right images

−n(d1 + d2) left images
, n ∈ 2N∗ (5.23)
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Figure 5.11 Graphical representation of the parallel-plate configuration with insight into the
polarization of the closet three images into the AUT.

Measurement angles are then retrieved by applying a forward Cartesian-to-spherical coordinates
transformation. Fig. 5.11 also provides an insight into the polarization of the excitation of each
image, showing the normal component with respect to the plate (Jx) unchanged at the images
level, whereas parallel components (Jy and Jz) alternating their directions at each image order.

The field intercepted by the probe is the superposition of the field generated by the AUT
and fields generated by all the images. A mathematical model requires truncating the number
of contributing images in order to allow a numerical implementation. It is then convenient to
study the impact of truncating the infinite number of images on the proposed model.

5.4.1 Truncating the Number of Contributing Images

The aim of this study is the assessment of the level of field error resulting from truncating the
number of contributing images, the actual number being infinite. Several factors suggest that the
number of images may be truncated to relatively small numbers. The first being the fact that the
image order and the corresponding distance separating it from the probe grow proportionally.
Accordingly, higher order images are positioned far from the probe and hence they contribute
less to the overall field. Moreover, by taking into account small losses introduced by the plate
which attenuate the field amplitude after each reflection, then fields generated by higher order
images, which correspond to higher numbers of reflections, are more attenuated with respect to
fields corresponding to lower order images. Also, if the AUT is directive, then if it is oriented
such that directions of weak power emission are directed towards the plate, the contribution of
higher order images is cut down more rapidly. Truncating the number of contributing images is
also motivated by the fact that higher order images correspond to measurement angles that tend
rapidly towards the [0◦, 180◦]-range limits for useful set-up dimensions. This is highlighted in
Fig. 5.12 which shows angles covered by two different set-ups respectively characterized by
equal AUT-plate separations d1 = d2 = 5λ0 and d1 = d2 = 10λ0, the probe being positioned
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(a) (b)

Figure 5.12 Angles covered by the parallel plates configuration as function of the AUT-plates
separations. Probe positioned at (x , y) = (1λ0, 5λ0), number of considered images Ni = 6 (a)
d1 = d2 = 5λ0 (b) d1 = d2 = 10λ0.

at (x , y) = (1λ0, 5λ0). Considering the contribution of a total number of eight images equally
distributed over the right and left sides (up to fourth order images), the first set-up shows
low angular contribution of the two highest order sets with respect to each others, having
angles covered by both sets being very close. Rising the AUT-plate separations with respect
to the AUT-probe separation further reduces the angular contribution of higher order images,
as is the case for the second set-up where all sets other than first-order images cover close
angles. Accordingly, higher order images contribute less to the measurement, which motivates
truncating the number of contributing images. Finally, the number of images Ni determines
the dimensions of the mathematical system, setting a lower limit to the number of required
frequency samples in order to balance the system, which is equal to the number of images
plus the AUT (N f = Ni + 1) in the TM model, and half that number in the basic TE model.
Consequently, rising the number of contributing images requires the ability of well predicting
the associated frequency impact on the free-space ARP, which is naturally more complicated for
higher numbers of frequency samples.

To verify the field error due to the truncation, a synthetic study based on the far-field model
is conducted by comparing the field generated using a variant number of images to a reference
field calculated by a sufficiently large number of images, Nref, set to 300 here. Results generated
using the two set-ups used in order to assess the angular contribution of higher order images
(Fig. 5.12) are shown in Fig. 5.13 for a number of contributing images varying between 1 and
30. Figs. 5.13a and 5.13b show results for an AUT with a hypothetical isotropic ARP. Using the
first set-up, error is very high over the Ey component being above −10dB for all considered
number of images, whereas it is considerably lower over the Ex component being generally
below −20dB down to less than −30dB for Ni > 15. On the other hand, error over the TM
component Ez is considerably high for Ni < 5 (> −20dB) but is attenuated gradually to very
low levels, oscillating between −20dB and −60dB. In order to explain these observations, note
that TE fields are biased by the corresponding measurement angles in addition to the natural
attenuation following the distance separating each source from the probe. Normalizing all
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Figure 5.13 Field relative amplitude error as function of the number of contributing images,
reference taken using 300 images, and impact of a scalar amplitude attenuation of 1% introduced
by the plate (dashed): (a) d1 = d2 = 5λ0, isotropic ARP (b) d1 = d2 = 10λ0, isotropic ARP (c)
d1 = d2 = 5λ0, sinusoidal ARP (d) d1 = d2 = 10λ0, sinusoidal ARP.

quantities with respect to the common ARP value (isotropic case), the relative field amplitude
error for each component may be expressed by the following equations,
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where G i is the free-space Green’s function corresponding to the ith image, and pi is the polar-
ization term to take into account the alternating orientations of the Jy excitation corresponding
to images of different orders,

pi =







1 even image order

−1 odd image order
(5.26)

Recalling that higher order images correspond to measurement angles in the vicinity of the
[0◦, 180◦]-range limits, consequently their corresponding Ey fields are amplified with respect to
lower order images by the projection operator (cosφi), in contrast with Ex components where
fields corresponding to higher order images are rapidly attenuated by the projection operator
(sinφi). The Ey components related to lower order images (and to the LOS) are particularly
very attenuated given the chosen probe position, i.e.,

φi −→
π

2
when i −→ 0,

making the contribution of higher order images as important as lower order images.

On the other hand, the TM component Ez is exclusively attenuated by the distance separating
each source from the probe. The corresponding error may be expressed as follows,
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which explains the gradual attenuation of the corresponding error. Enlarging the AUT-plates
separations reduces the general error as images are pushed away from the the probe. As shown
by Fig. 5.13b, which corresponds to the second set-up (dv = dh = 10λ0), error over the Ex

and Ez components is reduced to levels below −30dB for Ni > 2. However, error over the Ey

component remains high, around −10dB, due to the important contribution of higher order
images. The impact of small losses introduced by the plate in reducing the contribution of
higher order images is assessed by introducing a scalar reflection coefficient equal toΓ = 0.99.
Results are plotted in the same figures using dashed style. The impact is generally very weak
and may be neglected for the considered image numbers.

Figs 5.13c and 5.13d show results for an AUT having a sinusoidal ARP, which would cor-
respond to the azimuthal cut of the HWD ARP in TE mode when oriented in the reference
orientation set in the previous chapters. In this case, the APR nulls being directed towards the
two plates, 5 images are sufficient using the first set-up to reduce error over both Ex and Ez

components below −40dB; error over the Ey component remaining generally high, exceeding
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−30dB for all considered number of images. Using the second set-up, error may be neglected
over the Ex and Ez components for useful numbers of images, with error over the Ey component
considerably reduced to levels below −30dB for Ni ≥ 10. From theses results we may conclude
that useful AUT-plates separations, in the order of 10λ0, are sufficient to truncate the number
of contributing images to less than 10 images, with error over the Ey component, and general
error when directions of maximum power emission are directed towards the plates may be
reduced by applying linear regression.

5.4.2 Mathematical Model

Mathematical models for the TM and TE modes may be developed following the same approach
as for the single-plate and dihedral configurations, i.e., by introducing frequency diversity
in order to balance the mathematical systems. The only difference with the parallel-plate
configuration is the fact that the number of considered images Ni, which defines the system
dimensions, is set manually rather than being naturally defined by the configuration. The choice
of Ni should however approximate the number of contributing echoes in order to reduce the
truncation error. The same set of simplifying approximations is maintained, i.e., the plates are
considered PEC and of infinite extent, and the AUT dimensionless and frequency independent.
These assumptions shall simplify the conditioning study.

5.4.2.1 TM Case

The number of frequencies required to balance the mathematical system in the TM model is
at least equal to the number of considered sources, which is Ni + 1. A square system matrix is
characterized by N f = Ni + 1, and is formed by applying a Hadamard product similar to the
one describing the dihedral TM model (Eq. 5.3) between the free-space Green’s matrix and
the polarization matrix. The frequency vector characterizing rows of the free-space Green’s
matrix is generated using the same model which is by having frequency samples being uniformly
spaced over the working UFBW. Whereas the polarization matrix is generated based on Eq. 5.26
taking into account the alternating orientations of the TM excitation corresponding to images of
different orders. Accordingly, the system is expressed as follows,
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Note that sources in the mathematical model are sorted by referring to the image model as
depicted by Fig. 5.11 by setting the first source as the leftmost image and going rightward.

5.4.2.2 TE Case

The number of frequencies required in order to balance the mathematical system in the TE
model is half the number of considered sources. However, recalling the studies carried over
the single-plate and dihedral configurations, one would expect that using the same number of
frequencies as in the TM model, which over-determines the system, is advantageous in terms
of both conditioning and ARP results. The system matrix is formed by applying a Hadamard
product similar to the one describing the dihedral TE model (Eq. 5.6) between the free-space
Green’s matrix, the projection matrix, and the polarization matrix. The polarization matrix
keeps entries related to the Ex component unchanged, and alternates signs of entries related
to the Ey component based on Eq. 5.26. Accordingly, the system matrix may be expressed as
follows,
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Ideally, N f = Ni + 1 such that the same frequency parameters are used for both transverse
models.

5.4.3 Conditioning Issues

As for the right dihedral case, the conditioning study for the parallel-plate configuration, which
is further more complex, is also based on the single-plate model. The approach adopted herein
is by reducing the parallel-plate configuration to a set of single-plate configurations, mainly
two single-plate configurations as first-order images have generally the most important impact.
Accordingly, the behavior of the condition number is studied with respect to optimal hyperbolas,
optimal circles, and conditioning circles developed in the single-plate study.
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5.4.3.1 TM Model

The TM model requires using a relatively large number of frequencies to balance the system
given the relatively high number of considered images with respect to previously studied models.
This implies dividing the global working UFBW to much narrower UFBWs, which as shown for
the dihedral case, would require the smaller UFBW which models the projection between each
two successive rows to be large enough in order to allow the generation of an optimal hyperbola.
The subtility of the TM model follows from the fact that this would result in enlarging the global
UFBW which yields the generation of higher order optimal hyperbolas but also worst hyperbolas
which interfere with optimal hyperbolas from other families and reduces the optimal zone. As
an illustration let us consider a number of examples of the behavior of the condition number as
function of the operating UFBW as depicted in Fig. 5.14. The set-up used in these scenarios
is characterized by equal AUT-plate separations d1 = d2 = 12λ0, and a 40λ0 × 24λ0 test zone
bounded by the two plates from the sides and by the AUT from the bottom. Conditioning
circles corresponding to ρ = 0.3, and optimal hyperbolas corresponding to each scenario are
superposed to each related conditioning pattern. Note that, for simplicity and in order to have
more proper plots, only first-order hyperbolas are plotted. Fig. 5.14a shows the conditioning
pattern when considering a number of images Ni = 6, with an UFBW=8% which is somewhat
adapted to the configuration parameters. The symmetry of the set-up induces a symmetrical
conditioning pattern with two identical optimal regions in each half of the test zone. Unlike the
single-plate and dihedral configurations, conditioning in this case does not necessarily improve
when the AUT-probe separation grows. Instead, the condition number takes its minimum value
(κ(GT M )opt ≈ 4.7) at a vertical AUT-probe separation around 20λ0, and raises gradually as
the probe is moved in all directions. In view of this, positions near the AUT, near the plate,
at the horizontal center of the test zone, and at large distances from the AUT (40λ0) are all
ill-conditioned. Optimal conditioned regions are characterized by the intersection of a large
number of optimal hyperbolas with conditioning circles corresponding to low projection factors.
The chosen UFBW along with the AUT-plate separations were such that optimal hyperbolas are
very well distributed over the test zone such that their intersections with conditioning circles
yielded large optimal regions. If the UFBW is reduced, or similarly if the AUT-plate separations
are reduced, optimal hyperbolas are pushed away from the corresponding plates towards the
x-axis, which pushes optimal regions towards the AUT near which optimal hyperbolas are most
likely to intersect each others. The same can be seen in Fig. 5.14b where an UFBW=7% is
applied generating optimal regions centered at a vertical AUT-probe separation around 12λ0.
However, the optimal condition number value in this case has raised to κ(GT M )opt ≈ 6.7 which
may be explained by recalling that reducing the UFBW (or the AUT-plates separations) reduces
the degree of orthogonality between the matrix successive rows which negatively impacts the
global conditioning. If the UFBW is further reduced, this may lead to successive rows being
approximately parallel which would dramatically degrade conditioning. The same can be seen
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Figure 5.14 Evolution of the condition number versus the probe position as function of the
operating UFBW and the number of considered images, and relationship with optimal hyperbolas
(dashed) and conditioning circles (dotted). Parallel-plate configuration, d1 = d2 = 12λ0 (a)
UFBW= 8%, Ni = 6 (b) UFBW= 7%, Ni = 6 (c) UFBW= 6%, Ni = 6 (d) UFBW= 9%, Ni = 6 (e)
UFBW= 8%, Ni = 8 (f) UFBW= 8%, Ni = 4.
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in Fig. 5.14c where further reducing the UFBW to 6% amplified the condition number to
levels above 25 all-over the test zone. If the UFBW is raised above the adapted value (or if the
AUT-plates separations are enlarged), this would result in first-order hyperbolas being pushed
towards corresponding plates pushing the intersection zone, which is the conditioning optimal
zone further from the AUT. This is highlighted by Fig. 5.14d where an UFBW= 9% is applied,
pushing optimal zones around vertical AUT-plates separations equal to 25λ0. In this case the
optimal condition number value is not negatively affected; it may even be improved as shown
by Fig. 5.14d (κ(GT M )opt ≈ 3.6). However, the size of the corresponding optimal region is
reduced due to the appearance of worst hyperbolas. In this scenario the size reduction of the
optimal region was not very important because the UFBW was more or less still adapted to the
set-up dimensions. This would not be the case if wider UFBWs or AUT-plates separations are
introduced, which may reduce the size of optimal regions to very narrow levels.

The condition number is also function of the number of considered images which governs
the number of frequency samples. As stated earlier, raising the number of images implies raising
the number of frequency samples which divides the global UFBW into narrower UFBWs reducing
the degree of orthogonality between the system matrix successive rows. The same can be seen
in Fig. 5.14e, where the number of considered images is raised to Ni = 8 for a configuration
characterized by an UFBW= 8%. The difference with respect to Fig. 5.14a (Ni = 6) is clear as
conditioning is degraded in terms of both the optimal region size and the optimal condition
number level which is raised to κ(GT M )opt ≈ 6.3. On the contrary, reducing the number of
considered images is advantageous in terms of conditioning as it provides a larger degree of
freedom in setting the configuration parameters, namely the set-up dimensions and the UFBW
in order to achieve well conditioned positions. This is highlighted in Fig. 5.14f, where reducing
the number of considered images to Ni = 4 largely improved conditioning with respect to the
previous scenario, enlarging optimal regions to almost takeover the test zone, and reducing the
optimal condition number value down to κ(GT M )opt ≈ 3.2.

It is convenient, and perhaps easier, to also assess regions of ill-conditioning pointed out
earlier. Similarly to the single-plate and dihedral configurations, regions in the vicinity of the
AUT and the plate are ill-conditioned because of the large distances spread for the former and
due to the fact that the system matrix tends towards singularity in the latter. On the other hand,
positions far from the AUT require large UFBWs in order to guarantee the intersection between
the different optimal hyperbolas and conditioning circles corresponding to low projection factors.
If this is not the case, then the low distances spread characterizing AUT-probe separations that are
large compared to the AUT-plates separations becomes disadvantageous as it makes the system
matrix tends towards singularity, having its columns defined by relatively similar distances.
Finally, centered positions between the two plates are ill-conditioned in all the studied scenarios
because the system matrix was singular over theses positions. This may be easily verified by
noticing that the matrix over these positions is redundant having columns related to same
order images being exactly the same; which follows from the fact that same order images are
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(a) (b)

Figure 5.15 Parallel-plate configurations to avoid as they yield singular system matrices: (a)
The AUT and the probe placed at a common horizontal position (b) The distance separating the
AUT from one plate is equal to the distance separating the probe from the other plate.

equidistant from the test zone horizontal center due to the set-up symmetry. This is however
a special case that may be generalized by noticing that whenever the probe faces the AUT, as
depicted by Fig. 5.15a, the corresponding system matrix is singular. This follows from the fact
that even-ordered images are by definition equidistant from the AUT, as stated by Eq. 5.23,
and which is essentially a horizontal distance as all images are at the same vertical level as the
AUT. It follows that if the probe is at the same horizontal level as the AUT, i.e., x = x ′, then
even ordered image are equidistant from the probe as well. This means that in this case the
system matrix columns related to even ordered images are redundant, which yields a singular
matrix. If the probe faces the AUT at the center of the test zone, as was the case in the studied
scenarios, then all images of the same order are equidistant from the probe, yielding a system
matrix of rank Ni

2
+ 1 instead of the full rank Ni + 1 necessary for the system matrix to be well

conditioned. Another configuration that yields a singular matrix is when the distance separating
the AUT from one plate is equal to the distance separating the probe from the other plate, as
shown in Fig. 5.15b. In this case odd-ordered images are equidistant from the plate, which is
easily verified by noticing that the horizontal distance separating the AUT and the probe is the
difference between the distances separating the AUT from the two plates,

dh
AUT-probe =

�

�d2 − d1

�

� . (5.30)

Distances separating odd ordered images from the probe are then retrieved from Eqs. 5.22 and
5.30 yielding,

d2n+1
right images-probe = d2n+1

left images-probe = (2n+ 1)(d1 + d2), n ∈ N∗, (5.31)

generating as a results a singular matrix. Accordingly, both configurations depicted by Fig. 5.15
must be avoided in order to keep the possibility of achieving well-conditioned systems.
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Globally, we may conclude that achieving well-conditioned systems using the parallel-plate
TM model is possible using typical measurement parameters, although being more constrained
with respect to previously studied configurations due to the higher complexity of the associated
model. Achieving well-conditioned systems requires adapting the number of contributing images
to the frequency parameters which in their turn should be adapted to the set-up dimensions.
Reducing the number of images is advantageous in terms of conditioning.

5.4.3.2 TE Model

The TE model is characterized by the contribution of the projection matrix whose impact on
conditioning in the single-plate configuration was modeled by the optimal circle over which
the LOS and image fields are orthogonal. This reasoning was extended to the dihedral case
with success because the corresponding model may be decomposed into three single-plate
configurations with convenient simplifying approximations. This is however not the case with
the parallel-plate model which is generally characterized by a larger number of contributing
images which implies an approximation when reducing it to two single-plate configurations.
This approximation was of relatively lower impact in the TM model due to the lower complexity
of the system matrix with respect to the TE system matrix. Hence, the validity of the approach
adopted to explain the behavior of the condition number up to this point mainly depends in
this case on the dimensions of the system matrix which is defined by the adopted number
of contributing images. To illustrate this, consider the examples shown in Figs. 5.16a-5.16d
which shows the conditioning pattern for various considered numbers of images using a set-up
characterized by equal AUT-plate separations d1 = d2 = 12λ0, and applying an UFBW= 6%. The
test zone is extended up to 60λ0 in the positive y direction in order to illustrate more clearly the
behavior of the condition number. In these examples the basic TE model is used, i.e., by applying
the minimum required number of frequency samples in order to balance the mathematical
system. Conditioning circles corresponding to ρ = 0.1, and optimal hyperbolas corresponding
to first-order images are superposed to the figures. Fig. 5.16a shows the conditioning pattern for
the simplest case; when considering only the two first-order images (Ni = 2). By adding the AUT,
in this case the total number of considered sources is three, which necessitates two frequencies
in order to balance the system, generating as a result four equations which over-determines the
system. The agreement with the single-plate model in this case is excellent, showing optimal
positions exactly where the two optimal circles intersect the plates and where the two optimal
hyperbolas intersect each others. Notice here that the figure axes are not plotted with the same
scale, which explains the shape of the two optimal circles (dot-dashed). Fig. 5.16b shows the
conditioning pattern when considering second order images (Ni = 4) and applying N f = 3
frequency samples. Optimal circles corresponding to second order image are also plotted in
the figure, showing the conditioning pattern barely described by the contribution of first-order
images whose corresponding optimal hyperbolas intersect at the limit of the optimal zone. In
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Figure 5.16 Evolution of the condition number versus the probe position as function of the
number of considered images and the frequency parameters, and relationship with optimal
hyperbolas (dashed), optimal circles (dot-dashed), and conditioning circles (dotted). Parallel
plates configuration, d1 = d2 = 12λ0 (a) UFBW= 6%, Ni = 2, N f = 2 (b) UFBW= 6%, Ni = 4,
N f = 3 (c) UFBW= 6%, Ni = 6, N f = 4 (d) UFBW= 6%, Ni = 8, N f = 5 (e) UFBW= 6%, Ni = 8,
N f = 9 (f) UFBW= 8%, Ni = 10, N f = 11.
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this case the optimal zone is pushed further from the AUT. If the number of considered images
is further raised, first-order images fail to describe the behavior of the condition number which
is dominated by optimal hyperbolas corresponding to all images, as shown by Figs 5.16c-5.16d
which correspond to Ni = 6 and Ni = 8 respectively. Notice that in Fig. 5.16d in particular,
optimal circles corresponding to considered images do not generate any optimal regions near
the plate. This is to translate the fact that fields corresponding to different images cannot be
orthogonal to the AUT field at the same position; the only position where different optimal
circles intersect each others being the AUT position itself.

The advantage of the TE model is the default over-determination with respect to the TM
model and which may be verified by applying the same frequency parameters. Fig. 5.16e show
the conditioning pattern corresponding to the last considered scenario (Ni = 8) tested with the
number of frequencies necessary to balance the corresponding TM model, i.e., N f = 9. This
would generate eighteen equations for nine unknowns, which widely improves conditioning
with respect to the basic model, generating positions with optimal conditioning levels around
κ(GT M )opt ≈ 4.6 at vertical distances lower than 40λ0. This advantage gives more freedom under
the TE model in terms of measurement parameters with respect to conditioning. For instance, Fig.
5.16f plots the conditioning pattern when using Ni = 10 images with an UFBW=8%, showing
positions with optimal values as lows as κ(GT M )opt ≈ 4.5 at vertical AUT-plates separations
lower than 40λ0.

Globally, we may conclude, as for previously studied configurations, that achieving positions
with good conditioning levels using typical measurement parameters in the parallel-plate TE case
is easier than in the corresponding TM case, which follows from the default over-determination
of the TE model with respect to the TM model. Positions near the plates may be used in the
TE case, but in the context of a complete measurement, common optimal positions which are
described by optimal hyperbolas are the best option.

5.4.4 Discussion about the Method Efficiency in Reducing Mechanical Displace-
ment

The theoretical advantage provided by the parallel-plate configuration in reducing the mechanical
effort given the larger number of associated controlled echoes, is dramatically limited by the
poor angular distribution of covered angles for most useful set-up dimensions. This was already
highlighted in examples depicted by Fig. 5.12, showing that typically image sets with orders
higher than 3 cover close angles, in a scenario where the probe was located near the center of a
symmetrical set-up. It is easily verified that this observation may be generalized to set-ups of
arbitrary dimensions provided that the AUT-plate separations are comparable to the vertical AUT-
probe separation. The same can be seen in Figs. 5.17a and 5.17b which show constellations of
covered angles using a symmetrical configuration with d1 = d2 = 10λ0 and two probe positions
(x , y) = (5λ0, 10λ0) and (x , y) = (9λ0, 10λ0) respectively. The number of considered images is
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Ni = 10 which takes into account up to fifth-order images. In both situations angles covered by
images of orders higher than three are close, if not redundant. Better angles distributions are
achieved if the vertical AUT-probe separation is raised with respect to the AUT-plates separations.
This is highlighted by Figs. 5.17c and 5.17d which show covered angles when reducing the
AUT-plates separations to d1 = d2 = 5λ0 and keeping the same vertical AUT-probe separation by
placing the probe at (x , y) = (1λ0, 10λ0) and (x , y) = (4λ0, 10λ0) respectively. In the first case,
fifth order images cover clearly distinct angles with respect to third order images, showing a
better general angles distribution with respect to the first two scenarios. In the second case,
the probe being closer to the right plate, the highlighted improved distribution is reduced,
having several images of different order covering very close angles. It should be noted that
although enlarging the vertical AUT-probe separation with respect to the AUT-plates separations
improves the angles distribution, it requires larger UFBWs in order to ensure well-conditioning
of the system. Hence, configurations that are advantageous in terms of angles distribution, are
generally disadvantageous in terms of conditioning. The opposite case is also true, as optimal
conditioning requires comparable AUT-probe and AUT-plate separations, which as shown here,
is disadvantageous in terms of angular distribution.

Interesting constellations of covered angles may be achieved by using non-symmetrical
configurations. This is shown in Figs. 5.17e and 5.17f where the left plate is very close to
the AUT with respect to the right plate, with d1 = 9λ0 and d2 = 1λ0. The probe being placed
midway between the two plates at (x , y) = (4λ0, 10λ0) in the first case, showing a very good
distribution of covered angles with almost all images contributing with distinct angles, and close
to the right plate (x , y) = (4λ0, 10λ0) in the second case, showing a rather limited distribution
with respect to the first case. It is interesting to note that when the probe is placed near one of
the plates (Figs. 5.17b, 5.17d and 5.17f), covered angles are separated into several groups of
close angles, which suggests the conceivability of an effective rotation algorithm. Unfortunately,
situations when either the AUT or the probe or both are near the plates (Figs. 5.17b, 5.17d,
5.17e and 5.17f) are generally ill-conditioned in the TM model as the system matrix tends
towards singularity under these configurations.

The outlined observations concerning angular distributions in the parallel-plate model
suggest that developing a rotation algorithm in order to achieve maximum efficiency in terms
of mechanical effort reduction in the same fashion as for previously studied models is very
difficult and probably of not practical interest as it would require further truncating the number
of contributing images to very low levels in order to have more control over covered angles.
This limitation may be overcome by exploiting the large spatial diversity provided by the parallel
plates model by applying linear regression. The large number of measured samples which
would be multiplied by the number of rotations or probe positions is expected to improve the
performance of linear regression. Accordingly, the AUT may be rotated such that a minimum
interference between already measured angles and angles yet to be measured occurs, given the
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(a) (b)

(c) (d)

(e) (f)

Figure 5.17 Angles covered py the parallel plates configuration as function of the AUT-plate
separations and the probe position, number of considered images Ni = 10 (a) d1 = d2 = 10λ0,
probe at (x , y) = (9λ0, 10λ0) (b) d1 = d2 = 10λ0, probe at (x , y) = (9λ0, 10λ0) (c) d1 = d2 =
5λ0, probe at (x , y) = (1λ0, 10λ0) (d) d1 = d2 = 5λ0, probe at (x , y) = (4λ0, 5λ0) (e) d1 = 1λ0,
d2 = 9λ0, probe at (x , y) = (4λ0, 10λ0) (f) d1 = 1λ0, d2 = 9λ0, probe at (x , y) = (7.5λ0, 5λ0).
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angular range covered by the chosen number of contributing images. Then, linear regression
may be introduced in order to improve the final ARP results.

5.4.5 Discussion about the Model Practical Considerations

From a geometrical point of view, the parallel-plate configuration is a forward extension of the
single-plate set-up and may be regarded as a double single-plate configuration. Consequently,
all error sources related to the single-plate configuration are amplified in the parallel-plate case.
The impact on the AUT free-space radiation characteristics and the AUT-diffracted field are
amplified by the contribution of the second plate, which is also the case of edge and corner
diffracted fields. Optimal positions with respect to edge diffracted fields associated to one plate
are in the vicinity of the same plate, which is essentially a region exposed to diffracted fields from
the second plate. However, as discussed in Chapter 3, these error sources are totally manageable
and may be minimized by several techniques. An error in estimating losses introduced by the
plate is expected to be amplified at higher-order images which correspond to echoes undergoing
multiple reflections, which further motivates truncating the number of contributing images.

The parallel-plate model limitation is particularly caused by two factors. The first being the
truncation of the infinite number of contributing images which implies that all reflections that
are not taken into account in the mathematical model are considered as spurious reflections.
Although the contribution of these reflections may be reduced as function of the set-up dimen-
sions and the ARP orientation, as discussed in Sec. 5.4.1, generally a rather high number of
images, typically Ni > 10, needs to be taken into account in order to minimize the field error
into accepted levels. However, as was shown in Sec. 5.4.3, raising the number of contributing
images is disadvantageous in terms of conditioning as it implies rising the number of frequency
samples necessary to balance the mathematical models, which requires either large UFBWs or
large set-up dimensions. In order to overcome this limitation, one possible approach would
be by adapting the observation to the model, that is by truncating the number of contributing
images to the measured field, either physically by using absorbing material or numerically by
applying time gating [85]. The characteristics of echoes that are not taken into account in the
mathematical model being totally predictable, the absorbing material should be adapted to the
angular range covered by corresponding images, and the time window to the signals arrival
times. The second limitation of the simplified model is related to the frequency impact on the
free-space ARP. The model should be updated in a similar fashion as for the right dihedral case,
which is by multiplying the system matrices by a matrix α taking into account the amplitude and
phase variations of the radiated field at each applied frequency with respect to the reference
frequency. The larger number of considered images implies a larger number of unknown α-terms
that have to be solved. This highlights the dilemma related to the choice of the number Ni

of considered images, as rising it provides a larger number of covered angles and reduces the
field error due to the truncation, but at the same time it negatively impacts conditioning and
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complicates the task of solving for the ARP frequency dependence. As stated in Sec. 5.3.4,
solving for the α matrix involving more than one term is left as a perspective for future work.

5.4.6 Numerical Results

Numerical results to highlight the theoretical viability of the parallel-plate model and related
aspects are presented in a scenario involving two infinite plates. The HWD is used as AUT and is
positioned midway between the two plates with d1 = d2 = 15λ0. Such relatively large AUT-plate
separations are chosen in order to be able to generate convenient well-conditioned positions
using an appropriate UFBW given the narrow-band character of the HWD. Accordingly, a global
UFBW= 6% is applied and the number of contributing images is set to Ni = 6 (up to third
order images), implying a number of frequency samples equal to N f = 7, which is the required
number to balance the TM model. The test zone is bounded from the sides by the two plates,
from the bottom by the AUT position, and is extended up to vertical positions equal to 30λ0.
FEKO allows to control the maximum number of generated reflections using UTD plates, which
is set to 100 here. Hences, images up to 100th order are considered in forming the reference
field, which is equivalent to a total number of Nref = 200 images. The six α-terms necessary to
predict the frequency impact on the free-space ARP are retrieved from Table 4.1.

Results for the TM-isotropic case are shown in Fig. 5.18. Fig. 5.18a plots the corresponding
condition number pattern showing two symmetrical optimal regions around the two optimal po-
sitions at (xopt, yopt) = (±8λ0, 20λ0) with condition number levelsκ(GT M )opt = 5.6. Generally,
ARP error levels are considerably high and are proportional to the corresponding source order.
In other words, LOS samples show the lowest error levels, being generally between −40dB
and −20dB almost allover the test zone. Then, error is amplified as function of the image
order, oscillating between −35dB and −10dB in the optimal conditioned region over samples
corresponding to first-order images, between −30dB and −5dB over samples corresponding
to second order images, and between −25dB and 0dB over narrower regions over samples
corresponding to third order images. This is in obvious agreement with the error spread rule
retrieved for the single-plate case, which predicted forward proportionality between ARP error
levels and distances separating corresponding sources from the probe. The generally high error
levels highlight the impact of truncating the number of images when their contribution into the
reference field is important. Minimizing the contribution of higher order images would then
minimize the observed ARP error. The same can be seen in Fig. 5.19 which plots results for the
TE-directive case with the AUT being oriented in the reference TE orientation (parallel to x̂),
such that ARP nulls are directed towards the two plates. Conditioning in this case is improved
with respect to the TM case, having the optimal region extended up to certain positions near
the plates and at the center of the test zone, with optimal values around κ(GT M )opt = 3.7 at
(±8λ0, 30λ0). Keeping in mind the vulnerability of samples corresponding to directions of weak
power emission to all sorts of error sources, error is generally tolerable in well-conditioned
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Figure 5.18 ARP error as function of the probe position in a hypothetical scenario (infinite PEC
plates) using HWD as AUT. Parallel-plate configuration, TM case, d1 = d2 = 15λ0, FBW = 6%:
(a) κ(GT M ) (b) ε(F)los (c) ε(F)im, left 1st order image (d) ε(F)im, right 1st order image (e) ε(F)im,
left 2nd order image (f) ε(F)im, right 2nd order image (g) ε(F)im, left 3rd order image (h) ε(F)im,
right 3rd order image.
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Figure 5.19 ARP error as function of the probe position in a hypothetical scenario (infinite PEC
plates) using HWD as AUT. Parallel-plate configuration, TE case, d1 = d2 = 15λ0, FBW = 6%:
(a) κ(GT E) (b) ε(F)los (c) ε(F)im, left 1st order image (d) ε(F)im, right 1st order image (e) ε(F)im,
left 2nd order image (f) ε(F)im, right 2nd order image (g) ε(F)im, left 3rd order image (h) ε(F)im,
right 3rd order image.
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zones especially for samples corresponding to lower order sources. The LOS error is very low
almost all-over the test zone showing levels as low as −60dB in the lobe direction. Samples cor-
responding to first-order images also show considerably low error levels, being generally below
−30dB in well conditioned positions pointed by the lobe. The error levels are relatively larger
for samples corresponding to higher order sources, but remain quite tolerable over large sections
of valid probe positions, generally oscillating between −35dB and −10dB in well-conditioned
zones pointed by the lobe. These results highlight the feasibility of the proposed method in
retrieving the ARP samples with satisfying precision provided that the contribution of higher
order images to the reference field is minimized.

The usefulness of the parallel-plate configuration in accelerating the measurement process
and its advantage in terms of linear regression are highlighted in Fig. 5.20 which shows ARP
samples for horizontal cuts of eight probe positions linearly spaced between the two plates. The
vertical distance separating the set of probe positions from the AUT is varied in order to highlight
aspects related to angles distribution. An RBF regression with five base functions having a spread
equal to 36◦ confined in half the azimuthal plane (Fig. 3.21c) is applied in order to minimize
the ARP error resulting from the direct inversion. Figs. 5.20a and 5.20b show respectively the
TM and TE results for a vertical separation y = 10λ0. In this case the angular distribution of
measured samples is quite poor having the eight LOS samples largely spaced over around 110◦,
and the 48 image samples covering a total of 50◦ with smaller spacing, varying from 5◦ near the
region covered by LOS samples, and up to less than 0.5◦ near the half-plane limits. One may
however notice the excellent performance of linear regression which reduces the absolute ARP
error in the TM case from ±30dB over samples corresponding to ill-conditioned positions near
the plates up to ±1.5dB, and from ±6dB in regions of weak power emission in the TE case up
to ±1.3dB. Note that samples in the TM case are displayed with a maximum ±10dB error for a
better visualization. As discussed in Sec. 5.4.4, raising the vertical AUT-probe separation with
respect to the AUT-plate separations improves the angular distribution of measured samples.
The same can be seen in Figs. 5.20c and 5.20d which show results for y = 20λ0. In this case
the range covered by LOS samples is reduced to around 70◦ and the range covered by images to
is enlarged to around 90◦ with a better general distribution of covered angles. In this scenario
the measurement is almost complete over half the plane with a sampling angle varying from
less than 1◦ to a maximum of 10◦ in the range covered by LOS samples, and this by using only 8
probe positions. The linear regression is very effective, reducing the global measurement error
to ±1dB. The angular distribution is further improved by further raising the vertical AUT-probe
separation, as is the case for results shown in Figs. 5.20e and 5.20f which are generated using
y = 30λ0. In this case the LOS samples cover around 50◦ with a maximum sampling angle of
8◦, whereas images cover around 100◦ with much smaller sampling angles that go below 0.5◦.
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Figure 5.20 ARP samples calculated using 8 probe positions linearly spaced between the two
plates for variant vertical separations, and application of RBF regression in order to reduce error,
Nr = 5, s = 36◦: (a) y = 10λ0, TM (b) y = 10λ0, TE (c) y = 20λ0, TM (d) y = 20λ0, TE (e)
y = 30λ0, TM (f) y = 30λ0, TE

The regression is particularly less effective in the TM case with respect to previous scenarios,
reducing the maximum error to around ±3dB, which is due to the poor distribution of error
attaining considerably larger values below than above the reference ARP.

These results highlight advantages carried by the larger number of generated echoes intro-
duced by the parallel-plate configuration in reducing both the required mechanical displacement
and the measurement error.
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Conclusion

This chapter explored the possibility of extending the proposed concept to configurations
involving multiple echoes. Two configurations were studied: the right dihedral configuration
which allows the generation of three controlled echoes, and thus provides ARP information
related to four measurement angles, and the parallel-plate configuration which allows the
generation of an infinite set of controlled echoes. The study focused on the metamathematical
viability of the developed models to verify the possibility of generating well-conditioned systems
using typical measurement parameters in terms of set-up dimensions and operating bandwidths.
Due to the complexity of the systems, the study was mainly qualitative and was based on results
carried over the single-plate configuration.

Results related to the right dihedral configuration showed the possibility of attaining well-
conditioned systems using affordable set-up dimensions (r < 40λ0) and relatively narrow
UFBWs (6%). Achieving well conditioned systems in the TE model is easier and requires
less set-up and frequency requirements because of the over-determination of the problem. A
brief discussion concluded on the theoretical possibility of developing rotation algorithms of
maximum efficiency allowing to cut down the measurement time by four with respect to classical
measurements. The soundness of the model and its efficiency in reducing mechanical effort
were highlighted via numerical simulations. The large number of acquired data samples, which
is four times the number of measurements, made linear regression very efficient in reducing the
ARP error to levels below ±1dB in hypothetical scenarios affected by error due to the far-field
model assumption and the AUT-diffraction. The impacts of remaining error sources, which
showed to be manageable, may as well be minimized by regression.

The parallel-plate model required a truncation study of the number of contributing images
to be processed in the calculations given the infinite number of the "actual" contributing images.
The various studies concluded on the viability of developed models provided that a compromise
on the chosen number of contributing images is achieved as function of the measurement
parameters and the tested ARP. Enlarging the number of contributing images rises the number
of measured ARP samples in each measurement and reduces error due the truncation but
degrades conditioning and implies larger set-up dimensions and frequency bandwidths in order
to guarantee a minimum stability of the system, and vice versa. Although it is hard to analytically
express the usefulness of the parallel-plate configuration in reducing the mechanical effort with
respect to classical measurements, a measurement scenario showed that an almost complete
half azimuthal scan with a sampling angle no larger than 8◦ was achieved using only 8 probe
positions. The large number of measured ARP samples made linear regression very efficient
in reducing the absolute ARP error from levels as large as ±30dB to levels as lows as ±1dB,
highlighting the viability of the method.

One important aspect that was not covered in the present work, which is central to the
feasibility of the concept, is the estimation of the ARP frequency dependence when involving
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multiple unknowns modeling the impact of each frequency sample. A convexity study of the
corresponding cost function is necessary to shed light about the possible solutions to such
problems. Global optimization methods may be used in this context in order to solve for the
multiple α-terms and the regression coefficients that best fit the model to a set of observed data
samples.



General Conclusion

In this work, an ARP measurement concept aiming at speeding up the characterization process
using cost efficient systems involving highly-reflective metallic plates was introduced. The
proposed paradigm consists in generating a set of controlled echoes which directly contribute
to the measurement in addition to the LOS signal and extracting the ARP information carried
by all the generated signals concurrently. The proposed paradigm challenges the traditional
measurement paradigm stating that useful information is exclusively carried by the generated
test signal, usually the LOS signal, which implies excessive, time consuming mechanical effort in
order to perform a complete measurement; a limitation that is usually overcome using complex
multi-probe systems. The particularity of the proposed paradigm with respect to recently
developed measurement techniques in reverberating environments, which generally share the
traditional measurement paradigm, is that echoes are controlled, i.e., their characteristics are
predicted in a deterministic fashion.

The concept was applied to a far-field model. A choice that was motivated by its simplicity
with respect to near-field models. The mathematical model is described by a system of equations
in which retrieving the unknown ARP vector consists in inverting a matrix problem. The first
dimension of the model is represented by the set of measurement angles over which the ARP
samples are calculated, whereas the second dimension is generated by introducing frequency
diversity in order to have a number of equations at least equal to the number of unknowns.
Consequently, an important part of this work was devoted to the study of the mathematical
stability of the model in order to ensure the accuracy of the ARP results.

The largest part of this manuscript handled in detail the simplest configuration in terms
of controlled echoes, the single-plate configuration which allows the generation of a single
controlled echo. Chapter 2 presented the corresponding developed models which were simplified
in order to assess the viability of the proposed concept from a pure a mathematical point of view.
The general 3D problem was decomposed into TM and TE polarizations in order to simplify the
conditioning study by reducing the dimensions of the system matrices. The conditioning study
highlighted the possibility of achieving mathematically stable systems using typical measurement
parameters. Analytical expressions were developed in order to predict optimal positions in terms
of conditioning as function of the set-up dimensions and the operating frequency bandwidth.
The theoretical efficiency of the proposed concept in accelerating the measurement process
was highlighted and two algorithms for achieving maximum efficiency, i.e., to reduce the
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measurement time by a factor of 2 with respect to classical measurements, were developed. The
first algorithm is based on a uniform measurement sampling angle equal to the difference of the
two measurement angles, and is more adapted to the TE model as small sampling angles require
placing the probe in the vicinity of the plate, which is by default the TE optimal region in terms
of conditioning. The second algorithm, which is more general, is based on an integer ratio of
the two measurement angles, and consists in performing a set of rotations before introducing
an adapted jump in order to avoid interference between already covered angles and angles to
be covered.

After that, Chapter 3 handled the various practical limitations of the developed models in
order to verify the physical viability of the proposed concept. Impacts of a set of approximations
applied in order to simplify the mathematical formulations, and hence generating a set of
model-related errors, were analyzed. These model systematic limitations may be summarized in
error due to the far-field model assumption, impact of the plate on the AUT free-space radiation
resistance, diffracted fields by the AUT aperture and the plate discontinuities, and the plate
losses. Conducted studies showed, based on synthetic results, the manageability of the various
model-related error sources with various practical solutions to minimize their impacts. The
tolerance of the developed models to the inevitable practical systematic errors was assessed
as well, highlighting the importance of conditioning models developed in Chapter 2. Linear
regression was then introduced in order to enhance the robustness of the proposed method
by reducing the ARP error associated to the direct inversion. Regression was used in order to
optimize the model as well by estimating the ARP frequency dependence which was modeled
by a complex term α taking into account the amplitude and phase variations underwent by the
field at the second working frequency. A numerical approach which consisted in spanning the
space of solutions showed the problem in α and the unknown ARP vector to be convex. By
applying regression, the correct value of α was estimated without a priori information about
the ARP.

The feasibility of the proposed concept was then numerically assessed in Chapter 4 using
a comprehensive electromagnetic simulation software, FEKO. Different aspects related to the
concept were also verified such as the importance of developed conditioning models in ensuring
the mathematical systems stability, and the various model systematic limitations which were
proven to be manageable using typical measurement parameters. The usefulness of the concept
in accelerating the measurement process was highlighted by applying the general developed
algorithm based on integer ratios of measurement angles, which allowed to effectively cut down
the mechanical displacement effort to a half with respect to classical measurements.

Finally, Chapter 5 explored the possibility of extending the proposed concept to configurations
involving multiple echoes. Two configurations were studied: the right dihedral configuration
which allows the generation of three controlled echoes, and the two-parallel plates configuration
which allows the generation of an infinite set of controlled echoes. The study was focused on
the metamathematical viability of the developed models to verify the possibility of generating
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well-conditioned systems using typical measurement parameters and showed the possibility
of achieving such systems using affordable set-up dimensions and relatively narrow operating
bandwidths. Due to the complexity of the systems, the study was mainly qualitative and was
based on results carried over the single-plate configuration. Efficiencies of both configurations
in reducing the mechanical effort with respect to classical measurements were highlighted
via numerical simulations. One aspect that was not covered in this work, is solving for the
multiple α-terms modeling the impact of the different frequency samples used to balance the
mathematical model. Global optimization methods may be used for this purpose.

Perspectives

This work opened the door for exploiting echoes, generally regarded as spurious signals, in an
antenna measurements context. The conducted work being essentially a theoretical feasibility
study, one forward perspective that follows is the experimental validation of the proposed concept
which was not performed in this work due to time constraints. Experimentation would take into
account practical error sources whose synthetic and numerical modeling is always subject to
limitations. Multiple perspectives may be outlined. An essential improvement of the proposed
concept would be by conducting a comprehensive study on the associated measurement dynamic
range. In this work, the various error sources were theoretically and numerically highlighted
and their impacts were studied with the aim of proving the practical viability of the concept. A
knowledge about the measurement dynamic range would be very useful in defining applications
of the proposed concept.

Another major perspective would be extending the concept to near-field models. In this
work, the concept was exclusively developed based on a far-field model, a choice that was
motivated by the simplicity of far-field models with respect to near-field models. This choice,
however, is limited by the far-field distance necessary to approximate far-field measurement
conditions, and which may be very large for certain antenna types. The concept may as well
be applied in order to retrieve near field amplitude and phase values corresponding to several
angles of generation at each probe position in order to reduce the associated mechanical effort.

Finally, a rather optimistic perspective that follows from this work is assessing the usefulness
of other quantities that are usually treated as noise in the context of ARP measurements. For
instance, diffracted fields by the plate edges and corners are adequately modeled by several
high-frequency techniques. These fields, containing useful information about the ARP values of
the corresponding directions of generation, may offer the possibility of a fruitful contribution to
the measurement if the associated modeling error is not too large.





Résumé (French)

Le travail de cette thèse porte sur le domaine des mesures d’antennes, plus précisément la
mesure du diagramme de rayonnement. Un diagramme de rayonnement d’antenne décrit la
distribution angulaire de l’énergie rayonnée par une antenne. Cette caractéristique clé est très
pertinente pour toutes applications impliquant des antennes, et est utilisée afin de récupérer
d’autres propriétés importantes telles que la directivité et le gain.

Le développement et la croissance rapides de l’industrie des télécommunications, en par-
ticulier au cours de la dernière décennie, et sa généralisation à la vie quotidienne ont étendu
le rôle des antennes en dehors des applications classiques, telles que la radiodiffusion et la
défense, à une plus grande échelle d’applications. Le développement et la commercialisation
des systèmes intelligents modernes ainsi que les concepts de connectivité tels que l’internet
des objets, ont permis aux antennes de conquérir les dispositifs et équipements électroniques
modernes. Par exemple, les voitures modernes peuvent avoir jusqu’à 24 différentes antennes
installées sur le véhicule. Un nombre qui devrait encore augmenter dans les années à venir.
En conséquence, une connaissance fiable des caractéristiques de rayonnement des antennes
déployées est cruciale pour le bon fonctionnement du système intégral. Ces caractéristiques
qui incluent le diagramme de rayonnement, l’efficacité de rayonnement, la bande passante,
etc., sont généralement récupérées et vérifiées via des mesures. Ceci explique la pertinence du
domaine des mesures d’antennes autant sur le plan académique qu’industriel.

Plusieurs techniques et procédures de mesure du diagramme de rayonnement ont été
développées et améliorées au cours du dernier siècle. Ils sont généralement classés en termes de
conditions de mesure qui dépendent –en partie- de la distance à laquelle la mesure est effectuée
en deux catégories : technique de champ-lointain (CL) et techniques de champ proche (CP).
Bien que ces techniques soient exposées à des différents types de non-idéalités, elles partagent
le même type d’environnement de mesure anéchoïque dans lequel seulement le signal de test
généré est considéré, tandis que les réflexions spéculaires provenant du site de mesure et des
équipements de test sont réduites au minimum au cours du processus de caractérisation. Cela
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découle du modèle de mesure commun formant la base des mesures classiques, qui consiste à
acquérir l’information portée par le signal de test généré en vue de récupérer les caractéristiques
de rayonnement l’antenne sous test (AST) dans la direction associée. Par conséquence, toute
sorte de réflexion provenant du site de mesure et des équipements de test est considérée comme
perturbatrice car elle modifie la valeur ’correcte’ du signal de test. Dans cette perspective, deux
principales limites des techniques classiques de mesure d’antennes peuvent être décrites. La
première limitation est liée à l’effort de déplacement mécanique nécessaire pour effectuer une
mesure complète. Communément, soit l’AST est mis en rotation ou bien le système de sondes est
déplacé afin d’acquérir des valeurs de diagramme de rayonnement correspondant à des directions
différentes jusqu’à ce qu’une figure complète soit obtenue. Cela se traduirait par un temps de
mesure excessive qui peut être trop coûteux d’un point de vue industriel. Plusieurs techniques
ont été développées pour surmonter cette limitation, la plus commune étant les systèmes
multisondes, qui en revanche sont caractérisés par une électronique et une implémentation
logicielle sophistiquées et présentent un coût plus élevé par rapport aux systèmes traditionnels.
La seconde limitation est liée à la suppression des échos et des réflexions spéculaires provenant
du site de mesure. Généralement, les mesures de diagramme de rayonnement se déroulent à
l’intérieur de chambres entièrement anéchoïques (CA) dont les murs, le sol et le plafond sont
couverts par des absorbants micro-ondes qui, en plus de leur coût élevé, nécessite un entretien
régulier.

Très récemment, des efforts ont été faits afin de caractériser les antennes dans des environ-
nements diffusifs, à savoir, en chambres réverbérantes. Le principal avantage des chambres
réverbérantes par rapport aux chambres anéchoïques est leur coût d’installation et d’entretien
relativement faible. Cependant, aussi contre-intuitif que cela puisse paraître, les techniques
mises au point sont effectuées dans des environnements diffusifs essentiellement pour émuler
des conditions de mesure en espace libre ; car l’information ciblée est exclusivement portée
par le signal direct entre la source et l’AST, et donc les contributions des différentes réflexions
provenant du site de mesure sont mis au rebut. En conséquence, ces techniques présentent
les mêmes limitations en termes de déplacement mécanique et de temps de mesure que les
techniques classiques.

Le principal motif derrière cette thèse est la nécessité croissante d’accélérer les procédures de
mesure d’antennes. Un nouveau concept de mesure rapide est développé, basé sur un principe
de diversité spatiale qui permet l’acquisition simultanée de plusieurs valeurs de diagramme de
rayonnement correspondant à différents angles de mesure dans chaque réalisation. Le concept
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proposé fournit une nouvelle contribution importante dans le sens où la diversité spatiale mis
en évidence permettant d’accélérer le processus de mesure est générée en exploitant les échos
qui sont générés en utilisant des systèmes économiques impliquant des plaques réfléchissantes.
Bien que les échos soient exploités dans d’autres domaines, tels que les télécommunications
avec la notion de propagation par trajets multiples, à notre connaissance, le présent travail
constitut la première contribution à exploiter les échos dans un contexte de mesures d’antenne
afin d’accélérer le processus de caractérisation. La particularité du concept proposé par rapport
aux techniques réalisées en chambres réverbérantes est que les échos sont produits de façon
contrôlée. Par conséquent, une approche déterministe est utilisée afin de récupérer leurs
caractéristiques plutôt que l’approche statistique appliquée en milieux réverbérants. Le concept
proposé remet en cause le paradigme de mesure commun partagé par les techniques classiques
qui bannit les échos en les éxploitant afin d’accélérer le processus de caractérisation. Une diversité
fréquentielle est introduite afin de générer un système d’équations équilibré où le vecteur inconnu
contenant les valeurs du diagramme de rayonnement est récupéré en inversant un problème
matriciel. Par conséquent, une attention considérable est accordée au conditionnement du
modèle mathématique afin d’assurer la stabilité et la robustesse du système. Le concept a été
validé numériquement avec des résultats très prometteurs. Au moment de la rédaction de ce
manuscrit, une manip de mesure à CentraleSuepelc est en cours de préparation afin de valider le
concept expérimentalement. Malheureusement, en raison de contrainte de temps, les résultats
expérimentaux ne seront pas inclus dans ce manuscrit. Le concept a été protégé par un brevet
d’invention international publié par l’Institut National Français de la Propriété Industrielle sous
le numéro WO2016055739A3.

Le manuscrit est organisé comme suit. Le premier chapitre présente des notions élémentaires
de la théorie de mesure d’antennes et les outils nécessaires afin de développer le concept proposé.
Ensuite, les techniques de mesure classiques ainsi que des concepts développés récemment sont
brièvement présentés avec une discussion des limitations communes résultant principalement
du paradigme de mesure qu’ils partagent. Une vision globale sur le concept proposé est ensuite
fournie avec un aperçu des objectifs de la thèse.

Les autres chapitres peuvent être divisés en deux parties. Les Chapitres 2, 3 et 4 analysent en
détail la forme la plus simple du concept proposé en termes d’échos contrôlés, la configuration
simple-plaque. Dans ce cas, un seul écho contrôlé est généré et sa contribution à la mesure
avec le signal direct est évaluée. Le Chapitre 2 présente une étude détaillée de la viabilité du
modèle d’un point de vue purement mathématique. Tout d’abord le modèle mathématique
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est développé sous l’hypothèse des conditions de mesures en champ lointain qui a l’avantage
d’être simple à formuler par rapport aux modèles champ proche. Le problème étant sous
forme matriciel, une étude de conditionnement du système est effectuée afin de vérifier la
possibilité de générer des systèmes d’équations bien conditionnés en utilisant des paramètres de
mesure abordables en termes de dimensions de site et de bande passante de fonctionnement.
Pour faciliter cette étude, le problème générale 3D est décomposé en polarisations TM et TE.
Ainsi, des modèles de conditionnement précis avec des formules analytiques qui prédisent les
positions optimales en termes de conditionnement sont développées. Une étude de l’utilité de
la technique proposée pour réduire l’effort de déplacement mécanique, et donc accélérer le
processus de mesure est également présentée, avec des algorithmes de rotation de l’antenne
sous test permettant d’atteindre une efficacité maximale par rapport à une mesure classique, en
réduisant le temps de mesure par un facteur 2. Une fois la viabilité mathématique est évaluée,
une étude des limitations pratiques du modèle proposé est effectuée au Chapitre 3 afin de
vérifier sa viabilité d’un point de vue physique. La tolérance du modèle à des erreurs pratiques
systématiques, et à l’impact des phénomènes physiques qui ne sont pas pris en compte dans la
formulation mathématique simplifiée sont évalués. Ces derniers se résument au limitation de
l’hypothèse champs lointain et l’expression mathématique du champs associé, à l’impact de la
paroi métallique sur les caractéristiques de rayonnement espace-libre de l’antenne sous test,
à la contribution des champs diffractés par l’antenne sous test et par les bords et les coins de
la paroi métallique, et au pertes introduites par la paroi métallique sur le signal réfléchi dues
à sa conductivité finie. La robustesse de la méthode proposée est améliorée en introduisant
la régression afin de réduire l’errer sur les valeurs de diagramme de rayonnement calculés
via l’inversion directe. La régression est aussi utilisée afin d’estimer la variation subie par le
diagramme de rayonnement en changeant la fréquence de travail. Après cela, le Chapitre 4
présente des résultats numériques mettant en évidence la faisabilité du concept et de l’efficacité
du modèle adopté.

La deuxième partie du manuscrit, Chapitre 5, explore la possibilité d’étendre le concept
proposé à des configurations plus complexes impliquant plusieurs échos contrôlés. Après une
brève discussion sur quelques méthodes permettant la génération de multiples échos contrôlés,
deux configurations sont étudiées en se basant sur les résultats obtenus avec la configuration
simple-plaque. La première configuration, la configuration dièdre, permet la génération de
trois échos contrôlées, alors que la seconde, la configuration à plaques parallèles, permet la
génération d’un nombre infini d’échos contrôlés. La solidité des modèles développés ainsi que
leur efficacité théorique pour accélérer le processus de caractérisation sont mis en évidence par
les résultats numériques.
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Enfin, une conclusion générale regroupant les accomplissements de cette thèse est présentée,
suivie par des perspectives pour des futurs travaux.
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Titre : Développement d’un Concept de Caractérisation Rapide d’Antennes Exploitant les Echos

Mots-clés : Caractérisation d’antennes, milieux non-anéchoiques, problèmes inverses

Résumé : Les techniques de mesure de diagramme
de rayonnement d’antenne actuelles partagent un pa-
radigme commun qui stipule que l’information utile est
exclusivement portée par le signal de test généré. Cela
implique un effort mécanique fastidieux en faisant tour-
ner l’antenne sous test ou en déplaçant le système de
sondes afin de couvrir des angles de mesure différents
jusqu’à ce qu’une caractérisation complète soit effec-
tuée ; une limitation qui est généralement surmontée en
utilisant des systèmes multisondes coûteux. En outre,
toute réflexion provenant du site de mesure et des équi-
pements de test est considérée comme parasite pertur-
bant le signal de test et ainsi elle est minimisée. Dans
cette thèse, un concept de mesure du diagramme de
rayonnement d’antenne remettant en cause ce para-
digme commun est présenté comme un moyen d’accé-
lérer le processus de caractérisation en utilisant des sys-
tèmes économiques. Le paradigme proposé consiste en
la génération d’un ensemble d’échos contrôlés, en utili-
sant des configurations impliquant des plaques réfléchis-
santes, qui contribueraient directement à la mesure en
couvrant différents angles, et récupérer les informations
portées par l’ensemble des signaux générés simultané-
ment. Une diversité fréquentielle est introduite afin de

générer un système d’équations équilibré où le vecteur
inconnu contenant les valeurs du diagramme de rayon-
nement est récupéré en inversant un problème matriciel.
Par conséquent, une attention considérable est accor-
dée au conditionnement du modèle mathématique afin
d’assurer la stabilité et la robustesse du système. Trois
configurations de différents niveaux de complexité en
termes d’échos contrôlés sont étudiées, en mettant l’ac-
cent sur la configuration la plus simple impliquant un
seul écho contrôlé. Des modèles ont été mis au point,
avec des contraintes de conception des configurations
proposées en termes de dimensionnement et de bandes
passante de fonctionnement, mettant en évidence la via-
bilité mathématique du concept. Les aspects pratiques
ont également été évalués en étudiant la tolérance des
modèles développés vis-à-vis des erreurs systématiques,
ainsi qu’à l’impact de l’application d’un ensemble d’hy-
pothèses simplificatrices. La faisabilité du concept ainsi
que son utilité pour accélérer le processus de caractérisa-
tion par rapport aux techniques classiques ont été mises
en évidence par des simulations numériques. Ce travail
ouvre la porte à l’exploitation des échos, généralement
considérés comme perturbateurs, dans un contexte de
mesure d’antennes.

Titre : Design of a Fast Antenna Characterization Method Exploiting Echoes

Keywords : Antenna radiation pattern measurements, non-anechoic environments, inverse problems

Abstract : Current antenna radiation pattern mea-
surement techniques share a common paradigm which
states that useful information is exclusively carried by
the generated test signal. This implies an excessive,
time consuming, mechanical effort by rotating the an-
tenna under test or displacing the probe system in order
to cover different measurement angles until a complete
scan is performed ; a limitation that is typically over-
come using costly multi-probe systems. Moreover, any
reflection from the measurement site and test equip-
ment is considered spurious as it perturbs the test signal
and thus is minimized. In this thesis, an antenna radia-
tion pattern measurement concept challenging this com-
mon paradigm is introduced as a mean of accelerating
the characterization process using cost-efficient systems.
The proposed paradigm consists in the generation of a
set of controlled echoes, using set-ups involving highly-
reflective plates, which would directly contribute to the
measurement alongside the line-of-sight signal by cove-
ring different measurement angles, and retrieving the
ARP information carried by the set of all generated si-
gnals concurrently. Frequency diversity is used in order

to generate a balanced system of equations where the
unknown ARP vector is retrieved by inverting a matrix
problem. Consequently, a considerable attention is paid
into the conditioning of the mathematical model in or-
der to ensure the system stability and accuracy. Three
configurations of different complexity levels in terms of
controlled echoes are studied, with focus on the sim-
plest configuration involving a single controlled echo.
Models have been developed with design guidelines for
the proposed configurations in terms of set-up dimen-
sions and operating frequency bandwidth highlighting
the mathematical viability of the concept. Practical is-
sues were also assessed by studying the tolerance of de-
veloped models to systematic practical errors, as well
as to the impact of an applied set of simplifying as-
sumptions. The feasibility of the concept as well as its
usefulness in accelerating the measurement process with
respect to classical techniques were highlighted via nu-
merical simulations. This thesis opens the door for ex-
ploiting echoes, generally regarded as a nuisance, in an
antenna measurements context.
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