
HAL Id: tel-01532054
https://theses.hal.science/tel-01532054

Submitted on 2 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Synthesis of Interactive Reactive Systems
Rodica Bozianu

To cite this version:
Rodica Bozianu. Synthesis of Interactive Reactive Systems. Formal Languages and Automata The-
ory [cs.FL]. Université Paris-Est; Université libre de Bruxelles (1970-..), 2016. English. �NNT :
2016PESC1026�. �tel-01532054�

https://theses.hal.science/tel-01532054
https://hal.archives-ouvertes.fr

Université Paris-Est, Lab. d’Algorithmique, Complexité et Logique

Doctoral school MSTIC

Université Libre de Bruxelles,Département d’Informatique

PhD THESIS

proposed to obtain the degree of Doctor,

Speciality : Computer Science

Synthesis of Interactive Reactive

Systems

Proposed by

Rodica BOZIANU CONDURACHE

Thesis presented on 12th of December in front of the jury composed by:

Mme. Patricia Bouyer-Decitre LSV, CNRS & ENS de Cachan Reviewer

Mr. Cătălin Dima LACL, Université Paris Est, Créteil Coordinator

Mr. Emmanuel Filiot Université Libre de Bruxelles Coordinator

Mme. Orna Kupferman Hebrew University, Jerusalem Reviewer

Mr. Jean-François Raskin Université Libre de Bruxelles Examinator

Mr. Daniele Varacca LACL, Université Paris Est, Créteil Examinator

Université Paris-Est, Lab. d’Algorithmique, Complexité et Logique

École doctorale MSTIC

Université Libre de Bruxelles,Département d’Informatique

THÈSE

présentée en vue d’obtenir le grade de Docteur,

specialité: Informatique

Synthèse des systèmes réactifs

interactifs

Proposée par

Rodica BOZIANU CONDURACHE

Thèse soutenue le 12 Décembre devant le jury composé de:

Mme. Patricia Bouyer-Decitre LSV, CNRS & ENS de Cachan Rapporteur

Mr. Cătălin Dima LACL, Université Paris Est, Créteil Co-Directeur

Mr. Emmanuel Filiot Université Libre de Bruxelles Co-Directeur

Mme. Orna Kupferman Hebrew University, Jerusalem Rapporteur

Mr. Jean-François Raskin Université Libre de Bruxelles Examinateur

Mr. Daniele Varacca LACL, Université Paris Est, Créteil Examinateur

Doctorat réalisé en co-tutelle entre:

� Université Paris-Est

L’École Doctorale Mathématiques et Sciences et Technologies de l’Information

et de la Communication (MSTIC)

Laboratoire d’Algorithmique, Complexité et Logique (LACL)

LACL, Département d’Informatique

Faculté des Sciences et Technologie

61 avenue du Général de Gaulle

94010 Créteil Cedex

et

� Université Libre de Bruxelles

Département d’Informatique

ULB - Campus de la Plaine

1050 Bruxelles Belgium

i

ii

Title: Synthesis of Interactive

Reactive Systems

Summary

We study the problem of automatic synthesis of programs in multi-component

architectures such that they fulfill the specifications by construction. The main goal

of the thesis is to develop procedures to solve the synthesis problem that may lead to

efficient implementations.

Each component has partial observation on the global state of the multi-component

system. The synthesis problem is then to provide observation-based protocols for the

components that have to be synthesized that ensure that specifications hold on all

interactions with their environment.

The environment may be antagonist, or may have its own objectives and behave

rationally. We first study the synthesis problem when the environment is presumed

to be completely antagonist. For this setting, we propose a ”Safraless” procedure for

the synthesis of one partially informed component and an omniscient environment from

KLTL+specifications. It is implemented in the tool Acacia-K.

Secondly, we study the synthesis problem when the components in the environment

have their own objectives and are rational. For the more relaxed setting of perfect

information, we provide tight complexities for particular ω-regular objectives. Then,

for the case of imperfect information, we prove that the rational synthesis problem is

undecidable in general, but we gain decidability if is asked to synthesize one component

against a rational omniscient environment.

Key words: synthesis, verification, reactive systems, games, KLTL

iii

iv

Titre: Synthèse des systèmes réactifs

interactifs

Résumé

Nous étudions le problème de la synthèse automatique de programmes dans des

architectures multi-composants teles qu’elles respectent les spécifications par construction.

Le principal objectif de cette thèse est de développer des procédures pour résoudre le

problème de synthèse qui peut conduire à des implémentations efficaces.

Chaque composant a une observation partielle sur l’état global du système

multi-composants. Le problème est alors de fournir des protocoles basés sur les

observations afin que les composants synthétisés assurent les spécifications pour tout le

comportement de leur environnement.

L’environnement peut être antagoniste, ou peut avoir ses propres objectifs et se

comporter de façon rationnelle. Nous étudions d’abord le problème de synthèse lorsque

l’environnement est présumé antagoniste. Pour ce contexte, nous proposons une procédure

”Safraless” pour la synthèse d’un composant partiellement informé et un environnement

omniscient à partir de spécifications KLTL+. Elle est implémentée dans l’outil Acacia-K.

Ensuite, nous étudions le problème de synthèse lorsque les composants de

l’environnement ont leurs propres objectifs et sont rationnels. Pour le cadre plus simple

de l’information parfaite, nous fournissons des complexités serrées pour des objectifs

ω-réguliers particuliers. Pour le cas de l’information imparfaite, nous prouvons que le

problème de la synthèse rationnelle est indécidable en général, mais nous regagnons la

décidabilité si on demande à synthétiser un composant avec observation partielle contre

un environnement multi-composante, omniscient et rationnel.

Mots clés: synthèse, vérification, systèmes réactifs, jeux, logiques

v

Résumé détaillé

Motivation

Les systèmes réactifs sont des systèmes sans terminaison qui interagissent continuellement

avec leur environnement. Ils apparaissent à la fois comme matériel et logiciel, et font

habituellement partie des systèmes pour lesquelles la sécurité est critiques, par exemple,

microprocesseurs, systèmes informatiques responsables de la gestion du trafic aérien,

contrôle des centrales nucléaires, ou programmes de surveillance pour les dispositifs

médicaux. Il est donc crucial de garantir leur comportement correct. Il existe des

modalités différentes pour s’assurer que ces systèmes ont un comportement correct.

Vérification des Programmes La vérification des programmes est un domaine

d’informatique qui, dans le processus de conception des systèmes, aide a détecter

plus facilement à la fois les erreurs dans la partie logiciel et dans le matériel.

L’une des principales réalisations dans la vérification des systèmes est la théorie de

model-checking [27], qui permet de vérifier automatiquement la correction du système.

Il s’applique aux modèles d’interaction (ou systèmes de transitions) qui modélisent

l’interaction entre un programme et son environnement ainsi que aux spécifications

exprimé comme des formules temporelles [60] qui décrivant les comportements admissibles

de programme. Le problème de model-checking consiste en répondre à la question

“Le programme satisfait-il les spécifications?”. Dans le cas d’une réponse négative, les

procédures de model-checking fournissent un contrexemple qui consiste en une interaction

entre le système et l’environnement ne satisfaisant pas les spécifications. Ensuite, en

utilisent le contrexemple, il faut réparer l’erreur dans le système, ou même dans les

spécifications et procéder dès le début avec le processus de model-checking.

Actuellement, les techniques de model-checking représente une partie importante

dans le processus de conception des systèmes dans entreprises comme Intel et IBM.

Cependant, la conception des systèmes en utilisent le model-checking et le raffinement

guidé peut prendre beaucoup de temps et dépend de la compétence des programmeurs.

Autrement dit, le processus de vérification suivi d’une correction d’erreurs peut être répété

plusieurs fois avant d’obtenir un programme correct.

vii

Synthèse des Programmes Étant donné une spécification, le but de la synthèse

est de synthétiser automatiquement un programme ayant comportement défini par la

spécification. Par conséquent, les contraintes ne doivent pas être vérifiées après, ce qui

permet au concepteur de se concentrer sur la définition de spécifications de haut niveau,

plutôt que de concevoir des modèles computationnelles complexes des systèmes.

Le problème de synthèse a été introduit par Church [26] pour les circuits. Elle exige

que, étant donné une spécification logique S(I,O) entre les signaux d’entrée I et les

signaux de sortie O, déterminer s’il existe un circuit qui, pour toutes les entrées reçues, il

émet des signaux de telle sorte que la spécification est satisfaite.

Un des principaux défis de la synthèse des systèmes réactifs est de satisfaire la

spécification quel que soit le comportement de son environnement. Par exemple, prenons

un système informatique qui contrôle un ascenseur. Il a des actions pour faire monter ou

descendre l’ascenseur, ouvrir et fermer les portes. À chaque étage il y a des boutons

pour appeler l’ascenseur et à l’intérieur de l’ascenseur il y a quelques boutons qui

servent à demander le déplacement de l’ascenseur a un certain étage. La personne qui

appuie les boutons représente l’environnement du contrôleur de l’ascenseur. Ensuite, une

spécification à satisfaire par l’ascenseur est la suivante. L’ascenseur doit éventuellement

s’arrêter et ouvrir la porte à un étage, à chaque fois que il est appelé à cet étage. En outre,

à chaque fois que la personne à l’intérieur de l’ascenseur demande à l’ascenseur d’aller

à un certain étage, il devrait finalement l’atteindre. A noter que le comportement de la

personne dans l’ascenseur n’est pas connu à l’avance et n’est pas restreint. Par conséquent,

il peut pousser n’importe quels boutons et les spécifications doivent être satisfaites pour

tout comportement possible de la personne.

L’environnement incontrôlable entrâıne habituellement des problèmes de décision plus

difficiles en termes de calcul, par rapport à la vérification des systèmes. Par exemple, le

problème de model-checking pour des propriétés exprimées comme des formules de logique

temporelle linéaire (LTL) est PSpace-complète [83] alors que le problème de la synthèse

à partir des spécifications LTL est 2ExpTime-complète [74].

Le problème de synthèse des systèmes réactifs à partir des spécifications LTL a été

introduite et initialement étudiée par Pnueli et Rosner [74] et aussi par Abadi, Lamport

et Wolper [2]. Néanmoins, la solution proposée implique des automates nondéterministes

qui doivent être déterminisé en utilisant la construction complexe de Safra[79], qui est

résistante à des implementations efficaces [85]. Piterman [73], Muller et Schupp [70] ont

proposé des optimisations de la construction de Safra, qui, malheureusement, continuent

à ne pas conduire à des implémentations efficaces. La principale raison de la résistance

à des implémentations de ces constructions est que ils ne peuvent pas être implémenté

symboliquement et par conséquent il faut construire explicitement l’ensemble des états

des automates.

Récemment, ont été développés des procédures qui évite la construction de

viii

Safra (appelé ”Safraless”). Une première solution a été proposé par Kupferman et Vardi

dans [55] et utilise des automates coBüchi universelles pour caractériser les solutions du

problème de synthèse. Cette approche a suscité beaucoup d’intérêt dans le développement

des procédures faisables pour résoudre le problème de la synthèse. Depuis, ont été définis

plusiours autres procedures ”Safraless” [55, 81, 41, 36]. Dans [81, 36], il est démontré que

la synthèse LTL se réduit aux tester le vide d’un automate d’arbres coBüchi universel,

qui à son tour peut être réduit à résoudre un jeu de sûreté. La structure du jeux de

sûreté peut être exploité et définir un algorithm symbolique, basé sur des antichâınes,

pour résoudre le jeux [36]. Lily[49], Anzu[50], Ratsy[11] et Acacia+[12] sont quelques

exemples d’outils qui implémente efficacement des algorithmes pour résoudre le problème

de synthèse LTL.

Systèmes Multi-Composants Dans les travaux précédemment présentés, le système

à synthétiser est présumé avoir des informations parfaites sur l’état de l’environnement.

Néanmoins, dans nombreux situations pratiques, cette supposition n’est pas réaliste car

nombreuses systèmes ont des composants multiples. Dans le cas des systèmes distribué,

typiquement, chaque composant a ses variables privées, qui ne sont pas visibles de

l’extérieur. Par conséquent, les composants doivent agir sur la base des données locales

et doivent se coordonner pour assurer certaines propriétés globales du système qui est

exécuté dans un certain environnement.

L’interaction entre les composants d’un système et l’environnement est modélisée en

utilisent des modèles d’interaction (ou systèmes de transitions). Chaque état d’un modèle

d’interaction représente la configuration globale du système distribué (environnement

compris) et les transition entre les états est fait en function de les actions des composants

(environnement inclus). Alors, chaque composant a une observation partielle sur les états

du modèle d’interaction, en function de ses données locales. Les composants ne voient

pas quelles actions sont jouées par les autres, mais ils obtiennent une certaine observation

sur les états dans lesquels le modèle d’interaction peut être. Une exécution du modèle

d’interaction, du point de vue d’un composant du système, est alors une sequence infini

de ses propres actions et des observations.

Un protocole (ou comportement, ou stratégie) d’un composant consiste à indiquer les

actions à jouer dans le modèle d’interaction, selon les observations passées qu’il a reçues.

Par conséquent, la synthèse d’un (ensemble) des composant(s) est équivalent à trouver

une (set de) stratégie(s) pour le(s) composants à synthétiser. Quand est demandé de

synthétiser un ensemble des composants, les autres composants du système distribué sont

considérés comme faisant partie de l’environnement.

Les Logiques Temporales Épistémiques [44] sont des logiques formatées pour

raisonner sur des situations multi-agent. En plus de la description formelle de l’ordre

ix

temporelle des événements, ils permettent aussi le raisonnement sur la connaissance

des composants. On peut formuler des propriétés comme ”si le Processus i sait que

la transaction sera abandonnée, il devrait annuler sa contribution locale et terminer

immédiatement”[90]. L’importance de la connaissance des composants est mise en

évidence par différents problèmes. L’un d’entre eux est le problème d’attaque coordonnée.

Il s’agit de deux généraux qui tentent de coordonner une attaque en communiquant par

un messager douteux. Ils doivent choisir le moment du attaque et se mettre d’accord

pour attaquer en même temps. De plus, chaque général doit savoir que l’autre général

sait qu’ils sont d’accord sur le plan d’attaque.

Les logiques temporelles épistémiques sont des extensions de la logique temporelle avec

des opérateurs de connaissance Ki pour chaque agent. Une formule Kiϕ intuitivement dit

que l’agent i sait que la propriété ϕ est vrai. Les logiques épistémiques ont été utilisées avec

succès pour la vérification des diverses systèmes distribués dans lesquelles la connaissance

des agents est essentielle dans la correction des spécifications du système.

Synthèse avec des objectifs temporelles épistémiques et environnement

antagoniste Vardi et van der Meyden [89] ont étudié le problème de synthèse à

partir de spécifications exprimées comme des formules de logique temporelle épistémique.

Ils définissent le problème de synthèse dans un environnement multi-agent, pour les

spécifications écrites en LTL étendu avec les opérateurs de connaissances Ki pour chaque

agent (KLTL).

L’objectif du problème de synthèse KLTL est de générer automatiquement des

protocoles (si ils existent) pour les systèmes (multi-agent) qui indique les actions à prendre,

en function de les histoires finies, tel que pour toutes actions de l’environnement, toutes

les exécutions (concrètes) infinies résultant compatibles avec cette stratégie satisfont la

spécification KLTL. Grâce à [75], ce problème est indécidable déjà pour objectifs LTL

quand le système est constitué de deux composants partiellement informés qui agissent

contre l’environnement. D’autre part, pour un système avec un seul composant contre un

environnement antagoniste, le problème est montré 2Exptime-complet [89], par réduction

au problème de vide des automates d’arbres Büchi alternantes. Cette construction

théoriquement élégante est, malheureusement, difficile à implémenter et à optimiser, car

elle est basée sur des opérations complexes de type Safra sur les automates (construction

Muller-Schupp).

Synthèse avec un environnement multi-composant et rationnel Plus

récemment, Kupferman et. al [38, 53] ont introduit le problème de la synthèse contre

un environnement multi-composants rationnel. Le problème de la synthèse rationnelle

considère que chaque composant du modèle d’interaction a son propre objectif, autre que

faire les autres échouer. Ils sont rationnel dans le sens que ils visent d’abord la satisfaction

x

de leurs propres objectifs, puis essaient de nuire aux autres.

Le problème du synthèse rationnelle a été introduit dans le cadre plus simple

de l’information parfaite pour chaque composant dans le modèle d’interaction

(environnement et les processus à synthétiser). C’est-à-dire, ils savent quel est l’état

(globale) exacte du système. L’objectif de chaque processus est exprimé comme formules

LTL et leur rationalité est modélisé en utilisent des équilibres de Nash, des stratégies

dominantes, etc.

Le problème a été étudié dans deux cas différentes. Dans le cas de synthèse rationnelle

non-coopérative[53], étant donné le fait que les composants du modèle d’interaction

sont rationnels, ils peuvent jouer n’importe quel profil de stratégie qui est en équilibre.

En conséquence, on demande de synthétiser un protocole pour un processus tel que il

assure son objective contre n’importe quel comportement rationnel de les composants

de l’environnement. D’autre part, la synthèse rationnelle coopérative assume que

l’environnement est plus coopératif et accepte de adhérer à un profil de stratégies que

est un équilibre. Alors, le problème est de trouver un tel profil de stratégies où l’objectif

de protagoniste est satisfait.

La principale contribution des papiers originaux est de mettre en avant et de

motiver les définitions ci-dessus. Les seules résultats de complexité donnés sont les

suivants: les problèmes de synthèse rationnelle coopérative et non-coopérative sont

2ExpTime-complets pour objectifs donnés comme formules LTL. Ce résultat correspond

exactement à la synthèse LTL avec information parfaite et un environnement antagoniste

avec un seul composant. La borne inférieure est due au fait que le problème de synthèse

LTL est un cas particulier du problème de synthèse rationnelle. La limite supérieure est

obtenue par réduction au problème de model-checking pour des formules dans un fragment

de Strategy Logic (SL[NG]) [65].

Objectifs de cette Thèse

L’objectif de cette thèse est d’étudier le problème de synthèse des systèmes réactifs

interactifs dans le cas antagoniste ainsi que dans le cas rationnel. Nous considérons

également différents types d’observations pour les processus. Autrement dit, nous étudions

les deux problèmes quand les composants (processus) à synthétiser et les composantes de

l’environnement ont l’information parfaite ou partielle.

Plus précisément, nous sommes intéressés de trouver des procédures ”Safraless” pour

résoudre le problème de synthèse et qui peut ramener à des implémentations efficaces.

D’abord, pour le cas de la Synthèse KLTL avec un environnement antagoniste à un seul

composant, notre objectif est de utiliser les automates coBüchi universelles et développer

une procedure similaire à celle de [36].

Ensuite, dans le cas de Synthese Rationelle, la solution propose dans [37, 53] pour

xi

le cas d’information parfaite pour tous composants est par réduction au problème de

model-checking d’un fragment de Strategy Logic. Cela, est ensuite résolu par réduction

au problème de tester le vide des automates d’arbres alternantes, qui implique l’utilisation

des constructions similaires à construction de Safra. Notre objectif est de comprendre

finement les complexités du problème de synthèse rationnelle et comment manipuler

algorithmiquement le jeu sous-jasent. Ensuite, nous visons une procédure ”Safraless”

pour résoudre le problème du synthèse rationnelle sous information parfaite et imparfaite.

Contributions

Définition Générale du Problème de Synthèse

Dans cette thèse nous fournissons une définition plus générale du problème de synthèse qui

généralise les deux problèmes mentionnés ci-dessus. Plus précisément, nous considérons

des modèles d’interaction M sur lequel agissent k + 1 processus partiellement informées.

L’information partielle du chaque agent modélisée par une relation d’équivalence

(d’indistinguibilité) sur les états du modèle d’interaction. Chaque classe d’équivalence

représente une certaine observation du l’agent, correspondent à la relation considérée.

Cella capture la situation où chaque état deM représente une état globale d’un système

distribué, et chaque processus modélise l’un de ses composants qui ne voient pas les

données locales des autres composants. La transition entre les états est fait, comme

dans le modèle proposé en [89], en function des actions des processus. Aussi, au cours des

exécutions, chaque processus n’est informé que de ses propres actions et de ses observations

sur les états.

L’ensemble Ω = {0,1, ..., k} des processus est partitionné en deux ensembles. Il y a

un ensemble P des processus qui représente les composants dans le système distribué à

synthétiser et les processus dans l’ensemble Ω∖P représente l’environnement des processus

à synthétiser.

L’approche générale pour résoudre le problème de synthèse est de utiliser des concepts

de théorie des jeux. C’est-à-dire, chaque composante du modèle d’interaction représente

un joueur dans le jeux et, alors, résoudre le problème de synthèse se réduit à trouver des

stratégies pour les joueurs correspondant aux processus à synthétiser tel que ils satisfont

certaines spécifications. En général, les conditions à respecter sont donnés comme des

spécifications du profil de stratégies. Plus précisément, il est fourni un ensemble Φ de

profils de stratégies (une stratégie pour chaque processus) qui sont désirables. Étant

donné l’ensemble Γi des stratégies possibles pour Processus i ∈ Ω, Φ est un ensemble des

tuples appartenant à Γ0 × ... × Γk.

Ensuite, le problème de synthèse demande de trouver tuples (σi)i∈P de stratégies

pour les processus dans P tel que pour n’importe quel tuple (σi)i/∈P de stratégies pour

les processus dans l’environnement (Ω∖P), le profil de stratégies résultant ⟨σ0, ..., σk⟩ est

xii

inclus dans la spécification Φ. Autrement dit, on considère le problème de réalisabilité

suivant:

ENTRÉE ∶ M, P ⊆ Ω, Φ ⊆ Γ0 ×⋯ × Γk

SORTIE ∶ Oui ssi ∃(σi)i∈P ∀(σi)i/∈P ⟨σ0, ..., σk⟩ ∈ Φ

Si la réponse pour le problème ci-dessus est positive, le problème de synthèse demande

de fournir un témoin. Dans cette thèse, tous les tests de réalisabilité sont constructifs

(fournissent un témoin) et par suite nous nous référons au problème de réalisabilité comme

le problème de synthèse.

Une vue d’ensemble des résultats de décidabilité de ce problème est dans le Tableau 2.1.

Synthèse KLTL et Environnement Antagoniste

D’abord, nous traitons le Problème de synthèse KLTL avec environnement antagoniste

défini dans [89]. Dans ce cas, les processus dans l’ensemble P ont comme objectif commun

la satisfaction d’une formule KLTL ϕ contre un environnement complètement antagoniste

(ayant l’objectif ¬ϕ) qui n’a qu’un seul composant. Par conséquent, la spécifications

du profil de stratégies se compose de tous profils de stratégies pour lesquels l’exécution

résultante satisfait ϕ.

Le problème de synthèse KLTL est indécidable en général et alors nous nous

concentrons sur la restriction de [89] où il y a un processus partialement informé (∣P ∣ = 1) à

synthétiser contre un environnement complètement informé. La solution proposé dans [89]

est basé sur le vide des automates d’arbres alternantes de Rabin, qui est testé par

appliquent d’abord des constructions de type Safra pour éliminer l’alternance et après

vérifier le vide de l’automate d’arbres nondeterministe résultant.

La principale contribution concernant la synthèse KLTL avec environnement

antagoniste est de définir et implémenter une procédure Safraless pour le fragment positif

de KLTL (KLTL+), c’est à dire, formules KLTL où l’opérateur K apparâıt sous un nombre

pair de négations. La procédure proposé dans la thèse utilise des automates d’arbres

coBüchi universelles (UCT). Plus précisément, étant donné une formule KLTL+ ϕ et un

modèle d’interactionM, nous construisons un UCT Tϕ qui accepte exactement l’ensemble

de stratégies qui réalise ϕ dans l’environnement M.

Malgré le fait que notre procédure a la complexité 2ExpTime dans le pire des cas, nous

l’avons implémenté et montré sa faisabilité pratique à travers un ensemble d’exemples.

En particuliers, basé sur l’idée de [36], nous réduisons le problème de tester le vide d’un

UCT Tϕ à résoudre un jeux de sûreté dont l’espace d’états peut être ordonné et représenté

de manière compacte en utilisent des antichâınes. L’implémentation est basée sur l’outil

Acacia [12] et, à notre connaissance, est la première implémentation d’une procédure de

synthèse pour des spécifications temporelles épistémiques. En plus, cette implémentation

xiii

peut être utilisée pour résoudre des jeux à deux joueurs avec information imparfaite et

objectifs LTL. Cette contribution est détaillé en Chapitre 4 et poubliee dans [14].

Synthèse avec Environnement Rationnel

Nous étudions aussi la Synthèse Rationnelle. La rationalité de l’environnement est

modélisée en utilisant une notion d’équilibre. Ainsi, la spécifications du profil de stratégies

pour le contexte non-coopératif contient tous profils de stratégies qui, si ils sont en

équilibre de point de vue du l’environnement (P -fixé équilibre), alors ils satisfont tous

les objectifs des processus dans P . Pour le cas coopératif, la spécifications du profil de

stratégies contient tous les profils de stratégies qui sont équilibres P -fixées et satisfont les

objectifs de tous les processus dans P .

Cas de l’Information Parfaite Nous d’abord étudions le problème dans le cas

d’information parfaite pour les deux processus à synthétiser et l’environnement. On

considère des variantes du problème de synthèse pour objectifs de accessibilité, sûreté,

Büchi, coBüchi, parité, Rabin, Streett et Muller quand la rationalité des processus de

l’environnement est modélisé en utilisent des équilibres de Nash. Nous étudions également

la complexité de résoudre ces problèmes lorsque le nombre de joueurs est fixe. Cette

analyse paramétrée a du sens car le nombre des composants de l’environnement peut être

limité dans les situations pratiques. Nos résultats (illustrés dans le Tableau 5.1) montre

que la complexité diminue pour les objectifs particuliers que nous considérons.

Les bornes inférieures pour les différents objectifs sont obtenus par des

réductions (souvent complexes) de différents problèmes qui sont bien connus d’être difficile.

Quand le nombre des processus est fixé, les bornes inférieures vient en général de la

complexité de résoudre les jeux à deux joueurs à somme nulle, avec le même type d’objectif

pour le protagoniste. Toutefois, les objectifs de Rabin et Streett (dans les deux cas,

coopératif et non-coopératif) et objectifs de Parité (pour le cas non-coopératif) nécessitent

une réduction plus complexe.

La synthèse rationnelle coopérative avec information parfaite est un cas particulier du

problème d’existence d’un équilibre de Nash contraint dans les jeux multi-joueurs, où les

objectifs des processus dans le set P doivent être satisfaits. La complexité de ce problème

a été étudié par Ummels [87] pour quelques classes d’objectifs. L’idée principale dans [87]

est de caractériser les équilibre de Nash par des formules LTL sur les exécutions dans le

modèle d’interaction. Cette solution nous donne des bornes supérieures pour la synthèse

rationnelle coopérative et objectifs de Büchi, coBüchi, Parité et Streett. Pour les autres

objectifs, nous étendons cette caractérisation.

Les solutions pour le cas non-coopératif sont plus compliqué et sont basés sur une

application fine des techniques sur les automates d’arbres. Nous définissons des automates

non déterministes qui ont une taille exponentielle, mais nous montrons comment tester

xiv

leur vide en PSpace pour obtenir des algorithmes pour des objectives de Streett, Rabin

et Muller et un nombre fixé de joueurs. Plus précisément, l’automate as un nombre

exponentiel d’états dans le nombre d’agents et as des propriétés de monotonicité. Ça

nous permet de réduire le test du vide des automates au problème de résoudre un jeux de

durée fini (connu dans la littérature comme des jeux de premier cycle [8]) ayant une durée

polynomiale dans le cas des objectifs de Sûreté, Accessibilité, Büchi et coBüchi et durée

exponentielle pour les objectifs de Parité, Streett, Rabin et Muller. Pour un nombre fixée

d’agents, l’automate nondéterministe d’arbres a une taille polynomiale dans la taille du

modèle d’interaction fourni.

La procédure pour résoudre le Problème de Synthèse Rationnelle avec information

parfaite et les preuves détaillées pour les complexités serres pour les différents types

d’objectifs sont présentées dans Chapitre 5 et une version courte est publié dans [28].

Cas de l’Information Imparfaite Finalement, nous étudions le cas d’information

imparfaite pour la synthèse rationnelle. Dans le cas général, le problème est indécidable

car la synthèse distribué avec objectifs LTL et environnement antagoniste est déjà

indécidable [75]. Toutefois, nous regagnons la décidabilité pour le cas non-coopératif

si on demande à synthétiser un composant (∣P ∣ = 1) avec observation partielle contre

un environnement milti-composant, omniscient et rationnel. En autre, un répons positif

pour le cas où seulement le processus à synthétiser a l’information imparfaite, est aussi un

répons positif pour le cas plus restrictif où l’environnement a aussi observation partielle.

Effectivement, si Processus 0 a une stratégie pour gagner contre un environnement

omniscient et rationnel, il peut appliquer la même stratégie pour assurer son objectif

quand l’environnement a une observation partielle.

La preuve de décidabilité pour la synthèse d’un processus contre un environnement

multi-composant, omniscient, rationnel et non-coopératif utilise l’idée du construction

de l’automate d’arbre construit dans le cas d’information parfaite. Ensuite, le problème

se réduit au problème de synthèse de deux processus avec observation hiérarchique et

objectif LTL contre un environnement omniscient et antagoniste avec un seul composant.

Le dernière problème est démontré être décidable dans [90].

Les résultats de décidabilité pour la synthèse rationnelle avec information imparfaite

sont détailles dans Chapitre 6 et sont de nouveaux résultats qui ne sont pas encore publiés.

Organisation de cette Thèse

Dans le Chapitre 2, nous définissons le modèle d’interaction et donne la définition

générale du problème de synthèse. Également, nous définissons et présentons les résultats

existantes pour les deux problèmes de synthèse qui nous étudions.

Le Chapitre 3 présente outils et techniques utilisées pour résoudre le problème de

xv

synthèse. D’abord nous rappelons quelques logiques que permet le raisonnement sur les

stratégies et ensuite nous définissons les automates sur mots et arbres et fournissons les

procédures classiques pour tester leur vide.

Chapitre 4 révise les procédures existantes pour résoudre le problème de synthèse avec

environnement antagoniste et propose une solution Safraless pour la synthèse KLTL+.

Dans Chapitre 5, nous fournissons des solutions pour résoudre le problème de synthèse

rationnelle avec information parfaite. Dans Chapitre 6 nous étudions le problème du

synthèse rationnelle dans le cas d’information imparfaite.

xvi

Acknowledgements

I would like to thank all the people who made this thesis possible.

In am especially grateful to my supervisors Cătălin Dima and Emmanuel Filiot for

guiding my research and for all the time and interest they invested in making my PhD a

great experience. Thank you for encouraging my research and for allowing me to grow as

a research scientist.

I would like to thank each member of my thesis committee for reading my PhD memoir.

I am honored to having you as part of my thesis committee.

Many thanks to my co-authors Cătălin Dima, Emmanuel Filiot, Raffaela Gentilini and

Jean-François Raskin for the role they played in my research. I learned a lot from them

about the way the research is done and how to present the work so that the audience can

easily follow. I would also like to mention Youssouf Oualhadj with whom I had interesting

and stimulating discussions related to my research, and who is always motivating.

To all members of LACL, I am thankful for the extraordinary time spent during the

last years, for all the shared lunches, TPs and TDs. I have a special thought for Nicolas

Herniou who helped me whenever I had problems with my computer.

I thank the members of Computer Science department of ULB for all nice moments

spent during the time I was at ULB.

Last but not the least, I would like to thank my family: my husband and my parents

and sister for supporting me spiritually throughout writing this thesis and my life in

general.

Contents

1 Introduction 5

1.1 Motivation . 5

1.2 Objectives of the Thesis . 9

1.3 Contributions . 9

1.4 Organization of the Thesis . 13

2 Realizability and Synthesis 15

2.1 Interaction Model . 15

2.1.1 Strategies . 18

2.1.2 Observations . 21

2.1.3 Synthesis problem: goals and contributions 22

2.2 Execution Specifications . 25

2.2.1 ω-regular objectives . 25

2.2.2 Epistemic Linear Temporal Logic (KLTL) 26

2.3 Synthesis with antagonist environment . 29

2.4 Multi-component rational environment . 35

2.4.1 Modeling Rationality . 35

2.4.2 Rational Synthesis . 38

3 Games, Logics and Automata: Tools and Techniques 43

3.1 Two-players Zero-sum Games . 43

3.2 Logics of Strategies . 45

3.2.1 Alternating-Time Temporal Logic . 45

3.2.2 Nested-Goal Strategy Logic (SL[NG]) 49

3.2.3 Epistemic Strategy Logic (SLK) . 50

3.3 Automata on infinite Words . 51

3.4 Trees and Tree Automata . 53

3.4.1 Infinite Trees . 53

3.4.2 Alternating Automata on Infinite Trees 54

3.4.3 Emptiness of Alternating Tree Automata 59

3.4.4 Emptiness Game for Nondeterministic Tree Automata 62

1

CONTENTS

3.4.5 Antichain Algorithm of UCT Automata Emptiness 63

4 Solving the KLTL Synthesis Problem 69

4.1 Preliminaries . 70

4.2 Safraless Synthesis Procedure for Positive KLTL Specifications 72

4.2.1 LTL Synthesis under Imperfect Information 72

4.2.2 Positive KLTL Synthesis . 75

4.3 Implementation and Test Cases . 83

4.3.1 Implementation . 83

4.3.2 Light Bulb Controller . 84

4.3.3 The 3-Coins Game . 85

4.3.4 n-Prisoners Enigma . 87

4.3.5 Comparing Acacia-K with other tools 89

4.4 Conclusions . 91

5 Rational Synthesis with Perfect Information 93

5.1 Preliminaries . 95

5.2 LTL Characterization of Nash Equilibria . 97

5.3 Cooperative Rational Synthesis (CRSP) . 101

5.3.1 General Solution for CRSP . 101

5.3.2 Upper Bounds for CRSP . 102

5.3.3 Lower Bounds for CRSP . 106

5.3.4 CRSP with Fixed Number of Processes 110

5.4 Non-Cooperative Rational Synthesis (NCRSP) 113

5.4.1 General Solution for NCRSP . 113

5.4.2 Upper Bounds for NCRSP . 122

5.4.3 Lower Bounds for NCRSP . 135

5.4.4 NCRSP with Fixed Number of Processes 138

5.5 Conclusions . 151

6 Rational Synthesis with Imperfect Information 155

6.1 Imperfect Information for All Processes . 156

6.2 One Process Against Omniscient Multi-component Environment 158

6.2.1 Imperfect Information Cooperative Rational Synthesis (ICRSP) . . 158

6.2.2 Imperfect Information Non-Cooperative Rational Synthesis

(INCRSP) . 159

6.3 Conclusions . 164

7 Conclusions 165

7.1 Main Results . 165

7.2 Perspectives . 166

2

CONTENTS

REFERENCES 169

Index 180

List of Figures 183

List of Tables 185

3

CONTENTS

4

1. Introduction

1.1 Motivation

Reactive systems are non-terminating systems that interact with their environment. They

arise both as hardware and software, and are usually part of safety-critical systems, for

example microprocessors, computer systems responsible of air traffic management, control

of nuclear power plant or programs to monitor medical devices. It is therefore crucial to

guarantee their correctness. There are different approaches to ensure the correctness of

such systems.

Program Verification Program verification is a domain of computer science that

facilitates the early detection of defects in the hardware and software systems for which

failure is unacceptable. One of the major achievements in system verification is the theory

of model-checking [27], that allows to automatically check for system correctness.

It applies to interaction models (or transition systems) that model the interaction

between the program and its environment together with specifications typically expressed

as temporal logic formulas [60] describing the allowable behaviors of the program. The

model-checking problem consists of answering the question “Does the program satisfy

the specification?”. In the case of a negative answer, some procedures provide a

counterexample consisting of an interaction between the system and the environment

that does not satisfy the specification. Then, using the counterexample (if provided),

one has to fix the bug in the system or even in the specifications and proceed from the

beginning with the model-checking process.

Nowadays, model-checking techniques represent an important part of the design

process in companies such as Intel and IBM. However, designing the system using

model-checking and guided refinements may be time consuming and remains dependent

on the skills of programmers. That is, the process of verification followed by bug fixing

may be repeated several times before a correct program is obtained.

Synthesis Given a specification, the synthesis problem aim is to automatically

synthesize a program that fulfills the behavior defined by the specification. Therefore,

the constraints do not need to be checked afterwards, and this allows the designer to

5

CHAPTER 1. INTRODUCTION

focus on defining high-level specifications, rather than designing complex computational

models of the systems.

The synthesis problem was introduced by Church [26] for circuits. It requires that

if given a logical specification S(I,O) between input signals I and output signals O, to

determine whether there is a circuit that, for any received inputs, it outputs signals so

that the specification is satisfied.

One of the main challenges of synthesis of reactive systems is to satisfy the specification

regardless of the behavior of its environment. For example, let us take a computer that

controls an elevator. It has actions to make the elevator go up, go down, and open and

close the doors. At each floor there are buttons that can be pushed to call the elevator

and there are some buttons inside the elevator that serve to demand the destination

floor of some person in the elevator. The person that pushes the buttons represents the

environment of the controller of the elevator. Then, a specification to be satisfied by

the elevator is the following. Whenever the elevator is called at a certain floor, it has to

eventually stop and open the door at that floor. Also, whenever the person inside the

elevator asks the elevator to go at a certain floor, it should eventually reach it. Note

that the behavior of the person in the elevator is not known in advance and is also not

restricted. Thus, they can push any buttons and the specifications have to be satisfied

for any possible behavior of the person.

The uncontrollable environment usually leads to computationally harder decision

problems, compared to system verification. For instance, model-checking properties

expressed in linear time temporal logic (LTL) is PSpace-complete[83] while LTL synthesis

is 2Exptime-complete [74].

The synthesis problem of reactive systems from LTL specifications was first introduced

and studied by Pnueli and Rosner [74] and also by Abadi, Lamport and Wolper [2].

However, the solution proposed involves nondeterministic automata that have to be

determinized using the complex Safra’s construction[79] that was shown to be resistant

to efficient implementations[85]. Piterman [73] and Muller and Schupp [70] proposed

optimizations of Safra’s construction, that unfortunately continue not to lead to efficient

implementations. The main reason of the resistance to implementation of these

constructions is that they cannot be implemented symbolically and therefore one needs

to explicitly build the entire set of states of the automata.

Recently, procedures that avoid Safra-like constructions (called Safraless) were

developed. A first solution was proposed by Kupferman and Vardi in [55] and uses

universal coBüchi automata to characterize solutions for the synthesis problem. This

approach has aroused a lot of interest in developing feasible procedures to solve the

synthesis problem that can lead to implementations. Since then, several other ”Safraless”

procedures have been defined [55, 81, 41, 36]. In [81, 36], it is shown that LTL synthesis

reduces to testing the emptiness of a universal coBüchi tree automaton, that in turn can

6

CHAPTER 1. INTRODUCTION

be reduced to solving a safety game. The structure of the safety games can be exploited to

define a symbolic game solving algorithm based on compact antichain representations [36].

Lily[49], Anzu[50], Ratsy[11] and Acacia+[12] are some examples of tools that efficiently

implement algorithms to solve the LTL synthesis problem.

Multi-Component Systems In the previously presented works, the system is

presumed to have perfect information about the state of the environment. However

in many practical scenarios, this assumption is not realistic since several systems have

multiple components. In distributed or multi-component systems, it is typical that each

component has its private variables, which are not visible from exterior. Therefore,

components must act on the basis of the local data and coordinate to ensure some global

properties of the system in some environment.

The interaction of the distributed systems is classically modeled using interaction

models (or transition systems). Each state of the interaction model represents the

global configuration of the distributed system and the transition between states is made

depending on the action of each component (including the environment of the system that

can be considered an extra component). Then, each component has a partial visibility

on the state of the interaction model corresponding to its local data. The components

don’t see which actions are played by the others but get some observation on the states

in which the interaction model may be. An execution of the interaction model, from the

system’s perspective, is therefore an infinite sequence alternating between its own actions

and observations.

A protocol (or behavior or strategy) of some component consists in indicating the

actions to be run in the interaction model, depending on the past observations it received.

Therefore, the synthesis of a (set of) component(s) is equivalent to finding a (set of)

protocol(s) for the component(s) to synthesize. When a set of components is asked to be

synthesized, the rest of the components of the distributed system are considered to be

part of the environment.

Epistemic Temporal Logics [44] are logics formatted for reasoning about multi-agent

situations. Besides the formal description of the temporal ordering of events, they

also allow the reasoning about the knowledge of the components. One can formulate

statements as ”if process i knows that the transaction will be aborted, it should rollback

its local contribution and terminate immediately”[90]. The importance of knowledge of

components is highlighted by different problems. One of them is the coordinated attack

problem. It involves two generals that attempt to coordinate an attack by communicating

through an unreliable messenger. They must agree on a time to attack and to agree to

attack at the same time. Moreover, each general must know that the other general knows

that they have agreed on the attack plan.

7

CHAPTER 1. INTRODUCTION

Epistemic temporal logics are extensions of temporal logics with knowledge operators

Ki for each agent. A formula Kiϕ intuitively says that the Agent i knows that the

property ϕ holds. Epistemic logics have been successfully used for verification of various

distributed systems in which the knowledge of the agents is essential for the correctness

of the system specification.

Synthesis with Temporal Epistemic Objectives and Antagonist Environment

Vardi and van der Meyden [89] have studied the synthesis problem from specifications

expressed in epistemic temporal logic formulas. They define the synthesis problem in a

multi-agent setting, for specifications written in LTL extended with knowledge operators

Ki for each agent (KLTL).

The goal of the KLTL synthesis problem is to automatically generate protocols

for the (multi-component) system (if it exists) that tell which action should be

taken, depending on finite histories, so that whatever the environment does, all the

(concrete) infinite executions resulting from this strategy satisfy the KLTL formula.

Due to [75], this problem is undecidable already for LTL objectives when the system

consists of two partially informed components against their environment. On the other

hand, for a single-component system against antagonist environment, the problem is

shown 2Exptime-complete[89], by reduction to the emptiness of alternating Büchi tree

automata. This theoretically-elegant construction is, however, difficult to implement

and optimize, as it relies on complex Safra-like automata operations (Muller-Schupp

construction).

Synthesis with Multi-Component Rational Environment More recently,

Kupferman et. al [38, 53] introduced the synthesis problem against a multi-component

rational environment. The rational synthesis problem assumes that each component of

the interaction model has its own objective, other then making the others fail. They are

rational in the sense that first they target the satisfaction of their own objectives and

then try to harm the others.

The Rational Synthesis problem was introduced in the more relaxed setting of perfect

information of each component in the interaction model (environment and process to be

synthesized). That is, they know which is the global state of the system. The objectives

of each process is expressed as some LTL formula and their rationality is modeled using

solution concepts as dominant strategies, Nash Equilibria, and the like.

The problem was studied in two different settings. In the non-cooperative rational

synthesis [53], since the components of the environment are rational, they may play any

strategy profile that is an equilibrium. Therefore, the problem asks to synthesize a

protocol for some component such that it ensures its specification against any rational

behaviors of the other components making up its environment. On the other hand, the

8

CHAPTER 1. INTRODUCTION

cooperative rational synthesis problem assumes that the environment is more cooperative

in the sense that it agrees to adhere to a strategy profile that is an equilibrium. Therefore,

the problem is to find such a strategy profile where the system satisfies its objective.

The main contribution of the original papers is to put forward and to motivate the

definitions above. The only computational complexity results given in those papers

are as follows: the cooperative and non-cooperative rational synthesis problems are

2ExpTime-complete for specifications expressed in linear temporal logic (LTL). This

result matches exactly the perfect information LTL synthesis within a single-component

antagonist environment. The lower bound is due to the fact that the later problem

is a particular case of the rational synthesis problem. The upper bound is obtained

by reduction to the model-checking problem of formulas in a Nested-Goal fragment of

Strategy Logic (SL[NG]) [65].

1.2 Objectives of the Thesis

The objective of this thesis is to study the synthesis problem of reactive systems in

both antagonist and rational settings. We also consider different kinds of observations

for the processes. That is, we study the two problems when the components(processes)

to be synthesized and the ones consisting their environment have perfect or imperfect

information.

More precisely, we are interested in ”Safraless” decision procedures to solve the

synthesis problem that may lead to efficient implementations. First, for the case of KLTL

Synthesis Problem with a one-component antagonist environment, our goal is to make

use of universal coBüchi automata and develop a procedure similar to the one in [36].

Then, for the case Rational Synthesis Problem, the solution proposed in [37, 53] for

the case of perfect information for all components is by reduction to model-checking of

some Strategy Logic formulas. This, is further done by reduction to testing the emptiness

of alternating tree automata that involves Safra-like constructions. Our goal is to finely

understand the computational complexities of the rational synthesis problem and how to

manipulate the underlying game algorithmically. Then, we target ”Safraless” procedures

to solve the rational synthesis problems under both perfect and imperfect information.

1.3 Contributions

General Definition of Synthesis Problem

In this thesis, we provide a more general definition of the synthesis problem that

encapsulates both problems mentioned above. More precisely, we consider interaction

models M on which act k + 1 partially informed processes. The partial information of

9

CHAPTER 1. INTRODUCTION

each process is modeled by some equivalence indistinguishability relation on the states

of the interaction model. Each equivalence class represents some observation of the

corresponding process. This captures the situation where each state in M represents

some global state of a distributed system, and each process models one of its components

that do not see the local data of the others. The transition between states is done, as in

the model proposed in [89], depending on the actions of processes. Also, along executions,

each process is informed only on its own actions and the observations on states.

The set Ω of processes is partitioned in two. There is a set P of processes that represent

the components in the distributed system to be synthesized and the processes in Ω ∖ P

represent the environment of the processes to synthesize.

The general approach to solve the synthesis problem is by using game theory concepts.

That is, each component of the interaction model represents a player in the game and then

solving the synthesis problem consists in finding strategies for the players corresponding

to processes to synthesize so that they ensure some specifications. We consider that

the requirements are given as strategy profile specifications that describe the acceptable

strategy profiles. That is, it is provided a set Φ of strategy profiles (one strategy for each

process) that are desirable. Given the set Γi of possible strategies of Process i ∈ Ω, Φ is a

set of tuples in Γ0 × ... × Γk.

Then, the synthesis problem asks to synthesize tuples (σi)i∈P of strategies for

processes in P such that for any tuple (σi)i/∈P of strategies for the processes in

the environment (Ω ∖ P), the resulting strategy profile ⟨σ0, ..., σk⟩ is included in the

specification Φ. That is, we consider the following realizability problem:

INPUT ∶ M, P ⊆ Ω, Φ ⊆ Γ0 ×⋯ × Γk

OUTPUT ∶ Yes iff ∃(σi)i∈P ∀(σi)i/∈P ⟨σ0, ..., σk⟩ ∈ Φ

If the answer for the previous problem is positive, the synthesis problem asks to provide a

witness. In this thesis, all our realizability tests are constructive (provide a witness) and

therefore we may refer to the realizability problem as the synthesis problem.

An overview of the decidability results for this problem is sketched in Table 2.1.

KLTL Synthesis with Antagonist Environment

First, we consider the KLTL Synthesis Problem with antagonist environment defined

in [89]. In this case, the processes in the set P have as joint objective the satisfaction of

some KLTL formula ϕ against a completely antagonist environment (having the objective

¬ϕ) that consists of a single process. Therefore, the strategy profile specification consists

of all strategy profiles for which the resulting execution satisfies ϕ.

The KLTL synthesis problem is undecidable in the general case and therefore we

focus on the restriction from [89] where one partially informed process (∣P ∣ = 1) is

synthesized against a perfectly informed environment. The solution proposed in [89] is

10

CHAPTER 1. INTRODUCTION

based on emptiness of alternating Rabin tree automata, which is tested by first applying

Safra-like constructions to remove alternation and then checking the emptiness of resulting

nondeterministic tree automata.

Our main contribution regarding the KLTL synthesis against antagonist environment

is to define and implement a Safraless synthesis procedure for the positive fragment of

KLTL (KLTL+), i.e., KLTL formulas where the operator K does not occur under an odd

number of negations. Our procedure relies on universal coBüchi tree automata (UCT).

More precisely, given a KLTL+ formula ϕ and some interaction model M, we show how

to construct a UCT Tϕ whose language is exactly the set of strategies that realize ϕ in

the model M.

Despite the fact that our procedure has 2ExpTime worst-case complexity, we have

implemented it and shown its practical feasibility through a set of examples. In particular,

based on ideas of [36], we reduce the problem of checking the emptiness of the UCT Tϕ
to the problem of solving a safety game whose state space can be ordered and compactly

represented by antichains. Our implementation is based on the tool Acacia [12] and,

to the best of our knowledge, it is the first implementation of a synthesis procedure

for epistemic temporal specifications. As a byproduct, this implementation can be used

to solve two-player games of imperfect information whose objectives are given as LTL

formulas. The procedure is detailed in Chapter 4 and a short version is published in [14].

Synthesis with Rational Environment

We also study the Rational Synthesis Problem. The rationality of the environment is

modeled by using some notion of equilibria. Thus, the strategy profile specification for

the non-cooperative setting contains all strategy profiles that, if they are in equilibrium

from the environment’s perspective (P -fixed equilibrium), then they also satisfy all the

objectives of the processes in P . For cooperative setting, the strategy profile specification

contains all strategy profiles that are P -fixed equilibrium and satisfy the objectives of

processes in the set P .

Perfect Information Setting We first consider the problem under the assumption of

perfect information for both processes to be synthesized and the environment. We then

solve variants of the problem for reachability, safety, Büchi, coBüchi, parity, Rabin, Streett

and Muller objectives when the rationality of processes is modeled using Nash equilibria

and also study the computational complexity of solving those problems when the number

of players is fixed. This parameterised analysis makes sense as the number of components

forming the environment may be limited in practical applications. Our results (illustrated

in Table 5.1) show that the complexity decreases for the particular objectives we consider.

The lower bounds for the different objectives are obtained by (often intricate)

reductions from different problems that are well known to be hard. For the case of

11

CHAPTER 1. INTRODUCTION

fixed number of processes, the lower bounds generally come from the complexity of

solving two-players zero-sum games with the same type of objective for the protagonist.

However, Streett and Rabin objectives (in both cooperative and non-cooperative settings)

and Parity objectives (for non-cooperative setting) need more involved reductions.

Cooperative rational synthesis under perfect information assumption is a particular

case of the more general problem of checking the existence of a constrained Nash

equilibrium in a multiplayer game, where the strategies of processes in P are required to be

winning. The complexity of constrained Nash equilibria has been studied by Ummels [87]

for some classes of objectives. The main idea in [87] is to characterize Nash equilibria by

means of LTL properties on executions in the interaction model. This directly gives us

upper-bounds for cooperative synthesis and Büchi, coBüchi, parity and Streett objectives.

For the other objectives, we extend this characterization.

The solutions for the non-cooperative case are more involved and are based on a fine

tuned application of tree automata techniques. We define nondeterministic tree automata

that have exponential size but we show how to test their emptiness in PSpace to obtain

optimal algorithms for Streett, Rabin and Muller objectives and fixed number of players.

More precisely, the automaton has an exponential number of states only in the number

of processes and has monotonic properties. This allows us to reduce the emptiness test

of the automaton to the problem of solving some finite duration games (known in the

literature as first cycle games[8]) that have polynomial length in the case of Safety,

Reachability, Büchi and coBüchi objectives and exponential length for Parity, Streett,

Rabin and Muller objectives. For a fixed number of players, the nondeterministic tree

automaton has polynomial size in the size of the given interaction model M.

The procedures solving the Rational Synthesis Problem for the perfect information

setting and detailed proofs for the tight complexity bounds for different types of objectives

are presented in Chapter 5 and a short version is published in [28].

Imperfect Information Setting Finally, we consider the imperfect information setting

for Rational Synthesis. In the general setting, the problem is undecidable due to the

undecidability of LTL distributed synthesis with antagonist environment [75]. However,

we gain decidability for non-cooperative setting if we consider only one partially informed

process to synthesize (∣P ∣ = 1) against an omniscient environment. Moreover, a positive

answer to the setting when only the system to be synthesized has imperfect information, is

also a positive answer for the more restricted environment that has to play observational

strategies. Indeed, if Process 0 has a strategy to win against the omniscient rational

environment, then it can apply the same strategy to ensure its objective when the

environment’s observation is more restricted.

The decidability proof for the synthesis of one process against a multi-component

omniscient rational non-cooperative environment uses the idea in the construction of the

12

CHAPTER 1. INTRODUCTION

tree automaton built for the case of perfect information. The problem then reduces to the

problem of synthesizing two processes with hierarchical observations and LTL objectives

against an omniscient one-component antagonist environment. The later problem is

proven in [90] to be decidable.

Decidability results for the Imperfect Information Rational Synthesis are detailed in

Chapter 6 and are new results that are not published yet.

1.4 Organization of the Thesis

In Chapter 2, we define the interaction model and give the general definition of the

synthesis problem. We also define and present existent results and contributions for the

two considered settings of synthesis problem.

Chapter 3 presents tools and techniques used for solving the synthesis problem. We

first recall some logics that allow the reasoning about the strategies and then define the

automata on words and trees and give the classical procedures for testing their emptiness.

Chapter 4 revises the existing procedures to solve the synthesis problem with

antagonist environment and provides a Safraless solution for the KLTL+synthesis.

In Chapter 5, we provide solutions for the rational synthesis problem under perfect

information and in Chapter 6 we study the rational synthesis problem in the case of

imperfect information.

13

CHAPTER 1. INTRODUCTION

14

2. Realizability and Synthesis

In this section we define the realizability and synthesis problems in a multi-component

interaction model where each process (or agent) represents a component in the distributed

system.

2.1 Interaction Model

We assume that the possible behaviours of the processes that interact and the changes

that appear in the entire system are modelled as a transition system. Each state of the

transition system corresponds to a global configuration in the system and the change of

state is done depending on the events appearing in the system, modelled as actions of

processes. Therefore, assuming that the processes are numbered from 0 to k ∈ N, the

transition system is defined over k + 1 sets Σ0,Σ1, ...,Σk of actions for the component

processes and the transition relation from state to state is defined with respect to tuples

of actions in Σ0 ×Σ1 ×⋯×Σk. Additionally, each state v of the interaction model carries

an interpretation τ(s) over a (finite) set of properties modeled as a (finite) set of atomic

propositions P. Formally,

Definition 2.1.1. An interaction model is a tuple M= ⟨P,Ω, (Σi)i∈Ω, V, V0,E, τ⟩ where

� Ω = {0,1, ..., k} is the finite set of processes (also called agents or players in the

following)

� P is the finite set of propositions, Σ0,⋯Σk are finite sets of actions for the processes

� V is the set of states, V0 is the set of initial states,

� τ ∶ V → 2P is the labeling function (interpretation),

� E ∶ V ×Σ0 ×Σ1 ×⋯Σk → V is the (total) transition function

Note that by the definition we consider, the model is assumed to be deadlock-free and

complete for all actions, i.e., from any state and any tuple of actions there is one outgoing

transition. At each round, each player chooses an action and according to the choices of

all players, the system moves in the successor state given by E.

15

CHAPTER 2. REALIZABILITY AND SYNTHESIS

Turn-based interaction model In the above definition, the interaction model is

concurrent. In each state, each process proposes one action and the transition is made

depending on the tuple of actions of the processes. In the turn-based setting, there is a

partition (Vi)i∈Ω of the set of states, one set for each process. Intuitively, this corresponds

to the setting when only one process is active at a time. Then, at each state, the process

that is active (that controls the current state) chooses the next state in the interaction

model. Therefore, we can assume that there are no actions on transitions and that the

transition relation is formally defined as a set E ⊆ V × V of edges that indicates the

possible choices from each state. Therefore, at state v ∈ V , the Agent i for which v ∈ Vi
chooses a state v′ such that (v, v′) ∈ E. In this thesis we refer to concurrent setting, unless

is explicitly said otherwise.

Executions We denote by E(v) the set of successor states of v, i.e., E(v) = {v′ ∈ V ∣

∃(a0, ..., ak) ∈ Σ0× ...×Σk s.t. v′ = E(v, a0, a1, ..., ak)}. An execution(or path) ρ inM, is an

infinite sequence of states ρ = v0v1... ∈ V ω such that v0 ∈ V0 and for all n > 0, vn+1 ∈ E(vn).

We let trace(ρ) = τ(v0)τ(v1)τ(v2)... ∈ (2P)ω be the trace of the execution ρ inM. A prefix

(or history) of ρ up to vn is written ρ[∶n] and its last state is ρ[n]. We denote by ⊏ the

prefix relation over V ∗ ∪ V ω. We let exec(M) stand for the set of executions in M, and

Prefs(M) for its closure under ⊏. For ρ ∈ V ω, we write ρ[n ∶] for the suffix of ρ starting

from position n. Also, visit(ρ) stands for the set of states that appear at least once along ρ,

i.e. visit(ρ) = {v ∈ V ∣ ∃n ≥ 0 s.t. ρ[n] = v}, visit(ρ, v) for the number of times the state v is

visited along ρ (or ∞ if ρ visits infinitely often the state v) and inf(ρ) for the set of states

occurring infinitely often along ρ, i.e. inf(ρ) = {v ∈ V ∣ ∀n ≥ 0,∃m ≥ n s.t. ρ[m] = v}.

Finally, M[v] stands for the interaction model obtained from M by replacing the initial

set of states by {v}.

Example 2.1.1. We illustrate the notion of interaction model on the following toy

example. Let us consider two processes, one that sends requests for some resource and

the other grants it. We assume that Process 1 makes the requests by making the action R

(¬R if no request) and that Process 0 grants it by making the action G (¬G if no grant).

The interaction model has two states. The initial state is labeled with the proposition

g that stands for ”all requests are granted”. There is a second state labeled with r that

corresponds to the case in which there are some requests that are not granted yet.

We assume that, with action G, Process 0 grants all the requests that were made up to

the present, including the ones that are made in the same time with the grant. Therefore,

the transition relation in the interaction model is the one depicted in Figure 2.1. Whenever

a grant is given, the transitions lead to state v0 labeled with g. However, if a request is

made by Process 1 and there is no grant given in the same time, the transition leads to

the state v1. The interaction model remains in v1 until a new grant is provided. Formally,

16

CHAPTER 2. REALIZABILITY AND SYNTHESIS

gstart

v0

r

v1

(¬G,R)

(G,∗)

(¬G,¬R),

(G,∗) (¬G,∗)

Figure 2.1: Example: Request-Grant interaction model

we write

E(v0, (a, b)) =

⎧⎪⎪
⎨
⎪⎪⎩

v1 if (a, b) = (¬G,R)

v0 otherwise
E(v1, (a, b)) =

⎧⎪⎪
⎨
⎪⎪⎩

v0 if a = G

v1 otherwise

Example 2.1.2 (Light Bulb). Another example that is more related to the real world is

the one of [89], that describes the behavior of two processes acting on a timed toggle switch

with two positions (on,off) and a light bulb. The light is intended to indicate the position

of the toggle. That is, the light can be on only if the toggle is on. However, the light bulb

may be broken, so the light may be off even if the toggle is on. Also, the toggle may switch

off after an arbitrary time.

Process 0 can act on the switch by performing one of the actions ”toggle” or ”skip”.

Whenever he toggles, the position of the toggle changes. He proposes the action ”skip”

whenever he doesn’t want to change the position of the toggle.

t, l

v0

∅

v1

t

v2

(∗,∗), T

(tout,∗), S

(¬tout,¬lon), S

(¬tout, lon), S

(∗, lon), T

(∗,¬lon), T

(∗,∗), S

(∗,∗), T

(tout,∗), S

(¬tout, lon), S

(¬tout,¬lon), S

Figure 2.2: Interaction model M of Example 2.1.2

Formally, the configurations of the system are modeled by states labeled with atomic

propositions t (true iff the toggle is on) and l (true iff the light is on) that encode the

position of the toggle and the light respectively. Therefore, the set of atomic propositions

is P = {t, l}. The interaction model is illustrated in Figure 2.2. The state v0 (labeled with

both l and t) is the only state in which the light is on and also requires the toggle to be on.

17

CHAPTER 2. REALIZABILITY AND SYNTHESIS

But, since the light bulb can be broken, the state v2 models the situation when the toggle is

on (is labeled with t) but not the light (it is not labeled by l). State v1 corresponds to the

situation when both the light and the toggle switch are off. Therefore, the labeling function

τ ∶ V → 2P is such that τ(v0) = {t, l}, τ(v1) = ∅ and τ(v1) = {t}.

Actions of the Process 0 are Σ0 = {T,S} for “toggle” and “skip” respectively. To

model the fact the toggle times out at any time and that the light may be faulty, we

consider another process (Process 1) that has special actions to model these situations.

He may decide at any time to time out the toggle switch by doing the action tout. Also,

he controls the light and decides when it turns on the light by means of action lon. Note

that since the light can be on only if the toggle switch is on, the action lon is ignored if

the toggle is not on. Formally, the set of actions of Process 1 (which may be seen as the

environment in which Process 0 runs) is Σ1 = {(tout, lon) ∣ tout, lon ∈ {0,1}}. The Boolean

variables tout and lon indicate that Process 1 times out the toggle and that he switches on

the light. In Figure 2.2, we write tout and lon when the variables are set to true and ¬tout
and respectively ¬lon when they are set to false. The star ∗ means “any action”.

The transition function is depicted on the figure. Formally, E(v, (a, (b1, b2)) = v′ s.t.

⎧⎪⎪
⎨
⎪⎪⎩

t ∈ τ(v′) ⇔ t /∈ τ(v) if a = T or (t ∈ τ(v) and b1 = tout)

t ∈ τ(v′) ⇔ t ∈ τ(v) otherwise
and

l ∈ τ(v′) iff t ∈ τ(v′) and b2 = lon

2.1.1 Strategies

The processes are supposed to act depending to the current history. That is, they act

according some strategies (called protocols in [89]) that are mappings from a sequence of

states and actions of the corresponding process to an new action. Formally, a strategy

(or protocol) for Process i ∈ Ω is a total function σi ∶ V (ΣiV)∗ → Σi. An execution

ρ = v0v1... ∈ exec(M) is said to be compatible with σi if there is an infinite sequence

of actions a0
0a

0
1...a

0
ka

1
0.... ∈ (Σ0.Σ1.⋯Σk)ω such that vn = E(vn−1, an−1

0 , ..., an−1
k) and for all

n ≥ 0, ani = σi(a
0
i v0a1

i v1...an−1
i vn−1). We denote by exec(M, σi) the set of executions of M

compatible with σi and by Γi the set of strategies of Agent i.

For a strategy σi and a history h ∈ V (ΣiV), the strategy σhi denotes the strategy of

Process i after the history h and is defined as σhi (h1) = σi(h ⋅ h1).

In this thesis, the agents are assumed to have perfect recall and therefore the reason

why in the above definition of strategies they are assumed to play actions depending on

the entire history of states and actions of the corresponding process. However, in the

literature there are several different settings. It can happen that agents do not remember

their entire past experience. They may forget some previous states they visited (have

only finite memory or even no memory at all) or they may forget the actions they took

18

CHAPTER 2. REALIZABILITY AND SYNTHESIS

in the past. In these cases, we speak about the notion of finite memory and memoryless

strategies respectively. A strategy σi of Agent i is called memoryless if for any two

sequences h,h′ ∈ (V Σi)∗ and v ∈ V , σi(hv) = σi(h′v).

Example 2.1.3. One example in which memoryfull strategies are needed is to solve the

absent-minded driver paradox described in [46]. It is assumed there is an absent-minded

individual planning his trip home. In order to get home, he has to take the highway and

get off at the second exit. Since the driver is absent-minded, whenever he arrives at an

intersection, he cannot say if it is the first or the second intersection and cannot remember

how many he has passed. Note that there is no strategy that gets the driver home in the

setting we consider in this thesis. This is because if the driver decides to take the exit when

he arrives at an intersection, he will take the first exit. On the other hand, if he decides

to continue, he will not take the second exit either and he will arrive at the end of the

highway. We will give more details about objectives of agents and existence of strategies

in the remaining of the thesis.

In this thesis we call a finite memory strategy one for which the Moore machine

encoding it has a finite number of states.

Strategies as Moore Machines We use Moore machines to represent strategies σi ∶

V (ΣiV)∗ → Σi. A Moore machine M with input alphabet V and output alphabet Σi is a

tuple M = ⟨V,Σi, SM , s0, δM , gM⟩ where SM is the set of states, the initial state is s0 ∈ SM ,

δM ∶ SM ×V → SM is the (total) transition function and gM ∶ SM → Σi is the (total) output

function. The transition function δM is then extended to δ∗M ∶ V ∗ → SM inductively as

follows: δ∗M(ε) = s0 and δ∗M(xc) = δM(δ∗M(x), v) for all x ∈ V ∗ and v ∈ V .

We then say that a Moore machine M encodes a strategy σi for Process i if and only

id for any history h = v0a0
i v1a1

i ...vn ∈ V (ΣiV)∗, holds that gM(δ∗M(v0v1...vn)) = σi(h).

Strategy Profiles A strategy profile is defined as a tuple of strategies σ̄ = ⟨σ0, σ1, ...σk⟩

and by σ̄−i we denote a strategy profile σ̄ from which the strategy of Process i is ignored

and by (σ̄−i, σ′) the strategy profile in which Process i changes to strategy σ′. That

is, σ̄−i = ⟨σ0, ..., σi−1, ⋅, σi+1, ..., σk⟩ and (σ̄−i, σ′) = ⟨σ0, ..., σi−1, σ′, σi+1, ..., σk⟩. We define

similarly the strategy profile for a subset P ⊆ Ω of processes and write σ̄P for it. In the

strategy profile σ̄P , the strategies for processes in P are defined and the strategies for the

others are ignored(are replaced by ⋅ in σ̄).

Then, the interaction between processes that follow a certain strategy profile σ̄ defines

an execution in the interaction model M. We write exec(M, σ̄) for the execution in M

that is compatible with all the strategies in the strategy profile σ̄. Also, for a subset

P ⊆ Ω, exec(M, σ̄P) consists of the executions in M that are compatible with all the

strategies σi for i ∈ P .

19

CHAPTER 2. REALIZABILITY AND SYNTHESIS

Example 2.1.4. Let us come back to Example 2.1.2. A strategy for Process 0 could be

such that he plays ”toggle” from states v0 and v1 and ”skip” whenever the interaction

model is in the state v2. This is formally written as σ0(hv) = T for any h ∈ (V Σ0)∗ if

v ∈ {v0, v1} and σ0(hv) = S if v = v2.

If the initial state of the interaction model is v0, then the strategy described above for

Process 0 is represented by the Moore machine in Figure 2.3.

v0

T
start

s0

v1

T
s1

v2

S
s2

e

s3

v1

v0, v2

v0

v2

v1

v0

v1

v2

Figure 2.3: Example of strategy as Moore machine

The state sj for j ≤ 2 corresponds to the current state vj in the interaction model. There

is an extra error state s3 reached in case the transition taken in the interaction model is

not compatible with the last action of Process 0. The upper label of the states represents

the memory needed for the strategy. In this case, since the strategy is memoryless, it is

the current state. The lower label of the state is the action taken by Process 0. Finally,

the labels on the edges represent the new state in the interaction model after taking the

action of Process 0 and some action of the environment.

Let us now consider that Process 1 wants to always turn on the light, but never time

out the toggle. This means that he always plays (¬tout, lon) for any history. Formally,

σ1(h) = (¬tout, lon) for any h ∈ V (Σ1V)∗.

Then, from a starting state v0, the interaction between the two processes defines the

execution exec(M, σ̄) = (v0v1)ω alternating between the two states v0 and v1.

Remark 2.1.1. Note that the interaction model is a game arena in which each process

represents a player (or agent). Therefore the set exec(M) corresponds to the plays in the

game arena and exec(M, σi) is called the outcome of the strategy σi of Player i. In the

following, we may mix the two notations and use the name Player or Agent for Process,

game arena for the interaction model or play for an execution in the interaction model.

In some settings, agents do not dispose of the same set of actions on all the states of

the interaction model. Therefore, there is defined a function, called protocol, that says

which actions are available to an agent at each state. In this case, a strategy is a mapping

as presented above, but it has to output an action from the set of actions available at the

current state in the model. Such a setting is adopted in the model checker MCMAS[59]

where, besides the evolution of the configuration of the system, one is also asked to provide

20

CHAPTER 2. REALIZABILITY AND SYNTHESIS

the possible actions a process can take in each configuration. However, we can always

equivalently model an interaction model like this using the definition we provided in this

thesis by adding some extra sink state to which transitions are made whenever a process

takes an action that is not in his protocol.

2.1.2 Observations

It is not realistic that the processes have perfect information about the state of the

interaction model. This may be because, for example, some processes have some private

variables that are not visible for the exterior. Therefore, the interaction model where

agents have partial observation on states was introduced in [77] and [78]. That is, each

process i is equipped with an indistinguishability equivalence relation ∼i over V . Each

equivalence class of V induced by ∼i is an observation of Agent i. The equivalence class

of a state v ∈ V from the point of view of Agent i is denoted by oi(s) and the set of

observations of Agent i is denoted by Oi. The relation ∼i is naturally extended over

(finite or infinite) executions: ρ1 ∼i ρ2 if ∣ρ1∣ = ∣ρ2∣ and ∀0 ≤ n ≤ ∣ρ1∣, ρ1[n] ∼i ρ2[n]. We say

that an Agent i has perfect information (is omniscient) if each equivalence class induced

by the relation ∼i is a singleton.

Two finite sequences h = v0a0
i v1a1

i v2a2
i ...vn ∈ V (ΣiV)∗ and h′ = v′0b

0
i v

′
1b

1
i v

′
2b

2
i ...v

′
m ∈

V (ΣiV)∗ of states and actions of Agent i are indistinguishable for him (and write h ∼i h)

if n = m and ∀0 ≤ r ≤ n, vr ∼i v′r and ari = bri . Then, a strategy σi of Agent i is

observation-based if for any two finite sequences h,h′ ∈ V (ΣiV)∗ such as h ∼i h′, we also

have σi(π) = σi(π′). Therefore, observation-based strategies can be seen as mappings

from history of his own actions and the observations he got so far to a next action, i.e.,

σi ∶ Oi(ΣiOi)∗ → Σi, where Oi denotes the set of observations of Agent i over the states

of the interaction model M.

Note that in the case of observation-based strategies σi ∶ Oi(ΣiOi)∗ → Σi, the Moore

machine that encodes it, has as input alphabet the set Oi of observations and outputs

actions in Σi. Therefore, the state update of the Moore machine is done depending on

the new observation of Agent i, i.e., it is defined by δM ∶ SM ×Oi → SM .

Example 2.1.5. Let us now consider that in Example 2.1.2 Process 0 sees only the light,

i.e. v1 ∼0 v2 and his environment (Agent 1) is assumed to have perfect information. Note

that the strategy σ0 we defined in Example 2.1.4 for Agent 0 is not observation-based since

it proposes different actions in v1 and v2 which are indistinguishable for Process 0.

An observation-based strategy for Process 0 is such that he ”toggles” all the time

(σ0(h) = T for any h ∈ V (Σ0V)∗). Therefore, for any indistinguishable history, he plays

the same action.

Given an infinite sequence π = oi0a
0
i o
i
1a

1
i o
i
2a

2
i ... ∈ Oi(ΣiOi)ω of actions and observations

of Agent i, we associate with it the set of possible executions of M that are compatible

21

CHAPTER 2. REALIZABILITY AND SYNTHESIS

with π. Formally, we write exec(M, π) for the set of executions ρ = v0v1 ⋅ ⋅ ⋅ ∈ exec(M)

such that for all n ≥ 0, oi(vn) = oin and there are actions anj for all other agents j ≠ i

such that E(vn−1, a0,⋯ak) = vn. We also define the traces of π as the set of traces of all

executions of M compatible with π, i.e. traces(π) = {trace(ρ) ∣ ρ ∈ exec(M, π)}.

2.1.3 Synthesis problem: goals and contributions

In this thesis, we are interested in the synthesis problem. Informally, we want to synthesize

protocols of some processes such that the interaction with the other processes satisfies

some desired properties. These properties are given as a strategy profile specification,

which is a set of acceptable strategy profiles (i.e. Φ ⊆ Γ0×⋯×Γk). We will properly define

this notion in the following sections for the particular cases we study.

Let P ⊆ Ω be the set of processes for which protocols have to be synthesized. We call

environment the set of players that do not belong to the set P , as we have to take into

account all their possible behaviors.

Problem 2.1.1 (Synthesis problem). Given an interaction model M, a set of processes

P ⊆ Ω and a strategy profile specification Φ, are there strategies for processes in P such

that all the strategy profiles containing them are acceptable for Φ? Formally,

INPUT ∶ M, P ⊆ Ω, Φ ⊆ Γ0 ×⋯ × Γk

OUTPUT ∶ Yes iff ∃(σi)i∈P ∀(σi)i/∈P ⟨σ0, ..., σk⟩ ∈ Φ

Note that in the literature, the above problem is referred as the realizability problem.

Then, the synthesis problem asks to generate strategies that realize the strategy profile

specification. In this thesis, the algorithms we provide also output a witness in the case

the answer is ”yes”. Therefore, since we treat both problems in the same time, we only

refer to synthesis problem.

Definition 2.1.2 (Realizability). Given an interaction modelM and a set P of processes,

the strategy profile specification Φ is realizable iff the output of the synthesis problem is

affirmative.

In this thesis we are interested in studying the Synthesis problem for two kinds of

strategy profile specifications. We describe them intuitively in the following.

KLTL Synthesis Problem First, we consider the KLTL Synthesis Problem where

processes in the set P have a joint objective ϕ expressed in some epistemic temporal logic

that allows one to reason about the temporal evolution of the system, but also express

what the agents know about the current state of the system. Therefore, the logic we

consider in this case extends the linear temporal logic(LTL) with a knowledge operator

Kiψ which stands for ”Agent i knows that the property ψ holds at the current state in

22

CHAPTER 2. REALIZABILITY AND SYNTHESIS

the interaction model”. In this setting, the environment is assumed to be completely

antagonist having as only objective to prevent the satisfaction of the objective ϕ. Then,

the question is to find a strategy profile for the agents in P so that their joint objective

is satisfied against all the possible strategies of the other agents. We give the formal

definition of the problem in Section 2.3.

Rational Synthesis Problem Secondly, we consider the case of Rational Synthesis

Problem where each process has individual objectives and plays rationally. This means

that the goal of the processes in the environment is first to satisfy their objectives and

then to harm the other processes. For this setting we consider objectives express as

LTL formulas and also study some restrictions on the agent’s objectives by considering

that they are Safety, Reachability, Büchi, Streett or Muller conditions. The rationality

of the agents is modeled using solution concepts such as Nash Equilibria, Subgame

Perfect Equilibria or Dominant Strategies. Then, synthesis problem asks if there is a

strategy profile for the agents in P so that all their objectives are satisfied when the other

agents play whatever strategies that are in some equilibrium. We call this setting the

Non-Cooperative Rational Synthesis Problem.

We also study the Cooperative Rational Synthesis Problem where the processes in the

environment agree to adhere to some strategy profile which is in equilibrium. In this

case, the synthesis problem asks if there is a strategy profile which is in equilibrium (with

respect to the considered solution concept) and for which the processes in P satisfy their

objectives.

Known Results and Contributions

In the rest of the thesis we define the strategy specifications accordingly and study the

two problems considering different kinds of observations for the processes. That is, we

will study the two problems when the processes in the set P (to be synthesized) and the

ones making up the environment having perfect or imperfect information. An overview

of the (decidability) results is sketched in Table 2.1.

Let us first take the case of KLTL Synthesis Problem. The synthesis problem

with antagonist environment is undecidable already for LTL objective when considering

imperfect information for the processes to be synthesized and perfect information for the

environment [75]. Since LTL is a fragment of KLTL, it implies the undecidability of

KLTL synthesis. To gain decidability, several restrictions have been considered. If there

is only one partially informed process to synthesize against an omniscient environment,

Van der Meyden and Vardi [89] proved that the KLTL synthesis problem is decidable in

2ExpTime. However, the algorithm they present uses Safra’s construction, notoriously

known to be resistant to efficient implementations[85]. Therefore, we were interested in

avoiding this construction and come with a Safraless approach for a positive fragment of

23

CHAPTER 2. REALIZABILITY AND SYNTHESIS

Synthesis Problem :

∃(σi)i∈P ∀(σi)i/∈P ⟨σ0, ..., σk⟩ ∈ Φ?

Information Strategy Profile Specification

Agents in P Environment KLTL Synthesis Rational Synthesis

Perfect info Perfect info [54, 36] : 2ExpTime-c [37, 53]: 2ExpTime-c

[28] : Particular objectives

Perfect info Imperfect info ? ?

Imperfect info Perfect info [75]: Undecidable Undecidable

Imperfect info Perfect info 2ExpTime-c Decidable

∣P ∣ = 1 [89] : Safra [14] : Safraless (on-going work)

Imperfect info Imperfect info [75]: Undecidable Undecidable

Table 2.1: Decidability results for the Synthesis Problem

this logic [14] that leads to an efficient implementation [1]. The algorithm will be detailed

in Chapter 4.

When considering perfect information for both processes in P and the processes

composing the environment, the KLTL synthesis problem is equivalent to the one when

considering only one process to synthesize and one antagonist process for the environment.

Also, the KLTL formula can be equivalently written as an LTL formula. This leads to

the problem studied in [54] and [36] for linear temporal objectives (LTL) and proven to

be 2ExpTime-complete.

Let us now take the case of Rational Synthesis Problem. It was introduced by

Kupferman et. al [38, 53] in the setting of perfect information for all processes and proved

to be 2ExpTime-complete. However, the solution provide is based on strategy logic and it

does not allow one to fully understand the computational complexity aspects.Therefore,

our objective in [28] is to take particular classes of objectives for the processes (like

Safety, Reachability, Büchi, coBüchi, Streett, Rabin, parity and Muller) and better

understand the difficulties when solving the problem. Then, through a fine analysis

we also obtained better complexity results. The complete results on this topic will be

presented in Chapter 5.

Further, we study the rational synthesis problem when some processes have imperfect

information. We prove that it is undecidable when all processes have imperfect

information. Complete proofs are provided in Section 6.1. The same happens when it is

asked to synthesize protocols for two or more processes with imperfect information against

an omniscient environment. However, if we are interested in synthesizing the protocol of

only one process with imperfect information and the environment is perfectly informed,

the problem is decidable and an algorithm to solve this case is given in Chapter 6.

24

CHAPTER 2. REALIZABILITY AND SYNTHESIS

2.2 Execution Specifications

Towards the definition of strategy profile specifications for which we studied the synthesis

problem, we first define the execution specifications.

As already mentioned, the allowable behaviors (or executions) are generally

characterized using temporal formulas that have to be satisfied or, more concrete, as

sets of states that have to be reached, avoided or visited infinitely often. We can use

epistemic linear temporal logic (KLTL) in the case of imperfect information, LTL for

perfect information case, more particular specifications as safety, reachability, Büchi[16],

coBüchi, Strett[84], Rabin[62, 76], parity[67, 32], Muller[68] conditions or even other

temporal logics not used in this thesis. We first define some particular conditions and

then we give a formal definition of KLTL and LTL logics.

2.2.1 ω-regular objectives

In order to define a “good execution” in the interaction model, one can ask that some

states of the interaction model be avoided (safety), eventually reach a certain configuration

(reachability) or can express liveness conditions asking that something good happens over

and over again (Büchi).

Let X stand for the complement of a set X ⊆ V in V , i.e., X = V ∖X. In the following

we revise the definition of several classes of ω-regular objectives:

� Safety: Given a set S ⊆ V of safe states, Safe(S) = {ρ ∈ V ω ∣ visit(ρ) ⊆ S} = Sω is the

set of infinite sequences of states in S.

� Reachability: Given a set T ⊆ V of target states, the dual of safety condition is

Reach(T) = {ρ ∈ V ω ∣ visit(ρ) ∩ T ≠ ∅} = Safe(T).

� Büchi: Given a set F ⊆ V , Buchi(F) = {ρ ∈ V ω ∣ inf(ρ)∩F ≠ ∅} is the set of sequences

in which some state in F appears infinitely many times.

� coBüchi: Given a set F ⊆ V , coBuchi(F) = {ρ ∈ V ω ∣ inf(ρ) ∩ F = ∅} = Buchi(F) is

the set of sequences in which all the states in F appear finitely many times.

� Streett : Given a set Ψ ⊆ 2V × 2V , the Streett condition for Ψ asks that for all pairs

(R,G) ∈ Ψ, if ρ[k] ∈ L for infinitely many k then ρ[k] ∈ R for infinitely many k, i.e.

Streett(Ψ) = ⋂(R,G)∈Ψ(coBuchi(R) ∪Buchi(G)).

� Rabin: Given a set Ψ ⊆ 2V × 2V , the Rabin condition for Ψ asks that there is one

pair (L,R) ∈ Ψ, such that ρ[k] ∈ L for infinitely many k and ρ[k] ∈ R for finitely

many k, i.e. Rabin(Ψ) = ⋃(L,R)∈Ψ(Buchi(L) ∩ coBuchi(R)) = Streett(Ψ).

25

CHAPTER 2. REALIZABILITY AND SYNTHESIS

� Parity : For a priority mapping p ∶ V→N, Parity(p) is the set of infinite sequences

such that the least color appearing infinitely often is even, i.e., Parity(p)={ρ ∈

V ω ∣ min{p(v) ∣ v ∈ inf(ρ)} is even}.

� Muller : Given a Boolean formula µ over V , the Muller condition for µ is the set of

infinite sequences such that the set of states appearing infinitely often satisfy the

formula µ, i.e., Muller(µ) = {ρ ∈ V ω ∣ inf(ρ) ⊧ µ}.

Note that Büchi and coBüchi conditions are Parity conditions with two priorities.

Also, a Büchi (resp. coBüchi) condition F is a Streett condition (V,F) (resp. (F,∅))

or a Parity condition p ∶ V → {0,1} with p(v) = 0 if v ∈ F and p(v) = 1 otherwise (resp.

p ∶ V → {1,2} with p(v) = 1 if v ∈ F and p(v) = 2 otherwise).

As defined above, in this thesis we consider Muller conditions given implicitly as

boolean formulas over the set V of states. However, in the literature, the Muller condition

may also be equivalently given explicitly as a set Ψ ⊆ 2V . In this case, the Muller condition

Ψ is satisfied on all infinite sequences such that the set of states appearing infinitely often

belongs to ψ. That is, Muller(Ψ) = {ρ ∈ V ω ∣ inf(ρ) ∈ Ψ}.

The above conditions can be also expressed in the interaction model M for sets of

atomic propositions. For example, in the case of safety (resp. coBüchi) objectives, the set

S (F resp.) can be defined using a set of propositions Y . That is, SY = {v ∈ V ∣ τ(v) ⊆ Y }.

For reachability objectives, the target set of states can be defined by means of a subset

of propositions that have to be eventually seen. That is, TY = {v ∈ V ∣ τ(v) ∩ Y ≠ ∅}.

2.2.2 Epistemic Linear Temporal Logic (KLTL)

In the case of distributed systems, the components may not have access to the global state

of the system. Therefore, they must act on the basis of local data to coordinate and ensure

the global properties of the system. The incomplete information of each component in

distributed synthesis leads then to the notion of what the agent knows about the global

state, given its local state.

Epistemic Temporal Logics[44] are logics formatted for reasoning about this kind

of multi-agent situations and allow one to express reasoning about the knowledge of

agents in distributed systems. One can formulate statements as “if Process i knows that

the transaction will be aborted, it should rollback its local contribution and terminate

immediately”[90]. They are extensions of temporal logics with knowledge operators Ki

for each agent and have been successfully used for verification of various distributed

systems in which the knowledge of the agents is essential for the correctness of the system

specification.

The logic KLTL extends LTL with the epistemic operator Kiφ, expressing that Agent

i knows that the formula φ holds.

26

CHAPTER 2. REALIZABILITY AND SYNTHESIS

Definition 2.2.1 (KLTL). KLTL formulas are defined over the set of atomic propositions

P by the following syntax:

ϕ ∶∶= p ∣ ¬ϕ ∣ ϕ ∨ ϕ ∣ ◯ϕ ∣ ϕUϕ ∣ Kiϕ

in which p ∈ P and ◯ and U are the ”next” and ”until” operators from linear temporal

logic. Formulas of the type Kiϕ are read as ”agent i knows that ϕ holds”. The following

macros can be defined:

ϕ1 ∧ ϕ2 = ¬(¬ϕ1 ∨ ¬ϕ2) (ϕ1 and ϕ2)

ϕ1 → ϕ2 = ¬ϕ1 ∨ ϕ2 (ϕ1 implies ϕ2)

ϕ1 ↔ ϕ2 = (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1) (ϕ1 equivalent to ϕ2)

◇ϕ = true Uϕ (eventually ϕ)

◻ϕ = ¬◇ ¬ϕ (always ϕ)

ϕ1Rϕ1 = ◻ϕ1 ∨ ϕ1Uϕ2 (ϕ1 releases ϕ2)

Note that the operator ◻ is the dual of ◇ and R is the dual of U . Finally, the dual of Ki

is the operator Pi which reads as ”agent i considers that ϕ is possible” and is definable as

Piϕ = ¬Ki¬ϕ

KLTL Semantics The semantics of a epistemic LTL formula ϕ is defined for an

interaction model M = ⟨P,Ω, (Σi)i∈Ω, V, V0,E, τ⟩, a set of executions R ⊆ exec(M), an

execution ρ = v0v1 ⋅ ⋅ ⋅ ∈ R and a position n ≥ 0 in ρ. This is because when the operator

Ki is used, the formula Kiϕ holds on an execution ρ if ϕ holds on all indistinguishable

executions up to position n in the set R. It is defined inductively by:

� R,ρ,n ⊧ p if p ∈ τ(vn),

� R,ρ,n ⊧ ¬ϕ if R,ρ,n /⊧ ϕ,

� R,ρ,n ⊧ ϕ1 ∨ ϕ2 if R,ρ,n ⊧ ϕ1 or R,ρ,n ⊧ ϕ2,

� R,ρ,n ⊧ ◯ϕ if R,ρ,n + 1 ⊧ ϕ,

� R,ρ,n ⊧ ϕ1Uϕ2 if ∃m ≥ n s.t. R,ρ,m ⊧ ϕ2 and ∀n ≤ p <m, R,ρ, p ⊧ ϕ1,

� R,ρ,n ⊧Kiϕ if for all ρ′ ∈ R s.t. ρ[∶ n] ∼i ρ′[∶ n], we have R,ρ′, n ⊧ ϕ.

In particular, Agent i knows ϕ at position n in the execution ρ, if all other executions

in R whose prefix up to position n are indistinguishable from that of ρ, also satisfy ϕ. We

write R,ρ ⊧ ϕ if R,ρ,0 ⊧ ϕ, and R ⊧ ϕ if R,ρ ⊧ ϕ for all executions ρ ∈ R. We also write

M⊧ ϕ to mean exec(M) ⊧ ϕ. Note that M⊧ ϕ iff M⊧Kϕ.

27

CHAPTER 2. REALIZABILITY AND SYNTHESIS

LTL Linear Temporal Logic(LTL) is a included in KLTL logic and is obtained by

removing the knowledge operator Ki. Note that for the LTL formulas, as we do not

need to refer to other executions in the set R, we can ignore it and define the semantics

on execution ρ in the interaction model M and positions n. We can also define the

semantics of LTL formulas over infinite words w ∈ (2P)ω. The only difference is that

w,n ⊧ p if p ∈ w[n].

Positive KLTL The positive fragment of KLTL (KLTL+) is equivalent to the fragment

of KLTL in which formulas contain the knowledge operator K occurring under an even

number of negations. This is obtained by straightforwardly pushing the negations down

towards the atoms. We denoted this fragment of KLTL by KLTL+. Formally, it is defined

as follows.

Definition 2.2.2 (KLTL+). Positive KLTL formulas are defined by the following

grammar:

ϕ ∶∶= p ∣ ¬p ∣ ϕ ∧ ϕ ∣ ϕ ∨ ϕ ∣ ◯ϕ ∣ ◻ϕ ∣ ϕUϕ ∣Kiϕ

for all 0 ≤ i ≤ k.

Example 2.2.1. Consider Example 2.1.2 where Agent 0 doesn’t distinguish between states

v1 and v2 and the set R of executions that eventually loops in v0. Pick any ρ in R. Then

R,ρ,0 ⊧ ◻K0 ◇ l. Indeed, take any position n in ρ and any other executions ρ′ ∈ R such

that ρ[∶ n] ∼0 ρ′[∶ n]. Then since ρ′ will eventually loop in v0, it will satisfy ◇l. Therefore

R,ρ,n ⊧K0 ◇ l, for all n ≥ 0.

Using the logic of knowledge, one also can express specifications in security

protocols [45, 88]. For example, for sending a message anonymously, it can be specified

that all the parties come to know some fact, but all the agents except the sender should not

know the identity of the sender [88]. Also, in a voting system, the voter should know the

value of his vote, but none of the other participants in the voting protocol should come to

know how one voted. Therefore, from the point of view of an attacker a, we can express

the secrecy of a vote by the KLTL formula ◻(¬ϕsame → ⋀v⋀votev(votev → ¬Kavotev))

where v ranges over all voters, the proposition votev ranges over all the possible votes of

voter v and the formula ϕsame is a boolean formula that expresses the fact that all the

voters voted in the same way. The formula reads as “at any time, if the voters did not

vote in the same way, the attacker does not know the vote of the voter v”.

Other kind of specifications may be expressed using other temporal logics like CTL or

CTL∗ that are temporal logics allowing to express branching specifications. For example,

the CTL formula ∃ ◻ ¬ down may formalize the property that possibly the system never

goes down, where the atomic proposition down is true in the case the system would fail.

This can be expressed using KLTL formula Pi ◻ ¬ down that has to hold at the initial

28

CHAPTER 2. REALIZABILITY AND SYNTHESIS

state of the interaction model, where Pi is the ”possibly” operator. However, there are

formulas like ∀ ◇ ∀ ◻ a that assert that on any computation, eventually some state is

reached so that all the continuations satisfy ◻a. This formula is not expressible in KLTL.

2.3 Synthesis with antagonist environment

Interactive reactive systems (or open systems) are systems that interact with other systems

making up their environment. Therefore, the synthesis problem considers there are some

processes for which strategies have to be synthesized, and the other processes make up

the environment.

We recall that, as defined in Section 2.1.3, given an interaction model M, a set P of

processes and a set Φ of acceptable strategy profiles, the synthesis problem asks if there

is a strategy profile for the processes in the set P such that for any strategies of the other

processes, the resulting strategy profile belongs to Φ.

The classical setting for the synthesis problem considers the environment (the processes

that are not in P) that act against the other agents forming the system to synthesize. Its

only objective is to falsify the condition that has to be ensured by the processes in P .

The synthesis problem was first formalized by Church [26] in 1962 and asks to

synthesize circuits from synthesis requirements expressed in monadic second order theory

of one successor. Later, the synthesis problem was extended to distributed systems by

Pnueli and Rosner [75]. It asks to synthesize a system made of several components that

interact with each other and with the surrounding environment. The (joint) objective

of the composed system is to ensure the satisfaction of some requirement expressed in

terms of a linear temporal logic formula. This problem has been proven in [75] to be

undecidable.

Van der Meyden and Vardi [89] formalize the synthesis problem of a distributed

system when the specifications, besides the temporal evolution of the system, may also

speak about the knowledge of the involved agents. Intuitively, given the set P ⊆ Ω to

synthesize and considering an antagonist environment (all processes in Ω∖P play against

the processes in the set P), the strategy specification for a tuple (σi)i∈P of strategies of

processes in P consists on all the strategy profiles that include (σi)i∈P and whose outcome

satisfy some joint objective expressed as an KLTL formula ϕ. The formula is realizable

if there are strategies (σi)i∈P for processes in P such that the formula holds in the set of

executions compatible with (σi)i∈P .

Formally, assuming that is given the set of processes P ⊆ Ω to be synthesized, the

realizability problem is defined as follows.

Definition 2.3.1 (Synthesis with antagonist environment). A KLTL formula ϕ is

realizable in the model M by processes in P ⊆ Ω if there is a strategy profile σ̄P = (σi)i∈P

29

CHAPTER 2. REALIZABILITY AND SYNTHESIS

such as exec(M, σ̄P) ⊧ ϕ.

INPUT ∶ M, ϕ, P ⊆ Ω,

OUTPUT ∶ Yes iff ∃(σi)i∈P ∶ exec(M, σ̄P) ⊧ ϕ

We recall that since exec(M, σ̄P) is a set of executions, by exec(M, σ̄P) ⊧ ϕ we mean

that for any execution ρ in exec(M, σ̄P), holds exec(M, σ̄P), ρ,0 ⊧ ϕ.

Note that since the interaction model corresponds to a game arena, the synthesis

problem asks to find a joint strategy for the players constituting the distributed system

such that they enforce the satisfiability of the given specification ϕ without communicating

their knowledge to each other.

The synthesis problem with antagonist environment and KLTL specifications has

been introduced by van der Meyden and Vardi for the processes of the environment

having perfect information and only the processes to synthesize being partially informed.

Therefore, we can consider that we only have one environment process (let say Process

k) and it is to synthesize protocols for processes 0 to k − 1.

In the literature, the environment processes in the synthesis problem with antagonist

environment are always considered to be perfectly informed about the current state of the

interaction model. Indeed, whenever one can realize a specification against an omniscient

environment, he can realize it against an partial informed environment too.

In the following, we also consider a perfectly informed environment for the KLTL

synthesis. Therefore, whenever we speak about the synthesis with antagonist environment

we always consider that there is only one omniscient environment process.

Example 2.3.1. Considering again Example 2.1.2, the formula ϕ = ◻(K(t) ∨ K(¬t))

expresses the fact that the system knows at each step the position of the toggle. As argued

in [89], this formula is realizable if the initial set of states in the interaction model is

{v0, v2} since both states are labeled with t. Then, one strategy of Process 0 is to play first

time T , action that will lead to v1, and then always play S in order to stay in that state.

Following this strategy, in the first step the formula K(t) is satisfied and in the future

states K(¬t) becomes true forever. However, the formula is not realizable if the set of

initial states of the interaction model is {v1, v2} since from the beginning the system does

not know the value of the toggle.

Theorem 2.3.1 ([75]). The KLTL synthesis problem is undecidable for two partially

informed processes to synthesize and one antagonist omniscient environment.

The above holds since the problem is already undecidable for two processes to

synthesize and specifications expressed using only linear-time temporal logic [75]. The

proof is done by Pnueli and Rosner for distributed systems where the processes to

synthesize communicate with each other by means of some variables. Each variable has

at most one reading and at most one writing process and it is assumed that each variable

30

CHAPTER 2. REALIZABILITY AND SYNTHESIS

which is written by one process is read by another (if any). The variables that have no

writing process associated are called input variables and the ones that have no process to

read them are called output variables.

There is also an environment that provides some input to the distributed system by

writing in some input variables. Then, the processes to synthesize respond by setting

some output variables. Each process sets the variables in which it can write depending

on the values of variables he reads.

The joint objective of the processes in the distributed system is then to satisfy some

specification given as linear time logic formula on the set of input and output variables.

This architecture can also be modeled using an interaction model as presented in this

thesis. One configuration of the variables at an instance of time consists of the state of the

interaction model. Then, the transition between states is done according to the changes

the processes do on the controlled variables.

The undecidability proof is done by reducing from the halting problem on the empty

input-tape of deterministic Turing machine. More precisely, for an instance of distributed

system and a given deterministic Turing machine M , an LTL specification ϕM is defined,

such that it is realizable by the distributed system if and only ifM halts on the empty-tape.

The reduction is as follows: the configuration of the output variables at an instance of

time encodes a legal configuration of M (the tape symbols, the internal state and the

special symbol); a configuration of the input variables encode the vocabulary {S,N}

of M where S stands for ”start”(a new configuration) and N for ”next”(symbol of the

current configuration); and the formula ϕM encodes the behavior of the Turing machine

together with the requirement that eventually a terminating configuration is reached.

The above result is based on Peterson and Reif’s [77, 72] work on multiplayer games

with imperfect information where they prove that, in the games with three or more players,

the existence of winning strategies for a set P of players is undecidable if there is no

restriction on the information they may have and the players outside P have complete

information.

Another immediate proof for the undecidability of LTL realizability in distributed

systems results from [31]. The authors prove the undecidability of ATL model checking

under the assumption of imperfect information and perfect recall (ATLiR for short). The

proof is done by reduction from the non-halting problem of deterministic Turing machines

to the existence of strategies for two agents in a three-agent imperfect information

interaction model so that the formula ◻ ok is satisfied, where ok is some atomic proposition

corresponding to the non-halting of the Turing machine. The same proof applies to prove

the undecidability of LTL synthesis under imperfect information.

31

CHAPTER 2. REALIZABILITY AND SYNTHESIS

Decidable Restrictions for Synthesis with Antagonist Environment

Despite the undecidability result for the KLTL realizability problem, a number of

restrictions on the specifications, the number of agents or their information have been

identified, for which the problem becomes decidable.

One Process with KLTL Objective Van der Meyden and Vardi [89] proved the

decidability of KLTL realizability problem for one process to synthesize and one perfectly

informed antagonist process making up the environment. In this case, the problem is

viewed as a two-player zero-sum game with an imperfectly informed protagonist and an

omniscient adversary.

Theorem 2.3.2 ([89]). The KLTL realizability problem for one agent to synthesize and

one omniscient antagonist environment is 2ExpTime-complete.

Hierarchical Systems Later, van der Meyden and Wilke [90] studied some restrictions

of the synthesis problem, formalized in [89], that consider the synthesis of several

processes. In particular, they study the cases of hierarchical systems and broadcast

systems.

In hierarchical model, the processes to be synthesized can be linearly ordered such

that each process in the sequence observes at least as much as the preceding ones. This

setting is motivated by the models in which there is a hierarchy between agents. It is

the case of unclassified, secret and top-secret documents and agents allowed to access a

specific level of security. The agents from one level of security clearance are also allowed

to read the files from the below levels. Considering that there is some information p

that is accessible only to a high level (let us say a top-secret document), we can express

properties that ask if the top-secret information is passed to a lower level(say secret) by

means of the KLTL formula ◇(KL(p) ∨KL(¬p)) where KL is the knowledge operator

with respect to the agents in the lower (”secret”) level.

In [90] is then proved that synthesis problem with respect to LTL specifications and

imperfect information is decidable in hierarchical systems, but it is undecidable even for

two processes to synthesize having KLTL specifications. It is the case even if one process

to synthesize is omniscient and the other blind.

Theorem 2.3.3 ([90]). The synthesis problem for distributed systems with respect to LTL

specifications is decidable in hierarchical systems.

Van der Meyden and Wilke prove the above theorem by providing an iterative

automata-based procedure that receives an instance of the synthesis problem with k

processes to synthesize having hierarchical observations. Then, at each step, it transforms

the current model in a model with one agent less by removing the less informed process and

32

CHAPTER 2. REALIZABILITY AND SYNTHESIS

passing its decisions to the ones with a more accurate observation. Finally, the problem

is reduced to the synthesis of one imperfectly informed process against one antagonist

environment and epistemic specification.

Theorem 2.3.4 ([90]). The synthesis problem for distributed systems with respect to

KLTL specifications is undecidable in a system with two processes to synthesize, the first

being omniscient, the second being blind. It remains undecidable for the case where the

protocol of the blind agent is fixed (so only the protocol for the omniscient agent needs to

be synthesized).

The later theorem is proven by reduction from an undecidable problem in lossy counter

machines. Namely, given a lossy counter machine L, is there a natural number n such

that there is an infinite run on L starting from the initial configuration (qI ,0, ...,0, n) that

avoids the forbidden state qf?

However, the synthesis problem is decidable in hierarchical models when the

specification is given as a positive KLTL formula.

Theorem 2.3.5 ([90]). For specifications in positive KLTL (KLTL+), the synthesis

problem in distributed systems is decidable in hierarchical models.

The algorithm reduces the problem to an instance of the synthesis problem

with specifications given as LTL formulas. Thanks to the fact that the knowledge

operators have only positive occurrences in the given specification, for any (possibly

non-hierarchical) interaction model M, the authors define the new interaction model

M′. In M′, at each state, each agent has to say which is the knowledge subformulas

he thinks are true by choosing a corresponding action. Then, whenever one agent

proposed a knowledge subformula, the next states are labeled with an corresponding

atomic proposition and the newly defined LTL specification requires that the subformula

is indeed satisfied. Moreover, if in the initial interaction model M the agents have

hierarchical observations, it is also the case in the newly defined model M′.

Broadcast Systems Another restriction for which the synthesis problem is decidable

is in the case of broadcast systems. The broadcast model implies agents that have some

private information that can be shared with the other agents only by means of synchronous

simultaneous broadcast to all agents. This is motivated by systems in which components

communicate by means of shared bus.

Theorem 2.3.6 ([90]). The synthesis problem for specifications as KLTL formulas is

decidable in broadcast systems.

CTL, CTL∗ and LTL Objectives More restricted cases of the synthesis problem

were studied in [54] and [36] considering one process to synthesize and one antagonist

33

CHAPTER 2. REALIZABILITY AND SYNTHESIS

environment. In [54] the realizability problem for CTL and CTL∗ specifications is studied,

independently of the presence of perfect or imperfect information. It is proven to be

decidable using automata-theoretic constructions.

Theorem 2.3.7 ([74, 54]). The synthesis problem for one process with either complete or

incomplete information against an omniscient environment is 2ExpTime-complete for

LTL and CTL∗ specifications and ExpTime-complete for CTL formulas.

The algorithm proposed in [54] to prove the above theorem uses alternating tree

automata. In [36], Filiot, Jin and Raskin propose an antichain based solution for the

LTL synthesis under perfect information that avoids alternating tree automata and leads

to an efficient implementation in the tool Acacia+ [12].

Objectives with Boxes and Diamonds Other restrictions for the synthesis problem

transfer from solving two-player zero-sum games. This is because the interaction model

corresponds to a game arena and each agent is a player in the corresponding game.

Therefore, motivated by the results improvements in model checking of LTL specifications

when removing next(◯) and until(U) operators, Alur et. al [7, 6] proposed even

more restricted specifications in synthesis of one perfectly informed process against one

omniscient antagonist environment (two-player zero-sum games with perfect information

for both players). That is, they define fragments of linear temporal logic that don’t use

the next and until operators and obtain Pspace, Exptime and Expspace complexities.

Let X be a set of formulas (a fragment of LTL) and Lop1,...,opn(X) be the logic obtained

from the formulas in X as atomic propositions and the operators op1, ..., opn. Also, let

B(X) be the logic obtained using only boolean combinations of elements in X. Then, the

following holds:

Theorem 2.3.8 ([6],[7]). The synthesis problem of one perfectly informed process against

one antagonist omniscient environment is

� Pspace-complete for specifications given as B(L◇,∧(P)), B(L◻◇(P) ∪L◇,∧(P)) or

L◇,∧,∨(P) formulas;

� Exptime-complete for specifications given as B(L◇,◯,∧(P)) formulas;

� Expspace-complete for specifications given as B(L◇,∧,∨(P)) or B(L◇,◯,∧,∨(P))

formulas and

� 2Exptime-complete for specifications given as L◻,◇,∧,∨(P) formulas.

Request-Response Objectives Finally, we remind the restriction in [20] where

specifications are given as request-response conditions. That is, a specification is given

as a set ψ ∈ 2V × 2V of pairs (Q,P). We say that the specification is satisfied along an

34

CHAPTER 2. REALIZABILITY AND SYNTHESIS

execution if for each pair (Q,P) ∈ ψ, whenever a state in Q is visited, either the respective

state also belongs to set P , or later a state in P is also visited. In terms of LTL formula,

assuming that states are labeled with propositions Q and P corresponding to the sets in

ψ, the synthesis specification is written as ⋀(Q,P)∈ψ ◻(Q→◇P).

Theorem 2.3.9 ([20]). The realizability problem of one perfectly informed process is

Exptime-complete for request-response conditions.

2.4 Multi-component rational environment

In the previous section, we assumed that there is only one ”hostile” environment whose

only target is to prevent the realizability of the specification.

However, in real life, systems are made of several components having their own goals,

other then making the system fail. For example, there may be clients that interact with

a server. The approach taken in the field of game theory is to assume that agents that

interact in a computational system are rational. That is, their first goal is to achieve their

objectives and then to harm the others.

Therefore, in [38] the notion of rational synthesis under perfect information was

introduced. It asks to synthesize a strategy for one process that interacts with a

multi-component rational environment. The objectives of each process is expressed as

a LTL formula and the rationality of the processes is modeled using solution concepts as

dominant strategies, Nash Equilibria, and subgame perfect equilibria.

In this thesis we generalize the definition to the case of several processes to synthesize

and discuss the decidability of the synthesis problem also when agents have imperfect

information.

Let us first recall several solution concepts that are used in game theory to model the

rationality of the processes and then define the rational synthesis problem in two different

settings (cooperative and non-cooperative).

2.4.1 Modeling Rationality

Let (ϕi)i∈Ω be the tuple of LTL objectives for Processes 0,1, ..., k, where ϕi is the objective

of Process i. The payoff of a strategy profile σ̄ is the vector pay(σ̄) ∈ {0,1}k+1 defined

by pay(σ̄)[i] = 1 if and only if exec(M, σ̄) ⊧ ϕi. We write payi(σ̄) for Process i’s payoff

pay(σ̄)[i]. Intuitively, a Process i has payoff 1 if the execution(s) compatible with the

strategy profile satisfies the objective ϕi. We also use the game theory vocabulary and

say that Process i wins.

For a strategy profile σ̄ and a history h, the strategy σhi denotes the strategy of Process

i after the history h and is defined as σhi (h1) = σi(h ⋅ h1). Then, payi(σ̄)h = payi(σ̄h) is

the payoff of Process i when the strategy profile σ̄ is played after history h happened.

35

CHAPTER 2. REALIZABILITY AND SYNTHESIS

Also, Wi denotes the set of winning states (also called winning set or winning region)

for Process i to achieve objective ϕi. That is, Wi is the set of states v so that if the initial

state of the interaction model is v, Process i has a strategy to ensure his objective against

all the other agents that would play against him to satisfy the objective ¬ϕi.

As the notions we use to model the rationality of Processes come from game theory,

we also use the notion of players to refer to processes. There are several solution concepts

that can be used to model rationality, as follows.

Nash Equilibria A strategy profile σ̄ = (σi)i∈Ω is a Nash equilibrium in the model M

if no player can improve his payoff by (unilaterally) switching to a different strategy.

Formally,

Definition 2.4.1 (Nash Equilibrium). Given an interaction model M, a strategy profile

σ̄ is a Nash equilibrium iff for all players i ∈ Ω and all strategies σ′i of Player i,

payi(σ̄−i, σ
′
i) ≤ payi(σ̄)

Given a strategy profile σ̄, the strategy σ′i of Player i is a profitable deviation from σ̄

iff Player i can improve his payoff by unilaterally deviate from σ̄ and play σ′i. Formally,

σ′i is a profitable deviation for Player i from σ̄ iff payi(σ̄−i, σ′i) > payi(σ̄).

Astart B C(∗, b2) (a2,∗)

(∗, b1) (a1,∗) (∗,∗)

Figure 2.4: Example of interaction model

Example 2.4.1. For simplicity, let us take the setting where the players have perfect

information. Consider the two-player interaction model (or game arena) in Figure 2.4

where Player 0 plays the actions {a1, a2} and Player 1 plays actions {b1, b2} and both

players have as objective to reach state C(infinitely often). As observed, Player 0 has

complete control of state B while Player 1 controls state A by choosing the next state. Let

us consider the following strategy profiles:

� Player 1 plays action b2 in state A and Player 0 plays action a2 in state B. Hence,

both players win.

� Player 1 plays action b2 in state A and Player 0 plays action a1 in state B. Hence,

both players lose since the execution remains in state B forever.

� Player 1 plays action b1 in state A and Player 0 plays action a1 in state B. Hence,

both players lose.

36

CHAPTER 2. REALIZABILITY AND SYNTHESIS

Note that only the first and the last strategy profiles are Nash equilibria. In the first

case, this is because both players win and therefore none of them can improve the payoff.

In the third case however, both of the players lose, but they cannot improve their payoff

since if Player 1 changes the strategy and plays b2 in state A, the play loops in state B

forever.

The second strategy profile is not a Nash equilibrium since Player 0 could deviate and

play a2 from state B making both players win.

Chatterjee et al. [25] showed that any infinite multiplayer game with ω-regular winning

conditions and perfect information has a Nash equilibrium in pure strategies, and they also

gave an algorithm for computing one. Moreover, the Nash Equilibria can be computed in

nondeterministic polynomial time when players have parity objectives.

Theorem 2.4.1 ([25]). Every turn-based perfect information deterministic game with

ω-regular objectives has a Nash equilibrium with pure strategy profile.

Subgame Perfect Equilibria The notion of Nash equilibrium is the classical solution

concept that models the rationality of agents. However, in the definition of a Nash

equilibrium it is not taken into account that players can change their strategies during a

play. A solution concept that considers this is the subgame perfect equilibrium for which

the choice of strategies should be optimal from all possibles histories of the game, including

the histories not reachable by the strategy profile.

We say that a strategy profile σ̄ = (σi)i∈Ω is a Subgame Perfect equilibrium if for every

history of the game, no agent i ∈ Ω has an incentive to unilaterally deviate from the

strategy σi. Formally,

Definition 2.4.2 (Subgame Perfect Equilibrium). Given an interaction model M, a

strategy profile σ̄ is a Subgame Perfect Equilibrium if ∀h ∈ Prefs(M), ∀i ∈ Ω, ∀σ′i a

strategy of Player i,

payi(σ̄−i, σ
′
i)h ≤ payi(σ̄)h

Example 2.4.2. Going back to Example 2.4.1, the first strategy profile defined, which

is a Nash equilibrium, is also a subgame perfect equilibrium. However, the last strategy

profile defined (which is a Nash equilibrium too) is not a subgame perfect equilibrium since

Player 0 can improve his payoff after the play reaching state B by deviating and playing

the action a2.

Theorem 2.4.2. Any multiplayer perfect information game with ω-regular winning

objectives has a subgame perfect equilibrium.

Theorem 2.4.2 is a direct result of [86] that proves that every ω-regular multiplayer

game is equivalent to a multiplayer parity game. In the case of LTL formulas, it has

double exponential size. Finally, for any multiplayer parity game, there is a finite-state

subgame perfect equilibrium that can be computed in exponential time [86].

37

CHAPTER 2. REALIZABILITY AND SYNTHESIS

Dominant Strategies A dominant strategy is a strategy that, by playing it, the

corresponding player can never lose, regardless of the strategies of the other players.

A dominant strategy profile is a profile in which all the strategies are dominant. Formally,

Definition 2.4.3. Given an interaction model M, σ̄ = (σi)i∈Ω is a dominant strategy

profile if ∀i ∈ Ω and ∀σ̄′ an strategy profile with σ′i ≠ σi, it holds that

payi(σ̄
′) ≤ payi(σ̄

′
−i, σi)

Example 2.4.3. In the game from Example 2.4.1, we can see that there is no dominant

strategy for any player and therefore no dominant strategy profile. Indeed, if Player 1

plays the action b2 and go to state B, Player 1 may play action a1 and make both players

lose. The same holds for the point of view of Player 0. If he chooses the strategy that

plays a2 from state B, Player 1 may play the action b1 from state A and never give the

chance to Player 0 to win.

Non-deviating processes to synthesize Since the problem studied in this section is

to synthesize some processes (the ones in some given set P ⊆ Ω) against a multi-component

environment, Processes in the set P in the interaction model are supposed to not deviate

from a given strategy. Therefore, we introduce the following notions.

Definition 2.4.4 (P-fixed equilibrium). A strategy profile σ̄ = (σi)i∈Ω is a P -fixed Nash

equilibrium if pay(σ̄−i, σ′i) ≤ pay(σ̄) for all players i ∈ Ω ∖ P and all strategies σ′i of

Process i.

In other words, it is a Nash equilibrium in which processes in P are not changing

their strategy. Observe that any Nash equilibrium (σi)i∈Ω is a P -fixed equilibrium, but

the converse may not hold. Similarly, we define the notions of P -fixed Subgame perfect

equilibrium and P -fixed dominant strategies profile.

2.4.2 Rational Synthesis

Rational synthesis has been introduced in [38, 53] in two different settings for the solution

concepts considered above and perfect information for all players. Let γ be a solution

concept from above (i.e., γ is ”Nash equilibrium”, ”subgame perfect equilibrium” or

”dominant strategies”).

The non-cooperative rational synthesis [53] assumes that, since the components of the

environment are rational, they may play any strategy that is a γ-equilibrium. The problem

follows the general definition we gave for the synthesis problem in Problem 2.1.1. That

is, one has to output (if it exists) a strategy profile (σi)i∈P for agents in P which has to

be winning against all the possible strategy profiles which are γ-equilibria and include

strategies (σi)i∈P for players in P . In this setting, the strategy specification for the

38

CHAPTER 2. REALIZABILITY AND SYNTHESIS

synthesis problem consists of all the strategy profiles that if they are P -fixed γ-equilibria,

they are satisfy the objectives of all processes in P .

Definition 2.4.5 (Non-Cooperative Rational Synthesis (NCRSP)). Given an

interaction modelM with winning objectives (ϕi)i∈Ω, a set P ⊆ Ω of processes to synthesize

and a solution concept γ, are there strategies (σi)i∈P for Player in P s.t. for any P -fixed

γ-equilibrium σ̄ = ⟨σ0, . . . , σk⟩, we have payi(σ̄) = 1 for all i ∈ P?

INPUT ∶ M, (ϕi)i∈Ω, P ⊆ Ω,

OUTPUT ∶ Yes iff ∃(σi)i∈P ∀(σi)i/∈P (Eqγ,P (σ̄) → ⋀
i∈P

payi(σ̄) = 1)

where the function Eqγ,P (σ̄) outputs ”true” if σ̄ is P -fixed γ-equilibrium.

In [38] cooperative rational synthesis is also considered. It assumes that the

environment cooperates with the processes to be synthesized in the sense that its

components agree to play a γ-equilibrium that is winning for processes in P (if it

exists). In other words, in the cooperative setting, one assumes that once a γ-equilibrium

winning for agents in P is proposed, all the players will adhere to the suggested

strategies. In the cooperative setting, the synthesis problem is defined by the formula

∃(σi)i∈P ∃(σi)i/∈P ⟨σ0, ..., σk⟩ ∈ Φ where Φ is the strategy profile specification consisting of

all the P -fixed γ-equilibria for which the objectives of all processes in P are satisfied.

Definition 2.4.6 (Cooperative Rational Synthesis (CRSP)). Given an interaction

model M with winning objectives (ϕi)i∈Ω, a set P ⊆ Ω of processes to synthesize and a

solution concept γ, is there a P -fixed γ-equilibrium σ̄ s.t. payi(σ̄) = 1 for all i ∈ P ?

INPUT ∶ M, (ϕi)i∈Ω, P ⊆ Ω,

OUTPUT ∶ Yes iff ∃(σi)i∈P ∃(σi)i/∈P (Eqγ,P (σ̄) ∧ ⋀
i∈P

payi(σ̄) = 1)

where the function Eqγ,P (σ̄) outputs ”true” if σ̄ is P -fixed γ-equilibrium.

Example 2.4.4. As an example, consider again the two-agent interaction model of

Figure 2.4 with Alice (Agent 0 ∈ P) and Bob (Agent 1 /∈ P) having perfect information and

playing the actions {a1, a2} and {b1, b2} respectively. Let us take reachability objectives for

them given by the set R0 = {B} and R1 = {C} and Nash equilibrium as solution concept.

Remember that Alice has complete control over the state B and Bob controls the states A

and C. Consider Alice’s strategies σ0 which consists in looping forever in state B, and σ′0
which eventually goes to state C.

Let Bob cooperate by playing the strategy σ1 that goes to state B (making Alice win).

Both strategy profiles ⟨σ0, σ1⟩ and ⟨σ′0, σ1⟩ are solutions to the cooperative setting: under

the first strategy profile Bob loses but cannot get better payoff by deviating, and under the

second one Bob wins. Strategy σ0 is not a solution to the non-cooperative setting, because

39

CHAPTER 2. REALIZABILITY AND SYNTHESIS

Bob could stay forever in state A (according to a strategy σ′1): The profile ⟨σ0, σ′1⟩ is a

0-fixed Nash equilibrium because even by deviating and going to state B Bob would still

lose, and it is losing for Alice. However, σ′0 is a solution to the non-cooperative setting:

The only 0-fixed Nash equilibria in that case are when Bob eventually move to state B,

making him and Alice win.

Perfectly informed agents

In [38] and [53], Kupferman et al. introduce and study the problem of rational synthesis

assuming that all agents have perfect information. It is equivalent to considering that the

set P consists of only one process (say Process 0) and there are k environment components

that play according to a solution concept γ.

The main contribution of the original papers is to propose and to motivate the

definitions above. The only computational complexity results given in those papers are

for the setting when all agents composing the system and the environment have perfect

information over the sets of the interaction model and they are as follows:

Theorem 2.4.3 ([38, 53]). The cooperative and non-cooperative rational synthesis

problems are 2ExpTime-complete for specifications expressed in linear-time temporal logic

(LTL) and all processes having perfect information.

The result above matches exactly the complexity of classical zero-sum two-player LTL

synthesis [74]. The lower bound is due to the fact that the synthesis problem of one

process against one antagonist environment when both agents have perfect information

is a particular case of the rational synthesis. Indeed, consider an interaction model with

two agents and Agent 0 has the objective ϕ to achieve whatever the will of the other

agents. We can translate this problem in an instance of the rational synthesis problem

on the same interaction model, but associate the objective ¬ϕ to the environment (Agent

1). Then, asking if there is a strategy σ0 for Agent 0 that it is winning for all 0-fixed

γ-equilibria containing σ0 is the same with asking if there is a winning strategy for Agent

0 against all strategies of the environment.

The upper bound is obtained by reductions to the model-checking problem of formulas

in a Nested-Goal fragment of Strategy Logic(Sl[ng]) [65]. More precisely, the authors

define some Sl[ng] formulas that characterize the 0-fixed γ-equilibria. Then, they define

polynomial length Sl[ng] formula that hold in the interaction model if and only if there

is a solution for the rational synthesis problem. In the case of cooperative setting, the

formula expresses that there is a strategy profile σ̄ that is 0-fixed γ-equilibrium and

satisfies the specification ϕ0. On the other hand, the formula for the non-cooperative

setting expresses the existence of a strategy σ0 for Agent 0 so that all executions

compatible with a strategy profile that contains the strategy σ0 for Agent 0 and is a

40

CHAPTER 2. REALIZABILITY AND SYNTHESIS

0-fixed γ-equilibrium, satisfy the objective ϕ0. We give more details about the reduction

in Chapter 5 after we have formally defined the fragment of Strategy Logic in Chapter 3.

Imperfect information for Processes

Following the general definition of the interaction model, let us consider the rational

synthesis when agents have imperfect information. The goal is to synthesize some partially

informed processes from a given set P ⊆ Ω that act in the rational environment made of

the other partially informed processes in the interaction model M.

This case is motivated by the situation when there is a distributed system made of

several components and the goal is to introduce some other components that have their

own objectives. In distributed systems, it may be the case that each system has some

private local states that are not visible to the exterior.

In this setting, the rational synthesis problem gets easily undecidable. In Chapter 6

we study the problem considering different capabilities (imperfect/perfect information)

for both processes in P and the processes making up the environment. We prove that

the problem is undecidable in case when both the processes to be synthesize and the

environment have imperfect information. Also, the problem remains undecidable if there

are at least two processes to be synthesized against a perfectly informed environment.

This is because it corresponds to distributed synthesis problem (Definition 2.3.1) against

one perfectly informed antagonist environment which, according to Theorem 2.3.1, is

undecidable.

However, we gain decidability if we consider only one partially informed process to

synthesize against a multi-component omniscient but rational environment. In Chapter 6

we provide an algorithm that reduces the problem to the distributed synthesis problem

with hierarchical observations which, by Theorem 2.3.3, is decidable.

41

CHAPTER 2. REALIZABILITY AND SYNTHESIS

42

3. Games, Logics and Automata:

Tools and Techniques

In this section, we shall first revise some results regarding two-players zero-sum games

that are used in this thesis.

Then, we present some temporal logics that contain modalities allowing one to reason

about agents’ strategies in a multi-component interaction model. These logics can also

be used to express the synthesis problems in terms of model-checking problems. That is,

one can reduce the synthesis problem to the model-checking problem of some formulas in

these logics.

Finally, we revise the notions of automata on words and trees with the accepting

conditions used in this thesis. We also provide some complexity results and algorithms

used to test the emptiness of tree automata that are the main tool used in this thesis. The

main use of the tree automata is in the classical approach to solve the synthesis problem.

Also, they are used by model-checking algorithms that verify that some formula in a logic

of strategies holds.

3.1 Two-players Zero-sum Games

Two-players zero-sum games consist of an interaction model as defined in Section 2.1

with two players: a protagonist having some objective Θ ⊆ V and an opponent that

tries to falsify Θ. Therefore, on each execution in the game, only one of the two players

win (zero-sum).

We consider here perfect information turn-based games where there is only one initial

state. Formally a game is defined as G = ⟨Ω = {A,B}, V = VA ⊎ VB, v0,E,Θ⟩.

As already mentioned in Remark 2.1.1, the set of plays in the game G corresponds to

the set of executions in the underlying interaction model. We denote by exec(G) the set

of plays in G. For a play ρ ∈ exec(G), we say that Player A (the protagonist) wins if ρ ∈ Θ

and Player B wins otherwise. A player has a winning strategy σ from a state v ∈ V , if all

plays (executions) compatible with σ are won by him. We define the winning region for

Player X ∈ {A,B}, denoted WX , as the set of all states v ∈ V from which Player X has a

winning strategy. Clearly, since the game is zero-sum, at most one player has a winning

43

CHAPTER 3. GAMES, LOGICS AND AUTOMATA: TOOLS AND TECHNIQUES

strategy from a state v. Therefore, WA ∩WB = ∅.

A game is called determined if the winning regions for both players form a partition of

the set V . That is, V =WA ⊎WB. Therefore, from any state in the two-player zero-sum

game, it is exactly one player that has a strategy to win against any strategy of the other

player. Martin showed in [61] that the two-players zero-sum games where the protagonist’s

objective is a Borel subset of V ω are determined.

Theorem 3.1.1. [61] Every two-player zero-sum game with Borel winning condition is

determined.

We do not give the definition of Borel winning conditions, since they are not used in

this thesis. We will use the determinacy for objectives given Safety, Reachability, Büchi,

coBüchi, Streett, Rabin, Muller conditions (crf. Section 2.2.1) or, more generally, as LTL

formulas over the set of states V . All of the mentioned winning conditions are particular

Borel conditions.

Theorem 3.1.2. Given a two-player zero-sum game G and a state v ∈ V , deciding if

Player A has a winning strategy from v is

� [23, 42, 18] PTime-complete for Safety, Reachability, Büchi or coBüchi conditions.

� in UP ∩ coUP for Parity conditions

� [33] NP-complete for Rabin conditions.

� [33] coNP-complete for Streett conditions.

� [48] PSpace-complete for Muller conditions.

� [74] 2ExpTime-complete for LTL conditions.

Moreover, in the games where the condition is given as Safety, Reachability, Buchi,

coBuchi,Rabin and Parity, if Player A has a winning strategy in the game G to win, he also

has a memoryless winning strategy. The property does not hold for Streett and Muller

conditions. However, if Player A has a winning strategy in a Muller game, he has one

that can be represented by a finite-state Moore machine.

First cycle games First cycle games [8] (FCG) are played on a finite interaction model

by two players until a state is repeated, and a simple cycle is formed. Player A wins the

play if the sequence of labels of nodes of the cycle satisfies some fixed cycle property, and

otherwise Player B wins.

Theorem 3.1.3. [8] The problem of Player A has a winning strategy in a first cycle game

is PSpace-complete.

44

CHAPTER 3. GAMES, LOGICS AND AUTOMATA: TOOLS AND TECHNIQUES

3.2 Logics of Strategies

The components of a system are formally modeled as modules that interact with their

environment. Then, a desired property is verified on all such interactions (executions).

When studying interaction models (or multiplayer games), one may also be interested

in analyzing the behavior of individual components and sets of components. That is,

reasoning about the strategies of the agents/players and also analyzing the outcome

of these strategies. Therefore, logics that focus on the strategic behavior of agents in

multi-agent systems were developed[5, 71, 64].

In this section, we recall some temporal logics that, besides the properties on

executions, contain modalities that allow one to reason about the strategies of the agents.

We first revise the alternating-time temporal logic (ATL∗)[5] that allows one to

implicitly quantify on the strategies of agents. Then, we recall the nested-goal strategy

logic (SL[NG])[24, 66] that explicitly quantifies on strategies and allows one to bind exactly

one strategy to each player at a time. Finally, we recall the epistemic strategy logic

(SLK)[17] that also allow one to reason about the knowledge of imperfectly informed

agents.

3.2.1 Alternating-Time Temporal Logic

One of the most important development in this field is Alternating-Time Temporal Logic

(ATL∗ for short), introduced in [5], that allows one to reason about strategies of agents

with temporal goals. It disposes of strategy modalities ⟪P⟫ and JP K where P ⊆ Ω is a

set of agents. These strategy modalities are used to encode cooperation and competition

between agents in order to achieve some objectives.

Operator ⟪P⟫ existentially quantifies on the strategies of agents in the set P . It

intuitively say that the players in P can cooperate and ensure some property. For example,

one can express properties such as ”Agents 0 and 1 cooperate to ensure that the system

(with more than two agents) never fails” by the formula ⟪0,1⟫ ◻ ¬ fail.

On the other hand, the operator JP K is the dual of ⟪P⟫ and universally quantifies

on the strategies of agents in P . The formula JP Kϕ intuitively says that the coalition P

cannot avoid some property ϕ.

In ATL∗ there are two types of formulas: state formulas, whose satisfaction is related

to specific states, and path formulas, that are related to specific computations. Formally,

the formulas in ATL∗ are defined by the following syntax:

ϕ ∶= p ∣ ¬ϕ ∣ ϕ ∨ ϕ ∣ ⟪P⟫ψ

ψ ∶= ϕ ∣ ¬ψ ∣ ψ ∨ ψ ∣ ◯ψ ∣ ψUψ

where p ∈ P is an atomic proposition, ϕ is a state formula and ψ is a path formula. The

operator JP K is the dual of ⟪P⟫ and is defined by JP Kϕ = ¬⟪P⟫¬ϕ. We also define macros

45

CHAPTER 3. GAMES, LOGICS AND AUTOMATA: TOOLS AND TECHNIQUES

◻ψ, ϕ1 ∧ ϕ2, ψ1 ∧ ψ2 or ψ1Rψ2 as in the case of KLTL formulas (Section 2.2.2).

The semantics of ATL∗ formulas is defined over states v and executions ρ ∈ exec(M)

respectively (depending on the type of formula) in some interaction model M as follows:

� v ⊧ p iff p ∈ τ(v)

� v ⊧ ¬ϕ iff v /⊧ ϕ

� v ⊧ ϕ1 ∨ ϕ2 iff v ⊧ ϕ1 or v ⊧ ϕ2

� v ⊧ ⟪P⟫ψ if there exist a strategy profile σ̄P for the agents in P such that for all

paths ρ ∈ exec(M[v], σ̄P), holds ρ ⊧ ψ.

� ρ ⊧ ϕ iff ρ[0] ⊧ ϕ

� ρ ⊧ ¬ψ iff ρ /⊧ ψ

� ρ ⊧ ψ1 ∨ ψ2 iff ρ ⊧ ψ1 or ρ ⊧ ψ2

� ρ ⊧ ◯ψ iff ρ[1 ∶] ⊧ ψ

� ρ ⊧ ψ1Uψ2 iff there is i ≥ 0 s.t ρ[i ∶] ⊧ ψ2 and for all 0 ≤ j < i, holds ρ[j ∶] ⊧ ψ2.

Note that the semantics for the path formulas is defined as for LTL formulas

(Section 2.2.2) with respect to executions in the interaction models.

Model-Checking problem for ALT ∗ asks, given an interaction modelM and an ATL∗

(state) formula ϕ, for the set of states of M that satisfy ϕ. Formally,

Definition 3.2.1 (Model-Checking of ATL∗). Given M = ⟨P,Ω, (Σi)i∈Ω, V, V0,E, τ⟩ and

an ATL∗ (state) formula ϕ,

INPUT ∶ M, ϕ

OUTPUT ∶ X ⊆ V s.t. ∀v ∈X, holds v ⊧ ϕ

The model-checking problem for ATL∗ is closely related to synthesis problem for

linear-time formulas and, in the case of perfect information setting, it requires doubly

exponential time.

Depending on the perfect/imperfect information of the agents in the interaction model

and their capabilities to recall the past (perfect/imperfect recall), different complexity

results for the model-checking problem are obtained. We recall that in this thesis we

consider agents to have perfect recall. That is, their strategies depend on the entire

history.

Theorem 3.2.1 ([5]). Model-Checking problem for ATL∗ formulas under perfect

information and perfect recall for agents is 2ExpTime-complete, even in turn-based

interaction models. For ATL∗ formulas of bounded length, the model checking problem is

Ptime-complete.

46

CHAPTER 3. GAMES, LOGICS AND AUTOMATA: TOOLS AND TECHNIQUES

The strategies in [5] are strategies with perfect recall. That is, as in the setting of this

thesis, they are mappings that associate with every finite prefix in the interaction model,

an action. The algorithm that solves the ATL∗ model-checking problem under perfect

information and perfect recall translates each instance of the problem to the problem of

checking the nonemptiness of some tree automaton.

Unfortunately, if agents have imperfect information and perfect recall, the

model-checking problem is undecidable [31].

Theorem 3.2.2 ([31]). The model-checking problem for ATL∗ under imperfect

information and perfect recall is undecidable.

The result directly comes from [31] where the authors prove the undecidability of ATL

(a fragment of ATL∗) model-checking. The proof is based on a direct simulation of Turing

machines by three-agent interaction models M where agents have imperfect information

and perfect recall. Then, the Turing machine does not halt on the empty word if and

only if the formula ⟪0,1⟫ ◻ ok holds in the initial state of the interaction model. The

atomic proposition ok holds as long as the transitions in the interaction model correspond

to some computation step in the Turing machine.

However, if only the existence of memoryless strategies is asked, the model-checking

problem becomes decidable in Pspace[82].

Theorem 3.2.3 ([82]). The model-checking problem for ATL∗ with imperfect information

and memoryless strategies is Pspace-complete.

The algorithm for Theorem 3.2.3 simply enumerates all the memoryless strategies with

imperfect information and solves a CTL∗ model-checking problem for them.

Due to the syntax of LTL, the synthesis problem for some set P of processes against

an antagonist environment and an LTL objective ϕ can be modeled as the model-checking

problem of the formula ⟪P⟫ϕ. However, this does not improve the already known results

because when agents have perfect recall, the model-checking problem is 2ExpTime for

perfect information setting and undecidable if agents have imperfect information.

Limitations Unfortunately, ATL∗ suffers from the strong limitation that strategies are

treated only implicitly. That is, one can express the fact that some agent (or coalition)

has a strategy to enforce some property, but cannot refer explicitly to some strategy. A

consequence is the impossibility to ask that two players share in different contexts the

same strategy, assuming that they have the same actions available.

Moreover, the alternating temporal logic does not allow one to express properties

like ”For all strategies of Agent 0, there is a strategy of Agent 1 such that for any

strategy of Agent 2 a formula ϕ holds”. This is since ATL∗ is forgetful, in the sense

that each quantifier deletes the previously selected strategies. The previous statement

47

CHAPTER 3. GAMES, LOGICS AND AUTOMATA: TOOLS AND TECHNIQUES

is not equivalent to writing v0 ⊧ J0K⟪1⟫J2Kϕ. According to the semantics of ATL∗, the

fact that the initial state v0 of M satisfies J0K⟪1⟫J2Kϕ is equivalent to the fact that for

any strategy σ0 of Agent 0 there is at least one executions ρ ∈ exec(M, σ0), such that

ρ ⊧ ⟪1⟫J2Kϕ. This is equivalent to v0 ⊧ ⟪1⟫J2Kϕ and therefore there is a strategy σ1 of

Agent 1 such that for all ρ′ ∈ exec(M, σ1), ρ′ ⊧ J2Kϕ, i.e., v0 ⊧ J2Kϕ. The last formula says

that Agent 2 cannot avoid ϕ from the initial state of the interaction model, but it does

not ask that this happens for any strategy of Agent 0, which was the case in the informal

description of the requirement. The quantification over the strategies of previous agents

is lost when a subformula containing another quantification is evaluated.

Extensions of ATL∗ to Remember Strategies Due to the forgetfull semantics of

ATL∗, in the literature several extensions of the logic were proposed, that make strategy

quantifiers not to ”forget” the strategies fixed by the previous quantifiers.

First, IATL [3] extends ATL (fragment of ATL∗) with strategy contexts that store

the previously selected strategies. The strategies of agents are considered irrevocable in

the sense that it requires agents to commit to a strategy, which they are not allowed to

modify in the sequel. However, the strategies of the agents are memoryless. For this

setting, the following complexity result is proved.

Theorem 3.2.4 ([3]). Model-checking problem for IATL under perfect information is in

PNP w.r.t. the size of the model and the formula.

The logic ATL∗sc introduced in [15] relaxes the restrictions considered in IATL in the

following sense. A new operator that removes the strategies of the agents from the current

context is introduced. Then, agents keep on following their strategies until the formula

explicitly removes the strategy from the current context, or it is replaced by a new one.

Moreover, the authors consider memoryfull strategies for agents that depend on the entire

history of the current execution.

To solve the model-checking problem for ATL∗sc, in [29] an algorithm based on

alternating tree automata is proposed, that gives the following complexity result.

Theorem 3.2.5 ([29, 56]). Model-checking problem for ATL∗sc under perfect information

is (d+ 1)ExpTime-complete even for turn-based models, where d is the number of nested

strategy quantifiers in the formula being checked.

Using this fragment, one can express properties as the one above by the intuitive

formula [⋅0⋅]⟨⋅1⋅⟩[⋅2⋅]ϕ. As in the case of ATL∗, the operator ⟨⋅P ⋅⟩ expresses the existence

of a strategy for the agents in P ⊆ Ω and the operator [⋅P ⋅] quantifies universally on the

strategies of agents in P .

Also, ATL∗sc can express the existence of a Nash Equilibrium as

⟨⋅Ω⋅⟩[⋀
i∈Ω

¬ϕi → ¬⟨⋅i⋅⟩ϕi]

where ϕi is the LTL objectives for Agent i ∈ Ω in the interaction model M.

48

CHAPTER 3. GAMES, LOGICS AND AUTOMATA: TOOLS AND TECHNIQUES

3.2.2 Nested-Goal Strategy Logic (SL[NG])

All limitations of ATL∗ have led to the introduction of Strategy Logic(SL) that treats

strategies as explicit first order objects. It was first introduced in [24] for two agents and

then extended in [66] for multiagent architectures. Considering the set Γ of strategies

of agents, [24] introduces the two operators ⟪x⟫ and JxK that quantify over the strategy

variable x ∈ Var. Also, the ”binding” operator (i, x) is introduced to allow to associate

with Agent i the strategy bound to variable x. The model-checking problem for SL is

non-elementary hard.

Theorem 3.2.6 ([64]). The model-checking problem for (perfect information) Strategy

Logic is d-ExpSpace-hard, where d is the alternation depth of the formulas, i.e., d is the

maximum number of quantifiers switches ⟪x⟫JyK and JxK⟪y⟫.

Therefore, in [64] fragments of strategy logic that are expressive enough were

considered, for which are obtained better complexities. One of these fragments is the

Nested-Goal Strategy Logic (SL[NG]). The idea is that, when there is a quantification

over a variable used in a goal, we are forced to quantify over all free variables of the inner

subformula containing the goal itself, by using a quantification prefix. In this way, the

subformula is build only by nesting and Boolean combinations of goals.

Syntax Formally, the set of SL[NG] formulas is defined over the set of atomic

propositions P and the set Vari of strategy variables of each agent i ∈ Ω by the following

grammar:

ϕ ∶∶= p ∣ ¬ϕ ∣ ϕ ∨ ϕ ∣ ◯ϕ ∣ ◻ϕ ∣ ϕ1Uϕ2 ∣ ⟪xi⟫ϕ ∣ JxiKϕ ∣ ♭(~x)ϕ

where a formula ⟪xi⟫ϕ, where xi ∈ Vari ranges over Γi(the strategies of Agent i), states

that there is a strategy for Agent i such that the formula ϕ holds; the formula JxiKϕ states

that for all strategies of Agent i formula ϕ holds; and, finally, for a tuple ~x ∈ Γ0 ×⋯× Γk,

♭(~x) is a binding prefix that intuitively binds each Agent i to a strategy variable xi ∈ Vari.

Semantics To define the semantics of a Sl[ng] formula, we need the notion of

assignment which is a partial function χ ∶ Var ∪ Ω ⇀ Γ that maps variables and agents

to strategies. For an assignment χ, χ[l ↦ σ] denotes a new assignment so that, for the

element l ∈ Var ∪Ω, χ[l ↦ σ](l) = σ and χ[l ↦ σ](l′) = χ(l′) for all l′ ∈ (Var ∪Ω) ∖ {l}.

Then, given an interaction model M, a Sl[ng] formula ϕ, a state v ∈ V and an

assignment χ, we write M, χ, v ⊧ ϕ to indicate that the formula ϕ holds at state v in

M under the assignment χ. The semantics of Sl[ng] logic for the newly introduced

operators is inductively defined as follows:

� M, χ, v ⊧ ⟪xi⟫ϕ if there is a strategy σi for Agent i s.t. M, χ[xi ↦ σi], v ⊧ ϕ

49

CHAPTER 3. GAMES, LOGICS AND AUTOMATA: TOOLS AND TECHNIQUES

� M, χ, v ⊧ JxiKϕ if for all strategies σi for Agent i, it holds M, χ[xi ↦ σi], v ⊧ ϕ

� M, χ, v ⊧ ♭(~x)ϕ if M, χ[0↦ χ(x0)]...[k ↦ χ(xk)], v ⊧ ϕ

Intuitively, by means of operator ♭(~x), the agents in Ω are committed to the strategies

assigned to the variables in ~x. Then, we say that a formula ϕ is satisfied inM if there is

an assignment χ such that M, χ, v0 ⊧ ϕ for all initial states v0 ∈ V0.

Theorem 3.2.7 ([64]). The model-checking problem for Sl[ng] (under perfect

information) can be solved in (d + 1)ExpTime, where d is the alternation depth of the

specification, i.e., the maximum number of quantifiers switches ⟪x⟫JyK and JxK⟪y⟫.

As already mentioned in [66], ATL∗ corresponds to the one-alternation fragment

of strategy logic. Therefore, it is also possible to express the synthesis problem with

antagonist environment in terms of a model-checking problem. Let xi be the second order

variable that ranges over the strategies of Agent i. Then, the LTL specification ϕ is

realizable by the set P = {0,1, ..., k − 1} of agents in the interaction model M if and only

if the Sl[ng] formula

⟪x0⟫⟪x1⟫...⟪xk−1⟫JxeK ♭(x0, ..., xk−1, xe)ϕ

is true inM, where the environment consists of Agent e. Again, the above model-checking

problem can be solved in 2ExpTime since the alternation depth equals to 1.

Moreover, Sl[ng] can easily express the existence of equilibria in multi-player games.

That is, considering a multi-agent interaction modelM and an LTL objective ϕi for each

agent i, there exists a Nash equilibrium if the forumula

⟪x0⟫⟪x1⟫...⟪xk⟫⋀
i∈Ω

Jx′iK(♭(x0, ..., xi−1, x
′
i, xi+1, ..., xk)ϕi → ♭(~x)ϕi)

holds. We give more details about the use of this result in solving the rational synthesis

problem in Chapter 5.

3.2.3 Epistemic Strategy Logic (SLK)

In [17] was introduced a variant of strategy logic that integrates the epistemic concepts.

That is, the agents are considered to have imperfect information due to their limited

access only to their local variables. Then, the syntax of the strategy logic with knowledge

includes operators that allows one to reason about the knowledge of agents.

Unfortunately, since the ATL∗ model-checking is undecidable for imperfect

information and perfect recall (Thm. 3.2.2), the memoryless setting is adopted for the

logic SLK, where the agent’s local state do not necessary include the local history of the

run. Consequently, the strategies are also memoryless.

50

CHAPTER 3. GAMES, LOGICS AND AUTOMATA: TOOLS AND TECHNIQUES

Theorem 3.2.8 ([17]). The model-checking problem for SLK in systems with memoryless

strategies and imperfect information can be solved in PSpace.

In [17] the model checker MCMAS-SLK is also presented. The tool is based on

MCMAS, which is an open-source model checker for ATL(a fragment of ATL∗) and

epistemic operators.It reads a file containing the interaction model specified in terms of

agents which are described by their local state, a protocol specifying the available actions

at each local state and a local evolution function returning the state change according

to the joint actions of all agents. Also, the file contains the SLK formula that has to

be verified. The tool reads the input interaction model described in ISPL(Interpreted

System Programming Language) and verifies the SLK formula. In the case the formula

is not satisfied for the universally quantified variables, the algorithm implemented using

OBDDs returns a counterexample that can be used to refine the interaction model or even

the formula to be verified.

3.3 Automata on infinite Words

An infinite word automaton over some (finite) alphabet Λ is a tuple A = (Λ,Q, q0, δ, α)

where Q is the finite set of states, q0 ⊆ Q is the set of initial states, α ⊆ Q is the set of

final states (accepting states) and δ ⊆ Q ×Λ ×Q is the transition relation.

For all q ∈ Q and all ` ∈ Λ, we let δ(q, `) = {q′∣(q, `, q′) ∈ δ}. We let ∣A∣ = ∣Q∣ + ∣δ∣. We

say that A is deterministic if ∀q ∈ Q,∀` ∈ Λ, ∣δ(q, `)∣ ≤ 1. It is complete if ∀q ∈ Q,∀` ∈

Λ, δ(q, `) /= ∅. Without loss of generality, in the rest of the thesis the word automata

are always complete. This is because we can always complete an automaton by adding

missing transitions to some sink state.

A run of the automaton A over an infinite input word w = `0`1`2..., is a sequence

r = q0q1q2... ∈ Qω so that (qi, `i, qi+1) ∈ ∆ for all i ≥ 0. We denote by RunsA(w) the set of

runs of A on w and consider different accepting conditions for infinite word automata and

name the infinite word automata according to the used accepting condition. Let B ∈ N.

A word w ∈ Λω is accepted by A if (according to the accepting condition):

Büchi ∶ ∃r ∈ RunsA(w) s.t. inf(r) ∩ α ≠ ∅

Universal coBüchi ∶ ∀r ∈ RunsA(w), inf(r) ∩ α = ∅

Universal B-coBüchi ∶ ∀r ∈ RunsA(w),∀q ∈ α, visit(r, q) ≤ B

where, as for executions in the interaction model, inf(r) = {q ∈ Q ∣ ∀n ≥ 0,∃m ≥

n s.t. r[m] = q} is the set of states that appear infinitely often in r, visit(r) = {q ∈

Q ∣ ∃n ≥ 0 s.t. r[n] = q} is the set of states that appear at least once along r and visit(r, q)

is the number of times the state r appears along the rune r.

The set of words accepted by A with the non-deterministic Büchi (resp. universal

coBüchi and B-coBüchi) accepting condition is denoted by Lnb(A) (resp. Luc(A) and

51

CHAPTER 3. GAMES, LOGICS AND AUTOMATA: TOOLS AND TECHNIQUES

Luc,B(A)). We say that A is a non-deterministic Büchi word automaton (NBW) if the

first acceptance condition is used, a universal coBüchi word automaton (UCW) for the

second condition and that (A,B) is an universal B-coBüchi word automaton (UBCW) if

the last one is used.

Theorem 3.3.1 ([93]). For any LTL formula ϕ over the set of atomic propositions Λ,

there is an effective construction of a nondeterministic Büchi word automaton Aϕ such

that ∀w ∈ (2Λ)ω,

w ∈ Lnb(Aϕ) iff w ⊧ ϕ

The first procedure to translate LTL formulas to word automata is proposed in [93]

and in the worst case outputs automata with O(2n) states, where n is the number of

subformulas in the given formula. The algorithm starts by generating a node for each

(maximally consistent) set of subformulas of the property ϕ. Therefore, the procedure is

not reasonable for implementation, since it immediately reaches the worst case complexity.

Other more efficient algorithms were proposed in [52] and [40]. The algorithm in [52],

proposed as a basis for an implementation, is an improvement of the procedure in [93]

by using an incremental algorithm that allows the construction of only reachable states.

Although the worst case remains exponential, the construction often achieves a substantial

reduction of the number of generated states.

The algorithm proposed in [40] is the first algorithm that works on-the-fly in the sense

that the automaton is generated as needed in the automatic protocol verification process.

It is based on the algorithm in [52] and translates an LTL formula into a Büchi automaton.

The algorithm was implemented in Standard ML of New Jersey and statistics showing

that the improved algorithm constructs substantially smaller automata are provided. A

similar algorithm is used in the model checker SPIN [47] in the on-the-fly verification

program. Later, in [30] improvements (LTL2AUT) based on simple syntactic techniques

of the existing algorithm from [40] were proposed.

In [39] (later improved in [9]) another efficiently implemented algorithm was proposed,

which is motivated by the impossibility to use SPIN to generate a Büchi automaton

from a formula containing several fairness conditions. The procedure first builds a

generalized Büchi automaton which is a Büchi automaton, with labels and accepting

conditions on transitions instead of states. This, and some additional simplifications on

the intermediary automata, allow the construction of a Büchi automaton with significantly

less states then by using the classical direct construction. The algorithm is implemented

in the tool LTL2BA which seems to be much more efficient then the previous existent

implementations, in computational time and used memory.

LTL to Universal coBüchi Automata Using the above theorem, given an LTL

formula ϕ, we can translate it into an equivalent universal co-Büchi word automaton Aϕ.

This can be done with a single exponential blow-up by first negating ϕ, then translating

52

CHAPTER 3. GAMES, LOGICS AND AUTOMATA: TOOLS AND TECHNIQUES

¬ϕ into an equivalent non-deterministic Büchi word automaton, and then dualizing it

into a universal coBüchi word automaton [36, 55]. That is, the states and transitions of

the automaton remain unchanged and only the set of final states is seen as a coBüchi

condition. Indeed, there is a path in the automaton that visits infinitely often the set F

of accepting states if and only if it does not hold that all the paths visit finitely often the

set F of rejecting states.

Corollary 3.3.1 ([36, 55]). For any LTL formula ϕ over the alphabet Λ, there is an

effective construction of a universal coBüchi word automaton Aϕ that accepts exactly the

infinite words over Λ satisfying ϕ.

In the literature there are also used other accepting conditions for the word automata

as Streett, Rabin, parity or Muller and algorithms to determinize a nondeterministic

automaton are studied. More precisely, Safra proposed in [79] a procedure to transform

a nondeterministic Büchi word automaton with n states into an equivalent deterministic

Rabin word automaton having 2O(n logn) states and n pairs. However, Safra’s construction

was shown quite resistant to efficient implementations [85]. The tool presented in [85]

implements Safra’s construction for determinizing Büchi word automata and also provides

determinization routines for Streett and Rabin automata by converting them first to Büchi

automata.

Later, Piterman proposes in [73] an algorithm that takes a nondeterministic Streett

word automaton and produces an equivalent deterministic parity word automaton. The

construction is very similar to Safra’s construction, but thanks to some optimization, the

total number of states of the resulting automaton slightly reduces.

Muller and Schupp procedure in [70], which was developed to remove alternation from

tree automata (see Section 3.4.3), can also be applied to determinize nondeterministic

Streett word automata and obtain deterministic Streett automata. As we do not use

results on word automata determinization in this thesis, we don’t detail them here,

but refere the reader to the cited papers. More insight will be given on Muller-Schupp

construction for tree automata in the following section.

3.4 Trees and Tree Automata

3.4.1 Infinite Trees

Given a finite set Υ of directions, a Υ−tree is a prefix-closed set T ⊆ Υ∗, i.e., if x ⋅ c ∈ T ,

where c ∈ Υ, then x ∈ T . The elements of T are called nodes and the empty word ε is the

root of T . For every x ∈ T , the nodes x ⋅ c, for c ∈ Υ, are the successors of x. A node x is a

leaf if it has no successor in T , formally written ∀c ∈ Υ, x ⋅ c /∈ T . The tree T is complete if

for all nodes, there are successors in all directions, formally, ∀x ∈ T,∀c ∈ Υ, x ⋅ c ∈ T , that

53

CHAPTER 3. GAMES, LOGICS AND AUTOMATA: TOOLS AND TECHNIQUES

is, T = Υ∗. Finite and infinite branches π in a tree T are naturally defined, respectively,

as finite and infinite sequences of directions in T starting from the root node.

Given an alphabet Λ, a Λ−labeled Υ−tree is a mapping t ∶ T → Λ that maps each node

of the Υ-tree T to a letter in Λ. We call T the support of the labeled tree t denoted

Supp(t). Then, in a labeled tree t, an infinite (resp. finite) branch π induces an infinite

(resp. finite) sequence of labels and directions in (Λ.Υ)ω (resp. (Λ.Υ)∗Λ).

Strategies as trees We can use trees to encode strategies. For instance, for a set of

Agent i’s actions Σi and a set of observations Oi, a strategy σi ∶ Oi(ΣiOi)∗ → Σi of Agent

i can be seen as a complete (Σi ∪ {#})-labeled Oi-tree where the label of the root is

the special character # meaning that the Agent i does not play. This corresponds to

the choice of the initial states in the interaction model and then the first observation is

communicated to the agents. The rest of the nodes in the tree encoding the strategy

are labeled with elements of Σi. More precisely, for a node x = oi0o
i
1...o

i
n ∈ O+

i , t(x) =

σi(o0t(o0)o1t(o0o1)o2...on). We call strategy trees the trees with this structure.

Trees as Moore Machines As it was defined for strategies in Chapter 2, a complete

Λ-labeled Υ-tree t can be encoded by a (possible infinite state) Moore machine Mt =

⟨Υ,Λ, SM , s0, δM , gM⟩ with input alphabet Υ and output alphabet Λ. Note that the

composition of the two functions δ∗M and gM represents exactly a Λ-labeled Υ-tree. That

is, for any Λ-labeled Υ-tree t, we can define the equivalent Moore machine Mt so that the

function δ∗M associates to each vertex x from t, a state in the Moore machine and it holds

that ∀x ∈ Supp(t), t(x) = gM(δ∗M(x)).

3.4.2 Alternating Automata on Infinite Trees

A finite alternating tree automaton[69, 91] that runs over Λ-labeled Υ-trees is a tuple

T = ⟨Λ,Υ,Q, q0, δ, α⟩ where Λ is the finite alphabet, Υ is the set of directions, Q is the set of

states, q0 ∈ Q is the initial state, α ⊆ Qω is the accepting condition and δ ∶ Q×Λ→ B+(Q×Υ)

is the transition relation (assumed to be total) where B+(Q × Υ) is the set of positive

boolean formulas over Q × Υ, i.e., boolean formulas over Q × Υ using only operators ∧

and ∨ where we also allow the formulas true and false. Therefore, the transition relation

maps a state and an input letter to a formula that suggests a new configuration of the

automaton. As in this thesis we use tree automata to accept strategy trees, we assume

that the tree automata run over complete trees.

Example 3.4.1. In order to exemplify an alternating tree automaton, let us take the

example of [58]. Let the alphabet Λ = {a, b} and the language consisting of binary trees

(the set of directions is Υ = {0,1}) so that below each node labeled with ”a” eventually

appears some node labeled with ”b” on some branch. More precisely, whenever there is

x ∈ Υ∗ s.t. t(x) = a, there is an y ∈ Υ∗ s.t. t(xy) = b.

54

CHAPTER 3. GAMES, LOGICS AND AUTOMATA: TOOLS AND TECHNIQUES

To accept the trees defined above, we build an alternating tree automaton that has two

states Q = {q, qb} where the state q is used to run over the tree and whenever a node is

labeled with the letter ”a”, the automaton duplicates itself to the state qb that is used to

guess a path on which ”b” appears below the current node. The automaton has as initial

stat q0 = q and the transition relation is defined as follows:

δ(q, a) = (q,0) ∧ (q,1) ∧ ((qb,0) ∨ (qb,1))

δ(q, b) = (q,0) ∧ (q,1)

δ(qb, a) = (qb,0) ∨ (qb,1)

δ(qb, b) = true

The state q always reproduces itself in both successor nodes by the formula (q,0)∧(q,1).

This means that it continues to run on both subtrees from the current node. The state

qb on the other hand, before a node labeled with the letter ”b” appears, guesses a path

by choosing a successor on which it continues the search for a ”b” using the transition

δ(qb, a) = (qb,0) ∨ (qb,1). Whenever a ”b” appears in a label along the guessed path in the

tree, the automaton stops searching using the formula true.

Then, the accepting condition of the automaton is the coBüchi condition defined by the

set F = {qb} meaning that on each branch of the tree, the state qb should appear a finite

number of times. In other words, whenever the automaton is duplicated in a state qb, it

eventually has to reach the letter ”b” and stop the search.

Runs in a Tree Automaton The alternating tree automata runs on Λ-labeled

complete Υ-trees. A run of T on a Λ-labeled Υ-trees t is a (Q × Υ∗)-labeled N-tree

r such that

� r(ε) = (q0, ε) and

� for all nodes x ∈ Supp(r) such that r(x) = (q, h), there is a possible empty set

S = {(q1, c1), ..., (qn, cn)} such that S satisfies δ(q, t(h)) and for all 1 ≤ m ≤ n,

x ⋅m ∈ Supp(r) and r(x ⋅m) = (qm, h ⋅ cm).

A run is called accepting if and only if all its branches are in the accepting set α.

Particular Büchi, coBüchi, Rabin or Parity conditions can be defined. Intuitively, the

Büchi (resp. coBüchi) condition asks that each branch of the run r passes through an

accepting set F ⊆ Q infinitely (resp. finitely) often. The B-coBüchi condition is similar to

the co-Büchi condition, but there is a bound B that is imposed on the maximal number

of times some bad states are seen. A Rabin condition is defined by a set Ψ ⊆ 2Q × 2Q and

asks that along all branches π of a run, there is at least one pair (L,R) ∈ Ψ so that π visits

infinitely often L and finitely often R. Finally, a Parity condition is defined by a priority

function p ∶ Q→ N that associates to each state q ∈ Q a priority (also called color). Then,

55

CHAPTER 3. GAMES, LOGICS AND AUTOMATA: TOOLS AND TECHNIQUES

it asks that, along each branch, the smallest priority appearing infinitely often is even.

Also, a tree automaton is a safety automaton if the winning condition consists on all the

sequences in Qω that avoid a certain set S of states, i.e., α = Qω ∖Q∗SQω. Depending on

the accepting condition X used on the branches of the trees, the automaton is called a X

tree automaton.

Then, the automaton T accepts a tree t if there is an accepting run on t in T . We

denote by Lα(T) the trees for which there is an accepting run in T .

a

a

a

0

b

⋮

1

0

b

a
0

a
1

1

(a) A labeled binary tree t

(q, ε)

(q,0)

(q,00)

...

(q,01)

... ...

(qb,01)

true

(q,1)

(q,10)

...

(q,11)

...

(qb,1)

true

(b) A run of the automaton from Example 3.4.1

on the tree from 3.1a

Figure 3.1: Example of a tree and a run on it

Example 3.4.2. In Figure 3.1 is an example of a tree and one run on it in the automaton

defined in Example 3.4.1. From the initial state q in the root of the accepting run, is

taken the transition (q, a,{(q,0), (q,1), (qb,1)}) meaning that the automaton continues

to explore the tree on both directions with (q,0) and (q,1) and guesses that by taking

direction 1 it will find a ”b” (since the label of the root of the tree t is a). Then, from

the node 0 of the tree, from the state q (node (q,0)) the run uses the same transition

(q, a,{(q,0), (q,1), (qb,1)}) since t(0) = a. From the node 1 and the state q (the node

(q,1) in the run) the automaton simply continues to explore the tree t since t(1) = b.

Finally, from the node 1 in t and state qb the automaton stops the search since it is

already in a node labeled with ”b”. The rest of the run is built in the same way depending

on the labels of the tree t on which the automaton runs.

Then, the automaton accepts the tree t if on each branch of the run in Figure 3.1b we

see a finite number of states qb.

Non-deterministic Tree Automata Non-deterministic tree automata are particular

case of alternating tree automata. A tree automaton is non-deterministic if for each state

q ∈ Q and each letter c ∈ Λ, the transition relation δ(q, c) in disjunctive normal form does

not contain two pairs (c, q1) and (c, q2) in the same disjunct. Therefore, the transition

relation is a mapping δ ∶ Q × Λ → 2Υ→Q that maps any pair of states and labels to a set

56

CHAPTER 3. GAMES, LOGICS AND AUTOMATA: TOOLS AND TECHNIQUES

of mappings from directions to states (states in which are sent the children of the current

node).

Example 3.4.3. An example of nondeterministic tree automaton is one that has to check

that in a binary tree as in Figure 3.1a exists at least one node labeled with the letter ”b”.

The automaton needs two states q and qb. The initial state is qb with the meaning that

the automaton waits for a letter ”b”. The state q is the ”good” state from which nothing

is expected.

From the state qb the automaton has to guess the subtree in which it will find the letter

”b” and chooses the transition that goes to state qb on the corresponding direction and to

state q in the other one. When the letter ”b” is reached, from the state qb, the automaton

goes in both directions to the state q. Once the state q is reached, the automaton just

continues to explore the tree with the state q. Formally, the transition relation is

δ(qb, a) = ((qb,0) ∧ (q,1)) ∨ ((q,0) ∧ (qb,1))

δ(qb, b) = (q,0) ∧ (q,1)

δ(q, `) = (q,0) ∧ (q,1) , ∀` ∈ {a, b}

The automaton accepts if there is a run on the input tree such that on each branching

of the run the state q appears infinitely often. I.e., the Büchi condition F = {q} is satisfied.

Universal Tree Automata A tree automaton T is called universal if for each state

q ∈ Q and each letter c ∈ Λ, the transition relation δ(q, c) does not contain disjunctions.

That is, δ ∶ Q×Λ×Υ→ 2Q assumed to be total and if the tree automaton is in some state

q at some node x labeled by some ` ∈ Λ, it will evaluate, for all c ∈ Υ, the subtree rooted

at x ⋅ c in parallel from all the states of δ(q, `, c).

Example 3.4.4. To illustrate an universal tree automaton, let take a {a, b}-labeled binary

tree and ask that whenever one ”a” appears, it is followed later by a ”b” on all branches

of the subtree. The difference from Example 3.4.1 is that the automaton has to check in

both directions for a letter ”b” after the letter ”a” appears. That is,

δ(q, a) = (q,0) ∧ (q,1) ∧ (qb,0) ∧ (qb,1)

δ(qb, a) = (qb,0) ∧ (qb,1)

δ(q, b) = (q,0) ∧ (q,1)

δ(qn, b) = true

The accepting condition is, as in Example 3.4.1, the coBüchi set F = {qb}.

Deterministic Tree Automata We say that a tree automaton T is deterministic if

the transition relation is of the form δ ∶ Q ×Λ → (Υ → Q), i.e., it maps any pair of states

57

CHAPTER 3. GAMES, LOGICS AND AUTOMATA: TOOLS AND TECHNIQUES

and labels to one mappings from directions to states. In this case, we equivalently say

that the transition relation is of the form δ ∶ Q ×Λ ×Υ→ Q.

Example 3.4.5. In order to verify that on each branch of a given {a, b}-labeled binary

tree exists at least one letter ”b”, we define the deterministic automaton with two states

qb and q with the initial state qb meaning that the letter ”b” was not seen yet. Then, if

the label on the current node of the tree is ”a”, the automaton duplicates itself in both

children with the same state qb. Whenever the label ”b” appears in a node, the automaton

goes to state q where it remains forever. Formally, the transition relation is defined by:

δ(qb, a) = (qb,0) ∧ (qb,1)

δ(qb, b) = (q,0) ∧ (q,1)

δ(q, `) = (q,0) ∧ (q,1) , ∀` ∈ {a, b}

Then, the automaton accepts if on all branches, the state q appears an infinite number of

times (or equivalently, the state qb appears a finite number of times).

Similarly to word automata, when the automaton T has a Büchi condition, we may also

write Lub(T), Lnb(T) or Lab(T) for its language, depending if the Büchi tree automaton is

universal (UBT), nondeterministic (NBT) or alternating (ABT). For the other conditions,

we proceed similarly. For example Luc(T) stands for the language of the universal

co-Büchi tree automaton (UCT) T and Luc,B(T) stands for the language of the universal

B-co-Büchi tree automaton (UBCT) (T ,B) where the final set can be visited at most B

times.

Theorem 3.4.1. The Muller, Rabin, Streett and parity tree conditions are equivalent,

in the sense that a tree automaton using any condition may be converted into another

automaton using one of the others, but conversion to any condition, except Muller, costs

states.

Proof. Since the parity condition is a special case of Muller, Rabin and Streett conditions,

it suffices to explain how to transform a Muller tree automaton T into another tree

automaton that uses parity conditions. The construction is based on least appearance

record (LAR)[43], which allows us to identify states in Q appearing infinitely often. It

consists of a deterministic parity word automaton Aα that accepts the infinite sequences of

states in the automaton T that satisfy the Muller accepting condition. Then, we take the

product between the tree automaton T and the deterministic word automaton Aα built

for the accepting condition in T . The acceptance condition in the resulting automaton is

given by the parity condition of the automaton Aα. However, the automaton Aα has an

exponential number of states in the number of states of the automaton T . ∎

58

CHAPTER 3. GAMES, LOGICS AND AUTOMATA: TOOLS AND TECHNIQUES

3.4.3 Emptiness of Alternating Tree Automata

Different approaches in solving the synthesis problem use alternating tree automata

to characterize the possible solutions of the problem. The synthesis problem of a

reactive system that satisfies a desired specification is often reduced to checking the

emptiness of an alternating tree automaton accepting all possible strategies that realize

the specification [74]. However, in order to test the emptiness of an alternating tree

automaton, the removal of alternation is needed, which is usually done by reductions

to non-deterministic tree automata. In general, this reduction involves an exponential

blow-up.

Muller-Schupp Construction

In solving the synthesis problem, the most common are alternating Rabin and parity tree

automata.

Theorem 3.4.2 ([70]). Given an alternating Rabin tree automaton T on infinite trees with

n states and m pairs, there is an effective construction that produces a non-deterministic

Rabin tree automaton N having (mn)O(mn) states and mn pairs that accepts the same

language.

Theorem 3.4.3 ([70]). For each alternating parity tree automaton with n states and d

priorities one can construct a nondeterministic parity tree automaton, accepting the same

language, with 2O(nd log(nd)) states.

In order to construct the nondeterministic tree automaton in the above theorems,

Muller and Schupp[70] propose a Safra-like construction. The algorithm is given for

Streett conditions, but thanks to Theorem 3.4.1, it also applies for Muller, Rabin and

parity conditions and also to Büchi and co-Büchi conditions since they are particular

cases of Streett conditions. We recall that a Streett condition Ψ ∈ 2Q × 2Q asks that for

each pair (Ri,Gi) ∈ Ψ, if a ”red” state in Ri is seen an infinite number of times, then also

a ”green” state in Gi is seen infinitely often. Therefore, the condition can be rewritten as

”either we see finitely often states in Ri, or states in Gi appear infinitely often”.

For an alternating tree automaton T with a Streett condition with m pairs, the

nondeterministic tree automaton N that simulates it has as states m-tuples of ternary

trees, one tree for each pair in the Streett set. The nodes in each tree are named with

natural numbers and additionally are labeled by two items: a subset of states in the initial

alternating automaton and a color from the set {red, yellow, green}.

As observed in [4] for the case of Büchi conditions, in the Muller-Schupp trees the sons

of each node are partitioned into three classes: the ones that carry states in Gi, the ones

that carry states in Ri and the ones that carry states that are neither in Gi nor in Ri.

59

CHAPTER 3. GAMES, LOGICS AND AUTOMATA: TOOLS AND TECHNIQUES

The set of successors in Gi are collected in a set as the label of the left son, the ones in

Ri form the label of the right son and the last set labels the middle son.

The initial state in the nondeterministic automaton N is the m-tuple of trees where

each tree consists of a single vertex named 1i, colored green and labeled with the initial

state of the input Streett alternating tree automaton. Then, for an input letter a (as

label of an input tree for the automaton), the automaton nondeterministically chooses a

term in the transition δ(q, a) in T (in disjunctive normal form) for each state q in the set

of states that label the leafs of the current tree. The nondeterministic choice indicates,

for each state, the possible successors that will be used in the update operation of the

trees contained by the next state. Then, for each direction c ∈ Υ, the m-tuple of trees is

updated accordingly as follows.

We explain how the tree from position i corresponding to the pair (Ri,Gi) is updated.

First, the tree at position i from the current state is copied and all the red vertices are

made yellow. All the other vertices keep their color. Then, the tree is extended from

left to right by attaching sons (indicated by the nondeterministic choice) to the leaves

according to the subset construction, starting from the set of states in each leaf. No son is

introduced to a leaf if from none of its states a continuation with the letter ”a” is possible.

In this case, the whole path is deleted up to the last branching point. In the remaining

cases, the sons (left, middle and/or right) are introduced depending on the membership

of the continuations to the set Gi, Yi = Q ∖ (Ri ∪Gi) or Ri. The new vertices are then

colored green except the right successors that are colored red. Then, the threes are kept

from becoming too large by contracting edges vw to the vertex v in the case w is the only

successor of v. Each time a vertex is added in the new tree, it is named with the smallest

number available and whenever one vertex is removed, its name is made available to be

used later as names for other vertices.

Finally, the acceptance condition of the resulting nondeterministic tree automaton is

given as a Streett condition defined by pairs (R̂i,j, Ĝi,j), for all i corresponding to the ith

pair in the condition of the alternating autonaton T and each j ∈ Ni where Ni is the set

of all numbers used as vertex names of the trees corresponding to the pair i. The set R̂i,j

consists of those m-tuples in which the vertex j of the ith tree is red and Ĝi,j consists of

those m-tuples in which the vertex j in the ith tree is green. Thus, every vertex name is

forced to be green infinitely often or red only finitely often.

Piterman’s algorithm proposed in [73] can also be applied on alternating Streett tree

automata in order to obtain nondeterministic parity tree automata. However, as already

discussed in Section 3.3, it is very similar to Safra’s construction. It improves the number

of states by means of some optimizations in the labeling of the trees used as states in the

resulting automaton.

The construction of the nondeterministic tree automaton starting from an alternating

tree automaton involves Safra-like determinizations of automata that was shown resistant

60

CHAPTER 3. GAMES, LOGICS AND AUTOMATA: TOOLS AND TECHNIQUES

to efficient implementations. The Muller-Schupp procedure is an alternative to Safra’s

construction, but, as already seen, it still uses trees as states of the resulting automata.

One tool that implements both Muller-Schupp and Safra’s constructions and proves once

again their resistance to efficient implementations is OmegaDet[4]. It receives Büchi

nondeterministic word automata given as a well-structured text file and outputs the

equivalent deterministic Rabin automaton. This tool cannot be used for application

examples of any serious scale, the statistics shown in [4] giving results for the

determinizations of some Büchi automata that have only a few states.

Avoiding Safra-like Constructions for Alternating Parity Tree Automata

Kupferman and Vardi [55] proposed an alternative procedure for testing the emptiness

of alternating Parity tree automata by using universal coBüchi automata instead of

deterministic tree automata. The emptiness problem for the universal coBüchi tree

automaton is solved by translation to nondeterministic Büchi tree automata. The

translation goes through alternating weak tree automata. Finally, the nonemptiness

problem of nondeterministic Büchi tree automata is much simpler than the nonemptiness

problem of alternating Parity tree automata and can be solved symbolically in quadratic

time in the size of the transition function [92]. All these steps have been implemented and

optimized in the tool Lily [49] that solves the synthesis problem (under perfect information)

from LTL formulas by reducing it to the emptiness of universal coBüchi tree automata.

Theorem 3.4.4. [55] For each alternating Parity tree automaton T with n states,

transition function of size m and d priorities, there is an universal coBüchi tree automaton

U with O(nd) states and alphabet size 2O(m) such that Lap(T) ≠ ∅ iff Luc(U) ≠ ∅.

The universal coBüchi tree automaton built in the proof of the above Theorem accepts

annotated trees with restrictions on the transition functions to be taken. That is, the trees

to accept are annotated with partial functions ν ∶ Q→ 2Q×Υ so that a vertex (`, ν) appears

in a label if for all q ∈ Q, ν satisfies δ(q, `). Intuitively, if the transitions function is given

in disjunctive normal form, the function ν is used to remove the nondeterminism by

choosing a term from all the possible current states in the automaton T . Assuming that

the automaton T uses d priorities (from 1 to d) in the acceptance condition, automaton U

consists of h/2 copies of the automaton T , the ith copy checking that if the priority 2i is

visited finitely often, then so is the priority 2i+ 1. It has the coBüchi accepting condition

(F2i+1,{i}) where F2i+1 is the set of states with priority 2i+1 and the label {i} marks the

fact that is the ith copy. Then, following the disjunct chosen by ν, from each state the

automaton U branches universally to all copies of the automaton T .

Theorem 3.4.5. [55] Let U be an universal coBüchi tree automaton with n states. There

is an nondeterministic Büchi tree automaton N over the same alphabet such that Luc(U) ≠

∅ iff Lnb(N) ≠ ∅, and the number of states in N is 2O(n2 logn).

61

CHAPTER 3. GAMES, LOGICS AND AUTOMATA: TOOLS AND TECHNIQUES

The algorithm that proves Theorem 3.4.5 builds an nondeterministic Büchi tree

automaton N whose states are of the form (S,R, g) where S and R are sets of states

in the universal automaton U and g is a partial function from the set of states in U

to the set {0, ..., b}. The bound b = (2n!)n2n+13n(n + 1)/n! is a consequence of Safra’s

determinization[79, 55] and g(q) is even for all final states in U .

Using the first set S, the nondeterministic automaton computes a subset construction

on a run in U labeled nondeterministically with some ranks in the set {0, ..., b}. On each

labeled path of U , the successors of a vertex have smaller or equal rank then the current

vertex and if a label is not correct (a final state is associated with an odd rank), the

automaton rejects immediately.

Using the second set of states, the automaton makes sure that every infinite path

visits infinitely often states that are associated to odd ranks. That is, since there is a

finite number of ranks and the ranks decrease along paths of the run, an accepting run in

the automaton U gets trapped in a set of states labeled with odd ranks. Then, because

of the restriction of ”correct labeling”, this is possible only if the final sets are visited at

most b times. Finally, the acceptance condition in the constructed nondeterministic tree

automaton is the Büchi set consisting of the states having the second set empty.

Hayashi-Miyano Construction for Alternating Buchi Tree Automata

Other approaches reduce the synthesis problem to the emptiness of alternating Büchi

tree automata. It is the case of the procedure that solves the synthesis problem from

CTL specifications proposed in [54]. The following result, proven first by Miyano and

Hayashi [63] for word automata and then addapted by Kupferman and Vardi [55] for tree

automata, helps one to solve the emptiness of alternating Büchi tree automata.

Theorem 3.4.6 ([63, 55]). For each alternating Büchi tree automaton with n states, one

can construct an equivalent nondeterministic Büchi tree automaton with at most 3n states.

The idea behind the construction of the nondeterministic Büchi tree automaton from

the proof of Theorem 3.4.6 is an extension of subset construction. It essentially merges all

the vertexes, in a run of the given alternating tree automaton, that correspond to the same

node in the input tree. Therefore, the states of the nondeterministic tree automaton are

sets of states from the alternating automaton together with some additional information

that helps keeping track of the accepting condition on individual paths.

3.4.4 Emptiness Game for Nondeterministic Tree Automata

Once the nondeterministic tree automaton obtained, its emptiness is classically tested by

solving a two-player zero-sum game between the protagonist Eve (that wants to prove

that there is a tree and an accepting run on it) and Adam, the opponent, that tries to

62

CHAPTER 3. GAMES, LOGICS AND AUTOMATA: TOOLS AND TECHNIQUES

identify a non-accepting path in the run by choosing directions in the tree that falsify the

accepting condition.

Now, we define the game GT corresponding to the nondeterministic tree automaton

T = ⟨Λ,Υ,Q, q0, δ, α⟩ where the transition from a state q with the letter ` is given as a set

of functions f ∶ Υ→ Q. Let us denote by Range(f) the range of such a function f .

Formally, we define the turn-based game GT = ⟨VE, VA,E′, q0,Θ⟩ where

� VE = Q is the set of states controlled by Eve and

� VA = {Range(f) ∣ ∃q ∈ Q, ` ∈ Λ, f ∈ δ(q, `)} is the set of states controlled by Adam.

Then, the transition relation is defined for all q ∈ VE and all Y ∈ VA by

� (q, Y) ∈ E′ if there exist ` ∈ Λ and f ∈ δ(q, `) such that Y = Range(f) and

� (Y, q) ∈ E′ if q ∈ Y .

In other words, to go from q to Y , Eve chooses a symbol ` and a function f ∶ Υ → Q in

δ(q, `). Then, Adam chooses a direction in Υ, but since he wants to construct a sequence

of states not in α, one only needs to remember Range(f). Adam then picks a state in this

set. Finally, Eve’s objective is the set Θ = {π = q1Y1q2Y2... ∈ (VEVA)ω ∣ q1q2... ∈ α}.

Proposition 3.4.1. Eve has a wining strategy in the emptiness GT iff L(T) ≠ ∅.

Note that the resulting game GT is linear in the size of the nondeterministic tree

automaton T . Therefore, depending on the accepting condition, we obtain the complexity

results for the emptiness of the nondeterministic tree automata using the complexity of

solving the underlying game. Thanks to this, we have the following results:

Theorem 3.4.7 ([33, 74]). Emptiness of a nondeterministic Rabin tree automaton with

n states and m pairs over an alphabet with l letters can be tested in time (lmn)O(m).

Theorem 3.4.8 ([51]). Emptiness of a nondeterministic Parity tree automata with

n states and d priorities can be decided in NP ∩ co-NP. There is a deterministic

subexponential algorithm solving the problem in O(n
√
n).

3.4.5 Antichain Algorithm of UCT Automata Emptiness

As we already saw, there is a general trend to avoid Safra’s construction when desiring to

obtain algorithms that may lead to efficient implementations. Having as final objective

an implementation to solve the LTL synthesis problem under perfect information, in [36]

and [81] it was noted that testing the emptiness of an universal coBüchi automaton reduces

to testing the emptiness of a universal B-coBüchi word automaton for a sufficiently large

bound B, which in turn reduces to solving a safety game.

63

CHAPTER 3. GAMES, LOGICS AND AUTOMATA: TOOLS AND TECHNIQUES

We detail and slightly adapt here the algorithm proposed in [36, 35] for solving the LTL

synthesis under perfect information so that we test the emptiness of universal coBüchi tree

automata. First, to prove the existence of a bound as described above for the universal

coBüchi tree automata, we use the following results from [57, 73] to prove that if a UCT

automaton with n states is not empty, then it accepts a tree encoded by a finite state

Moore machine.

Theorem 3.4.9 ([73, 57]). For every NBW N with n states, there is a DPW D with

2n(n!)2 states and index 2n such hat L(D) = L(N).

Theorem 3.4.10. A UCT T with n states is not empty iff there is a non-empty Moore

machine with at most 2n(n!)2 states that represents a tree accepted by T .

Proof. The proof of the theorem follows the steps of one in [55] proving the theorem for

a different bound, but passes through parity automata. The interesting part of the proof

is from left to right. Let consider that the language of T is not empty.

We first prove that there is a DPT N automaton equivalent to T = ⟨Λ,Υ,Q, q0, δ, α⟩.

Note that when the automaton T rejects some tree t, there is a branch π = `0c0`1c1... ∈

(Λ ⋅Υ)ω for which there is a branch η in the run r on t in T which is compatible with π

and does not satisfy the coBüchi condition. Let us call such a branch rejecting.

We define a NBW automaton A that accepts branches in the tree t that are rejecting.

That is, it accepts words w ∈ (Λ×Υ)ω. The automaton A has the same state space as T .

Assuming that the transition relation in T is given as δ ∶ Q × Λ ×Υ → 2Q, the transition

relation in the automaton A is defined by δA(q, (`, c)) = δ(q, `, c). By Theorem 3.4.9, there

is a DPW B with 2n(n!)2 states equivalent to A. Let B = ⟨QB,Λ′ = Λ ×Υ, δB, p⟩ where p

is the priority function. Then, we complement B by incrementing the priorities by 1 and

get the DPW B′ = ⟨QB,Λ′, δB, p′⟩. Note that the automaton B′ accepts branches π in t

that are not rejecting. That is, all the branches in the run in T that are compatible with

π that are accepting.

We now define the DPT automaton D that accepts Λ-labeled Υ-trees t whose branches

are accepted by the automaton B′. It has the same set of states as B′ and the same priority

function. The transition relation is defined by δD(qB, `) = {f} where f ∶ Υ → QB such

that f(c) = δB(qB, (`, c)).

We now continue the proof showing that if the language of the automaton D is not

empty, there is a Moore machine encoding an accepted tree. We see the DPT automaton

D as a two-player parity game GD with perfect information and 2n(n!)2 states such that

L(D) /= ∅ iff there is a winning strategy for the protagonist in GD. Further, it is known that

parity games admit memoryless strategies. Therefore, if L(D) /= ∅, there is a memoryless

strategy for the protagonist in GD that is to play the labels of the accepted tree in D.

This strategy can be transformed into a Moore machine with the same states as D, and

therefore 2n(n!)2 states. ∎

64

CHAPTER 3. GAMES, LOGICS AND AUTOMATA: TOOLS AND TECHNIQUES

Theorem 3.4.11. Given a UCT T that accepts Λ-labelled Υ-trees with n states and a

Moore machine Mt with m states representing a Λ-labelled Υ-tree t,

t ∈ Luc(T) iff t ∈ Luc,mn(T)

Proof. From right to left, the proof is obvious since Luc,mn(T) ⊆ Luc(T). In the other

direction, let Mt = ⟨Λ,Υ, SM , s0, δM , gM⟩ be the Moore machine representing the tree t.

First, we equivalently transform Mt into a nondeterministic Büchi word automata

AM = ⟨Λ′ = Λ × Υ, SM , s0, δ′M , α
′ = SM⟩ that runs over the alphabet Λ′ = Λ × Υ and for

which Lnb(AM) is the set of traces ofMt. It accepts all the branches of t since the tree t

is the ”tree unfolding” of Mt. Note that AM has m states.

Let T = ⟨Λ,Υ,Q, q0, δ, α⟩. We define the product T × AM = ⟨Λ,Υ, Q̃, q̃0, δ̃, α̃⟩ where

Q̃ = Q × SM , q̃0 = (q0, s0), α̃ = α × SM and

δ̃((q, s), `, c) = {(q′, s′) ∣ q′ ∈ δ(q, `, c) and s′ = δ′M(s, (`, c))}

Now, since t ∈ Luc(T), for all accepting run rt on t in T , for all branches η of rt, the

restriction η↾Q = q0q1q2... of η on Q satisfies inf(η↾Q) ∩ α = ∅. That is, /∃ 0 ≤ i ≤ k < j

s.t. qi = qj and qk ∈ α (there are no cycles in rt containing a final state). Then, from

the construction of T × AM , there is no cycle reachable from q̃0 that contains a final

state. Therefore, all branches η of runs rt on t visit at most m × n final states. That is,

t ∈ Luc,mn(T). ∎

Using this results we can turn the emptiness problem for the UCT automaton T into

the emptiness problem of the UBCT automaton (T ,B) as follows:

Corollary 3.4.1. Given an UCT T that accepts Λ-labelled Υ-trees with n states and the

bound B = 2n2(n!)2,

Luc(T) ≠ ∅ iff Luc,B(T) ≠ ∅

Proof. If Luc(T) /= ∅, by Theorem 3.4.10, there is a regular tree t ∈ Luc(T) represented

by a finite state machine with at most m states(m < 2n(n!)2). Then, by Theorem 3.4.11,

t ∈ Luc,nm(T) and therefore Luc,B(T) /= ∅. In the other sense, the proof is obvious since

Luc,B(T) ⊆ Luc(T). ∎

Clearly, for all b ≥ 0, if Luc,b(T) ≠ ∅, then also holds Luc(T) ≠ ∅. This observation

has led to an incremental algorithm by starting with some small bound b and increment

it until a value for which the language of the b-coBüchi tree automaton is not empty is

reached.

Given a bound b ≥ 0 and a UCT T , the idea is to construct a safety game G(T , b) so

that Player 0 (the protagonist) has a winning strategy in G(T , b) if and only if Luc,b(T)

is non-empty. The game G(T , b) is obtained by extending the classical automata subset

construction with counters which count, up to b, the maximal number of times all the

65

CHAPTER 3. GAMES, LOGICS AND AUTOMATA: TOOLS AND TECHNIQUES

runs, up to the current point, have visited final states. If Q is the set of states of T , the

set of states of the safety game G(T , b) is the set of functions F ∶ Q → {−1,0, . . . , b + 1}.

The value F (q) = −1 means that no run have reached q and F (q) ∈ {0, . . . , b} means that

the maximal number of final states that has been visited by some run reaching q is F (q).

We set F (q) = b+ 1 if there is a run that reaches q and visits more then b times the set of

final states. The safe states are all the functions F so that F (q) ≤ b for all q ∈ Q. The set

of states can be partially ordered by the pairwise comparison between functions and it is

shown that the sets of states manipulated by the fixpoint algorithm are downward closed

for this order.

The emptiness of the UCBT automaton T is first reduced to the emptiness of

a deterministic safety tree automaton Det(T , b). Then, the emptiness of the later

automaton is tested by reducing to the emptiness game G(T , b) associated to it. The

game G(T , b) is a two-player zero-sum safety game, meaning that the protagonist has as

objective that the play stays into a safe set and the antagonist’s objective is to reach an

unsafe state. As we will use the construction in this thesis, we give the formal definition

here and also provide the proofs.

Determinization of UBCT Given the UBCT (T , b) with T = ⟨Λ,Υ,Q,Q0, δ, α⟩, the

deterministic safety tree automaton Det(T , b) is formally defined as the tuple Det(T , b) =

⟨F , F0, α′, δ′⟩ where F is the set of states, F0 is the initial state, α′ is the set of final states

and δ′ is the transition relation where

� F = {F ∣F ∶ Q→ {−1,0, ..., b + 1}}

� ∀q ∈ Q, F0(q) = −1 if q ≠ q0 and F0(q) = (q ∈ α) otherwise

� α′ = {F ∈ F∣∃q ∈ Q s.t. F (q) > b}

� ∀c ∈ Υ, δ′(F, `, c) = (F ′, c) if

F ′(q′) =max{min{b + 1, F (q) + (q′ ∈ α) ∣ (q′, c) ∈ δ(q, `, c) and F (q) /= −1}}

where max(∅) = −1 and, for all states q ∈ Q, (q ∈ α) = 1 if q is in α and 0 otherwise. We

say that a state F is unsafe if there exists q ∈ Q such that F (q) = b + 1. Intuitively, this

happens whenever there is a path from the initial state to q that visits more then b final

states.

Proposition 3.4.2. Let T be a UCT and b ∈ N. Then, Det(T , b) is complete,

deterministic and Luc,0(Det(T , b)) = Luc,b(T).

Proof. It is obvious by construction that the automaton Det(T , b) is complete since T

already is. Also, it is deterministic by construction: for each state F , one letter ` ∈ Λ and

one direction c ∈ Υ, there is only one successor state F ′.

66

CHAPTER 3. GAMES, LOGICS AND AUTOMATA: TOOLS AND TECHNIQUES

We prove the language equality by double inclusion. From right to left, if t is a

Λ-labeled Υ-tree accepted by (T , b), there is an accepting run rt on t in (T , b). Since the

run is accepting, each branch of rt is such that it visits at most b times the set of final

states. Then, by construction, Det(T , b) uses a sort of subset construction on the states

reached with the same sequence of letters and directions keeping the biggest number of

final states visited before a state q is reached. Therefore, there is an corresponding run

in Det(T , b) for rt that runs on t. The run in Det(T , b) is also accepting because the set

α′ is never reached, each branch in rt visiting at most b times the set of final states.

From left to right, let t be a Λ-labeled Υ-tree accepted by Det(T , b) and rt the

accepting run on it. Since rt is accepting, it never visits a state F such that there is

q with F (q) ≥ b + 1. Then, we can build a corresponding run for rt in (T , b) which is

accepting, since all the branches visit at most b times the final set of states α (otherwise,

rt is not accepting). ∎

Reduction to safety game The turn-based safety game is defined similarly to the

emptyness game used to test emptyness of nondeterministic tree automata as: G(T , b) =

⟨VE, VA,E′, q0, safe⟩ where VE = F is the set of states controlled by Eve, VA = {(F, `) ∣ F ∈

F and ` ∈ Λ} is the set of states controlled by Adam. The transition relation is defined

by (F, (F, `)) ∈ E′ for all F ∈ F and ` ∈ Λ and ((F, `), F ′) ∈ E′ for all F ′ ∈ δ′(F, l). Finally,

Eve’s objective safe = (F ∪VA) ∖α′ asks that all the states visited along a play are not in

the state α′.

Theorem 3.4.12 ([35, 36]). Let T be a UCT and b ∈ N. Luc,0(Det(T , b)) ≠ ∅ iff there is

a winning strategy σE for Eve in G(T , b).

Fixpoint algorithm to solve the Safety game Symbolic techniques that are also

exploited in this thesis have been used to solve the safety games. In [35] and [36] is

shown that the safety games G(T , b) can be solved on-the-fly without constructing them

explicitly, and that the fixpoint algorithm used to solve these safety games could be

optimized by using some antichain representation of the sets constructed during the

fixpoint computation.

The fixpoint algorithm solving the game G(T , b) computes the set of controllable

predecessors for Eve using the following predecessor functions. The functions PreU ∶

2VE → 2VA and PreC ∶ 2VA → 2VE compute the controllable and respectively uncontrolable

predecessors of states in a set X that are also in the set of safe states of the game G(T , b).

Formally, they are defined by

PreU(X) = {(F, `) ∈ VA∣∀F
′ ∈ VE, if ((F, `), F ′) ∈ E′, then F ′ ∈X} ∩ safe

PreC(X) = {F ∈ VE ∣∃(F, `) ∈ VA} ∩ safe

67

CHAPTER 3. GAMES, LOGICS AND AUTOMATA: TOOLS AND TECHNIQUES

Intuitively, the function PreU(X) outputs the set of safe states belonging to Adam

that have all the successors in the set X. Therefore, even if Eve cannot control Adam’s

choice, from some state in PreU(X), Adam cannot avoid the set X. On the other hand,

the function PreC(X) compute the set of safe states controlled by Eve that have at least

one successor in the state X.

Then, the controllable predecessor operator used by the fixpoint algorithm is

CPre = PreC ○ PreU

Since the function CPre is monotone over the complete latice (2VE ,⊆), it has a greatest

fixpoint denoted by CPre∗. That is, CPre∗ is the fixpoint of the ⊆-descending chain

defined by: X0 = VE∪VA and ∀i ≥ 0, Xi+1 = CPre(Xi)∩Xi. Intuitively, the set Xi consists

of all of Eve’s states from which she has a winning strategy to stay in the safe region during

i steps. Let us unfold the defined chain to better understand the meaning of Xi. The

chain starts with the entire set of states of the game. Then, X1 = PreC(PreU(X0))∩X0 =

VE ∩ safe is the set of Eve’s safe states. At the next step, X2 consists of all states from

X1 from which Eve has a strategy (can choose a successor) to enforce the game to stay in

the safe set X1. Therefore, as the following theorem says, the fixpoint CPre∗ is the set of

states from which Eve has a strategy such the game remains forever in the safe set safe.

Theorem 3.4.13 ([35]). The set of states from which Eve has a winning strategy in

G(T , b) is equal to CPre∗.

Partial order and antichains To optimize the algorithm, in [35] and [36] is defined a

partial order ≼ on states such that ∀F,F ′ ∈ F , F ≼ F ′ iff ∀q, F (q) ≤ F ′(q). We can extend

this ordering to the states belonging to Adam by defining (F, `) ≼ (F ′, `) iff F ≼ F ′ since

none of Adam’s states is final (if (F, `) is seen as a function, (F, `)(q) = F (q)). Intuitively,

if Eve can win from a state F ′, then she can also win from a state F with F ≼ F ′ since F

records less visited final states of T then F ′.

A set X is closed for ≼ if ∀F ∈ X, ∀F ′ ≼ F , holds F ′ ∈ X. Then, since the image

of a closed set by any functions defined above is also a closed set, instead of keeping all

the states in G(T , b), the antichain algorithm manipulates closed sets with respect to the

partial order ≼ that are carefully represented and manipulated.

The antichain algorithm described is implemented for universal coBüchi word

automata in the tool Acacia+[12] that solves the synthesis problem for LTL formulas

under the assumption of perfect information for the agents. We refer to [35] and [36] for

further details.

68

4. Solving the KLTL Synthesis

Problem

In this section we study the synthesis problem of one partially informed process against

an antagonist omniscient environment starting from KLTL specifications. We provide a

Safraless procedure to solve the Synthesis Problem for positive KLTL specifications. A

short version of this chapter was published in [14].

We recall that the KLTL synthesis problem asks, given an interaction model M =

⟨P,Ω, (Σi)i∈Ω, V, V0,E, τ⟩, a set P ⊆ Ω and a KLTL formula ϕ, to synthesize strategies

for processes in P such that the specification ϕ is satisfied for any strategies of the

environment (processes not in P). Formally,

INPUT ∶ M, ϕ, P ⊆ Ω,

OUTPUT ∶ Yes iff ∃(σi)i∈P ∶ exec(M, σ̄P) ⊧ ϕ

Contributions Our main contribution in this chapter, is a Safraless synthesis procedure

for the positive fragment of KLTL (KLTL+), i.e., KLTL formulas where the operator K

occurs under an even number of negations. We consider the setting where it is asked to

synthesize only one partially informed process (∣P ∣ = 1) against an omniscient antagonist

environment, since the more general case where several partially informed processes have

to be synthesized was proved to be undecidable. Our procedure relies on universal coBüchi

tree automata (UCT). More precisely, given a KLTL+ formula ϕ and some interaction

model M, we show how to construct a UCT T whose language is exactly the set of

strategies that realize ϕ in M.

Despite the fact that our procedure has 2ExpTime worst-case complexity, we have

implemented it and shown its practical feasibility through a set of examples. In particular,

based on ideas of [36] also recalled in Chapter 3, we reduce the problem of checking

the emptiness of the automaton T to solving a safety game whose state space can be

ordered and compactly represented by antichains. Our implementation is based on the

tool Acacia+ [12] and, to the best of our knowledge, it is the first implementation of

a synthesis procedure for epistemic temporal specifications considering perfect recall for

processes. Our tool synthesizes small strategies that correspond to the intuitive strategies

69

CHAPTER 4. SOLVING THE KLTL SYNTHESIS PROBLEM

we would expect, although it goes through a nontrivial automata construction. As an

application, this implementation can be used to solve two-player games with imperfect

information whose objectives are given as LTL formulas.

4.1 Preliminaries

Perfect Information Case (LTL Synthesis)

Let us first note that when all the agents in the interaction model have perfect information,

each KLTL formula reduces to an LTL formula by simply removing the knowledge

operator. Further, since all processes have perfect information and the interaction model

is known to everyone, the synthesis problem in Definition 2.3.1 reduces to the synthesis

of one process against one antagonist environment. This problem was already studied

in [36, 35, 54] without an interaction model specified. In the setting considered in the

above papers, the alphabet over which the specifications are formalized is partitioned into

input and output signals. The output alphabet PO belongs to the process to synthesize

(Agent 0) and the input alphabet PI is for the environment (Agent 1). Then, the

realizability game is played in turns. At each round Agent 0 gives a subset o of output

signals and then Agent 1 answers with a subset i of input signals. The play lasts forever

and defines an infinite word w = (i0 ∪ o0)(i1 ∪ o1)... ∈ (2P)ω. Then, the problem is to

find a strategy for the first agent such that, for any input from the adversary, the LTL

specification is satisfied on the defined infinite word.

This problem was first studied by Pnuli and Rosner [74] and Abadi, Lamport and

Wolper in [2]. The classical algorithm that solves the perfect information LTL realizability

problem translates the specification ϕ into a nondeterministic Büchi word automaton

equivalent to it that accepts all infinite words satisfying ϕ, applies Safra’s construction to

get a deterministic Rabin automaton for it and then extends it to a deterministic Rabin

tree automaton that accepts all complete 2PO -labeled 2PI -trees whose branches satisfy the

specification ϕ and hence encode winning strategies. Finally, the algorithm checks the

non-emptiness of the later tree automaton.

The algorithm proposed in [54] for solving LTL and CTL∗ realizability problems under

both perfect or imperfect information relies on the construction of alternating Rabin tree

automata and the testing of the emptiness of the accepted language. This is done using

the Muller-Schupp translation [70] of alternating tree automata into nondeterministic tree

automata recalled in Chapter 3.

Safraless Solutions Unfortunately, the above theoretically nice procedures turn to be

difficult to implement due to the fact that they use Safra-like procedures that, as we

have seen in Section 3.4.3, generate deterministic automata with a very complex state

space. The approach proposed in [36] by Filiot, Jin and Raskin for solving the LTL

70

CHAPTER 4. SOLVING THE KLTL SYNTHESIS PROBLEM

realizability under perfect information is based on antichains and works as following. The

LTL specification ϕ is first transformed into a universal coBüchi word automaton Aϕ as

described in Section 3.3. Then, the automaton Aϕ over the alphabet P is equivalently

transformed into a turn-based UCW (tbUCW) by splitting transitions (q1, `, q2) ∈ δA into

two transitions (q1, ` ∩ PO, q′1) and (q′1, ` ∩ PI , q2). The remaining steps for testing the

emptiness of the universal automaton follow the line described in Section 3.4.5. The

incremental algorithm starts with a small bound b and transforms the later automaton

into a b-coBüchi tbUCW which then is reduced to a safety game solved on the fly using the

antichain algorithm. This algorithm was efficiently implemented in the tool Acacia+ [12].

Because in practice the bound b turns to be quite small when the formula is realizable, and

because the unrealizability of a LTL formula ϕ under perfect information is equivalent

to the realizability of ¬ϕ from the point of view of the environment, the tool Acacia+

tests the realizability of both formulas and stops when one of the problems has a positive

answer.

The above procedure proposed in [36] can also be applied on architectures where the

interaction model is given. That is, one has to take the product between the interaction

model and the universal coBüchi word automaton equivalent with the specification and

apply the remaining of the algorithm on the resulting universal coBüchi automaton. More

details are provided in the following section.

Imperfect Information for the Process to Synthesize

As already stated in Section 2.3, the synthesis problem is undecidable for two or more

partially informed processes to synthesize. Therefore, in [89] Van der Meyden and Vardi

studied the synthesis problem of one partially informed process against one omniscient

antagonist environment with specifications given by KLTL formulas. In this case, the

interaction model is formally defined by M = ⟨P,Ω = {0,1},Σ0,Σ1, V, V0,E, τ⟩ and then,

assuming that Process 0 is the process to be synthesized and Process 1 represents the

environment, the synthesis problem resumes to the following:

A KLTL formula ϕ is realizable in M if there is a protocol σ0 for Process

0 such that for all executions ρ ∈ exec(M, σ0), holds exec(M, σ0), ρ,0 ⊧ ϕ.

They prove that this problem is 2ExpTime-complete by reducing it to the emptiness

problem for alternating Rabin tree automata that accept O-trees (where O is the set of

observations of Process 0) whose vertices are labeled with actions of the agent for which

the protocol is synthesized and a set K intended to be the knowledge of Process 0. The set

K consists of pairs (X,v) of a state v in the interaction model and a mapping X (called

atom) that associates to each subformula of ϕ a truth value. The projection of the labeling

of such trees on the actions of the agent encodes the strategy to follow in the interaction

model to realize ϕ. Note that the alphabet of the tree automaton built by the algorithm

71

CHAPTER 4. SOLVING THE KLTL SYNTHESIS PROBLEM

is exponential in the number of states of the interaction model and doubly exponential in

the size of the input formula ϕ.

The KLTL realizability is characterized by some restrictions that have to be satisfied

by the accepted tree. First of all, the atom X after any initial observation in the tree has

to map the formula ϕ to 1. Then, the authors define some conditions expressing that the

states appearing in K represent the possible states in which the interaction model may

be. The set is computed by subset construction depending on the actions of the agent and

the received observation. Finally, there are two more conditions that express the fact that

whenever (X,v) appears in the labeling of some node in the tree, the atoms X map to

true exactly the subformulas that hold true on some executions in the interaction model

starting from v. This implies that whenever X maps to true a subformula Kψ, all the

atoms X ′ that appear in some pair (X ′, v′) at the current node in the tree map ψ to true.

The alternating Rabin tree automaton that accepts exactly trees satisfying the above

conditions is then obtained as the intersection of the automata checking each property.

Then, the alternating automaton is equivalently transformed using Muller-Schupp

construction (Theorem 3.4.2) into a nondeterministic Rabin tree automaton with

2∣M∣⋅2O(∣ϕ∣) states and ∣M∣ ⋅ 2O(∣ϕ∣) pairs. The 2ExpTime complexity is finally obtained

by applying Theorem 3.4.7. The 2ExpTime lower bound holds since the synthesis from

LTL specifications under the assumption of perfect information is a particular case of

KLTL synthesis and it is already 2ExpTime-hard.

4.2 Safraless Synthesis Procedure for Positive KLTL

Specifications

In this section we explain our Safraless automata-based procedure to solve the synthesis

problem from positive KLTL formulas in an interaction modelM where the process to be

synthesized (Process 0) has imperfect information. We first define the procedure to deal

with LTL formulas and then extend this procedure to handle the knowledge operator K.

4.2.1 LTL Synthesis under Imperfect Information

As already mentioned in the previous chapter, given an interaction modelM and the set

of observations O of Agent 0, a complete (Σ0 ∪ {#})-labeled O-tree t where the root is

labeled with # and the other nodes have labels in Σ0 defines a strategy of the process to

synthesize. Further, all (Σ0 ∪ {#})-labeled O-trees that we consider have this structure

and are called strategy trees.

Any infinite branch π of t defines an infinite sequence of actions and observations of

Agent 0 in M, which in turn corresponds to a set of possible executions in M. Further,

72

CHAPTER 4. SOLVING THE KLTL SYNTHESIS PROBLEM

traces(π) denotes the set of traces of all executions compatible with π (the set of traces

of a sequence of actions and observations has been defined in Chapter 2).

Given an LTL formula ψ over the set P of propositions labeling the states of

the interaction model M, we construct a universal coBüchi tree automaton T =

⟨Σ0,O,Q,Q0, δ, α⟩ that accepts all the strategies of Agent 0 (the protagonist) that realize

ψ in the interaction model M. First, we convert ψ into an equivalent universal coBüchi

word automaton(UCW) Aψ = ⟨2P ,QA,QA0 , δ
A, αA⟩. This is done by constructing the

nondeterministic Büchi word automaton for the negation of the formula ψ. The later

automaton always exists thanks to algorithms presented in [40, 39]. Then, as a direct

consequence of the definition of KLTL realizability:

Proposition 4.2.1. Given a complete (Σ0∪{#})-labeled O-tree t, t defines a strategy that

realizes ψ under M iff for all infinite branches π of t and all executions ρ ∈ exec(M, π),

holds trace(ρ) ∈ Luc(Aψ).

We now show how to construct a universal tree automaton that verifies the property

mentioned in the previous proposition for all branches of the trees. We use universal

transitions to check, on every branch of the tree, that all the possible traces in M

compatible with the sequence of actions in Σ0 and observations in O defined by the

branch satisfy the formula ψ.

Based on the sequence of observations that the process has received and his own

actions, Agent 0 can define its knowledge I of possible states in which the interaction

model can be, as a subset of states of V . Given an action a ∈ Σ0 and some observation

o ∈ O, we define by posta(I, o) the new knowledge that Agent 0 can infer from observation

o, its action a and the previous information I. Formally,

posta(I, o) = {v ∈ V ∩ o ∣ ∃b ∈ Σ1,∃v
′ ∈ I s.t. E(v′, a, b) = v}

UCT T for LTL realizability The states of the universal tree automaton T are pairs

of states of Aψ and knowledge sets. We also have some extra initial state (qinit, V0) and

two sink states (qw,∅) and (⊥,∅). That is, Q = (QA × 2V) ∪ {(qinit, V0), (qw,∅), (⊥,∅)}

where the state (⊥,∅) is reached when the tree to accept does not encode properly a

strategy and therefore the automaton rejects and (qw,∅) is added for the completeness.

The initial set of states is then Q0 = {(qinit, V0)} and the accepting condition is the coBüchi

set α = {(⊥,∅)}∪(αA ×2V). This means that the associated path in the word automaton

Aψ is used to verify the acceptance condition along all the possible executions in M

defined by the sequence of knowledge sets.

Let us take an action a ∈ Σ0 and some observation o ∈ O of Agent 0. First, we define

the transition relation from the initial state as

δ((qinit, V0),#, o) = {(qA0 , V0 ∩ o) ∣ qA0 ∈ QA0 } and

δ((qinit, V0), a, o) = {(⊥,∅)}, ∀a ∈ Σ0

73

CHAPTER 4. SOLVING THE KLTL SYNTHESIS PROBLEM

This reads as: the automaton asks that the root of the tree to be accepted is labeled

with the special symbol # and the transition goes to the set of states consisting of an

initial state of the automaton Aψ and the knowledge set updated according the received

observation. The following equations define the transition relation in teh case of the sink

states or a label # in a node of the tree other than the root:

δ((⊥,∅), `, o) = {(⊥,∅)},∀` ∈ Σ0 ∪ {#};

δ((qw,∅), `, o) = {(qw,∅)},∀` ∈ Σ0 ∪ {#} and

δ((q, I),#,0) = {(⊥,∅)} for (q, I) ∈ QA × 2V

We now define δ((q, I), a, o) for a state q ∈ QA and a knowledge set I ⊆ V .

It can be the case that there is no transition in M from a state in I to a state of o,

i.e., posta(I, o) = ∅. In this case, all the paths from the next vertex of the tree should be

accepting. This situation corresponds to Agent 0 receiving a wrong observation and it is

modeled by going to the extra state (qw,∅), i.e., δ((q, I), a, o) = {(qw,∅)}.

Now, suppose that posta(I, o) is not empty. Since the automaton must check that all

the traces of M that are compatible with actions in Σ0 and observations are accepted

by Aψ, intuitively, one would define δ((q, I), a, o) as the set of states of the form

(q′,posta(I, o)) for all q′ such that there exists v ∈ I with (q, τ(v), q′) ∈ δA. However,

it is not correct for several reasons. First, it could be that v has no successor in o for

action a, and therefore one should not consider it because the traces up to state v die at

the next step after getting the observation o. Therefore, one should only consider states

of I that have a successor in o. Second, it is not correct to associate the new knowledge

posta(I, o) with q′ because it could be that there exists a state v′ ∈ posta(I, o) so that

for all its predecessors v in I, there is no transition (q, τ(v), q′) in δA, and therefore,

one would also take into account sequences of interpretations of propositions that do not

correspond to any trace in M.

Taking into account these two remarks, we define, for all states q′, the set

Iq,q′ = {v ∈ I ∣ (q, τ(v), q′) ∈ δA}

Then, the transition δ((q, I), a, o) in the automaton T is defined as the set

δ((q, I), a, o) = {(q′,posta(Iq,q′ , o)) ∣ ∃v ∈ I, (q, τ(v), q′) ∈ δA}

Note that with a state q′ is not associated the entire knowledge of Agent 0. However,

because the automaton is universal and ⋃q′∈QA posta(Iq,q′ , o) = posta(I, o), the protagonist

does not have better knowledge by restricting the knowledge sets in one state of the

automaton.

In the following, since the labeling of the root of trees encoding strategies and the initial

state in the automaton T have no impact on the actual executions in the interaction model

M, we ignore them when speaking about branches in a tree or an accepting run.

74

CHAPTER 4. SOLVING THE KLTL SYNTHESIS PROBLEM

Lemma 4.2.1. The LTL formula ψ is realizable in M iff Luc(T) ≠ ∅.

Proof. If ψ is realizable in M, there is a strategy σ0 ∶ O(Σ0O)∗ → Σ0 for Agent 0 such

that exec(M, σ0) ⊧ ψ. Let us see this strategy as the (Σ0 ∪ {#})-labeled O-tree tσ0 that

encodes it and prove that tσ0 ∈ Luc(T).

The run on tσ0 in the automaton T is a (Q × O∗)-labeled N-tree r. Therefore, each

branch π of r induces an infinite sequence r(π) = ((q0, I(0)), o0)((q1, I(1)), o0o1)... where,

by the definition of T , q0 ∈ QA0 , I(0) = V0 ∩ o0 and I(i+1) = postt(o0...oi)(I
(i)
qi,qi+1 , oi+1) for all

i ≥ 0.

Since I
(i)
qi,qi+1 is a a subset of the knowledge set I(i) consisting of the states in the

interaction model whose labels may fire transitions from qi to qi+1 in Aψ, and since the

transitions in T are universal, η = q0q1q2... is a run in Aψ on the traces of the executions

ρ = v0v1v2... ∈ exec(M, σ0) where vi ∈ I(i). Hence, because exec(M, σ0) ⊧ ψ and ρ ∈

exec(M, σ0), η is an accepting run and then r(π) visits a finite number of times the final

states of T along paths. Therefore, tσ0 ∈ Luc(T) and Luc(T) ≠ ∅.

In the other direction, if Luc(T) ≠ ∅, there exists an complete (Σ0∪{#})-labeledO-tree

tσ0 encoding a strategy such that tσ0 ∈ Luc(T). We prove that the strategy σ0 encoded by

the tree tσ0 realizes ψ, i.e., for all executions ρ ∈ exec(M, σ0), holds exec(M, σ0), ρ,0 ⊧ ψ.

Let r be the accepting tun in T on the tree tσ0 and π be a branch of r with r(π) =

((q0, I(0)), o0)((q1, I(1)), o0o1)((q2, I(2)), o0o1o2)... . Since r is an accepting run in T , the

sequence η = q0q1q1... is an accepting run in Aψ. Therefore, because of the definition of

the set I(i+1) as postt(o0...oi)(I
(i)
qi,qi+1 , oi+1), the sequence η is an accepting run in Aψ on the

traces of all executions ρ = v0v1v2... s.t. vi ∈ I(i) and therefore trace(ρ) ∈ Luc(Aψ).

Moreover, since the automata Aψ and T are universal and ∀i ≥ 0,

⋃q′∈QA posta(I
(i)
qi,q′

, o) = posta(I
(i), o), it holds that trace(ρ) ∈ Luc(Aψ) for all executions ρ

compatible with a branch u = o0a0o1a1o2... of t. But since the set of such executions ρ is

exactly exec(M, σ0), we conclude that the formula ψ is realizable in M. ∎

Moreover, thanks to Theorem 3.4.10, if a UCT has a non-empty language, it accepts

a tree that is the unfolding of a finite graph, or equivalently, that can be represented by a

finite state Moore machine. Therefore if ψ is realizable, it is realizable by a finite-memory

strategy. In this thesis we will also use the notation Tψ,X for the UCT built for the LTL

formula ψ where the executions of M start from the set X ⊆ V ,i.e., Q0 = {(qinit,X)}.

4.2.2 Positive KLTL Synthesis

In this section we extend the construction of Section 4.2.1 to the positive fragment of

KLTL. We recall that the Positive KLTL (KLTL+) (defined in Section 2.2.2) extends

LTL with the knowledge operator Ki that appears under a even number of negations.

Moreover, we assume that the formulas are in negative normal form, meaning that all

75

CHAPTER 4. SOLVING THE KLTL SYNTHESIS PROBLEM

negations are pushed down towards the atoms. Since in this section we consider only one

partially informed process, the operator K is intended to reason about its knowledge.

Intuition on the construction

Given an KLTL+ formula ϕ and an interaction model M = ⟨P,Ω =

{0,1},Σ0,Σ1, V, V0,E, τ⟩, we show how to construct a UCT T such that Luc(T) ≠ ∅

if and only if ϕ is realizable in M.

The construction is compositional and follows, for the basic blocks, the construction

of Section 4.2.1 for LTL formulas. The main idea is to replace iteratively the innermost

subformulas of the form Kγ by fresh atomic propositions pγ so that we get an LTL

formula for which the realizability problem can be transformed into the emptiness of an

universal coBüchi tree automaton. The realizability of the subformulas Kγ that have

been replaced by pγ is then checked by branching universally to an UCT constructed for

γ as in Section 4.2.1 (γ is an LTL formula over an extended alphabet). Since transitions

are universal, it will ensure that all infinite branches of the tree from the current vertex

where the new automaton has been triggered also satisfy the formula γ.

The UCTs we construct are defined over an extended alphabet that contains the

new atomic propositions, but we show that we can safely project the final universal tree

automaton on the alphabet Σ0.

The assumption on positivity of KLTL formulas implies that there is no subformulas

of the form ¬Kγ. If subformulas ¬Kγ would appear, the construction would not work

since one would need to check that there is one execution compatible with one of the

branches of the tree to accept that does not satisfy the formula γ. This would require

nondeterministic transitions and therefore the automaton T would become alternating.

Formal definition

We now describe the construction formally. We inductively define the sequence of formulas

associated with ϕ as:

ϕ0 = ϕ and

ϕi+1 is obtained from ϕi in which the innermost subformulas

Kγ are replaced by fresh atomic propositions pγ.

Let d be the smallest index such that ϕd is an LTL formula. In other words, d is the

maximal nesting level of the knowledge operators K. Also, we identify by

K =
d

⋃
i=0

{pγ ∣Kγ is subformula of ϕi}

76

CHAPTER 4. SOLVING THE KLTL SYNTHESIS PROBLEM

the set of new atomic propositions and let P ′ = P ∪ K be the extended set of atomic

propositions. Note that by the definition of the formulas ϕi, for all atomic propositions

pγ occurring in ϕi, γ is an LTL formula over P ′.

Example 4.2.1. Let us take the KLTL+ formula ϕ = p → K(q → (Kr ∨ Kz)) and

P = {p, q, r, z}. The sequence of formulas ϕi is:

ϕ0 = ϕ

ϕ1 = p→K(q → (pr ∨ pz))

ϕ2 = p→ pγ where γ = q → (pr ∨ pz)

Also, the extended set of atomic propositions is P ′ = {p, q, r, z, pr, pz, pγ} where γ = q →

(pr ∨ pz).

Then, we construct incrementally a chain of universal coBüchi tree automata T d, ...,T 0

such that

Luc(T
d) ⊇ Luc(T

d−1) ⊇ ... ⊇ Luc(T
0)

and the following invariant is satisfied: for all i ∈ {0, ..., d}, T i accepts exactly the set of

strategies that realize ϕi in M

Intuitively, the automaton T i is defined by adding new transitions in T i+1, so that for

all atomic propositions pγ occurring in ϕi+1, T i will ensure that Kγ is satisfied. This is

done by branching to a UCT verifying γ whenever the atomic proposition pγ is met.

Since the formulas ϕi are defined over the extended alphabet P ′ = P ∪ K and the

interaction modelM is defined over P, we now make clear what we mean by realizability

of a formula ϕi in M. It uses the notion of extended model executions and extended

strategies.

Extended actions, model executions and strategies We extend the actions of

Agent 0 to Σ′
0 = Σ0 × 2K and call them e-actions. Informally, Agent 0 plays an e-action

(a,K) if he considers formulas Kγ for all pγ ∈ K to be true. An extended execution

(e-execution) of M is an infinite sequence ρ = (v0,K0)(v1,K1)... ∈ (V × 2K)ω such that

v0v1... ∈ exec(M). We denote v0v1 . . . by proj1(ρ) and K0K1 . . . by proj2(ρ). The extended

labeling function τ ′ is a function from V × 2K to P ′ defined by τ ′(s,K) = τ(s) ∪ K.

The indistinguishability relation between extended executions is defined, for any two

extended executions ρ1, ρ2, by ρ1 ∼0 ρ2 if and only if proj1(ρ1) ∼0 proj1(ρ2) and proj2(ρ1) =

proj2(ρ2), i.e., the propositions in K are visible to Agent 0. Given the extended labeling

functions and indistinguishability relation, the KLTL satisfiability notionR,ρ, i ⊧ ψ can be

naturally defined for a set of e-execution R, ρ ∈ R and ψ a KLTL formula over P ′ = P ∪K.

An extended strategy is a strategy defined over e-actions, i.e. a function from O(Σ′
0O)∗

to Σ′
0. For an infinite sequence u = o0(a0,K0)o1(a1,K1)o2 ⋅ ⋅ ⋅ ∈ O(Σ′

1O)ω, we define

77

CHAPTER 4. SOLVING THE KLTL SYNTHESIS PROBLEM

proj1(u) as o0a0o1a1o2 The sequence u defines a set of compatible e-executions

exec(M, u) as follows: it is the set of e-executions ρ = (v0,K0)(v1,K1)... ∈ (V × 2K)ω

such that proj1(ρ) ∈ exec(M,proj1(u)). Similarly, we define for e-strategies σ′0 the set

exec(M, σ′0) of e-executions compatible with σ′0. Then,

A KLTL formula ψ over P ′ is realizable in M if there is an e-strategy σ′0
such that for all runs ρ ∈ exec(M, σ′0), we have exec(M, σ′0), ρ,0 ⊧ ψ.

Proposition 4.2.2. There is an e-strategy σ′0 ∶ O(Σ′
0O)∗ → Σ′

0 realizing ϕ0 inM iff there

exists a strategy σ0 ∶ O(Σ0O)∗ → Σ0 realizing ϕ0 in M.

Proof. Let us see e-strategies and strategies as the (Σ′
0 ∪ {#})-labeled (resp. (Σ0 ∪

{#})-labeled) O-trees encoding them. Given a tree representing σ′0, we project its labels

on Σ0 to get a tree representing σ0. The strategy σ0 defined in this way realizes ϕ0,

as ϕ0 does not contain any occurrence of propositions in K. Conversely, given a tree

representing σ0, we extend the labels of all nodes except the root with ∅ to get a tree

representing σ′0. It can be shown for the same reasons that σ′0 realizes ϕ0. ∎

Incremental tree automata construction The invariant mentioned above can now

be stated more precisely: for all i,

T i accepts the e-strategies σ′0 ∶ O(Σ′
0O) → Σ′

0 that realize ϕi in M.

Therefore, the trees accepted by the UCT T i are labeled with e-actions in Σ′
0 and have

as directions elements of O. We now explain how they are constructed.

Since ϕd is an LTL formula, we follow the construction of Section 4.2.1 to build the

UCT T d. Then, we construct T i from T i+1, for 0 ≤ i < d. The invariant tells us that

T i+1 defines all the e-strategies that realize ϕi+1 in M. It is only an over-approximation

of the set of e-strategies that realize ϕi inM since the subformulas of ϕi of the form Kγ

correspond to atomic propositions pγ in ϕi+1, and therefore T i+1 does not check that they

are satisfied. Therefore to maintain the invariant, T i is obtained from T i+1 such that

whenever an action that contains some formula pγ ∈ Sub(ϕi+1) occurs on a transition of

T i+1, we trigger (universally) a new transition to a UCT Tγ,I , for the current information

set I in T i+1, that will check that Kγ indeed holds.

As already mentioned, the assumption on positivity of KLTL formulas is necessary

here as we do not have to check for formulas of the form ¬Kγ, which could not be done

without an involved “non Safraless” complementation step. Since γ is necessarily an

LTL formula over P ′ by definition of the formula ϕi+1, we can apply the construction of

Section 4.2.1 to build Tγ,I .

Formally, from the incremental way of constructing the automata T j for j ≥ i, we

know that T i+1 has a set of states Qi+1 where all states are of the form (q, I) where I ⊆ V

is some knowledge set. In particular, it can be verified to be true for the state space of T d

78

CHAPTER 4. SOLVING THE KLTL SYNTHESIS PROBLEM

by definition of the construction of Section 4.2.1. Let also δi+1 be the transition relation of

T i+1. For all formulas γ such that pγ occurs in ϕi+1, we let Qγ be the set of states of Tγ,I ,

δγ its set of transitions and αγ be the set of its final states. Again from the construction

of Section 4.2.1, we know that Qγ = QAγ ×2V ∪{(⊥,∅), (qw,∅), (qγinit, I)} where QAγ is the

set of states of a UCW associated with γ (assumed to be disjoint from that of T i+1) and

Q0
γ = {(qγinit, I)} is the set of initial states of Tγ,I . However, since all the states in I have

the same observation and the current observation is known, we can consider the initial

set of states in the automaton Tγ,I being {(qγ0 , I) ∣ qγ0 ∈ Q0
γ} and that it accepts Σ′-labeled

O-trees.

The automaton T i is then formally defined as T i = ⟨Σ′
0,O,Qi,Qi

0, δi, αi⟩ where,

assuming without loss of generality that there is a unique initial state qγ0 ∈ QAγ in the

UCW Aγ, we have

� Qi = Qi+1 ∪⋃pγ∈Sub(ϕi+1)Qγ

� Qi
0 = Q

i+1
0 = {(qinit, V0)}

� δi((q, I), (a,K), o) = δi+1((q, I), (a,K), o) ∪ ⋃pγ∈Sub(ϕi+1) δγ((q
γ
0 , I), (a,K), o)

� αi = αi+1 ∪ αγ

The transition relation for the other cases is the same as in the automaton T i+1.

In the following, we prove that the automaton T i accepts exactly the strategies that

realize ϕi in the extended runs of the interaction model M. An e-strategy of the system

in this case can be seen as an appropriate ((Σ0 ×2K)∪{#})-labeled O-tree t as explained

in Chapter 3 and then we extend the notation for the set of executions induced by the

strategy tree in the interaction model by exec(M, t). Note that a branch of t is a sequence

π = o0ã1o1ã2o2... where ∀i, ãi ∈ Σ0 × 2K and oi ∈ O.

As we mentioned before, we start our construction with the LTL formula ϕd and

construct the universal coBüchi tree automaton T d for it. Then, we build the sequence of

automata T d, T d−1,... T 0 such that T i checks for the satisfaction of ϕi on the extended

executions compatible with the branches of accepted trees. In other words,

∀t ∈ L(T i), ∀ρ ∈ exec(M, t), holds exec(M, t), ρ,0 ⊧ ϕi.

In order to prove that the invariant holds, let us define the set of all extended executions

that are compatible with the branch π of the tree t up to position j as:

exec(M, t, π, j) = ⋃
π′∶ π′[0...j]=π[0...j]

exec(M, π′)

This executions are indistinguishable from the ones in exec(M, π) up to position j.

Observe that, by definition, we have exec(M, t, π,0) = exec(M, t).

79

CHAPTER 4. SOLVING THE KLTL SYNTHESIS PROBLEM

Definition 4.2.1. A (Σ0 × 2K ∪ {#})-labelled O-tree t encoding a strategy is called fair

with respect to an one-agent KLTL+ formula φ if:

∀π = o0(a0,K0)o1(a1,K1)o2...,∀j,∀pγ ∈Kj ∩ Sub(φ),

∀π′ s.t. π′[0...j] = π[0...j], ∀ρ ∈ exec(M, π′),

holds exec(M, π′), ρ, j ⊧ γ

Intuitively, whenever pγ appears in the label of a node of the tree along a branch π,

the formula γ holds at that position j on all the executions compatible with π up to that

position. These executions are indistinguishable up to position j. Because t is a tree, the

branches π′ that pass by the node x = o0o1...oj, have the same prefix as π up to position

j. Therefore, the set of e-executions indistinguishable up to position j from an execution

compatible with π consists of the e-executions that are compatible with some π′ having

the same prefix as π up to position j.

Lemma 4.2.2. If a (Σ1×2K∪{#})-labeled O-tree t encoding a strategy is fair with respect

to φ, then

∀ψ ∈ Sub(φ),∀π branch of t,∀j,∀ρ ∈ exec(M, t, π, j),

if exec(M, t, π, j), ρ, j ⊧ ψ,

then exec(M, t, π, j), ρ, j ⊧ ψ−1

where ψ−1 is obtained from ψ by replacing in one step the atomic propositions pγ with the

formula Kγ.

Proof. Let us fix a branch π = o0(a0,K0)o1(a1,K1)o2(a2,K2)o3... of t. Then, the proof is

done by induction on the structure of ψ.

� if ψ = p ∈ P, ψ−1 = ψ and then, exec(M, t, π, j), ρ, j ⊧ p.

� if ψ = pγ, since exec(M, t, π, j), ρ, j ⊧ pγ, holds pγ ∈ proj2(ρ[j]) =Kj. Then, because

t is a fair tree with respect to φ and ψ ∈ Sub(φ), holds that ∀π′ ∈ t s.t.π[0...j] =

π′[0...j], for all runs ρ′ ∈ exec(M, π′), we have that exec(M, t), ρ′, j ⊧ γ. Then,

since exec(M, t, π, j) = ⋃π′∶π[0...j]=π′[0...j] exec(M, π′), exec(M, t, π, j), r, j ⊧Kγ.

� if ψ = ψ1 ∧ ψ2, exec(M, t, π, j), ρ, j ⊧ ψ1 ∧ ψ2. That is, exec(M, t, π, j), ρ, j ⊧ ψ1 and

exec(M, t, π, j), ρ, j ⊧ ψ2. From the induction hypothesis, exec(M, t, π, j), ρ, j ⊧ ψ−1
1

and exec(M, t, π, j), ρ, j ⊧ ψ−1
2 which means that exec(M, t, π, j), ρ, j ⊧ ψ−1

1 ∧ ψ−1
2 .

The proof is the same for ψ = ψ1 ∨ ψ2.

� if ψ = ψ1Uψ2, exec(M, t, π, j), ρ, j ⊧ ψ1Uψ2. This means that ∃j′ ≥ j s.t. ∀j ≤ k < j′,

exec(M, t, π, j), ρ, k ⊧ ψ1 and exec(M, t, π, j), ρ, j′ ⊧ ψ2.

80

CHAPTER 4. SOLVING THE KLTL SYNTHESIS PROBLEM

Note that exec(M, t, π, k) ⊆ exec(M, t, π, j) and exec(M, t, π, j′) ⊆ exec(M, t, π, j).

Therefore, ∀j ≤ k < j′, exec(M, t, π, k), ρ, k ⊧ ψ1 and exec(M, t, π, j′), ρ, j′ ⊧ ψ2.

Then, from the inductive hypothesis, ∀j ≤ k < j′, exec(M, t, π, k), ρ, k ⊧ ψ−1
1 and

exec(M, t, π, j′), ρ, j′ ⊧ ψ−1
2 which means ∀j ≤ k < j′, exec(M, t, π, j), ρ, k ⊧ ψ−1

1 and

exec(M, t, π, j), ρ, j′ ⊧ ψ−1
2 . This is because exec(M, t, π, j) is the set of runs that

are consistent with π up to position j and exec(M, T, π, j′) and exec(M, T, π, k) are

subsets of exec(M, T, π, j)(since j ≤ k < j′). But, all the runs in exec(M, T, π, j′)

(and exec(M, T, π, k) respectively) are distinguishable from the rest of words in

exec(M, T, π, j). Then, exec(M, T, π, j), ρ, j ⊧ ψ−1
1 Uψ

−1
2 .

� if ψ = ◯ψ1, exec(M, t, π, j), ρ, j ⊧ ◯ψ1 and therefore exec(M, t, π, j), ρ, j + 1 ⊧ ψ1.

Because exec(M, t, π, j+1) ⊆ exec(M, t, π, j) and from the induction hypothesis, we

have exec(M, t, π, j + 1), ρ, j + 1 ⊧ ψ−1
1 . Using the same argument as before, holds

that exec(M, t, π, j), ρ, j + 1 ⊧ ψ−1
1 and therefore exec(M, t, π, j), ρ, j ⊧ ◯ψ−1

1 .

� if ψ = ◻ψ1, exec(M, t, π, j), ρ, j ⊧ ◻ψ1. Then,∀k ≥ j, exec(M, t, π, j), ρ, k ⊧ ψ1.

Because ∀k ≥ j exec(M, t, π, k) ⊆ exec(M, t, π, j) and from the inductive hypothesis,

∀k ≥ j, exec(M, t, π, k), ρ, k ⊧ ψ−1
1 . Using the same argument as before, we get

exec(M, t, π, j), ρ, k ⊧ ψ−1
1 , ∀k ≥ j. That is, exec(M, t, π, j), ρ, j ⊧ ◻ψ−1

1

� if ψ = Kψ1, the fact that exec(M, t, π, j), ρ, j ⊧ Kψ1 means that ∀ρ′ ∈

exec(M, t, π, j), holds exec(M, t, π, j), ρ′, j ⊧ ψ1. From the induction hypothesis

applied for ρ′, we have that ∀ρ′ ∈ exec(M, t, π, j), exec(M, t, π, j), ρ′, j ⊧ ψ−1
1 . That

is, exec(M, t, π, j), ρ, j ⊧Kψ−1
1 .

� if ψ = ¬ψ1, then Kγ is not a subformula of ψ1 because Kγ does not occur under

negations in ψ. This means that ψ1 = ψ−1
1 and then exec(M, t, π, j), ρ, j ⊧ ¬ψ1

implies that exec(M, t, π, j), ρ, j ⊧ ¬ψ−1
1 .

∎

Then, denoting by exec(M[X], π) the set of e-executions in M that are compatible

with π and start when the set of current possible states in M is X, we can prove that:

Lemma 4.2.3. For all i ∈ {0, ..., d − 1}, ∀t ∈ Luc(T i), t is fair with respect to ϕi+1.

Proof. The proof of this theorem comes directly from the construction of T i from T i+1.

Let us fix t ∈ Luc(T i). By construction, T i is T i+1 to which are ”plugged” the automata

Tγ,I for the LTL formulas γ where pγ ∈ Sub(ϕi+1) appears on a transition of T i+1.

Therefore, if at position j on a branch π = o0(a0,K0)oi(a1,K1)o2... of t holds pγ ∈

Kj ∩ sub(ϕi+1), there also starts the execution of Tγ,I that accepts the ”maximal” subtree

of t with the root at position j on branch π. Let us call this subtree tπ,j and observe that

it is formed from the suffixes π′[j...] of all the branches π′ of t such that π′[∶ j] = π[∶ j].

81

CHAPTER 4. SOLVING THE KLTL SYNTHESIS PROBLEM

Therefore, since tπ,j ∈ Luc(Tγ,I) for some information set I and γ is an LTL formula, using

the results in Section 4.2.1, we have that exec(M[I], π′[j...]) ⊧ γ. That is, ∀π′ branch

of t such that π′[∶ j] = π[∶ j] and ∀ρ ∈ exec(M, π′), we have exec(M, π′), ρ, j ⊧ γ. This

means that t is fair with respect to ϕi+1. ∎

Lemma 4.2.4. For all i ≥ 0, L(T i) accepts the set of e-strategies that realize ϕi in M.

Proof. An e-strategy σ′0 realizes ϕi if ∀ρ ∈ exec(M, σ′0), holds exec(M, σ′0), ρ,0 ⊧ ϕ
i. That

is, if we look at σ′0 as a (Σ′
0∪{#})-labeled O-tree tσ′0 encoding it and remember that each

branch of tσ′0 has different sequence of observations, we equivalently have that

tσ′0 realizes ϕi iff ∀π a branch of tσ′0 , ∀ρ ∈ exec(M, π), exec(M, π), ρ,0 ⊧ ϕi.

Therefore, we prove that a tree t encoding a strategy is accepted by T i if and only if

it satisfies the above property. We do the proof of the theorem by induction on i.

For the base case, if i = d, T d is the automaton built for the LTL formula ϕd as in

Section 4.2.1 and the proof is done with a sample adaptation of the proof of Lemma 4.2.1.

For the inductive step, we assume that the desired property holds for T i+1 and prove

it for T i. From the inductive hypothesis, we have that t ∈ Luc(T i+1) iff ∀π branch of t,

∀ρ ∈ exec(M, π), holds exec(M, π), ρ,0 ⊧ ϕi+1. But, since Luc(T i+1) ⊇ Luc(T i), it also

holds that t ∈ Luc(T i) iff ∀π branch of t, ∀ρ ∈ exec(M, π) we have exec(M, π), ρ,0 ⊧ ϕi+1.

Let us first take t ∈ Luc(T i) and a branch π of t. By Lemma 4.2.3, t is fair with respect

to ϕi+1. Also, since all the runs ρ ∈ exec(M, π) are distinguishable from the other runs from

exec(M, t, π,0)∖exec(M, π) (because they are compatible with different branches π′ that

have different observations oi), we have that ∀ρ ∈ exec(M, π) holds exec(M, t, π,0), ρ,0 ⊧

ϕi+1. Then, by applying Lemma 4.2.2, results that exec(M, t, π,0), ρ,0 ⊧ ϕi and because

of the inclusion exec(M, π) ⊆ exec(M, t, π,0), we have that exec(M, π), ρ,0 ⊧ ϕi.

Let us now take t such that ∀π a branch of t, ∀ρ ∈ exec(M, π), holds exec(M, π), ρ,0 ⊧

ϕi. We can label t with pγ for all innermost subformulas Kγ of ϕi if and only if γ holds

on all branches passing through that node. Therefore, it also holds exec(M, π), ρ,0 ⊧ ϕi+1

and from the inductive hypothesis, t ∈ Luc(T i+1).

Then, T i is built from T i+1 by triggering the automaton Tγ,I for all propositions pγ
that appear in ϕi+1. But, from the way we extended the labeling of t, the automaton Tγ,I
always accepts the subtree it is triggered for. Hence, t ∈ Luc(T i). ∎

From Lemma 4.2.4, we know that L(T 0) accepts the set of e-strategies that realize

ϕ0 = ϕ in M. Then by Proposition 4.2.2 we get:

Theorem 4.2.1. For any KLTL+ formula ϕ, one can construct a UCT T 0 such that

Luc(T
0) = {tσ0 ∣ σ0 realizes ϕ in M}

82

CHAPTER 4. SOLVING THE KLTL SYNTHESIS PROBLEM

Proof. Let us first take a tree t that is accepted by T 0 and that encodes a e-strategy σ′0 ∶

O(Σ′
0O)∗ → Σ′

0 of Agent 0. By Lemma 4.2.4, σ′0 realizes ϕ0. Then, from Proposition 4.2.2,

there exists a strategy σ0 ∶ O(Σ0O)∗ → Σ0 of Agent 0 that realizes ϕ0 = ϕ in M.

Now, if ϕ is realizable in M, there is a strategy σ0 ∶ O(Σ0 × O)∗ → Σ0 of Agent

0 that realizes ϕ0 = ϕ in the model M. From Proposition 4.2.2, there is an e-strategy

σ′0 ∶ O(Σ′
0O)∗ → Σ′

0 that realizes ϕ0 inM. Then, again by Lemma 4.2.4, the tree encoding

σ′0 is accepted by T 0. ∎

Therefore, the automaton searched in this section to accept exactly strategies that

realize the specification ϕ is the automaton T 0 obtained at the end of the constructed chain

of automata. The number of states of T 0 is (in the worst-case) 2∣V ∣.(2∣ϕd∣+∑pγ∈K 2∣γ∣+1)+1,

and since ∣ϕd∣ + ∑pγ∈K ∣γ∣ is bounded by ∣ϕ∣, the number of states of T 0 is O(2∣V ∣+∣ϕ∣). In

the rest of the chapter we refer to automaton T 0 as the automaton T that accept the set

of strategies that realize ϕ.

Applying the Antichain algorithm to Test the Emptiness As Theorem 4.2.1 says,

in order to test the KLTL+ realizability, we have to test the emptiness of the universal

tree automaton T . For this, we use the antichain algorithm presented in Section 3.4.5. We

recall that the incremental algorithm starts with a small bound b and first equivalently

transforms a universal coBüchi tree automaton into an universal b-coBüchi automaton for

some bound b ≤ 2n2(n!)2 where n is the number of states of the tree automaton. Then,it

builds a safety game that is solved on-the-fly using antichains. In the case the protagonist

of the game has a strategy to win the game, his strategy also realizes the formula ϕ in

the interaction modelM. If there is no winning strategy, the bound b is incremented and

the procedure is repeated. In the case the formula is not realizable, the algorithm stops

when the bound reaches the value 2n2(n!)2.

4.3 Implementation and Test Cases

In this section we briefly present our prototype implementation Acacia−K[1] for positive

KLTL synthesis, and provide some interesting examples on which we tested the tool,

on a laptop equipped with an Intel Core i7 2.10Ghz CPU. Acacia−K extends the LTL

synthesis tool Acacia+[12]. As Acacia+, the implementation is made in Python together

with C for the low level operations that need efficiency.

4.3.1 Implementation

As Acacia+, the tool is available in one version working on both Linux and MacOsX and

can be executed using the command-line interface. As parameters, Acacia−K requires a

file containing the KLTL+ formula, one defining the sets of actions for each process and the

83

CHAPTER 4. SOLVING THE KLTL SYNTHESIS PROBLEM

partition of the atomic propositions in visible and invisible signals (atomic propositions

labeling states of the interaction model) that defines the indistinguishability relation for

Agent 0. Finally, it also requires a file with the description of the interaction model. The

output of the tool is a winning strategy, if the formula is realizable, given as a Moore

machine described in Verilog and, if this strategy is small, Acacia−K also outputs it as a

picture.

In order to have a more efficient implementation, the construction of the automata for

the LTL formulas γ is made on demand. That is, we construct the UCT Tγ incrementally

by updating it as soon as it needs to be triggered from some state (q, I) which has not

been constructed yet.

As said before, the synthesis problem is reduced to the problem of solving a safety game

for some bound b on the number of visits to accepting states. The tool is incremental:

it tests the realizability for small values of b first and increments it as long as it cannot

conclude for realizability. In practice, we have observed, as for classical LTL synthesis,

that small bounds b are sufficient to conclude for realizability. However if the formula

is not realizable, we have to iterate up to a large upper bound, which in practice is too

large to give an efficient procedure for testing unrealizability. We leave as future work the

implementation of an efficient procedure for testing unrealizability.

4.3.2 Light Bulb Controller

Let us come back to the Light Bulb Example (Example 2.1.2). We recall that there are

two agents. The first one, Agent 0, controls the switch by playing ”toggle”(T) to change

its position or ”skip”(S) for doing nothing. The second agent, Agent 1, is used to model

the environment that may time out the toggle switch or may decide that the light bulb is

broken. Let us also consider that Agent 0 has partial information and only sees the light

and the specification is ϕ = ◻(K(t) ∨K(¬t)). We have seen in Example 2.3.1 that the

formula is realizable if the initial set of states is {v0, v1}.

0
T

start

2
S

1
T

{v1, v2}

{v0}

{v0} or {v1, v2}

{v
1 , v

2 } {v
0
}

Figure 4.1: Winning strategy synthesized by Acacia −K for Example 2.1.2

We tested the tool Acacka−K on this example and the strategy provided by the tool

is depicted in Figure 4.1. The labels of the states are the actions that have to be played

84

CHAPTER 4. SOLVING THE KLTL SYNTHESIS PROBLEM

by the agent and the labels of the transitions are the possible observations that the agent

may receive from the environment. The provided strategy by the tool asks to play first

”toggle” and then keep on playing ”skip”. Depending on the observation he gets, the

system (Agent 0) goes in a different state. The state 0 is for the start, state 1 is the

”error” state in which the system goes if he receives a wrong observation. That is, the

environment gives an observation even if he cannot go in a state having that observation.

Then, if the observation is correct, after playing the action ”toggle” from the initial states

{v0, v1}, the interaction model is forced to go in v2 and by playing the action ”skip”,

the system forces the interaction model to stay in v2 and he will know that t is false.

In the strategy, this situation corresponds to the state 2. For this example, Acacia−K

constructed a UCT with 31 states and the total running time is 0.2s.

4.3.3 The 3-Coins Game

Example 4.3.1 (The 3-Coins Game). Another example that we tried is a game played

using three coins which are arranged on a table with either head or tail up. The

system (Agent 0) does not see the coins, but knows at each time the number of tails

and heads. Then, the game is infinitely played as follows. At the beginning the

environment (Agent 1) chooses an initial configuration and then at each round, the system

chooses a coin and the environment has to flip that coin and inform the system about the

new number of heads and tails. The objective of the system is to reach, at least once, the

state in which all the coins have the heads up and to avoid all the time the state in which

all the coins are tails. Depending on the initial number of tails up, the system may or

may not have a winning strategy.

In order to model this, we considered an interaction model whose states are labeled

with atomic propositions c1, c2, c3 for the three coins, which are not visible for the system,

and two other variables b1, b0 which are visible and represent the bits encoding the number

of heads in the configuration. The actions of the system are C1,C2,C3 with which he

chooses a coin and the environment has to flip the coin chosen by the system by playing

only the action done. A picture of the environment generated by the tool is in Figure 4.2.

The first action on transitions belongs to Agent 1 (the environment) and the second one

is the action of Agent 0 (the system).

The specification is translated into the KLTL+formula ◇K(c1∧c2∧c3)∧◻K(c1∨c2∨c3).

Then, assuming that the initial state of the interaction model has two heads (the set of

initial states is {s1, s2, s3}), the synthesized strategy proposes to ”check” the position

of every coin by double flipping. If after one flip, the winning state is not reached, the

system flips back the coin and at the third round he chooses another coin to check. In the

Moore machine in Fig. 4.3 representing the strategy of Agent 0, the state 2 corresponds

to the configuration in which there are only heads and the states 3 and 7 are the states

85

CHAPTER 4. SOLVING THE KLTL SYNTHESIS PROBLEM

Figure 4.2: The interaction model for 3-Coins Game

Figure 4.3: The winning strategy for 3-Coins Game

86

CHAPTER 4. SOLVING THE KLTL SYNTHESIS PROBLEM

in which he goes when the environment cheated. Then, the strategy has two parts. One

that leads to the state 2 by checking the coins and the second part in which the system

plays only c3 and alternates between the states s1 and s7 in the interaction model.

The strategy reads as follows: first (state 0) flip coin C3 and if it gets observation

o2(won) go in state 2. Otherwise, if observation o3(one head) is received, go in state 1.

Finally, if the agent receives observations o0(lost) or o1(two heads), he goes in the error

state 3. Then, the action of the following turns is depending on the current state. If

the agent did not won (state 1), he turns again the coin C3 and if he receives a correct

observation goes in state 4 from which plays C2 and proceeds in the same way as with

the first coin. After the agent wins (state 2), he can always play the same action, as his

objective to turn the three coins with heads up is already reached. It only remains to

ensure that the three coins are not tails-up simultaneously.

For this example, Acacia−K constructs a UCT with 79 states, synthesizes a strategy

with 10 states, and the total running time is 3.9s.

4.3.4 n-Prisoners Enigma

Example 4.3.2 (n-Prisoners Enigma). Finally, the last example is about n prisoners in

a prison, each one in his own cell and they cannot communicate. Also, there is a room

with a light bulb and a switch and a policeman that, at each moment of time, sends only

one prisoner in that room and gives him the possibility to turn on or off the light. The

prisoners can observe only the light when they are in the room. The guardians ensure that

each prisoner is sent into the room an infinite number of times (fairness assumption).

Before the game starts, the prisoners are allowed to communicate, and they know the

initial state of the light. The goal of the prisoners is to learn whether all of them have

visited the room at least once – more specifically, whenever all prisoners have visited the

room, one specially designated prisoner must know that fact.

We assume that the light is initially off. Then the winning strategy is that the special

prisoner, say prisoner n, will count up to n − 1. For all 1 ≤ j ≤ n − 1, the fairness

assumption ensures that prisoner j will visit the room again and again until the game

stops. The first time j visits the room and the light is off, he turns it on, otherwise

he does nothing. Prisoner n will turn the light off next time he enters the room, and

increment his counter by 1. When the counter reaches n − 1, prisoner n will be sure that

all prisoners have visited the room at least once.

To model this problem, it is natural to represent the guardians by the environment

and the prisoners by multi-agents. Then, as the strategies of all prisoners except prisoner

n are fixed, it remains the prisoner n (the agent to synthesize) that must figure out a

winning strategy (ideally the counting strategy described above). We have modeled this

example in Acacia-K and indeed, our tool find the strategy described above. Let us now

87

CHAPTER 4. SOLVING THE KLTL SYNTHESIS PROBLEM

give more details about the formalization.

For three prisoners, P = {on, x1, x2, p1, p2, p3} where the atomic proposition on

corresponds to the light, values of xi for i ∈ {1,2} is true if the prisoner i already turned

the light on, and the proposition pi for i ∈ {1,2,3} indicates the prisoner that is inside

the room. Then, the special prisoner sees only the propositions {on, p3} indicating that

the last prisoner sees all the time the light and can observe when he is inside the special

room but cannot see what the other prisoners do.

We assume that at the beginning there is no one in the room. Then, the environment

can propose an action in Σ1 = {P1, P2, P3} deciding which prisoner is going in the room and

prisoner 3 will decide if he wants the light on or off by choosing an action in Σ0 = {ton, toff}.

Note that the action of P3 is ignored if he is not chosen by the environment. The transition

relation asks that if the prisoner pi, i ∈ {1,2} finds for the first time the light off (x1 = false

and on = false), he turns on the light and the value of xi changes and remains true for

all the reachable states from there.

Then, assuming that the environment is restricted to send all the prisoners in the

special room infinitely many times, the KLTL+formula that translates the goal is

◻
n

⋀
i=1

(◇pi) → ◇K(
n−1

⋀
i=1

xi)

A winning strategy for the prisoner n would be to turn off the light whenever he

is sent to the special room and to let it off if it already is. Then, after he finds the

light on n − 1 times when he is sent in that room, thanks to the strategy of the other

prisoners, he will know that all of them passed by that room, and even more, all of

them switched an the light. Assuming that the observations set O = {o0, o1, o2, o3} where

o0 = {s ∈ S ∣ on ∈ τ(s) and p3 /∈ τ(s)}, o1 = {s ∈ S ∣ on /∈ τ(s) and p3 ∈ τ(s)}, o2 = {s ∈

S ∣ on ∈ τ(s) and p3 ∈ τ(s)} and o3 = {s ∈ S ∣ on /∈ τ(s) and p3 /∈ τ(s)}, the strategy

synthesized by Acacia−K for three prisoners and corresponds to the intuitive strategy is

illustrated in Figure 4.4 where the state 10 in the generated Moore machine corresponds

to the moment when the prisoner p3 knows that all the other prisoners passed through

the special room and turned on the light.

We have tried 3/4/5/6 prisoners versions (including the protagonist) of this problem,

obtaining a one hour timeout for 6 agents. The statistics we obtained are depicted in

Table 4.1.

Again, Acacia − K generates strategies that are natural, the same that one would

synthesize intuitively. This fact is remarkable itself since, in synthesis, it is often a difficult

task to generate small and natural strategies.

88

CHAPTER 4. SOLVING THE KLTL SYNTHESIS PROBLEM

Figure 4.4: The winning strategy for 3-Prisoners Game

Pris # ∣M∣ ∣UCT ∣ ∣tb −UCT ∣ Aut constr (s) ∣Mλ∣ Total time(s)

3 21 144 692 1.79s 12 1.87s

4 53 447 2203 1.98s 16 13.20s

5 129 1310 6514 199.06s 20 553.45s (≃ 9 min)

6 305 3633 18125 6081.69s N/A N/A

Table 4.1: Statistic Results for n-Prisoners Example

4.3.5 Comparing Acacia-K with other tools

For the sake of comparison, we took some examples on which we tested the tool Acacia-K

and tried to solve them in other existing tools.

MCMAS-SLK[17] is an open-source model-checker supporting the verification of

interaction models against specifications in a variant of strategy logic (SLK) that includes

epistemic operators (Section 3.2.3). MCMAS-SLK takes in input an interaction model

specification and a set of SLK formulas to be verified. It evaluates the truth value of

these formulas using algorithms based on Ordered Binary Decision Diagrams (OBDDs).

89

CHAPTER 4. SOLVING THE KLTL SYNTHESIS PROBLEM

Whenever possible, MCMAS-SLK produces counterexamples for false formulas and

witnesses for true formulas.

The interaction model is described in ISPL (Interpreted Systems Programming

Language) that characterizes the Agents by means of local variables and their evolution in

time conditioned by Boolean expressions. In the .ispl file two kinds of agents are described:

”standard” agents, and the environment agent, being used to express constraints on

systems or the infrastructure shared by the standard agents. This model naturally

expresses systems with incomplete information.

The systems that are considered in [17] are memoryless where the agents local state

do not include the local history of a run, implying the fact that the strategies are also

memoryless. This semantics is chosen due to the fact that, as seen in Section 3.2.3,

the model-checking problem becomes undecidable when considering more then two

memoryfull agents with incomplete information.

Problems expressible in MCMAS-SLK Even if MCMAS-SLK does not allow

memory for the agents, there are some (memoryfull) examples that can be modeled using

memoryless semantics. It is the case of models in which agents need a finite memory

that can be encoded in the current state of the agent. Some toy examples on which

MCMAS-SLK was tested are dining cryptographers protocol, the cards game and muddy

children puzzle on which are used the epistemic operators to translate the specifications.

Acacia-K vs. MCMAS-SLK Even if in Acacia-K we solve the synthesis problem

under the assumption of imperfect information and perfect recall, we took some examples

on which we tested our tool and tried to describe and verify them in MCMAS-SLK.

Let us first take the timed toggle example. In order to model this example in

MSMAS-SLK, we need to use a variable tog that helps the protagonist deduce the current

position of the toggle depending on the initial state and his actions. This variable changes

between on and off if the Player knows the position of the toggle and his action is T

(toggle) and takes a special value in case the protagonist lost this information. The

formula to be verified for this example is

⟪x⟫(Agent, x)JyK(Environment, y)(K(Agent, t) ∨K(Agent,¬t))

Then, the constructed model has 6 reachable states and MCMAS-SLK runs 0.011s

before giving the winning strategy in Figure 4.5 that says to play all the time toggle.

Also, it uses 22 BDD variables and 9047840 BDD memory.

In this case, MCMAS-SLK was faster then Acacia-K, but provided different strategy.

Namely, the strategy is to play all the time T (”toggle”).

Another example we consider is the n-Prisoners puzzle. We recall that the strategy

of the special prisoner was to count how many times the light is turned on by the other

90

CHAPTER 4. SOLVING THE KLTL SYNTHESIS PROBLEM

Figure 4.5: Strategy for timed toggle game given by McMAS-SLK

prisoners. Therefore, when modeling the problem in MCMAS-SLK, one needs a variable

in the local state of the prisoner to count. After running this example for three prisoners,

MCMAS-SLK outputs the winning strategy after 0.725s when the model has 63 reachable

states and the BDD constructed uses 74 variables and 14438832 BDD memory.

We also tried the tool while increasing the number of agents. Then, we obtained the

correct strategies for up to 4 prisoners. The obtained results are illustrated in Table 4.2.

Even if MCMAS-SLK synthesized faster strategies for 3 and 4 prisoners, it did not output

any strategy for 5 prisoners, problem solved in 9 minutes with Acacia-K.

Pris Reach St BDD var BDD mem Cache use ∣Mλ∣ Total time(s)

3 63 74 14438832 94.71% 16 0.725s

4 173 146 62269216 100.00% 22 47.529s

5 N/A 434 2972996000 100.00% N/A N/A

Table 4.2: Statistics of n-Prisoners Puzzle in MCMAS-SLK

We stress out that the encoding of the above problems in MCMAS-SLK requires

knowledge of the expected strategy for the protagonists. Using it, one encodes the states

of the winning strategy in the states of the agent. This shows that Acacia-K is comparable

with other tools.

4.4 Conclusions

In this chapter, we defined a Safraless procedure for the synthesis from

KLTL+specifications of a process with imperfect information and perfect recall against an

omniscient antagonist environment. This problem is 2ExpTime-complete but we have

shown that our procedure, based on universal coBüchi tree automata, can be implemented

efficiently thanks to an antichain symbolic approach. We have implemented a prototype

and run some preliminary experiments that prove the feasibility of our method. While

91

CHAPTER 4. SOLVING THE KLTL SYNTHESIS PROBLEM

the universal coBüchi tree automata constructed by the tool are not small (around

1300 states), our tool can handle them, although in theory, the safety game could be

exponentially larger than the automaton from which it is derived. Moreover, the tool

synthesizes small strategies that correspond to the intuitive strategies we would expect,

although it goes through a non-trivial automata construction.

The results obtained represent an encouraging (and necessary) step towards developing

implementable procedures for the entire logic KLTL. A first step towards a procedure for

KLTL specifications would be to consider assume-guarantees specificationsKφ→ ψ, where

φ is an LTL formula and ψ a KLTL+ formula. Already in order to solve the n-Prisoners

Enigma such an assumption is needed. Namely, it is important that all prisoners are sent

infinitely often in the special room so that the special prisoner have a strategy to eventually

know that all the prisoners passed through that room. In this case the assumption is an

LTL formula and the procedure for KLTL+ applies.

When considering formulas of the type Kφ → ψ with φ is an LTL formula and ψ

a KLTL+ formula, not only that the environment should act correctly on the current

execution, but he has to do the same thing on all the other (indistinguishable) executions.

92

5. Rational Synthesis with Perfect

Information

In this section we study the rational synthesis problem when all agents have perfect

information on the states of the interaction model. We first present the solution proposed

by Kupferman et. all in [37, 53] which is based on a reduction to model-checking of some

SL[NG] formula that can be verified in 2ExpTime.

Our contribution in this chapter is to study the problem and provide tight results for

most of the classical omega-regular objectives, and show how to solve the cooperative

and non-cooperative rational synthesis optimally. A short version of this chapter was

published in [28].

We recall that the rational synthesis problem asks to synthesize strategies for a set P

of processes that are executed in an rational environment represented by several processes

with their own objectives.

As already mentioned in Section 2.4.2, there are two settings in which the rational

synthesis problem is studied. In the first setting, the environment is considered to be

cooperative and agree to adhere to a strategy profile as far as it is an equilibrium. Then,

the problem to solve the cooperative rational synthesis is to find a strategy profile that is

an equilibrium and for which the objectives of processes to synthesize are satisfied.

In the non-cooperative setting, the environment may not cooperate. Therefore, the

problem is to synthesize strategies only for processes in the set P such that their objectives

are satisfied on all executions that are compatible with these strategies and are outputs

of some strategy profile which is in equilibria.

Turn-Based Setting Due to the equivalence of the interaction model with a game

arena and the use of notions from game theory, in this chapter we often refer to processes

as players and to executions as plays. We also consider that the interaction model has

only one initial state. Moreover, we consider turn-based interaction models (at each step

there is exactly one player that determines the next state) and give away the actions of

the agents that label the transitions between states. Finally, we also remove the labeling

on states and consider that each state v ∈ V has associated one atomic proposition v that

93

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

is true only in state v. That is, M = ⟨Ω, V, (Vi)i∈Ω, v0,E⟩ with E ⊆ V × V and (Vi)i∈Ω a

partition of V . Therefore, the action of Agent i from a state v ∈ Vi is to choose a next state

v′ such that (v, v′) ∈ E. Since there is only one initial state, there is only one execution

compatible with each strategy profile. We often also introduce the objectives Θi ⊆ V ω in

the definition of the interaction model. That is, M= ⟨Ω, V, (Vi)i∈Ω, v0,E, (Θi)i∈Ω⟩.

We discuss it in Section 5.5 the generalization of the procedures presented in this

chapter to the concurrent setting and the resulting complexities.

Contributions Note first that in the case of perfect information, the problem is

equivalent to considering only one process to synthesize (modeled by Agent 0) against

the rational environment (modeled by Agents 1 ... k).

To better understand the computational complexity of the rational synthesis problems

and how to manipulate their underlying games algorithmically, we consider variants of

those problems for games played on turn-based graph structures for reachability, safety,

Büchi, coBüuchi, parity, Rabin, Streett and Muller objectives and the rationality of the

environment modeled as Nash equilibria. We also study the computational complexity

of solving the rational synthesis problem when the number of players is fixed. This

parameterised analysis makes sense as the number of components forming the environment

may be limited in practical applications. The results we obtain are summarized in

Table 5.1.

Perfect Information Rational Synthesis Problem

Cooperative Non-Cooperative

Unfixed k Fixed k Unfixed k Fixed k

Safety NP-c Ptime-c Pspace-c Ptime-c

Reachability NP-c Ptime-c Pspace-c Ptime-c

Büchi Ptime-c[87] Ptime-c[87] Pspace-c Ptime-c

co-Büchi NP-c[87] Ptime-c Pspace-c Ptime-c

Parity NP-c[87] UP ∩ coUP , parity-h Exptime, Pspace-h Pspace, NP-h, coNP-h

Streett NP-c [87] NP [87], NP-hard Exptime,Pspace-h Pspace-c

Rabin PNP , NP-h, coNP-h PNP , coNP-h Exptime, Pspace-h Pspace-c

Muller Pspace-c Pspace-c Exptime, Pspace-h Pspace-c

LTL 2Exptime-c[37] 2Exptime-c[37] 2Exptime-c[53] 2Exptime-c[53]

Table 5.1: Complexity of rational synthesis under perfect information for k processes.

On the positive side, our results show that for a fixed number of players, for objectives

that admit a polynomial time solution in the two-player zero-sum case (reachability, safety,

Büchi and coBüchi), cooperative and non-cooperative rational synthesis can be solved in

PTime. On the negative side, for rich omega regular objectives defined by parity, Rabin,

or Streett objective, the complexity increases. First, rational synthesis problem with

parity objectives cannot be solved in polynomial time unless PTime equals NP. This is

94

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

because solving two-player zero-sum parity games is a particular case of rational synthesis

and it is conjectured that this result does not hold for two-player zero sum parity games.

Second, rational synthesis with Rabin or Streett objectives is PSpace-complete for the

non-cooperative setting while two-player zero-sum Parity and Streett games are solved in

nondeterministic polynomial time.

When the number of players is not fixed, the complexity is usually substantially higher

than for the two-player zero-sum case. For example, non-cooperative rational synthesis is

PSpace-hard for all objectives, so even for safety objectives.

Cooperative rational synthesis is a particular case of the more general problem of

checking the existence of a constrained Nash equilibrium in a multiplayer game, where

the strategy of Process 0 is required to be winning. That is, it asks for a strategy profile σ̄

such that it is an Nash-equilibrium and ⟨1,0, ...,0⟩ ≤ pay(σ̄) ≤ ⟨1,1, ...,1⟩. The complexity

of constrained Nash equilibria has been studied by Ummels in [87] for some classes of

objectives, based on a characterisation of Nash equilibria by means of LTL formulas

to be checked on the game arena. This directly gives us upper-bounds for cooperative

synthesis and Büchi, coBüchi, parity and Streett objectives. Namely, the existence of

a Nash equilibrium with a payoff between the given bounds is decidable in polynomial

time for Büchi objectives, is in UP ∩ coUP for parity objectives and in NP for Streett

and NP -complete for coBüchi objectives. So one immediately gets the upper bounds of

Table 5.1 for these measures (and unfixed k). To establish the remaining upper bounds,

we characterize the Nash equilibrium by means of LTL formulas. We extend the technique

used in [87] for tail objectives to safety and reachability.

Solutions to the non-cooperative case are much more involved and are based on a

fine tuned application of tree automata techniques. This is a central contribution of this

chapter. In particular, our tree automata have exponential size but we show how to test

their emptiness in PSpace to obtain optimal algorithms for Streett, Rabin and Muller

objectives and fixed number of players.

5.1 Preliminaries

Using SL[NG] to Solve Perfect Information Rational Synthesis As already

mentioned, the rational synthesis problem was introduced in [37, 53] for perfect

information setting. The main contribution of these papers is to propose and to motivate

the definitions above. The only computational complexity results given in those papers

are as follows: the cooperative and non-cooperative rational synthesis problems under

perfect information for all agents are 2ExpTime-complete for specifications expressed in

linear temporal logic (LTL), thus matching exactly the complexity of classical zero-sum

two-player LTL synthesis [74]. The upper bound is obtained by reductions to the

satisfiability problem of formulas in Nested-Goal Strategy Logic (SL[NG]) [64].

95

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

Nested-Goal Strategy logic is first used to define a formula that characterizes strategy

profiles σ̄ that are 0-fixed γ-equilibria for every solution concept γ ∈ { Nash, Dominant

Strategy, Subgame Perfect Nash }. For example, in the case of Nash equilibria, the

formula

ψ0Nash(σ̄) ∶=
k

⋀
i=1

Jσ′iK(♭(σ̄−i, σ′i)ϕi → ♭(σ̄)ϕi)

says that for any agent in the environment, for any unilateral deviation σ′i, if the objective

ϕi of Agent i is satisfied, then it is also satisfied when Agent i does not deviate.

Then, to solve the rational synthesis problem, Kupferman et. al reduce it to the

model-checking problem of a Sl[ng] formula with one alternation of strategy quantifiers.

For the cooperative setting, one has to verify the formula ψcRS defined below, while in

the non-cooperative setting, the synthesis problem is reduced to model-checking of the

formula ψnoncRS.

ψcRS ∶= ⟪σ0⟫⟪σ1⟫...⟪σk⟫(ψ0Nash(σ̄) ∧ ϕ0)

ψnoncRS ∶= ⟪σ0⟫Jσ1K...JσkK(ψ0Nash(σ̄) → ϕ0)

In the cooperative case, the formula intuitively says that there is a strategy profile σ̄ =

⟨σ0, σ1, ..., σk⟩ so that σ̄ is a 0-fixed γ-equilibrium for which the outcome satisfies the

objective of the process to be synthesized (Agent 0). For the non-cooperative case, the

formula asks for the existence of a strategy σ0 for Process 0 such that for all tuples

(σ1, ..., σk) of strategies for the environment components, if the resulting strategy profile

is a 0-fixed γ-equilibrium, then also the objective ϕ0 of Process 0 is satisfied.

Using ATL∗sc to Solve Perfect Information Rational Synthesis As already seen in

Section 3.2.1, we can also use the logic ATL∗sc to express the existence of Nash equilibria

when processes have LTL objectives. Therefore, we can also write ATL∗sc formulas that

hold if and only if there is a solution for the cooperative and non-cooperative rational

synthesis problem. That is, we reduce the rational synthesis problem to model-check the

formulas ψ′cRS for cooperative setting and ψ′noncRS for the non-cooperative setting where:

ψ′cRS ∶= ⟨⋅Ω⋅⟩[ϕ0 ∧ (
k

⋀
i=1

¬ϕi → ¬⟨⋅i⋅⟩ϕi)]

ψ′noncRS ∶= ⟨⋅0⋅⟩[⋅{1, ..., k}⋅][(
k

⋀
i=1

¬ϕi → ¬⟨⋅i⋅⟩ϕi) → ϕ0]

Since the model-checking problem for ATL∗sc is (d + 1)ExpTime-complete (where d

is the alternation depth of the quantifiers), the above reduction provides the 2ExpTime

upper bound for the complexity of rational synthesis problem. As in the case of SL[NG],

this reduction does not provide more insight on the computational complexity of the

rational synthesis problem.

96

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

5.2 LTL Characterization of Nash Equilibria

In this section we provide effective characterizations of the existence of 0-fixed Nash

equilibria in interaction models where agents have safety, reachability, or tail objectives,

through the existence of an execution satisfying certain properties. These properties will

be expressed by LTL formulas.

Linear Temporal Logic on Interaction Models In order to define the LTL formulas

that characterize Nash equilibria (NE for short), let us first make clear the way we make

use of linear temporal logic. The alphabet over which LTL formulas are built represents

the set of states in the interaction model. Given a state v ∈ V , we view v as an atomic

proposition, true in the state v, and false otherwise. Given S ⊆ V , we may freely use S

in an LTL formula, where it stands for the formula ⋁v∈S v. Therefore, we may write, for

instance, ◻¬S, to denote the set of infinite paths in (V /S)ω.

We denote by LTL(M) the set of LTL formulas over the set of atomic propositions

V . A set Θ ⊆ V ω of infinite executions is definable in LTL(M) if there exists an LTL(M)

formula φ such that for all ρ ∈ V ω, ρ ⊧ φ if and only if ρ ∈ Θ. In [86] similar formulas were

given for similar tale objectives (see Corollary[26]).

LTL characterization of (0-fixed) Nash equilibria For all winning objectives

considered in this chapter, we characterize the existence of a (0-fixed) Nash equilibria in

an interaction model by the existence of a path satisfying some LTL formula, that depends

on the winning objectives. For tail objectives, we give a generic way of constructing such

an LTL formula.

An objective expressed as a set Θ ⊆ V ω is tail if for all ρ1 ∈ V ∗ and ρ2 ∈ V ω, ρ1ρ2 ∈ Θ

iff ρ2 ∈ Θ. In other words, a path is winning if and only if one of its (infinite) suffix is

winning. Büchi, coBüchi, parity, Streett, Rabin and Muller objectives are all tail. We use

the notations defined in Section 2.2.1 to define the objectives of the agents. For example,

we write Θi = Safe(Si) for the set of executions that satisfy the Safety objective of some

agent i ∈ Ω, where the set of safe states for him is Si ⊆ V .

Let M = ⟨P,Ω, (Σi)i∈Ω, V, V0,E, τ⟩ be an interaction model and Θi the objective of

Agent i, for all i ∈ Ω. Let (WM
i)0≤i≤k be the winning sets of each agent (i.e., the set of

states from which he has a winning strategy when the other agents play against him) in

the interaction model M and b ∈ {0,1}. Whenever the interaction model is understood

from the context, we simply write Wi for the winning region of Agent i.

We define an LTL[M]-formula φMbNash that characterize Nash equilibria (b = 1) and

0-fixed Nash equilibria (b = 0) for safety, reachability and tail objectives. We give the

characterization of Nash equilibria since it might be of independent interest for the reader.

97

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

φMbNash =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⋀ki=1−b((¬W
M
i U ¬Si) ∨ ◻Si) if Θi are safety objectives of the form

Θi = Safe(Si) for Si ⊆ V

⋀ki=1−b ¬ϕi → ◻¬WM
i if Θi are either all reachability or all tail

objectives definable by an LTL[M] formula ϕi

Assume that b = 1, and consider the formula for safety objectives. Intuitively, it says

that for all agents i ∈ {0, . . . , k}, either Agent i always stays safe, or if eventually he visits

an unsafe position, then he should never visit a winning position until he meets an unsafe

position for the first time. This is because otherwise he could apply a winning strategy

and satisfy his own objective, and therefore has some incentive to deviate.

The formula φbNash characterises (0-fixed) Nash equilibria in the following sense:

Proposition 5.2.1 (Characterization of 0-fixed NE and NE ([87] for tail objectives)).

Let M be an interaction model in which agents have either all safety, all reachability, or

all tail objectives, definable in LTL[M]. Then, the following hold:

1. For all ρ ∈ exec(M), if ρ ⊧ φM0Nash (resp. ρ ⊧ φM1Nash), then there exists a 0-fixed NE

(resp. NE) σ̄ in M such that exec(M, σ̄) = π,

2. For all 0-fixed NE (resp. NE) σ̄ in M, exec(M, σ̄) ⊧ φM0Nash (resp. exec(M, σ̄)) ⊧

φM1Nash).

Before proceeding to the proof of Proposition 5.2.1, we illustrate the characterization

of Nash equilibria on an example where agents have reachability objectives.

v0start

v1v2

TARGET2 TARGET0,1

(a) Path not consistent with a 0-fixed NE

v0start

v1v2

TARGET2 TARGET0,1

(b) Path consistent with 0-fixed NE

Figure 5.1: Example for LTL characterization of NE

Example 5.2.1. Consider the interaction model in Fig. 5.1, containing three agents that

control circle (Agent 0), square (Agent 1) and diamond (Agent 2) states respectively. The

objective of each agent is to reach its target. Player 0 and Player 1 aim for the red-blue

target (R0 = R1 = {TARGET0,1}) and Player 2 aims at the green target (R2 = {TARGET2}).

98

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

The winning sets for the three players (from which they have a winning strategy to

satisfy their objective for any strategy of the other agents) are W0 = {TARGET0,1}, W1 =

{v1,TARGET0,1} and W2 = {v2,TARGET2}.

First, consider the execution ρ that starts in v0, passes through v1 and reaches the

red-blue target. It satisfies the LTL characterization ⋀ki=0◻¬Ri → ◻¬Wi of Nash equilibria.

For this path, we can build a Nash equilibrium σ̄ that is represented in Fig. 5.1 b) with

bold arrows such that exec(M, σ̄) = ρ.

On the other hand, consider the path ρ′ that starts in the initial state and passes

through v1 and then v2 before reaching the green target. It is highlighted in Fig.5.1 a).

It does not satisfy ⋀ki=0◻¬Ri → ◻¬Wi. Also, it is not the outcome of any 0-fixed Nash

equilibria. Indeed, Agent 1 does not follow the path ρ′ from state v1. He would better

deviate and go to the red-blue target in order to reach his objective.

Note that from a state v /∈ Wi, Agent i does not have a winning strategy to ensure

Θi against the other players that want to make him lose. Since we are in the perfect

information setting, we can reduce to a two-player zero-sum game where Agent i plays

against an opponent (representing all the agents in Ω ∖ {i}) that wants to falsify the

objective Θi. Since the objectives that we consider are particular Borel objectives, by the

determinacy Theorem 3.1.1, there is a strategy for the opponent from the state v /∈ Wi

such that it makes Agent i lose on any play. Therefore, we can define the strategy profile

(retv,ij)j≠i for the agents in Ω ∖ {i} that makes Agent i lose. We say that this strategy

profile played by the agents in Ω ∖ {i} is the retaliating strategy profile.

We now give the proof of Proposition 5.2.1 that characterizes the existence of (0-fixed)

Nash Equilibria.

Proof of Proposition 5.2.1. We only write the proof for 0-fixed Nash equilibria, since

it is used further in the thesis. The proof for Nash equilibria is the same, differing only

in the agents that may deviate.

Statement (1), safety objectives The strategy profile σ̄ is intuitively defined as follows:

as long as the current history is a prefix of ρ, then the agents play according to ρ. If at

some point, some agent, say Agent i, decides to deviate from ρ, ending up in a state v,

then if v /∈Wi, all agents except Agent i punish him by playing a strategy that will make

him lose, otherwise, they play any strategy.

Let us give some arguments to justify that it is a 0-fixed equilibrium. The outcome of

σ̄ is ρ, and if an agent wins along ρ, then he has no incentive to deviate. If some agent,

say Agent i, loses along ρ, then suppose that he decides eventually to deviate from ρ:

either he has already lost before deviating and therefore his deviation is useless, or he

deviates to a state v before visiting an unsafe state for the first time, but in that case,

since ρ ⊧ ¬Wi U ¬Si, we have v /∈ Wi (otherwise the previous state would be winning),

and all the other agents retaliate, making his deviation useless, again.

99

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

Let us define σ̄ formally. For a state v /∈ Wi, we let (retv,ij)j≠i a retaliating profile for

the players j ≠ i that make Player i lose from the state v. We also pick an arbitrary profile

of strategies (β0, . . . , βk). Then, we define σj as follows, for x ∈ V ∗Vj:

σ̄j(x) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

ρ[l + 1] if x = v0v1...vl is a prefix of ρ

retv,ij (vx2) if condition (1) is satisfied

βj(x) otherwise

where condition (1) requires that x can be decomposed into x = x1vx2 such that x1 ∈ V ∗Vi,

x2 ∈ V ∗, x1 is a prefix of ρ, v /∈ Wi, x1v is not a prefix of ρ (meaning that Agent i has

deviated to a losing state).

Clearly, we have exec(M, σ̄) = ρ. We claim that σ̄ is a 0-fixed Nash equilibrium.

Towards a contradiction, we suppose that some agent i (1 ≤ i ≤ k) loses, and can win by

playing another strategy σ′i (when the other agents stick to their strategies σ̄−i). Then

necessarily, exec(M, σ̄−i, σ′i) deviates from ρ after some prefix x1 of ρ such that x1 ∈ V ωVi.

Let v ∈ V and y ∈ V ω such that exec(M, σ̄−i, σ′i) = x1vy. Then, if v /∈Wi, the other agents

retaliate making exec(M, σ̄−i, σ′i) losing for Player i, which is a contradiction. Therefore

v ∈ Wi. Let v′ be the last state of x1. Then v′ ∈ Wi since v′ ∈ Vi and it has a successor

in Wi (v). Now, we consider two cases: (i) suppose that some state of x1 is unsafe for

Agent i, then it contradicts the fact that exec(M, σ̄−i, σ′i) is winning for Agent i; (ii) if

x1 ∈ (Si)∗, then since ρ is losing for Agent i, there is an unsafe state for Agent i that

occurs after the prefix x1, contradicting the fact that ρ ⊧ ¬Wi U ¬Si, since the last state

of x1 is in Wi. In all cases, we have found a contradiction, showing that such a strategy

σ′i cannot exist.

Statement (2), safety objectives Assume that some agent, say i for 1 ≤ i ≤ k does

not win, i.e. exec(M, σ̄) ⊧ ◇¬Si. Towards a contradiction, assume that exec(M, σ̄) ⊭

¬WiU¬Si. Consider the first occurrence j of state satisfying ¬Si in exec(M, σ̄), i.e.

j = argmin{j ∣ exec(M, σ̄)[j] /∈ Si} (it exists since exec(M, σ̄) ⊧ ◇¬Si). Clearly, there

is a position 0 ≤ t < j such that exec(M, σ)[t] ∈ Wi (otherwise exec(M, σ̄) would satisfy

¬WiU¬Si). At that position, Agent i could have deviated and apply a winning strategy,

thus getting a strictly better payoff, contradicting the fact that σ̄ is a 0-fixed Nash

equilibrium.

Statements (1) and (2), reachability and tail objectives The proofs of these two

statements are very similar to that of safety objectives. The only difference here is that

the objectives are either all reachability or all tail, and therefore one has to make sure

that on ρ, the agents that lose never visit their winning region, because if it is so, they

would have an incentive to deviate: indeed, the satisfaction of their winning objective

would be independent from the prefix up to a visit to their winning region. The formal

definition of the strategy profile is as in the case of Safety objectives.

For statement (1), the profile of strategies σ̄ is: follow the execution ρ as long as

100

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

the play stays in ρ, and the first time the play deviates (say Agent i deviates from ρ),

then if ρ is losing for Agent i, then apply from that point on a retaliating strategy (as

a coalition of all the players j ≠ i), otherwise apply any strategy. If ρ is not winning for

Agent i, the retaliating strategy exists by definition of φ0Nash, since the first position after

the deviation would not be in Wi.

Conversely, any 0-fixed NE σ̄ satisfies φ0Nash. Indeed, if it is not the case, then there

is some player that satisfies ¬ϕi and ◇Wi. When reaching its winning region, this player

would better apply a winning strategy and strictly increase his payoff. ∎

5.3 Cooperative Rational Synthesis (CRSP)

We recall that the Cooperative Rational Synthesis Problem (CRSP) asks for a strategy

profile σ̄ such that it is a Nash-equilibrium and ⟨1,0, ...,0⟩ ≤ pay(σ̄) ≤ ⟨1,1, ...,1⟩. In [87],

Ummels proved that the existence of a Nash equilibrium with a payoff between the given

bounds is decidable in polynomial time for Büchi objectives, is in UP ∩ coUP for parity

objectives and in NP for Streett and NP -complete for coBüchi objectives.

In the following, we give a general solution for the cooperative rational synthesis

problem that extends the solution given in [87] by Ummels. Then, we describe the

algorithms and prove the tight complexity for the particular objectives.

5.3.1 General Solution for CRSP

Proposition 5.2.1 allows us to give a generic procedure to solve the cooperative rational

synthesis problem, which is based on the following direct consequence:

Proposition 5.3.1. Let M be an interaction model with k + 1 processes having either all

safety, all reachability, or all tail objectives, definable in LTL[M] by formulas (ϕi)0≤i≤k.

There is a solution to the cooperative synthesis problem iff there is an execution ρ ∈

exec(M) such that ρ ⊧ φ0Nash ∧ ϕ0.

Proof. Indeed, if there is a solution σ̄ for the cooperative rational synthesis problem,

ρ = exec(M, σ̄) satisfies ϕ0. Moreover, by Proposition 5.2.1, Statement 2, ρ also satisfies

φ0Nash. Therefore, ρ ⊧ φ0Nash ∧ ϕ0.

On the other direction, if there is an execution ρ such that ρ ⊧ φ0Nash ∧ ϕ0, by

Proposition 5.2.1, Statement 1, one can build a strategy profile σ̄ so that it is a 0-fixed

Nash equilibrium and exec(M, σ̄) = ρ. Since ϕ0 holds along ρ, σ̄ is a solution for the

cooperative rational synthesis problem. ∎

Based on the latter proposition, it is not difficult to design a procedure to decide CRSP:

first, compute the winning sets Wi for i = 1, . . . , k, and then check whether the interaction

model M contains an execution which satisfies the formula φM0Nash ∧ ϕ0, where ϕ0 is the

101

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

objective of Process 0, expressed in LTL[M]. To establish precise upper bounds, one

needs to consider the complexity of computing the winning sets, and then the complexity

of model-checking these particular LTL formulas. One objective of this chapter is to

give tight complexity bounds for the model-checking of this formula and, thus, to the

cooperative rational synthesis problem.

5.3.2 Upper Bounds for CRSP

In this section we give the upper bounds complexities for solving the Cooperative Rational

Synthesis Problem.

To obtain the tight complexity upper bounds for CRSP, we prove the following short

witness property: if an execution of the interaction model satisfies the formula φM0Nash∧ϕ0,

then there is a lasso path uwω satisfying it, such that u and w have polynomial length.

Then, the nondeterministic algorithm solving the cooperative synthesis problem simply

guesses such a path and verifies, in polynomial time, that it satisfies the desired property.

Remove Cycles from Paths To obtain the short witness, we remove cycles from

infinite executions so that the satisfaction of the LTL characterization is preserved on

the short path. By removing all cycles from a sequence x ∈ V ∗, we refer to the following

operation. We decompose x = x1vx2vx3 with x1, x2, x3 ∈ V ∗ and v ∈ V such that there

are no repetitions in x1vx2. We remove the sequence vx2 from x and obtain the sequence

x′ = x1vx3. We repeat the procedure for the newly obtained sequence until is obtained a

sequence that has no repetitions of states.

Safety Objectives

In the case of safety condition, the characterization of a 0-fixed Nash equilibrium

intuitively expresses the fact that either Process i always stays in its safe set of states,

or is the case that he loses by eventually reaching a unsafe state, but he could not play

better, i.e., the execution did not pass (before the unsafe state) through a state from

which he has a winning strategy.

The formula to be satisfied in the case of Safety objectives is

φ = ◻S0 ∧
k

⋀
i=1

((¬WiU¬Si) ∨ ◻Si)

The following theorem establishes the NP membership of the cooperative rational

synthesis problem with safety objectives and perfect information for the agents.

Theorem 5.3.1. The perfect information cooperative rational synthesis problem for safety

objectives is in NP.

102

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

Proof. To solve the NP membership of this problem, it suffices to check the existence

of an execution in the interaction model that satisfies the LTL formula φ = ◻S0 ∧

⋀ki=1((¬WiU¬Si) ∨ ◻Si).

First, by Theorem 3.1.2, two-player safety games can be solved in polynomial time,

and therefore the winning sets Wi can be computed in polynomial time.

Then, it is well-known from LTL model-checking that given a lasso path ρ = uwω, it can

be checked in polynomial time (in ∣u∣ and ∣w∣ and the size of the interaction model) whether

ρ ⊧ φ. Indeed, using Wi and Si as abbreviations for ⋁v∈Wi
v and ⋁v∈Si v, one can easily

construct a 5-state automaton equivalent to each of the subformula ((¬WiU¬Si) ∨ ◻Si),

for which checking the acceptance of uwω can be done in polynomial time.

It remains to show that we can bound the length of u and w polynomially.

Let ρ ∈ V ω be an execution satisfying φ. For each i ∈ {1, . . . , k}, we consider the

first occurrence of an unsafe state of Process i in ρ, and decompose ρ according to these

positions as follows. Formally, ρ is decomposed as ρ = x1vP1x2vP2 ...xlvPlxl+1 for all j ∈

{1, . . . , l}, xj ∈ V ∗, Pj ⊆ {1, . . . , k} and vPj ∈ V the first occurrence of a state which is

unsafe for all the processes in Pj (Pj is maximal for that property).

First, we remove the cycles in all xj, j ∈ {1, . . . , l}, leading to a new execution of

the form x′1vP1x
′
2vP2 ...x

′
lvPlxl+1 where the sequences x′j are loop-free. This preserves the

satisfaction of φ, i.e. ρ′ ⊧ φ. Indeed, by doing so, the subformula ◻S0 is still satisfied, and

for all i ∈ {1, . . . , k}, if ◻Si was satisfied by ρ, then it is still satisfied in ρ′. If ¬WiU¬Si was

satisfied in ρ, then by the choice of our decomposition, removing the cycles still preserve

the existence of an unsafe state for Process i in ρ′, and all the states before its first

occurrence in ρ′ satisfies ¬Wi.

Secondly, we modify xl+1 into a short lasso path x′l+1(x
′′)ω, where x′′ is a simple loop,

and x′l+1 is loop-free. This can be done by taking x′l+1 to be shortest prefix of xl+1 to a

state v that repeats in the future, and to take x′′ has any loop from v to v, shortened into

a simple loop by removing all inner-cycles. All these operations preserve the properties

of satisfying ◻Si for all i ∈ {0, . . . , k}.

Then, we set u = x′1vP1x
′
2vP2 ...x

′
lvPlx

′
l+1 and w = x′′. It holds that uwω ⊧ φ and

∣uw∣ ≤ n(k + 2) which concludes the proof. ∎

Reachability Objectives

The algorithm to solve the Cooperative Rational Synthesis for reachability objectives is

similar to the one in the case of safety objectives. However, observe that unlike the case

of two-player zero-sum games, there is no duality between reachability and safety, and no

natural reduction from reachability to safety.

Based on Proposition 5.3.1, in order to solve the rational cooperative synthesis problem

for reachability objectives, it suffices to have a procedure that test the existence of the

103

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

path in the game that satisfies the formula

φ = ◇R0 ∧ (
k

⋀
i=1

◻¬Ri → ◻¬Wi)

We prove that, as in the case of safety objectives, if such an execution exists, there is a

short witness and the rational synthesis problem can be solved in NP.

Theorem 5.3.2. The perfect information cooperative rational synthesis problem for

reachability objectives is in NP.

Proof. We start by showing that each execution ρ so that ρ ⊧ φ, with φ = ◇R0 ∧

(⋀ki=1◻¬Ri → ◻¬Wi) can be shortened into a lasso path ρ∗ such that ρ∗ ⊧ φ and ρ∗

can be decomposed into a prefix of length at most nk followed by a simple loop. In fact,

let L be the maximal set of processes such that ρ ⊧ ⋀i∈L◇Ri. Then, it is sufficient to

enucleate the first occurrences of states in Ri for all i ∈ L along ρ, and eliminate all the

cycles between these occurrences. This leads to a new path ρ′ where each process i ∈ L

accomplishes its reachability objective in at most n∣L∣ steps and such that ρ′ ⊧ ⋀i/∈L◻¬Wi.

Let j be the smallest position in ρ′ such that each process i ∈ L has accomplished its

reachability objective, i.e. j = min{` ≥ 0 ∣ ρ′[∶ `] ⊧ ⋀i∈L◇Ri}. Then, ρ∗ is obtained from

ρ′ by considering the first cycle (reduced to a simple cycle) appearing from the vertex

ρ′[j] on.

Therefore, the NP algorithm works as follows: guess a lasso-path of length at most

n(k + 1), check whether it satisfies φ, and use it to build a winning strategy that uses

as much memory as the length of the path. This is correct by the small lasso property

proved above, and Proposition 5.3.1. ∎

Büchi, co-Büchi, Streett and Parity Objectives

In the following, we show how to solve the cooperative rational synthesis problem in the

case of ω-regular objectives, in particular for Büchi, coBüchi, Streett and Parity objectives.

For these objectives, we rely on the results shown by Ummels in [87], following the next

remark.

Remark 5.3.1. In [87] the complexity of finding a Nash equilibrium σ̄ in a game with

k + 1 processes having all Büchi, coBüchi, Streett or Parity objectives is studied, so that

x ≤ pay(σ̄) ≤ y, for two given threshold x, y ∈ {0,1}k+1. The cooperative synthesis problem

reduces to this setting, by taking x = (1,0, . . . ,0) and y = (1,1, . . . ,1).

The following theoren is a direct consequence of [87].

Theorem 5.3.3. The perfect information cooperative rational synthesis problem in

multi-component interaction models is:

� in PTime for Büchi objectives,

� NP for co-Büchi, Streett and parity objectives.

104

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

Rabin Conditions

For Rabin conditions the PNP complexity can be obtained by applying the same general

solution as for the other classes of objectives. This result is already mentioned in [87],

but we provide here the complete proof.

Let us consider an interaction model M where the k + 1 processes have the Rabin

objectives (Rabin(ψi))0≤i≤k with ψi = {(L1,R1), ..., (Lmi ,Rmi)}, for all 0 ≤ i ≤ k. Based on

Proposition 5.3.1 and the fact that the Rabin condition ψi can be equivalently expressed

by the LTL[M] formula ϕi = ⋁
mi
j=1(◻ ◇ Lij ∧◇ ◻ ¬Rij), solving the cooperative rational

synthesis problem with Rabin objectives is equivalent to find an execution satisfying the

formula

φG0Nash ∧ ϕ0 =
m0

⋁
j=1

(◻◇L0j ∧◇◻ ¬R0j) ∧
k

⋀
i=1

(◻ ¬Wi ∨
mi

⋁
j=1

(◻◇Lij ∧◇◻ ¬Rij))

Theorem 5.3.4. The perfect information cooperative rational synthesis problem for Rabin

objectives is in PNP .

Proof. We first show that given the winning regions Wi for 1 ≤ i ≤ k, each path ρ = uwω so

that ρ ⊧ φG0Nash∧ϕ0 can be shortened into a lasso path ρ′ = u′(w′)ω such that ρ′ ⊧ φG0Nash∧ϕ0

and ∣u′w′∣ ≤ ∣V ∣2 + ∣V ∣ ⋅ k.

First, we mark as red node the first occurrence along uw of a state in Wi for every

process i not satisfying its objective along ρ. We also mark as red node the first occurrence

along w of states in Lij and Rij(if any) for every process and every pair j in the Rabin

condition ψi. Note that along u at most k red nodes are marked and along w we have

marked at most ∣V ∣ states since we marked the first occurrence of a state.

Then, by removing all the loops in u and w that do not contain red nodes we obtain

u′ and w′ such that ∣u′∣ ≤ ∣V ∣ ⋅ k and ∣w′∣ ≤ ∣V ∣2. Note that the property ρ′ ⊧ φG0Nash ∧ ϕ0

also holds since we didn’t remove key nodes(red nodes on w) from ρ.

Then the PNP algorithm will run as follows. First, it guesses a path ρ = uwω of

polynomial length (as we saw ∣uw∣ ≤ ∣V ∣2 + ∣V ∣ ⋅ k suffices) and mark the states in uw by

Wi or ¬Wi by checking in NP time if v ∈ Wi for each state. This can be done in PNP

time. Then, in polynomial time check if ρ ⊧ φG0Nash ∧ ϕ0 by checking if for each process is

a pair (Lij,Rij) such that Lij appears on w but not Rij. If not, Wi should not be a label

of a state in uw. If it is, the algorithm rejects. ∎

Muller Objectives

Let M be an interaction model on which the agents have the Muller objectives

(Muller(µi))i∈Ω where the formula µi is a boolean formula over the states of the interaction

model, i.e., µi = l1 Op1 l2 Op2 ... lmi where Opj ∈ {∧,∨} for all 1 ≤ j <mi and each literal

lj is either a state vj ∈ V or its negation ¬vj.

105

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

Let us define the LTL formula ϕi from µi by replacing each vj by the subformula

◻◇vj. Then, we claim that for any execution ρ, we have that ρ satisfies Muller(µi) if and

only if ρ ⊧ ϕi. Intuitively, it holds since whenever v ∈ inf(ρ), it satisfies both the Muller

condition Muller(v) and the LTL formula ◻◇ v. And if v /∈ inf(ρ), both Muller condition

Muller(¬v) and LTL formula ◇◻¬v ≡ ¬ ◻◇v are satisfied by ρ.

Then, using the characterization of 0-fixed Nash equilibria for ω-regular objectives,

the problem is to decide the existence of an execution satisfying the LTL formula φ =

ϕ0 ∨ ⋀
k
i=1(ϕi ∨ ◻¬Wi) where ϕi, 0 ≤ i ≤ k is defined as above. The formula φ is an

LTL formula in the fragment B(L◻◇(P) ∪ L◇,∧(P)) where P corresponds to the atomic

propositions associated to the states of M. For this fragment of LTL, it is shown in [6]

that a two-player zero-sum game with the protagonist having an objective in this fragment

of LTL can be solved in Pspace and therefore also the cooperative rational synthesis for

Muller objectives is.

5.3.3 Lower Bounds for CRSP

In this section we prove the lower bounds for the complexity of Cooperative Rational

Synthesis Problem for the several objectives we consider.

Safety and Reachability Objectives

Theorem 5.3.5. The perfect information cooperative rational synthesis problem for safety

objectives is NP-hard.

Proof. The proof for the NP-hardness of the CRSP problem for safety objectives is done

by reduction from 3SAT . Given a Boolean formula ϕ = C1∧ ...∧Ck in conjunctive normal

form where each clause has at most three literals, we construct an interaction modelMϕ

with k + 1 processes having safety objectives as follows (its arena is depicted in Fig. 5.2):

Let X = {x1, ..., xm} be the set of variables that appear in ϕ. The interaction model Mϕ

has three states x,1x and 0x controlled by the process to be synthesized (Process 0) for

all variables x ∈ X. The two latter states correspond to the two possible truth values of

x. For all i ∈ {1, . . . ,m− 1}, there are edges from each xi to both 1xi and 0xi and from 1xi
and 0xi to xi+1. There is a state Cj controlled by Process j for each clause in ϕ and two

states Us and Ue (which will be unsafe for Process 0 and processes in the environment

respectively). We add edges from 1xm and 0xm to C1, from Cj to Cj+1 for all 1 ≤ j < k,

and from every Cj to Us and from Ck to Ue. In Fig. 5.2 the protagonist (Process 0) plays

the circle states and each environment Process i plays the diamond state Ci.

We let V be the set of states (vertexes) of Mϕ, x1 being the initial one. All states

but Us are safe for Process 0, i.e. S0 = V ∖ {Us}. The unsafe states for Process j ≠ 0 are

Ue, as well as the state 0x if ¬x appears in Cj, and the state 1x if x appears in Cj, i.e.

Sj = V ∖ ({0x ∣ ¬x ∈ Cj} ∪ {1x ∣ x ∈ Cj} ∪ {Ue}).

106

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

x1start

1x1

0x1

x2

...

...

xm

1xm

0xm

C1
... Ck

Us

Ue

Figure 5.2: NP-h Safety CRSP: Reduction from 3-SAT

Let us now prove the correctness of this reduction, i.e. ϕ is satisfiable if and only if

there is a 0-fixed Nash equilibrium winning for Process 0 in Mϕ. Suppose first that ϕ

is satisfiable by a valuation ν ∶ X → {0,1} of its variables. The strategy σ0 of Process 0

is then to choose the truth values of the literals according to this valuation: choose 1x if

ν(x) = 1, and 0x otherwise. By doing so, all processes of the environment visit at least

one unsafe state before reaching C1. Indeed, let j ∈ {1, . . . , k}. Since Cj is satisfied by ν,

there is a literal ` in Cj such that ν(`) = 1. If ` = x for some x ∈ X, then 1x is unsafe

for Process j, but that is exactly the choice of Process 0 to go to 1x (and similarly when

` = ¬x). After reaching C1, we set the choices of the processes j ≠ 0 such to follow the

path C1, ...,Ck and then reach Ue. This profile is winning for Process 0 since the state Us
is not reached, and losing for all the other processes. They have no incentive to deviate

since they have already lost before making any choice. Therefore, it is a 0-fixed Nash

equilibrium.

Conversely, if there is a solution for the cooperative synthesis problem, the only way

to obtain a Nash equilibrium σ̄ winning for the system is to make all processes j, 1 ≤ j ≤ k

lose before reaching C1. Indeed, if σ̄ is winning for the system, then exec(M, σ) eventually

reaches Ue, which is losing for the components of the environment. In order to prevent the

deviation of the processes in the environment to Us (which is safe for them), it is necessary

that all the processes, except Process 0, have lost before reaching C1. By definition of

their sets of unsafe states, the only way to make them lose before reaching C1 is a to chose

a valuation that satisfies the formula, if it exists. ∎

With a similar proof as the one for safety objectives, one can prove the NP-hardness

for Cooperative Rational Synthesis Problem when the agents have reachability objectives.

Theorem 5.3.6. The perfect information cooperative rational synthesis problem for

reachability objectives is NP-hard.

Proof. The proof is similar to the one for Theorem 5.3.5. It uses the same interaction

model, but it changes the objectives of the processes. We set the target of the processes

composing the environment ({1, ..., k}) so that when the state C1 is reached, all the

processes reached their objective if and only if the formula ϕ is satisfiable. Then, we also

add the state Us as their target and set the state Ue as the only target for Process 0.

107

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

Formally, R0 = {Ue} and Rj = {0x ∣ ¬x ∈ Cj} ∪ {1x ∣ x ∈ Cj} ∪ {Us} for j ∈ {1, ..., k}.

Therefore, if some process does not reach its objective until the state C1, he prefers to

play Us which makes Process 0 lose. ∎

co-Büchi, Streett, Parity and Muller Objectives

In [87] (Theorem 15) it is already proven that the problem of finding a Nash equilibrium in

coBüchi multiplayer games with a payoff between the thresholds x = (xi)i∈Ω and y = (yi)i∈Ω
with x0 = y0 = 1, xi = 0 and yi = 1 for 1 ≤ i ≤ k is NP-hard. Therefore, the CRSP problem

is NP-hard.

Theorem 5.3.7. The perfect information Cooperative Rational Synthesis Problem is

� NP-hard for coBüchi, Streett and Parity objectives.

� PSpace-hard for Muller Objectives

Proof. As already argued, the NP-hardness for coBüchi objectives comes from [87].

We now prove the NP-hardness of CRSP for Streett and parity objectives which can

(polynomially) express coBüchi objectives.

Parity. It follows directly from the following two facts: (i) the problem is NP-hard for

coBüchi objectives, (ii) a coBüchi objective given by a set of states F can be equivalently

expressed by the priority function pF such that pF (v) = 1 if v ∈ F , and 2 otherwise.

Streett. As for parity, a Streett condition can easily express a coBüchi condition F ,

by taking the set of pairs {(F,∅)}. The result follows from the NP-hardness of coBüchi

objectives.

Muller. The PSpace-hardness of CRSP with Muller objectives follows by reducing

from the problem of solving two-players zero-sum Muller games with Muller objective µ

that by Theorem 3.1.2 is Pspace-hard. In the interaction model, we keep the same game

arena and set the objective of Process 0 to be µ and the objective of Process 1 to be ¬µ.

Then, it is obvious that there is a 0-fixed Nash equilibrium (σ0, σ1) winning for Process

0 iff there is a winning strategy σ0 for the Process 0 in the zero-sum two-player game. ∎

Rabin Objectives

We already saw that the Cooperative Rational Synthesis Problem for Rabin objectives

can be solved in PNP . We now prove that the problem is both NP -hard and coNP -hard.

Theorem 5.3.8. The perfect information cooperative rational synthesis problem with

Rabin objectives is NP-hard and coNP-hard.

Proof. As in the case of Parity and Streett games, the NP-hardness comes directly from

the fact that we can express a coBüchi condition F ⊆ V as a Rabin condition ψ = {(V,F)}

where V is the set of states of the interaction model.

108

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

To show the coNP-hardness, we reduce the problem of solving two-player zero-sum

Rabin games (which are NP-hard) to the CRSP problem with Rabin objectives. Let

G = ⟨V,VA, VB,E, v0, ψ⟩ be such a game where the protagonist (Player A) has the Rabin

objective ψ. We construct the interaction model M by considering a copy of G together

with two extra states v and v′ and transitions from v to both v′ and the initial state of G

and a self loop on v′. A sketched image of the interaction model is in Figure 5.3. Then,

Agent 0 in M controls the states belonging to Player B in G and Agent 1 controls the

states belonging to Player A in G together with the newly introduced states v and v′.

sB

Pl0

v0

sA

Pl2

vstart

v′ copy of G

Figure 5.3: coNP-h Rabin CRSP: Reduction from 2-players Rabin games

Formally, M = ⟨{0,1}, V ′, V0, V1, v′0,E
′, ψ0, ψ1⟩ where V ′ = V ∪ {v, v′}, V0 = VB, V1 =

VA ∪ {v, v′}, E′ = E ∪ {(v, v0), (v, v′), (v′, v′)}, v′0 = v and the objectives of the two agents

are defined as ψ0 = {({v′},∅)} and ψ1 = ψ. That is, Agent 0 wins if the game goes in the

state v′ and Agent 1 wins if the winning condition of the protagonist in the game G is

satisfied.

We claim that there is a solution to the rational synthesis problem in M if and only

if there is no winning strategy for Player A in G. Indeed, if there is a solution to the

rational synthesis, there is a 0-fixed Nash equilibrium ⟨σ0, σ1⟩ winning for Agent 0. The

only possibility that this happens is if σ1(v) = v′ in which case Agent 1 loses. But

since ⟨σ0, σ1⟩ is a 0-fixed Nash equilibrium, for any other strategy σ′1 s.t. σ′1(v) = v0,

exec(M, ⟨σ0, σ′1⟩) does not satisfy Rabin(ψ1). That is, there is a strategy σB for Player B

in G so that ∀σA a strategy of Player A, exec(M, (σA, σB)) /∈ Rabin(ψ) which means that

Player A has no winning strategy in G.

Suppose now that there is no solution to the cooperative rational synthesis. It means

that there is no 0-fixed Nash equilibrium ⟨σ0, σ1⟩ such that exec(M, ⟨σ0, σ1⟩) satisfies

Rabin(ψ0). That is, whatever strategy σ0 chooses Agent 0, Agent 1 prefers to go in the

copy of G where he has a strategy to win. That is, Player A has a winning strategy σA in

G to ensure Rabin(ψ). ∎

109

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

5.3.4 CRSP with Fixed Number of Processes

Until now, we considered the general case where the number of agents composing the

environment is not fixed. As announced, we restrict the rational synthesis problem to the

particular case when the number of players is fixed and study the complexity of solving

the cooperative rational synthesis problem.

Upper Bounds for k-fixed CRSP

The following theorems prove the upper bounds to solve CRSP with fixed k+1 number of

agents provided in the second column of Table 5.1. In particular, Theorem 5.3.9 provides

Ptime procedures to solve the k-fixed Cooperative Rational Synthesis Problem with

respect to safety, reachability, Büchi and coBüchi objectives. Theorem 5.3.10 provides a

UP∩ coUP algorithm for parity k-fixed CRSP.

Theorem 5.3.9. The perfect information CRSP with respect to safety, reachability, Büchi

and coBüchi objectives is in Ptime when the number of processes is fixed.

Proof. As seen in the proof of Proposition 5.3.1, there is a solution for cooperative rational

synthesis if and only if there is a path π such that π ⊧ ϕ where φ = ϕ0 ∧ φM0Nash.

Given the above, the Ptime algorithm for the winning conditions (Xi)i (where Xi ∈

{Safe(Si),Reach(Ri),Buchi(Fi), coBuchi(Fi)}) first labels in polynomial time each node in

the winning region Wi of each Agent i, 0 ≤ i ≤ k, by Wi. Also, for the winning conditions

of each process, we label in polynomial time nodes belonging to Si (resp. Ri and Fi) with

the corresponding atomic proposition vSi (resp. vRi and vFi). Note that since the number

of processes is fixed, also the number of atomic propositions introduces is and the formula

φ = ϕ0 ∧ φM0Nash becomes a constant formula(depends only on the number of processes).

Then, to check the existence of an execution so that ρ ⊧ φ, we build a constant size

Büchi word automaton Aφ(since the LTL formula φ is constant for k constant), take the

product with the interaction model and check in polynomial time the emptiness of the

resulting automaton. ∎

Theorem 5.3.10. The perfect information CRSP with respect to parity objectives is in

UP∩ coUP when the number of processes is fixed

Proof. Given 0 ≤ i ≤ k, let pi ∶ V → {0, ...,2n} be the priority function for Agent i, where

n = ∣V ∣. We provide a UP∩coUP algorithm to check if the interaction model M admits

an execution such that ρ ⊧ φ, where φ = parity(p0) ∧ ⋀1≤i≤k(parity(pi) ∨ ◻¬Wi) and

parity(pi) =
n

⋁
j=0

(◻◇Ci
2j ∧ ⋀

p<2j

◇◻¬Ci
p)

encodes the winning condition for Agent i, where Ci
j is an abbreviation for ⋁v∶pi(v)=j v

corresponding to color j associated by Agent i.

110

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

First, we prove that, if M admits an execution ρ such that ρ ⊧ φ, then M admits an

execution ρ′ = ρ′1(ρ
′
2)
ω such that ρ′ ⊧ φ, ∣ρ′1∣ ≤ n and ρ′2 is a loop of size at most (k + 2) ⋅n.

We build the execution ρ∗ as follows. If ρ ⊧ ◻¬Wi for each 1 ≤ i ≤ k, then ρ∗ can be

obtained by cutting ρ as soon as the first node repeats on it. Otherwise, we proceed

to apply a pumping procedure. We mark the first occurrences if vertexes that have the

smallest priority w.r.t. the parity function of each process. Then cut so that remains

a short cycles that contains all the marked nodes. That is, for each 1 ≤ i ≤ k so that

ρ ⊧ parity(pi), let mi ∈ {0 . . . n} be the least priority w.r.t. pi occurring infinitely often

on ρ. For each node v, we label v by the vector ā = (a0 . . . , ak), where for each 0 ≤ i ≤ k,

ā[i] = mi if pi(v) = mi, and ā[i] = � otherwise. Since m0 is the least priority w.r.t. p0,

there is a vertex u that appears infinitely often on ρ and is assigned a label ā that has

m0 (rather than �) at index 0. Pick the first occurrence of such a vertex and color it by

green. Repeat the above procedure for each 1 ≤ i ≤ k such that ρ ⊧ parity(pi) (starting

from the last green node colored along the path) in order to recover a green node on ρ

for each 0 ≤ i ≤ k such that ρ ⊧ parity(pi). Once detected the last green node, cut the

remaining path as soon as is find a further occurrence of the vertex u. Therefore, we

obtain an execution ρ′′ = ρ′′1ρ
′′
2 , where ρ′′2 is a loop (from u to u) witnessing that ρ′′ ⊧ φ.

Removing each simple loop on ρ′′1 as well as on each subpath of ρ′′2 without green nodes

lead to a path ρ′ = ρ′1(ρ
′
2)
ω such that ρ′ ⊧ φ, ∣ρ′1∣ ≤ n, and ρ′2 is a loop of size (k + 2) ⋅ n.

Given the above, it is sufficient to design UP∩ coUP algorithm to check ifM admits

an execution ρ′ ⊧ φ, where ρ′ = ρ′1(ρ
′
2)
ω such that ∣ρ′1∣ ≤ n and ρ′2 is a loop of size (k+2) ⋅n.

The UP algorithm works as follows. For each node v in M, for each 1 ≤ i ≤ k guess

if v ∈ Wi. Verify the guess applying the corresponding UP algorithm. If the guess was

incorrect, then reject immediately. Otherwise check in NLOGSPACE if M contains an

execution ρ′ ⊧ φ, where ρ′ = ρ′1(ρ
′
2)
ω such that ρ′ ⊧ φ, ∣ρ′1∣ ≤ n and ρ′2 is a loop of size

(k + 2) ⋅ n. This is possible by guessing on-the-fly a path ρ′ and a node u on it where the

loop should start, while maintaining (1) for each 0 ≤ i ≤ k, the minimum priority seen

along the loop w.r.t pi; (2) for each 0 ≤ i ≤ k, a bit to check if ◻¬Wi appears along ρ′

(3) the length of ρ′1, ρ
′
2 and (4) the node u witnessing that ρ′2 is a loop. Since k is a fixed

constant, the priorities are bounded by n, and the length of the path is polynomial w.r.t.

the size of the graph and therefore the amount of space required is logarithmic w.r.t. the

size of the input graph.

The coUP algorithm verifies in UP if ∀ρ holds ρ /⊧ φ. This is done as follows. For

each node v in M and for each 1 ≤ i ≤ k, guess if v ∈ Wi. Verify the guess applying

the corresponding UP algorithm. If the guess was incorrect, then reject immediately.

Otherwise, verify in coNLOGSPACE if ∀ρ holds ρ /⊧ φ. This amounts to check in

NLOGSPACE if ∃ρ such that ρ ⊧ φ that is done as above. ∎

111

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

Lower Bounds for k-fixed CRSP

Theorem 5.3.11 provides a reduction from two players zero-sum games to the cooperative

rational synthesis problem in interaction models containing two agents. This allows one

to infer the lower bounds on the complexities of CRSP for fixed number of processes.

Theorem 5.3.11. The perfect information Cooperative Rational Synthesis problem for

a fixed number of processes is as hard as solving the two-player zero-sum game with the

same type of objective.

Proof. The construction is similar to the one to prove the coNP-hardness of CRSP for

Rabin objectives.

Let G be a two-players zero-sum game where the protagonist (Player A) has the

objective ψ, and so Player B has objective ¬ψ. We construct the 2-processes CRSP

interaction modelM by considering a copy of G and two fresh states v and w. The state

v is the initial state ofM and has a transition to the initial state of G and a transition to

w, which is equipped with a self-loop. The environment (Agent 1) controls v,w and the

states belonging to Player A in G, while Agent 0 controls the states belonging to Player

B in G. For the winning conditions, Agent 0 wins only if the play gets into w (and stays

that forever), while the objective of the environment is ψ (i.e. the objective of Player A

in G).

M is a positive instance of the CRSP problem if and only if Agent 1 playing edge

v → w is a Nash equilibrium. But clearly Agent 1 does not have an incentive to deviate

if and only if Player A does not have a winning strategy in G for forcing ψ. ∎

Since Safety, Reachability, Büchi and coBuchi two-player zero-sum games are

PTime-complete (crf. Theorem 3.1.2), it follows that also the CRSP problem in models

with a fixed number of agents is PTime-hard. For parity objectives, the problem is as hard

as solving the two-player zero-sum parity games (parity-hard) since. The NP-hardness

for Streett objectives comes from the co-NP-hardness of Streett objectives.

Finally, we already proved that CRSP with two processes is NP-hard for Rabin

objectives (crf. Theorem 5.3.8) and the PSpace-hardness for Muller objectives (crf.

Theorem 5.3.7).

Note that the general algorithm for solving the perfect information Cooperative

Synthesis Problem for a fixed number of processes is the same as in the non-fixed case.

However, the fact that the number of processes is fixed, makes easier to search for an

execution that satisfies the formula ϕ0 ∧ φM0Nash.

112

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

5.4 Non-Cooperative Rational Synthesis (NCRSP)

In this section we study the complexity of non-Cooperative Rational Synthesis Problem.

In this setting the environment may not cooperate with the Process 0 (to synthesize), and

may play (rationally) any strategy profile providing it is a 0-fixed Nash equilibrium.

In the cooperative setting, in the cases where we could not rely on existing results [87],

namely reachability and safety objectives, we get our upper bounds via a reduction to

a model-checking problem. In the non-cooperative setting, we cannot rely on existing

results.

Proposition 5.2.1 characterises 0-fixed Nash equilibria by means of an LTL[M] formula

φM0Nash. This allowed us to solve cooperative rational synthesis problem by model-checking

against the interaction modelM, the formula φM0Nash∧ϕ0, where ϕ0 is Process 0’s objective.

It is tempting to think that non-cooperative rational synthesis reduces to a two-player

zero-sum game between Process 0, whose objective is φM0Nash → ϕ0, and the coalition of

the other processes.

1start 2 3

Figure 5.4: NCRSP: Example of interaction model

Consider the three states interaction model Figure 5.4 on which interact two processes.

Process 0 owns circle states and Process 1 square states and they have reachability

objectives given by the sets R0 = {2} and R1 = {3} respectively. This example shows

that this intuitive reduction to two-player games is not true in general. Indeed, in this

example there is a solution to non-cooperative rational synthesis problem, but no solution

to the two-player game with objective (◻R̄1 → ◻W̄1) → ◇R0. Since W1 = {3}, whatever

the strategy of Process 0 is, if Process 1 stays in state 1 forever, the execution ρ = (1)ω

satisfies (◻R̄1 → ◻W̄1) but not ◇R0 and therefore Process 0 loses.

The intrinsic reason why the reduction to two-player games is incorrect lies in the

definition of non-cooperative rational synthesis problem: once a Process 0’s strategy σ0

is fixed, only 0-fixed NE with respect to σ0 are considered, while the formula φ0Nash can

be satisfied by paths which are outcomes of some 0-fixed Nash equilibrium, fixed for a

different strategy of Process 0.

5.4.1 General Solution for NCRSP

The non-Cooperative Rational Synthesis Problem is more involved and requires automata

based techniques to solve and provide tight complexities for problem when safety,

reachability or the other classical tail objectives are considered.

113

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

We represent strategies σ0 of Process 0 as a tree tσ0 and use tree automata to define

the set of strategies that are solutions to the non-cooperative rational synthesis in the

interaction model M= ⟨Ω, V, (Vi)i∈Ω, v0,E, (Θi)i∈Ω⟩.

Theorem 5.4.1. Let M be an interaction model with k + 1 processes and n states. One

can construct a non-deterministic tree automaton TM with an accepting condition α such

that Lα(TM) is the set of trees encoding solutions to NCRSP. The automaton has an

exponential number of states in k, and polynomial in n. Moreover, for all runs r of TM,

for all branches η of r, the number of states appearing in η is polynomial in n and k.

In the following, we provide the construction of the tree automaton that proves the

above theorem. The emptiness of tree automata is then checked by solving a two-player

zero-sum game, whose complexity is carefully analyzed for all the winning conditions

considered in this chapter.

Strategies as trees

Let M be an interaction model in which acts the set Ω = {0, ..., k} of processes. Let

σ0 ∶ V ∗V0 → V be a strategy for Process 0. As seen in Section 3.4.1, strategies can be

encoded as strategy trees.

Since we consider here turn-based interaction model, the strategy trees are labeled

with letters in Λ = V ∪ {∗i ∣ 1 ≤ i ≤ k} ∪ {#} and the set of directions is Υ = V . Therefore,

any node of the tree is an history h in the interaction model M.

Intuitively, the labeling of the strategy tree tσ0 is as follows. The root is the only node

labeled by #. Then, for each node controlled by Process 0 (hv s.t. v ∈ V0), the label is

according to the strategy σ0. When is the turn to a process i ≠ 0 to play (some node hv

s.t. v ∈ Vi) it is labeled by ”letter” ∗i. This letter encodes the fact that Process i could

do any choice in the state v.

Formally, the labeling of the nodes in the strategy tree is defined by:

(i) tσ0(ε) = #

(ii) tσ0(hv) = σ0(hv) if v ∈ V0,

(iii) tσ0(hv) = ∗i if v ∈ Vi for i ≠ 0 (only the turn i is encoded)

Note that each Λ-labeled V -tree represents a partial function from V ∗ to Λ, which

may not be a strategy, because it is not total and may not be consistent with the edge

relation E of the interaction model. A branch in tσ0 is an infinite sequence of directions

ρ ∈ V ω. It is compatible with σ0 if for all finite prefixes h of ρ whose last state is in V0,

h.tσ0(h) is a prefix of ρ.

114

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

Characterization of solutions for NCRSP

We now want to characterize the strategy trees tσ0 s.t. σ0 is a solution to non-cooperative

rational synthesis problem in an interaction modelM= ⟨Ω, V, (Vi)i∈Ω, v0,E, (Θi)i∈Ω⟩ with

either all safety, all reachability, or all tail objectives.

We already saw that a branch of a strategy tree represents an infinite sequence of states

in the interaction model. It may not correspond to executions, but the tree automaton

that we will define will take care to consider only the branches that are executions

compatible with the strategy σ0 encoded by the tree.

The strategy tree tσ0 is a solution for the problem if for all branches π compatible

with σ0, either it is winning for Process 0, or it does not correspond to a 0-fixed Nash

equilibrium.

Good deviations A branch π is not the outcome of a 0-fixed Nash equilibrium if and

only if some process i loses along π (π /∈ Θi for some i ≠ 0) and there is a history h from

which Process i has a winning strategy against all other processes in the environment

(when Process 0 plays σ0). We call the history h a good deviation point.

Formally, h is a good deviation point along a branch π (h is a prefix of π) if there

is i ∈ Ω ∖ {0} s.t. π /∈ Θi and there is a strategy σi for Process i s.t. for all strategies

(σj)i∈{1,...,k}∖{i}, holds h.exec(M, σh0 , ..., σ
h
i−1, σ

h
i , σ

h
i+1, ..., σ

h
k) ∈ Θi. A branch π ∈ V ω has a

good deviation if some of its prefix h is a good deviation point.

Let us denote by NCRSP(M) the set of strategy trees tσ0 such that σ0 is a solution to

the NCRSP in M. Then:

Lemma 5.4.1. For all strategies σ0 of Process 0, tσ0 ∈ NCRSP(M) iff for all branches π

of tσ0 compatible with σ0, either π ∈ Θ0 or π has a good deviation.

Proof. First, let prove the implication from left to right and consider tσ0 ∈ NCRSP(M)

and a branch (execution in M) π such that π /∈ Θ0. Then, since tσ0 is a solution to

NCRSP(M), for all σ1, ..., σk such that exec(M, ⟨σ0, σ1, ..., σk⟩) = π, ⟨σ0, σ1, ..., σk⟩ is not

a 0-fixed Nash equilibrium.

Let us define σ1, ..., σk such that all the processes follow the path π and punish the

Process i that deviates from it by playing the worst strategy profile for him (they play

the retaliating strategies retv,ij against Process i from the state v to which he deviates).

That is, each Process j plays σj defined as

σj(x) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

π[l + 1] if x = v0v1...vl is a prefix of π

retv,ij (vx2) if condition (1) is satisfied

βj(x) otherwise

where βj is an arbitrary strategy of Process j and condition (1) requires that x can be

decomposed into x = x1vx2 such that x1 ∈ V ∗Vi, v /∈W
M[σ0]
i , x1 is a prefix of π, x1v is not

115

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

a prefix of π. The fact that v /∈W
M[σ0]
i means that Process i has deviated to a state from

which he does not have a winning strategy when the strategy σ0 of Process 0 is fixed, i.e.,

Processes 1, ..., j − 1, j + 1, ..., k have a strategy to make him lose under σ0.

Clearly, exec(M, ⟨σ0, σ1, ..., σk⟩) = π and therefore by hypothesis, ⟨σ0, σ1, ..., σk⟩ is not

a 0-fixed Nash equilibrium. Hence, there is a process i that prefers to deviate from π

and has a strategy σ′i such that exec(M, ⟨σ0, σ1, ..., σi−1, σ′i, σi+1, ..., σk⟩) ∈ Θi. From the

construction of the strategy profile, Process i chooses to deviate to a state in which he

has a winning strategy when Process 0 plays σ0 (otherwise the other processes make him

lose). Let h ∈ V ∗Vi be the prefix of π after which Process i deviates and v its last state.

Then, for all strategies σ̃1, ...σ̃i−1, σ̃i+1, ..., σ̃k for the processes 1, ..., i−1, i+1, ..., k, we have

that h.exec(M[v], ⟨σh0 , ..., σ̃
h
i−1, σ

′
i
h, σ̃hi+1, ..., σ̃

h
k ⟩) ∈ Θi which means that there is a good

deviation for Process i and then π has a good deviation h.

In the other direction, let us take the strategy tree tσ0 and π a branch of tσ0 compatible

with σ0 and representing an execution in M s.t. π /∈ Θ0. Then, there is a good deviation

from π for a Process i that loses in π. That is, Process i has a strategy σ′i such that he

wins by deviating from π at a position j against any strategy profile that follows π. That

is, for all σ1, ..., σk s.t. exec(M, ⟨σ0, σ1, ..., σk⟩) = π, ⟨σ0, σ1, ..., σk⟩ is not a 0-fixed NE since

Process i can deviate and win. Therefore, tσ0 ∈ NCRSP(M).

The equivalence is straightforward for the branches π ∈ Θ0. ∎

The previous lemma provides enough intuition on the structure and the properties

that have to be verified along branches of the strategy trees tσ0 .

Reduction to tree-automata emptiness

Based on Lemma 5.4.1, we construct a nondeterministic automaton announced in

Theorem 5.4.1 that defines the set NCRSP (M) of solutions for the non-Cooperative

Rational Synthesis Problem in the interaction model M= ⟨Ω, V, (Vi)i∈Ω, v0,E, (Θi)i∈Ω⟩.

The nondeterministic tree automaton TM is obtained as a product of two automata.

First, we construct a deterministic safety tree automaton CM that checks that a tσ0
is a proper encoding of a strategy σ0 in the turn-based interaction model M. Then,

we construct a nondeterministic tree automaton UM that is assumed to run on proper

encodings of strategies and checks that it corresponds to a solution to the NCRSP. Details

on the construction of the two automata are given in the following.

Automaton CM The deterministic safety automaton CM accepts trees that are proper

strategy trees encoding a strategy σ0 of Process 0. That is, he has to remember the last

direction v taken and make sure that if v ∈ V0, the current node is labeled by some v′ ∈ V

s.t. (v, v′) ∈ E, and otherwise by the symbol ∗i if v ∈ Vi. This automaton is polynomial

in the size of the interaction model.

116

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

Formally, the automaton CM is defined as CM = ⟨Λ,Υ,QC, qC0 , δC, αC⟩ where Λ = V ∪{∗i ∣

1 ≤ i ≤ k} ∪ {#} is the alphabet and Υ = V is the set of directions. The set of states is

QC = V ∪ {⊥, qC0} and the transition relation is defined as

� δC(qC0 ,#) = f where f(v) = v for all v ∈ V ,

� δC(qC0 , `) = f⊥ where f⊥(v′) =⊥ for any v′ ∈ V and ` ≠ #,

� δC(q,#) = f⊥ for q ≠ qC0 ,

� δC(⊥, `) = f⊥ and

� δC(v, `) = fv,` where fv,`(v′) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

v′ if (v ∈ V0 and (v, `) ∈ E)

or (v ∈ Vi≠0 and ` = ∗i)

⊥ otherwise

for any v′ ∈ V

The first two cases verify that the root of the accepted tree is labeled with ”#”. If

another letter is read, the automaton goes to the rejecting state ” ⊥ ” on all directions,

which is a trap according to the fourth case. The third case checks that the letter ”#”

does not appear in the rest of the tree. Finally, the last case verifies the proper labeling

the rest of the nodes of the strategy tree.

The acceptance condition on CM is αC = {η ∈ (QM ∖ {⊥})ω}. Note that by the

construction of the automaton, this is a safety condition that asks to avoid ” ⊥ ”. The

state ” ⊥ ” appears in two cases. Either is the turn of Process 0(state v ∈ V0) to play and

the letter l that is read is not a valid choice of his ((v, l) /∈ E), or is the turn of Process i ≠ 0

(state v ∈ Vi) and the label is different from ∗i. Also, the automaton CM is deterministic.

In the following, we construct the automaton UM that accepts trees that are solutions

for the non-Cooperative Rational Synthesis Problem. We assume that the automaton UM
only runs on proper encodings tσ0 of strategies σ0 of Process 0. That is, trees that are

accepted by the tree automaton CM.

Automaton UM The construction of UM is based on Lemma 5.4.1. For each branch,

the automaton checks that either it belongs to Θ0, or it guesses a prefix and checks it is a

good deviation. That is, in the later case, the automaton has to guess subtrees in which

at least one process has a winning strategy. This information is stored in a set W ⊆ Ω,

with the following semantics: if UM is in some state with set W at some node h ∈ V ∗ and

i ∈ W , then Process i has a winning strategy in the subtree rooted at h against σ0 and

any strategy of processes in Ω∖{0, i}. The set of processes for which a good deviation has

been guessed is stored in a set D ⊆ Ω, with the following semantics: if UM is in some state

with set D and i ∈D, at some node h ∈ V ∗, then some prefix of h is a good deviation.

The information in D is monotonic. Whenever i ∈ D in a state, i ∈ D in all the

successor states. In addition, it is updated by adding processes in D depending on the

117

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

updates of W . The information on W is maintained as follows: at some node hv ∈ V ∗,

if i ∈W and v ∈ Vi, the automaton UM non-deterministically chooses a strategy move for

the Process i and send W to one of the successor of v (and W ∖ {i} in the other ones).

If i /∈W and v ∈ Vi, there are two possibilities. First, if i ∈ D means that a deviation was

guessed before and then W is sent to all successors. Otherwise, if i /∈ D, there was not

guessed a good deviation point before. Then either the current node h (owned by Process

i) is not guessed to be a good deviation point and D and W are sent to all successors, or

it is guessed to be a good deviation for Process i and then D ∪ {i} and W are sent to all

successors but one in which is sent D and W ∪ {i}. If v /∈ Vi, the automaton UM keeps

i ∈W in all successors of v.

Formally, UM = ⟨Λ,Υ = V,QU , qU0 , δU , αU⟩ where the alphabet is Λ = V ∪ {∗i ∣ 1 ≤ i ≤

k} ∪ {#} and the set of states is QU ⊆ {qU0 ,⊺} ∪ 2Ω × 2Ω × V . A state q = (W,D, v) stores

information about the set W of processes that need a winning strategy from the current

node, the set D of processes that may deviate to win, and the last direction taken.

To define the transition relation, we will define functions mapping directions to states.

If we do not define them for some directions d, it means that d is mapped to ⊺ and

corresponds to successors that cannot be reached by a transition in the interaction model

compatible with the strategy encoded by the tree tσ0 to accept. The transition relation

δU is defined as:

� δU(qU0 ,#) = {g0} where g0(v0) = (∅,∅, v0) and g0(v) = ⊺ for all v ≠ v0,

� if q = (W,D, v) s.t. v ∈ V0: δU(q, v′) = {gv′} where gv′(v′) = (W,D, v′) and gv′(v′′) = ⊺

for v′′ ≠ v′ (the later case corresponds to directions v′′ that are not compatible with

the strategy),

� δU(⊺, `) = {g⊺} where g⊺(v′) = ⊺, for all v′ ∈ V and ` ≠ #

� For a state q = (W,D, v) and a label ∗i (i ≠ 0) we consider four cases:

1. i ∈D ∩W : Such a state is never reached by construction

2. i ∈D ∩W : Just propagate the information D and W . That is,

δU(q,∗i) = {g} s.t. g(v′) = (W,D, v′) for all (v, v′) ∈ E

3. i ∈ D ∩W : One has to check that Process i has a winning strategy in some

successor v′ (guessed nondeterministically) and to which the W information is

sent. That is,

δU(q,∗i) ={gv′ ∣ (v, v
′) ∈ E} s.t.

gv′(v
′) = (W,D, v′) and

gv′(v
′′) = (W ∖ {i},D ∪ {i}, v′′) for all v′′ ≠ v′

118

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

4. i ∈D ∩W : Either nothing is guessed, or one guesses that Process i has a good

deviation, and updates the sets W and D accordingly. That is,

δU(q,∗i) ={g} ∪ {g′v′ ∣ (v, v
′) ∈ E} s.t.

g′v′(v
′) = (W ∪ {i},D, v′) and

g′v′(v
′′) = (W,D ∪ {i}, v′′) for all v′′ ≠ v′

Along a branch of a run of UM, there are monotonicity properties for the W and

D-components of the states. Indeed, by construction, UM never removes a process from

D. For W , a Process i can be removed (case 3) but then it is added to D and, once a

process belongs to D, it can never be added to W again. This optimization is correct

since for a history h, if we guess that Process i has a winning strategy from history hv,

then i is added to D for all successors hv′ (v′ ≠ v) and there is no need to guess again later

on a good deviation for Process i in the subtrees rooted at the nodes hv′, and therefore

no need to add i in W again.

A consequence of the monotonicity property is that along a branch η of a run, there

is only a polynomial number of different components D and W , and they necessarily

stabilize eventually, to a set that we denote by limD(η) and limW (η). This monotonic

behavior is crucial for complexity.

Finally, the accepting condition αU asks that on each path of the accepting run, either

it is of the form Q∗
U
{⊺}ω (it is not an execution inM compatible with the strategy encoded

by the input tree), or Process 0 wins, or there is a process that loses but belongs to some

D eventually (therefore in the past he could have deviate and win). For safety objectives,

we also have to add the constraint that the losing process belongs to D before visiting an

unsafe state. Additionally, the accepting condition also expresses constraints on the W

components. It verifies that the processes that belong to W after it stabilizes, indeed win

by checking that the projection on the directions belong to Θi. That is, each process in

limW (η) wins.

Formally, if we denote by IRuns(UM) the set of images of branches of runs of UM, and

by η∣V the V -projection of any η ∈ (QU ∖ {⊺})ω, we have:

αU = Q
∗
U{⊺}

ω ∪ ({η ∈ IRuns(UM) ∩ (QU ∖ {⊺})ω ∣ η∣V ∈ Θ0 ∨
k

⋁
i=1

(η∣V /∈ Θi ∧ ϕ∃dev(i, η))}∩

∩ {η ∈ IRuns(UM) ∩ (QU ∖ {⊺})ω ∣ ⋀
i∈limW (η)

η∣V ∈ Θi})

where the formula ϕ∃dev(i, η) says that there is a good deviation for Process i. That is,

if D0D1 . . . is the sequence of D-components in η, then ϕ∃dev(i, η) = i ∈ limD(η) for tail

or reachability objectives, and ϕ∃dev(i, η) = ∃p ≥ 0, i ∈ Dp ∧ ∀p′ ≤ p, η∣V [p] ∈ Si for safety

conditions Safe(Si).

We now provide the general property of the tree automaton UM that is independent on

the type of individual objectives of the processes inM. The only assumption is that one

119

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

is able to write a formula ϕ∃dev(i, η) that correctly expresses the fact that Process i has a

deviation to win. That is, a good deviation point for Process i along η may appear only

before the objective of Process i is falsified. Thanks to the construction of the automaton

U , we can write an LTL formula that refers to the position along η when Process i is

added to the set D.

Lemma 5.4.2. For all strategies σ0 of Process 0, tσ0 ∈ LαU (UM) iff for all branches π of

tσ0 compatible with σ0, either π ∈ Θ0 or π has a good deviation.

Proof. Let tσ0 ∈ LαU (UM). By construction, the automaton UM takes transitions such

that all the branches that are not compatible with the strategy σ0 encoded by tσ0 lead

to the state ”⊺”. On all the other branches π, the accepting run rt on tσ0 satisfies the

condition that the branch η compatible with π either η∣V ∈ Θ0 (which means that π ∈ Θ0)

or there is a process i that loses along π = η∣V and has a good deviation. The automaton

verifies that all the deviations are correctly guessed by constructing a winning strategy

for Process i from the deviation point. Then, the condition ⋀i∈limW (η) η∣V ∈ Θi asks that

all processes for which η is compatible with their (guessed) winning strategy satisfy their

objective.

On the other direction, lets take a tree tσ0 such that for all branches π of tσ0 compatible

with σ0, either π ∈ Θ0 or π has a good deviation. We can build an accepting run in U on

tσ0 as follows. For each branch π of the tree tσ0 such that π /∈ Θ0, guesses the deviation

point of some Process i. Then, the automaton starts to build the winning strategy for

the process that deviates. This strategy exists by the definition of a good deviation point.

Note that the accepting condition α is satisfied along the branches of the constructed run.

This is because the formula ϕ∃dev correctly expresses the existence of a deviation in terms

of LTL formula on the D projection of branches. Then, whenever a process is added in

D, the construction of the winning strategy using the set W starts. Since the winning

strategy of Process i was correctly guessed, he wins along all branches compatible with

it. That is, along all branches η such that i ∈ limW (η). ∎

Automaton TM. Then, as mentioned before, the tree automaton TM with the

accepting condition α such that Lα(TM) = NCRSP(M) is defined as the product of

the two automata CM and UM. Formally, the automaton TM = ⟨Λ,Υ = V,Q, q0, δ, α⟩

is defined over the alphabet Λ = V ∪ {∗i ∣ 1 ≤ i ≤ k} ∪ {#}, has directions Υ = V , states

in Q ⊆ (2Ω × 2Ω × V) ∪ {⊥, (qU0 , q
C
0)} ∪ ({⊺} × V), q0 = (qU0 , q

C
0) is the initial state and the

transition relation for ` ∈ Λ is defined by

� δ((qU0 , q
C
0), `) =

⎧⎪⎪
⎨
⎪⎪⎩

{f⊥} if δC(qC0 , l) = f⊥

{g0} otherwise

� δ(⊥, `) = {f⊥}

120

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

� δ((⊺, v), `) =

⎧⎪⎪
⎨
⎪⎪⎩

{gt} with gt(v′) = (⊺, v′) if δC(v, v′) = v′ for v′ ∈ V

{f⊥} if δC(v) = f⊥

� δ((W,D, v), `) =

⎧⎪⎪
⎨
⎪⎪⎩

δU((W,D, v), `) if δC(v, v′) = v′ for all v′ ∈ V

{fp} otherwise

Remark 5.4.1. Note that the automaton TM follows the transitions in UM as far as the

automaton CM does not reach the state ” ⊥ ”. Therefore, on each branch of a run, the

number of different states in TM is still polynomial in the size of the interaction modelM.

This is also because TM is the product of UM with a deterministic safety tree automaton

of polynomial size.

The acceptance condition for the automaton TM is in essence the condition αU but

also asks to avoid states ” ⊥ ” that are reached in CM if the tree to accept is not a proper

encoding of some strategy σ0. That is,

α = Q∗({⊺} × V)ω ∪ {η ∈ IRuns(TM) ∩ {q0}(2
Ω × 2Ω × V)ω ∣

(η∣V ∈ Θ0 ∨
k

⋁
i=1

(η∣V /∈ Θi ∧ ϕ∃dev(i, η))) ∧ ⋀
i∈limW (η)

η∣V ∈ Θi}

Remark 5.4.2. Since the automaton TM is obtained by taking the product between the

automata UM and CM that verifies that a tree is a proper encoding of a strategy for

Process 0, and because of Lemmas 5.4.1 and 5.4.2, the automaton TM is the witness

proving Theorem 5.4.1.

The following lemma proves that on all loops that are taken by the branches of a run

in the tree automaton TM, the sets D and W are constant.

Lemma 5.4.3. Let π ∈ (Q ∩ {q0}(2Ω × 2Ω × V))ω be a path of a run in TM. Then, each

loop on π has only one value on states for the sets W and D.

Proof. Let us take a path π = xq′yq′z of a run in TM. Because of the definition of δU ,

π′ = xq′(yq′)ω is also a valid path of a run in TM. Suppose that there are two consecutive

states in y such that a process is removed/added from/to W in the second state compared

to the previous one. Then, there are also two consecutive states in y such that it is

added/removed to/from W . This contradicts the fact that π′ is a valid path of a run in

TM since we could do more than one addition of a process to W . Then, there is no change

on W on a loop. Also, because of the monotonicity of D, we prove that the value of D

remains unchanged along a cycle using the same argument. ∎

121

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

From tree automata to two-player games. As presented in Section 3.4.4, checking

emptiness non-deterministic tree automata is reduced to solving a two-player zero sum

game between Eve, who constructs a tree and a run on this tree, and Adam, whose goal

is to prove that the run is non-accepting, by choosing directions in the tree and falsifying

the acceptance condition.

Formally, remind that the alphabet is Λ = V ∪ {∗i ∣ 1 ≤ i ≤ k} ∪ {#} and for a

function f ∶ V → Q, we denote by Range(f) its range. The zero-sum two-player game

GT = ⟨VE, VA,E′, q0,Θ⟩ is such that VE = Q, VA = {Range(f) ∣ ∃q ∈ Q, ` ∈ Λ, f ∈ δ(q, `)} and

the transition relations is defined for all q ∈ Q, all Y ∈ VA, by

� (q, Y) ∈ E′ if there exists ` ∈ Λ and f ∈ δ(q, `) s.t. Y = Range(f),

� (Y, q) ∈ E′ if q ∈ Y .

In other words, to go from q to Y , Eve chooses a symbol ` and a function f ∶ V → Q in

δ(q, `). Then, Adam chooses a direction in V , but since he wants to construct a sequence of

states not in α, one only needs to remember Range(f). Adam then picks a state in that set.

Finally, Eve’s objective is then the set Θ = {π = q1Y1q2Y2 ⋅ ⋅ ⋅ ∈ (VEVA)ω ∣ π↾VE = q1q2 ⋅ ⋅ ⋅ ∈ α}

where π↾VE stands for the restriction of the play π on Eve’s states.

Proposition 5.4.1. Eve has a winning strategy in GT iff Lα(TG) ≠ ∅.

Note that for different particular winning conditions, we may use gadgets to add more

information on states of the game GT in order to check the satisfaction of the winning

conditions Θ of the processes and therefore slightly modify the game. For example, in the

case of Safety conditions, we may need a set of processes that already lost (reached an

unsafe state) and ask that the deviation is made before losing. More details will be given

later, when will be studied the complexities for particular objectives.

5.4.2 Upper Bounds for NCRSP

The game GT has linear size in the size of TM. A precise analysis of the time complexity

of solving GT gives upper bounds to the non-cooperative rational synthesis problem.

For safety, reachability, Büchi and coBüchi winning objectives, we exploit the

monotonicity of the sets W and D (the fact that only a polynomial number in k of

different sets W and D can be met along a play). We show that if Eve can win the game

GT , then she can win in a polynomial number of steps (in the size of the interaction model

M), in the sense that she wins if and only if she can enforce, in a polynomial number

of steps, to visit a state q she has already visited and which forms a good cycle. The

notion of good cycle depends on the winning condition of GT . In other words, GT reduces

to a finite duration game with a polynomial number of steps. This kind of reduction is

known as first-cycle game in the literature [8]. This game is not constructed explicitly, but

122

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

solved on-the-fly by a PTime alternating algorithm. This gives a PSpace upper-bound

for NCRSP.

For Muller conditions, the polynomial reduction to first-cycle game doesn’t work.

Therefore, we transform the game GT into a two-player zero-sum parity game with an

exponential number of states but a polynomial number of priorities, which can be solved

in Exptime (in the size of M). This reduction is based on the Last Appearance Record

(LAR) [43, 94], which allows us to identify states in V appearing infinitely often. More

details on the exact complexity for each type of winning condition are given in the

following.

Safety Objectives

Let us first consider the rational synthesis problem with safety objectives (Safe(Si))i∈Ω
for processes in M. We show how to verify Eve’s winning condition in the game

GT constructed in the general case. In fact, the difficulty is to verify the winning

condition (Safe(Si))i∈Ω of the processes. To do this, we keep an extra set of processes

I ⊆ Ω with the states of GT with the following semantics. Let us take some history

h = (q1, I1)(Y1, I1)(q2, I2)(Y2, I2)...(ql, Il) with qj ∈ Q and Yj ∈ {Range(f) ∣ ∃q ∈ Q, ` ∈

Λ, f ∈ δ(q, `)} for all 1 ≤ j ≤ l. If i ∈ Il, then Process i lost the play by reaching an unsafe

state along h, i.e., there is a position s ≤ l s.t. qs∣V /∈ Si.

We get a new game G′
T

that annotates plays in GT with sets I. Initially, I = ∅ and it

is updated as follows. If a process i belongs to I, then i ∈ I also in all successor nodes.

Otherwise, whenever the game GT goes in a state q = (W,D, v) such that v /∈ Si for some

i ∈ Ω, then i ∈ I in the associated set I to q. Then, if eventually there is a process i ∈W ∩I,

the only next state of the game is ” ⊥ ”(losing state for Eve). The last situation appears

when it is made a wrong guess for a good deviation for some process. Then, if the play

never go to the node ” ⊥ ” we are sure that all the processes from the set W win. We do

not need to keep the information about the processes in I if a state in {⊥} ∪ ({⊺} × V) is

reached.

Formally, the states of the game G′
T

has the sets of states V ′
E = (Q ∖ ({⊥} ∪ ({⊺} ×

V))) × 2Ω ∪ {⊥} ∪ ({⊺} × V) and V ′
A = {Range(f) ∣ ∃q ∈ Q, l ∈ Σ, f ∈ δ(q, l)} × (2Ω ∪ {{⊥}})

controlled by Eve and Adam respectively, the initial state is (q0,∅) and the transition

relation E′′ deterministically updates the information I along plays as follows:

� ((q, I), (Y, I)) ∈ E′′ if (q, Y) ∈ E′

� ((Y, I), (q, I ′)) ∈ E′′ if q ≠⊥ and (Y, q) ∈ E′ and I ′ = I sup{i ∈ Ω ∣ q∣V /∈ Si}

� ((Y, I),⊥) ∈ E′′ if (Y,⊥) ∈ E′ and

� (⊥,{⊥}) ∈ E′′ and ({⊥},⊥) ∈ E′′

123

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

Note that the set I is also monotonous along a play. Therefore, Eve’s winning condition

simplifies to a Büchi condition. Θ = Buchi(F S) where

F S = ({⊺} × V) ∪ {(W,D, I, v) ∈ Q ∣ 0 /∈ I} ∪ {(W,D, I, v) ∈ Q ∣D ∩ I ≠ ∅}

Intuitively, the first set corresponds to the branches of the tree tσ0 that do not

correspond to executions in M compatible with the strategy σ0. For the executions

compatible to σ0, the Büchi condition asks that Process 0 never belongs to the set I

(therefore wins) or there is a Process i for which was guessed a good deviation but loses

in the current play (i ∈D ∩ I).

Now, having simplified the winning condition for Eve, we can define a finite duration

game Gf
T

that ends after a ploynomial time. Intuitively, the finite duration game is an

unfolding of the game G′
T

up to the first cycle.

Finite Duration Game for Safety NCRSP Given the two-players zero-sum game

G′
T

, we define the finite duration two-player zero-sum game Gf
T

over the same game arena

as G′
T

where each play ends after the first cycle on Eve’s states. Then, a play π = xqyq

in Gf
T

is winning for Eve if either q ∈ {⊺} × V or q = (W,D, I, v) such that either 0 /∈ I or

D ∩ I ≠ ∅.

The definition is correct since once a state with D∩ I ≠ ∅ is reached, because D and I

are both monotone, the property holds on the remaining of the play. We prove that the

two games are equivalent in the following:

Proposition 5.4.2. Eve has a winning strategy in the game G′
T

iff she has a winning

strategy in the first cycle game Gf
T

.

Proof. From right to left, if Eve has a winning strategy σfE in Gf
T

, for all σfA a strategy for

Adam, out(σfE, σ
f
A) = xqyq either is such that q ∈ {⊺} × V or q = (W,D, I, v) s.t. (0 /∈ I or

I ∩D ≠ ∅).

We define now the strategy σE of Eve in G′
T

as σE(hq) = σfE(h
′q) s.t. h′ is h from

which are removed all cycles and prove that σE is winning for Eve in G′
T

. Let π be a play

compatible with σE. Then, by the definition of σE, we can decompose π in π = π1π2π3...

such that each πj is a suffix of a play π′j compatible with σfE in Gf
T

. If all πj on π satisfy 0 /∈ I

on the last state (resp. if it belongs to {⊺} × V), then also π will satisfy ◻(0 /∈ I)(because

I is monotone)(resp. π↾VE ∈ Q∗({⊺} × V)ω) and then Eve wins. Otherwise, if there is j

such that πj ends in a state q = (W,D, I, v) s.t. I ∩D ≠ ∅, because of the monotonicity of

I and D(Lemma 5.4.3), all the states of Eve in the continuations of the game will satisfy

I ∩D ≠ ∅ and then Eve wins.

Now, if there is no winning strategy for Eve in Gf
T

, by the determinacy of perfect

information games, there is a winning strategy σfA for Adam such that ∀σfE of Eve, either

exec(Gf
T
, ⟨σfE, σ

f
A⟩) contains ” ⊥ ” (has a suffix in ({⊥})∗) or it does not contain ” ⊥ ”, but

exec(Gf
T
, ⟨σfE, σ

f
A⟩) = xqyq such that q = (W,D, I, v) with 0 ∈ I and I ∩D = ∅.

124

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

Let σA be the strategy of Adam in G′
T

defined as σA(hq) = σ
f
A(h

′q) where h′ is obtained

from h by removing all cycles. We prove that σA is winning for Adam in the game G′
T

.

Let π be a play compatible with σA. By definition of σA, we can decompose π in

π = π1π2π3... such that each πj is a suffix of a play π′j compatible with σfA in Gf
T

. If all

πj are such that they don’t contain ” ⊥ ” but they end in a state q = (W,D, I, v) such

that 0 ∈ I and I ∩D = ∅, because of the monotonicity of I and D(Lemma 5.4.3), 0 ∈ I in

all states of Eve in πj′>j on π and since I ∩D = ∅, it means that all the states of π will

satisfy I ∩D = ∅ and therefore I ∩D ≠ ∅ appears a finite number of times which means

that Adam wins. Otherwise, if there is a πj that ends in ” ⊥ ”, then by definition of the

game arena(induced by the transition relation in TM) all πj′>j have Eve’s states equal to

” ⊥ ” which is again winning for Adam since they visit a finite number of times states in

the set F S. ∎

The fact that the plays in Gf
T

are stopped after the first loop, implies that they have

polynomial length as follows:

Lemma 5.4.4. All the plays of the game Gf
T

are of polynomial length in the size of the

interaction model M.

Proof. Since D and I are monotone, there are at most ∣Ω∣ + 1 different values that they

can take on a path of GT . Also, in the set W we can have at most one addition and one

removal for each process i ∈ Ω and hence 2 ⋅ ∣Ω∣ +1 different values for W . Therefore, along

a play π there are at most m = 1 + (2∣Ω∣ + 1) ⋅ (∣Ω∣ + 1)2 ⋅ ∣V ∣ different states. Then, since

all the plays in Gf
T

stop after the first cycle, the length of each play is of at most m + 1

states since there is only one state that appears twice. Therefore, all plays in Gf
T

have

polynomial length in Ω and V of the interaction model M. ∎

Thanks to Lemma 5.4.4 and Proposition 5.4.2, to decide the existence of a solution for

the non-cooperative synthesis in interaction modelM with Safety objectives is equivalent

to solve the two-player zero-sum finite game Gf
T

that has all the plays of polynomial size

in the size of M. According to Theorem 3.1.3, this can be done in Pspace using an

alternating Turing machine running in Ptime.

Theorem 5.4.2. The perfect information non-cooperative rational synthesis problem for

safety objectives is in Pspace.

Reachability Objectives

For the reachability objectives (Reach(Ri))i∈Ω, we have the same approach as in the case

of safety objectives but with a new meaning for the newly introduced set. We keep a set

J ⊆ Ω of agents that already reached their objectives in the past.

Initially, J = ∅ and it is updated as follows. Whenever a processes belongs to the set

J , this remains true for the successor nodes. Otherwise, whenever the game goes in a

125

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

state q = (W,D, v) such that v ∈ Ri for some i ∈ Ω, then i is added to the set J that is

associated to the state q. Note that along a play, the set J is monotone since there are

only additions of new processes.

The formal definition of the game is the same as in the case of Safety objectives, but

with the later semantics for the introduced set of processes. Then, the Eve’s winning

condition translates to the Büchi objective Θ = Buchi(FR) where

FR = ({⊺} × V) ∪ {(W,D,J, v) ∈ Q ∣W ⊆ J and (0 ∈ J or D ∖ J ≠ ∅)}

Since the sets J and D are monotonous and also W is establishing after at most 2k

changes, a play π satisfies the winning condition Θ iff

π↾VE ⊧ ◇◻ (⊺ ∨ (W ⊆ J ∧ (0 ∈ J ∨D ∖ J ≠ ∅)))

where π↾VE stands for the restriction of the play to Eve’s states and ⊺ holds in the states

from the set {⊺} × V .

Given the later property on the paths that are winning for Eve, one can define the

finite duration game Gf
T

as follows.

Finite Duration Game for Reachability NCRSP Given a two-player zero-sum

game G′
T

, we define the finite duration two-player zero-sum game Gf
T

over the same game

arena as G′
T

where each play ends after the first cycle. Then, a play π = xqyq in Gf
T

is

winning for Eve if either q ∈ {⊺} × V or q = (W,D,J, v) such that W ⊆ J and either 0 ∈ J

or D ∖ J ≠ ∅.

Proposition 5.4.3. Eve has a winning strategy in the game G′
T

iff she has a winning

strategy in the first cycle game Gf
T

.

Lemma 5.4.5. All the plays of Gf
T

are of polynomial length in the size of the interaction

model M.

The arguments for proving Proposition 5.4.3 and Lemma 5.4.5 are very similar as in

the case of Safety games since the set L is replaced by the set J in the Reachability case

having the same monotonic property. The only change appears in Proposition 5.4.3 in

the evaluation of the accepting condition which slightly differs.

The next complexity result is thanks to Lemma 5.4.5 and Proposition 5.4.3 and the fact

that the first cycle games can be solved in Pspace using an alternating Turing machine

running in Ptime.

Theorem 5.4.3. The perfect information non-cooperative rational synthesis problem for

reachability objectives is in Pspace.

126

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

Büchi Objectives

Consider now that the objective Θi of Process i is given as a Büchi set Fi ⊆ V for all

0 ≤ i ≤ k. A sequence v0v1v2... ∈ V ω belongs to Θi if and only if it satisfies the LTL[M]

formula ◻◇ Fi where Fi in this case is an abbreviation for ⋁v∈Fi v. Then, Eve’s winning

condition in the game GT is Θ = {π = q1Y1q2Y2 ⋅ ⋅ ⋅ ∈ (VEVA)ω ∣ π↾VE = q1q2 ⋅ ⋅ ⋅ ∈ α} where

α = Q∗({⊺} × V)ω ∪ {η ∈ IRuns(TM) ∩ {q0}(2
Ω × 2Ω × V)ω ∣

(η∣V ⊧ ◻◇ F0 ∨
k

⋁
i=1

(η∣V ⊭ ◻◇ Fi ∧ i ∈ limD(η))) ∧ ⋀
i∈limW (η)

η∣V ⊧ ◻◇ Fi}

Outline of the construction Our goal is to simplify the winning condition in the game

GT by slightly changing the game and finally to obtain a finite duration game. To do so,

we pass through tree intermediate games. First, we introduce two counters that allows us

to verify the two subconditions φW = ⋀i∈limW (η) η∣V ⊧ ◻◇Fi and φD = ⋁ki=1 (η∣V ⊭ ◻◇Fi∧i ∈

limD(η)). Then, we need another bit for further simplifications in the accepting condition

that lead to a parity game with only 6 priorities. Finally, having the parity game, we can

build a finite duration game that has all the plays of polynomial length.

First simplification: the two counters In order to check the satisfaction of α along

the plays of the game GT , we introduce two counters cW ∈ Ω∪{−1} and cD ∈ Ω∪{−1} in the

states of the game. The two counters help to monitor the appearance of states in Fi that

make the formulas φW = ⋀i∈limW (η) η∣V ⊧ ◻◇Fi and φD = ⋁ki=1 (η∣V ⊭ ◻◇Fi ∧ i ∈ limD(η))

true. The goal in using this counters is to write the formulas φW and φD as Büchi and

respectively co-Büchi conditions. Intuitively, whenever cW or cD equal to i means that a

state belonging to Fi is expected.

In order to correctly update the counters, we also need to keep in Adam’s states the

last previous state belonging to Eve. Note that by doing this, the size of the game remains

exponential in the size of the initial interaction gameM and the number of different states

along a play remains polynomial in the size of the initial interaction model.

Formally, given the game GT = ⟨VE, VA,E′, q0,Θ⟩, we define the new game G̃T =

⟨ṼE, ṼA, Ẽ, q̃0, Θ̃⟩ with q̃0 = (q0,−1,−1), ṼE = VE × (Ω ∪ {−1}) × (Ω ∪ {−1}), ṼA =

VA × VE × (Ω ∪ {−1}) × (Ω ∪ {−1}) and the transition relation Ẽ is such that

� ((qE, cW , cD), (qA, qE, cW , cD)) ∈ Ẽ iff (qE, qA) ∈ E′ for qE ∈ VE and qA = Y ∈ VA

� ((qA, qE, cW , cD), (q′E, c
′
W , c

′
D)) ∈ Ẽ iff (qA, q′E) ∈ E

′ where qE ∈ VE and qA = Y ∈ VA
and

127

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

c′W =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1 if qE =⊥ or qE ∈ {⊺} × V

or q′E = (W ′,D′, v′) s.t. W ′ = ∅

min{(cW + l) mod k ∈W ′ ∣ l > 0} if qE = (W,D, v), q′E = (W ′,D′, v′)

s.t. W ′ ≠ ∅ ∧ (v ∈ FcW ∨ cW ∈W ∖W ′ ∨W = ∅)

cW otherwise

and

c′D =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1 if qE =⊥ or qE ∈ {⊺} × V

or q′E = (W ′,D′, v′) s.t. D′ = ∅

min{(cD + l) mod k ∈D′ ∣ l > 0} if qE = (W,D, v), q′E = (W ′,D′, v′)

s.t. D′ ≠ ∅ and (v ∈ FcD or D = ∅)

cD otherwise

Note that a play π ∈ (ṼE, ṼA)ω is in exec(G̃T) if and only if π′ obtained from π by

projecting away cW and cD (and qE from Adam’s nodes) is in exec(GT). The role of the

counters cW and cD is to wait for the first occurrence of a state such that v ∈ FcW and

v ∈ FcD respectively as follows.

Initially, the information in cW is first −1, meaning that there is nothing to verify yet

(W = ∅). Then, the value changes in three cases. First, if in the current state W = ∅ and

one process is added in W ′, the value of c′w is the index of that process. The second case

is when a final state for the Process cw is reached, the final set of the process having the

next index in W ′ is waited. Finally, it may be the case that the process cw for which was

expected the final state FcW is removed from the state W . In this case, we stop waiting for

such a final state and pass to the next process. If none of the three conditions is satisfied,

the value of cw remains unchanged. The above definition of cw correctly simulates the

formula φW defined above by verifying that infinitely often is reached a state when v ∈ Fcw
and cw takes the smallest index in W . This is since the value of W eventually establishes

to some limit (say Wlim) and then it only waits for final states of all processes in Wlim.

The information in cD is updated similarly. Intuitively, the process having the index

cD is assumed to be the one that loses along he play. Then, when one of its final states is

reached, the next process becomes the candidate to lose. Therefore, if some process in D

(which eventually stabilizes) loses, the value of cD remains unchanged. Then, the formula

φD defined above holds in states where v ∈ FcD and cD is the smallest index in D appears

only a finite number of times.

Let us identify as q = (W,D, v) ⊧ Fi the fact that v ∈ Fi. Also, for a play π in G̃T , let

π↾VE stand for the restriction on Eve’s states. Then, the following two lemmas prove that

the above intuitions are correct.

Lemma 5.4.6. For a play π in G̃T , if π↾VE ∈ {q0}{q0}(2Ω × 2Ω × V)ω and Wlim =

limW (π↾VE),

128

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

π↾VE ⊧ ⋀
i∈Wlim

◻◇ Fi iff π↾VE ⊧ ◻◇Hw

where Hw = {(W,D, v, cW , cD) ∈ ṼE ∣W = ∅ ∨ (v ∈ FcW ∧ cW =min{i ∈W})}

Proof. Note that since we considered π↾VE ∈ {q0}{q0}(2Ω × 2Ω × V)ω, states in {⊺} × V

are not reached by π. Let us first treat the case Wlim = ∅, then π ⊧ true and also

π↾VE ⊧ ◻◇Hw since the only set W visited infinitely often is ∅.

Now, consider Wlim ≠ ∅. If π↾VE ⊧ ⋀i∈Wlim
◻ ◇ Fi, then inf(π∣cW) = Wlim by the

construction of the game G̃T (whenever a final state is reached, the counter cW is increased

to the next process in W). Then, we see an infinite number of times final states of the

”smallest” process in W, i.e., states in which v ∈ FcW and cW = min{i ∈ W} and then

π↾VE ⊧ ◻◇Hw.

In the other direction, if we see an infinite number of times states with v ∈ FcW and

cW = min{i ∈ W}, because of the construction of the game, once we reach a final state

with v ∈ FcW the counter cW is increased to the next process in W and so on. Therefore,

between two states having v ∈ FcW and cW =min{i ∈W}, the projection on the direction

visits all the states Fi where i ∈W . Then, since W is stabilizes to Wlim and since we visit

an infinite number of times final states with v ∈ FcW where cW = min{i ∈ Wp}, it means

that we visit infinitely often the final states of all processes in limW (π) and therefore

π↾VE ⊧ ⋀i∈Wp
◻◇ Fi. ∎

Lemma 5.4.7. For a play π in G̃T , if π↾VE ∈ {q0}{q0}(2Ω × 2Ω × V)ω and Dlim =

limD(π↾VE),

π↾VE ⊧ ⋁
i∈Dlim

◇◻¬Fi iff π↾VE ⊧ ◇◻ ¬Hd

where Hd = {(W,D, v, cW , cD) ∈ VE ∣D = ∅ ∨ (v ∈ FcD ∧ cD =min{i ∈D})}

Proof. The proof is similar to the proof of the previous Lemma. Indeed, if Dlim = ∅, then

by the monotonicity of D, all the states along the play are such that D = ∅ and then both

π↾VE ⊧ ⋁i∈Dlim◇◻¬Fi and π↾VE ⊧ ◇◻ ¬Hd are false.

If Dlim ≠ ∅, and π↾VE ⊧ ⋁i∈Dlim◇◻¬Fi, then there is a process that sees finitely often

Fi. Therefore, from the construction of the game G̃T , there is a process that blocks the

cycling through all the values in D for the counter cD and for that process, there are

eventually seen only non-final states. That is, there are not seen infinitely often states in

which v ∈ FcD and cD =min{i ∈D} and therefore π↾VE ⊧ ◇◻ ¬Hd.

In the other direction, if π↾VE visits finitely often states in which v ∈ FcD and cD =

min{i ∈ D}, from the definition of the game G̃T , either FcD is seen a finite number of

times along π, or there is a i ∈ D, i ≠ min{i ∈ D}, that blocks the cycling of cD through

all the values in D. Therefore, since D stabilizes to Dlim, there is a process i ∈Dlim such

that π↾VE ⊧ ◇◻ ¬Fi. ∎

129

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

Using Lemmas 5.4.6 and 5.4.7, if we note H⊺ = {q ∈ ṼE ∣ q∣VE ∈ {⊺} × V } and H0 =

{(W,D, v, cW , cD) ∈ VE ∣ v ∈ F0} Eve’s winning condition in the game G̃T is rewritten as

Θ̃ = {π ∈ (ṼEṼA)
ω ∣ π↾VE ⊧ ◇◻H⊺ ∨ ((◻◇H0 ∨◇◻ ¬Hd) ∧ ◻◇Hw)}

Note that by asking to see infinitely often Hw, there are also avoided the states containing

q =⊥. Also, the above formula ◇◻H⊺ ∨ ((◻◇H0 ∨◇ ◻ ¬Hd) ∧ ◻◇Hw) is equivalent to

◇◻H⊺ ∨ (◻◇H0 ∧ ◻◇Hw) ∨ (◇ ◻ ¬Hd ∧ ◻◇Hw), which leads to the following.

Second simplification: An extra bit Now, to be able to check if a path satisfies

◻◇H0 ∧ ◻◇Hw, we need to introduce a counter b ∈ {0,1} in the states of the game G̃T
as follows.

Given the game G̃T from above, we define a game ĜT = (V̂E = ṼE × {0,1}, V̂A = ṼA ×

{0,1}, (q̃0,0), Ê, Θ̂) where

� ((q, b), (q′, b′)) ∈ Ê iff (q, q′) ∈ Ẽ and b′ =

⎧⎪⎪
⎨
⎪⎪⎩

1 − b if q ∈Hw ∪H0

b otherwise

� Θ̂ = {π ∈ (V̂EV̂A)ω ∣ π↾VE ⊧ ◇◻H
′
⊺∨◻◇H

′
0∨(◇◻¬H

′
d∧◻◇H

′
w)} whereH ′

⊺ =H⊺×{0,1},

H ′
0 =H0 × {0}, H ′

d =Hd × {0,1} and H ′
w =Hw × {0,1}.

The intuition is similar as in the case of counter cw. The bit b waits alternatively

for H0 and Hw to appear. Note that the updates of the counter b are deterministic.

Therefore, for each path π in G̃T , there is an unique corresponding path π′ in G̃T such

that by projecting away the counter b from π′, we obtain the path π.

The following lemma says the fact that the two games G̃T and ĜT are equivalent. That

is, verifying the fact that ◻ ◇H0 ∧ ◻ ◇Hw holds, is equivalent to verifying that the set

H0 × {0} is visited infinitely often.

Lemma 5.4.8. Let π′ ∈ exec(ĜT) and π ∈ exec(G̃T) obtained from π′ by projecting away

the counter b. Then,

π↾VE ⊧ ◇◻H⊺∨((◻◇H0∨◇◻¬Hd)∧◻◇Hw) iff π′↾VE ⊧ ◇◻H
′
⊺∨◻◇H

′
0∨(◇◻¬H

′
d∧◻◇H

′
w)

Reduction to Parity condition Further, we express Eve’s winning condition Θ̂ = {π ∈

Plays(ĜT) ∣ π↾VE ⊧ ◇◻H ′
⊺ ∨◻◇H ′

0 ∨ (◇◻¬H ′
d ∧◻◇H ′

w)} using a parity condition where

the priority function pr defined as follows:

pr(q ∈ V̂E) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if q /∈H ′
⊺ ∧ q ∈H

′
0

1 if q /∈H ′
⊺ ∧ q /∈H ′

0 ∧ q ∈H
′
d

2 if q /∈H ′
⊺ ∧ q /∈H ′

0 ∧ q /∈H ′
d ∧ q ∈H

′
w

3 if q /∈H ′
⊺ ∧ q /∈H ′

0 ∧ q /∈H ′
d ∧ q /∈H ′

w

4 if q ∈H ′
⊺

130

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

For all states belonging to Adam, we set the priority pr(q ∈ V̂A) = 6, so they have no

influence and only the sequence of states corresponding to the automaton TM are verified.

The following lemma proves that the reduction is correct.

Lemma 5.4.9. Let π ∈ exec(ĜT). Then

π↾VE ⊧ ◇◻H ′
⊺ ∨ ◻◇H ′

0 ∨ (◇◻ ¬H ′
d ∧ ◻◇H ′

w) iff min{pr(q)) ∣ q ∈ inf(π)} is even

Finite Duration Game for Büchi NCRSP Now, given a two-player zero-sum parity

game ĜT with the priority function pr defined above, we define the first cycle two-player

zero-sum game Gf
T

over the same game arena as ĜT where each play ends after the first

cycle. Then, a play π = xqyq in Gf
T

is winning for Eve iff min{pr(yq[j]) ∣ 0 ≤ j < ∣yq∣} is

even.

Proposition 5.4.4. Eve has a winning strategy in the game ĜT iff she has a winning

strategy in the first cycle game Gf
T

.

The proof for Proposition 5.4.4 is similar to the ones in the case of Safety. The

difference in this case is that the smallest priority on each loop has to be even when Eve

wins.

Lemma 5.4.10. All the plays in Gf
T

are of polynomial length in the size of the interaction

model M.

Proof. It follows from the monotonicity of D and quasi-monotonicity of W and the fact

that 1 ≤ cW , cD ≤ k and b ∈ {0,1}. ∎

The following theorem follows from Proposition 5.4.4 and Lemma 5.4.10 and the fact

that the finite duration game Gf
T

can be solved in PSpace using an alternating Turing

machine running in PTime.

Theorem 5.4.4. The perfect information non-cooperative rational synthesis problem for

Büchi objectives is in PSpace.

coBüchi Objectives

In the case when the objectives of the processes are given as coBüchi conditions Fi ⊆

V , Eve’s winning condition in the game GT constructed in Section 5.4.1 is Θ = {π =

q1Y1q2Y2 ⋅ ⋅ ⋅ ∈ (VEVA)ω ∣ q1q2 ⋅ ⋅ ⋅ ∈ α} where

α = Q∗({⊺} × V)ω ∪ {η ∈ IRuns(TM) ∩ {q0}(2
Ω × 2Ω × V)ω ∣

(η∣V ⊧ ◇◻ ¬F0 ∨
k

⋁
i=1

(η∣v ⊭ ◇◻ ¬Fi ∧ i ∈ limD(η))) ∧ ⋀
i∈limW (η)

η∣V ⊧ ◇◻ ¬Fi)}

131

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

As in the case of Büchi objectives, the goal is to obtain a parity game with 5 priorities

and then to reduce to a finite duration game. This is simply done by rewriting the winning

condition as in the following two lemmas. We say that a state q = (W,D, v) ⊧ Fi if v ∈ Fi.

Lemma 5.4.11. For a play π in GT , if π↾VE ∈ {q0}{q0}(2Ω × 2Ω × V)ω and Wlim =

limW (π↾VE), then

π↾VE ⊧ ⋀i∈Wlim
◇◻¬Fi iff π↾VE ⊧ ◇◻ ¬Hw

where Hw = {(W,D, v) ∈ VE ∣ v ∈ ⋃i∈W Fi}.

Proof. This holds because all Eve’s states that appear an infinite number of times along

π have W =Wlim (W stabilizes along a play) and visiting a finite number of sets a finite

number of time is equivalent to visiting their union a finite number of times. ∎

Lemma 5.4.12. For a play π in GT , if π↾VE ∈ {q0}{q0}(2Ω × 2Ω × V)ω and Dlim =

limD(π↾VE), then

π↾VE ⊧ ⋁i∈Dlim ◻◇ Fi iff π↾VE ⊧ ◻◇Hd

where Hd = {(W,D, v) ∈ VE ∣ v ∈ ⋃i∈D Fi}.

Proof. This holds because all the states that appear an infinite number of times along π

have D =Dlim (D stabilizes along a play) and visiting one set among F1, ..., Fr an infinite

number of times is equivalent to visiting their union an infinite number of times. ∎

Let us now define H0 = {(W,D, v) ∈ VE ∣ v ∈ F0} and H⊺ = {q ∈ VE ∣ q ∈ {⊺}×V }. Then,

using Lemmas 5.4.11 and 5.4.12, we get that Eve’s winning condition is equivalent to

Θ = {π ∈ (VEVA)
ω ∣ π↾VE ⊧ ◇◻H⊺ ∨ ((◇ ◻ ¬H0 ∨ ◻◇Hd) ∧◇ ◻ ¬Hw)}

Let I = H0 ∪Hw. Then the above formula is equivalent to ◇ ◻H⊺ ∨ ◇ ◻ ¬I ∨ (◻ ◇

Hd ∧◇◻¬Hw). Further, from the construction, a play cannot alternate states in H⊺ and

I (once in H⊺, all the future states are in the same set). Therefore, we can define the set

J =H⊺ ∪ (VE ∖ I) and equivalently write ◇◻ J instead of ◇◻H⊺ ∨◇◻ ¬I.

Note that the condition Θ restricts only the sequence of Eve’s states. Therefore, when

transforming to a parity condition, we set the priority of Adam’s states even and high

enough to have not influence.

Reduction to Parity Condition Given the two player game GT , we define Eve’s

winning condition as a parity condition with the priority function pr ∶ (VE∪VA) → {1, ..,6}

with

pr(q ∈ VE) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if q /∈ J ∧ q ∈Hw

2 if q /∈ J ∧ q ∈Hd ∧ q /∈Hw

3 if q /∈ J ∧ q /∈Hd ∧ q /∈Hw

4 if q ∈ J

132

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

For states belonging to Adam, we just put priority pr(q ∈ VA) = 6, so that they have no

influence.

The following lemma is easy to prove by considering all the cases in the definition of

the priority function.

Lemma 5.4.13. Let π ∈ exec(GT). Then,

π↾VE ⊧ ◇◻H⊺ ∨ ((◇ ◻ ¬H0 ∨ ◻◇Hd) ∧◇ ◻ ¬Hw) iff min{pr(q) ∣ q ∈ inf(π)} is even

Now, having a parity objective for the game GT , we define the finite duration game

Gf
T

ans we did in the case of Buchi objectives for NCRSP. The plays of the finite duration

game also have polynomial length in the size of the interaction model M. Therefore,

there is an alternating Ptime (PSpace) algorithm to solve the NCRSP. We omit further

proofs and definition since they are the same as in the previous section.

Theorem 5.4.5. The perfect information non-cooperative rational synthesis problem for

coBüchi objectives is in PSpace.

Muller Objectives

In the case of Muller objectives, we cannot apply the same technique as in the previous

cases. This is because Muller condition asks that the set of states appearing infinitely

often represents a valuation that makes the formula µ true. Then, the reduction to finite

duration games does not work since two individual loops may satisfy the condition µ, but

their alternation does not satisfy it. Therefore, we apply other techniques to solve the

game GT as follows.

To establish the ExpTime upper bound for the rest of the objectives we consider in

this chapter, it suffices to establish it for Muller objectives. This is because Streett, Rabin

and parity objectives can be polynomially expressed as Muller conditions.

Let us consider the Muller objectives Muller(µi) for the k + 1 processors in M. Then,

Eve’s winning condition in the game GT is Θ = {π = q1Y1q2Y2 ⋅ ⋅ ⋅ ∈ (VEVA)ω ∣ π↾VE =

q1q2 ⋅ ⋅ ⋅ ∈ α} where

α = Q∗({⊺} × V)ω ∪ {η ∈ IRuns(TM) ∩ {q0}(2
Ω × 2Ω × V)ω ∣

(η∣V ∈ Muller(µ0) ∨
k

⋁
i=1

(η∣V /∈ Muller(µi) ∧ i ∈ limD(η))) ∧ ⋀
i∈limW (η)

η∣V ∈ Muller(µi))}

We transform GT into a two-player zero-sum parity game with an exponential number

of states but a polynomial number of priorities, which can be solved in Exptime (in the

size ofM). This reduction is based on the Last Appearance Record (LAR) [43, 94], which

allows us to identify states in V appearing infinitely often.

133

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

Least Appearance Record (LAR) Let us first recall the LAR[43, 94] construction.

For the given set of states V , we define the deterministic transition system LARV that

records the most recent states in V that appeared along an execution. We let P (V) the

set of permutations of V , which we denote by words of length n over alphabet V such

that each element of V appears exactly once. Then the deterministic finite automaton

that records the last states appeared in a sequence of elements in V is defined as LARV =

⟨M = P (V) × {0, . . . , ∣V ∣ − 1}, (m0, h0),→⟩ where M is the set of states, the initial state is

such that m0 = v1 . . . vn and h0 = 1, and the deterministic transition relation is such that

(m,h)
v
Ð→ (x1x2v, ∣x1∣) with m = x1vx2 for some x1, x2 ∈ V ∗.

Let (m,h) be a state of LARV . Then, h is called the hit, representing the position

from which the last state v is taken and moved to the back. Also, the states after position

h on in m are the most recent states v seen along the path, called recent states. Then,

let ξ = v0v1v2... be an infinite sequence of states in V . A path in LARV on ξ is a infinite

sequence r(ξ) = (m0, h0)(m1, h1)(m2, h2)... such that (m0, h0) ∈ M and for all j ≥ 1,

(mj−1, hj−1)
vj−1
ÐÐ→ (mj, hj). Let hmin be the smallest hit appearing infinitely often along

r(ξ). Then, the set of vertexes v in m situated after position hmin is always the same from

some point on and is equal to inf(ξ), i.e., the sequence of subsets ({mi[l] ∣ l ≥ hmin})i≥0

eventually stabilizes to inf(ξ).

Reduction to Parity Game We use the LAR construction to reduce the game GT
(defined in Section 5.4.1) to the parity game G̃T obtained by taking the product of GT
and LARV as follows.

Given the two-players zero-sum game GT = (VT = VE ⊎ VA, q0,E′,O) and the

deterministic transition system LARV defined as above, we define the parity game

G̃T = (Ṽ = ṼE ⊎ ṼA, q̃0, Ẽ, pr) where Ṽ = VT ×M , q̃0 = (q′0, (m0, h0)) and the set E′ is

defined by

� ((qE, (m,h)), (qA, (m,h))) ∈ E′ iff (qE, qA) ∈ E with qE ∈ VE and qA = Y ∈ VA

� ((qA, (m,h)), (qE, (m′, h′))) ∈ E′ iff (qA, qE) ∈ E where qE ∈ VE and qA = Y ∈ VA and

(m′, h′) is defined as follows:

– (m,h)
qE ∣V
ÐÐ→ (m′, h′) if qE /∈ {⊥} ∪ ({⊺} × V)

– (m′, h′) = (m,h) if qE ∈ {⊥} ∪ ({⊺} × V)

Finally, the priority function pr ∶ Ṽ → {0, ...,2∣V ∣+2} is defined as follows: pr(⊥,m,h) =

1, pr(q⊺,m,h) = 0 for q⊺ ∈ {⊺} × V and

pr((W,D, v), (m,h)) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

2h if ∀i ∈W{m[l] ∣ l ≥ h} ⊧ µi and

({m[l] ∣ l ≥ h} ⊧ µ0 or ∃i ∈D s.t. {m[l] ∣ l ≥ h} ⊧ ¬µi)

2h + 1 otherwise

134

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

For states whose first component belongs to Adam, we just put priority 2∣V ∣ + 2, so that

they have no influence.

Intuitively, the priority function associates an even priority to the states having the

most recent set of states {m[l] ∣ l ≥ h} such that it first satisfies the winning condition of

all agents in W and also either satisfies the Muller condition µ0 of Process 0, or there is

a process i that has a deviation, but loses. All the other states have off priorities.

Let π a play in GT . According to the definition above, there is a unique play π′ in

G̃T such that by projecting away the LAR construction along π′, we obtain the play π.

Also, the LAR component changes only on states belonging to Eve which helps verifying

the winning condition Θ. The following lemma proves the equivalence between the two

games.

Lemma 5.4.14. Let π a play in GT and the corresponding play π′ in G̃T . Then,

π ∈ Θ iff π′ ∈ Parity(pr)

Proof. Let hmin be the smallest hit appearing infinitely often along π′. As remarked

before, {m[l] ∣ l ≥ hmin} = inf(π′↾VE ∣V) = inf(π↾VE ∣V).

Let π ∈ Muller(µ0). This is equivalent to {m[l] ∣ l ≥ hmin} ⊧ µ0. If Dlim = limD(π↾VE),

the fact that ∃i ∈ Dlim s.t. inf(π↾VE ∣V) /∈ Muller(µi), since π↾VE ∣D = π′↾ṼE ∣D and {m[r] ∣

r ≥ hmin} = inf(π′↾ṼE ∣V) = inf(π↾VE ∣V), is equivalent with {m[l] ∣ l ≥ hmin} ⊭ µi.

Also, considering Wlim = limW (π↾VE), the property that ∀i ∈Wlim, π↾VE ∣V ∈ Muller(µi)

translates to inf(π↾VE ∣V) = {m[l] ∣ l ≥ hmin} ⊧ µi.

From the above, π ∈ Θ if and only if the smallest priority appearing infinitely often

when hitting hmin is 2hmin which is even and therefore π′ ∈ Parity(pr). ∎

Theorem 5.4.6. The perfect information non-cooperative rational synthesis problem with

Muller objectives is in Exptime.

Proof. The complexity comes from the fact that the game G̃T is a two-player Parity game

with exponential number of states, but with polynomial number of priorities which can be

solved in Exptime. This is because parity games can be solved in PTime in the number

of states and exponential in the number of priorities [51, 80], so proving the theorem. ∎

5.4.3 Lower Bounds for NCRSP

In this section we provide some lower bounds to the complexity of the non-cooperative

rational synthesis problem. More precisely, we prove that for each type of objective X ∈

{Reach,Safe, Büchi, coBüchi, Street,Rabin, Parity, Muller}, a PSpace lower bound applies

to the corresponding non-cooperative rational synthesis problem. The result is obtained

by reduction from the quantified boolean formula (QBF) problem.

135

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

Theorem 5.4.7. For each X ∈ {Reach,Safe,Buchi, coBuchi,Street,Rabin,Parity,Muller},

the perfect information non-cooperative rational synthesis problem with objectives of type

X is PSpace-h.

Proof. By reduction from QBF. Let ψ = ∃x1∀x2...∃xmγ(x1, x2, ..., xm) be a QBF in 3CNF

with k clauses C1,C2, ...,Ck.

Given X ∈ {Reach,Safe,Buchi, coBuchi,Street,Rabin,Parity,Muller}, we build an

interaction modelMψ with processes having objectives of type X so that ψ is true if, and

only if, there is a solution to the non-cooperative rational synthesis problem inMψ. The

interaction model Mψ involves 2m + 2 agent Ω = {A,B,P10, P11, P20, P21, . . . , Pm0, Pm1}.

Intuitively, Agent A (Process 0 to synthesize) controls the existential variables, while

Agent B (first process of the environment) controls the universal ones. Figure 5.5 presents

a sketch of the interaction model where the circle nodes are owned by Agent A, the

diamond ones by Agent B, and the rectangular ones by Agents P10, P11 . . . , Pm0, Pm1 as

specified below.

x1start

1x1 ∈WP11P11

v1

0x1 ∈WP10P10

v2

x2

...

...

xm

1xm ∈WPm1Pm1

v2m−1

0xm ∈WPm0Pm0

v2m

z

C1

...

Ck

l11

l12

l13

...

...

...

Figure 5.5: NCRSP lower bounds: Reduction from QBF

For each existential (resp. universal) variable xi the interaction model Mψ contains

a node xi controlled by the Agent A (resp. by Agent B). For each node xi,1 ≤ i < m, it

contains the edges (xi,0xi), (xi,1xi), (0xi , xi+1), (1xi , xi+1), where the vertex 0xi (resp. 1xi)

intuitively represents the value val(xi) = 1 (resp. val(xi) = 0) for the variable xi. For

each 1 ≤ i ≤ m, the value-node 1xi (resp. 0xi) is controlled by Agent Pi1 (resp. Pi0) and

has a further edge leading to the self-loop over the node v2i−1 (resp. v2i), owned by the

136

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

Agent A. The value nodes 1xm ,0xm (for the last variable xm) are then connected to a

vertex z controlled by Agent B, where intuitively Agent B can choose a clause (i.e. an

edge (z,Ci),1 ≤ i ≤ k, out from z). Each clause-node Ci, controlled by the Agent A, has

three outgoing edges toward the terminal nodes (with self-loops) li1, li2, li3, one for each

literal in Ci.

Given the interaction model described above, the objectives of agents are properly

designed so that the following conditions are satisfied:

(i) Given vi, where 1 ≤ i ≤ 2m, each lasso-path ending up into vi is winning for each

agent in the interaction model.

(ii) Given lij, where 1 ≤ i ≤ k and 1 ≤ j ≤ 3, each lasso-path ending up into lij is

winning for each agent in the interaction model except the process to synthesize

(i.e. Agent A) and the Process Pcb, where:

(lij = xc ∧ b = 1) ∨ (lij = ¬xc ∧ b = 0)

(iii) Agent B wins on all executions

Note that condition (i) implies that for each 1 ≤ i ≤ m and b ∈ {0,1}, the vertex bxi
belongs to the winning region WPib of Process Pib since it is controlled by him and has

can choose to go in a state winning for Pib.

We claim that the formula ψ is true if, and only if, there is a solution for the

non-cooperative rational synthesis problem in the interaction model M defined above.

Assume that ψ is true. Then, the existential player has a winning strategy in the

QBF game associated to ψ. Therefore, Agent A can play in Mψ according to such a

strategy up to the node z, ensuring a configuration of variables such that all the clauses

are satisfied. Therefore, from each clause node Ci, 1 ≤ i ≤ k, Agent A can choose one

literal lij, 1 ≤ j ≤ 3, that makes true Ci and go to the corresponding node lij. Each

execution ρ onMψ compatible with such a strategy for Agent A is either winning for him

(since it does not reach z, i.e. is a lasso-path to some vi, where 1 ≤ i ≤ 2m) or it ends up

into a node lij such that: either lij = xh and ρ passed trough 1xh or lij = ¬xh and ρ passed

trough 0xh (i.e. either Agent Ph1 or Agent Ph0 doesn’t play a Nash equilibrium since he

loses but passed trough his winning region).

Otherwise, assume that ψ is false. Then, the universal player has a winning strategy

σ in the QBF game associated to ψ. Consider a strategy profile (for the environment)

where Agent B plays according to σ and each Process Pib, for 1 ≤ i ≤ m,b ∈ {0,1}, plays

to the next variable-node (or to z). Once in z, Agent B can choose a clause Ci that is

false according to the instantiation of variables along the path followed so far. Therefore,

for any choice of Agent A from Ci, the play will be losing for him and will be compatible

with a 0-fixed Nash equilibrium. Indeed, let lij be the choice of Agent A from Ci. Then,

137

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

there is an index c such that lij = xc or lij = ¬xc. In the first case, Agent Ph1 loses but he

could not avoid it (since the play did not pass trough 1xh and he never played) and each

other agent in the environment wins. In the second case Ph0 loses but he could not avoid

it (since the play did not pass trough 0xh and he never played) and each other agent in

the environment wins.

To conclude the proof, we just need to show that the objectives of type X of the agents

in the interaction modelMψ can be defined in order to satisfy the conditions (i) and (ii)

above, for each X ∈ {Safe,Reach,Buchi, coBuchi,Street,Rabin,Parity,Muller}, .

� X = Safe. The safety objective for each agent is defined as follows. SA = V ∖ {(lij ∣

1 ≤ i ≤ k, 1 ≤ j ≤ 3}, SB = V , and for each c ∈ {1, . . . ,m}: SPc1 = V ∖ {lij ∣ 1 ≤ i ≤

k, 1 ≤ j ≤ 3 and lij = xc} and SPc0 = V ∖ {lij ∣ 1 ≤ i ≤ k, 1 ≤ j ≤ 3 and lij = ¬xc}

� X = Reach. The reachability objective for each agent is defined as follows: RA =

{vi ∣ 1 ≤ i ≤ 2m}, RB = V , and for each c ∈ {1, . . . ,m}, the reachability objective of

Pc1 is RPc1 = {vi ∣ 1 ≤ i ≤ 2m} ∪ {lij ∣ 1 ≤ i ≤ k, 1 ≤ j ≤ 3 and lij ≠ xc} and the one for

Pc0 is RPc0 = {vi ∣ 1 ≤ i ≤ 2m} ∪ {lij ∣ 1 ≤ i ≤ k, 1 ≤ j ≤ 3 and lij ≠ ¬xc}.

� X = Büchi. The Büchi objectives of the agents are defined as follows: FA = {vi ∣ 1 ≤

i ≤ 2m}, FB = V , and for each c ∈ {1, . . . ,m}: FPc1 = V ∖ {lij ∣ 1 ≤ i ≤ k, 1 ≤ j ≤

3 and lij = xc} and FPc0 = V ∖ {lij ∣ 1 ≤ i ≤ k, 1 ≤ j ≤ 3 and lij = ¬xc}

� X = coBüchi. The co-Büchi objectives of the agents are defined as follows. The

coBüchi objective of Process A is FA = {lij ∣ 1 ≤ i ≤ k, 1 ≤ j ≤ 3}. The coBüchi

objective of Process B is FB = ∅. For each c ∈ {1, . . . ,m}, the coBüchi objective of

Pc1 is {lij ∣ 1 ≤ i ≤ k, 1 ≤ j ≤ 3 and lij = xc} and the objective of Pc0 is {lij ∣ 1 ≤ i ≤

k, 1 ≤ j ≤ 3 and lij = ¬xc}

� X ∈ {parity, Street, Rabin}. The PSpace-hardness for the non-cooperative rational

synthesis for parity, Streett and Rabin comes directly from the fact that we can

easily express any Büchi condition as a parity, Streett or Rabin condition.

� X = Muller. The PSpace-hardness for the non-cooperative strategy synthesis

problem for Muller games follows from the fact that 0-sum two player Muller games

are PSpace-hard (we could clearly also define proper Muller objectives inMψ that

satisfy conditions (i),(ii) and (iii)).

∎

5.4.4 NCRSP with Fixed Number of Processes

We finally prove the upper bounds and the lower bounds to the complexity of k-fixed

NCRSP, reported in the last column of Table 5.1.

138

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

Upper Bounds to k-fixed NCRSP

For O ∈ {Safety,Reachability,Buchi, coBuchi}, a polynomial upper bound applies, as shown

in the following Theorem.

Theorem 5.4.8. The perfect information non-cooperative rational synthesis problem for

a fixed number of processes with Safety, Reachability, Büchi and co-Büchi objectives can

be solved in Ptime.

Proof. In the case of a fixed number k + 1 of processes, we obtain the polynomial size

two-player zero-sum game GT and a fixed objective φ, where φ ∈ {ϕs, ϕr, ϕc, ϕb} are the

formulas characterizing the winning objectives in the case of Safety, Reachability, Büchi

and coBüchi games. Namely, one has to verify the formulas ϕs = ◻ ◇ F S, ϕr = ◇ ◻ FR,

ϕb = ◇◻H⊺∨((◻◇H0∨◇◻¬Hd)∧◻◇Hw), and ϕc = ◇◻H⊺∨((◇◻¬H0∨◻◇Hd)∧◇◻¬Hw),

where the sets F S, FR, H⊺, H0, Hd and Hw are defined in Section 5.4.2 for different types

of objectives.

First, we can label in polynomial time the nodes of the game GT with atomic

propositions atomic propositions F S(for safety), FR(for reachability), H⊺, H0, Hd and

Hw(for Buchi and coBuchi respectively defined according the considered condition). Each

node is labeled with the atomic proposition corresponding to the set it belongs.

Then, since the formula φ is constant over the newly introduced atomic propositions,

we get a constant size automaton Aφ equivalent to the LTL formula φ and by taking the

product Aφ × GT we obtain a Büchi game that can be solved in polynomial time [23]. ∎

The procedure outlined within the proof of Theorem 5.4.8 does not yield a polynomial

upper bound for the remaining objectives considered in this thesis. However, we show

that the non-cooperative rational synthesis problem with fixed number of processes having

Muller objectives can be solved in PSpace (cfr. Theorem 5.4.9). This entails a PSpace

upper bound also for NCRSP with respect to X ∈ {Parity,Streett,Rabin} objectives and

fixed number of processes.

Theorem 5.4.9. The perfect information non-cooperative rational synthesis problem with

a fixed number of processes having Muller objectives is in PSpace.

Proof. For a fixed number k+1 of processes , the game GT has size polynomial in the size

of the interaction model M. Moreover, Eve’s objective in GT is equivalent to a Muller

condition µ that is polynomial in the size of the game, as we show below. The complexity

result follows then from the fact that G two-players zero-sum Muller games can be solved

in PSpace [48].

To conclude the proof, we show how to transform Eve’s objective Θ (when each process

in the interaction modelM has an implicit Muller condition µi) into an unique equivalent

implicit Muller objective µ. Note that we can ignore the states belonging to Adam and

139

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

define the objective µ only on Eve’s states. This is correct since by doing so, we let

the apparition of Adam’s states unrestricted by the implicit Muller condition, which is

desired.

First, for each tuple (W,D, v), we consider an atomic proposition xW,D,v. Note that

since the number of processes is fixed, the state space of the game GT is polynomial and

so is the size of the set of newly introduced atomic propositions. Then, let consider the

Muller condition µ0 and η ∈ IRuns(TM) ∩ {q0}(2Ω × 2Ω × V)ω such that η∣V ∈ Muller(µ0).

Since the sets W and D stabilize along η, we can equivalently write that η ∈ Muller(µ′0)

where

µ′0 = µ0[v ← ⋁
W,D

xW,D,v]

is the boolean formula where each state v in is replaced by a disjunction for all W and

D of xW,D,v. Further, the condition ψi = (η∣V /∈ Muller(µi) ∧ i ∈ limD(η)) asks that the

Process i belongs to D (therefore has a profitable deviation) from a position on, but his

Muller condition µi is not satisfied. Using again the monotonicity of the sets W and D,

we can rewrite the condition ψi as a Muller condition

µDi = ⋀
D⊆Ω
i∈D

((⋁
W,v

xW,D,v) → ¬µi[v ←⋁
W

xW,D,v])

Intuitively, the formula says that for the set D that appears infinitely often (after

stabilization) that contains i, the formula ¬µi holds for some W (that is also fixed after

some steps). Similarly, we take the condition ⋀i∈limW (η) η∣V ∈ Muller(µi) and write the

equivalent Muller condition

µW = ⋀
W⊆Ω

((⋁
D,v

xW,D,v) → ⋀
i∈W

µi[v ←⋁
D

xW,D,v])

The formula says that for the set W that appears infinitely often, for all the players in

this set, the Muller condition µi holds for some D.

Finally, the condition that η ∈ Q∗({⊺} × V)ω can be expressed using an atomic

proposition x⊺ that is true only in the states belonging to {⊺} × V as µ⊺ = x⊺ since

once η goes outside {⊺} × V , it goes to ⊥ and all the following states equal ⊥. Therefore,

the objective of Eve in the game GT is equivalent to the Muller condition Θ = Muller(µ)

with

µ = µ⊺ ∨ ((µ′0 ∨
k

⋁
i=1

µDi) ∧ µW)

∎

Corollary 5.4.1. The perfect information non-cooperative rational synthesis problem with

a fixed number of processors having all Parity, Street or Rabin objectives is in PSpace.

140

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

Lower Bounds to k-fixed NCRSP

In this section we prove the lower bounds for the complexity of non-cooperative rational

synthesis problem when the number of processors is fixed.

First, let us note that the reduction from QBF to general NCRSP provided in

Theorem 5.4.7 does not apply to the case of a fixed number of processes, as it requires

a number of components for the environment to be linear in the number of variables

of the given QBF formula. Clearly, NCRSP with Muller conditions is PSpace-hard by

reduction from the corresponding two-player zero-sum games.

The lower bounds for Parity conditions reported in the last column of Table 5.1

have been obtained by reduction from the generalized two-player zero-sum parity games

considered in [22], where the objective is a disjunction (dually, a conjunction) of parity

conditions. In particular, we have proven that NCRSP is NP-hard (cfr. Theorem 5.4.10)

on interaction models involving 3 players with parity objectives, and coNP-hard (cfr.

Theorem 5.4.11) on 4-agents case.

Finally, as listed in Table 5.1, we provide a PSpace lower bound also to Street and

Rabin k-fixed NCRSP. This is done in two steps: First a reduction from QBF to zero-sum

two players Muller games is provided (cfr. the proof of Theorem 5.4.12), similar to the one

given in [48]. Then, the latter is reduced to a Street (resp. Rabin, cfr. Theorem 5.4.13)

NCRSP with two players.

Parity Objectives

We first prove the NP-hardness and coNP-hardness of solving the non-cooperative rational

synthesis problem with a fixed number of players by reduction from the generalized

two-player zero-sum parity games [22], where the objective is a conjunction of two parity

conditions.

Theorem 5.4.10. The perfect information non-cooperative rational synthesis problem in

an interaction model with 3 processes having Parity objectives is NP-hard.

Proof. We prove the theorem by reduction from the two-player zero-sum game G = (V =

VA⊎VB,E, v0,ΘA = parity(p1)∧parity(p2)) where Player A(protagonist) has as objective

an outcome satisfying a conjunction of two parity objectives p1 and p2. In [22] was proven

that computing the winning region for the antagonist is NP-hard.

Without loss of generality, we consider that the game G is turn-based and that the

initial state belongs to Player A. Intuitively, the interaction model M with 3 processes

having parity objectives consists in a modified copy of G by duplicating the states of

Player A and adding an extra sink state called

:-) where are players are happy with

priority function equal to 0.

Formally, the interaction model is M = ⟨Ω = {0,1,2}, V ′ = V0 ⊎ V1 ⊎ V2,E′, v0, (p′i)i∈Ω⟩

where V0 = VB ∪ {

:-) }, V1 = {v′ ∣ v ∈ VA}, V2 = VA and E′ is defined as the smaller set such

141

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

that

� for all (vA, vB) ∈ E, (vA, vB) ∈ E′ and

� for all (vB, vA) ∈ E, we have (vB, v′A) ∈ E
′ and (v′A, vA) ∈ E

′ and

� for all v ∈ V1 ∪ V2, (v,

:-)) ∈ E′.

A sketch of the interaction model is depicted in Figure 5.6.

sB

Pl0

s′A

Pl1

sA

Pl2
:-)

(0,0,0)

copy of G

(1, p1, p2)

Figure 5.6: k-fixed Non-cooperative Parity: NP-hardness

Then, we define the parity functions for the tree processes as p′i ∶ V
′ → N for 0 ≤ i ≤ 2

such that

� p′0(v) = 1 for all v ≠

:-) and p′0(

:-)) = 0;

� p′1(v) = p1(v) for all v ∈ VB ∪ VA, p′1(v
′) = p1(v) for v ∈ VA and p′1(

:-)) = 0;

� p′2(v) = p2(v) for all v ∈ VB ∪ VA, p′2(v
′) = p2(v) for v ∈ VA and p′2(

:-)) = 0;

We claim that Player A has a winning strategy in G if, and only if, there is no solution

to the synthesis problem in the model M. Indeed, if there is a strategy σA in G so that

parity(p1) ∧ parity(p2) holds on all ρ ∈ exec(G, σA), in M Process 2 can play σ2 defined

as σ2(h) = σA(h′) where h′ is the restriction of h on the states in VA ∪ VB. Then, for

all σ0, there is a 0-fixed Nash equilibrium ⟨σ0, σ1, σ2⟩ such that the execution compatible

with it stays in the copy of G. Therefore, Process 0 loses and there is no solution for the

non-cooperative synthesis problem.

Otherwise, if there is no strategy σA to ensure parity(p1) ∧ parity(p2) on all the

paths compatible with it, it means that there is a strategy σB s.t. ∀ρ ∈ exec(G, σB),

ρ ⊧ parity(p1) ∨ parity(p2) (one of the parity conditions p1 and p2 is not satisfied). That

is, there is a strategy σ0 for Process 0 s.t. at least one of the processes 1 and 2 wants to

142

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

deviate to

:-) . Let us take ⟨σ0, σ1, σ2⟩ a strategy profile where σ1(v′) = v and σ2(v) ≠

:-) . If

exec(M, ⟨σ0, σ1, σ2⟩) ⊧ parity(p1), this is not a 0-fixed Nash equilibrium because Process

1 loses and prefers to go to

:-) . Otherwise, if exec(M, ⟨σ0, σ1, σ2⟩) ⊧ parity(p2), Process

2 loses and prefers

:-) instead of staying in the copy of G. Therefore, all the 0-fixed Nash

equilibria are such that their outcome reaches

:-) and Process 0 wins. This means that σ0

is a solution to the non-cooperative rational synthesis problem. ∎

Theorem 5.4.11. The perfect information non-cooperative rational synthesis problem in

an interaction model with 4 processes having Parity objectives is coNP-hard.

Proof. The proof is done by reducing from two-player zero-sum games G where the

objective of the protagonist (Player A) is a conjunction of two parity objectives p1 and

p2. For this games, in [22] is proven that the protagonist has a winning strategy from a

given state is coNP-hard.

The interaction model with 4 processes is obtained from the game G by making two

extra copies of each node of Player B (antagonist in G) and adding two extra states

:-(

1 and

:-(

2. We define the interaction model M = ⟨Ω = {0,1,2,3}, V ′ = V0 ⊎ V1 ⊎ V2 ⊎

V3,E′, v0, (p′i)i∈Ω⟩ where V0 = VA ∪ {

:-(

1,

:-(

2}, V1 = {v′′ ∣ v ∈ VB}, V2 = {v′ ∣ v ∈ VB}, V3 = VB
and E′ is the smaller set such that

� for all (vA, vB) ∈ E, holds {(vA, v′′B), (v
′′
B, v

′
B), (v

′
B, vB)} ⊆ E

′,

� for all (vB, vA) ∈ E, also (vB, vA) ∈ E′ and

� for all v ∈ V1, (v,

:-(

1) ∈ E
′ and for all v ∈ V2, (v,

:-(

2) ∈ E
′.

A sketch of the interaction model is depicted in Figure 5.7.

sB

Pl0

s′′A

Pl1

s′A

Pl2

sA

Pl3

:-(

1

(1,1,0,1)

:-(

2

(1,0,1,1)

copy of G

(0, p1, p2,1)

Figure 5.7: k-fixed Non-cooperative Parity: co-NP-hardness

Then, the parity functions for the four processes in M are defined as p′i ∶ V
′ → N for

0 ≤ i ≤ 3 such that

143

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

� p′0(v) = 0 for all v /∈ {

:-(

1,

:-(

2} and p′0(

:-(

1) = p
′
0(

:-(

2) = 1

� p′1(v) = p1(v) for all v ∈ VA, p′1(v
′′) = p′1(v

′) = p′1(v) = p1(v) for all v ∈ VB, p′1(

:-(

1) = 1

and p′1(

:-(

2) = 0.

� p′2(v) = p2(v) for all v ∈ VA, p′2(v
′′) = p′2(v

′) = p′2(v) = p2(v) for all v ∈ VB, p′2(

:-(

1) = 0

and p′2(

:-(

2) = 1.

� p′3(v) = 1 for all v ∈ V ′.

Note that Process 3 loses on all executions in the interaction modelM since its parity

function p′3 associates to all states the priority 1. Therefore, he acts completely antagonist

when considering the non-cooperative rational synthesis problem, which is according to

the behavior of Player B in the general parity game G.

We claim that there is a winning strategy σA for player A in G if, and only if, there is

a solution for NCRSP in M. If there is a strategy σA to satisfy parity(p1) ∧ parity(p2),

it means that there is a strategy σ0 for Player 0 defined as σ0(h) = σA(h′) where h′ is the

restriction of h on the states in VA ∪ VE such that for any strategy σ3 of Process 3, both

Process 1 and Process 2 prefer to play in the copy of G since they win and in

:-(

i Process

i loses, for i ∈ {1,2}. Therefore, all 0-fixed Nash equilibria have as outputs executions in

G and then Process 0 wins and σ0 is a solution for the rational synthesis problem.

On the other way, if there is a solution for the non-cooperative rational synthesis

problem inM, all the 0-fixed Nash equilibria have outputs in the copy of G which means

that ⟨σ0, σ1, σ2, σ3⟩ where σ1(v′′) = v′ and σ2(v′) = v are the only 0-fixed Nash equilibria.

This means that both parity(p′1) and parity(p′2) are satisfied for any strategy σ3. That

is, there is a strategy σA defined as σA(h′) = σ0(h) where h′ is the restriction of h on the

states in VA ∪ VE(note there is only one such h by the definition of M) in G s.t. for all

σB, holds exec(G, ⟨σA, σB⟩) ⊧ parity(p1) ∧ parity(p2). ∎

Rabin and Streett Objectives

In the following we prove the PSpace-hardness of the non-cooperative rational synthesis

problem in an interaction modelM on which act two processes having both either Streett

or Rabin objectives.

The proof is done in two steps. First, we reduce the validity of a quantified boolean

formula to the problem of solving a two player zero-sum game where the protagonist’s

objective is a conjunction between an Streett and a Rabin objective. Then, we define an

interaction model with two processes on which there is a solution for the non-cooperative

rational synthesis problem if and only if the protagonist in the above game does not have

a winning strategy.

The reduction to the two-player zero-sum game in the first part of the proof is

common for the two conditions and it follows similar techniques as in [48] to proves

144

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

the PSpace-hardness of the two-players zero-sum Muller games. Then, depending on the

type (Streett or Rabin) of objectives that we want to obtain in the interaction model, we

define the objectives of the processes accordingly. Let first provide the hardness result for

Streett objectives.

Theorem 5.4.12. The perfect information non-cooperative Streett synthesis problem in

a 2-player interaction model is PSpace-hard.

Proof. We prove the theorem by reduction from QBF. Let φ = ∃xk∀xk−1 . . .∀x1∃x0γ be a

quantified boolean formula in disjunctive normal form, where the quantifiers are strictly

alternating. The proof will proceed as follows. First, we build a two-players zero-sum

game Gφ such that Player 0 (the protagonist) has a winning strategy in Gφ if and only if φ

is true. Then, we use Gφ to build a non-cooperative Street strategy synthesis two-players

interaction model Mφ, such that the protagonist wins if and only if φ is false.

Two-players zero-sum game. Let us first define the two-players zero-sum game Gφ.

Let φ be a disjunction of the clauses C0, . . . ,Cm over the literals {x0,¬x0, . . . , xk,¬xk}.

Intuitively, there is an initial state φ from which there are transitions to all nodes Ci
controlled by Player 1 corresponding to the clauses in the formula φ. From each clause

Ci, there are transitions to all the literals appearing in Ci and finally, from each literal

there is a transition back to the initial state φ. Both the initial state φ and the states

corresponding to the literals in φ are controlled by Player 0. A sketch of the game is

depicted in Figure 5.8 where the round states are controlled by Player 0 and the square

states belong to Player 1.

φstart

C1

⋮

Cm

x0 ¬x0

x1 ¬x1

⋯ ⋯

xk ¬xk

Figure 5.8: QBF to two-player zero-sum game

145

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

Formally, the two-players zero-sum Muller game Gφ = ⟨V = V0 ⊎ V1,E, v0,Θ0 ⊆ V ω⟩ is

defined as follows:

� V0 = {φ} ∪ {x,¬x ∣ x is a variable appearing in φ}

� V1 = {C0, . . . ,Cm}, the set of clauses in φ

� v0 = φ

� E is such that:

– for each 0 ≤ i ≤m, (φ,Ci) ∈ E

– for each Ci = `0 ∧ `1 ∧ `2, holds (Ci, `0) ∈ E, (Ci, `1) ∈ E, (Ci, `2) ∈ E

– for each 0 ≤ i ≤ k, (xi, φ) ∈ E, (¬xi, φ) ∈ E

In order to define the winning condition Θ0, given a path ρ ∈ V ω, let i(ρ) be the index

0 ≤ i(ρ) ≤ k such that:

� either xi(ρ) or ¬xi(ρ) is seen infinitely often on ρ and

� for all i(ρ) < j ≤ k, both xj and ¬xj are seen finitely often along ρ

Intuitively, if we refer to the set of literals {xi,¬xi} as literals of level i, then i(ρ) is

the index of the last level of literals (counting the levels from 0 to k) visited infinitely

often in ρ. Note that i(ρ) is well defined since, by definition of E, each infinite path of

Gφ contains at least one literal that repeats infinitely often.

The winning condition Θ0 ⊆ V ω for Player 0 is defined by:

Θ0 ={ρ ∣ i(ρ) is odd ∧ {xi(ρ),¬xi(ρ)} ⊆ inf(ρ)}∪

{ρ ∣ i(ρ) is even ∧ (xi(ρ) ∉ inf(ρ) ∨ ¬xi(ρ) ∉ inf(ρ)}

where inf(ρ) is the set of nodes that appear infinitely often on the path ρ.

The winning condition expresses the fact that Player 0 wins the play π if and only if:

� either the index of the last level of literals visited infinitely often is odd (i.e. i(ρ) is

odd) and both xi(ρ) and ¬xi(ρ) are visited infinitely often, or

� the index of the last level of literals visited infinitely often is even (i.e. i(ρ) is even),

but only one literal in {xi(ρ),¬xi(ρ)} appears infinitely often in ρ.

We now show that Θ0 can be written as a combination of a Street and a Rabin

condition, i.e. Θ0 = S∧R where S (resp. R) is a Street (resp. Rabin) condition represented

146

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

as a conjunction (resp. disjunction) of pairs of sets of states. Given 0 ≤ i ≤ k, denote by

Lj>i the set of literals Lj>i = {xj,¬xj ∣ j > i}. Then:

S = ⋀
i odd

({xi},{¬xi} ∪Lj>i) ∧ ({¬xi},{xi} ∪Lj>i)

R = ⋁
i odd

({xi,¬xi}, Lj>i) ∨ ⋁
i even

({xi},{¬xi} ∪Lj>i) ∨ ({¬xi},{xi} ∪Lj>i)

The Streett condition S states that for each odd level i, if xi (resp. ¬xi) appears

infinitely often along a path ρ, then either i(ρ) > i (i.e. i is not the last level visited) or

i(ρ) = i (i.e. the last level visited is odd) and both literals at the odd level i(ρ) = i are

seen infinitely often on ρ.

The Rabin condition R instead states that either the last level visited is even and only

one between xi(ρ) and ¬xi(ρ) is seen infinitely often, or otherwise the last level is odd (and

the condition S takes care of its properties).

Given the above definition of the zero-sum Muller game Gφ, we are now ready to prove

that φ = ∃xk∀xk−1 . . .∀x1∃x0γ is true if and only if Player 0 wins Gφ. In particular, we

will proceed by induction on k. Note that if the existential quantified variable x0 does

not appear in φ, we can add the clause x0 ∧ ¬x0 without changing the truth value of φ.

Base cases: Assuming that φ is a closed formula, in the base case the formula φ is

logically equivalent to one of the following forms. We also provide the winning strategy

for Player A in the game Gφ.

1. φ = ∃x0(x0) or ∃x0(¬x0). In this case, the arena consists of four vertexes

{φ,C0, x0,¬x0}. If φ = ∃x0(x0), then ¬x0 is isolated, otherwise x0 is isolated.

Therefore, Gφ contains only one cycle winning for Player 0.

2. φ = ∃x0(x0 ∨ ¬x0). Gφ consists of five vertexes {φ,C0,C1, x0,¬x0}. Player 0 wins by

choosing always C0 from φ.

3. φ = ∃x0(x0 ∧ ¬x0). Gφ consists of four vertexes {φ,C0, x0,¬x0}. Player 0 can only

play to C0 = x0 ∧ ¬x0 from φ. Player 1 wins by choosing alternatively x0 and ¬x0

from C0.

Inductive step: By inductive hypothesis, we know that if φ has k−1 quantifiers and is

closed, than Player 0 has a winning strategy if and only if φ is true. To prove the inductive

step for k quantifiers we use the following claim that shows how subgames correspond to

restricted subformulas.

First, let us introduce some notation. Given v ∈ V,U ⊆ V and i ∈ {0,1}, we denote by

Avoidi(U, v) the subset of U from which Player i has a strategy to avoid vertex v without

leaving U . Also, the formula γ[x → true] (resp. γ[x → false]) stands for the formula γ

where the variable x is replaced by true (resp. true).

147

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

Claim: If φ = Qx.γ and γ[x → true] does not simplify to either true or false, then

Avoid1(Avoid0(V,¬x), x) induces a subgame of Gφ that is isomorphic to Gφ[x→true] . Dually,

if γ[x → false] does not simplify to either true or false, then Avoid1(Avoid0(V,x),¬x)

induces a subgame of Gφ that is isomorphic to Gφ[x→false] .

Proof of Claim. The formula γ[x → true] consists of the clauses of γ that do not

contain ¬x, say C1, . . . ,Cp with all the occurrences of x replaced by true. The arena

of the game Gγ[x→true] consists therefore of an initial vertex, one vertex for each clause

C1, . . . ,Cp and one vertex for each literal different from x and ¬x. The edges are the

same of Gγ restricted to the above set of vertexes. We show that the graph induced

by Avoid1(Avoid0(V,¬x), x) is isomorphic to the arena of Gγ[x→true]. Since we consider

formulas in disjucntive normal form, the set of vertexes U = Avoid0(V,¬x) is given by V

except the set Cl of clauses containing ¬x and the vertex ¬x. Note that Cl of clauses

is not empty since γ[x → true] does not simplify to false. Now, the set of vertexes

W = Avoid1(U,x) is then obtained by removing from U the only vertex x because Player 1

has more than one choice from each clause since γ[x→ true] does not evaluate to true and

therefore can chose another literal then x. Therefore, W precisely consists of the initial

vertex, one node for each clause not containing ¬x in γ and a node for each literal different

from x and ¬x. Hence, the graph induced by Avoid1(avoid0(V,¬x), x) is isomorphic to

Gγ[x→true]. The proof of the case γ[x→ false] is symmetric.

Proof of inductive step. Given the above claim, we are now ready to deal with the

inductive step. We consider two cases, depending on whether the variable x in φ = Qx.γ

is quantified universally or existentially.

1. φ = ∃x.γ. If φ is true, then there is a value v ∈ {0,1} such that γ[x → v] is true.

Assume v = 1 is such a value. Then, Player 0 plays in Avoid0(V,¬x) trying to reach

infinitely often x. If Player 1 at some point prevents him to reach x (from that

point of the game over) then the game gets restricted to Avoid1(avoid0(V,¬x), x) in

which Player 0 has a strategy to win. The subcase where v = 0 is symmetric.

If φ is false, one of γ[x → 0] and γ[x → 1] is false. If it is the case of γ[x → 0],

Player 1 can use the following strategy to win. Indefinitely, alternatively try to

reach first x (while avoiding ¬x), and then try to reach ¬x (while avoiding x). If at

any point the opponent prevents him to reach his current objective, the game gets

restricted in Avoid1(avoid0(V,¬x), x) or Avoid1(avoid0(V,x),¬x) in which Player 1

has a winning strategy.

2. φ = ∀x.γ. If φ is true, since x has an odd index, Player 0 can adopt the following

strategy to win. He will try alternatively to reach x (while avoiding ¬x) and then

reach ¬x while avoiding x. If at any point of the game Player 1 prevents Player

0 to reach its target then the game gets restricted into Avoid1(Avoid0(V,¬x), x) or

148

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

Avoid1(Avoid0(V,x),¬x) where Player 0 has a winning strategy. The subcase where

φ = ∀x.γ is false is symmetric to the subcase where φ = ∃x.γ is true seen above.

Note that, intuitively, Player 1 fixes the value of a variable each time he forbids Player

0 to reach from some point on of the play its target literal. Whenever the value of a

variable (say xi) is fixed by Player 1 in this way, the play proceeds into a inner layer of

variables, i.e. into the arena of a subgame that contains only literals of levels less than i.

Reduction to NCRSP with Streett Objectives. Resuming, we have now proven that

the QBF formula φ = Qkxk . . .∀x1∃x0γ (in DNF) is true if and only if Player 0 wins

the zero-sum game Gφ, in which the objective Θ0 = S ∧ R of Player 0 is a conjunction

of a Street condition S and a Rabin condition R. Given Gφ, consider now the following

interaction model Mφ

� the support graph of Mφ is exactly the same of Gφ

� Player 1 is the process to synthesize

� the environment is composed by the only Player 0

� the objective of the Player 1 is the Street condition ¬R

� the objective of the only component in the environment is the Street condition S

We show that φ is false if and only if there is a solution to the non-cooperative

strategy synthesis problem in M. Note that since the process to synthesize is Process 1,

the problem is to synthesize a strategy σ1 such that for any strategy σ0 of Player 0 (the

environment), if ⟨σ0, σ1⟩ is a 1-fixed Nash equilibrium, then exec(M, ⟨σ0, σ1⟩) ⊧ ¬R.

Before proceeding in such a proof, note that ¬R → S. In fact:

¬R = ⋀
i even

({xi},{¬xi} ∪Lj>i) ∧ ({¬xi},{xi} ∪Lj>i) ∧ ⋀
i odd

({xi,¬xi}, Lj>i)

Hence ¬R states that the last level visited infinitely often is even, that implies S.

Given the above observation, we proceed to prove that φ is false if and only if there

is a solution to the non-cooperative strategy synthesis problem in M where Player 1

represents the process to synthesize.

There are two cases to consider. If φ is true, then the environment can ensure S ∧R,

i.e. he has a strategy to guarantee that he accomplishes his objective, while the process

to synthesize (Player 1) does not.

In the other case, suppose that φ is false. Then the Player 1 has a strategy to ensure

¬S∨¬R. Since ¬R → S, either the environment loses, or it holds ¬R and both the players

win. The environment has always the possibility to cooperate to establish ¬R by always

choosing the clause x0 ∧ ¬x0. Without lost of generality we can assume that the only

clause containing x0 in φ is x0 ∧ ¬x0. In fact, if this is not the case we can leadφ to such

a form by renaming each variable xi to xi+2 and adding the clause x0 ∧ ¬x0 ∎

149

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

Theorem 5.4.13. The perfect information non-cooperative Rabin synthesis problem in a

2-player interaction model is PSpace-hard.

Proof. As in the case of Theorem 5.4.12 for Streett objectives, the proof is done by

reduction from QBF. Let φ = ∀xk∃xk−1 . . .∀x1∃x0γ be a quantified boolean formula in

disjunctive normal form, and consider the equivalent QBF:

φ′ = ∀xk∃xk−1 . . .∀x1∃x0∀y1∃y0((y1 ∧ γ) ∨ (¬y1 ∧ γ))

where there are introduced two variables y1 and y0. Let φ
′′

be the formula obtained from

φ′ by first renaming each variable xi, i = 0 . . . k, to xi+2, and each variable yj, j ∈ {0,1},

to xk, and then normalizing the resulting formula in DNF.

Let Gφ′′ be the two-player zero-sum game such that Player 0 has a winning strategy

in Gφ′′ if and only if φ
′′

is true, built according to the procedure shown within the proof

of Theorem 5.4.12. Given Gφ′′ , consider the following interaction model M:

� the support graph of M is exactly the same of Gφ′′

� Player 1 represents the process to be synthesized

� the environment is composed by the only Player 0

� the objective of Player 1 is the Rabin condition ¬S

� the objective of the only component in the environment is the Rabin condition R

We show that φ
′′

is false if and only if there is a solution to the non-cooperative

strategy synthesi problem G∗
φ′′

.

There are two cases to consider: In the first case, assume that φ
′′

is true. Then, the

environment can ensure S ∧R that is a {1}-fixed Nash equilibrium where Player 0 wins

while the process to synthesize (Player 0) looses.

In the second case, suppose that φ
′′

is false. Then, the system has a strategy to ensure

¬S ∨ ¬R. We claim that such a strategy is indeed a solution to the non-cooperative

Rabin strategy synthesis problem in M. Indeed, the environment (Player 0) can win if

he cooperates with Player 1 to establish ¬S, i.e. if he cooperate to let the last level of

variables visited to be odd. The environment can effectively force the last level visited

to be odd by opposing to Player 1 a strategy that forbid him to reach its target literal,

restricting the play within inner and inner layers (of literals), until the objective of Player

1 is to reach (only one) literal of level 1 (e.g. x1). At that point, the environment simply

let the system to pursue its objective by choosing only clauses with the literal x1 (that

appears in φ
′′

by construction). ∎

150

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

5.5 Conclusions

In this chapter, we have studied the complexity of rational synthesis in both the

cooperative and non-cooperative settings, and depending on whether the number of

players is fixed or not. For LTL objectives, the problem was proven by Kupferman et.

al [38, 53] to be 2ExpTime-complete. Since the solution proposed for LTL objectives

is based to reduction to satisfiability of Strategy Logic formulas, out goal was a fine

understanding of the computational complexity of the rational synthesis problem and how

to manipulate the underlying game algorithmically. Therefore, we considered restrictions

for this problem for safety, reachability, Büchi, coBüchi, parity, Rabin, Streett and Muller

objectves and rationality if the environment modeled as Nash equilibria. Our results are

summarized in Table 5.1.

To solve the cooperative rational synthesis problem (CRSP), we characterize the

executions compatible with Nash equilibria by means of LTL formula over the set of

states in the interaction model. Then, finding a strategy profile that is a solution to

CRSP is reduced to the problem of finding an execution satisfying the formula φM0Nash∧ϕ0

where φM0Nash is the characterization of 0-fixed Nash equilibria and ϕ0 is the objective of

Process 0, expressed in LTL[M]. This approach allows us to obtain NP complexities for

the majority of the objectives we consider.

The above procedure cannot be applied to the non-cooperative setting. We prove by

counterexample that is wrong to reduce directly to a two-player zero-sum game where the

protagonist’s objective is to satisfy the formula φM0Nash → ϕ0. This is because in the case

of non-cooperative rational synthesis problem (NCRSP) one has first to fix the strategy

of the process to synthesize (Process 0) and to consider only 0-fixed Nash equilibria with

respect to this strategy.

Therefore, we propose an automata-based solution for NCRSP that first encodes the

strategies of Process 0 as trees and then define a nondeterministic tree automaton that

accepts exactly solutions to the considered problem. The automaton that we obtain

is exponential in the number of processes and polynomial in the number of states in

the interaction model. Moreover, it has monotonic properties that allow us to obtain

PSpace complexity for Safety, Reachability, Büchi and coBüchi objectives and ExpTime

complexity for Parity, Streett, Rabin and Muller.

We also studied the cooperative and non-cooperative rational synthesis problems when

the number of processes is fixed and obtained even better complexities.

Generalization to Concurrent setting The algorithms presented in this chapter are

for turn-based interaction models, where only one process is active at a time. However,

the LTL characterization does not work in the case of concurrent models, as it is shown

in Example 5.5.1. It is unlikely to be a simple generalization as, in general, going from

turn-based to concurrent models increase the complexity of finding Nash equilibria [13].

151

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

Example 5.5.1. Let us take the concurrent interaction model illustrated in Figure 5.9 on

which act two processes by playing actions in the set Σ0 = Σ1 = {a, b}.

1start
v0

⊺0 ⊥1
v2

⊥0,1

v1

⊺0,1

v3

(∗,∗) (∗,∗) (∗,∗)

(b,∗)
(a, a)

(a, b)

Figure 5.9: Example showing that the LTL characterization doesn’t apply for CRSP in

concurrent models

We consider reachability objectives for the two processes as follows. The target set

for Process 0 is R0 = {v2, v3} (states labeled with ⊺0) and the target set of Process 1 is

R1 = {v3} (labeled with ⊺1).

The only state from which Process 1 has a strategy to reach the target (in the zero-sum

setting) is state v3. Indeed, the action b of Process 0 from the initial state leads to the

state v1 that is losing for Process 1. Therefore, W1 = {v3}.

Now, let’s take the path ρ = v0(v2)ω. It satisfies the LTL characterization φ = ◇R0∧(◻

¬R1 → ◻¬W1) since v2 ∈ R0 is reached and the set W1 = {v3} is not visited. However, the

path ρ is not compatible with any Nash equilibrium since Process 1 may deviate and play

from the initial state the action b while Process 0 keeps his strategy that asks to play a in

the initial state. Then, the tuple (a, b) of actions leads to the state v3 ∈ R1. Therefore,

Process 1 reaches its target.

The reason for which the LTL characterization does not apply is that in the concurrent

setting, deviations are not immediately visible since processes observe only the effect of

the actions played and not the actions themselves. For instance, in Example 5.5.1, since

both Processes 0 and 1 play at the same time, the deviation b of Process 1 is only seen

by Process 0 when v3 is reached.

The fact that processes only observing the effect of the actions played by processes

induce some partial observation. Results published in [13] show that this partial

observation makes decision of the existence of a (constrained) Nash equilibrium in

concurrent models possibly more difficult than in the turn-based models. For instance,

for Streett objectives, the complexity of finding a constrained Nash equilibrium increases

from NP-complete[87] in the turn-based case to Pspace and PNP -hard in the concurrent

models[13].

However, in the case of Safety, Reachability, Büchi, co-Büchi, Rabin and Muller

objectives, we can apply the algorithms from [13] to obtain the same complexities for

152

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

CRSP as for the turn-based models when the number of processes is not fixed. More

precisely, in [13] is studied the problem of finding constraints Nash equilibria in concurrent

games. It asks for the existence of Nash equilibria whose outcome is between two

thresholds. Then, by choosing the lower thresholds to be such that only Process 0 satisfies

his objective and the upper thresholds such that all processes win, we reduce to the

cooperative rational synthesis problem. It is shown in [13] that the existence of constrained

Nash equilibria in concurrent games can be solved in Ptime for Büchi objectives, NP for

Safety, Reachability and coBüchi objectives, in PNP for Rabin objectives and Pspace for

Muller objectives. All hardness results are inferred directly from the hardness results in

Section 5.3. For Streett objectives, by reducing to [13] we only obtain Pspace-easiness

and the NP -hardness comes from the turn-based setting. We leave this problem for

further work.

The construction presented in Section 5.4 does not work from similar reasons as in

the case of CRSP. We leave open the extension to the concurrent setting, but it seems

alternation would be needed in a naive attempt, as a path the model may be compatible

with more than one sequence of actions of processes. Therefore, it is unlikely toto improve

the complexity results from [53] obtained for LTL objectives.

Future work A first question that has to be answered is, as discussed above, what are

the tight complexities for the rational synthesis problem in concurrent interaction models.

Then, as already mentioned above, in this thesis the rationality of the environment is

modeled by assuming that the players composing it play a Nash equilibrium. Interesting

directions for future work would be to assume other notions of rationality, e.g. secure

equilibria [21], doomsday equilibria [19], subgame perfect equilibria [86, 87], or admissible

strategies [10, 34]. Choosing secure equilibria to model rationality involves two processes

and finally the rational synthesis problem reduces to the case when Nash equilibria are

considered (the case studied in this thesis). For other solution concepts, the technique to

follow is not straightforward.

153

CHAPTER 5. RATIONAL SYNTHESIS WITH PERFECT INFORMATION

154

6. Rational Synthesis with Imperfect

Information

In this chapter we study the rational synthesis problem under imperfect information. We

consider several capabilities (perfect/imperfect information) for both processes in P ⊆ Ω

to be synthesized and the environment. All results presented here represent ongoing work

that is not published.

We recall that, given an interaction model M where the k + 1 processes have the

objectives (Θi)i∈Ω and a set P ⊆ Ω of processes to be synthesize, the rational synthesis

problem asks the following questions according to the two settings:

cooperative: Is there a P -fixed Nash equilibrium σ̄ such that payi(σ̄) = 1 for all i ∈ P?

non-cooperative: Is there a strategy profile σP for processes in P such that for any

P -fixed Nash equilibrium σ̄ = (σP , σP), we have payi(σ̄) = 1 for all i ∈ P ?

Setting We consider turn-based interaction models in which the successor state is

deterministically given by the action of the process controlling the current state. Formally,

the interaction model is defined as M = ⟨Ω, (Σi)i∈Ω, V, (V)i∈Ω, v0,E,O0⟩ where Σi is the

set of actions of Process i and the transition relation is such that for each state v ∈ V

there is exactly one successor determined by each action of the process controlling v, i.e.,

∀i ∈ Ω, ∀v ∈ Vi, ∀ai ∈ Σi, holds ∣E(v, ai)∣ = 1. We introduce the actions for the processes

since Process 0 has imperfect information and is not realistic to ask him to name the next

state. We can assume that the actions of the other processes consist in choosing the next

state (i.e., Σi = V for 1 ≤ i ≤ k) since they have perfect information.

In the following we prove that the rational synthesis problem is undecidable in general

if we consider imperfect information for all agents in the interaction model. However, we

gain decidability if we restrict to synthesize the strategy for one process that acts against

a omniscient, rational environment.

155

CHAPTER 6. RATIONAL SYNTHESIS WITH IMPERFECT INFORMATION

6.1 Imperfect Information for All Processes

In this section we prove that the rational synthesis problem with all processes in

the interaction model having imperfect information is undecidable for both settings

(cooperative and non-cooperative).

Indeed, if it is asked to be synthesized two or more processes against some environment

(i.e. ∣P ∣ ≥ 2), the problem coincides with the distributed synthesis problem (defined in

Section 2.3.1) against an omniscient environment which, according to [75], is undecidable.

We recall that the question in the case of distributed synthesis problem is if there exist

strategies for the processes in P such that for any strategy of the environment, the joint

objective ϕ holds. Now, to reduce to the rational synthesis problem, we simply set the

formula ϕ as individual objective of the processes in P and associate to all the processes

in the environment the objective ¬ϕ.

Theorem 6.1.1. The LTL cooperative and non-cooperative rational synthesis problem are

undecidable when asked to synthesize two or more processes having imperfect information.

It holds already if the environment consists of one perfectly informed process.

Proof. The proof results directly from the distributed synthesis problem (defined in

Section 2.3.1) undecidability.

Let’s take the interaction model M = ⟨Ω = {0,1,2}, V, (Σi)i∈Ω,∆, (Oi)i∈Ω⟩ where

Process 2 is the only one having perfect information, i.e., O2 = V . We set the objectives

of the three processes as follows. Process 0 and 1 have the same objective ϕ0 = ϕ1 = ϕ

and the objective for Process 2 is ϕ2 = ¬ϕ.

We claim that there is a solution for the distributed synthesis problem of processes 0

and 1 with the joint objective ϕ if and only if there is a solution for the (non-)cooperative

synthesis problem where Process 2 represents the rational environment.

Indeed, if there is a solution for the distributed synthesis problem, there are

strategies σ0 and σ1 for Processes 0 and 1 such that for any strategy σ2 of Process

2, holds exec(M, ⟨σ0, σ1, σ2⟩) ⊧ ϕ. Then, the tuple (σ0, σ1) is also a solution for the

non-cooperative synthesis problem since all the executions compatible with this two

strategies ϕ (the objective of both Process 0 and 1), which makes Process 2 lose. Moreover,

any strategy profile ⟨σ0, σ1, σ2⟩ is a solution of the cooperative rational synthesis problem

since Process 2 cannot deviate and win.

On the other hand, if there is a solution for the non-cooperative synthesis problem,

the there is a tuple (σ0, σ1) of strategies for Processes 0 and 1 such that for any strategy

σ2 of Process 2, if the strategy profile ⟨σ0, σ1, σ2⟩ is a Nash equilibrium, then it satisfies

ϕ. It results that the only {0,1}-fixed Nash equilibria consistent with σ0 and σ1 are such

that Process 2 loses. Therefore, since he cannot deviate to improve his payoff, all the

executions compatible with σ0 and σ1 are losing for him (satisfy ϕ). This means that for

156

CHAPTER 6. RATIONAL SYNTHESIS WITH IMPERFECT INFORMATION

any strategy σ2 of Process 2, exec(M, ⟨σ0, σ1, σ2⟩) ⊧ ϕ and therefore (σ0, σ1) is a solution

for the distributed synthesis problem.

If there is a solution σ̄ = ⟨σ0, σ1, σ2⟩ for the cooperative synthesis problem, it holds

that exec(M, ⟨σ0, σ1, σ2⟩) ⊧ ϕ and it is a {0,1}-fixed Nash equilibrium. Therefore, the

Process 2 (that loses under σ̄) cannot deviate to improve its payoff. This means that for

any strategy σ′2 of Process 2, exec(M, ⟨σ0, σ1, σ′2⟩) ⊧ ϕ and therefore (σ0, σ1) is a solution

for the distributed synthesis problem. ∎

Moreover, the rational synthesis problem is easily proven undecidable for cooperative

setting even if there is only one process to synthesize (i.e. ∣P ∣ = 1) against an imperfectly

informed rational environment. The proof is by reduction from the distributed synthesis

problem against one perfectly informed antagonist environment.

Theorem 6.1.2. The Cooperative Rational Synthesis Problem of one process is

undecidable for three-processes imperfect information interaction model and LTL

objectives.

Proof. Let M = ⟨Ω = {0,1,2}, V, (Σi)i∈Ω,∆, (Oi)i∈Ω⟩ be an interaction model with three

processes and ϕ be an LTL formula and let consider in the following Process 2 having

perfect information. That is, the set O2 contains only singletons and we can abuse and

write O2 = V .

We claim that there is a solution for CRSP in M with objectives ϕ0 = ϕ1 = ϕ and

ϕ2 = ¬ϕ if and only if there is a solution for the distributed synthesis problem (defined in

Section 2.3.1) in M with antagonist environment and the objective ϕ.

From left to right, consider there is a solution for CRSP inM and objectives ϕ0 = ϕ1 =

ϕ and ϕ2 = ¬ϕ. It means that there is a strategy profile σ̄ = ⟨σ0, σ1, σ2⟩ that is a 0-fixed

NE and exec(M, ()σ̄) ⊧ ϕ0. From the definition of the objectives, pay0(σ̄) = pay1(σ̄) = 1

and pay2(σ̄) = 0, but since σ̄ is a 0-fixed NE, Process 2 cannot deviate and improve his

payoff. Therefore, for all strategies σ′2 of Process 2, out(σ0, σ1, σ′2) ⊧ ϕ and therefore the

tuple (σ0, σ1) is a solution for the distributed synthesis problem.

From right to left, consider there is a solution for distributed synthesis problem. Then,

there is a tuple (σ0, σ1) of observation-based strategies such that for any strategy σ2,

exec(M, ⟨σ0, σ1, σ2⟩) ⊧ ϕ. Consider such a strategy profile σ̄ = ⟨σ0, σ1, σ2⟩ where processes

0 and 1 play the solutions of distributed synthesis problem. Considering objectives ϕ0 =

ϕ1 = ϕ and ϕ2 in the cooperative rational synthesis problem, pay0(σ̄) = pay1(σ̄) = 1 and

pay2(σ̄) = 0 but on any deviation of Process 2, he is not improving his payoff since σ0 and

σ1 ensure ϕ against any strategy of Process 2. Therefore, σ̄ = ⟨σ0, σ1, σ2⟩ is a 0-fixed Nash

equilibrium s.t. exec(M, σ̄) ⊧ ϕ0 and therefore is a solution for the cooperative rational

synthesis problem. ∎

As already mentioned, the rational synthesis problem is undecidable when asked to

157

CHAPTER 6. RATIONAL SYNTHESIS WITH IMPERFECT INFORMATION

synthesize two processes against an omniscient environment due to the undecidability of

distributed synthesis problem.

Since the cooperative rational synthesis problem is undecidable when is asked to

synthesize one process in a three-process interaction model, it is very likely to be the

case of non-cooperative setting too. However, we leave this question open because the

existence of Nash equilibria in imperfect information games is essential in constructing a

reduction from distributed synthesis problem as in the cooperative case. Unfortunately,

in imperfect information games, Nash equilibria does not always exist. Therefore, one

needs another reduction to prove the undecidability of non-cooperative synthesis problem

when only one process is asked to be synthesized.

6.2 One Process Against Omniscient

Multi-component Environment

We already saw that the problem is undecidable when there are two or more partially

informed processes to synthesize against an omniscient environment.

In this chapter we consider imperfect information only for the process to be synthesized

to gain the decidability of the rational synthesis problem. Moreover, a positive answer

to the setting when only the system to be synthesized has imperfect information, is also

a positive answer for the more restricted environment that has to play observational

strategies. Indeed, if Process 0 has a strategy to win against the omniscient rational

environment, then it can apply the same strategy to ensure its objective when the

environment’s observation is more restricted. Therefore, a solution for this setting

represents a semi-procedure for the more general case when there is asked to synthesize

one process against a partially informed multi-component rational environment.

6.2.1 Imperfect Information Cooperative Rational

Synthesis (ICRSP)

We discuss in this section the cooperative rational synthesis problem under the assumption

of imperfect information for Process 0. We stress the difficulties that have to be faced

when solving the problem and give a possible direction towards a solution.

In the perfect information case (Section 5.3), we define a characterization of the

equilibrium in terms of LTL[M] properties on executions in the interaction model.

However, it does not apply to the case of imperfect information for Process 0.

First, one needs to compute the winning regions for all processes i ∈ Ω∖{0}. Once the

winning regions computed (if possible), it is not clear how the LTL[M] characterization

from Section 5.3 may apply. Indeed, assume that we computed the winning regions and

that there is an execution ρ inM that satisfies the formula φM0Nash defined in Section 5.2.

158

CHAPTER 6. RATIONAL SYNTHESIS WITH IMPERFECT INFORMATION

We have to define a strategy profile whose outcome is the execution ρ and in which the

strategy for Process 0 is observation-based. When a Process deviates from a state which

he does not have a winning strategy, the other agents should punish him by ensuring

he is not reaching his objective. But, since the we are in the imperfect information (for

Process 0) setting, it is not clear if such retaliating strategy exists. Moreover, if it exists,

Process 0 may not observe that there is a deviation and the retaliating strategy may ask

a different action then the one that follows ρ.

Having said this, for now we leave open the cooperative rational synthesis problem

and show in the next section how to solve the non-cooperative case.

6.2.2 Imperfect Information Non-Cooperative Rational

Synthesis (INCRSP)

In this section we show how the general algorithm for perfect information can be used

to solve the case where it is asked to synthesize a partially informed process against a

non-cooperative omniscient rational environment.

In this case we do not have the difficulties discussed in the cooperative setting. This is

because in the non-cooperative setting, we fix the strategy of Process 0 and consider the

Nash equilibria with respect to the fixed strategy. Moreover, in the procedure we describe

in the following, we don’t need to compute the winning regions of the agents.

Goal The idea is to build an interaction model M′ containing three processes A,B,C

having hierarchical observations such that there is a solution for the distributed synthesis

problem with antagonist environment if and only if there is a solution for INCRSP. They

are as follows. There is a Process A that has imperfect information and takes the decisions

of Process 0 inM, a second Process B has perfect information and decides which agents in

the environment have deviations along executions and a third Process C that plays for the

processes in the environment. Then, the imperfect information non-cooperative rational

synthesis is reduced to the problem of distributed synthesis (defined in Section 2.3) for

the two processes A and B against the antagonist environment that consists of Process

C. Note that due to Theorem 2.3.3 in Chapter 2, the later problem is decidable since the

two Agents A and B have hierarchical observations on the interaction model. We further

call ”agents” the processes in the new interaction model, so that is easier for the reader

to follow.

Motivation of reduction The construction follows the idea in the definition of the

nondeterministic tree automaton TM in Section 5.4.1 built to solve the non-cooperative

rational synthesis problem in the case of perfect information, and therefore is similar to the

game GT induced by the automaton. In the game built for the perfect information case,

159

CHAPTER 6. RATIONAL SYNTHESIS WITH IMPERFECT INFORMATION

Eve’s actions correspond to first choosing the actions of Process 0 in the interaction model

and then decide possible deviations for the other processes consisting the environment.

This is not possible in the case when Process 0 has imperfect information in the

interaction model M. This is because Eve’s decisions should be taken as follows. First,

she should decide observational strategies for Process 0 and therefore should not make

difference between indistinguishable states for Process 0 (has to decide depending on

observations on states of M). Then, she has to know the current state (and ”concrete”

history) in the modelM to be able to guess the possible deviations of the components of

the environment. Therefore, one cannot define an observation relation for Eve such that

she has in the same time perfect and partial observation on the states of the interaction

model M.

To solve the problem in the case of incomplete information, we use a dedicated agents

for the two decisions that have to be made. First, Agent A corresponds to Process 0 and

has the same observation as him, and then Agent B is perfectly informed and decides the

deviation points. Finally, there is a third Agent C that plays the same actions as Adam

in the game GT , corresponding to the choices of the components of the environment.

Intuition on construction The game arena is as follows: it contains all the nodes in

the interaction modelM and for each node v controlled by a process in the environment,

there is a state (v, `) for each ` ∈ E(v) ∪ {⋆}. Agent A controls all the nodes belonging

to Process 0 in M, Agent B controls all the nodes belonging to one of the processes of

the environment and Agent C controls the newly introduced states. Along the states, we

also keep the information W and D of the players that have a winning strategy from the

current node and the set of players that passed through a good deviation point.

Intuitively, the interaction is as follows. At each state (v,W,D) ∈ VA, Agent A makes

the choice of Process 0 in the interaction modelM and the game moves to the next state

v′ dictated by the transition function in M and transfers the information regarding the

two sets W and D. Then, if the current state v′ is controlled by some process i ≠ 0 in the

environment in M, it is the turn of Agent B to play from (v′,W,D). By his action, the

winning strategy of Process i (if any) is guessed. Agent B plays the action ”⋆” to indicate

that it does not guess a strategy for Process i controlling the state v′. However, Agent B

cannot play ”⋆” if i ∈W and is forced to play it if i ∈D. This is because in the first case

was guessed that Process i has a winning strategy and he has to continue guessing it. If

i ∈ D, a good deviation has already been guessed and Agent B does not need to guess

another one. The next state after Agent B played ` ∈ E(v) ∪ {⋆}, is (v′, `,W,D).

Finally, from the state (v′, `,W,D) is the turn Player C to play for Process i controlling

the state v in the modelM. He can choose any successor of v′ inM. The letter ` chosen

by Player B serves only to update the sets W and D and it does not influence the choice

of Player C. The sets W and D are updated as follows. If ` = ⋆, all the successors are

160

CHAPTER 6. RATIONAL SYNTHESIS WITH IMPERFECT INFORMATION

of type (v′′,W,D), where v′′ is a successor of v′ in M. If ` ∈ E(v′) (Player B guessed a

winning strategy for Process i), Process i is added in the set W ′ associated to the next

state (`,W ′,D′) and on all other successors Process i is removed from W (if contained)

and added to the set D, i.e., for all successors v′′ ≠ ` of v′ in M, (v′′,W ∖ {i},D ∪ {i})

is successor of (v′, `,W,D) in M′. The update of the two sets encodes the fact that it is

continued to be guessed a winning strategy from the successor ` chose by Agent B and

on the other successors is kept the information that there is a deviation.

Formal Construction Let us formally define the three-agent interaction model. Given

the interaction model M = ⟨Ω = {0, ..., k}, (Σi)i∈Ω, V, (Vi)i∈Ω, v0,E,O0⟩, we define the

three-agent interaction model asM′ = ⟨Ω′,ΣA,ΣB,ΣC , V ′ = VA⊎VB⊎VC , v0,E′,OA⟩ where

� Ω′ = {A,B,C} where Process C is the environment,

� ΣA = Σ0, ΣB = V ∪ {⋆} and ΣC = V

� VA = V0 × 2Ω × 2Ω ∪ {⊥,⊺}

� VB = ⋃1≤i≤k Vi × 2Ω × 2Ω

� VC = V × (V ∪ {⋆}) × 2Ω × 2Ω

� v′0 = v0 × ∅ ×∅

� the observation of Agent A is such that

– oA(v,W,D) = oA(v′,W ′,D′) iff o0(v) = o0(v′) for all (v,W,D), (v′,W ′,D′) ∈

V × 2Ω × 2Ω

– oA(v, `,W,D) = oA(v′, `′,W ′,D′) for all (v, `,W,D), (v′, `′,W ′,D′) ∈ VC

� the transition relation E′ is defined by

– for v ∈ V0, E′((v,W,D), a) = (E(v, a),W,D))

– for (v,W,D) ∈ VB, v ∈ Vi, i ≠ 0 and ` ∈ V ∪ {⋆},

1. if i ∈W , Agent B has to choose an action according to the winning strategy

of Process i in v:

E′((v,W,D), `) =

⎧⎪⎪
⎨
⎪⎪⎩

(v, v′,W,D) if ` = v′ ∈ E(v)

⊥ otherwise

2. if i ∈ W ∩D, Agent B decides if the current history is a good deviation

point or not:

E′((v,W,D), `) =

⎧⎪⎪
⎨
⎪⎪⎩

(v, `,W,D) if ` ∈ E(v) ∪ {⋆}

⊥ otherwise

161

CHAPTER 6. RATIONAL SYNTHESIS WITH IMPERFECT INFORMATION

3. if i ∈ W ∩D, Agent B does not guess any deviation for Process i since it

was already guessed in the past:

E′((v,W,D), `) =

⎧⎪⎪
⎨
⎪⎪⎩

(v,⋆,W,D) if ` = {⋆}

⊥ otherwise

– for (v, `,W,D) ∈ VC and v′ ∈ V ,

E′((v, `,W,D), v′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(v′,W,D) if ` = {⋆} and v′ ∈ E(v)

(v′,W ∪ {i},D) if ` = v′ and v′ ∈ E(v)

(v′,W ∖ {i},D ∪ {i}) if `, v′ ∈ E(v) and ` ≠ v′

⊺ otherwise

Note that the structure of the interaction model M′ is very similar to the one of

the tree automaton built in Section 5.4.1 for the case of perfect information NCRSP.

Moreover, we keep monotonicity properties for the sets D and W along the executions in

the model M′. That is, once a process is added in the set D, it is never removed and in

the set W each process i may be added and removed at most once.

Since Agent A simulates Process 0, it has the same observation. That is, it observes

only the V -component of each state (v,W,D) and makes no difference between states

of Agent C. That is, Agent A cannot observe the actions of the agent that guesses the

deviation points.

Finally, for η ∈ exec(M′) ∩ (V ′ ∖{⊺,⊥})ω, let η↾(VA∪VB) stand for the restriction of η to

the states belonging to Agents A and B. Note that if we further project on the component

V each state, we obtain an execution in the interaction modelM. Then, the joint objective

of Agent A and Agent B is defined as following. They try to propose actions such that

all the executions that are compatible with their decisions either satisfy the objective of

Process 0 in M, or there is one process i that loses, but Process B correctly guessed a

deviation for him. The correct deviations are verified by checking that all the agents that

are in the set W (after stabilization) and for which was guessed a winning strategy, win.

Formally,

Θ = (V ′)∗({⊺})ω ∪ {η ∈ exec(M′) ∩ (V ′ ∖ {⊺,⊥})ω ∣

(η↾(VA∪VB) ⊧ ϕ0 ∨
k

⋁
i=1

(η↾(VA∪VB) ⊭ ϕi ∧ ϕ∃dev(i, η))) ∧ ⋀
i∈limW (η)

η↾(VA∪VB) ⊧ ϕi}

where the formula ϕ∃dev(i, η) expresses the fact that Process i has a good deviation along

η and is formally defined depending on the type of objective we consider for the processes

in M. For tail objectives, ϕ∃dev(i, η) = i ∈ limD(η). For other objectives, we can define

the formula such that it specifies where deviation points should appear. For example, in

162

CHAPTER 6. RATIONAL SYNTHESIS WITH IMPERFECT INFORMATION

the case of Safety objectives, a deviation point can appear only before reaching an unsafe

state for Process i.

The following Proposition holds because the interaction model M′ corresponds to

M in which states are annotated with the extra information W and D and there is an

intermediary state (controlled by Process B) before any decision of a Process i ≠ 0 that is

used to update the information in W and D. Then, the accepting condition corresponds

exactly to the definition of non-cooperative rational synthesis problem. It asks that on

an execution, either Process 0 wins in M, or there is a process in the environment that

looses, but could deviate. As in the case of perfect information for all processes, the

formula ⋀i∈limW (η) η↾(VA∪VB) ⊧ ϕi asks that all the players for which it was guessed that

they play their winning strategy, indeed win.

Proposition 6.2.1. There is a solution for the INCRSP in M iff there exists σA
(observational) and σB such that ∀σC , exec(M′, ⟨σA, σB, σC⟩) ∈ Θ.

Proof. Let us take a strategy σ0 for Process 0 which is a solution to INCRSP problem in

M. Then, on all executions compatible with σ0, either ϕ0 is satisfied, or there is a Process

i that looses and would rather prefer to deviate. Let us consider the same strategy for

Agent A in M′ defined formally by σA(h) = σ0(h′) where h′ = (h↾(VA ∪ VB))∣V is the

projection on the first component of the restriction of h on the states in VA and VB. It is

a valid observational strategy for Agent A since he has the same observation as Process

0. Then, the strategy of Agent B is as follows. On each execution, he guesses which

are the processes that lose and may deviate to another strategy. It is possible to do this

because σ0 is a solution to INCRSP. Then, since Agent B guesses good deviations for the

processes from the environment that lose, it is also able to guess their winning strategy.

Therefore, on each execution η inM′, all processes i ∈ limW (η) win since Agent B guessed

the winning strategy for him.

On the other direction, let us consider a tuple (σA, σB) of strategies for Agents A and B

to ensure Θ on all executions ofM′. We define the strategy of Process 0 as σ0(h) = σA(h′)

for some h′ = (h↾(VA ∪ VB))∣V . Note that it is a correct definition since the annotation

with W and D is not visible for Agent A. Since all executions compatible with (σA, σB)

satisfy Θ, and since to each execution inM′ corresponds an execution inM by projecting

away the sets W and D, σ0 is a solution to INCRSP. Indeed, on all executions that satisfy

⋁ki=1(η↾(VA∪VB) ⊭ ϕi ∧ ϕ∃dev(i, η)), Agent B guessed a deviation for at least one process in

the environment that looses. Therefore, the execution is not compatible with a 0-fixed

Nash equilibrium. ∎

The interaction model M′ that we constructed is hierarchical since only Agent

A has imperfect information. Therefore, as a consequence of Proposition 6.2.1 and

Theorem 2.3.3, we obtain the following result:

163

CHAPTER 6. RATIONAL SYNTHESIS WITH IMPERFECT INFORMATION

Theorem 6.2.1. The synthesis problem of one partially informed process against an

omniscient, non-cooperative, but rational multi-component environment is decidable.

6.3 Conclusions

In this chapter we proved that generally the rational synthesis problem is undecidable

under the assumption of imperfect information for the participating processes. This is

obtained very easily from the undecidability of distributed synthesis problem.

We also considered some restrictions and prove that the cooperative rational synthesis

problem remains undecidable if there is one process to synthesize and multicomponent

environment, both with imperfect information. It is very likely that the undecidability

result holds for the non-cooperative setting too, but we leave open this question.

We gain decidability for the non-cooperative rational synthesis problem in the case

there is only one partially informed process to be synthesized and its environment is

omniscient. The algorithm we provide is inspired by the construction in Section 5.4.1

and reduces the rational synthesis problem to the distributed synthesis problem in

three-processes interaction model where processes have hierarchical observations.

164

7. Conclusions

7.1 Main Results

In this thesis we study the synthesis problem of reactive interactive systems. We consider

multi-component interaction models in which processes may have partial observation

of the current state of the model and study the synthesis of some components when

the environment (the other components) is either antagonist or rational. We study the

problem considering different observation capabilities of the components to be synthesized

and their environment. A summary of the decidability results is contained in Table 2.1.

The goal of the thesis is that, in case the problem is decidable under the considered

observation capabilities for the processes, to provide Safraless decision procedures for the

synthesis problem that may lead to efficient implementation.

In Chapter 2, we give a general definition of the synthesis problem that encapsulates

the two settings in which we study the problem and also present existing results in the

domain of synthesis and in Chapter 3, we present some tools and techniques that are used

by the procedures solving the synthesis problem. We also provide complete proofs for

testing the emptiness of universal coBüchi tree automata, that are used in Chapter 4.

The synthesis problem from KLTL specifications with an antagonist environment is

undecidable in general [75]. In Chapter 4, we propose a Safraless decision procedure to

synthesize one partially informed process against an antagonist one-component omniscient

environment from specifications expressed in the positive fragment of KLTL (KLTL+). It

is based on the idea of [36] to define some universal coBüchi tree automata that accepts

exactly solutions for the synthesis problem and for which the non-emptiness can be tested

efficiently by reduction to safety games. Our implementation[1] is based on the tool

Acacia+[12] and, to the best of our knowledge, it is the first implementation of a synthesis

procedure for epistemic temporal specifications considering perfect recall for processes.

In Chapter 5, we study the synthesis problem with a rational environment under the

assumption of perfect information. That is, the components of the environment are

rational in the sense that they first target the satisfaction of their own objectives and then

165

CHAPTER 7. CONCLUSIONS

try to harm the others. We use the notion of Nash equilibria to model the rationality.

We provide general solutions for both cooperative and non-cooperative settings. Then,

we apply them for particular classes of objectives and provide tight complexity results.

Table 5.1 gives an overview of the complexity results for the rational synthesis problem.

In this thesis we study the complexities considering the same type of objectives for all

player. However, we can also consider that the agents have different types of objectives.

In this case, the complexity to solve the problem is the maximum of the complexities of

the for the restrictions that we consider for the used classes of objectives.

Finally, in Chapter 6, we study the rational synthesis problem under the assumption

of partial information of components. We show that the problem is undecidable in the

general case when all processes have partial information. However, we gain decidability

of the non-cooperative synthesis problem if we consider one partially informed process to

synthesize against a multi-component rational omniscient environment. The procedure

we propose reduces our problem to the distributed synthesis problem of two components

with hierarchical observations against an omniscient antagonist environment.

It is important to note that the procedure that solves the rational synthesis problem

against an omniscient environment represents a semi-procedure for the more general

(and more realistic) case where the processes consisting the environment have partial

observation.

We only discuss the difficulties that have to be faced when studying the cooperative

rational synthesis problem when only one process (to be synthesized) has partial

information and its environment is omniscient. However, we conjecture that the problem is

also decidable, guided by the results in perfect information setting where, for the different

types of objectives that we consider, the rational synthesis problem in the cooperative

setting has lower complexities than the non-cooperative setting.

7.2 Perspectives

Several perspectives have already been given for each chapter of the thesis: In Section 4.4

for the KLTL synthesis with antagonist environment and in Sections 5.5 and 6.3 for the

synthesis problem with rational multi-component environment.

The general goal of the synthesis problem is to obtain ”Safraless” procedures that deal

with a large enough class of formulas to prove themselves useful in practice. That is, our

goal is to obtain some tools that help companies develop safety-critical programs that are

correct by construction, and therefore streamline the process of reactive systems design.

166

CHAPTER 7. CONCLUSIONS

Safraless Procedure for KLTL Synthesis

For KLTL synthesis with rational environment, we only provided a ”Safraless” procedure

from the positive fragment of KLTL (KLTL+). However, results obtained by testing

the implementation on several examples are an encouraging step towards developing

implementable procedures for the entire KLTL logic.

The difficulty appears when a formula contains some knowledge operator K under an

odd number of negations, or the formula in negative normal form contains the operator

P (the dual of K). The knowledge operator P expresses the fact that some property is

possible, meaning that there is an execution compatible with the sequence of observations

of the process to be synthesized that satisfies the desired property.

As already mentioned in Section 4.4, a first step to cope with this operator would

be to consider formulas of the type Kϕ → ψ where ϕ is an LTL formula and ψ is a

KLTL+formula. This means, the formula contains only one operator P that may be

easier to cope with. However, it is not obvious how this problem can be solved using

automata-based procedures that avoid alternation.

Procedures for Rational Synthesis

Tight complexities for the rational synthesis problem were studied only when all

components of the interaction model have perfect information.

In this thesis we proved the decidability of the non-cooperative synthesis problem when

is asked to synthesize a partially informed process against a multi-component omniscient

rational environment.

Our target is to develop (automata-based) procedure that efficiently solves the rational

synthesis problem for the process to be synthesized having partial information. The final

goal is to implement them in a tool. Already, an ongoing work is to define a nondeterminist

tree automaton that accepts solutions for the problem when all the processes have either

reachability or safety objectives. Our hope is that they will lead to procedures that can

be efficiently implemented.

Until now, we studied efficient procedures for the rational synthesis problem when the

rationality of agents is modeled by Nash equilibria. For the case of imperfect information,

the difficulty is that such equilibria may not exist. Another line of research would be

to consider other solution concepts to model rationality of processes. An interesting

direction would be to consider Doomsday equilibria that extends secure equilibria to

multi-component setting. In [19] has been proven that such equilibria always exist even

in the case of imperfect information. Moreover, the cooperative setting for the rational

synthesis is directly solved by finding such an equilibria.

167

CHAPTER 7. CONCLUSIONS

168

REFERENCES

[1] Acacia-k. http://lacl.fr/~rbozianu/Acacia-K/. Year: 2014.

[2] Mart́ın Abadi, Leslie Lamport, and Pierre Wolper. Realizable and unrealizable

specifications of reactive systems. In Proceedings of the 16th International Colloquium

on Automata, Languages and Programming, ICALP ’89, pages 1–17, London, UK,

UK, 1989. Springer-Verlag.

[3] Thomas Ågotnes, Valentin Goranko, and Wojciech Jamroga. Alternating-time

temporal logics with irrevocable strategies. In Proceedings of the 11th Conference on

Theoretical Aspects of Rationality and Knowledge (TARK-2007), Brussels, Belgium,

June 25-27, 2007, pages 15–24, 2007.

[4] Christoph Schulte Althoff, Wolfgang Thomas, and Nico Wallmeier. Observations on

determinization of büchi automata. Theor. Comput. Sci., 363(2):224–233, 2006.

[5] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time

temporal logic. J. ACM, 49(5):672–713, September 2002.

[6] Rajeev Alur and Salvatore La Torre. Deterministic generators and games for ltl

fragments. ACM Trans. Comput. Logic, 5(1):1–25, January 2004.

[7] Rajeev Alur, Salvatore La Torre, and P. Madhusudan. Playing games with boxes and

diamonds. In CONCUR 2003 - Concurrency Theory, 14th International Conference,

Marseille, France, September 3-5, 2003, Proceedings, volume 2761 of Lecture Notes

in Computer Science, pages 127–141. Springer, 2003.

[8] Benjamin Aminof and Sasha Rubin. First cycle games. In Proceedings 2nd

International Workshop on Strategic Reasoning, SR 2014, Grenoble, France, April

5-6, 2014., pages 83–90, 2014.

[9] Tomás Babiak, Mojmı́r Kret́ınský, Vojtech Rehák, and Jan Strejcek. LTL to büchi

automata translation: Fast and more deterministic. CoRR, abs/1201.0682, 2012.

[10] Dietmar Berwanger. Admissibility in infinite games. In STACS 2007, 24th Annual

Symposium on Theoretical Aspects of Computer Science, Aachen, Germany, February

169

http://lacl.fr/~rbozianu/Acacia-K/

REFERENCES

22-24, 2007, Proceedings, volume 4393 of Lecture Notes in Computer Science, pages

188–199. Springer, 2007.

[11] Roderick Bloem, Alessandro Cimatti, Karin Greimel, Georg Hofferek, Robert

Könighofer, Marco Roveri, Viktor Schuppan, and Richard Seeber. Ratsy - a new

requirements analysis tool with synthesis. In Tayssir Touili, Byron Cook, and Paul

Jackson, editors, Computer Aided Verification, volume 6174 of Lecture Notes in

Computer Science, pages 425–429. Springer Berlin Heidelberg, 2010.

[12] Aaron Bohy, Véronique Bruyère, Emmanuel Filiot, Naiyong Jin, and Jean-François

Raskin. Acacia+, a tool for ltl synthesis. In P. Madhusudan and Sanjit A. Seshia,

editors, CAV, volume 7358 of Lecture Notes in Computer Science, pages 652–657.

Springer, 2012.

[13] Patricia Bouyer, Romain Brenguier, Nicolas Markey, and Michael Ummels. Pure nash

equilibria in concurrent deterministic games. Logical Methods in Computer Science,

11(2), 2015.

[14] Rodica Bozianu, Catalin Dima, and Emmanuel Filiot. Safraless synthesis

for epistemic temporal specifications. In Computer Aided Verification - 26th

International Conference, CAV 2014, Held as Part of the Vienna Summer of Logic,

VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings, volume 8559 of Lecture

Notes in Computer Science, pages 441–456. Springer, 2014.

[15] Thomas Brihaye, Arnaud Da Costa, François Laroussinie, and Nicolas Markey.

ATL with strategy contexts and bounded memory. In Sergei N. Artemov and Anil

Nerode, editors, Proceedings of the Symposium on Logical Foundations of Computer

Science (LFCS’09), volume 5407 of Lecture Notes in Computer Science, pages 92–106,

Deerfield Beach, Florida, USA, January 2009. Springer.

[16] Julius R. Büchi. On a Decision Method in Restricted Second-Order Arithmetic.

In International Congress on Logic, Methodology, and Philosophy of Science, pages

1–11. Stanford University Press, 1962.

[17] Petr Cermák, Alessio Lomuscio, Fabio Mogavero, and Aniello Murano.

MCMAS-SLK: A model checker for the verification of strategy logic specifications.

In Computer Aided Verification - 26th International Conference, CAV 2014, Held as

Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014.

Proceedings, volume 8559 of Lecture Notes in Computer Science, pages 525–532.

Springer, 2014.

[18] Krishnendu Chatterjee, Luca de Alfaro, and Thomas A. Henzinger. Strategy

improvement for concurrent reachability and turn-based stochastic safety games. J.

Comput. Syst. Sci., 79(5):640–657, 2013.

170

REFERENCES

[19] Krishnendu Chatterjee, Laurent Doyen, Emmanuel Filiot, and Jean-François Raskin.

Doomsday equilibria for omega-regular games. In Verification, Model Checking,

and Abstract Interpretation - 15th International Conference, VMCAI 2014, San

Diego, CA, USA, January 19-21, 2014, Proceedings, volume 8318 of Lecture Notes

in Computer Science, pages 78–97. Springer, 2014.

[20] Krishnendu Chatterjee, Thomas A. Henzinger, and Florian Horn. The complexity

of request-response games. In Language and Automata Theory and Applications

- 5th International Conference, LATA 2011, Tarragona, Spain, May 26-31, 2011.

Proceedings, volume 6638 of Lecture Notes in Computer Science, pages 227–237.

Springer, 2011.

[21] Krishnendu Chatterjee, Thomas A. Henzinger, and Marcin Jurdzinski. Games with

secure equilibria. Theor. Comput. Sci., 365(1-2):67–82, 2006.

[22] Krishnendu Chatterjee, Thomas A. Henzinger, and Nir Piterman. Generalized

parity games. In Proceedings of the 10th International Conference on Foundations

of Software Science and Computational Structures, FOSSACS’07, pages 153–167,

Berlin, Heidelberg, 2007. Springer-Verlag.

[23] Krishnendu Chatterjee, Thomas A. Henzinger, and Nir Piterman. Algorithms for

büchi games. CoRR, abs/0805.2620, 2008.

[24] Krishnendu Chatterjee, Thomas A. Henzinger, and Nir Piterman. Strategy logic.

Inf. Comput., 208(6):677–693, 2010.

[25] Krishnendu Chatterjee, Rupak Majumdar, and Marcin Jurdzinski. On nash equilibria

in stochastic games. In Computer Science Logic, 18th International Workshop, CSL

2004, 13th Annual Conference of the EACSL, Karpacz, Poland, September 20-24,

2004, Proceedings, volume 3210 of Lecture Notes in Computer Science, pages 26–40.

Springer, 2004.

[26] Alonzo Church. Logic, arithmetic, and automata. In Proc. Internat. Congr.

Mathematicians (Stockholm, 1962), pages 23–35. Inst. Mittag-Leffler, Djursholm,

1963.

[27] Edmund M. Clarke, E. Allen Emerson, and Joseph Sifakis. Model checking:

algorithmic verification and debugging. Commun. ACM, 52(11):74–84, 2009.

[28] Rodica Condurache, Emmanuel Filiot, Raffaella Gentilini, and Jean-François Raskin.

The complexity of rational synthesis. In 43rd International Colloquium on Automata,

Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy,

volume 55 of LIPIcs, pages 121:1–121:15. Schloss Dagstuhl - Leibniz-Zentrum fuer

Informatik, 2016.

171

REFERENCES

[29] Arnaud Da Costa, François Laroussinie, and Nicolas Markey. ATL with strategy

contexts: Expressiveness and model checking. In Kamal Lodaya and Meena

Mahajan, editors, Proceedings of the 30th Conference on Foundations of Software

Technology and Theoretical Computer Science (FSTTCS’10), volume 8 of Leibniz

International Proceedings in Informatics, pages 120–132, Chennai, India, December

2010. Leibniz-Zentrum für Informatik.

[30] Marco Daniele, Fausto Giunchiglia, and Moshe Y. Vardi. Improved automata

generation for linear temporal logic. In Computer Aided Verification, 11th

International Conference, CAV ’99, Trento, Italy, July 6-10, 1999, Proceedings,

volume 1633 of Lecture Notes in Computer Science, pages 249–260. Springer, 1999.

[31] Catalin Dima and Ferucio Laurentiu Tiplea. Model-checking ATL under imperfect

information and perfect recall semantics is undecidable. CoRR, abs/1102.4225, 2011.

[32] E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus and

determinacy. In Proceedings of the 32Nd Annual Symposium on Foundations of

Computer Science, SFCS ’91, pages 368–377, Washington, DC, USA, 1991. IEEE

Computer Society.

[33] E. Allen Emerson and Charanjit S. Jutla. The complexity of tree automata and

logics of programs. SIAM J. Comput., 29(1):132–158, 1999.

[34] Marco Faella. Admissible strategies in infinite games over graphs. In Mathematical

Foundations of Computer Science 2009, 34th International Symposium, MFCS 2009,

Novy Smokovec, High Tatras, Slovakia, August 24-28, 2009. Proceedings, volume 5734

of Lecture Notes in Computer Science, pages 307–318. Springer, 2009.

[35] Emmanuel Filiot, Naiyong Jin, and Jean-François Raskin. An antichain algorithm

for ltl realizability. In Ahmed Bouajjani and Oded Maler, editors, CAV, volume 5643

of Lecture Notes in Computer Science, pages 263–277. Springer, 2009.

[36] Emmanuel Filiot, Naiyong Jin, and Jean-François Raskin. Antichains and

compositional algorithms for ltl synthesis. Formal Methods in System Design,

39(3):261–296, 2011.

[37] Dana Fisman, Orna Kupferman, and Yoad Lustig. Rational synthesis. CoRR,

abs/0907.3019, 2009.

[38] Dana Fisman, Orna Kupferman, and Yoad Lustig. Rational synthesis. In Tools

and Algorithms for the Construction and Analysis of Systems, 16th International

Conference, TACAS 2010, Held as Part of the Joint European Conferences on

Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010.

172

REFERENCES

Proceedings, volume 6015 of Lecture Notes in Computer Science, pages 190–204.

Springer, 2010.

[39] Paul Gastin and Denis Oddoux. Fast LTL to Büchi automata translation. In Gérard

Berry, Hubert Comon, and Alain Finkel, editors, Proceedings of the 13th International

Conference on Computer Aided Verification (CAV’01), volume 2102 of Lecture Notes

in Computer Science, pages 53–65, Paris, France, July 2001. Springer.

[40] Rob Gerth, Doron A. Peled, Moshe Y. Vardi, and Pierre Wolper. Simple on-the-fly

automatic verification of linear temporal logic. In Protocol Specification, Testing and

Verification XV, Proceedings of the Fifteenth IFIP WG6.1 International Symposium

on Protocol Specification, Testing and Verification, Warsaw, Poland, June 1995,

volume 38 of IFIP Conference Proceedings, pages 3–18. Chapman & Hall, 1995.

[41] Barbara Di Giampaolo, Gilles Geeraerts, Jean-François Raskin, and Nathalie

Sznajder. Safraless procedures for timed specifications. In FORMATS, volume 6246

of Lecture Notes in Computer Science, pages 2–22. Springer, 2010.

[42] Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics,

and Infinite Games: A Guide to Current Research [outcome of a Dagstuhl seminar,

February 2001], volume 2500 of Lecture Notes in Computer Science. Springer, 2002.

[43] Yuri Gurevich and Leo Harrington. Trees, automata, and games. In Proceedings of

the Fourteenth Annual ACM Symposium on Theory of Computing, STOC ’82, pages

60–65, New York, NY, USA, 1982. ACM.

[44] Joseph Y. Halpern and Yoram Moses. Knowledge and common knowledge in a

distributed environment. In Tiko Kameda, Jayadev Misra, Joseph G. Peters, and

Nicola Santoro, editors, PODC, pages 50–61. ACM, 1984.

[45] Joseph Y. Halpern and Kevin R. O’Neill. Anonymity and information hiding

in multiagent systems. In 16th IEEE Computer Security Foundations Workshop

(CSFW-16 2003), 30 June - 2 July 2003, Pacific Grove, CA, USA, pages 75–88,

2003.

[46] Joseph Y. Halpern and Rafael Pass. Sequential equilibrium in games of imperfect

recall. In Principles of Knowledge Representation and Reasoning: Proceedings of the

Fifteenth International Conference, KR 2016, Cape Town, South Africa, April 25-29,

2016., pages 278–287. AAAI Press, 2016.

[47] Gerard J. Holzmann. The model checker spin. IEEE Trans. Softw. Eng.,

23(5):279–295, May 1997.

173

REFERENCES

[48] Paul Hunter and Anuj Dawar. Complexity bounds for regular games. In Proceedings

of the 30th International Symposium on Mathematical Foundations of Computer

Science (MFCS), Lecture Notes in Computer Science, pages 495–506, Berlin,

Heidelberg, 2005. Springer-Verlag.

[49] Barbara Jobstmann and Roderick Bloem. Optimizations for LTL synthesis. In Formal

Methods in Computer-Aided Design (FMCAD), pages 117–124. IEEE Computer

Society, 2006.

[50] Barbara Jobstmann, Stefan J. Galler, Martin Weiglhofer, and Roderick Bloem. Anzu:

A tool for property synthesis. In Computer Aided Verification, 19th International

Conference, CAV 2007, Berlin, Germany, July 3-7, 2007, Proceedings, volume 4590

of Lecture Notes in Computer Science, pages 258–262. Springer, 2007.

[51] Marcin Jurdzinski, Mike Paterson, and Uri Zwick. A deterministic subexponential

algorithm for solving parity games. In Proceedings of the Seventeenth Annual

ACM-SIAM Symposium on Discrete Algorithms, SODA 2006, Miami, Florida, USA,

January 22-26, 2006, pages 117–123, 2006.

[52] Yonit Kesten, Zohar Manna, Hugh McGuire, and Amir Pnueli. A decision

algorithm for full propositional temporal logic. In Computer Aided Verification,

5th International Conference, CAV ’93, Elounda, Greece, June 28 - July 1, 1993,

Proceedings, volume 697 of Lecture Notes in Computer Science, pages 97–109.

Springer, 1993.

[53] Orna Kupferman, Giuseppe Perelli, and Moshe Y. Vardi. Synthesis with rational

environments. In Multi-Agent Systems - 12th European Conference, EUMAS 2014,

Prague, Czech Republic, December 18-19, 2014, Revised Selected Papers, pages

219–235, 2014.

[54] Orna Kupferman and Moshe Y. Vardi. Synthesis with incomplete information. In

2nd International Conference on Temporal Logic, pages 91–106, Manchester, July

1997.

[55] Orna Kupferman and Moshe Y. Vardi. Safraless decision procedures. In FOCS, pages

531–542. IEEE Computer Society, 2005.

[56] François Laroussinie and Nicolas Markey. Augmenting ATL with strategy contexts.

Information and Computation, 245:98–123, December 2015.

[57] Wanwei Liu and Ji Wang. A tighter analysis of piterman’s büchi determinization.

Inf. Process. Lett., 109(16):941–945, 2009.

[58] Christof Löding. Automata on infinite trees. 2011.

174

REFERENCES

[59] Alessio Lomuscio, Hongyang Qu, and Franco Raimondi. MCMAS: A model checker

for the verification of multi-agent systems. In Computer Aided Verification, 21st

International Conference, CAV 2009, Grenoble, France, June 26 - July 2, 2009.

Proceedings, Lecture Notes in Computer Science, pages 682–688. Springer, 2009.

[60] Zohar Manna and Amir Pnueli. The temporal logic of reactive and concurrent systems

- specification. Springer, 1992.

[61] Donald A. Martin. Borel determinacy. Annals of Mathematics, 102(2):363–371, 1975.

[62] Robert McNaughton. Testing and generating infinite sequences by a finite automaton.

Information and Control, 9(5):521 – 530, 1966.

[63] Satoru Miyano and Takeshi Hayashi. Alternating finite automata on omega-words.

Theor. Comput. Sci., 32:321–330, 1984.

[64] Fabio Mogavero, Aniello Murano, Giuseppe Perelli, and Moshe Y. Vardi. Reasoning

about strategies: On the model-checking problem. CoRR, abs/1112.6275, 2011.

[65] Fabio Mogavero, Aniello Murano, Giuseppe Perelli, and Moshe Y. Vardi. What

makes atl* decidable? A decidable fragment of strategy logic. In CONCUR 2012

- Concurrency Theory - 23rd International Conference, CONCUR 2012, Newcastle

upon Tyne, UK, September 4-7, 2012. Proceedings, volume 7454 of Lecture Notes in

Computer Science, pages 193–208. Springer, 2012.

[66] Fabio Mogavero, Aniello Murano, and Moshe Y. Vardi. Reasoning about strategies.

In IARCS Annual Conference on Foundations of Software Technology and Theoretical

Computer Science, FSTTCS 2010, December 15-18, 2010, Chennai, India, volume 8

of LIPIcs, pages 133–144. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010.

[67] Andrzej Wlodzimierz Mostowski. Regular expressions for infinite trees and a standard

form of automata. In 5th Symp. Computation Theory, volume 208 of Lecture Notes

in Computer Science, pages 157 – 168. Springer, 1984.

[68] David E. Muller. Infinite sequences and finite machines. In Proceedings of the

1963 Proceedings of the Fourth Annual Symposium on Switching Circuit Theory and

Logical Design, SWCT ’63, pages 3–16, Washington, DC, USA, 1963. IEEE Computer

Society.

[69] David E. Muller and Paul E. Schupp. Alternating automata on infinite trees. Theor.

Comput. Sci., 54:267–276, 1987.

[70] David E. Muller and Paul E. Schupp. Simulating alternating tree automata by

nondeterministic automata: New results and new proofs of the theorems of rabin,

mcnaughton and safra. Theor. Comput. Sci., 141(1&2):69–107, 1995.

175

REFERENCES

[71] Marc Pauly. A modal logic for coalitional power in games. J. Log. Comput.,

12(1):149–166, 2002.

[72] Gary Peterson, John Reif, and Salman Azhar. Decision algorithms for multiplayer

non-cooperative games of incomplete information. Journal of Computers and

Mathematics with Applications, 43:179–206, 2002.

[73] Nir Piterman. From nondeterministic büchi and streett automata to deterministic

parity automata. Logical Methods in Computer Science, 3(3), 2007.

[74] Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In POPL,

pages 179–190. ACM Press, 1989.

[75] Amir Pnueli and Roni Rosner. Distributed reactive systems are hard to synthesize. In

31st Annual Symposium on Foundations of Computer Science, St. Louis, Missouri,

USA, October 22-24, 1990, Volume II, pages 746–757. IEEE Computer Society, 1990.

[76] Michael O. Rabin. Decidability of second-order theories and automata on infinite

trees. Bulletin of the American Mathematical Society, 74(5):1025–1029, 09 1968.

[77] John H. Reif. Universal games of incomplete information. In Proceedings of the 11h

Annual ACM Symposium on Theory of Computing, April 30 - May 2, 1979, Atlanta,

Georgia, USA, pages 288–308. ACM, 1979.

[78] John H. Reif. The complexity of two-player games of incomplete information. J.

Comput. Syst. Sci., 29(2):274–301, 1984.

[79] Shmuel Safra. On the complexity of omega-automata. In 29th Annual Symposium

on Foundations of Computer Science, White Plains, New York, USA, 24-26 October

1988, pages 319–327. IEEE Computer Society, 1988.

[80] Sven Schewe. Solving parity games in big steps. In FSTTCS 2007: Foundations

of Software Technology and Theoretical Computer Science, 27th International

Conference, New Delhi, India, December 12-14, 2007, Proceedings, volume 4855 of

Lecture Notes in Computer Science, pages 449–460. Springer, 2007.

[81] Sven Schewe and Bernd Finkbeiner. Bounded synthesis. In International Symposium

on Automated Technology for Verification and Analysis (ATVA), volume 4762 of

LNCS, pages 474–488. Springer, 2007.

[82] Pierre-Yves Schobbens. Alternating-time logic with imperfect recall. Electr. Notes

Theor. Comput. Sci., 85(2):82–93, 2004.

[83] A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal logics.

J. ACM, 32(3):733–749, July 1985.

176

REFERENCES

[84] Robert S. Streett. Propositional dynamic logic of looping and converse is elementarily

decidable. Information and Control, 54(1):121 – 141, 1982.

[85] Serdar Tasiran, Ramin Hojati, and Robert K. Brayton. Language containment of

non-deterministic omega-automata. In Correct Hardware Design and Verification

Methods, IFIP WG 10.5 Advanced Research Working Conference, CHARME ’95,

Frankfurt/Main, Germany, October 2-4, 1995, Proceedings, volume 987 of Lecture

Notes in Computer Science, pages 261–277. Springer, 1995.

[86] Michael Ummels. Rational behaviour and strategy construction in infinite multiplayer

games. In FSTTCS 2006: Foundations of Software Technology and Theoretical

Computer Science, 26th International Conference, Kolkata, India, December 13-15,

2006, Proceedings, volume 4337 of Lecture Notes in Computer Science, pages 212–223.

Springer, 2006.

[87] Michael Ummels. The complexity of nash equilibria in infinite multiplayer games. In

Foundations of Software Science and Computational Structures, 11th International

Conference, FOSSACS 2008, Held as Part of the Joint European Conferences on

Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29 -

April 6, 2008. Proceedings, volume 4962 of Lecture Notes in Computer Science, pages

20–34. Springer, 2008.

[88] Ron van der Meyden and Kaile Su. Symbolic model checking the knowledge of the

dining cryptographers. In 17th IEEE Computer Security Foundations Workshop,

(CSFW-17 2004), 28-30 June 2004, Pacific Grove, CA, USA, page 280, 2004.

[89] Ron van der Meyden and MosheY. Vardi. Synthesis from knowledge-based

specifications. In Davide Sangiorgi and Robert Simone, editors, CONCUR’98

Concurrency Theory, volume 1466 of Lecture Notes in Computer Science, pages

34–49. Springer Berlin Heidelberg, 1998.

[90] Ron van der Meyden and Thomas Wilke. Synthesis of distributed systems from

knowledge-based specifications. In Mart́ın Abadi and Luca de Alfaro, editors,

CONCUR 2005 - Concurrency Theory, 16th International Conference, CONCUR

2005, San Francisco, CA, USA, August 23-26, 2005, Proceedings, volume 3653 of

Lecture Notes in Computer Science, pages 562–576. Springer, 2005.

[91] Moshe Y. Vardi. Alternating automata: Unifying truth and validity checking for

temporal logics. In Automated Deduction - CADE-14, 14th International Conference

on Automated Deduction, Townsville, North Queensland, Australia, July 13-17, 1997,

Proceedings, volume 1249 of Lecture Notes in Computer Science, pages 191–206.

Springer, 1997.

177

REFERENCES

[92] Moshe Y. Vardi and Pierre Wolper. Automata-theoretic techniques for modal logics

of programs. J. Comput. Syst. Sci., 32(2):183–221, 1986.

[93] Pierre Wolper, Moshe Y. Vardi, and A. Prasad Sistla. Reasoning about infinite

computation paths (extended abstract). In 24th Annual Symposium on Foundations

of Computer Science, Tucson, Arizona, USA, 7-9 November 1983, pages 185–194.

IEEE Computer Society, 1983.

[94] Wieslaw Zielonka. Infinite games on finitely coloured graphs with applications to

automata on infinite trees. Theor. Comput. Sci., 200(1-2):135–183, 1998.

178

REFERENCES

179

Index

(σ̄−i, σ′), 19

ATL∗sc, 48

Γi, 18

Λ−labeled Υ−tree, 54

M[v], 16

σ̄, 19

exec(M), 16

inf(ρ), 16

π↾VE , 122

σi, 18

σhi , 18

IRuns(UM), 119

limD(η), 119

ϕ∃dev(i, η), 119

visit(ρ), 16

payi(σ̄)h, 35

SL[NG], 49

ABT, 58

accepting run, 55

ALT*, 45

alternating tree automata, 54

Büchi, 25

branch, 54

coBüchi, 25

complete tree, 53

CRSP, 39

Dominant Strategies, 38

environment, 22

execution, 16

First cycle game, 44

history, 16

indistinguishability relation, 21

interaction model, 15

KLTL, 26

KLTL Synthesis, 29

KLTL+, 28

leaf, 53

LTL, 28

Moore machine, 19

Muller, 26

Nash equilibria, 36

NBT, 58

NBW, 52

NCRSP, 39

node, 53

observation, 21

outcome, 20

P-fixed equilibrium, 38

Parity, 26

payoff, 35

protocol, 18

Rabin, 25

Reachability, 25

realizability, 22

retaliating strategy profile, 99

run, 51, 55

180

INDEX

Safety, 25

SL[NG], 49

SLK, 50

strategy, 18

strategy profile, 19

strategy profile specification, 22

strategy tree, 54

Streett, 25

Subgame Perfect equilibria, 37

successor, 53

synthesis problem, 22

trace, 16

UBCT, 58

UBCW, 52

UBT, 58

UCT, 58

UCW, 52

winning region, 43

word automaton, 51

zero-sum game, 43

181

INDEX

182

List of Figures

2.1 Example: Request-Grant interaction model 17

2.2 Interaction model M of Example 2.1.2 . 17

2.3 Example of strategy as Moore machine . 20

2.4 Example of interaction model . 36

3.1 Example of a tree and a run on it . 56

4.1 Winning strategy synthesized by Acacia −K for Example 2.1.2 84

4.2 The interaction model for 3-Coins Game . 86

4.3 The winning strategy for 3-Coins Game . 86

4.4 The winning strategy for 3-Prisoners Game 89

4.5 Strategy for timed toggle game given by McMAS-SLK 91

5.1 Example for LTL characterization of NE . 98

5.2 NP-h Safety CRSP: Reduction from 3-SAT 107

5.3 coNP-h Rabin CRSP: Reduction from 2-players Rabin games 109

5.4 NCRSP: Example of interaction model . 113

5.5 NCRSP lower bounds: Reduction from QBF 136

5.6 k-fixed Non-cooperative Parity: NP-hardness 142

5.7 k-fixed Non-cooperative Parity: co-NP-hardness 143

5.8 QBF to two-player zero-sum game . 145

5.9 Example showing that the LTL characterization doesn’t apply for CRSP

in concurrent models . 152

183

LIST OF FIGURES

184

List of Tables

2.1 Decidability results for the Synthesis Problem 24

4.1 Statistic Results for n-Prisoners Example . 89

4.2 Statistics of n-Prisoners Puzzle in MCMAS-SLK 91

5.1 Complexity of rational synthesis under perfect information for k processes. 94

185

LIST OF TABLES

186

Summary

We study the problem of automatic synthesis of programs in multi-component architectures

such that they fulfill the specifications by construction. The main goal of the thesis is to

develop procedures to solve the synthesis problem that may lead to efficient implementations.

Each component has partial observation on the global state of the multi-component

system. The synthesis problem is then to provide observation-based protocols for the

components that have to be synthesized that ensure that specifications hold on all interactions

with their environment.

The environment may be antagonist, or may have its own objectives and behave rationally.

We first study the synthesis problem when the environment is presumed to be completely

antagonist. For this setting, we propose a ”Safraless” procedure for the synthesis of one

partially informed component and an omniscient environment from KLTL+specifications. It

is implemented in the tool Acacia-K.

Secondly, we study the synthesis problem when the components in the environment have

their own objectives and are rational. For the more relaxed setting of perfect information, we

provide tight complexities for particular ω-regular objectives. Then, for the case of imperfect

information, we prove that the rational synthesis problem is undecidable in general, but

we gain decidability if is asked to synthesize one component against a rational omniscient

environment.

Key words: synthesis, reactive systems, games, KLTL

Résumé

Nous étudions le problème de la synthèse automatique de programmes dans des architectures

multi-composants teles qu’elles respectent les spécifications par construction. Le principal

objectif de cette thèse est de développer des procédures pour résoudre le problème de synthèse

qui peut conduire à des implémentations efficaces.

Chaque composant a une observation partielle sur l’état global du système

multi-composants. Le problème est alors de fournir des protocoles basés sur les observations

afin que les composants synthétisés assurent les spécifications pour tout le comportement de

leur environnement.

L’environnement peut être antagoniste, ou peut avoir ses propres objectifs et se comporter

de façon rationnelle. Nous étudions d’abord le problème de synthèse lorsque l’environnement

est présumé antagoniste. Pour ce contexte, nous proposons une procédure ”Safraless” pour

la synthèse d’un composant partiellement informé et un environnement omniscient à partir

de spécifications KLTL+. Elle est implémentée dans l’outil Acacia-K.

Ensuite, nous étudions le problème de synthèse lorsque les composants de l’environnement

ont leurs propres objectifs et sont rationnels. Pour le cadre plus simple de l’information

parfaite, nous fournissons des complexités serrées pour des objectifs ω-réguliers particuliers.

Pour le cas de l’information imparfaite, nous prouvons que le problème de la synthèse

rationnelle est indécidable en général, mais nous regagnons la décidabilité si on

demande à synthétiser un composant avec observation partielle contre un environnement

multi-composante, omniscient et rationnel.

Mots clés: synthèse, systèmes réactifs, jeux, logiques

	Introduction
	Motivation
	Objectives of the Thesis
	Contributions
	Organization of the Thesis

	Realizability and Synthesis
	Interaction Model
	Strategies
	Observations
	Synthesis problem: goals and contributions

	Execution Specifications
	-regular objectives
	Epistemic Linear Temporal Logic (KLTL)

	Synthesis with antagonist environment
	Multi-component rational environment
	Modeling Rationality
	Rational Synthesis

	Games, Logics and Automata: Tools and Techniques
	Two-players Zero-sum Games
	Logics of Strategies
	Alternating-Time Temporal Logic
	Nested-Goal Strategy Logic (SL[NG])
	Epistemic Strategy Logic (SLK)

	Automata on infinite Words
	Trees and Tree Automata
	Infinite Trees
	Alternating Automata on Infinite Trees
	Emptiness of Alternating Tree Automata
	Emptiness Game for Nondeterministic Tree Automata
	Antichain Algorithm of UCT Automata Emptiness

	Solving the KLTL Synthesis Problem
	Preliminaries
	Safraless Synthesis Procedure for Positive KLTL Specifications
	LTL Synthesis under Imperfect Information
	Positive KLTL Synthesis

	Implementation and Test Cases
	Implementation
	Light Bulb Controller
	The 3-Coins Game
	n-Prisoners Enigma
	Comparing Acacia-K with other tools

	Conclusions

	Rational Synthesis with Perfect Information
	Preliminaries
	LTL Characterization of Nash Equilibria
	Cooperative Rational Synthesis (CRSP)
	General Solution for CRSP
	Upper Bounds for CRSP
	Lower Bounds for CRSP
	CRSP with Fixed Number of Processes

	Non-Cooperative Rational Synthesis (NCRSP)
	General Solution for NCRSP
	Upper Bounds for NCRSP
	Lower Bounds for NCRSP
	NCRSP with Fixed Number of Processes

	Conclusions

	Rational Synthesis with Imperfect Information
	Imperfect Information for All Processes
	One Process Against Omniscient Multi-component Environment
	Imperfect Information Cooperative Rational Synthesis (ICRSP)
	Imperfect Information Non-Cooperative Rational Synthesis (INCRSP)

	Conclusions

	Conclusions
	Main Results
	Perspectives

	REFERENCES
	Index
	List of Figures
	List of Tables

