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“All beauty comes from beautiful blood and a beautiful brain.” 

 

- Walt Whitman (from the preface to Leaves of Grass, 1855) 
 

 

 

 

 

 

(Picture: Plastinated blood vessels of a human face shown during a media viewing for the 

exhibition “The Human Body” in Ostend in 2012)  
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Résumé de la thèse en français 

Cette thèse de doctorat est centrée sur l’étude de la technique d’imagerie par résonance 

magnétique (IRM) de mouvement incohérent intravoxel (IVIM), sa modélisation, validation 

expérimentale et application à un modèle animal. La technique d’imagerie IVIM permet 

d’obtenir des informations sur la structure des microvaisseaux sanguins à l’intérieur des tissus 

de manière non-invasive et sans utiliser d’agents de contraste. 

Introduction sur les vaisseaux sanguins du cerveau 

Le sang est le fluide le plus important du corps humain. Il a pour fonction de transporter 

l’oxygène et les nutriments jusqu’à toutes les cellules de l’organisme. Sans oxygène, les cellules 

meurent très rapidement. Le cerveau a besoin d’une grande quantité d’énergie pour 

fonctionner mais est incapable de la stocker. Cette thèse est focalisée sur l’étude d’une fraction 

particulière du système vasculaire du cerveau : les microvaisseaux. Ce terme inclut les 

artérioles, capillaires et veinules. Pour pouvoir les observer directement, des méthodes 

d’imagerie optique sont généralement privilégiées. D’autres techniques comme la micro IRM ou 

le micro scanner à rayons X peuvent également être utilisées mais sur des tissus déjà fixés. Les 

réseaux microvasculaires peuvent être extraits des images obtenues à l’aide de ces techniques 

en utilisant des méthodes de segmentation pour extraire des paramètres morphologiques tels 

que le diamètre et la longueur des vaisseaux. Les capillaires ont un diamètre moyen d’environ 

4.2 µm chez le rat et de 6.2 µm chez l’homme avec une longueur moyenne d’environ 50 µm. 

Des techniques d’imagerie optique permettent aussi la mesure de la vitesse du flux à l’intérieur 

des vaisseaux sanguins qui est d’environ 1.6 mm/s pour les capillaires chez le rat. Néanmoins, la 

reconstruction de réseaux microvasculaires à partir de ces images dans le but de modéliser 

l’hémodynamique du sang ou le transport de l’oxygène par les vaisseaux peut être laborieuse. 

C’est pourquoi des modélisations simplifiées de ces réseaux obtenues à partir de simulations où 

une structure de type arbre vasculaire est privilégiée pour les artérioles et les veinules et une 

structure de type maillage vasculaire est généralement choisie pour les capillaires ont été 

développées. Elles sont faciles à manipuler et représentent des modélisations acceptables du 

réseau microvasculaire. 
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Introduction sur l’IRM des réseaux vasculaires 

Pour mener à bien cette thèse, l’IRM a été utilisée pour étudier les réseaux microvasculaires. 

Cette technique permet de réaliser des images des tissus mous avec un bon contraste et de 

façon non-invasive. L’IRM est basée sur les mêmes principes physiques que la résonance 

magnétique nucléaire. Des bobines de gradients sont ajoutées pour encoder spatialement la 

position des spins des molécules d’eau et construire des images. Différents contrastes qui 

dépendent des caractéristiques de la séquence d’impulsions radiofréquence (RF) et des 

paramètres d’acquisition peuvent être obtenus. Pour être sensible seulement aux groupes de 

spins en mouvement dans les vaisseaux sanguins, des gradients de diffusion sont ajoutés avant 

et après l’impulsion RF de 180° d’une séquence d’écho de spin (SE) standard (séquence SE à 

gradients pulsés (PGSE)) comme sur la Figure 1R. 

 

Figure 1R. Diagramme de la séquence d’impulsions PGSE. Elle est basée sur la séquence SE qui 
se compose d’une impulsion RF de 90° suivie d’une impulsion RF de 180°. Deux gradients de 
diffusion sont ajoutés à cette séquence sur la direction du gradient de lecture (GRead) avant et 
après l’impulsion de 180° (blocs hachurés). 

Le premier gradient de diffusion applique le même déphasage à tous les spins. Le second 

gradient de diffusion applique le même déphasage mais avec le signe inversé (négatif) à cause 

de l’impulsion de 180°, ainsi compensant et annulant le déphasage induit par le premier 

gradient pour les spins statiques. Par contre, les spins en mouvement dans les tissus ou dans le 

système vasculaire auront accumulé une phase non-nulle et donneront donc lieu à une 

atténuation du signal IRM (sauf cas particulier où le moment magnétique au premier ordre est 

nul, i.e. séquences compensées en flux). En réalisant des mesures répétées à différentes 

amplitudes du gradient de diffusion, l’évolution de l’atténuation du signal peut être obtenue et 

affichée en fonction d’un paramètre dérivé de l’amplitude du gradient de diffusion appelée 

valeur de b. La composante du signal IRM, 𝑆(𝑏), correspondant aux spins qui diffusent dans le 



11 
 

tissu, 𝐹𝑑𝑖𝑓𝑓(𝑏), peut être séparée de celle qui fait référence aux spins en mouvement dans les 

vaisseaux sanguins qui est appelée signal IVIM, 𝐹𝐼𝑉𝐼𝑀(𝑏), 

𝑆(𝑏) = 𝑆0(1 − 𝑓𝐼𝑉𝐼𝑀)𝐹𝑑𝑖𝑓𝑓(𝑏) + 𝑆0𝑓𝐼𝑉𝐼𝑀𝐹𝐼𝑉𝐼𝑀(𝑏) 

où 𝑆0 représente le signal total à 𝑏 = 0. 

Ces deux composantes sont pondérées par (1 − 𝑓𝐼𝑉𝐼𝑀) et 𝑓𝐼𝑉𝐼𝑀, respectivement, où 𝑓𝐼𝑉𝐼𝑀 

représente la fraction volumique de sang à l’intérieur du tissu. D’autres techniques utilisant 

l’IRM permettent aussi d’étudier les vaisseaux sanguins. La première catégorie de techniques 

appelée angiographie IRM (ARM) permet seulement l’étude des gros vaisseaux sanguins, les 

artères et les veines. La seconde catégorie dont fait partie la technique IVIM est focalisée sur 

l’imagerie des microvaisseaux et se nomme imagerie IRM de perfusion. Parmi elles, on trouve 

l’IRM dynamique de contraste de susceptibilité magnétique et l’IRM dynamique rehaussée par 

agent de contraste qui nécessitent l’injection d’un agent de contraste, ce qui est l’un de leurs 

inconvénients majeurs. Par contre, la technique IVIM et le marquage de spin artériel (ASL) n’en 

ont pas besoin. L’ASL est le plus proche compétiteur de la technique IVIM. Cependant, la 

technique ASL utilise une impulsion RF d’inversion qui est plutôt caractérisée par sa longueur 

(180°) pour réaliser le marquage qui nécessite beaucoup de puissance et peut chauffer le tissu 

ou le sujet d’étude, ce qui rend l’ASL moins approprié chez les enfants et les patients fragiles 

que la technique IVIM, pour laquelle ce n’est pas un problème. 

Différentes modélisations possibles du signal IVIM 

Plusieurs expressions mathématiques ont été proposées pour modéliser le signal IVIM. Le 

premier modèle qui a été développé par Le Bihan et al. en 1988 est un modèle mono-

exponentiel 

𝐹𝐼𝑉𝐼𝑀(𝑏) = 𝑒
−𝑏(𝐷𝑏+𝐷

∗), 

caractérisé par le coefficient de pseudo-diffusion, 𝐷∗, et le coefficient de diffusion de l’eau dans 

le sang, 𝐷𝑏. 𝐷𝑏 n’est pas considéré comme un paramètre IVIM et est supposé constant pour 

toutes les expériences réalisées pendant cette thèse. Ce modèle mono-exponentiel est basé sur 

le fait que les groupes de spins traversent plusieurs segments de capillaires pendant le temps de 
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diffusion comme illustré sur la Figure 2R.A. Le temps d’encodage de diffusion est défini comme 

le temps pendant lequel les spins peuvent diffuser avant l’acquisition du signal IRM. Ce temps 

débute à partir de l’application du premier gradient de diffusion et se termine à la fin du 

deuxième gradient de diffusion. 

 

Figure 2R. Représentation de groupes de spins entraînés par le flux sanguin à l’intérieur d’un 
réseau de capillaires dans le cas (A) où ils changent de segments de capillaires plusieurs fois 
pendant le temps de diffusion et dans le cas (B) où ils restent dans le même segment de 
capillaire pendant le temps de diffusion. Adapté de Le Bihan et al [1]. 

Ce type de mouvement est proche du mouvement Brownien mais il provient des groupes de 

spins en mouvement à l’intérieur d’un réseau de segments de capillaires orientés de façon 

aléatoire. Ce n’est pas à proprement parlé un phénomène de diffusion mais d’écoulement donc 

on parle généralement de pseudo-diffusion. Un autre modèle dans lequel les groupes de spins 

restent dans le même segment de capillaire pendant le temps de diffusion (Figure 2R.B) peut 

être défini par une fonction sinus cardinal 

𝐹𝐼𝑉𝐼𝑀(𝑐) = 𝑒−𝑏𝐷𝑏𝑠𝑖𝑛𝑐(𝑐𝑉) 

où 𝑐 est un paramètre qui, comme 𝑏, dérive de l’amplitude du gradient de diffusion et 𝑉 est la 

norme du vecteur vitesse du flux sanguin. 

D’autres modèles plus complexes ont également été proposés dans la littérature. Certains 

auteurs remettent en question le fait que la technique IVIM permette d’être seulement sensible 

aux groupes de spins à l’intérieur des capillaires sanguins mais soit au contraire sensible au 

réseau microvasculaire entier. Nous proposons un modèle IVIM bi-exponentiel pour tenir 

compte de ce dernier point. Ce modèle a deux composantes : une composante lente 

caractérisée par 𝑓𝑠𝑙𝑜𝑤 et 𝐷𝑠𝑙𝑜𝑤
∗  qui correspondrait au modèle IVIM initial qui ne prend en 
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compte que les capillaires et une composante rapide caractérisée par 𝑓𝑓𝑎𝑠𝑡 et 𝐷𝑓𝑎𝑠𝑡
∗  qui 

correspondrait à des vaisseaux plus gros comme des artérioles et veinules de taille moyenne 

𝐹𝐼𝑉𝐼𝑀(𝑏) = 𝑒
−𝑏𝐷𝑏 (𝑓𝑠𝑙𝑜𝑤𝑒

−𝑏𝐷𝑠𝑙𝑜𝑤
∗

+ 𝑓𝑓𝑎𝑠𝑡𝑒
−𝑏𝐷𝑓𝑎𝑠𝑡

∗

), 

avec 𝑓𝑠𝑙𝑜𝑤 + 𝑓𝑓𝑎𝑠𝑡 = 1. 

Validation expérimentale du modèle bi-exponentiel du signal IVIM  

Pour valider ce nouveau modèle, onze rats ont été scannés sous anesthésie à l’isoflurane sur un 

scanner IRM à 7T avec la séquence PGSE et les paramètres d’acquisition suivants : 30 valeurs de 

𝑏 allant de 7 à 2500 s/mm², 3 directions de gradient de diffusion [1,1,1], [0,1,0] et [0,0,1], la 

durée d’un gradient de diffusion, = 3 ms, l’intervalle entre les deux gradients de diffusion, = 

14, 24 et 34 ms, une résolution spatiale de 250 x 250 µm², temps d’écho/temps de répétition 

(TR) = 45/1000 ms et 6 répétitions. Deux régions d’intérêt ont été sélectionnées sur le cortex 

gauche et le thalamus gauche. Après avoir moyenné le signal IRM sur les différentes répétitions, 

directions de diffusion (la diffusion est ici supposée isotrope) et régions d’intérêt, la composante 

de diffusion du signal IRM a été retirée du signal total pour ne garder que le signal IVIM en 

ajustant le signal IRM à grandes valeurs de 𝑏 sur le modèle de diffusion Kurtosis puis en 

extrapolant ce modèle pour les petites valeurs de 𝑏 et en le soustrayant au signal IRM total. Le 

critère d’information d’Akaike a été utilisé pour comparer et déterminer le meilleur modèle du 

signal IVIM pour décrire les données expérimentales entre les modèles mono-, bi- et tri-

exponentiels et un autre modèle développé par Kennan et al. qui est supposé mieux décrire le 

signal IVIM que le modèle mono-exponentiel standard. Le modèle bi-exponentiel a été évalué 

comme étant le meilleur modèle pour décrire ces données par ce critère pour les deux plus 

petites valeurs de  = 14 et 24 ms, mais pas pour tous les rats pour la plus grande valeur de  = 

34 ms, ce qui suggère que les deux modèles convergent aux grandes valeurs de . 

Simulations du signal IVIM pour extraire des informations structurelles sur les réseaux de 

vaisseaux sanguins 

Pour obtenir plus d’informations sur les caractéristiques des deux composantes du modèle IVIM 

bi-exponentiel, des simulations du signal IVIM ont été réalisées. Des trajectoires de groupes de 
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spins composées de segments de vaisseaux modélisés par des segments mis bout à bout et 

caractérisés chacun par la longueur du segment et la vitesse du flux à l’intérieur du segment ont 

été générées. Le diamètre des segments et le branchement d’un segment avec plusieurs autres 

segments n’ont pas été considérés. Des calculs mathématiques ont été réalisés pour extraire le 

signal IVIM de groupes de spins se déplaçant suivant ces trajectoires. Le modèle analytique 

obtenu nous a permis de générer un dictionnaire de signaux IVIM en faisant varier les longueurs 

et vitesses du flux sanguins associées aux segments des trajectoires suivant des distributions 

Gaussiennes, 𝐿𝑚𝑒𝑎𝑛 ± 𝜎𝐿 et 𝑉𝑚𝑒𝑎𝑛 ± 𝜎𝑉, respectivement. En s’inspirant du modèle bi-

exponentiel, des paires de signaux du dictionnaire ont été combinées. Chacun des deux signaux 

correspond à une des deux composantes du modèle bi-exponentiel, 𝑒−𝑏𝐷𝑠𝑙𝑜𝑤
∗

 ou 𝑒−𝑏𝐷𝑓𝑎𝑠𝑡
∗

, et est 

appelé, 𝐹𝑆𝑖𝑚/𝑠𝑙𝑜𝑤(𝐿𝑠𝑙𝑜𝑤, 𝑉𝑠𝑙𝑜𝑤) ou 𝐹𝑆𝑖𝑚/𝑓𝑎𝑠𝑡(𝐿𝑓𝑎𝑠𝑡 , 𝑉𝑓𝑎𝑠𝑡) 

𝐹𝐼𝑉𝐼𝑀/𝑆𝑖𝑚(𝐿𝑠𝑙𝑜𝑤, 𝑉𝑠𝑙𝑜𝑤, 𝐿𝑓𝑎𝑠𝑡 , 𝑉𝑓𝑎𝑠𝑡)

= 𝑓𝑠𝑙𝑜𝑤𝐹𝑆𝑖𝑚/𝑠𝑙𝑜𝑤(𝐿𝑠𝑙𝑜𝑤, 𝑉𝑠𝑙𝑜𝑤) +  𝑓𝑓𝑎𝑠𝑡𝐹𝑆𝑖𝑚/𝑓𝑎𝑠𝑡(𝐿𝑓𝑎𝑠𝑡 , 𝑉𝑓𝑎𝑠𝑡) 

où 𝑓𝑠𝑙𝑜𝑤 et 𝑓𝑓𝑎𝑠𝑡 prennent les valeurs calculées précédemment en réalisant le fit bi-exponentiel 

des données expérimentales. 

Toutes les paires possibles de signaux du dictionnaire ont été combinées et comparées aux 

signaux expérimentaux pour en extraire une longueur moyenne des segments, 𝐿𝑚𝑒𝑎𝑛, et la 

vitesse moyenne du flux à l’intérieur des segments, 𝑉𝑚𝑒𝑎𝑛, pour chaque composante, lente et 

rapide. Cette comparaison nous a permis d’obtenir une gamme de valeurs possibles pour 𝑉𝑚𝑒𝑎𝑛 

pour chaque composante avec 𝑉𝑠𝑙𝑜𝑤 autour de 1.6 mm/s et 𝑉𝑓𝑎𝑠𝑡 autour de 4.5 mm/s. Ces 

valeurs de 𝑉𝑚𝑒𝑎𝑛 sont cohérentes avec des valeurs trouvées dans la littérature pour les 

capillaires et les artérioles de taille moyenne. Cependant, il n’a pas été possible de déterminer 

𝐿𝑚𝑒𝑎𝑛, ce qui suggère que les deux composantes du signal IVIM sont plus proches du régime 

sinc que du régime exponentiel car, dans ce régime, comme les spins restent dans le même 

segment pendant le temps d’encodage de diffusion, il n’est pas possible de déterminer la 

longueur réelle du segment dans lequel ils sont.  
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Etude de l’évolution du signal IVIM avec les paramètres d’acquisition 

Par la suite, l’évolution des paramètres IVIM avec des paramètres d’acquisition a été étudiée. 

Pour chaque paramètre varié, quatre rats ont été scannés. Dans un premier temps, le temps de 

répétition, TR, a été varié entre 1000 et 3000 ms avec une séquence PGSE standard. Une très 

forte baisse de 𝑓𝐼𝑉𝐼𝑀, et une baisse également de 𝑓𝑓𝑎𝑠𝑡  ont été observées. Ces diminutions ne 

peuvent pas être expliquées seulement par la variation de TR et sont cohérentes avec l’effet 

d’entrée de coupe ou inflow. A court TR, le signal provenant du tissu n’a pas assez de temps 

pour retrouver son aimantation complète entre chaque TR et des spins frais présents dans les 

vaisseaux entrant dans la coupe imagée apparaissent avoir plus de signal que le tissu 

augmentant artificiellement 𝑓𝐼𝑉𝐼𝑀 comme montré sur la figure 3R. 

 

Figure 3R. Schéma expliquant l’effet d’entrée de coupe ou inflow à court et long temps de 
répétition (TR). Les protons des molécules d’eau présents dans les vaisseaux sanguins entrent 
dans le voxel avec une magnétisation complète (en blanc) alors qu’à court TR les protons situés 
à l’intérieur du tissu n’ont pas assez de temps pour retrouver leur magnétisation complète (gris 
foncé). Cela augmente la contribution du signal provenant des vaisseaux sanguins comparée à 
celle du tissu. Au contraire, à long TR, les protons situés dans le tissu ont plus de temps pour 
retrouver une magnétisation complète (gris clair) ainsi donnant une moins grande différence 
entre le signal provenant des spins situés dans le sang. 

Cet effet impacte plus les vaisseaux où le flux sanguin est important menant à une 

augmentation de 𝑓𝑓𝑎𝑠𝑡. Dans un deuxième temps, l’effet d’utiliser la séquence d’écho stimulé, 

STE, qui permet d’accéder à des temps de diffusion plus longs au lieu de la séquence SE a été 

étudié. La séquence STE est moins sensible à l’effet inflow que la séquence SE car elle est moins 

sensible aux flux dans les larges vaisseaux, ce qui donne des valeurs de 𝑓𝐼𝑉𝐼𝑀 et de 𝑓𝑓𝑎𝑠𝑡 moins 

élevées que pour la séquence SE. Cette étude a été réalisée à deux TRs différents, 1000 et 3500 

ms. Le signal IVIM est devenu mono-exponentiel à TR = 3500 ms suggérant que la composante 

rapide n’est plus visible aux longs TRs. Enfin, la variation du temps de diffusion a été étudiée sur 
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une séquence STE en modifiant la valeur de  :  = 14, 30 et 60 ms. Aux longs temps de 

diffusion, nous avons confirmé que le comportement bi-exponentiel du signal IVIM tendait à 

disparaître. 

Application de la technique IVIM à l’étude d’un modèle animal de la maladie d’Alzheimer 

Enfin, la technique IVIM a été appliquée à l’étude de la maladie d’Alzheimer. C’est une maladie 

neurodégénérative affectant particulièrement les personnes âgées de plus de 65 ans. Les 

personnes atteintes de cette maladie perdent progressivement leur capacité à se rappeler, 

penser, apprendre et vivre de façon indépendante. Avant l’apparition de ces symptômes 

cliniques, des changements se produisent aussi au niveau biologique. Des agrégats anormaux de 

protéines forment des plaques dites amyloïdes dans le cerveau. Des neurones perdent leur 

connexion avec le réseau neuronal et finissent par mourir aboutissant à une diminution du 

volume cérébral. Les capillaires cérébraux sont aussi affectés dans les premières phases de la 

maladie car leur membrane basale s’épaissit et des plaques amyloïdes se forment à l’intérieur 

de leur paroi. Ces changements induisent des distorsions de la lumière des capillaires provocant 

une diminution de la microcirculation. Comme des symptômes précoces de la maladie sont liés 

à des dérèglements de la microcirculation, IVIM pourrait jouer un rôle dans son diagnostic 

précoce. Pour le montrer, un modèle de souris de la maladie d’Alzheimer, la souris APP/PS1, a 

été utilisé. Six souris contrôles et six souris APP/PS1 ont été scannées à 6 mois sur l’IRM à 11.7T. 

Cependant, aucune différence dans les paramètres de diffusion ou IVIM n’a été trouvée entre 

les deux populations. Nous pensons que les souris étaient trop jeunes pour détecter un 

éventuel effet dû au développement de plaques amyloïdes dans la paroi des vaisseaux. 5 souris 

APP/PS1 entre 22 et 24 mois ont aussi pu être scannées. Cependant, aucune souris contrôle du 

même âge n’a pu être obtenue. Néanmoins, elles ont été comparées avec les souris APP/PS1 

scannées à l’âge de 6 mois. Des différences ont été observées dans les paramètres de diffusion 

suggérant une diffusion plus restreinte en fin de maladie. Ce résultat n’est pas en complet 

accord avec des résultats publiés précédemment dans la littérature qui montrent au contraire 

une augmentation de la diffusion au sein des tissus suite à la disparition des barrières naturelles 

qui limitent normalement la diffusion. Aucune différence significative n’a été observée entre les 

paramètres IVIM avec l’âge des souris APP/PS1. Peut-être les résultats auraient été différents si 
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les souris APP/PS1 âgées avaient été comparées à des souris contrôles du même âge. Une 

analyse plus poussée et une comparaison avec des souris contrôles du même âge seraient 

souhaitables pour vraiment pouvoir estimer si la technique IVIM pourrait être utilisée pour 

étudier la maladie d’Alzheimer. 

Conclusion 

Pour conclure, les expériences et simulations réalisées pendant cette thèse ont permis de mieux 

comprendre comment le signal IVIM peut être modélisé et comment il est influencé par les 

paramètres d’acquisition. Son application à l’étude de la maladie d’Alzheimer a donné des 

résultats qui ont besoin d’être confirmés et il serait intéressant de continuer les expériences 

commencées pendant cette thèse à ce sujet. En perspectives, il serait intéressant d’étudier 

l’influence de différents types d’anesthésie pour sélectionner la meilleure anesthésie qui 

permette la plus grande stabilité dans l’estimation des paramètres IVIM. La technique IVIM 

pourrait également être éprouvée sur un fantôme microfluidique. Les simulations numériques 

pourraient aussi être améliorées en prenant en compte le diamètre des vaisseaux et en 

simulant directement le signal IVIM à partir de réseaux microvasculaires directement extraits 

d’images histologiques. L’étude d’autres maladies neurodégénératives devrait aussi être 

considérée. 
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Abbreviations and notations 

 

Imaging techniques 

 

ASL Arterial spin labeling 

CASL Continuous arterial spin labeling 

CE Contrast enhanced 

DCE Dynamic contrast enhanced 

DKI Diffusion kurtosis imaging 

DSC Dynamic susceptibility contrast 

DWI Diffusion weighted imaging 

EPI Echo planar imaging 

fMRI Functional magnetic resonance imaging 

GE Gradient echo 

IVIM Intra-voxel incoherent motion 

KESM Knife-edge scanning microscopy 

LSM Light sheet microscopy 

MOST Micro-optical sectioning tomography 

MRA Magnetic resonance angiography 

MRI Magnetic resonance imaging 

PASL Pulsed arterial spin labeling 

PCA Phase contrast angiography 

pCASL Pseudo-continuous arterial spin labeling 

PET Positron emission tomography 

PGSE Pulsed gradient spin echo 

SE Spin echo 

SEM Scanning electron microscopy 

STE Stimulated echo 

TOF Time of flight 

TPLSM Two-photon laser scanning microscopy 
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Parameters 

 

𝐴𝐷𝐶 Apparent diffusion coefficient (mm²/s) 

AICc Corrected Akaike information criterion 

AIF Arterial input function 

AW Akaike weight 

𝐵0 Static magnetic field (T) 

𝐵1 Oscillating magnetic field (T) 

BP Bayesian probability 

(r)CBF (Relative) cerebral blood flow 

(r)CBV (Relative) cerebral blood volume 

𝐷∗ Pseudo-diffusion coefficient (mm²/s) 

𝐷𝑓𝑎𝑠𝑡
∗  Pseudo-diffusion coefficient of the fast pool (mm²/s) 

𝐷𝑠𝑙𝑜𝑤
∗  Pseudo-diffusion coefficient of the slow pool (mm²/s) 

𝐷𝑏 Diffusion coefficient of water in blood (mm²/s) 

𝑓𝑓𝑎𝑠𝑡 Fractional volume occupied by spins flowing in the fast pool in a voxel (%) 

FID Free Induction Decay 

𝑓𝐼𝑉𝐼𝑀 Fractional volume occupied by groups of spins flowing in the microvasculature 

in a voxel (%) 

𝑓𝑠𝑙𝑜𝑤 Fractional volume occupied by spins flowing in the slow pool in a voxel (%) 

GPhase Phase encoding gradient 

GRead Frequency encoding gradient 

GSlice Slice selection gradient 

KM Kurtosis model 

 Brain-blood partition coefficient 

𝐿 Length 

MEM Mono-exponential model 

𝑀𝑆𝐸 Mean squared error 

MT Magnetization transfer 

MTT Mean transit time 
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𝑀𝑥𝑦 Transverse magnetization 

𝑀𝑧 Longitudinal magnetization 

Nb Number of b-values 

NLLS Non-linear least squares 

NM Number of mice 

NR Number of rats 

PFC Perfluorocarbon 

RF Radiofrequency 

ROI Region of interest 

SAR Energy deposited in the tissue 

SNR Signal-to-noise ratio 

𝑇1 Longitudinal relaxation time (s) 

𝑇1𝑏 Longitudinal relaxation time of blood (s) 

𝑇1𝑡 Longitudinal relaxation time of tissue (s) 

𝑇2 Transversal relaxation time (s) 

𝑇2
∗ “Observed” T2 in the presence of magnetic field inhomogeneities (s) 

TE Echo time (s) 

TM Mixing time (s) 

TR Repetition time (s) 

Tukey’s HSD Tukey’s Honest Significant Difference 

𝑉 Blood velocity 

VENC Velocity encoding 
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Structure 

19F Fluorine 

1H Proton 

BBB Blood brain barrier 

Ctx Cortex 

Gd Gadolinium 

GM Grey matter 

Hp Hippocampus 

ICA Internal carotid arteries 

LC Left cortex 

LT Left thalamus 

RBC Red blood cell 

St Striatum 

WM White Matter 

 

Others 

AD Alzheimer’s disease 

APP Amyloid precursor protein 

FITC Fluorescein isothiocyanate 

NMR Nuclear magnetic resonance 

NSF Nephrogenic systemic fibrosis 
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General introduction 

The brain is one of the most important organs in the human body. Its structural and functional 

integrity requires a continuous supply of energy, oxygen and glucose, mediated by circulating 

blood flow. The microvasculature, particularly the capillary network, is directly responsible for 

oxygen transport to the tissue and the regulation of local blood flow. A good understanding of 

the microcirculation is an essential aspect necessary to obtain the perfusion patterns in healthy 

and diseased tissues. The microcirculation can be visualized and studied using medical imaging. 

The term medical imaging refers to techniques and processes that create images of the inside of 

the body which can help the medical staff to diagnose a disease, follow the evolution of a 

treatment, guide the surgeon during a medical intervention and help study tissues and organs in 

vivo. Several types of imaging techniques exist. Compared to other imaging techniques able to 

image the whole body, computed tomography and positron emission tomography, magnetic 

resonance imaging (MRI) uses no ionizing radiation and is relatively non-invasive. MRI can study 

hydrogen as well as other nuclei such as carbon 13, sodium 23, etc. The nucleus the most 

commonly studied is however hydrogen because of its abundance in the human body. Several 

MRI techniques gathered under the term MRI angiography can be used to observe the large 

blood vessels such as arteries and veins. However, to study microvessels, the spatial resolution 

of MRI does not allow for their direct visualization. Nevertheless, with a well-chosen design of 

the pulse sequence, MRI can be made sensitive only to protons in motion inside the body. This 

motion is restricted by natural barriers such as cell membranes, vessel walls and 

macromolecules. One particularly interesting MRI technique to extract information from the 

microvasculature is the IntraVoxel Incoherent Motion (IVIM) technique. It is able to differentiate 

between water protons inside the tissue and inside the microvasculature. IVIM is capable of 

giving macroscopic information about microscopic processes, namely flow inside the 

microvessels. Moreover, it has numerous substantial advantages over other similar techniques 

as it is free from contrast agent injection, completely noninvasive and easy to implement on a 

clinical scanner as based on a standard MRI sequence available on every clinical scanner from 

any manufacturer.  
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However, although it has been proven that IVIM is sensitive to flow in the microvasculature, it is 

not clear if it is sensitive only to the capillary network or to a larger part of the 

microvasculature. If the second hypothesis is correct, it could enlarge the scope of the 

applications opened to IVIM. The goal of this thesis is to better understand from where the IVIM 

signal originates, validate our hypothesis experimentally and apply the IVIM technique to the 

study of an animal model of Alzheimer’s disease. 

The first chapter of this manuscript provides a brief description of the blood content and the 

brain microvasculature. In Chapter 2, the basics of MR physics are presented and applied to 

define and compare the MRI techniques which can be used to study blood flow in the brain. The 

advantages of the IVIM technique over the other MRI techniques are exposed at the end of this 

chapter. The validity of the standard IVIM signal model is challenged in Chapter 3 and a bi-

exponential IVIM model accounting for two distinct vascular pools is found to better describe 

the IVIM signal experimentally at short diffusion times. Mathematical modelling of the IVIM 

signal is then performed in Chapter 4 to design numerical simulations of the IVIM signal. These 

simulations are used in Chapter 5 to create a dictionary of simulated signals which is then 

compared to the signals obtained experimentally in order to extract structural information 

about the two vascular pools of the proposed bi-exponential IVIM model. The influence of 

acquisition parameters on the IVIM signal is also investigated in Chapter 5. IVIM is then applied 

to the study of an animal model of Alzheimer’s disease in Chapter 6. The final chapter, Chapter 

7, contains the conclusions, possible improvements and future work of this thesis.  
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Chapter 1: Blood vessels in the brain 

This chapter introduces the brain vasculature, first by defining blood constituents, then 

introducing the brain vascular architecture before focusing on the brain microvasculature. 

Finally, the last section describes how the microvascular network can be modelled and 

simulated. 

1.1 Blood content 

Blood is the most important fluid in the human body. This section presents the main functions 

of blood by going through its main constituents. As shown in Figure 1.1.A, the major 

components of blood are plasma (~ 55 %), red blood cells (RBCs) (~ 45 %), white blood cells and 

platelets (< 1 %).  

 

Figure 1.1. (A) Blood content represented in a centrifuged tube of blood sample. The heavier 
components, the red blood cells, pack at the bottom of the tube. Just above are the white blood 
cells and platelets. Finally, the principal component of blood, plasma, stays on top. (B) Scanning 
electron microscopy image of a red blood cell, platelet and white blood cell. Image taken at the 
Electron Microscopy Facility at the National Cancer Institute at Frederick, Maryland, USA. 

1.1.1 Plasma 

Plasma is the yellow fluid that remains after centrifuging a blood sample. It carries all the blood 

constituents to the cells. Apart from RBCs, white blood cells and platelets, it also contains 

sugars, lipids, vitamins, minerals, hormones, enzymes, antibodies and other proteins. 
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1.1.2 Red blood cells 

RBCs, also called erythrocytes, account for 45 % of the blood content. As shown in the scanning 

electron microscopy image in Figure 1.1.B, they look like flattened biconcave discs of about 7 

µm in diameter. They have no nucleus. Their purpose is the transport of dioxygen, O2, from the 

lungs to every cell in the body and of carbon dioxide from the cells back to the lungs. To 

accomplish that, RBCs have each around 280 million hemoglobin proteins. Hemoglobin consists 

of 4 hems, each containing one iron atom. Hems are arranged to leave a caveat at the center of 

the protein. The quaternary structure of the hemoglobin is important for the capture of O2 or its 

release. Figure 1.2 shows the two possible conformation states of the hemoglobin protein in 

quaternary structure: state T (for tensed) and state R (for relaxed). 

 

Figure 1.2. Transition between T and R states of hemoglobin in quaternary structure 

representation. The 4 hems of hemoglobin are also called subunits: 1, 2, here in grey and 1 

and 2, here in blue. Histidine residues (His HC3) located at one end of the  subunits rotate 
between T and R states to the center of the caveat. This and other mechanisms result in a 
narrowing of the caveat of the hemoglobin in R state. This state is preferred when binding O2. 
From Leningher [2]. 

At low pH and concentration of O2, the protein is preferably in T conformation which has low 

affinity for O2. Thus, if an O2 molecule was attached to the protein, it is released. On the 

contrary, if the pH is high as well as the O2 concentration, the R conformation with more affinity 

to O2 is preferred and hemoglobin is able to bind to O2. In fact, the T conformation is more 
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stable than the R conformation but, when O2 is present, it stabilizes the R conformation. 

Patients suffering from anemia lack of RBCs and feel fatigued due to a shortage of oxygen. 

When oxygen binds to iron atoms in hemoglobin, hemoglobin is called oxyhemoglobin and iron 

oxides are what gives blood its red color. 

1.1.3 White blood cells 

White blood cells, also called leukocytes, are about 600 times fewer than RBCs and represent 

less than 1% of the blood content with platelets. They are part of the immune system. Figure 

1.1.B shows a scanning electron microscopy image of a white blood cell. Unlike RBCs, leukocytes 

have a nucleus. There are three types of leukocytes. The most abundant are granulocytes which 

have small particles called granules inside their cytoplasm. They include basophils which are 

involved in inflammatory reactions and eosinophils and neutrophils which digest, phagocytize, 

complexes formed by antibodies-antigens and bacteria, respectively. The second most 

numerous type of leukocytes is lymphocytes, small cells with a large round nuclei and a small 

cytoplasm, which are responsible for killing viruses and produce antibodies. The last category is 

monocytes which are precursors to macrophages which digest bacteria as well as viruses. Thus, 

blood also has the function to transport these cells of the immune system quickly to the 

location of an infection. White blood cells do not always stay inside the blood vessels and can 

easily cross the vessel walls by amoeboid motion. They are able to pass through holes in the 

vessel walls smaller than themselves by extending a small part of the cell called a 

pseudopodium through the vessel wall. The cell’s cytoplasm and content progressively stream 

to that pseudopodium and finally arrive in the surrounding tissue. 

1.1.4 Platelets 

Platelets are the smallest elements in blood and are actually fragments of larger cells found in 

the bone marrow. They have no nucleus. Resting platelets are smooth discs of 2-4 µm in 

diameter while upon activation they have an irregular shape with protruding pseudopodia as 

the one shown in Figure 1.1.B. In that state, they are capable of the same amoeboid motion as 

white blood cells. The role of platelets is to start the clotting when a blood vessel is damaged 

and they constitute the major mass of the clot. In some circumstances, platelets can also 

produce a circulating clot also called thrombosis which, if located in one of a major arteries, can 
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prevent blood from flowing into one part of the heart or the brain and cause a heart attack or a 

stroke, respectively.  

As a conclusion, all blood constituents have their own function: blood, oxygen and nutrients 

transportation, infection fighting and blood clotting. They contribute to the well-being of the 

organs and any change in the blood content can have tremendous consequences on the viability 

of the organ. 

1.2 The brain vascular system 

1.2.1 Why does the brain need a constant vascular input? 

The brain is the most complex organ of the body. In the early eighteenth century, it was 

discovered to consist of two different parts: the white matter (WM) and the grey matter (GM) 

[3]. The WM, which represents more than half of the brain [4], mainly consists of myelinated 

axons and very few neuronal cell bodies. Its function is to ensure electrical connections between 

neurons. The GM includes all neurons, dendrites, microglia, astrocytes and blood vessels and 

represents less than 50 % of the brain. The function of neurons is to process information 

received through dendrites or axons. Dendrites have the same role as axons but are not 

surrounded by myelin and are shorter than axons. Microglial cells are part of the immune 

system and fight against foreign materials. Astrocytes, located between neurons and blood 

vessels, transport nutrients from the blood vessels to the neurons and also support endothelial 

cells that form the blood brain barrier (BBB). The BBB is a physiological barrier designed to 

protect the brain by regulating the crossing of particles from the blood stream at the capillary 

level to the brain tissue. 

The brain consumes 20 % of the total energy of the body even though it represents only 2 % of 

the total body weight [5]. However, this organ is not able to store energy. This is why the brain 

needs a constant vascular input. Figure 1.3 shows the brain vasculature with a brain for which 

the tissues surrounding the vessels have been dissolved. The brain is not the organ receiving the 

most part of the cardiac output at rest. The kidneys, liver, spleen, gastrointestinal tract and 

skeletal muscles are more vascularized than the brain.  
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Figure 1.3. Cerebral blood vessels obtained by injecting the blood vessels with a plastic emulsion 
and dissolving the brain parenchyma. From Zlokovic et al [6]. 

Blood vessels have the important function to provide organs with energy supplies and remove 

the waste products. A constant regulation of the supply and removal of these materials in the 

brain is needed otherwise a cascade of events is initiated which leads to neuronal deaths and 

irreversible damages [7]. 

1.2.2 Vasculogenesis and angiogenesis mechanisms 

The first process to occur in vascular network generation is vasculogenesis. In the embryo, 

endothelial precursor cells (angioblasts) migrate and differentiate into endothelial cells to 

create a first network of blood vessels. Then angiogenesis takes place. This process is shown in 

Figure 1.4.A: perivascular cells detach from the vessel walls and the vessel membrane is 

degraded to allow migration of endothelial cells creating new vessel buds and sprouts. These 

buds and sprouts elongate and form branches before being stabilized by the recruitment of 

perivascular cells and the production of extracellular matrix compounds. 

Vasculogenesis was thought to be only a pre-natal process but it can also occur in the adult 

organism by recruitment of circulating angioblasts as shown in Figure 1.4.B. For example, post-

natal vasculogenesis is involved in wound healing [8], limb ischemia [9] and tumor growth [10]. 
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Figure 1.4. Mechanisms of blood vessel formation. (A) Angiogenesis: 1) upon activation by pro-
angiogenic growth factors, perivascular cells (in blue) detach from the vascular wall and 
endothelial cells (in red) release proteases, which degrades their basement membrane. 2) It 
allows for endothelial cells migration and the formation of vessel buds or sprouts. 3) These 
sprouts further elongate and make branches and interconnections. 4) The new blood vessels are 
stabilized by the recruitment of perivascular cells and the production of extracellular matrix 
compounds. (B) Post-natal vasculogenesis: vessels form from the recruitment of circulating 
angioblasts (in yellow), their proliferation and finally differentiation into mature endothelial 
cells. From Laschke et al [11]. 

1.2.3 Similarities between vascular and nervous systems 

As blood vessels act as supply vessels for the neurons, their geometry is not random. Nerve 

fibers and blood vessels follow an orderly pattern, often alongside each other. They can 

influence each other’s development. Similarities have been found between the molecules 

involved in the guidance of nerve fibers and blood vessels and the growth factors directing 

angiogenic sprouting and those regulating terminal axon arborization [12]. Zheng et al. showed 

that there is a regional organization of the microvessels corresponding to the underlying 

organization of the neurons inside the primate visual cortex. They also suggest that this pattern 

can be generalized to other animals [13]. There is a close connection between the vascular and 

neuronal networks. The study of the vascular network can allow for a better understanding of 
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the organization of the neurons. Abnormalities in the nervous system most probably result or 

come from abnormalities in the vascular system. 

1.2.4 Anatomy of the brain vascular system 

The human brain has approximately 400 miles of blood vessels. As it is the most important 

organ in the human body, its vascular system is the one which develops first in the embryo [14]. 

Blood arrives to the brain mainly from the two internal carotid arteries (ICA). It can also arise 

from the vertebral arteries which merge to form the basilar artery and join the ICA at the circle 

of Willis shown in Figure 1.5. Even if one artery is blocked or damaged, the circle of Willis 

enables to still provide normal cerebral perfusion as the arteries are all connected through that 

circle also called polygon. However, only about a half of the human population has a complete 

Willis polygon [15]. An incomplete polygon can condition the appearance and severity of 

cerebrovascular disorders such as aneurysms and infarctions. 

 

Figure 1.5. (A) Axial maximum intensity projection time-of-flight (TOF) images of a complete 
circle of Willis from one patient. The TOF technique will be presented later in section 2.3.1. (B) 
Arteries comprising the circle of Willis. ICA: internal carotid artery; ACA: anterior cerebral artery; 
MCA: middle cerebral artery; PCA: posterior cerebral artery; BA: basilar artery; VA: vertebral 
artery; Acomm: anterior communicating artery; Pcomm: posterior communicating artery; A1, 
A2, P1, P2: branches of the anterior and posterior cerebral arteries. From Ezzatian-Ahar et al. 
[16] and Cucchiara et al [17]. 

From the circle of Willis, the anterior, middle and posterior cerebral arteries supply the brain 

with O2 and nutrients (Figure 1.5.B). If we focus for example on the cortex, the arteries which 
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are mapping the surface of the cortex are called pial arteries. Smaller diameter arteries are 

named arterioles. When arterioles perforate the surface of the cortex, they are called 

penetrating arterioles and as they divide and their diameter decreases, they become deep 

microvessels or capillaries. Then capillaries merge to become venules which in turn merge to 

give veins which finally go back to the heart as the vena cava. Figure 1.6 shows a 3D 

reconstruction of a part of the cortex with the vascular network going from pial arterioles to pial 

venules. 

 

Figure 1.6. 3D-reconstruction of a block of tissue collected by in vivo two-photon laser scanning 
microscopy from the upper layers of the mouse cortex. Penetrating vessels plunge into the 
depth of the cortex, bridging flow from surface vascular networks to capillary beds. From Shih et 
al [18]. 

1.2.5 Characteristics of the vessels 

The two main parameters measured when studying the brain vascular network are the cerebral 

blood flow (CBF) and cerebral blood volume (CBV). These two parameters can be broken up at 

the vessel scale into three other parameters: the vessel diameter, the vessel length and the 

blood velocity. Table 1.1 gives estimates of these three parameters and the wall thickness for 

the different vessel types. In this table, arterioles, capillaries and venules have been gathered 

under the term microvessels. They will be described in more details in the next section. 
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Vessel type 
Vessel diameter 

(mm) 
Wall thickness 

(µm) 
Vessel length 

(cm) 
Blood velocity 

(mm/s) 

Aorta 25 1500 40 630 

Large arteries 6.5 1000 20 200-500 

Main artery 
branches 

2.4 800 10 / 

Terminal artery 
branches 

1.2 125 1 50 

Microvessels 0.008-0.15 1-20 0.1-0.2 0.2-5 

Terminal veins 1.5 10 1 / 

Main venous 
branches 

5 100 10 / 

Large veins 14 200 20 / 

Vena cava 30 400 40 135 

 
Table 1.1. Characteristics of the human blood vessels categorized by vessel type: vessel 
diameter, wall thickness, vessel length and blood velocity. From Freitas [19]. 

The vessel diameter displayed in Table 1.1 is the lumen diameter. Arteries have a smaller lumen 

diameter than veins because their wall thickness is thicker than the one of veins. Indeed, 

arteries’ membranes must resist high blood pressure changes. Then, pressure drops when blood 

passes through the capillaries and is very low inside the veins which thus have thinner vessel 

walls. The values provided for the vessel length and blood velocity in Table 1.1 are mean values. 

1.3 The brain microvasculature 

This thesis is centered on the study of the microvasculature which consists of the smallest 

vessels: capillaries, arterioles and venules (Figure 1.7). 

First, techniques to extract structural information from the microvasculature are presented. 

Then, information about the geometry, structure and flow in the microvessels are summarized. 

Finally, methods to simulate the microvascular network are described. 
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Figure 1.7. 3D volume rendering of a selected zone of the cortex by scanning electron 
microscope showing the microvasculature: pial, penetrating arterioles and venules and 
capillaries. From Schoonover [20]. 

1.3.1 Methods to observe and extract information from the microvasculature 

The main techniques having enough spatial resolution to visualize and extract structural 

parameters from the microvessels are performed postmortem, ex-vivo. These techniques 

involve two steps. Microvessels are usually labelled to enhance their contrast compared to the 

surrounding tissue before being imaged. Techniques to measure the blood velocity are different 

as they require in-vivo access. They will presented in section 1.3.3.1. 

1.3.1.1 Staining of the blood vessels 

Labeling of the microvessels is an important step to facilitate their visualization in the imaging 

step. Different strategies can be used. 

A low viscosity resin like methyl methacrylate can be injected into the vessels replacing blood. 

After some time, it solidifies. Then, potassium hydroxide can be used to completely dissolve the 

surrounding tissue leaving the resin intact and yielding a cast of vessels [21]. The advantage of 

this technique is that the vessels are completely separated from the tissue and they are not 

deformed so precise measurements of the lumen diameter can be obtained. However, as the 

vessels are no longer supported by nervous tissue, they are more difficult to identify. 
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The other staining techniques rely on histological methods. The most common method involves 

injection of india ink and gelatin [21], [22]. This method has the advantage to completely fill the 

microvascular network and allows for the precise identification and detailed study of arteries 

and veins. However, vascular rupture can happen in superficial vessels masking them. Also, the 

fixation and dehydration of the tissue following the injection of india ink can deform the vessels 

to a large extent making the measure of the vessel diameter not fully reliable. In addition to 

this, when some vessels are ruptured consequently to a disease, the ink can diffuse outside of 

the vessel. 

Another strategy consists in injecting gelatin and fluorescein conjugated to albumin [23]. 

Crosslinking of the albumin to the gelatin skeleton prevents diffusion of the fluorophore in the 

extravascular space, even in exposed vessels. A derivative of the fluorescein, the fluorescein 

isothiocyanate (FITC), is often used in combination with dextran [24]. The india ink and 

fluorescein methods also permit simultaneous staining of other structures than the vessels. For 

example, if information about the location of the neurons compared to the vessels is sought, a 

fluorescent stain, DAPI, can be added to label all cell nuclei along with -NeuN antibody which 

allows for the differentiation of neuronal versus non-neuronal cells [23]. 

The two histological methods presented previously fill the vessels with a substance to label 

them. Another approach is to directly label endothelium cells of the vessel walls. This can be 

achieved by incubating the fixed tissue of interest with the calcium cobalt method to label 

alkaline phosphatase activity in the endothelium of blood vessels [25]. However, this type of 

staining is not homogeneous throughout the vascular tree [26]. In particular, venous capillaries 

are poorly stained. Other dyes use similar labeling strategies. Nissl targets the rough 

endoplasmic reticulum and free polyribosomes in neurons, glia and endothelial cells [27]. Von 

Willebrand factor specifically marks endothelial cells using specific antibodies [28]. And Dil 

efficiently stains the vessel membrane due to its lipophilic characteristics [29]. 

An interesting strategy is to combine staining of the perfused capillaries using for example FITC-

dextran dyes with staining of the membranes of all capillaries by labeling alkaline phosphatase 



42 
 

activity in the endothelium of the vessels [30]. This allows for the comparison of perfused and 

non-perfused capillaries at the same time. 

1.3.1.2 Imaging after staining of the blood vessels 

Several imaging techniques can be used to visualize the blood vessels after that they have been 

stained. Two-photon laser scanning microscopy (TPLSM) allows for the observation of 

fluorescent dyes such as fluorescein or FITC. Figure 1.8.A shows a TPLSM image of the mouse 

brain cortex with different fluorescent stains: DAPI, fluorescein and -NeuN. Blinder et al. 

managed to image the cortex with a 1 µm resolution [31]. However, this technique is limited by 

the imaging field and penetration depth of two-photon imaging. 

 

Figure 1.8. (A) Maximal projection of two-photon laser scanning microscopy image data of a 2 

mm region of the mouse brain cortex from the bregma. DAPI, fluorescein and -NeuN are 
fluorescent dyes of all cell nuclei, blood vessels and neuronal cells, respectively. (B) Light sheet 
microscopy image after india ink staining of a section of the human brain cortex showing the 
four cortical vascular layers (1-4) and examples of bush-like venous network (5-7) (x 64). (C) 
Scanning electron microscopy image of a cast of vessels of the human brain cortex. (1) 
Recurrent branch coupled with the parent vessel (2). Arrows indicate impressions of endothelial 
cell nuclei on the arterial cast (x 440). From Tsai et al. [23] and Duvernoy et al [21]. 

Light sheet microscopy (LSM) is generally used to image tissues stained with india ink or Nissl 

[22]. Figure 1.8.B is an example of a light sheet microscope image after injection of india ink and 

fixation of the sample. This optical method has the same limitations as TPLSM. However, a 
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technique to improve the penetration depth called optical clearing aiming to make the 

surrounding tissue transparent is more and more used [32]. For example, by adding liquid 

paraffin to a sample already stained with india ink, Hashimoto et al. managed to get whole 

mouse brain images with a 5 µm resolution [33]. 

To obtain LSM images, first the sample needs to be cut in very thin slices using a microtome. 

Techniques have been developed to perform this step at the same time as collecting the images. 

Li et al. created the micro-optical sectioning tomography (MOST) [34]. Using Nissl staining 

coupled with MOST, Wu et al. imaged the whole mouse brain at one micron voxel resolution 

with high image quality [35]. Xue et al. managed to get even better resolution with india ink 

perfusion: 0.35 x 0.4 x 2 µm3 [36]. Another similar technique developed approximately at the 

same time is knife-edge scanning microscopy (KESM) [37]. It allows to cut sections as thin as 0.5 

µm from tissues embedded in resin with india ink or Nissl staining [38]. 

Casts of vessels obtained by dissolving tissues after filling the blood vessels with a resin are 

imaged with scanning electron microscopy (SEM) [21], [39]. Figure 1.8.C shows a SEM image of a 

vessel cast of the human brain cortex. Nuclei of endothelial cells are pointed at by arrows. SEM 

has higher resolution than light sheet microscopy and the depth of focus is high enough to get a 

large field of view enabling to reliably trace individual vessels either over very short or over 

extremely long distances. 

Other strategies not using optical methods but MRI and CT can also be employed. Instead of 

injecting gelatin doped with gadolinium chelates to enhance the contrast in MRI images, an 

inert silicon rubber can be used. This other contrast agent causes vessels to appear dark on MRI 

and bright on CT. The low viscosity of the inert silicone rubber allows for complete filling of the 

vasculature and its hydrophobicity restricts itself from crossing the vessel membrane. By 

combining MRI and CT images, Dorr et al. created a whole brain mouse vascular atlas with a 30 

µm resolution [40]. This staining is also suitable for optical imaging as the silicon rubber is 

optically opaque. Pathak et al. thus compared MRI and CT images with LSM images of the same 

mouse brain to show that good agreement can be obtained between the three techniques 

(Figure 1.9) [41]. 
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Figure 1.9. Comparison between µMRI, µCT and bright-field images. (A) 1.2 mm slab of a mouse 
brain in which the µMRI-derived vasculature (gold) is overlaid on that acquired using µCT 
(purple). (B) Bright-field images of ROIs corresponding to the colored squares in Figure 1.9.A. 
White arrows indicate major vessels that are visible in both Figure 1.9.A and B. From Pathak et 
al [41]. 

1.3.2 Structural characteristics of the microvessels 

To detail the different characteristics of the microvessels, the work of Cassot et al. is going to be 

detailed. 

Based on Duvernoy et al.’s images of the cortex of an india ink-injected human brain (Figure 

1.10.a), Cassot et al. segmented all vessels in two sections of about 300 µm thick to extract 

quantitative structural parameters of the microvessels (Figure 1.10.d) [42]. 

 

Figure 1.10. (a) Section of india ink-injected human brain imaged with confocal microscopy from 
Duvernoy et al.’s collection. (b-c) Image and flipped image zoomed from image (a) on the 
collateral sulcus in the temporal lobe. (d) Depth coded projection of the vessels in image divided 
in two mosaics outlined in red and white (c). From Cassot et al [42]. 
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From this analysis, they were able to extract frequency distributions for the diameter and the 

vessel length of the microvascular network which are shown in Figure 1.11. 

 

Figure 1.11. Histograms of diameters (left) and lengths (right) of the microvascular networks for 
the two mosaics in Figure 1.10.d (solid and dotted lines). From Cassot et al [42]. 

They also measured for the two sections a stable vascular density of 2.44 %. The vessels are 

preferentially forming bifurcations (94 %). A bifurcation is defined when one parent vessel splits 

into two daughter vessels at a branching node as shown in Figure 1.12. 

 

Figure 1.12. LSM image of a tissue perfused with india ink and stained with cresyl violet. 
Capillaries (CAP) perfused with india ink appear in black. A branching point (BP) can be seen in 
the middle of the image. The neurons stained with cresyl violet appear in violet. Adapted from 
Tata et al [22]. 

The arterial and venous networks can also be separated from the capillary network. Generally, 

the delimitation between arterioles, venules and capillaries is made by putting a diameter upper 

limit for the capillaries. Arterioles and venules are then defined as vessels with a larger diameter 

than this limit. To set the diameter limit, for example, Pawlik et al. took all vessels with a 
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diameter smaller than 15 µm in their images and measured the goodness of fit of a normal 

distribution to a sample of 300 mean diameters while progressively decreasing this diameter 

limit [43]. The best fit was obtained for a diameter limit of 7 µm (Figure 1.13) and with that limit 

they found that capillaries have diameters ranging from 4.2 to 7 µm with a mean vessel length 

of 110 µm. This diameter limit varies between studies and is generally between 6 and 10 µm. 

 

Figure 1.13. Frequency distribution of the microvascular mean diameters in cat cerebral cortex 
and maximum likelihood normal distribution of intracortical capillary mean diameters. From 
Pawlik et al [43]. 

In Cassot et al.’s paper, they first performed an analysis of the arterial and venous trees defining 

4 levels of vessels for these two trees, the fourth level corresponding to a large vein and level 0 

to a precapillary venule. The threshold for the capillaries was fixed to the mean diameter of 

level 0 which was 9 µm. With this threshold, the capillary mean diameter and vessel length were 

found to be not so different from the mean diameter and vessel lengths of the entire 

microvascular network: 5.9 ± 1.30 µm and 57.4 ± 50.98 µm compared to 6.91 ± 3.85 µm and 

56.65 ± 51.66 µm for the mean vessel diameter and length, respectively. 

As there is no real consensus on what a capillary really is, anatomically, histologically or 

hemodynamically [44] and with the large of possible imaging methods, many different values 

for the capillary diameter and length have been reported in the literature. Some of them are 

gathered in Table 1.2.  
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Authors Year Subject Method Diameter (µm) Length (µm) Reference 

Craigie et al. 1932 rat India ink staining + LSM 2.3-3  [45] 
Hunziker et al. 1974 cat Alkaline phosphatase activity markers + SEM 4.8 280.4 [46] 
Laursen et al. 1977 rat Alkaline phosphatase activity markers + SEM 4.9 344.5 [25] 

Meier-Ruge et al. 1980 human Alkaline phosphatase activity markers + SEM 6.3  [47] 
Ivanov et al. 1980 rat Intravital microfilming 2-5 60-200 [48] 
Pawlik et al. 1981 cat High-speed microcinephotography 4.2-7 110 [43] 

Duvernoy et al. 1981 human 
India ink staining + LSM and vascular 

corrosion cast + SEM 
6 / [21] 

Weiss et al. 1982 rat FITC-dextran staining + TPLSM 6.1 / [30] 
Ben Hamida et al. 1983 cat Nissl staining + LSM 2-7 / [49] 

Villringer et al. 1994 rat Fluorescein staining + TPLSM 5.3 / [50] 

Tata et al. 2002 rat 
Nissl staining + LSM 4 32.2-51.2 

[22] 
India ink staining + LSM 3.5 42.5-51.6 

Lu et al. 2004 rat FITC-dextran staining + TPLSM < 7.5 < 200 µm [51] 
Hauck et al. 2004 rat Intravital microscopy 4.1 / [52] 

Cassot et al. 2006 human 
India ink staining + LSM and vascular 

corrosion cast + SEM 
5.9 57.4 [42] 

Michaloudi et al. 2006 rat India ink staining + LSM 4.1 / [53] 

Lauwers et al. 2008 human 
India ink staining + LSM and vascular 

corrosion cast + SEM 
6.5 53 [44] 

Tsai et al. 2009 mouse FITC-gelatin, DAPI, -NeuN staining + TPLSM 4.1 / [23] 

Blinder et al. 2013 mouse 
Fluorescein-conjugated-albumin gel staining 

+ TPLSM 
< 7 50 [31] 

Wu et al. 2014 mouse Nissl staining + MOST 3-6 / [35] 
Xue et al. 2014 mouse India ink staining + MOST 4.6 / [36] 

 
Table 1.2. Reported capillary diameter and length in the literature in chronological order. 
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The mean capillary diameter ranges between 2.5 and 6.5 µm. The mean value of all these 

estimates for each subject is very close between the rat (4.2 µm), the mouse (4.4 µm) and the 

cat (4.5 µm) but is a bit higher in humans (6.2 µm). The range of mean vessel length is also large 

from 32.2 to 344.5 µm. The more recent values are around 50 µm in humans as well as in mice. 

Arterioles and venules being larger diameter vessels, it is easier to identify them and measure 

their structural characteristics. In humans, Freitas reports diameters for the arterioles between 

25 and 100 µm [19]. Venules have pretty much the same range transposed slightly to higher 

diameters up to 150 µm. For the vessel length, they report the same for both types of vessels: 

on average, 2 mm. 

1.3.3 Flow inside blood vessels 

1.3.3.1 Measure of the blood velocity 

Contrary to the previous section, imaging techniques suitable for the study of microvessels in-

vivo are needed to obtain estimations of the blood velocity. 

Optical methods like intra-vital microscopy allow for the measure of parameters related to the 

blood velocity. In the first section, we saw that RBCs are giving blood its red color and that 

plasma is more of a yellow color. Taking advantage of this color difference and knowing that, 

with the small capillary diameter, RBCs can travel only one behind each other in capillaries, 

researchers have developed optical methods to track the plasma gaps between RBCs inside the 

capillaries [48]. Figure 1.14 shows the shift of a plasma gap in two images separated by 0.1 s. 

 

Figure 1.14. Brain capillaries at depth 40 µm with arrows showing the shift of the plasma gap. 
Images A and B are separated by 0.1 s. Scale bar: 20 µm. Adapted from Ivanov et al [48]. 
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However, this technique can lead to measurement errors as plasma gaps can also correspond to 

slowly moving white blood cells.  

A more reliable imaging technique is the tracking of fluorescently labeled RBCs [54]. After 

labeling of RBCs typically with FITC-dextran, the brain is imaged using a high speed camera laser 

scanning confocal microscope through a cranial window. In this technique, the movement of 

RBCs is directly recorded avoiding the problem of plasma gaps corresponding to white blood 

cells. However, Unekawa et al. pointed out a limitation of this method regarding the frame rate 

of the camera used [55]. As illustrated in Figure 1.15.A, the frequency distribution function of 

RBC velocities that is obtained highly depends on the frame rate. At short frame rate, high 

velocities are not measurable and a part of the RBCs present in the capillaries are not taken into 

account. Thus, a too short frame rate introduces errors in the RBCs velocity measurements. 

Only RBC velocity measurements with high frame rate are reliable. 

 

Figure 1.15. (A) Frequency distribution functions of RBC velocities obtained at different frame 
rates per second (fps): 500 fps (closed circles, n = 37), 250 fps (open squares, n = 10) and 125 fps 
(open triangles, n = 6) for 10 s. (B) Fluctuation (small dots) and respective averages (small bars) 
of RBC velocities in individual capillaries detected 5 or more times at 500 fps for 10 s against the 
capillary number. The mean of individual averages, 1.96 mm/s, is shown by the horizontal 
dotted line. From Unekawa et al [55]. 

Figure 1.15.B shows the values of repeated measures of the RBC velocity for 161 individual 

capillaries with a high frame rate (500 frames per second). The average RBC velocity in 

capillaries was found to be 1.96 ± 1.26 mm/s.  
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However, the RBC velocity is not the same as the blood velocity but it can be approximated 

from the RBC velocity. The RBCs’ diameter being close if not larger than the diameter of 

microvessels, they should not be able to get inside capillaries but they still need to travel 

through capillaries to deliver oxygen and nutrients. To achieve that, their cell membrane has the 

capacity to deform as shown in Figure 1.16. Instead of a biconcave disc-shape, they can adopt a 

parachute shape by decreasing their length, LRBC, and increase their width, WRBC. 

 

Figure 1.16. RBC shape in two cases: (A) without flow, equilibrium shape and (B) under flow in a 
capillary: parachute shape. LRBC and WRBC represent the length and width of the RBC, 
respectively. Adapted from Wang et al [56]. 

If the capillary diameter is approximated to 5 µm and the RBC diameter to 7 µm, the ratio 

between the RBC diameter and the vessel diameter is 1.4. If this ratio is around 1.3, it has been 

demonstrated that the blood velocity is 20 % smaller than the RBC velocity [57]. This 

approximates the mean blood velocity to 1.57 mm/s. 

For the blood velocity of arterioles, Freitas gives a mean velocity of 5 mm/s [19]. Fernandez-

Klett et al. differentiate between precapillary, penetrating and pial arterioles in the mouse brain 

with blood flow velocities between 2 and 4 mm/s, no estimation and between 6 and 8.5 mm/s, 

respectively [58]. Vennemann et al. report much higher values of 50 mm/s for the arterioles and 

10 mm/s for the venules in the human vascular network [59]. However, they considered vessels 

with a much larger diameter, from 25 to 100 µm, compared to 7 to 15 µm for Fernandez-Klett et 

al. This difference in diameters explains the higher velocities they find. 
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The two methods described here to measure the RBC velocity are indirect measures of the 

blood velocity and have many limitations among which the small penetration depth of optical 

methods. Furthermore, in clinics, the applications of optical-based methods are limited to 

superficial areas such as the skin [60]. There is thus a need for a measurement method of the 

blood velocity suitable for in-vivo experiments and not relying on RBCs for its measure. 

A new method has recently been developed by Demené et al [61]. By combining ultrasound 

ultrafast Doppler with tomographic reconstruction for 3D imaging, they are able to image the 

microvasculature in 4D. They achieve a 4D resolution of 100 μm × 100 μm × 100 μm and 10 ms. 

This technique is sensitive to flow in small vessels down to 1 mm/s. However, the transposition 

of this technique to clinics will be difficult as the human skull reduces transcranial propagation 

of the ultrasounds. However, it could be used to image newborns who have a fontanelle much 

thinner than the human skull. 

 

Figure 1.17. Back view (A) and front view (B) of the complete rat vascular network acquired with 
the ultrafast Doppler tomography technique. From Demené et al [61]. 

1.3.3.2 Velocity profiles 

Three types of velocity profiles can be defined to model blood flow: plug or bulk flow, laminar 

flow and turbulent flow (Figure 1.18). 

Inside a vessel, blood flows in straight lines with each layer of blood staying at the same 

distance from the vessel wall throughout the vessel length.  
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Figure 1.18. Flow velocity profiles in a blood vessel: plug (A), laminar (B) and turbulent (C) flow. 

In plug flow, the flow is constant along the diameter of the pipe. Plug flow is an ideal model for 

blood flow. However, it is suitable for vessels with very small diameters like capillaries [62]. In 

these vessels, RBCs take a parachute shape and leave a cell-free layer of blood between the 

vessel wall and the RBCs [56]. No viscosity effects can slow down the velocity of the blood layers 

close to the vessel wall and the vessel diameter being also small, the velocity can be considered 

constant across the vessel diameter and be modelled by plug flow. 

For vessels with a larger diameter, laminar flow occurs [62]. It appears when layers of blood 

closer to the vessel wall barely move and adhere to it making the other layers of blood slip over 

it. The result is a parabolic velocity profile. The blood velocity is maximum at the center of the 

vessel and 0 at the vessel walls. It is a more realistic model for the blood velocity. 

Finally, when the velocity is very high, blood can encounter an obstacle or make a sharp turn, 

the flow can become turbulent. When it occurs, blood flows crosswise in the vessel as well as 

along the vessel and whorls can appear. This usually takes place in large arteries after a stenosis. 

A dimensionless quantity can be calculated to define the limit between laminar and turbulent 

flow, it is called the Reynolds number, 𝑅𝑒 [63],[64]: 

𝑅𝑒 =
𝜌𝑑𝑉

𝜇
                 1.1 



53 
 

where 𝜌 is the blood density, 𝑑 the vessel diameter, 𝑉 the vessel blood velocity and 𝜇 the blood 

dynamic viscosity. 

𝑅𝑒 represents the ratio of the inertial forces aiming to keep the fluid flowing to the viscosity 

forces aiming to slow down the fluid motion. For laminar flow, 𝑅𝑒 is small and viscosity forces 

prevail. For 𝑅𝑒 > 2000, the inertial forces are more important than the viscosity forces, the flow 

is no longer laminar and progressively becomes turbulent. For the diameter and blood flow 

velocities displayed in Table 1.1 , 𝜌 = 1.05 g/cm3 and 𝜇 = 0.03 P, 𝑅𝑒 varies between 0.0003 and 

0.26 in the microvessels. These values are far from the turbulent flow limit. Blood flow can be 

modelled as plug flow in the capillaries and as laminar flow in larger vessels of the microvascular 

network, i.e. in arterioles and venules. 

1.3.4 Simulated microvascular networks 

To extract more than morphological information from the microvascular networks, it can be 

interesting to simulate these networks. First, reasons to simplify realistic constructions of 

microvascular networks are exposed. Then, several simulations strategies are proposed. 

1.3.4.1 Limitations of using real microvascular networks 

It would clearly be ideal to generate microvascular structures from real brain tissue and to run 

simulations on such networks. However, this process is extremely complex and time consuming 

as it involves sample preparation, scanning and image processing as well as being very difficult 

to do in-vivo. Yet, Duvernoy et al. acquired a collection of human brain cortex images making 

them available for the whole community [21]. For morphological studies, Lauwers et al. used 

part of this collection [44]. Working with the whole collection would mean to deal with a very 

large number of data so only pieces of it are processed at a time. After segmenting the vessels, 

he was able to obtain central morphometric features of the microcirculation. With the same 

method, Lorthois et al. measured the tortuosity of cortex blood vessels [65]. Using their own 

acquired data, other groups studied the relation between the microvascular topology [31] and 

the cortical columns or else the correlation between neuronal and microvascular densities [23].  
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These networks are handy when seeking morphological data only. Indeed, if studying different 

challenges, such as different levels of hypercapnia or hypoxia, it would be difficult to get images 

of a brain in the precise level of each condition. 

Yet, when studying varying parameters, these networks can form a structural basis for 

modelling. For example, Linninger et al. took part of Duvernoy et al.’s collection, added and 

propagated blood supply into the segmented network to then predict oxygen exchange 

between the microvasculature and brain cells [66]. 

However, usually when studying more complex parameters such as hemodynamics, researchers 

are looking for simpler models of the vascular network. This is why having models of the 

microvascular network is needed. 

1.3.4.2 Models of the microvascular network 

Two types of structures are generally proposed when modelling microvascular networks: mesh-

like and symmetric tree-like structures [67]. Figure 1.19.A and B give representations of such 

networks. 

 

Figure 1.19. Representations of vascular networks. (A-B) Mesh-like and symmetric tree-like 
structures. The colors indicate the intravascular oxygen levels (PO2). PO2 is higher in the 
arterioles and decreases progressively in the capillaries to be the lowest in the venules. (C) Real 
network extracted from the rat mesentery. The colors refer to the vessel type, red, green and 
blue for arterioles, capillaries and venules, respectively. Based on Pries et al [67]. 

To be efficient, a vascular network should be arranged to ensure effective transport of the 

oxygen and nutrients. Two mechanisms contribute to this transport: diffusive transport which 

depends on the random thermal motion of individual transported molecules and convective 

transport in which the transported molecules are carried by a flowing fluid, here blood. 
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The mesh-like structure is a simple structure that has short and homogenous distances between 

vessels and tissue cells. This structure is efficient for diffusive transport. However, the vessels in 

this structure are very thin and have relatively short lengths making convective transport 

ineffective. In the symmetric tree-like structure, on the contrary, the resistance to blood flow is 

lower due to changes in the blood flow along the tree. This structure is thus more effective for 

convective transport. Yet, it is only efficient for diffusive transport in the capillary region. Figure 

1.19.C shows the representation of a real microvascular network. Capillaries can be found 

everywhere in the tissue, close and far from the arterioles and venules. This real structure can 

be seen as a combination of the tree-like structure for the arterioles and venules and a mesh-

like structure for the capillaries. However, the capillaries are not oriented in a regular pattern as 

assumed by the mesh-like structure. Their orientation seems randomly distributed along the 

three directions. 

For example, Boas et al. used a tree-like network model built up from a branching series of 

individual arterioles, going through the capillaries and then on to a converging series of venules 

[68]. Each series of vessels has its own structural properties related to real vascular networks. 

With it, they modelled the hemodynamic response to neuronal activity. 

With a similar approach, Zagzoule et al. proposed a simplified model for which all important 

vessels are represented individually by a number in Figure 1.20 [69]. Then, they formulated a 

mathematical expression for blood flow which they applied to this model of the vasculature to 

study autoregulation during arterial hypotension. 
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Figure 1.20. Schematic diagram of the vasculature. The numbers correspond to important 
vessels. For more details, see Zagzoule et al [69]. 

More complex structures have been proposed to model just the capillary network like the 

modified spanning tree method [70]. This approach first creates an incomplete small network 

using the minimum spanning tree method with Prim’s algorithm [71] connecting a small number 

of nodes at random coordinates in a cube (Figure 1.21.A). Then, more nodes are added to the 

cube and branches are generated from a node to the closest node until a terminal node located 

on the sides of the cube is reached (Figure 1.21.B). In a third step, more branches are created 

between terminal nodes (Figure 1.21.C). Finally, vessels of specific lengths are added and 

removed to match the length distribution of the capillaries obtained with experimental data by 

Cassot et al. [42] and the radius distribution of the vessels likewise (Figure 1.21.D). 
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Figure 1.21. Modified spanning tree method. (A) Creation of a small network from nodes 
connected using the minimum spanning tree method with Prim’s algorithm [71]. (B) More 
nodes are randomly added to the cube and branched from one node to the closest node until 
reaching a terminal node on one side of the cube highlighted by circles. (C) Segments are 
formed between terminal nodes (dotted lines). (D) In a final step, branches are added (bold 
solid lines) and subtracted (dotted lines) to match the vessel lengths and diameter distributions 
observed by Cassot et al [42]. From Su et al [70]. 

This simulated network is closer to a real capillary network as it matches the vessel lengths and 

diameter distributions observed in real tissues. This is a good model to simulate blood flow, 

oxygen and nutrients transport and, for hypercapnia or hypoxia challenges, the mean lengths 

and diameters of the distributions can be varied to mimic the changes occurring in the capillary 

network under such conditions. 

As a conclusion to this chapter, the microvascular network is extensively described in the 

literature although with some differences depending on the labeling and imaging technique 

used. These characteristics can then be used to elaborate models to simulate the variation of 
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hemodynamic parameters after a challenge. As the goal of this thesis is to extract vascular 

parameters from the MRI signal, such simulated networks will be useful as a basis to model the 

evolution of the MRI signal with different vascular characteristics of the network. The next 

chapter introduces the MRI technique used in this thesis.  
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Chapter 2: MRI of the vasculature 

In this chapter, the history and basic physical concepts of MRI will be presented. The last section 

will focus on the MRI techniques able to probe characteristics of the blood vessels. 

2.1 History of MRI 

MRI is an imaging technique capable of producing images of the inside of the body in a 

noninvasive way and without the use of ionizing radiations.  

The development of MRI comes from a long series of discoveries rewarded by Nobel Prizes 

which put all together made MRI possible. It began with the discovery of nuclear magnetic 

resonance (NMR) in 1939 by Isidor Rabi [72] who obtained the Nobel Prize in Physics for his 

work in 1944. Then, simultaneously, Felix Bloch at Harvard University [73] and Edward Purcell at 

Stanford University [74] demonstrated the potential of NMR to decipher the chemical 

composition and structure of materials. They won the Nobel Prize in Physics together in 1952. It 

is not until 1973 that Paul Lauterbur had the idea to add linear magnetic field gradients to the 

MR system to produce images and invented what is now called MRI [75]. He received the Nobel 

Prize in Medicine with Peter Mansfield [76] in 2003. 

During the past 15 years, many different pulse sequences and contrast types have been 

designed and discovered making MRI a versatile technique suitable to study and diagnose a 

large number of pathologies and especially to better understand how the brain works. 

2.2 Basic physical concepts of MRI 

This section covers the basics needed to understand the physical concepts of MRI. 

2.2.1 Spins and Larmor frequency 

NMR and thus MRI are limited to the study of specific atomic nuclei that have the capacity to 

rotate about an axis and generate their own magnetic field. Only nuclei which have an unpaired 

proton and therefore a half integer nuclear spin belong to this category. The most abundant 

atom in the human body is hydrogen and it happens to have an isotope with only one proton 

which obeys to this rule: 1H. Almost all atoms have an isotope that can fulfill this condition. 

However, as the MR signal scales with the amount of studied isotope in the sample and the 
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value of its gyromagnetic ratio, 𝛾, only a small number of atoms are eligible for MRI. For 1H for 

example, 𝛾 = 267.51 × 106 rad.s-1.T-1. On top of being the most abundant isotope in the human 

body, 1H has the highest 𝛾-value. It has therefore the highest MR sensitivity. 1H is thus the most 

commonly used atom but specific MRI techniques have been developed to study also 13C, 31P, 

19F, 7Li and 23Na, 3He, 129Xe, 83Kr, etc. 

A spin can create a tiny magnetic field on a microscopic level. However, in the absence of a 

strong external magnetic field, all the spins are randomly oriented and cancel each other’s 

magnetic field resulting in a zero net magnetization (Figure 2.1.A). In the presence of a strong 

external static magnetic field 𝐵0⃗⃗⃗⃗ , the collection of spins tend to align with it creating a net 

magnetization (Figure 2.1.B). 

 

Figure 2.1. (A) Un-aligned collection of spins in the absence of a magnetic field. There is no net 

magnetization. (B) Aligned collection of spins in the presence of an external magnetic field, 𝐵0⃗⃗⃗⃗ , 
creating a net magnetization; 𝜇  is the magnetic moment of a spin. 

What comes next follows the semi-classical description of NMR. For the rigorous quantum 

description, interested readers can refer to more specialized literature such as Haacke et al [77]. 

An important parameter to define, the Larmor precession, the precession of the magnetic 

moment of a collection of spins about an external magnetic field, here 𝐵0⃗⃗⃗⃗ , can be expressed as 

𝜔0 = 𝛾𝐵0                           2.1 

In Figure 2.1, the magnetic moments have been represented in a static way to simplify the 

figure. 
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𝜔0 is the Larmor frequency for a constant field 𝐵0. If 𝐵 = 𝐵(𝑡) ≠ 𝐵0, the Larmor frequency 

associated with 𝐵(𝑡) is 𝜔(𝑡) = 𝛾𝐵(𝑡). 

Instead of representing spin magnetic moments in a reference frame where the spins are 

precessing at 𝜔0, it is sometimes more convenient to represent them in a reference frame 

rotating at 𝜔0. In this frame, the spin axis is not moving anymore. 

2.2.2 Magnetization vector and Bloch equations 

In the previous section, spins have only been considered individually. We now introduce the 

local magnetic moment per unit volume also called magnetization, 𝑀⃗⃗ . Considering a volume 

element or voxel with volume 𝑉𝑥, the magnetization can be expressed as: 

𝑀⃗⃗ =
1

𝑉𝑥
∑ 𝜇𝑗⃗⃗  ⃗𝑝𝑟𝑜𝑡𝑜𝑛𝑠 

𝑖𝑛 𝑉𝑥

                 2.2 

A microscopic group of spins in 𝑉𝑥 which resonate at the same frequency and are in the same 

chemical environment are referred to as an isochromat.  

With only a static magnetic field 𝐵0, the magnetization stays aligned to 𝐵0. In NMR and MRI, 

another magnetic field oscillating at 𝜔0 in the transverse plane, 𝐵1, is added to tip the 

magnetization into the transverse plane. 𝐵1 is called the radiofrequency (RF) field as 𝜔0 is in the 

radiofrequency range (9 kHz to 300 GHz). Typically, for proton, 𝜔0 = 300 MHz at 7T and 500 

MHz at 11.7T. A RF coil, the transmit coil, produces the RF pulse.  

Commonly, 𝐵0⃗⃗⃗⃗  is defined along the z-direction, 𝐵0⃗⃗⃗⃗ = 𝐵0𝑒𝑧⃗⃗  ⃗. When the 𝐵1 field is applied to an 

isochromat, the longitudinal magnetization along 𝐵0⃗⃗⃗⃗ , 𝑀𝑧, is flipped toward the x-y plane. This 

process is called excitation and the magnetization in the x-y plane is labelled as 𝑀𝑥𝑦. After 𝐵1 is 

turned off, the total magnetic moment relaxes back to its equilibrium state along the z-axis, 

generating a signal called free induction decay (FID). This signal is recorded by an RF coil, the 

receiver coil. The transmit and receiver coils can be the same coil or two different coils. The 

recorded signal is what we call the MR signal. 

After the application of an RF pulse, the time variation of 𝑀⃗⃗  can be written as 
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𝑑𝑀⃗⃗ 

𝑑𝑡
= 𝛾𝑀⃗⃗ × 𝐵0⃗⃗⃗⃗                            2.3 

This equation is known as the Bloch equation neglecting relaxation effects [74]. These effects 

will be explained in the next section. The Bloch equation can then be explicitly written for the 

three orthogonal components of the magnetization, 𝑀𝑥, 𝑀𝑦  and 𝑀𝑧, as 

{
 
 

 
 

𝑑𝑀𝑥

𝑑𝑡
= 𝛾𝑀𝑦𝐵0

𝑑𝑀𝑦

𝑑𝑡
= −𝛾𝑀𝑥𝐵0
𝑑𝑀𝑧

𝑑𝑡
= 0 

                2.4 

2.2.3 Relaxation types 

When the transverse magnetization goes back to equilibrium after the 𝐵1 field has been turned 

off, two types of relaxation occur simultaneously. 

As shown in Figure 2.2.A, spins loose coherence and dephase in the x-y plane due to a 

transverse or spin-spin relaxation characterized by the relaxation time 𝑇2. The return to 

equilibrium of the longitudinal component illustrated in Figure 2.2.B is caused by longitudinal or 

spin-lattice relaxation characterized by the relaxation time 𝑇𝟏. 

 

Figure 2.2. (A) 𝑇2 relaxation, dephasing of the transverse magnetization in the x-y plane. (B) 𝑇𝟏 
relaxation, recovery of the longitudinal component of the signal.  

𝑇𝟏 and 𝑇2 depend on the chemical and physical properties of the spin environment. 𝑇𝟏 increases 

whereas 𝑇2 decreases with increasing magnetic field strength 𝐵0. Figure 2.3 gives examples of 

the evolution of 𝑇𝟏 and 𝑇2 with the magnetic field strength in different media. 
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Figure 2.3. Variation of 𝑇𝟏 (A) and 𝑇2 (B) against the magnetic field strength. Data citation: for 
arterial blood 𝑇𝟏: 3T [24], 4.7, 7T and 9.4T [78], 11.7T [79] ; for arterial blood 𝑇2: 3T [80], 4.7T 
[81], 7T [82], 9.4T [83], 11.7T [79] ; for venous blood 𝑇𝟏: 3T [24], 11.7T [79] ; for venous blood 
𝑇2: 4.7T [81], 7T [82], 9.4T [83], 11.7T [79] ; for the cortex, hippocampus and thalamus 𝑇𝟏 and 𝑇2 
at 4T, 9.4T and 11.7T [84].  

There is a significant gap between the 𝑇𝟏 values of blood (arterial and venous) and tissue 

(cortex, hippocampus and thalamus). Indeed, 𝑇𝟏 depends on the spin mobility. As it is higher in 

blood, 𝑇𝟏 is higher for blood compared to tissue. Whereas 𝑇𝟏 is very similar between arterial 

and venous blood, 𝑇2 is much smaller for venous blood than arterial blood. This is because 𝑇2 

highly depends on the oxygenation level which is lower in venous blood.  

In practice, an additional dephasing of the magnetization due to field inhomogeneities produces 

an additional decay of the signal. The signal decreases with a time constant shorter than 𝑇2 

called 𝑇2
∗. 

When taking into account the relaxation effects, the Bloch equations become 

{
 
 

 
 

𝑑𝑀𝑥

𝑑𝑡
= 𝛾𝑀𝑦𝐵0 −

𝑀𝑥

𝑇2
𝑑𝑀𝑦

𝑑𝑡
= −𝛾𝑀𝑥𝐵0 −

𝑀𝑦

𝑇2
𝑑𝑀𝑧

𝑑𝑡
= −

𝑀𝑧−𝑀0

𝑇1
 

                             2.5 

where 𝑀0 is the magnetization at 𝑡 = 0. 
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In an MR experiment, we record the transverse complex magnetization, 𝑀𝑥𝑦(𝑡), which is a 

combination of 𝑀𝑥(𝑡) and 𝑀𝑦(𝑡), 𝑀𝑥𝑦(𝑡) = 𝑀𝑥(𝑡) + 𝑖𝑀𝑦(𝑡). The Bloch equations become 

{

𝑑𝑀𝑥𝑦

𝑑𝑡
= −𝑖𝛾𝑀𝑥𝑦𝐵0 −

𝑀𝑥𝑦

𝑇2
𝑑𝑀𝑧

𝑑𝑡
= −

𝑀𝑧−𝑀0

𝑇1

                2.6 

To solve these equations, we assume that, at 𝑡 = 0, the magnetization is only present in the z-

direction. This gives initial conditions for the magnetization: 𝑀𝑥𝑦(𝑡 = 0) = 0 and 𝑀𝑧(𝑡 = 0) =

𝑀0. Solving the Bloch equations with these initial conditions, we get 

{
𝑀𝑥𝑦(𝑡) = 𝑀0𝑒

−
𝑡

𝑇2𝑒−𝑖𝜔0𝑡

𝑀𝑧(𝑡) = 𝑀0 (1 − 𝑒
−
𝑡

𝑇1)
                                       2.7 

As shown in Figure 2.4, 𝑀𝑥𝑦(𝑡) precesses at the Larmor frequency 𝜔0 within an envelope that 

decays with a time constant 𝑇2 (grey curves). If the static field 𝐵0 is not completely 

homogenous, the signal decays with 𝑇2
∗ instead (red curves). The time constant, 𝑇2 or 𝑇2

∗, can be 

determined as it corresponds to the intersection of 𝑀𝑥𝑦(𝑡) with 𝑒
−
𝑡

𝑇2 or 𝑒
−
𝑡

𝑇2
∗
 when 𝑀𝑥𝑦 =

1

𝑒
𝑀0 

represented by the violet solid line. 

 

Figure 2.4. Time evolution of the complex transverse magnetization 𝑀𝑥𝑦 with 𝑇2 relaxation for 

the dotted grey curves and 𝑇2
∗ relaxation for the solid red curves. The signal envelope is 
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characterized by a 𝑇2 or a 𝑇2
∗ decay for the grey and red curves, respectively. The violet solid line 

corresponds to 𝑀𝑥𝑦 =
1

𝑒
𝑀0. 

Another useful definition of the complex transverse magnetization can be introduced, not in 

terms of real and imaginary parts but in terms of magnitude, |𝑀𝑥𝑦(𝑡)|, and phase, 𝜙(𝑡): 

𝑀𝑥𝑦(𝑡) = |𝑀𝑥𝑦(𝑡)|𝑒
−𝑖𝜙(𝑡)                2.8 

with |𝑀𝑥𝑦(𝑡)| = 𝑀0𝑒
−
𝑡

𝑇2 and 𝜙(𝑡) = 𝜔0𝑡 for which we assume that 𝜙(𝑡 = 0) = 0. 

2.2.4 Image generation 

All equations described in the previous subsections apply to both NMR and MRI. The present 

subsection introduces the main difference between NMR and MRI which allows MRI to produce 

images: the addition of spatial encoding gradients. 

2.2.4.1 Spatial encoding using magnetic field gradients 

In a complex sample as the human body, it is interesting to be able to localize where the MR 

signal comes from. This is typically done by adding spatial encoding gradients. To differentiate 

these gradients, they are named slice selection, frequency and phase encoding gradients.  

At the beginning of all MR sequences, an excitation RF pulse is needed to flip the magnetization 

in the transverse plane. If this RF pulse is associated with a gradient in one of the directions, x, y 

or z, what will result is a selective excitation of the magnetization in one slice of the sample 

characterized by the two other directions. This process is called slice selection. The slice 

thickness, 𝑡ℎ𝑘, can be controlled by varying the strength of the slice selection gradient, 𝐺𝑆𝑙𝑖𝑐𝑒, 

and the RF pulse bandwidth, 𝐵𝑊, as 

𝑡ℎ𝑘 =
𝐵𝑊

𝛾𝐺𝑆𝑙𝑖𝑐𝑒
                                                                   2.9 

After the slice selection gradient, a rephasing gradient is generally applied in the same direction. 

It has the function to correct for the accumulation of phase making the spins dephase. 

Consequently, the spins are all at zero phase after the end of the rephasing gradient. 

After the selective excitation pulse, a gradient is applied along one of the other two directions. 

As spins in different positions will experience different magnetic field strengths, their phase will 
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be modified introducing a phase shift between 𝑡 = 0 and the recording of the signal. This process 

is called phase encoding. 

By adding a gradient in the last direction, the Larmor frequency of spins is also varied according 

to their location along this direction. This gradient only affects spins inside the excited slice and 

changes their Larmor frequency with spins on one side of the chosen direction precessing faster 

than those on the other side, generating a frequency spectrum. This process is called frequency 

encoding. 

2.2.4.2 Modified Bloch equations 

Now that the complex transverse magnetization has been introduced, its time evolution in the 

presence of imaging gradients will be considered. The Bloch equation associated with 𝑀𝑥𝑦 is 

𝑑𝑀𝑥𝑦

𝑑𝑡
= −𝑖𝜔0𝑀𝑥𝑦 −

𝑀𝑥𝑦

𝑇2
             2.10 

Magnetic field gradients modify the Larmor frequency as such 

𝜔 = 𝜔0 + 𝛾𝐺𝐼𝑚(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∙ 𝑥                     2.11 

where 𝐺𝐼𝑚⃗⃗ ⃗⃗ ⃗⃗  ⃗ is the imaging gradients vector and 𝑥  the position vector of the observed 

isochromat. 

Replacing 𝜔0 by 𝜔 in Eq. 2.10 gives: 

𝑑𝑀𝑥𝑦

𝑑𝑡
= −𝑖𝜔0𝑀𝑥𝑦 −

𝑀𝑥𝑦

𝑇2
− 𝑖𝛾𝐺𝐼𝑚(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∙ 𝑥 𝑀𝑥𝑦           2.12 

The solution to this equation is straightforward: 

𝑀𝑥𝑦(𝑡) = 𝑀0𝑒
−
𝑡

𝑇2𝑒−𝑖𝜔0𝑡𝑒−𝑖 ∫ 𝛾𝐺𝐼𝑚(𝑡′)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗∙𝑥 𝑑𝑡′
𝑡
0             2.13 

2.2.4.3 K-space and image reconstruction 

The slice, frequency and phase information put together give the spatial location of a voxel. By 

combining information about many adjacent voxels, we now show how to obtain an image. 

When neglecting the relaxation effects and working in the rotating frame, the solution to the 

Bloch equation for 𝑀𝑥𝑦(𝑡) in the presence of imaging gradients is: 



67 
 

𝑀𝑥𝑦(𝑡) = 𝑀0𝑒
−𝑖 ∫ 𝛾𝐺𝐼𝑚(𝑡′)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗∙𝑥 𝑑𝑡′

𝑡
0             2.14 

The phase accumulated during a pulse sequence for a given voxel is thus: 

𝜙(𝑡) = ∫ 𝛾𝐺𝐼𝑚(𝑡′)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗𝑡

0
∙ 𝑥 𝑑𝑡′ = 2𝜋𝑘⃗ ∙ 𝑥                  2.15 

The encoding vector 𝑘⃗  summarizes the information given by the encoding gradients. A space of 

spatial frequencies called k-space can then be defined for which the location information is 

stored in 𝑘⃗ . In k-space, the total magnetization of the sample can be expressed as: 

𝑀𝑥𝑦(𝑘⃗ ) = ∫|𝑀𝑥𝑦(𝑥  )|𝑒
−𝑖𝜙(𝑥  )𝑑𝑟 = ∫|𝑀𝑥𝑦(𝑥  )|𝑒

−𝑖2𝜋𝑘⃗ ∙𝑥 𝑑𝑥           2.16 

The magnitude of the magnetization, |𝑀𝑥𝑦(𝑥  )|, can be obtained by applying an inverse Fourier 

transformation to 𝑀𝑥𝑦(𝑘⃗ ): 

       |𝑀𝑥𝑦(𝑥  )| = 𝐹𝑇
−1[𝑀𝑥𝑦(𝑘⃗ )] = ∫𝑀𝑥𝑦(𝑘⃗ ) 𝑒

𝑖2𝜋𝑘⃗ ∙𝑥 𝑑𝑘⃗                      2.17 

So, after applying the Fourier transformation, the MR image is obtained. Points located at the 

center of the k-space generate image contrast while those located toward the edges enable a 

higher resolution of the image. 

2.2.5 Basic MR pulse sequences 

This subsection introduces some of the basic MR pulse sequences: the gradient echo (GE), spin 

echo (SE) and stimulated echo (STE), echo planar imaging (EPI) and diffusion-weighted imaging 

(DWI) sequences. 

2.2.5.1 Gradient echo sequence 

The first sequence to be presented is the GE sequence. As stated by its name, the echo is 

formed by using gradients. It occurs when ∫𝐺𝑅𝑒𝑎𝑑(𝑡)𝑑𝑡 = 0 at 𝑡 = TE, the echo time. This is 

typically achieved by applying successively a negative and a positive frequency encoding 

gradient as shown in Figure 2.5.A. This sequence has only one excitation pulse for which the flip 

angle, 𝛼, can be less than 90°. As the rephasing lobe of the slice selection gradient, the phase 

encoding gradient and the negative lob of the read gradient can be turned on at the same time, 

the GE sequence allows for rather short TE. 
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Figure 2.5. Sequence diagram of the GE sequence. 

As nothing is done to correct for field inhomogeneities, this sequence is 𝑇2
∗ and not 𝑇2-

weighted. The expression of the signal for this sequence in the rotating frame is 

𝑆𝐺𝐸 =
𝑆0 sin(𝛼)(1−𝑒

−
𝑇𝑅
𝑇1)𝑒

−
𝑇𝐸

𝑇2
∗

1−cos(𝛼)𝑒
−
𝑇𝑅
𝑇1

             2.18 

where 𝑆0 is the signal at 𝑡 = 0. 

2.2.5.2 Spin echo and stimulated echo sequences 

This sequence was first introduced by Erwin Hahn in 1950 [85]. As shown in Figure 2.6.A, the SE 

sequence uses a 90° selective excitation pulse. After a time delay 𝜏 during which the spins are 

dephasing, a 180° refocusing pulse is applied. At 𝑡 = 2 × 𝜏, an echo forms and this time is 

defined as the echo time. Thanks to the 180° refocusing pulse, this sequence is not sensitive to 

field inhomogeneities and 𝑇2 can be used instead of 𝑇2
∗. Indeed, the phase shift induced by field 

inhomogeneities is constant in time and nulled by the refocusing pulse at the echo time. This 

sequence is commonly used to produce 𝑇2-weighted images. 
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Figure 2.6. Sequence diagrams of the SE (A) and STE (B) sequences. 

The expression of the signal for this sequence in the rotating frame is 

𝑆𝑆𝐸 = 𝑆0 (1 − 𝑒
−
𝑇𝑅

𝑇1) 𝑒
−
𝑇𝐸

𝑇2              2.19 

For this thesis, the STE sequence, which derives from the SE sequence, was also used. Its 

sequence diagram is displayed in Figure 2.6.B. Instead of a 180° pulse, two successive 90° pulses 

are applied. A new time delay between the second and third 90° pulses called the mixing time, 

𝑇𝑀, is defined. Several signals are produced during this sequence: three FIDs, three primary SEs, 

one secondary SE and one STE [86]. They are all shown in Figure 2.7. 

 

Figure 2.7. Signals generated by the STE sequence: three FIDs (FID 1 to 3) corresponding to the 
three pulses, (90° A to C), three primary SEs (SE 1,2, SE 2,3 and SE 1,3), one secondary SE (SEE) 
and one stimulated echo (STE). 
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When employing the STE sequence, the STE is the only signal we want to record. To suppress 

part of the unwanted signals, phase cycling can be used. The STE sequence is repeated a few 

times with the phases of the RF pulses varied at each repetition. The phases are carefully 

chosen so that the desired signals add up and the undesired signals cancel. To explain further 

how these values are chosen, the notion of coherence transfer pathway has to be introduced. 

This can only be explained with a quantum description so an exception regarding the semi-

classical description is made here. The transverse magnetization is a type of coherence and can 

be classified according to a coherence order, p, which can take the values -1, 0 or 1. The 

conventions are that before the first pulse, the magnetization is at equilibrium so p = 0 and that 

only signals with p = -1 after the last pulse can be recorded. RF pulses induce transfers from a 

coherence order to another. The phase shift obtained after a RF pulse 𝑖 is then Φ𝑖 = −Δ𝑝𝑖𝜙𝑖 

where Δ𝑝𝑖 is the difference in p before and after pulse 𝑖. A coherence transfer pathway can be 

built for a series of pulses. An example of such a pathway for the STE in the STE sequence and 

the values of p for all signals generated by the STE sequence are gathered in Figure 2.8. 

 

Figure 2.8. (A) Coherence transfer pathway of the STE in the STE sequence. (B) Table giving the 

values of p for all signals generated by the STE sequence. Based on Fauth et al. [87] and 
Kingsley [86]. 

The phases of the three pulses (A to C) and the receiver phase (D) in the phase cycling scheme 

of the STE sequence applied in this thesis are gathered in Table 2.1 [88]. This scheme allows only 

to keep signals with p1 = 1, i.e. SE 1,2, SE 1,3 and STE. To get rid of the remaining primary SEs, a 

spoiler gradient can be applied between the second and third RF pulses. Only the first two 

repetitions of the phase cycling scheme are needed to select the STE signal but two more 
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repetitions were added to suppress artifacts related to longitudinal magnetization recovery 

during the time between the first and second pulses. 

 

Table 2.1. Four-step phase cycling used for the STE sequence in this thesis. A to C represent the 
three RF pulses of the sequence and D the receiver phase. Based on Sattin et al [88]. 

The signal amplitude of the STE sequence is half that of the SE sequence so more averages and 

repetitions are needed to obtain comparable signal-to-noise ratio (SNR) than with the SE 

sequence. Despite this drawback, there is a major advantage of this sequence. This advantage is 

that the mixing time can be extended without increasing TE and loosing signal due to 𝑇2 

relaxation. The signal is 𝑇2-weighted between the first and second pulses and between the 

second and third pulses but 𝑇1-weighted during 𝑇𝑀, thus 

𝑆𝑆𝑇𝐸 =
𝑆0

2
(1 − 𝑒

−
𝑇𝑅

𝑇1) 𝑒
−
𝑇𝑀

𝑇1 𝑒
−
𝑇𝐸

𝑇2              2.20 

2.2.5.3 Echo planar imaging sequence 

The EPI sequence was pioneered by Peter Mansfield in 1977 [89]. It is mostly used in diffusion 

weighted imaging (DWI) and functional MRI (fMRI). The sequence diagram displayed in Figure 

2.9 shows a version of the EPI sequence based on a SE sequence but it can also be applied to a 

STE or a GE sequence. 



72 
 

 

Figure 2.9. Sequence diagram of the EPI sequence based on a SE sequence. 

The EPI-SE based sequence uses a train of gradient echoes to acquire all the desired part of k-

space in one spin echo and TE. EPI thus enables fast and motion robust data acquisition. 

2.2.5.4 Diffusion weighted imaging 

2.2.5.4.1 Diffusion phenomenon 

In 1828, Robert Brown studied the motion of small particles inside a fluid and found a similar 

random-walk type motion common to all particles in this particular state [90]. Figure 2.10 

illustrates the possible course of a particle in a random-walk type motion. 
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Figure 2.10. Random walk of a particle also called Brownian motion. 

The term Brownian motion was assigned much later in honor to Robert Brown’s work.  

Brownian motion is the microscopic description of the diffusion phenomenon. About a century 

later, in 1905, Albert Einstein formulated a mathematical definition for the diffusion coefficient 

of a particle experiencing Brownian motion [91]: 

𝐷 =
〈𝑅2〉

2𝑛𝑇
              2.21 

where 〈𝑅2〉 is the mean squared displacement of a particle diffusing during a time 𝑇 and 𝑛 the 

dimension of the displacement. This equation has been generalized for any dimension of the 

displacement compared to Einstein’s equation which was for 1D only. 

This expression of the diffusion coefficient is only valid in free diffusion cases. Diffusion can be 

restricted for example for water molecules in the intracellular space. Their motion is limited to 

the inside of the cell and by the other constituents of the cell. In those cases, the diffusion 

coefficient is reduced and depends on the diffusion time and the geometry of the limiting space. 

2.2.5.4.2 Application to the design of an MR pulse sequence 

MRI is able to probe the microstructure of a tissue non-invasively by using the diffusion 

phenomenon. Water molecules inside a tissue encounter many natural barriers such as vessel 

walls, cells, fibers or macromolecules which alter their diffusion coefficient. Hahn was the first 

to recognize the potential of the SE sequence to measure the diffusion coefficient [85]. Then, in 

1965, Stejskal and Tanner proposed the pulsed gradient SE (PGSE) sequence, in which they 



74 
 

added two diffusion gradients, one before and one after the 180° pulse (Figure 2.11) [92]. The 

diffusion gradients allow this sequence to differentiate between static spins and spins in motion 

in the studied voxel as the dephasing induced by the first gradient will be completely 

compensated by the second gradient for static spins whereas it is not compensated for moving 

spins. 

 

Figure 2.11. Sequence diagram of a PGSE sequence with EPI readout.  

Apart from TE, two other time parameters are defined in the PGSE sequence: the pulse diffusion 

gradient duration,  and the time delay between the two diffusion encoding gradients, .  

To take the effects of diffusion into account in the Bloch equations, two terms need to be 

added. The first term accounts for the effects of the diffusion encoding gradients, 𝐺(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . Based 

on Fick’s law [93], the second term can be expressed as 𝐷∇2𝑀𝑥𝑦 giving the Bloch-Torrey 

equation [94] 
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𝑑𝑀𝑥𝑦

𝑑𝑡
= −𝑖𝜔0𝑀𝑥𝑦 −

𝑀𝑥𝑦

𝑇2
− 𝑖𝛾𝐺𝐼𝑚(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∙ 𝑥 𝑀𝑥𝑦 − 𝑖𝛾𝐺(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ∙ 𝑥 𝑀𝑥𝑦 −𝐷∇

2𝑀𝑥𝑦          2.22 

The solution to this equation for a PGSE sequence in the rotating frame neglecting the effects of 

relaxation and the imaging gradients is then 

𝑆𝑃𝐺𝑆𝐸 = 𝑆0𝑒
−(𝛾𝛿𝐺)2(∆−

𝛿

3
)𝐷                                        2.23 

where 𝐺 is the diffusion encoding gradient strength. 

When this technique was first applied to biological tissues, Le Bihan proposed to simplify the 

term in the exponential by gathering all parameters only linked to the sequence or the type of 

nucleus studied into one single parameter [95] 

     𝑆𝑃𝐺𝑆𝐸(𝑏) = 𝑆0𝑒
−𝑏𝐷             2.24 

where 𝑏 = (𝛾𝛿𝐺)2 (∆ −
𝛿

3
) is called the b-value. This expression of the b-value is only valid for 

the type of gradients used in this sequence but it can be calculated for any gradient waveform 

using 

            𝑏 = ∫ |𝑘(𝑡)|2𝑑𝑡
𝑇𝐸

0
             2.25 

with 𝑘(𝑡) = 𝛾 ∫ 𝐺(𝑡′)𝑑𝑡′
𝑡

0
 where the sign of 𝐺(𝑡′) is reversed for 𝑡 >

𝑇𝐸

2
 in a SE sequence. 

𝑇𝐷𝑖𝑓𝑓 = ∆ −
𝛿

3
 is the diffusion time and represents the time isochromats diffuse inside the 

tissue. The factor 𝐷 can be calculated from Eq. 2.24. However, it is usually called “apparent” 

diffusion coefficient (𝐴𝐷𝐶) and not simply diffusion coefficient 

           𝐴𝐷𝐶 =
ln(

𝑆𝑃𝐺𝑆𝐸(𝑏2)

𝑆𝑃𝐺𝑆𝐸(𝑏1)
)

𝑏1−𝑏2
                2.26 

The adjective “apparent” was added because the term diffusion alone is given only when free 

diffusion occurs. Within a tissue, diffusion is hindered by cell membranes, macromolecules, etc., 

so the term diffusion alone was not adequate. 

Thanks to the diffusion gradients, the PGSE sequence is sensitive to diffusion but also to bulk 

motions such as cardiac-cycle-related pulsations, physical movements or flow of cerebrospinal 
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fluid. Applying fast EPI-readout allows to acquire an entire dataset in less than 0.1 ms and thus 

correct for this unwanted sensitivity [96]. 

There is a limit to the longest diffusion time achievable with the PGSE sequence. A longer 

diffusion time implies a longer TE and thus a larger signal loss due to 𝑇2-relaxation. One way to 

get longer diffusion times without this limitation is to replace the SE sequence with a STE 

sequence. In this sequence, the time between the two diffusion gradients mainly depends on 

𝑇𝑀 and can thus be increased without increasing TE. This PGSTE sequence is less dependent on 

𝑇2-relaxation and allows for longer diffusion times than with the PGSE sequence. However, it 

needs more averages and repetitions as the signal in this sequence is about half that of the 

PGSE sequence. 

2.3 MRI of the blood vessels 

Many imaging techniques allow for the visualization of blood vessels but, in this work, we will 

focus only on the ones using MRI. First, distinction needs to be made between imaging of large 

blood vessels, i.e. arteries and veins, and small vessels, i.e. capillaries, arterioles and venules. 

2.3.1 Imaging of the large blood vessels: MR angiography 

This section presents MRI techniques of the large blood vessels also called MR angiography 

(MRA): time-of-flight (TOF) MRA, phase contrast angiography (PCA) and contrast-enhanced (CE) 

MRA. 

In TOF MRA, the signal coming from static tissue in the slice of interest is first “saturated” and 

thus gives low intensity signal. However, blood outside of this slice remains unsaturated. When 

unsaturated blood flows inside the slice of interest, signal coming from blood appears bright 

compared to the surrounding tissue. This TOF or inflow approach allows for the visualization of 

blood vessels without the need of contrast agents. As illustrated in Figure 2.12, the TOF signal 

depends on the blood velocity. Fast flowing blood gives a higher signal compared to the 

surrounding tissue than slow flowing blood, such as in tortuous vessels. 
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Figure 2.12. Schematic representation of TOF or inflow effects for slow and fast flowing blood 
and resulting signal in the transverse plane. At 𝑡 = 0, the slice of interest represented here by a 
rectangle is saturated, the tissue has been put in dark grey color and the saturated blood in 
black color to better distinguish them. At t = TR, for slow flowing blood, unsaturated blood 
enters the slice but does not have the time to cross its entire thickness. The resulting signal in 
the transverse plane is in light grey, not much different from the signal from the tissue. On the 
contrary, fast flowing blood goes further inside the slice and maybe even outside of it, yielding a 
much higher contrast compared to the surrounding tissue represented by a white circle for the 
signal in the transverse plane. 

The TOF signal is also affected by the slice orientation. It is maximal when the slice is oriented 

perpendicular to the vessels imaged. To avoid slice dependence, the solution is to use 3D-TOF 

MRA. It is however time-consuming and only applicable to structures non subject to strong 

motions such as the head and neck regions [97]. 

The second main technique used in MRA is PCA. The spatial phase encoding of the signal 

assumes that the sample imaged stays relatively still during the acquisition. It is true for static 

tissue but not for blood vessels and that can generate ghosting in the images. PCA takes 

advantage of these artefacts. PCA images are generated by taking the difference between flow-

weighted images and flow-compensated images. The phase shift measured is between 0° and 

360° and is related to the blood velocity of the vessels. Before acquiring data, a parameter 



78 
 

called velocity encoding (VENC) representing the maximum blood velocity expected in a sample 

needs to be defined. Values of the blood velocity can then be retrieved directly from the 

images. Phase shifts between 0° and 180° correspond to ranges of blood flow velocities from 0 

to VENC while between 180° and 360°, they relate to the same range of blood velocities but 

flowing in the opposite direction. PCA can not only give quantitative values of the blood velocity 

but is also able to tell the flow direction. However a careful adjustment of VENC is crucial to 

avoid misinterpretation of the images. Also, turbulent flow which can be seen in some diseases 

or after a stenosis also causes intravoxel phase dispersion and signal loss in PCA. 

In CE MRA, a Gd-based-𝑇1-shortening contrast agent is injected intravenously. A GE sequence is 

then acquired with a TR as short as possible to get the highest contrast from the contrast agent 

located in the vessel lumen. The delay between the injection and the acquisition needs to be 

adjusted carefully not to have contamination from venous blood. Figure 2.13 shows an example 

of a time-resolved CE MRA of the head and neck of a healthy volunteer. 

 

Figure 2.13. Time-resolved sagittal MRA at 3T of a healthy volunteer. Consecutive timeframes 
are shown with temporal resolution of 2.5 seconds/frame and spatial resolution of 1 x 1 x 2.5 
mm. From Cashen et al [98]. 

This technique has the advantage to image in a more accurate way stenosis than the previously 

presented methods. It is also very fast and can be acquired within one breath-hold. It allows for 

what can be called dynamic or time-resolved MRA. Scans can be repeated in time and the 
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contrast agent path inside the vessels followed giving directional as well as anatomical 

information about the vessels. 

CE MRA benefits from high SNR, high spatial resolution and is relatively free from flow-related 

artefacts. The main drawback of this method is the contrast agent itself which has a cost and 

may not be supported by all patients. 

The three techniques presented in this section are able to image large blood vessels, i.e. arteries 

and veins. Information about their blood velocity and orientation can be retrieved, even the 

passage of a contrast agent inside these vessels can be followed. However, they are not suitable 

for the study of smaller vessels such as capillaries, arterioles and venules because they are 

limited in spatial resolution and by the gradient performances. 

2.3.2 Imaging of the microvasculature: perfusion imaging 

Because of its limited spatial resolution, MRI is not able to directly image the microvasculature. 

However, MRI methods that are sensitive to macroscopic parameters of the microvasculature 

can be designed. These techniques are known under the term perfusion imaging. Perfusion 

usually refers to the dynamic mechanism of blood supply allowing the delivery of nutrients and 

oxygen to an organ. It is measured in units of milliliters per 100 grams per minute. The study of 

the macrovasculature (arteries, veins) would not be sufficient to describe this phenomenon 

because these exchanges mainly take place at the capillary level. 

This section goes through the perfusion imaging techniques splitting them into two categories: 

dynamic susceptibility contrast (DSC) and dynamic contrast enhanced (DCE) MRI which need a 

contrast agent injection and arterial spin labeling (ASL) which is contrast agent free. IVIM 

imaging falls also in the same category as ASL but, as it is the focus of this thesis, IVIM is 

presented in a separate section. 

2.3.2.1 Techniques with injection of contrast agent 

DSC and DCE MRI are based on the injection of a paramagnetic contrast agent to generate a 

bolus. This tracer is typically a gadolinium (Gd) chelate. Paramagnetic contrast agents shorten 

both 𝑇1 and 𝑇2 relaxation times. 
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DSC MRI takes advantage of the 𝑇2-shortening effects of the Gd-based paramagnetic agents. To 

mainly be sensitive to the 𝑇2-relaxation, a high contrast agent infusion rate is used. GE or SE 

sequences can be applied. With a GE sequence, field inhomogeneities are not compensated and 

𝑇2
∗-relaxation is observed. Furthermore, these inhomogeneities being more important in the 

large vessels, there is contamination of the signal by the large vessels. When a SE sequence is 

used, signal loss is reduced because of the refocusing 180° pulse and the large vessel 

contamination is limited. DSC MRI images are acquired before, during and after the bolus 

injection and three main quantitative physiological parameters can be extracted from DSC 

images: relative cerebral blood volume (rCBV), mean transit time (MTT) and relative cerebral 

blood flow (rCBF). Figure 2.14 shows how to retrieve these parameters from the DSC signal 

curve. 

 

Figure 2.14. Parameters that can be calculated based on DSC perfusion imaging. The time-to-
peak, TTP, is the time interval between contrast agent administration and minimum signal 
intensity. MTT is the width of the curve at half minimum value. rCBV corresponds to the area 
under curve. Then we directly have rCBF = rCBV / MTT. Based on Haller et al [99]. 

DSC MRI is the most widely used perfusion technique in clinics because post-processing of the 

data is fairly easy. However, only relative quantitative parameters can be obtained. It is also 

possible to get absolute estimates of CBF by deconvolution of the arterial input function (AIF) 

with the signal curve. The AIF needs to be carefully evaluated otherwise it can lead to many 
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artefacts [100]. DSC MRI is also subject to susceptibility artefacts from bone, air and blood 

which can be another source of error. 

On the contrary, DCE MRI takes advantage of the 𝑇1-shortening effects of the Gd-chelates which 

enable it to probe different properties of the vasculature. The tracer is chosen small enough to 

diffuse through the vessel membrane and permeability parameters can be measured. To obtain 

primarily 𝑇1-shortening effect, a slower contrast agent infusion rate than in DSC MRI is used. 

Quantitative parameters can be extracted from DCE MRI images such as volume fractions of 

blood and the extravascular-extracellular space in the tissue and exchange constants between 

the blood and the tissue. These parameters are obtained by fitting the concentration curve to a 

model first developed by Tofts et al. [101] and then modified to take into account all of these 

parameters [102]. However, this equation depends on the diffusion properties of the contrast 

agent through the vessel membrane and on blood flow. Different vessel populations can be 

probed by varying the diffusion properties of the contrast agent. DCE MRI is very interesting in 

the sense that it allows to probe different quantitative parameters than the other perfusion 

techniques. However, the complexity of the kinetic modelling which depends on the diffusion 

properties of the contrast agent across the vessel membrane has made it less used in clinics 

than DSC MRI. 

2.3.2.2 Technique free from contrast agent injection 

In ASL, the longitudinal magnetization of blood in the large arteries is inversed in what is called 

the labeling plane creating a bolus of magnetically tagged spins. After a time delay, tagged 

blood reaches the imaging volume and the acquisition is performed (Figure 2.15.B). The labeling 

image obtained is subtracted to a control image for which blood has not been tagged (Figure 

2.15.A). The resulting image has very few signal as only 1 % of water molecules in blood is 

tagged during the allocated time delay. Images also need to be averaged and spatial resolution 

decreased to increase SNR (Figure 2.15.C). Generally, ASL uses single-shot GE EPI sequences to 

acquire multi-slice images with short TE to maximize SNR and relatively long TR to allow tagged 

spins to reach the slice of interest and exchange with the tissue. The main perfusion parameter 

measured with ASL is the CBF which is directly proportional to the ASL signal (Figure 2.15.C). 
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Figure 2.15. ASL imaging principles. (A) Acquisition of a control image in the imaging volume. (B) 
Labeling of blood ahead of the volume of interest and image acquisition after a time delay in the 
imaging volume. (C) The difference between control and labeled signals is very small as only 1 % 
of the blood is tagged but it is proportional to CBF. 

There are three main types of ASL sequences [103]: continuous ASL (CASL) [104], pseudo-

continuous ASL (pCASL) [105],[106] and pulsed ASL (PASL) [107]. They differ only in the labeling 

strategy. pCASL is the more recent ASL technique and derives from CASL, the first proposed ASL 

method. It is intermediate between CASL and PASL, combining the high labelling efficiency of 

PASL with the higher SNR of CASL. pCASL is the ASL method that was recommended in 2014 by 

Alsop et al. for use in clinics [108]. ASL can be used in repeated measurements and in patients 

where an intravenous injection is problematic because it does not need a contrast agent 

injection. However, it suffers from very low SNR and thus needs long acquisition time to 

increase the SNR which increases its sensitivity to motion artifacts. This can become a problem 

in uncooperative patients such as in stroke or neurodegenerative diseases. This is why this 

technique less used than DSC and DCE MRI in clinics. 

Another MRI technique also free from contrast agent injection is IVIM imaging. As it is the 

technique used throughout this thesis, it is highlighted in a different section. 
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2.3.2.3 Emphasis on intravoxel incoherent motion imaging 

The concept of diffusion imaging can be extended to the study of other intravoxel incoherent 

motions (IVIM). Indeed, capillaries have random orientations and blood flowing in the capillary 

network yields to a similar motion as the Brownian motion like shown in Figure 2.16. 

 

Figure 2.16. Representation of a capillary network in a voxel. Water molecules travelling inside 
this network experience an intravoxel incoherent motion responsible for a decrease of the MR 
signal in DWI. From Le Bihan et al [1]. 

In IVIM imaging, one postulates that a DW sequence is sensitive to all kinds of intravoxel 

incoherent motions. It is not just able to measure the 𝐴𝐷𝐶, it can also evaluate the motion of 

spins in the capillary network. This type of motion is also different from free diffusion as it is 

produced by random orientations of the capillaries. It is called pseudo-diffusion to differentiate 

it from free diffusion. 

To acquire images in IVIM imaging, a DW sequence is used, making the sequence easy to 

implement on clinical scanners. The difference with DWI rests on the number and values of the 

b-values acquired. In IVIM imaging, more b-values are acquired than in DWI. Also, a substantial 

number of b-values in the range of small b-values is added whereas a small number of b-values 

even none is usually used in that range for DWI. The apparent diffusion and pseudo-diffusion 

effects on the signal attenuation can be well separated as the 𝐴𝐷𝐶 and the pseudo-diffusion 

coefficient are very different. Protons experiencing pseudo-diffusion are driven by blood 

displacement inside the capillaries so the associated pseudo-diffusion coefficient is much bigger 

than the 𝐴𝐷𝐶 in tissue where diffusion is restricted by the presence of natural obstacles. IVIM 

imaging is thus able to extract at the same time the 𝐴𝐷𝐶, the pseudo-diffusion coefficient and 

also the volume fraction of the corresponding spin populations. Even if it is restricted diffusion, 

the phenomenon characterized by the 𝐴𝐷𝐶 is usually simply called diffusion. The equation for 
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the signal attenuation in IVIM imaging is based on the one for DWI with an added component 

corresponding to the contribution of spins inside the capillaries, 

𝑆(𝑏) = 𝑆0 ((1 − 𝑓𝐼𝑉𝐼𝑀)𝐹𝐷𝑖𝑓𝑓(𝑏) + 𝑓𝐼𝑉𝐼𝑀𝐹𝐼𝑉𝐼𝑀(𝑏))           2.27 

where 𝐹𝐷𝑖𝑓𝑓(𝑏) corresponds to the diffusion signal component allowing for the calculation of 

the 𝐴𝐷𝐶, 𝑓𝐼𝑉𝐼𝑀 is the fractional volume occupied by spins flowing in the capillaries in a voxel 

and 𝐹𝐼𝑉𝐼𝑀(𝑏) the signal decay induced by isochromats in motion in the capillaries. This model 

neglects water exchanges between the capillaries and the tissue. 

The model usually used to describe 𝐹𝐼𝑉𝐼𝑀(𝑏) in the literature is [1] 

𝐹𝐼𝑉𝐼𝑀(𝑏) = 𝑒
−𝑏(𝐷∗+𝐷𝑏)            2.28 

where 𝐷∗ is the pseudo-diffusion coefficient and 𝐷𝑏 the diffusion coefficient of water in blood. 

Efforts have been made to relate IVIM parameters, 𝑓𝐼𝑉𝐼𝑀 and 𝐷∗, to classical perfusion 

parameters, CBV and CBF, giving [109] 

𝐶𝐵𝑉 = 𝑓𝐼𝑉𝐼𝑀𝑓𝑤              2.29 

and 

𝐶𝐵𝐹 =
6𝑓𝑤

〈𝐿〉𝐿𝑇
𝑓𝐼𝑉𝐼𝑀𝐷

∗             2.30 

where 𝑓𝑤 is the tissue NMR-visible water content fraction, 〈𝐿〉 the mean capillary length and 𝐿𝑇 

the total capillary length. 

For a given tissue, the fraction in the expression of CBF in Eq. 2.30 is constant. CBF is thus 

directly proportional to the product 𝑓𝐼𝑉𝐼𝑀 × 𝐷
∗. However, the constant parameters in Eq. 2.29 

and 2.30, 𝑓𝑤, 〈𝐿〉 and 𝐿𝑇, are hard to estimate making the link between IVIM parameters and 

classical perfusion parameters still weak. 

When it was first introduced by Le Bihan in the 1980s and 1990s, due to the lack of robust pulse 

sequences and relatively low available gradient strengths combined with the low CBV, IVIM 

imaging was less studied than other new emerging techniques like diffusion tensor imaging, for 

example. Now that these limitations have been overridden, IVIM imaging has many applications 
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in highly vascular organs like the kidneys [110], liver [111], etc. It also has potential applications 

in the brain for the identification of stroke regions [112], the classification of brain tumors [113] 

and also in neurodegenerative diseases such as Parkinson’s disease [114]. 

Some drawbacks restrain IVIM imaging use in routine in clinics. The capillaries only represent 2-

5 % of the total brain volume so IVIM imaging is only looking at a very small fraction of the total 

DWI signal giving a low SNR. Several averages and repetitions are thus needed to increase the 

SNR. A certain number of b-values also need to be acquired in order to adequately fit for both 

the diffusion and the IVIM signals. For these two purposes, the acquisition time is relatively long 

and IVIM imaging is very sensitive to motion. 

Table 2.2 summarizes the main aspects of the MRI techniques of the microvasculature 

presented in the previous subsections and compares them to IVIM imaging. 

 DSC DCE ASL IVIM 

Contrast agent Gd-chelate Gd-chelate Without Without 

Tracer 
Non-diffusible 
blood pool tracer 

Diffusible tracer Diffusible tracer Non-diffusible 
blood pool tracer 

Effect 
Increased 
susceptibility 
effect 

𝑇1 shortening 
effect 

Blood 
magnetization 
inversion 

Diffusion and 
pseudo-diffusion 
effect 

Signal behavior Decreased signal Increased signal Subtracted signal Subtracted signal 

Quantitative 
parameters 

rCBF, rCBV, MTT, 
absolute CBF 

Permeability-
related 
parameters 

CBF 𝐴𝐷𝐶, 𝑓𝐼𝑉𝐼𝑀, 
𝐷∗(related to 
CBF and CBV) 

Advantages 

-Widely used in 
clinics 
-Easy to post-
process the data 

-Quantitative 
assessment of 
microvascular 
permeability 

-Non invasive 
-No need of 
contrast agent 
-Robust measure 
of CBF 

-Non invasive 
-No need of 
contrast agent 
-Easy to post-
process data 

Limitations 

-Invasive 
-No robust 
absolute 
quantification 
-Susceptibility 
artifacts 

-Invasive 
-Complexity of 
kinetic modelling 
-Lack of widely 
used software to 
process the data 

-Low SNR 
-Long acquisition 
times 
-Motion artifacts 
-Only measure of 
CBF 
-High SAR 

-Low SNR 
-Long acquisition 
times 
-Motion artifacts 
-Hard to relate 
to CBF and CBV  

 

Table 2.2. Comparison of the main characteristics of the MRI techniques of the microvasculature 
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IVIM imaging was chosen to be the focus of this thesis as it is a promising technique to study 

alterations of the capillary network non-invasively and without contrast agent injection in 

contrary to DSC and DCE MRI. It also has advantages over the ASL techniques as it is able to 

measure not only parameters related to the CBF but also to the CBV. The 180° RF pulses used 

for labeling in pCASL demand high power and produce heat (high specific absorption rate (SAR)). 

This technique is thus less suitable for children and weak patients than the IVIM technique for 

which this is not a problem. However, the IVIM technique still lacks of a more complete 

understanding of where the IVIM signal comes from. One assumption of the IVIM technique is 

that it is only able to probe the capillary network. Yet, many papers have challenged this 

hypothesis and stated that the IVIM technique is able to explore a larger part of the 

microvasculature. The next chapter, Chapter 3, will provide more information about how the 

IVIM signal can be modelled. 
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Chapter 3: Impact of the diffusion encoding time on 

IVIM signal modelling 

In this chapter, a review of the models of the IVIM signal is presented before showing that a bi-

exponential model taking into account more than just the capillary network better describes the 

IVIM signal at shorter diffusion encoding time. 

3.1 IVIM signal models 

Since its first introduction by Le Bihan et al. in 1988 [1], IVIM signal modelling has been 

extensively studied. In this chapter we first present the two models introduced originally by Le 

Bihan et al. In the second subsection, a review of other proposed models is performed. Finally, 

the last subsection introduces a bi-exponential IVIM model valid at a wide range of diffusion 

times and accounting for more than just the capillary network. 

3.1.1 Two models for two limit cases 

Making the hypothesis that the microvascular network can be modeled by a series of straight 

tubes randomly oriented in space and uniformly distributed over the unit sphere in 3D, the 

expression for the IVIM signal, 𝐹𝐼𝑉𝐼𝑀(𝑏), depends on the mean vessel length, 𝐿, the mean blood 

velocity, 𝑉, and the diffusion encoding time of the IVIM sequence. Two limit cases can be 

defined. 

3.1.1.1 The standard mono-exponential model 

The original IVIM model [1] assumes that blood flow changes directions several times during the 

diffusion time like in Figure 3.1. In this case, the isochromat trajectories, which can be modeled 

as a random walk, add up to a process that resembles diffusion, which will be called “pseudo-

diffusion” in this thesis. 
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Figure 3.1. Representation of isochromats flowing in a capillary network. Each arrow 
corresponds to one isochromat trajectory in the network during the diffusion time. In this case, 
the arrows and thus trajectories consists of two or more segments. The isochromats see several 
vessel segments during the diffusion time. From Le Bihan et al [1]. 

Let 𝐷∗ be the pseudo-diffusion coefficient, then the expression for 𝐹𝐼𝑉𝐼𝑀(𝑏) is an exponential: 

𝐹𝐼𝑉𝐼𝑀(𝑏) = 𝑒
−𝑏(𝐷𝑏+𝐷

∗)                3.1 

where 𝐷𝑏 is the diffusion coefficient of water in blood. The expression for 𝐷∗ can be found by 

going back to Einstein’s equation (Eq. 2.21).  

Supposing that an isochromat travels through N vessels during 𝑇𝐷𝑖𝑓𝑓 and that the time to cross 

each vessel is 𝑇, for a 3D displacement the Einstein’s equation becomes: 

〈𝑅2〉 = 𝐷∗6𝑁𝑇                3.2 

In addition, 〈𝑅2〉 can also be written in terms of the number of vessels crossed, 𝑁, and the mean 

vessel length, 𝐿: 

〈𝑅2〉 = 𝑁𝐿2                 3.3 

By comparing the two equations above, 𝐷∗ can be obtained: 

𝐷∗ =
𝐿𝑉

6
                 3.4 

where 𝑉 =
𝐿

𝑇
 is the mean blood velocity. 

This model represents one of the two limit cases, namely, it is valid at the long time scale. 
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3.1.1.2 The sinc model 

The other limit case is when vessels are long enough or the blood velocity small enough so that 

the isochromats stay in the same vessel during the diffusion time as shown in Figure 3.2. 

 

Figure 3.2. Representation of isochromats flowing in a capillary network. Each arrow 
corresponds to one isochromat trajectory in the network during the diffusion time. In this case, 
the arrows and thus trajectories stay in the same vessel segment.  From Le Bihan et al [1]. 

In this regime and if the blood velocity is assumed to be constant, the expression for 𝐹𝐼𝑉𝐼𝑀(𝑏) 

becomes: 

𝐹𝐼𝑉𝐼𝑀(𝑐) = 𝑒
−𝑏𝐷𝑏𝑠𝑖𝑛𝑐(𝑐𝑉)                3.5 

with  

      𝑐 = 𝛾 [∫ −𝐺𝑡𝑑𝑡
𝑇𝐸

2⁄

0
+ ∫ 𝐺𝑡𝑑𝑡

𝑇𝐸
𝑇𝐸

2⁄
]                3.6 

A 𝐷𝑠𝑖𝑛𝑐
∗  can also be defined in this regime by calculating the Taylor expansion of 𝐹𝐼𝑉𝐼𝑀(𝑐) [115]: 

𝐹𝐼𝑉𝐼𝑀(𝑐) ≈ 1 −
(𝑐𝑉)2

3!
                 3.7 

and comparing it to the Taylor expansion of 𝐹𝐼𝑉𝐼𝑀(𝑏): 

𝐹𝐼𝑉𝐼𝑀(𝑏) ≈ 1 − 𝑏𝐷
∗                 3.8 

This gives: 

      𝐷𝑠𝑖𝑛𝑐
∗ =

𝑐2𝑉2

6𝑏
                 3.9 

For a PGSE sequence, 
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𝑐 = 𝛾 [∫ −𝐺𝑡𝑑𝑡
𝛿

0
+ ∫ 𝐺𝑡𝑑𝑡

∆+𝛿

∆
] = 𝛾𝐺𝛿∆                        3.10 

In the short pulse approximation, 𝛿 ≪ ∆, 𝑏 ≅ 𝛾2𝐺2𝛿2∆, and 𝐷𝑠𝑖𝑛𝑐
∗  simplifies to : 

       𝐷𝑠𝑖𝑛𝑐
∗ =

𝑉2∆

6
              3.11 

It can be noticed that 𝐷𝑠𝑖𝑛𝑐
∗  is independent of L as spins never get to probe the entire segment. 

The sinc model is only valid at the very short time scale when the isochromats stay in the same 

vessel during the whole diffusion time. 

The two limit models presented in this subsection are valid at very short and long diffusion 

times. To cover the intermediate regime between very short and long diffusion times, other 

models have been proposed. 

3.1.2 Other models proposed in the literature 

Besides the standard mono-exponential model and the sinc model, other models have been 

proposed to describe the IVIM signal. Two categories can be distinguished: models trying to 

include the intermediate regime and models obtained from using innovative strategies to 

directly suppress the signal from non-flowing isochromats in the tissue compartment. 

3.1.2.1 Models accounting for the intermediate regime 

Kennan et al. [116] have proposed a model based on a velocity autocorrelation function to 

cover intermediate situations between the two extreme regimes, mono-exponential and sinc, 

but still only considering the capillaries. This model uses a velocity autocorrelation function to 

describe the isochromats’ dynamics. The velocity autocorrelation function is a measure of 

velocity fluctuations in the network and is defined as the average of the scalar product of the 

velocity of an isochromat evaluated at different times 𝑡’ and 𝑡”: 〈𝑉(𝑡")⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ∙ 𝑉(𝑡′)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 〉. For a capillary 

network with a distribution of segments of different lengths, this product can be expressed as: 

〈𝑉(𝑡")⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ∙ 𝑉(𝑡′)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 〉 = 〈𝑉̅2〉𝑒
−
|𝑡"−𝑡′|

𝑇0             3.12 

where 〈𝑉̅2〉 is the mean squared blood velocity and 𝑇0 the correlation time which corresponds 

to the average time the isochromats stay in a given segment. 
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After integrating the expression of the signal attenuation for the PGSE sequence and the 

assumed velocity autocorrelation function in Eq. 3.12, the IVIM signal becomes: 

𝐹𝐼𝑉𝐼𝑀(𝑏) = 𝑒
−𝑏(

〈𝑉̅2〉

3
𝑇0Ω+𝐷𝑏)             3.13 

with Ω = 1 −
2𝑇0

2𝛿+𝑇0
3𝑚

𝛿2(Δ−
𝛿

3
)

 and 𝑚 = 2𝑒
−
𝛿

𝑇0 + 2𝑒
−
Δ

𝑇0 − 𝑒
−
Δ+𝛿

𝑇0 − 𝑒
−
Δ−𝛿

𝑇0 − 2. 

The two parameters extracted from this model are 〈𝑉̅2〉 and 𝑇0. From them, morphological 

parameters can be extracted, the average flow velocity, 𝑉̅ = √〈𝑉̅2〉, and the segment length, 

𝐿 = 2𝑇0√〈𝑉̅2〉. 

This model converges toward the mono-exponential and the sinc regimes at long and very short 

diffusion times, respectively, and it is expected to also cover intermediate regimes. When 

comparing the expression of 𝐹𝐼𝑉𝐼𝑀(𝑏) in this model which we will call the Kennan model and 

the standard mono-exponential IVIM model, the models are very similar except that 𝐷∗ has 

been replaced by 
〈𝑉̅2〉

3
𝑇0Ω.  

Arguing that the Gaussian phase approximation assumed by Kennan et al. is invalid in some 

cases, Wetscherek et al. [117] introduced a model based on normalized phase distributions 

which only depend on the diffusion gradient waveform. According to the authors, this model is 

suitable for arbitrary choices of acquisition parameters. However, they state that a mono-

exponential model can probably describe IVIM data equally well when non flow-compensated 

diffusion gradients are used but will most likely underestimate the pseudo-diffusion coefficient. 

These two models assume that only flow in capillaries contributes to the signal attenuation. 

Some authors have contradicted this hypothesis and, by using other strategies to obtain the 

IVIM signal, they are taking into account a larger part of the microvascular network to model 

the IVIM signal.  

3.1.2.2 Other strategies to directly obtain and model the IVIM signal 

To overcome the difficulty to obtain the IVIM signal which represents only 5 % of the DW signal, 

Neil et al. developed a strategy to directly suppress the signal from non-flowing isochromats in 
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the extravascular space, i.e. the diffusion component [118]. They inject a contrast agent that 

decreases the 𝑇1 of flowing isochromats and selectively suppress the signal from non-flowing 

isochromats on the basis of 𝑇1. This scheme artificially increases the blood volume fraction 𝑓𝐼𝑉𝐼𝑀 

allowing for an easier measure of the IVIM signal. As the diffusion component was suppressed, 

one would think that the obtained IVIM signal would be fitted to a mono-exponential model 

(standard IVIM model). However, the IVIM signal they obtain is better fitted to a bi-exponential 

model. Their hypothesis for this second exponential in the IVIM signal is that it is associated 

with incompletely suppressed signal from non-flowing blood. 

This problem of incompletely suppressed non-flowing water signal gave them the idea to 

completely replace blood with perfluorocarbon (PFC) blood substitute containing 19F (fluorine) 

[119]. When using this technique, it is sure that the signal observed only comes from the 

vascular compartment as the PFC does not cross the BBB and animals contain no naturally-

occurring fluorine. A bi-exponential model is found to better describe the obtained IVIM signal. 

However, it is not clear what these two components represent. But comparing the pseudo-

diffusion coefficients with the diffusion coefficient obtained from scanning the brain of a dead 

rat, they show that both pseudo-diffusion coefficients are at least one order of magnitude 

greater than the diffusion coefficient suggesting that the pseudo-diffusion coefficients are 

related to blood flow.  

A few years later, coming back to proton experiments using the same technique of directly 

suppressing the contribution from non-flowing spins, Neil et al. performed a hypercapnia 

experiment increasing blood flow by adding CO2 to the anesthesia circuit and looked at the 

evolution of the two pseudo-diffusion coefficient with increasing pCO2 [120]. Both pseudo-

diffusion coefficients correlate with the pCO2 which strongly suggests that both components are 

related to intravascular signal. However it is still most likely that the smallest 𝐷∗ is subject to 

contamination from incompletely suppressed diffusion signal and stronger evidence needs to be 

gathered to be able to say that both 𝐷∗ are related to vascular components.  

Based on Neil et al.’s findings with the PFC experiments, Henkelman et al. have suggested an 

IVIM model which takes into account not only capillaries but all types of vessels [121]. Their 
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model is based on a distribution of vessel diameters and thus of blood flow velocities. They 

assume an isotropic orientation of the vessels and show that it is a good assumption for the 

whole brain except for the carotid arteries and the sagittal sinus. They are using laminar flow 

instead of plug flow as they are including larger vessels than capillaries. The mathematical 

equations related to laminar flow introduced by Ahn et al. will be described in details in the next 

chapter. Henkelman’s model involves two pools associated with the arterial and venous trees. 

One diameter distribution represents the arterial or supply side of the vascular system and 

accounts for 80 % of the vascular volume of the brain whereas the other distribution describes 

the venous or drainage side and represents 20 % of the vascular volume of the brain. Diameters 

range from 5 µm for the capillaries to 0.72 mm for the venous sinus, really incorporating all 

vessels in the brain. Henkelman et al. show that larger vessels than capillaries must be included 

in order to adequately model the IVIM signal. However, the perfusion estimated with their 

model is one order of magnitude lower than reported in the literature. 

Duong et al. take inspiration from these PFC experiments and exploit the fact that the spin-

lattice relaxation rate of the PFC correlates linearly with the dissolved oxygen concentration 

[122]. This allows them to link each of the pseudo-diffusion coefficients of the bi-exponential 

IVIM model to the arterial and venous trees and measure the associated regional arterial and 

venous blood volume fractions. However, this technique is invasive as the animals have to be 

euthanized at the end of the experiments. The process of replacing blood with PFC is not 

reversible. 

These findings with PFC experiments suggest that the IVIM signal represents more than just the 

capillary network. However, it has not been possible to demonstrate this finding in proton 

experiments yet. Even with the non-flowing isochromats suppression technique, this could not 

be proven. As is shown in the next section, in this thesis, we establish that it is possible to 

describe the IVIM signal with a bi-exponential model in proton imaging in the case of short 

diffusion times. 
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3.1.3 The bi-exponential model 

Here we introduce a bi-exponential IVIM model (not to be confused with the bi-exponential 

model used to separate diffusion and IVIM effects [123]), accounting for two different vascular 

pools, as an alternative to the mono-exponential model at short diffusion times: 

𝐹𝐼𝑉𝐼𝑀(𝑏) = 𝑒
−𝑏𝐷𝑏 (𝑓𝑠𝑙𝑜𝑤𝑒

−𝑏𝐷𝑠𝑙𝑜𝑤
∗

+ 𝑓𝑓𝑎𝑠𝑡𝑒
−𝑏𝐷𝑓𝑎𝑠𝑡

∗

)           3.14 

with the constraints 𝑓𝑠𝑙𝑜𝑤 + 𝑓𝑓𝑎𝑠𝑡 = 1 and 𝐷𝑓𝑎𝑠𝑡
∗  > 𝐷𝑠𝑙𝑜𝑤

∗ . We emphasize that, when fitting the 

bi-exponential model to experimental data, we always define the larger exponent as 𝐷𝑓𝑎𝑠𝑡
∗ . 

Our hypothesis about the physical meaning of the bi-exponential model is different from that of 

Henkelman and Duong. We hypothesize that the bi-exponential behavior reflects the 

contribution of flow in two distinct vascular pools: a slow and a fast flowing pool corresponding 

to capillaries and medium-sized vessels, respectively. 𝑇2 of venous blood being much smaller 

than 𝑇2 of arterial blood, the vessels contributing the most to the MR signal are mainly coming 

from the arterial part of the vascular tree. 

Depending on the experimental parameters and the vascular properties, one can also consider 

models consisting of a combination of two sinc functions or one exponential and one sinc 

function. However, in agreement with the literature [117],[124], our simulations show that, 

when considering a Gaussian distribution of blood flow velocities, the IVIM signal plotted 

against the b-value “looks exponential” even when isochromats do not change direction many 

times (sinc regime). This transition is analyzed in more details in the next chapter section 4.2.5. 
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Figure 3.3. Plot of the IVIM signal in the sinc regime for  = 3 ms,  = 34 ms and (A) a constant 𝑉 
= 1.5 mm/s or (B) a Gaussian distribution for 𝑉 with 𝑉𝑚𝑒𝑎𝑛 = 1.5 mm/s, 𝜎𝑉 = 0.5 x 𝑉𝑚𝑒𝑎𝑛 and 
1000 samples of 𝑉. In Figure 3.3.B, a mono-exponential fit of the IVIM signal was added. It gives 
𝐷∗ = 15.76 x 10-3 mm²/s. 

So, if there is a Gaussian distribution of the blood velocity in the network of vessels, the signal 

does not look like a sinc function anymore rather like something closer to an exponential 

function. It is thus reasonable to consider a bi-exponential model to account for both the slow 

and the fast vascular pools. 

If two pools can be observed, we should also consider the fact that three pools for example, 

could be observed too. This case can be modelled by a tri-exponential model: 

𝐹𝐼𝑉𝐼𝑀(𝑏) = 𝑒
−𝑏𝐷𝑏 (𝑓𝑠𝑙𝑜𝑤𝑒

−𝑏𝐷𝑠𝑙𝑜𝑤
∗

+ 𝑓𝑓𝑎𝑠𝑡𝑒
−𝑏𝐷𝑓𝑎𝑠𝑡

∗

+ 𝑓𝑓𝑎𝑠𝑡𝑒𝑟𝑒
−𝑏𝐷𝑓𝑎𝑠𝑡𝑒𝑟

∗

)             3.15 

A third exponential component characterized by 𝑓𝑓𝑎𝑠𝑡𝑒𝑟 and 𝐷𝑓𝑎𝑠𝑡𝑒𝑟
∗  has been added that 

represents the contribution from an even faster flowing pool than the fast pool introduced with 

the two-pool bi-exponential model. The condition 𝑓𝑠𝑙𝑜𝑤 + 𝑓𝑓𝑎𝑠𝑡 + 𝑓𝑓𝑎𝑠𝑡𝑒𝑟 = 1 must be fulfilled.  

And naturally, we order the exponents by the property 𝐷𝑓𝑎𝑠𝑡𝑒𝑟
∗  > 𝐷𝑓𝑎𝑠𝑡

∗  > 𝐷𝑠𝑙𝑜𝑤
∗ . 
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3.2 Evaluation of the best model for the IVIM signal at short diffusion encoding time 

3.2.1 Material and methods 

3.2.1.1 Animal procedures 

Dark Agouti male rats (NR = 11, 240-360 g, 3-21 months, Janvier, Saint Isle, France) were used in 

this study. All animal experiments were conducted according to recommendations of the EU 

Directive 2010/63/EU for care and use of laboratory animals. 

Throughout the experiments the animals, anesthetized with 1.5 - 2 % isoflurane in a 1:2 O2:air 

mixture, were monitored for respiration rate (30–50 breath per min) and temperature, 

maintained constant (36.5 ± 0.5°C) using a heated air circuit device (SA Instruments, Inc, USA). 

To avoid motion-related artifacts, the head was immobilized using a bite bar and ear pins 

connected to the nose cone. 

At first, plastic ear pins were used. However they are not convenient as they tend to bend if 

they are used too much and are too small to ensure that the rat’s head will be well-fixed. 

Therefore, we use wood ear pins which are in fact small diameter cotton buds that can be easily 

cut by hand at the right length when the animal is in the right position in the nose cone. 

Movement should be avoided with the IVIM sequence as a small movement can introduce noise 

or ghosts in the images causing more difficult evaluation of the IVIM parameters. With the 

frequent changes of the head of the bed between the different scanner users, the head of the 

bed needs to be well fixed to the bed. The animal’s head should not move at all with the rat’s 

teeth well positioned in the bite bar and the nose cone well fixed. 

3.2.1.2 MRI experiments 

Data were collected using a horizontally oriented 7T small animal MRI scanner (Biospec, Bruker 

Biospin, Etlingen, Germany) equipped with a 740 mT/m gradient coil system. A 3 x 3 cm² four-

element phased-array receiver coil and a 7.2 cm (inside diameter) volume transmit coil (Bruker 

BioSpin, Etlingen, Germany) were used. After scout scans, the magnetic field homogeneity was 

ensured through the FASTMAP method (Paravision 5.1) followed by the MAPSHIM method to 

correct more specifically in the region of interest. 
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Coronal DW-MRI images were acquired using a standard pulsed-gradient EPI spin-echo 

sequence (PG-EPI-SE) with a GRAPPA reconstruction (acceleration factor 2) and 30 b-values (20 

b-values ranging from 7 to 500 s/mm2 and 10 b-values ranging from 500 to 2500 s/mm2). The 

acquisition parameters were set as follows: gradient directions [X=1, Y=1, Z=1], [X=0, Y=1, Z=0] 

and [X=0, Y=0, Z=1], diffusion gradient duration time  = 3 ms, diffusion gradient separation 

times  = 14, 24 and 34 ms, in plane resolution 250 x 250 μm², matrix size 80 x 80, field of view 

20 x 20 mm2, slice thickness 1.5 mm, 1 segment, echo time TE = 45 ms, repetition time TR = 

1000 ms, 6 averages, 6 repetitions, 2 slices. Data with strong motion artefacts were discarded 

and the acquisition repeated. For one rat, only 5 repetitions could be included. 

3.2.1.3 Data processing 

IVIM/diffusion MRI images were processed using MATLAB (MathWorks, Massachusetts, USA). 

As diffusion is mostly isotropic in the gray matter with only some diffusion anisotropy visible at 

high resolution with MRI in the brain cortical gray matter [125], the signals from the different 

gradient diffusion directions were averaged to increase SNR. IVIM effects were also assumed to 

be isotropic. 

Afterwards, ROIs were drawn manually on the cortical gray matter and on the thalamus of the 

left hemisphere and averaged over the two acquired slices. The two ROIs are shown in Figure 

3.4. They consisted of approximately 132 ± 37 and 125 ± 33 pixels for each slice for the left 

cortex (LC), and 90 ± 18 and 88 ± 15 pixels for each slice for the left thalamus (LT), respectively.  

 

Figure 3.4. Example of the two ROIs drawn on the left cortex (A) and left thalamus (B). 

The total MR signal obtained from the PG-EPI-SE sequence is: 
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𝑆(𝑏) = 𝑆0𝑑𝑖𝑓𝑓𝐹𝑑𝑖𝑓𝑓(𝑏) + 𝑆0𝐼𝑉𝐼𝑀𝐹𝐼𝑉𝐼𝑀(𝑏)                        3.16 

where 𝑆0𝑑𝑖𝑓𝑓 and 𝑆0𝐼𝑉𝐼𝑀 are the fractions of diffusion and IVIM components, respectively, with 

𝑆0𝑑𝑖𝑓𝑓 = 𝑆0 × (1 − 𝑓𝐼𝑉𝐼𝑀) and 𝑆0𝐼𝑉𝐼𝑀 = 𝑆0 × 𝑓𝐼𝑉𝐼𝑀, where 𝑓𝐼𝑉𝐼𝑀 is the blood volume fraction 

and 𝑆0 is the overall signal when b = 0 (it should be noted that tissue and blood contribute to 𝑆0 

with different 𝑇2 and 𝑇1-weightings).  

IVIM parameters were obtained from the signal attenuation, 𝑆(𝑏), in two steps, first estimating 

the diffusion component, 𝐹𝑑𝑖𝑓𝑓(𝑏), for 𝑏 > 500s/mm², then estimating the IVIM component, 

𝐹𝐼𝑉𝐼𝑀(𝑏), from the residual signal, after the diffusion component has been removed for data 

corresponding to 𝑏 < 500 s/mm2. This two-step approach was found to give better stability than 

direct fitting of the data which is more sensitive to noise in the image and outliers [126],[127]. 

The adequacy of the chosen 𝑏 threshold value was confirmed after examination of many cases, 

as the residual signal taken after removing diffusion effects was found not to differ significantly 

from noise for b-values above 500 s/mm2. This 𝑏 threshold is higher than the one usually 

applied for the rat brain, 300-400 s/mm² (ref. [128]). Due to the high SNR (≅ 44 at b = 500 

s/mm²) made possible by the high field used and the many averages employed, we noticed that 

some IVIM signal was still present at 𝑏 = 400 s/mm² and therefore increased the cut-off value. 

An approach suggested by Wurning et al. could also have been used [129]. They developed an 

algorithm to adapt the b-value threshold for each set of data. The algorithm performs an 

iterative fitting of both diffusion and IVIM components for a varying number of b-values from 

the maximum number of b-values to two b-values, progressively decreasing the number of b-

values taken into account for the diffusion fit. As we show that the cut-off b-value can be varied 

to improve accuracy of the fit, maybe this approach should be used at the beginning of a new 

study to find the adequate b-value threshold.  

The most commonly used diffusion model in clinical studies [130],[131],[132] is the mono-

exponential model which assumes that diffusion is Gaussian in tissues. Other popular models 

which account more accurately for the signal behavior at high b-values (> 1000 s/mm²) are the 

bi-exponential diffusion model which assumes the presence of two slowly exchanging tissue 
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diffusion compartments and the polynomial, often referred to as the Kurtosis [133],[134] model 

which empirically handles the non-Gaussian nature of diffusion in tissues [123]. 

In this work, we used the Kurtosis model (Eq. 3.17) as it is more robust in the medium-range b-

values (< 3000 s/mm² (ref. [135])):  

                                                                    𝐹𝑑𝑖𝑓𝑓(𝑏) = 𝑒
−𝑏𝐴𝐷𝐶0+(𝑏𝐴𝐷𝐶0)

2𝐾

6             3.17 

where 𝐴𝐷𝐶0 is the apparent diffusion coefficient obtained when 𝑏 approaches 0 and 𝐾 is the 

Kurtosis parameter which characterizes the deviation from the exponential decay.  

The expression of the Kurtosis model goes to infinity for very high b-values. However, as stated 

by Jensen et al. [133], if we take typical values for 𝐴𝐷𝐶0 and 𝐾 in the brain, 𝐴𝐷𝐶0 = 1 µm²/ms 

and 𝐾 = 1, the Kurtosis model should not be used to fit the diffusion component in the brain 

with b-values ≥ 3000 s/mm². Indeed, as shown in Figure 3.5, for b-values ≤ 3000 s/mm², the 

Kurtosis model is a monotonically decreasing function of the b-value. 

 

Figure 3.5. Plot of the Kurtosis model versus the b-value for 𝐴𝐷𝐶0 = 1 µm²/ms and 𝐾 = 1. 

Not taking into account the non-Gaussian diffusion at high b-values with the Kurtosis model has 

a high impact on the value of 𝑓𝐼𝑉𝐼𝑀 [136]. As shown in Figure 3.6.A, 𝑓𝐼𝑉𝐼𝑀 is overestimated when 

fitting to a mono-exponential model. However, this does not change the results observed on the 

IVIM signal: the IVIM signal is still bi-exponential (Figure 3.6.B). 
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Figure 3.6. Differences between fitting the diffusion component to a Kurtosis model (KM) and a 
mono-exponential model (MEM). (A) Raw signal against the b-values superimposed to the 
diffusion fits to the KM for 𝑏 = [500-2500] mm²/s and the MEM for 𝑏 = [500-1500] mm²/s, in red 
and blue, respectively. (B) Bi-exponential fit of the residual IVIM signals after fitting to the KM 
and MEM, in red and blue, respectively. With the KM model, we get 𝑓𝑠𝑙𝑜𝑤 = 19.06 %, 𝐷𝑠𝑙𝑜𝑤

∗  = 
5.04 x 10-3 mm²/s and 𝐷𝑓𝑎𝑠𝑡

∗  = 19.91 x 10-3 mm²/s and with the MEM model, 𝑓𝑠𝑙𝑜𝑤 = 48.50 %, 

𝐷𝑠𝑙𝑜𝑤
∗  = 4.43 x 10-3 mm²/s and 𝐷𝑓𝑎𝑠𝑡

∗  = 14.83 x 10-3 mm²/s. 

Then the IVIM component, 𝐹𝐼𝑉𝐼𝑀(𝑏), was tested for the mono-, bi-, tri-exponential IVIM models 

and the Kennan model. 

Several algorithms can be used to determine the best fit for each signal component. The most 

common are the non-linear least squares (NLLS) analysis and the Bayesian probability (BP) 

theory. The NLLS method, the sum of squared differences between the studied signal and the 

modelled signal is minimized. This analysis can be biased by inadequate starting values for the 

estimated parameters. In that case, a local minimum can be found instead of the global 

minimum, giving incorrect parameter estimates. On the other hand, BP algorithms uses 

probability density functions and thus does not require starting values of the parameter 

estimates. Quite a few papers show that the BP theory is performing better than the NLLS 

analysis [137], [138]. A dictionary-based approach has also been proposed by Iima et al. to 

bypass the NLLS problem of starting values [136]. This method compares the whole MRI signal 

to a dictionary of model signals with different values for the parameters of the diffusion and 

IVIM models also adding a noise correction factor to account for noise in the MR image. The 

dictionary only has to be generated once and then the algorithm runs quickly as it only has to 
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calculate the error between the studied signal and the signals of the dictionary and minimize it. 

It was found to behave better than the NLLS but was not compared to the BP algorithm. For this 

thesis, the NLLS algorithm was used, knowing its drawbacks. Care was taken to ensure that the 

minimum value found was indeed the global minimum and not a local minimum by varying the 

initial conditions of the parameters. 

Another approach was also considered to test the Kennan model. As its equation takes into 

account  and allows to directly obtain morphological parameters, i.e. the average flow 

velocity, 𝑉̅, and the segment length, 𝐿, we put an additional constraint to the fit: the 

morphological parameters should be the same for all three diffusion encoding times. The 

experimental data were therefore compared to the Kennan model with a range of values for the 

two fit parameters: 200 values for 〈𝑉̅2〉 = [0.01 - 100] mm²/s² and 200 values for 𝑇0 = [1 - 200] 

ms. 

3.2.1.4 Statistical analysis 

The statistical analysis for the comparison between the four models was performed using the 

corrected Akaike information criterion (AICc) for a small number of samples [139] (NS < 30): 

𝐴𝐼𝐶𝑐 = 𝑁𝑏 ln(𝑀𝑆𝐸) +
2𝑘(𝑘+1)

𝑁𝑏−𝑘−1
            3.18 

with 𝑁𝑏 the number of b-values used to fit the signals, 𝑀𝑆𝐸 the mean squared error and 𝑘 the 

number of parameters in the model, taking into account that the Gaussian noise hypothesis for 

the signal residuals counts as 1 parameter according to the AIC theory. Hence, 𝑘 = 3, 4, 5 and 7 

for the mono-exponential (𝑓𝐼𝑉𝐼𝑀, 𝐷∗ + 1), Kennan (𝑓𝐼𝑉𝐼𝑀, 〈𝑉̅2〉, 𝑇0 + 1) bi- (𝑓𝐼𝑉𝐼𝑀, 𝑓𝑠𝑙𝑜𝑤, 𝐷𝑠𝑙𝑜𝑤
∗ , 

𝐷𝑓𝑎𝑠𝑡
∗  + 1) and tri-exponential models (𝑓𝐼𝑉𝐼𝑀, 𝑓𝑠𝑙𝑜𝑤, 𝑓𝑠𝑙𝑜𝑤, 𝐷𝑠𝑙𝑜𝑤

∗ , 𝐷𝑓𝑎𝑠𝑡
∗ , 𝐷𝑓𝑎𝑠𝑡𝑒𝑟

∗  + 1), respectively. 

For the comparison with the Kennan model with the constraint on the diffusion encoding times, 

the AICc was first calculated for each combination of 〈𝑉̅2〉 and 𝑇0 in the ranges defined earlier. 

Then, the maximum AICc for each combination over the three  was taken. Finally, the best fit 

was found by taking the minimum of the maximum AICc-values calculated. 

The reported AICc-values have been calculated using only experimental and fitted signals 

corresponding to b-values < 500 s/mm² (residual IVIM component of the signal) (hence 𝑁𝑏 = 
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20). The Akaike weight [140], 𝑤𝑖(𝐴𝐼𝐶𝑐), was then calculated as the probability that model 𝑖 is 

the best model given the data and the set of candidate models [141]: 

𝑤𝑖(𝐴𝐼𝐶𝑐) =
𝑒
−
1
2
∆𝑖(𝐴𝐼𝐶𝑐)

∑ 𝑒
−
1
2
∆𝑗(𝐴𝐼𝐶𝑐)

𝑁𝑗
𝑗=1

                         3.19 

where 

∆𝑖(𝐴𝐼𝐶𝑐) = [𝐴𝐼𝐶𝑐]𝑖 −𝑚𝑖𝑛(𝐴𝐼𝐶𝑐)            3.20 

where 𝑁𝑗 is the number of compared models (here 𝑁𝑗 = 4). A weight > 0.90 indicates that robust 

inferences can be made using the associated model. 

The AICc calculations were done using MATLAB while the other statistical analyses were 

conducted using the R software [142]. First, the statistical significance of the difference between 

the AICc of the bi- and mono-exponential models was assessed using a Wilcoxon signed rank 

test. Then, to assess the existence of a dependence of the diffusion and bi-exponential models 

parameters on the diffusion time and/or ROI, we used the two-way ANOVA test. If the two-way 

ANOVA was statistically significant with regards to , the Tukey’s Honest Significant Difference 

(HSD) post-hoc test was used, allowing the identification of the diffusion times for which the 

parameter means were significantly different. When one or both assumptions of the two-way 

ANOVA were not met, we used a non-parametric version of the two-way ANOVA, the Scheirer-

Ray-Hare test. If the p-value of the Scheirer-Ray-Hare test was statistically significant with 

regards to , the Games-Howell post-hoc test was used, allowing the identification of the 

diffusion times for which the parameter means were significantly different. 

3.2.2 Model comparison 

For one diffusion time ( = 24 ms), examples of the IVIM signal versus the b-value along fitted 

signals for the bi-, mono-exponential, Kennan and tri-exponential models are given in Figure 3.7. 

The error bars come from averaging over the directions, repetitions and slices. 
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Figure 3.7. IVIM signal resulting from the subtraction of the diffusion component from the total 

MRI signal versus b-value for  = 24 ms and the two ROIs: (A-C) left cortex (LC) and (D-F) left 
thalamus (LT). The black circles represent the experimental data. The black, dark blue, red and 
light blue lines correspond to the four fitting models, the bi-, mono-exponential, Kennan and tri-
exponential models, respectively. The curves were fit to the data with b-values ranging from 0 
to 500 s/mm². Error bars are +- SD. 

From the first two comparisons (Figure 3.7.A,B,D,E), it is clear that the bi-exponential better 

describes the IVIM signal than the mono-exponential and Kennan models. As shown in the 

previous section, the Kennan model is very close to the mono-exponential model except that 𝐷∗ 

has been replaced by 
〈𝑣̅2〉

3
𝑇0Ω. The values found for the parameters in this fit show that we have 

𝐷∗ =
〈𝑣̅2〉

3
𝑇0Ω for most of the fits. This is why the fitting curves with the mono-exponential and 

Kennan models look so alike in Figure 3.7.  

In Figure 3.7.C and F, the tri- and bi-exponential models are superimposed. Indeed, when 

looking at the parameter estimates for the tri-exponential model, either one of the fraction is 

zero or two of the pseudo-diffusion coefficients are equal. These two cases bring back the tri-

exponential to a simple bi-exponential model, explaining why the two fits are superimposed. 
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AICc for the mono-exponential (AICcM), bi-exponential (AICcB), tri-exponential (AICcT) and 

Kennan (AICcK) models are displayed for all the rat, diffusion and ROIs in Figure 3.8. The black 

circles highlight data for which AICcM < AICcB. 

 

Figure 3.8. AICc for each model and ROI for 11 datasets: (A) LC, (B) LT. The black dotted lines 
separate the data between the diffusion times. The black circles highlight the cases for which 
AICcM < AICcB. 

For every data set, AICcM < AICcK. This is coherent with the fact that the mono-exponential and 

Kennan model give the same fits. The Kennan model having more parameters to estimate, the 

correction factor in the AICc calculation is thus more important giving a higher AICc for the 

Kennan model compared to the mono-exponential model. We also have AICcB < AICcT. The same 
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principle applies for the tri- and bi-exponential models as for the Kennan and mono-exponential 

models. 

The Kennan model was also constrained to have the fit parameters kept the same for all three 

diffusion encoding times. The separated AICc for each diffusion encoding time for the Kennan 

model are compared to the AICc of the bi-exponential model in Figure 3.9. There is no dataset 

for which all three AICc of the Kennan model are smaller than the AICcs of the bi-exponential 

model. Therefore, the Kennan model with this constraint on the diffusion encoding times was 

not further considered. 

 

Figure 3.9. AICc for the bi-exponential and Kennan models while constraining the Kennan model 
to have the same fit parameters for every diffusion time for 11 datasets in the LC (A) and LT (B). 
The black dotted lines separate the data between the diffusion times. The black circles highlight 
the cases for which AICcK < AICcB. 
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Another way to look at the AICc is to calculate the Akaike weights (AW). They are shown in 

Figure 3.10 for the mono- (AWM), bi- (AWB), tri-exponential (AWT) and Kennan (AWK) models. 

 

Figure 3.10. Akaike weights for each model and ROI for 11 datasets: (A) LC, (B) LT. The black 
dotted lines separate the data between the diffusion times. The black circles highlight the cases 
for which AWB < AWM. 

We also observe that AWK < AWM  and AWB < AWT for all ROIs and diffusion times. Given this, for 

the rest of the analysis, we only compare the bi- and mono-exponential models. For 61 out of 66 

data points, AWB > AWM. A Wilcoxon signed rank test gives a p-value < 0.0001 when comparing 

the AICc values, showing a significant difference between the AICc of the two models. This test 

assesses that the bi-exponential model is better to describe the IVIM data at these diffusion 

times than the mono-exponential model. 
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The black circles draw attention to the datasets for which AWB is smaller than AWM. One can 

notice that they are all observed for  = 34 ms, suggesting that the bi-exponential model is a 

better model to describe the IVIM signal than the standard mono-exponential model, especially 

at short diffusion times, but that the two models converge at longer diffusion times. 

Figure 3.11.A displays the box-and-whisker plot for the difference in AICc between the mono- 

and bi-exponential models against the diffusion time for the two ROIs.  

 

Figure 3.11. (A) Box-and-whisker plot of the difference in AICc between the mono- and bi-
exponential models for the two ROIs against the diffusion time. (B) Table with the results of the 
two-way ANOVA and the Tukey’s HSD post-hoc test for the difference in AICc between the 
mono- and bi-exponential models. 

As shown in Figure 3.11.B, the two-way ANOVA test shows that the AICc is not different 

according to the ROI location, but is significantly different between diffusion times (p-value < 

0.0001). The Tukey’s HSD post-hoc test indicates that the differences in AICc are significantly 

different between all diffusion times. Specifically, we see a decrease in the difference in AICc 

between the two models when the diffusion time increases. This corroborates the conclusion 

stated in the previous paragraph that the two models converge as the diffusion time increases. 

3.2.3 Interpretation of the bi-exponential IVIM model 

The physical interpretation behind the bi-exponential model is that, instead of reflecting only 

one vascular pool, i.e. the capillaries, the IVIM signal incorporates signals coming from two 
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different vascular components: a slow component, characterized by 𝑓𝑠𝑙𝑜𝑤 and 𝐷𝑠𝑙𝑜𝑤
∗ , and a 

faster component, characterized by 𝑓𝑓𝑎𝑠𝑡 and 𝐷𝑓𝑎𝑠𝑡
∗ .  

Formerly, Neil et al. reported that the IVIM signal obtained by using a modified DW sequence in 

which the tissue component was directly suppressed can be better fit to a bi-exponential than a 

mono-exponential function [120]. The authors attributed this bi-exponential behavior to an 

incomplete saturation of the extravascular spins. In the analysis we performed, extra care was 

taken to insure that the tissue diffusion component has been completely removed, leaving the 

vascular component as the only possible contributor to the observed bi-exponential IVIM signal. 

The two components could also correspond to two compartments inside one vascular 

compartment as for example water molecules inside RBCs and in the plasma. When the ratio 

between the RBC diameter (6-8 µm) and the vessel diameter is ≤ 1, the mean velocity of the 

RBCs is about 40 % higher than the velocity of blood flow [57]. When this ratio is higher, this 

difference is less than 40 %. Even if the ratio is about 40 %, it does not match the difference we 

observe with our experimental data which is more a 400 % difference than a 40 % difference. 

Now that incompletely suppressed diffusion and two compartments inside the vascular 

compartment have been ruled out, it leaves only the hypothesis of two different vascular 

components. Henkelman et al. and Duong et al. proposed two components corresponding to 

the arterial and venous trees to explain the results of their PFC experiments. However, we 

propose another explanation. Venules have a much shorter 𝑇2 value than arterioles, for 

example, at 7T, 𝑇2 for venules is 20 ms whereas it is 68 ms for the arterioles. 𝑓𝐼𝑉𝐼𝑀 being 𝑇2 

dependent, if we estimate 𝑒
−
𝑇𝐸

𝑇2  for venules and arterioles at 7T for TE = 45 ms, we get 0.11 for 

veins and 0.52 for arteries. Given this large difference in the 𝑓𝐼𝑉𝐼𝑀 𝑇2-weighting, we hypothesize 

that the IVIM signal that we see is mostly coming from water molecules inside capillaries and 

arterioles and less from venules. Therefore, we think that the bi-exponential behavior observed 

in this study comes from vascular components corresponding to the capillaries for the slow 

component and to larger vessels mostly from the arterial tree but also from the venous tree for 

the fast component. 



109 
 

This theory is supported by the variation of the bi-exponential model parameters with the 

diffusion time. 

3.2.4 Evolution of the model parameters with the diffusion encoding time 

The diffusion encoding time can be defined as +[143].  was kept constant while three values 

were chosen for : 14, 30 and 60 ms. Table 3.1 gathers the means ± SD and the results of the 

statistical tests for all parameters of the Kurtosis model, 𝐴𝐷𝐶0 and 𝐾, for diffusion, and the bi-

exponential model, 𝑓𝐼𝑉𝐼𝑀, 𝑓𝑓𝑎𝑠𝑡, 𝐷𝑠𝑙𝑜𝑤
∗  and 𝐷𝑓𝑎𝑠𝑡

∗ , for IVIM. 

 

Table 3.1. Diffusion and IVIM parameters for the three  and two ROIs (NR=11) and results of 

the statistical tests on the dependence of the parameters against  and the ROIs. The values 
reported here for 𝐷𝑠𝑙𝑜𝑤

∗  and 𝐷𝑓𝑎𝑠𝑡
∗  are obtained by removing the contribution from water 

diffusion in blood from those obtained by fitting the experimental data. The two-way ANOVA 
test was used as initial statistical test. When the assumptions of the two-way ANOVA test were 
not met, i.e. for all parameters except 𝐴𝐷𝐶0 and 𝑓𝐼𝑉𝐼𝑀, the Scheirer-Ray-Hare test was used. The 
Tukey’s HSD and Games-Howell post-hoc tests were used when a significant difference was 

found for with the two-way ANOVA or Scheirer-Ray-Hare tests, respectively; Groups 1, 2, 3 

correspond to = 14 ms, 24 ms and 34 ms, respectively. p-values < 0.05, highlighted in bold, 
were considered statistically significant. 

Figure 3.12 displays the box-and-whisker plots for 𝐴𝐷𝐶0, K, 𝑓𝐼𝑉𝐼𝑀, 𝑓𝑓𝑎𝑠𝑡, 𝐷𝑠𝑙𝑜𝑤
∗  and 𝐷𝑓𝑎𝑠𝑡

∗  against 

 for the two ROIs. 
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Figure 3.12. Box-and-whisker plots of the parameters of the Kurtosis and bi-exponential models 
against the diffusion time for the two ROIs: (A) 𝐴𝐷𝐶0, (B) 𝐾, (C) 𝑓𝐼𝑉𝐼𝑀, (D) 𝑓𝑓𝑎𝑠𝑡, (E) 𝐷𝑠𝑙𝑜𝑤

∗ , and 

(F) 𝐷𝑓𝑎𝑠𝑡
∗ . Error bars represent SD (NR=11). 

𝐴𝐷𝐶0  was found significantly different between  = 24 and 34 ms. 𝐾 and 𝑓𝐼𝑉𝐼𝑀 were not 

significantly influenced by  in the range used in this study. The trend for 𝐴𝐷𝐶0 is coherent with 
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previous results from Pyatigorskaya et al. [144] although no significant difference was found 

between all . We found a significant difference in 𝐴𝐷𝐶0, 𝐾 and 𝑓𝐼𝑉𝐼𝑀 with the two ROIs 

studied, justified by the different composition and organization of the two structures. 𝑓𝐼𝑉𝐼𝑀 is 

higher than usually stated in the literature, around 5-6 % for healthy brain tissue [145]. This may 

explained by the fact that more vessels than just the capillaries are seen at shorter diffusion 

encoding times. Also, TR being short, inflow effects could be present and artificially increase 

𝑓𝐼𝑉𝐼𝑀. 

IVIM parameters, 𝑓𝑓𝑎𝑠𝑡  and 𝐷𝑠𝑙𝑜𝑤
∗ , were not significantly different between the two ROIs while 

𝐷𝑓𝑎𝑠𝑡
∗  was found lower in the thalamus. These findings suggest similarities in the vascular 

organization of the slow pool between the two regions. 

We found a 𝑓𝑓𝑎𝑠𝑡-value smaller at  = 34 ms compared to  = 24 ms, in agreement with a 

transition to a mono-exponential behavior at the longest diffusion encoding time for  = 34 ms 

as indicated by the AICc analysis. Combined with the fact that 𝑓𝐼𝑉𝐼𝑀 is independent of the 

diffusion encoding time, this observation also implies that while both pools, slow and fast, are 

initially present at 𝑏 = 0 s/mm², the decay of the IVIM signal corresponding to the fast pool is 

much faster as the diffusion encoding time increases, eventually becoming difficult or even 

impossible to estimate. 

𝐷𝑠𝑙𝑜𝑤
∗

 significantly increased with the diffusion encoding time, suggesting a sinc (Eq. 3.5) or 

intermediate regime for the slow pool. Also in agreement with a sinc or intermediate regime, 

𝐷𝑓𝑎𝑠𝑡
∗

 was higher at  = 34 ms than at  = 24 ms, although not statistically significant. Going 

from  = 14 to 24 ms, we see, however, a significant decrease in 𝐷𝑓𝑎𝑠𝑡
∗ . This decrease could 

result from an additional dephasing effect present only at very short diffusion times. It is 

reasonable to consider that flow in the slow pool has a plug flow profile. However, if the fast 

pool corresponds to medium-sized vessels in between capillaries and pial arterioles (diameters 

ranging between 10 (ref. [146]) and 50 µm (ref. [147]) and blood flow velocities ranging 

between 2 (ref. [55]) and 20 mm/s (ref. [148]) in rats), blood flow is expected to be laminar. In 

this case, an additional phase dispersion [149], 𝐷𝐿𝐹, should be considered to the overall IVIM 

signal decay of the fast flow component: 
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𝐹𝐼𝑉𝐼𝑀 = 𝑒
−𝑏𝐷𝑏 (𝑓𝑠𝑙𝑜𝑤𝑒

−𝑏𝐷𝑠𝑙𝑜𝑤
∗

+ 𝑓𝑓𝑎𝑠𝑡𝑒
−𝑏(𝐷𝑓𝑎𝑠𝑡

∗ +𝐷𝐿𝐹))           3.21 

with 𝐷𝐿𝐹 =
1

6
∆𝑢2̅̅ ̅, where 𝑢2̅̅ ̅ is the variance in the laminar flow velocity field. This contribution is 

significant only for observation times on the order of the fluid element correlation time, defined 

as 𝜏𝑐 =
𝑑

√𝑢2̅̅ ̅̅
,  where 𝑑 is the blood vessel diameter. A simple estimation, assuming 𝑑 = 40 µm 

and a mean blood velocity of 5 mm/s (corresponding 𝑢2̅̅ ̅ = 9 mm/s), leads to 𝜏𝑐 ~ 13.33 ms, 

implying that 𝐷𝐿𝐹 cannot be neglected when the diffusion time is 14 ms. At  = 24 ms, on the 

other hand, 𝐷𝐿𝐹 is negligible and, as a result, we witness a decrease in the measured 𝐷𝑓𝑎𝑠𝑡
∗ . 

The bi-exponential IVIM model being a new model, no literature with which to compare the 

present results is available. Additionally, as the two pools are likely to be in an intermediate 

regime between sinc and exponential regimes for which no equation for 𝐷∗ can be found, it is 

not possible to directly extract morphological information from the experimental data. Similarly, 

as 𝑓𝑠𝑙𝑜𝑤 and 𝐷𝑠𝑙𝑜𝑤
∗  vary with the diffusion time, it is not possible to relate them to values of CBF 

and CBV. 

To further analyze the current datasets and overcome this difficulty, numerical simulations of 

the IVIM signal microvascular networks were performed to extract structural information from 

these datasets. The methodology for the numerical simulations is presented in Chapter 4 and 

the comparison between the simulations and the experimental data is detailed in Chapter 5. 
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Chapter 4: Numerical simulations of the IVIM signal 

This chapter first introduces the approach chosen in this thesis to obtain further information 

from the experimental signals. Then, the mathematical modelling and numerical simulations 

performed are described. 

4.1 Introduction  

In order to extract more information about the structure of the underlying vascular networks 

from the experimental signals, an approach involving numerical simulations is used. First, 

methods combining MR data acquisition with numerical simulations to extract this kind of 

parameters are presented. Then, the approach selected for our purpose is presented. 

4.1.1 Method combining perfusion MRI with simulations of the MR signal 

The idea to combine simulations of the MR signal with experimental signals to extract 

parameters of the underlying structure is not new. Notably, we can cite the approach used by 

Yeh et al. who developed what they called a diffusion microscopist simulator [150]. However, 

for this introduction, we will focus on a technique which simulates perfusion MR signals. 

For DCE MRI, Pannetier et al. have designed a simulation tool to model the MR signal [151]. 

These complex simulations include modelling of 𝑇1 and 𝑇2 relaxations, magnetic field 

perturbations induced by susceptibility interfaces (vessels and cells), diffusion of the water 

protons, blood flow, permeability of the vessel wall to the contrast agent and constrained 

diffusion of the contrast agent within the voxel. Based on these simulations, Christen et al. 

developed what they call MR vascular fingerprinting [152]. The principles of their technique is 

described in Figure 4.1. What they call fingerprint is the ratio of the DCE signal after and before 

contrast agent injection. They use the simulations to create a database of DCE MR signals to 

compare them with the fingerprint and extract measures of CBV, mean vessel radius and 

oxygenation maps of the brain. 
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Figure 4.1. Summary of MR vascular fingerprinting. (a) A numerical simulation with different 
parameters for CBV, vessel size (Radius), and oxygen saturation (SO2) is used to create a family 
of curves (the dictionary) (b). (c,d) The actual fingerprint derived from DCE MRI (the GESFIDE 
sequence) is then compared to this dictionary to find the underlying parameters that make the 
best match. From Christen et al [152]. 

This approach opens the door to many possible applications as it can be adapted to other MRI 

sequences in order to foresee the results of a study or even predict the outcome of other 

perfusion techniques. However, no similar approach has yet been applied to IVIM imaging. 

4.1.2 Approach chosen for this thesis 

The technique presented in the previous subsection was developed after the framework of this 

thesis had been defined. However, the approach chosen for this thesis is similar to theirs in the 

sense that we are comparing a dictionary of simulated MR signals to experimental signals in 

order to extract structural information about the microvascular network. We model the IVIM 

signal coming from microvascular networks by combining the simulated MR signals due to 

isochromats following different simplified trajectories with defined structural properties. More 

details are provided in the next subsections. The simulated MR signals are computed in a 
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separate step and saved to generate a dictionary. This dictionary is compared to IVIM signals 

acquired experimentally. 

Unlike Christen et al., we compare directly the IVIM signal to the dictionary and not the ratio of 

signals coming from two different series of acquisitions as no contrast agent is needed to 

perform IVIM imaging. 

4.2 Modelling of the IVIM signal in a microvascular network 

In this chapter, we describe our chosen method to model the IVIM signal. One possible way to 

model the IVIM signal is to construct many realizations of (simulated) vascular networks. A 

realization of such a network defines the geometrical structure of the network and one then can 

follow the motion of the spins inside the network according to some appropriate laws of motion 

for blood motion. Even very simplistic rules such as imposed flow velocities in the vessels and 

fixed probability of flow into branching vessels at junctions would be very computationally 

intensive because of the large number of vessels in a micro-vascular network. Hence, in this 

thesis, we directly consider (simplified) spin trajectories, each with a fixed flow velocity, and we 

do not consider vessel branching effects. The IVIM signal is then defined as the total 

magnetization of the spins that follow a set of trajectories. A set of trajectory is defined by the 

probability distributions of vessel (segment) lengths, orientations, and flow velocity. All the 

spins that follow the same trajectory are called an isochromat.   

4.2.1 Simplified spin trajectories and isochromat magnetization 

Even though parts of vessels can be curved, for simplicity, we define an isochromat trajectory as 

a series of linked straight segments, connected head to tail, without any branching. Again for 

simplicity, the segment diameters are not taken into account. A typical trajectory is illustrated in 

Figure 4.2, along with the relevant notation, defined below. 

A trajectory is made up of 𝑁 segments. A segment 𝑘 is characterized by: 

 a starting point 𝑥𝑘−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and an endpoint 𝑥𝑘⃗⃗⃗⃗   

 the length of the segment, defined as 𝐿𝑘 = ||𝑥𝑘⃗⃗⃗⃗ − 𝑥𝑘−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|| 
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 the orientation of the segment, defined as 𝑜𝑘⃗⃗⃗⃗ =
(𝑥𝑘⃗⃗⃗⃗  ⃗−𝑥𝑘−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )

𝐿𝑘
, and in spherical coordinates it 

is 𝑜𝑘⃗⃗⃗⃗ = cos(𝜃𝑘) sin(𝜑𝑘) 𝑒𝑥⃗⃗  ⃗ + sin(𝜃𝑘) sin(𝜑𝑘) 𝑒𝑦⃗⃗⃗⃗ + cos(𝜃𝑘) 𝑒𝑧⃗⃗  ⃗ 

 a blood velocity vector 𝑉𝑘⃗⃗⃗⃗ = 𝑉𝑘𝑜𝑘⃗⃗⃗⃗ , where its associated magnitude is 𝑉𝑘  

 the time to cross the segment 𝑇𝑘 =
𝐿𝑘

𝑉𝑘
 

 the cumulative time to get to the end of the segment, defined as 𝑡𝑘 = ∑ 𝑇𝑚
𝑘
𝑚=0  

 

Figure 4.2. Schematic representation of an isochromat trajectory. There are 𝑁 segments in this 
isochromat trajectory. 

Considering an isochromat traveling along the trajectory defined above and calling its position 

vector 𝑥(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , to obtain the resulting magnetization of the isochromat, we solve the Bloch 

equation in the rotating frame while neglecting relaxation effects, water diffusion in blood and 

the effects of the imaging gradients. The expression of the phase accumulated by this 

isochromat from 𝑡 = 0 to 𝑇𝐸 can be written as: 

𝜙(𝑥 , 𝑇𝐸) = 𝛾 ∫ 𝑥 (𝑡) ∙ 𝐺 (𝑡)𝑑𝑡
𝑇𝐸

0
                4.1 

We specify that 𝐺 (𝑡) = 𝑓(𝑡)𝐺𝑒𝐺⃗⃗⃗⃗ , with 𝐺 the diffusion gradient amplitude, 𝑒𝐺⃗⃗⃗⃗  the diffusion 

gradient direction and 𝛾 is the gyromagnetic ratio. For a PGSE sequence with the time 

parameters defined as in Figure 4.3, 𝑓(𝑡) is expressed as:  
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𝑓(𝑡) =

{
 
 

 
 
  0,  𝑓𝑜𝑟 0 ≤ 𝑡 ≤ 𝑡𝐺1
1, 𝑓𝑜𝑟 𝑡G1 ≤ 𝑡 ≤ 𝑡G1 + 𝛿
0, 𝑓𝑜𝑟 𝑡𝐺1 + 𝛿 ≤ 𝑡 ≤ 𝑡𝐺2

−1, 𝑓𝑜𝑟 𝑡𝐺2  ≤ 𝑡 ≤ 𝑡𝐺2 + 𝛿      (to reflect the effect of the 180 ° pulse) 
0, 𝑓𝑜𝑟 𝑡𝐺2 + 𝛿 ≤ 𝑡 ≤ 𝑇𝐸

             4.2 

where 𝑡𝐺1 and 𝑡𝐺2 correspond to the beginning of the first and second gradient pulses, 

respectively, and  ∆ = 𝑡𝐺2 − 𝑡𝐺1. 

 

Figure 4.3. Part of the PGSE sequence diagram. 𝑡𝐺1 and 𝑡𝐺2 correspond to the times at the 
beginning of the first and second diffusion encoding gradients, respectively. 

To compute the magnetization of the isochromat, we will fix the following values which do not 

limit the generality of our calculations: 

 𝑡0 = 0 

 𝑥0⃗⃗⃗⃗ = (0,0,0)  

 𝑒𝐺⃗⃗⃗⃗ = (0,0,1) 

 𝑇𝐸 = 𝑡𝑁 with 𝑁 the number of segments seen by the isochromat during TE. 

Now we write out the position vector 𝑥 (𝑡): 

𝑥 (𝑡) = 𝑥𝑚⃗⃗ ⃗⃗  ⃗(𝑡) = ∑ 𝑉𝑘⃗⃗⃗⃗ 𝑇𝑘 + 𝑣𝑚⃗⃗⃗⃗  ⃗(𝑡 − 𝑡𝑚−1) ,
𝑚−1
𝑘=1    𝑡𝑚−1 < 𝑡 < 𝑡𝑚, 𝑚 ≥ 1              4.3 

Then, the accumulated phase is: 

𝜙 = 𝛾 (∫ 𝑥1⃗⃗  ⃗(𝑡) ∙ 𝐺 (𝑡)𝑑𝑡
𝑡1

0
+⋯+ ∫ (∑ 𝑉𝑘⃗⃗⃗⃗ 𝑇𝑘 + 𝑉𝑁⃗⃗ ⃗⃗ (𝑡 − 𝑡𝑁−1)

𝑁−1
𝑘=1 ) ∙ 𝐺 (𝑡)𝑑𝑡

𝑡𝑁

𝑡𝑁−1
)             4.4 

    = 𝛾∑ ∫ (∑ 𝑉𝑘⃗⃗⃗⃗ 𝑇𝑘 + 𝑉𝑚+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑡 − 𝑡𝑚)
𝑚
𝑘=1 ) ∙ 𝐺 (𝑡)𝑑𝑡

𝑡𝑚+1

𝑡𝑚

𝑁−1
𝑚=0   
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    = 𝛾∑ ∫ (∑ 𝑉𝑘⃗⃗⃗⃗ 𝑇𝑘 + 𝑉𝑚⃗⃗ ⃗⃗  (𝑡 − 𝑡𝑚−1)
𝑚−1
𝑘=1 ) ∙ 𝐺 (𝑡)𝑑𝑡

𝑡𝑚

𝑡𝑚−1

𝑁
𝑚=1   

We can rewrite 

∑ ∫ (∑ 𝑉𝑘⃗⃗⃗⃗ 𝑇𝑘
𝑚−1
𝑘=1 ) ∙ 𝐺 (𝑡)𝑑𝑡

𝑡𝑚

𝑡𝑚−1

𝑁
𝑚=1 = ∫ 𝑉1⃗⃗  ⃗𝑇1 ∙ 𝐺 (𝑡)𝑑𝑡

𝑡2

𝑡1
+ ∫ (𝑉1⃗⃗  ⃗𝑇1 + 𝑉2⃗⃗  ⃗𝑇2) ∙ 𝐺 (𝑡)𝑑𝑡

𝑡3

𝑡2
             4.5 

+⋯+∫ (𝑉1⃗⃗  ⃗𝑇1 +⋯+ 𝑉𝑁−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗𝑇𝑁−1) ∙ 𝐺 (𝑡)𝑑𝑡
𝑡𝑁

𝑡𝑁−1

 

∑ ∫ (∑ 𝑉𝑘⃗⃗⃗⃗ 𝑇𝑘
𝑚−1
𝑘=1 ) ∙ 𝐺 (𝑡)𝑑𝑡

𝑡𝑚

𝑡𝑚−1

𝑁
𝑚=1 = 𝑉1⃗⃗  ⃗𝑇1 ∙ (∫ 𝐺 (𝑡)𝑑𝑡

𝑡2

𝑡1
+ ∫ 𝐺 (𝑡)𝑑𝑡

𝑡3

𝑡2
+. . . +∫ 𝐺 (𝑡)𝑑𝑡

𝑡𝑁

𝑡𝑁−1
)       4.6 

 +𝑉2⃗⃗  ⃗𝑇2 ∙ (∫ 𝐺 (𝑡)𝑑𝑡
𝑡3

𝑡2
+ ∫ 𝐺 (𝑡)𝑑𝑡

𝑡4

𝑡3
+. . . + ∫ 𝐺 (𝑡)𝑑𝑡

𝑡𝑁

𝑡𝑁−1
)  

                                                                  +. . . +𝑉𝑁−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗𝑇𝑁−1 ∙ (∫ 𝐺 (𝑡)𝑑𝑡
𝑡𝑁

𝑡𝑁−1
) 

Thus using the fact that 

∑ ∫ (∑ 𝑉𝑘⃗⃗⃗⃗ 𝑇𝑘
𝑚−1
𝑘=1 ) ∙ 𝐺 (𝑡)𝑑𝑡

𝑡𝑚

𝑡𝑚−1

𝑁
𝑚=1 = ∑ 𝑉𝑚⃗⃗ ⃗⃗  𝑇𝑚 ∙ ∫ 𝐺 (𝑡)𝑑𝑡

𝑇𝐸

𝑡𝑚

𝑁−1
𝑚=1               4.7 

we obtain 

𝜙 = 𝛾 (∑ 𝑉𝑚⃗⃗ ⃗⃗  ∙ ∫ (𝑡 − 𝑡𝑚−1)
𝑡𝑚

𝑡𝑚−1

𝑁
𝑚=1 𝐺 (𝑡)𝑑𝑡 + ∑ 𝑉𝑚⃗⃗ ⃗⃗  𝑇𝑚 ∙ ∫ 𝐺 (𝑡)𝑑𝑡

𝑇𝐸

𝑡𝑚

𝑁−1
𝑚=1 )             4.8 

    = 𝛾∑ (𝑉𝑚⃗⃗ ⃗⃗  ∙ ∫ (𝑡 − 𝑡𝑚−1)𝐺 (𝑡)𝑑𝑡
𝑡𝑚

𝑡𝑚−1
+ 𝑉𝑚⃗⃗ ⃗⃗  𝑇𝑚 ∙ ∫ 𝐺 (𝑡)𝑑𝑡

𝑇𝐸

𝑡𝑚
)𝑁

𝑚=1   

As 𝑉𝑚⃗⃗ ⃗⃗  ∙ 𝐺 (𝑡) = 𝑉𝑚𝑓(𝑡)𝐺 cos(𝜃𝑚), the equation above becomes: 

𝜙 = 𝛾𝐺∑ 𝑉𝑚 cos(𝜃𝑚) (∫ (𝑡 − 𝑡𝑚−1)𝑓(𝑡)𝑑𝑡
𝑡𝑚

𝑡𝑚−1
+ 𝑇𝑚 ∫ 𝑓(𝑡)𝑑𝑡

𝑇𝐸

𝑡𝑚
)𝑁

𝑚=1              4.9 

The magnetization of the isochromat is then 𝑒−𝑖𝜙. 

4.2.2 Assumption 1: Uniform distribution of segment orientations 

To proceed with our calculations, we will make an assumption about the distribution of the 

orientations of the segments in a trajectory. Namely, we will assume that for each segment 𝑘, 

𝑜𝑘⃗⃗⃗⃗  has equal probability of being anywhere on the unit sphere in 3D. Some of the possible 

trajectories with 3 segments are shown Figure 4.4 where for the simplicity of illustration, we 

drew 2D circles instead of 3D spheres. 
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Figure 4.4. Possible trajectories containing three segments. Instead of 3D spheres, we draw 2D 
circles for the ease of illustration. The possible positions of the endpoint of the first segment lie 
on the first blue circle. The endpoints of the second and third segments of some trajectories lie 
on the orange and the violet circles, respectively. 

The above assumption is physically reasonable and has the advantage of simplifying the 

calculations for the isochromat magnetization, as shown below. 

By integrating over 𝑁 unit spheres in 3D, we obtain the average magnetization for all the 𝑁-

segment trajectories: 

   𝑆𝐼𝐶 =
1

4𝜋
∫ ∫ …

1

4𝜋
∫ ∫ 𝑒

−𝑖𝛾𝐺∑ 𝑉𝑚 cos(𝜃𝑚)(∫ (𝑡−𝑡𝑚−1)𝑓(𝑡)𝑑𝑡
𝑡𝑚
𝑡𝑚−1

+𝑇𝑚 ∫ 𝑓(𝑡)𝑑𝑡
𝑇𝐸
𝑡𝑚

)𝑁
𝑚=12𝜋

𝜑𝑁=0

𝜋

𝜃𝑁=0

2𝜋

𝜑1=0

𝜋

𝜃1=0
 4.10 

sin 𝜃1𝑑 𝜃1𝑑𝜑1⋯sin 𝜃𝑁𝑑 𝜃𝑁𝑑𝜑𝑁  

𝑆𝐼𝐶 = ∏ (
1

4𝜋
∫ ∫ 𝑒

−𝑖𝛾𝐺𝑉𝑚 cos(𝜃𝑚)(∫ (𝑡−𝑡𝑚−1)𝑓(𝑡)𝑑𝑡
𝑡𝑚
𝑡𝑚−1

+𝑇𝑚 ∫ 𝑓(𝑡)𝑑𝑡
𝑇𝐸
𝑡𝑚

)2𝜋

𝜑𝑚=0

𝜋

𝜃𝑚=0
sin 𝜃𝑗𝑑 𝜃𝑗𝑑𝜑𝑗)

𝑁
𝑚=1  4.11 

Thus, under the assumption that each segment of a trajectory has equal probability of being 

oriented in any direction in a unit sphere, the average magnetization of all the trajectories 

containing 𝑁 segments (characterized by 𝑉𝑘 and 𝑇𝑘, 𝑘 = 1…𝑁) is 

𝑆𝐼𝐶 = ∏ 𝑠𝑖𝑛𝑐𝑁
𝑘=1 (𝛾𝑉𝑘𝐺 (∫ (𝑡 − 𝑡𝑘−1)𝑓(𝑡)𝑑𝑡

𝑡𝑘
𝑡𝑘−1

+ 𝑇𝑘 ∫ 𝑓(𝑡)𝑑𝑡
𝑇𝐸

𝑡𝑘
))          4.12 

4.2.3 Assumption 2: Gaussian distribution of segment lengths and flow velocity 

Eq. 4.12 is an exact expression for the average magnetization of all N-segments trajectories that 

are characterized by the segment flow velocities 𝑉1…𝑉𝑁 and lengths 𝐿1 = 𝑉1 × 𝑇1…𝐿𝑁 = 𝑉𝑁 ×

𝑇𝑁. In a further attempt to reduce the number of freedom of the modeling of the IVIM signal, 
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we will assume that the segment velocities and the lengths follow probability distributions. The 

probability distribution that we will consider for both the lengths and the velocities of the 

segments is the Gaussian (normal) distribution. 

4.2.4 The average magnetization of trajectories in two limit cases 

4.2.4.1 Trajectories containing only one segment 

For trajectories that contain only one segment of length 𝐿1 and blood velocity 𝑉1, the end point 

of the segment has equal probability of being anywhere on a sphere of radius 𝐿1 (for illustration 

of the analogous 2D situation see Figure 4.5). 

 

Figure 4.5. Representation of the uniform distribution of segment orientations. For simplicity, 
the illustration is made in a circle in 2D rather than a sphere in 3D. 

The expression for 𝑥 (𝑡) is 

𝑥 (𝑡) = 𝑥0⃗⃗⃗⃗ + 𝑉1𝑡𝑜1⃗⃗  ⃗, 𝑓𝑜𝑟 0 ≤ 𝑡 ≤ 𝛿 𝑎𝑛𝑑∆ ≤ 𝑡 ≤ ∆ + 𝛿           4.13 

𝜙 can then be calculated: 

𝜙 = 𝛾𝐺 (∫ 𝑉1𝑡 cos(𝜃1) 𝑑𝑡
𝛿

0
− ∫ 𝑉1𝑡 cos(𝜃1) 𝑑𝑡

∆+𝛿

∆
)                   4.14 

                                             = −𝛾𝐺𝑉1 cos(𝜃1) 𝛿∆ 

𝑆𝐼𝐶, the resulting magnetization associated with all isochromats travelling at velocity 𝑉1 whose 

trajectory consists of only one segment is obtained by integrating over all possible segment 

orientations, 𝑜1⃗⃗  ⃗: 

𝑆𝐼𝐶 =
1

4𝜋(∆𝑉1)2
∫ ∫ 𝑒−𝑖𝛾𝐺𝑉1 cos(𝜃1)𝛿∆(∆𝑉1)

22𝜋

𝜑1=0

𝜋

𝜃1=0
sin(𝜃1)𝑑𝜃1𝑑𝜑1           4.15 
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Using the fact that 
1

4𝜋
∫ ∫ 𝑒−𝑖𝑥 cos𝜃

2𝜋

𝜑=0

𝜋

𝜃=0
sin(𝜃)𝑑 𝜃𝑑𝜑 = 𝑠𝑖𝑛𝑐(𝑥), we obtain in this case:  

𝑆𝐼𝐶 = sinc(𝛾𝐺𝑉1𝛿∆)              4.16 

This result confirms the expression for 𝑐 in section 3.1.1.2 for a PGSE sequence: 

𝑐 = 𝛾 [∫ −𝐺𝑡𝑑𝑡
𝑇𝐸

2⁄

0
+ ∫ 𝐺𝑡𝑑𝑡

𝑇𝐸
𝑇𝐸

2⁄
] = 𝛾𝐺 (− 

𝛿2

2
+
(∆+𝛿)2

2
−
∆2

2
) = 𝛾𝐺𝛿∆          4.17 

4.2.4.2 Trajectories containing many segments 

As 𝑁 becomes large, the isochromats change directions many times and we compute the limit 

of Eq. 4.12 as the segment length goes to 0, while the blood velocity and diffusion encoding 

sequence parameters (, , 𝐺) stay fixed. For simplicity, we show the calculation only for 

trajectories where all segments have the same length 𝐿 and the same blood velocity 𝑉. Let 𝑁1 

and 𝑁2 be the number of turns during the gradient pulses and between the pulses, respectively, 

so 𝑁 = 2 × 𝑁1 + 𝑁2 =
𝑉(𝛿+∆)

𝐿
 with 𝑁1 =

𝑁𝛿

𝛿+∆
, 𝑁2 =

𝑁(∆−𝛿)

𝛿+∆
 and 𝑇 =

𝐿

𝑉
=

𝛿+∆

𝑁
.  First, we separate 

𝑆𝐼𝐶 into contributions during the pulses and between the pulses 

𝑆𝐼𝐶 = ∏ 𝑠𝑖𝑛𝑐 (𝛾𝑉𝐺𝑇2 (
1

2
− 𝑘))

𝑁1
𝑘=1 × (𝑠𝑖𝑛𝑐(−𝛾𝑉𝐺𝑇𝛿))

𝑁2
          4.18 

×∏ 𝑠𝑖𝑛𝑐 (𝛾𝑉𝐺 (−
𝑇2

2
− (𝑁1 − 𝑘 + 1)𝑇

2))
𝑁1
𝑘=1   

We can see that the terms corresponding to the contributions during the two pulses are the 

same if we substitute 𝑘 by −(𝑁1 − 𝑘 + 1), so we can rewrite the equation above as 

𝑆𝐼𝐶 = (∏ 𝑠𝑖𝑛𝑐 (𝛾𝑉𝐺 (
1

2
− 𝑘)

(𝛿+∆)2

𝑁2
)

𝑁𝛿

𝛿+∆

𝑘=1 )

2

× (𝑠𝑖𝑛𝑐 (−𝛾𝑉𝐺𝛿
𝛿+∆

𝑁
))

𝑁(∆−𝛿)

∆+𝛿
          4.19 

       = (𝑓1(𝑁))
2
× 𝑓2(𝑁)  

Using the Taylor expansion we have log (𝑠𝑖𝑛𝑐 (
𝑤

𝑁𝑚
)) = − 

𝑤2

6𝑁2𝑚
+ 𝑜 (

1

𝑁2𝑚
), so the  asymptotic 

values for the logarithms of f1 and f2 are 

log(𝑓2(𝑁)) =
𝑁(∆−𝛿)

∆+𝛿
log (𝑠𝑖𝑛𝑐 (−𝛾𝑉𝐺𝛿

𝛿+∆

𝑁
)) ≈ − 

𝛾2𝑉2𝐺2𝛿2(∆−𝛿)(∆+𝛿)

6𝑁
          4.20 

and 
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          log(𝑓1(𝑁)) = ∑ log (𝑠𝑖𝑛𝑐 (𝛾𝑉𝐺 (
1

2
− 𝑘)

(𝛿+∆)2

𝑁2
))

𝑁𝛿

𝛿+∆

𝑘=1 ≈ − 
𝛾2𝑉2𝐺2(𝛿+∆)4

6𝑁4
∑ (

1

2
− 𝑘)

2𝑁𝛿

𝛿+∆

𝑘=1  4.21 

Using the fact that ∑ (
1

2
− 𝑘)

2
𝑚
𝑘=1 =

1

12
𝑚(4𝑚2 − 1), the term above becomes 

log(𝑓1(𝑁)) ≈ − 
𝛾2𝑉2𝐺2𝛿3(𝛿+∆)

18𝑁
             4.22 

In the end,  

lim
𝑁→+∞

𝑆𝐼𝐶 = 𝑒
− 
𝛾2𝑉2𝐺2𝛿3(𝛿+∆)

9𝑁 𝑒− 
𝛾2𝑉2𝐺2𝛿2(∆−𝛿)(∆+𝛿)

6𝑁 = 𝑒− 
𝛾2𝑉2𝐺2𝛿2(∆+𝛿)(3∆−𝛿)

18𝑁 = 𝑒− 
𝑏𝐿𝑉

6              4.23 

In other words, 𝑆𝐼𝐶 becomes a decaying exponential as N becomes large or equivalently, L 

becomes small. 

4.2.5 Influence of the Gaussian distribution of the blood velocity on the total magnetization 

Because the experimental IVIM signal never has a sinc shape even when it is unlikely that the 

spins have changed directions several times during the measured diffusion time, we suspect 

that the Gaussian distribution of the spin velocity makes the magnetization curve smoother.  

Here we compute the magnetization of trajectories consisting of only one segment, averaged 

over a Gaussian distribution of velocities. The magnetization in this case becomes: 

𝑆𝐼𝐶 =
1

√2𝜋𝜎𝑉2
∫ 𝑒

− 
(𝑉−𝑉𝑚𝑒𝑎𝑛)

2

2𝜎𝑉
2

𝑠𝑖𝑛𝑐(𝑐𝑉)𝑑𝑉
+∞

−∞
           4.24 

To compute the slope with respect to the b-value of the above signal, 𝐷𝑑𝑖𝑠
∗ , we replace 𝑠𝑖𝑛𝑐(𝑐𝑉) 

by its Taylor expansion 1 −
(𝑐𝑉)2

6
  

𝑆𝐼𝐶 = 1 −
𝑐2

6

1

√2𝜋𝜎𝑉2
∫ 𝑣2𝑒

− 
(𝑉−𝑉𝑚𝑒𝑎𝑛)

2

2𝜎𝑉
2

𝑑𝑉
+∞

−∞
+ 𝑂(𝑐4)          4.25 

to get   

𝑆𝐼𝐶 = 1 − 
𝑐2

6
(𝑉𝑚𝑒𝑎𝑛

2 + 𝜎𝑉
2) + 𝑂(𝑐4)                   4.26 

Given that 𝑐2 = 𝑏
∆2

(∆−
𝛿

3
)
, we obtain 
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       𝐷𝑑𝑖𝑠
∗ =

(𝑉𝑚𝑒𝑎𝑛
2 +𝜎𝑉

2)∆2

6(∆−
𝛿

3
)

             4.27 

In Figure 4.6, the simulated signal (Eq. 4.24) is plotted against the b-value for  = 3 ms,  = 14 

ms and a Gaussian distribution for 𝑉 with 𝑉𝑚𝑒𝑎𝑛 = 3 mm/s while varying 𝜎𝑉.  

 

Figure 4.6. Evolution of the signal’s shape with  = 3 ms,  = 14 ms and a Gaussian distribution 

for 𝑉 with 𝑉𝑚𝑒𝑎𝑛 = 3 mm/s and varying 𝜎𝑉. 𝑒−𝑏𝐷𝑑𝑖𝑠
∗

 with 𝐷𝑑𝑖𝑠
∗  given by Eq. 4.27 has been added 

for both values of 𝜎𝑉. 

As we suspected, for the values of 𝜎𝑉 shown, the sinc behavior disappears and the signal seems 

smoother. However, the signal is not exponential, as we can see by comparing the simulated 

signal with 𝑒−𝑏𝐷𝑑𝑖𝑠
∗

, where 𝐷𝑑𝑖𝑠
∗  is given in Eq. 4.27. The decay is much slower than exponential 

at the higher b-values, with a larger 𝜎𝑉 associated with slower decay. Only at very small b-values 

can the decay be approximated by an exponential function. 

4.2.6 Taking into account starting position of spins in the trajectory 

Given that spins can be anywhere in a vessel network at the start of a diffusion MRI experiment, 

we allow spins to start at various positions on the first segment of any 𝑁-segment trajectory. In 

essence, if the first segment has length 𝐿1, then we will suppose the spins can start anywhere 

on the segment. This is equivalent to supposing that the first segment can be any length 𝑟𝐿1, 

where 0 ≤ 𝑟 ≤ 1. If 𝑟 = 0, the isochromat starts at the beginning of the first segment while if 
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𝑟 = 1, it starts at the beginning of the second segment. Figure 4.7 illustrates a system of two 

segments with their characteristics. 

 

Figure 4.7. Representation of two segments with their characteristics. 𝑟 has no unit and 
indicates where the isochromat is in the first segment at 𝑡 = 0, i.e. the isochromat starts at the 
position 𝑥0⃗⃗⃗⃗ + 𝑟𝐿1𝑜1⃗⃗  ⃗. 

4.3 Simulation results and discussion 

The simulation protocol described in the previous section was implemented using MATLAB and 

in this section we describe and discuss our numerical simulation results. 

4.3.1 Simulation parameters 

The goal of these simulations is to obtain the IVIM MRI signal coming from isochromats 

following different trajectories, with vessel segment lengths and blood flow velocities that 

correspond to real microvascular networks. A flowchart of the simulations is shown in Figure 

4.8. 

The first step is to generate a large number of trajectories, where each trajectory consists of no 

more than 𝑁𝑆𝑀𝐴𝑋 segments, characterized by the segment lengths, 𝐿1…𝐿𝑁𝑆𝑀𝐴𝑋, and blood flow 

velocities, 𝑉1…𝑉𝑁𝑆𝑀𝐴𝑋 . Suppose 𝑁𝑇 is the total number of trajectories we want, then we call a 

pseudorandom number generator to obtain 𝑁𝑇 ×𝑁𝑆𝑀𝐴𝑋 values for the segment lengths (with 

mean 𝐿𝑚𝑒𝑎𝑛 and standard deviation 𝜎𝐿) and 𝑁𝑇 ×𝑁𝑆𝑀𝐴𝑋 values for the blood flow velocities 

(with mean value 𝑉𝑚𝑒𝑎𝑛 and standard deviation 𝜎𝑉). In order to have reasonable values for 𝐿 

and 𝑉 in accordance with estimates from the literature, segments for which 𝐿 < 5 µm or 𝑉 < 

0.01 mm/s and 𝑉 > 20 mm/s are removed. The constraint on 𝑉 was set to take into account not 

only the capillaries but also larger segments, 𝑉 = 20 mm/s representing the blood velocity in pial 

arterioles [153]. 
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Figure 4.8. Flow diagram of the numerical simulations. 𝑁𝑇  and 𝑁𝑆 are the number of trajectories 
and segments, respectively, and 𝑁𝑆𝑀𝐴𝑋 is the maximum number of segments in the trajectory 
set at the beginning of the simulations. 

We note if 𝜎𝐿 = 0 and 𝜎𝑉 = 0, then the signal can be obtained directly from Eq. 4.12. For the 

range of mean values and standard deviations relevant to IVIM signal modeling, we found that 

simulation results using 1000 trajectories were within 5 % of simulation results using 10 000 

trajectories, hence from now on, so we set 𝑁𝑇 = 1000 (Figure 4.9). 
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Figure 4.9. Plot of the difference between the simulated signal for 𝑁𝑇 trajectories and the 
simulated signal for 10 000 trajectories. The solid black and blue represent the difference curve 
and the 5 % line, respectively. The simulations were performed with Gaussian distributions of 𝐿 
and 𝑉 with 𝐿𝑚𝑒𝑎𝑛 = 61 µm, 𝜎𝐿 = 0.5 x 𝐿𝑚𝑒𝑎𝑛, 𝑉𝑚𝑒𝑎𝑛 = 2.2 mm/s, 𝜎𝑉 = 0.5 x 𝑉𝑚𝑒𝑎𝑛, 50 b-values 

linearly spaced between 2 and 500 s/mm²,  = 3 ms and  = 14 ms. 

To vary the starting position of spins in the first segment, the starting positions were placed 

with 1 µm spacing on the first segment. If the time to cross every segment in the trajectory is 

shorter than 𝑇𝐸, then the number of segments in the trajectory will be increased by 

regenerating a set of lengths and velocities using a larger value of 𝑁𝑆𝑀𝐴𝑋. Otherwise, the actual 

number of segments seen by the isochromat, 𝑁𝑆, is computed. The MRI signal coming from this 

trajectory containing 𝑁𝑆 segments, with 𝐿1…𝐿𝑁𝑆  and 𝑉1…𝑉𝑁𝑆, is calculated using Eq. 4.12. 

Finally, the total MRI signal is averaged over 𝑁𝑇 trajectories. 

The formula Eq. 4.12 was obtained by supposing that segment orientations are uniformly 

distributed on the unit sphere in 3D. This hypothesis may not be completely valid when there 

are relatively few vessels in a voxel. We note here that, in the case of trajectories consisting only 

one segment, having only 24 segments uniformly distributed on the unit sphere results in a 

magnetization that is within 10 % of the formula given in Eq. 4.12. In Figure 4.10 we show 

simulations where 𝐿𝑚𝑒𝑎𝑛 = 61 µm, 𝜎𝐿 = 0, and 𝑉𝑚𝑒𝑎𝑛 = 2.2 mm/s, 𝜎𝑉 = 0, for 20 b-values linearly 

spaced between 0 and 500 s/mm²,  = 3 ms and  = 14 ms. The difference between the formula 

of Eq. 4.12 and the simulations is shown for several choices of 𝑁𝑜, the number of orientations.  
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The simulation results were obtained by generating large number realizations of a set of 𝑁𝑜 

orientations uniformly distributed in the unit sphere in 3D. 

 

Figure 4.10. Plot of the difference between the simulated signal and the formula in Eq. 4.12 
against the number of segment orientations. The solid black and blue lines represent the 
difference curve and the 10 % line, respectively. The difference was calculated for one segment 

with 𝐿 = 61 µm, 𝑉 = 2.2 mm/s, b = [0-500] s/mm²,  = 3 ms and  = 14 ms. The two curves 
intersect at 𝑁𝑜 = 24. 

We note again that the choice to integrate the segment orientations over the unit sphere allows 

us to perform an analytical integration on the unit sphere and removes the need to sample the 

segment orientations in the numerical simulations, thus saving computing time. 

4.3.2 The transition from sinc to exponential regime 

We have shown previously two limiting cases of Eq. 4.12: 

A. Averaging all trajectories with flow velocity 𝑉 that consist of only one segment whose 

orientations are uniformly distributed in the unit sphere in 3D, the magnetization is a 

sinc function,  

B. Averaging all trajectories with flow velocity 𝑉 that consist of 𝑁 segments each of whose 

orientations are uniformly distributed in the unit sphere in 3D, the magnetization 

approaches an exponential function as 𝑁 goes to infinity. 
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The present subsection aims to characterize this transition and define the minimum 𝑁 larger 

than which the simulated signal can be considered exponential. To simplify the discussion, we 

consider for now 𝜎𝐿 = 0 and 𝜎𝑉 = 0 and that  << . In this case, we have  

𝑆𝐼𝐶 = (𝑠𝑖𝑛𝑐 (
𝑉√𝑏Δ

𝑁
))

𝑁

                         4.28 

where 𝑁 =
∆𝑉

𝐿
 is the number of segments seen by an isochromat during . 𝑁 needs to be at 

least 1 in the formula above. When 𝑁 ≤ 1, 𝑆𝐼𝐶 is given by Eq. 4.16 and can be rewritten with 

respect to the b-value, 

          𝑆𝐼𝐶 = 𝑠𝑖𝑛𝑐(𝑉√𝑏Δ)             4.29 

As 𝑁 goes to infinity, the limit of 𝑆𝐼𝐶 is the exponential function 

𝑆𝐼𝐶 = 𝑒−  
𝑏𝑉2Δ

6𝑁 ⟹ 𝑒− 
𝑏𝑉𝐿

6                         4.30 

Figure 4.11 illustrates the transition to the exponential regime. This transition occurs for 𝑁 = 5 

segments for the example shown. 

 

Figure 4.11. Evolution of the simulated signal with 𝑁 =
𝑉(∆+𝛿)

𝐿
, the number of segments seen by 

an isochromat during . 𝑁 is varied by changing the segment length 𝐿 and keeping the blood 

velocity 𝑉 at 3 mm/s,  = 3 ms and  = 14 ms. For 𝑁 = 5, 𝑒−𝑏𝐷
∗
 with 𝐷∗ =

𝐿𝑉

6
 has been added to 

show that the simulated signal becomes exponential for this 𝑁–value (difference between the 
two curves < 3 %). 
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The evolution of the shape of the simulated signal with the segment length 𝐿 is shown in Figure 

4.12.A. Each simulated signal is calculated for a trajectory with one segment with the same 𝑉 = 

3 mm/s but varying 𝐿 in the range [10-150] µm. The simulated signal has the shape of a sinc at 

long segment lengths which correspond to small𝑁-values. For short segment lengths and thus 

big 𝑁-values, the shape of the simulated signal is smoothed and approaches an exponential 

shape. 

 

Figure 4.12. (A) Evolution of the shape of the simulated signal with increasing 𝐿 with constant 𝑉 

= 3 mm/s,  = 3 ms and  = 14 ms. 𝑁 = 5.1, 2.55, 1.7, 1.02, 0.51 and 0.34 for each value of 𝐿. 

𝑒−𝑏𝐷
∗
 with 𝐷∗ =

𝐿𝑉

6
 has been added for 𝐿 = 10 µm as a black dotted line. (B) Evolution of the 

shape of the simulated signal with increasing 𝑉 with constant 𝐿 = 50 µm,  = 3 ms and  = 14 

ms. 𝑁 = 0.68, 1.02, 1.36, 1.7 and 5.1 for each value of 𝑉. 𝑒−𝑏𝐷
∗
 with 𝐷∗ =

𝐿𝑉

6
 has been added for 

𝑉 = 15 mm/s as a black dotted line. 

For the blood velocity, 𝑉, the effect is the opposite. Indeed, as shown in Figure 4.12.B, for a 

constant 𝐿 = 50 µm,  = 3 ms,  = 14 ms and increasing 𝑉, the signal has the shape of a sinc at 

low 𝑉 and the shape of an exponential at high 𝑉. This pattern is also coherent with the 

evolution of the signal’s shape with 𝑁. 

4.3.3 Influence of imposing a Gaussian distribution for the segment length and the blood velocity 

The effect of having a Gaussian distribution for 𝐿 and 𝑉 on the simulated signal’s shape is 

investigated in this subsection. 
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4.3.3.1 Gaussian distribution for the segment length 

For a constant 𝑉 = 3 mm/s, a Gaussian distribution is set for 𝐿 with a mean segment length, 

𝐿𝑚𝑒𝑎𝑛, and standard deviation, 𝜎𝐿. First, the effect of changing 𝐿𝑚𝑒𝑎𝑛 for a constant𝜎𝐿 = 0.5 x 

𝐿𝑚𝑒𝑎𝑛 is shown in Figure 4.14.A.  

 

Figure 4.13 Evolution of the signal’s shape with a constant 𝑉 = 3 mm/s,  = 3 ms,  = 14 ms and 
a Gaussian distribution for 𝐿 with 𝜎𝐿 = 0.5 x 𝐿𝑚𝑒𝑎𝑛 and varying 𝐿𝑚𝑒𝑎𝑛. 𝑁 = 5.1, 2.55, 1.7, 1.02, 
0.51 and 0.34 for each value of 𝐿. 

For 𝑁 ≤ 1, Figure 4.13 is not very different from Figure 4.12.A although a Gaussian distribution 

for 𝐿 has been added. However, when 𝑁 > 1, the curves are slightly different. This is confirmed 

by looking at Figure 4.14.A and B where 𝜎𝐿 changes while 𝐿𝑚𝑒𝑎𝑛 is kept constant at 100 and 20 

µm, respectively. 

The effect of changing 𝜎𝐿 from [0-1] x 𝐿𝑚𝑒𝑎𝑛 is very small for 𝑁 ≤ 1. Indeed, if a distribution for 

𝐿 is applied to the signal attenuation, as 𝑆𝐼𝐶 does not depend on 𝐿 (Eq. 4.29), the distribution for 

𝐿 has no effect on the signal attenuation. However, we also integrate 𝑆𝐼𝐶 on the starting 

positions of the isochromats in the first segment. Adding a distribution for 𝐿 changes the 

number of isochromats staying in the first segment during the experiment and the number of 

those that will be in a second segment at 𝑡 = +. This particularity of the simulations explains 

the small variation observed in Figure 4.14.A. 
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Figure 4.14. (A-B) Evolution of the signal’s shape with a constant 𝑉 = 3 mm/s,  = 3 ms,  = 14 
ms and a Gaussian distribution for 𝐿 varying 𝜎𝐿 with 𝐿𝑚𝑒𝑎𝑛 = 100 µm (𝑁 = 0.51) and 20 µm (𝑁 = 
2.55), respectively. 

For 𝑁 > 1, a larger difference is observed when varying 𝜎𝐿 from [0-1] x 𝐿𝑚𝑒𝑎𝑛. As such, the 

equation for 𝑆𝐼𝐶 is Eq. 4.28 in which 𝐿 is present through 𝑁. Imposing a Gaussian distribution for 

𝐿 thus has a larger impact on the signal’s shape. Taking into account the starting positions of the 

isochromats also adds to this effect. 

4.3.3.2 Gaussian distribution for the blood velocity 

This time, 𝐿 is kept constant and 𝑉 is varied according to a Gaussian distribution with mean 

blood velocity, 𝑉𝑚𝑒𝑎𝑛, and standard deviation, 𝜎𝑉. Figure 4.15.A shows the evolution of the 

simulated signal while increasing 𝑉𝑚𝑒𝑎𝑛 with a constant 𝜎𝑉 = 0.5 x 𝑉𝑚𝑒𝑎𝑛 and 𝐿 = 50 µm for  = 3 

ms and  = 14 ms. The signal decays faster with increasing 𝑉𝑚𝑒𝑎𝑛. Comparing Figure 4.15.A with 

Figure 4.12.B, we observe that the signal looks smoother for almost every 𝑉𝑚𝑒𝑎𝑛-value when a 

Gaussian distribution is applied for 𝑉. 

This is further confirmed by looking at Figure 4.15.B for which 𝑉𝑚𝑒𝑎𝑛 is kept constant at the 

value of 3 mm/s whereas 𝜎𝑉 is varied in the range [0-1] x 𝑉𝑚𝑒𝑎𝑛. For 𝜎𝑉 = 0, the signal is in the 

sinc regime. When 𝜎𝑉 increases, the signal is smoothed and the sinc behavior is not visible 

anymore.  
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Figure 4.15. (A) Evolution of the signal’s shape with a constant 𝐿 = 50 µm,  = 3 ms,  = 14 ms 
and a Gaussian distribution for 𝑉 with 𝜎𝑉 = 0.5 x 𝑉𝑚𝑒𝑎𝑛 and varying 𝑉𝑚𝑒𝑎𝑛. 𝑁 = 0.68, 1.02, 1.36, 

1.7 and 5.1 for each value of 𝑉. (B) Evolution of the signal’s shape with a constant 𝐿 = 50 µm,  = 

3 ms,  = 14 ms and a Gaussian distribution for 𝑉 with 𝑉𝑚𝑒𝑎𝑛 = 3 mm/s and varying 𝜎𝑉. 

Applying a Gaussian distribution to the segment length and most importantly to the blood 

velocity thus allows to get a closer match with the experimental data. The Gaussian distribution 

of the blood velocity has a larger impact on the signal’s shape as 𝑉 is present in the formula for 

𝑆𝐼𝐶 at both 𝑁 ≤ 1 and 𝑁 > 1. As the generation of a dictionary of simulated signals is time 

consuming, we decided to give priority to the generation of numerous values of 𝐿𝑚𝑒𝑎𝑛 and 

𝑉𝑚𝑒𝑎𝑛 while keeping 𝜎𝐿 and 𝜎𝑉 constant. To be coherent with the underlying vasculature, we did 

not set 𝜎𝐿 = 𝜎𝑉 = 0 but 𝜎𝐿 = 0.5 x 𝐿𝑚𝑒𝑎𝑛 and 𝜎𝑉 = 0.5 x 𝑉𝑚𝑒𝑎𝑛. 

4.3.4 Influence of the diffusion encoding time 

The shape of the simulated signal is also influenced by another parameter in the definition of 𝑁: 

, the diffusion encoding time. Figure 4.16 illustrates the evolution of the simulated signal’s 

shape with increasing  in the range [3-100] ms for Gaussian distributions of 𝐿 and 𝑉 with 

𝐿𝑚𝑒𝑎𝑛 = 50 µm, 𝜎𝐿 = 0.5 x 𝐿𝑚𝑒𝑎𝑛, 𝑉𝑚𝑒𝑎𝑛 = 3 mm/s and 𝜎𝑉 = 0.5 x 𝑉𝑚𝑒𝑎𝑛. When  increases, the 

simulated signal decays faster. 

For each diffusion time, the simulated signal can be fit to the mono-exponential model, 𝑒−𝑏𝐷
∗
, 

and 𝐷∗ called 𝐷𝑠𝑖𝑚
∗  for the simulated signals plotted against the diffusion time in Figure 4.16.B. 
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This plot confirms the faster decay of the simulated signals by a steep increase of 𝐷∗ as a 

function of  for short -values. 

 

Figure 4.16. (A) Plot of the simulated signal for Gaussian distributions of L and V with 𝐿𝑚𝑒𝑎𝑛 = 50 

µm, 𝜎𝐿 = 0.5 x 𝐿𝑚𝑒𝑎𝑛, 𝑉𝑚𝑒𝑎𝑛 = 3 mm/s and 𝜎𝑉  = 0.5 x 𝑉𝑚𝑒𝑎𝑛 while varying . (B) Plot of the 
obtained 𝐷∗ value from fitting with an exponential model the simulated curves in Figure 4.16.A 

(𝐷𝑠𝑖𝑚
∗ ) against . The red and black lines correspond to 𝐷𝑠𝑖𝑛𝑐

∗ =
(𝑉𝑚𝑒𝑎𝑛

2 +𝜎𝑉
2)∆

6
 and 𝐷𝑒𝑥𝑝

∗ =
𝐿𝑚𝑒𝑎𝑛𝑉𝑚𝑒𝑎𝑛

6
, respectively. 

At short diffusion times, we are in the sinc regime and the formula for 𝐷∗ in this regime can be 

applied, 𝐷𝑠𝑖𝑛𝑐
∗ =

(𝑉𝑚𝑒𝑎𝑛
2 +𝜎𝑉

2)∆

6
. The equation for 𝐷𝑠𝑖𝑛𝑐

∗  has been corrected for a Gaussian 

distribution of 𝑉. Indeed, in Figure 4.16.B, for short , 𝐷∗ increases with the slope 
(𝑉𝑚𝑒𝑎𝑛

2 +𝜎𝑉
2)∆

6
. 

At long diffusion times, 𝐷∗ reaches a plateau which corresponds to the exponential regime. The 

maximum value of 𝐷∗ in this regime is given by the exponential formula for 𝐷∗, i.e. 𝐷𝑒𝑥𝑝
∗ =

𝐿𝑚𝑒𝑎𝑛𝑉𝑚𝑒𝑎𝑛

6
. 

4.3.5 The two pool hypothesis 

It is possible to associate to each of the two pools defined in the previous chapter a simulated 

signal, 𝐹𝐼𝑉𝐼𝑀/𝑆𝑖𝑚/𝑠𝑙𝑜𝑤 𝑜𝑟 𝑓𝑎𝑠𝑡, characterized by different values of 𝐿𝑚𝑒𝑎𝑛 and 𝑉𝑚𝑒𝑎𝑛. Using the 

simulations, we can predict the evolution of the signals of the two pools with . As seen in a 

previous subsection, the mean blood velocity is the most important parameter that determines 

the shape of the simulated signal. Thus, blood flow velocities characterizing small and larger 
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segments were chosen: 𝑉𝑠𝑙𝑜𝑤 = 1 mm/s and 𝑉𝑓𝑎𝑠𝑡 = 4 mm/s. The mean segment lengths were 

set to 𝐿𝑠𝑙𝑜𝑤 = 40 µm and 𝐿𝑓𝑎𝑠𝑡  = 50 µm. Figure 4.17.A-C shows the simulated signals for the two 

pools for different diffusion times: 3, 30 and 90 ms. 

 

Figure 4.17. Influence of  on the simulated signal for the two pools with Gaussian distributions 
of 𝐿 and 𝑉 with 𝜎𝐿 = 0.5 x 𝐿𝑚𝑒𝑎𝑛 and 𝜎𝑉 = 0.5 x 𝑉𝑚𝑒𝑎𝑛, 𝐿𝑠𝑙𝑜𝑤/𝑚𝑒𝑎𝑛 = 40 µm, 𝑉𝑠𝑙𝑜𝑤/𝑚𝑒𝑎𝑛 = 1 

mm/s, 𝐿𝑓𝑎𝑠𝑡/𝑚𝑒𝑎𝑛 = 50 µm, 𝑉𝑓𝑎𝑠𝑡/𝑚𝑒𝑎𝑛 = 4 mm/s and  = 3 ms. (A-C) Simulated signal for the two 

pools for different values of : 3, 30 and 90 ms. For the slow pool, 𝑁 = 0.15, 0.83 and 2.33 for 

each value of . For the fast pool, 𝑁 = 0.48, 2.64 and 7.44 for each value of . (D) Plot of 

𝐷𝑠𝑖𝑚/𝑠𝑙𝑜𝑤
∗ , 𝐷𝑠𝑖𝑛𝑐/𝑠𝑙𝑜𝑤

∗ , 𝐷𝑒𝑥𝑝/𝑠𝑙𝑜𝑤
∗ , 𝐷𝑠𝑖𝑚/𝑓𝑎𝑠𝑡

∗ , 𝐷𝑠𝑖𝑛𝑐/𝑓𝑎𝑠𝑡
∗  and 𝐷𝑒𝑥𝑝/𝑓𝑎𝑠𝑡

∗  against . 

With increasing diffusion time, the simulated signals decay faster with the space between the 

two pools’ curves narrowing. The simulated signals for the two pools can be fit to the mono-

exponential model, 𝑒−𝑏𝐷
∗
, and 𝐷∗ values obtained. The fitted 𝐷∗ values are plotted in Figure 

4.17.D for the two pools against . For the fast pool, 𝐷∗ reaches a plateau at 𝐷𝑒𝑥𝑝/𝑓𝑎𝑠𝑡
∗  = 33.33 x 
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10-3 mm²/s. For  = 100 ms, 𝐷∗ of the slow pool is 5.88 x 10-3 mm²/s and has not reached its 

maximum, 𝐷𝑒𝑥𝑝/𝑠𝑙𝑜𝑤
∗  = 6.67 x 10-3 mm²/s, yet. For these choices of 𝐿𝑚𝑒𝑎𝑛 and 𝑉𝑚𝑒𝑎𝑛, the 

predicted 𝐷∗-values from the simulations are well separated for every  between the two pools. 

For the longest  in the experimental data,  = 34 ms, the obtained 𝐷∗-values suggest that the 

two pools are in an intermediate regime between sinc and exponential regimes, which is 

coherent with the conclusions drawn in Chapter 3. 

In this chapter, mathematical modelling and simulations of the IVIM signal have provided more 

insight into the different regimes and possible shapes of the IVIM signal. The next chapter, 

Chapter 5, uses the numerical simulations introduced in this chapter to extract structural 

information from the experimental data. The influence of acquisition parameters on the IVIM 

outputs is also investigated.  
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Chapter 5: Extraction of vascular structural 

characteristics and influence of the acquisition 

parameters on the IVIM outputs 

In the first section of this chapter we explain how the numerical simulations introduced in the 

previous chapter can be used to extract vascular structural information from the IVIM data 

already analyzed in Chapter 3. In the other sections of the chapter, the influence of the 

repetition time, the pulse sequence and the diffusion encoding time on the IVIM output 

parameters is studied. 

5.1 Comparison of IVIM data with the numerical simulations 

5.1.1 Generation of a dictionary of simulated signals 

In Chapter 4, we presented the mathematical formalism and the assumptions used to simulate 

the IVIM signal. The simulations are now used to generate a dictionary of simulated signals. We 

varied the chosen mean value of the Gaussian distributions for both blood flow velocities and 

segment lengths. The blood velocity is assumed to be constant within a trajectory but can be 

different between trajectories. For a given Gaussian distribution of lengths, with the mean value 

𝐿𝑚𝑒𝑎𝑛 and the standard deviation 𝜎𝐿 = 0.5 × 𝐿𝑚𝑒𝑎𝑛, and a given Gaussian distribution of 

velocities, with the mean value 𝑉𝑚𝑒𝑎𝑛 and the standard deviation 𝜎𝑉 = 0.5 × 𝑉𝑚𝑒𝑎𝑛, we take 

1000 samples of 𝑉 and 1000 samples of 50 values of segment lengths: 𝐿1, 𝐿2, ⋯ 𝐿50. For each 

sample, 𝑁 is the smallest value such that 𝐿1 + 𝐿2⋯+𝐿𝑁 ≥ 𝑉 × 𝑇𝐸. To compute 𝑆𝐼𝐶 for this 

sample, we plug 𝐿1, 𝐿2, ⋯ 𝐿𝑁 and 𝑉 into Eq. 4.12. The averaged 𝑆𝐼𝐶 over the 1000 samples is 

defined as the simulated signal 𝐹𝐼𝑉𝐼𝑀/𝑆𝑖𝑚 for the distribution choice (𝐿𝑚𝑒𝑎𝑛, , 𝑉𝑚𝑒𝑎𝑛, ). 

We computed 𝐹𝐼𝑉𝐼𝑀/𝑆𝑖𝑚 for 72 values of 𝐿𝑚𝑒𝑎𝑛, spanning the interval [8-150] µm with a 2 µm 

step, and 100 values of  𝑣𝑚𝑒𝑎𝑛, spanning the interval [0.1-10] mm/s with a 0.1 mm/s step. The 

simulated 𝐹𝐼𝑉𝐼𝑀/𝑆𝑖𝑚 for each combination of 𝐿𝑚𝑒𝑎𝑛 and 𝑉𝑚𝑒𝑎𝑛 were assembled to build a 

dictionary of simulated signals. 
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As stated in Chapter 3, our hypothetical explanation for the bi-exponential shape of the IVIM 

signal is that IVIM imaging is sensitive to more than one vascular pool, i.e. to two different pools 

identified by two different diffusion coefficients. We insert this hypothesis into the simulations 

drawing an analogy with the bi-exponential model. Two simulated signals representing the two 

pools, one for the slow pool, 𝐹𝐼𝑉𝐼𝑀/𝑆𝑖𝑚(𝑏, 𝐿𝑠𝑙𝑜𝑤, 𝑉𝑠𝑙𝑜𝑤), and another one for the fast pool, 

𝐹𝐼𝑉𝐼𝑀/𝑆𝑖𝑚(𝑏, 𝐿𝑓𝑎𝑠𝑡 , 𝑉𝑓𝑎𝑠𝑡), are combined and compared to the experimental signals. This 

comparison aims to identify the mean values (lengths and blood flow velocities) best matching 

the experimental signals for the two pools. Very importantly, to simplify the data fitting 

problem, we fixed two of the free parameters, the fractions 𝑓𝑠𝑙𝑜𝑤 and 𝑓𝑓𝑎𝑠𝑡, to be the values we 

found by fitting the experimental data (described in Chapter 3): 

𝐹𝐼𝑉𝐼𝑀/𝑆𝑖𝑚(𝑏, 𝐿𝑠𝑙𝑜𝑤, 𝑉𝑠𝑙𝑜𝑤 , 𝐿𝑓𝑎𝑠𝑡, 𝑉𝑓𝑎𝑠𝑡) = 𝑓𝑠𝑙𝑜𝑤𝐹𝐼𝑉𝐼𝑀/𝑆𝑖𝑚(𝑏, 𝐿𝑠𝑙𝑜𝑤, 𝑉𝑠𝑙𝑜𝑤)              5.1 

                    + 𝑓𝑓𝑎𝑠𝑡𝐹𝐼𝑉𝐼𝑀/𝑆𝑖𝑚(𝑏, 𝐿𝑓𝑎𝑠𝑡, 𝑉𝑓𝑎𝑠𝑡)                                   

As the self-diffusion of water molecules in the intravascular compartment was not taken into 

account in the simulations whereas it was included in the IVIM model, the simulated signals 

were not compared directly to the experimental signals but to 
𝐹𝐼𝑉𝐼𝑀/𝑑𝑎𝑡𝑎(𝑏)

𝑒−𝑏𝐷𝑏
 where 𝐷𝑏 is the 

blood diffusion coefficient, set to 1.75 × 10−3 mm²/s [154]. 

5.1.2 Comparison of the experimental data with the dictionary of simulated signals  

To evaluate the goodness of fit of the experimental data compared to the dictionary of 

simulated signals, the error  between them was calculated using the normalized 𝑙2-norm 

formula: 

𝜀(𝐿𝑠𝑙𝑜𝑤, 𝑉𝑠𝑙𝑜𝑤, 𝐿𝑓𝑎𝑠𝑡 , 𝑉𝑓𝑎𝑠𝑡) = √
∑ (𝐹𝐼𝑉𝐼𝑀/𝑆𝑖𝑚(𝑏,𝐿𝑠𝑙𝑜𝑤,𝑉𝑠𝑙𝑜𝑤,𝐿𝑓𝑎𝑠𝑡,𝑉𝑓𝑎𝑠𝑡)− 

𝐹𝐼𝑉𝐼𝑀/𝑑𝑎𝑡𝑎(𝑏)

𝑒−𝑏𝐷𝑏
)
2

𝑏

∑ (
𝐹𝐼𝑉𝐼𝑀/𝑑𝑎𝑡𝑎(𝑏)

𝑒−𝑏𝐷𝑏
)
2

𝑏

          5.2 

where 𝐹𝐼𝑉𝐼𝑀/𝑆𝑖𝑚 and 𝐹𝐼𝑉𝐼𝑀/𝑑𝑎𝑡𝑎 represent the simulated signals from the dictionary and the 

experimental signal, respectively. An 𝜀 less than 10 % was considered an acceptable match 

between the experimental data and a particular combination of simulated signals.  
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The comparison with the numerical simulations was performed for  = 24 ms only because at  

= 14 ms, 𝐷𝑓𝑎𝑠𝑡
∗  can be overestimated and at  = 34 ms, the signals from some datasets are 

better fitted to a mono-exponential than to a bi-exponential model. 

Four parameters are allowed to change in the numerical simulations, 𝐿𝑠𝑙𝑜𝑤, 𝑉𝑠𝑙𝑜𝑤, 𝐿𝑓𝑎𝑠𝑡 and 

𝑉𝑓𝑎𝑠𝑡. As it is impossible to show in one figure all the possible combinations of the four 

parameters giving a value of  less than 10%,  isolines are displayed instead, where we fixed 

two of the parameters for one pool to show the possible values of 𝐿𝑚𝑒𝑎𝑛 and 𝑉𝑚𝑒𝑎𝑛 for the 

other pool. 

In Figure 5.1, in red, we show the 10 % 𝜀 isolines for the slow pool obtained by fixing 𝐿𝑓𝑎𝑠𝑡 and 

𝑉𝑓𝑎𝑠𝑡 to 50 µm and 4 mm/s, respectively. The area between two isolines encompasses all 

acceptable combinations of 𝐿𝑠𝑙𝑜𝑤 and 𝑉𝑠𝑙𝑜𝑤 that match the experimental data for this particular 

set of 𝐿𝑓𝑎𝑠𝑡 and 𝑉𝑓𝑎𝑠𝑡. Similarly, we obtain the 10 % 𝜀 isolines for the fast pool (in blue) by fixing 

𝐿𝑠𝑙𝑜𝑤 and 𝑉𝑠𝑙𝑜𝑤 at 𝐿𝑠𝑙𝑜𝑤 = 40 µm, 𝑉𝑠𝑙𝑜𝑤 = 1 mm/s.  

 

Figure 5.1. 10 % ε isolines for different combinations of vessel lengths and blood flow velocities. 
The red curves correspond to the slow pool for the fixed fast pool values of 𝑉𝑓𝑎𝑠𝑡 = 4 mm/s, 

𝐿𝑓𝑎𝑠𝑡 = 50 µm and the blue curves to the fast pool for the fixed slow pool values of 𝑉𝑠𝑙𝑜𝑤 = 1 

mm/s, 𝐿𝑠𝑙𝑜𝑤 = 40 µm. 

The isolines’ shapes are similar for both pools, with the slow pool thinner and shifted to the left 

compared to the fast pool, clearly demonstrating that the two pools are well separated with the 

slow pool associated with a smaller blood velocity than the fast pool. However, the vessel 

length is difficult to determine and Figure 5.1 shows that nearly all probed vessel lengths can 
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yield an acceptable match with the data. To better illustrate this, in Figure 5.2, we plot the 

experimental signal along with simulated signals with the same blood velocity, 𝑉𝑓𝑎𝑠𝑡 = 3 mm/s, 

but with two different vessel lengths for the fast pool, 𝐿𝑓𝑎𝑠𝑡 = 70 and 150 µm, and with the 

same 𝑉𝑠𝑙𝑜𝑤 = 1 mm/s and 𝐿𝑠𝑙𝑜𝑤 = 40 µm for the slow pool.  

 

Figure 5.2. Examples of IVIM signal superimposed with simulated signals versus b-value for  = 
24 ms in the LC. The black circles stand for the experimental data and the blue solid lines for the 
simulated signals with the same 𝑉𝑠𝑙𝑜𝑤 = 1 mm/s, 𝐿𝑠𝑙𝑜𝑤 = 40 µm and 𝑉𝑓𝑎𝑠𝑡 = 3 mm/s but with two 

different values for 𝐿𝑓𝑎𝑠𝑡, (A) 𝐿𝑓𝑎𝑠𝑡 = 70 µm,  = 6.50 % and (B) 𝐿𝑓𝑎𝑠𝑡 = 150 µm,  = 6.38 % 

respectively. Error bars represent SD from the averaging step. 

The two different lengths give a match with a similar quality confirming that the vessel length 

cannot be determined in this comparison (6.50 % and 6.38 %, respectively). This incapability 

to determine the vessel lengths suggests that the two pools are closer to the sinc regime than to 

the exponential regime. To better understand the relation between the determination of the 

vessel length and the shape of the  isolines, the contour plots are analyzed in more details. 

5.1.3 Interpretation of the shape of the contour plots 

To help understand the shape of the curves in Figure 5.1, we represent the regions 

corresponding to the sinc and exponential behaviors according to our experimental encoding 

times. 

In Figure 5.3, the way the regions are obtained for the sinc regime for the fast pool is described 

highlighted by four circled numbers. 
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Figure 5.3. Description of the way the region corresponding to the sinc regime for the fast pool 

is obtained. Points 1 to 4 delimit the blue region corresponding to  = 14 to 34 ms. The dashed 
lines are drawn for a number of vessels seen during the encoding time, 𝑁 = 1. 

To represent the sinc regime, the equation of 𝐷∗ in this regime is used. As a reminder of Eq. 

3.11: 

𝐷𝑠𝑖𝑛𝑐
∗ =

𝑉2∆

6
                 5.3 

Also, the number of vessels, 𝑁, seen during the encoding time, ∆ + 𝛿, is less than 1 in this 

regime. 

Therefore, the lines between points 1 and 4 as well as between points 2 and 3 are obtained 

from the equation of 𝐷∗ in the sinc regime, Eq. 5.3, for the two , 34 and 14 ms, respectively: 

𝑉 = √
6𝐷𝑓𝑎𝑠𝑡

∗ (∆)

∆
                5.4 

where 𝐷𝑓𝑎𝑠𝑡
∗ (∆) is the value of 𝐷𝑓𝑎𝑠𝑡

∗  for a certain . 

The dashed lines are drawn for 𝑁 = 1 and  = 14 and 34 ms using: 

𝐿 =
𝑉(∆+𝛿)

𝑁
                 5.5 
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Points 1 and 2 are the points for which 𝑉 is described by Eq. 5.4 and L = 150 µm for  = 34 and 

14 ms, respectively. Points 3 and 4 are obtained by using Eq. 5.4 for 𝑉, with = 14 and 34 ms, 

respectively, and calculating the intersection between Eq. 5.4, with = 14 and 34 ms, 

respectively, and Eq. 5.5, with  = 34 ms and 𝑁 = 1, for 𝑉. The blue region in Figure 5.3 is then 

obtained by linking the four points together. The same technique can be used to get the region 

corresponding to the slow pool by replacing 𝐷𝑓𝑎𝑠𝑡
∗ (∆) by 𝐷𝑠𝑙𝑜𝑤

∗ (∆) in Eq. 5.4. 

The drawing of the region corresponding to the exponential regime for the fast pool and  = 14 

to 34 ms is explained in Figure 5.4. 

 

Figure 5.4. Plot of the hatched blue region corresponding to the fast pool in the exponential 

regime for  = 14 to 34 ms. Four points, 5, 6, 7 and 8 delimit the region. The dotted lines are 
drawn for a number of vessels seen during the encoding time, 𝑁 = 4. 

As for the sinc regime, four points, 5, 6, 7 and 8, have been added to delimit the region 

corresponding to the fast pool and the range of  = 14 to 34 ms. In the exponential regime, the 

expression for 𝐷∗ in this regime is used. As a reminder of Eq. 3.4, 

𝐷𝑒𝑥𝑝
∗ =

𝐿𝑉

6
                 5.6 

The dotted lines are drawn for 𝑁 = 4 and  = 14 and 34 ms using Eq. 5.5 as 𝑁 = 4 is the limit 

value of 𝑁 above which we are in the exponential regime. 
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The lines between points 6 and 7 as well as between points 5 and 8 are obtained from the 

equation of 𝐷∗ in the exponential regime, Eq. 5.6, for the two ∆, 14 and 34 ms, respectively: 

𝐿 =
6𝐷𝑓𝑎𝑠𝑡

∗ (∆)

𝑉
                            5.7 

Points 7 and 8 are the points for which 𝐿 is described by Eq. 5.7 and 𝑉 = 10 mm/s for  = 14 and 

34 ms, respectively. Points 5 and 6 are obtained by using Eq. 5.7 for 𝐿 for = 34 and 14 ms, 

respectively, and calculating the intersection between Eq. 5.5, with  = 14 ms and 𝑁 = 4, and Eq. 

5.7, with  = 34 and 14 ms, respectively, for 𝑉. The hatched blue region in Figure 5.4 is finally 

obtained by linking the points 5, 6, 7 and 8 together. As for the regions in the sinc regime, to get 

the region corresponding to the slow pool in the exponential regime, 𝐷𝑓𝑎𝑠𝑡
∗ (∆) needs to be 

replaced by 𝐷𝑠𝑙𝑜𝑤
∗ (∆) in Eq. 5.7. 

The four regions corresponding to the two pools, fast in blue and slow in red, and the two 

regimes, sinc with plain regions and exponential with hatched regions, are gathered in Figure 

5.5. 

 

Figure 5.5. Plot showing the two regimes, sinc and exponential, corresponding to different 
combinations of mean vessel lengths and blood flow velocities, for the slow (red) and fast (blue) 

pools. The dashed and dotted lines, plotted for the two diffusion times ( = 14 and 34 ms), 
correspond to 𝑁 = 1 and 4, respectively. 
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In between the dashed 𝑁 = 1 line for  = 14 ms and the dotted 𝑁 = 4 line for  = 34 ms, we find 

the intermediate regime, which is not sinc anymore but no yet exponential. If we draw lines 

between the two red and two blue domains and connect them, we find again the shape of the 

red and blue isolines in Figure 5.1. 

Considering a mean blood velocity for the slow pool of ≅ 1.6 mm/s, if the vessel length is small, 

below 50 µm, we are mostly in an intermediate regime. If the vessel length is > 50 µm, we are in 

the sinc regime. Although only a small number of isochromats will experience the exponential 

regime, given the wide range of blood flow velocities and vessel lengths, the signal is smoothed 

and does not look like a sinc function. It can be approximated by an exponential function at very 

short b-values. 

For the fast pool and 𝑉𝑓𝑎𝑠𝑡 ≅ 4 mm/s, for small vessel lengths, we observe the exponential 

regime. Increasing the length, we reach an intermediate regime and finally the sinc regime. 

Once again, the signal will not look like a product of a small number of sinc functions because of 

the length and velocity distributions which smooth the signal. This signal can thus also be 

approximated by an exponential function at very short b-values. However, when comparing 

with the slow pool, we can state that a larger proportion of isochromats will be in the 

exponential regime in the fast pool. 

In conclusion, it is a reasonable approximation to fit the IVIM signal to a two pool bi-exponential 

model at short diffusion times; however, within each pool, the signal is not truly exponential but 

a combination of sinc, products of different numbers of sinc and exponential functions with 

different weights depending on the vascular pool. 

5.1.4 Extraction of structural parameters for the two pools 

Even if it is not possible to determine the vessel length, to try to get an estimation of 𝑉𝑠𝑙𝑜𝑤 and 

𝑉𝑓𝑎𝑠𝑡, all possible combinations of parameters giving  < 10 % were averaged. The results of 

averaging on all possible combinations of [𝐿𝑠𝑙𝑜𝑤, 𝑉𝑠𝑙𝑜𝑤 , 𝐿𝑓𝑎𝑠𝑡, 𝑉𝑓𝑎𝑠𝑡] in all datasets with some 

constraints applied are gathered in Table 5.1. 
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  Constraints 

  𝑉𝑠𝑙𝑜𝑤 < 𝑉𝑓𝑎𝑠𝑡 𝑉𝑠𝑙𝑜𝑤 < 𝑉𝑓𝑎𝑠𝑡 and 𝐿𝑓𝑎𝑠𝑡 ≥ 30 µm 

𝑽𝒔𝒍𝒐𝒘 (mm/s) 
LC 1.76 ± 1.23 1.30 ± 0.46 

LT 1.44 ± 0.87 1.20 ± 0.43 

𝑽𝒇𝒂𝒔𝒕 (mm/s) 
LC 4.64 ± 2.27 3.03 ± 0.89 

LT 4.37 ± 2.19 3.19 ± 1.32 

 
Table 5.1. Mean ± SD mean values of the segment length and blood velocity extracted from the 
comparison of experimental data with the dictionary of simulations (NR=11). The average was 

calculated on all possible solutions giving  < 10% without any constraint, with  𝑉𝑠𝑙𝑜𝑤 < 𝑉𝑓𝑎𝑠𝑡 or 

with 𝑉𝑠𝑙𝑜𝑤 < 𝑉𝑓𝑎𝑠𝑡 and 𝐿𝑓𝑎𝑠𝑡  ≥ 30 µm. LC and LT refer to the left cortex and left thalamus ROIs, 

respectively. 

Relatively to our hypothesis that the two pools are associated with different groups of vessels, 

one with a slow blood velocity and the other with a fast blood velocity, it is not coherent to 

have 𝑉𝑠𝑙𝑜𝑤 > 𝑉𝑓𝑎𝑠𝑡. Therefore, we set the constraint that 𝑉𝑠𝑙𝑜𝑤 < 𝑉𝑓𝑎𝑠𝑡 and removed from the 

averaging all combinations for which 𝑉𝑠𝑙𝑜𝑤 > 𝑉𝑓𝑎𝑠𝑡. This allows to get separated values of 𝑉𝑠𝑙𝑜𝑤 

and 𝑉𝑓𝑎𝑠𝑡. 𝑉𝑠𝑙𝑜𝑤 is particularly close to the blood velocity of capillaries found in the literature, 

around 1.6 mm/s. Another assumption can also be made for the fast pool. If it is related to 

vessels larger in diameter than capillaries, then their length should be at least larger than twice 

their minimum diameter. If we put this limit to 30 µm and state that 𝐿𝑓𝑎𝑠𝑡 > 30 µm in addition to 

𝑉𝑠𝑙𝑜𝑤 < 𝑉𝑓𝑎𝑠𝑡, we obtain smaller values for both mean blood flow velocities. The validity of this 

second constraint is however questionable as it implies that the second pool of vessels 

corresponds to larger vessels and this assumption has not been validated yet. However, the first 

constraint allowed us to get reasonable estimations for 𝑉𝑠𝑙𝑜𝑤 and 𝑉𝑓𝑎𝑠𝑡 coherent with values 

from the literature for blood flow velocities inside the capillaries and somewhat larger vessels, 

possibly medium-size arterioles and venules. 

5.2 Influence of the repetition time: inflow effect 

Because the bi-exponential IVIM model includes a fast flow component, we checked for possible 

inflow effects by varying the repetition time. First, the inflow effect and the influence of varying 

the repetition time are described. Then, experimental results obtained for different repetition 

times are presented. 
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5.2.1 Explanation of the inflow effect 

The inflow effect and its relation to the repetition time are illustrated in Figure 5.6. At short 

repetition times (compared to relaxation time 𝑇1), the longitudinal magnetization of spins in the 

tissue has not fully recovered from the slice radiofrequency excitation, while fresh flowing spins 

entering the voxel are fully magnetized. This difference between the magnetization of the two 

populations slightly enhances the contribution of the fresh flowing spins to the signal. Applied 

to our model, this effect, called inflow effect, depends on the fraction of fresh spins entering the 

slice, thus also on the blood velocity and can lead to an overestimation of 𝑓𝑓𝑎𝑠𝑡. By increasing 

the repetition time, the spins inside the tissue have more time to recover their full 

magnetization and the difference with that of flowing spins vanishes, restoring the correct value 

for 𝑓𝑓𝑎𝑠𝑡. 

 

Figure 5.6. Scheme explaining the inflow effect at short and long repetition time. Protons in the 
blood vessels enter the voxels with their full magnetization (in white) whereas at short TR, 
protons present in the tissue do not have enough time to recover their full magnetization (dark 
grey). This enhances the signal contribution from the blood vessels compared to the tissue. On 
the contrary, at long TR, protons in the tissue have more time to recover their full magnetization 
(light grey) thus giving less difference with the signal coming from spins in blood vessels. 

5.2.2 Impact on the IVIM outputs 

For four rats, the influence of the repetition time was tested. A PGSE-EPI sequence was used 

with the following acquisition parameters: gradient direction [X=0, Y=1, Z=0], TE = 45 ms, TR = 

1000 and 3000 ms,  = 3 ms,= 14 ms, in-plane resolution 250 x 250 μm², matrix size 80 x 80, 

field of view 2 x 2 mm2, slice thickness 1.5 mm, 1 segment, 6 averages, 5 repetitions. We used 

30 b-values (20 b-values ranging from 2 to 500 s/mm2 and 10 b-values ranging from 500 to 2500 

s/mm2).  
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The data were analyzed similarly as in Chapter 3. After averaging on the repetitions and on an 

ROI on the LC, the signal obtained was first fitted for diffusion for 𝑏 > 500 s/mm² with the 

Kurtosis model. This diffusion signal was then extrapolated and subtracted to the raw signal and 

fitted to the bi-exponential IVIM model for 𝑏 < 500 s/mm². The retrieved values of the IVIM 

parameters are gathered in Table 5.2. The AICc values corresponding to the fit of the IVIM signal 

to the bi-exponential and the mono-exponential IVIM models, AICcbi and AICcmono, respectively, 

were also calculated. The difference in AICc between the two models is also displayed in Table 

5.2. 

TR (ms) 1000 3000 

fIVIM (%) 13.41 ± 0.55 6.36 ± 1.06 

fslow (%) 24.39 ± 10.84 57.94 ± 10.36 

D*
slow (10-3 mm²/s) 2.21± 0.33 2.16 ± 0.70 

D*
fast (10-3 mm²/s) 27.48 ± 1.97 25.96 ± 3.21 

fIVIM x fslow (%) 3.25 ± 1.45 3.76 ± 0.92 

fIVIM x ffast (%) 10.16 ± 1.51 2.60 ± 0.77 

AICcmono-AICcbi 19.04 ± 13.18 4.35 ± 7.57 

 
Table 5.2. IVIM parameters for two different repetition times on an ROI on the LC and one slice 
(NR = 4). 

A large decrease in AICcmono-AICcbi is observed when increasing TR from 1000 to 3000 ms. This 

decrease suggests that a further increase of TR might continue to reduce this difference 

resulting in the signal becoming mono-exponential at very long TRs. 

With increasing TR, we observe a major decrease in 𝑓𝐼𝑉𝐼𝑀 and an increase in 𝑓𝑠𝑙𝑜𝑤 while 𝐷𝑠𝑙𝑜𝑤
∗  

and 𝐷𝑓𝑎𝑠𝑡
∗  stay constant. As a result, even though the bi-exponential behavior was present for 

both repetition times, AICcbi was on average lower for TR = 1000 ms. Interestingly, the product 

𝑓𝐼𝑉𝐼𝑀 × 𝑓𝑠𝑙𝑜𝑤 is similar with both TRs, suggesting that the slow flow component does not 

present inflow effects, while the contribution of the fast flow component to the overall IVIM 

effects, 𝑓𝐼𝑉𝐼𝑀 × 𝑓𝑓𝑎𝑠𝑡, increases when TR gets shorter. This is consistent with the fast pool signal 

coming from faster moving blood than for the slow pool. As a result, the volume fraction of the 

fast pool, 𝑓𝑓𝑎𝑠𝑡, and therefore, the global 𝑓𝐼𝑉𝐼𝑀  fraction (or the 𝑓𝐼𝑉𝐼𝑀 value of the IVIM mono-

exponential model), are most likely overestimated when inflow effects are present (small 

number of slices, short TRs). 
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5.3 Influence of the pulse sequence: spin echo versus stimulated echo 

Both the SE and the STE pulse sequences can be used to acquire IVIM data. In this section, the 

differences between the two sequences are analyzed to understand their influence on the IVIM 

output parameters. As mentioned earlier, the STE sequence has the advantage to increase the 

diffusion encoding time without the need to increase TE and attenuate the signal because of 

increased 𝑇2-relaxation. However, the baseline signal at 𝑡 = 0 is half that of the SE sequence so 

more repetitions are needed to keep the same SNR between the two sequences. 

5.3.1 Phantom experiment 

To get an insight of the effect of the pulse sequence on the IVIM signal, a simple phantom 

experiment was designed. The phantom is a 15 mL falcon tube in which a thin pipe is inserted by 

piercing holes at both ends. As shown in Figure 5.7, the end without the cap is sealed with wax 

before adding agarose (2% agar) to fill the falcon and maintain the pipe straight inside of it. 

After solidification of the agarose, the hole in the cap was also sealed with wax. The phantom is 

then installed on a bed and inserted inside the MRI scanner. At one end of the pipe, a syringe 

pump pushes water inside the pipe at a controlled flow velocity towards a beaker located at the 

other end of the pipe outside of the MRI scanner. 

 

Figure 5.7. Scheme of the phantom experiment. The phantom consists of a thin pipe inserted 
inside a 15 mL falcon filled with agarose (2% agar). The holes performed in the falcon to insert 
the pipe are sealed with wax (in yellow). A syringe pump is used to control the blood velocity of 
the water flowing inside the phantom located inside the MRI scanner. A beaker is placed at the 
other end of the pipe to collect the water flowing inside the phantom. 

The syringe pump was used to vary the flow velocity inside the pipe while scanning the 

phantom with the SE and the STE sequence and the following acquisition parameters: diffusion 

gradient direction [X=0, Y=1, Z=0], = 3 ms, = 14 ms, in-plane resolution 400 x 400 μm², slice 

thickness 1.5 mm, 1 segment, TE/TR = 24/1500 ms, 4 averages, 1 and 4 repetitions for the SE 
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and STE sequences respectively, 1 slice, field of view 12.5 x 12.5 mm, matrix size 50 x 50, 26 b-

values in the range [2-1500] s/mm². The STE sequence was repeated four times and the signal 

averaged over these repetitions to increase the SNR and obtain similar signal level than with the 

SE sequence. Coronal images of the phantom with the two pulse sequences for 𝑉𝑓𝑙𝑜𝑤 = 0 mm/s 

are displayed in Figure 5.8. Both sequences give similar signal inside the pipe which is clearly 

visible at the center of the phantom. 

 

Figure 5.8. (A-B) Coronal images of the phantom for 𝑉𝑓𝑙𝑜𝑤 = 0 mm/s and the SE and STE pulse 

sequences and the same acquisition parameters, respectively. 

When turning on the syringe pump, the signal inside the tube becomes higher than the signal in 

the agarose due to inflow effects as illustrated in Figure 5.9.A and F. As the flow velocity 

increases, the signal intensity inside the tube does not change much for the SE sequence 

whereas it decreases substantially for the STE sequence. 
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Figure 5.9. Evolution of the signal inside the pipe with increasing flow velocity, 𝑉𝑓𝑙𝑜𝑤 = 4, 6, 10, 

14 and 18 mm/s, for the two pulse sequences, SE (A-E) and STE (F-J). 

Indeed, in Figure 5.10, when plotting the signal inside the tube normalized to the signal at 𝑉𝑓𝑙𝑜𝑤 

= 4 mm/s, this signal decreases by 10% and 50% when reaching 𝑉𝑓𝑙𝑜𝑤 = 18 mm/s for the SE and 

STE sequences, respectively. 

 

Figure 5.10. Normalized signal inside the tube against the flow velocity for the two sequences, 
SE and STE, in blue and red, respectively. 

These experiments point to two differences between the STE and the SE pulse sequences: 

1) The inflow effect is less important in the sequence STE than in the SE sequence. 
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2) The contribution to the signal of fast flowing spins is diminished in the STE compared to 

the SE sequence. 

Both points suggest that the contribution of the fast pool is less important for the STE sequence 

than for the SE sequence. To understand why high flow velocities contribute less to the IVIM 

signal in the STE sequence, we propose the following physical explanation. 

5.3.2 Physical explanation 

The 180° pulse of the SE sequence is replaced by two 90° pulses in the STE sequence allowing 

for longer diffusion times [155]. It introduces a new time in which spins experience only 𝑇1-

relaxation, the mixing time, TM, between the two added 90° pulses. To explain why the STE 

sequence is less sensitive to high flow velocities than the SE sequence, the phase shifts 

accumulated during the 180° pulse, for the SE sequence, and between the two 90° pulses, for 

the STE sequence, are calculated. In this calculation, we do not take into consideration the 

diffusion encoding gradients, we consider only the slice selection gradients. 

 

Figure 5.11. Representation of the slice gradients of the 180° and the second and third 90° 
pulses of the SE and STE sequences, respectively. The slice selection gradients are characterized 
by their gradient strength, G, and their duration 𝑡𝐺 . The + and – signs refer to the sign of the 
gradients. After the 180° pulse, the gradient sign is reversed. For the STE sequence, the 
gradients are hatched during TM as spins are in the longitudinal plane and do not contribute to 
the gradient dephasing. 
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For the SE sequence, the expression for the position vector of an isochromat with blood velocity 

vector 𝑉⃗  is: 

𝑥 (𝑡) = 𝑉⃗ 𝑡 𝑓𝑜𝑟 0 < 𝑡 <
𝑡𝐺

2
 𝑎𝑛𝑑

𝑡𝐺

2
< 𝑡 < 𝑡𝐺              5.8 

From Figure 5.11, 

𝐺 (𝑡) = {
𝐺𝑒𝐺⃗⃗⃗⃗ ,   0 < 𝑡 <

𝑡𝐺

2

−𝐺𝑒𝐺⃗⃗⃗⃗ ,
𝑡𝐺

2
< 𝑡 < 𝑡𝐺

                       5.9 

with 𝑒𝐺⃗⃗⃗⃗  the gradient direction. 

Making the hypothesis that 𝑉⃗ ∙ 𝑒𝐺⃗⃗⃗⃗ = 𝑉 cos(𝜃), the phase shift accumulated during the 180° 

pulse of the SE sequence, 𝜙𝑆𝐸 , is then: 

𝜙𝑆𝐸 = 𝛾𝑉𝐺 cos(𝜃) (∫ 𝑡
𝑡𝐺
2
0

𝑑𝑡 − ∫ 𝑡
𝑡𝐺
𝑡𝐺
2

𝑑𝑡)                                  5.10 

                = −𝛾𝑉𝐺 cos(𝜃)
𝑡𝐺
2

4
 

For the STE sequence, only the contribution from gradients before and after 𝑇𝑀 need to be 

considered so the expression for 𝑥 (𝑡) is: 

𝑥 (𝑡) = 𝑉⃗ 𝑡 𝑓𝑜𝑟 0 < 𝑡 <
𝑡𝐺

2
 𝑎𝑛𝑑𝑇𝑀 +

𝑡𝐺

2
< 𝑡 < 𝑇𝑀 + 𝑡𝐺                      5.11 

From Figure 5.11, 

𝐺 (𝑡) = {
𝐺𝑒𝐺⃗⃗⃗⃗ , 0 < 𝑡 <

𝑡𝐺

2

−𝐺𝑒𝐺⃗⃗⃗⃗ , 𝑇𝑀 +
𝑡𝐺

2
< 𝑡 < 𝑇𝑀 + 𝑡𝐺

                             5.12 

The phase shift accumulated during the two 90° pulses of the STE sequence, 𝜙𝑆𝑇𝐸, is then: 

𝜙𝑆𝑇𝐸 = 𝛾𝑉𝐺 cos(𝜃) (∫ 𝑡𝑑𝑡
𝑡𝐺
2
0

− ∫ 𝑡𝑑𝑡
𝑇𝑀+𝑡𝐺

𝑇𝑀+
𝑡𝐺
2

)                                 5.13 

                                             = 𝜙𝑆𝐸 − 𝛾𝑉𝐺 cos(𝜃)
𝑡𝐺𝑇𝑀

2
  

With the STE sequence, a term is added to the phase shift of the SE sequence. So, for the same 

blood velocity, the absolute value of the phase shift is bigger with the STE than with the SE 
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sequence. The higher the blood velocity, the bigger this difference will be. This explains why the 

signal of the STE sequence is less sensitive to high blood flow velocities than the signal of the SE 

sequence. It implies that it is also less sensitive to inflow effects than the SE sequence.  

The signal attenuation resulting from the dephasing calculated for the two sequences can be 

obtained by integrating over all possible segment orientation in a unit sphere giving: 

𝑆𝐼𝐶/𝑆𝐸 = 𝑠𝑖𝑛𝑐 (𝛾𝑉𝐺
𝑡𝐺
2

4
)                             5.14 

And  

𝑆𝐼𝐶/𝑆𝑇𝐸 = 𝑠𝑖𝑛𝑐 (𝛾𝑉𝐺
𝑡𝐺

2
(𝑇𝑀 +

𝑡𝐺

2
))                        5.15 

These analytical signals are plotted in Figure 5.12 against the flow velocity 𝑉 for 𝑇𝑀 = 6.2 ms, 𝑡𝐺  

= 1.5 ms and 𝐺 = 7.12 and 11.24 mT/m for the SE and STE sequences, respectively. They were 

normalized to the value for 4 mm/s to compare more easily with Figure 5.10. 

 

Figure 5.12. Normalized analytical signal against the flow velocity for the SE (Eq. 5.13) and STE 
(Eq. 5.14) sequences in blue and red, respectively to the signal at 𝑉 = 4 mm/s. 

The trend of the curves in Figure 5.12 is similar to the one in Figure 5.10 but the decay of the 

two curves is much steeper in Figure 5.10, especially for the STE sequence. Indeed, the 
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theoretical curves in Figure 5.12 were plotted without considering inflow effects present in the 

phantom experiments as they were performed at short TRs. 

To get rid of the inflow effects and only see the effect of the difference between the two pulse 

sequences, long TRs should be used. Thus, in the next subsection, the SE and STE sequences are 

compared both at short and long TRs.  

5.3.3 Impact on the IVIM outputs 

5.3.3.1 At short repetition time 

The two pulse sequences, SE and STE, were first compared on four rats at short repetition time, 

TR = 1000 ms, in the presence of inflow effects. The acquisition parameters for the two 

sequences are the same as used for the study of the influence of the repetition time except that 

6 repetitions were performed, the in-plane resolution was 400 x 400 µm², the matrix size 50 x 

50 and TR = 1000 ms. The same data processing scheme was also used. The results of the fitting 

of the data with the bi-exponential IVIM model on a ROI on the LC are displayed in Table 5.3. 

The difference in AICc between the mono- and bi-exponential IVIM models is also shown in 

Table 5.3. 

Sequence SE STE 

fIVIM (%) 11.21 ± 0.91 6.21 ± 1.93 

fslow (%) 40.06 ± 12.95 69.32 ± 25.60 

D*
slow (10-3 mm²/s) 1.79 ± 0.16 2.33 ± 0.14 

D*
fast (10-3 mm²/s) 19.98 ± 4.21 19.45 ± 4.31 

fIVIM x fslow (%) 4.45 ± 1.29 4.66 ± 2.37 

fIVIM x ffast (%) 6.76 ± 1.41 1.54 ± 1.18 

AICcmono-AICcbi 12.75 ± 15.68 4.25 ± 17.57 

 
Table 5.3. IVIM parameters for two pulse sequences, SE and STE, on an ROI on the LC for TR = 
1000 ms (NR = 4). 

For the same acquisition parameters but different pulse sequences, 𝑓𝐼𝑉𝐼𝑀 is divided by almost a 

factor of two between the SE and the STE sequences. 𝑓𝑠𝑙𝑜𝑤, 𝐷𝑓𝑎𝑠𝑡
∗  and 𝑓𝐼𝑉𝐼𝑀 × 𝑓𝑠𝑙𝑜𝑤 are not 

affected by the pulse sequence. However, student t-tests show a significant difference with p < 

0.01 for 𝑓𝐼𝑉𝐼𝑀, 𝐷𝑠𝑙𝑜𝑤
∗

 and 𝑓𝐼𝑉𝐼𝑀 × 𝑓𝑓𝑎𝑠𝑡. The difference in AICc is bigger for the SE sequence than 
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for the STE sequence suggesting that the two pools are harder to separate with the STE 

sequence when the other acquisition parameters are kept constant. 

To study the difference between the two pulse sequences without the occurrence of inflow 

effects, experiments were also performed at long TRs. 

5.3.3.2 At long repetition time 

To decrease the inflow effects on both sequences, TR was increased to 3500 ms while keeping 

the same acquisition parameters as for TR = 1000 ms. Four rats were scanned with the SE and 

STE sequences with the longer TR. The obtained IVIM signals on an ROI on the LC were fitted to 

both the bi- and the mono-exponential models and the AICc was calculated to determine the 

best model to fit the data.  

At TR = 3500 ms, for both sequences, the model best describing the data is the mono-

exponential IVIM model. Therefore, only 𝑓𝐼𝑉𝐼𝑀, 𝐷∗ and AICcmono-AICcbi are displayed in Table 5.4 

for the two sequences. 

Sequence SE STE 

fIVIM (%) 3.41 ± 0.56 3.27 ± 1.19 

D*
 (10-3 mm²/s) 6.37 ± 1.19 6.72 ± 2.64 

AICcmono-AICcbi -0.92 ± 22.47 -2.65 ± 17.34 

 
Table 5.4. IVIM parameters for the two pulse sequences, SE and STE, on an ROI on the LC for TR 
= 3500 ms (NR = 4). 

No significant difference was found for the two IVIM parameters, 𝑓𝐼𝑉𝐼𝑀 and 𝐷∗, between the 

pulse sequences when performing a Student’s t-test. 

5.3.3.3 Discussion 

At the short TR-value, both sequences are also subject to inflow effects. They have no effects on 

the slow pool in the two sequences, as 𝑓𝐼𝑉𝐼𝑀 × 𝑓𝑠𝑙𝑜𝑤 is not significantly different between the 

two sequences. However, we observe that 𝑓𝐼𝑉𝐼𝑀 × 𝑓𝑓𝑎𝑠𝑡  is much smaller for the STE sequence 

than for the SE sequence. This decrease implies that the STE sequence is less affected by inflow 

effects than the SE sequence. 𝐷𝑠𝑙𝑜𝑤
∗  was found higher in the STE compared to the SE sequence. 
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This parameter was not expected to vary with the pulse sequence. It is likely that this difference 

would disappear if more animals were scanned. 

As 𝑓𝐼𝑉𝐼𝑀 is the ratio between the signal coming from the microvasculature against the total 

signal, its value depends on 𝑇1. It is thus possible to estimate the variation of 𝑓𝐼𝑉𝐼𝑀 due to the 

change in TR. For the SE sequence (Eq. 2.19), the ratio of 𝑓𝐼𝑉𝐼𝑀 between TR = 1000 and TR = 

3500 ms can be approximated by: 

(
1 − 𝑒

− 
1000
𝑇1𝑏

1 − 𝑒
− 
1000
𝑇1𝑏 + 1 − 𝑒

− 
1000
𝑇1𝑡

)

(
1 − 𝑒

− 
3500
𝑇1𝑏

1 − 𝑒
− 
3500
𝑇1𝑏 + 1 − 𝑒

− 
3500
𝑇1𝑡

)

≅ 94.51% 

with 𝑇1𝑏 = 2200 ms, 𝑇1 in blood, and 𝑇1𝑡 = 1700 ms, 𝑇1 in the tissue, here the cortex at 7T. 

For the STE sequence (Eq. 2.20), the dependence of the signal upon 𝑇1 during the mixing time, 

𝑇𝑀, needs to be added. The ratio of 𝑓𝐼𝑉𝐼𝑀 between the two TRs then becomes: 

(

 
 

𝑒
− 
𝑇𝑀
𝑇1𝑏 (1 − 𝑒

− 
1000
𝑇1𝑏 )

𝑒
− 
𝑇𝑀
𝑇1𝑏 (1 − 𝑒

− 
1000
𝑇1𝑏 ) + 𝑒

− 
𝑇𝑀
𝑇1𝑡 (1 − 𝑒

− 
1000
𝑇1𝑡 )

)

 
 

(

 
 

𝑒
−
𝑇𝑀
𝑇1𝑏 (1 − 𝑒

− 
3500
𝑇1𝑏 )

𝑒
− 
𝑇𝑀
𝑇1𝑏 (1 − 𝑒

− 
3500
𝑇1𝑏 ) + 𝑒

− 
𝑇𝑀
𝑇1𝑡 (1 − 𝑒

− 
3500
𝑇1𝑡 )

)

 
 

≅ 94.51% 

with 𝑇𝑀 = 6.17 ms for  = 14 ms. 

This ratio is almost the same for the two pulse sequences. Going from TR = 1000 to TR = 3500 

ms, according to this calculation, without taking into account inflow effects, 𝑓𝐼𝑉𝐼𝑀 should 

decrease by 5.49 % for both sequences. A decrease is observed experimentally but it is much 

larger than expected by this calculation and different between the two sequences. This is 

another argument to say that inflow effects, present at short TR, impact more the SE than the 

STE sequence. 
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For TR = 3500 ms, 𝑓𝐼𝑉𝐼𝑀 is similar for the two sequences, still slightly bigger for the SE compared 

to the STE sequence with a difference between 𝑓𝐼𝑉𝐼𝑀 of the two sequences less than 5 %. This 

difference is coherent with the order of magnitude of the calculations performed in section 

5.3.2 to explain the difference between the two sequences. For 𝑉 < 18 mm/s, the difference 

observed between the signal of the two sequences only induced by the replacement of the 180° 

pulse in the SE sequence by two 90° pulses in the STE sequence is less than 5 %. However, no 

estimation of the blood velocity can be extracted from Figure 5.12 as the standard deviation of 

𝑓𝐼𝑉𝐼𝑀 does not allow for a precise calculation of the ratio of 𝑓𝐼𝑉𝐼𝑀 between the two sequences. 

At the long TR-value, AICcmono-AICcbi was found to be negative. In section 5.2.2, when comparing 

acquisitions performed with the SE sequence at TR = 1000 and 3000 ms, AICcmono-AICcbi was 

already showing a large decrease. These negative values suggest that, at long TRs, only one pool 

is visible in the IVIM signal. The inflow effect, strong at short TRs, makes the two sequences 

more sensitive to fast flowing spins allowing for the separation of two distinct pools. At long 

TRs, the fast flowing spins become less visible and only one pool can be observed. 

To summarize, the STE sequence is interesting to go to long diffusion times and get a more 

accurate estimation of 𝑓𝐼𝑉𝐼𝑀 × 𝑓𝑓𝑎𝑠𝑡 without being affected by inflow effects. Yet, 𝑓𝑓𝑎𝑠𝑡  might be 

slightly underestimated as this sequence is less sensitive to fast flowing blood vessels. However, 

if the goal of a study is to analyze both pools and find a difference in the relative volume 

fractions of the two pools between two populations or conditions, it would be better to use the 

SE sequence at short TRs as the two pools can be more easily separated. 

5.4 Influence of the diffusion encoding time 

We have seen in Chapter 3 that, when going from  = 14 to 34 ms, the IVIM signal tends to 

become mono-exponential at  = 34 ms. To confirm this trend, we decided to further increase 

the diffusion encoding time. To achieve a longer  of 60 ms, we changed the pulse sequence, 

compared to Chapter 3, and used the STE sequence. 

Six rats were imaged with the STE sequence and the following acquisition parameters: 30 b-

values in the range [2-2600] s/mm², diffusion gradient direction [X=0, Y=1, Z=0], TE/TR = 

18/1500 ms,  = 3 ms,= 14, 30 and 60 ms, in-plane resolution 400 x 400 μm², matrix size 50 x 
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50, field of view 2 x 2 mm2, slice thickness 1.5 mm, 1 segment, 6 averages, 5 repetitions. The 

data were then analyzed as in the previous sections of this chapter. 

 (ms) 14 30 60 

fIVIM (%) 3.17 ± 0.33 3.60 ± 0.50 3.51 ± 0.24 

fslow (%) 58.65 ± 23.19 49.01 ± 13.95 - 

D*
slow (10-3 mm²/s) 4.96 ± 3.20 4.04 ± 1.89 - 

D*
fast (10-3 mm²/s) 25.60 ± 10.95 14.86 ± 4.07 - 

AICcm-AICcb 4.67 ± 9.66 3.33 ± 11.07 0.5 ± 9.21 

 

Table 5.5. IVIM parameters for the three values of  on an ROI on the LC (NR = 6). 

For 4 out of 6 datasets, the signal was better fit to the mono-exponential model for  = 60 ms.  

As a result, 𝑓𝑠𝑙𝑜𝑤, 𝐷𝑠𝑙𝑜𝑤
∗  and 𝐷𝑓𝑎𝑠𝑡

∗  were not calculated for  = 60 ms. No significant difference 

was observed between the different values of  for any of the parameter in Table 5.5. However, 

the difference between the AICc of the two models decreases much between  = 30 and 60 ms. 

This implies that the IVIM signal tends to have a mono-exponential behavior at long diffusion 

encoding times, further validating what was shown in Chapter 3. 

To conclude this chapter, we have shown that: 

 It is possible to relate the two vascular pools of the bi-exponential IVIM model to the 

capillaries with a blood velocity around 1.6 mm/s and to larger vessels, possibly medium-

size arterioles and venules, with a higher blood velocity around 4.5 mm/s. 

 The mono- or bi-exponential behavior of the IVIM signal depends on TR and the diffusion 

encoding time. 

 It is not always possible to separate the two pools at long TRs and diffusion encoding 

times. 

 The STE sequence is less sensitive to inflow effects and fast flowing blood vessels than 

the SE sequence. 

 The pulse sequence and TR greatly influence the values of 𝑓𝐼𝑉𝐼𝑀 and 𝑓𝑓𝑎𝑠𝑡. 



158 
 

In the next chapter, the IVIM technique is applied to the study of a neurodegenerative 

disease involving deterioration of the microvessels in the early phases of the disease: 

Alzheimer’s disease. 
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Chapter 6: Application of IVIM imaging to the study of 

Alzheimer’s disease 

As early biological changes in Alzheimer’s disease involve damages to the blood vessels, we 

investigated the potential of IVIM to study Alzheimer’s disease. This chapter first introduces the 

disease in terms of clinical symptoms as well as underlying biological changes. Imaging 

techniques used for its diagnosis and follow-up are then described to show how IVIM imaging 

can contribute to its study. The experiments performed during this thesis using a mouse model 

of the disease are then presented and analyzed. 

6.1 Alzheimer’s disease 

This section first gives a description of the disease and exposes the advantages that IVIM could 

have in its study compared to other currently used imaging techniques. 

6.1.1 Description of the disease 

Alzheimer’s disease (AD), named after Alois Alzheimer who first described it in 1906 [156], is a 

neurodegenerative disease particularly affecting elderly people over 65 years old. An earlier 

onset can also happen to people in their 40s or 50s. Symptoms are progressive and worsen over 

time. The first to appear are usually memory lapses due to damages to the hippocampus which 

plays a central role in day-to-day memory. The diseased gradually lose their ability to 

remember, think, learn and live independently. The disease is usually fatal between 4 to 8 years 

after diagnosis. Before these symptoms can be detected clinically, biological changes occur. 

Abnormal aggregates of proteins form amyloid plaques and tau tangles in the brain. Once-

healthy neurons loose connections to their neuronal network and eventually die leading to 

shrinkage of brain tissue. Cerebral capillaries are also affected at early stages of the disease 

having their basement membrane thickening and intramural amyloid deposits [157]. These 

changes induce capillary lumen distortions and decreased microcirculation as shown in Figure 

6.1.B. 
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Figure 6.1. Sketch of a brain capillary surrounded by brain tissue in a normal brain and in case of 
AD. The drawing in (A) shows normal brain capillary with laminar flow (arrows) and optimal 
delivery of glucose (g), oxygen (o) and other proteins (p) to typical pyramidal neuron in CA1 
sector of the hippocampus. A few astrocytes may be seen in the normal aged brain. (B) Brain 
capillary in AD shows basement membrane thickening, intramural deposits of amyloid fibrils and 
structural distortions causing variability in the luminal diameter. The segments of capillary 
distortions characterized by stenosis and dilation of the lumen, cause blood flow to become 
disturbed and to strip molecules of glucose, oxygen and proteins from the cell free layer, thus 
depriving neurons of optimal energy substrate delivery. Adapted from De la Torre et al [157]. 

There is currently no cure for AD but treatments exist to help with cognitive and behavioral 

symptoms. An early diagnosis of AD would give patients and their families a better chance to 

prepare for the future. In addition, it would give patients greater opportunities to participate in 

clinical trials testing possible new treatments or in other research studies. 

6.1.2 Current imaging techniques used in clinics to diagnose and follow the disease 

There is no single test to diagnose AD. The National Institute on Aging and the Alzheimer’s 

Association published recommendations on diagnostic guidelines [158]. Initially, a clinical 

examination is performed including medical history screening, mental status testing, physical 

and neurological exams. Computed tomography or MRI can be used to rule out other causes of 

dementia. Then, only if the examination is conclusive are techniques measuring AD biomarkers 

used to confirm or infirm the diagnosis. But the institute does not advocate the use of these 

techniques for routine diagnosis because clinical criteria already offer good diagnostic accuracy 

and their too limited access. Imaging has the potential to play a major role in AD diagnose [159]. 

Structural MRI is able to measure brain atrophy which starts early and progresses with the 

disease [160]. Functional MRI is an indirect measure of neuronal activity and probes the 
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integrity of neuronal networks supporting memory and other cognitive domains which could be 

useful to evaluate a potential treatment of AD [161]. Fluorodeoxyglucose positron emission 

tomography (PET) is a biomarker of the overall brain metabolism [162]. Hypometabolism is 

observed when cognitive symptoms appear and can predict the rate of cognitive decline 

associated with AD. PET is also capable of imaging amyloid plaques [163]. ASL can measure 

brain atrophy along with regional cerebral hypoperfusion which was proven to be linked to 

glucose metabolism in AD patients [164],[165].  

6.1.3  Potential of IVIM in the study of Alzheimer’s disease 

IVIM is already used in the study of many brain pathologies such as cancer [166] and stroke 

[112]. Its application to Parkinson’s disease was recently proposed [114]. But IVIM has not yet 

been applied to the study of AD. IVIM benefits from all the advantages of MRI: its availability, 

safety because no ionizing radiation are used, etc. Economically, if we compare the costs of an 

imaging procedure with MRI (300 euros) against one with PET (1,200 euros including 

radiotracer), we cut down a lot the costs of the imaging sessions. PET also has limited 

availability and requires intravenous access and exposure to radioactivity. On the contrary, IVIM 

is completely non-invasive as no contrast agents are needed for its acquisitions. The closest 

competitor to IVIM is ASL. However, IVIM requires less RF power than ASL and is thus more 

adapted to repeated measurements (longitudinal studies). A key feature of IVIM diffusion MRI is 

that it does not involve contrast agents and it may serve as an interesting alternative to 

contrast-enhanced perfusion MRI in some patients with contraindications for contrast agents, 

such as patients with renal failure at risk for Nephrogenic Systemic Fibrosis (NSF) or patients 

requiring multiple MRI examinations, as gadolinium has been shown to accumulate in the brain. 

As seen in previous chapters, IVIM is also regionally specific and information rich as, within one 

acquisition, one can get diffusion and perfusion maps. Combining the information given by the 

evolution of the diffusion as well as the perfusion parameters, IVIM could be a valuable tool to 

detect and monitor AD evolution over time. 
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6.2 Material and methods 

6.2.1 Animal model 

The use of mouse models is beneficial in AD research as they are cheap to maintain, have short 

lifespans so symptoms appear faster and can target a single aspect of AD. Even if this aspect is 

not directly transferrable to humans, it is still useful to form a first hypothesis before expanding 

and testing it on more complicated models. They can also be used to test new treatments, using 

similar neuroimaging techniques that could be transferred to human studies in the future. 

In this thesis, a transgenic mouse model of AD, APP/PS1, was used. The full name of this model 

is APPswe/PS1dE9. These mice overexpress the Swedish mutation of the amyloid precursor 

protein (APP) and presenilin 1 (PS1) deleted in exon 9 [167]. These animals develop amyloid 

plaques that can be observed as early as 4–6 months of age with abundant plaques in the 

hippocampus and cortex by 9 months. The plaques keep increasing up to around 12 months of 

age [168]. Activated microglia and astrocytes surround the ever growing deposits starting 

around six months. Tangles are not typical in these animals. Evidence of amyloid deposition in 

the vessel segments’ membrane has been obtained for this model as early as 6 months of age 

[168]. An example of these deposits and the increase of their number over time in a 

representative vessel segment is shown in Figure 6.2. 

 

Figure 6.2. Illustrative example of amyloid angiopathy evolution, in a representative vessel 
segment of a 6-7-month old APP/PS1 mice. The imaging technique used is intravital multiphoton 
microscopy. Amyloid angiopathy deposits are shown in red and the angiogram in blue. The 
stains used are methoxy-XO4 and Texas Red dextran for amyloid plaques and vessel segments, 
respectively. (A) and (B) imaging sessions are separated by one week and the imaging session 
shown in (C) by 6 weeks from the one in (B). New senile plaques are observed in consecutive 
imaging sessions. Adapted from Garcia-Alloza et al [168]. 

APP/PS1 mice bred in the laboratory were used. As the breeding is quite recent, only 6-7-month 

mice could be scanned at the time the experiment was performed. The advantage of having an 

in-house breeding is that it is possible to follow the same mice longitudinally and monitor the 
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evolution of the disease. Additionally, as not all mice in the same litter are born with the 

disease, we have access to both APP/PS1 and control mice of the same age. Therefore six 6-7-

month APP/PS1 and control mice were scanned. 

To study the last stage of the disease, 21 to 24 months old APP/PS1 mice could be obtained 

from a collaboration with another research team and scanned as well. However, no control 

mice of the same age could be obtained. 

6.2.2 MRI experiments and data processing 

To take advantage of the cryoprobe available for the 11.7T MRI scanner in our laboratory, the 

experiments were performed on the 11.7T MRI scanner instead of the 7T MRI scanner. This 

cryoprobe dedicated to the study of the mice brain is a two-channel RF-coil cooled at 25 K which 

allows for a higher SNR compared to standard room temperature RF-coils allowing for higher 

spatial and temporal image resolution. 

The mice were first anesthetized with 3 % inspired isoflurane in a 1:2 O2:air mixture during their 

installation on the bed. A catheter was inserted subcutaneously on the back of the mouse. A 

thin tubing was connected to the catheter and to a syringe pump with the syringe containing a 2 

% medetomidine solution in NaCl. The isoflurane was then decreased to 2 %. After ensuring the 

animal was well positioned inside the scanner using scout scans, a bolus of medetomidine 

(Domitor, Pfizer, Karlsruhe, Germany) was injected to the animal using the syringe pump (0.092 

mg/kg, s.c.). A continuous subcutaneous injection of medetomidine (0.13 mg/kg/h) was started 

right away. Isoflurane was progressively decreased and stopped 10 minutes later. 

The design of this experiment is similar to the one already used in the previous chapters. To be 

able to distinguish well between the two vascular pools, a PGSE-EPI sequence with short TR was 

used. The acquisition parameters were set as follows: two diffusion gradient directions [X=1, 

Y=0, Z=0] and [X=0, Y=1, Z=0], = 3 ms, = 10 and 20 ms, in-plane resolution 150 x 150 μm², 

slice thickness 1 mm, 4 segments, TE/TR = 29/1000 ms, 2 averages, 6 repetitions, 9 slices, field 

of view 20 x 20 mm, matrix size 84 x 84, 29 b-values with 20 b-values in the range [2-500] s/mm² 

and 10 b-values in the range [600-2250] s/mm². ROIs were drawn manually in a selection of 

slices in three different regions: the cortex (Ctx), the hippocampus (Hp) and the striatum (St). 
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They are displayed in Figure 6.3. The same data processing scheme used for the previous 

experiments was also applied to this experiment. 

 

Figure 6.3. Example of the three ROIs drawn manually on the cortex (Ctx), the hippocampus (Hp) 
and the striatum (St). ROIs appear in white. 

6.2.3 Statistical analysis 

The statistical tests were performed using the R software [142]. To test if significant differences 

exist for the diffusion and IVIM parameters obtained for each ROI with the mouse type, control 

or APP/PS1 at the two different  = 10 and 20 ms, Student’s t-tests were used. Before 

performing the Student’s t-test, the assumptions of normality and homogeneity of variance 

were validated using Shapiro-Wilk and Bartlett’s tests, respectively. If the normality assumption 

was not met, the Wilcoxon rank sum test was used instead of the Student’s t-test. If the 

assumption of normality was met but not the one of homogeneity of variance, the Welch’s t-

test was performed. A p-value < 0.05 was considered statistically significant. 

6.3 Results and discussion 

6.3.1 Comparison of 6-month APP/PS1 and control mice 

For each diffusion and IVIM parameter, the mean values ± SD are gathered in Table 6.1 for each 

ROI,  and mouse type, control or APP/PS1. Both mouse populations are 6 to 7 months old. 

ROI Parameter 
Control mice APP/PS1 mice 

 = 10 ms  = 20 ms  = 10 ms  = 20 ms 

Ctx 

ADC0 
(10-4 mm²/s) 

6.40 ± 0.14 6.3 ± 0.3 6.48 ± 0.2 6.38 ± 0.12 

K 0.68 ± 0.02 0.53 ± 0.08 0.67 ± 0.03 0.53 ± 0.05 

fIVIM (%) 5.14 ± 0.37 5.4 ± 0.34 5.27 ± 0.63 5.59 ± 0.76 

ffast (%) 73.76 ± 4.37 62.38 ± 21.19 78.32 ± 3.57 69.89 ± 10.45 

D*slow 
(10-3 mm²/s) 

4.79 ± 0.88 6.35 ± 4.1 7.28 ± 5.34 6.26 ± 2.55 

D*fast 
(10-3 mm²/s) 

29.14 ± 4.3 23.85 ± 7.03 34.53 ± 8.11 24.07 ± 5.08 
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Hp 

ADC0 
(10-4 mm²/s) 

6.91 ± 0.14 6.78 ± 0.08 6.87 ± 0.13 6.83 ± 0.1 

K 0.75 ± 0.01 0.61 ± 0.04 0.72 ± 0.05 0.61 ± 0.03 

fIVIM (%) 5.92 ± 0.59 6.49 ± 0.66 5.61 ± 0.99 6.21 ± 1.15 

ffast (%) 40.55 ± 11.65 38.73 ± 11.05 42.45 ± 13.71 44.21 ± 18.86 

D*slow 
(10-3 mm²/s) 

4.39 ± 0.36 4.91 ± 0.41 4.91 ± 0.99 5.46 ± 1.69 

D*fast 
(10-3 mm²/s) 

19.5 ± 1.04 18.13 ± 1.16 22.32 ± 3.62 20.52 ± 5.23 

St 

ADC0 
(10-4 mm²/s) 

6.37 ± 0.26 6.28 ± 0.36 6.63 ± 0.26 6.46 ± 0.38 

K 0.79 ± 0.06 0.67 ± 0.06 0.82 ± 0.08 0.68 ± 0.07 

fIVIM (%) 4.42 ± 0.84 4.8 ± 0.85 4.49 ± 1.33 5.5 ± 1.48 

ffast (%) 38.28 ± 12.59 47.24 ± 11.39 37.27 ± 17.6 44.94 ± 17.57 

D*slow 
(10-3 mm²/s) 

4.19 ± 0.27 5.64 ± 3.12 4.32 ± 0.84 5.43 ± 2.89 

D*fast 
(10-3 mm²/s) 

23.34 ± 1.94 23.51 ± 7.23 25.94 ± 4 25.16 ± 8.84 

 
Table 6.1. Mean ± standard deviation of the diffusion and IVIM parameters for the three ROIs, 

cortex (Ctx), hippocampus (Hp) and striatum (St), the two  = 10 and 20 ms and the mouse type, 
control (NM = 6) or APP/PS1 (NM = 6). 
 

No significant difference was found between the two mouse populations at any of the -values 

suggesting that neither diffusion nor IVIM parameters are able to distinguish between APP/PS1 

and control mice at the age of 6 months. IVIM may not be able to detect a difference at 6 

months of age but it would be interesting to scan these mice again at 9 months of age and also 

correlate the results with histology measurements to get information on the location of the 

amyloid plaques at that age. 

Having the possibility to scan 21 to 24 months APP/PS1 mice, we also looked at the capability of 

IVIM imaging to monitor the evolution of the disease. 

6.3.2 Comparison of young and old APP/PS1 mice 

Five 21 to 24 months old APP/PS1 mice were imaged and compared to the six 6 to 7 months old 

APP/PS1 mice already presented in the previous subsection. Table 6.2 displays the mean ± 

standard deviation of the diffusion and IVIM parameters for the three ROIs, the two  and the 

two ranges of age. 



166 
 

ROI Parameter 
Young APP/PS1 mice Old APP/PS1 mice 

 = 10 ms  = 20 ms  = 10 ms  = 20 ms 

Ctx 

ADC0 
(10-4 mm²/s) 

6.48 ± 0.2 6.38 ± 0.12 6.31 ± 0.12 6.07 ± 0.27 

K 0.67 ± 0.03 0.53 ± 0.05 0.74 ± 0.03 0.57 ± 0.03 

fIVIM (%) 5.27 ± 0.63 5.59 ± 0.76 4.63 ± 0.43 5.21 ± 0.42 

ffast (%) 78.32 ± 3.57 69.89 ± 10.45 79.54 ± 10.62 65.55 ± 18.95 

D*slow 
(10-3 mm²/s) 

7.28 ± 5.34 6.26 ± 2.55 4.39 ± 2.1 4.19 ± 1.5 

D*fast 
(10-3 mm²/s) 

34.53 ± 8.11 24.07 ± 5.08 35.31 ± 9.45 19.16 ± 3.62 

Hp 

ADC0 
(10-4 mm²/s) 

6.87 ± 0.13 6.83 ± 0.1 6.94 ± 0.22 6.78 ± 0.28 

K 0.72 ± 0.05 0.61 ± 0.03 0.79 ± 0.04 0.64 ± 0.05 

fIVIM (%) 5.61 ± 0.99 6.21 ± 1.15 5.94 ± 1.3 7.55 ± 2.4 

ffast (%) 42.45 ± 13.71 44.21 ± 18.86 30.37 ± 3.57 39.55 ± 15.57 

D*slow 
(10-3 mm²/s) 

4.91 ± 0.99 5.46 ± 1.69 5.23 ± 0.6 5.05 ± 1.03 

D*fast 
(10-3 mm²/s) 

22.32 ± 3.62 20.52 ± 5.23 22.3 ± 2.93 17.33 ± 4.02 

St 

ADC0 
(10-4 mm²/s) 

6.63 ± 0.26 6.46 ± 0.38 6.28 ± 0.16 6.23 ± 0.21 

K 0.82 ± 0.08 0.68 ± 0.07 0.84 ± 0.04 0.77 ± 0.08 

fIVIM (%) 4.49 ± 1.33 5.5 ± 1.48 3.75 ± 0.92 5.02 ± 1.38 

ffast (%) 37.27 ± 17.6 44.94 ± 17.57 40.56 ± 20.35 56.14 ± 20.56 

D*slow 
(10-3 mm²/s) 

4.32 ± 0.84 5.43 ± 2.89 4.66 ± 1.03 6.97 ± 3.52 

D*fast 
(10-3 mm²/s) 

25.94 ± 4 25.16 ± 8.84 27.56 ± 6.04 24.96 ± 9.57 

 

Table 6.2. Mean ± standard deviation of the diffusion and IVIM parameters for the three ROIs, 

cortex (Ctx), hippocampus (Hp) and striatum (St), the two  = 10 and 20 ms and the APP/PS1 
mouse age, young between 6 and 7 months (NM = 6) and old between 21 and 24 months (NM = 
5). 
 

Significant differences with the mouse age were found only for 𝐴𝐷𝐶0 and 𝐾. The p-values of the 

statistical tests are displayed in Table 6.3. 

ROI 
ADC0 K 

 = 10 ms  = 20 ms  = 10 ms  = 20 ms 

Ctx 0.15 0.035 0.010† 0.16† 
Hp 0.53 0.75† 0.048 0.18 
St 0.026 0.23 0.58 0.090 
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Table 6.3. P-values of Student’s t-test corresponding to ADC0 and K for the two -values, 10 and 
20 ms and the three ROIs, cortex (Ctx), hippocampus (Hp) and striatum (St). † indicates that the 
Wilcoxon rank sum test was used instead of Student’s t-test. P-values < 0.05 are highlighted in 
red. 

A significant difference can be found in 𝐴𝐷𝐶0 with the mouse age in the cortex for  = 20 ms 

and in the striatum for  = 10 ms but not in the hippocampus. In these regions, 𝐴𝐷𝐶0 decreases 

with increasing mouse age. 

𝐴𝐷𝐶0 is expected to increase in AD patients compared to controls because of loss of myelin and 

damage to cell membranes consequently increasing the extracellular spaces available for the 

water molecules to diffuse in [169]. Significant increases in 𝐴𝐷𝐶0 have been observed in AD 

patients compared to controls in many different brain regions including the hippocampus and 

the frontal and parietal GM [170]. However, comparing young and old APP/PS1 mice, our study 

shows a decrease in 𝐴𝐷𝐶0 in aged mice. The studies found in the literature always compare 

APP/PS1 mice with control mice of the same age, maybe there is a trend at the late stages of 

the disease of 𝐴𝐷𝐶0 to decrease. This trend would have to be confirmed by scanning more 

animals in the two populations and control animals of the same age. 

𝐾 is also significantly different with the mouse age in the cortex and the hippocampus for  = 10 

ms. It increases with the mouse age. Reports from the literature using diffusion kurtosis imaging 

(DKI) had observed such an increase in the cortex comparing 16-month old APP/PS1 and control 

mice but no significant difference in the hippocampus [171]. 

However, no significant difference is observed with the IVIM parameters with the mouse age. 

The best way to analyze the data would have been to compare the 21-24 month-APP/PS1 mice 

to control mice of the same age. Unfortunately, we could not scan control mice of that age. 

Maybe, if this comparison had been performed, differences in IVIM parameters would have 

been seen between APP/PS1 and control mice. Nevertheless, more animals would need to be 

scanned to confirm the results obtained here by comparing diffusion parameters as some of 

them are in disagreement with the literature. 
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6.4 Conclusion 

IVIM has the potential to help in the diagnosis and monitoring of the evolution of AD because it 

is able to extract diffusion as well as perfusion parameters from the imaged tissues. The study 

performed here was not able to detect a difference in IVIM/diffusion parameters with the 

APP/PS1 mouse model used at 6 months of age. Control mice of 21 to 24 months old would 

have to be scanned and compared to the 21 to 24-month APP/PS1 mice to confirm the findings 

presented in this chapter on the diffusion parameters. This study would also benefit from a 

larger number of scanned animals. Other parameters such as fractional anisotropy or even 

perfusion anisotropy could also be studied to better characterize the disease. They can both be 

measured using IVIM. IVIM still has much to offer and the application of this technique to 

diseases involving impairments of the microcirculation should be continued. 
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Chapter 7: Summary and conclusion 

The final chapter of this thesis gives a summary, discusses some of the limitations of this work 

and possible improvements before exposing leads for future work and ending with a general 

conclusion. 

7.1 Summary 

Throughout this thesis, we have sought to give a better understanding of the origins of the IVIM 

signal using mathematical modelling, numerical simulations and experimental validation. In 

summary, we have demonstrated that the IVIM technique is sensitive to more than just water 

protons flowing in the capillary network. The IVIM signal is better described by a bi-exponential 

model representing the combination of two vascular pools. One of them, the slow pool, 

corresponds to the capillary network and is characterized by a slower blood velocity than the 

other pool, the fast pool, which is thought to be related to larger vessels, possibly medium-size 

arterioles and venules. The influence of acquisition parameters on the IVIM signal model 

parameters was also studied. At short repetition times compared to the 𝑇1 of blood, the 

contribution of the fast flowing blood vessels to the signal attenuation is increased due to inflow 

effects. Therefore, 𝑓𝐼𝑉𝐼𝑀 and 𝑓𝑓𝑎𝑠𝑡 tend to be overestimated at short TRs. Using the STE instead 

of the SE pulse sequence allows to go to longer diffusion times and be less sensitive to inflow 

effects. However, 𝑓𝑓𝑎𝑠𝑡 might be underestimated using the STE sequence. As the bi-exponential 

IVIM model converges into the mono-exponential IVIM model at long diffusion times, one 

should use short diffusion times in order to measure 𝑓𝑓𝑎𝑠𝑡, 𝐷𝑠𝑙𝑜𝑤
∗  and 𝐷𝑓𝑎𝑠𝑡

∗ . Finally, the IVIM 

technique with the proposed bi-exponential model was applied to the study of AD in an 

APP/PS1 mouse model. No significant difference in the diffusion or IVIM parameters was 

obtained between 6-month control and APP/PS1 mice. When comparing young and old APP/PS1 

mice, significant differences were obtained for the diffusion parameters, ADC0 and K. In 

accordance with previous reports from the literature, K increases with the APP/PS1 mouse age 

in the cortex and the hippocampus, although not reported in the literature for the latter. 

However, in our study, 𝐴𝐷𝐶0 decreases whereas it has been shown to increase in the literature. 

No significant difference has been shown in the IVIM parameters with the mouse age. These 
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results need further confirmation and a follow-up of the same mice at different ages along with 

control mice of the same age would maybe reveal the potential of the IVIM technique to study 

the appearance and follow-up of this disease. 

7.2 Limitations and possible improvements 

This work is subject to several limitations. Some of them are detailed in this section and ways to 

deal with them are suggested. 

7.2.1 Experimental protocol: anesthesia 

One major variable directly impacting the blood flow which was not discussed before in this 

thesis is the anesthesia. All actions and impacts of anesthetics are still not completely well 

understood. However, their effect on the cerebral blood flow has been extensively studied. 

Anesthetics have different effects depending on their type.  

During this thesis, two different anesthetics were used: isoflurane and medetomidine. Like the 

other inhaled anesthetics, isoflurane allows for a better control over the length and depth of the 

anesthesia, as opposed to injectable anesthetics [172]. It is believed to be safe and easy to 

maintain with a quick and uneventful recovery. However, inhaled anesthetics produce a dose-

dependent increase in CBF [173]. This effect is more pronounced with isoflurane than with 

other inhaled anesthetics. On the contrary, medetomidine is an injectable anesthetic which 

requires intravenous or subcutaneous access. It causes vasoconstriction of the cerebral arteries 

which leads to reduced CBF [174]. These effects of the two anesthetics have also been observed 

during this thesis as TOF-MRA images under both anesthetics could be acquired on a mouse on 

the 11.7T. 

Two examples of the maximum intensity projection rendering of a 3D-TOF MRA sequence of a 

mouse brain are given in Figure 7.1. For the left image, the sequence was acquired with the 

mouse under isoflurane anesthesia while it was under medetomidine anesthesia for the right 

image. We observe that the vessels are less visible in the image on the right compared to the 

image on the left. 
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Figure 7.1. Maximum intensity projection of a 3D-TOF MRA sequence of a mouse brain acquired 
on the 11.7T scanner with two different anesthesia conditions: (A) isoflurane and (B) 
medetomidine. 

Differences between these two anesthetics have already been observed by Ciobanu et al [175]. 

They show that changes in physiological parameters such as CBF, tissue oxygenation and 

vasodilation cause differences in the vessel-tissue contrast in 𝑇2
∗-weighted images. In TOF 

images, as vessels with higher blood flow and thus larger lumen diameter generate higher 

vessel-tissue contrast, the difference between our two images is most likely due to the dilation 

and constriction effects of isoflurane and medetomidine, respectively. Additionally, as the CBF is 

altered, the oxygen level is likely to change as well. As a result, the 𝑇2 value of the vessel pool 

varies and this can be another explanation for the difference observed between the two images. 

As such, one has to keep in mind that, for animal experiments, the anesthetic used can 

influence the results obtained. During this thesis, the rat experiments were performed under 

isoflurane anesthesia. Most of the results obtained did not need an absolute quantification of 

the perfusion parameters so the choice of anesthetic was not essential. However, the values 

obtained for the blood flow velocities of the two pools after the comparison with the dictionary 

of simulated signals might be overestimated due to the vasodilation effect of isoflurane. As the 

goal of the mouse study was to observe a significant difference in the perfusion parameters and 

the vasoconstrictor effect of medetomidine is less pronounced than the vasodilatory effect of 
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isoflurane, isoflurane was replaced by medetomidine anesthesia for these series of 

experiments. 

Recently, another intravenous anesthetic has been proposed: etomidate [176]. It acts rapidly 

and basal CBF values were found to be substantially lower when compared to isoflurane. This 

anesthetic has been shown to be compatible for use in more mouse strains than medetomidine. 

Etomidate could also be a good alternative to isoflurane and be used on more mouse strains 

than medetomidine. 

7.2.2 Data analysis: diffusion coefficient of water in blood 

In this work, a constant value for the coefficient of water in blood, 𝐷𝑏, has been assumed. 

However, its value varies with  and the size of the vessels [154]. 

In blood, water can be located inside the plasma, the RBCs and the macromolecules. However, 

the movement of the macromolecules is slow so the diffusion of the macromolecules can be 

neglected. Depending on the value of  and the vessel diameter, 𝑑, water exchanges between 

the RBCs and the plasma need to considered or can be neglected. The one-dimensional 

diffusion distance can be expressed as √2𝐷∆ with 𝐷 the diffusion coefficient along this 

dimension. When √2𝐷∆< 𝑑, exchanges can be neglected as only a small number of molecules 

hit the cell walls. On the contrary when √2𝐷∆> 𝑑, many molecules hit the cell walls and the 

exchange rate between the RBCs and the plasma needs to be taken into consideration. The 

exchange rate is most likely different between vessels of the two pools as the difference in 

blood flow velocities and shape of the RBCs are likely to impact its value. The value for 𝐷𝑏 can 

influence both  𝐷𝑠𝑙𝑜𝑤
∗  and 𝐷𝑓𝑎𝑠𝑡

∗  values and it would be interesting to measure it properly. 

7.2.3 Improvements of the numerical simulations 

Branching of vessels was not considered in the simulations but it is important to really describe 

the complexity of microvascular networks. Hierarchical structures as presented in section 

1.3.4.2 could be used as a first approximation to model the branching of vessels. 

As our bi-exponential IVIM model also includes a fast flowing pool, a laminar flow velocity 

profile should be used when modelling the IVIM signal of the fast pool. A way to mathematically 
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model flow with a laminar velocity profile has already been proposed [177]. It would be 

relatively straightforward to add this change in flow velocity profile to the simulations. Also, 

plasma viscosities and RBC folding effects could be taken into account when laminar flow is 

considered.  

Additionally, the vessel lumen diameter could be added as a structural parameter in the 

simulations. A relationship between the vessel lumen diameter and the blood velocity would be 

needed to keep coherence with a real vascular network. For example, a model inspired from the 

network models of flow impedance for cardiovascular applications could be used [178]. A 

laminar flow profile could be imposed from a certain diameter value. All vessels with a diameter 

above this threshold diameter would be associated with a laminar flow profile. 

Section 1.3.4.2 highlighted the importance of diffusive transport for a vascular network to be 

fully functional. Although in IVIM, exchanges with the extravascular space are neglected, it 

could be relevant to take them into account and simulate them in pathologies for which the BBB 

is impaired, i.e. in cancers. 

7.3 Future work 

Advances in the understanding of the origins of the IVIM signal have opened the door to more 

possible applications for the IVIM technique. Being sensitive to the capillaries and larger vessels 

smaller than arteries gives IVIM advantages over techniques such as MRA which are only 

sensitive to large vessels. Imaging techniques usually study either the capillaries or the very 

large vessels and not the medium-size vessels. It can be interesting for example to follow a 

disease which first affects the capillaries and then spreads to medium-size vessels and diagnose 

the disease with some kind of grading. IVIM could help diagnose for the right type of vasculitis 

which can affect small as well as large vessels. The proposed bi-exponential model could provide 

additional information about diseases already studied with IVIM such as for cancer and stroke. 

Animal experiments would clearly benefit from a study on the effects of anesthetics on the 

values of the IVIM parameters. It would help choose the right anesthesia best matching to each 

study. 
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Now that we have established that the IVIM technique consists of two pools with different 

vascular characteristics, it would be interesting to better model the IVIM signal by applying the 

improvements suggested in the previous section to the numerical simulations. This would allow 

for a better description of the second vascular pool and help monitor changes in the blood 

velocity of this second pool as well. With the current simulations and acquisition parameters, 

we have not been able to give precise estimations of the segment length. Other strategies could 

be considered, such as combining the data acquisition from multiple diffusion times in a model 

like Kennan’s or acquire data with long diffusion encoding times and compare them to 

simulated data. To get further information from the networks, joint IVIM and ASL acquisitions 

could be considered [179] or the use of flow-compensated and non-flow-compensated 

gradients [117]. These different acquisitions schemes could also be simulated. 

Finally, the results obtained in the study of APP/PS1 mice need confirmation and a longitudinal 

study of the disease would help understand the changes operating in the aging AD model. At 

each step, comparison with control mice would be needed to assess that the changes observed 

are not the result of normal aging. 

7.4 General conclusion 

The IVIM technique has a great potential to help diagnose and monitor diseases involving 

disruption of the microvascular network. The many advantages of the IVIM technique make it fit 

to image patients with contraindications for contrast agents or requiring repeated MRI 

examinations. The goal of this thesis has been to improve our understanding of the technique 

and take a few more steps toward the realization of this potential. The application of IVIM to 

the study of AD needs further investigation to really determine its potential. But the proposed 

bi-exponential model for the IVIM signal raises interest for the more complete study of 

numerous diseases such as cancer, stroke and other neurodegenerative diseases with IVIM.  
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  Titre : IVIM : Modélisation, validation expérimentale et application à des modèles animaux 
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Résumé : Cette thèse porte sur l’étude de la 

séquence d’imagerie IRM IVIM (« Intravoxel 

incoherent motion »). Cette séquence permet 

l’étude des microvaisseaux sanguins tels que 

les capillaires, artérioles et veinules. Pour être 

sensible seulement aux groupes de spins non 

statiques dans les tissus, des gradients de 

diffusion sont ajoutés avant et après 

l’impulsion 180° d’une séquence d’écho de 

spin. La composante du signal correspondant 

aux spins qui diffusent dans le tissu peut être 

séparée de celle des spins en mouvement dans 

les vaisseaux sanguins qui est appelée signal 

IVIM. Ces deux composantes sont pondérées 

par 𝑓𝐼𝑉𝐼𝑀 qui représente la fraction volumique 

du sang à l’intérieur du tissu. Le signal IVIM 

est en général modélisé par une fonction mono-

exponentielle (ME) caractérisée par un 
 

coefficient de pseudo-diffusion 𝐷∗. Nous 

proposons un modèle IVIM bi-exponentiel 

formé d’une composante lente caractérisée par 

𝑓𝑠𝑙𝑜𝑤 et 𝐷𝑠𝑙𝑜𝑤
∗  qui correspondrait aux 

capillaires comme dans le modèle ME, et d’une 

composante rapide caractérisée par 𝑓𝑓𝑎𝑠𝑡 et 

𝐷𝑓𝑎𝑠𝑡
∗  qui correspondrait à des vaisseaux plus 

gros comme des artérioles et veinules. Ce 

modèle a été validé expérimentalement et des 

informations supplémentaires ont été obtenues 

en comparant les signaux expérimentaux avec 

un dictionnaire de signaux IVIM simulés 

numériquement. L’influence de la séquence 

d’impulsions, du temps de répétition et du 

temps d’encodage de diffusion a également été 

étudiée. Enfin, la séquence IVIM a été 

appliquée à l’étude d’un modèle animal de la 

maladie d’Alzheimer. 
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Abstract: This PhD thesis is centered on the 

study of the IVIM (“Intravoxel Incoherent 

Motion”) MRI sequence. This sequence allows 

for the study of the blood microvasculature such 

as the capillaries, arterioles and venules. To be 

sensitive only to moving groups of spins, 

diffusion gradients are added before and after 

the 180° pulse of a spin echo (SE) sequence. 

The signal component corresponding to spins 

diffusing in the tissue can be separated from the 

one related to spins travelling in the blood 

vessels which is called the IVIM signal. These 

two components are weighted by 𝑓𝐼𝑉𝐼𝑀 which 

represents the volume fraction of blood inside 

the tissue. The IVIM signal is usually modelled 

by a mono-exponential (ME) function and 

characterized by a pseudo-diffusion coefficient, 

D*. We propose instead a bi-exponential IVIM 

model consisting of a slow pool, characterized 

by 𝑓𝑠𝑙𝑜𝑤 and 𝐷𝑠𝑙𝑜𝑤
∗ , corresponding to the 

capillaries as in the ME model, and a fast pool, 

characterized by 𝑓𝑓𝑎𝑠𝑡 and 𝐷𝑓𝑎𝑠𝑡
∗ , related to 

larger vessels such as medium-size arterioles 

and venules. This model was validated 

experimentally and more information was 

retrieved by comparing the experimental signals 

to a dictionary of simulated IVIM signals. The 

influence of the pulse sequence, the repetition 

time and the diffusion encoding time was also 

studied. Finally, the IVIM sequence was 

applied to the study of an animal model of 

Alzheimer’s disease. 
 


