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Chapter1

Introduction

1.1 Background

Wood has been an important construction material utilized in the building and shipbuil-
ding industries for many centuries, due to its excellent mechanical properties, such as
hardness, lightness and sustainability. Nowadays, wood and wood-based products are still
commonly used and the opportunities for the materials to gain market share is likely to
increase. Indeed, they offer excellent solutions for the new trends in building designs : the
requirements for good thermal performance and the use of renewable materials, resulting
in a low carbon footprint in the life cycle of buildings [1, 2]. Because of the good thermal
performance as well as the simple manufacturing processes, the energy consumption is
reduced not only in the construction stage but also in the use stage. However, as a bio-
based material, wood is easily degraded by organisms, such as insects [3], fungi [4], and
bacteria [5]. Among these organisms, fungi are the primary cause of the wood decompo-
sition, as they are very efficient in activating decay mechanisms and capable of surviving
in complex environments owing to the highly-branched networks. They can also develop
protective mechanisms against adverse conditions, like the generation of chlamydospore.
In the forest ecosystems, wood decay fungi play an essential role in degradation of organic
matter and cycling of the nutrient elements, and therefore it is critical in the global carbon
balance. On the other hand, the fungal decay in lumber structures is of major concern in
relation to the building service life as well as to human safety. They degrade the main
supporting components, such as cellulose and lignin, and hence increase the chance of
mechanical failure. Fig. 1.1 shows some examples of fungal decay on wood in buildings.
Every year an enormous amount of wood and wood-based products, including those in
storage as well as in service, are destroyed by fungal decay. Especially, throughout Eu-
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Chapter 1 Introduction

rope and North America, the brown rot fungi are the most common and destructive within
buildings due to their rapid wood decay mechanisms [4].

Figure 1.1 – Examples of fungal decay on wood in buildings [6, 7].

Whether to protect wood against bio-degradation or to predict the service life of lumber
structures, it is fundamental to investigate the fungal growth mechanisms. A great amount
of research has been performed on fungal morphogenesis, decay mechanisms, impact of
environmental factors, etc. Recently, great attention was paid to mathematical modeling.
Such modeling tools are likely to supplement costly and tedious experimental studies and
are absolutely required for service life to be accounted from the design stage. Mathema-
tical modeling has played a significant part in expanding the understanding of the growth
and function of the fungal mycelium. For example, the capacity of simulating and pre-
dicting the fungal growth in different conditions provides an efficient tool to understand
fungal morphology in different conditions, to protect wood against biotic factors and to
predict the service life of lumber structures.

1.2 Objective and strategy

This thesis proposes an original upscaling strategy to derive an efficient tool for modeling
fungal decay in wood-based materials. As reported by [8], the aim of mathematical mode-
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Objective and strategy Section 1.2

ling is to reduce a complex biology system to a simpler mathematical description which
can be used to investigate and identify the key characteristics of complex biological phe-
nomena. To simplify the biological system into a formulation of reasonable complexity, it
is essential to determine what has to be included and what can be omitted, which depends
on the specific biological issues to be addressed. In our work, we are interested in the mor-
phology and the distribution of hyphal density as a function of time. Therefore, the main
growth mechanisms should be included and the growth parameters should be calibrated.
Thus, an experimental observation was performed to determine and quantify these para-
meters. All these steps allowed a discrete model to be imagined, which is able to generate
the mycelial network and was precisely validated by experimental observation. Finally,
a continuous model was derived to perform the transition of modeling fungal growth in
porous media from the local scale (free-growth conditions) to the macro-scale (equivalent
medium of a locally heterogeneous medium).

As mentioned above, this work uses experimental microscopic observations to propose
a modeling of fungal growth at three successive scales : i) discrete mycelial network in
homogeneous media at the colony scale, ii) continuous mycelial growth in free-growth
conditions and iii) continuous fungal growth in porous media at the macro-scale. The de-
tailed strategy of this work is shown in Fig. 1.2, while Table 1.1 proposes some represen-
tative images along with this modeling strategy. In this work, the complexity of modeling
gradually shifts from an explicit description of growth mechanisms in the discrete model
to an implicit account of these mechanisms, but inside a complex geometry for the conti-
nuous model. Since it is essential to establish an approach to model the simplest case of
mycelial growth to explore its basic growth characteristics, we focused on the growth of
a single strain of mycelium in a homogeneous environment. Postia placenta was selected
as the fungus of interest according to the European standards (CEN/TS15083-1 [9]). It
is one of the most common brown rot fungi found in wood that is currently in service
[10, 11, 12]. The genome of this species was sequenced and its secretome was analyzed
[13]. Furthermore, the decay mechanisms and the impact of environmental factors on its
growth rate have been also studied [14, 15, 16]. However, there are no publications repor-
ting the visualization of mycelial structures and quantitative measurement of the growth
characteristics of Postia placenta. Thus, a laboratory experimental study of the growth of
Postia placenta was conducted as a basis for experimental inputs of our modeling work.
The temporal evolution of a colony on an agar medium was observed using confocal laser
scanning microscopy (CLSM). The growth parameters and statistical properties quanti-
fied in the observation were used to calibrate and validate our discrete model, the second
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Chapter 1 Introduction

step of the work, the structuring step of our modeling approach. A lattice-based approach
was chosen in this discrete model which incorporated the main growth behaviors of my-
celia observed in the experiment as well as those described in the literature. The validated
model was able to reproduce the intricate coupling between spatial invasion and network
densification. In addition, this model also has the potential to account for different envi-
ronmental factors by embedding tropisms and/or by modifying the growth statistics, such
as elongation and branching. The third step consists in deriving a continuous model for
simulating the fungal growth in a porous medium. Two successive upscaling steps were
included : i) to derive an equivalent continuous formulation from the radial biomass den-
sity simulated by the discrete model and ii) to derive an equivalent macroscale model by
inverse analysis of the averaged fields simulated at the local scale of the heterogeneous
medium.

Figure 1.2 – Strategy of the thesis work.

1.3 Outline

This thesis is structured in four parts following the strategy mentioned above :

• Chapter 2 describes the basic concept of wood and wood-decay fungi. The visua-
lization technique to observe mycelia using confocal laser scanning microscopy, is
introduced as well as its applications in the research of mycology. In addition, the
mathematical models on fungal growth are reviewed.
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Outline Section 1.3

Table 1.1 – Graphic summary of the thesis work.

Experiment Discrete model
Continuous model

1D 2D

Local scale in
homogeneous

media

Local scale in
porous media

Macro-scale
in porous

media

• In Chapter 3, the experimental study of the growth of Postia placenta is presented.
A colony of Postia placenta was visualized using CLSM during 17 days. The mor-
phological characteristics, such as tip extension rate, branching angle and segment
length (the length between two adjacent branch/anastomosis sites along one hypha),
were measured and analyzed. These experimental results were used to calibrate and
validate the discrete model depicted in Chapter 4.

• Chapter 4 presents the discrete model developed to mimic the temporal evolution
of a mycelial network, which explicitly incorporated the main growth behaviors of
hyphae, including hyphal elongation, branching and anastomosis. Different growth
conditions were reproduced via tropisms which influenced the tip growth direction,
especially the thigmotropism which provides the potential to simulate the myce-
lial growth in structurally heterogeneous media. The validation of this model was
implemented through the experimental data from Chapter 3.

• Chapter 5 proposes a continuous model capable of simulating the spatial develop-
ment of fungi in porous media at the macro-scale. This model consists of a reaction
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diffusion (RD) system and was derived by two successive upscaling steps from the
results of the validated discrete model. The first step was to identify an equivalent
RD equation from the radial biomass density of a mycelial network as simulated
by the validated discrete model. Then, this equation was used to simulate the fun-
gal growth in 2D periodic porous media. The computed local fields were averaged
to obtain macroscopic biomass density fields, which were used to derive an equi-
valent macroscopic formulation (RD model and relevant parameters) for different
morphologies of periodic porous media.

• Chapter 6 presents the conclusion of this work and proposes the possible future
work.
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Chapter2

Literature review

This chapter starts with the basic concepts of wood anatomy and fungal decay, which
are required as basic knowledge of this thesis work. After this general information, the
remaining sections are devoted to the applications of confocal laser scanning microscopy
(CLSM) and mathematical modeling of fungal growth, the two main families of scientific
tools used in this work.
In section 2.1, the anatomical structure of wood is depicted as well as the wood-based
products in the building industry. Then, the morphology of wood-decay fungi and the
impact of environmental factors on their growth is described in section 2.2, where three
wood rot types and the corresponding fungi are presented as well. A brief introduction of
the principle of CLSM and its application in the research of mycology is given in section
2.3 namely to assess fungal growth. Finally, a state-of-the-art of mathematical modeling
on fungal growth, especially at the local scale and the macro-scale, is presented in section
2.4.
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Chapter 2 Literature review

2.1 Wood

2.1.1 Wood structure and composition

Wood is a porous and fibrous structural tissue found in the stems and roots of trees. It
can be classified into two categories, softwoods and hardwoods. Softwoods, from gym-
nosperm trees, have a relatively homogeneous structure, which consists primarily of tra-
cheids and uniseriate xylem rays. The tracheids insure two main function of plant stems :
mechanical support and water diffusion. On the contrary, hardwoods, from angiosperm
trees, have a more complex structure. The dominant feature separating hardwoods from
softwoods is the presence of vessels that act as water conducting elements, while fibers
and fiber-tracheids play the role of mechanical strength and support [17].

As this work deals with brown rot fungi which are predominantly associated with gym-
nosperms like Norway spruce [18], the anatomical part will be devoted on the structure of
gymnosperms. As a consequence of seasonal changes in growth, the tree produces wood
with a high porosity and the wood cells with thin walls (earlywood, more efficient for sap
ascent) at the beginning of the vegetative period, whereas latewood is denser and with a
thicker wall, more efficient for mechanical support (Fig. 2.1(a)). Most of the cells either in
earlywood or latewood are tracheids (90− 95%) which have the shape of small elongated
tubes [19]. The average length of a Scandinavian softwood (Norway spruce) tracheid is
approximately 2−5 mm and its width is 20−40 µm [20, 21]. The hollow void inside them
is called the lumen which contains the living cell before lignification and serves for water
transport in wood. The sap flow between two adjacent cells is achieved through a system
of bordered pits.

The wood cell wall is composed of three main layers that consist of different ratios of
cellulose, hemicelluloses and lignin [21] (Fig. 2.1(b)). Hemicelluloses are branched ma-
cromolecules that play an important role in connecting cellulose fibrils together. Finally,
lignin forms the matrix of this natural nano-structured composite. The primary (P) wall is
the proper cell wall which is a thin layer and contains a large amount of lignin. A much
thicker secondary wall, subdivided into three layers, S1, S2 and S3, is added to the pri-
mary wall during lignification which marks the death of that living cell. The S1 layer is
adjacent to the primary wall with a thickness of 0.1−0.2 µm and contains cellulose micro-
fibril of which orientation is more or less perpendicular to the cell axis (70◦ − 90◦) [23].
The S2 layer is much thicker (ca. 1 µm in earlywood and ca. 5 µm in latewood) and forms
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Wood Section 2.1

Figure 2.1 – Schematic illustration of (a) the anatomical pattern of softwood [20], and (b) cell wall
with five layers : the middle lamella (ML), the primary wall (PW), the three-layer secondary wall
(outer (S1), middle (S2) and inner layer (S3)), and the lumen [22].

the main portion of the cell wall. It consists of cellulose microfibrils, linked by branched
hemicelluloses and lignin, that spiral around the axis of the cell (0◦ − 30◦) and contributes
mostly to the mechanical strength in the longitudinal direction. In the thin layer of S3, the
microfibrils orientation to the cell axis is 60◦ − 90◦ [24]. The walls of adjacent cells are
bonded through a layer rich in lignin called the middle lamella (ML).

2.1.2 Wood material

As a building material, wood cumulates several advantages. From an ecological point of
view, wood is the perfect example of a sustainable product : it is renewable and carries the
lowest carbon footprint of any comparable building material. Moreover, no high-energy
fossil fuels are required to produce wood, unlike other common building materials such as
aluminum, brick, steel or plastic. In terms of construction, wood is remarkably rigid and
strong, both for tensile and compression loading, in relation to its density. Since wood is
highly machinable, it can be processed into many wood-based materials, shapes and sizes
to fit practically any construction need. In addition, among the structural materials, wood
presents the best thermal properties and presents interesting acoustic properties. Thus,
due to this unique combination of properties, wood and wood-based products are used in
various applications, such as framing, flooring, wall coverings, ceilings and furniture.
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Chapter 2 Literature review

Depending on the application, wood material in the building industry can be classified
into ordinary lumber/timber and engineered wood (Fig. 2.2). The lumber and timber are
simply produced from logs by sawing and are distinguished by theirs dimensions. Pieces
of wood that are smaller than 5 inches (12.7 cm) wide by 5 inches thick (regardless of
length) are generally referred to as lumber, while those over 5 inches wide by 5 inches
thick (regardless of length) are named as timber. Furthermore, any timber pieces that ex-
ceed 8 inches (20.3cm) wide by 8 inches thick are referred to as beams. As timber pieces
are larger in dimension, they are often used to construct the frames of large structures
such as buildings and bridges. Engineered wood belongs to the family of wood-based
products. They are produced by a deconstruction of wood in more or less small parts
(veneers, chips, particles, fibers etc.) that are processed together to form a new material,
generally via an adhesive. Common examples of engineered wood include :

• Plywood is made from three or more thin layers of wood veneer glued together
to form a thicker and flat sheet which has a wide range of applications, such as
flooring, beams, wall cladding and furniture. Comparing with lumber or timber,
plywood is more flexible in manufacturing and presents an excellent dimensional
stability as a result of the cross-orientation of veneers.

• Glued laminated timber (i.e., glulam) is a type of structural engineered wood
product composed of wood laminations that are bonded together with durable,
moisture-resistant adhesives. Glulam has greater strength and stiffness than com-
parably sized dimensional timber. Moreover, due to its composition, glulam can be
manufactured from a variety of smaller trees and allows more design flexibility than
traditional timber construction.

• Oriented strand board (OSB) is formed by adding adhesives and compressing
layers of wood strands in specific orientations and is commonly used for load-
bearing applications due to its high mechanical properties.

• Fiberboard is made of wood fibers in different fashion to obtain different densi-
ties. The common use of low-density fiberboard is the insulation of sound and heat,
while the denser ones are heavily used in the furniture industry.
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Figure 2.2 – The two major categories of wood-based construction products manufactured from
tree logs : timber/lumber and engineered wood.

2.2 Wood decay fungi

2.2.1 Morphology

Wood decay fungi are a group of multi-cellular fungi that digest damp wood. Their ve-
getative part, the mycelium (Fig. 2.3 (a)), is a dense network consisting of filamentous
structures called hyphae (Fig. 2.3 (b)). Fungal hyphae are essentially tubular in shape,
surrounded by a rigid wall that separates the fungus from the external environment. De-
pending on the type of fungus, hyphae can be one large multi-nucleated cell devoid of
inner cross-walls called septa (e.g., zygomycete hyphae) or can have septa between indi-
vidual cells (e.g., ascomycete and basidiomycete hyphae) [25]. Generally, septa are per-
forated by pores allowing ribosomes, mitochondria and sometimes nuclei to flow between
cells. According to the type of hyphae, their diameter reaches from 0.1 − 0.4 µm for the
microhyphae (e.g., Phellinus pini) to 60 µm for the vessel hyphae in the mycelial strand
(cord) (e.g., Serpula lacrymans), with an average for vegetative hyphae of about 2− 7 µm
[4].

Hyphae typically emerge from germinating spores, other reproductive structures (e.g.,
sclerotia) or hyphal fragments. With few exceptions, hyphae elongate strictly by apical
deposition of wall skeletal polysaccharides, especially chitin and β-glucans [26]. This ex-
tension occurs as new materials added to the cell wall at the extreme apex and is driven
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Figure 2.3 – The mycelium of the filamentous fungi, Postia placenta, formed by tubular cells
(i.e., hyphae) with an averaged diameter of 3 µm. The images were visualized using confocal laser
scanning microscopy.

by turgor pressure. This hyphal morphogenesis is linked with the existence of a special
structure called Spitzenkörper which is found at the apex of hyphae of ascomycetes and
basidiomycetes and plays a crucial role in the growth and orientation of hyphal tips. It
is described as a complex, multicomponent structure dominated by vesicles which are
bubble-like objects storing and transporting substance for the formation of the cell walls
[27].

Additional important features of hyphal morphogenesis include branching formation [28]
and anastomosis (i.e., hyphal fusion) [29]. Due to branching, new hyphae emerge from
preexistent ones to form the network structure of the mycelium and increase its surface
area. Hyphal fusion is a mechanism in which two hyphae fuse and exchange cytoplasmic
contents. It appears to be important for intra-hyphal communication, translocation of wa-
ter and nutrients, and general homeostasis within a colony [30].

2.2.2 Physiology

The growth of wood decay fungi as well as their damage to wood are influenced by va-
rious physical, chemical and biological factors, such as nutrients, water, air, temperature,
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pH value, light, electrical fields, physical contact and interaction with other organisms
[4, 31, 32, 33, 34]. The most important and common factors, such as nutrients, moisture
content, temperature, oxygen and pH value are discussed below :

• Nutrients
Wood fungi are heterotrophic and hence need a source of carbon from organic ma-
terial. Regarding nutrients, wood-decay fungi digest and absorb carbon from the
complex, main components of the woody cell wall, cellulose, hemicelluloses and/or
lignin. It is widely accepted that fungi growing in low-nutrient conditions adopt an
’exploratory’ phase during which new emerged branches are largely suppressed
[35].

• Moisture content
Water is used for the uptake of nutrients, transport within the mycelium and as
a solvent for metabolism. The critical limit of water activity for fugal growth on
wood is around 75 − 80% (which is also the ambient air humidity in equilibrium
conditions) and the growth is more rapidly at higher humidity [36]. However, there
is evidence indicating that too much water does prevent fungal development as de-
monstrated by the conservation of organic matter in permanently saturated environ-
ments like lake sediment [37].

• Temperature
Generally, the minimum temperature for survival of wood-decay fungi is at 0 C◦

because no liquid water is available below the freezing point, while the maximum
temperature for mycelial growth and wood damage is often at 40 − 50 C◦ due to
the denaturation of the enzymes by heat. The optimum lies between 20 − 40 C◦

depending on species ([4] and references therein).

• Oxygen
Wood-decay fungi are aerobic organisms and therefore need oxygen. Fungal ac-
tivity is therefore affected by the composition of the surrounding gaseous phase.
Usually wood decay decreases at low O2 and high CO2 content. Nevertheless, some
wood-degrading basidiomycetes, (one of two large phyla, together with ascomy-
cetes, that constitute the "higher fungi"), are tolerant of a high CO2 content, since
they grow well at 70% CO2 [38].

• pH
The pH value influences germination of spores, mycelial growth and enzyme acti-
vity for wood degradation. The optimum for wood-decay fungi is often in a slightly
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acidic environment of pH 5 − 6 [39]. Basidiomycetes have an optimum span of pH
4 − 6 and a total range about 2.5 − 9. Ascomycetes may tolerate more alkaline sub-
strates to about pH 11.

2.2.3 Wood decay types

Wood-decay fungi are typically classified into three types : white rot, brown rot and soft
rot [4]. They are nominated after the outward appearance of the decayed wood and es-
sentially distinguished by the different decay mechanisms. Wood attacked by white rot
fungi takes on a fibrous appearance and tends to go slightly lighter in color. As shown in
Fig. 2.4(a)(b), these fungi can either degrade cellulose, hemicelluloses and lignin at the
same time and at a similar rate, or decompose lignin faster than the other two components
[40, 41]. Brown rot and soft rot fungi are chemically similar as both of them decompose
cellulose and hemicelluloses with little lignin attack. However, their decay pattern to the
wood cell wall is different. Typically, brown rot fungi grow inside the cell lumen and
they are in close contact with the S3 layer of the wood cell wall. The ectoenzymes pro-
duced by brown rot fungi are diffused into the S2 layer (the thickest layer that consists
mainly of cellulose and hemicelluloses) and cause rapid degradation of this layer without
decomposing the highly lignified middle lamella and S3 layer [42] (Fig. 2.4(c)). Due to
the rapid decomposition of cellulose, the wood dimensions are significantly reduced. The
wood cracks into crumbly cubes because of shrinkage and the remaining modified lignin
gives the decayed wood a "brown" color. Unlike brown rot, soft rot causes a spongy tex-
ture on the wood surface. The distinguishing feature of soft rot fungi is that they grow
mainly inside the wood cell wall. Around the penetration hyphae, cavities are formed and
developed with the apical growth of these hyphae, which breaks down the secondary wall
gradually as shown in Fig. 2.4(d). The decay features of these three types of wood decay
fungi are summarized in Table 2.1.

Among these wood decay fungi, brown rot fungi are typically associated with gymno-
sperm trees (e.g., conifers), which is the major source of timber used in construction in
the Northern hemisphere [18]. In this region, a large part of wood in service is destroyed
due to brown rot fungi. The present work is focused on this type and for simplicity, a
species of brown rot fungi, Postia placenta, was selected.
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Figure 2.4 – Schematic showing micro-morphological features of different decay types. (a) Si-
multaneous rot by Fomes fomentarius, a white rot fungus : degradations occur in the vicinity of
abundant hyphae growing with the lumen and the cell wall is progressively degraded from the
lumen outwards. (b) Selective delignification by Heterobasidion annosum, a white rot fungus :
low molecular weight substances (shown as dots) diffuse into the secondary wall from hyphae
growing in the lumen to degrade hemicellulose and lignin within the secondary wall as well as
ML, but remaining cellulose intact. (c) Brown rot by Fomitopsis pinicola : low molecular weight
substances are secreted by hyphae growing on the S3 layer and diffuse radially into the cell wall
to degrade hemicellulose and cellulose in the secondary wall. S3 and ML remain intact due to the
involvement of abundant lignin. (d) Soft rot by Kretzschmaria deusta : decay hyphae diffuse into
the secondary wall with parallel orientation to that of the cellulose microfibrils in the S2 layer.
Cavities are formed by these decay hyphae and the secondary wall is nearly completely broken
down [41].

2.3 Visualization of mycelial growth using CLSM

Visualization and observation of mycelia has been performed using different devices
accessible at the laboratory scale. The common techniques include optical microscopy
[44, 45, 46] and electron microscopy [47, 48]. Classical optical microscopy permits rapid
observation of many staining specimens with moderate preparation, but is constrained by
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Table 2.1 – Decay patterns of the three types of wood decay fungi [43].

Brown rot White rot Soft rot

Simultaneous rot
Selective

delignification

Host
Especially in

coniferous trees

Broad-leaved trees,
but seldom in

conifers

Broad-leaved trees
and conifers

Extensive decay in
living broad-leaved

trees

Fungi Basidiomycetes
Basidiomycetes

and Ascomycetes
Basidiomycetes

and Ascomycetes
Ascomycetes

Degradation
Cellulose and
hemicellulose

Cellulose, lignin
and hemicellulose

First lignin and
hemicellulose,
later cellulose

Cellulose and
hemicellulose ;
lignin slightly

Consistency
Fragile, powdery,
brown ; cracks and

clefts
Brittle Fibrous (stringy) Brittle

Strength
Drastic reduction
of bending and
impact strength

Brittle
Less drastic than in

brown rot
Between brown

and white rot

sample thickness and provides only two-dimensional information. Electron microscopy
has a large field depth able to produce images free of focus blur, but samples need to
be dehydrated, resulting in inactivating living samples and preventing time-laps observa-
tions. Alternatively, confocal laser scanning microscopy (CLSM) enables non-destructive
methods to observe fungal growth and realize three-dimensional imaging at a high resolu-
tion. In order to visualize and analyze the mycelial growth on a solid medium, the CLSM
was applied in our work.

2.3.1 Principle of CLSM

CLSM is a powerful tool for generating 2D and 3D images (stack of confocal images) with
high resolution in using fluorescence in photonics imaging. The key feature of CLSM is
its ability to produce blur-free images of thick specimens at various depths. The principle
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for this kind of microscopy was built by Marvin Minsky in 1955 and then it took another
thirty years to be developed as a standard technique toward the end of the 1980s [49].

Fig. 2.5(a) is a simplified schematic showing the structure of CLSM and how CLSM
works. One or more laser beams of a specific wavelength are directed through a dichroic
mirror to the laser scanning mirrors, and then they are focused by a series of objective lens
to a small diffraction-limited spot at the focal plane in the specimen. The fluorescence (at
a wavelength longer than the illumination light) emitted by the illuminated spot is filte-
red by the pinhole and an emission filter, and finally is detected by a photomultiplier tube
(PMT). The decisive design feature of a CLSM compared with a conventional microscope
is the confocal aperture called a pinhole arranged in a plane conjugate to the object plane
of the microscope. As a result, only the light coming from the confocal plane can be de-
tected by PMT (Fig. 2.5(b)). When the diameter of the pinhole is sufficiently small, the
light detected looks like a point. The illuminated spot in the specimen and the observed
point are situated in conjugate planes, which is called a confocal beam path. Thus, only
one point in the specimen is detected and the entire image is visualized point by point
by a scanning process. The functions of the principal optical components are depicted as
follows :

• Laser system
The advantage of the laser instead of a source of white light is to provide a more
specific monochromatic light with high intensity and is easy to control in terms
of filtering. The lasers used in Zeiss LSM700 CLSM (which we applied in our
experiment) are solid-state lasers with wavelengths of 405 nm, 445 nm, 488 nm,
555 nm and 639 nm, respectively.

• Dichroic mirror
A Dichroic mirror spectrally separates light by transmitting and reflecting light as
a function of wavelength. Typically, it allows a certain range of colors to be trans-
mitted and reflects the others. In the CLSM, it is used to separate the emitted light
from the excited light.

• Laser scanning mirrors
As a result of its principle, a CLSM realized a point-to-point scanning of the spe-
cimen in the x − y plane. This is ensured by two orthogonal mirrors with accurate
motion to control the x and y movements of the laser beam.

• Pinhole
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The pinhole is used to reject the light coming from the specimen points outside
the focal plane before the detection. By varying the pinhole diameter, the degree
of confocality can be adapted to practical requirements. Generally, the size of the
pinhole is automatically adjusted by CLSM to the optimal width according to the
objective used. However, we can artificially regulate its size in the special case (e.g.,
weak signals can be offset by enlarging the opening to collect more light).

Figure 2.5 – (a) Schematic of principle of CLSM; the blue lines denote the laser beams and the
red lines represent the fluorescence emitted by the specimen. (b) Placed in the conjugate plane, the
pinhole eliminates the light coming from any specimen point outside the focal plane.

2.3.2 Fluorescent dyes

CLSM uses fluorescence emitted by the specimen to generate images. Some samples, like
wood, possess the intrinsic fluorescence, called auto-fluorescence, which can be directly
observed using CLSM by choosing the best laser lengthwise. In the absence of sufficient
auto-fluorescence, the sample should be labeled by fluorescent dyes or expressed by fluo-
rescent proteins. Each fluorescent dye responds to a special excitation wavelength and
emits a corresponding emission wavelength. Some dyes can be used as vital dyes and
others may inhibit or be toxic to the living specimen. Note that some high concentration
of vital dyes also can influence the growth of living specimen. Furthermore, while stai-
ning, the concentration of dyes influences directly the quality of images. Overall, in order
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to realize successful imaging, a fluorescent dye should be carefully selected in considera-
tion of its excitation and emission spectra, quantum efficiency, tendency to photo-bleach
as well as the organelle stained and its impact to the living specimen.

2.3.3 Imaging capabilities

With a CLSM, it is possible to image a thin optical slice in good contrast out of a thick
depth (up to 100 µm), known as optical sectioning. CLSM allows an automatic collec-
tion of a series of optical sections at pre-chosen intervals along the z-axis. The interval
between successive optical sections can be different of the optical section thickness (lar-
ger or smaller) depending on the visualization requirement. The optical sections recorded
at different z-planes of the specimen can be reconstructed to a 3D image. The quality of
this image depends on the thickness of the slice and the spacing between successive slices.

Moreover, if the scan rate is sufficiently fast regarding the phenomena to be observed, a
time series of images can be recorded to realize the observation of the dynamic changes
of the living specimens. If necessary, reducing the image size and changing the scan mode
can reduce significantly the scan rate. Again, CLSM can automatically scan the specimen
with the same frequency in a pre-chosen period of time. When the frequency reaches a
sufficiently high rate (at least 30 frames per second), a real-time imaging can be achie-
ved. In addition, the fluorescent dyes have a selectivity on staining organelles, such as
cell walls, membrane and nuclei. Due to a special multichannel PMT in CLSM, of which
each channel can possess different laser sources and detect different fluorescent signals, it
is possible to distinguish different parts of the specimen.

2.3.4 Application of CLSM

Due to the numerous capabilities of CLSM mentioned above, it is widely applied in fun-
gal research for visualization of their shape, size, morphology and internal structure. One
of the common applications is to investigate the growth behaviors of hyphae and help un-
derstand the mechanisms by using various vital fluorescent dyes ([50, 51] and references
therein). For example, the vital fluorescent dyes combined with membranes are widely
used in investigating the patterns and the dynamics of hyphal growth behaviors, like the
distribution of the vacuoles, the migration of Spitzenkörper and the movement of the mito-
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chondrial during hyphal elongation, branching formation and hyphal fusion [52, 53, 54].
Fig. 2.6(a) shows the flow of organelles of the stained hyphae to a non-stained hypha
during hyphal fusion. Cell wall stains allowed the relationship between branch sites and
hyphal septa to be observed [28]. The cytoskeleton has been also a major subject yielding
new information on the spatial and temporal organization of microtubules in growing hy-
phae and in relation to cell wall formation [55, 56] (Fig. 2.6(b)).

Figure 2.6 – Examples of the investigation on hyphal growth dynamics in using CLSM with vi-
tal fluorescent dyes : (a) Tip-to-side hyphal fusion between hyphae of two mycelia differentially
stained with FM1-43 to investigate the flow of organelles between the two hyphae [54] ; (b) Mi-
crotubular cytoskeleton in growing hyphal tip labeled with GFP [55].

Advanced imaging capabilities, like 3D reconstruction and Multichannel technique, make
it possible to observe the fungal growth within biological materials as well, like plant roots
or wood, and quantify the hyphal growth characteristics. M. Schubert (2014) developed
the 3D filamentous growth of Physisporinus vitreus in Norway spruce wood by applica-
tion of two channels with different excited lights and separating the signals respectively
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emitted by labelled hyphae and wood [57] (Fig. 2.7(a)). The visualization of arbuscular
mycorrhizal fungal structures in living roots have been realized in using CLSM as well as
the quantification of their surface area and volume [58, 59] (Fig. 2.7(b)).

Figure 2.7 – Examples of the 3D reconstruction of hyphae in using CLSM : (a) Transverse section
of Norway spruce heartwood (green) colonized by hyphae (white) of Physisporinus vitreus [57] ;
(b) Paris-type coil of Scutellospora calospora in Lilium sp. [58].

2.4 Mathematical modeling of fungal growth

Mathematical modeling is a powerful tool to investigate mycelial growth, which is com-
plementary to the costly and tedious experimental studies. It is a description of a system
using mathematical concepts and languages. The objective of a mathematical model is to
reduce a complex (biological) system into a simpler model, able to reproduce, or even
better predict, partly the real system. A recurrent question regarding modeling is to dose
(carefully consider) the degree of simplification : too complex, a model is difficult to solve
and needs to be fed by many parameters, too simple, the model is no longer capable of
relevant predictions or realistic simulations. Indeed, the gap is often huge from a cognitive
model to an operational model. Fungi are in general very difficult to study in their natural
habitats by using experimental methods alone due to their complex growth mechanisms
and the extremes of spatial scales. Although fungal hypha is only a few microns in dia-
meter, the indeterminate growth habit of the mycelium can produce massive organisms
(one colony of Armillaria gallica covers over 15 hectares of forest [60]). As a comple-
mentary and efficient tool to laboratory experiments, mathematical modeling is capable
of mimicking and forecasting the behaviors of mycelial growth on various scales and give
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a deeper insight into the intricate interactions between fungi and their environment.

In general, three scales are classified in modeling mycelial fungi : micro-scale, colony
scale and macro-scale. The development of hyphal tips is the main focus in the research
at the microscale (Fig. 2.8(a)), ranging from simple geometrical models [61, 62] to so-
phisticated mechanical ones ([63] and references therein). In geometrical models, the in-
crease in the wall area of an advancing hyphal tip is balanced with the incorporation of
wall building material without specifying the details of underlying biological processes.
Besides, mechanical models aim at capturing the tip growth through a proper description
of the physical stresses and strains experienced by the growing hypha. The colony-scale
models produce centimeter-colony (Fig. 2.8(b)) by considering the development of fun-
gal hyphae via both discrete [64, 65, 66, 67, 68] and continuous modeling approaches
[69, 70, 71]. The discrete models focus on the behaviors of individual hypha and the mor-
phology of mycelial networks, while the spatial distribution of hyphae is represented by
the continuous ones depending on various environmental factors. At the macro-scale, the
interaction of fungi with their environment is the main objective of modeling. Examples
include the modeling of fungal crop pathogens [72, 73], the production of fungal bio-
mass by consumption of nutrients [74], the transmission of the fungal infection [75] and
the fungal decay in bio-based materials [76]. As we are interested in models on mycelial
growth and fungal decay in wood which describes at the macro-scale the global damage
assessment, some examples of the colony-scale and the macroscale modeling approaches
are presented below.

Figure 2.8 – Difference between modeling at the (a) microscale, which models the growth of the
hyphal tip [63], and (b) at the colony scale, which models the mycelial network [77].
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2.4.1 Colony-scale models

2.4.1.1 Discrete models

In discrete models, individual hypha is identified to mimic mycelial networks in incor-
porating hyphal growth behaviors. Two sub-groups can be further divided : lattice-based
and lattice-free models. The former approach arranges the mycelium in a predetermined
lattice, while in the latter one, a collection of connected line segments constitute the my-
celium. Both approaches have advantages and disadvantages. The lattice-based approach
restricts the topology of the network by the lattice, so that the mycelium constructed
possesses a regular geometry which may fail to sufficiently capture the complex beha-
vior exhibited, like the representation of mycelial growth in response to various tropisms.
However, the regular geometry makes this approach more efficient, computationally, in
comparison with lattice-free modeling because there are a finite number of orientations
adopted and a finite number of rules governing the development of the biomass struc-
tures. Except for shortage in computational efficiency, the lattice-free models apply global
growth rules of hyphae rather than the underlying mechanisms of hyphal growth, resulting
in difficulties in testing hypotheses concerning changes of growth dynamics. The advan-
tage of lattice-free models is the production of lively morphology indistinguishable from
the real mycelium due to the non-constrained orientations of the line segments. Some mo-
dels in adopting the two approaches are presented below.

Lattice-based models

In the lattice-based models, a regular lattice is used as the geometrical basis for develo-
ping mycelial network by formulating a series of stochastic rules applied on the nodes of
the lattice. Ermentrout and Edelstein-Keshet (1993) [64] used a cellular automata (CA)
method to develop a “solidification” model on a square-lattice to produce fungal growth
patterns. The basic rule was that once a node was occupied, it remained occupied. This
was also called a “bond” model. The growth mechanisms were tip splitting as a means
of growth and cross-linking as a way to limit over-growth. Despite the simple growth
mechanisms, a variety of networks were constructed capturing fractal-like structure of
mycelium in uniform growth conditions (Fig. 2.9).

Another CA model (i.e., a hybrid CA model) was developed by Boswell et al. (2007)
[65]. Its key feature was the simultaneous use of a combination of “cell” models (which
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Figure 2.9 – Mycelial networks constructed in uniform growth conditions by Ermentrout and
Edelstein-Keshet (1993) [64] : the probability of tip splitting and of tip inactivation is higher in (a)
than in (b).

were used for modeling substrate and hyphal tips) and “bond” models (which were used
for modeling hyphae). The mycelium was modeled using a triangular lattice embedded
in a hexagonal lattice used to model the substrate distributions. More complex growth
mechanisms were incorporated into the model in considering nutrient translocation and
the relationship between nutrients concentration and hyphal growth. This enabled simula-
tion of the growth of hyphal networks in response to heterogeneous environments. Some
examples of mycelial growth in various environments are shown in Fig. 2.10.

Smith et al. (2011) adopted a novel approach network automata (NA) to describe the dis-
tribution of resources within the mycelial network [78]. In contrast to CA, in which the
state of each node in the lattice evolved according to its own state and that of its neigh-
borhood, in the NA, the connections in network were updated at each time step. Such
an approach was particularly suitable in coupling the topological network to a dynamic
process occurring upon the network.

The models presented above were all bi-dimensional, which generated mycelial networks
on a x − y plane. The three-dimensinal (3D) models were also developed using a lattice-
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Figure 2.10 – Simulations of mycelial growth (in black or in red) in various environments in
Boswell et al. (2003) [71] : (a) homogeneous environment, (b) with located food sources (blue),
and (c) soil-like environment.

based approach. For example, a 3D version of the hybrid CA model was constructed by
Boswell (2008) [79] in focusing on the formation of mycelia in soil-like systems using a
face-centered cubic (FCC) lattice (Fig. 2.11). Another 3D model, developed by Coradin
et al. (2011) [66], simulated the growth of the aerial hyphae to further understand the role
of filamentous fungi in solid state fermentation processes.

Lattice-free models

The first attempt to develop a lattice-free model for branching networks was conducted
by Cohen (1967) [80]. The networks consisted of unit segments via a set of simple growth
and branching rules. Filamentous fungi were considered as one of the applications of this
model, which created a template for the construction of numerous models afterwards.

Based on this model, Yang et al. (1992,1992a) developed a hybrid model that generated
an explicit network of mycelial microorganisms in incorporating apical growth, septation
and branching [81, 82]. Part of the rules governing branching and hyphal tip extension
were based on fundamental cellular and physical mechanisms. The result of this model
corresponded closely to the observation in experiments.

A related approach was adopted by Meskauskas et al. (2004,2004a) [67, 77] to develop
a Neighbor-Sensing model which brought together the basic essentials of hyphal growth
kinetics into a vector-based model. This model considered the impact of various tropisms,
including negative autotropism, galvanotropism and gravitropism, to hyphal growth and
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Figure 2.11 – The evolution of the mycelial network (black) expanded in a soil-like environment
with time : (a) t = 0, (b) t = 0.05, (c) t = 0.1, (d) t = 0.15, (e) t = 0.2, (f) t = 0.25, (g) t = 0.3,
(h) t = 0.35, and (i) t = 0.4 day. The ’soil particles’ were colored according to their z-coordinate
(Boswell (2008) [79]).

could simulate various morphology of mycelium as well as complex fungal fruit body
shapes in 3D space (Fig. 2.12).

Another lattice-free model was developed by Carver and Boswell (2008) [83] in incor-
porating anastomosis and the interconnected nature of mycelium. During each timestep,
every tip could extend a fixed distance with a probability that increased with the internal
substrate concentration and in a direction normally-distributed from its previous orien-
tation. Hopkins and Boswell (2012) [68] extended this model to allow the simulation of
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Figure 2.12 – Examples of (a) hyphal growth patterns and (b) fungal fruit body shape in the
Neighbor-Sensing model developed by Meskauskas et al. (2004,2004a) [67].

planar growth in arbitrary nutritional conditions (Fig. 2.13). An important advance was
the application of a biased circular random walk to model tip orientation in response to
the tropisms that existed in the growth environment. In using this process, the manner
in which the bias of the reorientation of hyphal tips can be easily calibrated so that the
mycelial growth in a range of conditions could be simulated.

In addition to the models mentioned above, Fuhr et al. (2011) developed a lattice-free mo-
del aiming at investigating fungal growth in wood [84] (Fig. 2.14). An important part of
the model was to construct a simplified wood structure which was a network of tracheids
connected by bordered pits (nutrient source). The complex fungal growth was reduced to
a pit-to-pit growth. The model enabled the analysis of the effects of microscopic parame-
ters, such as the degradation rate and degree of opening of pits, on macroscopic system
properties as well such as penetration depth of the fungus, biomass, distribution of des-
troyed pits in early- and late-wood and the alteration of the permeability.
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Figure 2.13 – Example of planar growth of mycelium in Hopkins and Boswell (2012) [68] : (a)
Initial setup for two instances (i) and (ii) ; darker line segments denote higher internal substrate
concentration and circles denote supplementary resource sites. (b) Final mycelial structures after
a further 2-day growth.

2.4.1.2 Continuous models

The continuous approach is ideal when modeling dense mycelia, such as growth in Petri
dishes or on the surfaces of solid substrates. In continuous models, mycelium is viewed in
some sense as an average of the individual components, such as biomass density and tip
density. Sets of differential equations were derived to represent the interaction of fungal
biomass with the growth conditions. In a series of papers, reaction advection models were
derived to link the microscopic behavior of hyphae to the behavior of the fungal colony
[69, 85, 86]. The variables of these partial differential equations denoted hyphal density,
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Figure 2.14 – Example of hyphal growth in wood simulated by the model in Fuhr et al. (2011)
[84].

hyphal tip density and substrate concentration. However, in the 2D advection process, the
orientation of the tips and the hyphae should be explicitly defined, which augments the
mathematical complexity especially in heterogeneous media.

An advanced approach was developed by Davidson (1998) and, Davidson and Olsson
(2000) for the development of the fungal mycelium in nutritionally heterogeneous en-
vironments [70, 87]. In these models, movement of hyphae is represented by diffusion
rather than by advection. The biomass density, the external substrate concentration and
the internal substrate concentration were modeled to investigate the interaction of the my-
celium with its environment. Both passive and active translocation was considered via
reaction-diffusion equations.

More recently, Boswell et al. (2002,2003) derived a fungal growth model by combining
the work mentioned above [88, 71]. The model in Boswell et al. (2003) consists of five
variables : active hyphal density m(x, t) ; inactive hyphal density m

′

(x, t) ; hyphal tip den-
sity p(x, t) ; internal substrate concentration si(x, t) ; and external substrate concentration
se(x, t). The interactions between the components of the model are given by a system of
advection-diffusion equations, which were obtained through standard mass conservation
laws :

∂m
∂t

=
∣∣∣Dpsi∇p + vsi p∇m

∣∣∣ − dam, (2.1a)

45



Chapter 2 Literature review

change in active hyphae = new hyphae created by tip movement - hyphal inactivation,

∂m′

∂t
= dam − dim′, (2.1b)

change in inactive hyphae = hyphal inactivation - hyphal collapse,

∂p
∂t

= ∇ · (Dpsi∇p + vsi p∇m) + bsim − f mp, (2.1c)

change in hyphal tips = random and directed tip movement + branching - anastomosis,

∂si

∂t
= ∇ · (Dim∇si − Damsi∇p) + c1sise − c2

∣∣∣Dpsi∇p + vsi p∇m
∣∣∣ − c4 |Damsi∇p| ,

(2.1d)

change in internal substrate = diffusion and active translocation + uptake - growth costs
of hyphal extension-active translocation cost,

∂se

∂t
= De∇

2se − c3sise, (2.1e)

change in external substrate = diffusion of external substrate - uptake.

(2.1f)

where Di, Da, De and Dp denote respectively the coefficient of internal substrate diffu-
sion, internal substrate active translocation, external substrate diffusion and tip diffusion
per unit substrate ; v, b, f , di and da represent tip rate, branching rate, anastomosis rate, hy-
phal degradation rate and hyphal inactivation rate ; c1, c2, c3 and c4 are the rate of internal
substrate acquisition through uptake, cost of hyphal extension, rate of external substrate
depletion through uptake and translocation costs, respectively. The model was calibra-
ted by an experiment of the growth of Rhizoctonia solani and some simulated results are
shown in Fig. 2.15. Furthermore, based on this model, Boswell (2012) has investigated
the competition between two fungal colonies growing into a nutrient-free domain, depen-
ding on numerous factors produced by the interaction of the two colonies [89].

2.4.2 Macroscale models

Non-spatial models (0D models) are widely used in simulating the fungal damage of wood
and wood-based products. Various models have been established to reflect the influence
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Figure 2.15 – Hyphal density (cm hyphae cm−2) distributed in two different tessellations modeled
by Boswell et al. (2003) [71]. (The black and white discs respectively denote droplets made from
glucose-supplemented and unsupplemented agar.)

of fungal decay on the performance of wood under different environmental conditions.

A basic model for timber decay above ground was derived from the field test data to simu-
late the progress of fungal decay depth in a timber element as shown in Fig. 2.16 [90]. The
decay depth was approximated by an idealized bilinear relationship characterized by the
decay rate and the duration of a decay lag. The decay rate was assumed to be the product
of different factors accounting for the effects of material, construction and environmental
conditions, and the decay lag was a function of the decay rate.

Another common approach (i.e., the dose-response model) was proposed for modeling
the service life of wooden specimens decayed by brown, white and rot fungi [91, 92].
This approach describes the change on an organism caused by differing levels of doses to
a stress effect after a certain exposure time. These models were established on the basis
of field tests carried out at different sites in Europe over 3 − 8 years. The daily dose was
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Figure 2.16 – Progress of fungal decay depth with time used as the basic model for timber decay
in Wang et al. (2008) [90].

a function of daily average moisture content and daily average temperature, and the total
dose was simply the cumulative sum of the daily dose. The response to the total dose was
the mean decay rating. Fig. 2.17 shows the sigmoid curves depicting the logistic regres-
sion functions between the dose parameters and the different types of fungal decay rating.

Viitanen et al. (2010) [93] used also the dose-response relationship to develop an empiri-
cal model for decay of Scots pine and Norway spruce by a brown rot fungus Coniophora
puteana. This model was based on laboratory test data (i.e., the small samples under
constant conditions). The mass loss of wood (WML) caused by fungal decay was expres-
sed as a function of the relative humidity (RH), the temperature (T) and time (t) (Eq. 2.2).
One simulated result is shown in Fig. 2.18.

WML(RH,T, t) = −42.9t− 2.3T − 0.035RH + 0.14T · t + 0.024T ·RH + 0.45RH · t (2.2)

Non-spatial growth models can reproduce the decay for different species of wood and
wood-decay fungi during a long time period under various climatic conditions as long
as the experimental test data exist. However, as the essential decay mechanism is not ta-
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Figure 2.17 – Relationship between dose and mean decay rating fitted by field tests data in Bri-
schke and Meyer-Veltrup (2015) [92]. The dots represent the field tests data of different softwood
species dominated either by brown rot decay and exposed shaded or non-shaded or dominated by
white and soft rot decay ; each dot denotes the mean decay rating for one exposure site at a certain
exposure time.

Figure 2.18 – The evolution of wood mass loss by fungal decay at different ambient air humidity
conditions by Viitanen et al. (2010) [93]. Samples are small untreated pine sapwood decayed by
Coniophora puteana at a constant temperature of 15◦C.

ken into consideration, a comprehensive learning database is necessary for each species
of fungi and type of wood (the decay in preservative-treated wood is different from the
decay in nature wood). This is a constraint in view of the great cost in time for all the
measurement.

In consulting the model constructed by Cunniffe and Gilligan (2008) [75], we noticed
that the scaling from the mechanistic interpretation of mycelial growth to the macroscale
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transmission fungal infection in plants could be realized via a spatial fungal growth mo-
del combined with an epidemiological model. A simple reaction diffusion system was
used to simulate the spread of mycelial in 1D space depending on the level of nutrients
(Fig. 2.19(A)). The cumulative probability of infection of a target host was expressed as
a function of the nutrient and the spatial fungal biomass (Fig. 2.19(B)).

Figure 2.19 – 1D spatial fungal growth and the probability of fungal infection modeled by Cunniffe
and Gilligan (2008) [75]. (A) (a) Total biomass, (b) level of nutrient, (c) spatial extent of colony
and (d) profile of biomass density in 1D space ; (B) the probability of infection as a function of
initial distance of the fungal inoculum from the host and time.

Although it is still a major challenge to link information across scales, the modeling at
the local scale can provide a link between the microscopic behaviors of hyphae and large-
scale form of fungal distribution and function. In particular, the discrete models presented
explicitly the growth dynamics of hyphae, while the continuous approach can be the key
to realize the transition from the local scale to the macro-scale.

2.4.3 Conclusion

In this chapter, we presented a survey of the two main families of scientific tools used
for investigating the fungal growth : experimental observation and mathematical mode-
ling. Among the visualization tools, CLSM is an excellent technique for the observation
of living fungal specimens with certain thickness in comparing with conventional optical
microscopy and electron microscopy. It has been widely used to observe the morphology,
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size, internal structure and growth mechanisms of fungi via various fluorescent staining
techniques. Nevertheless, there are no publications of a systematic study on quantification
of the morphological characteristics of Postia placenta at the microscopic scale. In view
of the necessity of the growth parameters needed in our fungal growth model, the first step
of this thesis work focused on the observation and measurement of the growth parameters
of Postia placenta in using CLSM.

In terms of fungal growth modeling, the models at two scales have been respectively pre-
sented : spatial growth at the colony scale and global development at the macro-scale.
Two approaches have been presented at the colony scale : discrete and continuous mo-
deling. The discrete models are divided into two categories, lattice-based and lattice-free
modeling. The former possesses a high computational efficiency but constraint the geo-
metrical morphology of the generated mycelium by the lattice. On the contrary, realistic
mycelial networks can be obtained with the latter approach, at the price of high computa-
tional costs. Alternatively, the mycelium can be also viewed as continuous variables and
simulated using partial differential equations. The early models were based on reaction-
advection equations. However, in multi-dimensional space, the advection process requires
the development direction to be known at each point, which limits the prediction ability
of the code and/or augments the mathematical complexity especially in heterogeneous
media. Thus, the recent models applied diffusion process instead of the advection one to
model the movement of hyphae. At the macro-scale, non-spatial models are widely used
in assessing the fungal damage of wood and wood-based products under different envi-
ronmental conditions. These models were established based on a comprehensive database
for each species of fungi and type of wood but not the essential fungal decay mechanisms,
leading to a great constraint by the experimental data.

In this work, after the first step of fungal observation, a discrete model has been deve-
loped to model the fungal growth at the colony scale using the lattice-based approach.
A new algorithm developed for this model eliminates any geometrical restriction of the
lattice directions. Therefore, it is able to generate realistic mycelial networks yet keeping
the simplicity of lattice models, namely in accounting for complex geometrical shapes.
Thanks to experimental observation, the model parameters have been precisely defined
via a blend of direct calibration and inverse analysis. By accounting for elongation, bran-
ching and anastomosis, it is able to reproduce the intricate coupling between spatial inva-
sion and network densification. Moreover, the tropism mechanism has been also incorpo-
rated, which permits the simulation of mycelial growth in complex environments. Then, a
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continuous model of fungal development under free growth conditions was derived from
the radius biomass density obtained from the validated discrete model. This continuous
model was established based on a reaction-diffusion equation, which captured well the
front-like progression of hyphal movement. A transition from local-scale to macroscale
development of fungi in periodic porous media has been realized via this continuous mo-
del. The 1D macroscopic field was averaged from the local field simulated in 2D porous
media and was used to derive the macroscale model. In summary, the macroscale model,
which was developed step by step from the small-scale hyphal growth mechanisms, pos-
sesses a potential of modeling the macroscale development of fungal biomass in porous
media.
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Chapter3

Experimental observation of the growth
of Postia placenta

This chapter describes a method for visualizing the expansion of a colony of Postia pla-
centa by staining with a vital fluorescent dye under CLSM. A series of confocal images
were obtained during seventeen days for quantification of the morphological characteris-
tics. The growth parameters, which were used to calibrate the discrete model described
in Chapter 4, were determined here by statistical analysis. In section 3.2, the materials,
including the strain of fungus, the substrate and the culture dish were introduced as well
as the methods concerning the culture, the confocal observation and the measurement.
Then, the results of the observation and the measurement are shown and discussed in sec-
tion 3.3. The values of the growth parameters serving the discrete model are listed at the
end of the section 3.3.

•This work is published in PLOS ONE [94].
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Abstract

Continuous observation was performed using confocal laser scanning microscopy to vi-
sualize the three-dimensional microscopic growth of the brown-rot fungus, Postia pla-
centa, for seventeen days. The morphological characterization of Postia placenta was
quantitatively determined, including the tip extension rate, branch angle and segment
length, (hyphal length between two adjacent branch sites). A voxel method has been de-
veloped to measure the growth of the biomass. Additionally, the tip extension rate distri-
bution, the branch angle distribution and the segment length distribution, which quantified
the hyphal growth characteristics, were evaluated. Statistical analysis revealed that the ex-
tension rate of tips was randomly distributed in space. The branch angle distribution did
not change with the development of the colony, however, the segment length distribution
did vary with the development of the colony. The experimental data will be incorporated
into a lattice-based model simulating the growth of Postia placenta.

3.1 Introduction

Wood is a traditional constructive material in many parts of the world due to its solidity,
lightness and sustainability. Nowadays, wood and wood-based products, such as insula-
ting panels, are commonly used to address the two main trends in building designs : the
requirements for thermal performance and the use of renewable materials. Nevertheless,
wood is easily bio-degraded by insects, fungi and bacteria, resulting in the damage of
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lumber structures and the reduction of building service life. Fungi are the primary causes
of wood degradation, among which, the most destructive ones are brown rot fungi due
to their rapid decaying mechanisms. Throughout Europe and North America, they are
the most common wood decay fungi within buildings [4]. Recently, mathematical mo-
deling has aroused great attention in the study of fungi [84, 95], which can forecast the
behaviors of mycelial growth under different environmental conditions. Such modeling
tools are likely to supplement costly and tedious experimental studies and are indeed
absolutely required for service life to be accounted from the design stage. Our team is
currently developing a model of fungal growth based on the statistical reproduction of
hyphal development. Our assumption is that the same mechanisms will be valid in wood
and wood-based products, provided the porous geometry and the nutrients are accounted
for via tropisms and/or modification of the growth statistics, such as elongation. There-
fore, the first step of our modeling approach, which is the object of the present work, is
to supply the model with statistics extracted from growth observations in free conditions
(homogeneous medium and absence of resource limitations).

Different techniques have been used to visualize mycelial structure and to quantify its
growth characteristics. A series of time-lapse 2D (bi-dimensional) images were recor-
ded to visualize mycelial growth and structures by using photography, image scanner
and conventional light microscopy [96, 97, 98, 99]. However, they are obtained with low
clarity and limited by sample thickness. Electron microscopy [100, 101, 47] has a large
depth of field able to produce images free of focus blur, but samples need to be dehy-
drated, which results in inactivating living samples and prevents time-lapse observations.
Alternatively, confocal laser scanning microscopy (CLSM) allows non-destructive optical
sectioning of samples in observing living fungal cells and is used in the visualization of
3D (three-dimensional) structures of fungi at a high spatial resolution, which realizes the
quantification of fungal surface area, volume and density allocation [51, 102, 53, 54, 58,
59, 50, 57]. Moreover, in addition to the static visualization of fungi, dynamic observa-
tions of hyphal growth have been performed as well [52, 103].

Postia placenta is one of the most common brown rot fungi found in wood that is cur-
rently in service [10, 11, 12]. It decays wood at a rapid pace by degrading cellulose
and hemicelluloses using self-produced enzymes and hydroxyl radicals, leaving lignin
in place [104, 42, 105, 106]. Apart from the biochemical aspect, the environmental fac-
tors, (e.g., temperature, moisture content, and oxygen depletion), that influence its growth
rate in wood, have also been studied [14, 15, 16]. However, to our knowledge, there are
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no publications reporting the visualization of mycelial structures and quantitative measu-
rement of growth characteristics of Postia placenta at the microscopic scale.

The objective of this work is to visualize Postia placenta and evaluate its morphologi-
cal characteristics to produce a set of statistical functions able to feed a lattice-based
model for simulating a free growth (without restriction of resources, like nutrients or
growth space) of mycelium in a homogeneous environment. Thus, the observations on
the free-grown culture were performed using CLSM during 17 days. 3D images and their
2D projection images were obtained in order to quantitatively measure and analyze the
morphological and growth parameters of Postia placenta, such as tip growth rate, hyphal
density, branch angle and branching location. Then, the mycelial growth in complex en-
vironments, such as porous morphologies and resource limitation, will be extended from
the calibrated model. The simulation work based on the statistics derived in the present
work will be the object of a full paper.

3.2 Materials and methods

3.2.1 Materials

Postia placenta strain FPRL 280 and a media of malt extract agar (No.X923.2, Carl Roth)
at a concentration of 33.6 g/L was used. Teflon culture dishes, with an internal height of
5 mm and inner-radius of 7.5 mm, covered by glass coverslips with a thickness of 0.14
mm were designed for the observations using confocal microscopy. Vacuum grease (Carl
Roth), which is non-toxic to fungi, was applied at regular points along the circumference
of culture dishes to fix coverslips.

3.2.2 Methods

3.2.2.1 Inoculation and culture

750 µL malt extract agar was added into the culture dish to obtain a ∼4.2 mm-thick me-
dia. To avoid the contact of the suspension with the coverslip and to reduce the amount of
small hyphal fragments in the inoculation, 5 µL of the suspension, (Postia placenta strain
FPRL 280 mixed in sterilized water), was inoculated on the media. Several drops of the
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vacuum grease were put on the edge of the culture dish to fix the coverslip, which allowed
sufficient oxygen supplies and, simultaneously, reduced the risk of contamination. Then
the culture dish was kept in an incubator at 20◦C for 72 hours before observations. Ano-
ther ten cultures were prepared as controls at the same time and maintained at 20◦C for
one month. The mycelial growth in 2D began to be restricted by the surface of the culture
dish after two-week growth. Then, the colonies regained rapid growth in the z direction
thereafter till one month. This proves that the nutrients in media were sufficient at least
for one-month growth of Postia placenta.

3.2.2.2 Fluorescence staining

Calcofluor White M2R (Fluorescent Brightener 28, Sigma Aldrich), which stains fungal
cell walls, was prepared as a 0.1%(w/v) stock solution in distilled water. In each staining,
the stock solution was diluted to 0.001%(w/v) and was added into the culture by syringe
filter (0.2 µm). After 5 minutes, the dye was rinsed away gradually with sterilized water.
The low concentration of the dye and short time of staining allowed for normal growth
of hyphae [107] and, simultaneously, few residues of the fluorescent dye remaining in the
media. The staining was repeated every 4 or 5 days to ensure a high signal-to-noise ratio
while keeping low laser power, because the fluorescence intensity fades when exposed to
the wavelength of 405 nm (the selected laser line).

3.2.2.3 Confocal observation

Observations were performed at room temperature (∼20◦C) during 17 days using a Zeiss
LSM 700 Laser Scanning Confocal Microscope (CLSM). The UV diode laser, at a wa-
velength of 405 nm, was used for illumination. Fluorescence of Calcofluor White M2R
was captured through a band pass filter at a wavelength of 420− 475 nm. The sample was
evaluated every 2-3 days. A Plan-Apochromat 10×/0.45 M27 objective lens was used to
obtain the image, and each image was averaged across 4 scans. Since the medium was
transparent and the dyes transferred to the penetrative hyphae, the whole colony could
be visualized, including the surface and penetrative hyphae, (Fig. S3.2(a)). As the myce-
lium developed, the sizes of digital images in the x-y plane increased from approximately
4000 µm×4000 µm to 9000 µm×9000 µm. Pixel size in the x-y plane was 1.25 µm×1.25 µm
to be able to visualize the individual hyphae, as the hyphal diameter was greater than 2 µm.
The depth on the z-axis was approximately 600 µm and the interval distance between every
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two adjacent x-y slices was approximately 20 µm. A 3D image was obtained through re-
constructing the successive x-y slices in each observation (partly shown in Fig. S3.2(b)).
A 2D projection image was obtained as well for each observation using the method of
maximum intensity projection (MIP) [108], which consists of projecting the voxel with
maximum intensity on every view throughout the volume onto a 2D image (Fig. S3.3). By
using MIP of the color-coded slices, color projections were also generated to distinguish
the hyphae at different depths.

3.2.2.4 Measurement and analysis

Optical slices in each 3D image were converted to binary masks using the triangle thre-
shold method. The background noise caused by residual dyes was reduced by a selective
median filter in ImageJ (NIH, Bethesda MD). In each 3D image, the number of voxels that
contain hyphae in all slices were counted and plotted as a function of time to illustrate the
evolution of biomass growth.

Tip extension length, (∆lp), was measured and obtained by comparing the same hypha in
the overlapped two 2D projection images of consecutive observations using ImageJ (Fig.
S3.4). The tips were classified into two categories : active tips (∆lp > 0) and dormant
tips (∆lp = 0, defined as temporal non-extending tips which can regain the activity). The
hyphae that could be visually discriminated were measured. The extension rate for each
tip, as well as the average extension rate of the active tips on each image, was calculated
using Eq. (3.1) and Eq. (3.2) :

Rp(i; x, y) =
∆lp(i; x, y)

∆t
, (3.1)

〈
Rp

〉
=

1
Nap

Nap∑
i=1

Rp(i), (3.2)

where Rp(i; x, y) (µm/h) is the extension rate of tip i and the coordinates (x, y) are its
position. ∆lp(i; x, y) denotes the extension length of tip i when it reaches (x, y) in the
interval of time ∆t.

〈
Rp

〉
is the average tip extension rate and Nap is the number of active

tips. The distribution of tip extension rate for each image was calculated by Eq. (3.3) :

f (xk) =
nk

nt∆x
, (3.3)
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where x is the data to be classified (in this case the tip extension rate, Rp, was the sample
data) ; nk the number of data in the kth interval [xk − ∆x/2, xk + ∆x/2) ; nt the sample size
and ∆x the width of the interval ; f (xk) the probability density of x falling within the kth

interval. Moreover, the quantities of new emerged branches per hypha, as well as, the ratio
of active tips from the measured tips were quantified for each image.

Due to the linear and radial growth of hyphae, the biomass of mycelium depends on the
total length of hyphae not the area of colony. Thus, three regions, (R1, R2 and R3), with
equal gap were successively divided covering almost the entire colony on the 5th, 7th
and 10th day following inoculation (Fig. 3.1(a)). The selected regions were rectangular,
which was more suitable for image processing but not ideal for measurement because of
the radial growth of the colony. Therefore, four portions were selected in each region for
quantitative comparison (Fig. 3.1(b)(i)), which allowed that the areas analyzed for each
region were proportional to the radius. The shape and position of each portion chosen
in the same region was representative of an "average" distance to the inoculum. In 3D
images, the hyphal voxels of every four portions in each region were counted and nor-
malized by the total number of voxels of all portions in the final observation. The data of
each region was then plotted as a function of time. Curves from R2 and R3 were translated
along the time axis to coincide with that of R1. The age of R1 was defined as the duration
of the development of the colony since the inoculation, while the age of R2 and R3 was
obtained by an age gap through this translation.

There are two types of hyphal branches, the apical branch (AB) and the lateral branch
(LB), each distinguished by their formation patterns [28] (Fig. 3.1(b)(ii)). The AB emerges
from a hyphal tip and two daughter branches develop symmetrically around this tip. Mo-
reover, the LB is a new branch formed from a site distal to the hyphal tip. Accordingly,
there are two types of branch angles and branch sites based on these types of branches.
An AB angle is formed by two ABs and a LB angle is defined by the LB and the growth
direction of the mother hypha. The location of branch development is denoted as one
branch site, differing from a cross that is the intersection of two hyphae at different depths
(Fig. 3.1(b)(ii)). Moreover, the segment length is defined as the hyphal length between
the two adjacent branch sites. Next, the two types of branch angles, the number of AB
sites and LB sites and the segment length were quantified and measured in each region
from color projection images using the proprietary Zeiss software (ZEN 2012, black edi-
tion). The distributions of two branch angles, as well as, segment lengths were calculated
using Eq. (3.3) where the measured branch angle θ and segment length l were the sample
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Figure 3.1 – Method of the measurement of branching characteristics. (a) Three regions with equal
gap to partition the young and old hyphae : (i) R1, (ii) R2 and (iii) R3, covering almost the entire
colony on the 5th, 7th and 10th day following inoculation. (b) (i) Four portions selected for the
measurement in each of the three regions (e.g., P1.1, P1.2, P1.3 and P1.4 in R1). (ii) Zoom of a
color projection for measurement to show a cross of two hyphae with two types of branch sites and
branch angles (AB angle (θa

b) and LB angle (θl
b)). The color bar shows the depth of the mycelium

along the z-axis. (iii) Errors between real values and projective ones caused by z-direction growth
of hyphae : (left) real branch angle (θr), projective branch angle (θg), and angle of the real hypha
to the x-y plan (θz) ; (right) real branch length (lr) and projective branch length (lg).

data. Due to the projection in 2D of the real 3D structure, an error is possible for some
of the measured branch angles and segment lengths. The projection error due to the z-
component of the hyphal direction is shown in Fig. 3.1(b)(iii). This error was calculated
using Eq. (3.4) and Eq. (3.5) :

εθ = θr − θg = arccos(sinθ1
z sinθ2

z cosθg + cosθ1
z cosθ2

z ) − θg, (3.4)
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εl = ϕl × lg = (1/cosθz − 1) × lg, (3.5)

where εθ is error of angle ; θr real branch angle ; θg projective branch angle ; θz angle bet-
ween real hypha and the x-y plan, calculated by arctan(∆z/∆l) ; εl error of length ; ϕl error
coefficient, which was defined as the ratio of the error of length to the projective length ; lg

projective segment length. Due to the color projection, the distance of z-direction growth
(∆z) and the corresponding projective distance (∆l) can be measured and used to estimate
θz.

3.3 Results and discussion

3D images were reconstructed from confocal slices, which allowed the calculation of
the growth of the biomass. 2D projection images were also used to observe the mycelial
growth and to measure its morphological characterization. As shown in Fig. S3.3, the
Postia placenta grew from a central inoculum block and 8 instants were recorded on the
3rd, 4th, 5th, 7th, 10th, 12th, 14th and 17th day, following inoculation. During the initial
5 days, the hyphal elongation was dominant, while on the 7th day, a visible emergence
of branches occurred. Next, a symmetric colony formed and enlarged its area by tip ex-
tension, as well as branching. After the 14th day, the colony nearly reached the edge of
the culture dish and could not continue to increase its area. Overall, the colony remained
radially symmetric as it developed over time. Additionally, the mycelial surface density
increased over time at a given location but with a distinct spatial gradient as the density
decreases with the colony radius. This phenomenon is consistent with the fractal nature
of mycelial growth [109, 110].

Biomass growth is a global index used to represent the status of mycelial growth. In
Fig. 3.2, the biomass growth is presented as a function of days post inoculation. The
curve exhibits a lag phase of 5 days, during which the biomass growth was not conside-
rable. The mycelium may be adapting and exploring the new environment and inducing
its transport systems. The exponential phase began on the 5th day, when a rapid multi-
plication of hyphae occurred. As hyphal branches were initiated, the hyphae extended to
the uncolonized regions and the increase of biomass exponentially increased. A stationary
phase occurred after the 14th day, as evidenced by a gradual decrease of growth, poten-
tially due to the limited planar space.
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Figure 3.2 – Biomass growth of the whole colony as a function of days post inoculation.

The morphological characterization of mycelia, including the tip extension rate and the
branching parameters, was obtained by image processing and subsequently analyzed. The
number of measured tips (Np) in each overlapped image is shown in Table 3.1. The ave-
rage proportion of active tips (kactive) over all measurements was estimated as 0.72 and
0.70 during the lag and the exponential phase. And during the exponential phase, this pro-
portion was high (0.77) from the 5th to the 12th day, and then decreased to 0.5 because
the hyphal density became very high and a part of the tips approached the edge of the
culture dish. The average extension rate of the active tips (

〈
Rp

〉
) between two consecutive

observations are also listed in Table 3.1 together with the new emerged branch number
per hypha (ϕbr), which is the increment of branch number (∆Nbr) over the number of tips
(Np). ϕbr arose rapidly from 0.3 to 2.6 on the 7th day, then decreased to 1.8 and remained
at this level for 7 days. The ratio (klag) of the average value of ϕbr during the lag phase to
that during the exponential phase is 1/5. Thus, although the average proportion of active
tips was slightly higher in the lag phase, the increase of biomass was not so high just be-
cause there were much fewer new tips (generated by emerged branches) in the lag phase
than in the exponential phase. The peak of the the average tip extension rate coincides
with that of new emerged branch number per hypha (ϕbr). It increased rapidly between
the 5th and 7th day from 16.6 µm/h to 28.8 µm/h, then decreased to around 14 µm/h until
the 14th day. From the 14th day, it decreased much lower. As a result, the tip extension
rate and the branching emergence rate are both tied to the mycelial growth phase. Throu-
ghout the lag phase, tip extension dominated and few branches emerged, as also reported
by J. Meletiadis et al., 2001 [111]. Following the lag phase, both activities contributed to

62



Results and discussion Section 3.3

the rapid multiplication observed on day 7. Then, the average tip extension rate and the
branching emergence rate remained nearly constant, which resulted in the continuance of
the exponential phase until the 14th day.

Table 3.1 – Average tip extension rate obtained using Eq. (3.2) and relative increase of branch
number per hypha during two consecutive observations.

Days after inoculation 3 4 5 7 10 12 14 17

Number of measured tips
(Np)

– 86 119 132 144 150 190 224

New emerged branch
number per hypha ϕbr

– 0.3 0.3 2.6 1.8 1.4 1.4 0.9

Average extension rate of
active tips

〈
Rp

〉
(µm/h)

– 11.4 16.6 28.8 15.5 12.7 13.9 5.3

Although the average tip extension, (calculated by Eq. (3.2)), provides a global view, it
cannot absolutely represent the tip extension rate because of the important deviation of
individual values from the average. Indeed, individual values are spread over a wide range
as shown by the distributions, calculated by Eq. (3.3), in Fig. 3.3. Fig. 3.4 depicts the spa-
tial distribution of tip extension rate calculated by Eq. (3.1) during the 17 days. The green
points represent the rates smaller than 25 µm/h, while the orange ones represent the hi-
gher rates. The green and orange points are randomly distributed over the entire domain,
which indicates that the tip extension rate is randomly distributed in space. Therefore,
the formation of the colony generally presents a radial symmetry over time, despite the
irregular form of the inoculum. The fact that the extension rate of the same tip varies ran-
domly with time has also been reported by Sampson K., 2003 [112].

As shown in Fig. 3.5(a), the biomass growth in each region displayed a similar trend.
The curves of R2 and R3 were translated by -2 days and -4 days along the time axis, res-
pectively. Following translation, the three curves are nearly superimposed, which reveals
that the biomass behavior in the three regions is similar (the inset graph in Fig. 3.5(a)).
Fig. 3.5(b) illustrates the age of each region. The estimated starting time of hyphal growth
in the three regions was 0, 2 and 4 days following inoculation. Thus, Fig. 3.5(b) serves as
an age axis for Fig. 3.5(a).
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Figure 3.3 – Distribution of the extension rate (Rp(i; x, y)) of active tips calculated during two
consecutive observations. Different observations are displayed from the 4th to 17th day post ino-
culation.

An additional important branching parameter to simulate the hyphal morphology is the
branch angle. AB and LB angles were measured in the four portions of R1, R2 and R3
in the 12th-day observation. The population of the angle sample is approximately 1200,
including ∼400, ∼500 and ∼300 data measured respectively in R1, R2 and R3, among
which there were ∼960 LB angles and ∼240 AB angles. A comparative plot of the AB
angle distribution and the LB angle distribution in all three regions (Fig. 3.6(a)) reveals
that the type of branches has negligible effect on branch angle distribution. Fig. 3.6(b)
exhibits a similar branch angle distribution in R1, R2 and R3. According to Fig. 3.5(b),
these three regions on the 12th day were 12, 10 and 8 days old, which indicates there
are no visible differences in the branch angle distribution at different ages of region. Al-
ternatively, it is not influenced by different hyphal densities or by the age of the mother
hypha from which the new branches emerged. Overall, the branch angle distribution of
Postia placenta is not affected by the age of region, or by the branch type. The branch
angle remained approximately 80◦, close to a right angle, which appeared to maximize
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Figure 3.4 – Spatial distribution of tip extension rate (Rp(i; x, y)) during 17 days of observations.
(x, y) are the coordinates of the position of tip i. The colors display the different ranges of rate :
from green, less than 25 µm/h, to orange for the > 25 µm/h. Grey points represent dormant tips.

the area covered by the colony. The error of the branch angle between the real value and
projective value caused by the z-direction growth of hyphae calculated by Eq. (3.4) was
shown in Fig. S3.5(a). Considering around 200 errors out of 1200 angles in total, there
are only 10 absolute errors greater than 5◦, (0.8% of 1200 measured data and the rela-
tive error is 6.3% by the average of angles – 80◦), and 46 greater than 2◦, (3.8% of 1200
measured data and the relative error is 2.5% by the average of angles – 80◦). As a result,
we can assume that the error of the angle did not impact the branch angle distribution.
The curve fitting was then implemented to the probability density of all measured angles
(AB and LB angles in all three regions) using an evolutionary algorithm to minimize the
residual sum of squares (RSS) (Eq. (3.6)) between the experimental data and the Gaussian
distribution. RSS is defined as :

RS S =
∑

k

( f (xk) − g(xk))2, (3.6)

where xk is the kth explanatory variable, f (xk) is the kth value of the probability density cal-
culated from the experiment and g(xk) is that of the fit.The normalized Gaussian function
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Figure 3.5 – Age of region for R1, R2 and R3. (a) Biomass growth measured throughout the 4
portions of R1, R2 and R3 as a function of days after inoculation (the inset graph shows the three
curves translated by ∆x). (b) The starting time of growth for R1, R2 and R3 is the inoculation day,
the second day and the fourth day. The age axis is related with time axis to determine the age of
each region on different observation days (e.g., the age of R1 on the 12th day is 12 days old but
10 and 8 days old for R2 and R3 ; the R1, R2 and R3 are 10 days old respectively after 10 days,
12 days and 14 days.) The age of region represented approximately the age of the oldest hyphae
in that region.

reads as follows :

gs(θ; µ, σ) =
1

σ
√

2π
exp(−

(θ − µ)2

2σ2 ), (3.7)

where θ represents the branch angle, µ = 77.6◦ the mean of the distribution and σ = 12.3◦

the standard deviation. According to the fit, more than 68% of the branch angles were
within the interval : θ ∈ [65◦, 90◦]. The accuracy of the fit was measured by RSS, which
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characterized the global quality of the fit. Fig. 3.6(c) illustrates a low RSS of 5 × 10−5,
which represents strong agreement between the experimental data and the fit. Eq. (3.7)
with the identified parameters will be applied in the modeling of mycelial growth to de-
termine the formation of AB and LB angles.

In addition to branch angle, the segment length distribution, which is required to obtain
the density of branches, is a complementary parameter to describe the branching pattern.
The two types of branches were not distinguished while measuring the length, however,
the number of LB sites (N l

b) and AB sites (Na
b ) were additionally counted. The ratio of

N l
b/N

a
b decreased rapidly as a function of time and subsequently leveled off and remai-

ned between 4.0 and 5.0 from the 7th day. The segment length distribution is shown in
Fig. 3.7(a) and each sample possessed a population of 300 to 500. The most frequent
values were approximately 15 µm to 25 µm, regardless of the age of the region. Their
proportion increased with the age of the region. Indeed, as more branches appeared with
time, a long segment length was divided into segments and produced several short lengths.
The proportion of short lengths increased, while that of long ones decreased with time.
As shown in Fig. 3.7(a), few segments were longer than 200µm. Due to their very low
probability, these long segments were not clearly visible and their evolution with age
was difficult to distinguish. Yet, their importance in terms of biomass and morphology of
the mycelium is important. For this reason, a weighted cumulative distribution function
(Fig. 3.7(b)) was defined to better consider the influence of the long segments :

F(lm) =

m∑
k=1

f (lk)lk

m′∑
k=1

f (lk)lk

, (3.8)

where f is the probability density shown in Fig. 3.7(a) ; lk the length of the kth interval ; m
the number of the interval to be calculated and m′ the total number of the intervals. The
comparison of the segment length distributions was performed among the same region
(R1) of different days, among the three regions of the same day (on the 12th day) and
among the regions of the same age (10-day-old). In Fig. 3.5(b), the age of the regions
on different days can be identified. Fig. 3.7 (a)-(i), (a)-(ii) and (b)-(i), (b)-(ii), a compa-
rison between the regions of different ages, indicate that with the increasing of age, the
proportion of short segment lengths arose while that of long ones reduced. It reveals that
the branches emerge not only from young hyphae but also from the old parts of hyphae,
and that the branch sites can be located both in the parts with low and high branch den-
sity. The coincidence of the three curves in Fig. 3.7(a)-(iii) and (b)-(iii) illustrates that
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Figure 3.6 – Distribution of branch angle measured in the observation on the 12th day. (a) AB
angles and LB angles in three regions ; (b) two types of branch angles respectively in R1, R2
and R3 ; (c) two types of branch angles in three regions and fitted curve. The similar branch angle
distributions were observed in each of the different regions and they follow a Gaussian distribution.

the segment length distributions are approximately equal at the same age of the region.
The error coefficient of segment length calculated by Eq. (3.5) was shown in Fig. S3.5(b).
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Considering the 240 errors out of about 1200 segment lengths in total, there are 82 rela-
tive errors, (6.8% of 1200 measured data), greater than 5.0%. Thus, this error can be also
neglected for the segment length distribution. Experimental data measured at the same
age were regrouped to calculate the segment length distribution (Fig. 3.8). The parameter
identification was carried out to the segment length distributions at different hyphal ages.
Fig. 3.8 displays examples of fitted curves using a gamma distribution :

gγ(l;α, β) =
βα

Γ(α)
lα−1e−βl, (3.9)

where l is the length between two adjacent branch sites ; α and β are the scale and rate
parameters of the gamma distribution. The low value of RSS, about 10−5, indicates a tight
fit of the simulated data to the experimental ones. The fitted curves, which are in good
agreement with the observation curves, will be used to simulate all the hyphal branching
at the corresponding ages of region. The values of the scale and the rate parameter are
shown in Table 3.2 : the values of α are between 1.0 and 2.0 while those of β are less than
1.0, and increase when the branching age increases.

Figure 3.7 – (a) Segment length distribution and (b) the corresponding weighted cumulative dis-
tribution F(l). The different graphs depict (i) the same region on different observation days, (ii)
the different regions on the same observation day, (iii) the distributions of different regions on
observation days selected to have the same hyphal age.
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Figure 3.8 – Segment length distributions at different hyphal ages and their fitted curves. (a) 8-
day-old (experimental data from R2 on the 10th day and R3 on the 12th day) ; (b) 10-day-old
(experimental data from R1 on the 10th day, R2 on the 12th day and R3 on the 14th day) ; (c)
12-day-old (experimental data from R1 on the 12th day and R2 on the 14th day).

The identified parameters and their values that will be used for calibrating the model for
simulating the mycelial growth are listed in Table 3.2. The proportion of active tips (kactive)
and the tip extension rate distribution ( f (Rp)) quantify the tip extension, while the branch
angle distribution ( f (θ)), the ratio of N l

b/N
a
b and the segment length distribution ( f (l)) de-

termine the branching pattern. In addition, the lag phase and the exponential phase are
distinguished in assigning different values to kactive and klag in the further simulation due
to the noticeable difference of hyphal growth.

3.4 Conclusion

The live-cell imaging using CLSM described in the present work allows recording the
evolution of the mycelial structure of Postia placenta with time. Thanks to the observa-
tions on the whole colony level, the growth characteristics can be statistically analyzed in
relation with the different duration of the development of the colony. The determination
of the age of different regions implies the equivalence of time and space (radius of the co-
lony) in mycelial growth. The data analysis allows a full set of statistical expressions to be
proposed to characterize the fungal growth in free growth conditions. Among interesting
results, the statistical analysis shows that the hyphal growth presents certain randomness,
such as the spatial distribution of tip extension rate and the selection of the branch site.
Afterwards, all the quantified hyphal growth reported in this paper will be used to feed
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Table 3.2 – Description and values of the identified parameters to be applied in the simulation of
the mycelial growth.

Parameter Description Value & expression

D̄h
a Average diameter of hyphae 3 µm

kactive Proportion of active tips • Lag phase : 0.72

• Exponential phase : 0.7

f (Rp)b Tip extension rate distribution Γ(α = 1.51, β =

0.09) + 4.65 × 10−6(Rpmax − Rp)

klag Ratio of emerged branch numbers per hypha
during the lag phase to that during the
exponential phase ([ϕbr]lag/[ϕbr]exp)

1/5

f (θ) Branch angle distribution N(µ = 77.6◦, σ = 12.3◦)

N l
b/N

a
b Ratio of the number of LB sites to that of AB

sites
4.0 − 5.0c

f (l) Segment length distribution • 8-day-old :
Γ(α = 1.32, β = 0.022)

• 10-day-old :
Γ(α = 1.71, β = 0.039)

• 12-day-old :
Γ(α = 1.52, β = 0.045)

a identified by the observations using CLSM;
b fit to all the data from the 4th day to the 14th day (Fig. S3.6) ;
c from the 7th day.

a 2D lattice-based model for simulating the growth of Postia placenta. The tip extension
rate and the branch angle distribution obtained in this work will be directly used as the
input parameters for the model, while the segment length distribution calculated in the
simulation will be compared with the experimental one to validate the rest branching pa-
rameters. Then the calibrated model will be extended to simulate the mycelial growth in
heterogeneous environment with several hypotheses (e.g., the branch angle respects its in-
trinsic property but the extension and activity of this emerged branch is influenced by the
environmental factor). However, the observation of hyphal growth in wood is important
to further study, especially for validating a 3D model (work in progress in our team) to
mimic hyphal growth in wood. Thus, the growth of Postia placenta in wood will also be
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observed and quantified in using nano-tomography.
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3.5 Supporting Information

Additional explanation for the measurement

• When measuring the segment lengths, the anastomosis point was also considered
because it is difficult to distinguish the lateral branch (LB) site and the anastomosis
point as depicted in Fig. S3.1. The proportion of the anastomosis points was very
low, so that the increase of the short segments with time was still mainly caused by
branching formation.

• When counting the number of LB sites, we checked the whole branch. Simple cases,
such as branch 1 and branch 2, increase the number of sites by one. When two sites
are found on one branch (e.g., branch 3), one is necessarily an anastomosis site, so
one LB site was counted as well.

• When measuring the branching angles, we took the angle that was more close to
90◦. However, the two angles (emanating from the LB and anastomosis sites) were
both close to 90◦, we took their average.

Figure S3.1 – Schematic showing the measurement of the segment lengths.
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Supporting figures

Figure S3.2 – 3D reconstruction of one section of the mycelium on the 12th day of observation.
(a) Cross-sectional view of the surface and penetrative hyphae. (b) Top view of the hyphae.
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Figure S3.4 – Tip extension during two consecutive observations. The white curve is the hypha
at the 1st observation and the red curve is its shape observed 2 days later. The coordinates of the
tip positions are (x0, y0) and (x, y) respectively. ∆lp(i; x, y) is the extension length of tip i (i.e., the
length of the path from (x0, y0) to (x, y)).

Figure S3.5 – Error of branch angle and segment length caused by z-direction growth of hyphae.
(a) Error of branch angle, and (b) relative error of segment length calculated throughout all por-
tions.
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Figure S3.6 – Fitted curve of the tip extension rate distribution. The distribution, calculated by all
the data from the 4th day to the 14th day, was well fitted by a gamma distribution corrected with a
linear baseline.
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Chapter4

Discrete model of mycelial growth in
complex environment

This chapter depicts a discrete lattice-based model to mimic the development of the myce-
lial network with time in various environment. In section 4.2, we present the main growth
behaviors of hyphae, including tip extension, branching and anastomosis, and their res-
ponse to the environmental stimuli. Section 4.3 depicts the transformation of these growth
behaviors to mathematical rules which are incorporated into the lattice to realize a mathe-
matical model. Then, in section 4.4, the validation of this model is implemented through
experiment focusing on the morphology and the growth of Postia placenta. Two processes
are included to determine the value of the modeling parameters : the value is directly ob-
tained from the experiment and determined as in an inverse procedure by comparing the
simulated results to the experimental ones. Finally, part 4.5 shows the mycelial growth in
a complex environment, such as tropic media and porous media.

•This work is submitted.
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A lattice-based system for modeling mycelial growth in
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1 LGPM, CentraleSupelec, Université Paris-Saclay, 92290, Châtenay-malabry, France
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Abstract

Fungi are one of the most destructive agents to wood and wood-based products, resul-
ting in the decrease of the building service life by breaking down lumber structures. This
work presents a discrete lattice-based model to simulate mycelial growth, which explicitly
incorporates tip extension, extension angle, anastomosis, and branching. The developed
algorithm eliminates a geometrical restriction of the lattice directions ; thus, it can gene-
rate realistic mycelial networks with low computational costs. Different growth conditions
are reproduced via tropisms, which influence the tip dominant direction, such as thigmo-
tropism that enables hyphae to bend around obstacles in structurally heterogeneous me-
dia. The validation of this model is implemented through an experiment focusing on the
morphology and growth of Postia placenta, a species of brown rot fungi. Some model
parameters are directly obtained from the experimental data, while others must be deter-
mined by an inverse procedure in comparing the simulated results with the experimental
observation. This validated model provides an efficient tool for investigating and predic-
ting mycelial growth under different conditions at the micro-scale.

4.1 Introduction

Due to highly-branched networks, mycelial fungi can survive in complex environments,
such as soils, plant roots, and wood. Wood decay fungi play an essential role in the degra-
dation of organic matter and cycling of the nutrient elements in the forest system. They
are also the main organisms responsible for the decomposition of wood and wood-based
products, which are traditional constructive materials in the building industry due to their
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solidity, lightness, and sustainability. This is particularly problematic, as wood is promo-
ted to address two main trends in building designs : the requirements for thermal perfor-
mance and the use of renewable materials. However, an enormous amount of wood and
wood-based products are destroyed by fungal decay every year, among which brown rot
fungi are the most common and destructive within buildings throughout Europe and North
America due to their rapid decay mechanisms [4]. Moreover, the breakdown of lumber
structures leads to the reduction of building service life and even the risk of building col-
lapse. Studying mycelial growth in different environments allows a better understanding
of the fungal morphogenesis, predicting the service life of wood-based products and im-
proving the protective methodology of wood.

As a supplemental tool to the costly and tedious experimental studies, mathematical mo-
deling is efficient to mimic and forecast the behaviors of mycelial growth under different
environmental conditions, which is especially crucial for service life to be accounted from
the design stage. Efficient and validated models of fungal development are likely to be
implemented in thermal models of the building envelope [113]. The approaches for si-
mulating fungal growth are generally classified using continuous modeling and discrete
modeling. In continuous models, the mycelium is treated as a continuous variable and is
modeled by a system of partial differential equations [69, 86, 70, 88, 71, 114, 115]. This
approach can describe the large-scale properties of mycelia in focusing on their collective
attributes, such as the hyphal tip density, the biomass yield, and the substrate concentra-
tion. Thus, continuous models provide descriptions of mass distribution instead of the ex-
plicit morphological appearance. Contrary to continuous models, discrete models concen-
trate on the behavior of individual hyphae and describe the topological architectures of
mycelium in its environment.

There are two popular approaches in discrete modeling of fungal growth, lattice-free
models and lattice-based models. The lattice-free approach [80, 81, 82, 67, 77, 83, 84,
116, 68] represents the mycelial network as a collection of connected line segments. Wi-
thout placing any restrictions on the position of these segments, the results produced by
these models are extremely close to certain mycelial networks. However, due to the free
network, these models usually induce a high computational complexity. Lattice-based
modeling, as its name implies, is confined to a regular lattice. Different methods have
been adopted to generate the filamentous mycelium on lattice, such as cellular automata
(CA) [64, 117], network automata (NA) [78], and bond-based models [65, 79, 66]. The
regular lattice, with a finite number of status transition rules and a finite number of orien-
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tations for hyphal tip extension, allows the incorporation of complex growth behavior and
realizes large improvements in computational efficiency. Since the hyphal growth is res-
tricted to an artificial and predefined lattice, these models do not yield visually realistic
networks as for lattice-free models.

This paper proposes a new lattice-based algorithm that can correctly simulate the myce-
lial shape, therefore accumulating the advantages of off-lattice and on-lattice models. This
approach is also well suited to the process of model validation, as the initial conditions
can be supplied as the binary mask of the inoculum. This feature allows straightforward
use of our previous work [94], devoted to the observation and analysis of the morphology
and the growth of Postia placenta using confocal laser scanning microscopy (CLSM).

A set of rules are prescribed to simulate the mycelial growth, including tip elongation,
anastomosis, and branching. In addition, the tropisms are incorporated in the model in
consideration of the porous and fibrous structural tissue of wood. The same growth me-
chanisms are applied in such environments, provided the porous geometry and the other
environmental stimuli are accounted for via tropisms to modify the hyphal elongation.
Then, the validation of this model, which is carried out using the experimental data of
our previous work on the growth of P. placenta, are depicted. Certain model parameter
values are obtained directly from the experimental data, while the others are determined
as an inverse procedure by comparing the simulated results to the experimental ones. Fi-
nally, several examples of mycelial networks in different conditions that can be generated
by our model are provided. Overall, this model maintains the original advantage of the
lattice-based approach in developing the mycelial networks more efficiently in different
environments, and to our knowledge, this is the first model that overcomes the restriction
of the lattice to the topology of mycelial networks due to the new mechanism of tip ex-
tension proposed in the model.

4.2 Fungal growth behaviors

Fungi are well adapted for growing in complex environments due to their ability to form
hyphae, which consist of a complex network (i.e., mycelium). Hyphae are the characteris-
tic growth form of fungal cells with a filamentous structure. The main growth behaviors
of hyphae in forming mycelia include elongation, branching, and anastomosis and are
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illustrated in Table 4.1 along with the response of hyphae to environmental stimuli (i.e.,
tropisms and obstacles).

Table 4.1 – Illustration of fungal growth behaviors.

Growth Behavior Growth Pattern

Hyphal elongation

Lateral branching (LB)

Apical branching (AB)

Anastomosis

Tropism

Obstacle

With few exceptions, a hypha elongates strictly by apical deposition of wall skeletal po-
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lysaccharides [26]. This apical part, contributing to hyphal elongation, is called the tip.
A subcellular structure (i.e., Spitzenkörper) is found at the tips of the elongating hyphae,
affecting the hyphal growth direction [118]. Without external stimuli, hyphal elongation
maintains a relatively straight direction with frequent meandering. From time to time, hy-
phae abandon the original growth direction and establish a new one with minor directional
change of approximately 10◦ due to the shift in Spitzenkörper trajectory.

In addition to elongation, hyphae can generate new hyphae by branching, which results
in the formation of the networks of mycelia. Two types of branching, apical branching
and lateral branching, are defined according to their branch sites and their growth pat-
terns. Typically, apical branching is the emergence of two branches from a hyphal tip
around which these two branches symmetrically develop [119], while the generation of
new branches from the sub-apical part of one hypha is referred to as lateral branching.
Lateral branching formation could be triggered by the stochastic accumulation of vesicles
at a cortical site or behind hyphal cell septa [28]. Statistical analysis indicates that the se-
lection of lateral branch sites is independent of the hyphal age or the branch density [94].
However, the formation of lateral branches is inhibited near a hyphal tip, which is known
as apical dominance of individual hyphae [120].

Along their elongation, hyphae can contact each other and undergo fusions to yield an
interconnected mycelial network. This phenomenon is anastomosis. Two morphological
types of hyphal fusion are observed, tip-to-tip and tip-to-side. The process of anastomosis
can be positive (e.g., two tips attract each other) and passive (hyphal fusion occurs when
a tip contacts a hypha) [54]. For simplicity, only the passive anastomosis is considered in
our model.

Although hyphae possess their intrinsic growth habit, their behaviors, especially hyphal
growth direction, are greatly affected by environmental stimuli (e.g., chemicals [32], elec-
trical fields [33] and physical contact [34]). Most of the external factors cause unidirectio-
nal tropisms, which make the hyphae grow along a determined direction (toward or away
from the stimulus), except the thigmotropism, which forces the hyphae to ramp along the
surface of an obstacle. The direction and intensity of a tropism are determined by the
property or concentration of the stimuli. The reaction of fungi to the same environmental
stimuli can be different depending on the species as well as the other factors existing in
the environment (e.g., nutrients concentration and chemical elements) [121]. In addition
to the tropisms, the external nutrient concentration can influence fungal morphology even
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though their gradients do not create a tropism to hyphal growth direction. It is widely ac-
cepted that fungi growing in low-nutrient conditions adopt an ’exploratory’ phase during
which the formation of new branches is strongly inhibited [35].

4.3 Implementation of growth rules into lattice

The mycelium is modeled using a 2D square lattice with spacing δ. The position of each
node in the lattice is represented by its coordinates (xi, y j), and the number of hyphae
Nh(xi, y j, t) contained in node (xi, y j) at time t denotes the status of nodes with Nh = 0
for a vacant node and Nh ∈ N

+ for an occupied node. The nodes of the lattice correspond
to the possible locations of hyphal tips. For each tip i, three variables are defined to des-
cribe its status : Op(i, t), θp(i, t), and Rp(i, t), which denote the location, the angle of the
tip growth direction with respect to the positive x-axis, and the extension rate of tip i at
time t, respectively. For each tip, the time-sequence of its previous positions builds a set
of linked nodes, which constitute its trailing hypha. The three main behaviors of mycelial
growth and the response of hyphal tips to environmental stimuli are implemented in the
2D square lattice (the effect of the corresponding parameters on fungal growth behaviors
are depicted in Table 4.2).

4.3.1 Hyphal elongation

The hyphal elongation is modeled as a biased random walk following the tip extension
direction identified by θp. To follow this direction, at each time step of duration τ, the
tip attempts to move into one of the two neighboring nodes adjacent to this direction,
(xi + δsng(cos θp), y j) and (xi, y j + δsng(sin θp)) where sng(x) represents the sign of x, ac-
cording to the probabilities Px

p and Py
p with the relationship shown in Eq. 4.1 (Fig. 4.1(a)).

Consequently, we set the probability of the movement into the other two nodes to be zero.
During each time step, this tip may advance one step along the x-axis or y-axis and leave a
trailing hypha formed by a sequence of linked nodes. These nodes are regularly distribu-
ted along the growth direction to form a visually smooth hypha which follows a relatively
straight growth axis (Fig. 4.1(b)).
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Figure 4.1 – Main mechanism of hyphal growth. Hyphal elongation in the lattice : (a) Elongation
rules : consider the tip at location (xi, y j) and the four nodes adjacent to it ; tip movement with Px

p

and Py
p to select randomly one of the two nodes, (xi + δ, y j) and (xi, y j + δ), adjacent to the tip

extension direction identified by θp as the target node during the next time step. (b) The global
shape as an emergence of the local rules : after many iterations, the local stepwise effect disap-
pears, and the tip extension rate and its direction become obvious. A hypha elongates following its
extension direction with meandering. (c) Lateral branching : a lateral branch j emerges from the
node located at (xi, y j), with a branching angle θb with respect to the tangent direction (identified
by θh(xi, y j)) to the hypha at (xi, y j) ; (d) Apical branching : two apical branches emerge from tip i,
symmetrically with respect to the tip direction θp with branching angle θb. The new tip is indexed
as j, and the other keeps the tip number i. (e) Tropisms : the updated tip dominant direction for
the next time step ~np(i, t + τ) is obtained by applying the unidirectional tropism ~T to ~np(i, t) ; υ is
the reaction rate of hyphae. (f) Thigmotropism : calculation of the thigmotropism ~S applied to the
tip i located at (xi, y j) at time t ; ~nn is the unit normal vector of the solid surface, ~np denotes the tip
dominant direction, and ~ng is the vector projection of ~np on the tangent of the solid surface.
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Table 4.2 – Demonstration of the effect of the parameters on fungal growth behaviors.

Growth
Behavior

Parameter
Effect (Growth Pattern During ∆t)

1©∗ 2©∗

Hyphal
elongation

Rp

Lateral
branching

Pl
b

Apical
branching

Pa
b

Anastomosis Pa

Tropism
∥∥∥∥~T∥∥∥∥, υ

Obstacle cs, υ

* The value of parameter in the column 1© is lower than that in the column 2©.

Px
p

Py
p

=
cos θp

sin θp
(4.1)
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Provided that the tip extension rate is constant, without the variation of tip extension
direction (∀t ≥ 0, θp(i, t) = θp(i, 0)), the actual elongation length of the hypha over a
period ∆t is calculated as follows :

lh(i,∆t) =
∆t
τ

[Px
p(i, 0) + Py

p(i, 0)]
δ

cos θp(i, 0) + sin θp(i, 0)
, (4.2)

where ∆t
τ

denotes the number of time steps during ∆t and Px
p(i, 0) + Py

p(i, 0) ∈ [0, 1] repre-
sents the probability of the extension of tip i at each time step. Accordingly, their product
is the number of steps that the tip i advances over time ∆t. As the tip extension rate is
constant, the total length of the hyphae growing over the same time must be equal re-
gardless of along which direction they elongate, resulting in a linear relationship between
Px

p + Py
p and cos θp + sin θp with a coefficient c0 depending on the tip extension rate Rp.

The formula of the tip extension rate is expressed as follows :

Rp(i, t) = lim
∆t→0

lh(i, t) − lh(i, t − ∆t)
∆t

=
δ

τ

Px
p(i, t) + Py

p(i, t)

cos θp(i, t) + sin θp(i, t)
= c0

δ

τ
. (4.3)

As the probability of extension is equal to or less than 1, the maximum duration of each
time step τmax is determined by the maximum rate of tip extension Rpmax and the maximum
value of cos θp + sin θp :

τmax =
δ

√
2Rpmax

. (4.4)

The probability of tip extension toward the two allowed nodes, one along the x-axis (Px
p)

and the other along the y-axis (Py
p), are derived by Eq. 4.1 and Eq. 4.3 :

Px
p(i, t) = Rp(i, t)| cos θp(i, t)| τ

δ
,

Py
p(i, t) = Rp(i, t)| sin θp(i, t)| τ

δ
.

(4.5)

Overall, one of the three events, i) remaining in the position, ii) advancing along the x-
axis or iii) advancing along the y-axis, occurs to each tip at each time step with respective
probabilities 1− (Px

p + Py
p), Px

p and Py
p. The tip extension rate is regulated by adjusting the

value of the two probabilities. If Rp > 0, the tip is active and if Rp = 0, the tip is dormant
and does not elongate.

Note that hyphae change their growth axis from time to time. Thus, before elongation, the
tip extension direction is updated with probability Pdir to decide whether a small directio-
nal change occurs or not. If it happens, the direction varies by either +10◦ or −10◦ with
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equal probability with respect to its former direction. Then, the probabilities Px
p and Py

p

are calculated with the updated extension direction.

4.3.2 Branching

To implement lateral branching rules into the lattice, the tangent direction to a hypha at a
node (xi, y j) is determined by θh(xi, y j) and equals the tip extension direction when the tip
was at this position (xi, y j). As shown in Fig. 4.1(c), a lateral branch emerges from a node
belonging to the sub-apical part of the hypha, located at (xi, y j). The extension direction
of the new tip j is identified by θh(xi, y j) + θb or θh(xi, y j)− θb from which one is randomly
picked. Moreover, θb denotes the branching angle that can be either constant or determi-
ned as a distribution. For the apical branching (Fig. 4.1(d)), two branches emerge from
tip i, and one is randomly labeled as a new tip j so that the other one remains tip i. The
dominant directions of the two tips, which are symmetrical with respect to the previous
tip direction, are set to θp(i, t) + θb/2 and θp(i, t) − θb/2.

The frequency of lateral branching obeys the probability Pl
b for a branch to form from

a hypha during a time step. The number of lateral branches to be formed at time t is
calculated as follows :

∆N l
b(t) = N l

b(t) − N l
b(t − τ) =

⌊
Pl

bNp(t)
⌋

+ 1A1(ω), (4.6)

where Np(t) is the total number of tips at time t ; “bc” is a floor function mapping the
real number to the largest previous integer ; 1A1 is an indicator function that has the va-
lue 1 if ω ∈ A1 ; ω is a number randomly picked in the interval [0, 1] ; A1 = {x|x ∈
(0, Pl

bNp(t) −
⌊
Pl

bNp(t)
⌋
]}. Due to the stochastic pattern of lateral branching formation

mentioned in section 2, we apply an equal probability of branching to all mycelium. Thus,
the ∆N l

b positions of branch formation are randomly selected from the set involving all
the nodes occupied by hyphae except those that have emerged branches or are inhibited
by apical dominance. One node is considered inhibited by apical dominance when the
distance of this node to the tip is less than lad, which is defined as the length of apical
dominance.

Since the apical branching occurs at the active tips, we apply the same probability Pa
b to

each active tip. The number of apical branching during the time increment is obtained as
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follows :

∆Na
b (t) = Na

b (t) − Na
b (t − τ) =

⌊
Pa

bNap(t)
⌋

+ 1A2(ω), (4.7)

where Nap(t) is the total number of active tips (R > 0) at time t ; 1A2 an indicator function,
which has the value 1 if ω ∈ A2, where ω is a random number in the interval [0, 1] and
A2 = {x|x ∈ (0, Pa

bNap(t) −
⌊
Pa

bNap(t)
⌋
}. Then, ∆Na

b (t) tips are randomly selected from all
active tips.

4.3.3 Anastomosis

The anastomosis is simply incorporated in the model by assuming that it occurs when
a hyphal tip contacts another hypha. In the 2D lattice, all hyphae are in the same plane
so that two intersecting hyphae eventually touch each other. However, in the real colony,
hyphae grow in a 3D space, and they possess a probability of horizontal separation. The-
refore, we define a probability of anastomosis Pa to determine whether a tip that moves
into an occupied node anastomoses or not. If it anastomoses, the tip is removed from the
lattice, otherwise the tip crosses over the hypha and continues to elongate. The anasto-
mosis influences the number of tips in the lattice, and thereby the production of mycelial
biomass.

4.3.4 Tropism and obstacle

Two types of external stimuli are incorporated in this model, unidirectional tropism and
obstacles. The unidirectional tropism is represented by a vector field ~T (xi, y j, t) of which
the direction depends on the location of the stimuli. The magnitude of ~T (xi, y j, t) repre-
sents the intensity of the tropism. In addition to the tropism intensity, the reaction rate of
hyphae to the tropism influences the changing rate of the tip extension direction. Thus, a
coefficient of hyphal reaction rate υ is defined. The tip extension direction is denoted by a
unit vector ~np(i, t) = (cos θp(i, t), cos θp(i, t)). The tip extension direction ~np is changed by
the tropism ~T at each time step as shown in Fig. 4.1(e), and the affected ~np is calculated
as follows :
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~np(i, t + τ) =
~np(i, t) + ∆~np(i, t)∥∥∥~np(i, t) + ∆~np(i, t)

∥∥∥ ,
∆~np(i, t) = υ[~T (i, xi, y j, t) − ~np(i, t)].

(4.8)

The obstacles located in the lattice generate a thigmotropism around them. The thigmo-
tropism vector ~S (i, xi, y j, t) is related to both the presence of obstacles and the direction of
the tips. As shown in Fig. 4.1(f), the direction of the thigmotropism is within the tangent
plane to the surface. Its magnitude, which gives the intensity of this tropism, depends on
the extension direction of the tip i arriving at (xi, y j) (i.e., ~np(i, t)) and the intensity co-
efficient cs(xi, y j) with cs > 0 for the nodes surrounding the obstacle and cs = 0 for the
others. The thigmotropism vector is calculated as follows :

~S (i, xi, y j, t) = cs(xi, y j)
~ng(i, xi, y j, t)∥∥∥~ng(i, xi, y j, t)

∥∥∥2 ,

~ng(i, xi, y j, t) = ~np(i, t) − [~np(i, t) · ~nn(xi, y j)]~nn(xi, y j),

(4.9)

where ~nn(xi, y j) is the unit vector normal to the surface and ~ng(i, xi, y j, t) is the projection
of the tip direction vector on the tangent plane. Due to the divisor

∥∥∥~ng

∥∥∥2
in Eq. 4.9, the

intensity of the thigmotropism decreases as the tip direction approaches the tangent plane
of the surface. The thigmotropism generated by the obstacles influences the tip extension
rate in the same way as the unidirectional tropism. As Eq. 4.8 is linear, this equation
can be simply applied with the total tropism ~Ttot obtained by the sum of tropisms (i.e.,
~Ttot = ~T + ~S ).

4.3.5 Simulation

Following the procedures described above, the growth of a mycelium can finally be simu-
lated. A simulation basically comprises two important steps :

• Step 1. Initial field : The initial mycelium (spores or a binary mask of plugs of
mycelium) is replicated in the lattice (position and directions) as well as the en-
vironmental conditions (tropisms and obstacles) by setting the initial variables to
each node.

• Step 2. Incremental growth : The evolution of the mycelium is obtained by itera-
tive time increments. During each time step, all the tips are randomly selected since
there is no priority for hyphal growth. Then, the mycelium is expanded by applying
two main processes to hyphae : tip extension and branching. The anastomosis and
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the effect of the tropisms are incorporated into the process of tip extension. Thus,
the tip extension process is responsible for the determination of the tip dominant
direction and hyphal elongation, while the branching process leads to new tips.

4.4 Calibration from growth observation

The developed model was calibrated using the parameter values and statistical data obtai-
ned from our recent work on the mycelial growth experiment of Postia placenta (strain
FPRL 280) [94]. In this experiment, a tiny plug of Postia placenta was inoculated on a
media of malt extract agar. Then, the mycelial growth in homogeneous conditions was
visualized using CLSM and analyzed during a 17-day period. Part of the modeling para-
meters was directly obtained from the experimental data ; the rest was determined as an
inverse procedure by comparing the simulated results and the experimental data.

4.4.1 Initial field

In the experiment, a sequence of images of mycelial growth were obtained using CLSM
microscopy from the third day after inoculation. The first confocal image (Fig. 4.2 (a))
was transformed into a binary mask and embedded in the center of the lattice at t = 0
as the initial field of the simulation. As shown in Fig. 4.2 (b), we divided the colony into
three parts : inactive inner-inoculum (in black), tips (in red), and outstretched hyphae (in
blue). The inoculum was active and could continuously emerge new hyphae. However,
in the model, due to the anastomosis mechanism, the hyphae in the inner inoculum had
difficulties to extend. Thus, we assumed that the nodes inside the inoculum were inactive
and could neither elongate nor emerge branches, whereas all the nodes on the edge of this
inoculum were considered tips. These tips were inactive at t = 0, and 10% of the inactive
tips were transformed as dormant tips every 24 hours. This is a way to mimic the delayed
behavior of the emergence of tips from the inner part of the inoculum. We defined that
inactive tips can never elongate before transformation, while dormant tips will elongate
when they achieve an extension rate higher than 0 µm/min. All these tips have an exten-
sion direction that is outwards from the inoculum. Moreover, the tips of the outstretched
hyphae were also recorded and their extension direction was calculated by a normalized
vector directed from the tenth node backward from one tip (the first node of this hypha if
it contains less than 10 nodes) to this tip. Note that the outstretched hyphae were active

92



Calibration from growth observation Section 4.4

to emerge branches. The tangent direction to these hyphae at each node was necessary to
determine the direction of the newly emerged branches. This tangent direction was esti-
mated in the same way using the coordinates of this node and the tenth node backward.

Figure 4.2 – (a) Image of mycelium of the first observation using CLSM was transformed on (b)
a binary mask, which was used as an initial field in the simulation. The black, red, and blue nodes
represent the inactive inner inoculum, the tips, and the outstretched hyphae, respectively. The tip
extension directions of the outstretched hyphae were shown by the unit vectors in black.

4.4.2 Parameter defined directly from experimental observation

All the parameters mentioned in this section were directly obtained from the experiment
as detailed in [94]. For the model, the spacing of the lattice δ = 3 µm was determined
by the average diameter of hyphae of Postia placenta. The lattice is 4000 by 4000 nodes
large, which corresponds to an area of 1.44 cm2. As 99.0% of the tip extension rates in the
experiments were less than 80 µm/h, we set Rpmax = 80 µm/h. Thus, the maximum value
of the time scale τmax = 1.59 min was obtained by Eq. 4.4 with Rpmax = 80 µm/h. For
simplicity, time step τ was set as 1.5 min. The active tips were selected from all active and
dormant tips every 24 hours by a probability of activation obtained from the experiment as
Pactive = 0.7. The extension rate of each active tip was determined by a corrected gamma
cumulative distribution FΓ, which was fitted to the experimental data :
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FΓ(Rp;α, β) = Γ(α = 1.51, β = 0.09) + 4.65 × 10−6(RpmaxRp −
1
2

R2
p). (4.10)

The value of the probability Pdir was set as 0.05 to realize a minor directional change in
tip extension from time to time.

According to the experimental results, the difference of hyphal growth in the lag and expo-
nential phase was significant mainly in the branching frequency. Consequently, we define
a ratio klag of the branching frequency in the lag phase to that in the exponential phase.
Its value was estimated as 0.2 based on the observed results, which acted on the value
of Pl

b and Pa
b in the two growth phases. In the simulation, the lag phase lasted two days,

followed by the exponential phase. The branching angle θb is represented by a Gaussian
inverse cumulative distribution with µ = 77.6◦ and σ = 12.3◦, which allows the experi-
mental data to be nicely fitted. Finally, the length of apical dominance was defined as the
minimum length measured between the tip and the proximate branch (lad = 5 µm).

4.4.3 Parameters determined by inverse analysis

The experimental values of branching probabilities (lateral branching Pl
b and apical bran-

ching Pa
b) and anastomosis probability (Pa) are not explicitly available. Indeed, their effect

on the network structure can be assessed only after many time increments. Therefore, they
must be determined by an inverse procedure. Optimistically, the three parameters are not
independent. The observed ratio N l

b/N
a
b ∈ [4.0, 5.0] reveals that Pl

b is proportional to Pa
b.

From Eqs. 4.6 and 4.7, where Np and Nap respectively denote the total number of active
and dormant tips and that of active tips, the ratio Pl

b/P
a
b was calculated and should be in

the range [2.8, 3.5] since Pactive = 0.7. We set Pl
b/P

a
b to 3.5. Thus, Pa

b is linearly related
to Pl

b. Only two independent parameters remain. The discussion below will focus on the
relationship between Pl

b and Pa by fixing Pl
b/P

a
b = 3.5.

To determine their values, we compared the simulated and experimental segment length
distributions. The segment length is defined as the distance between two successive sites
of either branches or anastomosis, as the two types of sites are difficult to be distingui-
shed in observation. In the experiment, three regions were partitioned in the observed
images (from the center outward : R1, R2, and R3), to select different durations of myce-
lial growth, from old to young (details in [94]). In this published work, we defined the age
of the region to compare the growth observed in different regions and on different days,
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post inoculation. Each two consecutive regions are two days apart in age, and R1 is the
oldest region. The segment length distributions of each region were calculated with the
data measured in four radially arranged portions. The same measurements were carried
out for the three corresponding regions partitioned in the lattice. The results show that the
peak of the distribution is shifted toward short segment lengths in the simulated results,
from interval [0 µm, 10 µm] to [10 µm, 20 µm] (Fig. 4.3 (a)). This indicates that, branching
is inhibited near an already existing branch. This inhibition exists to avoid the generation
of too many short segments and was implemented as a local lateral branching mechanism
(LOC) (Fig. 4.3 (b)), which eliminates the possibility of lateral branching over NLOC nodes
on both sides of any branch/anastomosis site. The optimal value of NLOC was determined
through a criterion C1, using the root mean square (RMS) of the difference between the
simulated results and the fitted curves :

C1 =
1
3

∑
X∈{R1,R2,R3}

√√
1
n

n∑
i=1

(gX
γ (li

b) − f X(li
b))2, (4.11)

where li
b is the length of the ith interval, n is the total number of intervals, and gX

γ and f X

respectively denote the fitted gamma distribution and the probability density calculated
with the simulated data in Region X. We used several sets of parameters (Pa, Pl

b) and
computed criterion C1 with different values of NLOC. C1 was found to have its minimum
value for NLOC = 5, which corresponds to a distance of 15 µm. It is important to note that,
with this value, the RMS is also small for each individual region (R1, R2, and R3).

Criterion C1 was relevant while focusing on small segments but underestimated the contri-
bution of large segments to the biomass production. Therefore, we defined a second cri-
terion C2 in which the segment length distribution is weighted by the length of each cate-
gory :

C2 =
1
3

∑
X∈{R1,R2,R3}

√√√√√√√√√√ n∑
i=1

(gX
γ (li

b)li
b − f X(li

b)li
b)2

n∑
i=1

gX
γ (li

b)li
b

, (4.12)

where C2 was calculated with the simulated distributions f in R1, R2, and R3 at the end of
the 12th day and the corresponding experimental data. For each value of Pa, simulations
were performed with several values of Pb

l , keeping Pl
b/P

a
b equal to 3.5, as stated before.

Fig. 4.4 shows the contour plot of C2(Pa, Pl
b), which depicts a valley-like shape with a

small influence of Pa ; whatever the value of Pa, the minimum of C2 is obtained for al-
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Figure 4.3 – (a) Segment length distributions obtained from the experimental fit (in green), the
simulation without LOC (in red), and the simulation with LOC (in black), (simulation parameter
values : Pa = 0.1, Pl

b = 0.001, Pa
b = 0.00029) ; (b)-(i) possibility of lateral branching (Φl

b) along a
hypha without LOC, (b)-(ii) in applying LOC, no branches emerge from the NLOC nodes around a
branch/anastomosis site.

most the same value of Pl
b (0.001). Indeed, an increase in Pa leads to a reduction of the

total number of tips Np, and hence a reduction of the number of branching formation per
time-step. This effect tends to produce longer segments but is balanced by another effect,
as the increase of anastomosis sites divides more segments into shorter ones. Thus, C2

is a good criterion to determine the value of Pl
b but is quite loose regarding the value of

Pa. Through the analysis above, we noticed that increasing Pa simultaneously reduces the
total hyphal elongation and the branching emergence, which has a great negative effect
on the fungal biomass. Hence, Pa should be defined by accounting for the total biomass
production. To do so, the objective function should consider the total biomass production
rather than the dimensionless distribution.
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Figure 4.4 – The 2D contour (C2) displays the effect of (Pa, Pl
b) on the segment length distribution

(12th day).

4.4.4 Validation on macroscopic profiles

To determine the optimal Pa, we compared the computed normalized biomass density
profiles with the experiment at different observation days in fixing (Pl

b = 0.001, Pa
b =

Pl
b/3.5). The normalized radial biomass density ρ(r, t) was calculated by averaging the

discrete network along the radius :

ρ(r, t) =
1

Nn(r)

∑
{(xi,y j)|r− ∆r

2 ≤
√

x2
i +y2

j<r+ ∆r
2 }

(Noccupy(xi, y j, t)), (4.13)

where Noccupy is equal to 1 if the node (xi, y j) is occupied and 0 if not. Additionally, Nn de-
notes the total number of nodes within the corresponding ring. We chose 60 µm for ∆r as
a good compromise to reduce the noise level of the profiles without losing information on
the profile shape. Fig. 4.5 (a) and (b) show the biomass density profiles, respectively, at 5
and 12 days, post inoculation. The biomass density augments with the decrease of Pa, es-
pecially when the value of Pa is low. The simulated profile obtained with Pa = 0.1 agrees
the most with the experimental profile. This result coincides with the segment length dis-
tribution, which indicates that the macroscopic result and the statistical data are consistent.

After the determination of the optimal set of (Pa = 0.1, Pl
b = 0.001, Pa

b = 0.00029),
all modeling parameters were obtained and are listed in Table 4.3. With these parame-
ter values, we find that the simulated result is consistent with the experimental data on
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Figure 4.5 – Normalized biomass density profiles (rho) on the 5th and 12th day.

the evolution of the segment length distribution versus time (Fig. 4.6). The distributions
were calculated with the simulated network in each region and time corresponding to the
age/region relationship defined in the experimental work [94]. A good agreement was
found between simulated and experimental results. This means that the model can ac-
count for the intricate effects of distance and time on the development of the mycelial
network, namely the spatial invasion due to tip elongation and apical branching and the
densification of the network due to lateral branching. However, the relatively rapid in-
crease of branching/anastomosis sites in R1 and the slow increase in R3 reveals that the
probability of anastomosis may change with the density of hyphae since the thickness of
the colony can augment, resulting in the increase of the growth space of hyphae.

Fig. 4.7 depicts the evolution of the mycelial network with time obtained both in the simu-
lation and the experiment. These graphs confirm that the simulated spatial development
of the mycelial network is a good representation of the actual morphology development,
as observed by CLSM.
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Figure 4.6 – The fitted curve of observations at different ages of region and the distributions of
the branching lengths : (a) 12-day-old (simulated data from R1 on the 12th day, R2 on the 14th
day and R3 on the 16th day) ; (b) 10-day-old (simulated data from R1 on the 10th day, R2 on the
12th day and R3 on the 14th day) ; (c) 8-day-old (simulated data from R1 on the 8th day, R2 on
the 10th day and R3 on the 12th day). Parameter value in the simulation : Pa = 0.1, Pl

b = 0.001,
and Pa

b = 0.00029.

Figure 4.7 – Evolution of the topological architecture of a mycelial network versus time obtained
by (a) simulation with Pa = 0.1, Pl

b = 0.001, Pa
b = 0.00029, and (b) observation using CLSM on

the 5th, 10th and 14th days.
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Table 4.3 – Description and values of the modeling parameters.

Parameter Description Value & Expression

Rp Tip extension rate Γ(α = 1.51, β =

0.09) + 4.65 × 10−6(Rpmax − Rp)

θb Branching angle N(µ = 77.6◦, σ = 12.3◦)

lad Length of apical dominance 5 µm

Pl
b Probability of lateral branching 0.001

Pa
b Probability of apical branching 0.00029

Pa Probability of anastomosis 0.1

NLOC Number of nodes around a branch that do
not emerge branches

5

4.5 Potential in complex environment

To depict the potential of the model, various simulations of mycelial growth in different
environments were carried out with the calibrated parameters listed in Table 4.3. The di-
mension of the lattice was set as 18000 µm × 18000 µm and the mycelial network spread
from a spore placed at the center of the lattice (i.e., (9000 µm, 9000 µm)).

4.5.1 Obstacles in mycelial growth environment

To mimic fungal development in porous media, such as fiberboards, solid obstacles with a
periodic pattern were included into the lattice. In Fig 4.8A, the two series of graphs, (i) and
(ii), show the mycelial networks at two times, which are t = 15000 min and t = 30000 min,
in the case of free growth (a) and for two different porous media :

• Squares with side length of 1500 µm and distance between two neighboring squares
of 1500 µm (b) ;

• Rectangles with dimension of 4500 µm×1500 µm and distance between two neigh-
boring rectangles of 1500 µm (c).

We arbitrarily fixed the extension direction of the tip extended from the spore as 45◦ with
respect to the positive x-axis. The tips developed around the obstacles due to the thig-
motropism and changed the mycelial morphology and biomass distribution. From (a) to
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(c) in Fig. 4.8A, it is obvious that obstacles reduced the entire expansion of the myce-
lium. The rate of tip extension slows down because of the reduced space available for
fungal development (porosity) and increased local length (tortuosity) generated by the
obstacles. In the case of square obstacles, the expansion is reduced by the same amount
in the x- and y-directions. In the case of the rectangles, the reduction is much larger
along the y-direction since the obstacle width limits the possibility of vertical expansion
(Fig. 4.8A(c)(i)). Fig. 4.8B depicts the averaged density profiles along x and y for the
three configurations at two contrasting times. In each case, the average is computed along
a line perpendicular to the profile direction, including the porous and solid phases (for
the concept of global averaging, see [122]). At t = 15000 min (dashed lines), the den-
sity profiles confirm that the extension is smaller in porous media than in a homogeneous
environment. These profiles confirm the anisotropic behavior of the rectangular shape ;
the profiles along y are narrower than profiles along x. These trends are even more pro-
nounced at t = 30000 min (solid lines). Overall, these simulations allow the analysis of
biomass distribution in structurally heterogeneous environments, such as fiber panels used
for building insulation. The model is therefore ready to be applied to mycelial growth in
realistic porous media by placing obstacles with irregular shapes.

4.5.2 Other complex environments

In addition to the obstacles, the different distributions of nutrients and existence of tro-
pisms can cause different strategies of mycelial growth. Some examples are shown in
Fig. 4.9. The two series of graphs, (i) and (ii), show the mycelial networks at two times,
which are t = 11250 min and t = 22500 min in one realization, respectively, while the
effect of three environmental factors are presented in (a)-(c). As shown in Fig. 4.9 (a),
a complex structure was generated by canceling branching and increasing the tip exten-
sion rate in a shell area due to a lack of nutrients, for example. In Fig. 4.9(b) and 4.9(c),
a uniform unidirectional tropism of 60◦ with respect to the positive x-axis but with two
different intensities (

∥∥∥∥~T∥∥∥∥ = 1.0 and
∥∥∥∥~T∥∥∥∥ = 0.5) was applied to the environment. The tips

tended to follow this direction, and all hyphae formed a smoothly curved structure. With
the same reaction rate, the morphology of the curved structure depends heavily on the
intensity of the tropism.
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Figure 4.8 – Mycelial growth in structurally heterogeneous environments. A : Mycelial networks
in (a) a homogeneous environment, (b) an environment with squares of 1500 µm sides, and (c)
an environment with rectangles of dimensions of 4500 µm × 1500 µm. The parameter values are
cs = 1.0, υ = 0.01, Pl

b = 0.001, Pa
b = 0.00029, and Pa = 0.1. The model networks are shown

at two times : (i) t=15000 min and (ii) t=30000 min. B : Column density of biomass along x- and
y-directions for the six mycelial networks in A.

4.6 Conclusion

A discrete lattice-based model able to mimic mycelial development has been derived, in-
corporating the basic growth behaviors of hyphae, including tip extension, branching, and
anastomosis. An important feature of this model is the elimination of the restriction of the
lattice configuration to the hyphal elongation and branching angle. As a result, this model
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Figure 4.9 – Different growth strategies of mycelium in response to various environmental factors :
(a) inhibition of branching in a shell area with the inner radius 1500 µm and the outer radius
3000 µm ; application of a tropism directing to 60◦ with respect to positive x-axis with tropism
intensity (b)

∥∥∥∥~T∥∥∥∥ = 1.0 and (c)
∥∥∥∥~T∥∥∥∥ = 0.5 in fixing the reaction rate

upsilon = 0.01. The parameter values are Pl
b = 0.001, Pa

b = 0.00029 and Pa = 0.1. The model
networks are shown at two times : (i) t=11250 min and (ii) t=22500 min.

generates a visually realistic mycelial network. Moreover, due to the tropism and obs-
tacle mechanisms, the model possesses the potential to reproduce the different possible
strategies of mycelial growth in complex environments. In particular, the thigmotropism
permits hyphal growth in a structurally heterogeneous media, which provides a base for
simulating hyphal growth in bio-based products. A rigorous procedure has been carried
out to feed the model with all needed parameters from experimental observation, inclu-
ding the parameters obtained directly from experimental results and those determined by
inverse analysis. Branching and anastomosis probabilities were determined through their
effect on the mycelium network after a huge number of time steps. With these calibrated
parameters, the model is able to reproduce the intricate coupling between spatial invasion
and network densification. This validated discrete model will be used to tune a continuous
model able to realize fungal development over larger scales in complex morphologies.
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4.7 Supporting Information

Validation of the elongation mechanism
The hyphal elongation is modeled as a biased random walk following the tip extension
direction. With the probability of tip extension Px

p and Py
p, the tip selects at random a node

adjacent to the direction and advances into it. In averaging 10 identical simulations of the
elongation process along one direction, we tested if the averaged hypha follows exactly
this direction. Fig. S4.1 shows seven tests along seven different directions. The averaged
hyphae are well coincident to their predetermined directions. In addition, Fig. S4.1 reveals
that the elongated lengths of hyphae over the same time are equal despite of their growth
directions when their extension rates are the same.

Figure S4.1 – Test of the elongation mechanism. Seven averaged hyphae (black solid lines) over
10 identical simulations agree perfectly with their predetermined extension directions (red dashed
lines) in a dimensionless lattice. The hyphae elongate over t = 2000 with the same extension rate.

Impact of lateral branching mechanisms on mycelial morphology
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We have tested two mechanisms for the selection of the sites of lateral branches :

• Dirac function
Only the nodes having a fixed length behind the tips possess a probability of lateral
branching greater than 0 and the others cannot emerge lateral branches.

• Equal probability
All the nodes occupied by hyphae except those that have emerged branches or inhi-
bited by apical dominance possess an equal probability of lateral branching.

The mycelia formed in following the two lateral branching mechanisms are shown res-
pectively in Fig. S4.2(a)(b). The morphologies of the two mycelia are totally different.
The Dirac function leads to a relatively uniform biomass distribution in the whole colony,
while the biomass density is evidently much higher in the center of the colony and be-
came lower and lower from the center outwards due to the equal probability. Obviously,
for Postia placenta, the second lateral branching mechanism is more suitable.

Figure S4.2 – Mycelial networks generated by two different lateral branching mechanisms. (a)
Dirac function and (b) equal probability.
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Table 4.4 – Mathematical functions for modeling hyphal growth behaviors.

Growth
behavior

Function Notation

Hyphal
elongation

 Px
p(i, t) = Rp(i, t)| cos θp(i, t)| τ

δ

Py
p(i, t) = Rp(i, t)| sin θp(i, t)| τ

δ

Px
p Probability of tip extension along x-axis

Py
p Probability of tip extension along y-axis

R∗p Tip extension rate

θp
Angle of tip extension direction with
respect to positive x-axis

τ Duration of each time step
δ Lattice spacing
i Tip number
t Time

Lateral
branching

∆N l
b(t)

= N l
b(t) − N l

b(t − τ)
=

⌊
Pl

bNp(t)
⌋

+ 1A1(ω)

N l
b Total number of lateral branches

Pl
b
∗ Probability of lateral branching

Np Total number of tips

1A1(ω)
Indicator function which has the value 1 if
ω ∈ A1

A1
Set involving the real number between 0
and decimal part of Pl

bNp(t)
ω Random number in [0, 1]

Apical
branching

∆Na
b (t)

= Na
b (t) − Na

b (t − τ)
=

⌊
Pa

bNap(t)
⌋

+ 1A2(ω)

Na
b Total number of apical branches

Pa
b
∗ Probability of apical branching

Nap Total number of active tips

A2
Set involving the real number between 0
and decimal part of Pa

bNap(t)

Anastomosis
∆Np(t) =
Np(t)∑
i=1
−1[0,Pa](ω)1N+ (Nh(Op(i, t), t))

P∗a Probability of anastomosis
Op Coordinates of tip location
Nh Number of hyphae contained in a node

Tropism

 ~np(i, t + τ) =
~np(i,t)+∆~np(i,t)

‖~np(i,t)+∆~np(i,t)‖

∆~np(i, t) = υ[~T (i, xi, y j, t) − ~np(i, t)]

~np
Unit vector denoting tip extension
direction

~T ∗ Vector denoting unidirectional tropism

υ∗
Coefficient of hyphal reaction rate to
tropism

Obstacle


~S (i, xi, y j, t) = cs(xi, y j)

~ng(i,xi,y j,t)

‖~ng(i,xi,y j,t)‖
2

~ng(i, xi, y j, t) =

~np(i, t) − [~np(i, t) · ~nn(xi, y j)]~nn(xi, y j)

~S
Vector denoting thigmotropism generated
by obstacles

c∗s Intensity coefficient of thigmotropism

~ng
Projection of the tip direction vector on
the tangent plane

~nn
Unit vector normal to the surface of
obstacles

* The parameter can be regulated to affect fungal growth behaviors.
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Continuous model of the fungal growth
in porous media

This chapter presents a continuous formulation capable of simulating the fungal growth
in porous media at the macro-scale. The strategy of this work follows two major steps.
As depicted in part 5.2, the first step is to identify an equivalent reaction-diffusion equa-
tion from the radial biomass density of a mycelial network obtained from the validated
discrete model. This equation simulates the expansion of fungal biomass at the colony
scale (i.e., free growth at the local scale). Highly nonlinear expressions were obtained
for the diffusivity and the source term, which is consistent with the local mechanisms of
fungal development. This continuous model was then used to derive an equivalent macro-
scale model able to account for fungal development in a structurally heterogeneous me-
dium (part 5.3). Simulations were performed on various periodic heterogeneous media.
In part 5.4, the parameters of a reaction-diffusion model were identified on the macrosco-
pic field obtained by averaging the local field over one periodic unit cell. The identified
functions for the equivalent diffusivity and source term have a form similar to the local
model, but their values depend on the medium porosity and the morphology of the solid
phase, possibly leading to an anisotropic equivalent medium.
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Continuous model of the fungal growth in porous media :
identification of a macroscale model from local-scale
simulations

Huan Du1, Patrick Perré1*

1 LGPM, CentraleSupelec, Université Paris-Saclay, 92290, Châtenay-malabry, France

* patrick.perre@centralesupelec.fr

5.1 Introduction

Wood and wood-based products have been popular constructive materials due to their ex-
cellent mechanical properties for many years. The good thermal performance and design
of new manufacturing technology enable the reduction of energy consumption and emis-
sion, which responds well to the trends in building construction. This is why, these ma-
terials became even more promoted in construction. However, fungal decay in bio-based
materials is of major concern in relation to the service time of buildings and even to human
safety, since it weakens the structural support of wood enough to cause mechanical fai-
lure. Every year an enormous amount of wood and wood-based products is destroyed by
fungal decay, among which brown rot fungi are the most common and destructive within
buildings throughout Europe and North America due to their rapid decay mechanisms [4].
Many researches have studied the growth and decay patterns of brown rot fungi as well
as the impact of environmental factors to their growth [104, 42, 105, 106, 14, 15, 16].
Nevertheless, the laboratory observations are constrained by the scales of study and their
cost. As a supplementary tool, mathematical modeling in combination with laboratory
experiments can realize a deeper and wider insight in a more efficient way.

It is a challenge to model the spatial growth of filamentous fungi in porous media such
as wooden panels or soils, which can be considered as multi-scale materials (e.g., pore
scale and macro-scale). The modeling techniques to simulate the spatial distribution of
fungi are classified into two categories : discrete models and continuous models. The
previous ones adapt well to model the mycelial growth at a small scale in identifying
individual hypha to form mycelial networks in porous media. For example, Boswell et
al. (2007) and Boswell (2008) respectively developed a 2D and a 3D lattice-based mo-
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del to simulate mycelial growth in a soil-like environment [65, 79]. Fuhr et al. (2011)
constructed a 3D lattice-free model of hyphal growth in the heartwood of Norway spruce
in simplifying the structure of wood. Alternatively, the density of fungal matter was vie-
wed as smooth variable(s) in the continuous models, which are suitable for both colony
and macroscale modeling. These models focused on the interaction of fungal growth with
the environment, especially the distribution of nutrients. The early models were extended
from reaction-advection systems which included nutrients and geometries of mycelial
spread [69, 85, 123, 86]. However, the advection process requires the development di-
rection to be known at each point, which limits the prediction ability of the code and/or
augments the mathematical complexity especially in heterogeneous media. Thus, in the
recent models, the diffusion process has replaced advection to model the movement of hy-
phae [70, 124, 87, 114, 125, 75]. Nevertheless, few of them investigated the fungal growth
in a structurally heterogeneous environment and involved a multi-scale modeling. Apart
from the models of spatial fungal growth, several macroscale models were developed to
simulate non-spatial fungal growth in wood (i.e., the wood decay). These models focused
on the impact of the environmental factors on the decay risk and the decay rate (i.e., the
fungal expansion rate and the reduction rate of the woody biomass) based on the field test
data or the laboratory test data [76, 92, 93].

This work is devoted to two-scale modeling of spatial fungal growth of a brown rot fun-
gus, Postia placenta, in periodic porous media. Two successive upscaling techniques were
performed to achieve this goal : i) a continuous formulation able to mimic the biomass
development as simulated by a discrete model in free growth conditions and ii) the use
of this continuous formulation to simulate the fungal development in a periodic heteroge-
neous model to derive an equivalent macroscale model.

The continuous formulation was first developed to simulate the distribution of fungal bio-
mass of Postia placenta in applying a reaction diffusion (RD) equation. The parameters of
the local-scale continuous model (the diffusion coefficient D and the source term S ) were
identified by an inverse method : the model parameters were adjusted to minimize the gap
between the numerical solutions of the RD equation and the radial profiles of fungal bio-
mass density calculated by the validated discrete model (in Chapter 4). Highly nonlinear
expressions were obtained for the diffusivity and the source term, which is consistent with
the local mechanisms of fungal development.

This continuous model was then used to derive an equivalent macroscale model able to
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account for fungal development in a heterogeneous medium. Simulations were performed
on various periodic heterogeneous media. The parameters of the RD model were then
identified on the macroscopic fields obtained by averaging the local field over one per-
iodic unit cell. Thus, the parameters of the macroscale model were identified from the
local-scale growth of hyphae and can simulate the spatial fungal growth in porous media
at both local- and macro-scales. Fig. 5.1 summarizes the procedure to develop the conti-
nuous formulation at the macroscopic scale.

Figure 5.1 – Procedure of development of the continuous model.

5.2 Identification of the continuous model based on the
discrete model

5.2.1 Radial biomass density calculated from the discrete model

In using the validated fungal growth parameters listed in Table 3.2, the discrete model
presented in Chapter 4 generates a mycelial network from a spore. The simulated myce-
lium was divided into a series of rings with a gap of ∆r = 1.5×10−4 m (Fig. 5.2), of which
the normalized radial biomass density ρ(r, t) was calculated by averaging the discrete net-
work over radius increments using Eq. 4.13. Note that ρ is a dimensionless variable which
is the ratio of the space occupied by hyphae to the total space. Due to the numerous ran-
dom processes in the discrete model, one simulation was not representative so that 100

110



Identification of the continuous model based on the discrete model Section 5.2

realizations were simulated to obtain an averaged radial biomass density 〈ρ〉 (r, t) for each
ring :

〈ρ〉 (r, t) =

100∑
k=1

ρk(r, t)/100, (5.1)

where ρk is the normalized radial biomass density in the kth simulation. In addition, in
following the evolution of fungal biomass distribution with time, the averaged biomass
density was calculated at five times t1 = 4.5 × 104, t2 = 4.5 × 105, t3 = 6.75 × 105,
t4 = 9 × 105 and t5 = 1.35 × 106 s. Thus, five profiles of the averaged radial biomass
density at different times were obtained from the discrete model.

Figure 5.2 – Calculation of the normalized radial biomass density from the discrete model. (a)
Series of ring-parts with equal gap divided on the mycelial network ; (b) profile of normalized
biomass density calculated in the rings.

5.2.2 Continuous model at the local scale

The normalized biomass density was treated as the variable to be reproduced by the conti-
nuous model to represent the fungal development. In the continuous model, the biomass
density was denoted by B, a spatial field which evolves in time. A RD equation was solved
in a 1D axisymmetric configuration to simulate the evolution of the biomass density in
a homogeneous medium. The comparison of its numerical solution to the radial profiles
of biomass density obtained with the discrete model was used as the objective function
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to identify the diffusion coefficient D(B) and the source term S (B). The 1D RD axisym-
metric formulation was used to calculate the radial biomass B, which can be compared to
〈ρ〉, and reads as follows :

∂B(r, t)
∂t

=
1
r
∂

∂r
(D(B)r

∂B(r, t)
∂r

) + S (B), (5.2)

where r is the radius of the fungal colony and t denotes the time. After numerous tests,
we found that both the diffusion coefficient and the source term must depend strongly
on the biomass density. Finally, we optimize the parameters of the following nonlinear
expressions, product of a constant term, an increasing function and a decreasing function :

D(B) = DlBγ(1 − B)γ
′

, (5.3a)

S (B) = λBκ(1 − B)κ
′

. (5.3b)

These expressions contain six degrees of freedom, Dl, γ, γ′, λ, κ and κ′, which build up
the set of model parameters to be defined by inverse analysis. The flux of biomass on the
boundaries was assumed to be zero and the initial condition was the profile of the avera-
ged radial biomass density of the discrete model at t = 4.5 × 104 s.

The RD equation was solved using the finite volume method in cylindrical coordinates.
A uniform grid spacing (δ) was used to discretize the calculation domain and it was set
to be equal to the spatial resolution of the profiles obtained in the discrete model (i.e.,
δ = ∆r = 1.5 × 10−4 m). A simple explicit scheme but with the time step τ that must then
be mate small enough to deal with non-linearity was applied for the numerical solution
as a 1D solution is very fast. For a diffusion equation, the time step τ should be less than
δ2/(2 · D), which is the well-known stability criterion for the explicit scheme. However,
as the diffusion coefficient D as well as the source term S are nonlinear functions of the
biomass density, we made different tests to be sure that the time step is small enough to
capture the strong nonlinear behavior. All simulations were performed with τ ≤ 100 s,
which is much less than the simple stability criterion by 2 orders of magnitude.
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5.2.3 Determination of D and S

The determination of D and S involves an optimization problem to make the numerical
solution of the 1D RD equation close to the normalized biomass density obtained from
the discrete model. The Nelder-Mead method was applied to minimize the mean squared
error (MSE) between them, which was defined as follows :

MS E =
1

4N

∑
t∈{t2,...,t5}

N∑
k=1

(〈ρ〉 [r(k), t] − B[r(k), t])2, (5.4)

where N denotes the total number of rings (here N = 59) and r(k) represents the radius of
the kth ring.

Fig. 5.3(a) depicts the optimization results in which the value of MSE equals 6×10−4. The
red line represents the initial condition and the four curves plotted by circles represent the
profiles of the averaged biomass density at the four additional selected times. The dark
green lines are the numerical solutions of the RD equation. The profiles simulated by the
continuous model are in quite close agreement with the corresponding profiles of the dis-
crete model. In particular, one can note that the shape of the discrete model is globally
well-captured by the nonlinear RD model, even though it resembles more a front-like pro-
gression than a diffusion phenomenon. This agreement is particularly good for the profiles
at the first three times after the initial profile. The profile obtained for the last time is in
slightly poorer agreement due to the peak value of the source term around B = 0.15
(Fig. 5.3(b)-(ii)). The value of the six parameters (i.e., Dl, γ, γ′, λ, κ and κ′) governing the
diffusion coefficient D and the source term S are listed in Fig. 5.3(a). The large value of γ′

leads to the sharp decrease of D from the peak value towards 0 over a short interval of B,
while the low value of γ forces the peak position to be close to B = 0 and Dl regulates the
range of D (Fig. 5.3(b)-(i)). This means that, in the RD model, diffusion acts only over
a short range of B values, which is a way for the continuous formulation to mimic the
tip extension. After this first appearance of biomass, further increase in B is solely tied
to the source term. The parameters λ, κ and κ′ of the source term S play the same role,
respectively, as Dl, γ and γ′ for D. Note that κ′ regulates the maximum value of the bio-
mass density through controlling the density B where S starts to tend to 0. However, the
value of the parameters identified for the source term leads to a smoother function shape,
which presents its peak value at around 0.15 instead of 0.01 for D. The profiles of D and
S are consistent with the expansion of fungal biomass. The diffusion occurs at the marge
of the colony where the biomass density is low, while the increase of the density in the
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inner colony is mainly caused by the fungal growth (i.e., the source term). In addition, the
normalized fungal density cannot reach 1.0 which means the filamentous hyphae cannot
cover the whole domain, owing to anastomosis.

Figure 5.3 – Optimization result of 1D RD equation compared with the profiles of averaged density
obtained from the discrete model. (a) Four optimized profiles of the numerical solution (dark
green lines) calculated at t = 4.5 × 105, 6.75 × 105, 9 × 105, and 1.35 × 106 s compared with
the corresponding profiles obtained from the discrete model (black circle) ; red line is the initial
condition which is the profile at t = 4.5 × 104 s obtained from the discrete model ; the inset table
lists the optimized value of the six model parameters governing the diffusion coefficient and the
source term. (b) Evolution of (i) the diffusion coefficient D(B) and (ii) the source term S (B) with
the normalized biomass density B.

5.3 2D simulation of fungal growth using the continuous
model

5.3.1 Comparison of fungal growth in various media

In this section, the RD continuous model is used to simulate fungal development at a lar-
ger scale, in a periodic heterogeneous medium. As shown in Fig. 5.4, the 2D simulation
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was carried out in a porous medium Ω ∈ R2 composed of two phases, pore (Ωα) and obs-
tacle (solid phase) (Ωβ). We assumed that the flow of fungal biomass is homogeneous and
isotropic in the pore space, while no fungal biomass can grow in the solid phase. Conse-
quently, the flux normal to their interfaces ∂Ωβ is equal to zero. The biomass development
in the pore space is calculated according to the calibrated D(B) and S (B). A zero-flux
external boundary condition (BC) is applied on the external boundary of the computed
domain Ω (i.e., ∂Ω). The 2D RD system in Cartesian coordinates can be summarized as
follows :

∂B(x, y, t)
∂t

= ∇ · (D(B)∇B(x, y, t)) + S (B), in Ωα, (5.5a)

Internal BC D(B)∇B(x, y, t) · n = 0, on ∂Ωβ, (5.5b)

External BC D(B)∇B(x, y, t) · n = 0, on ∂Ω. (5.5c)

Figure 5.4 – General configuration of a porous medium. The whole domain (Ω) consists of two
phases : pore phase (Ωα) and solid phase (Ωβ). The interface of the two phases is denoted by ∂Ωβ

and the boundary of Ω is ∂Ω.

Two types of periodic porous media were constructed to investigate the biomass deve-
lopment in isotropic and anisotropic porous media. The calculation domain consists of
120 × 120 grid points (pts) and the resolution of the 2D grid is 1.5 · 10−4 × 1.5 · 10−4 m2.
The equivalent macroscopic medium is expected to be isotropic with respect to diffusion
when the elementary periodic pattern is unchanged by a rotation of 90◦. For example, in
the medium illustrated in Fig. 5.5(a) (denoted by isotropic medium), the identical squares
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are uniformly distributed in the domain and the spacing in x- and y-direction between two
squares is equal to the length of the square side (i.e., 10 pts). This equivalent medium is
isotropic since the diffusion in the x- and y-direction is the same (proved by Fig. 5.6). The
other medium shown in Fig. 5.5(b) (denoted by anisotropic medium) is composed of rec-
tangles of 30 pts long and 10 pts wide with the spacing between two adjacent rectangles
of 10 pts in both x- and y-direction. The minimum offset distance (denoted by s) between
the rectangles of two consecutive rows along the x-direction is 20 pts. In this case, the
elementary period is not invariant by rotation.

Figure 5.5 – Geometrical models of porous media. (a) Isotropic medium composed by aligned
squares and (b) anisotropic medium composed of offset rectangles. The grid dimension is 120 pts×
120 pts ; l and w denote respectively the length and the width of the obstacles ; δl and δw are the
spacing between two adjacent obstacles along x and y-direction ; s represents the minimum offset
distance between the two consecutive rectangle-rows along x-direction.

Eq. 5.5 was applied to calculate the biomass distribution in the homogeneous medium (no
solid phase), the isotropic medium and the anisotropic medium. The 2D RD problem was
solved using a 2D explicit finite volume method. The same protocol as for the 1D solution
was adopted to fix the time step. The initial condition consists in applying the averaged
radial biomass density of the discrete model at t = 4.5 × 104 s in the following way :
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B(x, y, t) = 〈ρ〉 (rk, t) if (rk −
∆rk

2
)2 < (x2 + y2) ≤ (rk +

∆rk

2
)2. (5.6)

The fungal fields at two different times (t = 9 × 105 s and t = 1.8 × 106 s) are depic-
ted in Fig. 5.6 for the three selected media via 2D contours and 3D carpet plots, which
respectively emphasize the shape of the mycelium and the flow of biomass bypassing
the obstacles. As expected, the mycelium in the homogeneous medium presents a round
shape with the highest biomass density in the center of the colony. We observed the nonli-
near decline of the biomass density from the center outward in the homogeneous medium
from the 3D carpet plots. In the two porous media, the morphology of the colony changes
significantly. The obstacles inhibit the flow of the biomass along the original direction
and hence slow down its expansion rate. However, the diffusion and reaction processes
give rise to a smooth flow of biomass bypassing the obstacles along the density gradient
from the region of high density to that of low density. The maximal density in the center is
not influenced by the obstacles due to the extremely low value of the diffusion coefficient
when the biomass density is greater than 0.05. The fungal biomass in the isotropic me-
dium is symmetrically distributed with respect to both x- and y-axis, which confirms an
isotropic diffusion process. On the contrary, the expansion of biomass in the anisotropic
medium is evidently faster in x-direction than in y-direction. As expected, the length of
the obstacles along x-axis is efficient in limiting biomass diffusion along the y-direction.

5.3.2 Simulation of fungal growth in extended domains

The final aim of this work is to derive a macroscopic formulation able to predict the ave-
raged field resulting from fungal development in structurally heterogeneous media. This
goal needs averaged fields of sufficient extension to be obtained to identify the model pa-
rameters at the macro-scale. To achieve this goal, enlarged calculation domains, based on
those in Fig. 5.5, were constructed. To limit the computational time and memory needs,
heterogeneous media were constructed along one direction. The extension of the medium
along the direction perpendicular to that direction is just one period wide, which is the
minimum extension needed to capture the macroscopic behavior.

In the homogeneous medium and the isotropic equivalent medium, the diffusion process is
the same in x- and y-directions, so that the expansion of fungal biomass along the x-axis is
also representative of the y-direction. On the contrary, both x- and y-directions need to be
computed for the anisotropic medium. Thus, the band domains of four studied cases were
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Figure 5.6 – 2D simulations of fungal biomass development at two selected times for various
contrasted media. Color bar indicates the normalized biomass density.

considered as shown in Fig. 5.7 : (i) homogeneous medium, (ii) isotropic medium, (iii)
anisotropic medium along x-direction, and (iv) anisotropic medium along y-direction. The
dimensions of the first two domains are 520×20 pts, while the last two are respectively of
dimension 520 × 40 pts and 40 × 520 pts. The obstacle size and the spacing between two
adjacent obstacles are identical to those of Fig. 5.5. The initial conditions are consistent
with a 1D problem in the following way : the normalized biomass density B is 0.05 in the
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column-domain (in light red) with width of 20 pts at the mid-length of the domain and
B = 0 for the remaining part.

Figure 5.7 – Enlarged calculation domains with the initial field. The size of the obstacles and
the spacing between two adjacent squares are respectively 10 × 10 pts and 10 pts in the isotropic
medium, and 30 × 10 pts and 10 pts in the anisotropic medium; the initial condition in each case
is that the normalized biomass density is set to 0.05 in the light red part and to 0 in the rest of the
domain.

The 2D contours of the numerical solutions were plotted at two times (t = 9 × 105 s and
t = 2.7 × 106 s) for each case (Fig. 5.8). In the homogeneous medium, the isovalues of
the biomass field remain vertical throughout the simulation, while the obstacles in the
porous media force the isovalues to be curved for the biomass flux to navigate around the
obstacles. The biomass spreads faster along the x-direction than along the y-direction in
the anisotropic medium, which is consistent with the shape of the unit cell (not invariant
by a rotation of 90◦).
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Figure 5.8 – 2D solutions computed for the extended calculation domains at two different times.
Color bar represents the normalized biomass density.

5.4 Deriving the macroscale model

When the size of the obstacles Ωβ is much small than the whole domain Ω, the scale of the
heterogeneity is small enough for the behavior of the porous medium to be homogenized
by volume averaging. The objective of this last section is to derive a macroscopic formu-
lation, valid on an effective homogeneous medium, whose solution is able to reproduce
the local field averaged over the unit cell.

5.4.1 Spatial averaging of the local fields

As the extended domains were designed to obtain 1D macroscopic fields, these domains
were simply averaged along the x-axis using a sliding window whose dimensions are
those of the unit periodic cell. The width of the unit cell (extension along the main domain
direction) was therefore equal to 20 pts which guarantees a uniform porosity (ε = 0.75
for the isotropic medium and ε = 0.625 for the anisotropic medium) whatever the posi-
tion of the cell. While calculating the column density, we used global averaging, hence the
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pore phase and solid phase volumes were both considered [122]. This method was used to
calculate the macroscopic field, denote by φ(x, t), from the simulated local-scale fields at
four different times : t′1 = 4.5×105, t′2 = 9×105, t′3 = 1.8×106 and t′4 = 2.7×106 s (Fig. 5.8).

The averaged fields for the four cases and the four times are plotted in Fig. 5.9. The time
evolution of these profiles is quite similar. Consistently, profiles of case (i), a medium
without a solid phase, has the higher field value and a slightly larger extension. On the
contrary, case (iv) depicts narrower profiles. This trend is especially obvious at 2.7×106 s.
Note the difference of width between profiles (iii) and (iv) (the same medium but for two
orthogonal diffusion directions) : this emergent macroscopic anisotropy, obtained with
two isotropic local phases (pore- and solid-phase), is then due to the spatial arrangement
of the phases.

Figure 5.9 – Profiles of the column density calculated from the simulations in extended calculation
domains.
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5.4.2 Identification of the macroscale model

Unsurprisingly, a RD model is proposed at the macro-scale. The same mathematical ex-
pressions were also used to obtain the diffusion coefficient and the source term as a func-
tion of the biomass density. The identification procedure therefore involves a 1D RD
solution (Eq. 5.7) in Cartesian coordinates with macroscopic variables : averaged fungal
biomass density 〈B〉, macroscopic diffusion coefficient 〈D〉 and macroscopic source term
〈S 〉. Hence, six parameters Dm, γm, γ′m, λm, κm and κ′m have to be adjusted by inverse ana-
lysis. The procedure is performed to determine the equivalent macroscopic forms of 〈D〉
and 〈S 〉. The objective was to determine the equivalent macroscopic 〈D〉 and 〈S 〉 for the
three cases of the porous media, case (ii), (iii) and (iv). The BCs and initial conditions
are assumed to be the same as for the local-scale model. For the initial conditions, we
assigned 〈B〉 = 0.05 × ε to the 20 pts in the middle of the calculation domain and 〈B〉 = 0
for the rest of the domain. The grid spacing and the time stepping are the same as the
local-scale model (i.e., δ = 1.5 × 10−4 m and τ = 100 s).

∂ 〈B〉 (x, t)
∂t

= ∇ · (〈D〉 (〈B〉)∇ 〈B〉 (x, t)) + 〈S 〉 (〈B〉)

〈D〉 (〈B〉) = Dm 〈B〉γm (1 − 〈B〉)γ
′
m

〈S 〉 (〈B〉) = λm 〈B〉κm (1 − 〈B〉)κ
′
m

(5.7)

The objective function of the optimization problem is the MSE (Eq. 5.8) between the
numerical solution 〈B〉 of the macroscale model and the profiles φ obtained by averaging
the 2D local-scale field at four different times :

MS E =
1

4N

∑
t∈{t′1,...,t

′
4}

∑N

k=1
(φ[x(5(k − 1) + 1), t] − 〈B〉 [x(5(k − 1) + 1), t])2, (5.8)

where N = 101 since 101 points with the same spacing (5 pts) were selected to calculate
MSE. The optimized results are presented in Fig. 5.10 where the red line is the initial
condition, the black circles are the averaged local-scale fields and the dark green line de-
picts the solution of the macroscale model. The macroscopic profiles are in very good
agreement with the averaged local-scale fields, leading to very low values of MS E =

4 × 10−5, 3 × 10−5 and 6 × 10−5 respectively for the three cases (ii)-(iv). The parameters
of the macroscale model are listed in Table 5.1 and the corresponding functions 〈D〉 and
〈S 〉 for the three cases are plotted in Fig. 5.11. In the case of the homogeneous medium,
the macroscopic parameters are equal to those of the local-scale model : this uses to be

122



Conclusion Section 5.5

expected and simply allows the strategy adopted for initial, boundary conditions and vo-
lume averaging to be validated. The obvious difference between the shape of the diffusion
coefficient in case (iv) compared to the other cases denotes a difference in biomass deve-
lopment due to the larger tortuosity imposed by the solid phase pattern. As a consequence,
the diffusivity is much smaller at very low values of density, when the source term is still
small. On the contrary, the diffusivity remains large up to larger values of density, up to
0.25 against 0.05, to compensate. Diffusion then starts later, when the source term has
already produced a sufficient amount of biomass.

It is also interesting to notice that the densities at which the source term starts to tend to
zero (i.e., the maximum density (〈B〉max) to be reached) in the case (ii)-(iv) are approxi-
mately the product of the porosity (ε = 0.75 for case (ii) and ε = 0.625 for case (iii) and
(iv)) and 〈B〉max in the homogeneous medium. Note that the higher peak of the source term
in case (iv) compared to case (iii) compensates the greater diffusion around 〈B〉 = 0.1 to
obtain the similar maximum density at x = 0.

Table 5.1 – Parameter values of the macroscale model.

Dm γm γ′m λm κm κ′m

Isotropic medium 8.71×10−12 0.48 94.44 6.84 × 10−6 0.9506 9.34

Anisotropic medium along
x-direction

5.06×10−12 0.41 61.33 6.99 × 10−6 0.9521 11.89

Anisotropic medium along
y-direction

8.69×10−12 0.81 16.65 8.98 × 10−6 0.9606 12.96

5.5 Conclusion

In this work, two successive upscaling steps were performed to propose a macroscale mo-
del able to simulate the spatial expansion of the biomass of Postia placenta in a porous
medium. The first step used the results of a discrete model to obtain averaged radial pro-
files of biomass at different times. This discrete model uses a new algorithm to mimic the
development of mycelium (tip elongation, lateral and apical branching, anastomosis) as
measured in conditions of free growth. A continuous model, based on a reaction-diffusion
equation, was successfully identified by inverse analysis to reproduce the radial profiles
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Figure 5.10 – Optimized results of the macroscale model compared with the averaged microscopic
fields. (a) Isotropic medium, (b) anisotropic medium along x-direction and (c) anisotropic medium
along y-direction.
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Figure 5.11 – Evolution of the macroscopic variables 〈D〉 and 〈S 〉 with 〈B〉 for different media.

obtained with the discrete model.

It is interesting to note that the two model parameters, the diffusivity and the source term,
are stiff non-linear functions of biomass density. The function shapes obtained for D and
S are consistent with the strategy of fungal development : the diffusion occurs at the
marge of the colony where the biomass density is low, while the density increase inside
the colony is ensured by the source term. This source term tends towards zero before a
normalized fungal density of 1.0, which is consistent because anastomosis prevents the
filamentous hyphae to cover the whole domain.

This continuous model was then used to simulate fungal development in 2D periodic po-
rous media with different solid phase patterns. The local-scale fields obtained on these
media were then averaged to produce macroscopic fields used to derive an equivalent
macroscale model for each pattern of the solid phase. Our results prove that a reaction-
diffusion model works very nicely for the macroscale model. The function obtained for
the diffusivity and the source term are affected by the porosity (part of the medium acces-
sible to fungi) and to the pattern of the solid phase : for example, an anisotropic behavior
emerges from a solid phase pattern which is not invariant by rotation.
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Chapter6

Conclusion and perspectives

Using experimental and modeling tools, the spatial growth of the brown rot fungus Postia
placenta in a complex environment at both local- and macro-scale was investigated. This
work includes three successive and complementary parts : (i) the experimental observa-
tion of mycelial morphology in homogeneous media at the local scale, (ii) the discrete
model of mycelial network development at the local scale, and (iii) the continuous model
of the expansion of fungal biomass in porous media at the macro-scale. The experimental
observation provided the growth parameters of the discrete model and then the continuous
model was derived from the results of the validated discrete model. In this way, the equi-
valent macroscale properties of fungal growth in porous media were determined step by
step from the small-scale properties of hyphal growth. The three main parts of the work
and possible future work are summarized below.

Experimental observation

The temporal evolution of the whole colony of Postia placenta was visualized using a
confocal laser scanning microscope whose resolution enables the behaviors of individual
hyphae to be observed. The 3D constructions and 2D projections of each observation
were obtained for the determination of different growth parameters. As a direct result of
the imaging of a large field covering the whole colony with a high resolution, the change
of the fungal biomass at the colony level and the growth characteristics at the hyphal
level could be both quantified and analyzed. The morphological characterization of the
mycelium, including the tip extension rate, the branch angle and the segment length dis-
tribution, was quantitatively measured and represented by mathematical expressions with
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full sets of identified parameters. The tip extension rate was measured and determined
for the whole colony, while the calculation of the branching parameters was carried out in
three radial regions which represent the different duration of the colony development. The
results indicate that the branch angle distribution, which was well fitted using a Gaussian
distribution, did not change with the age of the region, or with branching types (apical
or lateral). On the contrary, the segment length distribution, which represented the branch
density and was fitted by gamma distributions, varied with the age of the region. The main
hyphal growth parameters of Postia placenta are, for the first time, systematically quanti-
fied via imaging technique as well as the spatial biomass distribution of the whole colony.
These experimental results were used to validate our discrete model.

Discrete model

In this part, a discrete lattice-based model was derived to mimic the evolution of the my-
celial network with time in incorporating the basic hyphal growth behaviors observed
in the experiment and described in the literature, including hyphal elongation, branching
and anastomosis. We developed a new algorithm to eliminate the geometrical restriction
of the regular lattice on the morphology of the mycelia and gain the computational ef-
ficiency at the same time owing to the discrete transition rules and discrete orientations
for tips. Furthermore, the tropism and obstacle mechanisms highlightend that the model
possesses the potential to reproduce the different possible strategies of mycelial growth
in complex environments. In particular, the thigmotropism allows the hyphae to navigate
around the obstacles, which provides a base for simulating hyphal growth in bio-based
materials. This model has been calibrated and validated via a rigorous procedure using
the experimental results. Some of the modeling parameters were obtained directly from
experimental data, while others were determined by inverse analysis (in comparing the
simulated results to the experimental ones). With these validated parameters, both the
mycelial spatial invasion and the small-scale behaviors of hyphae are reproduced simul-
taneously.

Continuous model

In order to simulate the spatial development of Postia placenta in porous media at the
macro-scale, a continuous model was derived by two successive upscaling steps from the
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results of the validated discrete model. Firstly, an equivalent reaction-diffusion equation
was identified by inverse analysis to reproduce the radial biomass density of the mycelial
network obtained from the discrete model. Highly nonlinear expressions were obtained
for the diffusivity and the source term, which is consistent with the strategy of fungal de-
velopment : the diffusion occurs at the marge of the colony where the biomass density is
low, while the density increase inside the colony is regulated by the source term. Secondly,
this continuous formulation was used to simulate the fungal growth in a 2D periodic po-
rous medium, by assuming normal growth in the pore phase and no fungal growth in the
solid phase. By averaging the local fields over one periodic unit cell, the macroscopic
biomass field was obtained and was successfully used to derive an equivalent macroscale
model for each porous medium. The identified functions for the equivalent diffusivity and
source term on the macroscopic field have a form similar to the local model, but their
values depend on the medium porosity and the morphology of the solid phase, possibly
leading to an anisotropic equivalent medium.

Perspectives

The accomplished work, which scales from the small-scale properties of hyphal growth to
the macroscale spread of fungal biomass in periodic heterogeneous media, is a solid base
for modeling fungal decay in bio-based materials. However, due to the complex decay dy-
namics of fungi and their dependence on environmental factors, there is still much work
to be carried out. In terms of experiments, since the woody cell walls provide nutrients for
fungal growth, it would be interesting to investigate the possible different hyphal density
around these cell walls and the decay patterns. In using nano-tomography (LGPM project
for 2017), the local hyphal distributions and the local decay patterns in small blocks of
wood samples can be observed. These experimental results would provide the necessary
information to identify the decay mechanisms for our models. The 2D discrete model
could be extended to a 3D model which would generate mycelial networks in real porous
media to validate the decay mechanism in comparing to the observed results obtained by
nano-tomography. In addition, the impact of the temperature and the moisture content on
hyphal elongation and branching can also be studied to develop the relationship between
the growth parameters in the models and the environmental factors. A PhD work has
just started at LGPM to develop an original experimental bioreactor able to observe and
measure the fungal growth in lignocellulosic products in controlled growth conditions.
The experimental database collected by this project will be specially designed to feed the
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reaction-diffusion model at various growth conditions.

For the continuous model, the complexity of the nonlinear diffusion coefficient and source
term leads to the difficulty in analyzing and extracting the change rules of them related
to the fungal expansion in complex porous media. Due to the fractal nature of mycelial
colonies of Postia placenta, a fractional formulation, either in space or in time or both, is
certainly a promising approach to derive a continuous model from either observations or
discrete simulations. The leading idea is to simplify the bridge between the fungal stra-
tegy (elongation rate, branching probabilities) and the parameter values of the continuous
formulation. A collaboration with the School of Mathematical Sciences, QUT, Brisbane,
Australia, will start on this possibility just after the PhD defense.
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Annex

Résumé
Les matériaux d’origine végétale sont largement utilisés dans l’industrie de la construc-
tion en raison de leurs excellentes propriétés structurels et thermiques. Cependant, l’utili-
sation de ces matériaux dans les bâtiments pose la question de la pérennité des ouvrages
principalement à cause de la dégradation fongique. Postia placenta est une espèce de
champignon provoquant la pourriture brune qui est la plus destructrice pour les construc-
tions et structures en bois en raison de son mécanisme rapide de dégradation. A cet effet,
cette espèce rencontre une grande attention dans les domaines de la recherche mycolo-
gique et sur les matériaux bio-sourcés.

Ce travail de thèse porte sur l’observation et la modélisation de la croissance de Postia
placenta à trois échelles successives : l’arborescence du mycélium (échelle discrète), la
croissance en milieu libre (échelle continue) et la croissance en milieu encombré (échelle
macroscopique). L’observation expérimentale de la croissance de Postia placenta se fait
via un microscope confocal à balayage laser. Une série d’images de l’évolution tempo-
relle de la morphologie d’un mycélium a été obtenue à l’aide d’un fluorochrome vital
pendant dix-sept jours. Ces images ont permis de mesurer la croissance de la biomass
via une méthode de voxels pour obtenir les trois phases de croissance (phase de latence,
exponentielle et stationnaire). De plus, les différents mécanismes ont été quantifiés pour
obtenir les paramètres de croissance fongique. Les distributions de vitesse de prolonge-
ment des tips (i.e., apex des hyphes), d’angle de branchaison et de longueur de segment
entre deux sites adjacents de branchaison et/ou d’anastomose ont été mesurées et calcu-
lées. L’analyse statistique révèle que la vitesse des tips est répartie aléatoirement dans
l’espace. La distribution d’angle de branchaison n’évolue pas avec le développement de
la colonie, cependant, la densification du mycélium augmente avec le temps.

A partir de cette observation, un modèle discret sur lattice capable de reproduire les trois
mécanismes fongiques, y compris l’élongation des hyphes, la branchaison et l’anasto-
mose, a été imaginé et implémenté. L’originalité du travail repose sur l’élaboration d’un
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nouvel algorithme sur l’extension du tip, qui permet d’éliminer la restriction géométrique
de la lattice sur la forme du mycélium. Grâce à cette originalité, le modèle est capable de
générer un mycélium dont la morphologie est extrêmement similaire à celle observée. De
plus, en ajoutant des tropismes, ce modèle permet aussi de simuler le développement du
mycélium dans différents environnements, notamment le thigmotropism qui permet aux
hyphes de contourner les obstacles. Ceci ouvre la possibilité de simuler la croissance du
mycélium dans des milieux poreux, notamment les isolants à base de fibres naturelles.
Un processus rigoureux de validation du modèle a été effectué. Certains paramètres ont
été directement alimentés par ceux-ci de croissance obtenus grâce à l’expérimentation,
tandis que les autres ont devaient être déterminés par méthode inverse. Les paramètres
étant définis, le modèle est capable de reproduire le couplage complexe entre l’extension
spatiale de biomasse et la densification du réseau fongique. Avec le modèle discret, divers
profils de biomasse ont été obtenus à différents instants à l’échelle continue par prise de
moyenne selon le rayon des mycéliums simulés dans un milieu homogène. Un modèle
continu basé sur une équation de réaction-diffusion permet de décrire l’évolution de la
densité de biomasse fongique. Le coefficient de diffusion D et le terme source S ont été
déterminés par identification en confrontant les profils calculés par ce modèle continu à
ceux obtenus par le modèle discret. Ces deux paramètres, D et S, sont fortement non li-
néaires en raison de la stratégie de développement fongique : la diffusion ne se produit
qu’à la marge de la colonie où la densité de biomasse est faible, alors que la croissance de
la biomasse à l’intérieur liée à la branchaison est assurée par le terme de source.

Ce modèle continu offre la possibilité de la transition de l’échelle de la colonie vers
l’échelle macroscopique. Pour cela, des simulations de la prolifération en environnement
encombré ont été obtenues à l’aide du modèle continu. Deux types de milieux hétérigènes
(phases poreuse et solide) ont été étudiés : (i) milieu isotrope équivalent construit par des
obstacles carrés et (ii) milieu anisotrope construit par des obstacles rectangulaires. Les
champs macroscopiques, obtenus par prise de moyenne des champs locaux sur une cellule
unitaire périodique, permettent de déterminer les paramètres d’un modèle continu simi-
laire, mais valable à l’échelle macroscopique. Les paramètres macroscopiques dépendent
de la porosité et de la morphologie de la phase solide. De cette manière, les propriétés
macroscopiques équivalentes de la croissance fongique dans des milieux poreux ont été
déterminées étape par étape à partir des caractéristiques de la croissance des hyphes à
petite échelle.
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Titre : Observation et modélisation de la croissance de Postia placenta : de l'échelle discrète de la colonie à 

l'échelle macroscopique 

Mots clés : mycélium, pourriture brune, microscope confocal, modèle discret, modèle continu, multi-échelles. 

Résumé : L’utilisation de matériaux d’origine 

végétale dans les bâtiments thermiquement 

performants pose la question de la pérennité des 

ouvrages principalement à cause de la dégradation 

fongique. Postia placenta est une espèce des 

champignons provoquant la pourriture brune, qui 

est la plus destructrice pour les constructions en 

bois. 

Ce travail se concentre sur l’observation et la 

modélisation de la croissance de Postia placenta à 

trois échelles successives : l'arborescence du 

mycélium (échelle discrète), la croissance en milieu 

libre (échelle continue) et la croissance en milieu 

encombré (échelle macroscopique). 

L’observation expérimentale de la croissance de 

Postia placenta utilise un microscope confocal à 

balayage laser pour  quantifier les différentes 

mécanismes et obtenir 

les paramètres de croissance. A partir de cette 

observation, un modèle discret capable de générer un 

mycélium de forme extrêmement similaire à celle 

observée a été imaginé, développé et validé. Ensuite, 

à partir des profils de biomasse moyennés selon le 

rayon des mycéliums simulés par le modèle discret, 

un modèle continu basé sur une équation de réaction-

diffusion a été identifié pour décrire l’évolution de la 

concentration de biomasse fongique. Ce modèle 

continu offre la possibilité de la transition de 

l’échelle locale vers l’échelle macroscopique. Pour 

cela, des simulations de la prolifération en 

environnement encombré sont obtenues à l'aide du 

modèle continu. Par prise de moyenne, les champs 

spatio-temporels obtenus permettent de déterminer 

les paramètres d'un modèle continu similaire, mais 

valable à l'échelle macroscopique, sur un milieu fictif 

qui prend en considération la morphologie des 

obstacles. 

 
 

 

Title: Observation and modeling of the growth of the wood-decay fungus Postia placenta: scaling from 

discrete mycelial networks to macroscopic fungal development 

Keywords: mycelium, brown rot fungi, confocal microscopy, discrete and continuous model, multi-scale. 

Abstract: The use of bio-based materials in 

thermally efficient buildings raises the question of 

the sustainability mainly due to fungal degradation. 

Among the wood-decay fungi, Postia placenta is 

one of the most common  brown rot fungi, which 

are the most destructive due to their rapid decaying 

mechanisms. 

This work focused on the experimental observation 

and the modeling of fungal growth at three 

successive scales: the mycelial network (discrete 

scale), mycelial growth in homogeneous media 

(continuous scale) and mycelial growth in porous 

media (macroscopic scale). 

The experimental observation of the growth of 

Postia placenta was performed using confocal  

laser scanning microscopy to quantify the different 

growth mechanisms and obtain the growth 

parameters. A discrete model has been derived from 

this observation and is capable of generating 

mycelial networks extremely similar to the observed 

ones. A continuous formulation based on a reaction 

diffusion equation was developed from the radial 

biomass density of a mycelial network obtained in 

the discrete model. This continuous formulation was 

then used to derive an equivalent macroscale model 

able to account for fungal development in porous 

media. Simulations were performed on various 

periodic porous media. The parameters of the 

macroscale model was identified on the 

macroscopic fields obtained by averaging the local 

field over one periodic unit cell. 
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