
HAL Id: tel-01534145
https://theses.hal.science/tel-01534145

Submitted on 7 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automated Verification of Privacy in Security
Protocols : Back and Forth Between Theory & Practice

Lucca Hirschi

To cite this version:
Lucca Hirschi. Automated Verification of Privacy in Security Protocols : Back and Forth Between
Theory & Practice. Cryptography and Security [cs.CR]. Université Paris Saclay (COmUE), 2017.
English. �NNT : 2017SACLN019�. �tel-01534145�

https://theses.hal.science/tel-01534145
https://hal.archives-ouvertes.fr

NNT : 2017SACLN019

1

Thèse de doctorat
de l’Université Paris-Saclay

préparée à
l’École normale supérieure de Cachan

(École normale supérieure Paris-Saclay)

Ecole doctorale n◦580
Sciences et Technologies de l’Information et de la Communication

Spécialité de doctorat : Informatique
par

M. Lucca Hirschi
Vérification automatique de la protection de la vie privée:

entre théorie et pratique

Thèse présentée et soutenue à Cachan, le 21 avril 2017.

Composition du Jury :

M. David Baelde Maître de conférences (Co-directeur de thèse)
ENS Paris-Saclay

M. Gilles Barthe Professeur (Rapporteur)
IMDEA Software Institute

M. Bruno Blanchet Directeur de recherche (Rapporteur)
INRIA

M. Cas Cremers Professeur (Examinateur)
Université d’Oxford

Mme. Stéphanie Delaune Chargée de recherche (Directrice de thèse)
CNRS

M. Thomas Jensen Directeur de recherche (Président du jury)
INRIA

Mme. Catuscia Palamidessi Directrice de recherche (Examinatrice)
INRIA

Résumé en Français

La société de l’information dans laquelle nous vivons repose notamment sur notre capacité à
échanger des informations de façon sécurisée. Ces échanges sécurisés sont réalisés au moyen de
protocoles cryptographiques. Ils explicitent comment les différents agents communicants doivent
se comporter et exploitent des primitives cryptographiques (e.g. chiffrement, signature) pour pro-
téger les échanges. Étant donné leur prédominance et leur importance, il est crucial de s’assurer
que ces protocoles accomplissent réellement leurs objectifs. Parmi ces objectifs, on trouve de plus
en plus de propriétés en lien avec la vie privée (e.g. anonymat, non-traçabilité). Malheureuse-
ment, les protocoles développés et déployés souffrent souvent de défauts de conception entraînant
un cycle interminable entre découverte d’attaques et amélioration des protocoles.

Pour en sortir, nous prônons l’analyse mécanisée de ces protocoles par des méthodes formelles
qui, via leurs fondements mathématiques, permettent une analyse rigoureuse apportant des
garanties fortes sur la sécurité attendue. Parmi celles-ci, la vérification dans le modèle symbol-
ique offre de grandes opportunités d’automatisation. La plupart des propriétés en lien avec la vie
privée sont alors modélisées par l’équivalence entre deux systèmes. Toutefois, vérifier cette équiv-
alence est indécidable dans le cas général. Deux approches ont alors émergé. Premièrement, pour
un nombre borné de sessions d’un protocole, il est possible de symboliquement explorer toutes
ses exécutions possibles et d’en déduire des procédures de décision pour l’équivalence. Deuxième-
ment, il existe des méthodes de semi-décision du problème dans le cas général qui exploitent des
abstractions, notamment en considérant une forme forte d’équivalence.

Nous avons identifié un problème majeur pour chacune des deux méthodes de l’état de l’art qui
limitent grandement leur impact en pratique. Premièrement, les méthodes et outils qui explorent
symboliquement les exécutions souffrent de l’explosion combinatoire du nombre d’états, causée
par la nature concurrente des systèmes étudiés. Deuxièmenent, dans le cas non borné, la forme
forte d’équivalence considérée se trouve être trop imprécise pour vérifier certaines propriétés telle
que la non traçabilité, rendant cette approche inopérante pour ces propriétés.

Dans cette thèse, nous proposons une solution à chacun des problèmes. Ces solutions prennent
la forme de contributions théoriques, mais nous nous efforçons de les mettre en pratique via des
implémentations afin de confirmer leurs impacts pratiques qui se révèlent importants.

Tout d’abord, nous développons des méthodes de réduction d’ordres partiels pour réduire

3

drastiquement le nombre d’états à explorer tout en s’assurant que l’on ne perd pas d’attaques.
Nos méthodes sont conçues pour le cadre exigeant de la sécurité et sont prouvées correctes et
complètes vis-à-vis de l’équivalence. Nous montrons comment elles peuvent s’intégrer naturelle-
ment dans les outils existants. Nous prouvons la correction de cette intégration dans un outil
et proposons une implémentation complète. Finalement, nous mesurons le gain significatif en
efficacité ainsi obtenu et nous en déduisons que nos méthodes permettent l’analyse d’un plus
grand nombre de protocoles.

Ensuite, pour résoudre le problème de précision dans le cas non-borné, nous proposons une
nouvelle démarche qui consiste à assurer la vie privée via des conditions suffisantes. Nous définis-
sons deux propriétés qui impliquent systématiquement la non-traçabilité et l’anonymat et qui
sont facilement vérifiables via les outils existants (e.g. ProVerif). Nous avons implémenté un
nouvel outil qui met en pratique cette méthode résolvant le problème de précision de l’état de
l’art pour une large classe de protocoles. Cette nouvelle approche a permis les premières anal-
yses de plusieurs protocoles industriels incluant des protocoles largement déployés, ainsi que la
découverte de nouvelles attaques.

4

Abstract

The information society we belong to heavily relies on secure information exchanges. To exchange
information securely, one should use security protocols that specify how communicating agents
should behave notably by using cryptographic primitives (e.g. encryption, signature). Given
their ubiquitous and critical nature, we need to reach an extremely high level of confidence that
they actually meet their goals. Those goals can be various and depend on the usage context
but, more and more often, they include privacy properties (e.g. anonymity, unlinkability). Un-
fortunately, designed and deployed security protocols are often flawed and critical attacks are
regularly disclosed, even on protocols of utmost importance, leading to the never-ending cycle
between attack and fix.

To break the present stalemate, we advocate the use of formal methods providing rigorous,
mathematical frameworks and techniques to analyse security protocols. One such method allow-
ing for a very high level of automation consists in analysing security protocols in the symbolic
model and modelling privacy properties as equivalences between two systems. Unfortunately,
deciding such equivalences is actually undecidable in the general case. To circumvent undecid-
ability, two main approaches have emerged. First, for a bounded number of agents and sessions
of the security protocol to analyse, it is possible to symbolically explore all possible executions
yielding decision procedures for equivalence between systems. Second, for the general case, one
can semi-decide the problem leveraging dedicated abstractions, notably relying on a strong form
of equivalence (i.e. diff-equivalence).

The two approaches, i.e. decision for the bounded case or semi-decision for the unbounded
case, suffer from two different problems that significantly limit their practical impact. First,
(symbolically) exploring all possible executions leads to the so-called states space explosion prob-
lem caused by the concurrency nature of security protocols. Concerning the unbounded case,
diff-equivalence is actually too imprecise to meaningfully analyse some privacy properties such
as unlinkability, nullifying methods and tools relying on it for such cases.

In the present thesis, we address those two problems, going back and forth between theory
and practice. Practical aspects motivate our work but our solutions actually take the form of
theoretical developments. Moreover, we make the effort to confirm practical relevance of our
solutions by putting them into practice (implementations) on real-world case studies (analysis

5

of real-world security protocols).
First, we have developed new partial order reduction techniques in order to dramatically

reduce the number of states to explore without loosing any attack. We design them to be com-
patible with equivalence verification and such that they can be nicely integrated in frameworks
on which existing procedures and tools are based. We formally prove the soundness of such an
integration in a tool and provide a full implementation. We are thus able to provide benchmarks
showing dramatic speedups brought by our techniques and conclude that more protocols can
henceforth be analysed.

Second, to solve the precision issue for the unbounded case, we propose a new methodology
based on the idea to ensure privacy via sufficient conditions. We present two conditions that
always imply unlinkability and anonymity that can be verified using existing tools (e.g. ProVerif).
We implement a tool that puts this methodology into practice, hence solving the precision issue
for a large class of protocols. This novel approach allows us to conduct the first formal analysis
of some real-world protocols (some of them being widely deployed) and to discover some novel
attacks.

6

Remerciements

Je veux tout d’abord remercier mes directeurs de thèse David Baelde et Stéphanie Delaune qui
m’ont donné l’opportunité de commencer cette thèse et par qui j’ai appris tant de choses. C’est
d’abord grâce à vous que ces quelques années au LSV ont été si enrichissantes.

Je tiens aussi à remercier les deux rapporteurs de ma thèse Bruno Blanchet et Gilles Barthe
pour avoir lu et commenté mon manuscrit ainsi que Cas Cremers, Thomas Jensen et Catuscia
Palamidessi pour avoir accepté de faire partie de mon jury de thèse.

J’ai eu la chance de travailler dans un milieu où l’échange et le partage ont un rôle primordial.
Merci donc à tous ceux qui ont pris part à ce bouillonnement d’idées si stimulant que ça soit à
Cachan ou ailleurs. Notamment, merci aux doctorants et autres membres du LSV de faire en
sorte que ce bouillonement ne s’éteigne jamais.

Je veux également remercier mes amis qui m’entourent : que l’on se soit connu à Avignon,
Lyon, Paris, ou ailleurs, merci à vous tous d’être toujours là. Merci à ma famille qui m’a enraciné
dans ce qu’il y a de plus important. Merci à Marie-Charlotte pour m’avoir supporté ces quelques
derniers mois et pour son amour ces quelques dernières années.

7

Contents

Résumé en Français 3

Abstract 5

Contents 8

1 General Introduction 13
1.1 General Context . 13
1.2 Security Protocols . 18

1.2.1 Cryptographic Primitives . 18
1.2.2 The Example of the BAC Protocol . 19
1.2.3 Some Logical Attacks on the BAC Protocol 21

1.3 Formal Verification . 23
1.3.1 Computational Approach . 24
1.3.2 Symbolic Approach . 25

1.4 State of the Art: Methods and Tools . 27
1.4.1 Decision for a Bounded Number of Sessions 28
1.4.2 Semi-Decision for an Unbounded Number of Sessions 30
1.4.3 Other Results . 32

1.5 Problems . 32
1.5.1 Main Limitation for the Bounded Case: State Space Explosion 32
1.5.2 Main Limitations for the Unbounded Case: Lack of Precision 33

1.6 Contributions . 34
1.6.1 POR Techniques for the Bounded Case 34
1.6.2 Verifying Privacy via Sufficient Conditions for the Unbounded Case . . . 35
1.6.3 Developed Software and Models . 36

1.7 Organisation of the Thesis . 36

Publications by the Author 39

8

Contents

A Model 41

Introduction 43

2 Modelling Security Protocols 45
2.1 Term Algebra . 45

2.1.1 Semantics of Messages: Equational Theory 46
2.1.2 Semantics of Terms: Computation Relation 47
2.1.3 Attacker’s Knowledge: Recipes & Frames 48

2.2 Process Algebra . 49
2.2.1 Syntax . 49
2.2.2 Internal Reduction . 51
2.2.3 Semantics . 52

2.3 Instances of Term Algebras . 54
2.3.1 Computation Relation Through Rewriting Systems 54
2.3.2 Computation Relation Through an Equational Theory 56

3 Modelling Security Goals 59
3.1 Reachability Properties . 59
3.2 Behavioural Equivalences . 60

3.2.1 Trace Equivalence . 61
3.2.2 Other Behavioural Equivalences . 62

3.3 Examples of Privacy Goals Modelling . 63
3.3.1 Unlinkability of Feldhofer . 64
3.3.2 Anonymity of the Private Authentication Protocol 64

4 Variations of the Semantics 67
4.1 Executing Unobservable Actions Greedily . 67

4.1.1 Internal Reduction: Conditional, Parallel Composition and Blocked Output 67
4.1.2 ν-greedy Executions: Creation of Names 69

4.2 Executing Unobservable Actions Lazily . 69
4.3 Stability of the Security Notions . 70

B Partial Order Reduction Techniques 73

Introduction 77

5 A Reduced Semantics: Theory 81
5.1 Instantiation of the Model and Class of Processes 81
5.2 Annotated Semantics . 83

5.2.1 Annotations and Semantics . 83
5.2.2 Action Dependencies . 85

9

Contents

5.2.3 Symmetries of Trace Equivalence . 88
5.2.4 Proof of the Strong Symmetry Lemma . 89

5.3 Compression . 95
5.3.1 Compressed Strategy . 95
5.3.2 Improper Blocks and Release⊥ Rule . 97
5.3.3 Reachability . 98
5.3.4 Equivalence . 101
5.3.5 Proof of Theorem 2 . 102

5.4 Reduction . 105
5.4.1 Strong Independence . 106
5.4.2 Priority Order And Necessity . 108
5.4.3 Reduced Semantics . 108
5.4.4 Reachability . 110
5.4.5 Equivalence . 112

5.5 Main Result and Discussions . 114

6 Putting Reduced Semantics into Practice and Integration in Apte 117
6.1 Instantiation of the Model and Class of Processes 118
6.2 Combining Compression and Reduction with Constraint Solving 119

6.2.1 Symbolic Semantics . 120
6.2.2 Embedding Compression into Symbolic Semantics 125
6.2.3 Embedding Reduction into Symbolic Semantics 129

6.3 Integration in Apte . 133
6.3.1 Apte in a Nutshell . 134
6.3.2 Specification of the Procedure . 137
6.3.3 Proof of the Original Procedure . 139
6.3.4 Integrating Compression . 142
6.3.5 Integrating Dependency Constraints . 144

6.4 Implementation and Benchmarks . 146
6.4.1 Implementation . 146
6.4.2 Benchmarks . 147

6.5 Conclusion . 149

7 Related Work 151
7.1 Classical POR . 151
7.2 Security Applications . 153
7.3 Proof Theory . 154

C Verifying Privacy via Sufficient Conditions 157

Introduction 161

10

Contents

8 Model & Problem 167
8.1 Instantiation of the Model . 167
8.2 A Generic Class of Two-party Protocols . 169
8.3 Security Goals . 174

8.3.1 Unlinkability . 174
8.3.2 Anonymity . 176
8.3.3 Discussion . 177

9 Sufficient Conditions for Privacy 179
9.1 Annotations . 179
9.2 Frame Opacity . 181

9.2.1 Canonical Syntactical Idealisation . 183
9.2.2 Semantical Idealisation . 184

9.3 Well-Authentication . 185
9.4 Main Theorem: Soundness of Conditions w.r.t. Privacy 187
9.5 Proof of our Main Theorem . 188

9.5.1 Abstraction of Configurations . 188
9.5.2 Control is Determined by Associations . 192
9.5.3 Invariance of Frame Idealisations . 193
9.5.4 A sufficient Condition for Preserving Executability 194
9.5.5 Final Proof . 197

10 Mechanisation & Case Studies 201
10.1 Mechanisation . 201

10.1.1 Frame Opacity . 202
10.1.2 Well-authentication . 203
10.1.3 The Tool UKano . 207

10.2 Case Studies . 208
10.2.1 Hash-Lock Protocol . 208
10.2.2 LAK Protocol . 209
10.2.3 BAC Protocol and some others . 210
10.2.4 PACE Protocol . 212
10.2.5 Attributed-Based Authentication Scenario Using ABCDH Protocol 215
10.2.6 DAA Join & DAA Sign . 217

11 Conclusion 221
11.1 Regarding Mechanisation and the Tool UKano . 221
11.2 Regarding our Conditions and our Main Theorem 222
11.3 Reusing Core Ideas of the Methodology . 224

12 General Conclusion 227
12.1 Summary . 227

11

Contents

12.2 Future Work . 228

Bibliography 231

12

Chapter 1

General Introduction

1.1 General Context

Historically, cryptography exclusively belonged to the military and diplomatic domain: from the
ancient Greeks using scytales1 to the Enigma machine notably used by nazi Germany before and
during World War II and broken by Alan Turing et al.

Figure 1.1 A scytale and an Enigma machine

The context has changed during the last century with the rise of the information society
replacing the previously in place industrial society. Since the – commonly termed – information
revolution, information is at the heart of our society, be it in our economy (e.g. tertiary industry
gradually replacing primary industry, emergence and rise of quaternary industry2), political or
cultural activities. As the main tool to secure exchanges and storage of information, cryptography
has, very naturally, flood into our everyday life. It is now so ubiquitous that it appears to be one
of the most critical piece of technology in our society’s foundations alongside other Information
Technologies (ITs).

Security Protocols. More specifically, to secure exchanges of information, one should use
security protocols (also called cryptographic protocols). As all communication protocols, security

1A scytale (see Figure 1.1) is a rod around which a parchment is wrapped to read and write the message (in
the axis of the rod). The diameter of the rod constitutes the key to cipher and decipher. Indeed, when wrapped
around a rod of a different diameter, the message is unreadable.

2This commonly refers to the knowledge-based part of the economy.

13

1. General Introduction

protocols specify how different agents may exchange information through a communication chan-
nel (e.g. the Internet, the air) via a set of rules. However, security protocols additionally make
use of cryptographic primitives, such as encryption or signature for example, to protect exchanged
messages. To illustrate the wide range of contexts where security protocols are critical, we now
give a short selection of concrete examples (see also illustrations in Figure 1.2).

Figure 1.2 Some modern manifestations of cryptography

Obviously, one can find a tremendous amount of security protocols aiming at securing the
Internet. For instance, the Transport Layer Security (TLS) protocol which is mainly used by
websites (e.g. bank websites) to secure all communications (i.e. HTTPS traffic) between their
servers and web browsers, which then display a green lock in the address bar. As announced
recently [EFF16], more than half of page loads in Firefox and in Chrome are now secured with
TLS making this protocol one of the most popular ones. Security protocols are also intensely
used to secure services accessible through the Internet. For instance, Single Sign-On (SSO)
protocols enable users of companies such as Facebook or Google to sign in just once to their
respective websites and yet are able to access other (often third-party) services without signing
in again. Such a protocol is notably used by Google to share users’ credentials across all Google
Applications.

However, security protocols are not confined to the Internet. For instance, mobile phones also
heavily rely on them. The 3rd Generation Partnership Project (3GPP) has notably standardised
stacks of security protocols protecting 2G, 3G and 4G wireless mobile telecommunication tech-
nologies. For example, 3GPP designed the Authentication and Key Agreement (AKA) protocol
– equipping all 3G and 4G-capable mobile phones – which aims at establishing a secure channel

14

1.1. General Context

between a mobile phone and an antenna (i.e. serving network) for subsequent communications
(e.g. calls, SMSs).

More recently, came to the market a wide range of wireless devices such as radio-frequency
identification (RFID) tags embedded in goods in supermarkets, RFID chips in credit cards
enabling wireless payments, wireless keys for opening cars or garage doors, RFID chips embedded
in e-passport for improving its security. Not to mention the rise of the Internet of Things (IoT),
from the smart lights and heating systems at home, to cars connected to the Internet. Examples
of security protocols used in those devices are countless. Let us go a bit more into the details of
two examples mentioned above. First, the International Civil Aviation Organisation has designed
the Basic Access Control (BAC) protocol which now equips all biometric passports in the world.
Similarly to AKA, the purpose of the BAC protocol is to establish a secure link between an e-
passport and an authorised reading device (e.g. in customs offices at airports). Second, distance
bounding protocols are used e.g. in wireless keys and rely on mechanisms to measure the delay
between an emission and a reception to bound the physical distance between the key and the
door to open.

Maybe more surprisingly, we also find security protocols at the heart of e-voting systems and
notably in end-to-end voter verifiable systems. Such systems should obviously protect the vote
privacy but also must achieve an antagonist goal: every manipulation should be verifiable by all
voters in order to completely relocate the trust from the different agents and the architecture to
the protocol itself. One example of such protocols is Helios [ADMP+09] which has been used in
real elections by the International Association of Cryptologic Research [BVQ10], the Princeton
University [hel], and the Catholic University of Louvain [PAdM10]. A more recent example
is Du-Vote [GRCC15] that has been designed to be used securely even from an infected laptop
thanks to an additional hardware token.

Security Goals. As shown by the previous examples, security protocols are used in a wide
range of contexts. Naturally, they also have to achieve various requirements that we call security
goals. For instance, when a customer using his bank account online sees the green lock in his
web browser’s address bar, he expects that the TLS protocol ensures that all his HTTP traffic
(e.g. credentials, account balances) remains private from anybody but the bank account’s web
server (excluding e.g. his Internet service provider, the host of the Wi-Fi hot-spot, anybody
sniffing Wi-Fi traffic around). This high-level requirement actually involves at least two security
goals. First, the traffic encrypted by TLS should remain secret. Secrecy is maybe the most com-
mon security goal but ensuring it is already not that trivial. For instance, a bad management of
encryption keys may be exploited by an attacker to break the secrecy of some messages. Further-
more, secrecy is not sufficient in general. Indeed, if able to impersonate the bank’s web server, an
attacker could fake the bank’s website to get customer’s credentials. Hence, the customer’s web
browsers must make sure that the server it is communicating with is indeed the bank’s web server.
Conversely, the bank’s web server has to be convinced that it is indeed communicating with the
expected customer. Otherwise, an attacker could access to e.g. customers’ account balances.
This security goal is called mutual authentication: each party is able to correctly authenticate

15

1. General Introduction

the other party. Similarly for the wireless keys example, the underlying distance bounding proto-
cols shall achieve authentication of the key: i.e. the door opens only when requested by genuine
authorised keys.

More recently, privacy-related security goals (we shall call them privacy goals) are becoming
more and more predominant and critical. This could be explained by a combination of different
factors. First, as a consequence of the information revolution, the gigantic quantity of private
information created routinely (deliberately or not) and its continuing circulation (e.g. with advent
of wireless devices) understandably raises privacy concerns. Second, citizens and customers are
now more and more aware of privacy issues maybe because of the above, the countless recent
hacks, revelations about state-scale surveillance and GAFAM’s3 monopoly. Last but not least,
and surely with causal links with the previous, regulatory requirements about privacy protection
are becoming increasingly strict. For instance, the general data protection regulation (GDPR),
taking effect on May 25 2018 in EU and its partner states, will impose strong privacy requirements
on companies that control sensitive personal information [GDP]. In France, the “commission
nationale de l’informatique et des libertés” (CNIL) (i.e. the national data protection authority)
will have authority, once the GDPR takes effect, to impose fines to companies that can reach 20
millions of euros or 4% of their annual worldwide turnovers.

Let us illustrate some privacy goals previous examples shall meet. For instance, the AKA
protocol implemented in mobile phones must not enable ill-intentioned people to trace specific
mobile phones by wirelessly communicating with them4. Similarly, we expect to not be traceable
just because we carry on an e-passport implementing the BAC protocol. This privacy goal is
called unlinkability (or untraceability). Another example of privacy goal naturally arises in e-
voting systems, where vote privacy is one of the most essential property such systems must
achieve. We will discuss later on other privacy goals such as anonymity, coercion-resistance, etc.

Critical Attacks. Given the sensitivity of the exchanged data, security protocols’ societal and
economical5 significance, we need to reach an extremely high level of confidence that security
protocols actually meet their security goals. Given this context and despite the appropriate care
taken in designing those protocols, it is astonishing to regularly observe the contrary: highly
critical attacks on security protocols of utmost importance are regularly found, disclosed and
sometimes exploited. Let us discuss some of them which have broken the aforementioned security
protocols.

The TLS protocol has been repeatedly broken. The recently disclosed LogJam [ABD+15, log]
attacks notably rely on a downgrade attack: a Man-In-The-Middle (MITM) attacker is able to
force a client and a web server to negotiate the use of weak cipher suites which can then be
broken online. Indeed, many web servers continue to propose weak cipher suites designed in the

3GAFAM (or Big Five) refers to the most influential international technology companies: Google, Apple,
Facebook, Amazon and Microsoft.

4There are examples of companies (e.g. Navizon [nava]) selling tools to trace people exploiting traceability
attacks (see the survey [DCL14]). Such tools have for example been used by supermarkets to trace customers
through their shelves [navb, Tur17].

5For instance, when researchers disclosed an attack [car] to remotely take control over Jeep Cheroke cars, Fiat
Chrysler had to recall 1.54 million vehicles to fix the issue.

16

1.1. General Context

90s when regulation standards in the U.S. were limiting the size of the keys. As a result, such an
attacker can completely impersonate a web server to a client (e.g. fake a bank website despite the
reassuring green lock). Another attack on deployed TLS versions, called 3SHAKE [BLF+14, 3sh],
has been disclosed one year earlier. It enables an attacker to impersonate a client to a server
breaking also the mutual authentication security goal. This could be used to steal credentials from
users and use them later e.g. on a bank website. A similar attack has been found [CHSvdM16]
in proposals for the next versions of TLS (i.e. TLS 1.3) which is currently being designed by the
TLS working group.

Transport layer protocols are not the only components that put the Internet at risk. Indeed,
web-services themselves are also often flawed. For instance, the SAML-based SSO protocol
deployed in Google Applications has also been broken [ACC+08]. Researchers have shown how
a malicious third-party service could use credentials whose purpose was supposed to be limited
to this service to impersonate users to other services (e.g. Google Gmail).

The situation does not improve when it comes to mobile phones security. The AKA protocol
(still) suffers from several different traceability attacks: from the well-known IMSI catcher at-
tacks [SSB+16, vdBVdR15] to a more elaborate attack [ACRR10] where leaks of error messages
can be exploited by an attacker to trace people who carry mobile phones.

RFID devices also often suffer from traceability attacks. For instance, researchers [ACRR10]
have shown that the BAC protocol could be exploited by ill-intentioned people to trace citizens
who carry their e-passport by wirelessly communicating with the RFID chips they contain without
the victims being able to notice anything. In the next section, we will go into more details of
this protocol and its attacks. Distance bounding protocols have also been broken. We could for
example cite several distance hijacking attacks [CRSv12] (i.e. when an attacker is able to pretend
to be physically close by exploiting honest users) on several distance bounding protocols.

Finally, despite the highly sensitive nature of e-voting protocols, attacks are also found there.
Hence, several critical attacks [K+16] have been disclosed on the Du-Vote e-voting system and
Helios has been shown [CS13] to fail to entirely meet vote privacy, one of its most essential
security goal.

All those attacks, as many others we do not cite, break the protocols’ specifications themselves
and do not rely on the attacker being able to break or exploit flaws in cryptographic primitives
(e.g. fake a signature, decrypt a ciphertext without knowing the decryption key). Such attacks
neither rely on bad hardware or bad implementation of the protocol’s specification. They rather
rely on possible interactions of the different parties (but not the ones one would expect from
normal usages of the protocol). We say that they are logical attacks. Interestingly, any imple-
mentation and any deployment on any hardware of a protocol whose specification suffers from a
logical attack would be broken in practice as well. With this in mind, we now state the following
natural question:

How to explain that such critical logical attacks are regularly found on
specifications of security protocols of utmost importance despite the high
care given to their design ?

17

1. General Introduction

An important part of the answer is that designing protocols which actually achieve the re-
quired security goals is a tremendously complex task. In this thesis, we are interested in improv-
ing this current distressing situation by enhancing rigorous mathematical frameworks to analyse
security protocols and ease their design.

The rest of the introduction is organised as follows. In the next section, we explain more
precisely what are security protocols and logical attacks. Thanks to those additional details,
we will then be able to answer the above question in Section 1.3 by giving the reasons why the
security setting is particularly complex. This will motivate the need for rigorous, formal methods
to model and analyse security protocols. Next, the state-of-the-art of such methods will be given
in Section 1.4. Finally, we show that this state-of-the-art suffers from two main limitations in
Section 1.5 before explaining how our contributions address them in Section 1.6. We conclude
with the outline of the rest of this thesis in Section 1.7.

1.2 Security Protocols

A security protocol can be seen as a set of rules that participants have to follow in order to achieve
specific security goals. Those rules specify emissions and receptions of messages as well as tests
performed by the participants of the protocols called agents. Security protocols use as basic build-
ing blocks cryptographic primitives such as symmetric and asymmetric encryptions, signatures,
and hash functions. For a long time, it was believed that designing a strong encryption scheme
was sufficient to ensure secure message exchanges. Starting from the 80’s, researchers understood
that even with perfect encryption schemes, message exchanges were still not necessarily secure:
indeed protocols are still subject to logical attacks such as the ones discussed before. We will
conclude this section with in-depth descriptions of two such logical attacks, but we first briefly
explain the most standard cryptographic primitives together with their fundamental properties.

1.2.1 Cryptographic Primitives

We list below the most standard cryptographic primitives. Obviously this list is not exhaus-
tive, and modern protocols often rely on less standard cryptographic primitives, such as blind
signature, homomorphic encryption, trapdoor bit commitment, zero-knowledge proofs, etc.

Symmetric encryption. Symmetric cryptography refers to encryption methods in which both
the sender and the receiver share the same key. For instance, the Data Encryption Standard
(DES) and the Advanced Encryption Standard (AES) are symmetric encryption schemes which
have been designated cryptography standards by the US government in 1976 and 2002 respec-
tively. The scytale (see Figure 1.1) is an example of primitive symmetric encryption scheme.

A significant disadvantage of symmetric ciphers is the key management necessary to use
them securely. Each distinct pair of agents must share a different key. Therefore, the number
of required keys increases as the square of the number of agents, which very quickly requires
complex key management schemes to keep them all straight and secret. The difficulty of securely

18

1.2. Security Protocols

establishing a secret key between two agents, when a secure channel does not already exist
between them, also presents a chicken-and-egg problem which is a considerable practical obstacle
for the use of symmetric cryptography in the real world. This is why the recourse to asymmetric
cryptography is so popular for key establishment protocols that aim to establish a fresh symmetric
key between two parties.

Asymmetric encryption. In 1976, Diffie and Hellman proposed the notion of public key
cryptography, in which two different but mathematically related keys are used – a public key and
a private key. A public key system is constructed, in such a way that calculation of the private
key is computationally infeasible from the public key, even though they are necessarily related.
In public key cryptosystems, the public key may be freely distributed, while its associated private
key must remain secret. The public key is typically used for encryption, while the private key is
used for decryption. Diffie and Hellman showed that public key cryptography was possible6 by
presenting the Diffie-Hellman key exchange protocol [DH76] in 1976. In 1978, Rivest, Shamir,
and Adleman invented RSA, another public key cryptosystem [RSA78] which has established
itself as the main standard.

Digital signature. Over the same period, signature schemes have also been proposed. A
digital signature is a mathematical scheme for demonstrating the authenticity of a digital message
or of a document. It gives the recipient a reason to believe that the message was created by a
known sender, that the sender cannot deny having sent the message (authentication and non-
repudiation), and that the message was not altered while in transit (integrity). Digital signatures
are commonly used for software distribution, key management, financial transactions, etc.

Hash function. A hash function takes a message of any length as input, and outputs a short,
fixed length digest of this message. Hash functions have many security applications, notably
in digital signatures, message authentication codes (MACs), and other forms of authentication.
They can also be used as checksums to detect accidental data corruption. For good hash functions,
an attacker cannot find two messages that produce the same hash. MACs are much like hash
functions, except that a secret key can be used to authenticate the hash value upon receipt.

1.2.2 The Example of the BAC Protocol

For the purpose of illustration, we go into the details of the already mentioned BAC protocol
used in e-passports. An e-passport is a paper passport with a RFID chip that stores the critical
information printed on the passport in order to increase its security (e.g. anti-cloning, integrity).
The International Civil Aviation Organisation (ICAO) standard specifies the communication
protocols that are used to access this information [ICA04]. We do not plan to describe all the
protocols that are specified in the standard. Instead, we shall focus only on the BAC protocol
following the modelling proposed in [ACRR10].

6Diffie and Hellman have been rewarded by the ACM Turing Award in 2016 for having laid the foundations
of asymmetric encryption.

19

1. General Introduction

The information stored in the chip is organised in data groups (dg1 to dg19). For example, dg5

contains a JPEG copy of the displayed picture, and dg7 contains the displayed signature. The
verification key vk(skP) of the e-passport, together with its certificate sign(vk(skP), skDS) issued
by the Document Signer Authority, is stored in dg15. The corresponding signing key skP is stored
in a tamper resistant memory, and cannot be read or copied. For authentication purposes, a
hash of all the data groups, together with a signature on this hash value issued by the Document
Signer Authority, are stored in a separate file, the Security Object Document:

sod def= ⟨sign(h(dg1, . . . , dg19), skDS), h(dg1, . . . , dg19)⟩.

The ICAO standard specifies several protocols through which this information can be accessed.
In particular, read access to the data on the e-passport is protected by the BAC protocol.

Figure 1.3 Password of low entropy in some e-passport

The BAC protocol is a password-based authenticated key exchange (PAKE) protocol whose
security relies on two master keys, namely ke and km, which are derived from a password of low
entropy (see Figure 1.3) optically retrieved from the e-passport by the reader before executing
the protocol. Through the BAC protocol, the reader and the e-passport agree on a key seed
xkseed that is then used to generate an encryption session key as well as a MAC session key for
the next protocols. Following the description given in Figure 1.4, the protocol works as follows:

1. The reader sends a request get_Challenge to the e-passport that will answer by generating
a nonce, i.e. a fresh random number.

2. Once the reader receives this nonce nT , it will generate its own nonce nR, as well as a
key kR that will be used later on to derive session keys. The reader encrypts the nonce
nT , its own nonce nR as well as the key kR with the (long-term) symmetric encryption
key ke. This message senc(⟨nR, ⟨nT , kR⟩⟩, ke) is sent to the e-passport together with the
associated MAC (with key km) to ensure that the encryption will be correctly transmitted
to the e-passport.

3. The e-passport performs some checks not shown in Figure 1.4. In particular, it checks
that the MAC has been computed using the right key km, and that the nonce nT it has
generated at the first step of the protocol is part of the plaintext inside the encryption.

20

1.2. Security Protocols

Once these checks have been performed, the e-passport sends to the reader a message
similar to the one it has received using its own contribution kT .

4. Again, the reader will perform the necessary checks before accepting the message, and
in case of success two session keys will be generated from the value xkseed obtained by
applying the exclusive or operator on kR and kT .

Passport Tag
ke, km

Reader
ke, km

get_Challenge

new nT

nT

new nR, new kR

xenc← senc(⟨nR, ⟨nT , kR⟩⟩, ke)
xmac← mac(xenc, km)

⟨xenc, xmac⟩

new kT

yenc← senc(⟨nT , ⟨nR, kT ⟩⟩, ke)
ymac← mac(yenc, km)
xkseed← kT ⊕ kR

⟨yenc, ymac⟩

xkseed← kT ⊕ kR

Figure 1.4 Basic Access Control protocol

These two session keys are used to provide confidentiality, integrity, and authentication in
subsequent communications. In particular, they are used to encrypt and MAC the messages
exchanged during the execution of the Passive and Active Authentication protocols in order to
ensure that only parties with physical access to the e-passport7 can read the data. The aim of
establishing fresh session keys (instead of reusing ke and km at each session) is to notably make
the e-passport unlinkable, a property that will be discussed in Section 1.2.3.

1.2.3 Some Logical Attacks on the BAC Protocol

Now, we describe two possible attacks. These attacks are purely logical in the sense that they
do not require to break any cryptographic primitives.

7They can thus retrieve the low-entropy password.

21

1. General Introduction

Authentication issue (for a weakened version). First, we would like to pinpoint the fact
that the order in which the nonces nR and nT have been placed inside both encryptions is relevant.
The careful reader will have noticed that the nonces have been swapped: the reader encrypts
⟨nR, ⟨nT , kR⟩⟩ whereas the e-passport encrypts ⟨nT , ⟨nR, kT ⟩⟩. The purpose of this design is to
avoid a replay attack. Indeed, without such a swap, a malicious user (who does not know the
keys ke and km) would be able to simply replay the message he received from the reader without
decrypting it and performing the checks. Such a message will be accepted by the reader and
pass all checks performed by the reader. This means that the reader will end its session thinking
(s)he has talked with the e-passport identified by ke and km, whereas this e-passport will not
have really taken part to the protocol. Moreover, the key seed computed at the end will be
kR ⊕ kR = 0 and thus very different from the one that is supposed to be computed during a
normal execution.

Unlinkability issue. Following the specification provided by the ICAO, each nation has imple-
mented its own version of the BAC protocol. Unfortunately, as the specification is not completely
comprehensive, each nation’s e-passport has subtle differences. In particular, the standard speci-
fies that the e-passport must reply with an error message to every ill formed or incorrect message
from the reader, but it does not specify what the error message should be.

For example, in the French implementation of e-passports issued before 2010, the e-passport
replies different error messages [ACRR10] depending on whether the nonce in xenc is not nT

(i.e. nonce error) or xmac is not a correct MAC w.r.t. the key km (i.e. MAC error). An attacker
who does not know the keys ke and km could then trace an e-passport in the following way:

1. He eavesdrops a session between an authentic reader and an e-passport PAlice (with keys
ke and km) and stores m = ⟨xenc, xmac⟩.

2. In a different session, he sends the message m and waits for the e-passport’s answer.

3. Then, we distinguish two cases:

a) if he receives a nonce error then he knows that the e-passport succeeded to check the
MAC and so this e-passport is PAlice;

b) if he receives a MAC error then he knows that the e-passport is not the one with keys
km (and ke), and therefore it is not PAlice.

This attack makes it possible to detect when a particular e-passport comes into the range of a
reader, which could be, for instance, placed by a doorway, in order to monitor when a target
enters or leaves a particular building8. To avoid the information leakage of these error messages,
the specification should prescribe that, in case of failure, the e-passport yields the same message
in both situations (as it is done for instance in e-passports from the UK).

8This is not a paranoid scenario, remember the already mentioned tools which are sold e.g. by Navizon [nava]
to trace people by exploiting traceability attacks.

22

1.3. Formal Verification

Discussion. We may note that in presence of honest participants who follow the protocol rules,
the protocol works well, and the attack scenarios described above are not possible. However, it is
important to ensure that these protocols meet their security goals in any situation, especially in
the presence of malicious agents that may want to take advantage of the protocol and therefore
do not necessarily follow the instructions specified by the protocols. Making sure that security
protocols are secure in such a hostile environment is an essential aspect which makes protocol
design and verification very difficult tasks.

1.3 Formal Verification

Now that we better grasp what are security protocols and logical attacks, we go back to our
initial question and try to answer it.

Why is designing good security protocols so hard ? Compared to critical or embedded
software, that we routinely rely on (e.g. for flying planes), making sure that security protocols
actually meet their goals is more involved for several reasons.

First, as illustrated by logical attacks from the previous section, it is necessary to make sure
that security protocols are able to cope with malicious agents that do not necessarily follow the
expected instructions. In particular, security protocols have to be resistant to MITM attackers
who can actively exploit the insecure network on which agents are trying to exchange messages.
Already in 1978, this was considered the most reasonable threat model on the network as ac-
knowledged by Needham and Schroeder [NS78] (for the case of authentication protocols): “We
assume that the intruder can interpose a computer in all communication paths, and thus can
alter or copy parts of messages, replay messages, or emit false material. While this may seem
an extreme view, it is the only safe one when designing authentication protocols.” This complex
threat model also explains why fuzzing or testing are not powerful enough for this setting: even a
very unlikely corner case that will most likely be missed by those approaches could be exploited
systematically by a clever attacker to break a security goal.

Second, security protocols are essentially distributed programs. Indeed, the different agent’s
programs are running concurrently. This makes the set of possible interactions very large since
one needs to examine all possible interleavings of agents’ actions. Indeed, expected security goals
must hold for any interleaving. Otherwise, the attacker may force agents to follow the specific
scheduling enabling the attack for instance by delaying some receptions of messages.

To sum up, we face a very intricate problem here: we shall achieve rather
complex security goals using security protocols that will be executed concur-
rently by all the different agents involved. Moreover, those agents will exchange
messages through an insecure network that should be considered to be entirely
controlled by the attacker.

The combination of all those features makes potential attacks very subtle and extremely hard to
find. Furthermore, there are so many possible interactions with potential hidden corner cases to

23

1. General Introduction

analyse that security researchers and engineers will most likely miss some of them yielding poten-
tial disastrous attacks. To break the present stalemate, we advocate the use of formal methods
providing rigorous, mathematical frameworks and techniques to analyse security protocols. The
security community (academics but not only) now agrees upon the importance of formal meth-
ods also as a guide for designing security protocols. For instance, the TLS Working Group is
following an “analysis-before-deployment” design paradigm for drafting TLS 1.3 [PvdM16]. We
hope to find in the future more examples of such proactive standardisation processes. We also
stress the importance of automation we shall obtain from those verification techniques. While
the number of corner cases to examine is often too large to be examined by humans, we hope for
automated methods to conduct exhaustive analyses. Automated methods are also motivated by
the large number of security protocols and their variations to be verified.

Two main distinct approaches have emerged, starting with the early 1980’s attempt of [DY83],
to ground security analysis of security protocols on formal methods. These two approaches are
known as the computational approach and the symbolic approach. They essentially capture the
same threat model on the network (i.e. they both consider that the attacker entirely controls the
network) but differ in the threat model on the cryptographic primitives (i.e. what an attacker
can do with them).

1.3.1 Computational Approach

In the computational model, the attacker can do anything he wants – including trying to break
cryptographic primitives – as long as the overall amount of time and computational power he
needs is bounded (the bound may polynomially depend on security parameters such as key
length). More formally, messages are modelled as bit strings and agents and the attacker as
probabilistic polynomial time Turing machines. Then, security goals are defined using games
played by the attacker who has to be able to distinguish the protocol from an idealised version of
it (with a non negligible probability). Finally, proofs are done via reductions (or hops) between
successive games starting with the one we are interested in and ending with games expressing
computational assumptions on cryptographic primitives. It is generally acknowledged that se-
curity proofs in this model offer powerful security guarantees. Indeed, such a model captures
logical attacks as well as cryptographic design flaws. The latter rely on one or several flaws in
cryptographic primitives. Note that this model does not capture attacks at lower levels such as
implementation and hardware attacks. A serious downside of this approach, however, is that
even for small protocols, proofs are usually difficult, tedious, and highly error prone. Moreover,
due to the high complexity of such a model, automating such proofs is a very intricate prob-
lem that is still in its infancy (e.g. CryptoVerif [Bla08]). Finally, computer-aided verification
allows for only a low level of automation even though a lot of efforts have been put in devel-
oping computer-aided cryptographic verifiers (e.g. CertiCrypt [BGZB09], EasyCrypt [BGHB11],
FCF [BPKA15, PM15], F∗ [BFG+14]).

24

1.3. Formal Verification

1.3.2 Symbolic Approach

By contrast, the symbolic approach, which is the one targeted by this thesis, makes strong
assumptions on cryptographic primitives (i.e. perfect primitives) but fully models agents’ inter-
actions and algebraic properties of these primitives. Compared to the computational approach
where cryptographic primitives are modelled via computational assumptions expressing opera-
tions the attacker cannot do, the symbolic approach models cryptographic primitives in a term
algebra expressing what the attacker can do, that is exploiting expected algebraic properties of
primitives. For instance, symmetric encryption and decryption are modelled as function symbols
enc and dec along with the equation dec(enc(m, k), k) = m. This means that, without the corre-
sponding key k, it is simply impossible to get back the plaintext m from the ciphertext enc(m, k).
As already explained, this does not mean however that protocols relying on these primitives are
necessarily secure as logical attacks may remain (e.g. see Subsection 1.2.3 and Section 1.1).

Although more abstract, the symbolic approach benefits from automation (through decision
or semi-decision procedures) and can thus target more complex protocols than those analysed
using the computational approach. It can also be used sooner in the protocol design process as
only little effort needs to be put into verification. We target automatic verification for rather
complex protocols and thus choose to follow this symbolic approach.

Symbolic Models

The first symbolic model has been described by Dolev and Yao [DY83] and several other models
have been proposed since then. Verifying security protocols following the symbolic approach
mainly involves three-level models: messages, protocols and security goals.

Messages. First, one has to model messages and cryptographic primitives. Whereas messages
are bit strings in the real-world (and in the computational approach as well), they are modelled
using first-order terms within the symbolic model. Atoms can be for instance nonces, keys, or
agent identities. Examples of function symbols are concatenation, asymmetric and symmetric
encryptions or digital signatures. Next, the algebraic relations of cryptographic primitives are
modelled by reduction rules or equational theories on terms. For instance, as said before, one may
model the expected relation for the symmetric decryption by the equation dec(enc(m, k), k) = m.
To conduct automatic analysis, existing approaches often consider fixed sets of primitives or
user-defined primitives satisfying some properties.

Security Protocols. Second, we need to model protocols themselves. The model thus needs
to capture the concurrent nature of security protocols. Therefore, process algebras are very
natural solutions. Derivatives of π-calculus have thus been proposed for this purpose: first the
spi-calculus [AG97] and then the applied-pi calculus [AF01]. The key difference between the
two concerns the way in which cryptographic primitives are handled. The spi-calculus has a
fixed set of built-in primitives (namely, symmetric and asymmetric key encryption), while the
applied-pi calculus allows a wide variety of primitives to be defined by means of an equational
theory. Process algebras are not the only way to model protocols. We may at least mention the
multiset rewriting (MSR) model that has been introduced in [CDL+99], and the strand space

25

1. General Introduction

model [FJHG99] that comes with an appealing graphical representation, and some dedicated
proof techniques.

Security Goals. Third, in order to model security goals, one use either reachability properties
or equivalence properties. Both kinds of properties capture different security goals. We describe
both of them next.

Reachability Properties. Until the early 2000s, most works from the symbolic approach
were focusing on reachability properties (also called trace properties), that is, statements that
something bad never occurs on any execution trace of a protocol. Secrecy and authentication
are typical examples of reachability properties.

(Weak) secrecy concerns a message used by the protocol. This is typically a nonce or a
secret key that should not become public. Even for this quite simple security property, several
definitions have been proposed in the literature. When considering the notion of (weak) secrecy,
a public message is a message that can be learnt by the attacker.

Authentication. Many security protocols aim at authenticating one agent to another: one
agent should become sure of the identity of the other. There are also several variants of authen-
tication. A taxonomy of these has been proposed by Lowe in [Low97].

Equivalence Properties. However, many other security goals and notably privacy goals
(e.g. anonymity, unlinkability) are not of this type but are defined relying on a notion of indis-
tinguishability. Intuitively, two protocols are indistinguishable if it is not possible for an attacker
to decide whether (s)he is interacting with one or the other. This notion of indistinguishability
is also used for defining a stronger notion of secrecy, and we may also rely on this notion of indis-
tinguishability to compare a protocol with an idealised version of it. Now, we list some examples
of such equivalence-based security goals. We will see later how indistinguishability is formalised
in our setting most appropriately via the notion of trace equivalence. Below, we simply list some
security goals that can be formalised relying on such a notion.

Strong secrecy is stronger than (weak) secrecy, and related to the concept of indistinguisha-
bility. Intuitively, strong secrecy means that an adversary cannot see any difference when the
value of the secret changes [Aba97, Bla04, AG97].

Anonymity. Frequently, communication between two agents reveals their identities and pres-
ence to third parties. Indeed, anonymity is in general not one of the explicit goals of common
authentication protocols. However, as already discussed, we may want protocols that achieve
this privacy goal. It has been informally defined in the ISO/IEC 15408-2 standard as follows:
“[Anonymity] ensures that users may use a [protocol] without disclosing their identity.” It is usu-
ally formally defined (see [ACRR09, SS96, Cho06]) as the fact that an observer cannot distinguish
two scenarios where the same protocol is executed by different users.

Unlinkability. Protocols that keep the identity of their users secure may still allow an attacker
to identify particular sessions as having involved the same agent. Such linkability attacks may, for
instance, make it possible for an attacker to trace the movements of someone carrying an RFID
tag without him being able to notice anything (as the attacks on the AKA and the BAC protocol

26

1.4. State of the Art: Methods and Tools

previously mentioned). Intuitively, protocols are said to provide unlinkability (or untraceability)
according to the ISO/IEC 15408-2 standard, if they “[...] ensure that a user may make multiple
uses of [them] without others being able to link these uses together.” Formally, this is often
defined as the fact that an attacker should not be able to distinguish a scenario in which the
same agent (i.e. the user) is involved in many sessions from one that involved different agents
in each session. Following this intuition, slightly different definitions have been proposed (see
e.g. [ACRR09, ACRR10, BCDH10, VDMR08]). A comparison between these definitions may be
found in [BCEDH13]. We will also come back to this notion in this thesis.

Vote Privacy. In the context of e-voting, privacy means that the vote of a particular voter
is not revealed to anyone. This is one of the fundamental security properties that an e-voting
system has to satisfy. Vote privacy is typically defined (see e.g. [KR05, DKR08]) by the fact
that an observer should not observe when two voters swap their votes, i.e. distinguish between
a situation where Alice votes yes and Bob votes no and a situation where these two voters have
voted the other way around. Some stronger forms of vote-privacy have also been proposed such
as receipt-freeness and coercion-resistance [DKR06, BHM08].

Linking Computational and Symbolic Approaches

Note that a line of work known as computational soundness aims at spanning the gap between
these two approaches by establishing that, in some cases, security guarantees in the symbolic
model imply security guarantees in the computational one. This line has been initiated by Abadi
and Rogaway [AR00] and has received much attention since then (see [CKW11] for a survey on
computational soundness).

1.4 State of the Art: Methods and Tools

In this thesis, we are interested in automatic verification in the symbolic model with a strong
focus on equivalence-based properties (defined using trace equivalence) such as many privacy
goals. This section is dedicated to the state-of-the-art of such symbolic verification methods and
tools for equivalence.

How to circumvent undecidability? Modelling security protocols using the symbolic ap-
proach allows one to benefit from machine support through the use of various existing techniques,
ranging from model-checking to resolution and rewriting techniques. As already pointed out, aim-
ing at machine support is really relevant since manual proofs are error-prone, tedious and hard
to verify. Moreover, new protocols are developed quite frequently and need to be verified quickly.
Nevertheless, verifying a security goal in such a setting (and especially those expressed using
equivalence properties) is actually undecidable in the general case [Hüt03, CCD15b]. Two main
options are possible then: either recover decidability by only considering a bounded number of
sessions (and thus a bounded number of agents as well), or only semi-decide the problem for the
unbounded case.

27

1. General Introduction

Apte [Che14] Akiss [CCK12] Spec [TD10]

Equivalence trace equivalence
over and

under-approx. of
trace equivalence

open bisim.

Primitives standard convergent with
finite variant

pair & sym. encryption

Class of
protocols full linear role with

equality tests
linear role with filtering

Symbolic
Model applied-pi calculus spi-calculus

Termination proved proved for sub.
convergent

proved

Exploration forward

Table 1.1 Main features of existing tools (for bounded number of sessions)

1.4.1 Decision for a Bounded Number of Sessions

To design decision procedures, a reasonable assumption is to bound the number of protocol
sessions to consider (i.e. by forbidding replication) thereby limiting the length of execution
traces. Under such an assumption, the first decision procedure towards automatic verification
of a notion of equivalence between protocols dates back to [Hüt03], where a fragment of the
spi-calculus (no replication, no branching on conditional) is considered. Note that, even under
this assumption, infinitely many execution traces remain, since each input may be fed infinitely
many different messages (chosen by the attacker). This issue has been tackled in various ways
using forms of symbolic execution and the development of dedicated procedures. Obtaining a
symbolic semantics to avoid potentially infinite branching of execution trees is often a first step
towards automation of equivalence. Depending on the expressivity of the calculus and the way
its semantics is given, this task can be quite cumbersome (e.g. for applied-pi calculus [DKR10],
spi-calculus [DSV03, Bor09], psi calculus [BGRV15]) and sometimes only leads to incomplete
procedures.

A table summarising the main features of existing tools dedicated to the bounded case is
given in Table 1.1.

Constraint solving approaches. Some pioneering works paved the way for existing tools but
have not been implemented due to their practicality (that was not their focus). For instance,
Baudet designed [Bau05] a decision procedure for verifying indistinguishability from a passive
attacker (i.e. who can only eavesdrop output messages) point of view. The latter boils down
to verifying the indistinguishability between two sequences of open messages (i.e. messages with
some unknown parts constrained with some deducibility and equality constraints). The main
novelty of this work was to design a constraint solving procedure that is not only able to solve
satisfiability problems (sufficient for reachability properties) but also to establish equivalences

28

1.4. State of the Art: Methods and Tools

(i.e. two systems have the same sets of solutions), which are needed when one wants to verify
equivalence-based security goals. This is done for a user-defined equational theory given in the
form of a sub-term convergent rewriting system (i.e. convergent and such that the right-hand
side of each rewriting rule is actually a syntactic sub-term of the left-hand side). As shown
in [CCD13a], this yields a procedure deciding trace equivalence of a restricted class of protocols
for many primitives. A shorter proof of the result by Baudet is given in [CR12]. It is shown
that if two protocols are not equivalent, then there must exist a small witness of non-equivalence,
and a decision procedure can be derived by checking every possible small witness. However, as
said above, those decision procedures have not been implemented.

A decision procedure for a stronger notion of trace equivalence (namely open bisimulation)
has been proposed in [TD10] and implemented in the tool Spec9. The procedure deals with
a fixed set of cryptographic primitives, namely symmetric encryption and pairs, and protocols
modelled as linear roles with filtering (i.e. each agent has to be modelled by a sequence of out-
put and inputs with possibly expected patterns for the received messages). The procedure is
sound and complete w.r.t. open bisimulation (a notion that is strictly stronger than trace equiv-
alence [Tiu07]) and its termination is proved. The attacker’s deductive ability is modelled as
logical rules in sequent calculus, and procedures deciding message deduction and message indis-
tinguishability are defined as proof-search strategies. Finally, the proposed procedure iteratively
builds an open bisimulation from the two initial protocols by symbolically executing them and
checking that possible instantiations are coherent on both sides.

For a fixed but richer set of cryptographic primitives (i.e. symmetric/asymmetric encryptions,
signature, pair, and hash functions), a different procedure, presented in [CCD11] (improved
version of [CCD10]), allows to decide equivalence of two sets of constraint systems that may also
feature disequality tests. Dealing with disequality tests and sets of constraint systems is needed
in the presence of protocols that can branch on conditionals (i.e. with proper else branches)
since different symbolic executions may then be associated to a single symbolic trace. This
procedure explores all possible symbolic traces and computes all possible resulting symbolic
constraint systems on both sides. This forward symbolic exploration of two protocols is finite
since all symbolic traces have a bounded length and the exploration is finitely branching since
inputs are abstracted away by variables and constraints. The procedure then checks the symbolic
equivalence of all the resulting pairs of sets of constraint systems. Recently (subsequent to the
start of this thesis), this procedure has been further extended to deal with some forms of side-
channel attacks regarding the length of messages [CCP13], and the computation time [CC15].
This procedure and its extensions have been implemented in the tool Apte [Che14].

Resolution-based approaches. The procedure described in [CCK12] deals with rich user-
defined term algebras provided that they can be defined using a convergent rewriting system
enjoying the finite variant property [CLD05]. This property basically requires that it is possible
to finitely pre-compute possible normal forms of terms with variables. This in particular includes

9http://www.ntu.edu.sg/home/atiu/spec-prover/

29

http://www.ntu.edu.sg/home/atiu/spec-prover/

1. General Introduction

all sub-term convergent equational theories. In the setting of [CCK12], protocols are modelled
as linear roles with equality tests (i.e. each agent has to be modelled by a sequence of inputs,
outputs and equality tests). Further, the authors of [CCK12] use first-order Horn clauses to
model all possible instantiations of symbolic traces, and they rely on a saturation procedure to
put all clauses into solved forms. Finally, this finite description of all possible concrete executions
is used to decide equivalence between the two protocols under study. This procedure is actually
able to check an over-approximation and an under approximation of trace equivalence, and it
has been shown that the former over-approximation actually coincides with trace equivalence
for a large class of protocols. This procedure has been implemented in the tool Akiss10. After
the beginning of this thesis, termination of the procedure has been established for sub-term
convergent theories [CCCK16].

1.4.2 Semi-Decision for an Unbounded Number of Sessions

The decidability results mentioned so far analyse equivalence for a bounded number of sessions
and agents only, that is assuming that protocols are executed a limited number of times. This
is of course a strong limitation. Even if no flaw is found when a protocol is executed n times,
there is absolutely no guarantee that the protocol remains secure when it is executed n+1 times.
Therefore, despite the difficulty of the problem in the general case, several solutions have been
proposed in order to deal with the unbounded case. To circumvent the undecidability of the
problem in that case, many works aim at developing procedures (not necessarily completely au-
tomatic) that are sound w.r.t. trace equivalence but not complete. One source of incompleteness
is non-termination, another one is the over-approximation of trace equivalence by a stronger form
of equivalence. Indeed, in order to make those procedures deal with a form of equivalence, the
main idea is to merge the two protocols under study into a so-called bi-process, and to consider
a strong form of equivalence, namely diff-equivalence. This method has first been presented
in [BAF05] and implemented in the ProVerif tool. After the start of this thesis, this technique
has been integrated into the verification tools Tamarin [BDS15] and Maude−NPA [SEMM14] that
have been extended to deal with equivalence properties. A table summarising the main features
of existing tools dealing with an unbounded number of sessions is given in Table 1.2.

The method presented in [BAF08] and implemented in the most established tool ProVerif11

represents bi-processes that are given in input using Horn clauses (performing some well-chosen
approximations, and thus losing completeness). Then, a dedicated resolution algorithm tries
to derive a logical contradiction from those Horn clauses. Cryptographic primitives (that can
be user-defined) are decomposed into: reduction rules and a union of linear equational theories
(i.e. each equation has the same variables on both sides) and convergent theories (i.e. terminating
and confluent) that must have the finite variant property. This formalism is flexible enough to
model for instance different flavours of encryptions (e.g. symmetric, asymmetric, randomised),
signature, and blind signature, but excludes exclusive or, and more generally associative and

10http://akiss.gforge.inria.fr
11http://proverif.inria.fr

30

1.4. State of the Art: Methods and Tools

ProVerif [BAF08] Maude−NPA [SEMM14] Tamarin [MSCB13]

Equivalence diff-equivalence

Primitives linear + convergent
with finite variant

convergent modulo AC
with finite variant (inc.

XOR, A.G.)

convergent with
finite variant + DH

Class of
protocols full linear role with filtering full + state

Input syntax applied-pi calculus strand spaces multiset rewriting
Termination may diverge

Exploration resolution backward

Table 1.2 Main features of existing tools (for an unbounded number of sessions)

commutative operators. The resulting tool is very efficient, and terminates on many examples.
It has thus established itself as the leading tool.

After the start of this thesis, the approach behind the Tamarin verification tool [MSCB13] has
been extended to deal with diff-equivalence. In this approach, protocols are modelled as multiset
rewriting (MSR) systems. This allows one to model a rich class of protocols that may branch on
conditionals (i.e. featuring proper else branches) and allow the storage of some data from one
session to another (i.e. stateful protocols). The framework supports a rich term algebra including
user-defined convergent equational theories that have the finite variant property (thanks to recent
efforts [DDKS17]), and Diffie-Hellman exponentiation. The proposed algorithm exploits the finite
variant property [CLD05] to get rid of some equations, and it builds on ideas from strands spaces
and proof normal forms. It basically performs a backward search from attack states. Tamarin
provides two ways of constructing proofs: an efficient, fully automated mode that uses heuristics
to guide proof search, and an interactive mode. The interactive mode enables the user to explore
the proof states using a graphical interface. The Tamarin tool has been used to analyse different
security properties on many protocols. However, regarding equivalence, the tool is less mature
and has only been used on a few examples; the main one being a stateful TPM protocol (namely
the TPM envelope protocol) on which a strong secrecy property has been established.

The Maude−NPA tool has also been extended [SEMM14] (after the beginning of this thesis)
to deal with bi-processes (that they call synchronous product) and diff-equivalence. Their semi-
decision procedure is able to deal with a very large class of term algebras as long as they are
convergent modulo AC (associative and commmutative) and have the finite variant property
(modulo AC) as defined in [ESM10], such as Abelian groups, exclusive or, and exponentiation.
However, it can only be applied to linear role scripts with filtering over inputs (and therefore
does not handle protocols with else branches). Regarding equivalence, only a few case studies
have been carried out. Moreover, the approach of [SEMM14] suffers from termination problems,
especially when considering primitives such as exclusive or.

31

1. General Introduction

1.4.3 Other Results

Besides those two main approaches to the verification problem, a different recent line of work
aims at proving the decidability of trace equivalence verification for the unbounded case but for
constrained classes of protocols and cryptographic primitives. For examples, such results were
shown (after the beginning of this thesis) for ping-pong protocols [CCD13b, CCD15b] (i.e. having
at most one variable per protocol rule) that are determinate (i.e. agents in parallel are using dif-
ferent channel names), and for type-compliant (generalising the idea of tagged protocols [BP03])
and acyclic (roughly protocols without loops in their well-typed executions) protocols [CCD15a]
for a fixed set of primitives (namely pairs, and symmetric encryption only). However, the con-
straints imposed by the restricted classes of primitives and protocols make those results still too
impractical and no usable tool resulted from those decidability results.

1.5 Problems

The two approaches, i.e. decision for the bounded case or semi-decision for the unbounded case,
suffer from two different problems that significantly limit their practical impact: state space
explosion problem for the former and lack of precision when it comes to verifying privacy goals
for the latter. We describe those two limitations respectively in the two next sections. We aim
at addressing those two problems in this thesis.

1.5.1 Main Limitation for the Bounded Case: State Space Explosion

As shown in Subsection 1.4.1, all methods and tools (i.e. Apte, Spec and Akiss), which decide
trace equivalence (or an approximation of it) for a bounded number of sessions, symbolically
explore all possible execution traces. However, due to the highly concurrent nature of security
protocols, there are too many interleavings of concurrent actions to consider. This well-known
problem in concurrency and model-checking is called state space explosion problem. This problem
seriously limits the practical impact of existing tools in that category.

Indeed, in practice, this translates to really bad scaling. For instance, at the time of the
beginning of this thesis, anonymity in the Private Authentication protocol could be established
in less than 0.1 second for a simple scenario with only one session of each role whereas it takes
respectively an hour and more than 2 days as soon as we want to consider respectively 2 and 3
sessions of each role.

In standard model-checking approaches for concurrent systems, this is handled using partial
order reduction (POR) techniques [Pel98]. For instance, the order of execution of two indepen-
dent (parallel) actions is typically irrelevant for checking reachability. The theory of POR is
well developed in the context of reactive systems verification (e.g. [Pel98, BK08, GvLH+96]).
However, as pointed out by E. Clarke et al. in [CJM03], POR techniques from traditional model-
checking cannot be directly applied in the context of security protocol verification. Indeed, the
application to security requires one to keep track of the knowledge of the attacker, and to refer
to this knowledge in a meaningful way (in particular to know which messages can be forged at

32

1.5. Problems

some point to feed some input). Furthermore, security protocol analysis does not rely on the
internal reduction of a protocol, but has to consider arbitrary execution contexts (representing
interactions with arbitrary, active attackers). Thus, any input may depend on any output, since
the attacker has the liberty of constructing arbitrary messages from past outputs. This results
in a dependency relation which is a priori very large, rendering traditional POR arguments sub-
optimal, and calling for domain-specific techniques. Things become even more complex when
working with a symbolic semantics: the states obtained from the interleaving of parallel actions
will differ, but the sets of concrete states that they represent will have a significant overlap.
Finally, POR techniques are usually devised for reachability properties verification while we are
rather interested in trace equivalence verification. Hence, extra precautions have to be taken
before discarding a particular interleaving: we have to ensure that this is done in both sides of
the equivalence in a similar fashion.

Hence, there is a need for new POR techniques for trace equivalence that are
compatible with the security setting and which can be nicely integrated in
existing methods and tools.

1.5.2 Main Limitations for the Unbounded Case: Lack of Precision

We now turn to methods & tools that semi-decide trace equivalence (i.e. ProVerif, Tamarin and
Maude−NPA). As said before in Subsection 1.4.2, existing tools in that category all rely on
a stronger notion of equivalence instead (i.e. diff-equivalence) that greatly over-approximates
trace equivalence. Basically, diff-equivalence requires that the two protocols initially share the
same structure and that they can be executed exactly in the same way, notably for internal
rules (e.g. conditional evaluations), whereas the attacker cannot observe such details. This
problem has been partially addressed in [CB13] for ProVerif by pushing away the evaluation
of some conditionals into terms. Nevertheless, the problem remains in general (e.g. for generic
conditionals, indistinguishable actions in parallel12).

This gap between trace equivalence and diff-equivalence may not be a problem when verifying
some properties such as strong-secrecy. However, it is definitely a problem for the verification
of some privacy goals such as unlinkability for instance. Thus, considering the well-established
formal definition of strong unlinkability of [ACRR10], we end up verifying an equivalence between
two protocols that do not share the same structure. Worse, even after merging the two protocols
to be proved equivalent using some encodings, the two protocols can mimic each other but
cannot do so while keeping exactly the same structure. Therefore, verifying this notion using
the unrealistically strong notion of diff-equivalence systematically leads to false attacks. The
deep reason is the lack of precision of the over-approximation made by diff-equivalence over
trace equivalence. In practice, it means that tools verifying diff-equivalence instead of trace
equivalence (i.e. ProVerif, Tamarin, Maude−NPA) still cannot be used off-the-shelf to establish

12The very recent extension [BS16] neither solves the problem as it only allows to relax those constraints in
specific situations.

33

1. General Introduction

unlinkability for many security protocols such as13: the BAC protocol, PACE protocol that
should replace BAC in e-passports, RFID protocols such as Feldhofer, Hash-Lock, LAK. Similar
problems arise also in the e-voting context where vote-privacy cannot be established using diff-
equivalence for many protocols despite recent efforts trying to address this particular precision
issue [BS16].

Targeting the automation of diff-equivalence is often not enough to obtain
verification of privacy. We thus need new methods for verifying privacy in the
unbounded case that do not suffer from this lack of precision.

1.6 Contributions

We identified in the previous section two important problems, one for each approach of the
state-of-the-art, that negatively impact a lot the existing methods and tools. We describe how
our contributions respectively address those two problems in subsections 1.6.1 and 1.6.2. Fi-
nally, Subsection 1.6.3 focuses on contributions taking the form of software implementations and
security protocol modellings and analyses.

1.6.1 POR Techniques for the Bounded Case

In this thesis, we develop new POR techniques for trace equivalence checking of security proto-
cols. Besides the already mentioned extra complexity brought by the security setting and trace
equivalence, another important challenge is to do it in a way that is compatible with symbolic
execution: we should provide a reduction that is effective when messages remain unknown, but
leverages information about messages when it is inferred by the constraint solver.

We devise our POR techniques by refining interleaving semantics in two steps, gradually
eliminating redundant traces. The first refinement, called compression, uses a notion of polarity
over processes to impose a simple strategy for the exploration of traces. It does not rely on
data analysis at all but only on syntactical information about current available processes. This
first technique can thus easily be used as a replacement for the usual semantics in verification
algorithms. The second one, called reduction, takes data into account and achieves optimal-
ity in eliminating redundant traces. In theory, the reduction step can be implemented in an
approximated fashion, through an extension of constraint resolution procedures by leveraging
information about messages as soon as available. For each refined semantics, we show that it
captures essentially the same reachability properties and more importantly that it captures the
same trace equivalence notion.

We also formally explain how to integrate such techniques into symbolic semantics with con-
straint solving. We lift those refined semantics to refined, symbolic semantics and prove that
reachability and trace equivalence are preserved. Next, we put those techniques into practice
in the tool Apte: from the theoretical aspects of this integration to the implementation in the

13We will describe more precisely those protocols and why unlinkability cannot be verified directly using
diff-equivalence in Part C.

34

1.6. Contributions

distributed code of Apte. Hence, we axiomatize the building blocks of the tool Apte in order to
prove the correctness of the tool Apte using our refined semantics (instead of the regular, unop-
timised semantics). We also present extensive benchmarks of Apte showing that our theoretical
results do translate to dramatic speedups.

We claim that our POR techniques – at least compression – and the significant optimisations
they allow are generic enough to be applicable to other verification methods as long as they
perform forward symbolic executions. In addition to the integration in Apte we will extensively
discuss, we also have successfully done so in Spec [Hirb]. Furthermore, parts of POR techniques
have been independently integrated and implemented in the distributed version of Akiss14.

1.6.2 Verifying Privacy via Sufficient Conditions for the Unbounded Case

Solutions to the previously mentioned precision issue often consists in improving the tools and
the notion of diff-equivalence they verify to get closer to trace equivalence [CB13, BS16]. We
believe that targeting trace equivalence verification for the unbounded case is looking at a too
general problem. We thus approach the problem differently: by focusing on a class of protocols
and some privacy goals we would like to verify on them, we are able to precisely characterise
when those goals are met via sufficient conditions. While we believe our overall methodology is
generic enough to be used in various contexts, in this thesis, we fully develop our methodology
for the case of unlinkability and anonymity on 2-party protocols.

We proceed as follows. We carefully analyse reasons for having attacks on unlinkability or
anonymity for 2-party protocols. In light of that analysis, we define two conditions preventing
two generic kinds of attacks. In a nutshell, our first condition avoids attacks based on control-flow
leaks that may be observed through data or nature of actions while our second condition avoids
attacks based on data leaks taking the form of relations between outputs. Our main theorem
states that these two conditions are actually always sufficient to ensure both unlinkability and
anonymity. This is relevant in practice since our two conditions are fundamentally simpler and
are in the scope of existing verification tools like ProVerif. They can be precisely verified via
diff-equivalence without the previous systematic precision issue. We thus obtain a sound method
for automatically checking unlinkability and anonymity. We have implemented a tool called
UKano that automatically generates models to verify our two conditions. It suffices to feed this
tool with the specification of a security protocol written in a ProVerif model and it will build a
model for each condition and call ProVerif on them in order to verify the conditions.

The resulting method and tool is obviously not complete but we show that it is precise enough
to conclude on many case studies. We notably establish the first proof of unlinkability for the
ABCDH protocol [AH13] and the BAC protocol followed by the Passive Authentication (PA) and
Active Authentication (AA) protocols used in e-passports. We also report on an attack that we
found on the PACE protocol (that should replace BAC in e-passports), and another one that we
found on the LAK protocol whereas it was claimed untraceable. Furthermore, our method also
enables us to conduct the first automatic analysis of unlinkability for many security protocols

14See https://github.com/akiss/akiss.

35

https://github.com/akiss/akiss

1. General Introduction

(e.g. PACE, Feldhofer, Hash-Lock, LAK). Note that it happens that our conditions are rather
tight: for all our case studies, we provide an attack every time one of them is not satisfied.

Finally, our method is generic enough to verify different flavors of unlinkability and anonymity.
We build on previous definitions (that we compare briefly) to propose different variations of
unlinkability and anonymity. We show that those variations capture different threat models or
practical scenarios and provide examples that distinguish all of them.

Finally, we believe that the underlying methodology is of interest in itself as it may be used
to devise new methods for verifying other types of complex privacy goals for other classes of
security protocols addressing the precision issue more broadly (e.g. as done for the e-voting
setting in [CH17]).

1.6.3 Developed Software and Models

We now focus on our implementation and modelling efforts.
As already discussed in Subsection 1.6.1, our POR techniques have been implemented in the

distributed version of Apte. We stress the fact that Apte is a rather big software of more than
14k OCaml LoC based on a highly complex algorithm: description and proofs of the underlying
algorithm are available in a long and technical appendix (more than 100 pages) from [Che12].
The implementation of our POR techniques involved about 3k LoC modifications. We have
also carried out extensive benchmarks to test our optimisations on several security protocols.
More details about this implementation and the benchmarks can be found at http://www.lsv.
ens-cachan.fr/~hirschi/apte_por. We have also implemented a preliminary version of our
POR techniques in the tool Spec and carried out benchmarks to measure speedups. More details
about this implementation are given at http://www.lsv.ens-cachan.fr/~hirschi/spec.

We have built the tool UKano briefly presented in Subsection 1.6.2 by modifying the tool
ProVerif. We only re-used the lexer, parser and AST of ProVerif and build upon those a generator
and translator of ProVerif models. Our tool is able to verify that a given protocol lies in our
class of 2-party protocols. It then leverages several heuristics to automatically generate ProVerif
models to verify our sufficient conditions. This effort represents more than 2k OCaml LoC.
We applied our tool on many real-world case studies. Some of those case studies were never
symbolically analysed before. Therefore, we also provide first symbolic models for several security
protocols (e.g. ABCDH, PACE, Hash-Lock). More details are given on the the official page of
UKano at http://projects.lsv.ens-cachan.fr/ukano/.

1.7 Organisation of the Thesis

The present thesis is divided into three main parts.

Part A. The first part is dedicated to the symbolic model and the common security notions
that will be used in this thesis. We define a generic symbolic model in Chapter 2 on which all
subsequent parts build upon. Then, in Chapter 3, we define trace equivalence before giving a

36

http://www.lsv.ens-cachan.fr/~hirschi/apte_por
http://www.lsv.ens-cachan.fr/~hirschi/apte_por
http://www.lsv.ens-cachan.fr/~hirschi/spec
http://projects.lsv.ens-cachan.fr/ukano/

1.7. Organisation of the Thesis

comparisons with other behavioural equivalences. We also explain how to model some privacy
goals using this notion. Finally, we show in Chapter 4 how to derive variations of models (that
will be used in subsequent parts) from our generic symbolic model and prove that all those
variations capture the same security notions (and threat models) and most notably the same
notion of trace equivalence.

Part B. Our POR techniques addressing the state space explosion problem are described in
the second part. In Chapter 5, we define our POR techniques in the most generic setting. We
then show how to lift those techniques to symbolic semantics and prove the correctness of the tool
Apte optimised with our POR techniques in Chapter 6. We also show and discuss benchmarks.
Finally, we give comprehensive comparisons with related works in Chapter 7.

Part C. The final part of this thesis is dedicated to our new method to verify privacy in the
unbounded case. In Chapter 8, we define the class of security protocols we will deal with. We
also define unlinkability and anonymity for the unbounded case and propose variations of the
most-established definitions. We then define in Chapter 9 our two conditions and prove our
main theorem stating that they always imply unlinkability and anonymity. Finally, Chapter 10
shows the practical relevance of our method: we explain how to precisely verify the two sufficient
conditions and how our tool UKano automates this task. We also discuss an extensive list of case
studies.

Finally, we close the thesis with conclusive remarks and avenues for future work in Chapter 12.

Publications and Other Contributions

Most of the results presented in this thesis have been previously published sometimes in a weaker
form and always for specific semantics (thus lacking a uniform symbolic model). Some material
from this introduction comes from [DH16]. Part B describes contributions first published at
several places [BDH14, BDH15, BDH]. Part C describes enhanced and extended results based
on [HBD16] (and a journal version in progress).

However, in the interest of uniformity, several other results have not been included in this
thesis. Therefore, for the sake of completeness, we list all the publications of the author on the
next page.

37

Publications by the Author

David Baelde, Stéphanie Delaune, and Lucca Hirschi. A reduced semantics for deciding trace
equivalence. Logical Methods in Computer Science, 2017.

Piers O’Hanlon, Ravishankar Borgaonkar, and Lucca Hirschi. Mobile subscriber wifi privacy.
In Proceedings of Mobile Security Technologies (MoST’17), held as part of the IEEE Computer
Society Security and Privacy Workshops (SPW’17), 2017. To appear.

Stéphanie Delaune and Lucca Hirschi. A survey of symbolic methods for establishing
equivalence-based properties in cryptographic protocols. Journal of Logical and Algebraic Meth-
ods in Programming, 2016.

Amina Doumane, David Baelde, Lucca Hirschi, and Alexis Saurin. Towards completeness
via proof search in the linear time µ-calculus: The case of büchi inclusions. In 31st Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS’16), pages 377–386. ACM, 2016.

Lucca Hirschi, David Baelde, and Stéphanie Delaune. A method for verifying privacy-type
properties: the unbounded case. In 37th Symposium on Security and Privacy (Oakland’16),
pages 564–581. IEEE, 2016.

David Baelde, Stéphanie Delaune, and Lucca Hirschi. Partial order reduction for security
protocols. In 26th International Conference on Concurrency Theory (CONCUR’15), page 497,
2015.

David Baelde, Stéphanie Delaune, and Lucca Hirschi. A reduced semantics for deciding trace
equivalence using constraint systems. In 3th International Conference on Principles of Security
and Trust (POST’14), pages 1–21. Springer, 2014.

39

Part A

Model

41

Table of Contents of the Part

Introduction 43

2 Modelling Security Protocols 45
2.1 Term Algebra . 45

2.1.1 Semantics of Messages: Equational Theory 46
2.1.2 Semantics of Terms: Computation Relation 47
2.1.3 Attacker’s Knowledge: Recipes & Frames 48

2.2 Process Algebra . 49
2.2.1 Syntax . 49
2.2.2 Internal Reduction . 51
2.2.3 Semantics . 52

2.3 Instances of Term Algebras . 54
2.3.1 Computation Relation Through Rewriting Systems 54
2.3.2 Computation Relation Through an Equational Theory 56

3 Modelling Security Goals 59
3.1 Reachability Properties . 59
3.2 Behavioural Equivalences . 60

3.2.1 Trace Equivalence . 61
3.2.2 Other Behavioural Equivalences . 62

3.3 Examples of Privacy Goals Modelling . 63
3.3.1 Unlinkability of Feldhofer . 64
3.3.2 Anonymity of the Private Authentication Protocol 64

4 Variations of the Semantics 67
4.1 Executing Unobservable Actions Greedily . 67

4.1.1 Internal Reduction: Conditional, Parallel Composition and Blocked Output 67
4.1.2 ν-greedy Executions: Creation of Names 69

4.2 Executing Unobservable Actions Lazily . 69
4.3 Stability of the Security Notions . 70

42

Introduction

This part is dedicated to the model we use to represent security protocols and security goals. As
already discussed, we target a symbolic model abstracting cryptographic primitives but consid-
ering a strong attacker who is controlling all the network: he may eavesdrop messages, inject
messages and use cryptographic primitives. As mentioned in the general introduction, several
symbolic models have been proposed. The first one has been described by Dolev and Yao [DY83]
and several other models in the same flavor have been proposed since then. Unfortunately, there
is currently no unified, consensual such model. The reason for having several popular symbolic
models probably comes from the fact that they have to achieve two antagonistic goals. On the
one hand, models have to be as fine grained and expressive as possible to capture a large range
of applications. One the other hand, models have to remain relatively simple in order to allow
simple proofs and the design of verification procedures.

In this thesis, we shall work with a variant of the widespread dialect of Blanchet, Abadi &
Fournet [BAF08] on which the tool ProVerif is based. This model is inspired from cryptographic
calculi and is pretty close to the applied π-calculus [AF01]. More importantly, the framework
we define in this part is generic enough to be instantiated in different ways. We will notably be
able to instantiate it in the models on which the tools we eventually leverage in this thesis are
based (i.e. ProVerif and Apte). In this part, we also define trace equivalence for our symbolic
model and explain how some privacy goals can be defined relying on this notion.

We stress the fact that some of our subsequent developments, that will be built upon our
uniform and generic symbolic model, have different requirements w.r.t. the way the semantics
of security protocols is defined. This is often the case and, as already mentioned, partly explains
the diversity of symbolic models that have been proposed in the literature. However, in this
thesis, we put effort into defining a generic semantics that can be parametrised in different ways
in order to meet different requirements and expose different levels of details. More importantly,
we prove that all variations of our symbolic model one can thus obtain capture the same security
notions. More precisely, we prove that the induced reachability properties and more importantly
trace equivalence coincide for all of them.

43

Introduction

Outline. First, we formally define the process algebra we shall use to model security proto-
cols in Chapter 2. We notably define a generic semantics describing the processes’ behaviours.
We also describe different ways to model cryptographic primitives and their algebraic relations.
In Chapter 3, we formally define trace equivalence. We also compare this notion with other
behavioural equivalences. We conclude this chapter with illustrations of privacy goals modelled
using trace equivalence. Finally, in Chapter 4, we show how one can derive variants of the generic
semantics defined before, all capturing the same security notions. Those variants have different
technical features and we shall use one or the other depending on our needs in subsequent devel-
opments.

44

Chapter 2

Modelling Security Protocols

In this chapter, we define the generic model of security protocols we shall use in this thesis. This
model is a variant of the dialect of Blanchet, Abadi & Fournet [BAF08] based on the applied
π-calculus [AF01].

Messages exchanged by agents taking part in the protocol are represented using a term algebra.
In such a term algebra, the algebraic properties of the data structures and the cryptographic
primitives are modelled through an equational theory and a computation relation (generalizing
reduction rules). We define a generic notion of such term algebras and give some examples in
Section 2.1.

Agents of a protocol are modelled as processes in a process algebra describing all their possible
behaviours. The semantics of that process algebra specifies how processes can interact with each
other by sending and receiving messages through an insecure network totally controlled by an
attacker. We define the syntax and the semantics of that process algebra in Section 2.2.

Further, we show in Section 2.3 different ways to realise instances of the generic notion of
term algebra we defined notably corresponding to the tools we eventually leverage in this thesis:
ProVerif and Apte.

2.1 Term Algebra

We now present term algebras, which will be used to model messages built and manipulated
using various cryptographic primitives and data structures. We consider an infinite set N of
names (denoted k, n) which are used to represent keys or nonces and two infinite and disjoint
sets of variables X and W. Members of X are denoted x, y, z and are typically used to refer to
unknown parts of messages expected by participants, while variables in W, denoted w and called
handles, are used to store messages learned by the attacker. We assume a signature Σ, i.e. a
set of function symbols together with their arity. The elements of Σ are split into constructor
and destructor symbols, i.e. Σ = Σc ⊔ Σd. On the one hand, destructors are meant to model
computations that may fail; and such a failure can be observed. Signature and MAC verification
are examples of this kind. On the other hand, constructors can be used to model total functions

45

2. Modelling Security Protocols

possibly satisfying some algebraic properties. For instance, exclusive or and Diffie-Hellmann
exponentiation would be modelled using constructors.

Given a signature Σ, and a set of atoms A, we denote by T (Σ, A) the set of terms built from
elements of A by applying function symbols in Σ. We shall call terms the elements of T (Σ, N ∪X)
and note them t, s. Terms in T (Σc, N ∪ X) will be called constructor terms. We denote vars(t)
the set of variables that occur in a term t. A message is a constructor term u that is ground,
i.e. such that vars(u) = ∅. We let u, v range over messages. Messages are the only terms that can
be exchanged through the network while terms shall be executed yielding either a message or a
failure. Executions of terms are described by the computation relation we define in Section 2.1.2.

We denote by x, n, t a (possibly empty) sequence of variables, names, and terms respectively.
The application of a substitution σ to a term u is written uσ, and we denote dom(σ) the domain
of σ. The positions of a term and the notion of contexts (i.e. terms with holes) are defined as
usual. We write subTerms(t) to denote the set of syntactic sub-terms of a term t.

Example 1. Consider the signature:

Σ = {senc, sdec, ⟨ ⟩, π1, π2, ⊕, 0, eq, neq, ok}.

The symbols senc(•, •) and sdec(•, •) of arity 2 represent symmetric encryption and decryption.
Pairing is modelled using ⟨•, •⟩ of arity 2, whereas projection functions are denoted π1(•) and
π2(•), both of arity 1. The function symbol • ⊕ • of arity 2 and the constant 0 are used to model
the exclusive or operator. Finally, we consider the symbol • eq • of arity 2 to model equality test,
as well as the constant symbol ok. This signature is split into two parts: Σc = {senc, ⟨ ⟩, ⊕, 0, ok},
and Σd = {sdec, π1, π2, eq, neq}.

2.1.1 Semantics of Messages: Equational Theory

Messages are given a semantics through an equational theory. This has proved very useful
for modelling algebraic properties of cryptographic primitives (see e.g. [CDL06] for a survey).
Formally, we consider a relation E : T (Σc, X) × T (Σc, X) describing a set of equations modelling
each an algebraic relation satisfied by constructor symbols. This induces a congruence relation
generated from those equations as defined next.

Definition 1. Let E : T (Σc, X) × T (Σc, X) be a relation over constructor terms. The equa-
tional theory =E is the smallest equivalence relation over T (Σc, N ∪ X) containing E, stable by
substitution from X to T (Σc, N ∪ X) and stable by application of function symbols in Σc.

Note that, by definition, =E is closed under bijective renaming. The equational theory is
meant to be transparent from the point of view of participants and the attacker; i.e. all repre-
sentatives of a given equivalent class of =E are indistinguishable for them since they model the
same piece of data. The semantics of protocols itself will be stable by =E.

Note that we assume that E is chosen such that =E is not degenerate, i.e. there exist two
messages u, v such that u ̸=E v.

46

2.1. Term Algebra

Example 2. To reflect the algebraic properties of the exclusive or operator, we may consider
the equational theory generated by the following equations:

x ⊕ 0 = x (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z)
x ⊕ x = 0 (x ⊕ y) = (y ⊕ x)

In such a case, we have that senc(a ⊕ (b ⊕ a), k) =E senc(b, k). Remind that all representatives of
the same =E-class essentially models the same piece of data. For instance, nobody (no participant
nor the attacker) can distinguish k ⊕ n from n ⊕ k where k, n ∈ N .

Example 3. When modelling a symmetric encryption scheme whose decryption algorithm is a
bijective, total function (e.g. block cipher like AES), we shall use constructors for encryption
and decryption and model decryption property through equations. For instance, over the signature
Σc = {senc′, sdec′, ⊕}, the equational theory induced by sdec′(senc′(x, y), y) = x,
senc′(sdec′(x, y), y) = x and equations in Example 2 gives the expected semantics for symmet-
ric decryption. In such a case, we have that sdec′(senc′(a, k ⊕ a ⊕ a), k) =E a. Moreover, even
though the keys do not match in sdec′(senc′(a, k), k′), this term is considered as a message that
might be sent or received. Moreover, the attacker or other participants have no means to know
if the keys match1.

2.1.2 Semantics of Terms: Computation Relation

We now give a semantics to terms through a computation relation which describes how terms
can be executed yielding either a message or a failure.

Contrary to equational theories, computation relations allow to model computations that
may fail. For example, when modelling symmetric encryption as in Example 3, decryption never
fails even if keys do not match: it always returns a message. With a computation relation, it
is possible to express a failure in such a case. For instance, contrary to the Example 3, the
destructor symbol sdec introduced in Example 1 shall be given a semantics corresponding to a
partial function that may fail when the given keys do not match: sdec(senc(u, k), k′) would fail
while sdec(senc(ok, k), k) would not fail and would compute the message ok.

We now give a generic definition of computation relations. We prefer axiomatizing compu-
tation relations with all requirements they must satisfy rather than giving operational ways to
obtain them (we list some of them later on in Section 2.3). There are many requirements for
such computation relations mainly because its interactions with the equational theory have to
fulfil expected properties. For example, when two messages u, v are equal modulo =E, replacing
u by v in a term t should not impact the computation of t since u and v represent the same piece
of data. We describe in Section 2.3 several ways to operationally generate such computation
relations (e.g. from reduction rules or equations) satisfying all requirements.

Definition 2. A computation relation is a relation over T (Σ, N) × T (Σc, N), denoted ⇓, such
that:

1Except if they already know part of the plaintext. Indeed, in such a case, they can try to decrypt and check
whether the result matches the part of the expected plaintext they know.

47

2. Modelling Security Protocols

• n ⇓ n for any n ∈ N ;

• f(t1, . . . , tk) ⇓ f(u1, . . . , uk) for f ∈ Σc of arity k and ti ⇓ ui for all 1 ≤ i ≤ k,

• if t ⇓ u then tρ ⇓ uρ for any bijective ρ : N → N ;

• for any term t, messages u and v, and context t′[] built from Σ and N , if t ⇓ u and t′[u] ⇓ v

then t′[t] ⇓ v;

• for any term t and messages u1, u2 such that t ⇓ u1, it holds that t ⇓ u2 if, and only if,
u1 =E u2;

• if t[] is a context built from Σ and N , u1, u2 are messages such that u1 =E u2, and,
t[u1] ⇓ v1 for some message v1, then t[u2] ⇓ v2 for some message v2 such that v1 =E v2.

The relation ⇓ associates, to any ground term t, at most one message up to the equational
theory =E. When no such message exists, we say that the computation fails; this is noted t ��⇓.
Remark that the fifth requirement implies that ⇓ associates to each term either a failure or an
equivalence class of =E. As a slight abuse of notation, we may sometimes use directly t ⇓ as
a message, when we know that the computation succeeds and the choice of representative is
irrelevant.

Example 4. We precisely define later in Section 2.3 a computation relation giving a semantics
to symbols in Σd (see Example 1). It notably satisfies the following: sdec(senc(t, tk), t′

k) ⇓ u for
some message u if, and only if, t computes u (i.e. t ⇓ u) and tk and t′

k both compute the same
message uk (i.e. tk ⇓ uk and t′

k ⇓ uk). We will also have that eq(t1, t2) ⇓ ok if, and only if, t1 ⇓ u

and t2 ⇓ u for some u. Finally, ⇓ will be such that a failure of a computation of a sub-term
propagates at top-level (i.e. t ��⇓ if t′

��⇓ for t′ ∈ subTerms(t)).
As a result, we have for instance the following: sdec(senc(c, a ⊕ b), b ⊕ a) ⇓ c when a, b and c

are names, whereas sdec(senc(c, a ⊕ b), b) ��⇓, and sdec(a, b) ⊕ sdec(a, b) ��⇓.

2.1.3 Attacker’s Knowledge: Recipes & Frames

For modelling purposes, we split the signature Σ into two parts, namely Σpub and Σpriv. This is
orthogonal to the splitting into Σc, Σd: it allows to consider some function symbols as private
forbidding the attacker to use them, helping to model threat models more accurately.

The attacker’s knowledge, that is the set of messages he learnt by eavesdropping messages
outputted by agents of the protocol, is organised into a frame. Formally, a frame is a substitution
from W to messages and is noted Φ, Ψ. An attacker builds his own messages by applying
public function symbols (i.e. symbols in Σpub) to terms he already knows and that are available
through variables in W. Formally, a computation done by the attacker is a recipe, i.e. a term
in T (Σpub, W). Recipes will be denoted by R, M , N . Note that, although we do not give
the attacker the ability to generate fresh names to use in recipes, we obtain exactly the same
capability by assuming an infinite supply of public constants without equation in Σc ∩ Σpub.
Assume a frame Φ and a recipe R such that vars(R) ⊆ dom(Φ), then t = RΦ is the term

48

2.2. Process Algebra

computed by the attacker using R over Φ. Either this computation fails (i.e. t ��⇓) or it computes
a message (i.e. t ⇓ u). This allows the attacker to observe failure of some computations and
equalities or inequalities between results of successful computations.

Example 5. Consider a frame Φ = {w1 7→ k, w2 7→ senc(k′, k), w3 7→ senc(m, k′)} for some mes-
sage m and names k, k′ ∈ N . From this knowledge, the attacker is able to infer k′ using the recipe
R = sdec(w2, w1) (i.e. RΦ ⇓ k′) and m using the recipe R′ = sdec(w3, R) = sdec(w3, sdec(w2, w1))
(i.e. R′Φ ⇓ m). The attacker is also able to observe the failure of the computation Rf Φ ��⇓ for
Rf = sdec(w3, w1).

2.2 Process Algebra

We now define the syntax and semantics of the process algebra we use to model security protocols.

2.2.1 Syntax

We consider an infinite set C of channel names such that C ∩ N = ∅ and an infinite set χ of
recursive variables such that χ ∩ X = ∅. Agents of protocols are modelled through ground
processes using the grammar in Figure 2.1.

P, Q := Π S parallel composition
| in(c, x).P input
| out(c, t).P output
| νn.P restriction
| ! P replication
| let x = t in P else Q evaluation
| recX.P recursive process
| X recursive variable
| νc outch(a, c).P creation of new public channels

where S is a multiset of processes, c, a ∈ C, x is a sequence of variables, t is a sequence of terms,
t is a term, n is a sequence of names, c is a non-empty sequence of channel names in C that does
not contain a, and, X ∈ χ.

Figure 2.1 Syntax of processes

Grammar. For a multiset2 S of processes, Π S denotes the parallel composition of all processes
in S. When S contains only two processes, we use the notation P1 | P2

def= Π {P1, P2}#. This
is how parallel composition is usually defined. However, we prefer our definition because of the
precise analysis of the structure of processes we carry on later in the thesis (in Chapter 5). When
S is empty, the parallel composition describes the null process that does nothing and that we note
0 def= Π ∅. Input and output are standard. A process in(c, x).P waits for an input on channel

2When the context is not clear, we use {}# to denote that the underlying object is a multiset and use ⊎ to
denote union of multisets.

49

2. Modelling Security Protocols

c and then behaves like P{x 7→ u} where u is the inputted message. A process out(c, t).P
can output the message u on channel c provided that t computes u and then behaves like P .
The process νn.P can pick up fresh names n that P can then use. The replication !P behaves
like an infinite parallel composition P | (P | (P | . . .)). The construct let x = t in P else Q

allows to write computations and conditionals compactly. Such a process tries to evaluate the
terms t and if no failure happens, i.e. when for all i, ti ⇓ ui for some message ui (noted t ⇓ u),
then the process P{xi 7→ ui}i is executed. Otherwise, i.e. when there is some ti such that
ti ��⇓ (noted t ��⇓), the process Q is executed. Note also that the let instruction together with
the eq theory as defined in Example 10 can encode the usual conditional construction. Indeed,
“let x = eq(t1, t2) in P else Q” will execute P only if the computation succeeds on eq(t1, t2),
that is only if t1 ⇓ u1, t2 ⇓ u2, and u1 =E u2 for some messages u1 and u2. A process recX.P

is a recursive process: it intuitively satisfies the equation X = P . For instance, the process
recX.(out(c, ok).X) behaves like an infinite sequence of the output out(c, ok). Finally, the last
construct νc outch(a, c). P allows to create new fresh channel names c that the continuation P

may use after making them public by outputting them on the channel a.

Binding and conventions. The construct recX.P binds X in P , the construct in(c, x).P and
respectively let x = v in P else Q bind x and respectively all variables in x in P and νn.P binds
n in P . Finally, in the process νc outch(a, c).P , channel names in c are bound in P . We use
α-renaming and capture-avoiding substitution as is standard. We call ground a process having
no free variable from X or χ. We denote by fc(P) and bc(P) the set of free and bound channels
of P . For brevity, we sometimes omit “else 0” and null processes at the end of processes. We
often write P ∪ P instead of {P} ∪ P.

Example 6. We consider the RFID protocol due to Feldhofer et al. as described in [FDW04].
This protocol aims to mutually authenticate an RFID tag with a reader device. The protocol is
between an initiator I (the reader) and a responder R (the tag) that share a symmetric key k. It
can be presented using Alice & Bob notation as follows (we note {m}k the symmetric encryption
of a message m with a key k):

1. I → R : nI

2. R → I : {nI , nR}k

3. I → R : {nR, nI}k

We consider the term algebra introduced in Example 4. The protocol is modelled by the parallel
composition of the processes PI and PR, corresponding respectively to the roles I and R.

PFh
def= νk. (νnI .PI | νnR.PR)

where PI and PR are defined as follows:

PI
def= out(cI , nI).

in(cI , x1).
let x2, x3 = eq(nI , π1(sdec(x1, k))), π2(sdec(x1, k)) in
out(cI , senc(⟨x3, nI⟩, k))

50

2.2. Process Algebra

PR
def= in(cR, y1).

out(cR, senc(⟨y1, nR⟩, k)).
in(cR, y2).
let y3 = eq(y2, senc(⟨nR, y1⟩, k)) in 0

Note that, the final null process 0 in PR may be replaced by the next protocol to be executed after
the Feldhofer protocol.

Remark 1 (Replication vs. Recursive Processes). Recursive processes are standard in π-calculus
and are equi-expressive to replication in the full π-calculus [SW03]. This is also the case in the full
applied π-calculus notably including private channels and internal communication, where a well-
known translation can be used to encode recursive processes into non-recursive processes featuring
replications and private channels. However, when internal communication is not allowed as
it is the case in our calculus, recursivity is actually strictly more expressive than replication.
Even though replication could be encoded using recursive processes (!P would be encoded as
recX.(P | X)), we keep the two constructs because we eventually carry out a precise analysis
on processes structure that would behave differently on replicated processes than on replicated
processes encoded as recursive processes.

Configurations. The configurations (denoted by G, H, K, A, B) are pairs (P; Φ) where: P is a
multiset of ground processes describing a parallel composition of processes ready to be executed
and Φ is a frame denoting the set of messages the attacker currently knows. Intuitively, P
describes the internal state of the protocol while Φ describes the state of the environment which
coincides with the attacker. Given a configuration K, Φ(K) denotes its second component. We
may consider processes as configurations. In such cases, the corresponding frame is ∅.

Note that free names in configurations represent fresh, private, data. Thus, two configurations
G and H equal up to a bijection of names essentially represent the same object. Correspondingly,
all security notions we define in Chapter 3 are invariant by bijection of names.

Example 7 (Resuming Example 6). The configuration ({PFh}; ∅) represents a reader and a tag
ready to execute one session of the Feldhofer protocol in presence of an attacker with no prior
knowledge.

2.2.2 Internal Reduction

Processes are subject to an internal reduction3 ;R parametrized by a basic relation R. For-
mally, we assume a relation R over multisets of processes. The choice of R gives us enough
flexibility to consider some actions to be executed greedily without producing any explicit ac-
tion at the semantical level (to be defined). For instance, R could break parallel composition:
(P ⊎{ΠS}) R (P ⊎S) yielding an internal reduction breaking all parallel compositions occurring

3Our notion of internal reduction is close to but different from the one in [AF01]. It notably plays the role
of the structural equivalence from [AF01] and can be chosen such that it plays parts of the role of the internal
reduction as defined in [AF01].

51

2. Modelling Security Protocols

at top level. In Chapter 4, we eventually define a generic class of relations R one may use but,
for the moment and for the sake of clarity, one can fix an empty relation R = ∅.

Once a relation R has been chosen (e.g. R = ∅), the induced internal relation ;R applies
R under parallel compositions and reorganises the structure of parallel compositions as formally
defined next.

Definition 3. The relation ;R is the least relation over multisets of processes containing R

such that:

• for any multisets of processes P, S, S ′, it holds that P ⊎{Π(S ⊎{ΠS ′})} ;R P ⊎{Π(S ⊎S ′)}
(nested parallel compositions collapse);

• for any multiset of processes P, any process P , it holds that P ⊎ {Π{P}} ;R P ⊎ {P} (no
parallel composition of a single process);

• for any multisets of processes P, S, S ′, if S ;R S ′ then P ⊎ {ΠS} ;R P ⊎ {ΠS ′} (con-
gruence w.r.t. parallel composition).

We lift ;R over configurations by applying it on the first component only. We assume
that R is chosen in such a way that the induced relation ;R is terminating (i.e. no infinite
chain decreasing w.r.t. ;R) and confluent (i.e. if P ;R Q1 and P ;R Q2 then there exists
Q such that Q1 ;R Q, Q2 ;R Q). In Chapter 4, we define a generic class of relations R

(including the empty relation) and prove that such relations always yield internal reductions that
are terminating and confluent. The internal reduction thus yields normal forms: for any multiset
of processes P, there exists a unique Q that we note NFR(Q) such that P ;∗

R Q and there is
no Q′ such that Q ;R Q′. We now only consider configurations and multisets of processes in
normal forms by implicitly reducing multisets of processes.

Remark 2. Note that for any process P = ΠS in a configuration K in normal form, no process
in S is a parallel composition (i.e. of the form ΠS ′). Remark that as a sub-case of the first item
of Definition 3, we also have that P ⊎ {Π(S ⊎ {0})} ;R P ⊎ {ΠS} (0 is the identity element of
Π) independently of R.

Example 8. For instance, one could reduce P = {Π{Π{Q, 0, 0}, 0}} ;∅ {Π {Π{Q}}} ;∅ {Q}.
Moreover if Q is not a parallel composition, it holds that NF∅(P) = {Q}.

2.2.3 Semantics

The operational semantics of processes is given by a labelled transition system (LTS) over con-
figurations in normal forms (w.r.t. ;R). The semantics is given in Figure 2.2. This labelled
operational semantics allows one to avoid the quantification over all contexts when analysing a
protocol in presence of an arbitrary attacker and is therefore more amenable to automation.

The Out rule allows to trigger an output provided that the computation of the outputted
term does not fail. Note that the resulting outputted message is added to the current frame
modelling the fact that the attacker can eavesdrop all outputted messages. The In rule can be

52

2.2. Process Algebra

Par ({Π S} ⊎ P; Φ) τΠ−→ (P ⊎ S; Φ)
In ({in(c, x).P} ⊎ P; Φ) in(c, R)−−−−→ ({P{x 7→ u}} ⊎ P; Φ)

where R is a recipe such that RΦ ⇓ u

Out ({out(c, t).P} ⊎ P; Φ) out(c, w)−−−−−→ ({P} ⊎ P; Φ ⊎ {w 7→ u})
where w is a fresh variable and t ⇓ u

New ({νn.P} ⊎ P; Φ) τν−→ ({P} ⊎ P; Φ)
where n are fresh names from N

Repl ({! P} ⊎ P ; Φ) τ!−→ ({P, ! P} ⊎ P; Φ)
Let ({let x = t in P else Q} ⊎ P; Φ) τthen−−→ ({P{x 7→ u}} ⊎ P; Φ)

when t ⇓ u for some u

Let-Fail ({let x = t in P else Q} ⊎ P; Φ) τelse−−→ ({Q} ⊎ P; Φ)
when t ��⇓

Outch ({νc outch(a, c). P} ⊎ P; Φ) outch(a, c)−−−−−−→ ({P} ⊎ P; Φ)
where c are fresh

Unfold ({recX.P} ⊎ P; Φ) τr−→ ({P{X 7→ recX.P}} ⊎ P ; Φ)

Figure 2.2 Semantics for processes

used to trigger an input for a recipe built on the current frame. The inputted message injected
into the process that performed that action is given by the computation of the recipe on the
current frame. The latter models the injection capabilities of the attacker. Overall, observe
that this semantics models an attacker controlling all the network. Finally, note that the guard
condition of the rule New (i.e. names n must be fresh) is never blocking since it is always possible
to α-rename n.

All τ actions (i.e. τΠ, τν , τ!, τthen, τelse, τr) are unobservable actions from the attacker’s point of
view. They represent progress of the internal control points of the different agents involved in the
protocol that have no observable effect. We still label them precisely because of the annotations
we eventually equip the semantics with.

As usual, the relation α1.αn−−−−−→ between configurations (where α1.αn is a trace, i.e. a
sequence of actions) is defined as the (labelled) reflexive and transitive closure of α−→. We denote
by bc(tr) the bound channels of a trace tr, i.e. all the channels that occur in second argument of
an action νc outch(a, c) in tr, and we consider traces where channels are bound at most once.

Example 9. Continuing Example 7. We have that: ({PFh}; ∅) tr−→ ({0, 0}#; Φ0) where tr and Φ0

are as follows, for fresh names k′, n′
I , n′

R ∈ N :

tr = τν .τΠ.τν .τν .out(cI , w1).in(cR, w1).out(cR, w2).in(cI , w2).τthen.out(cI , w3).in(cR, w3).τthen

Φ0 = {w1 7→ n′
I , w2 7→ senc(⟨n′

I , n′
R⟩, k′), w3 7→ senc(⟨n′

R, n′
I⟩, k′)}.

This execution corresponds to a normal execution of one session of the protocol.

We prove in Chapter 4 that the choice of R (from which stems the induced internal reduc-
tion ;R) has no impact on the induced security notions providing that it only reduces processes

53

2. Modelling Security Protocols

as executing τ -actions would do. We will provide a generic class of such choices of R.

2.3 Instances of Term Algebras

We show in this section two means to operationally define computation relations corresponding to
the ways it is done in respectively ProVerif and Apte. In ProVerif, this is done through rewriting
systems over terms while in Apte this is done thanks to equations over terms equipped with a
validity predicate.

2.3.1 Computation Relation Through Rewriting Systems

A computation relation can be obtained from a rewriting system which describes basic rules
specifying how destructors affect their arguments.

Definition 4. A rewriting system is an ordered set of rewriting rules of the form g(u1, . . . , un) → u

where g ∈ Σd, and u, u1, . . . , un are constructors terms (i.e. in T (Σc, X)).
A ground term t can be rewritten into t′ (noted t ; t′) if there is a position p in t, a

rewriting rule g(u1, . . . , un) → u and a substitution θ from variables to messages such that t|p =
g(v1, . . . , vn), v1 =E u1θ, . . . , vn =E unθ, and, t′ = t[uθ]p (i.e. t in which the sub-term at position
p has been replaced by uθ). If for some position p, there is more than one rewriting rule that
can be applied, the one occurring first in the ordered set is applied. We note ;∗ the reflexive,
transitive closure of ; ∪ =E.

Proposition 1. If R is a rewriting system then the relation • ⇓ • induced by R (i.e. t ⇓ u if,
and only if, t ;∗ u and u is a message) is a computation relation.

Proof. We prove all requirements separately:

• Since ;∗ is reflexive, one has n ⇓ n for any n ∈ N ;

• Consider a f ∈ Σc of arity k, some terms ti and messages ui such that ti ⇓ ui for all 1 ≤ i ≤ k.
We thus have ti ;∗ ui for each i. One then deduces f(t1, . . . , tk) ⇓ f(u1, . . . , uk) since
f(t1, . . . , tk) ;∗ f(u1, t2, . . . , tk) . . . ;∗ f(u1, . . . , uk). Indeed, =E is stable by application of
constructor symbols, and each application of reduction rules on some ti can be adapted by
transforming the position p into i · p.

• We prove that for any term t, if t ⇓ u for some message u and ρ : N → N is a bijective
mapping then tρ ⇓ uρ. First, we remark that =E is stable by bijection of names. It then
suffices to show that if t ; t′ then tρ ; t′ρ. By hypothesis, there is a position p and a
rewriting rule g(u1, . . . , un) → u such that t|p = g(v1, . . . , vn), v1 =E u1θ, . . . , vn =E unθ

for some substitution θ, t′ = t[uθ]p, and, for all i, uiθ is a message. We let v′
i = viρ

and θ′ = ρ ◦ θ. It holds that (tρ)|p = g(v′
1, . . . , v′

n) and v′
1 =E u1θ′, . . . , v′

n =E unθ′, and
tρ ; tρ[uθ′]p. Finally, note that tρ[uθ′]p = t′ρ since uθ′ = (uθ)ρ. Therefore, one has
tρ ; t′ρ.

54

2.3. Instances of Term Algebras

• Consider a term t and messages u1, u2 such that t ⇓ u1. If u1 =E u2, t ⇓ u2 follows from
the fact that =E is included in ;∗. We now assume that t ⇓ u2 and shall prove that
u1 =E u2. By hypothesis, there exist two reductions t ;∗ u1 and t ;∗ u2. In order to
prove u1 =E u2, we intuitively show that when t1 and t2 are two terms that are equal
modulo =E on some sub-terms and t1 ;∗ t′

1, t2 ;∗ t′
2 then the two terms t′

1 and t′
2 are

equal modulo (i) =E on some sub-terms and possibly (ii) applications of reduction rules.
To that end, we formally define ≡E to be the smallest equivalence relation such that for
any term with hole t[] and messages u1 and u2 then t[u] ≡E t[v] when u =E v. We now
prove the following intermediate result:
For any two terms t1 ≡E t2 and two reductions t1 ; t′

1 and t2 ; t′
2, either t′

1 ≡E t′
2 or

there exist two terms t′′
1 ≡E t′′

2 and two reductions t′
1 ; t′′

1 and t′
2 ; t′′

2 .
Remark that this intermediate result would conclude the proof. Indeed, applying repeatedly
this result on the two finite reductions t ;∗ u1 and t ;∗ u2 entails that u1 ≡E u2 (since no
reduction can be applied on messages) implying u1 =E u2. We now prove the intermediate
result. We thus consider two terms t1 ≡E t2 and two reductions t1 ; t′

1 and t2 ; t′
2.

There must be two positions p1 and p2 such that for i ∈ {1, 2}, there is a reduction rule
gi(u1

i , . . . , uni
i) → ui in the rewriting system such that ti|pi

= gi(v1
i , v2

i , . . . , vni
i), vj

i = uj
i θi,

t′
i = ti[uiθi]pi . We distinguish two cases whether p1 = p2 or not. If p1 = p2 then t1 ≡E t2

implies g1 = g2 and vj
1 =E vj

2 for all j. Moreover, the same reduction rule is applied on t1

and t2. Indeed, the former implies that the same rules can be applied on t1|p1 and t2|p2

but, by definition of ;, the first one occurring in the ordered set of reduction rules was
actually applied to t1 and t2. We thus have u1θ1 =E u2θ2. Therefore, it holds that t′

1 ≡E t′
2

concluding the proof. Otherwise, it must be the case that p1 is not a prefix of p2 nor the
converse. Indeed, strict-sub terms below the positions where the rules are applied must be
messages. Additionally, since ti has a destructor symbol gi at position pi and t1 ≡E t2, then,
ti has also a destructor symbol g2−i at position p2−i and its arguments are equal modulo =E.
Therefore, t1 ≡E t2 implies (ti[uiθi])|p2−i

≡E gi(v1
2−i, v2

2−i, . . . , v
n2−i

2−i). The reduction rule
which has been applied on ti can thus be applied on t′

2−i yielding t′
2−i ; t′′

2−i. Moreover,
t′′
1 |pi

≡E t′′
2 |pi

for all i ∈ {1, 2}. Since at other positions (i.e. positions that are not a prefix
or a suffix of p1 or p2), the same term is present in t′′

i , t′
i and ti, and t1 ≡E t2, one can

deduce t′′
1 ≡E t′′

2 concluding the proof.

• Let t[] be a context built from Σ and N , u1, u2 be messages. We assume u1 =E u2, and,
t[u1] ⇓ v1 for some message v1. By hypothesis, we thus have that t[u1] ;∗ v1. Let us prove
by induction on the reduction t[u1] ;∗ v1 that t[u2] ;∗ v1. Let p be the position of the
hole in t. We reason by case analysis on the first step of t[u1] ;∗ v1. If t[u1] =E v′ then
v′ =E v1 and t[u1] and v′ are messages and so is t[u2]. In that case, we deduce t[u2] ;∗ v1

from the stability of =E by application of constructor symbols. If t[u1] ; t′ ;∗ v1 and
the reduction rule is applied to a position above u1 (i.e. at a position p′ that is a prefix of
p) then the exact reduction rule can be applied to t[u2] as well, leading to t′: t[u2] ; t′.
Indeed, all arguments of the destructor are taken modulo =E. We conclude by transitivity

55

2. Modelling Security Protocols

of ;∗. Otherwise, t[u1] ; t′ ;∗ v1 and the reduction rule is applied to a position that
is not above nor below u1. Indeed, u1 is a message and has thus no destructor symbol.
Hence, no reduction rule can be applied on u1. We thus have some term with hole t′′[]
such that t′ = t′′[u1] and thus t[u1] ; t′′[u1]. Since the reduction rule is applied on a strict
sub-term of t, one has t[u2] ; t′′[u2]. We conclude t[u2] ;∗ v1 by inductive hypothesis.
Hence t[u2] ⇓ v1.

• Consider a term t, some messages u and v, and a context t′[] built from Σ and N such
that t ⇓ u and t′[u] ⇓ v. Let us prove that t′[t] ;∗ v (implying t′[t] ⇓ v). By hypothesis,
we have the two following reductions: t′[u] ;∗ v and t ;∗ u. First, we show that
t′[t] ;∗ t′[u]. Indeed, one can modify applications of reduction rules on t to be applied
to t′[t] by modifying the position where they are applied. We conclude t′[t] ;∗ v by
transitivity of ;∗.

Example 10. The properties of symbols in Σd (see Example 1) are reflected through the following
ordered set of rewriting rules:

sdec(senc(x, y), y) → x eq(x, x) → ok
πi(⟨x1, x2⟩) → xi for i ∈ {1, 2}.
neq(x, x) → no neq(x, y) → ok

Thanks to Proposition 1, we deduce from this rewriting system a computation relation as defined
in Definition 2. Note that the resulting computation relations satisfies the relations given in
Example 4.

Remark 3. Thanks to the fact that rules are given priorities, we are able to give a semantics
for neq such that neq(t1, t2) ⇓ ok if, and only if, t1 and t2 can be reduced to messages that are
not equal modulo =E. In ProVerif, the priority over rules is achieved by using the otherwise key
word which specifies a rule that should be used only if previous ones could not. The extension
has been introduced with [CB13].

2.3.2 Computation Relation Through an Equational Theory

Another way to obtain computation relations is based on an equational theory over terms extend-
ing =E. We consider a set of equations given as a relation over terms and consider the induced
extended equational theory as shown below.

Definition 5. Let Ed : T (Σ, X) × T (Σ, X) be a relation over terms. The equational theory ≡Ed

is the smallest equivalence relation over T (Σ, N ∪ X) containing E ⊎ Ed, stable by substitution
from X to T (Σ, N ∪ X) and stable by application of function symbols in Σ.

Note that =E⊆≡Ed
: if u =E v for some messages u, v then u ≡Ed

v. We say that a term t

computes a message u (i.e. t ⇓ u) if t ≡Ed
u and t is valid as defined below.

56

2.3. Instances of Term Algebras

Definition 6. A term t is said valid, denoted valid(t), when for any t′ ∈ subTerms(t), it holds
that there exists a message v′ such that t′ ≡Ed

v′.

Intuitively, the validity condition expresses the fact that if a failure occurs during a bottom-up
computation of the term then it propagates through the whole term.

Finally, we can prove that the computation relation induced by such equational theories fulfils
all requirements of Definition 2 provided that ≡Ed

is a conservative extension of =E as defined
next.

Definition 7. We say that ≡Ed
is a conservative extension of =E when for all messages u1, u2,

if u1 ≡Ed
u2 then u1 =E u2.

Proposition 2. Assuming that ≡Ed
is a conservative extension of =E, the relation t ⇓ u induced

by the validity predicate (i.e. t ⇓ u if t is valid and u a message such that t ≡Ed
u) is a computation

relation.

Proof. We prove all requirements separately:

• Consider n ∈ N . Since ≡Ed
is reflexive, one has n ≡Ed

n. We conclude from subTerms(n) =
{n} and valid(n).

• f(t1, . . . , tk) ⇓ f(u1, . . . , uk) for f ∈ Σc of arity k and ti ⇓ ui for all 1 ≤ i ≤ k follows from
the stability of ≡Ed

by application of function symbols in Σc ⊆ Σ.

• We prove by structural induction on the term t that if t ⇓ u for some message u and
ρ : N → N is a bijective mapping then tρ ⇓ uρ. Since t ⇓ u, it holds that t ≡Ed

u and
valid(t). We trivially have that ≡Ed

is stable by bijection of name; hence tρ ≡Ed
uρ. Since

u is a message and ρ is a bijection of names, we have that uρ is a message. Consider now
a strict sub-term t′ of t. Since valid(t), there must be a message u′ such that t′ ≡Ed

u′.
Hence t′ ⇓ u′. By inductive hypothesis, it holds that t′ρ ⇓ u′ρ and u′ρ is a message. Since
any strict sub-term of tρ is a strict sub-term of t on which ρ is applied, we have shown that
tρ is valid. Therefore, tρ ⇓ uρ.

• Consider a term t, some messages u and v, and a context t′[] built from Σ and N such that
t ⇓ u and t′[u] ⇓ v . Let us prove that t′[t] ⇓ v. By hypothesis, we have that t ≡Ed

u and
t′[u] ≡Ed

v. By stability of ≡Ed
by application of function symbols, one has t′[t] ≡Ed

t′[u]
and thus, by transitivity of ≡Ed

, t′[t] ≡Ed
v. It remains to show valid(t′[t]). We already

proved that t′[t] ≡Ed
v where v is a message. Consider now a strict sub-term ts of t′[t]. If

it is a sub-term of t then valid(ts) follows from t ⇓ u. If it is a sub-term of t′ without hole
then valid(ts) follows from t′[u] ⇓ v. Otherwise, there exists t′

s a sub-term of t′ such that
ts = t′

s[t]. Applying the same argument as before, we deduce that t′
s[t] ≡Ed

t′
s[u] ≡Ed

v′ for
some message v′.

• Consider a term t and messages u1, u2 such that t ⇓ u1. If u1 =E u2, t ⇓ u2 follows
from =E⊆≡Ed

. If t ⇓ u2, then u1 =E u2 is implied by the fact that ≡Ed
is a conservative

extension of =E.

57

2. Modelling Security Protocols

• Let t[] be a context built from Σ and N , u1, u2 be messages. We assume u1 =E u2, and,
t[u1] ⇓ v1 for some message v1. Let us prove that t[u2] ⇓ v2 for some message v2 such that
v1 =E v2. By hypothesis, we have that t[u1] ≡Ed

v1 and valid(t[u1]). Since ≡Ed
is stable by

application of function symbols and u1 ≡Ed
u2, we also have t[u2] ≡Ed

t[u1] ≡Ed
v1. Since

this reasoning can also be applied for all sub-terms of t[u2], we deduce valid(t[u2]).

Example 11. The properties of symbols in Σd (see Example 1) are reflected through the following
equations:

sdec(senc(x, y), y) Ed x eq(x, x) Ed ok
πi(⟨x1, x2⟩) Ed xi for i ∈ {1, 2}.

It is easy to see that the induced ≡Ed
is a conservative extension of =E. Indeed, each equation

involves only one destructor symbol on one side and a constructor term on the other side and
all equations involve pairwise distinct destructor symbols. Therefore, if two messages u1, u2 are
such that u1 ≡Ed

u2 involving an equation from Ed\E then, since it introduces a destructor symbol
that cannot be removed using other equations, the same equation has to applied (but in the other
direction). The two applications of this equation must cancel out.

The induced computation relation (given by Proposition 2) coincides with the one given in
Example 10 except for neq. Indeed, equational theories are not flexible enough to give the ex-
pected semantics to this destructor. On the contrary, equational theories are better at specify-
ing reductions involving interactions between destructors (e.g. for dest1, dest2 ∈ Σd, equations
dest1(dest2(x)) Ed const(x) cannot directly be specified using reduction rules).

Example 12 (Apte’s Term Algebra). We now define the fixed term algebra used in the tool Apte.
The signature used in Apte is Σ = Σc ∪ Σd with:

Σc = Σ0 ∪ {aenc, pk, enc, hash, sign, vk, ⟨⟩}
Σd = {adec, dec, check, π1, π2}

where Σ0 may contain some additional user-defined constants (i.e. constructor symbols of arity
0) and attacker’s nonces. The equational theory is generated from no equation E = ∅. We thus
have u =E v if, and only if, u = v. To take into account the properties of the destructor symbols,
we consider the equational theory ≡Ed

generated by the following equations over terms:

adec(aenc(x, pk(y)), y) Ed x

π1(⟨x1, x2⟩) Ed x1

π2(⟨x1, x2⟩) Ed x2

sdec(senc(x, y), y) Ed x

check(sign(x, y), vk(y)) Ed x

It is easy to see that the induced ≡Ed
is a conservative extension of =E for the same reason given in

the previous example (i.e. Example 11). By Proposition 2, we thus have that Ed induces a compu-
tation relation. For instance, we have π2(adec(aenc(⟨n, pk(ska)⟩, pk(skb)), skb)) ⇓ pk(ska). We
also have that π1(⟨ok, sdec(senc(a, k), k′)⟩) ��⇓ since it is not valid (because sdec(senc(a, k), k′) ��⇓).

58

Chapter 3

Modelling Security Goals

Security goals are expressed as predicates over executions or sets of executions. Some can be
expressed as the reachability of some given states; we describe them informally in Section 3.1.
However, this thesis focuses on privacy goals that are often modelled based on a more complex
notion called behavioural equivalence. There are different variants of behavioural equivalence
modelling more or less precisely attacker’s capabilities. In Section 3.2, we define the most ap-
propriate one to model and automatically verify security goals, which is called trace equivalence,
and discuss its relations with other behavioural equivalences. Further, we explain how to model
some privacy goals using trace equivalence in Section 3.3.

3.1 Reachability Properties

Reachability properties (also called trace properties) are statements that something bad never oc-
curs on any execution trace of a protocol. Such properties are usually defined through predicates
over configurations and sometimes over executions. We informally define below some well-known
reachability properties. Obviously, there is a flurry of other reachability properties but we do
not list them since we rather focus on equivalence-based properties.

Secrecy. This property (also called confidentiality) concerns a message used by the protocol
and essentially models the fact that this message remains secret (i.e. not known by the attacker).
For instance, considering a configuration K and a message u, we say that K keeps u secret if for
any execution of K, the attacker is not able to deduce u: i.e. for any K tr−→ K ′, there is no recipe
R over Φ(K ′) such that RΦ(K ′) ⇓ u.

Example 13. For example, the configuration ({out(c, senc(s, k))}; {w0 7→ k}) for some k, s ∈ N
does not keep s secrect.

Authentication. Many security protocols aim at authenticating one agent to another: one
agent should become sure of the identity of the other. As already said in the general introduction,
there are several variants of authentication and a taxonomy of these has been proposed by Lowe

59

3. Modelling Security Goals

in [Low97]. Let us informally describe such a property. For a configuration K made of two
agents modelled by processes P and Q communicating respectively on channel cP and cQ, we
say that K guarantees to P a weak agreement with Q if for any execution of K, if P has finished
(all actions on channel cp have been triggered) then Q has finished (all actions on channel cq

have been triggered). Sometimes, processes and the semantics are equipped with additional
annotations in order to define other aspects of authentication (e.g. P and Q really exchanged
messages, P and Q agreed on some value).

Example 14. For example, the configuration ({PFh}; ∅) from Example 7 guarantees to PI a
weak agreement with PR. Establishing this property is not easy but can be automated using
e.g. ProVerif.

3.2 Behavioural Equivalences

Reachability properties are useful to model many security goals. However, privacy goals such
as anonymity or unlinkability cannot be defined (or cannot be naturally defined) as reachabil-
ity predicates. They are rather defined relying on a notion of behavioural equivalence relating
configurations that are indistinguishable.

Discussion. Intuitively, two configurations are indistinguishable if an attacker has no way to
tell them apart even when he is actively trying to do so. A natural starting point is to say that
configurations A and B are indistinguishable if they can output on the same channels, no matter
the context in which they are placed. Such a notion (called may-testing equivalence [CCD13a])
thus represents the attacker as a context and would represent behaviours of the protocol in pres-
ence of this attacker through a reduction semantics (that would not produce labels). Yet, the
quantification over contexts makes this definition hard to use in practice. Therefore, indistin-
guishability notions based on a LTS (as the one presented in Chapter 2) have been proposed. For
such LTS’s, executions model all behaviours of the protocol that may interact with an environ-
ment that represents an arbitrary attacker. The attacker’s behaviour is described by the trace
associated to the execution. Intuitively, the indistinguishability notion can now be expressed
as the fact that two configurations produce the same set of traces and frames (we define below
trace equivalence that formalises this notion). Such a definition is more suitable for both manual
and automatic reasoning since it avoids the quantification over contexts required when using a
reduction semantics.

Actually linking these two semantics (LTS vs. reduction semantics) and their associated
notions of equivalence (trace equivalence vs. may-testing) is not an easy task. Starting with the
pioneering work of Milner and Sangiorgi [MS92], this problem has been addressed for different
calculi and different notions of equivalences in several works (e.g. π-calculus, spi-calculus [AG98,
MNP02], applied-pi calculus [AF01], and psi-calculus [BJPV11]). Usually, the two notions of
equivalence coincide but that is not the case for the applied-pi calculus. Indeed, it has been
proved [CCD13a] that trace equivalence always implies may-testing equivalence and that may-
testing equivalence implies trace equivalence only for image-finite configurations; i.e. for any

60

3.2. Behavioural Equivalences

trace, there are only finitely many resulting frames modulo an indistinguishability notion over
frames (i.e. static equivalence defined below). Note that, all configurations according to our
definitions are necessarily image-finite since our model does not feature internal communication
(i.e. communication that does not produce any visible action for the attacker). In our setting,
trace equivalence is thus the most appropriate notion.

Static Equivalence. Before formally defining trace equivalence, we first introduce a notion of
equivalence between frames, called static equivalence.

Definition 8 (Static equivalence). A frame Φ is statically included in Ψ when dom(Φ) =
dom(Ψ), and

• for any recipe R such that RΦ ⇓ u for some message u, there exists some message u′ such
that RΨ ⇓ u′;

• for any recipes R1, R2 such that R1Φ ⇓ u1 for some message u1 and R2Φ ⇓ u2 for some
message u2 =E u1, there exist v1, v2 such that R1Ψ ⇓ v1, R2Ψ ⇓ v2, and v1 =E v2.

Two frames Φ and Ψ are in static equivalence, written Φ ∼ Ψ, if the two static inclusions hold.

Intuitively, an attacker can distinguish two frames if he is able to perform some computation
or a test of equality that succeeds in Φ and fails in Ψ (or the converse).

Example 15. Consider the following frame (given in Example 9):

ϕ0 = {w1 7→ n′
I , w2 7→ senc(⟨n′

I , n′
R⟩, k′), w3 7→ senc(⟨n′

R, n′
I⟩, k′)}.

We have that ϕ0 ⊔ {w4 7→ k′} ̸∼ ϕ0 ⊔ {w4 7→ k′′}. Indeed, the attacker may observe that the
computation R = sdec(w2, w4) succeeds in ϕ ⊔ {w4 7→ k′} but fails in ϕ ⊔ {w4 7→ k′′}.

3.2.1 Trace Equivalence

Then, trace equivalence is the active counterpart of static equivalence taking into account the
fact that the attacker may interfere during the execution in order to distinguish between the
two configurations. However, we require from the attacker to behave similarly for the two
configurations. In other words, the attacker can choose an experiment represented by a trace of
observable actions and then, he has to distinguish the frames resulting from the two configurations
for this trace. For this, we define for a trace tr the trace obs(tr) to be the subsequence of tr
obtained by erasing all unobservable actions; i.e. the τ actions: τΠ, τν , τ!, τthen, τelse, τr.

Definition 9 (Trace equivalence). Let K1 and K2 be two configurations. We say that K1 ⊑ K2

when, for any K1
tr1−→ K ′

1 such that bc(tr1) ∩ fc(K2) = ∅, there exists K2
tr2−→ K ′

2 such that
obs(tr1) = obs(tr2) and Φ(K ′

1) ∼ Φ(K ′
2). They are trace equivalent, written K1 ≈ K2, when

K1 ⊑ K2 and K2 ⊑ K1.

61

3. Modelling Security Goals

Example 16 (Continuing Example 7). Consider the process Q = νnI .PI | νnR.PR modelling
two parties of identity k ready to execute one session of the Feldhofer protocol. We may be
interested in checking whether K = ({Π{νk.Q, νk.Q}#}; ∅) and K ′ = ({νk.Π{Q, Q}#}; ∅) are
in trace equivalence. Intuitively, this equivalence models the fact that two sessions of PFh are
unlinkable: i.e. two sessions of the protocol performed by the same tag and reader (i.e. having
the same symmetric key k) modelled by K ′ appear to an attacker as if they have been initiated by
two different tags (i.e. having two different fresh keys) modelled by K. This equivalence actually
holds. It is non-trivial to establish though. Moreover, we will discuss in Section 3.3 a stronger
notion of unlinkability taking into account an unbounded number of sessions of the protocol.

3.2.2 Other Behavioural Equivalences

Showing trace equivalence properties is a very difficult task notably because of its forall-exists
structure: for any execution of one configuration, one has to find an indistinguishable execution of
the other configuration. For this reason, other notions of equivalence are sometimes considered in
order to under-approximate trace equivalence: they consider strictly less pairs of configurations
as equivalent.

Labelled bisimilarity. In the security setting, the notion of labelled bisimilarity has first been
introduced to approximate trace equivalence [AG97] for the spi-calculus. We only informally de-
fine this notion here since we do not use it in later developments. The labelled bisimilarity is
defined as the largest symmetric relation on configurations that: (i) relate only statically equiv-
alent configurations, and, (ii) that relate configurations which can execute the same observable
actions and such that their continuations remain related. The fact that labelled bisimilarity is
based on a notion of step-by-step simulation between configurations makes this notion sometimes
easier to establish directly.

It is well-known that labelled bisimilarity implies trace equivalence whereas the converse
is false in general. However, it has been proved in [CCD13a] that these two notions coincide
for a large class of configurations that includes in particular the class of simple processes that
essentially contains linear processes (only input, conditional and output) in parallel playing each
on pairwise distinct channels (we formally define this class later on in Chapter 6).

Diff-equivalence. Another notion of equivalence that has been extensively used in verification
tools is the notion of diff-equivalence. Such a notion is defined on bi-configurations that are pairs
of configurations that have the same structure and differ only in the choice of terms they use.
The syntax is similar to the one introduced in Chapter 2 but each term u has to be replaced
by a bi-term written choice[u1, u2] (using ProVerif syntax). Given a bi-process P , the process
fst(P) is obtained by replacing all occurrences of choice[u1, u2] with u1. Similarly, snd(P) is
obtained by replacing choice[u1, u2] with u2. These notations are also used for bi-configurations
and bi-frames.

62

3.3. Examples of Privacy Goals Modelling

Then ({let choice[x1, x2] = choice[t1, t2] in P else Q} ⊎ P; Φ)
τthen−−→bi ({P{choice[x1, x2] 7→ choice[u1, u2]} ⊎ P; Φ) when t1 ⇓ u1 and t2 ⇓ u2

Else ({let choice[x1, x2] = choice[t1, t2] in P else Q} ⊎ P; Φ)
τelse−−→bi ({Q ⊎ P; Φ) when t1 ��⇓ and t2 ��⇓

Figure 3.1 Semantical rules of biprocesses for conditional

The semantics of bi-configurations is defined as expected via a relation that expresses when
and how a bi-configuration may evolve. A bi-process reduces if, and only if, both sides of the
bi-process reduce in the same way; i.e. exactly the same semantical rule (from Figure 2.2) should
be applied on both sides. For instance a conditional has to be evaluated in the same way on
both sides as shown by the rules in Figure 3.1. When the two sides of the bi-process reduce in
different ways, the bi-process blocks. This leads us to the following notion of diff-equivalence.

Definition 10. An initial bi-configuration K0 satisfies diff-equivalence if for every bi-configuration
K = (P; ϕ) such that K0

tr−→bi K for some trace tr, we have that:

• fst(ϕ) ∼ snd(ϕ);

• if fst(K) α−→ K ′
L then there exists a bi-configuration K ′ such that K α−→bi K ′ and fst(K ′) =

K ′
L (and similarly for snd).

As expected, this notion of diff-equivalence is actually stronger than the usual notion of
labelled bisimilarity, and thus trace equivalence. Indeed, it may be the case that the two sides
of the bi-process reduce in different ways (e.g. taking two different branches in a conditional)
but still produce the same observable actions. This strong notion of diff-equivalence happens
to be sufficient to establish some interesting equivalence-based properties such as strong secrecy.
It can be automatically verified using the tools ProVerif,Tamarin and Maude−NPA. However,
as already discussed in the general introduction, this notion is actually too strong to establish
for example vote privacy for many interesting e-voting protocols [DKR08], or unlinkability as
defined in [ACRR10]. We come back to this problem in Subsection 3.3.1 and address it for a rich
class of protocols in Part C.

3.3 Examples of Privacy Goals Modelling

We now give two examples of privacy goals defined using trace equivalence: unlinkability property
on the Feldhofer protocol in Subsection 3.3.1 and anonymity of the initiator role of the Private
Authentication protocol in Subsection 3.3.2. Only illustrative examples are given in this section,
showing typical uses of trace equivalence. Formal definitions of different variants of unlinkability
and anonymity for unbounded number of sessions and users will be given in Part C (Chapter 8).

63

3. Modelling Security Goals

3.3.1 Unlinkability of Feldhofer

We informally explain how to model unlinkability of the Feldhofer protocol for an unbounded
number of sessions and users. Note that there are other definitions of unlinkability corresponding
to different modellings, scenarios or threat models. We will come back to those definitions in
Chapter 8.

We iterate from Example 16 where a definition of unlinkability for two sessions was given and
now seek for a definition of unlinkability considering an unbounded number of users and sessions.
In Example 16, unlinkability was defined by comparing a “real scenario” where two sessions
were performed by the same tag and reader with an “ideal scenario” where two sessions are
performed by two different pairs of tags and readers. For the unbounded case, the “real scenario”
models now an unbounded number of pairs of tags and readers playing each an unbounded
number of sessions while the “ideal scenario” models an unbounded number of pairs of tags and
readers playing each at most one session. The former and the latter are respectively modelled
by Kr = ({!νk!Q}; ∅) and Ki = ({!νk.Q}; ∅). The trace equivalence between Kr and Ki models
the fact that PFh is unlinkable for an unbounded number of users and sessions: each session of
the protocol appears to an attacker as if it has been initiated by a different tag, since a given tag
can perform at most one session in the idealised scenario Ki. This equivalence actually holds.

The trace equivalence between Kr and Ki is non-trivial to establish. Actually, no tool
is able to verify it directly. Indeed, the only existing tools that can verify a notion of be-
havioural equivalence for unbounded sessions (i.e. ProVerif,Tamarin or Maude−NPA) all verify diff-
equivalence rather than trace equivalence. But the above equivalence cannot be established via
diff-equivalence because the underlying bi-process (i.e. ({!νkl!νkr.let k = choice[kl, kr] in Q}; ∅))
is not diff-equivalent while Ki and Kr are trace equivalent. Unfortunately, this is not an iso-
lated problem: unlinkability as defined above is often incompatible with diff-equivalence because
the two processes to be verified do not share the same structure. To put in other words: diff-
equivalence considers an over-approximation of the Dolev-Yao attacker by giving him the internal
structure of the two processes to be verified, the attacker is thus able to observe from which repli-
cation a given thread originates often breaking unlinkability by construction. We detail at greater
length the reasons explaining the above in the introduction of Part C.

In order to address this problem, we devise sufficient conditions that imply unlinkability
and anonymity and that can be verified using such existing tools without the aforementioned
precision issue. We describe those conditions and the overall methodology in Part C.

3.3.2 Anonymity of the Private Authentication Protocol

We consider the Private Authentication protocol given in [AF04] designed for authenticating an
agent with another one without revealing their identities to other participants.

Private Authentication Protocol. In this protocol, A is willing to engage in communication
with B and wants to be sure that she is indeed talking to B and not to an attacker who is trying
to impersonate B. However, A wants to protect her privacy and expects that her identity is not

64

3.3. Examples of Privacy Goals Modelling

disclosed except to B. The protocol specifies the following interactions between participants A

and B (in Alice & Bob notations):

A → B : {Na, pubA}pubB

B → A : {Na, Nb, pubB}pubA

First A sends to B a nonce Na and her public key (asymmetrically) encrypted with the public
key of B. If the plaintext is of the expected form (i.e. the right-part of the pair contains the
public key pubA) then B sends to A the nonce Na, a freshly generated nonce Nb and his public
key, all of this being encrypted with the public key of A. Moreover, if the message received by B

is not of the expected form then B sends out a “decoy” message: {Nb}pubB
. This message should

basically be indistinguishable from B’s other message from the point of view of an outsider.
Relying on the signature and equational theory introduced in Example 12 (in Section 2.1), a

session of role A played by agent a (with private key ska) with b (with public key pkb) can be
modelled as follows:

P (ska, pkb) def= out(cA, aenc(⟨na, pk(ska)⟩, pkb)).
in(cA, x).
let z = neq(⟨π1(adec(x, ska)), π2(π2(adec(x, ska)))⟩, ⟨na, pkb⟩) in 0 else 0

Here, we are only considering the authentication protocol. A more comprehensive model should
include the access to an application in case of a success (i.e. replacing the null process in the then
branch by a process modelling the continuation in case of success). Similarly, a session of role B

played by agent b with a can be modelled by the following process, where u = adec(y, skb).

Q(skb, pka) def= in(cB , y).
let z = neq(π2(u), pka) in out(cB, aenc(⟨π1(u), ⟨nb, pk(skb)⟩⟩, pka))

else out(cB, aenc(nb, pk(skb)))

To model a scenario with one session of each role (played by the agents a and b), we may
consider the configuration (P; Φ0) where:

• P = {P (ska, pk(skb)), Q(skb, pk(ska))}, and

• Φ0 = {w0 7→ pk(ska′), w1 7→ pk(ska), w2 7→ pk(skb)}.

The purpose of pk(ska′) will be clear later on. It allows us to consider the existence of another
agent a′ whose public key pk(ska′) is known by the attacker.

Anonymity. Intuitively, the private authentication protocol preserves anonymity of the role
A for one session if an attacker cannot distinguish between the two following scenarios (provided
a, a′ and b are honest participants):

• a and b who is willing to talk to a play a session of the protocol (represented by the
processes Pa = P = {P (ska, pk(skb)), Q(skb, pk(ska))}) or

65

3. Modelling Security Goals

• a′ and b who is willing to talk to a′ play a session of the protocol (represented by the
processes Pa′ = {P (ska′, pk(skb)), Q(skb, pk(ska′))}).

This can be expressed relying on the following equivalence:

(Pa; Φ0) ?≈ (Pa′
; Φ0).

Note that we define anonymity more formally and for an unbounded number of sessions and
users in Chapter 8.

For illustration purposes, we also consider a variant of the process Q, denoted Q0, where its
else branch has been replaced by 0 (i.e. the null process). We note Pa

0 = {P (ska, pk(skb)),
Q0(skb, pk(ska))} and correspondingly for Pa′

0 . We will see that the “decoy” message plays a
crucial role to ensure privacy. We have that:

(Pa
0 ; Φ0) in(cB , aenc(⟨w1, w1⟩, w2)).τthen.out(cB, w3)−−−−−−−−−−−−−−−−−−−−−−−→ ({P (ska, pk(skb)), 0}; Φ)

where Φ = Φ0 ⊎ {w3 7→ aenc(⟨pk(ska), ⟨nb, pk(skb)⟩⟩, pk(ska))}. This trace has no counterpart
involving the same observable actions in (Pa′

0 ; Φ0). Indeed, we have that:

(Pa′

0 ; Φ0) in(cB , aenc(⟨w1, w1⟩, w2)).τelse−−−−−−−−−−−−−−−−→ ({P (ska′, pk(skb)), 0}; Φ0).

Hence, it holds that (Pa
0 ; Φ0) ̸≈ (Pa′

0 ; Φ0).
However, it is the case that (Pa; Φ0) ≈ (Pa′ ; Φ0) meaning that the Private Authentication

protocol with the decoy message ensures the anonymity of the role A for one session. This
equivalence can be checked using the tool Apte [APTa] in less than 0.1 second for a simple scenario
as the one considered here, and that takes few minutes/days as soon as we want to consider 2/3
sessions of each role. As already mentioned in the introduction this is not an isolated problem.
The fundamental reason behind this is the state space explosion problem stemming from the
concurrent nature of the problem leading to too many interleavings to explore.

In Part B, we show how to address this problem through dedicated Partial Order Reduction
Techniques.

66

Chapter 4

Variations of the Semantics

In the different chapters of this thesis, we need different levels of precision on the processes’ struc-
ture and on the unobservable actions (e.g. τ -actions). For instance, in Chapter 5, our analysis
heavily relies on the internal structure of processes, notably on the structure of parallel compo-
sitions. Moreover, evaluations of conditionals do not take part to our analysis while replication
should be executed lazily (i.e. only if the unfolded process is then immediately executed). By
contrast, in Part C, evaluations of conditionals have to produce (unobservable) actions and repli-
cations are not constrained. Furthermore, parallel compositions are unimportant as our analysis
focuses on the underlying multiset of (non-parallel) processes.

In this chapter, we show that, thanks to the flexibility of our framework, one can refine
the semantics by forcing a subset of non observable actions to be executed as soon as possible
(i.e. in a greedy way) and others as late as possible (i.e. in a lazy way) without impacting the
different notions of security properties. The two types of refinements are presented respectively in
Section 4.1 and Section 4.2. The semantics one can obtain in such a way do not capture different
threat models or yield different security notions but only correspond to different definition flavors
of the same notion that are captured by the same unified, generic framework we defined in
previous chapters. We formally prove the latter in Section 4.3.

4.1 Executing Unobservable Actions Greedily

There are two ways to define semantics executing unobservable actions greedily. First, one can
achieve this goal by choosing appropriate relations R on which the internal reduction ;R is
built. However, this cannot tackle the creation of names since, on the one hand, the New rule
non-deterministically chooses a fresh name, while, on the other hand, the relation R must yield
a confluent internal reduction. Hence the need for a dedicated notion covering the ν case.

4.1.1 Internal Reduction: Conditional, Parallel Composition and Blocked Output

We first define a generic relation R containing all reductions we might use in this thesis. Varia-
tions of the semantics can then be obtained using a sub-relation of this generic relation and the

67

4. Variations of the Semantics

resulting class of relations one may use will be called conform.
One of the reductions we need is the evaluation of conditionals. For instance if for some

term t there exists u such that t ⇓ u then we would like to reduce Pt = let x = t in P else Q

to P{x 7→ u}. However, remind that the internal reduction must be confluent and that there
may be more than one message v satisfying t ⇓ v. Fortunately, we know by Definition 2 that all
such messages are in the same equivalence class of =E. In order to achieve convergence, we thus
introduce an arbitrary fixed selection function selec : T (Σc, N) 7→ T (Σc, N) such that: (i) for
any messages u =E v, it holds that selec(u) = selec(v), and, (ii) for any message u, it holds that
selec(u) =E u.

Definition 11. We first define 3 types of reductions Rtest, Rpar, Rout as the least relations
satisfying the following:

• (evaluation of conditionals) for any process of the form Pt = let t = v in P else Q,

– if t ⇓ u for some u then {Pt} ⊎ P Rtest {P{x 7→ selec(u)}} ⊎ P

– if t ��⇓ then {Pt} ⊎ P Rtest {Q} ⊎ P

• (breaking parallel composition and removal of 0) for any multiset of process S, then {ΠS}⊎
P Rpar S ⊎ P.

• (removal of blocked outputs) for any term t and process P = out(c, t).P ′ such that t ��⇓, then
{P} ⊎ P Rout P.

Further, Rr is the reunion of relations defined above; i.e. Rr = Rtest ∪ Rpar ∪ Rout. A relation
R is said to be conform when R ⊆ Rr and Rpar ∩ R ̸= ∅ implies Rpar ⊆ R.

The second condition on the class of conform relations is needed to achieve confluence of the
induced ;R. For instance, a relation R that would collapse parallel compositions of size two
only would not be confluent (and thus not convergent).

Proposition 3. For any conform relation R, the internal reduction ;R is terminating and
confluent.

Proof. (Termination) For Rr, the sum of the structural sizes of processes (i.e. number of nodes
of the productions of the grammar defining processes) in the multiset strictly decreases. This
is thus also the case for R. Further, this also applies to ;R. Note that in the case of the
collapse of parallel compositions, the modified process has one less parallel composition Π so its
size decreases by 1.

(Confluence) Since ;R has been proved terminating, it suffices to prove its local confluence
to obtain its confluence (by Newman’s lemma). It is easy to see that Rtest and Rout cannot
break the local confluence since those reductions (i) modify processes that cannot be modified
by other rules and (ii) modify only one process independently from the rest of the processes in
the multiset and thus do not induce any critical pair. Moreover, critical pairs involving collapse
of parallel compositions or removal of parallel compositions of single processes can easily be

68

4.2. Executing Unobservable Actions Lazily

shown convergent. Therefore, one can deduce the local confluence of ;R when Rpar ∩ R = ∅.
Otherwise, it holds that Rpar is entirely included in R. In that case, it suffices to remark that
;R always removes top-level parallel compositions by merging underneath processes into the
multiset of processes.

Example 17. Consider Rtest (that is conform). The semantics induced by ;Rtest evaluates con-
ditionals as soon as possible, even under parallel composition, without producing any action. For
instance, we would have {Π{out(d, ok), let eq(ok, no) in out(c, ok) else 0}} ;Rtest {out(d, ok)}.

4.1.2 ν-greedy Executions: Creation of Names

As argued in the beginning of the chapter, a dedicated notion is needed to execute name creations
greedily. The following definition essentially states that as soon as a process in the current
configuration is ready to create a name, it is actually executed and before all other types of
actions.

Definition 12. We say that an execution G tr−→ H = (Q; Ψ) is ν-greedy if (i) H does not contain
any ν-process (i.e. there is no process of the form νn.Q in Q) and (ii) for any prefix of the former
execution of the form G tr0−→ ({νn.P} ⊎ P; Φ) α−→ K, the action α is τν .

Remark that we could have defined similar notions for conditionals and parallel compositions
but we prefer to use internal reduction to deal with those cases since the latter allows to avoid
producing spurious unobservable actions that will not get in the way of our analysis. Moreover,
using internal reductions allows to simplify reasoning on configurations since, then, normal forms
do not feature some constructs.

Example 18. Consider the configuration K = (Π{P, P}#; ∅) where P = νn.out(c, n). The ex-
ecution K τΠ−→ ({P, P}#; ∅) = K1 is not ν-greedy and nor is K τΠ.τν .out(c, w)−−−−−−−−→({P, 0}#; {w 7→ n}) =
K2. Indeed, the resulting configurations K1 and K2 contain some ν-processes. However, the
following execution is ν-greedy:

K τΠ.τν .τν .out(c, w).out(c, w′)−−−−−−−−−−−−−−−→ ({0, 0}#; {w 7→ n, w′ 7→ n′}).

4.2 Executing Unobservable Actions Lazily

In this thesis, we are only interested in replication to be lazily executed and thus limit our
definitions to this case but note that we could have dealt similarly with recursion, conditionals,
creation of names and parallel compositions.

Definition 13. We say that an execution K tr−→ K ′ is !-lazy if for any of its prefix of the form
K tr0−→ ({!P} ⊎ P; Φ) τ!−→ (S ⊎ {!P} ⊎ P; Φ) where S is the normal form (w.r.t. the internal
reduction) of P , one of the processes in S is executed (producing at least one action) in the
execution under consideration immediately after this prefix.

69

4. Variations of the Semantics

Example 19. Consider the configuration K = ({P}; ∅) where P =!out(c, ok). The execution
K ν!−→ ({out(c, ok), P}; ∅) is not !-lazy and nor is

K ν!.ν!.out(c, w).out(c, w′)−−−−−−−−−−−−−→ ({0, 0, P}#; {w 7→ ok, w′ 7→ ok}).

Indeed, the resulting replicated processes are not immediately executed after their replication.
However, K ν!.out(c, w)−−−−−−→ ({0, P}#; {w 7→ ok}) or K ν!.out(c, w).ν!.out(c, w′)−−−−−−−−−−−−−→ ({0, 0, P}#; {w 7→ ok, w′ 7→
ok}) are both !-lazy.

4.3 Stability of the Security Notions

We now turn to the proofs that all possible variations one can derive using previous definitions
capture essentially the same security notions. To put in other words, those choices actually do
not impact security notions. To that end, we need to introduce some notations to distinguish
the different notions of semantics and induced trace equivalence.

For a relation R ⊆ Rr over multisets of processes, we note •−→R the semantics equipped with
;R. Further, we note •−→ν

R the semantics exploring only ν-greedy executions. Similarly, we
consider •−→!

R (!-lazy) and •−→ν,!
R (!-lazy and ν-greedy). Finally, ≈α

R refers to the trace equivalence
notion induced by the semantics •−→α

R (i.e. replace −→ by −→α
R in Definition 9).

Reachability. We first show that the choice of a conform internal reduction and the choice
of executing ν greedily or/and ! lazily does not impact reachable states and observable actions
necessary to reach them. This is formalised by the two following easy properties.

Proposition 4. For any conform relation P, R, and for any execution A tr−→P B there exists
a trace tr′ and a configuration B′ such that A tr′

−→R B′, Φ(B) = Φ(B′) and obs(tr) = obs(tr′).

Proof. It suffices to show the result for (i) P = ∅ (which is conform) and an arbitrary conform
R and (ii) for an arbitrary conform relation P and R = ∅.

Both results can be established easily by remarking that all reductions of ;R (resp. ;P)
made available by a conform non-empty R (resp. P) can be exactly mimicked by applying
semantical rules producing unobservable actions. The only exception being the blocked outputs
(i.e. processes of the form out(c, t).P such that t ��⇓) that may be removed by reduction rules
when present in configurations. Fortunately, those outputs cannot be triggered (since t ��⇓) so
removing them as soon as they appear in a given execution does not alter this execution.

Proposition 5. For any conform relation R, α ⊆ {ν, !} and execution A tr−→R G there exists a
trace tr′ and a configuration K such that A tr′

−→α
R K, Φ(G) = Φ(K) and obs(tr) = obs(tr′).

Proof. Firstly, in case ν ∈ α and G contains ν-processes, it is easy to complete the former
execution with all available τν actions until the resulting process does not contain any ν-process
any more. We can thus assume the former w.l.o.g.. Now, we prove the result by induction on
the number of prefixes of A tr−→ G that violate one of the α condition(s). When there is no such
prefix, the resulting execution can be played by ·−→α

R. Otherwise, consider a prefix A tr0−→ B β−→ C

70

4.3. Stability of the Security Notions

of A tr−→ G of minimal length that violates at least one α condition(s). If β breaks a ν-greedy
condition only then tr0 produces at least a process starting with a creation of names. In that
case, the prefix is of the following form: A tr0−→ ({νn.P} ⊎ P; Φ) β−→ C and β is not τν . If νn.P is
never executed in the rest of the execution then it suffices to execute it (and all its next creation
of names if any) by completing the execution by adding unobservable actions τν . Otherwise, it
suffices to move existing τν actions towards the end of this prefix. The resulting prefix no longer
violates the condition and the extra actions we added do not introduce extra prefixes that violate
α condition(s).

If β breaks a !-lazy condition only then β must follow a τ! action and β is not performed by the
replicated processes. The prefix is thus the form: A tr′

0−→ ({!P} ⊎ P; Φ) τ!−→ (S ⊎ {!P} ⊎ P; Φ) β−→ C

such that β does not come from the execution of a process in S. If process(es) in S are never
executed, then one can remove the above τ! action from the execution without impacting the
executability, the observable part of the trace nor the resulting frame. By doing so, we remove
one prefix violating a condition in α. Otherwise, it suffices to move τ! just before the first action
performed by a process in S. The new prefix it thus creates (replacing the old one) now satisfies
the conditions in α. Moreover, this does not create new prefixes that could violate one of the α

condition(s).
If β breaks both ν-greedy and !-lazy condition then the prefix is of the form A tr′

0−→ ({!P} ⊎
P; Φ) τ!−→ ((S ⊎ {νn.Q}) ⊎ {!P} ⊎ P; Φ) β−→ C such that β does not come from the execution of
a process in (S ⊎ {νn.Q}). Dealing with this case as we did for the !-lazy condition removes
two prefixes violating α conditions and creates at most one prefix violating α condition (when
the first following action on (S ⊎ {νn.Q}) is not a τν); hence strictly decreasing the number of
prefixes violating α conditions.

Therefore, reachability properties expressed as predicates over reachable configurations (and
observable actions necessary to reach them) are not impacted by those choices. The two previous
propositions are also key ingredients for the trace equivalence case we tackle next.

Equivalence. Now, we shall prove that the notion of trace equivalence neither depends on the
ν-greedy and !-lazy status of the semantics nor on R as long as it is conform.

Proposition 6. For any conform R, the trace equivalences induced by R with any combination
of ν-greedy and !-lazy constraints coincides with ≈ (i.e. for any α ⊆ {ν, !}, it holds that ≈α

R=≈∅)

Proof. (≈α
R⊆≈∅) Consider an execution A trA−−→ A′. Applying Proposition 4 and then Proposi-

tion 5, we obtain an execution A tr′
A−−→α

R A′′ such that Φ(A′′) = Φ(A′) and obs(trA) = obs(tr′
A). By

hypothesis, there must be some B tr′
B−−→α

R B′′ such that Φ(A′′) ∼ Φ(B′′) and obs(tr′
A) = obs(tr′

B).
Trivially, this execution is also valid without any greedy or lazy constraints: it holds that
B tr′

B−−→R B′′. Applying Proposition 4, we obtain an execution B trB−−→ B′ such that Φ(B′′) = Φ(B′)
and obs(trB) = obs(tr′

B) concluding the proof (by symmetry of ≈∅).
(≈α

R⊇≈∅) Consider an execution A trA−−→α
R A′. This execution is obviously valid as well

without any greedy or lazy constraint: it holds that A trA−−→R A′. We now apply Proposition 4

71

4. Variations of the Semantics

and obtain an execution A tr′
A−−→ A′′ such that Φ(A′′) = Φ(A′) and obs(trA) = obs(tr′

A). By
hypothesis, there must be some B tr′

B−−→ B′′ such that Φ(A′′) ∼ Φ(B′′) and obs(tr′
A) = obs(tr′

B).
Applying Proposition 4 and then Proposition 5, we obtain an execution B trB−−→α

R B′ such that
Φ(B′) = Φ(B′′) and obs(trB) = obs(tr′

B) concluding the proof (by symmetry of ≈α
R).

In the different chapters of this thesis, depending on our needs, we may use one or the other
such variant of the semantics. The results we eventually establish there thus concern the same
semantics and the same model as shown by propositions 4 to 6.

72

Part B

Partial Order Reduction Techniques
Significantly Improving Efficiency for the Bounded Case

73

Table of Contents of the Part

Introduction 77

5 A Reduced Semantics: Theory 81
5.1 Instantiation of the Model and Class of Processes 81
5.2 Annotated Semantics . 83

5.2.1 Annotations and Semantics . 83
5.2.2 Action Dependencies . 85
5.2.3 Symmetries of Trace Equivalence . 88
5.2.4 Proof of the Strong Symmetry Lemma . 89

5.3 Compression . 95
5.3.1 Compressed Strategy . 95
5.3.2 Improper Blocks and Release⊥ Rule . 97
5.3.3 Reachability . 98
5.3.4 Equivalence . 101
5.3.5 Proof of Theorem 2 . 102

5.4 Reduction . 105
5.4.1 Strong Independence . 106
5.4.2 Priority Order And Necessity . 108
5.4.3 Reduced Semantics . 108
5.4.4 Reachability . 110
5.4.5 Equivalence . 112

5.5 Main Result and Discussions . 114

6 Putting Reduced Semantics into Practice and Integration in Apte 117
6.1 Instantiation of the Model and Class of Processes 118
6.2 Combining Compression and Reduction with Constraint Solving 119

6.2.1 Symbolic Semantics . 120
6.2.2 Embedding Compression into Symbolic Semantics 125
6.2.3 Embedding Reduction into Symbolic Semantics 129

6.3 Integration in Apte . 133
6.3.1 Apte in a Nutshell . 134
6.3.2 Specification of the Procedure . 137
6.3.3 Proof of the Original Procedure . 139
6.3.4 Integrating Compression . 142
6.3.5 Integrating Dependency Constraints . 144

74

4.3. Stability of the Security Notions

6.4 Implementation and Benchmarks . 146
6.4.1 Implementation . 146
6.4.2 Benchmarks . 147

6.5 Conclusion . 149

7 Related Work 151
7.1 Classical POR . 151
7.2 Security Applications . 153
7.3 Proof Theory . 154

75

Introduction

Problem. As already discussed in the general introduction, one approach to the automatic
decision of trace equivalence for bounded number of sessions consists in using symbolic execution
and dedicated constraint solving procedures. Unfortunately, the state-of-the-art procedures and
tools for deciding equivalence have a limited practical impact because they scale very badly.
Take for example the Private Authentication protocol: verifying anonymity for that protocol
as explained in Subsection 3.3.2 (in Part A) can be carried out using the tool Apte [APTa]
within few seconds for a simple scenario with only one session of each role whereas it takes
few minutes/days as soon as we want to consider 2/3 sessions of each role. We later conduct
comprehensive benchmarks (Chapter 6) showing the same limitations. This is thus not an isolated
problem and greatly impacts negatively the usefulness of those methods and tools.

This is not surprising since those tools treat concurrency in a very naive way, exploring all
possible (symbolic) interleavings of concurrent actions. As a consequence, those tools suffer from
the so-called state explosion problem caused by the too many interleavings to consider.

Our goal. In standard model-checking approaches for concurrent systems, the interleaving
problem is handled using partial order reduction (POR) techniques [Pel98]. In a nutshell, these
techniques aim to effectively exploit the fact that the order of execution of two independent
(parallel) actions is irrelevant when checking reachability.

In the general introduction (Subsection 1.5.1), we already have briefly explained why the
extensive state-of-the-art of POR in model-checking cannot be efficiently leveraged for our setting.
Note that we describe this state-of-the-art into much more details and argue much further in
a dedicated related-work chapter (Chapter 7). We thus seek for new POR techniques that
are dedicated to our demanding security framework. Additionally to the previously discussed
acknowledged difficulties of combining POR with the security framework, we shall address two
major challenges.

First, we shall devise POR techniques that can be used to verify not only reachability proper-
ties but also trace equivalence. Contrary to what happens for reachability-based properties, trace
equivalence cannot be decided relying only on the reachable states. The sequence of actions that
leads to this state plays a role. Hence, if a specific interleaving is identified as redundant because

77

Introduction

it allows to reach states that are already reachable (from other interleavings) then it cannot be
simply discarded (i.e. not explored at all). Indeed, this interleaving might be the only witness
of inequivalence so discarding it might make us lose completeness w.r.t. trace equivalence.

Second, in order to improve existing verification tools for security protocols, one has to design
POR techniques that integrate nicely with symbolic execution. In particular, we shall seek for
reductions that are effective when messages remain unknown, but leverage information about
messages when it is inferred by the constraint solver. This is necessary to precisely deal with
infinite, structured data. In this task, we get some inspiration from Mödersheim et al. [MVB10],
who design a partial order reduction technique that blends well with symbolic execution in the
context of security protocols verification. However, we shall see that their key insight is not fully
exploited, and yields only a quite limited partial order reduction. Moreover, they only consider
reachability properties (like all previous work on POR for security protocol verification) while
we seek an approach that is adequate for model-checking equivalence properties.

Contributions. We develop POR techniques for trace equivalence checking for a rich class
of processes. We achieve this by refining interleaving semantics in two steps leveraging two
techniques, eliminating more and more redundant interleavings and traces.

The first refinement, called compression, aims at discarding redundant interleavings that can
be detected only by looking at the nature of actions. For instance, one may remark that when
an output and an input are both available, performing the output first and then the input is
sufficient for being able to explore all reachable states. Intuitively, we do not lose states by
performing the output in priority since it boils down to give outputted messages to the attacker
as soon as they are available. This idea (quite trivial for the reachability case) only relies on
the nature of available actions in order to constrain the way the semantics is explored. In other
words, it imposes a syntactically-based strategy of exploration. Our compression technique is
based on several other ideas of this kind (e.g. inputs must be executed in a row, focus on
replicated processes) yielding an highly constrained strategy of exploration. It does not rely on
data analysis at all and can easily be used as a replacement for the usual semantics in verification
algorithms.

The second refinement, called reduction, builds upon compression by taking data into account
and achieves optimality in eliminating redundant traces. Intuitively, this technique discards
traces when the underlying choices of recipes allow one to reorganise the trace into another trace
leading to the same state and following an interleaving that has been already explored. We
define a predicate that operationally detects when a trace can be reorganised as above and shall
be discarded for this reason.

For each of our optimised semantics, we prove that the induced, optimised trace equivalence
coincides with the regular trace equivalence for a rich class of processes called action-deterministic.
Essentially, this class enforces that two processes in parallel must always use distinct channels.
This common assumption in POR techniques [BK08] is also reasonable in the context of secu-
rity protocols, where the attacker knows with whom he is communicating. We also show that
reachability properties are preserved by our POR techniques without assumption on processes.

78

On the practical side, we show how to integrate our reductions into a symbolic framework
consisting of a symbolic semantics and a constraint solving procedure. We also explain how we
integrated our partial order reduction into the state-of-the art tool Apte [CCD11], prove the
correctness of this integration, and provide experimental results showing that our theoretical
results do translate to dramatic improvements.

We stress that our presentation is generic enough to be easily adapted for other tools provided
that they are based on a forward symbolic exploration of traces combined with a constraint
solving procedure. This is supported by our preliminary implementation of our techniques in
Spec and the independent implementation of our compression technique in Akiss (see Section 6.5).

Organisation of this part. In Chapter 5, we focus on the theoretical aspects of our POR
techniques. We define the compressed and the reduced semantics, which refine the regular seman-
tics. We do so for a rich class of processes notably featuring replication, parallel composition
and conditionals with else branches. For all of our optimised semantics, we first show that they
preserve reachable states and then prove that, for action-deterministic processes, they induce the
same trace equivalence.

In Chapter 6, we explain how to put those optimised semantics into practice by adapting
them for the symbolic framework. We define symbolic variants of our compressed and reduced
semantics for the class of simple processes, which is roughly a sub-class of action-deterministic

7−→c

−→c−→ −→r

Z=⇒ 7−→r

7−→A
c7−→a 7−→A

r

Regular Compression Reduction

Regular

Symbolic

Apte

≈=≈c

Theorem 2
≈=≈r

Theorem 3

[Bau05]/Prop. 16 ≈=≈s Theorem 4 ≈c=≈s
c Theorem 5 ≈r=≈s

r

[CCD13a]/Prop. 22 ≈s=≈A Theorem 6 ≈s
c=≈A

c Theorem 7 ≈s
r=≈A

r

Chapter 5 – for action-deterministic processes

Chapter 6 – for simple processes

Figure 4.1 Overview of chapters 5 and 6. Optimised semantics part of our contributions are colored
in red. Vertically, it goes from the regular semantics (as defined in Chapter 2), to symbolic semantics
and Apte’s semantics. Those semantics have variants when our optimisations are applied or not: regular
(i.e. no optimisation), compression or reduction (that includes compression). The dashed line separates
contents of Chapter 5 from Chapter 6.

79

Introduction

processes based on a simple syntactical criterion. We also define the semantics that the tool Apte
is exploring and show how to adapt this tool to implement our reductions. Finally, we prove the
soundness of this implementation and discuss conclusive benchmarks.

An overview of the different semantics we define in chapters 5 and 6 and the results relating
them is depicted in Figure 4.1.

Finally, we conduct a comprehensive analysis of related works in Chapter 7.

80

Chapter 5

A Reduced Semantics: Theory

In this chapter, we define our POR techniques by iteratively refining the regular semantics. In
Section 5.1, we first define the instantiation of the model we shall work with and the class of
processes we will deal with in this chapter. We notably define the action-deterministic class. We
give in Section 5.2 an annotated semantics that will facilitate the next technical developments.
We then define our compressed semantics in Section 5.3 and our reduced semantics in Section 5.4.
In both sections, we first restrict the transition system, then show that the restriction is adequate
for checking trace equivalence under the action-determinism condition. Our main result is given
in Section 5.5 with some concluding remarks.

5.1 Instantiation of the Model and Class of Processes

The POR techniques we develop in this chapter are defined in a rather generic setting. We
present in this section the instantiation of the semantics we shall work with and the class of
configurations we deal with.

Term Algebra. We consider an arbitrary term algebra made of an arbitrary signature Σ,
equational theory =E and computation relation ⇓ as defined in Chapter 2, Section 2.1.

Semantics. We shall consider the internal reduction ;R induced by the relation R = Rtest ∪
Rout (see Definition 11 in Chapter 4). Remind that this internal reduction evaluates conditionals
(Rtest) and removes blocked outputs (Rout) greedily. We consider a !-lazy and ν-greedy semantics
based on this internal reduction (see definitions 12 and 13 in Chapter 4). The semantics thus
executes creation of names actions as soon as possible and unfolds replications only if the unfolded
process is then immediately executed. As already argued (see Proposition 6 in Chapter 4), this
is not a restriction on the semantics or the threat model but a technical tool that facilitates the
development.

81

5. A Reduced Semantics: Theory

Par ({Π S} ⊎ P; Φ) τΠ−→ (P ⊎ S; Φ)
In ({in(c, x).P} ⊎ P; Φ) in(c, R)−−−−→ ({P{x 7→ u}} ⊎ P; Φ)

where R is a recipe such that RΦ ⇓ u

Out ({out(c, t).P} ⊎ P; Φ) out(c, w)−−−−−→ ({P} ⊎ P; Φ ⊎ {w 7→ u})
where w is a fresh variable and t ⇓ u

Repl ({!ac,nP} ⊎ P ; Φ) sess(a, c)−−−−−→ ({P ; !ac,nP} ⊎ P; Φ) c, n fresh

Figure 5.1 Semantics for this chapter

Class of Processes. In this chapter, for parts of our results, we eventually impose an action-
determinism condition which essentially requires that processes we are dealing with have always
at most one way to execute a given observable action. This is a priori incompatible with repli-
cation (i.e. construct !) since it introduces an unbounded number of equal processes in parallel
ready to execute the same action (on the same channel). However, action-determinism would not
forbid a constrained form of replication where different sessions coming from the same replication
use different public channels. For this reason, we introduce a new construct as syntactic sugar
combining replication with channel and name restriction.

Notation 1. For a process P , a non-empty sequence of channels c and sequence of names n,
we note !ac,nP the process !νc outch(a, c).νn.P . We also note sess(a, c) the sequence of actions
τ!.outch(a, c).τν that such a process may produce.

Intuitively, such a process always advertises on the public channel a any new copy of the
replicated process. At the same time, it makes public the new channels c on which the copy may
operate — but not the new names n.

Moreover, we do not consider recursive processes in this chapter. There are fundamental
reasons for that which will be made explicit in Section 5.5. Since our class forbids recursion and
only considers the above constrained form of replication which bundles the generation of new
(private) names as part of the construct, we can, without loss of expressiveness, forbid creation
of names in other places. Indeed, we can always anticipate the generation of these names and
pull them until reaching a replication or the top of the process (in that case, those names can
be transformed into private constants).

Hypothesis 1 (Class of Processes). In this chapter, we only consider the class of processes with-
out recursion, creation of names, creation of channels and replication except ones in constructs
!ac,nP .

Remind that we consider in this chapter the variation of the semantics executing replication
lazily and creation of names greedily. We thus only consider executions where processes of the
form !ac,nP

def= !νc outch(a, c).νn.P are fully executed up to P , always producing at once a sequence
of actions of the form τ!.outch(a, c).τν (noted sess(a, c)). Hence, we are allowed to consider the
new rule Repl defined in Figure 5.1, which can be seen as the concatenation of the original rules
Repl,Outch,New, as a replacement of the original rule for replication. Finally, the only remaining

82

5.2. Annotated Semantics

needed rules are Par, In and Out since configurations in normal form from the considered class
do not feature conditional, creation of channels, recursion or creation of names. In the end, for
the class of processes under consideration, the variation of the semantics we are dealing with in
this chapter is depicted in Figure 5.1. We also remark that processes in the above class remain
in the class throughout executions.

In order to lift our optimised semantics to trace equivalence, we will require configurations
to be action-deterministic.

Definition 14. A configuration K is action-deterministic if whenever K tr−→ (P; Φ), and P, Q

are two processes in P, we have that P and Q cannot perform an observable action of the same
nature (in, out, or sess) on the same channel (i.e. if both actions are of same nature, their first
argument has to differ).

Note that action-deterministic processes remain action-deterministic throughout executions.
The problem of deciding whether a configuration is action-deterministic or not is undecidable
(it suffices to reduce from one of the numerous existing undecidability results e.g. [MSDL99]
for secrecy). However, it is easy to under-approximate this class with syntactical criteria easily
checkable. A simple such criterion is given in Section 6.1 (i.e. class of simple processes).

5.2 Annotated Semantics

Our goal in this section is to define an intermediate semantics that uses extra annotations on
produced actions. We prove that those annotations can be used to transform executions by
permuting some actions and are useful to ensure deep symmetries on executions when proving
trace equivalence: we will show a strong symmetry lemma stating that the same swaps can
be done for trace equivalent action-deterministic processes. Later on, we build our optimised
semantics on this intermediate one and use its properties as stepping stones.

5.2.1 Annotations and Semantics

The annotated actions notably feature labels indicating from which concurrent processes and
unfoldings of replication they originate.

Definition 15 (Labels). A label (ranges over ℓ, ℓ′) is an element of (N ∪ C ∪ {�})∗.

We shall label actions and processes. Intuitively, a label on a process represents the history of
that process and reflects how it has been obtained from an initial process through the execution.
We will see that � is added to the current label of a process when it performs an input or an
output. An integer is used to keep track of the position the current process has among all sub-
processes when breaking a parallel composition. Finally, channels are used to refer to a specific
unfolding when performing a replication.

A labelled action is written [α]ℓ where α is an action and ℓ is a label. Similarly, a labelled
process is written [P]ℓ. One of the roles of the annotated semantics we define next is to add
those labels to produced actions and processes throughout executions.

83

5. A Reduced Semantics: Theory

In ({[in(c, x).Q]ℓ} ⊎ P; Φ) [in(c,R)]ℓ

−−−−−−−→a ({[Q{x 7→ u}]ℓ·�} ⊎ P; Φ)
where R is a recipe such that RΦ ⇓ u

Out ({[out(c, t).Q]ℓ} ⊎ P; Φ) [out(c,w)]ℓ

−−−−−−−→a ({[Q]ℓ·�} ⊎ P; Φ ∪ {w 7→ u})
where w is a fresh variable and t ⇓ u

Repl ({[!ac,nP]ℓ} ⊎ P; Φ) [sess(a,c)]ℓ·c

−−−−−−−−→a ({[P]ℓ·c, [!ac,nP0]ℓ} ⊎ P; Φ) c, n fresh

Par ({[ΠS]ℓ} ⊎ P; Φ) [par(σ1;...;σn)]ℓ

−−−−−−−−−−→a ({[P1]ℓ·1, . . . , [Pn]ℓ·n} ⊎ P; Φ)
n > 1, S = {P1, . . . , Pn}#, σi = sk(Pi) and σ1 ≤ . . . ≤ σn

Zero ({[0]ℓ} ⊎ P; Φ) [zero]ℓ

−−−−→a (P; Φ)
Figure 5.2 Annotated semantics

Example 20. We will see that the process P resulting from the execution

([in(a, x).!a(c1,c2),∅ Π{out(c1, ok), out(c2, ok).P}]ℓ0 ; ∅) tr−→
({[P]ℓ, [!a(c1,c2),∅ Π{out(c1, ok), out(c2, ok).P}]ℓ0·�}; Φ)

where tr = in(a, ok).sess(a, (c1, c2)).τΠ.out(c1, w1).out(c2, w2) may be given a label ℓ = ℓ0 · � ·
c1 · c2 · 2 · �.

When reasoning about trace equivalence between two configurations, it will be crucial to
maintain a consistent labelling between configurations along the execution. In order to do so, we
define skeletons of observable actions.

Definition 16 (Skeletons). Skeletons of observable actions are of the form inc, outc or !a

where a, c ∈ C. Any process in a configuration in normal form that is neither 0 nor a parallel
composition induces a skeleton corresponding to its toplevel connective, and we denote it by sk(P).
We consider an (arbitrary) total ordering over those skeletons, denoted < with ≤ being its reflexive
closure.

Example 21. For instance, one has sk(in(c, x).0) = inc.

Next, we define in Figure 5.2 the annotated semantics −→a over configurations whose processes
are labelled. In rule Par, note that sk(Pi) is well defined as Pi cannot be 0 nor a parallel
composition since it would not be a normal form for the internal reduction ;R otherwise (remind
that the internal reduction collapses nested parallel compositions as specified in Section 2.2,
Definition 3). Note that the annotated transition system does not restrict the executions of a
process but simply annotates them with labels, and replaces τ actions by more descriptive actions
(e.g. par(•), zero). Further, remark that Zero is a special case of the parallel composition rule in
the regular semantics for null processes (remind that 0 = Π∅) producing a distinguished action
zero. We distinguish this special case because the exploration strategies which we eventually
define behave differently when executing a null process or a “true” parallel composition. Finally,
note that the label produced by the Repl rule is different from the label of the process that is

84

5.2. Annotated Semantics

executed. We will see that this is necessary to eventually be able to swap two unfoldings of the
same replicated process.

Skeletons are notably used to annotate actions produced when disassembling a parallel com-
position or unfolding a replication making more explicit, through the produced action, what pro-
cesses are thus made available. Essentially, the action produced when disassembling Π{Pi}1≤i≤n

is par(sk(P1) . . . sk(Pn)) making explicit that we break a parallel composition and make all skele-
tons of Pi’s available. Besides, processes Pi are ordered in increasing order (according to skeletons
and <) in order to make the labelling consistent1 when applied to two different (but equivalent)
configurations.

We extend obs(•) to annotated actions as follows: obs([α]ℓ) = α. We thus make observable
the actions zero and par(•) that replaced the unobservable τ -action τΠ. We will show that
for action-deterministic configurations, those extra information given to the attacker does not
modify the resulting notion of trace equivalence.

5.2.2 Action Dependencies

We now define how to extract dependencies from annotated traces, which will allow us to analyse
concurrency in an execution without referring to configurations. We obtain sequential dependen-
cies from labels, in a way that is similar, e.g. to the use of causal relations in CCS [DDNM90].
We also define recipe dependencies which are a sort of data dependencies reflecting our specific
setting, where we consider an arbitrary attacker who may interact with the process, relying on
(maybe several) previously outputted messages to derive input messages.

Definition 17 (Sequential Dependency). Two labels ℓ, ℓ′ are independent if ℓ is not a prefix of
ℓ′ and vice versa. They are dependent otherwise.

Example 22. For instance, ℓ · � · c1 · c2 · 2 · � is dependent with ℓ but is independent with
ℓ · � · c1 · c2 · 1 (were in parallel), ℓ · � · c′

1 · c′
2 · 2 · � (come from different unfoldings).

Definition 18 (Dependency). We say that the labelled actions α and β are sequentially depen-
dent when their labels are dependent, and recipe dependent when {α, β} =
{[in(c, M)]ℓ, [out(c′, w)]ℓ′} with w occurring in M . They are dependent when they are se-
quentially or recipe dependent. Otherwise, they are independent.

Our goal with action dependency is to characterise actions that can be swapped; i.e. (i) actions
that do not use data of each other and (ii) actions that are performed by processes in parallel or
resulting from two unfoldings of the same replicated process. However, (ii) can only be achieved
when the initial configuration is well-labelled as defined next (e.g. ({[P]ℓ, [P]ℓ}; Φ) would trivially
contradicts (ii)).

Definition 19. A configuration (P; Φ) is well labelled if P is a multiset of labelled processes
such that:

1Note that we will see that action-determinism guarantees that such skeletons are pariwise distinct.

85

5. A Reduced Semantics: Theory

1. for any two elements [P]ℓ, [Q]ℓ′ of P such that P and Q are not replicated processes (i.e. not
of the form !ac,nP ′) then ℓ and ℓ′ are independent and;

2. for any [!ac,nP]ℓ ∈ P and process [Q]ℓ′ ∈ P that is not a replicated process then ℓ′ is not a
prefix of ℓ.

Remark that any two processes in a well-labelled configuration always produce sequentially
independent actions. Obviously, any unlabelled configuration may be well labelled. Further, it
is easy to see that well labelling is preserved by −→a as shown next.

Proposition 7. Well labelling is preserved by −→a; i.e. if K is well labelled and K tr−→a K ′ for
some configuration K ′ then K ′ is well labelled.

Proof. By induction on tr, it suffices to prove that well labelling is preserved by the execution of
a single action. We reason by case analysis on this action.

Consider a Par transition, represented below (where S = {Pi}#
1≤i≤n such that σi = σ(Pi) are

well ordered):

({[{ΠS}]ℓ} ⊎ Q; Φ) [par(σ1, . . . , σn)]ℓ−−−−−−−−−→a ({[P1]ℓ·1, . . . , [Pn]ℓ·n} ⊎ Q; Φ)

We first check that labels of all pairs of non-replicated processes are independent. This is ob-
viously the case between new labels ℓ · i. Let us now consider a label ℓ′ from a non-replicated
process in Q and show that it is independent from any ℓ · i. For the sake of the contradiction, if
ℓ · i is a prefix of ℓ′ then ℓ is also a prefix of ℓ′ which contradicts the well labelling of the initial
configuration. Similarly, if ℓ′ is a prefix of ℓ · i then either ℓ′ = ℓ · i or ℓ′ is a prefix of ℓ. In
both cases, we infer a contradiction. We now verify the second requirement of well labelling. If
a process [Pi]ℓ·i is a replicated process, we already have proven above that ℓ · i is independent
with the label of any non-replicated process in Q which thus cannot be a prefix of the former.
Next, consider a replicated process [P]ℓ′ in Q. We have that no label ℓ · i is a prefix of ℓ′. Indeed,
since the initial configuration was well labelled and ΠS is a non-replicated process, one has that
ℓ is not a prefix of ℓ′.

Next, consider a Repl transition, represented below:

({[!ac,nP]ℓ} ⊎ Q; Φ) [sess(a, c)]ℓ·c
−−−−−−−→a ({[P]ℓ·c, [!ac,nP]ℓ} ⊎ Q; Φ)

We first check that labels of all pairs of non-replicated processes are independent. Let us consider
a label ℓ′ from a non-replicated process in Q and show that it is independent from ℓ · c. For
the sake of the contradiction, assume that ℓ′ is a prefix of ℓ · c. Remark that since c are fresh
names and ℓ′ was present in the initial configuration, it holds that ℓ′ ̸= ℓ · c implying that ℓ′ is
also a prefix of ℓ. This contradicts the well labelling of the initial configuration since a replicated
process labelled ℓ was present. Conversely, if ℓ · c is a prefix of ℓ′ then ℓ′ contains the names c

which contradicts the freshness condition of c since ℓ′ was initially present. We now verify the
second requirement of well labelling. If the [P]ℓ·c is itself a replicated process, we already have
proven above that ℓ · c is independent with the label of any non-replicated process in Q which

86

5.2. Annotated Semantics

thus cannot be a prefix of the former. Next, consider a replicated process [P]ℓ′ in Q. We have
that the label ℓ · c cannot be a prefix of ℓ′ by the freshness condition for c since ℓ′ was present in
the initial configuration.

The cases of all other transitions are similar to the case of a Par transition.

Thus, we shall implicitly assume to be working with well labelled configurations in the rest
of the chapter. Under this assumption, we obtain the following fundamental lemma.

Lemma 1 (Permutation Lemma). Let A be a (well labelled) configuration, α and β be two
independent labelled actions. We have A α.β−−→a A′ if, and only if, A β.α−−→a A′.

Proof. By symmetry it is sufficient to show one implication. Assuming ℓ1 and ℓ2 to be inde-
pendent, we consider a transition labelled α = [α′]ℓ1 followed by one labelled β = [β′]ℓ2 . We
distinguish two cases whether α and β are two unfoldings of the same replicated process or not.

(If α′ = sess(a, c1) and β′ = sess(a, c2).) The considered execution is thus of the form (for
some annotated processes Pα, Pβ):

A = (Q ⊎ {[!ac,nP]ℓ}; Φ) [α′]ℓ·c1−−−→a (Q ⊎ {[!ac,nP]ℓ, Pα}; Φ) [β′]ℓ·c2−−−→a (Q ⊎ {[!ac,nP]ℓ, Pα, Pβ}; Φ)

The freshness condition implies that elements of c1 (resp. n1) do not occur in A and elements of
c2 (resp. n2) do not occur in the configuration in the middle. We thus deduce that c2 (resp. n2)
do not occur in A and executing β from A would not introduce channels from c1 or names from
n1. Therefore, one can easily swap the two actions α and β in the execution under scrutiny.

(Otherwise.) We now deal with other cases; i.e. α′ and β′ are not two unfoldings of the same
replicated process. Let us prove that ℓ2 was already present in A by showing that the process
resulting from the action α cannot produce the action [β′]ℓ2 . For the sake of the contradiction,
assume the contrary. If α′ is an input or an output action then we necessarily have that ℓ2 = ℓ1 ·�
(the resulting process is non-replicated) or ℓ2 = ℓ1 · � · c (otherwise). Both cases contradict the
independence of ℓ1 and ℓ2. If α′ is a par(•) action then the same contradiction can be deduced.
If α′ = zero then no process results from α. Finally, consider the case α′ = sess(a, c) implying
ℓ1 = ℓ0 · c. If β is executed by the unfolded process then ℓ2 = ℓ1 (when the unfolded process
is a non-replicated) or ℓ2 = ℓ1 · d (otherwise). Both cases contradict the independence of ℓ1

and ℓ2. Finally, if β′ is executed by the replicated process that performed the action α then
β′ = sess(a, d) which contradicts our hypothesis.

Therefore, ℓ2 must be present in the original configuration and our execution is of the following
form, where we write Pα (resp. Pβ) instead of [Pα]ℓ1 (resp. [Pβ]ℓ2):

A = (Q ⊎ {Pα, Pβ}; Φ) [α′]ℓ1−−−→a (Q ⊎ Qα ⊎ {Pβ}; Φα) [β′]ℓ2−−−→a (Q ⊎ Qα ⊎ Qβ ; Φβ)

It remains to check that β can be performed by Pβ in the original configuration, and that doing
so would not prevent the α transition to happen next. The only thing that could prevent β

from being performed is that the frames Φ and Φα may be different, in the case where α is an
input. In that case, the recipe independence hypothesis guarantees that β does not rely on the
new handle introduced by α and can thus be played with only Φ. Finally, performing α after β

87

5. A Reduced Semantics: Theory

is easy. We also perform corresponding internal reductions that were applied after β and α on
the corresponding resulting processes. We only detail the case where β′ = out(c, w) and α′ is an
input of recipe M . In that case we have Φα = Φ, Φβ = Φα⊎{w 7→ m}, and M ∈ T (Σpub, dom(Φ)).
We observe that M ∈ T (Σpub, dom(Φβ)) and we construct the execution:

A = (Q ⊎ {[Pα]ℓ1 , [Pβ]ℓ2}; Φ) [β′]ℓ2−−−→a (Q ⊎ Qβ ⊎ {[Pα]ℓ1}; Φβ) [α′]ℓ1−−−→a (Q ⊎ Qβ ⊎ Qα; Φβ).

5.2.3 Symmetries of Trace Equivalence

We will see that, when checking A ≈ B for action-deterministic configurations, it is sound to
require that B can perform all traces of A in the annotated semantics (and the converse). In other
words, labels and detailed unobservable actions zero and par(σ1 . . . σn) can be made observable
by the attacker without impacting trace equivalence. Obviously, this can only hold if A and B

are (initially) labelled consistently. In order to express this, we extend sk(P) to parallel and zero
processes: we let their skeletons be the associated action in the annotated semantics. Next, we
define the labelled skeletons by skl([P]ℓ) = [sk(P)]ℓ. When checking for equivalence of A and B,
we shall assume that skl(A) = skl(B), i.e. the configurations have the same multiset of labelled
skeletons. This technical condition is not restrictive in practice: as a consequence of action-
determinacy, we show below (see Corollary 1) that, after pre-executing non-observable τΠ actions
of A and B, sk(A) = sk(B) is a necessary condition for A ≈ B. Hence, once sk(A) = sk(B) is
known, one can label A and B arbitrarily but consistently such that skl(A) = skl(B).

Example 23. Let A = ({[in(a, x).(out(b, m).P1 | P2)]0}; Φ) with P1 = in(c, y).0 and P2 =
in(d, z).0, and let B be the configuration obtained from A by swapping P1 and P2. We have
skl(A) = skl(B) = {[ina]0}#. Consider the following trace:

tr = [in(a, ok)]0.[par({outb; ind})]0·�.[out(b, w)]0·�·1.[in(c, w)]0·�·1·�.[in(d, w)]0·�·2

Assuming outb < inc < ind and ok ∈ Σ, we have A tr−→a A′ for some A′. However, there is
no B′ such that B tr−→a B′, for two reasons. First, B cannot perform the second action since
skeletons of sub-processes of its parallel composition are {outb; inc}. Second, even if we ignored
that mismatch on an unobservable action, B would not be able to perform the action in(c, w)
with the right label. Such mismatches can actually be systematically used to show A ̸≈ B, as
shown next.

Lemma 2 (Strong Symmetry). Let A and B be two action-deterministic configurations such
that A ≈ B and skl(A) = skl(B). For any execution

A
[α1]ℓ1
−−−−→a A1

[α2]ℓ2
−−−−→a . . .

[αn]ℓn

−−−−→a An

with bc(α1. . . . αn) ∩ fc(B) = ∅, there exists an execution

B
[α1]ℓ1
−−−−→a B1

[α2]ℓ2
−−−−→a . . .

[αn]ℓn

−−−−→a Bn

such that Φ(Ai) ∼ Φ(Bi) and skl(Ai) = skl(Bi) for any 1 ≤ i ≤ n.

88

5.2. Annotated Semantics

Before proving the previous fundamental lemma (see Subsection 5.2.4), we show that the
induced trace equivalence coincides with the regular trace equivalence as stated below.

Definition 20. Let A and B be two configurations. We have that A ⊑a B if, for every A′ such
that A tr−→a A′ with bc(tr)∩fc(B) = ∅, then there exists B′ such that B tr−→a B′, and Φ(A′) ∼ Φ(B′).
They are in annotated trace equivalence, denoted A ≈a B, if A ⊑a B and B ⊑a A.

In contrast to the regular semantics, the annotated semantics requires that both A and B

are able to execute the same traces including unobservable actions and annotations.

Theorem 1. Let A and B be two action-deterministic configurations such that skl(A) = skl(B),
it holds that:

A ≈ B if, and only if, A ≈a B.

Proof. The direction ⇐ is trivial since any annotated execution is also a regular execution. The
direction ⇒ is a direct corollary of Lemma 2.

5.2.4 Proof of the Strong Symmetry Lemma

This section is dedicated to the proof of Lemma 2.
First, we define a notion describing the set of all possible types of actions (i.e. skeletons) a

process may exhibit maybe after some unobservable actions.

Definition 21. Given a process P , we define the set of its enabled skeletons as

enable(P) =

{sk(P)} if P starts with an observable action

∪P ∈S{sk(P)} otherwise and P is thus of the form P = ΠS

In particular, note that one has enable(0) = enable(Π∅) = ∅. We may consider skeletons,
labelled skeletons and enabled skeletons of a configuration by taking the multiset of the corre-
sponding objects of all its processes.

Next, we make two trivial remarks formalised below.

Proposition 8. For any configurations A, A′ and unobservable action α, if A α−→a A′ or A τΠ−→ A′

then enable(A) = enable(A′).

Proposition 9. Let A be an action-deterministic configuration and P , Q two of its processes.
We have that enable(P) ∩ enable(Q) = ∅.

Further, we prove a key proposition essentially showing that an action-deterministic configu-
ration may have different executions yielding the same sequence of observable actions but they
all intuitively represent the same execution if one forgets about the precise structure of parallel
compositions (captured by enable(·)).

89

5. A Reduced Semantics: Theory

Proposition 10. Let A be an action-deterministic configuration. If A tr1−→ A1 and A tr2−→ A2

for some traces tr1, tr2 such that obs(tr1) = obs(tr2) then enable(A1) = enable(A2) and Φ(A1) =
Φ(A2).

Proof. We first prove a stronger result when the configurations A1 and A2 are canonical, i.e.
only contain processes that are neither 0 nor a parallel composition. Actually, in such a case, we
prove that A1 = A2.

To prove this intermediate result, we proceed by induction on obs(tr1). The base case is
trivial. Let us show the inductive case. We assume that tr1 = tr0

1.α.tr−
1 with α an observable

action and tr−
1 containing only unobservable actions. Since obs(tr1) = obs(tr2), we have that

tr2 = tr0
2.α.tr−

2 with tr−
2 containing only unobservable actions and obs(tr0

1) = obs(tr0
2). Our given

executions are thus of the form:

A tr0
1−→ A0

1
α.tr−

1−−−→ A1 and A tr0
2−→ A0

2
α.tr−

2−−−→ A2

It may be the case that A0
1 or A0

2 are not canonical. The idea is to reorder some unobservable
actions. More precisely, we perform all available unobservable actions of A0

1 and A0
2 before

performing α. By doing this, we do not change the observable actions of the different sub-traces
and obtain

A tr0
1.tr−

3−−−→ A′0
1

α.tr′−
1−−−→ A1 and A tr0

2.tr−
4−−−→ A′0

2
α.tr′−

2−−−→ A2

with A′0
1 and A′0

2 canonical. By inductive hypothesis, we have that A′0
1 = A′0

2 . We now must
show A1 = A2. By action-determinism of A, there is only one process P that can perform α in
A′0

1 (= A′0
2). The resulting process P ′ after performing α is thus the same in the two executions.

Since A1 and A2 are canonical and tr′−
1 and tr′−

2 contain only unobservable actions, A1 = A2.

In order to be able to apply our previous result, we complete the executions with all available
unobservable actions:

A tr1−→ A1
tr−

1−−→ A′
1 and A tr2−→ A2

tr−
1−−→ A′

2

such that A1 and A2 are canonical and tr−
1 and tr−

2 contain only unobservable actions. We also
have that:

• Φ(A1) = Φ(A′
1) and enable(A1) = enable(A′

1); and

• Φ(A2) = Φ(A′
2) and enable(A2) = enable(A′

2).

We now conclude thanks to our previous result, and obtain A′
1 = A′

2 implying the desired
equalities.

The following proposition essentially lifts the previous one to the equivalence case.

Proposition 11. Let A and B be two action-deterministic configurations such that A ≈ B.
If A trA−−→ A′ and B trB−−→ B′ with obs(trA) = obs(trB) then Φ(A′) ∼ Φ(B′) and enable(A′) =
enable(B′).

90

5.2. Annotated Semantics

Proof. By hypothesis, we know that A ≈ B, and also that A trA−−→ A′. Moreover, the freshness
conditions on channels (i.e. bc(trA) ∩ fc(B) = ∅) holds as B is able to perform trB , and trA and
trB share the same bound channels. Hence, we know that there exist tr′

B and B′′ such that

B tr′
B−−→ B′′, obs(trA) = obs(tr′

B), and Φ(A′) ∼ Φ(B′′).

Now, since B is an action-deterministic configuration, applying Proposition 10 on trB and tr′
B,

we obtain that enable(B′) = enable(B′′) and Φ(B′) = Φ(B′′). This allows us to conclude that
Φ(A′) ∼ Φ(B′).

It remains to show that enable(A′) = enable(B′). By symmetry, we only show one inclusion.
Let αs ∈ enable(A′), we shall show that αs ∈ enable(B′). We deduce from αs ∈ enable(A′) that
there is a trace tr′ that is either α or τ.α (where α is an observable action whose the skeleton is
αs) such that

A trA−−→ A′ tr′
−→ A0

for some A0. Since A ≈ B, we know that there exist tr′
0, tr′, B′

0, and B′ such that

B tr′
0−→ B′

0
tr′
−→ B0

with Φ(A0) ∼ Φ(B0) and obs(trA) = obs(tr′
0) and obs(tr′) = α. We have that the skeleton of α

(that is αs) is in enable(B′′
0) where B′′

0 is the configuration producing α in the latter execution.
Since B′′

0 can be reached from B′
0 by executing τ actions, Proposition 8 implies αs ∈ enable(B′

0).
Now, since B is an action-deterministic configuration, applying Proposition 10 on trB and

tr′
0 we obtain enable(B′) = enable(B′

0), and thus αs ∈ enable(B′).

The last ingredient which is essential to the Strong Symmetry Lemma (i.e. Lemma 2) allows
to lift information about enable(·) to information about sk(·).

Proposition 12. Let A, B be two action-deterministic configurations and P (resp. Q) a process
of A (resp. B). If enable(P) = enable(Q) then sk(P) = sk(Q).

Proof. Let us show that sk(P) = sk(Q). If enable(P) is an empty set then P = 0 and thus from
enable(Q) = ∅ we deduce that Q = 0 as well implying the required equality on skeletons. If
enable(P) is a singleton then it must be {sk(P)} — we cannot be in the case where P is a paral-
lel composition, since, in that case there would be at least two skeletons in enable(P) by action-
determinism of A (and the fact a process Π{P0}# is reduced to P0). The same goes with Q thus we
have {sk(P)} = {sk(Q)}. Finally, if enable(P) contains at least two skeletons then it must be the
case that P is a parallel composition of the form ΠS, S ≠ ∅ and enable(P) = ∪P ′∈S{sk(P ′)}. Simi-
larly, Q must be of the form ΠSQ and enable(Q) = ∪Q′∈SQ

{sk(Q′)}. Moroever, |enable(Q)| = |SQ|
and |enable(P)| = |S|. Here, we make use of action-determinism to obtain that the num-
ber of subprocesses in parallel is the same as the cardinality of the sets of skeletons, and
thus the same for P and Q: indeed, no two parallel subprocesses can have the same skele-
ton. Hence ⊎Q′∈SQ

{sk(Q′)} = ⊎P ′∈S{sk(P ′)} (as multisets). We conclude that sk(P) = par(S)
where S is the ordered sequence of skeletons from ⊎P ′∈S{sk(P ′)} (which are totally ordered by

91

5. A Reduced Semantics: Theory

action-determinacy), and sk(Q) = par(S) where S is the ordered sequence of skeletons from
⊎Q′∈SQ

{sk(Q′)} = ⊎P ′∈S{sk(P ′)}.

Before proving Lemma 2, we state in the following corollary that requiring that initial config-
urations have same sets of labelled skeletons is not restrictive. Indeed, it suffices to pre-execute
non-observable actions τΠ of the initial configurations. If the resulting configurations do not have
the same set of skeletons then the following corollary allows to conclude that the configurations
are not trace equivalent. Otherwise, it suffices to label them arbitrarily but consistently yielding
configurations satisfying all necessary conditions for our developments (notably skl(A) = skl(B)).

Corollary 1. Let A, B be two action-deterministic configurations such that A ≈ B and any
process in A or B is not a parallel composition. It holds that sk(A) = sk(B).

Proof. Applying Proposition 10 for tr1 = tr2 = ϵ, we obtain enable(A) = enable(B). Since no
process in A and B is a parallel composition, one has that enable(A) = ⊎P ∈Aenable(P) and each
enable(P) is a singleton (similarly for B). We thus deduce from Proposition 9 a bijection m be-
tween processes in A and B such that for any P in A, one has enable(P) = enable(m(P)). We thus
conclude by applying Proposition 12: sk(A) = ⊎P ∈Ask(P) = ⊎P ∈Ask(m(P)) = ⊎Q∈Bsk(Q) =
sk(B).

We now conclude with the proof of Lemma 2.

Proof of Lemma 2. We show this result by induction on the length of the derivation A tr−→a An.
The case where tr is empty (i.e. no action even a unobservable one) is obvious. Assume that we
have proved such a result for all the executions of length n, and we want to establish the result
for an execution of length n + 1.

Consider an execution of [α1]ℓ1 . . . [αn]ℓn from A to An, followed by [αn+1]ℓn+1 towards An+1.
By induction hypothesis, we know that there exists an execution

B [α1]ℓ1−−−→a B1
[α2]ℓ2−−−→a . . . [αn]ℓn−−−→a Bn

such that Φ(An) ∼ Φ(Bn) and skl(Ai) = skl(Bi) for any 1 ≤ i ≤ n. It remains to establish that
there exists Bn+1 such that Bn can perform [αn+1]ℓn+1 towards Bn+1, Φ(An+1) ∼ Φ(Bn+1) and
skl(An+1) = skl(Bn+1). We distinguish several cases depending on the action αn+1.

Case αn+1 = zero. We have that [zero]ℓn+1 ∈ skl(An), and thus, since skl(An) = skl(Bn),
we have also that [zero]ℓn+1 ∈ sk(Bn). We deduce that An = ({[0]ℓn+1} ⊎ P0; Φ0), and Bn =
({[0]ℓn+1} ⊎ Q0; Ψ0) for some P0, Q0, Φ0, and Ψ0. Moreover, since skl(An) = skl(Bn), we deduce
that skl(P0) = skl(Q0). Let Bn+1 = (Q0; Ψ0). We have that:

• Bn = ({[0]ℓn+1} ⊎ Q0; Ψ0) [zero]ℓn+1−−−−−→a (Q0; Ψ0) = Bn+1,

• Φ(An+1) = Φ(An) ∼ Φ(Bn) = Φ(Bn+1), and

• skl(An+1) = skl(P0) = skl(Q0) = skl(Bn+1).

92

5.2. Annotated Semantics

Case αn+1 = par(S) for some sequence S = (β1, . . . , βk). Note that this sequence is ordered
according to our order < over skeletons (i.e. β1 < . . . < βk) and βi’s are pairwise distinct by
action-determinism of A. Since An is able to produce the action par(S), it must be of the
form An = ({[Π ⊎k

i=1 {Pi}]ℓn+1} ⊎ P0; Φ0) for some Pi, P0 and Φ0 such that ∀i, sk(Pi) = βi.
It follows that [par(S)]ℓn+1 ∈ skl(An), and thus, since skl(An) = skl(Bn), we have also that
[par(S)]ℓn+1 ∈ skl(Bn). The latter implies Bn = ({[ΠSQ]ℓn+1} ⊎ Q0; Ψ0) for some SQ, Q0 and
Ψ0 such that sk(SQ) = {βi}i. Further, we have

An+1 = (⊎k
i=1{[Pi]ℓn+1·i} ⊎ P0; Φ0).

Moreover, since skl(An) = skl(Bn), we deduce that skl(P0) = skl(Q0), and

{sk(Qj) | Qj ∈ SQ}# = {sk(Pi) | 1 ≤ i ≤ k}# = {β1, . . . , βk}

Remark that, since Pi (resp. Qj) cannot be a zero or a parallel we have that enable(Pi) = {sk(Pi)}
(resp. enable(Qi) = {sk(Qi)}) and those sets are singletons and |SQ| = k. Moreover, by action-
determinism of A and B we know that all those singletons are pairwise disjoint. From this, we
conclude that there exists a permutation π over [1; k] such that

∀i, sk(Qπ(i)) = βi = sk(Pi)

and thus
∀i, skl([Qπ(i)]ℓn+1·i) = skl([Pi]ℓn+1·i)

We can finally let Bn+1 be (⊎k
i=1{[Qπ(i)]ℓn+1·i} ⊎ Q0; Ψ0) and we have:

• Bn = ({[Π ⊎k
i=1 Qπ(i)]ℓn+1} ⊎ Q0; Ψ0) [par(S)]ℓn+1−−−−−−−→a (⊎k

i=1{[Qπ(i)]ℓn+1·i} ⊎ Q0; Ψ0) = Bn+1,

• Φ(An+1) = Φ(An) ∼ Φ(Bn) = Φ(Bn+1), and

• skl(An+1) = skl(P0) ⊎
⊎k

i=1 skl([Pi]ℓn+1·i)
= skl(Q0) ⊎

⊎k
i=1 skl([Qπ(i)]ℓn+1·i) = skl(Bn+1).

Case αn+1 = in(c, M) for some c, and M with M ∈ T (Σpub, dom(Φ(An)). We have that
[inc]ℓn+1 ∈ skl(An), and thus, since skl(An) = skl(Bn), we have [inc]ℓn+1 ∈ skl(Bn). We deduce
that An = ({[in(c, xA).P]ℓn+1} ⊎ P0; Φ0), and Bn = ({[in(c, xB).Q]ℓn+1} ⊎ Q0; Ψ0) for some
xA, xB, P , Q, P0, Q0, Φ0, and Ψ0. We also deduce that there exists a message uA such
that MΦ0 ⇓ uA. Moreover, since skl(An) = skl(Bn), we deduce that skl(P0) = skl(Q0). By
inductive hypothesis, we also have that Φ0 ∼ Ψ0; hence a message uB such that MΨ0 ⇓ uB . Let
Bn+1 = ([Q{uB/xB}]ℓn+1·� ⊎ Q0; Ψ0). We have that:

• Bn
[in(c, M)]ℓn+1−−−−−−−−→a Bn+1, and

• Φ(An+1) = Φ(An) ∼ Φ(Bn) = Φ(Bn+1).

93

5. A Reduced Semantics: Theory

It remains to show that skl(An+1) = skl(Bn+1). Since we have that skl(P0) = skl(Q0), and the
label of the new subprocess is the same (namely, ℓn+1 · �) on both sides, we only need to show
that:

sk(P{uA/xA}) = sk(Q{uB/xB})

In order to improve the readability, we will note P ′ = P{uA/xA} and Q′ = Q{uB/xB}. We
have that A and B are two action-deterministic configurations such that A ≈ B. Moreover, they
perform the same trace, respectively towards An+1 and Bn+1. Thus, thanks to Proposition 11, we
deduce that enable(An+1) = enable(Bn+1). Moreover, our hypothesis skl(P0) = skl(Q0) implies
that enable(P0) = enable(Q0), and thus we deduce that enable(P ′) = enable(Q′) (recall that
by action-determinism, unions of the form enable(An+1) = enable(P0) ∪ enable(P ′) are actually
disjoint unions). We conclude using Proposition 12.

Case αn+1 = out(c, w) for some c and some w with w ̸∈ dom(Φ(An)). This case is similar to
the previous one. However, during such a step, the frame of each configuration is enriched, and
thus the fact that Φ(An+1) ∼ Φ(Bn+1) is now a consequence of Proposition 11.

Case αn+1 = sess(a, c) for some a, and some c. Firstly, we show for later that c are fresh
in Bn. Indeed, we deduce from bc(α1. . . . αn+1) ∩ fc(B) = ∅ that c are fresh in B and we
know that free channels of Bn are included in fc(B) ∪ bc(α1. . . . αn). Thereby, if there was a
channel ci ∈ c∩ fc(Bn) it would be in bc(α1. . . . αn) but this is forbidden because of the freshness
condition (in the current trace) over channels, i.e. new channels cannot be introduced twice (once
in α1. . . . αn and once in αn+1).

As before, we obtain ℓn+1 = ℓ · c and

An = ({[!ac,nP
P]ℓ} ⊎ P0; Φ0) and Bn = ({[!ac,nQ

Q]ℓ} ⊎ Q0; Ψ0)

for some P , Q, P0, Q0, Φ0, and Ψ0. Moreover, since skl(An) = skl(Bn), we deduce that skl(P0) =
skl(Q0).

We have:
An+1 = ({[P]ℓn+1 , [!ac,nP

P]ℓ} ⊎ P0; Φ0)

Accordingly, let us pose
Bn+1 = ({[Q]ℓn+1 , [!ac,nQ

Q]ℓ} ⊎ Q0; Ψ0).

We have that:

• Bn
[sess(a, c)]ℓn+1−−−−−−−−→a Bn+1; and

• Φ(An+1) = Φ(An) ∼ Φ(Bn) = Φ(Bn+1).

It remains to show that skl(An+1) = skl(Bn+1). Since we have that skl(P0) = skl(Q0), and since
the labels of corresponding subprocesses are the same on both sides, we only need to show that:

• sk(P) = sk(Q) and

• sk(!ac,nP
P) = sk(!ac,nQ

Q)

94

5.3. Compression

As in the previous case, thanks to Proposition 11, we know that enable(An+1) = enable(Bn+1),
and we deduce that enable(P) = enable(Q) and enable(!ac,nP

P) = enable(!ac,nQ
Q), which allows us

to conclude using Proposition 12.

5.3 Compression

Our first refinement of the semantics, which we call compression, is closely related to focusing
from proof theory [And92]: we will assign a polarity to processes and constrain the shape of
executed traces based on those polarities. This will provide a first significant reduction of the
number of traces to consider when checking reachability-based properties such as secrecy, and
more importantly, equivalence-based properties in the action-deterministic case. We illustrate
below one of the aspect of the compressed semantics.

Example 24. Consider the process (P; Φ) with P = {in(c1, x).P1, out(c2, b).P2}. In order to
reach ({P1{x 7→ u}, P2}; Φ ∪ {w 7→ b}), we have to execute the action in(c1, x) (using a recipe M

that allows one to deduce u) and the action out(c2, b) (giving us a label of the form out(c2, w)).
In case of reachability properties, the execution order of these actions only matters if M uses w.
Thus we can safely perform the outputs in priority. It turns out that, when one has such choices,
executing outputs in priority is always a complete strategy; i.e. all reachable states are actually
explored.

The situation is more complex when considering trace equivalence. In that case, we are
concerned not only with reachable states, but also with how those states are reached. Quite
simply, traces matter. Thus, if we want to discard the trace in(c1, M).out(c2, w) when studying
processes P and consider only its permutation out(c2, w).in(c1, M), we have to make sure that the
same permutation is available on the other process. The key to ensure that identical permutations
will be available on both sides of the equivalence is the action-deterministic assumption and the
Strong Symmetry Lemma (i.e. Lemma 2).

5.3.1 Compressed Strategy

The semantics we shall define is based on syntactical criteria over processes and configurations
as formalised next.

Definition 22 (Polarity assignment). A process P is positive if it is of the form in(c, x).Q, and
is negative otherwise. A multiset of processes P is initial if it contains only positive or replicated
processes (i.e. of the form !ac,nQ).

The compressed semantics (see Figure 5.3) is built upon the annotated semantics. It con-
strains the traces to follow a particular strategy, alternating between negative and positive phases.
It uses enriched configurations of the form (P; F ; Φ) where (P; Φ) is a labelled configuration and
F is either a process (signalling which process is under focus in the positive phase) or ∅ (in the
negative phase). The negative phase lasts until the configuration is initial (i.e. unfocused with
an initial underlying multiset of processes) and in that phase we perform actions that decompose

95

5. A Reduced Semantics: Theory

Start/In
P is initial (P ; Φ) in(c,M)−−−−−→a (P ′; Φ)

(P ⊎ {P};∅; Φ) foc(in(c,M))−−−−−−−−−→c (P; P ′; Φ)

Start/!
P is initial (!ac,nP ; Φ) sess(a,c)−−−−−−→a ({!ac,nP ; Q}; Φ)

(P ⊎ {!ac,nP};∅; Φ) foc(sess(a,c))−−−−−−−−−→c (P ⊎ {!ac,nP}; Q; Φ)

Pos/In
(P ; Φ) in(c,M)−−−−−→a (P ′; Φ)

(P; P ; Φ) in(c,M)−−−−−−→c (P; P ′; Φ)

Neg
(P ; Φ) α−→a (P ′; Φ′)

(P ⊎ {P};∅; Φ) α−−→c (P ⊎ P ′;∅; Φ′)
α ∈ {par(•), zero, out(•, •)}

Release (P; [P]ℓ; Φ) [rel]ℓ

−−−−→c (P ⊎ {[P]ℓ};∅; Φ) when P ̸= 0 is negative

Release⊥ (P; [0]ℓ; Φ) [rel]ℓ.[zero]ℓ

−−−−−−−−−→c (∅;∅; Φ)

Labels are implicitly set in the same way as in the annotated semantics. Neg is made non-
branching by imposing an arbitrary order on labelled skeletons of available actions.

Figure 5.3 Compressed semantics

negative non-replicated processes. This is done using the Neg rule, in a completely deterministic
way. When the configuration becomes initial, a positive phase can be initiated: we choose one
process and start executing the actions of that process (only inputs, possibly preceded by a new
session) without the ability to switch to another process of the multiset, until a negative subpro-
cess different from 0 is released (we explain what happens otherwise in Subsection 5.3.2) and we
go back to the negative phase. The active process in the positive phase is said to be under focus.
Between any two initial configurations, the compressed semantics executes a sequence of actions,
called blocks, of the form foc(α).tr+.rel.tr− where tr+ is a (possibly empty) sequence of input
actions, whereas tr− is a non empty sequence of out, par, and zero actions. Note that, except
for choosing recipes, the compressed semantics is completely non-branching when executing a
block. It may branch only when choosing which block is performed.

Example 25. Consider the process P = !ac,kin(c, x).out(c, senc(x, k)).0. We have that (omitting
labels and assuming the existence of a message ui such that MiΦ ⇓ ui):

({P};∅; Φ) foc(sess(a, ci))−−−−−−−−−→c ({P}; {in(ci, x).out(ci, senc(x, ki)).0}; Φ)
in(ci, Mi).rel−−−−−−−−→c ({P, out(ci, senc(ui, ki)).0};∅; Φ)

out(ci, wi).zero−−−−−−−−−→c ({P};∅; Φ′).

Once a replication is performed, the resulting process is under focus and must be executed in
priority until the end. Note that, after executing the input, the resulting process is negative
and, thus, still has priority. Thus, on this example, the compressed semantics only explores
executions that are made of blocks of the form sess(a, ci).in(ci, Mi).out(ci, wi) and discards all
other interleavings (e.g. the one that unfolds two sessions, executes the two available inputs and
then executes the two available outputs).

96

5.3. Compression

Remark 4. It is clear why disassembling parallel compositions and erasing zeros take part to the
semantics instead of the internal reduction. Indeed, if one had chosen to add Rpar to the relation
on which the internal reduction is based then the induced internal reduction ;R would always
break parallel compositions at top level. Consequently, the semantics would never have access to
the parallel composition structure because it only handles configurations in normal form. However,
it is now clear that the compressed semantics needs to have access to the configuration’s structure
details. For example, this is needed to decide to stop the current focus because new processes in
parallel have just been made available.

5.3.2 Improper Blocks and Release⊥ Rule

Note that blocks of the form foc(α).tr+.rel.zero that we call improper blocks do not bring any
new information to the attacker. One could argue that it is then useless to explore such blocks.
However, when checking trace equivalence, how to make sure then that both configurations
can exhibit exactly the same kinds of improper blocks? Moreover, how can one predict, when
choosing a focus, that the initiated block will be improper2 in order to not explore it ?

While it would be incorrect to fully ignore such improper blocks, it is in fact sufficient to only
consider them at the end of traces. This is implemented by the rule Release⊥: if the current block
is released improperly (i.e. the produced block is improper) then the semantics stops exploring
(i.e. the multiset of processes is set to ∅). We give intuitions explaining why this does not break
completeness (w.r.t. trace equivalence) in the next example. We call proper the blocks that are
not improper and proper trace a trace made of proper blocks.

Example 26. Consider P = {in(c, x).in(c, y), in(c′, x′)}. Its compressed traces are of the form
foc(in(c, M)).in(c, N).rel.zero and foc(in(c′, M ′)).rel.zero. The concatenation of those two
improper traces cannot be executed in the compressed semantics. Intuitively, we do not lose
anything for trace equivalence, because if a process can exhibit those two improper blocks they must
be in parallel (by action-determinacy) and hence considering their combination is redundant.

Finally, in order to ease the presentation and the structure of future proofs, we introduce a
variant of the compressed semantics which does not make any distinction between proper and
improper blocks. To that end, we define the semi-compressed semantics (noted •−→sc) similarly to
the compressed semantics based on the rules from Figure 5.3 except Release and Release⊥ that
are replaced by the single following rule:

Releases (P; [P]ℓ; Φ) [rel]ℓ

−−−−→sc (P ⊎ {[P]ℓ};∅; Φ) when P is negative

Remark 5 (Relation with Focusing). The reader familiar with focused proof systems will have
recognised the strong similarities: the phases of the compressed semantics are the same as those
of focused proof systems, and more deeply, the choice of polarities for each process construction
can actually be derived from encoding our process algebra into linear logic in such a way that

2Remind that conditionals are executed by the internal reduction and their outcomes are only known “at
runtime”, so do the explored branches (either Then or Else).

97

5. A Reduced Semantics: Theory

proof search corresponds to executions.While this encoding provides an intuitive guide, it would
not be obvious to obtain directly our results from the completeness of focusing in linear logic — for
instance, internal reduction would not naturally fit in. We give below (Lemma 4) a direct proof
of completeness (i.e. all reachable states are explored by the compressed strategy) using the idea
of the positive trunk argument of [MS07]. Besides being self-contained, this has the advantage
of setting the stage for the next section, where we go beyond what focusing actually allows, but
still exploit the positive trunk argument to carry out our analysis. In Section 7.3, we discuss at
greater length related work in proof theory.

5.3.3 Reachability

We now formalise the relationship between traces of the compressed and annotated semantics.
In order to do so, we translate between configurations and enriched configurations as follows:

⌈(P; Φ)⌉ = (P;∅; Φ), ⌊(P;∅; Φ)⌋ = (P; Φ) and ⌊(P; P ; Φ)⌋ = (P ⊎ {P}; Φ).

Similarly, we map compressed traces to annotated ones:

⌊ϵ⌋ = ϵ, ⌊foc(α).tr⌋ = α.⌊tr⌋, ⌊rel.tr⌋ = ⌊tr⌋, and ⌊α.tr⌋ = α.⌊tr⌋ otherwise.

We observe that we can map any execution in the compressed semantics to an execution in
the annotated semantics. Indeed, a compressed execution that does not use Release⊥ is simply
an annotated execution with some extra annotations (i.e. foc and rel) indicating positive/neg-
ative phase changes. Moreover, even with possibly a rule Release⊥ at the end, we obtain same
reachable frames with −→a.

Lemma 3. Let A, B be configurations and trc be a trace such that A trc−→c B. If trc is proper
then ⌊A⌋ ⌊trc⌋−−−→a ⌊B⌋. Otherwise, there exists a configuration B′ such that ⌊A⌋ ⌊trc⌋−−−→a B′ with
Φ(B′) = Φ(B).

Going in the opposite direction is more involved. In general, mapping annotated executions to
compressed ones requires to reorder actions. Compressed executions also force negative actions
to be performed unconditionally and blocks to be fully executed. One way to handle this is to
consider complete executions of a configuration, i.e. executions after which no more action can
be performed except possibly the ones that consist in unfolding a replication (i.e. rule Repl).

Last but not least, compressed executions stop exploring when reaching an improper block
while annotated semantics is able to continue. We first prove a completeness result for the
semi-compressed semantics −→sc for which all complete, annotated, executions can be mapped to
one compressed execution after permutations of independent actions. Second, we extend the first
completeness result for the full compressed semantics. However, instead of mapping an annotated
execution to a compressed execution, we only map an annotated execution to (possibly many)
compressed executions each exploring a different improper block at the end.

Inspired by the positive trunk argument of [MS07], we show the first completeness lemma.

98

5.3. Compression

Lemma 4. Let A, A′ be two configurations, tr a trace and A tr−→a A′ a complete, annotated exe-
cution. There exists a trace trc, such that ⌊trc⌋ can be obtained from tr by swapping independent
labelled actions, and ⌈A⌉ trc−→sc ⌈A′⌉.

Proof. Let A = (P; Φ) be a configuration and (P; Φ) tr−→a A′ a complete execution. We proceed
by induction on the length of tr, distinguishing two cases.
Case 1. We first consider the case where there is at least one process in P that is negative and
non-replicated. Since we are considering a complete execution, at least one negative action α is
performed on this process in tr. This action may be an output, the decomposition of a parallel
composition, or the removal of a zero. If there are more than one such action, we choose the one
that can be performed using Neg, i.e. the one that is minimal according to our arbitrary order
on labelled skeletons. Since our action can be performed initially by our process, and by well-
labelling, the label of the action is independent with all labels of previously executed actions in
tr. Moreover, there cannot be any second-order dependency between α and one of those actions.
Indeed, if α is an output, no input performed before α is able to use the handle of α. It can thus
be swapped before all the others by using Lemma 1, obtaining an execution of trace α.tr′ ending
in the same configuration A′. The rule Neg can be performed in the compressed semantics
to trigger the action α, and by induction hypothesis on tr′ we can complete our compressed
execution towards A′.
Case 2. Otherwise, when P contains only positive or replicated processes, we must choose one
process to focus on, start a positive phase and execute all its actions until we can finally release
the focus. As long as all processes are positive or replicated, only input or session actions can be
performed. In either case, the action yields a new process (the continuation of the input, or the
new session) which may be negative or positive. We define the positive prefix of our execution as
the prefix of actions for which all but the last transition yield a positive process. It is guaranteed
to exist because A′ contains only negative processes.

The positive prefix is composed only of input and replication actions. Because session actions
are performed by negative processes, and no new negative process is created in the positive prefix,
session actions can be permuted at the beginning of the prefix thanks to Lemma 1. Thus, we
assume without loss of generality that the prefix is composed of session actions, followed by input
actions: we write tr = tr!.trin.tr0. Note that actions in tr! are pairwise independent since they
correspond to unfoldings of replicated processes that were initially present in P. In the portion of
the execution where inputs of trin are performed, there is an obvious bijective mapping between
the processes of any configuration and its successor, allowing us to follow execution threads, and
to freely permute inputs pertaining to different threads. Such permutations are made possible
by Lemma 1. Indeed, they concern actions that are (i) sequentially independent (i.e. labels are
independent) since two different threads involve actions performed by processes in parallel and
(ii) recipe independent since there is no output action in trin.

The last action of the positive prefix releases a negative process P −. Let P be its antecedent
(through its corresponding thread) in the configuration obtained after the execution of tr!. We

99

5. A Reduced Semantics: Theory

have that:
A = (P; Φ) tr!−→a (P1 ⊎ {P}; Φ) trin−−→a (P2 ⊎ {P −}; Φ) tr0−→a A′

Now we can write P = P0 ⊎ {Pf} where Pf is either P or a replicated process that gives rise to
P in one transition. By permuting actions pertaining to Pf before all others thanks to Lemma 1
and previous remarks, we obtain an execution of the form

A = (P0 ⊎ {Pf}; Φ) tr1−→a (P ′
0 ⊎ {P −}; Φ) tr2−→a (P2 ⊎ {P −}; Φ) tr0−→a A′

where tr1.tr2.tr0 can be obtained from tr by swapping independent labelled actions, tr1 = [α]ℓ.tr′
1,

and P ′
0 = P0 when Pf = P , and P ′

0 = P0 ⊎ {Pf} otherwise.
In the compressed semantics, if we initiate a focus on Pf , we can execute the actions of tr1

and release the focus when reaching P − (using the rule Releases), i.e. we have that:

(P;∅; Φ) [foc(α)]ℓ−−−−−→sc
tr′

1−→sc (P ′
0; P −; Φ) [rel]ℓ′

−−−→sc (P ′
0 ⊎ {P −};∅; Φ)

where ℓ′ is the label of P −. We can conclude by induction hypothesis on tr2.tr0.

Next, we show the second completeness result covering the full compressed semantics. We
say that two blocks b1 and b2 are independent when the actions from one and the other are
independent.

Lemma 5. Let A, A′ be two configurations, tr be a trace and A tr−→a A′ be a complete, annotated,
execution. There exists a configuration A0, a proper trace trc and a (possibly empty) sequence of
pairwise independent improper blocks b1, . . . , bk, such that ⌊trc.b1.bk⌋ can be obtained from tr
by swapping independent labelled actions, and for all 1 ≤ i ≤ k, there exists a configuration Ai

and a compressed execution ⌈A⌉ trc−→c A0
bi−→c Ai such that Φ(Ai) = Φ(A′) = Φ(A0).

Proof. Applying Lemma 4, we obtain a trace tr′, such that ⌊tr′⌋ can be obtained from tr by
swapping independent labelled actions, and ⌈A⌉ tr′

−→sc ⌈A′⌉. Let b1, . . . , bk be the improper
blocks that occur in tr′. We argue that all those blocks are pairwise independent and each block
bi is independent with all actions occurring after bi in tr′. Both claims follow from (i) the absence
of recipe dependencies since blocks bi do not feature outputs and (ii) the fact that each block bi

gives rise to a null process that disappears from the multiset along with the label it carried out
preventing sequential dependencies.

Hence a proper trace trc such that trc.b1.bk can be obtained from tr by swapping indepen-
dent blocks. Those swaps can also be made along the former semi-compressed execution since
before starting a new block, the semi-compressed semantics allows to choose any positive process
to start a focus. We thus have an execution ⌈A⌉ trc.b1.bk−−−−−−→sc ⌈A′⌉.

Since blocks bi are pairwise independent, there exist initial configurations A0, A1, . . . , Ak such
that ⌈A⌉ trc−→sc A0, and

A0
b1−→sc A1, A0

b2−→sc A2, . . . , A0
bk−→sc Ak.

Since trc is a proper trace, the execution ⌈A⌉ trc−→sc A0 can easily be translated into a compressed
execution ⌈A⌉ trc−→c A0 using rule Release instead of Releases. Finally, remark that all executions

100

5.3. Compression

A0
bi−→sc Ai can be done using the compressed execution instead of the semi-compressed execution:

it suffices to trigger rule Release⊥ instead of Releases. We thus obtain executions A0
bi−→c

(∅;∅; Φ(Ai)) for all 1 ≤ i ≤ k.

Remark 6 (Reachability properties verified with the compressed semantics). When checking
a security property that can be decided by looking only at reachable frames obtained through
complete executions (e.g. secrecy properties), lemmas 3 to 5 show that the semi-compressed
semantics or the compressed semantics can be used instead of the regular one. More generally,
the semi-compressed semantics is sound and complete for reachable predicates that are:

• monotone (i.e. if an execution A tr−→ (P; Φ) satisfies the predicate then so does A tr.tr′
−−→

(Q; Φ ∪ Ψ)), and,

• invariant by permutations of actions (i.e. if A tr−→ B satisfies the predicate then so does any
execution A tr′

−→ B as long as tr′ equals tr up to a permutation of actions).

For instance, secrecy is monotone and invariant by permutations.
While this is already useful to reduce the search space, we will go much further in the following

sections. Most importantly, our final goal is to go beyond reachability properties, and to deal with
trace equivalence, which is addressed in the next subsection.

5.3.4 Equivalence

We now define the compressed trace equivalence (≈c) and prove that it coincides with the regular
trace equivalence (≈).

Definition 23. Let A and B be two configurations. We say that A ⊑c B when, for any A tr−→c A′

such that bc(tr)∩fc(B) = ∅, there exists B tr−→c B′ such that Φ(A′) ∼ Φ(B′). They are compressed
trace equivalent, denoted A ≈c B, if A ⊑c B and B ⊑c A.

Compressed trace equivalence can be more efficiently checked than regular trace equivalence.
Obviously, it explores fewer interleavings by relying on −→c rather than −→. It also requires that
traces of one process can be played exactly by the other, including details such as unobservable
actions, labels, and focusing annotations. The subtleties shown in Example 23 are crucial for
the completeness of compressed equivalence w.r.t. regular equivalence. Since the compressed
semantics forces to perform available outputs before e.g. input actions, some non-equivalences are
only detected thanks to the labels and detailed unobservable actions of our annotated semantics
(as illustrated by Example 23).

Theorem 2. Let A and B be two action-deterministic configurations with skl(A) = skl(B). We
have A ≈ B if, and only if, ⌈A⌉ ≈c ⌈B⌉.

Proof sketch, complete proof in Subsection 5.3.5. (⇒) Consider an execution ⌈A⌉ tr−→c A′ where
tr is a proper trace (the other case is similar). Using Lemma 3, we get A ⌊tr⌋−−→a ⌊A′⌋. Then,
Lemma 2 yields B ⌊tr⌋−−→a B′ for some B′ such that Φ(⌊A′⌋) ∼ Φ(B′) and labelled skeletons are

101

5. A Reduced Semantics: Theory

equal all along the executions. Relying on those skeletons, one can show that positive/negative
phases are synchronised, and thus ⌈B⌉ tr−→c B′′ for some B′′ with ⌊B′′⌋ = B′.
(⇐) We first deal with proper executions. Consider an execution A tr−→a A′ where tr is a proper
trace. We first observe that it suffices to consider only complete executions there. This allows
us to get a compressed execution ⌈A⌉ trc−→c ⌈A′⌉ by Lemma 4. Since ⌈A⌉ ≈c ⌈B⌉, there exists B′

such that ⌈B⌉ trc−→c B′ with Φ(⌈A′⌉) ∼ Φ(B′). Thus we have B ⌊trc⌋−−→a ⌊B′⌋ but also B tr−→a ⌊B′⌋
thanks to Lemma 1.

When tr is not proper, we invoke Lemma 5 and obtain executions ⌈A⌉ trc−→c A0
bi−→c Ai for

1 ≤ i ≤ k. Following similar arguments as above, we obtain executions B trc−→a B0
bi−→a Bi for

1 ≤ i ≤ k such that Φ(Bi) = Φ(B0) ∼ Φ(A0) = Φ(Ai). We then exploit independencies of blocks
bi to construct B trc−→a B0

b1.bk−−−−−→a B′ with Φ(B′) = Φ(B0) and then B tr−→a B′.

Remark 7. Note that the trace inclusions of the regular semantics (i.e. ⊑) and the compressed
semantics (i.e. ⊑c) do not coincide as witnessed by the following example. Let P = {in(c, x)}
and Q = {in(c, x).out(c, n)} accompanied with an arbitrary frame Φ. We have (P; Φ) ⊑ (Q; Φ)
but (P; Φ) ̸⊑c (Q; Φ) since (Q; Φ) is not able to produce the trace foc(in(c, M)).rel.zero in the
compressed semantics. But we have (Q; Φ) ̸⊑ (P; Φ) and thus (P; Φ) ̸≈ (Q; Φ).

5.3.5 Proof of Theorem 2

We prove below the two implications of Theorem 2, dealing first with soundness and then with
the more involved completeness result.

Soundness can be established for both the semi-compressed and the compressed trace equiva-
lence. Even though the semi-compressed semantics is weaker that the compressed semantics, we
still introduce the semi-compressed trace equivalence and prove that it coincides with the regular
trace equivalence for future proofs. Indeed, for the compressed (and the reduced semantics we
eventually define in Section 5.4), we prove the completeness of the optimised trace equivalence
w.r.t. regular trace equivalence in two steps: first the semi-optimised w.r.t. the regular one and
then the optimised one w.r.t. the semi-optimised one.

Definition 24. Let A and B be two configurations. We say that A ⊑sc B when, for any
A tr−→sc A′ such that bc(tr) ∩ fc(B) = ∅, there exists B tr−→sc B′ such that Φ(A′) ∼ Φ(B′). They
are semi-compressed trace equivalent, denoted A ≈sc B, if A ⊑sc B and B ⊑sc A.

Lemma 6 (Soundness). Let A and B be action-deterministic configurations such that skl(A) =
skl(B). We have that A ≈ B implies ⌈A⌉ ≈c ⌈B⌉ (and ⌈A⌉ ≈sc ⌈B⌉ as well).

Proof. We only deal with the compressed trace equivalence, the case of the semi-compressed trace
equivalence is identical. By symmetry it suffices to show ⌈A⌉ ⊑c ⌈B⌉. Consider an execution
⌈A⌉ tr−→c A′ such that bc(tr) ∩ fc(B) = ∅. Thanks to Lemma 3, we know that A ⌊tr⌋−−→a KA

with Φ(KA) = Φ(A′). Let ⌊tr⌋ = [α1]ℓ1 . . . [αn]ℓn , and we denote A1, . . . , An the intermediate
configurations that are reached during this execution. We have that:

A0 = A [α1]ℓ1−−−→a A1
[α2]ℓ2−−−→a . . . [αn]ℓn−−−→a An = KA = (P; ΦA).

102

5.3. Compression

Applying Lemma 2, we deduce that B can perform a very similar execution (same labels,
same actions), i.e.

B0 = B [α1]ℓ1−−−→a B1
[α2]ℓ2−−−→a . . . [αn]ℓn−−−→a Bn = (Q; ΦB).

with Φ(Ai) ∼ Φ(Bi) and skl(Ai) = skl(Bi) for 0 ≤ i ≤ n.
As a consequence of the equalities skl(Ai) = skl(Bi) and the fact that B produces the same

labelled actions as A does, we are sure that ⌈B⌉ will be able to do this execution in the compressed
semantics as well. In particular, the fact that a given configuration Bi can start a positive
phase or has to release the focus is determined by the set skl(Bi) = skl(Ai) and the actions
[α1]ℓ1 , . . . , [αi−1]ℓi−1 and the fact that it can keep the focus on a specific process while performing
positive actions can be deduced from labels of tr. Finally, we have shown that if Ai can execute
an action α using Neg rule then Bi can as well. The only missing part is about the fact that Neg
has been made non-branching using an arbitrary order on labelled skeletons. Let us say we can
use Neg only for actions whose skeleton is minimal among others skeletons of available, negative
actions. Using skl(Ai) = skl(Bi), we easily show that this is symmetric for Ai and Bi. This way,
we obtain an execution ⌈B⌉ tr−→c B′ with Φ(B′) = Φ(Bn) (we do not necessarily have ⌊B′⌋ = Bn

because tr may end with an improper block). Finally, we have Φ(B′) = ΦB ∼ ΦA = Φ(A′).

One key ingredient of the completeness is the fact that exploring complete executions only is
actually sufficient to establish annotated trace equivalence.

Lemma 7. Let A and B be two action-deterministic configurations. If for any complete execution
A tr−→a A′ with bc(tr) ∩ fc(B) = ∅, there exists a trace tr′ and an execution B tr′

−→a B′ such that
Φ(A′) ∼ Φ(B′), then A ⊑a B.

Proof. Let A tr0−→a A0 be an execution of A with bc(tr0) ∩ fc(B) = ∅. Firstly, we complete the
latter execution in an arbitrary way A tr0.tr1−−−→a A′ such that any process of A′ is replicated and
bc(tr0.tr1) ∩ fc(B) = ∅ (it suffices to choose fresh channels for B as well). By hypothesis, there
exists an execution B tr0.tr1−−−→a B′ such that Φ(A′) ∼ Φ(B′). The latter execution of B is thus
of the form B tr0−→a B0

tr1−→a B′. It remains to show that Φ(A0) ∼ Φ(B0). For the sake of
contradiction, we assume that Φ(B0) ̸∼ Φ(A0). In other words, there is a test of equality or a
computation test over dom(Φ(B0)) that holds for Φ(A0) and does not for Φ(B0) (or the converse).
Since dom(Φ(B0)) ⊆ dom(Φ(B′)) = dom(Φ(A′)), this same test can be used to conclude that
Φ(A′) ̸∼ Φ(B′) leading to a contradiction.

Finally, we prove the completeness of the compressed semantics w.r.t. trace equivalence in two
steps. First (Lemma 8), we show the completeness for the semi-compressed trace equivalence
defined above (see Definition 24). Second (Corollary 3), we show that both the full and the
semi-compressed trace equivalence coincide.

Lemma 8. Let A and B be two action-deterministic configurations satisfying skl(A) = skl(B).
Then ⌈A⌉ ≈sc ⌈B⌉ implies A ≈ B.

103

5. A Reduced Semantics: Theory

Proof. Assume ⌈A⌉ ≈sc ⌈B⌉, thanks to Theorem 1, it suffices to show A ≈a B. Let us show the
following intermediate result: for any complete execution A tr−→a A′ such that bc(tr) ∩ fc(B) = ∅,
there is an execution B tr−→a B′ such that Φ(A′) ∼ Φ(B′). Thanks to Lemma 7 and by symmetry
of ≈a, this intermediate result implies the required conclusion A ≈a B.

Let A tr−→a A′ be a complete execution with bc(tr) ∩ fc(B) = ∅. We thus have that A′ is
initial. Applying the Lemma 4, we obtain a trace trc such that ⌈A⌉ trc−→sc ⌈A′⌉ and ⌊trc⌋ can be
obtained from tr by swapping independent actions. Since we have ⌈A⌉ ≈sc ⌈B⌉, we deduce that
⌈B⌉ trc−→sc ⌈B′⌉ with Φ(A′) ∼ Φ(B′). Lemma 3 gives us B ⌊trc⌋−−→a B′. We can now apply Lemma 1
to obtain B tr−→a B′ and conclude.

Corollary 2. Let A and B be two action-deterministic configurations with skl(A) = skl(B). We
have A ≈ B if, and only if, ⌈A⌉ ≈sc ⌈B⌉.

Proof. It follows from lemmas 6 and 8

Lemma 9. Let A and B be two action-deterministic configurations. Then ⌈A⌉ ⊑c ⌈B⌉ implies
⌈A⌉ ⊑sc ⌈B⌉.

Proof. Assume that A ⊑c B. Let A′ be such that A tr−→sc A′ for some tr such that bc(tr)∩ fc(B) =
∅. Let b1, . . . , bk be the improper blocks that occur in tr. We argue that all those blocks are
pairwise independent and each block bi is independent with all actions occurring after bi in tr′.
Both claims follow from (i) the absence of recipe dependencies since blocks bi do not feature
outputs and (ii) the fact that each block bi gives rise to a null process that disappears from the
multiset along with the label it carried out preventing sequential dependencies.

Hence a proper trace trc such that trc.b1.bk can be obtained from tr by swapping indepen-
dent blocks. Those swaps can also be made along the former semi-compressed execution since
before starting a new block, the semi-compressed semantics allows to choose any positive process
to start a focus. We thus have an execution A trc.b1.bk−−−−−−→sc ⌈A′⌉.

Since blocks bi are pairwise independent, there exist initial configurations A0, A1, . . . , Ak such
that A trc−→sc A0, and

A0
b1−→sc A1, A0

b2−→sc A2, . . . , A0
bk−→sc Ak.

Since trc is a proper trace, the execution ⌈A⌉ trc−→sc A0 can easily be translated into a compressed
execution ⌈A⌉ trc−→c A0 using rule Release instead of Releases. Finally, remark that all executions
A0

bi−→sc Ai can be done using the compressed execution instead of the semi-compressed execution:
it suffices to trigger rule Release⊥ instead of Releases. We thus obtain executions A0

bi−→c

(∅;∅; Φ(Ai)) for all 1 ≤ i ≤ k.
Thanks to our hypothesis, we deduce that there exist configurations B0, B1, . . . , Bk such that

B trc−→c B0 with Φ(A0) ∼ Φ(B0), and

B trc.b1−−−→c B1, B trc.b2−−−→c B2, . . . , B0
trc.bk−−−→c Bk.

104

5.4. Reduction

Those executions can now be mapped back to semi-compressed executions: there exists B trc−→sc

B0 (because trc is proper) and there exist B trc.bi−−−→sc B′
i with Φ(B′

i) = Φ(Bi) = Φ(B0) (because
the block bi is improper). Since blocks b1, . . . , bk are pairwise independent, we deduce that there
exists B′ such that B trc−→sc B0

b1, . . . , bk−−−−−→c B′ with Φ(B′) = Φ(B0). Then, permutations of blocks
can be undone to retrieve tr (since swaps have been done between independent blocks).

Finally, combining lemmas 8 and 9 yields the following corollary.

Corollary 3 (Completeness). Let A and B be two action-deterministic configurations satisfying
skl(A) = skl(B). Then ⌈A⌉ ≈c ⌈B⌉ implies A ≈ B.

Theorem 2 follows from Corollary 3 and Lemma 6.

5.4 Reduction

The compressed semantics cuts down interleavings by using a simple focused strategy. However,
this semantics does not analyse data dependency that happens when an input depends on an
output, and is thus unable to exploit the independency of blocks to reduce interleavings as partly
illustrated in the next example. We tackle this problem with the reduced semantics which we
define in this section.

•

•

•

•

•

•

•

•

• s2s1

in(c1, X1)

out(c1, w1)

in(c2, X2)

out(c2, w2)

in(c2, Y2)

out(c2, w2)

in(c1, Y1)

out(c1, w1)

Figure 5.4 Resuming Example 27, we informally depict two possible interleavings abstracting away
recipes (i.e. X1, X2, Y1, Y2). A node in this tree represents all reachable states (from A using the com-
pressed semantics) that can be reached using the corresponding interleaving of actions and choosing
recipes for X1, X2 (or Y1, Y2). We represent two of those sets of states (i.e. s1 and s2) by the hatch
circles. The intersection of those circles illustrates to set of reachable states that can be reached by both
interleavings.

Example 27. For i ∈ {1, 2}, let Pi = in(ci, xi).out(ci, ni).P ′
i for some name ni ∈ N and

positive process P ′
i . We consider the configuration A = ({P1, P2}; ∅) and two types of inter-

leavings of actions that the compressed semantics may explore. Essentially, the compressed
semantics has two choices: either it starts to focus on process P1 producing a block b1 =
foc(in(c1, M1)).rel.out(c1, w1) for some recipe M1 or on process P2 producing a block b2 =

105

5. A Reduced Semantics: Theory

foc(in(c2, M2)).rel.out(c2, w2) for some recipe M2. The compressed semantics explores both
traces tr1 = b1.b2 and tr2 = b2.b1.

One could argue at this point that exploring those two traces may be redundant. For instance,
if M1 = M2 = ok ∈ Σc (i.e. a constant), then both traces essentially lead to the same state and
are thus redundant. Further, it seems that one can choose a priority order (e.g. P1 has priority
over P2) and, when the compressed semantics has to choose a focus, it has to choose the process
with highest priority. However, when recipes depend on previous blocks (e.g. M1 = w2 in tr2),
both traces do not lead to the same state and must be explored separately. A diagram informally
illustrating those two interleavings, the sets of reachable configurations following one or the other
interleaving and the overlap (i.e. reachable states that can be reached using both interleavings) is
depicted in Figure 5.4.

This is the crux of the problem: some interleavings explored by the compressed semantics
are mostly redundant but they cannot be simply discarded because some specific traces following
those interleavings actually exploit the specific ordering that violates the pre-defined priority order.
Moreover, distinguishing those traces from redundant ones calls for a notion of necessity based
on (strong) data-dependencies: “Is it the case that executing block b2 before b1 is really necessary
to be able to execute block b1 in a given way ?”. Intuitively, the necessity notion expresses the
necessity (for the environment) to execute a certain block after a certain trace for not losing
completeness; i.e. still exploring all reachable states.

5.4.1 Strong Independence

Before formally defining our reduction technique, we characterise the kind of independencies over
which we seek to eliminate redundancy in the compressed semantics.

Definition 25. Two blocks b1 and b2 are sequentially independent (resp. recipe independent),
written b1 ∥s

b2 (resp. b1 ∥r
b2), when all labelled actions α1 ∈ b1 and α2 ∈ b2 are sequentially

independent (resp. recipe independent).
They are independent, written b1 ∥ b2 when b1 ∥s

b2 and b1 ∥r
b2. Otherwise they are

dependent, written b1 ⇌ b2.

Obviously, Lemma 1 tells us that independent blocks can be permuted in a trace without
affecting the executability and the result of executing that trace. But this notion is not very
strong and does not well match the notion of necessity we need since it considers fixed recipes,
which are irrelevant (in the end, only the derived messages matter) and can easily introduce
spurious dependencies.

Example 28 (Resuming Example 27). Let M1 = π1(⟨ok, w2⟩) in the block b1 = foc(in(c1, M1)).
rel.out(c1, w1) and M2 = ok in the block b2 = foc(in(c2, M2)).rel.out(c2, w2), we obtain two
blocks that are dependent (i.e. b1 ⇌ b2) because M1 uses w2. However, it is clearly not a
necessity to execute one block before the other. Indeed, it suffices to replace M1 by M ′

1 = ok
yielding same messages and execution but also removing dependencies (the induced block b′

1 =
foc(in(c1, ok)).rel.out(c1, w1) satisfies b′

1 ∥ b2).

106

5.4. Reduction

We now consider A′ = ({P1, P2}; Φ0) where Φ0 = {w 7→ ⟨n1, n2⟩}. Intuitively, we give to
the attacker the two names n1, n2 that P1 and P2 may output. Let M3 = w2 in the block b3 =
foc(in(c1, M3)).rel.out(c1, w1) and M4 = ok in the block b4 = foc(in(c2, M4)).rel.out(c2, w2),
we obtain two blocks that are also dependent (i.e. b3 ⇌ b4). However, it is not a necessity to
execute one block before the other since one can replace M3 by M ′

3 = π2(w) whilst preserving
executability and resulting frame. As for the previous example, replacing M3 by M ′

3 also makes
the previous dependency disappear.

This calls for a stronger notion of equivalence over traces, which allows permutations of inde-
pendent blocks but also changes of recipes that preserve messages. During these permutations,
we will also require that traces remain plausible, which is defined as follows: tr is plausible if for
any input in(c, M) such that tr = tr0.in(c, M).tr2 then M ∈ T (Σpub, W0) where W0 is the set
of all handles occurring in tr0. Given a block b, i.e. a sequence of the form foc(α).tr+.rel.tr−,
we denote by b+ (resp. b−) the part of b corresponding to the positive (resp. negative) phase,
i.e. b+ = α.tr+ (resp. b− = tr−). We note (b1 =E b2)Φ when b+

1 Φ =E b+
2 Φ and b−

1 = b−
2 .

Definition 26. Given a frame Φ, the relation ≡Φ is the smallest equivalence over plausible
compressed traces such that tr.b1.b2.tr′ ≡Φ tr.b2.b1.tr′ when b1 ∥ b2, and tr.b1.tr′ ≡Φ tr.b2.tr′ when
(b1 =E b2)Φ.

Example 29 (Resuming Example 28). Consider a compressed execution of the trace b2.b1 (where
Φ = {w1 7→ n1, w2 7→ n2}):

A b2.b1−−→c ({P ′
1{x1 7→ ok}, P ′

2{x2 7→ ok}}; Φ)

The two blocks we defined were dependent (i.e. b1 ⇌ b2) but b2.b1 ≡Φ b2.b′
1 ≡Φ b′

1.b2 witnessing
the fact that b1 and b2 can actually be swapped and no block is actually necessary for the other to
be executed. The traces b1.b2 and b2.b1 are thus redundant and exploring only one of them should
be sufficient.

Along the same lines as the proof of Lemma 1, we prove the following result.

Lemma 10. Let A and A′ be two initial configurations such that A tr−→sc A′. We have that
A tr′

−→sc A′ for any tr′ ≡Φ(A′) tr.

Proof. Thanks to Lemma 3, we have that ⌊A⌋ ⌊tr⌋−−→a (P; Φ). We first prove that tr′ can be
performed using −→a. For this, it suffices to establish the implication for each of the two gen-
erators of ≡Φ. The first case is given by Lemma 1. The second one is a common property of
(derivatives of) the applied π-calculus that follows from a simple observation of the transition
rules; i.e. executions rules and computations (⇓) are insensitive to the choice of representative
in =E-equivalence classes. Finally, we must prove that tr′ can be played using −→sc. Thanks to
initiality of A and (P;∅; Φ) we know that each block of tr starts when the configuration is initial
and after performing it we get another initial configuration. This is still true in ⌊A⌋ ⌊tr′⌋−−→a (P; Φ).
Finally, labels of blocks of tr′ ensure that a single process is used in a positive part of any block.

107

5. A Reduced Semantics: Theory

Having proved those two facts, we can easily show that each block of tr′ can be performed using
−→sc.

Note that a similar lemma based on the compressed semantics (instead of the semi-compressed
semantics) would not hold since ≡Φ notably allows to swap an improper block that was at the
end to another position whereas the compressed semantics allows improper blocks to be executed
at the end only.

5.4.2 Priority Order And Necessity

We now turn to defining our reduced semantics, which will achieve the elimination of redundancies
identified above by only executing specific representatives in equivalence classes modulo ≡Φ.
More precisely, we shall only execute minimal traces according to some order, which we introduce
next.

Definition 27. We consider an arbitrary order ≺ on blocks that is insensitive to recipes and
handles, and such that independent blocks are always strictly ordered in one way or the other.
We finally define ≺lex on compressed traces as the lexicographic extension of ≺ on blocks.

In order to incrementally build representatives that are minimal with respect to ≺lex, we
define a predicate that expresses whether a block b should be authorised after a given trace tr.
Intuitively, this is the case only when, for any block b′ ≻ b in tr (that is to say, executing b would
violate the priority order), dependencies forbid to move b before b′ (meaning that violating the
priority order is a necessity). We define this with recipe dependencies first, then quantify over
all recipes to capture message dependencies.

Definition 28 (Weak and Strong Authorization). A block b is weakly authorised after tr, noted
tr ▷ b, when tr = ϵ; or tr = tr0.b0 and either (i) b ⇌ b0 or (ii) b ∥ b0, b0 ≺ b, and tr0 ▷ b.
A block b is strongly authorised after tr, Φ, noted (tr, Φ) ▶ b, when tr ▷ b′ for all b′ satisfying
(b′ =E b)Φ.

The strong authorised predicate is the formal counterpart of the intuitive notion of necessity
we sketched before.

Example 30 (Resuming Example 29). Assuming that b1 ≺ b2, one has (b1, Φ) ▶ b2 but (b2, Φ) ̸▶ b1

because b2 ̸ ▷ b′
1 and (b1 =E b′

1)Φ. In other words, b2.b1 is considered redundant and will not be
explored by the reduced semantics since b1.b2 has priority over the other interleaving and leads
to the same state.

5.4.3 Reduced Semantics

We finally define −→r as the least relation such that:

Init
A ϵ−→r A

Block A tr−→r (P;∅; Φ) (P;∅; Φ) b−→c A′

A tr.b−−→r A′ if (tr, Φ) ▶ b

108

5.4. Reduction

Our reduced semantics only applies to initial configurations: otherwise, no block can be per-
formed. This is not restrictive since we can, without loss of generality, pre-execute unobservable
and output actions that may occur at top level.

Similarly to compression, we also introduce the semi-reduced semantics noted •−→sr that is
defined as the reduced semantics but based on the semi-compressed semantics •−→sc instead of the
compressed semantics •−→c.

Example 31 (Resuming Example 27). We now consider the configuration A = ({P1, P2, P3}; ∅)
(remind that Pi = in(ci, xi).out(ci, ni).P ′

i and Pi’s are positive). We assume that blocks using
only channel ci are smaller w.r.t. ≺ than blocks using only channel cj when j > i. We now
illustrate and characterise the redundant traces that are not explored by the reduced semantics
but that are explored by the (semi-)compressed semantics. To conduct this analysis, we shall
group traces together depending on the interleaving of the first blocks of P1, P2, P3 they follow.
We note those blocks b1, b2, b3 where bi = foc(in(ci, Mi)).rel.out(ci, wi). There are 6 possible
interleavings of those 3 blocks that are depicted in Figure 5.5. Note that many different traces
can follow a given single interleaving since many different recipes can be chosen for M1, M2 and
M3. Moreover, all those traces will be explored by the (semi-)compressed semantics. We now
illustrate that, thanks to the authorised predicate (•, •) ▶ •, a strict subset of those traces are
actually explored by the reduced semantics.

•

• • •

• • • • • •

• • • • • •

b1 b2 b3

b2 b3 b1 b3
b1

b2

b3 b2 b3 b1 b2 b1

Figure 5.5 Interleavings with 3 processes in parallel

We informally depict the necessity relation by blue and red, dashed arrows. For instance,
traces following the interleaving b1.b3.b2 will be explored by the reduced semantics only if b3 is
necessary to b2, i.e. for any (b′

2 =E b2)Φ where Φ is the resulting frame, one has b′
2 ⇌ b3. Indeed,

(b1.b3, Φ) ▶ b2 implies that for any (b′
2 =E b2)Φ, one has b1.b3 ▷ b′

2. But since b2 ≺ b3 and so
b′

2 ≺ b3, the latter entails b′
2 ⇌ b3. We represent this necessary condition by the left-most arrow

(in blue). Note the many other arrows (in blue) corresponding to similar conditions.
Now, on the interleaving b3.b1.b2, the authorised predicate (b3.b1, Φ) ▶ b2 requires that either

b1 or b3 is necessary to b2 represented by the dashed, red 2-arrow. Intuitively, the latter condition
expresses that b2 is only allowed to come after b3 if it depends on it, possibly indirectly through
b1 (note that b1 should also depends on b3 as illustrated by the blue arrow).

Overall, the reduced semantics imposes many such conditions and does not explore the many
traces violating them.

109

5. A Reduced Semantics: Theory

Example 32. We consider processes Ri := in(ci, x).if x = ok then out(ci, ok) where ok is a
public constant, and then consider a parallel composition of n such processes: Pn := Π{Ri}#

1≤i≤n.
Thanks to compression, we will only consider traces made of blocks, and obtain a first exponential
reduction of the state space. However, contrary to the case of a replicated process (see Example 25
in Subsection 5.3.1), we still have many interleavings to consider – blocks can be interleaved in
all the possible ways. Our reduced semantics also cuts down these interleavings on this example.
Assume that our order ≺ prioritises blocks on ci over those on cj when i < j, and consider
a trace starting with foc(in(cj , Mj)).rel.out(cj , wj). Trying to continue the exploration with a
block on ci with i < j, the authorisation predicate (•, •) ▶ • will impose that there is a dependency
between the block on ci and the previous one on cj. In this case it must be a data dependency:
the recipe of the message passed as input on ci must make use of the previous output to derive
ok. Since ok is a public constant, it is possible to derive it without using any previous output and
thus the block on ci cannot be authorised by (•, •) ▶ •. Thus, on this simple example, the reduced
semantics will not explore any trace where a block on ci is performed after one on cj with i < j.

If one forgets about branching due to choices of recipes, there are (2n)!/2n different interleav-
ings of size 2n (i.e., containing 2n observable actions) in the regular semantics. In the compressed
semantics this number goes down to n!. Finally, in the reduced semantics, there is only one trace
of size 2n.

5.4.4 Reachability

An easy induction on the compressed trace tr allows us to map an execution w.r.t. the reduced
semantics to an execution w.r.t. the compressed semantics.

Lemma 11. For any configurations A and A′, A tr−→r A′ implies A tr−→c A′ and A tr−→sr A′ implies
A tr−→sc A′.

Next, we show that our reduced semantics only explores specific representatives. Given a
frame Φ, a plausible trace tr is Φ-minimal if it is minimal (w.r.t. ≺lex) in its equivalence class
modulo ≡Φ.

Lemma 12. Let A be an initial configuration and A′ = (P;∅; Φ) be a configuration such that
A tr−→c A′ (resp. A tr−→sc A′). We have that tr is Φ-minimal if, and only if, A tr−→r A′ (resp.
A tr−→sr A′).

Proof. We first deal with the semi-compressed and semi-reduced semantics case and then show
that the compressed and reduced case follows from the former.

(Semi-compressed and semi-reduced case) Let A and (P;∅; Φ) be two configurations such
that A tr−→sc (P;∅; Φ).

(⇒) We first show that if tr is Φ-minimal, then A tr−→sr (P;∅; Φ) by induction on the trace tr.
The base case, i.e. tr = ϵ is straightforward. Now, assume that tr = tr0.b for some block b and
A tr0−→sc (P0;∅; Φ0) b−→sc A′. Since tr is Φ-minimal, we also have that tr0 is Φ0-minimal and thus
we obtain by induction hypothesis that A tr0−→sr (P0;∅; Φ0). To conclude, it remains to show that

110

5.4. Reduction

tr0 ▷ b′ for any b′ such that (b′ =E b)Φ0. Assume that it is not the case, this means that for some
b′ such that (b =E b′)Φ0, the trace tr0 can be written tr′

0.b0.bn with:

bi ∥ b′ and bi ≺ b′ for any i > 0, as well as b0 ∥ b′ and b′ ≺ b0.

Let tr′ = tr′
0.b′.b0 . . . bn. We have tr′ ≺lex tr and tr′ ≡Φ tr0.b′, which contradicts the Φ-minimality

of tr.
(⇐) Now, we assume that tr is not Φ-minimal, and we want to establish that tr cannot be

executed in the semi-reduced semantics. Let trm be a Φ-minimal trace of the equivalence class
of tr. We have in particular trm ≡Φ tr and trm ≺lex tr. Now, we let trs

m (resp. trs) be the
“trace of labelled skeletons” associated to trm (resp. tr). Let trs

0 be the longest common prefix
of trs

m and trs, and tr0 (resp. tr′
0) be the corresponding prefix of tr (resp. trm). We have a

decomposition of the form tr = tr0.b.tr1 and trm = tr′
0.bm.tr′

1 with (tr0 =E tr′
0)Φ and bm ≺ b.

Again, since when dropping recipes, the relation ≡Φ only swaps sequentially independent labelled
skeletons, block bm must have a counterpart in tr and, more precisely, in tr1. We thus have a
more precise decomposition of tr: tr = tr0.b.tr11.b′

m.tr12 such that (b′
m =E bm)Φ.

We now show that b′
m cannot be executed after tr0.b.tr11 in the semi-reduced semantics

(assuming that the trace has been executed so far in the reduced semantics). In other words, we
show that tr0.b.tr11 ▷ b′

m does not hold. We have seen that (b′
m =E bm)Φ and bm ≺ b so it suffices

to show:

bm ∥ bi for any bi ∈ b.tr11

First, we prove bi ∥r
bm (i.e. they are recipe independent) for any bi ∈ b.tr11. This comes from

the fact that tr′
0.bm.tr′

1 = trm is plausible, and thus the inputs of bm only use handles introduced
in tr′

0 which are the same as those introduced in tr0. In particular, the inputs of bm do not rely on
the handles introduced in b.tr11. Similarly, using the fact that tr0.b.tr11.b′

m.tr12 = tr is plausible
and b′−

m = b−
m, we deduce that handles of outputs of bm are not used in b.tr11.

Second, we show that bi ∥s
bm (i.e. they are sequentially independent) for any bi ∈ b.tr11.

For this, we remark that for any traces tr1.b.tr2 ≡Φ tr′
1.b′.tr′

2 such that (b =E b′)Φ, we have that
b ∥s

bs for all bs ∈ skl(tr′
1)\skl(tr1) where skl(tr) is the multiset of labelled skeletons of blocks of

tr, and \ should be read as multiset substraction. This can be easily shown by induction on the
relation ≡Φ. By applying this helping remark to tr0.b′

m.tr′
2 ≡Φ tr0.b.tr11.b′

m.tr12, we obtain the
required conclusion: b′

m ∥s
b.tr11 and thus bm ∥s

b.tr11.

(Compressed and reduced case) We consider an execution A tr−→c (P; Φ) = A′.
(⇒) We suppose that tr is Φ-minimal. Even if it means modifying the resulting multiset, we

also have an execution A tr′
−→sc (Q; Φ) = A′

s for some Q. Indeed, it suffices to replace the final
potential rule Release⊥ by Releases followed by Neg (for removing the released null process).
Applying the above result, we obtain an execution A tr′

−→sr A′
s. Now it suffices to revert the

potential replacement made above yielding A tr−→r A′.
(⇐) We suppose that A tr−→r A′. Applying the same modification explained above, we obtain

an execution A tr′
−→sr (Q; Φ) for some Q. Invoking the above result, we deduce that tr is Φ-

minimal.

111

5. A Reduced Semantics: Theory

Remark 8 (Reachability properties verified with the reduced semantics). We now characterise
reachability predicates that are preserved by the reduced semantics the same way it was done for
the compressed semantics (see Remark 6). The semi-reduced semantics is sound and complete
for reachable predicates that are:

• monotone (i.e. if an execution A tr−→ (P; Φ) satisfies the predicate then so does A tr.tr′
−−→

(Q; Φ ∪ Ψ)), and,

• stable by =E (i.e. if A tr−→ (P; Φ) satisfies the predicate then so does A tr′
−→ (Q; Φ′) if

trΦ =E tr′Φ′),

• invariant by permutations of actions (i.e. if A tr−→ B satisfies the predicate for some con-
figurations A, B and a trace tr then for any trace tr′ equals to tr up to a permutation of
actions, any execution A tr′

−→ B must satisfy the predicate).

The above simply follows from lemmas 11 and 12.
For instance, secrecy is monotone, stable by =E, and, invariant by permutations.

5.4.5 Equivalence

The reduced semantics induces an equivalence ≈r that we define similarly to the compressed one,
and we then establish its soundness and completeness w.r.t. ≈c.

Definition 29. Let A and B be two configurations. We say that A ⊑r B (resp. A ⊑sr B)
when, for every A tr−→r A′ (resp. A tr−→sr A′) such that bc(tr) ∩ fc(B) = ∅, there exists B tr−→r B′

(resp. B tr−→sr B′) such that Φ(A′) ∼ Φ(B′). They are reduced trace equivalent, denoted A ≈r B,
if A ⊑r B and B ⊑r A. They are semi-reduced trace equivalent, denoted A ≈sr B, if A ⊑sr B

and B ⊑sr A.

We first prove that semi-reduced trace equivalence coincides with the semi-compressed trace
equivalence. To do so, we first show that ≡Φ is stable by static equivalence as stated and proved
next.

Proposition 13. For any static equivalent frames Φ ∼ Ψ and compressed traces tr and tr′, we
have that tr ≡Φ tr′ if, and only if, tr ≡Ψ tr′.

Proof. The two implications are symmetric, we thus only show one implication. Considering
the two generators of ≡Φ, the only non-trivial step is to show that tr.b1.tr′ ≡Ψ tr.b2.tr′ when
(b1 =E b2)Φ. But the latter condition, together with Φ ∼ Ψ, yields (b1 =E b2)Ψ which allows us
to conclude.

Then we need to show that the the semi-compressed trace equivalence restricted to complete
executions actually coincides with the semi-compressed trace equivalence.

Lemma 13. Let A and B be two action-deterministic configurations. If for any complete execu-
tion of the form A tr−→sc (P;∅; Φ) with bc(tr)∩fc(B) = ∅, there exists an execution B tr−→sc (Q;∅; Ψ)
such that Φ ∼ Ψ, then A ⊑sc B.

112

5.4. Reduction

Proof. Let A and B be two action-deterministic configurations, and assume that for any complete
execution A tr−→sc (P;∅; Φ) with bc(tr) ∩ fc(B) = ∅, there exists an execution B tr−→sc (Q;∅; Ψ)
such that Φ ∼ Ψ. Now, we have to establish that A ⊑sc B.

Let (P ′;∅; Φ′) be a configuration such that A tr′
−→sc (P ′;∅; Φ′). First, we can complete this

execution to reach a process (P;∅; Φ) such that each process P ∈ P is replicated, i.e.

A tr′
−→sc (P ′;∅; Φ′) tr+

−−→sc (P;∅; Φ) is a complete execution.

Without loss of generality, we can choose tr+ so that it satisfies bc(tr+)∩fc(B) = ∅. By hypothesis,
we know that there exists an execution B tr′tr+

−−−→sc (Q;∅; Ψ) such that Φ ∼ Ψ. Let B′ be the
configuration reached along this execution after the execution of tr′ and Ψ′ its frame. Similarly
to the proof of Lemma 7, we prove that Φ ∼ Ψ implies Φ′ ∼ Ψ′.

Lemma 14. Let A and B be two initial, action-deterministic configurations.

A ≈sc B if, and only if, A ≈sr B

Proof. We prove the two directions separately.

(⇒) A ⊑sc B implies A ⊑sr B. Consider an execution of the form A tr−→sr (P;∅; Φ) with
bc(tr) ∩ fc(B) = ∅. Using Lemma 11, we know that A tr−→sc (P;∅; Φ), and Lemma 12 tells us that
tr is Φ-minimal. Since A ⊑sc B, we deduce that there exists (Q;∅; Ψ) such that:

B tr−→sc (Q;∅; Ψ) and Φ ∼ Ψ.

Now, by Proposition 13 we obtain that tr is also Ψ-minimal, and so Lemma 12 tells us that the
execution of tr by B can also be performed in the semi-reduced semantics.

(⇐) A ⊑sr B implies A ⊑sc B. Relying on Lemma 13, it is actually sufficient to show that for any
complete execution A tr−→sc (P;∅; Φ) with bc(tr)∩ fc(B) = ∅, there exists an execution of the form
B tr−→sc (Q;∅; Ψ) such that Φ ∼ Ψ. We thus consider a complete execution A tr−→sc (P;∅; Φ) = A′

such that bc(tr) ∩ fc(B) = ∅. Note that since the given execution is complete, we have that A′ is
initial (this will be crucial to invoke Lemma 12). Let tr′ be a Φ-minimal trace in the equivalence
class of tr. Applying the Lemma 12, we obtain an execution A tr′

−→sr A′. By hypothesis, there
must be some B′ such that:

B tr′
−→sr B′ and Φ(B′) ∼ Φ.

Using Lemma 11, we obtain the same execution in the semi-compressed semantics. Finally, by
Proposition 13 we obtain tr′ ≡Φ(B′) tr, and by Lemma 10 we obtain:

B tr−→sc B′ and Φ(B′) ∼ Φ

concluding the proof.

Finally, we prove that the reduced trace equivalence coincides with the semi-reduced trace
equivalence implying, as a corollary (stated in Section 5.5), that the reduced trace equivalence
coincides with the regular trace equivalence.

113

5. A Reduced Semantics: Theory

Lemma 15. Let A and B be two initial action-deterministic configurations.

A ≈sr B if, and only, if, A ≈r B

Proof. The direction (⇒) is easy: it suffices to distinguish the case of proper executions from
improper ones and directly apply the hypothesis. We focus on (⇐). Assume that A ⊑r B. Let
A′ be such that A tr−→sr A′ for some tr such that bc(tr) ∩ fc(B) = ∅. Lemma 11 tells us that
A tr−→sc A′, and thanks to Lemma 12, we have that tr is Φ(A′)-minimal.

Let b1, . . . , bk be the improper blocks that occur in tr. We have that there exist tr0, tr1, . . . , trk

made of proper blocks such that tr = tr0.b1.tr1.b2. . . . trk−1.bk.trk. We have that b1, . . . , bk are
pairwise independent, and also:

tr ≡Φ(A′) tr0.tr1 . . . trk.b1.bk

Because (i) tri are proper traces, (ii) there are no dependencies between bi and trj for i < j,
and (iii) the bi do not have any output, we have that A tr0.tr1.trk−−−−−−−→r A0, and also that:

A tr0.b1−−−→r A1, A tr0.tr1.b2−−−−−→r A2, . . ., A tr0.tr1.trk−1.bk−−−−−−−−−−→r Ak.

Thanks to our hypothesis, we deduce that there exist B0, B1, . . . , Bk such that B tr0.tr1.trk−−−−−−−→r B0

with Φ(A0) ∼ Φ(B0), and also that:

B tr0.b1−−−→r B1, B tr0.tr1.b2−−−−−→r B2, . . ., B tr0.tr1.trk−1.bk−−−−−−−−−−→r Bk.

We deduce that there exists B′ such that B tr0.tr1trk.b1.bk−−−−−−−−−−−−→sc B′. Next, we observe that
Φ(A′) = Φ(A0) ∼ Φ(B0) = Φ(B′). From this we conclude tr ≡Φ(B′) tr0.tr1 . . . trk.b1.bk, hence
B tr−→sc B′ by Lemma 10. Since tr is Φ(A′)-minimal it is also Φ(B′)-minimal (by Proposition 13),
and thus B tr−→sr B′ by Lemma 12.

5.5 Main Result and Discussions

The main theorem of this chapter states that the –highly optimised– reduced semantics can be
used instead of the regular semantics to verify trace equivalence between action-deterministic
configurations. In other words, we finally obtain that the reduced trace equivalence coincides
with the trace equivalence for action-deterministic configurations having same skeletons.

Theorem 3. Let A and B be two initial action-deterministic configurations such that skl(A) =
skl(B). It holds that:

A ≈ B if, and only, if, ⌈A⌉ ≈r ⌈B⌉

Proof. It directly follows from Lemma 14, Lemma 15 and Corollary 2.

The practical implications of this theorem are addressed in Chapter 6. In the remaining of
this section, we discuss some theoretical aspects of the refined semantics we developed in this
chapter and some possible future work.

114

5.5. Main Result and Discussions

Discussion on Compression vs. Recursion. We did not consider recursive processes in
this chapter. There are fundamental reasons for that which we explain now.

First, remark that considering the unfolding of recursive processes as part of the internal
reduction is not an option. Indeed, in such a case, infinite executions induced by recursive
processes could make the compression get stuck in a negative phase (e.g. with recX.out(c, ok).X)
or a positive phase (e.g. with recX.in(c, ok).X) without the ability to explore other processes
in the multiset and thus losing completeness for reachability (e.g. losing Lemma 4). Therefore,
recursive processes shall be given an action (not necessarily observable) and thus a skeleton.
Such a skeleton should be different from the already defined ones since the compression rule
for recursive processes (to be defined) must be different from the others (otherwise, the above
problem arises again). But then, as stated by the Strong Symmetry Lemma (i.e. Lemma 2),
the attacker should be able to deduce skeletons of active processes from initial skeletons and
performed observable actions. This cannot be enforced in the general case; for instance, the
attacker has no way to distinguish P = recX.out(c, ok).X from out(c, ok).P (essentially because
he has no way to distinguish out(c, ok).0 from recX.out(c, ok).0). One could come up with
restrictions on the class of processes we deal with to avoid this problem. However, in our opinion,
those classes are really restrictive and would not reflect typical uses of recursion mainly because
those classes would make the unfoldings of recursion observable to the attacker.

Towards dropping the action-deterministic assumption. It would be interesting to
support processes that are not action-deterministic, which are commonplace when analysing
e.g. anonymity or unlinkability scenarios. We tried to adapt our POR techniques towards this
goal but encountered very difficult challenges that we explain now. We leave the task of address-
ing those challenges for future work.

For this discussion, we focus on the compression since challenges already arise for this first
technique and we leave aside the design choices and the proof technique we followed in this
chapter (e.g. annotations, the Strong Symmetry Lemma). What we seek for is a class of swaps
of actions that can systematically be done for executions of processes that are not necessarily
action-deterministic. The next step would be to design an exploration strategy in the flavor of
the compression strategy that could then be proved complete thanks to those swaps.

Let us illustrate problems one encounters when seeking for possible swaps between output and
input. We start with a minimal example abstracting away data to focus on the action’s nature:
P l

1 = inc | oute.ind and P r
1 = ind | oute.inc. Those two processes are not trace equivalent

(i.e. ({P l
1}; ∅) ̸≈ ({P r

1 }; ∅)) and a trace witnessing this would be inc (or ind). However, if one
imposes a strategy exploring outputs in priority, as the compression does, one would only explore
traces starting by the output oute. But there is no witness of non-equivalence starting with oute

since after this output the two processes are structurally equal (i.e. inc | ind).
One could argue that there is a more direct way to detect the non-equivalence in the former

example; indeed the immediately available actions are not the same in P l
1 and P r

1 . However,
the same problem arises for slightly more complex witnesses that require to “violate” the simple
strategy of prioritising outputs for many actions. For instance, consider the following processes

115

5. A Reduced Semantics: Theory

P l
2 = inα.A | oute.inα.B and P r

2 = inα.B | oute.inα.A such that A and B are not equivalent
but for “long” witnesses; e.g. A made of k inputs (k can be chosen arbitrarily) followed by
outf while B made of the same inputs but followed by outg. Again, P l

2 and P r
2 are not trace

equivalent. This example shows that even when one verifies that the actions immediately enabled
are the same on both sides, some witnesses can be found only by violating the simple strategy
aforementioned for an arbitrary long time (because k can be chosen arbitrary large).

The crux of the problem is that the backward swap (i.e. moving towards the beginning) of
the action oute with the other actions (i.e. inc, ine in the first example and inα in the second
example) do not violate any sequential dependency nor data dependency but are nevertheless
impossible for a reason that only arises in the non-deterministic case. This novel reason is that
performing the action oute makes available an action that is related to the actions to be swapped
(either they are dependent or, worse, they are equal). Note that there actually are other kinds
of interactions preventing swaps that we do not describe here. Those new entangled interactions
between actions to be swapped caused by the non-determinism are hard to predict and analyse.
In such cases, the strategy cannot impose any specific ordering since it is not certain that all the
necessary swaps, which are needed in order to prove that we do not lose completeness by not
exploring other interleavings, are all possible and not prevented by one of the above reasons.

Other Directions for Future Work. First, we could investigate the role of the particular
choice of the order ≺, to determine heuristics for maximising the impact of reduction. In partic-
ular, it could be chosen on a case-by-case basis after having analysed the shape of the processes
to be verified.

Further, one may adapt our treatment of replication to bounded replication to obtain a first
symmetry elimination scheme, which should provide a significant optimisation when studying
security protocols with several (but finitely many) sessions. More precisely, if one wants to
analyse n sessions of a process P , he may consider the bounded replication !ac,n

[n]P that intuitively
represents a standard replication !ac,nP that can be unfolded at most n times. The benefit stems
from the fact that such a bounded replication will be better optimised using our POR techniques
than the parallel composition Π1≤i≤nP .

Finally, it is certainly possible to leverage our POR techniques for processes that are not fully
action-deterministic but that feature phases, some of them being action-deterministic. This is
certainly useful e.g. for improving the verification of e-voting protocols. For instance, in presence
of strong phases (or synchronisation barriers) as defined in [BS16], we conjecture that our POR
techniques can be leveraged inside action-deterministic phases without losing completeness. We
claim that the same can be achieved with weak phases (e.g. defined in [DRS08]) provided that
the semantics considers actions produced when moving to next phases as observable for the
attacker.

116

Chapter 6

Putting Reduced Semantics into Practice
and Integration in Apte

In the previous chapter, we devised optimised semantics that only explore a selection of interleav-
ings according to some execution strategy (i.e. compression, reduction). We notably defined the
reduced semantics (see Subsection 5.4.3) combining our two POR techniques: compression and
reduction. We eventually obtained the main theorem of the previous chapter (i.e. Theorem 3)
that states that this reduced semantics can be used instead of the regular semantics to verify the
trace equivalence of action-deterministic configurations.

We now seek to put this reduced semantics into practice. Since we target methods and
tools dealing with bounded number of sessions only, we must restrict the class of configurations
(by comparison with the previous chapter). We have chosen to work with simple configurations
that lie in a strict sub-class of action-deterministic configurations (without replication) satisfying
syntactical constraints that are easy to verify. We define this class and the instance of the model
we shall work with in Section 6.1.

Then, we show how the compressed and the reduced semantics can be combined with con-
straint solving-based methods (Section 6.2). We shall define a (classic) symbolic semantics,
restrict it to follow the compressed strategy and finally show how to refine it further by translat-
ing the authorised predicate into a new type of constraints. We also prove that the soundness
and completeness results on the induced trace equivalences can be lifted to the symbolic setting
easily. All those steps involve a high level of technicalities but do not represent a key contribution
in themselves. However, the fact that it is possible to translate quite easily our POR techniques
from a regular, concrete semantics to a symbolic semantics validates our design choices.

Next, we show how we followed this approach to integrate our POR techniques in the tool Apte
(Section 6.3). More interestingly, we also prove the soundness of our integration; i.e. we show
that the modified version of Apte that uses our optimised semantics still decides trace equivalence
for simple processes. Finally, we provide benchmarks showing dramatic speedups brought by our
optimised semantics (Section 6.4) before concluding with future works (Section 6.5).

117

6. Putting Reduced Semantics into Practice and Integration in Apte

6.1 Instantiation of the Model and Class of Processes

In this chapter, we work with a strict sub-class of action-deterministic processes we considered
in the previous chapter (see Hypothesis 1). We also consider an instantiation of the term-algebra
and the semantics we used in the previous chapter. We now formally define those instantiations
and the class of processes we shall work with.

Term Algebra. We consider an arbitrary term-algebra made of an arbitrary signature Σ
and an equational theory =E. However, contrary to the previous chapter, we need to restrict
the computation relations • ⇓ • we can deal with to be computation relations induced by an
extension ≡Ed

of =E as defined in Chapter 2, Subsection 2.3.2. Remind that such computation
relations are induced by equational theories ≡Ed

over terms: a term t computes a messages u

(i.e. t ⇓ u) when t ≡Ed
u and t is valid (i.e. for all all sub-term t′ of t, there exists a message u′

such that t′ ≡Ed
u′). We note valid(t) when t is valid.

This restriction is imposed by the constraint solving approach where computations (whether
it leads to a success or a failure) shall be modelled by (dis)equality constraints. Obviously this
is in line with the theory behind the tool Apte we will discuss later in Section 6.3.

Semantics. Similarly to the previous chapter, we consider the internal reduction induced by
the relation R = Rtest ∪ Rout (see Definition 11 in Section 4.1). Remind that this internal
reduction evaluates conditionals (Rtest) and removes blocked outputs (Rout) greedily.

Class of Configurations. In this chapter, we eventually define a symbolic semantics based
on the constraint solving framework notably featuring deducibility and (dis)equality constraints.
While this will be sufficient to represent equality over terms, it does not allow to describe arbitrary
computations in let constructs (e.g. let x = sdec(y, z); in . . .). For this reason, we must restrict
ourselves to use conditionals (i.e. let constructs) containing only computations corresponding to
equality tests (e.g. let x = eq(y, z) in . . .). We thus introduce the following notation to ease the
readability of the further developments.

Notation 2. For some processes P, Q with x /∈ vars(P), and terms t1, t2, we note if t1 =
t2 then P else Q the process let x = eq(t1, t2) in P else Q where eq is described in Example 11
(in Subsection 2.3.2).

In the class of processes we eventually define, we shall only consider conditionals of the form
if t1 = t2 then P else Q. This is in line with restrictions made in the tool Apte that we eventually
leverage.

We consider the fragment of simple processes without replication and recursion built on basic
processes following [CCD13a]. A basic process represents a party in a protocol, which may se-
quentially perform actions such as waiting for a message, checking equality between terms (using
the construct introduced above), or outputting a message. Then, a simple process is a parallel

118

6.2. Combining Compression and Reduction with Constraint Solving

composition of such basic processes playing on distinct channels. The simple configurations form
a sub-class of action-deterministic configurations based on a simple syntactic criterion.

Definition 30 (Class of configurations). The set of basic processes on c ∈ C is defined using
the following grammar (where t, t1, t2 ∈ T (Σ, N ∪ X) and x ∈ X):

P, Q := 0 null
| if t1 = t2 then P else Q conditional
| in(c, x).P input
| out(c, t).P output

A simple process P = {P1, . . . , Pn}# is a multiset of basic processes Pi on pairwise distinct chan-
nels ci. We consider the class of simple configurations; i.e. configurations whose first components
are simple ground processes.

Example 33. The Private Authentication protocol defined in Subsection 3.3.2, which will be our
running example in this chapter, lies in our class: P (skA, pk(skb)), Q(skB, pk(skA)), Q0(skB, pk(skA))
are basic processes, P is a simple process and (P; Φ0) is a simple configuration.

We do not consider recursion and replication since the constraint solving approach is not
compatible with unbounded executions. Additionally, we dot not consider creation of names.
The latter is without loss of generality though, because they can be replaced by private constants
as already explained in Section 5.1. We do not consider parallel composition either to ease the
presentation and the (already) complex proofs. We let the extension of our results to a larger
class of processes featuring parallel compositions as future work.

Altogether, the instance of the semantics for the class of configurations under consideration
(see Definition 30) is depicted in Figure 6.1. Note that it can be seen as an instantiation of the
semantics we considered in the previous chapter (see Section 5.1) for a sub-class of configurations.

In ({in(c, x).P} ⊎ P; Φ) in(c, R)−−−−→ ({P{x 7→ u}} ⊎ P ; Φ)
where R is a recipe such that RΦ ⇓ u

Out ({out(c, t).P} ⊎ P; Φ) out(c, w)−−−−−→ ({P} ⊎ P ; Φ ⊎ {w 7→ u})
where w is a fresh variable and t ⇓ u

Figure 6.1 Instance of the Semantics for Chapter 6

6.2 Combining Compression and Reduction with Constraint Solving

In this section, we propose a symbolic semantics that we iteratively refine in order to embed our
two POR techniques.

119

6. Putting Reduced Semantics into Practice and Integration in Apte

6.2.1 Symbolic Semantics

We define a symbolic semantics following, e.g. [MS01, Bau05]. Such a symbolic semantics avoids
potentially infinite branching of concrete semantics due to inputs from the environment. Cor-
rectness is maintained by associating with each process a set of constraints on terms.

Constraint systems

Following the notations of [Bau05], we consider a new set X 2 of second-order variables, denoted
by X, Y , etc. We shall use those variables to abstract over recipes. We denote by vars2(o)
the set of free second-order variables of an object o, typically a constraint system. To prevent
ambiguities, we shall use vars1(•) instead of vars(•) for free first-order variables.

Definition 31 (constraint system). We consider three kinds of constraints:

D ⊢?
X x u =? v u ̸=? v

where D ⊆ W, X ∈ X 2, x ∈ X and u, v ∈ T (Σ, N ∪ X). We call symbolic frame (noted Φ, Ψ)
substitutions from W to terms. A constraint system C = (Φ; S) consists of a symbolic frame Φ,
and a set of constraints S.

The first kind of constraint expresses that a second-order variable X has to be instantiated
by a recipe that uses only variables from a certain set D, and that the obtained term should be
x. The handles in D represent terms that have been previously outputted by the process.

We are not interested in general constraint systems, but only consider constraint systems
that are well-formed. Given a constraint system C, we define a dependency order on first-order
variables in vars1(C) ∩ X by declaring that x depends on y if, and only if, S contains a deduction
constraint D ⊢?

X x with y ∈ vars1(Φ(D)). A constraint system C is well-formed if:

• the dependency relationship is acyclic, and

• for every x ∈ vars1(C) ∩ X (resp. X ∈ vars2(C)) there is a unique constraint D ⊢?
X x in S.

For X ∈ vars2(C), we write DC(X) for the domain D ⊆ W of the deduction constraint D ⊢?
X x

associated to X in C.

Example 34 (Continuing Example 33). Let Φ = Φ0⊎{w3 7→ aenc(⟨π2(N), ⟨nb, pk(skb)⟩⟩, pk(ska))}
with N = adec(y, skb), and S be a set containing two constraints:

{w0, w1, w2} ⊢?
Y y and π2(N) =? pk(ska).

We have that C = (Φ; S) is a well-formed constraint system. There is only one first-order variable
y ∈ vars1(C) ∩ X , and it does not occur in vars1(Φ({w0, w1, w2})), which is empty. Moreover,
there is indeed a unique constraint that introduces y.

Our notion of well-formed constraint systems is in line with what is used, e.g. in [MS01, Bau05].
We use a simpler variant here that is sufficient for our purpose.

120

6.2. Combining Compression and Reduction with Constraint Solving

Definition 32 (solution). A solution of a constraint system C = (Φ; S) is a substitution θ such
that dom(θ) = vars2(C), and Xθ ∈ T (Σpub, DC(X)) for any X ∈ dom(θ). Moreover, we require
that there exists a ground substitution λ : vars1(C) → T (Σc, N) such that:

• for every D ⊢?
X x in S, we have (Xθ)(Φλ) ⇓ xλ;

• for every u =? v in S, we have uλ ≡Ed
vλ, valid(uλ), and valid(vλ); and

• for every u ̸=? v in S, we have uλ ̸≡Ed
vλ, or ¬valid(uλ), or ¬valid(vλ).

Moreover, we require that all the terms occurring in Φλ are valid. The set of solutions of a
constraint system C is denoted Sol(C). Since we consider constraint systems that are well-formed,
the substitution λ is unique modulo =E given θ ∈ Sol(C). We denote it by λθ when C is clear
from the context.

The validity condition on Φλ ensures that all outputted terms actually compute messages.
Indeed, we have by definition of ⇓ (see Section 6.1) that for any term t, t ⇓ u for some u implies
that t must be valid. Similarly, an equality test holds only when it relates terms that compute
the same message implying that the related terms must be valid as well.

Example 35. Consider again the constraint system C given in Example 34. We have that
θ = {Y 7→ aenc(⟨w1, w1⟩, w2)} is a solution of C. Its associated first-order solution is λθ = {y 7→
aenc(⟨pk(ska), pk(ska)⟩, pk(skb))}.

Symbolic processes: syntax and semantics

Given a simple configuration (P; Φ), we compute the constraint systems capturing its possible
executions, starting from the symbolic configuration (P; Φ; ∅). Note that we are now manipu-
lating processes that are not ground anymore, but may contain free variables. For this reason,
symbolic configurations are no longer subject to the internal reduction ;R. Indeed, symbolic
configurations represent different (concrete) configurations that could trigger different internal
reduction rules. The semantics we eventually define features additional rules for conditionals
and blocked outputs. They are the counterpart of internal reductions.

Definition 33 (Symbolic Configuration). A symbolic configuration is a tuple (P; Φ; S) where
(Φ; S) is a constraint system, vars1(P) ⊆ (vars1(S) ∩ X) and P is a simple process.

When considering a symbolic configuration (P; Φ; S) and one of its solutions θ, we may write
A = (Pθ; Φλθ ⇓) the (concrete) configuration associated that is not necessarily in normal form
w.r.t. ;R. The notation Φλθ ⇓ denotes a frame Ψ (we may also note Φλ ⇓ Ψ) that is formally
defined as follows: Ψ = {w 7→ u | w ∈ dom(Φ), wΦ ⇓ u}. Note that computations never fail by
definition of a solution (i.e. terms in Φλ must be valid). Remark also that there may be more
than one frame Ψ such that Φλ ⇓ Ψ but they all are statically equivalent because equal modulo
=E. When the choice of representative in ∼-equivalence class or in =E-class is unimportant, we

121

6. Putting Reduced Semantics into Practice and Integration in Apte

In ({in(c, y).P} ⊎ P; Φ; S) in(c,X)Z=====⇒ ({P{y 7→ x}} ⊎ P; Φ; S ∪ {dom(Φ) ⊢?
X x})

where X (resp. x) is a fresh second-order (resp. first-order) variable

Out ({out(c, t).P} ⊎ P; Φ; S) out(c,w)Z=====⇒ ({P} ⊎ P; Φ ⊎ {w 7→ t}; S)
where w is a fresh variable

Then ({if t1 = t2 then P else Q} ⊎ P; Φ; S) τthenZ===⇒ ({P} ⊎ P; Φ; S ∪ {t1 =? t2})

Else ({if t1 = t2 then P else Q} ⊎ P; Φ; S) τelseZ==⇒ ({Q} ⊎ P; Φ; S ∪ {t1 ̸=? t2})

Blocked-Out ({out(c, t).P} ⊎ P; Φ; S) τoZ==⇒ ({0} ⊎ P; Φ; S ∪ {t ̸=? t})

Figure 6.2 Symbolic semantics for symbolic configurations

may just write Φλ ⇓ without making the choice explicit. Finally, we explicitly write NFR(A) to
refer to its normal form (i.e. (NFR(Pθ); Φλθ ⇓) where NFR has been defined in Chapter 2).

We give in Figure 6.2 the symbolic semantics for symbolic configurations. Remark the one-to-
one mapping from symbolic rules (Figure 6.2) on one hand and concrete rules (Figure 6.1) and
Rtest, Rout reduction rules (Definition 11 in Subsection 4.1.1) on the other hand. The additional
rules Then,Else and Blocked-Out play the role of the internal reduction rules of Rtest, Rout. No-
tably, Blocked-Out allows to symbolically remove blocked outputs adding a constraint (i.e. t ̸=? t)
making sure that any instantiation of this output cannot be triggered because the underlying
term do not reduce to a message or equivalently is not valid). Note that for a process out(c, t).P
in a symbolic configuration, the rules Out and Blocked-Out cover mutually exclusive concrete
executions: the former cover all instantiations for which t is valid (since Φλθ must contain only
valid terms) and the latter cover all instantiations for which t is not valid (since t ̸=? t holds iff t

is not valid).
The operator obs(•) is extended to symbolic actions straightforwardly; i.e. it just removes all

τ actions.

Example 36 (Resuming Example 34). We have that ({Q0(skB , pk(skA))}; Φ0; ∅) trZ==⇒ (∅; Φ; S)
where:

• tr = in(cB, Y).τthen.out(cB , w3), and

• C = (Φ; S) is the constraint system defined in Example 34.

We are now able to define the notion of equivalence associated to the symbolic semantics,
namely symbolic trace equivalence (denoted ≈s).

Definition 34. Let A = (P; Φ) and B = (Q; Ψ) be two simple configurations. We have that
A ⊑s B when, for every trace tr such that (P; Φ; ∅) trZ==⇒ (P ′; Φ′; SA), for every θ ∈ Sol(Φ′; SA),
we have that:

• (Q; Ψ; ∅) tr′Z==⇒ (Q′; Ψ′; SB) where obs(tr′) = obs(tr) with θ ∈ Sol(Ψ′; SB), and

122

6.2. Combining Compression and Reduction with Constraint Solving

• Φ′λA
θ ⇓ ∼ Ψ′λB

θ ⇓ where λA
θ (resp. λB

θ) is the substitution associated to θ w.r.t. (Φ′; SA)
(resp. (Ψ′; SB)).

We have that A and B are in trace equivalence w.r.t. Z=⇒, denoted A ≈s B, if A ⊑s B and
B ⊑s A.

Example 37. We have that ({Q0(skB, pk(skA))}; Φ0) ̸⊑s ({Q0(skB, pk(sk′
A))}; Φ0). Continuing

Example 36, we have seen that:

• ({Q0(skB, pk(skA))}; Φ0; ∅) trZ==⇒ (∅; Φ; S), and

• θ = {Y 7→ aenc(⟨w1, w1⟩, w2)} ∈ Sol(Φ; S) (see examples 34 and 35).

The only symbolic process that is reachable from ({Q0(skB, pk(sk′
A))}; Φ0; ∅) using tr (up to obs(•))

is (∅; Φ′; S ′) with:

• Φ′ = Φ0 ⊎ {w3 7→ aenc(⟨π2(N), ⟨nb, pk(skb)⟩⟩, pk(ska′))}, and

• S ′ =
{

{w0, w1, w2} ⊢?
Y y, π2(N) =? pk(ska′)

}
.

One can check that θ is not a solution of (Φ′; S ′).

For processes without replication, the symbolic transition system induced by Z=⇒ is essentially
finite. Indeed, the choice of fresh names for handles and second-order variables does not matter,
and therefore the relation Z=⇒ is essentially finitely branching. Moreover, the length of traces
of a simple configuration is obviously bounded. Thus, deciding (symbolic) trace equivalence
between processes boils down to the problem of deciding a notion of equivalence between sets
of constraint systems. This problem is well-studied and several procedures already exist [Bau05,
CR12], e.g. Apte [CCD11] (see Section 6.3).

Soundness and completeness

It is well-known that such symbolic semantics are sound and complete w.r.t. concrete semantics,
and therefore that they capture the same notion of trace equivalence. This has been proved for
instance in [Bau05, CCD13a]. Using the same approach, we can show soundness and completeness
of the symbolic semantics (Figure 6.2) w.r.t. the concrete semantics (Figure 6.1). We have:

• Soundness: each transition in the symbolic semantics represents a set of transitions that
can be done in the concrete semantics.

• Completeness: each transition in the concrete semantics can be matched by a transition in
the symbolic semantics.

These results are formally expressed in propositions 14 and 15 below. Note that the mapping
between the two semantics is up to ;R and computations on frames.

123

6. Putting Reduced Semantics into Practice and Integration in Apte

Proposition 14. Let (P; Φ) be a simple configuration such that (P; Φ; ∅) trZ=⇒ (Ps; Φs; Ss), and
θ ∈ Sol(Φs; Ss). We have that (P; Φ) obs(trθ)−−−−→ (NFR(Psλ); Φ′) where Φsλ ⇓ Φ′ for λ the first-order
solution of (Ps; Φs; Ss) associated to θ.

Proof. We proceed by induction on tr. If tr = ϵ, then we immediately conclude because θ = λ = ∅,
Ps = P and Φ′ = Φ so an empty concrete execution suits. If tr = tr0.α, then we have (P; Φ; ∅) tr0Z==⇒
(P0

s ; Φ0
s; S0) αZ=⇒ (Ps; Φs; S) with θ ∈ Sol(Φs; S). We note λ the associated first-order solution.

We also have that θ0 = θ|vars2(S0) ∈ Sol(Φ0
s; S0) with λ0 = λ|vars1(S0) the associated first-order

solution. By inductive hypothesis, we thus obtain an execution (P; Φ) obs(tr0θ0)−−−−−→ (NFR(P0
s λ0); Φ0)

where Φ0
sλ0 ⇓ Φ0 and λ0 is the first-order solution of (P0

s ; Φ0
s; S0

s) associated to θ0. We now reason
by case analysis on α.

Case α = out(c, w). Then, there exists a process Ps = out(c, t).P ′ ∈ P0
s . More precisely, we

have that P0
s = {Ps} ⊎ P ′

s, Ps = {P ′} ⊎ P ′
s, and Φs = Φ0

s ⊎ {w 7→ t}. Since θ0 is a solution
with λ0 as the associated first-order solution, it holds that tλ0 is valid and thus Psλ0 ∈ P0

s λ0 is
not “blocked” and cannot be removed by the internal reduction. Hence Psλ0 ∈ NFR(P0

s λ0). We
thus have a decomposition NFR(P0

s λ0) = NFR({P ′
sλ0}) ⊎ {Psλ0}. By validity, there must be a

message u such that tλ0 ⇓ u. Finally, we can construct an execution (NFR(P0
s λ0); Φ0) out(c, w)−−−−−→

(NFR({P ′λ0}) ⊎ NFR(P ′
sλ0); Φ0 ⊎ {w 7→ u}). This can be done using λ instead of λ0 and one

can easily verify that the resulting concrete execution satisfies all requirements.
Case α = in(c, X). This case can be proved similarly to the output case.
Case α is unobservable. In such cases, we remark that NFR(Psλ) = NFR(P0

s λ) and Φs = Φ0
s.

Thus, the execution given by the inductive hypothesis allows to conclude.

Proposition 15. Let (P; Φ) be a simple configuration such that (P; Φ) tr−→ (P ′; Φ′). There exists
a symbolic configuration (Ps; Φs; S), a solution θ ∈ Sol(Φs; S), and a sequence trs such that:

• (P; Φ; ∅) trsZ==⇒ (Ps; Φs; S);

• P ′ = Psλ, Φsλ ⇓ Φ′; and

• tr = obs(trsθ)

where λ is the first-order solution of (Ps; Φs; S) associated to θ.

Proof. We proceed by induction on tr. If tr = ϵ then we we immediately conclude by letting
θ = λ = ∅, Ps = P, trs = ϵ, Φs = Φ, and, S = ∅. If tr = tr0.α then we have (P; Φ) tr0

−→ (P0; Φ0) α−→
(P ′; Φ′). By inductive hypothesis, there must be a symbolic configuration (P0

s ; Φ0
s; S0) and a

solution θ0 ∈ Sol(Φs; S0) (with λ0 the associated first-order solution) such that (P; Φ; ∅)
tr0

sZ==⇒
(P0

s ; Φ0
s; S0), P0 = P0

s λ0, Φ0
sλ0 ⇓ Φ′, and, obs(tr0

sθ0) = tr0. We now reason by case analysis on
α.

If α = out(c, w). In that case, there must be a process P = out(c, t).P ′ ∈ P0 and t must
be valid. We thus also have a process Ps = out(c, ts).P ′

s ∈ P0
s and tsλ0 is valid. More precisely,

one has the following decomposition: P0
s = {Ps} ⊎ P ′

s. It is thus possible to extend the given
symbolic execution: (P0

s ; Φ0
s; S0) out(c,w)Z=====⇒ ({P ′} ⊎ P ′

s; Φ0
s ⊎ {w 7→ ts}; S0) = Ks. Remark that

124

6.2. Combining Compression and Reduction with Constraint Solving

θ0 (along with λ0) is also a solution of Ks since tsλ0 is valid. Further, we need to mimic the
internal reduction by executing τ -actions from Ks (indeed, we do not necessarily have that
P ′ = ({P ′} ⊎ P ′

s)λ0). More precisely, we trigger all available Then, Else, Blocked-Out rules as
long as they produce new constraint systems of which θ0 is still a solution. One can easily prove
that the resulting execution satisfies all requirements.

If α = in(c, X). This case can be proved similarly to the previous case.

Finally, relying on these two results, we can establish that symbolic trace equivalence (≈s)
exactly captures trace equivalence (≈). Actually, both inclusions can be established separately.

Proposition 16. For any simple configurations A and B, we have that:

A ⊑ B ⇐⇒ A ⊑s B.

Proof. We consider two simple configurations A = (P; Φ) and B = (Q; Ψ). We prove the two
directions separately.

(⇒) Let (P; Φ; ∅) trsZ==⇒ (Ps; Φs; Ss) and θ ∈ Sol(Φs; Ss). Applying Proposition 14, we ob-
tain an execution A obs(trsθ)−−−−−→ (P ′; Φ′) for some Φ′ such that Φsλ ⇓ Φ′. By hypothesis, we
deduce B obs(trsθ)−−−−−→ (Q′; Ψ′) with Ψ′ ∼ Φ′ ∼ Φsλ ⇓. Now, Proposition 15 implies an execution

(Q; Ψ; ∅)
tr′

sZ==⇒ (Qs; Ψs; SB
s) and a solution θB ∈ Sol(Ψs; SB

s) such that obs(trsθ) = obs(tr′
sθB) and

ΨsλB ⇓ Ψ′ (where λB is the first-order solution associated to θB and (Ψs, SB
s)). Remark that,

since the choice of fresh second-order variable is irrelevant, we can w.l.o.g. and up to a bijection
of second-order variables choose the ones in tr′

s in such a way that obs(tr′
s) = obs(trs) (remind

that obs(trsθ) = obs(tr′
sθB) so they may differ only on the second order variables). A quick

inspection at the notion of solutions and at the only rule from the symbolic semantics which add
second-order-variables to set of constraints shows that

dom(θB) = vars2((SB
s ; Ψs)) = vars2(tr′

s) = vars2(trs) = vars2((Ss; Φs)) = dom(θ).

Further, for each X ∈ dom(θ), Xθ can be found as a recipe in obs(trsθ). Since obs(trsθ) =
obs(tr′

sθB), it holds that Xθ = XθB and thus θ = θB concluding the proof of this direction.
(⇐) Let (P; Φ) tr−→ (P ′; Φ′). Applying Proposition 15, we obtain a symbolic execution

(P; Φ; ∅) trsZ==⇒ (Ps; Φs; Ss) and θ ∈ Sol(Φs; Ss) such that Φsλ ⇓ Φ′ and obs(trsθ) = tr. By

hypothesis, we obtain an execution (Q; Ψ; ∅)
tr′

sZ==⇒ (Qs; Ψs; SB
s) such that obs(trs) = obs(tr′

s), θ ∈
Sol(ΨS , SB

s) and ΨsλB
θ ⇓ ∼ Φsλ ⇓. Next, we apply Proposition 14 and obtain B obs(tr′

sθ)−−−−−→ (Q′; Ψ′)
for some Ψ′ such that ΨsλB

θ ⇓ Ψ′. We thus have Ψ′ ∼ ΨsλB
θ ⇓ ∼ Φsλ ⇓ ∼ Φ′. Finally, remark

that obs(tr′
sθ) = obs(tr′

s)θ = obs(trs)θ = obs(trsθ) = tr.

6.2.2 Embedding Compression into Symbolic Semantics

In order to define the symbolic, compressed semantics, we proceed as we did for the concrete
semantics in Chapter 5. There is no fundamental difficulty in doing so since compression only
leverages syntactical information (i.e. nature of available observable actions) that is similarly

125

6. Putting Reduced Semantics into Practice and Integration in Apte

available at the symbolic level. The only technical difficulty arises from unobservable actions
that were treated using internal reduction and are now treated using unobservable actions.

We shall start with the symbolic semantics with unobservable actions. Formally, we define
•7−→ as follows: A tr7−→ B when A

tr′Z==⇒ B and obs(tr′) = tr. We shall state parts of the next results
only for configurations with no conditional at top-level as they can be evaluated transparently
with •7−→. We formally define such configurations below.

Definition 35. A basic process P is said to be quiescent when it starts with either an input
(i.e. P = in(c, x) for some c, x, P) or with an output (i.e. P = out(c, t).Q for some c, t, Q).
A simple process is said to be quiescent when all of its processes are quiescent. This is lifted to
symbolic configurations in the obvious way.

Annotated Symbolic Semantics

One can define the annotated semantics by building on •7−→ as it was defined by building on
•−→ in Chapter 5. The notions of skeletons and annotations are extended straightforwardly

to respectively symbolic, quiescent processes and symbolic actions of •7−→ (i.e. of the form
in(c, X), out(c, w)). Note that we do not define skeletons for processes of the form if t1 =
t2 then P else Q (i.e. non-quiescent processes) as we will require that such conditionals are
executed before other observable actions.

We now equip the symbolic semantics (Figure 6.2) with annotations as it was done in Chap-
ter 5 (see Figure 5.2). However, doing so for the symbolic configurations is simpler since they do
not feature parallel composition nor replication. Labels are thus just handed over and extended
with a � from processes to their continuations. The resulting semantics is depicted in Figure 6.3.
Labels on processes of the form if t1 = t2 then P else Q are handed over to P or Q when
evaluating the conditional.

Actα
({P}; Φ; S) α7−→ ({P ′}; Φ′; S ′)

({[P]ℓ} ⊎ P; Φ; S) [α]ℓ7−−→a ({[P ′]ℓ·�} ⊎ P; Φ′; S ′)
α ∈ {in(•, •), out(•, •)}

Zero ({[0]ℓ} ⊎ P; Φ; S) [zero]ℓ7−−−−→a (P; Φ; S)

Figure 6.3 Annotated symbolic semantics for symbolic configurations

Compression Strategy

As done before for configurations, we enrich symbolic configurations with a focus position.
The symbolic, compressed semantics deals with enriched symbolic configurations of the form
(P; F ; Φ; S) that denotes a symbolic configuration (P ′; Φ; S) (where P ′ = P ⊎ {F} when F is a
process and P ′ = P otherwise) with (possibly) a distinguished process F that is said to be under
focus. We may write Sol(A) for an enriched symbolic configuration A = (P; F ; Φ; S) to denote
the set Sol(Φ; S). Operators ⌈•⌉ and ⌊•⌋ are lifted in the obvious way:

⌈(P; Φ; S)⌉ = (P;∅; Φ; S), ⌊(P;∅; Φ; S)⌋ = (P; Φ; S) and ⌊(P; F ; Φ; S)⌋ = (P ⊎ {F}; Φ; S).

126

6.2. Combining Compression and Reduction with Constraint Solving

Start/In P is initial (P ; Φ; S) in(c, M)7−−−−−→a (P ′; Φ; S ′)
(P ⊎ {P};∅; Φ; S) foc(in(c, M))7−−−−−−−−→c (P; P ′; Φ; S ′)

Pos/In (P ; Φ; S) in(c, M)7−−−−−→a (P ′; Φ; S ′)
(P; P ; Φ; S) in(c, M)7−−−−−→c (P; P ′; Φ; S ′)

Neg P, P are quiescent (P ; Φ; S) α7−→a (P ′; Φ′; S ′)
(P ⊎ {P};∅; Φ; S) α7−→c (P ⊎ P ′;∅; Φ′; S ′)

α ∈ {zero, out(•, •)}

Release (P; [out(c, t).P]ℓ; Φ; S) [rel]ℓ7−−−−→c ({[out(c, t).P]ℓ} ⊎ P;∅; Φ; S ⊎ {t =? t})

Release⊥ (P; [0]ℓ; Φ; S) [rel]ℓ.[zero]ℓ7−−−−−−−−→c (∅;∅; Φ; S)

Labels are implicitly set in the same way as in the annotated semantics. Neg is made non-
branching by imposing an arbitrary order on labelled skeletons of available actions.

Figure 6.4 Symbolic compressed semantics

Definitions of positive processes and initial configurations are lifted to symbolic processes
and symbolic multiset of processes straightforwardly. In particular, non-quiescent processes are
not positive (conditionals at top level shall be executed in the next negative phase) and non-
quiescent multisets of symbolic processes are not initial. We can now derive the compressed
symbolic semantics tr7−→c following the same pattern as for the concrete semantics leading to the
rules depicted in Figure 6.4. The only differences are in rules Neg and Release. In Neg, we
explicitly require that the underlying configuration is quiescent. This is in line with the concrete,
compressed semantics for which configurations are necessarily quiescent since they are in normal
form. This guard condition (i.e. the configuration should be quiescent) is needed to make the
Neg rule non-branching based on an arbitrary order on labelled skeletons of available actions. In
Release, we make sure that the output that popped out in the focused position is not blocked
by adding the t =? t constraint. By doing so, we are sure that the two ways to release a focus
through rules Release and Release⊥ are mutually exclusive: either the negative process in the
focused position is a non-blocked output (that can be triggered using Release) or it is a blocked
output (it can be triggered using the rules Blocked-Out and then Release⊥) or it is a null process
(it can directly be triggered using Release).

We derive similarly the notion of trace equivalence induced by 7−→c. We do not have to take
care of the τ actions since they are performed implicitly in the compressed semantics.

Definition 36. Let A = (P; FA; Φ) and B = (Q; FB ; Ψ) be two simple configurations. We have
that A ⊑s

c B when, for every trace tr such that (P; FA; Φ; ∅) tr7−→c A′, for every θ ∈ Sol(A′), we
have that:

• (Q; FB ; Ψ; ∅) tr7−→c B′ with θ ∈ Sol(B′), and

• Φ(A′)λA
θ ⇓ ∼ Φ(B′)λB

θ ⇓ where λA
θ (resp. λB

θ) is the substitution associated to θ w.r.t. A

(resp. B).

We have that A and B are in trace equivalence w.r.t. 7−→c, denoted A ≈s
c B, if A ⊑s

c B and
B ⊑s

c A.

127

6. Putting Reduced Semantics into Practice and Integration in Apte

Example 38. We have that ⌈({Q0(skB , pk(skA))}; Φ0)⌉ ̸⊑s
c ⌈({Q0(skB, pk(sk′

A))}; Φ0)⌉. Contin-
uing Example 36, we have that:

• ({Q0(skB, pk(skA))};∅; Φ0; ∅) trc7−−→c (∅;∅; Φ; S) where obs(trc) = obs(tr), and

• θ ∈ Sol(Φ; S) (see Example 34).

The only symbolic process that is reachable from ({Q0(skB , pk(sk′
A))};∅; Φ0; ∅) using obs(tr) is

(∅;∅; Φ′; S ′) with:

• Φ′ = Φ0 ⊎ {w3 7→ aenc(⟨π2(N), ⟨nb, pk(skb)⟩⟩, pk(ska′))}, and

• S ′ =
{

{w0, w1, w2} ⊢?
Y y; π2(N) =? pk(ska′)

}
.

One can check that θ is not a solution of (Φ′; S ′).

Soundness and Completeness

To prove that the symbolic, compressed trace equivalence coincides with the trace equivalence,
we follow the same proof technique as the one developed in Section 6.2 when proving that the
trace equivalence coincides with the symbolic trace equivalence (Proposition 16).

Thus, we show below (Theorem 4) that the compressed trace equivalence coincides with
the compressed trace equivalence relying on the mappings between the symbolic, compressed
semantics and the compressed semantics. Both directions of this mapping (propositions 17
and 18) follow from the already established mappings between symbolic executions and concrete
executions (see propositions 14 and 15) and the fact that the compressed, symbolic strategy
corresponds exactly to the compressed strategy (both exploration strategies are identical and
both rely on syntactical information about processes equally available at the symbolic level or
at the regular level).

Proposition 17. Let (P; Φ) be a simple configuration such that ⌈(P; Φ; ∅)⌉ tr7−→c (Ps; FA; Φs; Ss),
and θ ∈ Sol(Φs; Ss). We have that ⌈(P; Φ)⌉ trθ−→c (NFR(Psλ); F ′; Φ′) where F ′ = NFR(Fλ) if F

is a process and F ′ = ∅ otherwise, λ is the first-order solution of (Φs; Ss) associated to θ, and,
Φ′ is such that Φsλ ⇓ Φ′.

Proposition 18. Let (P; Φ) be a simple configuration such that ⌈(P; Φ)⌉ tr−→c (P ′; F ′; Φ′). There
exists a symbolic configuration (Ps; Fs; Φs; S), a solution θ ∈ Sol(Φs; S), and a sequence trs such
that:

• ⌈(P; Φ; ∅)⌉ trs7−→c (Ps; Fs; Φs; S);

• P ′ = Psλ, F ′ = Fsλ, Φsλ ⇓ Φ′; and

• tr = trsθ

where λ is the first-order solution of (Φs; S) associated to θ.

128

6.2. Combining Compression and Reduction with Constraint Solving

Applying exactly the same proof of Proposition 16 but invoking propositions 17 and 18 instead
of propositions 14 and 15, we obtain the following theorem.

Theorem 4. For any simple configurations A and B, we have that:

⌈A⌉ ⊑c ⌈B⌉ ⇐⇒ ⌈A⌉ ⊑s
c ⌈B⌉.

As an immediate consequence of theorems 2 and 4, we obtain that the relations ≈ and ≈s
c

coincide.

Corollary 4. For any simple processes A and B such that skl(A) = skl(B), we have that:

A ≈ B ⇐⇒ ⌈A⌉ ≈s
c ⌈B⌉.

6.2.3 Embedding Reduction into Symbolic Semantics

Unlike compression, which is essentially based on the input/output nature of actions, the reduc-
tion takes into account the exchanged messages and considers the notion of necessity introduced
in Section 5.4. Remind that the reduced semantics can be seen as the compressed semantics
with an additional constraint on the explored blocks: a block b can be explored after a trace
tr only if, each block b′ in tr that has less priority over b (violating the priority order), strong
data dependencies forbid us to swap b before b′ (to comply with that priority order). Formally,
this is when b is authorised after tr (see Definition 28). The idea for lifting this to the symbolic
semantics consists in replacing the authorised predicate by some additional constraints.

Priority Order

Remind that, in Section 5.4, we defined the priority order < as an order over blocks that is
insensitive to recipes and handles. Since, we only deal with simple (symbolic) configurations in
this chapter, we can refine this notion and let < be an order over channels. This is lifted to
blocks by comparing the (single) channel of each block.

Example 39. We consider the symbolic version of Example 27. Let us consider the configu-
ration A = ({P1, P2};∅; Φ0; ∅) where Φ0 = {w0 7→ n} and Pi are defined in Example 27. We
consider a priority order such that c1 < c2 (i.e. blocks produced by P1 have priority over blocks
produced by P2). We now examine the two following symbolic, compressed traces: tr1 = b1.b2 and
tr2 = b2.b1 where b1 = foc(in(c1, X1)).rel.out(c1, w1) and b2 = foc(in(c2, X2)).rel.out(c2, w2)
for some second-order variables X1, X2. The two symbolic configurations resulting from the com-
pressed executions of tr1 and tr2 are of the form ({P ′

1, P ′
2};∅; Φ; Si) where Φ = Φ0 ∪ {w1 7→

n1, w2 7→ n2},

S1 =
{

{w0} ⊢?
X1

x1; {w0, w1} ⊢?
X2

x2
}

, and S2 =
{

{w0} ⊢?
X2

x2; {w0, w2} ⊢?
X1

x1
}

.

Remind that the sets of concrete processes that these two symbolic processes represent are different
and some deeply rely on the specific order of blocks, which means that we cannot discard any of

129

6. Putting Reduced Semantics into Practice and Integration in Apte

those symbolic, compressed traces. However, these sets have a significant overlap corresponding to
concrete instances of the interleaved blocks that are actually independent, i.e. where the output of
one block is not necessary to obtain the input of the next block. This problem has been discussed in
Example 27 and depicted in Figure 5.4 (both in Section 5.4). In order to avoid considering such
concrete processes twice, we may add a dependency constraint “X1⋉w2” in C2, whose purpose
is to discard all solutions θ such that the message x1λθ can be derived without using w2 7→ n2.
For instance, the concrete trace foc(in(c2, w0)).rel.out(c2, w2).foc(in(c1, w0)).rel.out(c1, w1)
would be discarded thanks to this new constraint. The constraint “X1⋉w2” would be the symbolic
counterpart of the conditions imposed by the authorised predicate (b2, Φ) ▶ b1.

Dependency Constraints

We now introduce a new kind of constraints that we call dependency constraints. They will be
used to represent the authorised predicate at the symbolic level.

Definition 37. A dependency constraint is a constraint of the form X⋉w where X is a vector
of second-order variables in X 2, and w is a vector of handles, i.e. variables in W.

Given a constraint system C = (Φ; S), a set SD of dependency constraints, and θ ∈ Sol(C).
We write θ |=(Φ;S) SD when θ also satisfies the dependency constraints in SD, i.e. when:

for each X⋉w ∈ SD there is some Xi ∈ X such that for any recipe M ∈ T (Σpub, DC(Xi))
satisfying M(Φλθ ⇓) ⇓ =E (Xiθ)(Φλθ ⇓) ⇓ and valid(M(Φλθ ⇓)), we have vars1(M) ∩ w ̸= ∅

where λθ is the substitution associated to θ w.r.t. (Φ; S).

Intuitively, a dependency constraint X⋉w is satisfied as soon as at least one message among
those in (Xθ)(Φλθ ⇓) can only be deduced by using at least a message stored in w even when
one allows to modify recipes (as long as it is still a solution yielding same messages). Note that
the representative Φ′ such that Φλθ ⇓ Φ′ is unimportant since the validity predicate is stable by
=E.

Example 40. Continuing Example 39, assume that n1 = n2 = n and let θ = {X1 7→ w2; X2 7→
w0}. We have that θ ∈ Sol(C2) and the substitution associated to θ w.r.t. C2 is λ2

θ = {x1 7→
n; x2 7→ n}. However, θ does not satisfy the dependency constraint X1⋉w2. Indeed, we have
that w0(Φλ2

θ) = (X1θ)(Φλ2
θ) = n and valid(w0(Φλ2

θ)) whereas {w0} ∩ {w2} = ∅. Intuitively, this
means that there is no good reason to postpone the execution of the block on channel c1 if the
output on c2 is not useful to build the message used in input on c1.

We shall now define formally how dependency constraints will be added to our constraint
systems. Below, we define a function Deps(•) that takes a compressed symbolic trace as input
and returns necessary dependency constraints making sure that all concrete instantiations sat-
isfy the authorised predicates for any prefix of the trace. To simplify the presentation, for
some X = (X1, . . . , Xℓ) and w = (w1, . . . , wk), we use the notation ioc(X, w) as a short-
cut for foc(in(c, X1)).in(c, X2) . . . in(c, Xℓ).rel.out(c, w1) . . . out(c, wk) when w ̸= ∅ and for
foc(in(c, X1)).in(c, X2) . . . in(c, Xℓ).rel.0 otherwise.

130

6.2. Combining Compression and Reduction with Constraint Solving

Definition 38 (Generation of dependency constraints). Let c be a channel, and
tr = ioc1 (X1, w1).iocn (Xn, wn) be a symbolic, compressed trace. If there exists a rank k ≤ n

such that c ≺ ck and ci ≺ c for all k < i ≤ n, then dep(tr, c) = { w | w ∈ wi with k ≤ i ≤ n}.
Otherwise, we have that dep(tr, c) = ∅.

Then, given a symbolic, compressed trace tr, we define Deps(tr) by Deps(ϵ) = ∅ and

Deps(tr.ioc(X, w)) =

Deps(tr) ∪ {X⋉dep(tr, c)} if dep(tr, c) ̸= ∅

Deps(tr) otherwise

Intuitively, Deps(tr) corresponds to the accumulation of the dependency constraints generated
for all prefixes of tr.

Example 41. We consider the symbolic version of Example 31 (in Subsection 5.4.3 with its
associated Figure 5.5). We let ≺ be such that c1 ≺ c2 ≺ c3.

For instance, after executing the symbolic, compressed trace io1.io2.io3, a dependency con-
straint of the form X2⋉w3 (represented by the left-most arrow in Figure 5.5) is generated. Fur-
ther, on the symbolic, compressed trace io3.io1.io2 we add X1⋉w3 after the second transition, and
X2⋉{w3, w1} (represented by the dashed 2-arrow in Figure 5.5) after the third transition.

Symbolic Reduced Semantics

Dependency constraints give rise to a new notion of trace equivalence based on a symbolic,
reduced semantics, which is the symbolic counterpart of the reduced semantics (•−→r) where
Deps(•) plays the role of (•, •) ▶ •. Intuitively, the symbolic, reduced semantics explores all
symbolic executions but is equipped with the stronger notion of solution taking • |=(•;•) Deps(•)
into account. We prefer directly defining the reduced trace equivalence below.

Definition 39 (reduced trace equivalence). Let A = (P; Φ) and B = (Q; Ψ) be two extended
simple processes. We have that A ⊑s

r B when, for every sequence tr such that (P; Φ; ∅) tr7−→c

(P ′; Φ′; SA), for every θ ∈ Sol(Φ′; SA) such that θ |=(Φ′;SA) Deps(tr), we have that:

• (Q; Ψ; ∅) tr7−→c (Q′; Ψ′; SB) with θ ∈ Sol(Ψ′; SB), and θ |=(Ψ′;SB) Deps(tr);

• Φ′λA
θ ⇓ ∼ Ψ′λB

θ ⇓ where λA
θ (resp. λB

θ) is the substitution associated to θ w.r.t. (Φ′; SA)
(resp. (Ψ′; SB)).

We have that A and B are in reduced trace equivalence, denoted A ≈s
r B, if A ⊑s

r B and B ⊑s
r A.

Soundness and Completeness

We first prove that the constraints generated by the Deps(•) operator plays exactly the same
role as the authorised predicate of the reduced semantics (•, •) ▶ •.

Proposition 19. Let A be an initial, symbolic configuration, A tr7−→c (P; F ; Φ; S) be a symbolic,
compressed execution, and, θ ∈ Sol(Φ, S) a solution of the resulting symbolic configuration. It

131

6. Putting Reduced Semantics into Practice and Integration in Apte

holds that θ |=(Φ;S) Deps(tr) if, and only if, (tr0θ, Ψ) ▶ bθ for any prefix tr0.b of tr and some
frame Ψ such that Φλ ⇓ Ψ.

Proof. We proceed by induction on the number of blocks in tr. If tr = ϵ then S ′ = ∅, Deps(tr) = ∅
and there is no prefix of tr of the form tr0.b. The equivalence is thus trivial. Otherwise, tr = tr0.b.
We let c be the channel of the block b and X its second-order variables. We distinguish two
cases whether dep(tr0, c) is empty or not. If it is empty, then either tr0 = ϵ or the last blocks
of tr0 on channels different from c are lower (w.r.t. ≺) than b. In both cases, we trivially have
(tr0θ, Ψ) ▶ bθ for any Ψ such that Φλ ⇓ Ψ and conclude by inductive hypothesis. Otherwise,
dep(tr0, c) = W0. By inductive hypothesis, it suffices to show the following:

(i) θ |=(Φ;S) X⋉W0 if, and only if, (ii) (tr0θ, Ψ) ▶ bθ for some frame Ψ such that Φλ ⇓ Ψ.

Firstly, we remark that the choice of Ψ such that Φλ ⇓ Ψ is irrelevant since (•, •) ▶ • is stable by
=E on the second argument. We thus fix such a Ψ. We note bi (for i from 0 to n) the successive
blocks of tr0 and note ci their respective channels. Since dep(tr0, c) ̸= ∅, there exists a rank k < n

such that c ≺ bk and ci ≺ c for all k < i ≤ n. We now prove the two implications separately.
((i) ⇒ (ii)) For the sake of the contradiction, we assume that (tr0θ, Ψ) ▶ bθ does not hold.

Hence a block b′ such that (b′ =E bθ)Ψ and tr0θ ▷ b′ does not hold. Since bi ≺ b′ for all k < i

and b′ ≺ ck, the block b′ must be independent of all blocks bk, . . . , bn. We now prove that
it contradicts θ |=(Φ;S) X⋉W0. The latter implies the existence of some Xi ∈ X such that
one has for any recipe M ∈ T (Σpub, DC(Xi)) such that M(Φλθ ⇓) ⇓ =E (Xiθ)(Φλθ ⇓) ⇓ and
valid(M(Φλθ ⇓)), it holds that vars1(M) ∩ W0 ̸= ∅. However, since (b′ =E bθ)Ψ, one has a recipe
M (counterpart of Xθ in b′) such that M(Φλθ ⇓) ⇓ =E (Xiθ)(Φλθ ⇓) ⇓ (remind that Φλθ ⇓ Ψ).
But since b′ and bi are independent, vars1(M) ∩ W0 = ∅ which is absurd.

((ii) ⇒ (i)) By (i) and ci ≺ c ≺ ck for all i such that k < i, we have that any block b′ such
that (b′ =E b)Ψ must be recipe-dependent with at least a block bj for some k ≤ j ≤ n. For
the sake of the contradiction, we assume that θ ̸|=(Φ;S) X⋉W0. Hence, for any Xi ∈ X, there
exists a recipe Mi computing the same message as Xiθ for Φλ ⇓ such that vars1(Mi) ∩ W0 = ∅.
By replacing Xi by Mi in the block bθ we thus obtain a block b′ such that (b′ =E bθ)Ψ and
vars1(b′) ∩ W0 = ∅ which contradicts the fact that b′ must be recipe-dependent with at least a
block bj for some k ≤ j ≤ n.

To prove that the symbolic, reduced trace equivalence coincides with the reduced trace equiv-
alence, we now follow the same proof technique as the one developed for the compressed symbolic
trace equivalence (w.r.t. compressed trace equivalence) in Subsection 6.2.2 and for the symbolic
trace equivalence (w.r.t. trace equivalence) in Subsection 6.2.1. Both directions of this mapping
(propositions 20 and 21) directly follow from the already established mapping between symbolic,
compressed executions and compressed executions (see propositions 17 and 18) in addition to
Proposition 19 stating that Deps(•) exactly mimics (•, •) ▶ •.

Proposition 20. Let (P; Φ) be an initial simple configuration such that ⌈(P; Φ; ∅)⌉ tr7−→r

(Ps; FA; Φs; Ss), and θ ∈ Sol(Φs; Ss). We have that ⌈(P; Φ)⌉ trθ−→r (NFR(Psλ); F ′; Φ′) where

132

6.3. Integration in Apte

F ′ = NFR(Fλ) if F is a process and F ′ = ∅ otherwise, λ is the first-order solution of (Φs; Ss)
associated to θ, and, Φ′ is such that Φsλ ⇓ Φ′.

Proposition 21. Let (P; Φ) be an initial, simple configuration such that ⌈(P; Φ)⌉ tr−→r (P ′; F ′; Φ′).
There exists a symbolic configuration (Ps; Fs; Φs; S), a solution θ ∈ Sol(Φs; S), and a sequence
trs such that:

• ⌈(P; Φ; ∅)⌉ trs7−→r (Ps; Fs; Φs; S);

• P ′ = Psλ, F ′ = Fsλ, Φsλ ⇓ Φ′; and

• tr = trsθ

where λ is the first-order solution of (Φs; S) associated to θ.

As already argued in Subsection 6.2.2, the two propositions above (propositions 20 and 21)
are the two only ingredients necessary to obtain the theorem below (exactly the same proof of
Proposition 16 applies).

Theorem 5. For any initial, simple configurations A and B, we have that:

⌈A⌉ ⊑r ⌈B⌉ ⇐⇒ ⌈A⌉ ⊑s
r ⌈B⌉.

Proof. Same proof as the one of Proposition 16.

As an immediate consequence of theorems 3 and 5, we obtain that the relations ≈ and ≈s
r

coincide.

Corollary 5. For any initial, simple processes A and B such that skl(A) = skl(B), we have that:

A ≈ B ⇐⇒ ⌈A⌉ ≈s
r ⌈B⌉.

6.3 Integration in Apte

We validate our approach by integrating our refined semantics in the Apte tool. As already
mentioned, Apte is a tool deciding trace equivalence for a fixed set of cryptographic primitives
(i.e. “standard primitives”) and bounded processes (no replication, no recursion).

As we shall see, the compressed semantics can easily be used as a replacement for the usual
semantics in verification algorithms. However, exploiting the reduced semantics is not trivial, and
requires to adapt the constraint resolution procedure. Fortunately, this can be done in a relatively
superficial way, which avoids having to enter into the complex details of Apte’s algorithm.

It is beyond the scope of this thesis to provide a detailed summary of how the verification tool
Apte actually works. A paper of 50 pages long describing solely the constraint resolution proce-
dure implemented in Apte (the part of the procedure corresponding to 7−→A2 in our presentation)
is now available [CCLD16]. Detailed proofs of the soundness, completeness and termination of
this algorithm are available in a long and technical appendix (more than 100 pages).

133

6. Putting Reduced Semantics into Practice and Integration in Apte

In order to show how our reduced semantics have been integrated in the constraint solving
procedure of Apte, we choose to provide a high-level axiomatic presentation of the Apte’s algo-
rithm. This allows us to prove that our integration is correct in a relatively superficial way, which
avoids having to enter into the complex details of Apte’s algorithm (which manipulates matrices
of constraint systems and additional kinds of constraints). These statements are consequences of
results stated and proved in [Che12] and have been written in concertation with Vincent Cheval
(developer of Apte). However, due to some changes in the presentation, proving them will require
to adapt most of the proofs. It is therefore beyond the scope of this thesis to provide formal
proofs of these axioms.

In Subsection 6.3.1, we start with a high-level presentation of Apte’s algorithm, following the
original procedure [CCD11] but assuming public channels only. The purpose of this presentation
is to provide the reader enough details about Apte to explain him how our optimisations have been
integrated, leaving out unimportant details. We axiomatize the procedure in Subsection 6.3.2
and prove it correct w.r.t. trace equivalence in Subsection 6.3.3. Then we explain how compressed
semantics can be used to enhance the procedure (Section 6.3.4). We finally describe how our
reduction technique can be integrated (Section 6.3.5).

6.3.1 Apte in a Nutshell

Apte has been designed for a fixed equational theory Eapte (formally defined in Example 12 from
Chapter 2) containing standard cryptographic primitives whose the signatutre is recalled next
(where Σ0 is a user-defined set of constants not involved in any equation):

Σc = Σ0 ∪ {aenc, pk, enc, hash, sign, vk, ⟨⟩}
Σd = {adec, dec, check, π1, π2}.

We now give a high-level description of the algorithm that is implemented in Apte. The
main idea is to perform all possible symbolic executions of the processes, keeping together the
processes that can be reached using the same sequence of symbolic actions. Then, at each
step of this symbolic execution, the procedure checks that for every solution of every process
on one side, there is a corresponding solution for some process on the other side so that the
resulting frames are in static equivalence. This check for symbolic equivalence is not obviously
decidable. To achieve it, Apte’s procedure relies on a set of rules for simplifying sets of constraint
systems. These rules are used to put constraint systems in a solved form that enables the efficient
verification of symbolic equivalence.

The symbolic execution used in Apte is essentially the same as •Z=⇒ described in Section 6.2.
However, Apte’s constraint resolution procedure introduces new kinds of constraints. Fortunately,
we do not need to enter into the details of those constraints and how they are manipulated.
Instead, we treat them axiomatically.

Definition 40 (extended constraint system/symbolic process). An extended constraint system
C+ = (Φ; S; S+) consists of a constraint system C = (Φ; S) together with an additional set
S+ of extended constraints. We treat this latter set abstractly, only assuming an associated

134

6.3. Integration in Apte

satisfaction relation, written θ |= S+, such that θ |= ∅ always holds, and θ |= S+
1 implies θ |= S+

2

when S+
2 ⊆ S+

1 . We define the set of solutions of C+ as Sol+(C+) = { θ ∈ Sol(C) | θ |= S+ }.
An extended symbolic process (P; Φ; S; S+) is a symbolic process with an additional set of

extended constraints S+.

We shall denote extended constraint systems by S+, S+
1 , etc. Extended symbolic processes

will be denoted by A+, B+, etc. Sets of extended symbolic processes will simply be denoted by
A, B, etc. For convenience, we extend Sol and Sol+ to symbolic processes and extended symbolic
processes in the natural way:

Sol(P; Φ; S) = Sol(Φ; S) and Sol+(P; Φ; S; S+) = Sol+(Φ; S; S+).

We may also use the following notation to translate back and forth between symbolic processes
and extended symbolic processes:

V(P; Φ; S)W = (P; Φ; S; ∅) and T(P; Φ; S; S+)U = (P; Φ; S).

We can now introduce the key notion of symbolic equivalence between sets of extended
symbolic processes, or more precisely between their underlying extended constraint systems.

Definition 41 (symbolic equivalence). Given two sets of extended symbolic processes A and B,
we have that A ≺+ B if for every A+ = (PA; ΦA; SA; S+

A) ∈ A, for every θ ∈ Sol+(A+), there
exists B+ = (PB ; ΦB ; SB ; S+

B) ∈ B such that θ ∈ Sol+(B+) and ΦAλA
θ ∼ ΦBλB

θ where λA
θ

(resp. λB
θ) is the substitution associated to θ w.r.t. (ΦA; SA) (resp. (ΦB ; SB)). We say that A

and B are in symbolic equivalence, denoted by A ∼+ B, if A ≺+ B and B ≺+ A.

The whole trace equivalence procedure can finally be abstractly described by means of a
transition system 7−→A on pairs of sets of extended symbolic processes, labelled by observable
symbolic actions. Informally, the intent is that a pair of processes is in trace equivalence iff only
symbolically equivalent pairs may be reached from the initial pair using 7−→A.

We now define 7−→A formally. A transition (A; B) 7−→A can take place iff A and B are in
symbolic equivalence1.

Each transition for some observable action α consists of two steps, i.e. (A; B) α7−→A (A′′; B′′)
iff (A; B) α7−→A1 (A′; B′) and (A′; B′) 7−→A2 (A′′; B′′), where the latter transitions are described
below:

1. The first part of the transition consists in performing an observable symbolic action α

(either in(c, X) or out(c, w)) followed by all available unobservable (τ) actions. This is
done for each extended symbolic process that occurs in the pair of sets, and each possible
transition of one such process generates a new element in the target set. Formally, we have
(A; B) α7−→A1 (A′; B′) if

A′ =
∪

(P;Φ;S;S+)∈A

{
(P ′; Φ′; S ′; S+) | (P; Φ; S) α.τ∗Z===⇒ (P ′; Φ′; S ′) ̸ τZ=⇒ }

,

1 This definition yields infinite executions for 7−→A if no inequivalent pair is met. Each such execution eventually
reaches (∅; ∅) while, in practice, executions are obviously not explored past empty pairs. We chose to introduce
this minor gap to make the theory more uniform.

135

6. Putting Reduced Semantics into Practice and Integration in Apte

and correspondingly for B′. Note that elements of (A; B) that cannot perform α are simply
discarded, and that the constraint systems of individual processes are enriched according to
their own transitions whereas the extended part of constraint systems are left unchanged.
For a fixed symbolic action α, the α7−→A1 transition is deterministic. The choice of names
for handles and second-order variables does not matter, and therefore the relation 7−→A1 is
also finitely branching.

2. The second part consists in simplifying the constraint systems of (A′; B′) until reaching
solved forms. This part of the transition is non-deterministic, i.e. several different (A′′; B′′)
may be reached depending on various choices, e.g. whether a message is derived by using
a function symbol or one of the available handles. Although branching, this part of the
transition is finitely branching. Moreover, only extended constraints may change: for any
(P; Φ; S; S+

1) ∈ A′′ there must be a S+
0 such that (P; Φ; S; S+

0) ∈ A′, and similarly for B′′.

An important invariant of this construction is that all the processes occurring in any of the
two sets of processes have constraint systems that share a common structure. More precisely the
transitions maintain that for any (P1; Φ1; S1; S+

1), (P2; Φ2; S2; S+
2) ∈ A∪B, vars2(S1) = vars2(S2)

and D ⊢?
X x occurs in S1 iff it occurs in S2.

Example 42. Consider the simple basic processes Ri = in(ci, xi).if xi = ok then out(ci, ni) for
i ∈ N, xi ∈ X , ni ∈ N , ok a public constant. We illustrate the roles of 7−→A1 and 7−→A2 on the pair
({Q0}; {Q0}) where Q0 = ({R1, R2}; ∅; ∅; ∅). We have that

({Q0}; {Q0}) in(c2, X2)7−−−−−→A1 ({Qt
0, Qe

0}; {Qt
0, Qe

0})

where Qt
0 and Qe

0 are the two symbolic processes one may obtain by executing the observable
action in(c2, X2), depending on the conditional after that input. Specifically, we have:

• Qt
0 = ({R1, out(c2, n2)}; ∅; {∅ ⊢?

X2
x2, x2 =? ok}; ∅)

• Qe
0 = ({R1}; ∅; {∅ ⊢?

X2
x2, x2 ̸=? ok}; ∅)

After this first step, 7−→A2 is going to non-deterministically solve the constraint systems. From the
latter pair, it will produce only two alternatives. Indeed, if x2 =? ok holds then Apte infers that
the only recipe that it needs to consider is the recipe R = ok. In that case, the only considered
solution is {X2 7→ ok}. Otherwise, x2 ̸=? ok holds but, at this point, no more information is
inferred on X2. Formally,

({Qt
0, Qe

0}; {Qt
0, Qe

0}) 7−→A2 ({Qt
1}; {Qt

1})
({Qt

0, Qe
0}; {Qt

0, Qe
0}) 7−→A2 ({Qe

1}; {Qe
1}) where

• Qt
1 = ({R1, out(c2, n2)}; ∅; {∅ ⊢?

X2
x2, x2 =? ok}; St

1) and Sol+(Qt
1) = {θt

1} where θt
1 =

{X2 7→ ok};

• Qe
1 = ({R1}; ∅; {∅ ⊢?

X2
x2, x2 ̸=? ok}; Se

1).

136

6.3. Integration in Apte

The content of St
1 and Se

1 is not important. Note that after 7−→A2, only one alternative remains in
this example (i.e. there is only one extended symbolic process on each side of the resulting pair)
because only one of the two processes Qt

0, Qe
0 complies with the choices made in each branch.

Definition 42 (≈A). Let A = (PA; ΦA) and B = (PB ; ΦB) be two processes. We say that
A ≈A B when A ∼+ B for any pair (A; B) such that ((PA; ΦA; ∅; ∅); (PB ; ΦB ; ∅; ∅)) tr7−→A (A; B).

As announced above, we expect ≈A to coincide with trace equivalence. We shall actually
prove it (see Section 6.3.3), after having introduced a few axioms (Section 6.3.2). We note,
however, that this can only hold under some minor assumptions on processes. In practice, Apte
does not need those assumptions but they allow for a more concise presentation.

Definition 43. A simple process (resp. symbolic process) A is said to be quiescent when A ̸ τ−→
(resp. A ̸ τZ=⇒). An extended symbolic process A+ is quiescent when TA+U ̸ τZ=⇒.

In α7−→A1 transitions, processes must start by executing an observable action α and possibly
some τ actions after that. Hence, it does not make sense to consider 7−→A transitions on processes
that can still perform τ actions. We shall thus establish that ≈A and ≈s coincide only on
quiescent processes, which is not a significant restriction since it is always possible to pre-execute
all available τ -actions before testing equivalences.

6.3.2 Specification of the Procedure

We now list and comment the specification satisfied by the exploration performed by Apte. These
statements are consequences of results stated and proved in [Che12] and it is beyond the scope
of this thesis to prove them.

Soundness and completeness of constraint resolution. The 7−→A2 step, corresponding
to Apte’s constraint resolution procedure, only makes sense under some assumptions on the
(common) structure of the processes that are part of the pairs of sets under consideration. Rather
than precisely formulating these conditions (which would be at odds with the abstract treatment
of extended constraint systems) we start by defining an over-approximation of the set of pairs
on which we may apply 7−→A2 at some point. We choose this over-approximation sufficiently large
to cover pairs produced by the compressed semantics, and we then formulate our specifications
in that domain. This over-approximation have to cover two things:

1. we have to consider additional disequalities of the form t ̸=? t in constraint systems since
they are eventually added by our compressed symbolic semantics (see Figure 6.4);

2. we have to allow the removal of some extended symbolic process from the original sets since
they are eventually discarded by our compressed (resp. reduced) symbolic semantics.

Given an extended symbolic process A+ = (P; Φ; S; S+), we denote by add(A+) the set of
extended symbolic processes obtained from A+ by adding into S a number of disequalities of

137

6. Putting Reduced Semantics into Practice and Integration in Apte

the form u ̸=? u with vars1(u) ⊆ vars1(S). This is then extended to sets of extended symbolic
processes as follows: add({A+

1 , . . . , A+
n }) = {{B+

1 , . . . , B+
n } | B+

i ∈ add(A+
i)}.

Definition 44 (valid and intermediate valid pairs). The set of valid pairs is the least set such
that:

• For all quiescent, symbolic processes A = (P; Φ; ∅) and B = (Q; Ψ; ∅), ({VAW}; {VBW}) is
valid.

• If (A; B) is valid and A ∼+ B, (A; B) α7−→A1 (A1; B1), A2 ⊆ A1, B2 ⊆ B1, A3 ∈ add(A2),
B3 ∈ add(B2), and (A3; B3) 7−→A2 (A′; B′) then (A′; B′) is valid. In that case, the pair
(A3; B3) is called an intermediate valid pair.

It immediately follows that ({VAW}; {VBW}) tr7−→A (A; B) implies that (A; B) is valid and
only made of quiescent, extended symbolic processes. But the notion of validity accommodates
more pairs: it will cover pairs accessible under refinements of 7−→A based on subset restrictions of
7−→A1. We may note that these pairs are actually pairs that would have been explored by Apte
when starting with another pair of processes (e.g. a process that makes explicit the use of trivial
conditionals of the form let u = t in P else Q). Therefore, those pairs do not cause any trouble
when they have to be handled by Apte.

Axiom 1 (soundness of constraint resolution). Let (A′; B′) be an intermediate valid pair such
that (A′; B′) 7−→A2 (A′′; B′′). Then, for all A′′ ∈ A′′ (resp. B′′ ∈ B′′) there exists some A′ ∈ A′

(resp. B′ ∈ B′) such that TA′U = TA′′U (resp. TB′U = TB′′U) and Sol+(A′′) ⊆ Sol+(A′) (resp.
Sol+(B′′) ⊆ Sol+(B′)).

Apte almost treats symmetrically the two components of the pair of sets on which transitions
take place. This is reflected by the fact that axioms concern both sides and are completely
symmetric as in Axiom 1. In order to make the following specifications more concise and readable,
we may state properties only for one of the two sets and consider “symmetrically” as well.

The completeness specification is in two parts: it first states that no first-order solution is lost
in the constraint resolution process, and then that the branching of 7−→A2 corresponds to different
second-order solutions.

Axiom 2 (first-order completeness of constraint resolution). Let (A; B) be an intermediate
valid pair. For all A+ ∈ A and θ ∈ Sol(A+) there exists (A; B) 7−→A2 (A2; B2), A+

2 ∈ A2 and
θ+ ∈ Sol+(A+

2) such that TA+
2 U = TA+U and λA

θ =E λA
θ+ , where λA

θ (resp. λA
θ+) is the substitution

associated to θ (resp. to θ+) w.r.t. TA+U. Symmetrically for B+ ∈ B.

To express that the branching of 7−→A2 corresponds to different second-order solutions, we
state in the next Axiom that if a branch of 7−→A2 keeps a second-order solution for one process
then it keeps it uniformly for all processes.

Axiom 3 (second-order consistency of constraint resolution). Let (A; B) be an intermediate
valid pair such that (A; B) 7−→A2 (A2; B2), θ ∈ Sol+(A+) for some A+ ∈ A and θ ∈ Sol+(C+

2)

138

6.3. Integration in Apte

for some C+
2 ∈ A2 ∪ B2. Then there exists some A+

2 ∈ A2 such that TA+U = TA+
2 U and

θ ∈ Sol+(A+
2). Symmetrically for B+ ∈ B.

Partial solution. In order to avoid performing some explorations when dependency constraints
of our reduced semantics are not satisfied, we shall be interested in knowing when all solutions
of a given constraint system assign a given recipe to some variable. Such information is generally
available in the solved forms computed by Apte, but not always in a complete fashion. We reflect
this by introducing an abstract function that represents the information that can effectively be
inferred by the procedure.

Definition 45 (partial solution). We assume a partial solution2 function ps which maps sets of
extended constraints S+ to a substitution, such that for any θ ∈ Sol+(P; Φ; S; S+), there exists θ′

such that θ = ps(S+)⊔θ′. We extend ps to extended symbolic processes: ps(P; Φ; S; S+) = ps(S+).

Intuitively, given an extended constraint system, the function ps returns the value of some of
its second-order variables (those for which their instantiation is already completely determined).
Our specification of the partial solution shall postulate that the partial solution returned by Apte
is the same for each extended symbolic process occurring in a pair (A; B) reached during the
exploration. Moreover, there is a monotonicity property that ensures that this partial solution
becomes more precise along the exploration.

Axiom 4. We assume the following about the partial solution:

(1) For any valid pair (A; B), we have that ps(A) = ps(B) for any A, B ∈ A ∪ B. This allows
us to simply write ps(A; B) when A ∪ B ̸= ∅.

(2) For any intermediate valid pair (A; B) such that (A; B) 7−→A2 (A′; B′) and A′ ∪ B′ ̸= ∅, we
have ps(A′; B′) = ps(A; B) ⊔ θ for some θ.

Example 43. Continuing Example 42, we first note that ({Q0}; {Q0}) is a valid pair. Sec-
ond, the exploration ({Q0}; {Q0}) in(c2, X2)7−−−−−→A ({Qt

1}; {Qt
1}) covers all executions of the formTQ0U in(c2,X2).τthenZ=========⇒ TQt

1U going to the then branch even though the only solution of Qt
1 is θt

1.
Indeed, if θ ∈ Sol(TQt

1U) then the message computed by X2θ should be equal to ok and thus no
first-order solution is lost as stated by Axiom 2. Moreover, because the value of X2 is already
known in Qt

1, we may have ps(Qt
1) = ps(S+

1) = {X2 7→ ok}.

6.3.3 Proof of the Original Procedure

The procedure, axiomatized as above, can be proved correct w.r.t the regular symbolic semanticsZ=⇒ and its induced trace equivalence ≈s as defined in Section 6.2.1. Of course, Axiom 4 is unused
in this first result. It will be used later on when implementing our reduced semantics. We

2We use the notation σ1 ⊔ σ2 to emphasise the fact that the two substitutions do not interact together.
They have disjoint domain, i.e. dom(σ1) ∩ dom(σ2) = ∅, and no variable of dom(σi) occurs in img(σj) with
{i, j} = {1, 2}.

139

6. Putting Reduced Semantics into Practice and Integration in Apte

first start by establishing that all the explorations performed by Apte correspond to symbolic
executions.

This result is not new and has been established from scratch (i.e. without relying on the
axioms stated in the previous section) in [Che12]. Nevertheless, we found it useful to establish
that our axioms are sufficient to prove correctness of the original Apte procedure. The proofs
provided in the following sections to establish correctness of our optimised procedure follow the
same lines as the ones presented below.

Lemma 16. Let (A; B) be a valid pair such that (A; B) tr7−→A (A′; B′). Then, for all A′ ∈ A′

there is some A ∈ A such that TAU tr′Z==⇒ TA′U for some tr′ with obs(tr′) = tr. Symmetrically for
B′ ∈ B′.

Proof. We proceed by induction on tr. When tr is empty, we have that (A; B) = (A′; B′), and
the result trivially holds. Otherwise we have that:

(A; B) α7−→A1 (A1; B1) 7−→A2 (A2; B2) tr07−→A (A′; B′) with tr = α.tr0.

Let A′ be a process of A′. By induction hypothesis we have some A2 ∈ A2 such that TA2U tr′
0Z==⇒TA′U with obs(tr′

0) = tr0. By Axiom 1 there is some A1 ∈ A1 such that TA1U = TA2U, and by
definition of 7−→A1 we finally find some A ∈ A such that TAU α.τkZ===⇒ TA1U. To sum up, we have
A ∈ A such that TAU trZ=⇒ TA′U with obs(tr′) = tr.

We now turn to completeness results. Assuming that processes under study are in equivalence
≈A (so that Apte will not stop its exploration prematurely), we are able to show that any valid
symbolic execution (i.e. a symbolic execution with a solution in its resulting constraint system) is
captured by an exploration performed by Apte. Actually, since Apte discards some second-order
solution during its exploration, we can only assume that another second-order solution with the
same associated first-order solution will be found. We prove the former in the next lemma.

Lemma 17. Let A = (P; Φ; ∅), B = (Q; Ψ; ∅) and A′ = (P ′; Φ′; S ′) be three quiescent, symbolic
processes such that (P; Φ) ≈A (Q; Ψ), A

trZ=⇒ A′, and θ ∈ Sol(A′). Then there exists an Apte
exploration ({VAW}; {VBW}) tro7−→A (A′; B′) and some A+ ∈ A′, θ+ ∈ Sol+(A+) such that obs(tr) =
tro, TA+U = A′ and λθ =E λθ+ , where λθ (resp. λθ+) is the substitution associated to θ (resp. to
θ+) with respect to (Φ′; S ′). Symmetrically for B

trZ=⇒ B′.

Proof. By hypothesis, we have that A
trZ=⇒ A′. We will first reorganise this derivation to ensure

that τ actions are always performed as soon as possible. Then, we proceed by induction on
obs(tr). When obs(tr) is empty, we have that A′ = A since A is quiescent. Let (A′; B′) =
({VAW}; {VBW}), A+ = VAW, θ+ = θ. We have that θ ∈ Sol(A) and therefore θ ∈ Sol+(VAW),
i.e. θ+ = θ ∈ Sol+(A+). We easily conclude.

Otherwise, consider A
tr0Z==⇒ A1

α.τkZ===⇒ A′ with θ ∈ Sol(A′). Let A′ = (P ′; Φ′; S ′) and A1 =
(P1; Φ1; S1). We have that S1 ⊆ S ′. Since θ ∈ Sol(A′), we also have θ|V ∈ Sol(A1) where
V = vars2(S1). Therefore, we apply our induction hypothesis and we obtain that there exists an
Apte exploration ({VAW}; {VBW}) tr′

07−→A (A1; B1) and some A+
1 ∈ A1, θ+

1 ∈ Sol+(A+
1) such that

140

6.3. Integration in Apte

obs(tr0) = tr′
0, TA+

1 U = A1, and the first-order substitutions associated to θ|V and θ+
1 with respect

to (Φ1; S1) are identical. By hypothesis we have (P; Φ) ≈A (Q; Ψ), thus A1 ∼+ B1. Hence a

7−→A1 transition can take place on that pair. By definition of 7−→A1 and since TA+
1 U = A1

α.τkZ===⇒ A′

with A′ quiescent, there must be some (A1; B1) α7−→A1 (A2; B2) with A+
2 ∈ A2, TA+

2 U = A′.
Thus θ ∈ Sol(A+

2) and we can apply Axiom 2. There exists (A2; B2) 7−→A2 (A′; B′), A+ ∈ A′,TA+U = TA+
2 U and θ+ ∈ Sol+(A+) such that TA+

2 U = TA+U, and the substitutions associated
to θ (resp. θ+) w.r.t. (Φ′; S ′) coincide. To sum up, the exploration

({VAW}; {VBW}) tr′
07−→A (A1; B1) α7−→A1 (A2; B2) 7−→A2 (A′; B′)

together with A+ ∈ A′, and θ+ ∈ Sol+(A+) satisfy all the hypotheses.

We now prove that Apte discards the same second-order solutions in a given exploration. To
put in other words, if an execution with an associated second-order solution θ is captured by an
exploration and θ is not discarded by this exploration (possibly for another execution) then the
former is captured by the latter with this θ.

Lemma 18. Let A, B, A′ be quiescent symbolic processes such that A
trZ=⇒ A′ = (P ′; Φ′; S ′),

θ ∈ Sol(A′) and ({VAW}; {VBW}) tro7−→A (A′; B′) with obs(tr) = tro and θ ∈ Sol+(C) for some
C ∈ A′ ∪ B′. Then there exists some A+ ∈ A′ such that TA+U = A′ and θ ∈ Sol+(A+).
Symmetrically for B

trZ=⇒ B′.

Proof. We proceed by induction on tro. When tro is empty, we have that A′ = A (because A

is quiescent), A′ = {VAW}, and B′ = {VBW}. Let A+ be VAW = VA′W. We deduce that
θ ∈ Sol+(A+) from the fact that θ ∈ Sol(A) and A+ = VAW.

We consider now the case of a non-empty execution:

({VAW}; {VBW}) tro7−→A (A1; B1) α7−→A1 (A2; B2) 7−→A2 (A3; B3) and A
trZ=⇒ A1

α.τkZ===⇒ A3.

Note that, by reordering τ actions, we can assume A1 to be quiescent. By assumption we
have θ ∈ Sol(A3), obs(tr) = tro and θ ∈ Sol+(C3) for some C3 ∈ A3 ∪ B3. By Axiom 1, there
exists some C2 ∈ A2 ∪ B2 such that θ ∈ Sol+(C2). By definition of 7−→A1 we obtain C1 ∈ A1 ∪ B1

such that TC1U α.τkZ===⇒ TC2U and S+(C1) = S+(C2) (i.e. the sets of extended constraints of C1

and C2 coincide). The first fact implies θ|V ∈ Sol(C1) by monotonicity (where V = vars2(S(C1)),
i.e. second-order variables that occur in the set of non-extended constraints of C1), and the second
allows us to conclude more strongly that θ|V ∈ Sol+(C1). Since we also have θ|V ∈ Sol(A1) by
monotonicity, the induction hypothesis applies and we obtain some A+

1 ∈ A1 with TA+
1 U = A1

and θ|V ∈ Sol+(A+
1).

By definition of 7−→A1, and since TA+
1 U α.τkZ===⇒ A3 ̸ τZ=⇒ (A3 is quiescent by hypothesis), we have

A+
2 ∈ A2 such that TA+

2 U = A3 and S+(A+
1) = S+(A+

2). Therefore, we have that θ ∈ Sol(TA+
2 U),

and the fact that S+(A+
1) = S+(A+

2) allows us to say that θ ∈ Sol+(A+
2). We can finally apply

Axiom 3 to obtain some A+
3 such that TA+

3 U = TA+
2 U = A3 and θ ∈ Sol+(A+

3).

141

6. Putting Reduced Semantics into Practice and Integration in Apte

Lemmas 16 to 18 are the only ingredients needed to show that Apte computes the trace
equivalence as shown next.

Proposition 22. For any quiescent extended simple processes, we have that:

A ≈s B if, and only if, A ≈A B.

Proof. Let A0 = (P; Φ), B0 = (P ′; Φ′), A0 = {(P; Φ; ∅; ∅)} and B0 = {(P ′; Φ′; ∅; ∅)}. We prove
the two directions separately.

(⇒) Assume A0 ≈s B0 and consider some exploration (A0; B0) tro7−→A (A; B). We shall establish
that A ≺+ B. Let A+ = (PA; ΦA; SA; S+

A) be in A and θ ∈ Sol+(A+). By Lemma 16, we have
(P; Φ; ∅) trZ=⇒ TA+U such that obs(tr) = tro. By hypothesis, there exists B = (PB ; ΦB ; SB) such
that (P ′; Φ′; ∅) tr′Z==⇒ B, obs(tr′) = obs(tr) = tro, θ ∈ Sol(B) and ΦBλB

θ ∼ ΦAλA
θ . We can finally

apply Lemma 18, which tells us that there must be some B+ ∈ B such that TB+U = B and
θ ∈ Sol+(B+).

(⇐) We now establish A0 ⊑s B0 assuming A0 ≈A B0. Consider (P; Φ; ∅) trZ=⇒ A and θ ∈
Sol(A). If A is not quiescent, it is easy to complete the latter execution into (P; Φ; ∅) tr.τkZ===⇒
A′ = (PA; ΦA; SA) and θ ∈ Sol(A′) such that A′ is quiescent. By Lemma 17 we know that
(A0; B0) tro7−→A (A; B) with obs(tr) = tro, A+ ∈ A, θ+ ∈ Sol+(A+) with A′ = TA+U and
λθ =E λθ+ where λθ (resp. λθ+) is the substitution associated to θ (resp. θ+) w.r.t. (ΦA; SA).
By assumption we have A ≺+ B and thus there exists some B = (PB ; ΦB ; SB ; S+

B) ∈ B with
θ+ ∈ Sol+(B), and ΦBλB

θ+ ∼ ΦAλθ+ where λB
θ+ is the substitution associated to θ+ w.r.t.

(ΦB ; SB). By Lemma 16 we have (P ′; Φ′; ∅) tr′Z==⇒ TBU with obs(tr′) = tro = obs(tr). To conclude
the proof, it remains to show that θ ∈ Sol(TBU) and that ΦAλθ ∼ ΦBλB

θ where λB
θ is the

substitution associated to θ w.r.t. (ΦB ; SB).
For any X ∈ vars2(SB) = vars2(SA), we have valid((Xθ)(ΦAλθ+)), valid((Xθ+)(ΦAλθ+)),

and

(Xθ)(ΦAλθ+) ≡Ed
(Xθ)(ΦAλθ) ≡Ed

xAλθ ≡Ed
xAλθ+ ≡Ed

(Xθ+)(ΦAλθ+)

where xA is the first-order variable associated to X in SA. Since ΦAλθ+ ∼ ΦBλB
θ+ , we deduce

that (Xθ)(ΦBλB
θ+) ≡Ed

(Xθ+)(ΦBλB
θ+), valid((Xθ)(ΦBλB

θ+)) and therefore θ ∈ Sol(TBU), and its
associated substitution λB

θ w.r.t. (ΦB ; SB) coincides with λB
θ+ , and therefore ΦAλθ ∼ ΦBλB

θ is a
direct consequence of ΦBλB

θ+ ∼ ΦAλθ+ and λθ =E λθ+ .

6.3.4 Integrating Compression

We now discuss the integration of the symbolic compressed semantics of Section 6.2.2 as a
replacement for the regular symbolic semantics in Apte. Since the symbolic compressed semantics
does not interact with exchanged data, we are able to simply adapt •7−→A1

c to reflect the compressed
strategy.

142

6.3. Integration in Apte

Definition 46. Given two sets of extended symbolic processes A, B, and an observable action
α, we write (A; B) α7−→A1

c (A′; B′) when

A′ =
∪

(P;Φ;S;S+)∈A

{
(P ′; Φ′; S ′; S+) | (P; Φ; S) α7−→c (P ′; Φ′; S ′) ̸ τZ=⇒ }

,

and similarly for B′. We say that (A; B) α7−→A
c (A′′; B′′) when (A; B) α7−→A1

c (A′; B′) and (A′; B′) 7−→A2

(A′′; B′′).
Finally, given two simple extended processes A = (PA; ΦA) and B = (PB; ΦB), we say that

A ≈A
c B when A ≈+ B for any ({V(PA; ΦA; ∅)W}; {V(PB; ΦB; ∅)W}) tr7−→A

c (A; B).

As expected, 7−→A1
c allows to consider much fewer explorations than with the original 7−→A1. It

inherits the features of compression, prioritising outputs, not considering interleavings of outputs,
executing inputs only under focus, and preventing executions beyond improper blocks. These
constraints apply to individual processes in A ∪ B, but we remark that they also have a global
effect in 7−→A1

c , e.g. all processes of A ∪ B must start a new block simultaneously: recall that the
beginning of a block corresponds to some outputs after some inputs, and after the outputs, no
more outputs are available.

Example 44. Continuing Example 43, there is only one non-trivial3 compressed exploration
of one action from the valid pair ({Qt

1}; {Qt
1}). It corresponds to the output on channel c2:

({Qt
1}; {Qt

1}) out(c2, w2)7−−−−−−→A
c ({Q2}, {Q2}) for Q2 = ({R1}; {w2 7→ n2}; {∅ ⊢?

X2
x2, x2 =? ok}; S+

2). In
particular, for any i ∈ {1, 2}, we have ({Qt

1}; {Qt
1}) in(ci, Xi)7−−−−−→A

c (∅; ∅).

Observe that, because 7−→A
c is obtained from 7−→A by a subset restriction in 7−→A1 up to some

disequality constraints, we have that (A′; B′) is a valid pair when ({VAW}; {VBW}) tr7−→A
c (A′; B′)

for some quiescent, symbolic processes A, B having empty sets of constraints. Following the
same reasoning as the one performed in Section 6.3.3, we can establish that ≈s

c coincides with
≈A

c . The main difference is that 7−→c already ignores τ -actions, and therefore we do not need to
apply the obs(·) operator.

Lemma 19. Let (A; B) be a valid pair such that (A; B) tr7−→A
c (A′; B′). Then, for all A′ ∈ A′

there is some A ∈ A such that TAU tr7−→c TA′U. Symmetrically for B′ ∈ B′.

Lemma 20. Let A = (P; Φ; ∅), B = (Q; Ψ; ∅), and A′ = (P ′; Φ′; S ′) be three quiescent, symbolic
processes such that (P; Φ) ≈A

c (Q; Ψ), A tr7−→c A′ and θ ∈ Sol(A′). Then there exists an exploration
({VAW}; {VBW}) tr7−→A

c (A′; B′) and some A+ ∈ A′, θ+ ∈ Sol+(A+) such that TA+U = A′ and
λθ =E λθ+ , where λθ (resp. λθ+) is the substitution associated to θ (resp. to θ+) with respect to
(Φ′; S ′). Symmetrically for B tr7−→c B′.

Lemma 21. Let A, B and A′ be quiescent, simple symbolic processes such that A tr7−→c A′ =
(P ′; Φ′; S ′), θ ∈ Sol(A′), and ({VAW}; {VBW}) tr7−→A

c (A′; B′) with θ ∈ Sol+(C) for some C ∈
A′∪B′. Then there exists some A+ ∈ A′ such that TA+U = A′ and θ ∈ Sol+(A+). Symmetrically
for B tr7−→c B′.

3 We dismiss here the (infinitely many) transitions obtained for infeasible actions, which yield (∅; ∅).

143

6. Putting Reduced Semantics into Practice and Integration in Apte

Theorem 6. For any quiescent extended simple processes, we have that:

⌈A⌉ ≈s
c ⌈B⌉ if, and only if, A ≈A

c B.

6.3.5 Integrating Dependency Constraints

We now define a final variant of Apte explorations, which integrates the reduction strategy to
further reduce redundant explorations. We can obviously generate dependency constraints in
Apte, just like we did in Section 6.2.3, but the real difficulty is to exploit them in constraint
resolution to prune some branches of the exploration performed by Apte. Roughly, we shall
simply stop the exploration when reaching a state for which we know that all of its solutions
violate dependency constraints. To do that, we rely on the notion of partial solution introduced
in Section 6.3.1. In other words, we do not modify Apte’s constraint resolution, but simply rely on
information that it already provides to know when dependency constraints become unsatisfiable.
As we shall see in Section 6.4, this simple strategy is very satisfying in practice.

Definition 47. We define 7−→A
r as the greatest relation contained in 7−→A

c and such that, for any
symbolic processes A and B with empty constraint sets, ({VAW}; {VBW}) tr7−→A

r (A′; B′) implies
that there is no X⋉w ∈ Deps(tr) such that for all Xi ∈ X we have Xi ∈ dom(ps(A′; B′)), and
w ∩ vars1(Xips(A′; B′)) = ∅.

Finally, given two simple extended process A = (PA; ΦA) and B = (PB ; ΦB), we say that
A ≈A

r B when A ∼+ B for any pair (A; B) such that ((PA; ΦA; ∅; ∅); (PB ; ΦB ; ∅; ∅)) tr7−→A
r (A; B).

Example 45. Continuing Example 44, consider the following compressed exploration, where Q3

contains the constraints ∅ ⊢?
X2

x2, {w2} ⊢?
X1

x1, x2 =? ok and x1 =? ok:

({Q0}; {Q0}) foc(in(c2, X2))7−−−−−−−−→A
c

out(c2, w2).rel7−−−−−−−−→A
c ({Q2}; {Q2})

foc(in(c1, X1))7−−−−−−−−→A
c

out(c1, w1).rel7−−−−−−−−→A
c ({Q3}; {Q3}).

Assuming that ps(Q3) = {X2 7→ ok, X1 7→ ok} (which is the case in the actual Apte procedure)
this compressed exploration is not explored by 7−→A

r because

X1⋉w2 ∈ Deps(ioc2(X2, w2).ioc1(X1, w1)), X1ps(Q3) = ok and {w2} ∩ vars1(ok) = ∅.

Below, we show that all reduced executions are captured by ·7−→A
r .

Lemma 22. Let A = (P; Φ; ∅), B = (Q; Ψ; ∅) and A′ = (P ′; Φ′; S ′) be quiescent, simple symbolic
processes such that (P; Φ) ≈A

r (Q; Ψ), A tr7−→c A′, θ ∈ Sol(A′) and θ |=(Φ′;S′) Deps(tr). Then there
exists an exploration ({VAW}; {VBW}) tr7−→A

r (A′; B′) and some A+ ∈ A′, θ+ ∈ Sol+(A+) such thatTA+U = A′ and λθ =E λθ+ , where λθ (resp. λθ+) is the substitution associated to θ (resp. to θ+)
with respect to (Φ′; S ′). Symmetrically for B tr7−→c B′.

Proof. We proceed by induction on tr. The empty case is easy. Otherwise, consider A tr7−→c

A1
α7−→c A3 = (P3; Φ3; S3) with θ ∈ Sol(A3), A1, A3 quiescent, and θ |=(Φ3;S3) Deps(tr.α). Let

A1 = (P1; Φ1; S1) and V1 = vars2(S1). We also have θ|V1 ∈ Sol(A1) and θ|V1 |=(Φ1;S1) Deps(tr),

144

6.3. Integration in Apte

so the induction hypothesis applies and we obtain ({VAW}; {VBW}) tr7−→A
r (A1; B1) with A+

1 ∈ A1,TA+
1 U = A1 and θ+

1 ∈ Sol+(A+
1) such that the first-order substitutions associated to θ|V1 and θ+

1

w.r.t. (Φ1; S1) coincide.
By hypothesis we have A ≈A

r B, thus A1 ∼+ B1. Hence a 7−→A1
c transition can take place on

that pair. By definition of 7−→A1
c and since TA+

1 U = A1
α7−→c A3, there must be some (A1; B1) α7−→A1

c

(A2; B2) with A+
2 ∈ A2, TA+

2 U = A3. Thus θ ∈ Sol(A+
2) and we can apply Axiom 2 to obtain

(A2; B2) 7−→A2 (A3; B3) with A+
3 ∈ A3, TA+

3 U = TA+
2 U and θ+

3 ∈ Sol+(A+
3) such that the

substitutions associated to θ and θ+
3 w.r.t. (Φ3; S3) coincide.

It only remains to show that this extra execution step in 7−→A
c is also present in 7−→A

r , i.e. that
ps(A3; B3) does not violate Deps(tr.α) in the sense of Definition 47. This is because, by definition
of the partial solution, we have that θ+

3 = ps(A3; B3)⊔τ for some τ , so that if ps(A3; B3) violated
Deps(tr.α) then we would have θ+

3 ̸|=(Φ3;S3) Deps(tr.α). Since θ+
3 and θ induce the same first-order

substitutions with respect to (Φ3; S3), we would finally have θ ̸|=(Φ3;S3) Deps(tr.α), contradicting
the hypothesis on θ.

Finally, we show the main theorem of this chapter: Apte implementing the reduced strategy
as explained above computes the trace equivalence for quiescent simple processes.

Theorem 7. For any quiescent initial simple processes A and B such that skl(A) = skl(B), we
have that:

A ≈ B if, and only if, A ≈A
r B.

Proof. Let A = (P; Φ) and B = (Q; Ψ) be two quiescent, initial simple processes such that
skl(A) = skl(B). We prove the two directions separately.

(⇒) Applying Corollary 4 and theorem 6, we have that A ≈ B implies A ≈A
c B. Then,

we easily deduce A ≈A
r B. Indeed, for any ({V(P; Φ; ∅)W}; {V(Q; Ψ; ∅)W}) tr7−→A

r (A′; B′) we have
({V(P; Φ; ∅)W}; {V(Q; Ψ; ∅)W}) tr7−→A

c (A′; B′) by definition of 7−→A
r , and thus A′ ∼+ B′ by hypothe-

sis.
(⇐) For the other direction, it suffices to show that A ≈A

r B implies A ⊑s
r B (by Corollary 5).

Let (P; Φ; ∅) tr7−→c A′ = (P ′; Φ′; S ′) with θ ∈ Sol(A′) and θ |=(Φ′;S′) Deps(tr). By Lemma 22,
we have ({V(P; Φ; ∅)W}; {V(Q; Ψ; ∅)W}) tr7−→A

r (A′; B′) with A+ ∈ A′, θ+ ∈ Sol+(A+) such thatTA+U = A′ and λA′

θ =E λA′

θ+ where λA′

θ (resp. λA′

θ+) is the substitution associated to θ (resp. θ+)
w.r.t. (Φ′; S ′).

Since A ≈A
r B, we have A′ ∼+ B′: there must be some B+ = (PB′ ; ΦB′ ; SB′ ; S+

B) ∈ B′

such that θ+ ∈ Sol+(B+) and Φ′λA′

θ+ ∼ ΦB′λB′

θ+ where λB′

θ+ is the substitution associated to
θ+ w.r.t. (ΦB′ ; SB′). By Lemma 19, we have (Q; Ψ; ∅) tr7−→c TB+U. Furthermore, we can show
as before (see the end of the proof of Proposition 22) that θ ∈ Sol(B+) and Φ′λA′

θ ∼ ΦB′λB′

θ ,
where λB′

θ is the substitution associated to θ w.r.t. (ΦB′ ; SB′). Finally, by θ |=(Φ′;S′) Deps(tr),
D(Φ′;S′) = D(ΦB′ ;SB′) (i.e. sets of handles that second-order variables may use coincide), and
Φ′λA′

θ ∼ ΦB′λB′

θ , we obtain that θ |=(ΦB′ ;SB′) Deps(tr).

145

6. Putting Reduced Semantics into Practice and Integration in Apte

6.4 Implementation and Benchmarks

The POR techniques we presented in this part have been implemented, following the above
approach, in the official version of Apte [aptb]. We discuss the implementation in Subsection 6.4.1
and provide and comment on benchmarks in Subsection 6.4.2.

6.4.1 Implementation

In practice, many processes enjoy a nice property that allows one to ensure that blocking outputs
will never occur: it is often the case that enough tests are performed before outputting a term
to ensure its validity.

Example 46. Consider the following process, where k′ is assumed to be valid (e.g. because it is
a pure constructor term):

in(c, x).if sdec(x, k) = hash(u) then out(c, senc(sdec(x, k), k′))

The term outputted during an execution is necessarily valid thanks to the test that is performed
just before this output.

We exploit this property in order to avoid adding additional disequalities when integrating
compression in Apte. Therefore, in this section, we will restrict ourselves to simple processes that
are non-blocking as defined below.

Definition 48. Let (P; Φ) be a simple process. We say that (P; Φ) is non-blocking if u is valid
for any tr, c, u, Q′, Q, Ψ such that (P; Φ) tr−→ ({out(c, u).Q′} ∪ Q; Ψ).

This condition may be hard to check in general, but it is actually quite easy to see that
it is satisfied on all of our examples. Roughly, enough tests are performed before any output
action, and this ensures the validity of the term when the output action becomes reachable as in
Example 46.

We implemented •7−→A
c and •7−→A

r for non-blocking processes in the main development line of the
tool Apte distributed at [aptb]. Those optimisations can be enabled using an option

−with_por [compr|red] [improper].

It is thus possible to use the compressed or the reduced semantics with or without the “semi”
variant that does not stop exploring after an improper block. The modifications of the code
(≈ 2kloc of OCaml) are summarised at https://github.com/LCBH/APTE/compare/ref...APTE:
POR. Sources and instructions for reproduction of the following benchmarks are openly avail-
able [Hira].

146

https://github.com/LCBH/APTE/compare/ref...APTE:POR
https://github.com/LCBH/APTE/compare/ref...APTE:POR

6.4. Implementation and Benchmarks

6.4.2 Benchmarks

We now report on experimental results. We ran the tool (compiled with OCaml 3.12.1) on a
single 2.67GHz Xeon core with 48GO of RAM and compared three different versions:

• reference: the reference version without our optimisations (i.e. ≈A);

• compression: using only the compression optimisation (i.e. ≈A
c);

• reduction: using both compression and reduction (i.e. ≈A
r).

For reference, the version of Apte that we are using in the benchmarks below is available at
https://github.com/APTE/APTE/releases/tag/bench-POR-LMCS together with all benchmark
files, in subdirectory bench/protocols. More details, including instructions for reproducing our
benchmarks are available at http://www.lsv.fr/~hirschi/apte_por.

We first show examples in which equivalence holds. They are the most significant, because
the time spent on inequivalent processes is too sensitive to the order in which the (depth-first)
exploration is performed.

Toy example. We consider a parallel composition of n roles Ri as defined in Example 42:
Pn := Πn

i=1Ri. When executed in the regular symbolic semantics Z=⇒, the 2n actions of Pn may
be interleaved in (2n)!/2n ways in a trace containing all actions. In the compressed symbolic
semantics 7−→c, the actions of individual Ri processes must be bundled in blocks, so there are
only n! interleavings containing all actions. In the reduced symbolic semantics 7−→r, only one
interleaving of that length remains: the trace cannot deviate from the priority order, since the
only way to satisfy a dependency constraint would be to feed an input with a message that
cannot be derived without some previously output nonce ni, but in that case the message will
not be ok and the trace won’t be explored further. Note that there is still an exponential number
of symbolic traces in the reduced semantics when one takes into account traces with less than
2n actions.

We show in Figure 6.5 the time needed to verify Pn ≈ Pn for n = 1 to 22 in the three versions
of Apte described above: reference, compression and reduction. The results, in logarithmic
scale, show that each of our optimisations brings an exponential speedup, as predicted by our
theoretical analysis. Similar improvements are observed if one compares the numbers of explored
pairs rather than execution times.

Denning-Sacco protocol. We ran a similar benchmark, checking that Denning-Sacco [DS81]
ensures strong secrecy in various scenarios. The protocol has three roles and we added processes
playing those roles in turn, starting with three processes in parallel. Strong secrecy is expressed
by considering, after one of the roles B, the output of a message encrypted with the established
key on one side of the equivalence, and with a fresh key on the other side. The results are plotted
in Figure 6.6. The fact that we add one role out of three at each step explains the irregular growth
in verification time. We still observe an exponential speedup for each optimisation.

147

https://github.com/APTE/APTE/releases/tag/bench-POR-LMCS
http://www.lsv.fr/~hirschi/apte_por

6. Putting Reduced Semantics into Practice and Integration in Apte

10-3
10-2
10-1
100
101
102
103
104
105

 5 10 15 20

se
co

nd
s

nb. of parallel processes

reference
compression

reduction

Figure 6.5 Impact of optimisations on verification time on toy example.

10-3
10-2
10-1
100
101
102
103
104

 3 6 9 12

se
co

nd
s

nb. of parallel processes

reference
compression

reduction

Figure 6.6 Impact of optimisations on verification time on Denning-Sacco.

Practical impact. Finally, we illustrate how our optimisations make Apte much more useful
in practice for investigating interesting scenarios. Verifying a single session of a protocol brings
little assurance into its security. In order to detect replay attacks and to allow the attacker to
compare messages that are exchanged, at least two sessions should be considered. This means
having at least four parallel processes for two-party protocols, and six when a trusted third party
is involved. This is actually beyond what the unoptimised Apte can handle in a reasonable amount
of time. We show in Figure 6.7 how many parallel processes could be handled in 20 hours by Apte
on various use cases of protocols, for the same three variants of Apte as before, i.e. reference,
compression and reduction. We verify an anonymity property for the Passive Authentication
protocol of e-passports. For other protocols, we analyse strong secrecy of established keys: for
one of the roles we add, on one side of the equivalence, an output encrypted by the established

148

6.5. Conclusion

key and, on the other side, an output encrypted by a fresh key.

Protocol reference compression reduction
Needham Schroeder (3-party) 4 6 7
Private Authentication (2-party) 4 7 7
Yahalom (3-party) 4 5 5
E-Passport PA (2-party) 4 7 9
Denning-Sacco (3-party) 5 9 10
Wide Mouth Frog (3-party) 6 12 13

Figure 6.7 Maximum number of parallel processes verifiable in 20 hours.

We finally present the benefits of our optimisations for discovering attacks. We performed
some experiments on flawed variants of protocols, shown in Figure 6.8, corresponding to example
files in subdirectory bench/protocols/attacks/ of the above mentioned release. The scenario
Denning-Sacco A expresses strong secrecy of the (3-party) Denning-Sacco protocol, but this time
on two instances of roles at the same time (instead of one as in Figure 6.7). In Denning-Sacco B,
we consider again a form of strong secrecy expressed by outputting encrypted messages but this
time at the end of role B. The Needham-Schroeder pub scenario corresponds to strong secrecy of
the public-key Needham-Schroder protocol. The E-Passport PA exposed experiments show that
anonymity is (obviously) lost with the Passive Authentication protocol when the secret key is
made public. Similarly, the Yahalom exposed experiment shows that strong secrecy of Yahalom
is lost when secrets keys are revealed. Since Apte stops its exploration as soon as an attack is
found, the time needed for Apte to find the attack highly depends on the order in which the
depth-first exploration is performed. However, as shown in Figure 6.8, we always observe in
practice dramatic improvements brought by our optimisations compared to the reference version
of Apte. In some cases, our optimisations are even mandatory for Apte to find the attack using
reasonable resources.

Protocol reference compression reduction
Denning-Sacco A (6 proc.) OoM 0.07s 0.02s
Denning-Sacco B (6 proc.) 5.83s 0.04s 0.04s
Needham-Shroeder pub (7 proc.) TO 0.77s 0.67s
Needham-Shroeder pub (5 proc.) 0.79s 0.21s 0.13s
E-Passport PA exposed (8 proc.) TO 0.02s 0.02s
E-Passport PA exposed (6 proc.) 4.37s 0.03s 0.02s
Yahalom exposed (4 proc.) 7.24s 0.02s 0.02s

Figure 6.8 Impact of optimisations for finding attacks (“X proc.” stands for X parallel processes, OoM
denotes a consumption of >32Go of RAM and TO denotes a running time of >20 hours).

6.5 Conclusion

We have successfully put our two POR techniques into practice. We have shown that compression
can be easily lifted to the symbolic setting and that reduction can be embedded into the symbolic

149

6. Putting Reduced Semantics into Practice and Integration in Apte

setting by means of a new simple kind of contraints. We have fully described how we integrated
those techniques in the state-of-the-art tool Apte and we have proved its correction. Finally, we
have provided experimental results showing that the resulting optimised tool Apte has now much
better performance.

We believe that the interest of our POR techniques goes beyond the (important) speedups
we were able to bring to the tool Apte. Indeed, we believe that other tools could benefit from the
same important improvements by reusing the methodology developed in this chapter. We also
think that our POR techniques could be adapted for other settings than the constraint solving
one. We support those claims in related future work below.

Future Work. In addition to the future work we already discussed in Section 5.5, we now
mention some avenues for future developments specific to the practical aspects of our POR
techniques.

We first note that our compression technique should be applicable and useful in other verifi-
cation tools, not necessarily based on symbolic execution or constraint solving. First, we have
conducted [Hir13, Hirb] an experimental implementation in the tool Spec [TD10] of a prelimi-
nary version of our compression and reduction techniques. But this project has been abandoned
because of the drawbacks of Spec over Apte (see Subsection 1.4.1 for a comprehensive comparison
with Apte) and the complexity of the correction argument.

More interestingly, it is noteworthy that our compression technique has already been inde-
pendently implemented4 in the tool Akiss [CCK12] (it even is its default behavior) whereas this
tool is not based on constraint solving but is rather based on a dedicated Horn clauses abstrac-
tion and a resolution procedure (see Subsection 1.4.1 for a more comprehensive description and
comparison with Apte). This has been made possible because our compression technique boils
down to a constrained exploration strategy taking only nature of available actions into account.

Similarly, one could seek for adapting our techniques for verification methods based on back-
ward search where explorations start with attack states (e.g. Tamarin, Maude−NPA) instead of
forward search where explorations start with the initial state as is the case in our framework.

Finally, one could easily extend the class of simple processes towards action-deterministic
processes; notably allowing (nested) parallel compositions and non-action-deterministic prefixes
at the beginning of processes. We already have implemented those extensions in the tool Apte
but we have not yet proved their correction.

4https://github.com/akiss/akiss

150

https://github.com/akiss/akiss

Chapter 7

Related Work

The techniques we have presented in this Part borrow from standard ideas from concurrency
theory, trace theory, and, perhaps more surprisingly, proof theory. Blending all these ingredients,
and adapting them to the demanding framework of security protocols, we have come up with
partial order reduction techniques that can effectively be used in symbolic verification algorithms
for equivalence properties of security protocols. We now discuss related work, and there is a lot
of it given the huge success of POR techniques in various application areas. We shall focus on the
novel aspects of our approach, and explain why such techniques have not been needed outside
of security protocol analysis. These observations are not new: as pointed out by Baier and
Katoen [BK08], “[POR] is mainly appropriate to control-intensive applications and less suited
for data-intensive applications”; Clarke et al. [CJM00] also remark that “In the domain of model
checking of reactive systems, there are numerous techniques for reducing the state space of the
system. One such technique is partial-order reduction. This technique does not directly apply
to [security protocol analysis] because we explicitly keep track of knowledge of various agents,
and our logic can refer to this knowledge in a meaningful way.” In Section 7.1, we first compare
our work with classical POR techniques. We then comment on previous work in the domain of
security protocol analysis in Section 7.2. We conclude the chapter with some remarks on the
relationship between our optimised semantics and focused proof systems in Section 7.3.

7.1 Classical POR

Partial order reduction techniques have proved very useful in the domain of model checking
concurrent programs. Given a Labelled Transition System (LTS) and some property to check
(e.g. a Linear Temporal Logic formula), the basic idea of POR [Pel98, GvLH+96, BK08] is to
only consider a reduced version of the given LTS whose enabled transitions of some states might
be not exhaustive but are such that this transformation does not affect the property. POR
techniques can be categorised in two groups [GvLH+96]. First, the persistent set techniques
(e.g. stubborn sets, ample sets) where only a sufficiently representative subset of available transi-
tions is explored. Second, sleep set techniques memoize past exploration and use this information

151

7. Related Work

along with available transitions to disable some provably redundant transitions. Note that these
two kinds of techniques are compatible, and are indeed often combined to obtain better reduc-
tions. Theoretical POR techniques [GvLH+96] apply to transition systems which may not be
explicitly available in practice, or whose explicit computation may be too costly. In such cases,
POR is often applied to an approximation of the LTS that is obtained through static analysis.
Another, more recent approach is to use dynamic POR [FG05, TKL+12, AAJS14] where the
POR arguments are applied based on information that is obtained during the execution of the
system.

Clearly, classical POR techniques would apply to our concrete LTS, but that would not be
practically useful since this LTS is wildly infinite, taking into account all recipes that the attacker
could build. Applying most classical POR techniques to the LTS from which data would have
been abstracted away (as it is the case with symbolic semantics; see e.g. Section 6.2) would
be ineffective: any input would be dependent on any output (since the attacker’s knowledge,
increased by the output, may enable new input messages). Our compression technique lies
between these two extremes. It exploits a semi-commutation property: outputs can be permuted
before inputs, but not the converse in general. Further, it exploits the fact that inputs do
not increase the attacker’s knowledge, and can thus be executed in a chained fashion, under
focus. The semi-commutation is reminiscent of the asymmetrical dependency analysis enabled
by the conditional stubborn set technique [GvLH+96], and the execution of inputs under focus
may be explained by means of sleep sets. While it may be possible to formally derive our
compressed semantics by instantiating abstract POR techniques to our setting, we have not
explored this possibility in detail1. Concerning our reduced semantics, it may be seen as an
application of the sleep set technique [GvLH+96] (or even as a reformulation of Anisimov’s and
Knuth’s characterisation of lexicographic normal forms [AK79]) but the real contribution with
this technique is to have formulated it in such a way (see definitions 28 and 38) that it can
be implemented without requiring an a priori knowledge of data dependencies: it allows us to
eliminate redundant traces on-the-fly as data (in)dependency is discovered by the constraint
resolution procedure (as explained in Section 6.3.5) — in this sense, it may be viewed as a case
of dynamic POR.

Narrowing the discussion a bit more, we now focus on the fact that our techniques are
designed for the verification of equivalence properties. This requirement turns several seemingly
trivial observations into subtle technical problems. For instance, ideas akin to compression
are often applied without justification (e.g. in [SA06, TKL+12, MVB10]) because they may be
obvious when one does reachability rather than equivalence checking. To understand this, it
is important to distinguish between two very different ways of applying POR to equivalence
checking (independently of the precise equivalence under consideration). The first approach is
to reduce a system such that the reduced system and the original systems are equivalent. In

1 Although this would be an interesting question, we do not expect that any improvement of compression
would come out of it. Indeed, compression can be argued to be maximal in terms of eliminating redundant traces
without analysing data: for any compressed trace there is a way to choose messages and modify tests to obtain a
concrete execution which does not belong to the equivalence class of any other compressed trace.

152

7.2. Security Applications

the second approach, one only requires that two reduced systems are equivalent iff the original
systems are equivalent. The first approach seems to be more common in the POR literature
(where one finds, e.g. reductions that preserve LTL-satisfiability [BK08] or bisimilarity [HNW98])
though there are instances of the second approach (e.g. for Petri nets [God91]). In the present
work, we follow the second approach: neither of our two reduction techniques preserves trace
equivalence. This allows stronger reductions but requires extra care: one has to ensure that the
independencies used in the reduction of one process are also meaningful for the other processes;
in other words, reduction has to be symmetrical. We come back to these two different approaches
later, when discussing specific POR techniques for security.

7.2 Security Applications

The idea of applying POR to the verification of security protocols dates back, at least, to the
work of Clarke et al. [CJM00, CJM03]. In this work, the authors remark that traditional POR
techniques cannot be directly applied to security mainly because “[they] must keep track of
knowledge of various agents” and “[their] logic can refer to this knowledge in a meaningful way”.
This led them to define a notion of semi-invisible actions (output actions, that cannot be swapped
after inputs but only before them) and design a reduction that prioritises outputs and performs
them in a fixed order. Compared to our work, this reduction is much weaker (even weaker
than compression only), only handles a finite set of messages, and only focuses on reachability
properties checking.

In [EMMS14], the authors develop “state space reduction” techniques for the Maude-NRL
Protocol Analyzer (Maude-NPA). This tool proceeds by backwards reachability analysis and
treats at the same level the exploration of protocol executions and attacker’s deductions. Several
reductions techniques are specific to this setting, and most are unrelated to partial order reduction
in general, and to our work in particular. We note that the lazy intruder techniques from
[EMMS14] should be compared to what is done in constraint resolution procedures (e.g. the
one used in Apte) rather than to our work. A simple POR technique used in Maude-NPA is
based on the observation that inputs can be executed in priority in the backwards exploration,
which corresponds to the fact that we can execute outputs first in forward explorations. We
note again that this is only one aspect of the focused strategy, and that it is not trivial to
lift this observation from reachability to trace equivalence. Finally, a “transition subsumption”
technique is described for Maude-NPA. While highly non-trivial due to the technicalities of the
model, this is essentially a tabling technique rather than a partial order reduction. Though it
does yield a significant state space reduction (as shown in the experiments [EMMS14]) it falls
short of exploiting independencies fully, and has a potentially high computational cost (which is
not evaluated in the benchmarks of [EMMS14]).

In [FDW10], Fokkink et al. model security protocols as labelled transition systems whose
states contain the control points of different agents as well as previously outputted messages.
They devise some POR technique for these transition systems, where output actions are pri-
oritised and performed in a fixed order. In their work, the original and reduced systems are

153

7. Related Work

trace equivalent modulo outputs (the same traces can be found after removing output actions).
The justification for their reduction would fail in our setting, where we consider standard trace
equivalence with observable outputs. More importantly, their requirement that a reduced sys-
tem should be equivalent to the original one makes it impossible to swap input actions, and thus
reductions such as the execution under focus of our compressed semantics cannot be used. The
authors leave as future work the problem of combining their algorithm with symbolic executions,
in order to be able to lift the restriction to a finite number of messages.

Cremers and Mauw proposed [CM05] a reduction technique for checking secrecy in security
protocols. Their method allows to perform outputs eagerly, as in our compressed semantics.
It also uses a form of sleep set technique to avoid redundant interleavings of input actions. In
addition to being applicable only for reachability properties, the algorithm of [CM05] works under
the assumption that for each input only finitely many input messages need to be considered. The
authors identify as important future work the need to lift their method to the symbolic setting.

Earlier work by Mödersheim et al. has shown how to combine POR technique with sym-
bolic semantics [MVB10] in the context of reachability properties for security protocols, which
has led to high efficiency gains in the OFMC tool of the AVISPA platform [A+05]. While
their reduction is very limited, it brings some key insight on how POR may be combined with
symbolic execution. For instance, their reduction imposes a dependency constraint on the in-
terleavings of {in(c, x).out(c, m), in(d, y).out(d, m′)}. Assuming that priority is given to the
process working on channel c, this constraint enforces that any symbolic interleaving of the form
in(d, M ′).out(d, w′).in(c, M).out(c, w) would only be explored for instances of M that depend
on w′. Our reduced semantics constrains patterns of arbitrary size (instead of just size 2 diamond
patterns as above) by means of dependency constraints. Going back to Example 31 (in Subsec-
tion 5.4.3), their technique will only be able (at most) to exploit the dependencies depicted in
blue plain arrows, and they will not consider the one represented by the dashed 2-arrow. Lastly,
they will even do not detect all the patterns of this kind. Whereas we generate dependency
constraints on the fly, they implement their technique by looking for such a pattern afterwards.
Moreover, our POR technique has been designed to be sound and complete for trace equivalence
checking as well.

7.3 Proof Theory

The reader familiar with focused proof systems [And92] will have recognised the strong simi-
larities with our compressed semantics. The strategies are structured in the same way, around
positive and negative phases. More deeply, the compressed semantics can actually be derived
systematically from the focused proof system of linear logic, through an encoding of our processes
into linear logic formulas (such that proof search corresponds to process executions). There are
several such encodings in the literature, see for instance [Mil03, GP05, DCS12]. Intuitively, we
would map input and output respectively to existential and universal quantifiers, which are respec-
tively positive and negative in (linear) logic — the universal quantifier introduces a fresh handle
(eigenvariable) that may be used for future instantiations of existentially quantified variables.

154

7.3. Proof Theory

Then, parallel composition and its unit are mapped to the multiplicative disjunction and its
unit, and replication to the “why not” modality, all of which are negative. Finally, the behaviour
of each construct in the compressed semantics corresponds to the behaviour of its translation in
focused proof systems. For instance, our treatment of replication where one must initiate focus
when creating a new session is a direct translation of how the “why not” modality is treated
in Andreoli’s system [And92]. We do not provide here a fully worked-out encoding appropriate
for our protocols. It is not trivial, notably due to the need to encode the attacker’s knowledge,
and internal reductions of protocols — both features require slight extensions of the usual linear
logic framework. We have thus chosen to only take the correspondence with linear logic as an
intuitive guide, and give a self-contained (and simple) proof of completeness for our compressed
semantics (i.e. Lemma 4 in Section 5.3) by adapting the positive trunk argument of [MS07]. Note
that the strong analogies with proof theory only hold for reachability results concerning com-
pression, i.e. lemmas 3 and 4. It is a contribution in itself to observe that focusing (compression)
makes sense beyond reachability, at the level of trace equivalence: Theorem 2 (stating that trace
equivalence coincides with compressed trace equivalence for action-deterministic processes) has
no analogue in the proof theoretical setting, where trace equivalence itself is meaningless.

We motivated reduction by observing that (in)dependencies between blocks of the compressed
semantics should be exploited to eliminate redundant interleavings. This same observation has
been done in the context of linear logic focusing, and lead to the idea of multi-focusing [CMS]
where independent synthetic connectives (the analogue of our blocks) are executed simultaneously
as much as possible. That work on multi-focusing is purely theoretical, and it is unclear how multi-
focusing could be applied effectively in proof search. It would be interesting to consider whether
the gradual construction of unique representatives in our reduced semantics could be extended
to the richer setting of linear logic (where proof search branches, unlike process executions).

155

Part C

Verifying Privacy via Sufficient
Conditions

Significantly Improving Precision of Privacy Verification for the

Unbounded Case

157

Table of Contents of the Part

Introduction 161

8 Model & Problem 167
8.1 Instantiation of the Model . 167
8.2 A Generic Class of Two-party Protocols . 169
8.3 Security Goals . 174

8.3.1 Unlinkability . 174
8.3.2 Anonymity . 176
8.3.3 Discussion . 177

9 Sufficient Conditions for Privacy 179
9.1 Annotations . 179
9.2 Frame Opacity . 181

9.2.1 Canonical Syntactical Idealisation . 183
9.2.2 Semantical Idealisation . 184

9.3 Well-Authentication . 185
9.4 Main Theorem: Soundness of Conditions w.r.t. Privacy 187
9.5 Proof of our Main Theorem . 188

9.5.1 Abstraction of Configurations . 188
9.5.2 Control is Determined by Associations . 192
9.5.3 Invariance of Frame Idealisations . 193
9.5.4 A sufficient Condition for Preserving Executability 194
9.5.5 Final Proof . 197

10 Mechanisation & Case Studies 201
10.1 Mechanisation . 201

10.1.1 Frame Opacity . 202
10.1.2 Well-authentication . 203
10.1.3 The Tool UKano . 207

10.2 Case Studies . 208
10.2.1 Hash-Lock Protocol . 208
10.2.2 LAK Protocol . 209
10.2.3 BAC Protocol and some others . 210
10.2.4 PACE Protocol . 212
10.2.5 Attributed-Based Authentication Scenario Using ABCDH Protocol 215
10.2.6 DAA Join & DAA Sign . 217

158

7.3. Proof Theory

11 Conclusion 221
11.1 Regarding Mechanisation and the Tool UKano . 221
11.2 Regarding our Conditions and our Main Theorem 222
11.3 Reusing Core Ideas of the Methodology . 224

12 General Conclusion 227
12.1 Summary . 227
12.2 Future Work . 228

Bibliography 231

159

Introduction

In this part, we turn to methods and tools for verifying equivalence properties for an unbounded
number of sessions. Remind that such methods and tools all rely on diff-equivalence rather than
trace equivalence. As already mentioned in the introduction (Subsection 1.6.2) and discussed
further with the example of the Feldhofer protocol (Subsection 3.3.1; Part A), diff-equivalence
is not precise enough to be used for the verification of some privacy goals such as unlinkability.

We now narrow down the discussion on unlinkability and anonymity. In this part, we consider
the well-established definitions of strong unlinkability and anonymity as defined in [ACRR10].
They have notably been used to establish privacy for various protocols either by hand or using
ad hoc encodings (e.g. eHealth protocol [DJP12], mobile telephony [AMR+12, AMRR14]). Note
that we will provide a brief comparison with alternative definitions in Chapter 8 (Section 8.3) and
notably conclude that other definitions (e.g. game-based definitions in the symbolic model) do
not subsume our chosen definition. Intuitively, strong unlinkability and anonymity are expressed
as the trace equivalence between an ideal scenario (where the privacy goal under consideration
holds by construction) and a real scenario corresponding to a situation for which we are willing
the prove that the privacy goal holds. Hence, for the case of unlinkability, the ideal scenario
considers an unbounded number of users that can play at most one session each while the real
scenario considers the same users but assume that each user can play an unbounded number
of sessions. Unfortunately, as explained below, diff-equivalence is not suitable to establish such
modelling of unlinkability.

Closer look at the limitation of diff-equivalence. Formally, if (T (k, nT) | R(k, nR)) is a
process modelling one session of a 2-party protocol (e.g. think of T as an RFID tag and R as
a reader) where k is a long-term key (the same for all sessions but distinct for different users)
and nT , nR are fresh nonces (distinct for each session and each user), then the real scenario
would be Preal = !νk. !νnT .νnR.(T (k, nT) | R(k, nR)) while the ideal scenario would be Pideal =
!νk.νnT .νnR.(T (k, nT) | R(k, nR)). We end up with the following trace equivalence to prove:
Preal ≈ Pideal. If one is willing to prove this property automatically, he is left with tools such
as ProVerif, Tamarin or Maude−NPA that can only deal with diff-equivalence. Thus, the first
step would be to form a bi-process encoding the above equivalence. Based on the fact that two

161

Introduction

successive replications ! collapse, the most appropriate bi-process one can come up with is the
following:

!νkl. !νkr.νnT .νnR.(T (choice[kl, kr], nT) | R(choice[kl, kr], nR)).

It is now possible to understand why diff-equivalence is not precise enough. Since exactly the
same rules will be applied on the left and on the right, two instances of the role T having the
same key on the left cannot have the same key on the right: e.g. t1 = T (choice[k1

l , k1
r], nT)

and t2 = T (choice[k1
l , k2

r], n′
T). The same for R: e.g. r1 = R(choice[k1

l , k1
r], nR) and r2 =

R(choice[k1
l , k2

r], n′
R). Note that, on the left, the first instance t1 of T can successfully execute a

session of the protocol with the second instance r2 of R. However, when looking at the right side,
those two processes t1 and r2 are most likely unable to have such an “honest” interaction because
their long-term keys (i.e. respectively k1

r and k2
r) do not match. Therefore, the above bi-process

is most likely not diff-equivalent and we did not even examine the processes T and R to conclude
so. Obviously, the above trace equivalence does not systematically fail to hold since one can
come up with the pair (t1, r1) on the right to mimic a successful interaction of (t1, r2) on the left.
To sum up, the crux of the problem is that diff-equivalence considers an over-approximation of
the Dolev-Yao attacker by giving him the internal structure of the two processes to be verified,
the attacker is thus able to observe from which replication a given instance of a role originates.
The latter almost systematically leads to false attacks and makes diff-equivalence of no use when
it comes to verify unlinkability. Remark that similar issues arise with other privacy goals such
as vote-privacy (only partially addressed in [DRS08, BS16]).

In practice, this means that many security protocols cannot be verified. We already discussed
the case of the Feldhofer protocol in Subsection 3.3.1 (in Part A). But as explained above, this
is not an isolated problem: unlinkability of the BAC protocol (used in e-passport) cannot be au-
tomatically established either (despite recent improvements on diff-equivalence checking [CB13])
and similarly for most of the numerous real-world case studies we will present in Chapter 10.

Contributions. We believe that looking at trace equivalence of any protocol is a too general
problem and that much progress can be expected when one focuses on a few privacy goals and
a class of protocols only (yet large and generic enough). We follow this different approach.
We aim at proposing sufficient conditions that can be automatically checked, and that imply
unlinkability and anonymity for a large class of security protocols. The success of our solution
will be measured by confronting it to many real-world case studies.

More precisely, we identify a large class of 2-party protocols (simple else branches, arbi-
trary cryptographic primitives) and we devise two conditions called frame opacity and well-
authentication that imply unlinkability and anonymity for an unbounded number of sessions.
We show how these two conditions can be automatically checked using e.g. the ProVerif tool,
and we provide tool support for that. Using our tool UKano (built on top of ProVerif), we have
automatically analysed several protocols, among them the Basic Access Control (BAC) protocol
as well as the Password Authenticated Connection Establishment (PACE) protocol that are both
used in e-passports. We notably establish the first proof of unlinkability for ABCDH [AH13] and

162

for the BAC protocol followed by the Passive Authentication (PA) and Active Authentication
(AA) protocols. We also report on an attack that we found on the PACE protocol, and another
one that we found on the LAK [LAK06] protocol whereas it is claimed untraceable in [VDR08].
It happens that our conditions are rather tight: we provide an attack every time one of them is
not satisfied.

We believe that the overall methodology and proof method could be used for other classes of
protocols and other privacy goals. For instance, reusing the core ideas of the present methodology,
we devised a new method [CH17] to automatically verify vote-privacy for a large class of e-voting
protocols.

Our sufficient conditions. We now give an intuitive overview of our two sufficient conditions.
In order to do this, assume that we want to design a mutual authentication protocol between a
tag T and a reader R based on symmetric encryption, and we want this protocol to be unlinkable.
We assume that k is a symmetric key shared between T and R.

Frame opacity. A first attempt to design such a protocol is presented using Alice & Bob
notation as follows (nR is a fresh nonce):

1. R → T : nR

2. T → R : {nR}k

This first attempt based on a challenge-response scheme is actually linkable. Indeed, an active
attacker who systematically intercepts the nonce nR and replaces it by a constant will be able to
infer whether the same tag has been used in different sessions or not by comparing the answers
he receives. Here, the tag is linkable because, for a certain behaviour (possibly malicious) of the
attacker, some relations between messages leak information about the agents that are involved
in the execution. Our first condition, namely frame opacity, actually checks that all outputted
messages have only relations that only depend on what is already observable. Such relations can
therefore not be exploited by the attacker to learn anything new about the involved agents.

Well-authentication. Our second attempt takes the previous attack into account and ran-
domises the tag’s response and should achieve mutual authentication by requiring that the reader
must answer to the challenge nT . This protocol can be as follows:

1. R → T : nR

2. T → R : {nR, nT }k

3. R → T : {nT }k

Here, Alice & Bob notation shows its limit. It does not specify how the reader and the tag
are supposed to check that the messages they received are of the expected form, and how they
should react when the messages are not well formed. This has to be precisely defined, since
unlinkability depends on it. For instance, assume the tag does not check that the message he
receives at step 3 contains nT , and aborts the session if the received message in not encrypted
with its own k. In such an implementation, an active attacker can eavesdrop a message {nT }k

sent by R to a tag T , and try to inject this message at the third step of another session played

163

Introduction

by T ′. The tag T ′ will react by either aborting or by continuing the execution of this protocol.
Depending on the reaction of the tag, the attacker will be able to infer if T and T ′ are the same
tag or not.

In this example, the attacker adopts a malicious behaviour that is not detected immediately by
the tag who keeps executing the protocol. The fact that the tag passes successfully a conditional
reveals crucial information about the agents that are involved in the execution. Our second
condition, namely well-authentication, basically requires that when an execution deviates from
the honest one, the agents that are involved cannot successfully pass a conditional, thus avoiding
the leak of the binary information success/failure.

Main theorem. In a nutshell, well-authentication avoids attacks based on control-flow leaks
that may be observed through data or nature of actions while frame opacity avoids attacks
based on data leaks taking the form of relations between outputs. Our main theorem states that
these two conditions, frame opacity and well-authentication, are actually sufficient to ensure
both unlinkability and anonymity. Interestingly, at the core of its proof, we must show that any
execution can be transformed into another one indistinguishable from the former in which all
sessions are played by distinct agents. Well-authentication is used to prove that the latter has
the same control-flow as the first one. Frame opacity then ensures that the latter is indistin-
guishable from the former. This theorem is of interest as our two conditions are fundamentally
simpler than the targeted properties: frame opacity can be expressed and established relying on
diff-equivalence (without the aforementioned precision issue) and well-authentication is only a
conjunction of reachability properties. In fact, they are both in the scope of existing automatic
verification tools like ProVerif.

Related work. The precision issue of diff-equivalence is well-known (acknowledged e.g. in
[DRS08, CB13, BS16]). So far, the main approach that has been developed to solve this issue
consists in modifying the notion of diff-equivalence to get closer to trace equivalence. For in-
stance, targeting process algebra with phases (often used for modelling e-voting protocols), the
swapping technique introduced in [DRS08] allows to relax constraints imposed by diff-equivalence
in specific situations (this technique has then been given formal foundations in [BS16]). Besides,
the limitation of the diff-equivalence w.r.t. conditional evaluations has been partially addressed
in [CB13] by pushing away the evaluation of some conditionals into terms. Nevertheless, the
problem remains in general and the limitation described above is not addressed by those works
(incidentally, it is specifically acknowledged for the case of the BAC protocol in [CB13]).

We have chosen to follow a novel approach in the same spirit as the one presented in [BCDH10].
Nevertheless, [BCDH10] only considers a very restricted class of protocols (single-step protocols
that only use hash functions), while we target more complex protocols.

Outline In Chapter 8, we present the class of protocols and the formal definitions of un-
linkability and anonymity we woud like to verify. Our two conditions (frame opacity and well-
authentication) and our main theorem are presented in Chapter 9. We also prove their soundness;

164

i.e. the combination of our two conditions always imply unlinkability and anonymity. In Chap-
ter 10, we discuss how to mechanise the verification of our conditions via systematic encodings,
we describe our tool UKano mechanising those encodings and use it to analyse an extensive list
of real-world case studies. We conclude with future work in Chapter 11.

165

Chapter 8

Model & Problem

In this chapter, we first define the instantiation of the semantics (Section 8.1) we shall work
with in the present part. We then define (Section 8.2) the class of protocols we are dealing with.
Finally, we define (Section 8.3) the security goals unlinkability and anonymity we want to verify
and compare our definitions to others in the literature.

8.1 Instantiation of the Model

In this part of the thesis, we eventually leverage the tool ProVerif in Chapter 10 and shall use
the corresponding instantiation of the semantics. However, the theoretical part of our approach
(i.e. the theorem stating that our conditions imply privacy) can be formulated in a more generic
framework that we define now.

Term Algebra. We assume any signature Σ, any equational theory =E, and any computation
relation ⇓. In other words, our approach is completely generic in the term algebra.

Example 47. We may for instance consider the signature

Σ = {senc, sdec, ⟨ ⟩, proj1, proj2, ⊕, 0, eq, neq, ok}.

of Example 1 (Chapter 2) equipped with the equational theory of Example 2 (Chapter 2) and the
computation relation induced by the rewriting system given in Example 10 (Chapter 2).

Syntax & Semantics. We fix in this part R = Rpar and thus obtain an internal reduction
;R breaking parallel compositions greedily. We already proved in Section 4.1 that this choice
does not impact the induced notion of trace equivalence.

Example 48. One of our running examples in this part will be the Feldhofer protocol (see
examples 6 and 9 in Chapter 2). We recall here how we modelled it and describe one of its
executions. We consider the term algebra introduced in Example 47. The protocol is modelled

167

8. Model & Problem

by the parallel composition of the processes PI and PR, corresponding respectively to the roles I

and R.
PFh

def= νk. (νnI .PI | νnR.PR)

where PI and PR are defined as follows, with u = sdec(x1, k):

PI
def= out(cI , nI).

in(cI , x1).
let x2, x3 = eq(nI , proj1(u)), proj2(u) in
out(cI , senc(⟨x3, nI⟩, k))

PR
def= in(cR, y1).

out(cR, senc(⟨y1, nR⟩, k)).
in(cR, y2).
let y3 = eq(y2, senc(⟨nR, y1⟩, k)) in 0

We have that ({PFh}; ∅) tr−→ (∅; Φ0) where tr and Φ0 are as follows, for fresh names k′, n′
I , n′

R ∈ N :

tr = τν .τν .τν .out(cI , w1).in(cR, w1).out(cR, w2).in(cI , w2).τthen.out(cI , w3).in(cR, w3).τthen

Φ0 = {w1 7→ n′
I , w2 7→ senc(⟨n′

I , n′
R⟩, k′), w3 7→ senc(⟨n′

R, n′
I⟩, k′)}.

This execution corresponds to a normal execution of one session of the protocol.
As already discussed in Subsection 3.3.1 (in Chapter 3), unlinkability could be expressed as the

trace equivalence between K = (!PFh; ∅) (the ideal version) and K ′ = (!νk.(!νnI .PI | !νnR.PR); ∅)
(the real version). As said in the introduction, this equivalence is non-trivial, and cannot be
established using existing verification tools such as ProVerif or Tamarin. The technique developed
in this part will notably allow one to establish it automatically.

In the previous example, the process !νnI .PI models an initiator having a specific long-term
key k ready to execute an unbounded number of sessions of the protocol concurrently. Depending
on the practical scenario we shall model, sessions of such an agent may not be run concurrently
but only sequentially (i.e. one after the other). This will be the case if the initiator is played
by a device like RFID tags which can execute at most one session at a time. In such cases,
modellings based on replication ! might introduce unwanted behaviours possibly leading to false
attacks. We thus define next the constructs P ; Q and

!

P as syntactic sugar allowing to model
sequential executions and “sequential replication” that we rather call repetition.

Notation 3. We introduce two new constructs as syntactic sugar:

• For two processes P and Q, we note P ; Q the process P{0 7→ Q} (i.e. the process one can
obtain from P by replacing all null processes 0 by the process Q). We call P ; Q the sequence
of P and Q.

• For a process P , we note

!

P the process recX.(P ; X). We call such a process the repetition
of P .

168

8.2. A Generic Class of Two-party Protocols

According to the semantics defined in Chapter 2, we may infer the following intuitions. The
process (P ; Q) behaves like P at first, and after the complete execution of P it behaves like Q.
The process

!

P executes P an arbitrary number of times in sequence, intuitively corresponding
to (P ; P ; P ; . . .). That is the reason why we call repetition the construct

!

P . Such constructions
are known to be problematic in process calculi. Our goal here is however quite modest: as it is
visible in our operational semantics, our sequential composition is only meaningful for restricted
processes (e.g. (!P); Q is never able to reach Q).

Example 49. For instance,

!

νnI .PI models an initiator having a specific long-term key k ready
to execute an unbounded number of sessions of the protocol sequentially.

8.2 A Generic Class of Two-party Protocols

We aim to propose sufficient conditions to ensure unlinkability and anonymity for a generic class
of two-party protocols. In this section, we define formally the class of protocols we are interested
in. We consider two-party protocols that are therefore made of two roles called the initiator and
responder role respectively. We assume a set L of labels that will be used to name output actions
in these roles, allowing us to identify outputs that are performed by a same syntactic output
action. These labels have no effect on the semantics.

Definition 49. An initiator role is a ground process obtained using the following grammar:

PI := 0 | ℓ : out(c, u).PR

where c ∈ C, u ∈ T (Σc, N ∪ X), ℓ ∈ L, and PR is obtained from the grammar of responder roles:

PR := 0
| in(c, y).let x = t in PI else 0
| in(c, y).let x = t in PI else ℓ : out(c′, u′)

where c, c′ ∈ C, y ∈ X , x (resp. t) is a (possibly empty) sequence of variables in X (resp. terms
in T (Σ, N ∪ X)), u′ ∈ T (Σc, N ∪ X), and ℓ ∈ L.

Intuitively, a role describes the actions performed by an agent. A responder role consists
of waiting for an input and, depending on the outcome of a number of tests, the process will
continue by sending a message and possibly waiting for another input, or stop possibly outputting
an error message. An initiator behaves similarly but begins with an output. The grammar forces
to add a conditional after each input. This is not a real restriction as it is always possible to
add trivial conditionals with empty x and t. Finally, note that terms in outputs are necessarily
constructor terms (i.e. in T (Σc, N ∪ X)). Therefore, outputs are never blocked.

Example 50. Continuing our running example, PI (resp. PR) as defined in Example 48 is an
initiator (resp. responder) role, up to the addition of trivial conditionals and distinct labels ℓ1,
ℓ2, and ℓ3 to decorate output actions.

169

8. Model & Problem

Then, a protocol notably consists of an initiator role and a responder role that can interact
together producing an honest trace as defined next.

Definition 50. A trace tr is honest for a frame Φ if τelse /∈ tr and obs(tr) is of the form
out(_, w0).in(_, R0).out(_, w1).in(_, R1). . . . for arbitrary channel names, and such that RiΦ ⇓=E

wiΦ ⇓ for any action in(_, Ri) occurring in tr.

An honest trace is a trace in which the attacker does not really interfere, and that allows the
execution to progress without going into an else branch, which would intuitively correspond to
a way to abort the protocol.

In addition to the pair of initiator and responder roles, more information is needed in order
to meaningfully define a protocol. Among the names that occur in these two roles, we need
to distinguish those that correspond to long-term data (called identity names) and those which
shall be freshly generated at each session (called session names). We will require that any free
name of roles (free names of a process P are denoted by fn(P)) must be either a session or an
identity name.

We also need to know whether sessions (with the same identity parameters) can be executed
concurrently or only sequentially. For instance, let us assume that the Feldhofer protocol is used
in an access control scenario where all tags that are distributed to users have pairwise distinct
identities. Assuming that tags cannot be cloned, it is probably more realistic to consider that
a tag can be involved in at most one session at a particular time, i.e. a tag may run different
sessions but only in sequence. Another concrete example where sessions are executed sequentially
is the case of the e-passport application where a same passport cannot be involved in two different
sessions concurrently.

Definition 51. A protocol Π is a tuple (k, nI , nR, †I , †R, I, R) where k, nI , nR are three disjoint
sets of names, I (resp. R) is an initiator (resp. responder) role such that fn(I) ⊆ k ⊔ nI ,
fn(R) ⊆ k ⊔ nR, and †I , †R ∈ {!,

!

}. Labels of I and R must be pairwise distinct. Names k (resp.
nI ⊔ nR) are called identity names (resp. session names).

Given a protocol Π, we define PΠ
def= νk.(νnI .I | νnR.R) and assume that PΠ

trh−→ (∅; Φh) for
some frame Φh and some trace trh that is honest for Φh.

The component †I (resp. †R) describes whether the sessions of the role I (resp. R) can
be executed concurrently or only sequentially. The process PΠ models a single session of the
protocol involving the two roles. Moreover, we require that this process can produce an honest
trace.

Given a protocol Π, we also associate another process MΠ that represents the situation
where the protocol can be executed by an arbitrary number of identities, with the possibility
of executing an arbitrary number of sessions for a given identity. The formal definition differs
slightly depending on whether identity names occur in both roles or only in the role I (resp. R).

Definition 52. Given a protocol Π = (k, nI , nR, †I , †R, I, R), the process MΠ is defined as
follows:

170

8.2. A Generic Class of Two-party Protocols

• If k ∩ fn(I) ̸= ∅ and k ∩ fn(R) ̸= ∅, then MΠ
def= ! νk.(†I νnI .I | †R νnR.R);

• If k ∩ fn(I) = ∅ and k ∩ fn(R) ̸= ∅, then MΠ
def= †I νnI .I | ! νk. †R νnR.R)

For the sake of simplicity, in case identity names only occur in one role, we assume that this
role is the responder role. The omitted case where identity names occur only in the initiator role
is very much similar. In fact, swapping the initiator and responder roles can also be formally
achieved by adding an exchange of a fresh nonce at the beginning of the protocol under consider-
ation. Note that the case where both k ∩ fn(I) and k ∩ fn(R) are empty means that no identity
names are involved and therefore there is no issue regarding privacy.

Example 51. Let ΠFh = (k, nI , nR, !, !, PI , PR) with PI and PR as defined in Example 48. We
have seen that PI is an initiator role whereas PR is a responder role. Let PFh = νk.(νnI .PI |
νnR.PR). Let trh = tr, and Φh = Φ0 as defined in Example 48. They satisfy the requirements
stated in Definition 51, and therefore ΠFh is a protocol according to our definition. For this
protocol, the identity name k occurs both in the role PI and PR, and therefore we have that
MΠFh = ! νk.(! νnI .PI | ! νnR.PR).

For the purpose of illustrating our method and the use of the repetition operator, we will
consider a variant of the Feldhofer protocol, described next.

Example 52. We consider a variant of the RFID protocol presented in Example 48. This
protocol can be presented using Alice & Bob notation as follows:

1. I → R : nI

2. R → I : nR, {nI}rR

k

3. I → R : {nR}rI

k

The protocol is between an initiator I (the reader) and a responder R (the tag) that share
a symmetric key k. We consider here a randomised symmetric encryption scheme, and the
main difference with the original Feldhofer protocol as presented in Example 48 is the fact that
encryption is performed on messages that are reduced to a single nonce. We will see that this may
lead to a linkability attack in case concurrent sessions are possible, but this variant is actually
safe (w.r.t. unlinkability) otherwise.

We consider the computation relation induced by the empty set of equations, and the following
rewriting system:

rdec(renc(x, y, z), y) → x eq(x, x) → ok proji(⟨x1, x2⟩) → xi for i ∈ {1, 2}.

The processes P ′
I and P ′

R modelling respectively the initiator and the responder roles are

171

8. Model & Problem

defined as follows:

P ′
I

def= out(cI , nI).
in(cI , x1).
let x2, x3 = eq(nI , rdec(proj2(x1), k)), proj1(x1) in
out(cI , renc(x3, k, rI))

P ′
R

def= in(cR, y1).
out(cR, ⟨nR, renc(y1, k, rR)⟩).
in(cR, y2).
let y3 = eq(nR, rdec(y2, k)) in 0

The tuple Π

!

Fh′
def= (k, {nI , rI}, {nR, rR},

!

,

!

, P ′
I , P ′

R) is a protocol according to Definition 51.
For this protocol, we have again that k occurs both in the roles P ′

R and P ′
I , and therefore we have

that:
MΠ

!

Fh′
= ! νk.(

!

ν(nI , rI).P ′
I |

!

ν(nR, rR).P ′
R).

As a last example, we will consider one for which identity names only occur in one role. This
example can be seen as a simplified version of the DAA sign protocol that will be detailed in
Chapter 10.

Example 53. We consider a simplified version of the protocol DAA sign (adapted from [SRC15]).
Note that a comprehensive analysis of the protocol DAA sign (as well as the protocol DAA join)
will be conducted in Chapter 10. Before describing the protocol itself, we introduce the term
algebra that will allow us to model signature, and zero knowledge proofs used in that protocol.
For this, we consider:

• Σc = {sign, zk, pk, ⟨ ⟩, tuple, ok, skI, error}, and

• Σd = {checksign, checkzk, publiczk, proj1, proj2, proj41, proj42, proj43, proj44}.

We consider the computation relation induced by the empty set of equations, and the following
rewriting system:

checksign(sign(x, y), pk(y)) → x

checkzk(zk(sign(⟨xk, xid⟩, zsk), xk, tuple(y1, y2, y3, pk(zsk)))) → ok
publiczk(zk(x, y, z)) → z

proji(⟨y1, y2⟩) → yi i ∈ {1, 2}
proj4i (tuple(y1, y2, y3, y4)) → yi i ∈ {1, 2, 3, 4}

The protocol is between a client C (the responder) and a verifier V (the initiator of the
protocol). The client is willing to sign a message m using a credential issued by some issuer and
then he has to convince V that the latter signature is genuine. The client C has a long-term
secret key kC , an identity idC , and some credential credC = sign(⟨kC , idC⟩, skI) issued by some
issuer I having skI as a long-term signature key. Such a credential would be typically obtained

172

8.2. A Generic Class of Two-party Protocols

once for all through a protocol similar to DAA join. We give below an Alice & Bob description
of the protocol:

1. V → C : nV

2. C → V : zk(credC , kC , tuple(nV , nC , m, pk(skI)))

The verifier starts by challenging the client with a fresh nonce, the latter then sends a complex
zero-knowledge proof bound to this challenge proving that he knows a credential from the expected
issuer bound to the secret kC he knows. Before accepting this zero-knowledge proof, the verifier
V (i) checks the validity of the zero-knowledge proof using the checkzk operator, and (ii) verifies
that this proof is bound to the challenge nV and to the public key of the issuer I using the publiczk

operator.
The processes PC and PV modelling respectively the client and the verifier role are defined as

follows:

PV
def= out(cV , nV).

in(cV , x1).
let x2, x3, x4 =
eq(checkzk(x1), ok), eq(proj41(publiczk(x1)), nV), eq(proj44(publiczk(x1)), pk(skI)) in 0
else out(cV , error)

PC
def= in(cR, y1).

out(cR, zk(sign(⟨kC , idC⟩, skI), kC , tuple(y1, nC , m, pk(skI)))).

This protocol falls in our class: the two parties being the verifier V and the client C. The
tuple ΠDAA

def= ({kC , idC}, {nV }, {nC , m}, !, !, PV , PC) is a protocol according to our Definition 51.
We have that kC or idC only occur in PC , and therefore following Definition 52, we have that:

MΠDAA = (! νnV .PV) | (! ν(kC , idC). ! ν(nC , m).PC)

This models infinitely many different clients that may take part to infinitely many sessions of
the protocol with any verifier that executes always the same role (he has no proper identity). We
consider here a scenario where sessions can be executed concurrently.

Discussion: shared and non-shared protocols. As shown in Definition 52, we distinguish
two cases whether (i) both roles use identity names (i.e. fn(I) ∩ k ̸= ∅ and fn(R) ∩ k ̸= ∅) or (ii)
only one role uses identity names (i.e. by symmetry this is when fn(I)∩k = ∅ and fn(R)∩k ̸= ∅).
This corresponds to the cases where (i) we should consider arbitrary number of users for each
role or (ii) we should consider arbitrary number of users having the role R but it suffices to
consider the single identity of I. In addition to this distinction, note that two very different
kinds of protocols lie in the class (i):

(i-a) First case is when fn(I)∩fn(R) ̸= ∅ and we will refer to this case as the shared case. Indeed,
roles I and R from protocols satisfying the latter initially share some knowledge before the
beginning of the protocol (i.e. they share the knowledge of the names in fn(I) ∩ fn(R)). In
practice, this shared knowledge may have been established in various ways such as by using

173

8. Model & Problem

prior protocols, using another communication channel (e.g. optical scan of a password as
it is done with e-passports, use of PIN codes) or by retrieving the identity from a database
that matches the first received message (as it is often done with RFID protocols). For
such protocols, it is expected that an initiator user and a responder user can communicate
successfully producing an honest execution only if they have the same identity (i.e. they
share the same names k).

(i-b) Second case is when fn(I) ∩ fn(R) = ∅ and we will refer to this case as the non-shared case
as roles do not share any prior knowledge. For such cases, it is expected that an initiator
user and a responder user can communicate successfully producing an honest execution
whatever their identities.

Unlinkability and anonymity will be uniformly expressed for the cases (i-a) and (i-b) but our
sufficient conditions will slightly differ depending on the considered case.

8.3 Security Goals

This section is dedicated to the definition of the security properties we are willing to verify on
protocols: unlinkability and anonymity.

8.3.1 Unlinkability

Remind that according to the ISO/IEC standard 15408 [ISO09], unlinkability aims at ensuring
that a user may make multiple uses of a service or a resource without others being able to link
these uses together. In terms of our modelling, a protocol preserves unlinkability if any two
sessions of a same role look to an outsider as if they have been executed with different identity
names. In other words, an ideal version of the protocol with respect to unlinkability, allows the
roles I and R to be executed at most once for each identity names. An outside observer should
then not be able to tell the difference between the original protocol and the ideal version of this
protocol.

In order to precisely define this notion, we have to formally define this ideal version of a
protocol Π. This ideal version, denoted SΠ, represents an arbitrary number of agents that can
at most execute one session each. Such a process is obtained from MΠ by simply removing the
symbols ! and

!

that are in the scope of identity names. Indeed, those constructs enable each
identity to execute an arbitrary number of sessions (respectively concurrently and sequentially).
Formally, depending on whether identity names occur in both roles, or only in the initiator role,
this leads to slighly different definitions.

Definition 53. Given a protocol Π = (k, nI , nR, †I , †R, I, R), the process SΠ is defined as fol-
lows:

• If k ∩ fn(I) ̸= ∅ and k ∩ fn(R) ̸= ∅, then SΠ
def= ! νk.(νnI .I | νnR.R);

• If k ∩ fn(I) = ∅ and k ∩ fn(R) ̸= ∅, then SΠ
def= †I νnI .I | ! νk.νnR.R.

174

8.3. Security Goals

Then, unlinkability is defined as a trace equivalence between SΠ (where each identity can
execute at most one session) and MΠ (where each identity can execute an arbitrary number of
sessions).

Definition 54. A protocol Π = (k, nI , nR, †I , †R, I, R) ensures unlinkability if MΠ ≈ SΠ.

Even if we consider the notion of trace equivalence instead of the stronger notion of la-
beled bisimilarity, our definition is in line with the strong notion of unlinkability as proposed
in [ACRR10].

Example 54. Going back to our running example (Example 51), unlinkability is expressed
through the following trace equivalence:

! νk.(! νnI .PI | ! νnR.PR) ≈ ! νk.(νnI .PI | νnR.PR).

Although unlinkability of only one role (e.g. the tag for RFID protocols) is often considered
in the literature (including [ACRR10]), we consider a stronger notion here since both roles
are treated symmetrically. We believe this is needed to not miss some practical attacks (see
Chapter 10 where such attacks are shown on real-world case studies).

Example 55. We consider the variant of the Feldhofer protocol as described in Example 52.
However, for illustrative purposes, we consider Π!

Fh′
def= (k, {nI , rI}, {nR, rR}, !, !, P ′

I , P ′
R), i.e. a

situation where concurrent sessions are authorised. We may be interested in checking unlinkability
as in Example 54, i.e. whether the following equivalence holds or not:

! νk.(ν(nI , rI).P ′
I | ν(nR, rR).P ′

R) ≈ ! νk.(! ν(nI , rI).P ′
I | ! ν(nR, rR).P ′

R)

Actually, this equivalence does not hold. When concurrent sessions are authorised, an attacker
can interfere and swap messages coming from two different parallel sessions. Performing these
swaps, the two sessions will end correctly if, and only if, the keys that are involved in both sessions
are the same. Such a scenario, depicted in Figure 8.1 (which is possible on the right-hand side)
cannot be mimicked on the left-hand side (each tag can execute only once). Therefore the attacker
observes that such an interaction is possible whereas this scenario has no counterpart in the single
session scenario. In practice, this can be very harmful when e.g. tags are distributed among
distinct groups (e.g. for access control policies) sharing each the same key k. By interacting with
two tags, the attacker would then be able to know if they belong to the same group. The attacker
would thus have the ability to trace a group (rather than individual tags); we still consider the
former as unlinkability attack.

Now, coming back to the variant of the Feldhofer protocol as decribed in Example 52 (with
sessions running sequentially only), it can be shown relying on the technique developed in this
part that unlinkability holds. We have that:

! νk.(ν(nI , rI).P ′
I | ν(nR, rR).P ′

R) ≈ ! νk.(

!

ν(nI , rI).P ′
I |

!

ν(nR, rR).P ′
R)

175

8. Model & Problem

Tag 2
key k2

Tag 1
key k1

Attacker Reader 1
key k1

Reader 2
key k2

new n1
R

n1
Rn1

R

new n2
R

n2
Rn2

R

new n1
T

n1
T , {n2

R}k1

new n2
T

n2
T , {n1

R}k2

n1
T , {n1

R}k2

n2
T , {n2

R}k1

{n1
T }k1{n1

T }k1

{n2
T }k2{n2

T }k2

acceptaccept

Figure 8.1 A scenario involving two concurrent sessions (possible only if k1 = k2).

8.3.2 Anonymity

According to the ISO/IEC standard 15408 [ISO09], anonymity aims at ensuring that a user may
use a service or a resource without disclosing its identity. In terms of our modelling, a protocol
preserves anonymity of some identities id ⊆ k, if a session executed with some particular (public)
identities id0 looks to an outsider as if it has been executed with different identity names. In
other words, an outside observer should not be able to tell the difference between the original
protocol and a version of the protocol where the attacker knows that specific roles I and R with
identities id0 (known by the attacker) are present.

Definition 55. Given a protocol Π = (k, nI , nR, †I , †R, I, R), and id ⊆ k, the process MΠ,id is
defined as follows:

• If k ∩ fn(I) ̸= ∅ and k ∩ fn(R) ̸= ∅, then MΠ,id
def= MΠ | ν k.(†I ν nI .I0 | †R ν nR.R0).

• If k ∩ fn(I) = ∅ and k ∩ fn(R) ̸= ∅, then MΠ,id
def= MΠ | ν k. †R ν nR.R0.

where I0 = I{id 7→ id0} and R0 = R{id 7→ id0} for some fresh public constants id0.

176

8.3. Security Goals

Definition 56. Let Π = (k, nI , nR, †I , †R, I, R), and id ⊆ k. We say that Π ensures anonymity
w.r.t. id if MΠ,id ≈ MΠ.

Example 56. Going back to Example 53, anonymity w.r.t. identity of the client (i.e. idC) is
expressed through the following equivalence (where mC represents the sequence nC , m):

! νnV .PV | (! ν(kC , idC). ! νmC .PC) | (ν(kC , idC).! νmC .PC{idC 7→ id0})
≈ ! νnV .PV | (! ν(kC , idC). ! νmC .PC)

This intuitively represents the fact that the situation in which a specific client with some known
identity id0 may execute some sessions is indistinguishable from a situation in which this client is
not present at all. Therefore, if these two situations are indeed indistinguishable from the point
of view of the attacker, it would mean that there is no way for the attacker to deduce whether a
client with a specific identity is present or not. This particular equivalence that only involves the
replication operator (and not

!

) can actually be established relying directly on the ProVerif tool.
Our method also applies in presence of the

!

operator whereas ProVerif is not able to analyse such
a scenario.

8.3.3 Discussion

The definitions we proposed are variations of the ones proposed in [ACRR10]. In particular, they
all share the same pattern: we compare some process modelling real usage of the protocol with
another process modelling an idealised version of the system. However, a flurry of alternative
definitions of unlinkability have been proposed in the literature (see, e.g. [BCEDH13, Bru14] for a
comparison). Among the strongest ones, various game-based formulations have been considered,
both in the computational and symbolic models. Some of these definitions, unlike our definition
of unlinkability, can be verified directly in ProVerif using the notion of diff-equivalence [BMU08].

Game-based definition. We will not give any formal definition but instead briefly give its
general idea. In such a definition, the following game is considered:

1. Learning phase: During this phase, the attacker can trigger an arbitrary number of sessions
of the two roles (namely tag and reader) with the identity of his choice. This allows him
to gain some knowledge. Eventually, the attacker chooses to end the learning phase and
enter the second phase.

2. Guessing phase: The challenger chooses an identity x among two distinguished identities
id1 and id2. The attacker is allowed to interact again (an arbitrary number of times) with
roles of x, or of identities other than id1 and id2.

The attacker wins the game if he can infer whether x is id1 or id2, i.e. if he is able to distinguish
between these two scenarios. This is typically the kind of scenario that can be checked relying
on the diff-equivalence notion implemented in several automatic tools (e.g. ProVerif, Tamarin).
However, as illustrated by the following example, we would like to stress that such game-based
definitions do not imply unlinkability as defined in this part.

177

8. Model & Problem

Example 57. We consider the following protocol between a tag T and a reader R that share a
symmetric key k. We consider that sessions can be executed in parallel, and we assume that T

aborts in case the nonce nR he receives is equal to the nonce nT he sent previously (in the same
session).

1. T → R : {nT }k

2. R → T : {nR}k

3. T → R : {nR ⊕ nT }k

We consider the term algebra introduced in Example 1, and the equational theory introduced
in Example 2 (see Chapter 2) with in addition the equation sdec(senc(x, y), y) = x. To show
that the property formally stated in Definition 54 does not hold, consider the following scenario.

1. T → R : {nT }k

1′. T ′ → R : {n′
T }k

2. I(R) → T : {n′
T }k

2′. I(R) → T ′ : {nT }k

3. T → R : {n′
T ⊕ nT }k

3′. T ′ → R : {nT ⊕ n′
T }k

A same tag starts two sessions1 and therefore generates two nonces nT and n′
T . The attacker

answers to these requests by sending back the two encrypted messages to the tag who will accept
both of them, and sends on the network two messages that are actually equal (the exclusive or
operator is commutative). Therefore the attacker observes a test, namely the equality between
the last two messages, which has no counterpart in the single session scenario. Therefore, this
protocol does not ensure unlinkability. In practice, this can be very harmful. Suppose, for example,
that tags are distributed among distinct groups (e.g. for access control policies) sharing each the
same key k. By interacting with two tags, the attacker would then be able to know if they belong
to the same group and thus be able to trace groups.

To the best of our knowledge, all the existing game-based variants of unlinkability that are
amenable to automation relying on the diff-equivalence notion suffer from this problem. We may
also note that the attack described in Example 55 is not captured when considering the game-
based version of unlinkability. Actually, this protocol can even be proved secure using ProVerif
when considering the game-based version of unlinkability while it suffers from the attack depicted
in Figure 8.1.

1This is possible if different physical tags share the same identity (e.g. as it may be the case in access control
scenarios). In such a case, it may happen that two different physical tags are running two sessions concurrently.

178

Chapter 9

Sufficient Conditions for Privacy

We now define our two conditions, namely frame opacity (Section 9.2) and well-authentication
(Section 9.3), and our Main Theorem (Section 9.4) which states that these conditions are sufficient
to ensure unlinkability and anonymity as defined in Chapter 8. We conclude the chapter with
the proof of our Main Theorem (Section 9.5). Before doing that, we shall introduce annotations
in the semantics of processes (Section 9.1) in order to ease their analysis.

9.1 Annotations

We shall now define an annotated semantics whose transitions are equipped with more informative
actions. The annotated actions will feature labels identifying which concurrent process has
performed the action. This will allow us to identify which specific agent (with some specific
identity and session names) performed some action.

Formally, an annotation is of the form A(k, n) where A ∈ {I, R} and k, n are sequences of
names, or constants from id0. Annotations are noted with the letter a, and the set of annotations
is noted A. In the rest of the part, we shall call agent any initiator or responder process (i.e. I or
R) or a continuation of those. It corresponds to a certain user (described by its identity names)
playing a certain session (described by its session names) at a certain step of its role. Therefore,
annotations and agents are closely related (there is a one-to-one correspondence if one forgets
about continuations). However, we rely on the notion of agents when we want to point out
the process, and we use the notion of annotations to refer to the information that are used to
decorate actions and processes.

Given a protocol Π = (k, nI , nR, †I , †R, I, R) and id ⊆ k, consider any execution of MΠ,id,
MΠ or SΠ. In such an execution, all τ actions except τthen and τelse actions (i.e. τν , τ!, τr) are
solely used to instantiate new agents, by unfolding replications ! (using the semantical rule Repl)
or repetitions

!

(using the semantical rule Unfold), or choosing fresh session and identity names
(using the semantical rule New). Performing these actions results in the creation of agents, that
is, instances of I and R with fresh names or constants from id0. Actions other than τν , τ!, τr

(that is, input, output and conditionals) are then only performed by those agents.

179

9. Sufficient Conditions for Privacy

The previous remark allows us to define an annotated semantics for our processes of interest.
In that semantics, agents in the multiset of processes are annotated by their identity (i.e. iden-
tity and session names that have been created for them), and actions other than τν , τ!, τr are
annotated with the identity of the agent responsible for that action. Note that actions τthen and
τelse will be annotated as well. Traces of the annotated semantics will be denoted by ta. We
stress that agents having in their identity constants id0 shall be annotated with some A(k, n)
where id0 ⊆ k. Intuitively, in such a case, we keep the information that the identity id0 of that
agent has been disclosed to the attacker in the annotation.

We also assume that labels used to decorate output actions (i.e. elements of L) are added to
the produced output actions so that we can refer to them when needed (output actions are thus
of the form ℓ : out(c, w)[a]).

In annotated traces, τν , τ!, τr actions that are solely used to instantiate new agents are not
really important. We sometimes need to reason up to these τ actions. Given two annotated trace
ta and ta′, we write ta τ= ta′ when both traces together with their annotations are equal up to
some τν , τ!, τr actions. We also write K

ta==⇒ K ′ when K ta′
−→ K ′ for some ta′ such that ta τ= ta′.

Finally, an annotated process is of the form P [a] where P is a process and a ∈ A.

Example 58. Considering the protocol ΠFh defined in Example 51, process SΠFh can notably
perform the execution seen in Example 48. The annotated execution has the trace ta given below,
where k′, n′

I and n′
R are fresh names, aI = I(k′, n′

I) and aR = R(k′, n′
R):

ta = τ!.τν .τν .τν . ℓ1 : out(cI , w1)[aI].in(cR, w1)[aR]. ℓ2 : out(cR, w2)[aR].in(cI , w2)[aI].τthen[aI].
ℓ3 : out(cI , w3)[aI].in(cR, w3)[aR].τthen[aR]

After the initial τ actions, the annotated configuration is ({IσI [aI], RσR[aR], SΠ}; ∅) where σI =
{k 7→ k′, nI 7→ n′

I}, and σR = {k 7→ k′, nR 7→ n′
R}. The structure is preserved for the rest of

the execution of ta, with three processes in the multiset (until they become null), two of which
remaining annotated with aI and aR. After ta, the annotated configuration is ({SΠ}; Φ0) where
Φ0 has been defined in Example 48.

Example 59. Going back to Example 56 and starting with MΠ,id, a possible annotated config-
uration obtained after some τν , τ!, τr actions can be K = (P, ∅) where P is a multiset containing
the following processes:

• PC{kC 7→ k0
C , idC 7→ id0, mC 7→ m0

C}[a0
C];

• !ν mC .PC{kC 7→ k0
C , idC 7→ id0};

• PV {nV 7→ n1
V }[a1

V]; and

• MΠDAA .

where a1
V = I(ϵ, n1

V) and a0
C = R((k0

C , id0), m0
C). We may note that the annotation a1

V contains
the empty sequence ϵ since the initiator role does not rely on identity names; and the annotation
a0

C contains id0.

180

9.2. Frame Opacity

9.2 Frame Opacity

In light of attacks based on leakage from messages where non-trivial relations between outputted
messages are exploited by the attacker to trace an agent, our first condition will express that
all relations the attacker can establish on output messages only depend on what is already
observable by the attacker and never depend on a priori hidden information such as identity
names of specific agents. Therefore, such relations cannot be exploited by the attacker to learn
anything new about the agents involved in the execution. We achieve the latter by requiring
that any reachable frame must be indistinguishable from an idealised frame that only depends
on data already observed in the execution, and not on the specific agents (and their names) of
that execution.

As a first approximation, one might take the idealisation of a frame {wi 7→ ui}i∈I to be
{wi 7→ ni}i∈I where the (ni)i∈I are distinct fresh nonces. It would then be very strong to require
that frames obtained in arbitrary protocol executions are statically equivalent to their idealisation
defined in this way. Although this would allow us to carry out our theoretical development, it
would not be realistic since any protocol using, e.g. a pair, would fail to satisfy this condition.
We thus need a notion of idealisation that retains part of the shape of messages, which a priori
does not reveal anything sensitive to the attacker. We also want to allow outputs to depend
on session names or previous inputs in ways that are observable, e.g. to cover the output of the
signature of a previously input message.

Our idealised frames will be obtained by replacing each message, produced by an output of
label ℓ, by a context that only depends on ℓ, whose holes are filled with fresh session names and
(idealisations of) previously inputted messages. Intuitively, this is still enough to ensure that the
attacker does not learn anything that is identity-specific. In order to formalise this notion, we
assume two disjoint and countable subsets of variables: input variables X i = {xi

1, xi
2, . . .} ⊆ X ,

and session name variables X n = {xn
1, xn

2, . . .} ⊆ X , and a fixed, arbitrary idealisation operator
ideal(·) : L 7→ T (Σc, X i ∪ X n). Variables xi

j intuitively refers to the j-nth variable received
by the agent of interest. Therefore, we assume that idealisation operator satisfies the following:
∀ℓ ∈ L, ideal(ℓ)∩X i ⊆ {xi

1, . . . , xi
k} where k is the number of inputs preceding the output labelled

ℓ.

Definition 57. Let fr : A×X n 7→ N be an injective function assigning names to each agent and
name variable. We define the idealised frame associated to ta, denoted Φfr

ideal(ta), inductively on
the annotated trace ta:

• Φfr
ideal(ϵ) = ∅ and Φfr

ideal(ta.α) = Φfr
ideal(ta) if α is not an output;

• Φfr
ideal

(
ta.(ℓ : out(c, w)[a])

)
= Φfr

ideal(ta) ∪ {w 7→ ideal(ℓ)σiσn} where

– σn(xn
j) = fr(a, xn

j) when xn
j ∈ X n, and

– σi(xi
j) = uj where

(
RjΦfr

ideal(ta)
)

⇓ uj when xi
j ∈ X i and Rj is the recipe corresponding

to the j-th input of agent a in ta.

181

9. Sufficient Conditions for Privacy

Note that this is not necessarily well-defined, as the term tj = RjΦfr
ideal(ta) may not compute

to a message mj such that tj ⇓ mj. However, if Φfr
ideal(ta) is well-defined, and ta.α results

from an execution together with the frame Φ such that Φfr
ideal(ta) ∼ Φ, then Φfr

ideal(ta.α) is also
well-defined.

Remark that, by definition, Φfr
ideal(ta) never depends on the specific identity names occurring

in ta but only on the set of involved agents (without any knowledge about their identity names)
and how they interact with each other. In particular, idealised frames do not depend on whether
agents rely on the specific constants id0 or not.

Example 60. Continuing Example 58, we may consider the idealisation operator defined as
follows:

ℓ1 7→ xn
1, ℓ2 7→ xn

2, ℓ3 7→ xn
3.

Let fr be an injective function such that fr(aI , xn
j) = nI

j and fr(aR, xn
j) = nR

j . We have that
Φfr

ideal(ta) is well-defined and

Φfr
ideal(ta) = {w1 7→ nI

1, w2 7→ nR
2 , w3 7→ nI

3}.

On the latter simple example, such an idealisation will be sufficient to establish that any
reachable frame obtained through an execution of MΠFh is indistinguishable from its idealisation.
This simple idealisation operator is however not always sufficient for our purposes, and as illus-
trated by the following two examples, we sometimes need to consider more complex idealisation
operators.

Example 61. Continuing Example 52, and to have some hope to establish our indistinguishabil-
ity property, namely frame opacity defined below, we need to define an idealisation operator that
retains part of the shape of outputted messages. Typically, assuming that the three outputs are
labelled with ℓ1, ℓ2 and ℓ3 respectively, we will consider:

ℓ1 7→ xn
1, ℓ2 7→ ⟨xn

2, xn
3⟩, ℓ3 7→ xn

4

Example 62. Regarding Example 53, we need also to define an idealisation that retains the shape
of the second outputted message. Moreover, the idealisation of the second outputted message will
depend on the nonce previously received. Typically, assuming that the two outputs are labelled
with ℓ1, and ℓ2 respectively, we will consider:

ℓ1 7→ xn
1, ℓ2 7→ zk(sign(⟨xn

2, xn
3⟩, skI), xn

2, tuple(xi
1, xn

4, xn
5, pk(skI)))

The following proposition establishes that the particular choice of fr in Φfr
ideal(ta) is irrelevant

with respect to static equivalence. We can thus note Φideal(ta) ∼ Φ instead of ∃fr, Φfr
ideal(ta) ∼ Φ.

Proposition 23. We have Φfr
ideal(ta) ∼ Φfr′

ideal(ta) for any fr and fr′.

Proof. It suffices to observe that there exists a bijection σ : N 7→ N such that Φfr
ideal(ta) =

Φfr′

ideal(ta)σ.

182

9.2. Frame Opacity

We can now formalise the notion of frame opacity as announced: it requires that all reachable
frames must be statically equivalent to idealised frames.

Definition 58. The protocol Π ensures frame opacity if:

for any execution (MΠ,id; ∅) ta−→ (Q; Φ), it holds that Φideal(ta) ∼ Φ.

Note that Φideal(ta) is well-defined above. Formally, it can be established by induction on the
length of traces: assuming that Π ensures frame opacity for traces of length n then it is easy to
establish that Φideal(ta) is defined for traces ta executable by MΠ,id of length at most n + 1 and
the frame opacity condition is thus defined for such traces. In the rest of the part, we will only
consider idealisations for protocols that satisfy frame opacity, which ensures well-definedness.

There are many ways to choose the idealisation operator ideal(·). We present below a canon-
ical syntactical construction that is sufficient to deal with almost all our case studies. This
construction has been implemented as a heuristic to automatically build idealisation operators
in the tool UKano. The tool UKano also provides other heuristics that generally lead to better
performance but are less tight (i.e. they cannot always be used to establish frame opacity). We
explain how UKano verifies frame opacity and compare the different heuristics it can leverage in
Chapter 10.

At first reading, it is possible to skip the rest of the section and directly go to Section 9.3 since
proposed canonical constructions are just instantiations of our generic notion of idealisation.

9.2.1 Canonical Syntactical Idealisation

Intuitively, this construction builds the idealisation operator by examining the initiator and
responder roles as syntactically given in the protocol definition. The main idea is to consider
(syntactical) outputted terms one by one, and to replace identity names and variables bound by
a let construct by pairwise distinct session names variables.

Definition 59. Let Π = (k, nI , nR, †I , †R, I, R) be a protocol that uses input variables
{xi

1, xi
2, . . .} ⊆ X i (in this order) for its two roles, and distinct variables from Xlet in let construc-

tions. Let σ be an injective renaming from k ∪ nR ∪ nI ∪ Xlet → X n. The canonical syntactical
idealisation operator associated to Π maps any ℓ ∈ L occurring in an output action of the form
ℓ : out(c, u) (for some c and some u) in I or R to uσ.

Example 63 (Continuing Example 51). First, we perform some renaming to satisfy the condi-
tions imposed by the previous definition. We therefore replace x1 by xi

1 in role I, and y1, y2 by
xi

1, xi
2 in role R. We assume that x2, x3, and y3 are elements of Xlet. We consider a renaming σ

that maps k, nI , nR, x2, x3, y3 to xn
1, . . . , xn

6. We obtain the following idealisation operator:

ℓ1 7→ xn
2; ℓ2 7→ senc(⟨xi

1, xn
3⟩, xn

1); ℓ3 7→ senc(⟨xn
5, xn

2⟩, xn
1)

Considering fr as defined in Example 60, i.e. such that fr(aI , xn
j) = nI

j and fr(aR, xn
j) = nR

j ,
and relying on the idealisation operator defined above, we have that:

Φfr
ideal(ta) = {w1 7→ nI

2, w2 7→ senc(⟨nI
2, nR

3 ⟩, nR
1), w3 7→ senc(⟨nI

5, nI
2⟩, nI

1)}

183

9. Sufficient Conditions for Privacy

where ta is the trace given in Example 58.
Although this canonical syntactical idealisation is quite different from the one described in Ex-

ample 60, it also allows us to establish that any reachable frame obtained through an execution
of MΠFh is indistinguishable from its idealisation.

Example 64 (Continuing Example 52). Consider a renaming σ that maps k, nI , nR, x2, x3,
y3, rI , rR to xn

1, . . . , xn
8. We obtain the following idealisation operator:

ℓ1 7→ xn
2; ℓ2 7→ ⟨xn

3, renc(xi
1, xn

1, xn
8)⟩; ℓ3 7→ renc(xn

5, xn
1, xn

7)

Such an idealisation operator is suitable to establish frame opacity.

Example 65 (Continuing Example 53). Consider a renaming σ that maps: kC , idC , nV , nC ,
m, x2, x3, x4, y3 to xn

1, xn
2, . . . , xn

9. We obtain the following idealisation operator:

ℓ1 7→ xn
3; ℓ2 7→ zk(sign(⟨xn

1, xn
2⟩, skI), xn

1, tuple(xi
1, xn

4, xn
5, pk(skI))); ℓ3 7→ error

Such an idealisation operator is also suitable to establish frame opacity.

As illustrated by the previous examples, this canonical syntactical idealisation is sufficient to
conclude on most examples. Actually, using this canonical construction, we automatically build
the idealisation operator and check frame opacity for all the examples we have introduced in the
previous sections and for most of the case studies presented in Chapter 10.

9.2.2 Semantical Idealisation

However, the previous construction is clearly purely syntactic and therefore closely connected to
the way we write the roles of the protocol. Its main weakness is the way it deals with variables
bound by let constructions. Since there is no way to statically guess the shape of messages that
will be instantiated for those variables, the previous technique replaces them by fresh session
names. False negatives may result from such over-approximations.

We may therefore prefer to build an idealisation operator looking at the messages outputted
during a concrete execution. In such a case, we may simply retain part of the shape of messages,
which a priori does not reveal anything sensitive to the attacker (e.g. pairs, lists). This can be
formalised as follows:

Definition 60. A symbol f (of arity n) in Σ is transparent if it is a public constructor symbol
that does not occur in E and such that: for all 1 ≤ i ≤ n, there exists a recipe Ri ∈ T (Σpub, {w})
such that for any message u = f(u1, . . . , un), we have that Ri{w 7→ u} ⇓ vi for some vi such that
vi =E ui.

Example 66. Considering the signature and the equational theory introduced in Example 1 and
Example 2, the symbols ⟨ ⟩ and ok are the only ones that are transparent. Regarding the pairing
operator, the recipes R1 = proj1(w) and R2 = proj2(w) satisfy the requirements.

Once such a set Σt is fixed, the idealisation associated to a label ℓ occurring in Π will be
computed relying on a particular (but arbitrary) message u that has been outputted with this

184

9.3. Well-Authentication

label ℓ during a concrete execution of MΠ. The main idea is to go through transparent functions
until getting stuck, and then replacing the remaining sub-terms using distinct name variables
from X n.

Example 67. Consider the protocol given in Example 51 and the frame Φ0 as defined in Ex-
ample 48, the resulting idealisation associated to Π (considering the messages outputted in Φ0)
is: ℓ1 7→ xn

1; ℓ2 7→ xn
2; ℓ3 7→ xn

3. The protocol given in Example 52 will give us: ℓ1 7→ xn
1; ℓ2 7→

⟨xn
2, xn

3⟩; ℓ3 7→ xn
4. Even if these idealisation operators are quite different from the ones presented

in Example 63 and Example 64, they are also suitable to establish frame opacity.

In [HBD16], the idealisation operator associated to Π was exclusively computed using this
method. However, it happens to be insufficient to establish frame opacity in presence of function
symbols that are neither transparent nor totally opaque such as signatures. Indeed, a signature
function symbol is not transparent according to our definition, but an attacker can make the
difference between a signature sign(m, sk(A)) and a random nonce. Therefore, replacing such a
term by a fresh session name will never allow one to establish frame opacity.

However, this construction leads to simpler idealisation operators that often allow better
performance. We thus also have implemented a heuristic following the above ideas in the tool
UKano.

9.3 Well-Authentication

Our second condition will prevent the attacker from obtaining some information about agents
through the outcome of conditionals. To do so, we will essentially require that conditionals
of I and R can only be executed successfully in honest, intended interactions. However, it is
unnecessary to impose such a condition on conditionals that never leak any information, which are
found in several security protocols. We characterise below a simple class of such conditionals, for
which the attacker will always know the outcome of the conditional based on the past interaction.

Definition 61. A conditional let z = t in P else Q occurring in A ∈ {I, R} is safe if t ∈
T (Σpub, {x1, . . . , xn} ∪ {u1, . . . , un}), where the xi are the variables bound by the previous inputs
of that role, and ui are the messages used in the previous outputs of that role.

Example 68. Consider the process given below:

out(c, u).in(c, x).let z = neq(x, u) in P else Q

The conditional is used to ensure that the agent will not accept as input the message he sent at
the previous step. Such a conditional is safe according to our definition.

Note that trivial conditionals required by the grammar of protocols (Definition 49) are safe
and will thus not get in the way of our analysis. We can now formalise the notion of association,
which expresses that two agents are having an honest, intended interaction (i.e. the attacker
essentially did not interfere in their communications). For an annotated trace ta and annotations

185

9. Sufficient Conditions for Privacy

a and a′, we denote by ta|a,a′ the subsequence of ta that consists of actions of the form α[a] or
α[a′].

Definition 62. Given a protocol Π, we say that two annotations a1 = A1(k1, n1) and a2 =
A2(k2, n2) are associated in (ta, Φ) if:

• they are dual, i.e. A1 ̸= A2, and k1 = k2 when fn(R) ∩ fn(I) ̸= ∅ (the shared case);

• the interaction ta|a1,a2 is honest for Φ (see Definition 50).

Example 69. Continuing Example 58, the annotations I(k′, n′
I) and R(k′, n′

R) are associated
in (ta, Φ0).

Finally, we can state our second condition.

Definition 63. The protocol Π is well-authenticating if, for any execution (MΠ,id; ∅) ta.τthen[a]−−−−−→
(P; Φ) either the last action corresponds to a safe conditional, or there exists a′ such that:

(i) The annotations a and a′ are associated in (ta, Φ);

(ii) Moreover, when fn(R) ∩ fn(I) ̸= ∅ (the shared case), a′ (resp. a) is only associated with a

(resp. a′) in (ta, Φ).

Intuitively, this condition does not require anything for safe conditional as we already know
that they cannot leak new information to the attacker (he already knows their outcome). For
unsafe conditionals, condition (i) requires that whenever an agent a evaluates them positively
(i.e. he does not abort the protocol), it must be the case that this agent a is so far having an
honest interaction with a dual agent a′. Indeed, as discussed in introduction, it is crucial to avoid
such unsafe conditionals to be evaluated positively when the attacker is interfering because this
could leak crucial information.

As illustrated in the following example, Condition (ii) is needed to prevent from having execu-
tions where an annotation is associated to several annotations, which would break unlinkability
in the shared case (i.e. when fn(R) ∩ fn(I) ̸= ∅).

Example 70. We consider a protocol between an initiator and a responder that share a sym-
metric key k. The protocol can be described informally as follows:

1. I → R : {nI}k

2. R → I : nR

Assuming that the two outputs are labelled with ℓ1 and ℓ2 respectively, we have that the
idealisation operator: ℓ1 7→ xn

1, ℓ2 7→ xn
2 is suitable to establish frame opacity.

We may note that the only conditional is the one performed by the responder role when receiv-
ing the ciphertext. He will check whether it is indeed an encryption with the expected key k. When
an action τthen[R(k, nR)] occurs, it means that a ciphertext encrypted with k has been received by
R(k, nR) and since the key k is unknown by the attacker, such a ciphertext has been sent by a
participant: this is necessarily a participant executing the initiator role with key k. Hence condi-
tion (i) of well-authentication holds (and can actually be formally proved). However, condition

186

9.4. Main Theorem: Soundness of Conditions w.r.t. Privacy

Protocol Frame Well- Unlinkabilityopacity authentication
Feldhofer (Example 51) 3 3 safe
Feldhofer variant with ! (Example 55) 3 5 attack
Feldhofer variant with

!

(Example 52) 3 3(with Tamarin) safe
DAA-like (Example 53) 3 3 safe

Table 9.1 Summary of our running examples

(ii) fails to hold since two responder roles may accept a same ciphertext {nI}k and therefore be
associated to the same agent acting as an initiator. This corresponds to an attack scenario w.r.t.
our formal definition of unlinkability since such a trace will have no counterpart in SΠ. More
formally, the trace tr = out(cI , w0).in(cR, w0).τthen.out(cR, w1).in(cR, w0).τthen.out(cR, w2) will
be executable starting from MΠ and will allow one to reach that frame:

Φ = {w0 7→ senc(nI , k); w1 7→ nR; w2 7→ n′
R}

Starting from SΠ the second action τthen will not be possible, and more importantly this will
prevent the observable action out(cR, w2) to be triggered.

9.4 Main Theorem: Soundness of Conditions w.r.t. Privacy

Our main theorem establishes that the previous two conditions are always sufficient to ensure
unlinkability and anonymity for security protocols in our class.

Theorem 8. Consider a protocol Π = (k, nI , nR, †I , †R, I, R) and some identity names id ⊆ k.
If the protocol is well-authenticating and ensures frame opacity, then Π ensures unlinkability and
anonymity w.r.t. id.

Note that, when id = ∅, we have that MΠ,id ≈ MΠ and our two conditions coincide on
MΠ,id and MΠ. We thus have as a corollary that if MΠ ensures well-authentication and frame
opacity, then Π is unlinkable.

Before proving our Main Theorem in the next section, we show its applicability by summaris-
ing the different case studies we were able to verify notably using our theorem.

We first summarise in Table 9.1 the result of the confrontation of our method to our various
running examples, focusing on unlinkability. We note 3 for a condition automatically checked
using our tool UKano and 5 when the condition does not hold. For the analysis of Feldhofer
variant with

!

, we do not rely on UKano (which is based on ProVerif) since ProVerif does not
support the

!

operator. We establish the well-authentication property using Tamarin and frame
opacity using ProVerif by allowing sessions to be run concurrently and thus doing a sound over-
approximation of the protocol’s behaviours. Remark that being able to verify different conditions
using different methods or tools is also an advantage of our method. Except for the latter example,
all positive results were automatically established using our tool UKano.

In Table 9.2, we summarise the result of the confrontation of our method to our real-world
case studies, focusing on unlinkability. Detailed descriptions of our case studies are in Chapter 10.

187

9. Sufficient Conditions for Privacy

Protocol Frame Well- Unlinkabilityopacity auth.
Hash-Lock 3 3 safe
LAK (stateless) − 5 attack
Fixed LAK 3 3 safe
BAC 3 3 safe
BAC/PA/AA 3 3 safe
BAC/AA/PA 3 3 safe
PACE (faillible dec) − 5 attack
PACE (as in [BFK09]) − 5 attack
PACE − 5 attack
PACE with tags 3∗ 3 safe
DAA sign 3 3 safe
DAA join 3 3 safe
ABCDH (irma) 3∗ 3∗ safe

Table 9.2 Summary of our case studies

We remark that our conditions have proven to be tight enough for all our case studies: when
a condition fails to hold, we could always discover a real attack on unlinkability. Most of the
positive results (when unlinkability holds) and all attacks are new. Note that all positive results
were established automatically using our tool UKano (which is based on ProVerif) without any
manual effort (except for the cases indicated by 3∗ for which little manual efforts were needed).

9.5 Proof of our Main Theorem

We provide in this section the proof of Theorem 8. Our main argument consists in showing that,
for any execution of MΠ,id, there is an indistinguishable execution of SΠ (the other direction
being easy). This indistinguishable execution will be obtained by a modification of the involved
agents. We will proceed via a renaming of agents applied to an abstraction of the given execution
of MΠ,id. We then prove that the renamed executions can still be executed and produce an
indistinguishable frame.

In this section we fix a protocol Π, some identity names id and some fresh constants id0

yielding a process MΠ,id as defined in Section 8.3. The construction of the proof will slightly
differ depending on †I , †R (sequential or concurrent sessions) and whether fn(I) ∩ fn(R) = ∅ or
not (shared case).

9.5.1 Abstraction of Configurations

Instead of working with MΠ,id, MΠ, and SΠ, it will be more convenient to work with ground
configurations. Intuitively, we will associate to each execution of MΠ,id, MΠ, and SΠ, a ground
configuration that contains all agents involved in that execution, already correctly instantiated.
By doing so, we are able to get rid of technical details such as unfolding replications and rep-

188

9.5. Proof of our Main Theorem

etitions a necessary number of times, create necessary identity and session names, etc. These
ground configurations are generated from sequences of annotations satisfying some requirements.

Sequences of Annotations

The sequence of annotations from which we will build ground configurations shall satisfy some
requirements that we list below. Essentially, the goal is to make sure that no freshness condition
over session and identity names is violated.

Definition 64. A sequence S of annotations is well-formed if the following conditions hold.

• In all annotations A(k′, n′), the session parameters n′ are names, and the identity parame-
ters k′ are made of names or constants id0. We also have that |n′| = |nA| and |k′| = |k| (re-
mind that nI , nR and k are session and identity names from Π). Moreover, when id0∩k′ ̸= ∅,
then it holds that k′

i = id0i if, and only if, ki = idi (where id0i, idi, ki, k′
i are respectively

the i-nth element of the sequences id0, id, k, k′).

• No name appears both as identity and session parameter in any two annotations.

• Two different annotations never share a session parameter.

• Two annotations either have the same identity parameters, or do not share any identity
parameter at all.

We say that a sequence of annotations S is single-session when two different annotations of the
same role never share an identity parameter and no annotation contains a constant in id0.

We straightforwardly lift those definitions to annotated traces by only keeping the underlying
sequence of annotations and dropping actions. Roughly, well-formed (resp. well-formed, single-
session) sequence of annotations contains annotations of agents that can be instantiated from
MΠ,id (resp. SΠ). Conversely, we may note that given ta such that MΠ,id

ta−→ K ′, we have that
ta is well-formed.

Ground Configurations

After the introduction of some notations, we explain how ground configurations are obtained
from well-formed sequences of annotations.

Given a well-formed sequence of annotations S, and some role A ∈ {I, R}, we introduce
following notations:

• we note idA(S) the set of identity parameters of agents of role A occurring in S (i.e. the
set {k | A(k, n) ∈ S}),

• for l ∈ idA(S), we note sessA(S, l) the set of session parameters of agents of role A and
identity parameters l occurring in S (i.e. the set {n | A(l, n) ∈ S}),

189

9. Sufficient Conditions for Privacy

• for l ∈ idA(S), we note sessseq
A (S, l) the sequence made of elements from sessA(S, l), without

repetition, in order of first occurrence in S.

Finally, for some sequence of elements L = e1, e2, e3, . . . and a family of processes {P (ei)}i, we
denote by

⨿
e∈L P (e) the process P (e1); (P (e2); (P (e3); . . .)).

Definition 65. Let S be a well-formed sequence of annotations. The ground configuration
associated to S denoted by K(S) is the multiset PI ⊔PR where PA is defined as follows depending
on †A , where A is the process of Π corresponding to the role annotation A:

• if †A = ! (A can execute sessions concurrently) then

PA =
{ (

A{k 7→ l, nA 7→ m}
)
[A(l, m)] | A(l, m) ∈ S

}
.

• if †A =

!

(A cannot execute sessions concurrently) then

PA =

 ⨿
m∈S

l

Ql
A(m) | l ∈ idA(S) and Sl = sessseq

A (S, l)

 .

where Ql
A(m) =

(
A{k 7→ l, nA 7→ m}

)
[A(l, m)].

Note that, as illustrated by the next example, we now consider annotations inside a process.

Example 71. Consider for instance a trivial protocol Π def= (k, nI , nR,

!
,

!
, I, R) where I =

out(cI , senc(nI , k)) and R = in(cR, x). We have that

MΠ =! νk.(

!

νnI .I |

!

νnR.R) ta−→ (Q; ϕ)

for ta = τ!.τν .τr.τν . ℓ : out(cI , w0)[I(k, nI)].τr.τν . ℓ : out(cI , w1)[I(k, n′
I)]. The ground configura-

tion associated to ta is as follows:

K(ta) =
⨿

n∈(nI),(n′
I

)

Qk
I (n) = (out(cI , senc(nI , k))[I(k, nI)]); (out(cI , senc(n′

I , k))[I(k, n′
I)]).

Note that K(ta) is also able to produce the annotated trace ta up to τ=.

We lift those definitions to annotated traces as before. A ground configuration associated to
a well-formed sequence of annotations is essentially an “unfolding” of MΠ,id. Therefore, there is
a strong relationship between the original process and the one obtained through K(·) as shown
next.

Proposition 24. If ta is a well-formed annotated trace then the following hold:

(1) If MΠ,id

ta==⇒ K (resp. SΠ
ta==⇒ K), then K(ta) ta==⇒ K ′ for some K ′ such that Φ(K) =

Φ(K ′).

(2) If K(ta) ta==⇒ K, then MΠ,id

ta==⇒ K ′ for some K ′ such that Φ(K) = Φ(K ′).

190

9.5. Proof of our Main Theorem

(3) If K(ta) ta==⇒ K and ta is single-session, then SΠ
ta==⇒ K ′ for some K ′ such that Φ(K) =

Φ(K ′).

(4) If ta = ta1.ta2 and K(ta1.ta2) ta1−→ K then K(ta1) ta1−→ K ′ with Φ(K) = Φ(K ′).

Proof. Item (1) holds by construction of the operator K(·), which has been built by closely
mimicking how MΠ,id and SΠ create agents. We thus have that when an agent is at top-level
in a configuration in the execution of MΠ,id (or SΠ) then it is also available in the execution of
K(ta). In general, less τν , τ!, τr actions are necessary for the execution starting with K(ta) than
for the executions starting with MΠ,id or SΠ. Indeed, there is no need, in ground configurations,
to spawn agents by unfolding replications or repetitions or creating fresh names. This is because
agents are (more) immediately available in K(ta).

Item (2) heavily relies on the well-formedness of ta. One can thus prove that all agents in
K(ta) can be created along the execution by choosing appropriate names when triggering rules
New. For instance, the first item of Definition 64 makes sure that the arity of parameters in
agents matches the number of names to be created. The second and third items of Definition 64
ensure that the freshness guard conditions of the rule New holds for names to be created. Finally,
the fourth item of Definition 64 implies that when an agent a = A(k, n) must be created then
either (i) names in k are completely fresh and this identity k can be created from MΠ,id by
unfolding ! and create names k or (ii) names in k have already been created and thus the agent
a can be created from the last replicated process used to create identity k in the first place.

Item (3) is similar to (2). The single-session hypothesis provides exactly what is needed to
mimic the execution using SΠ rather than MΠ,id.

Finally, item (4) stems from a simple observation. Compared to K(ta1), the multiset of
processes K(ta1.ta2) adds processes in parallel and in sequence after some processes of K(ta1).
However, these extra processes are unused when executing ta1, thus K(ta1) can perform the same
execution.

Renamings of Annotations

As mentioned before, we shall prove that for any execution of MΠ,id, there is an indistinguishable
execution of SΠ. This indistinguishable execution that SΠ can perform will be obtained by a
renaming of annotations. We define next a generic notion of such renamings of annotations.
However, the crux of the final proof is to find a good renaming that implies: (i) the executability
by SΠ of the renamed trace, (ii) the static indistinguishability of the resulting frames (before
and after the renaming).

Definition 66. A renaming of annotations (denoted by ρ) is an injective mapping from anno-
tations to annotations such that:

• for any well-formed sequence of annotations S, Sρ is well-formed;

• ρ is role-preserving: i.e. initiator (resp. responder) annotations are mapped to initiator
(resp. responder) annotations;

191

9. Sufficient Conditions for Privacy

• for any a1 = A1(k1, n1), a2 = A2(k2, n2) ∈ A, if ρ(a1) and ρ(a2) have the same identity
parameters, then so do a1 and a2 (i.e. k1 = k2).

The two first conditions are expected: renaming of annotations shall only modify session
and identity parameters whilst preserving well-formedness. The final condition ensures that
renamings do not create more “sequential dependencies” between agents (i.e. agents sharing the
same identity and whose role can execute sessions only sequentially): after renaming, less pairs
of agents have same identity.

Next, we define taρ as the annotated trace obtained from ta by applying ρ to annotations
only. Note that, by definition of renamings, the resulting taρ is well-formed as well.

One can also define the effect of renamings on ground configurations. If ρ(A(k, n)) = A(k′, n′),
the renaming σ induced by ρ on A(k, n) is the (injective) mapping such that kσ = k′ and
nσ = n′. Given a ground configuration P = {

⨿
j P i

j [ai
j]}i, we define Pρ = {

⨿
j P i

j σi
j [ρ(ai

j)]}i

where σi
j is the renaming induced by ρ on ai

j . Note that the renaming on parameters induced by
a renaming of annotations may conflict: this happens, for example, when ρ(A(k, n)) = A(k1, n)
and ρ(A(k, m)) = A(k2, m).

A renaming of annotations can break executability. Even when executability is preserved,
it is not obvious to relate processes before and after the renaming, as messages can be affected
in complex ways and conditionals may not evaluate to the same outcome. Fortunately, frame
opacity and well-authentication will provide us with strong properties to reason over executions,
as seen in the next subsections.

Example 72. Consider the annotated trace ta from Example 58 that MΠ,id can execute. The
ground configuration K(ta) can execute it as well, using =⇒. We now define ρ as follows:
ρ(I(k′, n′

I)) = I(k1, n′
I) and ρ(R(k′, n′

R)) = R(k2, n′
R) for some fresh names k1, k2. The trace

taρ can no longer be executed by MΠ,id nor by K(taρ) (even using =⇒) because the first output
sent by R(k2, n′

R) (i.e. senc(⟨n′
I , n′

R⟩, k2)) will not be accepted by I(k1, n′
I) since k1 ̸= k2.

9.5.2 Control is Determined by Associations

We show in that section that the outcome of tests is entirely determined by associations. This
will be useful to show that, if we modify an execution (by renaming agents) while preserving
enough associations, then the control flow is left unchanged.

Proposition 25. We assume that Π satisfies item (i) of the well-authentication condition. Let
ta = ta0.τx[a1] (for τx ∈ {τthen, τelse}) be a well-formed annotated trace such that

K(ta) ta0.τx[a1]−−−−−→ (P; Φ)

and the last action (i.e. τx[a1]) is performed by an unsafe conditional. We have that τx = τthen

if, and only if, there exists a2 ∈ A such that a1 and a2 are associated in (ta0, Φ).

Proof. (⇒) We start by applying Proposition 24 to obtain an execution

MΠ,id

ta0.τthen[a1]========⇒ (P ′; Φ) and thus MΠ,id
ta∗

0.τthen[a1]−−−−−−→ (P ′′; Φ).

192

9.5. Proof of our Main Theorem

for some ta∗
0

τ= ta0. As a consequence of well-authentication, item (i) applied on the above
execution, we obtain that for some a2 ∈ A, a1 and a2 are associated in (ta∗

0, Φ). Since ta0
τ= ta∗

0,
they are also associated in (ta0, Φ).

(⇐) For this other direction, we observe that (up to changes of recipes that do not affect the
resulting messages) if two agents are associated in the above execution (starting with K(ta)), then
they are executing the honest trace of Π modulo a renaming of parameters, thus the considered
test must be successful. We thus assume that a1 = A(k1, n1) and a2 = A(k2, n2) are associated in
(ta0, Φ) we shall prove that τx = τthen. By association, ta0|a1,a2 is honest: its observable actions
are of the form out(c1, w1).in(c′

1, M1) . . . out(cn, wn).in(c′
n, Mn) with possibly an extra output

at the end, and are such that MiΦ ⇓=E wiΦ for all 1 ≤ i ≤ n. Consider ta′ obtained from ta0

by replacing each recipe Mi by wi. Since this change of recipes does not affect the resulting
messages, the modified trace can still be executed by K(ta) and yields the same configuration
(P; Φ). But now ta′|a1,a2 is a self-contained execution, i.e. if P and Q are the processes (possibly
sub-processes) respectively annotated a1 and a2 in K(ta), we have:

({P [a1], Q[a2]}; ∅) ta′|a1,a2−−−−→ ({P ′[a1], Q′[a2]}; Φ′) τx[a1]−−−→ ({P ′′[a1], Q′[a2]}; Φ′).

In the shared case (i.e. fn(I) ∩ fn(R) ̸= ∅), by definition of association, the identity parameters
of a1 are equal to those of a2. Otherwise, it holds that fn(I) ∩ fn(R) = ∅. In both cases, we thus
have:

({ν k.(ν nI .I | ν nR.R)}; ∅) τ∗
−→ ({P [a1], Q[a2]}; ∅)

ta′|a1,a2−−−−→ ({P ′[a1], Q′[a2]}; Φ′)
τx[a1]−−−→ ({P ′′[a1], Q′[a2]}; Φ′).

In that execution, everything is deterministic (up to the equational theory) and thus the execution
is actually a prefix of the honest execution of Π (from the process PΠ defined in Definition 51),
up to a bijective renaming of parameters (note that P and Q do not share session parameters).
Remind that all tests must be positive in the honest execution (i.e. τelse does not occur in the
honest execution). Therefore, τx = τthen concluding the proof.

9.5.3 Invariance of Frame Idealisations

In general, a renaming of annotations can break executability: as illustrated in Example 72,
mapping two dual annotations to annotations of different identities breaks the ability of the two
underlying agents to communicate successfully. Moreover, even when executability is preserved,
parameters change (so do names) and thus frames are modified. However, as stated next in
Proposition 26, such renaming do not change idealised frames. We obtain the latter since we made
sure that idealised frames only depend on what is already observable and not on specific identity
or session parameters. In combination with frame opacity, this will imply (Proposition 27) that
a renaming of annotations has no observable effect on the resulting real frames.

Proposition 26. Let ta be an annotated trace and fr1 be a name assignment such that Φfr1
ideal(ta)

is well-defined. Let ρ be a renaming of annotations, and fr2 be an injective function satisfying
fr2(aρ, x) = fr1(a, x). We have that Φfr2

ideal(ta) is well-defined and Φfr1
ideal(ta) = Φfr2

ideal(taρ).

193

9. Sufficient Conditions for Privacy

Proof. We proceed by induction on ta. The interesting case is when ta = ta0.ℓ : out(c, w)[a] and

Φfr1
ideal(ta0.ℓ : out(c, w)[a]) = Φfr1

ideal(ta0) ∪ {w 7→ ideal(ℓ)σi
1σn

1}

with σn
1(xn

j) = fr1(a, xn
j) and σi

1(xi
j) = RjΦfr1

ideal(ta0) ⇓ where Rj is the j-th input of a in ta0.
The idealised frame Φfr2

ideal(ta) is defined similarly, using σn
2 and σi

2 relying on ta0ρ and fr2

instead of ta0 and fr1. By induction hypothesis (i.e. Φfr1
ideal(ta0) = Φfr2

ideal(ta0ρ)), we only have to es-
tablish that ideal(ℓ)σi

1σn
1 = ideal(ℓ)σi

2σn
2 with σn

2(xn
j) = fr2(aρ, xn

j) and σi
2(xi

j) = Rρ
j Φfr2

ideal(ta0ρ) ⇓
where Rρ

j is the j-th input of aρ in ta0ρ. Since Rρ
j = Rj , we have σi

1(xi
j) = σi

2(xi
j). Moreover,

we have that σn
2(xn

j) = fr2(aρ, xn
j) = fr1(a, xn

j) = σn
1(xn

j), which allows us to conclude.

Proposition 27. We assume that Π satisfies the frame opacity condition. Let ρ be a renaming
of annotations and ta be a well-formed annotated trace. If K(ta) ta==⇒ (P1; Φ1) and K(taρ) taρ==⇒
(P2; Φ2), then we have that Φ1 ∼ Φ2.

Proof. We start by applying Proposition 24 on the two given executions to obtain two executions
starting with MΠ,id:

MΠ,id
ta∗
−→ (P ′

1; Φ1) and MΠ,id
ta∗

ρ−→ (P ′
2; Φ2)

with ta∗ τ= ta and ta∗
ρ

τ= taρ. Note that, if ta1 and ta2 are two annotated traces such that ta1
τ= ta2

and fr1 is a name assignment, then Φfr1
ideal(ta1) = Φfr1

ideal(ta2). Therefore, as a direct consequence
of Proposition 26, frame opacity and Proposition 23, we obtain the required conclusion: Φ1 ∼
Φ2.

9.5.4 A sufficient Condition for Preserving Executability

We can now state a key lemma (Lemma 23), identifying a class of renamings which yield indis-
tinguishable executions. More precisely, this lemma shows that for renamings satisfying some
requirements, if K(ta) can execute an annotated trace ta then K(ta)ρ has an indistinguishable
execution following the annotated trace taρ. Remark that, in the conclusion, the renaming is
applied after building the ground configuration (K(ta)ρ) instead of building the ground config-
uration of the renamed trace (K(taρ)). Both variants are a priori different. However, in the
final proof and in order to leverage previous propositions, we will need to relate executions of
K(ta) with executions of K(taρ). The following easy proposition bridges this gap. We also state
and prove a variant of Proposition 24, item (4). when ρ is applied after building the ground
configuration.

Proposition 28. Let ta be a well-formed annotated trace and ρ a renaming of annotations. If
K(ta)ρ taρ−−→ (P ′; Φ) then K(taρ) taρ==⇒ (P ′′; Φ).

Proof. Essentially, the proposition follows from the fact that there are less agents in sequence in
K(taρ) than in K(ta)ρ, thanks to the third item of Definition 66.

More formally, by considering K(taρ) and K(ta)ρ as multiset of processes without sequence
(by removing all sequences and taking the union of processes), we obtain the same multisets.

194

9.5. Proof of our Main Theorem

Next, it suffices to prove that no execution is blocked by a sequence in K(taρ). By definition of
the renaming ρ (third requirement in Definition 66), if an agent P [ρ(a)] occurring in K(taρ) is in
sequence with an agent ρ(a′) before him, then P [aρ] occurring in (K(ta)ρ) must be in sequence
with a before him as well. Hence, when a process P [ρ(a)]; Q is available (i.e. at top-level) at
some point in the execution from K(ta)ρ, then a similar process P [ρ(a)]; Q′ is also available at
the same point in the execution from K(taρ). However, a processes may become available in the
execution from K(ta)ρ only after having performed rule Unfold, while the same process may be
immediately available in the multiset in the execution from K(taρ). This is why we only obtain
a weak execution K(taρ) taρ==⇒ (P ′′; Φ).

Proposition 29. If ta = ta1.ta2 is a well-formed annotated trace and K(ta1.ta2)ρ ta1ρ−−→ K then
K(ta1)ρ ta1ρ−−→ K ′ with Φ(K) = Φ(K ′).

Proof. The argument is the same as for Proposition 24, item (4): the processes that are added to
K(ta1)ρ when considering K(ta1.ta2)ρ are unused in the execution of ta1ρ; moreover, the effect
of ρ on the processes of K(ta1) is obviously the same as in K(ta1.ta2).

Finally, after having defined the notion of connection between agents, we can state our key
lemma.

Definition 67. Annotations a and a′ are connected in (ta, Φ) if they are associated in (ta0, Φ)
for some prefix ta0 of ta that contains at least one τthen action of an unsafe conditional annotated
with either a or a′.

Lemma 23. We assume that Π satisfies frame opacity and item (i) of well-authentication. Let ta
be a well-formed annotated trace such that K(ta) ta−→ (P; Φ). Let ρ be a renaming of annotations.
Moreover, when fn(I) ∩ fn(R) ̸= ∅ (the shared case), we assume that for any annotations a, a′,
it holds that a and a′ are connected in (ta, Φ), if, and only if, ρ(a) and ρ(a′) are dual.

Under those assumptions, one has K(ta)ρ taρ−−→ (Q; Ψ) for some Ψ such that Φ ∼ Ψ.

Proof. We will proceed by induction on ta but we need to strengthen the invariants notably
by relating the multisets P and Q: when P = {

⨿
j∈J P i

j [ai
j]}i∈I , Q must be of the form Q =

{
⨿

j∈J Qi
j [ρ(ai

j)]}i∈I , where P i
j and Qi

j are equal up to terms (i.e. ignoring terms in outputs and
conditionals). We note P ∓ Q when this is the case.

For any prefix K(ta) ta0−→ (P0; Φ0) of the given execution, we prove that there exists an
execution K(ta)ρ ta0ρ−−→ (Q0; Ψ0) with those invariants:

(a) P0 ∓ Q0;

(b) Φ0 ∼ Ψ0;

(c1) when fn(I) ∩ fn(R) = ∅ (the non-shared case), ρ(a) and ρ(a′) are associated in (ta0ρ, Ψ0)
if, and only if, a and a′ are associated in (ta0, Φ);

(c2) when fn(I) ∩ fn(R) ̸= ∅ (the shared case), ρ(a) and ρ(a′) are associated in (ta0ρ, Ψ0) if,
and only if, a and a′ are associated in (ta0, Φ0) and connected in (ta, Φ).

195

9. Sufficient Conditions for Privacy

We proceed by induction on the prefix ta0 of ta.
If ta0 is empty, then ta0ρ can obviously be executed, and condition (a) holds because K(ta) ∓

K(ta)ρ by definition. Condition (b) is trivial since frames are both empty. In order to check
conditions (c1) and (c2), note that association coincides with duality for empty traces. Let us
verify condition (c1) in the non-shared case. Being dual simply means being distinct roles, hence
one obviously has that ρ(a) and ρ(a′) are dual if, and only if, a and a′ are. Let us verify condition
(c2) in the shared case. By hypothesis, we have that a and a′ are connected in (ta, Φ) if, and
only if, ρ(a) and ρ(a′) are dual. Furthermore, if a and a′ are connected in (ta, Φ) then they are
dual and therefore they are associated in (ϵ, ∅). Hence (c2).

Otherwise, we are considering a prefix of ta of the form ta0.α where α can be any action. The
action α may be an input, an output, a conditional (i.e. τthen or τelse) or a τ action produced
by the Unfold rule. By (a), we know that there is a process in Q0 which is able to perform an
action of the same nature. If this action is τ (excluding the cases of τthen, τelse) then triggering
the process in Q0 producing τ concludes the proof since all invariants are trivially preserved after
this action.

We now have to deal with the case where α is an input, an output or a conditional. In those
cases α is necessarily annotated, say by a, and has been produced by a process annotated a in
P0. By induction hypothesis we have (P0; Φ0) and (Q0; Ψ0) and executions

K(ta) ta0−→ (P0; Φ0) α[a]−−→ (P ′
0; Φ′

0) and K(ta)ρ ta0ρ−−→ (Q0; Ψ0)

satisfying all our invariants. Note that one has (ta0.α[a])ρ = ta0ρ.α[ρ(a)]. Now, we have to prove
that exactly the same action α can be executed by the corresponding process annotated ρ(a) in
Q0 given by the invariant P0 ∓ Q0 (taking into account recipe for input and failure/success for
conditional), and that our invariants are preserved after its execution. We now distinguish the
three kinds of actions α can be:

Case where α is an output. We immediately have that Q0 can perform α[ρ(a)], on the same
channel and with the same handle. We now have to check our invariants for ta0.α[a]. Condition
(a) is obviously preserved. Conditions (c1) and (c2) follow from the fact that association is not
affected by the execution of an output: ρ(a) and ρ(a′) are associated in (ta0.α[a])ρ if, and only if,
they are associated in ta0ρ, and similarly without ρ. Finally, we shall prove (b): Φ′

0 ∼ Ψ′
0 where

Φ′
0 (resp. Ψ′

0) is the resulting frame after the action α[a] (resp. α[aρ]). Applying Proposition 24
item (4) on the execution before renaming and Proposition 29 on the execution after renaming,
one obtains

K(ta0.α[a]) ta0.α[a]−−−−→ (P ′′
0 ; Φ′

0) and K(ta0.α[a])ρ ta0ρ.α[aρ]−−−−−→ (Q′
0; Ψ′

0).

We finally conclude Φ′
0 ∼ Ψ′

0 using Proposition 28 on the execution on the right and then
Proposition 27.

Case where α is a conditional. We first need to make sure that the outcome of the test is
the same for a and aρ. We let τx (resp. τy) be the action produced by evaluating the conditional

196

9.5. Proof of our Main Theorem

of a (resp. aρ) and shall prove that τx = τy. We distinguish two cases, whether the conditional
is safe or not.

• If the conditional is safe, then its outcome only depends on the inputs and outputs of a

that are statically equivalent to those of ρ(a) by the invariant (b). Hence, the outcome of
that test is the same for a and ρ(a) and τx = τy.

• If the conditional is unsafe, we make use of Proposition 25 to show that the outcome
of the conditional is the same on both sides. First, we deduce the following executions
from Proposition 24 item (4) applied on the execution before renaming and Proposition 29
applied on the execution after renaming:

K(ta0.τx[a]) ta0.τx[a]−−−−→ (P ′
0; Φ0) and K(ta0.τy[a])ρ ta0ρ.τy[aρ]−−−−−−→ (Q′

0; Ψ0).

To infer τx = τy from Proposition 25, it remains to prove that a and a′ are associated
in (ta0, Φ0) if, and only if, ρ(a) and ρ(a′) are associated in (ta0ρ, Ψ0). When not in the
shared case, this is given by the invariant (c1). Otherwise, (c2) gives us that a and a′ are
associated when ρ(a) and ρ(a′) are associated. Conversely, if a and a′ are associated in
(ta0, Φ), then by Proposition 25, the outcome of the test will be positive (i.e. τx = τthen)
and a and a′ are thus connected in (ta0, Φ). Therefore, ρ(a) and ρ(a′) are associated in
(ta0ρ, Ψ0) by (c2).

After the execution of this conditional producing τx = τy, condition (a) obviously still holds
since τx = τy implying that both agents go to the same branch of the conditional. Invariant
(b) is trivial since frames have not changed. Conditions (c1) and (c2) are preserved because the
association between a and a′ is preserved if, and only if, the outcome of the test is positive, which
is the same before and after the renaming.

Case where α is an input. We immediately have that Q0 can perform α[ρ(a)] on the same
channel and with the same recipe (since dom(Φ0) = dom(Ψ0) follows from Φ0 ∼ Ψ0). Conditions
(a) and (b) are obviously preserved. Conditions (c1) and (c2) are preserved because honest
interactions are preserved by the renaming, since Φ0 ∼ Ψ0 by invariant (b). We only detail
one direction of (c1), the other cases being similar. Assume that ρ(a) and ρ(a′) are associated
in ((ta0.α[a])ρ, Ψ0). The renamed agents ρ(a) and ρ(a′) are also associated in (ta0ρ, Φ′), thus
a and a′ are associated in (ta0, Φ′). Now, because α did not break the association of ρ(a) and
ρ(a′) in (ta0ρ, Ψ0), it must be that the input message in α = in(c, M) corresponds to the last
output of ρ(a′) in ta0ρ. Formally, if that last output corresponds to the handle w in Ψ0, we have
MΨ0 ⇓=E wΨ0. But, because Φ0 ∼ Φ0 by invariant (b), we then also have MΦ0 ⇓=E wΦ0 and
the association of a and a′ in (ta0, Φ0) carries over to (ta0.α[a], Φ0).

9.5.5 Final Proof

Thanks to Lemma 23, we can transform any execution of MΠ,id into an indistinguishable execu-
tion of SΠ, provided that an appropriate renaming of annotations exists. In order to prove that

197

9. Sufficient Conditions for Privacy

such a renaming exists in Proposition 31, we show below that in the shared case, there cannot
be agents connected multiple times.

Proposition 30. Assume that Π satisfies item (ii) of the well-authentication condition and that
fn(I) ∩ fn(R) ̸= ∅ (shared case). Consider a well-formed annotated trace ta and an execution

K(ta) ta−→ (P; Φ).

If there are three annotations a, a1, a2 such that a and a1 are connected in (ta, Φ) and a and a2

are connected in (ta, Φ) then a1 = a2.

Proof. Consider the first unsafe conditional performed by one of the three agents a, a1, a2. We
claim that when this action is performed, a and a1 are associated, and so are a and a2, which con-
tradicts condition (ii) of well-authentication. Indeed, both pairs (a, a1) and (a, a2) are connected
in (ta, Φ) and are thus associated until the first unsafe test of the corresponding pairs.

Proposition 31. We assume that Π satisfies item (ii) of well-authentication. For any well-
formed annotated trace ta such that

K(ta) ta−→ K,

there exists a renaming of annotations ρ satisfying the hypothesis of Lemma 23 and such that
taρ is single-session.

Proof. For k ∈ idI(ta) ∪ idR(ta), we define Co(k) as follows:

• if in the shared case (i.e. fn(I) ∩ fn(R) ̸= ∅), we let Co(k) be the set of all (n1, n2) such
that I(k, n1) and R(k, n2) are connected in (ta, Φ(K));

• otherwise (i.e. fn(I) ∩ fn(R) = ∅), we let Co(k) be the empty set.

Essentially, Co(k) denotes the set of pairs of (dual) sessions that the renaming to be defined
should keep on the same identity. Applying Proposition 30, we deduce that for any k ∈ idA(ta)
and (n1, n2), (n3, n4) ∈ Co(k), then either (i) n1 = n3 and n2 = n4 or (ii) n1 ̸= n3 and n2 ̸= n4.

Next, we assume the existence of a function kc : N ∗ × N ∗ ×∗ N ∗ 7→ N ∗ that associates to
any sequence of names (k, n1, n2) a vector of names of the length of identity parameters of Π:
k′ = kc(k, n1, n2). These name vectors are assumed to be all disjoint and not containing any name
already occurring in the annotations of ta. This gives us a mean to pick fresh identity parameters
for each combination of k, n1, n2 taken from the annotations of ta. We also assume a function
k1 such that the vectors k1(k, n1) are again disjoint and not overlapping with annotations of ta
and any kc(k′, n′

1, n′
2), and similarly for k2(k, n2) which should also not overlap with k1 vectors.

These last two collections of identity parameters will be used to give fresh identities to initiator
and responder agents, independently. We then define ρ as follows:

I(k, n1) 7→ I(kc(k, n1, n2), n1) if (n1, n2) ∈ Co(k)
7→ I(k1(k, n1), n1) otherwise

R(k, n2) 7→ R(kc(k, n1, n2), n2) if (n1, n2) ∈ Co(k)
7→ R(k2(k, n2), n2) otherwise

198

9.5. Proof of our Main Theorem

Let us prove that ρ satisfies all requirements.
The mapping ρ is a renaming. First, for any well-formed ta′, the fact that ta′ρ is well-formed

follows from the following: (i) session names are not modified and (ii) identity names are all
pairwise distinct and never intersect except for agents ρ(I(k, n1)) and ρ(R(k, n2)) such that
(n1, n2) ∈ Co(k) but there cannot be a third agent sharing the same identity names according to
the result obtained above. The mapping ρ is obviously role-preserving. Finally, if ρ(a) and ρ(a′)
share the same identity parameters then (a) fn(I) ∩ fn(R) ̸= ∅ and (b) a and a′ are connected
in (ta, Φ) and are thus dual implying that a and a′ share the same identity parameters as well.

The renaming ρ is single-session since id0 never occurs in the image of ρ and all agents are
mapped to agents having fresh, distinct identity parameters except for agents a, a′ that were
connected in (ta, Φ). But as already discussed, in such a case, there is no third agent sharing
those identity parameters and a and a′ are necessarily dual.

Hypothesis of Lemma 23. To conclude, we shall prove that, in the shared case, for any
annotations a, a′, it holds that a and a′ are connected in (ta, Φ), if, and only if, ρ(a) and ρ(a′)
are dual. The ⇐ direction has already been proved above. The ⇒ direction follows from the
fact that, in such a case, the session parameters of a and a′ would be in Co(k).

We conclude the section with the final proof of Theorem 8.

Proof of Theorem 8. It is easy to see that SΠ ⊑ MΠ ⊑ MΠ,id, so it only remains to establish
that MΠ,id ⊑ SΠ. Consider an execution MΠ,id

ta−→ (P; Φ). Proposition 24 yields an annotated
trace ta′ τ= ta and an execution K(ta) ta′

−→ (P ′, Φ).
Let ρ be the renaming obtained in Proposition 31 for ta′. By Lemma 23, ta′ρ remains

executable and is indistinguishable from ta′:

K(ta)ρ ta′ρ−−→ (Q; Φρ) with Φρ ∼ Φ.

We then deduce from Proposition 28 an execution

K(taρ) ta′ρ===⇒ (Q′; Φρ).

Since taρ is single-session, Proposition 24 implies:

(SΠ; ∅) ta∗
−→ (Q′′; Φρ) with ta∗ τ= ta′ρ.

This execution allows us to conclude: it has the same observable actions as ta since obs(ta) =
obs(ta′) = obs(ta′ρ) = obs(ta∗), and yields a statically equivalent frame (i.e. Φρ ∼ Φ).

199

Chapter 10

Mechanisation & Case Studies

In this chapter, we show why our Main Theorem and our conditions are interesting in practice.
We first explain how to verify each of our conditions using dedicated encodings in Section 10.1.
For that, we rely on the fact that each condition is fundamentally simpler that the original
properties of interest (i.e. unlinkability and anonymity) and only focuses on one aspect of the
underlying complex verification problem. For instance, one can get rid of control-flow issues when
verifying frame-opacity and one can verify well-authentication using only reachability properties
instead of more complex equivalence properties. Next, we describe our tool UKano that automates
all those encodings.

In Section 10.2 with consider several case studies and we show that our method allows to
establish new proofs or to find new attacks on real-world security protocols.

10.1 Mechanisation

We now discuss how to verify unlinkability and anonymity in practice, through the verification
of our two conditions. More specifically, we describe how appropriate encodings allow one to
verify frame opacity (Subsection 10.1.1) and well-authentication (Subsection 10.1.2), respectively
through diff-equivalence and correspondence properties. These can then be verified by several
tools such as ProVerif and Tamarin.

We additionally provide a tool, called UKano [UKA] (10.1.3), which mechanises the encodings
described in this section. Our tool takes as input a specification of a protocol in our class
and, computes encodings, and calls ProVerif to automatically check our two conditions, and
thus unlinkability and anonymity. As we shall see in Section 10.2, our tool concludes on many
interesting case studies.

Due to our choice of base tool, our presentation is sometimes biased towards ProVerif. We
note, however, that the encodings are quite generic, and may be used to verify our properties
through other tools, automatic or not, e.g. Tamarin. This may be useful to bypass some of
ProVerif’s limitations w.r.t. the supported cryptographic primitives or sequential sessions (which
cannot be modelled and verified with enough precision).

201

10. Mechanisation & Case Studies

10.1.1 Frame Opacity

We first explain how to check frame opacity using the diff-equivalence feature of ProVerif [BAF08].
Intuitively, diff-equivalence is obtained from trace equivalence by forcing the two processes (or
configurations) being compared to follow the same execution. More formally, diff-equivalence
is a property of bi-processes, which are processes (or configurations) in which some terms are
replaced by bi-terms of the form choice[u1, u2]. Intuitively, a bi-process represents two processes:
the first (resp. second) process is obtained by selecting the first (resp. second) component of
choice operators. Said otherwise, each execution of a bi-process produces two frames instead of
one. More importantly, when bi-processes are executed, exactly the same rule should be applied
to the two processes on both sides. A bi-process is diff-equivalent if, when executing it, (i) both
sides can always be executed synchronously (i.e. it never happens that a rule can be applied on
one side but not on the other side) and (ii) the two resulting frames are statically equivalent.
We say that two regular multisets of processes are diff-equivalent when they can be combined
into a diff-equivalent bi-process.

Our notion of frame opacity requires that, for any execution MΠ,id
ta−→ (P ; Φ), one has Φ ≈

Φideal(ta). It is possible to verify this condition by checking the diff-equivalence between MΠ,id

and a modified version of this process where each output u (identified by a label in L) has
been replaced by a static idealisation induced by the idealisation operator ideal(·). As a first
approximation, we consider the bi-process biproc(MΠ,id) obtained from MΠ,id by replacing each
ℓ : out(c, uℓ) by ℓ : out(c, choice[uℓ, ideal(ℓ)]) and binding X n variables used in ideal(ℓ) by ’ν’
constructs at the beginning of each role instance, so that they will be generated fresh for each
session. We assume here that variables xi ∈ X i actually correspond to the appropriate input
variables; this can be obtained easily by renaming.

The issue with this first bi-process is that diff-equivalence in ProVerif forces the left-hand
and right-hand processes to execute exactly the same kind of actions at the same time, even for
unobservable actions such as τthen, τelse. This is too constraining: typically, a normal execution
involving a ciphered message may be mapped to an idealised execution where that message is
replaced by a nonce, hence it will not pass tests such as the ability to be decrypted. However,
recall that our only goal here is to make sure that, if a frame Φ is reachable from MΠ,id then
it is statically equivalent to its idealisation. We are not really interested in executability of
the process on the right as we only use it to produce idealised frame corresponding to the real
frame produced by the process on the left. We overcome this difficulty in the actual definition
of biproc(MΠ,id) by pushing conditionals into messages and putting else branches in parallel.
We do not formally explain how to do so as it heavily depends on specificities of ProVerif, but
just give an example to illustrate the pushing of conditionals: we show in Figure 10.1 (part
of) the bi-process resulting from the application of our transformation to our running example;
note that the computation of merge never fails (neither on the left, nor on the right) because
catchFail always returns a message. More examples can be found in the ProVerif files produced
by UKano for our case studies, available online [UKe].

Assuming that diff-equivalence holds for biproc(MΠ,id), we have that frame opacity holds

202

10.1. Mechanisation

! new k ;
! new nI ; new nR; new n1 ; new n2 ; new n3 ;
((∗ I n i t i a t o r r o l e : ∗)

out (cI , cho i c e [nI , n1]) ;
in (cI , x) ;
l e t merge = cho i c e [

l e t ca t chFa i l =
l e t yt , ynR = eq (pro j1 (dec (x , k)) , nI) ,

pro j2 (dec (x , k)) in
enc ((ynR , nI) , k)

e l s e n2 ,
n2] in

out (cI , merge))
| ((∗ Responder r o l e : ∗)

in (cR , z) ;
out (cR , cho i c e [enc ((nI ,nR) , k) , n3]) ; . . .)

Figure 10.1 Example of ProVerif file checking frame opacity (Feldhofer)

too. Indeed, for any execution MΠ,id
ta−→ (P ; Φ), there exists some execution biproc(MΠ,id) ta−→

(Q, choice[Φ, Φr]) with Φ ≈ Φr. By construction of the bi-process we have that Φr ≈ Φideal(ta),
thus frame opacity holds.

Practical application. Our tool UKano does not require the user to input the idealisation
function. Instead, a default idealisation is extracted from the protocol’s outputs. The user
is informed about this idealisation, and if he wants to, he can bypass it using annotations. In
practice, this is rarely necessary. Moreover, UKano lets the user choose among different heuristics
to build idealisation operators. We briefly explain and compare them in Subsection 10.1.3.

In case of protocols with sequential sessions, we could check frame opacity with concurrent
sessions, which implies the property for the concurrent case.

We note, however, that frame opacity may be checked using more lightweight verification
techniques than diff-equivalence. At least in case of standard cryptographic primitives (pairs,
symmetric and asymmetric encryption, hash, MACs and signatures), we conjecture that frame
opacity can be reduced to secrecy and freshness conditions; such reachability properties can
be handled efficiently by several tools. For such cases (i.e. uses of standard primitives), we
thus claim that our methods allows to completely reduce the verification of unlinkability and
anonymity into purely reachability properties verification.

10.1.2 Well-authentication

We explain below how to check condition (i) of well-authentication. Once that condition is
established, together with frame opacity, we shall see that condition (ii) is a consequence of a
simple assumption on the choice of idealisation, which is always guaranteed when using UKano.

203

10. Mechanisation & Case Studies

Condition (i)

Condition (i) of well-authentication is basically a conjunction of reachability properties, which
can be checked in ProVerif using correspondence properties [AB03]. For each role A ∈ {I, R}, we
associate to each syntactical output (resp. input) of the role an event which uniquely identifies
the action. More formally, we use events of the form OutAi(k, n, m) and InAj(k, n, m), whose
arguments contain:

• identity parameters k and session parameters n;

• the message m that is inputted or outputted.

In the same fashion, we also add events of the form TestAk(k, n) at the beginning of each then
branch.

For each conditional of the protocol, we first check if the simple syntactical definition of
safe conditionals holds (see Definition 61). If it is the case we do nothing for this conditional.
Otherwise, we need to check condition (i) of well-authentication. It can be expressed as a corre-
spondence property using events as explained next. Given a role A ∈ {I, R} and a conditional
of this role whose event is TestAi(k, n), we express as a correspondence property the fact that
if the conditional is positively evaluated, then the involved agent must be associated to a dual
agent:

1. when the event TestAi(k, n) is fired,

2. there must be a previous event InAj(k, n, m) (InAj corresponding to the input just before
the conditional),

3. and a previous event OutBk(k′
, n′, m) (OutBk corresponding to the output that fed the input

InAj in the honest execution),

4. and a previous event InBl(k′
, n′, m′) (InBl corresponding to the first input before OutBk),

5. and a previous event OutAm(k′
, n, m′) (OutAm corresponding to the output that fed the input

InBl in the honest execution), etc.

Moreover, when fn(I)∩ fn(R) ̸= ∅ (shared case), to reflect that duality also requires that identity
parameters should be the same, we replace k

′ by k. Note that by using the same messages (m,
m′, etc.) for corresponding inputs and outputs, we express that the messages that are outputted
and inputted are equal modulo the equational theory E.

We show in Figure 10.2 the ProVerif query we produce for checking condition (i) on the first
conditional of PI from our running example.

Practical application. In our tool, safe conditionals are not (yet) automatically identified. Ac-
tually, the tool lists all conditionals and tells which ones satisfy condition (i) of well-authentication.
The user can thus easily get rid of the conditionals that he identifies as safe. Furthermore, the

204

10.1. Mechanisation

query k : key , n1 : b i t s t r i n g , n2 : b i t s t r i n g ,
nt : b i t s t r i n g , nr : b i t s t r i n g ,
mP: b i t s t r i n g , mR: b i t s t r i n g ;
event (TestI1 (k , n1)) ==>

(event (InI1 (k , n1 ,mR)) ==>
(event (OutR1(k , n2 ,mR)) ==>

(event (InR1 (k , n2 ,mP)) ==>
(event (OutI1 (k , n1 ,mP)))

))) .

Figure 10.2 Example of ProVerif query for checking condition (i)

structure of the ProVerif file produced by UKano makes it easy for the user to remove the proof
obligations corresponding to safe conditionals.

Note that, for some examples, we also verified condition (i) of well-authentication using
Tamarin by encoding the queries described above as simple lemmas (models are available at [UKe]).
In our case, one of the most important advantage of Tamarin over ProVerif is its capability to
model

!

and thus protocols for which a role executes its sessions in sequence. Relying on Tamarin,
we were thus able to verify condition (i) for protocols that ensure unlinkability when sessions are
running sequentially but not when they are running concurrently (e.g. we automatically verified
the variant of Feldhofer described in Example 52).

Condition (ii)

We shall prove that, for the shared case, once condition (i) of well-authentication is known to
hold, condition (ii) is a consequence of two simpler conditions. First, the first conditional of
the responder role should be safe — remark that if this does not hold, similar attacks as the
one discussed in Example 70 may break unlinkability. Second, messages outputted in honest
interactions by different agents should always be different.

Lemma 24. Let Π = (k, nI , nR, †I , †R, I, R) be a protocol such that fn(I) ∩ fn(R) ̸= ∅ (shared
case) that satisfies condition (i) of well-authentication. Condition (ii) of well-authentication
holds provided that:

(a) the first conditional that occurs in R is safe;

(b) for any execution ta of (MΠ,id; ∅), if ta1 = ta|a1,b1 and ta2 = ta|a2,b2 are honest with
a1 ̸= a2, then any message outputted by a1 in ta1 is different (modulo E) from any message
outputted by a2 in ta2.

Proof. Consider an execution MΠ,id
ta.τthen[a′]−−−−−→ (P; Φ) where two agents a and a′ are associated

and a′ has performed the last τthen. If this test corresponds to a safe conditional, there is nothing
to prove. Otherwise, we shall prove that a is only associated to a′, and vice versa.

205

10. Mechanisation & Case Studies

Agent a′ is only associated to a. Consider the last input of a′ and the last output of a:

MΠ,id
ta.out(c, wℓ)[a].ta′.in(c′, R)[a′].ta′′.τthen[a′]−−−−−−−−−−−−−−−−−−−−−−−→ (P; Φ)

We have RΦ ⇓ Φ(wℓ). Assume, for the sake of contradiction, that a′ is associated to another
agent b ̸= a. Then we have RΦ ⇓=E Φ(wℓ′), hence Φ(wℓ) =E Φ(wℓ′), for a handle wℓ′ corre-
sponding to some output of b in the honest trace ta|a′,b. This contradicts assumption (b).

Agent a is only associated to a′. Agent a must have performed an input in ta: this is
obvious if a is a responder, and follows from assumption (a) otherwise. Let ℓ be the label of the
previous output of a′ and wℓ be the corresponding handle in the frame Φ. Our execution is thus
of the following form:

MΠ,id
ta.out(c, wℓ)[a′].ta′.in(c, R)[a].ta′′.τthen[a′]−−−−−−−−−−−−−−−−−−−−−−−→ (P; Φ)

We know that the message m, satisfying RΦ ⇓ m, which is inputted by a is equal (modulo E)
to the previous output of a′, that is Φ(wℓ). As before, condition (b) implies that it cannot be
equal to the output of another agent having an honest interaction in ta, thus a is only associated
to a′.

Practical application. Condition (a) of Lemma 24 is usually easily checked manually; UKano
leaves it to the user. Condition (b) may in general be very difficult to verify. In practice, once
frame opacity is known to hold, condition (b) actually follows immediately from simple properties
of the idealisation function, since checking that honest outputs cannot be confused in executions
of MΠ,id is equivalent to checking that they cannot be confused in idealised executions. Often,
the idealisation function uses only function symbols that do not occur in E and such that at least
one session variable xn ∈ X n occurs in ideal(ℓ) for each honest output label ℓ. Checking that the
idealisation function enjoys these properties is straightforward. Let us now show that it implies
condition (b) of Lemma 24.

Proposition 32. Let Π = (k, nI , nR, †I , †R, I, R) be a protocol such that fn(I) ∩ fn(R) ̸= ∅
(shared case). Consider an idealised operator ideal(·) such that, for any label ℓ ∈ L occurring in
the honest execution of Π, the following holds:

• ideal(ℓ) ∈ T (Σs
c, X i ∪ X n) where Σs

c ⊆ Σc contains function symbols that never occur in
equations of E and

• vars(ideal(ℓ)) ∩ X n ̸= ∅.

If Π satisfies frame opacity for the idealised operator ideal(·) then condition (b) of Lemma 24
holds.

Proof. Consider an execution ta of MΠ,id where agent a1 performs an output with label ℓ and
handle w, and agent a2 ̸= a1 performs another output with label ℓ′ and handle w′. We assume
that ℓ occurs in the honest execution of Π and we note Φ the resulting frame from the above

206

10.1. Mechanisation

execution. Assume, for the sake of contradiction, that Φ(w) =E Φ(w′). Since the protocol ensures
frame opacity for the idealised operator ideal(·), we deduce that:

Φfr
ideal(ta)(w) =E Φfr

ideal(ta)(w′).

By hypothesis on ideal(ℓ), it holds that vars(ideal(ℓ)) ∩ X n ̸= ∅. Therefore, some name fr(a1, xn)
occurs in Φfr

ideal(ta)(w) at some position, under non-malleable function symbols only (i.e. function
symbols in Σs

c that do not occur in equations in E). Thus, the same function symbols must occur
along the path to that position in Φfr

ideal(ta)(w′), and fr(a2, xn) =E t for some sub-term t of
Φfr

ideal(ta)(w′). Since the name fr(a1, xn) does not occur in t by construction, this implies that
the equational theory is degenerate (all terms can be equated) which we have ruled out by
assumption (see Subsection 2.1.1 in Chapter 2).

10.1.3 The Tool UKano

As mentioned earlier, the tool UKano [UKA] automatises the encodings described in the previous
section. It takes as input a ProVerif model specifying the protocol to be verified (and the identity
names id) and returns:

1. whether frame opacity could be established or not: in particular, it infers an idealisation
operator that, when in the shared case, satisfies the assumptions of Proposition 32 discussed
in Subsection 10.1.2;

2. and the list of conditionals for which condition (i) of well-authentication holds.

If frame opacity holds and condition (i) of well-authentication holds for all conditionals — possi-
bly with some exceptions for conditionals the user can identify as safe — then the tool concludes
that that the protocol given as input ensures unlinkability and anonymity w.r.t. id. Note that
the tool detects whether fn(I) ∩ fn(R) = ∅ or not and adapts the queries for verifying item (i)
of well-authentication accordingly.

Our tool uses heuristics to build idealised operators that always satisfy requirements dis-
cussed in Subsection 10.1.2 (i.e. assumptions of Proposition 32). Three different heuristics for
automatically building idealisation operators have been implemented and can be used using dif-
ferent options. The default heuristic follows the canonical syntactical construction described in
Section 9.2 except that sub-terms having a function symbol at top-level that is involved in the
equational theory will be replaced by a fresh session name in order to comply with hypothesis of
Proposition 32. However, when using the option –ideal-full-syntax in the non-shared case,
the tool fully adopts the canonical syntactical construction (and displays a warning message
when in the shared case since all requirements are not met in this case). Further, the option
–ideal-greedy can be used to modify the heuristics as follows:

• idealisation of a tuple is a tuple of idealisations of the corresponding sub-terms and

• idealisation of any other term is a fresh session variable in X n.

207

10. Mechanisation & Case Studies

Such an idealised operator is much less precise (i.e. it often leads to false negatives) but since
idealised messages are much simpler, it allows better performance when it works. Finally, the
user can also define its own idealisations. The tool UKano always checks their conformity though
(i.e. assumptions of Proposition 32 when in the shared case).

At a technical level, we built UKano on top of ProVerif. We only re-used the lexer, parser and
AST of ProVerif and build upon those a generator and translator of ProVerif models implementing
our sufficient conditions via the above encodings. This effort represents about 2k OCaml LoC.
The official page of the tool UKano can be found at http://projects.lsv.ens-cachan.fr/
ukano/, the sources at http://github.com/LCBH/UKano, and the manual at http://github.
com/LCBH/UKano/wiki.

10.2 Case Studies

In this section we apply our verification method to several case studies. We rely on our tool
UKano to check whether the protocol under study satisfies frame opacity and well-authentication
as defined in Chapter 9. We also discuss some variations of the protocols to examine how privacy
is affected. Remind that if privacy can be established for concurrent sessions (i.e. †I = †R =!) then
it implies privacy for all other scenarios (when one or the two roles play sessions only sequentially).
We thus implicitly model protocols with concurrent sessions and discuss alternative scenarios only
when attacks are found.

As explained in Section 10.1, UKano relies on ProVerif; the source code of our tool and material
to reproduce results can be found in [UKA]. Before diving into our real-world case studies, we
recall that all our running examples developed so far have been automatically analysed with our
tool UKano (see Table 9.1). Furthermore, frame opacity can be automatically established for all
of them using any heuristics to build idealisation (except Example 53 for which only the default
and the fully syntactical heuristics allow to conclude). Furthermore, all case studies discussed in
this section except two (i.e. PACE in Subsection 10.2.4 and ABCDH in Subsection 10.2.5) have
been automatically verified using our tool UKano without any manual effort. We discuss little
manual efforts needed to conclude for PACE and ABCDH in the dedicated sections.

We used UKano v0.2 based on ProVerif v1.92 on a computer with following specifications:

• OS: Linux 3.10-2-amd64 #1 SMP Debian 3.10.5-1x86_64 GNU/Linux

• CPU / RAM: Intel(R) Xeon(R) CPU X5650 @ 2.67GHz / 47GO

10.2.1 Hash-Lock Protocol

We consider the Hash-Lock protocol as described in [JW09]. This is an RFID protocol that has
been designed to achieve privacy even if no formal proof is given. The protocol relies on a hash
function, and can be informally described as follows.

Reader → Tag : nR

Tag → Reader : nT , h(nR, nT , k)

208

http://projects.lsv.ens-cachan.fr/ukano/
http://projects.lsv.ens-cachan.fr/ukano/
http://github.com/LCBH/UKano
http://github.com/LCBH/UKano/wiki
http://github.com/LCBH/UKano/wiki

10.2. Case Studies

This protocol falls into our generic class of 2-party protocols in the shared case, and frame
opacity and well-authentication can be automatically established in less than 0.01 second. We
can therefore conclude that the protocol preserves unlinkability (note that anonymity does not
make sense here). All implemented heuristics (see those three heuristics in Section 10.1) were
able to successfully establish frame opacity automatically.

10.2.2 LAK Protocol

We present an RFID protocol first introduced in [LAK06], and we refer to the description given
in [VDR08]. To avoid traceability attacks, the main idea is to ask the tag to generate a nonce
and to use it to send a different message at each session. We suppose that initially, each tag has
his own key k and the reader maintains a database containing those keys.

The protocol is informally described below (h models a hash function). In the original version
(see e.g. [VDR08]), in case of a successful execution, both parties update the key k with h(k)
(they always store the last two keys). Our framework does not allow one to model protocols that
rely on a mutable state. Therefore, we consider here a version where the key is not updated at
the end of a successful execution allowing the key k to be reused from one session to another.
This protocol lies in the shared case since the identity name k is used by the reader and the tag.

Reader → Tag : r1

Tag → Reader : r2, h(r1 ⊕ r2 ⊕ k)
Reader → Tag : h(h(r1 ⊕ r2 ⊕ k) ⊕ k ⊕ r1)

Actually, this protocol suffers from an authentication attack. The protocol does not allow the
reader to authenticate the tag. This attack can be informally described as follows (and already
exists on the original version of this protocol). By using algebraic properties of ⊕, an attacker
can impersonate a tag by injecting previously eavesdropped messages. Below, I(A) means that
the attacker plays the role A.

I(Reader) → Tag : r1

Tag → Reader : r2, h(r1 ⊕ r2 ⊕ k)

Reader → Tag : r′
1

I(Tag) → Reader : rI
2 , h(r1 ⊕ r2 ⊕ k)

Reader → Tag : h(h(r0 ⊕ r1 ⊕ k) ⊕ k ⊕ r′
1)

where rI
2 = r′

1 ⊕ r1 ⊕ r2, thus h(r1 ⊕ r2 ⊕ k) =E h(r′
1 ⊕ rI

2 ⊕ k).

Due to this, the protocol does not satisfy our well-authentication requirement even with
sessions in sequence for Tag and Reader. Indeed, the reader can end a session with a tag whereas
the tag has not really participated to this session. In other words, the reader passes a test (which
does not correspond to a safe conditional) with success, and therefore performs a τthen action
whereas it has not interacted honestly with a tag.

Actually, this trace can be turned into an attack against the unlinkability property. Indeed,
by continuing the previous trace, the reader can send a new request to the tag generating a
fresh nonce r′′

1 . The attacker I(Tag) can again answer to this new request choosing his nonce r′′
2

209

10. Mechanisation & Case Studies

accordingly, i.e. r′′
2 = r′′

1 ⊕ r1 ⊕ r2. This execution, involving two sessions of the reader talking
to the same tag, cannot be mimicked in the single session scenario, and corresponds to an attack
trace.

More importantly, this scenario can be seen as a traceability attack on the original version
of the protocol (the stateful version) leading to a practical attack. The attacker will first start
a session with the targeted tag by sending it a nonce r0 and storing its answer. Then, later
on, he will interact with the reader as described in the second part of the attack scenario. Two
situations may occur: either the interaction is successful meaning that the targeted tag has not
been used since its last interaction with the attacker; or the interaction fails meaning that the
key has been updated on the reader’s side, and thus the targeted tag has performed a session
with the reader since its last interaction with the attacker. This attack shows that the reader
may be the source of leaks exploited by the attacker to trace a tag. This is why we advocate for
the strong notion of unlinkability we used, taking into account the reader and considering it as
important as the tag.

We may note that the same protocol was declared untraceable in [VDR08] due to the fact
that they have in mind a weaker notion of unlinkability.

To avoid the algebraic attack due to the properties of the xor operator, we may replace
this operator using the pairing operator. The resulting protocol is a 2-party protocol that falls
into our class, and for which frame opacity and well-authentication can be established (with
concurrent sessions) using UKano, again in less than 0.01 second. Therefore, Theorem 8 allows
us to conclude that it preserves unlinkability. Note also that frame opacity can be automatically
checked using any heuristic described in Section 10.1.

10.2.3 BAC Protocol and some others

An e-passport is a paper passport with an RFID chip that stores the critical information printed
on the passport. The International Civil Aviation Organization (ICAO) standard [ICA04] speci-
fies several protocols through which this information can be accessed. Before executing the Basic
Access Control (BAC) protocol, the reader optically scans a weak secret from which it derives
two keys kE and kM that are then shared between the passport and the reader. Then, the BAC
protocol establishes a key seed from which two sessions keys are derived. The session keys are
then used to prevent skimming and eavesdropping on the subsequent communication with the
e-passport.

In [ACRR10], two variants of the BAC protocol are described and analysed w.r.t. the un-
linkability property as formally stated in this part. We refer below to these two variants as the
French version and the United Kingdom (U.K.) version. The U.K. version is claimed unlinkable
(with no formal proof) whereas an attack is reported on the French version. To explain the
difference between the two versions, we give a description of the passport’s role1 in Figure 10.3.
The relevant point is the fact that, in case of failure, the French version sends a different error

1We do not model the getChallenge constant message that is used to initiate the protocol but it is clear this
message does not play any role regarding the security of the protocol.

210

10.2. Case Studies

Tag → Reader : nT

Reader → Tag : {nR, nT , kR}kE
, mackM

({nR, nT , kR}kE
)

Tag → Reader : {nT , nR, kT }kE , mackM ({nT , nR, kT }kE)

The BAC protocol using Alice & Bob notation between Tag (i.e. passport) and Reader is
depicted above. The corresponding process modelling Tag is defined below, where m =
senc(⟨nT , ⟨π1(sdec(xE , kE)), kT ⟩⟩, kE).

T (kE , kM) = νnT .νkT .out(cT , nT).in(cT , x).
let xE = π1(x), xM = π2(x), ztest = eq(xM , mac(xE , kM)) in

let z′
test = eq(nT , π1(π2(sdec(xE , kE)))) in

out(cT , ⟨m, mac(m, kM)⟩)
else out(errorNonce)

else out(errorMac)

We consider the signature given in Example 1 (Chapter 2) augmented with a function symbol mac
of arity 2. This is a public constructor whose purpose is to model message authentication code,
taking as arguments the message to authenticate and the mac key. There is no rewriting rule
and no equation regarding this symbol. We also assume public constants to model error messages.
The U.K. version of the protocol does not distinguish the two cases of failure, i.e. errorMac and
errorNonce are the same constant, whereas the French version does.

Figure 10.3 Description of the BAC protocol

message indicating whether the failure occurs due to a problem when checking the mac, or when
checking the nonce. This allows the attacker to exploit this conditional to learn if the mac key
of a Tag is the one used in a given message ⟨m, mac(m, k)⟩. Using this, he can very easily trace
a tag T by first eavesdropping an honest interaction between the tag T and a reader.

The U.K. version of the BAC protocol is a 2-party protocol according to our definition. Note
that since the two error messages are actually identical, we can merge the two let instructions,
and therefore satisfy our definition of being a responder role. Then, we automatically proved
frame opacity and well-authentication using UKano. It took less than 10 seconds. Therefore,
Theorem 8 allows us to conclude that unlinkability is indeed satisfied.

Regarding the French version of this protocol, it happens that the passport’s role is neither
an initiator role, nor a responder role according to our formal definition. Indeed, our definition
of a role, and therefore of a 2-party protocol does not allow to model two sequences of tests that
will output different error messages in case of failure. As illustrated by the attack on the French
version of the BAC protocol, imposing this syntactic condition is actually a good design principle
w.r.t. unlinkability.

Once the BAC protocol has been successfully executed, the reader gains access to the infor-
mation stored in the RFID tag through the Passive and Active Authentication protocols (PA
and AA). They are respectively used to prove authenticity of the stored information and prevent
cloning attacks, and may be executed in any order. A formal description of these protocols is
available in [ACD12]. These two protocols also fall into our class and our conditions can be
checked automatically both for unlinkability and anonymity properties. We can also use our

211

10. Mechanisation & Case Studies

technique to analyse directly the three protocols together (i.e. the U.K. version of the BAC
together with the PA and AA protocols in any order). We analysed both orders: on one hand,
we analysed BAC then PA then AA and, on the other hand, we analysed BAC then AA then
PA. We thus prove unlinkability and anonymity w.r.t. all private data stored in the RFID chip
(name, picture, etc.). UKano concludes within 4 minutes to establish both well-authentication
and frame opacity (for any order PA/AA). Note that frame opacity can also be automatically
checked using any heuristic described in Section 10.1. However, heuristics producing more com-
plex idealisations (e.g. syntactical canonical construction) are less efficient: frame opacity can
be established in 3 minutes using the greedy heuristic and in 20 minutes using the syntactic
construction.

10.2.4 PACE Protocol

The Password Authenticated Connection Establishment protocol [PAC] (PACE) has been pro-
posed by the German Federal Office for Information Security (BSI) to replace the BAC protocol.
It has been studied in the literature [BFK09], [BDFK12], [CSD+12] but to the best of our knowl-
edge, no formal proofs about privacy have been given. Similarly to BAC, the purpose of PACE
is to establish a secure channel based on an optically-scanned key k. The protocol includes four
main steps (see Figure 10.4):

• The tag randomly chooses a random number sT , encrypts it with the symmetric key k

shared between the tag and the reader and sends the encrypted random number to the
reader (message 1).

• Both the tag and the reader perform a Diffie-Hellman exchange (messages 2 & 3), and
derive G from sT and gnRnT .

• The tag and the reader perform a Diffie-Hellman exchange based on the parameter G

computed at the previous step (messages 5 & 6).

• The tag and the reader derive a session key k′ which are confirmed by exchanging and
checking the authentication tokens (messages 8 & 9).

A description in Alice & Bob notation is given in Figure 10.4. Moreover, at step 6, the reader
will not accept as input a message which is equal to the previous message that it has just sent.

To formalise such a protocol, we consider the following signature:

Σc = {senc, sdec, dh, mac, gen, g, ok} and Σd = {neq}.

Except g and ok which are public constants, all these function symbols are public constructor
symbols of arity 2. The destructor neq has already be defined in Section 2.3 (in Chapter 2). The
symbol dh is used to model modular exponentiation whereas mac will be used to model message
authentication code. We consider the equational theory E defined by the following equations:

sdec(senc(x, y), y) = x

dh(dh(x, y), z) = dh(dh(x, z), y)

212

10.2. Case Studies

1. Tag → Reader : {sT }k

2. Reader → Tag : gnR

3. Tag → Reader : gnT

4. Both parties compute G = gen(sT , gnRnT).
5. Reader → Tag : Gn′

R

6. Tag → Reader : Gn′
T

7. Both parties compute k′ = Gn′
Rn′

T

8. Reader → Tag : mac(Gn′
T , k′)

9. Tag → Reader : mac(Gn′
R , k′)

Figure 10.4 PACE in Alice & Bob notation

This protocol falls into our generic class of 2-party protocols. We take

ΠPACE = (k, {sT , nT , n′
T }, {nR, n′

R}, !, !, IPACE, RPACE)

where the RPACE process (reader), described in Figure 10.5, is a responder role (we do not detail
the continuation R′ and we omit trivial conditionals). The process modelling the role IPACE can
be obtained in a similar way.

RPACE := in(cR, y1).
out(cR, dh(g, nR)).in(cR, y2).
out(cR, dh(G, n′

R)).in(cR, y3).
let ytest = neq(y3, dh(G, n′

R)) in
out(cR, mac(y3, k′));
in(cR, y4).
let y5 = eq(y4, mac(dh(G, n′

R), k′)) in R′.

where G = gen(sdec(y1, k), dh(y2, nR)) and k′ = dh(y3, n′
R).

Figure 10.5 Process RPACE

Unfortunately, ProVerif cannot handle the equation above on the dh operator (due to some
termination issues). Instead of that single equation, we consider the following equational theory
that is more suitable for ProVerif:

dh(dh(g, y), z) = dh(dh(g, z), y)
dh(dh(gen(x1, x2), y), z) = dh(dh(gen(x1, x2), z), y)

This is sufficient for the protocol to work properly but it obviously lacks equations that the
attacker may exploit.

First, we would like to highlight an imprecision in the official specification [PAC] that may
lead to practical attacks on unlinkability. As the specification seems to not forbid it, we could
have assumed that the decryption operation in G = gen(sdec(y1, k), dh(y2, nR)) is implemented
in such a way that it may fail when the key k does not match with the key of the ciphertext
y1. In that case, an attacker could eavesdrop a first message c0 = senc(s0

T , k0) of a certain tag
T 0 and then, in a future session, it would let the reader optically scan a tag T but replace its
challenge senc(sT , k) by c0 and wait for an answer of the reader. If it answers, he learns that
the decryption did not fail and thus k = k0: the tag T is actually T 0. We discovered this attack

213

10. Mechanisation & Case Studies

using our method since, in our first attempt to model the protocol, we modelled sdec(·, ·) as a
destructor (that may fail) and the computation of G as an evaluation:

let G = gen(sdec(y1, k), dh(y2, nR)) in [...]

This test has to satisfy our requirement in order to declare the protocol well-authenticating. But
this conditional computing G is not safe and does not satisfy the requirements of Definition 63
(the attack scenario described is a counter-example). The same attack scenario shows that
the protocol does not ensure unlinkability (this scenario cannot be observed when interacting
with SΠ). Similarly to the attack on LAK, we highlight here the importance to take the reader
into account and give it as much importance as the tag in the definition of unlinkability. Indeed,
it is actually a leakage from the reader that allows an attacker to trace a specific tag.

Second, we report on an attack2 that we discovered using our method on some models of
PACE found in the literature [BFK09],[BDFK12],[CSD+12]. Indeed, in all those papers, the
first conditional of the reader

let ytest = neq(y3, dh(G, n′
R)) in

is omitted. Then the resulting protocol does not satisfy the well-authentication condition. To see
this, we simply have to consider a scenario where the attacker will send to the reader the message
it has outputted at the previous step. Such an execution will allow the reader to execute its role
until the end, and therefore execute τthen, but the resulting trace is not an honest one. Again,
this scenario can be turned into an attack against unlinkability as explained next. As before,
an attacker could eavesdrop a first message c0 = senc(s0

T , k0) of a certain tag T 0. Then, in a
future session, it would let the reader optically scan a tag T but replace its challenge senc(sT , k)
by c0. Independently of whether k is equal to k0 or not, the reader answers gnR . The attacker
then plays the two rounds of Diffie-Hellman by reusing messages from the reader (he actually
performs a reflection attack). More precisely, he replies with gnT = gnR , Gn′

T = Gn′
R and

mac(Gn′
R , k′) = mac(Gn′

T , k′). The crucial point is that the attacker did not prove he knows k

(whereas he is supposed to do so to generate G at step 4) thanks to the reflection attack that is
not detected. Now, the attacker waits for the reader’s answer. If it is positive (the process R′ is
executed), he learns that k = k0: the tag T is actually the same as T 0.

Third, we turn to PACE as properly understood from the official specification: when the
latter test is present and the decryption may not fail. In that case, we report on a new attack.
UKano found that the last test of the reader violates well-authentication. This is the case for
the following scenario: the message senc(sT , k) sent by a tag T (k, nT) is fed to two readers
R(k, n1

R), R(k, n2
R) of same identity name. Then, the attacker just forwards messages from one

reader to the other. They can thus complete the two rounds of Diffie-Hellman (note that the test
avoiding reflection attacks holds). More importantly, the mac-key verification phase (messages 8
and 9 from Figure 10.4) goes well and the attacker observes that the last conditional of the two
readers holds. This violates well-authentication but also unlinkability because the latter scenario

2For that different attack, we obviously consider that decryption is a constructor, and thus cannot fail.

214

10.2. Case Studies

cannot be observed at all in SΠ: if the attacker makes two readers talk to each other in SΠ they
cannot complete a session because they must have different identity names. In practice, this flaw
seems hard to exploit but it could be a real privacy concern: if a tag initiates multiple readers,
an attacker may learn which ones it had initiated by forwarding messages from one to another. It
does not seem to be realistic in the e-passport scenario, but could be harmful in other contexts.
It seems that, in the e-passport context, a modelling with sequential sessions would be more
realistic. We come back to such a modelling in Chapter 11.

Finally, we propose a simple fix to the above attack by adding tags avoiding confusions
between reader’s messages and tag’s messages. It suffices to replace messages 8 and 9 from Fig-
ure 10.4 by respectively mac(⟨cr, Gn′

T ⟩, k′) and mac(⟨ct, Gn′
R⟩, k′) where cr, ct are public constants,

and adding the corresponding checks. Well-authentication can be automatically established us-
ing UKano in around 1 minute. However, the model produced by UKano to verify the frame
opacity condition had to be slightly simplified (while preserving the semantics) in order to make
ProVerif conclude more quickly. With this little extra manual effort, we verified frame opacity in
less than 2 minutes. Therefore, PACE with tags preserves unlinkability in the model considered
here.

10.2.5 Attributed-Based Authentication Scenario Using ABCDH Protocol

Most authentication protocols are identity-based: the user needs to provide his identity and
prove to the service provider he is not trying to impersonate somebody else. However, in many
contexts, the service provider just needs to know that the user has some non-identifying attributes
(e.g. age, gender, country, membership). For instance, a bookshop just needs to have the proof
that the user has the right to borrow books and does not need to know the full identity of the
user. Attribute-based authentication protocols solve this problem and allow a user to prove to
another user, within a secure channel, that he has some attributes without disclosing its identity.

We used our method to automatically establish unlinkability of a typical use case of such a
protocol taking part to the IRMA project3. We analysed a use case of the protocol ABCDH as
defined in [AH13]. This protocol allows a smartcard C to prove to some Verifier V (which is also
a smartcard) that he has the required attributes. The protocol aims at fulfils this goal without
revealing the identity of C to V or to anyone else. One of its goal is also to avoid that any other
smartcard C ′ replays those attributes later on. The protocol should also ensure unlinkability
of C. To the best of our knowledge, there was no prior formal analysis of that security property
for this protocol.

The key ingredient of this protocol is attribute-based credential (ABC). It is a cryptographic
container for attributes. In ABC, attributes are signed by some issuers and allow for selective
disclosure (SD): it is possible to produce a zero-knowledge (ZK) proof revealing a subset of
attributes signed by the issuer along with a proof that the selected disclosed attributes are
actually in the credential. This non-interactive proof protocol can be bound to some fresh data
to avoid replay attacks. We shall use the notation SD(ai; n) to denote the selective disclosure of

3For more information about IRMA (“I Reveal My Attributes”), see https://www.irmacard.org.

215

https://www.irmacard.org.

10. Mechanisation & Case Studies

attributes ai bound to n. Note that SD(∅; n) (no attribute is disclosed) still proves the existence
of a credential. There are two majors ABC schemes: Microsoft U-Prove [PZ13] and IBM’s
Idemix [CLN12]. We decided to model IBM’s scheme (since it is the one that is used in IRMA)
following the formal model given in [CMS10]. It involves complex cryptographic primitives
(e.g. commitments, blind signature, ZK proofs) but ProVerif can deal with them all. In this
scheme, each user has a master secret never revealed to other parties. Issuers issue credentials
bound to the master secret of users (note that users are known to issuers under pseudonyms). A
SD consists in a ZK proof bound to n proving some knowledge: knowledge of the master secret,
knowledge of a credential bound to the master secret, knowledge that the credential has been
signed by the given organisation, knowledge that the credential contains some given attributes.

We analyse the ABCDH [AH13] using the model of SD from [CMS10] used in the following
scenario:

• an organisation Oage issues credentials about the age of majority;

• an organisation Ocheck issues credentials giving the right to check the age of majority;

• a user C wants to watch a movie rated adult-only due to its violent contents; his has a
credential from Oage with the attribute adult;

• a movie theatre V wants to verify whether the user has the right to watch this movie; it
has a credential from Ocheck with the attribute canCheckAdult.

The scheme is informally given in Figure 10.6. nV , nC and n are fresh nonces. Functions fi are
independent hash functions; we thus model them as free constructor symbols. The construction
SD(·; ·) is not modelled atomically and follows [CMS10] but we do not describe here its details.

1. Verifier → Client : dh(g, nV), SD(canCheckAdult; f1(dh(g, nV)))
2. Client → Verifier : dh(g, nC), SD(∅; f1(dh(g, nV), dh(g, nC)))
3. Verifier → Client : senc(⟨0x00, ok⟩, k)
4. Client → Verifier : senc(⟨0x01, ok⟩, k)
5. Verifier → Client : senc(⟨n; requestAdult⟩, k)
6. Client → Verifier : senc(⟨adult; SD(adult; f3(n, seed))⟩, k)

Figure 10.6 ABCDH (where seed = dh(dh(g, nC), nV) and k = f2(seed))

This 2-party protocol is in our class and falls in the category disjoint; i.e. k∩ = ∅ and
kI , kR ̸= ∅.

The complete model of this protocol is quite complex and can be found in [UKe]. Unfortu-
nately, no heuristic currently implemented in UKano allowed to verify frame opacity fully auto-
matically. Nevertheless, based on the file generated by UKano for the fully syntactical heuristic
and after some manual transformations, we were able to verify frame opacity in about 40 minutes.
Regarding well-authentication, due to the length of the protocol, the queries are also quite long.
Because of the latter and the high complexity of the underlying term algebra, it required too
much time for ProVerif to terminate. After some manual transformations and simplifications of

216

10.2. Case Studies

the generated file, we successfully established well-authentitcation for this protocol in about 2
hours and 20 minutes.

To sum up, we were able to verify unlinkability of the ABCDH protocol with minor manual
efforts in around 3 hours.

10.2.6 DAA Join & DAA Sign

A Trusted Platform Module (TPM) is a hardware device aiming at protecting cryptographic keys
and at performing some cryptographic operations. Typically, a user may authenticate himself
to a service provider relying on such a TPM. The main advantage is to physically separate the
very sensitive data from the rest of the system. On the downside however, such devices may be
used by malicious agents to breach users’ privacy by exploiting their TPMs. Direct Anonymous
Attestation (DAA) protocols have been designed to let TPMs authenticate themselves whilst
providing accountability and privacy.

In a nutshell, some issuers issue credentials representing membership to a group to the TPM
using group signatures via the DAA join sub-protocol. Those credentials are bound to the
internal secret of the TPM that must remain unknown to the service provider. Then, when
a TPM is willing to prove to a verifier its membership to a group, it uses the DAA sign sub-
protocol. We analysed the RSA-based DAA join and sign protocols as described in [SRC15]. Both
protocols rely on complex cryptographic primitives (e.g. blind signature, commitments, and Zero
Knowledge proofs) but ProVerif can deal with them all. Note that the authors of [SRC15] have
automatically established a game-based version of unlinkability of the combination of DAA Join
and DAA Sign using ProVerif. We have analysed both protocols separately since the combination
of the two protocols is a 3-party protocol.

DAA Join

In the RSA-based DAA join protocol, the TPM starts by sending a credential request in the
form of a commitment containing its internal secret, some session nonce and the public key of
the issuer. The issuer then challenges the TPM with some fresh nonces encrypted asymmetrically
with the public key of the TPM. After having received the expected TPM’s answer, the issuer
sends a new nonce as second challenge. To this second challenge, the TPM needs to provide
a ZK proof bound to this challenge proving that he knows the internal secret on which the
previous commitment was bound. Finally, after verifying this proof, the issuer blindly signs the
commitment allowing the TPM to extract the required credential.

1. TPM → Issuer : NI , U
2. Issuer → TPM : aenc((n, ne), pubTPM)
3. TPM → Issuer : h((U, (n, ne)))
4. Issuer → TPM : ni

5. TPM → Issuer : nt, ZK((tsk, v′), zetaI, NI , U, (nt, ni))
6. Issuer → TPM : clsign((e, v′′, U), skI)

Figure 10.7 DAA Join

217

10. Mechanisation & Case Studies

We give in Figure 10.7 an Alice & Bob description of the protocol between the TPM and
the issuer. The message zetaI = h((0, bsnI)) relies on bsnI: using a fresh bsnI allows to
ensure that the session of DAA Join will be unlinkable from previous ones. The message
tsk = h((DAAseed, h(pubI)), cnt, 0) combines the internal secret of the TPM (i.e. DAAseed)
with the public key of the issuer (i.e. pubI). The commit message NI = commit(zetaI, tsk) binds
zetaI with the internal secret while the commit message U = clommit(pubI, nv, tsk) expresses a
credential request. The goal of the TPM will be to get the message U signed by the issuer. More
precisely, the issuer will blindly sign the message U after making sure that the TPM can decrypt
challenges encrypted with its public key (step 2.) and that he can provide a fresh ZK proof show-
ing he knows its internal secret binds in U and NI (step 5.). Finally, if all checks are successful,
the issuer will blindly sign the credential request U (step 6.). We note clsign((e, v′′, U), skI) the
blind signature of a commitment U with signature key skI and nonces e, v′′. Note that ZK(•, •)
has two arguments: the first one should contain private data and the second one should contain
public data. One can always extract public data from ZK proofs and one can check if both public
and private data match as expected.

This protocol falls in our class and lies in the shared case4 (i.e. fn(I) ∩ fn(R) ̸= ∅). We
automatically analysed this protocol with UKano and established both frame opacity and well-
authentication in less than 5 seconds. frame opacity can be established using any heuristic
implemented in UKano but the greedy heuristic allows one to obtain simpler idealised messages
which yield better performance (2 seconds instead of 28 seconds for the fully syntactical heuristic).

DAA Sign

Once a TPM has obtained such a credential, it may prove its membership using the DAA sign
protocol. This protocol is played by a TPM and a verifier: the verifier starts by challenging
the TPM with a fresh nonce (step 1.), the latter then sends a complex ZK proof bound to this
nonce (step 2.). The latter ZK proof also proves that the TPM knows a credential from the
expected issuer bound to a secret he knows (essentially a message clsign((e, v′′, U), skI) received
in a previous session of DAA join). The verifier accepts only if the ZK can be successfully checked
(step 3.).

We give in Figure 10.8 an Alice & Bob description of the protocol between a verifier and the
TPM willing to sign a message m using its credential cred = clsign((e, v′′, U), skI) he received
from a past DAA join session. From its credential cred, the TPM will compute a new credential
dedicated to the current sign session: cred′ = clcommit((pubI, cred), nc). Indeed, if the TPM
had directly used cred then two sessions of DAA sign would have been trivially linkable.

Again, this protocol falls in our class and lies in the non shared case. Indeed, we model in-
finitely many different TPMs may take part to the DAA sign protocol with any verifier whose role
is always the same (he has no proper identity). Using the canonical syntactical idealisation for
frame opacity, we automatically established (using UKano) frame opacity and well-authentication

4Before executing the join protocol, the TPM and the issuer should establish a one-way authenticated channel
that is not specified by the DAA scheme.

218

10.2. Case Studies

1. Verifier → TPM : nV

2. TPM → Verifier : (zetaI, pubI, NI , cred′, nt,
ZK((tsk, nc), (zetaI, pubI, NI , cred′, (nT , nV , m))))

3. Verifier → TPM : accept/reject
Figure 10.8 DAA Sign

and thus unlinkability in less than 3 seconds. Frame opacity can be automatically established
using the fully syntactical heuristic but not using other heuristics (greedy and the default heuris-
tic).

Summary

We now summarises our results in Table 10.1. We notably indicate the verification time in
seconds to verify both conditions. When there is an attack, we give the time ProVerif takes to
show that one of the condition fails to hold. We note 3 for a condition automatically checked
using our tool UKano and 5 when the condition does not hold. Note that all positive results
were established automatically using our tool UKano (which is based on ProVerif) without any
manual effort (except for the cases indicated by 3∗ for which little manual efforts were needed).

Protocol Frame Well- Unlinkability Verification
opacity auth. time

Hash-Lock 3 3 safe 0.00s
LAK (stateless) − 5 attack −
Fixed LAK 3 3 safe 0.00s
BAC 3 3 safe 8.41s
BAC/PA/AA 3 3 safe 183.40s
BAC/AA/PA 3 3 safe 198.28s
PACE (faillible dec) − 5 attack 31.81s
PACE (as in [BFK09]) − 5 attack 61.43
PACE − 5 attack 83.72s
PACE with tags 3∗ 3 safe 169.91
DAA sign 3 3 safe 2.94s
DAA join 3 3 safe 4.68s
ABCDH (irma) 3∗ 3∗ safe 8479.76s

Table 10.1 Summary of our case studies

219

Chapter 11

Conclusion

We have identified two conditions, namely well-authentication and frame opacity, which imply
anonymity and unlinkability for a wide class of protocols. Additionally, we have shown that these
two conditions can be checked automatically using the tool ProVerif, and we have mechanised
their verification in a tool called UKano. This yields a new verification technique to check
anonymity and unlinkability for an unbounded number of sessions. It has proved quite effective
on various case studies. In particular, it has brought first-time unlinkability proofs for the
BAC protocol (e-passport) and ABCDH protocol. Our case studies also illustrated that our
methodology is useful to discover attacks against unlinkability and anonymity as illustrated by
the new attacks we found on PACE and LAK.

In the next section, we discuss limitations of the present technique and list main avenues for
future work.

11.1 Regarding Mechanisation and the Tool UKano

We start with limitations and possible improvements for the practical aspects of our method.

Optimising generated models. For complex protocols (e.g. PACE and ABCDH), UKano
produces models for verifying our conditions that are rather large on which ProVerif may not
terminate in reasonable time. While this was expected – the more complex the protocols are, the
longer is the verification time – we think this effect could be diminished by optimising generated
models. For instance, the manual modifications needed to make ProVerif terminate for PACE
(Subsection 10.2.4) or for ABCDH (Subsection 10.2.5) are based on simple observations and
could be mechanised in future versions of the tool UKano. We now discuss the two optimisations
we needed to make ProVerif terminate in reasonable time.

First, when verifying well-authentication, one has to verify one query per conditional. Each
query essentially states that if the underlying conditional holds for an agent then there must be a
sequence of events modelling the fact that this agent is associated to another. For complex proto-
cols, this sequence of events may be very long (e.g. 12 actions for ABCDH). However, it is possible

221

11. Conclusion

to reduce the size of such queries by relying on the other, smaller queries associated to other tests.
For instance, assume the honest execution is of the form out(cI , w1).in(cR, w1).τ1

then.out(cR, w2).
in(cI , w2).τ2

then. If we already know that all conditionals τ1
then,τk−1

then except the last one
τk

then satisfy well-authentication then, in order to show that τk
then satisfies well-authentication as

well, it should be sufficient to produce a query stating that if τk
then holds for an agent a then

there exists an agent a′ that is associated with a “between” the actions τk−2
then and τk

then and thus
skipping all events associated to actions before τk−2

then .
Second, note that models generated for verifying frame opacity heavily rely on nested condi-

tionals in order to overcome false negatives stemming from a conditional making sense on the
left (real protocol) but not on the right (idealised frame); see Subsection 10.1.1 for a discussion.
However, in many cases, a simple analysis of the protocol suffices to infer than some conditionals
could not cause such mismatches and do not call for such costly precautions. We hope to be able
to automate such analysis in order to produce simpler models.

Finally, a more efficient and also ambitious way to verify frame opacity could consist in
developping a dedicated Horn clauses generation. One could adapt the ProVerif generation of
clauses modelling executions of biprocesses for always prioritizing the left-process and then add
clauses ProVerif generates for verifying static equivalence on resulting bi-frames.

Other tools as back-ends. Currently, our conditions are checked in UKano using ProVerif as
back-end which, despite its great flexibility, supports only a limited kind of equational the-
ory. In particular, the full Diffie-Hellman theory or associative-commutative theories needed
for xor (widely used in RFID protocols) are not supported. However, we could consider using
other tools such as Tamarin and Maude−NPA. For instance, we already successfully proved well-
authentication for Example 52 in Tamarin by translating queries described in Subsection 10.1.2
as lemmas statements. We think such encodings could be mechanised. We would also like to
investigate the case of frame opacity. We could then leverage the richer cryptographic primitives
modelling capabilities of Tamarin (e.g. thanks to recent efforts [DDKS17]).

Better idealisation heuristics. Finally, we think that it is possible to make UKano build
idealisations in a cleverer way, roughly by detecting when a term can be idealised by a nonce or
when, on the contrary, it is crucial to retain its shape in order to remain precise enough. Hence,
UKano could then use an adaptive heuristic by greedily idealising terms by session nonces when
possible and use the more costly syntactical heuristic otherwise.

11.2 Regarding our Conditions and our Main Theorem

We also identify a number of research problems aimed at increasing the scope of our technique.

Stateful protocols. We would like to investigate the extension of our main theorem to the case
of protocols with persistent state (from one session to the other). This is certainly technically
challenging, but would make it possible to model more protocols (e.g. many RFID protocols

222

11.2. Regarding our Conditions and our Main Theorem

are stateful), or at least model them more faithfully. We think that a good starting point is to
define a notion of synchronised states between agents’ internal states. Intuitively, agents having
synchronised states may successfully execute a session (or its continuation) but never in the
other case. Next, we shall strengthen well-authentication by requiring that agents that pass a
conditional must be associated and must have synchronised states all the way. This way, we may
be able to reuse our proof technique. Indeed, control-flow and internal states of agents would
then be reduced to the association relation between agents. We would like to push this idea
further and formalise it.

Beyond 2-party. Our method only applies on 2-party protocols. For instance, this was the
reason why we have not modelled DAA join in combination with DAA sign (see Subsection 10.2.6)
since the resulting protocol would be a 3-party protocol. Going beyond 2-party protocols would
thus greatly extend the scope of our technique.

More generic notion of honest trace. As already mentioned in Subsection 10.2.4, we have
shown that the PACE protocol does not ensure unlinkability when sessions of e-passports and
readers can be executed concurrently. However, one could argue that executing sessions con-
currently does not seem practical. Indeed, e-passports RFID chips’ content are assumed to be
impossible to clone. It is thus expected that there exists at most one physical e-passport equipped
with given identity names.

Therefore, we have investigated the scenario where sessions can be executed only sequentially.
We have turned to Tamarin since ProVerif is not able to model faithfully such scenarios. We
wrote a Tamarin model encoding well-authentication and found that this condition does not hold
even with the tagged version (see Subsection 10.2.4). This contrasts with the positive result
obtained with ProVerif. Actually, this comes from the fact that Tamarin models Diffie-Hellman
exponentiation in a more faithful way than ProVerif. Some behaviours that were not possible in
the ProVerif model become possible, and it happens that well-authentication is not satisfied in
such a model. Indeed, the attacker can alter the Diffie-Hellman shares, as informally depicted
in Figure 11.1, without impacting successive agents’ conditionals. This is problematic because

1. Tag → Reader : {sT }k

2. Reader → Attacker : gnR

2′. Attacker → Tag : (gnR)X

3. Tag → Attacker : gnT

3′. Attacker → Reader : (gnT)X

Figure 11.1 Example of successful but dishonest interaction (X can be any message)

successful tests will pass (independently of the message X) while such interactions are not honest
according to our current definition of honest trace (see Definition 50). Obviously, this interaction
is not an attack on unlinkability at all.

We have ideas to tackle this issue. First, one could extend the notion of “honest trace
associated to a protocol” (Definition 51) as follows: to any protocol, we associate a set of symbolic

223

11. Conclusion

traces that are roughly traces with (possibly) variables in recipes. For instance, for PACE, one
may use trh = out(cI , w1).in(cR, dh(w1, X)).out(cR, w2).in(cI , dh(w2, X)). . . . in addition to the
standard non-symbolic trace. However, in order to adapt our proof technique, we need to make
sure that whatever the recipes chosen to fill in the variables (e.g. X in trh), the resulting concrete
trace can be executed by the protocol and the produced frame has always the same idealisation.
Remark that this is the case for trh in the case of the PACE protocol. We have hopes to adapt
our theorem and our method this way in order to deal with PACE and other examples based on
such Diffie-Hellman exchanges.

Getting rid of equivalence. We have conjectured that, for standard cryptographic primi-
tives, frame opacity should be verifiable with enough precision via a conjunction of reachability
properties (e.g. secrecy of encryption keys) and simple, syntactical checks (e.g. fresh nonce in
ciphertext). We would like to prove such a result. A good starting point would be to consider
(a)symmetric encryption, mac, signature and pairs defined via reduction rules with an empty set
of equations E. We are convinced that the above can be established for such term algebras. We
think that seeking for such a result in a way that can be applied to real-world case studies is an
attractive and exciting research goal since it would allow to completely reduce the verification of
complex equivalence based-properties such as unlinkability into purely reachability verification
problems. The practical implication is that the verification could then be carried out using one
of the numerous and highly efficient tools dealing with reachability only.

Compositional verification. We believe that our conditions could be verified more compo-
sitionally than the original anonymity and unlinkability properties. We notably have insights
about a way to verify frame opacity more compositionally. Indeed, assuming well-authentication
item (i) has been previously established, we know that if a protocol session reaches an unsafe
conditional, this session has necessarily followed the honest execution and all its outputs are
thus fixed. This remark allows us to intuitively split a protocol at the level of a given unsafe
conditional and verify frame opacity for a system made of (the combination of): (i) the first
part of the two roles before the given conditional, (ii) the last part of the two roles where all
honest, expected messages that the first parts of the roles would have sent are directly given to
the attacker. Note that the second system is intuitively made of more processes in parallel but
we stress the fact that each process is half the size of the original roles.

11.3 Reusing Core Ideas of the Methodology

We believe that the overall methodology developed in this part could be applied in other con-
texts where privacy is critical: e.g. e-voting, attribute-based credentials, blockchain technologies,
transparent certificate authorities. We have already successfully done so for the case of vote-
privacy for a large class of e-voting protocols [CH17]. We now try to sum up the main steps of
the overall methodology. We stress the fact that we have followed those steps when developing
the present method but also when devising the method for proving vote-privacy [CH17].

224

11.3. Reusing Core Ideas of the Methodology

First, one has to delimit an interesting class of protocols including numerous real-world case
studies and a privacy goal one typically want to establish for protocols in that class. Then,
inspired by known attacks on the privacy goal for protocols in the class, one should try to
identify main and deep reasons that enable those attacks. One way to achieve that consists in
classifying known attacks into a few categories.

Second, one must devise a condition per class of attack that should neatly capture the ingre-
dient enabling those attacks. Here, the main idea is to take advantage of (i) working with only
a class of protocols and (ii) focusing on one simple aspect of the (often) complex privacy goal.
Thanks to that, conditions obtained this way can be much simpler than the original privacy goal
and can be verified much more easily and with more precision. Note that, in our case (for the
present method and for [CH17]), we were able to nicely divide the problem between control-flow
issues (e.g. handled by well-authentication) and the other issues (e.g. relations between messages
handled by frame opacity). This is of great interest since it allows to get over control-flow issues
when looking at the other aspects. More precisely, once one has made sure that the typical
control-flow issues do not break the privacy goals, one can focus on a simpler problem roughly by
focusing on the honest execution and forgetting that many other behaviours are possible. This
has also been very helpful and interesting for the method for proving vote-privacy [CH17].

Third, one shall make sure one has gathered enough conditions and then prove the soundness
theorem; i.e. the combination of conditions always implies the privacy goal for protocols in the
class. Finally, one may take advantage of the fact that the complex privacy goal has been split
up into simpler sufficient conditions to mechanise the verification of the simpler conditions.

We believe that this methodology is a successful approach that helps to advance the state-
of-the-art for the highly complex problem of the verification of privacy-related properties, and
paves the way for further improvements.

225

Chapter 12

General Conclusion

12.1 Summary

When I started this thesis in 2013, several verification tools were already capable of analysing
privacy-related properties. There were some recent decision procedures for a bounded number of
sessions implemented in tools such as Apte, Akiss and Spec, and, pragmatic, yet highly efficient,
semi-decision procedures for an unbounded number of sessions implemented e.g. in ProVerif and
Tamarin. As shown throughout this thesis, having such (semi-)decision procedures is not enough.
The aim of this thesis is to bridge the gap between, on one hand, such (semi-)decision procedures
and, on the other hand, actual, practical verification of privacy goals for security protocols. For
each line of work, we have identified an important issue limiting its practical impact. We have
addressed those issues separately.

In Part B, we have focused on the state space explosion problem of decision procedures
for a bounded number of sessions. We have developed new partial order reduction techniques
compatible with equivalence verification than can be nicely integrated in frameworks on which
those procedures are based.

Part C has been dedicated to solving the precision issue of semi-decision procedures for an
unbounded number of sessions. We have developed a new method for verifying unlinkability
and anonymity that does not suffer from this precision issue. We think that the underlying
methodology allows to shed some light on those privacy goals. We also hope to reuse this
methodology in broader contexts.

For addressing both issues, we have proceeded back and forth between theory and prac-
tice. Practical aspects have motivated and guided our developments. But our solutions to the
identified problems have required highly theoretical developments. Furthermore, we have been
continuously checking the practical relevance of our solutions by putting them into practice on
real-world case studies and by conducting benchmarks.

227

12. General Conclusion

12.2 Future Work

We have already listed avenues for future work and interesting open questions throughout the
thesis (see sections 5.5 and 6.5 for Part B and Chapter 11 for Part C). Nevertheless, we now
recall a few of them and discuss a few more that we find particularly interesting.

POR without action-deterministic assumption. Dropping the action-deterministic as-
sumption whilst keeping the soundness and completeness of POR techniques is an interesting
challenge. We have already discussed the difficulties which arise without this assumption in
Section 5.5. Solving them for a variant of our POR techniques would allow to greatly extend
their scope and thus improve verification efficiency in many more cases.

POR for backward search. We would also be interested in adapting our POR techniques
for backward search in the unbounded case (e.g. in the Tamarin tool). The potential benefits
for Tamarin would be twofold. First, automatic verification would be more efficient. Second,
interactive-proofs would be less cumbersome since fewer cases would have to be explored and
considered.

Use our privacy verification method for the bounded case. One could wonder whether
our privacy verification method based on sufficient conditions could be adapted for the bounded
case. We think that it is the case and we see potential benefits and interests in doing so.
First, we claim that, replacing replications ! and repetitions

!

by “bounded” replications !k and
bounded repetitions

!k, one can adapt the definitions of MΠ, SΠ, MΠ,id, strong unlinkability
and anonymity (there is a need to match the number of total sessions on both sides though). We
believe that our conditions straightforwardly restricted to the bounded cases allow us to prove
that they always imply unlinkability and anonymity for this setting as well. There might be
interests to develop such a method for two mains reasons.

First, compared to the verification in the unbounded case, frame opacity could then be decided
instead of semi-decided. We thus benefit from the completeness of tools for the bounded case
(e.g. Apte, Akiss).

Second, the verification for the bounded case of the two sufficient conditions would be more ef-
ficient. Concerning frame opacity, the condition seems easier to establish than unlinkability even
in the bounded case since one can verify it with a process that is completely action-deterministic
(see Definition 14 in Chapter 5) while it is not possible to do so for the original properties of
interest (e.g. unlinkability). Therefore, one could benefit from the important speedups brought
by our POR techniques developed in the Part B while it was not possible to leverage them to
directly verify unlinkability. Indeed, if you force agents to use dedicated and pairwise distinct
channels then unlinkability is broken by construction. Concerning well-authentication, the con-
dition could be verified for the bounded case using tools such as ProVerif or Tamarin since they
generally are precise enough when it comes to verifying purely reachability properties.

228

12.2. Future Work

We would like to pursue our investigation towards this direction. If it can be completed,
our hope is to achieve twofold benefits: (i) better precision compared to verification entirely
carried out in tools like ProVerif or Tamarin and (ii) better efficiency compared to verification
done entirely in tools like Apte or Akiss.

Privacy via sufficient conditions approach. Another line of work we would like to pursue
is to adapt the methodology presented in Part C in broader contexts. We have already argued
in considerable detail in Chapter 11 that we consider the overall methodology generic enough to
have hopes to derive new methods for analysing other privacy goals for other classes of security
protocols.

From privacy to reachability. We think that seeking to verify frame opacity via reachability
properties only, as proposed in Chapter 11, is an exciting research goal. Indeed, achieving the
latter, in a more generic setting if possible, would allow to completely getting rid of the complex
and costly equivalence verification when it comes to analyse privacy in security protocols.

Guidelines for privacy. In our opinion, the privacy via sufficient conditions approach also
sheds light on the privacy notions themselves. Indeed, each sufficient condition helps to get a bet-
ter grasp of necessary ingredients for preserving privacy. It thus might be interesting to translate
such conditions into more comprehensive guidelines helping the design of new privacy-enhancing
protocols. It may be achieved by carefully extracting essential ingredients behind sufficient con-
ditions presented in Part C, [CH17] and in methods to come based on the same idea. Indeed,
it may be the case that patterns emerge from different conditions used in several methods. For
instance, one may remark strong similarities between the present well-authentication condition
and the dishonest condition of [CH17].

To conclude, we believe that, although imperfect and still requiring much improvements,
existing techniques for verifying privacy have reached enough maturity to guide design, analysis
and standardisation. It took many years and much research effort to develop usable methods for
verifying reachability properties and a few more years to get the standardisation and industrial
community to actually use them. We now have the encouraging example of the TLS Working
Group adopting an “analysis-before-deployment” paradigm for drafting TLS 1.3. We hope to
see in the near future such examples that also take privacy into account.

229

Bibliography

[3sh] 3SHAKE website. https://mitls.org/pages/attacks/3SHAKE. Accessed: 2016-
01-05.

[A+05] A. Armando et al. The AVISPA Tool for the automated validation of internet
security protocols and applications. In Proc. 17th Int. Conference on Computer
Aided Verification, LNCS. Springer, 2005.

[AAJS14] Parosh Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas. Op-
timal dynamic partial order reduction. ACM SIGPLAN Notices, 49(1):373–384,
2014.

[AB03] Martín Abadi and Bruno Blanchet. Computer-assisted verification of a protocol
for certified email. In Static Analysis, pages 316–335. Springer, 2003.

[Aba97] Martin Abadi. Secrecy by typing in security protocols. In Theoretical Aspects of
Computer Software, pages 611–638. Springer, 1997.

[ABD+15] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry,
Matthew Green, J Alex Halderman, Nadia Heninger, Drew Springall, Emmanuel
Thomé, Luke Valenta, et al. Imperfect forward secrecy: How diffie-hellman fails in
practice. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, pages 5–17. ACM, 2015.

[ACC+08] Alessandro Armando, Roberto Carbone, Luca Compagna, Jorge Cuellar, and
Llanos Tobarra. Formal analysis of saml 2.0 web browser single sign-on: break-
ing the saml-based single sign-on for google apps. In Proceedings of the 6th ACM
workshop on Formal methods in security engineering, pages 1–10. ACM, 2008.

[ACD12] Myrto Arapinis, Vincent Cheval, and Stéphanie Delaune. Verifying privacy-type
properties in a modular way. In Proceedings of the 25th IEEE Computer Secu-
rity Foundations Symposium, pages 95–109, Cambridge Massachusetts, USA, June
2012. IEEE Computer Society Press.

231

https://mitls.org/pages/attacks/3SHAKE

Bibliography

[ACRR09] Myrto Arapinis, Tom Chothia, Eike Ritter, and Mark Ryan. Untraceability in the
applied pi-calculus. In Proc. International Conference for Internet Technology and
Secured Transactions, pages 1–6. IEEE Computer Society Press, 2009.

[ACRR10] Myrto Arapinis, Tom Chothia, Eike Ritter, and Mark Ryan. Analysing unlinka-
bility and anonymity using the applied pi calculus. In Proceedings of the IEEE
Computer Security Foundations Symposium. IEEE Comp. Soc. Press, 2010.

[ADMP+09] Ben Adida, Olivier De Marneffe, Olivier Pereira, Jean-Jacques Quisquater, et al.
Electing a university president using open-audit voting: Analysis of real-world use
of Helios. EVT/WOTE, 9:10–10, 2009.

[AF01] M. Abadi and C. Fournet. Mobile values, new names, and secure communication.
In Proceedings of the ACM SIGPLAN Symposium on Principles of Programming
Languages. ACM Press, 2001.

[AF04] Martín Abadi and Cédric Fournet. Private authentication. Theoretical Computer
Science, 322(3), 2004.

[AG97] Martín Abadi and Andrew D Gordon. A calculus for cryptographic protocols: The
spi calculus. In Proc. of the 4th ACM conference on Computer and communications
security, pages 36–47. ACM, 1997.

[AG98] Martín Abadi and Andrew D. Gordon. A bisimulation method for cryptographic
protocols. Nord. J. Comput., 5(4):267, 1998.

[AH13] Gergely Alpár and Jaap-Henk Hoepman. A secure channel for attribute-based
credentials. In Proceedings of the 2013 ACM workshop on Digital identity manage-
ment, pages 13–18. ACM, 2013.

[AK79] A.V. Anisimov and D.E. Knuth. Inhomogeneous sorting. International Journal of
Computer & Information Sciences, 8(4):255–260, 1979.

[AMR+12] Myrto Arapinis, Loretta Mancini, Eike Ritter, Mark Ryan, Nico Golde, Kevin
Redon, and Ravishankar Borgaonkar. New privacy issues in mobile telephony: fix
and verification. In Proceedings of the 2012 ACM conference on Computer and
communications security, pages 205–216. ACM, 2012.

[AMRR14] Myrto Arapinis, Loretta Ilaria Mancini, Eike Ritter, and Mark Ryan. Privacy
through pseudonymity in mobile telephony systems. In Network and Distributed
System Security Symposium, 2014.

[And92] Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. J.
Log. Comput., 2(3), 1992.

[APTa] APTE webpage. http://projects.lsv.ens-cachan.fr/APTE/. Accessed: 2016-
01-05.

232

http://projects.lsv.ens-cachan.fr/APTE/

Bibliography

[aptb] Sources of APTE. Available at https://github.com/APTE/APTE. Accessed: 2016-
01-05.

[AR00] Martín Abadi and Phillip Rogaway. Reconciling two views of cryptography (the
computational soundness of formal encryption). In Proc. International Conference
on Theoretical Computer Science, pages 3–22, 2000.

[BAF05] Bruno Blanchet, Martín Abadi, and Cédric Fournet. Automated Verification of
Selected Equivalences for Security Protocols. In 20th Symposium on Logic in Com-
puter Science, pages 331–340, 2005.

[BAF08] Bruno Blanchet, Martín Abadi, and Cédric Fournet. Automated verification of
selected equivalences for security protocols. Journal of Logic and Algebraic Pro-
gramming, 75(1):3–51, 2008.

[Bau05] Mathieu Baudet. Deciding security of protocols against off-line guessing attacks.
In Proc. 12th Conference on Computer and Communications Security. ACM, 2005.

[BCDH10] Mayla Brusó, Konstantinos Chatzikokolakis, and Jerry Den Hartog. Formal verifi-
cation of privacy for RFID systems. In Proc. 23rd Computer Security Foundations
Symposium, pages 75–88. IEEE Computer Society Press, 2010.

[BCEDH13] Mayla Brusó, Konstantinos Chatzikokolakis, Sandro Etalle, and Jerry Den Hartog.
Linking unlinkability. In Trustworthy Global Computing, pages 129–144. Springer,
2013.

[BDFK12] Jens Bender, Özgür Dagdelen, Marc Fischlin, and Dennis Kügler. The PACE AA
protocol for machine readable travel documents, and its security. In Financial
Cryptography and Data Security, pages 344–358. Springer, 2012.

[BDH] David Baelde, Stéphanie Delaune, and Lucca Hirschi. A reduced semantics for
deciding trace equivalence. Under submission.

[BDH14] David Baelde, Stéphanie Delaune, and Lucca Hirschi. A reduced semantics for
deciding trace equivalence using constraint systems. In Proc. 3rd Conference on
Principles of Security and Trust, pages 1–21. Springer, 2014.

[BDH15] David Baelde, Stéphanie Delaune, and Lucca Hirschi. Partial order reduction
for security protocols. In 26th International Conference on Concurrency Theory
(CONCUR’15), page 497, 2015.

[BDS15] David Basin, Jannik Dreier, and Ralf Sasse. Automated symbolic proofs of ob-
servational equivalence. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pages 1144–1155. ACM, 2015.

233

https://github.com/APTE/APTE

Bibliography

[BFG+14] Gilles Barthe, Cédric Fournet, Benjamin Grégoire, Pierre-Yves Strub, Nikhil
Swamy, and Santiago Zanella-Béguelin. Probabilistic relational verification for
cryptographic implementations. In ACM SIGPLAN Notices, volume 49, pages
193–205. ACM, 2014.

[BFK09] Jens Bender, Marc Fischlin, and Dennis Kügler. Security analysis of the PACE
key-agreement protocol. In Information Security, pages 33–48. Springer, 2009.

[BGHB11] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago Zanella Béguelin.
Computer-aided security proofs for the working cryptographer. In Advances in
Cryptology–CRYPTO 2011, pages 71–90. Springer, 2011.

[BGRV15] Johannes Borgström, Ramunas Gutkovas, Ioana Rodhe, and Björn Victor. The
psi-calculi workbench: A generic tool for applied process calculi. ACM Trans.
Embedded Comput. Syst., 14(1):9:1–9:25, 2015.

[BGZB09] Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. Formal certifi-
cation of code-based cryptographic proofs. ACM SIGPLAN Notices, 44(1):90–101,
2009.

[BHM08] Michael Backes, Catalin Hritcu, and Matteo Maffei. Automated verification of
remote electronic voting protocols in the applied pi-calculus. In Proceedings of the
IEEE Computer Security Foundations Symposium, pages 195–209. IEEE, 2008.

[BJPV11] Jesper Bengtson, Magnus Johansson, Joachim Parrow, and Björn Victor. Psi-
calculi: a framework for mobile processes with nominal data and logic. Logical
Methods in Computer Science, 7(1), 2011.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking (Represen-
tation and Mind Series). The MIT Press, 2008.

[Bla04] Bruno Blanchet. Automatic proof of strong secrecy for security protocols. In 2004
Symposium on Security and Privacy, pages 86–100. IEEE Computer Society Press,
2004.

[Bla08] Bruno Blanchet. A computationally sound mechanized prover for security protocols.
IEEE Transactions on Dependable and Secure Computing, 5(4):193–207, 2008.

[BLF+14] Karthikeyan Bhargavan, Antoine Delignat Lavaud, Cédric Fournet, Alfredo Pironti,
and Pierre Yves Strub. Triple handshakes and cookie cutters: Breaking and fixing
authentication over TLS. In 2014 IEEE Symposium on Security and Privacy, pages
98–113. IEEE, 2014.

[BMU08] Michael Backes, Matteo Maffei, and Dominique Unruh. Zero-knowledge in the
applied pi-calculus and automated verification of the direct anonymous attestation
protocol. In Symposium on Security and Privacy, pages 202–215. IEEE, 2008.

234

Bibliography

[Bor09] Johannes Borgström. A complete symbolic bisimilarity for an extended spi calculus.
Electr. Notes Theor. Comput. Sci., 242(3):3–20, 2009.

[BP03] Bruno Blanchet and Andreas Podelski. Verification of cryptographic protocols:
Tagging enforces termination. In Foundations of Software Science and Computa-
tion Structures, volume 2620 of LNCS. Springer Verlag, 2003.

[BPKA15] Lennart Beringer, Adam Petcher, Q Ye Katherine, and Andrew W Appel. Verified
correctness and security of OpenSSL HMAC. In 24th USENIX Security Symposium,
pages 207–221, 2015.

[Bru14] Mayla Brusó. Dissecting Unlinkability. PhD thesis, Technische Universiteit Eind-
hoven, 2014.

[BS16] Bruno Blanchet and Ben Smyth. Automated reasoning for equivalences in the
applied pi calculus with barriers. In Proc. 29th Computer Security Foundations
Symposium, 2016.

[BVQ10] Josh Benaloh, Serge Vaudenay, and Jean-Jacques Quisquater. Final report of
iacr electronic voting committee. international association for cryptologic research,
2010.

[car] Blackhat’15 talk about cars hacking. https://www.blackhat.com/us-15/
briefings.html#remote-exploitation-of-an-unaltered-passenger-vehicle.
Accessed: 2016-01-05.

[CB13] Vincent Cheval and Bruno Blanchet. Proving more observational equivalences with
ProVerif. In Proc. 2nd Conference on Principles of Security and Trust, volume
7796 of LNCS, pages 226–246. Springer, 2013.

[CC15] Vincent Cheval and Véronique Cortier. Timing attacks in security protocols: sym-
bolic framework and proof techniques. In Proc. 4th Conference on Principles of
Security and Trust, pages 280–299. Springer, 2015.

[CCCK16] Rohit Chadha, Vincent Cheval, Ştefan Ciobâcă, and Steve Kremer. Automated
verification of equivalence properties of cryptographic protocol. ACM Transactions
on Computational Logic, 2016. To appear.

[CCD10] Vincent Cheval, Hubert Comon-Lundh, and Stéphanie Delaune. Automating secu-
rity analysis: symbolic equivalence of constraint systems. In Proc. 5th International
Joint Conference on Automated Reasoning, volume 6173. Springer-Verlag, 2010.

[CCD11] Vincent Cheval, Hubert Comon-Lundh, and Stéphanie Delaune. Trace equivalence
decision: Negative tests and non-determinism. In Proceedings of Conference on
Computer and Communications Security. ACM Press, 2011.

235

https://www.blackhat.com/us-15/briefings.html#remote-exploitation-of-an-unaltered-passenger-vehicle
https://www.blackhat.com/us-15/briefings.html#remote-exploitation-of-an-unaltered-passenger-vehicle

Bibliography

[CCD13a] Vincent Cheval, Véronique Cortier, and Stéphanie Delaune. Deciding equivalence-
based properties using constraint solving. Theoretical Computer Science, 492, 2013.

[CCD13b] Rémy Chrétien, Véronique Cortier, and Stéphanie Delaune. From security proto-
cols to pushdown automata. In Proc. 40th International Colloquium on Automata,
Languages and Programming, volume 7966 of LNCS, pages 137–149. Springer, 2013.

[CCD15a] Rémy Chrétien, Véronique Cortier, and Stéphanie Delaune. Decidability of trace
equivalence for protocols with nonces. In Proc. 28th Computer Security Founda-
tions Symposium, pages 170–184. IEEE Computer Society Press, 2015.

[CCD15b] Rémy Chrétien, Véronique Cortier, and Stéphanie Delaune. From security proto-
cols to pushdown automata. ACM Transactions on Computational Logic, 17(1:3),
September 2015.

[CCK12] Rohit Chadha, Ştefan Ciobâcă, and Steve Kremer. Automated verification of
equivalence properties of cryptographic protocols. In Programming Languages and
Systems, pages 108–127. Springer, 2012.

[CCLD16] Vincent Cheval, Hubert Comon-Lundh, and Stéphanie Delaune. A procedure for
deciding symbolic equivalence between sets of constraint systems. Information and
Computation, 2016. To appear.

[CCP13] Vincent Cheval, Véronique Cortier, and Antoine Plet. Lengths may break privacy
– or how to check for equivalences with length. In Proc. 25th International Con-
ference on Computer Aided Verification (CAV’13), volume 8044 of LNCS, pages
708–723. Springer Berlin Heidelberg, 2013.

[CDL+99] Iliano Cervesato, Nancy A Durgin, Patrick D Lincoln, John C Mitchell, and Andre
Scedrov. A meta-notation for protocol analysis. In Computer Security Foundations
Workshop, 1999. Proceedings of the 12th IEEE, pages 55–69. IEEE, 1999.

[CDL06] Véronique Cortier, Stéphanie Delaune, and Pascal Lafourcade. A survey of alge-
braic properties used in cryptographic protocols. Journal of Computer Security,
14(1):1–43, 2006.

[CH17] Cas Cremers and Lucca Hirschi. Improving automatic symbolic analysis for
e-voting protocols: Sufficient conditions for ballot secrecy. (Under submis-
sion) A copy can be found at http://www.lsv.ens-cachan.fr/~hirschi/pdfs/
CH-evoting.pdf, 2017.

[Che12] Vincent Cheval. Automatic verification of cryptographic protocols: privacy-type
properties. PhD thesis, École Normale Supérieure de Cachan, 2012.

[Che14] Vincent Cheval. Apte: an algorithm for proving trace equivalence. In Proceedings
TACAS’14. Springer, 2014.

236

http://www.lsv.ens-cachan.fr/~hirschi/pdfs/CH-evoting.pdf
http://www.lsv.ens-cachan.fr/~hirschi/pdfs/CH-evoting.pdf

Bibliography

[Cho06] Tom Chothia. Analysing the mute anonymous file-sharing system using the pi-
calculus. In Formal Techniques for Networked and Distributed Systems-FORTE
2006, pages 115–130. Springer, 2006.

[CHSvdM16] Cas Cremers, Marko Horvat, Sam Scott, and Thyla van der Merwe. Automated
analysis and verification of TLS 1.3: 0-RTT, resumption and delayed authentica-
tion. In IEEE Symposium on Security and Privacy, 2016.

[CJM00] E. Clarke, S. Jha, and W. Marrero. Partial order reductions for security protocol
verification. In Tools and Algorithms for the Construction and Analysis of Systems,
pages 503–518. Springer, 2000.

[CJM03] Edmund M. Clarke, Somesh Jha, and Wilfredo R. Marrero. Efficient verification of
security protocols using partial-order reductions. International Journal on Software
Tools for Technology Transfer, 4(2), 2003.

[CKW11] Véronique Cortier, Steve Kremer, and Bogdan Warinschi. A survey of symbolic
methods in computational analysis of cryptographic systems. Journal of Automated
Reasoning, 46(3-4):225–259, 2011.

[CLD05] Hubert Comon-Lundh and Stéphanie Delaune. The finite variant property: How
to get rid of some algebraic properties. In Proc. International Conference on
Rewriting Techniques and Applications, pages 294–307. Springer, 2005.

[CLN12] Jan Camenisch, Anja Lehmann, and Gregory Neven. Electronic identities need
private credentials. IEEE Security & Privacy, 10(1):80–83, 2012.

[CM05] Cas JF Cremers and Sjouke Mauw. Checking secrecy by means of partial order
reduction. In System Analysis and Modeling. Springer, 2005.

[CMS] Kaustuv Chaudhuri, Dale Miller, and Alexis Saurin. Canonical sequent proofs via
multi-focusing. In International Conference On Theoretical Computer Science.

[CMS10] Jan Camenisch, Sebastian Mödersheim, and Dieter Sommer. A formal model of
identity mixer. In Formal Methods for Industrial Critical Systems, pages 198–214.
Springer, 2010.

[CR12] Yannick Chevalier and Michael Rusinowitch. Decidability of symbolic equivalence
of derivations. Journal of Automated Reasoning, 48(2), 2012.

[CRSv12] Cas Cremers, Kasper B. Rasmussen, Benedikt Schmidt, and Srdjan Čapkun. Dis-
tance Hijacking Attacks on Distance Bounding Protocols. In 33rd IEEE Symposium
on Security and Privacy, pages 113–127. IEEE Computer Society, May 2012.

[CS13] Véronique Cortier and Ben Smyth. Attacking and fixing Helios: An analysis of
ballot secrecy. Journal of Computer Security, 21(1):89–148, 2013.

237

Bibliography

[CSD+12] Lassaad Cheikhrouhou, Werner Stephan, Özgür Dagdelen, Marc Fischlin, and
Markus Ullmann. Merging the cryptographic security analysis and the algebraic-
logic security proof of pace. In Sicherheit, pages 83–94, 2012.

[DCL14] Levent Demir, Mathieu Cunche, and Cédric Lauradoux. Analysing the privacy
policies of wi-fi trackers. In Proceedings of the 2014 workshop on physical analytics,
pages 39–44. ACM, 2014.

[DCS12] Yuxin Deng, Iliano Cervesato, and Robert J. Simmons. Relating reasoning method-
ologies in linear logic and process algebra. In LINEARITY, volume 101 of EPTCS,
2012.

[DDKS17] Jannik Dreier, Charles Duménil, Steve Kremer, and Ralf Sasse. Beyond Subterm-
Convergent Equational Theories in Automated Verification of Stateful Protocols.
In In 6th International Conference on Principles of Security and Trust, 2017. To
appear.

[DDNM90] Pierpaolo Degano, Rocco De Nicola, and Ugo Montanari. A partial ordering se-
mantics for ccs. Theoretical Computer Science, 75(3):223–262, 1990.

[DH76] W. Diffie and M. Hellman. New directions in cryptography. Transactions on
Information Society, 22(6):644–654, 1976.

[DH16] Stéphanie Delaune and Lucca Hirschi. A survey of symbolic methods for estab-
lishing equivalence-based properties in cryptographic protocols. Journal of Logical
and Algebraic Methods in Programming, 2016.

[DJP12] Naipeng Dong, Hugo Jonker, and Jun Pang. Formal analysis of privacy in an
ehealth protocol. In Computer Security–ESORICS 2012, pages 325–342. Springer,
2012.

[DKR06] Stephanie Delaune, Steve Kremer, and Mark Ryan. Coercion-resistance and
receipt-freeness in electronic voting. In Computer Security Foundations Workshop,
2006. 19th IEEE, pages 12–pp. IEEE, 2006.

[DKR08] Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Verifying privacy-type
properties of electronic voting protocols. Journal of Computer Security, (4), 2008.

[DKR10] Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Symbolic bisimulation for
the applied pi calculus. Journal of Computer Security, 18(2):317–377, March 2010.

[DRS08] Stéphanie Delaune, Mark D. Ryan, and Ben Smyth. Automatic verification of
privacy properties in the applied pi-calculus. In Proceedings of the 2nd Joint iTrust
and PST Conferences on Privacy, Trust Management and Security (IFIPTM’08),
volume 263 of IFIP Conference Proceedings. Springer, 2008.

238

Bibliography

[DS81] Dorothy E Denning and Giovanni Maria Sacco. Timestamps in key distribution
protocols. Communications of the ACM, 24(8):533–536, 1981.

[DSV03] Luca Durante, Riccardo Sisto, and Adriano Valenzano. Automatic testing equiv-
alence verification of spi calculus specifications. ACM Transactions on Software
Engineering and Methodology, 12(2), 2003.

[DY83] Danny Dolev and Andrew Yao. On the security of public key protocols. IEEE
Transactions on information theory, 29(2):198–208, 1983.

[EFF16] Eff article. https://www.eff.org/deeplinks/2016/12/
https-deployment-growing-leaps-and-bounds-2016-review, 2016. Accessed:
2016-01-05.

[EMMS14] Santiago Escobar, Catherine Meadows, José Meseguer, and Sonia Santiago. State
space reduction in the maude-nrl protocol analyzer. Inf. Comput., 238:157–186,
2014.

[ESM10] Santiago Escobar, Ralf Sasse, and José Meseguer. Folding variant narrowing and
optimal variant termination. In Rewriting Logic and Its Applications, pages 52–68.
Springer, 2010.

[FDW04] Martin Feldhofer, Sandra Dominikus, and Johannes Wolkerstorfer. Strong authen-
tication for RFID systems using the AES algorithm. In Cryptographic Hardware
and Embedded Systems-CHES 2004, pages 357–370. Springer, 2004.

[FDW10] Wan Fokkink, Mohammad Torabi Dashti, and Anton Wijs. Partial order reduction
for branching security protocols. In Proceedings of ACSD’10. IEEE, 2010.

[FG05] Cormac Flanagan and Patrice Godefroid. Dynamic partial-order reduction for
model checking software. In ACM Sigplan Notices, volume 40, pages 110–121.
ACM, 2005.

[FJHG99] THAYER Fabrega, F Javier, Jonathan C Herzog, and Joshua D Guttman. Strand
spaces: Proving security protocols correct. Journal of computer security, 7(2-
3):191–230, 1999.

[GDP] GDPR. http://ec.europa.eu/justice/data-protection/reform/index_en.
htm. Accessed: 2016-01-05.

[God91] Patrice Godefroid. Using partial orders to improve automatic verification methods.
In Computer-Aided Verification, pages 176–185. Springer Berlin Heidelberg, 1991.

[GP05] Deepak Garg and Frank Pfenning. Type-directed concurrency. In Proceedings
of the International Conference on Concurrency Theory, volume 3653 of Lecture
Notes in Computer Science. Springer, 2005.

239

https://www.eff.org/deeplinks/2016/12/https-deployment-growing-leaps-and-bounds-2016-review
https://www.eff.org/deeplinks/2016/12/https-deployment-growing-leaps-and-bounds-2016-review
http://ec.europa.eu/justice/data-protection/reform/index_en.htm
http://ec.europa.eu/justice/data-protection/reform/index_en.htm

Bibliography

[GRCC15] Gurchetan S Grewal, Mark D Ryan, Liqun Chen, and Michael R Clarkson. Du-
vote: Remote electronic voting with untrusted computers. In 2015 IEEE 28th
Computer Security Foundations Symposium, pages 155–169. IEEE, 2015.

[GvLH+96] Patrice Godefroid, J van Leeuwen, J Hartmanis, G Goos, and Pierre Wolper.
Partial-order methods for the verification of concurrent systems: an approach to
the state-explosion problem, volume 1032. Springer Heidelberg, 1996.

[HBD16] Lucca Hirschi, David Baelde, and Stéphanie Delaune. A method for verifying
privacy-type properties: the unbounded case. In 37th Symposium on Security and
Privacy (Oakland’16), pages 564–581. IEEE, 2016.

[hel] Princeton election server. https://princeton.heliosvoting.org/. Accessed:
2016-01-05.

[Hira] L. Hirschi. APTE with POR. http://www.lsv.ens-cachan.fr/~hirschi/apte_
por. Accessed: 2016-01-05.

[Hirb] Lucca Hirschi. SPEC with dependency constraints. http://www.lsv.ens-cachan.
fr/~hirschi/spec.php. Accessed: 2016-01-05.

[Hir13] Lucca Hirschi. Réduction d’entrelacements pour l’équivalence de traces. RR LSV-
13-13, Laboratoire Spécification et Vérification, ENS Cachan, France, September
2013.

[HNW98] Michaela Huhn, Peter Niebert, and Heike Wehrheim. Partial order reductions
for bisimulation checking. In Vikraman Arvind and Ramaswamy Ramanujam,
editors, Foundations of Software Technology and Theoretical Computer Science,
18th Conference, Chennai, India, December 17-19, 1998, Proceedings, volume 1530
of Lecture Notes in Computer Science, pages 271–282. Springer, 1998.

[Hüt03] Hans Hüttel. Deciding framed bisimilarity. Electronic Notes in Theoretical Com-
puter Science, 68(6):1–18, 2003.

[ICA04] PKI for machine readable travel documents offering ICC read-only access. Techni-
cal report, International Civil Aviation Organization, 2004.

[ISO09] Iso 15408-2: Common criteria for information technology security evaluation - part
2: Security functional components, July 2009.

[JW09] Ari Juels and Stephen A Weis. Defining strong privacy for RFID. ACM Transac-
tions on Information and System Security, 13(1):7, 2009.

[K+16] Steve Kremer et al. To du or not to du: A security analysis of du-vote. In 2016
IEEE European Symposium on Security and Privacy, pages 473–486. IEEE, 2016.

240

https://princeton.heliosvoting.org/
http://www.lsv.ens-cachan.fr/~hirschi/apte_por
http://www.lsv.ens-cachan.fr/~hirschi/apte_por
http://www.lsv.ens-cachan.fr/~hirschi/spec.php
http://www.lsv.ens-cachan.fr/~hirschi/spec.php

Bibliography

[KR05] S. Kremer and M. D. Ryan. Analysis of an electronic voting protocol in the applied
pi-calculus. In Proc. 14th European Symposium on Programming, volume 3444 of
LNCS, pages 186–200. Springer-Verlag, 2005.

[LAK06] Sangshin Lee, Tomoyuki Asano, and Kwangjo Kim. RFID mutual authentication
scheme based on synchronized secret information. In Symposium on cryptography
and information security, 2006.

[log] Logjam website. https://mitls.org/pages/attacks/Logjam. Accessed: 2016-
01-05.

[Low97] Gavin Lowe. A hierarchy of authentication specifications. In Proc. 10th Computer
Security Foundations Workshop, pages 18–30. IEEE Computer Society Press, 1997.

[Mil03] Dale Miller. Encryption as an abstract data type. Electr. Notes Theor. Comput.
Sci., 84, 2003.

[MNP02] M.Boreale, R. De Nicola, and R. Pugliese. Proof techniques for cryptographic
processes. SIAM Journal on Computing, 31(3):947–986, 2002.

[MS92] R. Milner and D. Sangiorgi. Barbed bisimulation. In W. Kuich, editor, Proc. 19th
International Colloquium on Automata, Languages, and Programming, volume 623
of LNCS, pages 685–695. Springer Verlag, 1992.

[MS01] J. Millen and V. Shmatikov. Constraint solving for bounded-process cryptographic
protocol analysis. In Proceedings of Conference on Computer and Communications
Security. ACM Press, 2001.

[MS07] Dale Miller and Alexis Saurin. From proofs to focused proofs: A modular proof
of focalization in linear logic. In Proceedings of the EACSL Annual Conference on
Computer Science Logic, volume 4646. Springer, 2007.

[MSCB13] S. Meier, B. Schmidt, C. Cremers, and D. Basin. The Tamarin Prover for the
Symbolic Analysis of Security Protocols. In Proc. 25th International Conference
on Computer Aided Verification, volume 8044 of LNCS, pages 696–701. Springer,
2013.

[MSDL99] J Mitchell, A Scedrov, N Durgin, and P Lincoln. Undecidability of bounded security
protocols. In Workshop on Formal Methods and Security Protocols, 1999.

[MVB10] Sebastian Mödersheim, Luca Viganò, and David A. Basin. Constraint differentia-
tion: Search-space reduction for the constraint-based analysis of security protocols.
Journal of Computer Security, 18(4), 2010.

[nava] Navizon website. https://www.navizon.com/. Accessed: 2016-01-05.

241

https://mitls.org/pages/attacks/Logjam
https://www.navizon.com/

Bibliography

[navb] Shops can track you via your smartphone, privacy watchdog
warns. https://www.theguardian.com/technology/2016/jan/21/
shops-track-smartphone-uk-privacy-watchdog-warns. Accessed: 2016-
01-05.

[NS78] Roger M Needham and Michael D Schroeder. Using encryption for authentication
in large networks of computers. Communications of the ACM, 21(12):993–999,
1978.

[PAC] Technical advisory group on machine readable travel documents (tag/mrtd). http:
//www.icao.int/Meetings/TAG-MRTD/TagMrtd22/TAG-MRTD-22_WP05.pdf. Ac-
cessed: 2016-01-05.

[PAdM10] Olivier Pereira, Ben Adida, and Olivier de Marneffe. Bringing open audit elections
into practice: Real world uses of Helios. swiss e-voting workshop, 2010.

[Pel98] Doron Peled. Ten years of partial order reduction. In Proceedings of International
Conference on Computer-Aided Verification, volume 1427. Springer, 1998.

[PM15] Adam Petcher and Greg Morrisett. The foundational cryptography framework. In
Principles of Security and Trust, pages 53–72. Springer, 2015.

[PvdM16] Kenneth G Paterson and Thyla van der Merwe. Reactive and proactive standard-
isation of TLS. In Security Standardisation Research, pages 160–186. Springer,
2016.

[PZ13] Christian Paquin and Greg Zaverucha. U-prove cryptographic specification v1.1
(revision 3), December 2013.

[RSA78] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

[SA06] Koushik Sen and Gul Agha. Automated systematic testing of open distributed
programs. In Fundamental Approaches to Software Engineering, pages 339–356.
Springer, 2006.

[SEMM14] Sonia Santiago, Santiago Escobar, Catherine Meadows, and José Meseguer. A
formal definition of protocol indistinguishability and its verification using maude-
npa. In Security and Trust Management, pages 162–177. Springer, 2014.

[SRC15] Ben Smyth, Mark D Ryan, and Liqun Chen. Formal analysis of privacy in direct
anonymous attestation schemes. Science of Computer Programming, 111:300–317,
2015.

[SS96] Steve Schneider and Abraham Sidiropoulos. CSP and anonymity. In Proc. Inter-
national Conference on Computer Security, pages 198–218. Springer, 1996.

242

https://www.theguardian.com/technology/2016/jan/21/shops-track-smartphone-uk-privacy-watchdog-warns
https://www.theguardian.com/technology/2016/jan/21/shops-track-smartphone-uk-privacy-watchdog-warns
http://www.icao.int/Meetings/TAG-MRTD/TagMrtd22/TAG-MRTD-22_WP05.pdf
http://www.icao.int/Meetings/TAG-MRTD/TagMrtd22/TAG-MRTD-22_WP05.pdf

Bibliography

[SSB+16] Altaf Shaik, Jean-Pierre Seifert, Ravishankar Borgaonkar, N. Asokan, and Valt-
teri Niemi. Practical attacks against privacy and availability in 4G/LTE mobile
communication systems. In 23nd Annual Network and Distributed System Security
Symposium, 2016.

[SW03] Davide Sangiorgi and David Walker. The pi-calculus: a Theory of Mobile Processes.
Cambridge university press, 2003.

[TD10] Alwen Tiu and Jeremy E. Dawson. Automating open bisimulation checking for the
spi calculus. In Proceedings of the IEEE Computer Security Foundations Sympo-
sium. IEEE Computer Society Press, 2010.

[Tiu07] Alwen Tiu. A trace based bisimulation for the spi calculus. In Programming
Languages and Systems, pages 367–382. Springer, 2007.

[TKL+12] Samira Tasharofi, Rajesh K Karmani, Steven Lauterburg, Axel Legay, Darko Mari-
nov, and Gul Agha. Transdpor: A novel dynamic partial-order reduction technique
for testing actor programs. In Formal Techniques for Distributed Systems, pages
219–234. Springer, 2012.

[Tur17] Joseph Turow. The Aisles Have Eyes. Yale University Press, 2017.

[UKA] UKano official webpage. http://projects.lsv.ens-cachan.fr/ukano/. Ac-
cessed: 2016-01-05.

[UKe] UKano case studies. https://github.com/LCBH/UKano/wiki#
our-case-studies. Accessed: 2016-01-05.

[vdBVdR15] Fabian van den Broek, Roel Verdult, and Joeri de Ruiter. Defeating IMSI Catch-
ers. Proceedings of the 2015 ACM Conference on Computer and Communications
Security - CCS’15, 2015.

[VDMR08] Ton Van Deursen, Sjouke Mauw, and Saša Radomirović. Untraceability of RFID
protocols. In Information Security Theory and Practices. Smart Devices, Conver-
gence and Next Generation Networks, pages 1–15. Springer, 2008.

[VDR08] Ton Van Deursen and Sasa Radomirovic. Attacks on RFID protocols. IACR
Cryptology ePrint Archive, 2008:310, 2008.

243

http://projects.lsv.ens-cachan.fr/ukano/
https://github.com/LCBH/UKano/wiki#our-case-studies
https://github.com/LCBH/UKano/wiki#our-case-studies

Titre : Vérification automatique de la protection de la vie privée : entre théorie
et pratique

Mots clefs : Protocoles de sécurité, vérification, vie privée, méthodes formelles

Résumé : Notre société de l’information s’appuie
de façon cruciale sur notre capacité à échanger
des données protégées par des protocoles crypto-
graphiques. Étant donné leur prédominance et leur
importance, il est important de garantir qu’ils ac-
complissent leurs objectifs, tels que la protection de
la vie privée. Idéalement, ces garanties sont obte-
nues par des méthodes formelles qui, via leurs fon-
dements mathématiques, permettent une analyse
rigoureuse. Seulement, ces méthodes sont limitées
par des problèmes de passage à l’échelle et de pré-
cision que nous nous proposons de résoudre dans

cette thèse.
Pour le premier problème, nous développons des
méthodes de réduction d’ordre partiel pour réduire
drastiquement l’espace d’exploration. Pour le se-
cond, nous proposons une nouvelle approche de vé-
rification. Nous définissons deux propriétés facile-
ment vérifiables qui impliquent la non-traçabilité
et l’anonymat.
Nous montrons l’impact pratique important de nos
travaux via leur implémentation et leur application
à des protocoles industriels menant à la découverte
de nouvelles attaques et de preuves de sécurité.

Title : Automated Verification of Privacy in Security Protocols: Back and Forth
Between Theory & Practice

Keywords : Security Protocols, verification, privacy, formal methods

Abstract : Our information society notably relies
on secure information exchanges typically achie-
ved by security protocols. Given, their ubiquitous
and critical nature, we need guarantees that they
meet their goals such as privacy properties. Ideally,
those guarantees are established via formal me-
thods providing mathematical frameworks to ana-
lyse security protocols. However, existing methods
suffer from scalability and precision issues that the
present thesis aims to address.
First, to mitigate the scalability problem, we de-

velop partial order reduction techniques enabling
to dramatically reduce the search space to explore
when analysing security protocols. Second, we solve
a critical precision issue by adopting a privacy via
sufficient conditions approach. We show that two
well-designed and easily verifiable conditions al-
ways imply unlinkability and anonymity.
We confirm the practical relevance of our contri-
butions by implementing them and using them for
analysing real-life security protocols, finding new
attacks and establishing new proofs.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

2

	Résumé en Français
	Abstract
	Remerciements

	Contents
	General Introduction
	General Context
	Security Protocols
	Cryptographic Primitives
	The Example of the BAC Protocol
	Some Logical Attacks on the BAC Protocol

	Formal Verification
	Computational Approach
	Symbolic Approach

	State of the Art: Methods and Tools
	Decision for a Bounded Number of Sessions
	Semi-Decision for an Unbounded Number of Sessions
	Other Results

	Problems
	Main Limitation for the Bounded Case: State Space Explosion
	Main Limitations for the Unbounded Case: Lack of Precision

	Contributions
	POR Techniques for the Bounded Case
	Verifying Privacy via Sufficient Conditions for the Unbounded Case
	Developed Software and Models

	Organisation of the Thesis

	Publications by the Author
	Model
	Introduction
	Modelling Security Protocols
	Term Algebra
	Semantics of Messages: Equational Theory
	Semantics of Terms: Computation Relation
	Attacker's Knowledge: Recipes & Frames

	Process Algebra
	Syntax
	Internal Reduction
	Semantics

	Instances of Term Algebras
	Computation Relation Through Rewriting Systems
	Computation Relation Through an Equational Theory

	Modelling Security Goals
	Reachability Properties
	Behavioural Equivalences
	Trace Equivalence
	Other Behavioural Equivalences

	Examples of Privacy Goals Modelling
	Unlinkability of Feldhofer
	Anonymity of the Private Authentication Protocol

	Variations of the Semantics
	Executing Unobservable Actions Greedily
	Internal Reduction: Conditional, Parallel Composition and Blocked Output
	-greedy Executions: Creation of Names

	Executing Unobservable Actions Lazily
	Stability of the Security Notions

	Partial Order Reduction Techniques
	Introduction
	A Reduced Semantics: Theory
	Instantiation of the Model and Class of Processes
	Annotated Semantics
	Annotations and Semantics
	Action Dependencies
	Symmetries of Trace Equivalence
	Proof of the Strong Symmetry Lemma

	Compression
	Compressed Strategy
	Improper Blocks and Release Rule
	Reachability
	Equivalence
	Proof of thm:eint-eintc

	Reduction
	Strong Independence
	Priority Order And Necessity
	Reduced Semantics
	Reachability
	Equivalence

	Main Result and Discussions

	Putting Reduced Semantics into Practice and Integration in Apte
	Instantiation of the Model and Class of Processes
	Combining Compression and Reduction with Constraint Solving
	Symbolic Semantics
	Embedding Compression into Symbolic Semantics
	Embedding Reduction into Symbolic Semantics

	Integration in Apte
	Apte in a Nutshell
	Specification of the Procedure
	Proof of the Original Procedure
	Integrating Compression
	Integrating Dependency Constraints

	Implementation and Benchmarks
	Implementation
	Benchmarks

	Conclusion

	Related Work
	Classical POR
	Security Applications
	Proof Theory

	Verifying Privacy via Sufficient Conditions
	Introduction
	Model & Problem
	Instantiation of the Model
	A Generic Class of Two-party Protocols
	Security Goals
	Unlinkability
	Anonymity
	Discussion

	Sufficient Conditions for Privacy
	Annotations
	Frame Opacity
	Canonical Syntactical Idealisation
	Semantical Idealisation

	Well-Authentication
	Main Theorem: Soundness of Conditions w.r.t. Privacy
	Proof of our Main Theorem
	Abstraction of Configurations
	Control is Determined by Associations
	Invariance of Frame Idealisations
	A sufficient Condition for Preserving Executability
	Final Proof

	Mechanisation & Case Studies
	Mechanisation
	Frame Opacity
	Well-authentication
	The Tool UKano

	Case Studies
	Hash-Lock Protocol
	LAK Protocol
	BAC Protocol and some others
	PACE Protocol
	Attributed-Based Authentication Scenario Using ABCDH Protocol
	DAA Join & DAA Sign

	Conclusion
	Regarding Mechanisation and the Tool UKano
	Regarding our Conditions and our Main Theorem
	Reusing Core Ideas of the Methodology

	General Conclusion
	Summary
	Future Work

	Bibliography
	Bibliography

