
HAL Id: tel-01534172
https://theses.hal.science/tel-01534172

Submitted on 7 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Supporting architectural design of acknowledged
Software-intensive Systems- of-Systems

Marcelo Benites Gonçalves

To cite this version:
Marcelo Benites Gonçalves. Supporting architectural design of acknowledged Software-intensive
Systems- of-Systems. Software Engineering [cs.SE]. Université de Bretagne Sud; Universidade de
São Paulo (Brésil), 2016. English. �NNT : 2016LORIS429�. �tel-01534172�

https://theses.hal.science/tel-01534172
https://hal.archives-ouvertes.fr

	

	

	

THESE / UNIVERSITE DE BRETAGNE-SUD
sous le sceau de l’Université Bretagne Loire

pour obtenir le titre de

DOCTEUR DE L’UNIVERSITE DE BRETAGNE-SUD

Mention :
Ecole doctorale: SICMA	

Présentée par

Marcelo BENITES GONÇALVES

Préparée à l’unité mixte de recherche 6074
Institut de Recherche en Informatique et Systèmes Aléatoires
Université Bretagne Sud	

Support à la conception

architecturale de
systèmes-de-systèmes

reconnus à logiciel
prépondérant

Thèse soutenue le 12 décembre 2016, devant le jury composé de :
M. Jair Cavalcanti LEITE

Professeur Titulaire, Université Fédérale du Rio Grande do Norte (UFRN), Natal, Brésil
/ Rapporteur

M. Yann POLLET
Professeur, Conservatoire National des Arts et Métiers (CNAM), Paris, France
/ Rapporteur

M. Khalil DRIRA
Directeur de Recherche CNRS, LAAS-CNRS, Toulouse, France
/ Examinateur

Mme. Cecília Mary Fischer RUBIRA
Professeur Titulaire, Université d’Etat de Campinas (UNICAMP), Campinas - SP, Brésil
/ Examinateur

Mme. Elisa Yumi NAKAGAWA
Maitre de Conférences HDR, Université de São Paulo, São Carlos, Brésil
/ Directrice de thèse

M. Flavio OQUENDO
Professeur des Universités, IRISA - Université Bretagne Sud, Vannes, France
/ Directeur de thèse

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Marcelo Benites Gonçalves

Supporting architectural design of
acknowledged SoS

Doctoral dissertation submitted to the Instituto de
Ciências Matemáticas e de Computação - ICMC-
USP and the Institut de Recherche en Informatique
et Systèmes Aléatoires - IRISA, in partial fulfillment
of the requirements for the degree of the Doctorate
in Science and Docteur en Informatique in the
agreement between the Graduate Program in
Computer Science and Computational Mathematics
(USP) and the Doctoral Program in Mathematics and
Information and Communication Science and
Technology (UBS). EXAMINATION BOARD
PRESENTATION COPY

Concentration Area: Computer Science and
Computational Mathematics / Mathematics and
Information and Communication Science and
Technology

Advisor: Profa. Dra. Elisa Yumi Nakagawa
(ICMC-USP, Brazil)
Advisor: Prof. Dr. Flavio Oquendo
(IRISA, France)

ICMC-USP, Brasil / IRISA, France
November 2016

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Abstract

System-of-Systems (SoS) refer to complex, large-scale, and sometimes crit-
ical software-intensive systems that has raised as a promising class of sys-
tems in several application domains. In parallel, software architectures play
a significant role in the development of software-intensive systems, dealing
with both functional and non-functional requirements. In particular, sys-
tematic processes to design SoS software architectures can tackle challenges
from SoS development, including to handle collaboration of independent
constituent systems with di↵erent owners, missions, and interests. Despite
the relevance and necessity of software-intensive SoS for diverse application
domains, most of their software architectures have been still developed in
an ad hoc manner. In general, there is a lack of structured processes for
architecting SoS, hindering the secure adoption of SoS, reducing possibil-
ities of sharing common architectural solutions, and negatively impacting
in the success rate for these systems. This thesis presents SOAR (“Gen-
eral Process for Acknowledged SoS Software Architectures”) that supports
the establishment of architectural design processes for acknowledged SoS.
Conceived to provide di↵erent levels of support according to each SoS devel-
opment context, it comprises a high level kernel that describes what must be
done when architecting SoS and also three practices with specific activities
and work products to guide how to perform architectural analysis, synthe-
sis, and evaluation. To evaluate SOAR, three surveys, a viability study, and
an experiment were conducted. Results achieved in these evaluation studies
indicate that SOAR can positively support the instantiation of architecting
processes for acknowledged SoS and, as a consequence, contribute to the
development and evolution of these complex, software-intensive systems.

Keywords: Acknowledged System-of-Systems, Software architecture, de-
sign process.

i

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Résumé

Systèmes-de-systèmes (SoS) sont des systèmes à logiciel prépondérant de
grande échelle, complexes et parfois critiques qui s’ont soulevés comme une
classe de systèmes prometteuse dans plusieurs domaines d’application. En
parallèle, architectures logicielles ont un rôle important dans le développe-
ment de systèmes à logiciel prépondérant, en traitant des exigences fonction-
nelles et non fonctionnelles. En particulier, processus systématiques pour
concevoir des architectures logicielles de SoS peuvent adresser les défis du
développement de SoS, y compris la collaboration des systèmes constitu-
ants indépendants avec di↵érents propriétaires, des missions et des intérêts.
Malgré la relevance et la nécessité des SoS à logiciel prépondérant dans
plusieurs domaines d’application, la plupart de leurs architectures logicielles
sont encore développées de manière ad hoc. En général, il y a un manque
de processus structurés pour concevoir architectures de SoS. Cette condi-
tion entrave l’adoption assurée de SoS, réduit les possibilités de partager
solutions architecturales communes et a un impact négatif sur le taux de
réussite pour ces systèmes. Cette thèse présente SOAR (General Process
for Acknowledged SoS Software Architectures) qui soutient la mise en place
des processus de conception architecturale pour SoS reconnus. Ce processus
a été conçu pour fournir di↵érents niveaux de soutien en fonction de chaque
contexte de développement de SoS. Il comprend un noyau de haut niveau qui
décrit ce qu’il faut faire pour la conception des architectures de SoS et ainsi
que trois pratiques avec des activités spécifiques et des produits de travail
pour guider l’analyse, synthèse et évaluation architecturale. Afin d’évaluer
SOAR, trois enquêtes, une étude de viabilité et une expérimentation ont été
menées. Les résultats obtenus dans ces trois études d’évaluation indiquent
que SOAR peut soutenir positivement l’instanciation des processus de con-
ception architecturale pour des SoS reconnus et par conséquent contribuer
au développement et l’évolution de ces systèmes complexes à logiciel prépon-
derant.

Mots clés: Systèmes-de-systèmes, Architecture logicielle, Processus de con-
ception.

v

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Contents

1 Introduction 1
1.1 Problem Statement . 3
1.2 Objectives and Research Questions . 4
1.3 Contributions . 4
1.4 Thesis Outline . 8

2 State of the art of SoS Software Architectures 11
2.1 System-of-Systems (SoS) . 11

2.1.1 Characterizing SoS . 12
2.1.2 Conceptual Model to Classify SiSoS 13
2.1.3 Illustrative Examples . 17

2.2 Architecting SoS . 18
2.2.1 Software Architecture . 19
2.2.2 SoS Software Architectures: a Sytematic Mapping 21
2.2.3 Architectural Process of SoS: a Systematic Literature Review 37

2.3 Final Remarks . 49

3 SOAR Kernel: General Approach for Architecting Acknowledged SoS 53
3.1 Description of SOAR Kernel . 53

3.1.1 SOAR Kernel Alphas: Things to Work with 54
3.1.2 SOAR Kernel Activity Spaces: Things to do 58
3.1.3 SOAR Kernel Competencies: Required Skills 60

3.2 Evaluation of SOAR Kernel . 61
3.2.1 Analysis and Intepretation of Results 63
3.2.2 Threats to Validity . 67

3.3 Final Remarks . 67

4 SOAR-A: Architectural Analysis on Acknowledged SoS 69
4.1 Description of SOAR-A . 69

4.1.1 SOAR-A Activities . 70
4.1.2 SOAR-A Alpha States and Work Products 74

4.2 Evaluation . 77
4.2.1 Analysis and Interpretation of Results 79

vii

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

4.2.2 Threats to Valitidy . 83
4.3 Final Remarks . 83

5 SOAR-S: A Practice for Architectural Synthesis on Acknowledged SoS 85
5.1 Description of SOAR-S . 85

5.1.1 SOAR-S Activities . 86
5.1.2 SOAR-S Alpha States and Work Products 89

5.2 Verifying the Applicability of SOAR-S: First Study 91
5.2.1 Scope and Planning of the Study 92
5.2.2 Study Operation . 94
5.2.3 Analysis and Interpretation of Results 96
5.2.4 Threats to Validity . 97

5.3 Evaluating SOAR-S: Second Study . 98
5.3.1 Scope and Planning the Experiment 99
5.3.2 Experiment Operation . 101
5.3.3 Analysis and Interpretation of Results 102
5.3.4 Discussion and Threats to Valididy 103

5.4 Final Remarks . 105

6 SOAR-E: A Practice for Architectural Evaluation on Acknowledged SoS107
6.1 Description of SOAR-E . 107

6.1.1 SOAR-E Activities . 108
6.1.2 SOAR-E Alpha States and Work Products 113

6.2 Evaluation . 115
6.2.1 Analysis and Interpretation of Results 117

6.3 Final Remarks . 121

7 Conclusions 123
7.1 Revisiting the Thesis Contributions . 124
7.2 Limitations and Future Work . 126

References 148

A Systematic Mapping on SoS Software Architectures: Study Protocol
and List of Included Primary Studies 149
A.1 Phase 1: Planning . 151

A.1.1 Research Questions . 151
A.1.2 Search Strategy . 153
A.1.3 Inclusion and Exclusion Criteria . 154
A.1.4 Quality Assessment . 155
A.1.5 Selection of Primary Studies . 155
A.1.6 Data Extraction and Synthesis Method 156
A.1.7 Threats to Validity . 156

A.2 List of Primary Studies . 156

viii

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

B Systematic Literature Review on SoS Architecting Processes: Study
Protocol and List of Included Primary Studies 163
B.1 Research Methodology . 163

B.1.1 Research Questions . 165
B.1.2 Search Strategy . 165
B.1.3 Selecion Criteria . 166
B.1.4 Data Extraction . 167
B.1.5 Quality Assessment . 167

B.2 Threats to Validity . 168
B.3 SLR: List of Selected Studies . 169

C The OMG’s Essence Standard 171
C.1 Essence Language . 171

C.1.1 Fundamentals . 172
C.1.2 Main Elements . 173

C.2 Essence Kernel . 175
C.2.1 Essence Kernel Alphas . 176
C.2.2 Essence Kernel Activity Spaces . 178
C.2.3 Essence Kernel Competencies . 179

D Using EssWork Practice Workbench to Build a SOAR-based Process
Instance 181
D.1 The Flood Monitoring Application Domain 182
D.2 An Process Instance to Flood Monitoring SoS 183

D.2.1 Characterizing a Flood Monitoring SoS 184
D.2.2 Building a process instance in EssWork Practice Workbench 184
D.2.3 Following Iterations . 193

E Survey Questionnaires 195
E.1 Questionnaire for personal profiles . 195
E.2 Questionnaire of SOAR Kernel’s survey . 196
E.3 Questionnaire of SOAR-A’s survey . 200
E.4 Questionnaire of SOAR-E’s survey . 202

ix

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

List of Figures

1.1 Context of application of SOAR (adapted from (Acheson et al., 2012)) . . 5
1.2 SOAR overview . 7

2.1 Conceptual model for SiSoS (Gonçalves et al., 2014). 14
2.2 Context of software architecture (Adapted from ISO/IEC 42010 (2011)) . . 21
2.3 Distribution of primary studies through the years 23
2.4 Countries of the authors of the primary studies 23
2.5 Application domains of SoS . 24
2.6 Architecturally relevant characteristics of SoS 25
2.7 Quality attributes of SoS . 26
2.8 Approaches for architectural representation of SoS 28
2.9 Approaches for architectural evaluation of SoS 30
2.10 Approaches to support architectural design 32
2.11 Framework for the characterization of research in the SoS software archi-

tecture area . 50
2.12 Characterization of a primary study . 51
2.13 Architectural design process reference model (Hofmeister et al., 2007) . . . 52

3.1 Workflow of SOAR Kernel . 55
3.2 Alphas of SOAR Kernel and their relations 56
3.3 Activity spaces of SOAR Kernel . 58
3.4 Competencies of SOAR Kernel . 60
3.5 Levels of expertise on SOAR Kernel survey 63
3.6 Evaluation of SOAR Kernel completeness 64
3.7 Evaluation of completeness of alphas and activity spaces in SOAR Kernel . 64
3.8 Impression level concerning SoS Kernel alphas and activity spaces 65
3.9 Coherence evaluation of SOAR Kernel . 65
3.10 Usability evaluation of SoS Kernel . 66

4.1 SOAR-A activities workflow . 71
4.2 Levels of expertise on SOAR-A survey . 80
4.3 SOAR-A Survey: RQ1 Results of Non-discursive Questions 81
4.4 SOAR-A survey: RQ2 results of non-discursive questions 81

xi

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

4.5 SOAR-A Survey: RQ3 results of non-discursive questions 82
4.6 SOAR-A Survey: RQ4 results of non-discursive questions 82

5.1 SOAR-S activities workflow . 87
5.2 Study operation . 95
5.3 Impressions of SOAR-S representation. 97
5.4 Impressions of SoS description. 98
5.5 Experiment operation of second experiment 102
5.6 Impressions of SoS description. 104

6.1 SOAR-E activities workflow . 109
6.2 Levels of expertise on SOAR-E Survey . 118
6.3 SOAR-E Survey: RQ1 results of non-discursive questions 119
6.4 SOAR-E Survey: RQ2 results of non-discursive questions 119
6.5 SOAR-E Survey: RQ3 Results of non-discursive questions 120
6.6 SOAR-A Survey: RQ4 results of non-discursive questions 120

7.1 Main thesis contributions and correlation to research goals 125

A.1 SLR protocol . 150
A.2 SoS software architectures investigation: GQM approach 152

B.1 Process for reviewing literature in SLRs (Kitchenham and Charters, 2007). 164

C.1 Essence architecture (Adapted from (Object Management Group (OMG),
2014)) . 173

C.2 Essence Language conceptual overview (Adapted from (Object Manage-
ment Group (OMG), 2014)) . 174

C.3 Essence Kernel Areas (Object Management Group (OMG), 2014). 176
C.4 The Alphas of Essence Kernel (Object Management Group (OMG), 2014). 177
C.5 Activity spaces of Essence Kernel(Object Management Group (OMG), 2014).178
C.6 Competencies of Essence Kernel (Object Management Group (OMG), 2014).180

D.1 Competencies of EssWork Practice Workbench. 182
D.2 Editing analysis plan work product . 186
D.3 Adding a new activity to SOAR-A . 187
D.4 Example of a process instance . 188
D.5 Editing a final process instance . 191
D.6 HTML of process instance for FMSoS . 192
D.7 Card view of acitivity . 192
D.8 Card view of planning analysis acitivity 193
D.9 State cards generated for Architectural Backlog 193
D.10 Alpha states evolution chart (Adapted from (Jacobson et al., 2013)) 194

xii

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

List of Tables

2.1 SoSs vs. monolithic systems (Adapted from (Valerdi et al., 2007)) 13
2.2 Key concepts for SoS (Boardman and Sauser, 2006; DoD, 2008; Firesmith,

2010; Maier, 1998; Zhou et al., 2011) . 15
2.3 Basic categories of SoS (Dahmann and Baldwin, 2008; Maier, 1998) 16
2.4 Adherence of the proposed approaches to the Hofmeister et al.’s model

(Hofmeister et al., 2007) . 41

3.1 Survey research questions . 62
3.2 Survey results of non-discursive questions 66

4.1 Work products produced/updated in SOAR-A activities 77
4.2 Survey research questions . 78

5.1 Work products produced/updated in SOAR-S activities 92
5.2 First SOAR-S study: summary of results 96
5.3 Process requirements for architectural synthesis 100
5.4 Second SOAR-S study: subjects individual scores on each instantiation

activity . 103

6.1 Work products produced/updated in SOAR-E activities 116
6.2 Survey research questions . 116

A.1 SM - Checklist for the assessment of the quality of primary studies 155
A.2 SM: list of selected studies . 156

B.1 Research questions and respective goals . 165
B.2 Electronic databases used in the automated search procedure 166
B.3 Data items extracted from selected primary studies 167
B.4 Systematic literature review: list of selected studies 170

D.1 Analysis of FMSoS . 185
D.2 Tasks of process instance . 188

xiii

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

xiv

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter

1
Introduction

With the advances of computational, network, and communication technologies, software-

intensive systems have become increasing ubiquitous, larger, and complex, with consid-

erable dissemination in various application domains and society sectors. In this scenario,

System-of-Systems (SoS) arises as a class of systems with the potential of encompass-

ing new development challenges brought by these advances. An SoS can be defined as

a set or arrangement of independent systems, cooperating into a larger resulting system

that delivers unique capabilities (DoD, 2008). Despite SoS concept has been used since

the 1950s, only recently its popularity has grown with the current network and commu-

nications technologies that have made possible to conceive and maintain a structure of

independent systems from di↵erent organizations producing emergent behaviors that are

not possible to be delivered by any of these systems working separately (Nielsen et al.,

2015). With this perspective of cooperation, SoS has gained space on several domains,

such as the internet (Maier, 1998), global earth observation (Johnson, 2008), healthcare

(Hata et al., 2007; Nielsen et al., 2015), emergence response (Nielsen et al., 2015), energy

(Agusdinata and DeLaurentis, 2008; Nielsen et al., 2015), transportation (DeLaurentis,

2005a; Nielsen et al., 2015), airport control (Jamshidi, 2008b), automotive (Aoyama and

Tanabe, 2011), avionics (Farcas et al., 2010), and robotics (Bowen and Sahin, 2010). SoS

development demands new software engineering approaches capable to encompass the SoS

challenges in software-intensive domains. In this context, the software architectures of SoS

have been noticed as an important element to the success of such systems (Brondum and

1

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Liming, 2010; Jamshidi, 2008b; Maier, 1998; Schaefer, 2005), and an important related

issue is to promote the adequate design of these architectures.

Software architecture is a fundamental element to guide development (Bengtsson et

al., 2004), being considered the backbone for any successful software-intensive system and

determinant to its quality (Shaw and Clements, 2006). A software architecture represents

the system structure including its software elements, their externally visible properties,

and the relationships among them. It must act as a bridge between the business goals

and the aimed system, providing a path from abstract customer needs to a final concrete

system (Bass et al., 2012). Architectural decisions directly impact on the achievement of

business goals as well as functional and quality requirements (Shaw and Clements, 2006).

Therefore, software architecture is essential not only in the initial construction of the

system but also in the further life cycle.

Due its relevance, the development of software architectures arises as a rich field of

concepts, methods, standards, frameworks, tools and so on to create, document, analyze,

and assess structural and behavioral specifications. In this sense, the use of systematic

architecting processes has become indispensable in the systems development, facilitating

the design and reducing development costs (Bass et al., 2012; Shaw and Clements, 2006).

Several approaches are proposed to guide and support the conduction of these processes

in traditional software engineering (Bass et al., 2012; Bosch, 2000; Clements et al., 2010;

Dikel et al., 2001; Garland and Anthony, 2003). Despite many of these approaches were

developed independently, a set of three macro-activities are commonly identified among

them (Hofmeister et al., 2007): (i) architectural analysis, which comprises the identifica-

tion of what problems in the system context software architecture can potentially solve;

(ii) the architectural synthesis, in which candidate architectural solutions must be pro-

posed to e↵ectively solve previously identified problems; and (iii) architectural evaluation,

which deals with evaluation of proposed solutions.

Architectural design processes are already considered an important research field in

systems engineering and even more when considering complex scenarios of SoS (Brondum

and Liming, 2010; Jamshidi, 2008b; Maier, 1998; Schaefer, 2005). SoS di↵er from mono-

lithic systems in several characteristics, such as the dynamicity and complexity of their op-

erational environments, boundaries, communication protocols, collaborating constituent

systems, and emergent behaviors (Acheson et al., 2012; Dagli et al., 2013). Therefore,

establishment and consolidation of systematic processes to overcome challenges and guide

the architectural design of these systems can bring important advantages, such as the

early identification of quality attributes, more comprehensive understanding of entire SoS

and its emergent behaviors, and cost savings in enabling constituent systems participation

(Kazman et al., 2012).

2

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 1. Introduction

1.1 Problem Statement

The development scenarios of SoS call for a paradigm shift to develop these systems. SoS

demand not only di↵erent models, views, and architectural levels, but also consistency

among them while the architecture evolves (Dagli et al., 2013). Several studies can be

found addressing SoS architectures and their construction from a Systems Engineering

perspective (Dandashi and Hause, 2015; DoD, 2008; Jamshidi, 2008b; Klein and van Vliet,

2013; Schuitemaker et al., 2015). Despite these studies can give important directions to

construct SoS software architectures, these studies still encompass the design by a Systems

Engineering level, not encompassing specific software development issues.

In the Software Engineering area, the complexity of SoS reaches a threshold where

customary approaches are no longer su�ciently reliable, naturally demanding for adap-

tations and proposition of new ones, as well as the formation of skilled engineers and

computer scientists to enable their accomplishment (Boehm and Lane, 2006; Dvorak et

al., 2005; Greaves et al., 2004). In terms of processes, SoS software architectures have

been constructed in an ad-hoc way, in which each architectural project is conducted on

a particular manner. In this context, current processes for software architectures do not

consider the particular challenges of SoS development, opening a new field to explore

particularities of software architectures development in SoS contexts.

The architectural processes in the SoS context must encompass several challenges,

such as: (i) increased complexity of scope and costs for planning and engineering (DoD,

2008); (ii) management of governance issues across multiple organizational boundaries

and stakeholders with competing interests and priorities (Dahmann et al., 2011; DoD,

2008); (iii) need to deals with emergent behaviors and likelihood of unpredictable ones

(DoD, 2008); (iv) achievement and maintenance of constituents cooperation as expected,

balancing individual characteristics, communication protocols, multiple lifecycles, and in-

dividual needs between constituent systems and SoS (Dagli et al., 2013; Dahmann et

al., 2011; DoD, 2008); and (v) establishment of an evolutionary development through

continuous changing scenarios (DoD, 2008). From this perspective, the complexity of

SoS demands for heavyweight plan-driven architecting processes in order to ensure an

adequate level of documentations, balance and alignment of architectural processes with

other processes of SoS development, reach the broad agreement among stakeholders, en-

sure high predictability of behaviors, and manage constituents participation in the SoS

context. Furthermore, architectural design processes can naturally exhibit domain char-

acteristics and emphasize di↵erent goals according to each system domain (Hofmeister et

al., 2007); the complexity of this process is increased in multidomain context, in which an

SoS typically has constituents with own domains. Moreover, each category of SoS (i.e.,

3

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

1.2. Objectives and Research Questions

virtual, collaborative, acknowledged, and directed) can also bring specific challenges for

development (DoD, 2008).

1.2 Objectives and Research Questions

According to research gaps presented in previous section, the general research question

to be investigated in this thesis is whether or not a general architecting process can sup-

port instantiation of specific architectural design processes for acknowledged SoS software

architectures. Based on this general research question, the main objective of this thesis

is to establish a general process, named SOAR (“General Process for Acknowledged SoS

Software Architectures”), conceived to support the establishment of design processes1

for acknowledged SoS software architectures. In this context, we focused our approach on

acknowledged SoS, an SoS category in which goals, management, resources, and author-

ity are all recognized at SoS level, while constituent systems retain their independence

and changes depend on negotiation between owners of SoS and of their constituent sys-

tems. Furthermore, this general goal will be achieved through the satisfaction of following

sub-goals:

SG1: To describe what must be encompassed in terms of process when designing ac-

knowledged SoS software architectures;

SG2: To provide support to establish processes for architectural analysis of acknowl-

edged SoS;

SG3: To provide support to establish processes for architectural synthesis of acknowl-

edged SoS; and

SG4: To provide support to establish processes for architectural evaluation of acknowl-

edged SoS.

With SOAR, we aim at providing prescriptive guidance for project teams to design

acknowledged SoS software architectures, the further implementation and evolution of

these systems.

1.3 Contributions

The SoS development process is a large set of processes that are multiple and interdepen-

dent in terms of work products (Perry, 1994; Sage and Biemer, 2007). In this context,

1In this thesis, we stipulate that a process can be formed by other processes.

4

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 1. Introduction

SOAR was conceived to make it possible to create instances of processes in consonance

with an specific SoS development process. For this, we established an interface with inputs

and outputs that must be adequately dealt in the SoS development process. SOAR is also

compatible with the general process for SoS development proposed in (DoD, 2008), which

describes a process at systems engineering level that reflects the current state of the art

in acknowledged SoS projects. Based on this process and on additional studies related

to this process (Acheson et al., 2012; Dahmann et al., 2011), Figure 1.1 represents how

SOAR can be used in the context of an iterative and evolutionary development cycle of

acknowledged SoS. At the central strip, architecting processes are executed receiving the

general context analysis, i.e., analysis performed at system engineering level considering

di↵erent layers of SoS, i.e., physical, organizational, software, etc. SOAR is conceived to

support the establishment of architecting processes at software layer and its activities are

performed in this stage, delivering the respective software architecture. Despite interde-

pendencies with other external processes of SoS development, software architecture is the

central concern to be encompassed in SOAR instances.

Figure 1.1: Context of application of SOAR (adapted from (Acheson et al., 2012))

SOAR was conceived to provide a well-defined documentation that includes activities,

work products, and guidelines. For this, we adopted the OMG’s Essence Standard that

includes a process authoring language, called Essence Language, which is a flexible nota-

tion that make possible authoring of software engineering processes in di↵erent scopes and

levels of specificity, and a general kernel for software development process, called Essence

Kernel, which provides a basis of general concepts useful for any software engineering

projects. Despite the existence of more mature languages for processes description, such

as SPEM (Software and Systems Process Engineering Meta-Model Specification) (Ob-

5

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

1.3. Contributions

ject Management Group (OMG), 2015a), this new standard was proposed to be flexible,

easy to use, and adequate to evolutionary development projects, in which development

processes can also evolve themselves maintaining their alignment with di↵erent stages of

development.

Each SoS also has particular issues surrounding its development (DeLaurentis, 2008;

Klein and van Vliet, 2013) and a general process like SOAR must have an adequate level

of abstraction. Being too general can result in useless processes, since main SoS challenges

could be not encompassed. Conversely, being too specific can generate very exclusive so-

lutions with low exploration of SoS common challenges and low impact for reuse. Due to

the complex, multidisciplinary nature of SoS and their software architectures, we adopted

a modular strategy with two levels of abstraction to SOAR. The first level is suited for

experienced teams, which must only use a kernel to check if their already well-established

processes adequately encompass the design of acknowledged SoS software architectures

and if improvements can be planned. The second abstraction level provides practices

with more detailed guidance for project teams not experimented in design process of SoS

software architectures. Furthermore, SOAR is also independent of specific architectural

styles and application domains, underlying an a↵ordable balance between generality and

specificity. Proposition of di↵erent abstraction levels was possible by using two main el-

ements of Essence Language: Kernels and Practices. Kernels are elements that describe

“what must be done” in processes. Given a pre-determined scope, a kernel must provide

a common ground of concepts and goals for process authors. Practices describe the “how

to do” in processes. In general, they are grounded by kernels and deliver specific solutions

in terms of activities and work products to support process authoring. In each individ-

ual project, the a process instance can be based on a composition of practices that are

convenient to solve project needs.

To conceive SOAR, several sources of knowledge are combined in the light of the new

challenges brought by SoS. These sources are: (i) knowledge from traditional software

engineering that has mature approaches for software development; (ii) recent approaches

on software engineering specifically proposed for SoS; (iii) knowledge from systems engi-

neering that is the area with more mature approaches focused on SoS; and (iv) personal

experience of experts who contributed in the conception and evaluation of our proposal.

Figure 1.1 shows SOAR2 organization in terms of its main elements and basic workflow.

Since the complexity of design processes does not allow establishment of a mandatory

workflow with a regular sequence of execution (Hofmeister et al., 2007), the presented

workflow is only a reference of execution and project teams can plan and adopt a work-

2A complete description of SOAR is available at: http://www.start.icmc.usp.br/html/SOAR/

6

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

http://www.start.icmc.usp.br/html/SOAR/

Chapter 1. Introduction

flow in each development context and evolution stage. SOAR kernel and practices are

briefly introduced as follows:

Figure 1.2: SOAR overview

SOAR Kernel is the SOAR element at highest level of abstraction and was conceived

to provide a common ground to the construction of acknowledged SoS software

architectures, including common vocabulary, concepts, and general guidelines.

SOAR-A is a SOAR practice that describes a set of activities and related work

products recommended to architectural analysis of acknowledged SoS. The main

output of this practice is a set of architectural requirements to further support the

architectural design activities.

SOAR-S is a SOAR practice that describes a set of activities and related work prod-

ucts recommended to architectural synthesis of acknowledged SoS. A central concern

in SoS development is the definition of an SoS architecture capable of expressing

the structures of SoS with its constituent systems, including their relationships,

connections, interactions, and parameters (Sanduka and Obermaisser, 2014). In ar-

chitectural synthesis, fundamental design decisions are made and the main output

is a candidate architecture to meet the SoS architectural requirements.

7

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

1.4. Thesis Outline

SOAR-E is a SOAR practice that describes a set of activities and work products to

encompass the architectural evaluation on acknowledged SoS. The main output of

this practice is an evaluated architecture and respective evaluation reports.

Considering the objectives and an overview of the contributions this thesis, next section

describes the context of its chapters.

1.4 Thesis Outline

Chapter 2 presents the state of the art of SoS software architectures. Initially, terminology

and key concepts related to SoS are presented including a general model proposed to sup-

port characterization of SoS and published in (Gonçalves et al., 2014). After that, theory

associated with SoS software architectures is presented, including results of a Systematic

Mapping(SM) that explored this topic. Finally, results of a Systematic Literature Review

(SLR), which leveraged the state of the art of processes for SoS software architectures, is

presented.

Chapter 3 describes SOAR Kernel and its main elements. In this thesis, we present an

enhanced/updated version of this Kernel initially published in (Gonçalves et al., 2015).

We also conducted a survey with experts to evaluate SOAR Kernel. Results indicate

that SOAR Kernel can be used to its grounding purposes of being a general basis for

supporting the development of acknowledged SoS software architectures and facilitating

the improvement of development processes of these systems.

Chapter 4 describes SOAR-A, the SOAR practice for architectural analysis. We con-

ducted a survey with experts to evaluate if SOAR-A is adequate to guide architectural

analysis in acknowledged SoS projects. Obtained results show a good acceptance of this

practice indicating confidence for its use.

Chapter 5 describes SOAR-S, the SOAR practice for architectural synthesis. For this

practice, we conducted two evaluation studies with di↵erent evaluation goals. The first

one explored the capability of generating process instances from SOAR representation.

Obtained results were useful as a proof of concept, providing more confidence to further

conduct the second study, which was an experiment focused on confronting process in-

stances generated with SOAR-S against the ones generated at ad-hoc manner. Regarding

the comparison criteria, results showed up that process instances generated with support

of SOAR-S were significantly better than the ones generated in ad-hoc manner.

Chapter 6 describes SOAR-E, the SOAR practice for architectural evaluation of soft-

ware architectures in acknowledged SoS projects. We conducted a survey with experts

to evaluate SOAR-E, obtained results showed up the relevance and acceptance of this

practice.

8

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 1. Introduction

Finally, Chapter 7 concludes this thesis, revisiting achieved contributions, summarizing

limitations, and presenting perspectives of future research.

Five appendices are also included. Appendix A presents both the research protocol

and the list of included studies regarding the SM presented in Chapter 2. Appendix B

presents both the research protocol and the list of included studies of the SLR presented in

Chapter 2. Appendix C presents the summarized description of Essence OMG’s Standard,

including a process authoring language and a general kernel adopted for SOAR process.

Appendix D illustrates the use of SOAR-S to produce a process instance for a flood

monitoring SoS. Finally, Appendix E presents questionnaires applied in the surveys.

9

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter

2
State of the art of SoS Software

Architectures

Systems-of-Systems (SoS) have brought considerable challenges to the area of Software

Architecture, mainly due to their inherent, unique set of characteristics. Hence, this

chapter presents the state of the art on the research being conducted in SoS software

architectures. Firstly, in order to present a background about SoS, Section 2.1 describes

SoS, their characteristics, and types, and also examples of SoS. A conceptual model that

we have established to classify if a system can be classified as a SoS is also presented.

Following, Section 2.2 presents the state of the art on SoS software architectures. In more

details, this section presents results obtained by conducting a systematic mapping and a

systematic literature review encompassing the design issues and the architecting processes

for SoS software architectures. Additionally, as results of these studies, a framework to

characterize research in SoS software architectures and a list of process requirements to

their design processes are also presented. Final remarks of this chapter are presented in

Section 2.3.

2.1 System-of-Systems (SoS)

In the last years, there has been a growing interest in the research and development of

complex systems called Systems-of-Systems (SoS) resulted from the interoperation of other

11

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

2.1. System-of-Systems (SoS)

independent and heterogeneous systems (Firesmith, 2010). SoS were initially applied as

a paradigm of how to deliver unique capabilities that are the result of a collaborative

work of a dynamic set of constituent systems (DoD, 2008; Firesmith, 2010; Maier, 1998).

Nowadays, SoS have been applied to several application domains in which their perspective

of emergent capabilities tend to be more adequate than monolithic ones.

From another perspective, a software-intensive system is defined as any system in

which software essentially influences the design, construction, deployment, and evolu-

tion of the system as a whole to encompass individual applications, subsystems, SoS,

product lines, product families, whole enterprises, and other aggregations of interest

(ISO/IEC/IEEE, 2011). By following a natural trend of complex, large-scale systems

to be more software dependent, SoS tend to be also software-dependent, becoming the

so-called Software-intensive SoS (i.e., SiSoS1) (Boehm and Lane, 2006). Due their com-

plexity and growing software dependence, the SoS development is a multidisciplinary field

that has gained relevance in the software community and also demanded for new investi-

gations of software engineering solutions to support development of these systems.

2.1.1 Characterizing SoS

The first step on characterizing SoS is to di↵erentiate them from monolithic systems

(Butterfield et al., 2008). Based on Lane and Valerdi (2007) study, Table 2.1 presents

a series of comparison perspectives di↵erentiating SoS from monolithic systems. In this

comparison, it is possible to notice how SoS present a more dynamic and evolutionary

perspective than monolithic systems, being more suitable for contexts of collaborative

operation and multiple needs.

The central idea of SoS refers to a dynamic set of independent systems that collaborate

delivering unique and emergent capabilities (DoD, 2008; Maier, 1998). When analyzing

what systems can be classified as SoS, it is noticeable that other classes naturally dialogue

with SoS, e.g., distributed systems, complex systems, and federated systems. Despite the

relation among them, SoS have a set of characteristics that place them as an unique system

class. Therefore, we recognize that overlaps indeed exist, but they are not determinant

for general classifications or direct correspondences. For example, SoS are distributed

systems, however, not any distributed system will be an SoS. In this perspective, SoS

present a level of singularity that encourages research to investigate solutions for their

particular challenges.

Since SoS are inherently multidisciplinary, several researchers have proposed di↵erent

definitions for them over the past years (Firesmith, 2010; Lane and Valerdi, 2005). Among

1For sake of simplicity, we adopt the term“SoS”when referring to “SiSoS”. This section is an exception
for this convention because here we describe and di↵erentiate these terms.

12

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 2. State of the art of SoS Software Architectures

Table 2.1: SoSs vs. monolithic systems (Adapted from (Valerdi et al., 2007))

Comparison

Perspective

Monolithic Systems SoS

Architecture Single system (dependent constituents) Multiple independent systems
(monolithic ones or even other
SoS)

Boundaries Static Dynamic

Problem Defined Emergent

Life cycle Predictable Evolutionary and continuous

Information
Flow

Well-defined Continuously changing

Development Fo-
cus

Defining and optimizing Culture and cooperative tools

System Architec-
ture

Established early in the life cycle; ex-
pectation set remains relatively stable

Dynamic adaptation as emer-
gent needs change

these definitions, there is an absence of a single precise categorization for SoS (Abdalla et

al., 2015; Firesmith, 2010; Jamshidi, 2008a; Klein and van Vliet, 2013) and, consequently,

SoS are frequently developed without the “SoS” label (Klein and van Vliet, 2013). How-

ever, existing literature o↵ers a rich set of descriptions of SoS and their characteristics,

allowing to understand and extract what is already consensual in this field and what

establishing SoS as an unique class of systems (Nielsen et al., 2015).

The initial e↵orts to support SoS categorization were introduced in systems engineer-

ing area. The first taxonomy for SoS was proposed by Maier (Maier, 1998) in 1990’s in

which three basic types (virtual, collaborative, and directed) and five main characteristics

(operational independence, managerial independence, evolutionary development, emergent

behavior and geographic distribution) were specified. With the evolution of the SoS com-

munity, several definitions for SoS in di↵erent contexts were proposed later. Some studies

(Firesmith, 2010; Jamshidi, 2008a; Lane and Valerdi, 2007; Sharawi et al., 2006) analyzed

these definitions to understand their di↵erences and commonalities. In general, these

studies ratified the characteristics initially proposed by Maier as the consensual ones for

SoS.

2.1.2 Conceptual Model to Classify SiSoS

By taking advantage of the available literature of Systems Engineering, we proposed a con-

ceptual model to support classification of SoS in the software-intensive context (Gonçalves

et al., 2014). At first, we considered studies that address consensual characteristics and

sets of definitions related to SoS (DoD, 2008; Firesmith, 2010; Jamshidi, 2008a; Maier,

13

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

2.1. System-of-Systems (SoS)

1998; Sauser et al., 2010). We also analyzed existing taxonomies and ontologies that de-

scribed SoS at a systems engineering level as references to establish our model. Finally,

these concepts were analyzed in the light of software-intensive systems. Our strategy

was to extend the ISO/IEC/IEEE 42010 International Standard (ISO/IEC/IEEE, 2011),

which provides a conceptual framework for creation, analysis, and specification of archi-

tectures of software-intensive systems. We chosen it as a basis for our conceptual model

since it is a standard that addresses important elements regarding software-intensive

systems, such as notions of system, stakeholders, purpose, and environment.Figure 2.1

depicts elements of our model and relationships among them. As in ISO/IEC/IEEE

42010(ISO/IEC/IEEE, 2011), this conceptual model uses conventions for class diagrams

defined in ISO/IEC 19501(ISO/IEC, 2005).

0...*

has

exhibits

contributes to

1...*

1...*

1

0...*

1

2...*

0...*

requires

has

is situated into

enables
accomplishes

has interests in has interests in

1...*

1...*

1...*

ISO/IEC/IEEE 42010
International Standard

1

1

1

SiSoS Conceptual Model

justifies

exhibits

influences

has

has

accomplishes

drives

has

influences

has

enables

influences
1

0...1

Architecture

Environment

SystemPurpose

Stakeholder

Constituent system
stakeholder SoS stakeholder

Individual mission Global mission

Operational independence

Managerial independence SoS awareness level

Connectivity

Cooperation

Emergent behavior

Evolutionary development

Central authority

VirtualCollaborativeAcknowledgedDirected

SoS category

Software
dominance

SiSoS

SoS

Software

Hardware

HumanConstituent system
1

is geographically
distributed

1

Figure 2.1: Conceptual model for SiSoS (Gonçalves et al., 2014).

Table 2.2 presents the definition of the key concepts required to understand if a given

system can be a software-intensive SoS (i.e., SiSoS) by using the model. At first, an

SoS exists to accomplish a global mission, which represents its major goals. An SoS is

composed of constituent systems, which contribute to the accomplishment of the global

mission of the SoS and they can have managerial independence and an individual mission.

14

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 2. State of the art of SoS Software Architectures

Moreover, constituent systems have operational independence and present the ability of

connecting to each other (connectivity (Boardman and Sauser, 2006; Zhou et al., 2011)),

thus enabling their cooperation to yield emergent functionalities, the so-called emergent

behavior. In addition, both an SoS and its constituent systems can have their respective

stakeholders (SoS and constituent systems stakeholders), which have interests in their

missions.

Table 2.2: Key concepts for SoS (Boardman and Sauser, 2006; DoD, 2008; Firesmith,
2010; Maier, 1998; Zhou et al., 2011)

Key concepts Definition

Global mission A set of goals to be accomplished by a SoS through the
collaboration of constituent systems.

Software dominance Software-based constituent systems are the dominant fac-
tor for operation of a SoS, so that it cannot operate or ac-
complish its global mission without contribution of these
systems.

Operational independence All constituent systems of a SoS can deliver their function-
alities when not working with other systems. They must
also have at least the capability of individually operating.

Managerial independence All constituent systems are autonomously managed by in-
dependent sources. They must also have at least the ca-
pability of being individually managed.

Evolutionary development A SoS as a whole may evolve over time to respond to
changes on its environment, on constituent systems, or on
its own mission.

Emergent behavior It is a behavior resulted from the collaboration of con-
stituent systems and that cannot be provided by any of
these systems if they operate as individual entities.

Distribution Constituent systems of a SoS are physically decoupled,
thus only exchanging information among them.

Connectivity Constituent systems must have the ability to form e↵ec-
tive connections with other constituent systems to accom-
plish common goals.

Particularly, a SiSoS is an SoS in which software is the dominant factor in its opera-

tion, i.e., it exhibits a software dominance. Despite a SiSoS can comprise human-based,

hardware-based or software-based constituent systems(DeLaurentis, 2008). Therefore, for

SiSoS, the set of participating software-based constituent systems justifies the software

dominance, so that a SiSoS cannot operate without them. Furthermore, SoS are typically

complex, large-scale systems whose functionalities and purposes can change and dynami-

cally evolve, i.e., they present an evolutionary development(Firesmith, 2010; Maier, 1998).

15

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

2.1. System-of-Systems (SoS)

As a consequence, the architecture exhibited by an SoS is dynamic and reactive, since it

must evolve according to the dynamic collaboration of constituent systems that are also

changing. Moreover, representation and simulation of these architectures allow to under-

stand possible emergent behaviors, even the not desired ones.

Table 2.3 complements our model presenting four categories in which any SoS can be

classified. Three of them were defined by Maier (1998) and the acknowledged category

was proposed by Dahmann and Baldwin (2008). In this context, the central authority

determines how constituent systems cooperate and how subordinated they are to a global

authority at SoS level. Virtual SoS is the only category with no central authority, in which

constituent systems are completely unaware of their participation in the system. In other

categories, i.e., collaborative, acknowledged, and directed, constituent systems are aware

of such participation in di↵erent levels. Directly related to this concept, the awareness

level stands for the degree in which constituent systems are aware of their participation

in SoS operation.

Table 2.3: Basic categories of SoS (Dahmann and Baldwin, 2008; Maier, 1998)

Category Definition Level of central au-
thority

Virtual Constituent systems are independently man-
aged in a distributed and uncoordinated en-
vironment where mechanisms to maintain
the whole SoS are not evident.

Nonexistent.

Collaborative Constituent systems voluntarily collaborate
more or less to address shared or common
interests.

The authority o↵ers
standards to enable
the collaboration of
constituent systems.

Acknowledged Goals, management, resources, and central
authority of the SoS are all recognized, but
the constituent systems still retain their in-
dependent management.

The authority is based
upon negotiation be-
tween constituent sys-
tems and the SoS as a
whole.

Directed Constituent systems can have their oper-
ational and managerial independence, but
their behavior is subordinated to a central
authority and its purposes.

The authority and its
specific main purposes
are evident and drive
constituent systems.

Regarding the use of proposed model, we consider that a system can be characterized

as a SiSoS if all key characteristics presented in Table I are encompassed. For example,

the operational independence is adequately encompassed if constituent systems have at

least the ability of operating in an independent way. After identifying that a system is a

SiSoS, its category is determined according to definitions presented in Table II. Therefore,

16

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 2. State of the art of SoS Software Architectures

concepts presented in the proposed model enable to identify if a system is a SiSoS or not

and to which category of SoS it belongs.

It is noteworthy this model is not just a review of the existing literature about SoS,

but it represents an e↵ort towards standardization of concepts related to this class of

systems and, by extension, to SiSoS. Therefore, this model can be useful to support the

research on SoS by being a source of consensual knowledge about this class of systems

and an useful resource for analyzing software-intensive systems under SoS perspective.

Hence, we hope to contribute to development and research on these systems by providing

means to adequately understand and classify them. Finally, despite we use the term SoS

meaning SiSoS in this thesis, we make clear in this section the di↵erences between them

and reinforce that the scope of this thesis is SiSoS.

2.1.3 Illustrative Examples

Over the past decades, several improvements in software and communication technologies

have enabled researchers to develop SoS of higher levels of cooperation (Nielsen et al.,

2015). In this context, new examples of SoS can be found in di↵erent application domains

revealing SoS as a promising system class (DeLaurentis, 2005b; Nielsen et al., 2015).

Global Earth observation: it is an application domain that refers to monitor sev-

eral Earth environments, their related conditions (e.g., climates, crops, forests, and

deserts), changes, and potential impacts (Johnson, 2008). This complex scenario

makes a monolithic system impracticable (Khalsa et al., 2009) and the Global Earth

Observation System-of-Systems(GEOSS)2 is a good example of SoS suitable to this

domain. GEOSS is also a global project encompassing over 60 nations and is con-

stituted by integrated systems that create information for environmental decision

making. GEOSS results from combined e↵orts and managerial independence among

constituents. Each constituent system is subordinated of its own source (country,

organization, research group, etc.), and the operational independence follows the

same reasoning. GEOSS includes shared data and systems provided by di↵erent

and geographically distributed sources, delivering unique capabilities, such as com-

plex crossed information not possible to obtain by isolated systems working alone,

what characterizes an emergent behavior.

Health assistance: it is another application domain in which SoS has been introduced.

Petcu and Petrescu (2010), an SoS for health assistance to persons living alone. In

such system, patients are monitored into their homes, which are distributed on large

geographic areas, including di↵erent levels of collaboration and constituent systems

2http://www.earthobservations.org/

17

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

2.2. Architecting SoS

with di↵erent operational features, e.g., monitoring of vital signs and ambulance

fleet management. The authors report the development of their system in an SoS

perspective facilitated obtaining of systems cooperation and consequent achievement

of expected emergent functionalities.

Transportation: this domain typically involves large-scale networks of independent and

geographically distributed systems. DeLaurentis (2005a) describes how transporta-

tion systems can be developed as SoS and argues that the SoS characteristics, such

as emergent behaviors and evolutionary development, are suitable for transportation

sector. Nielsen and Larsen (2012) present an SoS for vehicle monitoring that is de-

signed to improve road safety by making available the tra�c information to drivers.

In this scenario, vehicles are constituent systems with independence of movement,

resulting in high dynamicity for generating and sharing tra�c information.

Emergency management and response: in this application domain, SoS have en-

compassed the need of cooperation of di↵erent organizations and systems in critical

scenarios of imminent emergency. For example, Payne et al. (2012) describe an SoS

for major incident response, in which emergency services interoperate to response

emergencies. By using the SoS perspective, emergency systems can voluntary col-

laborate making possible a comprehensive incident management based on emergent

functionalities. Another example in this domain is the monitoring of floods in ur-

ban areas (Hughes et al., 2011). A flood monitoring SoS can support the monitoring

of urban rivers and create alert messages to notify authorities and citizens about

risks in case of an imminent flood. The collaborative work of di↵erent constituent

systems, e.g., systems embedded in sensors and data analysis systems, is quite im-

portant to detect risks of flood and to trigger warning messages.

Several other examples of di↵erent application domains can be mentioned, such as:

aerospace (Bonilla et al., 2005; Dvorak et al., 2005; Jackson et al., 2012), energy man-

agemnt (Agusdinata and DeLaurentis, 2008; Parker, 2008; Pérez et al., 2013), and military

defense (Belloir et al., 2014; Shing et al., 2006). The amount of publications related to

several di↵erent application domains indicates that SoS has raised considerable attention

from academia and industry being a relevant system class for nowadays systems.

2.2 Architecting SoS

SoS usually involve a number of complex constituent systems, di↵erent technologies, and

several teams and organizations that apply di↵erent approaches to develop these systems.

18

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 2. State of the art of SoS Software Architectures

The architecture of an SoS includes knowledge about SoS in di↵erent aspects and archi-

tectural layers, e.g., organizational, physical, and computational. For each of these layers,

a proper architecture must be conceived to encompass operations, functions, behaviors,

internal and external relationships, and dependencies regarding SoS and its constituents

(DoD, 2008). Following, we first introduce general concepts related to software archi-

tectures (in Section 2.2.1) and next we present specific details about SoS software archi-

tectures. Results of our systematic mapping that we conducted to identify and analyze

the state of the art about how SoS software architectures have been treated in terms

of representation..are presented in Section 2.2.2. Finally, Section 2.2.3 presents results

of our systematic literature review that investigate processes proposed to SoS software

architectures.

2.2.1 Software Architecture

From the first occurrence of“Software Architecture” term in 1969, only on 1990s it became

more e↵ectively widespread (Kruchten et al., 2006). Nowadays, software architecture

concept is recognized as a discipline of software engineering (Clements et al., 2010). Bass

et al. (2012) define software architecture as the structure (or a set of structures) of the

system, which comprises software elements, externally visible properties of those elements,

and the relationships among them. From a generic perspective, a software architecture

can be considered an abstraction that suppresses internal details on how software elements

are implemented, being concerned with their arrangement, interaction, and composition

(Bass et al., 2012). Software architecture establishes a link between abstract business

goals and concrete resulting system, making possible di↵erent people and organizations

to deal with the system complexity on adequate levels of abstraction (Clements et al.,

2010).

Software architectures can encompass issues related to functional and non-functional

requirements of systems; however, since the system quality is highly dependent on de-

cisions made at the architectural abstraction levels, establishing adequate software ar-

chitectures is a critical concern in determining non-functional requirements and quality

issues (Shaw and Clements, 2006). With the emergence of software architecture as a

discipline, new related concepts also emerged. In this scenario, e↵orts have been con-

ducted to establish a common vocabulary in the software engineering area, in particular,

standards (IEEE Computer Society, 2014; ISO/IEC/IEEE, 2011) or lists of terms and

concepts (Eeles, 2008; SEI, 2015). In spite of these e↵orts, some di↵erent terms still have

been sometimes used as synonyms and must be explicitly defined to avoid misconceptions

when used in this thesis. Therefore, the main terms related to software architecture and

used in the context of this research are described as follows:

19

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

2.2. Architecting SoS

Stakeholder: the one who has interest in a system and plays a relevant influence

during its development (ISO/IEC/IEEE, 2011). Stakeholders can be (but are not

restricted to) customers, teams, organizations, regulatory entities, and developers

(IEEE Computer Society, 2014);

Concern: an interest in a system relevant to one or more of its stakeholders (ISO/IEC/IEEE,

2011). Concerns can influence in di↵erent aspects of a system, e.g., technological,

business goals, operational, regulatory, legal, ecological, and social. Examples of

concerns include regulatory restrictions, specific technologies to be used, purposes

of use, budget constraints, and desired functionalities;

Concrete software architecture (or just software architecture): the set of con-

cepts, properties, specifications, design principles, and patterns proposed for a par-

ticular system and embodied in its elements and their relationships (ISO/IEC/IEEE,

2011);

Architectural Decision: any decision made at architectural level that influences the

resultant concrete architecture. Architectural decisions help a system to meet its

quality requirements (Clements et al., 2010);

Architectural style: a specialization of software elements and relation types, together

with a set of guidelines on how they can be used (SEI, 2015). Architectural styles

are based on recurrent design problems and conceived to bring well-proved design

experiences, defining a structural organization suitable for a particular group of

systems. There are several widely accepted architectural styles in the literature,

such as client-server, pipe and filters, Service-Oriented Architecture (SOA) (Eeles,

2008). Client-server is a widely-used style that proposes the physical separation

of client-side processing (such as a browser) and server-side processing (such as an

application server that accesses a database). Pipes-and-filters comprises a series

of filters, which provide data transformation, and pipes that connect the filters.

SOA proposes structure the system into modules called services (Papazoglou and

Heuvel, 2007). In SOA systems, all functionalities are provided as services, which

are black-boxes that hide implementation details and operate independently com-

municating through interfaces and providing one or more functionalities (Josuttis,

2007);

Architecture View: a way to express the architecture of a system from the perspective

of specific system stakeholders and concerns (ISO/IEC/IEEE, 2011). Architectural

view is a representation of a particular system from a particular perspective of inter-

est that discloses the system architecture and supports several engineering activities,

20

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 2. State of the art of SoS Software Architectures

such as construction, management, exploration, training, and testing (Garland and

Anthony, 2003);

Architecture Viewpoint: the conventions for construction, interpretation, and use of

architecture views to meet specific system stakeholders and concerns (ISO/IEC/IEEE,

2011). Architectural viewpoints can establish related stakeholders, concerns ad-

dressed by viewpoint, and other conventions to develop representations in confor-

mance with a particular view; and

Architecture Description: a work product, or a set of work products, used to express

an architecture including all required views (ISO/IEC/IEEE, 2011). Architecture

description allows capturing and conveying of important architectural aspects among

system stakeholders, such as design decisions, system behavior, and constraints.

In this perspective, architecture description must provide elements to adequately

express a system architecture, such as specific documentation, architectural view-

points, and architectural prototypes (ISO/IEC/IEEE, 2011).

Based on ISO/IEC 42010 2011, Figure 2.2 shows a relational scheme that depicts key

relationships among defined terms.

Figure 2.2: Context of software architecture (Adapted from ISO/IEC 42010 (2011))

2.2.2 SoS Software Architectures: a Sytematic Mapping

The design of SoS software architectures is a new challenging research area, with an

increasing amount of publications the last years (Nakagawa et al., 2013). In this context,

21

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

2.2. Architecting SoS

we conducted a SM study3 that aims to establish a fair, broad overview of the research

involving SoS software architectures. We also proposed in this study a framework to

characterize existing research in this area. Aiming at identifying as many evidences as

possible, the following Research Questions (RQs) were established:

RQ 1: What are the main architecturally significant characteristics of SoS?

RQ 2: What are the main quality attributes of SoS software architectures?

RQ 3: How have SoS software architectures been represented?

RQ 4: How have SoS software architectures been evaluated?

RQ 5: How have SoS software architectures been constructed?

RQ 6: How have SoS software architectures been evolved?

This SM is an ongoing work and its initial results were published in (Nakagawa et al.,

2013). Following, we present the updated results regarding last finished selection of this

SM, which included studies published until January 2014. However, this study is being

updated to produce a new version, including studies published until July 2016. In the

last finished selection, we obtained a final set of 91 primary studies as relevant. Before

to present results related to the main topics of investigation (i.e., architectural repre-

sentation, evaluation, construction, and evolution, as well as the architecturally relevant

characteristics and quality attributes of SoS), we following provide general results with

regard to: (i) distribution of primary studies over time; (ii) main research groups in SoS

software architectures; and (iii) application domains addressed by the studies.

Figure 2.3 shows the distribution of primary studies through their years of publication.

As the SoS software architecture is a relatively new research field, most of the studies were

published in the last seven/eight years. From a total of 91 studies, 92.3% were published

from 2005 to 2014. If this trend continues, for the next years, we can foresee a number of

contributions for this area.

An analysis for the identification of the research groups/institutions that have more

widely contributed to the area of SoS software architecture was also conducted. For each

primary study, we identified the groups/institutions of its authors. No group/institution

can be considered representative in the area of SoS software architecture. In particular,

Naval Postgraduate School/ Computer Science Department (USA), Carnegie Mellon Uni-

versity/Software Engineering Institute (USA), and University of California (USA) have

seven, six, and four primary studies, respectively. Other groups/institutions have fewer

3Details about the research protocol followed in this SM and the list of included studies are both
presented in Appendix A.

22

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 2. State of the art of SoS Software Architectures

Figure 2.3: Distribution of primary studies through the years

than three studies. Moreover, approximately half of the studies are single publication of a

group/institution. Therefore, there is still a lack of mature, representative research group-

s/institutions widely contributing to the SoS software architectures. Figure 2.4 shows the

distribution of primary studies per country. For each study, the country of all its authors

was considered. For instance, there are five studies that have one or more authors from

Brazil. Overall, USA has stood out in terms of the number of studies, mainly with studies

on SoS for the military domain.

Figure 2.4: Countries of the authors of the primary studies

Primary studies of our SM address di↵erent application domains: (i) 26 for civil do-

main; (ii) 24 for military domain; and (iii) 13 address both military and civil. Other 29

studies do not present SoS for any domain. With regard to military domain, four subdo-

mains can be found, as presented in Figure 2.5.a. For civil domain, diverse subdomains

can be also identified, as illustrated in Figure 2.5.c. We classified the remaining stud-

ies as possibly applicable to both military and civil domains as showed in Figure 2.5.b.

An important observation is that most SoS found in the primary studies can be classi-

23

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

2.2. Architecting SoS

fied as critical SoS, which requires considerable e↵orts and attention for their adequate

development.

Figure 2.5: Application domains of SoS

Based on analysis of all primary studies included, we present our findings and discuss

related challenges for each RQ.

RQ1: Architecturally Relevant Characteristics

We observed that 50.5% of the included studies (i.e., 46 studies) answer this RQ by

addressing characteristics of SoS that a↵ect their software architectures. We compared

these characteristics and found that the most common ones are the characteristics al-

ready proposed in Maiers’ work (Maier, 1998). For example, Eaton et al. (2008) focus

on agricultural automation and Nguyen et al. (2012) focus on urban transportation, but

both studies point out the operational independence as a characteristic relevant in the

architectural design of their SoS. Figure 2.6 summarizes the common characteristics of

SoS found: operational independence, managerial independence, emergent behavior, geo-

graphic distribution, and evolutionary development. The five characteristics proposed by

Maier (Maier, 1998) directly a↵ect the SoS software architectures. Although evolutionary

24

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 2. State of the art of SoS Software Architectures

development is a characteristic that refers to the capability of SoS of adapting in runtime,

it does not explicitly address the inherent dynamism of SoS software architectures. An

inherent characteristic is then the dynamic architecture. SoS can dynamically change

their architecture to fit to changes in their constituents and missions.

In general, the characteristics identified in this SM seem to be the most relevant ones

for SoS and these characteristics that can directly a↵ect the conception of their software

architectures. Therefore, they must be considered in processes/methods that systematize

the development of such architectures.

76.1%

56.5%
50.0%

60.9%
67.4%

47.8%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

Operational
Independence

Managerial
Independence

Evolutionary
Development

Emergent
Behavior

Geographic
Distribution

Dynamic
Architecture

Figure 2.6: Architecturally relevant characteristics of SoS

RQ2: Quality Attributes of SoS

Quality attributes that directly a↵ect the SoS software architectures were identified in

51.6% of studies (i.e., 47 studies). Figure 2.7 shows the set of attributes and their percent-

age of occurence among the studies. Such attributes have the same definition/meaning of

those presented in the international standard ISO/IEC 25010 (ISO/IEC, 2011). It was not

our concern to organize these attributes in a hierarchical level, for instance, considering

availability as a sub-characteristic of reliability. This decision was motivated to keep the

fidelity of our findings. Furthermore, we found two new quality attributes: “integrability”

(the ease of integration of new constituent systems in an SoS) and “predictability” (capa-

bility of predicting emergent behaviors, even those not initially foreseen). Therefore, it

is quite important to highlight that this international standard, which should encompass

25

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

2.2. Architecting SoS

quality attributes/characteristics and sub-characteristics of any type of software-intensive

systems, needs to be updated to meet with software-intensive SoS.

60.9%

47.8%

37.0% 37.0%
30.4%

23.9% 23.9% 21.7%
17.4% 17.4% 15.2% 13.0%

8.7%
4.3% 4.3%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

Figure 2.7: Quality attributes of SoS

Interoperability is the most recurrent quality attribute, present in 28 studies (i.e.,

60.9% of a total of 47). It can be understood as the capability of two or more systems

to exchange information and use it (ISO/IEC, 2011). Interoperability is also determinant

for promoting several common SoS characteristics, mainly emergent behaviour and evo-

lutionary development. According to Butterfield et al. (2008), interoperability can also

contribute with other quality attributes, specially performance and reliability. However,

more studies are required in the context of SoS, even in particular application domains,

to better understanding of the relationship and trade-o↵ among these attributes.

Other relevant quality attributes that influence the development of SoS software archi-

tectures are security, performance, adaptability/flexibility, dependability/reliability, inte-

grability, maintainability, and reusability. They were found in 21.7% to 47.8% of the

total of 47 studies that answer this RQ. The remaining quality attributes have lower

occurrence level and appear in isolated studies sometimes related to specific application

domains. This first set of main attributes can provide directions on what is important,

or even essential, in the development and evaluation of SoS software architectures. How-

ever, considering the knowledge we gained reading and analyzing those primary studies,

we can conclude these attributes must be deeply investigated. For example, the low oc-

currence level in some quality attributes does not mean they are not relevant to SoS,

but because SoS has been a more recent topic of research, these attributes will require

26

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 2. State of the art of SoS Software Architectures

to be more deeply studied. The area of SoS requires a set of common quality attributes

independently of application domains, technologies, and types of SoS.

Regarding the application domains, we observed that quality attributes are almost

equally distributed through them. Certainly, these attributes should have been found for

all application domains. For example, SoS for medicine presents interoperability, security,

and dependability, but it does not treat other important attributes, such as performance

and safety, which should be considered in systems of this nature. Furthermore, it was

not still possible to identify a clear relationship between SoS characteristics and quality

attributes. It will be important to know how, when, and which quality attributes should

be considered/implemented in an SoS, intending to meet, for instance, the characteristic

of evolutionary development. From this perspective, SoS characteristics and quality at-

tributes could be jointly treated during the development of an SoS. Moreover, the primary

studies found in our SM enable no identification of the architectural decisions (e.g., archi-

tectural styles, communication protocols, technologies, and so on) could be adopted for

meeting SoS characteristics and achieving the quality attributes. The next four sections

provide a panorama of how SoS software architectures have been developed and can con-

tribute towards clarifying the way how some architectural decisions a↵ect SoS software

architectures and quality attributes.

RQ3: Architectural Representation

A precise description can support the development, maintenance, and evolution of SoS

software architectures. Therefore, we investigated how their software architecture has been

represented. From a total of 91 studies, we observe that 38.5%(i.e., 35 studies) of them ad-

dress the representation of SoS software architectures using informal, semi-formal, and/or

formal languages. Figure 2.8 shows the representation approaches proposed in these stud-

ies. Informal representations were found in seven studies, of which two (Bhasin and

Hayden, 2008a; Bonilla et al., 2005) adopt architectural views proposed by Department

of Defense Architecture Framework (DoDAF) (DoD, 2010) to represent their architec-

tures. In general, these seven studies are more focused on presenting the architecture

rather than proposing a solution for their representation. On the other hand, semi-formal

representations have been widely used (26 studies). In general, these studies use Uni-

fied Modeling Language (UML). Although most SoS have been built for critical domains,

such as aerospace and automotive, formal techniques and languages have not been widely

considered. Only six initiatives address the use of a formal representation. For instance,

Gamble and Gamble (2008) extended the UNITY formal specification language to cap-

ture programmatic, structural, and scoping properties of SoS and analyze architectural

properties. Di↵erent representation techniques are also used and combined for the SoS

context. For example, Wang Wang and Dagli (2011) uses SysML-based specifications

27

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

2.2. Architecting SoS

and Colored Petri Nets (CPN) in a paradigm that enables static and dynamic system

analyses. Regarding representation techniques, the most used ones are UML sequence

diagrams, state diagrams, and Message Sequence Charts (MSC).

50.0%

12.5%
9.4% 9.4%

25.0%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

UML Informal
diagrams

Message
Sequence

Charts (MSC)

SysML Other

Figure 2.8: Approaches for architectural representation of SoS

We also investigated architectural views adopted to SoS software architectures and four

views proposed in RUP 4+1 views (Kruchten, 1995) were found: (i) logical view, which

concerns the functionality the system provides to end-users; (ii) process view, which deals

with the dynamic aspects of the system, explains the system processes and how they

communicate, and focuses on the runtime behavior of the system; (iii) deployment view,

which illustrates a system from a programmer’s perspective and is concerned with soft-

ware management; and (iv) physical view, which concerns the topology of the SoS on

the physical layer, as well as the connections among their constituent systems. In par-

ticular, the process view can address concurrency, distribution, integrators, performance,

and scalability and, therefore, this view seems to be necessary for representing software

architectures of SoS.

In summary, logical, process, and physical views are the most addressed views, UML

is the most used language and, as a consequence, semi-formal representations are in gen-

eral more disseminated than other techniques. While the use of formal representations is

needed to support analysis and other automated tasks, we observe that formal represen-

tations are not generally widespread in industry; therefore, as SoS have been sometimes

provided by initiatives from the industry, it is not expected that formal representations

are being used.

28

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 2. State of the art of SoS Software Architectures

This is a first panorama on how SoS software architectures have been represented.

However, considering the studies found in our SM, a more adequate, complete way to

represent software-intensive SoS can not be identified. For the future, there are still sev-

eral open issues involving SoS representation, architectural views, and related techniques.

A recent SLR from our research group showed a broader panorama on the architectural

description of SoS (Guessi et al., 2015). It can complement this RQ, as it provides addi-

tional information and analysis, including the purpose of the architectural description of

SoS and type of information represented (e.g., orchestration and communication among

the constituent systems).

RQ4: Architectural Evaluation

The evaluation of software architectures ensures that architectural decisions are cor-

rectly made. It is also important for SoS software architectures, because of the critical

aspects of such systems. 19.8% of the included studies (i.e., 18 studies) address the ar-

chitectural evaluation. Figure 2.9 shows approaches considered by these studies for eval-

uation. Some studies address more than one approach/method and four studies explored

Architecture Tradeo↵ Analysis Method (ATAM) and/or Software Architecture Analysis

Method (SAAM), two well-known methods for the evaluation of quality-related issues for

software architectures. For instance, Kazman et al. (2012) extended ATAM to address

SoS software architectures and Gagliardi et al. (2009) present an approach also based

on ATAM to identify architectural risks and inconsistencies in quality attributes across

the constituent systems. At first, both ATAM and SAAM seem to be also adequate to

SoS software architectures; however, more research must be conducted. The remainder

of studies address isolated initiatives. For instance, Michael et al. (2009) introduced a

mathematical model to combine non-functional requirements of SoS (in particular, those

related to integrability) for analyzing the quality of software architectures.

Quality attributes have also been considered during the evaluation. Five studies ad-

dress quality in a more general manner. With respect to specific quality attributes, se-

curity, dependability, performance, interoperability, and integrability were included in

evaluation. However, based on this small number of studies, it is not possible to have

a consensus on what exactly should be considered when evaluating SoS architectures.

Several other attributes were found for SoS architectures (as previously presented in Fig-

ure 2.7). Therefore, investigation and inclusion of these attributes in the evaluation must

be conducted. For example, adaptability refers to the degree to which an SoS can be

adapted to be executed in a di↵erent environment; therefore, it is interesting to consider

this attribute in the evaluation of SoS architectures. Other good examples are safety,

availability, and fault-tolerance.

29

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

2.2. Architecting SoS

Commonly, after the architectural design (that commonly occurs after architectural

analysis), software architectures are evaluated. Nevertheless, in the case of SoS, their

architectures should be evaluated not only during their design, but also during evolution

that occurs during their execution. SoS evolution can cause changes in their architectures,

what requires a continuous evaluation. Our SM did not find any study that deals with

this issue. Furthermore, SoS evolutions make evaluations quite di�cult and expensive

(Chen, 2006).

16.7%

11.1% 11.1%

5.6% 5.6% 5.6%

44.4%

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

50.0%

Architecture
Tradeoff Analysis
Method (ATAM)

Software
Architecture

Analysis Method
(SAAM)

Mission Thread
Workshop (MTW)

DynSAVE Security Test and
Evaluation (ST&E)

Model Driven
Evaluation
Framework

Guidelines

Figure 2.9: Approaches for architectural evaluation of SoS

RQ5: Architectural Design

This RQ explores approaches to support design of SoS software architectures, such as

architectural styles, methods, processes, and guidelines. These di↵erent approaches are

not directly comparable; however, our discussion was based on the set of 47 studies (i.e.,

51.6%) studies found, providing the approaches, methods, processes, their advantages,

and drawbacks.

Regarding processes for the architectural design of SoS, two studies ((Chigani and

Balci, 2012; Liang and Luqi, 2003)) were proposed to organize the steps of the complexity

associated with the design of SoS software architectures. The more complete study is

Chigani’s work (Chigani and Balci, 2012), which provides these main steps for the SoS

30

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 2. State of the art of SoS Software Architectures

architecture construction, organized in five specific goals: Identify System Components;

Establish Relationships among the Identified Components; Create the Architecture; and

Describe the Architecture. Chigani’s work also proposes specific practices to support

building of SoS architectures. This is an important initiative to the direction of establish-

ing a process to build such architectures; however, this and other proposed processes must

be widely used in the industry to achieve a more consolidated, experimented approach.

Moreover, this topic is explored in more details in the next subsection.

Besides architectural processes, we also identified other approaches presented in Fig-

ure 2.10, in which one study can include one or more of these approches. SOA has been

advocated as a promising architectural style for SoS. SOA-based development appears in

27 of a total of 47 related to architectural design. For instance, Simanta et al. (2010)

developed a detailed discussion about the use of SOA in SoS and argued that given the

existing similarities between service-oriented systems and SoS, approaches and techniques

that have been developed to support identification, publishing, discovery, and governance

in service-oriented systems can be used to support SoS. Kruger et al. (2006) proposed the

use of a SOA infrastructure for the cooperation of constituent systems in SoS. Similarly,

in Bull et al. (2010) and Farcas et al. (2010), the authors suggested the use of SOA to

facilitate the integration of constituent systems in SoS and a hierarchical architecture

pattern, called Rich Services, to encapsulate the various capabilities and functionalities

of SoS.

Another approach to design SoS software architectures is DoDAF, which is a com-

prehensive framework that provides guidelines for developing a standardized architecture

(Bonilla et al., 2005). Although DoDAF has been initially conceived for military appli-

cations, it has been employed to other SoS application domains, e.g., aerospace (Bhasin

and Hayden, 2008a). Additionally, there are isolated initiatives that explore software en-

gineering approaches to support SoS design. Some examples include Capability Maturity

Model Integration (CMMI), aspect orientation, reference architecture, design by contract,

and architectural patterns. In Figure 2.10, these initiatives were put together in “Other”

column.

RQ6: Architectural Evolution

As previously stated, evolutionary development is one of the main characteristics of

SoS that directly influences their architecture. Therefore, these architectures must support

the dynamic evolution of SoS, so as to incorporate new functionalities (or SoS missions) in

runtime. Only two studies directly address evolution and its impact on the SoS software

architectures. In particular, Chen and Han (2001) can be considered the most aligned

with SoS evolution. The authors proposeSelberg and Austin Selberg and Austin (2008)

presented key characteristics (for instance, standardized interfaces and interface layers)

31

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

2.2. Architecting SoS

57.4%

6.4%

17.0%

6.4% 4.3%

27.7%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

SOA-based Department of
Defense

Architecture
Framework (DoDAF)

Model Driven
Architecture (MDA)

Object Oriented-
based

Agent-based Other

Figure 2.10: Approaches to support architectural design

that could provide a dynamic architecture to the SoS. No study has reported concrete

experiences of how real SoS and their architectures have evolved. The lack of evidences

in this RQ indicates evolution has occurred possibly without an adequate and systematic

control and still requires attention and research e↵orts.

Framework for the Characterization of Research into SoS Software Architectures:

Another important contribution of this work is the first version of a framework that en-

ables the characterization of research in the area of SoS Software Architecture, as showed

in Figure 2.11. This framework is the result of an iterative process of classification of the

primary studies found in our SM and is organized through two main perspectives: Prob-

lem Space and Solution Space. Problem Space comprises three main categories: Quality

Attribute, which encompasses the main quality attributes found in our SM and seems to

directly influence on the SoS software architectures; Characteristic, which presents the

SoS characteristics that a↵ect SoS software architectures; and Application Domain, which

makes it possible to classify the application domain addressed by SoS as civil or military.

Solution Space refers to the activities commonly performed to build SoS software archi-

tectures: Architectural representation, Architectural evaluation, Architectural design, and

Architectural evolution. Each of these seven categories comprises subcategories for a more

refined characterization of the research developed in the area.

Such framework presents the most common and apparently stable elements/classes

for the primary studies found and can be useful for the understanding of a given study

or a set of studies. Additionally, it can provide an understanding of a research project

or research of a group/institution, or even to identify lack of research in the area of SoS

software architecture. This framework must be evolved so as to encompass new lines of

research.

32

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 2. State of the art of SoS Software Architectures

In order to clarify a use of this framework, we present an example that characterizes

the Oliveira’s work (Oliveira and Pereira, 2007), which proposes a reference architecture

that supports the development of SoS. This work had a good evaluation in our quality

assessment and also contributed to answering almost all RQs (RQ1 to RQ5). Figure 2.12

shows an instantiation of the classes from our framework. This study deals with both

solution and problem spaces; moreover, for instance, it addresses architectural design,

representation, and evaluation activities for SoS in the civil domain, also encompassing

some architecturally relevant characteristics and quality attributes. From this figure, it is

possible to observe that, for example, this study does not deal with architectural evolution.

Discussions and Challenges for Future Research:

An SM aims to influence the future direction of a research area (Kitchenham and

Charters, 2007). Our SM identified evidences that SoS software architectures are an

essential element for the development of software-intensive SoS. As previously stated, it

is a relatively new research field and publications are concentrated in the last years. SoS

for military domain and other application domains corroborates SoS as a comprehensive,

complex class of software-intensive systems. SoS usually involve a number of complex

constituent systems, di↵erent technologies, and several teams and organizations that apply

di↵erent approaches to develop these systems. The aforementioned issues are coherent

with new perspectives of current software-intensive systems. Although these issues can be

also observed in other system classes, their exclusive combination makes SoS particularly

challenging for software engineering community. In this scenario, we identify challenges

for the future research in Software Architectures for SoS area:

Challenge 1: Mapping SoS characteristics for software architectures: Ar-

chitecturally relevant SoS characteristics are coherent with the new perspectives of

current software-intensive systems. Although these characteristics can be also ob-

served in other classes, their exclusive combination makes SoS a trend for future

software-intensive systems, enabling the building of solutions for several highly in-

terconnected systems. Therefore, future research requires a better understanding of

how these characteristics can be treated in combination to be incorporated in the

architectures of such systems. For instance, how to better manage operational and

managerial independent constituent systems in the context of a dynamic architec-

ture and, at the same time, complying with changing missions.

Challenge 2: Improvement of the quality of SoS: quality attributes can vary

according to di↵erent application domains and this variation is an important is-

sue related to SoS, since these systems can involve several domains with di↵erent

constituents, organizations, and stakeholders with di↵erent interests. Therefore,

33

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

2.2. Architecting SoS

their software architectures must encompass complex structures of quality prioriti-

zation. The set of main quality attributes obtained in our work is the initial step

for research on the quality of SoS software architectures. Furthermore, a quality

model for SoS containing quality attributes considered as essential and their rela-

tionship could be established. In this same perspective, well-known quality model

for software-intensive systems, namely international standard ISO/IEC 25010, can

be evolved encompassing quality attributes that may arise. Quality models should

also be established for specific types of SoS (e.g., service-oriented SoS and network

centred SoS) or domains (e.g., avionics, embedded systems and information sys-

tems), since such diversity can influence the importance of each attribute. These

models are essential to guide the evaluation, design and evolution of SoS architec-

tures, contributing to the establishment of quality-based processes, methods, and

techniques to build such architectures.

Challenge 3: Representation of SoS software architectures: The adoption of

architectural views together with a semi-formal approach and UML have been used

to represent SoS software architectures. However, there is still room for research

in this direction, mainly focused on a clear understanding on how to improve the

description of SoS software architectures. A challenge related to such description is

the management, dissemination, and integration of di↵erent representations among

several organizations, stakeholders, and perspectives of interest. Due to the com-

plexity of SoS structure, it can involve di↵erent views, complex rules for accessing

SoS information and copyright, handle the dynamism and constant evolution, and

allows to predict and understand the emergent behaviors in SoS operation. At first,

the necessary level of formalism and also the situations for adequately applying

each level of formalism must be defined. Formal techniques and languages could

be introduced to adequately represent SoS architectures and contribute to an au-

tomatized verification and simulation. Furthermore, it is necessary to investigate if

existing ADLs are su�cient to represent such architectures and to possibly propose

new ADLs or to extend existing ones. As a consequence, a standard of architec-

tural description for SoS could be established so as to improve the understanding

of organizations and partners that will integrate or deliver their systems to be part

of an SoS. Such ADL could be generic (i.e., destined to any type of SoS) or specific

(i.e., destined to a given type or application domains). Additionally, empirical evi-

dences on viability and advantages of semi-formal and formal representations must

be obtained.

34

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 2. State of the art of SoS Software Architectures

Challenge 4: Evaluation of SoS software architectures: The inherent dy-

namism of SoS software architectures requires new approaches that could verify,

even at runtime, if changes in the architectures cause their degradation regarding

quality attributes, such as interoperability, adaptability, and performance. Exist-

ing approaches for the evaluation of dynamic architectures should be investigated

and, if possible, reused in the SoS context. Furthermore, processes, methods, and

techniques for evaluating those architectures must to be proposed and also widely

adopted. Software tools must to be also developed for the automation and optimiza-

tion of tasks related to evaluation and a considerable reduction in the evaluation

e↵orts.

Challenge 5: Design of SoS software architectures: The first challenge related

to architectural design of SoS is related to the establishment of architectural require-

ments. In monolithic systems, there is often a clear, predefined set of stakeholders

concerned with the system under production and hence architectural requirements

could be established from them (Bass et al., 2012). In turn, each SoS encompasses a

broader range of stakeholders, including stakeholders from both constituent systems

and SoS. These stakeholders may have their own interests and a more self-serving

perspective of participation that typically occurs in traditional systems (Bellomo and

Smith, 2008). Diverse perspectives of interest, sometimes conflicting ones, directly

influence architectural decisions during the development of SoS software architec-

tures. For instance, an SoS for the medical area can present diverse capabilities,

including those related to monitoring of patients in their houses. Several stake-

holders are involved and influence in how SoS must be designed, such as doctors,

emergency of a hospital, relatives, and researchers (Petcu and Petrescu, 2010). In

another perspective, SoS software architecture includes at least two architectural

levels: global architecture and individual architecture of constituents. Despite the

independence of constituents, interests of an SoS can interfere in their architectures

in di↵erent ways according to several variants, such as the SoS categories, level of

global authority from SoS, perspective of participation of each constituent, and de-

velopment context of such SoS. Therefore, several possibilities can be possible to

develop each of these architectural levels. SoS designers are challenged to archi-

tect more and more complex systems, which present a set of unique characteristics.

Despite the initiatives found in our work, e↵orts for e�ciently support design of

architectures for software-intensive SoS still remain necessary. New scenarios must

be considered in the design of SoS architectures. For example, constituent sys-

tems are usually unknown when conceiving the initial architecture. Moreover, these

constituents are sometimes legacy systems that were previously developed for a par-

35

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

2.2. Architecting SoS

ticular context. In this perspective, an existing open issue is how to facilitate the

construction of SoS that contain such constituents. For this, processes encompassing

integrated methods, techniques, and guidelines are required. These processes should

include common steps presented in most of architecture design processes and should

be experimented and also widely adopted by SoS designers. Software tools and en-

vironments that support such processes, methods, and techniques are necessary to

improve productivity.

Challenge 6: Evolution of SoS software architectures: Most SoS evolve by

nature, therefore, their evolution must be distinguished from evolution of a mono-

lithic system. Such an evolution must be considered part of the whole develop-

ment process supported by proper methods and techniques. It is also important to

understand why, how, and when this evolution occur to avoid future architecture

degradation. Initiatives that systematize the SoS evolution must be investigated,

adapted or proposed, and widely adopted. it is desirable to SoS the possibility of

dynamically change/reconfigure their architectures to accommodate changes in their

constituents and missions. This polymorphism enables SoS to dynamically change

their own structure of collaboration to keep them self-operational upon environmen-

tal changes. Due to the operational independence, constituents can unpredictably

change their participation at runtime (Bhasin and Hayden, 2008a). Therefore, the

architectural dynamism is related to di↵erent architectural configurations and ar-

chitectural strategies to handle it. Integrated environments and tools, mechanisms,

and technologies that could transparently evolve SoS are required to manage such

dynamic architectures and to deal with complicated SoS evolution challenges.

Software architectures are the key element to the success and quality of software-intensive

SoS. This work provided results of an SM on SoS software architectures. These results

show that the SoS characteristics and quality attributes can directly influence the concep-

tion of architectures for SoS. The way how these architectures have been designed, repre-

sented, evaluated, and evolved was also discussed. We found several extension of existing

approaches (from software architecture or other areas) to deal with SoS architectures,

although most of these extensions are not still completely adequate to software-intensive

SoS. Most studies are typically focused on specific application domains; therefore, the ex-

istence of general solutions for SoS must be investigated. There are not also consolidated

research groups or well-connected communities.

This SM provided also a framework that can characterize works in the SoS software

architecture area, aiming at providing a understanding of the existing research and also

to identify future research in this area. We believe our results support the advance of the

36

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 2. State of the art of SoS Software Architectures

state-of-the-art of SoS software architectures by identifying new lines of research. Indeed,

the eminence of SoS together with the exclusive combination of their characteristics brings

challenges of research, requiring attention from practitioners and researchers.

SoS software architecture is a challenging research area, with approximately 75% of the

works published in the last 5 years and 90% in the last 10 years. Most of these works raise

open-issues after having experimented existing approaches for architecting SoS. There

is also no conference focusing software-intensive SoS. The first workshop have occurred

in the last few years, such as the International Workshop on Software Engineering for

Systems-of-Systems (SESoS). For the future, considerable e↵orts must be still dedicated to

consolidate this area and, as a consequence, make possible high-quality software-intensive

SoS for the industry and society.

2.2.3 Architectural Process of SoS: a Systematic Literature Review

A software process can be defined as a roadmap that provides a series of predictable steps

to be followed when developing software products (Pressman and Maxim, 2015). Each

software development life cycle includes most convenient software processes to handle dif-

ferent development aspects, such as software requirements or software architecture (IEEE

Computer Society, 2014). An architectural process consists of conceiving, defining, ex-

pressing, documenting, communicating, certifying proper implementation, maintaining,

and improving an architecture throughout a system life cycle (ISO/IEC/IEEE, 2011).

Because software architecture is essential to any system design, any software development

process should include activities related to the architecting process (Bass et al., 2012),

and these activities must occur in conformance with whole development process (Garland

and Anthony, 2003).

Regarding SoS software architectures, there is a lack of investigation about how their

design processes might be. In this perspective, we performed a SLR4 to leverage the

state of the art of these processes. In this study, we also established a set of process

requirements to guide the conception of design processes for these systems. This SLR

included the following research questions:

RQ1: What are the important steps and artifacts to be considered in the construc-

tion of SoS software architectures?

RQ2: What is required for systematizing the construction of SoS software architec-

tures?

4Details about the research protocol followed in this SLR and the list of included studies are both
presented in Appendix B.

37

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

2.2. Architecting SoS

In our research, we used the structure of a general architecting processes presented

by Hofmeistter et al. (2007) as a basis to compare the specific processes found for SoS

software architectures. In this sense, we first introduce general processes from related

literature and further present results of our investigations.

Several works have recognized the value of explicitly considering software architec-

tures in software development processes (Bass et al., 2012; Kruchten, 2003; You-Sheng

and Yu-Yun, 2003). In the end of 1990s, Bass (1999) defined an architecture-centric pro-

cess, focused on architectural requirements in addition to functional requirements. This

process presented a set of steps, i.e., requirements identification, creation/selection of

the architecture, representation/communication of the architecture, analysis/evaluation

of the architecture, and implementation of the system. More recently, Bass et al. (2012)

proposed a set of essential activities to be encompassed in any development life cycle. The

authors argued that di↵erent processes and system context will determine particularities

of how each of these activities will be performed (Bass et al., 2012):

Making a system business case: the initial study of the viability to build a system.

The expected result is the justification of an investment for a given opportunity;

Understanding the architectural requirements: is the elicitation of requirements

that influences the architecture;

Creating or selecting the architecture: construct architecture by taking architec-

tural decisions. It can also include reuse of already existent architectural approaches;

Documenting and communicating the architecture: produce architectural doc-

umentation and the subsequent disclosing of this documentation to system stake-

holders;

Analyzing or evaluating the architecture: is the verification of the conformance of

the architecture to the architectural requirements;

Implementing and testing based on the architecture: refers to the assurance of

adequate support for an implementation in conformance with the proposed archi-

tecture; and

Ensuring implementation conformance to architecture: is the verification and

maintenance of the conformance of the developed system to the proposed architec-

ture.

Hofmeister et al. ((Hofmeister et al., 2007)) also present a comparison of five indus-

trial methods for software architectures: Attribute-Driven Design (ADD) (Bass et al.,

38

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 2. State of the art of SoS Software Architectures

2012); Siemens 4 Views (S4V) (Hofmeister et al., 2000); Rational Unified Process 4 + 1

views (RUP 4+1) (Kruchten, 1995, 2003); Business Architecture Process and Organiza-

tion (BAPO) (America et al., 2004; Obbink et al., 2000); and Architectural Separation

of Concerns (ASC) (Ran, 2000). As a result, this study pointed out similarities and dif-

ferences among analyzed processes and established a general model comprising the main

elements expected on any construction process for software architectures. This model

was proposed to support understanding the strengths and weaknesses of di↵erent existing

methods for software architectures as well as to provide a framework for developing new

methods. Figure 2.13 shows this model, including a set of macro activities and generic

artifacts in a basic data workflow.

In this model, three basic macro activities are (Hofmeister et al., 2007):

Architectural analysis: analysis of architectural concerns and system context to es-

tablish, in terms of architecturally significant requirements, which problems in the

system the software architecture can solve;

Architectural synthesis: candidate architectural solutions are proposed to e↵ectively

solve the architecturally significant requirements. In this sense, this activity moves

from problem to solution space; and

Architectural evaluation: candidate architectural solutions are measured against the

architecturally significant requirements. Although multiple iterations are expected,

the eventual result of architectural evaluation is a validated architecture. Inter-

mediate results would be the validation or invalidation of candidate architectural

solutions. So that the purpose is to verify whether architectural design decisions

made are the right ones.

In the same model, five generic artifacts are (Hofmeister et al., 2007):

Architectural concerns: interests that pertain to the development of system archi-

tecture. These interests are related to system’s architecture and they are important

to its development, operation, or any other aspect that is critical to mission accom-

plishment;

Context: a set of elements or circumstances that influences the system. This set can

be characterized as a specification of system environment. Distinction between

architectural concerns and context is whether it is specifically related to the system

(an architectural concern) or is a general characteristic or goal of the organization

or stakeholders (context);

39

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

2.2. Architecting SoS

Architecturally Significant Requirements: formalized architectural requirements

for software architecture. An architecturally significant requirement is any require-

ment upon a software system that influences its architecture;

Candidate Architectural Solutions: possible solutions identified to compose the

software architecture. Candidate architectural solutions may present alternative

solutions, and/or may be partial solutions (i.e., fragments of an architecture). They

express alternative design decisions about the software structure; and

Validated architecture: candidate architectural solutions that were evaluated and

chosen for the architecturally significant requirements. In addition, these solutions

must also be mutually consistent.

In this SLR, we performed in this SLR an investigation of current e↵orts and trends

of the design processes for SoS software architectures. Following, we present results con-

sidering the last finished selection of this SLR, which included studies published until

December 2015. In this selection, we obtained a set of 13 included studies. However, this

study is being updated to produce a new version, including studies published until Oc-

tober 2016. The main contributions of this SLR are the analysis of approaches proposed

in the literature on this topic and the establishment of a list of requirements to guide

conception of processes in the same direction. In this investigation, it was not possible

to conclude that there is a mature, well established approach to support the design of

SoS software architectures. Meanwhile, results indicate the existence of new e↵orts that

corroborate the relevance of this topic to the SoS development.

In general, we found several extensions of existing approaches (from software architec-

ture or other areas) to deal with SoS architectures. Most studies are typically focused on

specific application domains; therefore, the existence of general solutions for SoS must be

investigated. Furthermore, there are no consolidated research groups or well-connected

communities. In this investigation, the starting point for studies comparison was the gen-

eral model proposed by Hofmeister et al. (2007). Considering the aforementioned research

questions, we present our findings as follows:

RQ1 – Activities and Artifacts on Construction of SoS Software Architectures

In this RQ we investigate the activities and artifacts proposed for construction of SoS

software architectures. The starting point of this investigation was the general model

proposed by Hofmeister et al. (2007), which includes high level activities and artifacts

common in design processes for any software architecture. In order to investigate and

compare these approaches, we mapped approaches from included studies to activities and

artifacts proposed in this general model. Furthermore, for each activity or artifact from

this general model, a following scale-point was applied: Adherent - 1 point; Not adherent

40

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 2. State of the art of SoS Software Architectures

- 0 point; and Partially adherent - 0.5 point. The total adherence score (AS) for each

study fell into the range between: 0  AD � 0.3 (poor); 0.3 > AD � 0.7 (fair); and

0.7 > AD � 1.0 (excellent). Table 2.4 reports the studies adherence. In general, it reveals

that main design activities are more considered (i.e., 11 on a total of 13 studies have

reached fair or excellent AS) than the main artifacts expected in these processes (i.e.,

7 on a total of 13 studies have reached poor AS). The findings regarding the presented

scores are detailed as follows.

Table 2.4: Adherence of the proposed approaches to the Hofmeister et al.’s model
(Hofmeister et al., 2007)

Activities

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13

Architectural
analysis

0.5 0.5 0.0 0.5 0.5 0.5 0.5 0.5 1.0 0.0 0.5 1.0 1.0

Architectural
synthesis

0.5 0.5 0.5 0.5 1.0 1.0 0.0 1.0 0.0 0.5 0.5 0.5 1.0

Architectural
evaluation

0.0 1.0 0.0 1.0 0.5 0.5 0.5 1.0 1.0 0.5 1.0 0.0 1.0

Adherence 0.67 0.17 0.33 0.83 0.66 1.0 0.66 0.66 0.66 0.66 0.5 0.33 0.5

Artifacts

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13

Context 0.5 0.5 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.5 0.0 0.5

Architectural
concerns

0.5 0.0 0.5 0.0 0.0 0.0 0.5 0.0 0.5 0.0 0.0 0.0 1.0

Architecturally
significant
requirements

0.0 1.0 1.0 0.5 0.5 0.5 0.0 1.0 1.0 1.0 0.5 0.0 1.0

Candidate
architectural
solutions

0.5 1.0 1.0 1.0 0.5 0.5 0.0 0.5 0.0 0.5 1.0 0.5 0.5

Validated
architecture

0.5 0.0 0.5 0.5 0.5 0.0 0.0 1.0 0.5 0.5 1.0 0.0 1.0

Adherence 0.42 0.42 0.42 0.33 0.25 0.17 0.25 0.50 0.42 0.33 0.42 0.25 0.58

Architectural analysis on SoS software architectures: the challenges on ar-

chitectural analysis are often related to the additional complexity of architecting a system

that is a result of other independent systems working together but maintaining their own

operational context. SoS software architectures are designed upon constant uncertain. For

example, constituent systems are usually unknown when conceiving the initial architecture

(Nielsen et al., 2015). These constituents are sometimes legacy systems that were previ-

ously developed for a particular context and strategies to support this participation must

be present since the architectural conception. Therefore, understanding of architectural

41

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

2.2. Architecting SoS

requirements in this context is one of these challenges. SoS requires analysis in additional

levels, i.e., requirements of SoS and requirements of constituent systems. Furthermore,

there is a complex net of interests and influences involving organizations, consumers,

normative authorities, and constituent system providers. The complex multi-stakeholders

context of SoS requirements is cited as an challenge to be encompassed in the analysis (Ge

et al., 2013; Kazman et al., 2012). Some studies proposed the identification of SoS global

goals and missions. Griendling and Mavris (2010) argue that the architectural process

must start with the leveraging of SoS missions answering the question “What missions

need to be performed?”. Moreover, identification of architecturally significant require-

ments architectural requirements must be after derived from established SoS missions,

being in accordance with them (Kazman et al., 2012).

Moreover, Ayoama and Tanable (2011) suggest the extraction of SoS properties and

their dependencies during architectural analysis having over the assumption that a require-

ments specification was already done. Other issue is the identification of constituents. Chi-

gani and Balci (2012) propose the leveraging of SoS constituents at architectural analysis.

The authors consider a component as any identifiable part of the SoS, i.e., human, soft-

ware, and hardware. Finally, risks are also pointed in some studies. Kazman et al. (2012)

propose activities for risk identification on architectural analysis in which development

leaders and SoS stakeholders work together early identifying risks and problematic archi-

tectural decisions in a low cost perspective. For this, the study introduces a scaled-up

version of a previous technique to engage monolithic systems stakeholders in establishing

requirements and analysis risks named Mission Thread Workshop (MTW).

Architectural synthesis on SoS software architectures: in the SoS commu-

nity, di↵erent architectural synthesis strategies have been proposed to accomplish the

establishment of architectural decisions in SoS development projects. Ayoama and Tan-

able (2011) propose a behavior-oriented approach in which a meta-model of behavioral

properties guides the architectural design process. In this perspective, the proposed ac-

tivities related to architectural synthesis are the hierarchical structuring of properties and

non-functional requirements and the subsequent design of a service architecture based

on this structure. Iacobucci and Mavris (2011) propose the generation of architectural

solutions from the analysis of di↵erent architecture alternatives. The authors introduce

a declarative notation for describing these alternatives for automatic generation . There-

fore, the architectural synthesis comprises the allocation of constituent systems to SoS

functions and associated metrics for evaluation composing architectural alternatives to

be automatically executed and evaluated. Chigani and Balci (2012) describe as activities

of architectural synthesis the architecture creation and description. In architectural cre-

ation, architectural styles and architectural patterns are selected to make up a composite

42

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 2. State of the art of SoS Software Architectures

architecture. Thus, the authors propose two strategies to design architectures: the selec-

tion of pre-existent and well-known architectural solutions; and the architectural design

from scratch, if well known solutions do not provide an appropriate structure needed to

satisfy the architectural requirements. Next, architectural description is performed in ac-

cordance with multiple viewpoints of SoS. Additionally, they recommend viewpoints of

DoDAF (DoD, 2010). GonÃ§alves et al. (2015) argue for an incremental proposition of

new architectural versions in an evolutionary perspective. The main activities are: (i)

elaboration of a new architectural version that is an evolution of the previous one; and

(ii) representation of this new version encompassing all the required viewpoints on each

SoS context. To support these activities, it is proposed management of multiple providers

of constituent systems, support and monitoring of architectural changes to ensure an evo-

lutionary perspective of development, and formulation of strategies for prediction of both

desired and undesired emergent behaviors resulting from the architectural changes.

Furthermore, since all the stakeholders must have access to suitable architectural rep-

resentations to e↵ectively contribute with SoS design, a related challenge refers to the

adequate documentation of SoS software architecture. Providing a consistent architec-

tural representation is an universal duty for any architectural process; however, in SoS,

context the new challenge is on managing this representation in a complex set of stake-

holders and, at the same time, ensuring the consistency of this representation to a system

that constantly evolves. In this scenario, it is common on SoS that the architecture be

developed and documented in parallel to an operating system evolving at runtime; i.e.,

the overall structure can be modified by adding, replacing, or withdrawing constituent

systems and their relationships. Some studies propose architecture simulation as a so-

lution for this issue(Butterfield et al., 2008; Chen and Kazman, 2012; Ge et al., 2013;

Griendling and Mavris, 2010). Among these studies, there is an agreement on the ap-

plication of this strategy for predicting emergent behaviors in the complex operational

structure of SoS. Regarding the employment of technologies and tools from traditional

software engineering, we observed some the use and adaptation of approaches to support

design processes of SoS software architectures such as MDD techniques (e.g., common

modeling languages, model transformations, and frameworks) used on di↵erent levels of

abstraction (Mensing et al., 2012), SOA as an architectural style in which the constituent

systems can collaborate as service providers/consumers (Chigani and Balci, 2012), and

Petri-nets applied as a strategy to allow architecture simulation to support design (Ge et

al., 2013; Griendling and Mavris, 2010).

Architectural evaluation on SoS software architectures: architectural eval-

uation must consider the operational dynamism of SoS and its constituents. Liang and

Luqi (2003) propose a static design inspection that provides a means of assessing the

43

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

2.2. Architecting SoS

quality impact of design decisions before coding. This study performs the architectural

evaluation on the basis of a quantifiable architectural view with formalized descriptions

attaching constraints to architectural factors, such as roles, styles, and protocols. From

another perspective, Griendling and Mavris (2010) propose an evaluation strategy based

on simulation activities, in which alternative architectural solutions are experimented

upon a set of simulation techniques considering previously established metrics.

Chigani and Balci (2012) describe tree strategies to perform architectural evaluation:

(i) evaluation based on product, process, people, and project; (ii) evaluation following a

risk-driven approach; and (iii) evaluation based on scenarios. Kazman et al. (2012) pro-

pose a series of evaluation sessions based on ATAM to be attended by di↵erent sets

of stakeholders. The study approach has three phases: preparation, execution, and

roll-up/follow-up. In preparation, evaluations are planned establishing evaluation teams

and the number of evaluation sessions considering variety and availability of stakeholders.

In execution, architects from both constituent systems and SoS presents their architec-

tural approaches and the evaluation team probes it for specific mission threads, guided

in particular by a knowledge on architectural design. During roll-up/follow-up phase, the

evaluation team identifies problematic areas not properly addressed to explore in more

focused architecture evaluations. Ge et al. (2013) propose the use of both static and

executable models to perform architectural validation. In this approach, evaluation is

based on both static analysis of architectural models and simulation by using executable

models for predicting behaviors and explore alternative solutions in the architecture. Fi-

nally, Gonçalves et al. (2015 follow an incremental perspective of development proposes

the evaluation and validation of a new architectural version as central activities related to

architectural evaluation in which an explicit validated architecture is the expected output,

if it is not reached, the process must return to architectural synthesis instead to deliver

an architecture with new increments to be implemented. Additionally, the study also rec-

ommends the use of simulation to predict behaviors on architectural evaluation proposing

as predicting emergent behaviors an activities to support the evaluation work.

Artifacts are essential to methods and processes to support their conduction and pro-

vide evidences of their well-execution. Following, we present how the studies encompassed

artifacts from the general model proposed by Hofmeister et al. (2007). It is important to

mention that there is no strictly disruption among these assets and a process element can

express one or more of them at the same time:

Context: since architectural context is related to high level analysis, few studies have

mentioned this topic in their architectural process artifacts. The general trend is to al-

locate analysis and documentation of context to other activities external to architectural

process. For example, a pre-established register of context information produced in previ-

44

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 2. State of the art of SoS Software Architectures

ous analysis performed in general SoS engineering process activities (Aoyama and Tanabe,

2011).

Architectural concerns: despite architectural concerns be directly related to the

software architecture, SoS studies typically includes architectural concerns only at high

level of system engineering analysis.

Architecturally significant requirements: it is a recurrent concern in the inves-

tigated studies. Liang and Luqi (2003) propose “conceptual components” which accounts

for the stakeholders’ requirements, representing for example the computational activities

and information flows expected of SoS. Butterfield et al. (2008) propose a requirements

baseline representing stakeholders goals and concerns by using UML models, such as use

cases, activity diagrams, and state diagrams. Chigani and Balci (2012) propose a list

describing functional and non-functional architecturally significant requirements. The au-

thors also point out as essential that this list has a set of potential tradeo↵s that may

exist among the identified quality characteristics (i.e., the non-functional requirements) to

support the architectural decisions when creating the architecture. Kazman et al. ((Kaz-

man et al., 2012)) propose that architecturally significant requirements must be based on

business goals and stakeholders concerns. The authors point out that quality attributes

perform strongest influence on architectural design and propose the use of quality attribute

scenarios to form the backbone of everything that will be done in architectural analysis,

synthesis, and evaluation. The authors also describe quality attribute scenarios as a de-

scription of how a system is required to respond to possible stimulus and provide a set of

parts that it must contain, i.e., source; stimulus; system’s stimulated part; condition to

the stimulus occurrence; system’s response; and metric to measure this response. Mensing

et al. (2012) propose the concept of “architectural rules” that consists of several properties

representing crosscutting architectural concerns. These rules come from the refinement of

SoS requirements, i.e., “requirements rules”.

Candidate architectural solutions: some studies just indicates a path to leverage

and compose the candidate architectural solutions to propose an SoS architecture. For

example, Chigani and Balci (2012) suggest as possible solutions for SoS the client-server ar-

chitecture, distributed objects architecture, peer-to-peer architecture, and service-oriented

architecture. If well-known solutions are not adequate to the SoS, the authors recommend

composition of an architecture from scratch, also called custom-made or domain-specific

architectures. Butterfield et al. (2008) propose the employment of architectural represen-

tations that allow further analysis, modeling, and simulation of the proposed architec-

tural solutions. Other studies recommend some candidate architectural solutions to be

employed in the composition of an SoS architecture. Griendling and Mavris (2010) follow

the same line, proposing a simulation environment based on DoDAF models in which

45

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

2.2. Architecting SoS

alternative architectural solutions are resulted from interactions among constituent sys-

tems. In order to produce this environment, the authors propose the use of Markov Chains

and Petri-Nets, Network Theory, System Dynamics and Discrete Event Simulation, and

Agent-based modeling. Lytra and Zdun (2013) proposed an approach that aims to pro-

vide semi-automated support for specific recurring candidate architectural solutions and

resolve their inherent uncertainty by using specialized fuzzy models to structure and doc-

ument alternative candidate architectural solutions. The authors use Fuzzy-logic (Zadeh,

1965) to allow the numerical encoding of the vague linguistic values software engineers

describing requirements as well as forces and consequences of reusable candidate archi-

tectural solutions into a fuzzy model of rules. Therefore, design decision documentation

is produced having as inputs the system requirements, information of the fuzzy rules, the

actual and the alternative candidate architectural solutions.

Validated architecture: software architecture is naturally present in all studies of

our investigation expressed in di↵erent ways. Furthermore, the architecture documenta-

tion can be done by using di↵erent formalism levels (i.e., informal, semi-formal, or formal)

covering all required viewpoints necessary to design and evaluate the architecture against

the architecturally significant requirements.

RQ2 – Requirements for Systematizing the Construction of SoS Software Ar-

chitectures

With challenges brought by the construction of SoS software architectures, it is im-

portant to identify what is expected from a process for constructing them. In this RQ,

we also investigated what is required for systematizing the construction of SoS software

architectures. For this, we extracted from the studies of our review the challenges pointed

out by the authors for constructing SwS software architectures. As a result, we pro-

posed a list of requirements expressing what any process should satisfy to adequately

support the development of SoS software architectures. These requirements are interre-

lated and were proposed to represent essential issues to be encompassed by any design

process for SoS software architectures. When conceiving this list, we considered recurrent

and well-justified requirements from the included studies. Despite none single study in-

cludes all the identified challenges, these studies acted in a complementary way forming

the proposed list. We structured this list by following the same strategy proposed in

(Sage and Biemer, 2007), in which requirements are mapped to the SoS characteristics.

Following, we present these process requirements (PR), organized according to the SoS

characteristics (see Section 2.1.2):

Distribution

46

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 2. State of the art of SoS Software Architectures

PR1. Consider in the architectural design what is necessary to handle the distribution

of constituent systems. In case of geographically dispersed stakeholders, provide

communication means to allow the architectural design.

Emergent Behavior

PR2. Support prediction analysis and adequate representation of desired and undesired

emergent behaviors at any stage of the architecting process.

PR3. Provide means to establish traceability among SoS missions, functionalities, emer-

gent behaviors, and capabilities from constituent systems.

Evolutionary Development

PR4. Provide means to support the architectural evolution in accordance with to SoS

development.

PR5. Continuously develop, monitor, update, and refine architectural decisions and

respective SoS software architecture.

PR6. Maintain the management of complex range of stakeholders ensuring their in-

volvement in the architectural design during SoS life cycle.

PR7. Establish an architecture documentation that registers the SoS software architec-

ture and its evolution.

PR8. Include strategies to manage, negotiate, and update architectural requirements

and their e↵ect in the architecture.

PR9. Deal with quality attributes (e.g., interoperability, connectivity, and performance),

providing means to earlier verify these attributes in the architecting process.

PR10. Provide means to handle uncertainties and lack of information that surround

SoS development, particularly in the initial stages of its development.

Global Mission

PR11. Allow a mission-oriented design, in which SoS missions guide the SoS architecting

process and the influence of individual missions of constituents is also considered.

Managerial Independence of Constituents

PR12. Support inclusion of self-managed constituent systems handling issues in SoS

software architecture generated by these constituents, e.g., di↵erent organizations

and own interests involved, development teams, and di↵erent stages of development.

47

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

2.2. Architecting SoS

PR13. Include means to handle the lack of detailed information about the internal

architecture of constituents.

PR14. Explicit consider the SoS categories when establishing approaches to negotiate

with constituent system owners.

Operational Independence of Constituents

PR15. Manage operational impact of constituent systems, which have individual capa-

bility of operation and self-regulation. Support dynamic reconfiguration/participa-

tion of constituent systems in the SoS, facilitating both operation and evolutionary

changes.

PR16. Provide means to monitor and receive continuous feedback from SoS operations

and deal with deviations and changes in the operation of constituent systems.

PR17. Explicitly consider SoS categories (virtual, collaborative, acknowledged, and

directed) to manage di↵erent levels of awareness and operational independence that

constituents can assume.

Software Dominance

PR18. Consider impacts and relevance of software in SoS and the relation of software

with other architectural layers, e.g., physical and human.

After data extractions and analysis conducted to answer RQs, in this section we present

and discuss our findings surrounding included studies. In general, studies point out that

traditional software engineering approaches are not su�cient for SoS and, at same time,

they propose that some of these approaches can be adapted in the light of SoS challenges.

The main contributions of this SLR are analysis of approaches from literature on this

topic and establishment of a list of process requirements to guide future approaches in

the same direction. After conducting this review, it is not possible to conclude that

there is a mature, well established approach to support design processes of SoS software

architectures. Meanwhile, results indicate the existence of new e↵orts which corroborate

the relevance of this topic to SoS development.

In the analysis conducted to answer RQ2, we observed the common argument that

new challenges brought by SoS development demands for new solutions from software

engineering. These challenges were used as a basis to propose a process requirements

list to support process authoring for SoS software architectures. Moreover, in RQ2 we

analyzed how each study deals with basic activities and artifacts of a general process model

for software architectures. In this analysis, we identified the knowledge from software

48

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 2. State of the art of SoS Software Architectures

engineering of monolithic systems being also employed with some additions proposed

to encompass SoS design challenges. Despite main challenges concerning SoS software

architectures be recognized in reviewed studies, proposed solutions are not mature and

complete and new e↵orts are clearly necessary. Finally, a general panorama indicates the

design of these architectures as a new challenging field for research, which progresses can

meet emerging demands of new software-intensive systems.

2.3 Final Remarks

This chapter presented the state of the art for the contributions described in the following

chapters. Firstly, characterization of SoS was presented, introducing main concepts related

to this class of systems and a conceptual model to support characterization of these

systems. Following, the state of the art of both SoS software architectures and their

processes were encompassed. Based on results of a SM, we leveraged the main challenges of

SoS software architectures and produced a framework for the characterization of research

in the SoS software architecture area. Then, we identified in a SLR the limitations and

challenges on the current research into the design processes of such systems and produced

a set of process requirements to be used in these processes. In this SLR, we conclude that,

despite the existence of some design processes applied to SoS software architectures, these

systems have been sometimes developed in an ad-hoc manner. Next chapters describe

a process that aim at overcoming this lack of a well-structured processes to support

development of software architectures in the light of SoS challenges.

49

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

2.3. Final Remarks

Figure 2.11: Framework for the characterization of research in the SoS software archi-
tecture area

50

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 2. State of the art of SoS Software Architectures

Figure 2.12: Characterization of a primary study

51

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

2.3. Final Remarks

Figure 2.13: Architectural design process reference model (Hofmeister et al., 2007)

52

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter

3
SOAR Kernel: General Approach for

Architecting Acknowledged SoS

This chapter presents SOAR Kernel, a part of SOAR process that grounds the design

of software architectures for acknowledged SoS1. The organization of this chapter is as

follows. Section 3.1 describes SOAR Kernel, presenting its final version, i.e., after evalua-

tion by survey with experts through a survey. This evaluation is presented in Section 3.2.

Final remarks are presented in Section 3.3.

3.1 Description of SOAR Kernel

To be e↵ective, the architecting activities must directly link business and mission goals,

focus on quality attributes, and explicitly involve system stakeholders (Kazman et al.,

2012). In order to support the architectual process, facilitating the achievement of these

goals, we proposed SOAR Kernel. It describes in a higher level “what must be done”

when architecting SoS software architectures. Thus, project teams with well-established

practices can directly use SOAR Kernel as a process model to verify enhancement points

in their current design processes. The less experienced teams can use SOAR Kernel

1SOAR is focused on acknowledged “SiSoS”. For sake of simplicity, we use only the term “SoS”. Chap-
ter 2 presents more information about the SoS variations and their di↵erences.

53

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

3.1. Description of SOAR Kernel

combined with more detailed guidelines in SOAR practices described in the next three

chapters.

This kernel was initially published in (Gonçalves et al., 2015), being the result from

an analysis of the state of the art on SoS in conjunction with knowledge of collaborat-

ing experts. It is also in conformance with the macro-activities proposed by Hofmeister

et al. (2007) to design software architectures, i.e., architectural analysis, architectural

synthesis, and architectural evaluation, and the system engineering process proposed in

DoD’s Systems Engineering guide for acknowledged SoS (DoD, 2008). The initial concep-

tion was supported by three experts of our research group who provided improvements

and suggestions to the kernel. In an evaluation stage, external experts participated in a

survey.

Figure 3.1 shows the overall structure of SOAR Kernel with its alphas, activity spaces,

and competencies as well as its workflow. Despite each project can assume di↵erent work-

flows according to SoS particularities and stage of evolution, the presented workflow is a

reference to illustrate a typical flow of execution. SOAR Kernel elements are organized in

three main areas of concern, initially proposed in Essence Kernel: customer, solution, and

endeavor. In the customer area, the context of the SoS must be understood with an ade-

quate exploration of the opportunities that can be addressed by the software architecture,

involving multiple stakeholders of this SoS. In the solution area, architectural solutions

must be provided for the SoS. Finally, the endeavor area deals with management of e↵orts

for the architectural process, i.e., establishing, coordinating, distributing, and maintain-

ing a way of work in an architectural development environment. The following sections

present these elements of SOAR Kernel, i.e., alphas, activity spaces, and competencies.

3.1.1 SOAR Kernel Alphas: Things to Work with

Figure 3.2 presents SOAR Kernel alphas and relationships among them, expressing the

main “things to work with” when constructing SoS software architectures. A total of 12

alphas were established in SOAR Kernel, 11 of which are new ones. The Stakeholders

alpha is the only one already defined in Essence Kernel2. Alphas proposed in SOAR

Kernel are described as follows:

Context: It is the set of elements or circumstances that influence the system ar-

chitecture. This set can be characterized as a specification of the system environment

(ISO/IEC/IEEE, 2011), e.g., customer characteristics, missions, and business goals. To

define, prioritizing the context elements is quite relevant because everything else in the ar-

chitectural project should flow from, and be aligned with, these elements (Kazman et al.,

2Appendix C summarizes Essence Kernel and its elements.

54

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 3. SOAR Kernel: General Approach for Architecting Acknowledged SoS

Figure 3.1: Workflow of SOAR Kernel

2012). The Context must be well-defined and documented representing the comprehensive

and complex environment of SoS operation and its relation with software architecture.

Stakeholders: This alpha comes from Essence Kernel and represents people, groups,

or organizations who a↵ect or are a↵ected by a software system. Stakeholders are a source

of requirements for this software system. In SOAR, they must support the architectural

team ensuring that an acceptable SoS software architecture is produced.

Architecturally Significant Concerns (ASCs): This alpha represents a specific

set of interests pertaining to the development of the SoS software architecture. These

interests are related to development, operation, or any other important aspect in the

architectural context (ISO/IEC/IEEE, 2011), e.g., architectural patterns or previously

agreed design decisions. In this sense, distinction between ASCs and Context is that the

former are specifically related to the system and its architecture, while the latter includes

elements to support the understanding of the operation environment.

SoS Architecturally Significant Requirements (ASRs): An ASR is any func-

tional or non-functional requirement that is relevant for the SoS software architecture

and therefore drives the architectural design. In SoS, ASRs are often related to qual-

55

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

3.1. Description of SOAR Kernel

Figure 3.2: Alphas of SOAR Kernel and their relations

ity attributes, constraints, and requirements derived from environmental conditions (i.e.,

Context) (Chen et al., 2013). These requirements are obtained after agreement through

di↵erent Stakeholders to be further handled by the architecture. Additionally, quality

attributes exert the strongest influence on architectural process and must be considered

in the ASRs documentation (Bass et al., 2012; Hofmeister et al., 2007).

Candidate Architectural Solutions (CASs): This alpha represents possible so-

lutions or partial solutions (i.e., fragments of an architecture) proposed to compose the

SoS software architecture. Solutions are mainly proposed to meet ASRs reflecting design

decisions about the SoS software architecture.

Emergent Behaviors: In an SoS, emergent behaviors result from the collaborative

work of constituent systems. Some emergent behaviors can be either foreseen, i.e., they

can be determined by specifying interactions among constituent systems or representing

interaction patterns (the ways in which they interact), or unforeseen, i.e., they can dy-

namically and unplanned appear during SoS operation. Both foreseen and unforeseen

emergent behaviors may be desirable or even undesirable, so that the result of the inter-

actions among constituent systems within an SoS can be respectively positive or negative

over its operation (Holland, 2007). In general, predicted/desirable behaviors come from

architectural solutions and must be maximized since they foster the accomplishment of

SoS missions. On the other hand, undesirable behaviors must be minimized because

56

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 3. SOAR Kernel: General Approach for Architecting Acknowledged SoS

they may negatively a↵ect the accomplishment of SoS missions and/or important quality

attributes, such as performance, security, and reliability.

SoS Software Architecture: It is a software structure (or a set of structures) of

SoS comprising constituent systems, their externally visible properties, and relationships

among them. An SoS software architecture encompasses concepts, properties, specifica-

tions, design principles, and design decisions and patterns of SoS and its environment.

Constituent Systems: they are systems that together contribute to the accomplish-

ment of the SoS mission. Constituents operate independently, having their own missions

and resources. In acknowledged SoS, each constituent has its own software architecture

that typically is not visible, or accessible to changes at SoS development level. Therefore,

any architectural characteristic at constituent systems level must be negotiated with the

constituent owners.

Acknowledged System-of-Systems (SoS): It is a complex system resulted from

the interoperation of other independent and heterogeneous systems. The collaborative

work of these constituent systems yields emergent functionalities to accomplish SoS mis-

sions. In acknowledged SoS, goals, resources, and authority are all recognized at SoS level,

but the constituent systems retain their independent management and the behavior is not

subordinated to a central managed purpose (DoD, 2008).

SoS Development Environment : This alpha expresses the complex development

environment surrounding SoS, that is often distributed since several distinct teams can

collaborate in the SoS development and evolution. Moreover, developers of constituent

systems can influence the SoS development in di↵erent ways, e.g., by also being part of

SoS teams or merely as constituent systems providers. In this context, the environment

where architectural team collaborate and interwork must be managed for each SoS.

Architectural Backlog: It is a transversal knowledge repository that must be used to

support the architectural development process. Its function is to encompass any relevant

matter related to SoS software architecture not predicted in the regular work products

in the project, e.g., considerations for SoS architecture enhancement provided by out-

siders from architecting process as constituent systems developers, new ideas for further

viability analysis, and registration of changes in the system architecture made during the

implementation and not immediately reflected in the architectural description. Due to the

transversal approach of this alpha, related work products can be consulted or updated for

authorized SoS developers at any time of development process.

Architectural Team: A group of people with strong technical background and ac-

tively engaged in the development of the software architecture, making key design deci-

sions. This team plans and performs work needed to create, maintain, represent, simulate,

evaluate, and evolve software architectures. Moreover, in small projects this team can be

57

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

3.1. Description of SOAR Kernel

reduced to one individual, the software architect, who assumes all aforementioned respon-

sibilities (Garland and Anthony, 2003).

3.1.2 SOAR Kernel Activity Spaces: Things to do

In SOAR Kernel, activity spaces express “what must be done” when designing software

architectures for acknowledged SoS. Figure 3.3 shows these activity spaces organized by

area of concern. A total of eight alphas were proposed in SOAR Kernel that are described

as follows:

Figure 3.3: Activity spaces of SOAR Kernel

Architectural Contextualization: Due to the SoS multistakeholders environment,

there is a high amount of uncertainty that surrounds such system, not only in a technical

sense, but also in organizational and business senses. This activity space must have

activities to understand, update, and document the SoS Context in each iteration. It

must include establishment of SoS global missions and all mission-related information.

Moreover, Stakeholders must also be identified and agree with the Context leveraged for

such SoS.

ASCs Establishment: ASCs must be documented to express SoS concerns of dif-

ferent Stakeholders. This activity space refers to the identification and understanding of

which ASCs are related to and influence the SoS software architecture by considering: (i)

context; (ii) di↵erent Stakeholders; and (iii) SoS architecture itself in its current state of

development.

58

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 3. SOAR Kernel: General Approach for Architecting Acknowledged SoS

ASRs Elicitation: The main purpose of this activity space is to define and doc-

ument problems that SoS software architecture must solve in terms of ASRs. For this,

examination of Context and ASCs, and negotiation with Stakeholders to come up with

SoS ASRs must be considered. Common ambiguities, di↵erent vocabularies, and stake-

holders thinking about ASRs must be aligned. Additionally, anticipating changes must

help on avoiding restrictive design decisions and support evolution (Sommerville, 2009).

Therefore, more evident emergent behaviors can be considered in ASRs elicitation activ-

ities as the first step to deal with this issue in the software architecture. Finally, the

software architecture can itself be a source of requirements. In this sense, new ASRs

resulted from the software architecture must be also identified.

CASs Proposition: In this activity space, CASs are proposed to meet a set of

ASRs. The main expected result of this activity space is a new architectural version to

be further evaluated. In the context of SoS with emergent behaviors, this activity space

must provide means of predicting SoS emergent behaviors.

SoS Software Architecture Representation: In this activity space, the SoS soft-

ware architecture is described according to the development context of each SoS. Di↵erent

formalism levels can be considered (i.e., informal, semi-formal, or formal) covering di↵er-

ent viewpoints (e.g., structural and behavioral). At more abstract architectural levels

(e.g., systems engineering level), di↵erent aspects of SoS must be included in the rep-

resentation when appropriate (i.e., software, hardware, and human). At more specific

levels (i.e., the software level), representation must focus on software while maintaining

the compatibility with more abstract representations.

SoS Software Architecture Evaluation: The main purpose of this activity space

is to verify if the proposed CASs are the right ones. The SoS software architecture

must be verified against ASRs and ASCs. Although multiple iterations are expected,

the result is a validated architecture. If CASs were verified as not adequate, activities

of CASs proposition activity space must be performed again. Furthermore, this activity

space must also include activities to adequately convey the architecture for developers

and stakeholders.

SoS Architectural Development Management: This activity space must sup-

port architectural team working with di↵erent stakeholders and constituent systems provid-

ers. It is related to management of the complex and multi-stakeholders environment typi-

cally found in SoS.This activity space must encompass required planning/support for this

collaborative work through heterogeneous customers and project teams. It must include

not only negotiation of requirements with multiple stakeholders, but also negotiation of

capabilities and changes with providers of constituent systems. This scenario is even more

complex since SoS clients may simultaneously be constituent systems providers. The man-

59

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

3.1. Description of SOAR Kernel

agement of this environment must consider that stakeholders can naturally have a more or

less self-serving perspectives of participation in the SoS and the collaborative environment

must be managed focusing in the SoS missions (Bellomo and Smith, 2008).

Architectural Backlog Management: As a knowledge repository, Architectural

Backlog is continuously used throughout diverse architectural development activities.

3.1.3 SOAR Kernel Competencies: Required Skills

SOAR Kernel competencies express “Required Skills” when constructing SoS software ar-

chitectures. As these competencies describe issues to be considered in human resources,

overlaps naturally occur among di↵erent competencies. Figure 3.4 shows these compe-

tencies organized by area of concern. A total of six competencies were included in SOAR

Kernel, two of which are new ones. Competencies already provided by the Essence Kernel

are: Analysis, Development, Leadership, Management, and Stakeholders Representation.

Following, we describe these competencies and the new ones proposed in SOAR Kernel:

Figure 3.4: Competencies of SOAR Kernel

Analysis: This competency refers to the ability to understand the context and prob-

lems, identify solutions, and evaluate their applicability by applying logical thinking.

Leadership: This competency describes the ability of inspiring and motivating a

group of people to interact and work achieving project goals.

Management: This competency refers to the administrative and organizational abil-

ity that allows to plan, coordinate, and control people’s work maximizing the chances of

success in a project.

Stakeholders Representation: This competency is the ability to understand, ne-

gotiate, and convey opinions and interests of other stakeholders.

60

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 3. SOAR Kernel: General Approach for Architecting Acknowledged SoS

Architecting: This competency encapsulates the ability to design and represent

e↵ective software architectures, following standards and norms agreed by the architectural

team. This architecting competency is about solving complex problems and producing

e↵ective software architectures. It requires capability to exploit all knowledge about

Context, ASCs, and ASRs and balance them by creating appropriate CASs. Therefore,

it is a combination of talent, experience, knowledge, and design skills to develop and

maintain the software architecture as expected.

Negotiation: This competency encapsulates the ability to negotiate and reach agree-

ment among di↵erent stakeholders in a heterogeneous environment of SoS. It is a combina-

tion of technical and personal skills to avoid and manage conflicts reaching best agreements

to SoS development. This ability is essential to perform activities in SoS Environment

Management activity space.

3.2 Evaluation of SOAR Kernel

As SOAR Kernel is in a higher abstraction level that acts grounding the more concrete

SOAR practices, we decided to conduct a survey with experts in correlated fields to eval-

uate and enhance SOAR Kernel. In summary, a survey is an approach for collecting

information to gain insights into a subject under study (Kasunic, 2005). The qualitative

survey presented in this section was conducted with a team formed by five experts exter-

nal to our research group. This survey followed the steps proposed by Kasunic (2005): (i)

identify research objectives; (ii) identify and characterize target audience; (iii) design sam-

pling plan; (iv) design and write questionnaire; (v) pilot test questionnaire; (vi) distribute

questionnaire; and (vii) analyze results and write report. These steps are described as

follows:

1. Identify the research objectives: This survey aimed to verify if SOAR Kernel

meets the expectations of the SoS community as an approach to support the con-

struction of SoS software architectures. Five research questions (RQs), summarized

in Table 3.1, guided this survey.

2. Identify and characterize target audience: The survey target audience is rep-

resented by potential users of SOAR Kernel, i.e., members of SoS community on

both academy and industry. To obtain a sample of this population as representative

as possible, this population was sampled considering SoS researchers who have con-

ducted studies on SoS and developers who have constructed SoS. Other aspects such

as the level of expertise were also collected to support further analysis of answers.

61

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

3.2. Evaluation of SOAR Kernel

Table 3.1: Survey research questions

SOAR Kernel

RQ1 Is SOAR Kernel complete for what it is proposed?
RQ2 Is SOAR Kernel correct, with no wrong or misunderstood statements?
RQ3 Is SOAR Kernel conceptually coherent, with no conflicts or wrong placed

elements?
RQ4 Can SOAR Kernel be considered intelligible, well-organized, concise,

helpful, and easy to use?

3. Design sampling plan: Due to the low availability of experts in SoS software

architectures, the sampling strategy was non-probabilistic and for convenience, i.e.,

to invite a number of experts as largest as possible. For this reason, sample size

was limited by the number of individuals who agreed to participate. Experts who

participated as survey respondents are involved to development of SoS and software

architectures in both academy and industry.

4. Design and write questionnaire: Based on the general RQs, the chosen ap-

proach for gathering data was to use an online questionnaire3 combining discursive

and non-discursive scale-based questions. Additionally, participants were provided

with: (i) guidelines to read documentation and answer questionnaire; (ii) a profile

questionnaire to verify the level of expertise of the participants; (iii) a documentation

comprising a complete description of SOAR Kernel; and (iv) a support documenta-

tion about Essence Language and Essence Kernel.

5. Pilot test questionnaire: A initial survey pilot was executed with two researchers

from our research group. Data were collected only for verifying errors, average time

for response, and possible enhancements in the first version of survey material.

6. Distribute questionnaire: After the pilot, an invitation was sent to experts and

the survey was sent to whom has agreed to participate. Each participant followed

three steps when answering the questionnaire: (i) answering questions about level

of expertise;(ii) reading the survey’s documentation; and (iii) answering questions

about SOAR Kernel.

7. Analyze results and write report: For non-dircursive scale-based questions,

graphics were associated to a textual discussion to illustrate observed trends in the

experts’ opinions. Due to the existence of few experts in SoS software architectures

(and consequently the low number of survey participants) no statistical test were ap-

plied. Furthermore, discursive questions provided insights and open suggestions to

3The questionnaires of all surveys of this Thesis are included in Appendix E

62

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 3. SOAR Kernel: General Approach for Architecting Acknowledged SoS

enhance SOAR Kernel. The analysis strategy for these questions was the presenta-

tion of results through narrative compilations of answers and additional discussions

of our observations. Section 3.2.1 presents obtained results and discuss how they

help to enhance our proposal.

3.2.1 Analysis and Intepretation of Results

The first part of questionnaire collected the participants’ profile through three questions.

Figure 3.5 summarizes the level of expertise of the participants in both SoS and software

architecture. Regarding the role of each participants, i.e., industry practitioner, academy

researcher or both, one participant is an industry practitioner, three are academy re-

searchers, and one is both. Results for each RQ are described as follows.

0 1 2 3 4

P - 1

P - 2

P - 3

P - 4

P - 5

Pa
rt

ci
p

an
t

Software Architectures Expertise SoS Expertise

(expert)(beginner)

Figure 3.5: Levels of expertise on SOAR Kernel survey

RQ1. This RQ was structured into four questions for the participants, two of them discur-

sive and three non-discursive ones. Figure 3.6 shows results for the first non-discursive

subquestion evaluating if SOAR Kernel encompasses all general aspects that are es-

sential when constructing SoS software architectures. Results indicate the general

acceptance of SOAR Kernel for this aspect. Additionally, the first discursive ques-

tion asked the participants for pointing out aspects, concepts, and elements that

might be missing. Answers revealed important additions to SOAR: need of encom-

passing SoS multi-stakeholders environment and the need of explicitly describing

the “mission” concept in SOAR Kernel.

Next two non-discursive questions verified if alphas and activity spaces of SOAR

Kernel are su�cient to encompass “things to work with” and “what must be done”

when constructing SoS software architectures. Figure 3.7 shows results indicating

63

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

3.2. Evaluation of SOAR Kernel

P - 1

P - 2

P - 3

P - 4

P - 5

Pa
rt

ici
pa

nt

No (the SOAR
Kernel is not

representative at

Partially not (the SOAR
Kernel needs critical

additions)

Partially yes (the
SOAR Kernel needs
minimal additions)

Yes (the SOAR Kernel
satisfactorily

encompasses its
purpose)

Figure 3.6: Evaluation of SOAR Kernel completeness

a general acceptance of these elements in SOAR Kernel. Additionally, the last dis-

cursive question was open to receive insights and suggestions to enhance the sets of

alphas and activity spaces in SOAR Kernel. Experts provided important suggestions

resulting in some additions to SOAR Kernel: Distributed Development Environment

and Emergent Behaviors as alphas, and Architectural Backlog Management as a new

activity space. Furthermore, experts pointed that di↵erent types of emergent behav-

iors for SoS were not initially covered. This issue was solved by adding a description

of emergent behaviors in the Emergent Behaviors new alpha.

P - 1

P - 2

P - 3

P - 4

P - 5

Pa
rt

ici
pa

nt

Activity Spaces Alphas

Partially No (critical
elements/concepts are

missing)

Partially Yes (less important
elements/concepts are

missing)

Yes (the SOAR Kernel
is quite

representative)

No (does not
accomplish its
purpose at all)

Figure 3.7: Evaluation of completeness of alphas and activity spaces in SOAR Kernel

RQ2. This RQ was decomposed in two questions (a non-discursive and a discursive one)

both aiming at evaluating SOAR Kernel in terms of correctness. Figure 3.8 shows

results of the non-discursive question indicating the acceptance of SOAR Kernel as

correct, but with possibility of corrections. The discursive question asked partic-

ipants for justifying their grades in the previous question and indicating possible

errors for further corrections. Participants’ responses helped on finding errors and

misunderstandings throughout SOAR. In general, experts found only minor errors

in the provided SOAR documentation, such as addition of some possible flows be-

64

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 3. SOAR Kernel: General Approach for Architecting Acknowledged SoS

tween activity spaces and correction of names in some elements, i.e., activity spaces,

alphas, and alpha states.

P - 1

P - 2

P - 3

P - 4

P - 5

Pa
rt

ici
pa

nt

Totally incorrect (the
amount of errors make the

SOAR Kernel useless)

Partially incorrect
(critical statements
should be reviewed)

Partially correct (less
important statements
should be reviewed)

Correct (no wrong
or misunderstood

statements)

Figure 3.8: Impression level concerning SoS Kernel alphas and activity spaces

RQ3. This RQ was decomposed in two questions (a non-discursive and a discursive one)

both aiming at evaluating SOAR Kernel in terms of coherence. Figure 3.9 shows

results of non-discursive question indicating the general acceptance of SOAR Kernel

as coherent. The discursive question asked participants for justifying their grades in

the previous question and indicating problems regarding coherence in SOAR Kernel.

In general, participants found only minor coherence problems in the provided SOAR

documentation, such as divergences in alpha states between subsequent activity

spaces.

P - 1

P - 2

P - 3

P - 4

P - 5

Pa
rt

ici
pa

nt

Totally incoherent (the
amount of conflicts and/or

disorganization makes SOAR
Kernel useless)

Partially incoherent
(critical elements are
conflicting or wrong

placed)

Partially coherent (less
important elements are

conflicting or wrong
placed)

Coherent (no
relevant conflicts
or wrong placed

elements)

Figure 3.9: Coherence evaluation of SOAR Kernel

RQ4. This RQ was structured in one discursive and three non-discursive questions, each

one of non-discursive questions evaluating one aspect of the usability of SOAR Ker-

nel. We considered only usability aspects possible to determine when reading kernel

documentation. Figure 3.10 presents results of the non-discursive questions. In gen-

eral, SOAR Kernel was considered as helpful, well-structured, and intelligible. The

discursive question had a complementary purpose asking subjects to point out any

65

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

3.2. Evaluation of SOAR Kernel

di�culty that they had to understand the kernel and new concepts brought with

Essence Language. This question helped on identifying possible improvements in

terms of intelligibility. Participants suggested important additions, such as extra

diagrams (i.e., the ones not already determined by Essence Approach) to better

illustrate SOAR activity spaces. As Essence Language accepts complementary di-

agrams, the workflow illustrated previously in Figure 3.1 was added to facilitate

the comprehension of the kernel approach. Another mentioned point was the dif-

ficulty of understanding relationship among di↵erent kernels (i.e., Essence Kernel

and SOAR Kernel) and how the instantiated process can be executed to the SoS de-

velopment. These problems were handled in the complete documentation of SOAR

with additional explanations, diagrams, and guidelines for use.

P - 1

P - 2

P - 3

P - 4

P - 5

Pa
rt

ici
pa

nt

Helpfull Usable Well-structured

1 (low) 2 3 4 (high)

Figure 3.10: Usability evaluation of SoS Kernel

Table 3.2 summarizes results obtained with answers of non-discursive questions. For

each RQ, column “Yes” shows percentage of experts favorable to SOAR Kernel in their

answers, and column “No” shows the unfavorable ones. Collected answers showed us that

in general SOAR Kernel is clear, its elements are described without ambiguities (86.6%

of positive feedback for coherence), and provided documentation is enough to enable

evaluation team to understand concepts and technical terms (68.8% of positive feedback

for usability).

Table 3.2: Survey results of non-discursive questions

Research Question Non-discursive questions Yes (%) No (%)

RQ1 3 73.3 27.6
RQ2 1 93.3 6.7
RQ3 1 86.6 13.4
RQ4 2 68.8 31.2

In addition to proposed questions, a field was left open to suggestions or insights about

any issue not properly covered in questions. Concerning these suggestions, initially we

66

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 3. SOAR Kernel: General Approach for Architecting Acknowledged SoS

only adopted competencies already provided by Essence Kernel, however, participants

suggested specific skills related to SoS software architectures. These suggestions were

analyzed by considering the assumptions from SoS literature. With this analysis, was

possible to identify new skills that cannot be encompassed by any competency already

defined in Essence Kernel. As a result, we conceived new competencies proposed in

Section 3.1.3.

3.2.2 Threats to Validity

The main threats to the validity in this survey are related to:

Internal Validity: Internal validity is mainly concerned with unknown factors that

may influence the results. In this sense, survey questionnaire itself could induce the results.

To mitigate this, a pilot version of questionnaire was applied with two researchers that

were asked to pursue for biased questions. This pilot also helped to make adjustments on

contents and establish an a↵ordable time to answer the questions.

External Validity: External validity is related to claims for the generality of the

presented results. To ensure reliability, none of the participants were members of our

research group or of groups related to the authors of SOAR Kernel. Furthermore, answers

were received with no identification of their respondents.

Reliability Validity: Reliability validity refers to the possibility of replicating the

study. In order to enable this possibility, the survey was designed by following a well

defined and accepted methodology (Kasunic, 2005; Shull et al., 2008). Moreover, survey

protocol and applied questionnaire were made publicly available.

Construct Validity: Construct validity focuses on correct interpretation and mea-

surement of perceptions, i.e., the relationship between concepts and theories behind the

study and what is actually measured and a↵ected. In this perspective, discursive ques-

tions could yield di↵erent interpretations. To ensure validity in the interpretation, answers

and consequent improvements were discussed in our research group responsible for SOAR

Kernel.

3.3 Final Remarks

This chapter presented SOAR Kernel that supports construction of acknowledged SoS

software architectures. Contributions of this chapter are: (i) a kernel that provides a

general grounding when constructing acknowledged SoS software architectures; (ii) a rep-

resentation of SOAR Kernel in Essence Language built in the EssWork Practice Work-

bench that enables instantiation of processes for particular projects; (iii) a survey with

experts to evaluate SOAR Kernel that indicated that SOAR Kernel is adequate for con-

67

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

3.3. Final Remarks

struction of acknowledged SoS software architectures. Grounded by SOAR Kernel, next

three chapters present three practices for, respectively, architectural analysis, architec-

tural synthesis, and architectural evaluation. These practices describe activities and work

products to design acknowledged SoS software architectures, o↵ering a lower-level support

to complete the goals of SOAR.

68

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter

4
SOAR-A: Architectural Analysis on

Acknowledged SoS

This chapter introduces SOAR-A, a SOAR practice that supports the establishment of

process instances for architectural analysis of acknowledged SoS software architectures.

SOAR-A reflects the state of the art for this issue discussed in Chapter 2. Section 4.1

describes SOAR-A and its elements, i.e., activities and work products. This description

refers to the final version of SOAR-A produced after a survey conducted to evaluate it

that is presented in Section 4.2. Final remarks are presented in Section 4.3.

4.1 Description of SOAR-A

Architectural analysis is the initial phase, or macro-activity, in architecting processes, in

which problems that the architecture must solve are defined as architectural requirements,

i.e., ASRs(Hofmeister et al., 2007). In SoS, complexity of this analysis is increased by the

scale and heterogeneity of a multi-stakeholders environment, involving multiple organiza-

tions, consumers, and providers of constituent systems. SOAR-A is a practice to guide

architectural analysis of acknowledged SoS by providing activities and work products that

can be adopted by project teams in their own development processes. As a part of SOAR,

it is also represented with the Essence language by using Essence Workbench Tool. SOAR

Kernel (see Chapter 3) grounds SOAR-A by providing activity spaces, alphas, and compe-

69

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

4.1. Description of SOAR-A

tencies expressing “what must be done”. SOAR-A in turn defines essential activities and

work products to describe “how to” when eliciting and maintaining ASRs. When using

SOAR to build process instances, project teams can assemble the more suitable set of

practices based on its development context.

In Essence Language, the main elements of practices are activities and work products,

which are proposed to encompass alphas and activity spaces. Activities define approaches

to accomplish activity spaces by providing more concrete guidelines to reach pre-defined

alpha states. A work product is an artifact that concretely represents an alpha, e.g.,

specific types of document. SOAR-A is in the sense that other activities and work prod-

ucts specific to each SoS development project can be developed and added. Following,

activities, alpha states, and work products proposed in SOAR-A are described.

4.1.1 SOAR-A Activities

Figure 4.1 shows the workflow diagram of SOAR-A, which includes a set of activities and

related activity spaces inherited from SOAR Kernel. SOAR-A defines a total of eight ac-

tivities accomplishing a total of five activity spaces from SOAR Kernel: SoS architectural

development management, architectural backlog management, architectural contextual-

ization, ASCs establishment, and ASRs elicitation. These activities are organized in a

workflow that illustrates both the main flow, with the essential sequence of activities to

be followed in every iteration, and a secondary flow, with activities that must be consid-

ered when convenient in each development context.

SOAR was conceived to be performed in alignment with other development processes

in progress on each SoS development project. These processes are both external sources

of information to SOAR and consumers of the architectural information generated by it.

In this perspective, the entry-point for SOAR-A is the general SoS context that must

be understood at systems engineering level. This context should be externally provided

and previously available from architecting process working as an input for architecting

process. Furthermore, due to di↵erent project scales and organizational situations that

each SoS development environment can assume, we do not describe more specific details,

such as the number of people to integrate each group, a set of specific roles. In this sense,

tasks must be defined in specific process instances, encompassing particularities of each

SoS under development. Activities in SOAR-A are described as follows:

Planning Analysis: The way to perform architectural analysis changes on each

iteration of architecting process. This activity must establish/update a plan (see the work

product Analysis Plan) to deal with these changes maintaining an adequate execution of

analysis. Architectural team is responsible for this activity and SoS stakeholders can

contribute with any information necessary to the definition of plan details. Even with

70

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 4. SOAR-A: Architectural Analysis on Acknowledged SoS

Figure 4.1: SOAR-A activities workflow

the possibility of some deviations during the analysis, this plan must be a reference to

be followed as strictly as possible. As the main common issues to be considered in this

activity, we point out:

To identify and list representative Stakeholders that are relevant and agree to par-

ticipate in the architecting process;

To identify which stakeholders will contribute to each activity of architectural anal-

ysis;

After the first iteration, reuse previous versions of evaluation plan as an information

source to come up with a new plan version;

To determine of which activities and tasks must be performed on each iteration; and

To estimate and schedule time and resources required for analysis activities, e.g.,

time and human.

71

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

4.1. Description of SOAR-A

Checking Architectural Backlog on Analysis: This activity refers to the check-

ing of architectural backlog, which can be used as information source to support archi-

tecting activities. As a cross-cutting element, this backlog is checked and updated in all

architecting phases, i.e., analysis, synthesis, and evaluation. This backlog can also receive

information from other processes in SoS development, e.g., the registry of new ideas for

software architecture identified by other teams not responsible for architecture design.

The architectural team must identify any backlog information related to architectural

analysis, such as the changes on customers needs or potential new ASRs not agreed but

registered in previous iterations for further consideration.

Identifying Architectural Context: When developing an SoS, there is a high

amount of uncertainty surrounding such system, not only in a technical sense, but also

in organizational and business senses. Given the understanding of SoS general context

as entry-point, this activity aims at analyzing and identifying all information from this

context relevant to software architecture. For example, laws and regulatory entities that

may influence the SoS software architecture. Result of this activity must be the description

of how the particularities of SoS context are related to its software architecture.

Identifying ASCs: In this activity the ASCs must be leveraged considering the

SoS architectural context. It includes identify ASCs, the prioritization of these ASCs

to software architecture, obtain agreement among di↵erent stakeholders which typically

have di↵erent interests surrounding SoS. Therefore, this activity must also include tasks

for promote a collaborative environment in which multiple stakeholders can interact with

architectural team to negotiate ASCs.

Eliciting ASRs: This activity leverages a set of ASRs by considering inherent com-

plexity of multiple interests and constituent systems collaborating with SoS. Two main

directions of analysis are proposed, i.e., top-down and bottom-up. The top-down di-

rection derive ASRs from general SoS requirements and their mapping to capabilities

of constituents. So that, despite general SoS requirements be out of SOAR scope, it is

convenient that these requirements be available when eliciting ASRs. Furthermore, the

top-down SoS top-down analysis must also consider: (i) relationship with both global and

individual missions; (ii) capabilities of the constituent systems needed to fulfill ASRs and

contribute to the accomplishment of global missions; and (iii) predictable emergent be-

haviors top-down direction as a composition of functionalities available from constituent

systems. In addition, eliciting ASRs in a top-down direction must take into account con-

straints established at SoS level that may a↵ect the architecture and/or have influence

over constituent systems.

The bottom-up direction is mainly concerned with understanding interactions among

constituent systems that lead to emergent behaviors within the SoS, i.e., how such in-

72

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 4. SOAR-A: Architectural Analysis on Acknowledged SoS

teractions contribute to the fulfillment of ASRs and accomplishment of global missions.

Despite the management of emergent behaviors is often performed in other activities of

the architectural development (in particular, simulation and evaluation), ASRs elicitation

must consider the assessment of both desirable and undesirable behaviors (either fore-

seen or unforeseen) that emerge from the interactions among constituent systems and

that have influence on ASRs. The bottom-up elicitation must also take into account

constraints from constituent systems their influence over the SoS software architecture.

Managing Conflicts in ASRs: ASRs may be conflicting for several reasons, such

as: (i) existence of multiple stakeholders; (ii) conflicts in the relationship between con-

stituent systems and SoS due to their managerial independence; (iii) conflicts arisen from

the interactions among constituent systems due to their operational independence; and

(iv) the fact that a given constituent system might simultaneously belong to more than one

SoS. This activity is related to identification of such conflicts, understanding interdepen-

dencies among them, and establishing a trade-o↵ to solve these conflicting requirements.

Furthermore, in software-intensive SoS, the software typically interacts with other pro-

cesses (e.g., physical and human). This activity must also understand and manage how

these processes influence the SoS software architecture maintain the coherence through

these di↵erent architectural layers. An example of strategy is the definition of common

taxonomies and ontologies to facilitate common understanding and communication among

these di↵erent processes.

Identifying Self-Requirements: SoS software architecture can itself be a source

of ASRs (DoD, 2008). Therefore, this activity concerns the identification of ASRs coming

from SoS software architecture, including:

Analysis of potential constituent systems and their restrictions to identify if new

ASRs come from them;

Analysis of expected leveraged ASRs to identify if they generate new ASRs, e.g.,

new quality requirements yield from original ASRs; and

Verification of the SoS software architecture already designed and validated in pre-

vious iterations, to identify new ASRs.

Updating Architectural Backlog on Analysis: This activity updates the archi-

tectural backlog according to performed architectural analysis, e.g., obsolete information

from previous iterations can be removed and new ideas for potential changes in further

iterations can be included.

73

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

4.1. Description of SOAR-A

4.1.2 SOAR-A Alpha States and Work Products

Work products are proposed to express alphas and provide evidences of progress in alpha

states. In process instances, the inclusion of work products is guided by needs of each

project. When necessary, work products can be adapted/reused from already existent

practices or exclusively conceived for project teams. In this sense, SOAR-A recommends

a set of work products for architectural analysis of acknowledged SoS. Based on SOAR

Kernel, project teams can not only adopt and implement these work products but also

conceive new ones. Following, regarding the alphas from SOAR Kernel employed in

SOAR-A, we describe the alpha states variations expected to evidence the well execution of

SOAR-A activities. Furthermore, for each of these alphas, we describe the work products

recommended by SOAR-A:

Context: To perform SOAR-A, is expected that this alpha be at least1 in the provided

state before performing SOAR-A activities. In this state, general context is externally

leveraged and documented by systems engineering processes and delivered as a source

of information to software architecture process. After executing SOAR-A activities, the

expected state to be reached is documented, in which a documentation is available and

updated by considering all relevant elements of SoS software architecture (e.g., hierarchy,

organizational documents, governmental rules, etc.) and the development teams and

stakeholders also agree with this documentation. Furthermore, this documentation must

to be maintained updated as SoS evolves. Work products proposed to express this alpha

is the Architectural context Documentation. It can include elements such as:

Mission Model, which comprises the description of both global missions (assigned to

the SoS) and individual missions (assigned to constituent systems). Furthermore,

this model must also include prioritization of these missions and any other relevant

information (e.g., categorizations, associated metrics, and register of sources of ex-

ternal information related to SoS). SoS software architects can use this work product

to define architectural models intended to meet mission needs related to capabilities

provided by constituent systems (Silva et al., 2015); and

Domain Descriptions, which must represent common concepts to be used through

di↵erent stakeholders and developers and aims at enhancing communication in SoS

development. Domain taxonomy, conceptual model, ontology, and glossary can be

included in this work product.

Stakeholders: As an expected input for SOAR-A activities, this alpha must present

at least the represented state, in which mechanisms for stakeholders participation are

1The term “at least” is employed because the alpha states are progressive.

74

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 4. SOAR-A: Architectural Analysis on Acknowledged SoS

agreed. After executiing SOAR-A activities, the expected state to be reached is in agree-

ment, in which stakeholders agree with how their di↵erent priorities and perspectives

are balanced in architecture to provide a clear direction for architectural team. As a

work product for this alpha, we propose the Stakeholders Map, which must describe SoS

stakeholders and any other information relevant to understand the multi-stakeholders

environment of SoS. We recommend that this work product describe at least:

Stakeholders roles and responsibilities in the architecting process;

Relationships among stakeholders, including hierarchy and authority levels; and

Mapping of groups of stakeholders with common interests, e.g., specific communities

or organizations and the SoS ASCs related to them.

Architecturally Significant Concerns (ASCs): There is no specific previous state

expected to this alpha before performing SOAR-A activities. After executing SOAR-A

activities, the expected state to be reached is established, in which project teams and

stakeholders accept the current set of ASCs as the most adequate to the SoS architectural

context. This set of ASCs must be updated through SOAR-A activities during the evolu-

tionary development iterations of SoS life cycle. The work product proposed in SOAR-A

to express this alpha is the List of ASCs, which registers each concern and any related

relevant information of these concerns, such as priority level, stakeholders that are relat-

ed/interested on each concern, and analysis of impact of each concern in the SoS software

architecture.

Architecturally Significant Requirements (ASRs): There is no specific previ-

ous state expected to this alpha before performing SOAR-A activities. After executing

SOAR-A activities, the expected state to be reached is elicited, in which ASRs have been

identified and agreed. The work products proposed in SOAR-A to express this alpha is

the ASR Documentation, which must describes ASRs. As issues to be considered in this

work product, we recommend:

The description and essential information of ASRs agreed between architectural

team and stakeholders. This information can include specific glossary, architectural

impact, relation among ASRs and ASCs, description of operational scenarios; and

A quality model, in which quality attributes can be organized, prioritized, and

associated to metrics. Since software architecture plays a determinant role in the

guarantee of quality for software architectures (Bass et al., 2012), a quality model

can be produced to provide a specific view of ASRs that explicitly groups and

represents quality attributes, e.g., by using quality attribute scenarios, which are

75

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

4.1. Description of SOAR-A

short descriptions of how a system should respond to some stimulus. These scenarios

are extremely useful because they are architecture test cases useful on architectural

evaluation activities (Clements et al., 2002). Furthermore, with the maturation

of SoS community, general quality models can be proposed encompassing common

quality attributes on SoS context, such as interoperability, security, and scalability

(Bianchi et al., 2015).

Architectural Team: As an expected input for SOAR-A activities, this alpha presents

at least the formed state, in which the team has been populated with enough committed

people to start the work. After executing SOAR-A activities, the state expected to this

alphas before SOAR-A is performing, in which the team is working e↵ectively and e�-

ciently. The work product of SOAR-A to express this alpha is the Architectural Team

Work Scheme, in which all relevant information about the architectural team must be

documented, such as coaching plan, the list of individuals and respective skills, roles,

hierarchy, etc. This work product must be maintained and updated through all the ar-

chitecting process, being also present in other phases, i.e., synthesis and evaluation.

SoS Development Environment: There is no specific previous state expected to

this alpha before performing SOAR-A activities. After performing SOAR-A activities,

the expected state to be reached is working, in which the development environment is

supported to adequately develop the SoS software architecture. Furthermore, SoS are

complex systems that involve a joint work of di↵erent companies, demanding for a more

precise documentation (Sommerville, 2009). The work product in SOAR-A to express this

alpha is the Analysis Plan, which documents the required elements to ensure an environ-

ment as adequate as possible to elicit ASRs in a distributed perspective of development.

Architectural Backlog: Execution of SOAR-A activities must ensure the mainte-

nance of the updated state for this alpha, in which it is continuously reviewed and feed

with relevant information regarding the architectural development of the SoS. The work

product in SOAR-A to express this alpha is the Analysis Backlog, which includes backlog

items leveraged on architectural analysis activities. It must include any relevant infor-

mation of this matter, such as the feedback of problems found during the architectural

analysis to enhance elicitation in further iterations or even registration of not agreed ASRs

and ASCs to be further considered.

Acknowledged SoS: There is no specific previous state expected to this alpha before

performing SOAR-A activities. After executing SOAR-A activities, the expected state to

be reached is analyzed, in which architectural analysis was performed and ASRs were

established expressing problems that software architecture must solve. There is no work

product in SOAR-S to directly express this alpha, but project teams can schedule and

add additional documentation if necessary.

76

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 4. SOAR-A: Architectural Analysis on Acknowledged SoS

Constituent Systems: There is no specific previous state expected to this alpha

before performing SOAR-A activities. After executing SOAR-A activities, the expected

state to be reached is contextualized, in which potential constituent systems and their

providers/authorities were identified and, if necessary, they are in agreement with ASRs.

There is no work product in SOAR-A to directly express this alpha, but project teams

can schedule and add additional documentation if necessary.

In order to illustrate how the aforementioned work products are related to activities in

SOAR-A, Table 4.1 presents for each activity its related work products and kind of use,

i.e., input/output.

Table 4.1: Work products produced/updated in SOAR-A activities

Activity

Work
Product

Architec-
tural
Context

Analysis
Plan

Archi-
tectural
Backlog

Stake-
holders
Map

List of
ASCs

ASRs
Docu-
menta-
tion

Work
Scheme

Planning
Analysis

Input
Input/
Output

- Input - -
Input/
Output

Checking
Architectural
Backlog on
Analysis

- Input Input - - - -

Identifying
Architectural
Context

Input/
Output

Input - Output - - -

Identifying
ASCs

Input Input - Input Output - -

Eliciting ASRs Input Input - Input Input
Input/
Output

-

Managing
Conflicts in
ASRs

- Input - Input Input
Input/
Output

-

Checking Self-
Requirements

- Input - - Input
Input/
Output

-

Updating
Architectural
Backlog on
Synthesis

- Input Output - - - -

4.2 Evaluation

Aiming at assessing if SOAR-A can be suitable to support architectural analysis in ac-

knowledged SoS, we conducted a qualitative survey with experts from both academia and

industry who have been involved in the development of SoS. As the previous survey con-

ducted for SOAR Kernel (see Section 3.2), this study was also based on the survey steps

77

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

4.2. Evaluation

proposed by Kasunic (2005) that comprise: (i) identify research objectives; (ii) identify &

characterize target audience; (iii) design sampling plan; (iv) design & write questionnaire;

(v) pilot test questionnaire; (vi) distribute questionnaire; and (vii) analyze results and

write report. These steps are described as follows:

1. Identify the research objectives: This survey aimed to verify if SOAR-A meets

expectations of SoS community as an approach to support the architectural analysis

of SoS. Four research questions (RQs), summarized in Table 4.2, guided this survey.

Table 4.2: Survey research questions

SOAR-A Practice

RQ1 Is SOAR-A complete for what it is proposed?
RQ2 Is SOAR-A correct, with no wrong or misunderstood statements?
RQ3 Is SOAR-A conceptually coherent, with no conflicts or wrong placed el-

ements?
RQ4 Can SOAR-A be considered intelligible, well-organized, concise, helpful,

and easy to use?

2. Identify and characterize target audience: The survey target audience is rep-

resented by potential SOAR users, i.e., members of SoS community on both academy

and industry. To obtain a sample of this population as representative as possible,

SoS researchers who have been conducted studies on SoS and developers who have

been constructed SoS were considered. The level of expertise were also collected to

support further analysis of answers.

3. Design sampling plan: Due to the same reasons presented in the survey con-

ducted for SOAR Kernel (see Section 3.2), sample size was limited by the number

of individuals that agreed to participate, i.e., a set of five experts.

4. Design and write questionnaire: The survey instrument for gathering data was

an on-line self-administered questionnaire2, i.e., a questionnaire designed specifically

to be completed by each participant without intervention of the researchers. This

questionnaire was produced in the light of the research questions outlined in Ta-

ble 4.2 and included non-discursive (closed) and discursive (open) questions. The

questionnaire focused on evaluating the activities, workflow, and work products pro-

posed in SOAR-A. In closed questions, participants were asked to provide a score

to evaluate elements of SOAR-A with respect to the aforementioned dimensions.

In open questions, participants provided textual answers justifying their scores as

2The questionnaires of all surveys of this Thesis are included in Appendix E.

78

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 4. SOAR-A: Architectural Analysis on Acknowledged SoS

well as additional comments and improvement suggestions. Additionally, the par-

ticipants were provided with the following documentation: (i) guidelines to read

documentation and answer the questionnaire; (ii) a profile questionnaire to ver-

ify the level of expertise of the participants; (iii) the complete description of the

SOAR Kernel and SOAR-A; and (iv) a support documentation about the Essence

Language, and Essence Kernel.

5. Pilot test questionnaire: An initial survey pilot was executed with the partic-

ipation of one researcher from our research group. Data were collected only for

verifying errors, average time for response, and possible enhancements in the first

version of survey material.

6. Distribute questionnaire: After the pilot, an invitation was sent to participants

and the survey was sent to whom has agreed to participate. Each participant fol-

lowed three steps when answering the questionnaire: (i) answering questions about

level of expertise,(ii) reading survey’s documentation, and (iii) answering questions

about SOAR-A.

7. Analyze results and write report: For non-discursive scale-based questions,

graphics were associated to a textual discussion to illustrate observed trends in the

experts’ opinions. Due to the low number of survey participants, no statistical

test were applied. Furthermore, discursive questions provided insights and open

suggestions to enhance SOAR-A. The analysis strategy for these questions was the

presentation of results through narrative compilations of answers and additional

discussions of our observations. Section 4.2.1 presents obtained results and discuss

how they help to enhance SOAR-A.

4.2.1 Analysis and Interpretation of Results

The first analysis identified the profile of participants with three questions. Two non-

discursive questions, presented in Figure 4.2, asked about expertise in both SoS and soft-

ware architectures. The level of expertise range from zero to three. It indicates that all

participants had some level of expertise/knowledge concerning SoS and software architec-

tures. Additionally, a third discursive question asked for the occupation of participants.

In this case, the predominance was academic researchers, i.e., only one participant assert

to work as industry practitioner. After this profile analysis, we detailed results for each

RQ as follows:

RQ1. We conceived three questions for this RQ, two of them non-discursive and a dis-

cursive one. Figure 4.3 presents results of non-discursive questions. The first

79

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

4.2. Evaluation

Figure 4.2: Levels of expertise on SOAR-A survey

non-discursive question asked participants for grading work products in terms of

completeness, indicating how complete SOAR-A work products are to encompass

architectural analysis of acknowledged SoS. The second non-discursive question was

about the completeness of SOAR-A activities. Results of both non-discursive ques-

tions indicate that participants considered SOAR-A activities and work products

as satisfactory in terms of completeness. Finally, in the discursive question, partic-

ipants were asked to point out any element that could be missing in SOAR-A. In

their responses, participants indicated as missing issues: (i) need of a more complete

description of some work products (i.e., Context and ASRs); (ii) a path lacking in

the main workflow (i.e., the path from Checking Architectural Backlog on Analysis

to Planning Analysis activity); and (iii) the need of a more complete description

of some activities (i.e., the activities Identifying Self-requirements and Planning

Analysis). After analyze these suggestions, we implemented some enhancements

to SOAR-A: (i) inclusion of “Misson Model” and “Domain Ontology/Taxonomy” as

suggested content to be part of Context work product; (ii) the inclusion of lacking

path; (iii) enhancements in Planning Analysis activity by including a set of com-

mon issues to be considered in this activity; and (iv) enhancements in Identifying

Self-requirements activity by including a set of common sources of self-requirements

to be considered in this activity.

RQ2. This RQ was encompassed by two questions, a discursive and a non-discursive one.

Figure 4.4 shows the positive results of non-discursive question indicating the gen-

eral acceptance of SOAR-A as correct. The discursive question asked for indication

of possible errors. One participant pointed out some errors: (i) all activities might

determine what alpha states are expected as inputs. The “Planning Analysis” ac-

tivity had no states; (ii) an unnecessary direct flow from Checking Architectural

80

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 4. SOAR-A: Architectural Analysis on Acknowledged SoS

Figure 4.3: SOAR-A Survey: RQ1 Results of Non-discursive Questions

Backlog on Analysis to Managing Conflicts in ASRs. These errors were corrected

and all alpha states were also revised.

Figure 4.4: SOAR-A survey: RQ2 results of non-discursive questions

RQ3. This RQ was structured into two questions, a discursive and a non-discursive one.

The non-discursive question asked the participants to grade SOAR-A in terms of

coherence. Figure 4.5 shows results of the non-discursive question indicating the

general acceptance of SOAR-A as coherent. The discursive question asked partic-

ipants for justifying their grades in the previous question and indicating problems

regarding coherence. In this question, participants did not point out any suggestion

to enhance SOAR-A coherence.

RQ4. This RQ was structured into two questions, a discursive and a non-discursive one.

Figure 4.6 shows results of the non-discursive question indicating general acceptance

of SOAR-A in terms of clearance and organization. Answers collected in discursive

81

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

4.2. Evaluation

Figure 4.5: SOAR-A Survey: RQ3 results of non-discursive questions

question also provided us with relevant insights for improving: (i) graphical repre-

sentation of SOAR-A workflow; and (ii) textual clearance of Managing Conflicts in

ASRs activity description. In order to meet these suggestions, we implemented some

changes in SOAR-A: (i) enhancements in the figure of SOAR-A workflow, adding

a legend not originally existent as an Essence graphical elements. Additionally, we

included legends for all workflows of SOAR; and (ii) examples of common sources

of conflicts when establishing ASRs were included in Managing Conflicts in ASRs

activity.

0 1 2 3

P - 1

P - 2

P - 3

P - 4

P - 5

Pa
rti

cip
an

t

Organized Clear

Low High

Figure 4.6: SOAR-A Survey: RQ4 results of non-discursive questions

In general, answers were positive with good levels of satisfaction in all RQs. These

results represent a good indicative that SOAR-A can support processes of architectural

analysis of acknowledged SoS software architectures.

82

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 4. SOAR-A: Architectural Analysis on Acknowledged SoS

4.2.2 Threats to Valitidy

The conducted survey and its results may have been a↵ected by some threats to empirical

validity. These threats are discussed as follows.

Internal Validity: To increase validity of the study regarding this concern, we care-

fully designed, piloted, and iteratively refined the questionnaire to: (i) mitigate risk of

ambiguous and poorly phrased questions; (ii) ensure that all participants could properly

understand the proposed questions; and (iii) participation was anonymous.

External Validity: As previously mentioned, the sample was limited to five partici-

pants and defined by convenience, hampering broader generalizations to target population.

Nonetheless, the number of participants of this study still can be accepted since the main

goal was to gain insights about SOAR-A and suggestions for improving it.

Reliability Validity: Aiming at mitigate this threat, the conducted survey was

designed by following a well defined and accepted methodology (Kasunic, 2005; Shull

et al., 2008). Moreover, survey protocol and applied questionnaire were made publicly

available.

Construct Validity: Most of bias coming from researchers were mitigated conceiving

part of the questions had pre-defined answers (closed questions). Despite discursive (open)

questions could yield di↵erent interpretations, they helped us to implement important

enhancements so SOAR-A described in previous section.

4.3 Final Remarks

This chapter presented SOAR-A, a SOAR practice to support the establishment of pro-

cess instances for architectural analysis of acknowledged SoS. SOAR-A resulted from an

analysis of the state of the art on SoS and, similarly to SOAR Kernel, it applies Essence

Standard. The main contributions of this chapter are: (i) SOAR-A and its documentation

built in Essence Workbench Tool; and (ii) a survey evaluation with experts on SoS soft-

ware architectures. Results of this survey shown a good acceptance of SOAR-A. Experts

pointed out SOAR-A as adequate, comprehensive to support instantiation of process for

architectural analysis of acknowledged SoS. The next chapter presents SOAR-S, a practice

of SOAR that supports the establishment of process instances for architectural synthesis

of acknowledged SoS.

83

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter

5
SOAR-S: A Practice for Architectural

Synthesis on Acknowledged SoS

This chapter introduces SOAR-S, a SOAR practice that supports the establishment of

process instances for architectural synthesis of acknowledged SoS. Section 5.1 describes

SOAR-S. This description refers to the final version of SOAR-S, produced after two studies

conducted to evaluate SOAR-S. Section 5.2 presents an observational study conducted to

assess SOAR-S in terms of feasibility. Section 5.3 describes an experiment conducted to

evaluate SOAR-S. Final remarks are presented in Section 5.4.

5.1 Description of SOAR-S

Within the construction of software architectures, architectural synthesis proposes archi-

tectural solutions to meet the ASRs upon the system (Hofmeister et al., 2007). Despite

the relevance of architectural synthesis as a driver for system implementation, existing ap-

proaches in the literature do not properly address architectural synthesis in SoS software

architectures. Architectural synthesis encompasses “making” of architectural decisions.

As previously discussed (see Chapter 2), despite synthesis be present in several archi-

tectural design methods, particularities of SoS requires specialized solutions conceived to

support its particularities, e.g., evolutionary development and existence of independent

architectures from constituent systems.

85

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

5.1. Description of SOAR-S

Due to the independence of constituent systems, SoS software architectures are in-

herently dynamic. Moreover, emergent behaviors result from collaborative work of con-

stituent systems and these systems can be not subordinated to SoS interests. Therefore,

architectural solutions must consider the relevance of self-organization concerns and pre-

diction of both desired and undesired emergent behaviors. In general, desirable behaviors

come from architectural solutions and must be maximized, since they foster the accom-

plishment of SoS missions. On the other hand, undesirable behaviors must be minimized

because they may negatively a↵ect the accomplishment of SoS missions and/or impor-

tant quality attributes, such as performance, security, and reliability. In this context,

SOAR-S was conceived to provide guidelines on “how to” perform architectural synthesis

for acknowledged SoS.

As a part of SOAR, SOAR-S is also described upon the OMG’s Essence Standard and

documented in Essence Workbench Tool. Following, activities, alpha states, and work

products of SOAR-S are described.

5.1.1 SOAR-S Activities

SOAR-S includes an essential set of activities to be followed when proposing architectural

solutions, i.e., CASs, to a set of ASRs in acknowledged SoS. Figure 5.1 shows activities

of SOAR-S, their workflow, and correspondent activity spaces inherited from the SOAR

Kernel. These activities are described as follows:

Planning Synthesis: This activity establishes/updates a plan for architectural syn-

thesis, dealing with issues concerning execution of next activities of architectural analysis.

The main common issues to be considered are:

Establishment of what techniques, tools, and technologies must be used to sup-

port architectural synthesis, e.g., modeling and simulation tools or languages for

representation.

Estimation and scheduling of required resources, e.g., time and human. This schedul-

ing is a reference for the next activities, e.g., when selecting the ASRs to be encom-

passed in current iteration; and

After the first iteration, the review of previous iterations in order to maintain ar-

chitectural synthesis as expected.

Checking Architectural Backlog on Synthesis: As in architectural analysis, the

architectural backlog must be also checked on synthesis. It is particularly relevant to

verify if there are registered design ideas from external processes or previous architecting

iterations registered to be considered in further iterations.

86

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 5. SOAR-S: A Practice for Architectural Synthesis on Acknowledged SoS

Figure 5.1: SOAR-S activities workflow

Selecting ASRs to Design: This activity is about the decision and establishment

of what must be designed in each synthesis iteration based on a set of ASRs to be handled.

It defines an architectural milestone in which several factors can influence the number of

ASRs to be handled, such as diversity of application domains, architects expertise in these

domains, and teams size (Bass et al., 2012).

Conceiving CASs: SoSs are complex and interdisciplinary systems that inherently

encompass several types of architectures, or architectural perspectives (e.g., physical and

human) (DeLaurentis, 2008). In this activity, a set of CASs is proposed to encompass

ASRs under design, thus meeting a set of ASRs and establishing a new architectural

version to be further evaluated. Several sources of information must be considered, such

as ASCs, context, and the architectural backlog. In this activity, some issues can be

considered:

87

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

5.1. Description of SOAR-S

Di↵erent knowledge sources for conceiving CASs, such as background of architec-

tural team on designing similar architectures, frameworks, design checklists, domain

decomposition, reference architectures, and architectural patterns (Bass et al., 2012).

Understanding of how other SoS architectural perspectives influence software archi-

tecture to maintain coherence through these di↵erent perspectives; and

Analysis of impact of CASs in terms of risks and implementation costs.

Coordinating Distributed Synthesis: SoS development typically involves di↵er-

ent organizations performing a collaborative, distributed development of constituent sys-

tems and SoS. In this sense, this activity must support such collaborative work through

heterogeneous teams and stakeholders ensuring through negotiation of authority levels

and communication strategies the well-execution of architectural synthesis. Although ar-

chitectures of constituent systems cannot be directly manipulated by the SoS architectural

team, architectural decisions at SoS level may demand for agreement at constituents level,

such as specific constraints, patterns adoption, architectural frameworks, and reference ar-

chitectures. These details, which involves decisions at constituent systems level, must be

negotiated/agreed between architectural teams of SoS and constituent systems.

Handling Evolution: SoS are inherently evolutionary and their architectures must

be developed considering this perspective. Evolvability is the ability to easily accom-

modate future changes. This attribute is highly required in SoS, since the architecture

is constantly evolving. This activity investigates and establishes CASs to maintain SoS

evolvability. Since CASs must be established by considering the evolvability concern,

this activity dialogues with the Conceiving CASs activity influencing in the proposed

architectural version.

Predicting Emergent Behaviors: This activity is about predict emergent behav-

iors to support CASs establishment. Since emergent behaviors of an SoS are not simply

a sum of parts (e.g. , constituent systems and their capabilities), each emergent behavior

can assume di↵erent classifications (Holland, 2007): (i) foreseen, when developers could

identify its possibility of occurrence; (ii) unforeseen, when developers could not identify

its existence; (iii) desirable, that is expected to occur as a result of SoS operation; and

(iv) undesirable, when it should not occur if SoS is operating as planned. Regarding

this classification, foreseen and unforeseen emergent behaviors can be desirable or even

undesirable. In this activity, e↵orts must be directed to minimize unforeseen behaviors,

e.g., by analyzing architectural models based on the new CASs or using architectural sim-

ulation to understand the SoS operation at runtime. Therefore, relevant information can

be provided to Conceiving CASs activity about emergent behaviors that can dynamically

occur in SoS.

88

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 5. SOAR-S: A Practice for Architectural Synthesis on Acknowledged SoS

Updating Architectural Backlog on Synthesis: This activity refers to registry

and maintain in the architectural backlog. Any additional information regarding the

performed synthesis and not registered in other work products can be part of architectural

backlog, e.g., ideas to be considered in further iterations.

Building Architectural Documentation: In this activity, SoS software architec-

ture is represented by considering di↵erent interests, viewpoints, and particular environ-

ments. This documentation must describe a new architectural version that reflects the

inclusion of conceived CASs. After architectural evaluation, CASs can be added to a

definitive documentation of the SoS software architecture. This architectural descrip-

tion can be made with di↵erent representation techniques (informal, semi-formal, and

formal) and covering di↵erent views (e.g., structural and behavioral) to provide a better

understanding of the software architecture to both stakeholders and developers. Some

architectural frameworks have been used to reduce e↵orts of modeling SoS, e.g., Defense

Architecture Framework (DoDAF) (DoD, 2010). ADLs can be also used to this repre-

sentation, such as UML (Object Management Group (OMG), 2015b), SysML (SysML

Partners, 2015), and more recently SoSADL (Oquendo, 2016).

5.1.2 SOAR-S Alpha States and Work Products

Work products of SOAR-S express some alphas inherited from SOAR Kernel. Following

we present the states variation of these alphas when performing SOAR-S and describe the

work products of it:

Architectural Backlog: Execution of SOAR-S activities must ensure maintenance

of updated state for this alpha, in which it is continuously reviewed and feed with relevant

information regarding the architectural design. The work product proposed in SOAR-S to

express this alpha is Synthesis Backlog, which includes any information relevant to further

iterations that were not foreseen in other work products, such as feedback of problems

found during the synthesis activities (e.g., inconsistencies in ASRs), considerations for

other phases of architecting process, registration of potential changes in ASRs resulting

from synthesis conduction, and not agreed design ideas registered for further consideration.

Architecturally Significant Concerns (ASCs): As an expected input for SOAR-S

activities, this alpha must be in established state, in which ASCs were identified and

agreed with stakeholders. ASCs are used as an information source for SOAR-S activities

and its state does not changed after architectural synthesis. Because the establishment

and documentation of ASCs must be performed during architectural analysis, there is no

work product proposed in SOAR-S to express this alpha.

Architecturally Significant Requirements (ASRs): For this alpha, at least the

established state, in which ASRs were established. ASRs are an input for SOAR-S activ-

89

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

5.1. Description of SOAR-S

ities, previously established during architectural analysis, and does not changed after its

execution. If problems in ASRs are identified during SOAR-S, this information must be

registered in the architectural backlog.

Candidate Architectural Solutions (CASs): There is no specific previous state

expected to this alpha before performing SOAR-S activities. After executing SOAR-S

activities, the expected state to be reached is proposed, in which a new set of CASs was

proposed to meet one or more ASRs. The work product proposed in SOAR-S to express

this alpha is the CASs Documentation, which includes the CASs representation as a new

architectural version and other relevant information, such as priority rank for implemen-

tation, lists of alternative CASs, and traceability among CASs, ASRs, stakeholders, and

emergent behaviors. Furthermore, this is a support documentation and the representation

of CASs into the architecture, considering di↵erent views and representation strategies,

must be done in SoS Software Architecture Documentation, a work product for software

architecture alpha.

Software Architecture: There is no specific previous state expected to this alpha

before performing SOAR-S activities. After executing SOAR-S activities, the expected

state to be reached is represented, in which there is an agreement for CASs and they were

adequately represented. The work product proposed in SOAR-S to express this alpha

is SoS Software Architecture Documentation. This documentation must explicit describe

SoS software architecture.

Acknowledged SoS: As an expected input for SOAR-S activities, this alpha presents

at least the analyzed state, in which ASRs were previously established during architectural

analysis. After executing SOAR-S activities, the expected state to be reached is designing,

in which the SoS software architecture has a new version to be evaluated. There is no

work product proposed in SOAR-S to directly express this alpha, but project teams can

schedule and add additional documentation if necessary.

Constituent Systems: After executing SOAR-S activities, the expected state to be

reached is negotiated, in which negotiation with the constituent systems providers/au-

thorities were performed and they are in agreement with ASRs, CASs, and what they

must o↵er in terms of capabilities to e↵ectively operate in SoS context. Furthermore,

constituent systems boundaries and individual missions must be also know at SoS level.

There is no work product proposed in SOAR-S to directly express this alpha, but project

teams can schedule and add additional documentation if necessary.

Emergent Behaviors: There is no specific previous state expected to this alpha

before performing SOAR-S activities. After executing SOAR-S activities, the expected

state to be reached is predicted, in which analysis and prediction strategies were followed

to leverage both desired and undesired behaviors. There is no work product proposed

90

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 5. SOAR-S: A Practice for Architectural Synthesis on Acknowledged SoS

in SOAR-S to directly express this alpha; however, project teams can schedule and add

additional documentation if necessary.

Architectural Team: Execution of SOAR-S activities must ensure the maintenance

of the performing state for this alpha, in which architectural team is working e↵ectively

and e�ciently. The work product proposed in SOAR-S to express this alpha is the Work

Scheme, a work product present in all design phases, i.e., analysis, synthesis, and evalua-

tion.

Development Environment: Execution of SOAR-S activities must ensure the main-

tenance of the working state, in which the distributed environment adequately works to

develop the SoS software architecture. The work product proposed in SOAR-S to ex-

press this alpha is the Synthesis Plan, which documents required elements to ensure an

environment as adequate as possible to perform architectural synthesis activities.

Stakeholders: Execution of SOAR-S activities must ensure the maintenance of the

in agreement state for this alpha, in which stakeholders agree with how their di↵erent

priorities and perspectives are balanced in the architecture to provide a clear direction

for the architectural team. There is no work product proposed in SOAR-S to directly

express this alpha, but project teams can schedule and add additional documentation if

necessary.

Furthermore, in order to illustrate how the aforementioned work products are related

to activities in SOAR-A, Table 4.1 presents for each activity its related work products

and respective kind of use (input/output).

In order to illustrate how aforementioned work products can relate to activities of

SOAR-S, Table 5.1 presents for each activity its related work products and kinds of use,

i.e., input/output.

5.2 Verifying the Applicability of SOAR-S: First Study

Since not only SOAR-S but also Essence Standard are new approaches in software engi-

neering, it is essential to verify if is it possible to generate process instances from SOAR-S.

In this context, the main goal of this study was to produce a proof of concept about the

feasibility of applying SOAR-S to generate process instances adequate to architectural

synthesis of acknowledged SoS software architectures. Results provided more confidence

to further conduction of the experiment described in Section 5.3.

This study was conducted with six graduate students from the University of São

Paulo (USP) during the Fall 2015 semester. Our study has focused on using SOAR-S to

conceive process instances. Additionally, feedback on the participants experience in using

SOAR-S was collected and used to enhance SOAR-S. This study was carried out based on

91

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

5.2. Verifying the Applicability of SOAR-S: First Study

Table 5.1: Work products produced/updated in SOAR-S activities

Activity

Work
Product Synthesis

Plan
Arch.
Backlog

CASs Doc-
umentation

SoS Software
Architecture
Documenta-
tion

Work
Scheme

Planning
Synthesis

Output - - - -

Checking
Architectural
Backlog on
Synthesis

Input Input - - -

Selecting ASRs
to Design

Input - Input Input -

Conceiving
Candidate
Architectural
Solutions (CASs)

Input -
Input/ Out-
put

- -

Coordinating
Distributed
Synthesis

Input - - -
Input/
Output

Handling
Evolution

Input -
Input/ Out-
put

- -

Predicting
Emergent
Behaviors

Input - - - -

Updating
Architectural
Backlog on
Synthesis

Input Output Input - -

Building
Architectural
Documentation

Input - Input Output -

the process for software engineering experiments proposed by Wohlin et al. (2012) that

comprises five main steps: scoping, planning, operation, analysis and interpretation, and

presentation.

5.2.1 Scope and Planning of the Study

The objective of this study was outlined by using the Goal, Question, Metric (GQM)

technique (Basili et al., 1999). According to GQM, the study had the objective of ana-

lyzing SOAR-S for the purpose of evaluation with respect to applicability and generality

in producing process instances from the point of view of software engineering students in

the context of a course of Experimental Software Engineering of the Graduation Program

at USP. Based on this goal, we established two research questions (RQ):

92

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 5. SOAR-S: A Practice for Architectural Synthesis on Acknowledged SoS

RQ1: Can SOAR-S support the production of process instances of architectural

synthesis for acknowledged SoS software architectures?

RQ2: Can SOAR-S support the production of process instances for di↵erent appli-

cation domains?

The study was performed in the context of an Experimental Software Engineering

course of graduation program at USP. Students (hereafter referred to as subjects) were

chosen by convenience, as they had knowledge on software engineering and represented

a sample from possible SoS developers. Our planned strategy to answer the RQs was

ask these subjects to built process instances for two di↵erent acknowledged SoS by using

SOAR-S support. We first built descriptions of two di↵erent acknowledged SoS and their

development scenarios to be used in instantiation activities: a flood monitoring SoS and

a Global Earth Observation SoS. By considering these descriptions, we also produced

two process instances for architectural synthesis with SOAR-S support (hereafter referred

to as reference instances). These reference instances express what we expect from using

SOAR-S support and were used as models for evaluating the instances generated by the

subjects. In this perspective, it was considered the level of conformance of subjects’

instances with these reference instances. Furthermore, two hypotheses were defined in

our study, one for each research question. These hypotheses are described as follows:

1. Applicability: Null hypothesis, HA0: It is not possible to generate process instances

to design acknowledged SoS with the support of SOAR-S.

Alternative hypothesis, HA1: It is possible to generate process instances to design

acknowledged SoS with the support of SOAR-S.

2. Generality of Domain: Null hypothesis, HG0: It is not possible to apply SOAR-S

for generating process instances to design acknowledged SoS when considering dif-

ferent application domains.

Alternative hypothesis, HG1: It is possible to apply SOAR-S for generating pro-

cess instances to design acknowledged SoS when considering di↵erent application

domains.

To test our hypothesis, we proposed two metrics (i.e., independent variables) ranging

from zero to one:

Conformance Factor (CF): When building a process instance using SOAR-S,

subjects analyze the SoS description and select which SOAR-S elements, i.e., activ-

ities and work products, they believe should be used. We thus evaluated which of

93

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

5.2. Verifying the Applicability of SOAR-S: First Study

these elements were correctly selected by comparing subjects selections against selec-

tions of our reference instances. Based on this evaluation, this metric measures the

conformance of subjects’ instances raised to each SOAR-S element. CF is computed

(in its non-normalized form), for each SOAR-S activity or work product, as the

percentage of process instances produced by subjects in which the selection is equal

to the selection from reference instances. In this case, the higher the percentage,

more equal process instances produced by subjects are to reference instances.

Variation Factor (VF): In this study, subjects produced process instances for two

di↵erent application domains. For each of these domains, we calculated an average

CF based on CFs of all activities and work products of SOAR-S reached in each

domain. Given these average CFs, this metric measures the variation of them. VF

is computed as the module of the di↵erence between these two average CFs. In

this case, the lower the VF, the higher the independence of process instances of

specific application domains (i.e., the CFs raised in di↵erent application domains

are similar).

Materials used during this study were: (i) initial version of SOAR-S described in

Essence Language; (ii) descriptions of two SoS in di↵erent application domains (i.e., GEO

and flood monitoring, named GEOSS and FMSoS); and (iii) a form to be filled by subjects

with their process instances. We structured this form into three parts:

Part I: personal level of knowledge in main issues of the study, i.e., software archi-

tecture and software engineering processes;

Part II: guidelines for creating process instances with SOAR-S support. For this,

we provided a textual field to be filled with the instance description in terms of

activities and work products. Therefore, it was mandatory to provide at least these

elements in process instances;

Part III: fields to be filled by each subject with elements of SOAR-S must be

included in its process instance; and

Part IV: personal impressions from subjects regarding utilization of SOAR-S.

5.2.2 Study Operation

Before conduction with real subjects, we performed a pilot with two participants from

our research group to verify the study conformance with established planning. After

this pilot, we established the steps presented in Figure 5.2 that were followed in the

study operation. Subjects first received a training on SOAR-S and how to explore its

94

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 5. SOAR-S: A Practice for Architectural Synthesis on Acknowledged SoS

representation in EssWork Practice Workbench. Next, were divided into two groups:

Group I, which was introduced to GEO SoS; and Group II, which was introduced to Flood

Monitoring SoS. Both groups received descriptions of respective SoS of training and the

SOAR-S represented in EssWork Practice Workbench. After training sessions, two groups

were asked to produce process instances based on received documentation. There was no

time limit to produce the process instances and the subjects spent an average time of one

hour to produce the instances.

Group I Group II

Process instantiation with
SOAR-S (for GEOSS)

Process instantiation with
SOAR-S (for FMSoS)

General Instructions for
Experiment Operation

Training
SOAR-S and EssWorkBench

Process instantiation with
SOAR-S (for GEOSS)

Process instantiation with
SOAR-S (for Flood Monitoring) Forms - Part I

Group IIForms - Part I
Group I

Training on Flood Monitoring
SoS (FMSoS)

Training on Global Earch
Observation SoS (GEOSS)

Answering questionnaire
about personal impressions

and level of knowledge
Forms - Parts II and III

Both Groups

Figure 5.2: Study operation

95

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

5.2. Verifying the Applicability of SOAR-S: First Study

5.2.3 Analysis and Interpretation of Results

A summary of obtained results is shown in Table 5.2. For each element of SOAR-S (i.e.,

activities and work products), we present average results achieved by each group in re-

lation to pre-conceived reference instances. We observed in both groups that instances

generated by subjects achieved a high degree of conformance (i.e., excepting the Coor-

dinating Distributed Synthesis in Group II activity, all other evaluated elements reached

at least 58.3% of average CF). Furthermore, average CFs reached by the two groups was

similar, reaching a VF of 8.97%. In this context, we observed that was possible to use

SOAR-S to generate instances of process for architectural synthesis of acknowledged SoS.

Table 5.2: First SOAR-S study: summary of results

Activity Group I -
GEOSS (%)

Group II -
FMSoS (%)

Planning Synthesis 100.0 100.0
Checking Architectural Backlog 100.0 66.7
Selecting ASRs to design 66.7 100.0
Conceiving CASs 100.0 66.7
Coordinating Distributed Synthesis 66.7 33.3
Predicting Emergent Behaviors 100.0 100.0
Building Architectural Documentation 100.0 66.7
Updating Architectural Backlog 100.0 100.0

Alpha Group I -
GEOSS (%)

Group II -
FMSoS (%)

Synthesis Plan 66.7 83.3
Architectural Backlog 83.3 58.3
CASs Documentation 83.3 58.3
Work Scheme 66.7 100.0
Software Architecture Documentation 83.3 66.7
Average CF 85.9 76.9

VF=9

Subjects were also asked for evaluate SOAR-S representation and SoS descriptions

by providing personal impressions, additional comments, and enhancement suggestions.

This information was extracted in Part II of form, which was built with non-discursive

questions and open discursive ones. Non-discursive questions were proposed ranging from

1 (very bad) to 4 (excellent) and evaluation followed three main perspectives: coherence,

cleanness, and organization. Figure 5.3 summarizes the results about impressions on

SOAR-S representation. Not excellent averages of coherence and completeness provided

indicatives to review SOAR-S description to enhance the representation in these aspects.

Figure 5.4 summarizes results about SoS descriptions, in which despite similarity in the

96

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 5. SOAR-S: A Practice for Architectural Synthesis on Acknowledged SoS

results between the two application domains, low averages in coherence and cleanness,

help on review documentation of SoS descriptions not only to further replications of this

study, but also for reuse of this documentation in the experiment presented in Section 5.3.

1

2

3

4

Coherence Cleaness Organization

Group I Group II

Figure 5.3: Impressions of SOAR-S representation.

Regarding discursive questions, qualitative data provided us with lessons to enhance

SOAR-S. The main suggestions from subjects and further incorporated into respective

documents are: (i) in SOAR-S, inclusion of more details about relationships among ac-

tivities; (ii) also in SOAR-S, inclusion of more details of which information are essential

in work products for Architectural Backlog and ASRs as means of enhancing guidelines

concerning their conception/updating; (iii) in GEOSS SoS description, inclusion of more

details about involved stakeholders; and (iv) creation of Handling Evolution activity and

inclusion in SOAR-S.

With this study, we consider that results indicate that SOAR-S can be an adequate,

comprehensive practice to support production of process instances for architectural syn-

thesis. Results also contributed to improve SOAR-S and to verify its applicability and

independence in terms of application domains.

5.2.4 Threats to Validity

This study and its results may have been a↵ected by some threats to empirical validity.

Following, we briefly discuss these threats.

97

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

5.3. Evaluating SOAR-S: Second Study

1

2

3

4

Coherence Cleaness Organization

Group I (GEOSS) Group II (FMESoS)

Figure 5.4: Impressions of SoS description.

Internal Validity. To increase the validity of our study regarding this concern, we

carefully designed, piloted, and iteratively refined the form and documentation provided

to the subjects. Additionally, we made the participation voluntary and anonymous.

External Validity. We believe that the number of participants can be accepted

since our main goal was to observe the results of using SOAR-S and gain insights and

suggestions for improving it.

Construct Validity. We attempted to mitigate most of bias coming from the subjects

by structuring a significant part of the form to drive the use of SOAR-S in a particular

SoS context.

5.3 Evaluating SOAR-S: Second Study

In order to evaluate SOAR-S, we performed a controlled experiment with SoS researchers

from academia and industry. This experimental study aimed at checking if SOAR-S could

support the establishment of design processes for SoS software architectures better than

those currently developed in an ad hoc manner, i.e., without considering any specific

support for process establishment. As the study described in the previous section, this

experiment was also based on the systematic process proposed by Wohlin et al. (2012).

98

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 5. SOAR-S: A Practice for Architectural Synthesis on Acknowledged SoS

5.3.1 Scope and Planning the Experiment

Following the GQM strategy (Basili et al., 1999), this experiment had the objective of

analyzing SOAR-S support for generate process instances for the purpose of evaluation

with respect to a set of process requirements from the point of view of software engineering

researchers in the context of SoS community. Based on this goal, we established one

research question (RQs):

RQ1: Can process instances established with SOAR-S support encompass process

requirements of SoS software architectures better than those currently established

in an ad hoc manner?

In this experiment, we defined one hypothesis that is described as follows:

1. Null hypothesis, HA0: There is no di↵erence in conformance of instances generated

using SOAR-S and instances generated in an ad hoc manner, i.e., HA0: AF(SOAR-S)

= AF(Control).

Alternative hypothesis, HA1: AF(SOAR-S) > AF(Control).

In this experiment, input for each subject was a document containing an overview of

a specific acknowledged SoS and its development environment. Expected output was the

proposition made by the subjects of activities, work products, and a workflow to perform

architectural synthesis of such SoS. Therefore, each set of activities and work products

might represent an instance of a process for architectural synthesis of a specific SoS.

Our experiment was performed with a group of seven researchers from academia and

industry. Researchers (hereafter referred to as subjects) were chosen by convenience. We

provided two descriptions of di↵erent acknowledged SoS in di↵erent application domains.

In order to evaluate process instances generated by subjects, we invited two SoS experts

to perform this evaluation. Based on a list of process requirements for SoS software ar-

chitectures leveraged in an SLR (See Section 2.2.3), these experts initially identified what

requirements were applicable as evaluation criteria to our experiment context, i.e., archi-

tectural synthesis for SoS software architecture. Final requirements set to be employed

by the experts comprised 13 requirements summarized in Table 5.3. Given this set, we

proposed a metric to test our hypothesis (i.e., independent variables):

Adequacy Factor (AF): this metric measures how adequate the process instances

established by subjects are to encompass the process requirements summarized in

Table 5.3. Two experts who performed this evaluation are external from our research

group and provided a consensual judgment about how many process requirements

99

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

5.3. Evaluating SOAR-S: Second Study

each process instance encompassed. Therefore, AF of each process instance is the

number of requirements that this instance encompassed. In this case, the higher the

AF, better is the process instance.

Table 5.3: Process requirements for architectural synthesis

Requirement Description

PR1 Consider in the architectural design what is necessary to handle
the distribution of constituent systems. In case of geographically
dispersed stakeholders, provide communication means to allow the
architectural design.

PR2 Support prediction analysis and adequate representation of desired
and undesired emergent behaviors at any stage of the architecting
process.

PR3 Provide means to establish traceability among SoS missions, func-
tionalities, emergent behaviors, and capabilities from constituent
systems.

PR4 Provide means to support the architectural evolution in accordance
with to SoS development.

PR5 Continuously develop, monitor, update, and refine architectural de-
cisions and respective SoS software architecture.

PR6 Maintain the management of complex range of stakeholders ensur-
ing their involvement in the architectural design during SoS life
cycle.

PR7 Establish an architecture documentation that registers the SoS soft-
ware architecture and its evolution.

PR8 Deal with quality attributes (e.g., interoperability, connectivity, and
performance), providing means to earlier verify these attributes in
the architecting process.

PR9 Support inclusion of self-managed constituent systems handling is-
sues in SoS software architecture generated by these constituents,
e.g., di↵erent organizations and own interests involved, develop-
ment teams, and di↵erent stages of development.

PR10 Include means to handle the lack of detailed information about the
internal architecture of constituents.

PR11 Manage operational impact of constituent systems, which have in-
dividual capability of operation and self-regulation. Support dy-
namic reconfiguration/participation of constituent systems in the
SoS, facilitating both operation and evolutionary changes.

PR12 Provide means to monitor and receive continuous feedback from SoS
operations and deal with deviations and changes in the operation
of constituent systems.

PR13 Consider impacts and relevance of software in SoS and the relation
of software with other architectural layers, e.g., physical and human.

100

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 5. SOAR-S: A Practice for Architectural Synthesis on Acknowledged SoS

The materials used during this experimental study were: (i) initial version of SOAR-S

described in Essence Language with EssWork Practice Workbench; (ii) descriptions of

development of two SoS projects in di↵erent application domains (i.e., GEO and flood

monitoring), and (iii) a form to be filled by the subjects with a complete set of guidelines

to create partial process instances to architectural synthesis based on SOAR-S description.

We structured this form into three parts:

Part I: personal level of knowledge in both software architecture and software

engineering processes;

Part II: guidelines to perform experiment activities, including creation of process

instances for architectural synthesis in the context of provided SoS descriptions; and

Part III: personal impressions regarding utilization of SOAR-S description and the

SoS descriptions.

5.3.2 Experiment Operation

Figure 5.5 presents steps followed in the experiment operation that was conducted in a

single day. Initially, subjects received general instructions about experiment documents,

form, and activities to be performed. Answers of level of expertise were then collected

on online forms (Part I of form previously described), doubts and misunderstandings

on experiment were also clarified. After, subjects were split into two groups, each one

following di↵erent sequence of activities in experiment execution.

Subjects of Group I were firstly introduced to GEOSS and trained on how to create

process instances with SOAR-S support. Then, they were asked to build process instances

for architectural synthesis by considering the description of a GEOSS project. After to

build a process instance with SOAR-S support, the Group I was introduced to a FMSoS

project and asked to build process instances to it without SOAR-S support. As shown in

Figure 5.5, the Group II performed the same activities but through an inverse sequence

of support, i.e., they first built instances ad hoc and after they built instances with

SOAR-S support. SoS project descriptions were also switched, they first built instances

for FMSoS and after for GEOSS. Furthermore, no limit of time was imposed during the

instantiating activities. Before experiment conduction, we performed a pilot experiment

with two participants from our research group, each one following the activities sequence

proposed to one of planned groups, to verify study conformance with experiment planning

and make adjustments if necessary.

101

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

5.3. Evaluating SOAR-S: Second Study

Group I

General Instructions for
Experiment Operation

Group II

Process instantiation with
SOAR-S (for GEOSS)

Training
SOAR-S and EssWorkBench

Process instantiation
ad hoc (for GEOSS)

Process instantiation
ad hoc (for FMSoS)

Training
SOAR-S and EssWorkBench

Process instantiation with
SOAR-S (for FMSoS)

Training on Global Earch
Observation SoS (GEOSS)

Training on Flood Monitoring
SoS (FMSoS)

Answering about personal
impressions

Forms - Parts III
Both Groups

Forms - Part II
Group I

Forms - Part II
Group II

Forms - Part I
Both Groups

Answering questionnaire about
level of knowledge

Training on Global Earch
Observation SoS (GEOSS)

Training on Flood Monitoring
SoS (FMSoS)

Figure 5.5: Experiment operation of second experiment

5.3.3 Analysis and Interpretation of Results

A summary of results obtained by the subjects’ scores in the proposed metric (AF) is

shown in Table 5.4. As previously described, each subject produced two process instances

with di↵erent level of support, i.e., ad hoc and with SOAR-S. In this sense, each line

presents individual results of a subject with the scores raised on its process instances.

Furthermore, results are divided by groups, group I with three subjects, and group II

with four subjects. Figure 5.6 shows box plots for the evaluated metric considering two

treatments, i.e., ad hoc and SOAR-S.

We first analyzed results concerning individual level of knowledge. Answers revealed

that all subjects had a knowledge compatible with experiment goals with no significant

102

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 5. SOAR-S: A Practice for Architectural Synthesis on Acknowledged SoS

di↵erences between subjects. Next, we individually compared scores raised by subjects

in their process instances generated during the experiment. In this analysis, we could

notice some important trends:(i) the sequence of treatments does not influenced in best

results of SOAR-S instances. Results of group I were similar to group II indicating that

there was no di↵erence from subjects learning in group II, in which the ad hoc was the

first treatment; (ii) mean values of raised scores shown in Figure 5.6 indicate that, when

supported by SOAR-S, subjects produced their process instances with higher AC than

with an ad hoc manner; and (iii) we also could not observe significant di↵erences in results

of two di↵erent SoS project contexts. Group I built process instances for GEOSS with

SOAR-S support and group II make it for FMSoS with similar performance. Due to the

low number of subjects, we could not apply statistical test being restrict to observe trends

in results.

Table 5.4: Second SOAR-S study: subjects individual scores on each instantiation ac-
tivity

Group I
Subject AF - (SOAR-S/GEOSS) AF - (Ad hoc/FMSoS)

S1 12 8
S2 8 4
S3 11 6

Group II
Subject AF - (SOAR-S/FMSoS) AF - (Ad hoc/GEOSS)

S4 11 4
S5 10 5
S6 10 5
S7 6 3

5.3.4 Discussion and Threats to Valididy

In general, results were favorable to use SOAR-S instead to author architectural processes

in an ad hoc manner. Results obtained in this experiment shown trends that SOAR-S can

provide a suitable support to authoring design processes for SoS software architectures. In

complex project environments typical of SoS, it is not possible to admit unique solutions

in terms of processes and compare two or more di↵erent solutions is challenging as well.

Therefore, we pursued instead for ways to support authoring of these processes meeting

specific demands from SoS context. In first study described in the previous section, we try

to verify if SOAR-S is applicable for this kind of support. In a second study, we evaluated

how better process instances can be when supported by our approach in contrast with

ad hoc perspective currently practiced in real SoS environments. The base of comparison

103

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

5.3. Evaluating SOAR-S: Second Study

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

Ad
eq

ua
cy

 Fa
ct

or
 (A

F)

SOAR Ad-hoc

Figure 5.6: Impressions of SoS description.

is a list of process requirements carefully leveraged as a result of an SLR and agreed

by experts who e↵ectively performed evaluation. We consider that case studies in such

complex projects are a very di�cult and cost expensive choice that demands for more

reliability from approaches to be evaluated. Therefore, we believe our results are valid as

indicators of trends that enhance the reliability of future case studies in real SoS projects.

We were aware of threats to the validity of our experiment. Following, we briefly

discuss these limitations and our e↵orts to mitigate them.

Internal Validity. To avoid problems of internal validity, we carefully designed, pi-

loted, and iteratively refined form and documentation provided to subjects. Additionally,

we decided to perform the experiment in a single day, kept two groups separated dur-

ing conduction, prevented communication among subjects, and made the participation

voluntary and anonymous.

External Validity. We believe that the number of participants can be accepted

since the experiment context demands for subjects with too specific knowledge. Since

real population is naturally small, we consider that even a limited number of subjects

from this population can produce important results indicating relevant trends.

Construct Validity. To mitigate most of bias coming from evaluation of process

instances we combine two di↵erent sources of knowledge, agreement of two researchers

and the list of process requirements produced from related literature on architecting SoS

software architectures. Furthermore, as we decided to perform the experiment in a single

day, parts of design process had to be simplified or omitted, which could result in a threat

to construction validity. Nevertheless, the architectural synthesis is a macro-activity of

104

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 5. SOAR-S: A Practice for Architectural Synthesis on Acknowledged SoS

the design process relevant to be investigated, even using a simplified version of SOAR,

and able to be evaluated in a SoS project context.

Conclusion Validity: A main threat of our study is related to not be possible to

provide evidences with statistical significance to refuse null hypothesis. For reducing

possible issues associated with conclusion validity, our main goal was restricted to observe

trends in the results of using SOAR-S.

5.4 Final Remarks

This chapter presented SOAR-S, a SOAR practice to support the establishment of pro-

cesses for architectural synthesis of acknowledged SoS. As other SOAR practices, SOAR-S

is also represented in Essence Language and extends SOAR Kernel. Contributions of this

chapter are: (i) SOAR-S to guide architectural synthesis on acknowledged SoS; (ii) a

SOAR-S documentation built in Essence Workbench Tool that enables instantiation of

processes for particular projects; (iii) a study with six SoS researchers from academia and

industry to verify if SOAR-S is capable to support process instantiation; and (iv) an ex-

perimental study with seven SoS researchers. This experimental study aimed at checking

if instances produced with SOAR-S can be better than those ones developed in an ad

hoc manner. Results from two studies indicate that SOAR-S is adequate to architectural

synthesis in acknowledged SoS. Next chapter presents SOAR-E, the subsequent practice

of SOAR to the establishment of processes for architectural evaluation of acknowledged

SoS.

105

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter

6
SOAR-E: A Practice for Architectural

Evaluation on Acknowledged SoS

This chapter introduces the SOAR-E, a SOAR practice to the establishment of processes

for architectural evaluation of acknowledged SoS. Section 6.1 describes SOAR-E. This

description refers to the final version of SOAR-E, produced after a survey conducted for

evaluating it that is presented in Section 6.2. Final remarks are presented in Section 5.4.

6.1 Description of SOAR-E

Due to the relevance of software architectures on determining system structure and qual-

ity, their evaluation is essential to avoid further failures in any project of software-intensive

system. Therefore, evaluating software architectures is an essential activity in develop-

ment processes, even more in large complex systems (Kazman et al., 2012). In SOAR-E,

evaluating a SoS software architecture is to determine the degree in which new candi-

date architectures (i.e., CASs) satisfy requirements (i.e., ASRs) and if proposed changes

can cause architectural degradation regarding ASRs. As previously discussed (see Chap-

ter 2), SoS di↵er from monolithic systems since they involve a set of characteristics, in

which a global architecture contains constituent systems that have own architectures not

mandatorily visible at SoS level. SOAR-E includes activities and work products to the

107

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

6.1. Description of SOAR-E

architectural evaluation of acknowledged SoS, taking advantage of concepts and elements

already defined in SOAR Kernel (see Chapter 3).

In software development processes, the main two opportunities to perform architec-

tural evaluation are before and after implementation (Clements et al., 2002). Evaluating

before implementation is relevant to reduce cost to solve problems in design decisions

after implementation (Shanmugapriya and Suresh, 2012). Evaluate after implementation

is relevant to verify if the as-built SoS conforms with the as-designed one (Shanmugapriya

and Suresh, 2012). In SOAR, both these evaluations are supported by SOAR-E. As a part

of SOAR, SOAR-E is also described upon OMG’s Essence Standard and documented in

Essence Workbench Tool. Activities, alpha states, and work products of SOAR-E are

described as follows.

6.1.1 SOAR-E Activities

Figure 6.1 shows SOAR-E general workflow, its activities, and activity spaces inherited

from SOAR Kernel. Activities of SOAR-E are described as follows:

Evaluating deviations between current architecture, i.e., last validated version, and ar-

chitecture really implemented in SoS. This evaluation is called late evaluation and intends

to identify problems between architecting and development processes (Shanmugapriya

and Suresh, 2012). This evaluation is even more relevant in SoS, since architectures of

constituents are sometimes not accessible to SoS architectural teams and characteristics

agreed with constituent owners must be verified after their implementation.

Planning Evaluation: As in other SOAR practices (i.e., SOAR-A and SOAR-S),

strategies established in SOAR-E be also reviewed and updated on each design iteration.

In this activity, the architectural team must establish/update a plan for architectural

evaluation activities according to development stage. Following, we list some possible

issues and related tasks to be considered in this activity:

Determine which strategies, such as techniques, tools, and technologies, must be

used for evaluation. Bosch (2000) classifies these strategies in four main groups: (i)

experience-based, which depends on previous experience and domain knowledge of

evaluators; (ii) simulation-based, in which simulation techniques can be employed to

emulate the SoS generated by an architecture. Simulation-based can help on check-

ing emergent behaviors and other aspects not statically verifiable; (iii) mathemati-

cal modeling, which employs mathematical models to come up with mathematical

proofs for verify quality requirements; and (iv) scenario-based, in which evaluation

is based on scenarios built to describe a complete intended use of the system under

evaluation. In general, these scenarios are related to required quality attributes and

108

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 6. SOAR-E: A Practice for Architectural Evaluation on Acknowledged SoS

Figure 6.1: SOAR-E activities workflow

help on identifying architectural risks and their potential impacts in system oper-

ation (Kazman et al., 1998). Scenario-based is specially useful in SoS, because it

is a way to evaluate SoS focusing on global scenarios of operation, in which com-

plete information of constituent systems architectures can be not available. In this

case, evaluation can use information of expected behaviors agreed with constituent

systems providers;

Analyze previous versions of evaluation plan, after first iteration, to come up with

a new plan determining which activities of SOAR-E must be performed;

Determine disclosing and copyright rules, i.e., who must have access to the informa-

tion report; and

Estimate resources necessary to conduct evaluation activities. For example, analyze

the relevance of the new CASs proposed in synthesis in terms of size, complexity,

number of alternative CASs, and impact in whole SoS software architecture. This

109

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

6.1. Description of SOAR-E

analysis must guide how deep evaluation shall be and how many resources it de-

mands. Regarding human resources, evaluation of software architectures typically

includes the participation of more people who did not participated in the concep-

tion of CASs (Bass et al., 2012). Depending on each development project, di↵erent

structures can be considered to organize people to be engaged as evaluators and

their specific roles. We recommend three main groups based on ATAM (Kazman

et al., 1998)1: (i) an evaluation team with the role of ensuring that evaluation oc-

curs as planned. It can be formed by members of architectural team or external

ones; (ii) decision makers team must be formed by people who have authority to

mandate changes in the architecture; and (iii) a group of SoS stakeholders, which

is a more generic group formed by selected stakeholders that must determinate how

satisfactory is the way how CASs encompass ASRs. Developers of constituent sys-

tems represent a relevant type of stakeholders, since they can help the evaluation

through the perspective of who must reflect architectural decisions at SoS level to

lower level of constituent systems.

Once evaluation strategies are planned, this activity must also encompass the prepa-

ration of an environment that allows evaluation in accordance with established plan. This

environment involves several issues that must demand for preparatory tasks, such as:

Confirm who performs the evaluation, contacting potential participants and ensuring

participation of who are essential;

Negotiate and establish with participants an agreed schedule of activities in accor-

dance with evaluation plan;

Produce any additional documentation to follow the evaluation strategies; and

Prepare evaluation participants with all information needed to perform evaluation.

It may include workshops, presentations, and coaching surrounding SoS software

architecture.

Checking Architectural Backlog on Evaluation: In architectural evaluation,

the architectural backlog must be checked to supply the planning activity with any infor-

mation potentially relevant to perform architectural evaluation. Some examples are: (i)

reporting problems or process enhancements ideas registered during evaluation in previ-

ous iterations; (ii) and external information from other processes, e.g., problems identified

with independent evaluations performed by constituent systems owners, general systems

1Some of these recommendations are based on ATAM in light of SoS challenges, since it is a mature
evaluation method for software architectures already employed in some SoS projects (Chigani and Balci,
2012; Kazman et al., 2012).

110

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 6. SOAR-E: A Practice for Architectural Evaluation on Acknowledged SoS

engineering processes of SoS can register on architectural backlog information of new risks

and quality attributes also relevant to software architecture.

Evaluating SoS Software Architecture: In this activity, architectural evaluation

must be conducted in accordance with evaluation plan. Inputs of this activity are eval-

uation plan, CASs, related documentation from analysis and synthesis, and supporting

documentation produced in the Planning Evaluation activity. The main output must be

an evaluation report describing findings, such as problems, strengths, and weaknesses of

CASs and, in case of di↵erent alternative CASs, results comparing them. This activity

can demand more or less e↵orts according to several issues, such as the strategies proposed

to evaluate the architecture, size of CASs, and SoS level of maturity. Information pro-

duced in this activity must feed not only SoS implementation but also further iterations

of architecting process. The main issues recommended to be considered in this activity

are:

Identify problems that new CASs can bring to the SoS;

Check if emergent behaviors predicted in synthesis are truly accomplished by the

software architecture;

Identify potential sources of architectural degradation, in which changes in archi-

tecture cause its degradation regarding already raised ASRs;

Propose design solutions to meet identified problems and new enhancing opportu-

nities. Evaluators must also indicate if propositions must be directly applied to

implementation or if they must be registered to be better explored in architectural

design; and

Analyze architectural risks, identifying which CASs may lead to undesirable conse-

quences for SoS missions.

Coordinating Distributed Evaluation: This activity is necessary to manage the

participation of heterogeneous and distributed groups of stakeholders. It must occur in

parallel to Evaluating SoS Software Architecture activity, encompassing tasks to support

this collaborative work. For example, making adaptations in evaluation plan, managing

communication in the distributed work, and organizing of evaluation meetings.

Reviewing Evaluation: This activity encompasses both report of the evaluation

and establishment of an upshot of the evaluation. Based on results of Evaluating SoS

Software Architecture activity, architectural team and stakeholders with decision author-

ity must agree about the feasibility of implementing a new architectural version. If there

is a consensus that the SoS software architecture resultant of applying CASs is unfeasible,

111

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

6.1. Description of SOAR-E

architectural team must to go back to synthesis to come up with new CASs. In this

case, review evaluation activity must also include preparatory tasks to this backtrack.

For example, changing time schedule in the development project, estimating additional

resources needed to redone activities, and establishing agreement between architectural

team and decision makers concerning new e↵orts. In case of approval for implementation,

the Disclosing Validated Architecture activity must be normally followed. Reviewing eval-

uation must also include production of feedback information including all justifications of

what was deliberated. In case of partial approval, architectural team must deliberate if

approved CASs are enough and consistent to deliver an architectural version to be imple-

mented. Furthermore, all relevant information related to evaluation must be reported as

an output of Reviewing Evaluation activity. Following, we recommend some issues to be

considered when authoring tasks to accomplish this reporting on each SoS project:

Produce an evaluation report including all relevant information generated during

the evaluation;

Structure documentation by considering the di↵erent target audiences in accordance

with copyright and privacy rules; and

Perform meetings and presentations to transmit results to di↵erent audiences.

Updating Architectural Backlog on Evaluation: This activity registers any

relevant information leveraged in evaluation and not included in other work products

of evaluation activities For example, new design ideas, considerations for other archi-

tecting stages in future iterations (i.e., architectural analysis or architectural synthesis),

enhancement suggestions for architectural evaluation strategies in future iterations, and

description of possibly future trade-o↵s.

Disclosing Validated Architecture: When an evaluated set of CASs is approved,

the representation of the current SoS software architecture must be updated and disclosed

as a new architectural version with new CASs to be implemented. Documentation of

SoS software architecture can be built through all architecting process, specially during

architectural synthesis activities. However, only after evaluation, an approved set of CASs

can be documented and disclosed in the ongoing SoS software architecture. In this context,

this activity updates the SoS software architecture documentation to reflect these CASs.

Furthermore, this activity is also a way to convey the updated SoS software architecture

reaching all interested stakeholders. Di↵erent disclosure strategies can be considered for

di↵erent stakeholders, such as presentations, meetings, and coaching on SoS software

architecture. If necessary, access can be also limited, e.g., providers of constituent systems

can receive information with focus on specific parts of the SoS software architecture.

112

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 6. SOAR-E: A Practice for Architectural Evaluation on Acknowledged SoS

6.1.2 SOAR-E Alpha States and Work Products

In architecting process, evaluation activities must generate di↵erent work products and

change alpha states of this process. Work products of SOAR-E express some alphas

inherited from SOAR Kernel. Following we present the states variation of these alphas

when performing SOAR-E and describe the work products of it:

Architectural Backlog: Execution of SOAR-E activities must ensure maintenance

of updated state for this alpha, in which it is consulted in Checking Architectural Backlog on

Evaluation activity and fulfilled in Updating Architectural Backlog on Evaluation activity

with any relevant information unforeseen in other work products of SOAR-E. The work

product that express this alpha is the Evaluation Backlog, which must document backlog

information from Updating Architectural Backlog on Evaluation activity.

Architecturally Significant Concerns (ASCs): ASCs are a source of information

for SOAR-E activities. The required initial state for this alpha is established, in which a

set of ASCs is identified and agreed in the current development stage. After evaluation

activities, this alpha must reach the fulfilled state only if all ASCs related to proposed

CASs were satisfied, i.e., the architectural decisions employed to address ASRs were ver-

ified as e↵ective ones also satisfying ASCs. In case of partially addressing them, the

ASCs maintain the state established. A possible work product associated to this alpha is

a List of concerns. It must be generated in analysis phase, providing description to the

ASCs. SOAR-A practice already describes guidelines concerning this work product (see

Chapter 4).

Architecturally Significant Requirements (ASRs): Since ASRs must be con-

fronted to the CASs, this alpha is an expected input for SOAR-E activities. It must

present at least the established state, in which ASRs were established and agreed, ex-

pressing problems that software architecture must solve. The work product associated to

this alpha is the ARSs documentation. It must be generated during the architectural anal-

ysis, providing description to the ASRs. SOAR-A practice already describes guidelines

concerning this work product (see Chapter 4).

CASs: CASs must be produced during architectural synthesis (see more information

about CASs proposition in Chapter 5). In SOAR-E, this alpha must present at least the

proposed state, in which a new set of CASs was proposed and agreed to meet one or more

ASRs. After execution of SOAR-E activities, the expected state to be reached is evaluated,

in which there is an agreement regarding the acceptance of CASs. The main condition to

reach this state is the conclusion of Evaluating SoS Software Architecture activity. The

work product associated to this alpha is a CASs description to be incorporated to the

description of SoS software architecture.

113

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

6.1. Description of SOAR-E

SoS Development Environment: Execution of SOAR-E activities must ensure

maintenance of the working state, in which the distributed environment is supported to

adequately work to architectural development of SoS. The work product of SOAR-E in

which this state maintenance can be verified is the Evaluation Plan, which documents a

planning to evaluate SoS software architecture.

Acknowledged SoS: Before architectural evaluation, this alpha must present at least

the designing state, in which a set of CASs were proposed to ASRs as an increment to the

SoS software architecture. If this set of CASs had success during architectural evaluation,

the expected state to be reached is designed, in which these CASs were approved to

be further implemented. In case of failure, designing state is maintained and SOAR-E

activities must support backtracking to new architectural synthesis to conceive new CASs.

There is no work product in SOAR-S to directly express this alpha, but project teams

can schedule and add additional documentation if necessary.

Constituent Systems: The execution of SOAR-E activities must ensure the main-

tenance of the negotiated state for this alpha, in which constituent systems provider-

s/authorities agreed with the ASRs and respective CASs proposed to the SoS software

architecture. There is no work product in SOAR-E to directly express this alpha.

Emergent Behaviors: As an expected input to SOAR-E activities, this alpha must

present at least the predicted state, in which both desired and undesired behaviors are pre-

dicted during architectural synthesis. After execution of SOAR-E activities, the expected

state to be reached is checked, in which the evaluation strategies are applied confirming

the emergent behaviors of SoS as in accordance with the ASRs. There is no work product

in SOAR-E to directly express this alpha.

Software Architecture: The previous state required to this alpha is the represented

state, in which there is an agreement about proposed CASs and they are adequately

persisted in architectural representation. After execution of SOAR-E activities, two dif-

ferent states can be reached according to evaluation results: (i) validated state, if CASs

are totally or partially approved for implementation; and (ii) ASRs selected state if they

are not approved. In this scenario, a redesign is necessary and the architecting process

must back to synthesis. Regarding work products, a previous SoS Software Architecture

Documentation is expected as an input already produced during architectural synthesis

(see Chapter 5). If necessary, this documentation can be updated during evaluation, for

example, when architectural team discards some alternative CASs after evaluation. Fur-

thermore, Evaluation Report is a second work product related to this alpha that must be

produced/updated during evaluation activities. For main content of this work product,

we recommend the following points:

114

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 6. SOAR-E: A Practice for Architectural Evaluation on Acknowledged SoS

Organize report documentation by considering two main levels of target audiences,

i.e., stakeholders at both levels SoS and constituent systems;

Describe architectural risks. This description can include risk themes that express

systemic weaknesses in the architecture or even in the architecting process (Kazman

et al., 1998);

Indicate new opportunities for enhancing the SoS software architecture; and

Support testing activities with relevant information, e.g., describe critical quality

scenarios, if scenarios were used to describe ASRs, or key ASRs to be explored in

testing activities.

Architectural Team: Execution of SOAR-E activities must ensure the maintenance

of the performing state for this alpha, in which the architectural team must be working in

architectural evaluation. The work product proposed to expresses this alpha is the Work

Scheme. It is a work product common to all architecting phases, i.e., analysis, synthesis,

and evaluation. In this sense, it is already described in SOAR-A practice (see Chapter 4).

Stakeholders: Execution of SOAR-E activities must ensure the maintenance of the in

agreement state for this alphas. If validated, stakeholders must agree with the introduction

of CASs. There are no work products in SOAR-E to directly express these alpha. However,

work products that support the understanding of stakeholders can be previously conceived

during architectural analysis and used as information source for evaluation activities (see

work products proposed to these alphas in Chapter 4).

In order to illustrate how aforementioned work products can relate to activities of

SOAR-E, Table 6.1 presents for each activity its related work products and kinds of use,

i.e., input/output.

6.2 Evaluation

Following the same strategy employed to evaluate of SOAR Kernel and SOAR-A, we

evaluated SOAR-E by conducting a survey with experts from both academia and industry

who have been involved in SoS development. Similar to the surveys described in previous

chapters (see the survey conducted for SOAR Kernel in Section 3.2 and the one conducted

for SOAR-A in Section 4.2), this study was also based on the survey steps proposed by

Kasunic (2005) that comprises: (i) identify research objectives; (ii) identify & characterize

target audience; (iii) design sampling plan; (iv) design & write questionnaire; (v) pilot

test questionnaire; (vi) distribute questionnaire; and (vii) analyze results and write report.

These steps are described as follows:

115

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

6.2. Evaluation

Table 6.1: Work products produced/updated in SOAR-E activities

Activity

Work
Product Evaluation

Plan
Arch.
Backlog

Evaluation
Report

SoS SA
Doc.

Work
Scheme

Planning
Evaluation

Output Input Input -
Input/
Output

Checking
Architectural
Backlog on
Evaluation

Input Input - - -

Evaluating SoS
Software
Architecture

Input -
Input/ Out-
put

Input -

Coordinating
Distributed
Evaluation

Input - - -
Input/
Output

Reviewing
Evaluation

Input -
Input/ Out-
put

Input -

Updating
Architectural
Backlog on
Evaluation

Input Output Input - -

Disclosing
Validated
Architecture

Input - - Output -

1. Identify research objectives: This survey aimed to verify if SOAR-E meets

expectations of the SoS community as a supporting approach to architectural eval-

uation on SoS. Four research questions (RQs), summarized in Table 6.2, guided this

survey.

Table 6.2: Survey research questions

SOAR-E Practice

RQ1 Does SOAR-E encompass all common issues related to architectural eval-
uation on SoS software architectures?

RQ2 Is SOAR-E correct, with no wrong or misunderstood statements?
RQ3 Is SOAR-E conceptually coherent, with no conflicts or wrong placed el-

ements?
RQ4 Can SOAR-E be considered intelligible and easy to use?

2. Identify and characterize target audience: The target audience is represented

by potential SOAR users. We sampled this population by considering SoS re-

searchers who have conducted studies and/or development projects on SoS and

116

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 6. SOAR-E: A Practice for Architectural Evaluation on Acknowledged SoS

developers who have constructed SoS. The level of expertise, was also collected to

support further analysis of answers.

3. Design sampling plan: Considering the same reasons presented in the survey

conducted for SOAR Kernel (see Section 3.2), sample size was limited by individuals

who agreed to participate, i.e., a set of seven experts.

4. Design and write questionnaire: By following the same strategy of previous

surveys, we gathered answers with an on-line self-administered questionnaire2. The

questionnaire was guided by research questions presented in Table 6.2 and included

non-discursive (closed) and discursive (open) questions. In closed questions, par-

ticipants were asked to provide a score to evaluate elements of SOAR-E. In open

questions, participants provided textual answers justifying their scores as well as

additional comments and improvement suggestions. Additionally, participants were

provided with following documentation3: (i) guidelines to read documentation and

answer questionnaire; (ii) a profile questionnaire to verify the level of expertise of

the participants; (iii) complete description of the SOAR-E; and (iv) a support doc-

umentation about both Essence Language and Essence Kernel.

5. Pilot test questionnaire: A pilot survey was executed with participation of one

researcher from our research group. Data were collected only to verify if average

time for response is a↵ordable, possible errors and enhancement in first version of

survey material.

6. Distribute questionnaire: A list of experts were invited to participate and survey

was sent to whom has agreed to collaborate. Then, three steps were proposed to

participants: (i) answering questions about level of expertise;(ii) reading survey’s

documentation; and (iii) answering questions about SOAR-E.

7. Analyze results and write report: For scale-based questions, graphics were

associated to a textual discussion to illustrate observed trends. Due to the limited

number of survey participants, no statistical test were applied. Discursive questions

provided insights to enhance SOAR-E. Following section presents obtained results

and discusses how they help to enhance this practice.

6.2.1 Analysis and Interpretation of Results

To analyze the survey results, we first identified personal profile of participants. Figure 6.2

shows level of expertise in a scale ranging from zero (beginner) to three (expert) for both

2see the questionnaires of all surveys of this Thesis in Appendix E.
3Questionnaires of all surveys of this thesis are included in Appendix E.

117

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

6.2. Evaluation

SoS and software architectures. Collected information indicates that all participants have

at least a level of knowledge on SoS and software architectures. We also asked for their

occupation area. In this case, the predominance was of academic researchers and only

two participants work as industry practitioner.

0 1 2 3

P - 1

P - 2

P - 3

P - 4

P - 5

P - 6

P - 7

Pa
rtc

ip
an

t

Software Architectures Expertise SoS Expertise

(expert)(beginner)

Figure 6.2: Levels of expertise on SOAR-E Survey

Regarding previously established RQs, results for each one are detailed as follows.

RQ1. Three questions were related to this RQ, two of them non-discursive and a discursive

one. Figure 6.3 summarizes results of non-discursive questions. The first question

asked for participants how complete work products of SOAR-E are to the archi-

tectural evaluation of acknowledged SoS. In second non-discursive question, partic-

ipants graded the completeness of the activities contained in SOAR-E. A discursive

question asked participants to point out what is missing in SOAR-E. Answers help

us to enhance SOAR-E, in particular, we could provide in “planning evaluation” ac-

tivity more information about possible tasks to be considered in a process instance

to evaluate SoS software architectures.

RQ2. This RQ had two associated questions, a discursive and a non-discursive one. Fig-

ure 6.4 shows scales pointed out by participants concerning how correct SOAR-E

is in terms of correctness. In general, participants considered SOAR-E as correct.

Furthermore, errors pointed out by some participants in discursive question were

only minor errors in some figures and typographical errors.

RQ3. This RQ was structured into two questions (a discursive and a non-discursive one)

about the SOAR-E coherence. The non-discursive question asked the participants

118

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 6. SOAR-E: A Practice for Architectural Evaluation on Acknowledged SoS

0 1 2 3

P - 1

P - 2

P - 3

P - 4

P - 5

P - 6

P - 7

Pa
rti

cip
an

t
Activities Work Products

No (SOAR-E does not encompass
the architectural synthesis at all)

Partially not (SOAR-E requires
critical additions)

Partially yes (SOAR-E
requires minimal

additions)

Yes (SOAR-E does not
miss any relevant aspect)

Figure 6.3: SOAR-E Survey: RQ1 results of non-discursive questions

0 1 2 3

P - 1

P - 2

P - 3

P - 4

P - 5

P - 6

P - 7

Pa
rt

ic
ip

an
t

Incorrect (the amount of errors
makes SOAR-E practice useless)

Partially incorrect (critical
statements should be

reviewed)

Partially correct (less important
statements should be

reviewed)

Correct (there are no
wrong statements)

Figure 6.4: SOAR-E Survey: RQ2 results of non-discursive questions

for grading SOAR-E general coherence. Figure 6.5 shows results of the non-discursive

question, indicating that participants judged SOAR-E as coherent. However, in the

discursive question, participants indicated possibilities of coherence corrections. In

particular, the description of some work products had to be better aligned with the

checklists of alpha states described in SOAR Kernel.

RQ4. This RQ had two associated questions, a non-discursive and a discursive one. Fig-

ure 6.6 shows results of the non-discursive question that evaluated SOAR-E de-

scription in two dimensions: clearance and organization. Results indicated general

acceptance of SOAR-E as clear and well-organized, however, we did not obtain to-

119

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

6.2. Evaluation

0 1 2 3

P - 1

P - 2

P - 3

P - 4

P - 5

P - 6

P - 7

Pa
rti

cip
an

t

Incoherent (the amount of
conflicts and/or

disorganization make the
SOAR-E practice useless)

Partially coherent (critical
elements are conflicting or

incorrectly placed)

Partially coherent (less
important elements are
conflicting or incorrectly

placed)

Coherent (there are no
relevant conflicts or
incorrectly placed

elements)

Figure 6.5: SOAR-E Survey: RQ3 Results of non-discursive questions

tal satisfaction from participants. Analyzing discursive question, we identified some

possibilities of enhancements in description of activities and work products with

increment of suggestions of issues to be considered as specific tasks in process in-

stances. We also verified that despite facility to understand specific elements and

concepts of the Essence Language, as some participants had their first experience

with this language during the survey, they reported some extra e↵ort to understand

SOAR-E.

0 1 2 3

P - 1

P - 2

P - 3

P - 4

P - 5

P - 6

P - 7

Pa
rti

cip
an

t

Organized Clear

Low High

Figure 6.6: SOAR-A Survey: RQ4 results of non-discursive questions

The positive evaluations showed us that SOAR-E is described without severe problems

and its representation in Essence Language was enough clear to enable participants to

120

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 6. SOAR-E: A Practice for Architectural Evaluation on Acknowledged SoS

understand its content. These results represent a good indicative that SOAR-E can be

used to its application purposes. Regarding possible threats to validity, as this survey

followed the same methodology of the SOAR-A’s survey, we consider same limitation

previously described for this survey (see the discussion of these threts in Section 4.2.2).

6.3 Final Remarks

Architectural evaluation is quite relevant for any software-intensive system, predicting

impact of design decisions, avoiding later problems, and reducing budget. This chapter

presented SOAR-E, a SOAR practice to the establishment of processes for architectural

evaluation of acknowledged SoS. It resulted from an analysis of state of the art in related

literature in conjunction with experience of experts in SoS and software architectures.

Contributions of this chapter are: (i) a practice named SOAR-E that encompasses archi-

tectural evaluation of acknowledged SoS; (ii) SOAR-E documentation, built in Essence

language and available to use in Essence Workbench Tool; and (iii) a survey with experts

of SoS community SOAR-E which revealed good acceptance of SOAR-E. Next chapter

concludes this thesis, summarizing main contributions, general limitations, and prospect-

ing future work.

121

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter

7
Conclusions

SoS have been shown to be a suitable system class to develop software-intensive sys-

tems in several and even critical application domains. Construction of software-intensive

systems under SoS inherent characteristics can result in systems with higher autonomy,

dynamicity, and operational flexibility to accommodate changes. However, these charac-

teristics also bring several challenges for engineers, architects, and developers to create

complex systems formed by other independent constituent systems. Main examples of

these challenges include: (i) enable an evolutionary development in a system formed

by other independent systems; (ii) tackle changes/reconfiguration during SoS operation

to accommodate changes in both SoS and their constituent systems; and (iii) deal with

large-scale global missions involving multiple organizations and interests. In this scenario,

SoS development has arisen as an important, new research area, with contributions from

di↵erent research communities, e.g., systems engineering and software engineering. The

importance of developing novel theories and technologies to SoS development has been

highlighted in roadmaps targeting year 2020 and beyond (Cordis, 2012; Nielsen et al.,

2015).

From another perspective, software architectures have been considered an essential el-

ement to produce high-quality systems (Kruchten et al., 2006; Shaw and Clements, 2006).

Decisions made at the architectural level directly interfere with the achievement of sys-

tems missions. In this sense, software architectures have been also considered an essential

element to the success of SoS (Brondum and Liming, 2010; Jamshidi, 2008b; Maier, 1998;

123

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

7.1. Revisiting the Thesis Contributions

Schaefer, 2005). The architecture of an SoS usually involves a number of complex con-

stituent systems, di↵erent technologies, and several development teams applying di↵erent

approaches to develop these constituents. Design processes for such architecture involve

the conception of operations, functions, behaviors, internal and external relationships, and

dependencies regarding SoS and their constituents (DoD, 2008). Despite the existence of

some initiatives to support design of SoS, most of these software architectures are still

designed using ad hoc processes.

Regarding this lack, this thesis focus on guiding the authoring of architectural de-

sign processes for acknowledged SoS. Our main goal is to support process managers to

create instances of their architecting processes. Contributions of our work include: (i) a

conceptual model for characterizing software-intensive SoS; (ii) a list of process require-

ments for developing SoS software architectures; and (iii) a general process for designing

acknowledged SoS software architectures. Main contributions of this thesis is revisited in

Section 7.1. Section 7.2 summarizes limitations of the work, how these limitations can be

overcome, and directions for further research.

7.1 Revisiting the Thesis Contributions

In this thesis we presented SOAR, a high level process to support architecting process

instantiation for acknowledged SoS software architectures. Since SOAR is focused on

acknowledged SoS, it deals with particular challenges of these category, such as the need

of negotiation with constituent systems providers and the low control of their individual

architectures. In this context, Figure 7.1 depicts the research goals and main thesis

contributions, including SOAR main elements and how they are related to our research.

SOAR includes SOAR Kernel and three practices, i.e., SOAR-A, SOAR-S, and SOAR-E.

These contributions are fivefold, each one summarized in the following.

A conceptual model and a framework for software-intensive SoS. As dis-

cussed in Section 2.1.1, there is an absence of a consensual understanding about what

defines a software-intensive SoS. Regarding this lack, we established a common under-

standing about software-intensive SoS that supports the analysis and classification of this

class of systems. With this model, it is possible to analyze and classify a given system,

clearing if it is a SiSoS or not and to which category of SoS it belongs, i.e., virtual,

collaborative, acknowledged, or directed. In order to build this model, we considered

an extension of a standard for software-intensive systems (ISO/IEC/IEEE, 2011) aligned

with inherent SoS characteristics found in the existing literature (DoD, 2008; Firesmith,

2010; Jamshidi, 2008a; Maier, 1998; Sauser et al., 2010). Moreover, we also provided in

Section 2.2.2 a framework for the characterization of research into SoS Software Architec-

124

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 7. Conclusions

To propose a general design process for Acknowledged SoS software architecturesGeneral
Goal

Sub-goals

Thesis
Contributions

To provide guidance
on what must be

encompassed in terms
of process when

designing
acknowledged SoS

software architectures

To provide support on
establishing processes

for architectural
analysis of

acknowledged SoS

To provide support on
establishing processes

for architectural
synthesis of

acknowledged SoS

To provide support on
establishing processes

for architectural
synthesis of

acknowledged SoS

Process
requirements list

SOAR-A SOAR-S SOAR-E

SOAR Kernel

Conceptual model
& Framework for

SoS

Figure 7.1: Main thesis contributions and correlation to research goals

tures. This framework is the result of an iterative process of classification of the primary

studies found in our SM presented in the same section. It presents the most common

and apparently stable elements/classes for the primary studies found and can be useful

for the understanding of a given study or a set of studies. We expect that both this

both contributions can help SoS community to align its knowledge about SoS software

architectures.

A list of process requirements for designing SoS software architectures. As

described in Section 2.2.3, the second contribution of this work is a list of requirements to

express what any architecting processes should satisfy to adequately support the design of

SoS software architectures. Resulting from a systematic literature review that investigated

the state of the art on architecture design processes for SoS. This list is useful to evaluate

process instances for architecting SoS.

SOAR Kernel. The third contribution of this work, described in Chapter 3, is SOAR

Kernel. This kernel includes alphas, activity spaces, and competencies that describe what

must be done in design process for acknowledged SoS software architectures. In devel-

opment scenarios with mature, well-established organizational processes, it is possible to

enhance them by verifying their alignment to SOAR Kernel. Furthermore, this kernel was

also conceived to be a conceptual basis to build the SOAR practices. SOAR Kernel was

evaluated in a survey conducted with experts in SoS and software architecture. Results

indicate that SOAR Kernel is adequate to its purposes, being a relevant contribution to

SoS community.

125

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

7.2. Limitations and Future Work

SOAR-A. Chapter 4 describes SOAR-A, a SOAR practice proposed to support instan-

tiation of processes for architectural analysis of acknowledged SoS. Similarly to evaluation

strategy adopted with SOAR Kernel, we also evaluated SOAR-A with a survey involving

experts. Results presented positive evaluations, indicating that SOAR-A can be used to

support process authoring on architectural analysis of acknowledged SoS.

SOAR-S. Chapter 5 describes SOAR-S, a SOAR practice conceived to support instan-

tiation of processes for architectural synthesis of acknowledged SoS. Aiming at evaluating

SOAR-S, we conducted two studies. The first one evaluated if process instances could be

generated from SOAR-S. Results were positive, showing that is possible to use SOAR-S

to generate process instances. In the second study, we conducted an experiment con-

fronting process instances generated with SOAR against the ones generated in an ad hoc

manner. As a comparison criteria, we asked experts to apply the aforementioned list of

requirements to evaluate process instances generated with SOAR-E support against ad

hoc ones. Results shown that process instances generated with SOAR-S are significantly

better than ad hoc instances.

SOAR-E. Chapter 6 describes SOAR-E, a SOAR practice to support instantiation

of processes for architectural evaluation of acknowledged SoS. Similarly to evaluation

strategy adopted in SOAR Kernel and SOAR-A, SOAR-E was evaluated with a survey

involving experts. Its evaluation was positive, indicating that SOAR-E can be used to

support such instantiation.

It is undeniable that each SoS has an unique development context with exclusive

demands for its architecting process. In this perspective, SOAR is a flexible approach

to support the establishment of process instances that consider particularities of each

project and, at the same time, are aligned with a basis that explores common challenges

of designing acknowledged SoS software architectures. In summary, achievements of this

thesis contribute to the areas of Software Architecture and SoS, as they advance the

current state of the art on the architectural design processes of acknowledged SoS software

architectures.

7.2 Limitations and Future Work

During the development of this thesis, we identified limitations and also new opportunities

of research to bring new contributions to the areas of SoS and Software Architecture. We

summarize them as follows:

Evaluate the use of SOAR in real-world SoS. Due to the size and complexity to

create a process instance including all design activities, we individually evaluated SOAR

main elements (i.e., SOAR Kernel, SOAR-A, SOAR-S, and SOAR-E) by using surveys and

126

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Chapter 7. Conclusions

experimental studies. This set of evaluations allow us to understand SOAR limitations,

perform enhancements, and verify tendencies of SOAR acceptance in the SoS community.

As a next step, we envision conduction of case studies in industry scenario. Based on such

evaluation and use, we expect to disseminate SOAR, enhance it with users feedbacks, and

make it a relevant resource to support process authoring for acknowledged SoS software

architectures.

Extension of SOAR to cover other SoS categories. SOAR was conceived with

focus on acknowledged SoS. In this sense, we also consider to enrich SOAR by proposing

variations that encompass other SoS categories, i.e., virtual, collaborative, and directed.

For example, we can consider an extension of SOAR for collaborative SoS, in which

constituent systems voluntarily collaborate to form a SoS according to common interests.

In this case, we must investigate how to change SOAR structure according to specific

challenges of this category, such as the additional complexity of voluntary constituents,

which can unexpectedly stop their collaboration in the SoS.

Specialization of SOAR for specific application domains. After SOAR accep-

tance by the SoS community, we envision the development of specialized versions focused

on specific application domains, in which SoS is typically employed, e.g., tra�c control,

military defense, global Earth observation, flood monitoring, and smart cities. For this,

we must explore and include common architectural solutions, each one presenting sets of

design solutions more adequate for each application domain. For example, we can con-

sider in these specializations: (i) consensual quality models providing an essential set of

quality attributes, associated metrics, and guidelines for use; (ii) reference architectures

by considering particularities of specific application domains; and (iii) product line archi-

tectures, for application domains that demand constituents produced in a product line

perspective. Therefore, our focus at this point will be to explore and mature solutions

for common problems in specific application domains, complementing SOAR with a set

of compatible, reusable architectural solutions.

127

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

References

Abdalla, G.; Damasceno, C. D. N.; Guessi, M.; Oquendo, F.; Nakagawa, E. Y. A system-

atic literature review on knowledge representation approaches for systems-of-systems.

In: Proceedings of the 10th Brazilian Symposium on Components, Architectures and

Reuse Software, Belo Horizonte, Brazil, 2015, p. 70–79.

Acheson, P. Methodology for object-oriented system architecture development. In:

Proceedings of the 4th Annual IEEE Systems Conference (SysCon 2010), USA: IEEE,

2010, p. 643–646.

Acheson, P.; Pape, L.; Dagli, C.; Kilicay-Ergin, N.; Columbi, J.; Haris, K. Understanding

system of systems development using an agent- based wave model. Procedia Computer

Science, v. 12, p. 21–30, 2012.

Ackermann, C.; Lindvall, M.; Cleaveland, R. Towards behavioral reflexion models.

In: Proceedings of the 20th IEEE Int. Symposium on Software Reliability Engineering

(ISSRE 2009), USA: IEEE, 2009.

Agusdinata, D. B.; DeLaurentis, D. Specification of system-of-systems for policymaking

in the energy sector. Integrated Assessment Journal, v. 8, n. 2, 2008.

Aleti, A.; Buhnova, B.; Grunske, L.; Koziolek, A.; Meedeniya, I. Software architecture

optimization methods: A systematic literature review. IEEE Transactions on Software

Engineering, v. 39, n. 5, p. 658–683, 2013.

Alwakeel, S. S.; Alhalabi, B.; Alwakeel, M. M. Perspectives on system of systems for

pilgrimage ritual guidance and management. In: Proceedings of the 8th Annual IEEE

Systems Conference (SysCon 2014), USA: IEEE, 2014, p. 425–430.

129

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

References

America, P.; Rommes, E.; Obbink, H. Multi-view variation modeling for scenario anal-

ysis. Software Product-Family Engineering, v. 3014, p. 44–65, 2004.

Andrews, Z.; Payne, R.; Romanovsky, A.; Didier, A.; Mota, A. Model-based development

of fault tolerant systems of systems. In: Proceedings of the 7th Annual IEEE Systems

Conference (SysCon 2013), USA: IEEE, 2013, p. 356–363.

Aoyama, M.; Tanabe, H. A design methodology for real-time distributed software archi-

tecture based on the behavioral properties and its application to advanced automotive

software. In: Proceedings of the 18th Asia Pacific Software Engineering Conference

(APSEC), Ho Chi Minh, Vietname, 2011, p. 211–218.

Basili, V. R.; Shull, F.; Lanubile, F. Building knowledge through families of experiments.

IEEE Transaction on Software Engineering, v. 25, n. 4, p. 456–473, 1999.

Bass, L.; Clements, P.; Kazman, R. Software Architecture in practice. SEI Series in

Software Engineering, 3 ed. Addison-Wesley, 2012.

Bass, L.; Kazman, R. Architecture-based development. Technical Report

CMU/SEI-99-TR-007, SEI, Pittsburgh, USA, 1999.

Batista, T. Challenges for SoS architecture description. In: Proceedings of the 1st In-

ternational Workshop on Software Engineering for Systems-of-Systems (SESoS 2013),

New York, NY, USA: ACM, 2013, p. 35–37.

Belloir, N.; Chiprianov, V.; Ahmad, M.; Munier, M.; Gallon, L.; Bruel, J.-M. Using relax

operators into an mde security requirement elicitation process for systems of systems.

In: Proceedings of the European Conference on Software Architecture Workshops, Vi-

enna, Austria, 2014, p. 32:1–32:4.

Bellomo, S.; Smith, J. D. Attributes of e↵ective configuration management for systems

of systems. In: Proceedings of the 2nd Annual IEEE Systems Conference, Piscataway,

NJ, USA: IEEE, 2008, p. 1–8.

Bengtsson, P.; Lassing, N.; Bosch, J.; van Vliet, H. Architecture-level modifiability

analysis (ALMA). Journal of Systems and Software, v. 69, n. 1-2, p. 129–147, 2004.

Bhasin, K.; Hayden, J. Architecting communication network of networks for space

system of systems. In: Proceedings of the IEEE International Conference on System

of Systems Engineering, 2008a.

130

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

References

Bhasin, K.; Hayden, J. Architecting communication network of networks for space

system of systems. In: Proceedings of the IEEE International Conference on System

of Systems Engineering, USA: IEEE, 2008b, p. 1–7.

Bianchi, T.; Santos, D. S.; Felizardo, K. R. Quality attributes of systems-of-systems:

A systematic literature review. In: Proceedings of the Third International Workshop

on Software Engineering for Systems-of-Systems, Proceedings of the SESoS ’15, Piscat-

away, NJ, USA: IEEE Press, 2015, p. 23–30 (Proceedings of the SESoS ’15,).

Dispońıvel em http://dl.acm.org/citation.cfm?id=2821418.2821425

Biolchini, J.; Mian, P. G.; Natali, A. C. C.; Travassos, G. H. Systematic review in

Software Engineering. Technical Report, Systems Engineering and Computer Science

Department, Federal University of Rio de Janeiro, Brazil, 2005.

Boardman, J.; Sauser, B. System of systems – The meaning of of . In: Proceedings

of the IEEE/SMC International Conference on Systems of Systems Engineering, Los

Angeles, USA: IEEE Computer Society, 2006.

Bodeau, D. System-of-systems security engineering. In: Proceedings of the 10th Annual

Computer Security Applications Conference, USA: IEEE, 1994, p. 228–235.

Boehm, B.; Lane, J. 21st century processes for acquiring 21st century software-intensive

systems of systems. Journal of Defense Software Engineering, v. 19, n. 5, p. 4–9, 2006.

Bonilla, E.; Britton, J.; Gordon, M.; Scheldt, M.; Williams, R. Automated generation of

integrated architectures and end-to-end network models. In: Proceedings of the IEEE

Aerospace Conference, 2005, p. 1363–1369.

Bosch, J. Design and use of software architectures: Adopting and evolving a product-line

approach. 1 ed. New York, NY, USA: Addison-Wesley, 2000.

Bowen, R.; Sahin, F. A net-centric xml based system of systems architecture for human

tracking. In: Proceedings of the 5th International Conference on System of Systems

Engineering, Loughborough, England, 2010, p. 1–6.

Bowen, R.; Sahin, F. Net-centric system of systems framework for human detection.

In: Proceedings of the 8th Conference on System of Systems Engineering, USA: IEEE,

2013, p. 255–260.

Breivold, H. P.; Crnkovic, I.; Larsson, M. A systematic review of software architecture

evolution research. Information and Software Technology, v. 54, n. 1, p. 16–40, 2012.

131

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

http://dl.acm.org/citation.cfm?id=2821418.2821425

References

Brereton, P.; Kitchenham, B. A.; Budgen, D.; Turner, M.; Khalil, M. Lessons from ap-

plying the systematic literature review process within the Software Engineering domain.

Journal of Systems and Software, v. 80, n. 4, p. 571–583, 2007.

Briggs, M.; Baird, D.; Ogg, W.; Aafloy, S.; El-Osery, A.; Wedeward, K. An adaptable

outdoor robotic platform: architecture, communications, and control. In: Proceedings

of the IEEE/SMC International Conference on System of Systems Engineering, USA:

IEEE, 2006.

Brondum, J.; Liming, Z. Towards an architectural viewpoint for systems of software

intensive systems. In: Proceedings of the ICSE Workshop on Sharing and Reusing

Architectural Knowledge, Cape Town, South Africa, 2010, p. 60–63.

Bryans, J.; Payne, R.; Holt, J.; Perry, S. Semi-formal and formal interface specification

for system of systems architecture. In: Proceedings of the IEEE International Systems

Conference (SysCon 2013), USA: IEEE, 2013, p. 612–619.

Bull, P.; Grigg, A.; Guan, L.; Phillips, I. A quality of service framework for adap-

tive and dependable large scale system-of-systems. In: Proceedings of the 5th IEEE

International Conference on System of Systems Engineering, USA: IEEE, 2010, p. 1–6.

Butterfield, M.; Pearlman, J.; Vickroy, S. A system-of-systems engineering geoss: Ar-

chitectural approach. Systems Journal, IEEE, v. 2, n. 3, p. 321–332, 2008.

Ca↵all, D.; Michael, J. Architectural framework for a system-of-systems. In: Proceed-

ings of the IEEE Conference on Systems, Man and Cybernetics, USA: IEEE, 2005, p.

1876–1881.

Calinescu, R. Resource-definition policies for autonomic computing. In: Proceedings

of the 5th Conference on Autonomic and Autonomous Systems, USA: IEEE, 2009, p.

111–116.

Calinescu, R.; Kwiatkowska, M. Software Engineering techniques for the development

of systems of systems. In: Choppy, C.; Sokolsky, O., eds. Proceedings of the 15th

Monterey Workshop Foundations of Computer Software: Future Trends and Techniques

for Development, v. 6028 de Lecture Notes in Computer Science, Germany: Springer

Berlin Heidelberg, p. 59–82, 2010.

Carbon, R.; Johann, G.; Muthig, D.; Naab, M. A method for collaborative development

of systems of systems in the o�ce domain. In: Proceedings of the 12th International

IEEE Enterprise Distributed Object Computing Conference (EDOC 2008), USA: IEEE,

2008, p. 339–345.

132

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

References

Chen, H.-M.; Kazman, R. Architecting ultra-large-scale green information systems.

In: Proceedings of the 1st International Workshop on Green and Sustainable Software,

Piscataway, NJ, USA, 2012, p. 69–75.

Chen, L.; Ali Babar, M.; Nuseibeh, B. Characterizing architecturally significant require-

ments. IEEE Software, v. 30, n. 2, p. 38–45, 2013.

Chen, L.; Babar, M. A.; Zhang, H. Towards an evidence-based understanding of elec-

tronic data sources. In: Proceedings of the 14th International Conference on Evaluation

and Assessment in Software Engineering, Swinton, United Kingdom: British Computer

Society, 2010, p. 135–138.

Chen, P. Architecture-based interoperability evaluation in evolutions of networked enter-

prises. In: Bussler, C.; Haller, A., eds. Proceedings of the Business Process Management

Workshops, v. 3812 de Lecture Notes in Computer Science, Germany: Springer Berlin

Heidelberg, p. 293–304, 2006.

Chen, P.; Han, J. Facilitating system-of-systems evolution with architecture support.

In: Proceedings of the 4th International Workshop on Principles of Software Evolution,

New York, NY, USA: ACM, 2001, p. 130–133.

Chigani, A.; Balci, O. The process of architecting for software/system engineering.

International Journal of System of Systems Engineering, v. 3, n. 1, p. 1–23, 2012.

Christian, E. GEOSS architecture principles and the GEOSS clearinghouse. IEEE

Systems Journal, v. 2, n. 3, p. 333–337, 2008.

Clements, P.; Bachmann, F.; Bass, L.; Garlan, D.; Ivers, J.; Little, R.; Merson, P.; Nord,

R.; Sta↵ord, J. Documenting software architectures: Views and beyond. SEI Series

in Software Engineering, 2 ed. Addison-Wesley Professional, 2010.

Clements, P.; Kazman, R.; Klein, M. Evaluating software architectures: Methods and

case studies. The SEI Series in Software Engineering. Boston, MA: Addison-Wesley,

2002.

Cloutier, R.; Griego, R. Applying object oriented systems engineering to complex sys-

tems. In: Proceedings of the 2nd Annual IEEE Systems Conference, USA: IEEE, 2008,

p. 1–6.

Cook, T.; Drusinksy, D.; Shing, M.-T. Specification, validation and run-time monitoring

of SOA based system-of-systems temporal behaviors. In: Proceedings of the 2nd IEEE

International Conference on System of Systems Engineering, USA: IEEE, 2007, p. 1–6.

133

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

References

Cordis Directions in systems of systems engineering. [On-line], World Wide Web,

available in: http://cordis.europa.eu/fp7/ict/embedded-systems-engineering/

documents/report_system_of_system.pdf (Access in 03/18/2016), 2012.

Dagli, C.; Ergin, N.; Enke, D. Gosavi, A.; Qin, R.; Colombi, J.; Rebovich, R. Giammarco,

K.; Acheson, P.; Haris, K.; Pape, L. An advanced computational approach to system of

systems analysis & architecting using agent-based behavioral model. Technical Report

021-2, Systems Engineering Research Center(SERC), 2013.

Dahmann, J.; Baldwin, K. Understanding the current state of us defense systems of

systems and the implications for systems engineering. In: Proceedings of the 2nd

Annual IEEE Systems Conference, Montreal, Canada, 2008, p. 1–7.

Dahmann, J.; Rebovich, G.; Lowry, R.; Lane, J.; Baldwin, K. An implementers’ view of

systems engineering for systems of systems. In: Proceedings of the IEEE International

Systems Conference, Montreal, QC, 2011, p. 212–217.

Dandashi, F.; Hause, M. C. Uaf for system of systems modeling. In: Proceedings of the

10th System of Systems Engineering Conference, 2015, p. 199–204.

Degrossi, L. C.; Amaral, G. G.; Vasconcelos, E. S. M.; Albuquerque, J. P.; Ueyama, J.

Using wireless sensor networks in the sensor web for flood monitoring. In: Proceedings

of the 10th International ISCRAM Conference, 2013.

DeLaurentis, D. Understanding transportation as a system of systems design problem.

In: Proceedings of the 43rd AIAA Aerospace Sciences Meeting, Nevada, USA, 2005a.

DeLaurentis, D. A. A taxonomy-based perspective for systems of systems design methods.

In: Proceedings of the IEEE international conference on systems, man and cybernetics,

IEEE, 2005b, p. 86–91.

DeLaurentis, D. A. Appropriate modeling and analysis for systems of systems: Case

study synopses using a taxonomy. In: Proceedings of the IEEE International Confer-

ence on System of Systems Engineering, 2008, p. 1–6.

Demchak, B.; Ermagan, V.; Farcas, E.; Huang, T.; Kruger, I.; Menarini, M. A rich

services approach to CoCoME. In: Rausch, A.; Reussner, R.; Mirandola, R.; Plášil,

F., eds. The Common Component Modeling Example: Comparing software component

models, v. 5153 de Lecture Notes in Computer Science, Germany: Springer Berlin Hei-

delberg, p. 85–115, 2008.

134

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

http://cordis.europa.eu/fp7/ict/embedded-systems-engineering/documents/report_system_of_system.pdf
http://cordis.europa.eu/fp7/ict/embedded-systems-engineering/documents/report_system_of_system.pdf

References

Dickerson, C.; Valerdi, R. Using relational model transformations to reduce complexity

in SoS requirements traceability: Preliminary investigation. In: Proceedings of the 5th

IEEE International Conference on System of Systems Engineering (SoSE 2010), USA:

IEEE, 2010, p. 1–6.

Dieste, O.; GrimÃ¡n, A.; Juristo, N. Developing search strategies for detecting relevant

experiments. In: Empirical Software Engineering, v. 14, p. 513–539, 2009.

Dikel, D. M.; Kane, D.; Wilson, J. R. Software architecture: Organizational principles

and patterns. 1 ed. Prentice Hall, 2001.

DoD The dodaf architecture framework version 2.02. Available at: http://dodcio.

defense.gov/ (Access in 06/03/2016), 2010.

DoD, D. Systems engineering guide for systems of systems. O�ce of the Deputy Under

Secretary of Defense for Acquisition and Technology, Systems and Software Engineering,

Washington, DC, USA, version 1.0, 2008.

Domerçant, J.; Mavris, D. Measuring the architectural complexity of military

systems-of-systems. In: Proceedings of the IEEE Aerospace Conference, USA: IEEE,

2011, p. 1–16.

Dvorak, D.; Indictor, M.; Ingham, M.; Rasmussen, R.D.and Stringfellow, M. A unifying

framework for systems modeling, control systems design,and system operation. In:

Proceedings of the 4th IEEE International Conference on Systems, Man and Cybernet-

ics, 2005, p. 3648–3653.

Dyb̊a, T.; Dingsøyr, T.; Hanssen, G. K. Applying systematic reviews to diverse study

types: An experience report. In: Proceedings of the 1st International Symposium on

Empirical Software Engineering and Maintenance (ESEM 2007), USA: IEEE, 2007, p.

225–234.

Eaton, R.; Katupitiya, J.; Siew, K.; Dang, K. Precision guidance of agricultural tractors

for autonomous farming. In: Proceedings of the 2nd Annual IEEE Systems Conference,

USA: IEEE, 2008, p. 1–8.

Eeles, P. Understanding architectural assets. In: Proceedings of the 7th Working

IEEE/I-FIP Conference on Software Architecture (WICSA’08), Vancouver, Canada,

2008, p. 267–270.

Ermagan, V.; Kruger, I.; Menarini, M. Aspect-oriented modeling approach to define

routing in enterprise service bus architectures. In: Proceedings of the International

135

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

http://dodcio.defense.gov/
http://dodcio.defense.gov/

References

Workshop on Models in Software Engineering, New York, NY, USA: ACM, 2008, p.

15–20.

Farcas, C.; Farcas, E.; Krueger, I.; Menarini, M. Addressing the integration challenge

for avionics and automotive systems: From components to rich services. Proceedings

of the IEEE, v. 98, n. 4, p. 562–583, 2010.

Farroha, D.; Farroha, B. Agile development for system of systems: Cyber security

integration into information repositories architecture. In: Proceedings of the 5th Annual

IEEE Systems Conference, USA: IEEE, 2011, p. 182–188.

Ferguson, R.; Peterson, B.; Thompson, H. System software framework for system of

systems avionics. In: Proceedings of the 24th Digital Avionics Systems Conference

(DASC 2005), USA: IEEE, 2005, p. 1–10.

Firesmith, D. Profiling systems using the defining characterstics of systems of sys-

tems (SoS). Technical Report CMU/SEI-2010-TN-001, Software Engineering Institute

(SEI), Carnegie Mellon University, 2010.

Gagliardi, M.; Wood, W. G.; Klein, J.; Morley, J. A uniform approach for system

of systems architecture evaluation. CrossTalk - The Journal of Defense Software

Engineering, v. 22, p. 12–15, 2009.

Gamble, M.; Gamble, F. Reasoning about hybrid system of systems designs. In:

Proceedings of the 7th International Conference on Composition-Based Software Systems

(ICCBSS 2008), USA: IEEE, 2008, p. 154–163.

Garland, J.; Anthony, R. Large-scale software architecture: A practical guide using uml.

West Sussex, England: John Wiley & Sons Ltd., 2003.

Ge, B.; Hipel, K. W.; Yang, K.; Chen, Y. A data-centric capability-focused approach for

system-of-systems architecture modeling and analysis. Systems Engineering Journal,

v. 16, n. 3, p. 363–377, 2013.

Gonçalves, M. B.; Cavalcante, E.; Batista, T.; Oquendo, F.; Nakagawa, E. Y. Towards

a conceptual model for software-intensive system-of-systems. In: Proceedings of the

IEEE International Conference on Systems, Man, and Cybernetics, Piscataway, NJ,

USA: IEEE Computer Society, 2014, p. 1605–1610.

Gonçalves, M. B.; Oquendo, F.; Nakagawa, E. Y. A meta-process to construct SoS

software architectures. In: Proceedings of the 30th Annual ACM Symposium on Applied

Computing, USA: ACM, 2015, p. 1411–1416.

136

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

References

Gorlick, M. M.; Strasser, K.; Taylor, R. N. COAST: An architectural style for decentral-

ized on-demand tailored services. In: Proceedings of the Joint Working IEEE/IFIP

Conference on Software Architecture and European Conference on Software Architec-

ture, USA: IEEE, 2012, p. 71–80.

Greaves, M.; Stavridou-Coleman, V.; Laddaga, R. Dependable agent systems. IEEE

Intelligent Systems, v. 19, n. 5, p. 20–23, 2004.

Griendling, K.; Mavris, D. N. A process for systems-of-systems architecting. In: Pro-

ceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons

Forum and Aerospace Exposition, Reston, VA, USA: American Institute of Aeronautics

and Astronautics, 2010.

Guessi, M.; Neto, V. V. G.; Bianchi, T.; Felizardo, K. R.; Oquendo, F.; Nakagawa,

E. Y. A Systematic Literature Review on the Description of Software Architectures

for Systems of Systems. In: Proc. of the Symposium on Applied Computing ACM

(SAC 2015), Salamanca, Spain, (acccepted), 2015, p. 1–8.

Haley, C.; Nuseibeh, B. Bridging requirements and architecture for systems of sys-

tems. In: Proceedings of the International Symposium on Information Technology,

USA: IEEE, 2008, p. 1–8.

Hata, Y.; Kamozaki, Y.; Sawayama, T.; Taniguchi, K.; Nakajima, H. A heart pulse

monitoring system by air pressure and ultrasonic sensor systems. In: Proceedings of

the 1st IEEE International Conference on System of Systems Engineering, San Antonio,

TX, USA, 2007.

Hershey, P.; Rao, S.; Silio, C.; Narayan, A. System of systems to provide Quality of

Service monitoring, management and response in cloud computing environments. In:

Proceedings of the 7th IEEE International Conference on System of Systems Engineer-

ing, USA: IEEE, 2012, p. 314–320.

Hodges, R.; Cloutier, R.; Bone, M.; Korfiatis, P. Singleton to sandwich chunking into

buslets for better system development. In: Proceedings of the 6th IEEE Interna-

tional Conference on System of Systems Engineering (SoSE 2011), USA: IEEE, 2011,

p. 125–130.

Hofmeister, C.; Kruchten, P.; Nord, R. L.; Obbink, H.; Ran, A.; America, P. A general

model of software architecture design derived from five industrial approaches. Journal

of Systems and Software, v. 80, n. 1, p. 106–126, 2007.

137

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

References

Hofmeister, C.; Nord, R.; Soni, D. Applied software architecture. Addison-Wesley

Professional, 2000.

Holl, G.; Grunbacher, P.; Elsner, C.; Klambauer, T. Supporting awareness during col-

laborative and distributed configuration of multi product lines. In: Proceedings of the

19th Asia-Pacific Software Engineering Conference (APSEC 2012), USA: IEEE, 2012,

p. 137–147.

Holland, O. T. Taxonomy for the modeling and simulation of emergent behavior sys-

tems. In: Proceedings of the Spring Simulation Multiconference, Society for Computer

Simulation International, 2007, p. 28–35.

Horita, F. E. A.; Fava, M. C.; Mendiondo, E. M.; Rotava, J.; Souza, V. C.; Ueyama, J.;

Albuquerque, J. P. Agora-geodash: A geosensor dashboard for real-time flood risk

monitoring , university park, usa,. In: 11th International ISCRAM Conference, 2014.

Hughes, D.; Ueyama, J.; Mendiondo, E.; Matthys, N.; Horré, W.; Michaels, S.; Huygens,

C.; Joosen, W.; Man, K. L.; Guan, S.-U. A middleware platform to support river

monitoring using wireless sensor networks. Journal of the Brazilian Computer Society,

v. 17, p. 85–102, 2011.

Iacobucci, J.; Mavris, D. A method for the generation and evaluation of architecture

alternatives on the cloud. In: Proceedings of the 6th International Conference on

System of Systems Engineering, USA, 2011, p. 137–142.

IEEE Computer Society Guide to the Software Engineering Body of Knowledge (SWE-

BOK Version 3). Online, http://www.swebok.org - Accessed in January 4th 2015,

2014.

ISO/IEC Unified Modeling Language (UML) Version 1.4.2(ISO/IEC 19501:2005(E)).

Standard 19501/2005, International Organization for Standardization (ISO)/ Interna-

tional Electrotechnical Commission (IEC), 2005.

ISO/IEC Systems and software engineering - Systems and software Quality Requirements

and Evaluation (SQuaRE) – System and software quality models. Technical Report

25010/2011, International Organization for Standardization (ISO)/ International Elec-

trotechnical Commission (IEC), 2011.

ISO/IEC/IEEE Recommended Practice for Architectural Description of

Software-Intensive Systems (ISO/IEC/IEEE 42010). Standard 42010/2011, In-

ternational Organization for Standardization (ISO)/ International Electrotechnical

Commission (IEC)/Institute of Electrical and Electronics Engineers (IEEE), 2011.

138

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

http://www.swebok.org

References

Jackson, M. M.; FernÃ¡ndez, M. M.; McVittie, T. I.; Sindiy, O. V. Architecting the

human space flight program with systems modeling language (sysml). Technical Report,

American Institute of Aeronautics and Astronautics, online,http://hdl.handle.net/

2014/42571r - Accessed in July 4th 2016, 2012.

Jacobson, I. Software Development Moves from a Craft to an Engineering Discipline Us-

ing the Essence Standard. Online,https://www.ivarjacobson.com/publications/

case-studies/asian-telecommunications-equipment-vendor - Accessed in July

4th 2016, 2015.

Jacobson, I.; Ng, P.-W.; McMahon, P. E.; Spence, I.; Lidman, S. The essence of software

engineering: Applying the semat kernel. Addison-Wesley, 2013.

Jamshidi, M. System of systems engineering - new challenges for the 21st century. IEEE

Aerospace and Electronic Systems Magazine, v. 23, n. 5, p. 4–19, 2008a.

Jamshidi, M. System of systems engineering: Innovations for the twenty-first century.

1 ed. Wiley & Sons, 2008b.

Johnson, M. A. System of systems engineering: Innovations for the twenty-first century,

cap. 18 - System-of-systems Standards. In: (Jamshidi, 2008b), p. 451–461, 2008.

Jones-Wyatt, E.; Domercant, J.; Mavris, D. A reliability-based measurement of inter-

operability for systems of systems. In: Proceedings of the 7th Annual IEEE Systems

Conference (SysCon 2013), USA: IEEE, 2013, p. 408–413.

Josuttis, N. Soa in practice. 1st ed. O’Reilly, 2007.

Kaiser, G.; Parekh, J.; Gross, P.; Valetto, G. Kinesthetics eXtreme: An external infras-

tructure for monitoring distributed legacy systems. In: Proceedings of the Autonomic

Computing Workshop, USA: IEEE, 2003, p. 22–30.

Kasunic, M. Designing an e↵ective survey. Technical Report CMU/SEI-2005-HB-004,

2005.

Kazman, R.; Gagliardi, M.; Wood, W. Scaling up software architecture analysis. Journal

of Systems and Software, v. 85, n. 7, p. 1511–1519, 2012.

Kazman, R.; Klein, M.; Barbacci, M.; Longsta↵, T.; Lipson, H.; Carriere, J. The

architecture tradeo↵ analysis method. In: Proceedings of the 4th IEEE International

Conference on Engineering Complex Computer Systems (ICECCS’98), Monterey, CA,

USA, 1998, p. 68–78.

139

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

http://hdl.handle.net/2014/42571r
http://hdl.handle.net/2014/42571r
https://www.ivarjacobson.com/publications/case-studies/asian-telecommunications-equipment-vendor
https://www.ivarjacobson.com/publications/case-studies/asian-telecommunications-equipment-vendor

References

Kewley Jr., R.; Andreas, T. A systems engineering process for development of federated

simulations. In: Proceedings of the Spring Simulation Multiconference, San Diego, CA,

USA: Society for Computer Simulation Int., 2009, p. 1–8.

Khalsa, S.; Nativi, S.; Geller, G. The geoss interoperability process pilot project (ip3).

IEEE Transactions on Geoscience and Remote Sensing, v. 47, n. 1, p. 80–91, 2009.

Kitchenham, B. Procedures for performing systematic reviews. Technical Report, Keele

University and NICTA, 2004.

Kitchenham, B.; Brereton, O. P.; Budgen, D.; Turner, M.; Bailey, J.; Linkman, S. Sys-

tematic literature reviews in Software Engineering: A systematic literature review.

Information and Software Technology, v. 51, n. 1, p. 7–15, 2009.

Kitchenham, B.; Charters, S. Guidelines for performing systematic literature reviews in

Software Engineering. Technical Report EBSE 2007-001, Keele University / Durham

University, 2007.

Klein, J.; van Vliet, H. A systematic review of system-of-systems architecture research.

In: Proceedings of the 9th International ACM Sigsoft Conference on Quality of Software

Architectures, Vancouver, Canada, 2013, p. 13–22.

Kruchten, P. The 4+ 1 view model of architecture. Software, IEEE, v. 12, n. 6, p. 42–50,

1995.

Kruchten, P. The rational unified process: An introduction. The Addison-Wesley Object

Technology Series, 3 ed. Addison-Wesley, 2003.

Kruchten, P.; Obbink, H.; Sta↵ord, J. The past, present, and future for software archi-

tecture. IEEE Softw., v. 23, n. 2, p. 22–30, 2006.

Kruger, I.; Meisinger, M.; Menarini, M.; Pasco, S. Rapid systems of systems integration

- Combining an architecture-centric approach with enterprise service bus infrastruc-

ture. In: Proceedings of the IEEE International Conference on Information Reuse and

Integration, USA: IEEE, 2006, p. 51–56.

Lane, J.; Valerdi, R. Synthesizing sos concepts for use in cost estimation. In: Proceedings

of the 1st IEEE International Conference o Systems, Man and Cybernetics, 2005, p.

993–998.

Lane, J.; Valerdi, R. Synthesizing sos concepts for use in cost modeling. Systems

Engengineering, v. 10, n. 4, p. 297–308, 2007.

140

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

References

Lewis, G.; Morris, E.; Simanta, S.; Smith, D. Service orientation and systems of systems.

IEEE Software, v. 28, n. 1, p. 58–63, 2011.

Liang, S. X.; Luqi, V. B. Quantifiable architecting of dependable systems of embedded

systems. SIGSOFT Software Engineering Notes, v. 28, n. 6, p. 7–7, 2003.

Lindvall, M.; Ackermann, C.; Stratton, W.; Sibol, D.; Ray, A.; Yonkwa, L.; Kresser, J.;

Godfrey, S.; Knodel, J. Using sequence diagrams to detect communication problems

between systems. In: Proceedings of the IEEE Aerospace Conference (AERO 2008),

USA: IEEE, 2008, p. 1–11.

Loiret, F.; Rouvoy, R.; Seinturier, L.; Merle, P. Software engineering of component-based

systems-of-systems: A reference framework. In: Proceedings of the 14th International

ACM SIGSOFT Symposium on Component-Based Software Engineering (CBSE 2011),

New York, NY, USA: ACM, 2011, p. 61–66.

Lytra, I.; Zdun, U. Supporting architectural decision making for systems-of-systems de-

sign under uncertainty. In: Proceedings of the 1st International Workshop on Software

Engineering for Systems-of-Systems, New York, NY, USA: ACM, 2013, p. 43–46.

Maier, M. W. Architecting principles for systems-of-systems. Systems Engineering,

v. 1, n. 4, p. 267–284, 1998.

McDonough, A. Munich Re and ESSENCE â “ Kernel and Language for Software Engi-

neering Methods: A Case Study . Online,http://www.omg.org/news/whitepapers/

- Accessed in July 4th 2016, 2014.

Menon, C.; Kelly, T. Eliciting software safety requirements in complex systems. In:

Proceedings of the 4th Annual IEEE Systems Conference, USA: IEEE, 2010, p. 616–621.

Mensing, B.; Goltz, U.; Aniculfesei, A.; Herold, S.; Gärtner, S.; Schneider, K. Towards

integrated rule-driven software development for IT ecosystems. In: Proceedings of the

6th IEEE International Conference on Digital Ecosystems Technologies, USA: IEEE,

2012, p. 1–6.

Michael, J.; Riehle, R.; Shing, M.-T. The verification and validation of software archi-

tecture for systems of systems. In: Proceedings of the IEEE International Conference

on System of Systems Engineering, USA: IEEE, 2009, p. 1–6.

Mittal, S.; Risco Martin, J. Model-driven systems engineering for netcentric system

of systems with DEVS unified process. In: Proceedings of the Winter Simulation

Conference, USA: IEEE, 2013, p. 1140–1151.

141

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

http://www.omg.org/news/whitepapers/

References

Naegle, B. Developing performance-based requirements for open architecture design.

In: Proceedings of the 2nd IEEE International Conference on System of Systems Engi-

neering (SoSE 2007), USA: IEEE, 2007, p. 1–6.

Nakagawa, E.; Oquendo, F. Perspectives and challenges of reference architectures in multi

software product line. In: Proceedings of the 17th International Software Product Line

Conference Co-located Workshops, New York, NY, USA: ACM, 2013, p. 100–103.

Nakagawa, E. Y.; GonÃ§alves, M. B.; Guessi, M.; Oliveira, L.; Oquendo, F. The state

of the art and future perspectives in systems of systems software architectures. In:

Proceedings of the 1st Software Engineering System of Systems Workshop, 2013.

Nativi, S.; Bigagli, L.; Mazzetti, P.; Boldrini, E.; Papeschi, F. GI-Cat: A mediation

solution for building a clearinghouse catalog service. In: Proceedings of the Interna-

tional Advanced Geographic Information Systems & Web Services, USA: IEEE, 2009,

p. 68–74.

Nguyen, Q. T.; Bouju, A.; Estraillier, P. Multi-agent architecture with space-time com-

ponents for the simulation of urban transportation systems. Procedia - Social and

Behavioral Sciences, v. 54, p. 365–374, 2012.

Nielsen, C. B.; Larsen, P. G. Extending VDM-RT to enable the formal modelling of

system of systems. In: Proceedings of the 7th International Conference on System of

Systems Engineering, 2012, p. 457–462.

Nielsen, C. B.; Larsen, P. G.; Fitzgerald, J.; Woodcock, J.; Peleska, J. Systems of systems

engineering: Basic concepts, model-based techniques, and research directions. ACM

Computing Surveys, v. 48, n. 2, p. 18:1–18:41, 2015.

Obbink, H.; Müller, J. K.; America, P.; van Ommering, R.; Muller, G.; van der Sterren,

W.; Wijnstra, J. G. Copa: a component-oriented platform architecting method for

families of software-intensive electronic products (tutorial). In: Proceedings of 1st

Software Product Line Conference, Denver, CO, USA, 2000.

Object Management Group (OMG) Essence - kernel and language for software engi-

neering methods (essence) v 1.1. Online, available in: http://www.omg.org/spec/

Essence/1.0 Accessed in February 8th 2015, 2014.

Object Management Group (OMG) Software and Systems Process Engineering Meta-

model Specification (SPEM) Version 2.0. Online, http://www.omg.org/spec/

Essence/1.1/ - Accessed in July 8th 2015, 2015a.

142

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

http://www.omg.org/spec/Essence/1.0
http://www.omg.org/spec/Essence/1.0
http://www.omg.org/spec/Essence/1.1/
http://www.omg.org/spec/Essence/1.1/

References

Object Management Group (OMG) Unified Modeling Language (UML). Online, http:

//www.omg.org/spec/UML/2.4.1/ - Accessed in July 9th 2015, 2015b.

Oliveira, L. B. R.; Nakagawa, E. Y. A service-oriented reference architecture for software

testing domain. In: Crnkovic, I.; Gruhn, V.; Book, M., eds. Proceedings of the 5th

European Conference on Software Architecture, v. 6903 de Lecture Notes in Computer

Science, Germany: Springer Berlin Heidelberg, p. 405–421, 2011.

Oliveira, M.; Pereira, J. Extensible virtual environment systems using system of systems

engineering approach. In: Proceedings of the 17th International Conference on Artificial

Reality and Telexistence (ICAT 2007), USA: IEEE, 2007, p. 89–96.

Oquendo, F. Formally describing the software architecture of systems-of-systems with

sosadl. In: 11th System of Systems Engineering Conference, SoSE 2016, Kongsberg,

Norway, June 12-16, 2016, 2016, p. 1–6.

Dispońıvel em http://dx.doi.org/10.1109/SYSOSE.2016.7542926

Papatheocharous, E.; Axelsson, J.; Andrersson, J. Issues and challenges in ecosystems

for federated embedded systems. In: Proceedings of the 1st International Workshop

on Software Engineering for Systems-of-Systems, New York, NY, USA: ACM, 2013, p.

21–24.

Papazoglou, M.; Heuvel, W.-J. Service oriented architectures: approaches, technologies

and research issues. The VLDB Journal, v. 16, n. 3, p. 389–415, 2007.

Parker, J. M. Applying a system of systems approach for improved transportation.

S.A.P.I.EN.S [Online], online,http://sapiens.revues.org/1011 - Accessed in July

4th 2016, 2008.

Payne, R.; Bryans, J.; Fitzgerald, J.; Riddle, S. Interface specification for

system-of-systems architectures. In: Proceedings of the 7th International Conference

on System of Systems Engineering, Genoa, Italy, 2012, p. 567–572.

Pérez, J.; Dı́az, J.; Garbajosa, J.; Yagüe, A.; Gonzalez, E.; Lopez-Perea, M. Large-scale

smart grids as system of systems. In: Proceedings of the 1st International Workshop

on Software Engineering for Systems-of-Systems, Montpellier, France, 2013, p. 38–42.

Perrochon, L.; Mann, W. Inferred designs. IEEE Software, v. 16, n. 5, p. 46–51, 1999.

Perry, D. Issues in process architecture. In: Proceedings of the 9th Software Process

Workshop, Arlie, VA, USA, 1994, p. 138–140.

143

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

http://www.omg.org/spec/UML/2.4.1/
http://www.omg.org/spec/UML/2.4.1/
http://dx.doi.org/10.1109/SYSOSE.2016.7542926
http://sapiens.revues.org/1011

References

Petcu, V.; Petrescu, A. Systems of systems applications for telemedicine. In: Proceedings

of the 9th Roedunet International Conference, Sibiu, Romania, 2010, p. 208–211.

Petersen, K.; Feldt, R.; Shahid, M.; Mattsson, M. Systematic mapping studies in Soft-

ware Engineering. In: Proceedings of the 12th Conference on Evaluation and Assess-

ment in Software Engineering (EASE 2008), Swinton, England, UK: British Computer

Society, 2008, p. 1–10.

Ploom, T.; Glaser, A.; Scheit, S. Platform based approach for automation of workflows

in a system of systems. In: Proceedings of the 7th IEEE International Symposium on

the Maintenance and Evolution of Service-Oriented and Cloud-Based Systems, USA:

IEEE, 2013, p. 12–21.

Pressman, R. S.; Maxim, B. R. Software engineering: A practitioner’s approach. 8th

ed. McGraw-Hill Higher Education, 2015.

Ramos, M.; Masiero, P.; Braga, R.; Penteado, R. Reengineering legacy systems to-

wards system of systems development. In: Proceedings of the 13th IEEE International

Conference on Information Reuse and Integration (IRI 2012), USA: IEEE, 2012, p.

624–630.

Ran, A. Ares conceptual framework for software architecture. Technical Report, Nokia

Research Center, 2000.

Rossak, W.; Zemel, T.; Kirova, V.; Jololian, L. Two-level process model for integrated

system development. In: Proceedings of the Tutorial and Workshop on Systems Engi-

neering of Computer-Based Systems, USA, 1994, p. 90–96.

Rothenhaus, K.; Michael, J.; Shing, M.-T. Architectural patterns and auto-fusion process

for automated multisensor fusion in SOA system-of-systems. IEEE Systems Journal,

v. 3, n. 3, p. 304–316, 2009.

Sage, A.; Biemer, S. Processes for system family architecting, design, and integration.

IEEE Systems Journal, v. 1, n. 1, p. 5–16, 2007.

Sahin, F.; Jamshidi, M.; Sridhar, P. A discrete event XML based simulation framework

for system of systems architectures. In: Proceedings of the 2nd IEEE International

Conference on System of Systems Engineering, USA: IEEE, 2007, p. 1–7.

Sanduka, I.; Obermaisser, R. Model-based development of systems-of-systems with

real-time requirements. In: Proceedings of the 12th IEEE International Conference

on Industrial Informatics (INDIN), 2014, p. 188–194.

144

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

References

Sauser, B.; Boardman, J.; Verma, D. Systomics: Toward a biology of system of systems.

IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans,

v. 40, n. 4, p. 803–814, 2010.

Schaefer, R. Systems of systems and coordinated atomic actions. SIGSOFT Software

Engineering Notes, v. 30, n. 1, p. 6–11, 2005.

Schroh, D.; Bozowsky, N.; Savigny, M.; Wright, W. nCompass service oriented ar-

chitecture for tacit collaboration services. In: Proceedings of the 13th Information

Visualisation Int. Conference (IV 2009), USA: IEEE, 2009, p. 433–442.

Schuitemaker, K.; Braakhuis, J. G.; Rajabalinejad, M. A model based safety architecture

framework for dutch high speed train lines. In: Proceedings of the 10th System of

Systems Engineering Conference, 2015, p. 24–29.

SEI Software Engineering Institute (SEI) – Software Architecture Glossary. On-

line, http://www.sei.cmu.edu/architecture/start/glossary/ - Accessed in Jan-

uary 4th 2015, 2015.

Selberg, S.; Austin, M. Toward an evolutionary system of systems architecture. In:

Proceedings of the 18th Annual International Symposium of the Int. Council on Systems

Engineering, 2008, p. 1–14.

Shanmugapriya, P.; Suresh, R. M. Software architecture evaluation methods - a survey.

International Journal of Computer Applications, v. 49, n. 16, p. 19–26, 2012.

Sharawi, A.; Sala-Diakanda, S. N.; Dalton, A.; Quijada, S.; Yousef, N.; Rabelo, L.;

Sepulveda, J. A distributed simulation approach for modeling and analyzing systems

of systems. In: Proceedings of the Winter Simulation Conference, USA, 2006, p.

1028–1035.

Shaw, M.; Clements, P. The golden age of software architecture. IEEE Software, v. 23,

n. 2, p. 31–39, 2006.

Shing, M.-T.; Drusinsky, D.; Cook, T. Quality assurance of the timing properties of

real-time, reactive system-of-systems. In: Proceedings of the 1st IEEE International

Conference on System of Systems Engineering, 2006, p. 1–6.

Shull, F.; Singer, J.; Sjøberg, D. Guide to advanced empirical software engineering. 1

ed. Springer-Verlag London, 2008.

145

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

http://www.sei.cmu.edu/architecture/start/glossary/

References

Silva, E.; Batista, T.; Oquendo, F. A mission-oriented approach for designing

system-of-systems. In: Proceedings of the 10th System of Systems Engineering Con-

ference, USA, 2015, p. 346–351.

Simanta, S.; Morris, E.; Lewi, G. A.; Smith, D. B. Engineering lessons for systems of

systems learned from service-oriented systems. In: Proceedings of the 4th Annual IEEE

Systems Conference (SysCon 2010), USA: IEEE, 2010, p. 634–639.

Sloane, E.; Beck, R.; Metzger, S. AGSOA - Agile governance for service oriented ar-

chitecture (SOA) systems: A methodology to deliver 21st Century military net-centric

systems of systems. In: Proceedings of the 2nd Annual IEEE Systems Conference,

USA: IEEE, 2008, p. 1–4.

Sloane, E.; Way, T.; Gehlot, V.; Beck, R. Conceptual SOS model and simulation systems

for a next generation national healthcare information network (NHIN-2): Creating a

net-centric, extensible, context aware, dynamic discovery framework for robust, secure,

flexible, safe, and reliable healthcare. In: Proceedings of the 1st Annual IEEE Systems

Conference, USA: IEEE, 2007, p. 1–6.

Sommerville, I. Software engineering. 9th ed. Addison-Wesley Longman Publishing

Co., Inc., 2009.

Squair, M. Safety, software architecture and MIL-STD-1760. In: Proceedings of the 11th

Australian Workshop on Safety Critical Systems and Software, Darlinghurst, Australia:

Australian Computer Society, Inc., 2006, p. 93–112.

Stratton, W.; Sibol, D.; Lindvall, M.; Ackermann, C.; Godfrey, S. Developing an ap-

proach for analyzing and verifying system communication. In: Proceedings of the IEEE

Aerospace Conference, USA: IEEE, 2009, p. 1–13.

SysML Partners Unified Modeling Language (UML). Online, http://www.omgsysml.

org/ - Accessed in July 7th 2016, 2015.

Tianfield, H. Fundamentals and architectures of complex distributed systems. In:

Proceedings of the IEEE International Conference on Systems, Man and Cybernetics,

USA: IEEE, 2008, p. 2471–2475.

Tsai, W.; Fan, C.; Chen, Y.; Paul, R. DDSOS: A dynamic distributed service-oriented

simulation framework. In: Proceedings of the 39th Annual Simulation Symposium

(ANSS 2006), 2006, p. 1–8.

146

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

http://www.omgsysml.org/
http://www.omgsysml.org/

References

Ueyama, J.; Hughes, D. R.; Matthys, N.; Horré, W.; Joosen, W.; Huygens, C.; Michaels,

S. An event-based component model for wireless sensor networks: A case study for river

monitoring. In: Proceedings of the 28th Brazilian Symposium on Computer Networks

and Distributed Systems, Porto Alegre, RS, Brazil: SBC, 2010, p. 997–1004.

Valerdi, R.; Ross, A.; Rhodes, D. A. A framework for evolving system of

systems engineering. The Journal of Defense Software Engineering, p. 28–30,

available at: http://www.crosstalkonline.org/storage/issue-archives/2007/

200710/200710-Valerdi.pdf (Access in 07/01/2016), 2007.

Vila, V. Data fusion enabled networks. In: Proceedings of the 10th International

Conference on Information Fusion, USA: IEEE, 2007, p. 1–7.

Wang, R.; Dagli, C. Executable system architecting using systems modeling language

in conjunction with colored Petri nets in a model-driven systems development process.

Systems Engineering, v. 14, n. 4, p. 383–409, 2011.

Wessel, J.; Meyer, B. Assessing system software performance in complex system of

systems environments. In: Proceedings of the Military Communications Conference,

USA: IEEE, 2010, p. 2310–2315.

Wester-Ebbinghaus, M.; Moldt, D.; Kohler-Bubmeier, M. From multi-agent to

multi-organization systems: Utilizing middleware approaches. In: Artikis, A.; Picard,

G.; Vercouter, L., eds. Proceedings of the 9th International Workshop on Engineering

Societies in the Agents World, v. 5485 de Lecture Notes in Computer Science, Germany:

Springer Berlin Heidelberg, p. 46–65, 2009.

Wohlin, C. Guidelines for snowballing in systematic literature studies and a replication

in Software Engineering. In: Proceedings of the 18th International Conference on

Evaluation and Assessment in Software Engineering, New York, NY, USA, 2014.

Wohlin, C.; Runeson, P.; Höst, M.; Ohlsson, M. C.; Regnell, B.; Wesslén, A. Experimen-

tation in software engineering. Berlin, Germany: Springer, 2012.

Xia, X.; Wu, J.; Liu, C.; Xu, L. A model-driven approach for evaluating system of sys-

tems. In: Proceedings of the 18th International Conference on Engineering of Complex

Computer Systems (ICECCS 2013), USA: IEEE, 2013, p. 56–64.

You-Sheng, Z.; Yu-Yun, H. Architecture-based software process model. ACM SIGSOFT

Software Engineering Notes, v. 28, n. 2, p. 1–5, 2003.

Zadeh, L. Fuzzy sets. Information and Control, v. 8, n. 3, p. 338–353, 1965.

147

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

http://www.crosstalkonline.org/storage/issue-archives/2007/200710/200710-Valerdi.pdf
http://www.crosstalkonline.org/storage/issue-archives/2007/200710/200710-Valerdi.pdf

References

Zhang, H.; Babar, M. A.; Tell, P. Identifying relevant studies in Software Engineering.

Information and Software Technology, v. 53, n. 6, p. 625–637, 2011.

Zhou, B.; Dvoryanchikova, A.; Lobov, A.; Lastra, J. Modeling system of systems: A

generic method based on system characteristics and interface. In: Proceedings of the 9th

IEEE International Conference on Industrial Informatics, Caparica, Lisbon, Portugal,

2011, p. 361–368.

Zhou, J.; De Roure, D. Floodnet: Coupling adaptive sampling with energy aware routing

in a flood warning system. Journal of Computer Science and Technology, v. 22, n. 1,

p. 121–130, 2007.

Zhou, Y.; Zhang, H.; Huang, X.; Yang, S.; Babar, M. A.; Tang, H. Quality assessment of

systematic reviews in Software Engineering: A tertiary study. In: Proceedings of the

19th International Conference on Evaluation and Assessment in Software Engineering,

New York, NY, USA: ACM, 2015.

Zhu, L.; Staples, M.; Je↵ery, R. Scaling up software architecture evaluation processes.

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial In-

telligence and Lecture Notes in Bioinformatics), v. 5007 LNCS, p. 112–122, 2008.

148

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Appendix

A
Systematic Mapping on SoS Software

Architectures: Study Protocol and List

of Included Primary Studies

This appendix presents the research protocol and the list of included studies of the SM

whose results are summarized and discussed in Section 2.2.

An SM provides mechanisms to identify and aggregate research evidence (Petersen et

al., 2008). It is a more open form of SLR providing an overview of a research area to

assess the amount of existent evidence on a topic of interest (Petersen et al., 2008). An

individual piece of evidence, for instance, a case study or an empirical study considered in

SLRs and SMs, is known as primary study, while SLRs and SMs are known as secondary

studies (Kitchenham and Charters, 2007). In other words, the term“primary study”refers

to an individual publication or a study that aggregates research evidence.

SM builds a classification scheme and organizes a research field of interest within the

categories of the scheme. As a result, the coverage of the research field can be determined

and the scheme can also be used to answer specific research questions (Petersen et al.,

2008). Therefore, SM provides an overview of a research area by identifying and quan-

tifying the related available research. In general, an SM begins with a planning phase,

which includes formulation of research questions and definition of inclusion and exclusion

criteria. The data extraction activity for an SM is broad and the analysis of a mapping

149

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

does not include the use of in-depth analysis techniques, such as meta-analysis, but rather

totals and summaries. Graphic representations also can be used to summarize the data

(Kitchenham and Charters, 2007).

Secondary studies (SLRs and SMs) (Kitchenham and Charters, 2007; Petersen et al.,

2008) have been provided with methodological and structured processes to identify and

aggregate research evidence. They have been increasingly applied and advocated as a suit-

able research strategy in the Software Engineering area (Brereton et al., 2007; Kitchenham

and Charters, 2007; Petersen et al., 2008). Indeed, for a given software engineering prob-

lem, secondary studies are adequate strategies for the identification of tendencies among

di↵erent approaches and selection of the most adequate ones (Biolchini et al., 2005). Some

research topics of secondary studies in the Software Engineering area are service-oriented

architecture (Oliveira and Nakagawa, 2011), software evolvability (Breivold et al., 2012),

and software architecture optimization methods (Aleti et al., 2013).

SoS is a very comprehensive term and has several related studies from di↵erent areas.

The use of a systematic technique for reviewing the literature for investigation into SoS

software architectures seems to be a good strategy. In order to conduct our SM, we fol-

lowed the process proposed by Kitchenham (Kitchenham, 2004) and illustrated in Figure

A.1. This process is composed of three main phases: planning, conduction, and reporting.

The next section describes how each phase was executed in our SM.

Figure A.1: SM process

150

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Appendix A. Systematic Mapping on SoS Software Architectures: Study Protocol and
List of Included Primary Studies

A.1 Phase 1: Planning

In this phase, the SM protocol is established, including the research questions, search

strategy, selection criteria, and data extraction and synthesis methods. Our SM was

conducted from January/2014 to July/2014 and involved six researchers (the co-authors

of this work). First, the specific goal, research questions, and associated metrics were

organized and established using the Goal/Question/Metric (GQM) approach (Basili et

al., 1999). Figure A.2 shows the result of the GQM application. A hierarchical structure

supported the establishment of the research questions and required metrics for answering

the questions.

A.1.1 Research Questions

As mentioned by Kitchenham and Charters (Kitchenham and Charters, 2007), SMs gen-

erally have broader research questions driving them and often ask multiple research ques-

tions. Therefore, aiming at identifying as many evidences as possible of the research

involving SoS software architectures, the following Research Questions (RQs) were estab-

lished:

RQ 1: What are the main architecturally significant characteristics of SoS? Although

there is a known set of characteristics, characteristics that are architecturally relevant

must be investigated. In other words, this RQ will identify characteristics of SoS that are

relevant to their software architecture.

RQ 2: What are the main quality attributes of SoS software architectures? Since quality

attributes must be incorporated in the software architectures, this RQ aims at identifying

quality attributes that are commonly incorporated in SoS software architectures.

RQ 3: How have SoS software architectures been represented? This RQ aims at iden-

tifying the most common approaches (e.g., methods, techniques, and models) proposed

and/or used to represent SoS software architectures.

RQ 4: How have SoS software architectures been evaluated? The aim of this RQ is to

investigate the architectural evaluation methods proposed and/or applied to SoS software

architectures.

RQ 5: How have SoS software architectures been constructed? This RQ is concerned with

ways of designing SoS software architectures, including architectural styles, architectural

frameworks, and architectural patterns.

RQ 6: How have SoS software architectures been evolved? Considering that SoS continu-

ously evolve, this RQ addresses approaches proposed to support evolution of SoS software

architectures.

151

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

A.1. Phase 1: Planning

Figure A.2: Defining Research Questions and Metrics using GQM

152

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Appendix A. Systematic Mapping on SoS Software Architectures: Study Protocol and
List of Included Primary Studies

A.1.2 Search Strategy

The search terms for SMs are less highly focused than for SLRs (Kitchenham and

Charters, 2007), therefore, in order to establish the search strategy based on the RQs, we

initially identified three general keywords: “Software”, “Architecture”, and“System of Sys-

tems”. Terms related to “System of Systems” were then identified: “System-of-Systems”,

“Systems of Systems”, and “Systems-of-Systems”. The final search string was obtained by

the combination of the keywords and their synonyms. Keywords were connected by the

logical operator AND, and the synonyms of these keywords were connected by the logical

operator OR. The final search string was:

software AND architecture AND (“system of systems” OR

“system-of-systems” OR “systems of systems” OR

“systems-of-systems”).

The accuracy of this search string was verified by a control list, i.e., a list of the

primary studies that should be found by this search string. It was established based on

the opinion of specialists on SoS, software architecture and the relevant studies identified

in Nakagawa et al.(2013). This string was also iteratively applied to the Scopus1 database

and reviewed/improved, in terms of related terms and logical concatenation, until all

studies of the control list had been in the results. We believe this final string is the most

adequate to searches into primary studies in the area of SoS software architectures.

Regarding the search sources (i.e., publication databases), we chose the most ef-

fective ones for secondary studies in Software Engineering area, namely ACM Digital

Library2, IEEEXplore3, ISI Web of Science4, ScienceDirect5, and Scopus (that indexes

Springer6). Additionally, proceedings of specific SoS events were also included for inves-

tigation, namely International Workshop on Software Engineering for System-of-Systems

(SESoS), the Workshop on Distributed Software Development, Software Ecosystems, and

Systems-of-Systems (WDES), and the International System of Systems Engineering Con-

ference (SoSE). Particularly, the International Council on Systems Engineering (INCOSE)

is a relevant source of studies, however, its publications present restrictions of access.

Thus, we included for analysis only the INCOSE studies available in the aforementioned

basis. The criteria considered for their selection were availability of primary studies,

1http://www.scopus.com/
2http://dl.acm.org/
3http://ieeexplore.ieee.org/
4http://apps.isiknowledge.com/
5http://www.sciencedirect.com/
6http://www.springerlink.com/

153

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

http://www.scopus.com/
http://dl.acm.org/
http://ieeexplore.ieee.org/
http://apps.isiknowledge.com/
http://www.sciencedirect.com/
http://www.springerlink.com/

A.1. Phase 1: Planning

scientific publications and conferences coverage, and versatility of results exportation.

Whenever possible, we also limited the search space to title, abstract, and keywords.

Moreover, our SM considered studies published only in English, as this is the language

widely adopted in conferences and journals related to the Software Engineering area and

also in the search sources.

To avoid missing important primary study, we applied the snowballing technique,

which is a non-probabilistic sampling technique that checks the reference lists of the

included studies to retrieve other studies (Wohlin, 2014).

A.1.3 Inclusion and Exclusion Criteria

The inclusion and exclusion criteria are used to evaluate each primary study obtained and

select studies that provide evidence about the RQs. The Inclusion Criteria (IC) used in

our SM were:

IC 1: The primary study exhibits an architecturally relevant characteristic of SoS;

IC 2: The primary study shows a quality attribute for SoS software architectures;

IC 3: The primary study addresses an approach to represent SoS software architectures;

IC 4: The primary study addresses an approach to evaluate SoS software architectures;

IC 5: The primary study addresses an approach to design SoS software architectures;

and

IC 6: The primary study addresses an approach to support the evolution of SoS software

architectures.

The Exclusion Criteria (EC) are used to exclude studies that do not contribute to

answering the RQs. The exclusion criteria used in our SM were:

EC 1: The primary study is not related to SoS;

EC 2: The primary study is not related to software architecture;

EC 3: The primary study does not have an abstract or its full text is not available;

EC 4: The primary study is written in a language other than English;

EC 5: The primary study is directly related to another primary study of the same author.

In this case, only the most recent primary study is considered; and

EC 6: The primary study is a compilation of works or a tutorial in a conference or

workshop.

154

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Appendix A. Systematic Mapping on SoS Software Architectures: Study Protocol and
List of Included Primary Studies

A.1.4 Quality Assessment

In order to analyze the quality of the included primary studies, we developed a checklist

containing six Quality Questions (QQ) (see Table A.1) adapted from the generic qual-

ity checklist proposed by Kitchenham (Kitchenham, 2004). QQ was established for the

assessment of studies of each RQ, as the RQs encompass di↵erent focuses. From QQ3

to QQ6, we consider that a study shows an approach evaluated if a survey, case study,

experiment, and/or industrial use is contained in this study. The following scale-points to

each QQ were adopted: (i) Yes - 1 point; (ii) No - 0 point; and (iii) Partially - 0.5 point.

Table A.1: SM - Checklist for the assessment of the quality of primary studies

Research
Question
(RQ)

Id Quality Question (QQ)

RQ1 QQ1 Is the way the characteristic(s) of SoS
influence their software architecture
clear?

RQ2 QQ2 Is the way the quality attribute(s) of
SoS influence their software architec-
ture clear?

RQ3 QQ3 Has the approach to represent SoS soft-
ware architectures been evaluated?

RQ4 QQ4 Has the approach to evaluate SoS soft-
ware architectures been evaluated?

RQ5 QQ5 Has the approach to build SoS software
architectures been evaluated?

RQ6 QQ6 Has the approach to evolve SoS soft-
ware architectures been evaluated?

A.1.5 Selection of Primary Studies

After the primary studies have been searched in the databases using the search string, the

studies interesting to our SM are selected in 3 three main steps: (i) an initial selection

of the studies is conducted based on the reading of title and abstract of each primary

study and the application of selection criteria; (ii) the full text of each previously selected

primary study is read and the selection criteria are applied again; and (iii) the quality of

the final included studies is assessed. Moreover, each study is evaluated by at least two

researchers. In case of disagreement, consensus meetings are scheduled to solve it.

155

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

A.2. List of Primary Studies

A.1.6 Data Extraction and Synthesis Method

Forms based on the metrics showed in Figure A.2 are used to support and organize the

data extraction process. Data are extracted independently by reviewers.

It is worth highlighting that we present in details herein the protocol of our SM and

information of its conduction. Hence, it will be possible to audit our SM, clarifying all

executed steps, and also making it possible to re-conduct it or other SM in related topics.

A.1.7 Threats to Validity

The threats to the validity of our SM are:

Missing of important primary studies: The publication databases used in this SM

are considered the most relevant available ones (Dyb̊aet al., 2007; Kitchenham and

Charters, 2007). Although no limit was placed on the publication date of the primary

studies, some studies may have been missed;

Specialist’s suggestions: Besides using publication databases to retrieve primary

studies, we considered studies suggested by specialists in Software Architecture and

SoS. We believe that these suggestions have not introduced any bias, since none of

the studies was written by these specialists and they have never worked with authors

of the studies suggested; and

Data extraction: Since not all information was clearly available in the primary

studies, these information had to be interpreted. In order to ensure the validity of

our SM, discussions among reviewers were conducted whenever a doubt occurred.

A.2 List of Primary Studies

Table A.2: SM: list of selected studies

Title Citation

System-of-systems security engineering (Bodeau, 1994)

Two-level process model for integrated system development (Rossak et al., 1994)

Architecting principles for systems-of-systems (Maier, 1998)

Inferred Designs (Perrochon and Mann,

1999)

156

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Appendix A. Systematic Mapping on SoS Software Architectures: Study Protocol and
List of Included Primary Studies

Kinesthetics eXtreme: An external infrastructure for moni-

toring distributed legacy systems

(Kaiser et al., 2003)

Quantifiable Architecting of Dependable Systems of Embed-

ded Systems

(Liang and Luqi,

2003)

Automated generation of integrated architectures and

end-to-end network models

(Bonilla et al., 2005)

Architectural framework for a system-of-systems (Ca↵all and Michael,

2005)

A unifying framework for systems modeling, control systems

design,and system operation

(Dvorak et al., 2005)

System software framework for system of systems avionics (Ferguson et al., 2005)

Systems of systems and coordinated atomic actions (Schaefer, 2005)

An adaptable outdoor robotic platform: architecture, com-

munications, and control

(Briggs et al., 2006)

Architecture-Based Interoperability Evaluation in Evolutions

of Networked Enterprises

(Chen, 2006)

Rapid systems of systems integration - Combining an

architecture-centric approach with enterprise service bus in-

frastructure

(Kruger et al., 2006)

A distributed simulation approach for modeling and analyzing

systems of systems

(Sharawi et al., 2006)

Quality assurance of the timing properties of real-time, reac-

tive system-of-systems

(Shing et al., 2006)

Safety, software architecture and MIL-STD-1760 (Squair, 2006)

DDSOS: A dynamic distributed service-oriented simulation

framework

(Tsai et al., 2006)

Specification, Validation and Run-time Monitoring of SOA

Based System-of-Systems Temporal Behaviors

(Cook et al., 2007)

Developing Performance-based Requirements for Open Archi-

tecture Design

(Naegle, 2007)

Extensible Virtual Environment Systems Using System of

Systems Engineering Approach

(Oliveira and Pereira,

2007)

A Discrete Event XML based Simulation Framework for Sys-

tem of Systems Architectures

(Sahin et al., 2007)

157

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

A.2. List of Primary Studies

Conceptual SOS Model and Simulation Systems for A

Next Generation National Healthcare Information Network

(NHIN-2): Creating A Net-Centric, Extensible, Context

Aware, Dynamic Discovery Framework for Robust, Secure,

Flexible, Safe, and Reliable Healthcare

(Sloane et al., 2007)

Data fusion enabled networks (Vila, 2007)

Architecting communication network of networks for Space

System of Systems

(Bhasin and Hayden,

2008b)

A System-of-Systems Engineering GEOSS: Architectural Ap-

proach

(Butterfield et al.,

2008)

A Method for Collaborative Development of Systems of Sys-

tems in the O�ce Domain

(Carbon et al., 2008)

Architecture Principles and the GEOSS Clearinghouse (Christian, 2008)

Applying Object Oriented Systems Engineering to Complex

Systems

(Cloutier and Griego,

2008)

A Rich Services Approach to CoCoME (Demchak et al., 2008)

Precision guidance of agricultural tractors for autonomous

farming

(Eaton et al., 2008)

Aspect-oriented modeling approach to define routing in enter-

prise service bus architectures

(Ermagan et al., 2008)

Reasoning about Hybrid System of Systems Designs (Gamble and Gamble,

2008)

Bridging requirements and architecture for systems of systems (Haley and Nuseibeh,

2008)

Using Sequence Diagrams to Detect Communication Prob-

lems between Systems

(Lindvall et al., 2008)

Toward an Evolutionary System of Systems Architecture (Schroh et al., 2009)

Toward an Evolutionary System of Systems Architecture (Selberg and Austin,

2008)

AGSOA - Agile Governance for Service Oriented Architecture

(SOA) Systems: A Methodology to Deliver 21st Century Mil-

itary Net-Centric Systems of Systems

(Sloane et al., 2008)

Fundamentals and architectures of Complex Distributed Sys-

tems

(Tianfield, 2008)

Scaling up software architecture evaluation processes (Zhu et al., 2008)

158

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Appendix A. Systematic Mapping on SoS Software Architectures: Study Protocol and
List of Included Primary Studies

Towards Behavioral Reflexion Models (Ackermann et al.,

2009)

Resource-Definition Policies for Autonomic Computing (Calinescu, 2009)

A uniform approach for system of systems architecture eval-

uation

(Gagliardi et al., 2009)

A systems engineering process for development of federated

simulations

(Kewley Jr. and An-

dreas, 2009)

The verification and validation of software architecture for

systems of systems

(Michael et al., 2009)

GI-Cat: A Mediation Solution for Building a Clearinghouse

Catalog Service

(Nativi et al., 2009)

Architectural Patterns and Auto-Fusion Process for Auto-

mated Multisensor Fusion in SOA System-of-Systems

(Rothenhaus et al.,

2009)

Developing an approach for analyzing and verifying system

communication

(Stratton et al., 2009)

From Multi-Agent to Multi-Organization Systems: Utilizing

Middleware Approaches

(Wester-Ebbinghaus

et al., 2009)

Methodology for object-oriented system architecture develop-

ment

(Acheson, 2010)

A net-centric XML based system of systems architecture for

human tracking

(Bowen and Sahin,

2010)

A quality of service framework for adaptive and dependable

large scale system-of-systems

(Bull et al., 2010)

Software Engineering Techniques for the Development of Sys-

tems of Systems

(Calinescu and

Kwiatkowska, 2010)

Facilitating system-of-systems evolution with architecture

support

(Chen and Han, 2001)

Using relational model transformations to reduce complexity

in SoS requirements traceability: Preliminary investigation

(Dickerson and

Valerdi, 2010)

Addressing the Integration Challenge for Avionics and Auto-

motive Systems: From Components to Rich Services

(Farcas et al., 2010)

Eliciting software safety requirements in complex systems (Menon and Kelly,

2010)

Systems of systems applications for telemedicine (Petcu and Petrescu,

2010)

159

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

A.2. List of Primary Studies

Engineering Lessons for Systems of Systems Learned from

Service-Oriented Systems

(Simanta et al., 2010)

Assessing system software performance in complex system of

systems environments

(Wessel and Meyer,

2010)

Measuring the architectural complexity of military

Systems-of-Systems

(Domerçant and

Mavris, 2011)

Agile development for system of systems: Cyber security in-

tegration into information repositories architecture

(Farroha and Farroha,

2011)

Singleton to sandwich chunking into buslets for better system

development

(Hodges et al., 2011)

Service Orientation and Systems of Systems (Lewis et al., 2011)

Software engineering of component-based systems-of-systems:

A reference framework

(Loiret et al., 2011)

Executable system architecting using systems modeling lan-

guage in conjunction with colored Petri nets in a model-driven

systems development process

(Wang and Dagli,

2011)

The process of architecting for software/system engineering (Chigani and Balci,

2012)

COAST: An Architectural Style for Decentralized

On-Demand Tailored Services

(Gorlick et al., 2012)

System of Systems to provide Quality of Service monitoring,

management and response in Cloud Computing environments

(Hershey et al., 2012)

Supporting Awareness during Collaborative and Distributed

Configuration of Multi Product Lines

(Holl et al., 2012)

Architecting the Human Space Flight Program with Systems

Modeling Language (SysML)

(Jackson et al., 2012)

Scaling Up Software Architecture Analysis (Kazman et al., 2012)

Towards integrated rule-driven software development for IT

ecosystems

(Mensing et al., 2012)

Multi-agent architecture with space-time components for the

simulation of urban transportation systems

(Nguyen et al., 2012)

Extending VDM-RT to enable the formal modelling of System

of Systems

(Nielsen and Larsen,

2012)

Interface specification for system-of-systems architectures (Payne et al., 2012)

Reengineering legacy systems towards system of systems de-

velopment

(Ramos et al., 2012)

160

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Appendix A. Systematic Mapping on SoS Software Architectures: Study Protocol and
List of Included Primary Studies

Model-based development of fault tolerant systems of systems (Andrews et al., 2013)

Challenges for SoS architecture description (Batista, 2013)

Net-centric System of Systems framework for human detection (Bowen and Sahin,

2013)

Semi-formal and formal interface specification for system of

systems architecture

(Bryans et al., 2013)

A reliability-based measurement of interoperability for sys-

tems of systems

(Jones-Wyatt et al.,

2013)

Supporting architectural decision making for

systems-of-systems design under uncertainty

(Lytra and Zdun,

2013)

Model-driven systems engineering for netcentric system of sys-

tems with DEVS unified process

(Mittal and

Risco Martin, 2013)

Perspectives and challenges of reference architectures in multi

software product line

(Nakagawa and

Oquendo, 2013)

Issues and challenges in ecosystems for federated embedded

systems

(Papatheocharous et

al., 2013)

Large-scale Smart Grids As System of Systems (Pérez et al., 2013)

Platform based approach for automation of workflows in a

system of systems

(Ploom et al., 2013)

A Model-Driven Approach for Evaluating System of Systems (Xia et al., 2013)

Perspectives on System of Systems for pilgrimage ritual guid-

ance and management

(Alwakeel et al., 2014)

161

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Appendix

B
Systematic Literature Review on SoS

Architecting Processes: Study Protocol

and List of Included Primary Studies

This appendix lists, in Table B.4, the primary studies included in the systematic review

discussed in Section 2.2.3.

This appendix presents the research protocol and the list of included studies of the

SM whose results are summarized and discussed in Section 2.2.

B.1 Research Methodology

An SLR is a well-defined, systematic procedure recently advocated as a useful mean

of identifying, evaluating, and interpreting existing work from the literature on a given

research topic (Kitchenham, 2004). This type of evidence-based secondary study follows

a rigorous methodology that seeks to minimize bias while enabling other researchers to

reproduce the same process when exploring the same research topic. Such a methodology

can be viewed as the main point that di↵erentiates an SLR from traditional literature

reviews as it is able to provide scientific value for the obtained findings.

Despite the greater conduction e↵ort when compared to traditional literature reviews,

SLRs have become increasingly popular in the last years mainly due to the multiple

163

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

B.1. Research Methodology

benefits that they o↵er. First, SLRs are able to provide a comprehensive overview of

the state of the art (or state of the practice) on the investigated research topic as well

as identify research challenges and opportunities in this context. Second, they provide

a credible, unbiased evaluation of the analyzed primary studies. Third, given a software

engineering problem, an SLR can be a suitable strategy to identify similarities and/or

di↵erences among distinct approaches and reveal the most adequate ones (Brereton et al.,

2007).

As outlined by Kitchenham and Charters (2007), an SLR comprises three basic steps

(see Figure B.1). The Planning step yields a protocol defining the research questions to

be answered, the search strategy to be adopted, the criteria to be used to select primary

studies, and the methods for extracting and synthesizing data. In the Conduction (or

Execution) step, relevant primary studies on the investigated topic are identified, selected,

and evaluated according to the established protocol. Finally, the Reporting (or Analysis)

step aims to aggregate information extracted from relevant primary studies considering

the research questions and outlines conclusions from them.

Planning

Conduction

Reporting

protocol

relevant
primary
studies

Final report

YES

NO

YES

NO

Retrieve primary studies

Assess quality of primary studies
Extract data

Synthesize data

Snowballing
Select primary studies

Write report
Validate report

Validate protocol
Establish protocol

Outline research questions

preliminary
report

Figure B.1: Process for reviewing literature in SLRs (Kitchenham and Charters, 2007).

164

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Appendix B. Systematic Literature Review on SoS Architecting Processes: Study
Protocol and List of Included Primary Studies

B.1.1 Research Questions

Aiming at finding primary studies to understand how SoS software architectures have been

constructed and what are the requirements and challenges in this context, we proposed

the research questions (RQs) outlined in Table B.1.

Table B.1: Research questions and respective goals

Research question Goal

RQ1: What are the important steps and
artifacts to be considered in the construc-
tion of SoS software architectures?

Identify the general steps and
artifacts on the architectural
design of SoS.

RQ2: What are the important steps and
artifacts to be considered in the construc-
tion of SoS software architectures?

Identify the general steps and
artifacts on the architectural
design of SoS.

B.1.2 Search Strategy

In order to retrieve primary studies, we used an automated search procedure performed

over five electronic databases (see Table B.2), which are among the most popular ones in

Software Engineering and have a high coverage of potentially relevant studies (Chen et

al., 2010; Dyb̊aet al., 2007). Furthermore, we considered other important criteria, such

as: (i) coverage of the electronic database; (ii) content update, i.e., if the publications

are regularly updated; (iii) availability of the full text of the primary study; (iv) easiness

of building the search through fields and commands available at the electronic database;

(v) quality of the results, which is related to the accuracy of the results obtained by the

automated search procedure; and (vi) versatility to export results (Dieste et al., 2009).

Based on the defined RQs, four main keywords were initially identified, namely system

of systems, software, architecture, and construction. In addition, possible variations such

as synonyms and singular/plural forms were considered, thereby resulting in the following

search string:

("system of systems" OR "system-of-systems" OR

"systems of systems" OR "systems-of-systems") AND

(construction OR architecting OR method OR process OR design OR build OR

development) AND software AND architecture

in which the main keywords were connected by using the AND logical operator. In turn,

the possible variations and synonyms were connected by using the OR logical operator.

165

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

B.1. Research Methodology

Table B.2: Electronic databases used in the automated search procedure

Database URL

IEEEXplore http://ieeexplore.ieee.

org

ACM Digital Li-
brary

http://dl.acm.org

ScienceDirect.com http://www.

sciencedirect.com

Scopus http://www.scopus.com

Web of Science http://www.

webofknowledge.com

Due to technical limitations of the electronic publication databases or low precision of

the used search string, an automated search procedure may miss relevant studies. Aiming

at overcoming such a limitation and increasing the comprehensiveness of this study, we

conducted a snowballing procedure (Wohlin, 2014). This non-probabilistic technique con-

sists of checking the reference lists of the studies in order to find additional, potentially

relevant studies not retrieved by the automated search procedure.

B.1.3 Selecion Criteria

Selection criteria were used to evaluate each retrieved primary study according to the

defined RQs. The main goal was to include studies that are potentially relevant to answer

the RQs and to exclude the ones that do not contribute to answer them.

We considered the following two inclusion criteria:

1. IC1: The study presents a process or method to construct SoS software architec-

tures.

2. IC2: The study establishes a process requirement on constructing SoS software

architectures.

We also established the following five exclusion criteria:

1. The study does not address the construction of SoS software architectures.

2. The study is a previous version of a more complete study about the same research.

3. The study does not have an abstract or the full text is not available.

4. The study is a table of contents, foreword, tutorial, editorial, keynote talk, or sum-

mary of conference/workshop.

166

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

http://ieeexplore.ieee.org
http://ieeexplore.ieee.org
http://dl.acm.org
http://www.sciencedirect.com
http://www.sciencedirect.com
http://www.scopus.com
http://www.webofknowledge.com
http://www.webofknowledge.com

Appendix B. Systematic Literature Review on SoS Architecting Processes: Study
Protocol and List of Included Primary Studies

5. The study is not written in English, the most common language in scientific papers.

In this SLR, a given primary study is considered as relevant if it does not meet any of

the aforementioned exclusion criteria and it meets at least one inclusion criterion.

B.1.4 Data Extraction

In order to extract data from each selected primary study aiming at synthesizing results

and supporting conclusions, we built a data extraction form with 12 items, as outlined in

Table B.3. These data items were defined based on each RQ and other relevant informa-

tion. During the data extraction process, data of each primary study were independently

extracted by the researchers when considering each research question and recorded on a

spreadsheet. Conflicts found during the process were solved by discussions between the

researchers.

Table B.3: Data items extracted from selected primary studies

Number Item

1 Title

2 Author(s) and respective a�liation(s)

3 Publication year

4 Venue

5 Goal of the study

6 Application domain (or generic, if not specified)

7 Discussed challenges and/or process requirements

8 Proposed solution approach

9 Architectural analysis activities/artifacts

10 Architectural synthesis activities/artifacts

11 Architectural evaluation activities/artifacts

12 Additional comments

B.1.5 Quality Assessment

A reliable mechanism to increase the level of confidence in the findings of secondary

studies is establishing criteria to assess the quality of the selected primary studies as

means of ensuring that the collected evidences are relevant and present scientific value

(Kitchenham et al., 2009; Zhou et al., 2015). We performed a simplified procedure with

167

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

B.2. Threats to Validity

a checklist aiming to assess: (i) the rigor of the research methods employed to establish

the validity of the study; (ii) the credibility of the study for ensuring that its findings are

meaningful; and (iii) the relevance of the study (Zhang et al., 2011; Zhou et al., 2015).

We have used the following two quality assessment questions:

1. Q1: Is the proposal well defined in terms of activities, artifacts, and roles?

2. Q2: Does the study evaluate the proposed solution?

We adopted three possible answers for each quality assessment question, namely yes,

partially yes, and no. Each of these answers was quantified by assigning a numerical

score to it, that is, yes = 1.0, partially yes = 0.5, and no = 0.0. In the end, the quality

assessment score of a given primary study is determined by summing all scores assigned

to it with respect to the quality assessment questions. Therefore, a given primary study

may receive scores ranging from 0.0 (minimum) to 2.0 (maximum) since there are only

two quality assessment questions.

B.2 Threats to Validity

The conducted SLR and its results may have been a↵ected by some threats to validity.

In the following, we discuss some of these limitations.

Incompleteness of the search procedure. The completeness of this SLR may

have been a↵ected by missing relevant studies. In order to reduce this threat, we have

used electronic databases (see Table B.2) that are among the most relevant available

sources in Software Engineering (Chen et al., 2010; Dyb̊aet al., 2007). In addition, the

snowballing procedure (Wohlin, 2014) was performed aiming at finding additional studies

not retrieved by the automated search procedure. Nonetheless, there are still limitations.

First, some studies may have been missed due to technical limitations of the automated

search engines, an issue that is out of the control of the researchers. Second, the selected

electronic databases do not represent an exhaustive list of publication sources, so that

other databases might also be included. Therefore, other possibly relevant studies could

have been identified and considered in this SLR.

Bias on study selection. In order to make the results of this SLR reproducible,

the protocol presented in Section B.1 clearly established the search terms used in the

automated search procedure, search sources, and criteria for selecting the primary studies.

However, di↵erent researchers tend to have di↵erent understandings on these criteria, so

that the results of the study selection performed by di↵erent researchers are likely to be

varied. Even though the drawn conclusions may have been influenced by the researchers’

168

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Appendix B. Systematic Literature Review on SoS Architecting Processes: Study
Protocol and List of Included Primary Studies

opinions, we have striven to mitigate the e↵ect of any personal bias or misinterpretation

by adopting a multiple-revision strategy.

Inaccuracy of data extraction. Bias on data extraction may result in inaccuracy

of the extracted data items, thus a↵ecting the analysis of the selected studies. We have

striven to reduce this bias by clearly defining the data items outlined in the data extraction

spreadsheets. In addition, the data items to be extracted in this SLR were discussed among

the researchers and agreed upon their meaning.

Bias on data synthesis. Not all studies su�ciently and clearly describe the details

of information to be extracted as data items aiming at supporting the answers to the

defined RQs. Therefore, we have had to infer certain pieces of information regarding data

items during data synthesis. In order to minimize the inaccuracy of such inferences, we

have conducted discussions aiming at solving any disagreement and clarifying potential

ambiguities.

B.3 SLR: List of Selected Studies

169

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

B.3. SLR: List of Selected Studies

Table B.4: Systematic literature review: list of selected studies

Title Citation

Two-level process model for integrated system development (Rossak et al., 1994)

Quantifiable software architecture for dependable systems of sys-
tems

(Liang and Luqi, 2003)

A System-of-Systems Engineering GEOSS: Architectural approach (Butterfield et al., 2008)

A process for systems-of-systems architecting (Griendling and Mavris,
2010)

A design methodology for real-time distributed software architec-
ture based on the behavioral properties and its application to ad-
vanced automotive software

(Aoyama and Tanabe,
2011)

A method for the generation and evaluation of architecture alter-
natives on the cloud

(Iacobucci and Mavris,
2011)

Architecting ultra-large-scale green information systems (Chen and Kazman,
2012)

The process of architecting for software/system engineering (Chigani and Balci,
2012)

Scaling up software architecture analysis (Kazman et al., 2012)

Towards integrated rule-driven software development for IT ecosys-
tems

(Mensing et al., 2012)

A data-centric capability-focused approach for system-of-systems
architecture modeling and analysis

(Ge et al., 2013)

Supporting architectural decision making for systems-of-systems
design under uncertainty

(Lytra and Zdun, 2013)

Goncalves2015 A meta-process to construct software architectures
for system of systems

(Gonçalves et al., 2015)

170

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Appendix

C
The OMG’s Essence Standard

C.1 Essence Language

Essence Standard is an e↵ort of the SEMAT1 (Software Engineering Method and Theory)

community, published as an OMG’s standard in 20142, to support practitioners, project

managers, and process engineers in authoring, application, and management of develop-

ment processes3. Despite it be a recent standard, successful applications were already

reported from industry (Jacobson, 2015; McDonough, 2014). Among the abundance of

unique processes that are hard to compare, the di�culty of experimental evaluation and

validation, and the gap between academic research and its practical application, Essence

Standard proposes key features and goals to encompass these lacks that have influenced

our choice to represent SOAR using it (Jacobson et al., 2013; Object Management Group

(OMG), 2014):

Possibility of using di↵erent levels of abstraction when describing processes, sup-

porting the establishment of common bases for similar processes sharing vocabulary

and knowledge. In SoS, di↵erent views of processes can be provided for di↵erent

stakeholders. For example, process engineers can be more interested in specific de-

1http://www.semat.org
2The most recent version of Essence Standard is the 1.1 published in 2014.
3The Essence specification originally adopts the term “method” to represents a composition of devel-

opment practices. In this thesis, we will use the convention that “process” is the term that refers to this
composition.

171

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

http://www.semat.org

C.1. Essence Language

tails of activities while managers can be more interest in general aspects and results

of ongoing work. It is also possible to structure di↵erent levels of abstraction in the

same process, allowing project managers to choose how complete is the process that

they need. For instance, inexperienced teams can be interested in more lower-level

views of a process with more specific guidelines;

Focus on practical use, supporting project teams on identifying opportunities of pro-

cess evolution and monitoring process health, thus evolving their way of working to

be as adequate as possible for di↵erent development stages of each system. There-

fore, as systems evolve in their life cycles, their processes also change maintaining

the suitability at each development stage; and

Essence Standard provides a foundation for easy process authoring, which allows

teams to share their development solutions in a modularized way independently

from single and complex processes.

Essence Standard comprises a language and a kernel for creation, use, and improvement

of software engineering processes. Essence Language is a language for process authoring

proposed to make processes visible and useful to developers. Despite it pays extreme at-

tention to syntax, emphasizes intuitive and concrete graphical syntax over formal seman-

tics. The focus is on providing a description in a language that can be easily understood

by the wide developers community whose interests are to quickly understand and use

this language (Object Management Group (OMG), 2014). Represented in this language,

Essence Kernel was conceived to be a very comprehensive common basis for grounding

any software development process. Therefore, it captures essential elements of software

engineering common to all software engineering methods, structured in a reusable way

on any development process (Object Management Group (OMG), 2014). Additionally,

Essence Standard has a development environment for Essence Language, the EssWork

Practice Workbench4 to creation of processes with Essence. This tool provides an easy,

intuitive way to support project teams and process engineers on developing and deploying

customized processes on Essence Language.

C.1.1 Fundamentals

Figure C.1 presents the layered architecture of using Essence Language for process au-

thoring. The first main structure that can be described with this language is the kernel,

which provides a common ground for development endeavors. Given a scope, e.g. Software

Engineering, a kernel provides common basis that determines “what must be done” for

4http://www.ivarjacobson.com/EssWork_Practice_Workbench/

172

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

http://www.ivarjacobson.com/EssWork_Practice_Workbench/

Appendix C. The OMG’s Essence Standard

all processes related to it. Therefore, it provides basic elements (i.e., common concepts,

goals, and competencies) that must be considered when authoring processes to a such

scope. At a lower abstraction level, practices are the second main structure in Essence

Language, which describe “how to do” determinations described on kernels. Therefore,

practices provide a more concrete guidance to do something with a specific objective.

They must describe how to handle a specific aspect of a development endeavor, including

all relevant elements, e.g., activities and work products, necessary to express that the

purposes of the practice were achieved. Finally, processes are compositions of practices

assembled to satisfy a specific project context. This structure of composition allows sep-

aration of “what” must be done that is included in the kernels, from “how” to perform it,

which is included in practices and processes.

Figure C.1: Essence architecture (Adapted from (Object Management Group (OMG),
2014))

Furthermore, Essence Language o↵ers both textual and graphical syntax, in which

nobody is constrained to use a graphical notation in situations in which textual notation

is easier to handle, and vice-versa. Furthermore, it has not only a static base for processes

description, but also additional dynamic semantics to enable description of what is actually

being done in a running project. Therefore, process representations can be more than

static specifications of what to do, but active guides that can be consulted in running

development endeavors returning directions on what to do next (Object Management

Group (OMG), 2014).

C.1.2 Main Elements

Figure C.2 informally shows the main elements of Essence Language, their relationships,

and graphical representations. Following, we describe these elements used to compose

kernels, practices, and processes. In this description, we considered the level of details

needed for understanding the proposal of this thesis.

173

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

C.1. Essence Language

Figure C.2: Essence Language conceptual overview (Adapted from (Object Manage-
ment Group (OMG), 2014))

Areas of Concern: are the central concerns that impact the process conduction and

developers have to pay special attention to. The are graphically represented with

di↵erent colors assigned to the graphical representation of the other elements of

Essence Language. Therefore, each element fall into at most one of these colors

expressing what is its main focus in the process context.

Alpha: is an acronym of “Abstract-Level Progress Health Attribute” that represents

any issue whose process evolution can be understood, monitored, directed, and

controlled. Changes in alphas expressing evolution towards achieving the objectives

of the process and supporting project teams to understand their own way of work.

Alpha State: is a specification of a state situation that an alpha can assume. It

represents important and remarkable stages in the life-cycle of an alpha. The alphas

have well-defined states and each alpha state is determined by the fulfillment of

checkpoint items in a specific checklist. A checkpoint is a condition, that can be

tested as true or false, that contributes to the determination of whether a state has

been attained or not. For each alpha, the states are organized in a linear order

174

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Appendix C. The OMG’s Essence Standard

denoting the usual way of progression. Despite the change of states can assume any

sequence according to each particular life-cycle, when a particular state is reached,

all the previous states in the linear order must to be reached as well. This approach

enables accurately plan and control the alphas evolution through expected states.

Work Product: representation of concrete artifacts of value and relevance in a pro-

cess. Work products provide a concrete representation to alphas describing them

in di↵erent forms, such as models, documents, specifications, and software parts.

Thus, they can be inputs or outputs of activities that are created, modified, used,

or deleted during a process.

Activity Space: a high-level element that can be understood as a repository for a

group of activities with a common goal. It represents “something to be done” and is

described in terms of alphas and respective states. The definition of activity spaces

is based on alphas and their states. For each activity space, a set of previously

required alpha states is described its input and these states must change during its

execution reaching the expected output, i.e., the set of alpha states to be reached

revealing the well-execution of such activity space.

Activity: guidance of“how”to perform activity spaces to change alpha states. Activities

are defined in practices (not in kernels) to accomplish activity spaces purposes, i.e.,

to reach the expected set of alpha states.

Competency: specification of abilities, capabilities, attainments, knowledge, and skills

necessary to do a specific type of work in a process. Each activity can be associated

with competencies that performer(s) must have to perform it.

Patterns and Resources: generic concepts that can be attached to any element of

Essence Language. Resources can be templates for work products and tools for

activities. Patterns are arrangements of Essence Language elements in meaningful

structure, e.g., a pattern to organize a workflow for a set of activity spaces. When

instantiating processes based on predefined practices, process authors can adapt

these practices by adding or replacing specialized resources and patterns.

C.2 Essence Kernel

Essence Kernel is a body of knowledge about software development endeavor. It defines

a common basis for software development practices in a scalable and flexible way. There-

fore, this kernel provides a basis in which di↵erent software engineering practices can be

composed to di↵erent needs. Moreover, this kernel can be also extended with convenient

175

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

C.2. Essence Kernel

kernel extensions to build more specific bodies of knowledge for any recurrent challenge on

software engineering. The Essence Kernel is structured into tree discrete areas of concern,

each one having its own representing color and focusing on a specific aspect of software

engineering. Figure C.3 shows this structure in which “Customer” (green) area is related

to actual use and exploitation of software system; “Solution” (yellow) area includes ev-

erything related to the specification and development of the software; and “Endeavor”

(blue) area that encompasses everything about team and its way-of-working. Following,

an overview of Essence Kernel is presented including its alphas and activity spaces.

Figure C.3: Essence Kernel Areas (Object Management Group (OMG), 2014).

C.2.1 Essence Kernel Alphas

Alphas determine the “things to work with” in a kernel. Figure C.4 shows Essence Kernel

alphas, their inter-relationships, and areas of concern. Following, each alpha is described.

In Customer area of concern, the main challenge is to understand opportunities that

must be addressed.

Opportunity: Circumstances that makes it appropriate to develop or change a

software system. The set of opportunities justifies software engineering endeavors

and represents the understanding of stakeholders’ needs. It helps on shaping re-

quirements for a new software system by providing justification in terms of needs.

Stakeholders: Any subject (e.g., people, groups, organizations) who a↵ects or

is a↵ected by the related software system. Stakeholders may have involvement

176

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Appendix C. The OMG’s Essence Standard

Figure C.4: The Alphas of Essence Kernel (Object Management Group (OMG), 2014).

with software system development in several di↵erent aspects; for example, being

customer or even participant of development team.

In Solution area of concern, elements and strategies must be encompassed to ade-

quately build a system.

Requirements: What software system must accomplish in order to meet opportu-

nity and satisfy stakeholders.

Software System: A system based on software that is the primary product of

software engineering endeavors in a project. A software system can be included in

a larger software, hardware or business solution.

In Endeavor area of concern, the elements related to team’s way-of-working have to

be addressed.

Work: Mental or physical e↵ort done in order to achieve a given result. In Essence

Kernel, work is everything that team does to meet the goals related to software

development. Moreover, specific practices must be conceived in order to guide this

work and also express the team’s way-of-working.

Team: A group of people with specific skills and competencies that are actively

engaged in development, maintenance, delivery or support of a specific software

system.

177

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

C.2. Essence Kernel

Way-of-Working: A tailored set of common practices and tools used by a team to

guide and support their work. The standardization and specification of way-of-working

allows its monitoring and systematic evolution.

C.2.2 Essence Kernel Activity Spaces

Essence Kernel also provides a set of activity spaces that is shown in Figure C.5. This

set complements alphas describing the “things to do” on software engineering endeavors.

Following, each activity space is described grouped by areas of concern.

Figure C.5: Activity spaces of Essence Kernel(Object Management Group (OMG),
2014).

In Customer area of concern, team has to understand the system context and explore

opportunities by adequately involving stakeholders.

Explore Possibilities: Explore possibilities analyzing each opportunity to be ad-

dressed by system.

Understand Stakeholder Needs: Interact with stakeholders to understand their

needs and ensure that right results will be achieved.

Ensure Stakeholder Satisfaction: To verify if identified opportunities have been

successfully addressed and gain the stakeholders’ acceptance of the system produced.

Use the System: Perform verification and validation of system by observing the

use of system in a live environment.

178

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Appendix C. The OMG’s Essence Standard

In Solution area of concern, team has to develop adequate solutions to meet identified

opportunities, thus satisfying stakeholders.

Understand Requirements: Identify the requirements by establishing a shared

understanding of what the system to be produced must do.

Shape the system: Design the system by optimizing development, change, and

maintenance e↵orts. This activity space can include the overall design and archi-

tecting of system.

Implement the System: Execute the system, or a part of it.

Test the System: Verify whether the produced system meets established require-

ments.

Deploy the System: Make the validated system available for use outside of de-

velopment sphere.

Operate the System: Support system use in its real operation environment.

In Endeavor area of concern, team has to guarantee its own operation in an expected

way-of-working.

Prepare to do the Work: Set up the needed elements of work environment.

Coordinate Activity: Manage the team’s work. This includes all on-going plan-

ning, replanning, and control of the team on performing its activities.

Support the Team: Help the team members on supporting themselves, collaborate

and improve their way-of-working.

Track Progress: Measure and assess the relevant progress indicators of team.

Stop the Work: Stop software engineering endeavor and verify team’s responsi-

bilities.

C.2.3 Essence Kernel Competencies

Essence Kernel also provides a set of competencies that describe the“needed competencies”

when performing a software engineering endeavor. Figure C.6 presents these competencies

that are described following. Following, competencies are described grouped by areas of

concern.

179

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

C.2. Essence Kernel

Figure C.6: Competencies of Essence Kernel (Object Management Group (OMG),
2014).

In Customer area of concern, team has to be able to explore business and technical

aspects of system domain and to have the ability to accurately communicate views of

their stakeholders.

Stakeholder Representation: The ability to gather, communicate, and balance

the needs of other stakeholders, and to accurately represent their views.

In Solution area of concern, team has to have skills to build and operate a software

system that fulfill established requirements.

Analysis: Ability to understand opportunities and their related stakeholder needs,

and to transform them into an agreed and consistent set of requirements.

Development: Competency of design and program e↵ective software systems fol-

lowing standards, norms, and technologies agreed by team.

Testing: Competency to test system using agreed verification strategies.

In Endeavor area of concern, team has to be able to be auto manageable.

Leadership: Individual capability of inspire and motivate a group of people to

perform a successful work.

Management: Ability to plan, coordinate, and evaluate the work done by a team.

180

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Appendix

D
Using EssWork Practice Workbench to

Build a SOAR-based Process Instance

EssWork Practice Workbench 1 is a tool that o↵ers support to automate the generation

of process instances in Essence Language. It is an environment based on Eclipse 2 3.7

Indigo, and is therefore a Java 3 application. The main purpose of the EssWork Practice

Workbench is to provide a comprehensive development environment for processes, meth-

ods, and practices authoring. This tool supports practice authors and process engineers

to focus on essential business values of practice descriptions, and it makes easy and in-

tuitive to develop and deploy processes instead of be concerned with details of Essence

Language. In this context, an interactive version of Essence Kernel is available to be used

in EssWork Practice Workbench allowing creation of kernel extensions and practices as

well as their composition into processes instances.

Regarding the use of EssWork Practice Workbench, this appendix presents an illus-

trative example of a process instance generated in this tool. We considered the generation

of a process instance based on SOAR-A to perform architectural analysis in a flood mon-

itoring SoS project. Section D.1 introduces the flood monitoring application domain and

discusses how SoS can be a suitable system class of this domain. Section D.2 describes a

1Avaiable for download at http://www.ivarjacobson.com/Practice_Workbench_Download/
2http://www.eclipse.org/projects/project-plan.php?planurl=/eclipse/development/

plans/eclipse_project_plan_3_7.xml#target_environments
3http://www.java.com

181

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

http://www.ivarjacobson.com/Practice_Workbench_Download/
http://www.java.com

D.1. The Flood Monitoring Application Domain

Figure D.1: Competencies of EssWork Practice Workbench.

process instance and illustrate how the SOAR representation in EssWork Practice Work-

bench 4 can provide support to process instantiation for SoS software architectures.

D.1 The Flood Monitoring Application Domain

The occurrence of floods in urban areas traversed by rivers represents a critical problem

that can cause human and material losses (Degrossi et al., 2013). There are several oc-

currences across the globe a↵ected by this scenario, such as Queensland between 2010-11,

Thailand in 2011, China in 2012, and Germany and Hungary in 2013 (Horita et al., 2014).

It has been noticed that rain forecast from meteorological systems and satellite data are

not su�cient to support the management of flood emergencies. Since damages incurred

during a flood scenario are directly correlated with the river level, up-to-date emergence

actions also require monitoring of river water flow and level (Zhou and De Roure, 2007).

In this context, there are several relevant initiatives to monitor urban rivers (Horita et

al., 2014; Zhou and De Roure, 2007).

4The description of SOAR in EssWork Practice Workbench is available as HTML site at: http:

//www.start.icmc.usp.br/html/SOAR/. Furthermore, we provide a contact channel to request the
source code of SOAR.

182

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

http://www.start.icmc.usp.br/html/SOAR/
http://www.start.icmc.usp.br/html/SOAR/

Appendix D. Using EssWork Practice Workbench to Build a SOAR-based Process
Instance

Flood monitoring systems can include several other constituent systems, such as: (i)

embedded systems of water level sensors, which are spread in floodprone areas near the

river and monitor the water level; and (ii) data management and analysis systems to collect

and analyze information from sensors transmitting warnings when necessary. An exam-

ple of approach to use these constituents is building Wireless Sensor Networks (WSNs)

composed of motes, which are tiny hardware/software platforms equipped with an embed-

ded CPU, low power wireless networking capabilities, and simple level sensors (Ueyama

et al., 2010). These sensors can be based on pressure and/or ultrasound to respectively

gauge depth and average speed of water. WSNs have been increasing employed in several

real-world applications, also in flood monitoring in urban areas (Hughes et al., 2011). Sys-

tems that follow this approach are mainly composed of sensors spread in the proximity of

the river to monitor physical and/or environmental conditions related to flood detection,

e.g., water level and flow rate of the river. Data gathered by these sensors are forwarded

through wireless network connections to a base station gateway that analyzes such data

and then triggers alerts if a flood condition is detected. A possible strategy to architect

these networks is to transmit sensed data in a multihop communication, in which data

sensed by a mote in its respective site is successively sent to neighbors until reaching the

gateway station that will process them. This communication strategy can take place by

using wireless network connections such as WiFi, ZigBee (IEEE 802.15.4), General Packet

Radio Services, and Bluetooth (Ueyama et al., 2010).

There are challenges in the flood monitoring domain related to how a complex network

of heterogeneous systems can interact and operate to deliver flood monitoring information

as expected considering multiple stakeholders. Regarding these challenges, SoS is a suit-

able class of systems to that domain. Cooperation of di↵erent systems can be established

as emergent behaviors to meet global SoS capabilities, e.g., level monitoring reports and

flood warnings. Furthermore, systems in this domain also involve multiple structures of

stakeholders with di↵erent needs, e.g., researchers, emergency organizations, and local

population.

D.2 An Process Instance to Flood Monitoring SoS

In this section, we describe how a process instance can be created with SOAR for a

flood monitoring SoS, named FMSoS. We built this example based on the literature of

flood monitoring, and supposing information about project particularities, such as team

structure and decisions made during process instantiation. This example illustrates how

a small team can use SOAR-A in its project to produce a process instance. This project

is simpler than it could be in a real SoS because our purpose is to illustrate SOAR use

183

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

D.2. An Process Instance to Flood Monitoring SoS

instead of being a complete description of everything that should be done in this kind of

project.

D.2.1 Characterizing a Flood Monitoring SoS

As a first step before process instantiation, an analysis is performed to verify if the sys-

tem to be built is in the category covered by SOAR, i.e., an acknowledged SoS. In this

perspective, Table D.1 presents an analysis and the classification of FMSoS based on our

conceptual model (previously presented in Section 2.1.2). First and foremost, FMSoS is

software-intensive, software platforms and embedded software of water level sensors that

must collaborate with this SoS. Moreover, there is geographical distribution, in which

constituent systems are connected and collaborate towards the accomplishment of global

missions to detect risk of flood and to trigger warning messages. Functionalities provided

by this SoS arise from the collaboration among constituent elements, which are not able

to provide such global missions if they are separately considered, thus encompassing the

so-called emergent behavior. Despite the existence of a central control for FMSoS, the

functionalities and cooperation of constituents depends on the negotiation with their own-

ers. With these characteristics and the it is ones presented in Table D.1, FMSoS can be

classified as an acknowledged SiSoS and, hence, compatible with SOAR.

D.2.2 Building a process instance in EssWork Practice Workbench

A process instance is a composition of practices assembled and adapted to a specific

project. When authoring processes using SOAR, it is possible to choose a more adequate

level of support according to both level of expertise of developers and process maturity of

related organizations. In our example, we considered a small team inexperienced with SoS

projects, in which members share multiple roles and responsibilities. In this case, there

is no separated members or teams acting to conceive and manage the process instances.

Development team is responsible to conceive, perform, and evolve its own development

processes, including the architecting processes instance described in this appendix. We

considered that development team agreed on use the more complete level of support o↵ered

by SOAR, in which SOAR practices are used in process instances. With the utilization of

EssWork Practice Workbench, it is possible to produce and document process instances,

obtaining as final products not only process instances documented in the tool but also

HTML sites autocatically generated for them.

Figure D.2 exemplifies the edition, in EssWork Practice Workbench, of analysis plan

work product to FMSoS project. In this case, the team added a new point to check this

work product that refers to the use of redmine. Furthermore, it is possible not only edit

184

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Appendix D. Using EssWork Practice Workbench to Build a SOAR-based Process
Instance

Table D.1: Analysis of FMSoS

SiSoS Model concepts WSN-Based Flood Monitoring System

Global mission Monitoring a river to detect risk of flood and to
trigger warning messages

Software dominance Software systems of constituents (e.g., software
of level sensors) are essential to FMSoS opera-
tion

Operational independence Meteorological systems and surveillance sys-
tems can operate independently of the FMSoS

Managerial independence Level sensors, meteorological systems, and
surveillance systems are independently man-
aged, developed, and maintained

Evolutionary development FMSoS must a↵ord evolutionary changes in the
set of constituents

Emergent behavior Alerts of imminent floods can only be produced
with the cooperation of river monitoring sys-
tems operating together

Geographical distribution Level sensors, gateway, and other constituents
are geographically dispersed

Connectivity Level sensors and gateway are connected
through wireless network connections

SiSoS Category (Classification) Acknowledged SoS, because FMSoS func-
tionalities depend on the negotiation with con-
stituent owners

SOAR-A elements including particularities of each project, but also add new elements as

illustrated in Figure D.3, in which is possible to notice that, to support the creation of

elements aligned with the Essence Standard, the tool automatically provides the set of

textual guidelines about fields to be filled.

The aforementioned edition of elements mainly occur in practices and kernels. After

the practices and kernels were changed according to the project needs, a process instance

must be finalized by assembling them. Figure D.4 shows the starting of this assemblage.

After the process instance is named, the practices and kernels are selected. After that,

the process instance must be described by filling the fields shown in Figure D.5.

Figure D.6 shows an HTML version of FMSoS process instance generated in Essence

Workbench tool. In the left board, it is possible to navigate through descriptions of all

elements included in the process instance, e.g., alphas, activity spaces, activities, and work

products. The right board presents these descriptions according to what was selected in

the left board. In Essence Workbench tool, development team can edit and share this

instance. HTML sites describing process instances can be also created with Essence

185

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

D.2. An Process Instance to Flood Monitoring SoS

Figure D.2: Editing analysis plan work product

Workbench tool to facilitate the disclosure of their content to stakeholders. Essence

Workbench tool can generate di↵erent views of process elements with di↵erent levels of

detail. For example, Figure D.7 shows the summarized view, called “card view”, for the

planning analysis activity, including required alphas and competencies, summary of goals,

and alpha states to be reached (i.e., criterion name). Figure D.8 shows an extended view

regarding the same activity, including a summary, the textual description of all related

items, additional figures if included by team, etc.

186

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Appendix D. Using EssWork Practice Workbench to Build a SOAR-based Process
Instance

Figure D.3: Adding a new activity to SOAR-A

Considering the inherent evolutionary development of SoS, a process instance must

evolve in accordance with SoS evolution. In this perspective, the strategy of the FMSoS

project is to execute architectural analysis until a minimum set of ASRs is reached to

initiate architectural synthesis and evaluation. Therefore, only SOAR-A is initially ap-

plied to support the establishment of activities, tasks, and work products for the first

development iteration. Team members establish tasks to reach alpha states expected to

express the well execution of architectural analysis.

Table D.2 presents activities, tasks, and work products established for the first itera-

tion. First column presents activities from SOAR-A scheduled for the process instance.

The first activity to be executed is planning analysis, in which team members will plan,

organize, and convey to stakeholders the activities of first iteration. Tasks proposed for

activities are described in the second column. The first task is about a meeting of develop-

ment team to built an analysis plan based on its understanding about alpha states in the

project. For this, team members play a technique proposed in Essence Standard called

“poker game”. This technique is based on the use of state cards that can be generated in

Essence Workbench tool. For each alpha, team members use state cards to individually

assess and choose which alpha states they believe the project curretly are and which states

must be reached after the first iteration. Then they confront their choices and agree about

what are the current alpha states and which states must be reached after the iteration.

Figure D.9 presents an example of state cards for architectural backlog alpha. Each card

presents an state and a respective checklist to be applied to verify if the state is reached.

187

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

D.2. An Process Instance to Flood Monitoring SoS

Figure D.4: Example of a process instance

Furthermore, the states are cumulative, e.g., when updated state is reached, available and

established states have already been reached.

Work products to be manipulated in activities and tasks are presented in third col-

umn. These work products must express alphas and their states. SOAR practices suggest

possibilities of work products and process authors must choose/adapt the more adequate

ones for each development context. For example, analysis plan is implemented in FMSoS

by using the Redmine Tool5 to organize, update, and document this work product. Dur-

ing Task 1 of planning analysis activity, development team establishes a time schedule of

two weeks to be followed in the first iteration.

Another work product from SOAR-A also considered is the Context documentation,

which documents the SoS all information related to architectural context, e.g., organi-

zational documents, governmental rules, etc. Also following SOAR-A recommendations,

this documentation included a mission model to be produced in Task 2 of identifying ar-

chitectural context activity, which must describe the global mission of SoS and individual

missions of its constituent systems, such as: (i) monitoring river level for river monitoring

systems; (ii) monitor city areas for surveillance systems; and (iii) monitor weather for

meteorological systems. Fourth column presents the alpha states to be reached after each

task is done. For example, the stakeholders alpha reaches involved state after Task 3 of

planning analysis activity is executed, in which team members convey the analysis plan to

stakeholders. Fifth column indicates status of tasks execution. According to this column,

Tasks 1 and 2 of planning analysis activity was already done, Task 3 of the same activity

is being performed and other tasks were not initiate yet.

Table D.2: Tasks of process instance

5http://www.redmine.org/

188

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

http://www.redmine.org/

Appendix D. Using EssWork Practice Workbench to Build a SOAR-based Process
Instance

Activity Task Work Products Alpha State

to be Reached

Task

Status

Planning

Analysis

Task 1: make a development

team meeting to play poker

game with development team

to understand the current al-

pha states and plan architec-

tural analysis

Analysis plan

Work scheme

(Redmine)

Development

Team: Formed
Done

Task 2: contact the related

stakeholders

Stakeholders

map

Stakeholders:

Involved

Done

Task 3: make a meeting with

stakeholders to show the itera-

tion plan

Analysis plan

(Redmine)

Development

Environment:

Working

Doing

Identifying

Arch.

Context

Task 1: identify what is rel-

evant to be part of architec-

tural context, e.g., organiza-

tional documents, and govern-

mental rules

Context

Documentation

Context:

Arch. aspects

identified

To do

Task 2: meeting to establish

and agree a missions model

with the stakeholders

To do

Identifying

ASCs
Task 1: conduct interviews to

identify the stakeholders’ con-

cerns

List of ASCs ASCs: estab-

lished

To do

Managing

Conflicts

in ASRs

Task 1: analyze the general re-

quirements documentation and

the list of ASCs to identify pos-

sible conflicts that impact in

the software architecture

ASRs

documentation,

List of ASCs

Stakeholders:

in agreement

To do

189

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

D.2. An Process Instance to Flood Monitoring SoS

Eliciting

ASRs

Task 1: review requirements

documentation already pro-

vided externally from architect-

ing process activities to iden-

tify ASRs from general require-

ments

ASRs

documentation
ASRs: elicited

To do

Task 2: promote an discussion

meeting to raise agreement re-

garding the ASRs

To do

Task 3: produce and include

in the ASRs documentation a

quality model

To do

Identifying

Self-ASRs
Task 1: analyze all generated

ASRs documentation to iden-

tify possible new requirements

from the software architecture

ASRs docu-

mentation

ASRs:

self-checked,

FMSoS:

analyzed

To do

Updating

Arch.

Backlog on

Analysis

Task 1: define a template for

architectural backlog documen-

tation, guidelines to,edit this

documentation, and who is al-

low to perform this edition

Architectural

Backlog Doc-

umentation

(online reposi-

tory)

Architectural

Backlog:

Established

To do

Task 2: review and updated

any document or information

generated/changed during the

iteration should be included in

the backlog documentation

Architectural

Backlog Doc-

umentation

(online reposi-

tory)

Architectural

Backlog:

Updated

To do

Based on graphic representation of Essence Language elements (see this representa-

tion in Section C.1.2), team members are free to manually built their own graphics and

figures, and add them to process instance, according to target audiences and development

contexts. Figure D.10 shows one of these possibilities: the representation of the evolu-

tion of alpha states in the first iteration and activities planned to reach these states. As

FMSoS evolves during iterations, the architecting process must also evolves, with changes

in practices, activities, tasks, and work products, to maintain its adequability to FMSoS

project.

190

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Appendix D. Using EssWork Practice Workbench to Build a SOAR-based Process
Instance

Figure D.5: Editing a final process instance

Several iterations are expected to establish a satisfactory set of ASRs and ASRs Docu-

mentation is the main work product to be incrementally produced during analysis. After

first poker game, team members agreed on four initial iterations of 15 days will be fo-

cused on architectural analysis, and this is registered in analysis plan. During further

poker games, alpha states must be analyzed to guide team to understand if this time

schedule is adequate or if the plan must change. In FMSoS, there is a requirements doc-

ument already leveraged including general requirements and the development team must

analyse in Task 1 of eliciting ASRs activity which of these requirements are significant to

architectural design, i.e., ASRs. When a minimum set of ASRs is achieved, ASRs alpha

must reach the state Self-checked, in which the FMSoS ASRs were elicited including ASRs

possibly generated by the software architecture itself. ASRs Documentation must contain

established and agreed ASRs for the SoS software architecture.

An example of relevant ASR in FMSoS is the need to detect false positives, which is

related to an emergent behavior resulting from the interactions among the constituent sys-

tems. Although both river monitoring and meteorological systems can independently emit

alert messages indicating a critical condition for flooding, only the cooperation between

them can avoid false positives. Also following SOAR-A directions, ASRs documentation

includes a quality model, i.e., a set of quality characteristics and of relationships between

them (ISO/IEC, 2011). In this perspective, performance, fault-tolerance, and availability

are generic quality attributes that are relevant to the context of this flood monitoring.

Nevertheless, there are other specific attributes that play an important role in the software

191

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

D.2. An Process Instance to Flood Monitoring SoS

Figure D.6: HTML of process instance for FMSoS

Figure D.7: Card view of acitivity

architecture of this SoS and hence must be handled as ASRs. For instance, accuracy is

a quality attribute directly related the global mission of FMSoS of detecting floods with

192

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Appendix D. Using EssWork Practice Workbench to Build a SOAR-based Process
Instance

Figure D.8: Card view of planning analysis acitivity

Figure D.9: State cards generated for Architectural Backlog

maximum confidence because inaccurate information can negatively impact disaster man-

agement strategies. Di↵erent constituent systems and their arrangement within FMSoS

may have di↵erent influence with respect to accuracy of measures and predictions.

D.2.3 Following Iterations

Alpha states help to understand both progress and health of development processes.

Therefore, the development team must review, at each development cycle or in pre-defined

193

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

D.2. An Process Instance to Flood Monitoring SoS

Figure D.10: Alpha states evolution chart (Adapted from (Jacobson et al., 2013))

verification points, if alpha states were reached as expected. In our example, this review

is done during planning analysis, in which development team agree about alpha states,

plan its evolution, and made adjustments in the process instance when necessary, e.g., the

further introduction of SOAR-S and SOAR-E activities and work products. New alphas

and alpha states can be also proposed by the development team when necessary to help on

verify its project evolution. For example, the development team could propose a project

stage alpha, with states to express when the architecting process admits the introduction

of architectural synthesis and evaluation. In this illustrative appendix, we provide a sim-

ple and summarized example of how SOAR can support the instantiation an architecting

processes for acknowledged SoS. This example shows SOAR-A flexibility to accommodate

the particularities of each project, such as stage of development or development strategies

used by team members.

194

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Appendix

E

Survey Questionnaires

This appendix presents the online questionnaires used in the surveys conducted to evaluate

some elements of SOAR approach, i.e., SOAR Kernel, SOAR-A practice, and SOAR-E

practice. For sake of simplicity, only questions are presented and additional instructions

of how to fill the online forms and how to access and read supplementary documentations

are omitted. More details about these surveys are available in the Chapters 3, 4, and 6.

E.1 Questionnaire for personal profiles

Since the level of expertise of each subject was relevant on all surveys of this thesis, a

common set of questions was included in all surveys in order to identify this information.

These questions are presented as follows.

195

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

E.2. Questionnaire of SOAR Kernel’s survey

The goal of this survey is to evaluate the SOAR-E, a practice that defines a set of activities and work
products supporting the architectural evaluation in SoS software architectures.

This survey questionnaire is organized into three main parts. In Part I, you will be asked to answer a few
general questions about your background in the survey domain. In Part II, you will read a document
describing the SOAR-E practice. In Part III, you will be asked to answer some questions based on the
documentation read in Part II. Further instructions/directions will be presented along each part of this
questionnaire.

* Required

Part I - Background

Telling us a little about yourself will help us in further analysis.

How would you grade your knowledge/expertise about software architectures? *
Mark only one oval.

1 2 3 4

Beginner Expert

1.

How would you grade your knowledge/expertise about SoS? *
Mark only one oval.

1 2 3 4

Beginner Expert

2.

Which role describes you best? *
Mark only one oval.

Academic researcher

Practitioner of industry

Both of previous choices

3.

Part II - Reading the SOAR-E practice documentation
Please read the document available at http://issuu.com/erscav/docs/sare carefully. This document contains a
description of SOAR-E practice. Although SOAR comprises other elements, in this survey we are interested
only in the evaluation of the aspects of architectural evaluation encompassed by the SOAR-E practice.

Part III - Evaluating the SOAR-E practice

Questionnaire for Evaluating the SOAR-E Practice https://docs.google.com/forms/d/1SiZgc8iYtxS8TzRW4JstMH5J9v1-ha...

1 of 4 8/18/2016 5:36 PM

E.2 Questionnaire of SOAR Kernel’s survey

After read SOAR Kernel description in Essence Language, participants were asked to

answer questions about it. Additionally, an overview of Essence Language and description

of Essence Kernel were provides as reference documents. Specific questionnaire applied

to evaluate the SOAR Kernel is presented as follows.

* Required

Evaluating completeness

Do you think that SOAR .ernel encompasses all general aspects that are relevant when
constructing acknowledged SoS software architectures? *
Mark only one oval.

Yes (SOAR .ernel satisfactorily encompasses this issue)

Partially yes (needs minimal additions)

Partially not (needs critical additions)

No (SOAR .ernel is not representative at all)

1.

If you do not answered "yes" in the last question, please point out the aspect(s) that might be
missing.

2.

7he alphas must determine the "things to work with" in a kernel. In this context, how would you
grade the alphas of SOAR .ernel? *
Mark only one oval.

Yes (the set of alphas is acceptable)

Partially Yes (less important alphas are missing)

Partially No (critical alphas are missing)

No (the set of alphas does not accomplish its purpose)

3.

Activity spaces must determine the "things to be done" in a kernel. In this context, how would you
grade the activity spaces of SOAR .ernel? *
Mark only one oval.

Yes (the set of activity spaces is acceptable)

Partially Yes (less important activity spaces are missing)

Partially No (critical activity spaces are missing)

No (the set of activity spaces does not accomplish its purpose)

4.

Evaluating SOAR .ernel https://docs.google.com/forms/d/1RzE-MmQ1T2dzpa.eun\,psag64Bn...

1 of 4 8/20/2016 6:16 AM

196

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Appendix E. Survey Questionnaires

* Required

Evaluating completeness

Do you think that SOAR .ernel encompasses all general aspects that are relevant when
constructing acknowledged SoS software architectures? *
Mark only one oval.

Yes (SOAR .ernel satisfactorily encompasses this issue)

Partially yes (needs minimal additions)

Partially not (needs critical additions)

No (SOAR .ernel is not representative at all)

1.

If you do not answered "yes" in the last question, please point out the aspect(s) that might be
missing.

2.

7he alphas must determine the "things to work with" in a kernel. In this context, how would you
grade the alphas of SOAR .ernel? *
Mark only one oval.

Yes (the set of alphas is acceptable)

Partially Yes (less important alphas are missing)

Partially No (critical alphas are missing)

No (the set of alphas does not accomplish its purpose)

3.

Activity spaces must determine the "things to be done" in a kernel. In this context, how would you
grade the activity spaces of SOAR .ernel? *
Mark only one oval.

Yes (the set of activity spaces is acceptable)

Partially Yes (less important activity spaces are missing)

Partially No (critical activity spaces are missing)

No (the set of activity spaces does not accomplish its purpose)

4.

Evaluating SOAR .ernel https://docs.google.com/forms/d/1RzE-MmQ1T2dzpa.eun\,psag64Bn...

1 of 3 8/20/2016 6:49 AM

197

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

E.2. Questionnaire of SOAR Kernel’s survey

Please point out other alphas or activity spaces that should be included.5.

Evaluating correctness

How would you grade SOAR .ernel in terms of correctness? *
Mark only one oval per row.

Correct (no wrong
or misunderstood

statements)

Partially correct
(less important

statements should
be reviewed)

Partially incorrect
(critical

statements
should be
reviewed)

Totally incorrect
(the amount of

errors make
SOAR useless)

Alphas
Activity Spaces

6.

Please, point out any statement/concept that you think incorrect/misunderstood, also indicating
its respective alpha(s), activity space(s).

7.

Evaluating coherence

How would you grade SOAR in terms of coherence? *
Mark only one oval per row.

Coherent (no
relevant

conflicts or
wrong placed

elements)

Partially coherent
(less important
elements are
conflicting or

wrong placed)

Partially
coherent (critical

elements are
conflicting or

wrong placed)

Totally incoherent (the
amount of conflicts

and/or disorganization
makes SOAR useless)

Alphas
Activity spaces

8.

Evaluating SOAR .ernel https://docs.google.com/forms/d/1RzE-MmQ1T2dzpa.eun\,psag64Bn...

2 of 3 8/20/2016 6:49 AM
198

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Appendix E. Survey Questionnaires

Powered by

Please, point out any alpha or activity space that you think incorrectly placed or conflicting.9.

Evaluating usability

How would you grade the SOAR .ernel and its representation? *
Mark only one oval per row.

1 (low) 2 3 4 (high)

Clear
Well organized

10.

Specific difficulties.
Regarding your reading, point out any difficulty that you have on understanding the SOAR .ernel and its
elements.

11.

Extra comments and suggestions

Please, give your improvement sugestions to SOAR .ernel.12.

Evaluating SOAR .ernel https://docs.google.com/forms/d/1RzE-MmQ1T2dzpa.eun\,psag64Bn...

3 of 3 8/20/2016 6:49 AM
199

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

E.3. Questionnaire of SOAR-A’s survey

E.3 Questionnaire of SOAR-A’s survey

After read SOAR-A Practice description in Essence Language, participants were asked to

answer questions about it. Furthermore, an overview of Essence Language and descrip-

tions of SOAR Kernel and Essence Kernel were provides as reference documents. Specific

questionnaire applied to evaluate the SOAR-A Practice is presented as follows.

* Required

Evaluating completeness

Do you think that the work products of SOAR-A practice encompass all general aspects relevant
to the architectural analysis in acknowledged SoS software architectures? *
Note: remember that SOAR-A is a comprehensive solution to be fulfilled with the particularities of each
SoS project.
Mark only one oval.

Yes (it does not miss any relevant aspect)

Partially yes (it needs minimal additions)

Partially not (it needs critical additions)

No (it is not representative at all)

1.

How would you grade the set of activities defined in the SOAR-A practice? *
Mark only one oval.

The set of activities is acceptable

Less important activities are missing

Critical elements are missing

The set of activities does not accomplish its purpose at all

2.

Please point out any other element (e.g., alpha, work product, activity space, activity) that should
be included as well as any other issue that you consider as relevant.

3.

Evaluating correctness

Questionnaire for Evaluation SOAR-A Practice https://docs.google.com/forms/d/1lRPP1SdqNdGkBodbl7fD9UnZKvn...

1 of 3 9/28/2016 10:30 AM

200

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Appendix E. Survey Questionnaires

How would you grade the activities of the SOAR-A practice in terms of correctness? *
Mark only one oval.

Correct (there are no wrong or misunderstood statements)

Partially correct (less important statements should be reviewed)

Partially incorrect (critical statements should be reviewed)

Totally incorrect (the amount of errors makes SOAR-A practice useless)

4.

Please point out any statement/concept that you consider as incorrect/misunderstood.5.

Evaluating coherence

How would you grade the activities of the SOAR-A practice in terms of coherence? *
Mark only one oval.

Coherent (there are no relevant conflicts or incorrectly placed elements)

Partially coherent (less important elements are conflicting or incorrectly placed)

Partially coherent (critical elements are conflicting or incorrectly placed)

Totally incoherent (the amount of conflicts and/or disorganization make the SOAR-A practice
useless)

6.

Please point out any element (e.g., alpha, work product, activity space, activity) that you think
incorrectly placed or conflicting.

7.

Evaluating usability

Questionnaire for Evaluation SOAR-A Practice https://docs.google.com/forms/d/1lRPP1SdqNdGkBodbl7fD9UnZKvn...

2 of 3 9/28/2016 10:30 AM201

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

E.4. Questionnaire of SOAR-E’s survey

Powered by

How would you grade the usability of the SOAR-A practice description? *
Mark only one oval per row.

1 (low) 2 3 4 (high)

Clear
Well organized

8.

Specific difficulties
Regarding your reading, point out any difficulty that you had on understanding the SOAR-A practice and
its elements.

9.

Extra comments and suggestions

Please give your improvement sugestions to the SOAR-A practice.10.

Questionnaire for Evaluation SOAR-A Practice https://docs.google.com/forms/d/1lRPP1SdqNdGkBodbl7fD9UnZKvn...

3 of 3 9/28/2016 10:30 AM

E.4 Questionnaire of SOAR-E’s survey

After read the SOAR-E Practice description in Essence Language, participants were asked

to answer questions about it. Furthermore, an overview of Essence Language and descrip-

tions of SOAR Kernel and Essence Kernel were provides as reference documents. Specific

questionnaire applied to evaluate SOAR-E Practice is presented as follows.

202

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Appendix E. Survey Questionnaires
* Required

Evaluating completeness

Do you think that the work products of SOAR-E practice encompass all general aspects relevant
to the architectural evaluation in SoS software architectures? *
Note: remember that SOAR-E is a comprehensive solution to be fulfilled with the particularities of each
SoS project.
Mark only one oval.

Yes (it does not miss any relevant aspect)

Partially yes (it needs minimal additions)

Partially not (it needs critical additions)

No (it is not representative at all)

1.

How would you grade the set of activities defined in the SOAR-E practice? *
Mark only one oval.

The set of activities is acceptable

Less important activities are missing

Critical elements are missing

The set of activities does not accomplish its purpose at all

2.

Please point out any other element (e.g., alpha, work product, activity space, activity) that should
be included as well as any other issue that you consider as relevant.

3.

Evaluating correctness

&op\)OR ,MPRESS,ON of Questionnaire for Evaluation SOAR-E Practice https://docs.google.com/forms/d/1hi07Mth31ShKhPQZ;:22cKK:R...

1 of 3 9/28/2016 11:39 AM

203

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

E.4. Questionnaire of SOAR-E’s survey

How would you grade the activities of the SOAR-E practice in terms of correctness? *
Mark only one oval.

Correct (there are no wrong or misunderstood statements)

Partially correct (less important statements should be reviewed)

Partially incorrect (critical statements should be reviewed)

Totally incorrect (the amount of errors makes SOAR-E practice useless)

4.

Please point out any statement/concept that you consider as incorrect/misunderstood.5.

Evaluating coherence

How would you grade the activities of the SOAR-E practice in terms of coherence? *
Mark only one oval.

Partially coherent (less important elements are conflicting or incorrectly placed)

Coherent (there are no relevant conflicts or incorrectly placed elements)

Partially coherent (critical elements are conflicting or incorrectly placed)

Totally incoherent (the amount of conflicts and/or disorganization make the SOAR-E practice
useless)

6.

Please point out any element (e.g., alpha, work product, activity space, activity) that you think
incorrectly placed or conflicting.

7.

Evaluating usability

&op\)OR ,MPRESS,ON of Questionnaire for Evaluation SOAR-E Practice https://docs.google.com/forms/d/1hi07Mth31ShKhPQZ;:22cKK:R...

2 of 3 9/28/2016 11:39 AM204

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

Appendix E. Survey Questionnaires

Powered by

How would you grade the usability of the SOAR-E practice description? *
Mark only one oval per row.

1 (low) 2 3 4 (high)

Clear
Well organized

8.

Specific difficulties
Regarding your reading, point out any difficulty that you had on understanding the SOAR-E practice and
its elements.

9.

Extra comments and suggestions

Please give your improvement sugestions to the SOAR-E practice.10.

&op\)OR ,MPRESS,ON of Questionnaire for Evaluation SOAR-E Practice https://docs.google.com/forms/d/1hi07Mth31ShKhPQZ;:22cKK:R...

3 of 3 9/28/2016 11:39 AM205

Support à la conception architecturale de systèmes-de-systèmes reconnus à logiciel prépondérant Marcelo Benites Gonçalves 2016

	Introduction
	Problem Statement
	Objectives and Research Questions
	Contributions
	Thesis Outline

	State of the art of SoS Software Architectures
	System-of-Systems (SoS)
	Characterizing SoS
	Conceptual Model to Classify SiSoS
	Illustrative Examples

	Architecting SoS
	Software Architecture
	SoS Software Architectures: a Sytematic Mapping
	Architectural Process of SoS: a Systematic Literature Review

	Final Remarks

	SOAR Kernel: General Approach for Architecting Acknowledged SoS
	Description of SOAR Kernel
	SOAR Kernel Alphas: Things to Work with
	SOAR Kernel Activity Spaces: Things to do
	SOAR Kernel Competencies: Required Skills

	Evaluation of SOAR Kernel
	Analysis and Intepretation of Results
	Threats to Validity

	Final Remarks

	SOAR-A: Architectural Analysis on Acknowledged SoS
	Description of SOAR-A
	SOAR-A Activities
	SOAR-A Alpha States and Work Products

	Evaluation
	Analysis and Interpretation of Results
	Threats to Valitidy

	Final Remarks

	SOAR-S: A Practice for Architectural Synthesis on Acknowledged SoS
	Description of SOAR-S
	SOAR-S Activities
	SOAR-S Alpha States and Work Products

	Verifying the Applicability of SOAR-S: First Study
	Scope and Planning of the Study
	Study Operation
	Analysis and Interpretation of Results
	Threats to Validity

	Evaluating SOAR-S: Second Study
	Scope and Planning the Experiment
	Experiment Operation
	Analysis and Interpretation of Results
	Discussion and Threats to Valididy

	Final Remarks

	SOAR-E: A Practice for Architectural Evaluation on Acknowledged SoS
	Description of SOAR-E
	SOAR-E Activities
	SOAR-E Alpha States and Work Products

	Evaluation
	Analysis and Interpretation of Results

	Final Remarks

	Conclusions
	Revisiting the Thesis Contributions
	Limitations and Future Work

	References
	Systematic Mapping on SoS Software Architectures: Study Protocol and List of Included Primary Studies
	Phase 1: Planning
	Research Questions
	Search Strategy
	Inclusion and Exclusion Criteria
	Quality Assessment
	Selection of Primary Studies
	Data Extraction and Synthesis Method
	Threats to Validity

	List of Primary Studies

	Systematic Literature Review on SoS Architecting Processes: Study Protocol and List of Included Primary Studies
	Research Methodology
	Research Questions
	Search Strategy
	Selecion Criteria
	Data Extraction
	Quality Assessment

	Threats to Validity
	SLR: List of Selected Studies

	The OMG's Essence Standard
	Essence Language
	Fundamentals
	Main Elements

	Essence Kernel
	Essence Kernel Alphas
	Essence Kernel Activity Spaces
	Essence Kernel Competencies

	Using EssWork Practice Workbench to Build a SOAR-based Process Instance
	The Flood Monitoring Application Domain
	An Process Instance to Flood Monitoring SoS
	Characterizing a Flood Monitoring SoS
	Building a process instance in EssWork Practice Workbench
	Following Iterations

	Survey Questionnaires
	Questionnaire for personal profiles
	Questionnaire of SOAR Kernel's survey
	Questionnaire of SOAR-A's survey
	Questionnaire of SOAR-E's survey

