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Summary

The transport of particles by turbulent flows is ubiquitous in nature and industry. It occurs in
planet formation, plankton dynamics and combustion in engines. For the dispersion of atmospheric
pollutants, traditional predictive models based on eddy diffusivity cannot accurately reproduce high
concentration fluctuations, which are of primal importance for ecological and health issues.

The first part of this thesis relates to the dispersion by turbulence of tracers continuously
emitted from a point source. Mass fluctuations are characterized as a function of the distance from
the source and of the observation scale. The combination of various physical mixing processes limits
the use of fractal geometric tools. An alternative approach is proposed, allowing to interpret mass
fluctuations in terms of the various regimes of pair separation in turbulent flows.

The second part concerns particles with a finite and possibly large inertia, whose dispersion in
velocity requires developing efficient modelling techniques. A novel numerical method is proposed
to express inertial particles distribution in the position-velocity phase space. Its convergence is
validated by comparison to Lagrangian measurements. This method is then used to describe the
modulation of two-dimensional turbulence by large-Stokes-number heavy particles. At high inertia,
the effect is found to be analogous to an effective large-scale friction. At small Stokes numbers,
kinetic energy spectrum and nonlinear transfers are shown to be modified in a non trivial way which
relates to the development of instabilities at vortices boundaries.

Résumé

Le transport de particules par des écoulements turbulents est un phénomène présent dans de nom-
breux écoulements naturels et industriels, tels que la dispersion de polluants dans l’atmosphère ou
du phytoplancton et plastiques dans et à la surface des océans. Les modèles prédictifs classiques
ne peuvent prévoir avec précision la formation de larges fluctuations de concentrations.

La première partie de cette thèse concerne une étude de la dispersion turbulente de traceurs émis
à partir d’une source ponctuelle et continue. Les fluctuations spatiales de masse sont déterminées
en fonction de la distance à la source et à l’échelle d’observation.

La combinaison de plusieurs phénomènes physiques à l’origine du mélange limite la validité
d’une caractérisation de géométrie fractale. Une approche alternative est proposée, permettant
d’interpréter les fluctutations massiques en terme des différents régimes de séparation de pair dans
des écoulements turbulents.

La seconde partie concerne des particules ayant une inertie finie, dont la dispersion dans
l’espace des vitesses requiert de développer des techniques de modélisation adaptées. Une méth-
ode numérique originale est proposée pour exprimer la distribution des particles dans l’espace
position-vitesse. Cette méthode est ensuite utilisée pour décrire la modulation de la turbulence
bi-dimensionnelle par des particules inertielles. A grand nombres de Stokes, l’effet montré est ana-
logue à celui d’une friction effective à grande échelle. Aux petits Stokes, le spectre de l’énergie
cinétique du fluide et les transferts non-linéaires sont modifées d’une manière non triviale.
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V Tracer velocity.

Vp Inertial particle velocity.
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Xp Inertial particle position.
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δru Longitudinal velocity increment between two particles separated by a distance r.

✏ Total energy dissipation rate.

✏↵ Energy dissipation rate due to large-scale friction.

✏⌫ Energy dissipation rate due to viscous friction.

 Molecular diffusion coefficient.
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CHAPTER 1

Introduction and context

This thesis is to be put in the context of the ERC research project Atmoflex, running from
2010 to 2014, from which it was partly funded. This project aimed at providing a better
understanding of fluctuations in particulate transport and mixing processes in turbulent
flows, such as pollutants in the atmosphere or scalar fields like salinity in the oceans, or
merging density-matched gases.

Turbulence: a multi-scale phenomenon

Turbulence is a phenomenon characterised by a chaotic and out of equilibrium state of
a physical non-linear system. It may be found in numerous situations and applications,
such as non-linear optics, passive advection in fluids, waves interactions at water surface,
magnetic dynamos, etc. All these processes involve a system in which energy is exchanged
between many degrees of freedoms. Some theories emerged during the last century trying
to find rigorous mathematical formulation of the phenomenological predictions with the
use of non-equilibrium statistical mechanics, but an unifying and universal theory is still
lacking.

In this thesis is considered the Navier–Stokes turbulence, recognisable by the broad
range of vortex sizes it generates in fluids. It has the particularity of re-distributing energy
injected at a scale L down to smaller and smaller scales until molecular dissipation stops
this cascading energy transfer. This transfer can be thought of as a pipe carrying energy in
the scale space. It takes place in a range of scales, called inertial range, in which statistics
of the flow are believed to be independent of the way it is forced and dissipated. This
transfer arises because of the non-linear term in the Navier–Stokes equations which makes
this equation unsolvable exactly.

1



2 CHAPTER 1. INTRODUCTION AND CONTEXT

A striking characteristic of turbulent flows is the apparent chaotic trajectories of the
species they transport. This manifests into the unpredictability of the position of solid
grains in suspensions, or concentration values downstream of an emitting source of pol-
lutant. The same observation holds for the simultaneous transport of multiple objects.
Consider for example placing two buoys on the surface of a river in a turbulent state. ini-
tially very close to each other, then compare their trajectories. Whatever small are their
initial separation, they are likely to diverge in a finite time, demonstrating the chaotic
nature of turbulence through the sensibility to initial conditions.

Even though chaos theory underwent tremendous interest since the beginning of the
20th century, the statistics of the velocity differences between two points in space in the
inertial range lead to pair separation rates different from what can be predicted by chaotic
motions. This mixing of separation regimes between particles lead to even more complicated
prediction about their average concentration with possibly high fluctuations.

In addition, there still subsists a lack of understanding regarding the universality of the
fluid velocity statistics, i.e. the independence with respect to the forcing and dissipation
mechanisms. One is then forced to treat virtually each situation as a case-by-case study.

Lagrangian and Eulerian description

Considering the release of a cloud of a given substance, such as dye or passive pollutant,
in the atmosphere or in the ocean, one may ask multiple questions: how will its shape
be deformed with time? What would be the maximum expected concentrations? What
about the strength of its variations in space and time ? What are the probabilities that a
concentration grows above a given threshold and how often?

These questions are naturally raised by health and environmental issues (Shi et al.,
2001). Indeed, it is often required to predict concentration levels of various constituents,
like ash, particulate matter, radioactive elements, etc. Respective examples are volcanic
eruptions and their impact on air traffic (Schäfer et al., 2011), road traffic regulation in pe-
riods of intense air pollution (Han & Naeher, 2006), intra and intercontinental radioactive
transport (Wotawa et al., 2006), etc. Living organisms are also concerned by large fluctua-
tions: for the ones following concentration gradients (chemotaxis), such as moths attracted
by male pheromones, (Mafra-Neto et al., 1994), large scale-induced density fluctuations
make this approach much more difficult.

Furthermore, the multi-scale property of turbulent flows may be appreciated into its
self-similar character: irregular patterns made by smoke coming out of a cigarette resemble
the ones escaping from a small house chimney, or a large industrial power plant, or even,
to some extents, from a volcano. Another noticable effect of turbulent transport is the fact
that particles may get trapped inside vortices, leading to higher concentration values. Ac-
tually, it is known that the probability density function of the passive scalar concentration
have tails decreasing slower than a Gaussian distribution (Warhaft, 2000). Such trapping
events may then be related to regions of the flow with given topological properties (see, for



3

instance, Bhatnagar et al. (2016)). Figure 1.1 shows some examples of systems concerned
with transport of solid particles or continuous fields .

When measuring the spatial and temporal properties of the transported species, one
can choose to adopt two main points of view. The first one is Lagrangian (Lin et al., 2011).
It forces the description of phenomena in a framework attached to the transported particle.
Lagrangian models are very useful for various reasons. They offer a more natural way to
model turbulent transport of solid particles. In addition, they suffer from only infinitesimal
numerical diffusion, allowing to recover strong concentration gradients. They are also more
numerically stable and allow for bigger time steps. Furthermore, the inverse Lagrangian
transport may be used to track sources of contaminants or green house gases (Trusilova
et al., 2010). Finally, computational resources available nowadays allow to routinely sim-
ulate systems with millions of particles, which is sufficient in some application, and was
undoable a decade ago.

Another way to measure turbulent transport is by considering a continuous concentra-
tion field of a given released substance. We then talk about Eulerian description. This
point of view considers a fixed spatial grid on which are defined tensorial quantities, mostly
scalars, like concentration. Although Eulerian framework suffers from numerical diffusion
and instabilities, it offers a more natural description of a field transported by the under-
lying carrier flow, and allows for more convenient way to model back reaction from the
substance on the fluid. Eulerian formulations also offer more handy ways to parallelise nu-
merical codes, especially when considering domain decomposition among a large number
of computational nodes.

The challenge of numerical simulations

In order to perform fundamental studies regarding all questions risen above, computers
have played a growing role into fluid mechanics since their invention in the middle of the
20th century, although methods of discrete calculation to resolve the fluid equations already
appear in the pioneering works of Richardson (see Richardson (2007) (reprint) and reference
in Hunt (1998)). First computations based partly on these works appeared during the 40s
using ENIAC and the first three-dimensional simulations were later performed Los Alamos
laboratory (Harlow, 2004). Since then, more and more power was dedicated to simulate
flows as realistic as possible.

One could ask why tremendous supercomputer that we see today in 2016 are still
not sufficient ? This is again due to the multi-scale nature of turbulence but also to its
temporal fluctuation. Indeed, turbulence is characterised by different eddy sizes and time
scales. The width of the spatial scale separation can be measured by the adimensional
Reynolds number Re, which is the ratio between advection strength UL and viscosity .
The larger Re, the wider the scale separation. Furthermore, the complexity of numerical
calculations, or number of degrees of freedom, grows as Re9/4, which translates into a rapid
increase of the need for computational resources.
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(a) Amazonia forest fed with transported
sand from Sahara desert. See Yu et al.
(2015).

(b) Surface sea temperature along with
concentration spots of radioactive Cesium
134 following Fukushima eruption. Credit:
WHOI

(c) 3D simulation of ash spreading following
the Calbuco eruption in April 2015 combined
with actual data from Suomi NPP satellite.
Credit: NASA.

(d) Phytoplankton bloom off the Iceland
coast. Credit: NASA.

Figure 1.1: Examples of relevant issues involving turbulent transport.

Turbulent motions often arise above a critical Reynolds number, of the order of a
few thousands, depending on the system. Very high Reynolds numbers are especially
found in the case of planetary-scale motions, where the separation in scales spans from
millimetres to kilometres, Re can reach 108. For a moving car at 90 km/h, it reaches
106. Furthermore, because of its inherent intermittent character (see section 2.1.1), i.e.
with velocity statistics displaying tails much broader than Gaussian, turbulence is also
characterised by extreme events. These can represent up to 105 times the mean value.
They are not so probable (hence the name extreme) but sufficiently to play a key role in
the dynamics, a property shared with other strongly non-linear phenomena. Because of
these extreme events, numerical simulations have to be run for a very long time and / or
at very large resolutions.

State of the art three-dimensional turbulence numerical simulations achieve Reynolds
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numbers up to 45000, with a Taylor microscale Reynolds of 1300 for a resolution of 81923

grid points (Yeung et al., 2015).

How to overcome this numerical challenge and to reduce its complexity ? The answer
is not to resolve explicitly all the scales. Tons of scientist and engineers have worked
in this direction, leading to very clever and tricky methods and mathematical models to
represent the turbulent motions at scales smaller than the one of interest. Such activities
are referred to as sub-grid scales modelling (Majda & Kramer, 1999; Pope, 2000). Such
small scale motions however play a very important role, impacting larger ones in situations
like clouds (Bodenschatz et al., 2010), or planets (Armitage, 2015) formation. Careful
design of the models is thus required, and these must be continuously improved based on
a better knowledge of microscopic phenomena.

Particle transport is a typical situation where such problems occur. Traditional esti-
mations used in the mechanical and environmental engineering communities are based on
mean-field approach (Opper & Saad, 2001): substances are advected by larger scales (big
eddies) and the effect of smaller scales are just perturbations, treated for example as addi-
tional sources of diffusion, called eddy-diffusivity. Even if we know that the effect of small
scales motions on the larger ones cannot be accurately represented by a simple diffusion
operator (Corrsin, 1975). These models yield correct predictions for concentrations that
are far from an emitting source or during long time averages.

This topic is itself enclosed into a much wider research area, multiphase flow modelling,
dealing with the numerical simulation of multiple species simultaneously present in a spatial
domain, interacting or not. An example of application is the prediction of the fluid regimes
transition (Labourasse et al., 2007; Monahan & Fox, 2007; Van der Hoef et al., 2008), when
one wishes to test how a device such as a fluidized-bed reactor will scale when going from
the laboratory to the power plant (Ge et al., 2007).

When back-reactions come at play

Under some circumstances, the transported phase may have a significant impact on the
carrier flow, which may be desirable or not. Such effects are called two-way coupling, and
induce non-linear effects that can hardly be predicted by phenomenological arguments. In
the case of dispersed solutions, several application are worth mentioning.

Consider the example of fluid transportation in a pipe. Pressure losses in such conducts
lead to very high power consumption. It is thus of economical interest to try to reduce
energy dissipations in such flows. This dissipation attenuation was actually observed in
suspensions of certain additive types. Fibrous additives, like polymers (e.g. nylon, cotton)
have shown to reduce drag efficiently (White & Mungal, 2008; Yang, 2009) though the
situation is not yet clear for non fibrous materials, like rigid bodies of various shapes
(spherical or platelet, needle-shaped...) and size. The interplay between suspended solids
and the liquid phase is also a process of prime importance for planet formation (Barranco
& Marcus, 2005). Indeed, gas giant planets have been shown to migrate, i.e., to form far
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from their star and come closer at later stages, with the corresponding mechanisms depend
on their size.

The modelling of these back reactions leads to additional challenges. Indeed, when using
Lagrangian description, one needs to reconstruct a force field to act on the carrier phase,
and losses of convergence and precision occur a this step. When available, an Eulerian
point of view for the suspended phase is thus generally preferable.

The case of two dimensional turbulence

Turbulent flows that are considered in this thesis are two dimensional. Actually, there is
no such a thing as a real two-dimensional flow in nature, so why bother studying them ?

In some situations, a flow which is a priori three dimensional may exhibit 2D turbulence
dynamics. A particular example is the case when swirling motions are physically constrained
to evolve in a thin layer. These constrains may take various forms. They can be created
through the formation of a thin layer by geometric confinement with solid boundaries, or by
the presence of strong rotation (Pouquet et al., 2013) and / or stratification, in which case
the formation of two dimensional layers called pancakes is observed (Godoy-Diana et al.,
2004). Some systems may combine all these effects. Examples are large-scale geophysical
flows in the Earth atmosphere and oceans (Nastrom & Gage, 1985; Monin & Ozmidov,
1985). One way to reproduce such constrains in laboratory experiments is to isolate the
fluid within a thin tank. One can then use electrically conducting fluid put into motion by
an array of magnets (Paret et al., 1999; Boffetta et al., 2005). Soap films are also a really
good ”planetary toy” because this setup allows to reproduce turbulence under gravity in a
thin spherical layer combined with rotation (Kellay et al., 1998; Rutgers, 1998; Seychelles
et al., 2010).

Another notable example of flows dimensionally constrained are the protoplanetary
disks (Barranco & Marcus, 2005) where tall columnar vortices form. In gaseous nebulae,
both processes of planetary formation and migration depend on the vortices structure.
Accretion probabilities and transport will indeed vary depending if the flow is dominated
by turbulent eddies and long-lived coherent vortices.

One should recover three dimensional turbulence phenomenology when considering the
constrained flow at sufficiently small scales, or when removing the constrains. For example,
dimensionality may be measured as a function of the rotation or stratification intensity
(Smith et al., 1996; Deusebio et al., 2014; Sozza et al., 2015). This mechanisms at transition
between 2D and 3D is called bidimensionalisation and is also a very interesting research
topic by itself.

All the notional concepts described above form the core part of this thesis work. How
does the temporal and spatial correlations of fluid velocity in two dimensional turbulence
impact mass distribution when it is initially released from a limited region in space ? How



7

is the turbulence affected by small inertial particles ? How to represent such particles in
term of a field in a way that is computationally affordable and physically correct ?

This manuscript is organised in two parts. The first one is aimed at describing how
mass continuously injected from a point source in two-dimensional turbulence fills the space,
targeting situations such as oil spreads at ocean surface. Lagrangian particles are emitted
via numerical simulations, and mass fluctuations are quantified using fractal dimension and
a novel description based on relative pair separation.

The second part is split in two chapters. The first one describes a numerical approach
for the simulation of small heavy particle suspensions in two-dimensional turbulence. It
treats the kinetic equation associated to the dynamic on a regular lattice in position space
and finite volume method in velocity space. The second chapter shows an application to
the study of turbulence modulation by small and heavy particles. The modifications of
large and small scales statistical quantities of the fluid are assessed.

In order to realise these studies, scientific libraries have been developed for massively
parallel computations using GPGPUs. These libraries were used to simulate the two dimen-
sional turbulence from Navier–Stokes equations as well as particle emission and dynamics.
Some details about their implementation are explicited in the appendix A. Another library
to handle systems of large number of particles was jointly developed. It was aimed to
ease the process of creating particles with various properties like mass, electric charge, etc.
while keeping performance when simulating their dynamic on various parallel architectures
(see B).

The two parts may be read independently, with some concepts being introduced in
chapter 2.

First part: Tracers dispersion from a point source

One can have the intuitive picture that on average, an emitted puff of a suspended substance
will regularly grow under the effect of diffusion and spread uniformly in space. However, the
temporal correlation of the turbulent eddies at all scales bringing together regions of very
different concentration values results in creating strong inhomogeneities and gradients. In
chapter 3, a system of tracer particles continuously emitted from a point source is studied.
The additional challenge compared to traditional turbulent mixing lies in the joint effect
of spatial as well as temporal correlations in the particles trajectories. The interplay of
these correlations is one of the major issues in turbulence. Only in very few models for the
carrier fluid these correlations can be analytically treated, like in the Kraichnan ensemble
where temporal correlations are fully disregarded (Celani et al., 2007). High resolution
direct numerical simulations of inverse turbulent energy cascade are carried, and the issue
of measuring the spatial fluctuations of the particle distribution is addressed. To this end,
we propose a phenomenological description which allows us to relate the concentration
fluctuations along particle trajectories (quasi-Lagrangian mass scaling) with the tracers
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Figure 1.2: Gaussian concentration distribution (colour map) predicted by mean-field ap-
proaches do not allow to reproduce fine structures and high concentration levels of trans-
ported particles (black dots). The red cross represents the emitting source.

relative dispersion regimes. The idea is to follow an emitted line of particles to quantify
its foldings and see how it contributes to the quasi-Lagrangian mass scaling as a function
of the distance from the source.

Second part: Modelling particle-laden flows and two-way
coupling

Challenges of inertial particles statistical modelling

This second part starts with chapter 4 which addresses the issue of modelling heavy-
particle-laden turbulent flows. The dynamics of such particles is first introduced, and
the challenge is stressed to provide a correct modelling of this kind of suspensions, which
basically lies in the capacity of the particles to form caustics. The adopted mathematical
model must then be able to resolve the velocity dispersion of the particle population. A
short review of multiphase models dealing with solid suspensions is also presented.

A novel numerical method is then introduced. Its originality lies in the absence of
any form of closing of the kinetic equation associated with the dynamic. This Liouville
equation is integrated explicitly in the phase space. Numerical and physical convergence
are assessed, and it is shown that the method reproduces with good accuracy the particle
distributions obtained via Lagrangian direct simulations.
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Turbulent modulation by small heavy particles

Chapter 5 presents a study about the impact of back-reaction of small heavy particles on a
two-dimensional turbulent flow. A short overview of these effects is first presented and the
chosen models representing the considered Stokes number asymptotics are introduced. Di-
rect numerical simulations of direct enstrophy cascade are performed, varying the particles
mass load. The effect of particles on various statistical properties of the flow is assessed in
the asymptotics of low and large Stokes numbers. The modification of global quantities is
measured, such as mean energy and enstrophy, as well as the modifications of the scaling
in the velocity field through non-linear transfers and dissipations. Impacts on small-scale
statistics is also addressed, in particular the modification of intermittency modification.
Finally, we also measured how the particles preferential concentration property is affected.



10 CHAPTER 1. INTRODUCTION AND CONTEXT



CHAPTER 2

Definitions and concepts
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Concepts and mathematical tools relevant to each chapter will be introduced in their
respective opening. As all chapters of this thesis share in common the framework of two-
dimensional, incompressible turbulence, the characteristics of such flows are highlighted
and compared to their three-dimensional equivalent in this chapter. Some concepts and
notations regularly appearing throughout this manuscript are also introduced.

2.1 Navier–Stokes equations

An incompressible velocity field u(x, t) at position x is described by the following equations:

@tu+ (u · r)u = −rp+ ⌫r2u+ F , (2.1)

r · u = 0 . (2.2)

11
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⌫ is the kinematic viscosity, the term ⌫r2 being responsible for the dissipation of large
gradients at small scales. p is the pressure which ensures the incompressibility condition
(2.2). F denotes the external forcing that maintain the velocity field in a statistically
steady, developed turbulent state.

In the absence of dissipation and forcing, i.e. when ⌫ = 0 and F = 0, several quantities,
or invariants characterise the flows. In three dimensions, global invariants are energy

E =
D

kuk2
E

and helicity H = hω · ui. The averaging operation is taken over space and

time in the statistically stationary regime.

Properties of the flow may be assessed through the rate-of-strain tensor, a second order
tensor encompassing the gradients of each velocity component u1,2,3, namely:

A = ru =

0

@

@1u1 @2u1 @3v1
@1u2 @2u2 @3v2
@1u3 @2u3 @3v3

1

A .

This matrix, like any, can be decomposed into a symmetric and an antisymmetric part,
which are often named Ω and S, respectively:

Ω =
1

2

h

ru− (ru))T
i

, S =
1

2

h

ru+ (ru))T
i

. (2.3)

Ωij = 1
2(@iuj − @jui) are the vorticity components, and S = 1

2(@iuj + @jui) the shear
components.

From these tensors, a criterion can be built to determine whether locally in space the
flow is dominated by shear or vorticity. In two dimensions, this criterion is given by the
Okubo-Weiss criterion W = Ω2 − S2 (Okubo, 1970; Weiss, 1991). Due to the Poisson
equation for pressure r2p = Ω2/2 − S2, the following relation holds for incompressible
flows:

⌦
Ω2

↵
= 2

⌦
S2

↵
.

In three dimensions, one can use the Q−R criterion. The matrix A has three invariants
under canonical transformations: P = Tr(A), Q = −Tr(A2/2), R = −Tr(A3/3). The
determinant of the characteristic equation for A is then given by ∆ = (27/4)R2 +Q3 and
the Q − R plan defines 4 regions corresponding to different combinations of eigenvalues
of A. Vorticity dominates for large positive ∆ with vortices that are either compressed
(R < 0) or stretched (R > 0). On the contrary, strain will dominate for ∆ < 0. See
Cantwell (1993) for more details.

2.1.1 Structure functions and intermittency

The statistics of velocity differences between two points separated by a distance r constitute
an important quantity in turbulent flows. Their probability density function gives an
important idea about collision probabilities or particles separation rate (see section 2.3).
The scaling of their moments also gives information about the scale-invariance of turbulent
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flows. Velocity differences, or increments, are defined by:

δru = hu(x)− u(x+ r)i . (2.4)

They constitute a random quantity. When considering homogeneous, isotropic flows, as is
the case in this manuscript, δru only depends on the modulus of r and is independent of
the position x. The structure functions are defined by its moments of various order:

Sq(r) =
D

(δkru)
q
E

(2.5)

where δ
k
ru = δru(r) · r

r is the longitudinal component of δru. Alternatively, one may
also consider S? using the projection of δu(r) on directions orthogonal to r.

The average in (2.5) is taken over the whole space and over time series in the statistically
steady regime. In a developed turbulent regime, Sq(r) follows a power-law function of the
scale r:

Sq(r) / r⇣(q) (2.6)

The scaling behaviour is the following. Suppose a large scale forcing at lI of the flow
which is in a statistically stationary state. At scales smaller than lI , statistical quantities
can be assumed to be homogeneous. This is the inertial range. This regimes goes down
to a scale ld, the dissipative scale, at which energy is dissipated. In 1941, Andrei Kol-
mogorov made a series of hypothesis that leads to quantitative predictions about velocities
increments δru and ld. One is that the energy dissipation rate ✏ > 0 (we choose here to con-
sider this quantity as positive) has a non-zero limit at vanishing viscosity (⌫ ! 0). This is
called dissipative anomaly. Another of his hypothesis, shared with Onsager and Heisenberg,
sometimes called universality assumption, is that all the small-scale statistical properties
are uniquely and universally determined by the scale r and the energy dissipation rate ✏.
Given the dimensions of the relevant quantities at play in the inertial range, [δru] = LT−1,
[✏] = L2T−3 and [r] = L, an expression for ✏ follows from dimensional analysis:

✏ ⇠ (δru)
3

r
. (2.7)

The Reynolds number associated to the scale r reads:

Re(r) ⇠ (δru)r

⌫
⇠ ✏1/3r4/3

⌫
, (2.8)

which yields an expression for the dissipative scale corresponding to Re(ld) = 1:

ld = ⌫3/4✏−1/4 (2.9)

Note that it is possible to derive a formal expression for S3. Multiplying the Navier-
Stokes equations (2.1) for u(x) by u(x + r) yields an equation for the time evolution of
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S2 as a function of S3, called Karman-Howarth, or simply KH relation. It may then be
solved for S3 in the statistically stationary state (for details of the calculations, see Frisch
(1995); Landau & Lifshitz (1987)), yielding the only exact result in turbulence known as
the 4/5-law (Kolmogorov, 1941):

S3(r) = −4

5
✏r. (2.10)

This relation implies that there is a constant energy flux in the inertial interval of scales,
equal to the one injected at the stirring scale. It also displays that the velocity increments
are negatively skewed : particles getting closer are more probable than particles separating.

Kolmogorov then assumed strict self-similarity for the velocity differences, i.e. the

existence of a unique exponent h such that δ
k
λru ⇠ λhδ

k
ru. This implies that ⇣(q) = hq is

a linear function of q. Requiring (2.10), one gets h = 1/3 hence:

Sq(r) = Cq(✏r)
q/3, (2.11)

where the Cp’s are universal dimensionless constants. Furthermore,
The quantity S2 is actually linked to the power-spectra of the velocity. Let us first

define the energy density e(k) in the Fourier space (we note F the Fourier transform), with
k the wave-vector:

e(k) =
1

(2⇡)d
kû(k)k2

2V
= F

"
X

i

Rii(r)

#

. (2.12)

V = Ld is the domain volume and Rij(r) = hui(x)uj(x+ r)i is the velocity correlation
tensor. The following convention for the Fourier transform is used: û(k) =

R

Rd e
ik·r. The

kinetic energy spectrum may then be defined in various forms, such as the two following:

E(k) =

Z

Rd

dk0δ(
�
�k0

�
�− k)e(k0) =

Z

Θk

dΩkk
d−1 kû(k)k2

2
, (2.13)

with Θk the hypersphere in Fourier space of radius k and Ωk the solid angle element. Owing
to the Parseval theorem, the mean energy in our system can be evaluated either in Fourier
or physical space via:

E =
1

V

Z

Rd

ku(x)k2
2

dx =

1Z

0

E(k) dk. (2.14)

The following relation gives the equivalence between structure functions and spectra.
Given a power-law spectrum:

F (k) / k−n, 1 < n < 3, (2.15)

then the second order structure function is also a power-law with (Frisch, 1995):

⌦
(f(x)− f(x+ r))2

↵
/ |r|n−1. (2.16)
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The energy spectrum is sometimes more easily interpretable than the structure function
which is its physical pendant. It is also easily obtainable in numerical simulations that use
spectral methods to integrate the velocity fields (see appendix A.1).

Using (2.11) and (2.16) for q = 2, one gets

E(k) = ✏2/3k−5/3, (2.17)

which is also the only dimensionally correct combination of ✏ and k. This spectrum shape
has been effectively observed in numerical and experimental works. However, in three
dimensions, self-similar hypothesis shows to be more and more inexact as the moment q
increases (Frisch, 1995). Indeed, the exponent ⇣(q) =

d logSq

d log r has been shown to be a strictly
concave function of q, rather than linear. This is called anomalous scaling.

2.2 Turbulence in two dimensions

This thesis work mainly involves two-dimensional turbulent flows, which display some in-
teresting features that are phenomenologically different from their three-dimensional pen-
dants.

2.2.1 Two dimensional Navier–Stokes equations

In incompressible flows, @iui = 0 so that the two-dimensional velocity field is fully deter-
mined from the function  (x,y, t) via the relation u = r? = (@yux,−@xuy) (the sign of
r? may vary in the literature). The level sets of  represent the stream-lines, with u being
everywhere tangent to these level curves, hence the name stream-function for  . Vorticity
is related to  by the relation ! = r⇥ u = −r2 . The evolution equation for  reads:

@t +
1

r2
{ ,r2 } = ⌫r2 + f 0 (2.18)

where {} denotes the Poisson bracket, or Jacobian, such that {f, g} = @xf@yg − @xf@yg.
Kraichnan (1967) already conjectured that energy would accumulate in the gravest mode
kmin allowed by the boundary conditions (see below section 2.2.2). This accumulation of
energy at large scale would eventually a condensate (illustrated in Figure 2.1), analogous
to a Bose-Einstein condensate.

In the real world, mechanisms arise from various physical origins to prevent this large
scale energy piling up, like Rayleigh friction in stratified fluids or the friction induced
by the surrounding air in soap-film experiment. An additional linear term −↵ is often
added in Navier-Stokes equations to represent this friction, so that f 0 = f − ↵ . ↵ is
thus the Ekman friction coefficient responsible for the large scale energy dissipation. It
is often used in numerical simulations to reach a statistically stationary state, especially
in the two-dimensional inverse cascade (Salmon, 1998). The origin of its linear form may
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Figure 2.1: Vorticity condensate in the two dimensional inverse cascade. From Boffetta &
Ecke (2012).

be exemplified the following way: near solid boundaries with no-slip condition, a laminar
Poiseuille profile is usually admitted. Say the surface is horizontal at z = h, with z the
vertical direction, then the velocity reads u(z) = ↵

2⌫ (z − h)2 and ⌫(@2x + @2y + @2z )r2u ⇠
⌫(@2x+@

2
y)u−↵u. In experiments, it is also this drag form that is adopted for liquid friction

on a soap film, or with the bottom of a container. Also ion-neutral collisions in ionospheric
plasma give rise to such a friction.

The equivalent equation for the vorticity is obtained by taking minus the Laplacian of
equation (2.18):

@t! + u ·r! = ⌫r2! − ↵! + f! (2.19)

! is written in non-bold font to explicit that it is treated as a scalar quantity in the 2D plane:
the vortex lines are always perpendicular to the flow plane. Equation 2.19, except for the
forcing f!, expresses vorticity transport by the flow and dissipation by small-scale molecular
viscosity and large-scale friction. One important difference between (2.19) compared to its
3D equivalent is the lack of the vorticity stretching term (ω · r)u which is identically 0
in 2D. In 3D, it is responsible for vorticity amplification in the vortex stretching direction
due to angular momentum conservation.
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2.2.2 The double cascade framework

Global invariants

Neglecting the large-scale friction and force terms in (2.19) and multiplying (2.19) by !
and averaging, one gets DtZ = ⌫r2! where

Z =
1

2

⌦
!2

↵
(2.20)

is the enstrophy. Thus, for inviscid flows (⌫ = 0), enstrophy is conserved along Lagrangian
trajectories1. Actually,

R
!nd2x is a constant of motion for all n > 0. In two-dimensional

turbulence, enstrophy and energy are the quadratic invariants.
To give an intuition about the mechanism at play, the unforced Navier–Stokes equations

for the velocity Fourier coefficients are first introduced:

@tûi(k) +

✓

δij −
kikj
k2

◆
X

k=p+q

ipj ûi(p)ûj(q) = −⌫ kkk2 ûi(k). (2.21)

The second term on the left-hand side is the Fourier transform of the non-linear term. It
shows that the mode k interacts with modes p and q such that p = q + k, i.e. p, q and k

must form a triangle. This is called a triadic interaction, and conserves both energy and
enstrophy.

In order to grasp the essence of energy transfers in two-dimensional turbulence, one
can refer to the paper by Kraichnan (1967) who deduced the direction of the cascades of
energy and enstrophy with statistical mechanics arguments. The term cascade refers to
the fact that the injected energy (or enstrophy) is transferred at a constant rate through
the scales. This transfer results from the non-linear term in (2.1) and takes place until
molecular dissipation counter-balances at the dissipation scale.

Another phenomenological argument was already advanced by Fjørtoft (1953) to predict
the direction (in the scale space) of these transfers. A triadic interaction between wave-
numbers k1 < k2 < k3 conserving both energy and enstrophy, we have that their variations
must vanish:

P

i∆Ei =
P

i k
2
i∆Ei = 0. Therefore:

∆E1 =
k22 − k23
k23 − k21

∆E2 ∆E3 =
k21 − k22
k23 − k21

∆E2. (2.22)

This implies that when mode k2 loses energy (∆E2 < 0), more energy will go into k1 than
k3, indicating a direction of energy toward large scales. Similarly, more enstrophy must go
into k3 than k1, so that enstrophy is transferred to small scales.

It also implies that the energy and enstrophy transfers must take place in two different
directions in the |k| space.

1In three dimensions, an additional term appearing in the vorticity equation, called vortex stretching,
violates this conservation.



18 CHAPTER 2. DEFINITIONS AND CONCEPTS

The direct enstrophy cascade is considered to be the process responsible for vorticity
filaments stretching and folding, creating stronger and stronger vorticity gradients until
they are eventually dissipated by molecular viscosity. See (Kraichnan & Montgomery,
1980; Monin & Ozmidov, 1985) for details.

Spectrum scaling in the dual cascade

The energy and enstrophy spectra are related through Z(k) = k2E(k). In the inverse cas-
cade, under the assumption of Kolmogorov phenomenology, the energy spectrum exponent
is identical to the one in three dimensions:

E(k) = C1✏
2/3k−5/3, (2.23)

Z(k) = C1✏
2/3k−1/3, (2.24)

where ✏ is the energy dissipation rate and C1 is a constant, determined to be in the range
⇠ 5.8− 7.0 (Paret & Tabeling, 1997).

In the direct enstrophy cascade, the spectra are:

E(k) = C2✏
2/3
! k−3[ln(k/kf )]

−1/3, (2.25)

Z(k) = C2✏
2/3
! k−1[ln(k/kf )]

−1/3. (2.26)

where ✏! represents this time the enstrophy dissipation rate, analogous to ✏ for energy.
kf = 2⇡/lf denotes the forcing wave-number corresponding to the forcing length lf .

The presence of the logarithmic factor in (2.25) and (2.26) is a correction that ensures
that the enstrophy flux is constant across the inertial range (see Kraichnan (1971); Rose &
Sulem (1978) for details), This factor is important for regularity reasons. Indeed, the total
enstrophy Z =

R
k2E(k)dk ⇠ kr · uk2 with E(k) / k−3 logarithmically diverges, and the

velocity field is not differentiable. It also implies that enstrophy fluxes are less local (i.e.,
contributions to the flux at k can come from a much wider range of wave-numbers around
k) than their energy pendants.

Those scalings for energy and enstrophy spectra have been indeed observed in numerical
studies, already in Borue (1994), and experimentally in large-scale geophysical or quasi-2D
stratified flows and soap films (Boer et al., 1984; Rivera & Wu, 2000; Daniel & Rutgers,
2002). Figure 2.2, coming from a direct numerical simulation at very high resolution
(Boffetta & Musacchio, 2010), illustrates these two regimes.

In the inverse cascade, one can also derive an expression for S3(r) in the same way than
in three dimensions (see section 2.1). It reads:

S3(r) =
4

3
✏r. (2.27)

Compared to (2.10), S3 is positively skewed in two dimensions. In the direct cascade, the
prediction is S3(r) =

1
8✏!r

3.
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Figure 2.2: Energy spectra of two dimensional flows, obtained via Direct Numerical Sim-
ulations for spatial resolution up to 327682 (from Boffetta & Musacchio (2010)). In those
simulations, the forcing wave-number is set at kf = 100.

Effect of Ekman friction

Due to the energy flow toward the large scales in the two dimensional inverse cascade, it
is necessary to provide a low-k energy sink if ones wants to achieve statistical stationary
state. This is why the Ekman friction term is so important in two-dimensional simulations.

This term however has some impact on the flow structure. For example, it was shown
by Nam et al. (2000); Bernard (2000); Boffetta et al. (2002) in the direct enstrophy cascade
that as the friction coefficient ↵ increases, so does the enstrophy spectrum slope, deviating
more and more from the Kraichnan prediction, i.e. E(k) / k−(3+⇠) where ⇠ is related to the
distribution of finite time Lyapunov exponents (see below). A consequence of (2.15) and
(2.16) is that for ↵ = 0, ⇠ = 0 and for 0 < ⇠ < 2, ⇠ = ⇣!2 , where ⇣

! is the vorticity structure
function exponent. The slope steeper than k−3 when ↵ > 0 implies the differentiability of
the velocity field (see section 2.2.2) and the logarithmic correction in (2.25) and (2.26) is
absent.

In the inverse energy cascade range, it may be shown that the effect is the reverse:
as ↵ decreases, energy builds up into a large scale condensate. The apparent effect is
a steepening of its slope. This tendency is illustrated for various spectra coming from
the simulations with resolution N2

x = 40962 performed in the framework of the study at
chapter 3. The value of ↵ was selected in such a way that the accumulation of energy is
prevented at large scales, without depleting too much the inertial range cascade in order
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Figure 2.3: Energy spectra for various Ekman friction coefficients ↵ in the two dimensional
inverse energy cascade with kf = 103. The spectra are compensated by kkk5/3. Dashed-
lines represent fit in the inertial-range. Contrary to the direct cascade, the slope diminishes
as the friction coefficient increases.

to get a spectral slope as close as possible to k−5/3.

Intermittency in 2D turbulence

While the velocity field in three dimensions is known to be intermittent, the direct and
inverse cascade deserve separate discussion in the two-dimensional case. In the inverse
energy cascade, dimensional scaling was observed in numerical simulations by Boffetta
et al. (2000) for the Lagrangian structure function of order up to p = 7, ruling out the
possibility of intermittency similar to that in the 3D case. They nevertheless observed
an antisymmetric part for high fluctuations of the longitudinal velocity differences, so
that there is no Gaussianity. Other experimental and numerical works lead to the same
conclusion (Paret & Tabeling, 1998; Chen et al., 2006b; Xiao et al., 2009).

In the direct cascade, velocity doesn’t display any intermittency, so that its incre-
ment are Gaussian even at small scales. Rather, it is the vorticity structure function that
displays anomalous scaling. The exponents ⇣(p) of Sp may be related to the following
dynamical argument. As stated in section 2.1, the Lyapunov exponent λ is obtained in
the limit when two initially close trajectories in chaotic flows have diverged during an in-
finite time. When this time t is finite, these exponents depend on initial separations and
are characterised, owing to the large deviation principle, by a probability density func-
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tion P (λ|t) =
p

tG00(λ)/2⇡ e−tG(λ) (Ott, 2002). The convex Kramer function G(λ) is then
related to the exponents by the relation ⇣2n = min

h
[2q, (G(λ) + 2q↵)/λ] (Neufeld et al.,

2000). This implies that the probability density function of the vorticity increment is not
self-similar and deviates from Gaussian at small scales (Tsang et al., 2005).

A third sign of intermittency is the multifractal property of the vorticity dissipation
field, kr!(x)k2. One way to get a measure of a chaotic attractor in a give phase space is
to look at its Renyi dimension spectrum Dq. Dividing the phase space in (hyper)-cubes Cj
of size ✏, Dq is defined by (Renyi, 1970):

Dq = lim
✏!0

1

1− q

log
⇣
P

j µ(Cj)
q
⌘

ln(1/✏)
. (2.28)

µ is the natural measure associated with the attractor such that
P

j µ(Cj) = 1. Dq is a non-
increasing function of q and is independent of q for non-fractal attractors. In particular,
D1 is the information dimension and D2 the correlation dimension. These dimensions
may be determined numerically using box-counting algorithms (see section 3.3.2 for an
example of the measure of D2). Tsang et al. (2005) showed that anomalous scaling of
the vorticity structure function yields multifractality of vorticity dissipation through the
relation Dq = 2 +

⇣2q−q⇣2
q−1 .

2.2.3 Energy and enstrophy budgets

One can derive the equations for the evolution of the fluid energy and enstrophy by mul-
tiplying Navier-Stokes equations (2.18) respectively by the fluid velocity u and vorticity
!. Only the energy conservation terms are written, the case of enstrophy being analogous.
The equation for the instantaneous variations of the shell-averaged energy content at wave
numbers such that kkk = k reads:

@tE(k) + Π(k) = −2⌫Z(k) +−↵E(k) + F (k). (2.29)

Π(k) = hu · (u ·ru)i is the non-linear transfer contribution which satisfies

Z 1

0
Π(k) dk = 0. (2.30)

This term also corresponds to the integral of the triadic interactions over the wave-numbers
kkk = k. This quantity, represented along the k axis, allows one to better visualise the

cascades. Indeed, representing Π<(k) =
R k
0 Π(k) dk on a plot with a logarithmic scale in

the wavenumber dimension displays a plateau, i.e. a constant flux.
For example, in the inverse energy cascade, the energy goes from low to large values of

k. Π<(k) is thus a source term for the large scales (larger than the forcing scale). Hence,
as this term appears on the right hand side with a negative sign, it will give a negative
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Figure 2.4: Illustration of the terms appearing in the spectral energy budget (2.29) in the
inverse cascade at a resolution N2

x = 40962. The peak in the non-linear transfer is due to
the stochastic forcing injected at the corresponding scale.

plateau. In the direct cascade, this term would be constant and positive for the enstrophy
budget, as this quantity cascades to the small scales.

The energy dissipation has two contributions, which are on average negative for all k.
One comes from molecular viscosity with total dissipation ✏ =

R1
0 2⌫Z(k) dk, the other

one from Ekman friction with total dissipation ✏↵ =
R1
0 ↵E(k) dk. The term F (k) =

hû(k) · f(k)i denotes the input power at scales k, where the average is taken over wave-
numbers with modulus k.

Figure 2.4 illustrates the non-linear term along with the friction term appearing in
equation (2.29). Those simple relations may serve as a benchmark when designing Navier-
Stokes solvers. In a statistically steady state, h@tE(k)i is zero, and the other terms must,
on average, balance.

2.3 Relative dispersion rates of Lagrangian trajectories

2.3.1 Lyapunov exponents

One important quantity to characterise the dynamics of transported elements in chaotic
flows, coming back from the works of Lyapunoff (1907), describes how two tracers in-
finitesimally close do separate asymptotically in time following the continuous stretching,
contractions and rotations of their separation vector. Tracers are particles that follow ex-
actly fluid stream lines and can be thought as attached to fluid elements, hence their name
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(see 3.1.1). They are characterised by their position X, and velocity V = u(X), which is
the fluid velocity at their position. Their equation of motion reads:

Ẋ = u(X, t). (2.31)

Considering the tangent bundle in the phase-space R(t) = δX(t) at point X(t), its
evolution reads:

dR(t)

dt
= σ(t)R(t), (2.32)

with σij = @jui(X(t)) denoting the Lagrangian strain matrix. The integral

J = exp0

✓Z t

0
σ(s)ds

◆

, (2.33)

with expo the time-ordered exponential, is the Jacobian matrix such that R(t) = JR(0).
Consider an initial volume of fluid which is evolved by the dynamic. It will be elongated

along some directions and stretched along others. Actually, for each single trajectory and
in the limit t ! 1, the orientation of this ellipsoid’s axis will have converged (due to
the Multiplicative Ergodic Theorem by Oseledec (Oseledec, 1968)) in the directions of the
eigenvectors ej of the matrix JTJ . Indeed, with R(t) = JR0 then kRk2 = RTR =
R0J

TJR0. J
TJ is a symmetric matrix, hence diagonalisable. Because it is also positive,

its eigenvalues are positive and may written in the form of an exponential eλjt, defining
the Lyapunov exponents :

λj = lim
t!1

1

t
ln (|Jej |) j = 1, . . . , 2d. (2.34)

The evolution rate of a phase-space volume is given by ✓ =
P2d

j=1 λj . In incompressible
flows, this sum is zero, and the volumes are thus conserved. To provide another example,
as will be discussed in 4, for inertial particles, whose dynamic is dissipative, this sum is
negative, yielding a contraction rate with a given characteristic time which is a property
of the particles.

These Lyapunov exponents may be used to define a fractal dimension of a phase-space
attractor, called the Lyapunov dimension. Ordering the exponents in decreasing order
and defining the partial sum S(i) =

Pi
j λj , then dL is the interpolated index for which

S(dL) = 0. The Kaplan–Yorke conjecture (Kaplan & Yorke, 1979; Eckmann & Ruelle,
1985) then states that the information dimension of the attractor D1 is equal to dL.

2.3.2 Separation rates

The velocity of the relative separation between two tracers is not a trivial quantity in
turbulence.

Denoting by R(t) = Xi(t)−Xj(t) the separation between two particles i and j at time
t, the question is to know how fast such particles will migrate away from each other. It
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may depend on multiple factors like the initial and present separations R(0), R(t) and the
statistics of the fluid velocity differences projected on their separation vector

δRu = (ku(x)k − ku(x+R)k) · R

kRk . (2.35)

Smooth flows

Consider first two particles separated by a distance below the dissipation scale ld, i.e. in
the dissipative range. The flow is then differentiable and Lipschitz in R, i.e. δRu ⇠ σR,
ensuring the unicity of the solution of (2.31). The particles then separate exponentially in
time with the Lyapunov exponent λ:

kR(t)k = kR0k eλt. (2.36)

Non-smooth flows

Consider now two particles initially separated by kR0k which is in the inertial sub-range.
In this range, in the 3D direct cascade or 2D inverse cascade, velocity field is no longer
smooth: hδrui / r1/3. This implies dR2/dt = 2R · δRu / R4/3 and:

D

kR(t)k2
E

R0

/ gRt
3, (2.37)

where gR is the Richardson constant and the average is taken over particle pairs initially
at distance R0. This rate is faster than diffusion (R2(t) / t) and the regime is called
super-diffusive, faster than what can be attributed to sole chaotic motions. Indeed, in the
exponential separation (see paragraph above), the time for two particles to reach a scale
R diverges logarithmically with R/R0. On the contrary, the explosive separation does not
depend on the initial separation R0 and particles will always reach R in a finite time.

This observation was already predicted by Richardson (1926). He measured a scale-
dependant diffusivity K which fits well with K(r) / r4/3 on 4 decades. Indeed, a contam-
inant cloud of size r is only advected by vortices larger than r, and its diffusions results
mainly from vortices of size r. From this result, he derived equation (2.37) using Fickian dif-
fusion. This scaling law for K(r) was later formulated in the framework of the Kolmogorov
theory following the Obukhov hypothesis (Obukhov, 1941). If r is in the inertial range, the
effective diffusivity K(r) must only depend on r and ✏, leading to K(r) / ✏1/3r4/3.

This super-diffusive behaviour however was showed by (Batchelor, 1950) to be preceded

by a ballistic separation, i.e. with a velocity constant in time, for which we get
D

kR(t)k2
E

=

C(✏R0)
2/3t2. This regime is valid during the correlation time of the eddies of size R0. This

correlation time is typically of the order of the eddy turn-over time associated with the
scale R, ⌧R / ✏−1/3R2/3. From this observation, Bourgoin (2015) and Thalabard et al.
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(2014) successfully proposed to interpret the explosive separation as an iterative ballistic
process.

This Richardson dispersion regime is also associated with another issue about the re-
versibility of pair separations: in three dimensions, the Richardson constant gR is not the
same when considering the forward in time evolution of pairs and its backward in time
equivalent. Heuristically, this can be understood by the fact that the odd number of di-
mension allows a fluid ellipsoid to be elongated along more dimensions than those along
which it can be squeezed. This would not be the case in two dimensions.
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CHAPTER 3

Tracers dispersion in two dimensional turbulence
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3.1 Introduction

Turbulent mixing is of particular concern in situations such as the formation of clouds
through condensation of small water droplets (Grabowski & Wang, 2013), gas accretion in
planet formation (Johansen et al., 2007) or phytoplankton and nutrients distribution in the
oceans (Mann & Lazier, 2013). Mixing refers to the evolution of an initial distribution of
a scalar field (temperature, salinity, or the concentration of any substance...) by the fluid.

29
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The mechanical stress induced by the stirred flow tends to deform the initial distribution
of this field, and the multi-scale nature of turbulent flows gives rise to very complex shapes
and patterns of the concentration field (Celani et al., 2001). For example, while the scalar
is also submitted to molecular diffusion, which tends to smooth out concentration gradi-
ents, mixing by stretching and compression in directions orthogonal to each other cause to
reinforce these gradients by creating elongated concentration filaments.

Because incompressible flows preserve volumes, an homogeneous initial scalar concen-
tration remains uniform at any later time. However, non-uniform initial patches of concen-
trations will be deformed by the swirling eddies and create locally high gradients. Figure 3.1
displays an instantaneous field of scalar concentration advected by a turbulent flow: large
fronts and cliffs are seen along with rather uniform regions. These gradients form because
turbulence brings close together trajectories of fluid elements carrying different scalar tra-
jectories and history. Scalar differences over small scales grow in intensity while the front
boundaries become thinner, until they are eventually dissipated by molecular viscosity.
These large differences are responsible for strongly intermittent statistics in the scalar dis-
tribution (Sreenivasan & Antonia, 1997), i.e. the probability density function (pdf) of
scalar value shows a departure from a Gaussian behaviour, and displays exponential tails
(Pumir et al., 1991) that result from rare, extreme events. They prove that a restrictive
vision considering a large number of small-scales, uncorrelated stretching events for the
scalar distribution, which would yield Gaussian pdf through the central-limit theorem, is
not correct.

Interestingly, the passive scalar is strongly intermittent both in 2D and 3D even in
the absence of intermittency in the velocity field itself in 2D, and also in simple random
Gaussian velocity fields (Shraiman & Siggia, 2000). Similarly to the velocity increments in
3D or the vorticity in the 2D direct cascade, the scaling exponents of the scalar structure
function Sn✓ (r) = h(✓(x)− ✓(x+ r))ni / r⇣(n) are not linear: ⇣(n) 6= n/3 (see section
2.1.1). Scale invariance is thus broken and Sn reads (Celani & Vergassola, 2001):

Sn✓ (r) / r⇣
dim(n)

✓
L

r

◆⇣dim(n)−⇣(n)

(3.1)

The difference ⇣dim(n) − ⇣(n) is the correction for the anomalous scaling, and the broken
scale invariance manifests in the presence of L although r ⌧ L.

Some analytical models for the velocity correlations, like the Kraichnan model (Kraich-
nan, 1994), allow to recover predictions about the behaviour of limn!1 ⇣(n). In the Kraich-
nan ensemble, the two-points, two-times velocity correlation are:

hvi(x1, t2)vj(x2, t2)i = Dij(xi − xj)δ(t1 − t2) (3.2)

with

Dij(r) = D0δij −D1r
⇠[(d+ ⇠ − 1)δij − ⇠

rirj
r2

] (3.3)
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for r smaller than the integral scale. ⇠ denotes the degree of roughness of the flow: the
velocity field smoothness increases with ⇠ and is differentiable for ⇠ = 2.

In this model, and under the additional assumption of high dimensionality, d � ⇣(2),
it was analytically shown in Balkovsky & Lebedev (1998) that there exists a critical order
nc such that 8n > nc, ⇣(n) is independent of n This asymptotic behaviour seems also to
be observed with direct numerical simulations of two dimensional inverse cascade, where
it was estimated in Celani et al. (2000).

As vorticity and passive scalar share the same transport equation, it is tempting to com-
pare their scaling laws to see if the exhibit similarities. However, the direct link between !
and u make the equation for ! non-linear, which can lead to discrepancies for small scale
quantities. For example, Dubos & Babiano (2003) have shown using numerical simulations
that this difference is responsible for faster temporal fluctuations of the vorticity gradients.
In Boffetta et al. (2002), a correspondence is made between the intermittency of vorticity
and that of a passive scalar transported by the flow, showing that ⇣!p = ⇣✓p 8p. This corre-
spondence may be explained using the following ad-hoc argument (Tsang et al., 2005) based

on the Lyapunov exponent λ (see section 2.3). Since λ ⇠
D

kruk2
E1/2

⇠
qR1

kf
k2E(k) dk

and assuming, then λ ⇠ k
−⇠/2
f . Thus λ (and ru) characterising small separations stretch-

ing, are determined by large scale structures, and the small scale vorticity components
behave like scalar advected by the large scale flow.

Structure functions of order n are linked to the equal time n-point correlation function
of the scalar field. For example, consider the following equality for n = 2:

S2(r, t) =
D

(✓(x+ r, t)− ✓(x, t))2
E

(3.4)

=
⌦
✓(x)2

↵
+

⌦
✓(x+ r)2

↵
− 2 h✓(x+ r, t)✓(x, t)i (3.5)

= 2 (C2(0, t)− C2(r, t)) . (3.6)

The last equality results from homogeneity and isotropy and C2(r, t) = h✓(x+ r, t)✓(x, t)i.
Averages are taken over the positions x.

The generalisation of this quantity to n-points displays the link with the n-point joint
transition probability for the Lagrangian motion. For a set of n particles initially at position
x0, . . . , xn at instant t0:

Cn(x1, . . . ,xn; t) = h✓(x1, t), . . . , ✓(x2, t)i (3.7)

=

tZ

t0

✓(x0
1, t), . . . , ✓(x

0
2, t0) pn(x1, . . . ,xn, t|x0

1, . . . ,x
0
n, t0) dx

0
1 . . . dx

0
n

(3.8)

where p(. . . ) expresses the joint probability that the n trajectories initially at positions
x0
1 . . . ,x

0
n are transported at x1, . . . ,xn at time t.
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The quantity Cn can be related to the joint motion of n particles. It has a geometrical
interpretation in terms of Lagrangian trajectories. For example, in Celani & Vergassola
(2001), the intermittency of the passive scalar advection is attributed to long lasting clus-
tering of n-tuple of particles. In Bianchi et al. (2016), the shape of spherical puffs of
particles emitted is monitored as a function of time, showing that although the puff is
initially spherical, the quick and strong distortions prevent the cloud to return back to a
spherical shape at later times. It is also shown not to affect much large scale transport
statistics, like the pdf of durations of hits and between hits of a downstream target.

In particular, the two-point scalar correlation allows one to express pair dispersion
statistics. This correspondence was for example used in Boffetta & Celani (2000) to link
frequent pairs encounter and scalar fronts formation. This object, C2(r) may be analytically
derived only under drastic constrain on the flow, like for example the Kraichnan ensemble,
In such a flow, Celani et al. (2007) have studied scaling properties of a scalar continuously
emitted from a point source and derived an exact relation for the two-points equal-time
scalar correlation function C(x1,x2, t) = h✓(x1, t)✓(x2, t)i, demonstrating the persistence
of inhomogeneities at small scales.

Figure 3.1: Illustration of a scalar field mixed by turbulent flow, representing a 2D slice
from a 3D DNS simulation at N3

x = 40963 with a mean gradient scalar source. When initial
inhomogeneities or inhomogeneous scalar sources are present, mixing by eddies create fronts
where the scalar variations over very small scales are of the same order than the rms value
itself.
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3.1.1 Diffusion at long times

In this section, the correspondence between long time displacements of discrete particles
and the scalar diffusive behaviour is explicited.

Tracers are particles solely advected by the flow, and thus that perfectly follow stream-
lines. Denoting their position by X and velocity V , their equation of motion simply reads:

Ẋ(t) = V (t), (3.9)

V̇ (t) = u(X, t), (3.10)

where u(X, t) is the flow velocity at time t and at the particle position X.
Starting from position X(0) at t = t0, defining its displacement by :

X(t)−X(0) =

Z t

t0

u(X(⌧), ⌧) d⌧. (3.11)

The mean square displacement then reads:

D

kX(t)−X(0)k2
E

=

Z t

0

Z t

0

⌦
u(X(⌧), ⌧) · u(X(⌧ 0), ⌧ 0)

↵
d⌧ d⌧ 0. (3.12)

In turbulent flows, the exact behaviour of the integrand is of course unknown. But there
are two asymptotics in which we can approximate this integral.

The first one, trivial, is when considering very small durations t − t0, such that u

may be considered constant, or self-correlated during this time interval, leading to X(t) =
X0 + u(t0)(t− t0), so that

D

kX(t)−X(0)k2
E

= u2rms(t− t0)
2. (3.13)

where u2rms =
⌦
u2x + u2y

↵
is the mean square velocity averaged over the two dimensions x

and y.
The second exploits the fact that the autocorrelation of the tracers velocity u decreases

to 0 over a finite time scale TCL
, the Lagrangian correlation time, defined as:

TCL
=

1

u2rms

X

i

Z 1

0
hui(X(0), 0)ui(X(⌧), ⌧)i d⌧. (3.14)

In the limit of large times (t� TCL
), (3.12) becomes:

D

kX(t)−X(0)k2
E

⇠
Z t

0
TCL

u2rms d⌧ ⇠ TCL
u2rmst. (3.15)

This result may also be formulated the following way: decomposing the interval [t0, t]
into a subset of N intervals of length TCL

, [t0 + iTCL
, t0 + (i+ 1)TCL

].

X(t)−X(0) =
NX

i=0

Z t0+(i+1)TCL

t0+i TCL

u(⌧) d⌧ (3.16)
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This long-time displacement is thus a sum of random variables identically distributed,
hence, invoking the central limit theorem, it is itself a random Gaussian variable with
variance: D

kX −X(0)k2
E

= 2u2rmsTCL
t. (3.17)

Beside the Lagrangian description of particle dispersion, a continuous concentration
field ✓(x) can be defined, which is also transported along the fluid trajectories.

Let us define this scalar quantity in terms of emitted tracers from a source situated at
position xS which emits particles at a constant rate φS(⌧) = φS starting from the instant
t0. The expression of n⇤(x, t) counting the number of particles reaching x at time t then
reads:

n⇤(x, t) =

Z t

t0

φS δ(x(⌧ ;x, t)− xS) d⌧ (3.18)

where x(⌧ ;x, t) is the position of the particle at time ⌧ given that it is at position x at
time t. φS is an arbitrary number of particles injected at xS at time ⌧ .

The ensemble average of n⇤, i.e. over a large number of realisations, defines a number
density field:

n(x, t) = hn⇤(x, t)i =
Z t

t0

φS p(xS , ⌧ |x, t) d⌧ (3.19)

where p(xS , ⌧ |x, t) is the transition probability to travel from xS at time ⌧ to x at time
t. Notice that with such a definition, n⇤ and n both have units of number of particles per
unit area, or L−2. This is a consequence of the function δ(x) having units of L−2. In the
following, the field n(x, t) is sometimes used in place of the scalar concentration ✓(x, t). ✓
having units of a mass density, the two are simply related by ✓(x) = mpn(x) with mp the
constant mass of one particle.

As a remark, let us stress that formally, the following distinction has to be kept in
mind. The scalar quantity ✓(t,x) is a transported quantity along a Lagrangian trajectory
between x0 at t0 and x at time t:

✓(x, t) = ✓(t0,X(t0; t,x)) =

Z

δ(x0 − x(t0; t,x))✓(t0,x0)dx0, (3.20)

while the field n(x, t) results from the forward Lagrangian flow:

n(x, t) =

Z

δ(x−X(t; t0,x0))n(t0,x0)dx0. (3.21)

Equation (3.17) describes a diffusive process for the particle displacements. The link
between ✓ and Lagrangian trajectories (3.20) suggests that the scalar obeys at long times
the differential equation:

@t✓ = Tr2✓ + S(x), (3.22)
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which is the scalar pendent of equation (3.17). The operator Tr2 stands for the turbulent
diffusion with T = TLu

2
rms. S(x) is the source term. In the case we considered, it is a

punctual source of constant emission rate φS at position xS . Hence S(x) = φSδ(x− xS).

Once again, equations (3.22) and (3.17) are only valid when considering long times t−t0
since emission or long distances R from the source, i.e. R > urmsTCL

, where TL is the time
during which Lagrangian velocities are correlated, or equivalently (t− t0) > R/urms.

The advection-diffusion of the passive scalar can be obtained by expressing the conser-
vation of ✓ in an elementary volume and reads:

@✓

@t
+ u · r✓ = r2✓, (3.23)

with  the molecular diffusion coefficient and u the convection velocity. The link between
(3.23) and (3.22) deserves a comment. Decomposing u and ✓ into a mean and fluctuating
part, i.e. ✓(x, t) = ✓(x)+✓(x, t)0 and u = u(x)+u(x, t)0, we may then substitute in (3.23)
and taking the average. Given that hu0i = 0 and h✓0i = 0, one obtains:

@t✓ + u · r✓ = r2✓ −r · u0✓0. (3.24)

The last term on the right-hand side denotes the turbulent mixing. To close this equation,
the approximation −u0✓0 = Tr✓ is made, with T > , yielding (3.22) (omitting the
source). As an example, consider atmospheric dispersion. Molecular diffusivity of carbon
dioxide in the air is ⇠ 16 ⇥ 10−6m2s−1 while turbulent diffusion is often estimated as
⇠ 30m2/s, hence several orders of magnitude greater.

The Green function with u = 0 of (3.23) is a d-dimensional Gaussian whose variance
decreases linearly with time:

✓(x, t) =
M(t)

(2⇡|Σ(t)|)d/2 exp
✓

−1

2
xTΣ(t)−1x

◆

. (3.25)

M(t) =
R
✓(x, t) dx is the total mass and is a quantity constant in time, hence preserved

by diffusion. Σ is the covariance tensor. Note that the solution for a diffusion process in
a medium moving with constant velocity U is straightforwardly obtained by applying the
Galilean transformation x0 = x−U t.

If the diffusion is independent along each direction, the tensor Σ is diagonal. Further-
more, if the diffusion is isotropic, the solution reads

✓(r, t) =
A

(2⇡σ(t)2)d/2
exp

✓

− r2

2σ(t)2

◆

(3.26)

and only depends on time and distance r from the mean.
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3.1.2 Continuous source

Consider now a continuous emission of particles that takes place during a duration t. Due
to the linearity of equation (3.23), the solution can be expressed as the superposition of an
infinite number of emitting sources from t0 to t0 + dt, each emitting a quantity φSdt. The
solution then reads:

✓(x, t) =
1

(2⇡)d/2

Z t

0

1

(t− t0)d/2
exp

✓

− r2

4(t− t0)

◆

dt0 (3.27)

The value of this integral converges on [0,1] only for d > 2. For d = 2, it diverges
logarithmically. Why is that so? Actually, diffusion at long times translates into Wiener
process trajectories followed by the particles. And it is known that the Wiener process is
a recurrent stochastic process in dimensions less or equal than two (Van Kampen, 1992).

3.2 Concentration and mass fluctuations of particles emitted
by a continuous point source

The large scalar temporal correlations play a role in what is called vortex trapping. Indeed,
particles trapped inside a long-lived coherent vortex allows for interactions which take
place at a distance of the size of the eddy to last longer and affect both the suspended
solid phase as well as the carrier flow. This phenomenon is for example currently believed
to play a key role in planetesimal accretions. Indeed, in planet formation, one challenging
step is the understanding of the formation of planetesimals of the kilometre size, and the
existence of long-living vortices in protoplanetary disks capable to concentrate large dust
concentrations constitute a promising theory (Meheut et al., 2012).

The challenge of the system that is studied in this chapter, i.e. the continuous emission
from a source, lies in the fact that both spatial and temporal correlations play a role in the
n-point concentrations. The addition of the time difference in the correlations adds a non
trivial complexity. In this chapter, the problem of continuous mass release is addressed.

Having introduced to the reader the dispersion dynamics of both Lagrangian tracers
and scalar, the chosen framework to study the dispersion from a continuous point source
in two-dimensional turbulence is now described.

3.2.1 Fluid phase integration

The flow regime we considered is the inverse turbulent cascade. Direct numerical sim-
ulations have been performed using pseudo-spectral (Fourier) scheme in a d-dimensional
periodic domain. The flow is forced at high wave-numbers. To maximize the inertial range
and to minimise the range of scales affected by viscosity, we chose to implement hyper-
viscosity, which translates into a higher power of the Laplacian p > 2 in the Navier-Stokes
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(a) t = 0.22TL
(b) t = 1.12TL

(c) t = 4.5TL (d) t = 33.7TL

Figure 3.2: Illustration of recurrence phenomenon. In a few integral times TL, particle
distribution becomes nearly uniform in the domain due to large amount of returns near
the source. The cut-off distance is Rmax = 2L and width of the window is L.

equations. In all the simulations presented here, we have chosen p = 8. An illustration of
the kinetic energy spectrum for a resolution N2

x = 40962 is displayed in Figure 3.3.

In the two-dimensional inverse cascade, this number is defined as the ratio between the
friction and forcing scales:

Re↵ =

✓
l↵
lf

◆2/3

=

✓
kf
k↵

◆2/3

, (3.28)

where l↵ is the friction scale defined by l↵ = ✏1/2↵−3/2, and ✏ is the intensity of the nonlinear
energy flux going from small to large scales.

More details about the numerical integration of two-dimensional turbulence may be
found in appendix A.1.
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Figure 3.3: Fluid kinetic energy spectrum for the two-dimensional inverse cascade with
hyper-viscosity. The resolution is N2

x = 40962 and the flow is forced at k = 1000 with a
white noise. The black dashed line corresponds to the dimensional scaling k−5/3.

3.2.2 Injection mechanism

Numerically, a number of particles φS is injected into the domain for a period t = 1. The
symbol φS thus stands for the injection rate, in units of number of particle per unit time
[T ]−1, or equivalently mass per unit time, [M ]/[T ], through the relation m = ⇢pa

3φS , with
⇢p = ⇢f the particle density and a the particle radius, considered as infinitesimal. During
a time step ∆t, φS∆t particles are thus emitted.

Two different mechanisms were considered for the injection of particles from the source.
The first one consists of a uniform seeding around the source, either in a square region with
sides Rx and Ry, or a circular region of radius R. This may be used to emit regular puffs
of particles at a given period Tinj and is used for example in Scatamacchia et al. (2012)
to study strong deviations from Richardson separation law, or in Celani et al. (2014) to
determine the probabilities to detect concentrations above a given threshold downstream
of the emission.

Another way of releasing particles into the domain is proposed, the reason why will be
explained in section 3.3.3. Initially, at the beginning of the simulation, a first particle is
randomly seeded close to the source. Its position and identifier is noted X0. Then, φS ∆t
particles are injected at positions which are linearly interpolated between the source and
X0:

Xi = X0 + i
(xS −X0)

φS∆t
i = 1, . . . , φS∆t. (3.29)

During the next time step, all particles will have moved further, and X0 takes the value
of the position of the last emitted one which becomes the new reference for the next time
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step. This mechanism, referred later as line injection, requires the period Tinj to be short
enough so that kX0 − xSk is not too large compared to small scale structures, otherwise the
injection creates unrealistically aligned structures traversing (and not affected by) eddies.
Hence, it should be at most comparable to the dissipation time scale. In our case, the
chosen period is equal to the time step (Tinj = ∆t) which is the best possible choice to
respect the approximation of a continuous source.

3.2.3 Removal mechanism

Boundary conditions must be implemented to remove particles from the system in order
to reach a statistical steady state for the total number of particles. Furthermore, if one
wants to achieve reasonable statistics to measure, for example, fractal dimensions at a given
distance R from the source, both a sufficient number of particles need to be present and
during a time long enough to be able to perform ensemble averages as large as possible.
This may quickly leads to unmanageable number of particles present in the domain and
pauses difficulties for both computation capacity and memory. Hence, absorbing boundary
condition are used: as soon as a particle goes beyond a given criterion it is removed
from the domain. In our experiments, depending on the quantity of interest, two different
choices were implemented. The first one is a spatial criterion, allowing particles to live only
inside a given boundary Γ. In all our simulations, this frontier consists of a circle centered
around the source with a fixed radius Rmax. The second considered boundary condition is
a temporal one, allowing particles to live only until a maximum age tpmax .

Additional details regarding the used software, LAGSRC2D, may be found in ap-
pendix A.2.

3.3 Results

3.3.1 One point dispersion

Mean square displacements and Lagrangian velocities autocorrelation

The mean square displacement of particles is defined as:

⌦
R(⌧)2

↵
=

D

kXp(t)−Xp(t− ⌧)k2
E

. (3.30)

For small ⌧ , as long as the Lagrangian velocity of the tracers is correlated, these are
expected to migrate from their initial position at a constant speed, in average, yielding
⌦
R(t)2

↵
= u2rmst

2. For times longer than the Lagrangian velocity correlation time TCL
, the

diffusive regime is expected to be recovered with
⌦
R(t)2

↵
/ t.

TCL
is defined in the following way. The Lagrangian velocity autocorrelation functions
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are given by:

C(⌧) =
hVp(0) · Vp(⌧)i

D

kVpk2
E . (3.31)

In statistically stationary flows, this quantity is independent of time and depends only on
the time increment ⌧ . It is well known that this quantity decays exponentially with time as
it was already conjectured in Taylor (1921). From this function, the Lagrangian correlation
time reads:

TCL
=

Z 1

0
C(⌧) d⌧. (3.32)

When ⌧ is small, the correlation C(⌧) is constant and does not move appreciably away
from unity. The velocity is differentiable with respect to ⌧ and C(⌧) may be developed in
power series around ⌧ = 0. To the leading order, one has:

D

kXp(t)−Xp(0)k2
E

= 2

tZ

0

(t− ⌧)C(⌧)d⌧ = u2rmst
2. (3.33)

and the separation between the two particles is said to be ballistic, i.e. taking place at a
constant rate.

Notice that the mean square displacement is expected to be isotropic because the forc-
ing of the flow is itself isotropic. By measuring and comparing the displacements along
the x−direction

⌦
R2
x(t)

↵
and along the y−direction

⌦
R2
y(t)

↵
(not shown here), these were

observed to be identical 8t. This equality does not fully ensures isotropy but strongly
suggests it.

In order to evaluate (3.30) and (3.31) in the case of continuous particle emission in the
inverse energy cascade, a numerical simulation is run at a spatial resolutionN2

x = 5122, with
small-scale, delta-correlated forcing at kf 2 [100, 105]. A fixed number of 5⇥ 10−6 tracers
are uniformly spread in the square domain of size L2 = (2⇡)2. No boundary condition to
remove the particles are applied.

Figure 3.4 (left) displays C(⌧) for various values of the Reynolds numbers Re↵. One
can see that C(⌧) is indeed a constant function with value unity at small times, falling to
zero after a time comparable to the large eddies turn over time T↵ = l↵/urms.

Figure 3.4 (right) reports the mean square displacement
⌦
R2(t)

↵
as a function of time

and for various Reynolds numbers, which was adjusted by varying the Ekman friction
coefficient ↵. The ballistic regime is clearly seen at small times, and the agreement with the
dotted-dashed line representing u2rmst

2 is excellent. The diffusive regime is also represented
by the dashed line.

The lowest Reynolds used was actually chosen to be below the turbulent transition. It
is nevertheless represented on the figures to stress that the necessary ingredient to obtain
this succession of regimes - ballistic then diffusive - is only to have a finite Lagrangian
correlation time, whatever the turbulent state of the flow.
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Figure 3.4: Left: Lagrangian velocity correlation functions C(⌧) in log-lin plot. Curves
are shown to superimpose when represented as a function of ⌧/T↵ with T↵ = l↵/urms.
Right: mean square displacements as a function of time for the same Reynolds numbers.
TCL

is the Lagrangian correlation time. Dotted–dashed line represents the ballistic regime
⌦
R2

↵
= u2rmst

2 for the highest Reynolds which fits very well with the data. Dashed line
represents the diffusive regime with

⌦
R2

↵
/ t.

These measures, together with the ones for the equilibrium density probability, confirm
the validity of the ballistic and diffusive approximations for the tracer motion injected by
a point source in the two-dimensional inverse cascade.

Equilibrium distribution

As stated above, when including absorbing boundary conditions, the total number of par-
ticles present in the domain reaches a statistically steady state, for which the average of Np

over a given time interval T is then hNpiT = cst. One can wonder about the equilibrium
distribution for the number of particles as a function of the distance from the source, n(R).

As explained in the introduction of this chapter (see 3.1), point particle dispersion can
be related to a scalar field ✓(x). To obtain a theoretical prediction for this quantity, two
regimes must be considered, either if we are close or far from the source.

For short travelled distances (or times from ejection), particles mainly see a constant
velocity urms. They are thus shot radially from the source and distributed uniformly on an
enclosing surface, i.e. a circle in two dimensions. For a perfect continuous emission, this
ballistic regime creates a field of concentration

✓(R) =
φS

urmsR
. (3.34)

For large distances, the scalar mixing is expected to be dominated by diffusion as
expressed by equation (3.22). Averaged over time, it yields the stationary solution h✓i:
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0 = Tr2 h✓i+ φSδ(x− xS). (3.35)

Integrating (3.35) on a disk of radius R centered on the source (denoted by ΓR), then using
the Stokes theorem and assuming isotropy, we get:

Z

ΓR

Tr h✓i · er =
Z

ΓR

T (@R h✓i)Rd−1dΩd = −φS , (3.36)

where d is the dimension and dΩd the solid angle element in d dimensions (for d = 2, it is
an arc of a circle). Owing to isotropy:

d h✓i
dR

= −φSR
1−d

T 2⇡
. (3.37)

For d = 2, the solution reads:

h✓(R)i = h✓i0 −
φS logR

T 2⇡
. (3.38)

Absorption condition is ✓(Rmax) = 0. Then:

h✓(R)i = −φS log (R/Rmax)

2⇡T
. (3.39)

A time scale t⇤ at the crossover of these two regimes may be defined, i.e. beyond which
the diffusive regime is recovered. t⇤ is associated to a scale R⇤ such that:

t⇤ = R⇤/urms = (R⇤)2/T ) R⇤ = T /urms. (3.40)

To assess the agreement between this expectation in a turbulent inverse cascade, a
numerical simulation is carried at resolution N2

x = 5122 in a periodic square domain [0 2⇡]⇥
[0 2⇡]. Particles are seeded in a uniform region of size l/lf = 8 ⇥ 10−2 surrounding the
source situated at xS = (⇡, ⇡). 102 particles are injected per time step with ∆t = 10−3 ,
hence a rate φS = 105 particles per unit time.

The spatial absorbing boundary condition is at Rmax = L/4 = ⇡/2. Statistical station-
arity of the total number of particles in the domain is expected to be reached after a time
Rmax/urms. This was indeed verified numerically.

The simulation is run for another ⇡ 900TRmax
, with TRmax

= Rmax/urms the turn over
time of the eddies of size Rmax. The profile h✓(R)i is computed by averaging over time and
the number of particles in annulus shells around the source.

h✓(R)i is displayed in Figure 3.5. The left panel focuses on the density profile close
to the source and is shown to be indeed decreasing as R−1, in agreement with (3.34) and
validating the ballistic approximation for short emission times. The right panel focuses on
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Figure 3.5: Average number density ✓(R) as a function of the distance from the
emission point, normalised by the average number of particles in the domain hNi =

1
Rmax

R Rmax

0 N(R) dR. Left: focus on ballistic regime at short distances. Red dashed line
corresponds to the solution 3.34. Right: zoom on large R the effect of the absorbing con-
dition solution. Red dashed line is a fit over the large R using the form of the solution
(3.39). The parameters of the fit may then be used to estimate the turbulent diffusivity
T .

the large distances, where the effect of the absorbing boundary condition creates a profile
compatible with (3.39), thus ensuring the validity of the diffusion approximation (3.35).

We conclude this section by a remark, noting that statistical convergence requires long
time averages. Indeed, instantaneous snapshots of the particle distribution are shown in
Figure 3.6, each separated by a few integral time scales, revealing strong instantaneous
inhomogeneities and anisotropies.

3.3.2 Two-point correlation

Figure 3.7 displays an instantaneous distribution of particles in the inverse energy cascade.
It was obtained in a simulation at resolution N2

x = 40962 using the line injection mechanism
(see section 3.2.2). Several qualitative comments can be made upon the observed features
of the flow.

• Starting from the source (indicated by the red cross on the figure) we first note that
the particles migrate away from the source following a nearly straight line. The
nearly ballistic regime followed by particles as they separate from the source. They
are transported by larger eddies and their trajectory is deformed by small vortices
encountered.
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Figure 3.6: Instantaneous cloud distribution at times 2.5, 5, 7.5, 16 TI . Strong inhomo-
geneities due to large eddies transport are observable. The width of the window is L/6.
Red cross indicates the source.

• Further, strong and sudden deviations from this regime are revealed, where the line of
particles is deformed into a sheet with increasing stretching rate along the transverse
direction and compressing rate along the longitudinal direction. This is a manifesta-
tion place of homoclinic tangle, where an unstable and a stable manifold mix together.
Under these circumstances, it is legitimate to expect fractality in the particle cloud
(Manneville, 2010).

• Going further away from the source, complex patterns combine coherent lines folded
by the dynamic, still observable at small scales, and a rather uniform background.

• The qualitative distribution obviously changes as we go even further away from the
source. At the top of the figure, one can see that the cloud becomes more and more
uniform. It is thus expected to recover a homogeneous mass distribution far from the
source and at large scales.

Following this qualitative description, we wish to characterise the geometry of the distri-
bution and how it varies with the distance R from the source. The complex mix of the differ-
ent dynamical regimes and foldings of the line initially emitted gives the intuition of a multi-
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Figure 3.7: Zoom on the particle distribution around the source (red cross). The width of
the window is L/50 = 20 lf .

fractal distribution (Beigie et al., 1994). One way to measure the fractality of the ensemble
is to determine the scaling of the quasi-Lagrangian mass mQL(R, r) = hmQL(R, r, t)it,
which relates to the average mass found, on average, around a particle in a ball of size r
at a distance R. mQL(R, r) actually corresponds to the two-point correlation

C2(R, r) = h✓(X1, t)✓(X2, t)it (3.41)

integrated over a volume r, with R =
�
�1
2(X1 +X2)− xS

�
� and r = kX1 −X2k, hence:

mQL(R, r) =

Z r

0
C2(R, r

0) dr0. (3.42)

This quantity can also be defined in terms of the two-point transition probability in the
following way: let n(x, t) be the number of particles at position x at time t. It is the
contribution of all particles emitted in the past t0 < t and coming from any position x0.
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Hence:

hn(x, t)i =
tZ

−1

1Z

−1

δ(x− x(t|x0, t0))φSδ(x0 − xS) dt0dx0

= φS

Z

−1

tδ(x− x(t|x0, t0)) dt0

The integral over the initial position vanishes because all particles originate from the same
position xS corresponding to the emitting source. The average product of this quantity at
two different positions x and x+ y is

hn(x, t)n(x+ y, t)i = φ2S

ZZ

dt0dt
0
0 P (x, t,x+ y, t|t0, t00) (3.43)

The integrand in this last equation denotes the joint transition probability of finding a
particle 1 at position x at time t emitted at time t0 and a particle 2 at position x+ y at
time t emitted at time t00. It can be decomposed as:

hn(x, t)n(x+ y, t)i = φ2S

tZ

−1

dt0P (x, t|t0)
tZ

−1

dt00 P (x+ y, t|x, t, t0, t00) (3.44)

Integrating over a ball of size r centered on x yields:
Z

Br

dy hn(x, t)n(x+ y, t)i = φ2S

Z

dt0P (x, t|t0)
Z

Br

dy

Z

dt00 P (x+ y, t|x, t, t0, t00)
| {z }

mQL

(3.45)
The under-braced term denotes the quasi-Lagrangian mass and is the object to be evaluated
as a function of r.

We first chose to compute the correlation dimension D2, linked to pair probability. Its
measure requires evaluating the correlation integral. In practice it is approximated by the
discrete count of the number of pairs whose distance is smaller than r:

mQL =
X

i<j

Θ(r − |Xi −Xj |) (3.46)

with Θ the Heaviside function. Then mQL / rD2 for r ! 0.
As discussed above, we expect the distribution to vary from a line (D2 = 1) close to

the source to a uniform distribution (D2 = 2) far from the source, i.e:

D2 =

⇢
1 R⌧ R⇤

2 R� R⇤
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This kind of analysis requires a scaling range as large as possible. We thus performed
high spatial resolution simulations at Nx = 40962. In order not to be contaminated by the
recurrence problem (see section 3.1.2), we don’t use an absorbing boundary condition at
a given distance from the source but we rather fix a finite lifetime for the particles tpmax .
The physical origin of this removal condition is that the concentration transported by fluid
elements will gradually fade over time due to diffusion. After a given time, these fluid
elements will contribute by only a negligible amount to the quasi-Lagrangian mass.

A numerical simulation is run for a duration of ⇠ 10TL in the statistically steady state
for both fluid kinetic energy and particle number. With the criterion of removing particles
after a fixed time tpmax , the number of particles in the domain is exactly constant with
value N = φStpmax .

The region around the source is divided into annulus zones at distances R from the
source. For each zone, the number of pairs that are separated from a distance below
r are counted and averaged in time over ⇠ 10 large-eddy turn over times. A very large
number of scanned pairs is considered to reach sufficiently interpretable statistics. It reaches
5.12⇥ 1013 and the counting necessitates 5⇥ 103 equivalent CPU-hours for each value of
tpmax .

For two particles X1 and X2, the probability that their inter-distance is less than r
conditioned on the fact that their center of mass is at a distance R from the source reads:

p<2 (r,R) = P
✓

kX1 −X2k < r
�
�
�

�
�
�
�

(X1 +X2)

2
− xS

�
�
�
�
= R

◆

. (3.47)

In practice, the condition on R is restricted to an annulus zone of width ∆R.
This pdf scales with the size r of the ball with an exponent:

D(r) =
d log p<2 (r)

d log r
. (3.48)

Formally, D(r) ! D2 for r ! 0. In practice, small scales are very under-sampled for finite
sample sizes, and we look at the plot ofD(r) hoping to find a plateau over a sufficiently large
scale range which would yield a reasonable estimation for D2. More details and alternatives
on the methods to determine the correlation dimension may be found in Grassberger &
Procaccia (2004); Takens (1985); Theiler (1988).

Figure 3.8 (left panel) shows the quantity p<2 (r) for various distances R from the source.
For R small, we are able to recover a scaling p<2 (r) / r which yields D2 = 1, corresponding
effectively to the emitted line. As the distance R increases, one can see that this linear
distribution is still recovered at small scales, as was observed in figure 3.7. At larger scales,
the slope increases, as was already our guess: the distribution becomes more and more
uniform as one gets further from the source. The drop of the curves at very small scales r
can be interpreted as a lack of statistics.

Figure 3.8 (right panel) depicts in more details the logarithmic slopes of p<2 (r) (equa-
tion (3.48)). Curves of D(r) exhibit an increasing behaviour with the scale r, reaching a
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maximum at 1 − 10lf . Note that only data r ⌧ ∆R ⇠ 5lf should be considered. Hence,
in the of the falling curves for large r, corresponding to r > ∆R, the value of R assigned to
each line is not relevant any more. It is only shown for completeness and to illustrate that
no clear plateau is observable. Rather, we get a smooth variation of the scaling exponent.

This variation actually comes from a contamination from a uniform background that
is more and more dominant with increasing R. It has a marked effect on all scales r, as
shown by an increase of D(r) at large R even for small r/lf ⌧ 1. The line emitted by the
source is thus recovered at smaller and smaller r as R increases. Only close to the source
(R & lf ) is the line presence clearly marked.

To confront the hypotheses of increasing D(r) because of continuing return from long-
living particles, we did measure the same quantities, with the same geometrical framework,
and varying the lifetime of the particles tpmax . If particles are allowed to live a shorter time,
they contribute less to this uniformisation. One would thus expect the maximum of D(r)
to lower. Same quantities are shown in Figure 3.9. It is indeed seen that the maximum of
D(r) decreases with tpmax , and that the line D(r) = 1 is quickly recovered. Only data for
an arbitrary R = 52.5lf is shown, but this effect was ensured to be present at all distances
R. This validates our starting hypotheses, which makes impossible the estimation of a
correlation dimension D2.

It thus appears that the difficulty to determine a unique, clear scaling for mQL results
from the combination of a large variety of physical mixing processes: ballistic transport,
mixing by turbulent eddies, and uniformisation by long time diffusion. In the next section,
another way to determine the scaling of the quasi-Lagrangian mass is proposed.
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Figure 3.8: Left: p<2 (r) for various distances from the source R and tpmax = 0.4. Black
dashed line is / r and red dashed line / r5/3. Right: details of the logarithmic slopes D(r)
for the curves on the left.
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Figure 3.9: Same plots as in Figure 3.8 for a fixed value R = 52.5 lf and varying tpmax . TI
is the integral time.

3.3.3 Phenomenological description

In this section, another approach is presented to describe the quasi-Lagrangian mass fluc-
tuations in the emitted particle distribution.

Consider an emitted line Γ with a definite length LC . Due to velocity increments fluctu-
ations, it will undergo longitudinal stretching and compressing, in addition to bending, and
we may define a line density profile ⇢(s, t). The total mass of this line ism =

R

Γ ⇢(s, t) ds(t)
and grows linearly in time m(t) = φS t, if no removal term is included.

We wish to exploit these continuous stretchings and foldings in space to quantify the
total mass present in a region of size r at a distance R from the source. Figure 3.10 shows a
scheme introducing the notations used hereafter. The idea is the following: a first reference
particle P0 at a distance R0 from the source and an age A0 is picked. Among older ones, a
particle PH is searched corresponding to the last one to be inside a circle of radius r around
P0 before the line escapes further away from P0. In practice, this distance is set to 2r. This
limits the very short returns inside the ball, adding a small error r at the determination
of the distance R0. The age of PH is noted AH . The line joining particles P0 and PH is
represented in light green on the scheme.

The average age difference between particles P0 and PH is written as:
D

∆A
(i)
H0

E

=
D

A
(i)
H −A

(i)
0

E

(3.49)

and is a function of R0, A0 and r. The superscript i denotes the index of the line. The
first line just described above has the index i = 0. When this line comes back at a distance
below  r from particle P0, the particle PR is marked. It then serves as the new reference
particle and the algorithm is repeated. The new line then has the index i = 1. In the
following, this superscript is not written except where needed.
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Figure 3.10: Scheme of the setup based on particle ages to determine quasi-Lagrangian
mass scaling. The red cross represents the source from which particles are emitted. The
contributions of the mass around a reference particle P0 inside the circle of radius r come
from the green portions of the line.

The quantity (3.49) is a measure of the (average) mass between particles P0 and PH .
Indeed, it corresponds to what is emitted during a time h∆AH0i, hence m = φS h∆AH0i.
The quasi-Lagrangian mass may then be viewed as the total contribution from all these
lines inside the ball of radius r:

mQL = φS

1X

i

D

A
(i)
H −A

(i)
0

E

. (3.50)

Theoretical predictions

Multiple regimes can already be guessed using what is known about relative dispersion in
turbulent flow (see section 2.3). Let r(t) be the distance between particle P0 and PH at time
t and rE the distance between these same particles at the moment tE , when the particle
P0 is emitted. rE is thus the distance that the elder particle PH will have travelled from
the source before particle P0 is emitted. This separation is of the order of rE = urms∆AH0.

Different cases described here below can be distinguished. Notice that the characteristic
length scale used to compare rE is the forcing length scale lf . In our two dimensional
simulations focusing on the inverse energy cascade, i.e. with a very small scale forcing to
maximise the inertial range, this is tantamount to compare rE with the dissipative scale
lD. Below lf , the flow is actually differentiable.

• Case 1: rE ⌧ lf
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– Case 1a: r(t) ⌧ lf
The distance between the two particles always remains in the sub-forcing scales,
hence in the dissipative regime of the flow, so that r(t) = rEe

⇠t, where ⇠(t, rE)
is the positive finite-time Lyapunov exponent, thus r(t) / ∆AH0.

– Case 1b: r(t) � lf
The separation can be divided in two steps. Firstly, initial separation has started
in the dissipative regime and lasts until the separation equals the forcing scale:

r(t) = lf = rE exp (λt⇤), hence during a time t⇤ = 1
λ log

lf
rE

. Secondly, once
their distance is above the forcing scale, separation will be ballistic during a
turn-over time associated with the scale lf ,⌧rE , and will after be dominated by
the Richardson explosive regime : r(t) = ✏1/2(A0−t⇤)3/2. From this relation, we

have that rE / lfe
r(t)2/3−A0 . Hence, for A0 � r2/3✏−1/3, the quantity ∆AH0 is

independent of r.

• Case 2: rE � lf

Case 2a: A0 < ✏−1/3r
2/3
E = ⌧rE

Particles P0 and PH are initially distant from rE > lf . They separate during a time
A0 which is inferior to the eddy turn-over time associated to their initial separation
⌧rE . This corresponds to the ballistic regime prior to Richardson explosive separation,
where particles see a constant velocity difference δrEu, so that r(t) = rE + A0δrEu.
For A0 ⌧ ∆AH0urms/δrEu, it is thus also expected to recover h∆AH0i / r as in case
1a.

Case 2b: A0 > ✏−1/3r
2/3
E = ⌧rE

If particles have separated during a time A0 longer than ⌧rE , the inter-distance is

then in the explosive Richardson regime: r(t) / A
3/2
0 and is independent of the

initial separation rE .

Figure 3.11 (left) summarises the relations listed above.

Numerical measurements

To measure the quantity ∆AH0, a numerical simulation at resolution Nx = 40962 is per-
formed in which particles are emitted from the source situated at position xS = [⇡, ⇡],
with a maximum lifetime for the particles tpmax = L

2urms
, where L = 2⇡ is the size of the

square domain. Table 3.1 gives the parameters used for the simulation as well as global
flow quantities.

Because we simulate discrete particles, we will of course not find PH at an exact distance
r from P0. Limiting ourselves to the closest particle from the theoretical PH will then yield
an error on AH and on∆AH0. The maximum precision we can obtain for AH is equal to the
time step ∆t because one particle is released per time step. One way to get more precision
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Figure 3.11: Left: scheme of expected regimes for h∆AH0i. Notation 6= f(·) means: ”is
not a function of”. Right: contour plot of log10 h∆AH0i. In the simulation, the condition
rE � lf , ∆AH0 � lf/urms = 4⇥ 10−3.

⌫ ∆t φS L TI urms " kf lf tlf
4⇥ 10−4 10−5 105 2⇡ 1.96 1.6 41.6 1000 2⇡ ⇥ 10−3 0.01

Table 3.1: Some parameters of the simulation. ⌫ is the fluid molecular viscosity. ∆t is the
time step. φS is the injection rate in units of particles injected per time step. L = 2⇡ is
the size of the square domain. TI = L/urms is the time associated to the integral scales.
urms =

p
2E is the mean square velocity. " = −2⌫Z. kf is the forcing wave-number.

lf = 10−3L is the forcing scale. tlf = "−1/3l
2/3
f is the time associated to the forcing scale.

could be to increase the number of emitted particles per time step and to interpolate
linearly their age between the emission time tE and tE −∆t. This would however increase
the numerical cost, and another method is implemented.

Let D(PA, PB) be the distance between particles PA and PB. Then particle PH cor-
responds to a fictive point such that D(P0, PH) = r whose age is linearly interpolated
between particles, say PH1

and PH2
, which are directly surrounding particle PH , i.e for

which D(P0, PH1
) < r and D(P0, PH2

) > r. This is tantamount to suppose that particles
in the continuous framework are aligned between PH1

and PH2
, or equivalently that the

line is not deformed on a time scale ∆t. This is a valid hypotheses if D(PH1
, PH2

) is small
compared to the correlation length of the flow, and if ∆t is small compared to the temporal
correlation of velocity increment associated with the scale D(PH1

, PH2
).

The determination of AH then reads:

AH = AH1
+ (AH2

−AH1
)

r

krH − rH2
k2 + krH − rH2

k2 − 2
rH ·rH1

krHkkrH1k
krH1

− rH2
k (3.51)
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Figure 3.12: Left: the position of the true particle PH has to be interpolated between two
adjacent discrete particles. Right: For A0 � TI and / or r ⌧ urms∆t, the low spatial
resolution of particles along the line yields a very bad estimation of its length.

For A0 � TI and / or r ⌧ urms∆t, particles separate quickly and the distance r and
2r are rapidly attained. In that case, particle P0 corresponds to PH1

and particles P0, PH
and PH1

are aligned (see Figure 3.12). In this situation, h∆AH0i trivially scales as r. This
situation corresponds to a serious breaking of the continuous approximation at the scale r,
and these events are removed from the statistics. As a consequence, values of h∆AH0i will
be lower-bounded by ∆t.

The simulation is run for 2 TI after the number of particles has reached its equilibrium.
The quantity ∆AH0 is determined for all A0 and various r logarithmically spaced between
10−4 = 20⇡lf and 1 = L/2⇡. This is performed for 200 different instantaneous distributions
of tracers over which it is averaged.

We now wish to verify the theoretical predictions given above. Figure 3.13 (left panel)
shows the age difference hAH0

i /TI as a function of the distance r/lf for variousA0. Relation
1a, h∆AH0i / r, is indeed recovered in a wide range of scales for A0 ⌧ TI and r ⌧ lf .
As A0 grows, the asymptotic regime for A0 � r2/3, case 1b, is recovered, and h∆AH0i is
independent of r. The breaking of the lines correspond to the break-up of the continuity
of the line at the scale r (see Figure 3.12 (right)).

Figure 3.13 (right panel) displays the same quantity as a function of (r/lf )/A
3/2
0 . In

the explosive Richardson separation, r(t) / A
3/2
0 is a quantity independent of the initial

separation rE , or equivalently that h∆AH0i 6= f(A0). This is verified in our measures where

such a point is indeed observable in Figure 3.13 at ((r/lf )/A
3/2
0 , h∆AH0i) ⇡ (2 ⇥ 102, 2 ⇥

10−3).

A contour plot of the quantity log h∆AH0i represents these various regimes along with
the theoretical predictions in Figure 3.11 (right).
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monotonically increasing in the direction indicated by the arrow. The black dashed line
has a slope 1 and represents ∆AH0 / r.

3.4 Brief conclusion

We have analysed the dispersion of tracer particles continuously emitted from a point
source. This issue targets various natural phenomena such as the release of polluting
species at ocean surfaces. The turbulent mixing following the release results from a com-
plex combination. Numerical simulations of two-dimensional turbulence have been carried.
One point quantities, such as mean square displacements and average radial concentra-
tion profiles were shown to obey simple ballistic dynamic at short times from emission
and diffusion after one Lagrangian velocity correlation time scale. Then, we observed
that the combination of various mixing processes, involving particles of very different ages,
doesn’t allow for the description of mass fluctuations with fractal dimensions. Another
phenomenological approach was then proposed to account for the mixing of temporal and
spatial correlations. It makes use of the knowledge of relative pair separation as a function
of particles emission time and initial separation.
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CHAPTER 4

A lattice method for the numerical modelling of inertial particles
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4.1 Inertial particles dynamics

4.1.1 Individual particles

Massive particles, i.e. whose density differs from that of the fluid, experience a large variety
of forces exerted by the carrier flow. Considering large particles requires to integrate the
total constrain exerted by the fluid from the non-linear Navier-Stokes equations on the
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surface of the particle. This requires integrating analytically the full velocity field, which is
in general not possible. However, an explicit expression for the total force can be derived in
the case of small particles, i.e. smaller than the smallest characteristic length scale of the
flow, and in the case of small velocity difference with surrounding flow. The flow around
the particle is then in a laminar state, and the Reynolds number associated to the particle,
Rep = dp hVp − ui /⌫, with dp is the particle diameter and ⌫ the fluid viscosity, is low.
The non-linear term in the Navier-Stokes equation may then be neglected and the Stokes
equation integrated around the particle (see Maxey & Riley (1983) for details).

This leads to a closed equation that we rewrite here in order to illustrate the complexity
of the forces acting on each individual particle in a velocity field u(x):

mp
dVp
dt

= (mp −mf )g +mf
Du

Dt
(Xp)−

1

2
mf

✓
dVp
dt

− Du

Dt
(Xp)

◆

− 6⇡d2p⇢f⌫

tZ

0

d⌧
p

⇡⌫(t− ⌧)

d

d⌧
(vp − u(Xp(⌧), ⌧))

− 6⇡dp⇢f⌫ (Vp − u(Xp)) . (4.1)

mp denotes the mass of each individual particle, Vp its velocity and Xp its position. ⌫ is
the kinematic viscosity of the carrier flow and mf displaced mass of fluid by the particle.

The first term on the right-hand side is the buoyancy force. The second is the ac-
celeration of the unperturbed flow at the particle position. The third one is the inertial
correction, which arises because of the displaced flow by the particle, accounting for an ad-
ditional transported mass. The fourth term is the Basset-Boussinesq history force, which
obviously add a complicated effect linked to the past of the trajectory. It is due to the
particle wake which acts to diffuse the flow vorticity apart from the particle trajectory. It
is generally neglected when considering very small particles, because in that case the wake
is dissipated on a sufficiently short length scale. The last term is the Stokes viscous drag.
In this study, gravity is neglected, which is the case when fluid accelerations are stronger
than g and particles not too massive.

With the simplifications cited above, one gets:

dVp
dt

= β
Du

Dt
(Xp(t), t)−

1

⌧p
[Vp − u(Xp(t), t)] . (4.2)

The first term on the right is the added-mass factor, with β = 3⇢f/(⇢f + 2⇢p). For
heavy particles (⇢p � ⇢f ), we get β ⌧ 1 and this term is also neglected. The parameter
⌧p = d2p/(3β⌫) denotes the response time of the particles. For ⇢p � ⇢f , ⌧p = 2⇢pd

2
p/(9⇢f⌫).

Finally, the dynamic of one particle, Xp(t), obeys the following equations:

Ẋp(t) = Vp(t), (4.3)

V̇p(t) = − 1

⌧p
[Vp(Xp, t)− u(Xp, t)] . (4.4)
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The dots denote temporal derivatives.

The non-dimensional number quantifying the relative inertia, the Stokes number, is
built by the ratio of this response time and a relevant characteristic timescale of the flow:

St =
⌧p
⌧f

(4.5)

Fundamental differences characterise the asymptotics of very low and large inertia.
One noticeable fact about inertial particles in fluids, at least for moderate inertia, is that
they exhibit clustering, i.e. they concentrate in regions of given carrier flow topology.
The knowledge, quantification and prediction of such clustering is of central importance
when considering situations where interactions between particles play a key role, such as
in coalescence, or advection-reaction (Bodenschatz et al., 2010; Krstulovic et al., 2013).

The dynamic described by (4.3) and 4.4 is dissipative, with an associated phase-space
contraction rate of −d/⌧p. It has been shown in Bec (2003) that the long time behaviour
of those particles converge toward a multifractal set.

St ⌧ 1

In the limit when St ! 0, particles behave like tracers, and the difference V − u in (4.4)
cancels. One may then track individual particles in a Lagrangian framework, or consider
solely a transport equation for their density ⇢p(x) by the velocity vp(x) = u(x). The fractal
dimension of the ensemble is the space dimension D = d: the ensemble is homogeneous in
space.

For very small response time (i.e. fast relaxation), the same technique may be used,
but with a small correction applied to vp of the order of ⌧p (Maxey, 1987):

vp = u− ⌧p
Du

Dt
. (4.6)

which appeared to yield good results compared to Lagrangian simulation for up to St ⇡ 0.2
(see, for instance, Shotorban & Balachandar (2006)).

Increasing St, trajectories of particles and fluid elements begin to separate and an evo-
lution equation for the particle density must be provided. This density ⇢p(x) is transported
by a compressible flow (Balkovsky et al., 2001) and its evolution, along with the field vp(x),
obeys the following dynamical system:

@t⇢p +r · (vp⇢p) = 0, (4.7)

vp = u+ ⌧p (@tu+ (u ·r)u) . (4.8)

This formulation is valid for Stokes up to St ⇠ O(1) (Balachandar & Eaton, 2010), and
is to be preferred when particles are not in close equilibrium with the carrier phase, for
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example when they are injected perpendicularly to the flow. The divergence of the velocity
field is given by (Maxey, 1987) :

r · vp =
−1

4A

8

>>><

>>>:

✓
@ui
@xj

+
@uj
@xi

◆2

| {z }

strain rate

−
✓
@ui
@xj

− @uj
@xi

◆2

| {z }

vorticity

9

>>>=

>>>;

. (4.9)

with A a dimensionless parameter scaling as St−1. The relation (4.9) indicates that the
particles converge (the divergence is negative) where the strain dominates the vorticity,
resulting in a preferential sampling of the high-strain regions.

This effect increases with the Stokes number. Indeed, when looking at an instantaneous
spatial repartition of the particles, those leave near-empty regions whose size increases
with St (Goto & Vassilicos, 2006). However, this increase in size is not only due to the
centrifugal effect. In two dimensions, it has been shown that, for all St < T/⌧⌘, where T is
the characteristic timescale associated with the sweeping by the large eddies and ⌧eta the
one associated to the dissipation scale, small inertial particles move away from non-zero
acceleration zones. The clustering is better described by the correlation between the high-
valued particle number density regions and the zero acceleration stagnation points (Chen
et al., 2006a).

Equations (4.8) and (4.7) have been successfully applied to study the dynamical prop-
erties of weakly inertial particles. For example in Boffetta et al. (2007), they are used to
determine fractal dimension of the phase space attractor and yielded good agreement with
Lagrangian simulations.

St � 1

When the relaxation time gets larger, the existence and the uniqueness of the velocity field
vp(x) is not guaranteed any more. Indeed, inertia causes particles to detach from fluid
trajectories with the possibility to cross each other with different velocities at the same
position x, forming caustics. Actually, this phenomenon already occurs for St ⇠ O(1).
Figure 4.1 illustrates this phenomenon schematically in one dimension for a continuous line
of particle. Obviously, this situation is predominant in the case where the fluid exhibits
large and persistent gradients ru. The rate of formation of those caustics depends also
on St. For example, in the regime of St ⌧ 1, it has actually been shown that the rate
at which they form is / exp(−1/(6St)) for ⌧p ⌧ T ⌧ ⌧p exp(1/6St)) (Derevyanko et al.,
2007), thus showing an rapid decrease in the limit of vanishing inertia.

This particularity of inertial particles forces one the describe the particle dynamics in
a higher-dimensional space.

In the limit St ! 1, the motion is totally ballistic, with Vp independent of u. The
fractal dimension is D = 2d, and particles occupy the full position-velocity phase-space.
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Figure 4.1: Illustration in one dimension of caustic formation: when inertia is large, the
particle density f may overshoot the fluid velocity profile u and form multivalued velocity
regions (blue-shaded on the figure).

In between the asymptotics St! 0 and St! 1, a maximum of clustering can be found,
characterised by a minimum fractal dimension. This is depicted by Figure 4.2 (right), where
the dimension between the Lyapunov and the space dimension is represented as a function
of St for d = 2 and d = 3. Figure 4.2 (left) illustrates the particles distribution near the
maximum of clustering (St ⇠ 0.2).

An analysis of the domain of validity for each approximation in terms of St may be
found in (Balachandar & Eaton, 2010).

4.2 The modelling of dispersed multiphase flows

Many processing technologies require good analysis of their capabilities and performance.
Examples include cavitating pumps, papermaking, fluidized beds, etc. Very few processes
involving material transport don’t benefit from a better understanding of a multiphase dy-
namics. The definition of multiphase flows encompasses diverse cases, such as an arbitrary
number of fluid mixtures, or solid suspensions. In addition, suspensions may involve parti-
cles of the same kind but of unique size (we then talk about monodisperse suspensions) or
of various sizes (polydisperse ). To add up in difficulty, coupling between different phases
may also be considered. This increases the degree of complexity depending on the number
of phases and the nature of their interactions. Furthermore, the presence of a dispersed
phase can make appear different scale-resolving issues that would not be present when
considering the fluid phase alone. Think for example of bubbly flows, where bubbles may
leave along their trajectory a turbulent wake, while the large-scale flow is actually laminar
(Mudde et al., 2008).
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Figure 4.2: Left: Illustration of inertial particles distribution in position space. St = 10−2.
From Bec (2005). Right: difference between fractal dimension of the particle set and the
space dimension d for increasing St (from Bec (2003)).

All of those difficulties add up, taking into account that most natural and industrial
flows are in a turbulent state. And already, direct numerical simulations of a single tur-
bulent phase need to resolve a tremendously large scale separation to reach high Reynolds
numbers (up to 106 in some fluidized-beds). For all those reasons, the direct numerical
simulation (DNS) of realistic multiphase flows is non attainable with any nowadays com-
putational performance. Nevertheless, they constitute a required tool to better understand
physical mechanisms and thus improving and validating the approximations made. As an
example, models for polydisperse suspensions benefit from the knowledge of the interaction
between particles of different sizes (Tenneti et al., 2010; Yin & Sundaresan, 2009).

Such difficulties lead scientists and engineers to develop more and more sophisticated
models and this section is dedicated to introduce briefly some of them.

4.2.1 From microscopic description to macroscopic quantities

Basically, one can think about two classes of methods to model multiphase flows. One is
fundamentally relying on the detailed physical interactions between solid and fluid particles,
or between particles and solid interfaces. The other is more phenomenological, based on
conservation laws and constitutes a hydrodynamic approximation in which all relevant
quantities are treated as continuous space fields. The term Lagrangian is used for models
considering the evolution and tracking of discrete elements, while the term Eulerian is used
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for continuous fields approaches.

The transition between these two descriptions can be achieved for example through
ensemble averaging: microscopic dynamical equations are volume or ensemble averaged
to yield dynamical equations for the low order macroscopic quantities, such as mass or
momentum (Drew & Passman, 1999).

In between microscopic and macroscopic models come the kinetic equations whose so-
lution yields a function f defined over a phase space of relevant mesoscopic variables (vol-
ume, velocity, elasticity, etc.). Approximations are made from the microscopic description
to model physical interactions. Detailed physical studies and direct numerical simulations
are used to determine how the mesoscale variable associated to a given particle will be
affected by the external forces, fluid, other particles (collisions), etc.

The moments of the kinetic equation allow then for recovering the macroscopic con-
servation equations. A famous example of kinetic equation is the one for gas dynamics or
Boltzmann equation (Cercignani, 1988).

In this chapter, the collisions between solid particles are neglected and the mesoscopic
variables are limited to position and velocity.

Lagrangian simulations

A solution to integrate the particle dynamics is to resolve explicitly equations (4.3) and
(4.4) by considering point particles. This method presents two big advantages: it is not
restricted in terms of St, and because each point is treated individually, polydispersity may
be included easily. However, for a too-large number of particles in high-Reynolds-number
turbulent flows, the number of degree of freedom is huge and models must be introduced.
Another limitation of this approach is the difficulty to design numerical methods for the
back-reaction from the solid phase on the continuous phase. Indeed, one needs a large
number of particles and several approximations to handle correctly the distribution of
the particles reaction on the numerical grid-points of the continuous phase. This issue is
discussed in chapter 5. It was actually one of the main motivation for the development of
the Eulerian description of inertial particles presented in this chapter, as it yields a more
natural treatment of particle retro-action on the fluid.

When the number of particles becomes too large, so that their evolution is not com-
putationally tractable, other stochastic approaches have to be considered. One of them is
to build parcels which can be thought of as encompassing a large number of the discrete
particles. These parcels have properties driven by a set of stochastic differential equations
and their evolution represent Monte-Carlo simulations of the underlying pdf.

Their properties form a state vector L obeying a Langevin equation. For example, in
the simplest case for which L = (Xp,Vp,us(Xp)), where us is a velocity seen by the parcel,
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the equation takes the following form (Minier & Peirano, 2001):

dXp = Vpdt, (4.10)

dVp = g(t,L)dt, (4.11)

dui = hi(t,L)dt+
X

j

Bij(t,L)dWj , (4.12)

where g is in our case the Stokes drag, h models the interaction between us and the mean
fluid velocity hui. B is the Wiener process amplitude encompassing the model for the
fluctuating part of the turbulent fluid velocity, like a k − ✏ model. The importance of the
consistency between the turbulence models for the fluid and solid phases has been stressed
in Chibbaro & Minier (2011).

These methods are largely applied in the engineering community. For example, Chib-
baro & Minier (2008) have used this approach coupled to RANS equations for the fluid
phase to study particle wall deposition and obtained a good agreement with experimental
results.

Phase space description

The kinetic formulation for a particle population allows to encompass the physical proper-
ties of the particles (position, velocity...) in terms of an Eulerian field in the phase space:

f(x,v, t) =
X

p

δ(Xp(t)− x)δ(Vp(t)− v), (4.13)

where δ is the delta function. With such a definition, the units of f are L−2dT d.

The evolution equation for f may be obtained the following way. f being distributional,
we make use of a test function. Let ' 2 C1 be such a test function, infinitely smooth and
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with compact support. Then:

@t

Z

f(x,v, t)'(x,v) dx dv

= @t

"
X

p

'(Xp(t),Vp(t))

#

=
X

p

h

Ẋp(t) ·rx'+ V̇p(t) ·rv'
i

=
X

p

[Vp(t) ·rx'+Ap(t) ·rv']

=
X

p

Z

v ·rx'(x,v)δ(x−Xp)δ(v − Vp) dx dv

+
X

p

Z

a ·rv'(x,v)δ(x−Xp)δ(v − Vp) dx dv

=

Z

rx' · (vf) +rv' · (af) dx dv

)
Z

[@tf +rx · (vf) +rv · (af)]' dx dv = 0

where the integrals are taken over the phase-space and Ap is the particle acceleration.
Integration by parts has been used for the last line. Because the last integral doesn’t
depend on ', it comes:

@tf +rx · (vf) +rv · (af) = 0. (4.14)

a = F /mp is introduced to denote the instantaneous acceleration of the particle. Equa-
tion (4.14) is a Liouville equation expressing a conservation of the phase space density,
whose dimension is L−2dT d. The second term on the right hand side is the streaming of
the particles by the flow while the third term is the change in velocity due to the application
of the force F .

The knowledge of f(x,v) allows one to evaluate quantities such as density and mo-
mentum in the position space. These are obtained by evaluating the first moments of the
distribution f :

0th: number density np(x) =

Z

V
f(x,v) ddv (4.15)

1st: momentum np(x)vpi(x) =

Z

V
vi f(x,v) d

dv (4.16)

2nd: kinetic energy np(x)eij(x) =

Z

V
vivj f(x,v) d

dv (4.17)
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with V the velocity domain. np(x) is the density in terms of number of particles. For
a monodisperse non reacting phase as will be our case, we can define a mass density by
⇢(x) = mpnp(x) with a constant mp.

A model is needed for the different terms appearing in the kinetic equation (4.14). In
our case, as we make use of a phase-space only constituted by positions and velocities,
only a model for the force has to be provided. In this chapter, we only consider dilute
suspensions so that inter-particle collisions are neglected. For such suspensions, F reduces
to a Stokes drag F = ⌧−1

p (u− vp) (see Section 4.1.1).

Solving the kinetic equation

Starting from the kinetic equation (4.14), one has several strategies to solve for the distri-
bution f . One is to integrate it over velocities, once it has been multiplied by vn which
yields evolution equations for the n first moments of velocity. Evolution equations for the
macroscopic quantities are then recovered. However, it can be shown that the equation for
a moment of order n involves the (n + 1)-th order. This forms a set of infinite equations
yielding an unclosed hierarchy, and this is why closure is necessary at some order n. For
example, if M i denotes the moment of order i, being itself a tensor of order i, the following
evolution equations are (Fox, 2012):

@M0

@t
+
@M1

i

@xi
= 0,

@M1
i

@t
+
@M2

ij

@xj
=

1

⌧p
(M0ui −M1

i ),

@M2
ij

@t
+
@M3

ijk

@xk
=

1

⌧p
(M1

i uj + uiM
1
j − 2M2

ij). (4.18)

This system is said to be unclosed because one needs an evolution equation for M3, which
would make appear M4, etc. A closed formulation for M3 is thus needed, which may be
built by combining the lower order moments. The quality of the closure may itself be
optimised and improved by relevant knowledge of the underlying detailed physics.

As already stated, one must take care that the dynamics of large Stokes numbers parti-
cles require a description in the 2d phase-space (x,v) in order to resolve velocity dispersion.
To account for this dispersion, some methods involve for example the integration of the
moments up to the second order, then a reconstruction of the full distribution f(x,v). This
distribution is then used to compute the third order momentM3 to be used in (4.18). This
method however requires to assume the functional form of f (see, for instance, Simonin
et al. (1993)).

In Aguinaga et al. (2009), a closed kinetic equation is developed where the interaction
between particles and turbulence is modelled through a return-to-equilibrium term similar
to the Bhatnagar–Gross–Krook model (Bhatnagar et al., 1954), namely Ωi = −⌧−1(f−fp),
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where fp is an equilibrium distribution and ⌧ the relaxation time. Different models exist
then for fp, including a Gaussian pdf. The resulting equation may then be explicitly solved
using finite differences (Aguinaga et al., 2009) or via a Lattice Boltzmann scheme (Fede
et al., 2015).

The following sections describe the part of this thesis dedicated to this issue. A novel
approach to solve the kinetic equation is presented, based on the integration of the distri-
bution f in the full position-velocity phase space. Some of the results presented here may
be found in the paper published in Comptes Rendus de Mécanique (Laenen et al., 2016).
In this paper, the considered kinetic equation differs from (4.14) by an additional diffusive
term, i.e it reads:

@tf +rx · (vf) +rv · (af)− vr2
vf = 0. (4.19)

4.3 Description of the method

The solutions f(x,v, t) to the Liouville equation (4.14) are defined in the full position-
velocity phase-space Ω⇥R

d, where Ω designates a d-dimensional bounded spatial domain.
To simulate numerically the dynamics, we divide the phase-space in (2 ⇥ d)-dimensional
hypercubes. We then approximate f(x,v, t) as a piecewise-constant scalar field on this
lattice. Positions are discretised on a uniform grid with spacing ∆x in all directions. In
principle, f has to be defined for arbitrary large velocities. We however assume that relevant
values of v are restricted to a bounded interval [−Vmax, Vmax]

d , where Vmax has to be
specified from physical arguments based on the forces F applied on the particles. Velocities
are assumed to take Nd

v values, so that the grid spacing reads ∆v = 2Vmax/Nv. Figure 4.3
illustrates the phase-space discretisation in the one-dimensional case with Nv = 5. The
various cells in position-velocity contain a given mass of particles. All these particles are
assumed to have a position and velocity equal to that at the centre of the cell.

The three phase-space differential operators appearing in equation (4.14), namely the
advection, the particle forcing, and the diffusion, are applied one after the other, following
an operator splitting method (LeVeque, 2002). For the advection step, we use a technique
inspired from the Lattice-Boltzmann method (see Succi (2001)). The time stepping is cho-
sen so that a discrete velocity exactly matches a shift in positions by an integer number of
grid-points. Namely, we prescribe ∆x = ∆v∆t. All the particle phase-space mass located
in [−∆v/2,∆v/2] does not move; that in [∆v/2, 3∆v/2] is shifted by one spatial gridpoint
to the right and that in [−3∆v/2,−∆v/2] to the left, etc. All the mass is displaced from one
cell to another according to its own discrete velocity value. This evolution is sketched by
black horizontal arrows in Figure4.3. This specific choice for the time-stepping implies that
the advection (in space) is treated exactly for the discrete system. The next steps consist
in applying the force acting on the particles and the diffusion. The corresponding terms
in equation (4.14) are conservation laws, which suggests using a finite-volume approxima-
tion. The time evolutions due to forcing and diffusion are performed successively. In both
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u(x,t)

x

v

−V

+Vmax

max∆

∆ v

x

Figure 4.3: Sketch of the lattice dynamics in the (x, v) position-velocity phase space. The
solid curve is the fluid velocity profile; the grey-scale tiling represents the discretisation of
particles mass in phase space. The black horizontal arrows show advection, while the blue
and red vertical arrows are forcing and diffusion, respectively.

cases, we use classical schemes (see below), where zero-flux conditions are imposed on the
boundary of [−Vmax, Vmax]

d. The force is evaluated using the values of v at the centres of
the cells and rvf is approximated using finite differences. These steps are illustrated by
the horizontal blue and red arrows in Figure 4.3.

A few comments on the convergence and stability of the proposed method. Clearly,
except for specific singular forcings, all the linear differential operators involved in (4.14)
are expected to be bounded.1 We can thus invoke the equivalence (or Lax–Richtmyer)
theorem for linear differential equations that ensures convergence, provided the scheme is
stable and consistent LeVeque (2002).

For the operator associated to particle acceleration, we use in this study either a first-
order upwind finite-volume scheme or a higher-order flux limiter by following the strategy
proposed in Hundsdorfer et al. (1995). The upwind scheme is first-order accurate and
is well-known for being consistent and stable if it satisfies the Courant–Friedrichs–Lewy
(CFL) condition. This requires that the time needed to accelerate particles by the grid size
∆v is larger than the time step ∆t, leading to the stability condition

CFL = (∆t/∆v) max
x,v,t

|F(x,v, t)|/mp < 1. (4.20)

The upwind scheme is however known to suffer from numerical diffusion, and obviously,
one should only expect to recover the correct dynamics only when the numerical diffusion

1Notice that, although the velocity might explicitly appear in the force F , we only solve for a compact
domain of velocities, thus preventing divergences.
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num is much smaller than the physical one . The average numerical diffusion can be
estimated as hv,numi ⇡ hFi∆t/∆v. To limit the effects of this numerical diffusion, we
have also used a flux-limiter scheme. While taking benefit of a higher-order approximation
where the field is smooth, it uses the ratio between consecutive flux gradients to reduce
the order in the presence of strong gradients only. The limiter is a nonlinear function of
the phase-space density field and the stability is ensured provided that it is total-variation
diminishing (TVD), see LeVeque (2002). Among the various available TVD limiters, we
choose the scheme proposed in Koren (1993) with parameter 2/3.

For the term associated to diffusion, the flux at the interface between two velocity cells
is computed using finite differences. The resulting finite-volume scheme is thus equivalent
to compute a discrete Laplacian on the velocity mesh. The stability condition is then given
by

v∆t

∆v2
<

1

2
. (4.21)

To summarize, the stability and convergence of the proposed method is ensured when both
(4.20) and (4.21) are satisfied.

From now on we restrict ourselves to small and heavy particles whose interaction with
the carrier fluid is dominated by viscous drag and diffusion. In that case, we have that the
acceleration ap of one particle reads:

ap =
dvp
dt

= − 1

⌧p
(vp − u(xp, t)) +

p
2v η(t), (4.22)

where η(t) is the standard d-dimensional white noise and the fluid velocity field u(x, t) is
prescribed and assumed to be in a (statistically) stationary state. This Stokes drag involves
the viscous particle response time ⌧p = 2⇢pa

2/(9⇢f⌫), with a the radius of the particles, ⌫
the viscosity of the fluid, ⇢p � ⇢f the particle and fluid mass densities, respectively. Inertia
is quantified by the Stokes number St = ⌧p/⌧f , where ⌧f is a characteristic time of the carrier
flow. The diffusion results from the random collisions between the considered macroscopic
particle and the molecules of the underlying gas. Assuming thermodynamic equilibrium,
the diffusion coefficient reads  = 2 kB T/(mp ⌧p), where kB is the Boltzmann constant and
T the absolute temperature. The effect of diffusion is measured by the non-dimensional
number K =  ⌧f/U

2
f (Uf being a characteristic velocity of the fluid flow).

Such a specific dynamics leads to appropriate estimates for the bound Vmax in par-
ticle velocity. One can indeed easily check that when  = 0, we always have |vp| 
maxx,t |u(x, t)|. In a deterministic fluid flow, as for instance when u is stationary, this
gives the natural choice Vmax = maxx,t |u(x, t)|. However, in most situations, the maximal
fluid velocity is not known a priori. One then relies on the statistical properties of u, as
for instance its root-mean square value urms = hu2i i1/2. Usually the one-time, one-point
statistics of fluctuating velocity fields (being random or turbulent) are well described by a
Gaussian distribution. This ensures that by choosing Vmax = 3urms, the probability that
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a particle has a velocity out of the prescribed bounds is less than 1%. Such estimates
are rather rough. In practice, it is known that the typical particle velocity decreases as
a function of the Stokes number. It was for instance shown in Abrahamson (1975) that
h|vp|2i / u2rms/St at very large Stokes numbers. An efficient choice for Vmax should account
for that.

The equation solved in the velocity space is analogous to an advection equation in
position space. In finite volume and finite difference methods, those are known to suffer
from numerical diffusion and to introduce a non physical broadening of the solution along
the diffusive dimension, i.e. an increase of the variance of the distribution. For example,
the simple upwind scheme yields a numerical diffusion term with diffusivity equals to
num(v) = (1 − a(v)∆t

∆v )a(v)∆v2 . For more details, see, for instance, Cushman-Roisin &
Beckers (2011).

(a) Nx = 16384, Nv = 127 (b) Nx = 4096, Nv = 33 (c) Nx = 1024, Nv = 9

Figure 4.4: Illustration of the effect of numerical diffusion. Phase space resolutions Nx and
Nv are increased at constant ∆t with no physical diffusion (K = 0) .

The importance of this numerical diffusion can be quantified by the grid Peclet number

Penum =
∆v arms


. (4.23)

It is thus of importance that num ⌧ .
In the next two sections we investigate two different cases: first a one-dimensional

random Gaussian carrier flow with a prescribed correlation time and, second, a two-
dimensional turbulent carrier flow that is a solution to the forced incompressible Navier-
Stokes equations.

4.4 Application to a one-dimensional random flow

4.4.1 Particle dynamics for d = 1

In this section, our method is tested in a one-dimensional situation. For that, we assume
that the fluid velocity is a Gaussian random field, which consists in the superposition of
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two modes whose amplitudes are Ornstein–Uhlenbeck processes, namely

u(x, t) = A1(t) cos(2⇡ x/L) +A2(t) sin(2⇡ x/L) (4.24)

dAi(t)

dt
= − 1

⌧f
Ai(t) +

r
2

⌧f
⇠i(t) (4.25)

where the ⇠i’s are independent white noises with correlations h⇠i(t) ⇠i(t0)i = u2rms δ(t− t0).
This flow is by definition fully compressible (potential) and spatially periodic with period
L. It is characterized by its amplitude h(u(x, t))2i1/2 = urms and its correlation time ⌧f ,
which are fixed parameters. We focus on the case when the Kubo number Ku = ⌧f urms/L
is of the order of unity.

We next consider particles suspended in this flow and following the dynamics (4.22).
The relevant Stokes number is then defined as St = ⌧p urms/L and the relative impact of
diffusion is measured by K = L/u3rms. When diffusion is neglected (K ! 0), the particles
distribute on a dynamical attractor (see Figure 4.5 Left) whose properties depend strongly
on St. These strange attractors are typically fractal objects in the phase space and they

(a) K = 0 (b) K = 2⇡ ⇥ 10−4 (c) K = 2⇡ ⇥ 10−3

Figure 4.5: Instantaneous snapshots of the particle positions in the (x, v) plane for St ⇡ 2
for varying diffusivities K. The folded structures are spread out by diffusion.

are characterized by their fractal dimension spectrum (Hentschel & Procaccia, 1983). The
locations of particles are obtained by projecting theses sets on the position space and
might thus inherit the associated clustering (Bec, 2003). The dimension that is relevant
for binary interactions between particles is the correlation dimension D2, which relates to
the probability of having two particles within a given distance, namely

p<2 (r) = P(|X(1)
p (t)−X(2)

p (t)| < r) ⇠ (r/L)D2 , for r ⌧ L, (4.26)

where x
(1)
p and x

(2)
p denote the positions of two different particles. Note that as we con-

sider u to be in a statistically stationary state, p<2 is independent of time. The correlation
dimension D2 varies from D2 = 0 for a point concentrations to D2 = 1 for a homogeneous
mass distribution . In the example of Figure 4.5 (Left) D2 ⇡ 0.7. The variations of D2 as
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a function of the Stokes number are displayed in the inset of Figure 4.6. D2 indeed varies
from 0 at small Stokes numbers to values close to one. For St = 0, the particles concentrate
on a point; their distribution is said to be atomic and D2 = 0. This is a consequence of the
compressibility of the one-dimensional (potential) flow. Actually this behaviour persists for
finite Stokes numbers, up to a critical value St?, as shown in Wilkinson & Mehlig (2003) in
the case where ⌧f ⌧ L/urms (that is Ku ! 0). We observe here St? ⇡ 0.6. For St > St?,
the dimension increases and tends to a homogeneous distribution (D2 = 1) at large particle
inertia.

When one has only access to the Eulerian density of particles, the distribution of dis-
tances cannot be directly inferred from (4.26). One then relies on the coarse-grained density
of particles

⇢r(x, t) =

Z r/2

−r/2
dx0

Z

dv f(x+ x0, v, t). (4.27)

It is known that, under some assumptions on the ergodicity of the particle dynamics,
the second-order moment of this quantity scales as h⇢2ri / rD2−1 (see, e.g., Hentschel &
Procaccia (1983)). In one dimension, this second-order moment is exactly the same as the
radial distribution function. This quantity will be used in the next sections to address
the physical relevance of the lattice-particle method. It is of particular interest when
considering collisions between particles. Indeed, as explained for instance in Sundaram &
Collins (1997), the ghost-collision approximation leads to write the collision rate between
particles as the product of two contributions: one coming from clustering and entailed
in the radial distribution function, and another related to the typical velocity differences
between particles at a given distance. This second quantity relates to the particle velocity
(first-order) structure function

S1(r) =
D

|V (1)
p − V (2)

p |
�
�
� |X(1)

p −X(2)
p | = r

E

. (4.28)

This is the average of the amplitude of the velocity difference between two particles that
are at a given distance r. As the probability of distances, this quantity behaves as a power
law S1(r) ⇠ r⇣1 for r ⌧ L (see e.g. Bec et al. (2005)). The exponent ⇣1, shown in the
inset of Figure 4.6 decreases from 1 at St = 0, corresponding to a differentiable particle
velocity field, to 0 when St! 1, which indicates that particle velocity differences become
uncorrelated with their distances. Again, when working with the phase-space density one
cannot use (4.28) but relies on

S1(r) =

⌦R
dv

R
dv0 f(x, v) f(x+ r, v0) |v − v0|

↵

⌦R
dv

R
dv0 f(x, v) f(x+ r, v0)

↵ . (4.29)

As the second-order moment of the coarse-grained density, this quantity will also be used
as a physical observable for benchmarking the method.

In the above discussion, we have neglected the effects of diffusion. It is for instance
expected to alter clustering properties by blurring the particle distribution at small scales.
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This is illustrated in Figure 4.5 where one can compare the instantaneous phase-space
particle positions in the absence of diffusion (Left) and when it is present (Middle and
Right) at the same time and for the same realization of the fluid velocity. At large scales,
identical patterns are present, but diffusion acts at small scale and smoothes out the fine
fractal structure of the distribution. One can easily estimate the scales at which this
crossover occurs. Diffusion is responsible for a dispersion vd in velocities that can be
obtained by balancing Stokes drag and diffusion in the particle dynamics, namely v2d/⌧p ⇡ ,

so that vd ⇠ ⌧
1/2
p 1/2. This dispersion in velocity is responsible for a dispersion in positions

on scales of the order of `d = ⌧p vd ⇠ ⌧
3/2
p 1/2 = St3/2K1/2L. Hence, when diffusion is small

enough and `d ⌧ L, the spatial distribution of particles is unchanged by diffusion at length
scales r � `d, and the probability that two particles are at a distance less than r behaves
as p<2 (r) ⇠ (r/L)D2 . For r ⌧ `d, diffusion becomes dominant, the particles distribute in a
homogeneous manner and p<2 (r) / rd, with d = 1 being the space dimension. By continuity
at r = `d, we get p<2 (r) ⇠ (`d/L)

D2(r/`d) at small scales.
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Figure 4.6: Cumulative probability p<2 (r) of inter-particle distances for various diffusivities
 and for St ⇡ 2. One observes at low diffusivities and for r > `d a behaviour / (r/L)D2

with D2 ⇡ 0.7 < d = 1, followed at small scales by uniform particle distribution where
p<2 (r) / r. As  increases, the transition is moved to larger values of r. The vertical dashed

represent in each case the estimate `d ⇠ ⌧
3/2
p 1/2 for this transition. Inset: variations of the

correlation dimension D2 and of the scaling exponent ⇣1 of the first order particle structure
function, as a function of the Stokes number St in the case of the random fluid velocity
defined by equations (4.24)-(4.25).

This picture is confirmed numerically as shown in Figure 4.6 which represents the scale-
behaviour of p<2 (r) for a fixed Stokes number and various values of the diffusivity . One
clearly observes the homogeneous distribution / rd at small scales and the fractal scaling
/ rD2 in an intermediate range. The predicted transition between the two behaviours
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is indicated by the vertical lines at the diffusive scale `d. A homogeneous distribution is
recovered for r . `d/10.

Velocity statistics are also altered by the presence of diffusion. The structure function
S1(r) is expected to behave as r⇣1 for `d ⌧ r ⌧ L and to saturate to a constant value

when r ⌧ `d. By continuity, the value of this plateau should be ⇠ `⇣1d ⇠ K⇣1/2. Note

finally that the slow convergence `d/L /
p
K as K ! 0 implies that very small values of

the diffusion are needed in order to clearly recover the statistics of diffusive-less particles
as an intermediate asymptotics.

4.4.2 Lattice-particle simulations

We now turn to the application of the lattice-particle method described in Section 4.3 to
this one-dimensional situation. We compare the results to Lagrangian simulations where
we track the time evolution of Np particles randomly seeded in space with zero initial
velocity. We choose and normalize the initial phase-space density f(x, v, 0) to match the
Lagrangian settings. The distribution is uniform over the cells, concentrated on a vanishing
velocity and the total mass is such that

P

i,j f(xi, vj , t)∆x∆v = Np. In all simulations,
the maximum velocity is set to Vmax = urms = 1 and we have chosen L = 2⇡ and ⌧f = 1.
In these units, the time step is kept fixed at ∆t = ∆x/∆v = 2−6⇡ ⇡ 0.05. The number of
discrete velocities is of the form 2n + 1 and is varied between Nv = 3 to 129. The number
of spatial collocation points is then given by 2n+6 and thus varies between Nx = 128 to
8192. Note that, because of the CFL condition (4.20), this choice restricts the number of
discrete velocities that can be used to Nv < 1 + 128St/(2⇡).
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Figure 4.7: Position-velocity phase-space positions of Lagrangian particles (black dots) on
the top of the field obtained by the lattice-particle method (coloured background). The
diffusivity is here  = 10−3 (K ⇡ 6.28.10−3) and St ⇡ 2.

Figure 4.7 represents simultaneously the phase-space distribution of Lagrangian parti-



4.4. APPLICATION TO A ONE-DIMENSIONAL RANDOM FLOW 75

cles and the numerical approximation obtained by the particle-lattice method for Nv = 129.
Clearly, one observes that the method fairly reproduces the distribution of particles, in-
cluding the depleted zones, as well as the more concentrated regions. Furthermore, the
method is able to catch multivalued particle velocities. We have for instance up to three
branches in v for x ' 3⇡/2. It is important to emphasize that numerical diffusion is of
course present, and that it has to be smaller than the physical diffusion  in order for the
approach to be consistent with the Lagrangian dynamics.

To get a more quantitative insight on the convergence of the method, we next com-
pare the coarse-grained densities obtained from the Lagrangian simulation and the lattice-
particle approximation of the phase-space density. The first, denoted ⇢Lr is computed by
counting the number of particles contained in the different boxes of a tiling of size r. The
second is written as ⇢Er and is obtained by summing over velocities and coarse-graining over
a scale r the phase-space density obtained numerically. To confirm the convergence of the
method, we measure for a fixed r the behaviour of the L2-norm of the difference between
⇢Lr and ⇢Er , namely

k⇢Lr − ⇢Er k =
D�
⇢Lr (x, t)− ⇢Er (x, t)

�2
E1/2

, (4.30)

where the angular brackets h·i encompass a spatial and a time average. Figure 4.8 shows
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Figure 4.8: Left: Relative L2-error of the lattice-particle method for evaluating the coarse-
grained density ⇢r over a scale r = L/128 as a function of the number of velocity grid-points
Nv and for various values of the Stokes number, as labelled. Right: Convergence of the
second-order moment of the coarse-grained density h⇢2ri, which is shown as a function of r
for St ⇡ 1.9, K = ⇡ 10−2, and various lattice velocity resolutions Nv, as labelled.

the behaviour of the relative L2-error as a function of the number of velocity grid-points
Nv, for various values of the Stokes number St and for a given scale r. One observes that
the error decreases when the resolution increases, giving strong evidence of the convergence
of the method. The error is found proportional to the velocity grid spacing ∆v, indicating
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that the method is first order for large values of Nv. The constant is a decreasing function
of the Stokes number. This indicates that the method is more accurate for particles with
strong inertia. The reason for this trend will be addressed in the sequel.

To assess the ability of the proposed method to reproduce physically relevant quan-
tities, we now compare statistics obtained using the lattice method with those using a
Lagrangian approach. We focus on the clustering and velocity difference properties that
were introduced and discussed in section 4.4.1.

Figure 4.8 shows for given values of the Stokes number and of the diffusivity, the
second-order moment of the coarse-grained density h(⇢Er )2i as a function of r and various
values of the resolution in velocities, together with the value h(⇢Lr )2i obtained with 106

Lagrangian particles. One observes that the curves approach the limiting behaviour from
below when the number of grid-pointsNv becomes larger (i.e. when∆v ! 0). At sufficiently
high velocity resolutions, the method is able to capture the large-scale properties of the
concentration of the particles. The second-order moment of density then saturates to a
value lower than that expected from Lagrangian measurements. The situation is very
different at very low resolutions where the data obtained from the lattice-particle method
deviates much, even at large scales. This corresponds to the case when the numerical
diffusion in velocity is larger than the physical diffusion.

These strong deviations stem from a non-trivial effect of diffusion that lead to finite-
scale divergences of the solutions associated to different values of K. In the absence of
diffusion, there is a finite probability that an order-one fraction of mass gets concentrated
on an arbitrary small subdomain of the position-velocity phase space. This corresponds
to a violent fluctuation where the local dimension approaches zero. At the time when
this occurs, the mass distribution associated to a finite value of the diffusion will get
stacked at a scale `d. Because of the chaotic nature of the particle dynamics, the two
mass distributions, with and without diffusion will experience very different evolutions and
diverge exponentially fast. Such a strong clustering event followed by the divergence of the
solutions, is shown in Figure 4.9. Starting from a correctly reproduced distribution, the
major part of non-diffusive Lagrangian particles concentrate into a subgrid region while
the Eulerian approximation is stacked at scales of the order of `d. At a later time, the
two distributions diverge and the diffusive particles fill faster larger scales. The probability
with which one encounters such a configuration strongly depends on the Stokes number
and on the spatial dimension. In the one-dimensional case, such events are rather frequent
but become sparser when the Stokes number increases. This is essentially due to the
compressibility of the carrier flow. For incompressible fluids in higher dimensions, we
expect a negligible contribution from these events.

In addition, we report some results on velocity difference statistics. For that, we have
measured the first-order structure function S1(r) of the particle velocity, using (4.28) in
the Lagrangian case and (4.29) for solutions obtained with the lattice-particle method.
Figure 4.10 shows the relative error of S1(r) for fixed values of the separation r = 2⇡/26 =
25∆x, the Stokes number, and the diffusivity, as a function of the velocity resolution.
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Figure 4.9: Three snapshots of the Lagrangian particles (black dots, for K = 0) and of
the lattice-particle Eulerian solution (coloured background) in the (x, v) plane for different
times: At t < t? (Left) the solution is well approximated at large scales; At t = t? (Centre)
an order-unity fraction of the mass is concentrated on a scale less than `d; At t > t?
(Right), the Eulerian and Lagrangian solutions diverge exponentially fast with differences
appearing at the largest scales..

Clearly, when the number of grid-points Nv increases, the error decreases, following a law
approximatively proportional to the grid spacing ∆v. The inset shows the same quantity
but, this time, for a fixed resolution (Nv = 33) and as a function of the Stokes number. One
clearly observes a trend for this error to decrease with St. There are two explanations for
this behaviour. First, as seen above, there are strong clustering events leading to differences
between the Lagrangian and lattice solutions that can persist for a finite time. When
the Stokes number increases, such events become less probable. The second explanation
relies on the fact that particles with a larger Stokes number experience weaker velocity
fluctuations. This implies that for a fixed value of Vmax, the particle velocity is more likely
to be fully resolved at large values of St. As seen in the inset of Figure 4.10, the downtrend
of the error is compatible with a behaviour / St−1/2. It might thus be proportional to the
expected value of the root-mean-squared particle velocity when St � 1 (see Abrahamson
(1975)), favouring the second explanation.

To close this section on one-dimensional benchmarks of the lattice-particle method, we
briefly assess the numerical cost of the method. The computational cost per time step for
both Lagrangian and Lattice simulations are compared for a fixed resolution and coarse-
graining scale. A reference coarse-grained density field ⇢1r from the Lagrangian method
using a large number of particles (Np = 107) is compared to the ones ⇢NUM

r obtained either
from the Lattice or the Lagrangian simulations varying the resolution (number of velocities
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Figure 4.10: Relative error between the particle velocity structure function SE1 (r) obtained
from the lattice-particle method and that SL1 (r) from Lagrangian averages, as a function
of the number Nv of velocity grid-points. Here, the Stokes number is fixed St ⇡ 1.9 and
K = 2⇡ 10−3. Inset: same quantity but for Nv = 33 and as a function of the Stokes number
St.

Nv for the lattice method or the number Np of Lagrangian particles). All the density fields
are coarse-grained at the same scale r = L/128 as in Figure 4.8. Figure 4.11 shows the
relative error as a function of the computational cost. All the simulations were done using
the same quadri-core CPU with shared memory. We expect the costs to have the same
tendencies when using distributed memory machines, as the communication should not
vary much from one method to the other. For the Lagrangian simulations, the error is
essentially given by finite number effects that affect the resolution of the p[article density

field. It is thus related to the statistical convergence of the average and behaves as N
−1/2
p .

As the computational cost is proportional to Np, this explains the 1/2-scaling observed in
Figure 4.11. For the lattice simulations the cost is proportional to N2

v , since increasing
Nv with constant time step implies increasing Nx by the same factor. It appears that the
Lattice method is more computationally efficient down to a given error. A few number
of discrete velocities reproduces indeed better the reference density field than Lagrangian
simulations with too few particles. The crossover observed in Figure 4.11 is due to the
scaling of the error with respect to Nv that is slightly slower than linear, as shown in
Figure 4.8. Note that if the advection term in equation (4.14) is treated with a higher
order scheme, the error as a function of Nv will decrease faster than linearly, and the
Lattice method will be computationally advantageous if lesser errors are targeted. Finally,
let us stress that the comparison is here performed for the simple case of non interacting
particles. In some situations involving long-range interactions (such as gravitational or
electrical forces), Lagrangian methods might require O(N2

p ) operations and become much
less efficient that the lattice method, which will then still have a cost O(Nx ⇥Nv).
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Figure 4.11: Relative L2 errors on the coarse-grained density fields obtained with either
Lagrangian or lattice simulations, plotted here as a function of the computational cost
(same parameters as in Figure 4.8 for St = 2.5). The various simulations were done with a
fixed time stepping ∆t = 5⇥10−2; the lattice case spans Nv = 3 to 65, while the Lagrangian
simulations correspond to a number of particles Np varying from 103 to 2⇥106. The symbol
in the y-axis label stands for either Lagrangian of Eulerian simulations.

4.5 Application to incompressible two-dimensional flows

Numerical integration in more than one dimension consists of the same routines as in
Section 4.3, each operator being applied on one dimension after the other.

4.5.1 Cellular flow

We first consider a fluid flow that is a stationary solution to the incompressible Euler
equations (and to the forced Navier–Stokes equations). It consists of a cellular flow field,
a model that have often been used to investigate mixing properties, as well as the set-
tling of heavy inertial particles (see, e.g., Maxey (1987); Bergougnoux et al. (2014)).
The velocity field is the orthogonal gradient of the L-periodic bimodal stream function
 (x, y) = U sin(⇡(x+ y)/L) sin(⇡(x− y)/L) (the typical velocity strength is here denoted
by U). The cellular flow has been here tilted by an angle ⇡/4 in order to avoid any align-
ment of the separatrices between cells with the lattice that leads to spurious anisotropic
effects.

Figure 4.12 shows two snapshots for two different values of St = ⌧pU/L of the sta-
tionary particle distribution (black dots), together with the density field evolved by the
lattice-particle dynamics. For the smallest Stokes number (Left panel), one observes that
the particle distribution is concentrated along the separatrices between the different cells.
One also observes that it develops entangled structures in the vicinity of the hyperbolic
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Figure 4.12: Particles stationary distribution inside a tilted cellular flow along with the
density field from the lattice method. The value of the diffusivity is K = 8⇡ ⇥ 10−3. Left:
St = 1/(2⇡). Right: St = 1/⇡. These simulations were performed on a lattice with 10242

spatial grid-points associated to 192 discrete velocities. The distributions have been here
spatially shifted in order to avoid having the concentration point (0, 0) at the origin.

stagnation points of the flow. These loops, which are aligned with the stable direction, cor-
responds to oscillations in the particle dynamics that occurs when their inertia makes them
cross the unstable manifold with a too large velocity. At larger St, the particle distribution
is somewhat broader but is this time centred on specific trajectories that do not perform
the aforementioned oscillation but rather cross ballistically the heteroclinic separatrices. In
both cases the particle distribution contains regions where trajectories are clearly crossing
each other. The lattice method reproduces fairly well this complex dynamics. Note that
any traditional Eulerian-Eulerian method introducing a particle velocity field will not be
able to reproduce such effects.

One may wonder why the flow has been tilted by an angle. Figure 4.13 (left) shows the
density field obtained for a simulation with a non-tilted flow for St = 1/⇡. Unfortunately, it
is unable to recover the correct particle spatial repartition, shown on the right panel by the
Lagrangian particles (black dots). Actually, mass has concentrated along the steady, stable
manifolds between the rotating cells. At each passage through the hyperbolic points (cell
corners), for which u = 0, a little amount of mass is transferred into the corresponding cell
in velocity space [−∆v/2,∆v/2]2, from which no mass ever escape, due to the stationarity
of the velocity field. Trying to circumvent this effect, a refinement of the finite volume
scheme was attempted, adding an outgoing flux proportional to the difference between
u(x) − vi, with vi the centre of the cell. This ensured an ejection even for the cell for
which vi = 0. But it only spread the distribution a little along the concentrating, stable
manifold. This effect is expected to be present for all finite ∆v. This presently limits the
capacity of the model to represent correctly flows with stationary manifolds aligned with
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Figure 4.13: Illustration of the particle density integrated by the lattice method in the case
of a non-tilted cellular flow. St = 1/⇡ and K = 8⇡ ⇥ 10−3. This picture is to be compared
with Figure 4.12 (right).

one of the lattice propagation direction.

4.5.2 Heavy particles in 2D turbulence

We next turn to the study of the model in non-stationary fluid flows that are solutions to
the forced two-dimensional incompressible Navier–Stokes equations (2.1).

The fluid velocity field u is computed numerically using a pseudo-spectral, fully de-
aliased GPU solver for the vorticity streamfunction formulation of the Navier–Stokes equa-
tion (2.18).

The two-dimensional Navier–Stokes equation is known to develop two cascades, as
explained in Section 2.2.2.

Dimensional analysis predicts that the direct enstrophy cascade is associated to a unique

timescale ⌧Ω = ✏
−1/3
! . Investigating heavy particle dynamics at the small scales of two-

dimensional turbulence thus requires comparing their response time to ⌧Ω. The relevant
parameter is then the Stokes number defined as St = ⌧p/⌧Ω. For St ⌧ 1, particles almost
follow the flow and tend to distribute homogeneously in space. When St � 1, they
completely detach from the fluid and experience a ballistic motion leading again to a space-
filling distribution. Non-trivial clustering effects occur when the Stokes number is order one.
This is illustrated in Figure 4.14, which shows a snapshot of the particle distribution in the
position space on top of the turbulent vorticity field in the direct enstrophy cascade. Due
to their inertia, particles are ejected from vortices and concentrate in high-strain regions.
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Figure 4.14: Left: Snapshot of the position of particles (black dots) for St = 0.1. The
coloured background shows the vorticity field obtained from a 10242 direct numerical sim-
ulation with a large-scale forcing at wavenumbers 1  |k| < 4. Right: Correlation dimen-
sion D2 and scaling exponent ⇣1 of the particle velocity first-order structure function as a
function of St in the two-dimensional direct enstrophy cascade.

There, the combination of stretching, folding and dissipation induced by their dynamics
makes them converge to a dynamical attractor with fractal properties. Such a behaviour is
quantitatively measured by the correlation dimension D2 defined in equation (4.26). The
evaluation of D2 as a function of St resulting from Lagrangian simulations is presented in
Figure 4.14. At St = 0, unlike in the one-dimensional case where the dimension of the
attractor is 0, particles follow the streamlines of the incompressible two-dimensional flow,
fill the position space, and hence D2 = 2. Clustering then increases with inertia to attain
a minimum at St ⇡ 0.2. It then decreases again as the velocity of particles separate from
that of the fluid and disperse in the velocity space, leading to a space-filling distribution
D2 = 2 when St! 1.

The velocity distribution of particles is itself having a behaviour that is very similar to
the one-dimensional case. This is clear from Figure 4.14, where the scaling exponent ⇣1 of
its first-order structure function (see equation (4.28)) is represented as a function of the
Stokes number. For St⌧ 1, the particles are as if advected by a smooth velocity field and
⇣1 ⇡ 1. When St & 1, particles with very different velocities can come arbitrarily close to
each other and ⇣1 ! 0.

Particle properties in the inverse energy cascade are more difficult to characterize be-
cause of the scale-invariance of the velocity field. In particular, neither the moments of
the coarse-grained density nor the particle velocity structure functions display any scaling
behaviour. What has been nevertheless observed numerically by Boffetta et al. (2004) is
that the particle spatial distribution is dominated by the presence of voids whose sizes
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obey a universal scaling law. Chen et al. (2006a) argued that such voids are related to
the excited regions of the flow and that particles tend to follow the calm regions where the
zeros of the fluid acceleration are more probable.

In the sequel we apply the lattice method to both the direct and the inverse two-
dimensional cascades. Resolving both cascades in the same simulation would require a
tremendous scale separation and thus number of grid-points (see Boffetta & Musacchio
(2010)). For that reason we consider the two cases separately.

Direct enstrophy cascade

The fluid flow is integrated by a pseudo-spectral method on a uniform square spatial grid
using a streamfunction formulation of the Navier–Stokes equation (2.18). To maintain a
developed turbulent state, a stochastic forcing is applied in the wavenumber shell 1 
|k| < 4 of Fourier space while the kinetic energy accumulating at large scales is removed
by a linear friction. The particle dynamics is simulated using a spatial lattice with the
same resolution as the fluid and with various numbers N2

v of discrete velocities. The
acceleration step is done via a flux limiter scheme as described in Section 4.3. Results are
compared to particle trajectories obtained from Lagrangian simulations. Figure 4.15 shows
the instantaneous particle distributions obtained from the two approaches. The qualitative
agreement is excellent, reproducing correctly depleted zone as well as more concentrated
regions.

Figure 4.15: Snapshot of the position of Lagrangian particles (black dots), together with
the density field obtained from the lattice method (coloured background, from white: low
densities to red: high densities) for St ⇡ 0.1 at the same instant of time as Figure 4.14. The
fluid flow was integrated using a resolution of 10242 and lattice simulations were performed
with 10242 spatial grid-points associated to 172 discrete velocities.
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To get more quantitative informations on the relevance of the method, we have per-
formed a set of simulations with a 5122 resolution and in which both the number of discrete
velocities N2

v and the maximum velocity Vmax are varied. Figure 4.16 shows measurements
of the second-order moment of the coarse-grained density ⇢r obtained by integrating the
phase-space density f(x,v, t) with respect to velocities and over space in boxes of length
r. This is the two-dimensional version of Figure 4.8 and the statistics of h⇢2ri have a very
similar behaviour as in the one-dimensional case. Here St = 0.5, Vmax = 3.9urms, and Nv

is varied from 9 to 21. One clearly observes that the statistics obtained from the lattice
method converges to that obtained from Lagrangian simulations.
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Figure 4.16: Left: Second-order moment of the coarse-grained density ⇢r as a function of r
for St = 0.5 and K = 1.6⇡ 10−1 in the direct cascade, both from Lagrangian measurement
(black line) and the lattice method with different Nv, as labeled. Right: Distance-averaged
error E of the second-moment of the mass density as defined in (4.31) as a function of
the maximal velocity Vmax (top) and of the velocity grid spacing ∆v = 2Vmax/(Nv − 1)
(bottom) for various values of the velocity resolution N2

v and for St ⇡ 0.5.

The interplay between the choices of Nv and of Vmax requires some further comments.
On the one hand the method converges when both ∆v = 2Vmax/Nv ! 0 and Vmax ! 1.
On the other hand, the computational cost is / N2

v . One can thus wonder if for a fixed
cost there is an optimal choice of Vmax that minimizes the error obtained with the lattice
method. Focusing again on the second-order statistics of the particle mass distribution, we
have measured the average with respect to r of the error made on the density moment h⇢2ri
defined as

E(Nv, Vmax) = h(⇢Er )2i − h(⇢Lr )2i/h(⇢Lr )2i, (4.31)

where

f(r) =
1

L2

Z L

0
|f(r)| r dr. (4.32)
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Figure 4.16 (top) represents this quantity as a function of Vmax for different values of
the cost N2

v . One clearly observes that there is indeed for a fixed Nv a specific choice of
Vmax where the error is minimal. The optimal value of the maximal velocity increases with
Nv. On the right of the minimum, the error is in principle dominated by a ∆v too large.
This is confirmed by the collapse of the various curves on the right of their minima that
can be seen in the bottom of Figure 4.16 where E is represented as a function of ∆v. In the
left of the minimum, the error should be dominated by a too small value of Vmax. One can
indeed guess an asymptotic collapse for Vmax ⌧ urms on the upper panel of Figure 4.16, or
equivalently, the fact that the curves separate from each other at small values of ∆v in the
lower panel.

The value of the error at the optimal Vmax decreases from Nv = 9 to Nv = 13 but then
seems to saturate (or to decrease only very slowly) at higher values of Nv. One cannot
exclude that this behaviour corresponds to a logarithmic convergence of E when Nv ! 1.
This slow dependence is also visible in the bottom panel where the collapse of the various
curves seems to extend weakly on the left-hand side of the minima for Nv = 13, 17 and
21. Accordingly, a small difference in Nv is not enough to decrease significantly the error.
In the specific case considered (for St ⇡ 0.5 in the direct cascade), the resulting optimal
choice seems to be Nv = 13 with Vmax = 2.25urms, which leads to a relative error 10−3.

Inverse energy cascade

To complete this study we have also tested the proposed lattice method in a two-dimensional
turbulent flow in the inverse kinetic energy cascade regime. The stochastic forcing is now
acting at small scales (400  |k|  405) and we made use of hyper-viscosity (here eighth
power of the Laplacian) in order to truncate the direct enstrophy cascade. The kinetic
energy accumulated at large scales is again removed using a linear friction in the Navier–
Stokes equation (2.18). The particle Stokes number is now defined as St = ⌧p/⌧L using the
large-eddy turnover time ⌧L = L/urms since small-scale statistics are dominated by forcing
and are thus irrelevant. The flow is integrated with a resolution of 20482 grid-points while
the lattice-particle method is applied for St ⇡ 0.1 on a coarser grid with 5122 points.

Figure 4.17 shows that the lattice-particle method is able to reproduce the main qual-
itative features of the particle spatial distribution at scales within the inertial range of the
inverse energy cascade. This is confirmed in Figure 4.17 which represents the relative error
E defined in equation (4.31) of the second-order moment h⇢2ri of the density ⇢r coarse-
grained over a scale r. The Lagrangian integration was performed with 2 ⇥ 107 particles
(with no physical diffusion) and the lattice method on a 5122 spatial grid with N2

v = 92

discrete values of the particle velocity. One clearly observes that the error decreases at the
largest scales of the flow.
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Figure 4.17: Left: Snapshot of the position of Lagrangian particles (black dots), together
with the density field obtained from the lattice method (coloured background, from white:
low densities to red: high densities) for St ⇡ 0.1 in the inverse energy cascade. The fluid
flow was integrated using a resolution of 20482 and lattice simulations were performed
with 5122 spatial grid-points associated to 92 discrete velocities. Right: Relative error E of
the second-order moment of the coarse-grained density ⇢r as a function of r for St = 0.5.
The lattice-particle method was here used with 5122 position grid-points and 92 velocity
grid-points.

4.6 Conclusions

We have presented a new Eulerian numerical method to simulate the dynamics of inertial
particles suspended in unsteady flow. This lattice-particle method is based on the dis-
cretisation in the position-velocity phase space of the evolution equation for the particle
distribution. The spatial grid is chosen such that particles with a given discrete velocity
hop by an integer number of gridpoints during one time step, an idea close to that used
in lattice-Boltzmann schemes. We have shown that the method reproduces the correct
dynamical and statistical properties of the particles, even with a reasonably small amount
of velocity gridpoints. Some deviations from Lagrangian measurements are nevertheless
observed at small scales in one dimension. We obtained evidence that they are due to nu-
merical diffusivity acting in the space of velocities and are more important in one dimension
at small Stokes numbers than otherwise. The proposed method is anyway intended to de-
scribe large scales where such deviations disappear. It might hence be a suitable candidate
for developing large-eddy models for particle dynamics. Indeed, as equation (4.19) is linear
in f , some techniques of subgrid modeling used in scalar turbulent transport (see Girimaji
& Zhou (1996) for example) could be adapted.

Our approach consists in always imposing the same mesh for particle velocities, in-
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dependently of the spatial position and of the local value of the fluid velocity. This is
particularly well-adapted for particles with a large Stokes number. Their velocity experi-
ences small fluctuations and is generally poorly connected to that of the fluid. In addition,
the method is accurate at the largest scales and can hence catch the structures appearing in
the spatial and velocity distributions of large-Stokes-number particles. Such considerations
indicate that the proposed lattice-particle method is suitable for simulating particles with
a sufficiently strong inertia. Conversely, particles with a weak inertia develop fine-scale
structures in their distribution. They result from tiny departures of their velocity from
that of the fluid. Our method, applied with a fixed velocity resolution, might not be able
to catch such deviations. However, a more suitable idea for this case is to use a variation
of our approach where, instead of a full resolution of the particle velocity, one considers
its difference with that of the fluid. This would of course require changing scheme for
integrating advection but should in principle not lead to any major difficulty.
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CHAPTER 5

Turbulence modulation by small heavy particles

In this chapter, turbulence modulation by small heavy particles is studied in the two-
dimensional enstrophy cascade. The two asymptotics of small and high inertia are consid-
ered. In both of them, we make use of a fluid description for the solid suspension. This
allows us to treat two-way coupling in an exact manner. The net force exerted by the
particles on the fluid phase is computed exactly as the result of the action-reaction rule
from the number density function.

In the small Stokes regime, the bi-fluid approximation is used, yielding an evolution
equation for the density and the velocity of the solid phase. It is shown that particles
ejected from vortices core develop a shear instability at their boundaries. This results in
a decrease of the slope of the fluid kinetic energy spectrum, together with an enstrophy
injection. This last effects results in the reversal of the sign of the nonlinear flux.

This study has made the object of a paper submitted to the journal Physical Review
Letters which is reproduced hereafter.

In the large Stokes asymptotics, the lattice particle method presented in the previous
chapter was coupled to the fluid phase through the particle number density function. The
effect of two-way coupling in this case was shown to behave as an additional effective large-
scale friction. As the inertia was decreased, the qualitative behaviour observed in the limits
of small Stokes numbers (see above) began to be recovered.

This study has made the object of a paper submitted to the journal Journal of Fluid
Mechanics which is reproduced hereafter.
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The question of two-way coupling, that is of the back effects of a transported particle
phase onto the fluid flow, is adressed in this paper. The suspension considered is that
of small-Reynolds-number heavy particles with Stokes numbers of the order of unity or
larger, that are embedded in a two-dimensional turbulent flow in the direct enstrophy
cascade. A recently developed numerical approach providing a description of the particle
in terms of fields is used. This method is based on the kinetic equation for the position-
velocity phase-space distribution of the particles and allows for an exact expression
of the back-reaction from the particles from the action-reaction principle. It is shown
that global quantities such as total energy and enstrophy monotonically decrease with
the mass ratio, as well as Ekman and molecular dissipation. At large Stokes numbers,
the effect of particles is explained in terms of an effective additional Ekman friction.
This has the consequence to steepen the power-law behavior of the enstrophy spectrum.
The impact on the intermittent properties are also examined. In particular, it is shown
that the multiscaling properties of the vorticity structure function follow a simple
renormalisation given by second-order statistics. At scales within the dissipative range,
this renormalisation stops working. The probability distribution function of the vorticity
gradients display tails which broaden when the coupling intensity is increased. Finally, it
is also shown that two-way coupling enhances particle clustering at large Stokes numbers.
This effect can be attributed to a decrease of the actual particles inertia, making them
more likely to be ejected from coherent vortices and to form preferential concentrations.

Key words: turbulence modulation, particle-laden flows, turbulent flows, multiphase
flows modelling

1. Introduction

Numerous natural and industrial situations involve particle-laden flows. These include
pollutant transport (Gyr & Rys 2013), plankton dynamics and accumulation (Durham
et al. 2013), the modelling of fluidized beds in pharmaceutical or mining manufacturing
processes (Curtis & Van Wachem 2004) and dilute spray combustion (Li et al. 2012).
Finite-inertia particles display the important feature of detaching from the flow stream-
lines. Those heavier than the surrounding fluid (such as dust or liquid droplets in gases)
tend to be ejected from vortices by centrifugal forces and form preferential concentrations
in strain-dominated regions. This effect is expected to enhance turbulent collisions and,
as a matter of fact, to trigger coalescences between droplets and accelerate the initiation
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of rain in warm clouds (Falkovich et al. 2002; Lanotte et al. 2009). During this small-
scale process, particle with very different histories can possibly meet to collide, bringing
together different turbulent velocities (Gustavsson et al. 2008) or non-trivial inertial-
range correlations of transport (Bec et al. 2016). Consequently, this microphysical effect
is strongly coupled to the full range of length and timescales that are excited by turbulent
fluctuations, leading to significant difficulties in establishing reliable quantitative models.
The back reaction exerted by the particles onto the fluid gives rise to an extra

complexity in modelling. Such a two-way coupling typically arises when the mass fraction
of the dispersed particle phase relative to the carrier fluid is sufficient to provoke
momentum exchanges with the surrounding medium (Elghobashi 1994), resulting in a
modulation of the turbulent flow. The understanding of the mechanisms at play, even at
a purely qualitative level, is still insufficient for developing efficient models of relevance
to applications. An instance where turbulence modulation plays a key role is in the
process of planet formation during the early stages of the Solar system. It has indeed
been shown that the interactions between dust and gas in protoplanetary disks create an
instability facilitating grain clumping (Johansen & Youdin 2007; Jacquet et al. 2011) and
we are still lacking quantitative predictions on how much this enhances the formation of
planetesimals. Many questions on the modelling of turbulence modulation by particles
remain also open in engineering applications. These include turbulent sprays (Jenny et al.
2012) or fuel droplets in combustion chambers (Post & Abraham 2002), where two-way
coupling is expected to enhance heat transfers and macroscopic chemical reaction rates.

The development of a comprehensive phenomenology and of efficient models is hindered
by the complexity of the problem. A source of complexity comes from the possibility or
not to model the particle dynamics itself. For instance, when their sizes are comparable or
larger than the smallest active scale of the fluid flow (e.g. the Kolmogorov dissipative scale
in three-dimensional turbulence), determining particles dynamics requires fully resolving
the fluid flow around them and integrating viscous strain and pressure at their surface
to obtain net forces. Local modulation of the flow around the particles might then be
assessed, as well as modification of global quantities. Various numerical techniques have
been developed to the end of studying the effects induced by such finite-size particles.
Immersed boundaries (Lucci et al. 2010; Cisse et al. 2013), two-fluid level-set (Sabelnikov
et al. 2014; Loisy & Naso 2016) and Lattice-Boltzmann methods have already been used
in this context (Poesio et al. 2006; Gao et al. 2013), allowing one to reach volume fractions
of the order of 2-10 % (see, e.g., Ten Cate et al. 2004). However, the number of resolved
particles is generally limited because of the high computational demand and the effects
on turbulence do not manifest in a sufficiently intelligible manner. Experiments have
been conducted in order to span higher values of the dispersed phase volume fraction. It
was found that in wall flows, the presence of particles can either trigger or prevent the
transition to turbulence depending on the size and volume fraction of the particles (Matas
et al. 2003). In settings closer to homogeneous isotropic turbulence (as, e.g., in a von
Karman flow), it was observed that large neutrally buoyant particles attenuate turbulent
fluctuations without affecting their nature: The distribution of acceleration statistics and
the velocity structure functions are only affected by the modifications of the Reynolds
number (Cisse et al. 2015). In addition, these measurements suggest a mechanism of
particle shedding that prevent turbulent fluctuations from reaching the center of the
experiment, advocating that the attenuation of turbulence might strongly depend on the
particle size, on its mass, and on the way kinetic energy is injected in the flow. On this
account, and as stressed in Saber et al. (2015), important efforts are still needed in order
to build up a phenomenological outlook and to understand whether or not any universal
ideas and concepts can be sketched for the modulation of turbulence by particles.
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Such difficulties put forward the need to investigate in more details simpler and more
easily controllable situations. A straightforward choice is to focus on very small heavy
spherical particles whose dynamics is fully determined by a unique parameter, the Stokes
number St. Experimental and numerical studies suggest that the effect of small particles
is to attenuate turbulence intensity at low inertia, i.e. St . 1 or low volume fractions,
and to enhance it when St & 1 and inertia effects become large (Mandø 2009; Patro
& Dash 2014). Furthermore, modulation is not necessarily isotropic nor homogeneous
in space. Gualtieri et al. (2011) performed simulations with particles with St of order
one and that are suspended in a flow with mean shear. The effect of particles exhibits a
strong anisotropy: The kinetic energy spectrum displays an excitation of the small scales
that clearly indicates that two-way coupling is responsible for a transfer of large-scale
anisotropies to the small scales at the expense of the inertial-range energy content. Yang
& Shy (2005) investigated intermediate Stokes number (0 < St < 2) and computed a
wavelet-based energy spectrum. They observed an increase of the turbulent fluctuations
at high frequencies, maximal at St ⇠ 1, and more pronounced in the direction of gravity.
Hwang & Eaton (2006) considered suspensions with a larger value of the Stokes number
(St ⇠ 50) and showed a decrease of the total kinetic energy with increasing mass load.
They observed a uniform attenuation across the scales in the horizontal plane and a
dissipation less pronounced in the vertical direction.
An advantage of considering small particles is that they are generally associated with

a low Reynolds number, so that the forces exerted on them by the fluid can be expressed
explicitly. While this could seems as a strong point to perform efficient numerical
simulations, it actually leads to other difficulties. In principle, considering small particles
foster the use of Euler-Lagrange numerical approaches and thus of a point-force method
for the back reaction on the flow. This method originates from the particle-in-cell method
(Crowe et al. 1977) and consists in considering particles as punctual sources and sinks of
momentum. The total forces exerted on the fluid phase by all the particles in a given mesh
cell must then be distributed to the neighbouring grid points. As a result, this method is
strongly grid-dependent (Balachandar 2009). It greatly relies on the number of particles
in each cell, and can suffers from a lack of numerical convergence when this number is too
low (Garg et al. 2009). This effect can be particularly penalizing in the case of particles
with inertia that exhibit preferential concentration and distribute in space in a very
non-uniform manner. Progress are however made in order to improve Euler-Lagrange
approaches. For instance, Gualtieri et al. (2015) used physical arguments to propose
a specific regularisation method that is expected to remove most drawbacks linked to
the extrapolation of the point-force to the fluid gridpoints. Despite such developments,
Euler-Lagrange methods might still not fit situations requiring by essence a large number
of particles. These include of course situations where particles are not sufficiently dilute
but also cover the case of particles with large Stokes numbers. Such particles are indeed
known to develop a broad dispersion in velocity and a grounded representation requires
sufficiently many particles to map the full position-velocity phase-space.
The objective of the work reported here is twofold. The first target is to concentrate

on a case amenable to a systematic analysis, namely the modulation of two-dimensional
incompressible turbulence by small heavy particles. We focus on the direct cascade,
where enstrophy (squared vorticity) injected at the large scales, is transfered through
the scales, before being dissipated by molecular viscosity (see Boffetta & Ecke 2012,
for a review). Besides its relevance to horizontal, large-scale geophysical motions (see,
e.g., Danilov & Gurarie 2000), two-dimensional turbulence profits from being easy to
simulate numerically. On the one hand, this allows for broadly exploring the dependence
upon the two parameters which characterise the coupling with particles, namely their
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Stokes number St and their total mass fraction φm. On the other hand, undemanding
simulations enable integrations over very long periods, typically of several hundreds of
large-eddy turnover times, a necessary duration to guarantee the convergence of large-
scale quantities and to gather accurate statistics. The other goal of this work is to
propose and exploit a new Eulerian numerical technique that copes with the difficulties
encountered when using Lagrangian point-force methods and allows for considering the
effect of particles with moderately large Stokes numbers. We make use of the method
introduced in Laenen et al. (2016), which integrates explicitly the kinetic equation for
the particle population without introducing any approximation on the dynamics.

The paper is organised as follows. We formulate the dynamical model in §2 and describe
the numerical method in §3. Next, we describe in §4 the effects of two-way coupling on
the statistics of the fluid energy and enstrophy. We demonstrate that the presence of
large-Stokes-number particles leads to decrease both the dissipation rate and the global
values of energy and enstrophy, and concomitantly steepen the corresponding power
spectra. Conversely, the feedback of particles with St ⇠ 1 causes an increase of enstrophy
dissipation and is responsible for an injection of energy at intermediate scales. In §5, we
then present results on small-scale, higher-order statistics. We show that intermittency
increases with the particle mass loading. In particular, the probability density functions of
the vorticity gradients are found to develop larger tails when the coupling with particles
is strengthened. In §6 we report measurements on particle clustering and find that the
coupling can either enhance or deplete it depending on the value of the Stokes number.
We finally draw some concluding remarks in §7

2. Phase-space description

As stated in the Introduction, we adopt in this work a description of particle suspen-
sions in terms of fields. This method does not rely on approximating the particle dynamics
in terms of a particle velocity field but considers the full phase-space distribution
f(x,w, t) of particles positions and velocities. This quantity is defined as

f(x,w, t) =
1

Np

Np
X

i=1

δ(Xi(t)− x) δ(Vi(t)−w), (2.1)

where Np is the total number of particles in the domain, Xi and Vi are the position and
the velocity, respectively, of the i-th particle. Note that the phase-space distribution f is
normalized in such a way that its integral over positions and velocities is equal to unity.
The evolution of f is governed by the Liouville equation, which expresses conservation
in phase space, namely

∂tf +rx · (w f) +rw · (Ff!p f) = 0 (2.2)

where Ff!p(x,w, t) denotes the sum of the forces acting at time t on a particle at position
x with velocity w. These various forces can be very complex when including all possible
effects, such as buoyancy, Basset–Boussinesq history forces due to the interaction of the
particle with its own wake, the added-mass factor, Faxén corrections, etc. (see Maxey &
Riley 1983, for details). We focus here on the case of small, very heavy, low-Reynolds-
number spherical particles. Namely, we assume that the particles radius a is much smaller
than any active scale of the flow and that their material mass density ρp is much larger
than the fluid density ρf and or the sake of simplicity we also neglect the effect of gravity.
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Under these assumptions, the forces reduce to the Stokes drag:

Ff!p(x,w, t) = −
1

τp
(w − u(x, t)) , (2.3)

where u(x, t) denotes the fluid velocity evaluated at the particle position and τp is the
particle response time given by τp = 2a2ρp/(9 ρf ν), with ν the fluid kinematic viscosity.

The fluid velocity field u(x, t) evolves according to the two-dimensional incompressible
Navier-Stokes equations

∂tu+ (u · rx)u = −rxp− αu+ νr2
xu+ Fu + Fp!f , rx · u = 0. (2.4)

The flow is sustained in a stationary turbulent regime by the external Gaussian force Fu

which is assumed to be concentrated on the large spatial scales and white noise in time.
The linear damping −αu represents Ekman friction and prevents the pile-up of kinetic
energy at large scales. The force Fp!f exerted by the particles onto the fluid follows from
the action-reaction principle and reads

Fp!f(x, t) = −φm

Z

Fp(x,w, t) f(x,w, t) d
2w (2.5)

This volume forcing depends on the mass ratio parameter φm = Np Vp ρp/(V ρf ), where
Vp is the volume of a single particle, Np is the total number of particles in the domain
whose volume is denoted Vf . As we consider very heavy particles (ρp/ρf � 1), one can
possibly get finite values of φm even if the volume fraction NpVp/V is small.
We further introduce the particle density np and the average particle velocity vp as

np(x, t) =

Z

f(x,w, t) d2w, (2.6)

np(x, t)vp(x, t) =

Z

w f(x,w, t) d2w (2.7)

Note that np is not a mass density field. Because of the definition of f , it actually
counts the number of particles (and is rather a numer density) but it is normalised as
R

np(x, t) d2x = 1. It is worth keeping in mind that for particles with large Stokes
numbers, the actual velocities at a given spatial position can be very dispersed and
generally differ from the average velocity field vp.

Using (2.6), (2.7), and the Stokes drag expression (2.3), one obtains the following
expression for the force exerted by the particles onto the fluid

Fp!f(x, t) = −
φm

τp
np(x, t) [u(x, t)− vp(x, t)] . (2.8)

Usually, the dynamics of incompressible two-dimensional flows is formulated in terms of
the streamfunction ψ(x, t), such that u = (∂2ψ,−∂1ψ), the indices 1, 2 being associated
to the two spatial dimensions, and of the scalar vorticity ω = rx ⇥ u = ∂1u2 − ∂2u1 =
−r2

xψ. The vorticity-streamfunction formulation is obtained from the curl of Navier–
Stokes equation ((2.4)) and reads

∂tω + J (ψ,ω) = νr2
xω − αω + Fω −

φm

τp
[np rx ⇥ (u− vp) + (u− vp) · rxnp] , (2.9)

where we introduced the two-dimensional Jacobian J (ψ,ω) = ∂1ψ ∂2ω − ∂2ψ ∂1ω and
Fω = rx ⇥ Fu.
In the sequel we investigate the modification by particles of a fundamental turbulent

state. This primary regime is obtained by setting φm = 0 and fixing the characteristics of
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Figure 1. Sketch of the algorithm used to update the position-velocity phase-space particle
distribution f(x,w, t). The positions are discretized with a resolution ∆x and the velocities,
bounded between −Wmax and +Wmax with a resolution ∆w. At each time step,the dynamics
is split in two operations: advection with the corresponding velocity (horizontal arrows) and
relaxation to the fluid velocity (vertical arrows).

the external forcing Fu and the values of the dissipative constants ν and α. It is chosen
to correspond to a developed direct enstrophy cascade from which a root-mean-squared
vorticity ωrms can be measured. This value, obtained with no coupling to the particle
phase, serves as a reference. Deviations due to the coupling between the particle and the
fluid phases are obtained by varying only two control parameters: the non-dimensional
mass loading φm defined above and the Stokes number St0 = τp ωrms obtained by
non-dimensionalising the particle response time by the root-mean-squared value of the
vorticity obtained with no coupling.

3. Numerical method

The incompressible fluid flow is integrated numerically using a spectral, fully de-
aliased solver based on the vorticity-streamfunction formulation (2.9) of the Navier-
Stokes equations. Time-marching is done using a second-order Runge–Kutta scheme.
This equation is coupled to the time evolution of the particle phase-space distribution
f given by the Liouville equation (2.2). This integration is performed by means of the
lattice-particle method introduced by Laenen et al. (2016) and which has been shown to
reproduce well the concentration and velocity properties of inertial particles in random
and turbulent flows.

The lattice-particle algorithm is inspired from the lattice-Boltzmann method (see, e.g.,
Succi 2001, for a review). The idea is to approximate the distribution f as a piecewise
constant field discretized in phase-space on a square lattice with resolution N2

x ⇥ N2
w.

For a square periodic spatial domain of size L, the resolution in particle positions is
∆x = L/Nx. The velocity domain is the bounded square [−Wmax,+Wmax]

2 and is divided
in squares of size ∆w = 2Wmax/Nw. The time step size is chosen such that ∆x =
∆w∆t. The algorithm to update f between two consecutive time steps consists in two
successive operations (illustrated in Fig. 1 in the one-dimensional case for simplicity).
The first step consists in advecting on the spatial domain the mass situated in the cell
x = (i1 ∆x, i2 ∆x) with velocity w = (j1∆w, j2∆w). This mass is displaced to the cell
x0 = ((i1 + j1)∆x, (i2 + j2)∆x) associated to the same velocity w. The second step
consists in updating the value of f according to the conservation law (2.2) to account
for the relaxation of the particle velocity to that of the fluid at the same location. This
is performed using a finite-volume scheme in the velocity direction, which is based on



7

φm τp E Z ηC ην ηα

0 0.5 0.97 2.1 0 0.047 0.021
0.1 0.5 0.43 1.6 0.033 0.019 0.016
0.2 0.5 0.34 1.4 0.038 0.015 0.014
0.3 0.5 0.29 1.3 0.039 0.016 0.013
0.4 0.5 0.22 1.2 0.038 0.018 0.012
0.5 0.5 0.19 1.1 0.036 0.019 0.011
0 2 1.10 2.4 0 0.047 0.024

0.1 2 0.40 1.8 0.033 0.021 0.018
0.2 2 0.26 1.1 0.046 0.011 0.011
0.3 2 0.27 1.2 0.05 0.0083 0.012
0.4 2 0.19 0.88 0.054 0.0055 0.0088
0.5 2 0.16 0.83 0.057 0.0049 0.0083
0 8 1.10 2.3 0 0.047 0.023

0.1 8 0.38 1.3 0.021 0.032 0.013
0.2 8 0.30 1.2 0.033 0.020 0.012
0.3 8 0.23 1.0 0.044 0.016 0.010
0.4 8 0.19 0.89 0.047 0.0097 0.0089
0.5 8 0.17 0.83 0.051 0.0072 0.0083

Table 1. Parameters used for the numerical simulations. φm is the particle mass fraction,
τp their response time, E is the measured average kinetic energy of the fluid and Z its average
enstrophy. ηC is the average enstrophy dissipation due to the coupling, ην the average enstrophy
dissipation due to viscosity and ηα the average enstrophy dissipation due to Ekman friction. In
all cases, the spatial resolution, i.e. the number of spatial collocation points for the fluid phase
and the number of spatial cells for the solid phase, is always equal to N2

x = 10242. The number
of velocity cells for the solid phase is fixed to N2

w = 92. The kinematic viscosity of the fluid is
fixed to ν = 5⇥ 10−5 and the Ekman friction parameter to α = 0.005.

estimating mass fluxes between adjacent cells. We make use of a positivity-preserving
flux-limiter algorithm in order to avoid diverging gradients in the distribution (see, e.g.,
LeVeque 2002).
One of the key points of this numerical method is to provide a priori a correct guess

for the maximum velocity of the particlesWmax. To avoid arbitrary cautious choices that
might lead to non-optimal resolutions, we adopt an adaptive re-meshing of the velocity
grid, by keeping fixed Nw and imposing Wmax to be at least twice the root-mean squared
value of the particle velocity computed from the distribution f . The time step ∆t is then
adapted to maintain the constraint ∆x = ∆w∆t.

Here and in the following, the system is discretized on a square domain of size L =
2π with periodic boundary conditions. The particles are integrated with a resolution
N2

x ⇥ N2
v = 10242 ⇥ 92 and the fluid velocity discrete Fourier transform is computed

with 5122 wavenumbers (corresponding to an effective resolution of 10242 collocation
points). The flow is sustained by a large-scale Gaussian random forcing, acting on modes
k with moduli satisfying 1 < |k| < 4. The simulations are initialized with the fluid
flow at rest and uniformly distributed particles with zero velocity. Once the flow and
the particles have reached a statistically stationary regime, the statistics are performed
over 300 large-eddy turnover times T = L/urms. The parameters of the simulations are
reported in Table 1.
In Figure 2 we compare typical snapshots (taken at random times in the stationary

regime) of the fluid vorticity ω(x, t) (upper panels), along with the particle density
field np(x, t) integrated over velocities (lower panels), with and without back-reaction



8 F. Laenen, S. Musacchio, J. Bec

Figure 2. Snapshots of the fluid vorticity (upper panels) and of the particle density (lower
panel) illustrating the effect of the coupling for St0 ' 17. The left panels correspond to the
case with no coupling between the two phases (φm = 0). The right panels are for the case with
a moderately strong coupling (φm = 0.6). The color scales are the same for the left and right
figures.

from the particles and in both case for St0 ' 17. In the case without coupling (left
panels), the fluid flow is dominated by large eddies and particles are ejected from them
to concentrate in the high-strain filamentary regions outside. This is a clear illustration
of preferential concentration by centrifugal effects. Note that for such a high value of the
Stokes number, the particle density is nearly uniform. Preferential concentration is indeed
weak as the particles tend to follow ballistic trajectories, ignoring the vortices. As soon
as the coupling is turned on (right panels), one clearly detect a significant damping of the
large scales, still keeping larger densities outside the eddies. This qualitative observation
can be quantitatively confirmed by measuring the energy-containing scale defined as
LE(φm) = (

P

k E(k)/k)/(
P

k E(k)) where E(k) is the energy power spectrum of the
fluid velocity u. This lengthscale, which is not shown here, is a decreasing function of
the mass load φm. As can been seen from the lower panels of Fig. 2, the particle density
pictures an enhancement of the fluctuations, indicating an increase of clustering due to
the coupling.
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Figure 3. (a) Total energy E (dashed lines, open symbols) and enstrophy Z (solid lines, filled
symbols) normalized by their respective values E0 and Z0 obtained with no coupling, and
represented as a function of the mass loading φm for various values of the Stokes number
as labeled. (b) Average rates of energy exchange εC (dashed lines, open symbols) and of
enstrophy exchange ηc (solid lines, filled symbols) between the fluid and the particle phases.
These quantities, normalized to their respective injection rates εI and ηI , are represented as a
function of the mass loading φm for the different values of the Stokes number.
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Figure 4. (a) Average dissipation rates of energy εν (dashed lines, open symbols) and of
enstrophy ην (solid lines, filled symbols) due to molecular viscosity, normalized to the injection
rates εI and ηI , and represented as a function of the mass loading φm for the different values
of the Stokes number. (b) Same for the dissipation rates εα and of ηα due to the linear Ekman
friction term.

4. Modification of energy and enstrophy budgets

We report in this section measurements on how the energy and enstrophy of the fluid
are affected by the coupling with the particle phase. The feedback of the particles has
strong consequences on the global kinetic energy E = (1/2)h|u|2i and the enstrophy
Z = (1/2)hω2i, where the brackets h·i denotes averages over space and time. In particular,
as seen in Fig. 3(a), we find that both quantities decrease at increasing the mass loading
ratio φm.

The reduction of the kinetic energy of the fluid phase can be understood by considering
the global energy balance, which in the statistically steady state reads

εI = εα + εν + εC . (4.1)

Here, εI = hFu · ui denotes the average energy input, εα = α h|u|2i is the energy
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dissipation rate due to friction, εν = ν h|ru|2i is the energy dissipation rate due to
viscosity, and εC = hFp!f · ui = −φm hnp(|u|

2 − u · vp)i/τp is the exchange rate of
kinetic energy from the fluid to the particles. One can show analytically (see Appendix
for details) that the coupling between the fluid and particle acts on average as a dissipative
term for the kinetic energy of the flow, that is hFp!f · ui > 0. This can be understood
intuitively from the simple consideration that the particles move because the flow gives
them a fraction of its kinetic energy. This is confirmed by the numerical simulations,
which shows a significant transfer of energy from the fluid to the particle as soon as
φm > 0. This effect increases with the mass loading φm, as can be seen in Fig. 3(b).
Already when the mass ratio is φm = 0.1, we find that more than 50% of the kinetic
energy injected in the system is transferred to the particles. The viscous dissipation rate
εν , being proportional to the enstrophy Z, decreases with φm as confirmed in Fig. 4(a).
As usual in the two-dimensional direct enstrophy cascade, its contribution to the energy
balance is sub-dominant and this effect is unvarying when the coupling increases: We
always observe εν/εI < 2% with almost no dependence on φm or St0. The dissipation
due to friction εα is actually dominating the energy budget. Because it is proportional
to the kinetic energy, we expect it to decrease with φm, as confirmed in Fig. 4(b).

In analogy to the quantities introduced in the energy balance (4.1), we define the
enstrophy input rate ηI = hFω ωi, the enstrophy dissipation rate due to viscosity, ην =
ν h|rω|2i, the enstrophy dissipation rate due to friction ηα = α hω2i, and the exchange
rate of enstrophy with the particle phase ηC = hr⇥Fp!uωi. Their values obtained from
the various simulations are reported in Tab. 1. As for energy, these quantities enter in
the enstrophy budget, which reads in the statistically steady

ηI = ηα + ην + ηC (4.2)

The dissipation rate of enstrophy due to friction ηα is proportional to the enstrophy
itself, and therefore displays the same slowly decreasing behavior as a function of φm, as
shown in Fig. 4(b).

The contributions ην and ηC stemming from molecular viscosity and coupling with
the particle phase reveal a much richer phenomenology. We see from Fig. 4(b) that
the viscous dissipation decreases with φm at large values St0, while it displays a non-
monotonic behavior in the case St0 ' 1. Similarly, the transfer from the enstrophy of the
fluid to the particles increases with φm only at large St0, while the case St0 ' 1 displays
a non-monotonic behavior, as visible in Fig. 3(b). As we will discuss in the following,
the increase at large φm of both the enstrophy viscous dissipation comes from a strong
coupling with the particle phase that enhances the enstrophy transfers to the small scales.

In our simulations the flow is sustained by a large-scale forcing, which gives rise to
an enstrophy cascade toward viscous scales. We investigate here in more details how the
coupling with the particle phase influences this process by measuring the scale-by-scale
enstrophy budget. The equation for the enstrophy spectrum Z(k) reads:

∂tZ(k) = −T (k)− 2αZ(k) + ΦZ(k)− 2ν k2 Z(k) + C(k), (4.3)

where ΦZ(k) = hF [Fω ω]i is the spectral injection of enstrophy by the forcing, F [·]
denoting the Fourier transform. This contribution is concentrated at scales k < 4.
The term C(k) = hF [r ⇥ Fp!u ω]i is the spectral contribution due to the coupling
with particles and T (k) = hF [ω (u · rxω)]i is the spectral enstrophy transfer due to
the non-linear advection term. The averages are taken over time and the wave-number
shell of modulus |k| = k. In the statistically stationary regime, ∂tZ(k) = 0 and the
various terms on the right-hand side compensate each other. In the inertial range and
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Figure 5. Spectral contributions of non-linear transfer T (k), coupling with the particle phase
C(k), and viscous dissipation 2νk2Z(k) entering in the enstrophy balance (4.3) for (a) no
coupling: φm = 0, (b) coupling with a large Stokes number: φm = 0.5 with St0 ' 17, and
(c) coupling with a moderate Stokes number: φm = 0.5 with St0 ' 1.

in absence of coupling, the non-linear transfer is balanced by viscous dissipation, i.e.
T (k) ' −2ν k2 Z(k).

The spectral behaviors of the viscous term, the transfer term and the coupling term
are shown in Fig. 5. In the absence of coupling (φm = 0, left-most panel), we observe
a balance in the inertial and dissipative ranges between the non-linear transfer and the
viscous dissipation. In the case of strong coupling and a large value of the Stokes number
(φm = 0.5, St0 ' 17, middle panel), we observe at low wavenumbers an important
dissipative (i.e. negative) contribution from the term due to coupling, which is balanced
by a symmetric positive enhancement in the enstrophy transfer term. It seems in that
case that all the effects of the particles back-reaction are present over all scales, even if
they monotonically decrease with k. For the case of a smaller Stokes number (St ' 1,
right-most panel), the spectral behavior is much more complex. In this case, the effects
of coupling is still dissipative at very low wavenumbers, but becomes positive in an
intermediate range of wavenumbers. This means that the interaction between the two
phases is responsible for injecting enstrophy at intermediate scales. Consequently, the
transfer term also changes sign. In the limit of small Stokes numbers it is possible to
show that this phenomenon is connected to the occurrence of small-scales instabilities.
The numerical method used in this work is however not satisfactorily addressing the
asymptotics of weak particle inertia, so that undertaking this issue requires appropriate
developments. This is thus the subject of a separate work that will be published elsewhere.

As observed in Fig. 5(b), the back-reaction of large-Stokes-number particles strongly
modifies the enstrophy scale-by-scale budget. The coupling acts over all scales and breaks
up the balance between non-linear transfer and viscous dissipation. This effect causes
significant changes in the enstrophy power spectrum. Figure 6(a) shows the various
enstrophy spectra obtained when varying the mass load φm while keeping the Stokes
number constant at a fixed large value St0 ' 17. For a better visibility, the spectra
are compensated with the slope measured in the uncoupled case, namely Z(k) / k−1.4.
The deviation to the k−1 prediction of Kraichnan (1967) is due to the presence of linear
damping. It is indeed known that in two-dimensional turbulence with Ekman friction,
the competition between the exponential separation of Lagrangian trajectories and the
exponential damping of fluctuations is responsible for a strong intermittency, and in
particular drastically affects the spectral scaling of enstrophy (Boffetta et al. 2005). The
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Figure 6. (a) Fluid enstrophy spectra for St0 ⇠ 17 fixed and various mass loads; the spectra are
compensated with the power-law k1.4 corresponding to the case with no coupling.(b) Comparison
of the enstrophy spectra obtained in the coupled case with St = 17 and φm = 0.4 and in the
uncoupled case with the effective friction given by (4.4). The spectra have been compensated
by k1.8 for better visualization.

power-law scaling of Z(k) is steeper than the k−1 prediction, i.e. Z(k) / k−1−δ, and the
deviation δ > 0 increases linearly with the Ekman friction coefficient α (Verma 2012).
We see from Fig. 6(a) that when increasing the mass load φm and thus the strength of

coupling with the particles, an additional steepening of the spectrum power-law exponent
occurs. This effect can be explained by an heuristic argument. At very large Stokes, the
particles are almost uniformly distributed, np(x, t) ' 1/V, and their velocity is on average
much smaller than that of the fluid |vp| ⌧ |u|. This suggests that the coupling force (2.8)
entering in Navier–Stokes equation (2.4) can be approximated as

Fp!f = −
φm

τp
np [u− vp] ⇡ −

φm

τp V
u. (4.4)

Coupling thus acts to leading order as an effective linear friction with coefficient αeff =
φm/(τp V). From a phenomenological viewpoint, this amounts to say that the particles
are seen by the fluid almost like fixed obstacles which are increasing the friction drag.

In order to check the above arguments predicting that the modification of the enstrophy
spectrum by particles can be mimicked by an increase of the friction coefficient α, we
compare in Fig. 6(b) the results form a simulation with St = 17 and φm = 0.4 with
those obtained in the absence of coupling but with the effective friction given by (4.4).
The collapse of the two spectra in the scaling range and viscous range is remarkable.
This indicates that the effect of the particles on the vorticity filament in the straining
regions can be effectively modelled by an increased friction. However we observe some
discrepancies at large scales. The increase of the effective friction indeed causes a strong
depletion of the large-scale vortices. Conversely, the particles are ejected from the large-
scale vortices. Therefore they causes weaker modifications of the flow at those scales.

5. Amplification of intermittency

In previous section, we have focused on the second-order statistics of the velocity
and vorticity fields. Here we investigate the effect of two-way coupling on higher-order
statistics. In particular, we study the statistics of the vorticity increments δrω = ω(x+
r) − ω(x) and of their moments, which define the vorticity structure functions Sp(r) =
h|δrω|

pi, where the angular brackets comprise averages over space, time and, by isotropy,
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Figure 7. Vorticity structure functions of order p = 1 . . . 5 (as labeled), represented as a function
of the separation r in the cases (a) without coupling (φm = 0) and (b) with φm = 0.5 and
St0 ' 17.
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Figure 8. (a) Scaling exponents ζp of the p-th order vorticity structure function for various
values of the mass loading φm and for St0 ' 17, obtained by averaging the logarithmic derivative
d logSp(r)/d log r over the range 0.015 < r/L < 0.035. (b) Same exponents, but this time
represented once rescaled with ζ2 and put together with the exponents obtained in the absence
of coupling but with a different value of the friction parameter α.

the angle of the separation vector r. We have seen in previous section that at large
Stokes numbers, the effect of coupling can be described by a renormalization of the
friction coefficient. In the direct enstrophy cascade of two-dimensional turbulence with
non-zero large scale friction, vorticity fluctuations have been shown to be intermittent at
small-scale. This was conjectured by Bernard (2000) and Nam et al. (2000) and studied
numerically by Boffetta et al. (2002). This implies that their probability distribution differ
from a Gaussian and that the exponents ζp of the vorticity structure functions, defined
by Sp(r) / rζp , do not scale linearly with their order p. Such multiscaling properties are
however not present for the velocity structure functions (Perlekar & Pandit 2009).

Figure 7 gives a comparison of the vorticity structure functions without and with
coupling to a particle phase with St0 ' 17 . We observe a narrow scaling region
0.015 < r/L < 0.035. From the analysis of the local slopes in the scaling range, we
compute the exponents which are shown in Fig. 8(a). The exponents do not scale linearly
with the order p for all values of φm, indicating the presence of intermittency. In addition,
the exponents become larger when increasing the coupling with the particle phase,



14 F. Laenen, S. Musacchio, J. Bec

10
-3

10
-2

10
-1

r/L

0

5

10

15
F
la
tn
es
s
S
4
(r
)/
[S

2
(r
)]
2

(a)

φm = 0

φm = 0.2

φm = 0.5

Gaussian

-10 -5 0 5 10

∂rω/⟨(∂rω)
2⟩1/2

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

P
ro
b
ab

il
it
y
d
en
si
ty

fu
n
ct
io
n

(b) φm = 0

φm = 0.2

φm = 0.5

Figure 9. (a) Flatness F(r) = S4(r)/[S2(r)]
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2i2 of the distribution of vorticity

increments as a function of the separation r and for St0 ' 17 and various values of the mass load.
(b) Probability density function of the vortcity gradients normalized to unit variance represented
here for St0 ' 17 and various values of the mass load.

in agreement with what was observed in previous section for second-order statistics.
However, the dependence on φm remarkably disappears once the exponents are rescaled
by the value of ζ2, a representation which is somewhat equivalent to the extended self-
similarity approach. As can indeed be seen in Fig. 8(b), the various measurements of ζp/ζ2
collapse, within statistical uncertainty, onto a unique universal curve. The measurement
obtained from a different value of the linear damping coefficient α are put on the top of
the measurements of Fig. 8(b). They also follow the same universal law. This observation
suggests, on the one hand, that all intermittency effects due to Ekman friction on the
inertial-range scaling exponents of vorticity are entailed in second-order statistics, i.e. one
has ζp(α)/ζ2(α) = f(p) where f(p) is a universal function independent of the coefficient
α and, on the other hand, the coupling with a particle phase associated to a large Stokes
number is reproduced at all orders by the effective linear friction expressed in (4.4).

This specific behavior in inertial-range multiscaling properties is not detectable from
usual measurements of intermittency. For instance, it is frequent to make use of the
flatness of the distribution of increments defined as F(r) = S4(r)/[S2(r)]

2, whose
discrepancy to the value F(r) = 3 quantifies the deviations from a normal distribution.
The changes in behavior of F(r) at varying the coupling with the particle phase are
represented in Fig. 9(a). Above results suggest that, in the inertial range, F(r) ⇠ rγ

with γ = (f(4) − 1) ζ2, with all effects of coupling entailed in the variations of ζ2. This
completely explains the increase of F(r) observed when fixing r in the inertial range
and increasing φm. However, Figure 9(a) suggests that the effects of the coupling are
not limited to the scaling range. At large scales, we observe that the flatness of vorticity
increments decreases with φm. This behavior is connected to the suppression of the large
scales eddies, already observed qualitatively in Fig. 2. Conversely, at dissipative scales, we
observe that F(r) attains in all cases a plateau with stronger departures from a Gaussian
distribution when the coupling with particles and thus φm increases. This is confirmed
in the limit r ! 0 by measuring the probability density functions (pdf) of the vorticity
gradient. The results are shown in Fig. 9(b). When φm increases, the pdfs develop broader
tails even if the vorticity gradient is normalized with its standard deviation. This effect
suggest that, at difference with the inertial range, the effect of particles on small-scale
statistics is not fully determined by second-order quantities.
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obtained from the uncoupled regime and as a function of the particle mass loading φm.

6. Enhancement of particle clustering

To go beyond the modulation of turbulence by particles, we address in this section the
question of how the particle spatial distribution is itself affected by two-way coupling.
A first prediction can be made by recalling that we observed a decrease of the total
enstrophy when the particle mass loading is increased. As a result, the time scale of
the flow increases and the effective Stokes number experienced by the particles becomes
smaller than St0. This is shown in Fig. 10 which represents the evolution of the actual
Stokes number St as a function of the intensity of coupling. We observe that St decreases
monotonically with φm for all St0 considered, the strongest reduction being of the order
of 40%. As a straightforward consequence and since St0 & 1, this effect goes together with
an increase of particle concentration. A reduction of St indeed brings the distribution of
the particles closer to the maximum of clustering, which is known to occur at St ⇠ 1.

In order to test this prediction, we report in Fig. 11(a) the measurement of the
probability density function of the particle spatial density np for different intensities
of the back-reaction and for the largest available Stokes number, i.e. St ' 17. In the
absence of coupling, that is when φm = 0, the distribution is very narrow around its
average hnpi = n0 = 1/L2, which, by conservation of mass and spatial homogeneity
of the statistics, is independent of both φm and St. The observed narrow distribution
indicates that the spatial repartition of the mass is nearly uniform, as it is expected for
particles with large Stokes numbers. This is in agreement with the observed instantaneous
density field displayed in Fig. 2 (lower left panel). When the coupling is turned on, that is
when φm > 0, the distribution significantly broadens. Regions with very few or with high
particle-number become more probable, so that clustering is enhanced. We note that this
effect is much stronger than what would be expected by the sole reduction of the Stokes
number. One notice that the distribution of particle density develops a power-law tail at
small values np ⌧ n0. The exponent associated to this decreases when the intensity of
coupling increases. It reveals an increasing contribution of voids in the statistics of the
particle spatial density.

The intensity of clustering can be quantified by the variance h(np − n0)
2i of density

fluctuations. This quantity is represented as a function of φm in Fig. 11(b) for the various
reference Stokes numbers St0 considered in this work. The error bars are computed as
follows: for every time series of the second order moment of the field np(x, t), we compute
a sliding mean m(t) = hhn2

p(x, t)it2[T0,T ]ix with an increasing windowing size τ = T −T0.
T0 is the time at which the distribution reaches a statistically stationary state. A time
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Figure 11. (a) Probability density function of particle density ρp(x) represented for different
φm and St0 = 17. Note that hρpi = 1/L2 is independent of φm. (b) Variance of the density
fluctuations as a function of φm for St0 ⇠ 17.

t = T ⇤ is chosen at which the average m(t) seems to be stationary. The error is estimated
as maxt2[T∗,Tmax] |m(t) − m(Tmax)|. For the highest Stokes number (bottom line with
triangular symbols) and as pointed out earlier, those fluctuations indeed increase as a
function of the mass loading φm. This is also true for the intermediate Stokes number.
However, at the lowest value, the behavior changes. We indeed observe for St0 ' 1 a
decrease of clustering when the coupling intensity increases. This effect can be partially
explained by the reduction of the Stokes number which brings the particles away from the
maximum of clustering. Another effect which can contribute to the same phenomenon
may be due to small scale instabilities, which occur at small Stokes and that were already
mentioned in §4. These instabilities are responsible for disrupting the large-scale vortices
of the flow from which the particles are ejected. This mechanism thus leads to an increase
of particle mixing.

7. Summary and conclusion

We have investigated in this work the modulation of turbulence by heavy, point-
like particles in the two-dimensional direct enstrophy cascade. We made use of a field
formulation in position-velocity phase space for the particle dynamics, following the
recent development in Laenen et al. (2016) of a numerical method whose validity has
been assessed at large Stokes numbers. The fluid flow being characterized by a unique
timescale, particles dynamics in the direct enstrophy cascade is fully characterized by a
unique Stokes number. At large values of the Stokes number, we found that the effects
of two-way coupling are fully reproduced by an effective Ekman damping associated to
an extra linear friction term in Navier–Stokes equation. This purely dissipative effect
disappear at Stokes numbers of the order of unity or smaller. The particle phase still acts
as an enstrophy pump at large scales but is able to transfer and re-inject it at smaller
scales. As a result of this, the non-linear transfer over scales is reversed leading to a deep
qualitative change of the direct cascade phenomenology.
We also observed in this work a marked effect of coupling on the intermittency of the

fluid flow. In the scaling range, this effect is actually a straightforward consequence of the
modulation of second-order statistics. We have indeed seen that the scaling exponents
of the vorticity structure functions collapse to a universal curve, once they are rescaled
by the second-order exponent, and independently of either the particle mass loading or
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the coefficient of Ekman damping. At small scales, the coupling with a particle phase
is responsible for a flattening of the probability density function of vorticity gradients.
Finally, it was shown that the two-way coupling also impacts clustering. The distribution
of the particle spatial density field develops larger tails as the coupling intensity increases.
This effect might be partly attributed to the reduction of particles relative inertia due
to the attenuation of enstrophy fluctuations in the flow.

A clear extension of this work could consist in repeating such a study in the case
of the inverse energy cascade. In that case, characteristic timescales τr depend on the
observation scale r and monotonically increases with it as r2/3. Hence, the strength of
particle inertia is measured by a scale-dependent, local Stokes number St(r) = τp/τr.
When the scale associated to St(r) = 1 falls inside the inertial range, the small scales
are impacted by particles with St < 1, while large scales feel particles with St > 1.
This would lead to an intricate situation where both phenomenologies are present. Such
settings might clearly shed lights on what could happen in a fully developed, three-
dimensional turbulent flow.

This work benefited from useful discussions with Giorgio Krstulovic who is warmly
acknowledged. This research has received funding from the French Agence Nationale de
la Recherche (Programme Blanc ANR- 12-BS09-011-04). Simulations were performed
using HPC resources from the Mesocenter SIGAMM hosted by the Observatoire de la
Côte dAzur.

Appendix A. Energy conservation and dissipative effect of particles

We derive here a prediction for the sign of εC which is the contribution in the fluid
kinetic energy budget coming from the interaction with the particles — see equation (4.1).
We denote by Ef(x, t) = |u(x, t)|2/2 the spatial fluid kinetic energy field, Ep(x, t) =
R

f(x,w, t)|w|2 d2w/2 that of the particle phase and Ep = hEp(x, t)i the average energy
of the particles. Here and in the following the average is over time and the spatial domain.

We first write down the definition of εC :

εC = −
1

τp

⇥

hnpvp · ui − hnp|u|
2i
⇤

(A 1)

Using the Liouville equation (2.2), the conservation of particle kinetic energy reads:

dEp

dt
= h

Z

∂tf |w|2 d2wi =
1

τp
[hnpvp · ui − 2hEpi] (A 2)

Furthermore, using Holder inequality, it can be shown that
Z

f |w|2 d2w ⇥

Z

f d2w >

�

�

�

�

Z

fw d2w

�

�

�

�

2

, so that 2Ep > np|vp|
2 (A 3)

Since dEp/dt > 0 (particles are initially at rest), equation (A 2) implies

hnpvp · ui > 2hEpi > hnp|vp|
2i (A 4)

We further notice that hnpvp · ui cannot be simultaneously greater than hnp|u|
2i and

hnp|vp|
2i because of the Cauchy-Schwartz inequality. Hence hnp|u|

2i > hnpvp · ui and
εC > 0, meaning that two-way coupling may only withdraw kinetic energy from the fluid.
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1Université Côte d’Azur, CNRS, OCA, Laboratoire J.-L. Lagrange, Nice, France
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The feedback foces exerted by particles suspended in a turbulent flow is shown to lead to a new
scaling law for velocity fluctuations associated to a power-spectra / k−2. The mechanism at play
relies on a direct transfer of kinetic energy to small scales through Kelvin–Helmholtz instabilities
occurring in regions of high particle density contrast. This finding is confirmed by two-dimensional
direct numerical simulations.

It is common to face environmental, industrial or as-
trophysical situations where impurities such as dust,
droplets, sediments, and other kinds of colloids are trans-
ported by a turbulent fluid. When the suspended parti-
cles have finite sizes and masses, they detach from the
flow by inertia and form uneven distributions where in-
tricate interactions and collisions take place. The physi-
cal processes at play are rather well established, leading
to quantitative predictions on the rates at which cloud
droplets coalesce [1], dust accrete to form planets [2], or
heavy sediments settle in a turbulent environment [3, 4].
Still, basic and important questions remain largely

open as to the backward influence of particles on the
carrier flow structure and geometry. Some situations
involve particle mass loadings so large that the fluid
turbulent microscales are altered and, in turn, several
macroscopic processes are drastically impacted. These
include spray combustion in engines [5], aerosol salta-
tion in dust storms [6], biomixing by microorganisms in
the oceans [7], and formation of planetesimals by stream-
ing instabilities in circumstellar disks [8]. Currently such
systems are unsatisfactorily handled by empirical ap-
proaches or specific treatments. A better modelling re-
quires identifying and understanding the universal phys-
ical mechanisms at play in turbulence modulation by dis-
persed particles. In this spirit, we focus here on the alter-
ation of small scales by tiny heavy spherical particles. We
show that the fluid velocity is unstable in regions with a
high particle density contrast, leading to energy transfers
shortcutting the classical turbulent cascade. This effect
leads to a novel scaling regime of the turbulent velocity
field associated to a power-law spectrum / k−2.

The fluid velocity field u solves the incompressible
Navier–Stokes equations: r · u = 0 with

∂tu+ (u ·r)u = −
1

ρf
rp+ νr2u+ fext + fp!f . (1)

ρf is here the fluid mass density and ν its kinematic
viscosity. A homogeneous isotropic turbulence is main-
tained in a statistical steady state by an external forcing
fext. The fluid flow is perturbed by a monodisperse popu-
lation of small solid particles whose effects are entailed in
the force fp!f . These particles are assumed sufficiently
small, dilute and heavy for approximating their distri-
bution and dynamics in terms of fields, namely a mass

density ρp and a particle velocity field vp satisfying

∂tρp +r · (ρpvp) = 0 (2)

∂tvp + (vp ·r)vp = −
1

τp
(vp − u) , (3)

where τp = 2ρs a
2/(9ρf ν) is the particles response time,

a being their radius and ρs the mass density of the mate-
rial constituting the particles. The hydrodynamical sys-
tem (2)-(3) has proven to be a valid approximation for
relatively small Stokes numbers St = τp/τf [9], that is
when the particle response time is smaller than the small-
est active timescale τf of the fluid flow. In this limit,
fold caustics appear with an exponentially small proba-
bility [10, 11], preventing the development of multivalued
branches in the particle velocity profile and thus ensuring
the validity of a hydrodynamical description.
The force exerted by the particles on the fluid reads

fp!f =
1

τp

ρp

ρf
(vp − u) . (4)

It is proportional to the mass density of the dispersed
phase and thus combines the heaviness of the particles
with their number density. The strength of feedback is
measured by the comprehensive non-dimensional param-
eter Φ = hρpi/ρf . It involves the particle density spatial
average hρpi = Npmp/V, where Np is the total number
of particles, mp their individual mass, and V the volume
of the domain. All these quantities being conserved by
the dynamics, so is the coupling parameter Φ.

We first draw some straightforward comments pertain-
ing to the limit of small Stokes numbers. There, particles
almost follow the flow with a tiny compressible correc-
tion [12], namely vp ⇡ u−τp a, where a = ∂tu+(u ·r)u
denotes the fluid flow acceleration field. The feedback
force exerted on the fluid is hence, to leading order,

fp!f(x, t) ⇡ −
1

ρf
ρp(x, t)a(x, t) (5)

The effect of particles can thus be seen as an added mass,
which does not depend upon their response time and is
responsible for an increase of the fluid inertia. The fluid
is accelerated as if it has an added density equal to that of
the particles. Such considerations predict that the pres-
ence of particles decreases the effective kinematic viscos-
ity of the fluid and thus increases its level of turbulence.
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This vision is however too naive as it overlooks the spatial
fluctuations of the particle density. It is indeed known
that an even infinitesimal inertia of the particles creates
extremely violent gradients of their density through the
mechanism of preferential concentration. As we will now
see, these variations are responsible for instabilities that
shortcut the turbulent energy cascade by directly trans-
ferring kinetic energy to the smallest turbulent scales.
A key attribute of turbulence is the vigorous local spin-

ning of the fluid flow, weighed by the vorticity ω = r⇥u.
The effect of particles on the vorticity dynamics is en-
tailed in the curl of the feedback force (4), reading

r⇥ fp!f =
1

ρf τp
[ρp (ωp − ω) +rρp ⇥ (vp − u)] , (6)

where ωp = r⇥vp is the vorticity of the dispersed phase.
The action of particles is thus twofold. The first term ac-
counts for a friction of the fluid vorticity with that of
the particles, which amounts at small Stokes numbers
to the above-mentioned added-mass effect. The second
term gives a source of vorticity proportional to the gra-
dients of particle density. The combined effects of prefer-
ential concentration and turbulent mixing is responsible
for very sharp spatial variations of ρp. Centrifugal forces
indeed eject heavy particles from coherent vortical struc-
tures [13] and Lagrangian transport stretches particles
patches in stirring regions [14]. This leads to the devel-
opment of substantial fluctuations of rρp, as illustrated
in two dimensions on the left panels of Fig. 1. This mech-
anism creates regions with very strong shear in the fluid
flow, which, in turn, develop small-scale vortical struc-
tures through Kelvin–Helmholtz instability. It is indeed
well known that flows presenting a quasi-discontinuity of
velocity are linearly unstable and develop wavy vortical
streaks at the interface of the two motions (see, e.g., [15]).
Such phenomenological arguments thus suggest that the
feedback of particles lead to the formation of small-scale
eddies, as can be seen in the right panels of Fig. 1. Par-
ticles thus actively participate in the transfer of kinetic
energy toward the smallest turbulent scales.
This effect and the resulting modification of the fluid

flow scaling properties can be quantified by examin-
ing the scale-by-scale kinetic energy budget given by
Kármán–Howarth–Monin relation (see, e.g., [16]). De-
noting the velocity increment over a separation r by
δru = u0 − u with u0 = u(x + r, t) and u = u(x, t),
one can easily check that statistically homogeneous solu-
tions to the Navier–Stokes equation (1) satisfy

1

2
∂t hu · u0i =

1

4
rr ·

D

|δru|
2
δru

E

+ νr2
r hu · u0i

+
⌦

u · f̄ext

↵

+ hfp!f · ūi , (7)

where the overbar denotes the average over the two points
located at x±r, that is f̄ = [f(x+r, t)+f(x−r, t)]/2.
In classical stationary turbulence, the above relation sug-
gests a balance between the non-linear transfer term (first

Φ = 0 Φ = 0.4

-30

-20

-10

0

10

20

30

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

FIG. 1. (color online) Upper frames: Snapshots of the
(scalar) fluid vorticity ω = r⇥u in two dimensions for both
the passive case with no feedback (Φ = hρpi/ρf = 0, left) and
when the particles exert a back reaction on the flow (Φ = 0.4,
right). Lower frames: normalized particle density ρp/hρpi at
the same instants of time. The two cases (without and with
coupling) correspond to different realizations of the external
forcing; the x and y axis were however shifted in order to
locate large-scale structures at approximately the same posi-
tion.

term on the right-hand side) and viscous dissipation (sec-
ond term), leading for isotropic flows to the celebrated
Kolmogorov 4/5 law. In the presence of coupling with
particles, this equilibrium is broken by the feedback force.
In the asymptotics St⌧ 1 of low inertia, this force is ap-
proximated by (5), so that its contribution to (7) reads

hfp!f · ūi ⇡
1

ρf
hρp a · ui −

1

ρf
hρp a · δrui . (8)

The first term on the right-hand side involves the corre-
lation between the particle density field and the instan-
taneous power acting on fluid elements. To leading order
when St! 0, we have hρp a · ui ⇡ hρpi ha · ui = 0. Non-
vanishing corrections at small but finite Stokes numbers
might arise from a combined effect of the small compress-
ibility of the particle velocity together with the biased
sampling due to preferential concentration, as already
seen for the radial distribution function [17, 18]. How-
ever such correlations are in the best case of the order
of St2. The second term on the right-hand side of (8)
does not vanish in the limit St ! 0 and thus gives the
dominant contribution.
Such arguments lead to predict that the scale-by-scale
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energy balance (7) reduces in the inertial range to

1

4
rr ·

D

|δru|
2
δru

E

'
1

ρf
hρp a · δrui . (9)

Now, assuming that the fluid velocity field obeys some
scaling property δru ⇠ rh, one deduces from the above
balance that 3h−1 = h, and thus h = 1/2. Such a scaling
behavior is associated to an angle-averaged kinetic energy
power spectrum E(k) / k−2.

In order to test such prediction, we perform two-
dimensional simulations of the fluid-particle system de-
fined by (1), (2), (3), and (4) in a periodic domain. We
make use of a Fourier-spectral solver with 10242 collo-
cation points for estimating spatial derivatives and of
a second-order Runge-Kutta scheme for time marching.
We focus on the direct enstrophy cascade, so that the
external forcing fext is the sum of an Ekman friction
with timescale 1/α and of a random Gaussian field η

white noise in time and concentrated at wavenumbers
|k|  2. We make use of hyper-viscosity and hyper-
diffusivity (fourth power of the Laplacian) in order to
maximize the extent of the inertial range and prevent
Eqs. (2) and (3) from blowing up. The particle response
time is fixed in such a way that St = τp hω

2i1/2 ⇡ 10−2

in the uncoupled case and various values of the coupling
parameter Φ = 0, 0.1, 0.2, and 0.4 are simulated.
Figure 1 shows snapshots of the fluid vorticity field to-

gether with the particle density field, without and with
coupling between the two phases. In the absence of feed-
back from the particles (left panels), the flow develops the
traditional picture of two-dimensional direct cascade con-
sisting of large-scale vortices separated by a bath of fil-
amentary structures where enstrophy is dissipated. The
particles density field is characterized by large voids in
the vortical structures separated by a filamentary distri-
bution that is symptomatic of turbulent mixing. These
qualitative pictures are strongly altered when the particle
feedback is turned on. In the presence of coupling (right
panels), the fluid flow still shows large-scale structures
but which are this time surrounded by a bath of small-
scale vortices. These eddies form wavy structures along
the lines associated to quasi-discontinuities of the parti-
cle density field. This is a clear signature that Kelvin–
Helmholtz instability is at play.
Figure 2 shows the angle-averaged power spectra of

the fluid kinetic energy obtained when varying the cou-
pling parameter. In the case of no feedback (Φ = 0), the
specific choices of the Ekman coefficient α and of the en-
ergy injection amplitude yield a kinetic energy spectrum
E(k) / k−δ with δ ⇡ 3.3. For any non-vanishing value
of the coupling parameter Φ, one observes remarkable
changes in the spectral behavior of the fluid velocity. The
first effect is a clear decrease of the total kinetic energy.
Similarly to what is obtained in the asymptotic of large
Stokes numbers [19], this is due to a net dissipative effect
of the coupling with the particle phase. However this im-
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FIG. 2. (color online) Angle-averaged kinetic energy power
spectra of the fluid velocity represented for various values of
the coupling parameter Φ, as labelled.

pacts only the largest scales of the flow and the smaller
scales experience an increase in their energy content. The
inertial-range is characterized by a shallower power spec-
trum with an exponent close to −2, as expected from
above arguments. Dissipative scales are shifted toward
larger wavenumbers, as a consequence of the added-mass
effect induced by particles which decreases the effective
kinematic viscosity of the fluid loaded by particles.
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FIG. 3. (color online) Angle-averaged Fourier amplitudes
of the various terms contributing to the kinetic energy bud-
get (7) shown here for Φ = 0.4. Coupling stands from the
contribution of the forces exerted by the particles on the fluid,
transfer for the nonlinear advection terms, dissipation for vis-
cous forces and friction for Ekman damping.
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Further insight is given by measuring the amplitude
of the various terms entering in the energy budget (7).
Figure 3 shows the angle-averaged amplitude of their
Fourier transforms with respect to the separation r. One
observes that the non-linear transfer term gives a posi-
tive contribution at small wavenumbers. This is a strong
signature of two-dimensional turbulence for which, con-
versely to three dimensions, the nonlinear terms are not
transferring kinetic energy toward small scales partici-
pating to its accumulation at largest lengthscales of the
flow. This term is exactly compensated by the linear
Ekman friction and the coupling with the particle phase
which are both negative and of the same order. Coupling
is thus pumping energy at large scales but restitutes it
at larger wavenumbers as it is positive for k ≥ 4. In
the inertial range for 10 <⇠ k <⇠ 100 where both the con-
tribution of Ekman friction and viscous dissipation are
negligible, it is exactly compensated by a negative value
of the nonlinear transfer term. Both curves decrease as
k−1, in agreement with the scaling observed earlier. At
the smallest scales, coupling becomes negligible, nonlin-
ear transfer changes sign and is compensated by viscous
dissipation. The whole two-dimensional picture thus con-
firms the prediction made above.

We have thus evidenced from this work a new regime of
turbulent flow where the feedback of suspended particles
onto the fluid flow dominates inertial-range energy trans-
fers. This regime is evidenced by numerical simulations
in two dimensions but such strong effects should also be
present in three dimensions, at least at sufficiently small
scales. A remarkable feature of this turbulent enhance-
ment due to dust-like particles is the creation of small-
scale eddies whose spectral signature is a k−2 power-law
range for the fluid velocity. These vortices profoundly
affect particle concentration. On the one-hand, their
spatial distribution tends to weaken large-scale inhomo-
geneities, to reduce potential barriers to transport and
enhance mixing. On the other hand, the dispersion in the
flow and the interactions between these long-living struc-
tures trigger density fluctuations that are much more in-
tense than in the absence of coupling between the two
phases. Such effects clearly need being investigated in

a more systematic manner: They might indeed strongly
modify at both qualitative and quantitative levels the
rate at which particles interact together.

We acknowledge useful discussions with G. Krstulovic.
The research leading to these results has received fund-
ing from the French Agence Nationale de la Recherche
(Programme Blanc ANR-12-BS09-011-04).
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CHAPTER 6

Conclusions and perspectives

This thesis explored several problems related to the transport of particles by turbulent
flows. While such problems occur in many natural and industrial situations ranging from
combustion engines to planet formation, predictive models are mainly based on eddy-
diffusivity approaches and cannot accurately handle high concentration fluctuations or non-
trivial feedback of the dispersed phase on the fluid flow. We have focused here on these two
aspects: The first part of this thesis was dedicated to the dispersion by turbulence of tracers
continuously emitted from a point source. The second part concerned the introduction of
a novel numerical method to simulate the transport of inertial particles and to understand
how they modulate the carrier turbulent flow.

6.1 Turbulent transport of particles emitted from a point
source

In chapter 3, the emission of tracers from a point source in the two-dimensional inverse
cascade was studied. The main issue characterizing such a system is that, even if particles
are released from the same spatial location, they enter the domain at different times. As a
consequence, quantifying turbulent mixing requires understanding both the temporal and
spatial correlations of the flow. Numerical simulations of the two-dimensional inverse tur-
bulent cascade have been performed. Lagrangian tracers were seeded from a fixed point in
space into an Eulerian velocity field integrated by pseudo-spectral methods. An analysis
was carried of the mean displacement of tracers, as well as of the average radial concentra-
tion profile. This allowed to conclude that the time-averaged dispersion is well described
by two successive phases: A ballistic motion from the source with a characteristic velocity
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given by the large-scale flow, followed by diffusion after a time equal to the Lagrangian
velocity correlation time.

Furthermore, a scaling analysis of the quasi-Lagrangian mass mQL as a function of the
distance from the source has been performed. To this end, the fractal correlation dimension
was first measured using a classical box-counting algorithm at high spatial resolution N2

x =
40962. The signature of the linear particle distribution, due to the injected mechanism, was
found to persist at small scales. This is in qualitative agreement with the persistence of
the inhomogeneity (due to the injection mechanism) at small scales as it was concluded in
Celani et al. (2007) in the case of the Kraichnan model for the passive scalar. However, the
correlation dimension of the tracer distribution showed to be largely contaminated by the
recurrence of the Wiener process in two dimensions. Long-living trajectories indeed come
back arbitrarily close to the source and infinitely often, contributing a uniform background
to the concentration of tracers and thus acting as a source of homogenisation. This effect
was more and more contaminating the statistics as the particles maximum lifetime was
increased.

To circumvent such difficulties, an alternative way to measure concentration fluctuations
was further presented. This approach is based on a novel phenomenological description,
which exploits the distortion of the emitted line as a function of time in order to quantify
its contribution to the mass contained in balls of given size r and at a given distance R from
the source. Although this approach is strictly valid in the limit of a continuous emitted line,
some difficulties are encountered when working with discrete trajectories. In Lagrangian
simulations, the continuity condition is quickly broken and we have shown that this effect
limits the scaling analysis to a minimum size r that, in turn, depends on R.

A natural extension of this work could consist in relating the quasi-Lagrangian mass
scaling to the two-point equal-time correlation function. A comparison of this quantity
in the case of the Kraichnan velocity ensemble (Celani et al., 2007) would allow one to
stress the impact of a finite correlation time of the velocity. Also, as the Wiener process
is not recurrent in dimension three and higher, it is expected that the determination of
the correlation dimension D2 will not suffer from the homogenisation issue that has been
encountered in two dimensions. It would be interesting to display the correspondences
between the quasi-Lagrangian mass scaling obtained with the determination of D2 and
the method we have presented by performing simulations in the three-dimensional direct
cascade.

Another point that would be worth studying further is the universal character of the
mass scaling. Indeed, the Richardson super-diffusive regime is a consequence of the non-
smoothness of the velocity in the inertial range. For a kinetic energy spectrum E(k) / k−↵,
we have

⌦

r2
↵

/ t4/(3−↵). Other types of turbulence display the same scaling E(k) / k−5/3,
such as surface quasi-geostrophic turbulence (SQG), or single-layer QG model. This kind
of turbulence is for example observed at ocean surface (Lapeyre & Klein, 2006) and upper
troposphere (Tulloch & Smith, 2006).
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6.2 Modelisation of small inertial particles

In chapter 4, a numerical method has been proposed in order to resolve the kinetic equation
associated with the dynamics of small inertial particles. This method allows to recover
an Eulerian field for the particle density even at high inertia when the particle velocity
dispersion has to be taken into account. Simulations were carried along with Lagrangian
particles to assess for the validity of the method.

In a one-dimensional random flow, the ability of the method to recover the phase-space
fractal distribution was assessed through the study of the radial distribution function. In
two dimensions, it was shown that this approach is able to reproduce the spatial distribution
of the particles and their centrifugal ejection outside the vortical structures of the flow.
Such preferential concentration effects were tested in two-dimensional turbulence, both
in direct and inverse cascade, as well as in a cellular flow. The numerical convergence
of the proposed method was studied via the analysis of the numerical error with respect
to the velocity resolution. Also, the numerical performance was compared to Lagrangian
simulations, showing an advantage for the Eulerian formulation as long as moderate errors
O(10−2) on the density are tolerable.

Among questions that remain open, let us mention possible improvements of this
method. For example, one can wonder whether or not the designed approach would be
adaptable to polydisperse suspensions. Up to now it was used to integrate numerically
the Liouville equation for the particle density in the position-velocity phase space (x,u),
focusing on particles that are characterised by a unique Stokes number quantifying their
inertia. A naive way to consider N particle phases (of different sizes or masses) would be to
implement N different density fields f . This would obviously multiply the computational
complexity by N . This would open the way to consider interactions exchanging mass and
momentum between the different solid phases, such as collisions, aggregation or coales-
cence. This would amount to considering the density f in the phase-space (x,u, St). An
extra-term in the Liouville equation would then appear of the form @St [G(St)f ]. The ker-
nel G(St) stands for how a specific phase is affected by the medium or possibly by the other
phases, like an evaporation rate for example. The variable St is used here for generality
but the volume v of the particle is often considered as the additional mesoscopic variable,
as in the Williams equation (Williams, 1958) dealing with the issue of polydisperse sprays.
Actually, approaches have been proposed to integrate this equation in the limit of small
inertia, i.e. when velocity dispersion is negligible. Those originated in Tambour (1980) with
the idea of sectioning the v dimension. Later on, this method has been named Eulerian
multi-fluid methods. Each fluid is represented as a statistical average of the distribution in
each volume section. This method has received later on multiple improvements (Laurent
et al., 2004; Fox et al., 2008). The dynamic in the volume space can also be performed
with a finite-volume method, and the issue of numerical diffusion is also present. Fox et al.
(2008) have presented a method called direct quadrature method of moments that seems to
reduce this spurious diffusion. In those cases, it was stressed that the performance of such
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Eulerian descriptions was still competitive compared to Lagrangian simulations (Laurent
& Massot, 2001), thanks to easier parallelisation and easier treatment of fragmentation
and coalescence. However, when the phase-space dimension has to be further increased to
account for velocity dispersion, the issue of competition with Lagrangian methods is not
that trivial.

Another extension of the proposed would be to use it for developing Large-Eddy Sim-
ulation of particle suspensions. Basically, LES for the fluid phase consists in filtering the
Navier-Stokes equations. The same technique applied to the kinetic equation yields:

@t hfi+rx · (v hfi) +rv ·

✓hui − v

⌧p
hfi

◆

= −rv · (hufi − hui hfi)
⌧p

, (6.1)

where hi denotes a spatial averaging (RANS method), or filtering (LES). The right-hand
side denotes the interaction between particles and sub-grid scale fluid eddies and is the main
object that needs to be modelled. For instance, Zaichik et al. (2009) have expressed this
right-hand side in terms of a Gaussian integration by parts, yielding additional diffusive
terms, but other closure approached can easily be tested. Figure 4.14 showed that the
lattice particle method was able to reproduce the correct spatial density even when using
a resolution N2

x = 5122 against a resolution of 20482 gridpoints for the fluid velocity field.
This is equivalent to considering a filtered velocity field in the kinetic equation (4.14) and
constitutes a promising result in the framework of LES. It would be worth comparing the
method we have developed in this thesis with LES approaches with modelled closures.

6.3 Turbulence modulation by small heavy particles

In chapter 5, numerical simulations have been performed in order to explore the effect of
two-way coupling in a system with heavy particles in two dimensional direct cascade. This
study has been carried out in the two asymptotics of small and large Stokes numbers, using
two different models for the particle transport. Chapter 5 reproduces the scientific article
that presents the main results from this work in the case of the Large Stokes numbers. In
this asymptotics, the numerical method presented in 4 has been adapted in order to include
the back-reaction from the particles onto the fluid. The Eulerian formulation of the particle
population in the position space allows for an easier and more natural implementation of
two-way coupling. In addition, no closing, model or reconstruction for the particle to fluid
interaction is needed contrary to Lagrangian-Eulerian methods, although much progress
has been made in the last few years in this domain (see, for instance, Gualtieri et al. (2015);
Ayala et al. (2007)).

Several statistical quantities have been measured for various coupling intensities, de-
fined by the mass ratio φm. An effect directly observable when looking at the instantaneous
density is the increase of particle clustering outside high-vorticity regions. The impact of
two-way coupling on intermittency was also measured. In the two-dimensional direct en-
strophy cascade, the distribution of vorticity gradients is characterised by broader tails than
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Gaussian distributions. The action of the particles was shown to broaden this distribution,
i.e. to increase its flatness, as the mass load ratio is increased.

Gravity has been neglected in the dynamics we considered. This is a valid approxima-
tion when fluid accelerations are stronger than g and when the fluid turbulent velocities
are larger than the particle settling speed, which is more and more valid when the particles
are not too massive. However, we presented an analysis with increasing mass load φm, i.e.
with particles more and more massive with respect to the fluid. It would be interesting to
include the gravity force to see how it affects the statistics we have presented. For example,
experiments at large Stokes numbers carried by Hwang & Eaton (2006) showed that turbu-
lent attenuation was uniform in the horizontal plane, in agreement with our measurements,
and less pronounced in the vertical direction at high wavenumbers .

Simulations have been performed in the two-dimensional direct enstrophy cascade. In
that case, a single time scale ⌧f = (2Z)−1/2 can be defined (Z denotes here the average
enstrophy of the fluid flow). However, in the inertial range of two-dimensional inverse
energy cascade or three-dimensional direct cascade, the characteristic time of the flow
⌧f = ✏−1/3r2/3 depends on the observation scale r. So does the particles Stokes number
with St(r) = ⌧p/⌧f / r−2/3 which is a decreasing function of r. For a given r⇤ in the
inertial range, we may consider a time scale ⌧⇤p such that St(r⇤) = 1. In this situation,
the large scales r > r⇤ would be affected by low-inertia particles the small scales r < r⇤

by large-inertia particles. Following our results, the large scales would be destabilised
by the Kelvin-Helmholtz instability at the large-sized-vortices boundaries and the energy
spectrum less steep, while small scales would be damped with the energy slope.
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APPENDIX A

Software details

In these appendices, I discuss briefly about softwares that I have developed and used
during my PhD thesis. The goal is to provide a transparent view to the reader about
various numerical implementations and physical aspects.

A.1 GPU2DSOLVER

This C++-library was designed to solve Navier–Stokes equations in two dimensions in a
periodic box.

A.1.1 Numerical scheme

The library solves the incompressible two dimensional Navier–Stokes equations for the
stream-function  (x,y, t) from which the flow velocity is derived by u = r

? = (@y ,−@x ).
This allows one to integrate only one quantity instead of the two velocity components, which
saves memory while ensuring incompressibility. The equation solved is equation (2.18), and
is discretised in time using second order Runge–Kutta scheme.

The numerical integration relies on the pseudo-spectral method, in which the solution
is decomposed onto a Fourier basis, and the evolution equation is solved for the Fourier
coefficients û(k), with k the wave-number of the mode.

The general advantage of the spectral methods (Orszag, 1969), especially involving
Fourier decompositions suited for periodic boundary conditions, stands mainly in their
exponential rate of convergence for smooth fields (faster than any polynomial in the grid
size) (Bardos & Tadmor, 2015; Canuto et al., 2012). Furthermore, the evaluation of the
derivative is much more precise than finite difference methods. Indeed, one does not need
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to approximate derivatives using a finite number of points because it is straightforwardly
given by the multiplication with the wave-number vector in the Fourier space. For instance:
r · u(x) =

R

eik·xk · û(k).

Another advantage lies in the existence of fast algorithms to compute Fourier transfor-
mations which only involve N logN operations,where N is the number of field elements,
instead ofN2 as would perform a naive implementation (Walker, 1996; Brigham & Brigham,
1974). In addition, those algorithms were also been adapted and optimised for various par-
allel architectures (for memory distributed cluster, general purpose graphical processing
units, many-integrated core chips...). Spectral methods are also less expensive than finite
element methods for simple open geometries.

The term pseudo means that a part of the integration is done in the physical space. In-
deed, fields products appearing in the Navier-Stokes equation (in the non-linear, convective
term) translate into convolution in Fourier space involving N2 operations. Transforming
those fields in the physical space to preform this element-wise product and transforming
them back again in the Fourier space only involves 4N log(N) +N operations, instead of
N2 for the convolution. The field transformed back into Fourier space must be de-aliased:
the nonlinear term computation creates non-physical high-k modes. The classical 2/3 zero-
padding rule is used, setting  (k) =  (k)Θ(kmax−kkk), i.e,  (k) = 0 8 k s.a. kkk > kmax,
with kmax = N/3. In other words, all modes outside a circle of radius kmax are removed.

The potential  is initialized to  (x) = 0 by default or may be read from an external
file. This allows simulations to restart from a previous state, for example equilibrated flows
in high resolutions. It may also be prescribed analytically to test for special solutions or
to generate benchmark flows, like cellular ones (see section 4.5.1).

Viscous dissipation and hyper-viscosity

The integration of the dissipative term is made implicit:

 t+∆t(1 + ⌫ kkk2) =  t. (A.1)

Hyper-viscosity is also implemented, for which viscous dissipation operator uses a higher
power of the Laplacian: D̂ = −⌫r2q, yielding in Fourier space D̂ = −⌫(−1)q+1k2q. This
is often used to extend the inertial scaling range in the energy and enstrophy spectra and
is especially suited when studying dynamics in this regime, such as the Richardson pair
separation issue in the inverse energy cascade (see chapter 3). In this formulation for D̂,
⌫ has to be scaled accordingly and may go down to 10−47 for q = 16 (Smithr & Yakhot,
1994). To avoid having to renormalise the viscosity and use a value of the similar order for

different resolutions, we used for the operator the form D̂ = −⌫k2
⇣

k
kmax

⌘2(q−1)
.
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A.1.2 Forcing

Conservation equations for the fluid momentum writes:

@t(⇢fu) + ur · (⇢fu) = −rp+r ·Σ+ f . (A.2)

These equations are dissipative in the case of f = 0 due to the viscous forces in the constrain
tensor Σ (see section 2.1), which physically result from small-scale friction between fluid
particles. Starting from a non zero initial condition, energy would thus decrease until the
flow is at rest (u = 0).

Meanwhile, turbulence may arise due to non-linear transfer of energy through the
wave-numbers (see 2.2.2). Studies of such non sustained systems in various situations,
is called decaying turbulence in the literature. However, all experiments that I present in
this manuscript involve flows in statistically steady state, hence which are sustained by an
external source of energy. In real situations, such a forcing may come from mechanical
agitation (propellers, high speed flows through a pipe...), or thermal effects (nuclear and
chemical reactions in flows...).

The numerical forcing that is implemented in GPU2DSOLVER is volumetric: momen-
tum is added in Fourier space to modes in a given range of wave-numbers [kinf , ksup]. For
example, a forcing at large scales |k| ⌧ is often associated to stirring.

Forcing methods is still a matter of debate depending on the applications. Indeed,
although it is needed to reach a stationary steady state, one has to make sure that the
forcing will not influence the statistics of the flow. For example, it is generally admitted
that small scale dynamics are decoupled from large scale ones for sufficiently large Reynolds
numbers (Eswaran & Pope, 1988).

One can use multiple numerical methods (this list is not exhaustive):

• Freeze the forced modes to a constant value, fixing the large scale structures.

• Add a constant quantity to the forced modes: f = cst.

• Renormalise the total energy in the forced region so that at every time step such
that:

kend
Z

kfirst

| |2(k)dk = cst. (A.3)

• Use a stochastic process for f . This one is widely used due to its randomness which
is believed to be more realistic.

The forcing methods cited above have all been implemented in GPU2DSOLVER. In
practice, only the last one, non deterministic, was retained in the studies I have carried,
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mainly for the reason of being more physically realistic. Two random processes are imple-
mented: for the first one, the force follows an Ornstein-Uhlenbeck process:

df(k) = −✓(f(k)− µ)dt+ σdW (k). (A.4)

It consists of one drifting term, ✓µdt, one damping term, −✓f(k), and one diffusion term,
Gaussian, of variance σ2. The processes are independant, i.e hdW (k1)dW (k2)i = δ(k1 −
k2). These processes have a non zero correlation time given by σ2/2✓. µ is the asymptotic
average value and is always set to 0 in the studies I have carried.

f(k, t) = f(k, t−∆t) exp(−✓∆t) +
p
σ∆t ⇠(k, t) (A.5)

with ⇠ a number from the normal distribution N (0, 1).

For more details about this process numerical integration, see Gillespie (1996); Honey-
cutt (1992a,b).

The other stochastic forcing implemented is a white noise:

f(k, t) = σ⇠(k, t) (A.6)

This kind of forcing is delta-correlated in time: hf(t)f(t0)i = δ(t − t0) and is especially
suited for small scale forcing, as the correlation time of the velocity decreases with the
scale.

In practice, for both forcing types, σ is normalized in the following way:

σ0 = σ/(k2 2⇡(ksup − kinf ) (ksup + kinf )/2). (A.7)

The k2 factor removes the k2 dependence arising by the growing number of modes in shells
between k and k + 1. 2⇡(ksup − kinf ) accounts for the number of forced modes, and the
(ksup+kinf )/2 normalises by the middle kf . This normalisation allows one to use a forcing
amplitude independent of the spectral forcing band width, the mean forced mode and the
increase of the number of modes in each shell [k, k + 1].

Simple Euler temporal discretisation is used:

 (k, t) =  (k, t−∆t) + f(k, t). (A.8)

This is sufficient because we are not interested in a precise resolution of the forcing pro-
cesses, as they are just random sequences.

A.1.3 Parallelisation

The software makes exclusive use of general-purpose graphical programming units (GPGPU)
to integrate the flow, using the proprietary CUDA C-interface (Nickolls et al., 2008). In-
deed, this architecture was chosen because it is at present the best suited for massively
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independent calculations, like in our case the update of all fluid Fourier modes, or lin-
ear algebra operations. Furthermore, fast Fourier transforms also benefit from very well
optimized algorithms for GPU architectures. In my case, use was made of the cuFFT
library. The cuRAND library was also used to generate pseudo-random sequences for the
forcing. One sequence was generated for each forced mode in a way that allows one to
simulate reproducible flows. A quick benchmark with a pseudo-spectral 2D solver showed
that simulations using one single graphic card perform as well as distributed memory sim-
ulations (using message passing interface) with ⇠ 120 cores. Nevertheless, the choice of
this proprietary language implies that the software is only capable to run on systems with
CUDA-capable graphic cards.

It should be stressed that the very limiting factor for high resolution fluid simulation
is the available memory. The GPUs I have used during my thesis were middle-range Tesla
M2050 graphic cards from Nvidia which had a video memory of ⇠ 3.5GB. I was able to
perform fluid computations with resolutions up to N2

x = 81922, which only corresponds
to N3

x ⇠ 4003 in three dimensions while state of the art three dimensional computations
go up to N3

x = 81923 especially in cosmological simulations (Yeung et al., 2015). Newer
generations of graphical processing units can go up to O(10GB), but it is still limited
to perform high resolution three dimensional simulations on a single graphic card. It is
thus necessary to couple those acceleration devices with distributed memory architectures
using message passing protocols among many computational nodes. The performance then
hinders from inter-node communications. Nowadays high performance computing codes
show to linearly scale up to O(105) processors for O(61443) resolutions (see, for instance,
Mininni et al. (2011)).

Figure A.1 displays a benchmark to assess the performance of the software. Number of
points integrating by a full Runge-Kutta 2 step per second is shown as a function of the
resolution Nx. It corresponds to the the number of evolution of the full 2D field multiplied
by N2

x . This quantity was computed by averaging over a fixed number of 600 time steps.

For a single CPU, it would behave as N0
x , i.e. constant. In MPI implementations,

benchmarks are often presented as the time (in seconds or minutes) per time step as a
function of the number of processor for a fixed resolution. Performance generally scales
linearly with the number of processor until it eventually reaches a plateau, displaying the
bottleneck of messages communication which limits the performance. The metric displayed
in Figure A.1 is rather analogous, the constant behaviour being the proof of the absence
of an additional limiting bottleneck. Notice that in this case, as a single GPU card is used
in this case, the number of available threads and cores is fixed.

A slope greater than 0 indicates that the scaling is better than a single-threaded ex-
ecution, and this is what is indeed observed for small Nx. This can be explained by an
increase in the device occupancy: increasing the resolution, hence the number of points to
be treated, exposes more parallelism, i.e. there are less idle threads and the GPU card is
more efficiently exploited.

The saw-tooth like behaviour is due to the alternating resolution between Nx being or
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Figure A.1: Benchmark of the GPU2DSOLVER software performed on a middle-range
GPGPU, the Nvidia Tesla M2050. The number of points integrated per second is repre-
sented as a function of the resolution Nx up to Nx = 8192.

not a pure power of 2. FFTs algorithms perform better for combinations of prime number
powers, i.e. 2a3b5c7d..., the lower the number the better. In this case, Nx is alternatively
2i and 2i−13, with i = 8, ..., 13, excepting 2123.

This code is under CECILL-C license and available on demand.

A.2 LAGSRC2D

This C++ library was designed to simulate emission of particles from a punctual source
and removal from the domain following a custom criterion. The particle system may then
be prescribed an external fluid velocity for its transport. The work in which it was used
can be found in chapter 3.

A.2.1 Numerical implementation

A class is built to represent the whole particle system. Because it is generally more optimal
to pack in memory contiguous data, mainly to facilitate cache reuse (Cheng et al., 2014),
it was decided to encompass in it the arrays representing particle properties, i.e. positions,
velocities, accelerations, unique identifiers and ages. Each property is a GPU array, more
precisely Thrust device vectors, from the Thrust library distributed with the CUDA toolkit
(Bell & Hoberock, 2011). This library offers the advantages of transparent arrays utilisation
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and C++ standard template library (STL)-style high level algorithms.

Another way of designing the system would be to use fixed-length arrays, with a size
large enough to contain the desired maximum number of particles present in the system.
Then when particles exit the system due to some boundary conditions, they are reinjected.
This solution allows a gain in performance, because less time is spent to reorganize memory
by removing and adding elements at random places in the vectors. However, it would create
spurious temporal correlations between the injection intensity and boundary conditions.
Regarding the physical issue for which the library was designed, this is an undesired effect.

The design of this class was part of the motivation to work on the SoAx library project
(see appendix B). Indeed, this last library allows one to manipulate a particle system
and, through macro-generated function, to add very simply properties against which class
methods can be called.

LAGSRC2D is able to handle two types of removal conditions: particles are removed
after an age Amax or after a maximum distance from the injecting source. At a frequency
chosen by the user, the system checks for the exit condition and erases elements for which
this condition is true. This is done through a call to C++ standard library functions
remove if and erase, which gives a linear complexity ofN comparisons and some n deletions,
with generally n⌧ N .

The dynamical update of particles position and velocities make use of the second order
Adams-Bashforth scheme (Jeffreys & Jeffreys, 1999):

vt+∆t
i = vti +∆t(

3

2
Ati −

1

2
At−∆t) +

p
2∆tσ⇠(t). (A.9)

∆t is the time step, Ati stands for the i−component of the acceleration at time t, ⇠ a random
number from N (0, 1) distribution and σ the noise amplitude parameter to add a random
perturbation. This perturbation typically results from random shocks with fluid particles.
In chapter 3, σ = 0.

When the knowledge of the flow velocity at the position of the particle u(Xp) is required,
its value is determined by a bicubic interpolation, thus involving 16 points around the
particle.

Files for chosen properties are written on the disk with the time of the output and a
restart is then possible from any of those output by specifying the restart time.

A.2.2 Injection rate

A parameter NI⇤, called injection intensity is used to control the number of particles
emitted in a duration of t = 1. Another parameter determines how often the injection
takes place, the injection period T . The number of particles to be emitted during each
period is then N⇤

IT
= N⇤

I /T , which may be a floating point number.

Then, to ensure that an integer number of particles is injected per period, N⇤
IT

is
adjusted (simply rounded) so that the computed NI may be a bit higher or lower than
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requested. This number may then be zero, and if so the user is issued a warning and has to
modify the injection period. The maximum deviation expected between required N⇤

I and

actually computed NI is thus |NI −N⇤
I |/N

⇤
I = 1

2
t/T
NI⇤

. In practice, injection is done at the
beginning of each period.

This code is under CECILL-C license and available on demand.

A.3 LOCA: Lattice model for heavy particles

This C++ library was designed to simulate transport of heavy particles in externally-
prescribed flows. The challenge is to take into account the particles velocity dispersion at
a given point in space. For more details on this physical issue, see chapter 4.

As explained in chapter 4, the equation (4.14), which is a transport equation in the
position-velocity-phase-space for a scalar quantity, is to be discretised and represented in
4 dimensions.

A.3.1 Finite volume fluxes

Inertial particles heavier than the fluid cluster in regions of low fluid vorticity. Initial
uniform distributions will thus develop strong density fronts in the position space (see
for example section 4.5.2), and also in the two dimensional velocity space, where a finite
volume scheme is used for the numerical integration. Indeed, particles tend to relax toward
the fluid local velocity u(x) with a characteristic time ⌧p. The distribution width around
this velocity is thus an increasing function of ⌧p, and when ⌧p ! 0, particles perfectly align
their velocity to the fluid one, corresponding to a δ-function in the velocity space.

The finite volume should then be able to adapt to strong gradients when necessary.
Furthermore, positivity preservation is a necessary condition when dealing with positive
quantities such as mass, or substance concentration, as it is often the case in engineering
simulations. This property can be ensured requiring the TVD (total variation diminish-
ing) property of the scheme, which ensures not to create new extrema in the function.
I thus needed a finite volume discretisation which gave both good accuracy, that could
automatically adapt to strong fronts, and that preserved positivity.

The natural solution is the use of flux limiters, which are function of the local gradients,
either flux or state gradients. They are used to tune the part of the flux that comes
from a high order scheme and the one that comes from a low order scheme. A lot of
limiters exist, and after some trials among a few other TVD ones, the one from Koren
(1993) was chosen. It offered the best accuracy, although only the test for one spatial
resolution in the one dimensional case (Nx = 2048) was performed. Its expression writes
K(r) = max[0,min(2r, (2+ r)/3, 2)], where r is the local gradient. In the case of a positive
net force, F > 0 at the interface between cell i and i+ 1 (the upwind direction),

r =
fi − fi−1

fi−1 − fi−2
. (A.10)
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Flux at this cell interface is then computed by (Hundsdorfer et al., 1995):

φi+ 1
2
= fiFi +

1

2
K(r)(Fifi − Fi−1fi−1). (A.11)

The density field is updated via a Euler temporal discretisation:

f t+∆t,⇤
i = f ti +

∆t

∆v
(φi+ 1

2
− φi− 1

2
). (A.12)

When including diffusion, the fluxes at the cell interface are applied subsequently:

φD
i+ 1

2

=

⇣

f t+∆t,⇤
i+1 − f t+∆t,⇤

i

⌘

∆v
, (A.13)

f t+∆t
i = f t+∆t,⇤

i +
∆t

∆v

⇣

φD
i+ 1

2

− φD
i− 1

2

⌘

. (A.14)

A.3.2 Dynamic grid resizing (DGR)

The domain grid in the velocity space consists of regular square cells disposed in the interval
[−Vmax,+Vmax]

d with d the dimension. Fixing this parameter forces the user to know a
priori the value of the particles rms-velocity needed to be resolved. It can be estimated
in some cases, as it was in the study discussed in chapter 4. In this case, some pre-run
with Lagrangian particles were carried to estimate their rms-velocity, and this property
was known to decrease with St1/2 (St is the Stokes number of the particles). Of course this
knowledge is not always guaranteed. In particular, this is a problem faced for the study
described at chapter 5. In that case, the flow exerts drags on the particles and the particles
react back on the fluid. The system is thus coupled and it was a quantity of interest to
determine how this velocity varied with the intensity of the coupling (defined via the mass
ratio between the particle population and the fluid total mass). A tendency which could
also depend on the particles inertia. Furthermore, the importance to provide a good value
for the parameter Vmax is shown in section 4.4.2, where its impact on the error on the
density field was assessed.

It was thus decided to implement a dynamic re-gridding to be able to dynamically
adjust the parameter Vmax depending on the particle dynamics.

It is important to note that this method is different from adaptative mesh refinement,
or AMR. This last technique is used in the scientific community for methods generating
more densely gridded parts of the domain. It is widely used for large scale computing,
for example in astrophysics (Teyssier, 2002; Mignone et al., 2011; Bryan et al., 2014),
using a tree-based decomposition, advantageous for systems where small regions need large
refinement.

In our case, the number of cells is constant, and the 2d grid remains uniform. Only
the parameter Vmax is adapted, so that the dynamic of the particles is better resolved.



130 APPENDIX A. SOFTWARE DETAILS

Figure A.2: Particle density field without (left) and with (center) DGR. Left simulation
uses a fixed value of Vmax = 4 while the real value is ⇠ 3. Right simulation starts with
Vmax = 4, resizing the velocity grid every 10⌧p at Vmax/vprms = 2. It resolves better the
mass voids due to high vorticity regions (corresponding vorticity field shown on the right).
Resolution is N2

x ⇥N2
v = 10242 ⇥ 132 and St ⇠ 1.

This adjustment takes place at a frequency specified by the user, and the desired ratio
Vmax/vprms is also prescribed. At each adjustment, the resolution in the velocity space
∆v = 2Vmax

Nv
is modified and so is the time step ∆t = ∆x/∆v which is a necessary criterion

for agreement with the discrete displacements on a lattice (see section 4). The transfor-
mation between the particle population before DGR, fold, and after DGR, fnew is made
through a bilinear interpolation in the velocity space. If V new

max < V old
max, then all the mass

R

Ωx

V old
max
R

V new
max

fold(v) ddxddv is discarded (Ωx is the spatial domain), then the remaining field is

rescaled to conserve the total mass. For example, assuming a Gaussian distribution for the
velocities, if Vmax/vprms = 2, then maximum ⇠ 4.5% of the mass will be impacted.

Of course, one has to provide a minimum Vmax. Otherwise, ∆v would tend to 0 and
the stability criterion would not be fulfilled any more (see section 4.3 for more details on
stability). This is particularly the case when starting from rest initial condition.

This technique was tested on a benchmark with a two dimensional direct enstrophy
cascade at resolution N2

x ⇥ N2
v = 10242 ⇥ 132. Two simulations are performed using the

same stochastic forcing, with and without DGR. Figure A.2 displays two instantaneous
density fields for St ⇠ 1. One can see that DGR allows to reduce numerical diffusion and
to better resolved the clustered trajectories outside the fluid vortices. Systematic study
of the impact of this grid resizing would require to assess the numerical error between
Lagrangian particles and corresponding reconstructed Eulerian mass fields, as a function
of the ratio Vmax/vprms = 2 and the frequency of adjustment.
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A.3.3 Parallelisation

Although the flow is computed using GPU parallelisation, the lattice method was integrated
on the CPU using shared memory parallelisation with the OPEN-MP library. The overhead
of fetching the fluid data located on the GPU was compensated by the fact that the time
step of the flow was always smaller than the time step of the lattice particles, allowing
for a not so frequent memory fetch. It was indeed verified through profiling that the part
of the computation time dedicated to the memory transfers between CPU and GPU was
negligible (O(1%)). Furthermore, this allows to release pressure on the scarcely available
memory on the GPU, and to perform CPU computations in parallel to the GPU.

Finally, the algorithm was performing better using shared memory than GPU accel-
eration. This is easily interpretable: GPU acceleration functions better when processing
adjacent memory locations. Because the full particle distribution f is stored in a linear
array in memory with the velocity being the fastest varying dimension, the GPU paralleli-
sation is efficient during the acceleration step, but certainly not during the streaming step,
where lots of memory movements have to be performed by lightweight threads. Actually,
this issue is common with the Lattice-Boltzmann GPU acceleration, for which efficient
algorithms have been proposed (see, for instance, Habich et al. (2011)).

This code is under CECILL license and available on demand.
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APPENDIX B

SoAx: a convenient and efficient C++ library to handle simulation of

heterogeneous particles in parallel architectures

A large variety of natural and industrial applications require scientists and engineers to use
a collection of a large number of objects encompassing multiple attributes. For example,
in the research framework of this thesis, these objects are solid particles suspended in
turbulent flows and the attributes are, or can be, the positions, velocities, mass, electric
charge, concentration, lifetime, etc. When designing a code to handle these attributes,
it quickly appears that adding more properties becomes cumbersome in terms of code
maintenance and reusability. Indeed, for performance reasons, it is desirable that each
attribute be declared as a separate, linear array in memory, promoting cache reuse. The
trace of this array has then to be kept and propagated in all the members of the class
representing the particles. Adding a new attribute forces then one to pass in review all the
methods of the class encompassing these arrays.

The SoAx library basically solves this problem. It is placed under GPLv3.0 license.

Although the chained-list model may be more advantageous in some situations, it is
not when repeating the same operation for each attribute on every particles and repeatedly
a large number of times as in numerical integrations of differential equations. This is called
number crunching.

A list of its capabilities are:

• Macro generated class members. Each attribute may be given a handy name, and
each additional one is automatically added to member functions.

• GPGPU support. Users may choose that their data reside on a GPU device. In that
case, all commands and computations are executed on the device. Transfer between
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CPU and GPU only occurs when the user explicitly retrieves the data from the GPU.

• MIC support.

• Expression templates: naive implementations of chained operations (for example: a
= (b+c)*d/(e-f)) between arrays of data results in multiple traversal of the data,
operations between executed between pairs of arrays, thus leading to poor cache
utilisation. Expression templates, that arose since the great possibilities offered by
template metaprogramming in C++, allow to embed the succession of operations to
be performed an to apply them in a single traversal of the data (see, for instance,
Iglberger et al. (2012)).

• MPI-ready. Particles may be individually retrieved, shared among processors and
saved to .

Performances of SoAx are measured as a function of the number particles on several
architectures (MIC, GPU). For each case, they are compared to a classical implementation,
i.e. not using macro generated class members or expression templates, to assess for the
validity of the implementation.

The paper issued from this development submitted to Computer physics communica-
tions is reproduced hereafter.
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Abstract

The numerical study of physical problems often require integrating the dynamics of a large number of particles evolving according

to a given set of equations. Particles are characterized by the information they are carrying such as an identity, a position other.

There are generally speaking two different possibilities for handling particles in high performance computing (HPC) codes. The

concept of an Array of Structures (AoS) is in the spirit of the object-oriented programming (OOP) paradigm in that the particle

information is implemented as a structure. Here, an object (realization of the structure) represents one particle and a set of many

particles is stored in an array. In contrast, using the concept of a Structure of Arrays (SoA), a single structure holds several arrays

each representing one property (such as the identity) of the whole set of particles.

The AoS approach is often implemented in HPC codes due to its handiness and flexibility. For a class of problems, however, it is

know that the performance of SoA is much better than that of AoS. We confirm this observation for our particle problem. Using a

benchmark we show that on modern Intel Xeon processors the SoA implementation is typically several times faster than the AoS

one. On Intel’s MIC co-processors the performance gap even attains a factor of ten. The same is true for GPU computing, using

both computational and multi-purpose GPUs.

Combining performance and handiness, we present the library SoAx that has optimal performance (on CPUs, MICs, and GPUs)

while providing the same handiness as AoS. For this, SoAx uses modern C++ design techniques such template meta programming

that allows to automatically generate code for user defined heterogeneous data structures.
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1. Introduction

Particles are at the heart of many astrophysical, environmen-

tal or industrial problems ranging from the dynamics of galax-

ies over sandstorms to combustion in diesel engines. Investi-
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gating such problems require generally integrating the dynam-

ics of a large number of particles evolving according to a given

physical laws. Examples are N-body simulations in cosmology

[1], particle in cell codes (PIC) exploring plasma physics [2]

or hydrodynamic simulations studying Lagrangian turbulence

problems [3]. Such kind of numerical simulations have in com-

mon that that they are numerically expensive meaning that they

rely on number crunching, i.e. an enormous number of float-

ing point operations. Studying the particle dynamics during a

finite time interval requires the numerical integration of the un-

derlying equations of motion over many time steps so that the

particle data (position, velocity, ...) is used in simple but numer-

ous repeated operations. The performance of such operations

depend in a crucial way on how the particle data is stored and

accessed.

Modern supercomputers are often indispensable for studying

challenging problems. Their architecture got more and more

complex in recent years. The today’s fastest computers consists

of several performance sensible components such as multi-level

caches, vector units based on the ’single-instruction multiple-

data’ (SIMD) concept, multi-core processors, many-core (MIC)

and GPU accelerators. Evidently it is important to make use of

all these components to optimize the performance of a numeri-

cal code.

Particles can carry different properties such as an identity, a

position or a mass. In programming languages such as Fortran,

C or C++, the data types int, double and float, could be

chosen to represent the former particle properties. (In this paper

codelets (serving as implementation examples) will always be

given in C++, but the reasoning will be kept general so that it

will similarly apply to Fortran and C.)

In C++, particles can be implemented as a heterogeneous

structure

Listing 1: Particle structure storing the data of one particle

s t r u c t P a r t i c l e {

i n t i d ;

double p o s i t i o n ;

f l o a t mass ;

}

This way, individual particles can easily be generated as ob-

jects (Particle p;) and modified (p.id = 42). A set of

particles is then often handled by an array- or list-like struc-

tures (std::list<Particle> pList;) providing functional-

ities such as access, adding and removal of particles. Such an

organization is called array of structures (AoS) as the particles

are represented by a structure that is hold by an array (or list).

Treating particles as objects is also convenient for transferring

them from one process to another via the message passing in-

terface (MPI) in parallel applications.

Another implementation strategy for handling a set of many

particles is to use one structure that holds several arrays; one

array for each particle property:

Listing 2: Structure of array containing one array per particle property

c l a s s P a r t A r r

{

p u b l i c :

i n t ∗ i d ;

double ∗ p o s i t i o n ;

f l o a t ∗ mass ;

}

It is then convenient to add member functions to this class

that perform operations on all the properties such as allocating

memory:

Listing 3: Member function to allocate memory for particle property arrays

void P a r t A r r : : a l l o c a t e ( i n t n )

{

number = new i n t [ n ] ;

p o s i t i o n = new double [ n ] ;

mass = new f l o a t [ n ] ;

}

In the same way, member functions for adding, removing and

other functionalities could be added. This kind of implemen-

tation is called structure of arrays (SoA) from the fact that in

this case one structure handles a set of particles whose proper-

ties are represented by different arrays. PartArr pArr; cre-

ates a set of particles and an individual particle is referenced

by the array index (pArr.position[42] returns the position

of particle 42). A priory, particles cannot be extracted as indi-

vidual objects from the structure PartArr. For this, a structure

Particle (see codelet above) would be needed together with a

function copying the array data for one index to the Particle

member variables. From these considerations it is clear that

AoSs are easier to implement and to use than SoAs.

AoS are also more extendable than AoS. Imagine one would

like to reuse the above outlined particle storage implementa-

tion for a slightly different particle type that requires the ad-

dition of a property such as a charge. AoS are more flexi-

ble than SoA for this task: the novel property could be added

to the Particle structure by simply adding the member vari-

able float charge;. In the case of a SoA an array (through

float* charge;) could be added to PartArr. But in turn,

all member functions such as allocate would also have to be

updated in order to treat the added array.

AoS seem to be the better candidate to store particles than

SoA. However, SoA are faster in many circumstances (espe-

cially on MIC and GPUs) [4, 5] than AoS and we show that this

is also the case for typical manipulations (such as trajectory in-

tegration) on particle data. By means of a benchmark modeling

floating-point operations used in real codes we show that SoAs

are typically several times faster than AoSs and that the perfor-

mance of an AoS depends on the size (in terms of bytes) of the

structure (Particle in the example above). In order to cope

with the seemingly contradicting properties handiness, flexibil-

ity and performance, we present a generic implementation of a

SoA called SoAx that has optimal performance while providing

the same handiness and flexibility of an AoS.

This paper is organized as follows. In section 2 we bench-

mark the performance of AoS and SoA on CPUs. In section

3 we discuss a similar benchmark on GPUs and MICs. The

generic C++ implementation of SoAx is presented in section 4.

Conclusions are drawn in 5.
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2. Benchmarking AoS and SoA on CPUs

In order to compare the performance of SoA and AoS we

measure the execution time of a benchmark computation. The

latter consists in performing an Euler advection time step for

the position x of a set of particles

x+ = dt v, (1)

dt denoting the time step (a floating point number) and v the

velocity of the particle. This equation is a simple prototype for

typical operations appearing in numerical codes. It consists, for

each component, of two loads from the heap memory plus one

for the constant dt, usually from the stack, and two stores in

heap memory.

For benchmarking AoS we use the structure

Listing 4: Particle structure used in the benchmark. SIZE is the number of

supplementary floats.

template < i n t SIZE>

c l a s s P a r t i c l e

{

p u b l i c :

f l o a t x [ 3 ] ;

f l o a t v [ 3 ] ;

f l o a t temp [ SIZE ] ;

} ;

where temp is a place holder for additional particle properties

that might be necessary for the physical problem under consid-

eration (such as a mass, an electric charge...) or the numeri-

cal algorithm (such as temporary positions and velocities for a

Runge-Kutta scheme). In the case of SoA we simply use three

heap-allocated C++ arrays for x and v, respectively.

Typically, in numerical simulations many successive time

steps are performed in order to integrate the particle dynam-

ics. In our benchmark we therefore loop many times over the

numerical implementation of (1). We use standard compilers

with enabled optimization.

Figure 1 compares the normalized execution time for the SoA

and AoS as a function of the particle number. The SoA is

much faster than the AoS. Their relative performance is shown

in Fig. 2. The SoA implementation is up to 25 times faster than

the AoS and one gains at least a factor of two to three by using

a SoA instead of an AoS.

The measured performance depends on the number of par-

ticles which is a consequence of the different cache levels of

modern CPUs. Usually they provide three levels with sizes of

32 kByte (L1), 256 kByte (L2), and 8-40 MByte (L3). The

colored arrows in Fig. 1 show the cache limits in terms of a

the number of particles of a certain size (in terms of bytes).

One observes that the performance is maximal when the L1

cache is filled and all particle data still fits into the L2 cache.

When the particle data size exceeds the L2 cache, the execu-

tion time slightly increases. An important performance drop

happens when data becomes larger than the L3 level. At that

point data has to be transferred from the main memory that has

a significantly lower bandwidth than the caches.
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Figure 1: Benchmark comparing the performance of a structure of array (SoA)

and an array of structure (AoS). The index SIZE in AoSSIZE denotes the number

of supplementary floats in the structure Particle (List. 4).
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Figure 2: Execution time of an array of structure (AoS) relative to that of a

structure of array (SoA). The index SIZE in AoSSIZE denotes the number of

supplementary floats in the structure Particle (List. 4).

An important drawback of AoS is that its performance de-

pends on the size of the particle structure. The more data (prop-

erties) this structure holds, that is to say the bigger it is, the more

it fills the cache that in turn hinders performance. A particle

with 32 additional floating point member variables (SIZE=32

List. 4) in is much slower than its slim counterpart. This prob-

lem is of course absent for SoA as all arrays are allocated indi-

vidually and continuously in memory. Data (particle properties)

that is not used in the execution loop will not be loaded into the

cache.

The execution time of the AoS also depends on the container

used to store the particle objects. A stl vector is significantly

faster than than a stl list. We measure roughly a factor of two.

This difference is due to the additional indirections involved for

linked lists (such as the stl list). On the other hand, a list is

faster in removing particles than a vector as the latter copies

successive elements to keep the data continuous in memory.

This drawback can be overcome when the ordering of parti-
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cle is not important. In that case, a particle can be removed by

simply overwriting it with the last particle. This strategy is used

by default by SoAx.

The performance measured with a given benchmark naturally

depends on the architecture of the CPU. However, it is impor-

tant to note that the just discussed relative performance (SoA vs.

AoS) will not or only weakly depend on the clock speed. But

other differences, especially the vectorization units are impor-

tant as we will show now. We will consider two different CPU

architectures distinguished by the date of their commercial re-

lease. This sheds light on how the ’SoA vs AoS’ performance

ratio changed over time. We compare the SoA performance to

the maximal AoS performance (using the smallest possible par-

ticle size together with a stl vector). In Fig. 3 we compare Xeon

CPUs from 2010 and 2014. For the two CPU generations SoA

clearly wins over AoS. But the modern chip has a higher perfor-

mance gain. Over only four years the gain has nearly doubled.

The CPU architecture is more and more constructed in a way

that favors the SoA layout.

Figure 3: Benchmark comparing SoA and AoS for different CPU generations

distinguished by the date of their commercial launch. 2014: Intel Xeon E5-

2680 v3 (Haswell EP); 2010: Intel Xeon X5650 (Westmere EP)

One architectural component that has changed over the years

is the performance of the vector unit. All today’s CPUs possess

so-called single instruction multiple data (SIMD) register and

associated instruction sets. These allow to perform the same

instruction (such as an addition) to many floating-point number

at a time (in one cycle) that can significantly speed up code. In

Fig. 4 we compare the performance of SoA and AoS with and

without the use of the vector unit. The vectorization gain of a

SoA reaches four to five for small particle numbers of the or-

der of 100-1000 particles. The theoretical gain is eight as the

used CPU has a 256 bit vector register containing eight single

precision floating point values. At intermediate particle num-

bers (103-106) the gain is around two and vanishes for higher

particle numbers. The origin of these regimes can be found in

the three cache levels: The gain is maximal if all data fits into

the L2 cache. The second regime corresponds to data fitting

into the L3 cache. However, when the data size exceeds the

latter the vectorization gain vanishes because the data has to be

loaded from the main memory which is too slow to efficiently

fill the vector registers.

Vectorization does not speed up AoS computations. Appar-

ently, the auto-vectorizer of the compiler does not manage to

create a substantial gain if a AoS is used. This means that a part

of the SoA superiority can be explained by the fact that SoA

effectively use the CPU vector units.
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Figure 4: Performance gain due to vectorization for a SoA and AoSs.

This also explains the observed differences between the two

CPU architectures. From one CPU generation to the other, the

register width and the set of instruction has been augmented.

The old CPU from 2010 has 128 bit vector register with a

SSE4.2 instruction set and the most recent CPU from 2014 has a

256 bit vector register with an AVX2 instruction set. The factor

of two between the 128 bit and 256 bit register explains the dif-

ferences in Fig.3 for intermediate particle numbers. Of course

other features than the vector unit changed among CPU archi-

tectures but it seems that most of the changes in the ’SoA vs

AoS’ performance ratio over the years are due to optimizations

of the vector units.

3. Benchmarks on MICs and GPUs

Today’s supercomputer often use accelerators to speed up

computationally intensive parts of numerical codes. Mainly two

different accelerator types exist:

Intel recently introduced the ’many integrated core’ (MIC)

concept with the Xeon Phi co-processor that assembles many

computing cores (around 60) on one chip. The used computing

cores are simplified versions of commonly used CPUs so that

numerical code compile without changes on a Xeon Phi.

Nvidia and AMD/ATI developed graphics processing units

(GPU) that are now often used in high performance comput-

ing. This architecture uses hundreds to thousands of very sim-

ple computing cores to speed up high parallel algorithms. For

these GPUs the numerical code has to be especially designed.

The importance of these accelerators for HPC is under-

lined by the fact that they are massively employed by the two

fastest supercomputers in the world (according to the TOP 500
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list, www.top500.org). In fact, Tianhe-2 uses Xeon Phi co-

processors and Titan Nvidia GPUs.

3.1. MIC

During the last decade, the performance of supercomputers

grew essentially by increasing the number of (standard) com-

puting cores so that high performance computing demanded

more and more for parallel numerical algorithms and codes. In-

tel pushes now further in the direction of massive parallel pro-

gramming by introducing co-processors, called Xeon Phi, with

around 60 integrated cores each. A single core is in general

compatible to standard CPUs but exhibits some architectural

differences that are important for the performance of SoAs and

AoSs: A Xeon Phi has no L3 cache but only a 32 kByte L1

and a 512 kByte L2 cache per core. Another aspect is that the

vectorization capacities have been improved by extending the

SIMD registers to 512 bits which means that either 16 single

precision floating point number or 8 double precision number

can be processed in one cycle.

These design differences show up in the relative performance

of AoS compared to SoA (as before, we will only study the

single-core performance). Our benchmark shows the the MIC

cores favor SoAs over AoS and that even more than standard

CPUs. For small size objects and intermediate particle num-

bers the tested SoA is roughly ten times faster than the AoS

(see Fig. 5). If the stored particle has a considerable size, this

difference even varies between twenty and forty.
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Figure 5: Benchmark comparing the performance of AoS to SoA on a Xeon

Phi.

The reason is the extended vector performance of the MIC

cores. Up to the point when the L2 cache is filled, vectorization

speeds up the computation by a factor of roughly ten (see Fig.6)

which is below the optimal value of sixteen but twice the speed-

up measured for a standard CPU. Again, the cache size limits

the particle number range for this speed-up.

3.2. GPU

The architecture behind the General Purpose Graphical Pro-

cessing Units (GPU) uses a divide and conquer philosophy, by

Figure 6: Speed-up by vectorization on a Xeon Phi

providing a many-core device, separated from the CPU, and

typically connected to this one via a PCIe band. Graphic cards

are widely used as accelerators in computer clusters, and power

many of the TOP500 fastest supercomputer.

A few thousand of threads can run concurrently on the

graphic card, thus providing the possibility to process many el-

ements at a time. Furthermore, the architecture, labeled SIMT

(for Single Instruction, Multiple Thread) is somewhat different

from the SIMD in that every single thread has its own regis-

ter state and can have independent behaviors from the others, a

feature allowing a thread-based as well as coordinated threads

development.

Another important difference from the CPU is the role of the

L1 cache. Different caches co-exist, each one belonging to a

given streaming multiprocessor, a structure responsible to dis-

patch the work among the threads. This cache is mainly used

for register spilling and some stack variables. It does not pro-

mote temporal locality so that repeated operations on the same

memory locations will not necessarily benefit from this cache.

The L2 cache, shared among all streaming multiprocessors, will

be used instead. We thus expect the SoA pattern not to bene-

fit from the L1 cache, but the AoS will in fact benefit from it :

indeed, loading a large structure into memory allows threads to

reuse close memory.

A benchmark similar to those listed above is performed. The

graphic card used is a Nvidia Tesla M2050, a middle-range,

widespread computing device. The card has 448 cores, spread

among 14 multiprocessors and the L2 cache size is ∼ 786

kBytes. In the SOA algorithm, three functions are launched,

one per position and velocity component, with a number of

threads such that each thread has a single element to process.

The program is compiled with optimization. Timing is mea-

sured by the Nvidia profiling tool, allowing to isolate the kernel

execution time from the overhead of the function calls. Execu-

tion times normalized by the number of particles are shown in

Fig. 7. For large particle numbers, SoA outperforms AoS solu-

tion, by a factor ∼ 2 for S IZE = 0 and ∼ 20 for S IZE = 32.

As the particle number decreases however, AoS performs bet-
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ter, with higher crossover for lower S IZE. The reason for this

lies in the GPU architecture, as we will now explain.

Figure 9 displays two relevant measured metrics for the func-

tion used. The major drawback of the AoS approach is the well

know effect of uncoalesced memory access, hence threads fetch

unneeded data in the cache lines. This is particularly damage-

able in the case of GPU computing because the major weak

point is the latency of memory access. Accessing data is done

by a single, indivisible group of 32 threads, called a warp.

Loading a large structure in a thread memory, only to read a

small part of it, degrades badly the memory access performance

up to a factor of 32. The case AoS with S IZE = 0 packs 6 val-

ues and will then have a memory performance of 1/6 ≈ 16%

compared to SoA, and the highest values of S IZE will display

a performance down to 1/32 ≈ 3%. This is shown in Fig. 8. As

a result, one can clearly see that the performance per particle

saturates for a sufficiently large number of particles, with SoA

pattern outperforming the AoS with S IZE = 32 by a factor of

20 and the AoS with S IZE = 0 by a factor of 2. For small par-

ticle numbers, performance is hindered by a less effective usage

of memory, additional to the uncoalesced access pattern, as can

be seen in Figure 8.

It is also noticeable that the performance of SoA is slightly

worse than AoS for small particle numbers (up to 1000). This

can be attributed to the fact that when the number of particles is

small enough, the L1 cache and the threads registers are large

enough to keep the whole particles close in memory, hence al-

lowing faster access to other position and velocity components

for successive operations, while the SoA pattern has to make

a request to global memory for every needed data. Neverthe-

less, this effect only brings advantage when the particle number

is small. When this number increases, the cache cannot hold

the data anymore and so that the global memory is used and

another long latency fetch has to be performed. The caching

advantage is thus eventually taken over by the poor memory ac-

cess performance, and the crossing between SoA and AoS (with

S IZE = 0) occurs around 2000 particles. This corresponds to

a full utilisation of the L1 cache which is 48 kB, the size of one

SoA (S IZE = 0) particle being 6 ∗ 4 = 24 bytes.

We also performed this simple benchmark on another multi-

purpose graphic card boarded on a desktop computer. For this

example, we used the Nvidia Geforce GT755M, composed of

384 cores on 2 multiprocessors, with ∼ 262 kbytes. Timings

were 2 − 3 times slower, irrespective of the number of particles

and both for AoS and SoA (not shown here), illustrating the

benefit of using a graphic card specifically dedicated to high

performance computing exhibiting more parallelism.

4. Generic C++ implementation of a structure of arrays

(SoAx)

In the introduction we have seen that implementing, main-

taining and using a structure of array can be annoying. We

present now an implementation of a structure of array using

modern C++ (in fact C++11), called SoAx, that provides a handy

interface, high flexibility and optimal performance. We use
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10

0
10

2
10

4
10

6
10

8

ex
ec
u
ti
o
n
ti
m
e
(s
)
/
p
ar
ti
cl
e
n
u
m
b
er

10
-10

10
-9

10
-8

10
-7

10
-6

AoS0
AoS32
SoA

Figure 7: Benchmark comparing the execution time of AoS vs SoA implemen-

tation of the Eulerian update step in single precision.
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Figure 8: L1 cache hit rate for global memory load requests, in percents.

C++ because is enables powerful mechanisms to build abstrac-

tions without loss of performance. We discussed in the intro-

duction that adding a property (such as a charge) to a particle

requires the modification of all member functions (such as Par-

tArr::allocate) that handle the different arrays. C++ allows to

pass this task to the compiler. Using template meta program-

ming [6], the needed code can be automatically generated dur-

ing the compilation. The result is a class that contains an array

for each particle property, the associated access functions and

member functions that allow efficient handling of all arrays.

4.1. Using SoAx

Before discussing details of the implementation let us first

show a short listing presenting some functionality of SoAx. Let

us assume that we want our particles to have an identity, a posi-

tion, a velocity, and a mass of types int, double, double, and
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Figure 9: Loading efficiency from the main GPU memory. This is the ratio

between requested memory and effectively used memory.

float, respectively. Let us further assume that we need three-

dimensional coordinates for the position and velocity. Here is

what one could write using SoAx:

Listing 5: Example code showing typical usage of SoAx

/ / D e f i n e p a r t i c l e p r o p e r t i e s t h r o u g h macro

SOAX ATTRIBUTE( id , ’N’ ) ; / / i d e n t i t y

SOAX ATTRIBUTE( pos , ’P ’ ) ; / / p o s i t i o n

SOAX ATTRIBUTE( ve l , ’V’ ) ; / / v e l o c i t y

SOAX ATTRIBUTE( mass , ’M’ ) ; / / v e l o c i t y

/ / S p e c i f y t y p e s and d i m e n s i o n and

/ / c o n c a t e n a t e a t t r i b u t e s u s i n g s t d : : t u p l e

t y p e d e f s t d : : t u p l e < id < i n t ,1 > ,

pos<double ,3 > ,

ve l <double ,3 > ,

mass< f l o a t ,1>> ArrayTypes ;

/ / c r e a t e SoA f o r 42 p a r t i c l e s

Soax<ArrayTypes> soax ( 4 2 ) ;

/ / a c c e s s p r o p e r t i e s o f p a r t i c l e 23

soax . i d ( 2 3 ) = 0 ; / / s e t i d e n t i t y

soax . pos ( 2 3 , 0 ) = 100 ; / / s e t x− c o o r d i n a t e

/ / o p e r a t i o n s on a l l p a r t i c l e s ( x = vy − vz )

soax . posArr ( 0 ) =soax . v e l A r r ( 1 )−soax . v e l A r r ( 2 ) ;

/ / a l l o c a t e memory o f 100 p a r t i c l e s

soax . r e s i z e ( 1 0 0 ) ;

We have payed attention to the fact, that user might want

to extract and treat particles as objects (in the spirit of

struct Particle). With SoAx one can write

Listing 6: Example of using SoAx elements

auto p a r t i c l e = soax . g e t E l e m e n t ( 7 ) ;

p a r t i c l e . i d ( ) = 4 2 ;

p a r t i c l e . pos ( 0 ) = 3 . 1 4 ;

soax . p u s h b a c k ( p a r t i c l e ) ;

The necessary class from which the particle objects are cre-

ated is also automatically created by the compiler by means of

template meta programming. This technique will be discussed

in the next section.

4.2. Implementation of SoAx

SoAx uses inheritance in combination with template meta-

programming. The basic idea is to inherit all arrays (parti-

cle properties) into one single structure. The different prop-

erty types of the particle are passed to the SoAx class using

std::tuple. This is a component of C++11 storing heterogeneous

data types.

A SoAx attribute consists of an array for storing and

member-functions for accessing data. We have chosen to

generate these attribute classes by macros to avoid repet-

itive implementations as they have all the same structure.

Macros permit to give custom names to the attributes: From

SOAX_ATTRIBUTE(pos, ’P’); the compiler creates a class

with a member-function pos to access individual particles and

posArr to access directly the complete array. The character

P is only a descriptive string that can be used by the user for

other purposes. pos<double,N> is an instantiation of the class

template holding a N-dimensional array of type double.

Let us here mention that advanced programming techniques

can be used to provide usage safety. The dimensionality is for

example automatically taken into account for the member func-

tion pos. In the case of pos<double,3>, pos(42,0) gives

the expected access to the first coordinate of particle 42 while

pos(42) yields a compile-time assertion (through ’substitution

failure is not an error’ (SFINAE, [7])). The behavior is the op-

posite in the case of id<int,1>, where id(42) is the identity

of particle 42 and id(42,0) results in a compile-time assertion.

Advanced programming techniques also allow to enable the

library user to write automatically optimized code. The line

soax.posArr(0) = soax.velArr(1)-soax.velArr(2);

in List. 5 performs an operation on all particles. The library

user does not need to write a custom for-loop for CPUs or a

CUDA kernel for GPUs. For this, SoAx uses a technique called

expression templates [8, 7] where a computation such as a sum

is encoded in a template. Chained arithmetic operations are

analysed at compile time and an optimized code without un-

necessary copies is generated by the compiler. This technique

is nowadays used in linear algebra software [9].

4.2.1. Adding functions

The user can easily add custom functions to SoAx that he

wants to be applied to all arrays. For this, it is not necessary

to touch the code of the library. The user only has to define a

structure containing a doIt member-function (see List. 7 for an

example). The first template parameter of this member doIt is

a reference to one of the SoA arrays. Other parameters can be

freely chosen (internally SoAx uses variadic templates). Here

is an example of a function that sets the values of all arrays to a

certain value:

7



Listing 7: Example of a function to be applied to all SoAx arrays

s t r u c t SetToValue

{

template < c l a s s T , c l a s s Type>

s t a t i c vo id d o I t ( T& t , Type v a l u e ) {

f o r ( i n t i =0; i < t −> s i z e ( ) ; i ++)

t −>operator [ ] ( i ) = v a l u e ;

}

} ;

Passing this function to a SoAx object soax as a template

argument,

soax.apply<SOAX::SetToValue>(42); applies

SetToValue::doIt to all arrays in soax.

This is achieved via recursive templates. We discuss this pro-

gramming technique here as a showcase for the doIt function

as it explains how templates can be used to make the com-

piler generate code without loss of performance (see List. 8).

In fact, the SoAx member-function apply calls the member-

function doIt of the class template TupleDo with the particle

attribute tuple (Tuple), its size (N) and the user defined tem-

plate (DoItClass = e.g. SetToValue) as template arguments.

The member-function doIt calls recursively TupleDo::doIt

for the attribute tuple but passing a decremented size. This re-

cursion continues until the passed size is one so that the com-

piler chooses the partially specialized case below. Its doIt

member-function calls the doIt function of the user provided

DoItClass that terminates the treatment of the first entry of

the attribute tuple Tuple. After that the DoItClass::doIt is

called for the second entry. This process continues for all at-

tributes. As the code for all calls is generated at compile time,

there is no performance overhead compared to a hand-written

code.

Listing 8: Example explaining compile time code creation by recursive tem-

plates

template < c l a s s Tuple , s t d : : s i z e t N, c l a s s

D o I t C l a s s >

s t r u c t TupleDo {

template < c l a s s . . . Args>

s t a t i c vo id d o I t ( Tuple& t , Args . . . a r g s )

{

TupleDo<Tuple , N−1 , D o I t C l a s s > : : d o I t ( t ,

a r g s . . . ) ;

D o I t C l a s s : : d o I t ( s t d : : ge t <N−1>( t ) , a r g s . . . ) ;

}

} ;

template < c l a s s Tuple , c l a s s D o I t C l a s s >

s t r u c t TupleDo<Tuple , 1 , D o I t C l a s s > {

template < c l a s s . . . Args>

s t a t i c vo id d o I t ( Tuple& t , Args . . . a r g s )

{

D o I t C l a s s : : d o I t ( s t d : : ge t <0>( t ) , a r g s . . . ) ;

}

} ;

4.2.2. GPU implementation

Several restrictions apply when working with GPU proces-

sors. A first one is the costly data transfer between CPU and

GPU: one has to design a solution in which those transfers are

minimized. Data should reside mainly on the GPU and be trans-

ferred to the main memory only when needed by the CPU, for

example for output to a hard drive. One thus cannot make use of

solutions that would results in dereferenciation by the CPU of

each elements one at a time, but must rely on device functions

that process all data at once on the device. In addition, when

processing multiple vectors with several operations, processing

them all together is faster than successively, an optimisation

sometimes referred to as loop fusion. These constraits lead us

to make again use of expression templates for device data.

Another constrain comes from the fact that C++-stl vectors

are not designed to work on GPU processors within the CUDA

framework, as far as the version 7.0, and another type of data

storage is then needed. To allow expression templates to work

with GPUs, we build a custom class, called deviceWrapper, en-

compassing a pointer to data living on the device. In addition,

as the THRUST library provides the best mimic of stl vectors

structure and algorithms to our knowledge, we also keep trace

of the associated device vector to allow efficient operations to

be performed on the data.

When an assignment (of the form

soax.posArr(0) = soax.velArr(1)-soax.velArr(2);)

is performed, a kernel is called and passed a copy of the

underlying deviceWrapper object, accessing the data with

the expression template objects. The copy constructor of the

deviceWrapper class then needs to be overloaded in order to

copy only the raw device pointer and not all the data at each

call.

Fig. 10 shows a benchmark evaluating the performance of

this implementation for the operation (1) as a function of the

particle number, along with the SOA and AOS (with S IZE =

16) implementations as references. The time is measured this

time with a std::chrono rather then with the kernel profiler, al-

lowing to assess the possible overhead of the SoAx solution.

With this benchmark, we confirm that the performance of SoAx

is the same as the SOA also on GPUs. Indeed, the SoAx GPU

implementation comes down in fine to call a kernel on the stored

data adressed through expression templates.

5. Conclusions

The goal of the work is two-fold. First, it shows that het-

erogeneous data (such as particles) should be implemented in

an array of structure (AoS) fashion rather than in a structure of

array (SoA) one if performance is crucial. AoS are generally

much faster on modern CPUs as well as on GPUs. The reason

is that AoS better uses cache and vectorization resources that

can speed up typical number crunching algorithms on particles

by more than one order of magnitude. However, implementing

and maintaining AoS can be cumbersome especially if the the

number of numerical types representing a particle change from

one application to another. SoA are in general more handy and
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Figure 10: Benchmark of SoAx library GPU implementation.

flexible. This consideration leads to the second contribution of

this work showing that modern C++ programming techniques

permits to combine the advantages of both concepts (SoA and

AoS) to build a generic library that has the performance of SoAs

and the flexibility and handiness of AoS. We demonstrate the

benefit of template meta programming for scientific codes. This

technique delegates code generation to the compiler and allows

for highly readable, maintainable and fast application code. The

presented library SoAx runs on CPUs as well as on GPUs.
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