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Introduction 2.1 Overview

Liquid crystals are one of the best examples of the unique behavior of matter. As the name describes, they form intermediate states between the liquid and crystalline phases, that share important properties from both of them. First observed by Friedrich Reinitzer and later explained by Otto Lehmann [START_REF] Lehmann | Über fließende Krystalle[END_REF], the molecular Liquid crystals have represented an important step in material science and technology, used as the Liquid Crystal Display (LCD). However, this phenomenon was also observed in colloidal particles.

Rod-like colloidal particles form different liquid crystalline mesophases, as shown in Fig. 2.1. Zocher was the first to observe birefringent nematic tactoids of inorganic V 2 O 5 rods in an isotropic background, in 1925 [START_REF] Zocher | Über freiwillige strukturbildung in solen. (eine neue art anisotrop flüssiger medien[END_REF]. Later, not only the I-N phase coexistence was also reported in biological particles as the Tobacco Mosaic Virus (TMV) [START_REF] Stanley | Isolation of a Crystalline Protein Possessing the Properties of Tobacco-Mosaic Virus[END_REF][START_REF] Bawden | The isolation and some properties of liquid crystalline substances from solanaceous plants infected with three strains of tobacco mosaic virus[END_REF], but also the Smectic layered patterns formed due to the high monodispersity of the particles [START_REF] Stroobants | Columnar versus Smectic Order in Binary mixtures of hard parallel spherocylinders[END_REF][START_REF] Patti | Collective diffusion of colloidal hard rods in smectic liquid crystals: Effect of particle anisotropy[END_REF]. The phase coexistence between the Isotropic and Nematic phases observed experimentally, motivated Lars Onsager to develop a theory for first-order Isotropic-Nematic Phase transition of hard rods in his seminal work during 1949 [START_REF] Onsager | The effects of shape on the interaction of colloidal particles[END_REF].

Hard rods per definition cannot overlap, and only feel each other when they are in contact. Onsager demonstrated how highly anisotropic particles undergo a transition from the Isotropic liquid to the Nematic phase, which depends only on the maximization of the free volume. Particles in the Isotropic phase have neither positional nor orientational order, as opposed to those in the Nematic phase which have long-range orientational order but no po-7 2.1. OVERVIEW Figure 2.1: Scheme of the different meshopases that hard rods form when increasing concentration, from the less concentrated (Isotropic) to the highest dense phase (Crystal) [START_REF] Grelet | Hard-rod behavior in dense mesophases of semiflexible and rigid charged viruses[END_REF] sitional order. Through computer simulations, the work of Onsager was expanded to include the transition from the Nematic to the Smectic phase, where the particles gain 1D quasi-longrange positional order due to their layer confinement, being liquid-like within the layer [START_REF] Van Der Schoot | The Nematic-Smectic Transition in Suspensions of Slightly Flexible Hard Rods[END_REF][START_REF] Polson | First-order nematic-smectic phase transition for hard spherocylinders in the limit of infinite aspect ratio[END_REF].

Transitions between these phases are purely entropy driven, which means that the excluded volume interaction between particles is enough to form the different mesophases. These kinds of systems are called colloidal lyotropic liquid crystals, and their phase transitions are concentration dependent. Moreover, rod-like particles are abundant in nature, e.g. the actin filaments, cytoskeleton and muscular proteins [START_REF] Pollard | The cytoskeleton, cellular motility and the reductionist agenda[END_REF][START_REF] Huxley | Muscular contraction[END_REF][START_REF] Newman | Hydrodynamic properties and structure of fd virus[END_REF] that have a liquid crystalline-like behavior. These systems self-organize or diffuse in different ways, depending on their functions or even the changes in the medium. However, we are far from understanding some of the structures and mechanisms involved. One of the motivations for studying the dynamics and kinetics of these systems over the past decades was to understand the path that these systems follow to order and disorder [START_REF] S B Zimmerman | Macromolecular crowding: Biochemical, biophysical, and physiological consequences[END_REF][START_REF] Ellis | Macromolecular crowding: Obvious but underappreciated[END_REF][START_REF] Hess | Self-organization in living cells[END_REF][START_REF] Bernado | Macromolecular crowding in biological systems: hydrodynamics and NMR methods[END_REF][START_REF] Höfling | Anomalous transport in the crowded world of biological cells[END_REF][START_REF] Gnutt | The macromolecular crowding effect -From in vitro into the cell[END_REF].

In addition to the TMV viruses, the fd viruses were also observed to exhibit liquid crystalline mesophases [START_REF] Fraden | Phase Transitions in Colloidal Suspensions of Virus Particles[END_REF], and due to their physical properties, they are considered an ideal experimental system to study the phenomena of phase transitions and self-organization of rod-like particles. The fdwt (wild type) is well known for the ability to infect Escherichia coli (E.Coli). As opposed to synthetic particles, they are naturally monodisperse, which favors the formation of the Smectic layers [START_REF] Dogic | Smectic phase in a colloidal suspension of semiflexible virus particles[END_REF]. Moreover, the fd virus can be easily labeled with fluorescent dyes, thanks to the solvent exposed amines in their coat protein. Their physical properties CHAPTER 2. INTRODUCTION 9 can be tuned by genetic modification to obtain mutants with different lengths or stiffness. This is the case for the mutant fdY21M which is slightly longer than and much stiffer than fdwt.

The fd virus high aspect ratio, L/D>100, makes the individual visualization with fluorescence microscopy possible. Also, the I-N transition of the stiff fdY21M virus takes place at the same volume fraction of the value predicted by Onsager [START_REF] Barry | A model liquid crystalline system based on rodlike viruses with variable chirality and persistence length[END_REF]. Futhermore, they exhibit Brownian motion due to thermal agitation, first observed by Robert Brown in 1827 [START_REF] Brown | A brief account of microscopical observations made in the months of june, july and august 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies[END_REF]. Thus, their dynamics that can be studied in order to understand the features of the different mesophases that they form and the underlying physics.

Since the phase transition implies a difference in the free volume between the liquid crystalline phases, it directly affects the self-dynamics of the system. Thus, of fd viruses dynamics have been extensively studied over the past decade for each distinct mesophase. In the dilute Isotropic phase, the rods have no positional or orientational order, causing a freely rotation and translation of the rods. Experiments and simulations have demonstrated that when approaching the I-N phase transition, the rotational diffusion freezes in the Isotropic phase [START_REF] Modlińska | Condensation and dissolution of nematic droplets in dispersions of colloidal rods with thermo sensitive depletants[END_REF][START_REF] Y G Tao | Brownian dynamics simulations of the self-and collective rotational diffusion coefficients of rigid long thin rods[END_REF].

After the I-N phase transition, in the Nematic phase, the parallel translational diffusion is promoted, due to the alignment of rods along the long axis of the particles [START_REF] Lettinga | Self-diffusion of rod-like viruses in the nematic phase[END_REF]. Later, it was found that self-diffusion of these rods in the Smectic phase occurs via mass transport between the layers, which is called hopping-type diffusion [START_REF] Grelet | Dynamical and structural insights into the smectic phase of rod-like particles[END_REF][START_REF] Lettinga | Self-diffusion of rodlike viruses through smectic layers[END_REF][START_REF] Pouget | Dynamics in the smectic phase of stiff viral rods[END_REF][START_REF] Van Roij | Self-Diffusion of Particles in Complex Fluids : Temporary Cages and Permanent Barriers[END_REF]. In this case, the particles jump between the layers, overcoming the layering potential, rather than staying within the layer.

Thus, the rod-like viruses exhibit 1D diffusion confined in a potential energy background set by the Smectic layers. Although a big step has been taken towards the understanding of the dynamics of fd viruses in their different mesophases, the direct effect of the self-dynamics at these entropy driven phase transitions and in dense phases due to the change of free volume remain unclear. These will be the main questions treated in this Thesis.

Phase transitions in Liquid Crystals

The cascade of liquid crystalline phases exhibited by rod-like particles has been of great interest in the field of Soft Matter. In this section, we first introduce the theoretical work that Onsager developed on the Isotropic-Nematic Phase transition for hard rods. Second, we introduce the Onsager's theory for the Nematic-Smectic phase transition and also denser phases, which has been demonstrated with experiments and simulations.

Onsager's theory for an entropy driven Isotropic-Nematic Phase transition

Onsager developed the virial theory in the Isotropic-Nematic Phase transition for hard rod particles (1949). He established the theoretical basis for next generations in the field of colloidal liquid crystals. His work was motivated by the experiments of Zocher with the inorganic rodlike particles of V 2 O 5 , that exhibit Isotropic and Nematic phase coexistence [START_REF] Zocher | Über freiwillige strukturbildung in solen. (eine neue art anisotrop flüssiger medien[END_REF] as well as for TMV viruses, observed by Bawden et al. in 1936 [4]. The work of Onsager is based on the maximization of entropy since he considered purely hard particles. When discussing entropy, we consider the definition given by Boltzmann 1 , which refers to the number of accessible microstates of the system, which corresponds to the accessible volume.

Onsager developed a theory based on the second virial expansion of the free energy. The free energy has a contribution for an assembly of non-interacting rods, F ideal and a contribution due to the excluded volume F exc , where F = F ideal + F exc . Therefore, the free energy of a hard rods system expanded to the second virial factor can be expressed as

F Nk B t = µ o (T ) k B T + Ln(Λ 3 ρ) + B 2 ρ, (2.1 
) 1 To explain the behavior of macroscopic systems regarding the dynamical laws that rule their microscopic elements was the main motivation for Clausius, Maxwell, and Boltzmann in the 18th century. In his paper in 1877, Boltzmann presented a probabilistic expression for the entropy, where he showed that the entropy S is proportional to the 6N-dimensional phase space volume Ω occupied by the corresponding macrostate of an N-particle system, S ∝ logΩ . The second law implies to have an irreversible change in a closed system, the number of final states has to be larger than the initial state between two hard rods in the isotropic phase. [START_REF] Vroege | Phase transitions in lyotropic liquid crystals: bilayer and micelle stability[END_REF] where, µ o is the chemical potential of the solvent, Λ is the Broglie wavelength, ρ the rod particle density N/V , and B 2 is the second virial coefficient which is related to the intermolecular pair potential, in other words: the interaction between two particles. Since the second virial coefficient contains the interaction of two particles, it can be expressed as

B 2 = -1 2V Φ 1 Φ 2 dr 1 dr 2 , (2.2) 
where Φ represents the Mayer functions [START_REF] Mayer | The Theory of Ionic Solutions[END_REF] for a pair potentials of two particles 1 and 2.

The solution of Mayer functions, Φ, depends on if the particles overlap or not, being -1 for overlapping particles and zero in the opposite case.

In the context of Onsager's hard rod system, where the Isotropic-Nematic Phase transition occurs (Fig. 2.2), the contribution to the free energy is expressed as orientational distribution function f (Ω), which is the probability of finding a particle with determined orientation characterized by the solid angle Ω. In the Isotropic phase f iso (Ω) = 1 4π , where all orientations are equally probable due to the possibility of the rods to rotate. Onsager reformulates the second virial coefficient using this distribution function for pair potentials between two hard rods given by: 2.2. PHASE TRANSITIONS IN LIQUID CRYSTALS

B 2 = 1 2 dΩdΩ f (Ω) f (Ω )v excl (ΩΩ ) (2.3)
where V excl (ΩΩ ) is the excluded volume between two spherocylinders with orientations Ω

and Ω which can be written as

V excl (Ω, Ω ) = 2L 2 D|sinγ| + 4 3 πD 3 + 2πLD 2 , (2.4) 
where γ(Ω, Ω ) is the angle formed between two adjacent rods, D the diameter and L the length. Onsager considered the particular case of infinite long rods, where the aspect ratio is L/D >> 100. If the rods are completely parallel the excluded volume is minimal V excl = 2πLD 2 (Nematic phase) and maximal if they are perpendicular V ⊥ excl = 2L 2 D (Isotropic phase).

Knowing the orientational distribution function, the orientational order parameter S can be determined,

S = 1 2 3 cos 2 (θ ) -1 (2.5) 
where ... indicates the average and θ the angle that the particle orientation forms with the director. If all particles are oriented along the director unit vector n (unit vector that represents the preferred orientation of the particles in the phase, see Fig. 2.2), then θ = 0 and S = 1, while for particles which have a random orientation S = 0.

At the I-N Phase transition then F exc ∝ L D φ . Therefore, the formation of a liquid crystalline phase as the phase transition depends only on the volume fraction of the system φ . For flexible rods, an approach has been used [START_REF] Chen | Nematic ordering in semiflexible polymer chains[END_REF], where the excluded volume is less than for hard rods due to their partial deformability. It follows that, within the Onsager theory, the volume fraction of hard rods at the I-N phase transition scales as φ = 4 D L . When increasing volume fraction, the excluded volume becomes very small for parallel rods, the free volume in the system must increase. This way, when there is a transition from the isotropic which involves a loss of orientational entropy, it is compensated by the gain of translational entropy. Onsager determined with his theory that the Isotropic-Nematic Phase transition of thin and long hard rods is a first order phase transition and purely entropy driven when the aspect ratio of rods is higher than 100. For smaller aspect ratios, third or higher virial terms need to be taken into consideration for the free energy expansion.

To find the Isotropic-Nematic Phase boundaries, the free energy is minimized with respect to the orientational distribution function as a function of concentration. Thus, the volume fraction of both phases at phase coexistence is obtained numerically using the correct distribution functions [START_REF] Vroege | Phase transition in Lyotropic colloidal and plymer liquid crystals[END_REF]:

φ I(-N) = 3.3 D L , φ (I-)N = 4.2 D L , S = 0.79 (2.6)
The low packing density of thin rods or fibers in comparison to that of spheres is explained due to the number of rod contact per rod [START_REF] Philipse | The Random Contact Equation and Its Implications for (Colloidal) Rods in Packings, Suspensions, and Anisotropic Powders[END_REF].

The ideal theoretical particle does not exist in nature; therefore different considerations need to be taken into account for the study of experimental systems. Extensions of Onsager's theory were done for the case where the particles are not completely rigid but have a persistence length P,

P = B s k B T (2.7)
where B s is Young's modulus and measures the capacity of deformation. Flexibility destabilizes the Nematic phase. Thus, the I-N phase transition for flexible particles is found at higher volume fraction values, and there is a decrease of the order parameter at the phase coexistence.

Since many colloidal particles in solution are stabilized by the charge repulsion, another extension that has to be applied to the theoretical model of Onsager is the charge on the particle surface. Onsager has introduced the concept of the effective diameter ( D e f f ) of a charged particle, which is bigger than the bare particle diameter. First simulations were performed by Khokhlov and Semenov in 1982 [START_REF] Khokhlov | Liquid-crystalline ordering in the solution of partially flexible macromolecules[END_REF] and later Chen [START_REF] Chen | Nematic ordering in semiflexible polymer chains[END_REF] predicted the isotropicnematic coexistence concentrations accurately for hard, semiflexible, polymers, c I = 4.7/b e f f
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and b e f f = πL 2 D iso e f f /4. The increase of the D e f f , leads to a decrease of the aspect ratio, and to an increase of the volume fraction needed to form a liquid crystalline phase [START_REF] Vroege | Phase transition in Lyotropic colloidal and plymer liquid crystals[END_REF]37].

Nematic-Smectic Phase Transition

When increasing the volume fraction or rod density, liquid crystals formed by monodisperse rod-like particles exhibit a transition to a higher ordered phase called Smectic phase. In this phase the particles are located in periodic layers, exhibiting long range positional order in 1D and short range positional order (or liquid-like behavior) within the layers.

The fact that Smectic ordering was observed for TMV at low concentrations (3 wt% ) only due to electrostatic repulsion interactions was surprising, and it caught the attention of researchers in the 80's. The theory developed by Onsager of the effect of the excluded volume was applied to explain the phase transition that occurs from the Nematic phase to the Smectic phase. Hosino in 1979 developed a second virial approximation theory for the Nematic-Smectic phase transiton [START_REF] Hosino | Nematic-smectic transition in an aligned rod system[END_REF]. He showed that the Nematic-Smectic-A is a second order phase transition when fluctuations of the director are not taken into account or very weak first order otherwise. Wen and Meyer [START_REF] Wen | Model for smectic-A ordering of parallel hard rods[END_REF] proposed that the appearance of smectic layers is driven by the decrease of lateral packing density of the rods within the layers, compensating the entropy loss involved in the layer ordering, again due to an effect of excluded volume. The same year, Mulder shows theoretically and compared with simulations, that smectic order occurs purely due to packing effects caused by short-range repulsions [START_REF] Mulder | Density-functional approach to smectic order in an aligned hard-rod fluid[END_REF] Then Frenkel and Stroobants in their simulations in 1988 [START_REF] Frenkel | Structure of Hard-core Models for Liquid Crystals[END_REF][START_REF] Frenkel | Thermodynamic stability of a smectic phase in a system of hard rods[END_REF] demonstrated that the N-Sm phase transition for short rods (L/D 5) it is purely entropy driven, undergoing a stable Smectic phase. Later, simulations for hard spherocylinders of infinite aspect ratio L/D were performed in 1997 by Polson and Frenkel [9], where they showed that N-Sm phase transition was first order. Even though there were different opinions about the order of this phase transition, it has been accepted that for freely rotating hard long rods the Nematic-Smectic phase transition is first order.

The Smectic phase has been observed in suspensions of stiff monodisperse rod-like particles like TMV and silica-coated boehmite rods [START_REF] Wetter | Die Flussigkristalle des Tabak-rnosaikvirus[END_REF][START_REF] Van Bruggen | Long-time translational self-diffusion in isotropic and nematic dispersions of colloidal rods[END_REF], and also in the semiflexible fd viruses [START_REF] Dogic | Smectic phase in a colloidal suspension of semiflexible virus particles[END_REF]. Indeed, flexibility is a factor that affects the concentration at which the the Nematic-Smectic Phase transition occurs. In the same way that it was observed for I-N Phase Transition, simulation and experimental studies agree that flexibility shifts the N-Sm phase transition, destabilizing the formation of Smectic-A phase for flexible rods, and also decreasing the layer spacing. Experiments performed by Pouget et al. [START_REF] Pouget | Dynamics in the smectic phase of stiff viral rods[END_REF] and Grelet [START_REF] Grelet | Hard-rod behavior in dense mesophases of semiflexible and rigid charged viruses[END_REF], compared the flexible fdwt with its stiff mutant fdY21M, showing that the effect of flexibility shifts also the N-Sm phase transition. These results were supported by theory and simulations [START_REF] Van Der Schoot | The Nematic-Smectic Transition in Suspensions of Slightly Flexible Hard Rods[END_REF]. The volume fraction for the N-Sm phase transition depends on the approximations done (i.e., if the rods are parallel or freely rotating), varying from 0.36 to 0.47. Kuijk et al [START_REF] Kuijk | Phase behavior of colloidal silica rods[END_REF] showed that the phase behavior of silica rods with an aspect ratio (L/D) smaller than 8, exhibits Isotropic-Nematic and Smectic phases. Later experimental work showed that for fd viruses, Smectic-B mesophase could also be formed, in which the particles have hexagonal long range positional order within the layer [START_REF] Grelet | Hard-rod behavior in dense mesophases of semiflexible and rigid charged viruses[END_REF].

Different studies [START_REF] Koda | Phase diagram of the nematic-smectic a transition of the binary mixture of parallel hard cylinders of different lengths[END_REF][START_REF] Bolhuis | Tracing the phase boundaries of hard spherocylinders[END_REF][START_REF] Roij | Phase behavior of binary mixtures of thick and thin hard rods[END_REF][START_REF] Medero | Stability of smectic phases in hard-rod mixtures[END_REF] have proved that monodispersity is a key feature for the formation of the Smectic phase. It has been reported that, when the polydispersity of the system increases, a hexagonal columnar phase is favored rather than the Smectic lamellar phase [START_REF] Stroobants | Columnar versus Smectic Order in Binary mixtures of hard parallel spherocylinders[END_REF].

Stroobants showed with simulations how the bidispersity of the rods favors the Nematic-Hexagonal columnar phase transition rather than the Nematic-Smectic phase transition, supported later by more simulations [START_REF] Medero | Stability of smectic phases in hard-rod mixtures[END_REF].

In the next sections, we will show how the dynamics of the particles is influenced by these phase transitions or even how dynamics cause them to occur, as well as by the structure of each mesophase. Prior to that, we will take some time to introduce the general theory for the diffusion equation of rods and their dynamical features.

Self-diffusion Equation for rods and diffusion coefficients: from semi-dilute Regime to high concentrated phases

Colloids exhibit the very well-known Brownian motion, due to thermal agitation, first observed by Robert Brown in 1827 [START_REF] Brown | A brief account of microscopical observations made in the months of june, july and august 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies[END_REF]. This motion originates from thermal agitation of the order of a k B T per solvent molecule, which was demonstrated by Einstein in 1906 [START_REF] Einstein | On the Motion of Small Particles Suspended in Liquids at Rest Required by the Molecular-Kinetic Theory of Heat[END_REF]. In like DNA, proteins. This motion in most cases occurs in crowded environments which make dynamics more complex.

The diffusion of rod-like particles does not only have a translational component, but also a rotational component with respect to the symmetry axis of the particle, corresponding to the positional and orientational degrees of freedom. The diffusion is concentration dependent, as increasing the volume fraction the free volume decreases, decreasing the space available for diffusion [START_REF] Doi | Rotational relaxation time of rigid rod-like macromolecule in concentrated solution[END_REF][START_REF] Zero | Rotational and translational diffusion in semidilute solutions of rigid-rod macromolecules[END_REF].

At infinite dilution, we consider a single Brownian rod-like particle j, for which the orientation varies from û j (0) to û j (t), and the centre of mass changes from r(0) to r(t) (Fig. 2.4a).

This change of position and orientation is due to the thermal energy equal to k B T , while at the same time we need to consider the friction that a particle feels when moving throughout a solvent. Considering the friction coefficients and the equation of Stoke-Einstein, for long thin rods, the diffusion coefficients at infinite dilution are given by

D 0 = k B T Ln(L/D) 2πη 0 L , D 0 ⊥ = k B T Ln(L/D) 4πη 0 L (2.8)
where η 0 is the viscosity of the solvent and L/D is the aspect ratio of the rod, with length L and diameter D. Hence, for the perpendicular motion the friction constant is twice larger as for parallel motion. Knowing that D ⊥ = (1/2)D , thus the total translational diffusion is

D t = 1 3 [D + 2D ⊥ ] = k B T ln{L/D} 3πη 0 L (2.9)
For the rotational diffusion coefficient,

D 0 rot = 3k B T Ln(L/D) πη 0 L 3 (2.10)
From these equations, we can conclude that the friction is reduced if we increase the aspect ratio or the rod. If we imagine these rods as a chain of single beads, we can imagine that first bead will decrease the effect of friction in the second bead that follows, which is called the hydrodynamics effect. When we have rods with a finite length, this effect decreases.

At higher concentrations, the interaction between particles needs to be taken into account.

This is done by defining the equation of diffusion of the probability density function of an ensemble of rods as P(r 1 , ...r N , û 1 ,...û N ,t). The equation of diffusion for the probability density function P of these phase space coordinates can be found from the exact conservation,

∂ ∂t P(r 1 , ...r N , û 1 , ...û N ) = - N ∑ j=1 {∇ j • [v j P] + R j • [Ω j P]} (2.11)
where [v j is the translational velocity and Ω j the rotational velocity. Finally, we get

∂ ∂t P = N ∑ j=1 { 3 4 D 0 ∇ j • (Î + û j û j ) • [∇ j P + β P∇ j φ ] + D 0 r R j • [ R j P + β P R j φ ]} (2.12)
where Î is the identity matrix. This is the Smoluchowski equation for very long and thin, rigid rods, where hydrodynamic interactions are neglected. The index 0 indicates that we consider the case of infinite dilution for which the diffusion coefficients are given by Eq. 9 and 10. Note that we will always consider equilibrium on the colloidal time-scale. For infinite time t → ∞, when the suspension attains equilibrium, the probability density function P is proportional to the Boltzmann exponential β φ and ∂ P/∂t = 0.

The translation motion of a particle in a time t can be measured knowing its initial position. This is described by the conditional probability density function (pdf), which is the probability for a particle to diffuse a given distance at time t. For a Brownian particle, when there is no external force acting on the colloid, positive or negative displacement can occur with the same probability. If we consider a single particle at infinite dilution such that interaction potential can be neglected, then:

∂ ∂t P(r,t) = D 0 t,S 2 P(r,t) (2.13) 
As aforementioned, since random motion has no preferred direction, we square the average displacement over all particles; otherwise the average displacement would be zero. The Mean Square Displacement, is defined from the trajectories r j of the diffusing particles (labelled with index j) in terms of the distance from the initial position r(0) = 0 as: where Gauss's integral theorem has been used twice in the second line and 2 r 2 = 6 in three dimensions, 4 in two dimensions and 2 in one dimension. Hence

MSD(t) = r 2 (t) = 1 N N ∑ j=1 (r j (t) -r(0))
MSD(t) = a2D s t γ (2.16)
where a defines the dimension of the system, and γ is the diffusion exponent. When γ ∼ 1, the self-diffusion has a Brownian (diffusive) behavior, while γ < 1 is characteristic of a subdiffusive regime. Anomalous subdiffusive events have been observed in systems near glass transition of spherical colloids [START_REF] Weeks | Three-Dimensional Direct Imaging of Structural Relaxation Near the Colloidal Glass Transition[END_REF] a cage effect is observed. Moreover, the same behavior is present in most biological systems (i.e. diffusion of proteins) [START_REF] Banks | Anomalous diffusion of proteins due to molecular crowding[END_REF], transport in porous media [START_REF] Drazer | Experimental evidence of power-law trapping-time distributions in porous media[END_REF] or the so called free energy landscape systems [START_REF] Pouget | Dynamics in the smectic phase of stiff viral rods[END_REF][START_REF] Blickle | Characterizing potentials by a generalized Boltzmann factor[END_REF]. The value of D depends on the interaction with other rods or if there is any obstacle in the way.

The rotational diffusion coefficient D rot is obtained by measuring the orientation of a particle at time t, û j (t), knowing the initial orientation û j (0). The angle between û j (0) and û j (t), is calculated using P(û j |û 0 ), the so-called conditional probability density function, which gives the probability that a particle has an orientation û at time t, given that it had orientation û 0 at t = 0. This function correlates the orientations of the particles at different times. The orientational ordering in the system is set by P(û 0 ), which is peaked around the director n, when the rods are in the nematic phase. The ordering of the system is characterized by the 20 2.3. SELF-DIFFUSION EQUATION FOR RODS AND DIFFUSION COEFFICIENTS: FROM SEMI-DILUTE REGIME TO HIGH CONCENTRATED PHASES square cosine of the angle Φ between the rod, û 0 , and the director n defined by

P2 ≡ P 2 (Φ) = 1 2 {3 cos 2 (Φ) -1} (2.17)
where θ = n. û is the angle between the molecular axis and the director and P 2 (x) is the second Legendre polynomial. Thus, P2 is de order parameter which measures the degree of order, and it is 0 for an isotropic state and equal to 1 for a perfectly aligned state. For a system of rods without orientational order P(û 0 ) = 1 4π . We now derive the time dependence of the orientation of a single particle, again using Eq.2.12 omitting the torque term, such that

∂ ∂t P(û,t) = D 0 û,S R2 P(û,t) (2.18)
Hence, for a system with no orientational order, the Mean Squared Angular Displacement is

MSAD(t) = 2 3 exp(-6D 0 r,S t) (2.19) 
Finally, we can re define the evolution of the order parameter for a single particle:

P2 = P 2 (Φ t ) ) = 1 2 (3 MSAD(t) -1) = 1 2 {3 cos 2 (Φ) -1} = exp(-6D 0 r,S t) (2.20)
We derived the equations for the translational and rotational motion, by omitting the interaction terms. In principle, the full collective translational and rotational diffusion can be calculated from the Smoluchowski equation. In this thesis, however, we will focus on the self-diffusion of rods, which is a good measure of the available free volume. The accessible volume of the system plays a significant role in the dynamics. Thus, when increasing the volume fraction, the rotational diffusion "freezes", as Russo et al. demonstrate for the TMV [START_REF] Cummins | Translational and rotational diffusion constants of tobacco mosaic virus from Rayleigh linewidths[END_REF][START_REF] King | Translational and rotational diffusion of tobacco mosaic virus from polarized and depolarized light scattering[END_REF][START_REF] Cush | Self-diffusion of a rodlike virus in the isotropic phase[END_REF]. However, it is important to distinguish between the self-diffusion D S i and the collective diffusion D C i . It has been proved that in the Isotropic phase the self-rotational diffusion of the particles decreases as increasing concentration which does not reach zero, contrary to the collective diffusion. [START_REF] Y G Tao | Isotropic nematic spinodals of rigid long thin rodlike colloids by event-driven Brownian dynamics simulations[END_REF][START_REF] Tao | Brownian dynamics simulations of the self-and collective rotational diffusion coefficients of rigid long thin rod[END_REF].

A further step to explain the motion within an entangle of rods in the semi-dilute regime where L -3 < v < d -1 L -2 was done by Doi in 1975 [START_REF] Doi | Rotational relaxation time of rigid rod-like macromolecule in concentrated solution[END_REF]. He developed the first successful theory to explain the diffusion of rods in a concentrated rod dispersion. He assumed that a really thin rod in an isotropic packing of rods could diffuse freely in the direction of the rod axis. Its rotational motion, however, is highly restricted by neighbor rods (Fig. 2.4b). This confinement can be visualized, when one considers a sphere of radius L/2 centered on the middle-point of the test rod, and project all the other rods intersecting the sphere on the surface of this sphere. Thus, at short times the rotating rod can probe a surface S and is thus effectively confined in a tube with radius a = √ S. The confining tube is given by the maximum angle a/L and the free rotational motion (a/L) 2 /D 0 r . When the rod diffuses throughout its tube, it can only rotate by a/L. A rod can only get out of its confining tube when it diffuses at least L/2 along its axis, or when one of the other confining rods does. When the rod diffuses out of its tube, it can only rotate by an angle a/L. The overall rotation of the rod is attained by the repetition of these jump steps, hence

D r ∼ = (a/L) 2 /τ 1 ∼ = a 2 D /L 4 (2.21)
where τ 1 is the persistence time, assuming that translational diffusion along the axis is unhindered. The size of the tube a can be estimated with the probability that two cones with radius r if the base circle does not contact with the randomly placed thing rods, giving a ∼ = 1/cL 2 , where c is the concentration. Thus, assuming that a << L, the rotational diffusion is

D r (φ )/D 0 r = β (v/L 3 ) -2 (2.22)
The interest to understand the diffusion in the liquid crystalline phases of rod-like particles in isotropic and semi-dilute has motivated extensive experimental dynamical studies, such as experiments with F-actin filaments in isotropic and semi-dilute regime phases [START_REF] Käs | F-actin, a model polymer for semiflexible chains in dilute, semidilute, and liquid crystalline solutions[END_REF], silica 2.3. SELF-DIFFUSION EQUATION FOR RODS AND DIFFUSION COEFFICIENTS: FROM SEMI-DILUTE REGIME TO HIGH CONCENTRATED PHASES rods [START_REF] Kuijk | Phase behavior of colloidal silica rods[END_REF] and the filamentous fd viruses [START_REF] Grelet | Hard-rod behavior in dense mesophases of semiflexible and rigid charged viruses[END_REF][START_REF] Lettinga | Self-diffusion of rodlike viruses through smectic layers[END_REF][START_REF] Lettinga | Kinetic pathways of the Nematic-Isotropic phase transition as studied by confocal microscopy on rod-like viruses[END_REF][START_REF] Grelet | Hexagonal order in crystalline and columnar phases of hard rods[END_REF]. However, there are some issues like the coupling between the translational and rotational diffusion and the effect of the flexibility of the particles that should be addressed and which play an important role to understand the diffusion of rods in semi-dilute and dilute regimes.

Self-Van Hove function as a robust method to quantify dynamics

The dynamical equivalent of the radial distribution function g(r) is the van Hove distribution function G(r,t) [START_REF] Van Hove | Correlations in space and time and born approximation scattering in systems of interacting particles[END_REF][START_REF] Hansen | Theory of Simple Liquids[END_REF][START_REF] Gaub | Van Hove function for diffusion in zeolites[END_REF]. It is a conditional real-space dynamical correlation function to characterize the spatial and time distributions of particles in a fluid [START_REF] Kegel | Direct Observation of Dynamical Heterogeneities in Colloidal Hard-Sphere Suspensions[END_REF]. It gives the probability of finding two particles at a distance r at time t , given that at time t = 0 they were at distance r,

G(z,t) = 1 N N ∑ i=1 N ∑ i = j δ [z + z j (0) -z i (t)] (2.23) 
where ... represents the average over all particles, i and j are two different particles, and δ is the three dimensional Dirac delta function. Then the van Hove function can be split in two terms, the distinct part where i = j and the self part of the van Hove function where i = 1 for a single particle,

G s (z,t) = 1 N N ∑ i=1 δ [z + z i (0) -z i (t)] (2.24) 
G s (z,t) describes the conditional motion of the particle that was initially at the origin. Generally, for Brownian particles, it has the shape of a Gaussian function that smears out with time [START_REF] Hopkins | The van Hove distribution function for Brownian hard spheres: Dynamical test particle theory and computer simulations Bibliography xi for bulk dynamics[END_REF], as we show in Fig. 2.5. The self-van Hove function G s (z,t) has been used to study dynamics around the glass transition, where the shape is not Gaussian anymore but turns out to be a Lévy-flight distribution where P ∼ exp (-|x/x 0 | β ) [START_REF] Weeks | Three-Dimensional Direct Imaging of Structural Relaxation Near the Colloidal Glass Transition[END_REF][START_REF] Weeks | Subdiffusion and the cage effect studied near the colloidal glass transition[END_REF]. The Lévy-flight distribution is characteristic for heterogeneous dynamics typical of the glass state. Furthermore, for particles that diffuse in a periodic potential background, the self-Van Hove function is affected showing distinct peaks due to potential barriers, as shown by Dalle-Ferrier et al. [START_REF] Dalle-Ferrier | Dynamics of dilute colloidal suspensions in modulated potentials[END_REF]. This is also the concrete case for the already mentioned jump-like diffusion [START_REF] Pouget | Dynamics in the smectic phase of stiff viral rods[END_REF][START_REF] Naderi | Size and boundary effects on the diffusive behavior of elongated colloidal particles in a strongly confined dense dispersion[END_REF]. Hence, the change of shape of the self-van Hove function provides important dynamical and structural information of the system.

Theoretical background for the analysis of the self-van Hove function: study of diffusivity

For Brownian colloidal particles, the general approximation is to assume that G s (z,t) it is

Gaussian [69] G s (z,t) = (4πD t t) -3/2 exp(- z 2 4D t t ) (2.25)
The change of shape of the self-van Hove function can be characterized to distinguish the type of diffusion that the system exhibits. 

ln( √ tG(z,t)) = lnG 0 -(a 1 ∆z 2 ) (2.28)
and fit it by

Ln(G(z,t) √ dt) = a 0 -a 1 ( z 2 ) a 2 ;
(2.29)

The parameter a 1 measures the slope of the normalized self-van Hove function, while the a 2 is the exponential parameter. Hence, after the normalization of the self-van Hove function, we observe that the linear function is characteristic for Gaussian behavior (a 2 = 1), while the exponential decay function (a 2 = 0.5) corresponds to Lévy-flight. Thus, equation 2.25 is valid only when a 2 = 1 and in this case a 1 is proportional to D t . We use this method to quantify the a 2 parameter which measures the deviation from the Gaussian behavior. In Fig. 2.6 we show the simulations provided by Wouter den Otter (University of Twente, private communications), All this quantitative information (MSD, diffusion coefficient and exponents, and self-van Hove function) is the result of the analysis of previous qualitative results, which have been collected using the single particle tracking. The single particle tracking is a tool to study the dynamics at individual particle scale or also called self-dynamics. The advantage of the single particle tracking is that individual particles can be observed even when they are dispersed in a host system consisting of identical or different non-labelled particles. In addition to the mean square displacement of the center of mass of the rod, also the orientation can be followed.

Hence, the position and orientation of single particles at every point in time are known, and one is free to choose the kind of correlation function that is used to determine the rotational diffusion coefficient. This is in contrast to techniques such as Dynamics light scattering (DLS)

or fluorescence recovery after photobleaching (FRAP) where only second moments are measured, and they provide no information about the deviation from the Gaussian behavior [START_REF] Van Bruggen | Long-time translational self-diffusion in isotropic and nematic dispersions of colloidal rods[END_REF].

Moreover, it is not only possible to independently measure translational and rotational diffu-
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sion, but also to see how they are correlated. We consider that the self-dynamics is related to the available space or free volume, and it can be a probe for the entropy of the system [START_REF] Dzugutov | A universal scaling law for atomic diffusion in condensed matter[END_REF][START_REF] Kaur | Nature of the entropy versus self-diffusivity plot for simple liquids[END_REF].

However, a suitable experimental system and method to explore the complexity of dynamics in the different liquid crystalline mesophases is needed.

fd filamentous bacteriophages as a hard rod model colloidal system

In previous sections, we have introduced the theoretical model for colloidal hard-rods, their phase transitions and the dynamics of the rod-like particles from dilute to the semi-dilute regime. However, the ambition to find an experimental system to test this theoretical model has always motivated researchers to explore different types of colloidal dispersion. One of the main goals is to connect order and dynamics.

In biological systems, we can find many different and complex filamentous ordered systems (cytoskeleton, actin filaments, DNA or TMV) which can also form liquid crystalline phases.

These crowded systems and the way they ordered were poorly known, despite the important role that they play in nature. One of the ways for understanding the ordering of these systems is by using the hard rod model of Onsager through the maximization of entropy.

the fd viruses are an excellent experimental model of anisotropic colloidal particles and consistent with the previously described theoretical predictions. Their easy production, their versatility to be functionalized (with polymers and dyes) and their physical properties, make them a perfect model system as a lyotropic colloidal liquid crystal [START_REF] Fraden | Phase Transitions in Colloidal Suspensions of Virus Particles[END_REF][START_REF] Dogic | Ordered phases of filamentous viruses[END_REF]. Moreover, it has been widely studied in molecular biophysics [START_REF] Hansen | Filamentous bacteriophage for aligning RNA, DNA, and proteins for measurement of nuclear magnetic resonance dipolar coupling interactions[END_REF][START_REF] Rakonjac | Filamentous Bacteriophages: Biology and Applications[END_REF].

In this section, we will give details about the morphology, phase diagram and dynamics of the fd-viruses in their different liquid crystalline mesophases which are the experimental colloidal system used in this thesis. 

Morphology of the fd viruses

The fd virus, together with M13, belongs to a group of closely related filamentous, malespecific coli phages. It is formed by a circular single-stranded DNA chain covered by the main coat protein and consists of 6408 nucleotides. It has only 8 genes which are responsible for the codification of the proteins of the virus. [START_REF] Schafer | Nucleotide sequence of fd bacteriophage DNA[END_REF][START_REF] Marzec | DNA and Protein Lattice-Lattice interaction in the filamentous bacteriophages[END_REF][START_REF] Annstrong | Chemical modification of the coat protein in bacteriophage fd and orientation of the virion during assembly and diassembly[END_REF]. The process of infection Escherichia coli is done through the adsorption of the p2 protein to the host receptor, which is the tip of the F-pilus [START_REF] Marvin | Filamentous Bacterial Viruses[END_REF][START_REF] Armstrong | Domain structure of bacteriophages fd adsorption protein[END_REF]. The ssDNA encodes three classes of proteins: replication (pII, pX and pV), morphogenetic (pI, pIV and pXI) and structural (pVIII, pIII, pVI, pVII and pIX) proteins, as shown in Fig. 2.7. Although filamentous bacteriophages do not have a membrane, the major coat protein (pVIII) is present in the viral lifecycle [START_REF] Zeri | Structure of the coat protein in fd filamentous bacteriophage particles determined by solid-state NMR spectroscopy[END_REF][START_REF] Alsteens | Multiparametric atomic force microscopy imaging of single bacteriophages extruding from living bacteria[END_REF]. Proteins pIII and pVI are located at one extremity of the virus pVII and pIX in the other.

The coat protein pVIII has around 2700 copies of identical structural subunits, and it forms an α-helix structure with 50 amino acids, of which only the 20 first are hydrophilic and solvent-exposed [START_REF] Marvin | Filamentous phage structure, infection and assembly[END_REF], which determines the surface properties. The charge surface density is approximate 10 e -/nm at pH = 7.5 as a result of the location of the two amino groups (NH 2 ) and five acidic residues (COOH) in the solvent exposed part. [START_REF] Zimmermann | The ionic properties of the filamentous bacteriophages Pf1 and fd[END_REF] and its isoelectric point (IEP) is 4.2.

The fdwt virus is about 880 nm in length (L) and 6.6 nm in diameter (D) [START_REF] Newman | Hydrodynamic properties and structure of fd virus[END_REF], having an aspect ratio (L/D) bigger than 100. The persistence length (P) or stiffness is around 2.2 µm, 2.4. FD FILAMENTOUS BACTERIOPHAGES AS A HARD ROD MODEL COLLOIDAL SYSTEM being 2.5 times its contour length. The Molar Weight (MW) of fdtwt is 1.62x10 7 g/mol. The virus absorbs in the UV's spectra at 269 nm with an extinction coefficient (ε) of 3.84 cm 2 /mg.

The fact that by genetic modification the physical properties such as length and stiffness change makes this particle a versatile system to study. The result of these modifications is the so-called mutants, which have different physical features compared to the wild-type. In this thesis, we will focus on fdY21M and M13KO7 mutants.

The fdY21M only differs by one aminoacid from fdwt: the tyrosine in the 21st place is replaced by a methionine in the pVIII inside coat protein [START_REF] W M Tan | Effects of temperature and Y21M mutation on conformational heterogeneity of the major coat protein (pVIII) of filamentous bacteriophage fd[END_REF], which is not solvent-exposed.

This change has a direct effect on the morphology of the virus. The length L = 0.92µm is bigger than for fdwt, as well as for the persistence length P = 9.9µm [START_REF] Barry | A model liquid crystalline system based on rodlike viruses with variable chirality and persistence length[END_REF], which makes the mutant fdY21M stiffer. The molar weight is slightly different being 1.63x10 7 g/mol and the UV absorption changes to 3.63 cm 2 /mg at 269 nm.

The M13 virus differs only from fdwt by the substitution of one charged for one neutral amino acid per virus coat protein. This is the Aspartic acid in the 12th position of the pVIII of the fdwt, which is replaced by the Asparagine. This time the amino acid replaced is exposed to the solvent, and the surface charge of the virus is affected, decreasing up to 7 e -/nm at pH = 7. On the contrary the length, diameter and molar weight are not affected by this modification [START_REF] Purdy | Isotropic-cholesteric phase transition of filamentous virus suspensions as a function of rod length and charge[END_REF]. One of the most known mutants of M13 is M13KO7, used as helper phase for bacterial infection [START_REF] Dogic | Development of model colloidal liquid crystals and the kinetics of the isotropic smectic transition[END_REF]. It consists of M13 phage with a Kanamycin resistance gene added to the genome. The only difference for this mutant is the length L = 1.2 µm.

The characterization of these viruses can be performed by TEM (Transmission Electron Microscopy) and measure the average length, but also by gel electrophoresis. This is possible due to their different surface charge [START_REF] Purdy | Isotropic-cholesteric phase transition of filamentous virus suspensions as a function of rod length and charge[END_REF]. However, the most precise way to characterize each virus is by DNA sequencing, which determines the precise order of nucleotides (including the genetic modification for each mutant).

Phase behavior of fd viruses

The isotropic-nematic phase transition of fd viruses was first studied by Purdy and Fraden [START_REF] Purdy | Isotropic-cholesteric phase transition of filamentous virus suspensions as a function of rod length and charge[END_REF].

They investigated the ionic strength dependence of the location of the phase transition. These experiments allowed them to compare this experimental system to the Onsager's theory. These studies on ionic strength dependence were also performed for N-Sm and Sm-Col phase transitions, as shown in Fig. 2.8. Moreover, the flexibility has a strong influence on the location of the I-N phase transition. Decreasing the flexibility of the particles, the concentration at which the I-N transition occurs decreases, as shown by Barry et.al [START_REF] Barry | A model liquid crystalline system based on rodlike viruses with variable chirality and persistence length[END_REF]: the coexistence concentration at a fixed Ionic strength of 110mM is 19.8 -22.6 mg/mL for fd and 13.9 -18.9 mg/mL for fdY21M.

Due to the chirality of fd virus, in the Nematic phase particles are not just aligned along the director, but also the director rotates forming a helix. The characteristic texture for this behavior is the fingerprint from which they are able to measure the pitch P 0 [START_REF] Dogic | Cholesteric phase in virus suspensions[END_REF]. This pitch decreases with concentration, as shown in Fig. 2.9. Thus, the nematic phase is called chiralnematic phase, and it has been first observed by Lapointe and Marvin during 1973 [START_REF] Lapointe | Filamentous bacterial viruses viii. liquid crystals of fd[END_REF]. Dogic and Fraden have studied this chiral-Nematic phase for fdwt and fdY21M [START_REF] Barry | A model liquid crystalline system based on rodlike viruses with variable chirality and persistence length[END_REF].

The origin of this chirality is studied and discussed by Grelet and Fraden [START_REF] Grelet | What Is the Origin of Chirality in the Cholesteric Phase of Virus Suspensions ?[END_REF], showing that the chirality was independent of the charge, proposing a model of the existence of a superhelical twist, where chirality occurs at a much larger length scale.

The first observation of the Nematic-SmecticA phase transition and Smectic phase was per- formed by Lapointe and Marvin [START_REF] Lapointe | Filamentous bacterial viruses viii. liquid crystals of fd[END_REF], observing a periodicity of 1µm and the iridescence due to the diffraction of white light. Later, extensive studies were carried out to explain the behavior of the Smectic phase depending on the flexibility and charge of the fd virus [START_REF] Dogic | Smectic phase in a colloidal suspension of semiflexible virus particles[END_REF][START_REF] Purdy | Isotropic-cholesteric phase transition of filamentous virus suspensions as a function of rod length and charge[END_REF]. Also, the flexibility will shift the Nematic-Smectic phase transition to higher volume fractions and decrease the smectic periodicity. Dogic explained that N-Sm phase transition of fd viruses is discontinuous (first order) rather than continuous (second order), and the fd smectic layer spacing is approximately one rod-length, and this value decreases with rod flexibility. This effect of flexibility on the stability of the Smectic phase has been already predicted by simulations [START_REF] Frenkel | Thermodynamic stability of a smectic phase in a system of hard rods[END_REF]. Later, the formation of a Smectic-B phase by fd viruses was shown by Grelet [START_REF] Grelet | Hard-rod behavior in dense mesophases of semiflexible and rigid charged viruses[END_REF].

The difference between Smectic A and Smectic B is the ordering within the layer of the particles being liquid-like for Smectic-A and crystalline like for Smectic-B (Fig. 2.10). Also, Grelet proposes how the condensed ions estimated by different models change the effective diameter, finding a good agreement between experiments and theory. The smectic layers create a periodic energy landscape in one dimension, which as we will see later, affects the dynamics.

Dynamics of the fd virus throughout the phase diagram

The fd viruses can be labeled with fluorescent dyes, which make them a suitable system to be observed under fluorescence microscopy. Moreover, the high aspect ratio (L/D>100) of these particles allows for the study of the self-rotational diffusion of the particle and the diffusion along the short and long axis. This is indeed interesting to investigate the self-dynamics at the single particle level, related to the available space and being a probe for the entropy of the system. Using this technique the position and orientation of each particle at every point in time is known. Hence, the dynamics of the fd virus in the different mesophases has been investigated over the past decade.

It has been demonstrated that the diffusion in the Isotropic and Nematic phases is affected by the change of free volume [START_REF] Lettinga | Self-diffusion of rod-like viruses in the nematic phase[END_REF]. In the Isotropic phase, the rotational diffusion decreases by increasing the concentration. Simulations for fd viruses were performed to study the collective and self-rotational diffusion, as shown in Fig. 2.11. In these simulations, there is a difference between the collective and the self-rotational diffusion, where the last does not drop to zero.

Moreover, in the semi-dilute isotropic regime, the rotational diffusion starts to be restricted due to the interaction which neighbor rods. This agrees with the model proposed by Doi for the "tube effect" [START_REF] Doi | Rotational relaxation time of rigid rod-like macromolecule in concentrated solution[END_REF]. This tube diffusion for fd viruses has been confirmed by Modlinska et al. in his experiments at I-N phase transition [START_REF] Modlińska | Condensation and dissolution of nematic droplets in dispersions of colloidal rods with thermo sensitive depletants[END_REF], where a reptation-like diffusion is observed within the isotropic a-tactoids at the phase coexistence.

In the Nematic phase, the D is higher than in the Isotropic phase, being promoted by the alignment of the rods (see Fig. 2.12). However, at higher concentration, it decreases due to the packing of rods.

In the Smectic phase a hopping-like diffusion between the smectic layers is reported by Lettinga and Grelet [START_REF] Lettinga | Self-diffusion of rodlike viruses through smectic layers[END_REF]. The self-van Hove function shows distinct peaks at integers of one-rod length, as shown in Fig. 2.13. To understand this jumping-like behavior we need to introduce the concept of Smectic ordering potentials. The Smectic potential can be measured from the fluctuations of the particles within the layers. When increasing the concentration, the system gets highly packed, decreasing the fluctuations and increasing the potential barrier.

Thus, the diffusion of the particles between the smectic layers decrease. The presence of vacancies between adjacent layers and the packing of the system play a significant role in this type of diffusion. The small perpendicular diffusion within the layer depends on the flexibility, being more restricted for the flexible particles [START_REF] Pouget | Dynamics in the smectic phase of stiff viral rods[END_REF]. However, the reasons are still unclear.

It has been proposed that flexibility allows a higher packing within the layer, consequently decreasing the perpendicular dynamics [START_REF] Pouget | Dynamics in the smectic phase of stiff viral rods[END_REF].

Recently, simulations on dynamics in the Smectic phase with particles of different aspect ratio (L/D) are presented in the work of Patti et al. [START_REF] Patti | Collective diffusion of colloidal hard rods in smectic liquid crystals: Effect of particle anisotropy[END_REF]. They show that the potential barrier increases with increasing particle anisotropy, making the dynamics more heterogeneous and non-Gaussian for longer hard rods, having a lower diffusion coefficient. At even higher concentrations, it has been reported that there are full and half-jump displacements in the columnar phase in an aqueous solution of fd, due to the creation of a void. The jumping frequency if higher for flexible particles, in this case [START_REF] Naderi | Fractional hoppinglike motion in columnar mesophases of semiflexible rodlike particles[END_REF].

These studies of dynamics are all performed in systems formed by one type of particles.

Although there are some studies on the effect of bidispersity in the formation of the Smectic phase, neither the experiments nor the simulations treat the complexity of a Smectic system with guest particles that do not belong to the host Smectic phase. The interest of studying these systems relies on the dynamics of particles on crowded order phases. In the smectic phase, the dynamics are affected by the Smectic potentials, but a particle that is not commensurate within this potential could exhibit a different behavior. In nature we find a lot of examples for the lamellar-like structure (e.g., cell membranes) [START_REF] Brown | Chapter 8 -Photoreceptor Structures: The Chloroplasts[END_REF] as well as for some new materials [START_REF] Battaglia | The evolution of vesicles from bulk lamellar gels[END_REF][START_REF] Yamamoto | Dynamic control of the photonic smectic order of membranes[END_REF].

The effect on dynamics of the organization of the host system as well as the characteristics of the guest particle could be addressed. Moreover, the behavior of the dynamics at the phase transitions and its dependence on physical propertier of the particles remains unclear and a challenging part of the dynamical studies.

Outline of this thesis

The study of the self-organization of colloidal liquid crystals treats the simplest phenomena of forming structured systems. In a system where anisotropic particles have hard core interactions, the self-organization is purely entropy driven due to the maximization of the free volume of the system. Thus, the measure of dynamics at the single particle level should provide information on the available free volume and the structure of the mesophase. The dynamics can be used to address different questions related to the liquid crystalline phase transitions and with the structure of the mesophases. We propose different approaches to find a dynamical signature of the phase transitions, to dynamically recognize the order of the phase transitions, to explore the dynamics as a function of physical features such as flexibility and length, and finally to study the diffusion of guest particles in a layered system.

Experimentally, the self-dynamics has been used extensively in the study of the kinetics and diffusion of liquid crystalline mesophases of fd viruses [START_REF] Grelet | Dynamical and structural insights into the smectic phase of rod-like particles[END_REF][START_REF] Lettinga | Self-diffusion of rodlike viruses through smectic layers[END_REF][START_REF] Pouget | Dynamics in the smectic phase of stiff viral rods[END_REF][START_REF] Lettinga | Kinetic pathways of the Nematic-Isotropic phase transition as studied by confocal microscopy on rod-like viruses[END_REF], which are considered a colloidal model system of rod-like particles. However, some questions have not been treated

concerning the dynamics at phase transitions and the techniques to characterize it. Furthermore, systems of higher complexity, like the guest-host systems of Smectic phases can help to understand diffusion in high order systems, as found in nature. Although there are extensive theoretical and simulation studies focused on how the stability and location of the phase transitions are affected by flexibility, aspect ratio and monodispersity, very few experimental studies have been done about dynamics and kinetics at the phase transitions of fd viruses [START_REF] Modlińska | Condensation and dissolution of nematic droplets in dispersions of colloidal rods with thermo sensitive depletants[END_REF][START_REF] Lettinga | Kinetic pathways of the Nematic-Isotropic phase transition as studied by confocal microscopy on rod-like viruses[END_REF]. On the contrary, there are no studies of the diffusion of inclusions in the Smectic phase of fd viruses, which could help to understand the behavior of diffusion through lamellar structures found in nature.

In this Thesis, we aim to clarify the nature of the dynamics at the phase transitions and to understand more complex problems as the introduction of a guest particle in a host system and the effect of length and flexibility in the Isotropic semi-dilute regime where Doi's theory can be applied [START_REF] Doi | Rotational relaxation time of rigid rod-like macromolecule in concentrated solution[END_REF]. We use the analysis of the self-van Hove function as a robust method to characterize the Gaussian behavior, and as an alternative to the non-Gaussian parameter. We develop our experiments and data analysis with a complexity hierarchy: going from the less complex to the more complex system and phases. Hence, this thesis is done in such a way that the results of each chapter build upon the previous one.

OUTLINE OF THIS THESIS

In Chapter 3 we describe the general experimental approaches and strategies performed during this Thesis, which are the production and purification of our viral particles, the sample preparation for each different system here studied, and finally a brief description of the microscope techniques used.

In Chapter 4 we provide insights of the self-dynamics at each liquid crystalline mesophase of the stiff fdY21M mutant. We characterized the dynamics in the Isotropic-Nematic Phase transition, being highly heterogeneous and glass-like at the Isotropic phase, and undergoing to Gaussian in one direction in the Nematic phase. This is done by analyzing the self-van Hove function. Moreover, we can distinguish dynamical coexistence at the Nematic-SmecticA and SmA-SmB phase transitions by using an image and dynamical analysis. This presents an extra confirmation that N-SmA is a first order phase transition. The question of how the homogeneity of the sample affects the results is discussed.

In Chapter 5 we address the question of how the diffusion of a guest particle is affected by the organization of the host system, concretely when the guest particle is not commensurate within the Smectic phase. We study the self-diffusion of a semi-flexible long guest particle that has been included in the host Smectic phase of the stiff fdY21M. We show that the long and semi-flexible particle exhibits a faster and more continuous diffusion through the layers, in comparison with the jumping-like diffusion of host fdY21M. Furthermore, the results of the dynamics within the layer suggest that its perpendicular diffusion is restricted, being only promoted by the parallel diffusion when permeating between the layers.

In Chapter 6 we present the study of dynamics of the guest particles presented in the previous chapter, which is located into defects of the Smectic phase. We show that particles diffuse within a defect exhibit a slightly super-diffusive behavior. The analysis of the trajectory and the diffusion exponents make us conclude that the change of geometry imposed by the defect promotes the D par of the guest particle. Moreover, we observe that the long guest particle prefer to be located within defects, where it exhibits Nematic-like diffusion.

In Chapter 7 we study the effect of flexibility in the diffusion at concentrations corresponding to the semi-dilute regime in the Isotropic liquid phase. With these preliminary results, we show that the flexibility may help to release the constraints imposed by the surrounding neighbors, making the diffusion at this concentration more Gaussian-like.

Finally, we conclude by providing an outlook and perspectives for future investigations.

Experimental Materials and Methods

In this chapter, we will introduce the experimental procedures followed in this thesis from the very first step of sample production and preparation to the data acquisition by techniques such as fluorescence and DIC microscopy. In the first section, we introduce the standard protocol for virus production and purification. In section 2 we explain a method of induced fractionation used to remove polyphages from the sample. In section 3 we get into details of the protocol followed for the particle labeling with fluorescence dyes. Finally, in the last section we describe the sample preparation to perform microscopy observation. Production of fdY21M and M13KO7 bacteriophages. In both cases, the viruses were grown following the standard biological protocol using E.coli ER2837 as host bacteria. All materials and LB media have been autoclaved before the production, and the infecting experiment was carried out in a biological laminar-flow hood. All the infection procedure has been done in extremely clean conditions, by cleaning with ethanol the instruments used (pipets, vials ) before introducing them in the laminar flow hood to avoid the introduction of any biological contamination.

We first pre-amplified the bacteria, taking a colony from the Petri plate in 3mL of LB media where we add 4 µL of Tetracycline (TET, antibiotic, 1.5x10 -2 mM). The incubation is done for 5 hours at 37 • C and 200 rpm, until the solution is turbid. Then, in a 500 mL Erlenmeyer we add 100 mL of LB media, 1 mL of the bacteria solution and 133 µL of TET, and we let it grow overnight stirring at 200 rpm at 37 • C. For the infection of bacteria dispersion with the bacteriophage, 6 total liters of LB media are divided in three Erlenmeyer (2L in each one) and autoclaved. Then, we add in each Erlenmeyer 20 mL of the pre-amplified bacteria and 1 mL of the bacteriophages infecting solution of around 10 -9 PFU/mL infection power. In virology, a plaque-forming unit (PFU) is a measure of the number of particles capable of forming plaques per unit volume, like in this case viruses [START_REF] Vodt | Some problems of animal virology as studied by the plaque technique[END_REF].

The final infected solution is stirred for 7h at 37 • C and 200 rpm. It is important to control the bacteria Optical Density (OD). When the OD is between to 0.5-0.9 (approx.6 hours), the growth has reached an exponential state. Before the OD reaches 1, we stop the infection and we proceed to the purification step.

Purification of the viruses from the bacteria solution. After the step of infection, the viruses need to be purified from the bacteria. It is important to remark that the first turbidity that we observe during and after the infection is due to the growth of bacteria. Viruses are 1 µm length and 6 nm diameter, while E.Coli are approximate 2 µm length and 1 µm diameter. This difference in size and volume and also molecular weight makes possible the separation of the bacteria and the viruses with centrifugation. For the bacteria removal, we use a rotor F10-4x1000

LEX in a Sorvall RC6+ centrifuge. We set the speed at 6000g (approx. 6000 rpm) during 20 a spectrophotometer Genesys 10 UV scanning (Thermo). As purity check the ratio between the absorbance at 269 nm and 244 nm should be less than 1.41 for impurities below 1% [START_REF] Buitenhuis | Electrophoresis of fd-virus particles: Experiments and an analysis of the effect of finite rod lengths[END_REF].

The final yield obtained from the production (using 6L of LB media) is approximate 130 mg for fdY21M and 180 for M13KO7. The concentration of stock solution is between 40 and 50 mg/mL.

Characterization by Transmission Electron microscopy. The length of fdY21M and M13KO7 viruses after the production was measured using TEM (Transmission Electron Microscopy), analyzing the images obtained as shown in Fig. 3.2. The center of the peak is placed at the average length value for each virus. For fdY21M there is a percentage of dimers in the sample (at around 1800 nm), while there is no important of dimers in M13KO7 sample. 

Induced phase separation using non-adsorbing polymer to increase monodispersity

Since we aim to have completely monodisperse tracers in our experiments, we have performed a sample purification for fdY21M using Dextran (non adsorbing polymer) as depletant, which will allow us to phase separated the longer polyphages from, the shorter (Brandeis protocol, private communication).

The presence of Dextran increases the concentration at which the I-N transition takes place and also extends the phase coexistence concentration [START_REF] Lettinga | Kinetic pathways of the Nematic-Isotropic phase transition as studied by confocal microscopy on rod-like viruses[END_REF][START_REF] Dogic | Isotropic-nematic phase transition in suspensions of filamentous virus and the neutral polymer Dextran[END_REF]. The long viruses (dimers, trimers) go to the Nematic phase due to the difference of free volume, while the small viruses stay in the Isotropic phase (see Fig. 3.3). The buffer used for the experiment is TriHCl-NaCl 110 mM pH=8.19. Different concentrations of Dextran have been tried in a small volume of our fdY21M. The optimal concentration of Dextran and fdY21M for the phase separation are 13 mg/mL and 18 mg/mL respectively, for which the separation was efficient as shown in The gel used is 1.4% agarose to have the optimal pore size, weighing 0.7 g of agarose in an Erlenmeyer and add 1x TBE Buffer until the total mass reaches 50 g. The mix is heated in the microwave until the agarose melts. The solution is transferred to the agarose tray to cool it down. We prepare 20 µL of the sample of around 1 mg/mL and for the staining, we add 4µL of Bromophenol Blue (used as tracking dye in electrophoresis). The electrophoresis was performed overnight at 28V to obtain an optimum resolution of the sample. The next day the gel is introduced into a solution of NaOH of 0.2M for 45 minutes in a shaking plate and then put in a distilled water bath for other 45 minutes. After the gel is put into an Ethidium Bromide (BET) bath; a fluorescence dye used to stain nucleic acids, as the gel is checked with UV-light. We need to take extreme precaution due to the high toxicity of this compound

The purified total mass of monomers obtained from the Isotropic phase (around 6 mg) is used for the functionalization with fluorescence dyes, as explained in next section.

Efficient fluorescence labeling for microscopy observation

The measure of dynamics of Brownian particles have been mostly done by fluorescence imaging using different techniques such as Fluorescence Correlation Spectroscopy, Fluorescence

Recovery after Photobleaching (FRAP) and dynamic light scattering [START_REF] Berne | Dynamic light scattering: with applications to chemistry, biology, and physics[END_REF][START_REF] Hess | Biological and chemical applications of fluorescence correlation spectroscopy: A review[END_REF][START_REF] Stephens | Light Microscopy Techniques for Live Cell Imaging[END_REF]. However, the simplest way to obtain the diffusion coefficient is by individually imaging the particles using fluorescence microscopy [START_REF] H Qian | Single particle tracking. Analysis of diffusion and flow in two-dimensional systems[END_REF][START_REF] Saxton | Single-particle tracking:applications to membrane dynamics[END_REF][START_REF] Michael | Single Particle Tracking[END_REF]. This technique, as it is performed in this thesis, allow us to observe individual tracer particles when they are dispersed in a host system consisting of identical or different, non-labelled particles [START_REF] Lettinga | Self-diffusion of rodlike viruses through smectic layers[END_REF], to further calculate the self-dynamics. We have used two different viruses (fdY21M and M13KO7) for two main experiments: 1) dynamics in pure systems (labeled viruses in a matrix of identical non-labelled viruses), 2) dynamics in guest-host systems (labeled viruses inside a matrix of different non-labelled viruses). We assume that the labeled particles behave similar to the unlabeled ones, as demonstrated to happen regarding physical features, such as length and diameter [START_REF] Zhang | Tuning chirality in the self-assembly of rod-like viruses by chemical surface modifications[END_REF]. The two different dyes are used as shown in Table 3.1, one for each virus. NHS and TFP Esters react with primary amines of the protein, forming stable, covalent amide bond and releasing the NHS groups, as shown in Fig. 3.4.

The most important point during and after the labeling process is to protect them from light with aluminum foil to avoid photo-bleaching of the dyes. Moreover, the second consideration for the labeling of the virus with fluorescent dyes is that the reaction between the dye and the virus occurs with the amine groups of the coat protein. Thus, TRIS buffer has to be excluded, due to the presence of amine group that will compete with the coat protein amine groups of the viruses. For the labeling with Alexa Fluor488 5-TFP ester, the buffer used is Sodium Carbonate (I = 150mM and pH = 9), while for Dylight549-NHS Ester we have used Phosphate buffer (I = 350 mM and pH = 7). In the case of reaction with the TFP ester, a slightly basic pH is needed, to maintain the amine group in the non-protonated form. For the NHS ester, we achieve a more specific labeling due to the neutral pH, as the pk a of the amine is lower than the amine terminus protein of the virus (pK a = 7.9). The virus concentration should be around 1 mg/mL. The dye has to be kept in the fridge inside the glove box.

Dialysis of the viruses for the labeling with fluorescent dyes. The fresh buffer is prepared one day before the labeling is done (see Appendix 1) to perform the dialysis to exchange buffer. The principle relies on the selective diffusion of molecules across a semi-permeable membrane with a fixed pore size. In our case, we use SnakeSin 10K Molecular weight cut-off (MWCO), which allows the exchange of ion concentration of the buffer and non-reacting dye molecules, while the viruses stay inside the membrane.

We first need to clean the stock solution from any bacteria. We take 1mL of the stock solution of around 40 -50 mg/mL and we transfer it to a clean ultracentrifuge tube in which a volume of the fresh PBS buffer at 350 mM ionic strength and pH = 7.0 is added to have a final concentration of around 4 -5 mg/mL and a bacterial removal step is done. We transfer the supernatant to a clean falcon tube of 15 mL. The dialysis bag is prepared in which 1 mL of the already clean solution is transferred and after PSB fresh buffer is added giving final concentration between 1 and 2 mg/mL. The dialysis is carried out against the fresh buffer, which should be 3 times the volume inside of the dialysis bag. We make at least 3 changes of buffer and leaving the last change overnight. The next day the sample is removed from the dialysis bag (essential to rinse the bag walls well to recover all viruses that could get attached to the dialysis bag).

Labeling of fdY21M and M13KKO7. To start with the labeling process, we take a volume of around 1 mL of our stock solution at around 1 mg/mL and we transferred it to a glass vial covered with aluminum foil and with a small stirring bar inside. The dye stock once opened, has to be used in one go. The quantity (mass) of virus which has to be adjusted knowing that, for 1mg of virus the optimum number of moles of the dye is 0.5x10 -6 mol [112], having a 3 times excess of dye per protein. The dye should be dissolved in DMSO in a volume such that it does not exceed 20% of the total volume when added to the virus suspension. The viruses have to be added carefully. Once the dyes and the viruses are mixed, the reaction is carried out under stirring during 1h at room temperature or overnight at 4 • C, in the fridge (still under stirring). After the process of labeling, the solution has to be purified from the excess of dye, and the buffer needs to be changed again. Several dialyzes are done until the outer dilution color is transparent, against the desired buffer. In this case, we use TrisHCl-NaCl at 20mM and pH=8.2. After, the solution of labeled dyes is transferred to a ultracentrifuge tube where a first turn to clean bacteria is done and then the sample is concentrated, and the pellet is redispersed in the chosen buffer to have a stock solution concentration of 1mg/mL.

Optical microscopy techniques: sample preparation and observation

In all the experiments a fixed concentration of tracers is introduced in the non-labeled virus sample (matrix). These samples need to be in the correct buffer for each experiment, so a dialysis has been done as explained before the experiment. After, each sample is transferred to an ultracentrifuge tube in which a bacteria cleaning step is performed, and then the sample is concentrated (in the same conditions mentioned above), and the pellet is redispersed in the chosen buffer up to Nematic Phase close to Smectic. The addition of the tracers is done at this concentration because homogenization of the sample is easier (liquid like state) and also to have an idea how the tracers look in a background at a relatively high concentration. Later, depending on the experimental system studied we follow different procedures to prepare the dilutions, as explained below.

Prepararation of the pure systems: fdY21M-Alexa488 in non-labeled fdY21M and M13KO7-Dylight549 in non-labeled M13KO7 (Isotropic experiments). A volume that contains 30 mg of the stock virus solution obtained from each production is dialyzed against TrisHCl-NaCl 110 mM buffer at pH=8. Optical microscopy observations. Samples with labeled viruses are visualized using an inverted microscope (IX-71 Olympus), equipped with a high-numerical aperture (NA) oil objective (100x PlanAPO NA 1.4) and a mercury lamp as excitation light source (X-cite series 120 Q). The camera used is an sCMOS and Neo, using a rolling shutter. The readout time between frames is not the same as the exposure time set during the data acquisition in the microscope.

The real read out time is calculate using readout time = (1/ f rame rate)exp time .

In the experiments of host-host pure systems, the exposure time set for the experiments was 

Self-Dynamics as a signature of the Liquid Crystals

Phase Transition

In this chapter, we report on the dynamics at phase transitions of a colloidal suspension of stiff viral rods, called fdY21M. The stiff fdY21M forms liquid crystalline mesophases, which undergo phase transitions when varying the volume fraction, due to the maximization of free volume in the system. The dynamics are strongly affected exhibiting a different behavior for each mesophase. We focus on the dynamical insights around the Isotropic-Nematic Phase transition and at the Nematic-SmecticA and SmecticA-SmecticB phase transitions. For this purpose, direct visualization at the scale of a single particle is performed. For the I-N phase transition, we quantify the deviation from the Gaussian behavior analyzing the self-van Hove function,

showing that Brownian diffusion is much more restricted in the Isotropic phase close to the Phase transition, and being characterized as glass-like. Moreover, we found a dynamical coexistence at the Nematic-SmecticA and SmecticA-Smectic B phase transitions, confirming that both phase transitions are first order.

INTRODUCTION

Introduction

Assuming that we have a bunch of pencils inside a box just big enough such that they can be pointing in different directions. If we want to add pencils to the box, we need to optimize the space by aligning them. Thus, the system will undergo a phase transition from a disordered phase to an orientated phase. In this oriented phase, the rods have more space to be placed, and also more rods can be added. At the colloidal scale, for rod-like particles which undergo Brownian motion, this is the so-called Isotropic-Nematic Phase transition, and it spontaneously occurs at scaled concentration of φ = 4D/L, predicted by Onsager [START_REF] Onsager | The effects of shape on the interaction of colloidal particles[END_REF]. In the long-rod limit (L >> D), the excluded volume scales as V ⊥ excl = 2L 2 D in the Isotropic phase near the I-N transition. In the case of parallel hard rods and neglecting rod-end V excl = 2πLD 2 . At higher concentration, the system undergoes the N-SmA, where the particles gain positional order in one dimension, which leads to the formation of Smectic layers [START_REF] Van Der Schoot | The Nematic-Smectic Transition in Suspensions of Slightly Flexible Hard Rods[END_REF][START_REF] Polson | First-order nematic-smectic phase transition for hard spherocylinders in the limit of infinite aspect ratio[END_REF][START_REF] Vroege | Phase transitions in lyotropic liquid crystals: bilayer and micelle stability[END_REF]. At even higher concentration, another phase transition occurs from the Smectic-A to the crystalline Smectic-B phase [START_REF] Grelet | Hexagonal order in crystalline and columnar phases of hard rods[END_REF], as it is illustrated in Fig. 4.1. Thus, colloidal rods self-organize spontaneously into different liquid crystalline phases, displaying different phase transition that are purely entropy driven [START_REF] Bawden | The isolation and some properties of liquid crystalline substances from solanaceous plants infected with three strains of tobacco mosaic virus[END_REF][START_REF] Kuijk | Phase behavior of colloidal silica rods[END_REF] when increasing the rod density.

It is, however, demonstrated that this loss of entropy between phases is counter-balanced by an increased in the local free volume, and hence, that the dynamics of the single particles are affected [START_REF] Naderi | Effect of bending flexibility on the phase behavior and dynamics of rods[END_REF]. The study and understanding of dynamics at the single particle level around the phase transition is crucial because it might hint to an entropic gain which is related to the accessible free volume. Recent advances in experimental techniques have made it possible to explore the Brownian motion of individual particles in liquid crystalline phases. It is the case for the self-diffusion of actin filaments in dilute and semi-dilute isotropic regimes [START_REF] Käs | F-actin, a model polymer for semiflexible chains in dilute, semidilute, and liquid crystalline solutions[END_REF], as well as for the fd viruses [START_REF] Cush | Self-diffusion of a rodlike virus in the isotropic phase[END_REF]. Later, self-diffusion of fd viruses in the nematic phase was studied using fluorescent microscopy techniques [START_REF] Lettinga | Kinetic pathways of the Nematic-Isotropic phase transition as studied by confocal microscopy on rod-like viruses[END_REF]. It was found that the self-diffusivity along the main axis of the particles is promoted in the nematic phase compared to that in the isotropic phase. Moreover, in the smectic phase, diffusion of particles along the main axis has been found to be a kind of hopping-type diffusion between smectic layers [27-30, 72, 96]. This is also the case for the Smectic phases of monodisperse silica rods [START_REF] Kuijk | Synthesis of monodisperse, rodlike silica colloids with tunable aspect ratio[END_REF].

These studies provided relevant information on the physical behavior for each liquid crystalline mesophase. Contrary, self-diffusion at the phase transitions is still poorly understood, CHAPTER 4. SELF-DYNAMICS AS A SIGNATURE OF THE LIQUID CRYSTALS PHASE TRANSITION 51 although some experiments have been done [START_REF] Modlińska | Condensation and dissolution of nematic droplets in dispersions of colloidal rods with thermo sensitive depletants[END_REF][START_REF] Van Bruggen | Long-time translational self-diffusion in isotropic and nematic dispersions of colloidal rods[END_REF]. In the case of the I-N, simulations showed that the collective rotational diffusion slows down reaching zero, facilitating the formation of aligned states, while the self-diffusion does not [START_REF] Y G Tao | Brownian dynamics simulations of the self-and collective rotational diffusion coefficients of rigid long thin rods[END_REF][START_REF] Y G Tao | Isotropic nematic spinodals of rigid long thin rodlike colloids by event-driven Brownian dynamics simulations[END_REF].

The already mentioned fd virus, are particularly interesting because, unlike most other types of colloidal particle, they are very monodisperse. Due to the high aspect ratio and rigidity, the I-N transition of stiff fdY21M virus takes place at the same volume fraction of the value predicted by Onsager. Their length makes them accessible to be observed under optical microscopy. In this chapter, we study dynamics throughout the full phase diagram by tracking labeled fdY21M inside a matrix of unlabeled particles using fast fluorescence microscopy.

We show how we calculate and use different dynamical parameters than can act as dynamical signatures for phase transitions. The main goal is to investigate how the self-diffusion of the particles is affected by the proximity of the phase transition and if, reciprocally, the phase transition is affected by the dynamics of the system. Moreover, we will explore a method to quantify the dynamical signature of the phase transition, as well as characterized dynamically the phase coexistence.

We will treat dynamically three phase transitions of fdY21M: I-N, N-SmA, and SmA-SmB.

In the first case, at the I-N phase transition, the analysis of the self-van Hove function (as it has been explained in Chapter 3) is used to quantify the diffusivity on both sides of the phase transition. At higher concentration, N-SmA and SmA-SmB phase transitions, the fitting and analysis of the self-van Hove is not straightforward. Thus, we use a step-detect algorithm (see Appendix at the end of the Thesis) to study the evolution of dynamics at the phase transitions of denser phases, showing that self-dynamics is sensitive to the order of the phase transition.

This chapter is structured as follows: in Sec. ize microscopy can be used to determine the liquid crystal phase transitions. However, this is not the case of the SmA-SmB phase transition, as both phases have the same layered pattern.

In this case, we need to rely on X-ray experiments [START_REF] Grelet | Hard-rod behavior in dense mesophases of semiflexible and rigid charged viruses[END_REF]. To study the single-particle dynamics forming the system, we added labeled fdY21M virus into non-labelled matrix of the same type of particles to have a ratio of 1 labeled viruses into 10 5 non-labeled. The individually fluorescent labeled viruses were visualized using the techniques already mentioned in Chapter 2, and the further analysis by particle tracking has been done using a Matlab algorithm (Appendix).

We extract the raw dynamic information from trajectories which are produced by the image analysis, as shown in figure 4.3. From left to right we see random diffusion in the Isotropic phase, oriented diffusion in Nematic, jumping-like diffusion in Smectic-A phase and nonmoving particle in what we consider to be the Smectic-B phase as will be discussed later. The z-axis is defined by the director of the matrix. All trajectories have been rotated such that the original y coordinates lies on the z-axis. We are able to identify parallel ( ) and perpendicular (⊥) diffusion.

In the next section, we will show calculated features such as the mean square displacement 

Physical and dynamical behavior of fdY21M through the concentration range

Self-Van Hove calculation

We start by calculating the self-van Hove function which gives the probability of displacement probability that smears out with time. In a crowded environment the function will change its shape, and is therefore very sensitive to changes in dynamics and structure of the system.

z after a time t, G(z,t) = 1 N N ∑ i=1 δ [z + z i (0) -z i (t)] ( 4 
The concentration dependence of the self-van Hove function is shown in Fig. 4.4. Indeed, at very low concentration (0.1mg/mL) we observed a Gaussian curve, which is frustrated when approaching the I-N undergoes a roof-tent shape. In the Nematic phase after the I-N phase transition, for which we only plot the parallel self-van Hove function, the Gaussian shape is recovered. With increasing concentration, approaching the Smectic phase, the Gaussian shape is lost again, and the self-van Hove function starts to exhibit peaks at integral multiples of the particle length [START_REF] Pouget | Dynamics in the smectic phase of stiff viral rods[END_REF][START_REF] Naderi | Size and boundary effects on the diffusive behavior of elongated colloidal particles in a strongly confined dense dispersion[END_REF]. The peaks get sharper when increasing the concentration throughout the Smectic-A. This is a signature of the background potential which is imposed by the Smectic ordering. When reaching the Smectic-B phase, the absence of diffusion is reflected in the self-van Hove function, which does not change over time due to the freezing of dynamics. 

Mean Square displacement

The MSD quantifies the average distance that a particle travels in a given time. Most generally, it depends on the diffusion rate D i and on time as t γ , where the exponent γ > 1 indicates superdiffusive behavior and γ < 1 sub-diffusive behavior, CHAPTER 4. SELF-DYNAMICS AS A SIGNATURE OF THE LIQUID CRYSTALS PHASE TRANSITION 57

r 2 i (t) = 2dD i t γ i , (4.2) 
where d is the dimension of the system and i represent the direction with respect to the director ( and ⊥ for parallel and perpendicular respectively). In Diffusion coefficients and exponents have been obtained from the fit of the MSDs using Eq. 4.2. For consistency of the results, we have therefore tuned the time range of the fit to always maintain a high fit quality with a minimum value required for the reduced chi-square.

First we will describe the results obtained for the diffusion coefficients D i . We observe a non-monotonic evolution of the diffusion rates with concentration, as shown in Fig. 4.6a. Initially, D iso decreases sharply from the dilute isotropic phase to the semi-dilute regime. Immediately after the I-N phase transition, D increments dramatically promoted by the alignment of the rods. The increase of concentration in the Nematic phase causes a slow down of D , due to the gain of order packing after the phase transition where the rods strongly align. On the contrary, D ⊥ drops after the I-N phase transition and stays further constant. These results are in agreement with simulations [START_REF] Löwen | Anisotropic self-diffusion in colloidal nematic phases[END_REF] and also previous experiments [START_REF] Lettinga | Self-diffusion of rod-like viruses in the nematic phase[END_REF]. The diffusion is even more restricted entering in the Smectic-A phase, due to the smectic ordering which favors the jumping like behavior through layers, as we have shown already in the Self-Van Hove functions.

Furthermore, we plot in Fig. 4.6a in blue, the total diffusion rate given by D tot = D + 2 * D ⊥ , indicating that indeed also the total diffusion increases after the I-N transition, while it smoothly decays from the deep Nematic phase throughout the N-Sm phase transition and the Smectic-A phase. Finally, the D tot drops to zero in the Smectic-B phase. entering the Smectic-A phase, the exponents for both directions decrease, gradually reaching values below 0.5. This is typical behavior for glassy dynamics [START_REF] Weeks | Three-Dimensional Direct Imaging of Structural Relaxation Near the Colloidal Glass Transition[END_REF][START_REF] Weeks | Subdiffusion and the cage effect studied near the colloidal glass transition[END_REF] and at even higher concentrations it drops to zero, which is related to the absence of dynamics. This is in agreement with the fact that in the Smectic-B phase particles are crystalline-like within the Smectic layers [START_REF] Grelet | Hard-rod behavior in dense mesophases of semiflexible and rigid charged viruses[END_REF]. The study of the diffusion exponents and coefficients gives a hint of the behavior of the system. However, together with these studies, we need a different approach to characterize the dynamics. In following sections, we will do an analysis and quantification of dynamics beyond the results previously presented. This is done for all phase transitions, starting from the I-N, then N-SmA and finally SmA-SmB.

Isotropic-Nematic Phase transition

The I-N phase transition of fd virus is a first order phase transition [START_REF] Fraden | Phase Transitions in Colloidal Suspensions of Virus Particles[END_REF][START_REF] Tang | Isotropic cholesteric phase transition in colloidal suspensions of filamentous bacteriophage fd[END_REF] where the Isotropic and Nematic phases coexist. The dynamics at the I-N phase transition is distinctly different for each phase [START_REF] Modlińska | Condensation and dissolution of nematic droplets in dispersions of colloidal rods with thermo sensitive depletants[END_REF][START_REF] Lettinga | Kinetic pathways of the Nematic-Isotropic phase transition as studied by confocal microscopy on rod-like viruses[END_REF], as the free volume in the Isotropic phase is much lower than in the Nematic phase. Increasing the concentration in the Isotropic phase, the diffusion is frustrated as explained by Doi [START_REF] Doi | Rotational relaxation time of rigid rod-like macromolecule in concentrated solution[END_REF], reaching the semi-dilute regime where the particles diffuse through a tube created by its neighbors. For densely packed colloidal spheres in the glass state, it is We characterize the evolution from Gaussian to a Lévy-flight distribution by analyzing the Self-Van Hove (described in details in Chapter 1), with a method developed by Wouter den 4.4. ISOTROPIC-NEMATIC PHASE TRANSITION Otter (University of Twente, private communications). We normalize the self-van Hove function by multiplying the probability by √ dt and dividing the position by dz/( √ dt) 2 . This will take out the effect of time, so the curves will be comparable, and the fitting is done by using the following expression:

Ln(G(z,t) √ dt) = a 0 -a 1 ( z 2 ) a 2 ; (4.3)
where a 2 is 0.5 for Lévy-flight and 1 for Gaussian respectively, and a 1 is related to the inverse of the D i when a 2 = 1.

We focus first on the time dependence of the a 2 parameter since it is related with the diffusivity of the system, represented in Fig. 4.9, taking the Gaussian behavior at 0.1 mg/mL as a reference. In the Isotropic phase at 6 mg/mL the a 2 parameter is initially low and recovers to a 2 = 0.8. Close to the I-N at 11 mg/mL it remains roughly constant. In the Nematic phase, a 2 is relatively high 0.8 < a 2 < 1 for the parallel diffusion. On the contrary, the perpendicular diffusion is below 0.8 and recovers at longer times at 14 mg/mL, and does not change for 27 mg/mL which is deeper into the Nematic phase.

Finally, we represent the parameters a 1 and a 2 for parallel diffusion, as a function of concentration for 3 different times: short (0.03 s), middle (0.24 s) and longest time (2.4 s), as shown in Fig4.10. The a 1 parameter decreases with concentration and after the I-N transition remains rather constant. The a 2 parameter exhibits Gaussian behavior at very low concentrations in the Isotropic phase, with values a 2 ∼ = 1 and drops just before the I-N. In the Nematic phase after the I-N phase transition, the a 2 parameter for the parallel diffusion jumps to higher values and increases continuously with concentration to values close to 0.9 or Gaussian behavior. Furthermore, the data exhibit a big decay after I-N for short times, while at long times the curves before and after I-N converge.

This transition from restricted dynamics with a low value of a 2 to a diffusive state with more free volume in the Nematic phase is the dynamic signature we were after for the I-N phase transition.

Thus, we conclude that this behavior is caused by tube effect in the dense Isotropic phase before the I-N Phase transition, where the high particle packing restricts diffusion. This is CHAPTER 4. SELF-DYNAMICS AS A SIGNATURE OF THE LIQUID CRYSTALS PHASE TRANSITION 63 further confirmed with a general calculation of the deviation from the Gaussian behavior, the non-Gaussian parameter,

α 2 (∆t) = ∆x 4 3 ∆x 2 2 -1, (4.4) 
where the second and fourth moments of a 1D P[∆x(∆t)] are combined, being zero for a Gaussian distribution. In Fig. 4.11 we show the values of α 2 as a function of time in the Isotropic phase. We observe that α 2 changes its behavior from dilute Isotropic to the semi- In his work Weeks showed how close to the glass transition there is a rise of α 2 and it dramatically changes the behavior in the glass state, where α 2 shows immediately a decrease and then it drops at longer lag times, as we observed for 6 and 10 mg/mL in our results. The main difference is that our system does not undergo to a glass state, but this glass state behavior is prior to the I-N phase transition.
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Nematic-SmecticA Phase Transition

Contrary to the I-N phase transition which is clearly first order as demonstrated by the existence of tactoids, the Nematic-Smectic phase coexistence is not that evident. Generally, DIC microscopy is used to identify characteristic layered pattern of the Smectic phase, which can be distinguished from the Nematic texture characterized by the birefringence and the absence of layers.

In our sample, we found a N-Sm phase coexistent between 87 and 91 mg/mL, which is consistent with literature [START_REF] Grelet | Hard-rod behavior in dense mesophases of semiflexible and rigid charged viruses[END_REF][START_REF] Pouget | Dynamics in the smectic phase of stiff viral rods[END_REF]. At 87 mg/mL we observe clearly Nematic regions mixed with small Smectic regions, and at 91 mg/mL the Smectic region dominates while small Nematic regions can be distinguished. In this range of concentration, we want to study the underlying dynamical behavior of the rods to demonstrate that the order phase transition can be dynamically identified.

Analysis of dynamics throughout the phase transition

We proceed to the specific analysis of dynamics of the N-SmA Phase transition. The most noticeable difference in the dynamics between the N-Sm phase transition is that in the Nematic the motion is continuous while in the Smectic phase particles exhibit jumps.

In figure 4.12 we show four different types of trajectories that we find at 87 and 91 mg/mL: In Fig4.13a we represent the trajectories that are characteristic of the N-Sm Phase transition.

We color code them (green: pure Smectic, red: pure nematic and pink: smooth Smectic)

and overlay them with DIC pictures. These types of trajectories are distinguished using the step-detect algorythm, which identifies the sharp transitions of the Smectic jumps from the continuous Nematic diffusion. The smooth smectic are trajectories which the jumps have a very short residence time and the transitions start to be less sharp, so then the program These observations suggest a N-SmA dynamical phase coexistence. However, we need to quantify the differences between the trajectories labeled as pure Nematic and smooth Smectic, as the step-detection is not conclusive. The program may have limitations due to the short time residences found in the smooth smectic trajectories. We again evoke the use of the selfvan Hove, as it is distinctly different for both types of trajectories, as shown in Fig. 4.14. 

Calculation of Smectic Ordering Potentials

In addition to the dynamics, we characterize the N-SmA phase transition by first quantifying the energy barriers imposed by the Smectic ordering, as they strongly influence the dynamics.

The Smectic potentials U Layer are obtained from the probability P(z) of finding the particle with respect to the middle of the layer parallel to the director and subsequently using the Boltzmann factor,

P(z) ∼ e -U Layer (z)/k b T . (4.5)
where k B is the Boltzmann constant. P(z) is experimentally obtained from the fluctuations within the layer as shown in Fig. 4.3. For this purpose, we use a step-detection algorithm which finds sharp transitions of one-rod length between two points within the trajectory which we U Layer decreases with decreasing concentration, due to a higher packing between layers. At the concentration in the N-Sm phase transition close to the Nematic phase (87mg/mL), the value of U Layer drops below 1k b T . A similar trend is observed in the residence time τ res as shown in Fig. 4.16b , which is the average time that a particle stays within the layer. The τ res follows the same trend that the scape rate of Kramer's escape theory [START_REF] Kramers | Brownian motion in a field of force and the diffusion model of chemical reactions[END_REF]. Moreover, the ratio of jumpers over a total number of particles is represented, as shown in Fig. 4.16c. The number of particles that jumps through the layers correspondingly decreases with increasing concentration.

Smectic A-Smectic B Phase Transition

At high concentrations in the Smectic phase, the dynamics freezes as we showed by looking at the concentration dependence of the diffusion coefficients and exponents in the first section of the chapter. It is conceivable that this is related to the formation of the crystalline Smectic-B phase. So far, the way to recognize the Smectic-B phase is by using SAXS [START_REF] Grelet | Hard-rod behavior in dense mesophases of semiflexible and rigid charged viruses[END_REF]. While in the Smectic-A mesophase particles have short range ordering or liquid like within the layer;

in Smectic-B a long range crystalline order is found. Here we will dynamically recognize the possible co-existence of Smectic-A and Smectic-B phases looking at their different dynamical behavior.

Before we discuss the analysis of the dynamics, we further investigate the structure of the phase using DIC microscopy. This technique, instead of quantifying the packing of the rods which is obtained by SAXS, quantifies the packing between layers which is characterized by the layer spacing λ . We obtain λ from the FFT (fast Fourier transform) of the DIC pictures.

The value of the radius from the center of the FTT to the first and second harmonic intensity signal is related to the value of the layer spacing λ (Fig. 4.17). For each concentration, we have measured 12-15 values of layer spacing.

The concentration dependence of the layer spacing λ and the normalized layer spacing λ /L rod , are shown in (Fig. 4.18). There is a slight change of slope between the SmecticA and the SmecticB phase, which can be related to a different packing density, due to the confine- ment within the layers induced by the high rod density [START_REF] Grelet | Hard-rod behavior in dense mesophases of semiflexible and rigid charged viruses[END_REF]. At concentrations higher than 110 mg/mL, within the range of Smectic-B mesophase, λ /L rod reaches 1, which means that the system is highly packed. These results, however, are not consistent with the previous measurement, where the difference of slope of λ L between SmA and SmB phases is not that dramatic [START_REF] Grelet | Hard-rod behavior in dense mesophases of semiflexible and rigid charged viruses[END_REF].

We now want to relate this difference in the packing with the dynamic behavior. As mentioned before, D i and γ drop to zero at concentrations corresponding to the Smectic-B phase.

This is also reflected in the values of τ, which diverges due to the residence time of the particles, which do not move from the layers, as shown in Fig. 4.16. Nonetheless, we do have to be cautious with this latter statement due to the limited total time of observation, due to practical issues (photobleaching, memory, etc...). In this total time, most of the particles do not exhibit jumping-like behavior (non-jumpers). This poses the question if for those particles we do not observe jumps due to the limited time of observation (15 seconds), or they are completely stuck in the layer because they belong to the Smectic-B phase.

Hence, we want to distinguish the particles that jump and the particles that do not jump due to the lack of dynamics. We assume that there will be a considerable difference between the fluctuations within the layer of the particles that jump (even if do not track the jumps during CHAPTER 4. SELF-DYNAMICS AS A SIGNATURE OF THE LIQUID CRYSTALS PHASE TRANSITION 73 L rod , L rod = 0.92µm. The Smectic layered pattern starts to be observed after the SmecticB-Columnar phase transition at around 138 mg/mL and it vanishes when the Nematic-Smectic phase transition finishes at 87 mg/mL. the time window of the movie), and the particles that are in the Smectic-B and consequently do not show any dynamics. Thus, if we analyze the dynamics, we can track this difference and classify the type of particle. It is important to remark that we take as a reference for the Smectic-B phase (no dynamics) the data at 100 mg/mL, to compare the results obtained within the layer.

First, we make a distinction between the particles that exhibit jumps during the total time of the movies and the ones that do not exhibit any jump. Then, we obtain the dynamics of the jumping particles within the layer from isolated time windows during the residence time τ, represented by the green line in Fig. 4.19b. Also, we obtain the dynamics of the non-jumping particles from the full trajectory, as shown in Fig. 4.19c.

In figure 4.20 the linear representations of the MSD Layer parallel and perpendicular for jumping and non-jumping particles are represented. Indeed, the MSD shows two different behaviors. For non-jumping particles only at 93 mg/mL, we observe some motion while for higher concentrations the MSD remains at approximately zero. At the same concentration, we see almost free but sub-diffusive behavior for the particles that we classify as jumping particles.

The diffusion coefficients have been extracted from the slope of the MSD Layer , using Eq.4.2.

The D layer and D ⊥ layer for jumping-particles have values that follow the same trend, but they are somewhat lower than for full trajectories due to the discrimination of the jumps. Compared to the full trajectories, the main difference is that the diffusivity γ is glass-like for the dynamics within the layer, as shown in Fig4.21.

On the contrary, the diffusion rates within the layer for the non-jumping particles show that from 95 to 98 mg/mL motion is almost prohibited, as we observe for the full SmecticB at 100 mg/mL. Also, γ drops below 0.5 for the glassy state which confirms that these particles are in the Smectic B phase, as shown in Fig. 4.21. Interestingly, this is first observed at 95 mg/mL for the parallel diffusion, which means that the parallel diffusion is the first to be fixed 

Discussion and conclusion

In this chapter, we have presented an overview of the dynamics of the rod-like fdY21M particles at the different phase transitions: I-N, N-SmA, and SmA-SmB.

In Sec. been observed for colloidal glasses [START_REF] Weeks | Three-Dimensional Direct Imaging of Structural Relaxation Near the Colloidal Glass Transition[END_REF][START_REF] Weeks | Subdiffusion and the cage effect studied near the colloidal glass transition[END_REF], which hints to heterogeneous dynamics. Hence, this effect could be a signature of the tube effect [START_REF] Doi | Rotational relaxation time of rigid rod-like macromolecule in concentrated solution[END_REF], where particles are confined by their neighbours until they reorient to find the path they can diffuse through. The Gaussian behavior is recovered after the phase transition in the Nematic phase for the parallel diffusion, which is promoted by the orientational order of the phase [START_REF] Lettinga | Self-diffusion of rod-like viruses in the nematic phase[END_REF]. The perpendicular diffusion remains sub-diffusive.

In Sec.4.5 we use the different behavior of the trajectories in the Nematic phase (continuous motion) [START_REF] Lettinga | Self-diffusion of rod-like viruses in the nematic phase[END_REF] and Smectic phase (jumping-like motion) [START_REF] Lettinga | Self-diffusion of rodlike viruses through smectic layers[END_REF][START_REF] Pouget | Dynamics in the smectic phase of stiff viral rods[END_REF] to characterize dynamically the N-SmA phase transition. Phase transitions can be first order, where both mesophases are in coexistence in equilibrium (as it is clearly observed for I-N Phase Transition). On the contrary, second order phases transitions are continuous and do not exhibit phase coexistence.

We distinguish dynamic coexistence in the range of the N-SmA phase transition, which is also observed by DIC microscopy. Hence, the experiments support that the N-SmA phase transition is first order as proposed in previous studies [START_REF] Van Der Schoot | The Nematic-Smectic Transition in Suspensions of Slightly Flexible Hard Rods[END_REF][START_REF] Polson | First-order nematic-smectic phase transition for hard spherocylinders in the limit of infinite aspect ratio[END_REF]. We tried also to characterize the smooth Even though the self-van Hove for the Smooth Smectic trajectories exhibits discrete peaks observed at one adjacent layer distance, they are not as sharp as the pure Smectic trajectories.

It makes difficult the comparison with the pure Nematic phase.

Finally, in In Sec.4.6 we investigate dynamics at the SmA-SmB phase transition, for which the layer spacing λ layer suggests a different packing of the layer between both phases, in addition to the lateral particle packing studied by SAXS [START_REF] Grelet | Hard-rod behavior in dense mesophases of semiflexible and rigid charged viruses[END_REF]. We show that this change of packing density affects the dynamics as the diffusion rates and exponent drop to zero. When comparing the dynamics within the layer for jumping and non-jumping particles, we find a dynamic coexistence in a region with an appreciable width. Thus, a complete phase diagram which represents the fraction of particles in each mesophase and at the phase transitions is presented in Fig4.22. At each phase transition, we have a coexistence of two populations of trajectories, corresponding to the phases at both sides of the transition. However, one could argue that our observations are due to insufficient mixing after dilution, especially at SmA-SmB phase transition where the sample is very dense. Although there is a procedure of homogenization during the sample separation, there could be regions where the sample is not perfectly homogenized.

Appendix

For the acquisition of fluorescence movies of our system, we used two different exposure times: 20 and 5 ms. The corresponding frame rates for our instrument resolution are 33 and 180 fps for 20 and 5 ms respectively. For the data at 5ms, we used a region of interest (ROI) of approximately 1200x430 pixels. Residence time (τ res ) and potential are strongly related, since the potentials are calculated from the fluctuation within a determine τ res . However, as shown in Figure 4.23, τ for 5 ms is lower than for 20 ms movies, while the potentials obtained for 5 ms and 20 ms are consistent. Low exposure times allow us to make fast movies (which means increasing the frame rate), but the length of the movie decreases. Our effective time window for 5ms movies is 3-3.5 seconds (depending on the movie), although the movies are 6 seconds long. Despite the fact that we use the same conditions as for 20 ms, at this exposure time the CHAPTER 4. SELF-DYNAMICS AS A SIGNATURE OF THE LIQUID CRYSTALS PHASE TRANSITION 79 Signal to Noise Ratio (SNR) or contrast value between the intensity of the particles and the background noise decreases. Hence, the effect of photobleaching becomes more apparent.

If we look at 20 ms movies, we have a distribution of residences times where we find values above 3 or 4 seconds, but also shorter times. When we calculate the average of this probability, we take into account all of these different values. The fact that at 5 ms our time windows is reduced to 3 seconds results in a cut off for the long residence times, see Fig 4 .24. Hence, particles that stay in the layer a time longer than 3 seconds will not be accounted as a jumper, but as stuck particles, because within these 3 seconds, they do not jump. However, the short residence times are taken into account (those values are also in 20 ms movies), biasing the final result.

An advantage of using high time resolution is that we can resolve small intermediate jumps.

Thus, at small exposure times, we can track smaller time residence events. However, the fluctuations that we find within this small time residence are the same, giving potentials that are consistent with the 20 ms data. 

Introduction

Highly dense ordered and crowded systems generally cause a slowing down of the Brownian diffusion of its constituents [START_REF] Banks | Anomalous diffusion of proteins due to molecular crowding[END_REF][START_REF] Verkman | Crowding effects on diffusion in solutions and cells[END_REF][START_REF] Sokolov | Models of anomalous diffusion in crowded environments[END_REF]. There are many studies of this anomalous diffusion which mainly focus on the diffusion of a tracer through an amorphous unstructured host [START_REF] Berthier | Dynamic heterogeneity in amorphous materials[END_REF].

In many systems, however, there is structure present mainly through self-assembly. Thus the question arises as for how diffusion of a guest particle is altered when the host is ordered.

In nature, self-organization of systems into lamellar-like structures is ubiquitous, such as the lateral diffusion of membrane proteins within cell membranes [START_REF] Kusumi | Confined Lateral Diffusion of Membrane Receptors as Studied by Single Particle Tracking ( Nanovid Microscopy ). Effects of Calciuminduced Differentiation in Cultured Epithelial Cells[END_REF]. Many biological systems exhibit lamellar or smectic-like ordering [START_REF] Brown | Chapter 8 -Photoreceptor Structures: The Chloroplasts[END_REF] such as chloroplasts and retinal rods [START_REF] Wolken | Lipids and the molecular structure of photoreceptors[END_REF]. As transport through such structures still needs to take place, the question is whether and how transport of guest particles, which are not part of the structure forming materials, takes place through such highly ordered structures.

Similarly, it has been a long-standing question how diffusion in colloidal crystals takes place, where local mobility [START_REF] Holmqvist | Short-time dynamic signature of the liquid-crystal-glass transition in a suspension of charged spherical colloids[END_REF] at the crystal lattice points as well as vacancies play an important role. In most studies of the transport of guest particles through a structured background, the guest particles are smaller than the typical length scale of the host system, see e.g.

simulations [START_REF] Zwanzig | Diffusion in a rough potential[END_REF][START_REF] Lindner | Dynamic analysis of a diffusing particle in a trapping potential[END_REF] and experiments [START_REF] Blickle | Characterizing potentials by a generalized Boltzmann factor[END_REF][START_REF] Evstigneev | Diffusion of colloidal particles in a tilted periodic potential: Theory versus experiment[END_REF][START_REF] Volpe | Brownian motion in a speckle light field: tunable anomalous diffusion and selective optical manipulation[END_REF][START_REF] Tierno | Soft Matter magnetic colloids driven above a two-state flashing potential[END_REF].

In this chapter, we address the opposite limit from an experimental point of view, e.g.

how the mobility of a guest particle is affected by a surrounding energy landscape that has a smaller length scale than the guest particle? For this study, we have defined a model system by introducing tracer amount of long, non-commensurate, guest rods in a host smectic phase comprised from shorter host rods, as schematically represented in Fig5.1. Having long guest particles whose length is higher than the host layer spacing for which L layers L host , implies that the guest rods have to be accommodated in more than one smectic layer, exceeding the typical length scale of the host ordering potential.

It mimics the transport of a guest particle through layered structures, the so-called permeation, while it represents diffusion in a less stringently ordered phase than 3-d crystals. As we will consider purely hard core interactions, we assume that the complexity of the experimental model is reduced to a purely entropic problem, where only repulsion interactions between particles will lead a change from an ordered phase to am more ordered phase by increasing the free energy of the system.
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From the fact that the particle is non-commensurate only in one layer we expect that the ordering potential that sets the smectic layers will not be the same as for the host particle, and therefore also that the parallel diffusion will be affected. We also expect that the diffusion within the layer will be affected, as the particles have effectively close neighbors stemming from at least two adjacent layers.

Systems based on rod-like fd viruses are ideally suited for this study as they exhibit the full range of liquid crystalline phases [START_REF] Grelet | Hexagonal order in crystalline and columnar phases of hard rods[END_REF][START_REF] Dogic | Ordered phases of filamentous viruses[END_REF]. Their size of almost 1 µm allows for detailed fluorescence microscopy studies, while a biological toolbox can be exploited to make particles of different lengths and stiffnesses. This system has been used earlier to study host-in-host diffusion in the nematic [START_REF] Lettinga | Kinetic pathways of the Nematic-Isotropic phase transition as studied by confocal microscopy on rod-like viruses[END_REF], smectic phases [START_REF] Grelet | Dynamical and structural insights into the smectic phase of rod-like particles[END_REF][START_REF] Pouget | Dynamics in the smectic phase of stiff viral rods[END_REF] and columnar phases [START_REF] Naderi | Fractional hoppinglike motion in columnar mesophases of semiflexible rodlike particles[END_REF], but also for guest (bead) host (nematic) systems [START_REF] Kang | Diffusion of spheres in isotropic and nematic suspensions of rods[END_REF]. We will study the diffusion of the mutant M13KO7 as a guest particle in a Smectic ordered phase of the stiff fdY21M. M13KO7 has a contour length of 1.2 µm, which is 1.3x longer than the contour length of fdY21M viruses. When forming Smectic layers, fdY21M particles have a layer spacing of around 1µm so that we expect that the long guest M13KO7 is accommodated in more than one Smectic layer. As we have seen in chapter 2 and the work of Pouget et al., anomalous hopping type diffusion between the Smectic layers has been observed for a the Smectic phase of pure fdY21M, rather than diffusion within the layer. This hopping type diffusion takes places in quasi-quantized steps of one-rod length. Thus, the particles exhibit Brownian diffusion confined in a background ordering potential.

The chapter is organized as follows. We start by introducing our guest-host Smectic system and the methodology we use to characterize it. In the first section, we calculate the effective potential for the particles and then investigate its influence on the self-van Hove function, which is a very sensitive measurement to observe the effect of structure on the diffusion. In the second section, we discuss the mean square displacement both for the full trajectory of the particles and locally within the layer, which means that we consider the motion only within the Smectic layer. The results are always compared with the data that we already showed in chapter 4 for the host system. Finally, in section 5.6 we propose an interpretation of the results on the basis of the misfit between the guest particle and the layers that contain it. 

Design and detection of Guest-Host Smectic system

In this study, we have used two mutants of fdwt to create our experimental guest-host system: fdY21M as host liquid crystalline system and M13KO7 labeled with fluorescence dye as the guest particle. The diameter for both viruses is d = 6.6 nm, and due to a genetic modifications in the amino acids of the pVIII coat protein, both mutants have different contour lengths and stiffness. For fdY21M, which we will call short-host, the contour length is L = 0.92 µm and for M13KO7, which we will call long-guest, it is L= 1.2 µm [START_REF] Fraden | Phase Transitions in Colloidal Suspensions of Virus Particles[END_REF], so that the ratio L M13KO7 /L f dY 21M = 1.3. The length is characterized by Transmission Electron Microscopy (TEM). To visualize the rods by fluorescence microscopy, we labeled fdY21M with Alexa488-TFP (Invitrogen, MW=884.91 g/mol), and M13KO7 with Dylight549-NSH ester (ThermoFischer, MW=1040 g/mol). The procedure of labeling has been explained in Chapter 3. Both labeled particles were added in a ratio of about 1 labeled particle in 10 5 non-labelled particles (Fig. 5.1). With this ratio, we have around 100 labeled particles in our field of view (1208x1080 pixels) in the range of concentration of the Smectic phase. The host system fdY21M was prepared as explained in Chapter 4.

We performed experiments throughout the full phase diagram as described in Chapter 4.

Samples were prepared by putting a drop of the sample between two spacers of a height of about 10µm, covering it with a cover slip and shearing it by slight up and down motion for CHAPTER 5. SINGLE PARTICLE DYNAMICS OF GUEST-HOST SMECTIC SYSTEM OF COLLOIDAL FILAMENTOUS PARTICLES 85 about 10 seconds before the sample was sealed. Note that for smectic samples we observed the segregation with time of the long guest particle into highly defected regions of the sample or in regions containing impurities. This process occurs in more than a few weeks (Fig. 5.2).

In contrast, the labeled host particles do not show this tendency. Hence we conclude that this segregation is driven by the length mismatch [START_REF] Van Der Haegen | On the isotropic liquid crystal phase separation in a solution of rodlike particles of different lengths[END_REF], and not by an effective different diameter [START_REF] Koda | Phase diagram of the nematic-smectic a transition of the binary mixture of parallel hard cylinders of different lengths[END_REF][START_REF] Varga | Nematic-nematic phase separa-Bibliography xvii tion in binary mixtures of thick and thin hard rods: Results from Onsager-like theories[END_REF][START_REF] Buitenhuis | Phase Separation of Mixtures of Colloidal Boehmite Rod and Flexible Polymer[END_REF] due to the labeling. Moreover, the amount of labeled particles, and especially of long-guest particles, is so small (ratio 1 : 10 5 ) that we assume that the phase behavior of the host system is not affected by adding the tracer particles. Fluorescently labeled viruses were visualized using an inverted microscope (IX-71 Olympus), equipped with a high-numerical aperture (NA) oil objective (100x PlanAPO NA 1.4) and a mercury lamp as excitation light source (X-cite series 120 Q). A dual emission image splitter (Optosplit II Andor) was used to project two identical fields of view, corresponding to the two emission wavelengths, onto an ultra-fast electron-multiplying camera (sCMOS Andor camera). The exposure time was 20 ms, while the maximum length of the movies was 15 seconds.

After approximately 6-7 seconds photobleaching of the Alexa488 dyes become apparent. Per concentration, we collect in total around 800 trajectories using a particle tracking algorithm as explained in details (Appendix 1). for M13KO7 guest (top plot) and fdY21M host (bottom plot). There are a few apparent differences: (1) the long-guests do not display sharp jump events as compared with short-hosts, but still diffuse strongly along their long-axis; (2) diffusion within the layer is more hindered for long-guest than for short-host fdY21M particles. We could also observe that maximum displacement is bigger for the long-guest M13KO7 particles, but this needs to be quantified.

We will try to quantify these observations by comparing the potentials, the self-van Hove functions and diffusive behavior of the guest and host particles. 

Calculation of the Smectic ordering potentials

We start the evaluation of our results by calculating the potential that is effectively felt by the non-commensurate particles. The Smectic phase is characterized by an effective periodic energy landscape in one dimension due to the layered ordering. The potential barriers increase with increasing concentration. Thus, the particle has to overcome this barrier to jump from one layer to the adjacent one, exhibiting "hopping type" diffusion. We anticipate that this ordering potential will not be experienced to the same extent by the long-guest particles. As explained in Chapters 3 and 4, the Smectic potentials U Layer can be obtained experimentally from the probability P(z) of finding the particle with respect to the middle of the layer parallel to the director (or the fluctuations within the layer) (Fig. 5.3) and subsequently using the Boltzmann factor,

P(z) ∼ e -U Layer (z)/k B T . (5.1)
where k B is the Boltzmann constant. Fig. 5.4a displays the concentration dependence of U Layer for both particles. While for the short-host the potential increases around the N-SmA transition, as expected, the onset of U LG Layer for the long-guest is shifted to much higher concentrations. Thus, even if there is a background periodic potential, at this density packing of the system the guest particle can permeate through the Smectic layers. U LG Layer continues to increase after the SmA-SmB, while for the short-guest the diffusion freezes and no potential can be obtained anymore. The raw data observed in the inset has been deconvoluted from the optical smearing using the psf(point spread function) that we get from the immobile particles, as we explained in Chapter 2. Moreover, both particles have the same concentration dependence, since the slope is the same from both of potential decays. This is directly reflected in the ratio of jumping particles (particles that do not exhibit jumps within our time window) over non-jumping particles (particles that we are not able to observe jumping within our time window), see Fig. 5.4b. The ratio of jumpers for the short-host starts to decrease after the N-SmA transition and reaches 0 at the SmA-SmB transition, while for the long-guest the decay sets in at higher concentrations and jumpers can still be found in the SmB phase. Similarly, the average residence time τ, which is calculated from the histogram of residence times for all 

Study of self-dynamics: the self van Hove function

We now would like to see how the differences between the potential barriers U LG Layer and U SH Layer affect the diffusion of the particles. The data presented in the previous section suggests that the long-guest is not-commensurate within the host Smectic phase, so we expect a significant impact on the dynamics. This can be most clearly judged from the Self-Van Hove function.

This function gives the probability density function for a displacement z during a time t.

G(z,t) = 1 N N ∑ i=1 δ [z + z i (0) -z i (t)] (5.2)
Eq. 5.2 provides valuable information about the dynamics of particles as it represents the solution at the single particle level for the diffusion permeation equation 1 through the layers.

For Brownian particles, the Self-Van Hove function is given by a Gaussian distribution which smears over time.

In the scenario of a smectic background potential, it exhibits distinct peaks at integral multiples of the layer spacing [START_REF] Grelet | Dynamical and structural insights into the smectic phase of rod-like particles[END_REF][START_REF] Pouget | Dynamics in the smectic phase of stiff viral rods[END_REF]. In Fig 5

.5 we plot a comparison of the parallel self-van

Hove function between the host and the guest particles at three concentrations in the Smectic-A phase. For the host particle indeed we observe distinct peaks for the lowest concentration of [91 mg/ml]. The long-guest particles display weak humps, so the long-guests do "feel" the potential even though they are not-commensurate. However, the peaks are much less distinct.

This shows that the self-van Hove function is the most sensitive measurement to observe the effect of a background potential. For the middle concentration of [93 mg/ml], peaks are more distinct, but by far not as defined as for short-host particles. Finally, for the last concentration 1 The permeation through the Smectic is also a consequence of the vacancies available in adjacent layers. In 2013, Grelet and Lettinga [START_REF] Lettinga | Self-diffusion of rodlike viruses through smectic layers[END_REF] proposed a phenomenological expression for the permeation, derived by coupling the displacement of a segment of a smectic layer u to the compressibility modulus B via the permeation parameter λ b . As they explain, the fundamental solution of this diffusion equation at single-particle level is the self-van Hove function (Eq.5. These observations hint to an enhanced diffusion in the direction parallel to the rod along the normal of the layers. This will be further exploited in the next section where we discuss the mean square displacement. 

Study of self-dynamics: mean square displacement

Dynamics of the full trace

We have now established that the long-guest particles do feel the ordering potential of the smectic phase but to a much smaller extent. Also, the self-van Hove functions hint to a faster diffusion. The potentials and the self-van Hove function are the basis to understand the physics of the most common transport property, namely the mean-squared displacement (MSD). In complex systems, the time evolution of the MSD can most generally be described by a power law: The trends are the same for the diffusion exponent for the parallel diffusion γ . The shorthost becomes sub-diffusive at a lower concentration than the long-guest, which is a feature that is also reflected in the potentials plotted in Fig. 5.4. γ ⊥ is less sensitive to the differences.

r 2 i (t) = 2D i t γ i , (5.3 
It is interesting to remark that at high concentrations (100, 98 and 97 mg/mL) we observe a change in the slope of the log-log MSD in both directions. There is an increase in the slopes, and thus a decrease in γ, which implies that the confined particles escape from a cage.

The fact that no significant difference is observed between semi-flexible long guests and stiff short hosts in the perpendicular diffusion is rather unexpected. Indeed, it has been shown that self-diffusion within the layers is far more pronounced for stiff rods as compared to more flexible ones of the same size [START_REF] Pouget | Dynamics in the smectic phase of stiff viral rods[END_REF]. The reason is that parallel, and perpendicular diffusion is correlated, and that M13K07 guests do feel a weaker ordering potential than the constitut- 

Discussion and Conclusion

The proposition that the diffusion rate of Brownian particles decreases with increasing particles size is not generally true. We proved this effect by evidencing a promoted permeation of non-commensurate long guest rods through self-assembled smectic layers of shorter host particles. We show in this chapter that big Brownian particles can diffuse faster than small particles, when the length scale of a background potential fits the small particles, but not the bigger particles: the long-guest M13KO7 diffuses faster through smectic layers of short-host fdY21M than the host particles themselves, as can be seen in Fig. 5.7a, Fig. 5.4b and c. The long-guest particles are even mobile in the crystalline Smectic B phase. Thus, we can conclude that permeation is favored for non-commensurate particles. Indeed, also the potential barriers that are effectively felt by the long-guests, U LG Layer are lower than for the short-host U SH Layer , see Fig. 5.4a. This does not mean, however, that there is no potential. Even at the 96 5.6. DISCUSSION AND CONCLUSION lowest concentration in the smectic, the discrete peaks in the self-van Hove function confirm that a mean potential is felt by the long-guest particles, see Fig. 5.5. It suggests that the longguests "feel" the Smectic ordering potential even though they are not-commensurate within the Smectic-layer.

In order to interpret the enhanced permeation of the long particles, it is important to realize that a potential barrier in the SmA is not a static value but rather the result of fluctuations in the density within the layer. Particles can jump in between layers only when there is a void.

With increasing concentration, the number of voids decreases and hence the barrier increases.

Non-commensurate particles will always be present at least in two layers at the same time so that it does not need to "wait" until a void is created, hence U LG Layer < U SH Layer . In the smectic B, which has a crystalline order in the layer, the long-guest particle has to create a void to be accommodated. Hence it is not surprising that it will still be able to diffuse, while the shorthost are fixed to their crystal lattice. This process is indicated in the cartoon of Fig. 5.9. We assume that there is a coupling of the parallel and perpendicular motion of the guest particle so that the perpendicular diffusion is promoted when the particle diffuses through the smectic layers of the host system.

A particle can, therefore, jump when a transient void exists in the adjacent layer. At higher concentrations, the number of voids decreases and hence the potential barrier increases. As non-commensurate long rods are always present in at least two layers at the same time, they generate their voids facilitating their permeation.

For this process, the flexibility of the long-guest will certainly enhance the diffusion. This is in agreement with results obtained for the columnar phase, where semi-flexible fdwt exhibit higher number of half-jump events than for stiff fdY21M [START_REF] Naderi | Fractional hoppinglike motion in columnar mesophases of semiflexible rodlike particles[END_REF].

Induced super-diffusion in defected regions of dense

Smectic phase

Anomalous diffusion is observed in confined systems and geometries, such as the glass transition or crowded systems. Here, we study the diffusion of long guest tracer particles observed in highly defected regions of a host Smectic phase of filamentous bacteriophages. The defects appeared when two smectic domains with different orientation meet in a grain boundary. These defects are called extrinsic defects since they appear to compensate the deformation. Direct visualization of the guest traces has been performed by fluorescence microscopy, and the grain boundaries regions have been recognized by DIC. The guest particles exhibit two types of behaviors: pure nematic like behavior within a grain boundary and particles that diffuse from the Smectic phase into a grain boundary, displaying a mixed Smectic-Nematic behavior. For these last particles, we find an induced super-diffusion as a result of a driven motion due to confinement, and lateral diffusion is highly restricted. With time, phase separation of the guest particles is observed, preferably located within grain boundaries.

INTRODUCTION

Introduction

Transport properties in Soft Matter depend sensitively on microstructure. Hence, the structure of the host phase in which a Brownian particle is embedded dramatically influences the dynamics of the particles within the system. This is often observed in biology, where for example, anomalous diffusion in living cells or bacteria predominates due to crowding.

The best-known effect is the sub-diffusion of a tracer which is hindered by the crowded system [START_REF] Verkman | Crowding effects on diffusion in solutions and cells[END_REF][START_REF] Sokolov | Models of anomalous diffusion in crowded environments[END_REF]. However, there are also examples of particles within a biological system which exhibit super-diffusion due to self-propulsion [START_REF] Gal | Experimental evidence of strong anomalous diffusion in living cells[END_REF][START_REF] Reverey | Superdiffusion dominates intracellular particle motion in the supercrowded cytoplasm of pathogenic Acanthamoeba castellanii[END_REF]. Moreover, external forces can bring colloids out of equilibrium in a controlled way, such as shear flow, electric or magnetic fields, and confinement. We generally find confinement scenarios in crowded systems. The structure of these confined systems can be altered by the introduction of topological defects, as it happens for silica rods [START_REF] Kuijk | Phase behavior of colloidal silica rods[END_REF] or the hexatic columnar phase of fd viruses [START_REF] Grelet | Hexagonal order in crystalline and columnar phases of hard rods[END_REF]. It has been studied that super-diffusion emerges in confined, crowded systems mainly for geometrical reasons [START_REF] Stauffer | Superdiffusion in a Model for Diffusion in a Molecularly Crowded Environment[END_REF][START_REF] Illien | Velocity anomaly of a driven tracer in a confined crowded environment[END_REF][START_REF] Gradenigo | Field-induced superdiffusion and dynamical heterogeneity[END_REF]. In colloidal crystals, rapid diffusion in dislocations is observed, giving a dynamical heterogeneity, and a random walk in 1D is promoted [START_REF] Hui | Configurations and diffusion of point defects in two-dimensional colloidal crystals[END_REF][START_REF] Van Der Meer | Dynamical heterogeneities and defects in two-dimensional soft colloidal crystals[END_REF].

Inspired by the example of the colloidal crystals, one could ask about the dynamics of a particle within a dislocation in a Smectic liquid crystal. A considerable amount of investigations has been focused on the nature of the defects of the liquid crystals, concretely in the Smectic phase [START_REF] Michael P Allen | Molecular-dynamics simulation of the smectic-A * twist grain-boundary phase[END_REF][START_REF] Nasser | Edge dislocation core structure in xviii Bibliography lamellar smectic-A liquid crystals[END_REF][START_REF] Coursault | Linear self-assembly of nanoparticles within liquid crystal defect arrays[END_REF]. However very few investigations on single-particle dynamics within the Smectic defects [START_REF] Muzny | Direct observation of the brownian motion of a liquid-crystal topological defect[END_REF][START_REF] Selinger | Diffusion in a smectic liquid crystal with screw dislocations[END_REF] are known, where Brownian diffusion through defects is studied. In these studies, they observe a spontaneous diffusion caused by the appearance of grain boundaries that affect the continuity of the Smectic layers.

The two principal line defects or dislocations in the Smectic are the edge and screw dislocations, as shown in Fig 6 .2. Both of them can be defined as a local breaking of the translational order which involves a local variation of the layer symmetry, studied by F.C Frank in 1958 [START_REF] Frank | Liquid crystals. On the theory of liquid crystals[END_REF]. The edge dislocations are characterized by the breaking of continuity of a Smectic layer, where a new layer appears. The screw dislocations impose a change of orientation of the Smectic layer through the axial direction of the sample, and the rotation in the lateral packing of the molecules becomes localized at defect sites.

The imposed twist is accommodated in the smectic by taking the form of a series of regularly spaced blocks of smectics with a constant angle of rotation between adjacent blocks. They are defined by the Burger's vector b, which represents the magnitude and direction of the distortion. In an edge dislocation, the Burger's vector is perpendicular to the line direction, contrary to the screw dislocations where it is parallel to the line direction.

However, experimentally in the Smectic phases of rod-like colloidal particles we observe grain boundaries when there is a disturbance of the packing between two domains, which may consist of various dislocation arrangements [START_REF] Goodby | Twisted and frustrated states of matter[END_REF]. The smectic phase resists the twist deformations because it destroys the layering continuity, which is the configuration of lowest energy of the system. Thus, defects must be introduced when such a deformation is imposed.

These defects are called extrinsic defects since they appear to compensate the deformation.

The defects allow for blocks of defined size of the smectic phase to be rotated about one another through the introduction of rows of screw dislocations that form grain boundaries. One of the optical features due to the TGB is the Moiré pattern, observed by optical microscopy when two Smectic planes with different orientations overlap [START_REF] Oswald | Smectic and Columnar Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments[END_REF]. However, the distinction of single line defects is not straightforward, since a TGB can be formed by a configuration of a screw and also edge dislocations. As we have mentioned for colloidal crystals, one might expect that structural defects in the Smectic phase could facilitate the diffusion. In Chapter 4, we have studied a guest-host system, where we observed how the long guest particles locate into defects rather than the host particles. Motivated by these observations, we explore here the role of defects on the dynamics of these guest particles located in the defects of the Smectic host system.

This chapter is organized as follows: in the first section, we present the system and the conditions for the analysis. In the second section, we present the two most important events that take place within and through the defects. We calculate the dynamics, and we compare the results with the already calculated data for the Smectic monodomains (data from Chapter 4). Finally, we suggest an interpretation of the results. 

System: guest-host defected Smectic system

The Smectic phase exhibits two main types of defects: the screw and the edge dislocations, which form the grain boundaries. In the guest-host system presented in Chapter 4, we have observed that the long guest particles (semi-flexible M13KO7, L = 1.2 µm), are predominantly located within the defects of the Smectic phase formed by the short host particles (stiff fdY21M, L = 0.92 µm). The data were taken at 98 and 100 mg/mL within the Smectic phase of the guest-host system, where highly defected regions are observed.

The conditions of data acquisition are the same as for the guest-host system (see Chapter 4): Fluorescently labelled viruses were visualized using an inverted microscope (IX-71 Olympus), equipped with a high-numerical aperture (NA) oil objective (100x PlanAPO NA 1.4) and a mercury lamp as excitation light source (X-cite series 120 Q). A dual emission image splitter (Optosplit II Andor) was used to project two identical fields of view, corresponding to the two emission wavelengths, onto an ultra-fast electron-multiplying camera (sCMOS Andor camera). The exposure time was 20 ms, while the maximum length of the movies was 15 seconds.

After approximately 6-7 seconds photobleaching of the Alexa488 dyes became apparent.

The grain boundaries can be distinguished using DIC microscopy, as shown in Fig6.2. Since the observation is in 2D, we look at single grain boundaries between domains. The corresponding fluorescence images are taken in the same region of interest and overlaid with the DIC picture to locate individual particles within the background structure. The data acquisition was performed one day after sample preparation. For analysis of the dynamics, the trajectories that are identified in a defected region are represented one by one using the Matlab algorithm, as shown in Fig. 6.3. At these concentrations, Smectic-like trajectories are expected. However, when a particle is within a defect or diffuses from a Smectic region into a defect, its trajectory exhibits different behavior, as we will demonstrate in the next section. In Figures 6.4 and 6.5

we show more examples of these two types of motion observed in the sample.

It is important to remark that this analysis has been performed by using as reference the overlay of DIC and fluorescence movies, corresponding to each trajectory. The number of particles analyzed was 188 for 98 mg/mL and 175 for 100 mg/mL Furthermore, we observe a phase separation of the guest particles with time, within 5 to 7 days after the sample preparation. This phase separation occurs due to the size mismatch of 6.3. MEASUREMENT OF DYNAMICS OF PARTICLES WITHIN GRAIN BOUNDARIES the guest and host particles. This size mismatch is the origin of the faster diffusion of the guest particles, as studied in Chapter 4, but also of the preference of guest particles to be located into defects. After one week, we observe that most of the guest-particles are separated in regions and exhibit motion. However, the dynamics in this state of the sample are not comparable with previous data due to partial drying of the sample. This phase separation has not been observed in the Nematic phase (at 83 mg/mL), as shown in Fig. 6.6. This phase separation in the deep Smectic phase may be favored by the location of the guest particles within the defects.

Measurement of dynamics of particles within grain boundaries

The dynamics of the Smectic phase is influenced by the Smectic potentials, which leads to a jumping-like behavior. At high concentrations in the host Smectic phase, the long guest particles display discrete jump-events, as shown in Chapter 4. A different behavior hints to a change of structure of the sample, as it is the case of the defected regions. We have used two concentrations (98 mg/mL and 100 mg/mL) due to the presence of more defect regions, and because at lower concentrations, the long-guest particles start to exhibit less prominent jumping-like diffusion, which complicates the distinction between the motions within a defect and in a monodomain.

We start the analysis of the results by the distinction between the two main types of events that we observe in the highly defected regions. In Fig6.3 we showed the two characteristic trajectories for the mentioned events: particles diffusing within a defect or particles diffusing into a defect. We observe particles that are located within a grain boundary and whose trajectories are Nematic-like, contrary to the expected jumping-like behavior within the Smectic domains.

Moreover, there are particles whose trajectories are partly smectic-like and nematic-like. We call this behavior mixed trajectories, and it has also been observed for a small percentage of host particles (see Chapter 3).

The analysis of these two types of behavior in a defected region has been done separately for the full Nematic-like trajectories and the mixed trajectories. The distinction between Nematiclike and mixed trajectories is possible using the step detection algorithm, which was already used in Chapter 3 for the analysis of Nematic and Smectic behavior in the N-Sm phase transi-CHAPTER 6. INDUCED SUPER-DIFFUSION IN DEFECTED REGIONS OF DENSE SMECTIC PHASE 107 tion. We have collected enough events to calculate the average over all events for both types of dynamics in defects. At 98 mg/mL 103 Nematic-like events have been observed, while for 100 mg/mL 96 events. For the mixed trajectories 85 event have been identified at 98 mg/mL and 7 for 100 mg/mL. 

Nematic-like behavior within the defects

We have observed that most of the long-guest particles that are located within a grain boundary, exhibit a continuous motion which is characteristic for the Nematic phase. However, this motion is confined within the defect.

In Fig6.7a we represent the log-log Mean squared displacement for the Nematic-like particles within a defect, from which we have obtained the D i and the γ by fitting with a power law such as MSD = 2D i t γ . The results for D i as a function of concentration are shown in Fig6.7b.

We compare the D i to the behavior of the first concentration of the Nematic phase after the N-Sm phase transition. For the particles within defects that exhibit Nematic-like behavior, there 6.3. MEASUREMENT OF DYNAMICS OF PARTICLES WITHIN GRAIN BOUNDARIES is no significant difference between 98 and 100 mg/mL. However, the D in the Nematic like trajectories presents higher values than for the data that has been analyzed in Smectic monodomains (data presented in Chapter 4). On the contrary, the D ⊥ is of the order of the values in the Smectic monodomains (around 0.01 µm 2 /s), and seems compatible for the values of D ⊥ in the Nematic phase.

Regarding γ, we observe a distinct diffusive behavior for the Nematic-like particles that diffuse within a defect, and previous results in the Smectic monodomains where it is clearly sub-diffusive. For the nematic-like diffusion within defects, the γ and γ ⊥ are only slightly below 1, which corresponds mainly to a diffusive behavior. Our interpretation for these results is that the nature of the core may be a different phase than the Smectic, forming a channel that induces a Nematic-like diffusion.

Mixed trajectories: motion from a Smectic domain into a defect

We will now turn to the analysis of the particles that exhibit mixed trajectories. This type of particles exhibits a jump-like behavior, related to the location in a smectic monodomain, which suddenly develops into continuous motion in one direction (Fig. 6.3b). Thus, we separate both behaviors using the step detection algorithm and analyze them separately.

We represent the log-log MSD's for both parts of the trajectories in Fig. 6.8. There is a significant change in the dynamics between both parts of the trajectory by looking at the MSD. The first significant difference is the diffusion exponent γ. The γ of the Nematic-like part of the mixed trajectories exhibits a different behavior from the Smectic part and also from the Nematic-like trajectories studied in Sec.6.3.1.

First, the γ changes from diffusive to slightly super-diffusive behavior, as shown in the change of slope of the MSD in Fig. 6.8a. At given time t, the particles experience a velocity v when they diffuse into the defect, which is bigger than zero, which causes the super-diffusive behavior. We are able to quantify the velocity, knowing the time t where the slope changes and using D from the first slope of the MSD before it changes, such as D v 2 = t, and taking the D i of the first slope where γ ∼ = 1. For 98 mg/mL, D = 0.208 µ 2 /s and t = 0.35 s so then, v= 0.77 µm/s. For 100 mg/mL, D = 0.06 µ 2 /s and t = 0.34 s, giving v= 0.42 µm/s. Finally, we compare the results from the Nematic part of the mixed trajectories and the Nematic-like trajectories within the defect. Interestingly, the γ ⊥ for the Nematic-part of the mixed trajectories exhibits a strong sub-diffusive behavior in comparison with the Nematiclike particles within defects and also with the pure Nematic phase. This would hint a strongly restricted diffusion in the perpendicular direction. In Fig. 6.9 we compare the D rates of the Nematic trajectories within a defect and the Nematic part of the mixed trajectories. We observe that the D is slightly higher for the nematic part of the mixed trajectories. However, the D ⊥ for the Nematic part is lower of the mixed trajectories is much lower than for the pure Nematic of particles within a defect.

The previous results correspond to two principal types of behaviors found in the defect regions: the pure nematic-like particles that are located within a defect, and the particles that have partially Smectic and Nematic behaviors, where this mixed behavior is due to the diffusion from a Smectic region into a defect. In the case of the partially Smectic and Nematic particles, they diffuse from a Smectic domain into a defect. This change of domain could explain the slightly super-diffusion behavior, so then it becomes a driven motion with a velocity v, as it is for the ballistic motion when MSD ∼ t 2 .

Re-orientation events

We have observed a third type of event within the highly defected regions, which is the reorientation of the particle during diffusion. However, only a small fraction of the particle reorients (we have tracked 7 events of reorientation), so that the statistics are poor. This type of behavior has been already observed by Naderi et al. in the columnar mesophase of fd viruses [START_REF] Naderi | Fractional hoppinglike motion in columnar mesophases of semiflexible rodlike particles[END_REF].

In Fig6.10 we show an example of a reorientation event. In this case, the reorientation of 

Discussion and conclusions

In this chapter, we have studied the diffusion of tracer long-guest rods in a defected smectic liquid crystal formed by shorter host rod particles. The analysis of the dynamics is focused in the defected regions that appear at high concentration in the Smectic phase of the host system.

We have quantified diffusion within and into defects of the long-guest particle. We have shown the two types of behavior predominate: particles that exhibit a continuous motion are confined in a line defect of a grain boundary; and particles that escape from the Smectic confinement through or into a line defect, for which the trajectories display both Smectic and Nematic-like behaviors, as we have illustrated in Fig. 6.3. The results for the D i and the γ indeed suggest that for structural and geometrical reasons, the diffusion of the long-guest particle is affected when the particle diffuses within or into a defect due to the absence of smectic ordering.

In the case of the particle within a line defect or a grain boundary, the particle exhibits a Nematic-like diffusion throughout the full acquisition time. Also, this motion is restricted to the defected region. Moreover, compared to the smectic monodomains (data obtained in the previous chapter) the diffusion is higher for particles located within a defect.

The particles that exhibit first a Smectic-like behavior and which escape into defects perform a Nematic-like diffusion which goes from diffusive to slightly super-diffusive behavior.

The D ⊥ and γ ⊥ for these particles are lower than for the Nematic particles within defects, suggesting that the D ⊥ is restricted due to the structural configuration of the defect. We propose that this super-diffusive behavior could be induced by a driven motion from the Smectic-like region to the defect. Hence, we observe that particles are expelled, causing a super-diffusive behavior, where after a time t a driving force starts to dominate. When a particle experience a velocity, at longer times a ballistic behavior is expected were t 2 . However, the particles that go into a defect experience a driven-like motion which should have a t f inal for this driven regime, due to the confined geometry of the line defect, which finally develops into the pure Nematic-like diffusion studied within the defects.

This behavior could also be compared with the model proposed by Selinger [START_REF] Selinger | Diffusion in a smectic liquid crystal with screw dislocations[END_REF], in which interlayer diffusion is enhanced due to the presence of Screw dislocation. However, in this "spiral staircase" effect, we should also observe a change of orientation at the same time that the Nematic-like diffusion occurs as well as the particle going out of focus, which is not the case for most of our particles. Furthermore, the question about the nature of the core of the defect is presented due to the different type of motion characterized as Nematic-like.

We did recognize a small number of particles that reorient. We suggest that this reorientation from one Smectic region to another with a different orientation is done through a defect.

However, it is complicated to relate this kind of event to a specific type of defect due to the poor z-resolution of the DIC technique.

Finally, we suggest that the phase separation observed with time of the long guest particle in the deep Smectic phase of the host may be favored not only by the size mismatch but also the location of the guest particles within the defects.

Effect of length and flexibility on the Isotropic diffusion of fd filamentous particles

In the Isotropic semi-dilute regime, the free volume decreases dramatically due to the formation of rod entanglement. Hence, the rotational diffusion is highly restricted. In this chapter, we experimentally explore the effect of length L and persistence length P, on the diffusion of the stiff fdY21M and the flexible M13KO7, from dilute Isotropic to semi-dilute regime. Using single particle tracking, we quantify the self-translational and rotational diffusion. The results for the concentration dependence of the D rot scales as (nL 3 ) -0.3 for fdY21M, and (nL 3 ) -0.6 for M13KO7. The D trans is promoted at high concentration for long and flexible particles while at low concentrations small particles are faster. Hence, we find that L and P have an opposite effect on D rot and D trans . Furthermore, by analyzing the self-van Hove function, we determine the diffusivity of the system. We show that flexible particles relax faster to Gaussian diffusion, being the flexibility a mechanism to release the constraint imposed by neighbor particles.

INTRODUCTION

Introduction

Slender rod-like particles are common in nature and colloid science. They form entanglement networks where the dynamics exhibits a complex behavior, as it occurs for example in cells [START_REF] Bausch | A bottom-up approach to cell mechanics[END_REF]. This behavior is present in systems such as F-actin filaments [START_REF] Pollard | The cytoskeleton, cellular motility and the reductionist agenda[END_REF], microtubule [START_REF] Howard | Dynamics and mechanics of the microtubule plus end[END_REF],

fd viruses [START_REF] Fraden | Phase Transitions in Colloidal Suspensions of Virus Particles[END_REF] and filamentous polymer [START_REF] Everaers | Rheology and Microscopic Topology of Entangled Polymeric Liquids[END_REF].

This entanglement of particles occurs mainly in the semi-dilute regime where

L -3 < v < d -1 L -2
. Within this range of concentration, the motion of a single rod becomes a reptation motion, where the particle needs to reorient in order to find the path to diffuse along the long axis. This is called the tube effect, first developed by de Gennes [START_REF] De Gennes | Reptation of a Polymer Chain in the Presence of Fixed Obstacles[END_REF] and redefined by Doi

and Edwards [START_REF] Doi | Rotational relaxation time of rigid rod-like macromolecule in concentrated solution[END_REF][START_REF] Doi | The Theory of Polymer Dynamics[END_REF]. Doi developed a simple model, where the diffusion of the rods is not hampered when it takes place along the direction of the long axis of the rods, while the rotational motion is reduced due to the confining presence of at least three neighboring rods.

The only way that the rods can reorient by 'reptating' out of its cage is by diffusing along the long axis. Doi showed that this diffusion strongly reduces as a function of the concentration, as well as the length of the rod

D r = k B T Ln(L/d) η s c 2 L 9 (7.1)
where c is the concentration, L and d are the lengths and the diameter of the particle respectively, and η is the solvent viscosity. Studies on the rotational and translational diffusion of rods in the semi-dilute and dilute regimes have been performed for rigid rod macromolecules [START_REF] Zero | Rotational and translational diffusion in semidilute solutions of rigid-rod macromolecules[END_REF], rod-like polymers [START_REF] Bu | Self-Diffusion of Rodlike Polymers in Isotropic Solutions[END_REF], and also rod-like viruses [START_REF] Cummins | Translational and rotational diffusion constants of tobacco mosaic virus from Rayleigh linewidths[END_REF][START_REF] Cush | Self-diffusion of a rodlike virus in the isotropic phase[END_REF]. Recent simulations proved how the decrease of the rotational diffusion is significantly affected by the aspect ratio of rigid fibers [START_REF] Y G Tao | Isotropic nematic spinodals of rigid long thin rodlike colloids by event-driven Brownian dynamics simulations[END_REF][START_REF] Doucet | Effect of length on the diffusion of a rodlike polymer at concentrations spanning the isotropic-Lyotropic transition[END_REF][START_REF] Tse | Modified scaling principle for rotational relaxation in a model for suspensions of rigid rods[END_REF][START_REF] Cobb | Simulations of concentrated suspensions of rigid fibers : Relationship between short-time diffusivities and the long-time rotational diffusion[END_REF]. It is known that the rotational diffusion depends strongly on concentration and the length of the particle, but the role of stiffness on dynamics in the semi-dilute regime remains unclear. Although, as with cooked spaghetti, flexibility would aid to reduce the confinement effect by neighboring rods.

The flexibility of rods stabilizes the isotropic phase, narrows the I-N coexistence region, and causes a decrease of the nematic order parameter at phase coexistence, as Khokhlov-Semenov predicted in their theory [START_REF] Khokhlov | Liquid-crystalline ordering in the solution of partially flexible macromolecules[END_REF]. This is indeed observed for rod-like viruses, where the I-N phase CHAPTER 7. EFFECT OF LENGTH AND FLEXIBILITY ON THE ISOTROPIC DIFFUSION OF FD FILAMENTOUS PARTICLES 117 transition takes place at smaller volume fractions for stiff fdY21M than for flexible fd-wt [START_REF] Barry | A model liquid crystalline system based on rodlike viruses with variable chirality and persistence length[END_REF].

This shift is related to the free volume and how the particle can diffuse within the system.

In this chapter we will study the effect of length L and persistent length P on the selfdynamics of rod-like particles throughout the Isotropic phase: from dilute to semi-dilute regime close to the I-N phase transition. In the first section, we present the experimental 

The System: semi-dilute isotropic phase of semi-flexible and stiff rod-like viruses

We use as experimental rod-like particles stiff fdY21M with a persistence length of P = 9.9 µm and contour length L = 0.92 µm, and semi-flexible M13KO7 with P = 2.2 µm and L = 1.2 µm.

The M13KO7 viruses were labeled with Dylight549 dye and the fdY21M with Alexa488 dye, according to the protocol presented in Chapter 2. The particles are dispersed in TrisHCl-NaCl buffer at 110 mM Ionic strength and pH=8.2. The labeled viruses were added to a matrix of non-labelled viruses to have a ratio for each system of 1 labeled virus to 10 5 non-labelled viruses. Fluorescent labeled viruses were visualized using an inverted microscope (IX-71

Olympus), equipped with a high-numerical aperture (NA) oil objective (100x PlanAPO NA 1.4) and a mercury lamp as excitation light source (X-cite series 120 Q). The exposure time 7.3. STUDY OF DYNAMICS used was 5 ms, while the maximum length of the movies was 9 seconds, with and frame rate of 50 fps.

The concentrations used cover the full range of the Isotropic phase, starting from the dilute regime where v < L -3 and semi-dilute regime where L -3 < v < d -1 L -2 . We characterized two types of trajectories for each regime as shown in Fig. 7.1. The Isotropic trajectories are characteristic of the dilute regime where rods can freely rotate and D 0 = 2D 0 ⊥ . The skating trajectories are found in the semi-dilute regime, as the particles diffuse throughout the entanglement of neighbor rods. In next section, we present the characteristic dynamics for both types for flexible and stiff particles in these two ranges of concentrations.

Study of dynamics

One of the significant changes in the Isotropic phase when the concentration increases, is the decay of orientational degrees of freedom of the particles. The rotational diffusion freezes, being compensated by the increase of translational entropy after the phase transition [START_REF] Y G Tao | Brownian dynamics simulations of the self-and collective rotational diffusion coefficients of rigid long thin rods[END_REF][START_REF] Lettinga | Self-diffusion of rod-like viruses in the nematic phase[END_REF][START_REF] Y G Tao | Isotropic nematic spinodals of rigid long thin rodlike colloids by event-driven Brownian dynamics simulations[END_REF]. This is directly reflected in the diffusion coefficients, as shown in previous chapters. In addition to the Mean-square displacement, we calculate the P2 parameter. The P2 parameter measures the time-dependence between the initial orientation u 0 and the orientation at time t. We need to consider the < cos(Θ t ) 2 > between the u and u 0 , which is 0 when the rod is perpendicular to the initial orientation. Thus, P2 should decrease to zero at a different rate depending on the concentration.

The MSD and the P2 parameter are represented from the diluted to the semi-dilute regime, where Doi's theory can be applied, as shown in Fig. 7.2. We observe a linear behavior of the MSD for all concentrations for fdY21M, while for M13KO7 at concentrations close to the I-N phase transition we observe a change of slope, after approximately 0.5 s. We normalize the MSD by the square of the length of the rods L 2 , to obtain the time at which the particles have diffused by half rod length L/2, which depends strongly on concentration, as shown in Table 7.1.

The time dependence of the P2 parameter is represented for both viruses in Fig. where the rod has diffused by half rod length L/2, using the following equation: decreasing to zero, we observe an offset of the P2 parameter of 0.3 ± 0.1. We assume this could be an artifact due to the tracking in a 2D plane, or even a time resolution limitation in our data acquisition.

P2 = P 2 (Φ t ) ) = y 0 + exp(-2dD 0 r,S t), (7.2 
As expected, the translational diffusion depends on the size of the particle. For stiff fdY21M the diffusion in the isotropic phase is shifted as the phase transition occurs at lower concentrations. Also, it is of the order of D trans for flexible M13KO7 in the semi-dilute regime, and it becomes higher at lower concentrations. For M13KO7, D trans increases gradually and remains lower than fdY21M after 1 mg/mL, as shown in Fig. 7.3a. The concentration dependence of the rotational diffusion coefficient is shown in Fig. 7.3b. In the diluted regime, D rot is higher for flexible M13KO7 and reaches a constant value of around 17 s -1 , then it decreases gradually, being higher than stiff fdY21M, up to the concentrations close to the I-N phase transition where it drops below fdY21M. At higher concentrations in the semi-dilute regime, the rotational diffusion for flexible particles is slightly lower than for stiff fdY21M. However, the results are not in agreement with Doi's prediction, as represented by the slope in Fig. 7.3b. The decreasing rate of the D rot /D 0 rot as a function of rod density predicted by Doi's is 2 within the semi-dilute regime, while for the particles used in our experiments, the rates are considerably smaller, being 0.2 and 0.3 for fdY21M and M13KO7, respectively. Furthermore, we analyze the self-van Hove function using the method of Wouter den Otter as explained in Chapters 1 and 3. This is done throughout all concentrations between the dilute and semi-dilute regime. We are interested in the behavior of the system at concentrations close to the I-N phase transition, where the tube effect is observed and also the called reptation diffusion. We normalize the self-van Hove function by multiplying the probability by √ dt and dividing the position by dz/( √ dt) 2 . This normalization takes out the effect of diffusion over time, so the curves are comparable. The fitting is done by use the following expression:

Ln(G(z,t) √ dt) = a 1 ( x 2 ) a 2 ; (7.3)
where a 2 is 0.5 for Lévy-flight and 1 for Gaussian respectively, and a 1 is related to the inverse of the D i when a 2 = 1. In Fig. times, for flexible long particles a 2 is higher than for short flexible particles, meaning that D trans is smaller, being consistent with results shown in Fig. 7.3a.

Moreover, the reptation, also called skating diffusion [START_REF] Modlińska | Condensation and dissolution of nematic droplets in dispersions of colloidal rods with thermo sensitive depletants[END_REF], is observed for both viruses at concentrations close to the I-N phase transition, as showed in Fig. 7.1. The back and forward diffusion of the particle is represented in the trajectory in comparison with the trajectories observed in the dilute Isotropic phase. The change of orientation of the rod allows the particle to diffuse in a direction until the rod reorients again.

Discussion and conclusion

In this chapter, we have explored the effect of flexibility on the self-rotational and translational diffusion at concentrations, where the theory of Doi [START_REF] Doi | Rotational relaxation time of rigid rod-like macromolecule in concentrated solution[END_REF] can be applied. We use two rod-like viruses with different length and with a remarkable difference in persistence length, and we will discuss here the effect of both on dynamics.

We observe from the D trans that short particles exhibit faster diffusion at low concentrations in the Isotropic phase. The D trans coefficients overlap between 1 and 3 mg/mL for both parti- cles and at 10 mg/mL remains higher for flexible M13KO7. This behavior has been discussed

by Russo in his study of the D sel f for stiff TMV and semi-flexible PBLG. They proposed that the delay in diffusion of PBLG was due to its flexibility as a mechanism to evade the con-124 7.4. DISCUSSION AND CONCLUSION straints to their motion [START_REF] Cush | Self-diffusion of a rodlike virus in the isotropic phase[END_REF]. In this case, our results are in agreement with the results obtained for TMV.

On the contrary, rotational diffusion is not faster for longer rods at high concentrations in the isotropic phase (close to the phase transition) and increases below the stiff particles at concentrations lower than 10 mg/mL. Hence, flexibility may help to find more often a path to diffuse between the neighbors without reorientation, and also promote the translational diffusion, since D rot for flexible M13KO7 are close to those for stiff fdY21M, as it is shown in Fig. 7.3. Also, the time that a particle takes to diffuse L/2 is higher for stiff fdY21M, which again confirms that at higher persistence length the mobility in the entanglement of rods is indeed more restricted. These results show that there is an opposite effect of the flexibility on D rot and Dtrans. However, although in simulations the results were in agreement with Doi's predictions [START_REF] Y G Tao | Isotropic nematic spinodals of rigid long thin rodlike colloids by event-driven Brownian dynamics simulations[END_REF], our results show a deviation in the slope for Drot/D 0 rot as a function of concentration. This could be due to the hydrodynamic interaction and the fact that we have a semi-flexible particle in comparison with the stiff rod used in the theoretical model. Moreover, the a 2 parameter shows that the flexible particles relax faster to a 2 = 1, the Gaussian behavior, at concentrations where the tube effect is observed. For stiff particles, we observe values that fluctuate between 0.5 and 0.75 at concentrations in the semi-dilute regime, which suggests high dynamical heterogeneity of the system. Only at concentrations below 3 mg/mL the stiff particles relax to a 2 = 1. Hence, the relaxation time shows up at later times with increasing concentration, being slower for stiff fdY21M. This difference in the relaxation is related to the flexibility that helps to overcome the constraint imposed by neighboring rods so that diffusion recovers easily to the Gaussian behavior. In other words, the free volume of flexible particles is higher, so it affects directly the diffusion. For the same reason, the Isotropic phase stability is higher than for stiff particles [START_REF] Barry | A model liquid crystalline system based on rodlike viruses with variable chirality and persistence length[END_REF][START_REF] Khokhlov | Liquid-crystalline ordering in the solution of partially flexible macromolecules[END_REF]. Doi proposed that a rod would need to reorient to diffuse through the tube, but flexible rod-like particles can relax by another mechanism, such that flexibility promotes the D trans within the semi-dilute regime concentration. The flexible particles would also exhibit a permeation diffusion through the tube, and they would not always need to reorient. At dilute regime, the D rot of semi-flexible rod increases above that of the stiff particles.

We show that at low concentration the length dominates, as D trans is faster for the smaller particle, while at higher concentrations the persistence length prevails over the length, as it is a mechanism to reduce the constraints.
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It is important to remark that those are preliminary results. At present, the data obtained is inconclusive since at the same time that we change flexibility we also change the aspect ratio in 1.3 between the particles, which in an experimental system has an effect for an accurate comparison. Hence, more experimental data is required over a broader range of concentrations and for more systems with short flexible and long stiff rods, to cover all possible combinations. In order to have a stronger confirmation, we also need to study the coupling between the rotational and translational diffusion which is measured by the displacement of the rod r(t) = r(t)r(0) projected along the long axis u(0), [START_REF] Leitmann | Tube Concept for Entangled Stiff Fibers Predicts Their Dynamics in Space and Time[END_REF].

analysis, and interpretation of the self-van Hove are missing [START_REF] Grelet | Dynamical and structural insights into the smectic phase of rod-like particles[END_REF][START_REF] Lettinga | Self-diffusion of rodlike viruses through smectic layers[END_REF][START_REF] Pouget | Dynamics in the smectic phase of stiff viral rods[END_REF]. In Chapters 3 and 6 we try to demonstrate that the self-van Hove function can be used to characterize quantitatively the deviation from the Gaussian behavior.

In chapter 3, we have investigated the dynamics of the stiff mutant fdY21M throughout the phase diagram. The phase transitions are entropy driven by a maximization of the free volume which leads to an increase in the free energy of the system.

First, we have investigated the dynamics around the I-N phase transition. In the Isotropic phase close to the phase transition, the increase of volume fraction generates a scenario where the rotational and translational diffusion is restricted, due to the tube effect. The study of the translational diffusion reveals a decay of the motion, which is consistent with previous studies [START_REF] Lettinga | Self-diffusion of rod-like viruses in the nematic phase[END_REF]. We have shown that not only the diffusion rate is affected, but also the Gaussian behavior, which is reflected in the change of shape of the self-van Hove function. We found that the Brownian motion is very much restricted in the Isotropic phase close to the I-N phase transition. The same behavior has been observed for colloidal glasses [START_REF] Weeks | Three-Dimensional Direct Imaging of Structural Relaxation Near the Colloidal Glass Transition[END_REF][START_REF] Weeks | Subdiffusion and the cage effect studied near the colloidal glass transition[END_REF], and hints to heterogeneous dynamics.

The Gaussian behavior is recovered after the phase transition in the Nematic phase for the parallel diffusion, which is promoted by the orientational order of the phase [START_REF] Lettinga | Self-diffusion of rod-like viruses in the nematic phase[END_REF]. The perpendicular diffusion remains frustrated, demonstrated by the deviation from the Gaussian behavior.

The analysis of the self-van Hove with our method is not possible for the N-SmA and SmA-SmB phase transitions, due to the appearance of distinct peaks at one-rod length integer.

Furthermore, we discuss the dynamical coexistence found in the N-SmA and SmA-SmB phase transitions. The N-SmA phase transition is known as a first order phase transition [START_REF] Polson | First-order nematic-smectic phase transition for hard spherocylinders in the limit of infinite aspect ratio[END_REF][START_REF] Grelet | Dynamical and structural insights into the smectic phase of rod-like particles[END_REF] and the coexistence can be observed by DIC microscopy. In the case of the SmA-SmB phase transition, the coexistence between phases cannot be performed by DIC microscopy. The only method used to characterize SmecticA and SmecticB has been so far by SAXS [START_REF] Grelet | Hard-rod behavior in dense mesophases of semiflexible and rigid charged viruses[END_REF].

Contrary to the studies of dynamics at the I-N phase transition [START_REF] Modlińska | Condensation and dissolution of nematic droplets in dispersions of colloidal rods with thermo sensitive depletants[END_REF][START_REF] Lettinga | Kinetic pathways of the Nematic-Isotropic phase transition as studied by confocal microscopy on rod-like viruses[END_REF], the possible dynamical coexistence at N-SmA and SmA-SmB was not discussed before. Hence, we propose that the order of the phase transition can be determined looking at the dynamics. Two approaches are performed to distinguish the dynamics. Second, for the SmA-SmB phase transition analysis, we assume that non-jumping particles are in the SmecticB phase. We have compared the dynamics within the layer to estimate the particles that do not jump and the ones that do a jump. This is possible by quantifying the probability of a particle to fluctuate within the layer. In the Smectic-B phase, the particles have crystalline order within the layer, which freezes the dynamics.

We showed that for N-SmA and SmA-SmB phase transition, the dynamics could be characterized to determine the order of the phase transition. However, we need to keep in mind that we could have problems of sample homogeneity. At these high concentrations it is highly difficult experimentally to achieve a macroscopic phase separation (as it occurs for the I-N phase transition), so dynamics could be used to identify the phase transition.

As a future approach to investigate the dynamics at phase transitions, it will be interesting to monitor the dynamics while the phase transition takes place. This can be achieved by using a humidity chamber where evaporation of the solvent is performed leading to a change of concentration undergoing the different phase transitions. This way one would avoid homogenization issues during the sample preparation and also we could have an overview of dynamics in real time as the phase transition occurs. Also, a proper fitting for the self-van Hove is required in the Smectic phase, which can relate the values that we get from the potentials with the intensity of the distinct peaks, so that the analysis of the self-van Hove function can be extrapolated to the N-SmA and SmA-SmB phase transitions.

Following the same dynamical characterization with the self-van Hove function as in Chapter 3, in Chapter 6 we have compared the dynamics from the dilute Isotropic up to semi-dilute regime before the phase transition for short stiff and long flexible particles. We have shown a different dynamical behavior depending on the persistence length of the particle. The flexible particles relax faster to the Gaussian behavior at concentrations corresponding to the semidilute regime. Hence, flexibility provides a diffusion mechanism to release the constraint imposed by the surrounding rods. It can be related to the fact that the Isotropic phase concen-tration range is higher for flexible particles [START_REF] Barry | A model liquid crystalline system based on rodlike viruses with variable chirality and persistence length[END_REF]. However, our experimental results for D rot are not in agreement with Doi's predictions [START_REF] Doi | Rotational relaxation time of rigid rod-like macromolecule in concentrated solution[END_REF] for infinite stiff, slender rods and neither with the simulation done by Tao et al. with rods of L/D ∼ = 60 [START_REF] Y G Tao | Isotropic nematic spinodals of rigid long thin rodlike colloids by event-driven Brownian dynamics simulations[END_REF]. This could be due to hydrodynamic and electrostatic interactions that are not considered in the simulations, as well as to the effect of flexibility in the experimental system. The results for our systems are limited due to the analysis of the data in 2D. In the isotropic phase, we have short correlated time trajectories due to particles going out of focus.

Hence, in follow-up studies, it will be interesting to consider other combinations of physical properties as short and flexible particles and long stiff particles to gain insight on the effect of flexibility and length. Moreover, with a solvent with higher viscosity, which slows down the rotation of the rod, the measure of the rotational diffusion would be easier. Another alternative approach would be to use confocal microscopy.

Previous studies on the dynamics of the Smectic phase motivated us to consider a more complex system as it was the case for the guest-host system that we propose in Chapter 4. The dynamics in the Smectic-A phase of fd viruses are characterized to be hopping-type behavior, in which the particles jump through layers. It has been proved that flexibility also affects the dynamics in the Smectic phase [START_REF] Pouget | Dynamics in the smectic phase of stiff viral rods[END_REF].

We have proposed a different approach, from the pure Smectic system, where the dynamics of the Smectic host are compared with semi-flexible long guest particles introduced into it.

Generally, a big size of the particle is related to slow dynamics, also observed in the crowded system. We have shown that this is not the case for long particles that are included in a Smectic phase of slightly shorter particles. This is related to the concept of the non-commensurate particle. We suggested that the Smectic potential is not a fixed value, but a result of fluctuations within the layer. The long guest particle has part of its volume included in at least 2 adjacent layers, which promotes the diffusion through the host Smectic layers. The confinement that the long guest particles experience in the host Smectic phase, induce a faster diffusion which disappears when entering the Nematic phase. The results of the analysis of the dynamics within the layer proved that the D per of the long semi-flexible guest particles is restricted. cause a softer cage effect [START_REF] Naderi | Effect of bending flexibility on the phase behavior and dynamics of rods[END_REF]. However, in our guest-host system, the cage effect is caused by the stiffer host particles. The same study with stiff guest particles would tell if flexibility is a critical feature to release the constraint imposed by the host system, or if it relies only on the non-commensurate effect. These results showed that diffusion for longer particles is not always slower, depending on the structure of the matrix and the size ratio between the guest and host particles. This could be attractive to study and to improve materials with better permeation properties, such layered membranes through which particles could diffuse faster.

Thus, it would be a nice finding for example in drug delivery materials.

During these experiments in the guest-host Smectic phase, we have been able to track the dynamics of the guest particles placed in grain boundaries. We present these results in Chapter 5. It seems that particles can diffuse from the Smectic layers to the defect line dislocation within a grain boundary. It has been demonstrated that break of geometry caused by the defects may induce superdiffusion in crowded systems [START_REF] Illien | Velocity anomaly of a driven tracer in a confined crowded environment[END_REF]. We have been able to calculate dynamics of guest M13KO7 particles, where a slightly superdiffusive behavior has been observed in particles that diffuse from the Smectic domain into a grain boundary. Also, a nematic-like behavior is observed for the particles located within the line defect of a grain boundary. This poses the question of the nature of the host sample within these line defects.

In conclusion, in this Thesis we have shown that the self-dynamics is a signature for the phase transition of colloidal fd viruses. The Self-dynamics gives detailed information of the free volume of the system around the phase transitions. Consequently, we can measure the relaxation of the dynamics when approaching the phase transitions and also the dynamical coexistence. Moreover, the dynamics of a smectic guest-host system, where the surrounding energy landscape has a smaller length scale than the guest particle, demonstrates that a bigger particle can be faster. In this conditions, also the super-diffusion of the guest particle is observed when it diffuses into a grain boundary. Hence, the fact that fd rods are such a versatile system allowed us to play with different physical properties of the particles to understand more complex systems. Moreover, the self-dynamics can be accurately measured using fluorescence microscopy techniques. This is a step forward to understand the dynamics of colloidal structured systems and also in the development the new materials in which the dynamics of the particles introduced can be controlled.

This thesis treats the dynamics of the different liquid crystalline mesophases and phase transitions of a model colloidal of rod-like particles: the fd viruses. The study of the self-organization of colloidal liquid crystals treats the simplest phenomena of forming structured systems. In a system where anisotropic particles have hard core interactions, the selforganization is purely entropy driven due to the maximization of the free volume of the system.

Thus, the measure of dynamics at the single particle level provides information on the available free volume and the structure of the mesophase. Hence, the dynamics can be used to characterize phase transitions and solve issues such as the entropic gain of a phase transition, the order of the phase transition and to find a dynamical signature. We measure the relaxation of the dynamics when approaching the phase transitions and also the dynamical coexistence and the effect of flexibility and length as a mechanism to release the constraint of the neighbors. Moreover, the dynamics of a smectic guest-host system, where the surrounding energy landscape has a smaller length scale than the guest particle, demonstrates that a bigger particle can be faster. In this conditions, also the super-diffusion of the guest particle is observed when it diffuses into a grain boundary. Hence, fd rods are a versatile system and their self-dynamics can be accurately measured using fluorescence microscopy techniques. This is a step forward to understand the dynamics of colloidal structured systems and also in the development the new materials in which the dynamics of the particles introduced can be controlled. The extensive experimental results are completed by a whole analysis and interpretation, being very promising and challenging tracking analysis and how the parameters are determined to identify, locate and track rodlike particles and study their dynamical behavior. For this purpose, we use a Matlab particle tracking code, which has been improved from an existing version of IDL for particle tracking.

Nevertheless, we need to set some parameters within the algorithm to treat the movie and collect the right information from it. In this section, the goal is to explain the function of each algorithm as well as the criteria followed to set the different parameters within these algorithms to optimize the analysis for our systems.

Particle Location: determining the position of the particles

The first thing to consider is the type of system that we are studying and the settings of our instrument. In the Guest-Host system, for example, there are two kinds of rod-like particles labeled with different dyes: fdY21M and M13KO7 labeled with Alexa488 and Dylight550 respectively, in a matrix of a concentrated Smectic phase of fdY21M. This is something to take into account for the particle location because the size of the particles and the intensity of the dye depend directly on them. It has been observed that the life time for Dylight550 is longer than for Alexa448 due to the smaller effect of the photobleaching.

In all of the movies analyzed, we work with frame rates of 33 fps and 50 fps corresponding to 20 and 5 ms exposure time, at 100x magnification (oil immersion objective) and at binning two. The camera used is sCMOS, knowing that for the sCMOS camera one pixel is 6.5µm, the size of a pixel at binning 2 using a 100x immersion oil objective can be easily calculated using equation 1, which gives that one pixel is 0.13µm. pixelsize = camerapixelsize × binning ob jective magni f ication × ob jective lens magni f ication ×Cmount (9.1)

The theoretical values of length and width of both particles are compared by measuring the particles with ImageJ. We found a big difference in the width of the particles measured due to the resolution limitation of the camera. While the theoretical value D theo would correspond to 0.03 pixels, the minimum value for the experimental diameter D exp is 1 pixel, because this is the minimum unit of the resolution of the camera. During the process of particle location, the program approximates the candidate particles by looking at the brightest pixel. After this step, the location is refined by calculating the centroid-weighed position using a 2D-Gaussian fitting, which also determines the x (parallel) and y (perpendicular) axis and the angle with respect to the axis. This process requires certain functions and parameters as described in Table 9.2. The next step is refining the initial location to obtain a location with a sub-pixel resolution from the raw image. This is done by fitting the shape of the ith particle using a Gaussian function and applying some extra criteria to remove possible contamination locations. A 2D

Gaussian fitting is done around the particle Image I i , where the orientation and the short and long axes of the particle are specified:

I i = I 0 exp(- |r -r i | S 2 ). (9.2)
To set the size of the square around the particle (Fig. 

ε x ε y = ∑ i 2 + j 2 ≤w 2 i j I(x 0+i , y 0+ j ), (9.3) 
where I is obtained from the Gaussian fitting. The final refined particle location is (x i , y j ) = (x 0 + ε x , y 0 + ε y ). (9.4) Moreover, an extra selection is done from the centroids obtained from the 2D-Gaussian fitting, using the parameters contrast and aspect. Contrast is defined as difference in light intensity between the image and the adjacent background relative to the overall background intensity (or as described above SNR):

I 0 -d = I signal -I noise σ noise (9.5)
The values for both particles are calculated and set as 5 over all frames. This value could change depending on the movie, and the field of view, but in general, thanks to the filtering of the image for our sample it stays constant during all phases. It is the minimum value for the contrast. 

Jumping detection

The algorithm of the jump detection is a key point in the analysis of the N-SmA phase transition in Chapter 3. We recognize the jump due to a sharp transition in the trajectory which is recognized by the program. The algorithm constructs a set of scaled derivatives of the input data. First, it detects a maximum (or minimum) value that persists at a coarse scale to ensure the features we detect are significant (e.g. not due to noise). We then track these features through the other scaled derivatives; at the end, we have a reasonably confident measure of where significant edges occurred in the data, in this case, the dramatic change of position due to jumps. We obtain a profile which will be used for the identification of the jumps, as results of a convolution of the Gaussian Kernel of a width given by the amplitude of the scale parameter and the derivative of the data, as it is shown in Fig9.7. Given a threshold parameter, the program will look for those peaks that are within the value. The position of the peaks will be the position of the limit of the jumps. Then, Minimum jump is used to confirm that the difference in distance between the recognized jumps is above the value introduced. Otherwise, it will not be considered as a jump. In our case, the minimum jump is an approximately onerod length. Moreover, this algorithm has been further refined by including the parameter SD, which is the standard deviation within a residence to be considered Smectic behavior. This is done due to the limitation of the original program to distinguish the Nematic and Smectic trajectories when the jumps in the Smectic phase start to be less sharp. 

Calculation of Smectic potentials: PSF and deconvolution

After the data acquisition, all videos have been treated with a Particle Tracking Algorithm.

The particle tracking gives us information about the dynamics which has to be quantified by calculating the Mean-squared displacement, the self-van Hove function and in the case of the Smectic phase also the Smectic ordering potentials. During the data treatment process, we need to take into account several considerations as it is explained in this section.

PSF and deconvolution in Florescence microscopy

Fluorescence imaging is a versatile technique commonly used in biology to visualize cellular components, proteins or molecules of interest. Also, it is a useful tool to study dynamics of colloids, where the particles can be easily functionalized with different fluorescent dyes, and movies in real time are recorded for their further analysis. When using Fluorescence mi-croscopy, the sample is illuminated with light having the wavelength in the absorption spectrum of the fluorescence molecules of the sample, which will be excited and will emit light of a longer wavelength. This is detected by a camera appended to the microscope which will acquire a two-dimensional image of the light intensity. During this process, diffraction of light will occur, causing blurring which is a nonrandom spreading of the light caused when it passes through the lens and the sample. The final image will be a combination of the light of the infocus objects and the light caused by the blurring, making deconvolution necessary to remove blur. Blur is considered a function of the microscope system, principally of the objective lens so it can be easily modeled. For this reason, the concept of point spread function (PSF) is introduced. We consider the point spread function as the smallest point source of light. Since the camera cannot focus all this light into a perfect 2D image, the point appears spread into a 2D diffraction pattern. The convolution operation applies the PSF to every point in the object, convolving the light emitted from each point with the PSF.

The procedure of deconvolution allows us to recover the real data from this convoluted infocus object with the out of focus information. This is all due to the diffraction effect, which refers to diffraction of light when it goes through a small opening. This diffraction d due to the resolution of the microscope can be written as During data acquisition, the accuracy of the determination of the centroid of the particle plays a major role in the final results. This accuracy could decrease due to the static error (smearing due to optical aberrations) and dynamics error (due to the fact that the particle is moving) [START_REF] Savin | Static and dynamic errors in particle tracking microrheology[END_REF], and this error when determining the center of the particles propagates through the calculations, showing up for example, in the MSD as the offset.

Calculation of the Smectic potentials and deconvolution

In chapter 3 and 4 we have shown the results of raw and deconvoluted Smectic potentials.

In order to perform the deconvolution process, we first get the Point spread function (PSF).It Exposure time has an effect on the quality of the image, where background noise increases when decreasing the exposure time, and the signal of the particles smears. The direct consequence of decreasing the exposure time is the increase of the error when determining the position of the center of the particle. Thus, at different exposure times, we will get different PSF (Fig. 9.10). The effect of the smearing of the particle brightness signal due to diffusion or exposure time is also a factor to take into account when applying the deconvolution.

We first calculate the raw potentials. This is performed by converting the probability function P(z) of finding a particle at position z with respect to the middle of a layer to the smectic ordering potential U layer (z) via the Boltzmann law To obtain the total ordering potential, the particle distributions in a single layer are added periodically to themselves at all integer numbers of layer spacing L layer . All potentials can be best fitted with a sinusoidal function U layer (z) = U 0 sin(2πz/L layer ) (9.12)

We show this process in Fig. 9.11. Then, the fitted sine function is deconvoluted from the 150 9.2. CALCULATION OF SMECTIC POTENTIALS: PSF AND DECONVOLUTION PSF calculated. Hence, the deconvoluted potential is lower than the raw potential obtained from the probability. We found out that the contribution of the point spread function for the particles at high concentrations with approximately 80% stuck particles (100 mg/mL for fdY21M) in the Smectic phase makes the convolved data asymmetrical, being not possible to fit it with a sine function anymore (Fig. 9.12). The fact that particles are not commensurate within the Smectic layers gives results that we do not have Smectic ordering potentials (values below 1 K B T ) and the deconvolution of the PSF for the sine function is not valid anymore.

Finally, we simulate the convolution process using the value of U 0 for a given concentration after the deconvolution, as shown in Fig. 9.13. We first generate the sine function corresponding to the probability P(z), and then we convolute using Origin with the psf function.
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 22 Figure 2.2: a) Scheme of the Isotropic and Nematic phases. The particles in the Isotropic phase have short range positional and short range orientational order, while in the Nematic phase they have long-range orientational order and short range positional order. The arrow indicates that the transition is reversible by changing the volume fraction b) Excluded volume between two hard rods in the isotropic phase.[START_REF] Vroege | Phase transitions in lyotropic liquid crystals: bilayer and micelle stability[END_REF] 
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 23 Figure 2.3: Scheme of the Nematic and the Smectic mesophases for a system of hard rods. In the Smectic phase the particles gain position quasi long range order in 1D forming the Smectic layers. λ L indicates the layer spacing.
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 324 Figure 2.4: a) Rod-like particle translational and rotational motion. The initial and final orientations of the rod are u 0 and u t respectively and r 0 , r t are the initial position and final position. b) Interacting rods in the semi-dilute regime [51].
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 25 Figure 2.5: a) 3D representation of the G(z,t) as a function of time and position. The probability density function decreases with time as the particle diffuses from the first position. b) Log-linear representation of the self-van Hove function as a function of time. The different colors indicate different time steps. The position is normalized by the length of the rod.
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 26 Figure 2.6: Simulation of the rescale and fit self-van Hove function with Wouter de Otter, private communications) The curves are the self-van Hove function at different dt normalized and fit with Eq.2.29. The linear lines correspond to Gaussian behavior, a 2 ∼ = 1 while the exponential decays is related with the diffusive heterogeneity a 2 ∼ = 0.5.
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 27 Figure 2.7: a) Structure of fd viruses and the forming proteins [85] b) TEM image of fd virus [29].
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 28 Figure 2.8: (Left) Phase transitions for suspensions of fd as a function of ionic strength. The isotropic-cholesteric transition is indicated by the circles, with the open circles the coexisting isotropic phase. The cholesteric-smectic transition is indicated by the squares with the open symbols the highest measurable nematic phase concentration. The solid line is the second virial theoretical prediction for coexisting isotropic phase for charged semi-flexible rods [33] with L/P = 0.4 [91]. (Right) Experimental phase diagram of the dense phases showing the N-Sm and Sm-Col as a function of ionic strength[START_REF] Grelet | Hard-rod behavior in dense mesophases of semiflexible and rigid charged viruses[END_REF] 

2. 4 .Figure 2 . 9 :

 429 Figure 2.9: a) Polarized microscopy picture of the fingerprint characteristic of chiral-Nematic phase [92] b) Representation of cholesteric pitch P 0 as a function of concentration for fd (open circles) and fdY21M (solid symbols) [22] c) Model of the helical location of the coat protein on the virus surface. The left image represents the atoms of the individual proteins in different colors. In the middle, the electrostatic representation is shown, where the blue corresponds to the negative and the red the positive potentials. The right figure represents the model for the general surface of the virus; being the red dots the negative punctual charges[START_REF] Tombolato | Chiral Nematic Phase of Suspensions of Rodlike Viruses : Left-Handed Phase Helicity from a Right-Handed Molecular Helix[END_REF] 

Figure 2 .

 2 Figure 2.10: a) DIC optical micrograph of the fd smectic. The high contrast narrow blackwhite lines are the gaps between smectic layers. The particles are oriented perpendicular to the smectic planes [20]. b) Sketch of the smectic layers where ρ(z) density distribution and λ is the layer spacing [20]c)Scattered intensity obtained by SAXS that shows the different ordering within the layer for SmA (dotted black line) and SmB (solid red line) phases d) corresponding SmA and SmB schemes [19].

2. 4 .Figure 2 .

 42 Figure 2.11: a) Results of simulation for the rotational self-diffusion coefficients of rigid rods with various aspect ratios as functions of the scaled volume fraction based on Doi's theory in semi-dilute regime b) Scaled volume fraction dependence of self (black circles) and collective (red squares) rotational diffusion coefficients for rods of L/D=50 [60].

Figure 2 .

 2 Figure 2.12: a) Fluorescence image of labeled fd rods dispersed in the Nematic phase of unlabelled ones. The scale bar is 5 µm b) Two-dimensional Gaussian fit for an individual rod. The circle indicates the center of mass and the arrow the short and long axis. c) Diffusion coefficient D par (squared) and D per (triangles) as a function of concentration. The vertical line indicates the I-N phase transition [26].

Figure 2 .

 2 Figure 2.13: a) Overlay of DIC and fluorescence images, showing the Smectic layers and two fluorescently labeled particles, and the schematic representation of the jump of rod-like particles between adjacent smectic layers. The layer spacing is L 0.92 µm b) Displacement as a function of time of a given particle in the parallel (red line) and perpendicular (black line) directions to the normal of the smectic layers. The horizontal green lines indicate the residence time τ res within a layer [64] c) Evolution of the self-Van Hove function at different times. The functions are normalized to one; the z-axis is scaled by the smectic layer thickness L [64].

38 3. 1 .Figure 3 . 1 :

 38131 Figure 3.1: Scheme of the different steps carried out during the phage infection process

minutes at 4 • 40 3. 1 .

 4401 C, to separate the bacteria of the virus suspension. We put the supernatant (with the suspended viruses) in clean and sterile Erlenmeyer. In each Erlenmeyer where the supernatant has been collected we add 15g per liter of NaCl and 20g per liter of PEG 8K, working as a depletant for the negatively charged viruses. The depletion is performed to collect the viruses at low-speed centrifugation from significant volumes of LB used during the infection process. Depletion takes place under stirring during around 1h at 4 • C, until the solution is turbid. In the next step, the viruses are collected by centrifugation using the same rotor and centrifuge, at 6000g (approx. 6000 rpm) during 30 minutes at 4 • C. The pellet is re-dispersed in a small amount of distilled water and transferred to 20 mL ultra-centrifuge tubes. Another step of bacteria removal is done at higher speed using rotor F50L-8x39 in the Sorval WX Ultra 80 centrifuge, at 24000g(15000rpm) for 45 minutes at 4 • C. The supernatant containing the viruses is collected, and it needs to be concentrated by ultra-centrifugation at 215 000g (45000 rpm) for 3 hours at 4 • C. After this step of centrifugation, the viruses have precipitated forming a pellet, and the supernatant is discarded. We redisperse the pellet in approximately 20 mL of fresh TrisHCl-NaCl buffer at 20 mM and pH = 8.2 to stabilized the electrostatic PRODUCTION AND PURIFICATION OF FD BACTERIOPHAGES interactions and it is stored in the fridge at 4 • C as a stock solution for our experiments. The concentration of the viruses can be checked by getting the absorbance at 269 nm (extinction coefficient of the virus is 3.84 cm 2 /mg for fd-wt and M13 or 3.63 cm 2 /mg for fd-Y21M) with

Figure 3 . 2 :

 32 Figure 3.2: Histogram of the length of the viruses obtained from the measured of the TEM images for fdY21M (left) and M13KO7 (right). Red line is the Gaussian fit. Insets are the original TEM images.

Figure 3 . 3 :

 33 Figure 3.3: a) Image of the phase separation using Dextran between polarizers. Analysis of the intensity from the gel electrophoresis (inset) of the b) reference sample c) Isotropic phase after phase separation d) Nematic phase after phase separation .

Fig. 3 . 3 .

 33 Fig.3.3.

Figure 3 . 4 :

 34 Figure 3.4: Scheme of reaction corresponding to the functionalization of viruses with the two types of fluorescent dyes. The reaction takes place between the surface amino group and the ester groups of the dyes.

  2 and then reconcentrated at around 70 mg/mL. A dilution of the labeled stock solution ( 1mg/mL) is prepared at 10 -4 mg/mL. A set of different 3.4. OPTICAL MICROSCOPY TECHNIQUES: SAMPLE PREPARATION AND OBSERVATION dilutions are prepared in 100 mL plastic Eppendorf to get different concentrations from the Nematic phase through the Isotropic up to infinite dilution. Each dilution has a final total volume of 20 µL. Thus, we add a constant volume of tracers (in order to have a final ratio of around 1 labelled virus for 10 5 non-labelled viruses), and spacers (beads of around 500 nm diameter), and we change the ratio between of non-labeled host viruses sample and buffer (increasing the buffer and decreasing the host sample) in order to decrease concentration at each dilution. From each dilution, a volume of around 10 µL is pipetted and poured onto a previously cleaned and dried (see Appendix) glass slide (76x26 mm) and covered rapidly with a coverslip (18x18 mm). The sample is sealed with UV-glue and covered with aluminum foil.

Figure 3 . 5 :

 35 Figure 3.5: Set-up used for the guest-host experiments. (Left) Scheme of the Optosplit II Andor. The emission wavelength recovered from both dyes is split into two channels by using a dichroic mirror. (Right) Fluorescence image result of the beam split for each labeled particle in the same field of view.

5 and 2

 2 ms, with frame rates of 55 and 199 fps respectively. The corresponding readout times are 2 and 3 ms, which means that the real exposure times are 7 and 5 ms. This difference could be due to the size of the Region of Interest (ROI) used during the data acquisition. The SNR (Signal to Noise Ratio) at 2ms is very low, so we have chosen to use the data acquired at 5 ms.The correspondent polarization microscopy image was taken for each sample. For guest-host systems series of experiments, the exposure time set was 20 ms and 5ms, giving frame rates of 33 and 55 fps respectively. The movies taken at 20 ms had a duration of 15 s while the movies taken at 5ms were 5 s total. The readout time for this experiment was 10 ms. Again, for image quality reasons only 20ms data is used and because results are consistent at lowest exposure time (see Appendix). After approximately 6-7 seconds photobleaching of the Alexa488 dyes becomes apparent while Dylight-549 seems to be less photo-bleachable. To observe the two different labeled viruses at the same time in real time, a dual emission image splitter (Optosplit II Andor) was used to project two identical fields of view, corresponding to the two emission wavelengths, on to the two halves of the sensor of the ultra-fast electron-multiplying camera (Fig.3.5). Each time after the acquisition of fluorescence movie a DIC (Differential interference contrast) microscopy picture has been taken to have the correspondent Smectic background.

Figure 4 . 1 :

 41 Figure 4.1: Scheme of the liquid crystalline phase diagram of hard rods. From left to right: Isotropic, Nematic, Smectic A and Smetic B phase by increasing the volume fraction. The black arrow indicates the director n along which the particles are oriented.

4. 2

 2 Stiff fdY21M as a colloidal model rod-like particle: experimental systemWe investigate the dynamics of three Phase Transitions of the system formed by the stiff filamentous virus fdY21M: Isotropic-Nematic, Nematic-Smectic A, Smectic A-Smectic B. As already mentioned in Chapter 1, the stiff fdY21M has a persistence length of P = 9.9 µm and a contour length L = 0.92 µm, and it has a diameter of d = 6.6 nm. We take a volume from the stock solution sample to have a total mass of viruses of around 40 mg/mL, and we clean and concentrate it with an ultra centrifugation step. We re-disperse from the resulting highest concentrated (Columnar) phase, by adding TrisHCl-NaCl I = 17mM at pH = 8.2 and 3mM of NaN 3 , covering all range of mesophases and phase transitions (Fig.4.1). Samples were prepared by putting a drop of solution between a glass slide and cover slip, as explained in details in Chapter 2. Observations by optical microscopy were performed one day after sample preparation, assuming that the system has reached the equilibrium.The Nematic and Smectic phases are characterized by their optical features. The chiral-Nematic phase exhibits birefringence by observing the sample through cross polarizers, while the Smectic phase displays iridescence, due to the diffraction of white light from the layer spacing of around 1 µm (see Fig.4.2a and see Fig.4.2b at SmecticA phase). Moreover, polar-CHAPTER 4. SELF-DYNAMICS AS A SIGNATURE OF THE LIQUID CRYSTALS PHASE TRANSITION 53

Figure 4 . 2 :

 42 Figure 4.2: Polarized microscopy pictures of fdY21M samples. a) Nematic tactoids in a background of Isotropic phase. Inset: bulk isotropic-nematic phase transition. b) Smectic Phase, evidenced by a layered pattern. Inset: refraction of white light due to the Smectic pattern. All pictures are taken with a 100x magnification oil immersion objective, Numerical Aperture (NA) 1,4. Microscopy scale bar: 5 µm.

Figure 4 . 3 :

 43 Figure 4.3: Typical trajectories in the Isotropic, Nematic and Smectic phases obtained from the particle tracking algorithm. For isotropic phase random trajectories are observed, for Nematic phase are oriented in one direction and in the Smectic phase we observe the typical jumps from layers and the residence time of the particle within the layer. The z axis indicates the orientation along the director. The color scale indicates the evolution of the position in time.

Figure 4 . 5 :

 45 Figure 4.5: Log-log representation of some of the parallel (solid symbols) and perpendicular (open symbols) MSDs. a) Nematic and Isotropic (star symbols) concentrations b) High dense concentrations (from Smectic to Nematic phase). Each MSD is calculated for around 800 particles.

Fig. 4 .

 4 [START_REF] Stroobants | Columnar versus Smectic Order in Binary mixtures of hard parallel spherocylinders[END_REF] we plot the mean-squared displacement (MSD) as a function of time for the full range of concentrations studied: from the dilute Isotropic to the deep Smectic phase. For most concentrations, the MSD exhibits a linear behavior, but in the Isotropic phase close to the I-N phase transition and deep in the Smectic phase, we can distinguish two-time windows at short and long times, well defined by a change of slope. This can be interpreted as an effect of confinement when approaching the crystalline phase, which is overcome with time by the particles which escape from their local cage induced by the crowded environment.

58 4. 3 .Figure 4 . 6 :

 58346 Figure 4.6: Concentration dependence for a) The D (black solid squares), D ⊥ (red open squares) and D tot (blue symbols) b) D D ⊥ for stiff fdY21M (black squares). Inset zooms in the N-Sm Phase transition. Dashed vertical lines delimit the phase transition regimes. Error bars indicate the St.Deviation

CHAPTER 4 . 59 Figure 4 . 7 :

 45947 Figure 4.7: Diffusion exponent γ (black solid squares), γ ⊥ (black open squares) and γ iso (blue triangles). Dashed vertical lines delimit the phase transition regimes. Error bars indicate the Standard Deviation

Figure 4 . 8 :

 48 Figure 4.8: Parallel self-van Hove functions (left) and fitting of the normalization (right) at concentrations around the I-N Phase Transition at Isotropic (6,9 and 10 mg/mL) and Nematic (13,14,16 mg/mL). Fitting has been done with y = a 1 x a 2 ; being a 2 = 1 and a 2 = 0.5 if it is Gaussian or Levy distribution respectively. Insets represent the perpendicular self-van Hove function at the Nematic phase.

CHAPTER 4 . 61 Figure 4 . 9 :

 46149 Figure 4.9: Parameter a 2 obtained from the fitting of the normalized self-van Hove function as a function of time. a) Isotropic concentrations b) Nematic parallel (solid symbols) and perpendicular (star symbols). The open red stars represent the reference close to the dilute regime 0.1 mg/mL, where the behavior is almost Gaussian so values of a 2 are close to 1.

Figure 4 . 10 :

 410 Figure 4.10: Concentration dependence of a 1 and a 2 parameters obtained from the Normalized self-van Hove function at different time steps: 0.03 s (black), 0.24 s (red) and 2.4 s (blue). The slash lines determine the I-N phase transition.

Figure 4 . 11 :

 411 Figure 4.11: Time dependence of the non-gaussian parameter α 2 calculated for different concentrations in the Isotropic phase.

  a) Continuous Nematic-like diffusion; b) smooth smectic trajectory, where a transition between layers has intermediate points, such that our algorithm cannot identify as a jump; c) pure smectic trajectories where jumps are clearly recognized (the residence time τ is indicated by the green line); d) Mixed trajectories, in which we observe both Nematic and Smectic-like behavior. These are most likely particles that get into or out of a defect, see below.

Figure 4 . 12 : 67 Figure 4 . 13 :

 41267413 Figure 4.12: Typical trajectories found in the N-Sm phase transition (87 and 91 mg/mL): a) Nematic, b) Smooth Smectic c) Smectic d) Mixed trajectories. Parallel (black line) and perpendicular (red line) diffusion are represented as a function of time. For Nematic and smooth Smectic jumps are not recognized by the Step-detection program contrary to the Smectic were clear jumps are observed. The position is normalized by the L layer = 0.92 µm. Horizontal lines indicate adjacent layers.
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 414469415 Figure 4.14: Self-Van Hove function after the distinction of the dynamics for 87 mg7mL. a) Profile for the Self-Van Hove of the pure nematic like trajectories. Number of particles: 117 b) Profile of Self-Van Hove function of smooth Smectic trajectories. Number of particles: 541. Typical discrete peaks are shown at one layer distance for the smooth Smectic Self-Van Hove. 5ms data is included to increase statistics.

Figure 4 . 16 :

 416 Figure 4.16: Concentration dependence of a) Smectic potential barriers U Layer devonvoluted from the psf. Inset shows raw data for all Smectic concentrations; b) Residence time τ; c) Ratio of jumpers over no-jumpers. The vertical dashed lines represent the phase transitions.

Figure 4 .

 4 Figure 4.17: a) Region of interest (ROI) of a DIC picture of the Smectic phase formed by the host system fdY21M at 98 mg/mL. Layer spacing λ at this volume fraction is 0.95 µm. Scale bar indicates 5 µm. b) Corresponding Fast Fourier Transform (FFT) of original field of view left picture (2048x2048, binning 1, 100x, exposure time 50 ms, NA=1.4) of the Smectic system at 98mg/mL. The quantification of the lengths of the Smectic layer spacing has been done performing the FTT of the DIC pictures.

Figure 4 . 18 :

 418 Figure 4.18: The layer spacing λ as function of concentration. Left axis indicate the raw data and right axis the normalization λL rod , L rod = 0.92µm. The Smectic layered pattern starts to be observed after the SmecticB-Columnar phase transition at around 138 mg/mL and it vanishes when the Nematic-Smectic phase transition finishes at 87 mg/mL.

Figure 4 . 19 :

 419 Figure 4.19: Diffusion within the layer examples. a) DIC and fluorescence overlaying pictures at different time steps of a particle that diffuse within the layer. The blue cross is the reference starting point. The white arrow indicates the director n. Scale bar: 2 µm. b) Smectic-like trajectory as a function of time. The green line represents the time residence window where the analysis within the layer is performed. c) Typical trajectory of a non-jumping particle, which stays within the layers during the total movie time.

CHAPTER 4 . 75 Figure 4 . 20 :

 475420 Figure 4.20: MSD raw data within the layer for a) jumping particles and b) non-jumping particles. Non-jumping particles are in the range of Smectic-B concentration for the Host fdY21M. Subdiffusive behavior is reflected in the change of slope of the MSD. Each MSD is calculated for around 300-350 particles. Solid lines indicate the fitting with the power law r 2 i (t) = 2dD i t γ i .

Figure 4 . 21 :

 421 Figure 4.21: Concentration dependence of D i (upper figures) and γ i (bottom figures) within the layer for a) jumping particles b) non-jumping particles within the total time of the movie. Parallel diffusion is represented with black solid squares and perpendicular with open black triangles. Horizontal dashed line indicates the value for particles in SmB phase. The arrow indicates the range of concentration where SmB dynamics are found. Horizontal dashed line indicates the value at which the glass transition occurs. Vertical dashed lines indicate the phase boundaries. Each data point is calculated for around 400 particles.

4 . 4 77 Figure 4 . 22 :

 4477422 Figure 4.22: Ratio of pure smectic (green squares), pure Nematic (red triangles), Smooth Smectic (pink circles), mixed (blue triangles) and SmB particles (black diamonds) over the total number of positions as a function of concentration. Dashed vertical lines indicate phase transition limits. Number of particles used at each concentration is around 300.

4. 8 .

 8 APPENDIXsmectic trajectories, for which the program cannot recognize the jumps because they are not as sharp as the the pure Smectic ones. The self-van Hove function is used to do so (Fig.4.14).
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 423 Figure 4.23: Concentration dependence of Potentials and τ r for 5 and 20 ms expsosure time.

Figure 4 . 24 :

 424 Figure 4.24: Histograms of residence time in pixels at 97, 95 and 91 mg/mL for 5 and 20 ms exposure time. The vertical dashed line indicated the two different time windows for each exposure time.

Figure 5 . 1 :

 51 Figure 5.1: (a) a scheme of the Guest-Host system used in this work. The host system is a smectic phase of fdY21M viral rods, in which we dispersed tracer amounts of labeled shorthost (green, fdY21M) and long-guest (red, M13K07) rods, which are 1.3 times longer and about 3 times more flexible than the host rods. (b) Overlay of a DIC image, displaying smectic layers, and Fluorescence microscopy image, displaying the differently labeled particles. Scale bar indicates 1 µm length.

Figure 5 . 2 :

 52 Figure 5.2: Left: Overlaying of Fluorescence picture of M13KO7 particles with DIC picture at 100x magnification one day after sample preparation. Right: Same sample one week after. We observe how M13KO7 particles tend to aggregate in a inhomogeneous region of the sample.

Figure 5 .

 5 Figure 5.3 shows two typical trajectories in the middle of Smectic-A phase (93 mg/mL)

Figure 5 . 3 :

 53 Figure 5.3: Typical trajectories for guest-M13KO7 and host-fdY21M in the Smectic Phase. [fdY21M=93 mg/mL]. (a) Overlay of a DIC picture and a M13K07 guest trajectory for which rapid diffusion is observed through the layers. (b) Corresponding displacements of the M13K07 rod, parallel (red) and perpendicular (black) to the normal of the smectic layer. (c) An example of a trace for a fdY21M host particle in the lamellar phase of layer spacing Llayer. (d) Associated displacement where jumping type diffusion process is clearly evidenced. The green lines are obtained by the jump-recognition algorithm and define the residence time, τ res , that rods spend within a smectic layer before a hopping type event. Scale bars represent 1 µm.

Figure 5 . 4 :

 54 Figure 5.4: Concentration dependence of a) Smectic potential barriers U LG Layer are lower than for the short-host U SH Layer , deconvoluted for optical smearing. Solid lines represent the slope of the data. The arrow indicates the difference in concentration for the onset of the smectic potential. The inset shows raw data at [98 mg/mL]; b) Ratio of jumpers over no-jumpers; c) Residence time t. The vertical dashed lines represent the phase transitions. The open squares are the data for the fdY21M short-host particles, and the solid circles are the data for the M13KO7 long-guest ones.
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 25455 Figure 5.5: Self-Van Hove function or probability density functions in space at different concentrations for guest (left) and the host (right) particles at different concentrations for the parallel diffusion. The functions are normalized to one and the position is normalized by the thickness of the smectic layer λ . Vertical lines indicate the position of the adjacent layers with to respect z 0 .

Figure 5 . 6 :

 56 Figure 5.6: Log-log representation of the mean square displacement (MSD) parallel (top) and perpendicular (bottom) to the director plotted as a function of time for the long guest M13K07 particles in the range of high host concentrations. In blue is indicated the diffusion exponent γ obtained from the numerical fit (red lines) according to Eq.5.3
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 579357 Fig 5.7. On the contrary, after the N-Sm transition D for the short-host sharply decreases, while for the long-guest D even seems to increase. The perpendicular diffusion D ⊥ for both rods is similar in the smectic phase. The anisotropy in the diffusion is directly reflected in the ratio between D /D ⊥ which is plotted in Figure5.7c. While this ratio is already higher in the nematic phase, due to the more restricted perpendicular diffusion of the long-guest, it shows a

Figure 5 . 8 :

 58 Figure 5.8: The γ (left graph) and γ ⊥ (right graph) obtained from the mean square displacement (MSD = 2Dt γ ), as a function of concentration for host fdY21M (black open squares) and guest M13KO7 (red solid circles). The horizontal dashed line indicates the value at which the particle has diffusive rate, for γ = 1. Values for γ < 1 are sub-diffusive and γ > 1 superdiffusive. The vertical dashed lines indicate the phase transition boundaries.
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 59559 Figure5.9: Representation of the different location for the guest particle M13KO7 in the smectic background of fdY21M. In the first conformation, guest M13KO7 (red) is only in contact with two of the layers, when in the image of the right it is located within three layers.
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 69961 Figure 6.1: a) Scheme of (left) a screw dislocation and (right) an edge dislocation [154]. The Burger's vector is represented by b b) Scheme of a Twist Grain Boundary (TBG) formed by screw dislocations [155].

Figure 6 . 2 :

 62 Figure 6.2: DIC pictures at different z positions through the sample a) picture of the Smectic phase where a Moiré pattern can be observed. The black arrow indicates the director along which the particles are oriented b) edge dislocations where a Smectic layer appears breaking the continuity (dashed white lines). The yellow numbers indicate the position of the layers. The z (µm) indicates the planes normal to the director, at which each picture has been taken. Scale bar indicates 2 µm
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Figure 6 . 3 : 103 Figure 6 . 4 :

 6310364 Figure 6.3: a) Example of a particle that is located within a line defect that exhibits continuous or Nematic-like motion (left) DIC and fluorescence pictures overlay of particles located in a grain boundary (right) parallel and perpendicular position as a function of time b) Examples of a mixed trajectory (left) DIC and fluorescence picture overlay (right) examples of the position as a function of time, where the first part displays jumps and the second part is nematic-like The green lines indicate the time residence τ res between two jumps.
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 6510566 Figure 6.5: Mixed trajectories as a function of time (frames). The parallel direction is represented by the black line, the perpendicular direction by the red line and the angle by the blue line. The position has been normalized by the layer spacing. The green line represents the residence time within a layer between two jump events. Horizontal dashed lines indicate one layer distance.

Figure 6 . 7 :

 67 Figure 6.7: Dynamics for a Nematic-like particle within a defect a) log-log MSD as a function of time for parallel (solid) and perpendicular (open) direction at 100 (black) and 98 mg/mL (red). The red lines correspond to the fit using a power law. The gamma values represent the slope of the MSD b) D i obtained from the fitting. Solid symbols represent the data of the Nematic-like particles within a defect and the open symbols the data obtained in the previous chapter for the first Nematic concentration after the Smectic phase. The error bar is the standard deviation of the different values obtained from all the movies at a fixed concentration.

109 Figure 6 . 8 :

 10968 Figure 6.8: Log-log representation of the MSD of a) Nematic part and b) Smectic part of the mixed trajectories. Solid symbols represent the parallel direction, and the open symbols represent the perpendicular direction. The red lines correspond to the fit using a power law. The gamma values represent the slope of the MSD.
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 110369 Figure 6.9: Comparison of a) D and b) D ⊥ between pure Nematic particles within defects (black squares) and nematic part of the mixed trajectories. The error bar represents the standard deviation from the values obtained from all particles analyzed at each concentrations.

CHAPTER 6 . 111 Figure 6 . 10 :

 6111610 Figure 6.10: Reorientation event of a long-guest particle within a region where two orientations of the Smectic phase are observed (DIC picture, right). Fluorescence images show the raw data where the dashed red line is drawn perpendicular to the long axis of the labeled particle and indicates its position at the initial time and the yellow dashed line indicates the final position of the particle after the reorientation. ∆θ indicates the angle between the initial and the final positions. Scale bar indicates 1 µm
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  system and the range of concentrations used. Then, we show and compare the rotational D rot and translational diffusion D trans coefficients for both particles, and we analyze the self-van Hove function to characterize the nature of the diffusivity at each concentration.

Figure 7 . 1 :

 71 Figure 7.1: Representation of raw trajectories of a) isotropic diffusion b) reptation or skating diffusion. The red cylinder represents the rod particle at each point where the particle needs to reorient to diffuse. The color scale indicates the evolution of the position in time.

119 Figure 7 . 2 :

 11972 Figure 7.2: Time dependence at different concentrations of a) Log-log representation of the MSD for the two viruses at different concentrations b) P2 parameter. The red line corresponds to the fit up to the time where the particle diffuses by L/2.

) 120 7. 3 .

 1203 STUDY OF DYNAMICS where d = 2 indicates the dimension of the system and D r is the rotational diffusion coefficient. The rotational and translational diffusion coefficients are shown in Fig.7.3. Rather than

7 . 4 121 Figure 7 . 3 :Fig. 7 . 5 .Figure 7 . 4 :

 74121737574 Figure 7.3: Concentrations dependence of a) D trans calculated from the slope of the MSD fit with a power law y = ax b .The dashed colored lines represent the I-N phase transition for each system b) D rot , calculated from the < P 2 (Θ t ) > parameter function as exp (-2dD 0 r t) . The blue line indicates the slope obtained from Doi's prediction, and the red and black lines are the slopes obtained from the fitting of the data for M13KO7 and fdY21M, respectively.
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 712375 Figure 7.5: Time dependence for fdY21M (black squares) and M13KO7 (red circles) of (left) the a 1 parameter and (right) the a 2 parameter both obtained from the fitting of the re-scaled self-van Hove function.

First, for

  the N-SmA phase transition, we made a dynamical selection between Smectic and CHAPTER 8. CONCLUSIONS AND OUTLOOK 129 Nematic trajectories, which is possible due to the different dynamical behavior of particles in these two mesophases. This selection is performed using a step detect algorithm, from which Nematic and Smectic trajectories are distinguished. Coexistence of Nematic and Smectic regions observed by optical microscopy are in agreement with the corresponding dynamical behavior of the tracer rods.

Furthermore, we have

  observed phase separation of the longer particles with time. This phase separation is expected due to the size mismatch. Recently, it has been shown by simulations that at relatively short time scales, where caging of particles by neighbors predominates the kinetics; the more flexible particles move faster in a pure Smectic phase. The flexibility will CHAPTER 8. CONCLUSIONS AND OUTLOOK 131

134 9. 1 .Figure 9 . 1 :

 134191 Figure 9.1: Different steps of particle tracking method.
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 9293 Figure 9.3: Different values of the filtering parameter bp2. When increasing this value we increase intensity of the brightest pixel but also the image becomes blurry.

139 Figure 9 . 4 :

 13994 Figure 9.4: Fluorescence images of two particles that overlap in the image and them separate with time due to parallel diffusion. The yellow circles indicate the two different particles, p1 and p2.

Figure 9 . 6 :

 96 Figure 9.6: Flow chart of the particle tracking program.
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 9697 Figure 9.7: a) Raw position versus time of the jumping particle b) Scales created from the derivatives of the position c) Detection of the minima and maxima from the scales by using the parameter threshold, indicated by the horizontal dashed line.

Fig. 9 .

 9 Fig.9.7c illustrates the importance of thresholding. Here we have used a high initial threshold only to find very prominent features of the data set. Only the two strongest positive step edges are detected. For a given threshold, n, the edge detection application will compare a local maximum, in the derivative to the global maximum.

Figure 9 . 8 :

 98 Figure 9.8: Flow chart of the step detection program to distinguish Nematic and Smectic trajectories.

7 )Figure 9 . 9 :

 799 Figure 9.9: Convolution of two functions and the results obtained.

  has been obtained with immobile viruses fixed on the glass coverslip of the sample under the same experimental conditions, as shown in Fig.9.10. For a 100x oil objective of NA 1.4, the resolution for the sCMOS camera used in the experiments is 0.2 µm. Our point spread function represents the smearing the particle location due to the limited experimental resolution. One of the key points of using fd bacteriophage for the study of dynamics is the colloidal scale (with an aspect ratio L/D larger than 100) that enables imaging of individual viruses and to observe them as anisotropic particles.Despite the deconvolution is most of the times done directly during the image processing, we applied the deconvolution analytically on the raw data obtained from the image analysis. For the calculation of the Smectic ordering potentials, we measure fluctuations within the layer, collecting positions for each fluctuation from the center of the Smectic layer. At high concentrations in the Smectic phase, we have completely stuck particles that are not fluctuating. Thus, this signal has a maximum probability, and it needs to be deconvoluted from the final signal of all particles, which is the convolution of fluctuating particles and completely stuck particles.

Figure 9 .

 9 Figure 9.10: a) Fluorescence picture for 20 and 5 ms exposure times. For low exposure times the SNR is lower. b) Point spread function for 5 and 20 ms exposure times obtained from the probability of the non-moving particles close to the phase transition

Figure 9 .

 9 Figure 9.11: a) Probabilities P(z) obtained from the histogram of position of the particle from the middle of the layer (inset). b) Raw Potentials U layer (black squares) obtained from the P(z) using the Boltzmann factor for Smectic Potentials. Red line is the fit with the sine function. c) Representation of the P(z) before deconvolution (black line) and after deconvolution (blue line) from the PSF (red line).

Figure 9 .

 9 Figure 9.12: a) Probabilities obtained for 3 concentrations in Smectic phase b) Corresponding raw potentials before the deconvolution. The psf is represented with pink color.

Figure 9 . 13 :

 913 Figure 9.13: Simulation of the convolution of the real potential and the psf at 91 mg/mL a) Probabilities P(z) obtained from the sine function (Eq) b) Raw Potentials U layer (black squares) obtained from the P(z) using the Boltzmann factor for Smectic Potentials. Red line is the fit with the sine function. c) Representation of the P(z) before deconvolution (black line) and after deconvolution (blue line) from the PSF (red line).

  

  

  

  

  

  In this thesis, we use a method to analyze the self-van Hove function developed by Wouter den Otter ( the University of Twente, private 2.3. SELF-DIFFUSION EQUATION FOR RODS AND DIFFUSION COEFFICIENTS:FROM SEMI-DILUTE REGIME TO HIGH CONCENTRATED PHASES communications). This method quantifies the deviation from the Gaussian behavior with the shape of the self-van Hove function, as well as the Gaussian behavior itself. Thus, from the

	probability density function G(z,t) represented in Fig2.5b,	
	G(z,t) =	G 0 √ t	exp -(	∆z t	)	(2.26)
	the probability G(z,t) is rescaled by the	√ dt and the position by z/ √ dt to cancel the effect
	of time and to represent the squared position z 2			

√ tG(z,t) = G 0 exp -(a 1 ∆z 2 ) (2.27)

Next, we plot the Ln(G(z,t) * √ dt), such that for in case of a purely diffusive process all curves are linear.

Table 3 .

 3 

	Dye name	Molar Weigth (g/mol)	Virus	Excitation/Emission (λ )
	Alexa Fluor 488 5-TFP	884.91	fdY21M	495/519
	Dylight 549 NHS Ester	982	M13KO7	556/571

1: Resume of dyes used and the correspondent virus labeled. λ (nm)

Table 3 . 2 :

 32 The different systems used in this thesis

	System	Viruses	I(mM)/pH
	Pure host-host	fdY21M-Alexa488 in fdY21M	110/8.2
	Pure host-host	M13KO7-Dylight549 in M13KO7	110/8.2
	Guest-host	M13KO7-Dylight549 and fdY21M-Alexa488 in M13KO7	20/8.19

Prepararation of the guest-host systems: guest M13KO7-Dylight549 and fdY21M-Alexa (Phase Transition and Smectic experiments). The buffer used in this experiment is TrisHCl-NaCl at 17 mM and pH=8.19 in which we have added 3 mM of NaN 3 to avoid any bacteria growing, being an inhibitor for gram-negative bacteria

[START_REF] Keilin | Inhibitors of catalase reaction[END_REF][START_REF] Snyder | Sodium azide as an inhibiting substance for gramnegative bacteria[END_REF][START_REF] Forget | Sodium azide selective medium for the primary isolation of anaerobic bacteria[END_REF]

. The host system is formed by non-labelled fdY21M at around 70 mg/mL in which labeled fdY21M-Alexa488 and M13KO7-Dylight549 are added directly to have a final ratio of around 1 labeled virus for 10 5 non-labelled viruses. The sample is then re-concentrated to a high dense phase (Columnar) of about 140 mg/mL. Dilutions are done by adding small amounts of the buffer in the same tube and homogenizing by vortexing and centrifuging at low speed. The final sample is prepared by pipetting around 8 -10 µL onto a glass slide. When covering it with the coverslip is important to shear to homogenize the sample. We use two stripes of a thin layer of a polymer film (12 µm) as a spacer, placed at the edge between the coverslip and glass slide. The sample is sealed with UV-glue and covered with aluminum foil. All samples are observed one day after sample preparation to ensure they are in equilibrium.

Table 7 . 1 :

 71 Times at which the viruses have diffuse by half rod length L/2

		Viruses	
	C [mg/mL] fdY21M M13KO7
	0.1	0.05 s	0.15 s
	1	0.3 s	0.3 s
	3	0.5 s	0.4 s
	9	0.7 s	0.65 s
	11	1.2 s	0.7 s
	have more rotational freedom. The P2 parameter is fitted for each concentration up to the time

Table 9 . 1 :

 91 Theoretical (L t ) and experimental length L exp , experimental diameter D exp .

	Units
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Single Particle dynamics of Guest-Host Smectic system of colloidal filamentous particles

In this chapter, we investigate the dynamic behavior of long guest rod-like particles (M13KO7) immersed in liquid crystalline phases formed by shorter host rods (fdY21M). We use direct visualization and tracking at single particle level using fluorescence microscopy, thanks to the presence of labeled viruses. We quantify Nematic-like diffusion of the guest particle for the low concentration of the host Smectic-A phase, confirming that they are not commensurate in the Smectic layers. At higher concentrations, the long particles feel the stronger Smectic potential, and typical discrete peaks in the self-Van Hove functions are observed. In the crystalline smectic-B phase, the long guest particles which are not commensurate with the layer spacing, are still mobile as they generate their own voids in their adjacent layers. These results suggest that dynamics can be controlled by tuning the guest particle size and the packing density of the host system.

Conclusions and outlook

This Thesis provides a comprehensive study of the self-dynamics in the liquid crystalline phases and at phase transitions of colloidal rods, using as a model colloidal system the filamentous fd viruses. Concretely, we suggest an approach to characterize the phase transition dynamically. Moreover, we give insight on how the self-dynamics of rod-like particles is affected by the structure of the mesophase, as well as by the physical properties of the particles (length and flexibility).

The fd viruses have been used for decades as a model colloidal system. These biological rods are ideal model systems because they have an aspect ratio larger than 100, they are highly monodisperse, and they form liquid crystalline phases only by entropy driven forces, as Onsager predicted for the I-N phase transition. The fd viruses can be labeled with florescence dyes, which allows for performing the single particle tracking to determine the self-dynamics.

In the case of colloidal lyotropic liquid crystals, the self-dynamics can be used to estimate the free volume of the system, since its increase or decrease affects the dynamical behavior at the single particle level. Hence, self-dynamics can be a probe of the entropy of the system. One of the questions that we address in this Thesis is if the self-Van Hove function can be used to characterize dynamics around and at the phase transitions. Also, we have explored if it can be used to measure the deviation from the diffusive behavior, that commonly is measured with the non-Gaussian parameter [START_REF] Hurley | Non Gaussian behavior and the dynamical complexity of particle motion in a dense two dimensional liquid[END_REF]. Deviation from the Gaussian behavior is interpreted as a result of anomalous diffusion, generally caused by crowding. This behavior has also been observed in the colloidal glass-transition where the self-van Hove function evolves from a Gaussian into a Levy-flight, where dynamical heterogeneity is found [START_REF] Weeks | Three-Dimensional Direct Imaging of Structural Relaxation Near the Colloidal Glass Transition[END_REF][START_REF] Weeks | Subdiffusion and the cage effect studied near the colloidal glass transition[END_REF]. In most of the experimental studies of self-dynamics of fd viruses in their different liquid crystalline mesophases, detailed Appendix 1

Two-dimensional single particle tracking for the study of dynamics

Fluorescence microscopy allows us to collect good quality images of the fluorescence-labeled particles to perform the particle tracking analysis. Single-particle tracking is a different approach appeared in the 80's and combined high spatial and temporal resolution. It provides information that is not available by Fluorescence Recovery After Photobleaching (FRAP) or other methods that study the collective diffusion of the particles of the system. Single-particle tracking is based on the individual location of a particle with micro or nanometer precision, measuring its individual dynamics as a function of time. However, it is necessary to develop algorithms to get the trajectories and analyze the diffusion obtained from the image analysis.

The centroids of the particles are located and continuously linked in time between frames to generate the trajectories, as shown in Fig9.1. Later, these trajectories can be analyzed using different approaches, such as the Mean squared-displacement or the self-van Hove function, as we have seen throughout this thesis.

At the same time, the big disadvantages are the background fluorescence noise produced by particles out of focus and the photobleaching of dyes over time. Also, different factors influence the quality of the video microscopy: exposure time, frame rate, detection noise, etcetera.

The aim of this section is to present the algorithms used to perform the single particle The process of particle location collects the information frame by frame, until a chosen maximum number of frames. Moreover, specific parameters must be set to perform the particle location. However, how do we know which are the right parameters to perform the analysis?

It is important to consider the physical meaning of these parameters and to take into account the limitations of the instrument. As mentioned before, there are some factors that influence the quality of the image, coming from the instrument:

• Exposure time and frame rate: it depends on the sensitivity of the camera, the intensity of fluorescence emission of the particles and the overall tolerance noise.

• Detection noise: the noise is the standard deviation of the brightness in the region that excludes in-focus and out of focus particles. The SNR (signal to noise ratio) is proportional to the rate of photoelectrons conversion in the process that takes place in the detector, which converts light power to electrical current, on an active-pixel sensor (CMOS).

The SNR can be improved increasing the light or integration time Furthermore, some parameters depend on the sample: the concentration of the labeled particles added, the concentration of the sample and as a consequence the phase of the sample (Smectic, Nematic, isotropic), and also the type of dyes used to label our particles. The parameters for the particle location algorithm are shown in Tab.9.3. The particle location algorithm is divided into different stages as explained below.

Filtering. The first step in the particle location is the filtering of the raw image to avoid contrast gradients that complicate the process of identification of particles. The image has nonuniform background intensity, and it must be corrected before the analysis. For that purpose 

Location of particles.

Once the image is already filtered, the function pkfnd.m estimates the brightest centroid at pixel-level accuracy from which the initial positions of the particles (x 0 , y 0 ) are obtained. For this estimation, the minimum intensity and the minimum distance between particles parameters must be determined. The minimum intensity parameter is just the intensity threshold value for identifying the brightest pixels. We can determine the maximum value in Matlab. The bigger the value, the fewer particles we will keep. This parameter is tested for each concentration. The effect of the photobleaching in the minimum intensity needed is also tested with the program FirstLasFrame_Analysis.m, which compares the percentage of particles located between the first and the last frame. The limit distance between to particles, the si parameter, is applied in order to avoid two particles to be considered the The aspect parameter sets the minimum aspect ratio for each particle to be considered.

When the particles are beads, the aspect ratio is 1. In our case, we have anisotropic particles, which means that the aspect ratio is bigger than one. In pixels we have an aspect ratio of about 2-3, bur to be sure that all particles are located even if some of them get out of focus, we decided to set this value between 1-2.

With all these parameters set, we use the program FirstLastFrame A nalysis.m to check if they are the correct ones for our system. Since there is an effect of photobleaching, this program allows us to also compare the first and last frame with the same parameters, and confirm that we can keep them constant with time. Since there are two types of particles, we will have the option to set them for each particle. Less than 20% of particles are lost from the first frame to the last frame.

In conclusion, having different factors in mind and also the physical properties of our sample, we set parameters to perform our analysis. For other systems, with different physical properties than the viruses, following these steps, it would be possible to do a proper analysis.

Particle tracking: connecting the position in time

Once the particles are located frame by frame, the next step is to generate the traces by relating in time the different particle positions. This is done by inputting the data file with the coordinates and also setting the parameters for the particle tracking. The algorithm links the positions by using separation-based criteria, such as the nearest-neighbor distance. The pairs of localizations showing the minimum distance are selected as the most likely situation of the same particle in successive frames and are linked together. Repeating this procedure over all the particles and all the frames finally provide the reconstructed trajectories. As explained before, there are some parameters that depend on the type of particle that we are analyzing. In our sample, we have observed that the dynamics of M13KO7 are slightly different from fdY21M, so this is a key point to build consistent trajectories for each particle.

Also, the mesophase affects the construction of trajectories, since for example in the Smectic phase we have almost no particles going out of focus within the time duration of the movie, while in the Isotropic phase particles are continuously going in and out of focus. The parameters shown in Table 9.5, indicate the main criteria followed to have a well-connected trajectory.

The values of these parameters change for each virus and each mesophase as it is reported at the end of this Appendix.

After obtaining the trajectories, the next step is the calculation of the Mean squared displacement. The trajectories need first to be centered and rotated, using the CenRotLoc function. It centers the trajectories on the artificial XY axis that Matlab creates. After, the traces x j (t i + m∆t)x j (t i )) 2 , (

This process is done to each single particle and averaged over all of them in each movie.

The further analysis is done by Origin to get the diffusion coefficients and exponents from the MSD. At the same time, the program creates a list with the information at each time step to calculate the self-van Hove function using the program Self-van Hove calculation.